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Neurodegenerative diseases (NDs) are a group of diseases
that affect millions of people worldwide and which are char-
acterized by the progressive degeneration of the nervous sys-
tem, compromising cognitive and/or motor functions. The
most common NDs are Parkinson’s disease (PD), Alzhei-
mer’s disease (AD), Huntington’s disease, Prion disease,
amyotrophic lateral sclerosis (ALS), and multiple sclerosis
(MS). These pathologies have multifactorial causes, many of
which are not yet fully understood; however, recent studies
show that ageing and oxidative stress play important roles
in the appearance and evolution of these pathologies; to
which, the therapeutic options available are not curative
and only slow their progression. Despite this, it is very well
established that antioxidant therapy that can control free rad-
icals and reactive oxygen species (ROS) levels is a promising
strategy to delay, prevent, and/or treat NDs.

In this context, natural bioactive compounds isolated
from plants, animals, bacteria, fungi, and algae are widely
known and employed since the beginning of human life on
Earth, to treat many pathologies. In recent years, in silico,
in vitro, and in vivo studies, performed with natural products
and its isolated bioactive compounds, have proven its biolog-
ical activities and large therapeutic benefits, including its

antioxidant properties, reducing ROS levels, and modulating
the cellular redox balance, thus stating its great potential to
delay, prevent, and/or treat NDs.

In this special issue, articles were selected that address
new therapeutic alternatives on the antioxidant role with
related neuroprotective effects of natural bioactive com-
pounds in the prevention/treatment or improvement of neu-
rodegenerative diseases. This special issue compiles eighteen
(18) manuscripts including three (3) reviews and fifteen (15)
research papers, which show recent research about the dis-
covery of plant-derived antioxidants with application in
NDs.

In their minireview, R. Chandran and H. Abrahamse
describe several plants, plant parts, and isolated phytochem-
icals (especially phenolic compounds) with the potential to
prevent the progression of neurodegenerative diseases due
to its antioxidant properties. In the second review, A. G.
Miranda-Díaz, E. G. García-Sanchez, and A. Cardona-
Muñoz report the pro-oxidant effect of consumption of proc-
essed meat and the neuroprotective effects of some foods
constituents with antioxidant properties, like melatonin, N-
acetylcysteine, vitamin B3, ascorbic acid, and vitamin D, on
brain health in PD. In the review by J. M. Silva et al., the
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authors summarize the natural bioactive compounds with
antioxidant properties useful against ALS.

Fourteen of the fifteen research articles addressed to deal
with the proof of the neuroprotective activity associated with
the antioxidant properties of plants, mushrooms, plant
extracts, isolated phytoconstituents, herbal medicines, and
compositions containing phytochemicals. The only article
that is out of this theme is the work of M. S. Maia et al. which
performed a virtual screening based on studies of QSAR
(quantitative structure-activity relationship), molecular
docking, and ADMET (absorption, distribution, metabolism,
excretion, and toxicity) properties, allowing to identify lig-
nans with potential multitarget action against enzymes
related to the oxidative pathway which represent a potential
alternative for AD treatment.

K. Lei et al. demonstrated that the flavonoid baicalin
improved PD model’s behavioral performance, reducing
dopaminergic neuron loss in the substantia nigra. Addition-
ally, baicalin has the ability to protect dopaminergic neurons
against ROS, decreasing the expression of the transcription
factors such as α-synuclein and CCAAT/enhancer-binding
protein β (C/EBPβ). Y. Zhang et al., using a model of age-
related macular degeneration (AMD), demonstrated that
solid dispersion of the flavonoid apigenin is able to reduce
retinal oxidative injury by upregulation of autophagy and of
the expression of antioxidant enzymes through the Nrf2
pathway. Q. Chu et al. demonstrated that purified flavones
(3-caffeoylquinic acid, 5-caffeoylquinic acid, quercetin-3-O-
rutinoside, and kaempferol-3-O-rutinoside) from the vine
part of Tetrastigma hemsleyanum present in vitro and
in vivo neuroprotective effects through mitogen-activated
protein kinase (MAPK) pathways in models induced by glu-
tamic acid. Q. Zhu et al. found that the dihydro flavonoid
naringin is capable of increasing tolerance to oxidative stress
and delaying the evolution of ageing-related diseases like AD
and PK, via the transcription factor DAF-16.

I. Rjeibia, et al. demonstrated that polysaccharides from
the pulps of Crataegus azarolus L. var. Aronia exhibit the
neuroprotective activity mediated by its antioxidant, α-amy-
lase, and acetylcholinesterase inhibitory activities. S. S. Singh
et al.’s group observed that chlorogenic acid has a neuropro-
tective effect and decreased the loss of dopaminergic neurons
in the PD mouse model. The effect was associated with the
attenuation of mitochondrial dysfunction, inhibition of proa-
poptotic proteins caspase-3 and Bax, and with phosphoryla-
tion of GSK3β via activating Akt/ERK signaling in the
mitochondrial intrinsic apoptotic pathway. R.-L. Li et al.
demonstrated that hydroxy-α-sanshool (isolated from
Zanthoxylum bungeanum pericarps) promotes neuroprotec-
tion by reduction of intracellular ROS and suppression of
oxidative stress caused by H2O2.

D. Liao et al. observed that the polyphenol curcumin
reduces the depressive state by decreasing the expression of
oxidative stress markers and activating the Nrf2-ARE path-
way. D. Disana et al. demonstrated that the secoiridoid gly-
coside amarogentin (isolated from Gentiana rigescens
Franch) promotes anti-ageing and neuroprotective effects
by reduction of oxidative stress, promoted by the increase
of catalase, superoxide dismutase, and glutathione peroxi-

dase activities. A. Litwiniuk et al. demonstrated that alpha-
linolenic acid stimulates the release of insulin from astro-
cytes, and these astrocytes were capable to protect cells
against Aβ1-42-induced mitochondrial dysfunction promot-
ing neuroprotection.

J. Giacomettil and T. Grubić-Kezele demonstrated that
olive leaf polyphenols promote neuroprotection through
the reduction of oxidative stress, regulation of microglia
and SIRT1, and maintaining the myelin sheath integrity,
which can be effective for the treatment of multiple sclerosis
and other neurodegenerative diseases. A. Agapouda et al. evi-
denced the anti-ageing and neuroprotective effects of Honey-
bush extracts (Cyclopia spp.). The authors associated these
properties to the extract’s ability to recover the mitochondrial
function under oxidative stress conditions.

N. S. El Sayed and M. H. Ghoneum proved that Antia, a
natural product extracted from yamabushitake mushroom,
can exert protective effects attenuating cognitive dysfunction
against sporadic AD. The action is associated to its interfer-
ence in amyloidogenic, inflammatory, and oxidative stress
pathways, including the JAK2/STAT3 pathway. M. Yi et al.
investigated the effects on the cognitive performance and
the interference of Bushen Tiansui formula on the metabolo-
mic and lipidomic profiles in the cerebral cortices of the rat
AD model. The authors found that the Bushen Tiansui for-
mula can restore the metabolic balance acting on the metab-
olism of sphingolipids, glycerol phospholipids, alanine,
aspartate, glutamine, and glutamate, thus exerting its neuro-
protective effect.

Taken together, these studies provide readers with an
updated view of the evidence and mechanisms of action of
herbal medicines, compositions containing natural products,
and several classes of secondary metabolites including poly-
saccharides, flavonoids, lignans, polyphenols, iridoids, fatty
acids, phenolic acids, and alkyl amides in reducing oxidative
stress in the context of NDs. We are sure that these findings
will be useful and will contribute to the success of new ther-
apies for NDs.
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Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that is characterized by progressive loss of the upper and lower
motor neurons at the spinal or bulbar level. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration
of the electron transport chain are factors that contribute to neurodegeneration and perform a potential role in the pathogenesis of
ALS. Natural antioxidant molecules have been proposed as an alternative form of treatment for the prevention of age-related
neurological diseases, in which ALS is included. Researches support that regulations in cellular reduction/oxidation (redox)
processes are being increasingly implicated in this disease, and antioxidant drugs are aimed at a promising pathway to
treatment. Among the strategies used for obtaining new drugs, we can highlight the isolation of secondary metabolite
compounds from natural sources that, along with semisynthetic derivatives, correspond to approximately 40% of the drugs
found on the market. Among these compounds, we emphasize oxygenated and nitrogenous compounds, such as flavonoids,
coumarins, and alkaloids, in addition to the fatty acids, that already stand out in the literature for their antioxidant properties,
consisting in a part of the diets of millions of people worldwide. Therefore, this review is aimed at presenting and summarizing
the main articles published within the last years, which represent the therapeutic potential of antioxidant compounds of natural
origin for the treatment of ALS.

1. Introduction

Amyotrophic lateral sclerosis (ALS), also known as Charcot’s
or Lou Gehrig’s disease, is a progressive and ultimately fatal

neurodegenerative disorder characterized by affecting corti-
cal and spinal motor neurons that control the voluntary
motions of muscles [1, 2]. It is currently classified according
to the mode of the emergence of the pathology in familial
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(10% of cases), also referred as fALS, inherited in an autoso-
mal dominant, autosomal recessive, or X-linked manner, and
sporadic (90% of cases), also known as sALS, which is not
genetically inherited [3]. Both types of ALS share the most
common symptoms, which manifests as muscle weakness,
twitching, and cramping, subsequently leading to the impair-
ment of muscles. In the most advanced stages, the symptoms
extend to dyspnea, dysphagia, paralysis, and eventual death
from respiratory failure within 3 to 5 years after symptom
onset [4, 5].

ALS is the most common motor neuron disease, even
though the mechanism evolved in the neurodegenerative
dysfunction that leads to motor neurons’ loss is not entirely
known [6, 7]. Histopathological data shows reduction in neu-
ron size, loss and atrophy of nerve fibers, vacuolization, large
empty spaces near neurons, and sponge-like appearance
caused by spongiosis [8].

Its incidence is associated with increased age, as it onsets
mostly in adults between 50-65 years, and is slightly more
prevalent in males than females, with a ratio of approxi-
mately 1.6 : 1 [4, 9]. The majority of the epidemiological stud-
ies have been conducted in Europe, in which the incidence of
ALS is 2-3 people per year per 100,000 general population.
Furthermore, an increase in the prevalence of ALS to 8.58
cases per 100,000 inhabitants in the United Kingdom popu-
lation is expected by the year of 2020 [5, 10].

Multiple pathophysiological mechanisms and cellular
dysfunctions are involved as possible causative factors in
the disease. Among these, the following stand out: accumula-
tion of reactive oxygen species, mitochondrial dysfunction,
neuroinflammation, alterations on RNA processing, gluta-
mate excitotoxicity, apoptosis, protein misfolding and aggre-
gation, autophagy, impaired axonal transport and
neurofilament aggregation, and endoplasmic reticulum
stress. Moreover, environmental factors have shown to con-
tribute to the pathogeny, such as alcohol, tobacco, physical
activity, chemical exposure and metals, and exposure to radi-
ation [1, 10–12].

The oxidative stress is highly correlated with the develop-
ment and progression of the neurodegeneration in ALS.
Changes in the homeostatic balance of ROS production are
particularly associated with mutant forms of the antioxidant
enzyme SOD1 (encodes for copper/zinc ion-binding super-
oxide dismutase), which is reported to be the most common
causative factor for ALS. Over 150 different mutations have
been described in different parts of the enzyme, which
include G93A (glycine 93 changed to alanine), H46R (histi-
dine at codon 46 changed to arginine), and A4V (alanine at
codon 4 changed to valine). This particular enzyme is
responsible for catalyzing the conversion of superoxide
(O2-) into hydrogen peroxide and oxygen. Its mutation pro-
vokes a structural instability that promotes enzyme misfold-
ing, and consequent formation of cytotoxic protein
aggregates alone or with other proteins. Consequently, there
is a loss of enzyme activity and an increase in the production
of ROS that results in deterioration in the regulation of vital
cell processes and mitochondrial dysfunction [4, 13–16].

There is no cure for ALS, and current drug treatment is
limited since only two drugs are approved by the Food and

Drug Administration for the treatment of the disease: Rilu-
zole, a neuroprotective drug that blocks glutamatergic neuro-
transmission and, more recently, the antioxidant drug
Edaravone. These assist in delaying the progression of the
disease, extending life expectancy by 2-3 months [2, 17].

Therefore, the obtainment of new drugs, capable of effec-
tively fulfilling the gap in the therapeutic arsenal in order to
assist in the treatment and in the decrease of the disease’s
progression, presents itself as a priority. Among the strategies
used for obtaining new drugs, we can highlight the isolation
of secondary metabolite compounds from natural products
that, along with semisynthetic derivatives, correspond to
approximately 40% of the drugs found on the market [18].

Focusing on the influence of ROS for the onset and pro-
gression of the disease, the interest in natural compounds
with antioxidant potential has become increasing. According
to epidemiological studies focused on neurodegenerative dis-
eases, it was observed that there is a significant difference in
the incidence of such diseases among ethnic groups with dif-
ferent eating habits, recording that the diet rich in antioxi-
dants is related to a decrease in the incidence rate. Thus,
different types of compounds with antioxidant properties
can be highlighted, such as the following: polyphenols, which
provide protection against ROS and modulate metabolic cas-
cades [19, 20]; carotenoids, which perform antioxidant and
neutralizing activities against ROS [19–22]; antioxidant vita-
mins such as vitamins C and E, among others [13, 14, 23].
Hence, this review is aimed at presenting and summarizing
the main articles published within the last years, which repre-
sent the therapeutic potential of antioxidant compounds of
natural origin for the treatment of ALS. In this sense, the key-
words “antioxidant activity,” “amyotrophic lateral sclerosis,”
“natural products,” and “secondary metabolites,” among
others, were included in the search into the databases “Scien-
ceDirect,” “Pubmed,” “Periódicos Capes,” “Clinical Trials,”
“Web of Science,” and “Google Acadêmico,” during the
period of March 14 to April 10 2020.

2. Secondary Metabolites with Potential
Antioxidant Action and Their Possible
Applications for ALS

2.1. Alkaloids. Alkaloids comprise the largest group of nitro-
gen compounds, characterized by containing one or more
nitrogen atoms within a heterocyclic ring. Over 12,000 com-
pounds are known to be provided by a variety of sources such
as animals, bacteria, plants, and fungi [24, 25]. Figure 1 pre-
sents the chemical structure of some well-known alkaloids,
such as nicotine (1), morphine (2), and caffeine (3). Nitrogen,
oxygen, carbon, and hydrogen are the chemical elements that
constitute its basic formula, so that its molecular weight var-
ies between 100 and 900 gmol-1. This class of compounds has
revealed to be one of the most promising secondary metabo-
lites for ALS treatment due to their diverse mechanism of
action, which can collaborate to prevent the disease evolution
[26–28].

It has been suggested that the increase of extracellular
glutamate occurs mainly due to an anomaly in glutamate
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Figure 1: Chemical structure of the well-known alkaloids (nicotine (1), morphin (2), and caffeine (3)), such as those used in preclinical
antioxidant studies (8-methoxy-N-methylflindersine (4), zanthodioline (5), alternamide A (6), alternamide B (7), alternamine A (8),
hydroxytyrosol (9), formamide (10), alternamine B (11), uridine (12), mitraphylline (13), isomitraphylline (14), iraqiine (15), and
kareemine (16)).
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transporter EAAT2/GLT-1 and leads to ALS. Harmine, a
beta-carboline alkaloid, may act by activating EAAT2/GLT-
1 gene expression increasing the cellular uptake of glutamate
[29]. The indirect mechanism was suggested by the use of
alkaloids with commercial drug Riluzole, aiming to block
the increased levels of P-glycoprotein in the blood-brain bar-
rier (BBB) [30]. In this sense, Lopez and Martinez-Luis
showed that polyaromatic alkaloids from prosobranch mol-
lusk (Lamellaria sp.) restrain P-gp, demonstrating an
increased cellular uptake to different drugs in resistant cell
line [31]. However, in this review, we will highlight the ben-
efits of its mechanism of action as antioxidants, since alka-
loids have the ability to convert free radical species in
inactive substances [32, 33]. Thus, researches have explored
the advantages of employing alkaloids with this purpose,
alone or included in a pharmaceutical form and from several
sources [34–37].

For example, in order to evaluate the antioxidant activity
of two quinoline isolated alkaloids from Zanthoxylum rhetsa
root bark, Zohora and collaborators showed through DPPH
assay that the compounds 8-methoxy-N-methylflindersine
(4) and zanthodioline (5) (Figure 1) presented free radical
scavenging activity (IC50 in μg/mL) of 71:18 ± 1:74 and
101:90 ± 5:24, respectively, reveling potent antioxidant activ-
ity [38].

Alternanthera littoralis P. Beauv. is a tree common in
tropical, subtropical, and temperate regions. Koolen et al. iso-
lated seven chemical alkaloids from the aerial parts of this
plant, which include two known alkaloids, hydroxytyrosol
(9) and uridine (12), and five new alkaloids, namely, alterna-
mide A (6), alternamide B (7), alternamine A (8), N-(3,4-
dihydroxyphenethyl) formamide (10), and alternamine B
(11) (Figure 1). The biological evaluations showed the high
antioxidant free radical scavenging effect of the ethanolic
extract containing alkaloids alternamide B (1.10 relative Tro-
lox equivalent—RTE), alternamide A (0.85 RTE), and alter-
namine B (0.65 RTE) in relation to positive control
quercetin (5.62 RTE) [39].

Azevedo et al. studied the alkaloids mitraphylline (13)
and isomitraphylline (14) (Figure 1) obtained from extracts
of the aqueous leaf extract (ALE) from Uncaria tomentosa
which present high phenolic content (153.51μg gallic acid
equivalents per milligram extract). The ALE in vitro antioxi-
dant activity investigation, performed using DPPH, ABTS,
and ferric reducing antioxidant power (FRAP) assays,
obtained values of IC50 = 10:68 ± 0:64μgmL-1, 2:15 ± 0:29
mmolTrolox/mg AA and extract, and 2:9 ± 0:15mMFe-
SO4/mg AA and extract, respectively, presenting a moderate
activity [40].

Aiming to obtain new alkaloids, Aldulaimi and collabora-
tors isolated from Alphonsea cylindrical King two novel iso-
quinoline alkaloids, namely, iraqiine (15) and kareemine
(16) (Figure 1). In vitro antioxidant activity was performed,
and the results showed IC50 values of 48.77 and
101.66μgmL-1, respectively. In this same test, five additional
known alkaloids were tested and among them, O-
methylmoschatoline (144.15μg/mL) was better than karee-
mine [41].

Nevertheless, despite of examples above, researching for
papers about this matter, using “antioxidant activity” and
“alkaloids” as keywords on the Scholar, with range of last 5
years, it is possible to found 822 papers that cite these terms
in the abstract and/or title [42]. When the term “ALS” is
added, no articles are found and similar results are observed
in other databases (Web of Science, Pubmed, and Science-
Direct). These works always present alkaloids obtained from
different sources and evaluate their biocompatibility and
antioxidant activity in vitro using different methods [43,
44]. The association with ALS always happens in a general-
ized way because one treatment option to neurodegenerative
diseases is using this approach [45].

The lack of studies in the literature performing specific
preclinical or clinical tests for ALS and no therapy consoli-
date to alkaloids despite advantages can be by two main
problems, not to easy standardization in batch-to-batch
reproducibility and scale-up [46]. For these reasons, the use
of isolated alkaloid molecules can circumvent these draw-
backs. Another possibility is alkaloids-loaded in nanoscale
systems to develop new formulation in terms of tissue/organ
targeting and BBB penetration as shown in literature [47, 48].

Finally, alkaloids can slow down ALS by three hypothet-
ical mechanisms of action, as mentioned above. Several stud-
ies evidenced satisfactory results in terms of antioxidant
activity; thus, clinical trials (phase I) are necessary in order
to better understand the previously mentioned mechanisms
and advance this treatment proposal to improve patients’ life
quality.

2.2. Flavonoids. Flavonoids are phenolic compounds derived
from the aromatic amino acids phenylalanine and tyrosine,
which are widely found in plants. Its structure consists of a
flavin nucleus (17) containing 15 carbon atoms arranged in
three rings (C6-C3-C6), labeled as A, B, and C, as illustrated
in Figure 2. These compounds have a broad pharmacological
spectrum, in which their antioxidant and anti-inflammatory
stand out, which mainly associated with the fight against
neurodegenerative diseases such as ALS [49].

It is known that processes such as oxidative stress, neuro-
inflammation, and neural apoptosis collaborate with ALS
progression; in this sense, Winter et. al. evaluated the effects
of strawberry extract enriched with anthocyanin (18)
(Figure 2) in mice with ALS model (G93ASOD1 mutation),
as this class of flavonoids has antioxidant, anti-inflammatory,
and antiapoptotic activity established in previous studies
[50–52]. The trials showed that at a dose of 2mg/kg/day,
guinea pigs suffered a marked delay of approximately 17 days
at the onset of the disease, in addition to an increase in life
expectancy of approximately 11 days. Histological analysis
exhibited a significant reduction in spinal cord injury when
compared to mutant guinea pigs not treated with the extract.
For that reason, this study emphasizes that anthocyanins
have therapeutic potential for this disease and can evolve to
more complex pharmacological tests [53].

There are reports in the literature suggesting that the
mutation in superoxide dismutase (SOD1) at position 85 of
glycine and arginine is a fundamental cause for the onset of
ALS. Taking advantage of the antioxidant activity of the
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flavonoids kaempferida (19) and kaempferol (20) (Figure 2),
the study performed by Srinivasan and Rajasekaranb evalu-
ated through molecular docking their aggregation affinity
towards SOD1. Kaempferol portrayed stronger hydrophobic
interactions with the target in comparison to kaempferida,
thus qualifying it as a possible prototype for the design of
new drugs for the treatment of ALS [54].

Ueda and collaborators also proved the action of kaemp-
ferida and kaempferol, extracted from Brazilian green prop-
olis, as a possible alternative for the treatment and
prevention of ALS. In this study, kaempferida (15μM) and
kaempferol (3.0μM) were tested against Na2+ cells (superox-
ide induced) with mutant SOD1. The results showed signifi-
cant inhibition of mutant SOD1, as well as in Western blot
analysis, which showed that kaempferol induced autophagy
through the protein kinase activated by AMP, suggesting this
as a probable mechanism for neuroprotection and emphasiz-
ing this compound as a good therapeutic alternative on the
treatment of ALS [55].

A flavonoid known as fisetin (21) (Figure 2), a natural
antioxidant, already presented several benefits in some
degenerative diseases such as Alzheimer’s and Parkinson’s.
Therefore, Wang et al. performed in vitro assays on mutant
cells (hSOD1G85R and hSOD1G93A) and in vivo assays with
hSOD1 transgenic mice in order to evaluate the efficiency of
the compound to SOD1 associated with ALS. Treatment with
fisetin improved motor impairment, prolonged life span, and
confirmed the neuroprotective antioxidant effects, proposing
this flavonoid as a strong drug candidate with therapeutic
value for the treatment of ALS [56].

Studies in mice revealed that the first steps in the devel-
opment of ALS may comprehend the increased presence of
SOD1 monomers and their aggregation to motor neurons.
In this perspective, Ip and collaborators carried out tests in
silico with a library of 4,400 drugs and natural compounds
that were coupled in the SOD1 dimer. Between these com-
pounds, seven with best results were tested for aggregation
and splitting of SOD1 induced by hydrogen peroxide
in vitro at concentrations ranging from 20μM to 100μM.
Compound 22 (Figure 2) revealed that quercetin-3-β-D-glu-
coside presented one of the best results, and for that, it may
be a potential therapeutic inhibitor of misfolding and aggre-
gation of SOD1 and, therefore, can delay clinical symptoms
of ALS [57].

The use of Panax ginseng for the alternative treatment of
ALS is recurrent, but without scientific proof, these effects
may be related to the increase in the expression of the growth
factor for cells of the nervous system and high antioxidant
activity. For these reasons, Jiang et al. studied the effects of
ginseng extract, rich in flavonoids, at doses of 40 and
80mg/kg in B6SJL-TgN (SOD1G93A) transgenic mice.
Results showed a delay in the appearance of diseases’ signs
and increase in survival [58], pointing out the potential of
this root and possible mechanism action.

Korkmaza et al. observed that the chronic administration
of 5mg/kg of flavonoid 7,8-dihydroxyflavone (23) (Figure 2),
generally found in the plants Godmania aesculifolia and Tri-
dax procumbens, in mice with ALS (SOD1G93A) by up to
105 days caused a significant improvement in motor deficits.
This result is believed to be associated with the compound’s

A C

B
O

O
O

O
O O

O O

OO
O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

20

24

272625

232221

191817

HO

HO

HO

HO HO
HO

HO
HO

HO HO

OCH3

OH
OH

OH

OH

OH
OH

OH

OH

OH

OH
OH

OH

OH
OH

OH
OH

OH
OH

OH
OH

OH

OH

OH

OHOH

OH

OH
OH

OH OH

OH

Figure 2: Structure of flavin (17) and anthocyanin (18), kaempferida (19), kaempferol (20), fisetin (21), compound 22, 7,8 dihydroxy flavone
(23), myricetin (24), quercetin (25), naringin (26), and 3,5,4′-trihydroxy-6,7,3′-trimethoxy flavone (27).

5Oxidative Medicine and Cellular Longevity



ability to cross the blood-brain barrier and exercise neuro-
protective activity therefore can decrease the clinical mani-
festations of the disease [59].

As previously mentioned, the formation of poorly folded
protein aggregates inside or outside neural cells is one of the
causes of neurodegenerative diseases, such as ALS. In this
sense, Joshi and collaborators presented, through in vitro
studies with Cos-7 cells in immunofluorescence staining
assay with primary antibodies of E6-AP and Hsp70, that at
a concentration of 15μg/mL, mycetin flavonoid (24)
(Figure 2) is capable to eliminate or suppress the aggregation
of different proteins and reduce the inclusion of folded pro-
teins and leading to a decrease in the symptoms of muscle
paralysis [60].

Excessive neuronal stimulation of glutamate leads to a
large influx of Ca2+ which, when accumulated in mitochon-
dria, triggers an increase in the production of reactive oxygen
species for the formation of oxygen free radicals, just as this
excitation leads to the activation of caspase3, which seem to
be involved in the etiology of many neurodegenerative disor-
ders, such as ALS. In this context, Shimmyo et al., through
in vivo studies with mice induced by glutamate and in vitro
tests with neuronal cells, showed that myricetin 24
(Figure 2) inhibited the glutamate-induced excitotoxicity by
three routes: reduction of intracellular calcium through the
phosphorylation of NMDAR (N-methyl D-aspartate recep-
tor), inhibition of free oxygen radicals, and inhibition of
capase-3 [61].

Aluminum has been associated with several neurological
diseases, including Alzheimer’s disease, Parkinson’s disease,
and ALS; it is suggested that this neurotoxicity may be asso-
ciated with the fact that aluminum is capable of generating
reactive oxygen species (ROS) [60]. In this perspective,
Sharma et al. [62] evaluated the antioxidant activity of quer-
cetin (25) (Figure 2), at a dose of 10mg/kg body weight/day
in mice whose oxidative stress was induced by aluminum
(10mg/kg of body weight/day). The results revealed that
quercetin decreased neuronal apoptosis and decreased the
production of free radicals, in addition to obstructing neuro-
degenerative histological changes induced by aluminum.

Zhuang et al. analyzed through mass spectrometry and
molecular docking the noncovalent interactions between
SOD1 and selected flavonoid compounds, such as quercetin,
rutin, naringin, and hesperidin, among others. The study is
aimed at identifying which compound has a more prominent
capacity to inhibit the aggregation of the apo-SOD1 complex.
Through these techniques, the results showed that naringin
(26) (Figure 2) presented better aggregation inhibition pro-
file, being considered as an interesting compound for the
treatment of ALS [63].

As mentioned in the literature, glutamate toxicity is a
major contributor to the appearance of neurodegenerative
diseases such as ALS and Alzheimer’s disease. Hence,
Elmann and collaborators [64] isolated the sesquiterpene lac-
tone achillolide A and the flavonoid 3,5,4′-trihydroxy-6,7,3′
-trimethoxyflavone (27) (Figure 2) from the Achillea fragran-
tissima plant and tested in Na2+ cells of neuroblastoma of
mice intoxicated with glutamate. The results show that the

compounds protected astrocytes from cell death induced by
oxidative stress and inhibited microglia activation, demon-
strating its significant protective effect. In this sense, we high-
light the importance of flavonoids as a therapeutic potential
tool against the decrease in the time of onset of symptoms
and the increased survival of patients with ALS, whether by
antioxidant, neuroanti-inflammatory, and antiprotein aggre-
gation mechanisms.

In silico and in vivo tests of the cited studies demon-
strated that extracts enriched with flavonoids, as well as their
isolated, may act in the treatment of ALS by different mech-
anisms of action, such as decreased spinal cord injury, SOD1
inhibition, inhibition of motor neuron aggregation, inhibi-
tion caspase3, and decrease reactive oxygen species. These
compounds may cause a delay in the appearance of the dis-
ease’s signs and decrease the clinical manifestations. There-
fore, by evaluating the toxicity of these compounds and
establishing a therapeutic dose, they could potentially be
qualified to undergo more advanced pharmacological tests,
such as clinical trials.

2.3. Coumarins. Coumarins are another class of secondary
metabolites implemented in the literature as promising mol-
ecules due to their results against neurodegenerative diseases
such as ALS. Based on these facts, Mogana et al. tested the
antioxidant capacity in vitro of scopoletin (28) isolated from
Canarium patentinervium (Figure 3), starting from chloro-
form extract and purification by silica gel chromatography
using the hydrogen atom transfer (HAT) and simple elec-
tronic transfer (SET) method. This coumarin presented
strong antioxidant potential (EC50 191:51 ± 0:01μM), dem-
onstrating its ability to act in diseases caused by oxidative
stress [65].

In vitro studies for DPPH, hydroxyl, and ABTS radical
scavenging activity carried out by Kumar et al. to determine
the antioxidant capacity of substances present in fenugreek
seed extract (Trigonella foenum-graecum), such as trigocou-
marin (29) (Figure 3), were performed. The antioxidant
activity of the extract was expressed in IC50 and showed its
efficiency in reducing DPPH free radicals, being able to
reduce them by 50% at a concentration of 395μg/mL
(R2 = 0:9712) [66].

Oxidative stress was induced in NSC34 motor neurons of
rats by Barber and collaborators in the presence and absence
of several compounds. Among them, the coumarin esculen-
tin (30) (Figure 3) was the only one of the studied com-
pounds capable of directly buffering the radicals, promoting
protective effects for cells. This article does not present the
form of obtainment of these compounds [67].

Hasnat and collaborators presented results for inhibition
of acetylcholinesterase, as well as in vitro and in vivo antiox-
idant activity of Ganoderma lucidum that grows in germi-
nated brown rice (GLBR), in which coumarin (31)
(Figure 3) is presented as the fourth most predominant com-
pound between the thirteen identified by HPLC analysis of
the GLBR extract. In vitro results revealed the occurrence of
inhibition of peroxidation induced in brain cells of rats by
Fe2+. However, in in vivo results, no significant variations
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could be observed when doses of 100mg/kg were adminis-
tered in the treatment group [68].

Li and Seeram identified the presence of seven lignans, as
well as two coumarins isolated from the butanol extract of the
maple syrup (MS-BuOH), being identified as scopoletin and
fraxetin (32) (Figure 3). These coumarins were evaluated for
their antioxidant activity and obtained IC50 values of 68:2
± 31:2 and 46:5 ± 3:6μg/mL, respectively. Therefore, these
compounds better result in comparison to the seven isolated
lignans (values ranging between 101:5 ± 5:9 and 1335:9 ±
47:6μg/mL) and stilbenes contained in sugar fraction of
maple syrup (>2600μg/mL). Moreover, fraxetin also showed
a better result when compared to vitamin C
(IC50 = 58:6 ± 10:7μg/mL) [69].

Glutamatergic excessive transmission is associated with
several neurodegenerative diseases such as ALS. In order to
analyze the antioxidant and neurodegenerative capacity of
the seed extract of Amburana cearenses, Pereira and collabo-
rators promoted studies in PC12 cell cultures which were
induced by glutamate excitotoxicity. Among the isolated
compounds, methyl-3-coumarin (33) was identified
(Figure 3). In the isolate containing mainly coumarins,

including compound 33, promoted, after 24 h, a reduction
of 17% in death induced by glutamate, in addition to induc-
ing neuroprotection in 1000μg/mL [70].

To test the ability to inhibit oxidative stress from the
extract of Angelicae dahuricae radix, which presents furano-
coumarin as a secondary metabolite, Moon and colleagues
examined its effect on reducing the level of ROS in BV2 cells
activated by lipopolysaccharides (LPS). It was observed a sig-
nificant decrease in ROS levels at the concentrations of 10
and 50μg/mL. In vivo tests were performed using a dose of
100mg/kg administered orally to rats during 14 days. The
results indicated the extract’s neuroprotective effect after spi-
nal cord injury. In this way, the extract has a possible neuro-
protective capacity for diseases such as ALS, mainly due to
the decrease in cytokine levels when damage to BV2 cells is
inferred [71].

A plant of the same genus, Angelicae gigas, was evaluated
for its antioxidative effect directed to neurodegenerative dis-
eases by Park and collaborators, where the presence of cou-
marins in this plant has been identified in previous works
published by Ryu et al. [72]. In vitro tests on DPPH and
determination of the reducing capacity demonstrated that
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the ethanol extract showed an EE50 of 31:47 ± 0:68mg/mL in
the elimination of DPPH. The ethanol extract also showed
strong antioxidant activity with an IC50 of 43:22 ± 1:67
μg/mL, demonstrating to be more effective in comparison
to the aqueous and methanolic extracts, and to the positive
control α-tocopherol (68:64 ± 5:47μg/mL). The initiation
and propagation of free radicals in the body can be related
to transition metals in which elements such as iron and cop-
per act as powerful catalysts in oxidation reactions. Comple-
menting the tests, metal chelating activity was carried out,
which consists of adding different concentrations of the
extract, methanol, and FeCl2. For the ethanolic extract, an
accentuated binding capacity with Fe2+ was verified [73].

The effects of Caragana turfanensis on neuroinflamma-
tion inhibition were evaluated by Song et al. Among the 36
compounds present in the extract, a new coumarin, caraga-
nolide A (34), was observed (Figure 3). The evaluation of
each compound was performed on LPS-induced BV2 cells,
and caraganolide A demonstrated an IC50 of 1:01 ± 1:57
μg/mL, portraying the best activity among all isolated com-
pounds, including in comparison to the positive control
(minocycline) of 9:07 ± 0:86μg/mL [74].

From the extract of aerial parts from Ducrosia ismaelis
asch, Morgan and collaborators were able to isolate psoralen
(35) and isopsoralen (36), among other compounds
(Figure 3). In vitro antioxidant activity of these coumarins
demonstrated that the elimination of peroxy radicals and
the reducing capacity were inferior to the other components
of this extract; however, the inhibition of soluble epoxide
hydrolase (sEH) by psoralen was favorable, indicating that
this compound can act improving the antioxidant defense
mechanism, thus being considered a promising compound
for diseases such as ALS [75].

Varier et al. performed molecular docking, using Auto
Dock tools 1.5.6 program and the MGL tools 1.5.6 package,
to predict the inhibitory capacity of esculin and hinokitol.
In the target monooxidase b, esculin (37) (Figure 3) obtained
a more favorable binding affinity, with free energy result of
-9.6Kcal/mol, while the cocrystallized ligand levodopa and
hinokitol (38) presented binding energies of -7.7Kcal/mol
and -7.2Kcal/mol, respectively. For all six evaluated different
targets, esculin exhibited the best results in comparison to the
aforementioned ligands. Monooxidase B is found in the
external mitochondrial membrane, whose dysfunction of this
organelle may be associated with common neurodegenera-
tive diseases such as ALS and Alzheimer’s disease [76].

In neurodegenerative diseases such as ALS, compounds
that activate signal-regulated kinase phosphorylation (ERK)
and element response-binding protein (CREB) are consid-
ered as possible neuroprotective agents. Based on this infor-
mation, Nakamura et al. tested phosphorylation capacity in
human A172 cells of felopterin (39) and auraptene (40) iso-
lated from citrus fruits (Figure 3). Both coumarins promoted
an activation of ERK and CREB, indicating that the coumarin
ring is a possible pharmacophore responsible for activating
the neuroprotective effect on the central nervous system [77].

In general, there is an improvement in coping with neu-
rodegenerative diseases such as ALS through the use of iso-

lated coumarins or plant extracts containing them. The
results were promising when performed in silico, in vitro,
and experimentally in vivo, revealing its antioxidant effect,
prolongation of the programmed death of neural cells, and
neuroprotection, beyond the reduction of free radicals.

Most coumarins from natural products could potentially
be tested for antioxidant activity, reduction of DPPH, inhibi-
tion of induced peroxidation, reduction of glutathione-
induced death, and induction of neuroprotection. In general,
there is an improvement in dealing with neurodegenerative
diseases, such as ALS, through the use of isolated coumarins
or plant extracts containing them. The results were promis-
ing when performed in silico, in vitro, and experimentally
in vivo, revealing its antioxidant effect, prolongation of the
programmed death of neural cells, and neuroprotection,
beyond the reduction of free radicals.

2.4. Other Metabolites. In addition to the secondary metabo-
lites present in natural products with antioxidant action
already mentioned for the treatment of ALS, it is also com-
mon the presence of other metabolites in extracts or fractions
of extracts present in leaves, fruits, and roots, as well as in
other natural products such as fungi and algae [78–80]. From
here, we will present the presence and antioxidant mecha-
nisms of tannins, terpenoids, lignans, quinones, saponins,
methylxanthines, glucosinolates, and fatty acids directed to
the treatment of ALS.

2.5. Tannins. Tannins are secondary polyphenolic plant
metabolites commonly found in extracts from a wide variety
of plants [81, 82]. Studies of extracts of several plants con-
taining tannins have already reported their biological activity
for the treatment of various diseases, such as neurodegenera-
tive diseases, diabetes, lung infections, rheumatism, and kid-
ney diseases, among others [83, 84].

In this perspective, Auddy and collaborators evaluated
through in vitro and in vivo tests, in an unprecedented way,
the toxicity and the effect of eliminating radicals with ethano-
lic and aqueous extracts of three plants commonly used in
Indian medicine: Sida cordifolia, Evolvulus alsinoides, and
Cynodon dactylon. The results demonstrated that the water
infusion of the three plants (up to 1mg/mL) did not show
toxic effects on the PC12 cell line in the MTT tests. As for
the verification of antioxidant effects, it was shown that in
the ABTS test, the ethanolic extract of S. cordifolia presented
a better result, with an IC50 of 16.07μg/mL, followed by E.
alsinoides and C. dactylon, with IC50 values of 33.39μg/mL
and 78.62μg/mL, respectively. As for water infusions, the I
C50 values were, respectively: 172.25μg/mL for E. alsinoides,
273.64μg/mL for C. dactylon, and 342.82μg/mL for S. cordi-
folia. In the results of lipid peroxidation (TBARS), the water
infusion of E. alsinoides demonstrated the best result out of
the three infusions with an IC50 of 89.23μg/mL. In vivo stud-
ies have not shown significant results, and the author attri-
butes the experimental model as being ineffective due to the
high, rapid, and extensive degradation of the antioxidant
inside the body. The results were promising for the continu-
ity of tests and verification of activity in neurodegenerative
diseases [85].
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Banerjee et al. reported an in vitro study that evaluated the
antioxidant activity of black plum peel and juice extract scien-
tifically known as Syzygium cumimi of the myrtaceae family.
The antioxidant activities of the aqueous extracts were verified
for hydroxyl radicals, superoxide radicals, and stable free rad-
icals 1,1-diphenyl-2-picryl-hydrazil (DPPH). The IC50 values
for the fruit peel were 468μg/mL, 260μg/mL, and 168μg/mL,
respectively. Thus, it can be said that the antioxidant activity of
S. cumini has significant antioxidant activity. The author attri-
butes this activity to the presence of tannins in the extracts and
the peel of the fruit may be important for further studies in the
fight against diseases, including ALS [86].

The antioxidant activity of polyphenols is mainly linked
to its redox properties and hydrogen donation [87, 88].
Aware of these properties, Mahesh and collaborators carried
out studies to evaluate the antioxidant effect and of a plant
native to India, Terminalia chebula (combretaceae), tradi-
tionally used to treat various diseases in Asia. The elimina-
tion of superoxide radicals, hydroxyl radicals, and nitric
oxide radicals with the aqueous extract of the fruit peel of
T. chebula was evaluated showing significant results with I
C50 values of 0.031mg/mL, 0.097mg/mL and 0.744mg/mL,
respectively. Thus, although the tannin fraction has not been
isolated, the author attributes a greater contribution to the
antioxidant properties. It also highlights the importance of
studying T. chebula for possible applications in the treatment
of neurodegenerative diseases [89].

A plant-based multicomponent, called Padma® 28, con-
tains, in addition to other compounds, flavonoids and tan-
nins. It has had its antioxidant activity reported by
Ginsburg and collaborators, who also evaluated the neuro-
protective activity of the extract in a PC12 neuronal cell
strain against the toxins Aβ25-35 (10mM), glutamate
(40mM), MPTB (5mM), and 3-NP (10mM). Faced with
these neurotoxins, PC12 cells demonstrated reduced mito-
chondrial dysfunction following Padma 28 treatment, thus
decreasing cellular oxidative capacity. The decrease induced
by Padma® 28 can be attributed to the direct elimination of
reactive oxygen species generated in PC12 cells or by the
interference with the generation of hydroxyl radicals [90].

Chang and colleagues evaluated in vitro the antioxidant
activity and neuroprotective effects of five methanolic
extracts from dry parts of the plants Spatholobus suberectus
(SSE), Uncaria rhynchophylla (URE), Alpinia officinarum
(AOE), Drynaria fortune (DFE), and Crataegus pinnatifida
(CPE). Analyzing the extracted fractions, it was verified that
the SSE extract contained a higher content of flavonoids,
while the URE and AOE extracts contained a higher percent-
age of tannins and triterpenoids, respectively. Their antioxi-
dant effects were evaluated by 4 means: HRP-luninol-H2O2,
pyrogallol–luminol, CuSO4-Phen-Vc-H2O2, and Luminou-
H2O2. The URE extract demonstrated good antioxidant
activities in the HRP-luninol-H2O2 and CuSO4-Phen-Vc-
H2O2 assays, with respective IC50 values of 3:6 ± 0:4μg/mL
and 5:9 ± 0:5μg/mL. These values approximated and, in
some cases, better than, the positive controls: vitamin C
(14:8 ± 6:2μg/mL and 688:3 ± 29:7μg/mL) and Trolox
(3:2 ± 0:1μg/mL and 5:8 ± 1:0μg/mL) [91].

Regarding the neuroprotective evaluation, the neuro-
growth effects in H2O2 of the five extracts in PC12 were eval-
uated. The extracts that had the best neuroprotective effects
were CPE, URE, and SSE in the concentrations ranging from
0.5 to 5.0μg/mL, with a percentage of neuroprotection from
78.1 to 107.2% for CPE, 54.1 to 85.7% for URE, and 46.3 to
65.7% for SSE, compared to the positive control AC-
DEVDCHO (N-acetyl-Asp-Glu-Val-Asp-al) with values
from 23.9 to 37.5%. Therefore, the extracts have the potential
to be deepened into in vivo studies for the treatment of neu-
rodegenerative diseases, in which ALS is included [91].

In the study conducted by Adewale and colleagues with
the leaves of Solanum macrocarpon, a plant typical of India,
had its antioxidant activity verified in the protection of the
tissues of rats, especially the liver and brain, against iron-
induced lipids (Fe2+). Aqueous extracts showed levels of fla-
vonoids and phenolic compounds (with the presence of tan-
nins). The results demonstrated that the aqueous extract of
the leaves of S. macrocarpon showed high inhibition of lipid
peroxidation induced by iron sulfate II with an inhibition
value of 92:91 ± 1:56% at a concentration of 3.33μg/mL,
showing to be more effective than the quercetin control (con-
centration of 90:15 ± 1:35μg/mL). Thus, the aqueous extract
of the leaves of S. macrocarpon presented with a strong anti-
oxidant agent, offering protection against oxidative damage
of liver and brain tissues, which places it as a potential for
future analyses in the treatment of ALS and neurodegenera-
tive diseases [92].

Another in vitro study was carried out by Hamamcioglu
and collaborators, in which the evaluation of the potential
of the neuroprotective effect in PC12 (dPC12) cells, as well
as the antimutagenic and antigenotoxic effects of the species
of the plant Glaucium acutidentatum of the papaveraceae
family was carried out. The methanolic extract, at a concen-
tration of 500μg/mL, showed better results for cell damage,
caused by H2O2, with values between 80 and 90% of neuro-
protection, in comparison to the aqueous extract that pre-
sented a rate between 65 and 75%. It was also observed that
the aqueous extract presented no cytotoxicity (90 to 96%),
while the methanolic extract presented moderate cytotoxicity
(67 to 75%) at any concentration. Another important data
demonstrated in the same study is concerning the neuritis
index, which is strongly linked to the neuroprotective effect.
The higher the value, the better the neuroprotective result
[93], as it indicates neural regeneration. It was found that
in the presence of only H2O2, neuritis concentration dropped
to 50:7 ± 0:4μM, while the control untreated cells presented
a value of 80:3 ± 0:3μM and the extracts (methanolic and
aqueous), in a concentration of 500μg/mL, exhibited values
of 78:8 ± 0:5μM and 78:2 ± 0:3μM, respectively. Further-
more, the extracts showed antimutagenic activity (75.0 and
74.8% inhibition) and antigenotoxic activity. This is a pio-
neering study for antigenotoxic activity. The results demon-
strate strong candidates for the treatment of multiple
degenerative diseases, including ALS [94].

The studies presented above with extracts containing tan-
nins in the treatment of ALS demonstrate the lack of in-
depth studies, considering that they do not perform in vivo
experiments, therefore limited to in vitro studies, and,
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consequently, there are no subsequent preclinical tests and
specific clinical trials for ALS. Possibly this continuity of
the experiments is linked to the isolation and quantification
of the compounds, considering that the majority of the stud-
ies did not present gas chromatography techniques.

2.6. Terpenoids. Terpenoids are terpenic compounds that
have undergone oxidation. Many studies have been reported
with the use of terpenoids in the treatment of diseases [95–
97]. One of these studies was carried out by Kiaei and collab-
orators through the evaluation of the neurodegenerative
activities of celastrol (41) (Figure 4), a triterpenoid, isolated
from a Chinese plant Tripterygium wilfordii of the family
Celastraceae. In this study, the neuroprotective effects were
examined in the G93A SOD1 transgenic mice model for
ALS. Studies have shown that the treatment with celastrol
significantly improved motor function, delaying ALS symp-
toms, and also causing a decrease in mice’s weight. Another
relevant result was the increase in survival of the G93A mice
treated with celastrol, registering 9.4% and 13% at the dos-
ages of 2mg/kg/day and 8mg/kg/day, respectively. More-
over, an increase of 30% of the neuronal concentration in
the lumbar spine suggests a protective effect. Histological
analysis revealed a reduction in TNF-α, iNOS, CD40, and
GFAP immunoreactivity. Thus, celastrol can be a promising
therapeutic agent for the treatment of ALS [98].

In silico and in vivo evaluations of phytochemicals pres-
ent in the root extract of the Asparagus adscendens (AAE)
plant of the Liliaceaee family were carried out by Pahwa
and Goel, aiming to evaluate the nootropic, antiamnesic,
and antioxidative activities. Prediction of Activity Spectra
for Substances (PASS) and Pharmaexpert were used for in
silico studies. In vivo studies of antiamnesic activity were
assessed by scopolamine induction. Finally, nootropic activ-
ity was assessed by evaluating the effect of the extract of
AAE against antioxidant enzymes on the cortex and hippo-
campus of mice and acetylcholinesterase. The extracts
showed, in addition to other secondary metabolites, the pres-
ence of terpenoids. The results in silico pointed to a signifi-
cant decrease in memory loss that was proven by in vivo
studies. Besides, the AAE extract considerably reduced the
levels of oxidative stress in the cortex and hippocampus of
mice [99].

Lee et al. investigated the neuroprotective effects of a ses-
quiterpenoid, ECN (7β-(3-ethylcis-crotonoyloxy)-1α-(2-
methylbutyryloxy)-3,14-dehydro-Z-notonipetranone) 42)
(Figure 4) obtained from Tussilago farfara sprout, from the
Asteraceae family, mediated by Nrf2 (nuclear factor ery-
throid 2) against oxidative stress in the PC12 cell line, as well
as the potential of ECN to activate Nrf2 inducing OH-1, also
observing the protective effects of ECN (10μM) in an exper-
imental model of animals with neurodegeneration. The
results demonstrated a protective effect against H2O2 and
6-hydroxydopamine (6-OHDA) with 91:8 ± 6:6% and 87:9
± 1:7% inhibition in the concentration of 500μM of H2O2
and 250μM of 6-OHDA, respectively. The ECN also showed
good results in the positive regulation of ARE-luciferase
activity (cell line designed to monitor the induction of anti-
oxidant response elements), as well as in the induction of

Nrf2 and OH-1 mRNA expression. The results also suggested
an interaction between ECN and Keap1 modifying the cysteine
thiols of Nrf2, causing a positive regulation of OH-1. Further-
more, the administration of ECN improved dopaminergic
and motor neuronal damage [100].

2.7. Lignans. Lignans are a group of phytochemicals, which
are produced by oxidative dimerization of two phenylpropa-
noid units [101]. Studies related to the use of plant extracts
containing lignans have also been reported in the literature
for the treatment of neurodegenerative diseases [102, 103]
mainly by the mechanism of peroxidation dismutase-SOD1.
In one of these reports, Lahaie-Collins et al. evaluated sesa-
mine (43) (Figure 5), a lignan isolated from sesame seed
(Sesamum indicum L) and bark of fagara plants, for neuro-
protective, antioxidant, and anti-inflammatory effects on
neuronal cells PC12. The compound 1-methyl-
phenylpyridine (MPP+) was used as an oxidative damage
inducer. The results showed that in picomolar doses (10-
12M), sesamine protected the PC12 neuronal cells from oxi-
dative stress, attenuating by up to 60% the cell death caused
by MPP+, in addition to reducing the production of reactive
oxygen species. Further results revealed an increase in the
production of SOD proteins, as well as a reduction in cata-
lase. Sesamine showed potential in preventing neurodegener-
ative diseases [104].

Mei et al. isolated 12 lignans from the fruit of the Brous-
sonetia papyrifera plant, among which 9 were unpublished.
The ethanolic extracts of each lignan were evaluated for its
antioxidant activities via MTT and DPPH in PC12 neuronal
cells induced by H2O2 and also for the capability of eliminat-
ing DPPH radicals. The results showed that all ethanolic
extracts were efficient in antioxidant activities, reducing the
action of H2O2 in the CP12 cell line. Compounds 44, 45,
46, 47, and 48 (Figure 5) demonstrated DPPH radical scav-
enging activity with IC50 values of 236.8μM, 156.3μM,
273.9μM, 281.1μM, and 60.9μM, respectively, with H2O2
concentrations ranging from 0.16 to 100μM. Lignan 48
showed the best antioxidant activity. Subsequent studies
may apply these lignans for pharmacotherapeutic treatments
of ALS and additional neurodegenerative diseases [105].

Sesamine (Figure 5), as reported previously, was also the
object of the study of Shimoyoshi et al. They examined the
possibility of sesamine affecting the cognitive decline in mice
accelerated by senescence (SAMP10). Analytical methods
showed changes in oxidative stress related to age in reactive
brain carbonyl species (CRs) in mice treated with sesamine.
The results showed that mice treated with sesamine obtained
better results in tasks of avoidance and forced swimming
with aging. Oxidative stress in the cerebral cortex and liver
showed a reduction in mice treated with lignan. These results
suggest that sesamine prevents brain dysfunction by antioxi-
dative activity [106].

2.8. Quinones. Similar to the other secondary metabolites,
quinones present in extracts have been reported in studies
looking for ALS treatments and different neurodegenerative
diseases [107–109].
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One of these reports, presented by Lu et al., demonstrated
the antioxidant effects of ethanolic extracts from the roots of
the Rheum officinale baill plant of the Polygonaceae family,
popularly known as rhubarb. Phytochemical analysis of the
extracts demonstrated the presence of anthraquinones (emo-
dine 49) and dianthraquinones (aloe-emodine 50) (Figure 6),
in addition to other constituents. Rhubarb extract consider-
ably decreased the number of neurons with condensed and
fragmented DNA, especially at a concentration of 10μg/mL
(at concentrations 2 and 5μg/mL the results were inferior).
The study showed a protective role for rhubarb extract
against cell oxidation, which may bring significant results in
further studies in the treatment of ALS and other neurode-
generative diseases [109].

Vegás-Hernández and collaborators evaluated the anti-
oxidant effects of rapanone (51) (Figure 6), a natural benzo-
quinone isolated from the Myrsine plant, against the
chelation, iron removal activity, and protective potential
against damage induced by tert-butyl hydroperoxide in mito-
chondria. The results showed the formation of complexes
with irons II and III, oxidation of iron II, and peroxide radi-
cals, inhibiting Fenton-Haber-Weiss reactions, effectively
demonstrating the protective effect against oxidative stress

at concentrations of 50 and 300μM. The results demonstrate
the protective potential of rapanone against mitochondrial
lipid peroxidation with IC5010:33 ± 1:29 at 50μMvalues better
than the positive glycol-bis(2-aminoethylether)-N,N,N ′,N ′
-tetraacetic acid (EGTA) IC50 15:47 ± 2:01μM at 200μM.
Thus, rapanona appears with pharmacological potential in
the treatment of diseases that occur oxidative stress such as
neurodegenerative diseases [110].

Studies with terpenoids, lignans, and quinones are more
limited in the literature; however they exhibit greater depth
of studies aimed at treating ALS. Unlike studies with tannins,
these three metabolites, despite the few studies found, have
advanced to in vivo studies, presenting significant results in
different pathways. Few studies have reported the isolation
of the main compound and do not report the extraction
methodology transparently. Finally, despite having been car-
ried out in vivo, the studies have not yet been reported or
evaluated in clinical tests. It may be related to difficulties in
isolation, since the extractive methods were not well under-
stood in the study.

