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Background. There have been countless studies to date assessing specific oncogenic pathways in a range of tumor classes, but the
role of N6-methyladenosine- (m6A-) related long noncoding RNAs (lncRNAs) in colorectal cancer (CRC) remains to be defined.
Methods. We analyzed such m6A-related lncRNAs by conducting analyses of the Pearson correlation with information originating
from the databank of The Cancer Genome Atlas (TCGA). The prognostic relevance of these lncRNAs in CRC was then assessed
through a series of univariate Cox regression analyses, leading to the identification of two different m6A modification patterns;
they are associated with clinical outcomes and have been used to estimate tumor immune microenvironment (TIME) by the
CIBERSORT and ESTIMATE algorithms. We tested the expression of m6A-related lncRNAs in twelve pairs of colorectal
cancer tissues and adjacent normal tissues from patients by qRT-PCR. Results. We discovered the prognostic risk signature
composed of six m6A-related lncRNAs based upon TCGA data. When the overall survival of cases in the dataset of TCGA was
investigated, the low-risk cases survived longer than the high-risk CRC cases in both the training and testing cohorts. ROC
curves further indicated that m6A-related lncRNA prognostic signature (m6A-LPS) can effectively estimate the survival
outcomes of patients in both of these cohorts. We found that lncRNAs AC156455.1 and AC104532.2 were upregulated in
twelve colorectal cancer tissues compared with adjacent normal tissues using qRT-PCR. Conclusions. This data highlights that
the lncRNAs AC156455.1 and AC104532.2 in CRC can be used as biomarkers for diagnostics and prognosis in CRC,
demonstrating their potential as targets when designing novel immunotherapeutic regimens.

1. Introduction

Colorectal cancer (CRC) is well known as one of the most
widespread and deadly cancers all around the globe, with
roughly 400,000 and 212,000 new diagnoses and deaths
annually, respectively [1]. Novel immunotherapy-based reg-
imens developed in recent years can engage or enhance nat-
ural immunological pathways and cells within a treated host
to aid in tumor cell clearance, and many of these immuno-
therapies have been effective when applied in combination
with other treatments in individuals with a range of tumor

classes [2–4]. However, immunotherapy is commonly bene-
ficial to a poorly defined subset of cases, and therefore, novel
strategies must be devised to determine which CRC patients
are likely to respond to such treatment [2–5].

The most commonly found epigenetic modification on
mRNAs and noncoding RNAs (ncRNAs) is N6-
methyladenosine (m6A), which can alter the stability, transla-
tion, and splicing of modified RNAs in biologically important
contexts [6, 7]. As a reversible and dynamic process, the modi-
fication of m6A is controlled through three primary classes of
m6A-regulating proteins: “writers” (methyltransferases),
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“readers” (signal transducers), and “erasers” (demethylases) [8].
According to the latest studies, m6A modification has been
identified as a mechanism capable of modulating oncogenesis
in a range of tumor types. For example, METTL14 can drive
cancer advancement and maintenance in acute myeloid leuke-
mia by enhancing the self-renewal of leukemia stem cells [9],
while knocking down FTO can compromise lung squamous cell
carcinoma cell proliferative and invasive activity and the self-
renewal of glioblastoma stem cells [10, 11]. Furthermore,
YTHDF2 can decrease the EGFRmRNA stability in cancer cells
of the liver, thereby compromising their proliferation [12].

Recent research has underscored the relevance of ncRNAs
in the context of CRC both through the therapeutic delivery of
small interfering RNAs (siRNAs) as well as through in-depth
analyses of the functional importance of long ncRNAs
(lncRNAs) [13–18]. How m6A-related lncRNAs function in
the regulation of CRC onset and progression, however, has
yet to be defined, and there have been few studies exploring
the impact of m6A modification on lncRNA-mediated CRC
development. By studying the association between m6A mod-
ifications and lncRNAs in this tumorigenesis-related setting, it
may be possible to define novel biomarkers that can guide
therapeutic targeting efforts.

Herein, we leveraged the dataset of The Cancer Genome
Atlas (TCGA) and conducted a series of bioinformatics anal-
yses to clarify the prognostic relevance of m6A-related
lncRNAs in CRC cases. The overall aim of the current inves-
tigation is to conduct a systematic assessment of the rela-
tionship among m6A-related lncRNAs and CRC patient
prognosis, the composition of tumor immune microenvi-
ronment (TIME), and expression of programmed death

ligand 1 (PD-L1). Through clustering analyses and risk
modeling, we were able to initiate an m6A-related lncRNA
prognostic signature (m6A-LPS). Associations among clus-
tering subgroups, PD-L1 status, immune scores, and
immune cell infiltration were analyzed in light of m6A-LPS
as a means of further understanding the association between
this risk signature. We analyzed and confirmed m6A-related
lncRNAs AC156455.1 and AC104532.2 as biomarkers for
diagnostics and prognosis in CRC, which will provide a
new foundation for future efforts to develop effective immu-
notherapeutic treatments for CRC.

2. Materials and Methods

2.1. Data Selection. Transcriptomic and clinical outcomes
from cases with CRC were acquired from the database of
TCGA (https://portal.gdc.cancer.gov/). Initially, 23 regula-
tors of m6A RNA methylation were selected based upon
prior reports [19, 20], including 8 writers (RBM15, VIRMA,
METTL3, WTAP, METTL14, RBM15B, METTL16, and
ZC3H13), 2 erasers (FTO and ALKBH5), and 13 readers
(IGFBP2, YTHDC1-2, LRPPRC, YTHDF1-3, FMR1,
HNRNPA2B1, IGF2BP1, IGFBP3, HNRNPC, and RBMX).

2.2. lncRNA Annotation. The GRCh38 lncRNA annotation
file was downloaded from GENCODE to aid in TCGA data
annotation. In total, 14,086 lncRNAs were identified in this
dataset based upon Ensemble IDs.

2.3. Bioinformatics Analysis. Initially, m6A-related lncRNAs
were identified in each dataset via a series of Pearson’s

TCGA dataset 23 m6A-related genes
from published articles
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Figure 1: m6A-related lncRNA identification in patients with CRC. (a) Research flow chart. (b) Gene expression heatmap for 101
prognostic m6A-related lncRNAs in pairs of tumor and paracancerous tissues. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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correlation analyses (jPearson’s Rj > 0:5 and p < 0:001).
Prognostic m6A-related lncRNAs were subsequently identi-
fied through univariate Cox regression analyses, with 101
shared m6A-related prognostic lncRNAs being identified
through comparison of overlap among TCGA datasets.

CRC patients were classified into two cohorts via a k-
means clustering approach based upon the expression of
23 m6A-modulating genes using the R “kmeans function”
using the ConsensusClusterPlus package, with 1,000 compu-
tational permutations being performed to guarantee stability
and reliability [21].

The ESTIMATE algorithm was implemented to compute
immune scores with the “estimate” R package [22]. The
CIBERSORT algorithm was further employed to approximate
the levels of intratumor infiltration via 22 various immune cell
populations according to the expression data of RNA (https://
cibersort.stanford.edu/), with 1,000 permutations of this anal-
ysis being performed and samples with a CIBERSORT p <
0:05 being retained for comparisons of differential immune
cell infiltration among CRC patient subgroups defined accord-
ing to risk scores and clustering subtypes.

The “h.all.V6.2.symbols.gmt” hallmark gene set from
MSigDB was employed for a GSEA approach conducted
using the JACA program to compare differences among
CRC patient subtypes with respect to survival outcomes.
For this analysis, 1,000 random sampling permutations were
employed. Gene set enrichment was described according to
the false discovery rate ðFDRÞ < 0:05 and NES.

An analysis of LASSO regression was performed within
the TCGA training cohort to define m6A-related lncRNA-

based prognostic risk signatures [23], with the most appro-
priate signature being selected via choosing the optimal pen-
alty criterion (l) associated with the minimum 10-fold cross-
validation. LASSO regression algorithm-derived coefficients
were employed to develop a risk score model with the fol-
lowing general equation: risk score = sum of coef f icients × e
xpression level of m6A regulator. Risk scores were individu-
ally computed for each case in the training and testing
cohorts, and cases were stratified into low- and high-risk
groups, with median risk score values serving as the cutoff
for patient stratification. Comparisons of patient outcomes
were then made through Kaplan-Meier survival curves,
while the sensitivity and specificity of this prognostic model
were established through the use of receiver operating char-
acteristic (ROC) curves.

Associations between immune cell infiltration and m6A-
related lncRNAs were further assessed by utilizing the
Tumor Immune Estimation Resource (TIMER) tool
(https://cistrome.shinyapps.io/timer/), which assessed four
types of immune cells (activated mast cells, memory B cells,
T follicular helper cells, and resting memory CD4+ T cells).
GISTIC 2.0 outcomes were implemented in the analyses of
TIMER.

2.4. RNA Isolation and qRT-PCR. We collected twelve pairs
of colorectal cancer tissues and adjacent normal tissues from
patients who recently underwent surgical treatment in the
Department of Gastrointestinal Surgery, Shanghai Changhai
Hospital. Fresh tissues were frozen and stored at −80°C. This
research was approved by the Medical Ethics Committee of
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Figure 2: m6A-related lncRNA identification and evaluation of the CRC-related intratumoral immune cell landscape. (a) Consensus
clustering matrix at k = 2. (b) Consensus clustering cumulative distribution functions (CDFs) and relative area under CDF curve from k
values of 2 through 9. (c) PD-L1 expression in normal/tumor samples and in the cluster1/2 subtypes. (d) ESTIMATE, immune, and
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Changhai Hospital of the Second Military Medical Univer-
sity. Informed consent was acquired from each involved
patient. Total RNA from tissues of CRC patients was
extracted using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s protocol. For comple-
mentary DNA (cDNA) synthesis, 1μg of total RNA and the
PrimeScript RT reagent kit (Takara, Otsu, Shiga, Japan) were
utilized. The SYBR Green assay (Takara) was used to per-
form qRT-PCR, and the progression was executed on a
CFX-96 system (Bio-Rad Laboratories, Inc., Hercules, CA,
USA). The GAPDH was used as an internal reference, and
the relative lncRNA expression was calculated using the 2
−ΔΔCq method. Primer sequences for qRT-PCR used in this
study are shown in Supplementary Table S1.

2.5. Statistical Studies. GraphPad Prism 8.0, R v 3.60, and
SPSS 24.0 (IBM, NY, USA) were employed for statistical
assessments. Mann-Whitney U tests were employed to com-
pare lncRNA expression in normal and tumor tissue sam-
ples. Data in different subgroups or groups were
thoroughly evaluated via Student’s t-test and one-way ANO-
VAs. Chi-square experiments were employed to assess cate-
gorical variables. The curves of Kaplan-Meier and log-rank
assessments were utilized to compare survival outcomes.
Pearson correlation analyses were used to explore the rela-
tionships among risk scores, PD-L1 status, levels of infiltra-
tion of immune cells, clinicopathological factors, and
subtypes. The independent prognostic relevance of the
scores of risk and other clinical traits was analyzed through
the analyses of the multivariate and univariate Cox regres-
sion. ROC curves were implemented to appraise the predic-
tive efficiency of m6A-related lncRNA signatures when
estimating CRC patient OS. p < 0:05 was the significance
threshold for the current research.

3. Results

3.1. m6A-Related lncRNA Identification in Patients with
CRC. We began by identifying and evaluating 14,086
lncRNAs present within the selected TCGA dataset. Initially,
expression matrices for 23 m6A-associated genes were
downloaded from the TCGA database, and those lncRNAs
that correlated with the expression of one or more of these

genes were defined as m6A-related lncRNAs
(jPearson Rj > 0:5 and p < 0:001). Clustering analysis was
conducted to separate cases in the TCGA-CRC cohort into
different groups on the basis of their expression of m6A-
related lncRNAs. The prognostic relevance of these m6A-
related lncRNAs was then further evaluated through a series
of univariate Cox regression analyses based upon a p < 0:05
cutoff within the analyzed TCGA datasets. A LASSO Cox
analysis of the resultant 101 m6A-related prognostic
lncRNAs was identified via this approach, with the overall
workflow being detailed in Figure 1(a). Patterns of prognos-
tic m6A-related lncRNA expression in CRC and normal tis-
sues are shown in Figure 1(b).

3.2. m6A-Related lncRNA Identification and Evaluation of
the CRC-Related Intratumoral Immune Cell Landscape. For
this analysis, cumulative distribution functions (CDFs) were
generated for consensus clusters for k values from 2-9
(Figure 2(a)), with the maximal area under the curve
(AUC) value for this CDF function being evident at k = 2,
at which time there was a clear difference in the expression
of m6A-related lncRNAs between the two defined clusters
(Figure 2(b)). The associations among m6A-related
lncRNAs and PD-L1 expression were next assessed, reveal-
ing that the expression of PD-L1 was considerably greater
in cluster 2 relative to cluster 1; there was also a trend toward
increased PD-L1 expression in CRC tumor tissues relative to
vicinal normal tissues (Figure 2(c)). Next, the algorithm of
ESTIMATE was employed to measure stromal and immune
scores for CRC case and tumor samples; these immune
scores differed significantly between clusters, with higher
immune ESTIMATE and stromal scores in cluster 2 patients
relative to those in cluster 1 (Figure 2(d)). The CIBERSORT
algorithm was utilized to evaluate the discrepancies in the
levels of 22 populations of immune cells in these CRC
tumors, revealing that there were high levels of M0 macro-
phages, CD8+ T cells, naïve B cells, and resting memory
CD4+ T cells in cluster 2 patient tumors (Figure 2(e)).

