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Discrete nonlinear systems have become increasingly impor-
tant in the past decades. To understand them, new analytical
and numerical methodologies have been proposed. More
accurate predictions of the solutions of systems related to
physical problems are investigated in that way. It is worth not-
ing that qualitative and quantitative features of discrete non-
linear modeling problems and simulation techniques have
attracted a significant amount of attention from researchers
in different branches of applied sciences. �is is due to
the fact that features of the solutions are crucial to our
understanding of many important phenomena in nature and
society. In fact, the science and engineering communities
have been benefited tremendously from recent progress in the
area. Interactions between the praxis and new mathematical
methodologies have also reached a new high level.

Based on the above, this special issue aims at keeping
track of the most relevant developments in the analysis and
simulations of discrete nonlinear systems that appear in
nature and society. More precisely, we pay special attention
to analytical features of the solutions of the systems as well
as the analysis of interactive computational strategies. Both
deterministic and stochastic paradigms arising from nature
and society are of interest, and pertinent applications to
the resolution of realistic problems are studied. Continuous
methods are within our interest as far as they provide
helpful or insightful tools for the analysis. Challenging issues
pertaining to the analysis of (integer- and fractional-order)
partial differential equations and underlying approximation
techniques are also of high relevance.

�ere are 49 research papers being received and under-
gone thorough peer-reviewing processes.�ere are 15 articles
accepted and published in this special issue. �ey represent
the most recent developments in the fields, with applications
to sciences and technologies.�e contributions focus primar-
ily on issues that include the following:

(i) solvable time-inconsistent principal-agent problems;
(ii) non-smooth vibration characteristics of gear pair

systems with periodic stiffness and backlash;
(iii) applications of the general residual power series

method to problems with variable coefficients;
(iv) Laplace transformmethod for pricing American CEV

Strangles option with two free boundaries;
(v) Triopoly dynamic games with free or bundling mar-

kets in telecommunication industry;
(vi) Ising models of user behavior decision in network

rumor propagation;
(vii) uniqueness of the solution for a class of differential

system with coupled integral boundary conditions;
(viii) asymptotic properties of solutions to second-order

difference equations of Volterra type;
(ix) positive periodic solutions for generalized epidemic

models with time-varying coefficients and delays;
(x) spatial dynamics for generalized Solow growth mod-

els;
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(xi) uniqueness and finite-time stability of solutions for
nonlinear fractional delay difference systems;

(xii) evolution of electoral preferences for regimes of three
political parties;

(xiii) hybrid ant colony optimization for dynamic multide-
pot vehicle routing problem;

(xiv) optimal control strategies for discrete-time smoking
models with saturated incidence rates;

(xv) mean-square stability of semi-implicit Euler methods
for the model of technology innovation network.
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The aim of this paper is to study and investigate the optimal control strategy of a discrete mathematical model of smoking with
specific saturated incidence rate. The population that we are going to study is divided into five compartments: potential smokers,
light smokers, heavy smokers, temporary quitters of smoking, and permanent quitters of smoking. Our objective is to find the best
strategy to reduce the number of light smokers, heavy smokers, and temporary quitters of smoking. We use three control strategies
which are awareness programs through media and education, treatment, and psychological support with follow-up. Pontryagins
maximum principle in discrete time is used to characterize the optimal controls. The numerical simulation is carried out using
MATLAB. Consequently, the obtained results confirm the performance of the optimization strategy.

1. Introduction

Following the WHO report on the global tobacco epidemic,
which was published on 19 July 2017 in the United Nations
High-Level Political Forum for Sustainable Development in
New York, tobacco consumption is the world’s leading cause
of death with a rate of more than 7 million deaths a year [1].
Tobacco cosumption is known as the main cause of death
of lethal diseases such as lung cancer, oral cavity, stomach
ulcer, and a probable cause of death for cancers of the larynx,
bladder, pancreas, and renal pelvis. Comparative data on
smoking show that the risk of heart attack among smokers
is 70% higher than that of nonsmokers. In addition to that,
the economic costs are also enormous totaling more than
1400 billion dollars (US $) in health expenditure and loss of
productivity [2].

Lung cancer in smokers is ten times higher than in
nonsmokers, and one in ten smokers will die of lung
cancer. In Spain, it is estimated that about 55,000 deaths
a year are attributable to smoking [3]. However, smoking-
related illnesses cause more than 440,000 deaths each year

in the United States and more than 105,000 deaths in
the United Kingdom each year. Moreover, about 4 mil-
lion people die from smoking-related diseases worldwide
and half of all smokers die from smoking-related diseases,
while the number of new smokers continues to increase
[4].

As far asMorocco is concerned, a new report by theWorld
HealthOrganization revealed that the number of smokers has
notably risen, expecting it to reach over 7million by 2025 [5].
The WHO has urged the Moroccan government to increase
taxes on cigarettes and other tobacco products to discourage
use and decrease the rising number of smokers across the
country. In its Global Report on Trends in Prevalence of
Tobacco Smoking in 2015, WHO estimated that up to 21%
of Morocco’s population (approximately 4,820,500 persons)
smoked in 2010.

More specifically, the report noted that about 42% ofmen
and up to 2% of women smoked in Morocco in 2010. It goes
on to add that the highest rate of smoking among men was
seen in the 25–39 age groups and 15–24 age groups among
women. WHO recommends that at least one adult survey
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and one youth survey be completed every five years. In the
event that the Moroccan government does not adopt new
measures to discourage the use of tobacco, the UN estimated
that the number of smokers could be over 7 million by
2025. Member states, including Morocco, adopted a volun-
tary global target to reduce tobacco use 30% (smokers and
smokeless) by 2025. However, based on the current smoking
trend, Morocco will not achieve the target, WHO concluded
[6].

Mathematical modeling of smoking has been studied
by many researchers [3, 7–9]. We observe that most of
those researchers focused on the continuous-time models
described by the differential equations. It is noted that, in
recent years, more and more attention has been given to
discrete time models (see [10–13] and the references cited
therein). The reasons for adopting discrete modeling are as
follows: Firstly, the statistical data are collected at discrete
moments (day, week, month, or year). So, it is more direct
and more accurate and timely to describe the disease using
discrete timemodels than continuous timemodels. Secondly,
the use of discrete time models can avoid somemathematical
complexities such as choosing a function space and reg-
ularity of the solution. Thirdly, the numerical simulations
of continuous time models are obtained by the way of
discretization.

Based on the aforementioned reasons, we will develop
in this paper a discrete time model studying the dynamics
of smokers and introduce a saturated incidence rate to be
analysed in detail in the next section. Also, we add to our
model two elements which were not taken into consideration
in the most previous researches. Those two elements are a
group of light smokers who quit smoking permanently and
a group of heavy smokers who died due to diseases generated
by the excess of smoking.

In addition, in order to find the best strategy to
reduce the number of light smokers, heavy smokers, and
temporary quitters of smoking we will use three control
srategies which are awareness programs through media
and education, treatment, and psychological support with
follow-up.

In this paper, we construct a discrete PLSQ𝑡Q𝑝 Math-
ematical Smoking Model with Specific Saturated Incidence
Rate and introduce the control of awareness measures. In
Section 2, the mathematical model is proposed. In Section 3,
we investigate the optimal control problem for the proposed
discrete mathematical model. Section 4 consists of numeri-
cal simulation through MATLAB. The conclusion is given in
Section 5.

2. Formulation of the Mathematical Model

In this section, we present a discrete PLSQ𝑡Q𝑝 Mathemat-
ical Smoking Model. The population under invistegation is
divided into five compartments: potential smokers (non-
smokers) P𝑘, light smokers L𝑘, heavy smokers S𝑘, smok-
ers who temporarily quit smoking Q𝑡𝑘, and smokers who
permanently quit smoking Q𝑝

𝑘
, respectively. Following what

has been done in many works [2], we introduce a saturated
incidence rate 𝛽𝑖(𝑋𝑘𝑌𝑘/(1 + 𝑚𝑗𝑌𝑘)) in discete time (where
𝑋𝑘𝑌𝑘 ∈ {𝑃𝑘𝐿𝑘, 𝑃𝑘𝑆𝑘, 𝐿𝑘𝑆𝑘}, 𝛽𝑖 −for 𝑖 = 1, 2, − is the contact
rate between 𝑋𝑘 and 𝑌𝑘, 𝑚𝑗 −for 𝑖 = 1, 2, 3− is a positive
constant) to describe the crowding effect among potential
smokers, light smokers, and heavy smokers.𝛽𝑖𝑋𝑘𝑌𝑘measures
the infection force of the smoking and 1/(1+𝑚𝑖𝑌𝑘) describes
the crowding effect and the “psychological” effect from the
behavioral change of the individuals 𝑌𝑘 when their number
increases.

2.1. Description of the Model. The compartment P: the
potential smokers (nonsmokers), poeple who have not
smoked yet but might become smokers in the future. This
compartment is increased by the recruitment of individials
at rateΛ and P is decreased with the rates 𝛽1(1−𝜌)(𝑃𝑘𝐿𝑘/(1+𝑚1𝐿𝑘)), 𝛽1𝜌(𝑃𝑘𝑆𝑘/(1 + 𝑚2𝑆𝑘)) and some of the poeple vacate
at a constant death rate of 𝜇 due to the total natural death rate
𝜇𝑃𝑘.

The compartment L: the occasional smokers whose
number increases when the potential smokers start to smoke
with a saturated incidence rate 𝛽1(1 − 𝜌)(𝑃𝑘𝐿𝑘/(1 + 𝑚1𝐿𝑘)).
Some other individials will leave the compartment with
the saturated incidence rate 𝛽2(𝐿𝑘𝑆𝑘/(1 + 𝑚3𝑆𝑘)), the rate
𝛽3𝐿𝑘, and 𝜇𝐿𝑘. Here, 𝛽3 is the rate of light smokers who
permanently quit smoking.

The compartment S: the people who are heavy smokers
and whose number increases by the saturated incidence rate
𝛽1𝜌(𝑃𝑘𝑆𝑘/(1 + 𝑚2𝑆𝑘)), 𝛽2(𝐿𝑘𝑆𝑘/(1 + 𝑚3𝑆𝑘)) and the rate 𝛼 of
temporary quitters who revert back to smoking. Some others
will leave at the rates 𝛾𝑆𝑘, 𝜆𝑆𝑘, and 𝜇𝑆𝑘. Here, 𝜆 is the rate
of death due to heavy somking and 𝛾 is the rate of quitting
smoking.

The compartment 𝑄𝑡: the individuals who temporarily
quit smoking, whose number increases at the rate 𝛾(1 − 𝜎)𝑆𝑘
and decreases at the rates 𝜇𝑄𝑡𝑘 and 𝛼𝑄𝑡𝑘, where (1 − 𝜎) is the
fraction of heavy smokers who temporarily quit smoking (at
a rate 𝛾).

The compartment 𝑄𝑝: the individuals who perma-
mently quit smoking, whose number increases with the
rates 𝛾𝜎𝑆𝑘 and 𝛽3𝐿𝑘. Some people of this compartment
will die with the rate 𝜇𝑄𝑝

𝑘
, where 𝜎 is the remaining

fraction of heavy smokers who permanently quit smoking
(at a rate 𝛾).

The following diagram will demonstrate the flow direc-
tions of individuals among the compartments. These direc-
tions are going to be represented by directed arrows in
Figure 1.

2.2. Model Equations. Through the addition of the rates
at which individuals enter the compartment and also
by subtructing the rates at which people vacate the
compartment, we obtain an equation of difference for
the rate at which the individuals of each compartment
change over discrete time. Hence, we present the smoking
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Figure 1: The flow between the five compartments 𝑃𝐿𝑆𝑄𝑡𝑄𝑝.

infection model by the following system of difference
equations:

𝑃𝑘+1 = Λ + (1 − 𝜇) 𝑃𝑘 − 𝛽1 (1 − 𝜌) 𝑃𝑘𝐿𝑘
1 + 𝑚1𝐿𝑘

− 𝛽1𝜌 𝑃𝑘𝑆𝑘
1 + 𝑚2𝑆𝑘

𝐿𝑘+1 = (1 − 𝜇) 𝐿𝑘 + 𝛽1 (1 − 𝜌) 𝑃𝑘𝐿𝑘
1 + 𝑚1𝐿𝑘

− 𝛽2 𝐿𝑘𝑆𝑘
1 + 𝑚3𝑆𝑘 − 𝛽3𝐿𝑘

𝑆𝑘+1 = (1 − 𝜇 − 𝜆 − 𝛾) 𝑆𝑘 + 𝛽1𝜌 𝑃𝑘𝑆𝑘
1 + 𝑚2𝑆𝑘

+ 𝛽2 𝐿𝑘𝑆𝑘
1 + 𝑚3𝑆𝑘 + 𝛼𝑄

𝑡
𝑘

𝑄𝑡𝑘+1 = (1 − 𝜇 − 𝛼)𝑄𝑘 + 𝛾 (1 − 𝜎) 𝑆𝑘
𝑄𝑝
𝑘+1

= (1 − 𝜇)𝑄𝑝
𝑘
+ 𝛾𝜎𝑆𝑘 + 𝛽3𝐿𝑘

(1)

3. The Optimal Control Problem

Thestrategies of control that we adopt consist of an awareness
program through media and education, treatment, and psy-
chological supportwith follow-up.Ourmain goal in adopting
those strategies is to minimize the number of occasional
smokers, heavy smokers, and the temporarily quitters of
smoking during the time steps 𝑘 = 0 to 𝑇 and also
minimizing the cost spent in apllying the three strategies.
In this model, we include the three controls 𝑢𝑘, V𝑘, and 𝑤𝑘

that represent consecutively the awareness program through
media and education, treatment, and psychological support
with follow-up as measures at time 𝑘. So, the controlled
mathematical system is given by the following system of
difference equations:

𝑃𝑘+1 = Λ + (1 − 𝜇)𝑃𝑘 − 𝛽1 (1 − 𝜌) 𝑃𝑘𝐿𝑘
1 + 𝑚1𝐿𝑘

− 𝛽1𝜌 𝑃𝑘𝑆𝑘
1 + 𝑚2𝑆𝑘

𝐿𝑘+1 = (1 − 𝜇) 𝐿𝑘 + 𝛽1 (1 − 𝜌) 𝑃𝑘𝐿𝑘
1 + 𝑚1𝐿𝑘

− 𝛽2 𝐿𝑘𝑆𝑘
1 + 𝑚3𝑆𝑘 − 𝛽3𝐿𝑘 − 𝑐1𝑢𝑘𝐿𝑘

𝑆𝑘+1 = (1 − 𝜇 − 𝜆 − 𝛾) 𝑆𝑘 + 𝛽1𝜌 𝑃𝑘𝑆𝑘
1 + 𝑚2𝑆𝑘

+ 𝛽2 𝐿𝑘𝑆𝑘
1 + 𝑚3𝑆𝑘 + 𝛼𝑄

𝑡
𝑘 − 𝑐2V𝑘𝑆𝑘

𝑄𝑡𝑘+1 = (1 − 𝜇 − 𝛼)𝑄𝑡𝑘 + 𝛾 (1 − 𝜎) 𝑆𝑘 − 𝑐3𝑤𝑘𝑄𝑡𝑘
𝑄𝑝
𝑘+1

= (1 − 𝜇)𝑄𝑝
𝑘
+ 𝛾𝜎𝑆𝑘 + 𝛽3𝐿𝑘 + 𝑐1𝑢𝑘𝐿𝑘 + 𝑐2V𝑘𝑆𝑘

+ 𝑐3𝑤𝑘𝑄𝑡𝑘,

(2)

where

𝑐𝑖 = {{
{
1
0 for 𝑖 = 1, 2, 3. (3)
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Table 1: Interpretations according to the values of 𝑐𝑖.
𝑐1 𝑐2 𝑐3 Interpretations
0 0 0 Discrete smoking model (without controls)
1 0 0 Discrete smoking model with awareness program: (u)
0 1 0 Discrete smoking model with treatment: (v)
0 0 1 Discrete smoking model with psychological support along follow-up: (w)
1 1 0 Discrete smoking model with (u) and (v)
1 0 1 Discrete smoking model with (u) and (w)
0 1 1 Discrete smoking model with (v) and (w)
1 1 1 Discrete smoking model with (u), (v) and (w)

There are three controls 𝑢 = (𝑢0,𝑢1, . . . 𝑢𝑇), V =
(V0,V1, . . . V𝑇), and𝑤 = (𝑤0,𝑤1, . . . 𝑤𝑇).The first control can be
interpreted as the proportion to be adopted for the awareness
program through media and education. So, we note that
𝑢𝑘𝐿𝑘 is the proportion of the light smoker individuals who
moved to the individuals who permanently quit smoking at
time step 𝑘. The second control can be interpreted as the
proportion to be subjected to treatment. So, we note that
V𝑘𝑆𝑘 is the proportion of the individuals who will move
from the class of heavy smokers towards the class of the
individuals who permanently quit smoking at time step 𝑘.
The third control can also be interpreted as the proportion
to get psychological support with follow-up. So, we note that
𝑤𝑘𝑄𝑡𝑘 is the proportion of the individuals who temporarily
quit smoking and who will transform into the individuals
who permanently quit smoking at time step 𝑘. Indeed, the
system above (2) presents eight different models as Table 1
explains.

The problem that we face here is how to minimize the
objective functional:

𝐽 (𝑢, V, 𝑤) = 𝐴𝑇𝑆𝑇 + 𝐵𝑇𝐿𝑇 + 𝐶𝑇𝑄𝑡𝑇 +
𝑇−1

∑
𝑘=0

(𝐴𝑘𝑆𝑘

+ 𝐵𝑘𝐿𝑘 + 𝐶𝑘𝑄𝑡𝑘 + 𝐷𝑘2 𝑐1𝑢
2
𝑘 + 𝐸𝑘2 𝑐2V

2
𝑘 + 𝐹𝑘2 𝑐3𝑤

2
𝑘) ,

(4)

where the parameters 𝐴𝑘 > 0, 𝐵𝑘 > 0, 𝐶𝑘 > 0, 𝐷𝑘 > 0,𝐸𝑘 > 0, and 𝐹𝑘 > 0 are the cost coefficients; they are selected
to weigh the relative importance of 𝑆𝑘, 𝐿𝑘, 𝑄𝑡𝑘, 𝑢𝑘, V𝑘, and 𝑤𝑘
at time 𝑘. 𝑇 is the final time.

In other words, we seek the optimal controls 𝑢𝑘, V𝑘, and𝑤𝑘 such that

𝐽 (𝑢∗, V∗, 𝑤∗) = min
(𝑢,V,𝑤)∈𝑈𝑎𝑑

𝐽 (𝑢, V, 𝑤) , (5)

where 𝑈𝑎𝑑 is the set of admissible controls defined by

𝑈𝑎𝑑 = {(𝑢𝑘, V𝑘,𝑤𝑘) : 𝑎 ≤ 𝑢𝑘 ≤ 𝑏, 𝑐 ≤ V𝑘 ≤ 𝑑, 𝑒 ≤ 𝑤𝑘
≤ 𝑓; 𝑘 = 0, 1, 2 . . . 𝑇 − 1} (6)

The sufficient condition for the existence of optimal
controls (𝑢, V, 𝑤) for problem (2) and (4) comes from the
following theorem.

Theorem 1. There exists an optimal control (𝑢∗, V∗, 𝑤∗) such
that

𝐽 (𝑢∗, V∗, 𝑤∗) = min
(𝑢,V,𝑤)∈𝑈𝑎𝑑

𝐽 (𝑢, V, 𝑤) (7)

subjet to the control system (2) with initial conditions.

Proof. Since the coefficients of the state equations are
bounded and there are a finite number of time steps, 𝑃 =
(𝑃0, 𝑃1, . . . , 𝑃𝑇), 𝐿 = (𝐿0, 𝐿1, . . . , 𝐿𝑇), 𝑆 = (𝑆0, 𝑆1, . . . , 𝑆𝑇),𝑄𝑡 = (𝑄𝑡0, 𝑄𝑡1, . . . , 𝑄𝑡𝑇), and 𝑄𝑝 = (𝑄𝑝0 , 𝑄𝑝1 , . . . , 𝑄𝑝𝑇) are
uniformly bounded for all (𝑢; V; 𝑤) in the control set 𝑈𝑎𝑑;
thus 𝐽(𝑢; V; 𝑤) is bounded for all (𝑢; V; 𝑤) ∈ 𝑈𝑎𝑑.Since𝐽(𝑢; V; 𝑤) is bounded, inf (𝑢,V,𝑤)∈𝑈𝑎𝑑𝐽(𝑢, V, 𝑤) is finite, and
there exists a sequence (𝑢𝑗; V𝑗; 𝑤𝑗) ∈ 𝑈𝑎𝑑 such that
lim𝑗󳨀→+∞𝐽(𝑢𝑗, V𝑗, 𝑤𝑗) = inf (𝑢,V,𝑤)∈𝑈𝑎𝑑𝐽(𝑢, V, 𝑤) and corre-
sponding sequences of states 𝑃𝑗, 𝐿𝑗, 𝑆𝑗, 𝑄𝑡𝑗, and 𝑄𝑝𝑗. Since
there is a finite number of uniformly bounded sequences,
there exist (𝑢∗, V∗, 𝑤∗) ∈ 𝑈𝑎𝑑 and 𝑃∗, 𝐿∗, 𝑆∗, 𝑄𝑡∗, and
𝑄𝑝∗ ∈ 𝐼𝑅𝑇+1 such that, on a subsequence, (𝑢𝑗, V𝑗, 𝑤𝑗) 󳨀→
(𝑢∗, V∗, 𝑤∗), 𝑃𝑗 󳨀→ 𝑃∗, 𝐿𝑗 󳨀→ 𝐿∗, 𝑆𝑗 󳨀→ 𝑆∗, 𝑄𝑡𝑗 󳨀→ 𝑄𝑡∗,
and 𝑄𝑝𝑗 󳨀→ 𝑄𝑝∗. Finally, due to the finite dimensional
structure of system (2) and the objective function 𝐽(𝑢; V; 𝑤),
(𝑢∗; V∗; 𝑤∗) is an optimal control with corresponding states
𝑃∗, 𝐿∗, 𝑆∗, 𝑄𝑡∗, and 𝑄𝑝∗. Therefore inf (𝑢,V,𝑤)∈𝑈𝑎𝑑𝐽(𝑢, V, 𝑤) is
achieved.

In order to derive the necessary condition for optimal
control, the pontryagins maximum principle in discrete time
given in [10, 11, 14–16] was used. This principle converts into
a problem of minimizing a Hamiltonian 𝐻𝑘 at time step 𝑘
defined by

𝐻𝑘 = 𝐴𝑘𝑆𝑘 + 𝐵𝑘𝐿𝑘 + 𝐶𝑘𝑄𝑡𝑘 + 𝐷𝑘2 𝑐1𝑢
2
𝑘 + 𝐸𝑘2 𝑐2V

2
𝑘

+ 𝐹𝑘2 𝑐3𝑤
2
𝑘 +
5

∑
𝑗=1

𝜆𝑗,𝑘+1𝑓𝑗,𝑘+1,
(8)
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where 𝑓𝑗,𝑘+1 is the right side of the system of difference
equations (2) of the 𝑗𝑡ℎ state variable at time step 𝑘 + 1.
Theorem 2. Given an optimal control (𝑢∗𝑘 , V∗𝑘 , 𝑤∗𝑘 ) ∈ 𝑈𝑎𝑑 and
the solutions𝑃∗𝑘 ,𝐿∗𝑘, 𝑆∗𝑘 ,𝑄𝑡∗𝑘 , and𝑄𝑝∗𝑘 of the corresponding state
system (2), there exist adjoint functions𝜆1,𝑘 ,𝜆2,𝑘,𝜆3,𝑘,𝜆4,𝑘, and𝜆5,𝑘 satisfying

𝜆1,𝑘 = 𝛽1𝜌 (𝜆3,𝑘+1 − 𝜆1,𝑘+1) 𝑆𝑘
1 + 𝑚2𝑆𝑘

+ 𝛽1 (1 − 𝜌) (𝜆2,𝑘+1 − 𝜆1,𝑘+1) 𝐿𝑘
1 + 𝑚1𝐿𝑘

+ 𝜆1,𝑘+1 (1 − 𝜇) .

𝜆2,𝑘 = 𝐵𝑘 + 𝛽1 (1 − 𝜌) (𝜆2,𝑘+1 − 𝜆1,𝑘+1) 𝑃𝑘
(1 + 𝑚1𝐿𝑘)2

+ 𝛽2 (𝜆3,𝑘+1 − 𝜆2,𝑘+1) 𝑆𝑘
1 + 𝑚3𝑆𝑘

+ 𝜆2,𝑘+1 (1 − 𝜇)
+ (𝜆5,𝑘+1 − 𝜆2,𝑘+1) (𝑐1𝑢𝑘 + 𝛽3) .

𝜆3,𝑘 = 𝐴𝑘 + 𝛽1𝜌 (𝜆3,𝑘+1 − 𝜆1,𝑘+1) 𝑃𝑘
(1 + 𝑚2𝑆𝑘)2

+ 𝛽2 (𝜆3,𝑘+1 − 𝜆2,𝑘+1) 𝐿𝑘
(1 + 𝑚3𝑆𝑘)2

+ 𝜆3,𝑘+1 (1 − 𝜇 − 𝜆 − 𝛾) + 𝛾𝜆4,𝑘+1 (1 − 𝜎)
+ (𝜆5,𝑘+1 − 𝜆3,𝑘+1) 𝑐2V𝑘.

𝜆4,𝑘 = 𝐶𝑘 + 𝛼𝜆3,𝑘+1 + 𝜆4,𝑘+1 (1 − 𝜇)
+ (𝜆5,𝑘+1 − 𝜆4,𝑘+1) 𝑐3𝑤𝑘.

𝜆5,𝑘 = 𝜆5,𝑘+1 (1 − 𝜇) .

(9)

With the transversality conditions at time 𝑇, 𝜆1,𝑇 = 𝜆5,𝑇 =0, 𝜆2,𝑇 = 𝐵𝑇, 𝜆3,𝑇 = 𝐴𝑇, and 𝜆4,𝑇 = 𝐶𝑇.
Furthermore, for 𝑘 = 0, 1, 2 . . . 𝑇 − 1 and 𝑐1 =

𝑐2 = 𝑐3 = 1, the optimal controls 𝑢∗𝑘 , V∗𝑘 , and 𝑤∗𝑘 are
given by

𝑢∗𝑘 = min [𝑏;max(𝑎, 1𝐷𝑘 [(𝜆2,𝑘+1 − 𝜆5,𝑘+1) 𝐿𝑘])]

V∗𝑘 = min [𝑑;max(𝑐, 1𝐸𝑘 [(𝜆3,𝑘+1 − 𝜆5,𝑘+1) 𝑆𝑘])]

𝑤∗𝑘 = min [𝑓;max(𝑒, 1𝐹𝑘 [(𝜆4,𝑘+1 − 𝜆5,𝑘+1) 𝑄
𝑡
𝑘])]

(10)

Proof. TheHamiltonian at time step 𝑘 is given by

𝐻𝑘 = 𝐴𝑘𝑆𝑘 + 𝐵𝑘𝐿𝑘 + 𝐶𝑘𝑄𝑡𝑘 + 𝐷𝑘2 𝑐1𝑢
2
𝑘 + 𝐸𝑘2 𝑐2V

2
𝑘 + 𝐹𝑘2

⋅ 𝑐3𝑤2𝑘 + 𝜆1,𝑘+1𝑓1,𝑘+1 + 𝜆2,𝑘+1𝑓2,𝑘+1 + 𝜆3,𝑘+1𝑓3,𝑘+1
+ 𝜆4,𝑘+1𝑓4,𝑘+1 + 𝜆5,𝑘+1𝑓5,𝑘+1 = 𝐴𝑘𝑆𝑘 + 𝐵𝑘𝐿𝑘

+ 𝐶𝑘𝑄𝑡𝑘 + 𝐷𝑘2 𝑐1𝑢
2
𝑘 + 𝐸𝑘2 𝑐2V

2
𝑘 + 𝐹𝑘2 𝑐3𝑤

2
𝑘 + 𝜆1,𝑘+1 [Λ

+ (1 − 𝜇) 𝑃𝑘 − 𝛽1 (1 − 𝜌) 𝑃𝑘𝐿𝑘
1 + 𝑚1𝐿𝑘

− 𝛽1𝜌 𝑃𝑘𝑆𝑘
1 + 𝑚2𝑆𝑘 ] + 𝜆2,𝑘+1 [(1 − 𝜇) 𝐿𝑘

+ 𝛽1 (1 − 𝜌) 𝑃𝑘𝐿𝑘
1 + 𝑚1𝐿𝑘 − 𝛽2

𝐿𝑘𝑆𝑘
1 + 𝑚3𝑆𝑘 − 𝑐1𝑢𝑘𝐿𝑘

− 𝛽3𝐿𝑘] + 𝜆3,𝑘+1 [(1 − 𝜇 − 𝜆 − 𝛾) 𝑆𝑘

+ 𝛽1𝜌 𝑃𝑘𝑆𝑘
1 + 𝑚2𝑆𝑘 + 𝛽2

𝐿𝑘𝑆𝑘
1 + 𝑚3𝑆𝑘 + 𝛼𝑄

𝑡
𝑘 − 𝑐2V𝑘𝑆𝑘]

+ 𝜆4,𝑘+1 [(1 − 𝜇 − 𝛼)𝑄𝑡𝑘 + 𝛾 (1 − 𝜎) 𝑆𝑘 − 𝑤𝑘𝑄𝑡𝑘]

+ 𝜆5,𝑘+1 [(1 − 𝜇)𝑄𝑝𝑘 + 𝛾𝜎𝑆𝑘 + 𝑐1𝑢𝑘𝐿𝑘 + 𝑐2V𝑘𝑆𝑘
+ 𝑐3𝑤𝑘𝑄𝑡𝑘 + 𝛽3𝐿𝑘]

(11)

For 𝑘 = 0, 1 . . . 𝑇 − 1 the optimal controls 𝑢𝑘, V𝑘, , 𝑤𝑘 can
be solved from the optimality condition,

𝜕𝐻𝑘
𝜕𝑢𝑘 = 0,

𝜕𝐻𝑘
𝜕V𝑘 = 0,

𝜕𝐻𝑘
𝜕𝑤𝑘 = 0

(12)

that are
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𝜕𝐻𝑘
𝜕𝑢𝑘 = 𝐷𝑘𝑐1𝑢𝑘 + (𝜆5,𝑘+1 − 𝜆2,𝑘+1) 𝑐1𝐿𝑘 = 0

𝜕𝐻𝑘
𝜕V𝑘 = 𝐸𝑘𝑐2V𝑘 + (𝜆5,𝑘+1 − 𝜆3,𝑘+1) 𝑐2𝑆𝑘 = 0

𝜕𝐻𝑘
𝜕𝑤𝑘 = 𝐹𝑘𝑐3𝑤𝑘 + (𝜆5,𝑘+1 − 𝜆4,𝑘+1) 𝑐3𝑄

𝑡
𝑘 = 0

(13)

So, for 𝑐1 = 𝑐2 = 𝑐3 = 1, we have

𝑢𝑘 = 1
𝐷𝑘 (𝜆2,𝑘+1 − 𝜆5,𝑘+1) 𝐿𝑘

V𝑘 = 1
𝐸𝑘 (𝜆3,𝑘+1 − 𝜆5,𝑘+1) 𝑆𝑘

𝑤𝑘 = 1
𝐹𝑘 (𝜆4,𝑘+1 − 𝜆5,𝑘+1) 𝑄

𝑡
𝑘

(14)

However, if 𝑐𝑖 = 0 for 𝑖 = 1, 2, 3, the control attached to
this case will be eliminated and removed.

By the bounds in 𝑈𝑎𝑑 of the controls, it is easy to obtain
𝑢∗𝑘 , V∗𝑘 , and 𝑤∗𝑘 in the form of (10).

4. Simulation

4.1. Algorithm. In this section, we present the results
obtained by solving numerically the optimality system.
This system consists of the state system, adjoint system,
initial and final time conditions, and the controls char-
acterization. So, the optimality system is given by the
following.

Step 1. 𝑃0 = 𝑝0, 𝐿0 = 𝑙0, 𝑆0 = 𝑠0, 𝑄𝑡0 = 𝑞𝑡0, 𝑄𝑝0 = 𝑞𝑝0 , 𝜆1,𝑇 =𝜆5,𝑇 = 0, 𝜆2,𝑇 = 𝐵𝑇, 𝜆3,𝑇 = 𝐴𝑇, 𝜆4,𝑇 = 𝐶𝑇, and given 𝑢∗𝑘,0,
V∗𝑘,0, and 𝑤∗𝑘,0
Step 2. For 𝑘 = 0; 1; . . . ; 𝑇 − 1 do:

𝑃𝑘+1 = Λ + (1 − 𝜇) 𝑃𝑘 − 𝛽1 (1 − 𝜌) 𝑃𝑘𝐿𝑘
1 + 𝑚1𝐿𝑘

− 𝛽1𝜌 𝑃𝑘𝑆𝑘
1 + 𝑚2𝑆𝑘

𝐿𝑘+1 = (1 − 𝜇) 𝐿𝑘 + 𝛽1 (1 − 𝜌) 𝑃𝑘𝐿𝑘
1 + 𝑚1𝐿𝑘 − 𝛽2

𝐿𝑘𝑆𝑘
1 + 𝑚3𝑆𝑘

− 𝛽3𝐿𝑘 − 𝑐1𝑢𝑘𝐿𝑘
𝑆𝑘+1 = (1 − 𝜇 − 𝜆 − 𝛾) 𝑆𝑘 + 𝛽1𝜌 𝑃𝑘𝑆𝑘

1 + 𝑚2𝑆𝑘 + 𝛽2
𝐿𝑘𝑆𝑘

1 + 𝑚3𝑆𝑘
+ 𝛼𝑄𝑡𝑘 − 𝑐2V𝑘𝑆𝑘

𝑄𝑡𝑘+1 = (1 − 𝜇 − 𝛼)𝑄𝑡𝑘 + 𝛾 (1 − 𝜎) 𝑆𝑘 − 𝑐3𝑤𝑘𝑄𝑡𝑘
𝑄𝑝
𝑘+1

= (1 − 𝜇)𝑄𝑝
𝑘
+ 𝛾𝜎𝑆𝑘 + 𝛽3𝐿𝑘 + 𝑐1𝑢𝑘𝐿𝑘 + 𝑐2V𝑘𝑆𝑘

+ 𝑐3𝑤𝑘𝑄𝑡𝑘
...
...

𝜆1,𝑇−𝑘 = 𝛽1𝜌 (𝜆3,𝑇−𝑘+1 − 𝜆1,𝑇−𝑘+1) 𝑆𝑘
1 + 𝑚2𝑆𝑘

+ 𝛽1 (1 − 𝜌) (𝜆2,𝑇−𝑘+1 − 𝜆1,𝑇−𝑘+1) 𝐿𝑘
1 + 𝑚1𝐿𝑘

+ 𝜆1,𝑛−𝑘+1 (1 − 𝜇)

𝜆2,𝑇−𝑘 = 𝐵𝑘 + 𝛽1 (1 − 𝜌) (𝜆2,𝑇−𝑘+1 − 𝜆1,𝑇−𝑘+1) 𝑃𝑘
(1 + 𝑚1𝐿𝑘)2

+ 𝛽2 (𝜆3,𝑇−𝑘+1 − 𝜆2,𝑇−𝑘+1) 𝑆𝑘
1 + 𝑚3𝑆𝑘 + 𝜆2,𝑇−𝑘+1 (1 − 𝜇)

+ (𝜆5,𝑇−𝑘+1 − 𝜆2,𝑇−𝑘+1) (𝑐1𝑢𝑘 + 𝛽3)

𝜆3,𝑇−𝑘 = 𝐴𝑘 + 𝛽1𝜌 (𝜆3,𝑇−𝑘+1 − 𝜆1,𝑇−𝑘+1) 𝑃𝑘
(1 + 𝑚2𝑆𝑘)2

+ 𝛽2 (𝜆3,𝑇−𝑘+1 − 𝜆2,𝑇−𝑘+1) 𝐿𝑘
(1 + 𝑚3𝑆𝑘)2

+ 𝜆3,𝑇−𝑘+1 (1 − 𝜇 − 𝜆 − 𝛾) + 𝛾𝜆4,𝑇−𝑘+1 (1 − 𝜎)
+ (𝜆5,𝑇−𝑘+1 − 𝜆3,𝑇−𝑘+1) 𝑐2V𝑘

𝜆4,𝑇−𝑘 = 𝐶𝑘 + 𝛼𝜆3,𝑇−𝑘+1 + 𝜆4,𝑇−𝑘+1 (1 − 𝜇)

+ (𝜆5,𝑇−𝑘+1 − 𝜆4,𝑇−𝑘+1) 𝑐3𝑤𝑘
𝜆5,𝑇−𝑘 = 𝜆5,𝑇−𝑘+1 (1 − 𝜇)

𝑢𝑘+1 = min [𝑏;max(𝑎, 1𝐷𝑘 [(𝜆2,𝑇−𝑘+1 − 𝜆5,𝑇−𝑘+1) 𝐿𝑘])]

V𝑘+1 = min [𝑑;max(𝑐, 1𝐸𝑘 [(𝜆3,𝑇−𝑘+1 − 𝜆5,𝑇−𝑘+1) 𝑆𝑘])]

𝑤𝑘+1 = min [𝑓;max(𝑒, 1𝐹𝑘 [(𝜆4,𝑇−𝑘+1 − 𝜆5,𝑇−𝑘+1) 𝑄
𝑡
𝑘])]

(15)
end for

Step 3. For 𝑘 = 0; 1; . . . ; 𝑇; write:
𝑃∗𝑘 = 𝑃𝑘,
𝐿∗𝑘 = 𝐿𝑘,



Discrete Dynamics in Nature and Society 7

Table 2: The description of parameters used for the definition of discrete time systems (1). We used just arbitrary academic data.

𝑃0 𝐿0 𝑆0 𝑄𝑡0 𝑄𝑝0 𝜎 𝜌 𝛽3 𝛼
5.103 2.103 1.103 2.103 1.103 0.5 0.1 0.01 0.7
Λ 𝜇 𝛽1 𝑚1 𝑚2 𝑚3 𝜆 𝛾 𝛽2
8.102 0.04 0.6 1 1 1 0.05 0.7 0.05
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Figure 2:The evolution of the light smokers with and without controls.

𝑆∗𝑘 = 𝑆𝑘,
𝑄𝑡∗𝑘 = 𝑄𝑡𝑘,

𝑄𝑝∗
𝑘
= 𝑄𝑝
𝑘
,

𝑢∗𝑘 = 𝑢𝑘,

V∗𝑘 = V𝑘,

𝑤∗𝑘 = 𝑤𝑘
(16)

end for

In this formulation, there were initial conditions for
the state variables and terminal conditions for the adjoints.
That is, the optimality system is a two-point boundary

value problem with separated boundary conditions at time
steps 𝑘 = 0 and 𝑘 = 𝑇. We solve the optimal-
ity system by an iterative method with forward solving
of the state system followed by backward solving of the
adjoint system. We start with an initial guess for the con-
trols at the first iteration and then before the next itera-
tion we update the controls by using the characterization.
We continue until convergence of successive iterates is
achieved.

4.2. Discussion. In this section, we study and analyse
numerically the effects of optimal control strategies such as
awarness program through media and education, treatment,
and psychological support with follow-up for the infected
smokers (Table 2 ).

4.2.1. Strategy A: Control with Awareness Program. Given
the importance of the awareness programs in restricting
the spreading of smoking, we propose an optimal strategy
for this purpose. Hence, we activate the optimal control
variable 𝑢 which represents the awareness program for
light smokers. Figure 2 compares the evolution of light



8 Discrete Dynamics in Nature and Society

S without control
S with control v
S with two controls v and w

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

H
ea

vy
 S

m
ok

er
s (

S)

10 15 205
Time (Months)

(a) The evolution of the heavy smokers with and without
controls

Qt with control w
Qt with two controls v and w
Qt without control

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Te
m

po
ra

ri
ly

 q
ui

t S
m

ok
in

g 
(Q

t)

10 15 205
Time (Months)

(b) The evolution of the temporary quitters of smoking
with and without controls

Figure 3

smokers with and without control 𝑢 in which the effect of the
proposed awareness program through media and education
is proven to be positive in decreasing the number of light
smokers.

4.2.2. Strategy B: Control with Treatment and Psychological
Support with Follow-Up. When the number of smokers is
so high, it is obligatory to resort to some strategies such
as treatment in order to reduce the number of smok-
ers. Therefore, we propose an optimal strategy by using
the optimal control V in the beginning. In spite of using
the optimal control V, we observe a temporary decrease
of the heavy smokers number which is increased again
(Figure 3(a)). The reason of this increase is justified by
the fact that heavy smokers revert back to smoking after
giving up. For improving the effectiveness of this strategy,
we add the elements of follow-up and psychocological
support which are represented in the proposed strategy by
the optimal control variable 𝑤 (Figure 3(b)). Combining
follow-up and psychocological supportwith treatment results
in an obvious decrease in the number of heavy smok-
ers. Also, the proposed strategy has an additional effect
in decreasing clearly the number of temporary quitters of
smoking.

4.2.3. Strategy C: Control with Awareness Program,
Treatment, and Psychological Support with Follow-Up.
In this strategy, we combine the two previous strategies to
achieve better results. We notice that the numbers of light

smokers (Figure 4(a)), heavy smokers (Figure 4(b)),
and temporary quitters of smoking (Figure 4(c))
are decreased markedly which leads to satisfactory
results.

5. Conclusion

In this paper, we introduced a discrete modeling of
smokers in order to minimize the number of light smokers,
heavy smokers, and temporary quitters of smoking.
We also introduced three controls which, respectively,
represent awareness program through education and
media, treatment, and psychological support with follow-
up. We applied the results of the control theory and we
managed to obtain the characterizations of the optimal
controls. The numerical simulation of the obtained
results showed the effectiveness of the proposed control
strategies.
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In this article, we use a discrete system to study the opinion dynamics regarding the electoral preferences of a nontendentious
group of agents. To measure the level of preference, a continuous opinion space is used, in which the preference (opinion) can
evolve from any political option, to any other; for a regime of three parties, a circle is the convenient space. To model a nonbiased
society, new agents are considered. Besides their opinion, they have a new attribute: an individual iterative monoparametric map
that imitates a process of internal reflection, allowing them to update their opinion in their own way.These iterativemaps introduce
six fixed points on the opinion space; the points’ stability depends on the sign of the parameter. When the latter is positive, three
attractors are identified with political options, while the repulsors are identified with the antioptions (preferences diametrically
opposed to each political choice). In this new model, pairs of agents interact only if their respective opinions are alike; a positive
number called confidence bound is introducedwith this purpose; if opinions are similar, they update their opinion considering each
other’s opinion, while if they are not alike, each agent updates her opinion considering only her individual map. In addition, agents
give a certain level of trust (weight) to other agent’s opinions; this results in a positive stochastic matrix of weights which models
the social network. The model can be reduced to a pair of coupled nonlinear difference equations, making extracting analytical
results possible: a theorem on the conditions governing the existence of consensus in this new artificial society. Some numerical
simulations are provided, exemplifying the analytical results.

1. Introduction

The arising of opinion in society has become a very inter-
esting research topic in the last decades. For example, Ding
and Mo [1] have studied how noise, from different sources,
like TV, newspaper, and so on, contributes to eliminate
the disagreement in a social group; Chen et al. [2] have
considered how the social similarity influences the opinion
dynamics between individuals; D’Aniello et al. [3] have used
a fuzzy consensus approach to investigate decision-making
in a group; Lu et al. [4] have investigated the impact of the
community structure on the convergence time to reach a
consensus in a social group. A recent survey on some opinion
dynamics models and their applications is found in [5].

In particular, the opinion dynamics about political
options has been studied broadly, using models borrowed

from statistical physics, such as the Ising and Potts ones [6, 7],
in which agents are forced to choose between a finite set of
options, no matter how much they agree with them. The set
of options, naturally, is discrete as the corresponding opinion
space for these models too, allowing tendentious agents. An
alternative would be the use of a continuous opinion space, in
which agents can show their level of agreement regarding the
options; this space must also allow opinions to evolve from
one option to another, options being equidistant from each
other; these requirements suggest that an adequate opinion
space, for 𝑛-options, is an 𝑛 − 2-sphere. For example, a circle
is an appropriate opinion space for three options, while a
sphere is suitable for four options. These ideas were used by
Medina et al. [8] to study the consensus formation on a circle
for a regime of three political parties; they used an iterative
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Figure 1:The figure shows attractors described byTheorem 2 and their respective attraction basins for system (7). Attractorswith 0 < 𝜅 < 2/3
are the associated electoral preferences. Attractors with −2/3 < 𝜅 < 0, also called antioptions, are completely opposite to existing options.
Agents attracted to one antioption radically refuse the one option remaining half trusting to the other options.

monoparametric map which introduced six fixed points on
the opinion space.The stability of these points is governed by
the sign of the map’s parameter, the personal parameter; if it
is positive, the three attractors are identified with the political
options, while the remaining three repellers are called the
(political) antioptions. An agent having a negative personal
parameter rejects all the available political options, being
attracted to the antioptions. Since there is an alternating
sequence of attractors and repellers on the circle, options and
antioptions are diametrically opposed; see Figure 1. Hence an
agent whose opinion is attracted to one antioption rejects the
diametrically opposed political option, while she (or he) is
insecure about the remaining two options. So in contrast,
with the discrete optionmodels, these agents are not forced to
pick an option. In this sense, the iterative map allows agents
to update their opinion taking into account their postures
with respect to the choices, emulating an internal reflection
process in them. The above agents interact by pairs updating
their opinion considering their internal reflection processes
and their partners’ opinions with some weight (a subjective
trust given to each other’s opinion); if their opinions are
not alike, they update their opinions considering only their
own internal reflection processes. A positive number, the
confidence bound, is used as a threshold to separate between
these two cases.

Although agents, in Medina et al. [8] model, have differ-
ent personal parameters, the same iterative map was used for
the opinion updating. However, in a more realistic society,
each person forms her opinion differently from others; hence
it has sense to consider a different updating rule for each
agent. So, in this work, we propose to give each agent a new
attribute, a different iterative map that allows them to update
their opinion in their own manner. Then we investigate
the conditions under which a consensus arises, in this new
artificial society, under these new updating rules. Finally,
some numerical experiments are performed to validate the
analytical results.

This work is sectioned as follows: Section 2 presents a
new opinion dynamics model on the circle. Section 3, Main
Results, gives a theorem stating the conditions under which
the consensus emerges in the social network. Section 4 shows
that some simulations with two different opinion updating
rules are given. A section of concluding remarks and two
appendixes end this communication.

2. Opinion Dynamics Modeled on a Circle

Through the work, the opinion space 𝑋 is a circle, and it
could be identified with the segment [0, 2𝜋] modulus 2𝜋
in radians or, equivalently, as the segment [0, 360] modulo
360 in degrees. On it, the opinion updating rules establish
three attractors identified with the political options and three
antioptions. Options and antioptions are distributed in an
alternating sequence; see Figure 1.The antioption opposed to
an option corresponds to a total rejection of the latter. The
personal parameter space is denoted by𝐾; it is identified with
the segment [−𝜋, 𝜋] in radians or [−180, 180] in degrees. A set
with an even number 𝑁 of interacting agents is considered.
Such interactions take place on discrete times 𝑡𝑛, for each 𝑛 ∈
Z+ ∪ 0, so (𝑡𝑛)∞𝑛=0 is a nonbounded sequence of positive real
numbers such that 𝑡0 = 0. Each agent is characterized by three
attributes: an opinion 𝑥𝑖𝑛 ∈ 𝑋; a constant personal parameter𝜅𝑖 ∈ 𝐾 that allows acceptance or rejection of the presented
options (the attracting nature of options and antioptions
depends on the sign of 𝜅𝑖; see below); and an opinion
updating function Ξ𝑖 : 𝑋 × 𝐾 󳨀→ R. Like in [8, 9], the social
network describing the agent population is governed by the
stochastic absolute weights matrix:

𝐶 = (𝑐11 𝑐12 . . . 𝑐1𝑁𝑐21 𝑐22 . . . 𝑐2𝑁... ... d
...𝑐𝑁1 𝑐𝑁2 . . . 𝑐𝑁𝑁) (1)

where its elements are positive real numbers fulfilling 0 <𝑐𝑖𝑖 ≤ 1 and 0 ≤ 𝑐𝑖𝑗 < 1, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁}, in such a way
that the sum of each row is equal to one:

𝑁∑
𝑗=1

𝑐𝑖𝑗 = 1. (2)

From a social point of view, a possible interpretation to 𝑐𝑖𝑗
could be the credibility given by agent 𝑖 to the other agents’
opinions in the social network, including his own opinion.
The first inequality above 0 < 𝑐𝑖𝑖 ≤ 1 establishes that each
agent must give a nonzero credibility to its own opinion.
Since the matrix rows must add to one, the second inequality
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agent’s opinion must be less than one.

Since the interactions between the agents are pairwise, it
is necessary to reevaluate themutual trust between the agents.
Hence we use relative weights,𝑎𝑖𝑖 = 𝑐𝑖𝑖𝑐𝑖𝑖 + 𝑐𝑖𝑗 ,𝑎𝑖𝑗 = 𝑐𝑖𝑗𝑐𝑖𝑖 + 𝑐𝑖𝑗 . (3)

The relative weights fulfill these properties: 𝑎𝑖𝑖 + 𝑎𝑖𝑗 = 1, 0 <𝑎𝑖𝑖 ≤ 1 and 0 ≤ 𝑎𝑖𝑗 < 1.
On the same manner as well-known models of Deffuant

et al. [10, 11] and Hegsellman-Krause [12], we consider a
confidence bound 𝜀 > 0 that determines a criterion to set
a limit to agents interaction; i.e., the opinions belonging to
agents 𝑖 and 𝑗 are affine if and only if |𝑥𝑖𝑛 − 𝑥𝑗𝑛| < 𝜀.

Now we formulate the opinion updating rules on the
circle. It is important to distinguish six special points on
the opinion space: three options and three antioptions. To
do that, we consider iterative monoparametric maps that
introduce these six fixed points. As a construction element
of the dynamic rules, we use the following functions:Ξ𝑖 (𝑥, 𝜅) = 𝑥 − 𝜅𝑖𝑓𝑖 (𝑥) , (4)

where 𝑓𝑖 (𝑥) = sin (3𝑥) 𝑔𝑖 (sin (3𝑥)) , (5)

where 𝑔𝑖 : [−1, 1] 󳨀→ (0, 1] is a 𝐶1 class differential function
such that 𝑔𝑖(0) = 1, ∀𝑖 ∈ {1, 2, . . . , 𝑁}; the sine function,
sin(3𝑥), introduces the fixed points, 𝑝 = 𝑠𝜋/3 for 𝑠 ∈ Z; in
the iterative map 𝑥𝑛+1 = Ξ(𝑥𝑛, 𝜅𝑖):𝑝 = Ξ (𝑝, 𝜅) . (6)

Instead of the sine function in (5), it would be possible to
use the cosine function with the same purpose. However, this
would only move the fixed points on the circle.

Medina et al. [8] consider the same updating opinion
rule for all agents with 𝑔𝑖(𝑥) = 1. Now, we propose to use
a different function 𝑔𝑖(𝑥) for each agent, with the purpose
to give them a different way to update their opinions; thus
the functionsΞ𝑖(𝑥𝑖, 𝜅𝑖)model internal reflection processes for
opinion updating in agents; they also provide the knowledge
about the options and permit them to keep an attitude regard-
ing these options; see Appendix A. In this sense, the new
model introduces a more heterogeneous and less tendentious
agent population.

On the recursive model, as initial conditions, a personal
parameter and a random opinion are assigned to each
agent; aside the stochastic matrix 𝐶 is generated too. On
the 𝑛 temporal step, from the agents population, 𝑁/2-
couples are randomly chosen to interact according to these
rules:

(i) When a pair of agents have similar opinions, |𝑥𝑖−𝑥𝑗| <𝜖, they update their opinions considering their respec-
tive internal reflection processes and considering each
other’s opinion, with some relative weights:𝑥𝑖𝑛+1 = 𝑎𝑖𝑖Ξ𝑖 (𝑥𝑖𝑛, 𝜅𝑖) + 𝑎𝑖𝑗𝑥𝑗𝑛,𝑥𝑗𝑛+1 = 𝑎𝑗𝑖𝑥𝑖𝑛 + 𝑎𝑗𝑗Ξ𝑗 (𝑥𝑗𝑛, 𝜅𝑗) . (7)

(ii) But if they do not have similar opinions, |𝑥𝑖 − 𝑥𝑗| > 𝜖,
every agent in the pair uses only her iterative map
to update her opinion, without considering other’s
opinion, consequently, using 𝑎𝑖𝑖 = 𝑎𝑗𝑗 = 1 and 𝑎𝑖𝑗 =𝑎𝑗𝑖 = 0 in (7).

3. Main Results

Now, we present the conditions for consensus formation
in the artificial society described by the before enunciated
model. It is said that model (7) exhibits a strong consensus
if the opinions of agents evolve to a stable fixed point.

To simplify our notations and reduce model (7) to
a system of only two nonlinear difference equations, we
perform the following change of variables:𝑥𝑖 󳨀→ 𝑥,𝜅𝑖 󳨀→ 𝜅𝑥,𝑥𝑗 󳨀→ 𝑦,𝜅𝑗 󳨀→ 𝜅𝑦,𝑎𝑖𝑖 󳨀→ 𝛼,𝑎𝑖𝑗 󳨀→ 𝛽,𝑎𝑗𝑖 󳨀→ 𝛾,𝑎𝑗𝑗 󳨀→ 𝛿,𝑔𝑖 (𝑥𝑖𝑛) 󳨀→ 𝑔(𝑥) (𝑥𝑛)𝑔𝑗 (𝑥𝑗𝑛) 󳨀→ 𝑔(𝑦) (𝑦𝑛) ,𝑓𝑖 (𝑥𝑖𝑛) 󳨀→ 𝑓(𝑥) (𝑥𝑛)𝑓𝑗 (𝑥𝑗𝑛) 󳨀→ 𝑓(𝑦) (𝑦𝑛) ,Ξ𝑖 (𝑥𝑖𝑛, 𝜅𝑖) 󳨀→ Ξ(𝑥) (𝑥𝑛, 𝜅𝑥)Ξ𝑗 (𝑥𝑗𝑛, 𝜅𝑗) 󳨀→ Ξ(𝑦) (𝑦, 𝜅𝑦) .

(8)

The model becomes into𝑥𝑛+1 = 𝛼Ξ(𝑥) (𝑥𝑛, 𝜅𝑥) + 𝛽𝑦𝑛,𝑦𝑛+1 = 𝛾𝑥𝑛 + 𝛿Ξ(𝑦) (𝑦𝑛, 𝜅𝑦) , (9)

where 𝛼 + 𝛽 = 1 and 𝛾 + 𝛿 = 1.
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Analyzing the fixed points of the previous equations (9),
we establish conditions for the existence and stability of the
fixed points of the complete system (7), analogously as the
model in [8].

Theorem 1. The point (𝑝, 𝑝) is a common fixed point of (7), if
and only if 𝑝 = 𝑠𝜋/3 for some 𝑠 ∈ Z.

Proof. Assuming that (𝑝, 𝑝) is a fixed point (9), by direct
substitution results,𝑝 = 𝛼 [𝑝 − 𝜅𝑥 sin (3𝑝) 𝑔𝑖 (sin (3𝑝))] + 𝛽𝑝,𝑝 = 𝛾𝑝 + 𝛿 [𝑝 − 𝜅𝑦 sin (3𝑝) 𝑔𝑗 (sin (3𝑝))] . (10)

By definition 𝑔𝑖(𝑥) ̸= 0, then sin(3𝑝) = 0 or 𝑝 = 𝑠𝜋/3 for
some 𝑠 ∈ Z. Conversely, a direct substitution shows that the
point (𝑝, 𝑝) is a solution for (9), when 𝑝 is an entire multiple
of 𝜋/3, like it is asked.

Note that these fixed points do not depend neither on
the relative weights nor on personal parameters, so they are
common to all pairs of (9) and they are fixed points of the full
set of (7). Of course, (9) have other fixed points. However,
when one considers the full system (7), fixed points from one
pair of equations are not necessarily the same as another pair,
so they may not be fixed points of the complete system. Some
examples are presented in Appendix B.

For convenience, the index 𝑧 denotes indexes𝑥or𝑦.Thus,
for example, 𝜅𝑧 represents either 𝜅𝑥 or 𝜅𝑦.
Theorem 2. Let 𝑝 = 𝑠𝜋/3 for some 𝑠 ∈ Z and 𝜂𝑧 = 1 −𝜅𝑧𝑓󸀠(𝑧)(𝑝) = 1 − 3(−1)𝑠𝜅𝑧 such that |𝜂𝑧| < 1 and 𝜅𝑥, 𝜅𝑦 ∈ 𝐾.
Then (𝑝, 𝑝) is a stable fixed point for (9) if

(1) 0 < 𝜅𝑥, 𝜅𝑦 < 2/3 for 𝑠 even,
(2) −2/3 < 𝜅𝑥, 𝜅𝑦 < 0 for 𝑠 odd.

Proof. For the linearized system (9), the Jacobian matrix
is 𝑀 = (𝛼𝜂𝑥 𝛽𝛾 𝛿𝜂𝑦) (11)

Under these considerations, the spectral radius 𝜌(𝑀) of 𝑀
satisfies𝜌 (𝑀) ≤ ‖𝑀‖∞ = max {𝛼 󵄨󵄨󵄨󵄨𝜂𝑥󵄨󵄨󵄨󵄨 + 𝛽, 𝛾 + 𝛿 󵄨󵄨󵄨󵄨󵄨𝜂𝑦󵄨󵄨󵄨󵄨󵄨}< max {𝛼 + 𝛽, 𝛾 + 𝛿} = 1. (12)

Since all eigenvalues of 𝑀 are complex numbers with modu-
lus less than 1, then (𝑝, 𝑝) is a stable fixed point; see [13, 14].

Theorem 2 gives the necessary and sufficient conditions
for the existence of a consensus between a pair of agents; now
Theorem 3 establishes the necessary and sufficient conditions
for the existence of a consensus among all agents in the social
web.

Theorem 3. Let 𝜅𝑖 ∈ 𝐾 for each 𝑖 ∈ {1, 2, . . . , 𝑁} and 𝑝 = 𝑠𝜋/3
for some 𝑠 ∈ Z. A strong consensus appears around opinion 𝑝
in the next cases:

(1) if 𝑠 is even and 0 < 𝜅𝑖 < 2/3 for each 𝑖 ∈ {1, 2, . . . , 𝑁};
(2) if 𝑠 is odd and −2/3 < 𝜅𝑖 < 0 for each 𝑖 ∈ {1, 2, . . . , 𝑁}.
This theorem generalizes the one reported in [8] and it

could be seen that the consensus in the social network does
not depend on 𝑔𝑖 functions, nor absolute weights matrix 𝐶,
nor number of agents 𝑁.

A more realistic case is when agents have personal
parameters in a subset containing both positive and negative
values; then system (9), in general, will have distinct attractors
for different couples of agents; see Appendix B. Intuitively, it
is expected that these attractors be bounded in some subset of𝑋×𝑋; consequently the agents’ opinions will evolve towards
a subset 𝑈 ⊊ 𝑋; hence, it is said that a weak consensus is
present in the social network [8, 9].

4. Some Examples

For the sake of clearance, some simulations are provided.
Here we use a social web with 200 agents; it is described by a
randommatrix of absolute weights. Agents’ starting opinions
are uniform and randomly distributed on𝑋. Aside, a uniform
time interval partition is considered. The parameters and
variables will be expressed in degrees. Considering the same
interacting dynamics between agents and two cases for
updating rule opinion (5),𝑔1 (𝑥) = cos4 (𝑥) ,𝑔2 (𝑥) = exp (−𝑥2) . (13)

The simulations use 100 time steps.

Example 4. In Figure 2, the personal parameters 𝜅𝑖 are
randomly and uniformly distributed on [0.5∘, 38∘]. Three
different confidence bounds are considered: top rank 𝜀 =180∘; 𝜀 = 120∘ in middle rank; 𝜀 = 60∘ for bottom rank: 𝑔1(𝑥)
to the left and 𝑔2(𝑥) to the right. When 𝜀 = 180∘ all agents
interact and one cluster appears. If 𝜀 = 120∘, agents interact
with about two-thirds of total population at themost; initially,
two clusters appear, but the bigger one absorbs the smaller
one. For 𝜀 = 60∘, agents interact with one-third of population,
and three clusters arise, each one with about one-third of total
population. According to Theorem 3, strong consensus arise
for all these cases.

Example 5. In Figure 3, the personal parameters 𝜅𝑖 are
randomly and uniformly distributed on [−10∘, 10∘]. Three
different confidence bounds are considered too; top rank 𝜀 =180∘; 𝜀 = 120∘ in middle rank; 𝜀 = 60∘ for bottom rank: 𝑔1(𝑥)
to the left and 𝑔2(𝑥) to the right. When 𝜀 = 180∘, all agents
interact and one cluster appears, but with weak consensus.
If 𝜀 = 120∘, the agents interact with about two-thirds
of total population at the most, and two weak consensus
clusters appear. For 𝜀 = 60∘, agents interact with one-third
of population, but now strong and weak consensus states
coexist.
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Figure 2: The confidence bounds are 𝜖 = 180∘ (top row); 𝜖 = 120∘ (middle row), and 𝜖 = 60 (bottom row). 𝜅𝑖 ∈ [0.5∘, 38∘]. Function 𝑔1(𝑥)
is used on left column and 𝑔2(𝑥) on the right. In the top row, a single cluster appears. In the middle row, initially two clusters appear, which
finally merge. In the lower row, three clusters, with about one-third of the population, appear. Strong consensus appears always, in all three
cases, according toTheorem 3.

5. Conclusions

In this paper, a new model for opinion dynamics of political
preferences about three parties options has been presented;
it generalizes the model in Medina et al. [8] to include new
individual updating rules: a set of monoparametric iterative
maps, which emulate different internal reflection processes in

agents. For some positive values of the personal parameter𝜅 (map’s parameter), these rules introduce three equidistant
attractors on a circular opinion space, which correspond to
three choices, that can be interpreted with a different political
party. For some negative values of the personal parameter,
choices become repulsors, so agents with a negative personal
parameter reject the political options. The value of the
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Figure 3:The confidence bounds are 𝜖 = 180∘ (top row), 𝜖 = 120∘ (middle row), and 𝜖 = 60 (bottom row). 𝜅𝑖 ∈ [−10∘, 10∘]. Function 𝑔1(𝑥) is
used on left column and 𝑔2(𝑥) on the right. In the top row, a weak consensus appears throughout the social group. In the middle row, there
are two clusters, one grouping most of the opinions and another with a minority of these. In the lower row, the formation, of both weak and
strong consensus, can be seen.

personal parameter may lead to a convergence to the fixed
points with oscillation or without it; in the first case, the agent
is interpreted as a hesitant one, whose opinion consolidates
with time, while in the second case the agent is secure about
her opinion. At least, for the examples presented here, the
fixed points of the iterative maps can bifurcate, for other
values of the personal parameter, in 𝑛-cycles and even lead

to chaos (see Appendix A, and Figures 4 and 5). The 𝑛-cycles
might be interpreted as a set of 𝑛-postures that an insecure
agent can hold; for example, a 2-cycle may be considered a
dilemma, while an agent, with a personal parameter in the
chaotic regime, is considered an erratic one. In this sense, the
personal parameter introduces different behaviors and strong
postures in the agents.
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Figure 4: The figure shows a bifurcation diagram for the iterative map 𝑥𝑛+1 = 𝑥𝑛 − 𝜅 cos4(sin(3𝑥𝑛)) sin(3𝑥𝑛); an alternating sequence of
tree-like graphs goes upwards and downwards. Here are depicted the options for 0 < 𝜅 < 2/3 and antioptions for −2/3 < 𝜅 < 0. Stable fixed
points bifurcate in a 2-cycle for 𝜅 = 2/3; then a cascade of bifurcations appears, leading to chaos. The 2-cycle may model a dilemma, since
agent’s opinion jumps from one posture to another. Other 𝑛-cycles may model other doubt processes in agents.
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Figure 5: The figure shows a bifurcation diagram for the iterative map 𝑥𝑛+1 = 𝑥𝑛 − 𝜅 exp(−sin2(3𝑥𝑛)) sin(3𝑥𝑛); an alternating sequence of
tree-like graphs goes upwards and downwards. Stable fixed points bifurcate in different 𝑛-cycles for |𝜅| > 2/3. Stable fixed points bifurcate
in a 2-cycle for 𝜅 = 2/3; then a cascade of bifurcations appears, leading to chaos, at least in some small regions. The 2-cycle may model a
dilemma, since agent’s opinion jumps from one posture to another. Other 𝑛-cycles may model other doubt processes in agents.

So, the key point of the present model is a new agent
who is characterized by three attributes: opinion 𝑥, personal
parameter 𝜅, and an iterative map to update her own opinion
differently as her interlocutors. This kind of agent becomes
a fundamental piece of a more heterogeneous artificial
society.

The presented model, also, considers pairwise interac-
tions among agents and uses the confidence bound 𝜖 like
Hegselmann & Krause and Deffuant & Weisbuch classical
models to set a limit for dissimilar agents opinion case and
random absolute weights to describe the subjective trust
given to agents’ opinions, defining an artificial social web.

The main interest of this work was to study consensus
arising in this new artificial society; two classes of consensus
were considered: a strong one which is the convergence of
the opinions to a fixed point and a weak one which is the
convergence of the opinions to a subset of the opinion space.
Theorem 3 provides the necessary and sufficient conditions
for the arising of a strong consensus in this artificial hetero-
geneous society.

Finally two sets of simulations were performed; in each
set, a different iterative map and three different confidence
bounds were used. In each simulation, were used either
positive different personal parameters or mixed (positive
and negative) personal parameters, random absolute weights,

or random initial opinions, but the same iterative map for
all agents. However, simulations show practically the same
behaviors and convergence times as found in [8]; some
of them show the emergence of strong consensus or the
existence of weak consensus regions.

As perspectives of future research work, the model could
be used to study the opinion dynamic of the electoral pref-
erences regarding three political parties when a charismatic
political actor (a very persuasive agent) is present. It is also
possible to generalize the model to opinion spaces with four
or more options, spheres of two or more dimensions. These
latter models would be useful to study the situation when
there are four or more political parties.

Appendix

A. On the Role of the Personal Parameter

From a mathematical point of view, iterative maps present
a vast range of behaviors; some of them can be visualized
in the corresponding bifurcation diagrams; see Marotto [13].
Some of these mathematical behaviors are used tomodel how
agents update their ownopinion: with certainty, if the opinion
converges without oscillating; with doubt, if the opinion
converges oscillating.
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Figure 6:The figure shows a parametric plot of families of curves for system (9) for Ξ(𝑥) = 𝑥−𝜅𝑥𝑔1(sin(3𝑥)) sin(3𝑥), 𝜅𝑥 = 0.66, and different
relatives weights 𝛼 = 0.1, 0.2, . . . , 0.9 (red lines), Ξ(𝑦) = 𝑦 − 𝜅𝑦𝑔2(sin(3𝑦)) sin(3𝑦), 𝜅𝑦 = 0.4 and different relative weights 𝛿 = 0.1, 0.2, . . . , 0.9
(blue lines). The intersections correspond to different fixed points of different pairs of equations. Notice that only those fixed points of the
form (𝑝, 𝑝) are common to all equations in system (7). Other fixed points depend on parameters’ values.

The iterative map 𝑥𝑛+1 = Ξ(𝑥𝑛, 𝜅) converges to one of the
fixed points 𝑝 = 𝑠𝜋/3 without oscillation if0 < 𝑑Ξ (𝑥, 𝜅)𝑑𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝 < 1; (A.1)

this happens for 0 < 𝜅 < 1/3 and 𝑠 = 0, 2, 4 or −1/3 < 𝜅 < 0
and 𝑠 = 1, 3, 5.

The iterative map 𝑥𝑛+1 = Ξ(𝑥𝑛, 𝜅) converges to one of the
fixed points 𝑝 = 𝑠𝜋/3 with oscillation if0 < 𝑑Ξ (𝑥, 𝜅)𝑑𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝 < 1; (A.2)

this happens for 1/3 ≤ 𝜅 ≤ 2/3 and 𝑠 = 0, 2, 4 or −2/3 ≤ 𝜅 ≤1/3 and 𝑠 = 1, 3, 5.
The above fixed points bifurcate in a 2-cycle for |𝜅| =2/3; for greater values of |𝜅|, other bifurcations occur, finally

leading to a chaotic behavior; see Figures 4 and 5. In Medina
et al. [9], 𝑛-cycles are used to model different possible doubt
processes, in which agents opinions jump among 𝑛-different
postures; in particular, a 2-cycle is interpreted as a dilemma.
The chaotic behavior models the behavior of an agent, who
changes her opinion in an erratic way.

B. Fixed Points of the Updating Rules

Fixed points (𝑝𝑠, 𝑞𝑠) for 𝑠 = 1, . . . ,𝑀 of system (9) can be
found solving the system𝑝 = 𝛼Ξ(𝑥) (𝑝, 𝜅𝑥) + 𝛽𝑞,𝑞 = 𝛾𝑝 + 𝛿Ξ(𝑦) (𝑞, 𝜅𝑦) . (B.1)

However, due to the nonlinear nature of the system, it
is difficult to obtain solutions in the explicit form: 𝑝 =𝑝(𝜅𝑥, 𝜅𝑦, 𝛼, 𝛿), 𝑞 = 𝑞(𝜅𝑥, 𝜅𝑦, 𝛼, 𝛿). Nevertheless, it is always
possible to find them graphically. For example, in Figure 6,
the special case is considered when two different mappings
are used Ξ(𝑥)(𝑥, 𝜅𝑥) = 𝑥 − 𝜅𝑥 sin(3𝑥) cos(sin(3𝑦))4 (red lines)
andΞ(𝑦)(𝑦, 𝜅𝑦) = 𝑦−𝜅𝑦 sin(3𝑦) exp(− sin(3𝑦)2) (blue lines) in
system (B.1) with 𝜅𝑥 = 0.66 and 𝜅𝑦 = 0.4; 𝛼 = 0.1, . . . , 0.9 and𝛿 = 0.1, . . . , 0.9, respectively. In Figure 7, the same situation
is considered but now using 𝜅𝑥 = −0.66 and 𝜅𝑦 = 0.66.
Notice that the corresponding fixed points of a concrete pair
of equations correspond to intersections of only one red
curvewith one blue curve.Nevertheless, there are fixed points
common to all equations pairs, those of the form (𝑝, 𝑝). Since,
in general, in each temporal step, different pairs of agents
interact, so that different pairs of equations are used each
time, consequently, the only permanent fixed points are those
of Theorem 1.
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Figure 7:The figure shows a parametric plot of families of curves for system (9) for Ξ(𝑥) = 𝑥−𝜅𝑥𝑔1(sin (3𝑥))sin (3𝑥), 𝜅𝑥 = −0.66, and different
relatives weights 𝛼 = 0.1, 0.2, . . . , 0.9 (red lines), Ξ(𝑦) = 𝑦−𝜅𝑦𝑔2(sin (3𝑦))sin (3𝑦), 𝜅𝑦 = 0.66 and different relative weights 𝛿 = 0.1, 0.2, . . . , 0.9
(blue lines). The intersections correspond to different fixed points of different pairs of equations. Notice that only those fixed points of the
form (𝑝, 𝑝) are common to all equations in system (7); however, they are unstable. Other fixed points depend on parameters’ values.

References

[1] Y. Ding and L. Mo, “Improved finite time in eliminating
disagreement of opinion dynamics via noise,” Advances in
Mathematical Physics, vol. 2017,Article ID 1098169, 6 pages, 2017.

[2] X. Chen, X. Zhang, Y. Xie, and W. Li, “Opinion dynamics of
social-similarity-based Hegselmann-Krause model,” Complex-
ity, vol. 2017, Article ID 1820257, 12 pages, 2017.

[3] G. D’Aniello, M. Gaeta, S. Tomasiello, and L. Rarità, “A fuzzy
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This paper mainly explores a generalized SIS epidemic model with time-varying coefficients and delays. By employing Lyapunov
function method and differential inequality approach, a sufficient criterion to guarantee the existence and exponential stability
of positive periodic solutions for the addressed model is obtained, which complements the earlier publications. Particularly, an
example and its numerical simulations are given to demonstrate our theoretical results.

