Methodologies for Highly
Scalable and Parallel Scientific

Programming on High
Performance Computing Platforms

Lead Guest Editor: Pedro Valero-Lara
Guest Editors: Antonio J. Pena and Vassil Alexandrov

Methodologies for Highly Scalable and Parallel
Scientific Programming on High Performance
Computing Platforms

Scientific Programming

Methodologies for Highly Scalable
and Parallel Scientific Programming
on High Performance Computing
Platforms

Lead Guest Editor: Pedro Valero-Lara
Guest Editors: Antonio J. Pefia and Vassil
Alexandrov

Copyright © 2020 Hindawi Limited. All rights reserved.

This is a special issue published in “Scientific Programming.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Chief Editor

Emiliano Tramontana (), Italy

Academic Editors

Marco Aldinucci(), Italy
Daniela Briola, Italy

Debo Cheng (), Australia
Ferruccio Damiani(}), Italy
Sergio Di Martino (), Italy
Sheng Du (), China

Basilio B. Fraguela (), Spain
Jianping Gou(®), China

Jiwei Huang (), China

Sadiq Hussain (), India
Shyjuan Jiang (), China
Oscar Karnalim, Indonesia
José E. Labra, Spain

Maurizio Leotta ("), Italy
Zhihan Liu (>, China

Piotr Luszczek, USA

Tomas Margalef (), Spain
Cristian Mateos (2}, Argentina
Zahid Mehmood (%), Pakistan
Roberto Natella (), Italy
Diego Oliva, Mexico

Antonio J. Pefla (), Spain
Danilo Pianini (), Italy
Jiangbo Qian (%), China
David Ruano-Ordas (2, Spain
Zeljko Stevi¢ (), Bosnia and Herzegovina
Kangkang Sun (i), China
Zhiri Tang(®), Hong Kong
Autilia Vitiello (), Italy
Pengwei Wang(i®), China

Jan Weglarz, Poland

Hong Wenxing ("), China
Dongpo Xu (), China

Tolga Zaman, Turkey

https://orcid.org/0000-0002-7169-659X
https://orcid.org/0000-0001-8788-0829
https://orcid.org/0000-0002-0383-1462
https://orcid.org/0000-0001-8109-1706
https://orcid.org/0000-0002-1019-9004
https://orcid.org/0000-0001-8396-7388
https://orcid.org/0000-0002-3438-5960
https://orcid.org/0000-0002-8438-7286
https://orcid.org/0000-0001-5220-6703
https://orcid.org/0000-0002-9840-4796
https://orcid.org/0000-0003-0643-0565
https://orcid.org/0000-0001-5267-0602
https://orcid.org/0000-0003-4399-0326
https://orcid.org/0000-0001-6384-7389
https://orcid.org/0000-0001-5761-1898
https://orcid.org/0000-0003-4888-2594
https://orcid.org/0000-0003-1084-4824
https://orcid.org/0000-0002-3575-4617
https://orcid.org/0000-0002-8392-5409
https://orcid.org/0000-0003-4245-3246
https://orcid.org/0000-0002-6050-373X
https://orcid.org/0000-0003-4452-5768
https://orcid.org/0000-0002-2017-0029
https://orcid.org/0000-0002-0900-6500
https://orcid.org/0000-0001-5562-9226
https://orcid.org/0000-0002-5667-3488
https://orcid.org/0000-0003-3687-1812
https://orcid.org/0000-0002-9663-9743

Contents

Survey of Methodologies, Approaches, and Challenges in Parallel Programming Using High-
Performance Computing Systems

Pawel Czarnul (i), Jerzy Proficz, and Krzysztof Drypczewski

Review Article (19 pages), Article ID 4176794, Volume 2020 (2020)

Analysis of a New MPI Process Distribution for the Weather Research and Forecasting (WRF) Model
R. Moreno (), E. Arias(®), D. Cazorla (), J. J. Pardo (), A. Navarro (), T. Rojo (), and E J. Tapiador
Research Article (13 pages), Article ID 8148373, Volume 2020 (2020)

https://orcid.org/0000-0002-4918-9196
https://orcid.org/0000-0002-4919-2168
https://orcid.org/0000-0002-9882-8425
https://orcid.org/0000-0003-1968-7108
https://orcid.org/0000-0002-0714-7510
https://orcid.org/0000-0002-3716-7918
https://orcid.org/0000-0002-2032-7380
https://orcid.org/0000-0002-3343-8397
https://orcid.org/0000-0002-6773-5250

Hindawi

Scientific Programming

Volume 2020, Article ID 4176794, 19 pages
https://doi.org/10.1155/2020/4176794

Hindawi

Review Article

Survey of Methodologies, Approaches, and Challenges in Parallel
Programming Using High-Performance Computing Systems

Pawel Czarnul ©,' Jerzy Proficz,” and Krzysztof Drypczewski >

'Dept. of Computer Architecture, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology,
Gdansk, Poland

2Centre of Informatics-Tricity Academic Supercomputer & Network (CI TASK), Gdansk University of Technology,

Gdansk, Poland

Correspondence should be addressed to Pawet Czarnul; pczarnul@eti.pg.edu.pl
Received 11 October 2019; Accepted 30 December 2019; Published 29 January 2020
Guest Editor: Pedro Valero-Lara

Copyright © 2020 Pawet Czarnul et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper provides a review of contemporary methodologies and APIs for parallel programming, with representative tech-
nologies selected in terms of target system type (shared memory, distributed, and hybrid), communication patterns (one-sided
and two-sided), and programming abstraction level. We analyze representatives in terms of many aspects including programming
model, languages, supported platforms, license, optimization goals, ease of programming, debugging, deployment, portability,
level of parallelism, constructs enabling parallelism and synchronization, features introduced in recent versions indicating trends,
support for hybridity in parallel execution, and disadvantages. Such detailed analysis has led us to the identification of trends in
high-performance computing and of the challenges to be addressed in the near future. It can help to shape future versions of
programming standards, select technologies best matching programmers’ needs, and avoid potential difficulties while using high-

performance computing systems.

1. Introduction

In today’s high-performance computing (HPC) landscape,
there are a variety of approaches to parallel computing that
enable reaching the best out of available hardware systems.
Multithreaded and multiprocess programming is necessary
in order to make use of the growing computational power of
such systems that is available mainly through the increase of
the number of cores, cache memories, and interconnects
such as Infiniband or NVLink [1]. However, existing ap-
proaches allow programming at various levels of abstraction
that affects ease of programming, also through either one-
sided or two-sided communication and synchronization
modes, targeting shared or distributed memory HPC sys-
tems. In this work, we discuss state-of-the-art methodologies
and approaches that are representative of these aspects. It
should be noted that we describe and distinguish the ap-
proaches by programming methods, supported languages,
supported platforms, license, ease of programming,

deployment, debugging, goals, parallelism levels, and con-
structs including synchronization. Then, based on detailed
analysis, we present current trends and challenges for de-
velopment of future solutions in contemporary HPC
systems.

Section 2 motivates this paper and characterizes the
considered APIs in terms of the aforementioned aspects.
Subsequent sections present detailed discussion of APIs that
belong to particular groups, i.e., multithreaded processing in
Section 3, message passing in Section 4, Partitioned Global
Address Space in Section 5, agent-based parallel processing
in Section 6 and MapReduce in Section 7. Section 8 provides
detailed classification of approaches. Section 9 discusses
trends in the development of the APIs including latest
updates and changes that correspond to development di-
rections as well as support for hybrid processing, very
common in contemporary systems. Based on our extensive
analysis, we formulate challenges in the field in Section 10.
Section 11 presents existing comparisons, especially

mailto:pczarnul@eti.pg.edu.pl
https://orcid.org/0000-0002-4918-9196
https://orcid.org/0000-0002-4919-2168
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4176794

performance oriented, of subsets of the considered APIs for
selected practical applications. Finally, summary and
planned future work are included in Section 12.

2. Motivation

In this paper, we aim at identifying key processing para-
digms and their representatives for high-performance
computing and investigation of trends as well as challenges
in this field for the near future. Specifically, we distinguish
the approaches by the types of systems they target, i.e.,
shared memory, distributed memory, and hybrid ones. This
aspect typically refers to workstation/server, clusters, and
systems incorporating various types of compute devices,
respectively.

Communication paradigms are request-response/two-
sided vs one-sided communication models. This aspect
defines the type of a parallel programming API.

Abstraction level in terms of detailed level of commu-
nication and synchronization routines invoked by compo-
nents is executed in parallel. This aspect is related to potential
performance vs ease of programming of a given solution, i.e.,
high performance at the cost of more difficult programming
for low level vs lower performance with easier programming
using high-level constructs. Specifically, this approach dis-
tinguishes the following groups: low-level communication
(just basic communication API), APIs with interthread,
interprocess synchronization routines (MPI, OpenMP, etc.)
that still requires much knowledge and awareness of the
environment as well as framework-level programming. The
authors realize that the presented assessment of ease of
programming is subjective; nevertheless, it is clear that aspects
like the number of lines of code to achieve parallelization are
correlated with technology abstraction level.

The considered approaches and technologies have been
superimposed on a relevant diagram and shown in Figure 1.
We realize that this is our subjective selection, with many
other available technologies like C++11 thread.h library [2]
or Threading Building Blocks [3] (TBBs), High Performance
ParalleX [4] (HPX), and others. However, we believe that the
above collection consists of representative technologies/
APIs and can be used as a strong base for the further analysis.
Moreover, selection of these solutions is justified by the
existence of comparisons of subsets of these solutions
presented in Section 11 and discussed in other studies.

Data visualization is an important part of any HPC
system, and GPGPU technologies such as OpenGL and
DirectX received a lot of attention in recent years [5]. Even
though they can be used for general purpose computations
[6], the authors do not perceive those approaches to become
the main track of the HPC technology.

3. Multithreaded Processing

In the current landscape of popular parallel programming
APIs aimed at multicore and many-core CPUs, accelerators
such as GPUs, and hybrid systems, there are several popular
solutions [1] and descriptions of the most important ones in
the following.

Scientific Programming

Communication

One sided Two sided
= OpenMP CUDA
I3 UNIX sockets
= and pipelines
| OpenACC| | Pthreads
&
15
g OpenCL
s P
TCP/IP
]
L
2 8
= PGAS S MPI
2
MPI
RDMA

FIGURE 1: Abstraction level marked with colors: high, green;
middle, yellow; low, red.

3.1. OpenMP. OpenMP [7] allows development and exe-
cution of multithreaded applications that can exploit mul-
ticore and many-core CPUs within a node. Latest OpenMP
versions also allow offloading fragments of code to accel-
erators including GPUs. OpenMP allows relatively easy
extension of sequential applications into a parallel appli-
cation using two types of constructs: library functions that
allow determination of the number of threads executing a
region in parallel or thread ids and directives that instruct
how to parallelize or synchronize execution of regions or
lines of code. Mostly used directives include #pragma omp
parallel spawning threads working in parallel in a given
region as well as #pragma omp for allowing assignment of
loop iterations to threads in a region for parallel processing.
Various scheduling modes including static and dynamic
with predefined chunk sizes with a guided mode with a
decreasing chunk size are also available. It is also possible to
find out the number of threads and unique thread ids in a
region for fine-grained assignment of computations.
OpenMP allows for synchronization through constructs
such as critical sections, barrier, and atomic and reduction
clauses. Latest versions of OpenMP support a task model in
which a thread working in a parallel region can spawn tasks
which are automatically assigned to available threads for
parallel processing. A wait-directive imposing synchroni-
zation is also available [1].

3.2.CUDA. CUDA [8] allows development and execution of
parallel applications running on 1 or more NVIDIA GPUs.
Computations are launched as kernels that operate on and
produce data. Synchronization of kernels and GPUs is
performed through the host side. Parallel processing is
executed by launching a grid of threads which are grouped
into potentially many thread blocks. Threads within a block
can be synchronized and can use faster albeit much smaller
shared memory, compared to the global memory of a GPU.
Shared memory can be used as a cache for intermediate
storage of data as can be registers. When operating on data
chunks, data can be fetched from global memory to registers

Scientific Programming

and from registers to shared memory to allow data pre-
fetching. Similarly, RAM to GPU memory communication,
computations within a kernel and GPU memory to RAM
communication can be overlapped when operations are
launched to separate CUDA streams. On the other hand,
selection of the number of threads in a block can have an
impact on performance as it affects the total block re-
quirements for the number of registers and shared memory
and considering limits on the numbers of registers and
amount of shared memory per Streaming Multiprocessor
(SM), it can affect the number of resident blocks and level of
parallelization. Modern cards with high compute capability
along with new CUDA toolkit versions allow for dynamic
parallelism allowing launching a kernel from within a kernel
as well as Unified Memory between the host and the GPU.
CPU + GPU parallelization, similar to OpenCL, requires
cooperation with another multithreading CPU API such as
OpenMP or Pthreads. Multi-GPU systems can be handled
with the API which allows to set a given active GPU which
allows to do it from either one or many host threads to
handle such systems. NVIDIA provides CUDA MPS for
automatic overlapping and scheduling calls to even a single
GPU from many host processes using e.g. MPI for inter-
process communication.

3.3. OpenCL. OpenCL [9] allows development and execu-
tion of multithreaded applications that can exploit several
compute devices within a computing platform such as a
server with multiple multicore and many-core CPUs as well
as GPUs. Computations are launched as kernels that operate
on and produce data, within a so-called context defined for
one or more compute devices. Work items within potentially
many work groups execute the kernel in parallel. Memory
objects are used to manage data within computations.
OpenCL uses an analogous structure of an application to
CUDA where work items correspond to threads and work
groups to thread blocks. Similarly to CUDA, work items
within a group can be synchronized. Since OpenCL extends
the idea of running kernels on many and various (such as
CPUs and GPUs) devices, it typically requires many more
lines of device management code than a CUDA program.
Similarly to CUDA streams, OpenCL uses the concept of
command queues, into which commands such as data copy
or kernel launches can be inserted. Many command queues
can be used and execution can be synchronized by referring
to events that are associated with commands. Additionally,
the so-called local memory (similarly to what is called shared
memory in CUDA) can be shared among work items within
a single work group for fast access as cache-type memory.
Shared virtual memory allows us to share complex data
structures by the host and device sides.

3.4. Pthreads. Pthreads [1] allows development and execu-
tion of multithreaded applications on multicore and many-
core CPUs. Pthreads allows a master thread to call a function
that launches threads that execute code of a given function in
parallel and then join the execution of the threads. The
Pthreads API offers a wide array of functions, especially

related to synchronization. Specifically, mutexes are mutual
exclusion variables that can control access to a critical
section in the case of several threads. Furthermore, the so-
called condition variables along with mutexes allow a thread
to wait on a condition variable if a condition is not met.
Another thread that has changed the condition can wake up
a thread or several threads waiting for the condition. This
scheme allows implementation of, e.g., the producer-con-
sumer pattern without busy waiting. In this respect, Pthreads
allows expression of more complex synchronization patterns
than, e.g., OpenMP.

3.5. OpenACC. OpenACC [10] allows development and
execution of multithreaded applications that can exploit
GPUs. OpenACC can be seen as similar to OpenMP [11] in
terms of abstraction level but focused on parallelization on
GPUs through directives instructing parallelization of
specified regions of code, scoping of data, and synchroni-
zation as well as library function calls. The basic #pragma acc
parallel directive specifies execution of the following block
by one or more gangs, each of which may run one or more
workers. Another level of parallelism includes vector lanes
within a worker. A region can be marked as one that can be
executed by a sequence of kernels done with #pragma acc
kernels while parallel execution of loop iterations can be
specified with #pragma acc loop. Directives such as #pragma
acc data can be used for data management with specification
of allocation copy and freeing space on a device. Reference
counters to data are used. An atomic #pragma acc directive
can be used for accessing data.

3.6. Java and Scala. Java [12] and Scala [13] are Java Virtual
Machine- (JVM-) [14] based languages; both are translated
into JVM byte codes and interpreted or further compiled into
a specific hardware instruction set. Thus, it is natural that they
share common mechanisms for supporting the concurrent
program execution. They provide two abstraction levels of the
concurrency, the lower one which is related directly to op-
erating system/hardware-based threads of control and the
higher one, where the parallelism is hidden by the executor
classes, which are used to schedule and run user-defined tasks.

A Java thread can be used when direct control of the
concurrency is necessary. Its life cycle is strictly controlled by
the programmer; he or she can create and provide its
content: the list instructions to be executed concurrently,
monitor, interrupt, and finish. Additionally, API is provided
that supports thread interactions, including synchronization
and in-memory data exchange.

The higher level concurrency objects support parallel
code execution in more complex applications, where the fine
level of thread control is not necessary, but parallelization
can be easily provided for larger groups of compute tasks.
Concurrent collections can be used for parallel access to in-
memory data, lock classes enable nonblocking access to
synchronized code, atomic variables help to minimize
synchronization and avoid consistency issues, and the ex-
ecutor classes manage thread pools for queuing and
scheduling of compute tasks.

4. Message Passing Processing

4.1. Low-Level Communication Mechanisms. The low-level
communication mechanisms are used by HPC frameworks
and libraries to enable data transmission and synchroni-
zation control. From the network point of view, the typical
approach is to provide a network stack, with the layers
corresponding to different levels of abstraction. TCP/IP is a
classical stack provided in the most modern systems, not
only in HPC. Usually, its main goal is to provide means to
exchange data with external systems, i.e., Internet access;
however, it can be also used to support computations di-
rectly as a medium of data exchange.

