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In autonomous driving, lidar has become the main vehicle sensor due to its advantages such as long-range measurement and high
accuracy. However, the collected point cloud data is sparse and unevenly distributed, and it lacks characterization capabilities
when facing objects withmissing or similar shapes, so that the detection accuracy is low while detecting long-distance small targets
with similar shapes and a small number of point clouds. In order to improve the detection accuracy of small targets represented by
point clouds, this paper adopts a method that fuses point cloud and RGB image to construct a 3D object detection network
architecture based on two-stage complementary fusion. In the first stage of the fusion, we use the FPSmethod to select some points
from the raw point cloud data as key points. %en, we voxelize the raw point cloud and use the 3D sparse convolutional neural
network to extract multi-scale points cloud features, which would fuse features of different scales with key points. In the second
stage of fusion, a 2D object detector is used to obtain the 2D bounding box and category information of the target in the image and
take the camera as the origin to extend along the direction of the 2D bounding box to form a frustum; then the point cloud and
target category information within the frustum are fused into the key points. %is paper uses key points as a bridge to effectively
combine the semantic information of the image such as texture and color with the point cloud features. %e experimental results
show that the network proposed in this paper has excellent performance on small objects.

1. Introduction

Deep learning, as a major artificial intelligence technology,
has been widely used in computer vision, speech recogni-
tion, and natural language processing; more notably, the
application of deep learning to 2D object detection [1–6] and
semantic segmentation [7–10] techniques in computer vi-
sion has led to the rapid development of both in the past
10 years. However, with the rapid development of autono-
mous driving and mobile robots, only 2D object detection
can no longer satisfy all the information required for en-
vironment perception. In the urban scenario of autonomous
driving, a single sensor cannot accurately sense the complex
and changing road traffic environment, so fusing data
collected by multiple sensors is the preferred solution for
current autonomous driving perception systems. LiDAR and
camera are the two most commonly used sensors in current

autonomous vehicles. Since the 3D point cloud generated by
LiDAR has accurate depth and reflection intensity infor-
mation, but due to its disadvantages such as sparse and
uneven density, when facing objects with missing shape or
similar shape, its representation ability is insufficient.
%erefore, it often leads to missed or false detection when
detecting small long-range targets with similar shape and
small number of point clouds. While the 2D images gen-
erated by camera sensors are rich in semantic information
such as texture and color, which can delineate targets and
scenes in detail, but cause the loss of depth information by
perspective projection, there is no way to guarantee the
accuracy of depth estimation by either monocular [11, 12] or
stereo binocular [13, 14] based algorithms, which makes it
difficult to achieve high-precision 3D localization.%erefore,
how to effectively combine the respective advantages of 2D
images and 3D point clouds to achieve accurate and robust
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3D object detection in urban road scenarios of autonomous
driving is the main focus of this paper. %e contributions of
this paper include the following three main points.

(1) We designed a 3D object detection network archi-
tecture based on two-stage complementary fusion.
%e architecture uses key points as a bridge to
successfully combine Point-based, Voxel-based, and
Image-based methods. In this way, the comple-
mentary fusion of the geometric information col-
lected by the lidar and the semantic information
collected by the camera is realized.

(2) %e innovation of this paper is proposing a Feature
Fusion Model, which fuses features from voxels,
original point cloud features, BEV features, and RGB
image features, and conducts experimental analysis
on the contribution of each part of the features to the
accuracy of the network model, and the results show
that, after adding RGB image features, the accuracy
of point cloud object detection in 3D space is sig-
nificantly improved on small targets, and objects
with similar structures are also substantially
improved.

(3) In order to solve the problem of overreliance on the
detection performance of 2D detectors in point cloud
and image fusion, this paper proposes a method for
assigning the foreground point features and back-
ground point features within the cone according to
the confidence score and fusing them with the point
cloud features by applying parallel processing to the
first and second stages to use the features provided by
the images as auxiliary features.

2. Related Work

At present, most existing 3D object detection methods based
on point cloud representation are mainly divided into two
categories, namely, LiDAR+ Image fusion method and Only
LiDAR method. In the LiDAR+ Image fusion method [15],
it, respectively, fuses the top view and front view of the point
cloud and the RGB image features with the candidate area
generated in the top view, thereby achieving the data-level
fusion between the point cloud and the image. However, a
large amount of data processed in this method requires a lot
of computing resources and communication bandwidth, and
it also generates a large amount of redundant information.
%e 2D driving 3D method [16] is used to extract the point
cloud of corresponding area to estimate the 3D bounding
box, but the disadvantage of this type of method is that it
relies too much on the accuracy of the 2D detection. %e
research work [17] uses the camera at the first stage, and it
only processes the lidar point cloud at the second stage. %e
disadvantage of this method is that although two sensors are
used, the data of the two sensors is not fused; thus it is very
difficult to use this method to detect long distance and
obscured objects. In Only LiDAR method, it is divided into
Voxel-based method and Point-based method. Voxel-based
methods usually convert the point cloud into a Bird’s Eye
View (BEV) [18–24] or voxelize it [25–29] at first, then use

the 3D sparse convolutional neural network to extract the
features. %e advantage of this method is that it not only has
high convolution efficiency but also can produce high-
quality proposal. %e disadvantage is that the loss of in-
formation in the voxelization process reduces the accuracy
of location when locating the target frame. %e Point-based
method [30–35] directly extracts features from the raw point
cloud to detect 3D objects. Although this method can get a
larger receptive field, the calculation cost has also increased.
%ereby, this paper combines the advantages of Voxel-based,
Point-based, and Image-based methods to propose a 3D
object detection network architecture based on two-stage
complementary fusion. %is architecture is based on 3D
sparse convolutional neural network combined with mature
2D object detector, and the key points are utilized as a
bridge, so that a series of precise and guided fusion methods
can be designed to accurately predict the categories, 3D
positions, and other information of the objects in the sur-
rounding environment. Figure 1 shows some classic 3D
object detection algorithms based on point cloud
representation.

3. System Design

In order to fully combine the target object’s geometric in-
formation collected by the lidar and the semantic infor-
mation collected by the camera, this paper proposed a 3D
object detection network structure based on two-stage
complementary fusion. %is structure uses key points as a
bridge to combine Point-based, Voxel-based, and Image-
based methods, which fully integrates and utilizes the
geometric information of the point cloud and the semantic
information of the image.

3.1. Fusion of Voxel-Based Feature. In the first stage of
feature fusion, the Voxel-based method is used to conduct
the irregular raw point cloud data voxelization.%en, we use
the 3D sparse convolutional neural network [36, 37] as the
backbone network for feature extraction. %e output feature
from the feature extraction network uses a two-layer Mul-
tilayer Perceptron (MPL) network to ascend the dimension
of voxel features; then we convert its height information to
channel feature to generate BEV. Secondly, 2048 points are
sampled as key points from the raw point cloud data with the
Farthest Point Sampling (FPS) method, and then the voxel
features are fused to the key points. In the process of fusing
voxel features to key points, we propose a Feature Fusion
Module, which uses the set abstraction operation method
[32] to aggregate voxel-wise feature volumes, at which time
the voxels around the key points are regular voxels with
multiscale semantic features encoded by a multilayer 3D
voxel CNN. %e set of all voxel feature vectors in the kth
layer of the 3D voxel CNN is denoted by
F(lk) � f

(lk)
1 , . . . , f

(lk)
Nk

􏽮 􏽯, and V(lk) � ](lk)
1 , . . . , ](lk)

Nk
􏽮 􏽯 de-

notes the set of 3D coordinates of all voxels computed from
the voxel index of the kth layer and the actual voxel size,
where Nk is the number of nonempty voxels in the kth layer.
For each key point pi, we first determine the number of
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nonempty voxels within the radius rk in the kth layer of the
3D voxel CNN to retrieve the set of feature vectors of valid
voxels in the neighborhood of the key point rk:

S
lk( )

i � f
lk( )

j ; ] lk( )
j − pi􏼔 􏼕

T

|

‖ ] lk( )
j − pi‖

2 < rk

∀] lk( )
j ∈V

lk( )

∀f lk( )
j ∈F

lk( )

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (1)

where v
(lk)
j − pi is the local relative coordinate of the voxel

and the key point, which represents the relative position of
the voxel feature f

(lk)
j . %en, the voxel features within S

(lk)
i

are transformed using PointNetblock [31] to generate the
features of key point pi as

f
pvk( )

i � max G M S
lk( )

i􏼒 􏼓􏼒 􏼓􏼚 􏼛, (2)

where M(·) denotes the random sampling of up to Tk � 16
voxels from the set S

(lk)
i to save computational cost, and G(·)

denotes the use of a multilayer perceptual network to encode
the features and relative positions of each voxel. We perform
the above strategy on different convolutional layers of the 3D
voxel CNN to stitch the features aggregated in different
convolutional layers to generate multiscale semantic features
of key point pi. Also, to compensate for the information loss
caused by the voxelization process, we use a Point-based
approach to extend the key point features by fusing the raw
point cloud features f

(raw)
i and the BEV features f

(BEV)
i to

the key points, and the process of fusing the raw point cloud
features to the key points is given in Figure 2.

3.2. Fusion of Image-Based and Point-Based Feature. In the
second stage of network fusion, RGB images are used as
input data, and yolov5 [38] is employed as a 2D object
detector to classify and locate the target objects in the image
data, so as to obtain the class of target objects and the lo-
cation information of 2D bounding box.%rough the known
camera projection matrix, we project each 2D bounding box
into the 3D point cloud data to form a frustum candidate

area. %en, for the points in the frustum, we use the Point-
based method to fuse the features into the key points, so that
the effective fusion of Voxel-based, Point-based, and Image-
based methods can be realized. In this way, the search range
of the point cloud can be greatly narrowed down, and the
operating efficiency of the network can be improved. 3D
point cloud object detection by 2D-driven 3D is presented in
[16]; the final detection result of the whole network tends to
be overly dependent on the detection accuracy of the 2D
detector. To solve this problem, this paper proposes a
method to assign the foreground point features and back-
ground point features within the frustum according to the
confidence score value, by using parallel processing for the
first and second stages to fuse the features provided by the
image as auxiliary features with the point cloud features.%e
2D detector parameters are kept fixed during the entire
training period of the network model since the 2D detector
network model parameters are pretrained.

%e specific implementation of the method of assigning
the foreground point features and background point features
in the frustum according to the confidence is that the point
cloud in the frustum is extracted using the Point-based
method [31], where the point cloud in the frustum has the
point cloud data of the target object framed by the 2D
bounding box, which we call foreground points, and other
points that are not the target object, which we call back-
ground points. %erefore, the foreground point features in
the frustum should contribute more to the network model,
and the background point features should contribute less to
the network model. %e weight values of the internal and
external point cloud features of the bounding box are
assigned by the confidence provided by the 2D object
detector.

f
(RGB)
i � C · f

(fg)
i +(1 − C)f

(bg)
i , (3)

where C is the confidence of the target object provided by the
2D detector, ffg is the front point feature within the
frustum, fbg is the background point feature within the
frustum, and the final key point feature is

MV3D
(AP:62.35)

F-PointNet
(AP:70.39)

MMF
(AP:76.75)

Part-A2
(AP:77.86)

STD
(AP:77.63)

VoxelNet
(AP:65.11)

SECOND
(AP:73.66)

PointPillar
(AP:74.99)

PointRCNN
(AP:75.76)

PV-RCNN
AP R40:81.43

2017 2018 2019 2020

LiDAR+Image
Point-based + Voxel-based

Voxel-based
Point-based

Figure 1: %e development process of 3D object detection algorithm based on point cloud representation.
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f
(p)
i � f

(pv)
i + f

(raw)
i + f

(BEV)
i + f

(RGB)
i . (4)

%e overall structure of the network model is shown in
Figure 3.

Generally, we compress the height of voxels from top to
bottom directly in the process of generating BV, and the
method of forced compression tends to miss a lot of features.
In order to solve this problem, height features information of
voxels will be converted to channel feature. %e process of
generating BEV based on the voxel method is shown in
Figure 4. For instance, we assume that the voxel feature size
output by the feature extraction network is 3× 3× 3×N,
where 3× 3× 3 is the length, width, and height of the voxel
and N is number of feature channels. %en, the size of
converted feature map is 3× 3×1× 3N, which is utilized to
generate BEV.

4. Projection Transformation of the
Point Cloud

%e 2D object detector detects the 2D bounding box of the
target object from the image and then takes the camera as the
origin and extends along the direction of the bounding box
to form a frustum. In order to make the generated frustum
area more accurate, the first thing we have to do is to use the
projection transformation method to project the point cloud
in 3D space onto the RGB image, so as to obtain the in-
tersection area between the point cloud and the image plane.

4.1. Converting Image Plane Coordinate System to Pixel Co-
ordinate System. When a point on the target object in 3D
place is projected onto the image plane, it does not directly
correspond to the point observed in the digital image.
%erefore, we need to project each point from the image
plane to the digital image.

As shown in Figure 5, o is the center of camera and the
coordinate system is i, j, k, where k points to the image
plane.%en, point c intersecting with the k axis is recorded as
the main point, which represents the center of the image
plane. Right-hand plane coordinates which take the prin-
cipal point as the origin c − xy are used as the image plane

coordinate system. %erefore, the first step to take after
projecting the point P

→
in space to the image plane is to

subtract the principal point coordinates so that the discrete
image has its own coordinate system.

For converting metric coordinates (m) to pixel coordi-
nates, this paper uses parameters k and l provided by cal-
ibration procedure, which can be utilized to convert meter to
pixel and easily inherit it into the equation as is shown in

P
→
⟶ P

→′(x, y, z)
T⟶ f · k ·

x

z
+ cx, f · l ·

y

z
+ cy􏼒 􏼓, (5)

where f · k is called α and f · l is called β in the conversion
matrix. %erefore, the conversion equation for converting
points in 3D space to 2D image pixels is

P
→

�

x

y

z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⟶ P
→′ �

αx/z + cx

βy/z + cy

⎡⎣ ⎤⎦. (6)

For the points in the point cloud, we need to move each
of them from the position of the lidar to the position of the
camera through rotation and translation operations. As
shown in formula above, the projection equation is related to
the division of z, which makes the conversion nonlinear so
that equation is difficult to be transformed. %erefore, we
convert the original Euclidean coordinate system to a ho-
mogeneous coordinate system so that the projection
transformation is converted from nonlinear to linear and the
transformation equation can be transformed into matrix-
vector multiplication. Equation (7) is the conversion for-
mula from Euclidean coordinates to homogeneous
coordinates:

(x, y)⟶

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ · (x, y, z)⟶

x

y

z

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

With the help of homogeneous coordinate system, the
projection equation expressed in matrix vector is

Raw Point Cloud

FPS

KeyPoints Sampling Ball Query

x

y

z

x

y y

x

zz

Figure 2: Process diagram of fusion of raw point cloud data to key points.
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P
→

h
′ �

α · x + cx · z

β · y + cy · z

z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

α

0

0

0

β

0

cx

cy

1

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·

x

y

z

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

We realized the mapping from the point P
→

in 3D space
in camera coordinate system to the point P

→′ in 2D pixel
plane through (8).

4.2. PointCloudProjection on the ImagePlane. To project the
points measured in lidar coordinate system to camera co-
ordinate system, extra conversion needs to be added to the
operation of projection so that we can associate points in the
vehicle coordinate system to the camera coordinate system.
Generally, projection operation can be divided into three
parts: translation, scaling, and rotation.

4.2.1. Translation. As is shown in Figure 6, the P
→

point is
linearly translated to P

→′ by adding translation vector t.
We can get the translation formula as follows through

Figure 6:

P
→′ � P

→
+ t �

x + tx

y + ty

⎡⎣ ⎤⎦. (9)

In the homogeneous coordinate system, the translation
(10) is obtained:

[400,352,11]

[200,176,5]

Point Cloud 

3D Sparse ConvolutionVoxelization

RPN

BEV
Features 

Classification

Regression

To
 B

EV

...

2D
Detector

RGB Data

Feature Fusion Module

Confidence Box
Regression

[1600,1480,41]
[800,704,21]

Car
0.9867

Figure 3: Network structure diagram of point cloud object detection.

BEV

Voxelization

3×3×3×N 3×3×1×3N

Figure 4: Process diagram of BEV generation.
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P
→

h
′ �

x + tx

y + ty

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
I t

0 1
􏼢 􏼣 ·

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(10)

where I is a unit vector which is size of 2×2 and t is the
coordinate increment tx, ty.

4.2.2. Scaling. We multiply the original vector by a scale
vector to achieve scaling transformation. And the scaling
formula is as follows:

P
→

h
′ ⟶

sxx

syy

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

sx 0 0
0 sy 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� s ·

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(11)

4.2.3. Rotation. Figure 7 shows the process diagram of the
vector P

→
(x, y) after rotating θ counterclockwise to reach the

vector P
→′(x′, y′).

We can get the following rotation matrix from Figure 7:

x′ � cosθx − sinθy,

y′ � cosθy + sinθx,

P
→′ �

x′

y′
⎡⎣ ⎤⎦

�
cosθ −sinθ

sinθ cosθ
􏼢 􏼣 ·

x

y
􏼢 􏼣

� R · P
→

,

(12)

where R is called the rotation matrix. In 3D space, the
rotation of point P is realized around the three axes of x, y,
and z. %erefore, the rotation matrix in 3D space is

Rx �

1

0

0

0

cosθx

sinθx

0

−sinθx

cosθx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ry �

cosθy

0

−sinθy

0

1

0

sinθy

0

cosθy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Rz �

cosθz

sinθz

0

−sinθz

cosθz

0

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

We can obtain projection matrix that projects 3D point
cloud onto 2D image plane by cascading translation matrix
and rotation matrix, which is shown in

oc

[cx,cy]
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j

k

x

y

f

P′

P
→

Figure 5: Process diagram of point in space projected onto image.

x

y
P′
→

P
→

t
ty

tx

Figure 6: Point translation coordinate map.
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→′ �

1

0

0

0

1

0

x0

y0

1
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0

0

0
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0

0
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1
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1

0

0

s
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1

0

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×[I|t]

×

R 0

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ · P

→
.

(14)

Using (14) we can then project the point cloud data in 3D
space onto a 2D image, and the simulation diagram of the
projection result is shown in Figure 8.

By fusing the raw data from both sensors, the point cloud
can correspond to the image, so that the object detected in
2D can find the corresponding point cloud in the frustum
area formed in 3D.

5. Experiment

5.1. Introduction toTrainingDataset. %e dataset used in this
article is the KITTI [41] dataset, which was jointly developed
by the Karlsruhe Institute of Technology in Germany and the
Toyota American Institute of Technology. It is a computer
vision algorithm evaluation dataset in autonomous driving
scenes which is widely used all over the world. KITTI
contains real image data collected from scenes ranged from
urban areas, villages to highways. Each image can contain up
to 15 cars and 30 pedestrians with various degrees of
masking and truncation. %e entire dataset consists of 389
pairs of stereo images, optical flow diagrams, 39.2 km visual
ranging sequence, and more than 200k 3D annotated object
images, which are sampled and synchronized at a frequency
of 10Hz. %e original dataset is classified as ‘Road,’ ‘City,’
‘Residential,’ ‘Campus,’ and ‘Person.’ For 3D object detec-
tion, label is subdivided into car, van, truck, pedestrian,
pedestrian (sitting), cyclist, tram, and misc. In this section,
we visualized part of the image data and point cloud data of
the 2D and 3D labeled objects in the KITTI dataset, and the
visualization results are shown in Figure 9.

5.2. TrainingParameter Settings. When training the network
model with KITTI dataset, the position of the lidar on the
point cloud collection vehicle is used as the origin of the
coordinates. %e valid data range of point cloud length is
[0,70.4] m, the valid data range of point cloud width is
[-40,40] m, and the valid data range of point cloud height is
[-3,1] m. After point cloud voxelization, the length, width,
and height of each voxel are, respectively, 0.05m, 0.05m,
and 0.1m. %e batch-size used during training is 2, and the
learning rate is 0.01.

In this section, we trained and verified our network
model with the KITTI dataset and compared it with the
current state-of-the-art 3D point cloud object detection
algorithms such as F-PointNet, AVOD-FPN, ContFuse,
and MV3D. %e software and hardware configuration and
version models used in the experiment are shown in
Table 1.

5.3. AlgorithmPerformance Evaluation. In the field of object
detection, the quality of an algorithm is mainly evaluated in
two ways: qualitative and quantitative evaluation. Qualita-
tive evaluation is mainly based on observation, which is a
subjective evaluation mechanism. Quantitative evaluation
uses mathematical statistics to quantify algorithm perfor-
mance based on specific evaluation indexes. Compared with
qualitative evaluation methods, quantitative evaluation can
compare the differences between different algorithms more
scientifically, fairly, and accurately.

As a very important evaluation index in the object de-
tection algorithm, recall rate mainly reflects the algorithm’s
ability to cover positive examples. Its mathematical ex-
pression is

Recall �
TP

TP + FN
. (15)

In the formula, TP (True Positive) means “the number of
positive cases that are correctly detected as positive cases,”
and FN (False Negative) means “the number of positive cases
that are falsely detected as negative cases.” Precision reflects
the accuracy of the algorithm in predicting positive exam-
ples. %e mathematical expression is

precision �
TP

TP + FP
. (16)

In the formula, FP (False Positive) means “the number of
negative cases that are falsely detected as positive cases.”

%e two evaluation indicators, recall rate and accuracy,
show the performance of the algorithm from two different
perspectives, but they are a pair of contradictory measures.
Both affect each other and show a negative correlation trend.
In order to balance them, we introduce the Precision-Recall
(P-R) curve.

As shown in Figure 10, the P-R curve represents the
corresponding recall rate (horizontal axis) and accuracy
(vertical axis) when different IOU and confidence thresholds
are picked. Generally, the more the P-R curve goes to the
upper right corner, the better the result is. Take Figure 10 as
an example; curve A is better than curve B.

x

y

x

y

y′

x′

θ

P′
→

P
→

Figure 7: Point rotation coordinate map.
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%e average accuracy is derived from the P-R curve. For
a continuous P-R curve, the calculation of AP is shown in
(17). In the formula, p represents precision, r represents
recall, and p is a function which takes r as a parameter. %e
calculation of the discrete P-R curve AP is shown in (18),

where N represents the number of samples, p(k) represents
the accuracy when k samples are detected, and ·r(k) rep-
resents the change in recall rate when the number of detected
samples is changed from k − 1 to k. Mean average precision
(mAP) is to average AP of multiple categories and measure

Figure 8: A simulation diagram of the point cloud projected onto the image.

Figure 9: KITTI visualization data.
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the accuracy of the algorithm in all categories. %e calcu-
lation formula is shown in (19), where C is the number of
categories.

AP � 􏽚
1

0
p(r)d(r), (17)

AP � 􏽘

N

k�1
p(k) · r(k), (18)

mAP �
􏽐

C
i�1 APi􏼐 􏼑

C
. (19)

In this paper, AP and mAP are used as evaluation in-
dexes to measure the performance of the model. In the
following tables, the test results of all algorithms partici-
pating in the comparison are the results published by the
authors of the algorithm in their articles, and those un-
disclosed or unavailable experimental results are indicated

Table 1: Experimental environment used for training and testing.

Software and hardware configuration Version of the model
Processor Intel Xeon(R) W-2135 CPU @3.70GHz
Graphics card GeForce RTX 2080 Ti
RAM 32G
Operating system Ubuntu 16.04
Frame Pytorch 1.3.1、TensorFlow
Programming language Python 3.7、C++
CUDA/CUDNN CUDA 10.1/CUDNN v7.6

Recall

Pr
ec

isi
on

1

1
A

B

0

Recall

Pr
ec

isi
on

1

1

0

P-R curve

Figure 10: P-R curve diagram.

Table 2: Comparison of algorithm performance at a moderate level.

Class Method Modality 3DmAP

Car

F-PointNet [16] 70.92%
AVOD-FPN [18] 74.44%
ContFuse [20] RGB+LiDAR 73.25%
MV3D [15] 62.68%

Ours 75.02%

Pedestrian

F-PointNet [16] 61.32%
AVOD-FPN [18] 58.8%
ContFuse [20] RGB+LiDAR —
MV3D [15] —

Ours 62.51%

Cyclist

F-PointNet [16] 56.49%
AVOD-FPN [18] 49.7%
ContFuse [20] RGB+LiDAR —
MV3D [15] —

Ours 57.26%

Mathematical Problems in Engineering 9



Table 3: Comparison of 3D positioning performance between our algorithm and the state-of-the-art algorithm.

Method Modality
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
PointPillars [22]

Only LiDAR

90.07 86.56 82.81 57.60 48.64 45.78 79.90 62.73 55.58
PointRCNN [33] 92.13 87.39 82.72 54.77 48.13 42.84 82.56 67.24 60.28
Part-A2 [29] 94.07 85.35 75.88 59.04 49.81 45.92 83.43 68.73 61.85
PV-RCNN [39] 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65
SE-SSD [40] 91.49 82.54 77.15 - - - - - -
AVOD-FPN [18]

RGB+LiDAR

90.99 84.82 79.62 58.49 50.32 46.98 69.39 57.12 51.09
F-PointNet [16] 91.17 84.67 74.77 70.00 61.32 53.59 77.26 61.37 53.78
ContFuse [20] 94.07 85.35 75.88 — — — — — —
MV3D [15] 86.62 78.93 69.80 — — — — — —
Ours 95.01 88.32 80.57 79.67 66.89 56.36 90.12 72.41 63.21

Table 4: %e detection result diagram of the network model.

Feature
Pedestrian

Runtime (s)
Easy Moderate Hard

Voxel feature only 70.87% 58.50% 50.13% 0.04
+Raw point cloud feature +1.91% +1.37% +0.22% 0.02
+BEV feature +2.82% +3.73% +2.75% 0.00
+RGB feature +4.07% +3.29% +3.26% 0.04
Full model 79.67% 66.89% 56.36% 0.10

Figure 11: %e detection result diagram of the network model.
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by “-” or not included in the comparison. %e optimal value
of each test is shown in bold. %e results of comparing our
work comparing with current state-of-the-art fusion algo-
rithms are shown in Tables 2 and 3.

Table 2 shows that, among all the fusion methods of
LiDAR and RGB images, our method has a significant
improvement in mAP in the detection of pedestrians and
cyclists. %e main reason is that there are less data for
pedestrians and cyclists in the pure point cloud data; thus it
is difficult to detect. By adding the semantic information of
the image, we can determine the boundary box of the target
object in the image and then project it into the point cloud,
which ensures that the projected frustum definitely contains
a certain type of object. In this way, the detection accuracy of
pedestrians and cyclists with less point cloud data can be
increased.

In Table 3, we show the comparison results of the 3D
positioning accuracy AP(BEV)% comparing with some
state-of-the-art algorithms.

It can be found from Table 3 that the location results of
our algorithm are comparable to the state-of-the-art algo-
rithms, and the performance is more obvious in the easy
category of pedestrians and cyclists. %e result proves that
when our algorithm generates BEV, using redundant in-
formation for compression helps information loss.

To verify whether the semantic information of RGB
images we added improves the network model, we, re-
spectively, trained the network model only extracts voxel
features, the network model with raw point cloud features
added, the network model with BEV features added, and the
network model with image information added, and the
contribution of adding different feature information to the
network model is shown in Table 4.

%rough Table 4 we can see that the detection accuracy of
the networkmodel is improved due to the inclusion of image
semantic features. Since the network uses parallel process-
ing, the detection accuracy of the network model depends
mainly on the voxel features of the point cloud, and the RGB
image features are only used as auxiliary features to improve
the detection accuracy of the algorithm, so the overall
performance of the algorithm does not depend too much on
the detection accuracy of the 2D detector. Finally, at the end
of the paper, we give a set of final results of our algorithm as
shown in Figure 11.