1. Introduction

In the study of infectious dynamics, under the assumption
that there is no mortality due to illness, A. Iggidr, K. Niri b,
and E. Ould Moulay Ely [1] proposed the following delayed
SIS epidemic model:

𝑖󸀠 (𝑡) = 𝛽 [1 − 𝑖 (𝑡)] 𝑖 (𝑡) − 𝛽 [1 − 𝑖 (𝑡 − 𝜔)] 𝑖 (𝑡 − 𝜔) 𝑒−𝑑𝜔
− 𝑑𝑖 (𝑡) , (1)

where 𝑖(𝑡) = 𝐼(𝑡)/𝑁(𝑡), 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡), 𝑆(𝑡), 𝐼(𝑡), and𝑁(𝑡) denote the susceptible numbers, infective numbers,
and total numbers at time 𝑡, respectively. Here 𝛽 is the
transmission rate, 𝜔 > 0 designates the average latent period
of the disease, and 𝑑 represents the natural death rate. A
more detailed description of the model can be found in [2].
Recently, some criteria ensuring the global attractivity of the
endemic equilibrium of (1) have been established in [3]. On
the one hand, any biological or environmental parameters
are naturally subject to fluctuation in time and it is more
realistic to consider the model with time-varying coefficients
and delays. One can easily find that (1) can be extended to the
case with time-varying delay and time-varying coefficients
when d(t) has a special form. On the other hand, in the
real world, the model coefficients are usually assumed to be
periodic because the correlation coefficients are susceptible to
the change of climate and other factors. In fact, periodic phe-
nomena are found in the spread of many infectious diseases

such as influenza and chickenpox. Therefore it is worthwhile
to investigate how periodic solutions arise and the stability
of periodic solutions in an epidemiological model (see, for
instance, [4–7]). However, to the best of our knowledge, there
are no existing papers on positive periodic solutions of (1).
According to the previous analysis, in this paper, our goal is
to study the existence and the exponential stability of positive
periodic solutions of the following generalized SIS model
with time-varying delays and coefficients:

𝑖󸀠 (𝑡) = 𝛽 (𝑡) [1 − 𝑖 (𝑡)] 𝑖 (𝑡)
− 𝛽 (𝑡) [1 − 𝑖 (𝑡 − 𝜔 (𝑡))] 𝑖 (𝑡 − 𝜔 (𝑡)) 𝑒−𝑑(𝑡)𝜔(𝑡)
− 𝑑 (𝑡) 𝑖 (𝑡) ,

(2)

where 𝛽(𝑡), 𝜔(𝑡), 𝑑(𝑡) are nonnegative bounded and continu-
ous 𝑇-periodic functions.

For convenience, we introduce the following notations.

𝑔+ = sup
𝑡∈R

󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨 ,
𝑔− = inf
𝑡∈R

󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨 ,
𝐶 = 𝐶 ([−𝜔+, 0] ,R) ,
𝐶+ = 𝐶 ([−𝜔+, 0] ,R+) ,

𝑖𝑡 (𝜃) = 𝑖 (𝑡 + 𝜃) .

(3)
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By virtue of the biological interpretation ofmodel (2), one
can find that all solutions of (2) should remain in the interval[0, 1].Then, we introduce the initial value conditions of (2) as
follows:

𝑖𝑡0 = 𝜑, 𝜑 ∈ 𝐶 ([−𝜔+, 0] , [0, 1]) ⊂ 𝐶+ and 𝑖 (0) > 0. (4)

In addition, define a continuous map 𝑓 : R × 𝐶+ 󳨀→ R by

𝑓 (𝑡, 𝜑) = 𝛽 (𝑡) 𝜑 (0) (1 − 𝜑 (0))
− 𝛽 (𝑡) 𝜑 (−𝜔 (𝑡)) (1 − 𝜑 (−𝜔 (𝑡))) 𝑒−𝑑(𝑡)𝜔(𝑡)
− 𝑑 (𝑡) 𝜑 (0) .

(5)

Clearly, the existence and uniqueness of the solution of (2)
with the initial condition (4) are guaranteed by which 𝑓 is a
locally Lipschitzmapwith respect to𝜑 ∈ 𝐶+. Let 𝑖(𝑡; 𝑡0, 𝜑) be a
solution of the initial value problem (2) and (4) and [𝑡0, 𝜂(𝜑))
be the maximal right-interval of the existence of 𝑖(𝑡; 𝑡0, 𝜑).

Let 𝜃(𝑡) = 𝛽(𝑡)((1−𝑒−𝑑(𝑡)𝜔(𝑡))/𝑑(𝑡)),𝑔(𝑡, 𝑥) = 𝛽(𝑡)[(1−𝑥)−(1/4𝑥)𝑒−𝑑(𝑡)𝜔(𝑡)]/𝑑(𝑡) − 1, 𝑡 ∈ R. In the following, we always

assume that 𝜃(𝑡) > 2, for all ̈̈̈̈̈𝑡 ∈ R. Fix 𝑡 ∈ R; it is not difficult
to verify that 𝑔(𝑡, 𝑥) is increasing on (0, (1/2)𝑒−𝑑(𝑡)𝜔(𝑡)/2) and
decreasing on ((1/2)𝑒−𝑑(𝑡)𝜔(𝑡)/2, +∞) about the variable 𝑥.
Note that

𝑔(𝑡, 12𝑒−𝑑(𝑡)𝜔(𝑡)/2) ≥ 𝑔(𝑡, 12)
= 𝛽 (𝑡) (1 − 𝑒−𝑑(𝑡)𝜔(𝑡))

2𝑑 (𝑡) − 1
= 𝜃 (𝑡)2 − 1 > 0, ∀𝑡 ∈ R.

(6)

And

𝑔 (𝑡, 𝑥) 󳨀→ −∞ as 𝑥 󳨀→ 0+;
𝑔 (𝑡, 𝑥) 󳨀→ −∞ as 𝑥 󳨀→ +∞. (7)

For fixed 𝑡 ∈ R, we denote the unique zero solution of 𝑔(𝑡, 𝑥)
on (0, (1/2)𝑒−𝑑(𝑡)𝜔(𝑡)/2) by 𝜅(𝑡). For any 𝜅 ∈ (𝜅+, 1/2), denote𝑀 = 1 − 𝜅, 𝐶𝜅 = {𝜑 ∈ 𝐶 | 𝜑(𝜃) ∈ (𝜅,𝑀) for all 𝜃 ∈ [−𝜔+, 0]}.
Furthermore, it is not hard to see that

𝑔 (𝑡, 𝜅) > 0, ∀𝑡 ∈ R. (8)

2. Preliminary Results

The following lemmas are helpful to prove our main results
in Section 3.

Lemma 1. Assume that 𝑑− > 0, 𝜔− > 0, and
2𝑑 (𝑡) < 𝛽 (𝑡) (1 − 𝑒−𝑑(𝑡)𝜔(𝑡)) < 𝑑 (𝑡)𝜅 for all 𝑡 ∈ R. (9)

�en, for 𝜑 ∈ 𝐶𝜅,
𝜂 (𝜑) = ∞ and

𝑖 (𝑡; 𝑡0, 𝜑) ∈ 𝐶𝜅 for 𝑡 ≥ 𝑡0. (10)

Proof. For the sake of simplicity of notations, let 𝑖(𝑡) =𝑖(𝑡; 𝑡0, 𝜑) for all 𝑡 ∈ [𝑡0 − 𝜔+, 𝜂(𝜑)). We first show that

𝑖 (𝑡) > 𝜅 for all 𝑡 ∈ [𝑡0, 𝜂 (𝜑)) . (11)

Arguing by contradiction, if this is not true, then there must
exist 𝑇1 ∈ (𝑡0, 𝜂(𝜑)) such that

𝑖 (𝑇1) = 𝜅,
𝑖 (𝑡) > 𝜅 for all 𝑡 ∈ (𝑡0 − 𝜔+, 𝑇1) , (12)

which, with the help of (8), (9), and (12), entails that

𝑖󸀠 (𝑇1) = 𝛽 (𝑇1) [1 − 𝑖 (𝑇1)] 𝑖 (𝑇1) − 𝛽 (𝑇1)
⋅ [1 − 𝑖 (𝑇1 − 𝜔 (𝑇1))] 𝑖 (𝑇1 − 𝜔 (𝑇1)) 𝑒−𝑑(𝑇1)𝜔(𝑇1)
− 𝑑 (𝑇1) 𝑖 (𝑇1) ≥ 𝛽 (𝑇1) (1 − 𝜅) 𝜅 − 𝛽 (𝑇1)4
⋅ 𝑒−𝑑(𝑇1)𝜔(𝑇1) − 𝑑 (𝑇1) 𝜅 = 𝑑 (𝑇1)
⋅ 𝜅{𝛽 (𝑇1) [(1 − 𝜅) − (1/4𝜅) 𝑒−𝑑(𝑇1)𝜔(𝑇1)]𝑑 (𝑇1) − 1}
> 0,

(13)

which is contrary to the fact that 𝑖󸀠(𝑇1) ≤ 0. Hence (11) holds.
Next, we demonstrate that

𝑖 (𝑡) < 𝑀 for 𝑡 ∈ [𝑡0, 𝜂 (𝜑)) . (14)

If not, there must exist 𝑇2 ∈ (𝑡0, 𝜂(𝜑)) such that

𝑖 (𝑇2) = 𝑀,
𝑖 (𝑡) < 𝑀 for all 𝑡 ∈ (𝑡0 − 𝜔+, 𝑇2) , (15)

which, together with (9) and (15), suggests that

𝑖󸀠 (𝑇2) = 𝛽 (𝑇2) [1 − 𝑖 (𝑇2)] 𝑖 (𝑇2) − 𝛽 (𝑇2)
⋅ [1 − 𝑖 (𝑇2 − 𝜔 (𝑇2))] 𝑖 (𝑇2 − 𝜔 (𝑇2)) 𝑒−𝑑(𝑇2)𝜔(𝑇2)
− 𝑑 (𝑇2) 𝑖 (𝑇2) ≤ 𝛽 (𝑇2) (1 −𝑀)𝑀 − 𝛽 (𝑇2)
⋅ (1 −𝑀)𝑀𝑒−𝑑(𝑇2)𝜔(𝑇2) − 𝑑 (𝑇2)𝑀
= 𝑀[𝛽 (𝑇2) (1 −𝑀) (1 − 𝑒−𝑑(𝑇2)𝜔(𝑇2)) − 𝑑 (𝑇2)]
< 0,

(16)

which is a contradiction with 𝑖󸀠(𝑇2) ≥ 0 and hence (14) is true.
In view of (9), (11), and (14), we can show that

𝜅 < 𝑖 (𝑡) < 𝑀 for all 𝑡 ∈ [𝑡0 − 𝜔+, 𝜂 (𝜑)) . (17)

FromTheorem 2.3.1 in [8], we can easily obtain 𝜂(𝜑) = +∞.
This completes the proof.
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Lemma 2. Assuming that the conditions of Lemma 1 are
established, we further assume that

𝑑 (𝑡) > 𝛽 (𝑡) (1 − 2𝜅) (1 + 𝑒−𝑑(𝑡)𝜔(𝑡)) for 𝑡 ∈ R. (18)

�en there exists a positive 𝜆 such that

󵄨󵄨󵄨󵄨𝑖 (𝑡; 𝑡0, 𝜑) − 𝑖 (𝑡; 𝑡0, 𝜑∗)󵄨󵄨󵄨󵄨 ≤ 𝐾𝜑,𝜑∗𝑒−𝜆𝑡
for 𝜑, 𝜑∗ ∈ 𝐶𝜅 and 𝑡 ≥ 𝑡0, (19)

where 𝐾𝜑,𝜑∗ = 𝑒𝜆𝑡0 (max𝜃∈[−𝜔+,0]|𝜑(𝜃) − 𝜑∗(𝜃)| + 1).
Proof. Consider Γ : [0, 1] 󳨀→ R defined by

Γ (𝑢) = sup
𝑡∈R

{− [𝑑 (𝑡)
− (1 − 2𝜅) 𝛽 (𝑡) (1 + 𝑒−𝑑(𝑡)𝜔(𝑡)𝑒𝑢𝜔+) − 𝑢]} ,

for 𝑢 ∈ [0, 1] .
(20)

Clearly, Γ is continuous. Note that Γ(0) = sup𝑡∈R{−[𝑑(𝑡)−(1−2𝜅)𝛽(𝑡)(1+𝑒−𝑑(𝑡)𝜔(𝑡))]} < 0, which follows from the continuity
and periodicity of𝑑(𝑡),𝜔(𝑡), and𝛽(𝑡), then there are 𝜂 > 0 and1 > 𝜆 > 0 such that Γ(𝜆) < −𝜂 or
− [𝑑 (𝑡) − (1 − 2𝜅) 𝛽 (𝑡) (1 + 𝑒−𝑑(𝑡)𝜔(𝑡)𝑒𝜆𝜔+) − 𝜆] < −𝜂
< 0 for 𝑡 ∈ R. (21)

Let 𝜑, 𝜑∗ ∈ 𝐶𝜅. For simplicity, denote 𝑖(𝑡; 𝑡0, 𝜑) and𝑖(𝑡; 𝑡0, 𝜑∗) by 𝑖(𝑡) and 𝑖∗(𝑡), respectively. From Lemma 1, we
have

𝜅 < 𝑖 (𝑡) ,
𝑖∗ (𝑡) < 𝑀

for all 𝑡 ∈ [𝑡0 − 𝜔+,∞) .
(22)

Let 𝑦(𝑡) = 𝑖(𝑡) − 𝑖∗(𝑡) for 𝑡 ∈ [𝑡0 − 𝜔+,∞). Then, for 𝑡 ≥ 𝑡0,
𝑦󸀠 (𝑡) = − [𝛽 (𝑡) (𝑖 (𝑡) + 𝑖∗ (𝑡) − 1) + 𝑑 (𝑡)] 𝑦 (𝑡) + 𝛽 (𝑡)

⋅ 𝑒−𝑑(𝑡)𝜔(𝑡) [𝑖 (𝑡 − 𝜔 (𝑡)) + 𝑖∗ (𝑡 − 𝜔 (𝑡)) − 1]
⋅ 𝑦 (𝑡 − 𝜔 (𝑡)) .

(23)

Consider the Lyapunov functional

𝑉 (𝑡) = 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 𝑒𝜆𝑡 for 𝑡 ≥ 𝑡0. (24)

We claim that 𝑉(𝑡) ≤ 𝐾𝜑,𝜑∗ for 𝑡 ≥ 𝑡0. Otherwise, there exists𝑡∗ > 𝑡0 such that

𝑉 (𝑡∗) = 𝐾𝜑,𝜑∗ and
𝑉(𝑡) < 𝐾𝜑,𝜑∗

for all 𝑡 ∈ [𝑡0 − 𝜔+, 𝑡∗) .
(25)

Then

0 ≤ 𝐷− (𝑉 (𝑡∗)) ≤ − [𝛽 (𝑡∗) (𝑖 (𝑡∗) + 𝑖∗ (𝑡∗) − 1)
+ 𝑑 (𝑡∗)] 󵄨󵄨󵄨󵄨𝑦 (𝑡∗)󵄨󵄨󵄨󵄨 𝑒𝜆𝑡∗ + 𝛽 (𝑡∗) 𝑒−𝑑(𝑡∗)𝜔(𝑡∗) 󵄨󵄨󵄨󵄨𝑖 (𝑡∗
− 𝜔 (𝑡∗)) + 𝑖∗ (𝑡∗ − 𝜔 (𝑡∗)) − 1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑦 (𝑡∗ − 𝜔 (𝑡∗))󵄨󵄨󵄨󵄨
⋅ 𝑒𝜆𝑡∗ + 𝜆 󵄨󵄨󵄨󵄨𝑦 (𝑡∗)󵄨󵄨󵄨󵄨 𝑒𝜆𝑡∗ = − [𝛽 (𝑡∗) (𝑖 (𝑡∗) + 𝑖∗ (𝑡∗)
− 1) + 𝑑 (𝑡∗) − 𝜆] 󵄨󵄨󵄨󵄨𝑦 (𝑡∗)󵄨󵄨󵄨󵄨 𝑒𝜆𝑡∗ + 𝛽 (𝑡∗)
⋅ 𝑒−𝑑(𝑡∗)𝜔(𝑡∗) 󵄨󵄨󵄨󵄨𝑖 (𝑡∗ − 𝜔 (𝑡∗)) + 𝑖∗ (𝑡∗ − 𝜔 (𝑡∗)) − 1󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨𝑦 (𝑡∗ − 𝜔 (𝑡∗))󵄨󵄨󵄨󵄨 𝑒𝜆(𝑡∗−𝜔(𝑡∗))𝑒𝜆𝜔(𝑡∗) ≤ − [𝛽 (𝑡∗) (2𝜅
− 1) + 𝑑 (𝑡∗) − 𝜆] 󵄨󵄨󵄨󵄨𝑦 (𝑡∗)󵄨󵄨󵄨󵄨 𝑒𝜆𝑡∗ + (2𝑀 − 1) 𝛽 (𝑡∗)
⋅ 𝑒−𝑑(𝑡∗)𝜔(𝑡∗) 󵄨󵄨󵄨󵄨𝑦 (𝑡∗ − 𝜔 (𝑡∗))󵄨󵄨󵄨󵄨 𝑒𝜆(𝑡∗−𝜔(𝑡∗))𝑒𝜆𝜔(𝑡∗)
≤ {− [𝑑 (𝑡∗) + 𝛽 (𝑡∗) (2𝜅 − 1) − 𝜆] + (1 − 2𝜅)
⋅ 𝛽 (𝑡∗) 𝑒−𝑑(𝑡∗)𝜔(𝑡∗)𝑒𝜆𝜔+}𝐾𝜑,𝜑∗ ≤ {− [𝑑 (𝑡∗)
− 𝛽 (𝑡∗) (1 − 2𝜅) (1 + 𝑒−𝑑(𝑡∗)𝜔(𝑡∗)𝑒𝜆𝜔+) − 𝜆]}𝐾𝜑,𝜑∗
< −𝜂𝐾𝜑,𝜑∗ < 0,

(26)

a contradiction. Consequently, we infer that (19) holds. The
proof is completed.

3. Main Results

Combined with Lemmas 1 and 2, we have the following
theorem.

Theorem 3. Under the assumptions of Lemma 2, then system
(2) has exactly one positive 𝑇-periodic solution which is
exponentially stable.

Proof. Fix a 𝜑 ∈ 𝐶𝜅; let 𝑖(𝑡) = 𝑖(𝑡; 𝑡0, 𝜑) be a solution of system
(2) and (4). According to Lemma 1, we have

𝜅 < 𝑖 (𝑡; 𝑡0, 𝜑) < 𝑀 for all 𝑡 ≥ 𝑡0 − 𝜔+. (27)

From the periodicity of coefficients and delays for system (2),
for any nonnegative integer ℎ, we get

𝑖󸀠 (𝑡 + ℎ𝑇) = 𝛽 (𝑡 + ℎ𝑇) [1 − 𝑖 (𝑡 + ℎ𝑇)] 𝑖 (𝑡 + ℎ𝑇)
− 𝛽 (𝑡 + ℎ𝑇) [1 − 𝑖 (𝑡 + ℎ𝑇 − 𝜔 (𝑡 + ℎ𝑇))]
⋅ 𝑖 (𝑡 + ℎ𝑇 − 𝜔 (𝑡 + ℎ𝑇)) 𝑒−𝑑(𝑡+ℎ𝑇)𝜔(𝑡+ℎ𝑇)
− 𝑑 (𝑡 + ℎ𝑇) 𝑖 (𝑡 + ℎ𝑇) = 𝛽 (𝑡) [1 − 𝑖 (𝑡 + ℎ𝑇)]
⋅ 𝑖 (𝑡 + ℎ𝑇) − 𝛽 (𝑡) [1 − 𝑖 (𝑡 + ℎ𝑇 − 𝜔 (𝑡))]
⋅ 𝑖 (𝑡 + ℎ𝑇 − 𝜔 (𝑡)) 𝑒−𝑑(𝑡)𝜔(𝑡) − 𝑑 (𝑡) 𝑖 (𝑡 + ℎ𝑇)

(28)

which implies that 𝑖(𝑡 + ℎ𝑇; 𝑡0, 𝜑) is also a solution to system
(2) on [𝑡0 −𝜔+ −ℎ𝑇,∞). Denote 𝜓 = 𝑖(𝑡 +𝑇; 𝑡0, 𝜑). In view of
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Lemma 2, for any nonnegative integer ℎ and 𝑡 + ℎ𝑇 ≥ 𝑡0, we
obtain

󵄨󵄨󵄨󵄨𝑖 (𝑡 + (ℎ + 1) 𝑇; 𝑡0, 𝜑) − 𝑖 (𝑡 + ℎ𝑇; 𝑡0, 𝜑)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝑖 (𝑡 + ℎ𝑇; 𝑡0, 𝜓) − 𝑖 (𝑡 + ℎ𝑇; 𝑡0, 𝜑)󵄨󵄨󵄨󵄨
≤ 𝐾𝜑,𝜓𝑒−𝜆(𝑡+ℎ𝑇),

(29)

where𝐾𝜑,𝜓 = 𝑒𝜆𝑡0 (max𝜃∈[−𝜔+,0]|𝜑(𝜃) − 𝜓(𝜃)| + 1).
Now, we claim that 𝑖(𝑡 + 𝑞𝑇; 𝑡0, 𝜑) is convergent on any

compact interval as 𝑞 󳨀→ ∞. For an arbitrary subset [𝑎, 𝑏] ⊂
R, we can pick a nonnegative integer 𝑞0 satisfying 𝑡+𝑞0𝑇 ≥ 𝑡0
for 𝑡 ∈ [𝑎, 𝑏]. Then for 𝑡 ∈ [𝑎, 𝑏] and 𝑞 > 𝑞0, one can see that

𝑖 (𝑡 + 𝑞𝑇) = 𝑖 (𝑡 + 𝑞0𝑇)
+ 𝑞−1∑
ℎ=𝑞0

[𝑖 (𝑡 + (ℎ + 1) 𝑇) − 𝑖 (𝑡 + ℎ𝑇)] (30)

which implies that {𝑖(𝑡 + 𝑞𝑇)}𝑞 converges uniformly to a
continuous function 𝑖∗(𝑡). Due to the arbitrariness of [𝑎, 𝑏],
one can easily find that 𝑖(𝑡 + 𝑞𝑇) 󳨀→ 𝑖∗(𝑡) as 𝑞 󳨀→ ∞ for𝑡 ∈ R. Moreover, we get

𝜅 ≤ 𝑖∗ (𝑡) ≤ 𝑀 for all 𝑡 ∈ R. (31)

Next we show that 𝑖∗ is a 𝑇-periodic solution of (2). The
periodicity can be obtained immediately from the fact

𝑖∗ (𝑡 + 𝑇) = lim
𝑞󳨀→∞

𝑖 ((𝑡 + 𝑇) + 𝑞𝑇)
= lim
𝑞+1󳨀→∞

𝑖 (𝑡 + (𝑞 + 1) 𝑇) = 𝑖∗ (𝑡) (32)

for all 𝑡 ∈ R. Noting that 𝑖(𝑡 + 𝑞𝑇) is a solution to (2),

𝑖 (𝑡 + 𝑞𝑇) − 𝑖 (𝑡0 + 𝑞𝑇) = ∫𝑡
𝑡0

{𝛽 (𝑠) [1 − 𝑖 (𝑠 + 𝑞𝑇)]
⋅ 𝑖 (𝑠 + 𝑞𝑇) − 𝛽 (𝑠) [1 − 𝑖 (𝑠 + 𝑞𝑇 − 𝜔 (𝑠))]
⋅ 𝑖 (𝑠 + 𝑞𝑇 − 𝜔 (𝑠)) 𝑒−𝑑(𝑠)𝜔(𝑠) − 𝑑 (𝑠) 𝑖 (𝑠 + 𝑞𝑇)} 𝑑𝑠

(33)

for 𝑡 ≥ 𝑡0. Letting 𝑞 󳨀→ ∞ gives us

𝑖∗ (𝑡) − 𝑖∗ (𝑡0) = ∫𝑡
𝑡0

{𝛽 (𝑠) [1 − 𝑖∗ (𝑠)] 𝑖∗ (𝑠)
− 𝛽 (𝑠) [1 − 𝑖∗ (𝑠 − 𝜔 (𝑠))] 𝑖∗ (𝑠 − 𝜔 (𝑠)) 𝑒−𝑑(𝑠)𝜔(𝑠)
− 𝑑 (𝑠) 𝑖∗ (𝑠)} 𝑑𝑠

(34)

for 𝑡 ≥ 𝑡0; namely, 𝑖∗ is a solution to (2) on [𝑡0 − 𝜔+,∞).
Finally, by the same method as that in the proof of Lemma 2,
we can show that 𝑖∗(𝑡) is exponentially stable. This finishes
the proof.
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Figure 1: Numerical solutions 𝑖(𝑡) of model (35) for initial value𝜑(𝑡) = 0.4, 0.5, 0.6, 𝑡 ∈ [−50, 0].

4. An Example

Example 1. Regard the following generalized SIS epidemic
model with time-varying delays and coefficients:

𝑖󸀠 (𝑡) = (0.32 + 0.08 sin 𝑡) [1 − 𝑖 (𝑡)] 𝑖 (𝑡)
− (0.32 + 0.08 sin 𝑡) [1 − 𝑖 (𝑡 − (40 + 10 sin 𝑡))]

𝑖 (𝑡 − (40 + 10 sin 𝑡)) 𝑒−(0.08+0.02 sin 𝑡)(40+10 sin 𝑡)
− (0.08 + 0.02 sin 𝑡) 𝑖 (𝑡) .

(35)

Then

𝑒−4 ≤ 𝑒−𝑑(𝑡)𝜔(𝑡) ≤ 𝑒−1.8 ≈ 0.1653, for all 𝑡 ∈ R, (36)

and 𝜅+ ≈ 0.23025. Choose 𝜅 = 1/3, then 1/4 < 𝜅. By a simple
computation, we can easily check that all the conditions of
Theorem 3 are satisfied. Therefore, system (35) with initial
values in 𝜑 ∈ 𝐶𝜅 has a unique positive 2𝜋-periodic solution𝑖∗(𝑡)which is exponentially stable.Thenumerical simulations
in Figure 1 strongly support the conclusion.

Remark 5. To the author’s knowledge, it is the first time
to focus attention on the exponential stability of positive
periodic solutions for (2), which is the generalization of (1).
By constructing invariant sets ingeniously, under appropriate
conditions, we represent that all solutions of the addressed
model converge exponentially to the positive periodic solu-
tion. In addition, one can find that all the results in [1, 3–6]
cannot be applicable to show the global exponential stability
on the positive periodic solution of (35), which implies
that the results of this paper are new and complement of
previously known results. In future, we will consider the
properties of almost periodic solutions and pseudo almost
periodic solutions of the model.
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This paper focuses on the uniqueness and novel finite-time stability of solutions for a kind of fractional-order nonlinear difference
equations with time-varying delays. Under some new criteria and by applying the generalized Gronwall inequality, the new
constructive results have been established in the literature. As an application, two typical examples are delineated to demonstrate
the effectiveness of our theoretical results.

1. Introduction

The time difference of fractional order was firstly studied by
Kuttner [1] in 1957; since then, various kinds of definitions of
fractional difference were studied bymany authors. We know
fractional difference equations play an important role in
promoting modernmathematics development and have been
widely applied, especially in physics, dynamic mechanics,
medicines, and communications.There is a growing tendency
nowadays that many experts show their great enthusiasm for
fractional difference equations, and in the past few years, a lot
of achievements have been done. For an extensive collection
of such results, we recommend the readers to monograph [2]
and papers [3–16].

The study about uniqueness of discrete solutions for
fractional difference equations is one of the most inter-
esting and valuable topics. Recently, Abdeljawad et al. [3]
studied the following nonlinear fractional difference sys-
tem (𝐶𝐹𝑅𝑎∇𝛼𝑦) (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑡 ∈ N𝑎,𝑏,

𝑦 (𝑎) = 𝑐. (1)

Let 𝑓(𝑡, 𝑦) satisfy Lipschitz condition: there exists a constant𝐴 > 0 such that󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦1) − 𝑓 (𝑡, 𝑦2)󵄨󵄨󵄨󵄨 ≤ 𝐴 󵄨󵄨󵄨󵄨𝑦1 − 𝑦2󵄨󵄨󵄨󵄨 , (2)

and 𝑓 : N𝑎,𝑏 × R 󳨀→ R and 𝑦 : N𝑎,𝑏 󳨀→ R. By Banach
Contraction Principle, authors obtained that system (1) had
a unique solution 𝑥 ∈ 𝑋, 𝑋 = {𝑥 : max𝑡∈N𝑎,𝑏 |𝑥(𝑡)| < ∞},
if

𝐴𝐵 (𝛼 − 1) ((2 − 𝛼) (𝑏 − 𝑎) + (𝛼 − 1) (𝑏 − 𝑎)22 ) < 1, (3)

where 𝐵(𝛼) is a normalization positive constant depending
on 𝛼 satisfying 𝐵(0) = 𝐵(1) = 1, and 𝐶𝐹𝑅𝑎∇𝛼 is a fractional
operator defined as in Definition 4 of paper [3].

In [4], Abdeljawad and M. Al-Mdallal considered the
fractional difference system

(𝐴𝐵𝐶𝑎∇𝛼𝑦) (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑡 ∈ N𝑎,𝑏,
𝑦 (𝑎) = 𝑐, (4)

such that 𝑏 ≡ 𝑎 (mod 1), 𝑓(𝑎, 𝑦(𝑎)) = 0. Let 𝑓 admit
the Lipschitz condition, 𝐴 be a Lipschitz constant, and 𝑦 :
N𝑎,𝑏 󳨀→ R. Then system (4) had a unique solution provided
that

𝐴(1 − 𝛼𝐵 (𝛼) + + (𝑏 − 𝑎)𝛼Γ (𝛼) 𝐵 (𝛼)) < 1, (5)

where 𝐴𝐵𝐶𝑎∇𝛼 is a fractional operator, and we can see it in
Definition 4 of paper [4].
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What will happen if the nonlinear equations (1) and (4)
subjecting the initial value condition extend into fractional
delay difference equation? We are particularly interested in
fractional difference equation involving time-varying delays.

On the other hand, stability analysis is also one of the
most crucial themes for fractional nonlinear systems, such
as [17, 18] researching stability in nondelay fractional systems
and [14, 19–22] in delay fractional difference systems. Specifi-
cally, in [17, 18], using Lyapunov’s direct method, the stability
of discrete nonautonomous systems with the nabla Caputo
fractional difference was studied. In [19], the authors studied
a class of linear fractional difference equations with impulse
effects, and they provided the generalized Mittag-Leffler sta-
bility by numerical illustration. In papers [20, 22], asymptotic
stability of a fractional discrete system was discussed and the
theorem for a discrete fractional Lyapunov directmethodwas
proved. In [21], the researchers investigated the stability of the
equilibrium solution of a linear fractional difference equation
with the initial condition, and to achieve this target, the well-
known unilateral 𝑧−transform was successfully employed. In
paper [14], the researchers considered the following linear
fractional difference equations with a constant delay
𝐶Δ]
𝑎𝑥 (𝑡) = 𝐴0𝑥 (𝑡 + ]) + 𝐴1𝑥 (𝑡 + ] − 𝑘) , 0 < ] < 1, (6)

where 𝑥(𝑡) ∈ R𝑙, 𝑘 is a fixed positive integer, and 𝐶Δ]
𝑎𝑥(𝑡)

denotes the Caputo delta fractional difference of 𝑥(𝑡) on the
discrete time.Thefinite-time stable conclusions are presented
in the addressed paper.

Deeply inspired by [3, 4, 14] and other mentioned papers,
in this paper, we are concerned with the uniqueness and
finite-time stability of solutions for the following fractional
discrete equation with time-varying delays
𝐶Δ]
𝑎𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ (𝑡)) + 𝐷𝑤 (𝑡)

+ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)) , 𝑤 (𝑡)) ,
𝑡 ∈ 𝐽1,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ 𝐽2,
(7)

where 𝐶Δ]
𝑎 denotes the Caputo fractional difference operator

with ] ∈ (0, 1], and 𝐽1 = {𝑡 ∈ Z | 𝑎 + 1 − ] ≤ 𝑡 ≤ 𝑎 +𝑀}, and𝐽2 = {𝑡 ∈ Z | 𝑎 + 1 − ] − ℎ ≤ 𝑡 ≤ 𝑎 + 1 − ]}, 𝑎 ∈ R, 𝑀 is a
positive integer; 𝑥(𝑡) ∈ R𝑛 is the state vector,𝑤(𝑡) ∈ R𝑚 is the
disturbance vector, ℎ(𝑡) is a function satisfying 0 ≤ ℎ(𝑡) ≤ ℎ,
and 𝜙(𝑡) ∈ R𝑛 is the given function; 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑛,𝐷 ∈
R𝑛×𝑚 are constant matrices, and𝑓 : 𝐽1×R𝑛×R𝑛×R𝑚 󳨀→ R𝑛.

Comparedwith some recent results in the literatures, such
as [14, 17, 19–22], the chief contributions of this study contain
at least the following three:

(1) In [14, 17, 19–22], the literatures investigated the sta-
bility of fractional difference equations with constant
delays, but the delay term we studied in system (7)
is a bounded function with respect to the variable𝑡. This is a significant breakthrough in dealing with
fractional difference systemwith time-varying delays.

(2) Themodelwe are concernedwith ismore generalized,
some ones in the articles are the special cases of it.

In [19, 22], the coefficients of the fractional discrete
system researched by authors are one-dimensional
real numbers which are too simple to describe the
mathematical model well, and we adopt constant
matrices as coefficients in (7). Therefore, the gener-
alized models are originally discussed in the present
paper. Furthermore, our conclusions can also be
applied to the equations with function matrices, and
you can see it by the following Corollaries 10 and 13.

(3) An innovative method based on the generalized
Gronwall inequality is exploited to discuss the
uniqueness and finite-time stability of the solutions
for the fractional-order difference equation with
time-varying delays.The results established are essen-
tially new.

The following article is organized as follows: in Section 2,
we will recall some known results for our considerations.
Some lemmas and definitions are useful to our work. Sec-
tion 3 is devoted to researching the uniqueness of solutions
for the fractional-order difference equation with time delay.
Subsequently, we investigate the finite-time stability of the
addressed equation, and then we will come up with the main
theorem. To explain the results clearly, we finally provide two
examples in Section 4.

2. Preliminaries

In this section, we plan to introduce some basic definitions
and lemmas which are used throughout this paper.

Definition 1 ([23, 24]). We define

𝑡] fl Γ (𝑡 + 1)Γ (𝑡 + 1 − ]) , (8)

as for any 𝑡 and ] for which the right-hand side is defined.
Here and in what follows Γ denotes the gamma function. We
also appeal to the common convention that if 𝑡+1−] is a pole
of the gamma function and 𝑡 + 1 is not a pole, then 𝑡] = 0.
Definition 2 ([24]). The ]-th fractional sum of a function 𝑓,
for ] > 0, is defined to be

Δ−]𝑎 𝑓 (𝑡) = Δ−]𝑎 𝑓 (𝑡; 𝑎) fl 1Γ (])
𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 𝑓 (𝑠) , (9)

where 𝑡 ∈ {𝑎 + ], 𝑎 + ] + 1, . . . , } š N𝑎+]. We also define the
]-th fractional difference, where ] > 0 and 0 ≤ 𝑁−1 < ] ≤ 𝑁
with𝑁 ∈ N, to be Δ]𝑓(𝑡) fl Δ𝑁Δ]−𝑁𝑓(𝑡), where 𝑡 ∈ N𝑎+].

Lemma 3 ([15]). Assume that 𝜇 > 0 and 𝑓 is defined on N𝑎.
�en

Δ−𝜇Δ𝜇𝑓 (𝑡) = 𝑓 (𝑡) − 𝑛−1∑
𝑘=0

(𝑡 − 𝑎)(𝑘)𝑘! Δ𝑘𝑓 (𝑎)
= 𝑓 (𝑡) + 𝑐0 + 𝑐1𝑡 + ⋅ ⋅ ⋅ + 𝑐𝑛−1𝑡(𝑛−1),

(10)

where 𝑛 is the smallest integer greater than or equal to 𝜇, 𝑐𝑖 ∈ R,𝑖 = 1, 2, ⋅ ⋅ ⋅, 𝑛 − 1.
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Lemma 4 ([10]). Let ] ∈ R and 𝑡, 𝑠 ∈ R such that (𝑡 − 𝑠)] is
well defined, then Δ 𝑠(𝑡 − 𝑠)] = −](𝑡 − 𝑠 − 1)]−1.
Definition 5 ([14]). Given positive numbers 𝑐1, 𝑐2 satisfying𝑐1 < 𝑐2, system (7) is finite-time stable if and only if󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩 ≤ 𝑐1 󳨐⇒ ‖𝑥 (𝑡)‖ ≤ 𝑐2, ∀𝑡 ∈ 𝐽1 ∪ 𝐽2, (11)

for all disturbances 𝑤(𝑡) satisfying the following condi-
tion:

∃𝜂 > 0 : 𝑤𝑇 (𝑡) 𝑤 (𝑡) ≤ 𝜂2. (12)

Definition 6. A function 𝑥(𝑡) is called the solution of (7) if𝑥(𝑡) satisfies

𝑥 (𝑡) = {{{{{
𝑥 (𝑎) + 1Γ (])

𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 [𝐴𝑥 (𝑠) + 𝐵𝑥 (𝑠 − ℎ (𝑠)) + 𝐷𝑤 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − ℎ (𝑠)) , 𝑤 (𝑠))] , 𝑡 ∈ 𝐽1,
𝜙 (𝑡) , 𝑡 ∈ 𝐽2. (13)

Lemma 7 (generalized Gronwall inequality). Let 𝛼 > 0, and𝑢(𝑡), V(𝑡) be nonnegative functions and 𝑤(𝑡) be nonnegative,
nondecreasing function for 𝑡 ∈ N𝑎 such that 𝑤(𝑡) ≤ 𝑀, where𝑀 is a constant. If

𝑢 (𝑡) ≤ V (𝑡) + 𝑤 (𝑡) Γ (𝛼) Δ−𝛼𝑎 𝑢 (𝑡) , (14)

then

𝑢 (𝑡) ≤ V (𝑡) + ∞∑
𝑘=1

(𝑤 (𝑡) Γ (𝛼))𝑘 Δ−𝑘𝛼𝑎 V (𝑡) . (15)

Proof. Define operator

𝐵𝜙 (𝑡) = 𝑤 (𝑡) 𝑡−𝛼∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)𝛼−1 𝜙 (𝑠) , (16)

then from (14), we know

𝑢 (𝑡) ≤ V (𝑡) + 𝐵𝑢 (𝑡) , (17)

which implies that 𝑢(𝑡) ≤ ∑𝑛−1𝑘=0 𝐵𝑘V(𝑡)+𝐵𝑛𝑢(𝑡).The following
proof process is similar to the relevant conclusion, and we can
refer to Theorem 3.2 in [14].

3. Main Results

Let 𝜆(𝐴) be the set of all eigenvalues of 𝐴 and 𝜆max(𝐴) =
max{Re (𝜆) : 𝜆 ∈ 𝜆(𝐴)}. Assume that ‖𝐴‖ denotes the
spectral norm defined by √𝜆max(𝐴𝑇𝐴), and let ‖𝑥‖ be the
norm of 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), ⋅ ⋅ ⋅, 𝑥𝑛(𝑡))𝑇 ∈ R𝑛 defined by‖𝑥‖ = max𝑡∈𝐽1∪𝐽2(∑𝑛𝑖=1 𝑥2𝑖 )1/2. Suppose that B+(𝐽1) denotes
the set of all nonnegative bounded functions on 𝐽1. Assume
that the nonlinear function 𝑓 : 𝐽1 × R𝑛 × R𝑛 × R𝑚 󳨀→ R𝑛

satisfies the condition (𝐻1): there exists a positive constant𝑙(𝑡) ∈ B+(𝐽1) such that󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥1, 𝑦1, 𝑤1) − 𝑓 (𝑡, 𝑥2, 𝑦2, 𝑤2)󵄩󵄩󵄩󵄩
≤ 𝑙 (𝑡) (󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑦1 − 𝑦2󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑤1 − 𝑤2󵄩󵄩󵄩󵄩) , (18)

where 𝑓(𝑡, 0, 0, 0) = 0. In this section, we always assume that

‖𝐴‖ = 𝑎,
‖𝐵‖ = 𝑏,

‖𝐷‖ = 𝑑,
sup
𝑠∈[𝑎,𝑡−]]

𝑙 (𝑠) = 𝐿.
(19)

Theorem 8. Assume that 0 ≤ (𝑎 + 𝑏 + 2𝐿)/Γ(]) < 1, then
system (7) has a unique solution on 𝐽1∪𝐽2 if the condition (𝐻1)
holds.

Proof. Let 𝑥(𝑡) and 𝑥(𝑡) be any two different solutions to
system (7), then 𝑥(𝑡) and 𝑥(𝑡) both satisfy (13). Let 𝑧(𝑡) =𝑥(𝑡) − 𝑥(𝑡).

We can easily obtain 𝑧(𝑡) = 0 for 𝑡 ∈ 𝐽2. That is to say,
system (7) has a unique solution as 𝑡 ∈ 𝐽2.

When 𝑡 ∈ 𝐽1 = 𝐽11 ∪ 𝐽12, and 𝐽11 = {𝑡 ∈ Z | 𝑎 + 1 − ] ≤ 𝑡 ≤𝑎 + ]}, 𝐽12 = {𝑡 ∈ Z | 𝑎 + ] ≤ 𝑡 ≤ 𝑎 + 𝑀}, we get
𝑧 (𝑡) = 1Γ (])

𝑡−V∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 [𝐴𝑧 (𝑠) + 𝐵𝑧 (𝑠 − ℎ (𝑠))
+ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − ℎ (𝑠)) , 𝑤 (𝑠))
− 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − ℎ (𝑠)) , 𝑤 (𝑠))] .

(20)

If 𝑡 ∈ 𝐽11, then
𝑧 (𝑡) = 1Γ (])

𝑡−V∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 [𝐴𝑧 (𝑠)
+ 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − ℎ (𝑠)) , 𝑤 (𝑠))
− 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − ℎ (𝑠)) , 𝑤 (𝑠))] .

(21)

Now applying the norm ‖ ⋅ ‖ on both sides of (21), we get

‖𝑧 (𝑡)‖ ≤ 1Γ (])
𝑡−V∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 [‖𝐴‖ ‖𝑧 (𝑠)‖
+ 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − ℎ (𝑠)) , 𝑤 (𝑠))
− 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − ℎ (𝑠)) , 𝑤 (𝑠))󵄩󵄩󵄩󵄩] ≤ 1Γ (])

𝑡−V∑
𝑠=𝑎

(𝑡 − 𝑠
− 1)]−1 [(‖𝐴‖ + 𝑙 (𝑠)) ‖𝑧 (𝑠)‖] ≤ 𝑎 + 𝐿Γ (])

𝑡−V∑
𝑠=𝑎

(𝑡 − 𝑠
− 1)]−1 ‖𝑧 (𝑠)‖ .

(22)
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Applying the Generalized Gronwall Inequality in Lemma 7,
we have

‖𝑧 (𝑡)‖ ≤ 0. (23)

Namely, 𝑥(𝑡) = 𝑥(𝑡) for 𝑡 ∈ 𝐽11.
If 𝑡 ∈ 𝐽12, then applying the norm ‖ ⋅ ‖ on both sides of

(20), it follows that

‖𝑧 (𝑡)‖ ≤ 1Γ (])
𝑡−V∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1
⋅ [(𝑎 + 𝑙 (𝑠)) ‖𝑧 (𝑠)‖ + (𝑏 + 𝑙 (𝑠)) ‖𝑧 (𝑠 − ℎ (𝑠))‖]
≤ 𝑎 + 𝐿Γ (])

𝑡−V∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 ‖𝑧 (𝑠)‖ + 𝑏 + 𝐿Γ (])
⋅ 𝑡−V∑
𝑠=𝑎+]+1

(𝑡 − 𝑠 − 1)]−1 × ‖𝑧 (𝑠 − ℎ (𝑠))‖ .

(24)

Let 𝑧∗(𝑡) = sup𝜃∈[−ℎ,0]‖𝑧(𝑡 + 𝜃)‖, 𝑡 ∈ 𝐽12, then we have

𝑧∗ (𝑡) ≤ 𝑎 + 𝑏 + 2𝐿Γ (])
𝑡−V∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 𝑧∗ (𝑠) . (25)

Similarly, applying the generalized Gronwall inequality in
Lemma 7, it follows that

‖𝑧 (𝑡)‖ ≤ 𝑧∗ (𝑡) < 0. (26)

Hence we can obtain 𝑥(𝑡) = 𝑥(𝑡). This completes the proof.

Remark 9. Whenwedemonstrate the uniqueness of solutions
for the fractional discrete system with time delay, we find
that the conditions we needed have nothing to do with the
disturbance vector 𝑤(𝑡). That is to say, disturbance vector
does not affect the uniqueness of solution for the system.

One can extend the constant matrices in (7) to the
function form as follows:
𝐶Δ]
𝑎𝑥 (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑥 (𝑡 − ℎ (𝑡))

+ 𝐷 (𝑡) 𝑤 (𝑡)
+ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − ℎ (𝑡)) , 𝑤 (𝑡)) ,

𝑡 ∈ 𝐽1,
𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ 𝐽2.

(27)

Our conclusion (Theorem 8) can also be applied to (27) if𝑓(⋅) satisfies the condition (𝐻1). In the case, let ‖𝐴(𝑡)‖ = 𝑎,‖𝐵(𝑡)‖ = 𝑏̃, ‖𝐷(𝑡)‖ = 𝑑 in the same proof.

Corollary 10. Assume that 0 ≤ (𝑎 + 𝑏̃ + 2𝐿)/Γ(]) < 1, then
system (27) has a unique solution on 𝐽1 ∪ 𝐽2 if the condition(𝐻1) holds.
Theorem 11. Suppose that (𝐻1) holds, and 0 ≤ (𝑎 + 𝑏 +2𝐿)/Γ(]) < 1, and there exist positive numbers 𝑐1 < 𝑐2, and‖𝜙‖ ≤ 𝑐1, then system (7) is finite-time stable on 𝐽1 ∪ 𝐽2 if

(𝑐1 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1) )
⋅ (1 + ∞∑

𝑘=1

(𝑎 + 𝑏 + 2𝐿)𝑘 ⋅ 𝑀𝑘]Γ (𝑘] + 1)) ≤ 𝑐2.
(28)

Proof. Let 𝑢(𝑡) = sup𝜃∈[𝑎+1−]−ℎ,𝑡]‖𝑥(𝜃)‖, for 𝑡 ∈ 𝐽1. We have‖𝑥(𝑠)‖ ≤ 𝑢(𝑠), and ‖𝑥(𝑠 − ℎ(𝑠))‖ ≤ 𝑢(𝑠), ∀𝑠 ∈ [0, 𝑡]. According
to (12) and (13), one can obtain

‖𝑥 (𝑡)‖ ≤ ‖𝑥 (𝑎)‖ + 1Γ (])
𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 [‖𝐴‖ ‖𝑥 (𝑠)‖
+ ‖𝐵‖ ‖𝑥 (𝑠 − ℎ (𝑠))‖ + ‖𝐷‖ ‖𝑤 (𝑠)‖
+ 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠 − ℎ (𝑠)) , 𝑤 (𝑠))󵄩󵄩󵄩󵄩] ≤ 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩
+ 𝑎 + 𝑏 + 2𝐿Γ (])

𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 𝑢 (𝑠) + 𝜂 (𝑑 + 𝐿)Γ (])
⋅ (𝑡 − 𝑎)]

]
≤ 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1) + 𝑎 + 𝑏 + 2𝐿Γ (])
⋅ 𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 𝑢 (𝑠) .

(29)

As for all 𝜃 ∈ [𝑎 + 1 − ], 𝑡], we have
‖𝑥 (𝜃)‖ ≤ 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1)
+ 𝑎 + 𝑏 + 2𝐿Γ (])

𝜃−]∑
𝑠=𝑎

(𝜃 − 𝑠 − 1)]−1 𝑢 (𝑠)
≤ 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1)
+ 𝑎 + 𝑏 + 2𝐿Γ (])

𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 𝑢 (𝑠) .

(30)

Therefore, we have

𝑢 (𝑡) = sup
𝜃∈[𝑎+1−]−ℎ,𝑡]

‖𝑥 (𝜃)‖
≤ max{ sup

𝜃∈[𝑎+1−]−ℎ,𝑎+1−]]
‖𝑥 (𝜃)‖ , sup

𝜃∈[𝑎+1−],𝑡]
‖𝑥 (𝜃)‖}

≤ max{󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩 , 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1)
+ 𝑎 + 𝑏 + 2𝐿Γ (])

𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 𝑢 (𝑠)} = 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩
+ 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1) + 𝑎 + 𝑏 + 2𝐿Γ (])
𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 𝑢 (𝑠) .

(31)
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According to Lemma 7, we can get

𝑢 (𝑡) ≤ 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1) + ∞∑
𝑘=1

(𝑎 + 𝑏 + 2𝐿)𝑘

⋅ 1Γ (𝑘])
𝑡−𝑘]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)𝑘]−1
× (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1) )
≤ (󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1) )
⋅ (1 + ∞∑

𝑘=1

(𝑎 + 𝑏 + 2𝐿)𝑘 ⋅ 𝑀𝑘]Γ (𝑘] + 1)) .

(32)

Hence,

‖𝑥 (𝑡)‖ ≤ 𝑢 (𝑡) ≤ (𝑐1 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1) )
⋅ (1 + ∞∑

𝑘=1

(𝑎 + 𝑏 + 2𝐿)𝑘 ⋅ 𝑀𝑘]Γ (𝑘] + 1)) ≤ 𝑐2.
(33)

As for 𝑡 ∈ 𝐽2, obviously, system (7) has finite-time stability.
According to Definition 5, we can obtain that system (7)
is finite-time stable. This completes the proof of Theo-
rem 11.

Remark 12. Different from the research in uniqueness of
solutions, the disturbance vector 𝑤(𝑡) plays a key role in
studying the finite-time stability. It can be easily analyzed by
(33).

When 𝐴, 𝐵, 𝐷 are function matrices instead of constant
ones, our conclusion about the finite-time stability (Theo-
rem 11) also can be applied to system (27). In this case, we
assume that ‖𝐴(𝑡)‖ = 𝑎, ‖𝐵(𝑡)‖ = 𝑏, ‖𝐷(𝑡)‖ = 𝑑 in the same
proof.

Corollary 13. Given positive numbers 𝑐1, 𝑐2,𝑀, such that 𝑐1 <𝑐2, then system (27) is finite-time stable on 𝐽1 ∪ 𝐽2 if all the
conditions in �eorem 11 hold.

4. Example

In this section, we will present the following two examples to
illustrate our main results.

Example 14. Suppose that ] = 1/20, and 𝑓(⋅) = 0.1 sin 𝑥(𝑡) +0.1 cos 𝑥(𝑡 − ℎ(𝑡)) with 𝑥 = (𝑥1(𝑡), 𝑥2(𝑡))𝑇. Consider system
(7), where

𝐴 = (1 00 2) , (34)

𝐵 = (2 30 0) . (35)

We have ‖𝐴‖ = 𝑎 = 4, ‖𝐵‖ = 𝑏 = 13, and 𝐿 = 0.1, Γ(]) ≈19.47, which imply that the condition 0 < (𝑎+𝑏+2𝐿)/Γ(]) < 1
referred to inTheorem 8 holds.Therefore, the specific system
(7) has a unique solution.

Remark 15. Since there are few papers researching the
uniqueness of solutions for the nonlinear fractional-order
difference equation with time-varying delay, one can see that
all the results in [23, 25–28] can not directly be applicable
to Example 14 to obtain the uniqueness of the solution. This
implies that the results in this paper are essentially new.

Example 16. Suppose that

𝑓 (⋅) = 0.1(√𝑥21 (𝑡) + 𝑥21 (𝑡 − ℎ) + sin 𝑥1
√𝑥22 (𝑡) + 𝑥22 (𝑡 − ℎ) + sin 𝑥2) , (36)

and let

𝐴 = (0.2 00 0.3) , (37)

𝐵 = ( 0 00.4 0.2) , (38)

𝐷 = (10) . (39)

Let 𝑀 = 10, 𝑤(𝑡) = √2, ℎ = 1, ] = 0.03, Γ(]) ≈ 32.79,Γ(] + 1) ≈ 0.98, 𝑎 = 1, 𝜂 = 1.42, 𝜙(𝑡) = (0.8, 0.8)𝑇. We have𝑎 = 0.3, 𝑏 = 0.45, 𝑑 = 1, 𝐿 = 0.1. One can assume that𝑐1 = 1.14, 𝑐2 ≥ 463.26, 0 < (𝑎 + 𝑏 + 2𝐿)/Γ(]) ≈ 0.97 < 1. By
Mathematica software, we can get

(𝑐1 + 𝜂 (𝑑 + 𝐿)𝑀]

Γ (] + 1) )
⋅ (1 + ∞∑

𝑘=1

(𝑎 + 𝑏 + 2𝐿)𝑘 ⋅ 𝑀𝑘]Γ (𝑘] + 1)) ≈ 463.26
≤ 𝑐2,

(40)

which implies that inequality (28) holds, and we conclude
that all conditions in Theorem 11 are satisfied. Therefore, the
specific system (7) is finite-time stable.

5. Conclusion

In this paper, we are concerned with a nonlinear fractional-
order difference equation. The addressed equation has time
delay terms, which are quite different from the related
references discussed in the literature [18, 23, 24, 28, 29].
The nonlinear fractional-order difference system studied in
the present paper is more generalized and more practical.
By applying the generalized Gronwall inequality and the
definition of the finite-time stability, we employ a novel
argument and the easily verifiable sufficient conditions have
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been provided to determine the uniqueness and finite-
time stability of the solutions for the considered equation.
Finally, two typical examples have been presented at the end
of this paper to illustrate the effectiveness and feasibility
of the proposed criterion. Consequently, this paper shows
theoretically and numerically that some related references
known in the literature can be enriched and complemented.
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In the real world, the vehicle routing problem (VRP) is dynamic and variable, so dynamic vehicle routing problem (DVRP) has
obtainedmore andmore attentions among researchers.Meanwhile, due to actual constraints of service hours and service distances,
logistics companies usually build multiple depots to serve a great number of dispersed customers. Thus, the research of dynamic
multidepot vehicle routing problem (DMDVRP) is significant and essential. However, it has not attracted much attention. In
this paper, firstly, a clustering approach based on the nearest distance is proposed to allocate all customers to the depots. Then a
hybrid ant colony optimization (HACO)with mutation operation and local interchange is introduced to optimize vehicle routes. In
addition, in order to deal with dynamic problem of DMDVRP quickly, a real-time addition and optimization approach is designed
to handle the new customer requests. Finally, the t-test is applied to evaluate the proposed algorithm; meanwhile the relations
between degrees of dynamism (𝑑𝑜𝑑) and HACO are discussed minutely. Experimental results show that the HACO algorithm is
feasible and efficient to solve DMDVRP.

1. Introduction

In the history of VRP, the most original and famous rout-
ing problem is Traveling Salesman Problem (TSP) [1]. By
transforming the TSP, a great number of different kinds of
VRP are designed. Generally, VRP has been classified to
the following several variants: Capacitated VRP (CVRP),
VRP with time windows (VRPTW), VRP with Pickup and
Delivery (VRPPD), multidepot VRP (MDVRP), and so on
[2–6]. Most particularly, considering that many logistics
companies are desirous to improve service quality and save
time, the MDVRP receives more and more attentions.

In VRP models, most of the researchers usually define
some basic information concerning customers’ locations and
demands, available vehicles, etc., which are entirely known
before carrying out service. However, VRP is dynamic in
most of the actual situations; in other words, the arrange-
ments of customers are changing gradually over time,
although a part of customer requests may be known in
advance. In recent years, due to the development of new tech-
nologies, such as Global Position System, Communication
Technology, Information Technology, some researchers have

studiedDVRP.However, few researchers focus onDVRPwith
multiple depots, so this paper will study dynamic multidepot
vehicle routing problem (DMDVRP) [7].

Comparatively, the number of research projects on the
DMDVRP is fewer. T. C. Su introduced a dynamic vehicle
control and scheduling of a multidepot physical distribution
system in 1999 [8]. For solving dynamic multidepot pickup
and delivery problem, T. Huth and D. C. Mattfeld proposed a
framework to anticipate dynamic events bymodel adaptation
in 2006 [9]. In 2008, A. Hadjar and F. Soumis introduced
multidepot vehicle scheduling problem with time windows,
which is a dynamic window reduction. Y. Kuo and C. C.
Wang proposed an insertion heuristic to solve dynamic
multidepot vehicle routing problem where the pick-up and
delivery requests are both considered in 2014 [10]. Liu Y et al.
proposed a method with three steps to solve the multiperiod
and multidepot dynamic vehicle routing problem with time
windows in 2016 [7].

In general, DMDVRP is a NP-hard problem [11], so
some exact algorithms (branch and bound algorithm, linear
programming, cutting plane algorithm, etc.) are almost
impossible to solve it in finite time. However, modern
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heuristic algorithms, such as ant colony optimization (ACO)
[12, 13], genetic algorithm (GA) [14–16], and particle swarm
optimization (PSO) [17], have the ability to generate high
quality solutions, although they may not search the best
solution. In these approaches, ACO is widely applied to solve
different types of VRP.

The original ACO was put forward by Dorigo in his
Ph.D. Thesis [18], which is called ant system. However, it
is nonconvergent and easy to fall into local optimization.
To improve its weaknesses, many researchers have formed
several variants of the ant system, such as the ant colony
system, the elite ant system, and the largest ant system [19].
In addition, some newmechanisms are proposed to optimize
the algorithm, such as enlarging the degree of random search
[13], N-Opt local random search, and designing distributed
control [20]. For DMDVRP, the objective of the algorithm
is not only to search the optimal solution, but also to track
the optimal solution through the information of the previous
search space over time. Based on this consideration, a hybrid
ACO is proposed to solve DMDVRP.

There are two main contributions in this paper. The first
contribution of this paper is to use hybrid ACO algorithm
to solve DMDVRP, and the method strives to improve the
randomization and avoids falling into local search prema-
turely. In order to improve ACO, the following modifications
of ACO are implemented:

(1) Dividing region by the nearest distance cluster
(2) Optimizing vehicle routes with mutation operation
(3) Improving the solutions with local interchange oper-

ation

Hybrid ACO has shown its advantages through a large
number of comparative experiments based on data sets of
different scales.

The second contribution is that a real-time addition
and optimization approach is designed to add new real-
time customers to known routes and immediately optimize
vehicle routes. The process of dynamic optimization can be
accelerated.

The remainder of this paper is organized as follows.
In Section 2, we describe DMDVRP model and define the
problem. In Section 3, the details of hybrid ACO are shown. A
real-time addition and optimization approach is introduced
in Section 4. Experimental results are discussed in Section 5.
Some conclusions are provided in Section 6.

2. Dynamic Multidepot Vehicle
Routing Problem

2.1. The Description of DMDVRP. In the real world, MDVRP
is affected by the dynamic environment. With the wide appli-
cation of information technology and Global Positioning
System (GPS) technology, the process of logistics service can
be tracked and adjusted in real time. Due to the development
of these new technologies, the service mode of plan-execute
is replaced by the dynamic execution task [21].

Generally speaking, the dynamic nature of DMVRP
mainly reflects the uncertainty of customer requests in the

service process. Specifically, the type of request includes the
uncertain quantity of goods [21–23] and the uncertain service
time [24, 25].This paper focuses on the change of service time
and processing orders dynamically according to customer
request time. A DMDVRP example is shown in Figure 1. In
Figure 1(a), three different depots (red square) are responsible
to serve the customers (black dots) which are allocated to
them, and black and red lines represent initial routes. In
Figure 1(b), some new customers (blue triangle) are added to
system, and some new routes will be generated in time.

2.2. The Formulation of DMDVRP. The DMDVRP can be
formalized as follows. An undirected graph 𝐺 = (𝑉, 𝐸) is
established to describe mathematical model. In this model,
𝑉 = {𝑉𝐶, 𝑉𝐷} represents the vertex set and 𝐸 = {(V𝑖, V𝑗) |
V𝑖, V𝑗 ∈ 𝑉, 𝑖 < 𝑗} is the edge set. 𝑉𝐶 = {V1, V2, . . . , V𝑛} is the
set of customers and 𝑉𝐷 = {V𝑛+1, V𝑛+2, . . . , V𝑛+𝑚} is the set of
depots. In E, we get distance matrix 𝐶 = (𝑐𝑖𝑗) by calculating
the Euclidean distance of customers V𝑖 and V𝑗. Every customer
V𝑖 has a demand 𝑞𝑖 and needs to be visited once by only one
vehicle. There is also a fleet of K identical vehicles, each with
capacity Q.

In the mathematical formulation that follows, binary
variable 𝑥𝑖𝑗𝑘 is equal to 1 when vehicle k visits node j
immediately after node i.

Minimize
𝑛+𝑚

∑
𝑖=1

𝑛+𝑚

∑
𝑗=1

𝐾

∑
𝑘=1

𝑐𝑖𝑗𝑥𝑖𝑗𝑘, (1)

subject to

𝑛+𝑚

∑
𝑖=1

𝐾

∑
𝑘=1

𝑥𝑖𝑗𝑘 = 1 (𝑗 = 1, 2, . . . , 𝑛) ; (2)

𝑛+𝑚

∑
𝑗=1

𝐾

∑
𝑘=1

𝑥𝑖𝑗𝑘 = 1 (𝑖 = 1, 2, . . . , 𝑛) ; (3)

𝑛+𝑚

∑
𝑖=1

𝑛+𝑚

∑
𝑗=1

𝑞𝑖𝑥𝑖𝑗𝑘 ≤ 𝑄 (𝑘 = 1, 2, . . . , 𝐾) ; (4)

𝑛+𝑚

∑
𝑖=𝑛+1

𝑛

∑
𝑗=1

𝑥𝑖𝑗𝑘 ≤ 1 (𝑘 = 1, 2, . . . , 𝐾) ; (5)

𝑛+𝑚

∑
𝑗=𝑛+1

𝑛

∑
𝑖=1

𝑥𝑖𝑗𝑘 ≤ 1 (𝑘 = 1, 2, . . . , 𝐾) . (6)

The objective (1)minimizes the total cost. Constraints (2) and
(3) guarantee that each customer is served by exactly one
vehicle. Vehicle capacity constraint is found in (4). Finally,
constraints (5) and (6) check vehicle availability.

2.3. Measuring Dynamism. In most papers, three popu-
lar metrics of degree of dynamism [16], effective degree of
dynamism, and effective degree of dynamism with TW [22]
are introduced to describe dynamism concretely. In this
paper, the metric of degree of dynamism (𝑑𝑜𝑑) is selected
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Figure 1: An example of DMDVRP with three depots.

to characterize the dynamical degree of DMDVRP, and the
following is the calculation formula of dod. The range of dod
is from 0 to 1 [16].

𝑑𝑜𝑑 = count of customers (known in advance)
all customers

(7)

3. A Hybrid Ant Colony Algorithm
for DMDVRP

3.1. Hybrid Ant Colony Optimization. By reviewing previous
algorithms about solving VRP, we find that ant colony
algorithm (ACO) is a commonand effective algorithm. In this
paper, the ant colony algorithm is improved by the nearest
distance clustering, mutation operation, and 2-Opt algorithm
to obtain better solutions. The flowchart of hybrid ant colony
optimization (HACO) for theDMDVRP is shown in Figure 2.
The details of HACO will be introduced in the following
sections.

3.2. The Nearest Distance Cluster Algorithm. Generally, in
order to serve customers preferably, the depots are usually
placed at the locations which are as close to customers as
possible. Therefore, the nearest distance cluster algorithm
is proposed to exactly allocate each customer to its nearest
depot. By the nearest distance cluster algorithm, a whole
DMDVRP is divided into several little DVRPs; meanwhile
the whole service area is divided into a set of little regions.

An example of the nearest distance cluster algorithm is in
Figure 3; as shown, the black triangles are depots, and the
different color points represent that customers are allocated
to the nearest depot.

3.3. Generate Initial Solutions. In ACO, each ant represents a
vehicle and visits all customers once.The complete routes that
ants have passed are initial solutions. The ants will decide to
select the next customer by formula (8).

𝑝𝑖𝑗 (𝑘) =
{{{
{{{
{

(𝜏(𝑖,𝑗))
𝛼 × (𝜂(𝑖,𝑗))

𝛽

∑𝐼∉𝑡𝑎𝑏𝑢 (𝜏(𝑖,𝐼))
𝛼 × (𝜂(𝑖,𝐼))𝛽

𝑗 ∉ 𝑡𝑎𝑏𝑢𝑘

0 otherwise

(8)

In formula (8), 𝑝𝑖𝑗(𝑘) is the probability of selecting j as the
next customer of i. 𝜏(𝑖,𝑗) and 𝛼 are the pheromone density of
edge (i, j) and the relative influence of the pheromone trails,
respectively. 𝜂(𝑖,𝑗) and 𝛽 are the visibility of edge (i, j) and the
relative influence of the visibility values, respectively. 𝑡𝑎𝑏𝑢𝑘 is
a list, which stores the unvisited nodes for the 𝑘th ant [12].

3.4. Optimization Operation

3.4.1. Mutation Operation. Mutation operation is derived
from genetic algorithms (GA) primitively [23, 24], but it
can be applied to fusing other optimization algorithms.
For example, the optimization operation can help ACO
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Figure 2: The flowchart of HACO.
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Figure 3: An example of the nearest distance cluster algorithm.

get further solutions in the period of searching. The most
important step of mutation operation is to randomly select
a solution and exchange customers by mutation probability
𝑃𝑚. Therefore, the operational process may produce new
solutions and increase the likelihood of searching a better
solution.

Generally, 𝑃𝑚 has influence on the performance in the
mutation. If 𝑃𝑚 is so small it is not easy to produce the new
individual. If 𝑃𝑚 is so large the algorithm becomes a purely
random search algorithm. Therefore, the adaptive method is

applied to change the mutation probability with the fitness.
At the same time, considering the mutation coefficient k, it
can also affect the performance of mutation. 𝑃𝑚 and k can be
determined according to the following formulas.

𝑃𝑚 =
{{
{{
{

𝑃𝑚1 −
𝑃𝑚2 (𝑓𝑚 − 𝑓avg)
𝑓𝑚𝑎𝑥 − 𝑓avg

, 𝑓𝑚 ≥ 𝑓avg
𝑃𝑚1, 𝑓𝑚 ≺ 𝑓avg

(9)

𝑘 =
{{
{{
{

𝑘1 +
𝑘2 (𝑓𝑚 − 𝑓avg)
𝑓𝑚𝑎𝑥 − 𝑓avg

, 𝑓𝑚 ≥ 𝑓avg
𝑘1 + 𝑘2, 𝑓𝑚 ≺ 𝑓avg

(10)

where 𝑓𝑚𝑎𝑥 is the largest fitness value, 𝑓avg is average in
groups, and 𝑓𝑚 is the fit value for mutation. 𝑃𝑚1, 𝑃𝑚2, 𝑘1, and
𝑘2 are initial variables [25].

In most GA, considering that biological gene mutation
is a small probability event, the mutation rate is less than
0.1. However, in view of the aim of exploring greater search
space, a mutation operation with a larger mutation rate is
introduced to optimize route. Figure 4 is a demo of mutation
operation process. The red line route and the black line route
are serviced by two different vehicles. By exchanging 4 and 6,
two new routes (1-3-2-6-1 and 1-4-5-1) are generated and have
more appropriate arrangements.

3.4.2. Local Interchange Operation. In all local optimization
algorithms, 2-Opt is a common and classical heuristic pro-
posed by Croes [26] in 1958.Themain idea is to try to choose
a route and exchange two adjacent locations and calculate
the results of new route. This operation may avoid local
optimization and obtain a better route.

In this paper, the 2-Opt optimization is applied to
improve the route. First, swapping the locations of all possible
adjacent customers generates some new potential routes.
Then we test each new route to see if this pair of exchanges
can improve the quality of the route [27]. Finally, the best
route will be selected to replace previous old route. Figure 5 is
a demo of 2-Opt operation: (a) is the original route and (b) is
the new route of implementing the operation of exchanging
2 and 7.

3.5. Update of Pheromone Information. In ACO, the most
important step is the update of ant pheromones, which is key
to obtain high quality solution. In order to ensure that each
link has the same advantages, the following formula will be
implemented to update pheromones:

𝜏new𝑖𝑗 = 𝜌 × 𝜏old𝑖𝑗 +
𝐾

∑
𝑘

Δ𝜏𝑘𝑖𝑗 𝜌 ∈ (0, 1) (11)

In formula (11), 𝜏new𝑖𝑗 and 𝜏old𝑖𝑗 are the new and initial
pheromone concentration of link (𝑖, 𝑗), respectively, 𝜌 is
a constant and regulates the rate of evaporation, 𝑘 is the
number of all routes,𝐾 is the number of the routes in specific
solution, and Δ𝜏𝑘𝑖𝑗 is the increased pheromone of link (𝑖, 𝑗) in
route 𝑘.
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Figure 4: The example of mutation operation.

4. A Real-Time Addition and
Optimization Approach

In this section, a new real-time addition and optimization
approach is applied to dynamically add new customer to
known routes; meanwhile it can optimize the new generated
route. The procedure of this approach is shown in Figure 6.

4.1. The Strategy of Adding New Customers to Known Routes.
In the strategy of adding new customers to known routes,
a working day is split into 24 same length time slices,
and the customer requests are occurring in each time slice.
The distances between each new customer and the serving
customers or just finished serving customers are computed
and compared, and the new customer will be added to the
route which is the nearest to the new customer. If the new
customer demands exceed the vehicle capacity, they will be
handled by arranging another vehicle, and an extra route will
be formed.

An example of this strategy is shown in Figure 7; as
shown, some customers (black dots) have been known in
advance. Red lines and black lines represent initial designed
routes to serve known customers. As time goes on, new
customers (blue triangle N1, N2, N3) are added to system,

and the distances between N1 and the serving or just finished
serving customers (black dots 3, 5, 8) will be computed,
respectively; then new customer (N1) is added to the nearest
route (0-7-8-N1-9-0). Similarly, the new customers (N2, N3)
are added to routes (0-1-2-3-N2-0, 0-4-5-N3-6-0), respec-
tively. Although the new generated routes are not the best,
the optimized operations will be conducted in the next
section.

4.2. Reoptimize Routes Dynamically. Due to adding some
new customers to initial routes, the routes need to be
reoptimized dynamically. Each new route is divided into
two subroutes, and the first subroute which has been served
remains unchanged; meanwhile, the remaining part is opti-
mized by mutation and 2-Opt in Section 3.4.

5. Experimental Results and Discussions

In this section, the performance of HACO algorithm solving
for DMVVRP is evaluated strictly and completely. Through
a series of experiments based on different data sets, the
HACO will be analyzed by solution quality, running time,
degrees of dynamism, and so on.The data sets are completely
open and can be available at http://neo.lcc.uma.es/vrp/vrp-
instances/multiple-depot-vrp-instances/. The detailed infor-
mation of data sets is shown in Table 1. In this table, the
numbers of depots, the numbers of customers, and the
capacity are explained.

Table 2 shows that the parameters are used in HACO.
The number of ants is 30; weight of pheromone is 2; weight
of visibility is 1; evaporation rate of pheromone is 0.8;
initial mutation rate is 0.8; number of iterations is 100. The
algorithm implementation is based on the MATLAB (2010b)
language, and the computer configuration is an Intel(R)
Core (TM) i5-6500 3.19GHz, 8 GB RAM running Windows
10(x64). All the results are averaged over 10 runs.

5.1. Comparisons Based on Four Different ACO. The com-
parisons of the solution quality in terms of the route length
and running time among four proposed ACO algorithms
are implemented in this section, and the four algorithms are
ACO, MACO, LACO, and HACO, respectively. The ACO is
from Montemanni et al. [28]; MACO and LACO are basic
ACO fusing mutation operation and 2-Opt, respectively;
modifying ACO with mutation operation and 2-Opt forms
the final HACO. In addition, the scale of experimental data
sets is between 80 and 288, and the degree of dynamism is
0.3. Table 3 gives the route length and running time of four
algorithms. In this paper, the best solutions are in bold entries.
From the comparisons,MACO, LACO, andHACOare 3.25%,
0.73%, and 10.9% less than the ACO, respectively. The results
indicate that the mutation operation and 2-Opt can improve
ACO effectively, and HACO is effective algorithm for solving
DMDVRP.

This result may be attributed to the fact that the intro-
duction of 2-Opt algorithm and mutation operation can
improve the randomization and avoid falling into local search
prematurely, and make HACO obtain better solutions.

http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances/
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Table 1: The detailed information of data sets.

Problem Depots Customers Capacity
01 4 50 80
02 4 50 160
03 5 75 140
04 2 100 100
05 2 100 200
06 3 100 100
07 4 100 100
08 2 249 500
09 3 249 500
10 4 249 500
11 5 249 500
12 2 80 60
13 4 160 60
14 4 48 200
15 4 96 195
16 4 144 190
17 4 192 185
18 4 240 180
19 4 288 175

Table 2: HACO parameters settings.

Parameter Description Value
M The number of Ants 30
𝛼 Weight of pheromone 2
𝛽 Weight of visibility 1
𝜌 Evaporation rate of pheromone 0.8
t Initial Mutation rate 0.1
N Number of iterations 100

In addition, a paired t-test is performed to investigate
whether there are statistically significant differences between
HACO and other improved ACO algorithms. Since it is
expected that the solution quality of HACO is better than
other ACO, a one-sided alternative hypothesisH1 is given
below:

𝐻1 : 𝜇𝐻−𝐴𝐶𝑂 − 𝜇𝐶𝐴 < 0 (12)
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Table 3: Comparisons based on four different ACO.