Nowadays, TCP/IP [15] can be perceived as a reference
network stack, although the ISO-OSI is still reminded to be
used for this purpose [16]. Figure 2(a) presents the TCP/IP
layer structure: link—the lowest one is responsible for han-
dling hardware, IP—the second one provides simple routed
transmission of the packages, transport—the third one is
usually used by the communication frameworks or directly by
the applications for either connection-based protocol:
Transmission Control Protocol (TCP) or for connection-less
datagram transmission: User Datagram Protocol (UDP).

The other, quite often application/framework API used in
HPC, is Remote Direct Memory Access (RDMA) [17].
Similarly to the TCP/IP, its stack has layered structure and its
lowest layer link is responsible for handling the hardware.
Currently, two main hardware solutions are used: Infiniband,
the intraconnecting network characterized by multicast
support, high bandwidth, low latency, and an extended
version of Ethernet, with RDMA over Converged Ethernet v1
(RoCEvl) protocol [18], where multicast transmission is
supported in a local network (see Figure 2(b)). The test results
presented in [19] showed performance advantages of a pure
Infiniband solution; however, introduction of RoCE enabled
great latency reduction in comparison with classical Ethernet.

Figure 2(c) presents RDMA over Converged Ethernet v2
(RoCEv2) [20], where RDMA is deployed over plain IP
stack, on top of the UDP protocol. In this case, some ad-
ditional requirements over the protocol implementation are
introduced: ordering of the transmitted messages and some
congestion control mechanism. Usage of UDP packets,
which are routable, implies that the communication is not
limited to one local network, and that is why RoCEv2 is
sometimes called Routable RoCE (RRoCE).

The Unified Communication X (UCX) [21] is a network
stack providing a collection of APIs dedicated to support
different middleware frameworks: Message Passing Interface
(MPI) implementations, Partitioned Global Address Space
(PGAS) languages, task-based paradigms, and I/0O bound
applications. This initiative is a combined effort of the US
national laboratories, industry, and academia. Figure 2(d)
presents its architecture with link layer split into hardware
and driver parts, where the former is responsible for physical
connection and the latter provides vendor-specific func-
tionality used by the higher layer, which is represented by
two APIs: UC-T supporting low level hardware-transport
functionality and UC-S with common utilities. Finally, the
highest layer provides UC-P collections of protocols, where

Scientific Programming

specific platforms or even applications can find the proper
communication and/or synchronization mechanisms.

The UCX reference implementation presented promis-
ing results in performed benchmarks, showing the mea-
surements being very close to the underlying driver
capabilities, as well as providing the highest publicly known
bandwidth for a given hardware. The above results were
confirmed by benchmarks executed on OpenSHMEM [22]
PGAS platform, where, on the Cray XK, in most test cases,
UCX implementation outperformed the one provided by the
vendor [23]. In [24], comparison of performance of UC-P
and UC-T on InfiniBand is presented. Even though UC-T
was more efficient, optimizations proposed by Papado-
poulou et al. suggest that there is a room to improve per-
formance of higher level UC-P.

Finally, for the sake of completeness, we need to mention
UNIX sockets and pipeline mechanisms [25], which are
quite similar to TCP/IP ones; however, they work locally
within a boundary of a single server/workstation, managed
by the UNIX-based operating system. Usually, the sockets
support stream and datagram messaging, similar to the TCP/
IP approach, but since they work on the local machine, the
data transfer is reliable and properly sequenced. The pipe-
lines provide a convenient method for data tunneling be-
tween the local processes and usually correspond to the
standard output and input streams.

4.2. MPI. The Message Passing Interface (MPI) [26] stan-
dard was created for enabling development and running
parallel applications spanning several nodes of a cluster, a
local network, or even distributed nodes in grid-aware MPI
versions. MPI allows communication among processes or
threads of an MPI application primarily by exchanging
messages—message passing. MPI is a standard, and there are
several popular implementations of the standard, examples
of which are MPICH [27] and OpenMPI [28].

Key components of the standard, in the latest 3.1 version,
define and include the following:

(1) Communication routines: point-to-point as well as
collective (group) calls
(2) Process groups and topologies

(3) Data types including calls for definition of custom
data types

(4) Communication contexts, intracommunicators, and
intercommunicators for communication within a
group or among groups of processes

(5) Creation of processes and management
(6) One-sided communication using memory windows

(7) Parallel I/O for parallel reading and writing from/to
files by processes of a parallel application

(8) Bindings for C and Fortran

5. Partitioned Global Address Space

Partitioned Global Address Space (PGAS) is an approach to
perform parallel computations using a system with

Scientific Programming

Application/ Application/ Application/ Application/
framework framework framework framework
TCP/UDP

transport IB transport IB transport UC-P
UDP
1P 1B UC-T/UC-S
1P
Drivers
Link Link Link
Hardware

(a) (b)

(© (d)

FIGURE 2: Main network stacks used in HPC: (a) TCP/IP, (b) RDMA over Infiniband/RoCEv1, (c) RDMA over RoCEv2, and (d) UCX.

potentially distributed memory. The access to the shared
variables is possible by a special API, supported by a
middleware implementing data transmission, synchroniza-
tion, and possible optimization, e.g., data prefetch. Such a
way of communication, when the data used by many pro-
cesses are updated only by one, without activities taken by
the other is called one-sided communication.

The classical example of PGAS realization is Open-
SHMEM [22] specification, which provides a C/Fortran API
for data exchange and process synchronization with dis-
tributed shared memory. Each process, potentially assigned
to a different node, can read and modify a common pool of
the variables as well as use a set of synchronization functions,
e.g., invoking barrier before data access. This initiative is
supported by a number of organizations including CRAY,
HPE, Intel, Mellanox, US Department of Defense, and Stony
Brook University. The latter one is responsible for an
OpenSHMEM reference implementation.

Another notable PGAS implementation is Parallel
Computing in Java [29] (PCJ), providing a library of
functions and dedicated annotations for distributed memory
access over an HPC cluster. The proposed solution uses Java
language constructs like classes, interfaces, and annotations
for storing and exchanging common data between the
cooperating processes, potentially placed in different Java
Virtual Machines on separated cluster nodes. There are other
typical PGAS mechanisms like barrier synchronization or
binomial tree-based vector reduction. The executed tests
showed good performance of the proposed solution in
comparison with an MPI counterpart.

In our opinion, the above selection consists of repre-
sentative examples of PGAS frameworks; however, there are
many more implementations of this paradigm, e.g., Chapel
[30] and X10 [31] parallel programming languages, Unified
Parallel C [32] (UPC), or C++ Standard Template Adaptive
Parallel Library [33] (STAPL).

6. Agent-Based Parallel Processing

Soft computing is a computing paradigm that allows solving
problems with an approach similar to the way a human mind
reasons and provides good enough approximations instead
of precise answers. Soft computing includes many com-
puting techniques including machine learning, fuzzy logic,

Bayesian networks, and genetic and evolutionary algorithms.
A multiagent system (MAS) is a soft computing system that
consists of an environment and a set of agents. Agents
communicate, negotiate, and cooperate with each other and
act in way that can change their own state or the state of the
environment. MAS aims to provide solutions acquired from
knowledge base acquired from evolutionary process. Kisiel-
Dorohinicki et al. [34] distinguished the following com-
plexity-based MAS types: (1) traditional model based of
fuzzy logic in which evolution occurs on the agent level, (2)
evolutionary multiagent systems (EMAS) in which evolution
occurs on population level of homogeneous agents, and (3)
MAS with heterogeneous agents that use different types of
soft computing methods. Kisiel-Dorohinicki [35] proposed a
decentralized EMAS model based on an M-Agent archi-
tecture. Agents have profiles that inform about actions
taken. Profiles consist of knowledge about environment,
acquired resources, goals, and strategies to be achieved. In
EMAS, similarly to organic evolution, agents can reproduce
(create new, sometimes changed agents) and die according
to agent fitness and changes in the environment. Selection
for reproduction and death is a nontrivial problem, since
agents have their autonomy and there is no global knowl-
edge. Agents obtain nonrenewable resource called life en-
ergy that is obtained as a reward or lost as a penalty. Energy
level specifies actions that agents can perform.

Several general purpose agent modeling frameworks were
proposed. Repast [36] is an open-source toolkit for agent
simulation. It provides functionality for data analysis with
special focus on agent storage, display, and behavior. Repast
scheduler is responsible for running user-defined “actions,”
ie, agent actions. The scheduler orders actions in tree
structures that describe execution flow. This allows for dy-
namic scheduling during model tick, i.e., an action performed
by an agent generates a new action in response [37]. Repast
HPC aims to provide Repast functionality in an HPC envi-
ronment. It uses a scheduler that sorts agent actions (timeline
and relation between agent relations) and MPI to parallelize
computations. Each process typically handles one or more
agents and is responsible for executing local actions. Then, the
scheduler aggregates information for the current tick and
enables communication between related agents [38]. EUR-
ACE is an agent-based system project that tries to model
European Economy [39]. Agents communicate between each

other by sending messages. To reduce the amount of data
exchanged between agents, it groups them into local groups. It
leverages the idea that agents will typically communicate with
a small number of other agents that should be processed as
closely as possible (i.e., different processes on the same
machine instead of different cluster nodes).

7. MapReduce Processing

7.1. Apache Hadoop. Apache Hadoop is a programming tool
and framework allowing distributed data processing. It is an
open source implementation of Google’s MapReduce [40].
The Hadoop MapReduce programming model is dedicated
for processing large amounts of data. Computation is split
into small tasks that are executed in parallel in the machines
of the cluster. Each task is responsible for processing only
small part of data and thus reducing resource requirements.
This approach is very scalable and can be used both on high
end and commodity hardware. Hadoop handles all typical
problems connected with data processing like fault tolerance
(repeating computation that failed), data locality, schedul-
ing, and resource management.

First Hadoop versions were designed and tailored for
handling web crawler processing pipelines which provided
some challenges for adoption of MapReduce for wider types
of problems. Vavilapalli et al. [41] describe design and ca-
pabilities of Yet Another Resource Negotiator (YARN) that
aims to disjoin resource management and programming
model and provide extended scheduling settings. YARN
moves from original architecture to match modern chal-
lenges such as better scalability, multiuser support (“mul-
titenancy”), serviceability (ability to perform a “rolling
upgrade”), locality awareness (moving computation to data),
reliability, and security. YARN [42] also includes several
types of basic mechanisms for handling resource requests:
FAIR, FIFO, and capacity schedulers.

Apache Hadoop was deployed by Yahoo in early 2010s
and achieved high utilization on a large cluster. Nevertheless,
energy efficiency was not satisfactory, especially when heavy
loads were not present. Leverich and Kozyrakis [43] pointed
out that (due to its replication mechanism) Hadoop Dis-
tributed Files System (HDEFS) precluded scaling down
clusters. The authors proposed a solution in which a cluster
subset must contain blocks of all required data, thus allowing
processing only on this subset of nodes. Then, additional
nodes can be added if needed and removed when load is
reduced. This approach allowed for reducing power con-
sumption even up to 50% but the achieved energy efficiency
was accompanied with diminished performance.

Advancements in high-resolution imaging and decrease
in cost of computing power and IoT sensors lead to sub-
stantial growth in the amount of generated spatial data. Aji
et al. [44] presented Hadoop-based geographical informa-
tion system (GIS) for warehousing large-scale spatial
datasets that focuses on expressive and scalable querying.
The proposed framework parallelizes spatial queries and
maps them to MapReduce jobs. Hadoop GIS includes
mechanism for boundary handling especially in context of
data partitioning.

Scientific Programming

In recent years, several algorithms extending capabilities
of Hadoop MapReduce were proposed [45]. Hadoop
schedulers do not allow setting time constraints for job
execution. Kc and Anyanwu [46] present a scheduling al-
gorithm for meeting deadlines that ensures that only jobs
that can finish in user-defined time frame are scheduled. The
algorithm takes into consideration the number of available
map and reduces task slots for a job that has to process the
set amount of data and estimates if the deadline can be kept
on the cluster of a predefined size. Ghodsi et al. [47] pro-
posed the Domain Resource Fairness (DRF) allocation al-
gorithm for providing fair share in a system with
heterogeneous resources (e.g., two jobs may require similar
memory, but different amount of CPU time). DRF aims to
provide dominant share, i.e., demands weight which mostly
depends on max-min fairness of dominant resource. Longest
Approximate Time to End (LATE) [48] scheduling policy
aims to offer better performance for heterogeneous clusters.
LATE does not assume that that tasks progress linearly or
that each machine in cluster has the same performance
(which is important in virtualized environments). In case of
tasks that perform slower than expected (“stragglers”),
Hadoop runs duplicate (“speculative”) task on different
nodes to speed up processing. LATE improves the heuristics
that recognize stragglers by taking into consideration not
only the current progress of the task but also the progress
rate.

7.2. Apache Spark. Hadoop MapReduce became a very
popular platform for distributed data processing of large
datasets. Even though its programming model is not suitable
for several types of applications. An example of those would
be interactive operations on data sets such as data mining or
fast custom querying and iterative algorithms. In the first
case, intermediate processing results could be saved in
memory instead of being recomputed, thus improving
performance. In the second case of input data, iterative map
tasks read input data for each iteration, thus requiring re-
petitive, costly disk operations.

Apache Spark is a cluster computing framework
designed to solve the aforementioned issues and allow
MapReduce style operations on streams. It was proposed in
2010 [49] by AMPLab and later became Apache Foundation
project. Similarly to MapReduce, the Spark programming
model allows the user to provide directed acyclic graph of
tasks which are executed on the machines of the cluster.

The most important part of Spark is the concept of a
Resilient Distributed Dataset (RDD) [50], which represents
an abstraction for a data collection that is distributed among
cluster nodes. RDD provides strong typing and ability to use
lazily evaluated lambda functions on the elements of the
dataset.

The Apache Spark model is versatile enough to allow us
to run diverse types of applications and many big data
processing platforms run heterogeneous computing hard-
ware. Despite that, most big data oriented schedulers expect
to run in an homogeneous environment both in context of
applications and hardware. Heterogeneity-Aware Task

Scientific Programming

Scheduler RUPAM [51] takes into consideration not only
standard parameters like CPU, RAM, and data locality but
also include parameters like disk type (HDD/SDD), avail-
ability of GPU or accelerator, and access to remote storage
devices. RUPAM reduced execution time up to 3.4 times in
the tested cluster.

Spark allows multiple tasks to be run on a machine in the
cluster. To improve performance, the colocation strategy must
take into account characteristics of task’s resource require-
ments. For example, if a task receives more RAM that it
requires, the cluster throughput is reduced. If a task does not
receive enough memory, it will not be able to finish, thus also
affecting total performance. Due to this, developers often
overestimate their requirements from schedulers. The strategy
used by typical colocation managers to overcome these
problems requires detailed resource usage data for each task
type provided in situ or gathered from statistical or analytical
models. Marco et al. [52] suggest a different approach using
memory aware task colocation. Using machine learning, the
authors created an extensive model for different types of tasks.
The model is used during task execution to estimate its be-
havior and future resource requirements. The proposed so-
lution increases average system throughput over 8x.

Similarly to Hadoop MapReduce, Spark recognizes tasks
for which execution times are longer that expected. To
improve performance, Spark uses speculative task execution
to launch duplicates of slower tasks so that job can finish in a
timely manner. This algorithm does not recognize sluggers,
i.e., machines that run slower than other nodes in the cluster.
To solve this problem, Data-Based Multiple Phases Time
Estimation [53] was proposed. It provides Spark with in-
formation about estimated time of tasks which allows
speculative execution to avoid slower nodes and increase of
execution time up to 10.5%.

8. Classification of Approaches

In order to structure the knowledge about the approaches
and exemplary APIs representing the approaches, we pro-
vide classifications in three groups, by

(1) Abstraction level, programming model, language,
supported platforms and license in Table 1—we can
see that approaches at a lower level of abstraction
support mainly C and Fortran, sometimes C++ while
at a higher level distributed ones, Java/Scala

(2) Goals (performance, energy, etc.), ease of pro-
gramming, debugging, and deployment as well as
portability in Table 2—we can see that ease of
programming, debugging, and deployment increase
with the level of abstraction

(3) Level of parallelism, constructs expressing parallel-
ism, and synchronization in Table 3—the latter ones
are easily identified and are supported for all the
presented approaches

We note that classification of the approaches and APIs in
terms of target system types, distributed and shared memory
systems, is shown in Figure 1. The APIs targeting

accelerators are intentionally regarded as shared memory
referring to the device memory.

9. Trends in Scientific Parallel Programming

There are several sources that observe changes in the HPC
arena and discuss potential problems to be solved in the near
future. In this section, we collect these observations and
then, along with observations, build towards formulation of
challenges for the future in the next section.

Jack Dongarra underlines the progress in HPC hardware
that is expected to reach the EFlop/s barrier in 2020-2021
[56]. It can be observed that most of the computational
power in today’s systems is grouped in accelerators. At the
same time, old benchmarks do not fully represent current
loads. Furthermore, benchmarks such as HPCG obtain only
a small fraction of peak performance of powerful HPC
systems today.

HPC can now be accessed relatively easily in a cloud and
GPUs and specialized processors like tensor processing units
(TPU) addressing artificial intelligence (AI) applications have
become the focus with edge computing, ie., the need for
processing near mobile users being important for the future [57].