6. Conclusion

In order to integrate point cloud data and image data better,
this article proposed a 3D object detection network archi-
tecture based on two-stage complementary fusion. %e ar-
chitecture uses key points as the connection bridge and
successfully combines Point-based, Voxel-based, and Image-
based methods. Detecting through 3D point cloud targets
driven by 2D detectors further improved the detection result
of pedestrians and cyclists, which have a small amount of
point cloud data. %e disadvantage is that there is redundant
information between extracting features using Point-based
methods for point cloud data within a frustum and using
Point-based methods for the raw point cloud, which

increases the running time of the network model. In the
future we plan to introduce point cloud feature alignment
methods, so that we can apply feature similarity alignment to
the global features from the original point cloud and the
local features from the point cloud inside the frustum. For
the two features with high similarity, we discard the global
features in the original point cloud and keep the point cloud
features in the frustum and the target class and 2D bounding
box information provided by the 2D detector, so that the
retained features can participate in the subsequent calcu-
lation. In this way, we can reduce the redundancy of in-
formation and improve the efficiency of the network.
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'e advent of the 5G mobile network has brought a lot of benefits. However, it prompted new challenges on the 5G network
cybersecurity defense system, resource management, energy, cache, and mobile network, therefore making the existing ap-
proaches obsolete to tackle the new challenges. As a result of that, research studies were conducted to investigate deep learning
approaches in solving problems in 5G network and 5G powered Internet of Vehicles (IoVs). In this article, we present a survey on
the applications of deep learning algorithms for solving problems in 5Gmobile network and 5G powered IoV.'e survey pointed
out the recent advances on the adoption of deep learning variants in solving the challenges of 5Gmobile network and 5G powered
IoV. 'e deep learning algorithm solutions for security, energy, resource management, 5G-enabled IoV, and mobile network in
5G communication systems were presented including several other applications. New comprehensive taxonomies were created,
and new comprehensive taxonomies were suggested, analysed, and presented. 'e challenges of the approaches are already
discussed in the literature, and new perspective for solving the challenges was outlined and discussed. We believed that this article
can stimulate new interest in practical applications of deep learning in 5G network and provide clear direction for novel ap-
proaches to expert researchers.

1. Introduction

'e unprecedented quest for rapid mobile traffic calls opens
the way for emerging mobile communication systems [1, 2].
'e emerging wireless mobile networks are projected to
provide sufficient support for high rate of data transfer [3]
and applications that need innovative wireless radio tech-
nology paradigm [4]. In addition, it provides satellite
communication for delivering enhanced broadband [5]. 'e
diverse requirement of the emerging wireless mobile net-
work can be satisfied through radio in intelligent adaptive
learning and decision making [4]. 'e 5G wireless mobile
network [6, 7] is expected to stimulate interest in new
fundamental innovations [8, 9] that have an impact on video
surveillance, monitoring services for processing stream at
reliable high speed, high bandwidth, and network connec-
tivity that is highly secured [10], and Internet of Vehicles

(IoVs) forming 5G-enabled IoV [11]. 'e emerging 5G
mobile wireless network has the potentials for ultrahigh
bandwidth and communication latency that is ultralow [12].
'e 5G mobile wireless network aims to provide reliable
connectivity ubiquitously [13]. 'e 5G wireless mobile
network offers 1000 times increased in Internet traffic and is
expected to give support to the industries and the Internet of
'ings technology. 'e 5G wireless mobile networks have
more complications in design compared with the existing
mobile communication technology and its diverse appli-
cations [14]. 'erefore, it requires advance artificial intel-
ligent techniques to solve problems in the 5Gwireless mobile
networks.

As pointed out in [2], a lot of research and development
on 5G has been conducted before it is commercialized in the
year 2020. 'e resurfacing of artificial intelligence with full
force can bring an alternative methodology in solving 5G
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problems with likely better performance compared with the
traditional methods [14]. 'e increased complexity of the
cellular mobile network indicated that machine learning, a
subset of artificial intelligence, has the potential to effectively
improve the technologies of 5G wireless mobile networks
[15]. In machine learning, the new generation artificial
neural networks-deep learning algorithms have been applied
in different domains and found to produce remarkable
output comparable to human experts [16]. Xu et al. [17]
argued that in the era of the 5G, the generation of large-scale
data as a result of activities emanating from mobile task
requires the new generation artificial neural networks-deep
learning algorithms for the data processing, especially in the
area of speech recognition and computer vision. Klautau
et al. [15] pointed out that the performance of the deep
learning algorithms increases as the amount of data scales
up.'is characteristic of the deep learning algorithms makes
them fit to solve large-scale problems in 5G wireless mobile
networks.

'e dissemination of the data in traditional networks is
susceptible to limitations such as high latency, significant
drop in packets, and network congestion as a result of in-
creasing number of connected vehicles on the road. 'us,
the combination of the intelligent transportation and the
Internet of 'ings is motivated to develop the IoV that
basically allows exchange of data with its surrounding en-
vironment: vehicles-to-vehicles, vehicles-to-infrastructure,
vehicles-to-roadside units, vehicles-to-sensors, and vehicles-
to-personal devices via wireless communication networks
[18] which could be called vehicle-to-everything and au-
tonomous vehicle applications [19].

Different architectures of the deep learning algorithms
[20] such as the convolutional neural network (CNN),
generative adversarial network (GAN), dense neural net-
work (DDNN), deep reinforcement learning (DRL), long
short-term memory (LSTM), autoencoder (AE), and deep
recurrent neural network (DRNN) were applied in 5G to
solve problems in cybersecurity defense system, resource
management, energy, mobile networks, and 5G-enabled
IoV.

'is paper intends to conduct an in-depth literature
review on the progress made by deep learning algorithms in
developing solutions to different aspects of 5G wireless
mobile networks and 5G-enabled IoV.

'e paper intends to answer the following research
questions:

(i) What are the deep learning architectures applied for
solving problems in 5G mobile network?

(ii) How is the publication trend for the applications of
deep learning algorithms in 5G networks?

(iii) What taxonomies can be created for the deep
learning algorithms in 5G networks?

(iv) What is the extend of applying deep learning al-
gorithms in 5G-enabled IoV?

(v) What are the challenges identified in the existing
approaches of solving problems in 5G wireless
mobile networks?

(vi) What are the promising directions as new per-
spective for solving the identified challenges?

'e other sections of the paper are structured as follows.
Section 2 presents the previous reviews conducted and outlines
the differences with the current review. Section 3 provides the
basic information about the deep learning algorithms fre-
quently applied in 5G wireless mobile networks. Section 4
presents 5Gwirelessmobile network domains and classification
of papers accordingly. Section 5 presents meta-data analysis.
Section 6 points out challenges and future direction for research
work before. Conclusions are presented in Section 7.

2. Previous Surveys and Motivation

In the literature, there are a number of reviews on the
applications of deep learning in 5G wireless mobile network.
As such, the paper dedicated this section to present the
reviews and point out the differences with the current re-
view. For example, Aldweesh et al. [21] conducted a survey
on the applications of deep learning algorithms in detecting
anomaly. It mainly focused on the cyber security defense
system for the 5G wireless mobile network. In another
survey, Restuccia and Melodia [22] were motivated by the
fact that the 5G wireless mobile networks are based heavily
on millimeter wave (mmWave) and the ultrawideband
communications. 'erefore, it focuses on the physical layer
of the wireless mobile networks. 'e paper discusses the
significance of real time deep learning algorithms at the
physical layer. Similarly, Huang et al. [23] presented survey
focusing on deep learning algorithm-based physical layer,
mainly on the nonorthogonal multiple access (NOMA),
massive MIMO, and mmWave. 'e existing surveys mainly
focus on the physical layers and cyber security defense.
However, a lot of topics remain unexplored in the previous
surveys. In addition, the earlier surveys focus on a particular
aspect of the 5G wireless mobile networks denying readers to
see a broad view of the deep learning solutions in 5G wireless
mobile network. A comprehensive taxonomy connecting
different deep learning architectures with different tasks in 5G
wirelessmobile network ismissing from the already published
surveys.'e current review covers all aspects of deep learning
algorithm-based 5G wireless mobile network solutions to give
the reader a broad view of the 5G wireless mobile networks
research area on the applicability of different architectures of
the deep learning algorithms. Another major issue with the
previous survey is that no comprehensive taxonomy on the
5G wireless mobile network domains. In view of the limi-
tations in the previous surveys conducted, this paper proposes
a comprehensive taxonomy showing different deep learning
architectures and tasks in 5G wireless mobile networks.
Zhang et al. [24] presented a survey on the applications of
deep learning algorithms in the general area of mobile and
wireless networks unlike our proposal that mainly focuses on
5G wireless mobile networks.

2.1."eAdoptionofDeepLearningArchitecture in5GWireless
Mobile Network. In this section, for unification of the re-
search area, a taxonomy as shown in Figure 1 on the
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adoption of deep learning architectures in performing dif-
ferent tasks in 5G wireless mobile networks is proposed. 'e
taxonomy classified papers that applied deep learning al-
gorithms in solving machine learning problems in 5G
wireless mobile networks. 'e deep learning architectures
together with the task associated to each of the deep learning
architecture were extracted from different papers that used
deep learning in 5G wireless mobile networks. 'e taxon-
omy can serve as a basis for the creation of deep learning-
based 5G wireless mobile network framework that is holistic
to be applied in 5G wireless mobile networks. 'e taxonomy

is used as the foundation for extracting and classifying the
different deep learning architectures available in the liter-
ature used for a particular task in the 5G wireless mobile
networks. 'e deep learning architectures found to be ap-
plied in the 5G wireless mobile networks include CNN,
DDNN, AE, GAN, LSTM, DRNN, hybrid deep learning, and
DRL. 'e basic theory of each of the deep learning archi-
tecture is presented before summarizing the papers that
applied it in 5G wireless mobile networks. 'e basic theories
are presented to give readers understanding of how different
deep learning architectures operate to achieve desired goal.
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Figure 1: Taxonomy of the applications of deep learning in 5G wireless mobile networks.
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'is can make the paper self-contained especially for new
readers having the intention of starting a research career in
this field.

2.2.ConvolutionalNeuralNetwork. 'is section presents the
background information about CNN and the studies that
applied the CNN in 5G wireless mobile network to develop
solution. 'e CNN is a type of feed forward neural network
mostly used in image processing and pattern recognition. It
is characterized by a simple structure, adaptability, and few
training parameters [25]. 'e structure of a CNN consists of
different layers including input layer, convolution layer,
pooling layer, and the output layer. 'e convolution layer
receives an input image and performs the convolution
process by applying a filter to extract feature map. 'e
pooling layer receives feature maps from the convolution
layer and downsamples the featuremaps. During the pooling
process, n neighbouring pixels become a single pixel by
adding a bias bx + 1, scalar weighing Wx + 1, and applying
activation function, and a narrow feature map is produced.
A major advantage of CNN is its parallel learning ability that
helps in reducing the network’s complexity. Again, it im-
proved robustness, and scaling can be achieved by applying
the subsampling process. 'e processing of output at the
layers of CNN can be expressed by the following equations
[25]:

O
(l,k)
x,y � tanh ∑

f−1

t�0
∑

Kh

r�0
∑

Kw

c�0
W

(k,t)
(r,c)O

(l−1,t)
(x+r,x+c) + Bias(i,k) , (1)

where O(l,k)
x,y is the output of neuron at convolution layer l,

feature pattern k, row x, and column y and f denotes the
number of convolution cores in a given feature pattern. At
the subsampling stage, the output of neuron at the lth

subsampling layer, kth feature pattern, row x, and column y

is expressed as follows:

O
(l,k)
x,y � tanh W

(k)
∑

Sh

r�0
∑

Sw

c�0
O

(l−1,t)

x×Sh+r,y×Sw+c( )
+ Bias(i,k) . (2)

At the lth hidden layerH, the output of neuron j is given
as follows:

O(l,j) � tanh ∑
s−1

k�0
∑

Sh

x�0
∑

Sw

y�0
W

(j,k)

(x,y)O
(l−1,t)
(x,y) + Bias(i,j) , (3)

where s denotes the number of feature patterns in the
subsampling layer.

At the output layer, the output of neuron i at the lth
output layer is expressed by the following equation:

O(l,i) � tanh ∑
H

j�0
O(l−1,j)W

l
(i,j) + Bias(i,j) . (4)

2.2.1. "e Studies "at Applied Convolutional Neural Net-
work in 5G Wireless Mobile Network. Bega et al. [26] de-
veloped a DeepCog based on 3D CNN for resource

management in 5G mobile networks. In the 5G technology
network, infrastructure is divided into slice. 'e DeepCog
is designed to allocate each slice it is own required re-
sources. 'e DeepCog is evaluated in the real world sce-
nario, and it is found to be effective. Gante et al. [27]
proposed temporal CNN for outdoor positioning of
mmWave in 5G mobile wireless networks. 'e temporal
CNN achieved baseline accuracy for the non-line-of-sight
mmWave outdoor positions with 1.78meters as the average
error while maintaining moderate bandwidth, sample of
binary data, and single anchor. Huang et al. [28] presented
deep learning for the allocation of co-operative resources
based on channel conditions in 5G mobile wireless net-
works. 'e study generated CNN by applying channel
information and the resource allocation intended for op-
timization.'e generated CNN can assist in making the full
scale channel information in place of the traditional re-
source optimal utilization especially in a dynamic channel
environment. 'e method is found to be effective in re-
ducing the complexity of the optimization, reducing
computational time, and producing satisfactory
performance.

He et al. [29] proposed CNN to capture the character-
istics of interfering signal to suppress the interfering signal.
'e proposed CNN-based multiuser multiple-input multi-
ple-output (MU-MIMO) for 5G can be applied to suppress
the influence of interference that is correlated with a reduced
computational complexity and improve the performance of
the CNN-based MU-MIMO. Hussain et al. [30] proposed
CNN for the development of framework to detect distrib-
uted denial-of-service attack prompted by botnet that
control devices that are malicious over 5G network. 'ese
attack mainly target the cyber physical system. 'e frame-
work is found to have an accuracy of over 90% in detecting
attacks.

Doan and Zhang [34] proposed CNN for anomaly de-
tection in 5Gmobile wireless networks.'e CNN is found to
be a good algorithm for the detection of intrusion while
reducing the impact of latency.

Ahmed et al. [35] applied CNN to solve problem in
spectrum access for 5G/B5G cognitive radio network of IoT.
'e intelligent CNN-based model learns to locate spectrum
holes for users with over 90% accuracy. Cheng et al. [36]
proposed an enhanced CNN with attention for modeling
mmWave for the 5G network communications. 'e image
data captured and locality feature extraction were performed
using convolution while the attention enhances the use of
the global information. 'e proposed scheme was found to
be better than the classical methods. Guan et al. [37] pro-
posed CNN transfer learning for the classification of net-
work traffic in a dataset constrain scenario in 5G IoT. 'e
model is trained by weight transferring and ANN fine-
tuning. 'e CNN transfer learning was able to predict the
network traffic with comparative performance to the clas-
sical methods. Xu et al. [38] proposed RGB stream and
spatial rich model noise stream for differentiating between
adversarial and clean examples. 'e CNN is used to detect
adversarial image, and it achieved over 90% accuracy for the
detection rate.
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2.3. Deep Reinforcement Learning. 'e reinforcement
learning (RL) falls among the top real time methods for
decision making. It learns by interacting with the envi-
ronment through action and recognition [39]. At every stage
of interaction, depending on the environment’s state, the
agent selects an action that adjusts the state of the envi-
ronment. A reward or punishment is given to the agent for
every action taken depending on whether the action is
beneficial or not.

'e concept of RL is expressed as a Markov Decision
Process (MDP) tuple given as (S, A, R, P), with S as the
environment’s state, A as action, R as reward, and P as the
probability of state transition. 'e aim of RL is always to
learn the best policy and maximize the sum of discounted
reward of each state expressed as follows [39]:

Jπ∗ � max
π

Jπ � max
π

Eπ ∑

∞

t�0
c

t
rt

 , (5)

where π∗ and π denote the optimal policy and policy, re-
spectively, Jπ denotes total expected reward, Eπ[.] is the
expectation based on the policy π and the transition
probabilities, and c is the discount factor in the range [0, 1).
'e agent becomes opportunistic about the present reward
when c � 0 and strives for long-term great reward when
c � 1. rt denotes the reward at time t.

'e achievable return for execution of an action a in a
state s is represented by the value function Q(s, a). 'is can
be updated according to each state-action pair till a given
threshold turns out to be greater than the highest change in
the value:

Q(s, a)← ∑

s′

p s′ | s, a( ) r s, a, s′( ) + cmax
a

Q s′, a′( )[ ], (6)

where p(s′ | s, a) denote the transition probability from state
s to state s′ when action a has been executed, and the reward
is denoted by r(s, a, s′). Following the convergence of the
algorithm, the optimal policy is achieved by taking a greedy
action on each state s. 'is is expressed as follows:

a
∗

� argmax
a

Q
∗
(s, a), (∀sεS). (7)

In situations where the system does not have prior
knowledge about the environment, optimal policies can be
achieved by a type of the RL algorithm known as Q-learning.
Given αt as the learning rate such that when αt � 0, the agent
becomes incapable of learning, and when αt � 1, the agent
only considers the most recent information. 'e updating
rule of Q-learning is given as follows:

Q st, at( ) � 1 − αt( )Q st, at( ) + αt rt+1 + cmax
a

Q st+1, a′( )( ).

(8)

'is implies at time step t, state st is observed by the
agent and an action at is chosen. Reward rt+1 is received by
the agent for execution of the action at. Q-learning always
tries to choose the optimal action by considering the state-
action pair with the best Q-value. RL algorithms are very

good in solving various problems especially problems re-
lating to messaging and mobile network [39].

2.3.1. "e Applications of the Deep Reinforcement Learning in
5G Wireless Mobile Network. 'e studies that applied DRL
in solving machine learning problems are discussed in this
section. Dai et al. [40] applied deep reinforcement learning
(DRL) to develop caching scheme in 5Gmobile network and
beyond. Numerical results indicated that the DRL caching
scheme is effective in maximizing caching resource utility.
Dong et al. [41] proposed DRL to minimize normalize
energy consumption for hybrid 5G mobile network tech-
nology in edge computing systems. Digital twin from the real
network environment is used for the training of the DRL at
central server offline. It was found that the proposed ap-
proach minimizes normalized energy consumption with less
computational complexity better than the existing
approaches.

Pradhan and Das [48] proposed RL for resource res-
ervation in ultrareliable low latency communication for 5G
network. It is found that the RL performs better than the
baseline method in terms of the packet drop probability and
resource utilization. Zhao et al. [49] proposed the applica-
tion of RL for dynamic scheme of the network slice resources
to improve quality of service in 5G network-enabled smart
grid. 'e algorithm is able to change the demand of network
at a fast rate of response for processing resource allocation.
Ho et al. [50] proposed the application of DQN-based 5G-
V2X for the optimization of 5G-based station allocation for
platooning vehicles. It attempted to provide solution to the
base station allocation problem. Xie et al. [51] applied DQN
to develop an adaptive decision scheme for initial window in
5GMEC.'e scheme is able to optimize the flow completion
while minimizing the congestion. Comparison with baseline
algorithms shows that the proposed scheme converges fast
with stability. Supervised learning is introduced to improve
the responsiveness and efficiency of the initial window
decision.

Li and Zhang [52] applied DRL which is used in the 5G
network to optimize the tradeoff between the quality of
service and enhanced broadband and low latency com-
munications. It is found that the quality of the service is
achieved with the tradeoff between the enhanced mobile
broadband and ultrareliable low latency communications.
Yu et al. [53] proposed DRL for cloud radio access networks
to maximize energy efficiency, service quality, and con-
nectivity of remote radio heads. 'e proposed algorithm is
found to effectively meet user requirement and handle cell
outage compensation. Mismar et al. [54] used greedy nature
DQN for the estimation of voice bearers and data bearer in
sub-6GHz mmWave band. 'e performance of the signal to
interference plus noise ratio and sum-rate capacity has been
improved. Saeidian et al. [55] proposed DQN downlink
power control in 5G. It is found that the power control
approach proposed in Saeidian et al. [55] improved data rate
at the edge and reduced power transmitted compared with
the baseline approaches. Abiko et al. [56] proposed DRL for
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the allocation of radio resources in 5G that satisfied service
requirement notwithstanding the number of slices.

Giannopoulos et al. [57] applied DQN for the improve-
ment of energy efficiency inmultichannel transmission for 5G
cognitive in decentralized, centralized, and transfer learning.
Results indicated that the DQN model can enhance network
energy efficiency. Gu et al. [58] developed the DRL knowl-
edge-based assisted algorithm for the design of wireless
schedulers for 5G networks with time sensitivity in traffic.'e
proposal improved quality of service and reduced conver-
gence time. Yu et al. [53] designed DRL time scale consisting
of fast and slow timescales learning process for optimizing
resource allocation, computation offload, and caching
placement. For protecting the edge device data privacy,
federated learning is applied for training the DRL in a dis-
tributed approach. Experiment shows that the proposed
approach reduces convergence timewith over 30%. Dinh et al.
[59] applied DQN for self-optimization of access point se-
lection based on local network state knowledge. It was found
that the proposed scheme enhances throughput and improves
quality of service compared with the classical methods.

2.4. Autoencoder Architecture. 'e AEs are unsupervised
learning algorithms capable of learning automatically from
input data. 'e algorithms use simple learning circuits to
convert input to output without significant alteration. 'e
unsupervised training of AE takes a bottom-up fashion after
which the supervised learning stage is employed for the training
of the top layer and fine-tuning the whole architecture [60].

'e framework of an n/p/n autoencoder is expressed as a
tuple n, p, m, F ,G,A,B,X,Δ. In this case,F andG are sets,
n and p are positive integers with 0<p< n, and B denotes
class of functions from Gp to Fn.X � x1, . . . , xm{ } is a set of
m training vectors in Fn. In the cases where external targets
exist, the equivalent set of target vectors in Fn is represented
byY � y1, . . . , ym{ }. Δ signifies the alteration function over
Fn. A denotes class of functions from Gp to Fn. For each
A ∈ A and any B ∈B, autoencoder transforms received
vector x ∈ Fn into an output vector A °B(x) ∈ Fn.'e aim is
to achieve A ∈ A and B ∈B that minimize the entire al-
teration function by this equation:

minE(A, B) � min
A,B

∑

m

t�1
E xt( ) � min

A,B
∑

m

t�1
Δ A°B xt( ), xt( ).

(9)

In nonautoassociative situations where external targets
yt are given, the distortion minimization is defined as
follows:

minE(A, B) � min
A,B

∑

m

t�1
E xt, yt( ) � min

A,B
∑

m

t�1
Δ A°B xt( ), yt( ),

(10)

p< n occurs in cases where the autoencoder tries to apply a
kind of feature extraction or compression. Different com-
binations of transformation classesA andB,F and G sets,
and distortion function Δ along with some additional

constraints can be used to produce various architectures of
autoencoders.

2.4.1. "e Autoencoder Architecture Applications in 5G
Wireless Mobile Network. 'e papers that applied AE in
solving problem in 5Gwireless mobile network are discussed
in this section. For example, Lei et al. [61] proposed caching
strategy based on Stacked Sparse AE (SSAE) in Evolved
Packet Core of the 5G mobile wireless networks. 'e net-
work functions virtual (NFV)/software defined network
(SDN) is used for the development of the virtual distributed
deep learning on the SSAE. Subsequently, the SSAE pre-
dicted the content popularity. 'e caching strategy is gen-
erated by SDN controller based on the predicted result and
then synchronizing to each node of the cache via the flow
table for the strategy execution. 'e deep learning-based
strategy is found to improve the performance of the cache
better than the baseline methods. Kim et al. [62] presented
deep autoencoder sparse codemultiple access (Deep-SCMA)
for 5G mobile wireless networks. 'e Deep-SCMA code-
book reduces the bit error rate by adaptive construction and
deep autoencoder-based decoding and encoding. Results
indicated that the Deep-SCMA scheme achieved lower bit
error rate and fast computational time better than the
conventional scheme.

2.5. Hybrid Deep Learning Algorithm. 'e purpose of hy-
bridizing intelligent algorithms is to explore the strength of
the individual algorithms [63, 64]. Some of the studies
combined different deep learning architectures to form the
hybrid algorithm. Before dueling into the hybrid architec-
tures, brief discussion about the hybrid algorithm is pre-
sented. 'e hybrid intelligent algorithm is typically robust
and efficient because it combined the complimentary fea-
tures to deviate from the weakness of the constituent al-
gorithms. Algorithms are hybridized because of
performance improvement, multitask applications, and
achieving multiple functions. 'e degree of interaction
between the modules in hybrid models varies; it can be
loosely coupled, tight coupled, fully coupled, and trans-
formational [65]. 'e hybridization of the algorithms
strengthens synergetic effects to the algorithms as individual
algorithm limitation is overcome. 'e hybridization of the
intelligent algorithms has brought a lot of new intelligent
algorithms design [66].

2.5.1. Applications of Hybrid Deep Learning Architecture in
5G Wireless Mobile Network. Some of the studies combined
different architectures of the deep learning to form hybrid
architecture while others combined deep learning and
shallow algorithm to form the hybrid. 'is section presents
the papers that design hybrid deep learning for solving
machine learning problem in 5G wireless mobile network.
Luo et al. [67] employed the hybrid of CNN and LSTM
(CNN-LSTM) to predict channel state information in a 5G
wireless mobile network. Two outdoor and two indoor
scenarios were used for the evaluation of the proposed
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scheme. 'e result indicated that the CNN-LSTM predicts
channel state information in 5G network with the average
different ratio of 2.650%–3.457% within very fast conver-
gence time. Similarly, Huang et al. [68] proposed a com-
bination of CNN and LSTM (CNN-LSTM)-based
multitasking for the prediction of 5Gmobile network traffic
loads. 'e CNN-LSTM model is found to successfully
extract geographical and temporal features. 'e CNN-
LSTM can predict the minimum, maximum, and average
traffic loads in the 5G mobile network, and it performs
better than the baseline algorithms. Luo et al. [69] proposed
combination of CNN and deep Q-learning (CNN–DQL)
scheme for dynamic transmission power control to im-
prove the performance of the non-line-of-sight transmis-
sion in 5G network. 'e CNN is used to predict the
q-function offline before conducting online deep
q-learning to search for the control strategy. 'e approach
is found to maximize power transmission and quality of
service.

Simulation result shows that the proposed CNN-LSTM
detected the altered biometrics.

'e DBN and the LSTM-based anomaly detection
scheme inspect the network traffic flow in real time. 'e
first level in the scheme executed the DBN on each RAN
very fast. Subsequently, it detected the anomalous symp-
toms on the network traffic flow.'e anomalous symptoms
collected served as inputs to LSTM where the LSTM
identified pattern of the cyber-attacks. 'e work has been
extended in [77] with more extensive and comprehensive
results.

2.6. Long Short-Term Memory. 'e LSTM solves a major
problem of vanishing gradient or exploding gradient asso-
ciated with the recurrent neural networks (RNNs).'e error
posed by the vanishing gradient problem prevents RNNs
from learning in situations where the time lag between the
input events and the target signals is above 5–10 distinct time
steps. 'e LSTM on the other side is capable of linking
minimum time-lags up to 1000 distinct time steps. It does
this through special units termed as cells which comprise of
constant error carousels (CECs) that impose constant error
flow [80]. Access to the cells is granted by multiplicative gate
units.