3.3. Validation and Construction of a Prognostic m6A-
Related lncRNA Risk Model. Risk scores were then measured
based the regression coefficients derived from the LASSO
algorithm for cases in both the TCGA testing and training
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cohorts (Figures 3(a) and 3(b)). Median risk score values
were subsequently used to separate cases into high- and
low-risk groups, and the patterns of OS and the expression
of the six m6A-related lncRNAs composing the risk score
were next assessed (Figures 3(c) and 3(d)). We found that
low-risk CRC cases exhibited a longer OS relative to high-
risk cases in either of the training and testing cohorts
(Figures 3(e) and 3(f)). ROC curves further indicated that
the developed m6A-LPS was able to reliably predict the OS
of cases in both cohorts (Figures 3(g) and 3(h)). Univariate
and multivariate analyses were then conducted, which con-
firmed that stage, age, and risk score values were all indepen-
dent predictors of patient outcomes within the TCGA
testing and training cohorts (Figures 3(i) and 3(j)).

3.4. Assessment of the Prognostic Utility of Risk Scores in
Different CRC Patient Subgroups. Next, we examined the
relationship between risk scores and CRC patient clinical
features. Heatmaps were used to evaluate the patterns of
expression of the six m6A-related lncRNAs in low- and
high-risk cases (Figure 4(a)). This revealed that
AL137782.1 and AC104819.3 were expressed at lower levels
within the high-risk group relative to the low-risk group,
whereas AC245041.1, AC138207.5, AC156455.1, and
AC104532.2 exhibited the opposite trend. To more fully
understand the prognostic values of these risk scores, we
stratified CRC cases based upon their disease status and
found that compared to low-risk cases, those in the high-
risk group exhibited worse OS for both individuals with
stage I-II and stage III-IV disease (Figure 4(b)). Similarly,
these prognostic m6A-related lncRNAs were also able to
estimate the OS of cases irrespective of age (>65 vs. ≤65
years) (Figure 4(c)), gender (female vs. male) (Figure 4(d)),

T status (T1-2 vs. T3-4) (Figure 4(e)), N status (N0 vs. N1-
3) (Figure 4(f)), and M status (M0 vs. M1) (Figure 4(g)).

3.5. Association between Risk Scores and Immune Cell
Infiltration. We explored the associations between risk
scores and intratumoral infiltration by four different
immune cell types to meticulously discover the influence of
the 6 m6A-related lncRNAs composing our risk signature
and the TIME in CRC. Risk scores are considerably nega-
tively related to infiltration by resting memory CD4+ T cells
(p = 0:023) and activated mast cells (Figures 5(a) and 5(b)),
whereas they are positively correlated with infiltration by
memory B cells (p = 0:032) and T follicular helper cells
(Figures 5(c) and 5(d)).

3.6. Validation of the Expression Levels of lncRNAs
AC156455.1 and AC104532.2 with Prognostic Signature. To
further verify the accuracy of the m6A-related lncRNA sig-
nature, the expression levels of lncRNAs AC156455.1 and
AC104532.2 were measured in twelve colorectal cancer tis-
sues and twelve adjacent normal tissues using qRT-PCR.
lncRNAs AC156455.1 and AC104532.2 were upregulated
in colorectal cancer tissues compared with corresponding
normal tissues (Figures 6(a) and 6(b)). Meanwhile, the same
results were analyzed; lncRNAs AC156455.1 and
AC104532.2 were also upregulated in colorectal cancer tis-
sues compared with corresponding normal tissues from
TCGA database (Figures 6(c) and 6(d)).

4. Discussion

Several prior reports have explored the link between m6A
modifications and the regulation of cancer pathogenesis
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Figure 4: Assessment of the prognostic utility of risk scores in different CRC patient subgroups. (a) Low- and high-risk patient group
clinicopathological findings and heatmaps. (b) Comparison of the survival of low- and high-risk cases in the dataset of TCGA (cases > 65
years old: p < 0:001 and cases ≤ 65 years old: p = 0:032). (c) Comparison of the survival of low- and high-risk cases in the dataset of
TCGA (males: p = 0:004 and females: p < 0:001). (d) Comparison of the survival of low- and high-risk cases in the dataset of TCGA
(cases with stage I-II disease: p < 0:001 and cases with stage III-IV disease: p = 0:004). (e) Comparison of the survival of low- and high-
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survival outcomes were compared through curves of Kaplan-Meier and log-rank experiments.
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[24–28], but the mechanisms whereby lncRNAs may shape
this relationship are yet to be defined. KIAA1429 has been
indicated to drive the progression of liver cancer through
the m6A modification of the lncRNA GATA3 [29]. In glio-
blastoma stem cells, the lncRNA FOXM1-AS has been illus-
trated to influence interactions among FOXM1 and
ALKBH5 to shape cell maintenance [24]. In light of the
above results, we speculate that m6A modifications of spe-
cific mRNAs may shape oncogenesis, and as such, further
study of the impact of such m6A modifications on lncRNA
function is warranted to better identify key therapeutic tar-
gets or prognostic biomarkers associated with particular
cancers. LINC00265 has been shown to predict undesirable
findings in cases with AML [30], while LINC00665 has been
associated with enhanced activation of the pathway of PKR/
NF-κB hepatocellular carcinoma and with concomitant
increases in malignancy [31], while in gastric cancer, this
same lncRNA can activate the Wnt pathway to promote
tumor progression [32]. In our study, we explored the prog-
nostic relevance of m6A-related lncRNAs by analyzing data
from 437 CRC patients in the TCGA database. We ulti-
mately defined 101 prognostically relevant m6A-related
lncRNAs, of which 6 were employed to establish an m6A-
related lncRNA prognostic signature (m6A-LPS) capable of

estimating the OS of patients with CRC. When stratified into
low- and high-risk groups following the median risk score
values, high-risk CRC patients survived for significantly
shorter periods relative to low-risk patients. Multivariate
analyses further indicated that these m6A-LPS values were
independent predictors of CRC patient OS. While several
of the lncRNAs within our risk signature have been studied
in oncogenic contexts, they have not been analyzed in the
context of CRC, and there have been few reports regarding
interactions between these lncRNAs and m6A-associated
genes. As such, our findings offer novel insights regarding
lncRNAs targeted by m6A regulators in the context of
CRC, potentially shedding new light on their ability to pro-
mote CRC onset and progression.

The heterogeneous tumor microenvironment (TME)
often harbors a diverse array of immunosuppressive signals,
shaping tumor development, patient prognosis, and thera-
peutic responses [33–36]. The TME consists of an assorted
immune cells, vascular structures, and stromal cells, all of
which can impact the oncogenic progression associated with
a given tumor type. Immune cell infiltration within the TME
can predict patient outcomes and is often correlated with
tumor grade, stage, and metastasis [37, 38]. For example,
tumor-associated macrophages (TAMs) can generate
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Figure 5: Associations between risk scores and immune cell infiltration. (a–d) Memory B cells (a), activated mast cells (b), resting CD4
memory T cells (c), and T follicular helper cells (d).
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immunosuppressive cytokines including TGF-B and IL-10
for example, which can drive preferential tumor outgrowth
and contribute to poor patient outcomes [39–41]. More
potent tumor infiltration by CD4+ and CD8+ T cells, on
the contrary, is often related to better patient survival and
a higher response rate to immunotherapy [42]. We observed
that PD-L1 expression levels in cluster 2 were considerably
greater relative to cluster 1, and a trend towards increased
PD-L1 expression in CRC tissues relative to normal tissues.
It is critical that consensus criteria be established in order
to determine the CRC cases that are most probable to
respond to immunotherapeutic treatment. We found that
the ESTIMATE, stromal, and immune scores of cluster 2
were greater than those in cluster 1. This strongly suggests
a close relationship between patterns of m6A-related
lncRNA expression and the ability of particular immune
cells to enter or persist within the TIME, thereby altering
patient responses to immunotherapeutic intervention. Risk
scores were all negatively associated with activated mast cell
and resting memory CD4+ T cell infiltration in this study,
whereas they were positively associated with memory B cell
and T follicular helper cell infiltration. We reported that
lncRNAs AC156455.1 and AC104532.2 were upregulated

in colorectal cancer tissues compared with corresponding
normal tissues using qRT-PCR, compared with previous
studies. Therefore, lncRNAs AC156455.1 and AC104532.2
can be used as biomarkers for diagnostic and prognosis in
CRC, to provide new targets for future immunotherapy.

5. Conclusions

In summary, we herein conducted a systematic assessment of
the prognostic relevance of m6A-associated lncRNAs in CRC
and explored their associations with PD-L1 expression and the
TIME. Risk scores derived from m6A-associated lncRNA-
based expression signatures were also found to be indepen-
dently related to CRC patient prognosis, and further predictive
analyses suggested that these lncRNAs may be associated with
the regulation of the TIME in CRC tumors. As such, lncRNAs
AC156455.1 and AC104532.2 associated with tumor immune
responses have the potential to guide the design of modern
immunotherapeutic treatments for CRC.
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TIME: Tumor immune microenvironment
TCGA: The Cancer Genome Atlas
CRC: Colorectal cancer
LASSO: Least absolute shrinkage and selection operator
M6A-LPS: m6A-related lncRNA prognostic signature
siRNA: Small interfering RNAs
lncRNAs: Long noncoding RNAs
PD-L1: Programmed death-ligand 1
ROC: Receiver operating characteristics
FDR: False discovery rate
TIMER: Tumor Immune Estimation Resource
CDFs: Cumulative distribution functions
AUC: Area under the curve
GSEA: Gene set enrichment analysis
OS: Overall survival
TAMs: Tumor-associated macrophages.
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Background. Although transcriptomic data have been widely applied to explore various diseases, few studies have investigated the
association between transcriptomic perturbations and disease development in a wide variety of diseases. Methods. Based on a
previously developed algorithm for quantifying intratumor heterogeneity at the transcriptomic level, we defined the variation
of transcriptomic perturbations (VTP) of a disease relative to the health status. Based on publicly available transcriptome
datasets, we compared VTP values between the disease and health status and analyzed correlations between VTP values and
disease progression or severity in various diseases, including neurological disorders, infectious diseases, cardiovascular diseases,
respiratory diseases, liver diseases, kidney diseases, digestive diseases, and endocrine diseases. We also identified the genes and
pathways whose expression perturbations correlated positively with VTP across diverse diseases. Results. VTP values were
upregulated in various diseases relative to their normal controls. VTP values were significantly greater in define than in
possible or probable Alzheimer’s disease. VTP values were significantly larger in intensive care unit (ICU) COVID-19 patients
than in non-ICU patients, and in COVID-19 patients requiring mechanical ventilatory support (MVS) than in those not
requiring MVS. VTP correlated positively with viral loads in acquired immune deficiency syndrome (AIDS) patients.
Moreover, the AIDS patients treated with abacavir or zidovudine had lower VTP values than those without such therapies. In
pulmonary tuberculosis (TB) patients, VTP values followed the pattern: active TB> latent TB> normal controls. VTP values
were greater in clinically apparent than in presymptomatic malaria. VTP correlated negatively with the cardiac index of left
ventricular ejection fraction (LVEF). In chronic obstructive pulmonary disease (COPD), VTP showed a negative correlation
with forced expiratory volume in the first second (FEV1). VTP values increased with H. pylori infection and were upregulated
in atrophic gastritis caused by H. pylori infection. The genes and pathways whose expression perturbations correlated
positively with VTP scores across diseases were mainly involved in the regulation of immune, metabolic, and cellular activities.
Conclusions. VTP is upregulated in the disease versus health status, and its upregulation is associated with disease progression
and severity in various diseases. Thus, VTP has potential clinical implications for disease diagnosis and prognosis.

1. Introduction

With the recent development of next-generation sequencing
(NGS) technologies, a substantial number of multiomics data
associated with various diseases have been produced, includ-
ing cancer, neurological disorders, cardiovascular disease,
respiratory disease, digestive system disease, metabolic dis-

ease, endocrine disease, kidney and urinary system disorders,
and infectious disease. In a previous study [1], we developed
an algorithm, termed DEPTH, to quantify the variation of
transcriptomic perturbations (VTP) in cancer, namely intra-
tumor heterogeneity. We found that VTP value was signifi-
cantly higher in cancer than in normal controls. Moreover,
VTP values increased with cancer advancement, and its
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increase were associated with worse clinical outcomes in can-
cer patients [1]. In this study, we generalized this algorithm to
awide variety of diseases and explored the associationbetween
VTP and prognosis-associated clinical features. The disease
types we analyzed included neurological disorders, infectious

diseases, cardiovascular diseases, respiratory diseases, liver
diseases, kidney diseases, digestive diseases, and endocrine
diseases. We compared VTP values between the disease state
and normal controls and analyzed correlations between VTP
and disease progression or severity.

2. Methods

2.1. Algorithm. The algorithm is described as follows: given a
transcriptome dataset, which involves g genes and m disease
samples and n normal control samples; the variation of tran-

scriptomic perturbations (VTP) of a disease sample DS is
defined as

where exðGi, DSÞ indicates the expression value of gene
Gi in DS, and exðGi, NSjÞ indicates the expression value of
Gi in the normal sample NS j.

2.2. Datasets. We downloaded transcriptome datasets for
various diseases from the NCBI Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/) and analyzed
these datasets with the algorithm. The datasets were associ-
ated with various types of diseases, including neurological
disorders (Alzheimer’s disease (AD) and schizophrenia
(SCZ)), infectious diseases (COVID-19, acquired immune
deficiency syndrome (AIDS), hepatitis B virus (HBV) infec-
tion, tuberculosis (TB), and malaria), cardiovascular diseases
(acute myocardial infarction, dilated cardiomyopathy, idio-
pathic or ischemic cardiomyopathy, and heart failure), respi-
ratory diseases (chronic obstructive pulmonary disease),
liver diseases (chronic hepatitis B and liver cirrhosis), kidney
diseases (nephrotic syndrome, uremia, focal segmental glo-
merulosclerosis and glomerular disease), digestive diseases
(inflammatory bowel disease and helicobacter pylori infec-
tion), and endocrine diseases (diabetes). A description of
these datasets is shown in Table 1.