Energy-aware HPC is one of the current trends that can
be observed in both hardware development as well as
software solutions, both at the scheduling and application
levels [58]. When investigating performance vs energy
consumption tradeoffs, it is possible to find nonobvious (i.e.,
nondefault) configurations using power capping (i.e., other
than the default power limit) for both multicore CPUs [59]
as well as GPUs [60]. However, optimal configurations can
be very different, depending on both the CPU/GPU types as
well as application profiles.

A high potential impact of nonvolatile RAM (NVRAM)
on high-performance computing has been confirmed in
several works. The evaluation in [61] shows its potential
support for highly concurrent data-intensive applications
that exhibit big memory footprints. Work [62] shows a
potential for up to 27% savings in energy consumption. It
has also been shown that parallel applications can benefit
from NVRAM used as an underlying layer of MPI I/O and
serving as a distributed cache memory, specifically for ap-
plications such as multiagent large-scale crowd simulations
[63], parallel image processing [64], computing powers of
matrices [65], or checkpointing [66].

Trends in high-performance computing in terms of
software can also be observed by following recent changes to
the considered APIs. Table 4 summarizes these changes for
the key APIs along with version numbers and references to
the literature where these updates are described.

In the network technologies, we can see strong com-
petition in performance factors, where especially the
bandwidth is always a hot topic. New hardware and stan-
dards for Ethernet speeds beats subsequent barriers: 100,
400, ... GBps as well as the InfiniBand with its 100, 200, . ..
GBps. Thus, this rapid development gives the programmers
opportunities to introduce more and more parallel solutions,
which are well scalable even for large sizes of the problems.
On the other hand, such race does not have a great impact on

8 Scientific Programming
TaBLE 1: Target/model classification of technologies.
Technology/ Abstraction Programming model Programming Supported platforms/target License/standard
API level/group language parallel system
Heterogeneous system with
. . - CPU(s), accelerators including OpenMP is a standard
OpenMP Library Multithreaded application =~ C/C++/Fortran GPU(s) [54], supported by, (7]
e.g., gcc
CUDA model,
computations launched as
kernels executed by
multiple threads grouped . . Proprietary NVIDIA
CUDA Library into blocks, global, and C Ser‘llei ;i]}rvgillisté;%n(sx)mth solution, NVIDIA
shared memory on the EULA [8]"
GPU as well as host
memory for data
management
OpenCL model,
computations launched as
Kernels executed by Heterogeneous platform
. . . including CPUs, GPUs from OpenCL is a standard
OpenCL Library multiple work items C/C++ .
. various vendors, FPGAs, etc., [9]
grouped into work groups supported by, e o
and memory objects for PP > €8 8
data management
Multithreaded application,
provides thread
. management_ rogtmes, Widely avgﬂable in UNIX Part of the POSIX
Pthreads Library synchronization C platforms, implementations,
. . . standard
mechanisms including e.g., NPTL
mutexes, conditional
variables
Heterogeneous architectures,
e.g., a server or workstation .
Open ACC Library Multithreaded application ~ C/C++/Fortran with x86/POWER + NVIDIA OP enACC[llf)]a standard
GPUs, support for compilers
such as PGI, gcc, accULL, etc.
Java JVM .[14] Multithreaded application Java, scala Server, workst.atlon, mobile Open standards: [12, 13]
Concurrency specific device
TCP/IP [15] is a
Network . C, Fortran, C++, Cluster, server, workstation, standard broadly
TCP/IP stack Multi-process Java, and others mobile device, and others implemented by OS
developers
RDMA [17] is a
Network standard implemented
RDMA stack Multiprocess C Cluster by over InfiniBand and
converged Ethernet
protocols
UCX [21] is a set of
Network Multiprocess, . network APIs with a
UCX stack multithreaded C, Java, Python Cluster, server, workstation reference
implementation
MPI Library multithreaded if C/Fortran Cluster, server, workstation V. al implementa
implementation supports available, e.g., OpenMPI
P and MPICH
Open standard with
OpenSHMEM Library Multiprocess application C, Fortran Cluster reference
implementation
PCJ Java library ~ Multiprocess application Java Cluster Open source Java library

[29]

Scientific Programming

TaBLE 1: Continued.

Technology/ Abstraction Programming model Programming Supported platforms/target License/standard
API level/group language parallel system
Open source
Apache Set of YARN managed resource Core functionality implementation of
HE doo applications negotiation, multiprocess in JAVA, also C, Cluster, server, workstation ~ Google’s MapReduce
P pp MapReduce tasks [41] BASH, and others [40], Apache software
license-ASL 2.0
Resource negotiation based
Set of on the selected resource Apache software
Apache Spark applications manager (YARN, Spark Scala Cluster, server, workstation license-ASL 2.0 [55]

Standalone, etc.), executors
run workers in threads [49]

"https://docs.nvidia.com/cuda/eula/index.html

TaBLE 2: Technologies and goals.

Technology/ Goals . Ease of assessment, Ease of deployment/ Portability (between
(performance, Ease of programming . hardware, for new
API e.g., performance (auto) tuning
energy, etc.) hardware, etc.)
Relatively easy,
parallelization of a
sequential program by
addition of directives for
L . L Easy, thread number . .
parallelization of regions Execution times can can be set usine an Available for all major
OpenMP Performance, and optionally library calls ~ be benchmarked environment Var%able shared memory
p parallelization ~ for thread management, easily, debugging at the level of re ion) environments, e.g., in
difficulty of implementing relatively easy or clause & gcc
certain schemes, e.g.,
similar to those with
Pthread’s condition
variables [1]
Proprietary API, easy-to-
use in a basic version for a .
default card, more difficult ~ Can be performed L;:;g:dsio I\I)Ytnf)olf
for optimized codes using cuda-gdb or various t:ea) tfr z s depends
CUDA Performance (requires stream handling, very powerful nvvp Easy, requires CUDA on hardware Verslijon—
memory optimizations (NVIDIA visual drivers and software card’s CUDA compute
including shared Profiler) or text-based capability and softvI\)fare
memory-avoiding bank nvprof P \Zersion
conflicts, global memory
coalescing)
More difficult thgn CUDA Can be benchmarked
or OpenMP since it
. . at the level of kernels,
requires much device and .
kernel management code, "CUC MANAGEMENL g o o uires proper Portable across hybrid
OpenCL Performance manag > functions can be used)’ " prop parallel systems,
optimized code may for fencin drivers in the system especially CPU + GPU
require specialized kernels benchmarkg 4 P Y
which somehow defies the sections
idea of portability
More difficult than
OpenMP, flexibility to
implement several Easy, thread’s code in , . .
multithreaded schemes, designated functions, Easy, thread S code Available for all major
Pthreads Performance executed in shared memory

involving wait-notify,
using condition variables
for, e.g., producer-
consumer

and can be
benchmarked there

designated functions environments

https://docs.nvidia.com/cuda/eula/index.html

10

TaBLE 2: Continued.

Scientific Programming

Technology/ Goals . Ease of assessment, Ease of deployment/ Portability (between
(performance, Ease of programming . hardware, for new
API e.g., performance (auto) tuning
energy, etc.) hardware, etc.)
Easy, similar to the
OpenMP's dlrectlve-bz.ised Standard libraries can Requires a compiler
model, however requires .
awareness of overheads be used for supporting Portable across compute
OpenACC Performance) performance OpenACC, e.g., PGI's devices supported by the
and corresponding needs .
L. assessment, gprof can compiler, GCC, or software
for optimization related
be used accULL
to, e.g., data placement,
copy overheads, etc.
Java o Easy, two levels of Easy debugging and Easy deployment for Portable over majority of
Parallelization . :
Concurrency abstraction profiling many OS hardware
Programming can be Debugging can be
TCP/IP Standard network difficult, requires difficult, available Usually already Portable over majority of
connectivit knowledge of low-level tools for time deployed with the OS hardware
Y 8 ploy!
network mechanisms measurement
Programming can be Debugging can be
difficult, requires difficult, available Deployment can be Usually used with
RDMA Performance knowledge of low-level tools for time difficult clusters
network mechanisms measurement
Programming can be Debugging can be .
Ucx Performance difficult, it is library for difficult, it is quite a Deployrpent can be Usually used with
. difficult clusters
frameworks new solution
Deployment can
require additional
tools, e.g., drivers for Portable,
Measurement of . :
execution time eas advanced implementations
Performance, Relatively easy, high-level, . ; V> interconnects such as available on clusters,
MPI llelizati . di difficult debugging, Infiniband or SL Kstati
parallelization =~ message passing paradigm allv i] nfiniband or SLURM servers, workstations,
especially in a cluster) HPC queue typically used in Unix
environment - .
system, tuning environments
typically based on
low-level profiling
Portable,
. . implementations
Performance, Easy, needs attention for No defllcated Fairly e.asy available on clusters,
OpenSHMEM " . debugging and deployment in many .
parallelization ~ synchronized data access rofiling tools environments servers, workstations,
profing typically used in UNIX
environments
Performance, Easy, < lasses and No de(.ilcated Easy deployment for Portable over majority of
PCJ arallelization annotations used for debugging and many OS hardware
P object distribution profiling tools Y
Easy to acquire job Moderately easy basic
Relatively easy, high level performance deployment,
Apache Performance abstraction, requires good overview (web UI and tweaking Used in clusters,
HI; doop large dataset; understanding of logs), moderately easy ~ performance, and available for Unix and

MapReduce programming
model

debugging, central
logging can be used to
streamline the process

security for entire windows
hadoop ecosystem

can be very difficult

Performance, low Relatively easy, high-level
disk, and high abstraction, based on
RAM usage, large lambda functions on RDD
datasets and dataFrames

Apache Spark

Easy to acquire job
performance
overview (web UI and
logs), moderately easy
debugging, central
logging can be used to
streamline the process

Easy Spark
Standalone
deployment, Spark on
YARN deployment

Used in clusters,
available for Unix and
Windows

requires a functioning

Hadoop ecosystem

the APIs, protocols, and features provided to the pro-
grammers, so the legacy software based on the lowest layer

services does not need to be updated often.

We can observe that the frameworks and libraries are
continuously extended and updated. We can see that some

converging tendencies have already been present for a long

Scientific Programming

time, e.g., an introduction of oftload for accelerator support
in OpenMP or multithreading support in OpenSHMEM or
MPI. The message to the users is that their favorite API will
finally support new features of the most popular hardware or
at least will give easy way to use it in collaboration with other
technologies (e.g., the case of complementing MPI and
OpenMP).

Hybrid parallelism has also become mainstream in high-
performance computing due to hardware developments and
heterogeneity in terms of various compute devices within a
node or a cluster (e.g., CPUs+ GPUs). This forces pro-
grammers to use combinations of APIs for efficient parallel
programming, e.g., MPI+CUDA, MPI+OpenCL, or
MPI + OpenMP + CUDA [1]. Table 5 summarizes hybridity
present in various considered technologies including po-
tential shortcomings as well as disadvantages.

10. Challenges in Modern High-
Performance Computing

Similar to discussing trends, we mention selected works
discussing expected problems and issues in the HPC arena
for the nearest future. We then identify more points for an
even more complete picture, in terms of the aspects dis-
cussed in Section 2.

Dongarra mentions several problematic issues [56] such
as minimization of synchronization and communication of
algorithms, using mixed precision arithmetics for better
performance (low precision is already used in deep learning
[72], for instance), designing algorithms to survive failures,
and autotuning of software to a given environment.

According to [73], one of the upcoming challenges in
Exascale HPC era will be energy efficiency. Additionally,
software issues in HPC are denoted as open issues in this
context, e.g., memory overheads and scalability in MPI,
thread creation overhead in OpenMP, and copy overheads.
Fault tolerance and I/O overheads for large-scale processing
are listed as difficulties.

Both the need for autotuning and progress in software
for modern HPC systems have also been stated in [74], with
an emphasis on the need for looking for better suited lan-
guages for HPC than the currently used C/C++ and Fortran.

Finally, apart from the aforementioned challenges and
based on our analysis in this paper, we identify the following
challenges for the types of parallel processing considered in
this work:

(1) Difhiculty of offering efficient APIs for hybrid parallel
systems includes difficulty of automatic load bal-
ancing in hybrid systems. Currently, combinations of
APIs with proper optimizations at various paralleli-
zation levels are required such as MPI + OpenMP and
MPI + OpenMP + CUDA. This stems directly from
Figure 1 where there is no single approach/API
covering all the configurations in the diagram.

(2) Few programming environments oriented on several
criteria apart from performance. Optimizations us-
ing performance and, e.g., energy consumption are
performed at the level of algorithms or scheduling

11

rather than embedded into programming environ-
ments or APIs. This suggests the lack of consider-
ation of energy usage in APIs, especially APIs
allowing us to obtain desired performance-energy
goals for particular classes of applications and
compute devices. This is shown in Table 3. This
requires automatic tools for determination of per-
formance vs energy profiles for various applications
and compute devices.

(3) Lack of knowledge (of researchers) to integrate
various APIs for hybrid systems; many researchers
know only single APIs and are not proficient in using
all options shown in Table 5.

(4) Need for benchmarking modern and representative
applications on various HPC systems with new
hardware features, e.g., latest features of new GPU
families such as independent thread scheduling in
NVIDIA Volta, memory oversubscription in NVI-
DIA Pascal + series cards, cooperative groups, etc.
This stems from very fast developments in the APIs
which is shown in Table 4.

(5) Convergence of APIs that target similar environ-
ments, e.g., OpenMP and OpenCL. OpenMP now
allows offloading to GPUs, accelerators, etc., as
shown in Table 3 and some of their applications
overlap. This raises a question on whether both will
follow in the same direction or diverge more for
particular uses.

(6) Lack of automatic determination of application pa-
rameters run on complex parallel systems, especially
hybrid systems, i.e., numbers of threads and thread
affinity on CPUs, grid configurations on GPUs, load
balancing among compute devices, etc. Some works
[75] have attempted automation of this process but
this field of autotuning in such environments, as also
shown above, is relatively undeveloped yet.

(7) Difficulty in porting of specialized existing parallel
programming environments and libraries to modern
HPC systems when one wants to use the architec-
tural benefits of the latest hardware. This is also
related to the fast changes in the hardware archi-
tectures and APIs following these such as for the
latest GPU generations and CUDA versions, but also
for other APIs, as shown in Table 4.

(8) Problem of finding best hardware configuration for a
given problem and its implementation (CPU/GPU/
other accelerators/hybrid), considering relative
performance of CPUs, GPUs, interconnects, etc.
Certain environments such as MERPSYS [76] allow
for simulation of parallel application execution using
various hardwares including compute devices such
as CPUs and GPUs but the process requires prior
calibration on small systems and target applications.

(9) Lack of standardized APIs for new technologies such
as NVRAM in parallel computing. This is related to
the technology being very new and starting to be
used for HPC, as shown in Section 9.

12

TaBLE 3: Technologies and parallelism.

Scientific Programming

Tech/API

Level of parallelism

Parallelism constructs

Synchronization constructs

OpenMP

Thread teams executing some
regions of an application

Directives that define that a certain
region is to be executed in parallel, such
as #pragma omp parallel, #pragma omp

sections, etc.

Several constructs that allow
synchronization such as #pragma omp
barrier, constructs that denote that a
part of code be executed by a certain
thread, e.g., #pragma omp master,
#pragma omp single, critical section
#pragma omp critical, directives for
data synchronization, e.g., #pragma
omp atomic

CUDA

Threads executing kernels in parallel,
threads are organized into a grid of
blocks each of which consists a
number of threads, both threads in a
block and blocks in a grid can be
organized in 1D, 2D, or 3D logical
structures, kernel execution, host to
device and device to host copying can
be overlapped if issued into various
CUDA streams

Invocation of a kernel function launches
parallel computations by a grid of
threads, possible execution on several
GPUs in parallel

Execution of all grid’s threads is
synchronized after the kernel has
completed; on the host side, execution
of individual threads in a block is
possible with a call to __syncthreads (),
atomic functions available for accessing
global memory

OpenCL

Work items executing kernels in
parallel, work items are organized
into an NDRange of work groups
each of which consists a number of
work items, both work items in a
work group and work groups in an
NDRange can be organized in 1D,
2D, or 3D logical structures, kernel
execution, host to device and device
to host copying can be overlapped if
issued into various command queues

Invocation of a kernel function launches
parallel computations by an NDRange of
work items, OpenCL allows parallel
execution of kernels on various compute
devices such as CPUs and GPUs

Execution of all NDRange’s work items
is synchronized after the kernel has
completed; on the host side, execution
of individual work items in a block is
possible with a call to barrier with
indication whether a local or global
memory variable that should be
synchronized, synchronization using
events is also possible, atomic
operations available for
synchronization of references to global
or local memory

Pthreads

Threads are launched explicitly for
execution of a particular function

a call to pthread_create () creates a
thread for execution of a specific
function for which a pointer is passed as
a parameter

Threads can be synchronized by the
thread that called pthread_create () by
calling pthread_join (), there are
mechanisms for synchronization of
threads such as mutexes, condition
variables with wait pthread_cond_wait
() and notify routines, e.g., pthread
_cond_signal (), barrier
pthread_barrier*(), implicit memory
view synchronization among threads
upon invocation of selected functions

OpenACC

Three levels of parallelism available: Parallel execution of code within a block

execution of gangs, one or more
workers within a gang, vector lanes
within a worker

marked with #pragma acc parallel,
parallel execution of a loop can be
specified with #pragma acc loop

For #pragma acc parallel, an implicit
barrier is present at the end of the
following block, if async is not present,
atomic accesses possible with #pragma
acc atomic according to documentation
[10], the user should not attempt to
implement barrier synchronization,
critical sections or locks across any of
gang, worker, or vector parallelism

Java
Concurrency

Thread inside the same JVM

The main tread created during the JVM

start in main () method is a root of other

threads created dynamically using
explicit, e.g., new thread (), or implicit
constructs, e.g., thread pool

Typical shared memory mechanisms
like synchronized sections or guarded
blocks

TCP/IP

The whole network nodes

Managed manually by adding and
configuring hardware

Using IP addresses and ports for
distinguishing the connections/
destinations, no specific constructs

Scientific Programming

TaBLE 3: Continued.