'e hidden layer of a standard LSTM network consists
of the memory blocks. A memory block has some
memory cells and a pair of multiplicative gate units that
allow flow of input and output to and from all the cells in
the given block. A memory cell contains the CEC which
handles the vanishing gradient error problem by keeping
its local backflow error constant (without vanishing or
exploding) when the cell is not receiving new input or
error signals. 'e pair of gating units: input and output
gates shield the CEC from both forward and backward
error flow, respectively. 'e activation of the CEC de-
termines the state of the cell. 'e activation of the input
gate yin and the activation of the output gate yout given
discrete time steps t � 1, 2, . . . , A can be computed by the
following [80]:

netoutj(t) � ∑
m

woutjmy
m

(t − 1), y
outj (t) � foutj netoutj(t)( ),

netinj
(t) � ∑

m

winjmy
m

(t − 1), y
inj (t) � finj

netinj
(t)( ),

(11)

where j denotes memory block, f denotes the logistic
sigmoid in the range [0, 1], and wlm

denotes the connection
weight from the unit m to the unit l.

To compute the internal state of a given memory cell
Sc(t), the squashed gate input at (t − 1) where (t> 0) can be
added as follows:

netcv
j
(t) � ∑

m

wcv
j
my

m
(t − 1),

Scv
j
(t) � Scv

j
(t − 1) + y

inj (t)g netcv
j
(t)( ),

(12)

where cv
j denotes cell v of memory block j, squashing of the

cell input is done by g, and Scv
j
(0) � 0. To determine the

output of a cell yc, the internal state Sc is squashed using an
output squashing function h and gating it with the activation
of the output gate yout expressed as follows:

y
cv

j (t) � y
outj (t)h Scv

j
(t)( ), (13)

where h denotes a centered sigmoid in the range [−1, 1].
'e output units K of a network with layered topology

consisting of hidden layer with memory blocks, standard
input, and output layer can be defined by the equation as
follows:

netk(t) � ∑
m

wkmy
m

(t − 1),

y
k
(t) � fk netk(t)( ),

(14)

where fk denotes the squashing function with logistic sig-
moid in the range [0, 1] and m ranges over all input units
and the cells in the hidden layer. 'e LSTM is capable of
solving tasks with complex long time-lags that was never
solved by RNN.

2.6.1. Exploring Long Short-Term Memory in 5G Wireless
Mobile Network. 'e LSTM has been explored in finding
solution to machine learning problem in 5G wireless mobile
network.

Yu et al. [9] studied resource allocation of TV multi-
media service for 5G wireless cloud network random access
network. 'e study proposes a deep learning framework for
resource allocation. 'e DRL is integrated with bandwidth
of the users and power resource allocation. Subsequently, the
LSTM is applied for the construction of traffic multicast
service, and it improves energy efficiency. Liu et al. [82]
proposed LSTM to predict hotspot for potential formation of
virtual small cell in 5G wireless network. 'e LSTM is found
to predict the hotspot with accuracy and low latency and
improve energy efficiency compared with the traditional
approaches. Chen et al. [83] applied LSTM for the prediction
of traffic flow in 5G mobile wireless network. 'e LSTM is
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combined with the broad learning system to improve the
performance of the LSTM. Subsequently, the LSTM is used
to predict the traffic flow in 5G wireless network and
predict with accuracy while maintaining low complexity
and convergence time. Memon et al. [84] predicted next
packet time based on traffic trace using LSTM. 'e LSTM
predicts the dynamic sleep time in discontinuous reception
in 5G wireless mobile networks. It is found to improve
power savings.

Gumaei et al. [85] combined blockchain and DRNN
for edge computing 5G-enabled drone identification.
Dataset was collected from raw radio frequency signals
taken from many drones under several flight modes for
the training of the DRNN model. 'e DRNN is applied to
detect drones from radio frequency signals. Ullah et al.
[86] used hybrid of control flow graph and DRNN for
securing smart services rendered by 5G-enabled IoT. 'e
DRNN is applied to predict clone applications. Results
show that the approach recorded over 90% accuracy for
cloned applications predictions from android application
stores.

2.7. Generative Adversarial Networks. 'e GANs are deep
learning models consisting of both supervised and unsu-
pervised learning methods [87]. It basically uses two models,
namely, generative and discriminative models as shown in
Figure 2. 'e generative model acts as an image synthesizer
and is capable of forging images that are analogous to real
images. 'e discriminative model on the other side serves as
an expert that isolates real images from forged images. Both
the discriminative and the generative model compete against
each other and are trained in parallel [88]. 'e discriminator
gets access to images by interacting with the generator. An
error signal sent to the discriminator guides it in identifying
forged images, and generator uses the same error signal to
forge more qualitative images. 'e two models are deployed
in form of multilayer network having convolution and fully
connected layers.

max
g

min
f

V(f, g) ≡ Ex∼PX[−logf(x)] + Ex∼Pz

· [−log(1 − f(g(z)))].

(15)

Given that x is a natural image obtained from a certain
distribution PX, and given z as random vector in Rd that
comes from a uniform distribution in the range [−1, 1]d;
however, other normal distributions like the multivariate
distribution can also be applied. Let the generative and
discriminative models be denoted by g and f, respectively.
'e generative model receives z as an input image and forges
an image g(z) as output having the same form as x. LetPG

denote the distribution of g(z). 'e probability that an input
image is obtained from PX is calculated by the discrimi-
native model. Note that f(x) � 1 if x ∼ PX and f(x) � 0 if
x ∼ PG. 'e generative and the discriminative models of
the GAN can be simultaneously trained by the following
equations [87].

'e equation given can be solved by alternating the two
steps of updating gradient given as follows:

1st step : θt+1
f � θt

f − λt∇θf
V f

t
, g

t
( ),

2nd step : θt+1
g � θt

g − λt∇θg
V f

t+1
, g

t
( ),

(16)

with θf and θg denote the parameters of f and g, respec-
tively, t denotes iteration number, and λ denotes the
learning rate x′.

2.8. Dense Deep Neural Network. 'e DDNN sometimes
referred to as multilayer perceptrons (MLPs) or simply
feedforward neural networks with multiple hidden layers is
essential deep learning models with the goal of evaluating a
function f∗. For instance, a classifier y � f∗(x) maps an
input x to a category y, and feedforward network works by
defining a mapping y � f(x; θ) at the same time under-
stands which values of θ give the excellent function ap-
proximation. 'e models are termed as feedforward because
data pass from x through the function under evaluation via
the intermediate computation that defines f and lastly to y

which is the output. Feedforward neural networks are
named networks because they are composed of multiple
different functions.'e functions are arranged in a form of a
directed and acyclic graph. For instance, functions
f(1), f(2), and f(3), linked together form a chain:

f(x) � f
(3)

f
(2)

f
(1)

(x)( )( ). (17)

Generally, these forms of chain structures are the most
applied structures for neural networks. f(1) is known as the
first layer, f(2) being the second layer of the network and
other layers follow the same pattern. 'e depth of a model is
defined by the entire length of the chain. 'e last layer of the
network is the output layer. At the training stage, f(x) is
derived to match f∗. Noisy and estimated examples of
f∗(x) evaluated at varying training points are provided by
training data.'is implies that for every example x, there is a
label y ≈ f∗(x) attached to it. 'e essence of the training
example is to clearly point out that at each point x , the
output layer is expected to produce a value close to y.
However, the training data do not specify the behavior of
other layers instead the learning algorithm takes decision on
how to exploit those layers to arrive at ≈f∗(x). 'e layers
are called hidden layers. Each hidden layer is a form of
vector, and the dimension of the layers defines the model’s
width [91].

2.8.1. Exploring Dense Deep Neural Network in 5G Wireless
Mobile Network. Butt et al. [95] proposed DNN for RF
fingerprint for user equipment positioning in 5G mobile
network. 'e DNN framework is able to predict the user
equipment positioning in 5G network. Sim et al. [96]
proposed DDNN for the selection of beam that is compatible
with 5G new radio.'e DDNN is able to select the mmWave
beam, and it reduced the beam sweeping overhead. El
Boudani et al. [97] proposed deep learning-based co-

8 Mathematical Problems in Engineering



operative architecture in 5G network for 3D indoor posi-
tioning. 'e proposed approach is applied to predict 3D
location of a mobile station, and it is found to perform better
than the baseline algorithms. 'antharate et al. [98] used
DDNN to detect and eliminate security thread before
attacking 5G core wireless network.'e proposed model has
the ability to sell network slice as a service to service different
services on single infrastructure that is reliable and highly
secured. Chergui and Verikoukis [99] proposed deep
learning for slicing resource allocation based on the service
level agreement for 5G network reliability and end-end
slicing. 'e gated RNN is used for the prediction of slices
traffic while at every virtual network the DDNN is used to
estimate the needed resources.

Ali et al. [100] proposed DNN for resource allocation to
meet the requirement of the 5G network.'e DNN achieved
solutions for the resource allocation and remote radio head
problems in the C-RAN. Rathore et al. [101] proposed DNN
with blockchain for empowering security scheme for in-
telligent 5G IoT. 'e framework operated across the four
layers of the emerging cloud computing architectures. 'e
simulation of the proposed framework demonstrated effi-
ciency and effectiveness in securing the 5G-enabled IoT
systems.

2.9. "e 5G Wireless Mobile Network Technology and 5G
Powered Internet of Vehicle. 'is section presents the 5G
technologies mostly targeted by the researchers for solution
based on deep learning algorithms. 'e discussion includes
the applicability of the 5G technologies in IoV. Few papers
were found to apply deep learning algorithms to solve
machine learning problems in 5G powered IoV. Chiroma
et al. [102] argued that the deep learning algorithms are
anticipated to drive the data analytics in IoV for better
understanding and improvement of the IoV because large-
scale data are predictable to be collected from the IoV as a
result of vehicles mobility in the IoV environment.

'e network slicing isolates the network functions
logically and resources that are meant for the vertical
market on a common infrastructure of a network. 'e
network slicing can expand all the 5G network domains
across the core network and radio access network segments
[103]. 'e mmWave communications in the 5G signifi-
cantly improve the amount of bandwidth [27]. 'e sparse
code multiple access is a code-based nonorthogonal
multiple accesses that improve spectral efficiency and
connectivity that meet the standard of the 5G wireless
mobile network [62]. Other 5G technologies are presented
in Table 1. 'e 5G technologies in Table 1 are extracted
from the papers analyzed in Section 3.

'e 5G wireless mobile network was predicted to
eliminate the challenges of the IoV by providing fast con-
nection and low latency and offering a reliable connection
for the IoV applications [105]. For example, the 5G network
slicing can cope with variant use cases and different de-
mands by many tenants over the 5G infrastructure in ve-
hicle-to-everything communications ecosystem [103]. 'e

5G wireless mobile network can be used for guaranteeing
security in IoV [19].

Insufficient spectrum motivated interest on enabling 5G
vehicular communications at mmWave band.'e mmWave
band is the technology that offers very rich spectrum to
support the flow of very large volume of data at high speed. It
is crucial especially for the development of vehicular ap-
plications in view of the fact that the modern vehicles are
embedded with a lot of sensors, as such it generates a lot of
large-scale amount of data [106]. 'e 5G-based IoV em-
bedded with SDN, Cloud, and Fog is developed by Benalia
et al. [18]; the cloud and the fog enhance the processing and
computing capability for controlling traffic. On the other
hand, the flexibility, scalability, ease of programming, and
global knowledge of the network are provided by the SDN. It
uses the 5G MIMO and beamforming to get the high speed
communication. 'e 5G-based IoV has the capacity of
disseminating data efficiently with flexibility.'e 5G slice for
the vehicular infotainment application is anticipated to
apply multiple radio access technology for the purpose of
having high throughput as well as to cloud content remotely
or near a node. 'e diagnosis and management of the ve-
hicles are performed remotely via the slice configured to
support the bidirectional flow of small amount of data with
low frequency between vehicles and remote servers outside
the core network [107].

2.9.1. Deep Learning Algorithms in 5G Wireless Mobile
Network Powered Internet of Vehicles. In the 5G-based IoV,
the network selection is performed by the Fuzzy CNN
(FCNN). 'e vehicle-to-vehicle pairs were selected using
the jellyfish optimization algorithm. 'e dynamic
Q-learning and FCNN are applied to develop vertical
handover decision that combined 5G mmWave, LTE, and
DSRC in IoV. 'e performance of the Fuzzy CNN (FCNN)
is evaluated using the following metrics: handover failure,
handover success probability, redundant handover,
throughput, packet loss, and delay [108]. Scarcity of the
intensive study on data security and privacy preservation
prompted the investigation of vehicular crowd sensing. A
blockchain-enabled vehicular crowd sensing based on DRL
is applied for the protection of user privacy and security
safety in 5G powered IoV.'e DRL is used for the selection
of active miners and transactions, thus minimizing latency
and maximizing security of blockchain.'e nonorthogonal
multiple access subchannels are allocated by the two-sided
matching algorithm.'e scheme is found to protect against
common attacks, provide maximum security, and preserve
privacy and integrity [109]. Similarly, privacy risk re-
garding centralized training of the model motivated the
application of federated learning to develop a scheme based
on federated learning in 5G powered IoV for recognition of
license plate. 'e data for the modeling were harness in
individual mobile phone in place of the server. It was found
that the federated learning scheme preserved privacy and
has high accuracy as well as effective communication cost
(see Kong et al. [110]).
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3. The 5G Wireless Mobile Network Domain

Figure 3 presents the taxonomy of the domain of applica-
tions in 5G wireless mobile technology. 'e taxonomy
clearly indicated that a lot of domain in 5G witnessed the
adoption of deep learning architectures for solving prob-
lems. 'e domain of applications includes cyber security
defense system, resource management, signal, mobility,
energy, networking, 5G-enabled vehicular network, and
mobile network. 'e taxonomy revealed that different as-
pects of resource management and mobile network received
tremendous attention from the researchers.

3.1. Resource Management. 'is section provides the ap-
plications of the deep learning algorithms in resource al-
location in the 5G technology. Bega et al. [26] developed a
DeepCog based on 3D CNN for resource management in 5G
mobile network. In 5G technology, network infrastructure is
divided into slice. 'e DeepCog is designed to allocate each
slice it is own needed resources.'e DeepCog is evaluated in
the real-world scenario, and it is found to be very effective.
Huang et al. [28] presented deep learning for the allocation
of co-operative resources based on channel conditions in 5G
mobile wireless network. 'e study generated CNN by
applying channel information and the resource allocation
intended for optimization. 'e generated CNN can assist in
making the full scale channel information in place of the
traditional resource optimal utilization especially in a dy-
namic channel environment. 'e method is found to be
effective in reducing the complexity of optimization, re-
ducing computational time, and producing satisfactory
performance.

Chergui and Verikoukis [99] proposed deep learning for
slicing resource allocation based on the service level
agreement for 5G network reliability and end-end slicing.
'e gated recurrent neural network is used for the prediction
of slices traffic while at every virtual network the DDNN is
used to estimate the needed resources. Abbas et al. [90]

proposed a network slicing scheme that can slice and ef-
fectively manage radio access network and core network
resource. Subsequently, GAN is deployed to manage the
network resources, and it is found to perform better in terms
of bandwidth and latency. 5G-enabled TV multimedia al-
location was studied by Yu et al. [9], and a deep learning
framework was proposed. DRL is integrated with bandwidth
of the users and power resource allocation. Subsequently, the
LSTM is applied for the construction of traffic multicast
service, and it improves energy efficiency.

Abiko et al. [56] proposed DRL for the allocation of radio
resources in 5G that satisfied service requirement not-
withstanding the number of slices. Ho et al. [50] proposed
the application of DQN-based 5G-V2X for the optimization
of 5G-based station allocation for platooning vehicles. It
attempts to provide solution to the base station allocation
problem. Zhao et al. [49] proposed the application of RL for
dynamic scheme of the network slice resources to improve
quality of service in 5G network-enabled smart grid. 'e
algorithm is able to change the demand of network at a fast
rate of response in the processing of resource allocation.
Pradhan and Das [48] proposed RL for resource reservation
in ultrareliable low-latency communication for 5G network.
It is found that RL performs better than the baseline method
in terms of the f packet drop probability and resource
utilization.

Tang et al. [47] proposed DQN uplink/downlink re-
source allocation 5G heterogeneous network.'e features of
the complex network information were extracted using deep
belief network. 'e Q-value based on the DQN with the
reply is applied to change the time division duplex up/down
link ratio based on the reward mechanism. 'e proposed
DQN-based time division duplex is able to improve network
performance based on throughput and packet loss rate
compared with the resource allocation based on the tradi-
tional time division duplex. Li et al. [44] applied adaptive
DQN for on-demand service function chaining mapping
strategies in 5G. In the proposed approach, an agent makes
decision from the heuristic service function chaining
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Figure 2: Typical architecture of generative adversarial network.
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mapping algorithm with low complexity to meet the users’
need. 'e proposal is found to enhance the entire system
recourses efficiently by scheduling two heuristics effectively
after learning from the episode.

Abidi et al. [70] hybridized glowworm swarm optimi-
zation and deer hunting optimization algorithm to optimize
the structure of hybrid DBN and ANN for 5G network
slicing. 'e proposed model is found to accurately provide
5G network slicing. Ahmed et al. [35] applied CNN to solve
problem in spectrum access for 5G/B5G cognitive radio
network of IoT. 'e intelligent CNN-based model learns to
locate spectrum holes for users with over 90% accuracy. Ali
et al. [100] proposed DNN for resource allocation to meet
the requirement of the 5G network. 'e DNN achieved
solutions for the resource allocation and remote radio head
problems in the C-RAN.

3.2. Energy/Power Transmission. Energy/power transmis-
sion [111] is an issue in 5G wireless mobile network, as such
many researchers applied deep learning algorithms for
solving problem of energy efficiency [112] in the 5G net-
work. Dong et al. [41] proposed DRL to minimize nor-
malized energy consumption for hybrid 5G mobile network
technology in edge computing systems. Digital twin from the
real network environment is used for the training of the DRL
at central server offline. It was found that the proposed
approach minimizes normalized energy consumption with
less computational complexity better than the existing ap-
proaches. Luo et al. [69] proposed combination of CNN and
deep Q-learning (CNN-DQL) scheme for dynamic trans-
mission power control to improve the performance of the
non-line-of-sight transmission in 5G network. 'e CNN is
used to predict the q-function offline before conducting
online deep q-learning to search for the control strategy.'e
approach is found to maximize power transmission and
quality of service. Saetan et al. [93] deviated from the impact
of imperfect successive interference cancellation under the
fairness perspective for downlink nonorthogonal multiple
access. 'e DDNN is applied to predict the power allocation
factor. Result indicates that the performance DDNN is in
comparable to the exhaustive search. A similar study was
carried out by Saetan and 'ipchaksurat [94], but the focus
was on sum-rate maximization. Liu et al. [82] proposed
LSTM to predict hotspot for potential formation of virtual
small cell in 5G wireless network. 'e LSTM is found to
predict the hotspot with accuracy and low latency and
improve energy efficiency compared with the traditional
approaches.

Saeidian et al. [55] proposed DQN downlink power
control in 5G. It is found that the power control ap-
proach proposed by Saeidian et al. [55] improves data
rate at the edge and reduces power transmitted compared
with baseline approaches. Yu et al. [46] proposed DRL
for Cloud Radio Access Networks to maximize energy
efficiency, service quality, and connectivity of remote
radio heads. 'e proposed algorithm is found to effec-
tively meet user requirement and handle cell outage
compensation. Xia et al. [45] proposed the DQN-based

offloading algorithm for 5G multicell MEC to obtain
optimal offloading policy by the mobile phone users. It is
found the proposed algorithm is able to outperform the
baseline algorithm by significantly reducing the energy
cost of the mobile device and the delay experience by the
users of the mobile devices. Giannopoulos et al. [57]
applied DQN for the improvement of energy efficiency in
multichannel transmission for 5G cognitive in decen-
tralized, centralized, and transfer learning. Results in-
dicated that the DQNmodel can enhance network energy
efficiency.

3.3. Cybersecurity Defense Systems. 'e 5G wireless mobile
network requires protection from cyber-attacks [113].
'erefore, mechanism and protocol as basis for the pro-
tection of the 5G network are needed to address the security
challenges [114]. Ravi [115] argued that it is highly nec-
essary to proffer effective and efficient security breach
detection mechanism using intelligent systems. Maimó
et al. [76] proposed deep learning anomaly detection
scheme for network flows to effectively and efficiently
search for attacks in 5G mobile wireless network. 'e DBN
and the LSTM-based anomaly detection scheme inspect the
network traffic flow in real time. 'e first level in the
scheme executes the DBN on each RAN very fast. Subse-
quently, it detects anomalous symptoms on the network
traffic flow. 'e anomalous symptoms collected served as
inputs to LSTM where the LSTM identified pattern of
cyber-attacks. 'e work has been extended in [77] with
more extensive and comprehensive results. Maimó et al.
[78] extended the work in [77] by integrating mobile edge
computing (MEC) architecture in the management of 5G
wireless network anomaly detection autonomously in real
time based on policies. 'e policies provide the effective,
efficient, and dynamic management of the computing re-
sources used during the process of the anomaly detection in
5G network traffic flow. Sundqvist et al. [79] proposed
Adaboosted ensemble LSTM for the detection of anomalies
in 5G radio access network. 'e proposed ensemble
method is used to detect anomalies in 5G random access
network. 'e Adaboosted ensemble LSTM is able to detect
the anomalies in random access network very fast with
reliability.

'antharate et al. [98] used DDNN to detect and
eliminate security thread before attacking 5G core wire-
less network. 'e proposed model has the ability to sell
network slice as a service to service different services on
single infrastructure that is reliable and highly secured.
Doan and Zhang [34] proposed CNN for anomaly de-
tection in 5G mobile wireless network. 'e CNN is found
to be good algorithm for the detection of intrusion while
reducing the impact of latency. Hussain et al. [30] pro-
posed CNN for the development of framework to detect
distributed denial-of-service attack over 5G network
prompted by botnet that control devices that are mali-
cious. 'ese attack mainly target the cyber physical sys-
tem. 'e framework is found to have an accuracy of over
90% in detecting attacks.

Mathematical Problems in Engineering 11



Liu et al. [116] proposed federated learning framework
for securing federated learning in 5G wireless network.
Blockchain is embedded to protect the system against
poisoning attacks. Performance analysis of the proposed
framework indicated that the 5G-enabled federated learning
framework is promising and robust. Ahmed et al. [10]
proposed framework that uses 5G infrastructure based on
pretrained CNN variants model with a transfer learning for
multiple people tracking. 'e detection is performed by
YOLOv3, and tracking is performed by the deep SORT
algorithm. Experiment result indicated that it improves the
transfer learning detection and tracking accuracy of the
multiple people. Rathore et al. [101] proposed DNN with

blockchain for empowering security scheme for intelligent
5G IoT.'e framework operated across the four layers of the
emerging cloud computing architectures. 'e simulation of
the proposed framework demonstrated efficiency and ef-
fectiveness in securing the 5G-enabled IoT systems. Ullah
et al. [86] used hybrid of control flow graph and DRNN for
securing smart services rendered by 5G-enabled IoT. 'e
DRNN is applied to predict clone applications. Results show
that the approach recorded over 90% accuracy for cloned
applications predictions from android application stores. Xu
et al. [38] proposed RGB stream and spatial rich model noise
stream for differentiating between adversarial and clean
examples. 'e CNN is used to detect adversarial image, and

Table 1: 5G wireless mobile technology mostly applied deep learning algorithm.

References 5G technology
Bega et al. [26]; 'antharate et al. [98]; Abiko et al. [56]; Zhao et al. [49]; Abidi et al. [70]; Khan et al.
[72] Slice

Dai et al. [40] Caching scheme
Dong et al. [41] Hybrid 5G service
Gante et al. [27]; Yu et al. [104]; Cheng et al. [36]; Kaya and Viswanathan [73]; Zhang et al. [74] mmWave
Huang et al. [68] Traffic loads
Huang et al. [28] Channel information
Kim et al. [92] Massive MIMO
Kim et al. [62] Sparse code multiple access
Klautau et al. [15] Beam
Lei et al. [61]; Yu et al. [53] Cache
Luo et al. [67] Channel state information
Luo et al. [69] Power transmission
Maimó et al. [76]; Doan and Zhang [34]; Chen et al. [83]; Maimó et al. [78] Traffic flow
Ning et al. [42]; Ahmed et al. [35] Spectrum
Ozturk et al. [81]; Klus et al. [32] Handover
Pang et al. [12] Intelligent cache scheme
Razaak et al. [89] 5G fixed wireless
Sadeghi et al. [43] Scalable cache
Shahriari et al. [39] Load balancing
Sundqvist et al. [79]; Abbas et al. [90]; Ali et al. [100] Random access network
He et al. [29] MU-MIMO
Li et al. [44] Chaining
Xia et al. [45] Multicell MEC
Saetan et al. [93] Nonorthogonal multiple access
Pradhan and Das [48]; Li and Zhang [52] Ultrareliable low-latency
Ho et al. [50] 5G-V2X
Tang et al. [47]; Xu et al. [38] 5G heterogeneous network
Chergui and Verikoukis [99] Service level agreement
El Boudani et al. [97]; Guan et al. [37]; Rathore et al. [101]; Ullah et al. [86] 5G IoT network
Xie et al. [51] 5G MEC
Hussain et al. [30] 5G cyber physical system

Butt et al. [95] User equipment positioning in
5G

Godala et al. [31] 5G new radio
Yu et al. [104]; Yu et al. [9] Cloud radio access network
Liu et al. [82] Virtual small cell
Mismar et al. [54] Joint beamforming
Sim et al. [96] New radio
Memon et al. [84] Discontinue reception
Saeidian et al. [55] Downlink power control
Alhazmi et al. [33]; Ahmed et al. [10]; Gumaei et al. [85] 5G signal
Clement et al. [71] Modulation for 5G
Giannopoulos et al. [57] 5G cognitive
Gu et al. [58]; Dinh et al. [59] Quality of service
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it achieved over 90% accurate detection rate. Sedik et al. [75]
used combination of CNN-LSTM for the detection of fake
biometrics in 5G-based smart cities. 'e CNN-LSTM
computes the 3-tier probability for the tempered biometric.
Simulation result shows the proposed CNN-LSTM detects
the altered biometrics.

3.4.MobileNetwork. Ning et al. [42] developed an intelligent
offloading framework based on DRL 5G-enabled vehicular
networks that uses the combination of license spectrum and
unlicensed spectrum channels. Distributed DRL-based ap-
proach is developed to significantly improve the commu-
nication between macrocell and vehicles. It was found to
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minimize offloading cost and maintain user latency con-
strain simultaneously. Lastly, the approach greatly simplifies
distributed offloading traffic. Klautau et al. [15] proposed
Deep Q-Learning (DQN) algorithm for the selection of
beam based on 5Gmobile networkMIMO data.'e channel
realization with transceivers and objects that represent the
5G scenario is generated by combining vehicle traffic and ray
tracing simulators. 'e mobility and channel were modeled.
Gante et al. [27] proposed temporal CNN for outdoor
positioning of millimeter wave in 5G mobile network. 'e
temporal CNN achieved baseline accuracy for the non-line-
of-sight millimeter wave outdoor positions with 1.78meters
as the average error while maintaining moderate bandwidth,
sample of binary data, and single anchor. Dai et al. [40]
applied deep reinforcement learning (DRL) to develop
caching scheme in 5G mobile network and beyond. Nu-
merical results indicated that the deep reinforcement
learning caching scheme is effective in maximizing caching
resource utility. Shahriari et al. [39] proposed the generic
online learning system based on DRL for 5G cloud random
access network load-balancer. 'e proposed approach is
subsequently deployed for load balancing in the 5G cloud
random access network. It was found that the communi-
cation load and caches misses are reduced with limited
system overhead.