2.9. Saponins. The classic definition of saponins is based on
its surface activity and its detergent properties, forming stable
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foams in water. Saponin is a class of glycosidic compounds
that can be classified as steroidal saponins and triterpene
saponins, which can form colloidal solutions that foam in
water, like soap, if the mixture is stirred. Saponins can be
found in the roots and leaves of plants and present antimi-
crobial, antibacterial, antiviral, anticancer, and antioxidants
activities, in addition to its ability to stimulate the formation
of collagen, a protein that plays a role in the healing process
of wounds [111–113].

Many saponins have been reported for neuroprotection
purposes, including madecassoside (52) [114–117], ginseno-
side (53) [118–120], and astragaloside IV (54) [121]
(Figure 7). Saponin’s neuroprotection property is not corre-
lated to a single process, but to a spectrum of independent
and related processes, which promotes its ability to regener-
ate the neural network directly promoting cell survival,
improving neurite growth, and recovering the activities of
axons and synapses. These metabolites can also prevent neu-
ron malfunctions by changing levels of neurotransmitters,
receptors, and messengers [114, 121]. In this sense, madecas-
soside (52) is one of the bioactive compounds of the triterpe-
noid saponins isolated from Centella asiatica (L) Urban,
reported with the potential to protect the degeneration of
motor neurons and also increase the longevity of transgenic
mice SOD1G93A with ALS [114].

In a model of ALS using a type of lipopolysaccharide-
induced rats (LPS), two different doses of madecassoside
were tested, 61:1 ± 11:0 and 185:6 ± 18:7mg/kg/day, respec-
tively. Compared to the control group (mice without made-
cassoside treatment), madecassoside failed to delay the
onset of the disease, but can significantly prolong the mice’s
survival time by 11.4 and 9.4 days, respectively (P < 0:05)
[113, 114]. Also, madecassoside inhibits the production of
nitric oxide (NO) (a harmless component when present in
small quantities, but undesirable when secreted in large
quantities), prostaglandin E2 (PGE2), and additional inflam-
matory factors in RAW264.7 macrophage cells
lipopolysaccharide-induced (LPS) and collagen-induced
arthritis in a rat model, which could explain its neuroprotec-
tive and anti-inflammatory effect [113].

According to a study by Sasmita et al., madecassoside
(52) is introduced as a potent antineuroinflammatory agent,
which is able to influence genetic and protein components
that are implicated in neuroinflammation and to reduce the
intracellular levels of reactive oxygen species (ROS) by
56.84% in BV2microglia cell line, in comparison to the group
stimulated only with LPS. The results of the present study
suggest that madecassoside successfully and significantly reg-

ulated the gene and protein expression of inducible nitric
oxide synthase (iNOS), cyclooxygenase 2 (COX-2), signal
transducer and transcription activator 1 (STAT1), and
nuclear factor kappa B (NF-κB), which are all proneuroin-
flammatory components. In addition, madecassoside signifi-
cantly increased the gene expression of the anti-
inflammatory component heme oxygenase 1 (HO-1) by
175.22% compared to the LPS group, suggesting that this
compound is an important ally in the treatment of neurode-
generative diseases [115].

In another study by Liu et al., in which researchers eval-
uated the protective effect of madecassoside (52) on the cog-
nitive process induced by LPS and neuroinflammation in
rats, it was observed that the treatment with madecassoside
(120mg/kg, i.g.) for 14 days reduced LPS-induced neurotox-
icity, decreasing cognitive deficiencies and suppressing the
production of inflammatory cytokines, such as interleukin
1-beta (IL-1β), tumor necrosis factor alpha (TNF-α), and
interleukin 6 (IL-6), through the activation of nuclear factor
2 signaling related to erythroid nuclear factor 2 (Nrf2). In
addition, the treatment improved heme oxygenase (HO-1)
protein levels, through the positive regulation of Nrf2 in
LPS-stimulated neurotoxicity. Collectively, these results sug-
gest that madecassoside is effective in preventing neurode-
generative diseases by improving memory functions due to
its anti-inflammatory activities and activation of Keap1-
Nrf2/HO-1 signaling [113].

Additional studies with madecassoside (52) extracted
from Centella asiatica (CA) were also carried out evolving
the evaluation of its potential to inhibit the enzyme Serina
Racemase (SR), an enzyme responsible for converting L-
serine into D-serine, an amino acid coagonist at glutamate
N-methyl-D-aspartate (NMDA) receptors, whose hyperexci-
tation is involved in several neurodegenerative diseases,
including ALS. The authors observed that the activity of the
SR enzyme was significantly inhibited in the presence of
CA extract. The CA extract at a concentration of 20μg/mL
and 40μg/mL inhibited 85% and 99% of SR activity
(P = 0:0001), respectively. The enzyme inhibition assay indi-
cates that madecassoside is an inhibitor of human SR. The I
C50 value for madecassoside is 26μM, which is the lowest I
C50 among SR inhibitors reported up to date, giving this
compound anti-inflammatory, neuroprotective, antiapopto-
tic, and antioxidative activity in animal models of ALS [116].

Ginsenosides are saponins found in the medicinal herb
Panax ginseng that can be classified into three groups
(Figure 8) based on structural differences: the protopanaxa-
diol group (55) (including Rb1, Rb2, Rb3, Rc, and Rd), the
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Figure 6: Structure of emodin (49), aloe-emodin (50) quinones found in the roots of the Rheum officinale baill plant, and rapanone (51), a
benzoquinone isolated from the Myrsine plant.
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protopanaxatriol group (56) (as the Re, Rf, Rg1, and Rg2
derivatives), and the Oleanano group (as the Ro variant)
(57) [117–119]. Different studies have shown that the com-
ponents of Panax L., especially the ginsenosides Rb1, Rb2,
Rb3, Rc, Rd, Re, Rg1, Rg2, and Rg3, have significant thera-
peutic effects in various neurological disorders such as mem-
ory, anxiety, depression, epilepsy, accident stroke, ALS,
Alzheimer’s disease (AD), Parkinson’s disease (PD), and
Huntington’s disease [119]. Each ginsenoside molecule is
potentially effective in the treatment of various diseases of
the central nervous system (CNS). For example, the biologi-
cally active ginsenoside component Rg1 reduces reactive oxy-
gen species (ROS) and cytotoxicity by negatively regulating
proapoptotic proteins, neutralizing oxidative stress, resulting
in neuroprotection of cells treated with lipopolysaccharides
(LPS) [117, 118]. The ginsenosides present in ginseng have
shown the potential to be an excellent compound for the
treatment of neurodegenerative diseases, possibly its neuro-
protective effect occurs due to the modulation of neuronal
calcium channels. Some studies suggest that ginsenoside
Rg1 (58) (Figure 8), panaxatriol saponin, reduces the produc-
tion of reactive oxygen species (ROS), releases cytochrome c
in the cytosol, inhibits caspase3 activity, and lowers nitric
oxide production (NO), reducing the level of inducible pro-
tein of nitric oxide synthase (iNOS), in addition to being
reported rescue of cellular damage caused by hydrogen per-
oxide through the negative regulation of the NF-κB signaling
pathway, as well as activation of the AKT and ERK1/2 [118,
122, 123].

A preliminary study by Jiang et al. [58] with ginseng root
showed beneficial effects in an ALS model using SOD1G93A
transgenic mice, portraying a delay in disease onset and a
prolonged survival rate. This study, combined with the
anti-inflammatory, antioxidant, antiapoptotic, and immuno-
logical effects on the CNS reported in the literature, encour-
aged Ratan et al. [119] to evaluate the effects of the
ginsenoside Re (G-Re) (59) (Figure 8) on neuroinflammation
and its action on human superoxide dismutase 1 (SOD1)
through the administration of 2.5μg/g of the compound in
symptomatic ALS hSOD1G93A mice. The authors observed
that treatment with G-Re reduced the loss of motor neurons
and the expression of Iba-1 (ionized calcium binding adapter
molecule 1), a microglia-specific calcium-binding protein, in

the spinal cord of transgenic mice hSOD1G93A, indicating a
possible neuroprotective effect. Besides, compared to
hSOD1G93A mice of the same age, those treated with G-Re
showed a significant reduction in the expression of proin-
flammatory proteins, like the CD14 protein and TNF-α
related to the TLR4 signaling pathway. G-Re administration
also led to a decrease in phospho-p38 protein levels related
to cell death and had an antioxidant effect by reducing the
expression of HO-1. These results suggest that ginsenoside-
Re has a potent antineuroinflammatory effect on ALS, inhi-
biting the TLR4 pathway.

Astragaloside IV (AST-IV) (54) is a small saponin and
the main active component in Astragalus membranaceus,
holding anti-inflammatory, antiviral, antiaging, immuno-
modulatory, and neuroprotective effects. The neuroprotec-
tive effect of this compound was observed in neural
microglia cells, in which the presence of AST-IV in the con-
centration of 1 to 5μmol/L protected the microglia from
death caused by LPS and negatively regulated the release of
proinflammatory mediators, including interleukin IL-1β,
IL-6, tumor necrosis factor α (TNF-α), and nitric oxide, as
well as the expression of Toll-like 4 receptors (TLR4),
MyD88, and nuclear factor κB (NF-κB) of these cells. These
results indicate that AST-IV exerts an anti-inflammatory
effect on microglia, possibly by inhibiting the TLR4/NF-κB
signaling pathways and protects neurons from microglia-
mediated cell death by converting the inflammatory M1
microglia into a M2 anti-inflammatory phenotype, indicat-
ing the potential of this compound for the treatment of neu-
rodegenerative diseases [120].

The evidence of possible beneficial effects during in vitro
and in vivo studies, shown in the studies above, is a starting
point for the achievement of new therapeutic alternatives in
the treatment of ALS. However, it is important to note that
such studies demonstrate a lack of methodological standard-
ization of the samples used, ranging from commercially
obtained saponins [113, 117, 120, 124] to plant extracts
[116]. The lack of standardization of the samples can influ-
ence the reproducibility of the results obtained in these initial
tests.

2.10. Methylxanthines. Methylated xanthines (methylxan-
thines) are heterocyclic organic compounds that are
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methylated derivatives of xanthine, therefore comprising
coupled rings of pyrimidinedione and imidazole. They are
present in almost 100 species of 13 orders from the plant
kingdom, including tea (Camellia sinensis L.), coffee (Coffea
sp.), and cocoa (Theobroma cacao L.), being normally
included in the daily human diet in many drinks and foods
extremely common, such as coffee, tea, cocoa, yerba mate,
and cola. Caffeine (60), theophylline (61), and theobromine
(62) (Figure 9) are the main methylxanthines available from
natural sources [125, 126].

Methylxanthines have been widely used as therapeutic
agents, in a range of medicinal fields, such as CNS stimulants,
bronchodilators, coronary dilators, diuretics, anticancer
adjuvant treatments, and, more recently, they have been sug-
gested with a potential beneficial health effect in the treat-
ment of neurodegenerative diseases, cardioprotection,
diabetes, and fertility [126].

Caffeine is a methylxanthine that nonselectively antago-
nizes adenosine receptors and is the most widely used psy-
choactive substance in the world. Its chronic consumption
has proven to be protective against neurodegenerative dis-
eases, such as Parkinson [127], Alzheimer [128], and ALS
[129]. For many years, it was believed that caffeine consump-
tion could be associated with an increased risk of neurode-

generative diseases. However, Fondell and colleagues [129]
performed a longitudinal analysis based on more than
1,010,000 men and women in five large cohort studies, in
which they evaluated the association between caffeine, coffee,
and tea consumption and ALS risk. The results showed that a
total of 1,279 cases of ALS were documented during an aver-
age of 18 years of follow-up. Caffeine intake was not associ-
ated with the risk of ASL; the combined multivariate
adjusted risk (RR) ratio was 0.96 (95% CI 0.81-1.16). Simi-
larly, neither coffee nor tea has been associated with ASL risk.
Therefore, the results of this large study did not demonstrate
any associations of caffeine or caffeine drinks with the risk of
ASL [130, 131].

The data found by Fondell and collaborators [129] reaf-
firm the results obtained by Herden andWeissert [132] when
investigating in 377 patients with newly diagnosed ALS the
relationship between coffee consumption and ALS risk in
which they evidenced an inverse correlation between the
consumption of coffee and the risk of disease.

Onatibia-Astibia et al. and Sonsalla et al. [125, 127]
report that caffeine consumption improves cognitive func-
tion, prevents neurodegeneration, and restores neuronal
plasticity and mitochondrial production in middle-aged rats
and in the APPswe mouse model of Alzheimer’s disease.
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Regarding ALS, caffeine is believed to be neuroprotective,
antagonizing A2A adenosine receptors in the brain and thus
protecting motor neurons from excitotoxicity [128, 129]. In
this sense, Monteiro et al. [126], Kolahdouzan and Hamadeh
[130], and Herden andWeissert [132] also reinforce the ben-
eficial effects of caffeine consumption in improving motor
activity in the context of neurodegenerative diseases through
mechanisms of neuroprotection and neurorestoration by tro-
phic proteins, suggesting that caffeine is a promising com-
pound for the treatment of neurodegenerative diseases.

Caffeine is the most studied methylxanthine concerning
its effect on neurodegenerative diseases. According to the
studies with patients reported above, the consumption of caf-
feine has shown a protective effect in patients with ALS. On
the other hand, there is a lack of evidence on the neuroprotec-
tivemechanism of action of this compound, and it is necessary
to expand research in this area, using in silico, in vitro, and
in vivo experiments, not only to elucidate the effect of caffeine
on neurodegenerative diseases, but also to investigate new
methylxanthines that may show a potential effect on these dis-
eases. So these structures can be explored for the design of new
compounds that may be more promising, facilitating the
understanding of their possible mechanisms of action.

2.11. Glucosinolates. Glucosinolates are abundant com-
pounds in the Moringa species, mainly in the Moringa olei-
fera, having been reported to have anti-inflammatory,
antioxidant, anticancer, and antidiabetic activities. The most
abundant glucosinolate present in the species is 4-O-(α-L-
ramnopyranosyloxy)-benzyl glucosinolate, also known as
glucomoringin (GMG) (63). Glucosinolates and related
hydrolytic products, isothiocyanates (ITCs) (64), have
attracted researchers due to their neuroprotective effect
[133–136]. ITCs are phytochemicals containing sulfur and
nitrogen obtained from glucosinolates after myrosinase
action. Myrosinasin-catalyzed hydrolysis at neutral pH of
GMG releases the biologically active compound 4-(α-L-ram-
nosiloxy)-benzylisothiocyanate (GMG-ITC) (65) (Figure 10)
[135, 136].

Many studies have revealed the benefits of consuming
vegetables from Brassicaceae and moringaceae, which are
the main sources of ITCs. These compounds are considered
to contribute to the massive reduction of risk for the develop-
ment of neurodegenerative diseases, due to their antiamyloi-
dogenic, antioxidant, and anti-inflammatory properties. The
preventive and treatment capacity of ITCs for NDDs is being
extensively explored over the last years [135].

In this sense, Jaafaru and collaborators [137] evaluated
the neuroprotective activity of GMG-ITC (65) by eliminating
ROS in SH-SY5Y neuroblastoma cells (ATCC® CRL-2266

™), observing that the presence of GMG-ITC (1.25μg/mL)
before the development of the oxidative stress condition
decreased the expression of cyt-c (cytochrome C), p53 (also
called TP53 gene and tumor protein p53 gene), Apaf-1 (apo-
ptosis-activating factor 1), Bax (BCL-2-associated protein X),
CASP3, CASP8, and CASP9 (proteins involved in the cas-
pase pathway) with simultaneous positive regulation of the
Bcl-2 gene (B cell lymphoma protein 2) in the mitochon-
drial apoptotic signaling pathway. In view of these results,
the authors suggest that pretreatment with GMG-ITC can
relieve the condition of oxidative stress in neuronal cells,
reducing the level of ROS production and protecting cells
against apoptosis through possible neurodegenerative path-
ways of disease [137].

In another study, Galuppo et al. [136] evaluated the ther-
apeutic efficacy of GMG-ITC against ALS in vivo using
SOD1tg mice, which physiologically develop SOD1G93A at
around 16 weeks of age and can be considered a genetic
model of the disease. The rats were treated once a day with
GMG (10mg/kg) bioactivated with myrosinase (20μL/rat)
by intraperitoneal injection for two weeks before the onset
of the disease, and the treatment was prolonged for another
two weeks before sacrifice. The results showed statistically
significant differences between mice treated and untreated
with GMG-IT (P = 0:003), demonstrating that the adminis-
tration of GMG-IT was able to delay the onset of the disease
for approximately two weeks, probably due to its immuno-
modulatory, anti-inflammatory, antioxidant, and antiapop-
totic effects, suggesting that this compound could be a
potential drug for the treatment of this disease.

Glucosinolates have been extensively studied in recent
years due to their anti-inflammatory and antioxidant poten-
tial. However, few studies in the literature report their action
on neurodegenerative diseases, such as ALS. Preliminary
studies in both cells and animals show neuroprotective effects
of these compounds, but the mechanism of action and the
extent of the effects have yet to be further investigated in
more robust preclinical and clinical studies.

2.12. Fatty Acids. The growing amount of researches involv-
ing neurodegenerative diseases shows that neurons are par-
ticularly vulnerable to oxidative damage due to their high
content of polyunsaturated fatty acids in the membranes,
high oxygen consumption, and weak antioxidant defense
[138]. Fatty acids are essential lipid molecules to support
the structural integrity of cell membranes, providing energy
and assisting in signaling pathways. Studies show that a
higher intake of polyunsaturated fatty acids ω3, considered
neuroprotectives, was associated with a reduced risk of
ASL [139].
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On the other hand, Boumil et al. estimated the impact of
omega-3 (Ω-3) (66) and omega-6 (Ω-6) (67) (Figure 11) in
the function of the motor neuron in mice expressing the
mutant human superoxide dismutase-1 (SOD1). The authors
noted that supplementation with Ω-3 and Ω-6 equivalents
hastened the pathology and death of motor neurons; how-
ever, 10x Ω-6 with no change in Ω-3 (1mg/kg) significantly
delayed pathology in motor neurons, including preservation
of minor motor neuron function during the terminal stage,
suggesting that a critical balance ofΩ-6 andΩ-3 may tempo-
rarily preserve motor neuron function during the terminal
stages of ALS, which could provide a substantial improve-
ment in the quality of life of the affected individuals [140].

Assessing the therapeutic potential of fatty acids for the
treatment of ALS, Tefera and collaborators [141] observed
the effects of triheptanoin fatty acid (68) (Figure 11), a hep-
tanoate triglyceride, in the treatment of mice that overexpress
the SOD1G93A human gene mutant. They observed that rats
fed the SF11-028 diet (composed of ingredients typical of
other rat diets), modified with 35% oral triheptanoin, starting
at P35 (35th day), showed attenuation in the loss of motor
neurons at 70-day old by 33%. This result, combined with
the pressure strength of the hind limbs, which demonstrated
a delay in the loss of strength in hSOD1G93A mice treated
with triheptanoin, suggests that this compound delays the
loss of motor neurons and the appearance of motor symp-
toms in mice.

According to Días-Amarilla et al., nitro-fatty acids (NO2-
FA) are electrophilic signaling mediators formed in tissues
during inflammation, capable of inducing cytoprotective
pathways and pleiotropic antioxidants, including the regula-
tion of genes responsive to factor 2 (Nrf2) related to the ery-
throid nuclear factor. These researchers demonstrated that
nitro-arachidonic acid (NO2-AA) or nitro-oleic acid (NO2-
OA) administered in astrocytes that express hSOD1G93A
bound to ALS at a concentration of 5μM induces an antiox-
idant effect through the activation of Nrf2 concomitantly
with the increased levels of glutathione. In addition, the treat-
ment of astrocytes expressing hSOD1G93A with NO2-FA
prevented its toxicity to motor neurons, proving its antioxi-
dant effect on astrocytes capable of preventing the death of
motor neurons in an ALS culture model [142].

Trostchansky and collaborators also evaluated the
response of transgenic SOD1G93A mice with ALS after the
treatment with 16mg/kg/day of nitro-oleic electrophilic acid

(NO2-OA) subcutaneously. It was observed that NO2-OA
significantly improved the grip strength and performance
on rotarod (also called rotating bar that assesses motor coor-
dination and balance) compared to animals treated with
vehicle or oleic acid (AO), suggesting NO2-OA as a promis-
ing therapeutic compound [143].

Another fatty acid of importance in ALS is docosahexae-
noic acid (DHA) (69) (Figure 11), an essential fatty acid that
modulates the main functions of the nervous system, includ-
ing neuroinflammation, and regulation of pre- and postsyn-
aptic membrane formation, being reduced in patients with
amyotrophic lateral sclerosis and preclinical murine models
[144]. Based on this information, Torres et al. [144] per-
formed dietary supplementation of DHA in a murine model
fASL B6SJL-Tg (SOD1 ∗ G93A), in which they observed that
a diet rich in DHA significantly increases the survival of male
rats by 7% (average of 10 days over 130 days of life expec-
tancy) and delays motor dysfunction (based on stride length)
and loss of weight associated with ALS transgene (P < 0:01).
Also, DHA supplementation led to an increase in the profile
of anti-inflammatory fatty acids (P < 0:01), a lower concen-
tration of circulating proinflammatory such as the cytokine
TNF-α (P < 0:001 in males), reduced immunoreactivity to
markers of oxidative DNA damage (8-oxodG) in the lumbar
spinal cord (LSC), and preserved the number of motor neu-
rons compared to untreated. The literature also suggests the
antioxidant action of fatty acids as the main mechanism of
action.

Due to the importance of fatty acids for the structure and
integrity of cell membranes, these compounds have been
investigated with a potential neuroprotective effect. Studies
in murine models have shown a beneficial effect obtained by
the supplementation with fatty acids, such as DHA, omega-3
(Ω-3), and omega-6 (Ω-6). Nonetheless, it is important to
emphasize that the amount to be supplemented is not yet well
established. Some studies have suggested that the neuroprotec-
tive effect is derived from a balance between fatty acids [140].
Therefore, further research is required to establish the neuro-
protective potential, the neuroprotective mechanism, and the
amount of fatty acids to be used to ensure this effect.

3. Conclusions

Unfortunately, there is still no effective and/or curative treat-
ment for the disease, and the few drugs on the market are
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intended to only slow the progress of the disease. Among the
most promising treatment alternatives, the effectiveness of
antioxidants can be highlighted, since the disease is directly
related to oxidative stress and cell death. In this context, the
relevance of natural products with potential antioxidant
action was reported in this review, emphasizing on oxygen-
ated and nitrogenous compounds that are capable of acting
in redox balance, attenuating or decreasing the impact of
these effects on neuronal and motor cells. Among them, we
highlight polyphenols, flavonoids, coumarins, and alkaloids
as main metabolites, as well as unsaturated hydrocarbons,
such as fatty acids and their esters, which are part of the diet
worldwide and are considered promising alternatives. The
mechanisms of action associated with the activity of these
metabolites are not yet entirely elucidated, but researches
point out that natural products capable of regulating redox
effects are fundamental for cellular processes, maintaining
an appropriate environment for metabolic activities and
healthy functioning, as they present, in some cases, low col-
lateral effects and multiple targets. Nevertheless, there are
still few studies related to toxic effects, mechanisms of action,
and strategies of molecular modifications using these proto-
types through total synthesis or semisynthesis, which could
lead to further preclinical and clinical trials, and eventual
obtainment of safe and effective compounds that can
improve the ALS patient’s outcome.
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Accumulating evidence has demonstrated that oxidative stress is associated with depression. Our present study aimed at
investigating the antidepressant effect and the possible mechanisms of curcumin (CUR) in chronic unpredictable mild stress-
(CUMS-) induced depression model in rats. After exposure to CUMS for four weeks, the rats showed depressive-like behavior,
and the depressive-like behaviors in CUMS-treated rats were successfully corrected after administration of CUR. In addition,
CUR could effectively decrease protein expression of oxidative stress markers (Nox2, 4-HNE, and MDA) and increase the
activity of CAT. CUR treatment also reversed CUMS-induced inhibition of Nrf2-ARE signaling pathway, along with increasing
the mRNA expression of NQO-1 and HO-1. Furthermore, the supplementation of CUR also increased the ratio of
pCREB/CREB and synaptic-related protein (BDNF, PSD-95, and synaptophysin). In addition, CUR could effectively reverse
CUMS-induced reduction of spine density and total dendritic length. In conclusion, the study revealed that CUR relieves
depressive-like state through the mitigation of oxidative stress and the activation of Nrf2-ARE signaling pathway.

1. Introduction

As one of the most common neuropsychiatric illness, depres-
sion has affected 300 million people of all ages in the modern
world [1]. According to the WHO’s prediction, depression is
expected to become the world’s second leading cause of dis-
ability by 2020 [2], leading to a huge social and economic
burden on the modern society [3]. In currently clinical prac-
tice, many chemical treatments are used for depression, such
as tricyclic antidepressants, monoamine oxidase inhibitors,
and selective serotonin reuptake inhibitors [4, 5]. However,
the existing treatments were not effective to all patients [6]
and also accompanied with unwanted side effects [7, 8].
Thus, it is necessary to develop a more effective and safer
pharmacological intervention.

Increasing evidence suggested that oxidative stress is
responsible for the development of depression [9]. Oxidative
stress mainly focused on brain which has a limited

amount of antioxidant capacity [10]. It was reported that
antidepressants could effectively reduced oxidative damage
in depressed patients [11, 12]. The antioxidant subjects
like polyphenolic compounds exhibit antidepressant activity
in experimentally induced depression models by modulating
the brain oxidative stress status [13].

Oxidative stress is an etiologic factor in depressive/
neurodegenerative disorders that it is often accompanied by
deregulation of nuclear factor erythroid-2-related factor 2
(Nrf2) pathway, a key antioxidant mechanism indicated as
a promising target for treatment of depression [14]. As a piv-
otal transcription factor, Nrf2 was involved in the regulation
of the antioxidant response in the brain. Under oxidative
stress circumstances, Nrf2 isolate from Kelch-like ECH-
associated protein 1 (Keap1) and translocate from cytoplasm
into the nucleus [15, 16]. Furthermore, antioxidant response
element (ARE) could be upregulated after the activation of
the Nrf2 and finally regulates the expressions of a variety
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of antioxidant enzymes like heme oxygenase-1 (HO-1) and
NADPH: quinine oxidoreductase-1 (NQO-1) [17, 18].
Buendia et al. [19] has reported that Nrf2-ARE pathway
is proved to reduce oxidative stress and neuroinflammation
and play a protective role in neurodegenerative diseases.

Numerous evidence has indicated that depression was
associated with a range of changes in synaptic form [20, 21].
Cyclic AMP response element-binding protein (CREB)
was a major transcription factor involved in the regulation
of genes associated with synaptic and neural plasticity. As
an important neurotrophic factor, brain-derived neuro-
trophic factor (BDNF) supports growth and survival of neu-
rons. Recent study has showed that CREB-BDNF signaling
pathway in hippocampus was closely related to depression
and the pathogenesis of cognitive function impairments
[22]. PSD-95 and synaptophysin were postsynaptic marker
and presynaptic marker, respectively, which play an impor-
tant role in the maintenance of synaptic plasticity.

Curcumin (CUR) is the major active component extracted
from Curcuma longa, which exhibited anti-inflammatory,
antioxidant, immunomodulatory, and neuroprotective activi-
ties [23, 24]. It has been increasingly recognized that CUR
has the potential to cross blood brain barrier and exert
antidepressant-like action. Xu et al. have reported that chronic
administration of CUR produced a significant antidepressant
property in the treatment of depression in mice model [25].
Notably, CUR’s antioxidative properties hold a great deal of
potential for the treatment of depression. More and more
evidences also showed that the activation of Nrf2 was themain
mechanism of CUR in the treatment of oxidant stress-related
diseases [26, 27]. Shen et al. have reported that CUR exerts its
chemopreventive effects via the induction of antioxidant
enzymes by activating Nrf2-ARE signaling [28]. Oxidative
stress in the diabetic rat-induced by STZ could be attenuated
by CUR through activation of the Keap1-Nrf2-ARE signaling
pathway [29]. In addition, CUR augments the cardioprotec-
tive effect of metformin in an experimental model of type I
diabetes mellitus via the Nrf2/HO-1 pathway which is also
reported in previous study [30]. However, the detailed mech-
anism underlying the antidepressant effects of CUR as related
to Nrf2 in the brain remains seldom studied.

Therefore, in our present study, we aimed to investigate
the antidepressant-like effect of CUR in CUMS-induced rats.
In addition, to further investigate the possible molecular
mechanisms underlying the therapeutic effects of CUR, we
also assessed whether the possible antidepressant-like effects
of CUR are associated with oxidative stress status and the
changes on the activation of Nrf2 in the brain.

2. Materials and Methods

2.1. Animals. Male Sprague-Dawley rats (180-220 g) were
provided by the Hunan Cancer Hospital Animal Centre.
The rats were housed in standard conditions (23 ± 2°C, 12 h
light/dark cycle). Except prior to sucrose preference test
(SPT), food and water were freely available in the whole
experiment. This study was approved by the Animal Care
and Use Committee of Hunan Cancer Hospital (protocol
number 016/2018). All experiments were performed in

accordance with the Guide for Care and Use of Laboratory
Animals (Chinese Council).

2.2. CUMS Procedure. The rats were adapted for one week
and the CUMS procedure was performed for four weeks as
previously described [31]. 24 h food deprivation followed by
24 h water deprivation, 45° cage tilting for 24h, restraint for
4 h in an empty water bottle, 20min of noise, 1min tail
clamping, and damp bedding were selected as stressors in
our study. All stressors were applied individually, continu-
ously, and randomly, so that the stress procedure is unpre-
dictable. The detailed information for specific modeling
methods of CUMS are shown in Table 1.

2.3. Experimental Design. Rats were randomly divided into
three groups (n = 8): control, CUMS, and CUMS+CUR.
CUR (suspended in 0.5% Tween 80, purchased from Sigma
Chemical Co., USA) was administrated by oral gavage
(100mg/kg/day) in the CUMS+CUR group, and the rats in
control group were treated with the same volume of saline.

At the end of four weeks, behavioral tests were carried out,
and the rats were sacrificed under anesthesia with an intraper-
itoneal injection of 1% sodium pentobarbital (50mg/kg).
Blood samples and the hippocampus were collected in our
study. The whole experimental protocols are shown in
Figure 1.

2.4. Behavioral Test

2.4.1. SPT. The SPT was performed as our previous study
[32]. Prior to testing conditions, all the rats were separated
in 1 cage each and habituated to 48 h of forced 1% sucrose
solution consumption in two bottles on each side. After dep-
rivation of water for 14 h, two preweighted bottles containing
1% sucrose solution and tap water were given to each rat.
After 1 h, the bottles were weighed again, and the consumed
weights of 1% sucrose solution and tap water were
recorded. The percentage preference for sucrose was calcu-
lated as follows: sucrose preference ð%Þ = sucrose consumption/
ðsucrose consumption + water consumptionÞ.
2.4.2. Forced Swimming Test (FST). The FST was performed
as described previously [33] with minor modifications. In
brief, rats were separated and were forced to swim in an open
cylindrical container (45 cm height, 25 cm diameter) contain-
ing 35 cm of water (24 ± 1°C) for a 15min pretest. The rats
were then dried and removed from their cages. 24 hours later,
the rats were exposed to the same experimental conditions

Table 1: Specific modeling methods of CUMS.

Number CUMS procedure

1 24 h food deprivation

2 24 h water deprivation

3 45° cage tilting for 24 h

4 Restraint for 4 h in an empty water bottle

5 20min of noise

6 1min tail clamping

7 Damp bedding

2 Oxidative Medicine and Cellular Longevity



outlined above for a 5min FST. Immobility time was scored
by an experienced observer blind to the experiment design,
defined as floating with only small movement necessary to
keep the head above water.

2.4.3. Novelty-Suppressed Feeding Test (NSFT). All the rats
were food deprived for 24 h in their home cages before NSFT.
A piece of white paper (10 × 10 cm) was placed in an open
field (75 × 75 × 40 cm), and a small amount of food was
placed on this paper. The rats were allowed to explore the
open field for 8min. The time it took for the rat to approach
and take the first bite of the food was defined as the latency
time and was recorded in our study. Immediately afterwards,
the animals were transferred to their home cage, and the total
food intake for the next 5min was also weighed to avoid the
influence of the animals’ appetite.

2.4.4. Open Field Test (OFT). The open field apparatus con-
sisted of a 76 × 76 cm gray wooden box with 42 cm high
boundary walls. The floor was divided into 25 equal squares
by black lines. Each rat was placed in the center of the square
and left to explore it freely for 5min. The number of crossing
and rearing was recorded by the observer blind to the treat-
ment condition of the animal. The apparatus was cleaned
with ethanol and water to remove olfactory cues.

2.5. Determination of Serum Corticosterone. For the determi-
nation of serum corticosterone, the blood samples were
collected at 13:00-15:00 on day 38 before sacrifice. The col-
lected plasma was centrifuged (3500×g, 15min) at 4°C and
stored at -80°C until analysis. The serum corticosterone levels
were measured using a commercial ELISA kit (Cayman
Chemical, USA) according to the manufacturer’s instruc-
tions. The standards and samples were all run in duplicates,
and the averaged data were used for statistical analysis.

2.6. Real-Time PCR Analysis. According to the instruction of
manufactory, total RNA was extracted from the hippocam-
pus using TRIzol reagent (Invitrogen Corp., Carlsbad, CA,

USA). The mRNA expression of Nrf2, NQO-1, and HO-1
was determined in our present study. Quantitative PCR was
performed on Bio-Rad Cx96 Detection System (Bio-Rad,
Hercules, CA, USA) using the SYBR green PCR kit (Applied
Biosystems Inc., Woburn, MA, USA) and gene-specific
primers. The sequences of gene-specific primers are listed
in Table 2. A 5ng cDNA sample was used with 40 cycles of
amplification. Each cDNA was determined in triplicate. The
signals were normalized to β-actin as an internal standard.

2.7. Determination of Antioxidant Enzyme Activities and
Lipid Peroxidation. Malondialdehyde (MDA) content was
determined according to the previous report [34]. Briefly,
1ml of 15% trichloroacetic acid was added to 500μl of brain
homogenate supernatant and mixed well, and then, the solu-
tions were centrifuged at 1006×g for 10min. One milliliter of
the supernatant was added to 0.5ml of 0.7% TBA, and then,
the mixture was heated for 60min at 90°C. The absorbance
was recorded at 532 nm using UV spectrophotometer.
CAT activity was assayed by H2O2 consumption, following
Aebi’s [35].

2.8. Western Blot Analysis. For western blot analysis, total
protein was prepared from the hippocampus, and the
Bradford method was used to determine its concentration.
The hippocampus sample was loaded on a precast 12%
SDS-PAGE gel with 10μg proteins in each lane. Proteins in
the gels were transferred to a polyvinylidene fluoride mem-
brane and blocked for 1 h in 5% nonfat dry milk in TBS-T
(25mM Tris, pH 7.5, 150mM NaCl, 0.05% Tween-20). The
antibodies and concentrations listed below were used
overnight at a temperature of 4°C: Nox2 (Santa Cruz; sc-
130549; 1 : 800); 4-HNE (Abcam ab48506; 1 : 1000); Nrf2
(Abcam; ab137550; 1 : 200); pCREB (Cell Signaling; 9198;
1 : 1000); CREB (Cell Signaling; 9197; 1 : 1000); BDNF
(Abcam; ab108319; 1 : 2000); PSD-95 (ProteinTech; 20665-
1-AP; 1 : 2000); synaptophysin (ProteinTech; 17785-1-AP;
1 : 1000); PCNA (ProteinTech; 10205-2-AP; 1 : 3000); and

Day

Adaption

D0 D7 D14 D21 D28 D35 D38

Sacrifice

Behaviour test:
SPT, NSFT,
FST, OFT

CMS and drug administration
Group 1: control (no stressors)
Group 2: CUMS for 28d
Group 3: CUMS+CUR (100 mg/kg/d) for 28d

Figure 1: Schematic representation of experimental protocol.

Table 2: Primers used in real-time PCR analyses of mRNA expression.

Gene Sense primer (5′-3′) Antisense primer (5′-3′)
HO-1 TGCTCGCATGAACACTCTGGAGAT ATGGCATAAATTCCCACTGCCACG

NQO-1 GTGAGAAGAGCCCTGATTGT CCTGTGATGTCGTTTCTGGA

Nrf2 CCCAGCACATCCAGACAG TATCCAGGGCAAGCGACT

β-Actin CATCCTGCGTCTGGACCTGG TAATGTCACGCACGATTTCC
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β-actin (ProteinTech; 60008-1-Ig; 1 : 4000). Membranes were
then probed with horseradish peroxidase-conjugated sec-
ondary antibody for 40min. After washing, the membranes
were dipped in electrochemiluminescence, and immunoblots
were analyzed by using the Bioprofl Biolight PC software
(Vulber Lourmat, France). β-Actin was used as an internal
standard to normalize the signals.

2.9. TUNEL Staining. According to the manufacturer’s
instructions, the terminal deoxynucleotidyl transferase-
mediated deoxyuridine triphosphate nick-end labeling
(TUNEL) detection kit (KeyGen Biotech, Nanjing, China)
was used to assess apoptosis. Apoptotic index was defined
as the average percentage of TUNEL-positive cells in 20
nonoverlapping cortical fields under ×200 magnification.

2.10. Immunohistochemical Staining. Paraffin-embedded
tissue sections were rehydrated first in xylene and then in
graded ethanol solutions. The slides were then blocked with
5% bovine serum albumin (BSA) in Tris-buffered saline
(TBS) for 2 h. After incubation with anti-8-OHDG and
anti-Nox2 overnight at 4°C, the sections were then washed
with PBS and incubated with secondary antibodies. Counter
staining was performed using hematoxylin, and the slides
were visualized under a light microscope.

2.11. Golgi Staining. Golgi staining was performed as previ-
ous report [36]. In brief, the brain tissues of the rat were kept
in the Golgi-Cox solution for 14 days in the darkness, and the
solution was replaced every 48 h. After dehydration with 30%

sucrose solution, the tissues were cut into 100μm section.
The following steps included treatment with ammonia water
and acid hardening fixing bath and dehydration with increas-
ing concentrations of alcohol. A digital camera attached with
microscopy was used to take images of the tissues for
dendritic structure analyzing. Dendritic spine density and
total dendritic length analysis were done manually using
the Fiji software under ×400 magnification.

2.12. DHE Staining. Reactive oxygen species (ROS) was
measured by dihydroethidium (DHE) microfluorography as
previous study [37]. In brief, freshly prepared frozen brain
sections (15μm thick) were incubated with 5μM DHE in
PBS at 37°C for 30min in a dark humidified chamber. The
sections were then imaged by using the Leica fluorescence
microscope (Leica Microsystems, Germany).

2.13. Statistical Analysis. Statistical Package for Social Science
(SPSS) version 18 (SPSS Inc., Chicago, IL, USA) was used for
data analysis in our study. All data were analyzed by one-way
analysis of variance (ANOVA) with least significant differ-
ence (LSD) post hoc multiple comparisons. All data were
presented asmeans ± SD, and p < 0:05 was considered statis-
tically significant.

3. Results

3.1. Effects of CUR on Behavioral Tests. The CUMS group
showed reduced source preference in SPT (Figure 2(a),
p < 0:01), prolonged immobility time in FST (Figure 2(b),
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Figure 2: Effect of CUR on CUMS-induced behavior changes. (a) Sucrose preference in SPT, (b) immobility time in FST, (c) latency time in
NSFT, (d) food intake in NSFT, (e) number of crossing in OPT, and (f) number of rearing in OPT. Data are expressed asmeans ± SD (n = 8).
∗p < 0:05 and ∗∗p < 0:01 compared to the control group. #p < 0:05 and ##p < 0:01 compared to the CUMS group.
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p < 0:01), and latency time in NSFT (Figure 2(c), p < 0:01)
in comparison with the rats in control group. Our study
also observed that the number of crossing (Figure 2(e),
p < 0:05) and rearing (Figure 2(f), p < 0:01) in OPT was
all significantly decreased in the CUMS group. In compari-
son with the CUMS group, the administration of CUR suc-
cessfully increased the sucrose preference (Figure 2(a),
p < 0:01), decreased immobility time (Figure 2(b), p < 0:01)
and latency time (Figure 2(c), p < 0:01), and increased the
number of crossing (Figure 2(e), p < 0:05) and rearing
(Figure 2(f), p < 0:01) in the CUMS+CUR group. In addition,
no significant difference of food intake was observed in
NSFT.

3.2. Effects of CUR on Corticosterone Level. As displayed
in Figure 3, the serum corticosterone level significantly
increased (p < 0:01) in the CUMS group compared with
the control group. However, the administration of CUR
markedly decreased (p < 0:01) the corticosterone level
when compared with the rats in the CUMS group.

3.3. Effect of CUMS and CUR on Oxidative Stress. The immu-
nohistochemical staining results of 8-OHDG and Nox2 are
shown in Figure 4(a); the results showed that the expressions
of 8-OHDG and Nox2 were all increased in CUMS-treated
rats when compared to control group, and the supplementa-
tion of CUR markedly moderated CUMS-induced increasing
of 8-OHDG and Nox2. The results of DHE immunostaining
showed that ROS production was significantly increased
in the CUMS group, and this increase in ROS generation
was markedly alleviated by the pretreatment with CUR
(Figure 4(a)). The protein expressions of Nox2 (Figure 4(b),
p < 0:01) and 4-HNE (Figure 4(c), p < 0:01) were significantly
increased in the CUMS group as compared to the rats in the
control group, and the administration of CUR effectively mit-
igated CUMS-induced increasing of Nox2 (Figure 4(b), p <
0:05) and 4-HNE (Figure 4(c, p < 0:01); the western blot result
of Nox2 was in accordance with immunohistochemical
staining results. The content of MDA (Figure 4(d), p < 0:01)
was significantly increased in the CUMS group when com-
pared to the control group. The CUR treatment successfully
decreased the content of MDA in the CUMS+CUR group
when compared to the CUMS group (Figure 4(d), p < 0:01).
In comparison with the rats in the control group, the activity
of CAT (Figure 4(e), p > 0:05) was decreased in CUMS-
treated rats but without significance difference. Furthermore,
the administration of CUR significantly increased CAT activ-
ity in the CUMS+CUR group when compared to the CUMS
group (Figure 4(e), p < 0:05).

3.4. Effects of CUR on the Activation of Nrf2 in CUMS-
Treated Rats. The Nrf2 levels in cytoplasmic (Figure 5(a),
p < 0:05) and nuclear (Figure 5(b), p < 0:01) all signifi-
cantly decreased in the CUMS group when compared with
the rats in the normal-treated group, and the Nrf2 in
nuclear obviously (Figure 5(b), p < 0:01) increased in the
CUMS+CUR group compared to the CUMS group. Interest-
ingly, as shown in Figure 5(c), the gene expression of Nrf2
was similar with the protein expression of Nrf2 in the

nuclear. The mRNA expressions of NQO-1 (Figure 5(d),
p < 0:01) and HO-1 (Figure 5(e), p < 0:05) all significantly
decreased in the CUMS model rats, and CUR treatment
significantly prevented the decrease of NQO-1 (Figure 5(d),
p < 0:01) and HO-1 (Figure 5(e), p < 0:05) in the CUMS+
CUR group when compared with the rats in the CUMS
group.

3.5. Effect of CUMS and CUR on Synaptic Plasticity. As
shown in Figure 6(b), the pCREB/CREB ratio was signifi-
cantly decreased in the CUMS group compared to vehicle
control group (Figure 6(b), p < 0:05). Administration of
CUR significantly increased pCREB/CREB ratio in the hip-
pocampus compared to the CUS-treated rats (Figure 6(b),
p < 0:01). The protein expression of BDNF (Figure 6(c),
p < 0:01), PSD-95 (Figure 6(d), p < 0:05), and synaptophy-
sin (Figure 6(e), p < 0:01) all significantly decreased in the
CUMS-treated rats, and CUR successfully reversed the
CUMS-induced decrease of these three proteins (p < 0:01).
Previous studies have reported that dynamic alterations in
synaptic and dendritic structure and function play a pivotal
role in the development of depression [38, 39]. In our present
study, Golgi staining showed that spine density (Figure 6(g),
p < 0:01) and total dendritic length (Figure 6(i), p < 0:01)
significantly decreased in the dentate gyrus (DG) granule
neurons of CUMS-induced rats, and the administration of
CUR markedly reversed this effect (Figure 6(g), p < 0:01,
Figure 6(i), p < 0:05).

4. Discussion

Our present study demonstrated that the administration of
CUR exhibited antidepressant-like activities in CUMS-
induced depression model. We investigated the depressive-
like behaviors (SFT, FST, NSFT, and OFT) in rats under
CUMS, and chronic administration of CUR normalized
behavioral changes in rats exposed to stress. CUR could effec-
tively decrease protein expression of oxidative stress marker
(MDA, Nox2, and 4-HNE). CUR could also activate stress-
induced Nrf2-ARE axis inhibition. In addition, long-term
treatment with CUR markedly prevented CUMS-induced
reduction of BDNF, PSD-95, and synaptophysin expressions.
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These findings indicate the potential benefits of administra-
tion of CUR to reverse the development of depression. Fur-
thermore, the antidepressant mechanism of CUR may be
mediated by restoring changes in oxidative stress and the
activation of the Nrf2-ARE signaling pathway.

The CUMS model has long been used as animal model of
depression, and previous study showed that most effects of
CUMS could be effectively reversed by antidepressant agents
[40]. In our present study, reduced sucrose preference in SPT
and prolonged immobility time in FST were observed in the
CUMS group, which indicated the depressive-like state. In
comparison with the rats in the CUMS group, chronic
administration of CUR successfully increased sucrose prefer-
ence and decreased immobility time, which was consistent
with the former studies [41, 42]. Anxiety status was assessed
by NSFT and OFT. Our study observed that CUR treatment
could successfully reverse CUMS-induced increase in latency
time in NSFT and decrease in crossing number and rearing

number in OFT. Motaghinejad et al. have also reported that
chronic administration of CUR could effectively improve
ambulation number and ambulation distance in nicotine-
treated rats, indicating neuroprotective effect of CUR against
nicotine-induced neurotoxicity [43]. Therefore, CUR exhib-
ited antidepressant-like properties basing on the above-
mentioned results.

As a stress marker, corticosterone level is widely used for
accessing the stress state. More and more evidences showed
that the elevated corticosterone level was associated with
depressive-like behaviors, and antidepressant-like activity
could always induce a reduction of corticosterone level
[44–46]. In the present study, the corticosterone serum
level was significantly increased in rats exposed to CUMS
model compared to the nonstressed group, and chronic
administration of CUR successfully reversed CUMS-
induced the elevation of the corticosterone serum level. The
results that serum corticosterone in the rats of the CUMS
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Figure 4: Effects of CUR on CUMS-induced oxidative stress change. (a) Immunohistochemical staining, TUNEL staining, and DHE staining,
(b) protein expression of Nox2, (c) protein expression of 4-HNE, (d) content of MDA, and (e) activity of CAT. Data are expressed as
means ± SD (n = 8). ∗p < 0:05 and ∗∗p < 0:01 compared to the control group. #p < 0:05 and ##p < 0:01 compared to the CUMS group.
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group increased significantly were in accordance with
previous studies [2, 47]. As a typical antidepressant agent,
fluoxetine could effectively prevent the elevation of serum
corticosterone level in CUMS-treated rats [1, 48]. Disrupting
the HPA axis and elevating the levels of serum corticosterone
by CUMS were increasingly recognized [49, 50]. In addition,
CUMS-induced increase of serum corticosterone level may
be due to an impaired negative feedback in the HPA
[51, 52] and lack of the inhibitory role of the hippocam-
pus in glucocorticoid synthesis [53].

The elevated free radical generation and decreased
activity of antioxidants break the balance between oxidant-
antioxidant systems, which will always induce oxidative
stress [54]. More and more evidence showed that the brain
is highly susceptible to oxidative damage [55], and oxidative
stress plays a pivotal role in CUMS-induced depression [54].
The release of excitatory amino acid and the expression of
specific gene may be enhanced by ROS, which will always
induce lipid peroxidation and DNA oxidation, subsequently
resulting in neuronal apoptosis [56]. Our present study
observed that the intensity of DHE staining and TUNEL-
positive cells significantly increased in CUMS-treated rats,
which indicated oxidative stress induced a severe neuronal
apoptosis. Fortunately, as a natural antioxidant agent, the
administration of CUR significantly alleviated CUMS-
induced oxidative stress and neuronal apoptosis in the

CUMS+CUR group. In our present study, signs of oxidative
stress were observed as exemplified by the decrease of antiox-
idant enzyme activity, such as CAT. In addition, as lipid per-
oxidation markers, MDA and 4-HNE levels all significantly
increased in the CUMS group when compared to the control
group. Previous study has reported that CUR has shown to
counteract oxidative stress by reducing lipid peroxidation
and improving the activity of antioxidant enzymes [54].
Our study results were consistent with this report, which
expressed a significantly decrease in MDA and 4-HNE levels
and a markedly increase in CAT activity in the CUMS+CUR
group. Furthermore, DNA is an important and recognized
target of free radicals attack. 8-OHDG is one of the most
widely studied biomarkers of oxidative DNA damage. The
immunohistochemical staining results coincide with a previ-
ous study, which indicated that CUR effectively reversed the
increase of 8-OHDG expression under CUMS. ROS and
oxidative stress are mainly generated from Nox which is a
multiunit enzyme [57]. In particular, the primary mechanism
underlying the development of oxidative stress in various
neurodegenerative conditions is the activation of Nox2
[58]. In our present study, the protein expression of Nox2
significantly increased in CUMS-treated rats, and the admin-
istration of CUR successfully alleviated this phenomenon in
the CUMS+CUR group. These results supported that oxida-
tive stress plays a pivotal role in CUMS-induced depression.

CO
N

CU
M

S

CU
M

S+
CU

R

Nrf2(110kD)

1.5

1.0

0.5

Cy
to

pl
as

m
ic

 N
rf2

 le
ve

l

0.0

𝛽-Actin(43kD)

⁎

(a)

CO
N

CU
M

S

CU
M

S+
CU

R

1.5
##

1.0

0.5

N
uc

le
ar

 N
rf2

 le
ve

l

0.0

Nrf2(110kD)
PCNA(36kD)

⁎⁎

(b)

CO
N

CU
M

S

CU
M

S+
CU

R

1.5

1.0

0.5

N
rf2

 m
RN

A
 ex

pr
es

sio
n

0.0

#
⁎

(c)

CO
N

CU
M

S

CU
M

S+
CU

R

1.5

1.0

0.5

N
Q

O
-1

 m
RN

A
 ex

pr
es

sio
n

0.0

##

⁎⁎

(d)

CO
N

CU
M

S

CU
M

S+
CU

R

1.5

1.0

0.5

H
O

-1
 m

RN
A

 ex
pr

es
sio

n

0.0

#
⁎

(e)

Figure 5: Effects of CUR on the activation of Nrf2 in CUMS-treated rats. (a) Protein expression of Nrf2 in cytoplasmic, (b) protein expression
of Nrf2 in nuclear, (c) mRNA expression of Nrf2 in the hippocampus, (d) mRNA expression of NOQ-1in the hippocampus, and (e) mRNA
expression of HO-1in the hippocampus. Data are expressed asmeans ± SD (n = 8). ∗p < 0:05 and ∗∗p < 0:01 compared to the control group.
#p < 0:05 and ##p < 0:01 compared to the CUMS group.

7Oxidative Medicine and Cellular Longevity



In addition, our results also demonstrated that the neuropro-
tective effect of CUR was mediated via its antioxidative
ability.

As a transcription factor, Nrf2 is known to play a pivotal
role in modulating oxidative stress and exhibiting an impor-
tant protective role in brain injury and neurodegenerative
diseases. As it is known to us, Nrf2 is mainly located in the
cytoplasm under physical conditions. However, Nrf2 translo-
cates into the nucleus in response to oxidative stress [15]. In
our present study, the results of western blot showed that
CUR administration promoted Nrf2 nuclear translocation.
This indicates that the Nrf2 level markedly increased in
CUMS+CUR-treated rats when compared with the rats in
the CUMS group. And the protein expression of Nrf2 was
without significant difference in both the CUMS+CUR group
and the CUMS group. The above observations revealed that
Nrf2 was inhibited when rats exposed to CUMS and CUR

had the ability to activate Nrf2. Previous studies have also
reported that CUR had the ability to activate Nrf2 and
provide neuroprotection from a traumatic brain injury
[16, 56]. In order to investigate the regulation effects of
CUR on the Nrf2 downstream pathway, the mRNA levels
of Nrf2, NQO-1, and HO-1 were evaluated in our study.
NQO-1 and HO-1 are important antioxidant enzymes in
the Nrf2-ARE pathway [59]. The results showed that chronic
administration of CUR could significantly reverse CUMS-
induced decrease in the mRNA level of Nrf2, NQO-1, and
HO-1. The above results indicated that the Nrf2 downstream
pathway was inhibited under CUMS, and chronic adminis-
tration of CUR could effectively activate this signal pathway.
Our results indicated that the Nrf2 signal pathway was inhib-
ited under CUMS, and chronic administration of CUR
enhanced Nrf2 translocation from cytoplasm to nucleus
and increased expression of antioxidant enzymes through
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Figure 6: Effect of CUR on synaptic plasticity. (b) pCREB/CREB ratio in the hippocampus, (c) protein expression of BDNF in the
hippocampus, (d) protein expression of PSD-95 in the hippocampus, (e) protein expression of synaptophysin in the hippocampus,
(f) representative images of dendritic spines from DG granule neurons in the rat, (g) spine density in different groups, (h) representative
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Nrf2 signal pathway, thereby protecting the brain against
CUMS-induced depression.