13

Tech/API Level of parallelism Parallelism constructs Synchronization constructs
RDMA The whole network nodes Managed mangally by adding and Using remote access with the indicators
configuring hardware of the accessed memory
UCx The whole network nodes Managed mangally by adding and Special APIs for message passing and
configuring hardware memory access
Processes (+threads combined with a Processes created with mpirun at

multithreaded API like OpenMP, application launch + potentially MPI collective routines: barrier,
MPI Pthreads if MPI implementation processes created dynamically with a call communication calls like MPI_Gather,

supports required thread support to MPI_Comm_spawn or MPI_Scatter, etc.

level) MPI_Comm_spawn _multiple
Processes possibly on different Processes created with oshrun at Opens HMEM synchrqnlzat10n and
OpenSHMEM .. collective routines; barrier, broadcast,
compute nodes application launch ;
reduction, etc.
The so-called nodes p laceq " The node structure is created by a main ~ PCJ synchronization and collective
PCJ possibly separated JVMs on different L ! .
Manager node at application launch routines; barrier, broadcast, etc.
compute nodes

Apache Task is a single process running Synchronization managed by YARN,
Hadoop inside a JVM API to formulate MapReduce functions ~ API for data aggregation (reduce

operation)

RDD and DataFrame API for managing

Executors run worker threads - .
distributed computations

Apache Spark

Managed by built-in Spark Standalone
or by external cluster manager: YARN,
Mesos etc.

TaBLE 4: Selected, important latest features and extensions in various technologies.

Tech/API Description of latest features Version Literature
Support for controlling oftfloading behavior (it is possible to offload to GPUs as well), extensions
OpenMP regarding thread affinity information management (affinity added to the task construct), data 5.0 (7]
mapping clarifications and extensions, extended support for various C++ and Fortran versions
Improved the scalability of cudaFree in multi-GPU environments, support for cooperative group
CUDA kernels with MPS, new cuBLASLt library has been added for general matrix GEMM operations, 101 (8]
cuBLASLt now has support for FP16 matrix multiplies using tensor cores on volta and turing GPUs, ’
improved performance of cuFFT on multi-GPU systems, some random generators in cuRAND
Minor changes in the latest 2.1 to 2.2 update, e.g., added calls to
clSetProgramSpecializationConstant and clSetProgramReleaseCallback, major changes in 1.2 to 2.0
OpenCL 2.2 [9]
update including shared virtual memory, device queues used to enqueue kernels on a device, added
the possibility for kernels enqueing kernels using a device queue
OpenACC Reduction clause on in a compute construct assumes a copy for each reduction variable, arrays and 27 [10]
P composite variables are allowed in reduction clauses, local device defined ’
Java Conc. An interoperable publish-subscribe framework with flow class and various other improvements 9 [67]
MPI Introduction of nonblocking collective I/O routines, corrections in Fortran bindings 3.1 [26]
OpenSHMEM Multithreading supPort., extendf?q type suppprt, Cl1 type—gf:nerlc 1nterfac‘es. for point-to-point 14 [68]
synchronization, additional functions and extensions to the existing ones
Support for opportunistic containers, i.e., containers that are scheduled even if there is not enough
Apache - . . oy .
Hadoop resources to run them. Opportunistic containers wait for resource availability and since they have 3.0.3 [69]
low priority, they are preempted if higher priority jobs are scheduled
Apache Spark Built-in avro datasource, support for eager evaluation of DataFrames 2.4 [70]

11. Comparisons of Existing Parallel
Programming Approaches for

Practical Applications applications.

be seen as a review that allows us to gather insights which
APIs could be preferred in particular compute intensive

In order to extend our systematic review of the approaches
and APIs, in this section,we provide summary of selected
existing comparisons of at least some subsets of approaches
considered in this work for practical applications. This can

In [77], ten benchmarks are used to compare CUDA and
OpenACC performance. The authors measure execution
times and speed of GPU data transfer for 19 kernels with
different optimizations. Test results indicate that CUDA is
slightly faster than OpenACC but requires more time to send

14 Scientific Programming
TaBLE 5: Hybridity in various technologies.
Tech/API Support for hybridity (description) Potential disadvantages or shortcomings
Allows to run threads on multicore/many-core CPUs as well as .
OpenMP offload and parallelize within devices, including GPUs Not easy to set up for offloading to GPUs
CUDA’s API allows management of several GPUs, it is possible Requires combination with some multlthreafled APIs
. . such as OpenMP or Pthreads for load balancing across
to manage computations on several GPUs from a single CPU .
CUDA CPU + GPU systems, with MPI for clusters, many host
thread, several streams may be used for sequences of commands .
threads may be preferred for balancing among several
onto one or more GPUs
GPUs
A universal model based on kernels for execution on several, Requires many more lines of code when used with hybrid
OpenCL potentially different, compute devices, command queues used for CPU + GPU systems compared to, e.g.,
several streams of computations OpenMP + CUDA
While it is possible to balance computations among
Allows to manage computations across several devices within a devices using OpenACC functions (similarly to CUDA),
OpenACC 8 pu node CPU threads (and correspondingly APIs allowing that)
might be preferred for more efficient balancing strategies
[71]
The standard allows a hybrid multiprocess + multithreaded ~ Requires combining with APIs such as OpenCL or, e.g.,
model if implementation supports it (check with OpenMP/CUDA to use efficiently with hybrid multicore/
MPI MPIL_init_thread (). An MPI implementation can be combined = many-core CPUs and GPUs, such solutions are not
with multithreaded APIs such as OpenMP or Pthreads, a CUDA- always fully supported by every MPI implementations,
aware MPI implementation allows using device pointers in MPI e.g., CUDA features can be limited to some type of the
calls operations, e.g., point-to-point
Apache Ability to manage computations with different processing Easy basic installation but requires a lot of effort to
Hadoop paradigms: MapReduce, Spark, HiveQL, Tez, etc. provide production ready and secure cluster
Apache Barrier execution mode makes integration with machine learning Production ready solutions typically require external
Spark pipelines much easier cluster manager

data to and from a GPU. Since both APIs are performed
similarly, the authors suggest using multiplatform Open-
ACC, especially because it provides an easier to use syntax.

The EasyWave [78] system receives data from seismic
sensors and is used to predict characteristic (wave height,
water fluxes etc.) of a tsunami. To improve processing speed,
CUDA and OpenACC EasyWave implementations were
compared, each tested on two differently configured ma-
chines with NVIDIA Tesla and Fermi GPU, respectively.
CUDA single instruction multiple dispatch (SIMD) opti-
mizations for grid point updates (computing value for el-
ement of the grid) achieved 2.15 and 10.77 for the
aforementioned GPU. Parallel window extension with
atomic instruction synchronization allowed for 13% and
46% speed up.

Cardiac electrophysiological simulations allow study of
patient’s heart behavior. Those simulations provide com-
putationally heavy challenges since the nonlinear model
requires numerical solutions of differential equations. In
[79], the authors provide implementation of system solving
partial and ordinary differential equations with discretiza-
tion for high spatial resolutions. GPGPU solutions using
CUDA, OpenACC, and OpenGL are compared to test the
performance. Ordinary differential equations were best
solved with OpenGL which achieved a speedup of 446 while
parabolic partial equations where best solved using CUDA
with a speedup of 8.

SYCL is a cross-platform solution that provides func-
tionality similar to OpenCL and allows building parallel
application for heterogeneous hardware. It uses standard

C++, and its programming model allows providing kernel
and host code in one file (“single-source programming”). In
[80], the authors compare overall performance (number of
API calls, memory usage, processing time) and easy of use of
SYCL with OpenMP and OpenCL. Two benchmarks are
provided: Common Midpoint (CMP) used in seismic pro-
cessing and 27stencil which is one of the OpenACC
benchmarks and is similar to algorithms for solving partial
differential equations. The authors also compare results with
previously published benchmarking results. Generally, re-
sults indicate that non-SYCL implementations are about two
times faster (2.35 and 2.77 for OpenCL, 1.38 and 2.22 for
OpenMP) than SYCL implementation. The authors point
out that differences in processing time may be influenced by
small differences in used hardware and compiler used.
Comparisons with previous tests indicate that SYSCL is
catching up with other programming models in context of
performance.

In paper [81], the authors presented a comparison of the
OpenACC and OpenCL related to the ease of the tunability.
They distinguished four typical steps of the tuning process:
(i) avoiding redundant host-device data transfer, (ii) data
padding for 32, 64, 128 bytes segments read-write matching,
(iii) kernel execution parameter tuning, and (iv) use of on-
chip instead of global memory where possible. Furthermore,
the additional barrier operation was proposed for OpenACC
to introduce the possibility of explicit thread synchroniza-
tion. Finally, the authors performed evaluation, using a
nanopowder growth simulator as a benchmark, and
implemented each optimization step. The results showed

Scientific Programming

similar speedups for both OpenCL and OpenACC imple-
mentations; however, the OpenACC one required fewer
modifications for the two first optimization steps.

An interesting evaluation of OpenMP regarding its new
features (ver. 4.5/5.0) was presented in [82]. The authors
tested four different implementations of miniMD (a mo-
lecular dynamics benchmark from the Mantevo benchmark
suite [83]): (i) orig: original, (ii) mxhMD: optimized for Intel
Xeon architecture, (iii) Kokkos: based on Kokkos portability
framework [84], and (iv) omp5: utilizing OpenMP 4.5 off-
load features. For the performance-portability assessment of
each implementation, a self-developed ® metric was used
and the results showed the advantage of Kokkos for GPU
and mxhMD for CPU hardware; however, for the pro-
ductivity measured in SLOC, omp5 was on-par with Kokkos.
The conclusion was that introduction of new features in
OpenMP provides improvements for the programming
process, but the portability frameworks (like Kokkos) are
still viable approaches.

The paper [85] provides a survey of approaches and APIs
supporting parallel programming for multicore and many-
core high-performance systems, albeit already 7 years old.
Specifically, the authors classified parallel processing models
as pure (Pthreads, OpenMP, message passing), heteroge-
neous parallel programming models (CUDA, OpenCL,
DirectCompute, etc.), Partitioned Global Address Space and
hybrid programming (e.g., Pthreads + MPI, OpenMP + MP],
CUDA + Pthreads and CUDA + OpenMP, CUDA + MPI).
The work presents support for parallelism within Java, HPF,
Cilk, Erlang, etc., as well as summarizes distributed com-
puting approaches such as grids, CORBA, DCOM, Web
Services, etc.

Thouti and Sathe [86] present a comparison of OpenMP
and OpenCL, also 7 years old already. The authors developed
four benchmarking algorithms (matrix multiplication,
N-Queens problem, image convolution, and string reversal)
and describe achieved speedup. In general, OpenCL per-
formed better when input data size increased. OpenMP
performed better in the image convolution problem
(speedup of 10) while (due to overhead work of kernel
creation) OpenCL provided no improvement. The best
speedup was achieved in the matrix multiplication solution
(8 for OpenMP and 598 for OpenCL).

In [87], Memeti et al. explore performance of OpenMP,
OpenCL, OpenACC, and CUDA. Programming produc-
tivity is measured subjectively (number of lines of code
needed to achieve parallelization) while energy usage and
processing speed are tested objectively. The authors used
SPEC Accel suite and Rodinia for benchmarking afore-
mentioned technologies in heterogeneous environments
(two single-node configurations with 48 and 244 threads). In
context of programming productivity, OpenCL was judged
to be the least effective since it requires more effort than
OpenACC (6.7x more) and CUDA (2x more effort).
OpenMP requires less effort than CUDA (3.6x) and OpenCL
(3.1x). CUDA and OpenCL had similar, application de-
pendent, energy efficiency. In the context of processing
speed, CUDA and OpenCL performed better than OpenMP
and OpenCL was found to be faster than OpenACC.

15

Heat conduction problem solution, a mini-app called
TeaLeaf, is used to showcase [88] code portability and
compare performance of moderately new frameworks:
Kokkos and RAJA with OpenACC, OpenMP 4.0, CUDA,
and OpenCL. In general, RAJA and Kokkos provide satis-
factory performance. Kokos was only 10% and 5% slower
than OpenMP and CUDA while RAJA was found to be 20%
slower than OpenMP. Results for OpenCL varied and did
not allow for reliable comparison. Device tailored solutions
were found performing better than platform-independent
code. Nevertheless, Kokkos and RAJA provide rich lambda
expressions, good performance and easy portability which
means that if they reach maturity, they can become valuable
frameworks.

In [89], Kang et al. presented a practical comparison
between the shared memory (OpenMP), message-passing
(MPI-MPICH), and MapReduce (Apache Hadoop) ap-
proaches. They selected two fairly simple problems (the all-
pairs-shortest path in a graph, as a computational-intensive
benchmark and two sources-data join as a data-intensive
one). The results showed the advantage of the shared memory
for computations and MapReduce for data-intensive pro-
cessing. We can note that the experiments were performed
only for two problems and only using one hardware setup (a
set of workstations connected by 1 Gbps Ethernet).

Another MapReduce vs message-passing/shared mem-
ory comparison was presented in [90] showing that even for
a typical big data problem (counting words in a text, with
roughly 2 GB of data), the in-memory implementation can
be much faster than a big-data solution. The experiments
were executed in a typical cloud environment (Amazon
AWS) using Apache Spark (which is usually faster than a
typical Hadoop framework) in comparison with MPI/
OpenMP implementation. The Spark results were an order
of magnitude slower than OpenMP/MPI ones.

Asaadi et al. in [91] presented yet another MapReduce/
message-passing/shared memory comparison using the
following frameworks: Apache Hadoop and Apache Spark,
with two versions: IP-over-Infiniband and RDMA directly
(for shuffling only), OpenMPI with RDMA support, and
OpenMP, using an unified hardware platform based on a
typical HPC cluster with an InfiniBand interconnect. The
following benchmarks were executed: sum reduction of
vector of numbers (a computation performance micro-
benchmark), parallel file reading from local file system (an I/
O performance micro-benchmark), calculating average
answer count for available questions using data from
StackExchange website, and executing PageRank algorithm
over a graph with 1,000,000 vertices. The discussion covered
several quality factors: maintainability (where OpenMP was
the leader), support for execution control flow (where MPI
has the most fine-grained access), performance and scal-
ability (where MPI showed the best results even for I/O-
intensive processing), and fault tolerance (where Spark
seems to be the best choice, however containing one single
point of failure—a driver component).

In [92], Lu et al. proposed extension to a typical MPI
implementation to provide Big Data related functionality:
DataMPI. They proposed four supported processing modes:

16

Common, MapReduce, Iteration, and Streaming, corre-
sponding to the typical data processing models. The pro-
posed system was implemented in Java and provided an
appropriate task scheduler, supporting data-computation
locality and fault tolerance. The comparison to Apache
Hadoop showed an advantage of the proposed solution in
efficiency (31%-41% better performance), fault tolerance
(21% improvement), and flexibility (more processing
modes), as well as similar results in scalability (linear in both
cases) and productivity (comparable coding complexity).

The evaluation of Apache Spark versus OpenMPI/
OpenMP was presented in [93]. The authors performed tests
using two machine learning algorithms: K-Nearest Neigh-
bors (KNN) and Pegasus Support Vector Machines (SVM),
for data related to physical particles’ experiments (HIGGS
Data Set [94]) with the size 11 of 28-dimension records, i.e.,
about 7 GB of disk space, thus they fit in the memory of a
single compute node. The benchmarks were executed using a
typical cloud environment (Google Cloud Platform), with
different numbers of compute nodes and algorithm pa-
rameters. For this setup, with such a small data size, the
performance results, i.e., execution times, showed that
OpenMPI/OpenMP outperformed Spark by more than one
order of magnitude; however, the authors clearly marked
distinction in possible fault-tolerance and other aspects
which are additionally supported by Spark.

The paper [95] provides performance comparison of
OpenACC and CUDA languages used for programming an
NVIDIA accelerator (Tesla K40c). The authors tried to
evaluate data size sensitivity of both solutions, namely, their
methodology uses Performance Ratio of Data Sensitivity
(PRoDS) to check how the change of data size influences the
performance of a given algorithm. The tests covering 10
benchmarks with 19 different kernels showed the advantage
of CUDA in the case of optimized code; however, for
implementation without the optimization, OpenACC is less
sensitive to data changes. The overall conclusion was that
OpenACC seems to be a good approach for nonexperienced
developers.