Kim et al. [62] presented deep autoencoder sparse code
multiple access (Deep-SCMA) for 5G mobile wireless net-
work. 'e Deep-SCMA codebook reduces the bit error rate
by adaptive construction and deep autoencoder-based
decoding and encoding. Results indicated that the Deep-
SCMA scheme achieved lower bit error rate and fast
computational time better than the conventional scheme.
Luo et al. [67] employed the hybrid of CNN and LSTM
(CNN-LSTM) to predict channel state information in a 5G
wireless mobile network. Two outdoor and two indoor
scenarios were used for the evaluation of the proposed
scheme. 'e result indicated that the CNN-LSTM predicts
channel state information in 5G network with the average
different ratio of 2.650%–3.457% within very fast conver-
gence time.

Huang et al. [68] proposed a combination of CNN and
LSTM (CNN-LSTM)-based multitasking for the prediction
of 5G mobile network traffic loads. 'e CNN-LSTM model
is found to successfully extract geographical and temporal
features. 'e CNN-LSTM can predict the minimum,
maximum, and average traffic loads in the 5G mobile net-
work, and it performs better than the baseline algorithms.
Ozturk et al. [81] proposed the stacked LSTMmodel for cost
evaluation of holistic handover that combined signaling
overhead, latency, call dropping, and wastage of radio re-
source that focuses on control/data separation architecture.
Analysis of the framework indicated that the stacked LSM
has the potential for holistic handover management for 5G
wireless network.

El Boudani et al. [97] proposed deep learning-based co-
operative architecture in 5G network for 3D indoor posi-
tioning. 'e proposed approach is applied to predict 3D
location of a mobile station, and it is found to perform better
than the baseline algorithms. Sim et al. [96] proposed

DDNN for the selection of beam that is compatible with 5G
new radio. 'e DDNN is able to select the mmWave beam,
and it reduced the beam sweeping overhead. Butt et al. [95]
proposed DNN for RF fingerprint for user equipment po-
sitioning in 5Gmobile network.'e DNN framework is able
to predict the user equipment positioning in 5G network.
Memon et al. [84] predicted next packet time based on traffic
trace using LSTM. 'e LSTM predicts the dynamic sleep
time in discontinuous reception in 5G networks. It is found
to improve power savings. Chen et al. [83] applied LSTM for
the prediction of traffic flow in 5G mobile wireless network.
'e LSTM is combined with the broad learning system to
improve the performance of the LSTM. Subsequently, the
LSTM is used to predict the traffic flow in 5G wireless
network and predict with accuracy while maintaining low
complexity and convergence time. Mismar et al. [54] used
greedy nature DQN for the estimation for voice bearers and
data bearer in sub-6GHz mmWave band. 'e performance
of the signal to interference plus noise ratio and sum-rate
capacity has been improved.

Li and Zhang [52] applied DRL in 5G network to achieve
tradeoff between quality of service between enhancedmobile
broad band and ultra-reliable low latency communications.
It is found that the quality of the service is achieved with the
tradeoff between the enhanced mobile broadband and ultra-
reliable low latency communications. Xie et al. [51] applied
DQN to develop an adaptive decision scheme for initial
window in 5GMEC.'e scheme is able to optimize the flow
completion while minimizing the congestion. Comparison
with baseline algorithms shows that the proposed scheme
converges fast with stability. Supervised learning is intro-
duced to improve the responsiveness and efficiency of the
initial window decision.

Yu et al. [53] proposed DQN for the 3D aerial station-
based station location for sudden traffic in 5G mmWave
wireless network. Findings indicate that the DQN location
scheme can search for the optimal deployment locations
with very low convergence speed. Alhazmi et al. [33] pro-
posed LeNet-5 a variant of CNN for the identification of
signals in a cellular system environment. 'e LeNet-5 is able
to successfully identify 5G signal, 3G, and long-term evo-
lution in the environment. Klus et al. [32] proposed CNN for
the prediction of user location. 'e model is first trained for
the setting of the weights before reducing the unnecessary
number of handovers at the same time sustaining high-
quality connection at the second stage. 'e CNN model
predicts user location and reduces number handover
without affecting the throughput of the system. Godala et al.
[31] proposed CNN for the estimation of state channel
information in 5G mobile network new radio. It is found
that the proposed framework enhances the spectral effi-
ciency performance compared with the traditional methods.

Cheng et al. [36] proposed an enhanced CNN with at-
tention for modeling mmWave for 5G network commu-
nications. 'e image data capture and locality feature
extraction were performed using convolution while the
attention enhances the use of global information. 'e
proposed scheme was found to be better than the classical
methods. Clement et al. [71] combined CNN, DDNN, and
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LSTM to create hybrid deep architecture for the modulation
classification of 5G and beyond wireless communications.
Principal component analysis is used for dimension re-
duction.'e proposed framework classified the modulation,
and results show that it outperforms the constituent algo-
rithms. Gu et al. [58] developed the DRL knowledge-based
assisted algorithm for the design of wireless schedulers 5G
networks with time sensitivity in traffic. 'e proposal im-
proved quality of service and reduced convergence time.
Guan et al. [37] proposed CNN transfer learning for the
classification of network traffic in a dataset constrain sce-
nario in 5G IoT. 'e model is trained by weight transferred
and ANN fine-tuning. 'e CNN transfer learning was able
to predict the network traffic with comparative performance
compared with the classical methods. Gumaei et al. [85]
combined blockchain and DRNN for edge computing 5G-
enabled drone identification. Dataset was collected from raw
radio frequency signals taken from many drones under
several flight modes for the training of the DRNN model.
'e DRNN is applied to detect drones from radio frequency
signals. Dinh et al. [59] applied DQN for self-optimization of
access point selection based on local network state knowl-
edge. It was found that the proposed scheme enhances
throughput and improves quality of service compared with
the classical methods.

Khan et al. [72] proposed of LSTM and SVM for reliable
and efficient congestion control mechanism in 5G/6G
wireless network. 'e simulation was conducted for data
collected for multiple unknown devices, failure of slice, and
overloading. Results show improvement in congestion
control in 5G/6G network. Kaya and Viswanathan [73]
applied LSTM and AE (LSTM-AE) for the prediction of
beam in 5G mmWave. 'e proposed approach reduces
blockage and handover by switching user to new beams or
cells. 'e method reduces overhead and enhances signal-to-
noise ratio. Zhang et al. [74] proposed DRL-LSTM for re-
source allocation in mmWave 5G network based on column
generation. 'e DRL-LSTM addresses the routing and link
scheduling for 5G network mmWawe.

3.5. Caching. Pang et al. [12] applied MEC to improve
caching in 5G mobile network based on LSTM framework
that expedites the smart-based intelligent caching instead of
the commonly used frequency and time based for replacing
the strategies as well as cooperation within the base stations.
'e LSTM intelligent-based cache framework detects the
individual pattern request for individual based-station to
take a decision based on the intelligent cache. 'e intelligent
LSTM-based cache framework reduces transmission delay
by at least 14%, and the backhaul data traffic saves up to 23%.
Sadeghi et al. [43] proposed DRL-based cache scheme that
employs Q-learning for the implementation of the best
policy in online manner, thereby enabling the cache control
unit of the base station to learn, monitor, and adjust to the
environment dynamics. To embed the algorithm with
scalability, the Q-learning linear function estimation is in-
troduced which provides fast computational time and re-
duces complexity and requirement for memory. Lei et al.

[61] proposed caching strategy based on Stacked Sparse
AutoEncoder (SSAE) in Evolved Packet Core of the 5G
mobile wireless network. 'e network functions virtual
(NFV)/software defined network (SDN) is used for the
development of the virtual distributed deep learning state-
ment on SSAE. Subsequently, the SSAE predicted the
content popularity. 'e caching strategy is generated by
SDN controller based on the predicted result and then
synchronizing to each node of the cache via the flow table for
the strategy execution. 'e deep learning-based strategy is
found to improve the performance of the cache better than
the baseline methods.

3.6. Multiple-Input Multiple-Output. Kim et al. [92] devel-
oped DDNN-based pilot allocation scheme for 5G massive
multiple-input multiple-output (MIMO) that used large
number of antenna for multitude end users. It is found that
the proposed approach improved the performance of the 5G
network. 'e scheme recorded 99.38% accuracy with low
complexity and convergence times. He et al. [29] proposed
CNN to capture the characteristics of interfering signal to
suppress the interfering signal. 'e proposed CNN-based
multiuser multiple-input multiple-output (MU-MIMO) for
5G can be applied to suppress the influence of interference
that is correlated with a reduced computational complexity
and improve the performance of the CNN-based MU-
MIMO.

3.7. Other Domain. Razaak et al. [89] applied GAN for
precision farming. 'e GAN-based image analysis frame-
work is developed for 5G wireless mobile network. 'e
GAN-based unmanned aerial vehicle image processing
framework indicated that precision farming can significantly
benefit from the combination of 5G wireless network
technology, unmanned aerial vehicle, and intelligent algo-
rithm. It has been demonstrated that the intelligent
framework has the potential of applying drones integrated
with 5G and cameras for the monitoring of farm lands to
reduce human intervention. Different deep learning algo-
rithms in different 5G domains are presented in Table 2
where it shows the domain, deep learning architecture, and
corresponding references for each of the architecture. Yu
et al. [53] designed DRL time scale consisting of fast and
slow timescales learning process for optimizing resource
allocation, computation offload, and caching placement. For
protecting the edge device data privacy, federated learning is
applied for training the DRL in a distributed approach.
Experiment shows that the proposed approach reduces
convergence time with over 30%.

'e main contributions found in each of the study, type
of deep learning architecture adopted, and mobility level are
summarized in Table 3 for easy outlook of the studies.

'e deep learning architecture was extracted to show
suitability of each architecture as well as the applicability in
5G wireless mobile network. 'e different deep learning
architectures found in the literature used in the 5G wireless
mobile network are summarized in Table 4 indicating the
corresponding applications in 5G.
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4. Discussion on the Deep Learning in 5G
Network and 5G-Enabled IoV

4.1. General Overview. 'e deep learning algorithms found
to be frequently used in the 5G wireless network and 5G-
enabled IoV are as follows: GAN, DRL, CNN, LSTM,
DRNN, DDNN, and hybrid of the deep learning algorithm.
'e basic theories of the different architectures are presented
for the readers to understand how they operate to achieve
their goal.

'e review has indicated that it is possible to apply deep
learning algorithms in solving machine learning problems in
5G wireless mobile network and 5G powered IoV. 'e deep
learning algorithms have shown to perform better than the
shallow machine learning algorithms/techniques as well as
conventional approaches. 'e applications of different deep
learning architecture in 5G wireless mobile network and 5G
powered IoV are presented in the review. It is found that
most of the works are on the applications of deep learning in
5G. On the other hand, the applications of deep learning in
5G powered IoV are limited with few number of recent
papers.

Different taxonomies were created based on the 5G
papers analyzed. 'e taxonomy created is as follows: 5G
domains and deep learning algorithm connecting the 5G
machine learning task and learning paradigm. 'e taxon-
omies clearly showed the gap that is existing, the area that
attracted a lot of attention, and those with little attention in
the 5G wireless mobile network. It is found that the DRL
architecture received the highest number of applications in
5G wireless mobile network. On the issue of mobility, it is
found that the mobility level is mostly outdoor. Resource
management and mobile network in 5G wireless mobile
network received tremendous attention from the research
community. 'e learning paradigm showed that the rein-
forcement learning has the highest number of applications in
5G. Federated learning has limited applications; very few
studies attempted to solve machine learning problem in 5G
wireless mobile network that applied the federated learning.

'e review indicated that there is a lot of interest from
the research community for the synergy between the
communications engineering and artificial intelligence re-
search community fostering collaborations from the two
communities. It is hoping that this collaboration will con-
tinue into the future because of the interest it has currently
generated. In addition, the race to 6G has already begun
though in an early stage as evident in Wu et al. [117]. As a
result of that we believe that in the future, the collaboration
between the communications engineering and artificial
intelligence research communities will continue because of
the advent of 6G wireless mobile communication that will
open up new challenges requiring new machine learning
solutions for improving the entire 6G wireless communi-
cation systems.

'e applications of deep learning in 5G wireless mobile
network were used in different technological aspects of the
5G. 'e technologies are tabulated in Table 1 with the
corresponding references where the 5G technology was

considered for a research. 'e technology of the 5G wireless
network technology that received remarkable attention from
the research community is the 5G network slicing.

'e 5G technologies were found to be used to develop
the 5G-enabled IoV to improve the performance of the IoV.
'e 5G technologies used for the improvement of the IoV
are as follows: 5G network slicing, 5G mmWave, 5GMIMO,
and beamforming. In conjunction with deep learning al-
gorithms, the 5G-enabled IoV is improved on the area of
security and privacy and network selection. 'e deep
learning algorithms established to solve problems in 5G-
enabled IoV include CNN, DRL, and federated learning
leaving the greater percentage of the deep learning algo-
rithms without exploring them in the 5G wireless mobile
network.

4.2. Publication Trend. Figure 4 presents the publications of
papers that applied deep learning algorithms in developing
cyber defense systems for the 5G wireless mobile network.
'e publications start appearing in 2017 up to 2021. 'e
publication trend indicated growing number of papers in the
area as the papers keep on increasing from 2017 to date. 'is
is practically showing growing interest in developing cyber
defense system for the 5G wireless mobile network.

'e publications of papers that applied deep learning
algorithms in improving energy efficiency in 5G wireless
mobile network are presented in Figure 5. Similar to cyber
defense systems, the publications in this domain are
growing up to 2020 before dropping in 2021. On the other
hand, in the field of cyber security defense system, the
publications went up in 2020 and dropped in 2021. 'ough
they dropped in 2021, they are still much higher than the
domain of 5G energy. Meaning is that there are more
interest on the cyber security defense system compared
with energy. 'e deep learning models are found to be
effective, efficient, and robust in managing energy in 5G
mobile network technology though not absolute as it is
found in Falkenberg et al. [118] that random forest is better
than the deep learning model in predicting power trans-
mission used for the transmission of data in 5G wireless
mobile network.

Figure 6 depicts the publication trend of the applications
of deep learning algorithms in mobile network domain. 'e
publications showed raising interest in mobile network
domain of the 5G wireless communications because the
papers keep increasing from 2017 to 2021.'e number of the
publications is more than that of energy/power transmission
and cyber security defense systems. 'e interest in mobile
network is more compared with the energy/power trans-
mission and cyber security defense systems.

Figure 7 shows the applications of the deep learning
algorithms in solving machine learning problems in man-
aging resource in 5G. It shows growing number of publi-
cations on yearly basis. 'e longest bar indicated the most
recent publications. 'is signifies that in recent times, there
is a lot of interest in the resource management of the 5G
wireless mobile network. However, it shows that the bar
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diminishes in 2021 indicating dropped in the number of
publications.

Figure 8 is showing the overall publications in the ap-
plication of deep learning algorithms in 5G wireless com-
munications. 'e papers steadily increase from 2017 to 2020
before it suddenly dropped in 2021. In general, the interest in
the adoption of deep learning in 5G wireless communica-
tions is increasing drastically based on paper published in
the last 3 years as shown in Figure 8.

4.3.LearningParadigm. Figure 9 is a taxonomy created from
the data collected from the papers analyzed. 'e review
article only used the data found in the applications of deep
learning in 5G wireless communications. 'e learning
paradigm for the 5G wireless communication is shown in
Figure 8 forming taxonomy of the learning paradigm and the
deep learning algorithms architecture associated with each
learning paradigm. Variants of deep learning architecture
such as CNN, GAN, AE, LSTM, DRL, hybrid deep learning,
and DDNN are used for different learning paradigms.

It is indicated that the supervised learning has the
highest number of deep learning variants which found to be
applied in solving machine learning problems in 5G wireless
communications showing that researchers heavily depend
on the supervised learning for solving problems in 5G
wireless network using different architectures of the deep
learning algorithms. 'is is likely because of the availability
of 5G wireless communications data having input and
outputs. 'e multitasking learning received the lowest at-
tention from the researchers likely because of limited need
for multitasking learning in 5G wireless communications.
'ough multitask learning is not needed for 5G [119], it is
needed in 6G-enabledMEC [120]. A lot of intensive work on
multitasking in 5G wireless communications is required
because of the limited number of publications found in the
literature.

5. Challenges and Future Perspective

Despite the tremendous successes achieved in adopting deep
learning architecture to solve problems in different domains
of 5G wireless mobile network, yet, there are unresolved
challenges. In this section, the challenges are discussed and
alternative approaches to solve the challenges in the future
are suggested.

5.1. Lack of Freely Available Large-Scale Data. In machine
learning especially data analytic involving deep learning
algorithms, large-scale dataset is key component. 'e per-
formance of the deep learning algorithms in data analytic
heavily depends on the scale of the available datasets.
However, it is found that at present, there are no publicly
available 5G large-scale data for benchmarking deep
learning algorithms in 5G [15]. 'is is a challenge to the
research community as it will definitely limit the number of
research studies to be conducted by researchers and limit the
study due lack of sufficient data. 'e lack of benchmark data
set for 5G can hinder the basic foundation of proposing and

evaluating new deep learning approach in solving problem
related to large-scale learning in 5G wireless mobile network
domain. In [30, 121], limited amount of data hindered large-
scale study. 'erefore, we propose research studies to de-
velop a reliable repository for 5G large-scale data set to be
available to researchers freely.

5.2. Complexity Constrain. In practice, machine learning
mainly involved two stages, namely, training and testing.
High complexity typically arises from the training phase of
the machine learning compared with the testing phase of
the machine learning process. In mobile terminal, there is
the challenge of energy constrain and computational
complexity constrain. 'erefore, in this situation,
deploying both the training and testing phase of the ma-
chine learning to the mobile terminal will result in high
complexity in addition to the mobile terminal energy
constrain which will further compound the challenge. As
such, it is recommended for researchers to deploy only the
testing phase of the machine learning systems to the shirt-
pocket-sized mobile terminals [4].

5.3. Comparative Study. It is found that researchers mainly
used single deep learning framework for implementing
solutions, therefore limiting the study to the performance
of a particular framework without subjecting comparative
performance evaluation of the available deep learning
frameworks. For instance, Maimó et al. [76] evaluated
only Tensorflow without the comparative study of dif-
ferent deep learning frameworks. To determine the op-
timum suited deep learning framework, it is required to
perform a comparative study to find the best deep learning
framework with the highest performance in terms of
processing [76].

5.4. Obsolete Security Protection Mechanism. 'e cyberse-
curity defense system of the 5G technology comes with new
challenges as the current approaches used in protecting the
mobile technology will become absolute because of the new
advance features that 5G comes with. Typically, the 5G has
added features of technology, and pattern of the intrusion by
the hackers will change as a result of the 5G technological
development. It is recommended that the existing cyber-
security defense be adapted to accommodate the new fea-
tures of the 5G technology to keep protecting the system
[76].

5.5.HighVolumeofData. One of themain component of the
5G technology is the mmWave frequency communication. It
delivers large-scale data at high rate for accommodating the
uncompressed 4K UHD video as well as different consumer
electronic devices that requires high throughput [122]. 'e
data rates in 5G are 1000 times more than those in 4G [123].
'e high volume of data means increasing space for data
storage, processing, analytics, and mining which in turn
increases hardware cost. 'is has automatically rendered
shallow machine learning algorithms absolute. Now, it is
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suggested that the deep learning algorithm with improve
training speed should be considered in the future for pro-
cessing data generated from 5G technology.

5.6. 5G Cybersecurity Defense System Is Vulnerable. 'e
cybersecurity defense system for the 5G wireless mobile
network heavily relied on machine learning for the de-
velopment of the 5G cyber defense system. However,
machine learning models are at safety risk. Developing the
cyber defense system based on machine learning models is
susceptible to vulnerabilities. 'e vulnerability of the
learning system outlined by Pitropakis et al. [124] is as
follows: the data for the training are prompt to poisonous
injection by inserting Trojan horse into the machine
learning model. 'e learning system is prompt to evasion
attack at the testing phase to produce erroneous security
alarm. 'e defense mechanism can be attacked by
bypassing it to increase false negative or at the same time
increase false positive and false negatives. Ftaimi and
Mazri [125] pointed out that the deep learning models are
vulnerable to adversarial attacks. We suggest that the
future cybersecurity defense system for 5G wireless mo-
bile network should be made to be robust by integrating
with the mechanism to detect a possible backdoor attack
on the learning systems and detect adversarial attacks on
the cyber security defense system. 'e activation clus-
tering methodology proposed by Chen et al. [126] can be
applied to remove backdoor in the cybersecurity learning
system for 5G wireless mobile network.

5.7. Restriction in 5G-EnabledApplication. 'e development
of the 5G-enabled applications like the vehicular network is
restricted by cellular spectrum and energy constraints in the
vehicular networks [42]. Massive and rigorous research
studies are required to unravel the restrictions in the 5G-
enabled applications.

5.8. 5G Ecosystem. 'e directional accuracy for a secured 5G
ecosystem is yet to attain optimum. AS such, room for im-
provement still exists requiring further research to close the gap
by developing secured 5G into mobile edge computing, core
slicing, and radio access network. It is recommended to include
traffic behavior learning in training the learning system in real
time based on reinforcement learning and recurrent learning
[98]. It should be extended to 6G [127].

5.9. Privacy. Collecting system logs from the live 5G wireless
communication system can be difficult because of the issue
of privacy, network disturbance, and repeated scenarios (see
Sundqvist et al. [79]).'e live data on the 5G wireless mobile
network contain user data that are confidential in nature, in
which not all users may like to expose it to third party. 'e
systematic deep learning approach to conceal data confi-
dentiality while processing the live 5G wireless network data
remains an open challenge. 'erefore, we have this research
question for researchers:What is the systematic deep learning
approach to conceal data confidentiality before, during, and
after modeling?

Table 2: Summary of different deep algorithms in different aspects of 5G wireless network.

Domain CNN DRL DDNN GAN Autoencoder LSTM/
DRNN Hybrid algorithm

Resource
management

Bega et al.
[26]; Huang
et al. [28];

Godala et al.
[31]

Dai et al. [40]; Li et al.
[44]; Pradhan and Das
[48]; Zhao et al. [49];
Ho et al. [50]; Tang

et al. [47]; Abiko et al.
[56]

Kim et al. [92];
Chergui and

Verikoukis [99];
El Boudani et al.
[97]; Ali et al.

[100]

Abbas
et al.
[90]

Abidi et al. [70]

Energy/
power
transmission

Dong et al. [41]; Xia
et al. [45]; Saeidian
et al. [55]; Yu et al.
[104]; Giannopoulos

et al. [57]

Saetan et al. [93]
Liu et al. [82];
Memon et al.

[84]
Luo et al. [69]

Network

Gante et al.
[27]; Klus
et al. [32];
Alhazmi
et al. [33];
Guan et al.

[37]

Klautau et al. [15];
Ning et al. [42];

Sadeghi et al. [43];
Shahriari et al. [39]; Yu
et al. [9]; Xie et al. [51];
Li and Zhang [52];
Mismar et al. [54];

Cheng et al. [36]; Gu
et al. [58]

Butt et al. [95];
Sim et al. [96]

Razaak
et al.
[89]

Kim et al.
[62]; Lei et al.

[61]

Ozturk et al.
[81]; Pang

et al. [12]; Yu
et al. [9];
Chen et al.
[83]; Gumaei
et al. [85]

Huang et al. [68]; Luo
et al. [67]; Sundqvist
et al. [79]; Clement
et al. [71]; Kaya and
Viswanathan [73];

Khan et al. [72]; Dinh
et al. [59]; Zhang et al.

[74]

Cyber
security
system

Hussain et al.
[30]; Doan
and Zhang
[34]; Xu et al.

[38]

'antharate et al.
[98]; Rathore
et al. [101]

Ullah et al.
[86]

Maimó et al. [76];
Maimó et al. [78]; Liu
et al. [116]; Sedik et al.

[75]

Signal He et al. [29]
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Table 3: Summary of the contributions of the applications of deep learning 5G.

References Mobility level Deep learning architecture Main contribution

Dong et al. [41] Mobile edge DRL Minimizes normalized energy consumption with less
complexity

Gante et al. [27] Outdoor Temporal CNN Reduces the error of non-line-of-sight millimeter wave outdoor
positions

Huang et al. [68] Outdoor CNN-LSTM Improves traffic loads forecasting accuracy over baseline
algorithms

Huang et al. [28] User group CNN Reduces complexity of optimization and reduce computational
time

Kim et al. [92] User group DDNN Improves performance of cellular network while reducing
computational time and complexity

Kim et al. [62] Individual Autoencoder Deep-SCMA scheme performs better than conventional
methods in terms of bit error rate and computational time

Klautau et al. [15] Outdoor DQL Model channel and mobility
Lei et al. [61] Individual SSAE Improves the performance of cache

Luo et al. [67] Outdoor and
indoor CNN-LSTM Converges fast in predicting channel information

Luo et al. [69] User group CNN-DQL Maximizes power transmission
Maimó et al. [76] Outdoor DBN-LSTM Detects symptoms on traffic flow
Maimó et al. [78] Outdoor DBN-LSTM Integrates MEC in traffic flow for 5G

Ning et al. [42] Vehicular
network DRL Minimizes offloading cost and maintains user latency constrain

simultaneously

Ozturk et al. [81] Outdoor Stacked LSTM Potential for holistic handover management for 5G wireless
network

Pang et al. [12] Individual LSTM 'e intelligent framework reduces transmission delay
Razaak et al. [89] Outdoor GAN Reduces efforts of human intervention

Sadeghi et al. [43] User group DRQL Provides fast computational time and reduces complexity and
requirement for memory

Shahriari et al. [39] Outdoor DRL It was found that the communication load and caches misses are
reduced with limited system overhead

Sundqvist et al. [79] Individual Adaboosted ensemble
LSTM Detects anomalies in random access network very fast

He et al. [29] Outdoor CNN Detecting of signal interference with less computational
complexity

Li et al. [44] User group DQN Effective chaining
Xia et al. [45] User group DQN Reduces energy cost and delay experience by users
Saetan et al. [93] Outdoor DDNN Predicts power factor
Pradhan and Das [48] Individual RL Provides packet drop probability and better resource utilization
Zhao et al. [49] Outdoor RL Fast response to network demand
Ho et al. [50] Outdoor DQN Solves the problem of base station allocation
Yu et al. [46] Outdoor DQN Searches for optimal deployment location with high speed

Tang et al. [47] Outdoor DQN Improved network performance based on throughput and
packet drop rate

Chergui and
Verikoukis [99] Outdoor DDNN Estimates slices resources

El Boudani et al. [97] Outdoor DDNN Predicts 3D position of mobile station
Xie et al. [51] Outdoor DQN Improves efficiency of initial window decision
Hussain et al. [30] Outdoor CNN Detects denial of service with high accuracy
Butt et al. [95] Outdoor DDN Estimating user equipment positioning
Godala et al. [31] Outdoor CNN Estimates channel state information
Li and Zhang [52] Outdoor DRL Improves quality of service
Yu et al. [53] Outdoor DRL Improves energy efficiency
Yu et al. [9] Outdoor LSTM Resource allocation in TV broadband services
Liu et al. [82] Outdoor LSTM Predicts hotspot for small virtual cell
Mismar et al. [54] Outdoor DQN Signal to interference plus noise ratio improvement
Sim et al. [96] Outdoor DDNN Selection of beam
Doan and Zhang [34] Outdoor CNN Detects anomaly in 5G network
Memon et al. [84] Outdoor LSTM Improves power savings and predicts discontinue reception
Klus et al. [32] Localization CNN Predicts user localization and reduces unnecessary handover
Saeidian et al. [55] Outdoor DQN Improves data rate at the edge and reduces power transmitted
'antharate et al. [98] Outdoor DDNN Detects security thread
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5.10. Complexity. 'e complexity of the cost values of the
reflection for anticipatory resources orchestration in-
creases as it moves towards the edge. 'e ratio of 3 to 1

has been quantified between the operational expenses at
the cloud radio access network with respect to the core
[26].