CREB is involved in the regulation of genes associated
with synaptic and neural plasticity [43]. CREB has been
reported to be phosphorylated by many signaling events on
serine 133 [60]. The results in our study showed that the ratio
of pCREB/CREB significantly decreased in the CUMS group,
and chronic administration of CUR successfully reversed this
reduction. These results were in conformity with previous
studies which have shown that CUR can increase the
pCREB/CREB ratio in rats exposed to CUMS [61]. In addi-
tion, a previous study also showed that CUR could function
as a potential agent that suppresses depressive-like behavior
via the prevention of protein changes associated with syn-
aptic plasticity [62]. As the most abundant neurotrophin
in the brain, BDNF plays a crucial role in the regulation
of survival as well as synaptic plasticity. Our study investi-
gated whether BDNF was involved in the antidepressant
effects induced by CUR. The results indicated that the
expression of BDNF in rats exposed to CUMS was signifi-
cantly increased after chronic administration of CUR.
Furthermore, other synapse-associated proteins were also
accessed in our study. PSD-95 and synaptophysin were
postsynaptic marker and presynaptic marker respectively.
In accordance with BDNF, CUR successfully alleviated
CMUS-induced reduction in the protein level of PSD-95
and synaptophysin. Zhang et al. have reported that CUR
can reverse the decreased expression of BDNF, PSD-95,
and synaptophysin in CMS-induced rats [62]. Previous
studies have shown that spine densities and synaptic plas-
ticity were closely correlated with the function of neuron
and cognitive performance [63, 64]. Our present study
shows that CUR could effectively reverse CUMS-induced
decrease of spine density and total dendritic length. Hence,
the alteration of the above-mentioned synaptic plasticity-
associated proteins may underlie changes in functional
plasticity associated with CUMS-induced depression.

5. Conclusion

In conclusion, our present study suggests that the admin-
istration CUR is effective in preventing CUMS-induced
depression. Furthermore, the current results suggested that
the antidepressant action of CUR may be mediated by
restoring changes in oxidative stress, the Nrf2-ARE signal-
ing pathway, and the synaptic and neural plasticity, which
might ultimately contribute to its antidepressive-like effect.
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Free radicals and oxidative stress are among the most studied factors leading to the imbalance in mental health. With no exception,
free radicals also damage neuronal cells, leading to various degenerative diseases. With existing modern medications, around 80%
of the world population relies on herbal medicine for various ailments. Phytochemicals in plants have a wide range of
pharmacological properties, the major being their ability to scavenge free radicals. Plant polyphenols are among the major class
of antioxidants identified in plants. This antioxidative property of plant compounds and their ability to downgrade the process
of oxidative stress can be used to treat neurodegenerative diseases. However, selecting plants and their active compounds is a
crucial step in framing the mechanism of action underlying their therapeutic potential.

1. Introduction

Herbal medicine and their active ingredients are trusted
source of medicine since ancient times. Herbal products with
plant parts in crude form or their bioactive compounds are
gaining interest in the treatment of diseases [1]. Plant are rich
in medicinal compounds and almost all the parts of a plant
can be considered as a medicine in one way or another.
However, the most commonly used parts are flowers, fruits,
seeds, roots, leaves, bark, etc. Due to increasing disease forms,
resistance to existing drugs and demand for drugs with lesser
side effects, concern has raised to explore the best source of
medicine with modern science/technology and ideas. Global
pharmaceutical companies are in the run to find novel medic-
inal sources and plants being their best choice [2–4]. The
popularity of herbal products has increased worldwide in
the past few decades [5]. These days, herbal products with
well-defined constituents are more preferred over crude
forms due to their reliability in preclinical and clinical studies.

Depression and anxiety are among the most common
neurodegenerative disorders and also highly associated with
substantial comorbidity and mortality. Free radicals and oxi-
dative stress might induce conditions pertaining to nervous

disorders and behavioral changes [6]. Further, a better
understanding of oxidative stress-induced mitochondrial
dysfunction, neuroinflammatory response, and intracellular
signaling pathways may help to draw up a relation among free
radicals, oxidative stress, and neurodegerative disorders [7, 8].

Plant based-therapy targeting the relative link between
oxidative stress and neurodegeration through cellular and
molecular levels may improve strategies of treatment and
drug development.

2. Oxidative Stress and Neurodegeneration

Oxygen is an essential molecule, which during metabolic
conditions may generate free radicals. Free radicals are also
an essential and fundamental molecule in any biochemical
process and are essential in redox reactions [9]. However,
these radicals are highly unstable and target easily accessible
biomolecules like lipids, nucleic acids, and proteins. This
establishes a chain reaction and plays an important role in
the pathogenesis of many disease conditions [10]. In recent
years, the research community has witnessed new develop-
ments in free radical biology and their role in health and
disease incidence (Figure 1). Compared to other organs, the
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brain uses a major portion of oxygen and has relatively less
antioxidant enzymes, making them more prone to free
radical attack [11]. Free radicals like reactive oxygen species
(ROS) and reactive nitrogen species (RNS) are prime gener-
ators of stress.

Due to high reactivity, superoxide radicals generated in
the brain mitochondria limit their movement and cause
damage to its DNA and lead to impaired function [12]
and neurodegenerative diseases. Hydrogen peroxide
(H2O2) is the major precursor of superoxide radical in
mitochondria. Reduced nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX1 and NOX4) being
another sources, are expressed in neurons [13]. Increased
NOX activity in the microglia induces neuroinflammation
[14] and neurodegenerative diseases [15]. The level of free
radical damage increases when nitric oxide interacts with
superoxide to become more toxic to neurons [16]. Brain-
derived neurotrophic factor (BDNF) is one of the major
factors determining the bipolar disorder and depression.
Increased free radical concentration and oxidative stress
are directly proportional to low concentrations of BDNF
and promote depression and anxiety. The use of an antide-
pressant will increase BDNF, regenerate brain cells, and
reduce oxidative stress, depression, and anxiety [17, 18].
Depression is characterized by mood fluctuation and
short-term emotional changes leading to serious health. A
similar mental disorder is observed in patients with anxiety
showing symptoms such as insensitiveness, unpleasant
feeling, and loss of interest [19]. The irregular production
of neurotransmitters like serotonin, dopamine, and gluta-
mate in the brain is also associated with neurodegeneration
[20, 21]. Oxidative stress, increased levels of nuclear factor κ
B (NFκB) and insulin-like growth factor (IGF) is also linked
with the progression of these disease conditions [22]. Oxida-
tive stress and mechanisms leading to neurodegenerative
and neuropsychiatric disorders have been well studied
[23–26]. Antioxidants can remove these free radicals and
suppress the conditions leading to depression and anxiety
(Figure 2) [27–29].

3. Phytochemicals and Their
Pharmacological Significance

According to the World Health Organization [30], around
5% of the population has anxiety and depression disorders.
Plant medicine has shown wonders in the treatment of
diseases, and traditional plant formulations have been well
documented by many researchers [31–33]. Pharmacological
reports using these traditional medicines are promising; the
research on medicinal plants and neurological disorders are
progressing worldwide [34]. With an extensive research on
the biological and clinical aspects of depression and anxiety
and existing side effects of synthetic drugs, it has become
possible to offer new treatment strategies using herbal medi-
cine. The clinical importance of a plant can be related to its
biologically active compounds present in them. These com-
pounds are produced in plants as primary and secondary
metabolites for the defense mechanism against pathogens,
abiotic stress, and other similar adverse conditions [35]. How-
ever, these phytochemicals are known to have therapeutic
properties, provide nutrition for normal cell health and
repairs, enhance the immune system, fight disease-causing
agents, inhibit carcinogens, and act as antioxidants [36]. Some
of them such as polyphenols, flavonoids, terpenoids, cate-
chins, ascorbic acid, alpha-tocopherol, and beta-carotene
may act as an effective nutraceutical supplement. Though
their mechanism of actions is yet to be studied completely,
their role in preventing the progression of neurodegenerative
disorders including Parkinson’s disease [37] and Alzheimer’s
disease are well evaluated [38]. These phytochemicals may
exert their therapeutic effects as a single active compound or
synergistically. Furthermore, additive action of crude extracts
eliminates side effects associated with the predominance of a
single xenobiotic compound, giving them a broad spectrum
activity and reducing chances of developing resistance by
pathogens [39].

Plants produce three major classes of phytochemicals,
viz. phenolic metabolites and alkaloids, terpenoids, and other
nitrogen-containing compounds [40]. Figure 3 represents
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Figure 1: Pathogenesis of free radicals. Free radicals and oxidative stress are responsible for the development of various diseases through
various cellular and molecular processes. Among them, neurodegeneraion is the most commonly noted disorder induced by free radicals.
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major classes of plant-derived phenolic compounds. Among
these, polyphenolics are well known for their high antioxi-
dant capacity [41, 42]. Phenolics are compounds possessing
one or more aromatic rings with one or more hydroxyl
groups. Plant polyphenols, such as epicatechin, β-catechin,

epicatechin gallate, epigallocatechin, tannic acid, isoflavones,
glycyrrhizin, saponins, and chlorogenic acid, have an antidi-
abetic property [43]. Flavanoids have been reported to show
therapeutic activity in cardiovascular diseases and atheroscle-
rosis [44]. Basirnejad et al. [45] reviewed the protective role
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of carotenoids including lycopene, γ-carotene, lutein, and
xanthophyll against cancer progression. In animals, phytos-
terols exhibit anti-inflammatory, antineoplastic, antipyretic,
and immune-modulating activities [46]. Flavonoids perform
a wide range of actions against free radical-mediated inflam-
mation, tumors, and cellular signaling, [47]. These impaired
signaling may cause neurodegenerative disorders.

Researchers have also reported neurotrophin induction
properties of plant-derived natural compounds. Phytocom-
pounds like 3,5-dicaffeoyl-mucoquinic acid (Aster scaber),
furostanol saponins, diosgenin, diosniposide A-B, diosniponol
C-D, (Dioscorea spp.), 6-shogaol (Zingiber officinale), and lig-
nans (Abies holophylla) were found to possess nerve growth
factor (NGF) mimicking property. Other compounds like
3,7-dihydroxy-2,4,6-trimethoxy-phenanthrene, ginkgolide
B, lignan derivatives, 4,6-dimethoxyphenanthrene-2,3,7-triol,
spicatoside A, ginsenoside Rg3, quercetin, apigenin deriva-
tives, cyanidin-3-O-β- glucopyranoside, quinic acid deriva-
tives, and clerodane diterpenoids have been well reported in
inducing neuronal cell differentiation and upregulating
BDNF [48, 49]. Plant parts as a raw material in traditional
medicine or their defined active compounds in modern
natural medicine are an interesting source of treatment
against neurodegenerative disorders (Table 1).

4. Selection of Plant

There are certain strategies used for the selection of plant
species: random screening and ethnobotany. With over
500,000 plant species on earth, and each of these with flowers,
fruits, leaves, stem, bark, and roots with different chemical
compositions, geographical and seasonal, the likelihood of
finding an appropriate plant sample for a desired disease
through random search is fairly difficult [60, 61]. In some
cases, the compounds isolated from such plants may not be
novel and show good activity compared to those available in
the market. However, a plant with its ethnobotanical back-
ground could be selected with the belief that it is being used
traditionally with some medicinal purpose. Traditional
knowledge also includes detail of the season during which
a particular plant species is medicinally active, part of the
plant used, geographical region in which a species abundant
[62–64]. Long-term use of a medicinal plant in traditional
medicines, including folklore remedies, is generally consid-
ered safe and active against prevention of many diseases,
and has been proven to be a trustworthy source of active
compounds. Such a correlation between traditional medicine
and their use in research and the isolation of compounds are
well studied by many researchers [65–67].

5. Extraction and Isolation of
Bioactive Compounds

As discussed, plant polyphenolics are the major class of
antioxidants, which are widely studied for their disease
prevention, free radical scavenging property, and reducing
oxidative stress. Extraction of these and other compounds is
the crucial step in the analysis of plants for its medicinal prop-
erty. It is necessary to extract the desired chemical compo-

nents from the plant materials for further separation and
characterization. Extraction and isolation of active com-
pounds from plants are tedious processes. Hence, definitive
measures must be taken to restore the bioactive compounds
while extraction and to assure that they are not destroyed, lost,
or distorted. It is important to follow traditional uses of a
medicinal plant and prepare an extract to mimic as closely
as possible the traditional ‘herbal’ drug [68]. The selection of
a solvent system largely depends on the specific nature of the
bioactive compound being targeted. Different solvent systems
are available to extract the bioactive compound from natural
products. As the target compounds may vary from polar to
nonpolar, the suitability of the methods of extraction must
be considered. Various methods, such as sonication, Soxhlet
extraction, heating under reflux, and others are commonly
used [69–71] for the extraction of compounds from plant
samples. In addition, maceration or percolation of fresh green
plants or dried powdered plant material in water and/or
organic solvent systems is also being used. In order to reduce
the consumption of solvents and time, several modern tech-
niques have been introduced. These include solid-phase
microextraction, supercritical-fluid extraction, pressurized-
liquid extraction, microwave-assisted extraction, solid-phase
extraction, and surfactant-mediated techniques, which pos-
sess certain advantages [72]. These steps improve extraction
efficiency, kinetics of extraction, and selectivity [73]. But the
conventional methods like Soxhlet and maceration are still
under use due to their high efficiency in extracting the phyto-
compounds with higher extract yield. However, the wide
range of compounds in plants makes separation and isolation
of unknown active compounds a difficult ask. Activity-guided
fractionation is the most frequently used technique for isolat-
ing plant compounds [74]. The optimum recovery of antiox-
idant compounds like polyphenolics is different from one
sample to the other and relies on the type of plant used. The
choice of extraction solvents such as ethyl acetate, acetone,
alcohols (methanol, ethanol, and propanol), water and their
mixtures [75] will influence the yields of phenolics extracted.

According to research findings, increasing time and tem-
perature will increase the solubility and extractability of com-
pounds; however, plant phenolics may undergo enzymatic
oxidation and reactions forming undesirable compounds
under such conditions [76, 77]. Sample matrix and particle
size also strongly influence phenolic extraction from plant
materials [78]. Flavonoids are often extracted with methanol,
ethanol, acetone, water, or mixtures of these solvents using
heated reflux extraction methods [79–81]. Similarly,
maximum extractability of flavonoids can be achieved using
polar organic solvents alone or in combination [82, 83].

Maceration, Soxhlet, and heated reflux extraction are
simple, require relatively cheap apparatus, and result in
adequately high phenolic extraction rates [84, 85]. However,
the need for large volumes of hazardous organic solvents,
long extraction times, and degradation of targeted compo-
nents due to air, light, high temperatures, and enzymatic
reactions are few noted disadvantages [86, 87] which needs
standardization. Other modern techniques include pressur-
ized liquid extraction (PLE), super critical fluid extraction
(SFC), and microwave-assisted extraction (MAE) [74].
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6. Purification and Structural Determination

Purification of the phytocompounds from the crude extract is
a difficult and crucial part. Advances in modern techniques of
isolation and purification have opened up possibilities for
large-scale production of active compounds from plants
[78]. Based on the solvent system and techniques used, the
crude extract displays combination of bioactive compounds
or phytochemicals with different polarities. Chromatographic
separations are the best used techniques implemented for effi-
cient isolation and purification of targeted phytocompounds.
Paper, thin layer, and column chromatography are the best
used conventional isolation and purification method to
achieve maximum yield [88, 89]. Finally, the structural
determination of compounds after isolation can be done by
accumulating data from a wide range of spectroscopic tech-
niques, such as UV-visible, infrared (IR), and nuclear mag-
netic resonance (NMR) spectroscopy (Figure 4). Although
almost all parts of the electromagnetic spectrum are used for
studying matter in organic chemistry, but natural products
are concerned with energy absorption from three or four
regions—ultraviolet (UV), visible, infrared (IR), radio
frequency, and electron beam [90].

In clinical trials, isolating active principle and their use
are frequently investigated compared to crude extract in
order to determine the exact mechanism of action. However,
the combination of various active principles of crude extracts
promotes synergistic effects, leading to an antioxidant-based
defense mechanism in patients with neurodegeneration [91].
Moreover, natural antioxidants with multitarget drug profiles
can suppress oxidative stress and the combination of single
active principle or crude extracts needs further investigation.

7. Conclusion and Future Perspective

In conclusion, free radicals and oxidative stress could act as
one of the prime precursors in building up neurodegenerative

disorders. Phytochemicals with a broad range of activities has
increased interest among researchers to explore plant species
with significant traditional use. Moreover, it is important to
note that natural products, especially fromplants with antiox-
idant property can present a reliable source of medicine. The
process of identifying plants and using them for desired
medication is a tedious process. But, once identified, herbal
medicine could noticeably have maximum impact with lesser
side effects due to the synergistic action of compounds present
in them.However, more research is needed in this direction to
justify their use in the disease management.
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Alzheimer’s disease (AD) is characterized by the progressive disturbance in cognition and affects approximately 36 million people,
worldwide. However, the drugs used to treat this disease are only moderately effective and do not alter the course of the
neurodegenerative process. This is because the pathogenesis of AD is mainly associated with oxidative stress, and current drugs
only target two enzymes involved in neurotransmission. Therefore, the present study sought to identify potential multitarget
compounds for enzymes that are directly or indirectly involved in the oxidative pathway, with minimal side effects, for AD
treatment. A set of 159 lignans were submitted to studies of QSAR and molecular docking. A combined analysis was performed,
based on ligand and structure, followed by the prediction of absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties. The results showed that the combined analysis was able to select 139 potentially active and multitarget
lignans targeting two or more enzymes, among them are c-Jun N-terminal kinase 3 (JNK-3), protein tyrosine phosphatase 1B
(PTP1B), nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NADPH quinone oxidoreductase 1 (NQO1),
phosphodiesterase 5 (PDE5), nuclear factor erythroid 2-related factor 2 (Nrf2), cycloxygenase 2 (COX-2), and inducible nitric
oxide synthase (iNOS). The authors conclude that compounds (06) austrobailignan 6, (11) anolignan c, (19) 7-epi-virolin, (64)
6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-methoxy-1,3-benzodioxole, (116) ococymosin, and
(135) mappiodoinin b have probabilities that confer neuroprotection and antioxidant activity and represent potential alternative
AD treatment drugs or prototypes for the development of new drugs with anti-AD properties.

1. Introduction

Although Alzheimer’s disease is a multifactorial disease [1,
2], it is characterized by the increased generation and/or
accumulation of amyloidogenic peptides (particularly Aβ),
which are derived from the proteolysis of APP [3]. The pres-
ence of senile plaques in the cerebral cortex is thought to
result in the activation of inflammatory and neurotoxic pro-
cesses, culminating in the production of NO, cytokines, and
ROS [3–9]. This process contributes to neurodegeneration
and the loss of neuronal cells in AD [10, 11].

ROS can have beneficial and negative effects on cellular
functions, depending on their concentrations. Low concen-

trations of ROS can regulate cellular functions, through
redox-dependent signaling and redox-dependent transcrip-
tion factors [8, 9]. However, high concentrations of ROS
can impair vital cell processes, causing damage to proteins,
lipids, and DNA [10]. Therefore, a balance between the pro-
duction and removal of ROS is essential for normal cellular
functions. Homeostasis imbalances can result in oxidative
stress and the subsequent development of pathological con-
ditions [11]. Stress precedes Aβ deposition, tau hyperpho-
sphorylation, and impaired cognitive function. Endogenous
antioxidant systems decrease with aging, favoring the
appearance of AD. Therefore, oxidative stress is at the heart
of AD pathogenesis [12, 13].
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Currently, drugs for the treatment of AD include donepe-
zil, galantamine, and rivastigmine, which are inhibitors of the
enzyme acetylcholinesterase, while memantine is a noncom-
petitive inhibitor drug against N-methyl-D-aspartate
(NMDA) [14–16]. These inhibitors act on cholinergic recep-
tors and glutamate, respectively. This is because the oxidative
glutamate toxicity [13] which is an excitatory neurotransmit-
ter in the central nervous system (CNS) is associated with AD
[16]. The excess of glutamate causes the suppression of cyste-
ine uptake by the xc

─ system, which subsequently causes the
inhibition of glutathione synthesis (GSH), triggering the
accumulation of ROS [17, 18]. In addition to this mechanism,
the neurochemical impairment of cholinergic neurons in the
central nervous system (CNS) can contribute to the pathol-
ogy of AD [17]. Although these drugs represent the best
pharmacological treatments available at the time of AD, they
have a relatively small average overall effect and do not alter
the course of the underlying neurodegenerative process [19]
probably because AD is multifactorial and is related to sev-
eral deregulated mechanisms, due to the activation or inacti-
vation of several enzymes important for homeostasis.

Knowing that oxidative stress is the center of the patho-
genesis of AD, oxidative defense mechanisms appear to be
important targets for the development of new and promising
AD drugs. The Kelch-like ECH-associated protein 1
(Keap1)/Nrf2/ARE pathway is one of the most potent defen-
sive systems against oxidative stress [20]. In addition,
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase
(iNOS), NADPH oxidase (NOX), lipoxygenase (LOX), c-
Jun N-terminal kinase 3 (JNK-3), protein tyrosine phospha-
tase 1B (PTP1B), phosphodiesterase type 5 (PDE5), NADPH
oxidase, sodium-glucose cotransporter (SGLT)1, SGLT2, and
DJ-1 have been associated with the expression of anti-
inflammatory mediators, neuroprotection, and ROS regula-
tion and therefore represent promising AD targets [21–29].

Natural products are important alternatives for AD treat-
ment because they contain widely known and reported clas-
ses of molecules associated with antioxidant activities,
especially polyphenol compounds [23]. Lignans are a class
of polyphenol compounds, which, according to Barbosa
Filho in Simões (1999) [24], are chemically characterized as
dimers formed by the oxidative homocoupling of cinnamic
alcohols or the coupling with cinnamic acids.

Drug design is an important strategy in the field of
medicinal chemistry, which increasingly requires the use of
modern tools to ensure the increased practicality and speed
of obtaining results. For example, we often utilize in silico
studies that seek to understand the properties between a
ligand and its respective receptor [25].

1.1. c-Jun N-Terminal Kinases (JNKs). JNKs represent a fam-
ily of serine-threonine protein kinases that are encoded by 3
genes (JNK1, JNK2, and JNK3) [26]. JNK1 and JNK2 are
ubiquitously expressed, whereas JNK3 is primarily expressed
in the brain. JNKs are activated by phosphorylation (pJNK),
through the activation of mitogen-activated protein (MAP)
kinase kinase (MAPK2), by extracellular stimuli, such as
ultraviolet light, cytokines, and Aβ peptides [27]. In addition,
studies have indicated that JNK can be activated by stress and

triggered by harmful external stimuli, via the kinase cascade
and oxidative stress, in patients with AD [21]. JNKs are asso-
ciated with several important functions in the cell, such as
inflammation, the regulation of gene expression, cell prolifer-
ation, and apoptosis. JNK3 has been implicated in the patho-
genesis of AD because JNK3 phosphorylates amyloid
precursor protein (APP), which increases the production of
Aβ [27]. Due to its fundamental role in neurodegeneration,
JNK pathway signaling has been a target for the design of
pharmacological and potential therapeutic agents [28].

The activation of the JNK pathway depends on the
coordinated interaction among the scaffold proteins that
belong to the JNK activation complex, which is capable
of mediating signal amplification, ensuring substrate spec-
ificity, and coordinating a signaling cascade [29]. Different
stimuli can trigger JNK activation, including JNK interac-
tion protein 1a (JIP1a) and JIP1b (also called IB1), JIP2,
JIP3 (initially called JSAP1) JNK-associated leucine zipper
protein (JLP), and various SRC homology 3 (SH3)
domain-containing proteins. Substrates are activated by
JNK phosphorylation, mediated by c-Jun, which in turn
interact with JunB, JunD, c-Fos, and activating transcrip-
tion factor (ATF), which constitute the transcription factor
activator protein 1 (AP-1), which regulates the maturation
of the cellular response to stress and modulates the signals
that ultimately lead to the activation of caspases and pro-
teins associated with apoptosis [30, 31].

Studies have found elevated levels of JNK-3 in the brains
of living patients with AD compared to levels in controls and
that inhibitors kinases, including JNK-3, are able to reduce
the effects of neuronal injury induced by Aβ [28, 32–34].

1.2. Phosphodiesterases (PDEs). PDEs represent a group of
enzymes, consisting of 11 subtypes (PDE1-PDE11), that con-
trol the cAMP and cGMP hydrolysis rates [31]. Variant PDEs
play specific roles in different physiological characteristics
and pathological processes. Although most PDE isoforms
are expressed in the brain (PDE1, PDE2, PDE3, PDE4,
PDE5A, PDE7A, PDE7B, PDE8B, PDE9A, PD10A, and
PDE11A), their levels of expression vary among regions
[33]. For example, PDE5 and PDE1 are located in the cer-
ebellum, but only in Purkinje neurons; PDE1B is located
in subsets of Purkinje cells; PDE6 is restricted to the retina
and pineal gland; PDE3B is expressed in proopiomelano-
cortin and neuropeptide neurons; PDE1 exhibits distribu-
tion patterns in the hippocampus, cerebral cortex,
thalamus, and striatum [34]; PDE2A is widely expressed
in the brain, with the strongest expression in the cortex,
striatum, and hippocampus; and PDE4 is widely expressed
in the CNS [22].

PDEs can affect neuronal cell survival, and when PDES
malfunction, they can play roles in neurodegenerative dis-
eases, such as AD [23]. PDE5 produces anti-inflammatory
and neuroprotective effects, increasing NOS expression and
cGMP accumulation and activating the protein kinase G
(PKG) signaling pathway, which plays an important role in
the development of several neurodegenerative diseases,
including AD, Parkinson’s disease (PD), and multiple sclero-
sis (MS) [24].
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During AD pathogenesis, PDE5 hydrolyzes cGMP, an
important intracellular messenger that activates PKG, trig-
gering a wide range of intracellular signals [25]. The cyclic
regulation of AMP/cGMP plays a determining role in several
memory-related processes because these molecules are criti-
cal secondary messengers in the brain that are specifically
associated with the memory recovery processes [34]. The
levels of these messengers are maintained by the balance
between production, catalysis, by adenylyl cyclase and gua-
nylyl cyclase, and degradation, which is mediated by PDEs
[35]. PDE5 specifically hydrolyzes cGMP [31]. Therefore,
PDE5 inhibitors act to increase the levels of cGMP in neu-
rons. Age-associated decreases in cGMP levels have been
related to increased PDE5 expression and activity and
the accumulation of Aβ peptide, which inhibits the activa-
tion of the NO/cGMP pathway [23]. Many studies have
shown that PDE5 inhibitors exhibit therapeutic effects on
AD by stimulating NO/cGMP signaling. PDE5 inhibitors
can trigger vasodilation in the brain, resulting in the
increased or sustained activation of signaling pathways
that impact neuroprotective processes [36]. Therefore, ele-
vating cGMP levels through PDE5 inhibition represents an
alternative strategy for improving the learning and mem-
ory functions of AD patients.

1.3. Protein Tyrosine Phosphatase 1B (PTP1B). PTP1B is a
member of the nontransmembrane phosphotyrosine phos-
phatase family [37] and is a regulator of several processes in
the CNS, many of which are therapeutically relevant to AD.
Increased PTPB1 activity is associated with insulin deficiency
and signaling pathways that are impaired in AD [38]. In
addition, increased PTP1B activity can be activated with
endoplasmic reticulum neuroinflammation and stress, which
are both associated with amyloidosis [36]. The neuroinflam-
matory response includes the activation of innate immune
cells in the brain (microglia), the infiltration of macrophages,
and the release of inflammatory mediators, such as NO, cyto-
kines, and chemokines, which are associated with the pro-
gression of neurodegenerative diseases [37]. Inflammatory
processes and amyloid aggregates have been implicated in
neuronal loss and cognitive decline. When activated, PTP1B
suppresses many signaling pathways that activate GSK3 and
are involved in neurodegeneration.

Trodusquemina is a highly selective PTP1B inhibitor
that has been used for the intervention of diabetes and
obesity in clinical trials and has been investigated for the
selective inhibition of PTP1B in neurons. The results
showed that trodusquemina was sufficient to improve spa-
tial learning and memory deficits in hAPP-J20 mice and to
prevent the loss of neurons in the hippocampus [39]. In
another study, PTP1B expression was found to be regu-
lated by inflammatory stimuli, and PTP1B promotes
microglial activation and functions as a critical positive
regulator of neuroinflammation [37]. Thus, the inhibition
of PTP1B provides a new therapeutic strategy for neuroin-
flammatory and neurodegenerative diseases.

1.4. Nicotinamide Adenine Dinucleotide Phosphate (NADPH)
Oxidase (NOX). NOX is the most studied ROS-generating

system [6]. NOX family members are transmembrane pro-
teins that utilize electrons from cytosolic NADPH to reduce
oxygen, generating a superoxide anion [16]. Seven known
isoforms, NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1,
and DUOX2, combined with several subunits to form active
enzyme complexes [40, 41]. The only known function of
these membrane proteins is the catalysis superoxide anion
formation from hydrogen peroxide. Hydrogen peroxide eas-
ily permeates cell membranes and can directly damage cells
by oxidizing deoxyribonucleic acid (DNA), proteins, and
lipids [41].

NOX primarily functions to generate free radicals, and
some isoforms can be overregulated by a variety of neurode-
generative factors [41]. Studies have suggested that the
genetic and pharmacological inhibition of NOX enzymes
may reduce harmful aspects associated with brain injuries
and neurodegenerative disorders, resulting in a neuroprotec-
tive effect [41]. In particular, the observed lack of benefits
associated with various antioxidant strategies may be due to
the ineffectiveness of antioxidant molecules in vivo or the
concomitant attenuation of oxidant regulatory roles [40].
Shimohama et al. [42] reported the translocation of p47phox
and p67phox, which strongly suggested that NOX is acti-
vated in the AD brain.

Studies with NOX inhibitors exert neuroprotective effects
against AD, due to anti-inflammatory properties, through
the oligomeric Aβ- (oAβ-) induced microglial proliferation
and the production of proinflammatory factors, including
ROS, NO, tumor necrosis factor (TNF)-α, and interleukin
(IL)-1β [42–45].

1.5. NADPH Quinone Oxidoreductase 1 (NQO1). NADPH
quinone oxidoreductase 1 (NQO1) is a flavin adenine
dinucleotide- (FAD-) dependent cytoplasmic flavoprotein
that catalyzes the reduction of two electrons from qui-
nones, quinonimines, and nitroaromatic naphthoquinones
and substituted by glutathione, dichlorophenolindophenol
(DCPIP) dyes, and an NADPH as an electron donor
[12]. Therefore, NQO1, plays a central role in monitoring
cellular redox status, protecting against oxidative stress
induced by a variety of metabolic situations [44], including
the metabolism of quinones and other xenobiotics,
through the following mechanisms: (i) functioning as a
two-electron donor, to provide a derivation that competes
with the formation of ROS; (ii) maintaining reduced coen-
zyme Q; and (iii) regulating the stress-activated kinase
pathway [45].

According to Chhetri et al. [12], the inactivation of
the detoxifying enzyme NQO1 has been linked to the
progression of AD. Factors that alter NQO1 activity can
include genetic predispositions, such as the C690T
NQO1 polymorphism, advanced age, cigarette smoking,
and various medications [12]. The early expression of
NQO1 in astrocytes may reflect a partially protective neu-
ronal cell antioxidant protection system that activates at
the beginning of the disease process, whereas the late
expression of NQO1 may indicate the delayed activation
of this system, as a final attempt to prevent neuronal cell
death [46].
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The antioxidant activity of NQO1 is essential; however,
further studies are necessary to determine whether it should
be targeted in the treatment of AD.

1.6. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2). Nrf2
is a transcription factor that facilitates adaptation and
survival under stress by regulating the gene expression of
different networks of cytoprotective proteins, including
anti-inflammatory and antioxidant proteins and proteins
that repair or remove damaged macromolecules [47]. Nrf2
plays a crucial role in maintaining cellular redox homeostasis
and regulating the production of ROS by mitochondria. Nrf2
affects changes in the mitochondrial membrane potential
(Δψm), ATP synthesis, and lipid peroxidation, and Nrf2 acti-
vation under stress conditions or by growth factors can neu-
tralize increases in ROS production by the mitochondria,
contributing to neuroprotection [48, 49].

Nrf2 is a key regulator of the body’s antioxidant response
and is responsible for inducing the expression of genes that
encode antioxidant proteins and enzymes, in addition to
metabolism detoxification phase II enzymes, which is a criti-
cal mechanism associated with cell protection and survival.
Nrf2 targets include HO-1, superoxide dismutase (SOD), cat-
alase (CAT), NADPH, NQO1, GSH S transferase (GST),
GSH reductase (GR), GSH peroxidase (GPx), thioredoxin
(Trx), and glutamate-cysteine ligase (GCL) [50, 51].

In addition to mediating antioxidant and detoxification
mechanisms, Nrf2 is responsible for modulating the
expression of 200 genes associated with other cellular pro-
cesses, including the inflammatory response, metabolic
regulation, cell proliferation, senescence, and mitochon-
drial function [52, 53].

Recent studies have investigated the participation of
Nrf2, in the mechanisms of apoptosis and neuroprotec-
tion associated with Alzheimer’s disease and traumatic
brain injury, as well as the reduction of the expression
of EROs [54].

1.7. Sodium-Glucose Transport Protein (SGLT). Glucose
transporters can be divided into two primary families: facili-
tative glucose transporters (GLUTs) and sodium-dependent
glucose cotransporters (SGLTs) [54]. Five primary SGLT iso-
forms have been identified, SGLT1, SGLT2, SGLT3, SGLT4,
and SGLT5; however, SGLT1 and SGLT2, in particular, are
associated with the pathways involved in the cellular mecha-
nisms of AD [55].

The SGLT1 isoform is encoded by the SLC5A1 gene and
performs glucose transport through a secondary active trans-
port mechanism that uses the Na+ gradient established by
the Na+/K+ ATPase pump. This receptor is primarily
expressed in the intestine, trachea, heart, testicles, prostate,
brain, and kidneys. SGLT1 is characterized as a metabotropic
receptor, coupled to transmembrane G proteins, with a sec-
ondary structure consisting of 664 amino acid residues,
arranged in 14 transmembrane helices with both the NH2
and COOH terminals facing the extracellular side of the
plasma membrane. The receptor contains only one N-
glycosylation site, at Asn248 [56–58].

The SGLT2 isoform is encoded by the SLC5A2 gene and
is found in the kidneys, brain, liver, thyroid, muscle, and
heart. The SGLT2 structure is highly similar to that for the
SGLT1 receptor and appears to be involved in diabetes and
kidney disease mechanisms [54].

Studies have demonstrated the involvement of the factor
SGLT1 in Alzheimer’s disease, as it is related to cellular medi-
ators of vascular injury [58]. Its activation is associated with a
reduction in the levels of epidermal growth factor (EGFR),
and its expression can be linked to food and control of insulin
release by inhibiting the enzymes α-amylase and α-glucosi-
dase [59–61].

1.8. Factor DJ-1. DJ-1 protein acts as an oxidative stress sen-
sor and eliminates peroxide by self-oxidation [61]. This
receptor is also related to cancer pathogenesis and may
act as a potential tumor marker [62, 63]. DJ-1 participates
in several signaling pathways, including mitochondrial
quality control and the reaction to oxidative stress. Cells
with high levels of DJ-1 have been shown to be resistant
to oxidative stress and neurotoxins, such as 6-OHDA,
whereas lower levels of DJ-1 make cells vulnerable to oxi-
dative stress [64, 65].

The DJ-1 receptor was reported to have anti-Parkinson’s
disease activity, by Dolgacheva and collaborators [66]. The
mechanisms addressed included the protection of dopami-
nergic neurons against neurodegeneration in Parkinson’s
disease. The authors stated that the wild-type DJ-1 receptor
can act as an oxidative stress sensor and as an antioxidant.
DJ-1 regulates transcription and protects mitochondria from
oxidative stress, in addition to increasing uncoupling protein
(UCP)4 and UCP5 levels, which are responsible for mito-
chondrial decoupling and the consequent decrease in mito-
chondrial membrane potential. DJ-1 also suppresses the
production of EROS and acts on redox factors, such as NF-
κB, which acts on anti-inflammatory factors [67].

1.9. Cycloxygenase (COX). Prostaglandins (PGs) are pro-
duced by prostaglandin-endoperoxide via synthase/cycloox-
ygenase (COX), which plays important roles in the etiology
and inflammation of autoimmune diseases. COX has 2 iso-
forms: COX-1, which is permanently expressed in most tis-
sues and organs, and COX-2, which is an inflammation-
inducible enzyme that is essential during the inflammation
process and in autoimmune disease [68–72]. In addition,
COX-2 plays a significant role in aging and skin cancer.
PGE2 is a fundamental product of the COX synthesis path-
way [70].

COX-2, also known as prostaglandin H synthase 2
(PGHS-2), catalyzes the conversion from arachidonic acid
and O2 to PGs, which are important lipid mediators involved
in numerous physiological aspects and pathophysiological
processes. Under normal physiological conditions, COX-2
most often has a low level of expression, but this gene is
highly induced in response to inflammation [71–73]. COX-
1 is a constitutive enzyme, responsible for maintaining a
basic level of PGs, to maintain physiological homeostasis,
such as gastrointestinal integrity [73, 74]. COX-1 and COX-
2 catalyze the biosynthesis of prostaglandins, prostacyclins,
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and thromboxanes [68]. COX-1 and COX-2 share a very
high degree of sequence identity and very similar active site
topologies [75].

Neurodegenerative diseases, such as AD, are some-
times treated with nonsteroidal anti-inflammatory drugs
(NSAIDs), which target COX-1 and COX-2 [76].

1.10. Nitric Oxide Synthase (NOS). NOS is formed by a group
of three enzymes (eNOS, nNOS, and iNOS), which are
responsible for the generation of nitric oxide (NO) from the
amino acid L-arginine [77, 78]. NO is a free radical gas and
is associated with several biological functions, playing key
roles in the regulation of blood flow, blood pressure, and oxy-
gen delivery [79–81].

NOS includes endothelial NOS (eNOS or NOS1) [81, 82],
inducible NOS (iNOS or NOS2), and neuronal NOS (nNOS
or NOS3) [83]. eNOS and nNOS are characteristically
expressed, whereas iNOS expression is induced exclusively
by appropriate stimuli, such as cytokines, TNF-α, infections,
chronic inflammation, tumors, interferon γ, or hypoxia [83].
During iNOS induction, the production of large amounts of
NO occurs, in contrast with the other two isoforms [79, 84].

The generalized expression of iNOS in the CNS is patho-
logical and is often observed during neurological diseases,
such as multiple sclerosis, stroke, and Parkinson’s disease
[85]. In patients with AD, studies have shown that the num-
ber of iNOS-positive neurons significantly increases in the
brain and is associated with neuronal damage [86].

eNOS acts directly on the NO formation rate and acts as a
limiting enzyme for this process, based on its expression
levels and biological activity [78, 87]. eNOS activity also
influences the maintenance of vascular and endothelial
homeostasis [88–90], in addition to the structure and func-
tion of the vascular endothelium [90].

nNOS produces NO in both the CNS and the peripheral
nervous system, where it acts as a neurotransmitter [91, 92].
Although nNOS is the enzyme responsible for NO synthesis
in neurons, not all neurons express nNOS [93]. However, the
excessive activation of nNOS can result in neuronal death
due to the harmful production of NO [94].

1.11. Lipoxygenases (LOXs). LOXs are a group of dioxygenase
enzymes that contain iron and catalyze the stereoselective
addition of oxygen to arachidonic acid (AA), docosahexae-
noic acid (DHA), and other polyunsaturated fatty acids
(PUFAs) [95]. The basic nomenclature of LOXs (except
LOX-3) is based on the position of oxygen insertion in a
substrate [95, 96]. Five types of LOXs have been identified
in mammals, referred to as 5-, 8-, 12-, and 15-LOX and
LOX-3 [97, 98].

Although 5-LOX is known primarily as a modulator of
oxidation and inflammation [99], according to Chu et al.
[100], this pathway can directly influence the pathogenesis
of AD. The 5-LOX-γ-secretase pathway acts on the forma-
tion of Aβ peptides and other molecular diseases, including
neuroinflammation, synaptic integrity, and cognitive func-
tion, which can contribute to new treatments for AD and
associated neurodegenerative problems. High levels of 5-

LOX in the nuclear envelope are associated with the release
of leukotrienes to attract inflammatory cells [101].

5-LOX is widely distributed in the CNS and has been
shown to be positively regulated in the postmortem brain
of patients with AD, playing a functional role in the patho-
genesis [102], as well as its activation influencing synapses
and memory impairment [103]. According to Di Meco
et al. [104], 5-LOX is a key enzyme for AD because it is
involved in inflammatory responses and is expressed at
higher levels in the hippocampi of AD patients compared
with healthy adults [105].

Observing that several enzymes are directly and indi-
rectly involved through oxidative stress mechanisms and that
their activation and inactivation can contribute to neuropro-
tection or disease progression, the objective of the research
was to explore new targets through virtual screening of lig-
nans to identify molecules with potential anti-AD [106, 107].

2. Materials and Methods

2.1. Data Collection and Curation. Several enzymes with
available biological activity and 3D structure data were
selected and investigated in this study. Chemical compounds
were selected with known activity against the following
enzymes: JNK-3 (CHEMBL2637), PTP1B (CHEMBL335),
NFR2 (CHEMBL1075094), NOX1 (CHEMBL1287628),
PDE5 (CHEMBL1827), COX-2 (CHEMBL230), and iNOS
(CHEMBL4EM1). These compounds were used in the bank
of images used to construct predictive models (https://www
.ebi.ac.uk/chembl/) [108]. The details of the banks can be
found in Table 1. The compounds were classified based on
the pIC50 ð−log IC50 ðmol/lÞÞ. The IC50 value represents the
concentration required for 50% inhibition. However, for the
enzyme Nrf2, activation data was used because the activa-
tion of this protein would obtain the desired effect. In
addition, 159 CHEMBL lignans (Table S1) were assessed
by virtual screening to identify molecules with potential
activity against enzymes involved in AD progression,
according to the workflows presented by Fourches et al.
[109]. Three-dimensional structures were generated by
ChemaxonStandardiser v.18.17.0, (http://www.chemaxon.org).

2.2. Quantitative Structure-Activity Relationship (QSAR)
Modeling. The Knime 3.5.3 software (KNIME 3.5.3, Kon-
stanz Information Miner Copyright, 2018, https://www
.knime.org) was used to perform the analyses and to generate

Table 1: Set of molecules from the ChEMBL databases for each
enzyme selected in the study.

Database Active molecules Inactive molecules Total

JNK-3 580 (pIC50 ≥ 6:0) 642 (pIC50 < 6:0) 1.222

PTP1B 1.446 (pIC50 ≥ 5:0) 1.354 (pIC50 < 5:0) 2.800

NFR2 163 (activity) 85 (no activity) 248

NOX1 85 (pIC50 ≥ 4:75) 60 (pIC50 < 4:75) 145

PDE5 873 (pIC50 ≥ 7:0) 869 (pIC50 < 7:0) 1742

COX2 2.018 (pIC50 ≥ 5:50) 1.702 (pIC50 < 5:50) 3.720

iNOS 396 (pIC50 ≥ 5:50) 367 (pIC50 < 5:50) 763
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the in silicomodels. Given the success of our previous studies
[110, 111], we opted to perform a 3D QSAR analysis for each
bank of enzymes. All studied compounds with a solved
chemical structure were saved in special data file (SDF) for-
mat and imported into the Dragon 7.0 software [112], to gen-
erate descriptors.

The banks of molecules and their calculated descriptors
were imported from the Dragon software, and the data were
divided into a “Partitioning” tool, using the “Stratified sam-
ple” option, which separated the data into Training and Test-
ing sets, which represented 80% and 20% of all compounds,
respectively. The sets were randomly selected, but the pro-
portions of active and inactive substances were maintained
in both databases.

The Random Forest (RF) algorithm, using WEKA nodes
[113], was used to build predictive models. The parameters
selected for RF for all models were as follows: the total num-
ber of forests was 250, and 1 seed was used for the generation
of random numbers. Cross-validation was performed to esti-
mate the predictive power of the developed models.

The external performances of the selected models were
analyzed for sensitivity (true-positive rate, or active rate),
specificity (true-negative rate, or inactive rate), and accuracy
(general predictability). In addition, the sensitivity and spec-
ificity of the receiver operating characters (ROC) curve were
used because these describe actual performance more clearly
than accuracy.

The models were also analyzed using the Matthews cor-
relation coefficient (MCC), which can evaluate the model
globally, based on the results obtained in the confusion
matrix. The MCC is a correlation coefficient between the
observed and predictive binary classifications, resulting in
values between -1 and +1, where a coefficient of +1 represents
a perfect prediction, 0 represents a random prediction, and -1
indicates the total disagreement between the prediction and
the observation [114].

MCC can be calculated using the following formula:

MCC = VP xVN − FP x FN
√ VP + FPð Þ VP + FNð Þ VN + FPð Þ VN + FNð Þ , ð1Þ

where VP represents true positives, VN represents true neg-
atives, FP represents false positives, and FN represents false
negatives.

The applicability domain (APD) was used to analyze the
compounds in the test sets, to evaluate whether the predic-
tions are reliable. The APD is a theoretical chemical space
that encompasses the model’s descriptors and the modeled
response, allowing the estimation of uncertainty when pre-
dicting the activity of a compound in the training set used
during the development of the model. This technique is
important for verifying the reliability of QSAR models by
comparing predicted values with observed values [115].
APD is calculated using the following formula:

APD = d + Zσ, ð2Þ

where d and σ are the Euclidean distances and the mean stan-
dard deviation, respectively, for the compounds in the train-

ing set. Z is an empirical cutoff value, which was set to 0.5 in
this study.

2.3. Molecular Docking. Molecular docking was performed
using the Molegro Virtual Docker v6.0.1 (MVD) software
[116], and six targets were selected for anchorage studies
(Table 2). The 3D structures of the enzymes used in this
study were obtained from Protein Data Bank (PDB) [117],
using the following codes: PDB ID 4Y46 for JNK-3; PDB
ID 4Y14 for PTPB1; PDB ID 6FY4 for NQO1; PDB ID
3B2R for PDE5; PDB ID 5KIR for COX-2; and PDB ID
4NOS for iNOS. We did not dock the enzymes Nrf2 and
NOX1 because 3D structures were not available in PDB for
the human species. Initially, all water molecules were
removed from the crystalline structure, and the root-mean-
square deviation (RMSD) was calculated from the poses,
which indicates the degree of reliability for the fit. The RMSD
provides for the connection mode close to the experimental
structure and is considered successful if the value is below
2.0Å. The MolDock score algorithm was used as a scoring
function, to predict the best interactions between the ligand
and the receptor. Then, the anchor assistant was generated,
in which the enzyme and ligands were inserted to analyze
the stability of the system based on the interactions identified
with the active site of the enzyme.

2.4. Prediction of ADMET Properties. ADME parameters
were calculated using the SwissADME open-access web tool
(http://www.swissadme.ch) [118], which offers a set of rapid
predictive models for the assessment of physicochemical,
pharmacokinetic, and pharmacological properties. The tox-
icity prediction was performed in OSIRIS Property Explorer
(https://www.organic-chemistry.org/prog/peo/) [119], based
on the following parameters: mutagenicity, tumorigenicity,
reproductive effects, and irritability. For absorption, factors
included membrane permeability, intestinal absorption, and
substrate or inhibitor of P glycoprotein. Thus, we investi-
gated compounds that did not exceed more than two viola-
tions of Lipinski’s rule and for which the log P consensus
was not greater than 4.15. In addition, compounds were not
substrates for the permeability glycoprotein enzyme (P-gp).
The distribution was assessed by factors that include the
blood-brain barrier (logBB) and the permeability of the
CNS. Metabolism was predicted based on the CYP substrate
or inhibition models (CYP1A2, CYP2C19, CYP2C9,
CYP2D6, and CYP3A4).

3. Results and Discussion

3.1. QSAR Modelling. The metrics mentioned are the most
commonly used metrics for chemoinformatics, although
others can be used to guarantee the high predictability of
the model, such as ROC curves [120]. The results of the
ROC curve and MCC analyses revealed excellent results.
The models achieved ROC curves greater than 0.78 during
cross-validation, and the MCC values were also greater than
0.52 during the cross-validation, revealing a model with
excellent classification, performance, and robustness
(Table 3, Figure S1). Only the model for the Nrf2 enzyme
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achieved an MCC below 0.5. Table 4 shows the ROC curve
values for each protein.

Using the models created, with excellent performance,
the lignan set was screened to select compounds that are
potentially active against the studied enzymes. Lignans with
a probability of biological activity above 0.5 and that passed
the applicability domain were considered active.

The results showed that no lignans were considered
active for the JNK-3, PDE5, and COX-2 targets. However,
22 compounds were potentially active against the PTPB1
enzyme with a probability ranging from 50 to 74%, 111
compounds active against Nfr2 with a probability ranging
from 50 to 64%, six compounds active against NOX1 with
a probability ranging between 63 and 78%, and 27

Table 2: Information regarding the selected enzymes, obtained from the PDB database and used for docking.

PDB ID Enzyme Class PDB ligand Resolution

4Y46 c-Jun N-terminal kinase Transferase

N

N N ON
H

H
N

H
N

O

H3C

CH3 2.04Å

4Y14 Tyrosine phosphatase 1B Hydrolase

F F

P OHO

OH

HN O
CH3

S
O

O

H3C

Br

N
H

1.89Å

6FY4 NAD(P)H:quinone oxidoreductase Oxidoreductase
NH

Br SO O

N

2.76Å

3B2R Phosphodiesterase-5 Hydrolase

N

N

H
N

N

H3C

H3C

O

CH3

S OO
N

N

H3C

O

2.07Å

5KIR Cyclooxygenase-2 Oxidoreductase

SO O

CH3

O
O

2.69Å

4NOS Inducible nitric oxide synthase Oxidoreductase N

H
N

N

N NH2

O
OH

HO

H3C

2.25Å
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compounds active against iNOS with probability varying
between 52 and 79%.

3.2. Docking Molecular. The molecular docking study was
performed for six enzymes that were targeted for the AD
treatment. The lignan set was analyzed to select molecules
with good probabilities for potential inactivation and activa-
tion activity against the enzymes targeted for AD treatment.
Docking was not performed for Nrf2 and NOX1, due to the
unavailability of human 3D protein structures.

In this study, the docking results were validated by the
redocking of the crystallographic ligand and by the RMSD
of the poses. Redocking consists of positioning and predict-
ing the binding affinity of the crystallographic ligand in the
region of the active site of the enzyme. The RMSD compares
and calculates the mean deviation of the square root of the
poses obtained by redocking and the structure of the ligand
obtained experimentally. For the fit to be reliable, the RMSD
value must be 2.0Å or less. The results showed that the tar-
gets JNK-3, PTP1B, NQO1, PDE5, COX-2, and iNOS
obtained RMSD values of 0.56, 0.25, 0.18, 0.47, 0.19, and
0.16Å, respectively.

TheMolegro software is capable of generating interaction
energies for lignans, by producing a MoldockScore for each
studied protein. Then, calculations were performed to iden-

tify the lignans with the best active potential probabilities
for each analyzed protein, using the following formula:

Prob =
ELig
EMLig

, se ELig < EInib, ð3Þ

where ELig is the energy of the analyzed lignan, EMLig is the
lowest energy obtained from the tested lignans, and EInib is
the energy of the inhibitor ligand, obtained from the crystal-
lography data for the tested protein. Only molecules that
obtained binding energies below the binding energy for the
crystallographic inhibitor ligand were considered to be
potentially active.

Table 5 shows the interaction energies of the inhibitor
ligand for each protein, and the top ten lignans with the best
energy values for each protein.

Among the 159 lignans analyzed by molecular docking,
21 were found to be potentially active against JNK-3, 1 was
identified for PTP1B, 157 were identified for NQO1, 34 were

Table 3: Performance summary corresponding with the results obtained for all Random Forest models.

Enzyme Validation Accuracy Sensitivity Specificity PPV NPV MCC

JNK-3
Test 0.89 0.91 0.87 0.86 0.91 0.78

Cross 0.83 0.85 0.82 0.81 0.85 0.67

PTP1B
Test 0.81 0.81 0.81 0.82 0.80 0.62

Cross 0.82 0.82 0.82 0.83 0.81 0.64

NFR2
Test 0.76 0.75 0.76 0.86 0.61 0.50

Cross 0.73 0.78 0.63 0.80 0.60 0.41

NOX1
Test 0.82 0.76 0.91 0.92 0.73 0.67

Cross 0.80 0.89 0.66 0.92 0.73 0.58

PDE5
Test 0.87 0.9 0.84 0.85 0.9 0.75

Cross 0.86 0.88 0.85 0.85 0.87 0.73

COX2
Test 0.78 0.83 0.71 0.77 0.78 0.55

Cross 0.76 0.81 0.7 0.76 0.76 0.52

iNOS
Test 0.81 0.87 0.74 0.78 0.84 0.62

Cross 0.8 0.85 0.74 0.78 0.82 0.60

Table 4: Values for the ROC curves, during the test and cross-
validation, for each RF model.

Enzyme
ROC curve

Test Cross

JNK-3 0.96 0.91

PTP1B 0.87 0.89

NFR2 0.82 0.81

NOX1 0.90 0.78

PDE5 0.95 0.94

COX2 0.84 0.84

iNOS 0.87 0.87

Table 5: MoldockScore scores for the top ten lignans with the best
energy values relative to the energy value of the crystallographic
ligand for each protein.

ID JNK-3 PTP1B NQO1 PDE5 COX2 iNOS

1 -183 -177 -137 -204 -203 -178

2 -175 -156 -137 -192 -193 -153

3 -164 -154 -136 -182 -191 -147

4 -159 -153 -124 -169 -190 -144

5 -155 -153 -120 -167 -187 -143

6 -148 -152 -116 -166 -176 -143

7 -148 -152 -116 -164 -175 -143

8 -146 -151 -114 -164 -174 -141

9 -146 -151 -112 -164 -172 -139

10 -144 -150 -108 -162 -170 -139

Ligand PDB -134 -156 -36 -139 -142 -59
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identified for PDE5, 53 were identified for COX-2, and 156
were identified for iNOS. These results indicated that lignans,
in general, are more likely to activate the NQO1 and iNOS
proteins and are not selective for the PTP1B enzyme.