12. Conclusions and Future Work

In this paper, we presented detailed analysis of state-of-the-
art methodologies and solutions supporting development of
parallel applications for modern high-performance com-
puting systems. We distinguished shared vs distributed
memory systems, one-sided or two-sided communication
and synchronization APIs, and various programming ab-
straction levels. We discussed solutions using multithreaded
programming, message passing, Partitioned Global Address
Space, agent-based parallel processing, and MapReduce
processing. For APIs, we presented, among others, sup-
ported programming languages, target environments, ease
of programming, debugging and deployment, latest features,
constructs allowing parallelism as well as synchronization,
and hybrid processing. We identified current trends and
challenges in parallel programming for HPC. Awareness of
these can help standard committees shape new versions of
parallel programming APIs.

Scientific Programming

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] P. Czarnul, Parallel Programming for Modern High Perfor-
mance Computing Systems, Chapman and Hall/CRC Press,
Boca Raton, FL, USA, 2018.

[2] C++ v.11 thread support library, 2019.

[3] Intel threading building blocks, 2019.

[4] High Performance paralleX (HPX), 2019.

[5] J. Nonaka, M. Matsuda, T. Shimizu et al., “A study on open
source software for large-scale data visualization on sparc64fx
based hpc systems,” in Proceedings of the International
Conference on High Performance Computing in Asia-Pacific
Region, pp. 278-288, ACM, Chiyoda, Tokyo, Japan, January
2018.

[6] M. U. Ashraf and F. E. Eassa, “Opengl based testing tool ar-
chitecture for exascale computing,” International Journal of
Computer Science and Security (IICSS), vol. 9, no. 5, p. 238, 2015.

[7] OpenMP Architecture Review Board, OpenMP Application
Programming Interface, 2018.

[8] NVIDIA: CUDA toolkit documentation v10.1.243, 2019.

[9] Khronos OpenCL Working Group, “The openCL specifica-
tion,” 2019.

[10] OpenACC-Standard.org, The OpenACC Application Pro-
gramming Interface, 2018.

[11] S. Wienke, C. Terboven, J. C. Beyer, and M. S. Miiller, “A
pattern-based comparison of openacc and openmp for ac-
celerator computing,” in European Conference on Parallel
Processing, pp. 812-823, Springer, Berlin, Germany, 2014.

[12] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and
D. Smith, “The Java language specification,” 2019.

[13] M. Odersky, P. Altherr, V. Cremet et al., “Scala language
specification,” 2019.

[14] T. Lindholm, F. Yellin, G. Bracha, A. Buckley, and D. Smith,
“The Java virtual machine specification,” 2019.

[15] TCP/IP standard, 2019.

[16] A. L. Russell, “The internet that wasn’t,” IEEE Spectrum,
vol. 50, no. 8, pp. 39-43, 2013.

[17] RDMA consortium, 2019.

[18] InfiniBand architecture specification release 1.2.1 Annex A16:
RoCE, 2010.

[19] M. Beck and M. Kagan, “Performance evaluation of the
RDMA over ethernet (RoCE) standard in enterprise data
centers infrastructure,” in Proceedings of the 3rd Workshop on
Data Center-Converged and Virtual Ethernet Switching,
Berkeley, CA, USA, September 2011.

[20] InfiniBand architecture specification release 1.2.1 Annex A17:
RoCEv2, 2010.

[21] P. Shamis, M. G. Venkata, M. G. Lopez et al., “UCX: an open
source framework for HPC network APIs and beyond,” in
Proceedings of the 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, pp. 40-43, IEEE, Santa
Clara, CA, USA, August 2015.

[22] B. Chapman, T. Curtis, S. Pophale et al, “Introducing
openshmem: shmem for the pgas community,” in Proceedings
of the Fourth Conference on Partitioned Global Address Space
Programming Model, PGAS ’10, pp. 2.1-2.3, ACM, New York,
NY, USA, October 2010.

[23] M. Baker, F. Aderholdt, M. G. Venkata, and P. Shamis,
“OpenSHMEM-UCX: evaluation of UCX for implementing

Scientific Programming

OpenSHMEM programming model,” in OpenSHMEM and
Related Technologies. Enhancing OpenSHMEM for Hybrid
Environments, pp. 114-130, Springer International Publish-
ing, Berlin, Germany, 2016.

N. Papadopoulou, L. Oden, and P. Balaji, “A performance

study of ucx over infiniband,” in Proceedings of the 17th IEEE/

ACM International Symposium on Cluster, Cloud and Grid

Computing, CCGrid ’17, pp. 345-354, IEEE Press, Piscataway,

NJ, USA, May 2017.

[25] R. Love, Linux System Programming: Talking Directly to the
Kernel and C Library, O’Reilly Media, Inc., Newton. MA,
USA, 2007.

[26] Message passing interface forum MPIL: a message-passing
interface standard, 2015.

[27] MPICH-a portable implementation of MPI, 2019.

[28] The Open MPI Project, “Open Mpi: open source high per-
formance computing. A high performance message passing
library,” 2019.

[29] M. Nowicki and P. Bala, “Parallel computations in Java with
PCJ library,” in Proceedings of the 2012 International Con-
ference on High Performance Computing & Simulation
(HPCS), pp. 381-387, IEEE, Madrid, Spain, July 2012.

[30] The chapel parallel programming language, 2019.

[31] The X10 parallel programming language, 2019.

[32] Berkeley UPC—unified parallel C, 2019.

[33] A. A. Buss and H. Papadopoulos, “STAPL: standard template
adaptive parallel library,” SYSTOR ’10, vol. 10, 2010.

[34] M. Kisiel-Dorohinicki, G. Dobrowolski, and E. Nawarecki,

“Agent populations as computational intelligence,” in Neural

Networks and Soft Computing, L. Rutkowski and J. Kacprzyk,

Eds., pp. 608-613, Physica-Verlag HD, Heidelberg, Germany,

2003.

M. Kisiel-Dorohinicki, “Agent-oriented model of simulated

evolution,” 2002.

M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos, “The

repast simphony runtime system,” in Proceedings of the Agent

2005 Conference on Generative Social Processes, Models, and

Mechanisms, vol. 10, pp. 13-15, Citeseer, Chicago, IL, USA,

October 2005.

[37] N. Collier, “Repast: an extensible framework for agent sim-
ulation,” The University of Chicago’s Social Science Research,
vol. 36, p. 2003, 2003.

[38] N. Collier and M. North, “Repast hpc: a platform for large-
scale agent-based modeling,” Large-Scale Computing, vol. 10,
pp. 81-109, 2012.

[39] S. Cincotti, M. Raberto, and A. Teglio, “Credit money and
macroeconomic instability in the agent-based model and
simulator eurace. Economics: the open-access,” Open-As-
sessment E-Journal, vol. 4, 2010.

[40] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” in Proceedings of the OSDI'04:
Sixth Symposium on Operating System Design and Imple-
mentation, pp. 137-150, San Francisco, CA, USA, December
2004.

[41] V. Kumar Vavilapalli, A. Murthy, C. Douglas et al., “Apache
hadoop yarn: yet another resource negotiator,” 2013.

[42] T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc.,
Newton, MA, USA, 4th edition, 2015.

[43] J. Leverich and C. Kozyrakis, “On the energy (in)efficiency of
hadoop clusters,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 1, pp. 61-65, 2010.

[44] A. Aji, F. Wang, H. Vo etal., “Hadoop-gis: a high performance
spatial data warehousing system over mapreduce,”

(24

[35

[36

17

Proceedings of the VLDB Endowment International Conference
on Very Large Data Bases, vol. 6, 2013.

[45] J. Alwidian and A. A. A. AlAhmad, “Hadoop mapreduce job
scheduling algorithms survey and use cases,” Modern Applied
Science, vol. 13, 2019.

[46] K. Kc and K. Anyanwu, “Scheduling hadoop jobs to meet
deadlines,” in Proceedings of the 2010 IEEE Second Interna-
tional Conference on Cloud Computing Technology and Sci-
ence, CLOUDCOM 10, pp. 388-392, IEEE Computer Society,
Washington, DC, USA, November 2010.

[47] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant resource fairness: fair
allocation of multiple resource types,” in Proceedings of the 8th
USENIX Conference on Networked Systems Design and
Implementation, NSDI'11, pp. 323-336, USENIX Association,
Berkeley, CA, USA, June 2011.

[48] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous en-
vironments,” in Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI'08,
pp. 29-42, USENIX Association, Berkeley, CA, USA, De-
cember 2008.

[49] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
1. Stoica, “Spark: cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing, HotCloud’10, USENIX Association, Ber-
keley, CA, USA, June 2010.

[50] M. Zaharia, M. Chowdhury, T. Das et al., “Resilient dis-
tributed datasets: a fault-tolerant abstraction for in-memory
cluster computing,” in Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation,
NSDI'12, USENIX Association, Berkeley, CA, USA, April
2012.

[51] L.Xu,R.Butt, A, S. H. Lim, and R. Kannan, “A heterogeneity-
aware task scheduler for spark,” 2018.

[52] V. S. Marco, B. Taylor, B. Porter, and Z. Wang, “Improving
spark application throughput via memory aware task co-
location: a mixture of experts approach,” in Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference, Mid-
dleware ’17, pp. 95-108, ACM, New York, NY, USA, De-
cember 2017.

[53] P. Zhang and Z. Guo, “An improved speculative strategy for
heterogeneous spark cluster,” 2018.

[54] S. McIntosh-Smith, M. Martineau, A. Poenaru, and
P. Atkinson, Programming Your Gpu with Openmp, Uni-
versity of Bristol, Bristol, UK, 2018.

[55] H. Karau and R. Warren, High Performance Spark: Best
Practices for Scaling and Optimizing Apache Spark, O’Reilly
Media, Inc., Sebastopol, CA, USA, Ist edition, 2017.

[56] J. Dongarra, “Current trends in high performance computing
and challenges for the future,” 2017.

[57] B. Trevino, “Five trends to watch in high performance
computing,” 2018.

[58] P. Czarnul, J. Proficz, and A. Krzywaniak, “Energy-aware
high-performance computing: survey of state-of-the-art tools,
techniques, and environments,” Scientific Programming,
vol. 2019, Article ID 8348791, 19 pages, 2019.

[59] A.Krzywaniak, J. Proficz, and P. Czarnul, “Analyzing energy/
performance trade-offs with power capping for parallel ap-
plications on modern multi and many core processors,” in
Proceedings of the 2018 Federated Conference on Computer
Science and Information Systems (FedCSIS), pp. 339-346,
Poznan, Poland, September 2018.

18

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]
(68]

(69]

(70]
(71]

(72]

(73]

(74]

(75]

(76]

A. Krzywaniak and P. Czarnul, “Performance/energy aware
optimization of parallel applications on gpus under power
capping,” Parallel Processing and Applied Mathematics, 2019.
B. Van Essen, R. Pearce, S. Ames, and M. Gokhale, “On the
role of nvram in data-intensive architectures: an evaluation,”
in Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, pp. 703-714, Shanghai,
China, May 2012.

D. Li, J. S. Vetter, G. Marin et al., “Identifying opportunities
for byte-addressable non-volatile memory in extreme-scale
scientific applications,” in Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing Symposium,
pp. 945-956, Kolkata, India, May 2012.

A. Malinowski and P. Czarnul, “Multi-agent large-scale
parallel crowd simulation with nvram-based distributed
cache,” Journal of Computational Science, vol. 33, pp. 83-94,
2019.

A. Malinowski and P. Czarnul, “A solution to image pro-
cessing with parallel MPI I/O and distributed NVRAM
cache,” Scalable Computing: Practice and Experience, vol. 19,
no. 1, pp. 1-14, 2018.

A. Malinowski and P. Czarnul, “Distributed NVRAM
cache-optimization and evaluation with power of adjacency
matrix,” in Computer Information Systems and Industrial
Management-16th IFIP TC8 International Conference, CISIM
2017, volume of 10244 of Lecture Notes in Computer Science,
K. Saeed, W. Homenda, and R. Chaki, Eds., pp. 15-26, Bia-
lystok, Poland, 2017.

P. Dorozynski, P. Czarnul, A. Malinowski et al., “Check-
pointing of parallel mpi applications using mpi one-sided api
with support for byte-addressable non-volatile ram,” Procedia
Computer Science, vol. 80, pp. 30-40, 2016.

D. Lea, “JEP 266: more concurrency updates,” 2019.

Baker M. B., Boehm S., Bouteiller A., et al., Openshmem
specification 1.4, 2017.

K. Karanasos, A. Suresh, and C. Douglas, Advancements in
YARN Resource Manager, Springer International Publishing,
Berlin, Germany, 2018.

J. Laskowski, “The internals of apache spark barrier execution
mode,” 2019.

OpenACC-Standard.org, OpenACC Programming and Best
Practices Guide, 2015.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in Pro-
ceedings of the 32nd International Conference on International
Conference on Machine Learning, ICML’15, vol. 37,
pp. 1737-1746, Lille, France, July 2015.

C. A. Emerson, “Hpc architectures—past, present and
emerging trends,” 2017.

M. B. Giles and I. Reguly, “Trends in high-performance
computing for engineering calculations,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 372, 2014.

P. Czarnul and P. Rosciszewski, “Expert knowledge-based
auto-tuning methodology for configuration and application
parameters of hybrid cpu+gpu parallel systems,” in Pro-
ceedings of the 2019 International Conference on High Per-
formance Computing ¢ Simulation (HPCS 2019), Dublin,
Ireland, July 2019.

P. Czarnul, J. Kuchta, M. Matuszek et al., “MERPSYS: an
environment for simulation of parallel application execution
on large scale HPC systems,” Simulation Modelling Practice
and Theory, vol. 77, pp. 124-140, 2017.

(77]

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

Scientific Programming

X. Li and P. C. Shih, “Performance comparison of cuda and
openacc based on optimizations,” in Proceedings of the 2018
2Nd High Performance Computing and Cluster Technologies
Conference, HPCCT 2018, pp. 53-57, ACM, New York, NY,
USA, June 2018.

S. Christgau, J. Spazier, B. Schnor, M. Hammitzsch,
A. Babeyko, and J. Waechter, “A comparison of cuda and
openacc: accelerating the tsunami simulation easywave,” in
Proceedings of the 2014 Workshop Proceedings on Architecture
of Computing Systems (ARCS), pp. 1-5, Luebeck, Germany,
February 2014.

R. Sachetto Oliveira, B. M. Rocha, R. M. Amorim et al,
“Comparing cuda, opencl and opengl implementations of the
cardiac monodomain equations,” in Parallel Processing and
Applied Mathematics, R. Wyrzykowski, J. Dongarra,
K. Karczewski, and J. Wasniewski, Eds., pp. 111-120, Springer
Berlin Heidelberg, Berlin, Germany, 2012.

H. C.D. Silva, F. Pisani, and E. Borin, “A comparative study of
sycl, opencl, and openmp,” in Proceedings of the 2016 In-
ternational Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW), pp. 61—
66, New York, NY, USA, December 2016.

M. Sugawara, S. Hirasawa, K. Komatsu, H. Takizawa, and
H. Kobayashi, “A comparison of performance tunabilities
between opencl and openacc,” in Proceedings of the 2013 IEEE
7th International Symposium on Embedded Multicore Socs,
pp. 147-152, Tokyo, Japan, September 2013.

S.J. Pennycook, J. D. Sewall, and J. R. Hammond, “Evaluating
the impact of proposed openmp 5.0 features on performance,
portability and productivity,” in Proceedings of the 2018 IEEE/
ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC), pp. 37-46, Dallas, TX, USA,
November 2018.

M. A. Heroux, D. W. Doerfler, P. S. Crozier et al., “Improving
performance via mini-applications. Sandia national labora-
tories,” Technical Report SAND2009-5574 3, Sandia National
Laboratories, Livemore, CA, USA, 2009.

H. C. Edwards, C. R. Trott, D. Sunderland, and Kokkos,
“Enabling manycore performance portability through poly-
morphic memory access patterns,” Journal of Parallel and
Distributed Computing, vol. 74, no. 12, pp. 3202-3216, 2014.
J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel
programming models and tools in the multi and many-core
era,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 8, pp. 1369-1386, 2012.

K. Thouti and S. R. Sathe, “Comparison of openmp & opencl
parallel processing technologies,” International Journal of
Advanced Computer Science and Applications, vol. 3, no. 4,
2012.

S. Memeti, L. Li, S. Pllana, J. Kolodziej, and C. Kessler,
“Benchmarking opencl, openacc, openmp, and cuda: pro-
gramming productivity, performance, and energy con-
sumption,” in Proceedings of the 2017 Workshop on Adaptive
Resource Management and Scheduling for Cloud Computing,
ARMS-CC 17, pp. 1-6, ACM, New York, NY, USA, July 2017.
M. Martineau, S. MclIntosh-Smith, M. Boulton, and
W. Gaudin, “An evaluation of emerging many-core parallel
programming models,” in Proceedings of the 7th International
Workshop on Programming Models and Applications for
Multicores and Manycores, PMAM’16, pp. 1-10, ACM, New
York, NY, USA, May 2016.

S.J.Kang, S. Y. Lee, and K. M. Lee, “Performance comparison
of openmp, mpi, and mapreduce in practical problems,”
Advances in Multimedia, vol. 2015, 2015.

Scientific Programming

[90] J. Li, “Comparing spark vs mpi/openmp on word count
mapreduce,” 2018.