Table 3: Continued.

References Mobility level Deep learning architecture Main contribution
Abbas et al. [90] Outdoor GAN Manages slice
Abiko et al. [56] Outdoor DRL Allocates radio resource without change in the number of slices
Alhazmi et al. [33] Outdoor LeNet-5 Detects 5G signal from cellular system environment

Chen et al. [83] Outdoor LSTM Predicts traffic flow while maintaining low complexity and
running time

Abidi et al. [70] Outdoor Metaheuristic-based
DBN+ANN Provides 5G network slicing

Liu et al. [116] Outdoor YOLOv3 + deep SORT Improves multiple people detection and monitoring
Ahmed et al. [35] Outdoor CNN Improves efficiency in spectrum allocation
Ali et al. [100] Outdoor DNN Efficient resource allocation
Cheng et al. [36] Outdoor CNN Models mmWave for 5G communications
Clement et al. [71] Outdoor CNN+DDNN+LSTM Modulation classification in 5G wireless network
Giannopoulos et al.
[57] Outdoor DQN Enhances energy efficiency in 5G cognitive

Gu et al. [58] Outdoor DNR Improves quality of service and shortens convergence time
Guan et al. [37] Outdoor CNN Predicts network traffic flow with limited dataset
Gumaei et al. [85] Outdoor DRNN Detects drones from radio frequency signals
Rathore et al. [101] Outdoor DNN Enhances security of intelligent 5G-enabled IoT
Ullah et al. [86] Outdoor DRNN Predicts clone applications from android and application stores
Xu et al. [38] Outdoor CNN Detects adversarial attacks in 5G-based CNN

Yu et al [53] Outdoor DRN Reduces time required to execute computational offloading,
resource allocation, and caching placement

Dinh et al. [59] Outdoor DQN Improves quality of service and enhances throughput
Khan et al. [72] Outdoor LSTM-SVM Improves congestion control in 5G/6G network
Kaya and
Viswanathan [73] Outdoor LSTM-AE LSTM-AE reduces overhead and enhances signal-to-noise ratio

Zhang et al. [74] Outdoor DRL-LSTM 'e DRL-LSTM addresses the routing and link scheduling in
mmWawe

Sedik et al. [75] Outdoor CNN-LSTM Detects altered biometrics

Table 4: 'e summary of deep learning algorithm characteristics and learning suitability in 5G.

Deep learning
algorithm Learning suitability Application in 5G

DRL Reinforcement

Energy consumption minimization, beam selection, load balancing scheme,
distributed offloading framework, service function chaining mapping, packet drop
probability and resource utilization, network slicing scheme; vehicles platooning

management, optimal locations deployment, time division duplex resource
allocation; initial window decision policy, quality of service, maximizing energy
efficiency, signal to interference plus noise ratio, improve data rate at the edge and

reduces power transmitted

CNN Supervised
Millimeter wave positioning, channel estimation, scalable caching scheme, signal
interference detector, denial-of-service detector scheme, predict user location,

detecting 5G signal

DDNN Supervised learning Pilot assignment in massive MIMO, power factor allocator, slices resources
predictor, 3D base station positioning system, beam selector, authentication scheme

Hybrid algorithm Supervised/unsupervised Mobile network traffic loads forecasting, channel state information prediction,
power transmission, cyber security system

Autoencoder Unsupervised/semisupervised Deep-SCMA scheme, cache scheme

LSTM Supervised
Holistic handover management, intelligent cache scheme; TV broadband allocation,
hotspot virtual small cell allocator, discontinue reception prediction, predict traffic

flow

GAN Semisupervised and
unsupervised learning 5G-enabled drone monitoring system; slice resource management
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6. Conclusions

In this paper, we present review article on the adoption of deep
learning architecture to solvemachine learning problems in 5G
wireless communications and 5G-enabled IoV. 'e advances
made on the applications of deep learning in 5G network are
presented in a concise form. Different deep learning archi-
tectures used in solving problems in the 5G wireless com-
munications were unrevealed such the CNN, LSTM, DRL,
GAN, DDNN, and hybrid deep learning.'e publication trend
shows that the research area is attracting attention with the
highest number of publications in the last three years. Tax-
onomies were created for the deep learning in 5G network and
the domain of applications. Deep learning algorithms have
started making inroad in 5G-enabled IoV especially federated
learning. 'e challenges in the existing approaches for solving
problem in 5G network based on deep learning algorithms and
promising directions as new perspective for solving the
identified challenges are presented in the article.'e article can
be used by new researchers as an initial reading material, and
established researchers can use the article to easily identify area
that requires further development of the research area that will
lead to the real-world practical application of deep learning
solutions for 5G wireless network [128–130].
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.e Internet of Vehicles (IoV) is a developing technology attracting attention from the industry and the academia. Hundreds of
millions of vehicles are projected to be connected within the IoV environments by 2035. Each vehicle in the environment is
expected to generate massive amounts of data. Currently, surveys on leveraging deep learning (DL) in the IoV within the context
of big data analytics (BDA) are scarce. In this paper, we present a survey and explore the theoretical perspective of the role of DL in
the IoV within the context of BDA. .e study has unveiled substantial research opportunities that cut across DL, IoV, and BDA.
Exploring DL in the IoV within BDA is an infant research area requiring active attention from researchers to fully understand the
emerging concept. .e survey proposes a model of IoV environment integrated into the cloud equipped with a high-performance
computing server, DL architecture, and Apache Spark for data analytics. .e current developments, challenges, and opportunities
for future research are presented..is study can guide expert and novice researchers on further development of the application of
DL in the IoV within the context of BDA.

1. Introduction

By 2025, the massive ecosystem of the Internet of .ings
(IoT) is projected to pave a smooth way for 100 billion
connections. .us, the IoT can revolutionize future indus-
tries [1]. .e IoT has been extended to the Internet of
Vehicles (IoV) [2] due to incorporation of intelligent
transportation systems for enhanced services [3]. .e IoV
allows vehicles to communicate with their internal and
external environments. .e communications of vehicles in
sharing information can be in a different form. For example,
the vehicles can communicate with sensors, road

infrastructure, vehicles, and the Internet [4]. .e building
blocks of the IoV are the connected vehicles. .e IoV
evolution is driven by the dynamic mobile communication
system with capabilities of gathering, sharing, processing,
computing, and securing the release of information [5].

Over 90% of road accidents are caused by human errors.
.is finding has prompted the emergence of autonomous
vehicles to eliminate drunk driving, sleeping while driving,
and human errors. As next-generation vehicles that usher in
a new frontier of vehicle revolution worldwide, autonomous
vehicles can reduce traffic congestion and improve energy
efficiency. Different vehicle manufacturing companies, such
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as Volkswagen, Waymo, Tesla, Hyundai, Mercedes Benz,
Baidu, BMW, and Ford, conduct test runs of autonomous
vehicles. .ese autonomous vehicles will be merged into the
IoV. Autonomous vehicles need to communicate with the
internal and external environments for safety and smooth
driving. .ese vehicles have attracted the attention of the
academia and the industry because of their positive impact
on the society [6]. Reference [7] argued that the autonomous
vehicle market is presently growing and is expected to hit
USD 131.9 billion in 2019.

Autonomous vehicles are expected to flood European
public roads by 2021 [2]. In China, 8.6 million autonomous
vehicles are anticipated to hit public roads by 2035. Out of
the 8.6 million vehicles, 3.4 million will be fully autonomous
while the others will remain semiautonomous [8]. In USA,
hundreds of autonomous vehicles are expected to start
operating on public roads in the near future. 25% of the
global automobile market between 2015 and 2040 is esti-
mated to be dominated by autonomous vehicles [8]
equipped with sensors for communications to realize the
IoV experience. Reference [9] pointed out that 200 sensors
are projected to be embedded in each vehicle in 2020 to cope
with the increasing communications with the environments.

.ese sensors are expected to generate massive amounts
of data. Reference [10] estimated that in 2021, 380 million
connected vehicles will be running on public roads, and each
was projected to generate 25GB of data every hour. Ref-
erence [5] argued that the IoV will generate information
more than the telecommunication industry. For instance,
the smart processes of collecting, processing, and releasing
dynamic traffic information emanating from various sources
within a city will require a petabyte-scale system. .erefore,
the IoV ushers in the big data arena.

Deep learning (DL) plays a critical role in big data analytics
(BDA) because of its capacity to process big data to uncover
knowledge from the complex system [11]. DL searches for the
network elements or features in respect of input data by
mimicking how human brain operates to generate the best
solution [12]. Different from conventional techniques, DL can
deal with raw natural data [13]. Deep neural networks have
wonmultiple awards in pattern recognition competitions [14].
In machine learning, DL is the most active theme in current
times [15]. DL is expected to record more number of successes
in the near future because its architecture requires minimal
human effort in engineering [13].

Despite the success of DL in different domains and the
unprecedented attention it currently receives from re-
searchers, the empirical exploration of DL in the IoV within
the context of BDA is highly limited in the literature. We
believe that exploring DL in the IoV within the context of
BDA can improve the effectiveness and efficiency of the IoV
as a key component in decision making. .e IoV is an
emerging concept in its early stage. .erefore, a theoretic
viewpoint is required to guide the effective empirical ap-
plications of DL in the IoV within the context of big data.

We present a survey and theoretical perspective leverage of
DL in the IoV within the context of BDA. .e intention is to
stimulate the research community to focus on exploring DL in
the IoV within the context of BDA. .is approach can unveil

valuable knowledge from the large-scale data expected to be
generated from the IoV. Exploring the theoretical aspect of big
data is crucial [16] for it is empirical application.

.e remainder of this paper is organized as follows.
Section 2 presents the rudiments of DL. Section 3 presents
the concept and new taxonomy of the IoV. Section 4 em-
phasizes the case studies of the IoV. Section 5 introduces the
BDA platform that supports DL in the IoV..e role of DL in
the IoV in the context of BDA is presented in Section 6.
Section 7 presents the proposed model of the IoV integrated
into the cloud equipped with a high-performance computing
server, DL models, and Apache Spark. Section 8 outlines the
research challenges and future research opportunities.
Lastly, the concluding remarks are presented in Section 9.

2. Deep Learning Architecture andApplications

In this section, we provide a brief description of the DL and
some major DL architectures and their variants given the
limited scope of this study. .e main application domain of
DL architecture is outlined. A simple taxonomy of the ar-
chitecture and applications of DL is presented in Figure 1.
.emajor DL architecture discussed is as follows: deep belief
network (DBN), generative adversarial network (GAN), and
convolutional neural network (ConvNet).

DL is the branch of machine learning that allows the
computers to learn from experience and comprehend the
hierarchy of a concept in the world [17]. DL includes
computational models that permit the composition of
multiple layers of processing elements to learn the repre-
sentation in datasets with multiple levels of abstraction. DL
uses the backpropagation algorithm to uncover complex
structure in large-scale datasets..eDL algorithms and their
architecture newly proposed in the literature are geared
toward minimal human effort in engineering [13].

2.1. Deep Belief Network. .e DBN architecture (Figure 2) is
a deep ANN that comprises a sequential arrangement of the
unsupervised restricted Boltzmann machine (RBM). We
discuss the basic concepts of the RBM for easy under-
standing of the DBN and how it works to achieve its goal.
.e RBM is the major building block of the DBN. .e RBM
is a stochastic two-layered ANN that has hidden and visible
layers, as shown in Figure 3. It is restricted because the
connection between neurons on the same layer is restricted.
.e data representation in the RBM occurs in the visible
units, and the learning that represents features capturing the
higher-order correlation in the experimental data occurs in
the hidden layer..e visible and hidden layers are connected
by a matrix of asymmetric weight W connections [18].

.e computation of the weights in the RBM assumes that
the probability of the distribution of input vector (x) can be
expressed as follows:

p(xw)|
1

Z(W)ℓ(x; W)
E, (1)

where Z (W) ℓ (x; W) is the normalized constant. In the
architecture of the DBN, the hidden layer of the RBM is
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visible to the subsequent RBM [19]. .e main idea of the
DBN is that the DBN weight W is learned by the RBM that is
defined by p(v|h, W) and the predistribution over the
hidden vectors p(h|W). Accordingly, the probability of
generating v can be expressed as follows:

p(v) � 􏽘 hp(h | W)p(v | h, W). (2)

When W is learned, p(v|h, W) is maintained. However,
p(h|W) is substituted by a superior model with better
performance of the aggregated posterior over the hidden
vectors [18].

.e weights of the DBN are learned using the contrastive
divergence approach to avoid being stuck in local minima
and to improve the speed of the convergence contrary to the
typical Markov Chain Monte Carlo approach [20]. .e
training of the DBN involves two phases, namely, unsu-
pervised and supervised. Unsupervised training is per-
formed by the contrastive divergence algorithm to
determine the initial weights using sample input data,
whereas supervised training is performed by the back-
propagation algorithm to obtain the final and optimal
weights [21, 22]. .e DBN can be used to reduce high-di-
mensional data to low-dimensional data without losing
accuracy [23].

2.1.1. Deep Recurrent Belief Network. .e DBN vanishing
gradient with increase in delay causes long delays when
learning. A deep recurrent belief network (DRBN) with
distributed time delay is proposed to avoid this problem. A
Gaussian network is applied to initialize the weights of every
hidden neuron. Markov ChainMonte Carlo is used to evolve
the dynamic Gaussian Bayesian network over the training
samples to initialize the weights of the hidden neurons [19].

2.1.2. Discriminative Deep Belief Network with Ant Colony
Optimization. .e DBN and the discriminative (D) feature
of backpropagation are combined to produce DDBN. .e
optimum parameter of the DDBN is selected automatically
without human intervention through ant colony optimi-
zation (ACO) to avoid the laborious trial and error in DDBN
parameter selection. .e resulting algorithm is the combi-
nation of DBN, D, and ACO to obtain DDBN-ACO [24].

2.1.3. Adaptive Fractional Deep Belief Network. Adaptive
fractional DBN (AFDBN) is another variant of the DBN. In
this variant, fractional calculus is used to generate the
learning weights to obtain an optimal weight suitable for
yielding optimum results. Learning by fractional theory is
conducted by derivative theory [25].

2.1.4. Quaternion-Improved Harmony Search Deep Belief
Network. Quaternion-improved harmony search (QHS) is
applied to fine-tune the parameters of DBN (QHS-DBN) in
quaternion search space. .e harmony search algorithm is
selected because of its efficiency in optimization. Moreover,
the harmony search algorithm updates probable solutions

one by one in a single iteration, not at once. .us, it is
suitable for the fine-tuning of the DBN parameters [26].

2.1.5. Self-Organizing Deep Belief Network. .e self-orga-
nizing DBN (SODBN) based on the growing and pruning
algorithm is the integration of the self-organizing ANN and
DBN. Different from the original DBN, the SODBN si-
multaneously considers its structure and learning algorithm.
.e best number of hidden layers and units can be deter-
mined automatically by the SODBN, and weight adjustment
is performed during the self-organizing structure dynamic
process [27].

2.1.6. Competitive Deep Belief Network. .e competitive
DBN (CDBN) is constructed by introducing a competitive
learning algorithm mechanism into the DBN. .e com-
petitive learning algorithm improves the discriminate in-
formation of the deep features among the groups [28].

2.1.7. Continuous Deep Belief Network. .e continuous
DBN (CoDBN) deals with the actual data instead of the
discrete data in the standard RBM..eCRBM is designed by
introducing zero-mean Gaussian noise to the visible layer of
the RBM. .us, the RBM can improve its capability to deal
with actual data. .e CoDBN is constructed by sequentially
arranging the CRBM and can work with continuous data
[21, 29, 30].

2.1.8. Cost-Sensitive Adaptive Differential Evolution Deep
Belief Network. .e cost-sensitive DBN (CS-DBN) with
adaptive differential evolution (ADE) is introduced to
eliminate the problem of classical DBN in dealing with
imbalanced data. .e DBN does not effectively work on
imbalanced data given that the DBN assumes equal cost for
every class. .e misclassification cost is optimized before
embedding into the DBN to create CS-DBN..e parameters
of the CS-DBN are updated using adaptive differential
evolution to construct CS-DBN-ADE [15].

2.2. Generative Adversarial Network. GAN, as shown in
Figure 4, is a class of feedforward ANN. It is composed of
two feedforward ANNs, namely, the generator (G) and
discriminator (D). .e two networks, G and D, compete
against each other. .e adversary D evaluates the quality of
the new candidate produced by G. .e G ANN model
generates forged data from random uniform space, whereas
D differentiates between the forged generated data and the
original data. .e distinguishing of the forged and original
data by the D ANN model assists G in generating data with
good precision without making reference to the original
data. .us, the G model is refined..is approach is the main
idea behind the GAN. G and D are deep ANN models
comprising many layers. .e connections in the deep ANN
model are conducted in such a manner that the output of the
neuron in each layer is the input of the neurons in the next
layer [31].
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.e objective of G is to learn the probability distribution
of the training data to generate forged data as close as possible
to the original data. On the contrary, the objective of the
adversarial D is to distinguish the forged data from the
original data. It is performed by penalizing the work of G in
generating forged data. .is process continues until G and D
improve their ability until an equilibrium is reached, where
forged and original data cannot be distinguished. G is trained
to deceive D to believe that the generated data are actual data.
.e training of G is performed by minimizing prediction
error, whereas that of D is performed by maximizing the
prediction error. .is approach has resulted in a competitive
battle between G and D. .e challenging issue in the training
of GAN is the lack of stability between its component net-
works. In training GAN, when the performance of G is
significantly better than that of D in the competition, the
complete GAN fails. In the initial stage, D gains superior
performance to G. G has to struggle to compete with D [31].
.e core GAN capability includes image synthesis [32]. GAN
is also effective in fraud detection [33].

2.2.1. Coupled Generative Adversarial Network. .e coupled
GAN (CoGAN) mitigates the requirement of the tuples of
the corresponding images in the dataset with a different
domain. .e CoGAN has the ability to learn the joint
distribution without requiring tuples for the corresponding
images. .e joint distribution can be learned with samples
that emanate from marginal distribution. Weight-sharing
constraint is enforced to limit the capacity of the network
and provide preference to the joint distribution solution
over the marginal distribution product [34].

2.2.2. Coupled Generative Adversarial Stacked Autoencoder.
Coupled generative adversarial stacked autoencoder
(CoGASA) is introduced to overcome the limitations of
CoGAN, such as the inability to handle noisy dataset, high
computational cost, and lack of potential for real-world
applications. .e CoGASA can transfer data from one
domain to another without difficulty in handling noisy
dataset, and it has less computational cost [35].

2.2.3. Stacked Generative Adversarial Networks. Stacked
GAN (SGAN) comprises a stack of GAN in a top-down
hierarchical representation. Each GAN in the stack is

learned to generate low-level representation for high-level
representations. .e architecture also has conditional and
entropy loss for using conditional information and maxi-
mizing lower bound variation on the conditioned entropy
belonging to the G outputs [36].

2.2.4. Conditional Generative Adversarial Network.
Conditional GAN (CGAN) is a variant of GAN that in-
troduces a condition to the discriminator and generator..e
CGAN is achieved by feeding extra information to the
discriminator and the generator as an extra layer of input.
.e condition introduced to the GAN has the advantage of
providing representation for multimodal data generation
[37].

2.2.5. Deep Convolutional Generative Adversarial Network.
Deep convolutional GAN (DCovGAN) is created to extend
the supervised ConvNet to unsupervised deep Con-
vNet +GAN. .e spatial down- and upsampling operators
in the DCovGAN use the stride and fractional stride con-
volutions for learning during the training. .e DConvNet
has strong DL architecture for unsupervised learning [38].

2.3. Convolutional Neural Network. ConvNet was proposed
in [39] and subsequently modified as LeNet-5 to improve its
effectiveness and efficiency [40] for the classification of
handwriting digits. .e architecture of the ConvNet com-
prises input, hidden, and output layers, as shown in Figure 5.
.e hidden layer of the ConvNet is composed of con-
volutional, pooling, fully connected, and normalized layers,
and individual features are usually extracted by different
layers of the ConvNet in a high-dimensional structure [41].
When an input is supplied to the ConvNet, convolutional
operations are applied to the input by the convolutional
layer before the result of the operations is passed to the next
layer in the ConvNet hidden layers. Each neuron in a feature
map is connected to the receptive field of the neuron in the
previous layer. .e response of a neuron is imitated by the
convolution to the visualization of a stimulus.

.e role of the convolutional layer is to reduce the high
number of free parameters required for training the Con-
vNet, especially the large input associated with images..us,
the ConvNet allows the entire network to be deep with a few
parameters. .erefore, the problem of vanishing gradient
associated with training the classical deep ANN is resolved
using the backpropagation algorithm. Global or local
spooling may be included in the convolutional network. .e
convolutional network integrates the results yielded by the
cluster of neurons into a single neuron at the subsequent
layer. Maximum (max) or average pooling can be used from
each of the clusters at the previous layer [40].

.e fully connected layer in the ConvNet connects
each neuron in one layer to the neuron in another layer.
.e weights of the ConvNet are shared in the convolu-
tional layer to reduce memory footprint and improve
performance [40]. .e ConvNet requires activation
function to introduce nonlinearity in the network for
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detecting nonlinear features. .e typical activation
function for ConvNet includes the following: ReLU, Tanh,
and Sigmoid [42].

2.3.1. Dilated Convolutional Neural Network. .e dilated
ConvNet (DConvNet) has an additional hyperparameter
introduced to the convolutional layer of the ConvNet. In the
DConvNet, zero is introduced between the filter elements to
increase the size of the network receptive field. .is ap-
proach can provide room for the DConvNet to cover a large
amount of relevant information [43].

2.3.2. Recurrent Convolutional Neural Network. .e re-
current ConvNet (RConvNet) has the capacity to use large
input; however, the capacity of the RConvNet is limited.
Different from the classical techniques, the RConvNet does
not rely on segmentation or task-specific features. As long as
the size of the context increases with the built-in recurrences,
the system adapts to detect and correct its own errors [44].

2.3.3. Tiled Convolutional Neural Network. .e tiled Con-
vNet (TConvNet) tiles and multiplies feature maps to enable
the model to learn different types of invariance. .e tiling
and multiplication of the feature maps allow the model to
learn rotational and scale-invariant features contrary to the
ConvNet [45].

2.3.4. Network in Network Convolutional Neural Network.
.e network in network ConvNet (NINConvNet) uses
micro networks in place of the convolutional layer linear
filter. .is approach provides the NINConvNet the capa-
bility of approximating abstraction representation more
than the classical ConvNet. .e main building block of the
NINConvNet is the micro network; the stack of the micro
networks forms the NINConvNet [46].

2.3.5. Symmetric Convolutional Neural Network. .e sym-
metric ConvNet (SConvNet), contrary to the ConvNet,
imposes convolution and deconvolution operations in a
symmetric approach to improve segmentation performance.
.e SConvNet can also perform automatic mandible seg-
mentation from the original data [47].

2.4. Other Deep Learning Architecture

2.4.1. Deep Echo State Network. .edeep echo state network
(DeepESN) is the extension of the ESN architecture. Con-
trary to the classical ESN, the recurrent component of the
ESN is organized into hierarchical structure as a stack of
reservoir layers. Subsequently, the architecture is referred to
as the DeepESN [48, 49].

2.4.2. Deep Recurrent Neural Network. .e basic recurrent
neural network (RNN) is a neural network architecture that
accepts the set of input sequence and computes the hidden
and output vector sequences by iterations. For a given input
vector sequence x� (x1, . . ., xt), hidden vector sequence
h� (h1, . . ., ht), and output vector sequence y� (y1, . . ., yt),
the iterations start from T�1 to t. However, the deep RNN
(DRNN) is built by stacking multiple RNN hidden layers on
the top of one another. In this approach, the output sequence
of one layer forms the input sequence of the subsequent layer
[50, 51].

2.4.3. Deep Feedforward Neural Network. .e deep feed-
forward neural network (DFNN) is the architecture of the
ANN that has multiple hidden layers. It is different from the
shallow ANN composed of only three layers, namely, input,
hidden, and output. .e DFNN is carefully constructed to
avoid the local minima problem. .e number of hidden
layers increases the complexity of the DFNN because many
parameters are required to be tuned. However, the DFNN
can effectively deal with large-scale datasets because recent
empirical and theoretical works indicated that local minima
are not a serious issue [13].

2.5. Application of Deep Learning Architecture. In this sec-
tion, the applications of the DL architecture are briefly
presented. Recently, the application of DL in image analysis,
speech recognition, and text understanding has demon-
strated outstanding success. .e DL applies the supervised
and unsupervised learning techniques for learning multiple-
level representation as well as features in hierarchical ar-
chitectures to solve classification and pattern recognition
problems [15]. .e DL architecture presented in the pre-
vious section has demonstrated excellent performance in
different application domains. .e DL architecture can be
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applied in image processing [52, 53], natural language
processing [54, 55], video analysis [56], text analysis [57],
scene [57], object detection [58, 59], speech processing
[60, 61], and dimension reduction [23].

3. Internet of Vehicles

.e great revolution that escalated from the Internet has
provided opportunity for connecting people at an excep-
tional magnitude and speed. .e success recorded from the
Internet revolution brought about significant opportunity
that is presently changing the methods by which various
objects communicate at present. .is rapid development
considers the interconnection between objects to realize a
smart city, where a device interacts with other connected
devices. .is communication is achieved through seamless
ubiquitous sensing, emerging technologies, and availability
of a scalable platform for large data analysis. At present,
objects, such as smartphones, vehicles, laptops and tablets,
TVs, and other handheld devices, change our surround-
ings, making them very interactive and informative
[62, 63]. .rough modern communication, smart devices
create a network of interconnected objects with real-time
interactions. .e growth in the number of devices and the
nature of the global network architecture, which includes
all existing heterogeneous networks, has shaped our ex-
perience. .is universal network of things has been
identified as a future Internet presently shaped as the IoT
[64]. .e IoT serves as an enabling environment where
sensors and actuator objects interact seamlessly and pro-
vide progressively more suitable platforms for data ex-
change. .e recent advancement and adaptation of various
wireless communication technologies have positioned IoT
to be a promising technology, which benefits from the
potential prospects provided through Internet technology.
.e IoT technology has brought about the development of
intelligent systems, which include but are not limited to
smart retail, smart water, smart energy, smart grids, smart
healthcare, smart homes, and smart transportation [62, 63].
.e IoT has created interfaces for smart devices to be
connected to a global network with the ability to render
services from other connected devices [65]. .e IoTenables
seamless integration of heterogeneous network of devices
through the use of intelligent interfaces. .erefore, one of
the key objectives of the IoT is interoperability among
heterogeneous devices [62, 64]. .e emergence of IoT
technology has revolutionized many new research and
development areas.

.e IoV is an innovation activated by IoT, and this
domain evolves from vehicular ad hoc networks (VANETs)
to build smart vehicles within smart cities [66]. At present,
the number of connected vehicles has witnessed exponential
growth, and according to [67], a significant number of
vehicles are expected to have an Internet connection.