2.3. Data Preprocessing. For RNA-Seq gene expression
values, we normalized them by the TPM method. For micro-
array gene expression values, we used the normalization
methods recommended by related platforms. A description
of the normalization methods for the datasets analyzed was
provided in Supplementary Table S1. All normalized
expression values were transformed by log 2ðx + 1Þ before
subsequent analyses.

2.4. Statistical Analysis and Visualization. We employed the
Mann–Whitney U test (one-tailed) to compare VTP values
between two classes of samples, and the Kruskal-Wallis test
to compare VTP values among more than two classes of
samples. We utilized the Spearman method to assess the cor-
relation between VTP values and other variables and
reported the correlation coefficients (ρ) and P values. To
correct for P values in multiple tests, we utilized the Benja-
mini and Hochberg method to calculate the false discovery
rate (FDR) [2]. All statistical analyses were performed in
the R programming environment (version 4.1.2). The R
packages “ggplot2”, “ggpubr”, and “ggstatsplot” were used
for data visualization.

2.5. Identifying Genes and Pathways whose Expression
Perturbations Have Significant Positive Correlations with
VTP across Diverse Diseases. In each dataset, we identified
the genes satisfying that jΔðGi, DS, NSjÞj significantly and
positively correlated with VTP values in all disease samples
using a threshold of the Spearman correlation test FDR <
0:1. For each disease with n datasets analyzed, we identified
the genes which satisfied the prior condition at least n − 1
datasets. These genes were defined as the genes having sig-
nificant positive correlations of expression perturbations
with VTP in specific diseases. Among them, the genes iden-
tified in common in at least 5 specific diseases were defined
as the genes whose expression perturbations had significant
positive correlations with VTP across diseases. By inputting
the genes associated with VTP across diseases into the GSEA
web tool [3], we obtained the KEGG pathways [4] having
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Table 1: Summary of the datasets analyzed.

Disease Dataset Platform
Sample size

Patients Controls

Alzheimer’s disease

GSE63063
GPL6947 145 104

GPL10558 139 134

GSE84422

GPL96

737 214

328 (definite AD)

180 (probable AD)

229 (possible AD)

GPL97

737 214

328 (definite AD)

180 (probable AD)

229 (possible AD)

GPL570

74 28

34 (definite AD)

23 (probable AD)

17 (possible AD)

GSE118553 GPL10558 167 100

GSE140831 GPL15988 599 530

GSE158233 GPL20828 20 10

Danio rerio dataset

Schizophrenia

GSE38484 GPL6947 106 96

GSE53987 GPL570 48 55

GSE87610 GPL13667 65 72

GSE93577 GPL13667 70 71

GSE93987 GPL13158 102 106

Corona virus Disease 2019

GSE152075 GPL18573 430 54

GSE157103 GPL24676

102

2650 (ICU)

42 (MVS)

GSE161731 GPL24676 46 19

GSE198449 GPL24676

149

2285 (asymptomatic)

64 (symptomatic)

Acquired immune deficiency syndrome

GSE18233 GPL6884
153

3
16 (EC)

GSE87620 GPL10558

83

1051 (EC)

32 (HAART-treated)

GSE104640 GPL10558 188 60

Hepatitis B virus infection

GSE83148 GPL570 122 6

GSE114783 GPL15491 3 3

GSE121248 GPL570 70 37

Tuberculosis

GSE28623 GPL4133

71

3746 (TB)

25 (LTB)

GSE153340 GPL21185 18 4

GSE152532 GPL10558
50

11
42 (TB)

3Disease Markers



Table 1: Continued.

Disease Dataset Platform
Sample size

Patients Controls

8 (LTB)

Malaria

GSE1124

GPL96

20

5
5 (asymptomatic)

5 (uncomplicated)

5 (severe)

GPL97

20

5
5 (asymptomatic)

5 (uncomplicated)

5 (severe)

GSE5418 GPL96 22 22

GSE34404 GPL10558 94 61

Cardiovascular disease

GSE1145 GPL570 53 37

GSE5406 GPL96 194 16

GSE17800 GPL570 40 8

GSE33463 GPL6947 49 41

GSE48060 GPL570 31 21

GSE62646 GPL6244 28 14

GSE66360 GPL570 49 50

GSE74144 GPL13497 28 8

GSE109048 GPL17586 38 19

GSE120895 GPL570 47 8

Respiratory disease

GSE5058 GPL570 15 24

GSE42057 GPL570 94 42

GSE55962 GPL13667 24 82

GSE103174 GPL13667 37 16

GSE112811 GPL570 20 18

GSE151052 GPL17556 77 40

GSE32147 GPL6101
56 4

Rattus norvegicus dataset

Liver disease

GSE14323 GPL96 58 19

GSE77627 GPL14951

40

1432 (cirrhosis)

18 (noncirrhosis)

GSE135501 GPL13667

40

1416 (white tongue)

24 (yellow tongue)

GSE36533 GPL15354
11 10

Marmota monax dataset

Kidney disease

GSE37171 GPL570 63 20

GSE104948 GPL22945 53 18

GSE108113 GPL19983 269 5

GSE133288 GPL19983 239 5

Digestive disease
GSE16879 GPL570 61 12

GSE27411 GPL6255 12 6

Endocrine disease GSE9006 GPL96 55 24
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significant positive correlations of their expression perturba-
tions with VTP across diseases using a threshold of FDR<0:1
.

3. Results

3.1. Neurological Disorder. AD is a progressive neurodegen-
erative disease [5]. In four transcriptome datasets for AD
(GSE63063 [6], GSE118553 [7], GSE140831, and
GSE84422 [8]), the VTP values were significantly larger in
AD patients than in normal controls (P < 0:001)
(Figure 1(a)). In GSE84422, VTP values were significantly
larger in define than in possible or probable AD (P = 0:02)
(Figure 1(a)). In addition, we analyzed correlations between
VTP and several measures of the degree of AD progression
in GSE84422, including clinical dementia rating, Braak neu-
rofibrillary tangle score, average neuritic plaque density, sum
of consortium to establish a registry for Alzheimer’s diseases
(CERAD) rating scores in multiple brain regions, and sum of
neurofibrillary tangles density in multiple brain regions.
Notably, VTP displayed significant positive correlations with
these measures (P < 0:01) (Figure 1(a)). Mutations in PSEN2
may result in early-onset AD. In GSE158233 [9], Barthelson
et al. generated transcriptomes of two-types of PSEN2-
mutated (psen2T141_L142delinsMISLISV and psen2N140fs) lines
of zebrafish brains and transcriptomes of their wild type sib-
lings. We observed that VTP values were remarkedly greater
in PSEN2-mutated zebrafish brains than in their wild type
controls (P < 0:03) (Figure 1(a)).

Schizophrenia (SCZ) is a severe psychotic disorder char-
acterized by relapsing incidences of psychosis [10]. In four
transcriptome datasets (GSE38484 [11], GSE87610 [12],
GSE93577 [13], and GSE93987 [14]) generated from SCZ
patients and normal controls, VTP values were consistently
greater in SCZ patients than in normal controls (P < 0:02)
(Figure 1(b)).

Taken together, these results indicate that VTP is aug-
mented in certain neurological disorders (such as AD and
SCZ) and grows with disease progression.

3.2. Infectious Disease. COVID-19 is a highly contagious dis-
ease caused by SARS-CoV-2 infection and is currently wide-

spread around the globe. This disease has caused more than
552 million cases and 6.3 million deaths as of July 1, 2022
[15]. In four transcriptome datasets (GSE152075 [16],
GSE157103 [17], GSE161731 [18], and GSE198449 [19])
for COVID-19 patients, VTP values were significantly
greater in COVID-19 patients than in normal controls
(P < 0:01) (Figure 2(a)). Notably, in GSE157103, VTP values
were significantly greater in intensive care unit (ICU)
COVID-19 patients than in non-ICU patients (P < 0:001)
(Figure 2(a)). Moreover, COVID-19 patients requiring
mechanical ventilatory support (MVS) had greater VTP
values than those not requiring MVS (P < 0:001)
(Figure 2(a)). In addition, VTP displayed a significant posi-
tive correlation with the scores of the sequential organ fail-
ure assessment (SOFA) (P = 0:006; ρ = 0:36) (Figure 2(a)),
which indicates the severity of ICU patients.

Acquired immune deficiency syndrome (AIDS) is a
chronic condition resulting from infection with the human
immunodeficiency virus (HIV) [20]. In three transcriptome
datasets (GSE18233 [21], GSE87620 [22], and GSE104640
[23]) for AIDS patients, VTP values were significantly
upregulated in AIDS patients versus normal controls
(P < 0:001) (Figure 2(b)). In GSE18233, VTP correlated pos-
itively with viral loads (P = 0:002; ρ = 0:28) (Figure 2(b)). In
GSE87620, the AIDS patients with highly active antiretrovi-
ral therapy had greater VTP values than elite controllers,
who were the AIDS patients with undetectable levels of
HIV replication not receiving antiretroviral therapy
(P = 0:01) (Figure 2(b)). In addition, in GSE62117 [24], the
AIDS patients treated with abacavir or zidovudine had lower
VTP values than those without such therapies (P < 0:05)
(Figure 2(b)).

Hepatitis B virus (HBV) infection is a major etiologic
factor for hepatocellular carcinoma [25]. In three tran-
scriptome datasets (GSE83148 [26], GSE114783 [27], and
GSE121248 [28]), VTP values were greater in HBV-
infected patients than in normal controls (P < 0:01)
(Figure 2(c)).

Pulmonary tuberculosis (TB) is an infectious disease
caused by Mycobacterium tuberculosis attacking lungs
[29]. In three transcriptome datasets (GSE28623 [30],
GSE153340 [31], and GSE152532 [32]), TB patients showed

Table 1: Continued.

Disease Dataset Platform
Sample size

Patients Controls

T1D (43)

T2D (12)

GPL97

55

24T1D (43)

T2D (12)

GSE19420 GPL570 30 12

GSE35725 GPL570

57

4446 (recent onset)

11 (longstanding)

Note: EC: Elite controllers. HAART: Highly active antiretroviral therapy. LTB: Latently tuberculosis. T1D: Type 1 diabetes. T2D: Type 2 diabetes.
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Figure 1: Associations between the VTP measure and disease development and progression in neurological disorder. (a) VTP values are
significantly greater in AD patients than in normal controls, larger in define than in possible or probable AD, and increase with AD
progression. The measures of Braak neurofibrillary tangle score, average neuritic plaque density, sum of CERAD rating scores in multiple
brain regions, and sum of neurofibrillary tangles density in multiple brain regions represent the degree of AD progression. VTP values
are remarkedly greater in PSEN2-mutated zebrafish brains than in their wild type controls. (b) VTP values are significantly greater in
SCZ patients than in normal controls. AD: Alzheimer’s disease. N140: psen2N140fs. T141: psen2T141_L142delinsMISLISV. SCZ: Schizophrenia.
∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. They also apply to the following figures.
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Figure 2: Continued.
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greater VTP values than normal controls (P < 0:001)
(Figure 2(d)). Moreover, in GSE152532 and GSE28623
[30], VTP values likely followed the pattern: active TB >
latent TB > normal controls (Figure 2(d)).

Malaria is a serious disease caused by a parasite and is a
major cause of death globally [33]. In three transcriptome
datasets (GSE1124 [34], GSE5418 [35], and GSE34404
[36]), malaria patients had greater VTP values than normal
controls (P < 0:01) (Figure 2(e)). Moreover, in GSE34404,
the high parasitemia group had significantly larger VTP
values than the low parasitemia group of malaria patients
(P = 0:004) (Figure 2(e)). In GSE1124, VTP values likely
followed the pattern: malaria associated with severe anemia
> uncomplicatedmalaria > asymptomatic infection
(Figure 2(e)). In addition, in another transcriptome dataset
(GSE5418), VTP values were greater in clinically apparent
than in presymptomatic malaria (P = 0:006) (Figure 2(e)).

Collectively, these results support that VTP is upregu-
lated in infectious diseases and increases with disease
severity.

3.3. Cardiovascular Disease. Heart disease is the leading
cause of death worldwide [37]. In numerous transcriptome
datasets of heart disease, such as GSE1145, GSE5406 [38],
GSE17800 [39], GSE48060 [40], GSE66360 [41],
GSE109048 [42], and GSE120895 [43], VTP values were sig-
nificantly greater in patients than in normal controls
(P < 0:05) (Figure 3(a)). In GSE17800, VTP had a significant
negative correlation with the cardiac index of left ventricular
ejection fraction (LVEF) (P = 0:035; ρ = −0:33)
(Figure 3(b)). In GSE62646 [44], the VTP values calculated
based on gene expression patterns in leukocytes from acute
myocardial infarction patients followed the pattern: the 1st
day of myocardial infarction > after 4 − 6 days > after 6
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Figure 2: Associations between the VTP measure and disease development and progression in infectious disease. (a) VTP values are
significantly greater in COVID-19 patients than in normal controls and increase with disease severity. (b) VTP values are significantly
greater in AIDS patients than in normal controls, greater in AIDS patients without treatment than in AIDS patients with treatment, and
increase with disease severity. (c). VTP values are significantly greater in HBV-infected patients than in normal controls. (d) VTP values
are significantly greater in TB patients than in normal controls and increase with disease progression. (e) VTP values are significantly
greater in malaria patients than in normal controls and increase with disease severity. ICU: intensive care unit. MVS: mechanical
ventilatory support. SOFA: sequential organ failure assessment. AIDS: acquired immune deficiency syndrome. HBV: hepatitis B virus.
TB: tuberculosis.
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months (Figure 3(c)). In addition, in two transcriptome
datasets (GSE33463 [45] and GSE74144) for hypertension,
VTP values were significantly larger in patients than in nor-
mal controls (P < 0:001) (Figure 3(d)). Altogether, these
results suggest that VTP is upregulated in cardiovascular
diseases and decreases with disease remission.