[91] H. Asaadi, D. Khaldi, and B. Chapman, “A comparative
survey of the hpc and big data paradigms: analysis and ex-
periments,” in Proceedings of the 2016 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 423-432,
Taipei, Taiwan, September 2016.

[92] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu, “Datampi:
extending mpi to hadoop-like big data computing,” in Pro-
ceedings of the 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, pp. 829-838, Minneapolis,
MN, USA, May 2014.

[93] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data analytics
in the cloud: spark on hadoop vs mpi/openmp on beowulf,”
Procedia Computer Science, vol. 53, pp. 121-130, 2015.

[94] Whiteson, D.: HIGGS data set, 2019.

[95] X. Li and P. C. Shih, “An early performance comparison of
cuda and openacc,” in Proceedings of the MATEC Web of
Conferences, ICMIE, vol. 208, Lille, France, July 2018.

19

Hindawi

Scientific Programming

Volume 2020, Article ID 8148373, 13 pages
https://doi.org/10.1155/2020/8148373

Hindawi

Research Article

Analysis of a New MPI Process Distribution for the Weather
Research and Forecasting (WRF) Model

R. Moreno @, E. Arias @, D. Cazorla®, J. J. Pardo @, A. Navarro @, T. Rojo (),

and F. J. Tapiador

University of Castilla-La Mancha, Albacete, Spain

Correspondence should be addressed to J. J. Pardo; juanjose.pardo@uclm.es

Received 24 September 2019; Revised 28 November 2019; Accepted 14 December 2019; Published 17 January 2020
Academic Editor: Antonio J. Pefa

Copyright © 2020 R. Moreno et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The standard method used in the Weather Research and Forecasting (WRF) model for distributing MPI processes across the
processors is not always optimal. This circumstance affects performance, i.e., execution times, but also energy consumption,
especially if the application is to be extended to exascale. The authors found that the reason why the standard method for
process distribution is not always optimal was an imbalance between the orthogonality of the communication and the
proper cache usage, and this affects energy consumption. We present an improved MPI process distribution algorithm that
increases the performance. Furthermore, scalability analyses for the new algorithm are presented and the energy use of the
system is evaluated. A solution for balancing energy use with performance is also proposed for cases where the former is

a concern.

1. Introduction

Weather forecasting is becoming increasingly important in
people’s everyday lives. It is as important for a person who
wants to have a good weekend as it is for an agency that has
to plan a world-class event like the Winter Olympics.
Moreover, increasingly higher resolution forecasts are being
demanded, which involves the need to increase the com-
putational power used for these forecasts, even reaching
exascale. From an operational point of view, performance is
the most important computational aspect of systems pro-
viding weather forecasts, as these must be generated in a
short period of time, without losing sight of the energy
consumption of these computational resources. Thus, a
forecast for the next 12 hours should be computed in less
than an hour in order to be useful for operations. For this
reason, the use of more computational resources is
demanded. Increasing the number of processors used on a
weather simulation allows the problem to be split into
smaller subproblems, but at the cost of an increased com-
munication throughput. This increase in computational
resources cannot be sustained indefinitely; at some point, the

computational workload of the subproblems will be so low
that communications will become a bottleneck, avoiding
further reduction in the computation times.

The Weather Research and Forecasting (WRF) model
package is a well-known weather forecasting software used
extensively around the world. WRF makes use of parallel
computing, which has allowed it to be executed on many
supercomputers. The authors used the Advanced Research
WRF (WRF-ARW) to provide 24-hour-ahead forecasts
every 12 hours for the interest points of the events of the
Winter Olympics 2018.

WREF performs a domain-based distribution of the
workload, using the Message Passing Interface (MPI) as the
communication protocol, where the domain is the target
region on Earth to be simulated. The domain is partitioned
among the available MPI processes, distributed on the
available processors. The processing complexity arises from
two issues: (i) the simulation resolution, which governs the
complexity of the integration step; and (ii) the grid/mesh
dimensions, which determine the size of the subdomains.

Each of these questions is influenced by different
properties of the underlying processing platform. For

mailto:juanjose.pardo@uclm.es
https://orcid.org/0000-0002-9882-8425
https://orcid.org/0000-0003-1968-7108
https://orcid.org/0000-0002-0714-7510
https://orcid.org/0000-0002-3716-7918
https://orcid.org/0000-0002-2032-7380
https://orcid.org/0000-0002-3343-8397
https://orcid.org/0000-0002-6773-5250
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8148373

example, the processing capacity of every processing unit
greatly determines the quality and performance of inte-
gration step (i). As the resolution increases, i.e., the mesh
subdomains become smaller, the integration step is short-
ened causing an increase in the required total integration
steps.

This paper focuses, on the one hand, on the second issue
(ii), which establishes the number of subdomains, each
subdomain having a fixed number of cells. WRF evenly splits
the general domain into # subdomains, #n being the number
of available MPI processes, which are arranged in a 2D grid
(x x y).

The process distribution parameters x and y greatly
determine the overall performance of the simulation
depending on the dimensions of the subdomain mesh, i.e.,
the dimensions (x x y) of the domain grid. For example,
with 25 MPI processes, the domain can be decomposed into
three possibilities: (25 x 1), (5% 5), and (1 x 25). It may be
thought that distributing processes in a (25 x 1) layout
performs similarly to distributing them in a (1 x 25) layout,
but we show that this was not the case with WRF. In fact,
there was an enormous difference in performance between
the two layouts. For this reason, we studied the impact of the
different process distributions on the simulation times and
the reasons for this impact and proposed a new distribution
algorithm that works better than the one implemented by
WREF.

On the other hand, we also studied how increasing the
number of used processing resources decreases the wall time
of the simulation at the cost of losing efficiency for com-
puting the same workload, dramatically increasing the en-
ergy consumption. In consequence, we found a balance
between overall performance and energy consumption,
which indicated the best process distribution when energy
consumption was also a factor. Note that exascale platforms
will be composed of thousands of processors, which means
that a slight reduction in the energy consumption of each of
them would substantially reduce the energy consumption of
the platform as a whole.

The rest of this paper presents an overview of the current
state of the art in Section 2. All the methods used in this work
are detailed in Section 3. In Section 4, we study the effects of
different process distributions on the overall performance
and propose a new method to distribute them in Section 5.
In Section 6, we study how an increase of the available MPI
processes, as well as the variability of the processing capacity
of each of these processes, affects the efficiency of the dis-
tributed computations and the energy consumption,
thinking on an implementation of WREF for exascale. Finally,
we present our conclusions and future work in Section 7.

2. Precedents and Related Work

WRE performance may be affected by different factors. Some
are related to the software used in the compilation and
execution phases (C and Fortran compiler, MPI library, and
use of threads) and others to the configuration of a certain
case study (physical model used, resolution requested, do-
main mesh, .. .). In this paper, we will focus on three topics:

Scientific Programming

how scalable WRF is when the number of available MPI
processes increases; how the dimensions of the domain mesh
affects performance; and how we can save energy while
achieving good performance. In the literature, there are a
number of papers addressing these topics.

Malakar et al. [1] focused on improving and analyzing
the performance of nested domain simulations. They
showed a significant reduction (up to 29%) in runtime via a
combination of compiler optimizations, mapping of pro-
cesses to physical topology, overlapping communication
with computation, and parallel] communications. They also
concluded that high-resolution nested weather simulations
are a challenge in terms of scaling to a large number of
processors and considered it critical that practitioners
choose a good nesting configuration.

Christidis [2] concluded that significant performance
improvements, due to better cache utilization, can be ob-
tained with a proper choice of the parameters nproc_x,
nproc_y, and numtiles. Smaller contiguous arrays fit more
efficiently in local caches, especially in the cases of “thin”
decompositions (nproc_x <nproc_y) which allow compu-
tations with minimal cache misses.

In the same line, Johnsen et al. [3] investigated a “best fit”
node placement scheme when using 2 OpenMP threads per
MPI rank, 8 MPI ranks on each Cray XE6 “Blue Waters”
node. By default, the XE6 job scheduler places MPI ranks in
serial order on the machine, but halo exchange partners are
not mapped this way in WRF. Using an alternate placement
allows 3 communication partners to be obtained for most
MPI ranks on the same node. At very high scales, this
strategy improves overall WRF performance by 18% or
more. The WRF grid is decomposed into rectangles with
latitudes longer than longitudes for each subdomain. The
optimized placement employed has the benefit of sending
smaller east-west direction exchanges off-node and keeping
as many larger north-south messages on-node as possible.

Shainer et al. [4] concluded that although interconnect
type was the greatest determinant in improving WRF
scalability, it was also observed that overall cluster pro-
ductivity could be improved by up to 20% by running si-
multaneous jobs on the cluster rather than allocating the
entire cluster to a single job. This increase in productivity
was the result of two factors: (i) core and memory affinity,
which reduces the remote memory access penalties and
increases cache hits, and (ii) parallel jobs with smaller core
counts help reduce the synchronization overhead for each
application.

Kruse et al. [5] studied WREF scalability to several
thousand cores on commodity supercomputers using Intel
compilers and found that total time decreased between 512
and 2K cores and increased beyond 2K cores. While the
computation time scaled well with increasing numbers of
cores, the time to complete operations involving I/O in-
creased, outweighing the gains in simulation speed at 2K
cores and beyond.

For a very long time, computing performance was the
only metric considered when launching a program. Scien-
tists and users were only concerned about the time it took for
a program to finish. Though still often true, the priority of

Scientific Programming

many hardware architects and system administrators has
shifted to an increasing concern for energy consumption.
High-performance computing consumes ever-larger vol-
umes of electricity, and the reduction of consumption saves
an appreciable amount of money.

One group of methods to reduce energy consumption
focuses on how to distribute the workload among the cores
of the computer. In this area, Lagraviere et al. [6] compared
the performance and power efficiency of Unified Parallel C
(UPC), MP], and OpenMP by running a set of kernels from
the NAS Benchmark. They focused on the Partitioned Global
Address Space (PGAS) model, and their main conclusion is
that UPC can compete with MPI and OpenMP in terms of
both computation speed and energy efficiency, but the data
show that OpenMP consumes less energy than the others.

Igumenov and Zilinskas [7, 8] measured the power
consumption of multicore computers with different com-
puting loads: when the computer is idle and when some
cores are fully loaded. The mean power consumption per
core decreases when the computing load increases. Hence,
running computers with greater loads is preferable to dis-
tributing parallel tasks among separate multicore computers.

Aqib and Fouz [9] compared the time and energy
consumption of different tasks using different parallel
programming models (OpenMP, OpenMPI, and CUDA).
Their results, which can be generalized, outline the effect of
choosing a programming model on the efficiency and energy
consumption when running different codes on different
machines. The parallel programming models obviously only
improve the efficiency and reduce the energy consumption if
there are blocks of codes that can be parallelized. Their
conclusion is that OpenMPI performs much better than the
other parallel models considered.

To summarize, the first works mentioned in this section
seek to improve performance by modifying different pa-
rameters, both software and hardware, but unlike our work,
in no case have they presented an exhaustive analysis that
provides a heuristic to determine a distribution of processes
close to optimal. In all these works, there is no concern for
energy consumption. In the following works, different
techniques are presented that allow reducing the con-
sumption of energy for certain established test benches.
Although they show the way forward, we have carried it out
through software in a real situation.

3. Materials and Methods

3.1. Application Case. This work was conducted within the
ICE-POP 2018 project, where the collaborating agencies
were tasked with supporting the Winter Olympics by pro-
viding different kinds of weather information. A mid-
resolution simulation with WRF has approximately 1 to
4km of resolution per cell, with an integration step in the
order of seconds. For the ICE-POP 2018, a resolution of
about 300 m was required, which imposed integration steps
lower than a second. Figure 1 shows the three nested do-
mains with different resolutions that were computed in every
simulation over the Korean peninsula. Different parameters
from WREF forecasts, such as the visibility or the humidity,

UCLM-WRF ICE-POP 2018 South Korea

height (m) and domains
T 1850

1650

1450

1250

1050

Q 850

F 650

450

250

—L 50

FiGure 1: WRF domains used in our simulations over the Korean
peninsula. Three nested domains D01, D02, and D03 with different
resolutions. Terrain heights in meters are plotted inside the
domains.

were extracted for the points of interest of the Olympics. This
kind of information was extremely useful for planning the
events. We performed the same kind of simulations over the
same geographical region for all our studies. WREF-ARW
version 3.9.1 with customized configuration (UCLM-WRF)
was used by the authors to obtain the weather forecasts.
WREF is open-source, so the source code can be obtained
from the National Center of Atmospheric Research (NCAR)
website (http://www2.mmm.ucar.edu/wrf/users/download/
get_source.html). The configuration made use of state-of-
the-art P3 microphysics [10], the Rapid Radiative Transfer
Model scheme [11] for radiation, and the Noah Land Surface
Model [12] for the surface.

3.2. Test Platform. We used the GALGO Supercomputer to
perform all the tests in this work. GALGO is located at the
Albacete Research Institute of Informatics, Spain, and hosts
all kinds of scientific research. GALGO is a cluster of ap-
proximately 1200 processing cores, half of which are pro-
vided by Intel Xeon E5450 3.0 GHz processors. Each
processing node is dual-socket, mounting two processors
with shared DRAM and a 40Gb/s dual-port Mellanox
ConnectX-2 Infiniband interface. We used up to 40 of
GALGO’s processing nodes (320 processing cores) for our
tests. The topology of the network is depicted in Figure 2; it
consists of a first level of 24-port DDR switches and a second
level of one 36-port QDR switch, with link rate of 20 Gb/s.
Sixteen computing nodes are connected to each 24-port
switch.

3.3. Compilation Options. The choice of compiler, compi-
lation options, and MPI implementation has a big influence
on the runtime of a simulation. In this work, we used the

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
http://www2.mmm.ucar.edu/wrf/users/download/get_source.html

Scientific Programming

Switch of 36 ports

.t

DN

Switch of 24 ports } { Switch of 24 ports

Switch of 24 ports Switch of 24 ports

‘Q‘@CJDCJDQ&)

64 Blades BL460C-GS5, 2 Quad- Core Intel Xeon E5450 (3.0 GHz) each.

FIGUre 2: Topology of the network.

fastest binary codes, which are the best combination we can
get, that is, the executable that allows us to run a simulation
in the shortest possible time of all combinations. In our case,
we used Intel compilers with Intel MPI libraries (ver.
2018.0.128) to compile all the required programs and de-
pendencies. For best performance, we used the -O3 com-
pilation option to activate the most aggressive optimizations
available. We also used the -xHost compilation option to use
the SIMD capabilities of the processor (SSE4). We empir-
ically verified that the hybrid MPI-OpenMP (dm + sm) WRF
compilation performed better than the other options and
hence used this configuration in our tests.

3.4. Simulations. Our simulations covered the target region
where the Winter Olympics were held, simulating 25 Jan-
uary 2018 from 06:00 to 06:30 for all the tests. A typical
simulation for the Winter Olympics covered 24 simulated
hours, but we used a reduced simulated time in our tests
because of the large number of simulations these test in-
volved. We used three one-way nested grids (see Figure 1)
with sizes 199 x 199 for the inner grid (300 meters per cell),
103 x 103 for the intermediate grid (900 m), and 60 x 60 for
the outer grid (2700 m), each of them with 70 vertical levels.
Furthermore, the very high resolution of 300 meters per
inner cell required substantial processing power per itera-
tion. Numerical stability greatly depends on the resolution of
the input geographical data, and therefore we used a high-
resolution dataset of the Korean peninsula provided by the
ICE-POP project instead of the default WRF Preprocessing
System (WPS) Geographical Input Data.

3.5. Mesh Distribution. WRF performs an automatic distri-
bution or layout of the simulation domain/grids among the
available MPI processes, based on a Cartesian topology
(MPI_Cart_create). As a result, it splits the domain into the
most orthogonal coordinates possible (x, y) € N or (x x y),
assigning every coordinate to an MPI process. The x and y
values can be overridden, so in order to check whether the
most orthogonal layout is the best domain distribution, we
performed additional simulations with all the possible (x x y)

combinations for a set of n values, where n represents the
number of processing nodes. In our experiments, the number
of MPI processes matches the number of nodes #n because we
only used one MPI process per node. An easy way to change
the x and y coordinates in WRF is through the edition of the
namelist.input file needed to run WREF. In the namelist.input
file, nproc_x controls the x coordinate and nproc_y controls
the y coordinate.

3.6. Time Measurement. The basic measurement for our
experiments is the average wall time, which is defined as

z Wi
=;7 (1)

where W is the wall time for the i simulation and z the total
number of iterations. Every test is composed of 10 iterations,
i.e., executed 10 times, and then y,, is obtained using (1).

3.7. Speedup and Efficiency. The average wall time y,, is not
appropriate to characterize how scalable parallel software is.
For this reason, the analyses are usually done over the
speedup (see Kumar et al. [13]) value:

S = Href ,
Hfaster

(2)

where p,¢ is the reference average wall time which depends
on the study, e.g., for scalability, it is usually the time for the
case with fewer processing units. fig, ., is the time of the case
we are interested in analyzing. We can also measure the
parallel efficiency E of a case as

E=2 po e 3)

>

p Ryef
where S is the speedup of the case, 7, is the number of
processes corresponding to ppge M 1S the number of
processes corresponding to .., and p is how many times

more processes the selected case has with respect to the
reference case.