.e global vehicular traffic was projected to escalate to
300,000 exabytes toward the end of 2020. .is significant
increase in vehicular data results from the advancement in
vehicular telematics applications, including in-vehicle in-
fotainment and ITS [68]. Conventional VANETs use vehicle

as a node for transmitting or relaying traffic information
between vehicles and infrastructures using vehicle-to-ve-
hicle (V2V) and vehicle-to-infrastructure (V2I) communi-
cations. Many vehicular applications, including ITS services
and safety application, have leveraged the potentials offered
by the increasing connectivity of modern vehicles. For in-
stance, V2V communication enables sharing of information
among vehicles for safety communication propagation.
Conversely, V2I communication enables the collection of
information from different infrastructure facilities [68]. .e
IoV can be visualized using the three layers shown in
Figure 6. .is architecture considers the IoV from the
network connection perspective [5].

.e taxonomy of the IoV communication system with
various information flows is presented in Figure 7.

.e taxonomy of IoV communication is shown in
Figure 7. .is taxonomy presents the different types of
interactions that exist between vehicles and other devices. In
addition, it identifies the information flow in each IoV
communication category as well as the emerging technol-
ogies utilized by each communication type. .e type of the
communication involved vehicle-to-vehicle communica-
tions, vehicle-to-infrastructure communications, vehicle-to-
roadside unit communications, vehicle-to-sensor (V2S)
communications, vehicle-to-personal device (V2P) com-
munications, vehicle-to-pedestrian (V2D) communications,
and vehicle-to-home (V2H) communications.

4. Case Studies

.is section briefly points out case studies involving IoV.
Five case studies are presented for readers to appreciate the
level of progress in the concept of IoV. .e summary of the
case studies is presented in Table 1 and discussed in the
subsequent section.

4.1. 5G Internet of Vehicles. A 5G IoV has been built by
Nokia in Wuzhen Town, China. .e 5G IoV has a 5 km test
route that can be used by three vehicles. Two different
scenarios are tested on the route..e first scenario shows the
vehicle signaling warning while slowing down at a time
when a different car at 1000m away makes an emergency
stop. .e second scenario shows the capability of the vehicle
to issue accurate instructions on changing or packing a lane
in complex circumstances. .e Nokia 5G IoV solution
Car2X has improved the current 1 s delay to less than 20ms
between the vehicle and the mobile communication net-
works [69].

4.2. Internet-of-Vehicle Platform of Huawei Technologies.
In promoting innovation in the IoV, Huawei technologies
have developed a connected car solution on its plat-
form—OceanConnect IoV. .e connected car solution
provides transport-oriented services, such as data, in-
terconnection, fleet, and security. It has a secure network
access. .e connected car solution generates new value
stream and flexible adaptation for multiple terminals, as
well as the collection and analysis of large-scale data. .e
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connected car solution has been commercialized with
FAW group, including Kingdom of Saudi Arabia Zain
and Malaysia Axiata. .e connected car solution has won
the best “IoV Innovation Award at World Intelligent
Vehicle Conference 2017” [70]. A DS 7 CROSSBACK
vehicle is developed on the OceanConnect IoV platform
launched in China and Europe. It is the first vehicle
developed on the OceanConnect IoV platform. .e
OceanConnect IoV platform can support hundreds of
millions of connections [74].

4.3. Cadillac Vehicle-to-Vehicle Communications. Cadillac
has announced the introduction of V2V communication
in CTS-performance sedan since March 2017. .e V2V
technology equips vehicles to share information about the
possibility of a hazard. .e Cadillac V2V uses a dedicated
short-range communication and GPS. .e Cadillac V2V
technology operates on the 5.9 GHz spectrum. It can
handle 1000 messages in each second from vehicles within
almost 1000 feet. .e Cadillac V2V technology scans the
vicinity to track the position, direction, and speed of other
vehicles. Subsequently, the driver is warned on potential
risks ahead. .e communication within the vehicles can
only occur among vehicles with compatible V2V com-
munication technology. .e V2V technology is currently
included in Cadillac 2017 as a standard feature in the USA
and Canada [72].

4.4. Fatal Accident of Autonomous Vehicle. In March 2018,
an experimental autonomous Uber vehicle driving on a
public road of Arizona struck a pedestrian to death. .e
Uber vehicle was driving in autonomous mode..e accident
is believed to be the first recorded fatal accident involving a
full autonomous vehicle. .e unfortunate incident killed
Elaine Herzberg, 49 years old, while riding on a bicycle
across the street. .e speed of the Uber autonomous vehicle
was estimated at 40mph within a 35mph zone, as revealed
during the police preliminary investigation. Police claimed
that no evidence showed that the autonomous vehicle
slowed down before striking Elaine Herzberg [73].

4.5. Test Run of Autonomous Vehicles on Public Roads. In
April 2017, over 50 Chevrolet Bolt autonomous vehicles
were given a test run on the public roads of San Francisco,
Scottsdale, Arizona, and Metro Detroit. .e test run of the
autonomous vehicles was conducted by the Cruise auto-
mation and General Motors engineers [71].

5. Big Data Analytic Platforms That Support
Deep Learning in the Internet of Vehicles

.e processing of the large-scale data generated from the
IoV environment from various sources, such as cameras and
sensors, is required. DL can be used for the processing of the
IoV big data. BDA platforms that support DL are required
for the analysis of IoV BDA. In this section, we present the
Apache Spark that supports DL and other BDA platforms
that support machine learning, such as Hadoop, AzureML,
and BigML (Figure 8). DL is a branch of the machine
learning that can solve classification, prediction, and clus-
tering problems in IoV environments.

5.1. Apache Spark. Spark is a big data processing frame-
work based on streaming, machine learning, and graph
processing [75]. It is an open-source framework and was
developed to overcome some of the limitations of Hadoop
MapReduce. Spark uses memory based on processing large
amounts of data, and it is faster in terms of data processing
than MapReduce framework. As a result, the data are
stored in memory using resilient distributed datasets.
Moreover, Spark supports real-time analysis. Reference
[76] presented Spark’s open-source distributed machine
learning library, MLlib. Several learning settings exist in
MLlib to improve the functionality efficiently, such as
optimization, linear algebra primitives, and underlying
statistical methods. Moreover, MLlib provides a high-level
API and several languages that leverage Spark’s rich
ecosystem to simplify the development of end-to-end
machine learning pipelines. Reference [77] discussed the
DL over Apache Spark for mobile BDA. .e authors
showed how Spark can perform distributed DL on Map-
Reduce. Each partition of the deep model is learned by the
Spark worker for the entire mobile big data. .en, the
parameters use the master deep model of all partial models
through averaging.

5.2. Hadoop. Hadoop has emerged as an important
framework for “distributed processing of large datasets
across clusters of machines” [78]. Many Hadoop-related
projects have been developed over the years to support the
framework, such as, Hive, Pig, Tez, Zookeeper, and Mahout.
Mahout is one of the distributed linear algebra frameworks
for scalable machine learning [79]. Moreover, “scalable
advanced massive online analysis” is an open-source plat-
form for data mining and machine learning similar to
Mahout, which supports Hadoop for streaming big data
processing [80]. Discussion on Twitter’s integration of
machine learning into the Hadoop platform was done by
[81]. .e main idea is to utilize Pig extensions to offer
predictive analytic capabilities. .e authors identified var-
ious techniques related to stochastic gradient descent for
supervised classification through online learning and en-
semble methods, which can scale out to large amounts of
data. Recently, DL networks based on backpropagation are
implemented with one hidden layer in Mahout to learn
arbitrary decision boundaries. Moreover, different machine

ClientSystem Connection System
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(IoV)

Cloud System

Figure 6: IoV three-level architecture.
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Table 1: Summary of the case studies.

Work Use case Description Application

[69] IoV route used by three
vehicles Nokia built 5G IoV in Wuzhen 5G IoV

[70] IoV Huawei technologies developed connected car solution for advancing IoV Connected car solution

[71] Chevrolet Bolt
autonomous vehicles

50 Chevrolet Bolts autonomous vehicles were given a test run on the public
roads of San Francisco, Scottsdale, Arizona, and Metro Detroit Autonomous mode

[72] V2V Cadillac introduced V2V technology in Cadillac 2017 model Cadillac V2V

[73] Uber autonomous
vehicle driving An autonomous vehicle on test drive struck a pedestrian to death Autonomous mode
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learning algorithms, including neural networks, and parallel
programming methods, such as MapReduce, are mapped to
improve processing speed.

5.3. AzureML. AzureML is a collaborative machine learning
platform based on predictive analytics in big data, which
allows easy development of predictive models and APIs.
Numerous unique features, such as easy operationalization,
versioning collaboration, and integration of user code, are
provided by AzureML [82]. Reference [83] offered a tech-
nique for cloud-based AzureML named Generalized Flow,
which allows binary classification and multiclass datasets and
processes them to maximize the overall classification accu-
racy. .e performance of the technique is tested on datasets
based on the optimized classificationmodel..e authors used
three public datasets and a local dataset to evaluate the
proposed flow using the classification..e result of the public
datasets has shown an accuracy of 97.5%. Furthermore, the
concept has become indispensable on big data technologies.
For example, AzureML supports neural network for regres-
sion, two-class classification, and multiclass classification.

5.4. BigML. BigML provides highly scalable ML and pre-
dictive analysis services on cloud (Martin & Ortega). .e
goal of BigML is to assist in developing a set of services given
that it is easy to use and seamless to integrate. BigML has
been used in many studies for predictive analytics and DL
because of its robustness and simplicity in providing a user-
friendly interface. For example, a study on the distinguishing
features of human footprint images is conducted by [84] to
offer deep analysis using BigML. .e idea is to exploit the
concept of the human footprint for personal identification
using many fuzzy rules for predictive analysis. .e verifi-
cation of 440 footprint images is conducted for data quality.
GPUs have been applied to speed up the performance.
Moreover, [85] presented a predictive analysis on the most
popular place for dengue in Malaysia to obtain an early
warning and awareness to people using BigML platform..e
study is based on the decision tree algorithm model, which
builds on BigML to support classification. Moreover, [86]
analyzed the game features and acquisition, retention, and
monetization strategies as primary drivers of mobile game
application success.

6. Harnessing Deep Learning in the Internet of
Vehicles in the Context of Big Data Analytics

In the IoV, fully autonomous, semiautonomous, and con-
ventional vehicles equipped with IoV technologies operate
in the environment.

IoV has the ability to support big data acquisition,
storage, transmission, and computing. .e big data can
improve the effectiveness and efficiency of the IoV based on
the characterization of network, analysis of performance,
and protocol design [68]. Big data distinctly have different
formats (unstructured). Unstructured data can be in the
format of text, images, videos, and graphics. .e unstruc-
tured component of the big data constitutes 75% [87]. DL is
a popular tool for big data processing [77, 88] because of its
outstanding result in different applications [26].

.e DL architecture is complex with the capability to
work on big data generated from the IoV. .ese complex
networks work better than the simple structure of the ANN
[89]. DL has shown promising performance in unstructured
data analytics. .e promising performance of DL in pro-
cessing unstructured data, for example, in visual object
classification, speech recognition, natural language pro-
cessing, and information retrieval, has been reported in the
literature [90].

In the case of autonomous vehicles, DL is highly required
because it learns from experience. Despite the fact that al-
most all available possibilities are fully automated, DL is
required to capture new scenarios and perform analytics of
accumulated data from the cameras and sensors. .is ap-
proach enables the vehicles in the IoV environment to take
critical decision that can avoid collision and possible loss of
life. Progress in sensor networks and communication
technology prompted the gathering of big data. Sufficient
training objects are provided when big data are exploited. As
a result, the performance of DL is improved. Training of
large-scale DL models for big data feature requires high-
performance systems and architecture, such as graphical
processing units (GPUs) and CPU cluster [15]. A recent
study has shown that evolutionary ANN has potential ap-
plication in the IoV. Chen et al. [91] demonstrated that the
evolutionary ANN can predict rear-end collision within the
IoV environment. Hence, it can help in the development of
an effective rear-end collision detection system for vehicles
in IoV environments. Kong et al. [92] proposed the appli-
cation of DBN for the prediction of short traffic flow within
the IoV environment. .e study is motivated by the accu-
mulation of big data in the IoV, and the shallow artificial
neural network algorithm cannot handle such a large
amount of data..e DBN is applied for the short traffic flow,
and it performs better than the baseline algorithms. Wang
et al. [93] proposed a DL model for optimal workload al-
location to improve vehicle energy consumption in the IoV.
DL provides enhanced energy efficiency and improves the
latency of the network. Ning et al. [94] proposed ConvNet to
improve the speed of data transmission and enhance the
content among vehicles in the IoV environment. .e
ConvNet is applied for data transmission by exploiting the
tri-relationship between vehicles. .e result indicates the
efficiency of the proposed ConvNet based on latency,
message delivery, and percentage of connected devices.

Ning et al. [95] hybridized motif based method (MBM)
and ConvNet (MBM-ConvNet) for D2D communication in
the IoV. .e MBM clusters the intelligent mobile devices in
buses and with passengers in a triangular manner whereas

Hadoop Azure ML

Machine Learning Based Big Data Analytics
Platforms

Spark BigML

Figure 8: Big data analytic platforms for machine learning.
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the ConvNet predicts the D2D connection. .e MBM-
ConvNet model performed better than the pair discovery
scheme, social aware approach, and MBM. .e issue here is
that edge network may not be good for emergencies. Gulati
et al. [96] hybridized energy estimation scheme (EES),
Wiener process model (WPM), and ConvNet (EES-WPM-
ConvNet) to ensure enhanced throughput and reduced la-
tency for data transmission in the IoV. .e EES checks
vehicle’s energy level for connectivity by comparing it with a
threshold value, WPM estimates vehicles connectivity while
the ConvNet predicts the ideal vehicle pairs for data
transmission..e proposed EES-WPM-ConvNet performed
better than the EES-WPM..e challenge is that connectivity
is allowed only for vehicles with sufficient amount of energy.

Wang et al. [93] hybridized greedy algorithm (GA) and
ConvNet with simulated annealing (SA) algorithm (GA-
ConvNet with SA) to ensure reduced energy level con-
sumption for both vehicles and road sign unit in the IoV..e
GA selects the server with minimum power consumption for
processing the queuing requests, SA searches for the global
optimal solution for the initialization phase of the ConvNet,
and the ConvNet predicts the optimal workload allocation
for the computational facilities. .e result showed that the
GA consumes less power compared to the ConvNet and SA
whereas the ConvNet has the least network delay compared
with the GA and SA. However, the paper assumed that all
vehicles move on a straight line. Ning et al. [94] hybridized
Edmonds–Karp Algorithm (EKA) and DRL with deep
Q-network (DQN) (EKA-DDQN) to minimize the amount
of energy consumed during computational offloading in the
IoV. .e EKA ensures flow redirection among RSUs while
the DDQN minimizes the overall energy consumption. .e
result obtained showed that the EKA performed better than
the greedy method and exhaustive method while the DDQN
outperformed Q-learning and cloudlet computing models.
.e issue is that if the rate of data offloads is above the
computational capability of the vehicles, say 80MB, the rate
of energy consumption increases rapidly.

Liu et al. [97] hybridized practical Byzantine fault tolerant
algorithm (PBFTA) and DRL based scheme in blockchain
enabled (PBFTA-DRL-BCE) IoV for performance optimi-
zation. .e PBFTA appends a particular block to blockchain
through agreement on the block that is recently realized. .e
DRL makes block producers (BPs), block size (BS), and block
interval (BI) in the PBFTA-DRL-BCE conversant with var-
ious instances of the IoV so as to maximize throughput. .e
PBFTA-DRL-BCE model performs better than the PBFTA-
DRL-BCE without BPs selection, PBFTA-DRL-BCE with
fixed BS, PBFTA-DRL-BCE with fixed BI, and existing static
scheme. .e transactional throughput was unstable at some
point during learning process.

Dai et al. [98] hybridized DRL based on deep deterministic
policy gradient (DDPG) and Manhattan grid model (MGM)
for edge caching and content delivery latency reduction in the
IoV..eMGM defines direction of vehicle’s movement while
DDPG optimizes vehicle edge caching and minimizes content
delivery latency. .e result obtained shows that the DDPG
scheme performed better than random edge caching without
bandwidth allocation, optimization of edge caching, and

content delivery without bandwidth allocation schemes. Kong
et al. [92] proposed a deep belief network (DBN) model for
short-term traffic flow prediction in smart multimedia system
(SMS) in the IoV. .e DBN model predicts short-term traffic
flow in SMS for SMS to driver communication. .e result
obtained shows that the DBNmodel performed better than the
ANN, backpropagation, support vector regression machine
(SVRM), and autoregressive moving average. .e issues here
are that the DBN model cannot handle a large-scale dataset of
up to 10 million for feature mining and prediction, and if data
complexity and randomness are increased in the traffic, the
output cannot be ascertained.

Goudarzi et al. [99] hybridized DBN, backpropagation
algorithm (BPA), and firefly algorithm (FFA) (DBN-BPA-
FFA) for traffic flow prediction in the IoV. FFA optimizes
the DBN topology and learning rate parameters, the BP fine-
tunes the weight parameters of RBMs, and the optimized
DBN predicts the traffic flow. .e result shows that DRBM-
FFA performed better than the autoregressive integrated
moving average (ARIMA), multilayer perception (MLP)
optimized FFA (MLP-FFA), and ARIMA optimized particle
swarm optimization (PSO) (ARIMA-PSO). It is assumed
that traffic behaviors are concurrent at peak periods. Sharma
et al. [100] proposed a deep neural network (DNN) for
security system in the IoV. .e DNN detects and thwarts
various cyberattacks. .e DNN scheme performed better
than the traditional security system (TSS).

Deep reinforcement learning [101] can also play a vital
role within the IoV environments because of the complexity
of real-world driving. In autonomous vehicles, DL, high-
performance computing system, and advanced algorithms
are required for the vehicles to adapt to changing situations.
.is approach can be performed through 3D high-definition
maps. .e cameras and sensors in the autonomous vehicles
generate large-scale data for compilation. .e data are re-
quired to be analyzed to keep the vehicle moving on the lane.
Without DL that uses the information from high-definition
maps that contain geocoded data, fully autonomous driving
becomes a mirage. Without high-definition maps containing
geocoded data and DL that uses this information, fully
autonomous driving stagnates in Europe [8]. Artificial in-
telligence software and DL models are used in Baidu’s
AutoBrain to train computers to drive the same way as
humans [102].

6.1. Deep Learning for IoV in the Context of BigDataAnalytics
Compared to Other AI Techniques. Unlike DL architectures,
other artificial intelligence (AI) techniques like the shallow
neural network, support vector machine, fuzzy systems,
random forest, and k-nearest neighbor typically witness de-
teriorating performance as the amount of data increases,
which makes them unfit for BDA. As discussed in Ali et al. [3],
support vector machine has the challenge of dealing with fast
authentication mechanism for large-scale IoV architecture.
Fuzzy system has the limitation of dealing with IoV multi-
media communications. Shallow algorithms like the random
forest, multilayer perceptron, and AdaBoost are facing the
challenge of securing decision for safety in the V2X traffic.
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In addition, other AI techniques require separate tech-
niques for feature extraction before feeding the data to the
algorithm for processing, which increases computational
cost and requires human intervention, whereas DL has
embedded automatic feature extraction mechanism that
makes the DL algorithm eliminate the requirement for extra
feature extraction techniques, thereby reducing the effort of
data engineering. .erefore, it gives DL advantage in BDA
over other AI techniques. It is well known in the literature
that DL architecture, specifically ConvNet, has proven to be
outstanding in image processing compared to other AI
techniques. DL has the advantage of dealing with natural
unlabeled data better than other AI techniques.

Furthermore, the application of DL in BDA has the
following strengths: ability to generate intrinsic features,
effective processing of unlabeled data, high accuracy in
providing results, and efficiency with multimodal data [77].
We discuss it in the context of the IoV as follows.

Accuracy in the IoV is a crucial issue because the vehicles
in the IoV environment depend on the decision of the DL
system. Accurate analysis can prevent chaos on the public
roads that can lead to accidents, injury, and possibly death.
For example, inaccurate capturing of new scenario by the DL
system might cause a fatal accident in the IoV environment.

.e 3D road map data are recorded by the automated
driving maps. Within the distance of a few centimeters away,
the 3D road map data are accurate for the vehicle position.
.e vehicle detects and follows other vehicles with a high
level of accuracy, recognizes lanes, and measures distance
and speed. .is condition typically occurs when the object
and environmental technology of the car is enabled [8]. .e
DL system plays a significant role in this circumstance.

.e sensors embedded in the vehicles within the IoV
environment generate data with intrinsic feature because the
data are obtained from the sensors. BDA requires intrinsic
features, and DL has the ability to generate the intrinsic
features required by BDA. .e feature is a characteristic of
sensor data. High-level features can be learned automatically
by DL without manual intervention.

A large portion of the data generated from the sensors
embedded in vehicles in the IoV environment refers to
natural data. Different from conventional machine learning
techniques that require significant engineering works, DL
can effectively deal with natural unlabeled data with
minimal human intervention. .us, human effort in la-
belling data is minimized. .e sensors generate a variety of
data (images, audio, and speech), and DL can work with
multimodal input data.

7. Proposed Model of IoV Integrated into the
Cloud Equipped with High-Performance
Computing Server, Deep Learning Models,
and Apache Spark

.e paper proposes a model that integrates the IoV into
cloud equipped with high-performance computing server,
large-scale DL models, and Apache Spark. Low-end devices
have limitation in terms of handling the application of large-

scale DL models for data processing [15]. .erefore, com-
puters in the vehicles within the IoV environment have
limitation in terms of handling large-scale DL models for
processing massive large-scale data expected to be generated
from the IoV environment with millions of vehicles. Ref-
erence [8] suggested that the computers in the vehicles
within the IoV environment should be connected to a cloud
processing platform for instantaneous data integration and
move to the selected terminal.

Figure 9 shows the networks of wireless access tech-
nology involving vehicles and the Internet, as well as the
heterogeneous network commonly referred to as the IoV.
.e figure shows the representation of the IoV in large-scale
distributed environment in terms of wireless communica-
tion of various devices. In the proposed model, the IoV
environment comprises autonomous, semiautonomous, and
conventional vehicles equipped with IoV technologies.

Autonomous vehicles are equipped with sensors for self-
controlling self-driving vehicles and monitoring road con-
ditions, energy consumption, tire pressure, traffic infor-
mation, water temperature, speed control, and parking
services. As the sophistication of autonomous vehicles in-
creases, the number of sensors in the vehicle increases at the
same rate. A single vehicle is expected to be equipped with
200 sensors by 2020 given the increase in communication
between the vehicle and its surrounding environments.
Semiautonomous and conventional vehicles equipped with
IoV technologies within the IoV environment are also
equipped with sensors. However, the number of sensors in
semiautonomous and conventional vehicles can differ from
that in autonomous vehicles because the latter are more
sophisticated. .ese embedded sensors in the vehicles
generate diverse and complex data at a faster rate in real time
and on a massive large scale given that the number of the
vehicles with large number of sensors gains acceptability and
continues to increase exponentially.

.ese data are generated from the IoV through sensors,
cameras, road infrastructure, vehicles, home, Internet, pe-
destrians, and personal devices that can provide information
about the representation of the IoV environment. Such
dataset from the IoV environment has extremely high di-
mension and is unstructured..e data are transferred in real
time to the cloud equipped with large-scale DL models,
Apache Spark platform, and high-performance computing
server equipped with multiple GPUs for processing IoV big
data and storage in the cloud, as shown in Figure 9.

.e DL model requires a large-scale dataset as the main
component in solving classification, clustering, and pre-
diction problems related to the big data from the IoV en-
vironment. .e data generated from the IoV could include
speech, visual objects, signals, audio, video, and text. .e DL
concepts perform excellently in processing such data (Sec-
tion 2).

We propose GPU for the high-performance computing
server because studies [15, 103] have shown that processing
large-scale data based on DL is more effective and efficient
when run on GPU than on CPU. Currently, a special
processor for DL is under development and is expected to
run DL experiments faster than the GPU to reduce
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computational time [15]. Apache Spark is the proposed big
data platform for the large-scale DL to process the big data
generated from the IoV environment because the BDA
platform supports DL.

.e results of the analytics can be forwarded to the
relevant companies, such as automobile makers and in-
surance companies, for use in making crucial decisions, such
as designing new business models, detecting component
malfunction, reducing the number of recall vehicles, and
predicting component failure. .e autonomous vehicles can
use the result in making decisions, such as predicting rear
collision and warning regarding change of lane. .is ap-
plication can prevent unexpected failure prior to occurrence.
.ese decisions are uniform throughout the entire IoV
environment, thereby improving the reliability, effective-
ness, and efficiency of the IoV environment.

.e IoV involves drastic communications (Section 3).
.ese communications continue to increase as long as the
vehicles continue to grow in number within the IoV envi-
ronment. Extensive research and test run of the IoV in
complex and challenging environments can also create new
opportunities for new communications within the IoV
environment.

8. Challenges and Future Research Directions

8.1. Internet-of-Vehicle Dataset Problem. Performing data
analysis in the IoV requires datasets generated from the IoV
environment. However, the IoV is an emerging concept
mostly pilot-tested by different companies. .e data re-
quired by researchers to apply DL for carrying out mean-
ingful analysis in the IoV within the context of big data are
scarce, so working in the area of DL is challenging. Most IoV
technologies are in the trial phase; thus, releasing data to
third-party researchers for analysis is difficult. Data are the

key component of DL; without data, the algorithm is in-
effective even with excellent DL architecture. .erefore, we
suggest the building of public IoV data repository for use by
the research community to run the proposed DL algorithms
in the context of the IoV.

.e availability of public IoV repository will encourage
studies on DL within IoV environments. With such a public
repository, additional effective, robust, and efficient models
of the IoV can be built for further improvement. In-depth
research is required to fully understand the emerging
concept and improve the state-of-the-art progress. Data
analysis is a key ingredient in timely resolving potential
challenges in the IoV. As an alternative, PTV VISSIM, a
leading simulator for simulating microscopic traffic [104],
can be used to create an IoV environment similar to [105]
and generate relevant IoV data for the DL application. .e
OceanConnect IoV platform developed by Huawei is a good
platform for researchers to explore.

8.2. Limited Deep Learning Approaches in the Internet of
Vehicles. Despite the excellent performance of DL in dif-
ferent application domains as revealed in the literature, very
few studies applied the DL architecture in the IoV for data
analysis. Despite the fact that the IoV is projected to generate
large-scale data (Section 1), the application of the DL ar-
chitecture in IoV data analysis is highly limited in the lit-
erature..e application of DL in the IoV to solve problems is
in its infancy stage. .e following DL concepts remain
unexplored in the context of IoV: GAN, efficient inference
technique, attention models, memory augmented neural
network, transfer learning, biologically plausible deep net-
work, and few-shot learning.

.e DL, IoV, and big data research communities should
deploy massive efforts in the application of DL in the IoV

Figure 9: Proposed model of the IoV integrated into the cloud equipped with a high-performance computing server with multiple GPUs,
large-scale DL models, and Apache Spark.
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within the context of BDA. .e DL architecture deserves
exploration on the dataset acquired from the IoV envi-
ronments—real-life or simulated environments. .is ap-
proach can provide insights into the development of
effective and efficient IoVmodels, the concept of which is yet
to be fully understood..emetaheuristic optimization of the
DL architecture should be tuned by considering its pa-
rameters in the context of the IoV because it is effective in
solving problems, as proven by [106].