Problem ACO MACO LACO HACO
Length Time Length Time Length Time Length Time

01 833.06 35.27 839.46 52.27 932.75 46.47 811.72 60.45
02 716.17 26.55 718.64 42.57 729.37 26.83 599.60 46.62
03 1061.86 40.24 1105.81 77.84 1062.03 43.17 1033.07 89.86
04 1490.26 81.59 1570.71 154.06 1541.79 78.66 1482.00 158.92
05 1267.82 52.54 1323.36 115.64 1240.11 54.99 1255.38 130.16
06 1313.02 79.38 1279.35 124.45 1318.54 63.79 1274.60 137.51
07 1377.80 60.93 1328.30 109.80 1322.94 60.17 1292.97 123.60
08 8737.04 147.12 8264.29 525.99 8014.18 165.17 7873.47 599.77
09 6723.11 162.60 6616.01 416.62 6820.88 168.08 6279.87 453.87
10 6357.03 138.60 6344.92 343.92 6103.97 137.69 6076.75 384.96
11 6410.59 146.39 6262.12 343.00 6202.83 142.02 6101.29 366.24
12 1539.51 68.24 1533.00 120.76 1541.37 69.29 1524.62 106.05
13 3118.52 137.43 2979.31 242.30 3124.21 142.99 3100.88 214.50
14 1561.51 23.01 1399.14 35.12 1445.15 23.61 1443.02 39.38
15 2383.12 45.73 2109.31 85.79 2436.77 44.54 2003.30 98.77
16 3173.39 77.47 3295.31 148.20 3469.17 75.40 3236.13 165.18
17 3603.98 105.81 3724.63 237.49 3604.21 115.32 3368.47 242.12
18 4035.92 154.08 6493.59 246.79 6398.13 121.50 3803.42 357.06
19 8541.46 156.46 4972.95 446.51 6468.04 176.03 4652.53 449.91
Average 3381.32 91.55 3271.59 203.64 3356.65 92.40 3011.21 222.36
Increased by 0 3.25% 0.73% 10.9%%

Table 4: Results of paired t-test based on route length.

Problem HACO vs ACO HACO vsMACO HACO vs LACO
Mean Difference -370.11 -260.37 -345.44
p value 0.083 0.077 0.041

where 𝜇𝐻−𝐴𝐶𝑂 and 𝜇𝐶𝐴 are population mean for HACO and
CA, respectively. CA refers to algorithm, which is compared
withHACO. For example, if HACO is comparedwithMACO,
the CA will refer to MACO.

Table 4 shows pairs, mean differences for instances,
and p value at statistical level of 𝛼 = 0.1. The mean
differences of HACO vs ACO, MACO, and LACO are -
370.11, -260.37, and -345.44 with p value of 0.083, 0.077, and
0.041, respectively. This indicates that HACO is statistically
significantly different from other ACO; meanwhile HACO
fusing mutation and 2-Opt can exploremore possibilities and
search better solutions.

5.2. Comparisons Based on Different Degrees of Dynamism.
In order to investigate the relation of degrees of dynamism
(𝑑𝑜𝑑) and HACO, the experiment based on different 𝑑𝑜𝑑
(0.3, 0.5, 0.7) is performed in this section. Table 5 gives the
detailed routes length and running time of comparisons. In
addition, we count the average value, number, and proportion
of different 𝑑𝑜𝑑 in terms of the routes length and running
time. When 𝑑𝑜𝑑 are 0.3, 0.5, and 0.7, the proportions of the
best length are 78.95%, 5.26%, and 15.79%, respectively, and
the proportions of the best time are 15.79%, 52.63%, and
31.58%, respectively. By the statistical data, the results reveal

that 𝑑𝑜𝑑 is directly proportional to routes length. However,
the running time of 𝑑𝑜𝑑 (0.5 and 0.7) is less than that of 𝑑𝑜𝑑
(0.3).This illustrates that the proposed real-time addition and
optimization approach can reduce algorithm running time,
along with the increase of 𝑑𝑜𝑑.

5.3. The Analyses of Real-Time Addition and Optimization
Approach. In Table 6, the analyses of real-time addition and
optimization approach are conducted, and the results are
based on 𝑑𝑜𝑑 (0.3) in this section. In this table, the second,
fourth, and fifth columns are the results of static routes
length, additional extra routes length, and dynamic routes
length, respectively; the third and sixth columns are static and
dynamic running time; the seventh and eighth columns are
the whole length and running time.

From the analyses of results based on average value, the
average dynamic routes length is 2618.7, and it is 23.64%more
than the average static routes length. Meanwhile, the average
dynamic running time is 24.9 seconds, and it just accounts for
11.20%of thewhole running time.These results reveal that the
real-time addition and optimization approach can solve the
DMDVRP efficiently. The strategy of adding new customers
to the nearest known routes is feasible and efficient to solve
dynamic problem.
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Table 5: Comparisons based on different degrees of dynamism.

Problem dod = 0.3 dod = 0.5 dod = 0.7
Length Time Length Time Length Time

01 811.72 60.45 802.57 49.81 783.52 62.96
02 599.60 46.62 846.88 36.83 834.74 27.80
03 1033.07 89.86 1038.82 67.68 1018.35 78.12
04 1482.00 158.92 1523.84 149.00 1541.10 95.22
05 1255.38 130.16 1338.78 100.67 1718.58 183.34
06 1274.60 137.51 1378.00 106.24 1419.99 137.65
07 1292.97 123.60 1377.39 245.13 1467.39 105.61
08 7873.47 599.77 7251.37 300.56 7090.63 145.94
09 6279.87 453.87 6738.20 326.09 7358.75 298.08
10 6076.75 384.96 6713.71 311.21 7158.48 331.20
11 6101.29 366.24 6525.99 329.49 7711.66 417.96
12 1524.62 106.05 1511.59 128.06 1709.70 131.95
13 3100.88 214.50 3115.21 250.86 3407.92 270.14
14 1443.02 39.38 1487.92 27.40 2013.60 25.92
15 2003.30 98.77 2774.69 73.84 2640.64 86.81
16 3236.13 165.18 3576.19 140.96 3927.35 159.61
17 3368.47 242.12 4118.43 260.63 4419.52 290.03
18 3803.42 357.06 4457.53 312.86 5063.65 426.19
19 4652.53 449.91 5117.38 425.45 6069.40 619.00
Average 3011.24 220.78 3247.08 191.72 3545.00 204.92
Count 15 3 1 10 3 6
Proportion 78.95% 15.79% 5.26% 52.63% 15.79% 31.58%

Table 6: Results of real-time addition and optimization approach.

Problem Len-S Time-S Len-E Len-D Time-D All-Length All-Time
01 530.36 50.96 152.18 659.54 9.49 811.72 60.45
02 402.51 40.93 67.48 532.11 5.69 599.60 46.62
03 1787.62 77.01 160.15 872.92 12.85 1033.07 89.86
04 1018.21 128.09 340.43 1141.57 30.82 1482.00 158.92
05 788.61 102.83 288.92 966.46 27.33 1255.38 130.16
06 880.39 117.87 249.77 1024.83 19.64 1274.60 137.51
07 846.64 108.18 230.12 1062.85 15.41 1292.97 123.60
08 5471.76 578.84 731.18 7142.29 20.93 7873.47 599.77
09 4161.98 425.35 964.16 5315.71 28.51 6279.87 453.87
10 3971.37 367.37 535.12 5541.63 17.59 6076.75 384.96
11 3914.98 335.17 883.43 5217.86 31.07 6101.29 366.24
12 1101.56 71.93 336.47 1188.15 34.12 1524.62 106.05
13 2193.00 145.49 654.49 2446.39 69.01 3100.88 214.50
14 627.68 34.95 204.10 1238.92 4.43 1443.02 39.38
15 1288.89 93.90 118.85 1884.45 4.87 2003.30 98.77
16 1726.21 150.22 251.35 2984.78 14.97 3236.13 165.18
17 2043.77 218.86 266.67 3101.80 23.26 3368.47 242.12
18 2470.63 299.59 818.56 2984.85 57.47 3803.42 357.06
19 2765.14 404.28 204.28 4448.24 45.64 4652.53 449.91
Average 1999.54 197.46 392.51 2618.70 24.90 3011.21 222.36
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Table 7: Comparisons based on other two algorithms.

Problem GA PSO HACO
Length Time Length Time Length Time

01 736.39 61.11 788.56 68.51 811.72 60.45
02 569.69 56.96 598.73 60.50 599.60 46.62
03 931.87 97.18 911.40 101.09 1033.07 89.86
04 1374.53 126.36 1411.22 132.62 1482.00 158.92
05 1396.97 139.64 1226.40 144.05 1255.38 130.16
06 1544.30 126.95 1444.62 147.58 1274.60 137.51
07 1497.30 126.87 1475.88 146.60 1292.97 123.60
08 9253.53 447.36 7987.20 511.32 7873.47 599.77
09 8633.74 349.46 6940.90 387.90 6279.87 453.87
10 7088.22 348.61 6541.11 389.81 6076.75 384.96
11 6684.20 353.06 6686.50 382.13 6101.29 366.24
12 1616.50 134.80 1493.42 129.90 1524.62 106.05
13 4549.78 144.42 3720.01 146.55 3100.88 214.50
14 1124.46 35.76 1244.96 41.97 1443.02 39.38
15 2305.61 104.37 2107.53 111.19 2003.30 98.77
16 3549.58 151.35 3398.40 175.16 3236.13 165.18
17 3876.65 255.01 3651.31 274.10 3368.47 242.12
18 4270.49 371.66 4058.70 402.31 3803.42 357.06
19 5268.36 364.75 5486.40 396.60 4652.53 449.91
Average 3488.01 199.77 3219.64 218.42 3011.21 222.36
Count 4 3 12
Proportion 21.05% 15.79% 63.16%

5.4. Comparisons Based on Other Two Algorithms. In order
to better evaluate the performance of the proposed HACO
in terms of solution quality in minimizing travel distance,
HACO is compared with previously published algorithms.
These algorithms are Wang et al.’s [29] genetic algorithm
(GA) and Yao et al.’s [30] particle swarm optimization (PSO),
respectively.

Table 7 gives the best solution length and running time
of this comparison and counts the number and proportion
of the best length of each algorithm. From Table 6, the
proposed HACO based on DMDVRP finds 12 new best
solutions in the 19 problems, accounting for 63.16% of the
best, while GA and PSO reach 4 and 3 best possible solutions,
accounting for 21.05% and 15.79%, respectively. The results
indicate that the HACO is effective algorithm for solving
DMDVRP.

6. Conclusions

In the past few decades, few researchers focused on dynamic
multidepot vehicle routing problem (DMDVRP). However,
DMDVRP has wide application scenarios, so we have a
research on DMDVRP. In order to improve the efficiency
of ACO, we proposed a hybrid ant colony optimization
algorithm (HACO) to solve DMDVRP. The HACO is based
on fusion of ACO and the nearest distance cluster, meanwhile
using mutation and 2-Opt to optimize routes further. In
addition, a real-time addition and optimization approach is
proposed to add customers and optimize routes dynamically.

In the experiments, the ACO,MACO, LACO, and HACO
are compared directly. In order to demonstrate the efficiency
of proposed algorithm, the t-test is applied to perform
statistical analysis. But beyond that, the relations of HACO
and degree of dynamism (𝑑𝑜𝑑) are analyzed by a number of
tests based on different 𝑑𝑜𝑑. With the aim of testing the per-
formance of real-time addition and optimization approach,
the comparisons of static routes quality and dynamic routes
quality are conducted. Experimental results show that the
HACO algorithm is feasible and efficient to solve DMDVRP.
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metaheuristics for the Clustered Vehicle Routing Problem,”
Computers & Operations Research, vol. 58, pp. 87–99, 2015.

[28] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A.
V. Donati, “A new algorithm for a Dynamic Vehicle Routing
Problem based on Ant Colony System,” in Proceedings of
the Second International Workshop on Freight Transportation
Logistics, pp. 27–30, 2003.

[29] S. Wang, Z. Lu, L. Wei, G. Ji, and J. Yang, “Fitness-scaling
adaptive genetic algorithm with local search for solving the
Multiple Depot Vehicle Routing Problem,” Simulation, vol. 92,
no. 7, pp. 601–616, 2016.

[30] B. Z. Yao, B. Yu, J. J. Gao, and M. H. Zhang, “An improved
particle swarm optimization for carton heterogeneous vehicle
routing problem with a collection depot,” Annals of Operations
Research, vol. 242, pp. 303–320, 2016.



Research Article
Laplace Transform Method for Pricing American CEV Strangles
Option with Two Free Boundaries

Zhiqiang Zhou and HongyingWu

School of Mathematics and Finance, Xiangnan University, Chenzhou 423000, China

Correspondence should be addressed to Zhiqiang Zhou; zqzhou@2014.swufe.edu.cn

Received 24 March 2018; Accepted 13 August 2018; Published 4 September 2018

Academic Editor: Jorge E. Macias-Diaz

Copyright © 2018 Zhiqiang Zhou and Hongying Wu. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Laplace transform method (LTM) has a lot of applications in the evaluation of European-style options and exotic options without
early exercise features. However the Laplace transform methods for pricing American options have unsatisfactory accuracy and
suffer from the instability. The aim of this paper is to develop a Laplace transform method for pricing American Strangles options
with the underlying asset price following the constant elasticity volatility (CEV) models. By approximating the free boundaries,
the Laplace transform is taken on a fixed space region to replace the moving boundaries space. After solving the linear system in
Laplace space, Gaver-Stehfest formula (GSF) and hyperbola contour integral method (HCIM) are applied to compute the Laplace
inversion. Numerical results show that the LTM-HCIM outperform the LTM-GSF in regard to the accuracy and stability for the
option values.

1. Introduction

The Laplace transform methods for option pricing originate
from the idea of randomizing the maturity in [1]. The
Laplace transform methods are applied in the pricing options
without early exercise features: Pelsser [2] for pricing double
barrier options, Davydov and Linetsky [3] for pricing and
hedging path dependent options under constant elasticity of
variance (CEV) models, Sepp [4] for pricing double barrier
options under double-exponential jump diffusion models,
Cai and Kou [5] for pricing European options under mixed-
exponential jump diffusion models, and Cai and Kou [6]
for pricing Asian options under hyperexponential jump
diffusion models.

This technique is known to work well for options without
early exercise features, but, for American-style options, one
difficulty has been perceived that the Black-Scholes-Merton
PDE only holds where it is optimal to retain the option.
Mallier and Alobaidi [7] develop a partial Laplace transform
method for pricingAmerican options inwhich the location of
the free boundary for all values of the transform variable has
to be determined by solving nonlinear integral equations. The
approach is only conceptually appealing but practically inef-
fective in numerical implementations as for each transform

variable one has to solve the nonlinear integral equations.
In fact Mallier and Alobaidi [7] do not give the numerical
computations.

A simple framework for Laplace transform methods is
introduced by Zhu [8] for pricing American options under
GBM models. This framework is later developed for evalu-
ation of finite-lived Russian options by Kimura [9], pricing
American options under CEVmodels byWong and Zhao [10]
and by Pun and Wong [11], pricing American options under
hyperexponential jump-diffusion model by Leippold and
Vasiljević [12], pricing stock loan (essentially an American
option with time-dependent strike) by Lu and Putri [13], and
pricing American options with regime switching by Ma et
al. [14]. But this framework suffers from a drawback that
numerical Laplace inversion such as Gaver-Stehfest (GS)
and Gaver-Wynn-Rho (GWR) algorithm are not stable. Pun
and Wong [11] explain the complex calculation of special
functions as one of the possible reasons causing instability.

Zhou et al. [15] develop a new Laplace transform method
for solving the free-boundary fractional diffusion equations
arising in the American option pricing. By approximating the
free boundary, the Laplace transform is taken on a fixed space
region to replace the moving boundaries space. Then the
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hyperbola contour integral method is exploited to restore the
option values. The coefficient matrix has theoretically proven
to be sectorial. Therefore, the highly accurate approximation
and computational stability of the fast Laplace transform
method are guaranteed.

In this paper, we develop the new Laplace transform
method for solving American Strangles option pricing under
CEV model. The Black-Scholes-Merton PDE of Strangles
option is defined on the moving region [𝑆𝑝(𝜏), 𝑆𝑐(𝜏)], where𝑆𝑝(𝜏) is put side and 𝑆𝑐(𝜏) is call side. The idea of the new
method is modifying PDE into a new form on certain fixed
region [𝑆𝑝, 𝑆𝑐]. Then performing the Laplace transform leads
to a ODEwhich involves the inverse functions 𝜏𝑝(𝑆) and 𝜏𝑐(𝑆)
of 𝑆𝑝(𝜏) and 𝑆𝑐(𝜏), respectively. Using the finite difference
method combined with the approximation of functions 𝜏𝑝(𝑆)
and 𝜏𝑐(𝑆), where the optimal parameters of the approximation
are obtained by minimizing the prescribed residual error, we
obtain the numerical solution of the ODE in the Laplace
space. In the final step, both the inversion Laplace Gaver-
Stehfest formula (GSF) and the hyperbola contour integral
method (HCIM) are used to recover the option value and the
free boundary.

Numerical examples show the inverse Laplace GSF is
unstable if the number of discrete integral nodes is great than
20, so HCIM is an effective algorithm for computing Laplace
inversion. However, the technics of spectral analysis in [15]
cannot be applied over here, because the coefficients of PDEs
arising from CEV Strangles option are not constant. This
paper gives a convergence theorem by analysing the so-called
Laplace transform iteration algorithm.

The remaining parts of this paper are arranged as follows:
In Section 2, we develop the Laplace transform method for
pricing American CEV Strangles option; in Section 3, we
discuss the hyperbola contour integral method to compute
inverse Laplace and give some stable conditions forHCIM. In
Section 4, some examples are taken to conform the theoretical
results of HCIM. Conclusions are given in the final section.

2. Evaluation of American Strangles
under CEV Model

Assume that the underlying asset price is governed by CEV
(see, e.g., [16]):

𝑑𝑆𝑡 = (𝑟 − 𝑞) 𝑆𝑡𝑑𝑡 + 𝛿𝑆𝛽+1𝑡 𝑑𝑊𝑡, (1)

where 𝑟 > 0 is the risk-free interest rate, 𝑞 ≥ 0 is the
dividend yield, and 𝑊𝑡 is standard Brownian motion. 𝜎(𝑆) =𝛿𝑆𝛽 represents the local volatility function and 𝛽 can be
interpreted as the elasticity of 𝜎(𝑆). 𝛿 is the scale parameter
fixing the initial instantaneous volatility at time 𝑡 = 0, i.e.,𝛿 = 𝜎(𝑆0)/𝑆𝛽0 fl 𝜎0/𝑆𝛽0 . If 𝛽 = 0, the SDE (1) becomes the
standard log-normal diffusion model or so-called geometric
Brownian motion models (GBM). If 𝛽 = −1/2, the SDE (1)
nests the Cox-Ingersoll-Ross (CIR) model.

Let

𝑓 (𝑆, 𝑡) = sup
𝜏∈T0,𝑇

𝐸 [𝑒−𝑟(𝜏−𝑡)Π(𝑆𝜏) | 𝑆𝑡 = 𝑆] (2)

be the price of an American Strangles position written on an
underlying asset with price 𝑆 at time 𝑡 and the payoff

Π(𝑆𝜏) = max (𝐾1 − 𝑆𝜏, 0) +max (𝑆𝜏 − 𝐾2, 0) . (3)

This position is formed using a long put with strike 𝐾1 and a
long call with strike 𝐾2. Note that 𝐾1 < 𝐾2. Let 𝜏 = 𝑇 − 𝑡,
V(𝑆, 𝜏) = 𝑓(𝑆, 𝑇 − 𝑡), and the early exercise boundary on the
put side be denoted by 𝑆𝑝(𝜏), and the early exercise boundary
on the call side be denoted by 𝑆𝑐(𝜏). It is known that V(𝑆, 𝜏)
satisfies the Black-Scholes PDE:
𝜕V𝜕𝜏 = 12𝛿2𝑆2𝛽+2 𝜕

2V𝜕𝑆2 + (𝑟 − 𝑞) 𝑆𝜕V𝜕𝑆 − 𝑟V,
𝑆𝑝 (𝜏) < 𝑆 < 𝑆𝑐 (𝜏)

(4)

with initial condition
V (𝑆, 0) = max (𝐾1 − 𝑆, 0) +max (𝑆 − 𝐾2, 0) ,

𝑆𝑝 (0) < 𝑆 < 𝑆𝑐 (0) (5)

and free boundary conditions

V (𝑆, 𝜏) = 𝐾1 − 𝑆,
𝜕𝜕𝑆V (𝑆, 𝜏) = −1,

𝑆 ≥ 𝑆𝑝 (𝜏) ,
(6)

V (𝑆, 𝜏) = 𝑆 − 𝐾2,
𝜕𝜕𝑆V (𝑆, 𝜏) = 1,

𝑆 ≤ 𝑆𝑐 (𝜏) .
(7)

Chiarella and Ziogas [17] apply Fourier transform technique
to derive a coupled integral equation system for the Strangles
free boundaries, and then a numerical algorithm is provided
to solve this system.

To establish the new Laplace transform method proposed
by Zhou et al. [15], we first note some properties of early
exercise boundary for American Strangle option under the
CEV model (1). It is known from [18–20] that the free-
boundary functions 𝑆𝑝(𝜏) and 𝑆𝑐(𝜏) of American Strangles
are continuously differentiable on the interval [0, +∞). We
call the fact that 𝑆𝑝(𝜏) is a decreasing function of variable 𝜏,
while 𝑆𝑐(𝜏) is an increasing function of variable 𝜏. Denote

𝑆𝑝 = 𝑆𝑝 (∞) ,
𝑆𝑝 = 𝑆𝑝 (0) ,
𝑆𝑐 = 𝑆𝑐 (0) ,
𝑆𝑐 = 𝑆𝑐 (∞) ,

(8)

Then we know

𝑆𝑝 = min(𝐾1, 𝑟𝑞𝐾1) ,
𝑆𝑐 = max(𝐾2, 𝑟𝑞𝐾2) ,

(9)
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1: Step 1. Let 𝐿1 = 1,𝐻1 = 𝑗1, 𝐿2 = 𝑗2,𝐻2 = 𝑁 − 1.
2: Step 2.Do the following loop:
3: while 𝐿1 < 𝐻1 − 1 or 𝐿2 < 𝐻2 − 1 do
4: Let 𝑘1 = floor[0.5 ∗ (𝐿1 + 𝐻1)] and 𝑘2 = floor[0.5 ∗ (𝐿2 + 𝐻2)].
5: Solve linear system (13) with boundary V𝑘1 = 𝐾1 − 𝑆𝑘1 and V𝑘2 = 𝑆𝑘2 − 𝐾2.
6: % Finite difference approximation (6).

7: if
V𝑘1+1 − V𝑘1Δ𝑆 < −1 then

8: 𝐿1 = 𝑘1;
9: else
10: 𝐻1 = 𝑘1;
11: end if
12: % Finite difference approximation (7).

13: if
V𝑘2 − V𝑘2−1Δ𝑆 < 1 then

14: 𝐿2 = 𝑘2;
15: else
16: 𝐻2 = 𝑘2.
17: end if
18: end while
19: Step 3. Output 𝑆𝑝 = 𝑆𝑘1 and 𝑆𝑐 = 𝑆𝑘2 .

Algorithm 1: Algorithm for solving 𝑆𝑝 and 𝑆𝑐.

𝑆𝑝 > 0, 𝑆𝑐 < ∞ and V∞(𝑆) = V(𝑆,∞) satisfy the following
ODE (similar to perpetual American option):

12𝛿2𝑆2𝛽+2𝑑
2V∞𝑑𝑆2 + (𝑟 − 𝑞) 𝑆𝑑V∞𝑑𝑆 − 𝑟V∞ = 0,

𝑆𝑝 < 𝑆 < 𝑆𝑐,
(10)

V∞ (𝑆𝑝) = 𝐾1 − 𝑆𝑝,
𝑑𝑑𝑆V∞ (𝑆𝑝) = −1, (11)

V∞ (𝑆𝑐) = 𝑆𝑐 − 𝐾2,
𝑑𝑑𝑆V∞ (𝑆𝑐) = 1. (12)

The values of 𝑆𝑝 and 𝑆𝑐 could be computed by secant
method. Define uniform mesh 𝑆𝑗 = 𝑗Δ𝑆, 𝑗 = 0, 1, . . . , 𝑁 and
take larger enough number 𝑆𝑚𝑎𝑥 = 𝑆𝑁 such that 𝑆𝑚𝑎𝑥 > 𝑆𝑐.
The discrete form of (10) is as follows:

(𝛿2𝑆2𝛽+2𝑗2 (Δ𝑆)2 − (𝑟 − 𝑞) 𝑆𝑗2Δ𝑆 ) V𝑗−1 − (𝛿2𝑆2𝛽+2𝑗(Δ𝑆)2 + 𝑟) V𝑗

+ (𝛿2𝑆2𝛽+2𝑗2 (Δ𝑆)2 + (𝑟 − 𝑞) 𝑆𝑗2Δ𝑆 ) V𝑗+1 = 0.
(13)

for 𝑗 = 1, 2, . . . , 𝑁 − 1 with V𝑗 = V∞(𝑆𝑗). Assuming 𝑆𝑝 = 𝑆𝑗1
and 𝑆𝑐 = 𝑆𝑗2 , we have the pseudocode as Algorithm 1.

Theorem 1. With the same initial condition (5) and boundary
conditions (6)-(7), the PDE (4) is equivalent to the following
PDE:

𝜕V𝜕𝜏 = 12𝛿2𝑆2𝛽+2 𝜕
2V𝜕𝑆2 + (𝑟 − 𝑞) 𝑆𝜕V𝜕𝑆 − 𝑟V

+ (𝑟𝐾1 − 𝑞𝑆) 1{𝑆≤𝑆𝑝(𝜏)} − (𝑟𝐾2 − 𝑞𝑆) 1{𝑆≥𝑆𝑐(𝜏)}.
(14)

for 𝜏 ∈ (0, +∞) and 𝑆 ∈ (𝑆𝑝, 𝑆𝑐), where 1{⋅} is the indicator
function.

Proof. (i) On the region 𝜏 ∈ (0,∞), 𝑆 ∈ (0, 𝑆𝑝(𝜏)), we know
from the boundary condition (6) that V(𝑆, 𝜏) = 𝐾1 − 𝑆. Direct
calculation shows that V(𝑆, 𝜏) = 𝐾1−𝑆 satisfies (14). (ii) On the
region 𝜏 ∈ (0,∞), 𝑆 ∈ (𝑆𝑝(𝜏), 𝑆𝑐(𝜏)), both (4) and (14) have
the same forms. (iii) On the region 𝜏 ∈ (0,∞), 𝑆 ∈ (𝑆𝑐(𝜏),∞),
we know from the boundary condition (7) that V(𝑆, 𝜏) = 𝑆 −𝐾2. Direct calculation shows that V(𝑆, 𝜏) = 𝑆−𝐾2 satisfies (14).
Combining (i), (ii), and (iii), we get this theorem.

Let 𝜏𝑝(𝑆) and 𝜏𝑐(𝑆) be the inverse functions of 𝑆𝑝(𝜏) and𝑆𝑐(𝜏), respectively. Taking Laplace transform
[LV (𝜏)] (𝑧) fl ∫∞

0
𝑒−𝑧𝜏V (𝜏) 𝑑𝜏, (15)

L [1{𝑆≤𝑆𝑝(𝜏)}] = ∫+∞
0

𝑒−𝑧𝜏1{𝑆≤𝑆𝑝(𝜏)}𝑑𝜏
= ∫+∞

0
𝑒−𝑧𝜏1{𝜏≤𝜏𝑝(𝑆)}𝑑𝜏 = ∫𝜏𝑝(𝑆)

0
𝑒−𝑧𝜏𝑑𝜏

= −1𝑧 𝑒−𝑧𝜏󵄨󵄨󵄨󵄨𝜏𝑝(𝑆)0 = 1𝑧 (1 − 𝑒−𝑧𝜏𝑝(𝑆)) ,
(16)
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and

L [1{𝑆≥𝑆𝑐(𝜏)}] = 1𝑧 (1 − 𝑒−𝑧𝜏𝑐(𝑆)) , (17)

to the both sides of (14), we get

𝑧V̂ = 12𝛿2𝑆2𝛽+2 𝜕
2V̂𝜕𝑆2 + (𝑟 − 𝑞) 𝑆𝜕V̂𝜕𝑆 − 𝑟V̂

+max (𝐾1 − 𝑆, 0) +max (𝑆 − 𝐾2, 0)
+ (𝑟𝐾1 − 𝑞𝑆) 1𝑧 (1 − 𝑒−𝑧𝜏𝑝(𝑆))
− (𝑟𝐾2 − 𝑞𝑆) 1𝑧 (1 − 𝑒−𝑧𝜏𝑐(𝑆))

(18)

on fixed space region 𝑆 ∈ (𝑆𝑝, 𝑆𝑐). The initial free boundary
conditions (6) and (7) become the following forms:

V̂ (𝑆𝑝, 𝑧) = 1𝑧 (𝐾1 − 𝑆𝑝) ,
𝜕𝜕𝑆 V̂ (𝑆𝑝, 𝑧) = −1𝑧 ,

(19)

V̂ (𝑆𝑐, 𝑧) = 1𝑧 (𝑆𝑐 − 𝐾2) ,
𝜕𝜕𝑆 V̂ (S𝑐, 𝑧) = 1𝑧 .

(20)

Now, the free boundaries 𝜏𝑝(𝑆) and 𝜏𝑐(𝑆) can be approxi-
mated. To this end, we give the fit functions with unknown
parameters 𝑝𝑖, 𝛼𝑖 for 𝑖 = 1, 2:

𝜏𝑝 (𝑆) ≈ 𝜏𝑝 (𝑆; 𝑝1, 𝛼1)

=
{{{{{{{{{{{{{

0, 𝑆 ≥ 𝑆𝑝,
𝑝1 (− log

𝑆 − 𝑆𝑝𝑆𝑝 − 𝑆𝑝)
𝛼1 , 𝑆𝑝 < 𝑆 < 𝑆𝑝,

+∞, 𝑆 = 𝑆𝑝,
(21)

𝜏𝑐 (𝑆) ≈ 𝜏𝑐 (𝑆; 𝑝2, 𝛼2)

=
{{{{{{{{{{{

+∞, 𝑆 ≥ 𝑆𝑐,
𝑝2 (− log 𝑆𝑐 − 𝑆𝑆𝑐 − 𝑆𝑐)

𝛼2 , 𝑆𝑐 < 𝑆 < 𝑆𝑐,
0, 𝑆 = 𝑆𝑐.

(22)

Redefine uniformmesh 𝑆𝑗 = 𝑆𝑝+𝑗Δ𝑆, 𝑗 = 0, 1, . . . , 𝑛+1withΔ𝑆 = (𝑆𝑐 − 𝑆𝑝)/(𝑛 + 1). Equations (18) can be discretized as
follows:

(𝑧I − A) k̂𝑛 (𝑧) = g (𝑧) , (23)

with index 𝑛 representing the number of space mesh parti-
tion. Matrix A, solution vector k̂𝑛(𝑧), and RHS vector g(𝑧)
are defined as

A (𝑧) =
[[[[[[[[[[[[
[

𝑏1 𝑐1 0 ⋅ ⋅ ⋅ 0 0
𝑎2 𝑏2 𝑐2 ⋅ ⋅ ⋅ 0 0
0 𝑎3 𝑏3 d 0 0
... d d d d

...
0 0 0 d 𝑏𝑛−1 𝑐𝑛−10 0 0 ⋅ ⋅ ⋅ 𝑎𝑛 𝑏𝑛

]]]]]]]]]]]]
]𝑛×𝑛

, (24)

𝑎𝑗 = 𝛿2𝑆2𝛽+2𝑗2 (Δ𝑆)2 − (𝑟 − 𝑞) 𝑆𝑗2Δ𝑆 ,
𝑏𝑗 = −𝛿2𝑆2𝛽+2𝑗(Δ𝑆)2 − 𝑟,
𝑐𝑗 = 𝛿2𝑆2𝛽+2𝑗2 (Δ𝑆)2 + (𝑟 − 𝑞) 𝑆𝑗2Δ𝑆 ,

(25)

k̂𝑛 (𝑧) = [V̂𝑛 (𝑆1, 𝑧) , V̂𝑛 (𝑆2, 𝑧) , . . . , V̂𝑛 (𝑆𝑛, 𝑧)]⊺ , (26)

g (𝑧; 𝑝1, 𝑝2, 𝛼1, 𝛼2) = [𝑔1, . . . , 𝑔𝑛]⊺ , (27)

where

𝑔1 = 𝑎1 (𝐾1 − 𝑆𝑝) , (28)

𝑔𝑗 = max (𝐾1 − 𝑆𝑗, 0) +max (𝑆𝑗 − 𝐾2, 0)
+ 1𝑧 (𝑟𝐾1 − 𝑞𝑆𝑗) (1 − 𝑒−𝑧𝜏𝑝(𝑆𝑗;𝑝1,𝛼1))
− 1𝑧 (𝑟𝐾2 − 𝑞𝑆𝑗) (1 − 𝑒−𝑧𝜏𝑐(𝑆𝑗;𝑝2,𝛼2)) ,

(𝑗 = 2, . . . , 𝑛 − 1)

(29)

𝑔𝑛 = 𝑐𝑛 (𝑆𝑐 − 𝐾2) . (30)

Denote a1(𝑧) and a𝑛(𝑧) to be the first row and the 𝑛𝑡ℎ row of(𝑧I−A)−1(𝑧), respectively. a1(𝑧) and a𝑛(𝑧) can be obtained by
solving linear equation:

a1 (𝑧) (𝑧I − A) = [1, 0, 0, . . . , 0] , (31)

a𝑛 (𝑧) (𝑧I − A) = [0, 0, . . . , 0, 1] . (32)

Then, we reach the expressions

V̂ (𝑆1, 𝑧) = a1 (𝑧) g (𝑧; 𝑝1, 𝑝2, 𝛼1, 𝛼2) ,
V̂ (𝑆𝑛, 𝑧) = a𝑛 (𝑧) g (𝑧; 𝑝1, 𝑝2, 𝛼1, 𝛼2) . (33)

We find the parameters 𝑝𝑖, 𝛼𝑖 (𝑖 = 1, 2) such that conditions
(19) and (20) hold for all real values of 𝑧 > 0. A practicable
way is to consider a positive sequence {𝑧1, 𝑧2, . . . , 𝑧𝑚} which
are used for numerical Laplace inversion and find the values
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Step 1. Use Algorithm 1 to compute 𝑆𝑝 and 𝑆𝑐.
Step 2. Compute 𝜏𝑝(𝑆) and 𝜏𝑐(𝑆) by optimizing (34).
Step 3. Solve the linear system (23) to get k̂𝑛(𝑧).
Step 4. Apply Laplace inversion GSF or HCIM to restore American Strangles option
value k𝑛(𝜏).

Algorithm 2: NLTM algorithm for pricing American Strangles.

of unknown 𝑝𝑖 and 𝛼𝑖 that optimizing the following objective
function:

min
𝑝1,𝑝2,𝛼1,𝛼2≥0

𝐹 (𝑝1, 𝑝2, 𝛼1, 𝛼2)
= 𝑚∑
𝑖=1

𝐸1 (𝑖; 𝑝1, 𝑝2, 𝛼1, 𝛼2) + 𝑚∑
𝑖=1

𝐸2 (𝑖; 𝑝1, 𝑝2, 𝛼1, 𝛼2) (34)

with

𝐸1 (𝑖; 𝑝1, 𝑝2, 𝛼1, 𝛼2) = ( V̂ (𝑆1, 𝑧𝑖) − V̂ (𝑆0, 𝑧𝑖)Δ𝑆
− 𝜕𝜕𝑆 V̂ (𝑆0, 𝑧𝑖))

2

= [
[
a1 (𝑧𝑖) g (𝑧𝑖; 𝑝1, 𝑝2, 𝛼1, 𝛼2) − (1/𝑧𝑖) (𝐾1 − 𝑆𝑝)Δ𝑆

+ 1𝑧𝑖]]
2

,

(35)

𝐸2 (𝑖; 𝑝1, 𝑝2, 𝛼1, 𝛼2) = ( V̂ (𝑆𝑛+1, 𝑧𝑖) − V̂ (𝑆𝑛, 𝑧𝑖)Δ𝑆
− 𝜕𝜕𝑆 V̂ (𝑆𝑛+1, 𝑧𝑖))

2

= [(1/𝑧𝑖) (𝑆𝑐 − 𝐾2) − a𝑛 (𝑧𝑖) g (𝑧𝑖; 𝑝1, 𝑝2, 𝛼1, 𝛼2)Δ𝑆
− 1𝑧𝑖]

2

.

(36)

After determining 𝜏𝑝(𝑆) and 𝜏𝑐(𝑆) we can compute k̂𝑛(𝑧)
by solving linear system (23), and the value of American
Strangles can be expressed in terms of the inverse Laplace
transforms

V𝑛 (𝑆𝑗, 𝜏) = L
−1 [V̂𝑛 (𝑆𝑗, 𝑧)] , 𝑗 = 1, 2, . . . , 𝑛. (37)

Applying polynomial interpolations, we can obtain the option
value V(𝑆, 𝜏) for any values 𝑆 ∈ (0,∞). Moreover, the vector
version of inverse Laplace can be formulated as

k𝑛 (𝜏) = L
−1 [k̂𝑛 (𝑧)] . (38)

One of the classical numerical Laplace inversion is the
Gaver-Stehfest formula (GSF) (see [21, 22]):

k𝑛 (𝜏) ≈ k𝑛,𝐿 (𝜏) = ln 2𝜏
𝐿∑
𝑘=1

𝐶(𝐿)𝑘 k̂𝑛 (𝑘 ln 2𝜏 ) , (39)

where

𝐶(𝐿)𝑘 = (−1)𝑘+𝐿/2
⋅ min[𝑘,𝐿/2]∑
𝑗=[(𝑘+1)/2]

𝑗𝐿/2 (2𝑗)!(𝐿/2 − 𝑗)!𝑗! (𝑗 − 1)! (𝑘 − 𝑗)! (2𝑗 − 𝑘)!
(40)

with 𝐿 being taken as an even positive integer. Another
effective numerical scheme for inverse Laplace transform is
the so-called hyperbolic contour integral method (HCIM).
We discuss HCIM in next section and give some examples,
in Section 4, to illustrate the advantages of HCIM compared
with GSF.

We finally summarize the Laplace transform method
(NLTM) for pricing American Strangles as Algorithm 2.

3. Hyperbolic Contour Integral Method for
Laplace Inversion

Many computational experiences show that the Gaver-
Stehfest inverse Laplace formula (39) is unstable when 𝐿 ≥ 20
(see [21, 22]; also see Example 1 in this paper). So, it is very
important to develop an appropriate numerical algorithm for
restoring the option values. In this section, we discuss how
to apply the Hyperbolic contour integral method to compute
k𝑛(𝜏) from k̂𝑛(𝜏).

The inversion of Laplace transform is based on numerical
integration of the Bromwich complex contour integral:

V (𝑆, 𝜏) = 12𝜋i ∫
𝜂+i∞

𝜂−i∞
𝑒𝑧𝜏V̂ (𝑆, 𝑧) d𝑧, 𝜂 > 𝜂0, (41)

where i = √−1 and 𝜂0 is the convergence abscissa.Thismeans
that all the singularities of V̂(𝑆, 𝑧) (with respect to 𝑧) lie in
the open half-plane Re(𝑧) ≤ 𝜂0. The integral (41) is not well-
suited for numerical integration. First, the exponential factor
is highly oscillatory on the Bromwich line, 𝑧 = 𝜂 + i𝑦, −∞ <𝑦 < +∞. Second, the transform V̂(𝑆, 𝑧) typically decays slowly
as |𝑦| 󳨀→ ∞. One strategy for circumventing the slow decay
is due to Talbot [23], who suggests that the Bromwich line be
deformed into a contour Γ that begins and ends in the left
half-plane, such that Re(𝑧) 󳨀→ −∞ at each end. On such a
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contour, the exponential factor in (41) forces a rapid decay
of the integrand as Re(𝑧) 󳨀→ −∞. This makes the integral
well suited for approximation by the trapezoidal or midpoint
rules. Owing to Cauchy’s theorem, such a deformation of
contour is permissible as long as no singularities are traversed
in the process, provided that V̂(𝑆, 𝑧) 󳨀→ 0 uniformly in
Re(𝑧) ≤ 𝜂0 as |𝑧| 󳨀→ ∞.

Because the coefficient matrix A in (23) is not Toeplitz
matrix, the technics of spectral analysis in [15] cannot be

applied over here. To apply the idea of Talbot [23] and Zhou
[15], we rewrite the linear system (23) as follows:

(𝑧I − Ã) k̂𝑛 (𝑧) = Ck̂𝑛 (𝑧) + g (𝑧) , (42)

where I is the identity matrix,

Ã = DB, (43)

B = 1(Δ𝑆)2

[[[[[[[[[[[[[[[[[
[

−1 12 0 ⋅ ⋅ ⋅ 0 012 −1 12 ⋅ ⋅ ⋅ 0 0
0 12 −1 d 0 0
... d d d d

...
0 0 d

12 −1 120 0 ⋅ ⋅ ⋅ 0 12 −1

]]]]]]]]]]]]]]]]]
]

,

D =
[[[[[[
[

𝛿𝑆2𝛽+21

𝛿𝑆2𝛽+22

d

𝛿𝑆2𝛽+2𝑛

]]]]]]
]
,

(44)

C =

[[[[[[[[[[[[[[[[[[[
[

−𝑟 (𝑟 − 𝑞) 𝑆12Δ𝑆 0 ⋅ ⋅ ⋅ 0 0
−(𝑟 − 𝑞) 𝑆22Δ𝑆 −𝑟 (𝑟 − 𝑞) 𝑆22Δ𝑆 ⋅ ⋅ ⋅ 0 0

0 −(𝑟 − 𝑞) 𝑆22Δ𝑆 −𝑟 d 0 0... d d d d
...

0 0 d −(𝑟 − 𝑞) 𝑆𝑛−12Δ𝑆 −𝑟 (𝑟 − 𝑞) 𝑆𝑛−12Δ𝑆
0 0 ⋅ ⋅ ⋅ 0 −(𝑟 − 𝑞) 𝑆𝑛2Δ𝑆 −𝑟

]]]]]]]]]]]]]]]]]]]
]

(45)

and g(𝑧) is defined by (27). Note that B is a Toeplitz matrix.
The linear system (42) can be solved by the following iteration
algorithm:

[k̂𝑛 (𝑧)](ℓ+1) = (𝑧I − Ã)−1 (C [k̂𝑛 (𝑧)](ℓ) + g (𝑧)) ,
ℓ = 0, 1, . . . (46)

with [k̂𝑛(𝑧)](0) = 0.
Let D−1-inner product and the corresponding vector

norm be defined by

(k, k)D−1 = k∗D−1k,
‖k‖D−1 = √(k, k)D−1 ,

∀k ∈ C,
(47)

with D being defined by (44). Matrix D−1-norm is induced
by the vector D−1-norm, i.e.,

‖A‖D−1 = max
k ̸=0

‖Ak‖D−1‖k‖D−1 , ∀A ∈ C
𝑛×𝑛. (48)
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The theorem below shows that the iteration algorithm
(46) is convergent if 𝑧 falls outside of a sectorial region.
Theorem 2. (i) The spectrum Λ(Ã) of Ã defined by (43) lies in
the sectorial region Σ𝜖 for any values of 𝜖 ∈ (0, 𝜋/2), i.e.,

Λ(Ã) ⊆ Σ𝜖 = {𝑧 ∈ C : 󵄨󵄨󵄨󵄨arg (−𝑧)󵄨󵄨󵄨󵄨 ≤ 𝜖} . (49)

(ii) For Ã defined by (43), we have

󵄩󵄩󵄩󵄩󵄩󵄩(𝑧I − Ã)−1󵄩󵄩󵄩󵄩󵄩󵄩D−1 ≤ 11 + dist (𝑧, Σ𝜖) , 𝑧 ∉ Σ𝜖, (50)

with Σ𝜖 being defined by (49) and dist(𝑧, Σ𝜖) = inf{|𝑧−𝜉| : 𝜉 ∈Σ𝜖}.
(iii) Let ‖C‖D−1 ≤ 𝛾0 with C being defined by (45) and

assume dist(𝑧, Σ𝜖) ≥ 𝛾 such that 0 < 𝛾0 < 1 + 𝛾. Assuming
k̂𝑛(𝑧) solve (42), we have

󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](ℓ+1) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1 = ( 𝛾01 + 𝛾)
ℓ+1 󵄩󵄩󵄩󵄩k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩D−1 . (51)

Therefore, [k̂𝑛(𝑧)](ℓ+1) is convergent to k̂𝑛(𝑧) according to‖ ⋅ ‖D−1 -norm.
(iv) Under the assumptions of (iii), we have

󵄩󵄩󵄩󵄩k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩D−1 ≤ 11 + 𝛾 − 𝛾0 󵄩󵄩󵄩󵄩g (𝑧)󵄩󵄩󵄩󵄩D−1 . (52)

Proof. (i) Matrix B defined by (44) is a Toeplitz matrix and
the generating function 𝑓(𝜂) of B is

𝑓 (𝜂) = 1(Δ𝑆)2 (12𝑒i𝜂 − 𝑒−0⋅i𝜂 + 12𝑒−i𝜂)
= 1(Δ𝑆)2 (cos 𝜂 − 1) , 𝜂 ∈ (−𝜋, 𝜋) . (53)

From the above generating function 𝑓(𝜂) and the discussion
of Pang and Sun [24], we know the spectrum Λ(B) lies the
sectorial region Σ𝜖 for any values of 𝜖 ∈ (0, 𝜋/2). Since D is
positive definite, the spectrum Λ(Ã) = Λ(DB) also lies in the
same sectorial region Σ𝜖 (see [24, Lemma 3.5]).

(ii) The inequality (50) is proven in [24, Theorem 3.3].
(iii) From linear system (42) and iteration algorithm (46),

we have󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](ℓ+1) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1
≤ 󵄩󵄩󵄩󵄩󵄩󵄩(𝑧I − Ã)−1 C󵄩󵄩󵄩󵄩󵄩󵄩D−1 󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](ℓ) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1
≤ 󵄩󵄩󵄩󵄩󵄩󵄩(𝑧I − Ã)−1󵄩󵄩󵄩󵄩󵄩󵄩D−1 ‖C‖D−1 󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](ℓ) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1
≤ 11 + dist (𝑧, Σ𝜖) ‖C‖D−1

󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](ℓ) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1
≤ 𝛾01 + 𝛾 󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](ℓ) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1 ,

for ℓ = 0, 1, 2, . . .

(54)

Therefore,󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](ℓ+1) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1
≤ 𝛾01 + 𝛾 󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](ℓ) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1
≤ ( 𝛾01 + 𝛾)

ℓ+1 󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](0) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1
= ( 𝛾01 + 𝛾)

ℓ+1 󵄩󵄩󵄩󵄩k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩D−1 ,

(55)

and

lim
ℓ󳨀→∞

󵄩󵄩󵄩󵄩󵄩󵄩[k̂𝑛 (𝑧)](ℓ+1) − k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩󵄩󵄩D−1 = 0, (56)

which means [k̂𝑛(𝑧)](ℓ+1) is convergent to k̂𝑛(𝑧) according to‖ ⋅ ‖D−1-norm.
(iv) From linear equation (42) we have

󵄩󵄩󵄩󵄩k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩D−1 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩(𝑧I − Ã)−1󵄩󵄩󵄩󵄩󵄩󵄩D−1 ‖C‖D−1 󵄩󵄩󵄩󵄩k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩D−1
+ 󵄩󵄩󵄩󵄩󵄩󵄩(𝑧I − Ã)−1󵄩󵄩󵄩󵄩󵄩󵄩D−1 󵄩󵄩󵄩󵄩g󵄩󵄩󵄩󵄩D−1

≤ 𝛾01 + 𝛾 󵄩󵄩󵄩󵄩k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩D−1 + 11 + 𝛾 󵄩󵄩󵄩󵄩g󵄩󵄩󵄩󵄩D−1 .
(57)

Consequently,

󵄩󵄩󵄩󵄩k̂𝑛 (𝑧)󵄩󵄩󵄩󵄩D−1 ≤ 11 + 𝛾 − 𝛾0 󵄩󵄩󵄩󵄩g (𝑧)󵄩󵄩󵄩󵄩D−1 , (58)

which ends the proof.

FromTheorem2,we see the iteration sequence {[k̂𝑛 (𝑧)](ℓ),ℓ = 0, 1, 2, . . .} and the limit k̂𝑛(𝑧) are analytical if 𝑧
lies out the sectorial region Σ𝜖 defined by (49). Therefore,
the convergence of iteration algorithm (46) requires that 𝑧
is far away from the sectorial region Σ𝜖 such that ‖(𝑧I −
Ã)−1‖D−1‖C‖D−1 < 1. This condition could be satisfied in next
discussion.

The Laplace inversion of k̂𝑛(𝑧) with respect to 𝑧 can be
expressed as

k𝑛 (𝜏) = 12𝜋i ∫Γ 𝑒𝑧𝜏k̂𝑛 (𝑧) d𝑧. (59)

This is the vector version of Laplace inversion (41).Weideman
et al. [25] (also see Pang and Sun [24]) suggest to select the
hyperbolic contour Γ, which can be parameterized by

Γ : 𝑧 (𝜁) = 𝜇 [1 + sin (i𝜁 − 𝜃)] , −∞ < 𝜁 < ∞, (60)

where parameters 𝜇 > 0 and 𝜃 set the width and the
asymptotic angle of the hyperbolic contour, respectively.Then
substituting the contour (60) into (59) gives

k𝑛 (𝜏) = 12𝜋i ∫Γ 𝑒𝑧𝜏k̂𝑛 (𝑧) d𝑧
= 12𝜋i ∫

+∞

−∞
𝑒𝑧(𝜁)𝜏𝑧󸀠 (𝜁) k̂𝑛 (𝑧 (𝜁)) d𝜁.

(61)
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Discretization of this integral with uniform node spacing ℎ
yields

k𝑛 (𝜏) = ℎ2𝜋i
+∞∑
𝑘=−∞

𝑒𝑧(𝜁𝑘)𝜏𝑧󸀠 (𝜁𝑘) k̂𝑛 (𝑧 (𝜁𝑘)) + 𝐷𝐸+ (ℎ)
+ 𝐷𝐸− (ℎ)

(62)

= ℎ2𝜋i
𝐿∑

𝑘=−𝐿

𝑒𝑧(𝜁𝑘)𝜏𝑧󸀠 (𝜁𝑘) k̂𝑛 (𝑧 (𝜁𝑘)) + 𝐷𝐸+ (ℎ)
+ 𝐷𝐸− (ℎ) + 𝑇𝐸 (ℎ𝐿)

(63)

fl k𝑛,𝐿 (𝜏) + 𝐷𝐸+ (ℎ) + 𝐷𝐸− (ℎ) + 𝑇𝐸 (ℎ𝐿) , (64)

where 𝜁𝑘 = 𝑘ℎ for the trapezoidal rule and 𝜁𝑘 = (𝑘 +1/2)ℎ for the midpoint rule, 𝐿 is the number of quadrature
nodes,𝐷𝐸±(ℎ) are the discretization errors, and𝑇𝐸(ℎ𝐿) is the
truncation error. Define

𝑔𝜏 (𝜁) = 12𝜋i𝑒𝑧(𝜁)𝜏𝑧󸀠 (𝜁) k̂𝑛 (𝑧 (𝜁)) (65)

and assume the function 𝑔𝜏(𝜁 + i𝑑) to be analytic in the strip𝑑 ∈ (𝑑−, 𝑑+) with 𝑑+ > 0 and 𝑑− < 0, then the discretization
errors are bounded as

󵄩󵄩󵄩󵄩𝐷𝐸+ (ℎ)󵄩󵄩󵄩󵄩 = 𝑀(𝑑+)𝑒2𝜋𝑑+/ℎ − 1 ,
󵄩󵄩󵄩󵄩𝐷𝐸− (ℎ)󵄩󵄩󵄩󵄩 = 𝑀 (𝑑−)𝑒−2𝜋𝑑−/ℎ − 1 ,

(66)

where

𝑀(𝑑) = ∫+∞
−∞

󵄩󵄩󵄩󵄩𝑔𝜏 (𝜁 + i𝑑)󵄩󵄩󵄩󵄩 𝑑𝜁, 𝑑 = 𝑑+ (or 𝑑−) (67)

and ‖⋅‖ is some vector norm.The truncation error𝑇𝐸(ℎ𝐿) can
be approximated by the magnitude of the last term retained,
i.e.,

‖𝑇𝐸 (ℎ𝐿)‖ = O (󵄩󵄩󵄩󵄩𝑔𝜏 (ℎ𝐿)󵄩󵄩󵄩󵄩) , 𝐿 󳨀→ ∞. (68)

We note that the estimates in (66) and (68) are extended in
a straightforward manner, from the case 𝑔𝜏(𝜁) being scalar
functions (see [24–26]) to the case when 𝑔𝜏(𝜁) takes value in
a complex vector space.

To make all the singularities of the integrand in (61) to
fall into the sectorial region Σ𝜖 defined by (49) for a given 𝜖 >0, the expressions of optimal parameters ℎ, 𝜇, and 𝜃 must be
chosen appropriately. By asymptotically matching ‖𝐷𝐸±(ℎ)‖
and ‖𝑇𝐸(ℎ𝐿)‖, ℎ and 𝜇 are derived as follows:

ℎ = 𝜌 (𝜃)𝐿 ,
𝜇 = 4𝜋𝜃 − 𝜋2 + 2𝜋𝜖𝜌 (𝜃) 𝐿𝜏 ,

𝜌 (𝜃) = cosh−1 ( 2𝜃(4𝜃 − 𝜋 + 2𝜖) sin 𝜃)
(69)

and 𝜃 is a free parameter satisfying 𝜃 < 𝜋/2 − 𝜖. With this
choice the predicted convergence rate is given by󵄩󵄩󵄩󵄩󵄩k𝑛,𝐿 (𝜏) − k𝑛 (𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ O (𝑒−𝑅(𝜃)𝐿) , (70)

where

𝑅 (𝜃) = 𝜋2 − 2𝜋𝜃 − 2𝜋𝜖𝜌 (𝜃) . (71)

According to (70), we see that once the semiangle 𝜖 of the
sectorial region (49) is given, then one can find the optimal 𝜃
by maximizing the function 𝑅(𝜃). Consequently, the optimal
parameters ℎ and 𝜇 can be obtained from formulas (69).

Denoting 𝑧𝑘 = 𝑧(𝜁𝑘) and 𝑧󸀠𝑘 = 𝑧󸀠(𝜁𝑘), we have
k𝑛,𝐿 (𝜏) = ℎ2𝜋i

𝐿∑
𝑘=−𝐿

𝑒𝑧𝑘𝜏𝑧󸀠 (𝜁𝑘) k̂𝑛 (𝑧𝑘) ≈ k𝑛,ℓ,𝐿 (𝜏)
fl

ℎ2𝜋i
𝐿∑

𝑘=−𝐿

𝑒𝑧𝑘𝜏𝑧󸀠 (𝜁𝑘) [k̂𝑛 (𝑧𝑘)](ℓ) .
(72)

Now, we give the convergence condition of the iteration
algorithm (46). From [27,Theorem 3.3], the distance betweenΣ𝜖 and Γ is given by

dist (Σ𝜖, Γ) fl min
𝑃1∈Σ𝜑 ,𝑃2∈Γ

󵄨󵄨󵄨󵄨𝑃1 − 𝑃2󵄨󵄨󵄨󵄨 = 𝜇 (1 − sin 𝜃) . (73)

Inserting the above equation and the expression 𝜇 = ((4𝜋𝜃 −𝜋2 + 2𝜋𝜖)/𝜌(𝜃))(𝐿/𝜏) into following inequality
󵄩󵄩󵄩󵄩󵄩󵄩(𝑧I − Ã)−1󵄩󵄩󵄩󵄩󵄩󵄩D−1 ≤ 11 + dist (Σ𝜖, Γ) (74)

we get󵄩󵄩󵄩󵄩󵄩󵄩(𝑧I − Ã)−1󵄩󵄩󵄩󵄩󵄩󵄩D−1
≤ 11 + ((4𝜋𝜃 − 𝜋2 + 2𝜋𝜖) (1 − sin 𝜃) /𝜌 (𝜃)) (𝐿/𝜏) .

(75)

Denote 𝛾 = 𝜇(1 − sin 𝜃) = dist(Σ𝜖, Γ). If we take 𝐿 such that

𝐿𝜏 > 𝜌 (𝜃) (𝛾0 − 1)(4𝜋𝜃 − 𝜋2 + 2𝜋𝜖) (1 − sin 𝜃) , (76)

then 1+𝛾 > 𝛾0 and the iteration algorithm (46) is convergent
according to norm ‖ ⋅ ‖D−1 . Inequality (76) requires that 𝐿 is
large enough such that the hyperbolic contour Γ is far away
from the sectorial region Σ𝜖.

In following Theorem, we give an estimation for ‖C‖D−1
and then give the minimum estimation for 𝐿.
Theorem 3. For matrix C being defined by (45), we have the
following estimation:

‖C‖D−1 ≤ 𝛾0 fl 𝑀(𝑆𝑝, 𝑆𝑐)2Δ𝑆
⋅ √(8𝑟2 − 4𝑟 (𝑟 − 𝑞)) (Δ𝑆)2 + 3 (𝑟 − 𝑞)2 𝑆2𝑝,

(77)
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where 𝑆𝑐 and 𝑆𝑝 are defined by (8) in Section 2 and

𝑀(𝑆𝑝, 𝑆𝑐) = 𝑆𝑐𝑆𝑝
max𝑗𝑆𝛽+1𝑗

min𝑗𝑆𝛽+1𝑗

=
{{{{{{{{{{{{{

(𝑆𝑐𝑆𝑝)
𝛽+2 , 𝛽 ≥ −1,

(𝑆𝑝𝑆𝑐 )
𝛽 , 𝛽 < −1.

(78)

If Δ𝑆 is small enough, then

‖C‖D−1 ≤ 𝛾0 fl √3 󵄨󵄨󵄨󵄨𝑟 − 𝑞󵄨󵄨󵄨󵄨 𝑆𝑝𝑀(𝑆𝑝, 𝑆𝑐)2Δ𝑆 = O ( 1Δ𝑆) ,
Δ𝑆 󳨀→ 0.

(79)

Proof. Firstly, we verified the inequality

‖C‖D−1 ≤ max𝑗𝑆𝛽+1𝑗

min𝑗𝑆𝛽+1𝑗

‖C‖ , (80)

where ‖ ⋅ ‖ represents the vector ℓ2-norm. Indeed,

‖C‖D−1 = max
k ̸=0

‖Ck‖D−1‖k‖D−1 = max
k ̸=0

√(Ck)∗D−1Ck√k∗D−1k

≤ max
k ̸=0

√(1/min𝑗𝛿𝑆2𝛽+2𝑗 ) (Ck)∗ Ck
√(1/max𝑗𝛿𝑆2𝛽+2𝑗 ) k∗k

= √max𝑗𝑆2𝛽+2𝑗

√min𝑗𝑆2𝛽+2𝑗

max
k ̸=0

‖Ck‖‖k‖ = max𝑗𝑆𝛽+1𝑗

min𝑗𝑆𝛽+1𝑗

‖C‖ .

(81)

From definition (45), we have C = (1/2Δ𝑆)D1C1 with

C1

=

[[[[[[[[[[[[[[[[[[
[

−2𝑟Δ𝑆𝑆1 (𝑟 − 𝑞) 0 ⋅ ⋅ ⋅ 0 0
− (𝑟 − 𝑞) −2𝑟Δ𝑆𝑆2 (𝑟 − 𝑞) ⋅ ⋅ ⋅ 0 0

0 − (𝑟 − 𝑞) −2𝑟Δ𝑆𝑆3 d 0 0
... d d d d d

0 0 d − (𝑟 − 𝑞) −2𝑟Δ𝑆𝑆𝑛−1 (𝑟 − 𝑞)
0 0 ⋅ ⋅ ⋅ 0 − (𝑟 − 𝑞) −2𝑟Δ𝑆𝑆𝑛

]]]]]]]]]]]]]]]]]]
]

(82)

and D1 = Diag[𝑆1, 𝑆2, . . . , 𝑆𝑛]. By carefully calculating, we
have

C⊺1C1 = [𝑐𝑗𝑘]𝑛×𝑛 (83)

where

𝑐𝑗𝑗 = 4𝑟2 (Δ𝑆)2𝑆2𝑗 + (𝑟 − 𝑞)2 , 𝑗 = 1, 𝑛,
𝑐𝑗𝑗 = 8𝑟2 (Δ𝑆)2𝑆2𝑗 + (𝑟 − 𝑞)2 , 𝑗 = 2, 3, . . . , 𝑛 − 1,

𝑐𝑗,𝑗−1 = 𝑐𝑗,𝑗+1 = 2𝑟 (𝑟 − 𝑞) (Δ𝑆)2𝑆𝑗𝑆𝑗+1 , 𝑗 = 1, 2, . . . , 𝑛,
𝑐𝑗,𝑗−2 = 𝑐𝑗,𝑗+2 = − (𝑟 − 𝑞)2 , 𝑗 = 1, 2, . . . , 𝑛,

(84)

and 𝑐𝑗𝑘 = 0 for 𝑗 = 1, 2, . . . , 𝑛, 𝑘 < 𝑗 − 2 and 𝑘 > 𝑗 + 2. By the
Gershgorin circle theorem, each eigenvalue 𝜆(C⊺1C1) of C⊺1C1
falls into a certain Gerschgorin diskG𝑗, i.e.,

𝜆 (C⊺1C1) ) ∈ G𝑗 fl
{{{𝑧 : 󵄨󵄨󵄨󵄨󵄨𝑧 − 𝑐𝑗𝑗󵄨󵄨󵄨󵄨󵄨 ≤

𝑗+2∑
𝑘=𝑗−2,𝑘≠𝑗

𝑐𝑗𝑘}}} (85)

for some index 𝑗. Incorporating (84) and (85), we get

𝜆 (C⊺1C1) ≤ max
𝑗

{8𝑟2 (Δ𝑆)2𝑆2𝑗 + 4𝑟 (𝑟 − 𝑞) (Δ𝑆)2𝑆𝑗𝑆𝑗+1
+ 3 (𝑟 − 𝑞)2} ≤ 1

min𝑗𝑆2𝑗 {(8𝑟2 − 4𝑟 (𝑟 − 𝑞)) (Δ𝑆)2

+ 3 (𝑟 − 𝑞)2min
𝑗

𝑆2𝑗} .
(86)

Therefore,

󵄩󵄩󵄩󵄩C1󵄩󵄩󵄩󵄩 ≤ √𝜆 (C⊺1C1) ≤ 1
min𝑗𝑆𝑗

⋅ √(8𝑟2 − 4𝑟 (𝑟 − 𝑞)) (Δ𝑆)2 + 3 (𝑟 − 𝑞)2min
𝑗

𝑆2𝑗 .
(87)

Incorporating (80) and (87), we have

‖C‖D−1 ≤ max𝑗𝑆𝛽+1𝑗

min𝑗𝑆𝛽+1𝑗

‖C‖ = 12Δ𝑆
max𝑗𝑆𝛽+1𝑗

min𝑗𝑆𝛽+1𝑗

󵄩󵄩󵄩󵄩D1C1
󵄩󵄩󵄩󵄩

≤ 12Δ𝑆
max𝑗𝑆𝛽+1𝑗

min𝑗𝑆𝛽+1𝑗

󵄩󵄩󵄩󵄩D1
󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩C1󵄩󵄩󵄩󵄩 ≤ 12Δ𝑆

max𝑗𝑆𝛽+1𝑗

min𝑗𝑆𝛽+1𝑗

⋅ max𝑗𝑆𝑗
min𝑗𝑆𝑗

⋅ √(8𝑟2 − 4𝑟 (𝑟 − 𝑞)) (Δ𝑆)2 + 3 (𝑟 − 𝑞)2min
𝑗

𝑆2𝑗

(88)

Let max𝑗𝑆𝑗 = 𝑆𝑐, min𝑗𝑆𝑗 = 𝑆𝑝 and 𝑀(𝑆𝑝, 𝑆𝑐) = (𝑆𝑐/𝑆𝑝)(max𝑗𝑆𝛽+1𝑗 /min𝑗𝑆𝛽+1𝑗 ); we finally obtain the estimate
expression (77).

Finally, we give two remarks as follows.
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Table 1: Values of American Strangles at time 𝑡 = 0 (i.e., 𝜏 = 𝑇) with 𝐾1 = 1, 𝐾2 = 1.5, 𝑟 = 0.05, 𝑞 = 0.1, 𝑆0 = 1.5, 𝜎0 = 0.4, different values
of 𝛽, and different values of 𝐿. The CPU time is about 20s, 22s, and 680s for LTM-GSF, LTM-HCIM, and FDM, respectively.

𝛽 𝐿 = 10 𝐿 = 20 𝐿 = 26 FDM
LTM-GSF LTM-HCIM LTM-GSF LTM-HCIM LTM-GSF LTM-HCIM

-0.50 0.260862 0.260864 0.297905 0.260864 18.447801 0.260864 0.258805
-0.25 0.253815 0.253800 0.284163 0.253800 22.070192 0.253800 0.251154
0 0.247986 0.247964 0.261926 0.247964 24.667532 0.247964 0.244310
0.25 0.245120 0.245090 0.239312 0.245090 -0.098661 0.245090 0.238169
0.50 0.236749 0.236703 0.217691 0.236724 -9.087067 0.236724 0.232615

Remark 4. (i) For the fixed hyperbolic contour parameters 𝜃
and 𝜖, Theorem 3 and iteration convergence condition (76)
show that we must take 𝐿 = O(1/Δ𝑆). (ii) For inverse Laplace
formula k𝑛,𝐿(𝜏) in (72), we solve k̂𝑛(𝑧) by directly computing
linear equations k̂𝑛(𝑧) = (I−A)−1g(𝑧) (i.e., expression (23) in
Section 2) if 𝐿 satisfies inequality (76) with 𝛾0 being defined
by (77).

Remark 5. From the upper estimate (52) for ‖k̂𝑛(𝑧)‖D−1 , we
see the convergence of inverse Laplace dependents on the
norm ‖g(𝑧)‖D−1 . Moreover, observing the expression of g(𝑧)
defined by (27) and (29), the exponential terms 𝑒−𝑧𝜏𝑝(𝑆𝑗;𝑝1,𝛼1)
and 𝑒−𝑧𝜏𝑐(𝑆𝑗;𝑝2,𝛼2) play important roles. Following the strategy
of Zhou et al. [15], we split 𝑔𝑗(𝑧) into two parts 𝑔𝑗(𝑧) =𝑔1𝑗(𝑧) + 𝑔2𝑗(𝑧) with

𝑔1𝑗 = max (𝐾1 − 𝑆𝑗, 0) +max (𝑆𝑗 − 𝐾2, 0)
+ 1𝑧 (𝑟𝐾1 − 𝑞𝑆𝑗) − 1𝑧 (𝑟𝐾2 − 𝑞𝑆𝑗)
− 1𝑧 (𝑟𝐾1 − 𝑞𝑆𝑗) 𝑒−𝑧𝜏𝑐(𝑆𝑗)1{𝜏>𝜏𝑐(𝑆𝑗)}
+ 1𝑧 (𝑟𝐾2 − 𝑞𝑆𝑗) 𝑒−𝑧𝜏𝑐(𝑆𝑗)1{𝜏>𝜏𝑝(𝑆𝑗)}

𝑔2𝑗 = −1𝑧 (𝑟𝐾1 − 𝑞𝑆𝑗) 𝑒−𝑧𝜏𝑐(𝑆𝑗)1{𝜏<𝜏𝑐(𝑆𝑗)}
+ 1𝑧 (𝑟𝐾2 − 𝑞𝑆𝑗) 𝑒−𝑧𝜏𝑐(𝑆𝑗)1{𝜏<𝜏𝑝(𝑆𝑗)}

(89)

for 𝑗 = 1, 2, . . . , 𝑛. Therefore, we have splitting expression
g(𝑧) = g1(𝑧)+g2(𝑧). 𝑒𝑧𝜏g1(𝑧) rapidly decays as Re(𝑧) 󳨀→ −∞
if 𝑧 falls on the hyperbola contour Γ defined by (60). To make
the Laplace transformmethod convergent, we define an other
hyperbola contour Γ̃:

Γ̃ : 𝑧 (𝜁) = 𝜇 [1 + sin (i𝜁 + 𝜃)] , −∞ < 𝜁 < ∞, (90)

which begins and ends in the right half-plane, such that
Re(𝑧) 󳨀→ +∞ at each end. We select the same parameters𝜖, 𝜇, and 𝜃 as those of Γ. Obviously, 𝑒𝑧𝜏g2(𝑧) rapidly decays as
Re(𝑧) 󳨀→ +∞ if 𝑧 falls on the hyperbola contour Γ̃ defined
by (90). The inverse Laplace of k̂𝑛(𝑧) with respect to 𝑧 can be
expressed as

k𝑛 (𝜏) = 12𝜋i ∫Γ 𝑒𝑧𝜏k̂𝑛 (𝑧) d𝑧
= 12𝜋i ∫Γ 𝑒𝑧𝜏 (𝑧I − A)−1 (g1 (𝑧) + g2 (𝑧)) d𝑧
= 12𝜋i ∫Γ 𝑒𝑧𝜏 (𝑧I − A)−1 g1 (𝑧) d𝑧

+ 12𝜋i ∫̃Γ 𝑒𝑧𝜏 (𝑧I − A)−1 g2 (𝑧) d𝑧 :≈ k𝑛,𝐿1 (𝜏)
+ k𝑛,𝐿2 (𝜏) ,

(91)

where k𝑛,𝐿1 (𝜏) and k𝑛,𝐿2 (𝜏) have the predicted convergence rate𝑅(𝜃) defined by formula (70).

4. Numerical Examples

In this subsection, we list some Strangles option values
computed by the Laplace transform method and hyperbola
contour integral method (labeled by “LTM-HCIM”). These
results are compared with those obtained by LTM using
inverse Laplace GSF (labeled by “LTM-GSF”) and FDM.The
parameters in model (4)-(7) are taken as 𝑇 = 1(𝑦𝑒𝑎𝑟), 𝑟 =0.05(1/𝑦𝑒𝑎𝑟), 𝑞 = 0.1($), 𝐾1 = 1($), 𝐾2 = 1.5($), 𝑆0 = 1.5,𝛿 = 𝜎0/𝑆𝛽0 and 𝑆𝑚𝑎𝑥 = 4𝐾2.The values of parameters inHCIM
are taken as 𝜃 = 0.8 and 𝜖 = 0.4. We take the number of space
partition 𝑁 = 3000 to compute 𝑆𝑝 and 𝑆𝑐 and take 𝑛 = 3000
to optimise 𝜏𝑝(𝑆) and 𝜏𝑐(𝑆). The positive values 𝑧𝑖 = 1 + 3𝑖/𝑚
with 𝑚 = 6 in expressions (35) and (36). The size of space
mesh and the time mesh is set as𝑁 = 2000, Δ𝑡 = 𝑇/2000 for
FDM.

Example 1. Table 1 lists the American Strangles option prices
with 𝜎0 = 0.4, different values of 𝛽 and different values of 𝐿.
From the table, we see LTM-GSF is unstable when 𝐿 > 20,
while the values of LTM-HCIM is very close to ones of FDM
for 𝐿 = 10, 20, 26. So, LTM-HCIM outperforms the LTM-
GSF formula in regard to the accuracy and stability for the
option values.

Example 2. This example illustrates the convergence rate of
LTM-HCIM for the number 𝑛 of space mesh and the number𝐿 for HCIM. Table 2 lists the space convergence rate with 𝐿 =20 and fixed 𝑁 = 3000. The column labeled “Value” shows
the option values at stock price 𝑆0 = 1.5; the column labeled
“Err” is defined by
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Table 2: Values of American Strangles at time 𝑡 = 0 (i.e., 𝜏 = 𝑇) with 𝐾1 = 1, 𝐾2 = 1.5, 𝑟 = 0.05, 𝑞 = 0.1, 𝑆0 = 1.5, 𝐿 = 20, different values of𝜎0, different values of 𝛽, and different space partition 𝑛.
𝑛 𝜎0 = 0.2, 𝛽 = 0.5 𝜎0 = 0.4, 𝛽 = −0.5

Value Err Rate Value Err Rate
24 0.150660 3.3277e-003 0.6061 0.262272 2.7302e-003 1.5515
49 0.149394 2.1862e-003 0.5367 0.260271 9.3141e-004 0.9603
99 0.149262 1.5070e-003 0.5154 0.260335 4.7871e-004 1.0611
199 0.149211 1.0543e-003 0.5076 0.260319 2.2943e-004 0.9601
399 0.149187 7.4158e-004 0.5037 0.260274 1.1793e-004 0.9812
799 0.149191 5.2302e-004 0.5018 0.260276 5.9737e-005 0.9920
1599 0.149189 3.6937e-004 — 0.260275 3.0034e-005 —
3199 0.149189 — — 0.260275 — —

Er
r

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

Er
r

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

2 4 6 8 10 120
L

4 6 8 10 122
L

e
−R()L

e
−R()L

Figure 1: LTM-HCIM errors in log-scale v.s. 𝐿 for American CEV Strangles option at 𝜏 = 1. Left: log scale errors with 𝜎0 = 0.2, 𝛽 = 0.5;
Right: log scale errors with 𝜎0 = 0.4, 𝛽 = −0.5.