3.3. Combined Analysis Based on Ligand and Structure. A
second consensus analysis was performed to identify poten-
tial multitarget lignans, which demonstrate active potential
probabilities for more than one protein, based on the RF
model and docking. In this case, we use all the results of pre-
diction of biological activity of the lignans and combine them
with the results of docking. For this analysis, the following
formula was used:

ProbComb =
ProbDc + 1 + ESPð Þ × PActivity
�

2 + ESP , Se ProbComb > 0:5,

ð4Þ

where ProbDc is the active potential probability from the
molecular coupling analysis, ESP is the average specific
value of the RF model, and PActivity is the active potential
probability value of the RF model. This combined proba-
bility was conditioned, as only molecules with values
greater than 0.5 were considered likely to be active. Com-
bined probability values were calculated for the lignans
identified for each target enzyme, and we analyzed which
molecules were multitarget.

After performing the combined analysis, based on the
ligand and structure, and using the formula to identify mul-
titarget molecules, we identified 139 molecules that were
potentially active for two or five target enzymes, out of the
entire lignan set analyzed. For Nrf2 and NOX1, we only used
the biological activity probability data, and for NQO1, we
only used the docking data not enough data was available
for these enzymes to construct the necessary models.

The combined probability (ProbComb), based on both
ligand and structure, can increase the predictive power of
the models and decrease the number of false positives. Com-
bined probability analyses could be performed for five
enzymes (JNK-3, PTP1B, PDE5, COX-2, and iNOS). For
enzymes without sufficient data to build both models, only
model was used. For molecules to be considered potentially
active, the probability values should be equal to or greater
than 0.5. However, for ProbDc, the probability value should
also be greater than that for the crystallographic ligand.

After the combined probability analysis, we selected the
multitarget compounds that passed the applicability domain
for all enzymes in this study. Using ProbComb, we were able to
select three compounds with probabilities of activity ranging
from 50% to 61% for JNK-3, 43 compounds with a 52-72%
probabilities for PTP1B, 57 compounds with 51%–72% prob-
abilities for PDE5, 27 compounds with probabilities between
50% and 61% for COX-2, and 27 compounds with probabil-
ities between 50% and 81% for iNOS (Table 6). The number
of compounds with excellent combined probabilities was
reduced when compared with the results of the docking
probabilities; however, the combined probabilities increased
the numbers of true positives.

Based on the biological activity probability data, 111
compounds, with probabilities ranging from 50% to 64%,
were identified for Nrf2, and nine compounds, with probabil-
ities ranging from 51% to 78%, were identified for NOX1.
Based on the docking probability data, 156 compounds were
selected, with probabilities ranging from 27% to 100%, for
NQO1. For this enzyme, compounds with probabilities
above 0.27 were considered, as these were greater than the
probability of the crystallographic ligand, which was 0.26.

We observed that although the results of QSAR do not
indicate active compounds for JNK-3, PDE5, and COX-2,
after the application of the formula that combines prediction
values of biological activity and docking (ProbComb), we were
able to identify active compounds for all targets of the study.

3.4. Prediction of ADMET Properties. The set of 139 poten-
tially active and multitarget lignans were submitted to several
predictive parameters to identify the compounds with the
best ADMET profiles. Using physical-chemical properties,
we attempted to verify compounds with good absorption,
considering the lipid rule as a parameter.

According to Shimohama et al. [42, 43], molecules with
molecular weights below 500Da, calculated log P (ClogP)
values less than five, less than five hydrogen bond donors,
no more than ten hydrogen bond acceptors, and ≤10 rotating
bonds have excellent absorption and bioavailability. Mole-
cules that violate two or more of these rules do not show good
absorption. We observed that 66% (92) of our lignans set
showed solubility values that varied between soluble and
moderately soluble.

Factors such as lipophilicity and solubility contribute to
drug distribution in vivo, which is a requirement for advanc-
ing to preclinical and clinical tests. The most common
descriptor for lipophilicity is the partition coefficient between
n-octanol: water (log P). Ideal log P values are below 5.0. The
results showed that 87% (121) of our lignan compounds had
ideal log P values.

Metabolism can affect drug activity by changing the half-
life, promoting the generation of toxic metabolites, or dis-
rupting therapeutic potential. Pharmacokinetics are essential
for understanding drug metabolism in the body. For a com-
pound to display the desired effect during AD treatment,
the drug must be able to cross the blood-brain barrier. Many
compounds that have been developed fail at the preclinical
and clinical testing stage due to metabolism effects and poor
absorption in the brain. Currently, the prediction and selec-
tion of compounds that act on nervous system tissues can
be performed through in silico tests. The results showed that
among lignans that target three or more enzymes, nine lig-
nans would likely cross the blood-brain barrier.

Toxicity was also evaluated, and among the compounds
that appeared likely to cross the blood-brain barrier, com-
pounds 6, 11, 19, 64, 116, and 135 had no predicted mutage-
nicity or tumorigenesis effects or negative effects on the
reproductive system and irritability. Therefore, these mole-
cules were considered to have the best ADMET properties
because they do not present any toxicity risks. Tables S2
and S3 show the ADMET profiles of compounds with
potential activity and multitargeting effects against four or
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more enzymes. In addition, Table S4 and Figure 1 show
the compounds that did not present toxicity for these
evaluated parameters.

Due to the antioxidant properties of lignans, the present
study sought to perform a virtual screening among diverse
structural lignans to identify potential molecules for the
treatment of AD. Lignans represent a huge class of phar-
macologically active compounds that exhibit various func-
tionalities, which are worth exploring by pharmaceutical
industries [121].

According to a review by Zálešák et al. [122], several
researchers have identified the antioxidant activity and neu-
roprotective properties of lignans. Lignans isolated from
Schisandra bicolor var. were assayed for their neuroprotective
effects against SH-SY5Y cell damage induced by Aβ25−35.
Among the active compounds, both new lignans (esquibitu-
bina B (L1-4), F (L1-7), H (L4-1), and I) and previously iso-
lated lignans (galgravine, (-)-nectandrin A, (-)-futocadsurine
A, (+)-9′-hydroxigalbelgin, austrobailignan-6, oleiferin-F,

(+)-dihydro-guaiaretic acid, and (-)- isootobafenol)
increased the cell viability in SH-SY5Y cells, following the
induction of cellular injury by 3.25 nM Aβ25-35 compared
with the negative control group. Furthermore, 25μM diben-
zocyclooctadiene lignans (L6-14 and NL5-10) from Schisan-
dra chinensis exhibited protective activity against Aβ1-42
neurotoxicity induced in PC12 cells, increasing cell viability
to 84:1% ± 5:4% and 82:1% ± 4:3%, respectively, compared
with the control (52:0% ± 3:2%) [122].

Lignans are a large group of naturally occurring phenols
widespread in the plant kingdom. In addition, notable
advances have been made in the isolation and identification
of lignans the last few years, which has already led to around
500 new congeners [121]. In addition, several studies have
reported the synthesis of different lignans successfully and
which have been tested for various biological activities.

3.5. Interaction Analysis. We analyzed the interactions of six
lignans through molecular docking that obtained the highest

Table 6: Potentially active lignans, multitarget for four or more enzymes, based on the RF and docking model. In bold are the active enzymes
that walk in the applicability domain.

ID
ProbComb ProbActivity ProbDc Multitarget

JNK-3 PTP1B PDE5 COX-2 iNOS NFR2 NOX1 NQO1

05 0.39 0.68 0.52 0.41 0.62 0.54 0.17 0.47 5

06 0.38 0.67 0.49 0.43 0.59 0.57 0.51 0.35 4

07 0.45 0.66 0.56 0.53 0.70 0.59 0.25 0.49 4

11 0.35 0.64 0.48 0.46 0.53 0.53 0.63 0.38 4

12 0.37 0.62 0.51 0.48 0.60 0.60 0.25 0.64 4

13 0.32 0.62 0.59 0.46 0.57 0.51 0.45 0.72 4

14 0.51 0.62 0.54 0.45 0.62 0.60 0.25 0.45 5

19 0.31 0.59 0.48 0.49 0.56 0.56 0.51 0.35 4

33 0.41 0.53 0.51 0.50 0.51 0.58 0.41 0.39 5

34 0.35 0.53 0.50 0.43 0.54 0.56 0.45 0.40 5

35 0.27 0.52 0.59 0.46 0.49 0.61 0.70 0.56 5

38 0.54 0.52 0.69 0.51 0.66 0.52 0.31 1.00 5

39 0.54 0.52 0.68 0.61 0.65 0.61 0.33 0.81 4

41 0.59 0.52 0.61 0.60 0.54 0.58 0.33 0.67 4

42 0.52 0.52 0.64 0.59 0.62 0.57 0.36 0.78 4

44 0.35 0.51 0.52 0.45 0.58 0.54 0.43 0.50 4

45 0.45 0.51 0.52 0.49 0.55 0.54 0.35 0.47 4

47 0.39 0.50 0.56 0.47 0.54 0.56 0.36 0.56 4

52 0.45 0.48 0.49 0.50 0.69 0.54 0.45 0.38 4

104 0.42 0.40 0.55 0.51 0.31 0.59 0.30 0.50 4

106 0.48 0.40 0.58 0.57 0.52 0.56 0.25 0.63 4

108 0.53 0.40 0.56 0.45 0.64 0.50 0.38 0.66 4

115 0.31 0.39 0.52 0.51 0.61 0.52 0.28 0.52 4

134 0.26 0.36 0.50 0.40 0.51 0.56 0.71 0.38 5

141 0.40 0.35 0.54 0.50 0.50 0.62 0.52 0.40 5

142 0.37 0.35 0.50 0.51 0.65 0.55 0.30 0.40 4

146 0.40 0.33 0.57 0.56 0.66 0.55 0.27 0.60 4

153 0.49 0.32 0.60 0.50 0.63 0.52 0.39 0.74 4
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probability of activity, multitarget, and with low toxicity. In
addition, we consider analyzing the targets on which these
compounds were most active.

The compounds austrobailignan 6 (06), anolignan c
(11), and 7-Epi-virolin (19) formed several interactions
with the PTP1B active site. Austrobailignan 6 formed
hydrophobic interactions with residues Ile219 and Arg221,
steric interactions with the amino acids Phe182, Cys215,
and Ala217, an electrostatic bond with Arg181, and a
hydrogen bond with Tyr46, stabilizing the bond. Analignan
c formed four hydrophobic interactions with the amino
acids Tyr26, Cys215, Ala217, and Arg221. In addition, it
formed an electrostatic and a steric interaction. 7-Epi-
viroline formed several hydrophobic interactions with
Tyr46, Phe182, Ala217, and Arg221. Three important
hydrogen bonds were also observed with the residues
Arg47, Arg45, and Glu262 (Figure 2).

According to the study carried out by Krishnan et al.
[123], the inhibitor CPT157633 managed to form electro-
static interactions with the PTP1B active site. In that study,
interactions with the amino acids Cys215, Arg221, and

Gln262 were reported. We observed that these amino acids
are also interacting with lignans, forming more stable bonds.

These same lignans were also investigated for their inter-
actions with the NQO1 target. We found that 6 - [(2R, 3R,
4R, 5R) -3,4-dimethyl-5- (3,4,5-trimethoxyphenyl) oxolan-
2-yl] -4-methoxy-1,3-benzodioxole (64) formed hydrogen
bonds with the amino acids Tyr129, Gly175, and Ile176,
and a hydrophobic interaction with the amino acid Tyr127.
Oocymosin (116) showed hydrophobic interactions with
Tyr127 and Phe179. In addition, it formed a hydrogen bond
with the Tyr129 residue. Mappiodionin b (135) formed
hydrogen bonds with Gly175 and Ile176 and a hydrophobic
interaction with Tyr127. All compounds formed interactions
with the same amino acids (Figure 3).

NQO1 must be activated to display antioxidant activity.
According to Strandback et al. [124], the addition of N-(2-
bromophenyl)pyrrolidine-1-sulfonamide (BPPSA) stabilized
the flexible C-terminal region of the protein, resulting in the
slower incorporation of deuterium. The amino acids
involved in the bond were Tyr127, Thr128, and the catalytic
residues Tyr156 and His162.
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Figure 1: Lignans considered to be potentially active according to the Random Forest model, with multitarget effects and no predicted
toxicity.
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Compounds 6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-tri-
methoxyphenyl)oxolan-2-yl] -4-methoxy-1, 3-benzodioxole
(64) and Ococymosin (116) interacted well with PDE5. Com-
pound 64 was able to form three hydrogen bonds with
Met816, Tyr612, and Gln817 and four hydrophobic interac-

tions with the amino acids Cys677, Val782, Phe786, and
Phe820. It also formed a steric interaction with Ile680. Oco-
cymosin formed two hydrogen bonds with Tyr612 and
Cys677 and five hydrophobic interactions with Ile680,
Ala779, Val782, Phe786, and Phe820 (Figure 4).
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Experimental studies carried out by Wang et al. [125]
showed that the drug vardenafil is a potent PDE5 inhibitor,
binding to several amino acids in the active site. The amino acids

that interacted with vardenafil are Tyr612, Leu765, Ile768,
Ala767, Ile680, Cys677, Ty676, Ile813, Met816, Gln817, and
Phe820. Most of these amino acids also interacted with lignans.
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4. Conclusions

AD is a complex and multifactorial disease, comprising a
variety of aberrant cellular and molecular processes in dif-
ferent cell types and brain regions. The activation and
inactivation of a variety of enzymes can contribute to neu-
roprotection or disease progression. Therefore, AD therapy
must be able to block or compensate for various abnormal
pathological events [38].

Few drugs are available for AD treatment. In addition,
AD pathophysiology is not well-understood, and the identifi-
cation of targets for disease treatment remains a major chal-

lenge for drug discovery. Therefore, in this study, we
investigated several potential targets that are directly and
indirectly involved in the development and progression of
AD, through oxidative stress mechanisms, aiming to explore
new targets and to design effective drugs, with minimal side
effects, for AD treatment. We examined a set of lignans and
used virtual screening to select compounds with potential
multitargeting effects for the treatment of AD.

The predictive models built in this study obtained excel-
lent performance results, with accuracies greater than 73%.
To increase the predictive power and decrease the number
of false positives generated by these models, a combined
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analysis was used, based on both ligand and structure. The
combined analysis was able to identify potentially active
molecules, based on the Random Forest and multitargeting
models.

Out of 159 total lignans, several potentially active com-
pounds were identified: three compounds with probabilities
of activity ranging from 50% to 61% for JNK-3, 43
compounds with a 52-72% probabilities for PTP1B, 57
compounds with 51%–72% probabilities for PDE5, 27
compounds with probabilities between 50% and 61% for
COX-2, and 27 compounds with probabilities between 50%
and 81% for iNOS; 111 compounds with probabilities rang-
ing from 50% to 64% were identified for Nrf2; nine com-
pounds with probabilities ranging from 51% to 78% were
identified for NOX1, and 156 compounds were selected, with
probabilities ranging from 27% to 100%, for NQO1. We also
identified 139 potentially active molecules for two to five tar-
get enzymes, from the entire lignan set analyzed.

Among the 139 lignans that were considered to be poten-
tially active and multitargeting, 92 showed good absorption,
bioavailability, and solubility, ranging from soluble to mod-
erately soluble. Among the compounds that were considered
to be multitargeting, we selected those likely to cross the
blood-brain barrier, through an in silico evaluation, resulting
in the identification of nine lignans, which were then evalu-
ated for toxicity. The compounds austrobailignan (06),
anolignan c (11), 7-epi-virolin (19), 6-[(2R,3R,4R,5R)-3,4-
dimethyl-5-(3, 4,5-trimethoxyphenyl)oxolan-2-yl]-4-meth-
oxy-1, 3-benzodioxole (64), ococymosin (116), and mappio-
doinin b (135) were considered to have no toxicity risks for
the evaluated parameters.

We suggest that lignans, especially austrobailignan (06),
anolignan c (11), 7-epi-virolin (19), 6-[(2R,3R,4R,5R)-3,4-
dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-meth-
oxy-1, 3-benzodioxole (64), ococymosin (116), and mappio-
doinin b (135), have high probability of activity against
several enzymes that may be involved in AD pathogenesis
and may confer neuroprotective effects, with low toxicity.
The proposed compounds are projected as possible solutions
that need to be validated experimentally.
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Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Amyloid β- (Aβ-) induced mitochondrial dysfunction
may be a primary process triggering all the cascades of events that lead to AD. Therefore, identification of natural factors and
endogenous mechanisms that protect neurons against Aβ toxicity is needed. In the current study, we investigated whether
alpha-linolenic acid (ALA), as a natural product, would increase insulin and IGF-I (insulin-like growth factor I) release from
astrocytes. Moreover, we explored the protective effect of astrocytes-derived insulin/IGF-I on Aβ-induced neurotoxicity, with
special attention paid to their impact on mitochondrial function of differentiated SH-SY5Y cells. The results showed that ALA
induced insulin and IGF-I secretion from astrocytes. Our findings demonstrated that astrocyte-derived insulin/insulin-like
growth factor I protects differentiated SH-SY5Y cells against Aβ1-42-induced cell death. Moreover, pretreatment with
conditioned medium (CM) and ALA-preactivated CM (ALA-CM) protected the SH-SY5Y cells against Aβ1-42-induced
mitochondrial dysfunction by reducing the depolarization of the mitochondrial membrane, increasing mitochondrial biogenesis,
restoring the balance between fusion and fission processes, and regulation of mitophagy and autophagy processes. Our study
suggested that astrocyte-derived insulin/insulin-like growth factor I suppresses Aβ1-42-induced cytotoxicity in the SH-SY5Y cells
by protecting against mitochondrial dysfunction. Moreover, the neuroprotective effects of CM were intensified by preactivation
with ALA.

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegener-
ative disorder being the principal cause of dementia among
the elderly. The major pathological hallmarks of AD are senile
plaques and neurofibrillary tangles (NFTs) along with the loss
of neurons and synapse in the AD brains [1]. Most of these
changes appear in the brains of patients long before the onset
of clinical symptoms of cognitive decline [2]. A recent study
demonstrated that besides these know hallmarks, mitochon-
drial malfunctions may play a distinct role in AD [3].

Mitochondria are highly dynamic organelles with
morphology and numbers being regulated by fission and
fusion proteins [4]. The balance between fusion and fission
processes is essential to maintain the health of the neuronal
cells. Both processes are largely regulated by the guanosine
triphosphatase (GTPase) enzymes. Mitochondrial fusion is
regulated by the GTPases including mitofusin 1 (Mfn1),
mitofusin 2 (Mfn2), and optic atrophy protein 1 (OPA1),
and helps to maintain tubular mitochondrial network and
optimal mitochondrial functions. Whereas the fission
process is regulated by dynamin-related protein-1 (Drp1)
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and mitochondrial fission 1 protein (Fis1). Excessive mito-
chondrial fission leads to impaired mitochondrial function
and neuronal death in AD [5]. The fusion/fission process is
a part of the mitochondrial biogenesis in which the cells
increase their mitochondrial mass. However, the mitochon-
drial biogenesis, another key mitochondrial function, is also
impaired in AD. The level of proteins regulating the
mitochondrial biogenesis such as peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α),
nuclear respiratory factor 1 and 2 (NRF1, NRF2), and mito-
chondrial transcription factor A (mTFA) was found to be sig-
nificantly reduced in human AD hippocampus and cellular
models overexpressing APP Swedish mutation [6]. Due to
the hypothesis that Amyloid β- (Aβ-) induced mitochondrial
dysfunction may be the primary process triggering all the cas-
cades of events that lead to AD, identification of the natural
factors and the endogenous mechanisms that protect neurons
against Aβ toxicity is needed. It has been suggested that neu-
rons may be protected against Aβ-induced damage through
activation of the insulin and insulin-like growth factor I
(IGF-I) signaling pathways [7, 8]. In recent years, it has been
reported that physiological protection against Aβ-induced
damage can be mediated by astrocyte-derived insulin and
IGF-I [8]. Moreover, the protective role of IGF-I and insulin
has been confirmed in animal models of AD [9, 10].

Additionally, growing attention has been paid to the
search for compounds from natural sources that can protect
neurons against Aβ-induced mitochondrial and synaptic
toxicities. Alpha-linolenic acid (ALA) is the plant-derived
ω-3 fatty acid. Previous studies showed that consumption
of dietary ALA reduced the risk of cardiovascular disease
and stroke [11, 12]. Gao et al. demonstrated that long-term
dietary intake of ALA improved the cognitive function
through the activation of extracellular signal-regulated kinases
(ERK) and Akt signaling in the aged-rat model [13]. However,
the direct effect of ALA on the secretory activity of astrocytes
has not been studied yet. Moreover, very little data have been
reported on the effects of astrocytes-derived insulin/IGF-I on
Aβ-induced mitochondrial dysfunction.

Therefore, in the current study, we investigated whether
ALA would increase insulin and IGF-I secretion from
astrocytes. Moreover, we explored the protective effect of
astrocytes-derived insulin/IGF-I on Aβ-induced neurotoxic-
ity, with special attention paid to their impact on mitochon-
drial function of differentiated SH-SY5Y cells.

2. Materials and Methods

2.1. Reagents and Antibodies. Alpha-linolenic acid (ALA),
Human Beta Amyloid 1-42 (Aβ1-42), All-trans retinoic acid
(RA), Insulin, Human Insulin ELISA Kit, Human IGF-I
ELISA Kit, 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetra-
zolium bromide (MTT), bovine serum albumin (BSA), and
acridine orange (AO) were purchased from Sigma Aldrich,
Saint Louis, MO, USA. Insulin Degrading Enzyme (IDE)
was purchased from Abcam Inc., USA. Antibodies to the fol-
lowing targets were used: rabbit anti-TOMM20 antibody
(Abcam Inc.), mouse anti-PARKIN (Abcam Inc.), rabbit
anti-Synaptophysin (GeneTex, Inc., Alton Pkwy Irvine, CA,

USA), mouse anti-β3-Tubulin (TUJ 1; Santa Cruz Biotech-
nology, Dallas, CO, USA), horseradish peroxidase- (HRP-)
conjugated goat anti-rabbit IgG antibodies (Abcam Inc.),
HRP-conjugated goat anti-mouse IgG antibodies (Abcam
Inc.), Alexa Fluor™488-labeled chicken anti-mouse IgG
(Thermo Fisher Scientific, Waltham, MA, USA), Alexa
Fluor™568-conjugated goat anti-rabbit IgG (Thermo Fisher
Scientific).

2.2. Aβ Preparation. Amyloid β1-42 (Aβ1-42) was prepared as
described previously [14]. Dried synthetic Aβ1–42 peptide
(Sigma Aldrich) was first dissolved in dimethylsulfoxide
(DMSO) and then diluted in phosphate buffer saline (PBS)
to obtain a 250mM stock solution. This solution was incu-
bated at 4°C for at least 24 h and stored at -80°C. Before
use, the solution was centrifuged at 12 000 g for 10min, and
the supernatant was used as an oligomeric Aβ1-42.

2.3. Cell Cultures

2.3.1. Human Astrocyte Cells Cultures. The Normal Human
Astrocytes (NHA) were obtained from the Lonza Basel, Swit-
zerland. The cells were cultured in ABM™ Basal Medium
(NHA medium, Lonza Basel) supplemented with AGM™
SingleQuotsTM Supplements (Lonza Basel) required for
growth of Astrocytes.

2.3.2. Preparation of Astrocyte-Conditioned Medium (CM)
and ALA-Preactivated CM (ALA-CM). After seeding, the
NHA cells were allowed to grow for 24–48 hours or until
60-70% confluence in six-well plates. Next, NHA cultures
were grown in the medium containing NHA-Medium and
neurobasal medium (the phase II differentiation medium
DM II) (1 : 1). After 24h, the medium was replaced with
DM II medium. The NHA cells were grown in medium
without or with ALA at different doses (10 nM, 50 nM,
100 nM, 250nM) for 24h to obtain ALA-preactivated CM
(ALA-CM) and control CM, respectively. A dose of 10nM
ALA was used for the following experiments (Figures 1).

2.3.3. Human Neuroblastoma SH-SY5Y Cell Cultures. The
human SH-SY5Y cells were purchased from the European
Collection of Cell Cultures (ECAAC, cat.94030304, passage
11). The cells were initially cultured in growth media (GM),
constituted by Minimum Essential Medium Eagle (MEM,
Sigma Aldrich) supplemented with 15% (v/v) heat-
inactivated fetal bovine serum (hiFBS), 2mML-glutamine
(Sigma Aldrich), 50 IU/mL/50μg/mL penicillin/streptomy-
cin (Sigma Aldrich), 20μg/mL gentamicin sulphate (Biowest,
Nuaillé, France); and 1μg/mL Fungizone/amphotericin B
(Biowest), at 37°C in a humidified atmosphere containing
5% CO2, and kept below ECAAC passage +15 to avoid cell
senescence [15].

(1) Differentiation and Treatments. The differentiation of the
SH-SY5Y cells was carried out in two steps using phase 1
(DM I) and phase 2 (DM II) media. The presented differen-
tiation protocol was modified from Forster et al. [15] and
Mackenzie et al. [16]. The DM I medium was MEM (Sigma
Aldrich) containing 2.5% (v/v) hiFBS, 2mML-glutamine
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(Sigma Aldrich), 50 IU/mL/50μg/mL penicillin/streptomy-
cin (Sigma Aldrich). The DM I was supplemented with
10μM RA (Sigma Aldrich) immediately before adding the
medium to the cells. The DM II medium was Neurobasal
medium minus phenol red (Invitrogen, Life Technologies,
Saint Aubin, France), supplemented with 2mM Glutamax I
(Invitrogen, Life Technologies), 1x B-27 supplement (50x,
Invitrogen, Life Technologies), 20mM KCl (Sigma Aldrich),
and 50 IU/mL/50μg/mL penicillin/streptomycin (Sigma
Aldrich). The DM II was supplemented with 10μM RA
(Sigma Aldrich) and 50ng/mL Human BDNF (PeproTech
EC, Ltd, London, UK) immediately before adding the
medium to the cells. On the day 6th, the SH-SY5Y cells
(differentiated) were pretreated for 1h with CM or ALA-CM
before the addition of 5μM Aβ1-42 for the next 24h. Prelimi-
nary experiments were carried out with increasing concentra-
tions of Aβ to choose the respective half-maximal inhibitory
concentrations—IC50.

2.4. Cell Viability and Cytotoxicity Assay. Cell viability was
based on the ability of viable cells to convert soluble MTT
[3-(4,5n-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium
bromide] (Sigma Aldrich) into an insoluble purple formazan.
Cells were seeded in 96-well plates. Briefly, cells grown and
differentiated as described above were incubated for 4 h at
37°C with MTT (0.5mg/mL in Neurobasal medium without
phenol red). Then, the MTT solution was removed and
water-insoluble formazan was immediately dissolved in

DMSO (100μL per well). The amount of formazan was
measured at 570 nm with SpectraMax iD3 Multi-Mode
Microplate Reader with a version of SoftMaxPro7.1Setup
Software (Molecular Devices, LLC., San Jose, CA, USA).

Cytotoxicity was determined by measuring the release of
LDH using the Pierce LDH Cytotoxicity Assay Kit (Thermo
Fisher Scientific) according to the manufacturer’s instructions.
The absorbance was measured at 490nm and 680nm by Spec-
traMax iD3 Multi-Mode Microplate Reader with a version of
SoftMaxPro7.1Setup Software (Molecular Devices, LLC.). To
determine LDH activity, we subtracted the 680nm absorbance
value (background) from the 490nm absorbance value before
calculation of % cytotoxicity [(LDH at 490nm)—(LDH at
680nm)]. The percentage of the LDH release was normalized
to the condition with the least amount of cell death and
divided by a maximum lysis control.

2.5. Hoechst Dye 33342 and Propidium Iodide (PI) Double
Staining. The SH-SY5Y cells were seeded onto 24-well cul-
ture plates (Corning-Costar, Sigma Aldrich, Saint Louis,
MO, USA) and were differentiated as described above. On
the day 6th, the SH-SY5Y cells (differentiated) were pre-
treated for 1 h with CM or ALA-CM before the addition of
5μM Aβ1-42 for the next 24h. Following 24 h incubation,
the SH-SY5Y cells were subjected to vital double staining
with PI/Hoechst 33342 and evaluated for nuclear morpho-
logical changes. Briefly, the SH-SY5Y cells were incubated
for 30min at 37°C (humidified 5% CO2/95% air incubator)

60-70% of
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Figure 1: Scheme of the experimental procedures. The first step of the research involved the preparation of astrocyte-conditioned medium
(CM) and Alpha-linolenic acid-preactivated CM (ALA-CM). The Normal Human Astrocytes (NHA) cells were allowed to grow until 60-70%
confluence. Then, NHA cells were grown in the medium containing NHA-Medium and neurobasal medium (the phase II differentiation
medium DM II) (1 : 1). After 24 h, the medium was replaced with DM II medium alone or with 10 nM ALA for the next 24 h incubation
to obtain CM and ALA-preactivated-CM. The second step included the evaluation of the neuroprotective effect of CM and ALA-CM on
Amyloid β1-42- (Aβ1-42-) induced neurodegeneration of differentiated SH-SY5Y cells. On the day 6th, the SH-SY5Y cells (differentiated)
were pretreated for 1 h with CM or ALA-CM before the addition of 5μM Aβ1-42.
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with PI (1μg/mL) and HO33342 (5μg/mL) (Thermo Fisher
Scientific), both dissolved in Neurobasal Medium without
phenol red. Before measurement, the staining medium was
replaced with fresh Neurobasal Medium. Hoechst 33342 is a
cell-permeant nuclear counterstain emitting blue fluorescence
when bound to DNA, and PI is a membrane impermeant
nuclear dye that emits red fluorescence in dead cells, as previ-
ously described [17]. The fluorescence of stained SH-SY5Y
cells was measured using excitation/emission wavelengths for
Hoechst 33342 350/461nm and 535/617nm for PI, respec-
tively, by SpectraMax iD3Multi-Mode Microplate Reader with
SoftMaxPro7.1Setup Software (Molecular Devices, LLC.). The
stained cells were also analysed in inverted fluorescence
microscopy (Olympus IX73, Japan).

2.6. Mitochondrial Membrane Potential (ΔΨm). Mitochon-
drial depolarization was evaluated using JC-1 Mitochondrial
Membrane Potential Assay Kit (Cayman Chemical Com-
pany, Ann Arbor, Michigan USA) according to the manufac-
turer’s protocol. The SH-SY5Y cells were seeded in 96-well
black plates (Corning-Costar, Sigma Aldrich) and were
differentiated as above. On the day 6th, the SH-SY5Y cells
(differentiated) were pretreated for 1 h with CM or
ALA-CM before the addition of 5μM Aβ1-42 for the next
24 h. Following incubation for 24 h, 10μL JC-1 Staining Solu-
tion (JC-1 Staining Solution was prepared by diluting the
reagent 1 : 10 in the culture medium used to culture) was
added to each well, and the cells were cultured in the CO2
incubator for 30min at 37°C. Then, the plate was centrifuged
for 5min at 400 g at room temperature. The supernatant was
removed, and the plate was rinsed with assay buffer and cen-
trifuged again (the cycle was repeated 5 times). Properly, in
healthy cells, JC-1 forms J-aggregates, which display strong
fluorescence intensity with excitation and emission at
535nm and 595nm, respectively. In apoptotic or unhealthy
cells, JC-1 exists as a monomer, which shows a strong fluo-
rescence intensity with excitation and emission at 485 nm
and 535nm, respectively. Fluorescence of J-aggregates and
J-monomers was measured using excitation/emission wave-
lengths of 535/595 nm and 485/535 nm, respectively, by
SpectraMax iD3 Multi-Mode Microplate Reader with Soft-
MaxPro7.1Setup Software (Molecular Devices, LLC.) and
inverted fluorescence microscopy (Olympus IX73). The ratio
of fluorescence intensity of J-aggregates to the fluorescence
intensity of monomers was used to measure the ΔΨm
of the SH-SY5Y cells. Mitochondrial depolarization was
indicated by an increase in the proportion of cells emitting
green fluorescence.

2.7. Immunocytofluorescence. The SH-SY5Y cells were seeded
onto 8-chamber slides (0.8 cm2/well; Lab-Tek, Thermo
Fisher Scientific) and were differentiated as described above.
On the day 6th, the SH-SY5Y cells (differentiated) were pre-
treated for 1 h with CM or ALA-CM before the addition of
5μM Aβ1-42 for the next 24 h. Following 24h incubation,
the SH-SY5Y cells were fixed (4% paraformaldehyde,
15min, RT) and permeabilized by subsequent incubation
with 0.5% Triton X-100 (10min, RT) and nonspecific sites
blocked with 1% BSA and 5% normal donkey serum (NDS;

30min, RT). Next, the cells were incubated with mouse
monoclonal anti-β3 Tubulin antibody (TUJ 1; Santa Cruz
Biotechnology, Inc.; 1: 50 in 1% BSA-PBS, for 1 h, RT), rabbit
anti-Synaptophysin (GeneTex, Inc.; 1 : 500 in 1% BSA-PBS,
for 1 h, RT), mouse anti-PARKIN (Abcam Inc.; 1 : 200 in
1% BSA-PBS, for 1 h, RT), rabbit anti-TOMM20 antibody
(Abcam Inc.; 1 : 500 in 1% BSA-PBS, for 1 h, RT), and Alexa
Fluor™488-conjugated donkey anti-mouse IgG or Alexa
Fluor™568-conjugated goat anti-rabbit IgG (Invitrogen, Life
Technologies; 1 : 200 in 1% BSA-PBS, for 1 h, RT). The nuclei
were visualized by staining with Hoechst 33342 (Thermo
Fisher Scientific; 5μg/mL, 30min, RT). In all cases, slides
were mounted with Mowiol (Calbiochem-Novabiochem
Co. La Jolla, CA, USA) and fluorescence was evaluated in
the fluorescence microscope (Olympus IX73). Quantification
of fluorescent intensity of TUJ 1, Synaptophysin, TOMM20,
and PARKIN in untreated and treated cells was calculated
according to the following formula:

Fluorescence intensity = Integrated Density – ðSum area
of selectedcells xMeanfluorescenceof backgroundreadingsÞ.

Fluorescence intensity was quantitated using the cellSens
Entry Version 1 software platform (Olympus Camera, Japan)
and Fiji (ImageJ) open-source image processing package [20].

2.8. Assessment of Insulin and Insulin-Like Growth Factor I by
Enzyme-Linked Immunosorbent Assay. NHA cell culture
supernatants were collected and centrifuged at 10 000 g, 4°C
for 5min to remove cell debris. Levels of secreted insulin
and IGF-I in cell culture supernatants were measured using
a commercially available ELISA kit, (Sigma Aldrich) accord-
ing to the manufacturer’s instructions.

2.9. Detection and Quantification of Autophagic Cells by Vital
Staining with Acridine Orange. The SH-SY5Y cells were
seeded onto 24-well culture plates (Corning-Costar, Sigma
Aldrich) and differentiated as mentioned above. On the day
6th, the SH-SY5Y cells (differentiated) were pretreated for 1h
with CM or ALA-CM before the addition of 5μM Aβ1-42 for
the next 24h. Following the 24h incubation, the SH-SY5Y cells
were subjected to vital staining with acridine orange (AO). The
SH-SY5Y cells were incubated with AO (1μg/mL) for 10min.
Before measurement, the staining medium was replaced with
fresh Neurobasal Medium without phenol red and analysed
in the Olympus IX-73 inverted fluorescence microscope.
Quantification of acidic vesicular organelles (AVOs) was calcu-
lated as red to green fluorescence intensity ratio (R/G-FIR) in
eachmicroscopic field, as described previously [18, 19]. At least
10 replicates for each treatment as well as untreated control
cells were quantitated using the cellSens Entry Version 1 soft-
ware platform (Olympus Camera) and Fiji (ImageJ) open-
source image processing package [20].

2.10. Quantitative Reverse Transcriptase PCR (RT-qPCR).
Total RNA was extracted from NHA and the SH-SY5Y cells
using the Universal RNA Purification Kit (EURX, Poland)
according to the manufacturer’s protocol. One microgram of
total RNA was reverse transcribed to cDNA using High
Capacity cDNA Reverse Transcription Kit with RNase
Inhibitor (Invitrogen, Life Technologies). For RT-qPCR, the
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quantification of expression changes was performed 5x HOT
FIREPol Eva Green qPCR Mix Plus (Solis BioDyne, Tartu,
Estonia) and CFX Connect (Bio-Rad, Hercules, California,
USA). Data were normalized to the housekeeping gene and
displayed as fold-change compared to the control (DM) using
the 2−ΔΔCt method. Primers are listed in Table 1.

2.11. Statistical Analysis. Data from at least three indepen-
dent experiments were expressed as the mean ± standard
error (SEM). Statistical analyses were performed using the
one-way analysis of variance (ANOVA) followed by Tukey’s
multiple comparison post-test and with P value being
adjusted for multiple comparisons. P values of less than
0.05 were considered statistically significant. Statistical differ-
ences between the treated cells and untreated control cells
were indicated by asterisks (∗ for P < 0:05; ∗∗ for P < 0:01;
∗∗∗ for P < 0:001; #∗∗∗ versus the control group). Statistical
analyses were performed using GraphPad PrismTM version
5.0 software (GraphPad Software Inc., San Diego, CA, USA).

3. Results

3.1. Effect of Alpha-Linolenic Acid on the Viability and
Secretory Activity of the NHA Cells. To determine the optimal
dose of ALA, which would stimulate astrocytes to secrete
insulin and IGF-I, the NHA cells were treated for 24 h with
ALA at different doses (10 nM, 50 nM, 100 nM, and
250nM). First, we checked the effect of ALA on the viability
of the NHA cells by MTT assay. As illustrated in Figure 2,
10 nM and 50nM ALA treatments increased the NHA cells
viability to 120% compared with the control group (100%;
P < 0:05). When the dose of ALA was increased to 250nM,
the viability decreased to 86% (Figure 2).

Then, we assessed by RT-qPCR the effect of different
doses of ALA on IGF-I and insulin mRNA production in
the NHA cells (Figures 3(a) and 3(b)). We found that
10 nM ALA treatment significantly increased the mRNA
expression of IGF-I (Figure 3(a); P < 0:001) and insulin
(Figure 3(b); P < 0:01). Likewise, 10 nM ALA treatment-
induced astrocytes to secrete IGF-I (Figure 3(c); P < 0:05)
and insulin (Figure 3(d); P < 0:001) into the culture medium.

Based on the above results, a dose of 10 nM ALA was
used for the experiments.

3.2. Effect of CM and ALA-CM on Cell Viability of
Differentiated SH-SY5Y Cells. We hypothesized that com-
pound secreted by astrocytes might exert protective effects
against Aβ-induced cytotoxicity. To investigate the potential
neuroprotective effects of CM and ALA-CM, differentiated
SH-SY5Y cells were pretreated with CM and ALA-CM for
1 h before Aβ1-42 treatment.

We observed that Aβ1-42 treatment effectively inhibited
the cell viability of differentiated SH-SY5Y cells in a dose-
dependent manner as compared with the control (Figure 4;
P < 0:001). When the SH-SY5Y cells were exposed to 5μM
of Aβ1-42 for 24 hours, cell viability was reduced to approxi-
mately 50% of the control (Figure 4; P < 0:001). Thus, the
concentration of 5μM of Aβ1-42 was used for further
investigations.

As shown on Figure 5, the CM pretreatment significantly
increased the cell viability (P < 0:001), and restored the cell
viability (to 79.16%) compared to control system (64%;
DM+Aβ1−42) (P < 0:01). Moreover, the ALA-CM pretreat-
ment intensified the neuroprotective effect of CM (Figure 5;
P < 0:01). A similar effect was observed after treatment of
the SH-SY5Y cells with insulin (Figure 5(c); P < 0:01).

Table 1: Primers and their sequences used to identify genes in the quantitative real-time reverse-transcription-polymerase chain reaction
(RT-qPCR).

Gene name Forward primer sequences Reverse primer sequences

Mitophagy genes

PINK1 GGACGCTGTTCCTCGTTA ATCTGCGATCACCAGCCA

PARKIN CCCACCTCTGACAAGGAAACA TCGTGAACAAACTGCCGATCA

Autophagy genes

ATG5 ATGATAATGGCAGATGACAAGG TCAGTCACTCGGTGCAGG

LC3β AAAGGAGGACATTTGAGCAG AATGTCTCCTGGGAAGCGTA

Mitochondrial biogenesis genes

TFAM GTGGGAGCTTCTCACTCTGG TAGGGCTTTTTCTCCTGCAA

PGC1α CACCAGCCAACACTCAGCTA GTGTGAGGAGGGTCATCGT

Mitochondrial dynamics genes

MFN2 AATCTGAGGCGACTGGTGA CTCCTCCTGTTCGACAGTCA

OPA1 GGCCAGCAAGATTAGCTACG ACAATGTCAGGCACAATCCA

DRP1 GGCAACTGGAGAGGAATGC CTTTTTGTGGACT

Synaptic genes

PSD95 CTTCATCCTTGCTGGGGGTC TTGCGGAGGTCAACACCATT

Synaptophysin CTGCGTTAAAGGGGGCACTA ACAGCCACGGTGACAAAGAA

Reference gene

GAPDH GAAGGTGAAGGTCGGAGT GAAGATGGTGATGGGATTTC
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Additionally, the insulin pretreatment significantly increased
the SH-SY5Y cell viability compared to the control model
(DM+Aβ1−42) (Figure 5(c); P < 0:01).

Next, to check whether insulin and IGF-I presence in CM
and ALA-CM was responsible for the neuroprotective effect,
we treated CM and ALA-CM with the insulin-degrading
enzyme (IDE), which degrades both insulin and IGF-I.
Cotreatment of CM and ALA-CM with IDE significantly
decreased the cell viability to 90.53% and 93.3%, compared
to CM and ALA-CM groups, respectively (Figure 5; P < 0:01).

3.3. The CM and ALA-CM Pretreatment Reversed the Aβ1-42-
Induced Cytotoxicity in Differentiated SH-SY5Y Cells. The
inhibitory effects of CM and ALA-CM on Aβ1-42–induced
cytotoxicity were evaluated by measuring LDH levels and
double-stained with Hoechst 33342 and propidium iodide.

Differentiated SH-SY5Y cells treated with Aβ1-42 for 24 h
expressed 12.25% LDH release as compared to the control
group (4%) (Figure 6(a); P < 0:001). However, the CM and
ALA-CM pretreatment attenuated LDH activity. The CM-
pretreatment markedly decreased LDH release to 8.08%
(Figure 6(a); P < 0:001). In addition, the ALA-CM pretreat-
ment showed a stronger cytoprotective effect than CM as
LDH release was decreased to 4.6% (Figure 6(a); P < 0:001).

Similar to the LDH release results, the cytoprotective
effect of CM and ALA-CM was confirmed by using double-
stained with Hoechst 33342 and propidium iodide
(Figures 6(a) and 6(b)). Data indicated that Aβ1-42 treated
cells (DM+Aβ1−42) had a significantly increased (P < 0:001)
ratio of PI/Hoechst fluorescence signal (Figure 6(b)),
which resulted from the increase in cell death. The CM
and ALA-CM pretreatment decreased (P < 0:001) the ratio

of PI/Hoechst fluorescence signal as compared to the control
group (Figure 6(b)). Moreover, the CM pretreatment
decreased cell death in the SH-SY5Y cells treated with Aβ1-42
when compared with DM+Aβ1−42 group (Figure 6(b);
P < 0:05). Interestingly, ALA preactivated CM significantly
intensified the protective effect of CM (Figure 6(b); P < 0:001).
In contrast, IDE significantly attenuated the protective effect
of CM and ALA-CM (Figures 6(a) and 6(b), P < 0:001).

A similar effect was observed after the treatment of differ-
entiated SH-SY5Y cells with insulin (Figure 6(c); P < 0:05;
Figure 6(d); P < 0:001, Figure 6(e)). Moreover, the insulin pre-
treatment reversed the Aβ1-42-induced cytotoxicity in differ-
entiated SH-SY5Y cells. (Figure 6(c); P < 0:001, Figure 6(d);
P < 0:01, Figure 6(c)).

These results indicated that astrocyte-derived insulin/in-
sulin-like growth factor I protect differentiated SH-SY5Y
cells against Aβ1-42-induced cell death.

3.4. The CM and ALA-CM Pretreatment Reversed the Aβ1-42-
Induced Synaptic Toxicity in Differentiated SH-SY5Y Cells.
To elucidate the effect of CM and ALA-CM on Aβ1-42-
induced synaptic toxicity in differentiated SH-SY5Y cells,
we measured the expression of synaptic markers through
RT-qPCR and immunocytofluorescence methods. RT-
qPCR results indicated that pretreatment with CM increased
mRNA levels of Synaptophysin and PSD95 (Figures 7(a) and
7(b); P < 0:001) in comparison to the control group.
Moreover, ALA preactivated CM significantly intensified this
effect (P < 0:001). However, the Aβ1-42 treatment markedly
decreased mRNA levels of Synaptophysin (Figure 7(a);
P < 0:001) andPSD95 (Figure 7(b);P < 0:05)when compared
to the control group. In contrast, the CM and ALA-CM pre-
treatment increased levels of PSD95 in the SH-SY5Y cells
treated with Aβ1-42 as compared with DM+Aβ1−42 group
(Figure 7(b); P < 0:001). Cotreatment of CM and ALA-CM
with IDE significantly attenuated their effect on mRNA
expression of synaptic markers.

Further evaluation of the effect of CM and ALA-CM on
Aβ1-42-induced synaptic toxicity and neuronal phenotype
of differentiated SH-SY5Y cells was established by using
immunocytofluorescence staining with antibodies against
Synaptophysin and microtubule component β3-tubulin TUJ
1 (Figures 7(c)–7(f)). Similar to RT-qPCR results, the Aβ1-42
treated cells (DM+Aβ1−42) had a decreased Synaptophysin
(Figures 7(c) and 7(e); P < 0:001) and TUJ 1 (Figures 7(d)
and 7(f); P < 0:001) fluorescence intensity. Moreover,
the Aβ1-42 treatment induced fragmentation of neuritis
(Figure 7(d)). In contrast, the CM and ALA-CM pre-
treatment reversed Aβ1-42–induced synaptic toxicity in differ-
entiated SH-SY5Y cells (Figures 7(c)–7(f); P < 0:05). More-
over, the insulin pretreatment reversed the Aβ1-42-induced
decrease of TUJ 1 fluorescence intensity and fragmentation
of neuritis in differentiated SH-SY5Y cells (Figures 7(d) and
7(f); P < 0:001). Cotreatment of CM and ALA-CM with IDE
attenuated these effects.

3.5. The CM and ALA-CM Pretreatment Protected the SH-
SY5Y Cells against Aβ1-42-Induced Mitochondrial Dysfunction.
Mitochondrial dysfunction is proposed to participate in cellular
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Figure 2: Effect of Alpha-linolenic acid (ALA) on the viability of
the Normal Human Astrocytes (NHA). The viability of the NHA
cells was increased in 10 nM and 50 nM ALA treatments. The
NHA cells were exposed for 24 h to ALA at different doses
(10 nM, 50 nM, 100 nM, and 250 nM). The obtained results are
presented as a percentage of the control value. One-way
ANOVA test for viability followed by Tukey’s multiple
comparisons was used to analyse the data. Results are presented
as means ± SEM (n = 6 − 12). Statistical differences between the
treated cells and untreated control cells are indicated by
asterisks (∗ for P < 0:05; ∗∗ for P < 0:01; ∗∗∗ for P < 0:001).

6 Oxidative Medicine and Cellular Longevity



apoptosis. Depolarization of the mitochondrial membrane is a
sensitive indicator of mitochondrial function. Therefore, the
Δψm in the SH-SY5Y cells was evaluated by detecting the
red/green fluorescence intensity ratio of JC-1 staining
(Figures 8(a)–8(c) and 9(b)). The positive control was the
SH-SY5Y cells treated with carbonyl-cyano-m-chlorophenyl-
hydrazone-CCCP (10μM). CCCP causes uncoupling of the
electron transport of the respiratory chain, reducing the mito-
chondrialmembrane potential, which consequently induces cell
death.As shown in Figures 8(a) and 8(b), treatment withAβ1-42
significantly increased green fluorescence intensity in the SH-
SY5Y cells (P < 0:001). The Aβ1-42 exposure has a similar effect
to CCCP suggesting that Aβ1-42 significantly reduced Δψm.
Whereas pretreatment with CM and ALA-CM remarkably
reduced green fluorescence intensity and increased red fluores-
cence intensity in the SH-SY5Y cells treatedwithAβ1-42 as com-
pared with DM+Aβ1−42 treated group (P < 0:001). However,

cotreatment of CM and ALA-CM with IDE significantly
decreased Δψm (P < 0:001).

Similarly, the insulin treatment increased red fluores-
cence intensity in differentiated SH-SY5Y cells (Figure 8(c);
P < 0:01). Additionally, the insulin pretreatment significantly
increased Δψm when compared to DM+Aβ1−42 treated
group (Figure 8(c); P < 0:05).

This finding indicates that astrocyte-derived insulin/in-
sulin-like growth factor I inhibits Aβ1-42-induced depolar-
ization of the mitochondrial membrane in differentiated
SH-SY5Y cells.

Then, we examined the effect of CM and ALA-CM on
mRNA expression of mitochondrial biogenesis and dynamics
genes. First, we analysedmRNA levels of the PGC-1α gene and
its target genemTFA, which is directly involved in mitochon-
drial biogenesis. As shown in Figures 10(a) and 10(b), treat-
ment with Aβ1-42 significantly decreased mRNA transcripts
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Figure 3: Effect of Alpha-linolenic acid (ALA) on mRNA and protein expression of Insulin and Insulin-Like Growth Factor I (IGF-I).
Quantitative reverse transcriptase PCR (RT-qPCR) results indicated that 10 nM ALA treatment significantly increased the mRNA
expression of IGF-I and Insulin in the NHA cells (a, b). Moreover, the ELISA analysis showed that 10 nM ALA significantly
increased the release of IGF-I and insulin from the NHA cells to the medium (c, d). The NHA cells were exposed for 24 h to ALA
at different doses (10 nM, 50 nM, 100 nM, and 250 nM). One-way ANOVA followed by Tukey’s multiple comparisons test at the
0.05 level was used to determine differences between treated cells and untreated control cells. Results are presented as means ± SEM
(n = 3 − 8). RT-qPCR fold increase was calculated according to the formula described in the Materials and Methods section.
Statistical differences between treated cells and untreated control cells are indicated by asterisks (∗ for P < 0:05; ∗∗ for P < 0:01; ∗∗∗

for P < 0:001).
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levels of PGC-1α (P < 0:05) and its downstream target gene
mTFA (P < 0:001). The pretreatment with CM and ALA-CM
increased mRNA levels of PGC-1α and mTFA (P < 0:001)
compared to the control. Moreover, pretreatment with CM
and ALA-CM reversed the inhibition of PGC-1α (P < 0:05)
and mTFA (P < 0:001) mRNA expression caused by Aβ1-42.
Cotreatment of CM and ALA-CM with IDE significantly
decreased mRNA expression of genes involved in the mito-
chondrial biogenesis.

Mitochondria are highly dynamic organelles with
morphology and numbers regulated by fission and fusion
proteins. Excessive mitochondrial fragmentation leads to
impaired mitochondrial function and neuronal death in
AD. Therefore, in the next step, we also investigated the reg-
ulating signals in mitochondrial fission and fusion processes.
Mitofusins 2 (Mfn2) in the outer mitochondrial membrane
and optic atrophy 1 (Opa1) in the inner mitochondrial mem-
brane regulate the fusion process, and dynamin-related
protein 1 (Drp1) regulates the mitochondrial fission. The
SH-SY5Y cells exposed to Aβ1-42 showed reduced mRNA
transcripts levels of Mfn2 and Opa1, and increased levels of
mRNA of Drp1 (Figures 10(c)–10(e)); P < 0:001). Whereas
pretreatment with CM and ALA-CM of the SH-SY5Y cells
exposed to Aβ1-42 rescued the levels of these transcripts to
values similar to those of the untreated cells. Also, cotreat-
ment of CM and ALA-CM with IDE significantly increased
mRNA expression of Drp1 (Figure 10(e); P < 0:001).

To determine the mitochondrial content in the SH-SY5Y
cells, we probed for the mitochondrial outer membrane pro-
tein TOMM20 (translocase of outer mitochondrial mem-
brane 20) by using the immunocytofluorescence method.

As shown in Figures 9(a) and 9(b), TOMM20 fluorescence
intensity was decreased in Aβ1-42-treated SH-SY5Y cells
(DM+Aβ1−42) (P < 0:001). Whereas pretreatment with CM
of the SH-SY5Y cells exposed to Aβ1-42 increased the immu-
noreactivity of TOMM20-positive mitochondrial in compar-
ison with DM+Aβ1−42 group (P < 0:05). Furthermore,
pretreatment with ALA-CM increased TOMM20 fluores-
cence intensity in comparison with CM+Aβ1−42 group
(P < 0:05). However, the SH-SY5Y cells exposed to cotreat-
ment of CMandALA-CMwith IDE showed a decrease in fluo-
rescence intensity of TOMM20 when compared to CM and
ALA-CM groups (Figures 9(a) and 9(b); P < 0:001). Likewise,
we observed that the insulin treatment increased TOMM20
fluorescence intensity (Figures 9(a) and 9(b); P < 0:05).
Similarly, pretreatment with insulin increased TOMM20
fluorescence intensity in comparison with DM+Aβ1−42
group (Figures 9(a) and 9(b); P < 0:05).

In agreement with the above results, astrocyte-derived
insulin/insulin-like growth factor I restored the Aβ1-42 -dam-
aged of mitochondrial biogenesis and dynamic processes.