8.3. Restriction of Uniform Decision in the Internet-of-Vehicle
Environment. Compatibility issue is another challenge
facing the smooth operation of the IoV. .e communica-
tions between vehicles, especially V2V, are challenging. .e
V2V technology in a vehicle should be compatible prior to
exchange of data between the vehicles. If the V2V technology
in a vehicle is not compatible with another V2V technology
in another vehicle, no communication between the vehicles
exists. .us, these vehicles cannot communicate within the
IoV environment. .e data generated from the vehicles and
transferred to central processing system for data analysis
cannot easily provide uniform decision to the vehicles within
the IoV environment. .e data generated from a particular
vehicle obtain a decision different from the data generated
from vehicles with different V2V technologies. .erefore,
having uniform decision is restricted only to vehicles with
compatible V2V technologies.

.e V2V technology in the IoV environment should be
compatible among all the vehicles in the same environment
to provide smooth communications. .e data generated
from the vehicle sensors and cameras can be transferred to a
central location for analysis by DL on the BDA platform in a
high-performance computing platform. .erefore, the de-
cision taken as a result of the analysis will be uniform, and all
the vehicles will benefit from the decision.

8.4.UnknownEffect of AutonomousVehicles on the Internet of
Vehicles. .e effect of autonomous vehicles on the traffic
operations and infrastructure of the transportation system is
unknown [104]. Lack of IoV data limits the understanding of
the effect and its consequences. In addition, the IoV is an
emerging technology, and its idea is not fully understood
[64]. However, an ongoing initiative aims to fully operate it
in the near future. .e IoV currently attracts unprecedented
attention from the industries and the academia.

.is concept requires in-depth research and development
to fully understand the effect of autonomous vehicles on
traffic operations and transportation infrastructure. .e DL
research community can consider a research in this direction
given that determining the effect of autonomous vehicles on
traffic operations and transportation infrastructure of the IoV
can assist in developing a robust IoV infrastructure that can
accommodate autonomous vehicles comfortably.

8.5. Loss of Internet Connectivity Can Cause Missing Data
Points. .e IoV heavily depends on Internet connectivity
for its smooth and efficient operation. A loss of Internet

connectivity between fast moving vehicles in the IoV can
cause the loss of data points in the data generated from the
IoV environment. .e loss of Internet connectivity can be
caused by extreme weather, natural disaster, and interrup-
tion as a result of limited Internet coverage. Reference [68]
argued that the high mobility in the IoV environment can
cause frequent interruptions of Internet connectivity. .us,
the quality of the data generated from the IoV environment
is affected, thereby resulting in noisy large-scale data.
Processing of noisy data requires extra effort to improve the
quality of data. However, obtaining real-life dataset without
missing points is difficult. .e DL models are capable of
handling datasets with missing data points. We recommend
the application of DL models to handle the IoV dataset with
missing data points for BDA. .e performance of the DL
models does not require complete information to perform
contrary to expert systems.

8.6. New Perspective Based on Deep Learning for Solving
Challenges Raised in [68]. .e IoV big data sources data in
different forms, and preprocessing is required. .e issue of
sourcing different data from different sources is expected
from the IoV, and bigger data from larger scope of IoV can
also be collected [68]. In view of the fact that the DL does not
require extra preprocessing techniques to process data, we
recommend that the DL algorithm can be applied to process
the IoV big data in conjunction with the framework pro-
posed in Section 7 as shown in Figure 9. Big data can be
collected from the IoV network protocol. .e big data
collected from the IoV network protocol [68] can be ana-
lyzed using deep learning to gain insight. .e new insight
from the data analytics can be used to improve the efficiency,
quality, security, and effectiveness of the IoV network
protocol. It is reported that the data collected from the roads
by the vehicles can be aggregated to form HD maps [68].
Because the HD maps are in form of images, the images can
be processed via deep learning especially the ConvNet ar-
chitecture to get value from the HD images for improving
the overall vehicular mobility in the IoV, thereby improving
the services rendered by the big data IoV powered services.

8.7. Security Challenges in the Internet-of-Vehicle
Environment. .e security of an IoV network is vital, and
some of the possible attacks on the IoV are discussed as
follows.

8.7.1. Ransomware Attacks. Ransomware attacks are clas-
sified into three types, namely, crypto, locker, and crypto-
locker. .e crypto ransomware works by applying encryp-
tion schemes on device data. .e locker ransomware works
by restricting user access to system functionalities, whereas
the crypto-locker ransomware supports encrypting and
locking devices. .is attack is dangerous because the device
data and functionality could be compromised. .e device is
only released back to the user after a ransom has been paid
via any of the blockchain technology online payment sys-
tems, such as Bitcoin [107].
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.e threat of ransomware attacks in the IoV environment
can be devastating when fully deployed because of the pos-
sibility of vehicle hijack using remote connectivity via IoV
protocols until a ransom is paid. Vehicles can also be hijacked
to commit crimes by impersonation given that the crypto-
locker ransomware can encrypt and lock devices and com-
promise computerized vehicular systems. In addition, the IoV
is a source of big data generation given that vehicle signals,
vehicle routing information, packing information, and GPS
information should be securely stored in massive storage
facilities, such as the cloud infrastructure, big data processing,
distribution, e-commerce, and IoV transactions [108]. .ese
storage facilities are also a potential target for ransomware
attacks, leading to the compromise of data integrity.

8.7.2. DDoS/DoS Attacks. .e DDoS/DoS attacks in the IoV
environment are used to flood a target vehicle with unso-
licited traffic to deny legitimate communication. .is attack
can lead to system jamming, malfunction, or failure, which
will eventually cause vehicular accident in an IoV envi-
ronment. A number of DDoS/DoS detection and prevention
algorithms have been presented in the VANETenvironment
[109–111]. However, these algorithms are ineffective in an
IoV situation. One of the best efforts in detecting DDoS/DoS
attacks in the IoV was presented by [112]. .e study in-
troduced a broadcast authentication protocol called Paral-
leling Broadcast Authentication Protocol, which aims at
improving energy efficiency and providing network security
in the uninterrupted communication between vehicles in the
IoV environment.

DoS and DDoS attacks can drain the resources of a target
autonomous vehicle. Bandwidth resources can be very
limited for IoV entities depending on the nature of vehicular
communication. Exhaustion of the bandwidth for a certain
time interval can lead to inaccessibility of the server or an
autonomous vehicle within that time. .e resources of an
autonomous vehicle range from processing capacity,
number of ports, memory, to storage space. .erefore, ex-
haustion of available resources of the autonomous vehicle
can lead to adverse state of the vehicle during which the
cybercriminals can compromise the confidentiality, avail-
ability, and integrity of the data in the autonomous vehicle
[113]. In the IoV environment, DoS/DDoS attacks are fre-
quently achieved in two ways, namely, reflection and am-
plification methods. In the reflection method, the attacker
sends different packets with a bogus IP address of the target
vehicle as the source address of the packets to many end-
points. .is method is deployed by cybercriminals to hide
trails of the attacker. In the amplification method, an in-
significant number of packets are sent from cybercriminals
to stimulate an enormous number of packets directed to the
targeted vehicle. .e amplification method is often used
together with the reflection method to launch a huge attack
against an unsuspecting autonomous vehicle.

8.7.3. Malware and Spyware Attacks. Malware is generally
referred to as viruses or worms. .ese viruses are generally
propagated via outside unit software and firmware updates.

Malware can affect autonomous vehicles in IoV environ-
ment, thereby permitting remote enemies to gain access and
control the target vehicles. Remote access spyware combines
with the innovative communication services that VANETs
convey to the IoV, which is likely to gain access of the
autonomous vehicle to interrupt vital facilities and services.
Isolated malware threats are commonly established and have
been revealed in test beds to put drivers and passengers at
risk. Recent studies on spyware targeting vehicles have
revealed that the spread of spyware is likely to be realized via
weaknesses in the in-built systems deployed to analyze
vehicles throughout the service period. .e broad conse-
quence is that many vehicles within the IoV network may be
infected given that the malware or spyware is transmitted via
trusted service platform, possibly infecting a complete
product line [114].

Reference [115] introduced a verification method to
ensure that only the verified IoV user can use the autono-
mous car. .e authors also used a cloud-based vehicle
malware defense mechanism to address the malware and
spyware challenges. However, the main issue is the main-
tenance of updated patches and signature files in the IoV
vehicles.

.e DDoS/DoS, ransomware, malware, spyware, and
MITM attacks are dynamic in nature. .erefore, the attacks
can change to disguise and bypass the security system in the
Internet of Vehicles. .e DL models are adaptive in nature
with capability of adapting to new circumstances. .erefore,
we suggest the application of DL models for the develop-
ment of a powerful adaptive intrusion detection system that
can detect dynamic security threats in the IoV environment.
.us, the impact of the DDoS/DoS, ransomware, malware,
spyware, and MITM attacks in the IoV is minimized.

9. Conclusions

We present a survey on leveraging DL in the IoV within the
context of BDA. .e relationship that exists between DL,
IoV, and BDA has been unveiled to provide researchers with
a clear perspective on the empirical application of DL in the
IoV within the context of BDA. .e results show that
empirical works on DL in the IoV are highly limited and
public repository data for IoV are unavailable to researchers.
.e paper presents current development issues, potential
challenges, and new direction for emerging research on DL
in the IoV within the context of BDA. We believe that this
study can help expert researchers to easily identify areas that
require solutions and novice researchers can use it as a
benchmark.
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Recently, 5G and beyond 5G (B5G) systems, Ultrareliable Low Latency Network (URLLC) represents the key enabler for a range of
modern technologies to support Industry 4.0 applications, such as transportation and healthcare. Real-world implementation of
URLLC can help in major transformations in industries like autonomous driving, road safety, and efficient traffic management.
Furthermore, URLLC contributes to the objective of fully autonomous cars on the road that can respond to dynamic traffic
patterns by collaborating with other vehicles and surrounding environments rather than relying solely on local data. For this, the
main necessity is that how information is to be transferred among the vehicles in a very small time frame. (is requires in-
formation to be transferred among the vehicles reliably in extremely short time duration. In this paper, we have implemented and
analyzed the Multiaccess Edge Computing- (MEC-) based architecture for 5G autonomous vehicles based on baseband units
(BBU). We have performed Monte Carlo simulations and plotted curves of propagation latency, handling latency, and total
latency in terms of vehicle density. We have also plotted the reliability curve to double-check our findings. When the RSU density
is constant, the propagation latency is directly proportional to the vehicle density, but when the vehicle density is fixed, the
propagation latency is inversely proportional. When RSU density is constant, vehicle density and handling latency are strictly
proportional, but when vehicle density is fixed, handling latency becomes inversely proportional. Total latency behaves similarly to
propagation latency; that is, it is also directly proportional.

1. Introduction

Connecting vehicles with each other and the infrastructure
around them could play a significant role in autonomous
vehicles’ future and improving safety. Vehicles can com-
municate with one another, respond to traffic signals, and
even see around corners. 5G is on the way to making this a
reality, delivering the higher speeds and more space needed
for smart traffic control systems and fully autonomous
vehicles. However, autonomous vehicles are not the only
way to connect cars; they compete with Wi-Fi technologies
called Dedicated Short-Range Communication (DSRC) or
Cellular Vehicle to Everything (C2VX) that will eventually

use the 5G networks. Vehicles connected to cellular net-
works are becoming accessible and more common due to
recent telecommunications industry developments. Indeed,
because of critical applications such as autonomous vehicles,
automotive monitoring, traffic control, and traffic man-
agement, the network’s link will be inseparable from future
vehicles communication systems. Vehicles would be able to
communicate among themselves or with the network in-
frastructure via this link to exchange vital data, and accidents
will be avoided, and lives can be saved by using them. A
crucial piece of information for safety applications is the
location or, in general, the vehicles kinematic condition [1].
Together with the evolution of radio and transport
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technologies, a profound approach has been established.(e
management and maintenance of these networks have been
active in the revolution, to achieve high versatility, from
manually built and programmed infrastructures to systems
that can self-manage themselves, equipped with advanced
intelligence. Many of these skills have been accepted by all of
the new criteria. (e so-called 5G architecture is currently
the latest revision of the mobile network specifications,
based on the 15th release published in 2019 by the 3GPP
Consortium [2]. According to this scenario, research ac-
tivities in the field of mobile networks are an important
activity for opening the way to new requirements and sat-
isfying customer and operator requests [3]. Operating a
network infrastructure is a vital activity that requires a high
degree of accountability when information goes through the
device. Over the last 20 years, general network monitoring
solutions have been established to obtain this type of in-
formation, focusing in particular on big data center network
infrastructures. On the other hand, no standard for the
retrieval of real-time monitoring data from the mobile
network has been defined by 3GPP [3]. In addition, only
aggregated counters are available, which provides infor-
mation at an inadequate frequency for real-time operations.

Automation is one of 5Gs main drivers [4] and through
the definition of 5G self-organizing networks are supposed to
reduce the life-cycle expense of the infrastructure, as observed
by operators who have implemented it in Long-Term Evo-
lution (LTE) networks [5]. Automation in the next-genera-
tion mobile networks would also presume that a strategic
position requires advanced agents to organize the infra-
structure and maintain it. (e authors of [6, 7] discussed the
importance of Artificial Intelligence (AI) and Machine
Learning (ML) for improving vehicles and agents connectivity
and quality of service. Ideally, these will be motivated by
algorithms from AI [8]. However, AI algorithms need a wide
base of data to be trained upon to enable systems to take
accurate actions. (us, the 5G core network’s flow tracking
and other metrics are one of the enablers of this technology.
(e 5G system is an extension of previous systems, but it can
be seen as a big technological change that will alter certain
paradigms based on conventional mobile networks.

Since 5G wireless networks must be capable of
addressing the problems encountered by 4G networks, such
as higher bandwidth, lower end-to-end latency, high data
rate, large device connectivity, and consistent quality of
experience provisioning [9, 10], hence, they must have the
potential to address these issues. (e proposed general 5G
infrastructure is built on the interconnection of numerous
new technologies, such as Massive MIMO networks, Cog-
nitive Radio Networks, and Mobile and Static Cell Networks
[9]. Traditional performance metrics, such as spectral quality
and network bandwidth, must be increased due to the
continued advancement of 5G technologies, and a wide
range of connectivity modes must be offered to increase
customer experience [9]. Ultrareliable Low Latency Com-
munication (URLLC) [11] is one of the most important 5G
use cases. URLLC is expected to play a key role in providing
networking for emerging technologies like autonomous
vehicles, smart factories, and so on [11]. URLLC is a 5G New

Radio technology with stringent latency and reliability [12].
Due to hard latency conditions, URLLC traffic is usually
scheduled on top of ongoing enhanced Mobile Broadband
(eMBB) transmissions and cannot be queued [12]. Because
of the advent of multiservice networking [13], beyond 5G
networks (B5G) or 6G systems have significant interest, and
the reliability and latency considerations in 6G may be use
case specific [13]. B5G is also required to accommodate
ultralong battery life, eliminating the need for charging
devices [14]. (e advent of multiservice technologies will be
useful for improving network intelligence due to an im-
provement in network complexity [13].

To make autonomous vehicles (AVs) work efficiently,
the V2I systemmust be fast, capable of exchanging messages
without any delay, and capable of working under low la-
tency. Current techniques are not capable of offering a re-
liable environment for faster exchange of information
between the AVs. (e architecture suggested in this paper is
based on Multiaccess Edge Computing (MEC) architecture
on baseband units (BBUs), which will allow the processing of
tasks to be performed by AVs locally without depending
upon the remote cloud servers. Current studies based on
remote cloud servers are having various research gaps, such
as small cell base stations having restricted resources for
computation, and they can be overloaded easily. Further-
more, the quality-of -service (QoS), end-to-end latency
management is very challenging without effective com-
puting resource management.

(e major contributions of this paper are as follows:

(i) Analysis of the literature, identification of chal-
lenges of the existing works, and techniques to
resolve them

(ii) Examination of the architecture based on mobile
edge computing (MEC) running together with
Virtualized Radio Access Network (vRAN) services
on Edge Servers improving the efficiency and security
of autonomous vehicles and enabling a 5G-based
URLLC networks for smart Internet of Vehicles
(IoVs)

(iii) Testing of the suggested architecture to show how
MEC enabled autonomous vehicles is more efficient
and secure

(e rest of the paper is organized as follows. (e related
work is covered in Section 2. In Section 3, the challenges of
5G-based autonomous vehicles are discussed, as well as the
importance of the work. Section 4 covers the research sig-
nificance. (e combination of MCC and MEC is defined in
Section 5. (e MEC-based BBU architecture for autono-
mous vehicles is explained in Section 6. (e conclusions are
explained in Section 7, limitations are mentioned in Section
8, and the article is concluded in Section 9.

2. Related Work

5G comes with a few new interesting technologies that may
be of great use in the remote control and Industrial Internet
of (ings. Ultrareliable Low Latency Communication
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(URLLC), enhanced Mobile Broadband (eMBB), and
massive Machine Type Communication (mMTC) are three
of these technologies [15]. URLLC stands for Ultrareliable
Low Latency Communication and is one of the many ad-
vantages that 5G can have. URLLC is projected to provide
one-digit millisecond cycle times [16] and 99.9999% effi-
ciency of transmission over one square kilometer, while
multiple gNB (next-generation node B) provides the signal
[17]. Combining with the ability to mount smaller gNBs on
rooftops made it possible for urban environments to have
these low latencies over wide areas. According to researchers
Kim et al., more base stations would also make it possible to
reduce access times and enable support for more devices
[18]. Earlier on ether-net-based networks, stable low la-
tencies were most prevalent, and even there, they required
TSN (Time-Sensitive Networking) for the versatile and
linked delay requirements [19]. As it has the capacity to carry
large payloads at high transmission rates [19], eMBB is
similar to 4G LTE. (e eMBB speeds are in Gigabit per
second (Gbps) range and are ideal for heavy network use.

Traffic, such as video content handling, is a type of job
that suits eMBB well as every day more video data is gen-
erated and consumed, which places a large load on today’s
networks. eMBB can use high-bandwidth channels, resulting
in higher usable bitrates and is thus more suitable for
handling video traffic [20]. Another 5G functionality that
targets massive IoT (Internet of (ings) is Massive Machine
Style Communication or mMTC for short. (e use case for
mMTC is the provision of network connectivity for many
devices that communicate over long distances through short
messages [19, 21]. In general, IoT devices are not reliant on
reliability and data rate but rely on the ability to commu-
nicate over long ranges instead. According to [22], a single
technology for remote operation is not appropriate. For
accurate monitoring, low latency from URLLC is needed,
eMMB is required to transmit the vehicle’s view, and mMTC
is suitable for sensor readings and similarly small inter-
mittent data transmissions. Other researchers are investi-
gating if 5G is to be used along with the upcoming V2X [23]
(vehicle-to-everything) standard. In terms of latency, reli-
ability, and range, the researchers proposed specifications
similar to what URLLC can provide, but with the bit rates
that the only eMBB can deliver [24]. Remote operating
vehicles have been used in recent years to perform different
kinds of work. (ree types of vehicle design trends have
contributed to these jobs: exploration rovers, Unmanned
Ground Vehicles (UGV), or hazardous duty machines [25].
(erefore, it is necessary to research the field of remote
vehicles to collect information on suitable vehicle designs
and input devices for vehicle control.

In [26], the authors have developed an industry-service
classification of autonomous vehicles based on 5G. In order
to extract the advantages of the next generation of cellular
networks for positioning, several works have been done. (e
authors of [27] propose a 5G-based radio network archi-
tecture that combines various radio access technologies and
cloud-based radio access network functionalities to provide
a stable and privacy-preserving CAV network. (e auton-
omous driving requirements of high precision and low

latency can be met by 5G-based positioning techniques.
However, cellular systems are not intended to maintain LOS
for the UE all the time [1]. A simplified model for the
probability, frequency, and length of blockage in mm-wave
cellular systems was proposed by Jain, Kumar, and Panwar
[28], and in their paper, they explained that the design of
mm-wave networks can often be motivated by blockage
rather than capacity requirements. As described above, the
use of INS could support full-form GNSS in the failure times
and during the outages, it could be able to compensate for
high errors of 5G-based positioning systems.

In [29], the authors surveyed the field of video streaming
over wireless technology and explained how to calculate
users’ quality of experience (QoE) in both subjective and
objective ways. (ey explained how encoding works and
how the outcome of the encoded video can be calculated.
When it was streamed over an unreliable mobile network,
they also presented the encoded video’s product. (ey be-
lieve that there is a trade-off between precision and com-
puter power by using QoE metrics and that simplified QoE
metrics on cellular networks are less taxing. (is paper
contributes to the research by sharing the peak signal-to-
noise ratio (PSNR) equation as a metric for measuring
streamed video signal loss in order to determine which
wireless technology is best for remote service. (e 5G en-
vironment is designed to accommodate multiple use cases
[30], and very versatile and intelligent network architecture
is needed to serve all of them.(e 5G framework is designed
to take full advantage of Software Defined Networks (SDN)
and network functions virtualization (NFV) to achieve this
purpose, incorporating it into a special IP-oriented physical
infrastructure system [31]. All modern networks (e.g., longer
routes or packet losses) are expected to incorporate certain
self-healing systems in order to maximize the resources and
to avoid bottlenecks and other network problems, which can
track the resource status and act accordingly, directing the
implementation of new infrastructures towards the principle
of SDN [32, 33].

3. Challenges for 5G-Based
Autonomous Vehicles

(e future of mobility will benefit greatly from autonomous
driving technologies. (is allows us to focus on our jobs
rather than the stressful job of driving, and it aids in the
elimination of human mistakes, enhancing response times,
increasing traffic flow quality, and lowering the incidence of
road injuries [34]. URLCC is the most recent 5G service tier,
targeted at mission-critical communications with a target
latency of 1milliseconds, end-to-end security, and 99 per-
cent reliability [34]. (is type of wireless communication
technique will be ultrafast and ultrareliable in autonomous
driving, which helps enable real-time communication be-
tween the vehicles (V2V communication) and its roadside
environments (V2I Communication). A brief comparison
between 4G LTE and 5G is shown in Table 1.

Although various researches have been done for securing
the vehicular networks, some of the major challenges, such
as security, privacy, and efficient resource management,
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need to be investigated more in the field of 5G-enabled
autonomous systems. (ese challenges are discussed in
detail in the upcoming subsections.

3.1. Security Challenges. V2I and V2V services enable 5G
vehicles to communicate with the core network and with
other vehicles [35]. Because of the large-scale M2M com-
munications, efficient and reliable mobility management is a
major challenge. Several studies have identified general
security services for cooperative vehicular systems, but IPv6
integration has not been well performed. In [36], the authors
have used Internet Protocol Security (IPSec) and Internet
Key Exchange version 2 (IKEv2) for securing Internet
Protocol Version 6 Network Mobility (NEMO) in vehicular
communication and tried to resolve the challenge for se-
curing the vertical handover condition between 3G and
802.11p. Safe mobility control schemes are currently unable
to effectively accommodate group-oriented collaboration
scenarios. Cooperative driving is a new technology of 5G
vehicular networks that enable autonomous vehicles to
travel in platoons to save fuel and reduce the risks associated
with driver errors.

Falsification, covert falsification, Sybil assault, emer-
gency braking obstruction, and vehicle location hijacking
[37] are just some of the attacks that can damage the V2V
service and cause serious road accidents. Message verifica-
tion methods can be used to counteract these attacks. (e
batch verification technique is still in use for authentication,
but the main problem is determining which signatures are
invalid. A highly efficient group testing technique was
suggested for the identification of invalid signatures with
fewer batch verifications [35]. Forged identity, forged venue,
and any forged occurrence that can raise the likelihood of
road collisions are all possible attacks [38] that the sender of
an update may initiate. To protect the credibility of the
communications, necessary countermeasures should be
taken to combat these assaults. Potential attacks [38] which
the sender of an update launches may include a forged
identification, forged location, and any forged event, which
may increase the risks of road accidents. Necessary coun-
termeasures should be taken to overcome these attacks to
ensure the integrity of the messages.

3.2. Privacy Challenges. Most of the applications for
VANETs are dependent on the periodic broadcasting of the
beacon messages by vehicles [39]. (is message contains the
real identity, status of the vehicles, and timestamp. Ex-
changing information cooperatively between the vehicles
and other roadside entities can help in avoiding a collision.
However, there’s a major privacy threat for vehicles as their

states’ information and location in a broadcasted message
could be collected and tampered. If a malicious party has
access to the passengers’ records, it is extremely risky.
Furthermore, combining IoV and social networks will aid in
improving vehicle safety by giving vehicles social attributes
[40]. (is makes the passengers in the autonomous vehicles
anonymous to each other before cooperation connected
through wireless connectivity, unlike the traditional online
social networks. In this case, the major challenge is the
exploration of the efficiency of common attributes for co-
operation among autonomous vehicles in proximity. In
certain cases, there’s also a risk of disclosing passenger
personal details to the general public. As a result, it is im-
portant to safeguard passengers’ personal details. Some
critical systems, such as autonomous vehicles, must report
high precision real-time map updates and face problems,
such as the need for information to be validated with the
help of a server, which will guarantee the message’s accuracy
ahead of time due to computing and storage space limita-
tions. (us, some of the vehicles’ key information like lo-
cation is required by the servers for comparing this
information for confirming the authenticity of the messages
and determining whether the traffic information uploaded
by the vehicles in the same area is consistent. (e server is
unable to acquire detailed vehicle details. As a result, a more
reliable and effective multiparty set intersection protocol
enabling big data processing is needed for privacy-pre-
serving data sharing.

3.3. VNG Management and Resource Allocation. Due to a
large number of autonomous vehicles, new challenges in 5G-
SDVN are posed by VNG management [41]. (e huge scale
of VNG is advantageous for improving services in VNG
because it allows for the sharing of newer content while still
allowing for a large management overhead. As the size is
reduced, all shared content and available capacity are lim-
ited, threatening normal services and negatively impacting
customer satisfaction. Normally, the network contains a few
isolated VNGs [41]. A vehicle can join several VNGs and
serve as a coordinator, allowing VNGs to communicate with
one another. Two proximal vehicles can communicate di-
rectly with each other using D2D communication to allow
high-rate content distribution. D2D connectivity, on the
other hand, results in inference for wireless communication
due to the reuse of a cellular user’s bandwidth. To address
this problem, numerous spectrum-optimization resource
allocation strategies have been developed [42]. (ese
methods can be paired with resource selection for D2D
communication so that the control plane can select the best
decision-making approach.

Table 1: Comparison between 4G LTE and 5G.

Parameters 4G LTE 5G
Frequency (mm-waves) Low (600MHz–2.5GHz) High (24GHz–52GHz) and (62GHz–82GHz)
Cells High Small
MIMO Larger Smaller
Duplex nature Half duplex Full duplex
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4. Research Significance

For handling a range of resources in VNGs, 5G URLLC has
more scalability. Controllers can be used by managers to
allocate new management policies to any switch due to the
highly efficient reconfigurability and programmability of
network equipment, which helps to improve network
management. An efficient cooperation among the vehicles is
encouraged by adopting and is encouraged by adopting
global-aware controllers, enabling unprecedented flexibility
of the resource scheduling. Resources available are allocated
on demand. According to their requirements and resource
capabilities, these resources are shared among the vehicles,
thereby improving resource optimization. (e proposed
architecture takes into account vehicle mobility assistance
and topology differences, as well as quality of service (QoS)
for different services. (is type of architecture restricts the
development and deployment of new network features by
separating the social plane, control plane, and the data plane
andmaking the network strong and centralized contributing
to sustainable development.