Err (𝑛) = √Δ𝑆 (𝑛) 󵄩󵄩󵄩󵄩󵄩k𝑛,𝐿 (𝜏) −I [k2𝑛,𝐿 (𝜏)]󵄩󵄩󵄩󵄩󵄩 , (92)

whereI[k2𝑛,𝐿(𝜏)] is the linear interpolation of k2𝑛,𝐿(𝜏) from2𝑛-mesh to 𝑛-mesh, ‖ ⋅ ‖ is the ℓ2 vector norm and Δ𝑆(𝑛) =(𝑆𝑐 − 𝑆𝑝)/(𝑛 + 1), and the convergence rate is defined by

Rate (𝑛) = log2
Err (𝑛)
Err (2𝑛) . (93)

From Table 2, we see the convergence rate of LTM-HCIM
is 0.5 and 1.0 for 𝛽 = 0.5 and 𝛽 = −0.5, respectively. It is
very interesting to investigate the relationship between the
convergence rates and the values of 𝛽 and we leave this topic
to the future.

We regard the computational solution k𝑛,𝐿(𝜏) with 𝑛 =1599, 𝐿 = 30 as the reference option prices, i.e., k𝑛(𝜏) ≈
k1599,30(𝜏), and the LTM-HCIM time-errors are defined by

Err (𝐿) = √Δ𝑆 (1600) 󵄩󵄩󵄩󵄩󵄩k1599,𝐿 (𝜏) − k1599,30 (𝜏)󵄩󵄩󵄩󵄩󵄩 , (94)

for different values of 𝐿. Figure 1 plots the LTM-HCIM errors
in log-scale v.s. 𝐿. From this Figure we see the numerical
convergence rates are consistent with the predicted rates󵄩󵄩󵄩󵄩󵄩k𝑛,𝐿 (𝜏) − k𝑛 (𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ O (𝑒−𝑅(𝜃)𝐿) , (95)

for moderate values of 𝐿.

5. Conclusions

An efficient Laplace transform method was developed for
pricing American Strangles option under CEV diffusion.
Numerical examples show LTM is a fast algorithm to solve
PDEs with free boundaries and the hyperbola contour inte-
gralmethod has higher numerical accuracy and good stability
for numerical Laplace inversion. Themethod developed here
can be extended to the pricing of other American options,
such as American options with regime switching and with
jump-diffusion process.
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We consider the dynamic contract model with time inconsistency preference of principal-agent problem to study the influence of
the time inconsistency preference on the optimal effort and the optimal rewardmechanism.We show that when both the principal
and the agent are time-consistent, the optimal effort and the optimal reward are the decreasing functions of the uncertain factor.
And when the agent is time-inconsistent, the impatience of the agent has a negative impact on the optimal contract. The higher
the discount rate of the agent is, the lower the efforts provided; agents tend to the timely enjoyment. In addition, when both the
principal and the agent are time-inconsistent, in a special case, their impatience can offset the impact of uncertainty factor on the
optimal contract, but, in turn, their impatience will affect the contract.

1. Introduction

The principal-agent problem is a classic issue of the optimal
contract and is widely used in financial and economical fields.
The principal and the agent, as two parties of the contract,
interact with each other. Under the constraints of the con-
tract, the agent creates profits for the principal and the
principal pays the salary for the agent as incentives. In this
paper, we introduce an optimal contract where both the prin-
cipal and the agent are time-inconsistent to solve the prin-
ciple-agent problem under moral hazard in a dynamic envi-
ronment. In general, the agent is regarded as risk-neutral and
the principal is risk aversion.

In solving the optimal contract with the time-inconsistent
principle-agent problem, there are three problems we need to
face. The first is the solution to the principal-agent’s problem
in the continuous-time. A continuous-time model where the
agent controls the Brownian motion drift rate over the time
interval is studied by [1]. Later, [2, 3] uses martingale meth-
ods to develop the first-order approach of principal-agent
problems under moral hazard with exponential utility. Ref-
erence [4] shows that the first best sharing rule is also linear
in output in the continuous-time principal-agent model
with exponential utility. Reference [5, 6] uses the stochastic
maximum principle to extended Holmstrom’s model, and

discuss the optimal solution of the agent with private infor-
mation in the continuous-time model. Reference [7, 8] uses
the forward-backward stochastic differential equations to
consider the optimal contract under moral hazard. Reference
[9] systematically expands the problem of continuous-time
principal-agent. However, the above methods solved the
principal-agent problem in a continuous period of timeunder
the time-consistent preference, which is simplistic for the
actual situation. Therefore, it is natural to consider the time
inconsistency in the principal-agent model.

The second problem is how to find the optimal strategy
when the time preference is inconsistent. Reference [10] pro-
poses the optimal contracts for the principal who contracted
with the dynamically inconsistent agents in a discrete case.
Their study includes exploitative contracts that applied for
naive agents to better explain the true contractual arrange-
ments. Based that, [11, 12] takes the neutral agent as a bench-
mark to study the possibility that the principal manipulates
the naive agent. The result shows that the innocence of the
agent does not bring benefits to the principal, and the maxi-
mum effectiveness of the principal is the same in front of the
neutral agent and naive agent. Besides, the definition of naive
and neutral agent was firstlymentioned in [13]. Reference [14]
takes the discount of the quasi-hyperbolic 𝛽𝛿 as the agent’s
discount function, then discuss the optimal contract and the
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profit level of the principal when the agent is neutral or naive.
The abovemainly dealswith the problemof time-inconsistent
agents in discrete time. However, less attention is paid in
continuous-time because it is complicated to solve the closed-
loop solution under nonconstant discounting. Reference [15]
proposes the optimal contract models based on the Pon-
tryagin maximum principle for forward-backward stochastic
differential equations to study a general continuous-time
principal-agent problem in which the utility function is time-
inconsistent.

The third question is how to find the exact solution
of the Hamilton-Jacobi-Bellman (HJB) equation. Using the
stochastic control to solve the HJB equation is a complex
mathematical process, especially in the case of increasing
the control variables, which will be more complex nonlinear
partial differential equations. By the Legendre transform, the
problem can be transformed into a dual problem that is con-
venient for analysis, so as to solve some model solving prob-
lems. Reference [16] studies the portfolio problem under the
general utility function, and prove the effectiveness of using
the Legendre dual method to solve the HJB equation. Refer-
ence [17] uses Legendre transform-dual theory to solve the
optimal investment problem based on hyperbolic absolute
risk aversion (HARA) preference under constant elastic vari-
ance model. References [18, 19] study the investment-con-
sumption of HARA utility by Legendre method.

In this paper, we study the optimal incentive contract
under moral hazard in the framework of the principal-agent
problemwith time inconsistency in continuous-time.Assume
both the principal and the agent are time-inconsistent,
where the principal is risk-averse with an exponential utility
function and the agent is risk-neutral with a linear utility
function. To describe the time inconsistency of participants,
we assume that the discount rate of participants is a function
of time (not a constant) but still takes the form of exponential
discounting because the principal’s utility function is the
exponential utility function. According to the property of the
exponential function, we can divide the discount function
into two parts: one part is the traditional discount function
(discount rate is constant) and the other part is the uncer-
tainty. Under the moral hazard, the principal can observe
the process of output but cannot observe the agent’s efforts
and random perturbations. Thus the principal considers a
part of the discount function as an unknown factor that
affects the output. Reference [20] puts forward that the
principal can constantly learn and update his belief from the
unknown factor (the uncertain part of the discount function)
through the existing information and historical information
in the production process. Therefore, we transform the time-
inconsistent principal into a principal who has the consistent
time and learning process. For time-inconsistent agents, we
can employ the Markov subgame perfect Nash equilibrium
method [21] to get its time consistency strategy.

Through the above assumption, we solve the optimal
contract in two cases where the principal is time-consistent
and time-inconsistent. When the principal is time consis-
tency, we use the stochastic optimal control method to derive
the nonlinear partial differential equation (HJB equation)
for the optimal value function of the principal. This partial

differential equation is hard to solve for an exact closed-loop
solution; however, the original problem can transfer to a dual
problem by applying the Legendre transform in some cases.
To obtain the exact solution of the optimal contract (closed-
loop solution), we use the Legendre transform-dual theory to
obtain the explicit solution of the optimal solution and the
optimal contract. When the principal is time-inconsistent,
we obtain a value function which takes the time, the agent’s
personal information, and the utility of agent as variables, so
as to derive a three-dimensional nonlinear second-order HJB
equation. In this situation, we solve theHJB equation by guess
solution.

The general structure of this paper is as follows. Section 2
presents the model. The incentive compatibility conditions
and the given proof are provided in Section 3. Section 4 stud-
ies the optimal contract of a time-consistent and time-incon-
sistent principal. Section 5 provides numerical simulation of
optimal strategy. Finally, wemade the conclusion in Section 6.

2. The Model

2.1. The Agent. Suppose a principal made the contract with a
time-inconsistent agent to manage a production process (or
invest a risk project) and the initial time of contracting period
is recorded as 0. Consider an infinite horizon stochastic
environment; let {𝑊0

𝑡 } be a standard Brownian motion on
the probability space (Ω,F,P0). The risk process that pays
a cumulative process 𝑌𝑡 evolved on period [0, 𝑇] as follows:

𝑑𝑌𝑡 = (𝑒𝑡 − 𝑐𝑡) 𝑑𝑡 + 𝜎𝑑𝑊0
𝑡 (1)

assumes that A ∈ R is a compact set and 𝑒𝑡 ∈ A is the agent’s
effort choice. 𝑐𝑡 ∈ R is the salary of the agent (or his consump-
tion). 𝜎 is the project’s volatility (constant) where 𝜎 > 0. The
path of𝑌𝑡 is observable both from the principal and the agent,
but the path of {𝑊0

𝑡 } is observable only from the agent, and
the effort choice 𝑒𝑡 is unobservable from the principal.

At the initial moment time 0, the principal provides
the agent with a contract (pay the salary according to the
contract). Assume that the salary is composed of two parts, a
continuous payment 𝑐𝑡 and a terminal payment𝐶𝑇.Moreover,
we assume that the agent is risk-neutral, 𝑢 and V ( we will
give the explicit functional forms for 𝑢 and V in the specific
question (see (26) and (27) )) are utility functions, and 𝑢 and
V are concave and twice continuously differentiable. And the
agent has a discount function ℎ, where ℎ(𝑡) = 𝑒−∫

𝑡

0
𝜌(𝑠)𝑑𝑠 (in

this paper, for convenience, sometimes ℎ(𝑡) is written as ℎ𝑡)
is a general discount function; see [22]; then the agent will be
time-inconsistent if 𝜌(𝑠) is time dependence.

The agent’s preferences as of time 0 read
𝐽𝐴 (0; 𝑒) = E [∫𝑇

0
ℎ (𝑡) 𝑢 (𝑐𝑡, 𝑒𝑡) 𝑑𝑡 + ℎ (𝑇) V (𝐶𝑇)] (2)

2.2.The Principal. In this paper, we assume that the principal
is partially naive type ([23] in a discrete time-inconsistent
model, disaggregate participants intomature type, naive type,
and partially naive type based on the cognitive differences of
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participants about their own future preference), whichmeans
that the principal knows he is time-inconsistent (his discount
function is time-variant), but his current perception of the
future discount rate is biased against the true value of the
future discount rate (at time 𝑡, he cannot be sure the value
of discount rate 𝛿(𝜏) (we can further assume that 𝜌(𝑡), 𝛿(𝑡) :[0, 𝑇] 󳨀→ [0, 1]) when 0 ≤ 𝑡 < 𝜏 ≤ 𝑇). Therefore, the prin-
cipal will continuously update his belief in the future discount
rate based on the past information. The detailed analysis is as
follows.

The principal’s preferences as of time 0 will be
𝐽𝑃 (0; 𝑒, 𝑐)

= E [∫𝑇

0
𝑘 (𝑡) 𝑈 (𝑒𝑡 − 𝑐𝑡) 𝑑𝑡 + 𝑘 (𝑇) 𝐿 (−𝐶𝑇)] (3)

where𝑈 and 𝐿 are utility functions by the principle and 𝑘(𝑡) =𝑒−∫
𝑡

0
𝛿(𝑠)𝑑𝑠 is the discount function. Assume that the utility

function𝑈(𝑒𝑡−𝑐𝑡) = −𝑒−𝜆(𝑒𝑡−𝑐𝑡) over salary (consumption) and
effort and 𝐿(−𝐶𝑇) = −𝑒−𝜆(−𝐶𝑇), where 𝜆 is an absolute risk
aversion coefficient. Hence, we rewrite (3) as follows:

𝐽𝑃 (0; 𝑒, 𝑐) = E [∫𝑇

0
𝑒−∫
𝑡

0
𝛿(𝑠)𝑑𝑠 ⋅ (−𝑒−𝜆(𝑒𝑡−𝑐𝑡)) 𝑑𝑡

+ 𝑒− ∫𝑇
0
𝛿(𝑠)𝑑𝑠 ⋅ (−𝑒−𝜆(−𝐶𝑇))]

= E [∫𝑇

0
𝑒−𝛿𝑡 (−𝑒−𝜆(𝑒𝑡−𝑐𝑡+𝐾𝑡)) 𝑑𝑡

+ 𝑒−𝛿𝑇 (−𝑒−𝜆(−𝐶𝑇+𝐾𝑇))]

(4)

where𝐾𝑡 = (∫𝑡0 𝛿(𝑠)𝑑𝑠 − 𝛿𝑡)/𝜆 that 𝑡 ∈ [0, 𝑇].
From (4), we can split the principal’s discount factor 𝛿

into two parts under the condition of the exponential utility
function: one part is a constant discount rate 𝛿 and another
part is 𝐾𝑡. The purpose of the above operation is that the
principal estimates a suitable constant discount rate 𝛿 instead
of a time-varying discount rate 𝛿(𝑡), and the principal does
not know the exact value of this constant. Therefore, the prin-
cipal will constantly update the recognition of 𝛿 based on past
information. 𝑐𝑡 is the subjective choice of the principal, but𝐾𝑡 indicates an objective reality, reflects the type of principal
(time-inconsistent or time-consistent), and does not depend
on the subjective choice of the principal. So we can set 𝐾𝑡
as a part of the output (investment) process. In this way, we
can turn the principal’s time inconsistency problem into an
unknown constant discount rate problem. If the principal
is time-consistent, namely, the principal’s discount rate is a
constant 𝛿0, he can choose 𝛿0 as a constant discount rate 𝛿;
hence 𝛿0 = 𝛿 ( or𝐾𝑡 = 0). Under the probability measureP of
the principal, we can regard that𝐾𝑡 is an intrinsic influence of
the risk item and is not subject to the control of the principal
but must be considered. Hence the risk process (1) becomes

𝑑𝑌𝑡 = (𝑒𝑡 − 𝑐𝑡 + 𝐾𝑡) 𝑑𝑡 + 𝜎𝑑𝑊P
𝑡 (5)

As discussed above, we know that the process 𝑌𝑡 and
the path of 𝑊0

𝑡 are observable from the agent; therefore the
measure for the agent is P0, which means that the agent does
not learn in secretly, so the agent’s beliefs will not be a hidden-
state variable ([24]) (this does not mean that the agent cannot
mislead the principal by choosing an effort, just that such
actions do not cause persistent hidden states according to the
agent’s beliefs). From (1) we have

𝑑𝑌𝑡 = (𝑒𝑡 − 𝑐𝑡) 𝑑𝑡 + 𝜎𝑑𝑊P
0

𝑡 (6)

Equation (5) expresses the principal’s beliefs about the
project and (6) expresses the agent’s beliefs.The disagreement
between the principal and the agent is caused by principal’s
nonindex discount.

At time 𝑡, the principal knows the exact value of ∫𝑡0 𝛿(𝑠)𝑑𝑠,
because 𝛿(𝑠) is his discount rate, but he does not knows the
exact value of 𝛿; therefore we use a sided Bayesian learning
model after signed contract, and we assume that the prior
about 𝐾 at time 0 is normally distributed with mean 0 and
variance 𝜃0. The agent does not update his beliefs because
he has perfect information. If the agent follows the recom-
mended effort choice 𝑒, the principal’s posterior beliefs about𝐾𝑡 depend on 𝑌𝑡 and on cumulative effort 𝐸𝑡 = ∫𝑡0 𝑒𝑠𝑑𝑠.

According to the Kalman-Bucy filter, see [25].The condi-
tional expectation 𝐾̂𝑡 = E[𝐾𝑡 | 𝑌𝑡, 𝐸𝑡] = 𝜎−2(𝑌𝑡 − 𝐸𝑡)/𝜃𝑡 and
the precision of filtering 𝜃𝑡 = E[(𝐾𝑡−𝐾̂𝑡)−2] satisfy the system
of equations

𝑑𝐾̂𝑡 = 1𝜎𝜃𝑡 [𝑑𝑌𝑡 − (𝑒𝑡 − 𝑐𝑡 + 𝐾̂𝑡) 𝑑𝑡]
𝜃𝑡 = 𝜃0 + 𝜎−2𝑡 (7)

where 𝐾̂0 = 0 and 𝜃0 = 0 and 𝑍𝑡 is a standard Brownian
motion under the measure induced by the effort sequence{𝑒𝑠 : 0 ≤ 𝑠 ≤ 𝑡} as

𝑑𝑍𝑡 ≜ 𝑑𝑌𝑡 − (𝑒𝑡 − 𝑐𝑡 + 𝐾̂𝑡) 𝑑𝑡𝜎 (8)

3. Incentive Compatible Conditions

In this section, we focus on the agent’s problem. Since the
agent’s objective function relies on the consumption process{𝑐𝑡}, that is, it relies on the history of the whole output, so it is
non-Markov (the specific proof see [6]).Thus, the agent opti-
mization problem cannot be solved by the standard dynamic
programming principle. We will employ the stochastic max-
imum principle of the solution to the weak situation of the
agent problem. The main idea is to apply random variational
methods; the relative papers [8, 20, 26] used the similar
approach.
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Define the agent’s continuation value (promised utility) 𝑞𝑡
as the expected discounted utility for remaining in the con-
tract from date 𝑡 forward

𝑞𝑡 = max
𝑒∈A

E [∫𝑇

𝑡
𝑒− ∫
𝑠

𝑡
𝜌(𝜏)𝑑𝜏𝑢 (𝑐 (𝑠, 𝑌𝑠) , 𝑒𝑠) 𝑑𝑠

+ 𝑒− ∫
𝑇

𝑡
𝜌(𝜏)𝑑𝜏V (𝐶𝑇) | F𝑒

𝑡] (9)

where 𝑌𝑠 ≜ {𝑌𝑡 : 0 ≤ 𝑡 ≤ 𝑠} is the output history. We useΓ to relate the expectation operator E𝑒[⋅] under the measure
Q𝑒 (because the agent’s objective function depends on the
consumption process 𝑐𝑡, which is non-Markovian since it
depends on the whole output path 𝑌𝑡; hence the optimization
problem (9) cannot be analyzed with standard methods. So
we use a martingale approach. Given a contract (𝑐, 𝑒∗), the
agent controls the distribution of salary through his choice of
effort. For the specific technical treatment see Appendix A).
The agent’s objective function can be recast as

𝐽𝐴 (0; 𝑒, 𝑐) = E𝑒 [∫𝑇

0
ℎ (𝑠) 𝑢 (𝑐 (𝑠, 𝑌) , 𝑒𝑠) 𝑑𝑠

+ ℎ (𝑇) V (𝐶𝑇)] = E [∫𝑇

0
Γ𝑡,𝑠ℎ (𝑠) 𝑢 (𝑐 (𝑠, 𝑌) , 𝑒𝑠) 𝑑𝑠

+ Γ𝑡,𝑇ℎ (𝑇) V (𝐶𝑇)]
(10)

where 𝑐 = 𝑐(𝑠, 𝑌) represents the salary paid by the principal
based on output history.

After the change ofmeasure, the time-inconsistent agent’s
problem only has one control. We apply a stochastic maxi-
mum principle to characterize the agent’s optimality condi-
tion, and we also use the dynamic programming equation
derive a stochastic maximum principle with general time-in-
consistent.

The agent’s problem is to find an admissible control to
maximize the expected reward 𝐽𝐴(0; 𝑒, 𝑐). In other words, the
agent needs to solve the problem

sup
𝑒∈A

𝐽𝐴 (0; 𝑒, 𝑐) (11)

Given 𝑐, for all 0 ≤ 𝑡 ≤ 𝑇, subject to
𝑑Γ𝑡 = Γ𝑡𝜎−1 [𝑒t − 𝑐 (𝑡, 𝑌) + 𝐾̂𝑡] 𝑑𝑍0

𝑡 (12)

next we define the optimal effort for the time-inconsistent
agent. Let 𝜀 > 0 and E𝜀 ⊆ [0, 𝑇] be a measurable set whose
Lebesguemeasure is |E𝜀| = 𝜀. Let 𝑒𝑡 ∈ A be an arbitrary effort
choice. We define the following:

𝑒𝜀𝑡 = {{{
𝑒∗𝑡 , 𝑡 ∈ [0, 𝑇] \ E𝜀,𝑒𝑡, 𝑡 ∈ E𝜀. (13)

with E𝜀 = [0, 𝜀], and it is clear that 𝑒𝜀𝑡 ∈ A. We refer 𝑒𝜀𝑡
as a needle variation of the effort choice 𝑒∗𝑡 . Then, we have
following definition.

Definition 1. An effort choice 𝑒∗𝑡 is an optimal effort choice for
the time-inconsistent agent, for 𝑡 ∈ (0, 𝑇], if

lim
𝜀󳨀→0

𝐽𝐴 (0; 𝑒∗, 𝑐) − 𝐽𝐴 (0; 𝑒𝜀, 𝑐)𝜀 ≥ 0 (14)

The optimal density process {Γ∗(𝑡)}𝑡∈[0,𝑇] is a solution of
the stochastic differential equation.

𝑑Γ∗𝑡 = Γ∗𝑡 𝜎−1 [𝑒∗𝑡 − 𝑐 (𝑡, 𝑌𝑡) + 𝐾̂ (𝑡, 𝑌𝑡, 𝐸∗
𝑡 )] 𝑑𝑍0

𝑡 (15)

Through the above technical processing, we convert
the time-inconsistent strategy into time consistency optimal
strategy of the agent.

Next, we analyze the conditions for the implementation
of incentive contract. According to the previous analysis, the
agent will control the distribution of salary by choosing his
effort.The idea of using the distribution of salary as control to
solve principal-agent problem goes back to [27] is and
expanded by [5, 20]. The learning process of the principal
complicates our problem, as the past effort affects not only
current salary but also future expectations of the agent and
the principal. Therefore, we have to deal with a principal-
agent problem with time inconsistency and learning process.
In Appendix B, we show how this difficulty can be handled
through an extension of the proof by [8, 20]. And the conclu-
sion presents the following.

Proposition 2. The agent’s continuation value can be uniquely
represented by the following differential form:

𝑑𝑞𝑡 = [𝜌 (𝑡) 𝑞𝑡 − 𝑢 (𝑐𝑡, 𝑒∗𝑡 )] 𝑑𝑡 + 𝛾𝑡𝜎𝑑𝑍𝑡𝑞𝑇 = V (𝐶𝑇) (16)

where 𝛾𝑡 is a square integrable predictable process.
The necessary and sufficient conditions for 𝑒∗𝑡 is the optimal

effort choice reads:
(i) If 𝑒∗𝑡 is the optimal effort choice, then for every 𝑡 ∈ [0, 𝑇]

there exists a solution {𝑞𝑡, 𝛾𝑡}𝑡∈[0,𝑇] of (16) which satisfies (in
this paper, 𝜕𝑒𝑢 and 𝜕𝑒𝑒𝑢 represent function 𝑢 taking the first-
order partial derivative and second-order partial derivative of𝑒, respectively)

𝛾𝑡 + 𝜎−2𝜃𝑡 𝑝𝑡 + 𝜕𝑒𝑢 (𝑐𝑡, 𝑒∗𝑡 ) = 0 (17)

where

𝑝𝑡 ≜ 𝜃𝑡 ⋅ E [−∫𝑇

𝑡
𝑒−∫
𝑠

𝑡
𝜌(𝜏)𝑑𝜏𝛾𝑠𝜃−1𝑠 𝑑𝑠 | F𝑒

𝑡] (18)

(ii) For almost all 𝑡, if the following inequality holds
−2ℎ (𝑡) 𝜕𝑒𝑒𝑢 (𝑐𝑡, 𝑒𝑡) ≥ 𝜎2𝜉𝑡𝜃𝑡 (19)

where 𝜉 is the predictable process defined by
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E[−∫𝑇

0
𝑒−∫𝑠
0
𝜌(𝜏)𝑑𝜏𝛾𝑠𝜎−2𝜃𝑠 𝑑𝑠 | F𝑒∗

𝑡 ]
− E[−∫𝑇

0
𝑒− ∫
𝑠

0
𝜌(𝜏)𝑑𝜏𝛾𝑠𝜎−2𝜃𝑠 𝑑𝑠 | F𝑒∗

0 ]
= ∫𝑡

0
𝜉𝑠𝜎𝑑𝑍𝑠

(20)

then 𝑒∗𝑡 is the optimal effort choice.

According to (18), we say that 𝑝𝑡 is a stochastic process
capturing the value of private information and then obtain
the solution

𝑝𝑡 = E [∫𝑇

𝑡
ℎ (𝑠 − 𝑡) 𝜕𝑒𝑢 (𝑐𝑠, 𝑒𝑠) 𝑑𝑠 | F𝑒

𝑡] (21)

for all 𝑠 ∈ [𝑡, 𝑇].
In the following, at any time 𝑒∗𝑠 > 0, the process for 𝑝

reads

𝑑𝑝𝑡 = [𝜌𝑡𝑝𝑡 − 𝜕𝑒𝑢 (𝑐𝑡, 𝑒𝑡)] 𝑑𝑡 + 𝜗𝑡𝜎𝑑𝑍𝑡

𝑝𝑇 = 0. (22)

the coefficients 𝜗 is chosen by the principal to maximize his
expected utility (the proof is given by [20])

According to (19), the process 𝜉𝑡 is the randomfluctuation
in the discounted sum of marginal utilities evaluated from
time 0. Based on the stochastic differential equation of 𝑝𝑡, we
can obtain that 𝜉𝑡 = 𝑒− ∫

𝑡

0
𝜌(𝑠)𝑑s𝜎𝜃𝑡. Besides that, 𝑐𝑡, 𝑒𝑡, 𝛾𝑡, and𝜉𝑡 are endogenous, which implies that we need to get a con

tract to satisfy the necessary conditions and then prove that
it also meets the sufficient conditions. If the contract has no
explicit solution, it will be difficult to prove that the contract
also satisfies the sufficient condition. In this paper, the utility
function for the principal is exponential function and the
utility function for the agent is linear function. In the next
section we will employ the exponential utility function to get
the closed-loop solution of the contract.

4. The Optimal Contract

This section detailedly explains how to solve the principal’s
problem and derive the optimal contract in closed formwhen
the principal’s utility is exponential.

Eliminating 𝐾̂ from the list states. For a given contract(𝑐, 𝑒∗), the principal expected utility formdata 𝑡 forward reads

Π𝑡 (𝑐, 𝑒∗) ≜ E [∫𝑇

𝑡
𝑒−𝛿(𝑠−𝑡) (−𝑒−𝜆(𝑒𝑠−𝑐𝑠+𝐾̂𝑠)) 𝑑𝑠

+ 𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇+𝐾̂𝑇)) | F𝑌
𝑡 ]

(23)

and defines

𝐽𝑃 (𝑡, 𝑐, 𝑒∗) ≜ E [∫𝑇

𝑡
𝑒−𝛿(𝑠−𝑡) ⋅ (−𝑒−𝜆(𝑒𝑠−𝑐𝑠)) 𝑑𝑠

+ 𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇)) | F𝑌
𝑡 ]

(24)

and we have the following result.

Proposition 3.

max
𝑐,𝑒

Π𝑡 (𝑐, 𝑒∗) ⇐⇒ max
𝑐,𝑒

𝐽𝑃 (𝑡, 𝑐, 𝑒∗) (25)

Proof in Appendix C.

Assume that Propositions 2 and 3 hold, so that the
necessary condition is also sufficient. The principal’s problem
consists of solving for 𝐽𝑃(𝑡, 𝑐, 𝑒) subject to the two promise-
keeping constraints (9) and (18) and also to the incentive
constraint (17). Given that the posterior mean 𝐾̂ does not
enter directly into any of the constraints, it can be dispensed
as a state, only leaving the precision as a belief state. Further-
more, since 𝜃𝑡 is deterministic, we may index the precision
by 𝑡. The fact is that the expected value of 𝐾𝑡 is immaterial
to the principal’s objective and illustrates that incentives are
designed to reward effort, not to ability.

�e Agent’s utility function. To obtain the solution of
optimal contract, according to our assumption in Section 2.1,
the agent is risk-neutral and the utility functions of the agent
are linear, i.e.,

𝑢 (𝑐, 𝑒) = 𝑐 − 𝑒22 ; (26)

moreover, we make a particular assumption about the termi-
nal utility for the agent, setting

V (𝐶𝑇) = 𝑎 + ln𝐶𝑇 (27)

where 𝑎 is a constant. This assumption implies a situation
in which an infinitely lived agent retires at the termination
date T of the contract and, after retirement, he can consume a
permanent annuity derived from 𝐶𝑇. We always concentrate
on problems where the contracting horizon goes to infinity𝑇 󳨀→ ∞, so this particular assumption V is not critical.

Incentive providing contracts. Restore the principal’s
optimization problem as

𝑉𝑡 ≜ max
𝑐,𝛾,𝜗

E [∫𝑇

𝑡
𝑒−𝛿(𝑠−𝑡) ⋅ (−𝑒−𝜆(𝑒𝑠−𝑐𝑠)) 𝑑𝑠 + 𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇)) | F𝑌

𝑡 ] (28)
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subject to

𝑑𝑞𝑡 = [𝜌𝑡𝑞𝑡 − 𝑢 (𝑐𝑡, 𝑒𝑡)] 𝑑𝑡 + 𝛾𝑡𝜎𝑑𝑍𝑡, 𝑞𝑇 = V (𝐶𝑇) (29)

𝑑𝑝𝑡 = [𝜌𝑡𝑝𝑡 − 𝜕𝑒𝑢 (𝑐𝑡, 𝑒𝑡)] 𝑑𝑡 + 𝜗𝜎𝑑𝑍𝑡, 𝑝𝑇 = 0 (30)

𝛾𝑡 = −𝜕𝑒𝑢 (𝑐𝑡, 𝑒𝑡) − 𝜎−2𝜃𝑡 𝑝𝑡 (31)

Since the state variables 𝑞𝑡 and 𝑝𝑡 are Markovian pro-
cesses, we can use the HJB equation to analyze the principal’s
optimal control problem. Take 𝑉(𝑡, 𝑞, 𝑝) as the principal’s
value function; this value function satisfies the HJB equation
for 0 < 𝑡 < 𝑇:
𝛿𝑉 − 𝜕𝑡𝑉 = max

𝑐,𝑒,𝛾,𝜗
{−𝑒−𝜆(𝑒−𝑐) + 𝜕𝑞𝑉 ⋅ [𝜌𝑡𝑞 − 𝑢 (𝑐, 𝑒)]

+ 𝜕𝑝𝑉 ⋅ [𝜌𝑡𝑝 − 𝜕𝑒𝑢 (𝑐, 𝑒)] + 12𝜎2 [𝜕𝑞𝑞𝑉 ⋅ 𝛾 (𝑝, 𝑐, 𝑒)2
+ 𝜕𝑝𝑝𝑉 ⋅ 𝜗2 + 2𝜕𝑝𝑞𝑉 ⋅ 𝜗𝛾 (𝑝, 𝑐, 𝑒)]}

(32)

4.1. Second Best Contracts for the Time-Consistent Principal.
In this section, we mainly consider that the model with the
time-consistent principal and setting hidden action means
that the principal can observe the process 𝑌𝑡 but does not
know the type of agent and also cannot observe the agent’s
effort 𝑒𝑡. For incentive contracts (𝑒, 𝑐) : 𝑒𝑡 > 0, for any 𝑡 ≥ 0,
the necessary condition for incentive compatibility (17) be-
comes 𝛾𝑡 = −𝜕𝑒𝑢(𝑐𝑡, 𝑒𝑡). When the principal is time-con-
sistent, it expresses that 𝛿𝑡 = 𝛿 for all 𝑡 ∈ [0, 𝑇]; hence we say𝐾 = 0. There is no need to inquire 𝐾 and there is no influ-
ence of belief manipulation, which indicates that the infor-
mation value 𝑝 is equal to zero.

4.1.1. The HJB Equation. When the time tends to infinity
(𝑇 󳨀→ ∞), the agent’s continuous value function 𝑞 is the only
state variable for writing the principal’s HJB equation as fol-
lows:

𝛿𝑉 − 𝜕𝑡𝑉 = max
𝑐,𝑒,𝛾

{−𝑒−𝜆(𝑒−𝑐) + 𝜕𝑞𝑉
⋅ [𝜌𝑞 − (𝑐 − 𝑒22 )] + 12𝜎2𝜕𝑞𝑞𝑉 ⋅ 𝛾2 (𝑐, 𝑒)} (33)

with the terminal condition 𝑉(𝑇, 𝑞𝑇) = 𝐿(−𝐶𝑇), where 𝑞𝑇 =
V(𝐶𝑇). Taking the first-order conditions for (𝑒, 𝑐), we have

𝜆𝑒−𝜆(𝑒−𝑐) + 𝜕𝑞𝑉 ⋅ 𝑒 + 𝜕𝑞𝑞𝑉 ⋅ 𝑒𝜎2 = 0
−𝜆𝑒−𝜆(𝑒−𝑐) − 𝜕𝑞𝑉 = 0 (34)

Under full information, the principal can observe the
agent’s effort and consumption and there is no private in-
formation in this case. Hence, the principal can freely choose𝛾𝑡 as parts of the contract; i.e., 𝛾 is independent of 𝑐 and 𝑒, and
then we have the following proposition.

Proposition 4. Under full information, the optimal effort for
the principal is a constant 𝑒∗ = 1. We say 𝑒∗ = 1 is the first best
effort level.

Under hidden action case, the optimal effort and con-
sumption derived from (34) shows

𝑒∗𝑡 = 𝜕𝑞𝑉𝜕𝑞𝑉 + 𝜎2𝜕𝑞𝑞𝑉,
𝑐∗𝑡 = 𝜕𝑞𝑉𝜕𝑞𝑉 + 𝜎2𝜕𝑞𝑞𝑉 + 1𝜆 ln(−𝜕𝑞𝑉𝜆 ) (35)

Putting (35) into (33), the HJB equation (33) for the value
function 𝑉(𝑡, 𝑞) is rewritten as

𝛿𝑉 − 𝜕𝑡𝑉 = 𝜕𝑞𝑉𝜆 + 𝜕𝑞𝑉 ⋅ 𝜌𝑞 − 𝜕𝑞𝑉
⋅ [ 𝜕𝑞𝑉𝜕𝑞𝑉 + 𝜎2𝜕𝑞𝑞𝑉 + 1𝜆 ln(−𝜕𝑞𝑉𝜆 )]
+ 𝜕𝑞𝑉2 ⋅ ( 𝜕𝑞𝑉𝜕𝑞𝑉 + 𝜎2𝜕𝑞𝑞𝑉)2 + 12𝜎2𝜕𝑞𝑞𝑉
⋅ ( 𝜕𝑞𝑉𝜕𝑞𝑉 + 𝜎2𝜕𝑞𝑞𝑉)2

(36)

Recalling the principal with the exponential utility func-
tion, the HJB equation is a complex nonlinear partial differ-
ential equation. It is difficult to take the classic separation of
the variable method and solve it intuitively. In the next, we
will employ the Legendre transform to turn the problem into
a dual problem, by solving the dual problem to obtain the
optimal solution for the original problem.

4.1.2. Legendre Transform. The dual function of 𝑉 is defined
by

𝑉̂ (𝑡, 𝑧) = sup
𝑞>0

{𝑉 (𝑡, 𝑞) − 𝑞𝑧}
𝑔 (𝑡, 𝑧) = inf

𝑞>0
{𝑞 | 𝑉 (𝑡, 𝑞) ≥ 𝑉̂ (𝑡, 𝑧) + 𝑞𝑧} (37)

where 𝑧 < 0 is the dual variable of 𝑞. The function 𝑔(𝑡, 𝑧) is
closely related to 𝑉̂(𝑡, 𝑧) and can be used as a dual function
of the function 𝑉(𝑡, 𝑞). In this paper, 𝑔(𝑡, 𝑧) is defined as the
dual function of 𝑉(𝑡, 𝑞) and satisfies

𝑔 (𝑡, 𝑧) = −𝜕𝑧𝑉̂ (𝑡, 𝑧) (38)

According to the definition of the dual function, we have𝑧 = 𝜕𝑞𝑉(𝑡, 𝑞) and
𝑔 (𝑡, 𝑧) = 𝑞
𝑉̂ (𝑡, 𝑧) = 𝑉 (𝑡, 𝑞) − 𝑧𝑔 (𝑡, 𝑧) (39)
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Based on the conclusion in [28], the following transfor-
mation rules are obtained:𝜕𝑡𝑉 = 𝜕𝑡𝑉,𝜕𝑞𝑉 = 𝑧,

𝜕𝑞𝑞𝑉 = − 1𝜕𝑧𝑧𝑉̂
(40)

Define the dual function of the utility function as

𝑈̂ (𝑡, 𝑧) = sup
𝑥>0

{𝑈 (𝑡, 𝑥) − 𝑥𝑧}
𝐺 (𝑡, 𝑧) = inf

𝑥>0
{𝑥 | 𝑈 (𝑡, 𝑥) ≥ 𝑈̂ (𝑡, 𝑧) + 𝑥𝑧} (41)

With the analysis from [29], the function 𝑈(𝑥) and 𝑈̂(𝑧)
can be changed to pass the Legendre conversion

𝑈̂ (𝑧) = sup
𝑥>0

{𝑈 (𝑥) − 𝑥𝑧}
𝑈 (𝑥) = inf

𝑧>0
{𝑈̂ (𝑧) + 𝑥𝑧} (42)

The relationship between the optimal values 𝑥∗ and 𝑧∗ is
𝑧∗𝑡 = (𝑈̂󸀠)−1 (−𝑥∗𝑡 ) ,
𝑥∗𝑡 = 𝑒∫𝑡0 𝜌(𝑠)𝑑𝑠 (𝑈󸀠)−1 (𝑧∗𝑡 ) ,

𝑌∗
𝑇 − 𝐶∗

𝑇 = (𝐿󸀠)−1 (𝑧∗𝑇)
(43)

According to equation (39) and rules (40), the HJB
equation for the dual problem is

𝛿𝑉 − 𝜕𝑡𝑉̂ = ( 1𝜆 + 𝜌𝑔 − 𝛿𝑔) 𝑧 − 𝑧𝜆 ln(−𝑧𝜆 )
− 12 𝑧2 ⋅ 𝜕𝑧𝑧𝑉̂𝑧 ⋅ 𝜕𝑧𝑧𝑉̂ − 𝜎2

(44)

Taking the derivative of 𝑧 and combineing (35), we have

−𝛿𝑔 + 𝜕𝑡𝑔 = −𝛿𝑔 − 𝛿𝑧 ⋅ 𝜕𝑧𝑔 + 𝜌𝑔 + 𝜌𝑧 ⋅ 𝜕𝑧𝑔
− 1𝜆 ln(−𝑧𝜆 ) − 12 + 𝜎2 (𝜎2 − 𝑧2 ⋅ 𝜕𝑧𝑧𝑔)2 (𝑧 ⋅ 𝜕𝑧𝑔 + 𝜎2)2

(45)

4.1.3. Solution of the HJB Equation. According to the form of
the principle’s utility function, we have

𝐺 (𝑇, 𝑧) = 1𝜆 ln(−𝑧𝜆 ) (46)

We can assume that HJB equation (36) has the following
form of solution:

𝑔 (𝑡, 𝑧) = 𝑒∫𝑡0 𝜌(𝑠)𝑑𝑠𝜆 𝜙 (𝑡) ln (−𝑧𝜆 ) + 𝜑 (𝑡) (47)

with 𝜙(𝑇) = ℎ(𝑇), 𝜑(𝑇) = 0.

𝜕𝑡𝑔 = 1𝜆 (𝜕𝑡𝜙 ⋅ ℎ − 𝜙 ⋅ 𝜕𝑡ℎℎ2 ) ln(−𝑧𝜆 ) + 𝜕𝑡𝜑
𝜕𝑧𝑔 = 𝜙𝜆ℎ𝑧 ,
𝜕𝑧𝑧𝑔 = − 𝜙𝜆ℎ𝑧2

(48)

plug in (45) and separate the variables; then we have

0 = − 1𝜆ℎ ln (𝑧𝜆) [𝜕𝑡𝜙 + ℎ]
+ 𝜙𝜆ℎ [𝜌 − 𝛿 − 12 (𝜎2 + 𝜙/𝜆ℎ)] + (𝜌𝜑 − 𝜕𝑡𝜑)

(49)

Thus, the following two ordinary differential equations
are established:

𝜕𝑡𝜙 + ℎ = 0,𝜙 (𝑇) = ℎ (𝑇) (50)

𝜕𝑡𝜑 − 𝜌𝜑 + 𝜙𝜆ℎ [𝛿 − 𝜌 (𝑡) + 12 (𝜎2 + 𝜙/𝜆ℎ)] = 0,
𝜑 (𝑇) = 0 (51)

Proposition 5. Assume that (i) the principal is time-consistent
and the agent is time inconsistent, (ii) 𝑢(𝑐, 𝑒) and V(𝐶) are as
defined in (26) and (27), and (iii) 𝑒∗𝑡 > 0 for all 𝑡, so that the
incentive constraint (17) binds for almost all 𝑡 ∈ [0, 𝑇]. Then
recommended effort and the agent’s consumption is given by

𝑐∗𝑡 = 𝜙/ℎ𝜙/ℎ + 𝜆𝜎2 + ℎ𝜙𝑞 − ℎ𝜙𝜑
𝑒∗𝑡 = 𝜙/ℎ𝜙/ℎ + 𝜆𝜎2

(52)

where

𝜙 (𝑡) = ℎ (𝑇) + ∫𝑇

𝑡
ℎ (𝑠) 𝑑𝑠,

𝜑 (𝑡)
= ∫𝑇

𝑡
[𝑒− ∫

𝜏

𝑡
𝜌(𝑠)𝑑𝑠 𝜙𝜆ℎ𝜌 (𝛿 − 𝜌 + 12 (𝜎2 + 𝜙/𝜆ℎ))]𝑑𝜏

(53)

4.2. Second Best Contracts for the Time-Inconsistent Principal.
In this section, we discuss the case when the principal is
time-inconsistent, which means the discount rate 𝛿 is not
a constant. In this case, the principal still cannot observe
the agent’s efforts and consumption (moral hazard). Hence,
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the value of private information is not zero. As described in
Section 3, the HJB equation is as follows:

𝛿𝑉 − 𝜕𝑡𝑉 = max
𝑐,𝑒,𝛾,𝜗

{−𝑒−𝜆(𝑒−𝑐) + 𝜕𝑞𝑉 ⋅ (𝜌𝑞 − 𝑐 + 𝑒22 )
+ 𝜕𝑝𝑉 ⋅ (𝜌𝑝 + 𝑒) + 12𝜎2 [𝜕𝑞𝑞𝑉 ⋅ (𝑒 − 𝜎−2𝜃 𝑝)2

+ 𝜕𝑝𝑝𝑉 ⋅ 𝜗2 + 2𝜕𝑝𝑞𝑉 ⋅ 𝜗(𝑒 − 𝜎−2𝜃 𝑝)]}
(54)

Nowwe need to solve this above equation by guessing the
solution. Under the first-order conditions for (𝑒, 𝑐, 𝜗), we have

𝜆𝑒−𝜆(𝑒−𝑐) + 𝜕𝑝𝑉
+ [[𝜕𝑞𝑉 + 𝜎2 𝜕𝑝𝑝𝑉 ⋅ 𝜕𝑞𝑞𝑉 − (𝜕𝑝𝑞𝑉)2𝜕𝑝𝑝𝑉 ]] ⋅ 𝑒
− 𝜕𝑝𝑝𝑉 ⋅ 𝜕𝑞𝑞𝑉 − (𝜕𝑝𝑞𝑉)2𝜕𝑝𝑝𝑉 ⋅ 𝑝𝜃 = 0

− 𝜆𝑒−𝜆(𝑒−𝑐) − 𝜕𝑞𝑉 = 0
𝜗 = −𝜕𝑝𝑞𝑉𝜕𝑝𝑝𝑉𝛾

(55)

Substituting (55) into (54), denoting that 𝑉̃ = (𝜕𝑝𝑝𝑉 ⋅𝜕𝑞𝑞𝑉 − (𝜕𝑝𝑞𝑉)2)/𝜕𝑝𝑝𝑉, we have
𝜕𝑡𝑉 − 𝛿𝑉 + 𝜕𝑞𝑉𝜆 + 𝜕𝑞𝑉[𝜌𝑡𝑞 − 1𝜆 ln(−𝜕𝑞𝑉𝜆 )] + 𝜕𝑝𝑉

⋅ 𝜌𝑡𝑝 − 12𝐸 + 𝜎−2𝑝22𝜃2 𝑉 = 0 (56)

where 𝐸 = ((𝑝/𝜃)𝑉̃ + 𝜕𝑞𝑉 − 𝜕𝑝𝑉)2/(𝜎2𝑉̃ + 𝜕𝑞𝑉).
In particular, we suppose the value function has the

following form:

𝑉 (𝑡, 𝑝, 𝑞) = −𝑒𝜆[𝐴(𝑡)𝑞+𝑔(𝑡,𝑝)] (57)

with 𝐴(𝑇) = 1 and 𝑔(𝑇, 𝑝) = 0.
Hence, for some functions 𝐴(𝑡) and 𝑔(𝑡, 𝑝), the expres-

sions of optimal effort and consumption are

𝑒∗𝑡
= 𝜆𝐴2𝜕𝑝𝑝𝑔 (𝑝/𝜃) + (𝐴 − 𝜕𝑝𝑔) (𝜕𝑝𝑝𝑔 + 𝜆 (𝜕𝑝𝑔)2)𝜆𝐴2𝜕𝑝𝑝𝑔𝜎2 + 𝐴𝜕𝑝𝑝𝑔 + 𝜆𝐴 (𝜕𝑝𝑔)2 𝑐∗𝑡
= 𝑒∗𝑡 + ln𝐴𝜆 + 𝐴𝑞 + 𝑔

(58)

Substituting the optimal effort and consumption into (54), we
deduce

𝜆 [𝐴 𝑡 + 𝐴𝜌 − 𝐴2] 𝑞 + 𝜆𝜕𝑡𝑔 − 𝛿 + 𝐴 − 𝐴 ln𝐴 − 𝜆𝐴𝑔
+ 𝜌𝜆𝑝𝜕𝑝𝑔 + 𝜆𝐴(𝜎−42𝜃2𝑝2 − 𝜎−2𝜃 𝑝)
+ 𝜆𝜎−2𝜕𝑝𝑔𝜃 𝑝 − 𝜆2𝐸 = 0

(59)

where 𝐸 = ((𝜕𝑝𝑞𝑔 + 𝜆(𝜕𝑝𝑔)2) ⋅ ((𝑝/𝜃)𝜎−2𝐴 + 𝜕𝑝𝑔 − 𝐴)2)/(𝜆𝜎2𝐴2𝜕𝑝𝑞𝑔 + 𝐴(𝜕𝑝𝑝𝑔 + 𝜆(𝜕𝑝𝑔)2)).
The following two differential equations can be obtained

by eliminating the dependence on 𝑞:
𝜕𝑡𝐴 + 𝐴𝜌 (𝑡) − 𝐴2 = 0, 𝐴 (𝑇) = 1 (60)

𝜕𝑡𝑔 − 1𝜆 (𝛿 − 𝐴 + 𝐴 ln𝐴) − 𝐴𝑔 + 𝜌𝑝𝜕𝑝𝑔
+ 𝐴(𝜎−42𝜃2𝑝2 − 𝜎−2𝜃 𝑝) + 𝜎−2𝜕𝑝𝑔𝜃 𝑝 − 12𝐸 = 0,

𝑔 (𝑇, 𝑝) = 0
(61)

According to (60), we can obtain

𝐴 (𝑡) = 1𝑒−∫
𝑇

𝑡
𝜌(𝑠)𝑑𝑠 + ∫𝑇𝑡 𝑒−∫

𝜏

𝑡
𝜌(𝑠)𝑑𝑠𝑑𝜏 (62)

From the above analysis, we need to know the specific
expressions of 𝑔(𝑡, 𝑝) to get the explicit expression of effort𝑒(𝑡) and consumption 𝑐(𝑡).

Let us expand 𝑔(𝑡, 𝑝) at 𝑝 = 0,
𝑔 (𝑡, 𝑝) = 𝑔 (𝑡, 0) + 𝑔𝑝 (𝑡, 0) 𝑝 + 𝑔𝑝𝑝 (𝑡, 0)2 𝑝2 + ⋅ ⋅ ⋅

+ 𝑔(𝑛) (𝑡, 0)𝑛! 𝑝𝑛 + ⋅ ⋅ ⋅
≜ 𝐴 (𝑡) + 𝐵 (𝑡) 𝑝 + 𝐶 (𝑡) 𝑝2 + ⋅ ⋅ ⋅

(63)

Here we consider a simple situation; according the principal’s
utility function 𝑈 = −𝑒−𝜆(𝑒−𝑐) and 𝑑𝑝(𝑡)/𝑑𝑡 = 𝜌(𝑡)𝑝(𝑡) +𝑒(𝑡), suppose the structure of the solution of equation (61) is𝑔(𝑡, 𝑝) = 𝐴(𝑡) + 𝐵(𝑡)𝑝 with the terminal condition 𝐴(𝑇) = 0
and 𝐵(𝑇) = 𝜌(𝑇).
Lemma 6. Suppose the structure of solution of (61) is 𝑔(𝑡, 𝑝) =𝐴(𝑡)+𝐵(𝑡)𝑝, with the terminal condition𝐴(𝑇) = 0 and𝐵(𝑇) =1, and then 𝐴(𝑡) and 𝐵(𝑡) are, respectively, the solutions of the
following differential equations:

𝐴 (𝑡) = −∫𝑇

𝑡
[𝑒−∫

𝜏

𝑡
𝐴(𝑠)𝑑𝑠 ⋅ 𝐷 (𝜏)] 𝑑𝜏

𝐵 (𝑡) = 𝜌 (𝑇) 𝑒∫𝑇𝑡 [𝜌(𝑠)−𝐴(𝑠)]𝑑𝑠 (64)
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where 𝐷(𝜏) = (1/𝜆)(𝛿 − 𝐴(𝜏) + 𝐴(𝜏) ln𝐴(𝜏)) + (𝐴2(𝜏) +𝐵2(𝜏))/2𝐴(𝜏).
It is proved as follows.
Substituting 𝑔(𝑡, 𝑝) = 𝐴(𝑡) + 𝐵(𝑡)𝑝 into (61), we calculate

to get

[𝜕𝑡𝐴 − 𝐴𝐴 − 1𝜆 (𝛿 − 𝐴 + 𝐴 ln𝐴) − 𝐴2 + 𝐵22𝐴 ]
+ [𝜕𝑡𝐵 − 𝐴𝐵 + 𝜌𝐵] 𝑝 = 0 (65)

The following two differential equations can be obtained by
eliminating the dependence on 𝑝:

𝜕𝑡𝐴 − 𝐴𝐴 − 1𝜆 (𝛿 − 𝐴 + 𝐴 ln𝐴) − 𝐴2 + 𝐵22𝐴 = 0
𝜕𝑡𝐵 − 𝐴𝐵 + 𝜌𝐵 = 0 (66)

Lemma 6 conclusion can be provided by solving the above
two differential equations.

Proposition 7. When the principal is time-inconsistent, the
expressions of optimal effort and consumption for the agent are

𝑒∗ (𝑡) = 1 − 𝐵 (𝑡)𝐴 (𝑡)
𝑐∗ (𝑡) = 𝑒∗ (𝑡) + ln𝐴 (𝑡)𝜆 + 𝐴 (𝑡) 𝑞 (𝑡) + 𝐴 (𝑡)

+ 𝐵 (𝑡) 𝑝 (𝑡)
(67)

where 𝐴(𝑡), 𝐴(𝑡), and 𝐵(𝑡) are given by (62) and (64),
respectively.

It can be seen from the proposition that the second opti-
mal effort is less than the first optimal effort.The optimal con-
sumption is the linear function of the agent’s promise value
and private information.

5. Numerical Simulation

In this section, we provide a numerical simulation to charac-
terize the dynamic behavior of the optimal portfolio strategy
derived in the previous section. Firstly, an optimal effort
numerical simulation is performed when the principal was
time-consistent.

As shown in Figure 1, the discount rate of the agent is
taken as the constant discount rate, namely, 𝜌(𝑡) = 𝜌. The
optimal effort, under different volatility, is reduced with
the increase of volatility. It also shows that the greater the
uncertainty, the lower the efforts of the agent. In addition, the
three curves are almost declining, indicating that effort is a
decreasing function of time.

If we take the discount rate of the agent as 𝑑𝜌(𝑡)/𝑑𝑡 =𝜌 − 𝜌(𝑡), i.e., 𝜌(𝑡) = 𝜌 + 𝑒−𝑡, where 𝜌 = 0.1 and 𝜎 = 0.1; 0.2;0.5, respectively. The curves of effort variation are drawn in
Figure 2.
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Figure 1: The efforts of constant discount rate for different uncer-
tainty 𝜎.
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Figure 2: The efforts of variable discount rate for different uncer-
tainty 𝜎.

Analogy with Figure 1, although the discount function
is different, we still can get the similar conclusion, which
means that the greater the uncertainty for any type of agent
is (whether he is time-consistent or time-inconsistent), the
less effort he provides. The reason is that in the case of moral
hazard, the principal cannot distinguish the influence of the
agent’s efforts and uncertainty on the risk project’s return.

Next, we simulate the optimal consumption (salary)
under the specific parameters. Let 𝜌(𝑡) = 𝜌 = 𝛿, 𝜆 = 𝜙/ℎ𝜌,
and 𝜎2 = 0.25. According to the expression of 𝜑, we have

𝜑 (𝑡) = 1 − 𝑒𝜌(𝑡−𝑇)2 (𝜌2 + 𝜎2) (68)
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Figure 3: The consumption of constant discount rate for different
uncertainty 𝜎.
Since 𝑞 is a stochastic process, the mathematical expectation
of 𝑞 can be expressed as

𝑞 (𝑡) = 𝑒− ∫𝑇
𝑡
(𝜌−ℎ(𝑠)/𝜙(𝑠))𝑑𝑠 ⋅ V (𝐶 (𝑇))

− E[∫𝑇

𝑡
𝑒−∫
𝜏

𝑡
(𝜌−ℎ(𝑠)/𝜙(s))𝑑𝑠

⋅ [𝑒 (𝜏) − 𝑒 (𝜏)22 − ℎ (𝜏)𝜙 (𝜏)𝜑 (𝜏)] 𝑑𝜏]
(69)

where 𝑞(𝑇) = V(𝑐(𝑇)) ≜ 𝑎 + ln 𝑐(𝑇) within a constant 𝑎.
Thenwe substitute the expressions of 𝑒, 𝑞 and 𝜑 into the above
expression; the relationship between 𝑐(𝑡) and time 𝑡 can be
simulated with the terminal condition 𝑐(𝑇) = 1.

Consumption is initially diminishing because the effort
is a function that decreases monotonically over time. After
falling to a certain value, the bottoming out of consumption
rose and this trend can be explained by the value of terminal
condition of consumption setting. The overall consumption
trend is shown in Figure 3.

As shown in Figure 3, in the period of time just after the
contract has been performed (for example 𝑡 ∈ [0, 5]), the
greater the volatility, the lower the consumption. The reason
is that greater volatility leads to lower efforts. In the latter part
of the contract, the situation is just the opposite.

Finally, we simulate the optimal effort trend when the
principal is time-inconsistent. Assuming that the discount
rate for the agent is the constant discount rate, then two differ-
ent effort curves are both horizontal lines, as Figure 4 shows.
This indicates that, under the established discount rate, the
optimal effort does not change over time. The reason is that
we hypothesize the value function of principal as an exponen-
tial function under private information. And also, the effort
is a decreasing function of the agent discount rate, which
means that if the agent pays more attention to the present
value (timely enjoyment), the higher discount rate and the
less effort provided.
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Figure 4: The efforts with time-inconsistent principle for different
uncertainty 𝜌.
6. Conclusion

In this paper, we were interested in a time-inconsistent
principal-agent problem under full information and moral
hazard framework. In particular, the optimal contracts we
discussed in details assume that the principal is risk aversion
and the agent is risk-neutral. There are two main works we
have done in the paper. First, we made the technical process-
ing of the time-inconsistent principal and agent, respectively.
We transformed the principal by the changing of the time-
varying discount rate into the time-consistent. And we used
the Markov subgame perfect Nash equilibrium method to
get the time consistency strategy for the time-inconsistent
agent. Second,we used the Legendre transformduality theory
to transform the HJB equation into the dual equation. The
solution of the original HJB equation was obtained smoothly,
thus obtaining the explicit expression of the optimal effort
and optimal consumption. Under moral hazard, we also
obtained the exact solution of the original HJB equation
by using the guessing solution. We found that the optimal
consumption of agent is a linear function of promised value 𝑞
and private information 𝑝. The optimal effort is the function
of the agent discount rate. Eventually, we considered the con-
tractual relationship between the principal and the agent in a
special circumstances. The more general situations of time-
inconsistent contracts should be considered in future re-
search.

Appendix

A. Details of the Change of Measure

Consider the Brownian motion 𝑍0 under a probability space
with probability measure Q. And let

𝑑𝑌𝑡 = 𝜎𝑑𝑍0
𝑡 (A.1)
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so that 𝑌𝑡 is also a Brownian motion under Q. Given a con-
tract 𝑐(𝑡, 𝑌𝑡), we define the drift of output as

𝑓 (𝑡, 𝑌, 𝑒t) = 𝑒𝑡 − 𝑐 (𝑡, 𝑌) + 𝐾̂𝑡 (A.2)

Since expected output is linear in cumulative output, then we
define aF𝑡− predictable process with an effort 𝑒 ∈ A:

Γ0,𝑡 (𝑒) = exp(∫𝑡

0
𝜎−1𝑓 (𝑡, 𝑌, 𝑒𝜏) 𝑑𝑍0

𝜏

− 12 ∫𝑡

0

󵄨󵄨󵄨󵄨󵄨𝜎−1𝑓 (𝑡, 𝑌, 𝑒𝜏)󵄨󵄨󵄨󵄨󵄨2 𝑑𝜏)
(A.3)

for 0 ≤ 𝑡 ≤ 𝑇, and Γ𝑡 is anF𝑡−martingale with E(Γ𝑇(𝑒)) = 1
for all 𝑒 ∈ A. By Girsanov theorem, the defined new measure
Q𝑒 is as 𝑑Q𝑒𝑑Q = Γ𝑇 (𝑒) (A.4)

and the process 𝑍𝑒
𝑡 defined by

𝑍𝑒
𝑡 = 𝑍0

𝑡 − ∫𝑡

0
𝜎−1𝑓 (𝑡, 𝑌, 𝑒𝜏) 𝑑𝜏 (A.5)

is a Brownian motion underQ𝑒, and the triple (𝑌, 𝑍𝑒,Q𝑒) is a
weak solution of the following SDE:

𝑑𝑌𝑡 = 𝑓 (𝑡, 𝑌, 𝑒𝑡) 𝑑𝑡 + 𝜎𝑑𝑍𝑒
𝑡 (A.6)

Hence each effort choice 𝑒 results in a different Brownian
motion. Γ𝑡 defined above satisfied Γ𝑡 = E(Γ𝑇 | F𝑡) which is
the relative process for the change of measure.

B. The Proof of Proposition 2

Consider the agent problem and suppose 𝑐(𝑡, 𝑌𝑡) is given;
in general we assume 𝑐 = 0 to ease the presentation. Let{Γ𝜀𝑡 }𝑡∈[0,𝑇] be the density process corresponding to {𝑒𝜀𝑡}𝑡∈[0,𝑇],
i.e., 𝑑Γ𝜀𝑡 = Γ𝜀𝑡 𝜎−1 [𝑒𝜀𝑡 + 𝐾̂ (𝑡, 𝑌𝑡, 𝐸𝜀

𝑡)] 𝑑𝑍0
𝑡 (B.1)

Processes {𝑌𝜀
𝑡 }𝑡∈[0,𝑇] and {𝑍𝜀

𝑡 }𝑡∈[0,𝑇] are defined by the SDE

𝑑𝑌𝜀
𝑡 = 𝜎−1 {𝑌𝜀

𝑡 [𝑒𝜀𝑡 + 𝐾̂ (𝑡, 𝑌𝑡, 𝐸𝜀
𝑡)]

+ Γ∗𝑡 [(𝑒𝑡 − 𝑒∗𝑡 ) + (𝐾̂ (𝑡, 𝑌𝑡, 𝐸𝑡) − 𝐾̂ (𝑡, 𝑌𝑡, 𝐸∗
𝑡 ))]

⋅ 𝜒𝐸𝜀 (𝑡)} 𝑑𝑍0
𝑡𝑌𝜀

0 = 0
(B.2)

and𝑑𝑍𝜀
𝑡 = 𝜎−1 {𝑍𝜀

𝑡 [𝑒𝜀𝑡 + 𝐾̂ (𝑡, 𝑌𝑡, 𝐸𝜀
𝑡)]

+ 𝑌𝜀
𝑡 [(𝑒𝑡 − 𝑒∗𝑡 ) + (𝐾̂ (𝑡, 𝑌𝑡, 𝐸𝑡) − 𝐾̂ (𝑡, 𝑌𝑡, 𝐸∗

𝑡 ))]
⋅ 𝜒𝐸𝜀 (𝑡)} 𝑑𝑍0

𝑡𝑍𝜀
0 = 0

(B.3)

can be regarded as the first-order and the second-order varia-
tion of the density process {Γ𝜀𝑡 }𝑡∈[0,𝑇].

From the reference of Theorem 4.4 in Chapter 3. in [30],
the following expansion holds:

𝐽𝐴 (0; 𝑒𝜀𝑡) − 𝐽𝐴 (0; 𝑒∗𝑡 ) = E {V (𝐶∗
𝑇) (𝑌𝜀

𝑇 + 𝑍𝜀
𝑇)}

+ E∫𝑇

0
{ℎ (𝑡) (𝑌𝜀

𝑡 + 𝑍𝜀
𝑡) 𝑢 (𝑒𝑡)

+ ℎ (𝑡) Γ∗𝑡 [𝑢 (𝑒𝑡) − 𝑢 (𝑒∗𝑡 )] 𝜒𝐸𝜀 (𝑡)} 𝑑𝑡 + 𝑜 (𝜀)
(B.4)

Define the adjoint variables {𝑀(𝑡),𝑁(𝑡)}𝑡∈[0,𝑇] as follows:
𝑑𝑀 (𝑡) = − [𝑁 (𝑡) 𝜎−1 (𝑒∗𝑡 + 𝐾̂ (𝑡, 𝑌𝑡, 𝐸∗

𝑡 ))
+ ℎ (𝑡) 𝑢 (𝑐𝑡, 𝑒∗𝑡 )] 𝑑𝑡 + 𝑁 (𝑡) 𝑑𝑍𝑡𝑀(𝑇) = ℎ (𝑇) V (𝐶𝑇)

(B.5)

Using adjoint processes {𝑀(𝑡),𝑁(𝑡)}𝑡∈[0,𝑇] to partial integra-
tion, we can remove {𝑌𝜀

𝑡 }𝑡∈[0,𝑇], {𝑍𝜀
𝑡}𝑡∈[0,𝑇] in the above equa-

tion.
Now we introduce the Hamiltonian functionH by

H (𝑡, Γ𝑡, 𝑢,𝑀𝑡, 𝑁𝑡) = Γ𝑡 ⋅ 𝐻 (𝑡, 𝑢,𝑀𝑡, 𝑁𝑡)= Γ𝑡 [𝑁𝑡𝜎−1 (𝑒𝑡 + 𝐾̂ (𝑡, 𝑌𝑡, 𝐸𝑡)) + ℎ (𝑡) 𝑢 (𝑐𝑡, 𝑒𝑡)] (B.6)

Since the control variable enters into the volatility of the
density process, we have to introduce a second pair of adjoint
processes {𝑃𝑡, Υ𝑡}𝑡∈[0,𝑇] by

𝑑𝑃 (𝑡) = − {𝑃𝑡𝜎−2 [𝑒∗𝑠 + 𝐾̂ (𝑠, 𝑌𝑠, 𝐸∗
𝑠 )]2

+ 2Υ𝑡 [𝑒∗𝑠 + 𝐾̂ (𝑠, 𝑌𝑠, 𝐸∗
𝑠 )]

+ ℎ (𝑡)HΓΓ (𝑡, Γ∗𝑡 , 𝑢∗,𝑀𝑡, 𝑁𝑡)} 𝑑𝑡 + Υ𝑡𝑑𝑍𝑡

𝑃𝑇 = ℎ (𝑇) 𝜕ΓV (𝐶𝑇)
(B.7)

By using the Lemma4.5 and Lemma4.6 inChapter 3 [30],
we have

lim
𝜀󳨀→0

𝐽𝐴 (0; 𝑒∗𝑡 ) − 𝐽𝐴 (0; 𝑒𝜀𝑡)𝜀
= E {[𝐻 (𝑡, Γ∗𝑡 , 𝑢∗,𝑀𝑡, 𝑁𝑡) − 𝐻 (𝑡, Γ𝑡, 𝑢,𝑀𝑡,𝑁𝑡)]
− 𝑃𝑡2 (Γ𝑡𝜎−1)2
⋅ [(𝑒∗𝑡 − 𝑒𝑡) + (𝐾̂ (𝑡, 𝑌𝑡, 𝐸∗

𝑡 ) − 𝐾̂ (𝑡, 𝑌𝑡, 𝐸𝑡))]2}
(B.8)

We claim that the process {𝑃𝑡}𝑡∈[0,𝑇] is nonpositive. As a
matter of factHΓΓ = 0; hence
𝑑𝑃 (𝑡) = − {𝑃𝑡𝜎−2 [𝑒∗𝑠 + 𝐾̂ (𝑠, 𝑌𝑠, 𝐸∗

𝑠 )]2} 𝑑𝑡 + Υ𝑡𝑑𝑍𝑡

𝑃𝑇 = 0 (B.9)
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where

𝑑𝑍𝑡 = 𝑑𝑍𝑡 + 2 [𝑒∗𝑠 + 𝐾̂ (𝑠, 𝑌𝑠, 𝐸∗
𝑠 )] 𝑑𝑡 (B.10)

Therefore a sufficient condition for 𝑒∗𝑡 has to be an optimal
effort strategy that

𝑒∗𝑡 = argmax
𝑒∈A

H (𝑡, Γ𝑡, 𝑢,𝑀𝑡, 𝑁𝑡) (B.11)

Let 𝑒− ∫
𝑡

0
𝜌(𝑠)𝑑𝑠𝑞𝑡 = 𝑀𝑡 and 𝑒− ∫

𝑡

0
𝜌(𝑠)𝑑𝑠𝜎𝛾𝑡 = 𝑁𝑡; we have

𝑑𝑞𝑡 = 𝜌 (𝑡) 𝑞𝑡− [𝛾𝑡 (𝑒∗𝑡 + 𝐾̂ (𝑡, 𝑌𝑡, 𝐸∗
𝑡 )) + 𝑢 (𝑐𝑡, 𝑒∗𝑡 )] 𝑑𝑡+ 𝛾𝑡𝜎𝑑𝑍𝑡 = [𝜌 (𝑡) 𝑞𝑡 − 𝑢 (𝑐𝑡, 𝑒∗𝑡 )] 𝑑𝑡 + 𝛾𝑡𝜎𝑑𝑍𝑒

𝑡𝑞𝑇 = V (𝐶𝑇)
(B.12)

Hence, (16) is satisfied.
There is no drift in Γ; in addition, since Γ𝑡 > 0, we can

define the conditions on the Hamitonian 𝐻 rather than H.
Hence, the first-order condition for 𝑒 is
𝜕𝑒𝐻 = 𝑁𝑡𝜎−1 (1 − ∫𝑡

0

𝜎−2ℎ𝑡 𝑑𝑠) + ℎ (𝑡) ⋅ 𝜕𝑒𝑢 (𝑐𝑡, 𝑒𝑡)
𝑒∫𝑡0 𝜌(𝑠)𝑑𝑠 ⋅ 𝜕𝑒𝐻 = 𝑒∫𝑡0 𝜌(𝑠)𝑑𝑠𝑁𝑡𝜎−1 (1 − ∫𝑡

0

𝜎−2ℎ𝑡 𝑑𝑠)
+ 𝑢𝑒 (𝑐𝑡, 𝑒𝑡) = 𝑒∫𝑡0 𝜌(𝑠)𝑑𝑠 [𝑁𝑡𝜎−1
− ∫𝑇

𝑡
(𝑁𝑠𝜎−1𝜎−2ℎ𝑠 )𝑑𝑠] + 𝜕𝑒𝑢 (𝑐𝑡, 𝑒𝑡)

= 𝑒∫𝑡0 𝜌(𝑠)𝑑𝑠 [𝑒−∫
𝑡

0
𝜌(𝑠)𝑑𝑠𝛾𝑡

− ∫𝑇

𝑡
(𝑒− ∫𝑠

0
𝜌(𝜏)𝑑𝜏𝛾𝑠𝜎−2ℎ𝑠 )𝑑𝑠] + 𝜕𝑒𝑢 (𝑐𝑡, 𝑒𝑡) = [𝛾𝑡

− ∫𝑇

𝑡
𝑒−∫
𝑠

𝑡
𝜌(𝜏)𝑑𝜏𝛾𝑠𝜎−2𝜃𝑠 𝑑𝑠] + 𝜕𝑒𝑢 (𝑐𝑡, 𝑒𝑡)

(B.13)

Finally, the necessary condition for 𝑒∗𝑡 to be an optimal effort
choice is 𝜕𝑒𝐻 = 0, namely,

[𝛾𝑡 − ∫𝑇

𝑡
𝑒− ∫
𝑠

𝑡
𝜌(𝜏)𝑑𝜏𝛾𝑠𝜎−2𝜃𝑠 𝑑𝑠] + 𝜕𝑒𝑢 (𝑐𝑡, 𝑒∗𝑡 )

= 𝛾𝑡 + 𝜎−2𝜃𝑡 𝑝𝑡 + 𝜕𝑒𝑢 (𝑐𝑡, 𝑒∗𝑡 ) = 0 (B.14)

On the other hand, from (9) the expected utility form 𝑒∗ is
given by 𝐽𝐴(0; 𝑒∗) = 𝑞∗0 ,

V (𝐶𝑇) = 𝑞𝑇
= 𝑞∗0 − ∫𝑇

0
ℎ (𝑡) 𝑢 (𝑐𝑡, 𝑒∗𝑡 ) 𝑑𝑡

+ ∫𝑇

0
ℎ (𝑡) 𝛾∗𝑡 𝜎𝑑𝑍𝑒∗

𝑡

(B.15)

Then, for an arbitrary effort choice 𝑒 ∈ A, we define 𝜔𝑡 =𝑒𝑡 − 𝑒∗𝑡 and Δ 𝑡 = ∫𝑡0 𝜔𝑠𝑑𝑠 = 𝐸𝑡 − 𝐸∗
𝑡 ; the following holds:

𝐽𝐴 (0; 𝑒) − 𝐽𝐴 (0; 𝑒∗)
= E𝑒 [∫𝑇

0
ℎ (𝑡) [𝑢 (𝑐𝑡, 𝑒𝑡) − 𝑢 (𝑐𝑡, 𝑒∗𝑡 )] 𝑑𝑡

+ ∫𝑇

0
ℎ (𝑡) 𝛾∗𝑡 𝜎𝑑𝑍𝑒∗

𝑡 ]
= E𝑒 [∫𝑇

0
ℎ (𝑡) [𝑢 (𝑐𝑡, 𝑒𝑡) − 𝑢 (𝑐𝑡, 𝑒∗𝑡 )] 𝑑𝑡

+ ∫𝑇

0
ℎ (𝑡) 𝛾∗𝑡 𝜎𝑑𝑍𝑒

t

+ ∫𝑇

0
ℎ (𝑡) 𝛾∗𝑡 [𝜔𝑡 − 𝜎−2𝜃𝑡 Δ 𝑡]𝑑𝑡]

(B.16)

The second term on the right hand side E𝑒[∫𝑇0 ℎ(𝑡)𝛾∗𝑡 𝜎𝑑𝑍𝑒
𝑡 ] =0 uses the fact that the stochastic integral is martingale. The

last term on the right hand side can be written as

− ∫𝑇

0
ℎ (𝑡) 𝛾∗𝑡 𝜎−2𝜃𝑡 Δ 𝑡𝑑𝑡

= −∫𝑇

0
ℎ (𝑡) 𝛾∗𝑡 𝜎−2𝜃𝑡 (∫𝑡

0
𝜔𝑠𝑑𝑠) 𝑑𝑡

= ∫𝑇

0
𝜔𝑡 (−∫𝑇

𝑡
ℎ (𝑠) 𝛾∗𝑠 𝜎−2𝜃𝑠 𝑑𝑠) 𝑑𝑡

= ∫𝑇

0
𝜔𝑡 (ℎ (𝑡) 𝜎−2𝜃𝑡 𝑝∗

𝑡 + ∫𝑇

𝑡
𝜉∗𝑠 𝜎𝑑𝑍𝑒∗

𝑠 )𝑑𝑡

(B.17)

where the last equality follows the form definition of 𝑝 and 𝜉.
Hence,

𝐽𝐴 (0; 𝑒) − 𝐽𝐴 (0; 𝑒∗) = E𝑒 [∫𝑇

0
ℎ (𝑡) [𝑢 (𝑐𝑡, 𝑒𝑡)

− 𝑢 (𝑐𝑡, 𝑒∗𝑡 ) + 𝜔𝑡 (𝛾∗𝑡 + 𝜎−2𝜃𝑡 𝑝∗
𝑡 )]𝑑𝑡]

+ E𝑒 [∫𝑇

0
𝜔𝑡 (∫𝑇

𝑡
𝜉∗𝑠 (𝜔𝑠 − 𝜎−2𝜃𝑠 Δ 𝑠)𝑑𝑠)𝑑𝑡]

= E𝑒 [∫𝑇

0
ℎ (𝑡) [𝑢 (𝑐𝑡, 𝑒𝑡) − 𝑢 (𝑐𝑡, 𝑒∗𝑡 )
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+ 𝜔𝑡 (𝛾∗𝑡 + 𝜎−2𝜃𝑡 𝑝∗
𝑡 )]𝑑𝑡]

+ E𝑒 [∫𝑇

0
𝜉∗𝑡 Δ 𝑡 (𝜔𝑡 − 𝜎−2𝜃𝑡 Δ 𝑡)𝑑𝑡]

(B.18)

Similar to [20], we define a new function𝐺 (𝑡, 𝑒, 𝐸, 𝛾∗, 𝜉∗, 𝑝∗)
= 𝑢 (𝑐, 𝑒) + [𝛾∗ − ℎ (𝑡)−1 𝜉∗ (𝐸∗ − 𝐸)] 𝑒
− ℎ (𝑡)−1 𝜉∗ 𝜎−2𝜃 𝐸2 + 𝜎−2𝜃 𝑝∗𝑒

(B.19)

which says that 𝐺(⋅) is a generalized Hamiltonian for the
agent’s problem with full information which means without
private information (i.e., 𝜉 = 0 ), we have ℎ(𝑡) ⋅ 𝐺(𝑡, ⋅) =𝐻(𝑡, ⋅). Taking the first-order approximation on 𝐺(⋅) around𝐸∗ yields

𝐺 (𝑡, 𝑒𝑡, 𝐸𝑡) − 𝐺 (𝑡, 𝑒∗𝑡 , 𝐸∗
t ) − 𝜕𝐸𝐺 (𝑡, 𝑒𝑡, 𝐸𝑡)󵄨󵄨󵄨󵄨𝑒∗

𝑡
,𝐸∗
𝑡⋅ (𝐸𝑡 − 𝐸∗

𝑡 )
= 𝑢 (𝑐𝑡, 𝑒𝑡) − 𝑢 (𝑐𝑡, 𝑒∗𝑡 ) + 𝜔𝑡 (𝛾∗𝑡 + 𝜎−2𝜃𝑡 𝑝∗

𝑡 )
+ ℎ (𝑡)−1 𝜉∗𝑡 Δ 𝑡 (𝜔𝑡 − 𝜎−2𝜃𝑡 Δ 𝑡)

(B.20)

so that

𝐽𝐴 (0; 𝑒) − 𝐽𝐴 (0; 𝑒∗) = E𝑒 [∫𝑇

0
ℎ (𝑡)

⋅ (𝐺 (𝑡, 𝑒𝑡, 𝐸𝑡) − 𝐺 (𝑡, 𝑒∗𝑡 , 𝐸∗
𝑡 ) − 𝜕𝐸𝐺 (𝑡, 𝑒𝑡, 𝐸𝑡)󵄨󵄨󵄨󵄨𝑒∗

𝑡
,𝐸∗
𝑡

⋅ (𝐸𝑡 − 𝐸∗
𝑡 )) 𝑑𝑡]

(B.21)

is negative when 𝐺(⋅) is concave. Concavity is considered by
the Hessian matrix of 𝐺(⋅),

∇𝐺 (𝑡, 𝑒, 𝐴) = (𝜕𝑒𝑒𝑢 (𝑐𝑡, 𝑒𝑡) ℎ (𝑡)−1 𝜉𝑡
ℎ (𝑡)−1 𝜉𝑡 −2ℎ (𝑡)−1 𝜉𝑡 𝜎−2𝜃𝑡 ) (B.22)

which is negative semidefinite when −2ℎ(𝑡)(𝜎−2/𝜃𝑡)𝜕𝑒𝑒𝑢(𝑐𝑡,𝑒𝑡) ≥ 𝜉𝑡. When the agent seeks to maximize expected utility,𝑒∗𝑡 is the optimal effort choice for the agent. All above com-
pletes the proof of Proposition 2.