3.4. Respiratory Disease. Respiratory diseases are the diseases
affecting the organs and tissues involved in gas exchange in
air-breathing animals [46]. Some of the most common respi-
ratory diseases include obstructive lung disease, restrictive
lung disease, and respiratory tract infections. In many tran-

scriptome datasets of respiratory diseases, such as
GSE112811, GSE42057 [47], GSE55962 [48], GSE103174,
and GSE151052, VTP values were significantly larger in
patients than in normal controls (P < 0:05) (Figure 4(a)).
In chronic obstructive pulmonary disease (COPD), forced
expiratory volume in the first second (FEV1) and ratio of
FEV1 to forced vital capacity (FVC) are crucial in evaluating
the severity of disease [49]. In GSE103174, which is a tran-
scriptome dataset for COPD, VTP showed negative correla-
tions with both FEV1 (P = 0:018; ρ = −0:39) and FEV1/FVC
(P = 0:067; ρ = −0:31) (Figure 4(b)). The transcriptome
dataset GSE32147 [50] is gene expression profiles in lung
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Figure 3: Associations between the VTP measure and disease development and progression in cardiovascular disease. (a) VTP values are
significantly greater in heart disease patients than in normal controls and increase with disease severity. (b) VTP values correlate
negatively with the cardiac index of LVEF. (c) VTP values decrease with the remission of acute myocardial infarction. (d) VTP values
are significantly greater in hypertension patients than in normal controls. LVEF: left ventricular ejection fraction.
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Figure 4: Associations between the VTP measure and disease development and progression in respiratory disease. (a) VTP values are
significantly greater in respiratory disease patients than in normal controls. (b) VTP values correlate negatively with FEV1 and ratios of
FEV1/FVC in COPD. (c) VTP values increase steadily with the progression of silica-induced pulmonary toxicity in a mouse model.
COPD: chronic obstructive pulmonary disease. FEV1: forced expiratory volume in the first second. FVC: forced vital capacity.
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Figure 5: Associations between the VTP measure and disease development and progression in liver disease. (a) VTP values are significantly
greater in liver disease patients than in normal controls. (b) VTP values are greater in WHV chronically infected than in infection resolved
woodchuck in an animal model. WHV: woodchuck hepatitis virus.
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Figure 6: Associations between the VTP measure and disease development and progression in kidney disease. (a) VTP values are
significantly greater in kidney disease patients than in normal controls. (b) VTP values correlate positively with disease severity in kidney
disease.
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samples of rats exposed to crystalline silica. We observed
that VTP values increased steadily with the progression of
silica-induced pulmonary toxicity: 1 week of exposed to
crystalline silica < 2weeks < 4 or 8weeks < 16weeks
(Figure 4(c)).

Collectively, these results support that VTP is upregu-
lated in respiratory diseases and is negatively associated with
their clinical outcomes.

3.5. Liver Disease. In three transcriptome datasets (GSE14323
[51], GSE77627, and GSE135501) for liver diseases, VTP
values were significantly larger in patients than in normal
controls (P < 0:01) (Figure 5(a)). The transcriptome dataset
GSE36533 [52] is gene expression profiles in woodchuck
infected with woodchuck hepatitis virus (WHV), an animal
model for studying the human HBV. Notably, VTP values
are greater in WHV chronically infected than in infection
resolved woodchuck (P < 0:001) (Figure 5(b)).

3.6. Kidney Disease. In four transcriptome datasets
(GSE37171 [53], GSE104948 [54], GSE108113 [54], and
GSE133288 [55]) for kidney disease, VTP values were signif-
icantly greater in patients than in normal controls (P < 0:001
) (Figure 6(a)). In addition, in GSE133228, VTP values were
significantly larger in focal segmental glomerulosclerosis and
glomerular disease than in minimal change disease (P < 0:01)
(Figure 6(b)). It indicates that VTP values increase with dis-
ease progression in kidney disease.

3.7. Digestive Disease. In two transcriptome datasets
(GSE16879 [56] and GSE27411 [57]) for digestive disease,
VTP values were significantly larger in patients than in nor-
mal controls (P < 0:01) (Figure 7(a)). GSE27411 is a tran-
scriptome dataset for patients with different stages of
Helicobacter pylori (H. pylori) infection. Interestingly, we
found that VTP values were significantly different among dif-
ferent stages of H. pylori infection and followed the pattern:
without current H:pylori infection < H:pylori − infected
without corpus atrophy < with current or past H:pylori −
infection with corpus-predominant atrophic gastritis
(Figure 7(b)). These results collectively support that VTP is
upregulated in digestive diseases and increases with disease
severity.

3.8. Endocrine Disease. Diabetes is a metabolic disease that
causes high blood sugar to cause many chronic health prob-
lems, such as cardiovascular diseases, vision damage, and
kidney disease [58]. In two transcriptome datasets
(GSE9006 [59] and GSE19420 [60]) for diabetes, VTP values
were significantly greater in patients than in normal controls
(P < 0:05) (Figure 8(a)). Moreover, in the transcriptome
dataset GSE35725 [61] for diabetes, VTP values were signifi-
cantly greater in recent onset diabetes patients than in long-
standing diabetes patients (P < 0:001) (Figure 8(b)).

3.9. Genes and Pathways whose Expression Perturbations
Correlate Positively with VTP across Diseases. We identified
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Figure 7: Associations between the VTP measure and disease development and progression in digestive disease. (a) VTP values are
significantly greater in digestive disease patients than in normal controls. (b) VTP values correlate positively with disease severity in
atrophic gastritis.
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369 genes whose expression perturbations showed significant
positive correlations with VTP values across diseases (Sup-
plementary Table S2). Notably, many of these genes are
involved in immune regulation (such as CD2, CD247,
CD300A, CD2AP, CD28, CD47, CD53, CD7, and CXCR2),
cell cycle (such as CCND2, CDK4, and SKP2), and
metabolism (such as LDHA, LDHB, PDHA1, GLO1, and
ME2). Furthermore, we identified 58 KEGG pathways
showing significant positive correlations of expression
perturbations with VTP across diseases. Notably, many of
these pathways are immune pathways, including natural
killer cell-mediated cytotoxicity, T cell receptor signaling, B
cell receptor signaling, chemokine signaling, cell adhesion
molecules, Fc gamma R-mediated phagocytosis, leukocyte
transendothelial migration, Fc epsilon RI signaling,
hematopoietic cell lineage, Toll-like receptor signaling, Jak-
STAT signaling, cytokine-cytokine receptor interaction,
intestinal immune network for IgA production, and NOD-
like receptor signaling (Figure 9). The 58 pathways also
included many metabolism-related pathways, such as
pyruvate metabolism, inositol phosphate metabolism,
propanoate metabolism, cysteine and methionine

metabolism, fructose and mannose metabolism, riboflavin
metabolism, β-alanine metabolism, and nicotinate and
nicotinamide metabolism. Moreover, many pathways
regulating cell growth and division were included in the list
of the 58 pathways. Such pathways included MAPK
signaling, Wnt signaling, calcium signaling, ErbB signaling,
oocyte meiosis, and cell cycle. In addition, the 58 pathways
also included many specific diseases-associated pathways,
such as leishmania infection, AD, vibrio cholerae infection,
epithelial cell signaling in Helicobacter pylori infection,
amyotrophic lateral sclerosis, viral myocarditis, pathogenic
Escherichia coli infection, arrhythmogenic right ventricular
cardiomyopathy, pancreatic cancer, non-small-cell lung
cancer, acute myeloid leukemia, colorectal cancer, glioma,
and chronic myeloid leukemia.

4. Discussion

Although transcriptomic data have been widely applied to
biomedical science, few studies have explored the association
between transcriptomic perturbations and disease develop-
ment and progression in a wide variety of diseases. For the
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Figure 8: Associations between the VTP measure and disease development and progression in endocrine disease. (a) VTP values are
significantly greater in diabetes patients than in normal controls. (b) VTP values are significantly greater in recent onset diabetes patients
than in longstanding diabetes patients. T1D: Type 1 diabetes.
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first time, we investigated the association between the VTP
and various diseases’ onset and progression. Our analysis
suggests that VTP values are upregulated in various diseases
relative to their normal controls, and that VTP values
increase with disease progression. Thus, this analysis
uncovers a common characteristic of transcriptomic pertur-
bations across various human diseases. In fact, the VTP
measure reflects the asynchronous degree of transcriptomic
perturbations in a disease status relative to the health status.
Our results indicate that the asynchronous degree of tran-
scriptomic perturbations is positively associated with disease
progression or severity. That is, the higher asynchronous
degree of transcriptomic perturbations suggests more unfa-
vorable clinical outcomes in disease. This is consistent with
the findings in cancer [1]. An intriguing question is whether
the variation of perturbations in other molecules, such as
genome, proteome, and metabolome, has similar associa-
tions with disease development and progression.

We identified numerous genes and pathways whose
expression perturbations correlated positively with VTP
scores across diseases. These genes and pathways are mainly
involved in the regulation of immune, metabolic, and cellular

activities. It is justified since deregulated immune, metabolic,
and cellular activities have been associated with various dis-
eases. Our data suggest that the disordered perturbations of
the molecules modulating immune, metabolic, or cellular
activities are associated with the development and progres-
sion of various diseases. Interestingly, by searching for the
database of publicly available GWAS summary statistics
(https://www.ebi.ac.uk/gwas/), we found that many of the
369 genes, which displayed significant expression perturba-
tions’ correlations with VTP values across diseases, had
genetic variants that are statistically associated with the risk
of the diseases we analyzed (Supplementary Table S3). For
example, there were 16 genes, including RDX, PIP4K2A,
PILRA, LPXN, LILRB2, ITGAX, IQGAP2, FOXN2, CR1,
CELF2, CDC42SE2, CD2AP, PDK4, PARP8, HSPA6, and
BNIP3, whose genetic variants are statistically associated
with the risk of AD. Six genes (TKT, TCF4, SWAP70,
DDHD2, ARHGAP31, and LTB) showed significant
associations of genetic variants with the risk of
cardiovascular disease. Notably, FOXN2 had genetic
variants statistically associated with the risk of both AD and
SCZ, and NOTCH2 displayed genetic variants that are
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Figure 9: Pathways whose expression perturbations correlate positively with VTP scores across diseases.
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statistically associated with the risk of both endocrine disease
and kidney disease. These data support the relevance of many
of these genes with the diseases.

This study has several limitations. First, although we have
analyzed numerous datasets for various diseases, more data-
sets are needed to be analyzed to bolster the validity of this
analysis. Second, the mechanism underlying the association
between VTP and disease development and progression
needs to be explored. Finally, the prospect of translating the
present findings into clinical practice remains unclear. Nev-
ertheless, our further study is to implement further investiga-
tions to overcome these limitations.

5. Conclusions

VTP is upregulated in the disease relative to health status,
and its upregulation is associated with disease progression
and severity in various diseases. The molecules whose abun-
dance perturbations correlate positively with VTP are
mainly involved in the regulation of immune, metabolic,
and cellular activities. Thus, VTP has potential clinical
values in disease diagnosis and prognosis.
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Single-cell RNA sequencing (scRNA-seq) is increasingly used in studies on gastrointestinal cancers. This study investigated the
prognostic value of epithelial cell-associated biomarkers in colorectal cancer (CRC) using scRNA-seq data. We downloaded
and analysed scRNA-seq data from four CRC samples from the Gene Expression Omnibus (GEO), and we identified
marker genes of malignant epithelial cells (MECs) using CRC transcriptome and clinical data downloaded from The
Cancer Genome Atlas (TCGA) and GEO as training and validation cohorts, respectively. In the TCGA training cohort,
weighted gene correlation network analysis, univariate Cox proportional hazard model (Cox) analysis, and least absolute
shrinkage and selection operator regression analysis were performed on the marker genes of MEC subsets to identify a
signature of nine prognostic MEC-related genes (MECRGs) and calculate a risk score based on the signature. CRC patients
were divided into high- and low-risk groups according to the median risk score. We found that the MECRG risk score
was significantly correlated with the clinical features and overall survival of CRC patients, and that CRC patients in the
high-risk group showed a significantly shorter survival time. The univariate and multivariate Cox regression analyses
showed that the MECRG risk score can serve as an independent prognostic factor for CRC patients. Gene set enrichment
analysis revealed that the MECRG signature genes are involved in fatty acid metabolism, p53 signalling, and other
pathways. To increase the clinical application value, we constructed a MECRG nomogram by combining the MECRG risk
score with other independent prognostic factors. The validity of the nomogram is based on receiver operating
characteristics and calibration curves. The MECRG signature and nomogram models were well validated in the GEO
dataset. In conclusion, we established an epithelial cell marker gene-based risk assessment model based on scRNA-seq
analysis of CRC samples for predicting the prognosis of CRC patients.