Vehicles can benefit from feedback obtained from
roadside facilities or other vehicles in order to conduct au-
tomatic overtaking, cooperative collision avoidance, and
high-density platooning. At smart intersections, cars can
connect with traffic signals and other networks, allowing
emergency responders and buses to be prioritized [34]. Both
of these implementations necessitate a high level of redun-
dancy and strict end-to-end latencies, which can only be
provided by a URLLC communication network [34]. Fur-
thermore, using either onboard processing capability or cloud
storage would not be adequate for storing and processing the
massive amounts of data provided by vehicles from their
high-resolution cameras and sensors, as well as achieving a
higher level of safety than the best human driver by processing
real-time traffic conditions within latency of 100ms [34].
(ere were limitations on energy and power constraints on-
board computing and storage capacities. GPUs used for low
latency processing and inference, for example, have high
power consumption needs, which are increased by the cooling
load to satisfy thermal constraints, reducing the vehicle’s
operating range and fuel performance substantially. Local
storage units, such as SSDs, can be filled with sensor data in a
matter of hours [34]. Although on-board processing capa-
bilities can be adequate for passenger-vehicle interactions,
they may not be adequate for managing workload between
vehicles or between vehicles and infrastructure. In the
meantime, long latencies and large bottlenecks in data pro-
cessing as cloud storage are not an adequate solution for the
IoV to connect with intelligent vehicles together [34].

5. Combination of MEC and MCC

In order to get better insights of the work done, this section
explains why there is a need for MEC. (is section will
compareMEC andMCC.MEC, together with the increase in
popularity of mobile phones, is the natural progression of
cloud technologies. In a network infrastructure, mobile edge
computing uses mobile base stations to get cloud computing

as close to the mobile device as physically possible [43].
Cloud computing is described by the National Institute of
Standards and Technology (NIST) as a model for gaining
access to a common pool of configurable computing services
that can be configured and delivered with minimal man-
agement effort and service provider involvement [44]. Cloud
storage allows more resources to be shared, resulting in
improved performance and lower costs. (is model has
become well-known, and its exceptional simplicity has en-
abled a wide variety of applications. Cloud computing is a
rapidly adapting model that has the potential to become a
viable mobile computing approach. One of the most popular
applications of cloud computing is to increase the capacity of
mobile devices. MCC is the name given to this one-of-a-kind
technology. MCC can supplementmobile devices in terms of
data capacity, processing power, and mobility [43]. Mobile
devices can attach to the Internet in a variety of ways. Mobile
networks, Wi-Fi, and satellite connections, for example, can
provide access to the Internet through Internet Service
Providers (ISPs). ISPs provide the network infrastructure
that routes the connections across the appropriate paths on
the Internet in order to connect the mobile user to the cloud
controller. Cloud controllers manage the incoming requests
frommobile clients and distribute them to the relevant cloud
providers. Utility computing, virtualization, and service-
oriented architecture were used to create these networks
[45]. Furthermore, the word "mobile cloud computing" has
another meaning. It envisions a set of nearby mobile devices
pooling their resources in order to share them.(is model is
referred to as an "ad hoc mobile cloud." A mobile application
task is spread and processed on the computers that belong to
the ad hoc mobile cloud in a shared manner in this model.
(is model was demonstrated in Virtual Cloud Provider [46]
by distributing aMap-Reduce architecture across a variety of
mobile devices.

(e architecture of the MCC still has challenges. In-
creased latency, device availability sensitivity, operation
reliability, and bandwidth constraints are all costs of con-
necting to cloud servers. (ese considerations also limited
MCC’s ability to support a wide range of applications. For
example, augmented reality or assisted cognition rely on
sending streams of sensor data and video to a server with
enough resources to process them and produce a near-real-
time outcome [47]. As a result, a cloudlet, a third mobile
cloud computing vision, was proposed. A cloudlet is a
compact, resource-rich, self-managed system that can be
deployed on a company’s premises. It is decentralized and
locally operated, and it uses LAN latency and bandwidth to
serve only a few users at a time. In this model, a mobile
device also taps into cloud computing space. In contrast to
the MCC architectures described earlier, the cloudlet par-
adigm proposes bringing the cloud closer to the user by
placing a device on the first hop of the network [47]. (is is
beneficial to certain actors. Second, the apps would be more
responsive to the end-user, allowing for the deferral of
critical applications. Additionally, network carriers may use
the cloudlets’ location to store media and files, reducing
latency, and energy consumption on the core network. Fi-
nally, since their software can be hosted on cloudlets,
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application service providers benefit from increased scal-
ability. Cloudlets are still being researched in academia, but
commercial implementations based on the same model have
only recently become available. (e industry has called this
paradigm as mobile edge computing (MEC).

MEC and cloudlets are similar in that they are both lo-
cated at the network’s first hop, provide storage and com-
puting to neighboring computers, and are accessible by
mobile users using wireless connections. AMEC server can be
mounted at an LTE macrobase station’s UMTS Radio Net-
work Controller (RNC) or at a multitechnology cell aggre-
gation site (eNodeB). A multitechnology aggregation site [48]
manages a range of local multitechnology access points to
have on-site radio coverage. MEC, on the other hand, differs
from cloudlets in that it is operated by a mobile network
carrier, it contains knowledge specific to network providers,
and MEC servers are broadly spread and accessible to all
mobile devices. MEC servers also provide access to knowledge
about location and mobility [49]. MEC began as an Industry
Specification Group (ISG) under the auspices of the European
Institute for Telecommunications Standards (ETSI).

According to the ISG’s Introductory Technical White
Paper [50], MEC is described by being on site, proximity,
reduced latency, location awareness, and network context
information. MEC’s first benefit is that it is located on site.
(is ensures that the MEC server is disconnected from the
rest of the network and can run independently. In the case of
a link loss to the core network, an application operating on a
MEC server will be unaffected and continue to operate
normally. Mobile devices, which are the basis of informa-
tion, are often close to MEC servers. Because of their close
proximity, MEC servers can function as data aggregators
and gather big data and analytics. Since all data collected
from crowd sensing apps and Internet of (ings (IoT)
sensors can be aggregated and preprocessed on aMEC server
before being uploaded to a central repository, this feature
gains the most from them. As a result, data flow and mobile
networks are limited. Both the provider and the creator of
the application benefit from reducing bandwidth usage [50].
(e MEC architecture [53] is shown in Figure 1.

In Figure 1, Multiaccess Edge Orchestrator or ME Or-
chestrator (MEO) manages the mobile edge application
packages along with resource orchestration across edge DC
and selecting the right mobile edge hosts for instantiation of
application with triggering, termination, and relocation with
the help of reference points such as MM1, MM9, MM3, and
MV1. (e MM1 reference point acts as an instantiation
triggering agent between the MEO and operation support
system (OSS) along with termination of applications in
mobile edge system. (e MM9 reference point is used for
managing the mobile edge applications requested by the UE
application. (e MM3 reference point between the MEO
and ME platform manager is used for managing the ap-
plication lifecycle, rules, and requirements for keeping track
of available mobile edge services.(eMV1 reference point is
under research and evaluation. However, a few studies have
shown that it acts as a connection agent betweenMEAO and
NFVO, associated with the Os-Ma-nfvo reference point and
is also called ETSI-NFV.

Another advantage of the MEC server is the reduction in
the latency. Reduced latency enables technologies like
augmented reality and cloud gaming to react quickly. MEC
servers also exchange information about their location as
well as low-level signaling data with applications.(is allows
for location-based applications, analytics, and distinction in
terms of network conditions and location of the content
served [50]. A Novel MEC-based framework was developed
by Nokia. (is framework is called the Redundant Array of
Cloud Services (RACS) [51]. It is a MEC Solution that covers
all the elements needed to develop and build apps packaged
as virtual machines, which are managed. (is is the only
practical implementation of MEC to date. (erefore, an
efficient and more secure system is needed to be worked
upon. Table 2 summarizes the whole paragraph.

6. MEC-Based BBU Architecture for
Autonomous Vehicles

Autonomous vehicles will become one of the main members
of 5G in the coming years [54]. Vehicular networks
(VANETs) are developing as a significant application for 5G
services. In 5G VANETs, autonomous vehicles are more
reliant on URLLC than traditional vehicles [53, 54]. Vehicles
may use information obtained from roadside units (RSUs)
or other vehicles to perform automatic overtaking and crash
avoidance in autonomous driving [34]. (ese applications
require a high level of stability and latency, which URLLC
can only provide. However, since storage capacities are
limited by resource and power constraints, using only cloud
computing would not be adequate for processing and storing
the vast amount of data provided by autonomous vehicles
from numerous sensors and cameras within a latency of
100ms. (e developers of studies have explored some 5G
vehicular network infrastructure, and our architecture is
based on that. (e architecture is given in Figure 2.

In Figure 2, it has been shown that MEC is able to
improve the idea of a RSU to higher level and work with no
strict deployment of 5G components, such as massive
MIMO and beamforming [55]. A fairly recent networking
approach is SDN, where the network setup and control take
place in an environment that is more cloud-like than
standard networking [3]. In this approach, network devices
are managed by a central authority responsible for managing
the various network devices, rather than relying on a dis-
tributed configuration per system.(is transformation turns
the network into a more modular technology, opening the
way for programmable and self-organizing networks. An
auxiliary network layer to transport called the control plane
to transport signaling and management messages to in-
corporate this technology. In comparison, most of the data
traffic flows through the so-called data plane, which is ap-
plied on top of the data plane-configured computers [3].

Although traditional networks rely on a strict relationship
between hardware and applications, the various features are
not linked to the physical devices in an NFV-based network
but rather are implemented in general-purpose commodity
servers. Consider a typical router system to understand the
idea further.(e router features are performed on a dedicated,
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specialized computer in a conventional network: the router.
Instead, these can be performed with the NFV method in a
commodity server or, more commonly, in a virtual envi-
ronment. With respect to conventional networking, this
decoupling provides tremendous flexibility, enabling the
tenant to scale the various resources of a network accordingly,
to the actual load or to the relevant use-case specifications.
(us, by allocating more resources to the physical framework
and creating more instances of the desired functions, it is easy
to scale and adapt a network’s implementation. Usually, this
strategy is applied in strict conjunction with SDN technology:
the network becomes amassive, programmable device that can
be easily controlled and tailored to the use-case scenario ac-
cordingly. It is worth noting that the definitions of the SDN
and the NFV do not depend on each other. Indeed, regular
network devices equipped with an SDN approach can be
deployed and an NFV system without an SDN can be
equipped. However, the two technologies will take advantage
of each other and, when implemented together, communicate
the best functionalities [3].

6.1. Network Slicing. (ere is no universal definition for
network slicing, even though the principle of considering it
as the separation of network traffic is accepted by most
authors, through various logical networks, all operating on
the same physical infrastructure. Network slicing is the
enabler of certain main features of the system in the 5G
architecture, enhancing scalability and versatility. A portion
of the network can require a different collection of physical
nodes, with different functionalities installed in a different
network infrastructure location. In this case, the number of
nodes used to process user packets can be increased. In the
case of an eMBB slice, the URLLC slice would be designed to
achieve a lower latency (e.g., by assigning nodes to the edge
of the network). (is method is also of the utmost im-
portance when using Mobile Edge Computing.(e Network
Slicing Architecture [56] is given in Figure 3.

As previously mentioned, onboard computing capacities
may be adequate for handling passenger-vehicle interac-
tions, but they may not be sufficient for managing workload
between V2V and V2I. Cloud storage is therefore insufficient

Table 2: Comparison between MCC and MEC [52].

Criteria MEC MCC
Latency Shorter (around 1ms) Longer (around 30–100ms)

Energy savings Satisfies the latency condition and increases
the battery life by 30%–50%

Cannot reduce the consumption of energy of IoTdevices simultaneously
and thus satisfy the latency requirements

Awareness of
context High No awareness of context

Privacy and
security High Low
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Device
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User
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Figure 1: MEC architecture.
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for creating a link between intelligent vehicles due tomassive
data delivery and long latencies [34]. To address this
problem, we must install all computation and storage ca-
pabilities at the wireless network edge, like edge caching and
edge computing, using a MEC network infrastructure that
runs on BBU servers at radio access points along the
roadsides. Since it is entirely software-defined and recon-
figurable on request, a cloud-native BBU server can be
adapted for DRAN and CRAN installation. It can also run
virtualized RAN services with network feature virtualization,
as well as MEC-based software like self-driving. (is ar-
chitecture is useful for network slicing, which enables the
URLLC network to operate on the same physical networks as
other 5G networks, saving money on bandwidth, and net-
work running costs.

6.2.OptimalCPUScheduling. All data processing takes place
at the edge server, and only the energy used for transmitting
at mobile devices is considered.(is energy is usually greater
than the total energy expended by the coordination chain’s
subunits. Let us consider an OFDMA system [57]. Let P(t)
and H(t) denote transmission power of the mth UE over the
subcarrier n.As the time interval of transmission is fixed, the
total energy consumption [57] is given as follows:

Am(t) � 􏽘
n∈Xm

Amn(t) (1)

where Xm is defined as the set of subcarriers assigned to UE
and Amn � ϕP(t) is defined as the consumption of energy
over the subcarrier n. In URLLC, high reliability is a must.
As a result, using the most recent advancements in infor-
mation theory, the maximum achievable rate for a finite
block length can be calculated as [57]

Rmn(t) ≈ Bmn(t) −
K

ln(2)

�����
ymn(t)

L

􏽲

· Q
− 1 βm( 􏼁, (2)

where Bmn(t) is the formula for Shannon capacity [13] given
as

Bmn(t) � K log2 1 +
H(t)Amn(t)

ϕcK
􏼠 􏼡, (3)

where c is defined as the spectral density of the noise power.
K is the channel dispersion, Q− 1 is defined as the inverse of
the Gaussian Q-function, βm is defined as the maximum
block error rate, and L is the length of the block, which can
also be given as L � ϕK. Let all of the computational tasks be
offloaded to the MEH. Consider a local communication
queue at each UE, which contains the bits to be transmitted
to AP, which further enables the amount of the computa-
tions to be performed [57]. (e arrival of the data can be
given as

Q
1
m(t + 1) � max 0, Q

1
m(t) − ϕRm(t)􏼐 􏼑 + αm(t), (4)

where Q1
m(t) is defined as the local queue at time t and αm(t)

is defined as the arrival of the new data, which is available for
the transmission from the next time, which is an unknown
distribution with random variables. During the process,

another queue is called a remote queue, which is given as
[58]

Q
p
m(t + 1) � max 0, Q

p
m(t) − ϕfm(t)xm( 􏼁

+ min Q
p
m(t), ϕRm(t)( 􏼁,

(5)

where Rm(t) is defined as the CPU cycles per second, which
is assigned byMEH to UEm during t time, and xm shows the
number of bits in a CPU cycle. To address the Resource
Allocation Challenge, which includes UE’s long-term energy
consumption, we must incorporate the idea of virtual
queues. (is can be given as [58]

Xm(t + 1) � max 0, Xm(t) + Q
total
m (t + 1) − Q

average
m􏽮 􏽯,

(6)

where m� 1, 2, 3, . . ., m.

6.2.1. Rate Allocation Challenge. Since the users in the
OFDMA scheme are orthogonal, various issues affect dif-
ferent users. As a result, the problem can be expressed as
follows [57] for each user m:

min Qmϕ 􏽘
n∈Xm

Bmn + Y 􏽘
n∈m

ϕKc

H(t)
exp

Bmn ln(2)

K
􏼠 􏼡⎡⎢⎢⎣ ⎤⎥⎥⎦. (7)

(e above equation is subject to

(1) Bmn ≥ 0,∀n ∈ Xm

(2) 􏽐n∈Xm
Bmn ≤ 􏽤Bm,max

Qm � −2Q
p
m + 2Q

q
m − Xm − μmYm. As 􏽐n∈Xm

Bmn and
multiplier Y are the nondecreasing of Bmn. (en, the optimal
solution is Bmn � 0∀n ∈ Xm when Qm ≥ 0. If Qm < 0, then
the solution can be given as Lagrangian solution [13]:

ψ � Qmϕ 􏽘
n∈Xm

Bmn + Y 􏽘
n∈Xm

ϕKc

H(t)
exp

Bmn ln(2)

K
− 􏽘

n∈Xm

ηmnBmn + λm Bmn − 􏽤Bmax ,m􏼐 􏼑⎛⎝ ⎞⎠,

(8)

where ηmn and λm are Lagrangian multipliers.

6.2.2. CPU Scheduling at MEH. (e second problem deals
with the optimization of the scheduling at MEH and can be
given as [57]

min fm( )m
� 􏽘

M�1

m�1
ϕ Xm + μmYm + 2Q

p
m( 􏼁fmAm. (9)

(e above equation is subject to the following
conditions:

(1) 0≤fm ≤ (Q
p
m/ϕAm)∀m

(2) 􏽐
M�1
m�1 fm ≤fmax

(ere is a linear and optimal solution obtained by the use
of simple iterative steps as defined in Algorithm 1. (e
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algorithm ensures that all virtual queues aremean-rate stable
in this situation. (e algorithm’s path appears to be as close
to the optimal available solution as possible. (is is mea-
sured in terms of the time it takes to arrive at a stable
solution.

In this algorithm, to solve the problem linearly with
optimal CPU scheduling, we have adopted the technique of
virtual queues [57]. Xm(t)m , Ym(t)m is defined as the virtual
queue of UE. Q

p
m(t)m is defined as the nondifferentiability of

the maximum function. Amm is defined as the conversion
factor, which is used for converting the number of CPU
cycles to be processed at MEH into its equivalent bits for
adding the length of the two queues of UE [57]. (e smaller
the values of Am are, the more computationally intensive the
applications would be there, and Fmax is defined as the
computational power of MEHs.

7. Results and Discussion

For evaluation purposes, we have taken 20 UEs, which are
embedded in a wireless framework based onmm-waves with
path loss values as given in [66]. We have distributed the
users uniformly to an area of 500m2. We have composed an
orthogonal frequency-division multiplexing (OFDM) sys-
tem of 200 subcarriers/user, with a spacing of 30 kHz. (e
noise power spectral density is taken as -180dBm/Hz with a
transmission time of 20ms and a block length of 100. (e
computational power of Mobile Edge Hosts (MEH) is taken
as 5.0×109 CPU cycles/second. (e results obtained are
shown in Table 3. A trade-off is plotted, which is found to be
increasing along the abscissa from right to left.

Furthermore, the reliability and convergence have also
been plotted. (e graph shows the boundation imposed on
the remote queues on their average long-term lengths. (e
probability at which the sum of the queue lengths increases is
a predefined threshold. (e challenges are resolved using a
dynamic algorithmic framework that is solved using opti-
mization without having a prerequisite knowledge of the
radio channel data arrivals. (rough these graphs, we can
interpret a fast-converging behaviour and the capacity of the
system to adapt in the nonstationary environment. By

looking at the transient intervals, in the graphs when the
convergence is not achieved, the probability converges
quickly to the expected levels. Larger values of μm give a
lower convergence time, with a larger variance and vice
versa. (is can be explained by Figures 4 and 5, respectively.

Now, for analyzing the reliability and latency of the 5G
autonomous vehicles, Monte Carlo Simulations [54] were
performed with configurations as follows: weight factor is
taken as 20 and the length of the road covered by the RSU is
taken as 800meters. (e vehicle density [54] is taken as 0.5
vehicles per minute. (e message generation exchange rate
[54] is taken as 80 messages per second, average service time
[54] is taken as 10milliseconds, and transmission power of
the vehicle [54] is taken as 50 dBm. (e slot duration [54] is
65 microseconds, noise power density [54] is taken as
-180dBm/Hz, and the number of the resource blocks are
taken as 20 and we are considering a multiple hop situation
[54]. (e simulation results are shown in Figure 6–8,
respectively.

When the RSU density is constant, propagation latency
increases, and when the vehicle density is constant, prop-
agation latency decreases.

From Figure 8, it can be concluded that vehicle density
and handling latency are directly proportional to each other,
keeping the RSU density fixed, and when the handling la-
tency slightly decreases when the vehicle density becomes
fixed for a short time.

Although this graph is somewhat skewed, we may de-
duce that overall latency rises when vehicle density rises.(e
overall latency reduces when the vehicle density is fixed.

8. Limitations and Future Scope

In autonomous vehicle technology, vehicles can benefit
from the information extracted from their surroundings or
roadside units to avoid any accident. To enable a fast
message exchange mechanism between the autonomous
vehicles and roadside units, we require reliable and low
latency techniques which only MEC-based BBU URLLC
communication can guarantee. However, there are certain
limitations of our study, which would become the base for
our future study or for other researchers in this fields. AVs
work on various sensors, cameras, and techniques, such as
LIDAR, and each of the sensors cannot perform fast
processing and can cause some delay in exchange of in-
formation between the vehicles. Due to the COVID-19
restrictions, our approach cannot be implemented on
larger scale and evaluation of image quality using peak
signal-to-noise ratio cannot be done to find the best per-
formance of our approach. Our approach can be imple-
mented on small scale and to implement on large scale, it
requires high capital investment and time, and the com-
plexity of the system may also increase. Furthermore, some
attacks or malicious users can tamper the system, which
could lead to accidents. To prevent this, one of the solutions
we suggest is integrating 5G URLLC communication with

Input: { Xm(t)}m, {Ym(t)}m, {Q
p
m(t)}m, {Am}m

Fmax, M
faverage � fmax, ψ � {m� 1, . . ., M}
While faverage> 0 do

(1) m� arg maxmϵψ {Am(Xm+ μmYm+ 2Q
p
m)};

(2) fm � min(Qmp/ΦAm, faverage);

(3) ψ �ψ − {m};
(4) If ψ � null→break;
(5) faverage � faverage − fm;
(6) End

ALGORITHM 1: Optimal CPU scheduling.

10 Mathematical Problems in Engineering



Table 3: Output of URLLC.

UE Q
average
m ρm ΓQtotal

m (t)> Qmax
m􏼈 􏼉

1 1.08×105 0.006 0.0058656
2 1.56×106 0.005 0.0038845
3 4.01× 106 0.004 0.0096214
4 7.02×106 0.003 0.0045215
5 3.19×106 0.002 0.0054687
6 2.22×107 0.001 0.0044568
7 2.39×107 0.006 0.0039987
8 1.10×107 0.005 0.0028757
9 1.00×107 0.004 0.0025647
10 1.24×107 0.003 0.0012354
11 1.28×108 0.003 0.0042318
12 1.12×108 0.007 0.0033320
13 2.54×108 0.006 0.0054222
14 1.38×108 0.002 0.0036987
15 1.55×109 0.007 0.0047785
16 1.64×107 0.005 0.0055447
17 1.89×108 0.001 0.0042300
18 2.01× 109 0.002 0.0044798
19 1.96×109 0.008 0.0025447
20 1.71× 109 0.003 0.0039886
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Figure 5: Out of service versus time plot.
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blockchain technology, which would secure the cloud in-
frastructure and prevent system tampering. Further re-
searches are required on improving the system with the
help of blockchain technology.

9. Conclusion

Speaking of the device’s latency, all the values calculated in
this work were below 1ms. It could be argued that 1ms is a
short period and, with the general Internet Round Trip Time
average, the improvement in this value due to the new
features is marginal. Although this is valid in most cases, it is
crucial to keep this value as low as possible in certain cases of
use envisaged by the 5G. Indeed, in URLLC, the overall
Round Trip Time (RTT) of the device must be less than 1ms,
and, thus, even a small increment like the one implemented
here can be within the service limits. It is also mandatory to
study telemetry’s effect in such situations, studying both
optimizations and trade-offs to reduce latency. (e tests
carried out on the test bed indicate that with appropriate
values for the parameters, the core network prototype’s
efficiency is not compromised and is therefore a legitimate
solution for the implementation of network telemetry in the
core network. (e rational choices are made regarding the
parameters of the system; the assessment should not directly
affect the efficiency of the core network services.
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[43] E. Castellanos Nájera, “Evaluating mobile edge-computing on
base stations: case study of a sign recognition application,”
Student thesis, Master of Science, 2014.

[44] P. M. Mell and T. Grance, Sp 800-145. He Nist Definition of
Cloud Computing, US Department of Commerce, Wash-
ington, DC, USA, 2011.

[45] X. Fan, J. Cao, and H. Mao, “A survey of mobile cloud
computing,” ZTE Communications, vol. 9, no. 1, pp. 4–8, 2011.

[46] G. Huerta-Canepa and D. Lee, “A virtual cloud computing
provider for mobile devices,” in Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond, vol. 6, ACM, San Francisco, CA, USA,
June 2010.

[47] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “(e
case for VM-based cloudlets in mobile computing,” IEEE
Pervasive Computing, vol. 8, no. 4, pp. 14–23, 2009.

[48] E. B. M. E. Computing, “Initiative,” https://portal.etsi.org/
Portals/0/TBpages/MEC/Docs/MECExecutiveBriefv128-09-
14.pdf Tech. Rep., ETSI-European Telecommunications
Standards Institute, Sophia Antipolis, France, 2015, https://
portal.etsi.org/Portals/0/TBpages/MEC/Docs/
MECExecutiveBriefv128-09-14.pdf Tech. Rep..

[49] M. T. Beck, M.Werner, S. Feld, and S. Schimper, “Mobile edge
computing: a taxonomy,” in Proceedings of the Sixth Inter-
national Conference on Advances in Future Internet, pp. 48–
55, Lisbon, Portugal, November 2014.

[50] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computing—a key technology towards 5G,”
ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.

[51] C. R. Murthy and C. Kavitha, “A survey of green base stations
in cellular networks,” International Journal of Computer
Networks and Wireless Communications (IJCNWC), vol. 2,
no. 2, pp. 232–236, 2012.

[52] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge
intelligence: multiaccess edge computing for 5G and internet
of things,” IEEE Internet of Hings Journal, vol. 7, no. 8,
pp. 6722–6747, 2020.

[53] “MEC-are we getting closer?,” August 2018, https://www.
netmanias.com/en/post/blog/13893/5g-mec/mec-are-we-
getting-closer.

[54] X. Ge, “Ultra-reliable low-latency communications in au-
tonomous vehicular networks,” IEEE Transactions on Ve-
hicular Technology, vol. 68, no. 5, pp. 5005–5016, 2019.

14 Mathematical Problems in Engineering

https://www.gigabyte.com/Solutions/Networking/urllc
https://www.gigabyte.com/Solutions/Networking/urllc
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/MECExecutiveBriefv128-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/MECExecutiveBriefv128-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/MECExecutiveBriefv128-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/MECExecutiveBriefv128-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/MECExecutiveBriefv128-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/MECExecutiveBriefv128-09-14.pdf
https://www.netmanias.com/en/post/blog/13893/5g-mec/mec-are-we-getting-closer
https://www.netmanias.com/en/post/blog/13893/5g-mec/mec-are-we-getting-closer
https://www.netmanias.com/en/post/blog/13893/5g-mec/mec-are-we-getting-closer


[55] F. Giust, V. Sciancalepore, D. Sabella et al., “Multi-access edge
computing: the driver behind the wheel of 5G-connected
cars,” IEEE Communications Standards Magazine, vol. 2,
no. 3, pp. 66–73, 2018.

[56] P. Rost, C. Mannweiler, D. S. Michalopoulos et al. “Network
slicing to enable scalability and flexibility in 5G mobile
networks,” IEEE Communications Magazine, vol. 55, no. 5,
pp. 72–79, 2017.

[57] M. Merluzzi, P. D. Lorenzo, S. Barbarossa, and V. Frascolla,
“Dynamic computation offloading in multi-access edge
computing via ultra-reliable and low-latency communica-
tions,” IEEE Transactions on Signal and Information Pro-
cessing over Networks, vol. 6, pp. 342–356, 2020.

[58] N. Wang, Resource Management for Edge Computing Systems,
Queen’s University Belfast, Belfast, UK, 2020.

Mathematical Problems in Engineering 15