C. The Proof of Proposition 4

In front, we provide a significant lemma.

Lemma C.1 (jessen inequality). Let 𝑓(𝑋) be a continuous
convex function and 𝑋 be a random variable with respect to

F as 𝜎− integrable; then 𝑓(𝑋) is expected to exist with respect
toF,

𝑓 (E [𝑋 | F]) ≤ E [𝑓 (𝑋) | F] (C.1)

Then we prove Proposition 4; the belief 𝐾̂𝑡 follows a
martingale and it isF𝑌

𝑡 −predictable,
Π𝑡 (𝑐, 𝑒∗) = E [∫𝑇

𝑡
𝑒−𝛿(𝑠−𝑡) ⋅ (−𝑒−𝜆(𝑒𝑠−𝑐𝑠+𝐾̂𝑠)) 𝑑𝑠

+ 𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆𝛽(−𝐶𝑇+𝐾̂𝑇)) | F𝑌
𝑡 ]

= E [∫𝑇

𝑡
𝑒−𝛿(𝑠−𝑡) ⋅ (−𝑒−𝜆(𝑒𝑠−𝑐𝑠+𝐾̂𝑠)) 𝑑𝑠 | F𝑌

𝑡 ]
+ E [𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆𝛽(−𝐶𝑇+𝐾̂𝑇)) | F𝑌

𝑡 ]
(C.2)

Divide Π𝑡(𝑐, 𝑒∗) into two parts: for the first part,
E [∫𝑇

𝑡
𝑒−𝛿(𝑠−𝑡) ⋅ (−𝑒−𝜆(𝑒𝑠−𝑐𝑠+𝐾̂𝑠)) 𝑑𝑠 | F𝑌

𝑡 ]
≤ ∫𝑇

𝑡
{E [𝑒−𝛿(𝑠−𝑡) ⋅ 𝑒−𝜆(𝑒𝑠−𝑐𝑠) | F𝑌

𝑡 ]
⋅ E [−𝑒−𝜆𝐾̂𝑠 | F𝑌

𝑡 ]} 𝑑𝑠 ≤ −𝑒−𝜆𝛽𝐾̂𝑡
⋅ ∫𝑇

𝑡
{E [𝑒−𝛿(𝑠−𝑡) ⋅ 𝑒−𝜆(𝑒𝑠−𝑐𝑠) | F𝑌

𝑡 ]} 𝑑𝑠
(C.3)

and on the other hand,

− {E [∫𝑇

𝑡
𝑒−𝛿(𝑠−𝑡) ⋅ (𝑒−𝜆(𝑒𝑠−𝑐𝑠+𝐾̂𝑠)) 𝑑𝑠 | F𝑌

𝑡 ]}
≥ −{∫𝑇

𝑡
{E [𝑒−𝛿(𝑠−𝑡) ⋅ 𝑒−𝜆(𝑒𝑠−𝑐𝑠) | F𝑌

𝑡 ]
⋅ E [𝑒−𝜆𝐾̂𝑠 | F𝑌

𝑡 ]} 𝑑𝑠} ≥ −{𝑒−𝜆𝛽𝐾̂𝑡
⋅ ∫𝑇

𝑡
{E [𝑒−𝛿(𝑠−𝑡) ⋅ 𝑒−𝜆(𝑒𝑠−𝑐𝑠) | F𝑌

𝑡 ]} 𝑑𝑠}

(C.4)

Combine the above two inequalities and then

E [∫𝑇

𝑡
𝑒−𝛿(𝑠−𝑡) ⋅ (−𝑒−𝜆(𝑒𝑠−𝑐𝑠+𝐾̂𝑠)) 𝑑𝑠 | F𝑌

𝑡 ]
= 𝑒−𝜆𝛽𝐾̂𝑡
⋅ ∫𝑇

𝑡
{E [𝑒−𝛿(𝑠−𝑡) ⋅ (−𝑒−𝜆(𝑒𝑠−𝑐𝑠)) | F𝑌

𝑡 ]} 𝑑𝑠
(C.5)
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For the second part,

E [𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇+𝐾̂𝑇)) | F𝑌
𝑡 ]

= E [𝑒−𝛿(𝑇−𝑡) ⋅ (𝑒−𝜆(−𝐶𝑇)) | F𝑌
𝑡 ]

⋅ E [−𝑒−𝜆𝐾̂𝑇 | F𝑌
𝑡 ]

≤ −𝑒−𝜆𝐾̂𝑡 ⋅ E [𝑒−𝛿(𝑇−𝑡) ⋅ (𝑒−𝜆(−𝐶𝑇)) | F𝑌
𝑡 ]

(C.6)

And on the other hand,

E [𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇+𝐾̂𝑇)) | F𝑌
𝑡 ]

= E [𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇)) | F𝑌
𝑡 ]

⋅ E [𝑒−𝜆𝐾̂𝑇 | F𝑌
𝑡 ]

≥ 𝑒−𝜆𝐾̂𝑡 ⋅ E [𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇)) | F𝑌
𝑡 ]

(C.7)

Through the above two inequalities, we have

E [𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇+𝐾̂𝑇)) | F𝑌
𝑡 ]

= 𝑒−𝜆𝐾̂𝑡 ⋅ E [𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇)) | F𝑌
𝑡 ] (C.8)

Finally,

Π𝑡 (𝑐, 𝑒∗) = 𝑒−𝜆𝛽𝐾̂𝑡 ⋅ E [∫𝑇

𝑡
𝑒−𝛿(𝑠−𝑡) ⋅ (−𝑒−𝜆(𝑒𝑠−𝑐𝑠)) 𝑑𝑠

+ 𝑒−𝛿(𝑇−𝑡) ⋅ (−𝑒−𝜆(−𝐶𝑇)) | F𝑌
𝑡 ] = 𝑒−𝜆𝐾̂𝑡

⋅ 𝐽𝑃 (𝑡, 𝑐, 𝑒∗) .
(C.9)
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[7] J. s. Cvitanić, X. Wan, and J. Zhang, “Optimal contracts in con-
tinuous-time models,” Journal of Applied Mathematics and
Stochastic Analysis. JAMSA, Art. ID 95203, 27 pages, 2006.

[8] J. Cvitanic, X. Wan, and J. Zhang, “Optimal compensation with
hidden action and lump-sum payment in a continuous-time
model,” Applied Mathematics & Optimization, vol. 59, no. 1, pp.
99–146, 2009.

[9] J. s. Cvitanic and J. Zhang, Contract Theory in Continuous-Time
Models, Springer-Verlag, New York, NY, USA, 2012.

[10] K. Eliaz and R. Spiegler, “Contracting with diversely naive
agents,” Review of Economic Studies, vol. 73, no. 3, pp. 689–714,
2006.

[11] M. Yilmaz, “Repeated moral hazard with a time-inconsistent
agent,” Journal of Economic Behavior & Organization, vol. 95,
pp. 70–89, 2013.

[12] M. Yilmaz, “Contracting with a naı̈ve time-inconsistent agent:
To exploit or not to exploit?” Mathematical Social Sciences, vol.
77, pp. 46–51, 2015.

[13] D. Laibson, “Golden eggs and hyperbolic discounting,” The
Quarterly Journal of Economics, vol. 112, no. 2, pp. 443–478, 1997.

[14] Z. Zou, S. Chen, Y. Yan, and Z. Honghao, “The optimization
and decision-making of principal-agent problem based on
time-inconsistencypreference,”Chinese Journal of Management
Science, vol. 21, no. 4, pp. 27–34, 2013.

[15] B. Djehiche and P. Helgesson, The principal-agent problem
with time inconsistent utility functions, ArXiv preprint, arXiv,
1503.05416.

[16] B. Bian andH. Zheng, “Turnpike property and convergence rate
for an investment model with general utility functions,” Journal
of Economic Dynamics & Control, vol. 51, pp. 28–49, 2015.

[17] E. J. Jung and J. H. Kim, “Optimal investment strategies for the
HARA utility under the constant elasticity of variance model,”
Insurance: Mathematics and Economics, vol. 51, no. 3, pp. 667–
673, 2012.

[18] Hao Chang and Xi-min Rong, “Legendre Transform-Dual
Solution for a Class of Investment and Consumption Problems
with HARAUtility,”Mathematical Problems in Engineering, vol.
2014, pp. 1–7, 2014.

[19] H. Chang and K. Chang, “Optimal consumption investment
strategy under the Vasicek model: HARA utility and Legendre
transform,” Insurance: Mathematics & Economics, vol. 72, pp.
215–227, 2017.

[20] J. Prat and B. Jovanovic, “Dynamic contracts when the agent’s
quality is unknown,” Theoretical Economics, vol. 9, no. 3, pp.
865–914, 2014.

[21] I. Ekeland and A. Lazrak, Being serious about non-commitment:
subgame perfect equilibrium in continuous time, Arxiv preprint
math/0604264v1.

[22] J.-m. Yong, “Deterministic time-inconsistent optimal control
problems—an essentially cooperative approach,” Acta Mathe-
maticae Applicatae Sinica, vol. 28, no. 1, pp. 1–30, 2012.

[23] T. O’Donoghue and M. Rabin, “Choice and procrastination,”
The Quarterly Journal of Economics, vol. 116, no. 1, pp. 121–160,
2001.



Discrete Dynamics in Nature and Society 15

[24] T. Adrian andM.M.Westerfield, “Disagreement and learning in
a dynamic contractingmodel,” Review of Financial Studies , vol.
22, no. 10, pp. 3873–3906, 2009.

[25] R. S. S. A. N. Liptser, “Statistics of random processes, ii appli-
cations. no. 6 in applications of mathematics,” Stochastic Mod-
elling and Applied Probability.

[26] Z. He, “Dynamic compensation contracts with private savings,”
Review of Financial Studies , vol. 25, no. 5, pp. 1494–1549, 2012.

[27] J. Mirrlees, “Notes on welfare economics, information, and un-
certainty,” Essays on economic behavior under uncertainty, pp.
243–261, 1974.

[28] J.W. Gao, “Stochastic optimal control of DC pension funds,” In-
surance: Mathematics and Economics, vol. 42, no. 3, pp. 1159–
1164, 2008.

[29] D. Kramkov and W. Schachermayer, “Necessary and sufficient
conditions in the problem of optimal investment in incomplete
markets,” The Annals of Applied Probability, vol. 13, no. 4, pp.
1504–1516, 2003.

[30] J. Yong andX. Y. Zhou, Stochastic Controls: Hamiltonian Systems
and HJB Equations, vol. 43 of Applications of Mathematics,
Springer, New York, NY, USA, 1999.



Research Article
Ising Model of User Behavior Decision in
Network Rumor Propagation

Chengcheng Li, Fengming Liu , and Pu Li

School of Management Science and Engineering, Shandong Normal University, Ji’nan 250014, China

Correspondence should be addressed to Fengming Liu; liufm@sdnu.edu.cn

Received 8 April 2018; Revised 27 June 2018; Accepted 12 July 2018; Published 1 August 2018

Academic Editor: Jorge E. Macias-Diaz

Copyright © 2018 Chengcheng Li et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The continuous breeding and rapid spread of rumors in social networks poses a severe challenge to the effective utilization and
scientific management of social media. Therefore, it is of great theoretical significance and application value to study the decision-
making behavior of users in rumors spread in social networks and to reveal the rumor transmission rules. Based on the Ising
model, this paper constructs a social network rumor propagation dynamics model and then reveals the rumor transmission rules.
In the model, the Monte Carlo method is used to simulate the interaction between the user’s self-identity attribute (micropart),
the user-user interaction (the middle part), and the social environment’s influence (the macroscopic part) to study user decision
behavior of rumor spread in a social network system. The results show that, in the rumor propagation system, von Neumann
entropy can quantify well the phase transition of the system and is consistent with the phase transition information obtained by
measuring the spontaneous magnetization and magnetic susceptibility of the system. In addition, the introduction of the self-
identity characteristics of individual users into the Ising model has greatly changed the users’ decision-making behavior of rumor
spreading and changed the internal structure of the system, thus changing the type of phase transition. As the degree of self-
identification increases, the need for lower temperatures can change the orderly state of the system, and user behavior changes
more rapidly. For the rumor transmission system, the state of close order is conducive to the blocking of rumors, thus maintaining
social stability.

1. Introduction

With the wide use of social networks and the convenience
of the media, rumors permeate all aspects of social life.
The importance, ambiguity, and potential dangers of rumors
are often widely disseminated without confirmation [1, 2]
which affects public attitudes, beliefs, and behaviors [3, 4].
In particular, the explosive development of online social
networks such as Facebook, Twitter, and Microblog [5]
make an increasingly rapid diffusion of rumors. A rumor
can often bring a butterfly effect [6] and bring about huge
social and network exchanges and normal social order. The
negative impact can easily lead to serious social problems
and even crisis social stability, economic development, and
national security [7]. DiFonzo believes that Internet rumor
has become an important issue that affects social stability.

The research on the rumors characteristics and propagation
related to cyber rumor can effectively curb the negative effects
caused by it [8]. The research [9–14] on identifying major
depressive disorder (MDD) has also provided important
ideas and methods for rumor identification and dissemi-
nation. Therefore, it is of great theoretical significance and
practical value to study rumors spreading rules of social
network and stop rumors immediately, which can effectively
control rumors and maintain social stability.

The rumor spread in social media involves many fac-
tors such as information, users, and network environment.
It not only embodies the network effect of information
dissemination but also integrates the social psychological
factors, the decision-making behaviors of human beings,
and the interaction among usersand the social environment
influence. Rumor spread in social media will cause different
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degrees of harm to people’s lives and even the whole society.
So the ultimate goal of rumor communication research is to
suppress or even prevent rumors from spreading. Therefore,
based on the user’s attributes of the micropart, based on
the interaction between the user parts of the micropart,
and based on the environmental influence and positive and
negative social reinforcement on the rumors of social media
of themacropart has become an important research issue one.

In social media, the user’s decision-making behavior is
influenced by its factors and the influence of the neighbor-
hoodusers on its impact and social environment.Thedissem-
ination users’ intrinsic factors, specific purposes, and their
authority, influence, and behavior characteristics determine
the width and depth of rumor spread and the outbreak point
of rumors. Scholars [15] have found that user differences
can provide an important basis for rumor identification in
the study of users’ differences involved in the spread of
rumors and nonrumors. Based on the Isingmodel, this paper
combines the influence among users and the influence of
social environment, that is, describing the decision-making
behavior of users in the process of spreading rumors in the
medium and macroaspects. At the same time, taking into
account the user’s attributes and introducing the individual
identity characteristics (microcosmic part), the influence of
the feature on the model is analyzed. Finally, the experiments
show that the interaction of the user itself, interaction
between a user and another, and the social environment in
which the user is located can well maintain the orderly state
of the cyberspace and provide the decision basis for decision-
making of the network governance.

2. Related Works

In social media, the user’s factors, the neighborhood users,
and social environment influence the user’s decision-making
behavior.The study found that the spread of rumors is driven
by many factors, including the internal factors that spread
users, the influence of neighboring neighbors, social factors
and environmental factors, and so on.

In the research of user decision behavior based on
user’s attributes, the internal factors of transmitting users
(such as personality traits) and their specific purpose have
influenced their behavior of spreading messages on social
media. Chen et al. [16] have found that the Neuroticism and
Openness in the user’s personality have a significant impact
on the spread of rumor news. In addition, the dissemination
users’ motivations for entertainment, socializing, and seeking
status have also had a significant impact on the spread of
rumor messages. In fact, whether users can spread rumors
will be affected by a variety of factors, such as personal
preference [17]. In recent years, many scholars have shifted
their attention to the social attributes of human behavior
[18].

In the research of user decision behavior based on
the influence of neighbor nodes, since the nodes in social
networks are users in real life, their propagation behavior is
highly autonomous and independent. Therefore, it is neces-
sary to evaluate the behavior decisions of individual nodes
and their neighbor nodes. Simon et al. [19] found that, in

the case of infection, shopping, and social interaction, users’
decision-making behavior is influenced by their neighbors or
friends. Peoplewillmake andmodify their behavior decisions
based on others’ decisions. Jackson et al. [20] analyzed the
game in social networks where each user would make a
binary choice. And Lopez analyzes the influence of the
neighbor nodes on the user’s decision and gives the equation
of the field average [21]. If a good reputation or influential
person or a media participates in the spread of rumors,
it will cause qualitative changes in rumors; that is to say,
it will become quasi-news and make potential rumors and
ballads increase significantly. Liao and Shi’s [22] research on
the contribution and influence of celebrities, certified users,
mass media, organizations, websites, talent, and ordinary
users in the process of rumor dissemination found that
the users who played a major role in the dissemination
process were dignitaries, celebrities, and the mass media.
Considering that the decision-making in social networks is
rational and autonomous, and the user’s behavior decision-
making is influenced by the neighbors’ nodes. Many scholars
use game theory to depict this kind of influence and regard
the diffusion process of rumors in the network as the process
of users choosing the best decision through the game and
maximizing their interests.

In the analysis of user decision-making behavior based
on the role of social environment, such as social strength-
ening mechanism, before an individual takes action, it will
be affected by the superposition of multiple actions from
his neighbors and even the society [23]. At present, some
achievements have shown that external public opinion plays
an important role in user communication [24]. But these
studies only study the influence of positive or negative
one of the social reinforcement mechanisms on the spread
of rumors. However, in fact, due to the extremely vague
nature of the rumors, people’s life experience and education
experience are different [25]. After the spread of rumors, it is
easy to produce two opposing views at the same time, thus
forming two powerful social reinforcing functions: positive
and negative [26]. Most previous works focused on detecting
rumors by shallow features of messages, including content
and blogger features. Zhang et al. [27] also believe that
shallow features cannot distinguish between rumors and
nonrumors well in many situations.Therefore, they extracted
four implicit features based on content: popularity orienta-
tion, internal and external consistency, emotional polarity,
and comment point of view. The popularity orientation
feature can obtain the correlation between the content of the
message and a hot topic or event in the current society, and
the feature value of popularity orientation can be obtained
by calculating the Jaccard coefficient. In some cases, user’
proximity to events physically or emotionally has a significant
impact onwhether they publish or forwardmessages [28–30].
When people have physical proximity to or are emotionally
associated with people or places (such as friends, family,
or former residences) that may be affected by the incident,
they can spread more news and sometimes think of helping
others by spreading the message. However, these messages
may contain a large number of rumors and their forwarding
expanded the spread of rumors.
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3. Ising Model of the Decision-Making of
Rumor Propagation

3.1. Ising Model. Ising model is an important model in
statistical physics. It describes the phase transition of amatter
by characterizing the interaction between particles and the
effect of external environment on the particles; that is,magne-
tization disappears above certain critical temperature, while
magnetization appears below certain critical temperature. In
the Ising model, a ferromagnetic material consists of a stack
of regularly arranged small magnetic pins, each of which
has only two directions (spin) up and down. Adjacent small
needles interact with each other through energy constraints.
At the same time, the random magnetic transition (upside
down or vice versa) occurs due to the interference of ambient
thermal noise [31].

Assuming that the 𝑖th node is a small magnetic pin, each
small magnetic pin has two states up and down. We use 𝑠𝑖 to
indicate this state and 𝑠𝑖 = { +1−1 means the magnetic pin is
up or down. The two adjacent small magnetic needles on the
grid can interact.

In the Ising model, there is an interaction between each
pair of adjacent spins, and the energy of the system is

𝐸{𝑠𝑖} = −𝐽 ∑
⟨𝑖,𝑗⟩

𝑠𝑖𝑠𝑗 − 𝐻
𝑁

∑
𝑖

𝑠𝑖, (1)

where 𝐽 is energy coupling constant and 𝐸{𝑠𝑖} represents the
total energy of the system under state combination {𝑠𝑖}. The
summing subscript ⟨𝑖, 𝑗⟩ indicates the summation of all two
adjacent small magnetic needles. We see that if 𝑠𝑖 = 𝑠𝑗, the
total energy is reduced by 𝐽. 𝐻 represents the strength of
the external magnetic field; the magnetic field up then 𝐻 is
positive and otherwise negative. If the direction of a small
needle coincides with the field, the total energy is reduced by
one unit.

3.2. Ising Decision Model. Based on the Ising model, this
paper constructs a behavioral decision-making model of
rumor propagation. Each small magnetic needle is compared
to a user in a social network.The upper and lower states of the
small magnetic needle are compared to the user’s decision-
making behavior, propagation, and nonpropagation. The
interaction between adjacent small needles is analogous to
the effect of behavioral decision-making among users. The
temperature of the environment is analogous to the influence
of the environment (the heat of the social network rumor
topic and the appeal or influence of a rumor). In this way,
the entire Ising model can express the dynamic evolution of
rumors made by different users in social networks. In addi-
tion, this paperwill also add the self-identity characteristics of
individuals to the rumor communication behavior decision-
making model and then analyze the characteristics of the
impact of the model.

This paper calculates the revenue function of the behavior
strategy adopted by the user through the rumor propaga-
tion user behavior decision-making model and obtains the
equilibrium state of the system, that is, the time point when
the rumor no longer propagates and the system reaches

the steady state. The Nash equilibrium is used to judge the
decision-making distribution of each user when the social
network is in a steady state. By measuring the von Neumann
entropy, we study and analyze the phase transitions and
critical phenomena of the user behavior decision-making
system and get the critical information. Finally, the Monte
Carlo simulation of the Ising model is carried out.

3.3. IsingModel Construction. The Isingmodel was originally
used in phase change studies and later with the development
of complexity science. Because of its simple mechanism and
rich dynamic behavior [32], it can effectively simulate the
evolution of binary opinion; it has been widely used in the
study of viewpoint kinematics.

3.3.1. User Decision Behavior Model. Let 𝑍2 be represented
as a square lattice; the element 𝑖 in the lattice is a pair of
integers (𝑖1, 𝑖2), for any finite symmetric subset Λ ⊂ 𝑍2;
let ΩΛ = |−1, 1|Λ denote the spin configuration on Λ; the
element of ΩΛ may be denoted as 𝜎Λ = {𝜎i : i ∈ Λ}. Without
being obfuscated, the subscript Λ in 𝜎Λ can be omitted.
Considering the Ising model with the following Hamiltonian
system, the energy of an Ising model system on a complex
network over any 𝜎 ∈ ΩΛ is defined:

𝐻Λ,ℎ (𝜎) = − ∑
𝑖,𝑗∈Λ

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 − ℎ ∑
𝑖∈Λ

𝜎𝑖, (2)

where ℎ is a real number, which represents the environmental
influence of the microblog (ℎ = 𝜉ℎ1 + (1 − 𝜉)ℎ2, whereℎ1 represents the heat of the rumor topic, ℎ2 represents the
attraction or influence of the rumor, and 𝜉 represents the
environmental factor, the value of which depends on the real
environment). 𝐽𝑖𝑗 is the interaction between users, the view of
the individual 𝑖 is updated by the nearest neighbors, and the
direction selection similar to spin is subject to the local spin
interaction

3.3.2. Calculate the User’s Local Environment. Based on
Simon’s research, the user’s neighbors or friends influence his
or her decision-making behavior. People make and modify
their own behavioral decisions based on others’ decisions.
Therefore, we can calculate the individual user’s local envi-
ronment. Assume that the users in the social network are at a
point in the Λ grid (Λ is a subset of square grids 𝑍2). At each
point of time, the user decides whether to spread the rumor
(𝜎𝑖 = +1) or not to spread the rumor (𝜎𝑖 = −1). The decision
of each user 𝑖 depends on the local environment 𝐼𝑖(𝑡) at the
time 𝑡, and its formula is

𝐼𝑖 (𝑡) = 1
|Λ| ∑
𝑗∈Λ

𝐽𝑖𝑗 (𝑡) 𝜎𝑗 (𝑡) − ℎ𝑖 (𝑡) . (3)

The first term in (3) (1/|Λ|) ∑𝑗∈Λ 𝐽𝑖𝑗(𝑡)𝜎𝑗(𝑡) of 𝐼𝑖(𝑡)
denotes the influence of the behavior decision attitude of
other users on the decision-making of user i at time 𝑡. Due
to the interaction between users, 𝐽𝑖𝑗(𝑡) is time-varying and
has the form 𝐽𝑖𝑗(𝑡) = 𝑎𝜉(𝑡) + 𝑏𝜂𝑖𝑗(𝑡), 𝑎𝜉(𝑡), which reflects the
average effect of the entire society on the user 𝑖 and 𝑏𝜂𝑖𝑗(𝑡)
reflects the influence of all users on user 𝑖 decision.
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The second term in (3) ℎ𝑖(𝑡) = 𝑐𝑖∑𝑖−1𝑖=𝑖 𝛼𝑥𝑖 + 𝑑𝑖𝐵(𝑡) of
𝐼𝑖(𝑡) represents the social environment, c𝑖∑𝑖−1𝑖=𝑖 𝛼𝑥𝑖 represents
the influence of the total return of behavior decision-making
on the user 𝑖 over a period, 𝐵(𝑡) is the standard Brownian
motion, which represents the external random information
into society, and 𝑑𝑖𝐵(𝑡) reflects the impact of stochastic
information on the behavior decisions of different users 𝑖.
3.3.3. Calculate User’s Behavior Decision Probability. Users
change their behavior decisions based on changes in the
environment. At eachmoment 𝑡, the user changes his attitude
with a certain probability, the probability of spreading the
rumor is 𝑃, and the probability of not spreading the rumor
is 1 − 𝑃. Then the formula is as follows:

P = 1
1 + exp [−2𝐼𝑖 (𝑡)] . (4)

3.3.4. Calculate the User’s Revenue Function. In social net-
works, users’ behavioral decisions are influenced not only by
their own interests, but also by their neighbors or friends.
Everyone makes and modifies their behavioral decisions
based on the decisions of others. Users choose the best
decision through the game to maximize their own interests.
Based on the game in social networks analyzed by Jackson
et al., we can calculate the user’s revenue function and find
the equilibrium state threshold.Therefore, in the Isingmodel,
user decisions are rational and autonomous, and users always
choose to make their own decisions. An individual achieves
an equilibrium state during the interaction, in which no
individual can increase returns by unilaterally changing his
or her behavior strategy. Therefore, the Nash equilibrium is
used to judge the decision-making distribution of each user
when the social network is in a steady state.

Suppose the social network group user 𝑖 will choose to
spread rumors with a probability of 𝑝 and with a probability
of 1−𝑝 choosing not to spread rumors.The user 𝑗will choose
to spread rumors with a probability of 𝑞, with a probability of
1 − 𝑞 choosing not to spread rumors. Then the probability
matrix of the user 𝑖 and 𝑗 selection behavior is 𝑃 = 𝑝, 1 −
𝑝 𝑄 = 𝑞, 1 − 𝑞, respectively; among them, 0 ≤ 𝑝 ≤ 1, 0 ≤
𝑞 ≤ 1. In addition,𝛽𝑖𝑗 denotes the trust degree of the neighbor
node, 𝑉𝑑 denotes the proceeds of the choice of spreading the
rumor, 𝑉𝑎 denotes the proceeds of receiving the rumor, and
𝐶 is the cost of spreading the rumor.

The expected utility function for user 𝑖’s choice of spread-
ing rumor behavior is

𝑈𝑠𝑖 = 𝑞 [𝛽𝑖𝑗 (𝑉𝑑 + 𝑉𝑎) − 𝐶] + (1 − 𝑞) (𝛽𝑖𝑗𝑉𝑑 − 𝐶) . (5)

The expected utility function when choosing not to spread
rumors is

𝑈𝑛𝑠𝑖 = 𝑞𝛽𝑖𝑗𝑉𝑎 + 0 (1 − 𝑞) . (6)
Get the user 𝑖’s overall expected utility function

𝑈𝑖 (𝑝, 1 − 𝑝)
= 𝑝 {𝑞 [𝛽𝑖𝑗 (𝑉𝑑 + 𝑉𝑎) − 𝐶] + (1 − 𝑞) (𝛽𝑖𝑗𝑉𝑑 − 𝐶)}

+ (1 − 𝑝) 𝑞𝛽𝑖𝑗𝑉𝑎.
(7)

Similarly, for the user 𝑗, its expected utility function is the
same as 𝑖.

Differentiate the above-expected utility function to obtain
the first-order condition:

𝜕𝑈𝑖
𝜕𝑝 = 𝛽𝑖𝑗𝑉𝑑 − 𝐶 = 0, 𝛽𝑖𝑗𝑉𝑑 = 𝐶. (8)

The user 𝑗’s hybrid strategy is (𝑞, 1 − 𝑞). If the user 𝑖
chooses to propagate rumors, then the revenue is 𝑞𝛽𝑖𝑗𝑉𝑎 +𝛽𝑖𝑗𝑉𝑑 −𝐶; if user 𝑖 chooses not to spread rumors, the revenue
is 𝑞𝛽𝑖𝑗𝑉𝑎. When 𝛽𝑖𝑗𝑉𝑑 > 𝐶, the larger the value of 𝑝, the
more the participants expected to spread the gains, at which
point (𝑝 = 1) represents the best strategy for 𝑖.When 𝛽𝑖𝑗𝑉𝑑 <𝐶, the user’s expectation of the spread of earnings is inversely
proportional to 𝑝. The smaller the 𝑝 is, the less likely the user
is to choose to spread the rumor. Do not spread rumors (𝑝 =
0) to become the best strategy for 𝑖. When 𝛽𝑖𝑗𝑉𝑑 = 𝐶, user
𝑖 spreads that the benefits of nondissemination are the same.
Therefore, every feasible 𝑝 is the best strategy for user 𝑖. User
𝑗 and user 𝑖’s analysis method are the same.

When 𝛽𝑖𝑗𝑉𝑑 − 𝐶 > 0, the game’s mixed strategy Nash
equilibrium is (1, 1).

When 𝛽𝑖𝑗𝑉𝑑 − 𝐶 < 0, the game’s mixed strategy Nash
equilibrium is (0, 0).

When 𝛽𝑖𝑗𝑉𝑑 − 𝐶 = 0, any feasible (p, q) is the mixed
strategy Nash equilibrium of this game.

From this, we can conclude that themore the trustworthi-
ness among users, the higher the rate of rumor propagation. If
there is a massive spread of rumors and sensitive information
on the Internet, the government and the media should timely
release official messages to reduce the panic and anxiety in
the society. The more important the rumor, the higher the
spread rate. After the rumor incident, the public is easily
influenced by herd mentality, and herd behavior can easily
occur [33]. The common denominator of these events is the
life, property, and economic interests of many people, even
though the initial communicators are all very humble users.
If the government clarifies the relevant laws and regulation
to punish criminals who spread rumors, they can increase
the risk of transmission of rumors, thus reducing the rate of
spreading rumors.

3.3.5. Calculate the Von Neumann Entropy. In recent years,
researchers have found that it is possible to quantify quantum
phase transitions by measuring the entanglement of the
quantum. The researchers found that von Neumann entropy
shows finite-scale scaling behavior as a measure of quantum
entanglement near the critical quantum point [34]. This
method can effectively and directly obtain the quantum
transition in the quantum model. By the predecessors, this
paper uses the von Neumann entropy to study the Ising
model and find out the transformation point and critical
information of the rumor propagation system. The von
Neumann’s entropy formula is as follows:

𝑆𝑝 (𝑇) ≡ −𝑡𝑟𝑝𝜌𝑝 (𝑇) ln 𝜌𝑝 (𝑇)
= 2 ln 2 − 1

2 [𝛾 ln 1 + 𝛾
1 − 𝛾 + ln (1 − 𝛾2)] . (9)
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Among them, the spin correlation is 𝛾(𝑇) = ⟨𝜎𝑖𝜎𝑖+1⟩.
Where 𝜌𝑝(𝑇) represents the reduced density matrix, 𝑡𝑟𝑝𝜌𝑝(𝑇)
represents the trace of the subsystem, and 𝛾 is a critical
exponent.

4. Monte Carlo Experimental Simulation

MC simulation refers to a calculation method that uses
computer-generated pseudo-random numbers to deal with
probability problems. In recent years, the MC method has
become a standard method for scientific research and has
been widely used in statistical physics and complex systems,
nonlinear dynamic processes, chaos, and some chemical
reactions and mathematical random processes.

The key to performing aMonte Carlo simulation is to first
give the state transfer rate. First write the master equation

𝜕𝑃𝑠 (𝑡)
𝜕𝑡 = ∑

𝑠 ̸=𝑛𝑠

(𝑃𝑛𝑠Ψ𝑛𝑠󳨀→𝑛 − 𝑃𝑠Ψ𝑠󳨀→𝑛𝑠) , (10)

where 𝑃𝑠(𝑡) represents the probability that the system is in
the s-state at time t, and Ψ𝑠󳨀→𝑛𝑠 represents the transition rate
from the state 𝑠 to the state ns. When the system reaches
equilibrium, 𝜕𝑃𝑠(𝑡)/𝜕𝑡 = 0, so careful balance conditions can
be written as follows:

𝑃𝑛𝑠Ψ𝑛𝑠󳨀→𝑠 = 𝑃𝑠Ψ𝑠󳨀→𝑛𝑠. (11)

In addition, the probability of balancing the temporal 𝑠
can be given by the Boltzmann distribution:

𝑃𝑒𝑞𝑠 = 𝑒−𝐻𝑠/𝑘𝐵𝑇
𝑍 . (12)

The denominator 𝑍 in the above formula is the distribu-
tion function of the system. In general, the partition function
cannot be directly solved. For this reason, the method often
used by people is to assume that the system evolution process
is a Markov process, so that we can directly generate new
states from the old state, and there is no time and other
memory processes. The system transitions from one state
to another, and its transition probability should satisfy the
following formula:

Ψ𝑠󳨀→𝑛𝑠
Ψ𝑛𝑠󳨀→𝑠 =

𝑃𝑒𝑞𝑛𝑠
𝑃𝑒𝑞𝑠 = 𝑒−Δ𝐻/𝑘𝐵𝑇, Δ𝐻 = 𝐻𝑛𝑠 − 𝐻𝑠. (13)

Using the above method can avoid solving the compli-
cated partition function. The ratio of the transition proba-
bility can be obtained by calculating the difference between
the energy before and after the transition and the temper-
ature. Only this one equation still cannot get the transition
probability, so we introduce a fine balance condition to get
another equation, for example, according to the rules of the
Metropolis dynamics, you can write

Ψ𝑛𝑠󳨀→𝑠 = {
{{
exp(−Δ𝐻

𝑘𝐵𝑇) , Δ𝐻 > 0
1, Δ𝐻 < 0.

(14)

Figure 1: Ferromagnetic Ising model.

4.1. Magnetization and Magnetic Susceptibility of Rumor
Propagation Systems. In order to prove the von Neumann
entropy method to study the critical temperature 𝑇𝑐 of the
rumor propagation system and whether the phase transition
type and some critical exponents the system experiences
are effective and feasible. Therefore, the magnetization and
magnetic susceptibility of the system are measured accord-
ing to the traditional method. Magnetization is a physical
quantity that describes the degree of magnetic properties of
a macroscopic magnetic bod, ⟨|𝑚|⟩ = (1/𝑁2) ∑𝑁2𝑖=1𝑚𝑖, 𝑚 =
(1/𝑁2) ∑𝑁2𝑖=1 𝜎𝑖. Magnetic susceptibility is a physical quantity
that characterizes the properties of a magnetic medium,
𝜒/𝑁2 = (1/𝑁2)(𝜕𝑚/𝜕𝑇) = ⟨(𝑚 − ⟨|𝑚|⟩)2⟩ = ⟨𝑚2⟩ −
⟨|𝑚|⟩2. The “spontaneous magnetization” average 𝑚 =
(1/𝑁2) ∑𝑁2𝑖=1 𝜎𝑖 as the order parameter [35]; among them 𝜎𝑖 ∈{+1, −1}; 𝑁 × 𝑁 is the size of the network. Here, when ⟨|𝑚|⟩
is close to 1, the rumor propagation system is in an orderly
state; when ⟨|𝑚|⟩ is 0, the system is in a completely disordered
state. Therefore, we use Monte Carlo method to carry out
numerical simulation, respectively, in the size of 4 × 4, 6 × 6,
8×8, 10×10, 12×12, 14×14, 20×20, and 50×50 network to
simulate; take the temperature interval Δ𝑇 = 0.03; the results
are as shown in Figure 2.

It can be seen from Figure 2 that, as the scale𝑁×𝑁 of the
system increases, 𝑇𝑐(𝑁)will be close to the critical point 𝑇𝑐 at
which the true rumor propagation system intersects. Figure 1
shows us some change rules, but in order to obtain the exact
critical point and the critical index, we assume that the critical
index V = 1 (V is expressed as a critical index in the rumor
propagation system) fitted to the case, fromwhich the critical
point 𝑇𝑐 = 2.3075, ±0.00852 can be obtained.

4.2. Von Neumann Entropy of Rumor Propagation System. In
order to study the critical temperature of the rumor propa-
gation system and the types of phase transitions experienced
by the system and some critical indices, we measured the von
Neumann entropy of the system in a conventional way. von
Neumann entropy formula is as follows:

𝑆𝑝 (𝑇) ≡ −𝑡𝑟𝑝𝜌𝑝 (𝑇) ln 𝜌𝑝 (𝑇)
= 2 ln 2 − 1

2 [𝛾 ln 1 + 𝛾
1 − 𝛾 + ln (1 − 𝛾2)] . (15)
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Figure 2: Functional images of magnetic susceptibility 𝜒𝑁(𝑇) and
temperature 𝑇.

Therefore, we performed simulations on 15 × 15, 20 ×
20, 30 × 30, 35 × 35, 50 × 50, 80 × 80, and 100 × 100
networks, respectively; in the rumor propagation system, von
Neumann entropy is measured, and the temperature interval
of Δ𝑇 = 0.03, according to finite-scale theory, and we got
some information about the critical point; the results are
shown in Figure 3.

From Figure 3, it can be easily found that the inflection
point appears on the curve. This implies the existence of a
critical point. Next, we observe the changes in these inflection
points by deriving the curves.

From Figure 4, based on the finite-scale scale theory, we
can determine that the critical temperature of the system is
𝑇𝑐 = 2.30728.

4.3. Comparison of Experimental Results. Through the study
of the Ising model of rumor propagation system from the
aspects of measuring magnetization, magnetic susceptibility,
and measuring von Neumann entropy, we get some conclu-
sions, respectively.

(1) To study the magnetization and magnetic suscepti-
bility, we obtain that the critical temperature of the system
is 𝑇𝑐 = 2.3075, ±0.00852 and the critical length of the
correlation length is V = 1.

(2) We study the von Neumann entropy of the rumor
propagation system, and we obtain that the critical tempera-
ture of the system is𝑇𝑐 = 2.30728 and the critical length of the
correlation length is V = 1. The derivative of von Neumann
entropy is logarithmically divergent at the critical point and
reflects the secondary phase changing characteristics.

(3) Through comparative studies, von Neumann entropy
of rumor propagation system can also be used to characterize
the phase transition of user behavior decision in the system.
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Figure 3: Variation of von Neumann entropy 𝑆𝑝(𝑇) of different
systems with temperature 𝑇.
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Figure 4: Variation of von Neumann entropy derivative 𝑆𝑝󸀠(𝑇) of
different systems with temperature 𝑇.

5. Introducing Personal Self-Identity

The previous model ignores the individual differences in the
system, such as differences in the self-identity characteristics
of the population [36, 37]. Based on the Ising model, this
paper introduces the self-identity into the rumor propagation
dynamics. When this feature reaches a certain level of
strength, the phase-shifting behavior of the user’s rumor
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decision in the rumor communication system changes from
continuous to discontinuous.

5.1. Construct Model. In a homogeneous grid, each grid
represents individual users in a social network, and each user
has four neighbors individually. All user entities have one
of two decision-making behaviors. Therefore, an individual’s
decision behavior can be described as one of two possible
behaviors 𝜎𝑖 ∈ {+1, −1} at any moment. On the one hand,
we introduce the function 𝑆(𝑖) = 2𝜎𝑖∑4𝑗=1 𝜎𝑗 to describe the
relationship between the state of an individual 𝑖 and the state
of its companion 𝑗 (𝑗 = 1, 2, 3, 4). On the other hand, we
use 𝜀 (0 < 𝜀 ≤ 1) to describe the individual’s psychology
of acceptance of the surrounding social environment, which
allows the individual to follow the behavioral decisions of the
majority of the neighbors. On the contrary, 1 − 𝜀 describes
the individual’s self-identity psychology, which allows the
individual to insist on his own behavior. The smaller the
value of 𝜀 is, the more the individuals identifying with the
self are, and the easier it is for individuals to adhere to their
own behavioral decisions rather than following most of their
neighbors’ behavioral decisions.

Based on this, the following model is constructed as
follows: when 𝑆(𝑖) > 0, 𝜎𝑖 is the same as most neighbors, 𝜎𝑖
changes its own behavior by the probability of exp[−𝑆(𝑖)/𝑇],
and 𝑇 is a parameter of the class temperature associated with
the internal fluctuation of the system; when 𝑆(𝑖) < 0, 𝜎𝑖 is
contrary to the state of most neighbors, and 𝜎𝑖 changes its
own state by the probability of 𝜀; when 𝑆(𝑖) = 0, the number
of states in the neighborhood is the same as and opposite to
the state of the individual, so 𝜎𝑖 changes its own behavior
decision according to its characteristics; that is, 𝜎𝑖 changes
its own behavior decision with the probability of 𝜀. From the
dynamic evolution rules of themodel, we find that, in the case
of 𝜀 = 1, the model returns to the Ising model.

5.2. Numerical Simulation Results. Figure 5 shows that when
the temperature is below the critical value, the final state of
evolution of the rumor propagation system is ordered, and
when the temperature is above the critical value, the final
state of evolution of the system is disordered. As the degree of
self-identity increases, the user behavior decision-making of
the rumor communication system changes from an ordered
state to an unordered state, from continuous phase change to
discontinuous phase change, with 𝜀𝑐 being about 0.575. This
shows that the individual’s self-identity has greatly changed
the dynamics of rumor transmission. As the level of self-
identification increases, the need for lower temperatures will
change the orderly status of the rumor transmission system
and change more and more rapidly.

Note. In Figure 6(1), 𝑎 is a graph of the probability density
function of𝑚 in the case of 𝜀 = 0.8, where 𝑇 is less than 𝑇𝑐. 𝑏
is a graph of the probability density function of 𝑚 in the case
of 𝜀 = 0.8, where 𝑇 is greater than 𝑇𝑐.

In Figure 6(2), 𝑐 is a graph of the probability density
function of𝑚 in the case of 𝜀 = 0.2, where 𝑇 is less than 𝑇𝑐. 𝑑
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Figure 5: Phase diagram of model: discontinuous phase change
occurs on the red representative system, and the continuous phase
change occurs on the green representative system. q describes the
individual’s identity to the surrounding public opinion environ-
ment.

is a graph of the probability density function of 𝑚 in the case
of 𝜀 = 0.2, where 𝑇 is greater than 𝑇𝑐.

In (1) and (2) of Figure 6, we show the variation of ⟨|𝑚|⟩
with temperature in the case of 𝜀 = 0.8 and 𝜀 = 0.2,
respectively. We find that the phase transitions at 𝜀 = 0.8
are continuous and the phase transitions at 𝜀 = 0.2 are
discontinuous. The inset 𝑎 and the inset 𝑏 in Figure 6(1) are,
respectively, the probability density functions of ⟨|𝑚|⟩ when
less than 𝑇𝑐 and greater than 𝑇𝑐 in the case of 𝜀 = 0.8:
when less than 𝑇𝑐, there are only two peaks on both sides of
⟨|𝑚|⟩󸀠 = 0, but only one peak at ⟨|𝑚|⟩󸀠 = 0. This is analogous
to the continuous change of the ferromagnetic phase to the
paramagnetic phase in a balanced phase transition. So when
𝜀 = 0.8, what happens to the rumor propagation system
is a continuous phase change. The ⟨|𝑚|⟩ probability density
function diagram in the case of illustration 𝑐 and illustration
𝑑 in Figure 6(2) in the case of 𝜀 = 0.2 is less than 𝑇𝑐
and greater than 𝑇𝑐, respectively: the most probable value
of ⟨|𝑚|⟩󸀠 in illustration 𝑐 has two peaks of symmetry, and
the most probable value of ⟨|𝑚|⟩󸀠 in the illustration 𝑑 has
a peak. In the process of phase transition point 𝑇𝑐, the two
peaks in the insertion of 𝑐 become unstable, and, at 𝑇𝑐, the
value of ⟨|𝑚|⟩󸀠 rapidly changes to 0. Therefore, in the case of
𝜀 = 0.2, the system of rumor propagation is a discontinuous
phase transition.Obviously, the characteristics of self-identity
change the internal structure of rumor transmission system,
which in turn changes the type of phase transition.

5.3. Conclusion. By introducing the self-identity of individ-
uals into the nonequilibrium Ising model, the influence of
individual self-identity on the dynamics of system rumor
propagation is discussed. These studies have shown that
the pervasive self-identity psychology of individuals in the
social system has a significant impact on rumor propagation
dynamics. The system presents a nonequilibrium phase
transition from a state with a single public behavior decision
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Figure 6: Order parameter changes with temperature (the illustra-
tion shows the distribution of probability density functions of order
parameters).

to a state where a large number of behavioral decisions
coexist. Moreover, with the strengthening of self-identity,
the phase transition of the user decision in the rumor
propagation system changes from the continuous phase to the
discontinuous phase.

6. Conclusion and Outlook

6.1. Conclusion. Based on the Ising model, this paper com-
bines the characteristics of the individual’s self-identity (the
micropart), the interaction between a user and another (the
middle part), and the influence of the social environment (the
macroscopic part) and then applies Monte Carlo simulation
method to study the social network system rumor spreading
user decision-making behavior, revealing that the law of
rumor transmission has important theoretical significance
and application value.

The results show that after the von Neumann entropy
concept is used to study the phase transitions and the
critical phenomena in the classical thermodynamic system,
we use the Ising model to obtain the critical information
of the rumor propagation system by measuring the von
Neumann entropy of the system. The von Neumann entropy
of the rumor propagation system can quantify well the phase
transition of the system and is consistent with the phase
change information obtained by measuring the spontaneous
magnetization and the susceptibility of the system. The

successful application of von Neumann entropy in rumor
propagation system proves that von Neumann entropy can
indeed be used to quantify the phase transition of rumor
propagation. This provides a good way to quantify the phase
change of rumor communication. In addition, the study also
shows that the introduction of self-identity characteristics of
individual users into the Ising model has greatly changed
the user decision-making behavior of rumor transmission
and changed the internal structure of the system, thereby
changing the type of phase transition. As the level of self-
identification increases, the need for lower temperatures will
change the orderly state of the system and the transition will
changemore rapidly. For the spread of rumors, the close order
of the state is conducive to social stability.

6.2. Outlook. (1) Based on the Ising model, this paper only
considers the feature of the user’s personal self-identity but
does not consider the positive and negative social reinforce-
ment of the social environment. Double social enhancement
plays a role in the spread of the rumor, and rumors vary in
their attractiveness to users. The next step of research will
be further combined with the differences in the ability of
users to explore the impact of user influence on the spread of
rumors. Through further analysis of rumors, we can find out
its propagation rule, effectively reduce the final spread scale
of rumors, weaken the biggest impact of rumors, and slow
down the speed of rumor spreading and provide more time
for relevant departments to take measures to control rumor
spread.

(2) The user behavior decision model studied in this
paper is individualized; that is, each node in the network
represents each user, so it is not suitable for large-scale
complex networks. In order to study the complex dynamic
behavior of large-scale networks and their relationship with
local structures, the next step is to use the theory andmethod
of multiscale coarse-graining to look at multiple users as a
node in the network. We merge nodes with similar strengths
(i.e., user’s friend nodes) into one coarse-grained node,
because in weighted networks it is impractical to combine
nodes of exactly the same strength. On the basis of modeling
individual user behavior decision based on the Ising model,
it is hoped that the coarse granulationmethod based on node
strength merging can be proposed to make it suitable for
large-scale complex networks. It is more widely used.
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The existence of nontrivial equilibrium and poverty traps for a generalized Solow growth model with concave and nonconcave
production functions is investigated. The explicit solutions of the growth model, which is expressed by a differential equation with
corresponding boundary conditions, are employed to illustrate the spatial dynamics of the model in different economic regions.
Numerical method is used to justify the validity of the theoretical analysis.

1. Introduction

The distribution over space of spatial economic activities has
been investigated in many literatures, in which economic
geographers study how and why people make their location
choices, consider the reasons of production agglomeration,
and find the formation of cities and migration flows. Early
regional economic growth models focus on capital, labor,
pollution flows, individuals’ welfare, and the policymaker
both in discrete and continuous cases. In recent years, the new
economic geography emerges in economic analysis, where
economic geographers employ a refined specification of
whole market structures and several precise assumptions on
the mobility of production factors. Fujita and Thisse [1] and
Krugman [2] use a general equilibrium framework to explain
production, consumption, and price formation in local and
global economy. Mossay [3] studies that continuous space
is not incompatible with regional divergence in different
migration schemes which are decided by idiosyncrasies in
location taste. Krugman [4] states that the economy always
displays regional convergence and migration follows utility-
level differentials.

Since the assumption of a continuous space structure
in economic model fits better modern economies, several
continuous space extensions of economic models have been
discussed. Brito [5] has investigated spatial capital accumu-
lation and capital mobility in the spatial Ramsey growth
framework. In [5], production and capital accumulation are
distributed in continuous space and capital differentials drive

the spatial capital dynamics. La Torre et al. [6] investigate
the optimal dynamics of capital and pollution in a spatial
economic growthmodel. Camacho and Barahona [7] analyze
spatial optimal land use and environmental degradation.
Boucekkine et al. [8] and Camacho et al. [9] illustrate how
to choose optimal trajectories of capital and consumption by
maximizing an objective function in a spatial Ramsey model
with continuous space. Industrial dynamics and economic
geography over time and space are considered in Capasso
et al. [10]. The relationship between the growth process and
stable spatially nonhomogenous distribution for per capital
and income is described by Xepapadeas and Yannacopoulos
[11]. Boucekkine et al. [12] prove the characterization of the
optimal dynamics in a spatial AK model across as a circle
and Fabbri [13] investigates the generalized model with AK
production function in a generic geographic structure. For
other studies of spatial economic growth model, the reader is
referred to [14–18] and the references therein.

The classical Solow model describes the evolution in
time of gross output which is based upon the input factors,
labor, capital, and technology (see [19]). In the Solow model,
there exist multiple steady states when production function
is not concave for any level of capital. Kamihigashi and Soy
[20] establish an optimal discrete time problem when an s-
shaped production function is assumed. Ferrara et al. [21]
discuss the stability of the classical Solow model with delay
and nonconvex technology. Brianzoni et al. [22] investigate
the dynamics of a discrete growth model with nonconcave
production function in local and global economy. Camacho

Hindawi
Discrete Dynamics in Nature and Society
Volume 2018, Article ID 6945032, 8 pages
https://doi.org/10.1155/2018/6945032

http://orcid.org/0000-0001-5668-9669
http://orcid.org/0000-0002-2071-4153
https://doi.org/10.1155/2018/6945032


2 Discrete Dynamics in Nature and Society

and Zou [23] illustrate the long-run structure for the spatial
distribution of the capital and the spatially homogeneous
steady state when capital movement is modeled by local
diffusion and spatial dynamics. Neto and Claeyssen [24]
consider the stability of a spatial Solow model with labor
mobility and prove that capital induced labor migration is
a necessary condition for the spatiotemporal dynamics of
the model. Capasso et al. [25] prove the steady state of the
classical Solow model with a nonconcave production func-
tion and analyze the convergence of a spatial Solow model
with technological diffusion. In our paper, we generalize the
classical Solow model in [25] and obtain the steady states
of the generalized Solow model in a geographic structure.
In open regions, we prove the existence and uniqueness of
solution for a partial differential equationwith corresponding
boundary conditions, which is different from convergence
analysis in [25].

Precisely, the aim of this paper is to investigate the steady
states of a generalized Solow model with both concave and
nonconcave production functions and obtain the asymptotic
properties of solutions for the model in continuous space and
bounded time. Using the monotonic property of functions,
we choose a function to show the steady state of the gen-
eralized Solow model with a concave production function.
When production function is not concave, we introduce a
nonconcave production function into the generalized Solow
model to get the existence of nontrivial equilibrium and
poverty traps. Our main contribution is to obtain the explicit
solution of an ordinary differential equation which expresses
the generalized Solow model in close regions and prove the
existence and uniqueness of solution for a partial differential
equation in open economy. The obtained result in our work
shows the asymptotic capital distribution across space.This is
different from those in [23], where solution of a spatial Solow
model is given in global economy. On the proof of existence
and uniqueness of solution for the generalized Solow model
in open economy, we apply an approach used in Boucekkine
et al. [8], in which a generalized Ramsey growth model is
investigated in global economy.

This paper is organized as follows. Section 2 states a
generalized Solow model with concave and nonconcave
production functions. We prove the existence of nontrivial
equilibrium and poverty traps when several conditions are
satisfied and get the time path of capital per effective worker
in close economic regions. Section 3 presents the generalized
Solow model in open economy and we obtain the existence
and uniqueness of the solution for the model. In Section 4,
we use numerical method to analyze the solution of the
corresponding partial differential equation with boundary
conditions by discretizing the space variable.Our conclusions
are presented in Section 5.

2. A Generalized Solow Model
in Autarkic Regions

2.1. Steady States of the Model with Concave and Nonconcave
Production Functions. Assume that there is only one final
good signed to be consumed or invested in one economy
market.The generalized Solowmodel describes the evolution

in time for gross output𝑌(𝑥, 𝑡)which depends upon the input
factors, labor 𝐿(𝑥, 𝑡), capital𝐾(𝑥, 𝑡), and technology𝐴(𝑥, 𝑡) at
work in location 𝑥 ∈ Ω. The typical mathematical expression
linking the input variable is

𝑌 (𝑥, 𝑡) = 𝐴 (𝑥, 𝑡) 𝐹 (𝐾 (𝑥, 𝑡) , 𝐿 (𝑥, 𝑡)) , (1)

where 𝐹 is a production function which is continuous and
twice differentiable. The usual production function satisfies
constant returns to scale or linear homogeneity, whichmeans
that the marginal products depend only on the ratio𝐾/𝐿. All
inputs satisfy

𝐹 (0, 𝐿) = 𝐹 (𝐾, 0) = 0. (2)

The evolution of the physical capital over time is described by
the following differential equation:

𝜕
𝜕𝑡𝐾 (𝑥, 𝑡) = 𝑌 (𝑥, 𝑡) − 𝐶 (𝑥, 𝑡) − 𝜂𝐾 (𝑥, 𝑡) , (3)

where the change of capital stock (𝜕/𝜕𝑡)𝐾(𝑥, 𝑡) is related to
the saved quantity after consumption𝐶(𝑥, 𝑡) and depreciation𝜂𝐾(𝑥, 𝑡). If a traction of the output is saved, we have

𝑌 (𝑥, 𝑡) − 𝐶 (𝑥, 𝑡) = 𝑠𝑌 (𝑥, 𝑡) . (4)

We rewrite (3) in the form

𝜕
𝜕𝑡𝐾 (𝑥, 𝑡) = 𝑠𝐴 (𝑥, 𝑡) 𝐹 (𝐾 (𝑥, 𝑡) , 𝐿 (𝑥, 𝑡)) − 𝜂𝐾 (𝑥, 𝑡) . (5)

Using a new variable 𝑘(𝑥, 𝑡) = 𝐾(𝑥, 𝑡)/𝐿(𝑥, 𝑡), we obtain
1𝐿 (𝑥, 𝑡)𝐹 (𝐾 (𝑥, 𝑡) , 𝐿 (𝑥, 𝑡)) = 𝐹 (𝑘 (𝑥, 𝑡) , 1) (6)

and
𝜕𝜕𝑡𝑘 (𝑥, 𝑡) = 𝜕𝜕𝑡 (𝐾 (𝑥, 𝑡)𝐿 (𝑥, 𝑡) )
= 𝐿 (𝑥, 𝑡) (𝜕/𝜕𝑡) 𝐾 (𝑥, 𝑡) − 𝐾 (𝑥, 𝑡) (𝜕/𝜕𝑡) 𝐿 (𝑥, 𝑡)𝐿2 (𝑥, 𝑡)
= 1𝐿 (𝑥, 𝑡)

𝜕𝜕𝑡𝐾 (𝑥, 𝑡) − 𝑛 (𝑥, 𝑡) 𝐾 (𝑥, 𝑡)𝐿 (𝑥, 𝑡) ,
(7)

where 𝑛(𝑥, 𝑡) = (1/𝐿(𝑥, 𝑡))(𝜕/𝜕𝑡)𝐿(𝑥, 𝑡) denotes the constant
growth rate of the labor input. From (5) and (7), we have the
following generalized Solow model:

𝜕
𝜕𝑡𝑘 (𝑥, 𝑡) = 𝑠𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑥, 𝑡)) − (𝜂 + 𝑛) 𝑘 (𝑥, 𝑡) , (8)

where 𝑓(𝑘(𝑥, 𝑡)) ≡ 𝐹(𝑘(𝑥, 𝑡), 1), 𝑛(𝑥, 𝑡) = 𝑛 and 𝑘(𝑥, 𝑡)
denotes the capital stock held by the representative household
located at 𝑥 and 𝑡, 𝑥 ∈ Ω ⊂ 𝑅, 𝑡 ≥ 0.

The hypothesis of a concave production function has
played a crucial role in many economic growth models
based on intertemporal allocation. It describes the maximum
output for all possible combinations of input factors and
determines the way that the economic model evolves in
time. Usually, a production function𝑓(𝑘) fulfills the so-called
Inada conditions (see [26]), if 𝑓(𝑘) satisfies the following
assumptions:
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(𝐴1) 𝑓(𝑘) is nonnegative, increasing, and concave;
(𝐴2) lim𝑘󳨀→0𝑓󸀠(𝑘) = +∞, lim𝑘󳨀→∞𝑓󸀠(𝑘) = 0, 𝑓(0) =0.

Condition (𝐴2) implies that the marginal productivity of
capital is only related to the distribution of the per capital
stock of capital. It is possible to get high returns when
one invests only a small amount of money. Obviously, this
is not realistic. Even if a basic structure is established for
production, onemight still get small returns when the returns
increase to the point where the law of diminishing returns
takes effect. This fact is known as poverty traps (see [27]).

By the change of capital per worker, or to bemore precise,
one conclusion of (8) shows that the capital per worker can
reach its steady state described in the following proposition.

Proposition 1. Assume that 𝐴(𝑥, 𝑡) = 1 and 𝑓(𝑘) is a concave
production function. At location 𝑥0 ∈ Ω, if 𝜂 + 𝑛 ∈ (0, 1) and𝑠 ∈ (0, 1), (8) has a unique steady state 𝑘 which is given by

𝑘 = 𝜑−1 (𝜂 + 𝑛𝑠 ) , (9)

where 𝜑(𝑘) = 𝑓(𝑘)/𝑘.
Proof. Equation (8) reaches its steady state if and only if

0 = 𝑠𝑓 (𝑘) − (𝜂 + 𝑛) 𝑘. (10)

Let

𝜑 (𝑘) = 𝑓 (𝑘)
𝑘 = 𝜂 + 𝑛

𝑠 . (11)

The function 𝜑 gives the output-to-capital ratio in the
economy. Since 𝑓 is continuous, decreasing, and satisfies the
Inada conditions, we have

𝜑󸀠 (𝑘) = 𝑓󸀠 (𝑘) 𝑘 − 𝑓 (𝑘)
𝑘2 = −𝐹𝐿𝑘2 (12)

and

𝜑 (0) = 𝑓󸀠 (0) = +∞,
𝜑 (∞) = 𝑓󸀠 (∞) = 0. (13)

Since 𝜑󸀠(𝑘) < 0, the function 𝜑(𝑘) ≡ 𝑓(𝑘)/𝑘 is a decreasing
function, which means that (11) has a solution and the
solution is unique. Therefore, the steady state of the economy
is unique and given by

𝑘 = 𝜑−1 (𝜂 + 𝑛𝑠 ) . (14)

Remark 2. The steady state of the economy in Proposition 1
can be described in other words. That is to say, if there is no
technological progress and exponential labor growth, the rate
of capital per worker is determined by three variables: saving
rate 𝑠, depreciation rate 𝜂, and growth rate of labor input 𝑛.
Moreover, the capital per worker increases whenever 𝑠𝑓(𝑘) >(𝜂 + 𝑛)𝑘 and decreases otherwise.

If 𝑓(⋅) is a Cobb-Douglas production function, that is,𝑓(𝑘) = 𝑘𝛼, the economy always converges to the so-called
steady state where the capital per capita is constant. Namely,
there is just enough money saved to cover the population
growth and the amount of capital lost through depreciation.
Thus, in the short term, the economy grows faster and both
the output per capita and the capital per capita increase. In
the long term, the economy tends to a new steady state and
the economic growth rate eventually is 𝑛 again. Moreover, the
saving rate has no effect on the growth rate of the economy.
Therefore, the main consequence of the spatial Solow model
is that the only way to obtain enduring economic growth is to
assume a nonconstant technological progress.

When 𝑓(⋅) is not concave for any level of capital, the
economy is history-dependent and the poverty traps exist in
the long-run structure. Using the similar method in [25], we
consider a nonconcave production function

𝑓 (𝑘) = 𝑘𝑝
𝛾1 + 𝛾2𝑘𝑝 , (15)

where all involved parameters are nonnegative and 𝑝 ≥ 2.
We focus on the existence of a poverty trap for (8) at

location 𝑥0 ∈ Ω. For simplicity, we assume 𝐴 = 1, 𝑠 ∈ (0, 1),
and 𝜂+𝑛 = 𝛿 ∈ (0, 1). If 𝑠𝑓(𝑘∗)−𝛿𝑘∗ = 0, we have a nontrivial
equilibrium 𝑘∗, with 𝑘∗ ̸= 0. That is,

𝑠 (𝑘∗)𝑝
𝛾1 + 𝛾2 (𝑘∗)𝑝 − 𝛿𝑘

∗ = 0. (16)

The following proposition states the existence of a poverty
trap if

𝛿 < 𝛿 = 𝑠 [𝛾1 (𝑝 − 1) /𝛾2](𝑝−1)/𝑝𝛾1𝑝 . (17)

Proposition 3. At location 𝑥0 ∈ Ω, if 𝛿 < 𝑠[𝛾1(𝑝 −1)/𝛾2](𝑝−1)/𝑝/𝛾1𝑝, (8) shows two nontrivial equilibria 𝑘∗1 and𝑘∗2 , with 𝑘∗1 < 𝑘∗2 . The economy is unstable at 𝑘∗1 while it is
stable at 𝑘∗2 .
Proof. From (16), we have

𝛿 = 𝑠 (𝑘∗)𝑝−1
𝛾1 + 𝛾2 (𝑘∗)𝑝 . (18)

Let 𝜑(𝑘) = 𝑠(𝑘)𝑝−1/(𝛾1 + 𝛾2(𝑘)𝑝). Using the basic notions of
calculus, when 𝜑󸀠(𝑘∗) = 0, we obtain the maximum of the
function𝜑(𝑘) at point 𝑘∗ = [𝛾1(𝑝−1)/𝛾2]1/𝑝.Then the optimal
value is

𝛿 = 𝜑 (𝑘∗) = 𝑠 [𝛾1 (𝑝 − 1) /𝛾2](𝑝−1)/𝑝𝛾1𝑝 . (19)

If 𝛿 < 𝛿, there exist two equilibria 𝑘∗1 and 𝑘∗2 , with 𝑘∗1 < [𝛾1(𝑝−1)/𝛾2]1/𝑝 < 𝑘∗2 . We come back to (16). Let

𝑔 (𝑘) fl 𝑠𝑘𝑝𝛾1 + 𝛾2𝑘𝑝 − 𝛿𝑘. (20)
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We have the first derivative of 𝑔, which is given by

𝑔󸀠 (𝑘) = 𝛾1𝑝𝑠𝑘𝑝−1
(𝛾1 + 𝛾2𝑘𝑝)2 − 𝛿. (21)

We verify that 𝑔󸀠(𝑘∗1 ) > 0 and 𝑔󸀠(𝑘∗2 ) < 0, which means that
the economy is unstable at 𝑘∗1 while it is stable at 𝑘∗2 .
Remark 4. Proposition 3 shows thatwhen the level of physical
capital surpasses the threshold 𝑘∗1 , it converges certainly to
a nontrivial steady state 𝑘∗2 , which is similar to those of the
classical Solow model in [25].

2.2. Asymptotic Analysis. Assume that all regions are closed
and there is are capital flows among the regions, which
means that real transfers of goods between regions cannot be
financed and there is no trade between regions. Furthermore,
a mathematical representation of the assumption is that all
locations have access to goods in modern economy (see [1]).
Since there are no arbitrage opportunities in an autarkic
region (see [5]), we write the regional balance equation as

∫
Ω
{𝜕𝑘 (𝑥, 𝑡)𝜕𝑡 − 𝑠𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑥, 𝑡)) + 𝜂𝑘 (𝑥, 𝑡)} 𝑑𝑥
= 0, ∀ (𝑥, 𝑡) ∈ Ω × [0, 𝑇] ,

(22)

wherewe assume 𝐿(𝑥, 𝑡) = 𝐿 for all 𝑡, which implies 𝑛 = 0 and
the capital stock depreciates at a fixed rate 𝜂. We set 𝑠 = 1 for
simplicity.The production function and the technology affect
the economic growth. According to the regional balance
equation, the instantaneous budget constraint of household
at 𝑥 ∈ Ω is written in the form
𝜕𝑘 (𝑥, 𝑡)𝜕𝑡 = 𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑥, 𝑡)) − 𝜂𝑘 (𝑥, 𝑡) ,

∀ (𝑥, 𝑡) ∈ Ω × [0, 𝑇] .
(23)

In addition to (23), we assume that the initial capital distribu-
tion 𝑘(𝑥, 0) is known and that there is no capital flow through
the boundary 𝜕Ω. Since there is no capital flow if the location
is far away from the origin, we have

lim
𝑥󳨀→+∞

𝜕𝑘 (𝑥, 𝑡)𝜕𝑥 = 0. (24)

We write the initial problem of (23) in the form

𝜕𝑘 (𝑥, 𝑡)𝜕𝑡 = 𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑥, 𝑡)) − 𝜂𝑘 (𝑥, 𝑡) ,
(𝑥, 𝑡) ∈ Ω × [0, 𝑇] ,

𝑘 (𝑥, 0) = 𝑘0 (𝑥) , 𝑥 ∈ Ω.
(25)

In order to present the solution of problem (25), we denote𝑘(𝑡)(𝑥) ≡ 𝑘(𝑥, 𝑡). Then, we have

𝑘𝑡 (𝑡) = 𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑡)) − 𝜂𝑘 (𝑡) ,
(𝑥, 𝑡) ∈ Ω × [0, 𝑇] ,

𝑘 (0) = 𝑘0, 𝑥 ∈ Ω,
(26)

where 𝑘𝑡(𝑡) = 𝑑𝑘(𝑡)/𝑑𝑡. Therefore, problem (26) is equivalent
to the standard one-dimensional Solow model.

Theorem 5. Suppose that 𝐴 is a positive constant. If 𝑓(𝑘(𝑡)) =𝑘𝛼(𝑡) is a Cobb-Douglas production function, there exists the
time path of capital per effective worker to (26).