Scientific Programming

3.8. Energy Estimation. There is currently great interest in
carrying out efficient implementations, both from the
computational point of view (less execution time) and from
the energy consumption perspective (less energy is needed).
The power consumption of the entire platform is measured
in Watts, and it is measured in Joules when the energy
consumption is considered. In order to approximately es-
timate the power consumption, we have to know the amount
of energy consumed in Watts by each processor. For the
processors of the experimental platform, the vendor specifies
this number as 80 W on average. In order to estimate the
energy consumption in average from the average wall time
Uy We defined

J =y, xnxW, (4)

where] represents the estimated Joules consumed by n
nodes and W, is the amount of Watts per processor
according to vendor specifications. Therefore, W, takes a
value of 80 W when considering 2 or 4 cores (1 processor per
node) and 160 W when considering 6 or 8 cores (two
processors per node). We suppose that idle processors do
not consume energy, which is not actually true, as seen in
some studies such as Igumenov and Zilinskas [7]. We do this
because we only have processors with the same model and a
fixed number of cores, so we need to ascertain whether a
processor with a reduced number of cores would be more
energy efficient.

3.9. Experiment Setup. As a summary of the information
shown in this section, the experiment setup is detailed below:

(i) Machines

(1) Up to 40 of GALGO’s processing nodes with
Intel Xeon E5450 3.0 GHz processors. Each
processing node is dual-socket, mounting two
processors with 32GB DRAM and a 40 Gb/s
dual-port Mellanox ConnectX-2 Infiniband
interface.

(ii) Software

(1) Weather Research and Forecasting (WREF)
version 3.9.1, compiled for hybrid MPI-
OpenMP platforms (option “dm +sm” in WRF
configuration).

(2) Intel compilers with Intel MPI libraries (version
2018.0.128). Compilation options used: -O3 and
-xHost.

(iii) Methodology

(1) All WRF simulations were performed with the
same parameters; the only change was the
number of processes and the distribution of
these processes over the nodes.

(2) We performed experiments using different
distributions of n=9, 16, 25, and 36 nodes.
These values of n were used because they allow
us to use an exact orthogonal distribution, that

is, (3 x 3), (4 x4), (5x5), and (6 X 6), which is
the default in WREF.

(3) For a given number of nodes n, we considered
all the different distributions of nodes in a 2D
mesh.

(4) Average wall time was obtained for n processing
nodes and 8 cores per node with different do-
main distributions. Every domain distribution
was executed 10 times.

(5) Energy consumption is estimated from wall
time and the amount of Watts per processor
according to vendor specifications.

4. Analysis over WRF Process Distribution

All our WRF simulations were performed with the same
parameters; the only change was the number of processes
and the distribution of these processes over the processors.
The WREF distribution algorithm assumes that the best layout
for distributing the processes is the one that most preserves
orthogonality, i.e., for n processes, the distribution is ap-
proximately (1/n X +/n). We performed experiments using
different distributions of n = 9,16, 25, and 36 nodes. These
values of n were used because they allow us to use an exact
orthogonal distribution, that is, (3 x 3), (4 x 4), (5 x 5), and
(6 x6).

The question is do these orthogonal layouts provide the
best times? In our experiments, we took into account all the
different distributions of nodes in a 2D mesh with a fixed n.
For instance, in the case of n = 16 nodes, the possibilities are
(16 x 1), (8x2), the orthogonal (4x4), (2x8), and
(1 x 16). In Table 1, we can see the layout effects on y,, for
n=9,16,25,36. The underlined values correspond to the
automatic layouts used by WRF and the best values of y,, are
marked in bold.

The results in Table 1 show that even though the layouts
chosen by WREF are usually “good enough,” they are not the
best. Therefore, based on the results, we state that the most
orthogonal layouts are not always the best performing lay-
outs. The results also corroborate the theory, thatis, (x x y) is
not equal to (y x x) in terms of performance due to the fact
that different (y x x) process distribution involves different
communication patterns.

4.1. WRF Communication Behavior. In order to explain the
above finding, we looked at the communication behavior. It
is known that MPI communications can be a bottleneck in
programs with low computational workload and large
number of communications among processes. We looked at
two main factors that greatly influence the overhead in-
troduced by MPI or any other message passing strategy: (i)
the amount of data shared among the MPI processes and (ii)
the number of transactions needed to share that amount of
data. When these aforementioned factors exceed the ca-
pacity of the underlying platform, especially the intercon-
nection network, the performance is greatly degraded.
Because the example of n =36 has more distribution
combinations than the others, we used this example to

6 Scientific Programming
TaBLE 1: Average wall time y,, when using n processing nodes and 8 processor cores with different domain distributions.
(xxy) n=9 (xxy) n=16 (xxy) n=25 (xxy) n=36
9x1 3443 16 x1 2596 25x1 2117 36x1 —
3x3 2403 8§x2 1714 5x5 1017 18 x2 1152
1x9 2327 4x4 1458 1x25 1298 12x3 951

2x8 1396 9Ix4 861
1x16 1622 6Xx6 824
4x9 801
3x12 855
2x18 908
1x36 —

The automatic distributions chosen by WRF are underlined and the ones with the best y,, are marked in bold. Some extreme distributions such as (36 x 1)

crashed the simulations and could not be executed.

analyze the communications, using the statistics provided by
the Intel MPI library. Therefore, we plotted the amount of
data in MB injected into the intercommunication network
(i) by the n = 36 distributions in Figure 3 and the number of
transactions of every distribution (ii) in Figure 4.

Looking at the results, we can see that the more or-
thogonal combinations show the minimum amount of data
transferred (i); however, they present a higher amount of
transactions (ii). With WRF, we see that the amount of MB
has a much greater impact on the wall time than the number
of transactions. Moreover, if we suppose that communica-
tions are the most important factor for performance in our
WRE simulations, (x x y) performance should be similar to
(y x x) performance. If we look at Figure 5, we can see that
the observed y,, for every distribution of n = 36 is not the
expected y, (approximation) in a situation where the
communications are the most important factor.

4.2. WRF Integration Step Analysis. Consequently, com-
munications were not the reason for the differences in
performance between (x x y) and (y x x) distributions. As
observed in Christidis [2] and Johnsen et al. [3], combi-
nations where x <y work better due to enhanced cache
usage.

The WREF Fortran routine that is executed in every in-
tegration step is solve_em(), which is defined in solve_em.F
source file. All the MPI and OpenMP functionality is used in
this file. As previously stated, every subdomain of the (x x y)
distribution is assigned to a MPI process. As an example, in
Figure 6, we can see how WREF divided the inner domain
(199 x 199 x 70 cells) of our simulations when using the (6 x
6) process distribution, where x = 6 and y = 6. For the sake of
clarity, the cells of the domains are indexed by the i index
(latitudes), the j index (longitudes), and the k index (vertical
levels). This (6 x 6) distribution generated a subdomain for
every MPI process with 33 x 33 cells (i = 33, j = 33,k = 70),
each of those cells having 70 vertical levels (see the subdomain
of case 6 x 6 in Figure 6).

When using OpenMP, every one of these subdomains is
divided into tiles, which can be automatically handled by
WREF (usually, tiles = threads) or manually set through the
numtiles parameter in the namelist. The solve_em routine
contains many loops over the target subdomain of every MPI

Amount of MB transferred by 36 processes

4
+ *
35+ B E E E E E E sy -1
N /.
\ /
\ /
= \ /
=] \ . /
= \ ,
X 3 R , J
) N : /)
s . S
ey A
. N . . . P .
25 F . . SN . . I . . .
Ry A
S
2 L L L L L L L

2x18 3x12 4x9 6x6 9x4 12x3 18x2

Combination
-+~ Transfered MB

Figure 3: Total amount of data in MB injected into the inter-
connection network by the MPI processes. The distributions
correspond to the case when n = 36.

Number of transfers by 36 processes

35 T T T T T T T
—~ ot .
a5l AT T
2 /*)K
Bl ’ N
2 S : : : ‘
E 30 F
& / N
5 ‘ ‘
5 + +
0
£
Z 27.5

25 1 1 1 1 1 1 1

2x18 3x12 4x9 6x6 9x4 12x3 18x2

Combination
-+~ Number of transfers

FIGUure 4: Total number of transactions performed by the MPI
processes on the interconnection network. The distributions cor-
respond to the case when n = 36.

process, and every loop iterates the corresponding tiles of the
subdomain using OpenMP threads (OMP PARALLEL DO).
A pseudocode of the WRF integration step (solve_em) is
presented in Algorithm 1.

Scientific Programming

Wall time for 36 processes

1250 T T T

1200

X

1150
1100 | RN

1050

1000

950 b X
900 |- - Ho - Sy

Wall time (s)

~

800 e

2x18 3x12 4x9

6x6 9x4 12x3 18x2

Combination

—+- Obtained
-X~ Estimated

F1GUre 5: Execution time y,, obtained on the tests and expected execution time for the different distributions of n = 36 processes.

Domain distributions for n = 36

6X%6 4x9 % k Ix4
N
]
............... L oo
1
|
Ll
iy
199 L
3 1 22
. 1 -
1 33 ;
I ! ! 1 50
: I \ 1 -7
\ \ |
\ \ \
(|||t N \ N
] | Lo22
33 (I | L B
| 1 T
| | 1
\\‘_ //f“~\\ 50 -1

Subdomain tiling

FIGURE 6: Process distributions over the inner domain when using n = 36 processes over the inner domain. The domains had 199 x 199 cells,
each with 70 vertical levels. Every subdomain was divided in a number of tiles that was automatically chosen by WRF.

To be efficient with Fortran memory layout, every time
the integration step computes anything over the target tile, it
performs three nested loops in the right order (from inner to
outer loop: i, k and then j). Thus, the problem lies elsewhere.
In Figure 6, we can see the effects on the tiles when using
three different distributions for n = 36. Remember that in
terms of p,: (4 x9) < (6 x6) < (9 x4), as we saw in Table 1.
If we look at the three cases in Figure 6, the difference is the
dimensions of i and j. When WRF computes every tile or
slice of the corresponding subdomain, it performs better
when the i dimension is large because of better cache usage.

In order to understand this effect, we need to look at how
WRF maps the subdomains in memory. The i dimension is
contiguous in memory, but not the k and j dimension

because the subdomain is mapped on top of a larger memory
layout where additional cells are allocated (e.g., the halos).
These discontinuities in the three nested loops interfere with
the performance of the cache when changing the k or j
indexes, slowing down the computation.

Therefore, lowering the j dimension increases the i di-
mension, resulting in better cache usage and performance.
Again, if we look at Figure 6, we can see that in the case of the
(4 x 9) distribution, which is the fastest of the three, the i
dimension is larger than in the other two cases, making it
better performing than the others.

In the ideal case that the communications did not matter,
the (1 x36) distribution would be the fastest because a
better cache usage (i=199,j=5 per subdomain). In

Scientific Programming

(2) for j =1 to tile_max_y do

(9) end function

(11)
(12) !$OMP PARALLEL DO
(13) for t =1 to numtiles do

to compute something
(15) end for
(16) !'$OMP END PARALLEL DO
(17) if DM_PARALLEL then
(18) HALO_EM x*x.inc
depending on the stencil
(19) end if

(21) end procedure

(1) function COMPUTE_SOMETHING(tile)

(3) for k = 1 to max_vertical do
(4) for i = 1 to tile_max_x do
(5) tile[{][K][j] =. ..

(6) end for

(7) end for

(8) end for

(10) procedure SOLVE_EM/(subdomain)

(14) compute_something(subdomain][t])

> Send halos to other adjacent processes

(20) ... > Replicate the same loop structure tens of times for the different
variables to compute on the subdomain

> Iterate the tile
> The iteration order is OK

> Do something on the grid

> Initialization
> One thread per tile
> Iterate tiles
> Pass the tile to the function

> End of parallel region
> If MPI is being used

ALGORITHM 1: Integration step (solve_em) pseudocode obtained from WREF Fortran code.

practice, this is not the case because in these extreme cases,
communications escalate the computing times (see Figures 3
and 5 and Table 1). As a conclusion, a balance between the
next two factors must be found when using WREF:

(1) Communications perform better when the process
distribution is orthogonal

(2) Cache performance improves when larger values of i
(latitudes) are used in the tiles

5. Improved Distribution Algorithm for WRF

Drawing on the results described in Section 4, we propose an
alternative algorithm to distribute the layout of processes
based on an « value. We observed that with a lower x di-
mension than y dimension (better cache usage), perfor-
mance is much better when the workload of every process is
sufficient to negate the communication overhead.

Thus, we devised a method to obtain a better distribution
from an « ratio applied to n processes, balancing good cache
usage with an acceptable increase in the communication
overhead. In fact, the ratio between the values of x and y
seemed to be the same, which we defined as

x
a=—

(5)

Depending on « chosen, we can obtain a good value for x
that can be used to obtain an optimal (x x y) distribution of
n MPI processes. In order to derive x, we have the system of
equations composed by (5) and

Xy =n, (6)

y= (7)

%=

Solving (5)-(7) we obtain

x
o ==
Y
x
= (8)
52
T
Then, we clear the x from (7) and (8):
x = +an. (9)

Equation (9) provides a way to obtain a good x value
from a specific n. We also define f (x,) as a function which
returns the divisor x' of n which is the nearest integer divisor
to the value of x. Having a specific n, we can use (9) to obtain
a near-optimal distribution (x' x y'):

n

(x' X yl) :(f(x, f’l) X m) (10)

5.1. Deriving the Optimal Alpha. Equation (9) needs an «
value to be useful, and this value should minimize the
overhead generated by the communication and cache
misses. We have a domain with [x [latitude/longitude di-
mensions, and we subdivide the domain into x x y =n

Scientific Programming

subdomains. From this, we obtain that the latitude/longitude
dimensions of every subdomain are ((I/x) x (I/y)).

The communication overhead for every subdomain can
be calculated as the length of the perimeter multiplied by the
communication overhead A for every point at the perimeter.
The communication overhead for the subdomain, using a
specific x, is therefore defined by the following formula:

Ocomm (X) = 2A(£+£) = 2A£+2Al—x. (11)
x y x n

Then, we derive (11) and equate to zero:

/ (x)=—2AL2+2A1=0—>x=\/ﬁ~ (12)
x n

Ocomm

The last equation proves that the communications
overhead is minimum when x = +/n, as we already saw in
Figure 4.

Following the same line of thought, we derived the
overhead of the cache misses. The cache miss overhead could
be defined by the dimension of the longitudes (I/y) mul-
tiplied by the overhead B introduced for every cache miss.
From this, we obtain the cache miss overhead for a specific x
as

11
Opies (x) = B— = B—. (13)
y n

Equation (13) represents a monotonic increasing func-
tion whose minimum value is obtained for x = 1. This result
supports the finding that the lower the y dimension is, the
better the cache usage is. From the previous results, we can
obtain the combined overhead o(x) of (11) and (13):

I l
0(x) = Oomm + Omiss (X) = 2A—+ 2A= + B (14)
x n n

After deriving (14) to obtain the x value where the
combined overhead is minimum, we obtained:

l l l 2An
"(x)=2A—+2A-+B-=0 =\/ :
o (x) x2 n n X 2A+B

(15)

Therefore, from (9) and (15), the optimal « where the
combined overhead is minimum is

.o 2An e 2A . (16)
2A+ B 2A+ B

This result clearly shows the influence of both overheads
(communication and cache misses) on the final computing
performance.

5.2. Obtaining an Alpha Value. Note that A and B are un-
known constants in equation (16), which impeded us from
calculating the optimal «. On the other hand, we still needed
to assign a value to « in order to obtain any distribution
using (10). The problem is that it is not trivial to theoretically

(or even empirically) calculate these constants and so we
attempted another empirical approach to obtain an ap-
proximation of the optimal a.

For this purpose, we first defined a,, values for each of
our training cases. From Table 1, we obtained the (x,, x y,)
distributions with the best y,, of every n. We then used the x,,
and y, from these distributions to define «,, as

«, =2n.
" In 1

In the same way, we obtain the values «,, for the dis-
tributions presented in Johnsen et al. [3] (Table 2). Finally,
we fit a 4/a- 11 curve to these data («, values) and obtain as
result & = 0.43.

5.3. Near-Optimal Process Distribution. After applying (10)
and a = 0.43 to our valuesn = 9,n = 16, n = 25, and n = 36,
we obtained the optimal distributions of (1 x9), (2 x8),
(5x5), and (4 x9), respectively. In these cases, WRF
picked the orthogonal distributions, which were subop-
timal. Our process distribution implementation is pre-
sented in Algorithm 2. Algorithm 2 admits two call
parameters, the number of nodes considered (n) and the
alpha value, and returns the value of x which is divisor of n
and which is closer to the one calculated by the formula
x = +Jan. To do this, function F(x,n) first looks for values
smaller than x (decreasing a unit in each step) until it finds
a divisor of n and then repeats the process with values
greater than x. Finally, both obtained values are compared
and the one closest to the initial x is chosen. Finally y is
calculated as y = n/x.

We were unable to perform simulations with # higher
than 40 MPI processes in our platform, but we applied our
distribution algorithm to the # values in Johnsen et al. The
resulting x values from our algorithm (marked with x) are
shown in Figure 7 along with the x values used by Johnsen
et al. (marked with +). The top solid line represents x = /n
(orthogonal), whereas the bottom solid line represents the x
values obtained by (9). Using our algorithm achieves a
smoother adjustment of x while increasing n.