3.6. The CM and ALA-CM Pretreatment Modulates Aβ1-42-
Induced Effects on Mitophagy and Autophagy. As observed
above, decreased levels of mitochondrial profusion genes
and increased levels of mitochondrial profission genes may
result in autophagic clearance of damaged mitochondria.
As CM and ALA-CM rescued the Aβ1-42-induced mitochon-
drial dysfunction, we further investigated these effects on
subsequent mitophagy. Autophagy (mitophagy) process has
been suggested to remove damaged and dysfunctional mito-
chondria, which has been implicated in the progression of
AD [21]. In this experiment, the potent depolarizing agent
CCCP was used as a positive control to chemically induce
mitophagy and autophagy. We determined mitophagy by
monitoring expression levels of PINK-1 and PARKIN, well-
known markers of this process. As shown in Figures 11(a)
and 11(b), Aβ1-42 treatment markedly increased mRNA
levels of PINK-1 (P < 0:001) and PARKIN (P < 0:01) in com-
parison to the control group. Aβ1-42 exposure had a similar
effect to CCCP, suggesting that Aβ1-42 significantly increased
mitophagy. Whereas pretreatment with CM of the SH-SY5Y
cells exposed to Aβ1-42 significantly decreased the level of
mitophagy markers when compared to DM+Aβ1−42 group
(Figure 11(a); P < 0:001, Figure 11 (b); P < 0:01). Interestingly,
ALA preactivated CM significantly intensified this effect
(Figure 11(a); P < 0:01, Figure 11(b); P < 0:001).

Similarly, immunofluorescence staining results showed
that the Aβ1-42 treated cells had an increased PARKIN
fluorescence intensity (Figures 11(e) and 11(f); P < 0:01).
Whereas pretreatment with CM and ALA-CM of the SH-
SY5Y cells exposed to Aβ1-42 significantly decreased PARKIN
fluorescence intensity (Figures 11(e) and 11(f); P < 0:01).
Similarly, the pretreatment with insulin decreased PARKIN
fluorescence intensity in comparison with DM+Aβ1−42 group
(Figures 11(e) and 11(f); P < 0:001). However, the SH-SY5Y
cells exposed to cotreatment of CM and ALA-CM with IDE
showed an increased PARKIN fluorescence intensity in
comparison to CM (Figures 11(e) and 11(f); P < 0:01) and
ALA-CM groups (Figures 11(e) and 11(f); P < 0:05).
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Figure 4: Effect of Amyloid β1-42 (Aβ1-42) treatment on
differentiated SH-SY5Y cell viability. Aβ1-42 treatment significantly
inhibited the cell viability of differentiated SH-SY5Y cells in a
dose-dependent manner as compared with the control.
Differentiated SH-SY5Y cells (on the day 6th) were exposed for
24 h to Aβ1-42 at different doses (5 μM, 10μM, 25 μM, 40 μM).
The obtained results are presented as a percentage of the control
value. One-way ANOVA test for viability followed by Tukey’s
multiple comparisons was used to analyse the data. Results are
presented as means ± SEM (n = 7 − 8). Statistical differences
between the treated and untreated control cells are indicated by
asterisks (∗ for P < 0:05; ∗∗ for P < 0:01; ∗∗∗ for P < 0:001).
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Removal of damaged mitochondria requires also the
induction of general autophagy [22]. Therefore, we assessed
expression levels of ATG5 and LC3β, well-known markers
of autophagy. The RT-qPCR results revealed that Aβ1-42
exposure resulted in elevated mRNA levels of ATG5 and
LC3β (Figures 11(c) and 11(d); P < 0:001). Whereas pretreat-
ment with CM of the SH-SY5Y cells exposed to Aβ1-42 signif-
icantly decreased expression ofATG5 (Figure 11(c); P < 0:01)
and LC3β (Figure 11(d); P < 0:001) in comparison with
DM+Aβ1−42 group.

Interestingly, ALA preactivated CM significantly intensi-
fied this effect (Figure 11(c); P < 0:01, Figure 11(d); P < 0:001).

Besides, the SH-SY5Y cells exposed to the cotreatment
of CM and ALA-CM with IDE showed increased expression
of mitophagy and autophagy markers (Figures 11(a)–11(d);
P < 0:001).

The late state of autophagy is characterized by the devel-
opment of acidic vesicular organelles (AVOs), which include
lysosomes as well as autophagosomes. Therefore, to deter-
mine the late state of autophagy, the SH-SY5Y cells were
stained with acridine orange (AO). The formation of punc-
tate staining was monitored with fluorescence microscopy.
As shown in Figures 12(a) and 12(b), Aβ1-42 treatment mark-

edly increased AVO production (P < 0:001). Whereas pre-
treatment with CM and ALA-CM remarkably reduced
AVO production in the SH-SY5Y cells treated with Aβ1-42
to similar values of untreated cells (P < 0:05). Increased
AVO production was also observed in the SH-SY5Y cells
exposed to the cotreatment of CM and ALA-CM with IDE.

4. Discussion

The main purpose of the present study was to explore
indicated a new alpha-linolenic acid- (ALA-) induced mech-
anism of neuroprotection during Aβ-associated neuronal
damage, with special regard to astrocyte involvement.
Herein, we reported that ALA stimulated the secretory
activity of astrocytes. Moreover, our results showed that ALA
preactivated astrocytes conditioned medium reversed Aβ1-42-
induced mitochondrial dysfunction and neuronal death.

ω-3 (n-3) polyunsaturated fatty acids (PUFAs) are fatty
acids that are important for human health, especially for
brain development and function. Alpha-linolenic acid, the
most abundant n-3 PUFA, is an essential fatty acid in the
human diet and is present in green leaves, oil, seeds (flaxseed,
canola, perilla), and nuts. Various studies have suggested that
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Figure 5: CM and ALA-CM reversed the effects of Amyloid β1-42 (Aβ1-42) treatment on differentiated SH-SY5Y cell viability. The
results showed that the CM and ALA-CM pretreatment significantly increased the viability of differentiated SH-SY5Y cells and
restored Aβ1-42-induced reduction of the cell viability (a). Insulin Degrading Enzyme (IDE) treatment of CM and ALA-CM reduced
this effect. On the day 6th, the SH-SY5Y cells (differentiated) were pretreated for 1 h with CM or ALA-CM before the addition of
5μM Aβ1-42 for the next 24 h. The SH-SY5Y cells were also exposed to cotreatment of CM and ALA-CM with IDE to check
whether insulin and IGF-I presence in CM and ALA-CM was responsible for the neuroprotective effect. Positive controls were the
SH-SY5Y cells treated with insulin (c) and carbonyl-cyano-m-chlorophenylhydrazone-CCCP (10μM). The obtained results are
presented as a percentage of the control value. One-way ANOVA test for viability followed by Tukey’s multiple comparisons was used to
analyse data. Statistical differences between the treated cells and untreated control cells are indicated by asterisks (∗ for P < 0:05; ∗∗ for
P < 0:01; ∗∗∗ for P < 0:001; #∗∗∗ versus the control group). Results are means ± SEM of three independent experiments. Cell
morphology was observed under a microscope (b). Scale bar is 20μm.
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Figure 6: The CM and ALA-CM pretreatment reversed the Amyloid β1-42- (Aβ1-42-) induced cytotoxicity in differentiated SH-SY5Y cells.
The LDH assay (a, c) and double-stained with Hoechst 33342 and propidium iodide (PI) (b, d, e) results indicated that Aβ1-42
significantly increased cell death of differentiated SH-SY5Y cells. Whereas, the CM pretreatment decreased cell death in the SH-SY5Y cells
treated with Aβ1-42. Besides, ALA preactivated CM significantly intensified the protective effect of CM. In contrast, Insulin Degrading
Enzyme (IDE) significantly attenuated the protective effect of CM and ALA-CM. The insulin pretreatment reversed the Aβ1-42-induced
cytotoxicity in differentiated SH-SY5Y cells. On the day 6th, the SH-SY5Y cells (differentiated) were pretreated for 1 h with CM or ALA-CM
before the addition of 5μM Aβ1-42 for the next 24 h. The SH-SY5Y cells were also exposed to cotreatment of CM and ALA-CM with IDE to
check whether insulin and IGF-I presence in CM and ALA-CM was responsible for the neuroprotective effect. Positive controls were
the SH-SY5Y cells treated with Insulin and carbonyl-cyano-m-chlorophenylhydrazone-CCCP (10μM). Next, cells were subjected to vital
double staining with PI and Hoechst 33342 (see Materials and Methods section). The PI/Hoechst ratio was calculated by dividing the PI by
Hoechst Relative fluorescence units (RFUs). One-way ANOVA test for cytotoxicity followed by Tukey’s multiple comparisons was used to
analyse data. Statistical differences between the treated cells and untreated control cells are indicated by asterisks (∗ for P < 0:05; ∗∗ for P < 0:01;
∗∗∗ for P < 0:001; #∗∗∗ versus the control group). Results are means ± SEM of three independent experiments. The vital double staining cells
were also analyzed in inverted fluorescencemicroscopy (see Materials andMethods section). Scale bar is 50μm.
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Figure 7: Continued.
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ALA exerts neuroprotective and anti-inflammatory effects
[11–13]. However, the direct effect of ALA on the trophic
activity of astrocytes has not been studied yet.

In the current study, we focused on astrocytes because it
is widely accepted now that they play a key role in the central
nervous system. Astrocytes produce and release multiple
proteins that impact the survival, migration, differentiation,
and function of neurons. Importantly, these proteins can
serve as neurotrophic agents against Aβ toxicity [7, 8, 23].
In this study, we focused our interest on insulin and IGF-I
as likely candidates for neuroprotection, taking into account
their involvement in synaptic and mitochondrial function, as
seen also in AD. It seems that insulin and IGF-I production
in the brain may be a controversial topic. For many years, it
has been thought that brain insulin was derived from pancre-
atic β cells and permeated through the blood-brain barrier
[24]. However, in the last few years, this hypothesis has been
abolished. Nowadays, it is believed that astrocytes may be the
source of local insulin and IGF-I in the brain. More recently,
insulin and IGF-I secretion was also confirmed in cultured
astrocytes [8, 25, 26]. Therefore it seems that the identifica-
tion of astrocytes as an insulin and IGF-I source in the brain
would allow us to better understand the importance of these

factors in brain physiology, and it could also point to a new
therapeutic target for dementia and age-related cognitive dis-
orders. Interestingly, in the present study, we demonstrated
for the first time that ALA stimulates astrocytes to express
and release insulin and IGF-I to the medium (Figures 3(c)
and 3(d)). However, we also observed that ALA at higher
concentrations reduces the viability and thus the secretory
activity of astrocytes, which could be due to the excessive
oxidation of ALA which generates various metabolites as well
as reactive oxygen species. Demar et al. described that radi-
olabelled ALA entering the brain is almost completely
metabolized to its β-oxidation products [27]. Recently, it
has been suggested that the oxidation of polyunsaturated
fatty acids could be associated with induced cell death. For
example, Liu et al. indicated that DHA hydroperoxide is a
potential inducer of apoptosis via mitochondrial dysfunction
in human neuroblastoma SH-SY5Y cells [28]. Probably, the
effect of ALA on astrocytes, similarly to the impact of another
PUFA, could be dose-dependent. Therefore, these results
indicate that ALA in lower concentrations may regulate the
trophic activity of astrocytes.

The next aim of our study was to investigate whether pre-
treatment with CM and ALA-preactivated CM modulates
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Figure 7: The CM and ALA-CM pretreatment reversed Amyloid β- (Aβ1-42-) induced synaptic toxicity in differentiated SH-SY5Y cells. On
the day 6th, the SH-SY5Y cells (differentiated) were pretreated for 1 h with CM or ALA-CM before the addition of 5 μM Aβ1-42 for the next
24 h. The SH-SY5Y cells were also exposed to the cotreatment of CM and ALA-CM with Insulin Degrading Enzyme (IDE) to check whether
insulin and IGF-I presence in CM and ALA-CM was responsible for the neuroprotective effect. Positive controls were the SH-SY5Y cells
treated with insulin and carbonyl-cyano-m-chlorophenylhydrazone-CCCP (10 μM). RT-qPCR results indicated that Aβ1-42 significantly
decreased mRNA levels of Synaptophysin (a) and PSD95 (b), well-known synaptic markers. The CM and ALA-CM pretreatment reversed
the effect of Aβ1-42 when compared with DM+Aβ1−42 group. The IDE treatment of CM and ALA-CM reduced this effect. The
immunocytofluorescence staining showed that the Aβ1-42 treated cells had a decreased Synaptophysin (c, e) and TUJ 1 (β3-Tubulin) (d, f)
fluorescence intensity and increased neurites fragmentation. Moreover, results showed that the CM and ALA-CM pretreatment reversed
the Aβ1-42–induced synaptic toxicity in differentiated SH-SY5Y cells. A similar effect of TUJ 1 fluorescence intensity was observed after
the treatment of differentiated SH-SY5Y cells with insulin (d, f). The IDE treatment of CM and ALA-CM reduced this effect. The cells
were subjected to immunocytofluorescence staining with antibodies against Synaptophysin and TUJ 1. TUJ 1 was used as a marker to
stain differentiated SH-SY5Y cells (show as green signals). Synaptophysin was used to stain synaptic in differentiated SH-SY5Y cells (show
as red signals). Hoechst 33342 was used to stain nuclei (show as blue signals) (see Materials and Methods section). Bar graphs (e, f)
showed the relative fluorescence intensity of Synaptophysin and TUJ 1. Scale bar is 20μm. One-way ANOVA followed by Tukey’s
multiple comparisons test at the 0.05 level was used to determine differences between the treated cells and untreated control cells. Results
are presented as means ± SEM (n = 3 − 8). RT-qPCR fold increase and the fluorescence intensity were calculated according to the formula
described in the Materials and Methods section. Statistical differences between the treated group and untreated control cells are indicated
by asterisks (∗ for P < 0:05; ∗∗ for P < 0:01; ∗∗∗ for P < 0:001; #∗∗∗ versus the control group; ##∗∗∗ versus DM+Aβ1−42 group).
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Figure 8: Continued.
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Aβ1-42-induced cytotoxicity in differentiated SH-SY5Y cells.
Aβ is a key molecular factor in the etiology of AD [29]. Pre-
vious in vitro studies have shown that Aβ is toxic to neurons,
which is manifested by cell death [8, 29–31]. In agreement
with the previous findings, our results showed that Aβ1-42
was highly toxic to differentiated SH-SY5Y cells what was
exemplified by the reduction of MTT values in a dose-
dependent manner (Figure 4). Moreover, Aβ1-42 probably
induced apoptosis of differentiated SH-SY5Y cells. It was
evidenced by morphological and biochemical alterations
associated with apoptosis including condensed chromatin
(Figure 6(e)) increased LDH release and increased ratio fluo-
rescence of PI/Hoechst (Figures 6(a) and 6(b)). However, we
are aware that further research is needed to determine which
apoptosis pathways are activated in Aβ1-42-treated differenti-
ated SH-SY5Y cells. Nonetheless, our results showed that
pretreatment with CM and ALA-CM was able to attenuate
the toxic effect of Aβ1-42. Additionally, the protective effect
of CM was intensified by pre-activation with ALA.

The presented protective action of CM and ALA-CM
could also effect through the regulation of synaptic proteins
and rescue of synaptic function. The pathogenesis of AD cor-
relates with neuronal dysfunction and loss of functional syn-
apses caused by changes in neurite morphology. In vitro
studies indicated that mechanisms of synapse deterioration

in AD result from the toxic activity of Aβ [8, 32]. In our
study, the addition of Aβ1-42 reduced levels of synaptic
markers (Figures 7(a)–7(f)) and induced the fragmentation
of neuritis (Figures 7(d) and 7(f)) in differentiated SH-SY5Y
cells. Whereas treatment with CM and ALA-CM was able to
attenuate the synaptotoxic effect of Aβ1-42.

Mitochondria are organelles that may activate apoptosis
when their function is damaged. A recent study demon-
strated that mitochondrial dysfunction is a hallmark of Aβ-
induced neuronal toxicity in AD [3, 33]. Therefore, in the
next step, we investigated whether mitochondria were
involved in the protective effect of CM and ALA-CM against
Ai1-42. In our study, we demonstrated that Aβ1-42 disrupted
the function of mitochondria. Our results, in concordance
with previously reported data, showed that Aβ1-42 signifi-
cantly reduced Δψm (Figures 8(a) and 8(b)) when compared
to the control group [34, 35]. However, pretreatment with
CM and ALA-CM reversed the Aβ1-42-induced depolari-
zation of the mitochondrial membrane in differentiated
SH-SY5Y cells.

Moreover, we observed the reduced mitochondrial mass
in Aβ1-42-treated SH-SY5Y cells (Figure 9). The reduced
mitochondrial mass has already been found in brains from
AD when compared to a healthy brain in a mouse model of
AD as well as in AD cellular models [36, 37]. A reduction
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Figure 8: The CM and ALA-CM pretreatment inhibits Amyloid β- (Aβ1-42-) induced depolarization of the mitochondrial membrane in
differentiated SH-SY5Y cells. Representative fluorescence microscopy images of 5,5,6,6′-tetrachloro-1,1′,3,3′ tetraethylbenzimi-
dazoylcarbocyanine iodide (JC-1) staining (a) and the ratio of fluorescence intensity of J-aggregates to the fluorescence intensity of
monomers (b, c) was used to measure mitochondrial membrane potential (ΔΨm) of differentiated SH-SY5Y cells. Results showed that
Aβ1-42 treatment decreased the ΔΨm of differentiated SH-SY5Y cells. The CM and ALA-CM pretreatment reversed the effect of Aβ1-42
compared with DM+Aβ1−42 group. The Insulin Degrading Enzyme (IDE) treatment of CM and ALA-CM reduced this effect. On the day
6th, the SH-SY5Y cells (differentiated) were pretreated for 1 h with CM or ALA-CM before the addition of 5μM Aβ1-42 for the next 24 h.
The SH-SY5Y cells were also exposed to cotreatment of CM and ALA-CM with IDE to check whether insulin and IGF-I presence in CM
and ALA-CM was responsible for the neuroprotective effect. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as a
mitochondrial membrane potential disruptor. Insulin was used as a positive control. Next, cells were subjected to JC-1 staining (see
Materials and Methods section). Fluorescence of JC-1 was measured by a fluorescence microscope and microplate reader. One-way
ANOVA followed by Tukey’s multiple comparisons test at the 0.05 level was used to determine differences between the treated cell and
untreated control cells. Results are presented as means ± SEM (n = 4 − 6). The ratio of fluorescence intensity of J-aggregates (shown as red
signals) to the fluorescence intensity of monomers (shown as green signals) was calculated according to the formula described in the
Materials and Methods section. Statistical differences between the treated cells and untreated control cells are indicated by asterisks (∗ for
P < 0:05; ∗∗ for P < 0:01; ∗∗∗ for P < 0:001; #∗∗∗ versus the control group). Scale bar is 50 μm.
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in the number of mitochondria may result from impairment
of the mitochondrial biogenesis or increased mitochondrial-
specific autophagy clearance known as mitophagy. Our results
showed that Aβ1-42 suppressed mRNA levels of PGC-1α
and mTFA, key regulators of mitochondrial biogenesis
(Figures 10(a) and 10(b)). Whereas pretreatment with CM
and ALA-CM increased PGC-1α and mTFA mRNA levels
(Figures 10(a) and 10(b)), reversing the Aβ1-42-mediated
reduction of the mitochondrial biogenesis.

Another key mitochondrial functions, the mitochondrial
dynamics such as fusion and fission processes, were found to
be unbalanced in AD. Several findings indicate that Aβmight
play a role in impaired mitochondrial dynamics [38]. In the

present study, we showed that the SH-SY5Y cells incubated
with Aβ1-42 presented alterations in the mitochondrial
dynamics towards more fission rather than fusion events.
The CM and ALA-CM pretreatment restored Aβ1-42-
reduced mRNA levels of the mitochondrial profusion genes
Mfn2 (Figure 10(c)) and Opa1 (Figure 10(d)), and, con-
versely, it rescued Aβ1-42-increased mRNA levels of the fis-
sion gene Drp1 (Figure 10(e)). The balance between fusion
and fission processes is essential to maintain the health of
the neuronal cells. Moreover, Mfn2, whose expression is
induced by PGC-1α, regulates not only the mitochondrial
fusion but also mitochondrial biogenesis and mitochondrial
function through changes in the mitochondrial membrane
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Figure 9: The CM and ALA-CM pretreatment reversed Amyloid β (Aβ1-42) induced a reduction in mitochondrial mass in differentiated
SH-SY5Y cells. The fluorescence intensity indicating mitochondrial mass was calculated by immunocytofluorescence staining of the
translocase of outer mitochondrial membrane 20 (TOMM20) in differentiated SH-SY5Y cells. Representative fluorescence images (a) and
the relative fluorescence intensity of TOMM20 (b) showed that Aβ1-42 induced a reduction of TOMM20 fluorescence intensity. However,
the decrease in TOMM20 fluorescence intensity was improved by the CM pretreatment of differentiated SH-SY5Y cells before Aβ1-42
exposure. Besides, ALA-preactivated CM intensified this effect. In contrast, cotreatment of CM and ALA-CM with Insulin Degrading
Enzyme (IDE) markedly decreased the immunoreactivity of TOMM20-positive mitochondrial. On the day 6th, the SH-SY5Y cells
(differentiated) were pretreated for 1 h with CM or ALA-CM before the addition of 5μM Aβ1-42 for the next 24 h. The SH-SY5Y cells
were also exposed to cotreatment of CM and ALA-CM with IDE to check whether insulin and IGF-I presence in CM and ALA-CM was
responsible for the neuroprotective effect. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as a mitochondrial membrane
potential disruptor. Insulin was used as a positive control. Next, cells were subjected to immunocytofluorescence staining with antibodies
against TOMM20 (see Materials and Methods section). TOMM20 was used to stain mitochondria in differentiated SH-SY5Y cells (shown
as red signals). Hoechst 33342 was used to stain nuclei (shown as blue signals). Bar graph showed the relative fluorescence intensity of
TOMM20. The fluorescence intensity of TOMM20 was calculated according to the formula described in the Materials and Methods
section. Statistical differences between the treated cells and untreated control cells are indicated by asterisks (∗ for p < 0:05; ∗∗ for p < 0:01;
∗∗∗ for p < 0:001; #∗∗∗, #∗ versus the control group; ##∗; versus DM + Aβ1-42 group). Scale bar is 20 μm.
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potential and the expression of mitochondrial oxidative
phosphorylation subunits [39].

As observed above, decreased levels of mRNA of mito-
chondrial profusion genes and increased mRNA levels of
mitochondrial profission genes may result in the mitophagy
of damaged mitochondria. Under physiological conditions,
mitophagy plays an essential role in the basal mitochondrial
turnover and maintenance. The PTEN-induced putative
kinase protein 1- (PINK1-) Parkin-mediated mitophagy is
the most extensively studied and the best-understood mito-

phagy pathway [40, 41]. It has been reported that acute
depolarization of mitochondrial Δψm in vitro with Δψm
dissipation reagents induces Parkin-mediated mitophagy
and subsequently eliminates depolarized mitochondria
within the autophagy-lysosomal system. Our results showed
that Aβ1-42 significantly increased mRNA levels of PINK-1
(Figure 11(a)) and PARKIN (Figure 11(b)) in comparison
to the control group. Parkin-mediated mitophagy induction
has been associated with reduced levels of mitochondrial
outer membrane proteins including TOMM20 [42], and
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Figure 10: The CM and ALA-CM pretreatment regulated the mitochondrial biogenesis and dynamics in differentiated SH-SY5Y cells. RT-
qPCR results indicated that Amyloid β (Aβ1-42) significantly decreased mRNA levels of PGC-1α (a), mTFA (b), Mfn2 (c), and OPA1 (d), and
increased levels of Drp1 (e). Amyloid β (Aβ) Aβ1-42-induced reduction on mitochondrial biogenesis was restored by CM and ALA-
preactivated CM. Moreover, the CM and ALA-CM pretreatment regulated the balance between fission and fusion processes. Cotreatment
of CM and ALA-CM with Insulin Degrading Enzyme (IDE) decreased mRNA expression of genes involved in mitochondrial biogenesis
and promoted the elevation of mRNA levels of Drp1, a fission gene. On the day 6th, the SH-SY5Y cells (differentiated) were pretreated for
1 h with CM or ALA-CM before the addition of 5μM Aβ1-42 for the next 24 h. The SH-SY5Y cells were also exposed to cotreatment of
CM and ALA-CM with IDE to check whether insulin and IGF-I presence in CM and ALA-CM was responsible for the neuroprotective
effect. The positive control was the SH-SY5Y cells treated with carbonyl-cyano-m-chlorophenylhydrazone-CCCP (10μM). One-way
ANOVA followed by Tukey’s multiple comparisons test at the 0.05 level was used to determine differences between the treated cells and
untreated control cells. Results are presented as means ± SEM (n = 3 − 8). RT-qPCR fold increase was calculated according to the formula
described in the Materials and Methods section. Statistical differences between the treated cells and untreated control cells are indicated by
asterisks (∗ for p < 0:05; ∗∗ for p < 0:01; ∗∗∗ for p < 0:001; #∗∗ versus the control; #∗∗∗ versus the control group).
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Figure 11: The CM and ALA-CM pretreatment modulates Amyloid β- (Aβ1-42-) induced effects on mitophagy and autophagy. On the day
6th, the SH-SY5Y cells (differentiated) were pretreated for 1 h with CM or ALA-CM before the addition of 5 μMAβ1-42 for the next 24 h. The
SH-SY5Y cells were also exposed to the cotreatment of CM and ALA-CMwith Insulin Degrading Enzyme (IDE) to check whether insulin and
IGF-I presence of CM and ALA-CM was responsible for the neuroprotective effect. Positive controls were the SH-SY5Y cells treated with
insulin and carbonyl-cyano-m-chlorophenylhydrazone-CCCP (10 μM). RT-qPCR results showed that Aβ1-42 significantly increased
mRNA levels of markers of mitophagy (PINK-1 (a), PARKIN (b)), and autophagy (ATG5 (c) and LC3β (d)). Whereas pretreatment with
CM of the SH-SY5Y cells exposed to Aβ1-42 significantly decreased expression of mitophagy and autophagy markers. IDE increased levels
of mitophagy and autophagy markers. The immunocytofluorescence staining showed that the Aβ1-42 treated cells had an increased
PARKIN fluorescence intensity, a well-known marker of mitophagy (e, f). Whereas pretreatment with CM and ALA-CM of the SH-SY5Y
cells exposed to Aβ1-42 significantly decreased PARKIN fluorescence intensity. A similar effect was observed after the insulin treatment.
IDE increased PARKIN fluorescence intensity. Bar graph showed the relative fluorescence intensity of PARKIN. Antibody against
PARKIN was used to stain marker of mitophagy in differentiated SH-SY5Y cells (shown as green signals). Hoechst 33342 was used to
stain nuclei (shown as blue signals). Scale bar is 20μm. The results showed that Aβ1-42 exposure has a similar effect to CCCP suggesting
that Aβ1-42 induce mitophagy and autophagy. One-way ANOVA followed by Tukey’s multiple comparisons test at the 0.05 level was used
to determine differences between the treated cells and untreated control cells. Results are presented as means ± SEM (n = 3 − 8). RT-qPCR
fold increase and the fluorescence intensity were calculated according to the formula described in the Materials and Methods section.
Statistical differences between the treated cells and untreated control cells are indicated by asterisks (∗ for P < 0:05; ∗∗ for P < 0:01; ∗∗∗ for
P < 0:001; #∗∗∗ versus the control group; ##∗∗∗ versus DM+Aβ1−42 group).

17Oxidative Medicine and Cellular Longevity



this observation is consistent with our results (Figures 9(a)
and 9(b)). Enhanced mitophagy has been also confirmed in
AD patient brains, and it has been accompanied by depletion
of cytosolic PARKIN over disease progression [43]. In the
recent study, we demonstrated that CM and ALA-CM abol-
ished Aβ1-42 -induced mitophagy by reduction in PINK1 and
PARKIN levels to similar values to the control.

Removal of damaged mitochondria requires also the
induction of general autophagy [22]. Aβ1–42 has been also
reported as an autophagy inducer accompanied by
increased LC3-II expression [44]. Our results also con-
firmed that Aβ1-42 increased mRNA levels of ATG5
(Figure 11(c)) and LC3β (Figure 11(d)), well-known
markers of autophagy, as well as increased acidic
vesicular organelles production (Figures 12(a) and 12(b)).
Whereas pretreatment with CM and ALA-CM abolished
Aβ1-42-induced autophagy by reduction of ATG5 and LC3β
levels to similar values to the control.

Finally, to check whether insulin and IGF-I presence in
CM and ALA-CM was responsible for the above described
neuroprotective effects, we treated CM and ALA-CM with

the insulin-degrading enzyme, which degrades both insulin
and IGF-I [8]. Our results showed that IDE attenuated neu-
roprotective effects of CM and ALA-CM by increasing cell
death (Figures 5, 6(a), 6(b), and 6(e)), decreasing Δψm
(Figures 8(a) and 8(b)), increasing mitochondrial dysfunc-
tions and consequently increasing mitophagy and autophagy
processes. Besides, we examined the direct neuroprotective
effect of insulin on differentiated SH-SY5Y cells untreated
or treated with Aβ1-42. Our results confirm its neuroprotec-
tive effect. Moreover, our results are consistent with previ-
ously published results which have shown that both IGF-I
and insulin were involved in the pathogenesis of AD. Lower
serum levels of IGF-I were associated with an increased risk
of developing AD [45]. Moreover, it has been reported that
physiological protection against synaptotoxic Aβ can be
mediated by astrocyte-derived insulin/IGF-I [8]. Besides,
insulin resistance results in mitochondrial dysfunction and
excessive autophagy, and in extreme cases, mitochondrial
dysfunction can even lead to neuronal cell death as previ-
ously described in cases of age-associated neurodegenerative
diseases like Alzheimer’s disease [46].
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Figure 12: The CM and ALA-CM pretreatment reduced acidic vesicular organelles (AVOs) production in the SH-SY5Y cells treated with
Amyloid β (Aβ1-42). Representative fluorescence microscopy images of acridine orange (AO) staining (a) and the ratio of red to green
fluorescence intensity ratio (R/GFIR) (b) were used to measure the late state of autophagy, which is characterized by AVOs production.
On the day 6th, the SH-SY5Y cells (differentiated) were pretreated for 1 h with CM or ALA-CM before the addition of 5μM Aβ1-42 for
the next 24 h. The SH-SY5Y cells were also exposed to the cotreatment of CM and ALA-CM with Insulin Degrading Enzyme (IDE) to
check whether insulin and IGF-I presence in CM and ALA-CM was responsible for the neuroprotective effect. The positive control was
the SH-SY5Y cells treated with carbonyl-cyano-m-chlorophenylhydrazone-CCCP (10μM). Next, the SH-SY5Y cells were subjected to vital
staining with AO (see Materials and Methods section). Red to green fluorescence intensity ratio (R/GFIR) was calculated in at least 10
replicates for each treatment and nontreated controls. One-way ANOVA followed by Tukey’s multiple comparisons test at the 0.05 level
was used to determine differences between the treated cells and untreated control cells. Results are presented as means ± SEM. Statistical
differences between the treated cells and untreated control cells are indicated by asterisks (∗ for P < 0:05; ∗∗ for P < 0:01; ∗∗∗ for P < 0:001;
#∗∗∗ versus the control group).
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To conclude, the present study showed that astrocyte-
derived insulin/insulin-like growth factor I suppresses Aβ1-
42-induced cytotoxicity in the SH-SY5Y cells by protecting
against mitochondrial dysfunction. Moreover, the neuropro-
tective effects of CM are intensified by preactivation with
ALA. Our study suggests that ALA may be a very promising
AD-modifying drug candidate.

5. Conclusions

(1) Alpha-linolenic acid stimulates the release of insulin
and IGF-I from astrocytes

(2) Astrocyte-derived insulin/IGF-I protects differenti-
ated SH-SY5Y cells against Aβ1-42- induced cell death

(3) Astrocyte-derived insulin/IGF-I protect against Aβ1-42-
induced mitochondrial dysfunction in differentiated
SH-SY5Y cells via:

(i) reducing depolarization of the mitochondrial
membrane

(ii) increasing mitochondrial biogenesis and restoring
the balance between fusion and fission processes

(iii) regulation of mitophagy and autophagy processes
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Mitochondrial dysfunction plays a major role not only in the pathogenesis of many oxidative stress or age-related diseases such as
neurodegenerative as well as mental disorders but also in normal aging. There is evidence that oxidative stress and mitochondrial
dysfunction are the most upstream and common events in the pathomechanisms of neurodegeneration. Cyclopia species are
endemic South African plants and some have a long tradition of use as herbal tea, known as honeybush tea. Extracts of the tea
are gaining more scientific attention due to their phenolic composition. In the present study, we tested not only the in vitro
mitochondria-enhancing properties of honeybush extracts under physiological conditions but also their ameliorative properties
under oxidative stress situations. Hot water and ethanolic extracts of C. subternata, C. genistoides, and C. longifolia were
investigated. Pretreatment of human neuroblastoma SH-SY5Y cells with honeybush extracts, at a concentration range of 0.1-
1 ng/ml, had a beneficial effect on bioenergetics as it increased ATP production, respiration, and mitochondrial membrane
potential (MMP) after 24 hours under physiological conditions. The aqueous extracts of C. subternata and C. genistoides, in
particular, showed a protective effect by rescuing the bioenergetic and mitochondrial deficits under oxidative stress conditions
(400 μM H2O2 for 3 hours). These findings indicate that honeybush extracts could constitute candidates for the prevention of
oxidative stress with an impact on aging processes and age-related neurodegenerative disorders potentially leading to the
development of a condition-specific nutraceutical.

1. Introduction

Reactive oxygen species (ROS) are oxygen-containing chem-
ical entities of great reactivity that have been in the spotlight
as a common feature in many diseases. They are involved in
neurodegenerative and cardiovascular diseases, cancer, ath-
erosclerosis, diabetes, and also in normal aging [1–4]. ROS
include mainly superoxide anion radical (O2

⋅–), hydrogen

peroxide (H2O2), and the hydroxyl radical (OH-) of which
superoxide anion and hydrogen peroxide are found in the
most abundance in cells [5]. Mitochondria are organelles
which are responsible for the majority of adenosine triphos-
phate (ATP) production through oxidative phosphorylation
(OXPHOS) taking place at their electron transport chain
(ETC). Neurons are high-energy demanding cells and thus
are highly dependent on mitochondria in order to survive
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and function. However, mitochondria are also the epicenter
of ROS production and metabolism [2, 6]. Despite an estima-
tion of 31 existing ROS (mostly superoxide anion and H2O2)
production sites in the entire cell versus 12 ROS emission
sites in the mitochondria, the majority of cellular endogenous
ROS are produced by mitochondria as by-products of
OXPHOS [5, 7].

Exposure to oxygen is not only unavoidable but also vital
and necessary for organism and cell survival and for energy
production [5]. Mitochondrial ROS are mostly generated by
complexes I and III of the ETC when leaking electrons that
are provided by NADH or FADH2 react with oxygen. Inter-
estingly, the two high-production sites releasing O2

⋅– and
H2O2 directly into the intermembrane space are the enzyme
sn-glycerol-3-phosphate dehydrogenase and complex III of
the ETC [5]. As a result, the presence of ROS in the inter-
membrane space may cause depolarization of the mem-
branes and hinder the free motion of electrons through
complexes I-IV, thereby directly affecting the proton gradi-
ent and the mitochondrial membrane potential (MMP) and
ultimately preventing the production of ATP [8].

As mitochondria are the main superoxide anion and
hydrogen peroxide producers, they largely affect redox
homeostasis [9]. For their protection, cells are equipped with
antioxidant defense systems (superoxide dismutases, gluta-
thione peroxidases, thioredoxin, catalase, and glutathione
GSH) in order to fend off ROS [10–12]. The redox state of
the cells is dynamic and depends on the production of ROS
and the functionality of the antioxidant defense systems. At
normal nonelevated concentrations, ROS act as signaling
molecules and they participate in the regulation of senes-
cence, cell death, and proliferation. When there is an over-
production of ROS, the antioxidant defense systems are
overwhelmed and they are not able to diffuse them. There-
fore, oxidative stress is the overaccumulation of ROS (mainly
superoxide anion and H2O2) due to their overproduction or
overburdened antioxidant defense systems [1, 5]. ROS react
with and damage many cellular and mitochondrial biomole-
cules. Of note, they cause lipid peroxidation and membrane
damage, protein misfolding, as well as DNA damage [3].
Mitochondrial DNA (mtDNA) is located in the matrix of
mitochondria and encodes for 13 proteins which are struc-
tural components of the ETC. MtDNA is in very close prox-
imity to the ROS production sites and is therefore directly
affected and mutated, leading to faulty ETC components
which leads back to impaired OXPHOS and more produc-
tion of ROS [10, 13]. When the ROS levels surpass a cer-
tain threshold, then they become mitochondria-damaging
and disease-causing agents [14]. Aging is characterized
by an increase in ROS and a decrease in antioxidant
defenses leading to mitochondrial damage and ultimately
to cellular dysfunction, senescence, and apoptosis. Normal
aging and neurodegenerative disorders have these charac-
teristics in common although to a different extent. In neu-
rodegeneration, the damaging effects are even more
profound [3, 5, 9, 15].

Hydrogen peroxide, which is endogenously produced in
mitochondria, is considered the ROS with the most impact
on the fate of the cell. It can easily diffuse through mem-

branes and has the greatest life span [9]. Therefore, hydrogen
peroxide was used as an oxidative stressor in this study.

Cyclopia species, belonging to the Fabaceae family, are
endemic to South Africa. Old records describe the traditional
use of several species including C. subternata, C. genistoides,
and C. longifolia as herbal teas [16]. At present, these Cyclo-
pia species form the bulk of cultivated plant material supple-
menting plant material harvested in the wild and crucial to
meet the growing demand of international markets. The
main product is “fermented” (oxidised) honeybush tea, while
the green (unoxidised) herbal tea is preferred for nutraceuti-
cal extract production due to a higher phenolic content and
antioxidant capacity. The phenolic profile of honeybush var-
ies qualitatively and quantitatively depending on the Cyclopia
species. Major phenolic constituents belong to xanthone,
benzophenone, flavanone, flavone, and dihydrochalcone
subclasses [17]. Increased consumption and popularity of
honeybush came along with increasing research interest in
order to reveal new bioactivities and to examine its potential
use as a nutraceutical and functional food [16, 18]. Quite pre-
dictably due to their phenolic composition, honeybush
extracts have been shown to possess antioxidant activities
which are of great importance and interest in the research
of oxidative stress-related diseases [19–22]. Considering on
the one hand the evidence of its antioxidant capacity and
on the other hand the need for mitochondria-targeting anti-
oxidant substances for use in the prevention of oxidative
damage or the amelioration of increased oxidative stress
levels, we hypothesized that honeybush could possess some
beneficial mitochondria-enhancing properties. For this rea-
son, this study is aimed at examining the protective effects
of honeybush extracts against H2O2-induced oxidative
stress in SH-SY5Y neuronal cells with a focus on mito-
chondria. To our knowledge, this is the first study that
evaluates the effects of honeybush extracts on mitochon-
drial function in a neuronal cell model.

2. Materials and Methods

2.1. Chemicals and Reagents. Dulbecco’s modified Eagle
medium (DMEM), phosphate-buffered saline (PBS), fetal
calf serum (FCS), Hanks’ balanced salt solution (HBSS),
penicillin/streptomycin, pyruvate, dihydrorhodamine 123
(DHR), 2′,7′-dichlorodihydrofluorescein diacetate (DCF),
dihydroethidium (DHE), tetramethylrhodamine methyl
ester (TMRM), gelatin, and H2O2 were from Sigma-Aldrich
(St. Louis, MO, USA). MitoSOX and GlutaMAX were from
Gibco Invitrogen (Waltham, MA, USA), ATPlite1step kit
from PerkinElmer (Waltham, Massachusetts, USA), and XF
Cell Mitostress kit from Seahorse Bioscience (North Billerica,
MA, USA). Folin-Ciocalteau reagent was purchased from
Merck (Darmstadt, Germany). Authentic reference stan-
dards (purity> 95%) for identification and quantification of
phenolic compounds were obtained from Sigma-Aldrich
(hesperidin), Extrasynthese (Genay, France; mangiferin,
eriocitrin), Chemos (Regenstauf, Germany; isomangiferin),
and Phytolab (Vestenbergsreuth, Germany; vicenin-2, 3-β-
D-glucopyranosyliriflophenone). Compounds from the
Plant Bioactives Group library included 3-β-D-
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glucopyranosyl-4-O-β-D-glucopyranosyliriflophenone, 3-β-
D-glucopyranosylmaclurin and (2S)-5-O-[α-L-rhamnopyra-
nosyl-(1→ 2)-β-D-glucopyranosyl] naringenin isolated from
C. genistoides, and scolymoside and 3′,5′-di-β-D-glucopyra-
nosylphloretin isolated from C. subternata. HPLC gradient
grade “far UV” acetonitrile was supplied by Merck.

2.2. Plant Material and Extract Preparation. Harvesting of
aerial parts (shoots and leaves) occurred in March 2017.
Cyclopia subternata was harvested on Elsenburg research
farm (-34.30267, 19.13809), while C. longifolia and C. genis-
toides were harvested on Nietvoorbij research farm
(-33.90619, 18.87031), both located in the Western Cape
Province of South Africa. The fresh plant material was
mechanically cut into small pieces (<3mm) and dried at
40°C in a cross-flow, temperature-controlled drying tunnel
to a moisture content< 7% as for green honeybush tea pro-
duction. The dried plant material was coarsely milled using
a rotary mill equipped with a 1mm sieve (Retsch, GmbH,
Haan, Germany).

Hot water extracts were prepared from each batch of
milled plant material by extracting 70 g plant material with
700ml deionised water at 93°C for 30min followed by fil-
tration and freeze drying of the filtrate as previously
described [23]. Similarly, 40% EtOH-water (v/v) extracts
were prepared by extracting the milled plant material at
70°C for 30min. Ethanol was removed under vacuum
using rotary evaporation, and the remaining aqueous layer
was freeze-dried. Prior to extraction using 70% EtOH-
water (v/v), the plant material was subjected to exhaustive
Soxhlet extraction with dichloromethane to remove chlo-
rophyll. The defatted plant material was air-dried and fur-
ther treated as for the 40% EtOH-water (v/v) extracts. The
freeze-dried extracts (>15 g/extract) were coded, aliquoted
into glass vials (for testing and retention samples), sealed,
and stored under desiccation in the dark.

2.3. Quantification and Identification of Phenolic
Compounds. The major phenolic compounds in the extracts
were quantified using the respective species-specific validated
HPLC-DAD method for C. subternata [23], C. longifolia
[24], and C. genistoides [25]. Samples were dissolved in water
or 10% DMSO and filtered using 0.45μm pore size PVDF
syringe filters (Merck) for C. subternata, while 0.22μm pore
size filters were used for C. genistoides and C. longifolia.
Ascorbic acid was added to prevent compound degradation
during analysis (final concentration ca 9mg/ml). Peak areas
at the appropriate wavelength together with external calibra-
tion curves were used for quantification (benzophenones, fla-
vanones, and dihydrochalcones at 288nm; xanthones and
flavones at 320 nm). In cases where authentic reference stan-
dards were not available, quantification was in equivalents of
a similar compound.

Total polyphenol content of extracts was determined
using the Folin-Ciocalteau assay as adapted for microplate
by Arthur et al. [26]. Values were expressed as g gallic acid
equivalents per 100 g extract.

Extracts selected for further study after initial testing
were also analyzed by LC-MS using a Waters Acquity ultra-

performance liquid chromatography (UPLC) instrument
coupled to a Synapt G2 quadrupole time-of-flight (Q-TOF)
MS detector equipped with an electrospray ionization (ESI)
source (Waters, Milford, USA). Mass calibration was per-
formed using a sodium formate solution, and leucine
enkephalin was used as the lockspray solution. Analysis was
first performed in the MSE mode with negative ionization:
scanning range, 150–1500 am; capillary voltage, -2.5 kV;
sampling cone voltage, 15.0V; source temperature, 120°C;
desolvation temperature, 275°C; cone gas flow (N2), 650 l/h;
desolvation gas flow (N2), 50 l/h. For the MS/MS experi-
ments, a collision energy of 30.0V was used. Peaks were iden-
tified by comparing UV-Vis spectra, relative retention time,
MS characteristics (molecular formula predicted by accurate
mass), and MS/MS fragmentation spectra with those of
authentic standards or literature data.

2.4. Cell Culture. The human neuroblastoma SH-SY5Y cell
line was selected as our cellular model in this study as it is a
well-established and widely used neuronal model in bio-
chemical studies in general. The cell line behaves as human
neuronal network in a dish and has been largely used in
research as it expresses neuronal receptors. The SH-SY5Y
cells were kept and grown at 37°C in a humidified incubator
chamber under an atmosphere of 7.5% CO2 in DMEM sup-
plemented with 10% (v/v) heat-inactivated FCS, 2mM Glu-
taMAX, and 1% (v/v) penicillin/streptomycin. Cells were
passaged 1-2 times per week, and the cells used for the exper-
iments did not exceed passage 20. The cells were plated when
they reached 80–90% confluence.

2.5. Treatment of Cells. Evaluation of ATP production was
conducted on SH-SY5Y neuroblastoma cells to determine
the potential toxic concentration range of the nine honey-
bush extracts. Two screenings were performed. Initially,
aqueous, 70% ethanolic and 40% ethanolic extracts of the
species C. subternata, C. genistoides, and C. longifolia were
screened at a very broad concentration range of 0.1 ng/ml
to 1mg/ml (data not shown). Of note, all dry extracts were
dissolved in DMSO for our experiments (final concentration
of DMSO< 0.005%, no effect of the vehicle solution alone
compared to the untreated condition). The first screening
revealed that the extracts were not toxic for the neuroblas-
toma cells up to a concentration of 10μg/ml. According to
the results of the first screening, the concentration range
was reduced down to that of 0.1 ng/ml to 1μg/ml and the
number of extracts was reduced from nine down to four
(according to the capacity of the extracts in increasing the
ATP levels of the cells) and a second screening cycle was per-
formed. The screening was conducted by using an ATP
detection assay (ATPlite 1step kit was from PerkinElmer).
For the experiments, cells were plated and treated 1 day after
plating for 24 h either with DMEM (untreated cells—control
condition) or with a final concentration of 0.1 ng/ml to
1μg/ml of the extracts.

Because vehicle treatment was without any effect in our
assays, we evaluated the effects of the honeybush extract con-
centrations in comparison to the untreated control condition
in the following experiments. Cellular sensitivity of SH-SY5Y
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cells was confirmed by using the positive control estradiol as
previously described in Grimm et al. 2014 [27].

Hydrogen peroxide (H2O2) which belongs to the reactive
oxygen species produced by mitochondria was used as a
stressor at the concentration 400μM which was able to
decrease mitochondrial and cellular functions. The H2O2
concentration was selected based on screening experiments
conducted on SH-SY5Y cells. For the stress experiments, cells
were firstly pretreated for 24 h with the honeybush extracts
and then treated for 3 h with 400μM H2O2. Each assay was
conducted and repeated at least in triplicate.

2.6. ATP Levels. Total ATP content was determined using a
bioluminescence assay (ATPlite 1step) according to the
instructions of the manufacturer and as previously described
[28–30]. Cells were plated in 6 replicates into white 96-well
cell culture plates at a density of 1 × 104 cells/well. The ATP
was extracted from the cells upon lysis and it was trans-
formed into light. The method measures the formation of
light from ATP and luciferin catalyzed by the enzyme lucifer-
ase. The emitted light was linearly correlated to the ATP con-
centration and was measured using the multimode plate
reader Cytation 3 (BioTek instruments, Winooski, Vermont,
United States).

2.7. Determination of Mitochondrial Membrane Potential
(MMP). The MMP was measured using the fluorescent dye
TMRM, since its transmembrane distribution depends on
the MMP. As previously described [31, 32], the cells were
plated in 6 replicates into black 96-well cell culture plates at
a density of 1× 104 cells/well and were incubated with the
dye at a concentration of 0.4μM for 20min. After washing
three times with HBSS, fluorescence was measured at
548nm (excitation)/574 nm (emission), using a Cytation 3
multimode plate reader (BioTek instruments).

2.8. Mitochondrial Respiration. Mitochondrial respiration
and cellular glycolysis were measured using the Seahorse Bio-
science XF24 analyser as described before [28, 29, 33]. Briefly,
XF24 cell culture microplates were coated with 0.1% gelatin
and cells were plated at a density of 2.5× 104 cells/well in
treatment medium (100μl) containing 1 g/l glucose, 4mM
pyruvate, and 10% FCS. After treatment with honeybush
extracts for 24 h, the cells were washed once with PBS and
then 500μl of assay medium (DMEM containing 1 g/l of glu-
cose and 4mM of pyruvate) was added to each well. The oxy-
gen consumption rate (OCR) and extracellular acidification
rate (ECAR) were measured concurrently under basal respi-
ration. The data were extracted from the Seahorse XF24 soft-
ware, and bioenergetic parameters (basal respiration, ATP
production, maximal respiration, spare respiratory capacity,
and glycolytic reserve) were calculated according to the
guidelines of the manufacturer.

2.9. Determination of ROS Levels. Mitochondrial and cyto-
solic ROS levels and the specific levels of mitochondrial
O2

⋅–superoxide anion radicals and the total levels of O2
⋅–

superoxide anion radicals levels were assessed using the fluo-
rescent dyes dihydrorhodamine 123 (DHR), 2′,7′-dichloro-
dihydrofluorescein diacetate (DCF), the Red Mitochondrial

Superoxide Indicator (MitoSOX), and dihydroethidium
(DHE), respectively, as described before [30, 34]. SH-SY5Y
cells were plated in 6 replicates into black 96-well cell culture
plates at a density of 1× 104 cells/well. After treatment with
honeybush extracts alone or after pretreatment with honey-
bush extracts, followed by treatment with H2O2, cells were
treated with 10μM of one of the dyes: DCF, DHR, or DHE
for 20min or 5μM of MitoSOX for 90min at room temper-
ature in the dark on an orbital shaker. After washing the cells
three times with HBSS, the formation of green fluorescent
products triggered by DCF and DHR, respectively, was
detected at 485nm (excitation)/535 nm (emission). MitoSOX
triggers the formation of red fluorescent products which were
detected at 531 nm (excitation)/595nm (emission). DHE,
which is permeable to cells, is used as a total O2

⋅– superoxide
anion detector as it is oxidised to the impermeable red fluo-
rescent product ethidium, detected at 531nm (excita-
tion)/595 nm (emission). The intensity of fluorescence was
proportional to mitochondrial ROS, cytosolic ROS, and
O2

⋅– levels (total and mitochondrial). The fluorescence was
measured using the Cytation 3 multimode plate reader.

2.10. Statistical Analysis. Data are given as the mean± SEM.
Statistical analyses were performed using GraphPad Prism
software (version 5.02 for Windows, San Diego, California,
USA). For statistical comparisons of more than two groups,
one-way ANOVAwas used, followed by a Dunnett’s multiple
comparison tests versus the control for physiological condi-
tions and versus H2O2 for stress conditions. P< 0.05 was con-
sidered statistically significant.

3. Results

Two cycles of screenings were conducted with regard to the
ability of each extract in increasing the ATP production of
SH-SY5Y cells. The nine Cyclopia extracts produced by
extraction of C. subternata, C. genistoides, and C. longifolia
with hot water and two ethanol-water mixtures were
screened (data not shown), and the four most promising
extracts in terms of increased ATP production were selected
for all subsequent experiments: the water extracts of all three
Cyclopia species and the 70% ethanolic extract of C. genis-
toides. Table 1 gives the content of the major phenolic com-
pounds present in the selected extracts. Qualitative and
quantitative differences in the phenolic profile are evident,
notably the absence or presence of only trace levels of dihy-
drochalcones in C. longifolia and C. genistoides but substan-
tial xanthone levels compared to C. subternata. Mangiferin
followed by isomangiferin was the predominant compound
in the C. longifolia and C. genistoides extracts. Scolymoside,
a flavone rutinoside, followed by 3-β-D-glucopyranosyl-4-
O-β-D-glucopyranosyliriflophenone, a benzophenone, was
the main phenolic compound in C. subternata water extract.
Scolymoside was not detected in the two C. genistoides
extracts, but these extracts had substantially higher levels of
the flavone di-glucoside, vicenin-2, compared to the C. sub-
ternata and C. longifolia extracts. Overall, the total phenolic
content, based on the sum of individual phenolic compound
content, was highest in the 70% EtOH-water extract of C.
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genistoides and lowest in the water extract of C. subternata.
The total polyphenol content determined using the Folin-
Ciocalteau assay was highest in the 70% EtOH-water extract
of C. genistoides and lowest in the water extract of C. longifo-
lia with similar values for the water extracts of C. subternata
and C. genistoides (Table 1).

3.1. Honeybush Extracts Increase ATP Production under
Physiological Conditions and under H2O2-Induced Stress.
ATP is the end product not only of mainly oxidative phos-
phorylation but also of glycolysis and is thus an indicator of
mitochondrial and cellular viability and proper functioning.
Therefore, we assessed the effect of the honeybush extracts
on the ATP production of neuroblastoma cells. The concen-
tration range of 0.1-1000 ng/ml for each extract was first
tested under physiological conditions. The results indicated

that the lower concentrations (0.1-1 ng/ml), but not the
higher ones (50 ng/ml-100mg/ml, data not shown), of the
water extracts of the three Cyclopia species and of the 70%
ethanolic extract of C. genistoides significantly increased
ATP production up to 4% after treatment for 24 h under
physiological conditions (Figures 1(a)–1(d)).

Regarding ATP levels under oxidative stress, H2O2 at
400μM caused a 39.1% decrease in ATP production. Accord-
ing to the experimental design under physiological condi-
tions, we tested the same broad concentration range for
each extract under oxidative stress (data not shown). Again,
the concentrations 0.1 and 1ng/ml significantly protected
against oxidative stress. Therefore, these concentrations were
used in the following oxidative stress experiments. The
harmful effect of H2O2 was partially but significantly amelio-
rated by all the extracts up to 13.5% (Figure 2).