Proof. By a change of variables 𝑤(𝑡) = 𝑘1−𝛼(𝑡), we transform
(26) into the following linear differential equation:

𝑤𝑡 (𝑡) + (1 − 𝛼) 𝜂𝑤 (𝑡) = (1 − 𝛼)𝐴. (27)

Using the knowledge of ordinary differential equation, we get
the mild solution (see [12]) of (27), which is given by

𝑤 (𝑡) = 𝑒(𝛼−1)𝜂𝑡𝑤 (0) + ∫𝑡
0
𝑒(𝑡−𝑠)(𝛼−1)𝜂 (1 − 𝛼) 𝐴𝑑𝑠

= 𝑒(𝛼−1)𝜂𝑡𝑤 (0) + (1 − 𝛼)𝐴𝑒(𝛼−1)𝜂𝑡 ∫𝑡
0
𝑒(1−𝛼)𝜂𝑠𝑑𝑠

= 𝑒(𝛼−1)𝜂𝑡𝑤 (0) + 𝐴𝜂 𝑒(𝛼−1)𝜂𝑡 [𝑒(1−𝛼)𝜂𝑡 − 1]
= 𝑒(𝛼−1)𝜂𝑡 (𝑤 (0) − 𝐴𝜂 ) + 𝐴𝜂 .

(28)

Combining the initialization 𝑤(0) = 𝑘1−𝛼(0) into (28), we
obtain

𝑘 (𝑡) = [(𝑘1−𝛼 (0) − 𝐴𝜂 ) 𝑒(𝛼−1)𝜂𝑡 + 𝐴𝜂 ]
1/(1−𝛼) , (29)

which shows the time path of capital per effective worker in
autarkic regions.

Remark 6. Assume that 𝑟 is an exogenous interest rate with𝜆 = 𝑟 + 𝜂. We get the lifetime budget constraint expressed in
present discounted value form for agent if (23) is multiplied
by 𝑒−𝑟𝑡. Assume that all debts are required to be paid off.
Integrating over 𝑡 from 𝑡 = 0 to∞, we obtain a reformulation
of the instantaneous budget constraint in the static form

∫∞
0
𝑒−𝑟𝑡 {𝑘0 + 𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑥, 𝑡)) − 𝜆𝑘 (𝑥, 𝑡)} 𝑑𝑡 = 0. (30)

Remark 7. Equation (30) shows an investment optimiza-
tion problem which is required to characterize the spatial
structure of the capital stock. When there exists quadratic
adjustment cost denoted by (𝛼/2)[𝜕𝑘(𝑥, 𝑡)/𝜕𝑡]2 and 𝐴(𝑥, 𝑡) =1, Brock et al. [28] investigates the following investment
optimization problem:

max
𝑘󸀠(𝑥,⋅)

∫∞
0
𝑒−𝑟𝑡 {𝑓 (𝑘 (𝑥, 𝑡) , 𝑘𝑒 (𝑥, 𝑡)) − 𝜆𝑘 (𝑥, 𝑡)

− 𝛼2 [𝜕𝑘 (𝑥, 𝑡)𝜕𝑡 ]2}𝑑𝑡, ∀𝑥 ∈ Ω,
(31)

where 𝑘𝑒(𝑥, 𝑡) denotes the geographical spillovers.



Discrete Dynamics in Nature and Society 5

3. A Generalized Solow Growth
Model in Open Regions

When capital and goods flow among open regions and
there are no (intertemporal) adjustment costs, the aggregate
balance equation for region Ω becomes

∫
Ω
{𝜕𝑘 (𝑥, 𝑡)𝜕𝑡 − 𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑥, 𝑡)) + 𝜂𝑘 (𝑥, 𝑡)
+ 𝑖 (𝑥, 𝑡)} 𝑑𝑥 = 0,

(32)

where 𝑖(𝑥, 𝑡) ̸= 0 is the household’s net trade balance of
household 𝑥 at time 𝑡. The trade is matched by reallocations
of capital among regions in a centralized economy. When a
decentralized equilibrium is set, we assume that there exists
an interspatial capital market where stocks are traded. From
(32), for a region Ω, the budget constraint follows
𝜕𝑘 (𝑥, 𝑡)𝜕𝑡 = 𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑥, 𝑡)) − 𝜂𝑘 (𝑥, 𝑡) − 𝑖 (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ Ω × [0, 𝑇] .
(33)

In order to eliminate interregional arbitrage opportunities,
we consider that capital always flows from regions with low
marginal productivity of capital to regionswith highmarginal
productivity of capital. Since 𝑖(𝑥, 𝑡) is symmetry of capital
account balance, when there are no institutional barriers to
capital flows and the regions are internally homogeneous, the
current account balance 𝑖(𝑥, 𝑡) is measured by the symmetry
of the difference of capital intensities with the adjacent
regions

∫
Ω
𝑖 (𝑥, 𝑡) 𝑑𝑥 = −[𝜕𝑘 (𝑥𝑖 + Δ𝑥𝑖, 𝑡)𝜕𝑥 − 𝜕𝑘 (𝑥𝑖, 𝑡)𝜕𝑥 ]

= −∫𝑥𝑖+Δ𝑥𝑖
𝑥𝑖

d𝑑𝑥 (𝜕𝑘𝜕𝑥) 𝑑𝑥
(34)

See [8], that is,

𝑖 (𝑥, 𝑡) = − 𝑑𝑑𝑥 (𝜕𝑘𝜕𝑥)
= − lim
Δ𝑥󳨀→0

𝑘𝑥 (𝑥 + Δ𝑥, 𝑡) − 𝑘𝑥 (𝑥, 𝑡)Δ𝑥
= −𝜕2𝑘 (𝑥, 𝑡)𝜕𝑥2 .

(35)

Substituting (35) into (32), we have

∫
Ω
{𝜕𝑘 (𝑥, 𝑡)𝜕𝑡 − 𝜕2𝑘 (𝑥, 𝑡)𝜕𝑥2 − 𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑥, 𝑡))

+ 𝜂𝑘 (𝑥, 𝑡)} 𝑑𝑥 = 0
(36)

for ∀𝑡 ≥ 0.

If we assume that the space interval is sufficiently large
and there is no capital flow, we have the following Neumann
boundary condition:

𝜕𝑘𝜕𝑥 (𝑥, 𝑡) = 0, 𝜕Ω × [0, 𝑇] . (37)

Then, the budget constraint (36) is written in the form

𝜕𝑘 (𝑥, 𝑡)𝜕𝑡 − 𝜕2𝑘 (𝑥, 𝑡)𝜕𝑥2 = 𝐴 (𝑥, 𝑡) 𝑓 (𝑘 (𝑥, 𝑡))
− 𝜂𝑘 (𝑥, 𝑡) , Ω × [0, 𝑇] ,

𝜕𝑘𝜕𝑥 = 0, 𝜕Ω × [0, 𝑇] ,
𝑘 (𝑥, 0) = 𝑘0 (𝑥) > 0, 𝑥 ∈ Ω.

(38)

System (38) describes the distribution of capital for the
generalized Solow model in open economic regions. In
recent economic analysis, Boucekkine et al. [8] consider the
solutions of a generalized Ramsey growth model in global
economy. Following the method of [8], we investigate the
existence and uniqueness of solution for system (38) in the
next theorem.

Theorem 8. Suppose (𝐴1) and (𝐴2) hold. For any given finite𝑇, if there exist positive constants 𝑎 and 𝑏 with 0 < 𝑘0(𝑥) <𝑎𝑒𝑏|𝑥2|, then, problem (38) has a unique solution 𝑘(𝑥, 𝑡) ∈𝐶2,1(Ω × [0, 𝑇]), which is given by

𝑘 (𝑥, 𝑡) = ∫
Ω
𝑘0 (𝜉) 𝐺 (𝑥, 𝜉, 𝑡) 𝑑𝜉

+ ∫𝑡
0
∫
Ω
(𝐴𝑓 (𝑘 (𝜉, 𝜏)) − 𝜂𝑘 (𝜉, 𝜏))

⋅ 𝐺 (𝑥, 𝜉, 𝑡 − 𝜏) 𝑑𝜉 𝑑𝜏,
(39)

where

𝐺 (𝑥, 𝜉, 𝑡) = {{{{{
1

2√𝜋𝑡 exp [−
(𝑥 − 𝜉)24𝑡 ] , 𝑡 > 0,

0, 𝑡 ≤ 0. (40)

Proof. Defining a sequence {𝑘(𝑛)}, 𝑛 ≥ 1, we have the
following iteration process:

Λ𝑘(𝑛) = 𝑘(𝑛)𝑡 − 𝑘(𝑛)𝑥𝑥
= 𝐴𝑓 (𝑘(𝑛−1) (𝑥, 𝑡)) − 𝜂𝑘(𝑛−1) (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ Ω × [0, 𝑇] ,
𝑘(𝑛) (𝑥, 0) = 𝑘0 (𝑥) , 𝑥 ∈ Ω,

(41)
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where 𝑘(0)(𝑥, 𝑡) = 𝑘0(𝑥). According to Theorem 7.1.1 in [29],
we get a unique solution sequence {𝑘(𝑛)} ∈ 𝐶2,1(𝑅 × [0, 𝑇]),
which is given by

𝑘(𝑛) (𝑥, 𝑡) = ∫𝑡
0
∫
Ω
(𝐴𝑓 (𝑘(𝑛−1) (𝜉, 𝑡)) − 𝜂𝑘(𝑛−1) (𝜉, 𝑡))

⋅ 𝐺 (𝑥, 𝜉, 𝑡 − 𝜏) 𝑑𝜉 𝑑𝜏 + ∫
Ω
𝑘0 (𝜉) 𝐺 (𝑥, 𝜉, 𝑡) 𝑑𝜉,

(42)

where 𝐺(𝑥, 𝜉, 𝑡) is the fundamental solution to the parabolic
operator Λ and given by

𝐺 (𝑥, 𝜉, 𝑡) = {{{{{
1

2√𝜋𝑡 exp [−
(𝑥 − 𝜉)24𝑡 ] , 𝑡 > 0,

0, 𝑡 ≤ 0. (43)

Moreover, for each 𝑛, the solution satisfies the following
growth condition:

󵄨󵄨󵄨󵄨󵄨𝑘(𝑛)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑀𝑒𝛽|𝑥|2 , 𝑥 󳨀→ ±∞, (44)

where 𝑀 and 𝛽 are positive constants (see [30]). Since the
sequence starts from 𝑘0 and 𝑀 does not depend on 𝑛, we
obtain an estimate of the solution

󵄨󵄨󵄨󵄨󵄨𝑘(𝑛)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑀1𝑒𝛽1|𝑥|2 , (𝑥, 𝑡) ∈ Ω × [0, 𝑇] (45)

for positive constants𝑀1 and𝛽1 .Then, there is a subsequence𝑘(𝑛𝑗) which converges to a function 𝑘̃ ∈ 𝐶2,1(Ω × [0, 𝑇]) and
satisfies

󵄨󵄨󵄨󵄨󵄨𝑘̃󵄨󵄨󵄨󵄨󵄨 ≤ 𝑀2𝑒𝛽2|𝑥|2 , (𝑥, 𝑡) ∈ Ω × [0, 𝑇] , (46)

where 𝑀2 and 𝛽2 are positive constants. Following the
uniqueness of the solution to the linear equation, we know
that the whole sequence converges to the function 𝑘̃. In (42),
when 𝑛 󳨀→ ∞, taking the limit on both sides, we obtain that

𝑘̃ (𝑥, 𝑡) = ∫
Ω
𝑘0 (𝜉) 𝐺 (𝑥, 𝜉, 𝑡) 𝑑𝜉

+ ∫𝑡
0
∫
Ω
(𝐴𝑓 (𝑘̃ (𝜉, 𝑡)) − 𝜂𝑘̃ (𝜉, 𝑡))

⋅ 𝐺 (𝑥, 𝜉, 𝑡 − 𝜏) 𝑑𝜉 𝑑𝜏
(47)

is the solution of problem (38) for (𝑥, 𝑡) ∈ Ω × [0, 𝑇].
4. Numerical Method

In this section, numerical method is used to analyze problem
(38). Following the idea of Capasso et al. [25], we make
problem (38) dimensionless by choosing a characteristic time𝑡̃ and a characteristic space 𝑥 with 𝑡̃ = 𝑡/𝜏 and 𝑥 = 𝑥/𝜒.
Considering our model on the interval [0, 𝐿] with 𝜒 = 𝐿 as
the characteristic space quantity, we get 𝑥 ∈ [0, 1]. Similarly,
we assume 𝜏 = 𝜂−1 on the time interval [0, 𝑇], where the

end point 𝑇 is a characteristic time. Introducing 𝑡̃ and 𝑥 into
problem (38), we get

𝜂𝜕𝑢𝜕𝑡̃ (𝑥, 𝑡̃) −
1𝐿2 𝜕
2𝑢𝜕𝑥2 (𝑥, 𝑡̃)

= 𝐴 (𝑥, 𝑡̃) 𝑓 (𝑢 (𝑥, 𝑡̃)) − 𝜂𝑢 (𝑥, 𝑡̃) ,
(48)

where 𝑢(𝑥, 𝑡̃) = 𝑘(𝑥, 𝑡̃). For convenience, we rename the
characteristic dimensions 𝑥 and 𝑡̃ as 𝑥 and 𝑡. Then, (48)
becomes

𝜕𝑢 (𝑥, 𝑡)𝜕𝑡 − 1𝜂𝐿2 𝜕
2𝑢 (𝑥, 𝑡)𝜕𝑥2

= 𝐴 (𝑥, 𝑡)𝜂 𝑓 (𝑢 (𝑥, 𝑡)) − 𝑢 (𝑥, 𝑡) .
(49)

We introduce an equidistant grid on the region Ω = [0, 1] to
discretize the space variable (see [31]), that is,

0 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑁 = 1 (50)

with 𝑥𝑗 = 𝑗ℎ, for ℎ = 1/𝑁, and 𝑗 = 0, . . . , 𝑁.
Using classical difference quotient, we replace the second

order space derivative by the following form:

𝜕2𝑢𝑗𝜕𝑥2 (𝑡) ≈ 1ℎ2 [𝑢𝑗+1 (𝑡) − 2𝑢𝑗 (𝑡) + 𝑢𝑗−1 (𝑡)] . (51)

From (49), we get the semidiscrete form of (38) in the form

𝜕𝑢𝑗𝜕𝑡 (𝑡) − 1ℎ2𝜂𝐿2 [(𝑢𝑗+1 (𝑡) − 2𝑢𝑗 (𝑡) + 𝑢𝑗−1 (𝑡))]

= 𝐴𝑗 (𝑡)𝜂 𝑓 (𝑢𝑗 (𝑡)) − 𝑢𝑗 (𝑡) ,
(52)

for 𝑗 = 1, . . . , 𝑁 − 1, where 𝑢𝑗(𝑡) ≈ 𝑢(𝑥𝑗, 𝑡), 𝐴𝑗(𝑡) ≈ 𝐴(𝑥𝑗, 𝑡).
We approximate the boundary condition of (38) by

𝑢1 (𝑡) − 𝑢0 (𝑡)ℎ = 0,
𝑢𝑁 (𝑡) − 𝑢𝑁−1 (𝑡)ℎ = 0.

(53)

Then, we have

𝑢1 (𝑡) = 𝑢0 (𝑡) ,
𝑢𝑁 (𝑡) = 𝑢𝑁−1 (𝑡) . (54)

Defining the matrix 𝐵 ∈ 𝑅(𝑁+1)×(𝑁+1)

𝐵 = 1ℎ2 ×

[[[[[[[[[[[[[[
[

−2 1
1 −2 1 0

1 −2 1
d d d

1 −2 1
0 1 −2 1

1 −2

]]]]]]]]]]]]]]
]

(55)
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and the vectors

𝑈ℎ (𝑡) = (𝑢𝑗 (𝑡)) ,
𝐹ℎ (𝑈ℎ (𝑡)) = 𝑓 (𝑢𝑗 (𝑡)) ,

𝑗 = 0, . . . , 𝑁,
(56)

we rewrite (52) in the form

𝑑𝑈ℎ𝑑𝑡 (𝑡) − 1𝜂𝐿2𝐵𝑈ℎ (𝑡) = 𝐴 (𝑡)𝜂 𝐹ℎ (𝑈ℎ (𝑡)) − 𝑈ℎ (𝑡) . (57)

In order to obtain the time discretization, we choose a grid
on the interval [0, 𝑇] by 𝑡𝑘 = 𝜏𝑘, where 𝜏 = 𝑇/𝑚 and 𝑘 =0, . . . , 𝑚, and denote the values by approximating𝑈ℎ(𝑡) at the
discrete point of time. Using a backward difference quotient,
we approximate the time derivative in the form

𝑑𝑈ℎ,𝜏𝑑𝑡 (𝑡𝑘) ≈ 1𝜏 (𝑈ℎ,𝜏 (𝑡𝑘) − 𝑈ℎ,𝜏 (𝑡𝑘−1)) . (58)

Then, we obtain

[𝑈ℎ,𝜏 (𝑡𝑘) − 𝑈ℎ,𝜏 (𝑡𝑘−1)] − 𝜏𝜂𝐿2𝐵𝑈ℎ,𝜏 (𝑡𝑘)

= 𝜏𝐴𝑗 (𝑡𝑘)𝜂 𝐹ℎ (𝑈ℎ,𝜏 (𝑡𝑘)) − 𝜏𝑈ℎ,𝜏 (𝑡𝑘) ,
(59)

that is,

𝑈ℎ,𝜏 (𝑡𝑘) + 𝜏𝑈ℎ,𝜏 (𝑡𝑘) − 𝜏𝜂𝐿2𝐵𝑈ℎ,𝜏 (𝑡𝑘)

= 𝜏𝐴𝑗 (𝑡𝑘)𝜂 𝐹ℎ (𝑈ℎ,𝜏 (𝑡𝑘)) + 𝑈ℎ,𝜏 (𝑡𝑘−1) .
(60)

Defining

𝐹󸀠ℎ (𝑈ℎ,𝜏 (𝑡𝑘)) = diag(𝑑𝑓𝑑𝑢 (𝑢𝑗 (𝑡𝑘))) , (61)

where

𝑓 (𝑢𝑗 (𝑡𝑘)) ≈ 𝑓 (𝑢𝑗 (𝑡𝑘−1))
+ 𝑑𝑓
𝑑𝑢 (𝑢𝑗 (𝑡𝑘−1)) (𝑢𝑗 (𝑡𝑘) − 𝑢𝑗 (𝑡𝑘−1))

(62)

for all 𝑗 = 0, . . . ,𝑁 and 𝑘 = 1, . . . , 𝑚,
we write (60) in the form

[𝐼 + 𝜏𝐼 − 𝜏
𝜂𝐿2𝐵 −

𝜏𝐴𝑗 (𝑡𝑘)𝜂 𝐹󸀠ℎ (𝑈ℎ,𝜏 (𝑡𝑘−1))]𝑈ℎ,𝜏 (𝑡𝑘)

= 𝜏𝐴𝑗 (𝑡𝑘)𝜂 [𝐹ℎ (𝑈ℎ,𝜏 (𝑡𝑘−1))
− 𝐹󸀠ℎ (𝑈ℎ,𝜏 (𝑡𝑘−1)) 𝑈ℎ,𝜏 (𝑡𝑘−1)] + 𝑈ℎ,𝜏 (𝑡𝑘−1) ,

(63)

where 𝐼 ∈ 𝑅𝑁+1×𝑁+1 is the identity matrix. From (63), we
obtain

𝑈ℎ,𝜏 (𝑡𝑘) = 𝐵−1𝐷, (64)

where

𝐵 = 𝐼 + 𝜏𝐼 − 𝜏𝜂𝐿2𝐵 −
𝜏𝐴𝑗 (𝑡𝑘)𝜂 𝐹󸀠ℎ (𝑈ℎ,𝜏 (𝑡𝑘−1)) (65)

and

𝐷 = 𝜏𝐴𝑗 (𝑡𝑘)𝜂 [𝐹ℎ (𝑈ℎ,𝜏 (𝑡𝑘−1))
− 𝐹󸀠ℎ (𝑈ℎ,𝜏 (𝑡𝑘−1)) 𝑈ℎ,𝜏 (𝑡𝑘−1)] + 𝑈ℎ,𝜏 (𝑡𝑘−1) .

(66)

5. Conclusions

In this paper, we have investigated a generalized Solow
model with continuous space and bounded time. Introduc-
ing concave and nonconcave production functions into the
generalized Solow model in close regions, we get the steady
states of the model when several conditions are satisfied.
The asymptotic properties of solutions for the generalized
Solow model are proved. We obtain the explicit time path of
capital per effective worker by solving an ordinary differential
equation in close regions and prove the existence and unique-
ness of the solution for the generalized Solow model in open
regions. The obtained results show the asymptotic capital
distribution across space. Discretizing the space variable,
we employ numerical method for the system of partial
differential equation to justify the validity of the theoretical
analysis.
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Based on the real situation of telecom industry in China, we establish a triopoly game model, which includes two competitive
telecomfirms and their correlative corporationwhich produces the complementary product. Both freemarket and bundlingmarket
will be concerned in this dynamic model. Moreover, we consider a one-to-many bundling way instead of two complementary
products in terms of the proportion of one to one in a bundling product. By numerical simulation, we find that stable space will
decrease and decision chaos appearswhen the degree of the competition becomes fierce between the two competitive telecomfirms.
Besides, increasing the amount of bundling services provided by a telecom firm can lead to different impacts on the prices of the
three firms investigated. This paper enriches the decision-making for the strategy of bundling pricing and will be valuable for the
telecom operators.

1. Introduction

As a formofmarketing activity, bundling sales arewidespread
in operations. Since this kind of behavior may increase sales
and profits, many large enterprises even small businesses
should consider adopting bundling sales strategy. The form
of bundling sell is varied, like bundling pricing, exchanging
prizes, presenting the prizes, etc. It is worth noting that the
phenomenon of bundling pricing not only occurs between
tangible products but may also happen to service products;
the telecommunications companies sell smart phone with
their own service packages, for instance.

In this paper, we focus on two kinds of bundling products
provided by two competitive oligarchies of telecom industry
in China and their important partner, Apple Inc. The two
telecom companies are China Mobile Communications Cor-
poration (CMCC, for short) and China Union Communica-
tion Corporation (CUCC, for short). CMCC constitutes the
majority of market share and CUCC, which also has a large
market share, firstly collaborates with Apple. Both of them
cooperate with Apple by the best-selling iPhone. As a high-
end product in the smart phone market, iPhone, compared
with other cheaper mobile phones, could be bundled with
more communication services provided by the telecom firms.

On the other hand, many customers prefer to choose a pack-
age including more services instead of a package including
fewer services, because the discount would become deeper
under the former situation. As Table 4 shows, an extreme
case is that when customers choose CUCC's bundling service
package 9, which has numerous services, the price of the
iPhone seems to reduce to zero. It is no doubt that this is a
stratagem for attracting customers. Since each of the three
firms has their own channel for marketing, we also consider
three free markets.

Anyhow, the essence of bundling pricing is stimulating
the demand according to the discount. Therefore, we con-
centrate on how the discounts provided by the three firms
severally or the different degree of competition between the
two telecomfirms impacts the stabilitymargin in the dynamic
model. In our gaming system, a linear demand function and
a constant marginal cost are supposed. In order to conform to
the actual situation, we investigated all the data of the service
packages for the assignment of the parameters.

2. Literature Review

Based on game theory and rank-dependent utility theory,
Tan et al. [1] studied an incomplete information Cournot

Hindawi
Discrete Dynamics in Nature and Society
Volume 2018, Article ID 5720392, 11 pages
https://doi.org/10.1155/2018/5720392

http://orcid.org/0000-0002-0827-5143
http://orcid.org/0000-0001-6791-8383
http://orcid.org/0000-0002-5445-0440
https://doi.org/10.1155/2018/5720392


2 Discrete Dynamics in Nature and Society

game in an ambiguous decision environment, and they found
players decision-making is affected by their behavioral char-
acteristics and psychological preference. Many researchers
have contributed much to the field of dynamic system
and dynamic system bifurcation and chaos theory. Li and
Chen[2] investigated some new nonlinear equations which
have exact explicit parametric representations of break-
ing loop-solutions. Aziz-Alaoui and Chen [3] researched
a new piecewise-linear continuous-time three-dimensional
autonomous chaotic system and briefly discussed its complex
chaotic dynamics. Zelinka et al. [4] introduced the notion
of chaos synthesis and developed a new method for chaotic
systems synthesis.

With the consideration of mixed bundling pricing and
decision research, Shao and Li [5] studied the bundling and
product strategy involving the channel competition, and they
found that the retailer preferred the bundling strategy in two
channel competitions. Under the consideration of the price
bundle offers in the telecommunications industry, Le et al.
[6] introduced a Bayesian game model. They investigated
the case where operators propose substitutable offers and
compete for customers, in order to maximize the operator's
revenue. Based on game theory, Ma and Mallik [7] pointed
out that, under themanufacturer bundling scenario, theman-
ufacturer would not provide the full product line composed
of the basic product, the premium product, and the bundle.
Pan and Zhou [8] established a two-layer supply chain with
bundling and pricing decisions and found that the manufac-
turer could earn more if he sells complementary products
separately. Mantovani and Vandekerckhove [9] researched
the strategies of merging and bundling decisions and showed
that bundle strategy could not benefit the consumers because
it brings surge in prices in their model. By calculating,
R. et al. [10] discussed the optimal bundling and pricing.
Chen and Wang [11] researched the pricing policies, subsidy
policies, and channel selection policies of different power
supply chain structures. In the perspective of the mergers
producer, Gaudet and Salant [12] compared the profits of
firms under different circumstances. Martin [13] studied the
price pooling equilibriumunder various conditions that firms
produce strategic substitutes or strategic complements. Dilip
and John [14] figured out that the price bundling as a usual
marketing action could result in the diminution of demand.
In the field of decision research, Li and Liu [15] studied the
coordination of supply chain between a supplier and a retailer
with price and sales effort dependent demand.

With the rise of bifurcation and chaos theory, many
scholars have been interested in combining the theories to
the game in the domain of economy. Agiza and Elsadany
[16] built a nonlinear discrete-time duopoly game assuming
the oligarchies have heterogeneous expectations. With the
discussion of a 6-dimension dynamical system, Ma and Wu
[17] described a triopoly game with two products. They
investigated the impacts of the adjustment parameter and the
reform of flexible manufacturing could decrease fluctuation
risk caused by the instability in multiproduct market. By
applying continuation theorem in their research, Wang et
al. [18] obtained the sufficient conditions of the existence

of positive periodic solutions of a predator-prey system and
improved themethods of computation on topological degree.
Besides, Yassen and Agiza [19] proposed a delayed bounded
rationality model and figured out that the stability region
of the model with bounded rationality is reduced when
the competitors use different production methods. Bischi
et al. [20] showed a dynamic game model and discussed
the question of whether the economic hypothesis of the
“representative agent” may sometimes impact the results of
research. Sarafopoulos [21] conducted the study of a duopoly
game which proposes one player has limited rationality
and the other uses adaptive expectations. By studying a
triopoly price game model, Ma and Wu [22] found the
result that the number of time-delay decision makers has
no obvious relationship with stability of the system. Based
on the Cournot-Bertrand duopoly model, Ma and Pu [23]
studied the stability of the system and found only one Nash
equilibrium point after calculation. They also showed the
bifurcation diagram which could exhibit the behaviors of
the system. Elsadany et al. [24] derived a dynamic system
with four various firms and indicated that applying a delayed
feedback control method can get the stabilization of the
chaos. Srivastava and Srivastava [25] confirmed the FACTS
devices could regulate the dynamic bifurcations and chaos
effectively. Considering a nonlinear cost function, Du et al.
[26] investigated the effects of upper and lower limiter on a
duopoly game. By establishing a game model which relates
to the power market, Tan et al. [27] analyzed the dynamic
behaviors in different market parameters and found that the
chaos could be controlled to the stable equilibrium point with
the time-delayed feedback control method. As to building
two different game models, Ma and Guo (2016) investigated
the effect of information on the stability. As to building a
Cournot model, Ma and Guo [28] investigated a game whose
player's decision was based on his estimation. According to
the research done by Yue et al. (2016), a point of view that
information sharing may not be beneficial to the firms all
through is presented. Ma and Ma [29] established a model
and found that market competition could lead to bullwhip
effect in a supply chain.

In the field of dynamic game, many authors have investi-
gated the products bundled in terms of putting one product
A to another product B in a package. However, the reality is
often not the ratio of one to one. Therefore, we construct a
model in which bundling products accord with ways of one-
to-many. Furthermore, our research not only investigates the
behavior of bundling pricing but also considers a competition
between twomonopolies.This initiate consideration enriches
the previous studies of bundling pricing and makes the game
more realistic.

After the literature review in Section 2, the remaining part
of this paper is divided into four sections. Section 3 describes
a new-type game model including five subdivided markets,
with the consideration of bundling pricing. Besides, we figure
out theNash equilibrium. In Section 4, we do somenumerical
experiments and analyze the results of the experiments from
the perspective of chaos and complexity. Finally, Section 5 is
the conclusion of this paper.
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3. The Model

3.1. The Assumptions

(a) Assumption. We suppose the market demand is
divided into five sections, which is shown in Figure 1.
Here, markets A, B, and C represent the market of
CMCC’s product, the market of CUCC's product, and
themarket of iPhone separately, and the threemarkets
only have their own products without bundling pric-
ing. Besides, markets AC and BC, respectively, mean
the market of bundling product, which is a CMCC’s
product or a CUCC’s product bundled a new iPhone
7. Customers would only buy products from the three
free markets, like markets A, B, and C, or buy the
bundling product in the bundling market, like market
AC and market BC.

(b) Assumption.As shown inTables 1 and 2, the details of
the service packages already fixed by the two telecom
companies are presented. We consider the customers
only decide which service package to choose, instead
of thinking more about the costs incurred by the
service out of the package.

(c) Assumption. We assume the period of a service is a
month. By the exhibition of Tables 1–4, we define both
of the service packages, which are CM 1 and CU 1, as
a unit of service, which includes 100 minutes’ call and
500Mdata plan.Thus, the amount of the other service
packages is𝑚

𝑖
or 𝑛
𝑖
(𝑚
𝑖
, 𝑛
𝑖
are constants not less than

1) times as the quantity of the CM 1 or CU 1. We
assume the amount of the services offered in market
AC (or BC) is m (or n), which is the expectation
of 𝑚
𝑖
(or 𝑛
𝑖
). In the same manner, the discounts of

the two bundling products are 𝜇𝑖
1
and 𝜇𝑖

2
, and their

expectations are 𝜇
1
and 𝜇

2
.

(d) Assumption.Theprice of the two telecomfirms refers
to the price of a unit of service in one month. We
also assume the price of the iPhone 7 equals the real
price divided by 24, because of the research period in
contrast of the services. All markets use the price list
as Tables 1 and 2 show.

(e) Assumption. In order to make the research feasible,
we assume that all the discounts of the iPhone 7,
which is bundled with one of the service packages
in the two bundling markets, are the same since
the exact discounts for the telecom firms are trade
secret. Because of playing a leading role, we assume
the discount of the iPhone 7 is a fixed value, 0.84,
according to the price of the phone in Table 4, CU 1.

(f) Assumption. Each of the three companies adjusts
their price every period under the bounded rational-
ity, in order to maximize their own profits.

3.2. Variable Enactment. A series of specification and vari-
ables in this Bertrand game model will be enacted in this
section: 𝑝

𝑖
(𝑡) (𝑖 = 1, 2, 3) are the definitions for the three

products per unit made by the three companies in the period

Figure 1: The structure of the model.

of t. 𝑞𝐴
1
(𝑡), 𝑞𝐵
2
(𝑡), and 𝑞𝐶

3
(𝑡) are the demands of products

provided by CMCC and CUCC and the demands of iPhone
7 in markets A, B, and C severally during the period of t. The
linear demand functions are as follows:

𝑞𝐴
1
(𝑡) = 𝑎

1
− 𝑏
1
𝑝
1 (𝑡) + 𝑑

1
𝑝
2 (𝑡) . (1)

𝑞𝐵
2
(𝑡) = 𝑎2 − 𝑏2𝑝2 (𝑡) + 𝑑2𝑝1 (𝑡) . (2)

𝑞𝐶
3
(𝑡) = 𝑎

3
− 𝑏
3
𝑝
3 (𝑡) (3)

where 𝑎
𝑖
(𝑖 = 1, 2, 3) are the positive parameters of potential

demand in markets A, B, and C, on condition that the firms
fix their prices to zero. And, then, 𝑏

𝑖
(𝑖 = 1, 2, 3) reflect the

self-price sensitive coefficients for the three kinds of products.
Besides, 𝑑

𝑖
(𝑖 = 1, 2, 3) are denoted as the mutual product

substitution ratios between the two telecom firms.
And, then, the parameters 𝑞𝐴𝐶

3
(𝑡) and 𝑞𝐵𝐶

3
(𝑡) mean the

demands of iPhone 7 in market AC and in market BC,
respectively, during the period of t. The demand functions in
bundling markets are given as

𝑞𝐴𝐶
3

(𝑡) = 𝑎
31

− 𝑏
31
𝜇𝑝
3 (𝑡) − 𝑏

31
𝑟
31
𝜇
1
𝑝
1 (𝑡) . (4)

𝑞𝐵𝐶
3

(𝑡) = 𝑎
32

− 𝑏
32
𝜇𝑝
3 (𝑡) − 𝑏

32
𝑟
32
𝜇
2
𝑝
2 (𝑡) (5)

where the positive parameters 𝑎
3𝑖
(𝑖 = 1, 2) are the potential

demand for the CMCC’s bundling product and the CUCC's
bundling product from markets AC and BC. And 𝑏

3𝑖
(𝑖 =1, 2), which are greater than zero, are the self-price sensitive

coefficients for the two bundling products. The parameters𝜇, 𝜇
1
, and 𝜇

2
denote the discount given by the three firms.

The positive constants 𝑟
3𝑖
(𝑖 = 1, 2) are the complementarity

degree between two products and 𝑏
3𝑖
𝑟
3𝑖
(𝑖 = 1, 2) are the

cross-price sensitive coefficients.
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Table 1: The price list of CMCC.

service package call plan (min) data plan (M) price of service package (RMB) 𝑚𝑖
CM 1 100 500 58 1.00
CM 2 220 700 88 1.58
CM 3 500 1000 138 2.67
CM 4 500 2000 158 4.22
CM 5 1000 2000 238 5.35
CM 6 1000 3000 268 6.90
CM 7 2000 3000 338 9.15
CM 8 4000 6000 588 18.29

Table 2: The price list of CUCC.

service package call plan (min) data plan (M) price of service package (RMB) 𝑛
𝑖

CM 1 100 500 56 1.00
CM 2 200 800 76 1.67
CM 3 300 1000 106 2.19
CM 4 500 1000 136 2.56
CM 5 500 2000 166 4.19
CM 6 500 3000 196 5.81
CM 7 1000 4000 296 8.37
CM 8 2000 6000 396 13.5
CM 9 3000 11000 596 23.5

Table 3: Details of the service package offered by CMCC.

service package CM 1 CM 2 CM 3 CM 4 CM 5 CM 6 CM 7 CM 8
service price in the
actual situation

58 88 138 158 238 268 338 588

price of the phone
in bundling
product

5388 5388 5388 5388 5388 5388 5388 5388

price of the phone
after mathematic
transaction

4540 4540 4540 4540 4540 4540 4540 4540

gift calls 348 528 828 948 1428 1608 2028 3528
service price after
mathematic
transaction

78.8 101.3 138.8 153.8 213.8 236.3 288.8 476.3

total cost 6432 6972 7872 8232 9672 10212 11472 15972
price ratio (𝑝𝑀

𝑟𝑖
) 1.0 1.29 1.76 1.95 2.71 3.00 3.66 6.04𝑚

𝑖
1.0 1.6 2.7 4.2 5.3 6.9 9.1 18.3𝜇𝑖

1
1.00 0.81 0.66 0.46 0.51 0.43 0.40 0.33

In bundlingmarkets AC and BC aswell, 𝑞𝐴𝐶
1

(𝑡) and 𝑞𝐵𝐶
2

(𝑡)
denote the demand of CMCC's service andCUCC's service in
period t. The demand functions are demonstrated as follows:

𝑞𝐴𝐶
1

(𝑡) = 𝑚𝑞𝐴𝐶
3

(𝑡)
= 𝑚 [𝑎

31
− 𝑏
31
𝜇𝑝
3 (𝑡) − 𝑏

31
𝑟
31
𝜇
1
𝑝
1 (𝑡)] . (6)

𝑞𝐵𝐶
2

(𝑡) = 𝑛𝑞𝐵𝐶
3

(𝑡)
= 𝑛 [𝑎

32
− 𝑏
32
𝜇𝑝
3 (𝑡) − 𝑏

32
𝑟
32
𝜇
2
𝑝
2 (𝑡)] (7)

where the nonintegral parameters m and n which are not less
than 1 are the multiples of the unit of service.𝑞
𝑖
(𝑡) (𝑖 = 1, 2, 3), the aggregate demand functions of three

products offered by CMCC, CUCC, and Apple in the period
t, are showed as follows:

𝑞
1 (𝑡) = 𝑞𝐴

1
(𝑡) + 𝑞𝐴𝐶

1
(𝑡)= 𝑎

1
− 𝑏
1
𝑝
1 (𝑡) + 𝑑

1
𝑝
2 (𝑡)+ 𝑚 [𝑎31 − 𝑏31𝜇𝑝3 (𝑡) − 𝑏31𝑟31𝜇1𝑝1 (𝑡)] .

(8)
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Table 4: Details of the service package offered by CUCC.

service package CU 1 CU 2 CU 3 CU 4 CU 5 CU 6 CU 7 CU 8 CU 9
service price in the actual
situation 56 76 106 136 166 196 296 396 596

price of the phone in
bundling product 4549 4359 4069 3779 3489 3199 2239 1279 0

price of the phone after
mathematic transaction

4549 4549 4549 4549 4549 4549 4549 4549 4549

gift calls 0 0 0 0 0 0 0 0 0
service price after
mathematic transaction 56 68.1 86.0 103.9 121.8 139.8 199.8 259.8 406.5

total cost 5893 6183 6613 7043 7473 7903 9343 10783 14304
price ratio (𝑝𝑈

𝑟𝑖
) 1.00 1.22 1.54 1.86 2.18 2.50 3.57 4.64 7.26𝑛

𝑖
1.0 1.7 2.2 2.6 4.2 5.8 8.4 13.5 15.1𝜇𝑖

2
1.00 0.73 0.70 0.72 0.52 0.43 0.43 0.34 0.48

𝑞
2 (𝑡) = 𝑞𝐵

2
(𝑡) + 𝑞𝐵𝐶

2
(𝑡)

= 𝑎
2
− 𝑏
2
𝑝
2 (𝑡) + 𝑑

2
𝑝
1 (𝑡)

+ 𝑛 [𝑎
32

− 𝑏
32
𝜇𝑝
3 (𝑡) − 𝑏

32
𝑟
32
𝜇
2
𝑝
2 (𝑡)] .

(9)

𝑞
3 (𝑡) = 𝑞𝐶

3
(𝑡) + 𝑞𝐴𝐶

3
(𝑡) + 𝑞𝐵𝐶

3
(𝑡)

= 𝑎
3
− 𝑏
3
𝑝
3 (𝑡)

+ [𝑎
31

− 𝑏
31
𝜇𝑝
3 (𝑡) − 𝑏

31
𝑟
31
𝜇
1
𝑝
1 (𝑡)]

+ [𝑎
32

− 𝑏
32
𝜇𝑝
3 (𝑡) − 𝑏

32
𝑟
32
𝜇
2
𝑝
2 (𝑡)] .

(10)

The total profit functions of the three firms are defined as𝜋
𝑖
(𝑡) (𝑖 = 1, 2, 3) in the period of t. In addition, we suppose

a fixed marginal cost greater than zero for each product. 𝑐
0
is

the cost per unit for the service of two telecom firms, and 𝑐
3

is the cost per unit for the iPhone 7.

𝜋
1 (𝑡) = 𝑞𝐴

1
(𝑡) 𝑝1 (𝑡) + 𝑞𝐴𝐶

1
(𝑡) 𝜇1𝑝1 (𝑡) − 𝑐

0
𝑞
1 (𝑡) . (11)

𝜋
2 (𝑡) = 𝑞𝐵

2
(𝑡) 𝑝2 (𝑡) + 𝑞𝐵𝐶

2
(𝑡) 𝜇2𝑝2 (𝑡) − 𝑐

0
𝑞
2 (𝑡) . (12)

𝜋
3 (𝑡) = 𝑞𝐶

3
(𝑡) 𝑝3 (𝑡) + [𝑞𝐴𝐶

3
(𝑡) + 𝑞𝐵𝐶

3
(𝑡)] 𝜇𝑝3 (𝑡)

− 𝑐
3
𝑞
3 (𝑡) . (13)

3.3. The Dynamic Model. On the basis of the bounded
rationality in Assumption (f), three firms treat their price
as the decision variable. Meanwhile, they adjust their price
according to the marginal profit 𝜕𝜋

𝑖
(𝑡)/𝜕𝑝

𝑖
(𝑡) in each period.

If the marginal profit is positive in period t, increasing the
price in period 𝑡 + 1 will be profitable. Conversely, if the
marginal profit is negative in period t, decreasing the price

in period 𝑡 + 1 will be profitable. The nonlinear functions of
the marginal profit are as follows:

𝜕𝜋
1 (𝑡)𝜕𝑝
1 (𝑡) = 𝑎

1
− 𝑏
1
𝑝
1 (𝑡) + 𝑑

1
𝑝
2 (𝑡) + 𝑏

1
[𝑐
0
− 𝑝
1 (𝑡)]

− 𝑚𝜇
1
[𝑏
31
𝜇𝑝
3 (𝑡) − 𝑎

31
+ 𝑏
31
𝑟
31
𝜇
1
𝑝
1 (𝑡)]+ 𝑚𝑏

31
𝑟
31
𝜇
1
[𝑐
0
− 𝜇
1
𝑝
1 (𝑡)] .

(14)

𝜕𝜋
2 (𝑡)𝜕𝑝
2 (𝑡) = 𝑎

2
− 𝑏
2
𝑝
2 (𝑡) + 𝑑

2
𝑝
1 (𝑡) + 𝑏

2
[𝑐
0
− 𝑝
2 (𝑡)]

− 𝑛𝜇
2
[𝑏
32
𝜇𝑝
3 (𝑡) − 𝑎

32
+ 𝑏
32
𝑟
32
𝜇
2
𝑝
2 (𝑡)]+ 𝑛𝑏

32
𝑟
32
𝜇
2
[𝑐
0
− 𝜇
2
𝑝
2 (𝑡)] .

(15)

𝜕𝜋
3 (𝑡)𝜕𝑝
3 (𝑡) = 𝑎

3
− 𝑏
3
𝑝
3 (𝑡) − 𝜇 [𝑏

31
𝜇𝑝
3 (𝑡) − 𝑎

32
− 𝑎
31

+ 𝑏
32
𝜇𝑝
3 (𝑡) + 𝑏

31
𝑟
31
𝜇
1
𝑝
1 (𝑡) + 𝑏

32
𝑟
32
𝜇
2
𝑝
2 (𝑡)] + [𝑐

3− 𝜇𝑝
3 (𝑡)] (𝑏31 + 𝑏

32
) 𝜇 + 𝑏

3
[𝑐
3
− 𝑝
3 (𝑡)] .

(16)

Hence, the dynamic equations in this model could be
given by following form:

𝑝
1 (𝑡 + 1) = 𝑝

1 (𝑡) + 𝛼𝑝
1 (𝑡) 𝜕𝜋1 (𝑡)𝜕𝑝

1 (𝑡)
𝑝
2 (𝑡 + 1) = 𝑝

2 (𝑡) + 𝛽𝑝
2 (𝑡) 𝜕𝜋2 (𝑡)𝜕𝑝

2 (𝑡)
𝑝
3 (𝑡 + 1) = 𝑝

3 (𝑡) + 𝛾𝑝
3 (𝑡) 𝜕𝜋3 (𝑡)𝜕𝑝

3 (𝑡) 𝛼, 𝛽, 𝛾 > 0
(17)

where we suppose the three companies adjust their price in
the speed of 𝛼, 𝛽, and 𝛾, which reflect the decision-making of
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the three enterprises. After taking (14)–(16) into (17), we can
get functions as follows:𝑝
1 (𝑡 + 1) = 𝑝

1 (𝑡) + 𝛼𝑝
1 (𝑡) {𝑎1 − 𝑏

1
𝑝
1 (𝑡) + 𝑑

1
𝑝
2 (𝑡)+ 𝑏

1
[𝑐
0
− 𝑝
1 (𝑡)] − 𝑚𝜇

1
[𝑏
31
𝜇𝑝
3 (𝑡) − 𝑎

31+ 𝑏
31
𝑟
31
𝜇
1
𝑝
1 (𝑡)] + 𝑚𝑏

31
𝑟
31
𝜇
1
[𝑐
0
− 𝜇
1
𝑝
1 (𝑡)]}𝑝

2 (𝑡 + 1) = 𝑝
2 (𝑡) + 𝛽𝑝

2 (𝑡) {𝑎2 − 𝑏
2
𝑝
2 (𝑡) + 𝑑

2
𝑝
1 (𝑡)+ 𝑏

2
[𝑐
0
− 𝑝
2 (𝑡)] − 𝑛𝜇

2
[𝑏
32
𝜇𝑝
3 (𝑡) − 𝑎

32+ 𝑏32𝑟32𝜇2𝑝2 (𝑡)] + 𝑛𝑏32𝑟32𝜇2 [𝑐0 − 𝜇2𝑝2 (𝑡)]}𝑝
3 (𝑡 + 1) = 𝑝

3 (𝑡) + 𝛾𝑝
3 (𝑡) {𝑎3 − 𝑏

3
𝑝
3 (𝑡)− 𝜇 [𝑏

31
𝜇𝑝3 (𝑡) − 𝑎

32
− 𝑎
31

+ 𝑏
32
𝜇𝑝
3 (𝑡)+ 𝑏

31
𝑟
31
𝜇
1
𝑝
1 (𝑡) + 𝑏

32
𝑟
32
𝜇
2
𝑝
2 (𝑡)] + [𝑐

3
− 𝜇𝑝
3 (𝑡)]⋅ (𝑏

31
+ 𝑏
32
) 𝜇 + 𝑏

3
[𝑐
3
− 𝑝
3 (𝑡)]} .

(18)

In order to get the positive stable fixed points of the
dynamic model, we need the condition of Nash equilibrium
state which is 𝑝

𝑖
(𝑡 + 1) = 𝑝

𝑖
(𝑡) (𝑖 = 1, 2, 3). After calculation,

we obtain only one significant solution in which all the prices
are positive; that is, 𝐸∗ = (𝑝∗

1
, 𝑝∗
2
, 𝑝∗
3
) (19)

Due to the fact that the length of 𝑝∗
𝑖
(𝑖 = 1, 2, 3) is too

long to exhibit in this section, we will show the form of them
which have taken the fixed parameters in Section 4.

Besides, the Jacobian matrix of dynamic equation (18) is
that𝐽

= ( 𝐽
11

𝛼𝑑
1
𝑝
1

−𝛼𝑏
31
𝑚𝑝
1
𝜇𝜇
1𝛽𝑑

2
𝑝
2

𝐽
22

−𝛽𝑏
32
𝑛𝑝
2
𝜇𝜇
2−𝛾𝑏

31
𝑝
3
𝑟
31
𝜇𝜇
1

−𝛾𝑏
32
𝑝
3
𝑟
32
𝜇𝜇
2

𝐽
33

) (20)

where𝐽
11

= 𝛼 (𝑎
1
− 𝑏
1
𝑝
1
+ 𝑑
1
𝑝
2
+ 𝑏
1
(𝑐
0
− 𝑝
1
)

− 𝑚𝜇
1
(𝑏
31
𝑝
3
𝜇 − 𝑎
31

+ 𝑏
31
𝑝
1
𝑟
31
𝜇
1
) + 𝑏
31
𝑚𝑟
31
𝜇
1
(𝑐
0− 𝑝

1
𝜇
1
)) − 𝛼𝑝

1
(2𝑏
31
𝑚𝑟
31
𝜇2
1
+ 2𝑏
1
) + 1.

𝐽
22

= 𝛽 (𝑎
2
− 𝑏
2
𝑝
2
+ 𝑑
2
𝑝
1
+ 𝑏
2
(𝑐
0
− 𝑝
2
) − 𝑛𝜇

2
(𝑏
32
𝑝
3
𝜇

− 𝑎
32

+ 𝑏
32
𝑝
2
𝑟
3
2𝜇
2
) + 𝑏
32
𝑛𝑟
32
𝜇
2
(𝑐
0
− 𝑝
2
𝜇
2
))

− 𝛽𝑝
2
(2𝑏
32
𝑛𝑟
32
𝜇2
2
+ 2𝑏
2
) + 1.

𝐽
33

= 𝛾 (𝑎
3
− 𝑏
3
𝑝
3
− 𝜇 (𝑏

31
𝑝
3
𝜇 − 𝑎
32

− 𝑎
31

+ 𝑏
32
𝑝
3
𝜇

+ 𝑏
31
𝑝
1
𝑟
31
𝜇
1
+ 𝑏
32
𝑝
2
𝑟
32
𝜇
2
) + (𝑐
3
− 𝑝
3
𝜇) (𝑏
31
𝜇

+ 𝑏
32
𝜇) + 𝑏

3
(𝑐
3
− 𝑝
3
)) − 𝛾𝑝

3
(2𝑏
3
+ 2𝜇 (𝑏

31
𝜇

+ 𝑏
32
𝜇)) + 1.

(21)

The characteristic polynomial of the matrix of (20) is as
the function equation (22) shows. Consider𝑃 (𝜆) = 𝜆3 + 𝐴󸀠𝜆2 + 𝐵󸀠𝜆 + 𝐶󸀠 (22)

where 𝐴󸀠; 𝐵󸀠; and 𝐶󸀠 will be discussed in Section 4. In addi-
tion, we can also figure out the stable region of parameters 𝛼,𝛽, and 𝛾 by the condition of Jury criterion as follows:Ω

𝐸
∗ (𝛼, 𝛽, 𝛾) = {(𝛼, 𝛽, 𝛾) :
1 + 𝐴󸀠 + 𝐵󸀠 + 𝐶󸀠 > 0
1 − 𝐴󸀠 + 𝐵󸀠 − 𝐶󸀠 > 0

1 − 𝐶󸀠2 > 0
(1 − 𝐶󸀠2) − (𝐵󸀠 − 𝐴󸀠𝐶󸀠)2 > 0} .

(23)

The stable region is the range where 𝐸∗ will be stable.
4. The Numerical Modeling and Analysis

4.1. The Parameter Setting. It is worth mentioning that we
investigate the service package in practice, in order to
determine the values of parameters, for instance, m, n, 𝜇

1
, 𝜇
2
,

and 𝜇. As (A.1) and (A.2) show, the tariffs include different
service packages which are posted on their official website,
respectively. Based on the analysis for each of the first 8
packages, we figure out and suppose that the utility of 1.45
M data is equal to the utility of 1-minute call in CMCC, and
the utility of 1.15 M data is equal to the utility of 1-minute
call in CUCC. And then we could obtain all the values of the
parameters m and n, which are the amount of the service.
Each of 𝑝𝑀

𝑟𝑖
and 𝑝𝑈

𝑟𝑖
refers to each of their service package

prices divided by their price of unit service, separately. We
can calculate the parameters 𝜇𝑖

1
and 𝜇𝑖

2
, which are equal to𝑝𝑀

𝑟𝑖
/𝑚 and 𝑝𝑈

𝑟𝑖
/𝑛, respectively.

Furthermore, compared with the group clients who will
be excluded in our research, most individual customers who
choose an iPhone 7 in bundling markets would bemore likely
to buy several specific service packages. The parameters m,𝜇
1
, n, and 𝜇

2
are assigned the value of 5.5, 0.47, 6.1, and 0.46,

respectively. The calculation of the values of them will be
presented in Figure 9. In our research, so as to do in-depth
study, we assign values for the rest of the parameters which
are as follows: 𝑎1 = 3.8,𝑎

2
= 3.8,𝑎
3
= 4.5,𝑏
1
= 0.55,𝑏
2
= 0.55,𝑏
3
= 0.6,𝑑
1
= 0.2,𝑑2 = 0.2,
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𝑐
0
= 0.0006,𝑐
3
= 0.95,𝑎
31

= 1.5,𝑎
32

= 1.5,𝑏
31

= 1.15,𝑏
32

= 1.15,𝑟
31

= 0.5,𝑟
32

= 0.5,𝜇 = 0.84.
(24)

Moreover, 𝛼 = 0.16, 𝛽 = 0.25, and 𝛾 = 0.15 when the
adjustment parameter is not changed in the experiments.

4.2.The Stable Region. Wewill do some numerical modeling
experiments to investigate how the parameters impact the
stable region of Nash equilibrium.

Experiment 1. By the parameters assigned into (14)–(16) and
(18)–(22), the Nash equilibrium, the Jacobian matrix, and
the characteristic polynomial of the matrix are as follows,
respectively.

With valuing all (14); (15); and (16) equal to 0, we can get

0.2𝑝
2
− 2.5𝑝

1
− 2.5𝑝

3
+ 7.68 = 00.2𝑝

1
− 2.58𝑝

2
− 2.71𝑝

3
+ 8.01 = 09.43 − 0.222𝑝

2
− 4.45𝑝

3
− 0.227𝑝

1
= 0. (25)

Solving (25), we can get

𝐸∗ = (1.181, 1.272, 1.996) . (26)

Equation (25) is the Nash equilibrium.
And, then,

𝐽 = (1 − 2.95𝛼 0.236𝛼 −2.95𝛼0.254𝛽 1 − 3.74𝛽 −3.45𝛽−0.453𝛾 −0.444𝛾 1 − 8.87𝛾) . (27)

Equation (26) is the Jacobian matrix.
Besides,

𝑃 (𝜆) = 𝜆3 + (2.95𝛼 + 3.74𝛽 + 8.87𝛾 − 3) 𝜆2 + (11𝛼𝛽
− 7.48𝛽 − 17.7𝛾 − 5.9𝛼 + 24.8𝛼𝛾 + 31.7𝛽𝛾 + 3) 𝜆+ 2.95𝛼 + 3.74𝛽 + 8.87𝛾 − 11𝛼𝛽 − 24.8𝛼𝛾− 31.7𝛽𝛾 + 87.2𝛼𝛽𝛾 − 1

(28)

where

𝐴󸀠 = 2.95𝛼 + 3.74𝛽 + 8.87𝛾 − 3
𝐵󸀠 = 11𝛼𝛽 − 7.48𝛽 − 17.7𝛾 − 5.9𝛼 + 24.8𝛼𝛾+ 31.7𝛽𝛾 + 3
𝐶󸀠 = 3.74𝛽 + 8.87𝛾 − 11.0𝛼𝛽 − 24.8𝛼𝛾 − 31.7𝛽𝛾+ 87.2𝛼𝛽𝛾 − 1

(29)

Equation (27) is the characteristic polynomial. Moreover,
putting (29) into Jury criterion equation (23), we can obtain
the system of inequalities which is the stable region. In
addition, we acquire the stable region shown in Figure 2(a).
As it shows, we set 𝛾 equal to 0.15 and calculate the stable
region by Jury criterionwith both𝛼 and𝛽 changing fromzero
to one. The figure illustrates that the red region is the stable
region, and the deep blue, green, orange, light blue, and pink
region refer to the 2, 4, 8, 6, and 5 cycles’ regions, severally.
The rest of the regions, gray region and white region, are the
variable overflow areawhichmeans the region of chaos. From
this figure, we can know that the prices of the firms will have
only one Nash equilibrium solution under the fixed adjusted
speed in red region. Also, Figure 2(b) shows the stable region
and the other regions using the same colors as 𝛼 and 𝛾 are
changed from 0 to 1, on the condition that 𝛽 = 0.25 is
fixed. Similarly, with 𝛼 assigned the value of 0.16, Figure 2(c)
indicates the stable region in the same way as 𝛽 and 𝛾 are
changed from 0 to 1.

Experiment 2. In order to investigate the impacts to the
stable region on conditions of different degree of competition
between the two telecomfirms, we did the second experiment
and exhibited the result by Figure 3. Obviously, we can
find that the stable region decreased when the degree of
competition became fierce between the CMCC and CUCC
from the picture. Under the circumstance of 𝛾 = 0.25, the
green, the blue, and the red regions reflect the stability of𝑑
1
= 𝑑
2
= 0.1, 𝑑

1
= 𝑑
2
= 0.4, and 𝑑

1
= 𝑑
2
= 0.9, severally.

Experiment 3. By comparing the content plotted in Figure 4,
the authors observed that the stable region increased when
the degree of the complementarity was enhanced between the
telecommunication products to the smart phones. The three
regions in Figures 4(a), 4(b), and 4(c) refer to the stabilities
under the circumstances of 𝑟

31
= 𝑟
32

= 0.1, 𝑟
31

= 𝑟
32

= 0.5,
and 𝑟
31

= 𝑟
32

= 0.9, separately.
In addition, the authors plotted the system's largest Lya-

punov exponent (LLE), which was illustrated as the variation
of system state, as presented in Figure 5. Note that the system
was stable when the LLE was smaller than 0. If the LLE
is greater than zero, the system enters into chaos. Without
changing others parameters, we obtain the stability scope of𝛼, 𝛽, and 𝛾 in Figures 5(a), 5(b), and 5(c) separately.

4.3. The Impact of Price Adjustment Parameters. For the sake
of investigating the impact of price adjustment parameters,
we plot the bifurcation diagrams by changing the adjustment
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(a) (b) (c)

Figure 2: (a)The stability with 𝛼 and 𝛽 is changed and 𝛾 = 0.15. (b)The stability with 𝛼 and 𝛾 is changed and 𝛽 = 0.25. (c) The stability with𝛽 and 𝛾 is changed and 𝛼 = 0.16.

Figure 3: The stability of three values of 𝑑
1
, 𝑑
2
, with 𝛼, and 𝛽 is

changed, and 𝛾 = 0.25.
parameters, 𝛼, 𝛽, and 𝛾 in Figures 6(a), 6(b), and 6(c). For
the three subfigures, the blue line marked 𝑝

1
reflects one unit

price of service package offered by CMCC, and the red line
refers to one unit price of service package offered by CUCC,
and finally the green line represents the price of the iPhone
7. After a period of stability, the system begins bifurcation as
the parameter 𝛼 goes. The system goes into period four and
then period eight, and afterwards it enters into chaos. When
the chaos appears, it would be hard for the managers to make
decision.

4.4. The Impact of Bundling Amount. The impact of parame-
termwill be investigated in this section according to Figure 7.
We can see that both 𝑝

1
and 𝑝

2
decrease with the value of m

increases in Figures 7(a) and 7(b). Conversely, 𝑝
3
grows up

with the increasing of m in Figure 7(c).

4.5. The Chaos Attractor. Figure 8 shows the chaos attractor.
In Figure 8(a), the horizontal axis and vertical axis refer to the
prices of the service packages of CMCC and CUCC, and then
we set 𝛼 equal to 0.93. Similarly, in Figure 8(b), the horizontal
axis and vertical axis refer to the prices of the service package
of CMCC and iPhone 7, and then the authors set 𝛼 equal to
0.95.The chaos attractor means a little variation in the initial
condition could cause a diverse and unpredictable output.
Hence, the firmsmay suffer enormous risks with competition
in the market of chaos. The fluctuations in prices, which are
the decision variables made by firms every periods, exert the
negative effects.

5. Conclusion

In this research, we build a dynamic triopoly model which
includes two competitive telecom firms in China and their
correlative corporation, which produces the complemen-
tary product. Both their free markets and the markets of
bundling pricing products are considered in order to make
themodel more realistic. We do some numerical experiments
to research the Nash equilibrium solution, the stable regions,
bifurcation of prices, the LLE, and the chaos attractor. The
valuable conclusions by our research are as follows: Firstly,
we can find that the stable region will decrease when the
degree of the competition becomes fierce between the two
competitive firms. Secondly, the stable region will increase
if the degree of the complementarity enhances between the
telecommunication products to the smart phones. Thirdly,
moderately increasing the amount of bundling services not
only can lead to the decrease of the prices of two telecom
firms when the system is stable but also can increase the
price of iPhone 7. Hence, for CMCC or CUCC, moderately
decreasing their services in packages without the variation
of other conditions can increase their service prices. And,
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(a) (b) (c)

Figure 4: (a) The stability with 𝛼 and 𝛽 is changed, and 𝛾 = 0.25; 𝑟
31

= 𝑟
32

= 0.1. (b)The stability with 𝛼 and 𝛽 is changed, and 𝛾 = 0.25 and𝑟
31

= 𝑟
32

= 0.5. (c) The stability with 𝛼 and 𝛽 is changed, and 𝛾 = 0.25 and 𝑟
31

= 𝑟
32

= 0.9.

(a) (b) (c)

Figure 5: (a)The LLE as 𝛼 changes. (b)The LLE as 𝛽 changes. (c) The LLE as 𝛾 changes.

(a) (b) (c)

Figure 6: (a) Bifurcations of 𝑝
𝑖
as 𝛼 goes when 𝛽 = 0.25 and 𝛾 = 0.15, (b) bifurcations of 𝑝

𝑖
as 𝛽 goes when 𝛼 = 0.16 and 𝛾 = 0.15, and (c)

bifurcations of 𝑝
𝑖
as 𝛾 goes when 𝛼 = 0.16 and 𝛽 = 0.25.

(a) (b) (c)

Figure 7: (a) Bifurcations of 𝑝
1
when𝑚 = 5.5 and 6.2, (b) bifurcations of 𝑝

2
when𝑚 = 5.5 and 6.2, and (c) bifurcations of 𝑝

3
when𝑚 = 5.5

and 6.2.
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(a) (b)

Figure 8: (a)The chaos attractor when 𝛼 is 0.93, 𝛽 = 0.25, and 𝛾 is 0.15. (b)The chaos attractor when 𝛼 is 0.95, 𝛽 = 0.25, and 𝛾 is 0.15.

(a) (b)

Figure 9: (a) The probability distribution of 𝑚
𝑖
. (b) The probability distribution of 𝑛

𝑖
.

finally, we give the regions of chaos, which should be avoided,
from the perspective of economics.

Our research enriches the existing papers about bundling
pricing. This research has managerial significance of not
only the three firms discussed, but also the enterprises
simulated to the three firms. The result of this model may
help the managers adjust their decision-making with their
experiences. Certainly, there are more studies that should
be done in the future, such as considering the firm, which
produces the complements, which has different discounts
for the two firms, or the innovation of the products in the
background of electronic products, etc.

Appendix

See Tables 1, 2, 3, and 4 and Figure 9.
Based on our research, as shown in Figure 9, we inves-

tigate 𝑃(𝑀𝑖), which means the probability of the customers
choosing the service package of CM i (i=1,2,. . .,8), and also
investigate the 𝑃(𝑈𝑖), which refers to the probability of the

customers choosing the service package of CU i (i=1,2,. . .,9).
So, the expectations of m, 𝜇

1
, n, and 𝜇

2
are as follows:

𝑚 = 8∑
𝑖=1

𝑚
𝑖
𝑃 (𝑀𝑖) (A.1)

𝜇
1
= 8∑
𝑖=1

𝜇𝑖
1
𝑃 (𝑀𝑖) (A.2)

𝑛 = 9∑
𝑖=1

𝑛
𝑖
𝑃 (𝑈𝑖) (A.3)

𝜇
2
= 9∑
𝑖=1

𝜇𝑖
2
𝑃 (𝑈𝑖) (A.4)
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We discuss the uniqueness of the solution to a class of differential systems with coupled integral boundary conditions under a
Lipschitz condition. Our main method is the linear operator theory and the solvability for a system of inequalities. Finally, an
example is given to demonstrate the validity of our main results.

1. Introduction

In this paper, we study the following differential system with
coupled integral boundary conditions:

−𝑢󸀠󸀠 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , V (𝑡)) , 𝑡 ∈ (0, 1) ,
−V󸀠󸀠 (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡) , V (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = V (0) = 0,
𝑢 (1) = 𝛼 [V] ,
V (1) = 𝛽 [𝑢] ,

(1)

where 𝛼[𝑢], 𝛽[𝑢] are bounded linear functionals on 𝐶[0, 1]
given by

𝛼 [𝑢] = ∫1
0

𝑢 (𝑡) 𝑑𝐴 (𝑡) ,

𝛽 [𝑢] = ∫1
0

𝑢 (𝑡) 𝑑𝐵 (𝑡) ,
(2)

involving Riemann-Stieltjes integrals defined via positive
Stieltjes measures of 𝐴, 𝐵.

Differential systems with coupled boundary conditions
have some applications in various fields of sciences and

engineering, for example, the heat equation [1], reaction-
diffusion phenomena [2], and interaction problems [3]. The
existence of solutions for differential system with coupled
boundary conditions has received a growing attention in
the literature; for details, see [4–21]. For example, Asif and
Khan in [4] obtained the existence of positive solution for
singular sublinear system with coupled four-point boundary
value conditions by using the Guo-Krasnosel’skii fixed point
theorem. In [5], Cui and Sun discuss the existence of positive
solutions of singular superlinear coupled integral boundary
value problems by constructing a special cone and using fixed
point index theory. In [7], Cui and Zou proved the existence
of extremal solutions of coupled integral boundary value
problems by monotone iterative method. In [10], Infante,
Minhós, and Pietramala presented a general theory for
existence of positive solutions for coupled systems by use of
fixed point index theory.

The question of existence and uniqueness of solution
of differential equations and differential systems is an age-
old problem and it has a great importance, as much in
theory as in applications. This problem has been investigated
by use of a variety of nonlinear analyses such as fixed
point theorem for mixed monotone operator [7, 15, 22–
25], maximal principle [6], Banach’s contraction mapping
principle [26–29], and the linear operator theory [27, 30, 31].
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For example, the authors [31] introduced a Banach space
using the positive eigenfunction of linear operator related
to differential system (1). They established the uniqueness
results for differential system (1) under a Lipschitz condition.
It should be noted that the Lipschitz constant is related to the
spectral radius corresponding to the related linear operators.
Theobtained results are optimal from the viewpoint of theory.
However, it is very difficult to determine the spectral radius
for differential system (1) with general functions 𝐴(𝑡), 𝐵(𝑡).

Motivated by the above works, we investigate the unique-
ness of solutions for differential system (1) by using a system
of inequalities and the linear operator theory. The main
features of this paper are as follows: (1) The main results
are mostly implemented to the uniqueness result for coupled
boundary value problems. (2) An easy criterion to determine
the uniqueness result is obtained by using a system of
inequalities. (3) An example shows that the main result
provides the same results with weaker conditions.

Throughout the paper, we assume that the following con-
dition hold:

(𝐻1) 𝛼[𝑡] = ∫1
0

𝑡𝑑𝐴(𝑡) > 0, 𝛽[𝑡] = ∫1
0

𝑡𝑑𝐵(𝑡) > 0, 𝜅 =1 − 𝛼[𝑡]𝛽[𝑡] > 0.
(𝐻2) 𝑓, 𝑔 : [0, 1] × R2 󳨀→ R are continuous.

2. Preliminaries

Let𝐶[0, 1] be the Banach space with themaximal norm given
by ‖𝑥‖ = max𝑡∈[0,1]|𝑥(𝑡)|. Let𝐸 = 𝐶[0, 1]×𝐶[0, 1], ‖(𝑥, 𝑦)‖𝐸 =
max{‖𝑥‖, ‖𝑦‖}. Then (𝐸, ‖(⋅, ⋅)‖𝐸) is a Banach space.

Lemma 1 (see [5]). Let 𝑢, V ∈ 𝐶[0, 1], then the system of BVPs

−𝑢󸀠󸀠 (𝑡) = 𝑥 (𝑡) ,
−V󸀠󸀠 (𝑡) = 𝑦 (𝑡) ,

𝑡 ∈ [0, 1] ,
𝑢 (0) = V (0) = 0,
𝑢 (1) = 𝛼 [V] ,
V (1) = 𝛽 [𝑢]

(3)

has integral representation

𝑢 (𝑡) = ∫1
0

𝐺1 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 + ∫1
0

𝐻1 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠,

V (𝑡) = ∫1
0

𝐺2 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 + ∫1
0

𝐻2 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠,
(4)

where

𝐺1 (𝑡, 𝑠) = 𝛼 [𝑡] 𝑡
𝜅 ∫1
0

𝑘 (𝑠, 𝜏) 𝑑𝐵 (𝜏) + 𝑘 (𝑡, 𝑠) ,

𝐻1 (𝑡, 𝑠) = 𝑡
𝜅 ∫1
0

𝑘 (𝑠, 𝜏) 𝑑𝐴 (𝜏) ,

𝐺2 (𝑡, 𝑠) = 𝛽 [𝑡] 𝑡
𝜅 ∫1
0

𝑘 (𝑠, 𝜏) 𝑑𝐴 (𝜏) + 𝑘 (𝑡, 𝑠) ,

𝐻2 (𝑡, 𝑠) = 𝑡
𝜅 ∫1
0

𝑘 (𝑠, 𝜏) 𝑑𝐵 (𝜏) ,

𝑘 (𝑡, 𝑠) = {{{
𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(5)

Lemma 2 (see [5]). The functions 𝑘(𝑡, 𝑠), 𝐺𝑖(𝑡, 𝑠), 𝐻𝑖(𝑡, 𝑠) (𝑖 =1, 2) satisfy the following properties:
𝐺𝑖 (𝑡, 𝑠) ≤ 𝜌𝑡,
𝐻𝑖 (𝑡, 𝑠) ≤ 𝜌𝑡,

∀𝑡, 𝑠 ∈ [0, 1] , 𝑖 = 1, 2,
(6)

0 < 𝑘 (𝑡, 𝑠) ≤ 𝑠 (1 − 𝑠) , ∀𝑡, 𝑠 ∈ (0, 1) , (7)

where

𝜌 = max{𝛼 [𝑡]
𝜅 𝛽 [1] + 1, 𝛽 [𝑡]

𝜅 𝛼 [1]

+ 1, 1
𝜅𝛽 [1] , 1

𝜅𝛼 [1]} .
(8)

With the help of Lemma 1, BVP (1) can be viewed as a
fixed point in 𝐸 for the completely continuous operator

𝑆 (𝑢, V) = (𝑆1 (𝑢, V) , 𝑆2 (𝑢, V)) , (𝑢, V) ∈ 𝐸, (9)

where 𝑆1, 𝑆2 : 𝐸 󳨀→ 𝐶[0, 1] are defined by

𝑆1 (𝑢, V) (𝑡) = ∫1
0

𝐺1 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+ ∫1
0

𝐻1 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠,

𝑆2 (𝑢, V) (𝑡) = ∫1
0

𝐺2 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

+ ∫1
0

𝐻2 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠.

(10)

In order to prove our main result, the following criterion
for solving system of inequalities is needed.

Lemma 3. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, +∞) with 𝑎 < 1, 𝑑 < 1. Then the
inequality system

𝑎 + 𝑏𝜇 ≤ 𝜆,
𝑐 + 𝑑𝜇 ≤ 𝜆𝜇 (11)

has a solution (𝜆, 𝜇)with𝜆 ∈ (0, 1), 𝜇 > 0 if and only if 𝑎, 𝑏, 𝑐, 𝑑
satisfy

(1 − 𝑑) (1 − 𝑎) > 𝑏𝑐. (12)
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Proof.