To perform our tests with different distributions, we used
the outputs of Algorithm 2 to change the value of the nproc_x
and nproc_y parameters in the WRF namelist file. Never-
theless, the WRF distribution code can be modified to im-
plement our algorithm without the need to externally modify
(via automatic scripting or manual way) the namelist.

6. WRF Scalability and Energy Analysis

The improved distribution algorithm allowed us to boost in
performance for our simulations, but we wanted to deter-
mine how this performance could be further increased. The
second part of this work consisted of a study of the scalability
of WRF and its efficiency when increasing the available
processing power from the perspective of performance and
energy consumption. Our target was to increase perfor-
mance without significantly increasing the energy
consumption.

10

TaBLE 2: Rounded average wall times y,, in seconds when using #
processing nodes and ¢ processor cores per node.

c\n 10 20 30 40

8 2024 1182 896 774
6 2288 1333 964 812
4 3049 1733 1220 952
2 3895 2316 1612 1239

600 Values of x for different number of processes

100000 150000 200000

Number of nodes (1)

0 50000

-+~ xused by Johnsen et al.
-X~- xused by our algorithm

—— Orthogonal x=Vn
— x=na

FIGURE 7: Final x values obtained from our distribution algorithm.
The orthogonal x = +/n values (top solid line) and raw values from
equation (9) (bottom solid line) are plotted. The x values obtained
by our algorithm are very similar to those chosen by Johnsen et al.

6.1. Scalability. For our scalability study, we tested dif-
ferent cases using a variable number of computing nodes
n and processing cores ¢ from these nodes. After per-
forming 10 simulations of every combination and ap-
plying (1), we obtained the y,, values shown in Table 2.
The same results are presented in Figure 8, where we can
see the enormous differences in performance when 7 is
low. In contrast, when # is high, the four cases shorten
the distance between each other and converge to the
same values of y,.

The processing cores ¢ were handled by OpenMP
threads, which provided good performance and a reduced
memory footprint. After applying (2) and (3) to the values in
Table 2, we obtained the efficiency values e, presented in
Table 3.

From the information in Tables 2 and 3, we inferred the
following observations:

(i) As expected, the average time per simulation is
reduced when increasing the total number of pro-
cessing units used (1 x c)

(ii) Decreasing the number of ¢ cores per node and
increasing the number of nodes n greatly increase
efficiency e

(iii) When the total number of processing units (n x ¢) is
greater than 180, efficiency e plummets

Scientific Programming

Require: n e N, a € R, n>0and a>0
(1) function F(x,n) > f (x,n) implementation
(2) fori=0tondo plterate possible decrements

(3) Xpe—x—i
(4) re—nmodx
(5) if r == 0 then
(6) break > Nearest divisor below x has been found
(7) end if
(8) end for
(9) fori=0tondo > Iterate possible increments
(10) X, —X+i
1) r «—nmod x,
(12) if r == 0 then
(13) break > Nearest divisor over x has been found
(14) end if

(15) end for
(16) if (x—xf) < (x. - x) then > Return the nearest to x

(17) return x
(18) else

(19) return x,
(20) end if

(21) end function

(22) procedure DISTRIBUTE (n, &) > Distribution algorithm
(23) xe—+Ja-n > Get the first candidate

(24) xe— f(x,n) > Get the nearest divisor of #n to x
(25) ye—nlx

(26) Distribute processes using the (x x y) distribution
(27) end procedure

ALGORITHM 2: New WREF process distribution algorithm and
f(x',n) implementation.

From the first observation, we see that increasing the
number of nodes #n reduces the wall times in all the cases
when the number of ¢ used per node is constant. In the case
of using all the cores of every node, efficiency is greatly
undermined when increasing the number of nodes. How-
ever, when the number of used cores per node is four or less,
the efficiency keeps stable. This circumstance is clearly
observed in Table 3.

One clear example to see the impact of using more nodes
with limited cores is when comparing the cases that used 80
processing units: (n=10,c=8), (n=20,c=4), and
(n=40,c =2). The (n =20,c = 4) case is =~ 14% faster than
the (n = 10, c = 8) case, even at the expense of an increase in
the MPI communications. Again, we see that communica-
tions are not the critical factor for performance when using
WRE. The gap is even larger in the case of (n=40,c =2)
where only 25% (2 cores) of the nodes’ processing capacity is
being used, reducing the wall times by = 38%.

After profiling the processor performance when exe-
cuting (n=10,c = 8) and (n =40, ¢ = 2) cases, we found
that the number of minor memory page faults in the
second case was = 75% lower than that in the first one.
Additionally, the number of cache misses was reduced by
6% in the second case. We therefore conclude that the
reason for these differences in performance is the better
cache usage because of the reduced size of the data
structure.

Scientific Programming

11

TaBLE 4: Estimated energy consumption J for using n processing
nodes and ¢ processor cores.

c\n 10 20 30 40

8 3238400 3782400 4300800 4953600
6 3660800 4265600 4627200 5196800
4 2439200 2772800 2928000 3046400
2 3116000 3705600 3868800 3964800

Wall time
4000 .
N
\\
3500 F - Sncs e
N
\\
3000%K - - - - N
\\ \\
S ~
2 2500 |- ol N
(") B B\
PR .
£ 2000F T~ L ~i
SN \\X ~<.
1500 p s o Teeeso o Bel
. SRR SN |
500 1 1 1 1 1
10 15 20 25 30 35 40
Number of nodes
-+- 8 cores -3~ 4 cores
-~ 6 cores —-[=]- 2 cores

FIGURE 8: Execution time y,, for different numbers of processing
nodes n.

TasLe 3: Efficiency e for using n processing nodes and ¢ processor
cores, relative to the number of cores.

c\n 10 20 30 40
8 1 0.86 0.75 0.65
6 1 0.86 0.79 0.70
4 1 0.88 0.83 0.80
2 1 0.84 0.81 0.79

When we combined the second observation with the
conclusions of the first one, we saw that memory man-
agement greatly improves when the size of the data
structures per node is low enough but also the number of
processing cores ¢ is not too high for that size. This is
reflected in the efficiency e values obtained in Table 3 for
the cases with less than 180 total processing units
(nx c<180), which is also supported by the third ob-
servation. As a conclusion, we state that in order to
maintain a high parallel efficiency, the size of the problem
should be proportional to the used processing capacity.
For the size of the problem in our simulations, 180
processing units are a good compromise between per-
formance and efficiency. Increasing this number or the
number of MPI processes n would divide the domains into
small partitions that are too small and cannot be efficiently
fed to the processors.

Looking at the previous observations, we conclude and
recommend that WRF should be executed in computational
resources that prioritize the size and latency of the cache
memory more than the complexity and quantity of the
computing cores. This recommendation is supported by the
better efficiency observed in our simulations with the low
values of ¢, which is in line with the results obtained in Shainer
et al. [4]. Moreover, the available processing power should be
appropriate to the size of the problem (resolution and domain
dimensions), being neither too high nor too low.

6.2. Energy Efficiency. As we stated in the introduction
section, when dealing with exascale platforms, a small
reduction on performance could become a large reduction
on energy consumption. This is why it is so important to
balance the performance of the whole system when
considering its energy consumption.

There is a limit at which increasing the number of
computational resources barely improves performance, at
the cost of skyrocketing energy consumption. Therefore,
energy consumption is a factor when deciding how many
computational resources are needed to satisty the estab-
lished requirements. Table 4 shows the estimated energy
consumption J after applying (4) to the y,, times presented
in Table 2. The estimated energy consumption J is also
presented in Figure 9, where we can see that the greatest
energy savings corresponding to the use of 4 cores.

In consequence, it may be thought possible to find a good
balance between the time spent on an execution and energy
consumption. Evidently, if time is the most critical variable
in an experiment, the energy consumption becomes irrel-
evant. For instance, if the simulations of this paper must be
executed in less than 800 seconds, the only feasible con-
figuration corresponds to 8 cores and 40 nodes. But, if the
time to execute the simulation is represented by a limit, e.g.,
1000 seconds, then we can play with other variables such as
the energy consumption. We scatter plotted all the com-
binations in Figure 10 so we could choose a good combi-
nation for the last example. With 1000 seconds as a limit and
looking at Figure 10, we have 4 options: (n =40,c =4),
(n=30,c=8), (n=30,c =6), and (n=40,c = 8). In this
case, the best option is clearly (n = 40, ¢ = 4) because of the
enormous difference in Joules between this and the other
options.

In other cases, the best option is not so clear and de-
pends on the priorities. For example, with a limit of 1900
seconds, the reader might agree with us that of all the
possibilities, only three are feasible: (n=20,c=4),
(n=30,c=4),and (n =40,c = 4). The (n = 20,c = 4) case
is the least energy consuming but much slower than the
other two. (n = 40, c = 4) consumes a little more than (n =
20, ¢ = 4) but, in contrast, is twice as fast. (n = 30,c = 4)isa
compromise between both. Depending on our priorities,
we would choose

(i) (n=40,c =4) for maximizing performance
(ii) (n=20,c = 4) for maximizing energy savings

(iii) (n = 30,c = 4) if the priority is to harmonize per-
formance and energy consumption

12
6 Joules consumed
| CeemzzzR
4 B |
g <”::::;::=::‘E:: “““““““ Et-----
X M7 s
£ ’ I i b St ¥
g8 77 ‘
21
1t
0 . - . L 1
10 15 20 25 30 P o
Number of nodes
~+- 8 cores -~ 4 cores
X 6 cores -[E- 2 cores
FIGURE 9: Estimated energy consumption J.
5.5
%
5k
I
45 23 .
P
S - 0)
X
p T
8351 - LK
o
3f- K - 10 3|
40 200{ "
20
25 :
10

2 L N L N N N N L " N
700 1000 1300 1600 1900 2200 2500 2800 3100 3400 3700

Time (s)
-+ 8 cores K 4 cores
X 6 cores [] 2 cores

FIGURE 10: Scatter plot of time (ordinates) and energy consumption
(abscissas) for the different combinations of n processes (below the
points) and c¢ cores.

In our simulations, we needed the fastest distribution
possible, which was the (n=40,c=8) distribution. The
other option we considered was the (n = 40,c = 4) distri-
bution, which obtained a 38% energy saving with an increase
of 23% in the wall time. The problem with this distribution
was that the wall times were far from our target time re-
quirements and therefore not a feasible choice.

7. Conclusions

This paper proposes a new distribution algorithm that works
better than the one implemented by WREF. This algorithm
was devised from the results of a performance study over
different process distributions with a different number of
total processes.

We also present a study of the performance of the WRE-
ARW model in terms of three main variables: process
distribution, execution time, and energy consumption. The

Scientific Programming

authors had to comply with the execution time requirements
imposed by the ICE-POP 2018 project, with regard to 2018
Winter Olympics held in Pyeongchang, but also taking into
account the appropriate use of resources and energy con-
sumption imposed by the authors’ research institution.
However, this study is essential for any research group
working in this area, so this paper could be considered as a
guideline.

Beyond this guideline, the following main contributions
emerge from this work:

(i) Orthogonal distributions are optimal for commu-
nications and interprocessor performance.

(ii) Latitude dominant dimensions are optimal for
cache usage and intraprocessor performance.

(iii) WREF performance therefore depends on the balance
between orthogonality (communications) and efhi-
cient cache usage (longer latitudes per subdomain).
We proposed an algorithm to obtain a balanced
distribution.

(iv) In our platform, the WRF model works better when
using less cores per node.

(v) WRF consumes less energy using less nodes,
achieving a good execution time.

(vi) To execute WREF, it is thus recommended to use
simple machines (not so many cores and more
energy efficient than complex ones) with quality
cache memories.

Related to the grid distribution used in the WRF
software package, the authors evidence that for the plat-
form used in this experiment, the best process distribution
is not always the orthogonal one. To address this issue, the
authors proposed a new distribution algorithm to calculate
a better distribution layout than the default one imple-
mented by WRE. As a future work, the authors propose to
corroborate the results of this paper in other platforms
completely different to that used in this work, especially
platforms where the number of processes could be higher
than 10,000. In this work, we obtained a good « value from
near-optimal distributions used in other works, but we
expect to find a better a value from the best process dis-
tributions when 7 is high enough. We also proved that the
combined overhead of the communications and cache
misses follows a relationship between two constants that we
propose to determine in future works. These two constants
would allow us to obtain the optimal process distribution
for any number of MPI processes.

In order to test our algorithm in our simulations, we
externally modified the WRF namelist's nproc_x and
nproc_y parameters in our simulations, but the algorithm is
easily implementable as an alternative distribution option
inside WREF source code.

From the study of WRF source code, we think it is
possible to optimize the data locality and hence remove the
limitation of having latitude dominant dimensions to
achieve the best performance. This could be achieved by
modifying the details of the tiling processing code.

Scientific Programming

Furthermore, and from the previous contributions, we
explored different ways of saving energy by changing the
process locations. The authors used a graphical method to
obtain the best configuration by plotting energy and time
together. Depending on the priorities (performance or
energy savings), different options could be chosen from
this plot. In addition, in this work, we are not considering
the use of accelerator due to the fact that the use of GPUs
on WREF software is reduced to a short set of functions.
Our purpose in this paper was to study the influence of
process distribution both in terms of performance and
energy consumption without comparing against other
WRF implementations that consider GPUs. This com-
parison (with WRF and without using GPUs) could be
interesting as a future work.

Data Availability

The data used to support the findings of this study are in-
cluded within the article.

Disclosure

An earlier version of this manuscript was presented as a part
of RM’s PhD dissertation “Some critical HPC improvements
in numerical weather prediction workflows.”

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Spanish Ministry of the
Economy, Competitiveness, Science and Innovation
(MINECO) (grant nos. CGL2013-48367-P and CGL2016-
80609-R) and the KMA (Korea Meteorological Adminis-
tration) (grant no. 1365002970/KMA2018-00721). RM ac-
knowledges support from MINECO (grant no. FPI BES-
2014-069430) for conducting his PhD. AN acknowledges
support from MINECO (grant no. FPU 13/02798) for
carrying out his PhD.

References

[1] P. Malakar, V. Saxena, T. George et al., “Performance eval-
uation and optimization of nested high resolution weather
simulations,” in Euro-Par 2012 Parallel ~Processing,
C. Kaklamanis, T. Papatheodorou, and P. G. Spirakis, Eds.,
pp. 805-817, Springer, Berlin, Germany, 2012.

[2] Z. Christidis, “Performance and scaling of WRF on three
different parallel supercomputers,” in High Performance
Computing, J. M. Kunkel and T. Ludwig, Eds., pp. 514-528,
Springer, Berlin, Germany, 2015.

[3] P. Johnsen, M. Straka, M. Shapiro, A. Norton, and
T. Galarneau, “Petascale WRF simulation of hurricane sandy:
deployment of NCSA’s cray XE6 blue waters,” in Proceedings
of the 2013 SC-International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 1-7,
Denver, CO, USA, November 2013.

13

[4] G. Shainer, T. Liu, J. Michalakes et al., “Weather research and
forecast (WRF) model performance and profiling analysis on
advanced multi-core HPC clusters,” in Proceedings of the 10th
LCI International Conference on High-Performance Clustered
Computing, Boulder, CO, USA, 2009.

[5] C. Kruse, D. Del Vento, R. Montuoro, M. Lubin, and
S. McMillan, “Evaluation of WRF scaling to several thousand
cores on the yellowstone supercomputer,” in Proceedings of
the Front Range Consortium for Research Computing 2013,
Boulder, CO, USA, August 2013.

[6] J. Lagraviere, P. H. Ha, and X. Cai, “Evaluation of the power
efficiency of UPC, OpenMP and MPI. Is PGAS ready for the
challenge of energy efficiency? A study with the NAS
benchmark,” Tech. Rep., The Arctic University of Norway,
Tromse, Norway, 2015.

[7] A.Igumenov and J. Zilinskas, “Electrical energy aware parallel
computing with MPI and CUDA,” in Proceedings of the 2013
Eighth International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC), pp. 531-536, IEEE,
Compiegne, France, October 2013.

[8] A. Igumenov and J. Zilinskas, “Power consumption optimi-
zation with parallel computing,” Jaunujy Mokslininky Darbai,
vol. 4, pp. 119-122, 2011.

[9] M. Aqib and E. F. Fouz, “The effect of parallel programming
languages on the performance and energy consumption of
HPC applications,” International Journal of Advanced Com-
puter Science and Applications, vol. 7, no. 2, 2016.

[10] H. Morrison and J. A. Milbrandt, “Parameterization of cloud
microphysics based on the prediction of bulk ice particle
properties—part I: scheme description and idealized tests,”
Journal of the Atmospheric Sciences, vol. 72, no. 1, pp. 287-311,
2015.

[11] E.J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Tacono, and
S. A. Clough, “Radiative transfer for inhomogeneous atmo-
spheres: RRTM, a validated correlated-k model for the
longwave,” Journal of Geophysical Research: Atmospheres,
vol. 102, no. D14, pp. 16663-16682, 1997.

[12] G.-Y. Niu, Z.-L. Yang, K. E. Mitchell et al., “The community
Noah land surface model with multiparameterization options
(Noah-MP): 1—model description and evaluation with local-
scale measurements,” Journal of Geophysical Research: At-
mospheres, vol. 116, no. D12, 2011.

[13] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction
to Parallel Computing: Design and Analysis of Algorithms,
Vol. 400, Benjamin Cummings, San Francisco, CA, USA,
1994.