Table 1: Phenolic composition (g/100 g extract) of aqueous extracts of Cyclopia subternata, Cyclopia longifolia, and Cyclopia genistoides and a
70% ethanolic extract of C. genistoides.

Compounds
C. subternata C. longifolia C. genistoides

Water Water Water 70% EtOH

Benzophenones

Maclurin-di-O,C-hexoside (MDH)a nd nd 0.079 0.061

3-β-D-Glucopyranosyl-4-O-β-D-glucopyranosyliriflophenone (IDG) 1.67 0.700 1.78 1.41

3-β-D-Glucopyranosylmaclurin (MMG) nd nd 0.400 0.373

3-β-D-Glucopyranosyliriflophenone (IMG) 0.536 0.076 1.52 1.12

Total benzophenones 2.21 0.776 3.77 2.97

Xanthones

Tetrahydroxyxanthone-di-O,C-hexoside A (THXA)b nq 0.168 nq nq

Tetrahydroxyxanthone-di-O,C-hexoside B (THXB)b nq 0.133 nq nq

Mangiferin 1.16 6.38 6.86 9.66

Isomangiferin 0.458 1.84 1.97 2.36

Total xanthones 1.62 8.53 8.83 12.0

Flavones

Vicenin-2 0.182 0.192 0.498 0.524

Scolymoside 1.84 0.497 nq nq

Total flavones 2.02 0.690 0.498 0.524

Dihydrochalcones

3-Hydroxyphloretin-di-C-hexoside (HPDH)c 0.458 nq nq nq

3′,5′-Di-β-D-glucopyranosylphloretin (PDG) 1.22 nq nq nq

Total dihydrochalcones 1.67 0.000 0.000 0.000

Flavanones

Eriodictyol-O-hexoside-O-deoxyhexoside (EHD)d nd 0.186 0.297 0.195

(2R)-5-O-[α-L-Rhamnopyranosyl-(1→ 2)-β-D-glucopyranosyl]naringenin (2RNAR)e nd 0.028 0.146 0.051

(2S)-5-O-[α-L-Rhamnopyranosyl-(1→ 2)-β-D-glucopyranosyl]naringenin (2SNAR) nd 0.087 0.397 0.444

Eriocitrin 0.536 0.310 nq nq

Hesperidin 1.43 0.839 0.988 1.73

Total flavanones 1.96 1.45 1.83 2.42

Total quantified phenolics 9.48 11.5 14.9 17.9

Total polyphenols (Folin-Ciocalteau)f 25.5 23.7 25.3 27.8
aExpressed as MMG equivalents. bExpressed as mangiferin equivalents. cExpressed as PDG equivalents. dExpressed as eriocitrin equivalents. eExpressed as
2SNAR equivalents. fExpressed as g gallic acid equivalents/100 g extract. nd: not detected using LC-MS; nq: present in extract, but not quantified due to
coelution of very low content.
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3.2. Honeybush Extracts Increase Mitochondrial Respiration
under Physiological Conditions and under H2O2-Induced
Stress.Mitochondria consume oxygen to perform respiration
and oxidative phosphorylation. Thus, for an assessment of
mitochondrial respiration, the oxygen consumption rate of
the cells was measured live under basal conditions. The
results indicated that the water extracts of C. subternata
and C. genistoides and the 70% ethanolic extract of C. genis-
toides increased the respiration under physiological condi-
tions at baseline. However, upon closer analysis of data, it
was found that only the water extracts of C. subternata and
C. genistoides at 1 ng/ml significantly increased the respira-
tion by 33.2% and 40.7%, respectively (Figure 3(a)). The
extracts that significantly increased the other pathway lead-
ing to the production of ATP, glycolysis, were C. genistoides
(1 ng/ml) and C. longifolia (at 0.1 and 1ng/ml). This increase
was up to 51.7% (Figure 3(b)). Upon correlation of the respi-
ration with the glycolysis, an “energy map” was obtained
(Figure 3(c)) which allows a visual representation of where
each individual extract acted. Thus, C. subternata and C. gen-
istoides increased the oxygen consumption rate of the cells
(respiration), while C. longifolia increased the glycolysis.

H2O2 caused a significant decrease of 41.7% in respira-
tion (Figure 4(a), red bar). All extracts increased the oxygen
consumption rate, bringing it closer to the levels of the

untreated cells. However, only the water extract of C. subter-
nata was able to significantly enhance respiration at baseline
(increase of 25.9%) (Figure 4(a)). Regarding glycolysis, H2O2
caused a significant decrease of 38.9% which was completely
rescued by the water extract of C. genistoides (1 ng/ml)
(Figure 4(b)). The “energy map” confirmed that the most
effective extract in rescuing the respiration under H2O2 stress
was the aqueous extract of C. subternata (Figure 4(c)).

3.3. Honeybush Extracts Increase Mitochondrial Membrane
Potential (MMP) under Physiological Conditions and under
H2O2-Induced Stress. The aqueous extracts of C. genistoides
(1 ng/ml) and C. longifolia (0.1 and 1ng/ml) significantly
increased MMP up to 24% under physiological conditions
after a treatment of 24h (Figure 5(a)).

H2O2 at 400μM caused a significant reduction of 55.1%
in MMP which was increased by up to 67.9% by the extracts.
In this case, all extracts completely rescued the MMP
(Figure 5(b)).

Overall, all extracts acted on the mitochondrial mem-
brane potential by increasing it both under physiological
condition and under H2O2-induced oxidative stress.

3.4. Honeybush Extracts Decrease Different Types of ROS
under H2O2-Induced Stress. H2O2 at 400μM caused an
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Figure 1: (a–d) The water extracts of Cyclopia subternata, C. genistoides, and C. longifolia, and the 70% ethanolic extract of C. genistoides
significantly increased the ATP levels up to 4%. The cells were treated for 24 h with the extracts. Values represent as the mean± SEM of
three independent experiments and were normalized on the untreated (CTRL) group (=100%). One-way ANOVA and post hoc Dunnett’s
multiple comparison test versus CTRL cells. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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increase of 29.5% in mitochondrial ROS which was detected
using the dye DHR (dihydrorhodamine 123). This increase
was significantly ameliorated up to 23.1% by C. subternata
water extract. C. genistoides also brought the ROS levels
down but not significantly (Figure 6(a)).

Cytosolic ROS were detected using the dye DCF (2′,7′
-dichlorodihydrofluorescein diacetate). H2O2 at 400μM
caused an elevation of 31.2%. All extracts lowered cytosolic
ROS levels, but the water extract of C. subternata at 1 ng/ml
(28.9% reduction of cytosolic ROS) and the 70% ethanolic
extract of C. genistoides at 0.5 ng/ml (26.2% reduction of
cytosolic ROS) were the most effective (Figure 6(b)).

H2O2 at 400μM increased the mitochondrial superoxide
anion levels by 43%. All extracts, except the ethanolic extract
of C. genistoides, significantly lowered the mitochondrial
superoxide anion levels. However, the water extracts of C.
subternata, C. genistoides, and C. longifolia at a concentration
of 1 ng/ml completely neutralized the mitochondrial super-
oxide anion levels (reduction of 42%, 42.6%, and 42.6%,
respectively) (Figure 6(c)).

The total superoxide anion levels were elevated by 67.9%
in the H2O2-treated cells. All four extracts ameliorated this
increase, but only the water extracts of C. subternata and C.
longifolia at 1 ng/ml and the ethanolic extract of C. genis-
toides at 0.5 ng/ml significantly reduced the superoxide anion
levels by 48.8%, 50.9%, and 50.3%, respectively (Figure 6(d)).

4. Discussion

In this study, we hypothesized that honeybush extracts might
exert a beneficial effect on mitochondria of neuronal cells
under physiological conditions as well as under oxidative

stress due to their phenolic compound content. Neurons
have high energy demands and are thus particularly depen-
dent on functional mitochondria. For this reason, we
assessed the effects of four different honeybush extracts in a
well-characterized neuronal model, the neuroblastoma SH-
SY5Y cells. The four extracts were the hot water extracts of
C. subternata, C. genistoides, and C. longifolia as well as the
70% ethanolic extract of C. genistoides. These extracts were
selected after screening the water, 40% ethanolic and 70%
ethanolic extracts of these Cyclopia species. Hydrogen perox-
ide (H2O2) was used as an oxidative stressor as it is one of the
most abundant and reactive endogenous ROS.

The beneficial effect of honeybush extracts on mitochon-
drial functions under physiological conditions and a protec-
tive effect under oxidative stress could be demonstrated.
The four extracts showed different beneficial properties in
different mitochondrial and cellular sites. ATP is the energy
that is required for the survival and functionality of cells
and especially of neurons which have high energy demands.
At the lowest concentrations (0.1-1 ng/ml), all extracts
improved the production of ATP under physiological condi-
tions. This increase amounted up to 4% (Figure 1). Also, all
extracts were able to significantly increase the ATP levels
under H2O2-induced oxidative stress. This improvement
was not a complete rescue but a partial increase of up to
13.5% (Figure 2).

Mitochondrial respiration is an intrinsic function of
mitochondria and is essential for the survival of the cells as
it results in the production of the majority of ATP. Respira-
tion is taking place at the ETC which is located on the inner
mitochondrial membrane (IMM). Glycolysis is the secondary
pathway leading to production of ATP. The aqueous extracts
of C. subternata and C. genistoides (both at 1 ng/ml) signifi-
cantly increased the basal respiration of the mitochondria
by up to 40.7%, while those of C. genistoides and C. longifolia
significantly increased glycolysis up to 51.7% under physio-
logical conditions (Figure 3). However, only C. subternata
aqueous extract (1 ng/ml) could significantly rescue the
impaired respiration and only C. genistoides aqueous extract
(1 ng/ml) could rescue the impaired glycolysis caused by
H2O2 (Figure 4). The aqueous extracts of C. subternata and
C. genistoides specifically acted on respiration. In addition,
the C. subternata aqueous extract enhanced respiration
under oxidative stress. This could be explained by the fact
that this extract was the only one that neutralized all four
types of tested ROS and particularly the mitochondrial ROS
and the mitochondrial superoxide anion which directly affect
OXPHOS and respiration (Figure 6). This could be the rea-
son why it was also the only extract to act on respiration
under stress.

The aqueous extracts of C. genistoides and C. longifolia
increased the MMP under physiological conditions, while
all four extracts completely rescued the MMP under oxida-
tive stress (Figure 5), in addition to partly ameliorating
ATP production (Figure 2). During OXPHOS at the ETC of
mitochondria, electrons provided by NADH and FADH2
are transferred through complexes I-IV. This motion of elec-
trons drives the complexes I, III, and IV to pump protons
into the intermembrane space where they are finally used
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Figure 2: H2O2 treatment at 400μM for 3 h caused a 39.1%
decrease in ATP production which was significantly increased up
to 13.5% by a 24 h pretreatment with each of the extracts. The red
bar represents the H2O2-treated cells, and the grey bars represent
cells that were pretreated for 24 h with the indicated honeybush
extract and then treated for 3 h with H2O2. Values represent as the
mean± SEM of three independent experiments and were
normalized on the untreated group (=100%). One-way ANOVA
and post hoc Dunnett’s multiple comparison test versus H2O2-
treated cells. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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by ATP synthase (complex V) to produce ATP via the phos-
phorylation of ADP. MMP is an indicator for polarized mito-
chondrial membranes and therefore an indicator that the
pumping of protons in the intermembrane space is not hin-
dered so that they can drive the ATP production by complex
V [35, 36]. Amelioration of ATP production under oxidative
stress by the extracts could be as a result of their capacity to
completely rescue the MMP under oxidative stress and sup-
ports this interdependence of MMP and ATP production.

In terms of ROS (Figure 6), pretreatment with the aque-
ous extract of C. subternata (mostly at 1 ng/ml) decreased
the four types of tested ROS and it was the only extract of
those tested to significantly reduce the mitochondrial ROS

(detected with the dye DHR). The result that C. subternata
extract acted both on mitochondrial superoxide anion levels
(detected with the dye MitoSOX) and on all other mitochon-
drial ROS, such as H2O2 (detected with the dye DHR), could
mean that it either additionally scavenges them or it
enhances the activity of the antioxidant defenses that neutral-
ize them (e.g., glutathione, catalase) [21]. The aqueous
extract of C. longifolia lowered cytosolic ROS, total superox-
ide anion levels, and mitochondrial superoxide anion levels.
The two C. genistoides extracts differed, i.e., its aqueous
extract neutralized cytosolic ROS and mitochondrial super-
oxide anion, while its 70% ethanolic extract decreased cyto-
solic ROS and total superoxide anion levels but had no
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Figure 3: Respiration under physiological condition. (a) 24 h pretreatment with the water extracts of C. subternata and C. genistoides (both at
1 ng/ml) significantly increased the oxygen consumption rate of the cells and therefore the respiration. (b) The water extracts of C. genistoides
(0.1 ng/ml) and C. longifolia (0.1 and 1 ng/ml) significantly increased the glycolysis in the SH-SY5Y cells. (c) Energy map created after
correlation of the OCR (respiration—y-axis) with the ECAR (glycolysis—x-axis). The aqueous extracts of C. subternata and C. genistoides
acted on respiration (displayed as + metabolic in the figure), while the water extract of C. longifolia increased the glycolytic activity. Values
represent as the mean± SEM of three independent experiments and were normalized on the comparison test versus H2O2-treated
cells. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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significant effect on the specific mitochondrial ROS. All
extracts had thus a minimizing effect on ROS levels, though
at different degrees and on different ROS types (Figure 6).
This might be explained by different bioactive components
in the specific extract depending on Cyclopia species and
extraction solvent. While all the water extracts (C. subter-
nata, C. genistoides, C. longifolia) act on mitochondrial
superoxide anion levels, the ethanolic extract of C. genistoides
only affects the cytosolic ROS and total superoxide anion
levels. It is assumed that the latter extract acted specifically
on cytosolic superoxide anions.

The most beneficial concentrations of the honeybush
extracts in this study were found to be as low as 0.1 and
1ng/ml. Plant extracts are complex mixtures of a multitude

of compounds of diverse chemistries and pharmacological
activities at different concentrations. The different constitu-
ents in the plant extracts could have antagonistic, synergistic,
or allosteric effects [37]. For example, an active substance at
the higher concentration could have blunted the activity of
another bioactive constituent. Possibly, there is one or several
constituents that are effective at a low concentration and a
gradual increase in concentrations may gradually reduce
the efficacy and might explain the observed effect at very
low concentrations.

Considering the phenolic profiles of the different extracts,
it is clear that no pattern emerged that could explain differen-
tial activity. The total polyphenol content often highly corre-
lates with the antioxidant activity in vitro but was similar in
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Figure 4: Respiration under oxidative stress condition. (a) 3 h treatment with H2O2 reduced the oxygen consumption rate by 41.7% (red
bars). 24 h pretreatment with the water extract of C. subternata (at 1 ng/ml) significantly ameliorated the oxygen consumption rate of the
cells and therefore the respiration (grey bars). (b) 3 h treatment with H2O2 reduced the glycolysis by 38.9% (red bars). The aqueous extract
of C. genistoides (1 ng/ml) significantly increased the glycolysis in SH-SY5Y cells. The red bar represents the H2O2-treated cells, and the
grey bars represent cells that were pretreated for 24 h with the indicated honeybush extract and then treated for 3 h with H2O2. (c)
Energy map created after correlation of the OCR (respiration—y-axis) with the ECAR (glycolysis—x-axis). This map helps in
visually recognizing whether an extract predominantly increased the respiration (displayed as + metabolic in the figure) or the
glycolytic activity compared to the H2O2-treated cells. Values represent as the mean± SEM of three independent experiments and
were normalized on the untreated group (=100%). One-way ANOVA and post hoc Dunnett’s multiple comparison test versus
H2O2-treated cells. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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the aqueous extracts of C. subternata, C. genistoides, and C.
longifolia (~26, 25, and 24 g gallic acid equivalents per 100 g
extract, respectively). In the ethanolic extract of C. genis-
toides, the phenolic content was slightly increased (~28 g gal-
lic acid equivalents per 100 g extract). However, the phenolic
content does not differ substantially between the different
extracts to provide an explanation to our findings. In fact,
mangiferin, shown to have beneficial effects in in vitro and
in vivo models of neurodegeneration, as well as of oxidative
stress [38–43], was lowest in the C. subternata water extract
and highest in the 70% ethanolic extract of C. genistoides.
According to these studies, we expected that the C. genis-
toides 70% ethanolic extract would exert the most potent
neuroprotective properties, while the aqueous extract of C.
subternata would exert the least. Interestingly, the results of
our experiments proved our assumption wrong as the oppo-
site effect was observed with the aqueous extract of C. subter-
nata being the most beneficial extract. A closer observation at
the composition of the extracts (Table 1) reveals that the
aqueous extract of C. subternata contains higher concentra-
tions of flavones and dihydrochalcones. Scolymoside, present
in the highest concentration in the C. subternata water
extract and absent in detectable quantities in the two C. gen-
istoides extracts, is a glycoside of luteolin, a flavone aglycone
demonstrated to inhibit the production of neuronal mito-
chondrial superoxide anion O2

⋅– [44]. While glycosylation
of position C-7 of the A-ring of the flavonoid structure as
for scolymoside would decrease its radical scavenging
potency compared to luteolin, it does not abolish the activity
[45]. Dihydrochalcones related to those in C. subternata not
only act as radical scavengers [46] but also demonstrated
neuroprotective effects [47, 48]. The flavanone, hesperidin,
present in the highest level in the 70% ethanolic extract of
C. genistoides could alleviate oxidative stress [49] and act as
neuroprotective agent, amongst others by enhancing endog-
enous antioxidant defense functions [50].

Regarding the bioavailability of the plant extract, it
depends on the bioavailability of the single compounds con-
tained in each extract. Extracts from different honeybush
species vary in chemical composition. However, the main
active constituents of honeybush have been reported to be
mangiferin and hesperidin and there are some data available
with regard to their bioavailability and their ability to cross
the blood-brain barrier (BBB). Of note, trace amounts of
mangiferin were found in the rat brain after an acute oral
treatment with a single dose of a plant extract containing
mangiferin indicating that the compound can cross the
BBB [51], whereas in another study, mangiferin was not
detected in the brain of rats after a single dose via intraperi-
toneal administration [52]. However, one has to take into
consideration that different assays of different sensitivities
were used in the two studies. In the study from Li et al.
(2008), a validated highly sensitive HPLC method was
developed and applied to detect mangiferin after a single
oral dose of Rhizoma Anemarrhenae extract, while in the
study of Zajac et al. (2012), a much less sensitive detection
method (a simple TLC method) was used. Similarly, the
bioavailability of the therapeutically active constituents of
Ginkgo biloba extract (GBE) in the brain was formerly
questioned until recent studies demonstrated the distribu-
tion of GBE in the brain of rats after single and repeated
oral administration of GBE [53, 54]. The compounds in
this case were also successfully detected with an HPLC
method. Hesperidin or its aglycone hesperetin seems to
be able to traverse the BBB and directly exerts their neuro-
protective effect in the brain [55–57].

Furthermore, bioavailability in the brain might be
affected by the route of administration and by whether the
pure compound is administered or contained in a plant
extract but we can assume that mangiferin and hesperidin
exert neuroprotective effects on the brain and peripheral
neurons.
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Figure 5: (a) Honeybush extracts significantly increased the mitochondrial membrane potential (MMP) up to 24% under physiological
conditions (black bars). (b) 3 h treatments with H2O2 at 400 μM caused a reduction of 55.1% in MMP which was rescued by the different
honeybush extracts. The red bar represents the H2O2-treated cells, and the grey bars represent cells that were pretreated for 24 h with the
indicated honeybush extract and then treated for 3 h with H2O2. Values represent as the mean± SEM of three independent experiments
and were normalized on the untreated group (=100%). One-way ANOVA and post hoc Dunnett’s multiple comparison test versus (a)
untreated (CTRL) or (b) H2O2.

∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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To sum up, the results obtained from this study indicate
that C. subternata aqueous extract is the most effective in
enhancing mitochondrial functions especially under oxida-
tive stress situations. It was the only one to act on respiration
under oxidative stress and the only one to lower all four types
of ROS measured in this study. These findings are particu-
larly relevant for the establishment of honeybush tea as
nutraceutical as the species that is mostly cultivated for the
production of the tea is currently C. subternata. The other
two aqueous extracts (C. genistoides and C. longifolia) also
exert a beneficial effect. C. genistoides acted more on respira-
tion under physiological conditions, while C. longifolia was
more effective in neutralizing ROS (active against three types
of ROS). Interestingly, in the tea industry, honeybush tea is
often prepared after blending of different species. Therefore,

evaluating the activity of a mixture of different species
extracts will be very interesting.

5. Conclusion

In this study, the effects of honeybush extracts on enhancing
mitochondrial and neuronal functions and on preventing the
detrimental effects of oxidative stress were examined. The
aqueous extract of C. subternata was superior to the other
extracts in increasing mitochondrial functions and bioener-
getics, especially under H2O2-induced oxidative stress. The
aqueous extracts of C. genistoides and C. longifolia came next
in terms of efficacy on mitochondrial functions. Lower
extract concentrations (0.1-1 ng/ml) were also more effective.
Overall, our data are in line with existing literature reporting
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Figure 6: Effect of honeybush extracts on ROS levels under H2O2-induced oxidative stress. (a) H2O2 treatment at 400 μM caused an increase
of 29.5% in mitochondrial ROS which were detected using the dye DHR. This increase was significantly ameliorated up to 23.1% by C.
subternata aqueous extract. (b) H2O2 caused an elevation of 31.2% in cytosolic ROS (detected with the dye DCF). All the extracts could
bring the cytosolic ROS levels down, but the ones that reduced them significantly and most effectively were the aqueous extract of C.
subternata at 1 ng/ml and the 70% ethanolic extract of C. genistoides at 0.5 ng/ml. (c) H2O2 increased the mitochondrial superoxide anion
levels by 43%. All the extracts, except the ethanolic extract of C. genistoides, significantly reduced the mitochondrial superoxide anion
levels. The aqueous extracts of C. subternata, C. genistoides, and C. longifolia at the concentration of 1 ng/ml each completely neutralized
the mitochondrial superoxide anion levels. (d) The total superoxide anion levels were elevated by 67.9% in the H2O2-treated cells. All 4
extracts could ameliorate this increase but only the aqueous extracts of C. subternata at 1 ng/ml, C. longifolia at 1 ng/ml, and the ethanolic
extract of C. genistoides at 0.5 ng/ml significantly reduced the superoxide anion levels. The red bar represents the H2O2-treated cells, and
the grey bars represent cells that were pretreated for 24 h with the indicated honeybush extract and then treated for 3 h with H2O2.Values
represent as the mean± SEM of three independent experiments and were normalized on the untreated group (=100%). One-way ANOVA
and post hoc Dunnett’s multiple comparison test versus (a) untreated (CTRL) or (b) H2O2.

∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

11Oxidative Medicine and Cellular Longevity



an antioxidant effect of honeybush [19–22]. However, the
effects of honeybush extracts on neuronal cells and specif-
ically on mitochondrial function have been investigated
here for the first time. Further research is ongoing by
our team in order to study more in depth the effect of
honeybush in combatting stress and in enhancing neuro-
nal function. These findings make honeybush a potential
candidate for prevention of oxidative stress, laying the
foundation for further research aimed at the development
of a condition-specific nutraceutical.
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Oxidative stress plays a fundamental role in the pathogenesis of Parkinson’s disease (PD). Oxidative stress appears to be responsible
for the gradual dysfunction that manifests via numerous cellular pathways throughout PD progression. This review will describe the
prooxidant effect of excessive consumption of processed food. Processed meat can affect health due to its high sodium content,
advanced lipid oxidation end-products, cholesterol, and free fatty acids. During cooking, lipids can react with proteins to form
advanced end-products of lipid oxidation. Excessive consumption of different types of carbohydrates is a risk factor for PD. The
antioxidant effects of some foods in the regular diet provide an inconclusive interpretation of the environment’s mechanisms
with the modulation of oxidation stress-induced PD. Some antioxidant molecules are known whose primary mechanism is the
neuroprotective effect. The melatonin mechanism consists of neutralizing reactive oxygen species (ROS) and inducing
antioxidant enzyme’s expression and activity. N-acetylcysteine protects against the development of PD by restoring levels of
brain glutathione. The balanced administration of vitamin B3, ascorbic acid, vitamin D and the intake of caffeine every day
seem beneficial for brain health in PD. Excessive chocolate intake could have adverse effects in PD patients. The findings
reported to date do not provide clear benefits for a possible efficient therapeutic intervention by consuming the nutrients that
are consumed regularly.

1. Introduction

Parkinson’s disease (PD) is the second most common
chronic progressive neurodegenerative disorder. PD is char-
acterized by the selective loss of dopaminergic neurons of
the substantia nigra (SN) pars compacta, which conditions
deficiency of dopamine secretion in the basal ganglia of the
midbrain with the ability to produce classic motor symp-
toms: bradykinesia, tremor, rigidity, posterior postural insta-
bility, gait disturbances, smell, memory, and dementia [1].
PD involves genetic, environmental, and toxicological factors
[2, 3]. PD is associated with oxide-reduction processes
through excessive production of reactive oxygen spices
(ROS) [4]. The hallmark of PD is the appearance of insoluble
inclusions in neurons called Lewy bodies. Lewy bodies
mainly consist of α-synuclein deposition [5]. α-Synuclein is
a 140 kDa protein encoded via the SNCA gene. α-Synuclein

plays an essential role in the pathogenesis of PD. Duplication,
triplication, and point mutations in the N-terminal region
(A30P, A53T, and E46K) are linked to familial PD [6]. A
recent study suggests that α-synuclein monomers and tetra-
mers are the physiological forms, while oligomers and fibrils
are the pathogenic forms [7]. Abnormal accumulation of sol-
uble α-synuclein monomers may lead to the formation of
oligomers and fibrils as a key pathogenic event in the early
stages of PD [8]. The first clinical signs and symptoms of
PD appear after the loss of 50-70% of SN [9, 10]. Based on
PD’s progressive nature, oxidation might be responsible for
gradual dysfunction as a continuous process that manifests
itself through many cellular pathways throughout the dis-
ease. ROS are normally produced in the cell during the mito-
chondrial electron transfer chain or by redox reactions [11].

ROS are necessary components for cellular homeostasis.
However, when ROS are produced in excess, they induce
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transcription errors that cause dysfunction in the expression
of different proteins, including C-terminal α-synuclein, par-
kin, and ubiquitin hydrolase which are directly related to
PD [12]. A recent study reported the propensity of oligomers
to cause ROS production and significant reduction in the
presence of metal chelators such as deferoxamine. This evi-
dence indicates that α-synuclein oligomers produce superox-
ide (O‐

2) radicals that bind to transition metal ions such as
copper and iron [13]. α-Synuclein toxicity may contribute
to elevated cellular oxidative stress. Oxidative stress may trig-
ger α-synuclein toxicity [9]. In PD, α-synuclein oligomers
cause the impairment of proteasomes and lysosomes’ degra-
dation activity, increasing protein accumulation and aggre-
gation. The accumulation of α-synuclein is associated with
a decrease of dopamine release [14]. The mitochondrial
respiratory chain can produce oxidative stress by generating
ROS and reactive nitrogen species (RNS). Excessive produc-
tion of ROS and RNS can damage the cell, especially the
mitochondrial system. Oxidative stress can trigger apoptosis
signaling in nerve cells (Figure 1) [15].

In this review article, we will briefly discuss the role of
lipoperoxidation, oxidative damage, DNA repair, mitochon-
dria, endogenous antioxidants, and the anti- and prooxidant
effects of some natural foods for daily consumption and some
food alternatives with antioxidant potential in PD. These die-
tary alternatives at low or increased levels can have beneficial
or detrimental effects to increase or decrease the signs and
symptoms of PD.

1.1. Lipoperoxidation in Parkinson’s Disease. Oxidative stress
induces toxicity in the cell by the oxidation of lipids. Lipid
oxidation leads to the accumulation of intracellular aggre-
gates, mitochondrial dysfunction, excitotoxicity, and apopto-
sis. Oxidative damage is a common phenomenon in
neurodegenerative diseases. However, it is unclear whether
oxidative stress is a cause or a consequence. The formation
of modified lipids via oxidation can produce postmitotic
cellular dysfunction, and the dysfunction is capable of lead-
ing to necrosis or apoptosis of neurons. Lipoperoxidation of
polyunsaturated fatty acids (PUFAs) in cell membranes initi-
ates the cumulative deterioration of cell membrane functions
by causing decreased fluidity, reduced electrochemical poten-
tial, and increased permeability of the cell membrane [16].
Postmortem studies have shown that the effect of chronic
oxidative stress is lipoperoxidation of PUFAs in the SN cell
membranes [11]. Malondialdehyde (MDA) and glycosyla-
tion end-product levels increase in PD, resulting in impaired
oxidation of glucose. The increase of MDA and glycation
end-products leads to irreversible oxidation of proteins in
the SN and the cerebral cortex. The SN has a high risk of
aggressive oxidative attacks via lipoperoxides. It has been
previously reported that the distribution of transition
metals in the brain showed remarkable regional differences
[17]. 4-Hydroxy-2-nonenal is a lipid peroxidation product
capable of preventing the fibrillar formation of α-synuclein
by promoting the formation of secondary β-sheets and
toxic soluble oligomers in a dose-dependent manner.
Therefore, oxidative stress can also influence α-synuclein
toxicity and mediate the pathogenesis of PD [18]. In the

postmortem brains of PD patients, increased carbonylated
proteins and TBAR markers have been detected [19]. Lipo-
peroxidation markers were increased in plasma and cere-
brospinal fluid (CSF) in PD patients compared to controls
without the disease [20].

1.2. Oxidative DNA Damage in Parkinson’s Disease. PD is
characterized by defects in the ability to repair acute or
chronic oxidative damage to neurons [21]. The 8-hydroxy-
2′-deoxyguanosine (8-OHdG) marker is an indicator of
nucleic acid oxidation; in particular, it is a marker of oxida-
tive damage to nuclear and mitochondrial DNA. In patients
with PD, the marker has been found to increase in the CSF
coupled with increased levels of oxidized coenzyme Q10
[22].Oxidative DNA damage leads to genomic instability
and cellular dysfunction. More than 100 oxidative modifica-
tions to DNA are identified; many of these are mutagenic,
while others interrupt replication or transcription, leading
to cancer or cell death in PD [23]. Oxidative damage can arise
from external sources, such as chemical agents and ionizing
radiation. However, most of the oxidative damage is caused
by ROS produced through normal cellular respiration and
metabolism [24]. Oxidative damage to DNA in the brain is
particularly frequent since it is produced by endogenous met-
abolic activity. The continuous electrochemical transmission
between brain cells requires a large amount of energy. Brain
tissue maintains a high basal metabolic rate to meet high
energy demands, resulting in brain cells that produce high
levels of ROS [25]. The oxidative stress imbalance amplifies
the level of damage within brain cells, increasing the demand
for DNA repair activity, requiring additional energy, and cre-
ating a perpetual state of oxidative stress. Differentiated post-
mitotic brain cells lack a robust DNA repair and detection
machinery associated with replication [26]. However, brain
cells have highly efficient base excision repair (BER) mecha-
nisms to cope with the high oxidative stress involved in
neurodegenerative disorders. Emerging research suggests
that specific BER pathway deficiencies perpetuate neuronal
dysfunction [5, 22]. Injuries that occur in DNA include base
modifications, abasic sites, and single- and double-strand
breaks of DNA. The injuries that occur are mostly repaired
via BER [27]. The first step of BER is the recognition and
removal of damaged DNA bases. DNA base modifications
are recognized first and removed by glycosylase enzymes.
Abasic sites are removed by apurinic enzymes/apyrimidinic
endonucleases [28]. DNA glycosylases are the first DNA
repair enzymes recruited for oxidative damage [29]. Eleven
glycosylases are known in humans [30]. The three central
glycosylases that recognize oxidative damage are 8-
oxoguanin DNA glycosylase (OGG1), endonuclease III, and
endonuclease VIII [29]. OGG1 shows specificity for lesions
caused by the oxidative damage marker to DNA 8-
oxoguanin. The mutY homolog (MYH) can cleave a mis-
matched adenine throughout the 8-oxoguanin injury to
suppress mutagenicity [31]. In the brain, the most abundant
oxidative lesions produced by the 8-oxoguanin and formami-
dopyrimidine (FAPY G) markers are derived from the oxida-
tion and reduction of 8-hydroxyguanine injuries [32].
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1.3. Mitochondria in Parkinson’s Disease. Mitochondria are
organelles that produce ATP (chemical energy) and play a
critical role in energy metabolism, the redox state, and Ca2+

homeostasis. Therefore, mitochondria are crucial to cell
survival. Intracellular Ca2+ stimulates the electron transport
chain in the mitochondria producing ATP and ROS as sub-
products. The endoplasmic reticulum is a quality control
organelle that organizes protein synthesis, folding, and trans-
port. Crosstalk between the endoplasmic reticulum and
mitochondria increases with oxidative stress and mito-
chondrial stress, which can cause endoplasmic reticulum
dysfunction. Research in the postmortem brain tissue has
previously reported impaired mitochondrial function and
elevated oxidative stress caused by α-synuclein aggregates,
autooxidation, and degradation of dopamine in the SN
[33]. Chronic oxidative stress is characterized by altered
levels of iron and antioxidant defenses (enzyme superoxide
dismutase (SOD) and glutathione (GSH)) in brain cells in
PD [34]. Antioxidant enzymes, SOD, and GSH prevent
ROS levels from rising [35]. When antioxidant defenses
fail to regulate ROS levels, there is an increase in OS capa-
ble of producing harmful effects [36]. Random oxidation
of macromolecules within the cell can damage cell struc-
tures and even cause cell death [37]. OS increases the
possibility of spontaneous cellular mutations. The appear-
ance of mutations conditions the vulnerability of cells to
dysfunction [38].

1.4. Prooxidant Foods. Prooxidant foods are compounds that
promote oxidative stress by increasing ROS generation or by
decreasing antioxidant systems [39]. Diet can participate in
OS production processes depending on the quantity or qual-
ity of micro- or macronutrients [40]. Some characteristics
and mechanisms of different types of prooxidant foods that
have the ability to favor the clinical manifestations of PD
are described below (Figure 2).

1.5. Processed Meat Containing Oxidized Proteins in
Parkinson’s Disease. Meat products are the primary source
of protein, amino acids, vitamins (niacin, vitamin B6, and
vitamin B12), and minerals such as iron and zinc [41]. How-
ever, meat also contains products that, in excess, can be
harmful to human health such as sodium, advanced glycation
end-products, cholesterol, and free fatty acids [42, 43]. Cur-
rently, most meat products undergo processing stages that
involve modification of their structure, changes in aggrega-
tion, or fragmentation that can cause protein oxidation
[44]. Protein carbonylation determination is a useful marker
to measure oxidative damage in different foods with high
protein content [45]. Carbonylation is common in some
processed foods, such as fermented sausages, dry-cured loins,
chicken thigh meat, and pork or beef patties [46]. These
products accumulate oxidized molecules during their pro-
cess, and when ingested, they come into contact with the
intestinal mucosa, internal organs, and the bloodstream after
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Figure 1: Schematic representation of the oxidative stress mechanism in the development of Parkinson’s disease in dopaminergic neurons.
Oxidative stress from aging or exogenous sources causes damage to vulnerable cellular structures such as mitochondria and DNA. α-
Synuclein gene mutations can promote the formation of α-synuclein oligomers and Lewis bodies. Oxidative stress causes mitochondrial
dysfunction that converts the mitochondria into a source of ROS/RNS. ROS/RNS increases α-synuclein aggregate formation, and these, in
turn, damage mitochondrial function. Both mitochondrial dysfunction and Lewis bodies lead to a loss of dopaminergic neurons and thus
neurodegeneration
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intestinal absorption [47]. Various studies have reported that
oxidative protein modifications can accumulate in the body
and damage specific tissues. For example, protein carbonyls
correlated with the severity of damage in inflammatory bowel
disease [48], and oxidized thyroxines are associated with dys-
function of insulin secretion [49]. Besides, the proteolytic
damage of tissue releases 2-aminoadipic acid, which is a risk
marker for diabetes mellitus (DM) [50]. Intake of products
with these structural modifications is also associated with
aging and age-related diseases like PD [51–53]. There are dif-
ferent pathological mechanisms in which the intake of pep-
tides or modified amino acids in PD is involved. One
mechanism depends on the incorporation of oxidized amino
acids into de novo protein synthesis, resulting in enzyme
dysfunction with the ability to cause cellular damage [54].
One of the examples is the oxidative modification of the
DJ-1 protein. The DJ-1 protein, which contains 189 amino
acids, has been linked to PD because the loss of its functions
causes disease with parkinsonian characteristics [55]. The
oxidative modifications in a single amino acid of the DJ-1
protein are sufficient to favor PD development. Oxidative
modifications of dopamine have been linked to PD [56].

Oxidized dopamine accumulates in the dopaminergic neu-
rons of patients with sporadic or genetic PD, resulting in
mitochondrial and lysosomal dysfunction [57].

1.6. Oxidized Lipids in Parkinson’s Disease. Lipids are a nec-
essary part of nutrition, providing large amounts of energy
and essential fatty acids and promoting food acceptance
[58]. Lipids provide important quality characteristics to meat
products such as flavor and juiciness [59]. Lipids are highly
prone to oxidation and represent the leading nonmicrobial
cause of decomposition of meat products [60, 61]. During
the oxidation of lipids in food, nutrient quality is lost due
to the decrease of some macro- and micronutrients such as
PUFAs, tocopherols, and amino acids or proteins that react
with oxidized lipids [62]. Oxidized cholesterol products can
be found in beef, mortadella, and anchovies [63–65]. Lipid
oxysterols and hydroperoxides can be found in butter, corn
oil, or olive oil [66, 67]. During food processing or cooking,
lipids can react with proteins to form advanced lipid oxida-
tion end-products (ALE) [68]. The health effects of ALEs in
food are controversial. Some authors describe that oxidized
fats can activate the inflammatory response and damage
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organs such as the intestine, liver, and kidney [69, 70]. Baynes
reported that enzyme systems can neutralize oxidized fats
during metabolism and that harmful metabolic processes
can occur in people with compromised cellular functions
[71]. The effect of the high-fat diet on PD is not entirely
clear. Mouse studies showed that high-fat diets could
increase dopamine depletion in the nervous system and
promote the progression of PD [72, 73]. Human studies
associate the consumption of animal fat with an increased
risk of developing PD [74, 75]. However, results were not
replicated in other more extensive recent studies [76–78].
The contradictory findings may be due to different types
of fat used in the diet that are not always described. Some
studies indicate that high cholesterol or a keto diet may
lower the risk of developing PD or improve the motor
and nonmotor symptoms of the disease [79]. Also, the con-
sumption of PUFAs contributes to the neuroprotective
anti-inflammatory capacity [80–82].

1.7. The Effect of a Diet Rich in Carbohydrates in Parkinson’s
Disease. Eating a diet rich in carbohydrates can promote cel-
lular signaling of inflammatory effects [83]. High carbohy-
drate consumption increases the glycemic index. A high
glycemic index is associated with cancer risk and comorbid-
ities due to overweight or obesity [84, 85]. In the Asian pop-
ulation, high consumption of rice or total carbohydrates is
positively related to type 2 DM [86, 87]. Additionally, con-
suming refined carbohydrates, such as fructose-rich syrups,
may lead to metabolic problems such as DM, obesity, and
cardiovascular disease [88, 89]. High caloric intake can
induce oxidative stress by increasing the substrates of mito-
chondrial respiration [90]. The high level of glucose metabo-
lism increases NADPH and FADPH, which are capable of
increasingO‐

2production [91]. High glucose concentrations
increase the activity of the thioredoxin-interacting protein
that favors the generation of ROS [92]. The increased con-
sumption of fructose products plays an important role as a
trigger for oxidative stress. Animal studies showed that
increased fructose in the diet causes metabolic and endocrine
changes that affect different organs and tissues [93, 94]. Some
retrospective studies report risk factors for developing PD
due to high carbohydrate intake, but the effects of high carbo-
hydrate intake on PD are still inconclusive. Consumption of
dairy products is a risk factor in men, but not in women [74].
It has been previously reported that carbohydrates, monosac-
charides, refined sugar, lactose, and other carbohydrate-rich
foods such as bread and cereals are risk factors for PD [95].
However, cohort studies have not confirmed that total carbo-
hydrate intake is associated with the risk of developing PD
[76]. Diet with a high glycemic index or high carbohydrate
intake found in a case-control study reduces the risk of PD
[96]. A diet rich in carbohydrates could link DM to the
risk of developing PD [97, 98]. PD and DM share com-
mon pathogenic mechanisms involving mitochondrial dys-
function, inflammation, and metabolic disturbances [99].
There is evidence between the association of DM with
PD risk by increasing postural instability and difficulty
walking [100]. However, further confirmatory studies are
still needed [101, 102].

1.8. Parkinson’s Disease Management Alternatives.Due to the
increase in life expectancy and generational change, PD has
become a common health problem and care of a PD patient
has become a treatment challenge. PD is a costly disease for
health services characterized by the accelerated appearance
of clinical manifestations. PD becomes devastating for
patients and their families. In the field of neurodegenerative
diseases, the existing therapies only limit the activity of the
disease. Alternative treatments need to be evaluated for both
their beneficial and harmful properties (Table 1). A combina-
tion of therapies is recommended, which could condition the
real delay in the evolution of PD as a possibility to improve
the symptomatology of the disease or improve the quality
of life of patients [103].

1.9. Antioxidants in Parkinson’s Disease. Cells have devel-
oped antioxidant defense systems to protect themselves
against their destructive products. The antioxidant defense
system consists of enzymes that involve BER, SOD, glutathi-
one peroxidase (GPx), peroxiredoxins, and GSH [26]. Due to
the brain’s high metabolic rate, there may be a decreased
ratio of antioxidant to prooxidant enzymes [104]. The SN’s
antioxidant defenses are relatively low compared to other
regions of the central nervous system (CNS). Low levels of
GSH are produced during the early stages of PD. Extravesicu-
lar dopamine and its breakdown products can act as GSH
depleting agents [105]. N-acetylcysteine (NAC) shows anti-
oxidant properties by restoring cellular GSH and participat-
ing in important endogenous antioxidant systems. In
experimental studies, NAC has been reported to protect
against the development of PD [106]. The antioxidant char-
acteristics of GSH have been demonstrated in oxidative stress
models, including models that use buthionine-sulfoximine to
deplete GSH. GSH depletion increases oxidative stress in all
cells and mitochondrial fractions. Most of the antioxidant
functions of GSH are exerted as a cofactor of the GPx enzyme
family [107]. The GPx family forms a group of selenium-
containing enzymes with the ability to reduce toxic peroxides
[108]. Under neurotoxicity conditions, the overexpression of
the antioxidant enzyme GPx can decrease the number of
neurons lost [109]. An immunocytochemical study of GPx1
expression showed that dopaminergic neurons in SN express
low levels of the enzyme. In contrast, in other regions not
affected by PD, they express high levels of the enzyme
[110]. GPx is an enzyme involved in the elimination of per-
oxides in the brain. The enzymatic activity of GPx reduces
the probability that the hydroxyl radical (OH) will be pro-
duced by transition metals [44]. One of the major cellular
defense systems for oxidative attacks is the antioxidant
enzyme SOD. Three types of SOD have been identified in
mammalian cells: copper-zinc SOD (Cu/ZnSOD or SOD1),
manganese SOD (MnSOD or SOD2), and extracellular
SOD (ECSOD or SOD3). SOD1 is a 32 kDa homodimer of
a 153-residue polypeptide with one copper and one zinc-
binding site per subunit [111]. Specifically, each monomer
possesses a β-barrel motif and two functionally important
large loops, called zinc and electrostatic loops that coat the
metal-binding region. SOD1 catalyzes the reaction of the
O‐

2 anion in molecular oxygen (O2) and hydrogen peroxide
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(H2O2) in a bonded copper ion [112]. The intracellular con-
centration of SOD1 is high (between 10 and 100μM) [113].
SOD1 represents 1% of the total protein content in the
CNS. SOD1 is located in the cytoplasm, nucleus, lysosomes,
peroxisomes, and intermitochondrial membrane spaces of
eukaryotic cells [114]. Reports suggest that SOD1 is a crucial
antioxidant enzyme whose mutations are a significant target
of oxidative damage to brains with PD [115, 116]. SOD1 and
mitochondrial SOD2 are among the most abundant antioxi-
dant proteins in the brain and are fundamental in protecting
neurons from oxidative stress. SOD enzymes eliminate toxic
O‐

2 converting it catalytically into oxygen and H2O2. Some
studies suggest that abnormalities in SOD1 or SOD2 may
contribute to the development of PD [117].

1.10. Melatonin in Parkinson’s Disease.Melatonin is a natural
hormone mainly secreted by the pineal gland that regulates
different physiological functions. Melatonin is also synthe-
sized by other organisms, such as bacteria, invertebrate ani-
mals, and plants [118]. The consumption of foods rich in
melatonin such as pineapple, orange, and banana, can
increase the antioxidant capacity of the organism [119].
Melatonin has also been identified in vegetables, meats, and
sprouts [120, 121]. Meng et al. evaluated that eggs, fish, nuts,

cereals, and some seeds are the foods with the highest mela-
tonin content [122]. Melatonin is known for its antioxidant
properties and anti-inflammatory and cardiovascular effects.
Melatonin has properties that inhibit tumor proliferation in
the autoimmune system and provide a neuroprotective effect
[123–127]. The main interest in the investigation of the
effects of melatonin on PD arises from the relationship
between the decrease in the activity of the pineal gland and
melatonin in these patients [128]. MT1 and MT2 melatonin
receptors are also decreased in PD [129]. Melatonin neutral-
izes ROS and induces the expression and activity of antioxi-
dant enzymes [130, 131]. In mice, the effect of melatonin
counteracts the progression of dopamine by increasing the
activity of the mitochondrial complex I by decreasing the
levels of lipoperoxides and nitrites in the cytosol and mito-
chondria of brain cells [132]. Other studies have shown anti-
apoptotic, neuroprotective, and antidepressant activity in
mouse models with PD [133–135]. Other studies have shown
that melatonin treatment can help improve sleep disorder
and increase neuroprotection in PD patients [136, 137].
However, the consumption of melatonin has not been able
to improve the motor symptoms of PD [138]. Some studies
reported that melatonin could promote ROS generation. In
vitro studies showed that melatonin has prooxidant effects

Table 1: Antioxidant and prooxidant properties of nutrients used in Parkinson’s disease.

Nutrient Antioxidant/benefit effects in PD Prooxidant/side effects in PD

Melatonin
Increases the expression of GPx, SOD, and catalase [134]
Improves sleep disturbances in PD patients [139, 140]

Melatonin can promote ROS production at a
concentration of 10-1000 μM [143]

Vitamins

The low singular form of vitamin B (10mM) can induce
differentiation of embryonic stem neuron cells [153]
Vitamin C has antioxidant properties and it is well

distributed in the brain [155]
Vitamin D protects dopaminergic neurons [159]

The high singular form of vitamin B3 (>20mM) can
induce cytotoxicity and cell death [153]

Vitamin C can induce OS in the presence of free
transition metals and H2O2 [156]

Whey protein
supplements

20 g/day increases GSH in PD patients but
does not improve the severity of disease [176]

High protein intake decreases the absorption of
levodopa and increases the symptoms of PD [177]

Chocolate

Chocolate rich in flavonoids has free radical scavenging
capacity and neuroprotective effects [180]

No improvement was found in motor function
after administration of 200 g of cocoa chocolate

in PD patients [188]

Cocoa chocolate contains β-phenylethylamine
which can promote -OH formation and

psychomotor dysfunction [192]

Berberine
Administration of 50mg/kg prevents loss of
dopaminergic neurons and improves motor

balance and coordination in a rat PD model [219]

Long-term administration of berberine increases loss of
dopaminergic neuronal mass in vitro and in vivo [220]
Berberine along with chronic L-DOPA administration

causes degeneration of dopaminergic cells in the
substantia nigra in a rat model of PD [221]

Curcumin
Decreases ROS and the neurodegenerative
severity and improves locomotor symptoms

in Drosophila PD model [226]

Quercetin
Administration of quercetin and piperine decreases

the neurotoxicity in rat PD model [230]

Coffee
Components in coffee have antioxidant,
anti-inflammatory, and neuroprotective

effects [204, 206]

GSH: glutathione; GPx: glutathione peroxidase; SOD: superoxide dismutase; PD: Parkinson’s disease; ROS: reactive oxygen species.
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mainly at lipids and proteins [139]. However, high concen-
trations of melatonin (10-1000μM) are reported to promote
ROS production by inducing cytotoxicity and apoptosis in
human leukemia cells [140]. Similar effects were found in
an Alzheimer’s disease model culture, where melatonin con-
centrations of 1mM increased oxidative stress markers, while
concentrations < 0:1mM reduced oxidative damage [141].
The prooxidant mechanisms of melatonin have not been
fully described. Leukocyte studies show that melatonin has
little interaction affinity for calmodulin and that this phe-
nomenon seems to favor ROS production [142]. The benefits
and risks of melatonin supplementation in PD patients
require more clinical evidence to support the previously
described findings.

1.11. Vitamins in Parkinson’s Disease. Complementary to the
usual pharmacological therapy for PD, it is suggested to add
some other natural compounds as adjuvants. Vitamins are
natural bioactive products with antioxidant properties
[135]. Vitamins are necessary to maintain normal body func-
tions; since essential vitamins cannot be synthesized endoge-
nously by the body, they must be obtained through the diet.
Vitamin deficiency is common in the elderly. Vitamins A,
D, E, and K are fat-soluble. Fat-soluble vitamins bind primar-
ily to nuclear receptors and affect the expression of specific
genes [143]. Vitamins B and C are soluble in water and are
cofactor constituents that affect enzyme activity [144]. The
antioxidant properties of vitamins and their biological func-
tions to regulate gene expression may be beneficial for the
treatment of PD. Recent clinical evidence indicates that ade-
quate supplementation of different vitamins can reduce PD
incidence and improve the clinical symptoms of patients.
Vitamin supplementation may be a beneficial adjuvant treat-
ment for PD [145]. The members of the vitamin B family
which are soluble in water include thiamine (vitamin B1),
riboflavin (vitamin B2), niacin (vitamin B3), pantothenic
acid (vitamin B5), pyridoxine (vitamin B6), biotin (vitamin
B7), folic acid (vitamin B9), and cobalamin (vitamin B12)
[146]. B vitamins play an important role as enzyme cofactors
in multiple biochemical pathways in all tissues, such as regu-
lating metabolism, improving the immune system and ner-
vous system function, and promoting growth and cell
division. Recently, the association between vitamin B and
PD is receiving increasing attention [147]. Fukushima sug-
gests that excess vitamin B3 (nicotinamide) is related to PD
development [148]. Excess nicotinamide can induce the
overproduction of 1-methyl nicotinamide (MNA) in PD
patients [149]. Griffin et al. found that the singular form of
nicotinamide (10mM) has a significant effect in inducing
the differentiation of embryonic stem cells in neurons. How-
ever, high singular forms (>20mM) of nicotinamide cause
cytotoxicity and cell death [150].

Vitamin C (ascorbic acid) is an essential water-soluble
vitamin that is widely distributed in various tissues. Vitamin
C is abundant in vegetables, fresh fruits, and animal livers.
Vitamin C contains two molecular subforms in the body.
The reduced form of vitamin C is ascorbic acid and the
oxidized form of dehydroascorbic acid. Vitamin C is essential
for the nervous system’s physiological function and antioxi-

dant function by inhibiting oxidative stress, reducing lipo-
peroxidation, and eliminating free radicals [151]. Vitamin
C has the potential for the treatment of PD because it is
mainly distributed in areas rich in neurons [152]. Vitamin
C deficiency can cause scurvy. However, ascorbic acid
exhibits prooxidant properties in the presence of free transi-
tion metals because it reduces ferric ions to ferrous ions in a
Fenton-type reaction. Ascorbic acid in the presence of H2O2
stimulates the formation of OH radicals [153]. Therefore, the
final prooxidant or antioxidant effect depends on the rela-
tionship between ascorbic acid concentration and the avail-
able ferrions [38]. At sufficiently high levels, ascorbic acid
reduces and destroys the radicals formed [154]. Postmortem
studies have shown that vitamin D receptors are present in
dopaminergic neurons in the human SN. Vitamin D admin-
istration has been suggested to protect dopaminergic
neurons, and its deficiency is associated with increased motor
severity, postural instability, worsening verbal fluency, and
memory [155, 156]. In early PD, patients have been reported
to have significantly lower serum 25-(OH)-D concentrations
than controls of the same age, which may have implications
for bone health and fracture risk. Sleeman et al. reported a
small significant association between vitamin D status at
baseline and worsening PD motor function at 36-month
follow-up [157]. 25-Hydroxyvitamin-D deficiency and
reduced exposure to sunlight are significantly associated with
an increased risk of PD. However, vitamin D supplementa-
tion does not produce significant benefits to improve motor
function in PD patients [158].

1.12. Whey Protein Supplementation in Parkinson’s Disease.
In addition to the protein obtained from food, there is also
whey protein (WP) supplements used to treat some meta-
bolic disorders [159]. WP is a soluble by-product obtained
from the separation of casein during cheesemaking [160].
WP is mainly rich in globulins, albumin, and amino acids
[161, 162]. Some studies have shown that specific WP prep-
arations can reduce proinflammatory cytokine levels (TNF-
α, IL-6) and work as a hepatoprotective agent in hepatitis
and liver fibrosis in rat models [163]. Other studies evaluated
the antioxidant effect of (WP) supplementation on oxidative
stress [164]. Rat studies reported that WP supplementation
increases the antioxidant enzyme activity of catalase, SOD,
and GPx and reduces the effect of TBAR [165]. Falim et al.
evaluated the effect of WP supplementation on oxidative
stress in subjects with overweight/obesity and DM. The
authors found no significant effect on oxidative stress
markers (TBAR, AOPP, and 8-OHdG) [166]. Reyes et al.
and Katz et al. demonstrated that supplementation of the
amino acid NAC contributes to raising GSH levels in mice
and patients with PD [167, 168]. PD patients are generally
malnourished and have decreased muscle strength. In these
patients, the use of WP may be recommended [169–171],
although there is little clinical evidence in this regard.
Tosukhowong et al. conducted a double-blind, placebo-
controlled clinical trial of 38 patients with PD, and they also
conducted a six-month follow-up to assess WP’s clinical
effects. The authors found that 20 g/day increased the levels
of reduced GSH and decreased homocysteine levels. These
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results did not impact the severity of PD measured according
to the unified PD classification scale (UPDRS) [172]. Clinical
studies involving a larger number of patients with long-term
follow-up are required to establish the possible beneficial
effects of WP supplementation in PD patients. WP supple-
mentation must be monitored because high protein intake
decreases the therapeutic effects of levodopa, increasing the
symptoms of PD [173].