Necessity. The proof is obviously true for the case: 𝑏𝑐 = 0.
So we consider the remaining case 𝑏𝑐 ̸= 0. From the first
inequality in (11), we get

𝜇 ≤ 𝜆 − 𝑎
𝑏 . (13)

Substituting it into the second inequality in (11), we have

𝑐 ≤ (𝜆 − 𝑑) 𝜇 ≤ (𝜆 − 𝑑) 𝜆 − 𝑎
𝑏 . (14)

Thus,

(1 − 𝑑) (1 − 𝑎) > (𝜆 − 𝑑) (𝜆 − 𝑎) ≥ 𝑏𝑐. (15)

Sufficiency. For the case 𝑏𝑐 = 0, we can take 𝜆 = max{(𝑑 +1)/2, (𝑑 + 1)/2}. So we consider the last case 𝑏𝑐 ̸= 0. Let
𝜑 (𝑥) = (𝑥 − 𝑑) (𝑥 − 𝑎) − 𝑏𝑐, 𝑥 ∈ R. (16)

From the derivative of 𝜑(𝑥), we conclude that 𝜑(𝑥) is
increasing on [(𝑎 + 𝑑)/2, 1]. This together with the locally
sign-preserving property of 𝜑(𝑥) implies that there exists 𝜆 ∈[(𝑎 + 𝑑)/2, 1) such that

(𝜆 − 𝑑) (𝜆 − 𝑎) ≥ 𝑏𝑐 (17)

The above inequality can be rewritten as

𝑐
𝜆 − 𝑑 ≤ 𝜆 − 𝑎

𝑏 . (18)

Hence (11) holds for 𝜇 ∈ [𝑐/(𝜆 − 𝑑), (𝜆 − 𝑎)/𝑏].
3. Main Result

For notational convenience, let

𝑎11 = 𝛼 [𝑡] 𝛽 [𝜙]
𝜅 + 1

6 ,

𝑎12 = 𝛼 [𝜙]
𝜅 ,

𝑎21 = 𝛼 [𝜙] 𝛽 [𝑡]
𝜅 + 1

6 ,

𝑎22 = 𝛽 [𝜙]
𝜅 ,

(19)

where

𝜙 (𝑡) = 𝑡 (1 − 𝑡) (1 + 𝑡)
6 . (20)

Take 𝜑(𝑡) = 𝑡. By (7), we get
∫1
0

𝐺1 (𝑡, 𝑠) 𝜑 (𝑠) 𝑑𝑠

= 𝛼 [𝑡] 𝑡
𝜅 ∫1
0

∫1
0

𝑘 (𝑠, 𝜏) 𝑑𝐵 (𝜏) 𝑠𝑑𝑠 + ∫1
0

𝑘 (𝑡, 𝑠) 𝑠𝑑𝑠

= 𝛼 [𝑡] 𝑡
𝜅 ∫1
0

∫1
0

𝑘 (𝑠, 𝜏) 𝑠𝑑𝑠𝑑𝐵 (𝜏) + 𝑡 (1 − 𝑡) (1 + 𝑡)
6

= 𝛼 [𝑡] 𝑡
𝜅 ∫1
0

𝜏 (1 − 𝜏) (1 − 𝜏)
6 𝑑𝐵 (𝜏)

+ 𝑡 (1 − 𝑡) (1 + 𝑡)
6 ≤ (𝛼 [𝑡] 𝛽 [𝜙]

𝜅 + 1
6) ⋅ 𝑡

= 𝑎11𝑡,

(21)

∫1
0

𝐻1 (𝑡, 𝑠) 𝜑 (𝑠) 𝑑𝑠 = 𝑡
𝜅 ∫1
0

∫1
0

𝑘 (𝑠, 𝜏) 𝑑𝐴 (𝜏) 𝑠𝑑𝑠

= 𝑡
𝜅 ∫1
0

∫1
0

𝑘 (𝑠, 𝜏) 𝑠𝑑𝑠𝑑𝐴 (𝜏)

= 𝑡
𝜅 ∫1
0

𝜏 (1 − 𝜏) (1 − 𝜏)
6 𝑑𝐴 (𝜏) = 𝛼 [𝜙]

𝜅 ⋅ 𝑡 = 𝑎12𝑡,

(22)

∫1
0

𝐺2 (𝑡, 𝑠) 𝜑 (𝑠) 𝑑𝑠

= 𝛽 [𝑡] 𝛼 [𝜑] 𝑡
𝜅 ∫1

0
∫1
0

𝑘 (𝑠, 𝜏) 𝑑𝐴 (𝜏) 𝑠𝑑𝑠
+ 𝑘 (𝑡, 𝑠) 𝑠𝑑𝑠

= 𝛽 [𝑡] 𝑡
𝜅 ∫1
0

𝜏 (1 − 𝜏) (1 − 𝜏)
6 𝑑𝐴 (𝜏)

+ 𝑡 (1 − 𝑡) (1 + 𝑡)
6 ≤ (𝛼 [𝜙] 𝛽 [𝑡]

𝜅 + 1
6) ⋅ 𝑡

= 𝑎21𝑡,

(23)

∫1
0

𝐻2 (𝑡, 𝑠) 𝜑 (𝑠) 𝑑𝑠 = 𝑡
𝜅 ∫1
0

∫1
0

𝑘 (𝑠, 𝜏) 𝑑𝐵 (𝜏) 𝑠𝑑𝑠

= 𝑡
𝜅 ∫1
0

∫1
0

𝑘 (𝑠, 𝜏) 𝑠𝑑𝑠𝑑𝐵 (𝜏)

= 𝑡
𝜅 ∫1
0

𝜏 (1 − 𝜏) (1 − 𝜏)
6 𝑑𝐵 (𝜏) = 𝛽 [𝜙]

𝜅 ⋅ 𝑡 = 𝑎22𝑡.

(24)

By use of (21), (22), (23), and (24), we present the main
result of this paper.

Theorem 4. Suppose that there exist four nonnegative con-
stants 𝑎1, 𝑏1, 𝑐1, 𝑑1 such that the following conditions hold:󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢1, V1) − 𝑓 (𝑡, 𝑢2, V2)󵄨󵄨󵄨󵄨

≤ 𝑎1 󵄨󵄨󵄨󵄨𝑢1 − 𝑢2󵄨󵄨󵄨󵄨 + 𝑏1 󵄨󵄨󵄨󵄨V1 − V2
󵄨󵄨󵄨󵄨 ,

𝑡 ∈ [0, 1] , 𝑢1, 𝑢2, V1, V2 ∈ R,
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󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑢1, V1) − 𝑔 (𝑡, 𝑢2, V2)󵄨󵄨󵄨󵄨
≤ 𝑐1 󵄨󵄨󵄨󵄨𝑢1 − 𝑢2󵄨󵄨󵄨󵄨 + 𝑑1 󵄨󵄨󵄨󵄨V1 − V2

󵄨󵄨󵄨󵄨 ,
𝑡 ∈ [0, 1] , 𝑢1, 𝑢2, V1, V2 ∈ R,

(1 − 𝑎11𝑎1 − 𝑎12𝑐1) (1 − 𝑎21𝑑1 − 𝑎22𝑏1)
> (𝑎11𝑏1 + 𝑎12𝑑1) (𝑎21𝑐1 + 𝑎22𝑎1) ,

(25)

𝑎11𝑎1 + 𝑎12𝑐1 < 1,
𝑎21𝑑1 + 𝑎22𝑏1 < 1. (26)

Then differential system (1) has a unique solution in 𝐸.
Proof. We divide the proof into several main steps to show
that the operator 𝑆 has a unique point in 𝐸 under the
conditions of Theorem 4.

Step 1. It follows from (25), (26), and Lemma 3 that there exist𝜆 ∈ (0, 1), 𝜇 > 0 such that

(𝑎11𝑎1 + 𝑎12𝑐1) + (𝑎11𝑏1 + 𝑎12𝑑1) 𝜇 ≤ 𝜆,
(𝑎21𝑐1 + 𝑎22𝑎1) + (𝑎21𝑑1 + 𝑎22𝑏1) 𝜇 ≤ 𝜆𝜇. (27)

Let us introduce a linear operator 𝑇 on 𝐸 as

𝑇 (𝑢, V) = (𝑇1 (𝑢, V) , 𝑇2 (𝑢, V)) , (28)

where 𝑇1, 𝑇2 : 𝐸 󳨀→ 𝐶[0, 1] is given by

𝑇1 (𝑢, V) (𝑡) = ∫1
0

𝐺1 (𝑡, 𝑠) (𝑎1𝑢 (𝑠) + 𝑏1V (𝑠)) 𝑑𝑠

+ ∫1
0

𝐻1 (𝑡, 𝑠) (𝑐1𝑢 (𝑠) + 𝑑1V (s)) 𝑑𝑠,

𝑇2 (𝑢, V) (𝑡) = ∫1
0

𝐺2 (𝑡, 𝑠) (𝑐1𝑢 (𝑠) + 𝑑1V (𝑠)) 𝑑𝑠

+ ∫1
0

𝐻2 (𝑡, 𝑠) (𝑎1𝑢 (𝑠) + 𝑏1V (𝑠)) 𝑑𝑠.

(29)

Take 𝜓(𝑡) = 𝜇𝑡. Now, (21)-(24) and (27) show that

𝑇1 (𝜑, 𝜓) (𝑡) = ∫1
0

𝐺1 (𝑡, 𝑠) (𝑎1𝜑 (𝑠) + 𝑏1𝜓 (𝑠)) 𝑑𝑠

+ ∫1
0

𝐻1 (𝑡, 𝑠) (𝑐1𝜑 (𝑠) + 𝑑1𝜓 (𝑠)) 𝑑𝑠
≤ (𝑎1𝑎11 + 𝑎12𝑐1) 𝜑 (𝑡)

+ (𝑎11𝑏1 + 𝑎12𝑑1) 𝜓 (𝑡) ≤ 𝜆𝜑 (𝑡) ,

(30)

𝑇2 (𝜑, 𝜓) (𝑡) = ∫1
0

𝐺2 (𝑡, 𝑠) (𝑐1𝜑 (𝑠) + 𝑑1𝜓 (𝑠)) 𝑑𝑠

+ ∫1
0

𝐻2 (𝑡, 𝑠) (𝑎1𝜑 (𝑠) + 𝑏1𝜓 (𝑠)) 𝑑𝑠
≤ (𝑐1𝑎21 + 𝑎22𝑐1) 𝜑 (𝑡)

+ (𝑎21𝑑1 + 𝑎22𝑏1) 𝜓 (𝑡) ≤ 𝜆𝜓 (𝑡) ,

(31)

i.e.,

𝑇 (𝜑, 𝜓) (𝑡) ≤ 𝜆 (𝜑 (𝑡) , 𝜓 (𝑡)) . (32)

Then for 𝑝 ∈ N, by induction, we obtain

𝑇𝑝 (𝜑, 𝜓) (𝑡) ≤ 𝜆𝑝 (𝜑 (𝑡) , 𝜓 (𝑡)) . (33)

Step 2. For all (𝑢, V) ∈ 𝐸 with 𝑢(𝑡) ≥ 0 and V(𝑡) ≥ 0, there
exists 𝑀 = 𝑀(𝑢, V) ∈ (0, +∞) such that

𝑇 (𝑢, V) (𝑡) ≤ 𝑀 ⋅ (𝜑 (𝑡) , 𝜓 (𝑡)) , 𝑡 ∈ [0, 1] . (34)

Indeed, by Lemma 2, we have

𝑇1 (𝑢, V) (𝑡) ≤ 𝜌 ((𝑎1 + 𝑐1) ‖𝑢‖ + (𝑏1 + 𝑑1) ‖V‖) 𝑡
= 𝜌 ((𝑎1 + 𝑐1) ‖𝑢‖ + (𝑏1 + 𝑑1) ‖V‖) 𝜑 (𝑡)

𝑇2 (𝑢, V) (𝑡) ≤ 𝜌 ((𝑎1 + 𝑐1) ‖𝑢‖ + (𝑏1 + 𝑑1) ‖V‖) 𝑡
= 𝜌 ((𝑎1 + 𝑐1) ‖𝑢‖ + (𝑏1 + 𝑑1) ‖V‖)

𝜇 𝜓 (𝑡)
(35)

So, we can take𝑀 = 𝜌max{1, 1/𝜇}((𝑎1+𝑐1)‖𝑢‖+(𝑏1+𝑑1)‖V‖)
such that (34) holds.
Step 3. For any given (𝑢0, V0) ∈ 𝐸, 𝑛 = 1, 2, . . ., let (𝑢𝑛, V𝑛) =𝑆(𝑢𝑛−1, V𝑛−1). By Step 2, there exists 𝑀 > 0 such that

𝑇 (󵄨󵄨󵄨󵄨𝑢1 (𝑡) − 𝑢0 (𝑡)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V1 (𝑡) − V0 (𝑡)󵄨󵄨󵄨󵄨)
≤ 𝑀 ⋅ (𝜑 (𝑡) , 𝜓 (𝑡)) , 𝑡 ∈ [0, 1] . (36)

Notice for 𝑝 ∈ N that
󵄨󵄨󵄨󵄨󵄨𝑢𝑛+𝑝+1 (𝑡) − 𝑢𝑛+𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝑆1 (𝑢𝑛+𝑝, V𝑛+𝑝) (𝑡)

− 𝑆1 (𝑢𝑛+𝑝−1, V𝑛+𝑝−1) (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ ∫1
0

𝐺1 (𝑡, 𝑠)
⋅ 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢𝑛+𝑝 (𝑠) , V𝑛+𝑝 (𝑠))
− 𝑓 (𝑠, 𝑢𝑛+𝑝−1 (𝑠) , V𝑛+𝑝−1 (𝑠))󵄨󵄨󵄨󵄨󵄨 𝑑𝑠
+ ∫1
0

𝐻1 (𝑡, 𝑠) 󵄨󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑢𝑛+𝑝 (𝑠) , V𝑛+𝑝 (𝑠))
− 𝑔 (𝑠, 𝑢𝑛+𝑝−1 (𝑠) , V𝑛+𝑝−1 (𝑠))󵄨󵄨󵄨󵄨󵄨 𝑑𝑠
≤ ∫1
0

𝐺1 (𝑡, 𝑠) (𝑎1 󵄨󵄨󵄨󵄨󵄨𝑢𝑛+𝑝 (𝑡) − 𝑢𝑛+𝑝−1 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑏1 󵄨󵄨󵄨󵄨󵄨V𝑛+𝑝 (𝑡) − V𝑛+𝑝−1 (𝑡)󵄨󵄨󵄨󵄨󵄨) 𝑑𝑠 + ∫1

0
𝐻1 (𝑡, 𝑠)

⋅ (𝑐1 󵄨󵄨󵄨󵄨󵄨𝑢𝑛+𝑝 (𝑡) − 𝑢𝑛+𝑝−1 (𝑡)󵄨󵄨󵄨󵄨󵄨
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+ 𝑑1 󵄨󵄨󵄨󵄨󵄨V𝑛+𝑝 (𝑡) − V𝑛+𝑝−1 (𝑡)󵄨󵄨󵄨󵄨󵄨) 𝑑𝑠 = 𝑇1 (󵄨󵄨󵄨󵄨󵄨𝑢𝑛+𝑝 (𝑡)
− 𝑢𝑛+𝑝−1 (𝑡)󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨V𝑛+𝑝 (𝑡) − V𝑛+𝑝−1 (𝑡)󵄨󵄨󵄨󵄨󵄨) (𝑡) ≤ ⋅ ⋅ ⋅
≤ 𝑇𝑛+𝑝1 (󵄨󵄨󵄨󵄨𝑢1 − 𝑢0󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V1 − V0

󵄨󵄨󵄨󵄨) (𝑡) ,
󵄨󵄨󵄨󵄨󵄨V𝑛+𝑝+1 (𝑡) − V𝑛+𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑇𝑛+𝑝2 (󵄨󵄨󵄨󵄨𝑢1 − 𝑢0󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V1 − V0

󵄨󵄨󵄨󵄨) (𝑡) .
(37)

Thus, by (33) and (36), we obtain that

(󵄨󵄨󵄨󵄨󵄨𝑢𝑛+𝑝+1 (𝑡) − 𝑢𝑛+𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨V𝑛+𝑝+1 (𝑡) − V𝑛+𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨)
≤ 𝑇𝑛+𝑝 (󵄨󵄨󵄨󵄨𝑢1 (𝑡) − 𝑢0 (𝑡)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V1 (𝑡) − V0 (𝑡)󵄨󵄨󵄨󵄨)
≤ 𝑀𝑇𝑛+𝑝−1 (𝜑, 𝜓) (𝑡) ≤ 𝑀𝜆𝑛+𝑝−1 (𝜑 (𝑡) , 𝜓 (𝑡)) .

(38)

Thus for 𝑛, 𝑚 ∈ N, we conclude that

󵄨󵄨󵄨󵄨𝑢𝑛+𝑚 (𝑡) − 𝑢𝑛 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑢𝑛+𝑚 (𝑡) − 𝑢𝑛+𝑚−1 (𝑡)󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨𝑢𝑛+1 (𝑡) − 𝑢𝑛 (𝑡)󵄨󵄨󵄨󵄨

≤ 𝑀 (𝜆𝑛+𝑚−2 + ⋅ ⋅ ⋅ + 𝜆𝑛−1) 𝜑 (𝑡)
= 𝑀𝜆𝑛−1 − 𝜆𝑛+𝑚−1

1 − 𝜆 𝜑 (𝑡) ,
󵄨󵄨󵄨󵄨V𝑛+𝑚 (𝑡) − V𝑛 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑀𝜆𝑛−1 − 𝜆𝑛+𝑚−1

1 − 𝜆 𝜓 (𝑡) .

(39)

The above two inequalities ensure that {(𝑢𝑛, V𝑛)} is a
Cauchy sequence in 𝐸. Since 𝐸 is complete, there exists(𝑢∗, V∗) ∈ 𝐸 such that lim𝑛󳨀→∞(𝑢𝑛, V𝑛) = (𝑢∗, V∗). Therefore,(𝑢∗, V∗) is a fixed point of 𝑆 that follows from the continuity
of operator 𝑆.
Step 4.We show that 𝑆 has a unique fixed point. Suppose there
exist two elements (𝑢∗, V∗), (𝑢∗, V∗) with 𝑆(𝑢∗, V∗) = (𝑢∗, V∗)
and 𝑆(𝑢∗, V∗) = (𝑢∗, V∗). By Step 2, there exists 𝑀 > 0 such
that

𝑇 (󵄨󵄨󵄨󵄨𝑢∗ (𝑡) − 𝑢∗ (𝑡)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨V∗ (𝑡) − V∗ (𝑡)󵄨󵄨󵄨󵄨)
≤ 𝑀 (𝜑 (𝑡) , 𝜓 (𝑡)) , 𝑡 ∈ [0, 1] . (40)

Applying the method used in Step 3 again, for 𝑝 ∈ N, we get

󵄨󵄨󵄨󵄨𝑢∗ (𝑡) − 𝑢∗ (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑀 𝜆𝑝
1 − 𝜆𝜑 (𝑡) ,

󵄨󵄨󵄨󵄨V∗ (𝑡) − V∗ (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑀 𝜆𝑝
1 − 𝜆𝜓 (𝑡) .

(41)

Hence we get the desired results.

In the following, we give an example to illustrate our
theory.

Example 5. Consider the differential system

−𝑥󸀠󸀠 (𝑡) = sin 𝑥 (𝑡) + ln (1 + 𝑦2 (𝑡)) + ℎ1 (𝑡) ,
𝑡 ∈ (0, 1) ,

−𝑦󸀠󸀠 (𝑡) = 2 arctan𝑥 (𝑡) + √1 + 𝑦2 (𝑡) + ℎ2 (𝑡) ,
𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑦 (0) = 0,
𝑥 (1) = ∫1

0
𝑦 (𝑡) 𝑑𝑡,

𝑦 (1) = 2 ∫1
0

𝑥 (𝑡) 𝑑𝑡,

(42)

where ℎ1, ℎ2 ∈ 𝐶[0, 1]. We have
𝐴 (𝑡) = 𝑡,
𝐵 (𝑡) = 2𝑡,
𝛼 [𝑡] = 1

2 ,
𝛽 [𝑡] = 1,

𝜅 = 1
2 ,

𝛼 [𝜙] = 1
24 ,

𝛽 [𝜙] = 1
12 ,

𝑎11 = 𝛼 [𝑡] 𝛽 [𝜙]
𝜅 + 1

6 = 1
4 ,

𝑎12 = 𝛼 [𝜙]
𝜅 = 1

12 ,

𝑎21 = 𝛼 [𝜙] 𝛽 [𝑡]
𝜅 + 1

6 = 1
4 ,

𝑎22 = 𝛽 [𝜙]
𝜅 = 1

6 .

(43)

Let
𝑓 (𝑡, 𝑥, 𝑦) = sin𝑥 + ln (1 + 𝑦2) + ℎ1 (𝑡) ,
𝑔 (𝑡, 𝑥, 𝑦) = 2 arctan𝑥 + √1 + 𝑦2 + ℎ2 (𝑡) ,

(44)

then󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢1, V1) − 𝑓 (𝑡, 𝑢2, V2)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑢1 − 𝑢2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V1 − V2
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑢1, V1) − 𝑔 (𝑡, 𝑢2, V2)󵄨󵄨󵄨󵄨 ≤ 2 󵄨󵄨󵄨󵄨𝑢1 − 𝑢2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V1 − V2
󵄨󵄨󵄨󵄨 , (45)

where 𝑡 ∈ [0, 1], 𝑢1, 𝑢2, V1, V2 ∈ R. Hence, there exists a
solution (𝜆, 𝜇) = (11/12, 3/2) of the following inequality
system:

(𝑎11𝑎1 + 𝑎12𝑐1) + (𝑎11𝑏1 + 𝑎12𝑑1) 𝜇 = 5
12 + 1

3𝜇 ≤ 𝜆,
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(𝑎21𝑐1 + 𝑎22𝑎1) + (𝑎21𝑑1 + 𝑎22𝑏1) 𝜇 = 2
3 + 5

12𝜇 ≤ 𝜆𝜇.
(46)

Therefore, according to Theorem 4, the problem (42) has a
unique solution.

When the nonlinearity of differential equation and differ-
ential system satisfies Lipschitz condition, the usual method
to obtain the uniqueness is the well-known Banach’s con-
traction principle. For this purpose, we should add some
restriction on the Lipschitz constants to guarantee the norm
of a linear operator related to differential equation and
differential system less than 1. Next, we discuss the estimate
of the norm of a linear operator related to differential system
(42).

Take 𝜎(𝑡) = 1, 󰜚(𝑡) = 3/2. After standard computation,
we get

∫1
0

𝐺1 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠 = ∫1
0

𝐺2 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠 = 4𝑡 − 𝑡2
6 ,

∫1
0

𝐻1 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠 = 𝑡
6 ,

∫1
0

𝐻2 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠 = 𝑡
3 .

(47)

Then

𝑇1 (𝜎, 󰜚) (𝑡) = ∫1
0

𝐺1 (𝑡, 𝑠) (𝜎 (𝑠) + 󰜚 (𝑠)) 𝑑𝑠

+ ∫1
0

𝐻1 (𝑡, 𝑠) (2𝜎 (𝑠) + 󰜚 (𝑠)) 𝑑𝑠

= 20𝑡 − 5𝑡2
12 + 7𝑡

12 = 27𝑡 − 5𝑡2
12 ,

𝑇2 (𝜎, 󰜚) (𝑡) = ∫1
0

𝐺2 (𝑡, 𝑠) (2𝜎 (𝑠) + 󰜚 (𝑠)) 𝑑𝑠

+ ∫1
0

𝐻2 (𝑡, 𝑠) (𝜎 (𝑠) + 󰜚 (𝑠)) 𝑑𝑠

= 28𝑡 − 7𝑡2
12 + 5𝑡

6 = 38𝑡 − 7𝑡2
12

(48)

So it follows from the definition of the norm for linear
operator that

‖𝑇‖ ≥
󵄩󵄩󵄩󵄩𝑇 (𝜎, 󰜚)󵄩󵄩󵄩󵄩𝐸󵄩󵄩󵄩󵄩(𝜎, 󰜚)󵄩󵄩󵄩󵄩𝐸 = 31

18 > 1. (49)

Thus Example 5 shows that Theorem 4 provides the same
results with weaker conditions.
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This paper is devoted to studying the analytical series solutions for the differential equations with variable coefficients. By a general
residual power series method, we construct the approximate analytical series solutions for differential equations with variable
coefficients, including nonhomogeneous parabolic equations, fractional heat equations in 2D, and fractional wave equations in
3D. These applications show that residual power series method is a simple, effective, and powerful method for seeking analytical
series solutions of differential equations (especially for fractional differential equations) with variable coefficients.

1. Introduction

In the field of science and engineering, many physical
phenomena can be described by differential equations with
variable coefficients. For example, some physical problems
in inhomogeneous media [1–3]. In the past, many assump-
tions on integral order differential equations were applied
artificially to describe the systems with memory properties
and hereditary properties. Some significant information will
be lost by such assumptions. Generally, fractional calculus
provides an effective tool to describe memory properties
and hereditary properties of different materials and processes
without extra assumptions. Now the fractional differential
equation has attracted a great deal of interest in several areas
including chemistry, physics, engineering, and even finance
and social sciences [4, 5]. Some recent progress in fractional
calculus can be found in [6–8].

The analytical series solutions of differential equations
are of fundamental importance in applied science. Various
numerical and analytical methods are proposed such as
Adomian decomposition method [9, 10], Fractional complex
transform method [11], and Laplace transform method [12].

Although lots of methods are put forward, scientists are still
looking for more effective ways to solve specific problems,
especially for the fractional equations with variable coeffi-
cients.

The residual power series method (RPS), proposed by
Abu Arqud in [13], is an efficient and easy method for
constructing power series solutions of differential equations
without linearization, perturbation, or discretization. Dif-
ferent from the classical power series method, RPS does
not need to compare the coefficients of the corresponding
terms. This method computes the coefficients of the power
series by a chain of equations with one or more variables.
One advantage is that RPS is not affected by computational
round-off errors and also does not require large computer
memory and extensive time. In [14], power series solutions of
higher-order ordinary differential equations are obtained by
RPS. Inspired by this approach, we present a general residual
power series method (GRPS) for constructing power series
solutions of time-space fractional differential equations with
variable coefficients:

𝐷𝑚𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝑃 (𝑥) 𝐺 (𝑢) = 𝐹 (𝑥, 𝑡) ,
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𝐷𝑖𝛼𝑡 𝑢 (𝑥, 0) = 𝑎𝑖 (𝑥) ,
𝑖 = 0, . . . , 𝑚 − 1,

(1)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) ∈ R𝑑, 𝛼 ∈ ((𝑚 − 1)/𝑚, 1],𝑚 ∈ N+,
and

𝐺 (𝑢) fl 𝐺(𝑢,𝐷𝛼𝑡 𝑢, . . . , 𝐷(𝑚−1)𝛼𝑡 𝑢,𝐷𝛽11𝑥1 𝑢, . . . , 𝐷𝛽1𝑑𝑥𝑑 𝑢, . . . ,
𝐷𝛽𝑙1𝑥1 𝑢, . . . , 𝐷𝛽𝑙𝑑𝑥𝑑 𝑢) ,

(2)

with 𝑝 − 1 < 𝛽𝑝𝑗 ⩽ 𝑝, 𝑝 = 1, . . . , 𝑙; 𝑗 = 1, . . . , 𝑑. Here 𝐷𝑖𝛼𝑡
and 𝐷𝛽𝑝𝑗𝑥𝑗 mean the Caputo fractional derivative with respect
to 𝑡 of order 𝑖𝛼 and 𝑥𝑗 of order 𝛽𝑝𝑗, respectively. Such type
of differential equation provides an exact description of some
physical phenomena in fluid dynamics, electrodynamics, and
elastic mechanics.

RPS has been extended to many partial differential
equations (PDE), especially to fractional partial differential
equations (FPDE), such as time-fractional dispersive PDE
[15, 16], time-fractional KdV-Burgers equations [17], homo-
geneous time-fractional wave equation [18], and time-space
fractional Boussinesq equations [19]. In the present paper, we
will apply GRPS to a series of PDE with variable coefficients,
including fourth-order parabolic equations, fractional heat
equation, and fractional wave equation. For other approxi-
mation and numerical techniques for FPDE, we refer to finite
difference methods [20, 21], differential transform method
[22, 23], wavelet method [24], Adomian’s decomposition
method [25], variational iterationmethod [26, 27], homotopy
analysis method [28], homotopy perturbation method [29],
tau method [30, 31], and so on.

The paper is organized as follows: some necessary def-
initions and theorems will be presented in Section 2. In
Section 3, we propose the main steps of GRPS for the general
time-space fractional equations with variable coefficients. In
Section 4, the applications of GRPS to some different equa-
tions with variable coefficients are given, including fourth-
order parabolic equations, fractional heat equations, and
fractional wave equations. Finally, conclusions are presented
in Section 5.

2. Concepts on Fractional Calculus Theory

There are several definitions of the fractional integration with
order 𝛼 ≥ 0, and they are not necessarily equivalent to each
other. The two most common ones are Riemann-Liouville’s
definition and Caputo’s definition; see [32, 33].

Definition 1. TheMittag-Leffler function is defined as follows:

𝐸𝛼 (𝑥) fl
∞

∑
𝑘=0

𝑥𝑘
Γ (𝛼𝑘 + 1) , 𝛼 > 0. (3)

Definition 2. A real function 𝑢(𝑥, 𝑡), 𝑥 ∈ 𝐼, 𝑡 > 0 is said to be
in the space 𝐶𝜇(𝐼 × R+), 𝜇 ∈ R, if there exists a real number
𝑝 > 𝜇 such that 𝑢(𝑥, 𝑡) = 𝑡𝑝𝑓(𝑥, 𝑡), where𝑓(𝑥, 𝑡) ∈ 𝐶(𝐼×R+),

and it is said to be in the space 𝐶𝑛𝜇, if (𝜕𝑛/𝜕𝑡𝑛)𝑢(𝑥, 𝑡) ∈ 𝐶𝜇,𝑛 ∈ N.

Definition 3. Let 𝑢(𝑥, 𝑡) ∈ 𝐶𝜇(𝐼 ×R+), 𝜇 ≥ −1. The Riemann-
Liouville fractional integral operator of order 𝛼 ≥ 0 of 𝑢(𝑥, 𝑡)
is defined as follows:

𝐽𝛼𝑡 𝑢 (𝑥, 𝑡)

fl
{
{{

1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑢 (𝑥, 𝜏) d𝜏, 𝛼 > 0, 𝑥 ∈ 𝐼, 𝑡 > 𝜏 ≥ 0,

𝑢 (𝑥, 𝑡) , 𝛼 = 0.
(4)

Definition 4. The Caputo time-fractional derivative operator
of order 𝛼 of 𝑢(𝑥, 𝑡) is defined as follows:

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡)

fl
{{{
{{{{

𝐽𝑛−𝛼𝑡 (𝜕𝑛𝑢 (𝑥, 𝑡)𝜕𝑡𝑛 ) , 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N+,
𝜕𝑛𝑢 (𝑥, 𝑡)

𝜕𝑡𝑛 , 𝛼 = 𝑛.
(5)

Definition 5. TheCaputo space fractional derivative operator
of order 𝛽 is defined as follows:

𝐷𝛽𝑥𝑢 (𝑥, 𝑡)

fl
{{{
{{{{

𝐽𝑛−𝛽𝑥 (𝜕𝑛𝑢 (𝑥, 𝑡)𝜕𝑥𝑛 ) , 𝑛 − 1 < 𝛽 < 𝑛, 𝑛 ∈ N+,
𝜕𝑛𝑢 (𝑥, 𝑡)

𝜕𝑥𝑛 , 𝛼 = 𝑛.
(6)

Definition 6. A power series representation of the form

∞

∑
𝑛=0

𝑐𝑛 (𝑡 − 𝑡0)𝑛𝛼 fl 𝑐0 + 𝑐1 (𝑡 − 𝑡0)𝛼 + 𝑐2 (𝑡 − 𝑡0)2𝛼 + ⋅ ⋅ ⋅ (7)

is called a fractional power series (FPS) about 𝑡0, where 𝑡 is a
variable and 𝑐𝑛 are the coefficients of the series.

Theorem 7 (see [34]). Suppose that 𝑓 has a FPS representa-
tion at 𝑡0 of the form

𝑓 (𝑡) =
∞

∑
𝑛=0

𝑐𝑛 (𝑡 − 𝑡0)𝑛𝛼 , 𝑡0 ⩽ 𝑡 < 𝑡0 + 𝑅, (8)

where 𝑅 is the radius of convergence of the FPS. If 𝐷𝑛𝛼𝑡 𝑓(𝑡) ∈𝐶(𝑡0, 𝑡0 +𝑅) for 𝑛 = 0, 1, 2, ⋅ ⋅ ⋅ , then the coefficients 𝑐𝑛 will take
the form of

𝑐𝑛 =
𝐷𝑛𝛼𝑡 𝑓 (𝑡)󵄨󵄨󵄨󵄨𝑡=𝑡0
Γ (𝑛𝛼 + 1) , (9)

where𝐷𝑛𝛼𝑡 = 𝐷𝛼𝑡 ⋅ 𝐷𝛼𝑡 ⋅ ⋅ ⋅ ⋅ 𝐷𝛼𝑡 (𝑛-times).

3. Algorithm of GRPS

In this section, we give a general RPS to obtain fractional
power series solutions for any-order time-space fractional
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differential equations with variable coefficients (1). The ana-
lytic function 𝑢(𝑥, 𝑡) can be expanded as follows:

𝑢 (𝑥, 𝑡) =
∞

∑
𝑛=0

𝑢𝑛 (𝑥, 𝑡) fl
∞

∑
𝑛=0

𝐶𝑛 (𝑥) 𝑡𝑛𝛼,

𝑥 ∈ 𝐼 ⊂ R
𝑑, |𝑡| < 𝑅,

(10)

where 𝑅 is the radius of convergence of above series. Substi-
tute the initial conditions in (1); we have

𝑎𝑖 (𝑥) = 𝐶𝑖 (𝑥) Γ (𝑖𝛼 + 1) , 𝑖 = 0, 1, . . . , 𝑚 − 1, (11)

which implies

𝑢𝑖 (𝑥, 𝑡) = 𝐶𝑖 (𝑥) 𝑡𝑖𝛼 = 𝑎𝑖 (𝑥)
Γ (𝑖𝛼 + 1) 𝑡

𝑖𝛼,
𝑖 = 0, 1, . . . , 𝑚 − 1.

(12)

So we have the initial guess approximation of 𝑢(𝑥, 𝑡) in the
following form:

𝑢initial (𝑥, 𝑡) fl 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡) + ⋅ ⋅ ⋅ + 𝑢𝑚−1 (𝑥, 𝑡)
= 𝑎0 (𝑥) + 𝑎1 (𝑥)

Γ (𝛼 + 1) 𝑡
𝛼 + ⋅ ⋅ ⋅

+ 𝑎𝑚−1 (𝑥)
Γ ((𝑚 − 1) 𝛼 + 1) 𝑡

(𝑚−1)𝛼.
(13)

Define the approximate solution of (1) by the 𝑘th truncated
series:

𝑢𝑘 (𝑥, 𝑡) fl 𝑢initial (𝑥, 𝑡) +
𝑘

∑
𝑖=𝑚

𝐶𝑖 (𝑥) 𝑡𝑖𝛼,

𝑘 = 𝑚,𝑚 + 1,𝑚 + 2 ⋅ ⋅ ⋅ .
(14)

Before applying GRPS to solve (1), we give some notations

Res (𝑢,𝑥, 𝑡) fl 𝐷𝑚𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝑃 (𝑥) 𝐺 (𝑢) − 𝐹 (𝑥, 𝑡) . (15)

Substituting the 𝑘th truncated approximate solutions 𝑢𝑘(𝑥, 𝑡)
into (1), we obtain the 𝑘th residual function

Res𝑘 (𝑢,𝑥, 𝑡) fl 𝐷𝑚𝛼𝑡 𝑢𝑘 (𝑥, 𝑡) + 𝑃 (𝑥) 𝐺𝑘 (𝑢)
− 𝐹 (𝑥, 𝑡) , (16)

where

𝐺𝑘 (𝑢) = 𝐺 (𝑢𝑘, 𝐷𝛼𝑡 𝑢𝑘, . . . , 𝐷(𝑚−1)𝛼𝑡 𝑢𝑘, 𝐷𝛽11𝑥1 𝑢𝑘, . . . , 𝐷𝛽1𝑑𝑥𝑑 𝑢𝑘,
. . . , 𝐷𝛽𝑙1𝑥1 𝑢𝑘, . . . , 𝐷𝛽𝑙𝑑𝑥𝑑 𝑢𝑘) .

(17)

Then we have the following facts:

(1) lim𝑘󳨀→∞𝑢𝑘(𝑥, 𝑡) = 𝑢(𝑥, 𝑡);
(2) Res(𝑢,𝑥, 𝑡) = 0;
(3) lim𝑘󳨀→∞Res

𝑘(𝑢,𝑥, 𝑡) = Res(𝑢,𝑥, 𝑡), 𝑥 ∈ 𝐼 ⊆ R𝑑, |𝑡|
< 𝑅.

Assume that

𝐷(𝑘−𝑚)𝛼𝑡 Res𝑘 (𝑢,𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 = 0. (18)

Since

𝐷(𝑘−𝑚)𝛼𝑡 Res𝑘 (𝑢,𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝐶𝑘 (𝑥) Γ (𝑘𝛼 + 1)

+ 𝐷(𝑘−𝑚)𝛼𝑡 [𝑃 (𝑥) 𝐺𝑘 (𝑢) − 𝐹 (𝑥, 𝑡)]
𝑡=0

,
(19)

we have

𝐶𝑘 (𝑥) = −𝐷
(𝑘−𝑚)𝛼
𝑡 [𝑃 (𝑥) 𝐺𝑘 (𝑢) − 𝐹 (𝑥, 𝑡)]

𝑡=0

Γ (𝑘𝛼 + 1) ,
𝑘 = 𝑚,𝑚 + 1,𝑚 + 2, ⋅ ⋅ ⋅ .

(20)

In fact, this relation is a fundamental rule in GRPS. So the
FPS solution of (1) is

𝑢 (𝑥, 𝑡) = 𝑢initial (𝑥, 𝑡) +
∞

∑
𝑖=𝑚

𝐶𝑖 (𝑥) 𝑡𝑖𝛼

=
𝑚−1

∑
𝑖=0

𝑎𝑖 (𝑥)
Γ (𝑖𝛼 + 1) 𝑡

𝑖𝛼 +
∞

∑
𝑖=𝑚

𝑓𝑖 (𝑥)
Γ (𝑖𝛼 + 1) 𝑡

𝑖𝛼,
(21)

where

𝑓𝑘 (𝑥) = −𝐷(𝑘−𝑚)𝛼𝑡 [𝑃 (𝑥) 𝐺𝑘 (𝑢) − 𝐹 (𝑥, 𝑡)]
𝑡=0

,
𝑘 = 𝑚,𝑚 + 1,𝑚 + 2, ⋅ ⋅ ⋅ .

(22)

4. Applications of GRPS to PDEs with
Variable Coefficients

4.1. Fourth-Order Parabolic Equation with Variable Coeffi-
cients in R1. Let us consider the fourth-order parabolic dif-
ferential equation

𝜕2𝑢
𝜕𝑡2 + ( 𝑥

sin 𝑥 − 1) 𝜕4𝑢
𝜕𝑥4 = 0, 0 < 𝑥 < 1, 𝑡 > 0, (23)

where 𝑥/ sin 𝑥 − 1 > 0 is the ratio of flexural rigidity of the
beam to its mass per unit length; see [35]. In [35], the initial
conditions and the boundary conditions of (23) are

𝑢 (𝑥, 0) = 𝑥 − sin 𝑥,
𝜕
𝜕𝑡𝑢 (𝑥, 0) = −𝑥 + sin𝑥, (24)

and
𝑢 (0, 𝑡) = 0,
𝑢 (1, 𝑡) = 𝑒−𝑡 (1 − sin 1) ,

𝜕2
𝜕𝑥2 𝑢 (0, 𝑡) = 0,
𝜕2
𝜕𝑥2 𝑢 (1, 𝑡) = 𝑒−𝑡 sin 1,

(25)



4 Discrete Dynamics in Nature and Society

respectively. According to (10), 𝑢 can be written in the
following form:

𝑢 (𝑥, 𝑡) = 𝐶0 (𝑥) + 𝐶1 (𝑥) 𝑡 + 𝐶2 (𝑥) 𝑡2 + 𝐶3 (𝑥) 𝑡3
+ ⋅ ⋅ ⋅ . (26)

The initial approximation is

𝑢initial (𝑥, 𝑡) = (𝑥 − sin 𝑥) − (𝑥 − sin𝑥) 𝑡. (27)

Now by (15), denote

Res (𝑥, 𝑡) = 𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2 + ( 𝑥

sin𝑥 − 1) 𝜕4𝑢 (𝑥, 𝑡)
𝜕𝑥4 ,

𝑢𝑘 (𝑥, 𝑡) = 𝑢initial +
𝑘

∑
𝑖=2

𝑓𝑖 (𝑥) 𝑡𝑖,

Res𝑘 (𝑥, 𝑡) = 𝜕2𝑢𝑘 (𝑥, 𝑡)
𝜕𝑡2 + ( 𝑥

sin 𝑥 − 1) 𝜕4𝑢𝑘 (𝑥, 𝑡)
𝜕𝑥4 .

(28)

By (16) and (18), we assume that

𝐷𝑘−2𝑡 Res𝑘 (𝑥, 0) = 0, 𝑘 = 2, 3, 4 ⋅ ⋅ ⋅ . (29)

Letting 𝑘 = 2 in (29), it shows

2!𝐶2 (𝑥) + ( 𝑥
sin𝑥 − 1) (− sin𝑥) = 0, (30)

which implies

𝐶2 (𝑥) = 𝑥 − sin𝑥
2! . (31)

So the 2nd truncated approximate solution of (23) is

𝑢2 (𝑥, 𝑡) = (𝑥 − sin𝑥) − (𝑥 − sin 𝑥) 𝑡 + 𝑥 − sin𝑥
2! 𝑡2. (32)

Similarly, 𝐶𝑘(𝑥) can be constructed as follows:

𝐶𝑘 (𝑥) = (−1)𝑘
𝑘! (𝑥 − sin𝑥) , 𝑘 = 2, 3, 4 ⋅ ⋅ ⋅ . (33)

So the 𝑘th truncated approximate solution of (23) is

𝑢𝑘 (𝑥, 𝑡) = (𝑥 − sin𝑥)
𝑘

∑
𝑖=0

(−1)𝑘
𝑘! 𝑡𝑖. (34)

Finally, if we define

𝑢 (𝑥, 𝑡) fl lim
𝑘󳨀→∞

𝑢𝑘 (𝑥, 𝑡) = (𝑥 − sin𝑥) 𝑒−𝑡, (35)

it is easy to verify that 𝑢(𝑥, 𝑡) in (35) is the exact solution of
(23) with boundary value condition (25).

Numerical comparisons are studied next. Figure 1 shows
the exact solution 𝑢 of (23) with 0 ≤ 𝑡 ≤ 5. In Figure 2, 𝑢9, 𝑢10,
𝑢11, and 𝑢12 represent the 9th-, 10th-, 11th-, and 12th-order
truncated approximate solution of 𝑢 with 0 ≤ 𝑡 ≤ 5. It shows
that these GRPS approximate solutions are convergent to the
exact solution 𝑢.
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Figure 1: The exact solution 𝑢 of (23).
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Figure 2: The approximate solutions 𝑢9, 𝑢10, 𝑢11, and 𝑢12 of (23).

4.2. Nonhomogeneous Parabolic Equation with Source Term in
R1. Let us consider the nonhomogeneous parabolic equation
(see [35]):

𝜕2𝑢
𝜕𝑡2 + (1 + 𝑥) 𝜕4𝑢𝜕𝑥4 = (𝑥4 + 𝑥3 − 6

7!𝑥
7) cos 𝑡,
0 < 𝑥 < 1, 𝑡 > 0,

(36)

with the initial conditions

𝑢 (𝑥, 0) = 6
7!𝑥
7,

𝜕
𝜕𝑡𝑢 (𝑥, 0) = 0,

(37)
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and the boundary conditions

𝑢 (0, 𝑡) = 0,
𝑢 (1, 𝑡) = 6

7! cos 𝑡,
𝜕2
𝜕𝑥2 𝑢 (0, 𝑡) = 0,
𝜕2
𝜕𝑥2 𝑢 (1, 𝑡) =

1
20 cos 𝑡.

(38)

Assume that 𝑢(𝑥, 𝑡) is an analytical function with 𝑡 > 0. The
initial approximation is

𝑢initial (𝑥, 𝑡) = 6
7!𝑥
7. (39)

Denote

Res𝑘 (𝑥, 𝑡) = 𝜕2𝑢𝑘 (𝑥, 𝑡)
𝜕𝑡2 + (1 + 𝑥) 𝜕4𝑢𝑘 (𝑥, 𝑡)𝜕𝑥4

− (𝑥4 + 𝑥3 − 6
7!𝑥
7) cos 𝑡,

(40)

where

𝑢𝑘 (𝑥, 𝑡) = 𝑢initial (𝑥, 𝑡) + 𝐶2 (𝑥) 𝑡2 + ⋅ ⋅ ⋅ + 𝐶𝑘 (𝑥) 𝑡𝑘. (41)

Let 𝑘 = 2 in (40); it yields

Res2 (𝑥, 𝑡) = 2𝐶2 (𝑥) + (1 + 𝑥) ( 6
3!𝑥
3 + 𝐶(4)2 (𝑥) 𝑡2)

− (𝑥4 + 𝑥3 − 6
7!𝑥
7) cos 𝑡.

(42)

Using the fact that

𝐷𝑘−2𝑡 Res𝑘 (𝑥, 0) = 0, 𝑘 = 2, 3, 4 ⋅ ⋅ ⋅ , (43)

we have

𝐶2 (𝑥) = − 6
2!7!𝑥
7. (44)

Thus the 2nd truncated series have the following form:

𝑢2 (𝑥, 𝑡) = 6
7!𝑥
7 − 6

2!7!𝑥
7𝑡2. (45)

Similarly, taking 𝑘 = 3, 4, 5, 6 in (40) we obtain

𝐶3 (𝑥) = 0,
𝐶4 (𝑥) = 6

4!7!𝑥
7,

𝐶5 (𝑥) = 0,
𝐶6 (𝑥) = − 6

6!7!𝑥
7.

(46)
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Figure 3: The exact solution 𝑢 of (36).

Then 6th truncated approximate solution of (36) is

𝑢6 (𝑥, 𝑡) = 6
7!𝑥
7 − 6

2!7!𝑥
7𝑡2 + 6

4!7!𝑥
7𝑡4 − 6

6!7!𝑥
7𝑡6. (47)

By (21), we can obtain the solution of (36):

𝑢 (𝑥, 𝑡) = lim
𝑘󳨀→∞

𝑢𝑘 (𝑥, 𝑡) = 6
7!𝑥
7 cos 𝑡, (48)

which is consistent with the solution obtained by Adomian
decomposition method [35].

Some numerical comparisons are given next. Figure 3
shows the exact solution 𝑢 of (36) with 0 ≤ 𝑡 ≤ 5. In Figure 4,
𝑢19, 𝑢20, 𝑢21, and 𝑢22 represent the 19th-, 20th-, 21st-, and
22nd-order GRPS solution of 𝑢 with 0 ≤ 𝑡 ≤ 5. It shows
that these approximate solutions are convergent to the exact
solution 𝑢.
4.3. Fractional Heat Equation with Variable Coefficients inR2.
Consider the two-dimensional heat equation with variable
coefficients

𝐷𝛼𝑡 𝑢 (𝑥, 𝑦, 𝑡) = 1
2𝑦
2𝑢𝑥𝑥 (𝑥, 𝑦, 𝑡) + 1

2𝑥
2𝑢𝑦𝑦 (𝑥, 𝑦, 𝑡) ,

(𝑥, 𝑦, 𝑡) ∈ (R+)3 , 0 < 𝛼 ≤ 1,
(49)

with the initial conditions

𝑢 (𝑥, 𝑦, 0) = 𝑦2. (50)
Assume that 𝑢(𝑥, 𝑦, 𝑡) is an analytical function on 𝑡 > 0 and
the initial approximation solution has the following form:

𝑢initial (𝑥, 𝑦, 𝑡) = 𝑦2. (51)

Then the 𝑘th truncated series and 𝑘th residual function will
be

𝑢𝑘 (𝑥, 𝑦, 𝑡) = 𝑢initial (𝑥, 𝑦, 𝑡) +
𝑘

∑
𝑚=1

𝐶𝑚 (𝑥, 𝑦) 𝑡𝑚𝛼

= 𝑦2 + 𝐶1 (𝑥, 𝑦) 𝑡𝛼 + ⋅ ⋅ ⋅ + 𝐶𝑘 (𝑥, 𝑦) 𝑡𝑘𝛼,
(52)
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Figure 4: The approximate solutions 𝑢19, 𝑢20, 𝑢21, and 𝑢22 of (36).

and

Res𝑘 (𝑥, 𝑦, 𝑡) = 𝐷𝛼𝑡 𝑢𝑘 (𝑥, 𝑦, 𝑡) − 1
2𝑦
2 𝜕2𝑢𝑘 (𝑥, 𝑦, 𝑡)

𝜕𝑥2

− 1
2𝑥
2 𝜕2𝑢𝑘 (𝑥, 𝑦, 𝑡)

𝜕𝑦2 ,
(53)

respectively. By (18), we have

𝐷(𝑘−1)𝛼𝑡 Res𝑘 (𝑥, 𝑦, 0) = 0,
0 < 𝛼 < 1, 𝑘 = 1, 2, 3, ⋅ ⋅ ⋅ . (54)

When 𝑘 = 1 in (54), we obtain

𝐶1 (𝑥, 𝑦) = 𝑥2
Γ (𝛼 + 1) . (55)

Thus, the 1st truncated approximate solution of (49)-(50) is

𝑢1 (𝑥, 𝑦, 𝑡) = 𝑦2 + 𝑥2
Γ (𝛼 + 1) 𝑡

𝛼. (56)

Let k=2 in (54); it yields that

𝐶2 (𝑥, 𝑦) = 𝑦2
Γ (2𝛼 + 1) . (57)

Therefore, the 2nd truncated approximate solution of (49)-
(50) is

𝑢2 (𝑥, 𝑦, 𝑡) = 𝑦2 + 𝑥2
Γ (𝛼 + 1) 𝑡

𝛼 + 𝑦2
Γ (2𝛼 + 1) 𝑡

2𝛼. (58)

In the similar way, taking 𝑘 = 3, 4, 5, 6 in (54), we can obtain
that

𝐶3 (𝑥, 𝑦) = 𝑥2
Γ (3𝛼 + 1) ,

𝐶4 (𝑥, 𝑦) = 𝑦2
Γ (4𝛼 + 1) ,

𝐶5 (𝑥, 𝑦) = 𝑥2
Γ (5𝛼 + 1) ,

(59)

and

𝐶6 (𝑥, 𝑦) = 𝑦2
Γ (6𝛼 + 1) . (60)

Thus 6th truncated approximate solution of (49)-(50) can be
obtained

𝑢6 (𝑥, 𝑦, 𝑡) = 𝑦2 + 𝑥2
Γ (𝛼 + 1) 𝑡

𝛼 + 𝑦2
Γ (2𝛼 + 1) 𝑡

2𝛼

+ 𝑥2
Γ (3𝛼 + 1) 𝑡

3𝛼 + 𝑦2
Γ (4𝛼 + 1) 𝑡

4𝛼

+ 𝑥2
Γ (5𝛼 + 1) 𝑡

5𝛼 + 𝑦2
Γ (6𝛼 + 1) 𝑡

6𝛼.

(61)

Following the same step, we have the exact analytical solu-
tions of (49)-(50):

𝑢 (𝑥, 𝑦, 𝑡) = 𝑦2 (1 + 1
Γ (2𝛼 + 1) 𝑡

2𝛼 + 1
Γ (4𝛼 + 1) 𝑡

4𝛼

+ 1
Γ (6𝛼 + 1) 𝑡

6𝛼 + ⋅ ⋅ ⋅) + 𝑥2 ( 1
Γ (𝛼 + 1) 𝑡

𝛼

+ 1
Γ (3𝛼 + 1) 𝑡

3𝛼 + 1
Γ (5𝛼 + 1) 𝑡

5𝛼 + ⋅ ⋅ ⋅) = 𝑦2

⋅ cosh (𝑡𝛼, 𝛼) + 𝑥2 sinh (𝑡𝛼, 𝛼) .

(62)

Particularly, if 𝛼 = 1, we obtain the following form:

𝑢 (𝑥, 𝑦, 𝑡) = 𝑦2 𝑒𝑡 + 𝑒−𝑡
2 + 𝑥2 𝑒𝑡 − 𝑒−𝑡

2 , (63)

which is the solution of the integer order heat equation with
variable coefficients.

Some numerical simulation are presented next. In Figures
5 and 6, 𝑢9, 𝑢10, 𝑢11, and 𝑢12 represent the 9th-, 10th-, 11th-
, and 12th-order GRPS solution of (49) at time 𝑡 = 3 with
𝛼 = 1/2 and 𝛼 = 1, respectively. In Figures 7 and 8, 𝑢9,
𝑢10, 𝑢11, and 𝑢12 represent the 9th-, 10th-, 11th-, and 12th-
order GRPS solution of (49) at time 𝑡 = 5 with 𝛼 = 1/2 and
𝛼 = 1, respectively. It shows that the speed of convergence of
truncated approximate solution of (49) with 𝛼 = 1 is better
than the one with 𝛼 = 1/2.
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Figure 5: The approximate solutions 𝑢9, 𝑢10, 𝑢11, and 𝑢12 of (49) at
𝑡 = 3 with 𝛼 = 1/2.

0

5

10 0
2

4
6

8
100

500

1000

1500

2000

2500

3000

y
x

u(
x,

y,3
)

u9

u10
u11

u12

Figure 6: The approximate solutions 𝑢9, 𝑢10, 𝑢11, and 𝑢12 of (49) at
𝑡 = 3 with 𝛼 = 1.

4.4. Fractional Wave Equation in R3. Consider the three-
dimensional wave equation with variable coefficients

𝐷2𝛼𝑡 𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 1
2 (𝑥2𝑢𝑥𝑥 (𝑥, 𝑦, 𝑧, 𝑡)

+ 𝑦2𝑢𝑦𝑦 (𝑥, 𝑦, 𝑧, 𝑡) + 𝑧2𝑢𝑧𝑧 (𝑥, 𝑦, 𝑧, 𝑡)) + 𝑥2 + 𝑦2

+ 𝑧2, (𝑥, 𝑦, 𝑧) ∈ (R+)3 , 𝑡 > 0, 0 < 𝛼 ≤ 1,
(64)

with the initial conditions

𝑢 (𝑥, 𝑦, 𝑧, 0) = 0,
𝐷𝛼𝑡 𝑢 (𝑥, 𝑦, 𝑧, 0) = 𝑥2 + 𝑦2 − 𝑧2. (65)
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Figure 7: The approximate solutions 𝑢9, 𝑢10, 𝑢11, and 𝑢12 of (49) at
𝑡 = 5 with 𝛼 = 1/2.
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Figure 8: The approximate solutions 𝑢9, 𝑢10, 𝑢11, and 𝑢12 of (49) at
𝑡 = 5 with 𝛼 = 1.

First, we construct the initial approximation solution:

𝑢initial (𝑥, 𝑦, 𝑧, 𝑡) = 𝑥2 + 𝑦2 − 𝑧2
Γ (𝛼 + 1) 𝑡𝛼. (66)

Secondly, construct the 𝑘th truncated series and 𝑘th residual
function of (64)-(65) as follows:

𝑢𝑘 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢initial (𝑥, 𝑦, 𝑧, 𝑡)

+
𝑘

∑
𝑚=2

𝐶𝑚 (𝑥, 𝑦, 𝑧) 𝑡𝑚𝛼,
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Res𝑘 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐷2𝛼𝑡 𝑢𝑘 (𝑥, 𝑦, 𝑧, 𝑡) − (𝑥2 + 𝑦2 + 𝑧2)
− 1
2 (𝑥2𝑢𝑘𝑥𝑥 (𝑥, 𝑦, 𝑧, 𝑡) + 𝑦2𝑢𝑘𝑦𝑦 (𝑥, 𝑦, 𝑧, 𝑡)

+ 𝑧2𝑢𝑘𝑧𝑧 (𝑥, 𝑦, 𝑧, 𝑡)) .
(67)

By (18), we have

𝐷(𝑘−2)𝛼𝑡 Res𝑘 (𝑥, 𝑦, 𝑧, 0) = 0,
0 < 𝛼 < 1, 𝑘 = 2, 3, 4, ⋅ ⋅ ⋅ . (68)

Taking 𝑘 = 2 in (68), it yields

𝐶2 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2
Γ (2𝛼 + 1) . (69)

Then the 2nd truncated approximate solution will be

𝑢2 (𝑥, 𝑦, 𝑧, 𝑡) = 1
Γ (𝛼 + 1) (𝑥

2 + 𝑦2 − 𝑧2) 𝑡𝛼

+ 1
Γ (2𝛼 + 1) (𝑥

2 + 𝑦2 + 𝑧2) 𝑡2𝛼.
(70)

In a similar way, taking 𝑘 = 3, 4, 5, 6 in (68), we have

𝐶3 (𝑥, 𝑦, 𝑧) = 1
Γ (3𝛼 + 1) (𝑥

2 + 𝑦2 − 𝑧2) ,

𝐶4 (𝑥, 𝑦, 𝑧) = 1
Γ (4𝛼 + 1) (𝑥

2 + 𝑦2 + 𝑧2) ,

𝐶5 (𝑥, 𝑦, 𝑧) = 1
Γ (5𝛼 + 1) (𝑥

2 + 𝑦2 − 𝑧2) ,

𝐶6 (𝑥, 𝑦, 𝑧) = 1
Γ (6𝛼 + 1) (𝑥

2 + 𝑦2 + 𝑧2) .

(71)

Then the 6th-order truncated approximate solution of (64)-
(65) can be obtained as follows:

𝑢6 (𝑥, 𝑦, 𝑧, 𝑡) = 1
Γ (𝛼 + 1) (𝑥

2 + 𝑦2 − 𝑧2) 𝑡𝛼

+ 1
Γ (2𝛼 + 1) (𝑥

2 + 𝑦2 + 𝑧2) 𝑡2𝛼

+ 1
Γ (3𝛼 + 1) (𝑥

2 + 𝑦2 − 𝑧2) 𝑡3𝛼

+ 1
Γ (4𝛼 + 1) (𝑥

2 + 𝑦2 + 𝑧2) 𝑡4𝛼

+ 1
Γ (5𝛼 + 1) (𝑥

2 + 𝑦2 − 𝑧2) 𝑡5𝛼

+ 1
Γ (6𝛼 + 1) (𝑥

2 + 𝑦2 + 𝑧2) 𝑡6𝛼.

(72)

Finally, the exact analytical solution of (64)-(65) can be
obtained:

𝑢 (𝑥, 𝑦, 𝑡) = (𝑥2 + 𝑦2 − 𝑧2) ( 1
Γ (𝛼 + 1) 𝑡

𝛼

+ 1
Γ (3𝛼 + 1) 𝑡

3𝛼 + 1
Γ (5𝛼 + 1) 𝑡

5𝛼 + ⋅ ⋅ ⋅) + (𝑥2 + 𝑦2

+ 𝑧2) ( 1
Γ (2𝛼 + 1) 𝑡

2𝛼 + 1
Γ (4𝛼 + 1) 𝑡

4𝛼

+ 1
Γ (6𝛼 + 1) 𝑡

6𝛼 + ⋅ ⋅ ⋅) = (𝑥2 + 𝑦2 − 𝑧2)
⋅ sinh (𝑡𝛼, 𝛼) + (𝑥2 + 𝑦2 + 𝑧2) [cosh (𝑡𝛼, 𝛼) − 1] .

(73)

5. Conclusions

This paper concerns the analytical series solutions of the dif-
ferential equations with variable coefficients (integer order or
fractional order). By a general residual power residual series
method, we construct the analytical approximate solutions
and the analytical exact solutions of the differential equations
with variable coefficients, for example, nonhomogeneous
parabolic equations, fractional heat equations in 2D, and
fractional wave equations in 3D. It shows that GRPS is a
direct, simple, and efficient method which could be widely
applied to many other PDEs with variable coefficients.
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We consider the discrete Volterra type equation of the form Δ(𝑟𝑛Δ𝑥𝑛) = 𝑏𝑛 + ∑𝑛𝑘=1𝐾(𝑛, 𝑘)𝑓(𝑥𝑘). We present sufficient conditions
for the existence of solutions with prescribed asymptotic behavior. Moreover, we study the asymptotic behavior of solutions. We
use o(𝑛𝑠), for given nonpositive real 𝑠, as a measure of approximation.

1. Introduction

In this paper we consider the nonlinear Volterra sum-
difference equation of nonconvolution type:

Δ (𝑟𝑛Δ𝑥𝑛) = 𝑏𝑛 + 𝑛∑
𝑘=1

𝐾 (𝑛, 𝑘) 𝑓 (𝑥𝑘) , (E)
𝑟𝑛, 𝑏𝑛 ∈ R, 𝑟𝑛 > 0, 𝑓 : R 󳨀→ R, 𝐾 : N × N 󳨀→ R. (1)

Here N, R denote the set of positive integers and the set of
real numbers, respectively. By a solution of (E) we mean a
sequence 𝑥 : N 󳨀→ R satisfying (E) for large 𝑛.

Discrete Volterra equations of different types are widely
used in the process of modeling of some real phenomena
or by applying a numerical method to a Volterra integral
equation. Let 𝑚 ∈ N. The general form of a Volterra sum-
difference autonomous equation is

Δ𝑚𝑥𝑛 = 𝑎𝑛 + 𝑛∑
𝑘=1

𝐾 (𝑛, 𝑘) 𝑓 (𝑥𝑘) . (2)

Such equations can be regarded as the discrete analogue of
Volterra integrodifferential equations of the form

𝑥(𝑚) (𝑡) = 𝑓 (𝑡) + ∫𝑡
0
𝐾 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠)) 𝑑𝑠. (3)

There are relatively few works devoted to the study of equa-
tions of type (2); see, for example, [1–4]. In [5], the asymptotic
behaviors of nonoscillatory solutions of the higher-order
integrodynamic equation on time scales are presented.

In most papers, the following special case of (2) is
considered:

𝑥𝑛+1 = 𝑎𝑛𝑥𝑛 + 𝑏𝑛 + 𝑛∑
𝑘=1

𝐾 (𝑛, 𝑘) 𝑥𝑘; (4)

see, e.g., [6–9], [10–13], [14], [15], or [16]. For some recent
results devoted to nonlinear Volterra equations we refer to
[5, 17–22] and references therein.

Note, that equation (E) generalizes the second-order
discrete Volterra difference equation of type (2):

Δ2𝑥𝑛 = 𝑏𝑛 + 𝑛∑
𝑘=1

𝐾 (𝑛, 𝑘) 𝑓 (𝑥𝑘) . (5)

On the other hand, if 𝐾(𝑛, 𝑘) = 0 for 𝑘 ̸= 𝑛, then denoting𝑎𝑛 = 𝐾(𝑛, 𝑛) equation (E) takes the formΔ (𝑟𝑛Δ𝑥𝑛) = 𝑎𝑛𝑓 (𝑥𝑛) + 𝑏𝑛. (6)

Hence second-order difference equation (6) is a special case
of (E). The results on asymptotic properties and oscillation of
equations of type (6) can be found, i.e., in [23–26].
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Our main goal is to present sufficient conditions for the
existence of a solution 𝑥 to equation (E) such that

𝑥𝑛 = 𝑛−1∑
𝑘=1

𝑐𝑟𝑘 + 𝑑 + o (𝑛𝑠) , (7)

where 𝑐, 𝑑 ∈ R and 𝑠 ∈ (−∞, 0]. We give also sufficient
conditions for a given solution 𝑥 of equation (E) to have
an asymptotic property (7). Moreover, in Section 5 we show
applications of the obtained results to linearVolterra equation
of type (E). We present also some results for the case when(𝑟𝑛) is a potential sequence.
2. Preliminaries

We will denote by SQ the space of all sequences 𝑥 : N 󳨀→ R.
If 𝑥, 𝑦 in SQ, then 𝑥𝑦 and |𝑥| denote the sequences defined by𝑥𝑦(𝑛) = 𝑥𝑛𝑦𝑛 and |𝑥|(𝑛) = |𝑥𝑛|, respectively. Moreover,

‖𝑥‖ = sup {󵄨󵄨󵄨󵄨𝑥𝑛󵄨󵄨󵄨󵄨 : 𝑛 ∈ N} . (8)

If 𝑥 ∈ SQ, 𝑠 ∈ R, and lim𝑛󳨀→∞𝑛−𝑠𝑥𝑛 = 0, then we write 𝑥𝑛 =
o(𝑛𝑠). Analogously, 𝑥𝑛 = O(𝑛𝑠) denotes the boundedness of
the sequence (𝑛−𝑠𝑥𝑛).

The following two lemmas will be useful in the proof of
our main results.

Lemma 1. Assume 𝑢 ∈ SQ, 𝑛 ∈ N, and
∞∑
𝑗=1

1𝑟𝑗
∞∑
𝑖=𝑗

󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨 < ∞. (9)

Then
∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨 ≤ ∞∑
𝑗=𝑛

𝑗∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨𝑟𝑖 < ∞. (10)

Proof. We have

∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨 = 1𝑟𝑛 (󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑢𝑛+1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑢𝑛+2󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅)
+ 1𝑟𝑛+1 (󵄨󵄨󵄨󵄨𝑢𝑛+1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑢𝑛+2󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅) + ⋅ ⋅ ⋅

= 1𝑟𝑛 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨 + ( 1𝑟𝑛 + 1𝑟𝑛+1) 󵄨󵄨󵄨󵄨𝑢𝑛+1󵄨󵄨󵄨󵄨
+ ( 1𝑟𝑛 + 1𝑟𝑛+1 + 1𝑟𝑛+2) 󵄨󵄨󵄨󵄨𝑢𝑛+2󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅

≤ ∞∑
𝑗=𝑛

𝑗∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨𝑟𝑖 ≤ ∞∑
𝑗=1

𝑗∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨𝑟𝑖
= 1𝑟1 󵄨󵄨󵄨󵄨𝑢1󵄨󵄨󵄨󵄨 + ( 1𝑟1 + 1𝑟2) 󵄨󵄨󵄨󵄨𝑢2󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅
= 1𝑟1 (󵄨󵄨󵄨󵄨𝑢1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑢2󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅)

+ 1𝑟2 (󵄨󵄨󵄨󵄨𝑢2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑢3󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅) + ⋅ ⋅ ⋅
= ∞∑
𝑗=1

1𝑟𝑗
∞∑
𝑖=𝑗

󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨 < ∞.
(11)

Lemma 2 ([27, Lemma 4.7]). Assume 𝑦, 𝜌 ∈ 𝑆𝑄, and
lim𝑛󳨀→∞𝜌𝑛 = 0. In the set

𝑋 = {𝑥 ∈ SQ : 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝜌󵄨󵄨󵄨󵄨} (12)

we define a metric by the formula

𝑑 (𝑥, 𝑧) = ‖𝑥 − 𝑧‖ . (13)

Then any continuous map𝐻 : 𝑋 󳨀→ 𝑋 has a fixed point.

3. Solutions with Prescribed
Asymptotic Behavior

In this section we present sufficient conditions for the
existence of a solution 𝑥 to equation (E) such that

𝑥𝑛 = 𝑛−1∑
𝑘=1

𝑐𝑟𝑘 + 𝑑 + o (𝑛𝑠) , (14)

where 𝑐, 𝑑 ∈ R and 𝑠 ∈ (−∞, 0].
Theorem 3. Assume 𝑠 ∈ (−∞, 0], 𝑡 ∈ [𝑠,∞), 𝑐, 𝑑 ∈ R, 𝑦 :
N 󳨀→ R, 𝑞 ∈ N, 𝛼 ∈ (0,∞),

𝑟−1𝑛 = O (𝑛𝑡) ,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞,
𝑦𝑛 = 𝑑 + 𝑐𝑛−1∑

𝑘=1

1𝑟𝑘 ,
𝑈 = ∞⋃
𝑛=𝑞

[𝑦𝑛 − 𝛼, 𝑦𝑛 + 𝛼] ,

(15)

and 𝑓 is continuous and bounded on 𝑈. Then there exists a
solution 𝑥 of (E) such that

𝑥𝑛 = 𝑦𝑛 + o (𝑛𝑠) . (16)

Proof. For 𝑛 ∈ N and 𝑥 ∈ SQ let

𝐹 (𝑥) (𝑛) = 𝑏𝑛 + 𝑛∑
𝑘=1

𝐾 (𝑛, 𝑘) 𝑓 (𝑥𝑘) . (17)

There exists 𝐿 > 0 such that󵄨󵄨󵄨󵄨𝑓 (𝑢)󵄨󵄨󵄨󵄨 ≤ 𝐿 for any 𝑢 ∈ 𝑈. (18)
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Let

𝑌 = {𝑥 ∈ SQ : 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 ≤ 𝛼} . (19)

If 𝑥 ∈ 𝑌 and 𝑛 ≥ 𝑞, then
𝑥𝑛 ∈ [𝑦𝑛 − 𝛼, 𝑦𝑛 + 𝛼] ⊂ 𝑈. (20)

Choose a positive number 𝑄 such that 𝑟−1𝑛 ≤ 𝑄𝑛𝑡 for any 𝑛.
Then
∞∑
𝑛=1

1𝑛𝑠𝑟𝑛
∞∑
𝑗=𝑛

𝑗∑
𝑘=1

󵄨󵄨󵄨󵄨𝐾 (𝑗, 𝑘)󵄨󵄨󵄨󵄨 ≤ 𝑄∞∑
𝑛=1

𝑛𝑡−𝑠 ∞∑
𝑗=𝑛

𝑗∑
𝑘=1

󵄨󵄨󵄨󵄨𝐾 (𝑗, 𝑘)󵄨󵄨󵄨󵄨 (21)

Since 𝑡 − 𝑠 ≥ 0, we have
∞∑
𝑛=1

𝑛𝑡−𝑠 ∞∑
𝑗=𝑛

𝑗∑
𝑘=1

󵄨󵄨󵄨󵄨𝐾 (𝑗, 𝑘)󵄨󵄨󵄨󵄨 ≤ ∞∑
𝑛=1

∞∑
𝑗=𝑛

𝑗𝑡−𝑠 𝑗∑
𝑘=1

󵄨󵄨󵄨󵄨𝐾 (𝑗, 𝑘)󵄨󵄨󵄨󵄨 . (22)

For 𝑗 ∈ N let

𝑧𝑗 = 𝑗𝑡−𝑠 𝑗∑
𝑘=1

󵄨󵄨󵄨󵄨𝐾 (𝑗, 𝑘)󵄨󵄨󵄨󵄨 . (23)

Then we have
∞∑
𝑛=1

∞∑
𝑗=𝑛

𝑧𝑗 = (𝑧1 + 𝑧2 + ⋅ ⋅ ⋅) + (𝑧2 + 𝑧3 + ⋅ ⋅ ⋅) + ⋅ ⋅ ⋅
= 𝑧1 + 2𝑧2 + 3𝑧3 + ⋅ ⋅ ⋅ = ∞∑

𝑛=1

𝑛𝑧𝑛
= ∞∑
𝑛=1

𝑛𝑛𝑡−𝑠 𝑛∑
𝑘=1

|𝐾 (𝑛, 𝑘)|
= ∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑘=1

|𝐾 (𝑛, 𝑘)| < ∞.

(24)

Hence, using (21) and (22), we get

∞∑
𝑛=1

1𝑛𝑠𝑟𝑛
∞∑
𝑗=𝑛

𝑗∑
𝑘=1

󵄨󵄨󵄨󵄨𝐾 (𝑗, 𝑘)󵄨󵄨󵄨󵄨 < ∞. (25)

Analogously, replacing ∑𝑗
𝑘=1

|𝐾(𝑗, 𝑘)| by |𝑏𝑗|, we obtain
∞∑
𝑛=1

1𝑛𝑠𝑟𝑛
∞∑
𝑗=𝑛

󵄨󵄨󵄨󵄨󵄨𝑏𝑗󵄨󵄨󵄨󵄨󵄨 < ∞. (26)

Using (25) and (26) we get

∞∑
𝑗=1

1𝑗𝑠𝑟𝑗
∞∑
𝑖=𝑗

(󵄨󵄨󵄨󵄨𝑏𝑖󵄨󵄨󵄨󵄨 + 𝐿 𝑖∑
𝑘=1

|𝐾 (𝑖, 𝑘)|) < ∞. (27)

Since 𝑠 ≤ 0, we have
∞∑
𝑗=1

1𝑟𝑗
∞∑
𝑖=𝑗

(󵄨󵄨󵄨󵄨𝑏𝑖󵄨󵄨󵄨󵄨 + 𝐿 𝑖∑
𝑘=1

|𝐾 (𝑖, 𝑘)|) < ∞. (28)

Define a sequence 𝜌 ∈ SQ by

𝜌𝑛 = ∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

(󵄨󵄨󵄨󵄨𝑏𝑖󵄨󵄨󵄨󵄨 + 𝐿 𝑖∑
𝑘=1

|𝐾 (𝑖, 𝑘)|) . (29)

Define 𝑤, 𝑔 ∈ SQ by

𝑤𝑛 = 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 + 𝐿 𝑛∑
𝑘=1

|𝐾 (𝑛, 𝑘)| ,
𝑔𝑛 = ∞∑
𝑗=𝑛

1𝑗𝑠𝑟𝑗
∞∑
𝑖=𝑗

𝑤𝑖.
(30)

By (27), 𝑔𝑛 = o(1). We have

𝑛−𝑠𝜌𝑛 = 𝑛−𝑠 ∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

𝑤𝑖 = ∞∑
𝑗=𝑛

1𝑛𝑠𝑟𝑗
∞∑
𝑖=𝑗

𝑤𝑖 ≤ ∞∑
𝑗=𝑛

1𝑗𝑠𝑟𝑗
∞∑
𝑖=𝑗

𝑤𝑖
= 𝑔𝑛.