1. Introduction

Colorectal cancer (CRC) is among the most common malig-
nant tumours of the digestive system worldwide, and its high
incidence and mortality are second only to those of lung
cancer and breast cancer [1, 2]. Unhealthy lifestyle habits,
such as smoking, drinking, and consuming a high-fat diet,
have led to an increase in CRC incidence [3], with 1.5%
annual increase reported in people aged 30 to 39 years from
2007 to 2016 [4]. At present, tumour node metastasis

(TNM) staging, histopathology, and completion of surgical
resection are mainly evaluated to determine CRC prognosis,
and molecular markers are widely used for CRC diagnosis
and treatment. Various medical treatments, including sur-
gery, postoperative adjuvant chemoradiotherapy, and
molecular targeted therapy, have been used to treat CRC
[5]. CRC symptoms are generally minor in early disease
stages, and therefore, patients are often at an advanced stage
of the disease by the time they seek medical attention. Fur-
thermore, the optimal treatment timing can easily be missed
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in cases of advanced, metastatic, and recurrent CRC, and the
effects of conventional treatment are usually inconsistent,
resulting in variable prognoses.

As a malignant tumour of epithelial origin, the develop-
ment and progression of CRC are closely related to epithelial
tissue [6, 7]. Normal epithelial cells have antitumor activities
and are able to eliminate oncogenic transformed cells by reg-
ulating cytoskeletal proteins [8]. According to Lv et al., epi-
thelial cells secrete periostin, which inhibits the growth of
gastric cancer cells by stabilising P53 and E-cadherin pro-
teins [9]. Epithelial cells exhibit apical-basal polarity and
cell–cell adhesion. Correct regulation of polarity is essential
to inhibit tumour growth [10]. Royer and Lu suggested that
the malignant transformation of epithelial cells in the pres-
ence of oncogene activation is generally closely associated
with the loss of cell polarity and disorganisation and that
the disruption of epithelial cell polarity promotes
epithelial-mesenchymal transition (EMT), which is a key
step in the invasion of the surrounding stroma by epithelial
tumour cells [11]. In addition, under hypoxic conditions,
pulmonary epithelial cells can downregulate connexin
(CX)26 and CX43 via the P53 signalling pathway to promote
lung carcinogenesis [12]. Epithelial cells are both the struc-
tural basis of most organ tissues in the body and the source
of most human tumours [13]. With the progressive research
on epithelial cells, epithelial cell-related biomarkers have
become a research hotspot in recent years. Keratins are
widely used as epithelial cell biomarkers in the pathological
diagnosis of tumours and in predicting survival prognosis.
In CRC patients, decreased expression of keratin (K)8 and
K20 is closely related to EMT and suggestive of poor survival
and high tumour invasion [14]. Increased serum levels of a
cleaved K18 fragment produced by apoptotic epithelial cells
suggest a high risk of CRC recurrence within 3 years [15].
However, because of the uncontrollable pathological types,
stages, and metastases of CRC [16], using conventional bio-
markers to predict prognosis does not achieve adequate
results. Therefore, to explore more epithelial cell-related bio-
markers with clinical application potential, we used high-
resolution omics tools to perform a more accurate analysis
of CRC epithelial cells.

Single-cell RNA sequencing (scRNA-seq) allows the
construction of a gene-regulatory network at the cellular
level [17]. Analysis of the genome, transcriptome, or epige-
nome of single cells individually or simultaneously enables
the detection of gene expression profiles and tracking of cell
development at the single-cell level [18]. The RNA-seq tech-
nology has been widely used to evaluate the tumour immune
microenvironment [19, 20]; however, few studies have
applied this method to CRC epithelial cells to predict CRC
prognosis.

In this study, we identified marker genes of CRC epithe-
lial cell subsets using scRNA-seq analysis, determined the
prognostic significance of nine malignant epithelial cell-
(MEC-) related genes (MECRGs) using data from The Can-
cer Genome Atlas (TCGA) and the Gene Expression Omni-
bus (GEO), and integrated the MECRG-based risk score and
clinical traits to construct a nomogram for the prediction of
CRC patient prognosis.

2. Materials and Methods

2.1. Data Availability. ScRNA-seq data of four CRC samples
were downloaded from the GEO database (https://www.ncbi
.nlm.nih.gov/geo/) (GSE161277). Relevant clinical informa-
tion related to the CRC samples is provided in Supplemen-
tary Table S1. The dataset comprises four CRC samples,
four adenoma samples, three normal tissue samples, one
paracancer sample, and one blood sample [21]. Tissue
samples other than the CRC samples were not considered
in this study. Transcriptome data of 473 CRC samples and
41 nontumour tissues were obtained from the TCGA
database (https://portal.gdc.cancer.gov/), including 435
CRC samples with matched clinical data. The extracted
clinical information included sex, age, and stage. TCGA-
CRC samples with complete clinical information were used
to construct the training set used to develop a prediction
score. A total of 232 CRC samples with complete clinical
information obtained from the GEO database (GSE17538)
were used as the external validation set.

2.2. scRNA-seq Data Processing. The scRNA-seq data of the
four CRC samples were processed using the R language
(v4.1.0; https://www.r-project.org/) and the “Seurat” package
[22] (https://cran.r-project.org/web/packages/Seurat/index
.html). The “harmony” package was used to remove batch
effects from the scRNA-seq data of the four CRC samples.
First, we determined the percentage of mitochondrial genes
in each cell using the “PercentageFeatureSet” function with
the parameter set to pattern = “^MT-”. Subsequently,
using the “subset” function, genes expressed in <10 cells
and cells expressing <200 genes were eliminated. Further,
we excluded noncells and cell aggregates. Cell samples
with a mitochondrial gene proportion < 15% were included
in the subsequent analysis and logarithmically normalized.
Principal component analysis (PCA) was used for unsu-
pervised clustering, and the “JackStraw” function was used
to determine and visualise the number of principal com-
ponents. We used nonlinear dimension reduction (t-dis-
tributed stochastic neighbour embedding; t-SNE)
clustering and the “FindAllMarkers” function (parameters:
minimum% = 0:3, log function threshold = 0:25) to identify
marker genes based on between-cluster differences. The
cell clusters were then annotated based on reported cell-
specific marker genes [23–29].

2.3. Analysis of Chromosome Copy Number Variation (CNV)
and Screening of MEC Marker Genes. To distinguish epithe-
lial cell malignancy, we identified chromosome CNV in each
sample using the “infercnv” package [30] (https://
github.com/broadinstitute/inferCNV; default parameters).
Using immune cells as a reference [31], we calculated CNV
scores for epithelial cell subsets and defined the epithelial cell
subset showing a median CNV score > 1,000 as the MEC
subset, which was used for subsequent analysis. Differences
in CNV scores between epithelial cell clusters were com-
pared using the Kruskal–Wallis test. We then identified
marker genes in the MEC subset based on a jlog 2ð f old cha
ngeÞj > 0:5 and a false discovery rate ðFDRÞ < 0:01.
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2.4. Analysis of Differential Gene Enrichment of Epithelial
Cell Subsets. The potential biological mechanisms of the
MEC marker genes were determined using the “cluster-
Profiler” (https://bioconductor.org/packages/release/bioc/
html/clusterProfiler.html) and “org.Hs.eg.db” (https://
www.bioconductor.org/packages/release/data/annotation/
html/org.Hs.eg.db.html) packages. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed, using a q value <
0.05 to determine statistically significant enrichment.

2.5. MEC Marker Gene Analysis Using Weighted Gene
Correlation Network Analysis (WGCNA). WGCNA can be
used to find modules of correlated genes and identify
disease-related biomarkers. We used the WGCNA R
package [32] (https://horvath.genetics.ucla.edu/html/Coex-
pressionNetwork/Rpackages/WGCNA/) to identify MEC
marker genes related to CRC. We generated a similarity
matrix between MEC marker genes using the Pearson corre-
lation analysis and then calculated an adjacency matrix and
constructed a topological overlap matrix. Next, we plotted a
tree diagram of modules and clustered closely related MEC
marker genes within the modules using hierarchical cluster-
ing. The MEC marker genes in the final correlation module
(P < 0:05) were used for subsequent analysis.

2.6. Construction and Validation of the MECRG Signature.
The univariate Cox analysis was used to find MECRGs sig-
nificantly related to overall survival (OS) in the TCGA-
CRC cohort, and a forest map was plotted. MECRGs were
identified using least absolute shrinkage and selection oper-
ator (LASSO) analysis, using 10-fold cross-validation and
1,000 iterations to determine the minimum value of the pen-
alty parameter (λ) and construct a MECRG signature. The
regression coefficients of the nine MECRGs thus identified
were calculated using the “predict” function. The following
formula was used to calculate the risk score:

MECRG risk score =〠X,G ∗ coef G, ð1Þ

where “coef G” is the regression coefficient and “X G” describes
the expression levels of the MECRGs. Patients from the TCGA-
CRC training cohort were divided into high- and low-risk
groups according to themedian value of theMECRG risk score.
A Kaplan–Meier survival curve was used to explore differences
in survival and prognosis between the two groups. We then
used a receiver operating characteristic (ROC) curve to evaluate
the predictive value of theMECRG signature. Finally, the signa-
ture was validated using the GSE17538 GEO dataset.

2.7. Analysis of the Prognostic Accuracy of the MECRG Risk
Score. Combining the MECRG risk score with clinical fea-
tures, we used univariate and multivariate Cox analyses to
assess whether the risk score could serve as an independent
prognostic factor. Using the training and validation sets,
we then performed a survival analysis of the MECRG signa-
ture for patients of different clinical subgroups. Additionally,
we identified the relationships between MECRG risk groups

and clinical traits (including sex, age, and TNM stage) and
generated a heat map.

2.8. Gene Set Enrichment Analysis (GSEA) of the MECRG
Signature. Patients in the TCGA-CRC training cohort were
grouped according to the median value of the risk score
and we used GSEA to evaluate the functions of and signal-
ling pathways associated with MECRGs in the high- and
low-risk groups, using P < 0:05 as a threshold. The
“AUCell” package (https://www.rdocumentation.org/pack-
ages/msigdbr/versions/7.4.1) was used to present the
results of enrichment analysis according to cell subsets.

2.9. Construction of a MECRG Nomogram. Using the train-
ing set, we integrated the three independent prognostic fac-
tors of age, stage, and MECRG risk group to plot a MECRG
nomogram capable of predicting the 1-, 3-, and 5-year OS of
CRC patients for clinical application. ROC and calibration
curves were used to evaluate the predictive value of the
MECRG nomogram, and feasibility was confirmed by exter-
nal validation using the GSE17538 GEO dataset.

2.10. Statistical Analysis. The “survival” (https://cran.r-pro-
ject.org/web/packages/survival/index.html) and “survmi-
ner” (https://cran.r-project.org/web/packages/survminer/
index.html) packages were used to construct Kaplan–
Meier survival curves. The log-rank test was used to deter-
mine significant differences in survival between the high-
and low-risk groups according to the training and validation
datasets. LASSO regression was performed using the “glmnet”
package (https://cran.r-project.org/web/packages/glmnet/
index.html), and the “timeROC” package (https://cran.r-pro-
ject.org/web/packages/timeROC/index.html) was used to gen-
erate the ROC curve to evaluate model accuracy. The
univariate and multivariate Cox regression analyses were used
to determine the independent predictors of OS outcomes in
CRC patients. The “rms” package (https://cran.r-project.org/
web/packages/rms/) was used to construct the nomogram
model. Comparisons between two groups were made using
the Wilcoxon rank sum test, and comparisons between multi-
ple groups were made using the Kruskal–Wallis test. Correla-
tion analysis was conducted using the Pearson method.
P < 0:05 was considered significant.

3. Results

3.1. CRC scRNA-seq Data Analysis.We obtained 15,465 cells
from the four CRC samples. After applying the screening
criteria, 8,798 high-quality cell samples were obtained. Gene
numbers (nFeature_RNA), sequencing depth (nCount_
RNA), and mitochondrial gene percentage (percent.mt) are
shown in Supplementary Figure S1. The Pearson
correlation coefficient between gene count and sequencing
depth was 0.92 (Supplementary Figure S2), suggesting a
positive correlation. PCA used to classify the high-quality
cells identified 40 principal components (Supplementary
Figure S3), and t-SNE of the first 11 principal components
(P < 0:05) (Supplementary Figure S4) allowed visualisation
of the high-dimensional CRC scRNA-seq data and the
distribution of the cell subsets, as well as classification of
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the cells into 18 subclasses (Figures 1(a) and 1(b)). Among
the 18 subclasses, clusters 0, 4, 7, 9, 10, and 11 were
identified as epithelial cell subtypes 1, 2, 3, 4, 5, and 6,
respectively, based on the presence of epithelial cell marker
genes (EPCAM, KRT19, and CDH1), clusters 2, 12, 13, 15,
and 17 were identified as B cell subsets (CD79A, MS4A1,
and CD19), clusters 1, 3, 6, and 8 were identified as T cell
subsets (CD3D, CD8A, and CD3E), clusters 5 and 16 were
identified as macrophage subsets (CD14, CD68, and
CD163), and cluster 14 was identified as an endothelial cell
subset (IL3RA, SERPINF1, and CCDC88A). For the
purpose of selecting epithelial cell subsets with high
malignancy, we did not merge the epithelial cell subsets.
Based on the above annotation effects, we summarised the
final cell subpopulation annotations in Figure 2(a). In
addition, we calculated the proportions of the five cell
types in the four CRC samples, which revealed that the
epithelial cell subpopulation accounted for a relatively large
fraction (Figure 2(b)). The five most strongly expressed
marker genes in each cell subset are shown in Figure 2(c).