1.13. Chocolate in Parkinson’s Disease. Chocolate is produced
from the cocoa bean of the Theobroma cacao tree. Polyphe-
nols, especially flavonoids, are the main components of
health interest in cocoa and its derivatives [174]. Currently,
research on the potential health benefits of consuming PD
cocoa is attractive due to their high content of antioxidant
polyphenols [175]. The antioxidant capacity of flavonoids
has been previously reported due to their free radical scav-
enging capacity, chelation of transition metal ions, and the
mediation of some cell signaling cascades [176]. In vitro stud-
ies have shown the beneficial antioxidant effects of cocoa
[177, 178]. However, these effects are not always extrapolated
to in vivo studies [179]. It is difficult to establish the recom-
mended amount of chocolate intake to obtain any specific
health benefit because the bioavailability characteristics and
polyphenol contents are different in each type of chocolate
[180]. Dark chocolate, unlike white or milk chocolate, has
been used in studies to evaluate its health effects due to its
high flavonoid content close to 50% [181]. Dark chocolate
shows potential benefits in DM [182], cancer [183], cardio-
vascular disease [184], and neuroprotective effects [185].
The study on the effects of chocolate in PD patients could
be of great importance because the intake of chocolate and
other sweets is frequent. A study reported that PD patients
consume more chocolate (100 g weekly) than a control group
without the disease. PD patients increase chocolate intake by
22% during the disease [186]. A single-dose crossover study
evaluated the immediate effect of 200 g of cocoa chocolate
on motor function in PD patients. Contrary to expectations,
no significant differences in motor function were found in
this study at 1-3 h after the ingestion of cocoa chocolate com-
pared to cocoa-free chocolate [187]. An important factor to
consider in addition to the flavonoid content is that cocoa
contains β-phenylethylamine, traces of a type of amine with
neurotransmitter activity [188, 189]. Studies suggest that
the distribution of β-phenylethylamine in the brain reaches
its maximum concentration in dopaminergic regions [190].
Studies in mice show that β-phenylethylamine causes inhibi-
tion of mitochondrial complex I favoring the generation of
OH and psychomotor dysfunction [191]. Furthermore, the
intake of β-phenylethylamine in mice causes alterations of
akinesia, catalepsy, and other motor disorders found in PD
[192, 193]. Due to this, it has been reported that long-term
intake of cocoa chocolate can promote neurodegeneration
and dopamine complications due to its content of β-phenyl-
ethylamine [194]. There is still insufficient clinical evidence
to support the benefits of the chocolate diet in PD patients.
It is necessary to know the singular form and composition
of cocoa-derived products that can help improve PD
symptoms safely.

1.14. Coffee in Parkinson’s Disease.Normally, soluble α-synu-
clein in PD is intrinsically disordered. This protein errone-
ously folds and forms distinctive amyloid fibrils in
neuropathological inclusions. Initial oligomerization and
eventual fibrillation are believed to be critical steps leading
to neuronal dysfunction and death [195]. Postmortem brain
studies show that α-synuclein in aggregates is hyperpho-
sphorylated in serine 129, and antibodies to phospho-
Ser129-α-synuclein (p-α-syn) are useful in detecting these
inclusions [196]. The phosphorylation of α-synuclein in ser-
ine 129 accelerates its oligomerization and fibrillation
in vitro. Consequently, this posttranslational modification is
of pathogenic and therapeutic interest in α-synucleinopathies
[197]. Dephosphorylation of the protein is carried out by a
specific isoform of protein phosphatase 2A (PP2A). Serine/-
threonine phosphatase is the primary brain enzyme consist-
ing of a structural A subunit, a catalytic C subunit, and one
of the multiple regulatory B subunits that determine sub-
strate specificity [198]. Carboxyl PP2A methylation is regu-
lated by different PP2A-specific leucine carboxyl
methyltransferase 1 (LCMT-1) and a PP2A-specific methyl-
esterase (PME-1). The levels of these methylation regulatory
enzymes are disturbed in the brains in PD, with low regula-
tion of LCMT-1 and high regulation of PME-1, associated
with reduced relative levels of methylated PP2A (methyl-
PP2A), which is the enzymatically more active form [199].
In addition to the antioxidant effects present in the compo-
nents of coffee [200], caffeine has shown protective effects
on altered α-synuclein activity in PD [201]. In 2013, the treat-
ment of transgenic mice with PD was reported; these mice
were administered eicosanoyl-5-hydroxytryptamide (EHT),
an inhibitor of PME-1 methyl esterase activity present in
many types of coffee. The authors found increased brain
methylation and PP2A phosphatase activity with reduced
accumulation of phosphorylated α-synuclein aggregates with
improved neuronal integrity and suppression of the neuroin-
flammatory response [202]. The study results suggest that
EHT and caffeine have synergistic effects in protecting the
brain against α-synuclein-mediated toxicity by maintaining
active PP2A [203]. Decaffeinated coffee has even been found
to have a protective effect in PD models in Drosophila [204].
Caffeine is one of the widely consumed purines (phytochem-
icals) that can contribute beneficial effects to the brain.
Among the purines, caffeine is the most studied, theobro-
mine and theophylline have been studied less, and other
methylxanthines have been mostly unexplored. While caf-
feine’s neurological effects are well established, it is unknown
whether this purine alone is responsible for the beneficial
effects of coffee consumption on cognition and resistance to
neurodegenerative disorders. Emerging evidence suggests
that other classes of phytochemicals present in large quanti-
ties in coffee may improve neuroplasticity and protect neu-
rons against dysfunction and degeneration. Among the
many nonpurine phytochemicals in coffee, flavonoids such
as epicatechins have been shown to promote synaptic plastic-
ity [205]. Growing evidence indicates that regular coffee
consumption results in better cognitive performance during
stressful conditions [206]. Acute caffeine intake improves
performance on memory tasks [207]. A 150mg dose of
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caffeine was previously reported to improve cognitive perfor-
mance for at least 10 h, and caffeine is recommended in
military rations [208]. Extensive longitudinal clinical studies
have established an inverse relationship between coffee
consumption and decreased memory during aging [209].

1.15. Other Phytochemicals in Parkinson’s Disease. Interest in
scientific research on the properties of natural antioxidants in
chronic degenerative diseases has been steadily increasing
over the past two decades [210]. Medicinal plants are the
source of a wide variety of bioactive components with antiox-
idant and anti-inflammatory properties that can be useful as
neuroprotective agents [211]. The neuroprotective molecular
mechanisms of plant extracts include the elimination of
toxins, antioxidant activity, and antiapoptotic effects [212,
213]. Berberine is one of the active components of different
Chinese medicinal herbs, including Hydrastis canadensis,
Coptis chinensis, Berberis aquifolium, and Berberis vulgaris
[214]. Berberine has been used as a natural remedy to treat
diarrhea, stomatitis [215], hepatitis [216], and hypoglycemic
effect [217]. Studies have shown that berberine also has neu-
roprotective effects by regulating neurotrophin levels [218,
219]. Experimental PDmodels report that berberine prevents
the loss of dopaminergic neurons and enhances motor bal-
ance and coordination with maximum effect at 50mg/kg
[220]. However, the long-term treatment with berberine has
been associated with decreased dopamine levels and
increased degeneration of dopaminergic neuronal cells and
its loss in experimental models of PD in rats [221, 222].

Curcumin is a compound derived from the Curcuma
longa plant that has been extensively researched for its anti-
oxidant and anti-inflammatory properties [223]. In vitro
studies report that the antioxidant properties of curcumin
contribute to its neuroprotective effects [224]. Cognitive defi-
ciencies have improved after the administration of curcumin
due to increased levels of the brain-derived neurotrophic fac-
tor [225]. Curcumin also has beneficial effects on PD by
destabilizing the α-synuclein protein [226]. A study in the
Drosophila model of PD has shown that the administration
of curcumin decreases ROS and neurodegenerative severity
and improves motor skills [227].

Another bioactive molecule of natural products is
quercetin. Quercetin is one of the main flavonoids widely
distributed in apples, berries, onions, tea, tomatoes, and other
plant products [228]. The antioxidant and anti-inflammatory
properties of quercetin administration have been demon-
strated in rat models [229, 230]. The administration of quer-
cetin and piperine (a natural alkaloid) has potent
neuroprotective effects against neurotoxicity in rat PD
models [231].

2. Conclusions

PD is a common neurodegenerative disorder. PD incidence
generally increases with age. Potential risk factors in develop-
ing PD include environmental toxins, drugs, pesticides, brain
microtrauma, focal cerebrovascular damage, and genomic
defects. Previous studies suggest that the intake of certain
products may be associated with an increased risk of PD.

Many foods for daily consumption have benefits because of
their content of amino acids, vitamins, minerals, and micro-
nutrients. However, increased use of some prooxidant foods
may increase the risk of developing or increasing PD symp-
toms. Processed meat is characterized by high sodium
content, advanced glycation end-products, cholesterol, and
free fatty acids. The overconsumption of meat conditions a
prooxidant effect. The alteration or fragmentation of the
structure of meat products can cause oxidation of proteins
by carbonylation. On the other hand, fruits and vegetables
stand out for their antioxidant effect due to their amounts
of vitamins and minerals. The evidence about the beneficial
effect of coffee intake and the health risk by consuming large
amounts of chocolate in PD patients is noteworthy. Short-
term, medium-term, and long-term follow-up clinical studies
are required to establish the useful quantities of the food sub-
stances, alone or in combination, to determine the bioavail-
ability and nutritional content of each type of food in PD.
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Naringin is a dihydroflavonoid, which is rich in several plant species used for herbal medicine. It has a wide range of biological
activities, including antineoplastic, anti-inflammatory, antiphotoaging, and antioxidative activities. So it would be interesting to
know if naringin has an effect on aging and aging-related diseases. We examined the effect of naringin on the aging of
Caenorhabditis elegans (C. elegans). Our results showed that naringin could extend the lifespan of C. elegans. Moreover, naringin
could also increase the thermal and oxidative stress tolerance, reduce the accumulation of lipofuscin, and delay the progress of
aging-related diseases in C. elegans models of AD and PD. Naringin could not significantly extend the lifespan of long-lived
mutants from genes in insulin/IGF-1 signaling (IIS) and nutrient-sensing pathways, such as daf-2, akt-2, akt-1, eat-2, sir-2.1,
and rsks-1. Naringin treatment prolonged the lifespan of long-lived glp-1 mutants, which have decreased reproductive stem cells.
Naringin could not extend the lifespan of a null mutant of the fox-head transcription factor DAF-16. Moreover, naringin could
increase the mRNA expression of genes regulated by daf-16 and itself. In conclusion, we show that a natural product naringin
could extend the lifespan of C. elegans and delay the progression of aging-related diseases in C. elegans models via DAF-16.

1. Introduction

Aging is accompanied by constant changes in morphology
and gradual decline in function. Aging is a major risk factor
for human diseases including cancer, diabetes, cardiovascu-
lar diseases, and neurodegenerative diseases [1–3]. Aging
could be slowed by getting rid of unhealthy habits, including
smoking, bad diet, alcohol consumption, lack of sleep,
stress, and sun exposure, and by treating signs of aging with
various esthetic methods or food supplements such as anti-
oxidants [4]. Many epidemiological studies have shown that
natural bioactive products could reduce the risk of aging-
related diseases [5–7]. A number of natural bioactive prod-
ucts, including phosvitin [8], royal jelly-collagen peptide [9],

Alaskan berry extracts [10], walnut protein hydrolysate [11],
and tea extracts [12], exhibit longevity extension abilities.

Naringin, also known as citrus or isohesperidin, is a kind
of dihydroflavonoid (Figure 1(a)), which is a natural pale
yellow pigment that exists in the peel and fruit of Citrus
grandis, Citrus paradisi, and Citrus (Rutaceae) aurantium
[13]. Naringin exhibits multiple biological activities and
pharmacological effects, including antitumor [14], antihy-
percholesterolemic [15], desensitization [16], antiallergy,
antiphotoaging [17], cytoprotective [18], anti-inflammatory,
heart-protective [7, 13, 19, 20], and neuroprotective activi-
ties [21–23]. Naringin could also regulate glucose and lipid
metabolism [24] and oxidative stress [25]. Given the various
biological activities reported, we are wondering if naringin
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has an effect on aging and aging-related diseases. We found
that naringin could significantly extend the lifespan of C.
elegans and delay aging-related degeneration in body move-
ment and delay the progression of aging-related diseases in
models of Alzheimer’s and Parkinson’s diseases.

2. Materials and Methods

2.1. Chemicals and Strains of C. elegans.All strains were from
Caenorhabditis Genetics Center (CGC) and maintained
(unless otherwise stated) at 20°C on nematode growth
medium (NGM) agar plates carrying a lawn of Escherichia
coli OP50 as described previously [26]. The strains used in
this study were Bristol N2 (wild-type), DA1116 eat-

2(ad1116)II, CL4176 smg-1(cc546)I, PS3551 hsf-1(sy441)I,
CF1903 glp-1(e2141)III, TJ356 zIs356 [Pdaf-16::daf-16-gfp;
rol-6]IV, CB4876 clk-1(e2519)III, VC204 akt-2(ok393)X,
CF1553 muIs84 [Psod-3::GFP], CF1038 daf-16(mu86)I,
CB1370 daf-2(e1370)III, RB759 akt-1(ok525)V, VC199
sir-2.1(ok434)IV, and BZ555 (Pdat–1::gfp). CL4176 smg-
1(cc546)I was temperature-sensitive [27] and was main-
tained at 15°C and shifted to 25°C at the L3 stage in lifespan
experiments. For CF1903 glp-1(e2141)III, L1 larvae were
cultured at 25°C until they develop into L4 larvae or young
adults, then switched to 20°C for the lifespan test [28]. Narin-
gin was purchased from Sigma and completely dissolved in
PBS and then added to the top of the prepared plates.
NGM plates containing naringin were equilibrated overnight

OH

OH
NarOH

OHO

O O

O

O

O
OH

OH

OH

HO

(a)

N2

0 10 20 30 40
0

50

100

Days at 20°C

Pe
rc

en
t s

ur
vi

va
l

Control
50 𝜇M Nar
100 𝜇M Nar
200 𝜇M Nar
500 𝜇M Nar

(b)

M
ea

n 
lif

es
pa

n

18

20

22

24

26

Nar conc. (𝜇M)
Control 25 50 100 200 

(c)

Pe
rc

en
t s

ur
vi

va
l

0 10

N2

20 30 40
0

50

100

Days at 20°C

0 𝜇M (live)
50 𝜇M (live)
0 𝜇M (dead)
50 𝜇M (dead)

(d)

Figure 1: Naringin extended adult lifespan in C. elegans. (a) Chemical structure of naringin. (b) Survival curves of wild-type (N2) animals
raised at 20°C on NGM plates containing 50, 100, 200, and 500 μM of naringin or control plates without naringin. (c) Dose-response
analysis of naringin. Wild-type (N2) animals were treated with 25, 50, 100, and 200μM of naringin at least two independent experiments,
plotting the mean changes of lifespan. Error bars represent the standard deviation (SD). (d) Effects of naringin on the lifespan of wild-type
(N2) animals raised at 20°C on NGM plates in the absence (0 μM) or presence (50 μM) of naringin with two different feeding procedures
including live bacteria (E. coli OP50) and dead OP50 (65°C 30min).
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before use. Synchronized late L4 larvae or young adult worms
(wild-type) were transferred to NGM plates containing
naringin and maintained at 20°C.

2.2. Lifespan Assay. All strains were cultured on fresh NGM
plates at least for 2-3 generations without starvation, and life-
span analyses were performed in the same manner at 20°C,
unless otherwise stated. Late L4 larvae or young adults were
transferred to NGM plates containing inactive OP50 (65°C
for 30min) and 40μM of 5-fluoro-2′-deoxyuridine (FUDR,
Sigma) to prevent progeny growth [29]. The time L4 larvae
or young adults were transferred to a NGM plate was defined
as test day 0. Live and dead animals were counted each day
until all individuals have died. The worms that were not
active when gently prodded using a platinum wire were
scored as dead [29]. Besides, the worms were transferred to
fresh plates every other day. Worms suffering from internal
hatch and crawling off the NGM plate were not included in
the lifespan counts. The lifespan assays were repeated for at
least three independent trials. At least 60 animals were
included in each group of lifespan experiment.

2.3. Aging-Related Phenotype Analysis. The body movement
assay was conducted as previously described [29]. Late L4 lar-
vae or young adults were transferred to NGM plates and
treated as described in the lifespan assay. The bending behav-
ior in a coordinated sinusoidal manner was counted.

Lipofuscin accumulation assay was conducted as previ-
ously reported [30–32]. Wild-type animals at L4 larvae or
young adults were treated with naringin; then, the intestinal
autofluorescence of lipofuscin was analyzed on the 2nd and
5th days of adulthood. The intestinal autofluorescence of
lipofuscin was captured with a Leica epifluorescence micro-
scope using the GFP filter set (with excitation at 340-
380nm and emission at 435-485nm) and analyzed by using
the image processing software ImageJ. The total number of
worms in each group of the aging-related phenotype analysis
was at least 20.

2.4. Stress Resistance Assays. Wild-type N2 worms were pre-
treated with naringin, followed by oxidation and heat stress
treatment. For the oxidative stress experiment, larvae and
early adults of stage L4 were treated with 50μM of naringin
for 7 days, then exposed to paraquat (20mM) and cultured
at 20°C, and their death rate was calculated every day [29].
For the heat stress resistance experiment, stage L4 larvae
and young adults were treated with 50μM of naringin for 7
days. Then, the NGM plates were incubated at 35°C. The
death rate was calculated every 2 hours [29]. For the patho-
genic stress induced by pseudomonas, stage L4 larvae and
young adults were treated with 50μM of naringin for 7 days.
Then, the worms were transferred to a new NGM containing
pseudomonas and the death of animals was monitored every
day. The dead animals of the stress resistance assays were
counted the same way as in the lifespan assay. The experi-
ments were repeated independently at least twice. The num-
ber of worms in each group of experiments was at least 60.

2.5. Aging-Related Disease Analysis. The CL4176 (dvIs27
(myo-3/A beta 1-42/let UTR)+pRF4(rol-6(su1006)) worms

were incubated at 15°C until the L3 stage [27, 33], then trans-
ferred to NGM plates containing 50μM of naringin and
incubated at 25°C. Paralyzed nematodes were counted every
2 hours. This experiment was independently repeated for at
least twice. The total number of worms in each group of
experiment was at least 60.

Transgenic nematode strain NL5901 expresses human α-
synuclein gene fused with yellow fluorescent protein (YFP)
[34]. Worms of NL5901 were treated with 50μM of naringin
for 7 days; then, the aggregation of α-synuclein was captured
with a Leica epifluorescence microscope and analyzed by
using the image processing software ImageJ. The experi-
ments were independently repeated at least three times.
The number of worms in each group of experiment was at
least 30.

The transgenic strain BZ555 (Pdat–1::gfp) has GFP
expressed specifically in dopaminergic neurons, which could
be induced to degeneration by 6-OHDA [34, 35]. To induce
selective degeneration of DA neurons, the L3 stage larvae of
strain BZ555 (Pdat–1::gfp) were transferred to the OP50/s-
medium containing 50μM of 6-OHDA and 10mM of ascor-
bic acid, incubated at 20°C for 1 h, and gently shaken every 10
minutes [33]. Then, the worms were washed with an M9
buffer three times and cultured in OP50/NGM plates con-
taining 50μM of naringin for 72 hours [34]. After that,
fluorescent photos of head neurons were taken using a Leica
epifluorescence microscope (DFC 7000T) and analyzed by
using the image processing software ImageJ. The experi-
ments were repeated independently at least twice. The num-
ber of worms in each group of experiment was at least 30.

2.6. DAF-16::GFP Location and SOD-3::GFP Assay. The sub-
cellular locations of DAF-16::GFP were determined using the
transgenic strain TJ356 daf-16(zls356IV). L4 larvae were
transferred to the plates containing 50μM of naringin and
cultured for 48 h at 20°C [29, 32]. The image of DAF-
16::GFP signal was captured by using a fluorescence micro-
scope system (Leica, DFC 7000T) and analyzed by using
the image processing software ImageJ. The experiments were
repeated independently at least twice. The total number of
worms in each group of experiment was at least 30.

The C. elegans transgenic strain CF1553 muIs84 [Psod-
3::GFP] expresses GFP fused with SOD-3. The worms of
CF1553 were treated with 50μM naringin for 7 days for life-
span assays [32]. Then, intensity of fluorescence of worms
was observed by using a fluorescence microscope system
(Leica, DFC 7000T). All fluorescent photos of at least 30
animals in each group were scored by ImageJ, and the exper-
iment was repeated independently at least twice.

2.7. ROS Assay. For intracellular ROS accumulation, age-
synchronized N2 worms (L4 stage) were treated with 50μM
of naringin at 20°C for 7 days. The positive control group
was treated with 2mM of hydrogen peroxide (H2O2) solution
while the negative control group was treated with 5mM of
antioxidants N-acetylcysteine (NAC) [36]. ROS formation
was quantified with H2DCF-DA. After being treated with
naringin, worms were collected by washing off the plate with
an M9 buffer to a centrifuge tube. OP50 was removed by
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washing the plate three times. Then, 50μM of H2DCF-DA
was added and the worms were incubated for 1 h in the dark
at 20°C. After that, the worms were mounted on a glass slide
and paralyzed by the addition of tetramisole hydrochloride,
and at least 20 worms were randomly photographed using a
fluorescence microscope (Leica, DFC 7000T) using a DAPI
filter set (with excitation at 488 nm and emission at
525nm) [32]. ImageJ software was then used to measure
the relative fluorescence intensity of the full body. The exper-
iment was repeated at least twice in independent trials with
20 worms per plot.

2.8. Reproduction Assay. Individual worms from synchro-
nized L4 larvae were transferred to NGM plates containing
50μM naringin. Then, the worms from each plate were
transferred into a fresh NGM plate at almost the same
time every day. The number of progeny was counted each
day [37]. The number of worms in each group was more
than 20. The experiments were repeated independently at
least twice.

2.9. Quantitative RT-PCR Assay. About 3,000 synchronized
young adult wild-type worms were transferred to 4 NGM
plates containing 50μM of naringin or control plates and
cultured at 20°C for 48 h. The RNA was extracted using
RNAiso Plus (Takara) and converted to cDNA using a
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems). The qRT-PCR was performed in Power SYBR
Green PCR Master Mix (Applied Biosystems) and run by
the QuantStudio 6 Flex system. The relative expression of
genes was calculated using the 2–ΔΔCT method and normal-
ized to the expression of gene cdc-42 [29]. All the primers
used in this research are listed in Table S12.

2.10. Statistical Analyses. Lifespan statistical analyses were
performed using the SPSS package. Kaplan-Meier lifespan
analysis was performed, and p values were calculated using
the log-rank test. Other results are expressed as the mean ±
SEM, and p values were calculated by two-tailed t-test. p <
0:05 was considered significant.

3. Results

3.1. Naringin Extends the Lifespan of C. elegans. To investi-
gate if naringin could extend the lifespan of C. elegans, the
wild-type C. elegans N2 was treated with naringin from stage
L4 larva or early adult till their death. Our results showed that
naringin increased the lifespan of C. elegans in a dose-
dependent manner (Figure 1(b), Table S1). The 50μM of
naringin had the greatest effect on longevity, extending
adult mean lifespan by up to 23% at 20°C (p < 0:001)
(Figure 1(b), Table S1). Worms exposed to either higher or
lower concentrations of naringin showed a smaller or an
insignificant lifespan extension (Figure 1(c), Table S1).

The metabolites produced by live bacteria proliferation
could significantly shorten the lifespan of C. elegans [38].
To test if the effect of naringin on the lifespan extension
could be affected by live bacteria, worms were fed with live
and heat-killed bacteria when treated with 50μM of narin-
gin. We observed that the mean lifespan of worms fed by

heat-killed (nonproliferating) bacteria E. coli and live bac-
teria were both significantly increased under the treatment
of naringin (Figure 1(d), Table S1), suggesting naringin
did not exert on bacteria to extend the lifespan of C.
elegans. Therefore, the dead bacteria were used throughout
the experiments.

3.2. Naringin Delayed Aging-Related Decline of Phenotypes.
The body bending behavior of C. elegans declines with aging
[39]. In order to test if naringin could delay the decline of
body bending with aging, the body movement of nematodes
was analyzed. Our results showed that although both treated
and nontreated animals showed a tendency of movement
slowing down with aging, the treatment of naringin signifi-
cantly slowed the declining of body movement with aging
(Figure 2(a), Table S2). In addition, the level of lipofuscin,
an endogenous intestinal autofluorescent, accumulates
during the aging of C. elegans [3, 40]. Our results showed
that the fluorescence intensity of intestinal lipofuscin in
worms treated with naringin was reduced by 46.8% and
15.1% on the second day and fifth day, respectively
(Figure 2(b), Table S3), indicating that naringin treatment
suppressed lipofuscin accumulation.

3.3. Naringin Promotes the Stress Resistance of C. elegans.
There is a strong correlation between stress resistance and
lifespan of C. elegans. Several studies have shown that the life-
span of C. elegans is affected by oxidative stress or high tem-
peratures [41, 42]. In order to study whether naringin affects
stress resistance of C. elegans, wild-type N2 worms were pre-
treated with naringin, followed by oxidative stress or heat
stress treatment. Our results showed that pretreatment with
naringin increased the survival rate of worms under oxidative
stress by 18.1% (Figure 2(c), Table S4). The treatment of
naringin increased the survival rate of worms under thermal
stress by 31.2% (Figure 2(d), Table S5). In addition, we used
Pseudomonas aeruginosa (PA14), a pathogenic bacterium, to
test if naringin affected the resistance of worms to
pathogenic stress. Our results showed that naringin could
not extend the lifespan of nematodes fed by Pseudomonas
aeruginosa (Figure 2(e), Table S1).

HSF-1 is a transcriptional regulator of stress-induced
gene expression and protein-folding homeostasis [43].
Therefore, we tested the effect of naringin on the deletion
mutant hsf-1(sy441)I. Our results showed that naringin
could not extend the lifespan of hsf-1(sy441)I (Figure 2(f),
Table S1).

3.4. Naringin Delays the Progression of Aging-Related
Diseases in C. elegans Models of AD and PD. Misfolded
proteins accumulate with aging and lead to chronic toxic
stress for cells [27, 34], which causes a variety of aging-
related neurodegenerative diseases, such as Parkinson’s dis-
ease, Alzheimer’s disease, and Huntington’s disease. Since
naringin could extend the lifespan of C. elegans, we are
wondering if naringin could also ameliorate protein toxicity
stress in nematodes and delay the progression of neurode-
generative diseases.
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Figure 2: Naringin delayed aging-related decline of phenotypes and improved stress resistance. (a) Aging-related movements of worms with
nontreated control plates and 50μM naringin. The mean body movement speed is found in Table S2 (Supplementary information). (b) The
intestinal autofluorescence of lipofuscin was analyzed on the 2nd and 5th days of adulthood. The figures showed the mean lipofuscin
aggregated in the intestinal tract at least repeated twice. The statistical details and repeats of these experiments are summarized in
Table S3 (Supplementary information). (c) The survival curves of wild-type worms cultured at 20°C in plates with treated 50 μM and
nontreated naringin on the 7th day of adulthood; then, the worms were exposed to paraquat (20mM) and cultured at 20°C; and their
death was calculated every day. Statistical details and repeats of these experiments are summarized in Table S4 (Supplementary
information). (d) The survival curves of wild-type worms cultured at 35°C in nontreated control plates and plates treated with 50μM
naringin. Statistical details and repeats of these experiments are summarized in Table S5 (Supplementary information). (e) Survival curves
of wild-type (N2) animals feeding Pseudomonas aeruginosa raised at 20°C on NGM plates in the absence (0 μM) or presence (50 μM) of
naringin. Statistical details and repeats of these experiments are summarized in Table S1 (Supplementary information). (f) Survival curves
of hsf-1 mutants in the control or treated with 50 μM naringin; naringin could not further extend the mean lifespan of C. elegans.
Statistical details and repeats of these experiments were summarized in Table S1 (Supplementary information).
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Parkinson’s disease is characterized by the accumulation
of α-synuclein protein and degeneration of dopaminergic
neurons in the substantia nigra [33, 34]. C. elegans does
not have an α-synuclein homolog, so several transgenic C.
elegans strains with human α-synuclein have been created
to study the pathogenicity of α-synuclein. The transgenic
strain NL5901 ([unc-54p::α-synuclein::YFP+unc-119(+)])
expresses α-synuclein protein fused with yellow fluorescent
protein (YFP) [34] in the body wall muscle cells [33, 34].
We analyzed the aggregation of α-synuclein in worms
treated with 50μM of naringin for 7 days. We found that
naringin treatment significantly decreased the aggregation
of α-synuclein (p < 0:001) (Figure 3(a), Table S6). In
addition, the accumulation of α-synuclein aggregating in
NL5901 is associated with locomotion and movement
impairments [34]. Our results showed that naringin
treatment could also increase the swimming bending
behavior of C. elegans NL5901 (Figure 3(b), Table S2).
Dopaminergic neurodegeneration can easily be induced by
neurotoxins such as 6-hydroxydopamine (6-OHDA). Thus,
another transgenic strain BZ555 (Pdat–1::gfp) expressing
green fluorescent protein (GFP) in dopaminergic neurons
[35] was used to study the degeneration of dopaminergic
neurons [33]. Fluorescent photographs of neurons in the
head of the nematode BZ555 were taken after being
exposed to 6-OHDA for 72 hours. Our results showed that
BZ555 treated with 6-OHDA decreased the mean
fluorescence intensity from 35:73 ± 2:129 to 18:94 ± 0:757
in the absence of naringin, whereas exposure to 50μM of
naringin increased the mean fluorescence intensity to 38:82
± 1:646 (Figure 3(c), Table S6). Our results also showed
that BZ555 presents increased neurite blebbing under
6-OHDA treatment, while naringin treatment reduced half
of the neurite blebbing caused by 6-OHDA. (Figure S1,
Table S7). Above results suggest that naringin treatment
slowed the degeneration of head neurons of C. elegans
BZ555, with the degree of protection comparable to the
anti-Parkinson’s disease medicine levodopa (Figure 3(c),
Table S6).

β-Amyloid is the main component of the extracellular
plaques found in the brain of patients with Alzheimer’s
disease [27]. Temperature-induced expression of human
beta-amyloid peptide (Aβ) in muscles of C. elegans CL4176
(dvIs27 (myo-3/A beta 1-42/let UTR)+pRF4 (rol-6(su1006))
leads to paralysis [27, 33]. Our results showed that 50μM
of naringin could delay the temperature-induced paralysis
of C. elegans CL4176 (Figure 3(d), Table S8), suggesting
that naringin could suppress the toxicity of A-beta plaque.

3.5. The Effect of Naringin on the Lifespan Extension in C.
elegans Depends on FOXO Homologous daf-16. In C. elegans,
the transcription factor FOXO homologous daf-16 plays a
critical role in stress resistance, longevity, development, fat
accumulation, and reproductivity [44, 45]. Our results
showed that naringin could not extend the lifespan of daf-
16 null mutant daf-16(mu86)I (Figure 4(a), Table S1).
Upon activation, daf-16 transferred from the cytoplasm to
the nucleus and activates the expression of downstream
genes [46]. But our results showed that there was no

significant increase in daf-16 nuclear translocation in
nematodes treated with naringin (Figure 4(b)). So we
investigated if naringin could affect the mRNA level of daf-
16 regulated genes sod-3, gst-4, dod-3, hsp12.6, hsp16.1, and
hsp-16.2 [47, 48]. The mRNA expression level of genes sod-
3, hsp12.6, hsp16.1, and hsp-16.2 was significantly increased
in wild-type N2 worms treated with naringin (p < 0:05).
Among them, the mRNA expression of sod-3 was increased
up to 4-fold. No significant changes were found in the
mRNA expression level of genes gst-4 and dod-3 in worms
treated with naringin (p > 0:05) (Figure 4(c), Table S9).
In addition, we monitored the fluorescence intensity of
SOD-3::GFP in report transgenic strain CF1553; the naringin
treatment significantly increased the GFP intensity (p < 0:001)
(Figure 4(d), Table S10). SOD-3 is a mitochondrial
superoxide dismutase which is involved in antioxidative
stress [49]. Thus, we use the wild-type nematodes N2 to
quantify the ROS in the body. We found that naringin
treatment significantly lowered ROS (Figure 4(e), Table S10).
These findings showed that naringin extended the lifespan of
worms by activating daf-16.

In C. elegans, the insulin-like ligands interact with DAF-
2/insulin receptors to activate the phosphoinositide 3-kinase
age-1/PI3K, which regulates the activity of kinases AKT-1,
AKT-2, and SGK-1 through phosphorylation of PDK-1.
AKT regulates the activity of multiple downstream targets,
including DAF-16/FOXO transcription factor [44]. There-
fore, we detected the mRNA expression level of genes associ-
ated with DAF-16 and itself. The results showed that in
naringin-treated groups, the relative expression levels of
daf-2, akt-1, and akt-2 were downregulated to 0:161 ± 0:014
, 0:472 ± 0:108, and 0:317 ± 0:150, respectively. It was worth
noticing that the relative expression level of daf-16 was
significantly upregulated to 3:184 ± 0:445. However, the
naringin-treated group did not show significant differences
in the expression of daf-2, akt-1, akt-2, as well as daf-16 in
daf-16 null mutant daf-16(mu86)I (Figure 5(a), Table S9).
So we studied the effect of naringin on long-lived mutant
daf-2(e1370)III and loss of function mutants akt-1(ok525)V
and akt-2(ok393)X. Our results showed that naringin could
not prolong the lifespan of daf-2(e1370)III (Figure 5(b),
Table S1), akt-1(ok525)V, and akt-2(ok393)X (Figures 5(c)
and 5(d), Table S1).

3.6. Naringin Does Not Act on the Germline Signaling
Pathway. Reduced fertility and slower growth could extend
the lifespan of C. elegans [50]. To test if naringin could affect
the reproduction of C. elegans, we measured the oviposition
of animals treated with naringin. We found that the number
of eggs in the treated group was less than that in the
untreated group on the 1st and 2nd days but was more than
that in the untreated group on the next three days. The nar-
ingin treatment did not significantly change the total number
of progenies throughout the spawning cycle (Figure 6(a),
Table S11).

To investigate if naringin could extend the lifespan of C.
elegans by affecting reproduction, we selected the germ-
related glp-1 mutant glp-1(e2141)III to determine if naringin
acts on the reproductive signaling pathway. Our results
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Figure 3: Naringin declines the progression of aging-related diseases. (a) Representative images of the α-synuclein in NL5901 treated with or
without naringin. The aggregation of α-synuclein in NL5901 treated with or without naringin was captured with a Leica epifluorescence
microscope and analyzed by using the image processing software ImageJ. 50 animals of each strain were scored in two independent trials.
(b) Aging-related movements of NL5901 with nontreated control plates and 50μM naringin. The mean body movement speed is found in
Table S2 (Supplementary information). (c) Representative images of the head neurons of BZ555 using different ways of rescue after
6-OHDA induction. After the rescue of 50 μM naringin, the head neurons showed slow degenerative changes, and the degree of
protection was basically consistent with levodopa which is the anti-Parkinson’s disease drug. 40 animals of each strain were scored in each
independent trial. Statistical details and repeats of these experiments are summarized in Table S6 (Supplementary information). (d) The
paralysis phenotype associated with muscle Aβ expression is suppression by 50μM naringin treatment from the L3 stage larvae in the
transgenic strain CL4176. Shown is the independent experiment with 70-100 animals in indicated time points after temperature upshift to
25°C. Statistical details and repeats of these experiments are summarized in Table S8 (Supplementary information).

7Oxidative Medicine and Cellular Longevity



0 10

daf-16(mu861)I.

20 30
0

50

100

Days at 20°C

Pe
rc

en
t s

ur
vi

va
l

Control
50 𝜇M Nar

(a)

Control-20°C Nar Control-37°C

(b)

0

so
d-

3

hs
p-

12
.6

hs
p-

16
.1

hs
p-

16
.2

gs
t-4

do
d-

3

2

4

6

ns ns

Re
la

tiv
e e

xp
re

ss
io

n 
fo

ld

⁎

⁎⁎⁎

⁎

⁎

Control
50 𝜇M Nar

(c)

0

5

10

15 Day 7

SO
D

-3
 p

ro
du

ct
io

n
7d-Control 7d-Nar Control Nar

⁎⁎⁎

(d)

0

10

20

30 Day 7

RO
S 

pr
od

uc
tio

n

7d-Control 7d-Nar 7d-NAC 7d-H2O2

⁎⁎⁎
⁎⁎

⁎⁎

Control Nar NAC H2O2

(e)

Figure 4: The effect of naringin on the lifespan extension in C. elegans depends on FOXO homologous daf-16. (a) Survival curves of daf-16
mutants in the control or treated with 50 μM naringin; naringin could not further extend the mean lifespan of C. elegans. (b) 50 μM naringin
could not lead to DAF-16 nuclear localization. DAF-16::GFP expressing worms were placed on the plates with 50 μM naringin and control
plates at 20°C for 48 h. (c) The mRNA level of genes downstream of daf-16 in worms (N2) treated with or without 50μM naringin. The
columns showed the mean value of two independent experiments with error bars representing SEM. ∗ represents p < 0:05, calculated
using two-tailed t-test. Statistical details and repeats of these experiments are summarized in Table S9 (Supplementary information). (d)
Representative images of the SOD-3::GFP report transgenic CF1553 with naringin or not; naringin enhanced the fluorescence intensity of
SOD-3. The aggregation of SOD-3 in N2 treated with or without naringin was captured with a Leica epifluorescence microscope and
analyzed by using the image processing software ImageJ. Statistical details and repeats of these experiments are summarized in Table S10
(Supplementary information). (e) Representative images of the degree of ROS with wild-type (N2) animals raised at 20°C on NGM plates
via naringin, NAC (5mM), and H2O2 (2mM) treated; naringin impaired the fluorescence intensity of ROS. The aggregation of ROS in N2
treated with or without naringin was captured with a Leica epifluorescence microscope and analyzed by using the image processing
software ImageJ. Statistical details and repeats of these experiments are summarized in Table S10 (Supplementary information).
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showed that naringin treatment further extended the lifespan
of the long-lived mutant (Figure 6(b), Table S1), indicating
that naringin did not extend the lifespan of nematodes
through the germline signaling pathway.

3.7. Naringin Could Not Extend the Lifespan of Long-Lived
Mutants in the Nutrition-Sensing Pathway. Dietary restric-
tions (DR) reduce available nutrients, regulate metabolism,
and can extend the lifespan of different organisms, including
yeast and mammals [50]. To investigate if the role of naringin
in extending the lifespan of C. elegans is related to DR, we
measured the lifespan of eat-2(ad1116)II, a mutant with
reduced consumption of food. Our results showed that nar-
ingin treatment could not significantly extend the lifespan
of eat-2(ad1116)II (p = 0:182) (Figure 7(a), Table S1).

SIR-2.1 is a member of the Sir-2 family (NAD+-depen-
dent protein deacetylases) and regulates nematode aging by
interacting with various transcription factors including
DAF-16. SIR2 protein has been associated with lifespan reg-
ulation in C. elegans [51]. We investigated whether naringin
could act on SIR2 to extend the lifespan of C. elegans by using
a null mutant strain sir-2.1(ok434)IV. Our results showed

that naringin could not significantly extend the lifespan of
sir-2.1(ok434)IV (p = 0:083) (Figure 7(b), Table S1).

The gene target of rapamycin (TOR) is a highly con-
served nutrient-sensing kinase, which plays an important
role in DR [52]. RSKS-1 is a homolog of TOR target nuclear
subgroup S6 kinase (S6K) in nematodes. Here, our results
show that naringin also could not further extend the lifespan
of the loss-of-function mutant rsks-1(ok1255)III (p = 0:255)
(Figure 7(c), Table S1).

In addition, mitochondrial involvement in DR-mediated
life extension has been reported [52]. The gene clk-1 encodes
a mitochondrial hydroxylase necessary for the biosynthesis
of ubiquinone. CLK-1 mutant clk-1(e2519)III is a long-lived
mutant with mitochondrial respiratory dysfunction [53].
Our results showed that naringin did not significantly extend
the lifespan of clk-1(e2519)III compared to the control group
(Figure 7(d), Table S1).

4. Discussion

The natural product naringin has been reported to have
multiple biological activities, such as antineoplastic, anti-
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Figure 5: Naringin could affect the mRNA expression and not extend the lifespan of daf-2, akt-1, and akt-2 mutants in the IIS pathway. (a)
ThemRNA expression level of genes associated with DAF-16 and itself. The columns showed the mean value of two independent experiments
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with 50μMnaringin; naringin could not further extend the mean lifespan or control plates without naringin. Statistical details of mutants and
repeats of these experiments are summarized in Table S1 (Supplementary information).
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inflammatory, and antioxidative activities [54]. So, we inves-
tigated if naringin could influence aging and neurodegenera-
tive diseases. Our results showed that naringin treatment
could increase the lifespan of C. elegans, delay the aging-
related decline of body bending, relieve the accumulation of
lipofuscin, enhance the stress resistance, and mitigate the
aging-related diseases in models of PD and AD.

Naringin extends the lifespan of C. elegans cultured with
both live and heat-killed bacteria, suggesting that naringin
has biological activity in C. elegans. DAF-16 plays a crucial
role in stress resistance, longevity, fat accumulation, and
reproductive ability in C. elegans [47]. Naringin could not
extend the lifespan of null mutated daf-16. Although no obvi-
ous nuclear translocalization was observed under treatment
of naringin, naringin increased the mRNA expression of
daf-16 and the genes regulated by daf-16. Moreover, naringin
inhibited the mRNA expression level of the genes upstream
of daf-16 in the IIS pathway. Besides, naringin could not
significantly extend the lifespan of long-lived mutants from
genes upstream of daf-16, including daf-2, akt-1, and akt-2.
These results suggest that naringin extends the lifespan of
C. elegans by regulating the IIS pathway (Figure 8).

We also investigated if naringin could regulate other
targets to extend the lifespan of C. elegans. It was found that
naringin treatment further extended the lifespan of the long-
lived glp-1 mutant (Figure 6(b), Table S1), indicating that
naringin did not extend the lifespan of nematodes through
the germline signaling pathway.

Dietary restrictions (DR) that reduce available nutrients
and regulate metabolism can extend the lifespan of different
organisms, including yeast and mammals [50]. Nutrient-
sensing pathways play a central role in aging and lifespan.
Our results showed that naringin could not significantly
extend the lifespan of long-lived mutants from genes in
the nutrient-sensing pathway, such as eat-2, sir-2.1, rsks-1,
and clk-1 that modulate mitochondrial respiration. Above
results suggest that either the effect of naringin on the life-
span extension is not strong enough to distinguish from the
lifespan of the already long-lived mutants or these mole-
cules are required for naringin to extend the lifespan of C.
elegans (Figure 8). Another possibility is that at the molec-
ular level, the mechanisms of DR appear embedded in the
response to reduce energy availability, resulting in the
emergence of an altered metabolic state that promotes
health and longevity.

Here, we show that naringin could dramatically reduce
the α-synuclein aggregation as well as alleviate paralysis in
C. elegans models of AD and PD. Flavonoids chelate metal
ions, preventing formation of free radicals and limiting the
onset of PD [55]. Naringin is a kind of dihydroflavonoid.
Our results show that naringin could increase the expression
of SOD-3 and the scavenging activity of ROS. In addition,
several studies showed the link between the IIS pathway
and the nervous system. For instance, reduced IGF-1 signal-
ing delays age-associated proteotoxicity in a mouse model of
Alzheimer disease [56]. Similarly, attenuated IR substrate of
IIS signaling in aging brains extended the lifespan in mice
[57]. Likewise, basal IGF-1 activity has been reported to
regulate ongoing neuronal activity in hippocampal circuits

[58]. Interestingly, another study has shown that reduced
IGF signaling mediated by FOXO could decrease the proteo-
toxic activities induced by Aβ hyperaggregation and oxida-
tive stress [56]. Above reports together with our results
indicate that naringin might mitigate the aging-related
diseases through the IIS pathway.
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In the present study, the replicative lifespan assay of yeast was used to guide the isolation of antiaging substance from Gentiana
rigescens Franch, a traditional Chinese medicine. A compound with antiaging effect was isolated, and the chemical structure of
this molecule as amarogentin was identified by spectral analysis and compared with the reported data. It significantly extended
the replicative lifespan of K6001 yeast at doses of 1, 3, and 10μM. Furthermore, amarogentin improved the survival rate of yeast
under oxidative stress by increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase
(GPx), and these enzymes’ gene expression. In addition, this compound did not extend the replicative lifespan of sod1, sod2,
uth1, and skn7 mutants with K6001 background. These results suggested that amarogentin exhibited antiaging effect on yeast
via increase of SOD2, CAT, GPx gene expression, enzyme activity, and antioxidative stress. Moreover, we evaluated antioxidant
activity of this natural products using PC12 cell system, a useful model for studying the nervous system at the cellular level.
Amarogentin significantly improved the survival rate of PC12 cells under H2O2-induced oxidative stress and increased the
activities of SOD and SOD2, and gene expression of SOD2, CAT, GPx, Nrf2, and Bcl-x1. Meanwhile, the levels of reactive
oxygen species (ROS) and malondialdehyde (MDA) of PC12 cells were significantly reduced after treatment of the amarogentin.
These results indicated that antioxidative stress play an important role for antiaging and neuroprotection of amarogentin.
Interestingly, amarogentin exhibited neuritogenic activity in PC12 cells. Therefore, the natural products, amarogentin from G.
rigescens with antioxidant activity could be a good candidate molecule to develop drug for treating neurodegenerative diseases.

1. Introduction

The number of aging population is rapidly increasing
globally [1]. Aging, which is a functional and structural dete-
rioration of cells, tissues, and organs, has been implicated as a
risk factor for age-related diseases, such as neurodegenerative
disease, cancer, and metabolic diseases [2–5]. Alzheimer’s
disease (AD) which is the most prevalent neurodegenerative
disorder threatens the health of an enormous number of
aging populations worldwide. This age-related neurodegen-
erative disease has no effectively curative drug. Therefore,
the discovery of drugs that can effectively delay the inevitable
aging process and cure AD is highly desirable. Rapamycine,
resveratrol (RES), metformin, and curcumin which exhibit

antiaging effects were also reported to have significant neuro-
protective effects in AD models, indicating a strong link
between aging and neurodegenerative diseases [6–10]. Thus,
antiaging substances may be developed as promising drugs to
cure neurodegenerative diseases.

Oxidative stresses play a vital role in aging and neurode-
generative disorders [3, 5]. Gradual accumulation of ROS
causes disruption of macromolecules such as proteins,
DNA, and lipids which are implicated for progression of
neurodegenerative disease and aging processes [5]. The
superfluous level of ROS causes several damaging effects such
as reduction of ATP production and mitochondrial dysfunc-
tion. An excessive or low level of mitochondrial ATP produc-
tion affects the normal function of nerve cells and its
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response to stress during aging and AD development. Mito-
chondrial permeability transition pore results in hypertrophy
of mitochondria and subsequent cell death [11]. Another
consequence of oxidative stress is oxidative damage to
DNA, which could potentially lead to cellular dysfunction
and death [5, 11]. Excessive ROS could be scavenged by
antioxidative enzymes such as SOD, CAT, and GPx [5].
SODs are metalloproteinases that catalyze the conversion
of ROS into less harmful products to protect cells against
oxidative damage [12]. CAT helps cells to survive by break-
ing down reactive hydrogen peroxide into products such as
water and oxygen. It is used as a therapeutic agent for
several diseases related to oxidative stress [13]. Cellular
GPx system is part of essential constituents in protecting
cells against oxidative stress. It detoxifies hydrogen perox-
ides in cells. It plays an indispensable role to protect cells
from oxidative damage exerted by free radicals especially
lipid peroxidation [12]. Lipid peroxidation product, MDA,
is widely used as a biomarker to examine the level of oxida-
tive damage [14].

The genus Gentiana, a major group in the Gentianaceae
family, is found in Asia, Europe, and America [15]. Several
important molecules, such as iridoids, secoiridoids, essential
oils, xanthones and terpenoids, have been isolated from
Gentiana. Iridoids and secoiridoids are the major constitu-
ents from this genus and are regarded to be responsible for
a variety of biological activities [15]. Gentiana rigescens
Franch (Jian Long Dan in Chinese) is a well-known tradi-
tional Chinese medicine (TCM) that is widely distributed in
Yunnan Province, Southwest of China. G. rigescens is used
to treat hepatitis, rheumatism, cholecystitis, and inflamma-
tion [16]. “Sheng Nong’s Herbal Classic”, a classic book on
TCM material medica, states that G. rigescens improves cog-
nition and has antiaging activity. In our previous study, gen-
tisides A–K, which are 11 novel neuritogenic benzoate-type
molecules, were isolated from G. rigescens; the mixture of
gentisides (n-GS) was confirmed to alleviate the impaired
memory of the AD model [17–19]. Natural products are
important sources of drugs to reduce or prevent oxidative
stresses in humans. In our previous studies, 19 molecules
were isolated from natural products which were able to
extend the replicative lifespan of yeast via antioxidative stress
[20–25]. Therefore, searching for effective molecules with
antioxidative stress potential should be considered an impor-
tant strategy to treat aging and neurodegenerative disorders.

Yeast is one of the well-known bioassay models in aging
research because of its low cost, genetic tractability, and
short generation time. A unique characteristic of K6001 is
that only mother cells can produce daughter cells in a glu-
cose medium but not in a galactose medium [26]. In our
previous study, K6001, which is a yeast mutant strain,
was used as a bioassay system to evaluate the antiaging
activity of natural products [20–25]. Furthermore, the
PC12 cell line, which was derived from rat pheochromocy-
toma cells, is one of the useful models for studying the
nervous system at the cellular level [27]. Based on the link
between aging and neurodegenerative diseases [6–10], PC12
cells were also used to evaluate the neuroprotective activity
of antiaging molecules.

In present study, a K6001 yeast bioassay system was
employed to guide the isolation of antiaging substances.
Amarogentin was discovered as an antiaging natural product.
Amarogentin is a kind of secoiridoid-type compound that
can be found inGentiana lutea, Swertia japonica, Gentianella
nitida, and Swertia chirayita [28–30]. It has been reported to
possess various activities, such as anti-inflammatory, immu-
nomodulatory, antioxidative stress, and antidiabetic effects
[31–33]. Herein, the antiaging, neuroprotective, and neurito-
genic effects and the underlying mechanism of the natural
bioactive product, amarogentin, which possesses antioxida-
tive stress potential for treatment neurodegenerative disease,
will be reported.

2. Materials and Methods

2.1. General. Silica gel (200–300 mesh, Yantai Chemical
Industry Research Institute, Yantai, China) and reversed
phase C18 (Octadecylsilyl, ODS) silica gel (Cosmosil 75 C18
OPN, Nacalai Tesque, Japan) were used for column chroma-
tography. Precoated silica gel (0.25mm) and RP-18 plate
(0.25mm) were used for TLC analysis. Preparative high-
performance liquid chromatography (HPLC) was performed
using a HPLC equipped with two ELITE P-230 pumps and a
UV detector. High-resolution electrospray ionisation mass
spectrometry (HR-MS) analysis was performed on Agilent
6224A accurate mass time-of-flight LC/MS system (Agilent
Technologies). A Bruker AV III-500 spectrometer (Bruker,
Billerica, MA, USA) was operated for NMR measurement.
The NMR chemical shifts in δ (ppm) were referred to the
solvent peak of δC (49.0) for methanol.

2.2. Extraction and Isolation. Dried roots of G. rigescens were
purchased from HuQingYuTang Pharmacy in Hangzhou
City, Zhejiang Province, China. The plant material (1.5 kg
dry weight) was smashed and extracted with methanol for
48 h under shaking at room temperature. The extract was fil-
tered, and the supernatant was concentrated to obtain 400 g
of crude extract. The crude extract was partitioned between
the water and ethyl acetate. The samples from each layer were
tested for antiaging activity on the K6001 yeast strain. The
active ethyl acetate layer (12 g) was subjected to silica open
column and eluted with n-hexane/ethyl acetate (100/0,
90/10, 80/20, 70/30, 60/40, 50/50, 30/70, and 0/100 and
methanol 100%) to obtain nine fractions. The active fraction
(300mg) obtained from n-hexane/ethyl acetate (30/70) was
further chromatographed on ODS and eluted with metha-
nol/water (30/70, 40/60, 50/50 70/30, 80/20, 90/10, and
100/0) to obtain six fractions. The active fraction obtained
from 50/50 methanol/water (19mg) was subjected to HPLC
purification (Develosil 5C18-MS-II (10 × 250mm), flow
rate of 3ml/min and 40% aqueous methanol) to obtain
the active sample (11mg, tR = 25 min). In the present
study, amarogentin was dissolved in ethanol or DMSO with
stock concentration of 10mM for yeast and PC12 cell
experiments, respectively.