(31)

Hence 𝑛−𝑠𝜌𝑛 = o(1) and we get

𝜌𝑛 = 𝑛𝑠o (1) = o (𝑛𝑠) . (32)

Hence there exists an index 𝑝 ≥ 𝑞 such that

𝜌𝑛 ≤ 𝛼 (33)

for 𝑛 ≥ 𝑝. Let
𝑋 = {𝑥 ∈ SQ : 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 ≤ 𝜌, 𝑥𝑛 = 𝑦𝑛 for 𝑛 < 𝑝} ,𝐻 : 𝑌 󳨀→ SQ,
𝐻 (𝑥) (𝑛) = {{{{{{{

𝑦𝑛 for 𝑛 < 𝑝
𝑦𝑛 + ∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

𝐹 (𝑥) (𝑖) for 𝑛 ≥ 𝑝.
(34)

We define a metric on 𝑋 by formula (13). Note that 𝑋 ⊂ 𝑌.
Let 𝑥 ∈ 𝑋. By (33) and (20) we have 𝑥𝑖 ∈ 𝑈 for any 𝑖 ≥ 𝑝.
Hence, by (18), |𝑓(𝑥𝑖)| ≤ 𝐿 for 𝑖 ≥ 𝑝. Using (17) and (29) we
obtain

󵄨󵄨󵄨󵄨𝐻 (𝑥) (𝑛) − 𝑦𝑛󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

𝐹 (𝑥) (𝑖)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

|𝐹 (𝑥) (𝑖)| ≤ 𝜌𝑛
(35)

for 𝑛 ≥ 𝑝. Therefore𝐻𝑋 ⊂ 𝑋. Now we show that the map𝐻
is continuous. Using (25) and the assumption 𝑠 ≤ 0, we have

∞∑
𝑛=1

1𝑟𝑛
∞∑
𝑗=𝑛

𝑗∑
𝑘=1

󵄨󵄨󵄨󵄨𝐾 (𝑗, 𝑘)󵄨󵄨󵄨󵄨 < ∞. (36)

Hence, by Lemma 1, we get
∞∑
𝑛=1

𝑛∑
𝑗=1

1𝑟𝑗
𝑛∑
𝑘=1

|𝐾 (𝑛, 𝑘)| < ∞. (37)
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Let 𝜀 > 0. Choose an index 𝑚 ≥ 𝑝 and a positive constant 𝛾
such that

𝐿 ∞∑
𝑛=𝑚

𝑛∑
𝑗=1

1𝑟𝑗
𝑛∑
𝑘=1

|𝐾 (𝑛, 𝑘)| < 𝜀,
𝛾 𝑚∑
𝑛=1

𝑛∑
𝑗=1

1𝑟𝑗
𝑛∑
𝑘=1

|𝐾 (𝑛, 𝑘)| < 𝜀.
(38)

Let

𝐶 = 𝑚⋃
𝑛=1

[𝑦𝑛 − 𝛼, 𝑦𝑛 + 𝛼] . (39)

Choose a positive 𝛿 such that if 𝑡1, 𝑡2 ∈ 𝐶 and |𝑡1 − 𝑡2| < 𝛿,
then 󵄨󵄨󵄨󵄨𝑓 (𝑡1) − 𝑓 (𝑡2)󵄨󵄨󵄨󵄨 < 𝛾. (40)

Choose 𝑥, 𝑧 ∈ 𝑋 such that ‖𝑥 − 𝑧‖ < 𝛿. Then we have

‖𝐻𝑥 − 𝐻𝑧‖ = sup
𝑛≥𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

(𝐹 (𝑥) (𝑖) − 𝐹 (𝑧) (𝑖))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ sup
𝑛≥𝑝

∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

|𝐹 (𝑥) (𝑖) − 𝐹 (𝑧) (𝑖)|
= ∞∑
𝑗=𝑝

1𝑟𝑗
∞∑
𝑖=𝑗

|𝐹 (𝑥) (𝑖) − 𝐹 (𝑧) (𝑖)|
≤ ∞∑
𝑗=𝑝

1𝑟𝑗
∞∑
𝑖=𝑗

𝑖∑
𝑘=1

|𝐾 (𝑖, 𝑘)| 󵄨󵄨󵄨󵄨𝑓 (𝑥𝑘) − 𝑓 (𝑧𝑘)󵄨󵄨󵄨󵄨 .

(41)

Using Lemma 1 we obtain

‖𝐻𝑥 − 𝐻𝑧‖ ≤ ∞∑
𝑗=𝑝

𝑗∑
𝑖=1

1𝑟𝑖
𝑗∑
𝑘=1

󵄨󵄨󵄨󵄨𝐾 (𝑗, 𝑘)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓 (𝑥𝑘) − 𝑓 (𝑧𝑘)󵄨󵄨󵄨󵄨 . (42)

Note that |𝑓(𝑥𝑗) − 𝑓(𝑧𝑗)| ≤ 2𝐿 for 𝑗 ≥ 𝑝 and

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥𝑗) − 𝑓 (𝑧𝑗)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛾 for 𝑗 ∈ {𝑝, 𝑝 + 1, . . . , 𝑚} . (43)

Hence we obtain

‖𝐻𝑥 − 𝐻𝑧‖ ≤ 𝛾 𝑚∑
𝑛=1

𝑛∑
𝑗=1

1𝑟𝑗
𝑛∑
𝑘=1

|𝐾 (𝑛, 𝑘)|
+ 2𝐿 ∞∑
𝑛=𝑚

𝑛∑
𝑗=1

1𝑟𝑗
𝑛∑
𝑘=1

|𝐾 (𝑛, 𝑘)| < 3𝜀.
(44)

Therefore 𝐻 : 𝑋 󳨀→ 𝑋 is continuous. By Lemma 2 there
exists a point 𝑥 ∈ 𝑋 such that 𝑥 = 𝐻𝑥. Then, for 𝑛 ≥ 𝑝, we
have

𝑥𝑛 = 𝑦𝑛 + ∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

𝐹 (𝑥) (𝑖) . (45)

Note that

Δ (𝑟𝑛Δ𝑦𝑛) = Δ(𝑟𝑛Δ(𝑑 + 𝑐𝑛−1∑
𝑘=1

1𝑟𝑘))
= 𝑐Δ(𝑟𝑛Δ(𝑛−1∑

𝑘=1

1𝑟𝑘)) = 𝑐Δ1 = 0
(46)

for any 𝑛. Hence, for 𝑛 ≥ 𝑝, we get
Δ (𝑟𝑛Δ𝑥𝑛) = Δ(𝑟𝑛Δ(∞∑

𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

𝐹 (𝑥) (𝑖)))
= −Δ(𝑟𝑛 1𝑟𝑛

∞∑
𝑖=𝑛

𝐹 (𝑥) (𝑖)) = 𝐹 (𝑥) (𝑛)
= 𝑏𝑛 + 𝑛∑

𝑘=1

𝐾 (𝑛, 𝑘) 𝑓 (𝑥𝑘) .
(47)

Therefore 𝑥 is a solution of (E). Since 𝑥 ∈ 𝑋 we have 𝑥𝑛 =𝑦𝑛 + o(𝑛𝑠).
If the function 𝑓 is continuous, then fromTheorem 3 we

get the following two results.

Corollary 4. Assume 𝑠 ∈ (−∞, 0], 𝑡 ∈ [𝑠,∞),𝑓 is continuous,
and

𝑟−1𝑛 = O (𝑛𝑡) ,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞.
(48)

Then for any 𝑑 ∈ R there exists a solution 𝑥 of (E) such that𝑥𝑛 = 𝑑 + o(𝑛𝑠).
Proof. Taking 𝑐 = 0, 𝑞 = 1, and𝛼 = 1 inTheorem 3, we obtain
the result.

Corollary 5. Assume 𝑡 ∈ (−∞, −1), 𝑠 ∈ (−∞, 𝑡], 𝑓 is contin-
uous, and

𝑟−1𝑛 = O (𝑛𝑡) ,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞.
(49)

Then for any 𝑐, 𝑑 ∈ R there exists a solution 𝑥 of (E) such that
𝑥𝑛 = 𝑑 + 𝑐𝑛−1∑

𝑘=1

1𝑟𝑘 + o (𝑛𝑠) . (50)
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Proof. Assume 𝑐, 𝑑 ∈ R and a sequence 𝑦 ∈ SQ is defined by

𝑦𝑛 = 𝑑 + 𝑐𝑛−1∑
𝑘=1

1𝑟𝑘 . (51)

Since 𝑟−1𝑛 = O(𝑛𝑡) and 𝑡 < −1, we see that 𝑦 is bounded.
Now, taking 𝑞 = 1 and 𝛼 = 1 in Theorem 3, we obtain the
result.

Note that Corollaries 4 and 5 concern convergent solu-
tions. However, Theorem 3 includes also divergent solutions.
For example, if 𝑓(𝑥) = 𝑥−1 for 𝑥 ̸= 0, 𝑠 ∈ (−∞, 0], 𝑡 = 0,𝑟−1𝑛 = O(1), and

∞∑
𝑘=1

𝑟−1𝑘 = ∞,
∞∑
𝑛=1

𝑛1−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞.
(52)

then, by Theorem 3, for any nonzero 𝑐 ∈ R and any 𝑑 ∈ R

there exists a solution 𝑥 of (E) such that

𝑥𝑛 = 𝑑 + 𝑐𝑛−1∑
𝑘=1

1𝑟𝑘 + 𝑜 (𝑛𝑠) . (53)

Now we present an example that proves the assumption

∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞, (54)

inTheorem 3, is essential.

Example 6. Assume 𝑟𝑛 = 𝑛, 𝑏𝑛 = 0,
𝐾 (𝑛, 𝑘) = 1𝑛2 ,
𝑓 (𝑥) = 1|𝑥| + 1 + 1,

(55)

𝑠 = 0, and 𝑡 = 0. Then equation (E) takes the form
Δ (𝑛Δ𝑥𝑛) = 1𝑛2

𝑛∑
𝑘=1

( 1󵄨󵄨󵄨󵄨𝑥𝑘󵄨󵄨󵄨󵄨 + 1 + 1) . (56)

Let 𝑐, 𝑑 ∈ R and

𝑦𝑛 = 𝑑 + 𝑐𝑛−1∑
𝑘=1

1𝑟𝑘 = 𝑑 + 𝑐
𝑛−1∑
𝑘=1

1𝑘 . (57)

Notice that 𝑓 is continuous and bounded on R. Moreover,

∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑘=1

𝐾 (𝑛, 𝑘) = ∞∑
𝑛=1

𝑛1𝑛 = ∞, (58)

and

Δ𝑦𝑛 = 𝑐𝑛 ,
Δ (𝑛Δ𝑦𝑛) = 0. (59)

Assume 𝑥 is a solution of (56) such that

𝑥𝑛 = 𝑦𝑛 + 𝑧𝑛,
𝑧𝑛 = o (𝑛𝑠) = o (1) . (60)

Since Δ(𝑛Δ𝑦𝑛) = 0, we haveΔ (𝑛Δ𝑥𝑛) = Δ (𝑛Δ𝑦𝑛) + Δ (𝑛Δ𝑧𝑛) = Δ (𝑛Δ𝑧𝑛) . (61)

Hence

Δ (𝑛Δ𝑧𝑛) = Δ (𝑛Δ𝑥𝑛) = 𝑛∑
𝑘=1

1𝑛2 ( 1󵄨󵄨󵄨󵄨𝑥𝑘󵄨󵄨󵄨󵄨 + 1 + 1) > 0 (62)

for large 𝑛. Therefore, the sequence 𝑛Δ𝑧𝑛 is eventually
increasing and there exists the limit

𝜆 = lim
𝑛󳨀→∞

𝑛Δ𝑧𝑛 > −∞. (63)

If 𝜆 < ∞, then the sequence 𝑛Δ𝑧𝑛 is convergent in R. Hence
the series

∞∑
𝑛=1

Δ (𝑛Δ𝑥𝑛) = ∞∑
𝑛=1

Δ (𝑛Δ𝑧𝑛) (64)

is convergent. On the other hand

Δ (𝑛Δ𝑥𝑛) = 𝑛∑
𝑘=1

1𝑛2 ( 1󵄨󵄨󵄨󵄨𝑥𝑘󵄨󵄨󵄨󵄨 + 1 + 1) > 1𝑛 (65)

for large 𝑛. Hence 𝜆 = ∞. Therefore 𝑛Δ𝑧𝑛 > 1 for large 𝑛 and
we get

∞∑
𝑛=1

Δ𝑧𝑛 ≥ ∞∑
𝑛=1

1𝑛 = ∞. (66)

But since 𝑧𝑛 󳨀→ 0, the series ∑∞𝑛=1 Δ𝑧𝑛 is convergent.
4. Asymptotic Behavior of Solutions

In this section we present sufficient conditions for a given
solution 𝑥 of equation (E) to have an asymptotic property

𝑥𝑛 = 𝑛−1∑
𝑘=1

𝑐𝑟𝑘 + 𝑑 + o (𝑛𝑠) , (67)

where 𝑐, 𝑑 ∈ R and 𝑠 ∈ (−∞, 0].
Theorem 7. Assume 𝑠 ∈ (−∞, 0], 𝑡 ∈ [𝑠,∞),

𝑟−1𝑛 = 𝑂 (𝑛𝑡) ,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞,
(68)
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and 𝑥 is a solution of (E) such that the sequence (𝑓(𝑥𝑛)) is
bounded. Then there exist 𝑐, 𝑑 ∈ R such that

𝑥𝑛 = 𝑛−1∑
𝑘=1

𝑐𝑟𝑘 + 𝑑 + 𝑜 (𝑛𝑠) . (69)

Proof. We have

Δ (𝑟𝑛Δ𝑥𝑛) = 𝑏𝑛 + 𝑛∑
𝑘=1

𝐾 (𝑛, 𝑘) 𝑓 (𝑥𝑘) (70)

for large 𝑛. Using boundedness of the sequence (𝑓(𝑥𝑛)) and
(68) we get

∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨Δ (𝑟𝑛Δ𝑥𝑛)󵄨󵄨󵄨󵄨 < ∞. (71)

Define 𝑤, 𝑢 ∈ SQ by

𝑤𝑛 = Δ (𝑟𝑛Δ𝑥𝑛) ,
𝑢𝑛 = 𝑛𝑡−𝑠 󵄨󵄨󵄨󵄨𝑤𝑛󵄨󵄨󵄨󵄨 . (72)

Choose a positive 𝐿 such that 𝑟−1𝑛 ≤ 𝐿𝑛𝑡 for any 𝑛. Since 𝑡−𝑠 ≥0, we have
∞∑
𝑛=1

1𝑛𝑠𝑟𝑛
∞∑
𝑗=𝑛

󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝐿∞∑
𝑛=1

𝑛𝑡−𝑠 ∞∑
𝑗=𝑛

󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 = 𝐿∞∑
𝑛=1

∞∑
𝑗=𝑛

𝑛𝑡−𝑠 󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨
≤ 𝐿∞∑
𝑛=1

∞∑
𝑗=𝑛

𝑗𝑡−𝑠 󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 .
(73)

Moreover,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑤𝑛󵄨󵄨󵄨󵄨 = ∞∑
𝑛=1

𝑛𝑢𝑛
= 𝑢1 + (𝑢2 + 𝑢2) + (𝑢3 + 𝑢3 + 𝑢3) + ⋅ ⋅ ⋅
= ∞∑
𝑗=1

𝑢𝑗 + ∞∑
𝑗=2

𝑢𝑗 + ∞∑
𝑗=3

𝑢𝑗 + ⋅ ⋅ ⋅ = ∞∑
𝑛=1

∞∑
𝑗=𝑛

𝑢𝑗
= ∞∑
𝑛=1

∞∑
𝑗=𝑛

𝑗𝑡−𝑠 󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 .

(74)

Hence, by (73)
∞∑
𝑛=1

1𝑛𝑠𝑟𝑛
∞∑
𝑗=𝑛

󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 < ∞. (75)

Since 𝑠 ≤ 0, we have
∞∑
𝑛=1

1𝑟𝑛
∞∑
𝑗=𝑛

󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 < ∞∑
𝑛=1

1𝑛𝑠𝑟𝑛
∞∑
𝑗=𝑛

󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 < ∞. (76)

Let

𝑧𝑛 = ∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

𝑤𝑖. (77)

Then

𝑛−𝑠 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨 = 𝑛−𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

𝑤𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑛
−𝑠
∞∑
𝑗=𝑛

1𝑟𝑗
∞∑
𝑖=𝑗

󵄨󵄨󵄨󵄨𝑤𝑖󵄨󵄨󵄨󵄨
= ∞∑
𝑗=𝑛

1𝑛𝑠𝑟𝑗
∞∑
𝑖=𝑗

󵄨󵄨󵄨󵄨𝑤𝑖󵄨󵄨󵄨󵄨 ≤ ∞∑
𝑗=𝑛

1𝑗𝑠𝑟𝑗
∞∑
𝑖=𝑗

󵄨󵄨󵄨󵄨𝑤𝑖󵄨󵄨󵄨󵄨 = o (1) .
(78)

Thus 𝑧𝑛 = o(𝑛𝑠). Let
𝑦𝑛 = 𝑥𝑛 − 𝑧𝑛. (79)

Then

Δ𝑦𝑛 = Δ𝑥𝑛 − Δ𝑧𝑛 = Δ𝑥𝑛 + 1𝑟𝑛
∞∑
𝑖=𝑛

𝑤𝑖. (80)

Hence

𝑟𝑛Δ𝑦𝑛 = 𝑟𝑛Δ𝑥𝑛 + ∞∑
𝑖=𝑛

𝑤𝑖 (81)

and we get

Δ (𝑟𝑛Δ𝑦𝑛) = Δ (𝑟𝑛Δ𝑥𝑛) − 𝑤𝑛
= Δ (𝑟𝑛Δ𝑥𝑛) − Δ (𝑟𝑛Δ𝑥𝑛) = 0 (82)

for any 𝑛 ∈ N. Therefore, there exists a real constant 𝑐 such
that 𝑟𝑛Δ𝑦𝑛 = 𝑐. Thus

𝑦𝑛 − 𝑦1 = Δ𝑦1 + ⋅ ⋅ ⋅ + Δ𝑦𝑛−1 = 𝑐𝑟1 + ⋅ ⋅ ⋅ + 𝑐𝑟𝑛−1 . (83)

Hence

𝑥𝑛 = 𝑦𝑛 + 𝑧𝑛 = 𝑛−1∑
𝑘=1

𝑐𝑟𝑘 + 𝑑 + o (𝑛𝑠) (84)

where 𝑑 = 𝑦1.
Corollary 8. Assume 𝑠 ∈ (−∞, 0], 𝑡 ∈ [𝑠,∞), 𝑟−1𝑛 = 𝑂(𝑛𝑡), 𝑓
is locally bounded,

∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞,
(85)

and 𝑥 is a bounded solution of (E). Then there exist 𝑐, 𝑑 ∈ R

such that

𝑥𝑛 = 𝑛−1∑
𝑘=1

𝑐𝑟𝑘 + 𝑑 + o (𝑛𝑠) . (86)

Proof. Since 𝑥 is bounded and 𝑓 is locally bounded, the
sequence (𝑓(𝑥𝑛)) is bounded. Hence the assertion is a
consequence of Theorem 7.
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Corollary 9. Assume 𝑡 ∈ [0,∞), 𝑟−1𝑛 = 𝑂(𝑛𝑡), 𝑓 is locally
bounded, and

∞∑
𝑛=1

𝑛1+𝑡 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞.
(87)

Then any bounded solution of (E) is convergent.
Proof. Assume 𝑥 is a bounded solution of (E). Let 𝑠 = 0. By
Corollary 8, there exist 𝑐, 𝑑 ∈ R such that

𝑥𝑛 = 𝑐𝑛−1∑
𝑘=1

1𝑟𝑘 + 𝑑 + o (1) . (88)

Define a sequence 𝑢 ∈ SQ, by 𝑢𝑛 = 𝑟−11 +𝑟−12 +⋅ ⋅ ⋅+𝑟−1𝑛−1.Then 𝑢
is increasing and bounded. Hence 𝑢 is convergent. Therefore𝑥𝑛 = 𝑐𝑢𝑛 + 𝑑 + o(1) is convergent.
Corollary 10. Assume 𝑠 ∈ (−∞, 0], 𝑡 ∈ [𝑠,∞), 𝑟−1𝑛 = 𝑂(𝑛𝑡),𝑓 is bounded,

∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞,
(89)

and 𝑥 is an arbitrary solution of (E). Then there exist 𝑐, 𝑑 ∈ R
such that

𝑥𝑛 = 𝑛−1∑
𝑘=1

𝑐𝑟𝑘 + 𝑑 + 𝑜 (𝑛𝑠) . (90)

Proof. The assertion is an immediate consequence of
Theorem 7.

5. Additional Results

In this section we present some additional results. First,
we give some applications of our results to linear discrete
Volterra equations of type (E). From Corollary 4 we get the
following result.

Corollary 11. Assume 𝑠 ∈ (−∞, 0], 𝑡 ∈ [𝑠,∞),
𝑟−1𝑛 = 𝑂 (𝑛𝑡) ,

∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞.
(91)

Then for any 𝑑 ∈ R there exists a solution 𝑥 of equation

Δ (𝑟𝑛Δ𝑥𝑛) = 𝑏𝑛 + 𝑛∑
𝑘=1

𝐾 (𝑛, 𝑘) 𝑥𝑘 (92)

such that 𝑥𝑛 = 𝑑 + 𝑜(𝑛𝑠).
From Corollary 5 we get the following.

Corollary 12. Assume 𝑡 ∈ (−∞, −1), 𝑠 ∈ (−∞, 𝑡], and
𝑟−1𝑛 = 𝑂 (𝑛𝑡) ,

∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞.
(93)

Then for any 𝑐, 𝑑 ∈ R there exists a solution 𝑥 of (92) such that
𝑥𝑛 = 𝑑 + 𝑐𝑛−1∑

𝑘=1

1𝑟𝑘 + 𝑜 (𝑛𝑠) . (94)

Example 13. Assume 𝑠 = 0, 𝑡 = 1, and
𝑟𝑛 = 1𝑛 − 1 ,
𝑏𝑛 = − 3(𝑛 + 2) (𝑛 + 1) 𝑛 (𝑛 − 1) − 1𝑛4 ,

𝐾 (𝑛, 𝑘) = 2𝑘𝑛6 .
(95)

Then (92) takes the form

Δ( 1𝑛 − 1Δ𝑥𝑛) = − 3(𝑛 + 2) (𝑛 + 1) 𝑛 (𝑛 − 1) − 1𝑛4
+ 𝑛∑
𝑘=1

2𝑘𝑛6 𝑥𝑘.
(96)

It is easy to check that all assumptions of Corollary 11 hold.
Indeed, we have
∞∑
𝑛=1

𝑛2 𝑛∑
𝑘=1

|𝐾 (𝑛, 𝑘)| = ∞∑
𝑛=1

𝑛2 𝑛∑
𝑘=1

2𝑘𝑛6 =
∞∑
𝑛=1

𝑛 + 1𝑛3 < ∞, (97)

and
∞∑
𝑛=1

𝑛2 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞. (98)

So, for every 𝑑 ∈ R, there exists a solution 𝑥 of (96) such that
lim𝑛󳨀→∞𝑥𝑛 = 𝑑. One such solution is 𝑥𝑛 = 1 − 1/𝑛.

In our investigations the condition
∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞ (99)

plays an important role. In practice, this condition can be
difficult to verify. In the following remark we present the
condition, which is a little stronger but easier to check.

Remark 14. Assume 𝑠 ∈ (−∞, 0], 𝑡 ∈ R, 𝜆 ∈ (−∞, 𝑠 − 𝑡 − 2),
and 𝑢𝑛 = O(𝑛𝜆). Let 𝜀 = 𝑠 − 𝑡 − 2 − 𝜆, 𝐿 > 0, |𝑢𝑛| ≤ 𝐿𝑛𝜆 for
any 𝑛. Then 𝜆 = 𝑠 − 𝑡 − 2 − 𝜀 and

∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨 ≤ 𝐿∞∑
𝑛=1

𝑛1+𝑡−𝑠𝑛𝜆 = ∞∑
𝑛=1

1𝑛1+𝜀 < ∞. (100)

Applying this remark to Corollaries 4, 5, 8, and 9,
respectively, we obtain following results.



8 Discrete Dynamics in Nature and Society

Corollary 15. Assume 𝑠 ∈ (−∞, 0], 𝑡 ∈ [𝑠,∞), 𝜆 ∈ (−∞, 𝑠 −𝑡 − 2), 𝑓 is continuous, and

𝑟−1𝑛 = 𝑂 (𝑛𝑡) ,
𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| = 𝑂 (𝑛𝜆) ,
𝑏𝑛 = 𝑂 (𝑛𝜆) .

(101)

Then for any 𝑑 ∈ R there exists a solution 𝑥 of (E) such that𝑥𝑛 = 𝑑 + 𝑜(𝑛𝑠).
Corollary 16. Assume 𝑡 ∈ (−∞, −1), 𝑠 ∈ (−∞, 𝑡], 𝜆 ∈(−∞, 𝑠 − 𝑡 − 2), 𝑓 is continuous, and

𝑟−1𝑛 = 𝑂 (𝑛𝑡) ,
𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| = 𝑂 (𝑛𝜆) ,
𝑏𝑛 = 𝑂 (𝑛𝜆) .

(102)

Then for any 𝑐, 𝑑 ∈ R there exists a solution 𝑥 of (E) such that
𝑥𝑛 = 𝑑 + 𝑐𝑛−1∑

𝑘=1

1𝑟𝑘 + 𝑜 (𝑛𝑠) . (103)

Corollary 17. Assume 𝑠 ∈ (−∞, 0], 𝑡 ∈ [𝑠,∞), 𝜆 ∈ (−∞, 𝑠 −𝑡 − 2), 𝑓 is locally bounded,

𝑟−1𝑛 = 𝑂 (𝑛𝑡) ,
𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| = 𝑂 (𝑛𝜆) ,
𝑏𝑛 = 𝑂 (𝑛𝜆) ,

(104)

and 𝑥 is a bounded solution of (E). Then there exist 𝑐, 𝑑 ∈ R

such that

𝑥𝑛 = 𝑛−1∑
𝑘=1

𝑐𝑟𝑘 + 𝑑 + 𝑜 (𝑛𝑠) . (105)

Corollary 18. Assume 𝑡 ∈ [0,∞), 𝜆 ∈ (−∞, −𝑡 − 2), 𝑓 is
locally bounded, and

𝑟−1𝑛 = 𝑂 (𝑛𝑡) ,
𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| = 𝑂 (𝑛𝜆) ,
𝑏𝑛 = 𝑂 (𝑛𝜆) .

(106)

Then any bounded solution of (E) is convergent.
Now we present some results for the case when the series

∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| ,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨
(107)

are strongly convergent.

Remark 19. If 𝑢 : N 󳨀→ R and lim sup𝑛󳨀→∞ 𝑛√|𝑢𝑛| < 1, then,
by the root test,

∞∑
𝑛=1

𝑛𝜆 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨 < ∞ (108)

for any 𝜆 ∈ R.

Corollary 20. Assume 𝑡 ∈ R, 𝑓 is continuous, and

𝑟−1𝑛 = 𝑂 (𝑛𝑡) ,
lim sup
𝑛󳨀→∞

𝑛√ 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < 1,
lim sup
𝑛󳨀→∞

𝑛√󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < 1.
(109)

Then for any 𝑑 ∈ R and any 𝜆 ∈ (−∞, 0] there exists a solution𝑥 of (E) such that
𝑥𝑛 = 𝑑 + 𝑜 (𝑛𝜆) . (110)

Proof. Let 𝑑 ∈ R. Choose 𝑠 ∈ (−∞,min{𝑡, 𝜆}). By Remark 19,
we have

∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞.
(111)

By Corollary 4, there exists a solution 𝑥 of (E) such that

𝑥𝑛 = 𝑑 + o (𝑛𝑠) = 𝑑 + o (𝑛𝜆) . (112)

Analogously, using Corollary 5, we get the following.

Corollary 21. Assume 𝑡 ∈ (−∞, −1), 𝑓 is continuous, and

𝑟−1𝑛 = 𝑂 (𝑛𝑡) ,
lim sup
𝑛󳨀→∞

𝑛√ 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < 1,
lim sup
𝑛󳨀→∞

𝑛√󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < 1.
(113)

Then for any 𝑐, 𝑑 ∈ R and any 𝜆 ∈ (−∞, 0] there exists a
solution 𝑥 of (E) such that

𝑥𝑛 = 𝑑 + 𝑛−1∑
𝑘=1

𝑐𝑟𝑘 + 𝑜 (𝑛𝜆) . (114)

To the end we consider the case when (𝑟𝑛) is a potential
sequence.
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Lemma 22. If 𝜔 ∈ (1,∞), then
𝑛−1∑
𝑘=1

1𝑘𝜔 =
∞∑
𝑛=1

1𝑛𝜔 + 𝑂 (𝑛1−𝜔) . (115)

Proof. Define 𝑢 ∈ SQ and 𝜆 ∈ R by

𝑢𝑛 = 𝑛−1∑
𝑘=1

1𝑘𝜔 ,
𝜆 = ∞∑
𝑘=1

1𝑘𝜔 .
(116)

By [28, Theorem 2.2], we have

Δ𝑛1−𝜔 = (1 − 𝜔) 𝑛−𝜔 + o (𝑛−𝜔) . (117)

Since Δ𝑢𝑛 = 𝑛−𝜔, we getΔ (𝑢𝑛 − 𝜆)Δ𝑛1−𝜔 = 𝑛−𝜔(1 − 𝜔) 𝑛−𝜔 + o (𝑛−𝜔)
= 1(1 − 𝜔) + o (1) 󳨀→ 11 − 𝜔.

(118)

Note that 𝑛1−𝜔 󳨀→ 0 and (𝑢𝑛 − 𝜆) 󳨀→ 0. Hence, by discrete
L’Hospital’s Rule, 𝑢𝑛 − 𝜆𝑛1−𝜔 = 11 − 𝜔 + o (1) . (119)

Therefore

𝑢𝑛 = 𝜆 + 11 − 𝜔𝑛1−𝜔 + o (𝑛1−𝜔)
= ∞∑
𝑘=1

1𝑘𝜔 +O (𝑛1−𝜔) . (120)

Corollary 23. Assume 𝑡 ∈ (−∞, −1), 𝑠 ∈ (−∞, 𝑡], 𝑓 is
continuous, and

𝑟𝑛 = 𝑛−𝑡,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞.
(121)

Then for any 𝜇 ∈ R there exists a solution 𝑥 of (E) such that
𝑥𝑛 = 𝜇 + 𝑂 (𝑛𝑡+1) . (122)

Proof. Assume 𝜇 ∈ R. Let

𝑑 = 0,
𝜆 = ∞∑
𝑛=1

𝑛𝑡,
𝑐 = 𝜇𝜆 .

(123)

By Corollary 5, there exists a solution 𝑥 of (E) such that

𝑥𝑛 = 𝑑 + 𝑐𝑛−1∑
𝑘=1

𝑘𝑡 + o (𝑛𝑠) . (124)

By Lemma 22

𝑛−1∑
𝑘=1

𝑘𝑡 = 𝜆 +O (𝑛𝑡+1) . (125)

Hence

𝑥𝑛 = 𝜇 +O (𝑛𝑡+1) + o (𝑛𝑠) = 𝜇 +O (𝑛𝑡+1) . (126)

Corollary 24. Assume 𝑡 ∈ (−∞, −1), 𝑠 ∈ (−∞, 𝑡], 𝑓 is locally
bounded, and

𝑟𝑛 = 𝑛−𝑡,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 𝑛∑
𝑖=1

|𝐾 (𝑛, 𝑖)| < ∞,
∞∑
𝑛=1

𝑛1+𝑡−𝑠 󵄨󵄨󵄨󵄨𝑏𝑛󵄨󵄨󵄨󵄨 < ∞.
(127)

Then for any bounded solution 𝑥 of (E) there exists a real
number 𝜇 such that

𝑥𝑛 = 𝜇 + 𝑂 (𝑛𝑡+1) . (128)

Proof. By Corollary 8 there exist 𝑐, 𝑑 ∈ R such that

𝑥𝑛 = 𝑑 + 𝑐𝑛−1∑
𝑘=1

𝑘𝑡 + o (𝑛𝑠) . (129)

By Lemma 22 we obtain

𝑥𝑛 = 𝑑 + 𝑐(∞∑
𝑘=1

𝑘𝑡 +O (𝑛𝑡+1)) + o (𝑛𝑠)
= 𝜇 +O (𝑛𝑡+1) , where 𝜇 = 𝑑 + 𝑐∞∑

𝑘=1

𝑘𝑡.
(130)
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[20] I. Györi and F. Hartung, “Asymptotic behaviour of nonlinear
difference equations,” Journal of Difference Equations and Appli-
cations, vol. 18, no. 9, pp. 1485–1509, 2012.

[21] M. g. Migda and J. Migda, “Bounded solutions of nonlinear
discrete Volterra equations,” Mathematica Slovaca, vol. 66, no.
5, pp. 1169–1178, 2016.

[22] Y. Song and C. T. Baker, “Linearized stability analysis of
discrete Volterra equations,” Journal of Mathematical Analysis
and Applications, vol. 294, no. 1, pp. 310–333, 2004.

[23] M. Migda, “Asymptotic behaviour of solutions of nonlinear
delay difference equations,” Fasciculi Mathematici, no. 31, pp.
57–62, 2001.

[24] P. Rehák, “Asymptotic formulae for solutions of linear second-
order difference equations,” Journal of Difference Equations and
Applications, vol. 22, no. 1, pp. 107–139, 2016.
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As the most widely used power transmission device in mechanical equipment, the vibration characteristics of gears have a
very important influence on the working performance. It is of great theoretical and practical significance to study the vibration
characteristics of gear system. In this paper, a gear transmission systemmodel is set up in a forcefully nonlinear form; the continuity
mapping and discontinuity mapping are utilized to analyze the nonsmooth vibration. Then, the sliding dynamics of separation
boundaries is studied by using the perturbation method and the differential inclusion theory. In addition, the periodic response
of gear pair system is illustrated and Floquet’s theory is presented to confirm the stability and bifurcation of periodic response.
Concurrently, the maximal Lyapunov exponent is obtained to accurately determine the chaotic state in gear pair system, which is
consistent with the bifurcation diagram and Poincare section. Finally, a reasonable explanation is given for the jump phenomenon
in bifurcation diagram.

1. Introduction

The gear system is widely used in variousmechanical systems
and equipment because of its compact structure and high
transmission efficiency. Its own vibration characteristics can
directly affect the performance and reliability of the whole
system.Therefore, the study of its vibration characteristics has
great significance.

Dating back to 1980s, many researchers had carried out
experiments on the nonlinear vibration of gear system [1–
5]; besides a certain number of complicated phenomena
such as bifurcation and chaos had been observed. In [6],
the nonlinear frequency response characteristics of a gear
transmission system with backlash had been studied by the
harmonic balance method. In [7], some experiments had
been carried out on a gear pair transmission system. In
addition several phenomena such as chaotic behaviors of
subharmonic resonance and superharmonic resonance had
been studied. In [8], a nonlinear rotor-bearing system was
observed; bifurcations and the periodic responses were also
investigated. Moreover, the chaotic response was checked as
well through using the Lyapunov exponent and numerical

methods. In [9], a research on a nonlinear model of gear
transmission system including backlash, friction, and time-
varying stiffness was achieved. On the contrary, the existence
of bifurcation, periodic responses, and chaotic motions were
studied numerically. In [10], the frequency responses of a
nonlinear geared rotor-bearing system with time-varying
mesh stiffness were inspected by the methods of multiple-
scales and mathematical simulation. In [11], the vibration
dynamic responses of a gear transmission system supported
by journal bearing were studied; besides the subharmonic,
periodic, and chaotic states were examined.

What is more, plenty of valuable research had been com-
menced on gear transmission system. But they rarely involved
the nonsmooth dynamics of gear system. More precisely, the
gear transmission system is a typical system with segmented
properties, caused by the presence of backlash. Moreover,
with the presence of backlash, the gear transmission system
can be considered as one of vibration shock systems. At
the beginning of this century, considerable researchers were
interested in this system, especially in segmented linear sys-
tems that were stimulated by external periodic forces. In [12],
the earliest research for a segmented linear system without
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Figure 1: The gear transmission model.

damping was made and a closed solution of the periodic
response was obtained. In [13], a mapping technique was
developed to investigate a discrete linear system; besides the
chaotic behavior was presented in numerical representation.
In [14], a mapping approach was adopted to observe the
periodic response and bifurcation of a segmented linear
oscillator. In [15], a mapping structure for discontinuous
system was initially proposed; the idea of mapping structure
was used to investigate a periodic segmented linear system. In
addition, the investigations can serve as examples in [16–18].

In all those works, a continuous mapping method was
applied to transform nonsmooth gear system into segmented
linear system, which can not explain the nonsmooth dynamic
behavior of gear system completely. A large number of
common problems can be described by discrete dynamic
systems even if the problems are described by continuous
dynamic systems. In this paper, the Poincare section and
bifurcation diagram are obtained by numerical simulation,
and the dynamic performance of gear transmission system is
studied. In this paper, we construct discontinuous mapping,
and combining with Floquet theory, we study the local
dynamic characteristics of clearance and its front and rear,
which reveal the vibration mechanism of gear transmission
system in the gap nonsmooth state. The organization of this
paper is as follows. Firstly, this paper briefly introduces a
gear drive model with the basic dynamic response of a
typical gear drive system. Then, the continuity mapping and
discontinuity mapping are set up systematically. What is
more, the differential inclusion theory and the method of
perturbation are adopted to investigate the singularity of the
sliding dynamics on separation boundaries, and the periodic
response is analyzed by themappingmethod. In addition, the
discretization is a very important tool for analyzing the sta-
bility of the periodic motion in the gear system.The discrete-
time shooting method is adopted to calculate the change
of the Floquet multiplier. Then, the Floquet theory and the
idea of mapping are introduced to give the methods and
conditions for judging the periodic response of the system.
At last, a summary of this work is presented.

2. The Mechanical Model

When both the bearing support of the entire system and
the stiffness of the drive shaft are large for the gears in the
transmission system, the torsional vibration model can be
simplified as the form shown in Figure 1.

If the vibration between teeth is ignored in the gear
system, the time-varying stiffness and static transmission

error of the basic oscillation frequency are equal to the gear
meshing frequency:

𝜔ℎ = 𝑛𝑝𝜔𝑝 = 𝑛𝑔𝜔𝑔 (1)

𝑛𝑝 and 𝑛𝑔 represent the number of teeth in the driving
wheel and the driven wheel, respectively. This means that
the time-varying stiffness and static transmission error of the
system can be expressed in a form of Fourier to Fourier series:

𝑘 (𝑡) = 𝑘0 + ∞∑
𝑚=1

𝑘𝑚 cos (𝑚𝑤ℎ𝑡 + 𝜑𝑚𝑡) (2)

Through Newton’s theorem, the balance equation of
driving wheel and driven wheel can be written as

𝐼𝑃 ̈𝜃𝑃 + 𝐶𝑅𝑃 [𝑅𝑃 ̇𝜃𝑃 − 𝑅𝑔 ̇𝜃𝑔 − ̇𝑒 (𝑡)]
+ 𝐾 (𝑡) 𝑅𝑃𝑓 [𝑅𝑃𝜃𝑃 − 𝑅𝑔𝜃𝑔 − 𝑒 (𝑡)] = 𝑇𝑃 (3)

𝐼𝑔 ̈𝜃𝑔 − 𝐶𝑅𝑔 [𝑅𝑃 ̈𝜃𝑃 − 𝑅𝑔 ̇𝜃𝑔 − ̇𝑒 (𝑡)]
− 𝐾 (𝑡) 𝑅𝑔𝑓 [𝑅𝑃𝜃𝑃 − 𝑅𝑔𝜃𝑔 − 𝑒 (𝑡)] = −𝑇𝑔 (4)

𝐼𝑝 and 𝐼𝑔 are, respectively, the rotational inertia of the
driving gear and the driven gear, 𝜃𝑝 and 𝜃𝑔 are, respectively,
the angular displacement of driving gear and driven gear, 𝑅𝑝
and 𝑅𝑔 are, respectively, the radius of base circle of driving
gear and the driven gear, and 𝑇𝑝 and 𝑇𝑔 are, respectively, the
load torque of drivingwheel andwheel. In addition, 𝑘(𝑡) is the
time-varying meshing stiffness, 𝑒(𝑡) is the transmission error,
and 𝑐 is the mesh damping.

By assuming that 𝑥 = 𝑅𝑃𝜃𝑃 − 𝑅𝑔𝜃𝑔 − 𝑒(𝑡), (3) and (4) can
be transformed as

𝑚𝑒𝑥̈ + 𝑐𝑥̇ + 𝑘 (𝑡) 𝑓 (𝑥) = 𝐹𝑎V + 𝐹𝑒 (5)

𝑚𝑒 = 𝐼𝑝𝐼𝑔/(𝐼𝑔𝑅𝑃2 + 𝐼𝑝𝑅𝑔2); 𝐹𝑒 = −𝑚𝑒 ̈𝑒(𝑡); 𝐹𝑎V = 𝑚𝑒 ∗(𝑅𝑝𝑇𝑝/𝐼𝑝 + 𝑅𝑔𝑇𝑔/𝐼𝑔).
Because the time-varying stiffness and static transmission

error of the basic oscillation frequency are equal to the
gear meshing frequency 𝜔ℎ, the mesh stiffness and the static
transmission error terms can be expressed in the form of
Fourier series. Taking the first harmonic,

𝑘 (𝑡) = 𝑘0 + 𝑘1 cos (𝜔ℎ𝑡) ,
𝑒 (𝑡) = 𝑒𝑚 cos (𝜔ℎ𝑡 + 𝜑𝑒) (6)

𝑘0 is the average stiffness, and 𝑘1 is the fluctuation
amplitude. Assuming that 𝜏 = 𝜔0𝑡, 𝜔0 = √𝑘0/𝑚𝑒, 𝜉 =𝑐/2√𝑚𝑒𝑘0, 𝑘(𝜏) = 𝑘(𝑡)/𝑘0, 𝜔 = 𝜔ℎ/𝜔0, 𝑢(𝜏) = 𝑥(𝑡)/𝑏, and
replacing 𝜏 with 𝑡, then the dynamic model can be simplified
as follows:

𝑢̈ + 2𝜉𝑢̇ + 𝑘 (𝑡) 𝑓 (𝑢) = 𝑓𝑎V + 𝑓𝑒𝜔2 cos (𝜔𝑡 + 𝜑) ,
𝑒 (𝑡) = 𝑒𝑚 cos (𝜔ℎ𝑡 + 𝜑𝑒) (7)
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And 𝑓𝑎V = 𝐹𝑎V/𝑏𝑘0, 𝑓𝑒 = 𝑒𝑚/𝑏, 𝑘(𝑡) = 1 + 𝑘1 cos(𝜔𝑡),

𝑓 (𝑢) =
{{{{{{{{{
𝑢 − 1 𝑢 ≥ 1
0 −1 ≤ 𝑢 ≤ 1
𝑢 + 1 𝑢 ≤ −1

(8)

From (7), themechanicalmodel is set up. Because the gear
system is a typical nonsmooth system, the previous method
about smooth is not applicable.Therefore, amappingmethod
is utilized to analyze the nonsmooth system.

3. The Construction of Mapping

For the gear model in this paper, due to the backlash, time-
varying stiffness, and static transmission error, a variety of
complex motion patterns may occur between the driving
wheel and the driven wheel, so it is necessary to establish
different mappings to study each movement. There are three
main cases and corresponding mapping methods.

(1) The Meshing State. In this case, the system flow does not
pass through the constraint surface. But in a smooth area, the
operating state of the system is continuous and smooth, and
it can be analyzed by continuous smooth theory.

(2) The Collision State. In this case, the system flow moves
from one subinterval through the constraint surface to
another subinterval. The Jacobi matrix of the system has a
jump when the flow crosses over the constraint surface. A
discontinuous mapping is necessary to compensate for the
system flow jump, and then the composite mapping method
can be used to analyze the whole system.

(3)The Edge State. In this case, the teeth of driving wheel are
in contact with the teeth of driven wheel at a relative zero
speed, which is a critical situation.The system flow is tangent
to a constraint in a subinterval. Edge theory can be used to
study this condition; besides the discontinuous mapping is
used to analyze the local characteristics.

3.1.TheBasicMapping. For the gear pair system (7), the phase
space is divided into three subdomains by two separation
boundaries and the corresponding phase space is defined as

𝐷1 = {(𝑢, 𝑢̇) | 𝑢 ∈ (1,∞) , 𝑢̇ ∈ (−∞, +∞)}
𝐷2 = {(𝑢, 𝑢̇) | 𝑢 ∈ (−1, 1) , 𝑢̇ ∈ (−∞, +∞)}
𝐷3 = {(𝑢, 𝑢̇) | 𝑢 ∈ (−∞, −1) , 𝑢̇ ∈ (−∞, +∞)}

(9)

The two constraint surfaces are defined as

𝐷12 = {(𝑢, 𝑢̇) | 𝑢 = 1, 𝑢̇ ∈ (−∞, +∞)}
𝐷23 = {(𝑢, 𝑢̇) | 𝑢 = −1, 𝑢̇ ∈ (−∞, +∞)} (10)

In order to establish themapping, the two constraints can
be further divided,𝐷12 = 𝜕𝐷12 ∪ 𝜕𝐷21 ∪ (1, 0),𝐷23 = 𝜕𝐷23 ∪𝜕𝐷32 ∪ (−1, 0), and the four subsets are defined as

𝜕𝐷12 = {(𝑢, 𝑢̇) | 𝑢 = 1, 𝑢̇ < 0}
𝜕𝐷21 = {(𝑢, 𝑢̇) | 𝑢 = 1, 𝑢̇ > 0}
𝜕𝐷23 = {(𝑢, 𝑢̇) | 𝑢 = −1, 𝑢̇ < 0}
𝜕𝐷32 = {(𝑢, 𝑢̇) | 𝑢 = −1, 𝑢̇ > 0}

(11)

From the four subsets, all the six basic mappings are
defined as shown in Figure 2.

𝑃1: 𝜕𝐷21 󳨀→ 𝜕𝐷12,
𝑃2: 𝜕𝐷21 󳨀→ 𝜕𝐷23,
𝑃3: 𝜕𝐷23 󳨀→ 𝜕𝐷32,
𝑃4: 𝜕𝐷32 󳨀→ 𝜕𝐷21,
𝑃5: 𝜕𝐷12 󳨀→ 𝜕𝐷21,
𝑃6: 𝜕𝐷32 󳨀→ 𝜕𝐷23

(12)

3.2. Discontinuous Mapping. Discontinuous mapping is a
conversion relationship that represents the flow of the system
between two adjacent subintervals. This transformation is
to compensate for the discontinuity of the system flow at
the constraint surface. Considering the gear pair system in
this paper, it is used to compensate for the discontinuity
of the teeth during the transition between the disengaged
state and the meshing state. The motion between the driving
wheel teeth and the driven wheel teeth mainly includes
three cases; the relationship between the system flow and
the constraint surface is different from the cases (2) and (3),
which are the collision state and the edge state.Therefore, it is
necessary to introduce two types of discontinuous mappings,
which are noncritical discontinuous mapping and critical
discontinuous mapping.

The noncritical discontinuous mapping is to compensate
for the discontinuity of the system’s flow through the con-
straint surface. The figure is shown in Figure 3.𝑡𝑝 is the time that the undamaged line 𝑥(𝑡) reaches the
interface 𝑆; 𝑡 is the time that the disturbed trajectory reaches
the constraint surface 𝑆;𝛿𝑥0 = 𝑥0−𝑥0 is the initial disturbance
value; 𝛿𝑥𝑝− = 𝑥(𝑡𝑝) − 𝑥(𝑡𝑝) represents the disturbance value
in the subspace before crossing the boundary 𝐷−; 𝛿𝑥𝑝+ =𝑥(𝑡𝑝) − 𝑥(𝑡𝑝) is the disturbance value in the subspace after
crossing the boundary 𝐷−. Assuming that 𝛿𝑥𝑝+ = 𝑆21𝛿𝑥𝑝−,𝑆21 represents the transition from the subspace𝐷− across the
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interface to the subspace 𝐷+. Make the trajectory 𝛿𝑥𝑝+ in
front of 𝑡𝑝 the first-order Taylor expansion.

𝛿𝑥𝑝+ = 𝑥 (𝑡𝑝) − 𝑥 (𝑡𝑝)
≈ (𝑥 (𝑡𝑝) + 𝑓𝑝−𝛿𝑡) − (𝑥 (𝑡𝑝) + 𝑓𝑝+𝛿𝑡)
≈ (𝑥 (𝑡𝑝) − 𝑥 (𝑡𝑝)) + (𝑓𝑝−𝛿𝑡 − 𝑓𝑝+𝛿𝑡)
≈ 𝛿𝑥𝑝− + (𝑓𝑝− − 𝑓𝑝+) 𝛿𝑡

(13)

𝛿𝑡 = 𝑡𝑝 − 𝑡𝑝 is the time which 𝑥(𝑡) reaches the constraint
surface after the trajectory 𝑥(𝑡) reaches the interface. Accord-
ing to the analysis of the transition point conditions ℎ(𝑥) = 0,

𝛿𝑡 = −∇ℎ𝛿𝑥𝑝−∇ℎ𝑓𝑝− (14)

From (13) and (14),

𝛿𝑥𝑝+ = 𝛿𝑥𝑝− + (𝑓𝑝− − 𝑓𝑝+) 𝛿𝑡
= 𝛿𝑥𝑝− + (𝑓𝑝− − 𝑓𝑝+)(−∇ℎ𝛿𝑥𝑝−∇ℎ𝑓𝑝− )
= (𝐼 + (𝑓𝑝+ − 𝑓𝑝−) ∇ℎ∇ℎ𝑓𝑝− )𝛿𝑥𝑝−

(15)

Then

𝑆21 = 𝐼 + (𝑓𝑝+ − 𝑓𝑝−) ∇ℎ∇ℎ𝑓𝑝− (16)

If it is reversible, then

𝑆21 = 𝐼 + (𝑓𝑝+ − 𝑓𝑝−) ∇ℎ∇ℎ𝑓𝑝− (17)

Equations (16) and (17) are the noncritical discontinuous
mapping. When the state of motion of the gear system tran-
sitions between teeth and meshing happens, it is necessary to
introduce the above discontinuous mapping.

The critical discontinuous mapping is to compensate for
discontinuities when the system flow near the edge of the
wipe traverses the interface.

The discontinuous mapping of the critical situation is
the discontinuous mapping when the edge is bifurcated. For
the vector field segmented smooth system, the vector field is
given as follows:

𝑋̇ = {{{
𝐹1 (𝑥) , 𝐻 (𝑥) < 0
𝐹2 (𝑥) , 𝐻 (𝑥) > 0

𝑋 ∈ 𝑅𝑛, 𝐹𝑖 : 𝑅𝑛 󳨃󳨀→ 𝑅𝑛, 𝐻 : 𝑅𝑛 󳨃󳨀→ 𝑅
(18)

𝑖 = 1, 2. Define the switching plane or interface as follows:∑ = {𝑥 ∈ 𝑅𝑛 | 𝐻(𝑥) = 0}. The switching surface corresponds
to the constraint surface of the model. The interface divides
the phase space of the system into two parts, 𝑆− = {𝑥 ∈ 𝑅𝑛 |𝐻(𝑥) < 0}, 𝑆+ = {𝑥 ∈ 𝑅𝑛 | 𝐻(𝑥) > 0}. Assuming that, in 𝑆−,
the motion is determined by the flowΦ1(𝑡); in 𝑆+, the motion
is determined by the flow Φ2(𝑡). The phase space is shown in
Figure 4.

If bifurcation occurs in the system at the edge of (𝑥∗, 𝑡∗),
it should meet the analytical conditions:

𝐻(𝑥∗) = 0,
∇𝐻 (𝑥∗) ̸= 0
⟨∇𝐻(𝑥∗) , 𝜕𝜙𝑖𝜕𝑡 (𝑥∗, 𝑡∗)⟩ = ⟨∇𝐻, 𝐹𝑖⟩ = 0
𝑑2𝑑𝑡2𝐻(𝜙𝑖 (𝑥∗, 𝑡∗))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑋=𝑋∗ ,𝑡=𝑡∗
= ⟨∇𝐻, 𝜕𝐻𝜕𝑥 𝐹𝑖⟩ +⟨𝜕2𝐻𝜕𝑥2 𝐹𝑖, 𝐹𝑖⟩ > 0

(19)
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In general, the bifurcation point can be converted to
by coordinate transformation. In this paper, the analytical
form of the discontinuity map is ignored. We just give the
conclusion that the local mapping in the neighborhood of
grazing point has a 3/2-type singularity.

3.3. Local Singularity. The sliding dynamics along the sep-
aration boundaries will be investigated in this section by
using the perturbation method and the differential inclusion
theory.

For (7), suppose 𝑥1 = 𝑢, 𝑥2 = 𝑢̇, then
𝑥̇1 = 𝑥2
𝑥̇2 = −2𝜉𝑥2 − (1 + 𝑘1 cos (𝜔𝑡)) ∗ 𝑓 (𝑥1) + 𝑓𝑎V

+ 𝑓𝑒𝜔2 cos (𝜔𝑡)
(20)

where

𝑓 (𝑥1) =
{{{{{{{{{
𝑥1 − 1 𝑥1 ≥ 1
0 −1 ≤ 𝑥1 ≤ 1
𝑥1 + 1 𝑥1 ≤ −1,

(21)

and the system can also be expressed as a uniform

𝑋̇ = 𝐹(𝑖) (𝑥, 𝑡, 𝜇𝑖) , 𝑖 ∈ {1, 2, 3} (22)

where 𝐹(1)(𝑥, 𝑡, 𝜇1) = (𝑥2, −2𝜉𝑥2 − (1 + 𝑘1 cos(𝜔𝑡))(𝑥1 − 1) +𝑓𝑎V + 𝑓𝑒𝜔2 cos(𝜔𝑡))𝑇,𝐹(2)(𝑥, 𝑡, 𝜇2) = (𝑥2, −2𝜉𝑥2 + 𝑓𝑎V + 𝑓𝑒 cos(𝜔𝑡))𝑇,𝐹(3)(𝑥, 𝑡, 𝜇3) = (𝑥2, −2𝜉𝑥2 − (1 + 𝑘1 cos(𝜔𝑡))(𝑥1 + 1) + 𝑓𝑎V +𝑓𝑒𝜔2 cos(𝜔𝑡))𝑇.𝜇𝑖, 𝑖 = 1 ∼ 3, represent system parameters. In order to
obtain the sliding dynamics along the separation boundaries,
the differential inclusion theory will be introduced.

For (22), it can also be expressed as

𝑋̇ ∈ 𝐹 (𝑥, 𝑡, 𝜆) , 𝑋 = (𝑋1, 𝑋2)𝑇 ∈ 𝐷𝑖 ∪ 𝐷𝑗 ∪ 𝐷𝑖𝑗 (23)

The set-valued vector field𝐹(𝑋, 𝑡, 𝜆) is convex and contin-
uous with respect to the parameter 𝜆 contained in the closed
interval [0, 1].The following property holds for the convex set
of the vector field.

𝐹 (𝑥, 𝑡, 𝜆) =
{{{{{{{{{
𝐹𝛼 (𝑥, 𝑡, 𝜇𝛼) 𝜆 = 0
𝐹0 (𝑥, 𝑡) ∃𝜆 ∈ (0, 1)
𝐹𝛽 (𝑥, 𝑡, 𝜇𝛽) 𝜆 = 1

(24)

𝛼, 𝛽 ∈ {𝑖, 𝑗}, 𝛼 ̸= 𝛽, and 𝐹𝛼(𝑥, 𝑡, 𝜇𝛼) and 𝐹𝛽(𝑥, 𝑡, 𝜇𝛽) are
the input and output vector fields, respectively. 𝐹0(𝑥, 𝑡) is a
vector field along the separation boundary.

From the convexity of the set-valued vector field, we have

𝐹0 (𝑥, 𝑡) = 𝜆𝐹𝛽 (𝑥, 𝑡, 𝜇𝛽) + (1 − 𝜆) 𝐹𝛼 (𝑥, 𝑡, 𝜇𝛼) (25)

The sliding motion is along the separation boundary,
which indicates the vector field is along the boundary. So𝑛𝑇𝐷𝑖𝑗𝐹0(𝑥, 𝑡) = 0 from which we have

𝜆 = 𝑛𝑇𝐷𝑖𝑗𝐹𝛼 (𝑥, 𝑡, 𝜇𝛼)𝑛𝑇𝐷𝑖𝑗 [𝐹𝛼 (𝑥, 𝑡, 𝜇𝛼) − 𝐹𝛽 (𝑥, 𝑡, 𝜇𝛽)] (26)

For our system, the separation boundaries are 𝑥1 ± 1 =0, so the normal vector of separation boundaries is 𝑛𝐷12 =𝑛𝐷23 = (1, 0)𝑇; then we get

𝑛𝑇𝐷12𝐹(1) (𝑥, 𝑡, 𝜇1) = 𝑛𝑇𝐷12𝐹(2) (𝑥, 𝑡, 𝜇2) = 𝑥2
𝑛𝑇𝐷23𝐹(2) (𝑥, 𝑡, 𝜇1) = 𝑛𝑇𝐷23𝐹(3) (𝑥, 𝑡, 𝜇3) = 𝑥2 (27)

From (26) and (27), we can obtain 𝜆 󳨀→ ∞. However,
from the convexity, the parameter 0 < 𝜆 < 1 is required.
Therefore, a perturbation parameter 𝛿 is introduced for a
new separation boundary (𝑥1 + 𝛿𝑥2 = ±1) near the original
boundaries 𝑥1 ± 1 = 0; then

𝑛𝐷12 = 𝑛𝐷23 = (1, 𝛿)𝑇 (28)

𝑛𝑇𝐷12𝐹(1) (𝑥, 𝑡, 𝜇1) ̸= 𝑛𝑇𝐷12𝐹(2) (𝑥, 𝑡, 𝜇2) = 𝑥2
𝑛𝑇𝐷23𝐹(2) (𝑥, 𝑡, 𝜇1) ̸= 𝑛𝑇𝐷23𝐹(3) (𝑥, 𝑡, 𝜇3) = 𝑥2 (29)

Finally, the vector field on the new separation boundaries
can be determined as 𝐹(0)(𝑥, 𝑡) = (𝑥2, −𝑥2/𝛿)𝑇, so the
sliding dynamics along the separation boundaries can be
investigated by

(𝑥̇1𝑥̇2) = (0 1
0 −1𝛿)(𝑥1𝑥2) (30)
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Figure 5: Sliding dynamics.

With initial condition (±1, 𝑥20) at 𝑡 = 0, the foregoing
equation gives

𝑥1 = ±1 − 𝛿𝑥20𝑒−𝑡/𝛿,
𝑥2 = 𝑥20𝑒−𝑡/𝛿 (31)

Since 𝛿 is very small, (31) can approximately describe the
sliding dynamics along the separation boundaries. From (30),
if 𝛿 󳨀→ 0+, all the sliding motions on the two boundaries,
respectively, approach the two static balance points (i.e., (±1,
0)) as 𝑡 󳨀→ ∞. However, for given 𝛿 󳨀→ 0−, the sliding
motions on the two boundaries, respectively, go away from
the two static balance points. So the two balance points are
like saddles as shown in Figure 5. But for 𝛿 ≡ 0, the sliding
dynamics along the separation boundaries 𝑥1 ± 1 = 0 are
undetermined.

From the analytical conditions for grazing motions, the
grazing bifurcation conditions on the separation boundaries
for the flows of this nonsmooth system are

𝑥2 = 0,
𝑥̇2 ̸= 0

for 𝑥1 = ±1
(32)

Therefore, in the neighborhoods of the two equilibrium
points, the local topological structures can be sketched in
Figure 6.

In order to verify the rationality of the topology, several
grazing trajectories will be obtained. Herein, we make use
of these grazing trajectories to approximately describe the
sliding dynamics along the separation boundaries.

Choose the system parameters as 𝜉 = 0.024, 𝑘1 = 0.06,𝜔 = 0.61,𝑓𝑒 = 0.25, where𝑓𝑎V represents the constant forcing
parameter and 𝜑 denotes the initial phase.

(1, 0)(−1, 0)

D3

D32 D21

D2 D1

D23 D12

x2

x1

Figure 6: Topological structures of the flows.

Consider the parameters 𝑓𝑎V = 0.075, 𝜑 = 4.47, initial
state (1,0.3); 𝑓𝑎V = 0.596, 𝜑 = 4.21, initial state (1,0.4),
respectively. Two grazing trajectories can be obtained as
shown in Figure 7. The grazing points are both (1, 0). In the
neighborhoods of (1, 0), the system trajectories conform to
the topology above.

Suppose 𝑓𝑎V = 0.075, 𝜑 = 4.47, initial state (1,0.3);𝑓𝑎V = 0.596, 𝜑 = 4.21, initial state (1,-0.3), respectively. We
can also obtain two grazing trajectories in the points (-1, 0),
(1, 0), respectively. As shown in Figure 8, they both conform
to the topology above.

As shown in Figure 9, several grazing trajectories are
obtained to draw on the same coordinates to approximately
describe the sliding motions along the separation boundaries
and to verify the topology in the neighborhood of grazing
points.

4. Analysis of Periodic Response

For the gear transmission system, due to the existence of
time-varying period stiffness and periodic excitation, the
system must have periodic motion under certain system
parameters’ combination.Therefore, the external load is used
as the conversion parameter, and the periodic response of the
system is analyzed by the mapping method.

4.1. The First Case Periodic Motions. The system parameter
adopts common parameter, which can be accessed from [2,
18]. Select the system parameters as follows: 𝜉 = 0.024, 𝑘1 =0.06, 𝜔 = 0.61, 𝑓𝑒 = 0.25 𝑓𝑎V = 0.25. The system flow is
always within the range 𝑢 ≥ 1 of intervals 𝐷1 (Figure 2).
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Figure 7: Grazing trajectories at (1,0).
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Figure 10: Phase diagram of meshing state.

The phase diagram is shown in Figure 10. The dynamics is
constrained by the equation:

𝑢̈ + 2𝜉𝑢̇ + 𝑘 (𝑡) (𝑢 − 1) = 𝑓𝑎V + 𝑓𝑒𝜔2 cos (𝜔𝑡) (33)

where 𝑘(𝑡) = 1 + 𝑘1 cos(𝜔𝑡); 𝑓𝑎V = 𝐹𝑎V/𝑏𝑘0; 𝑓𝑒 = 𝑒𝑚/𝑏.
4.2. The Second Case Periodic Motion. For the gear trans-
mission system, the second case periodic motion that corre-
sponds to the collision state of the gear can be divided into

two cases: single-sided impact periodic motions and double-
sided impact periodic motions.

4.2.1. Single-Sided Impact Periodic Motions. When 𝑓𝑎V =0.223, other parameters remain the same. In this case, the
maximum value of the corresponding periodic flow is bigger
than 1, the minimum value is between the two constraint
surfaces 𝑢 = ±1. The gear system operates in a single-sided
impact periodic motions, and the teeth are transitioning
between the two states of disengagement and engagement.
The phase diagram is shown in Figure 11.

For the convenience of research, assuming the initial state
of the periodic motion is a fixed point on the interface 𝜕𝐷21,
as shown in Figure 12. At this point the system flow consists
of two parts; one is in the interval 𝐷1 and the other is in
the interval 𝐷2. For the trajectory in 𝐷1, the dynamic is
constrained by (33), and the corresponding basic mapping
is 𝑃1; for the trajectory in 𝐷2, the dynamic is determined by
(34), and the corresponding basic mapping is 𝑃5.

𝑢̈ + 2𝜉𝑢̇ = 𝑓𝑎V + 𝑓𝑒𝜔2 cos (𝜔𝑡) (34)

In this case, the system flowmoves through the constraint
surface. In order to establish the periodic mapping corre-
sponding to periodic motion, it is necessary to introduce
discontinuous mappings 𝑆21 and 𝑆12 to compensate for the
discontinuity of the system flow and then use the mapping
compound rule to obtain the periodic mapping 𝑃𝑇.

Suppose 𝑥1 = 𝑢, 𝑥2 = 𝑢̇; then the system (7) can be
expressed as follows:

In interval𝐷1,

𝑓𝑝+ : {{{
𝑥̇1 = 𝑥2𝑥2 = −2𝜉𝑥2 − (1 + 𝑘1 cos (𝜔𝑡)) ∗ (𝑥1 − 1) + 𝑓𝑎V + 𝑓𝑒𝜔2 cos (𝜔𝑡) (35)

In interval𝐷2,
𝑓𝑝− : {{{

𝑥̇1 = 𝑥2𝑥̇2 = −2𝜉𝑥2 + 𝑓𝑎V + 𝑓𝑒𝜔2 cos (𝜔𝑡) (36)

According to the noncritical discontinuous mapping,

𝑆21 = 𝐼 + (𝑓𝑝+ − 𝑓𝑝−) ∇ℎ∇ℎ𝑓𝑝− = 𝐼 (37)

𝑆12 = 𝑆21−1 = 𝐼 (38)

Therefore, the periodic mapping is

𝑃𝑇 = 𝑆21 ⋅ 𝑃5 ⋅ 𝑆12 ⋅ 𝑃1 = 𝑃5 ⋅ 𝑃1 (39)

4.2.2. Double-Sided Impact Periodic Motions. When 𝑓𝑎V =0.233, other parameters remain the same. A steady periodic
state can be obtained as shown in Figure 13. In this case, the
maximum value is bigger than 1 and the minimum value is

smaller than -1. This state corresponds to the double-sided
impact.

As shown in Figure 14, the initial state still selects the fixed
point on interface 𝜕𝐷21. Adopting the similar method above,
the periodic mapping could be obtained as

𝑃𝑇 = 𝑆12 ⋅ 𝑃4 ⋅ 𝑃23 ⋅ 𝑃3 ⋅ 𝑆32 ⋅ 𝑃2 ⋅ 𝑆21 ⋅ 𝑃1 (40)

As 𝑆12 = 𝑆21 = 𝑆23 = 𝑆32 = 𝐼, then
𝑃𝑇 = 𝑃4 ⋅ 𝑃3 ⋅ 𝑃2 ⋅ 𝑃1 (41)

5. Stability Analysis

In this section, these mapping structures will be used to
analyze the periodic motion stability of the system through
Floquet theory. At the same time, in order to judge whether
the system enters the chaotic state, the maximum Lya-
punov exponent spectrum of the system is obtained. That
paper takes the double-sided impact case as an example to
demonstrate the mapping method of stability analysis. Its
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Figure 12: The mapping structures.

corresponding periodic mapping is 𝑃𝑇 = 𝑃4 ⋅ 𝑃3 ⋅ 𝑃2 ⋅ 𝑃1.
The stability and bifurcation for periodic motion can also
be confirmed through the periodic mapping 𝑃𝑇 which is
corresponding to Jacobi matrix. By the chain rule, the Jacobi
matrix can be expressed as follows:

𝐷𝑃 = 𝐷𝑃4 ⋅ 𝐷𝑃3 ⋅ 𝐷𝑃2 ⋅ 𝐷𝑃1 (42)

For 𝐷𝑃𝑖, 𝑖 = 1 ∼ 4, due to the time-varying stiffness of
the gear system and backlash, 𝐷𝑃𝑖 has difficulty in getting
the analytical form of its system flow, so the analysis of each
mapping form can not be got. But they can be obtained
through numerical method, such as the shooting method.
At the same time, the corresponding Jacobi matrix can be
yielded.

Suppose that the Jacobimatrix𝐷𝑃 of periodicmotion has
been obtained, then the eigenvalues of a fixed point for this
periodic mapping can be demonstrated as

𝜆1,2 = 12 [Tr (𝐷𝑃) ± √Δ] (43)

−1.5

−1

−0.5

0

0.5

1

1.5

du
/d

t

10 2 3−1−2
u

Figure 13: Double-sided impact.
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Figure 15: Floquet multiplier map and bifurcation diagram.

Tr(𝐷𝑃) represents the trace of 𝐷𝑃; Det(𝐷𝑃) denotes the
determinant of𝐷𝑃.Δ = [Tr(𝐷𝑃)]2 − 4Det(𝐷𝑃). If Δ < 0, (43) can be
demonstrated through

𝜆1,2 = Re (𝜆) ± 𝑗Im (𝜆) (44)

𝑗 = √−1; Re(𝜆) = (1/2)Tr(𝐷𝑃); Im(𝜆) = (1/2)√|Δ|.
For 𝜆1,2, the period-1 motion will be stable if they are

located in the unit circle. But if one of them is located outside
the unit circle, then the period-1motionwill be unstable.This
means that only if |𝜆1,2| < 1, the periodic motion of the
system is stable.

If one eigenvalue is -1 and the other is within the unit
circle, the periodic doubling bifurcation is going to occur.

If one eigenvalue is +1 and the other is within the unit
circle, the saddle-node bifurcation is going to occur.

Therefore, an improved shooting method is adopted to
calculate the variation of the Floquet multiplier when the sys-
tem changes with the external load parameters.The principle
of the shooting method is to convert the two-point boundary
value problem into the initial value problem. When the
shooting method is used to calculate the Floquet multiplier,
the Floquet multiplier is discrete and parameterized in the
time domain. According to the change of Floquet multiplier,
the stability of the system’s periodic motion and the way
of instability are predicted. The Floquet multiplier map
and the corresponding bifurcation diagram in the interval
[0.075,0.086] are also presented as shown in Figure 15.
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Figure 16: The maximum Lyapunov exponent spectrum.

From Figure 15, we can deduce that when 𝑓𝑎V ≥ 0.079
both eigenvalues are located in the unit circle, which implies
that corresponding period-1 motion is stable. When 𝑓𝑎V is at
the vicinity of 0.0785, one of the two eigenvalues jump out the
unit circle from -1.Meanwhile the other is still within the unit
circle, which indicated the period doubling bifurcation takes
place.

By using the Floquet theory, we can merely get the
stability and bifurcation of periodic motions. For judging the
chaos state, other effectivemethods need to be introduced. As
the Lyapunov exponent spectrum is one of the most precise
tools to determine the chaos state, therefore, the maximum
Lyapunov exponent spectrum is presented in Figure 16.

From Figure 16, we can deduce that when 𝑓𝑎V ≥ 0.06, the
maximum Lyapunov exponents are negative, which implies
the system does not enter the chaos state. When 𝑓𝑎V ≤0.06, the maximum Lyapunov exponents are positive, which
implies the system is under chaos state. By comparing the
result with the bifurcation diagram and Poincare section,
consistent conclusions can be obtained. For the sake of
demonstrating this system and ensuring the conclusion
above, the system bifurcation of the gear systemwith external
load parameters 𝑓𝑎V is shown in Figure 17. Enlarging the
0.06 - 0.08 part of bifurcation diagram, we can get the local
bifurcation diagram as demonstrated in Figure 18.

The bifurcation diagram is used in the process of sim-
ulation. Bifurcation refers to small and continuous changes
in the parameters of the system. As a result, the nature or
topological structure of the system suddenly changes.

Poincare is a method for discretizing continuous systems
and the Poincare map can replace the 𝑛 order continuous
system by using the discrete mapping of order 𝑛 − 1. The
Poincare map is used to reduce the order of the system, and
the Poincare map builds a bridge between the continuous
system and the discrete system.

In order to demonstrate the transition process in detail,
suppose 𝑓𝑎V =0.08, 0.078,0.064,0.0624,0.058, respectively;
both the Poincare section and the corresponding phase
diagram are gained as demonstrated in Figure 19.
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Figure 17: Bifurcation diagram.
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Figure 18: Local bifurcation diagram.

6. Conclusions

Firstly, for common gear systems, a nonlinear vibration
model with backlash, time-varying stiffness, and static trans-
mission error is established. The nonsmooth characteristics
of the system are analyzed theoretically. According to the
model, the state of motion is summarized into three main
cases. For the period motion, the corresponding Poincare
mapping is established. In order to analyze the stability of
the periodic motion of the system, the discrete-time shooting
method was adopted to calculate the variation of the Floquet
multiplier. Then, the Floquet theory and the idea of mapping
are used to give methods and conditions for judging the
stability of the system’s periodic response. At the same time, to
judge the chaotic state of the system, themaximumLyapunov
exponent of the system is obtained. Finally, in order to verify
the rationality of the above method, the global bifurcation
diagramof the system is gained.Through the comparison, the
same conclusion can be got, the whole process of the system
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Figure 19: Phase diagrams and Poincare sections.
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from the periodical bifurcation to the chaos is given, and a
reasonable explanation for the jumping phenomenon in the
bifurcation diagram is given.

Through the study of the gear system we can get the
following conclusions. When the external load of the gear
system is large, it is in a fully engaged state; as the load
decreases, the state of motion changes from full meshing
to unilateral collisions and bilateral collisions. In addition
unilateral collisions and bilateral collisions occur alternately.
As the load continues to decrease, the stable periodic motion
of the system begins to lose its stability, and the motion
state enters chaotic state through periodic bifurcation. This
conclusion has important practical value, which can guide us
in the actual project to select reasonable load parameters.

As a complex nonlinear system, the gear system not
only includes backlash, time-varying stiffness, and static
transmission error of these nonsmooth factors, but also
includes many other nonsmooth factors. Therefore, how to
improve the system’s nonsmooth characteristics in the further
is an important research direction. In addition, how to avoid
chaos by taking effective measures is also a future research
tendency.
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