3.2. Evaluation of Chromosome CNV in the Epithelial Cell
Subsets. We next determined the chromosome CNV in each
sample based on the transcriptome data to evaluate the
degree of malignancy in the epithelial cell subsets. We
observed low CNV in the immune cell subsets (macro-
phages, B cells, and T cells) in control samples, whereas high
CNV was observed in epithelial cells. Chromosome amplifi-
cation mainly occurred in chromosomes 7, 8, 9, 12, 13, 16,
19, 20, and 21, and deletions were most prevalent in chro-
mosomes 4, 6, 8, 12, 14, 15, 17, 18, 19, and 22
(Figure 3(a)). The MEC subpopulation was screened using
a median CNV score > 1,000 as the threshold. Notably, the
CNV scores for epithelial cell subtypes 1 through 5 were
more significant than epithelial cell subtype 6 (Figure 3(b)
and Supplementary Table S2), suggesting a higher degree
of malignancy of CRC lesions associated with these cell
subsets. Therefore, we defined these as MEC subsets, and,
using jlog 2ð f old changeÞj > 0:5 and FDR < 0:01 as
thresholds, we identified 1,259 marker genes
(Supplementary Table S3), and we speculated that 1259
MEC marker genes function differently in CRC than in
normal colonic epithelial cells and therefore require further
analysis.

3.3. GO and KEGG Enrichment Analyses of MEC Subset
Marker Genes. We performed GO function (Figure 4(a))
and KEGG pathway (Figure 4(b)) enrichment analyses of
the 1,259 marker genes in the five MEC subsets to determine
their possible biological functions. We found that the differ-
entially expressed genes in the MEC subsets were mainly
involved in processes associated with ATP metabolism, focal
adhesion, formation of cell–substrate junctions, cadherin
binding, formation of adherens junctions, reactive oxygen
species (ROS), and thyroid cancer. Notably, cell–substrate
junction formation, calmodulin binding, and adhesion junc-
tions are closely related to the characteristics of epithelial
cells themselves, ROS is strongly associated with tumor pro-
gression, and as thyroid cancer and CRC are both epithelial-

derived malignancies, we hypothesised that common epithe-
lial cell-related genes might be involved in the development
of both. These results tentatively suggest that marker genes
of the MEC subpopulation are involved in the occurrence
and progression of CRC mainly through the above-
mentioned biological mechanisms.

3.4. WGCNA of MEC Marker Genes. Using the TCGA-CRC
cohort, we performed WGCNA of the expression profiles of
the identified 1259 marker genes. We clustered the MEC
genes into modules associated with clinical traits (“tumour”
and “normal”) based on a soft threshold of β = 7. As shown
in Figure 5, to prevent meaningful MEC marker genes from
being missed, with the exception of the turquoise module
(P > 0:05), all genes in the remaining modules were signifi-
cantly associated with clinical characteristics (“tumour”
and “normal”) (P < 0:05) and were used in subsequent anal-
yses. To build a clinical prediction model by linking to the
clinical characteristics of CRC patients, we initially identified
787 genes significantly associated with clinical characteristics
(“tumour” and “normal”) and further identified MEC
marker genes associated with survival prognosis.

3.5. Establishment and Validation of a MECRG Signature for
Predicting CRC Patient Survival. The univariate Cox analysis
(Figure 6(a)) and LASSO regression analysis (Supplemen-
tary Figure S7) of the TCGA-CRC training cohort
identified 47 MEC marker genes capable of predicting OS,
the regression coefficients of the nine MECRGs were
calculated using the “predict” function, and nine MECRGs
were identified based on the minimum λ (λ = 0:01970):
galectin 2 (LGALS2), glycerophosphodiester
phosphodiesterase 1 (GDE1), monocyte chemoattractant
protein 1 (MPC1), bone marrow stromal cell antigen 2
(BST2), tropomyosin 2 (TPM2), PRELI domain-containing
2 (PRELID2), G protein subunit gamma 5 (GNG5),
calcyphosin (CAPS), and calcium voltage-gated channel
subunit alpha 1D (CACNA1D). Validation using the
GSE17538 data identified BST2, TPM2, and CAPS as risk
genes (hazard ratio ðHRÞ > 1) and LGALS2, GDE1, MPC1,
GNG5, PRELID2, and CACNA1D as protective genes
(HR < 1). The MECRG risk score was defined as follows: ð
–0:13614 ∗ expression of LGALS2Þ + ð–0:60881 ∗ expression
of GDE1Þ + ð–0:49609 ∗ expression of MPC1Þ + ð–0:20530
∗ expression of GNG5Þ + ð0:05613 ∗ expression of BST2Þ + ð
0:12894 ∗ expression of TPM2Þ + ð–0:16624 ∗ expression of
PRELID2Þ + ð0:48635 ∗ expression of CAPSÞ + ð–0:83941 ∗
expression of CACNA1DÞ. The final risk scores for all CRC
samples in the training and validation cohorts are shown
in Supplementary Tables S4 and S5. The MECRGs were
predominantly distributed in the epithelial cell subsets
(Figure 6(b)).

Next, we divided the patients into high- and low-risk
groups according to the median MECRG risk score. The
Kaplan–Meier survival analysis demonstrated that in the
TCGA-CRC training and GSE17538 validation cohorts, the
survival time of the high-risk group was shorter than that
of the low-risk group (P < 0:001) (Figures 6(c) and 6(d)).
In both cohorts, an increase in the risk score was
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accompanied by an increase in patient mortality
(Figures 6(e) and 6(f)). The area under the ROC curve
(AUC) at 1, 3, and 5 years was 0.746, 0.726, and 0.710,
respectively, in the training cohort, and 0.618, 0.668, and

0.658, respectively, in the validation cohort (Figures 6(g)
and 6(h)). These data indicated that the MECRG risk score
shows good sensitivity and specificity for predicting the
prognosis of CRC patients.
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Figure 1: Characterisation of scRNA-seq from 15,465 cells. (a) The cells were classified into 18 subsets using the t-SNE algorithm.
(b) Distribution ratios of the cell subsets in the four CRC samples.
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Figure 2: Characteristics of the cell subsets. (a) Annotated cell subsets. (b) Proportions of the various types of cells in the four CRC samples.
(c) Heat map of the five most differentially expressed marker genes in each cell subset.
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Figure 3: CNV analysis of epithelial cells from CRC patients. (a) Heat map of CNV in epithelial cells from the four CRC samples. (b) CNV
score distribution among different epithelial cell subtypes.
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3.6. Independent Prognostic Value of the MECRG Risk Score.
To determine whether the MECRG risk score can predict
prognosis independently of traditional clinical features, such
as age, sex, and TNM stage, we performed univariate and
multivariate Cox regression analyses. In the training cohort,

age (HR = 1:029 and 1.040, 95% confidence interval (CI):
1.010–1.048 and 1.021–1.060, respectively; P = 0:002 and P
< 0:001), TNM stage (HR = 2:068 and 2.106, 95% CI:
1.628–2.627 and 1.642–2.701, respectively; P < 0:001), and
the MECRG risk score (HR = 1:294 and 1.234, 95% CI:
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Figure 4: Functional enrichment analysis of marker genes in the MEC subsets. Results of GO function (a) and KEGG pathway (b)
enrichment analyses.
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1.200–1.396 and 1.139–1.336, respectively; P < 0:001) were
independent predictors of OS. Analysis of the GSE17538 val-
idation cohort confirmed that TNM stage (HR = 2:712 and
3.027, 95% CI: 2.077–3.541 and 2.323–3.945, respectively;
P < 0:001) and the MECRG risk score (HR = 1:138 and
1.298, 95% CI: 1.005–1.289 and 1.127–1.496, respectively;
P = 0:042 and P < 0:001) were independent predictors of
OS (Figure 7). The above results indicated that the MECRG

risk score was an independent prognostic factor in both the
training and validation sets.

3.7. Correlation between MECRG Risk Groups and Clinical
Features.We evaluated the correlation between clinical traits
and risk groups among the 435 patients in the TCGA-CRC
training cohort and the 232 CRC patients in the GSE17538
validation cohort (with complete clinical information). The
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Figure 5: MEC marker genes associated with CRC. (a) Dendrogram of MEC subset marker genes obtained by WGCNA according to colour.
(b) Correlations between characteristic genes of different modules and CRC.
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Figure 6: Continued.
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Figure 6: Identification and validation of MECRGs in the TCGA-CRC training and GSE17538 validation cohorts. (a) Univariate Cox analysis
was used to screen MECRGs with prognostic significance. (b) Distribution of MECRGs in cell subsets. (c and d) Kaplan–Meier survival curve
showing the prognostic value of the MECRG signature in the training cohort (c) and the validation cohort (d). (e and f) Distribution of the
MECRG risk scores and survival status of CRC patients in the training cohort (e) and validation cohort (f). ROC curve representing the
efficiency of the MECRG signature in predicting 1-, 3-, and 5-year OS in CRC patients in the training cohort (g) and validation cohort (h).
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patients were grouped according to sex (male or female), age
(≤65 or >65 years), and TNM stage (I–II or III–IV), and
analyses were performed using the log-rank test and
Kaplan–Meier analysis. We found that among female and
male patients (P < 0:05), patients aged >65 years and ≤65
years (P < 0:05), and patients at TNM stage III–IV
(P ≤ 0:001), those in the high-risk group had a shorter sur-
vival time than those in the low-risk group (Figures 8(a)
and 8(b)). A heat map revealed significant differences in
tumour staging between the high- and low-risk groups
(TCGA-CRC: P = 0:024; GSE17538: P = 0:02) (Figures 8(c)
and 8(d)). These results suggested that the MECRG risk
score can significantly affect the survival prognosis of CRC
patients across gender, age, and stage.

3.8. Functional Enrichment Analysis of the MECRG
Signature. We used GSEA to evaluate the functions of and
signalling pathways associated with the genes in the high-
and low-risk groups (Figure 9(a)). The results showed that
the high-risk group was significantly enriched in functions
related to the positive regulation of migration involved in
sprouting angiogenesis, the phosphoinositide 3-kinase
(PI3K)-AKT-mammalian target of rapamycin (mTOR) sig-
nalling pathway, basal cell carcinoma, extracellular matrix
(ECM) receptor interaction, and angiogenesis, whereas the
low-risk group was significantly enriched in apoptosis and
the p53 signalling pathway. Additionally, enrichment analy-
sis of the epithelial cell subsets indicated significant enrich-
ment of activities involving collagen-containing ECM, fatty
acid metabolism, basal cell carcinoma, PI3K-AKT signalling,
and p53 signalling (Figure 9(b)). We found that the above
signalling pathways are more likely to mediate the process
of tumor progression in CRC epithelial cells than in other
cell subpopulations.

3.9. Nomogram for Predicting the Prognosis of CRC Patients.
To establish a practical method for predicting the probability
of CRC patient survival, we constructed a MECRG nomo-

gram using the TCGA-CRC training cohort to predict OS
at 1, 3, and 5 years (Figure 10(a)). The predictors included
three clinical features (age, sex, and TNM stage) and the risk
score. ROC curve analysis of nomogram reliability revealed
AUC values at 1, 3, and 5 years of 0.787, 0.806, and 0.777,
respectively (Figure 10(b)). Analysis of the GSE17538 valida-
tion cohort yielded AUC values of 0.843, 0.812, and 0.827,
respectively (Figure 10(c)). The calibration curve showed
that the predicted survival rate agreed well with the actual
survival rate (Figures 10(d) and 10(e)). Our results demon-
strated that the MECRG nomogram constructed in combi-
nation with the clinical characteristics of CRC can provide
good prediction.

4. Discussion

Epithelial adenocarcinoma represents the most prevalent
type of CRC and arises from benign colon adenoma [33].
Studies have shown that in epithelial malignant tumours,
unstable adhesion between epithelial cells strongly correlates
with an increased invasiveness of tumour cells. Recently,
numerous mechanisms underlying cell–cell junctions regu-
lated by E-cadherin expression in epithelial cells have been
discovered [34–36]. Apical-basal polarity is the main charac-
teristic of epithelial cells. Epithelial cell-associated polarity
proteins are associated with the origin and poor prognosis
of colorectal tumours, hepatocellular carcinoma, and endo-
metrial cancer [37–39]. Therapeutic targets based on epithe-
lial cell apical-basal polarity complexes have been reported.
For example, partitioning-defective 6 (Par6) is expected to
be a therapeutic target for breast cancer [37], and atypical
protein kinase C (aPKC) has been suggested as a possible
therapeutic target for gastric cancer [40]. Based on the above
findings, we believed that the discovery of CRC epithelial
cell-related biomarkers would facilitate the development of
new therapeutic and predictive targets for CRC prognosis.
ScRNA-seq technology allows the sequencing of RNA from
individual cells to systematically track the dynamic changes
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Figure 7: Independent prognostic value of the MECRG signature. Univariate and multivariate Cox analyses of the MECRG risk score in the
TCGA-CRC training cohort (a and b) and GSE17538 validation cohort (c and d).
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in individual cells and deepen the understanding of cellular
states and gene expression regulation in pathological disease
processes [41]. scRNA-seq analysis provides analytical detail
on the cellular level [42]. The technology has been recently
applied to study epithelial cells in serous epithelial ovarian
cancer and endometrial cancer [43, 44]. In nontumour
research, scRNA-seq has been used for gene expression pro-
filing of breast epithelial cells during their development [45].
Xu et al. revealed the biological mechanisms implicated in
the involvement of lung epithelial cells in idiopathic fibrosis
using scRNA-seq [46]. Additionally, scRNA-seq technology
has received increasing attention for predicting the progno-
sis of cancer patients. For example, Wang et al. constructed a

model based on 10 biomarkers of pancreatic ductal epithelial
cells to predict the prognosis of patients with pancreatic ade-
nocarcinoma [47], Zheng et al. [48] screened nine fibroblast
marker genes from scRNA-seq CRC data as potential prog-
nostic markers, and Li et al. [49] identified seven macro-
phage marker genes from breast cancer scRNA-seq data as
promising diagnostic and prognostic biomarkers.

In our study, we constructed a CRC prognosis model by
analysing scRNA-seq data from CRC epithelial cells. Specif-
ically, we analysed scRNA-seq data of 15,465 cells from four
CRC patients, followed by PCA for unsupervised clustering
and the identification of MEC subsets based on chromosome
CNV analysis. We then used WGCNA, univariate Cox, and
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Figure 8: Analysis of the relationships between the MECRG signature and clinical features using the TCGA-CRC training and GSE17538
validation cohorts. (a) Survival analysis of the MECRG signature in clinical features based on the training cohort. (b) Survival analysis of the
MECRG signature in clinical features based on the validation cohort. (c and d) Heat maps showing the correlation between MECRG risk
grouping and TNM stage in the training cohort (c) and validation cohort (d). ∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05.
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LASSO regression analyses to construct a MECRG signature
of nine genes related to CRC prognosis. We validated the
MECRG signature using both training and validation
cohorts. The Kaplan–Meier analysis confirmed a signifi-
cantly shortened OS for CRC patients with a high MECRG
risk score. Furthermore, the univariate and multivariate
Cox regression analyses showed that the MECRG risk score
may be an independent predictor of OS. Based on the
MECRG risk score coupled with the clinical characteristics
of sex, age, and TNM stage (III–IV), low-risk patients
showed significantly longer survival times than high-risk
patients. It is worth noting that there were significant differ-
ences between the MECRG signature-based risk groups at
different CRC stages. Furthermore, the MECRG nomogram
showed excellent prediction in both the training and valida-
tion sets, suggesting that it may efficiently predict CRC
patient survival in the clinical setting.

Elevated expression of LGALS2 reportedly inhibits the
development of CRC and lymph nodemetastasis of gastric can-
cer [50, 51]. GDE1 expression is significantly reduced in drug-
resistant ovarian cancer samples [52]. Consistent with these
findings, our results suggested that high expression of LGALS2
and GDE1 in CRC patients implies a good prognosis. However,
the relationship betweenGDE1 and CRC requires further study.
Lysine demethylase 5A (KDM5A) regulates MPC1 expression,
and the KDM5A–MPC1 axis is involved in regulating the mes-
enchymal characteristics of cancer cells during EMT [53]. Schell
et al. [54] found that loss of MPC1 expression enhances the
Warburg effect and promotes the proliferation of CRC cells.
Deletion ofMPC1 is related to a poor prognosis in glioblastoma
[55]. Furthermore, BST2 activates the nuclear factor-κB-Snail-
Raf kinase inhibitor protein axis to promote tumour invasion
and metastasis via EMT [56, 57]. BST2 overexpression corre-
lates with poor prognosis in CRC, stomach cancer, and
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Figure 9: Functional enrichment analysis of the MECRG signature and distribution of enriched pathways in the cell subsets. (a) GSEA of the
MECRG high- and low-risk groups. (b) Pathways enriched in the cell subsets of the MECRG risk groups.
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Figure 10: Continued.
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oesophageal cancer [58]. BST2 expression is specifically upreg-
ulated in oral squamous cell carcinoma and is responsible for
drug resistance [59]. BST2 is more highly expressed in breast
cancer cells derived from patients presenting bone metastasis
than in human primary breast cancer cells [60]. Furthermore,
Mukai et al. [58] showed that BST2 knockout in vitro inhibited
the proliferation of gastric cancer cells. Together, these findings
suggest thatMPC1 is a protective gene and BST2 a risk gene in
CRC, which is consistent with the results of the present study.
CAPS is a calcium-binding protein related to cell proliferation
and differentiation signals [61] and associated with poor prog-
nosis in CRC and gliomas and drug resistance in breast cancer
[62–64], which is consistent with our results. Abnormal expres-
sion of TPM2 is involved in actin cytoskeleton remodelling dur-
ing EMT of lens epithelial cells [65]. Shibata et al. [66] showed
that downregulation of TPM2 expression decreased EMT in
injured mouse lens epithelium, resulting in delayed lens wound
healing. Additionally, TPM2 is upregulated in ovarian cancer,
liver cancer, and breast cancer [67–69]. Zhou et al. [70] found
that elevated TPM2 expression in CRC patients was predictive
of poor prognosis, which is in line with the findings of the pres-
ent study. However, Ma et al. [71] showed that TPM2 expres-
sion was downregulated in CRC; therefore, the precise
mechanism of TPM2 in CRC requires clarification. Patients
with glioma exhibiting elevatedGNG5 expression have a shorter
survival time [72], and patients with head and neck squamous
cell carcinoma and elevated PRELID2 expression have a poor
prognosis [73]. Tan et al. [74] reported that excessive aldoste-
rone secretion from aldosteronoma is related to a CACNA1D
mutation. We identified GNG5, PRELID2, and CACNA1D as
protective genes in CRC patients; however, further basic exper-
imental studies of these three genes in CRC are needed. Addi-
tionally, we showed that MPC1, BST2, and TPM2 are closely

related to EMT, suggesting that these molecules are potentially
important EMT-related therapeutic targets.

GSEA suggested that genes related to collagen-containing
ECM, fatty acid metabolism, PI3K-AKT signalling, p53 signal-
ling, EMT, and other related pathways were enriched in epithe-
lial cell subsets. Among these, EMT-related pathways were
more significantly enriched in epithelial cell clusters 7, 9, and
10. Activation of the PI3K-AKT signalling pathway is a key fea-
ture of the EMT programme during tumour progression [75].
The expression of genes involved in fatty acid synthesis is
upregulated in CRC epithelial cells, where the accumulation of
polyunsaturated fatty acids contributes to the development of
CRC [76]. Targeting fatty acid synthesis genes may become a
new strategy for the treatment of CRC in the future. ECM
remodelling can affect the signalling in the tumour microenvi-
ronment [77]. The P53 signalling pathway is a common tumour
suppressor pathway [78], and we speculate that epithelial cells
may promote CRC progression by interfering with this path-
way. Thus, in the CRC microenvironment, epithelial cells may
mediate the development of CRC through collagen-containing
ECM, fatty acid metabolism, PI3K-AKT signalling, p53 signal-
ling, EMT, and other pathological mechanisms.

This was a retrospective study that used scRNA-seq data
and bulk data from public databases to construct a model for
predicting survival in CRC patients. However, this study had
some limitations. First, the mechanisms of GDE1, PRELID2,
GNG5, and CACNA1D in CRC have not been clarified; there-
fore, the data suggesting their prognostic value need to be val-
idated. Second, we did not evaluate tumour size, metastasis,
surgery, postoperative chemoradiotherapy, and other prog-
nostic factors in this study. This may have affected the predic-
tive accuracy of the model. In future studies, we will include
additional data to increase the accuracy of the model.
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Figure 10: Construction of a nomogram based on the MECRG signature. ROC curve analysis of the nomogram (a) using the TCGA-CRC
training cohort (b) and the GSE17538 validation cohort (c). (d and e) Calibration curves for the nomogram using the training cohort (d) and
the validation cohort (e).
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5. Conclusion

We evaluated epithelial cell marker genes with prognostic
significance in CRC using scRNA-seq data and bulk data
and generated a MECRG signature and risk score, which
was confirmed to show independent prognostic efficacy for
CRC patients. A nomogram based on the MECRG signature
along with specific clinical features demonstrated accurate
prediction of CRC patient survival, suggesting its potential
utility for clinical application.
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Background. Slow transit constipation (STC) is a clinical syndrome characterized by a decreased urge to defecate and delayed
colonic transit. Circular RNAs (circRNAs) are a recently discovered class of regulatory RNAs that have emerged as critical
biomarkers and regulators of various diseases. However, the expression profiles and mechanisms underlying circRNA
regulation in human STC tissues have not been explored. Methods. High-throughput RNA sequencing technology was used to
compare the differences in circRNA expression profiles in colon samples taken from patients with STC or controls.
Bioinformatics analyses were performed on the host genes of the differentially expressed circRNAs (DE-circRNAs), a
competing endogenous RNA network was constructed, and the expression levels of some DE-circRNAs were verified using
quantitative real-time polymerase chain reactions (qRT-PCR). Results. There were 190 DE-circRNAs identified in the STC
group. Bioinformatics analysis predicted that the DE-circRNAs were enriched in the relaxation of smooth muscle, actin
binding, actin cytoskeleton organization, dilated cardiomyopathy, and cardiac muscle contraction. These results suggest that
muscle diseases may be related to the pathogenesis of STC. The expression levels of the 12 most differentially expressed
circRNAs were verified using qRT-PCR. In addition, circRNA–microRNA–mRNA regulatory networks were constructed using
the 8 most significant circRNAs. Some mRNAs predicted to be closely related to smooth muscle function were found in these
networks. Conclusions. This study provides a helpful blueprint for researchers to select candidate circRNAs for further study of
the pathogenesis of STC and screen potential biomarkers or targets for use in the diagnosis and treatment of STC.

1. Introduction

Functional constipation (FC) is a common digestive tract
disorder [1]. A recent study showed that the incidence of
FC was 8.73% in the Japanese population between the ages
of 20 and 69 years [2]. Slow transit constipation (STC) is a
typical type of functional constipation characterized by pro-
longed colonic transmission and a decreased frequency of

defecation [3]. Patients with STC suffer from both physical
and psychological burdens that seriously affect their quality
of life.

Many hypotheses about the pathophysiology of STC
have been proposed, including degenerative neuromuscular
processes, interstitial cell dysfunction, dysbacteriosis, and
autoimmune disorder [4–6]. However, the pathogenesis of
STC remains unclear. Recently, the changes and functions
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in noncoding RNAs (ncRNAs) in the colon tissue of STC
patients have been explored, enriching the research direc-
tions on the pathogenesis of STC [7–10].

Circular RNAs (circRNAs) are a special class of ncRNAs
that have a stable circular structure [11]. These RNAs play
important roles in a variety of digestive diseases (e.g.,
Hirschsprung’s disease and colitis) and physiological pro-
cesses (e.g., the self-renewal of intestinal stem cells)
[12–14]. However, the expression profiles of circRNAs in
human STC tissues have yet to be explored.

In the present study, we performed whole-
transcriptome sequencing of RNA samples from the colon
tissues of STC patients and controls to identify differen-
tially expressed circRNAs. Furthermore, the expression of
potentially functional circRNAs was validated using
reverse transcription quantitative real-time polymerase
chain reactions (qRT-PCR). Bioinformatics analyses were
also performed to explore the possible regulatory mecha-
nisms of selected circRNAs. This study provides a basis
for further research on the pathogenesis of STC, innova-
tive diagnostic methods for STC, and new insights into
STC gene therapy.

2. Materials and Methods

2.1. Tissue Samples and Cell Culture. There were 42 patients
included in this study: 21 patients with STC undergoing sub-
total colectomy and 21 controls undergoing radical surgery
for colon cancer. The inclusion and exclusion criteria were
based on those of our previous study [15]. Briefly, all
included patients had a history of STC for more than five
years, failed to respond to nonsurgical regimens, and had a
strong desire for surgery. Patients with obstructed defecation
syndrome, severe psychiatric disease, small bowel dysmoti-
lity, or megacolon/megarectum were excluded from this
study. Tissue samples of these patients were collected during
surgical treatment at the Department of Colorectal and Anal
Surgery, Zhongnan Hospital of Wuhan University. All sam-
ples were obtained from the same region of the colon des-
cendens in the STC and tumor-free control groups. Tissues
were immediately frozen in liquid nitrogen for 15min and
stored at −80°C until use. This study was approved by the
Ethics Committee of Zhongnan Hospital (ethical application
ref: 2022061), and written informed consent was obtained
from each participant.

Human HEK 293T cells were purchased from the China
Center for Type Culture Collection and cultured in DMEM
(Dulbecco’s modified Eagle’s medium) with 10% fetal bovine
serum (Gibco, USA), 1% penicillin/streptomycin, in a
humidified incubator with 5% CO2 at 37

°C.

2.2. circRNA Sequencing and Identification. We randomly
selected 12 tissues (6 STC and 6 controls) from 42 samples
for circRNA screening by Shanghai Majorbio Bio-Pharm
Biotechnology Co., Ltd. (Shanghai, China). The remaining
15 pairs of samples were used to verify circRNA expres-
sion (Table 1). The sequencing library was prepared using
the TruSeq total RNA kit (Illumina; San Diego, CA, USA).
First, ribosomal RNA was depleted and fragmented. Next,
cDNA was synthesized using random hexamer primers.
The RNA template was then removed, and a replacement
strand was synthesized incorporating dUTP instead of
dTTP to generate double-stranded (ds) cDNA. AMPure
XP beads were used to separate the ds-cDNA from the
second-strand reaction mix. A single ‘A’ nucleotide was
added to the 3′ ends of these blunt fragments. Finally,
multiple indexing adapters were ligated to the ends of
the ds-cDNA. Libraries were size-selected for cDNA target
fragments of 200–300 base pairs on 2% Low Range Ultra
Agarose, followed by PCR amplification using Phusion
DNA polymerase (NEB). After quantification using
TBS380, the library was sequenced using an Illumina
HiSeq Xten system (Illumina; San Diego, CA, USA). Cir-
cRNA Identifier (CIRI) tools were used to identify the cir-
cRNAs. The level of each circRNA was calculated using
the spliced reads per billion mapping (SRPBM) method.
Significantly differentially expressed circRNAs (DE-cir-
cRNAs) were defined as jlog2FCj > 1 and p < 0:001.

2.3. Quantitative Real-Time PCR (qRT-PCR). Total RNA
was extracted from tissues using TRIzol reagent (Invitro-
gen; USA). RNA (1μg) was reverse-transcribed into cDNA
using HiScript II Reverse Transcriptase (Vazyme Biotech
Co., Ltd., China). An Applied Biosystems 7500 Real-
Time PCR System (ThermoFisher Scientific; USA) was
used to perform qRT-PCR in a 10μl reaction, including
5μl SYBR Mix (Vazyme Biotech Co., Ltd., China), 1μl
cDNA, 3.6μl ddH2O, and 0.2μl each of the forward and
reverse primers. The qRT-PCR amplification conditions
included an initial denaturation step (95°C for 2 min)
followed by 40 cycles of denaturation at 95°C for 15 s
and annealing at 60°C for 1min. GAPDH was used as a
normalization standard. The relative RNA levels were cal-
culated using the 2−ΔΔCt method. The experiments were
repeated three times for each sample. The primers are
listed in Supplementary Table S1.

2.4. Functional Enrichment Analysis of Host Genes of the
circRNAs. The host genes of the significant DE-circRNAs
were subjected to functional enrichment analysis using the
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) databases. The analyses of GO terms

Table 1: Demographic information of STC and control.

Characteristics
STC for circRNA screening

(n = 6)
Control for circRNA screening

(n = 6)
STC for verification

(n = 15)
Control for verification

(n = 15)
Age (y) 62:3 ± 7:0 60:8 ± 10:1 57:3 ± 8:4 60:7 ± 10:6
Male/female 2/4 2/4 4/11 5/10

STC: slow transit constipation.
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and KEGG pathways were performed using Goatools
(https://github.com/tanghaibao/Goatools) and KOBAS
(http://kobas.cbi.pku.edu.cn/home.do).

2.5. Construction of circRNA–microRNA–mRNA Network.
The target microRNAs (miRNAs) of the circRNAs were pre-

dicted using starBase (https://starbase.sysu.edu.cn/) and cir-
cBank (http://www.circbank.cn/index.html). The target
mRNAs of the miRNAs were predicted using TargetScan
(https://www.targetscan.org/), miRDB (http://mirdb.org/),
miRWalk (http://mirwalk.umm.uni-heidelberg.de/), and
TarBase (http://microrna.gr/tarbase/). Next, circRNA–
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Figure 1: Analysis of the circRNA expression profile in STC. (a) Scatter plot of circRNA expression in the STC and control groups. (b) The
circRNAs are classified by distribution. (c) A volcano plot represents the STC DE-circRNAs. Red dots and blue dots indicate the upregulated
and downregulated DE-circRNAs, respectively. (d) Hierarchically clustered heatmap analysis of the circRNA expression profiles.
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miRNA–mRNA interaction networks were constructed and
displayed using Cytoscape v3.8.2 [16].

2.6. Statistical Analysis. GraphPad Prism 8 was used for data
analysis. Two-tailed Student’s t-test was used to evaluate the
differences between the two groups. Data are presented as
the mean ± standard deviation. Statistical significance was
defined as p < 0:05.

3. Results

3.1. circRNA Expression Profiling in STC. CIRI analysis of the
high-throughput RNA sequencing results from the STC and
control colon tissues identified 31082 circRNAs (Figure 1
(a)). Among the circRNAs, 70.83% was derived from exons,
22.63% were from introns, and 6.54% were intergenic
(Figure 1(b)). There were 190 DE-circRNAs; 117 were
upregulated and 73 were downregulated. Figure 1(c) shows

a volcano plot of the DE-circRNAs. A hierarchically clus-
tered heatmap revealed distinct differences between the cir-
cRNA expression profiles of the two groups (Figure 1(d)).
The DE-circRNAs are listed in Supplementary Table S2.

3.2. Functional Enrichment Analysis of Host Genes. GO
enrichment analysis of the host genes of the DE-circRNA
transcripts revealed that they were enriched in 555 terms,
comprising 413 biological processes (BP) terms, 64 cellular
component (CC) terms, and 78 molecular function (MF)
terms. The majority of BP host genes were enriched in actin
filament–based processes (GO:0030029), the relaxation of
smooth muscle (GO:0044557), cytoskeleton organization
(GO:0007010), and actin cytoskeletal organization
(GO:0030036). The most enriched MF terms were for cyto-
skeletal protein binding (GO:0008092), heparin sulfate bind-
ing (GO:1904399), and actin binding (GO:0003779). Among
the CC terms, the host genes were associated primarily with
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Figure 2: Functional enrichment analysis. (a) Top 10 GO enrichment terms in biological processes (BP), molecular functions (MF), and
cellular component (CC) functions. (b) KEGG signaling pathways with p < 0:05.

5Disease Markers



secretory dimeric IgA immunoglobulin complexes
(GO:0071752), dimeric IgA immunoglobulin complexes
(GO:0071750), and the cytoskeleton (GO:0005856)
(Figure 2(a)). In the KEGG signaling pathway analysis, the

host genes were significantly enriched in 16 terms; dilated
cardiomyopathy (map05414), thermogenesis (map04714),
the PPAR signaling pathway (map03320), and oxidative
phosphorylation (map00190) were the most significant
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Figure 3: Presence of the selected circRNAs. (a) Detailed information on the circRNAs in circPrimer 2.0. (b) The circRNAs are amplified
from cDNA of HEK 293T cells using divergent primers.

Table 2: Top six up-/downregulated circRNAs.

circRNA ID circBase ID Log2FC P value Regulate

8_101558419_101558812 hsa_circ_0085173 5.80 1:44192E − 05 Up

8_39221610_39257343 hsa_circ_0084055 5.60 7:49084E − 05 Up

14_58318542_58330169 hsa_circ_0000542 5.52 0.000132928 Up

13_98409338_98424650 hsa_circ_0030694 5.45 0.000237855 Up

7_92343024_92352642 hsa_circ_0009112 5.36 0.000400085 Up

22_44802077_44825593 hsa_circ_0063716 5.28 0.000688839 Up

3_197866112_197871462 hsa_circ_0002319 -5.42 3:5989E − 05 Down

15_44328685_44380976 hsa_circ_0035052 -5.12 0.000370208 Down

1_203710877_203722689 hsa_circ_0016094 -5.12 0.000370208 Down

4_168890922_168916027 hsa_circ_0071410 -3.58 8:67005E − 05 Down

22_50125392_50128507 hsa_circ_0063878 -3.58 8:67005E − 05 Down

11_94799390_94800311 hsa_circ_0004214 -2.67 8:83338E − 07 Down

6 Disease Markers



(Figure 2(b)). The detailed data are provided in Supplemen-
tary Tables S3 and S4.

3.3. Validation of DE-circRNAs. Further analysis of the DE-
circRNAs using circBase identified 61 overlapping cir-
cRNAs and 129 novel circRNAs [17]. The top 6 DE-
circRNAs that were derived from exons were selected for
subsequent experiments (Figure 3(a), Table 2). First, diver-
gent primers were designed to amplify the circRNAs from
cDNA, and their presence was confirmed using agarose gel
electrophoresis (Figure 3(b)). The expression of these DE-

circRNAs was verified in 15 pairs of STC and non-STC
tissues using qRT-PCR (15 vs. 15 samples). The results
revealed that the candidate circRNAs were differentially
expressed in the STC samples, which is consistent with
the circRNA sequencing results. In the STC tissues, the
levels of hsa_circ_0085173, hsa_circ_000542, hsa_circ_
0030694, and hsa_circ_0063716 were significantly
increased, whereas the levels of hsa_circ_0016094, hsa_
circ_0071410, hsa_circ_0063878, and hsa_circ_0004214
were significantly decreased, compared with the control
samples (Figures 4(a) and 4(b)).
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Figure 4: Validation of the expression of the selected circRNAs in STC tissues. (a, b) qRT-PCR analysis of the top 6 up-/downregulated
circRNAs in the STC and control groups (n = 15 each). All data are means ± SD.
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Figure 5: Continued.
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3.4. Construction of the circRNA–miRNA–mRNA Interaction
Network in STC. circRNAs can act as miRNA sponges to reg-
ulate miRNA activities and influence downstream mRNA
expression. Thus, we constructed a circRNA–miRNA–mRNA
interaction network to investigate the role of circRNAs in
STC. The starBase and circBank databases were used to predict
the target miRNAs of the selected circRNAs. TargetScan,
miRDB, miRWalk, and TarBase were used to predict the down-
stream genes of the identified miRNAs. Because thousands of
interaction pairs were predicted for the DE-circRNAs, we estab-
lished and visualized competing endogenous RNA (ceRNA)
networks for the validated circRNAs. Using the regulatory net-
workmap, we identified the top 6miRNAs that potentially bind
to the circRNAs and the 6 most likely target genes for each
miRNA (Figures 5(a) and 5(b), Supplementary Table S5).
This might provide a foundation for understanding the
biological functions of circRNAs in STC.

4. Discussion

STC is a primary functional disease characterized by
impaired colonic function and decreased motility. Surgery
may be the definitive therapy for patients with refractory

STC who fail to respond to medical treatment [18]. To date,
the detailed mechanisms of STC have not been fully eluci-
dated. In recent years, ncRNAs have been confirmed to par-
ticipate in the occurrence and development of various
diseases by directly or indirectly regulating gene expression
[19]. Exploring the changes in ncRNAs in STC patients will
help enrich our understanding of the pathogenesis and
potential therapeutic targets of STC. Using human speci-
mens, we compared circRNA expression patterns between
STC and control colon tissues via whole-transcriptome
sequencing.

This study identified 190 circRNAs as being significantly
differentially expressed in patients with STC compared with
controls. GO and KEGG enrichment analyses showed that
the host genes of these circRNAs were enriched in the relax-
ation of smooth muscle, actin binding, dilated cardiomyop-
athy, and cardiac muscle contraction. These results suggest
that STC pathogenesis may be related to myopathy. Smooth
muscle cells are the final effectors of gastrointestinal motility
[20]. Studies have shown that colonic smooth muscle cells
are impaired in patients with STC [21]. Our previous study
demonstrated thinning of the intestinal smooth muscle layer
in chronically constipated mice [22]. However, whether

(b)

Figure 5: The ceRNA regulatory network. (a) The upregulated ceRNA network. (b) The downregulated ceRNA network.
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injury of smooth muscle cells is a primary pathological pro-
cess of STC or a secondary result of fecal deposition of
denervation remains to be further studied. The results of
the present study suggest that abnormal expression of cir-
cRNAs may be involved in the regulation of smooth muscle
injury in patients with STC.

The 12 circRNAs with the most significant abnormal
expression were verified via qRT-PCR using 15 paired colon tis-
sues from STC and controls. The results were consistent with
the sequencing data. Among the identified circRNAs, four were
significantly overexpressed in STC tissues, and four others were
significantly downregulated compared with the controls. Since
ceRNA mechanisms are important pathophysiological path-
ways of ncRNAs and ceRNA networks that are out of balance
can disrupt life activities and cause disease [23], we constructed
circRNA–miRNA–mRNA interaction networks for the top 8
circRNAs that were differentially expressed in both the whole-
transcriptome sequencing and qRT-PCR tests.

Interestingly, some mRNAs predicted to be closely related
to smooth muscle function were found in these networks. For
example, it has been suggested that there may be a ceRNA
relationship between hsa_circ_0004214, hsa-miR-526b-5p,
and tropomyosin 4 (TPM4). TPM4 is a major F-actin–
binding protein that plays important roles inmodulatingmus-
cle contraction [24]. Common binding sites were predicted
among hsa_circ_0071410, hsa-miR-149-5p, and synaptotag-
min 2 (SYT2), thus constituting a potential ceRNA network.
SYT2 is a key protein in the neuromuscular junction and is
essential for fast synaptic vesicle exocytosis. Studies have
shown that SYT2 is one of the disease genes responsible for
congenital myasthenic syndromes [25]. Neuromuscular junc-
tion disorders may also play crucial roles in STC; this provides
ideas for further understanding of the pathogenesis of the dis-
ease. Moreover, hsa_circ_0004214 and hsa-miR-193a-5p
shared binding sites with COL1A1, which is the major compo-
nent of type 1 collagen, suggesting that they may participate in
the pathogenesis of STC through ceRNA mechanisms.
Although collagen is not a direct component of smooth mus-
cle cell contraction elements, the extracellular matrix com-
posed of collagen plays an important role in regulating
muscle contraction [26]. Smooth muscle has been shown to
mediate extracellular matrix remodeling, which indirectly reg-
ulates overall muscle tissue contractility [27].

Although the ability to bind to miRNAs is the best
described mechanism of circRNAs, other functions of cir-
cRNAs should not be ignored, including participation as
RNA-binding proteins [28], transcriptional regulators [29],
and the ability to directly translate proteins [30]. Compre-
hensive exploration and innovative research on the differen-
tially expressed circRNAs identified in the current study may
contribute to further understanding the pathogenesis of STC
and provide potential targets for its treatment.

5. Conclusions

This is the first study to summarize the differential expres-
sion of circRNAs in human STC colon tissues. Bioinformat-
ics methods were used to identify the GO and KEGG
pathways of these DE-circRNAs to understand their poten-

tial mechanisms of action. Moreover, 12 circRNAs with the
most differentially expressed genes were verified using
qRT-PCR, and their predicted ceRNA networks were con-
structed. Taken together, the findings of this study provide
a helpful blueprint for researchers to select circRNAs for fur-
ther study of their corresponding mechanisms. Moreover, it
is hoped that our findings will highlight the role of circRNAs
in STC and stimulate the exploration and development of
new therapeutic targets.
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