2.3. Yeast Strains, Culture Medium, and Lifespan Assay.
K6001 yeast with back ground W303, wild-type BY4741
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yeast strain, and uth1, skn7, sod1, and sod2 mutants with
K6001 background were used. The liquid culture medium
contained yeast extract, peptone, and D-glucose (YPD, 1%
yeast extract, 2% peptone and 2% glucose) or galactose
(YPG, 1% yeast extract, 2% peptone, 3% galactose) media.
Replicative lifespan assays were performed as described in
our previous study [20]. In brief, the K6001 yeast strain was
inoculated in 5ml of galactose medium and incubated in a
shaking incubator at 180 rpm for 24h at 28°C. Afterwards,
1ml of broth containing yeast was centrifuged, and the yeast
pellet was washed three times with phosphate buffer solution
(PBS). The pellet was then diluted with PBS, and a haemocyt-
ometer was used to count cells. Approximately 4,000 cells
were smeared on the glucose medium agar plates containing
resveratrol (RES) or amarogentin at different concentrations.
The agar plates were incubated for 48h at 28°C, and the
microcolonies that formed on the agar plate were observed
under a microscope. Forty microcolonies were randomly
chosen to count the number of daughter cells produced by
one mother cell. The replicative lifespan assay of uth1, skn7,
sod1, and sod2 mutants with K6001 background was the
same as that of K6001 yeast strain.

2.4. Antioxidative Stress Assay. Based on the evidence from
our previous studies [21, 23], 10mM H2O2 was chosen as
the optimum concentration to induce oxidative stress. The
wild-type BY4741 yeast was inoculated in YPD medium,
placed in a shaker incubator, and cultured for 24 h. The
BY4741 yeast at initial 0.1 OD was placed in a liquid glucose
medium and treated with RES at 10μM as positive control or
amarogentin (0, 1, 3 and 10μM) for 24h at 28°C. Subse-
quently, 5μl of the cultured cells with the same OD600 value
from each group was dropped on a plate containing 10mM
H2O2. The growth of yeast cells on the plate was observed
and photographed after 3 days of incubation at 28°C.

The effect of amarogentin on oxidative stress in yeast was
quantified using a different approach. Similar to the above
antioxidative stress assessment, BY4741 yeast cells were
treated with RES (10μM) or amarogentin (0, 1, 3, and
10μM). The counted 200 yeast cells from each group were
spread on a glucose agar plate with or without 5.5mM
H2O2 and incubated at 28°C for 48h. After 2 days, the colo-
nies that formed on the plate were counted. The survival rate
of the yeast cells was analysed from the ratio of the number of
colonies in the absence of 5.5mM H2O2 divided by the num-
ber of colonies in the presence of 5.5mM H2O2.

2.5. Measurement of SOD, GPx, and CAT Enzymatic
Activities in Yeast. Y4741 yeast in the liquid glucose medium
was treated with RES (10μM) or amarogentin (0, 1, 3, and
10μM) for 48h at 28°C. The activity assays of total SOD,
SOD1, SOD2, GPx, and CAT were performed according to
a previous study [23, 24]. The BY4741 yeast cells in the liquid
glucose medium was treated with RES (10μM) or amarogen-
tin (0, 1, 3, and 10μM) for 24h at 28°C with the initial OD of
0.1. Yeast cells were collected and sonicated for five minutes
(each time lasted for 1min). The cell lysates were centrifuged
to get supernatant. The enzymatic activities of the SOD, GPx,
and CAT in the supernatant were measured with corre-

sponding assay kits (Biotime Biotechnology Limited
Company, Shanghai, China) following the manufacturer’s
instructions; the details of assays procedures are shown in
supplementary materials.

2.6. Neuroprotection Effect of Amarogentin in PC12 Cells.
Approximately 50,000 PC12 cells were seeded in each well
of a 24-well plate and cultured in 5% CO2 at 37

°C for 24 h.
Then, the medium was replaced by 1ml serum-free
Dulbecco’s modified Eagle’s medium (DMEM; Thermo
Scientific, Shanghai, China) containing different tested sam-
ples. In the dose-dependent experiment of H2O2, the cells
were treated with 0.5% dimethyl sulphoxide (DMSO) for
24 h and cultured with different concentrations of H2O2 for
1 h. To investigate the neuroprotection effect of amarogentin,
PC12 cells were treated with RES (10μM) or amarogentin (1,
3, or 10μM) for 24 h and with 0.9mM H2O2 for 1 h. The
medium was replaced with 500μl of serum-free DMEM
containing 200μg/ml 3-(4,5-dimethyltaizol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) and cultured for another
2 h. The medium was completely removed and replaced
by 200μl of DMSO to each well to solubilise the formed
formazan crystal. The resultant formazan was detected at
570 nm by using a plate reader (Bio-Tec instruments Inc.,
Winooski, VT, USA). The experiment was performed three
times, and the result was considered viable compared with
negative control.

2.7. ROS, MDA, Total SOD, SOD1, and SOD2 Enzymatic
Activity Assays in PC12 Cells. To determine the ROS level
in PC12 cells, approximately 50,000 PC12 cells were seeded
in each well of a 24-well plate. The cells were treated with
RES (10μM) or amarogentin (1, 3, and 10μM) for 24 h and
then with 0.9mM H2O2 for 1 h. Each well was then added
with DCFH-DA (2′,7′-dichlorodihydrofluorescein diacetate,
final concentration, 10μM) and incubated for 30min. The
cells were washed with PBS to remove extracellular DCFH-
DA, and intercellular ROS was detected by using the Spectra-
Max M3 multimode microplate reader (Molecular Devices
Corporation, California, USA) under the excitation wave-
length of 488 nm and emission wavelength of 525nm. At
the same time, DCF in PC12 cells was observed using a
fluorescence microscope (HCS, Thermo Fisher, scientific,
Waltham, MA, USA).

To test the MDA content and total SOD, SOD1, and
SOD2 enzymatic activities in PC12 cells, approximately 2 ×
106 of PC12 cells were seeded in a 60mm culture dish, con-
taining 5ml of DMEM medium, and incubated for 24 h.
Then, PC12 cells were treated with RES (10μM) or amaro-
gentin (1, 3, or 10μM) for 24 h and then with 0.9mM
H2O2 for another 1 h to determine MDA content, and total
SOD, SOD1, and SOD2 activities. The cells were then col-
lected by centrifugation and three cycles of ultrasonication
(1min for each instance) with PBS. The cell lysates were
centrifuged, and the supernatant was removed to assess
MDA, total SOD, SOD1, and SOD2 enzymatic activities.
MDA quantification and total SOD, SOD1, and SOD2
activities were determined using MDA and SOD enzy-
matic activity assay kits (Nanjing Jiancheng Bioengineering
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Institute, Nanjing, China) following the manufacturer’s
instructions; the details of assays procedures are shown
in supplementary materials.

2.8. RT-PCR Analysis. To get the RNA samples of yeast,
BY4741 yeast cells were cultured in glucose medium >follow-
ing addition of 0, 1, 3, and 10μM of amarogentin or 10μM
RES. RNA was extracted from yeast cells in the exponential
phase through the hot phenol method. For PC12 cells,
approximately 2 × 106 of PC12 cells were seeded in a
60mm culture dish and treated with RES (10μM) or amaro-
gentin (1, 3, or 10μM) for 12h or 24h. Total RNA was
extracted with TRIzol Reagent (Beijing Cowin Biotech
Company, Beijing, China). RNA content was determined
using Eppendorf Biophotometer Plus (Eppendorf Company,
Hamburg, Germany). Transcription was performed using
5μg of total RNA, Oligo (dT)20 primers, and reverse tran-
scriptase (Beijing Cowin Biotech Company, Beijing, China).
Transcript levels were quantified by real-time PCR (AB
SCIEX, Massachusetts, USA) and SYBR Premix EX Taq™
(Takara, Otsu, Japan). The primers (Sangon Biotech Co.
Ltd., Shanghai, China) used in this study are given in
Supplementary Table S1. Thermal recycling parameters for
yeast are as follows: SOD1 and SOD2, 95°C for 2min,
followed by 40 cycles, 94°C for 15 seconds, 60°C for 25
seconds, and 72°C for 10 seconds; and GPx and CAT, 40
cycles, 95°C for 15 seconds, 60°C for 35 seconds. Thermal
recycling parameters for PC12 cells are as follows: SOD1
and SOD2: 95°C for 2min, followed by 40 cycles, 54°C for
35 seconds; GPx and CAT, 95°C for 2min, followed by 40
cycles, 55°C for 35 seconds; and Bcl-x1 and Nrf2: 95°C for
2min, followed by 40 cycles, 95°C for 15 seconds, 60°C for
15 seconds, and 68°C for 20 seconds. All results were
normalized to TUB1 or GAPDH RNA levels, and relative
mRNA transcript levels were calculated using the ΔΔCt
formula. All samples were run in triplicate, and the average
values were calculated.

2.9. Neuritogenic Activity of Amarogentin in PC12 Cells. The
neuritogenic activity of the isolated compound was evaluated
according to our previous report [17]. Approximately 50,000
PC12 cells were seeded in each well of a 24-well microplate in
1ml of DMEM containing 7.5% foetal bovine serum, 10%
horse serum, and 1% premixed antibiotics (Invitrogen,
Shanghai, China) and cultured under a humidified atmo-
sphere of 5% CO2 at 37°C. The medium was replaced by
serum-free DMEM containing either DMSO (0.5%) or the
sample at various concentrations after 24 h. The cells were
treated with 40 ng/ml NGF (Recombinant Human β-NGF,
Sigma, Shanghai, China) as the positive control. For evalua-
tion of the enhancement of NGF activity, the medium was
replaced by serum-free DMEM containing 1ng/ml NGF in
addition to the test sample. Cellular morphological changes
were observed under a phase-contrast microscope (Olympus,
model CKX41, Tokyo, Japan) after 48 h. Approximately 100
cells were randomly selected from different areas and
counted. Cells bearing neuritis outgrowth longer than the
diameter of the cell body were considered positive cells.

2.10. Statistical Analysis. Data were evaluated by one-way
ANOVA, followed by Tukey’s post hoc test by using Graph-
Pad Prism software. p value < 0.05 was considered statisti-
cally significant. Each experiment was repeated three times,
and data were expressed as mean ± SEM.

3. Results

3.1. Extraction and Isolation. The methanol extract of G.
rigescens was partitioned between ethyl acetate and water to
obtain two samples from each layer, respectively. The two
samples were tested on the K6001 yeast strain to evaluate
their antiaging activity. The active ethyl acetate layer sample
was subjected to silica gel and then ODS open column
followed by HPLC purification to yield the active molecule
(11mg). The chemical structure of the molecule was identi-
fied as amarogentin (AMA) (Figure 1(a)) by comparing spec-
tral data with those reported in literature [34]. 13C NMR
(125MHz, methanol-d4): δ 25.8, 28.7, 43.4, 62.4, 69.5, 71.7,
74.6, 74.8, 78.4, 96.8, 97.2, 103.1, 104.0, 105.6, 112.9, 114.5,
116.5, 121.0, 121.2, 129.3, 132.9, 146.5, 148.6, 153.7, 157.5,
163.9, 166.0, 167.6 and 171.5; HRESI-TOF-MS, m/z
609.1584, calculated for C29H30O13Na (M+Na)+ 609.1579.

3.2. Amarogentin Extended the Replicative Lifespan of Yeast
with K6001 Background. The K6001 yeast strain has a unique
characteristic; that is, daughter cells produced by mother cells
only survive in a galactose medium and not in a glucose
medium [23]. Therefore, we utilized this characteristic to
perform a replicative lifespan assay. The effect of amarogen-
tin on the replicative lifespan of the K6001 yeast strain is dis-
played in Figure 1(b). The mean lifespan of the control is
7:8 ± 0:1 generations, 10:4 ± 0:1 in the RES-treated group,
and 9:8 ± 2:4, 10:6 ± 2:0, 9:8 ± 0:1, and 8:1 ± 0:2 generations
in amarogentin groups at concentrations of 1, 3, 10, and
20μM, respectively. Amarogentin extended the replicative
lifespan of K6001 yeast at concentrations of 1, 3, and 10μM
compared with the control group (p < 0:05, p < 0:01, and p
< 0:05, respectively). Hence, 3μM amarogentin is the best
concentration. The result also suggests that amarogentin
has antiaging effect on yeasts.

3.3. Amarogentin Improved the Survival Rate of Yeast under
Oxidative Stress and SOD, GPx, and CAT Activities. Oxida-
tive stress is one of the major risk factors for aging and age-
related pathologies. The elevated level of oxidants or free
radicals released from biochemical reactions triggers deleteri-
ous effect on macromolecules, such as proteins, nucleic acids,
and lipids [11, 12]. Therefore, we focused on the antioxida-
tive stress to do investigation with two methods. The effects
of amarogentin on the growth of yeast under oxidative stress
induced by 10mM H2O2 are shown in Figure 2(a). The
growth of yeast on the agar plate with H2O2 in the
amarogentin-treated groups was better than negative control
and RES-treated groups. To quantify the change induced by
amarogentin on oxidative stress, we used another analytical
method. The survival rate of yeast under oxidative stress
induced by 5.5mM H2O2 in the amarogentin-treated group
was significantly increased compared with that in the control
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group (Figure 2(b)). The effect of amarogentin on antioxida-
tive stress at a concentration of 3μM is similar to that of RES
at a concentration of 10μM. These results indicate that amar-
ogentin showed antiaging effect by inhibiting oxidative stress.

Antioxidant enzyme system widely exists in organisms. It
can effectively eliminate the active oxygen produced by the
metabolism of organisms and protect the biological macro-
molecules from the oxidative damage of active oxygen radi-
cals. The antioxidant enzyme system is mainly composed of
superoxide dismutase, glutathione peroxidase, and catalase
[5]. Thus, we evaluated the activities of total SOD, SOD1,
SOD2, CAT, and total GPx in yeast after treatment with
amarogentin at different concentrations for 24h. As indi-
cated in Figures 2(c)–2(g), the enzymatic activities of total
SOD, SOD2, CAT, and GPx notably increased after treat-
ment with 3 and 10μM amarogentin. The SOD1 activity
was not affected by amarogentin. Therefore, amarogentin
exhibited antiaging effect by regulating the total SOD,
SOD2, GPx, and CAT enzymatic activities.

3.4. Effect of Amarogentin on Gene Expression of SOD1,
SOD2, GPx, and CAT in Yeast. The changes on SOD1,
SOD2, GPx, and CAT gene expression of yeast are shown in
Figure 3. The gene expression of SOD1 was not affected by
amarogentin (Figure 3(a)). The abundance of SOD2 mRNA
was significantly increased after treatment of amarogentin
at doses of 1 and 3μM (Figure 3(b), p < 0:05, p < 0:05). The
significant increase of GPx gene expression was observed in
all of amarogentin-treated groups (Figure 3(c), p < 0:01,
p < 0:01, and p < 0:01). The significant increase of CAT gene
expression was only observed in the 3μM amarogentin-
treated group (Figure 3(d), p < 0:05). These results suggested
that SOD2, GPx, and CAT genes took important roles in anti-
aging effect of amarogentin.

3.5. Amarogentin Failed to Extend the Replicative Lifespan of
sod1, sod2, uth1, and skn7 Mutants of Yeast with K6001
Background. Several genes are known to be involved in regu-
lating the aging process. UTH1, which is an aging gene, is
involved in apoptosis. UTH1 gene intrinsically participates
in regulating oxidative stress, and the deletion of this gene
leads to extended replicative life span in yeast. SKN7 is an
upstream transcriptional factor for UTH1, which is associ-
ated in the defence against oxidative stress [35, 36]. SOD is
a kind of antioxidant metal enzyme in an organism. This
molecule can catalyse the superoxide anion free radical dis-
proportionation to produce oxygen and hydrogen peroxide.
SOD plays an important role in the balance of oxidation
and antioxidation and is closely related to the occurrence
and development of many diseases. To investigate whether
these proteins and gene were involved in the anti-aging effect
of amarogentin, we used sod1, sod2, uth1, and skn7 mutants
of yeast with K6001 background to perform the replicative
lifespan assay. The changes in the replicative lifespan of
mutant yeast with K6001 background after treatment with
amarogentin are shown in Figures 4(a)–4(d). The replicative
lifespan in Δuth1 yeast significantly increased compared with
that in K6001 yeast. However, the replicative lifespans of the
mutants were not affected by amarogentin and RES. These
results indicate that SOD1, SOD2, UTH1, and SKN7 genes
were involved in the antiaging effect of amarogentin.

3.6. Amarogentin Exhibited Neuroprotection on the H2O2-
Induced Oxidative Damage in PC12 Cells. Antioxidative
stress is one of the essential pathways for protecting against
neurodegeneration. Based on the significant antioxidative
activity of amarogentin in yeast, the PC12 cell line, which
was derived from mammalian cells, was employed as a bioas-
say system to confirm the effects of the antioxidative stress of
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Figure 1: Chemical structure of amarogentin (AMA) (a), changes in the replicative lifespan of K6001 yeast after treatment with different
concentrations of amarogentin (b). In the replicative lifespan assay, K6001 yeast cultured in galactose medium for 24 h. After that, it was
spread on glucose agar plates with different concentrations of amarogentin or 10 μM RES as a positive control and incubated for 48 h. The
randomly selected daughter cells produced by 40 mother cells were counted, and the survival curve was plotted for analysis. This process
was repeated three times. ∗, ∗∗ indicated significant difference as compared with the control (p < 0:05 and 0.01), respectively.
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Figure 2: Continued.
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amarogentin in higher organisms. H2O2 was used to induce
oxidative stress in PC12 cells, and the effect of amarogentin
on cell viability was assessed by the MTT method.
Figure 5(a) shows that the cell viability decreased dose-
dependently with increasing concentration of H2O2 from
0.2mM to 1mM. This result indicates that approximately
50% of the cells were dead or under poor condition after
1 h of treatment with 0.9mM H2O2. According to the cell
viability induced by H2O2, 0.9mM H2O2 was chosen as the
optimum concentration to induce oxidative stress in PC12
cells. Amarogentin at 1μM and 3μM and RES at 10μM sig-
nificantly increase survival rates of PC12 cells (Figure 5(b)).
These results demonstrate that amarogentin exhibited a neu-
roprotective effect on PC12 cells.

3.7. Amarogentin Decreased Intracellular ROS Level and
MDA Content under Oxidative Stress Induced by H2O2 in
PC12 Cells. ROS is one of the main causes of many age-
related diseases, such as AD. In addition, ROS is an effector
of oxidative stress in cells [37]. Therefore, the protection
effect of amarogentin against ROS production induced by
H2O2 was investigated. The intracellular formation of ROS
in the PC12 cells was monitored by using the DCFH-DA
assay. The nonfluorescent DCFH-DA can be oxidised to a
green fluorescent substance (DCF) when it reacts with ROS
[38]. As shown in Figure 5(c), the fluorescence intensity
was enhanced after treatment with 0.9mM H2O2 for 1 h.
However, the increasing fluorescence intensity by H2O2 was
diminished after adding 1, 3, and 10μM amarogentin. The

photomicrographs of PC12 cells under fluorescence micro-
scope are shown in Figure 5(d). These results suggest that
amarogentin is essential to counteract an oxidative insult to
cells rendered by the highly reactive ROS induced by H2O2.

Lipids are among the classes of biological macromole-
cules that are targeted by oxidative substances. Lipid oxida-
tion results in the formation of numerous metabolites,
which are mainly aldehydes. Metabolites from lipid peroxi-
dation can interact with other macromolecules, such as
nucleic acids and protein; such interaction most often results
in irreversible damage to cellular function. MDA, which is
the principal and most studied product of polyunsaturated
fatty acid peroxidation, is often considered a biomarker of
oxidative stress [14]. Therefore, the MDA level in H2O2-
induced oxidative damage to PC12 cells was evaluated. The
MDA level increased significantly in the H2O2-treated cells
compared with the untreated control group. However, the
MDA level in the amarogentin-treated group was signifi-
cantly decreased compared with that in the H2O2-treated
group. This result confirms that the pretreatment with
amarogentin inhibited lipid peroxidation, reduced the level
of MDA formation, and rescued cells from damage
(Figure 5(e)).

3.8. Amarogentin Increased the Total SOD and SOD2 Activity
under Oxidative Stress Induced by H2O2 in PC12 Cells. SOD is
an important endogenous free radical scavenger in mamma-
lian cells [39]. Therefore, the level of SOD in the H2O2-
induced oxidative damage to PC12 cells was evaluated. The
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Figure 2: Effect of amarogentin on oxidative stress in yeast and the SOD, GPx, and CAT enzymatic activities of yeast. (a) The growth of yeast
under oxidative stress induced by 10mM H2O2 after treatment with amarogentin. The wild-type BY4741 yeast was inoculated in YPD
medium for 24 h. Then after, initial 0.1 OD of yeast was placed in a liquid glucose medium and treated with RES at 10μM as positive
control or amarogentin (0, 1, 3, and 10 μM) for 24 h at 28°C. Subsequently, 5μl of the cultured cells with the same OD600 value from each
group was dropped on a plate containing 10mMH2O2. The growth of yeast cells on the plate was observed and photographed after 3 days of
incubation at 28°C. (b) Survival rate of the BY4741 yeast strain under 5.5mMH2O2-induced yeast oxidative stress after adding amarogentin.
BY4741 yeast cells were treated with RES (10 μM) or amarogentin (0, 1, 3, and 10 μM). The counted 200 yeast cells from each group were
spread on a glucose agar plate with or without 5.5mM H2O2 and incubated at 28°C for 48 h. After 2 days, the colonies that formed on the
plate were counted. The survival rate of yeast cells was analysed from the ratio of the number of colonies in the absence of 5.5mM H2O2
divided by the number of colonies in the presence of 5.5mM H2O2. Effect of amarogentin on the total superoxide dismutase (T-SOD) (c),
SOD1 (d), SOD2 (e), total glutathione peroxidase (GPx) (f) and catalase (CAT) (g). BY4741 yeast strain cells were incubated with RES as
a positive control or amarogentin at concentrations of 1, 3, and 10μM for 24 h. Afterwards, the yeast cells were collected by centrifugation
and ultrasonicated for five times. The supernatant of the yeast was used to measure the T-SOD, SOD1, SOD2, GPx, and CAT activities
according to the manufacturer’s instructions. Each experiment was conducted thrice. ∗, ∗∗, and ∗∗∗ indicated significant difference as
compared with the control (p < 0:05, 0.01, and 0.001), respectively.
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total SOD and SOD2 activities were significantly decreased in
the H2O2-treated group. The total SOD and SOD2 activities
evidently increased in amarogentin-treated cells (Figures 5(f)
and 5(g)). However, SOD1 activity in PC12 cells was not
affected by amarogentin (Figure 5(h)). Furthermore, amaro-
gentin and RES alone did not affect the cell viability, fluores-
cence intensity, MDA level, and the total SOD, SOD1, and
SOD2 activities in normal condition. These results indicate
that amarogentin could significantly reduce the oxidative
damage in PC12 cells.

3.9. Effect of Amarogentin on Gene Expression of SOD1,
SOD2, Bcl-x1, and Nrf2 in PC12 Cells. The gene expressions
of SOD1 and SOD2 in PC12 cells after treatment of RES or
amarogentin are shown in Figure 6. The SOD1 gene expres-
sion in all of treatment groups was not affected by RES or
amarogentin (Figure 6(a)). However, SOD2 gene expression
in these groups was significantly increased after treatment
with RES (10μM) or amarogentin (1, 3μM) for 12 h
(Figure 6(b)). In addition, we detected the gene expression
of GPx and CAT. The abundance of GPx and CAT mRNA
was also significantly increased with RES (10μM) or
amarogentin (1, 3μM) for 12 h or 24 h (Supplementary
Figure 1).

Nrf2 plays an important role in protecting against
oxidative stress and apoptotic damage [40]. Bcl-xl, one of
the antiapoptotic proteins, plays a considerable role of resis-
tance in apoptosis and involves neuroprotection [41]. Thus,
we conducted qRT-PCR to detect whether Nrf2 and Bcl-x1
genes were involved in the protection effect of amarogentin.
The abundance of Bcl-xl and Nrf2 mRNA was significantly
increased with RES or amarogentin (1, 3, and 10μM) for
12 h or 24 h (Figures 6(c) and 6(d)). These results indicated
that SOD2, CAT, Gpx, Bcl-x1, and Nrf2 genes were involved
in the neuroprotective effects of amarogentin.

3.10. Amarogentin Showed Neuritogenic Activity in PC12
Cells. The neuritogenic activity of amarogentin was evaluated
in PC12 cells. Amarogentin induced neurite outgrowth in a
dose-dependent manner. The percentage of cells with neurite
outgrowth after treatment with 0, 0.3, 1, and 3μMamarogen-
tin for 48 h was 6:3% ± 0:9%, 36:7% ± 2:3%, 43:0% ± 2:3%,
and 50:0% ± 1:5%, respectively (Figure 7(a)). Interestingly,
amarogentin (3μM) combined with NGF (1ng/ml) remark-
ably increased the percentage of cells with neurite outgrowth
from 50:0% ± 1:5% to 80:3% ± 1:5% (Figure 7(a)), and the
neurite outgrowth interweaved into a network. The morpho-
logical changes in PC12 cells after treatment with DMSO,
NGF (40ng/ml), amarogentin (3μM), and amarogentin
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Figure 3: Effect of amarogentin on SOD1, SOD2, GPx, and CAT gene expression in BY4741 yeast after treatment of amarogentin and RES.
Experiments were repeated thrice, and the data were presented as means ± SEM. ∗p < 0:05 and ∗∗p < 0:01 represent significant difference
compared with the control group.
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together with NGF are shown in Figure 7(b). The results
suggest that amarogentin possessed NGF-mimic activity
and could enhance NGF activity in PC12 cells. Amarogentin
should be further studied given that it could be a candidate
molecule because of its neuritogenic activity for treatment
of neurodegenerative disorders.

4. Discussion

G. rigescens is a traditional Chinese herbal medicine which is
used to treat inflammations, hepatitis, rheumatism, cholecys-
titis, and inflammation in China [16]. To search for the active
components and understand the action mechanism of these
compounds of G. rigescens, we began an intensive study on

this species more than ten years ago. In our previous study,
we used PC12 cells as a bioassay system to isolate 11 novel
neuritogenic substances from G. rigescens and named as
gentisides A–K [17, 18]. Furthermore, we used the fraction
consisted with gentisides A-K to investigate the neuropro-
tection effects in AD model mice induced by scopolamine.
We found that this fraction could improve the memory
function of AD model mice in vivo [19]. In the present
study, we focused on the isolation of antiaging molecules
from G. rigescens by using a yeast replicative lifespan
bioassay system. The chemical structure of amarogentin
and changes in replicative lifespan of yeast in Figures 1(a)
and 1(b) indicated that amarogentin has anantiaging effect
on yeast.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Control
RES 10 𝜇M⁎⁎

AMA 3 𝜇M⁎⁎

Control (𝛥sod1)
RES 10 𝜇M (𝛥sod1)
AMA 3 𝜇M (𝛥sod1)

Generations

V
ia

bi
lit

y 
(%

)

(a)

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Control
RES 10 𝜇M⁎⁎

AMA 3 𝜇M⁎⁎

Control (𝛥sod2)
RES 10 𝜇M (𝛥sod2)
AMA 3 𝜇M (𝛥sod2)

Generations

Vi
ab

ili
ty

 (%
)

(b)

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Control
RES 10 𝜇M⁎⁎

AMA 3 𝜇M⁎⁎

Control (𝛥uth1)
RES 10 𝜇M (𝛥uth1)
AMA 3 𝜇M (𝛥uth1)

Generations

V
ia

bi
lit

y 
(%

)

(c)

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Control
RES 10 𝜇M⁎⁎

AMA 3 𝜇M⁎⁎

Control (𝛥skn7)
RES 10 𝜇M (𝛥skn7)
AMA 3 𝜇M (𝛥skn7)

Generations

V
ia

bi
lit

y 
(%

)

(d)

Figure 4: Effect of amarogentin on the replicative lifespans of sod1 (a), sod2 (b), uth1 (c), and skn7 (d) mutant yeast strain with K6001
background. The average replicative lifespans of the wild-type K6001 yeast were 7:0 ± 0:3 generations under the control treatment, 9:0 ±
0:5 generations under the RES treatment, and 9:6 ± 0:5 generations under the 3 μM amarogentin treatment. The average replicative
lifespans of the sod1 mutant were 7:5 ± 0:1 generations under the control treatment, 7:6 ± 0:3 generations under the RES treatment, and
7:6 ± 0:2 generations under the 3 μM amarogentin treatment. The average replicative lifespans of the sod2 mutant were 8:1 ± 0:1
generations under the control treatment, 8:1 ± 0:5 generations under the RES treatment, and 7.7± 0.2 generations under the 3μM
amarogentin treatment. The average replicative lifespans of the uth1 mutant were 10.8± 0.1 generations under the control treatment, 11:3
± 0:1 generations under the RES treatment, and 11:0 ± 0:1 generations under the 3μM amarogentin treatment. The average replicative
lifespans of skn7 were 8:5 ± 0:7 generations under the control treatment, 8:1 ± 0:6 generations under RES treatment, and 8:0 ± 0:6
generations under 3μM amarogentin treatment.
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Oxidative stress plays a crucial role in the aging process,
and antioxidative stress mechanism is a strategy used to
prevent and treat aging-related diseases, such as neurodegen-
erative diseases [11]. To understand the action mechanism of
amarogentin for anti-aging, we firstly examined the effect of
amarogentin on the survival rate of yeast under oxidative
stress condition and activity of enzymes. The results in
Figures 2(a) and 2(b) and the activities of total SOD and
SOD2, CAT, and GPx (Figures 2(c)–2(g)) suggested that
antioxidative stress and activity increase of enzymes are
involved in antiaging effect of amarogentin. To obtain more
evidences to support our conclusion, we investigated the gene
expression of antioxidative enzyme and constructed sod1,
sod2, uth1, and skn7 mutants of yeast with K6001 back-
ground. We conducted replicative lifespan assays of sod1,
sod2, uth1, and skn7 mutants with a K6001 background; all
of which had related effects on antioxidative stress. The

results in Figures 3(a)–3(d) and Figures 4(a)–4(d) show that
SOD1, SOD2, CAT, GPX, UTH1, and SKN7 contribute to the
antiaging effect of amarogentin. The results demonstrated
that antioxidative stress is an important role for the antiaging
effect of amarogentin.

In our research strategy, the yeast biological activity eval-
uation system has the advantages of low cost, short research
period, and easy operation. This system was used for the ini-
tial screening and mechanism study. To confirm the effects of
the antioxidative stress activity of amarogentin in higher
organisms, we employed the PC12 cell line, which was
derived frommammalian cells, as a bioassay system. A signif-
icant increase of the survival rates of PC12 cells under oxida-
tive conditions as shown in Figure 5(b), significant reduction
of ROS and MDA levels (Figures 5(c) and 5(d)), and increase
of the total SOD and SOD2 activities (Figures 5(e)–5(g))
implied that amarogentin possessed the neuroprotective
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Figure 5: Neuroprotection effect of amarogentin on the H2O2-induced oxidative damage in the PC12 cells. (a) Relative viability of the PC12
cells after treatment with H2O2 at different concentrations for 1 h. With an increase in H2O2 concentration, survival rates decreased
significantly compared with the control group. (b) Neuronal protection of amarogentin at 1, 3, and 10μM with or without the H2O2
stimulation. (c) Effect of amarogentin with or without H2O2-induced on ROS production in PC12 cells as detected by fluorescence
microplate reader. (d) Photomicrographs of PC12 cells stained with DCFH-DA under a fluorescence microscope. Control (A), RES
(10 μM) (B), amarogentin (1 μM) (C), amarogentin (3 μM) (D), amarogentin (10 μM) (E), H2O2-treated control (F), H2O2+RES (10 μM)
(G), H2O2+amarogentin (1 μM) (H), H2O2+amarogentin (3 μM) (I), and H2O2+amarogentin (10 μM) (J); scale bar, 20 μm. The levels of
MDA content (e), total SOD activities (f), SOD2 activities (g), and SOD1 activities (h) were measured by corresponding assay kits. The
PC12 cells were pretreated with RES (10 μM) and different concentrations of amarogentin (1, 3, and 10 μM) for 24 h and then subjected to
H2O2 (0.9mM) for 1 h or treated with RES (10μM) and amarogentin (1, 3, and 10μM) alone for 24 h. Experiments were repeated thrice,
and the data were presented as means ± SEM. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 compared with the control group; #p < 0:05, ##p <
0:01, compared with the H2O2-treated group (grey color bar).
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effect in PC12 cells via regulation of antioxidative stress. To
understand which genes and signalling pathways were
involved in antioxidative stress, we investigated both of the
genes, Nrf2 and Bcl-x1 which are related to oxidative stress

and neuroprotection [40, 41]. The increase of SOD2, Nrf2,
and Bcl-xl gene expression after treatment of amarogentin
(Figures 6(b)-6(d)) clarified that amarogentin produced neu-
roprotection via modification of antioxidative stress and
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Figure 6: Effect of amarogentin on SOD1, SOD2, Bcl-x1, and Nrf2 gene expression in PC12 cells after treatment of amarogentin and
resveratrol for 12 h or 24 h. Experiments were repeated thrice, and the data were presented as mean ± SEM. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p
< 0:001 compared with the control group.
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Figure 7: Neuritogenesis activity of amarogentin in PC12 cells. (a) Percentage of cells with neurite outgrowth after treatment with indicated
doses of amarogentin and amarogentin with NGF for 48 h. (b) Morphological changes in the neurite outgrowth of PC12 cells treated with
negative control (0.5% DMSO) (A), positive control (40 ng/ml NGF) (B), amarogentin (3 μM) (C), NGF (1 ng/ml) (D), and amarogentin
(3 μM) with NGF (1 ng/ml) (E). Each experiment was repeated thrice. The data are presented as mean ± SEM. ∗∗∗ indicated significant
and highly significant differences compared with the negative control group at p < 0:001.
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regulation of SOD2, Nrf2, and Bcl-xl gene expression. These
results were consistent with other reports [42].

The NGF is the first and best characterized neurotrophic
factor [27]. NGF cannot pass through the blood brain barrier
(BBB) because of its physical property, resulting in difficultly
in using NGF as a drug to treat neurodegenerative diseases.
Therefore, a small molecule that mimics or enhances the
NGF activity and can pass through BBB can be a promising
candidate for treatment of neurodegenerative diseases [43].
In the present study, we found that amarogentin not only sig-
nificantly induced the neurite outgrowth but also enhanced
the neuritogenic activity of NGF (Figures 7(a) and 7(b)).
These results suggested that amarogentin has potential for
treatment of neurodegenerative diseases, such as AD.

To confirm whether these obtained antiaging compounds
have an anti-AD effect, PC12 cells were used to evaluate
neuritogenic activity of them. Cucurbitacin B which is a tri-
terpenoid and isolated from Pedicellus melo, like amarogen-
tin, not only exerted antiaging effects on yeasts but also
induced neurogenesis in PC12 cells and improved the mem-
ory of APP/PS1 transgenic mice [20, 44]. Amarogentin,
which has a structure that is completely different to that of
CuB, exhibits significant antiaging activity and NGF-mimic
activity and enhances the NGF activity. The underlying
mechanisms of the activities of amarogentin should be eluci-
dated. Comparison of the similarity and difference of mech-
anisms of two different structures may be important for
drug discovery.

5. Conclusion

Amarogentin isolated from G. rigescens, which is a TCM,
showed a significant antiaging effect on yeasts and neuropro-
tective and neuritogenic activities in PC12 cells, a mamma-
lian cell line. Amarogentin prolonged the replicative
lifespan and neuroprotective activities by antioxidative stress
activity. However, the underlying mechanisms of neurito-
genic and antiaging activities need to be elucidated, and the
relationship between these activities should also be addressed
in future studies. Novel leading compounds can be designed
and synthesised based on the structure of amarogentin. This
study lays an important foundation for development of a
novel drug for treatment of aging and neurodegenerative
diseases.
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Numerous evidences suggest that plant polyphenols may have therapeutic benefits in regulating oxidative stress and providing
neuroprotection in many neurodegenerative diseases, including multiple sclerosis (MS). However, these mechanisms are not
yet completely understood. In this study, we investigated the effect of olive leaf polyphenols on oxidative stress through
oxidation marker level and activity (TBARS, SOD, and GPX) and their protein expression (SOD1, SOD2, and GPX1), as
well as the protein expression of Sirtuin 1 (SIRT1) and microglia markers (Iba-1, CD206, and iNOS) and myelin integrity
(proteolipid protein expression) in the brain of rats with induced experimental autoimmune encephalomyelitis (EAE) and
subjected to olive leaf therapy. Experiments were performed in male EAE DA rats, which were randomly divided into 2
main groups: EAE groups treated with the therapy of olive leaf (EAE+TOL) and untreated EAE control groups. The EAE
treated groups consumed olive leaf tea instead of drinking water (ad libitum) from the beginning to the end of the
experiment. In addition, olive leaf extract was injected intraperitoneally (i.p.) for the 10 continuous days and started on
the 8th day after EAE induction. The clinical course was monitored in both groups until the 30th day after EAE induction.
Our results demonstrated that TOL attenuated the clinical course of EAE; reduced the oxidative stress (by decreasing the
concentration of MDA); upregulated antioxidant enzymes (SOD1, SOD2, and GPX1), SIRT1 (overall and microglial), and
anti-inflammatory M2 microglia; downregulated proinflammatory M1 type; and preserved myelin integrity. These data
support the idea that TOL may be an effective therapeutic approach for treating MS and other neurodegenerative diseases.

1. Introduction

A broad range of evidence suggests that oxidative stress plays
a major role in the pathogenesis of neurodegenerative dis-
eases, including multiple sclerosis (MS) [1, 2]. Reactive oxy-
gen species (ROS), which if produced in excess during
inflammation lead to oxidative stress, have been implicated
as mediators of demyelination and axonal damage in both
MS and its animal models.

One of the most studied cell populations in the central
nervous system (CNS) in the context of ROS-mediated tissue
damage in MS are microglia cells. An activated microglia
produce ROS [3] and NO radicals in MS lesions, which sug-
gests their role in the demyelination and neurodegeneration
process of MS [4–8] and accounts for the features of MS
pathological findings [9].

Oligodendrocyte progenitor cells (OPCs) are particularly
vulnerable to oxidative stress because they have lower levels
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of antioxidant enzymes [8]. The extent of lipid and DNA
oxidation correlates significantly with inflammation and
oxidative injury of oligodendrocytes and neurons, which is
also associated with active demyelination and axonal and
neuronal injury [10], together with upregulated expression
of oxidative molecules and antioxidant enzymes in MS
lesions [11–13].

However, and this aspect is less well understood, the
extracellular and intracellular redox milieu is integral to
many processes underlying T cell activation, proliferation,
and apoptosis and subsequent neuropathological processes.
Besides the promotion of demyelination through oxidative
damage [14], release of proinflammatory cytokines (IL-1β,
IL-6, and TNF-α), and increased expression of iNOS and
ROS [15], microglia contribute to the repair-permissive
environment by providing growth factors, such as IGF-1
and FGF-2 [16], and provide myelin debris clearance for
adequate oligodendrocyte differentiation and ongoing mye-
lination/remyelination [17–19].

Furthermore, it seems SIRT1, the nicotinamide adenine
dinucleotide- (NAD+-) dependent deacetylase highly
expressed in both neurons and glial cells in the brain
[20–22], is a crucial component of multiple interconnected
regulatory networks that modulate dendritic and axonal
growth, as well as survival against oxidative stress [23].

Moreover, SIRT1 exerts neuroprotective effects in many
models of microglial activation-induced neurodegenerative
disease [24, 25].

A decrease in SIRT1 levels and activities is related to
inflammation-associated diseases, including various neuro-
degenerative diseases [26, 27]. Moreover, the reduction of
SIRT1 expression could contribute to microglial activation
and neuroinflammation [28]. Thus, pharmacological activa-
tion or upregulation of SIRT1 may be a promising strategy
for the treatment of inflammation-related neurodegenerative
diseases. Till now, there are already some phytochemical
compounds that have been confirmed to have the ability to
increase SIRT1 expression and activity, including resveratrol,
quercetin, catechin, and protocatechuic acid [29–33].

Numerous evidences reported that olive leaf phenolics
have an antioxidant effect [34], and it seems to have a good
potential therapeutic effect on the prevention of neurodegen-
erative diseases; however, further investigation in humans is
needed.

Nevertheless, the effect of olive leaf polyphenols (OLP)
on SIRT1 during microglial activation is not completely
understood. However, there is little data regarding the effect
of OLP in MS or its animal models. Here, we examined the
effect of OLP on oxidative stress mediators (SOD and
GPX), SIRT1, and microglia and integrity of myelin in exper-
imental autoimmune encephalomyelitis (EAE), an animal
model of MS, in an attempt to provide further insights into
the neuroprotective potential of olive leaf polyphenols.

2. Materials and Methods

2.1. Experimental Animals. Experiments were performed on
male Dark Agouti (DA) rats, aged 2–3 months. They were
housed under standard conditions of light, temperature,

and humidity with unlimited access to food and water.
Experimental procedures involving animals complied with
Croatian laws and rules (NN 135/06; NN 37/13; NN
125/13; NN 055/2013) and with the guidelines set by the
European Community Council Directive (86/609/EEC).
The experimental protocol was approved by the Ethics Com-
mittee of the Department of Biotechnology University of
Rijeka (2170-57-005-02-17-1).

2.1.1. EAE Induction and Evaluation. Induction of chronic
relapsing- (CR-) EAE was performed in male DA rats by
bovine brain white matter homogenate emulsion (BBH) in
the complete Freund’s adjuvant (CFA) (Sigma, St. Louis,
Mo., USA), as previously described [35]. To each animal,
0.1mL emulsion was injected subcutaneously in each hind
footpad. The evaluation of the clinical course was assessed
daily using the following criteria: 0: no symptoms; 1: flaccid
paralysis of the tail; 2: hind leg paresis; 3: hind leg paralysis
with incontinence; and 4: the death of the animal.

2.1.2. Preparation of the Olive Leaf Tea and Olive Leaf Extract
(OLE). Olive leaf extract (OLE) was prepared from samples
of olive tree leaves according to the method of Giacometti
et al. [36]. The dry residue was weighed and then dissolved
in sterile saline and kept at -20°C until its use as therapy
together with olive leaf tea (olive leaf therapy; TOL). In addi-
tion, the sample of OLE was analyzed using ultrahigh-
pressure liquid chromatography with a diode array detector
(UHPLC-DAD) in order to determine the concentration of
oleuropein and other major phenolics in the extract accord-
ing to the method of Giacometti et al. [36]. The adminis-
trated dose of olive leaf extract (OLE) was 1024mg/kg,
while the concentration of oleuropein was 45.96mg/kg.

Olive leaf tea was prepared from the dry and ground olive
leaf by pouring hot water (at 60-80°C) over plant matter
(1.5%,w/v) and infused for 30min. After then, the plant mat-
ter was removed by filtration. Analysis of major phenolics in
the water infusion was performed using the UHPLC-DAD
method according to the method of Giacometti et al. [36].
The concentration of oleuropein in tea was 1.5mg/mL.

2.2. Experimental Design. EAE rats were randomly divided
into 2 main groups: EAE groups treated with the therapy of
olive leaf (EAE+TOL) and untreated EAE control groups.
Both main groups are divided into 2 smaller groups sacrificed
on different days after EAE induction, i.e., on the 20th day or
the 2nd relapse (EAE+TOL 20d and EAE 20d group) and the
30th day or the 2nd remission (EAE+TOL 30d and EAE 30d
group). The experimental groups (EAE+TOL 20d and EAE
+TOL 30d) were treated with olive leaf tea ad libitum from
the first day after EAE induction and with OLE injected
intraperitoneally (i.p.) for 10 continuous days starting from
the 8th day after EAE induction (a day before the onset of
the first EAE symptoms). This study design was chosen as
the design with the highest amelioration of the clinical course
symptoms of EAE from the pilot experiments conducted
with different olive leaf polyphenol concentrations (see
Suppl. Figure 1). Control EAE groups (EAE 20d and EAE
30d) were treated in the same way with physiological saline
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solution. The fifth group of rats was untreated or did not get
EAE induction nor treatment with olive leaf therapy
(untreated). EAE rats were sacrificed by exsanguination on
the 20th day after induction (n = 5) and on the 30th day
after induction (n = 5). EAE rats treated with OLE were
sacrificed on the same days as untreated EAE rats (on the
20th and 30th day after EAE induction, n = 5 each). The
exsanguination was done in deep anaesthesia (EAE, EAE
+TOL, and untreated rats), induced by a combination of
ketamine (80mg/kg) and xylazine (5mg/kg), given by
intraperitoneal (i.p.) injection, according to the guidance of
European Community Council Directive (86/609/EEC) and
recommendation of the National Centre for the
Replacement, Refinement and Reduction of Animals in
Research (http://www.nc3rs.org.uk).

2.3. Tissue Preparation for Paraffin Slices. The rat brain hemi-
sphere samples were fixed in 4% buffered paraformaldehyde
(Sigma-Aldrich, St. Louis, MD, USA) solution during 24h.
Tissue was then embedded in paraffin wax, and sections were
cut at 4μm using the HM 340E microtome (Microtome, Ger-
many). Heat-induced epitope retrieval was done prior to
staining procedure by heating tissue slides in boiled citrate
buffer pH 6.0 for four times, each 5min, using a microwave
steamer.

2.4. Immunohistological and Immunofluorescence Staining

2.4.1. Immunohistochemistry. Immunohistochemical label-
ing of proteolipid protein (PLP) was performed on paraffin-
embedded tissues using DAKO EnVision+ System, Peroxi-
dase (DAB) kit, according to the manufacturer’s instructions
(DAKO Cytomation, USA), as previously described [36, 37].
Briefly, slices were incubated with peroxidase block to elimi-
nate endogenous peroxidase activity.

After washing, rabbit polyclonal anti-myelin PLP IgG
antibodies (Abcam, UK, diluted 1 : 1000 with 1% BSA in
PBS) were added to tissue samples and incubated overnight
at 4°C in a humid environment, followed by 45min incuba-
tion with peroxidase-labeled polymer conjugated to goat
anti-mouse or anti-rabbit immunoglobulins containing car-
rier protein linked to Fc fragments to prevent nonspecific
binding. The immunoreactions’ product was visualized by
adding substrate chromogen (DAB) solution. Tissues were
counterstained with hematoxylin, dehydrated through
graded ethanol, and mounted using Entellan (Sigma-Aldrich,
Germany). The photomicrographs were taken and examined
under an Olympus BX51 light microscope (Olympus, Japan).

2.4.2. Immunofluorescence. Immunofluorescence labeling
was also performed on paraffin-embedded tissue sections.
Nonspecific binding was blocked by one-hour incubation
with 1% BSA in PBS containing 0.001% NaN3 at room tem-
perature, as previously described [37]. The following primary
antibodies were used: rabbit polyclonal anti-SIRT1 IgG
(GeneTex, Alton Pkwy, Irvine, CA, USA, 1 : 200), goat poly-
clonal anti-Iba-1 IgG (Abcam, Cambridge, UK, 1 : 200), rab-
bit polyclonal anti-iNOS IgG (Abcam, Cambridge, UK,
1 : 200), and rabbit polyclonal anti-CD206/Mannose receptor
IgG (Abcam, Cambridge, UK, 1 : 200). Primary antibodies

were diluted in blocking solution and incubated with tissue
sections overnight at 4°C in a humid environment. To visual-
ize immunocomplexes, the following secondary antibodies
were used: Alexa Fluor donkey anti-rabbit IgG 594nm
(Molecular Probes, Carlsbad, CA, USA, 1 : 500) and Alexa
Fluor donkey anti-goat IgG 488 nm (Molecular Probes,
Carlsbad, CA, USA, 1 : 300). Secondary antibodies were
diluted in blocking solution and incubated with tissue sec-
tions in the dark for 1 h at room temperature in a humid
environment. Nuclei were visualized by DAPI staining
(1 : 1000 in PBS for 5min; Molecular Probes, Carlsbad, CA,
USA). Slides were afterwards washed in PBS and mounted
with Mowiol (Sigma-Aldrich, Germany). The photomicro-
graphs were taken under a fluorescent microscope equipped
with DP71CCD camera (Olympus, Japan) and Cell F imag-
ing software.

2.5. Immunohistochemical Staining Quantification and
Cell Counting

2.5.1. Quantification. The immunohistochemical staining
quantification of protein expression was performed on
4μm tissue sections from paraffin-embedded tissues of the
brain using Cell F v3.1 software (Olympus Soft Imaging Solu-
tions), as previously described [38]. Captured images were
subjected to intensity separation. They were subsequently
inverted, resulting in grayscale images with different intensity
ranges, depending on the strength of immunohistochemical
signals. Regions of interest (ROIs) were arranged to cover
the area being analyzed, and mean gray values were mea-
sured. ROI surface size was always equal for each analyzed
area. Twelve ROIs were analyzed per field (400x) on 3 sepa-
rate microscopic slides of different tissue samples per animal,
obtained from 5 animals/group. The data were expressed as
the mean gray value ± SD.

2.5.2. Cell Counting. In the dentate gyrus, subventricular
zone, and cortex were estimated the SIRT1+, iNOS+, and
CD206+ microglial cells by using antibodies and DAPI stain-
ing, respectively. SIRT1+ and Iba-1+ cells were counted man-
ually in an image surface area of 0.014mm2 and
magnification of 1000x. Iba-1+ CD206+ and Iba-1+ iNOS+

cells were counted manually in an image surface area of
0.053mm2 and magnification of 400x. Results are expressed
as a mean number of cells per mm2 [39].

2.6. Tissue Preparation and Homogenization for Western Blot
and Biochemical Analyses. Brain tissue for protein isolation
was obtained from 5 intact rats (untreated), 10 EAE rats (5
EAE 20d and 5 EAE 30d), and 10 EAE rats treated with olive
leaf therapy (5 EAE+TOL 20d and 5 EAE+TOL 30d). The rat
brain hemisphere samples were rapidly removed and snap-
frozen in liquid nitrogen for protein isolation and stored at
-80°C. Bead Ruptor 12 homogenizer (Omni International,
Kennesaw GA, USA) was used for the preparation of brain
tissue homogenates (10% w/v) from frozen samples. Briefly,
one rat cerebral hemisphere was placed into 7mL tube con-
taining 1.4mm ceramic beads and suspended with 100mM
Tris-HCl buffer pH 7.6 containing phosphatase and protease
inhibitors. The samples were processed at speed 4 for three
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cycles; each was 15 sec with Dwell of 30 sec. The homoge-
nates were then centrifuged in an Eppendorf 5427R centri-
fuge (Eppendorf, Hamburg, Germany) for 10min at
5000 rpm and 4°C. The obtained supernatants were aliquoted
and stored at -80°C until analysis. Protein concentrations in
supernatants of brain homogenate were determined accord-
ing to the manufacturer procedure using a BCA protein assay
kit (Pierce, Thermo Scientific, Rockford, IL, USA).

2.7. Biochemical Analyses

2.7.1. Determination of Malondialdehyde. The lipid peroxida-
tion level (as TBARS) was measured spectrophotometrically
by the estimation of malondialdehyde concentration
(nmol/mg of proteins) based on the reaction with thiobarbi-
turic acid (TBA) according to the modified method by
Ohkawa et al. [40]. Briefly, 100μL of brain tissue homogenate
supernatant was added in the test tube that contained the
mixture of 1%w/v of TBA dissolved in 10%w/v trichloroace-
tic acid (TCA) and 2% w/v butylhydroxytoluene (BHT) dis-
solved in 10% w/v TCA. The test tubes were kept for
boiling at 90°C for 20min. After cooling, the tubes were cen-
trifuged at 10000 rpm for 15min at RT. Separated superna-
tant was collected and absorbance read at 532nm using
Eppendorf BioSpectrometer® basic (Eppendorf AG, Ham-
burg, Germany) against reagent blank. All absorbances were
read in triplicate. 1,1,3,3-Tetraethoxypropane (TEP) was
used as a standard for calibration curve in the range of 0 to
125μM (y = 0:019x + 0:0102, R2 = 0:99996).

2.7.2. Glutathione Peroxidase Activity. Glutathione peroxi-
dase (GPX) activity was determined in the brain homogenate
supernatants by commercial Ransel kit (Randox, Crumlin,
UK) according to the manufacturer’s instructions. GPX
activity was calculated as U/mg protein/min.

2.7.3. Superoxide Dismutase Activity. The total superoxide
dismutase (SOD) activity was determined in the supernatants
of brain homogenates using Ransod kit (Randox, Crumlin,
UK) according to the manufacturer’s instructions. The per-
cent of SOD inhibition was found between 63.98 and
95.36% (y = 43:238x + 63:984, R2 = 0:9929). SOD activity
was calculated in terms of U/mg protein/min. GPX and
SOD activities were measured at room temperature (RT)
using BioSpectrometer fluorescence (Eppendorf, Hamburg,
Germany).

2.8. Western Blot Analysis. The supernatants were collected
and used for the determination of SOD1, SOD2, GPX1,
SIRT1, Iba-1, and myelin basic protein (MBP). Briefly,
50μg protein was subjected to SDS-PAGE and transferred
to a PVDF membrane using a semidry protocol after previ-
ous protein determination by the BCA method. Electropho-
retic separation was performed using precast 4–15% TGX
gels in the Mini-PROTEAN Tetra Vertical Electrophoresis
Cell (Bio-Rad, Hercules, CA, USA) according to the manu-
facturer’s procedure. The transfer run was at 275mA for
30min in an SD10 semidry blotter (Cleaver Scientific Ltd.,
Rugby, Warwickshire, UK). The membranes were blocked
in TBST with a 5% w/v nonfat dry milk, incubated with pri-

mary rabbit monoclonal antibodies SOD1 (Booster Biologi-
cal Technology, Pleasanton, CA, 1 : 1000), SOD2 (Booster
Biological Technology, Pleasanton, CA, 1 : 1000), GPX1
(Booster Biological Technology, Pleasanton, CA, 1 : 1000),
SIRT1 (Cell Signaling, Leiden, Netherlands, 1 : 1000), MBP
(Booster Biological Technology, Pleasanton, CA, 1 : 1000),
and goat polyclonal Iba-1 antibody (Abcam, Cambridge,
UK, 1 : 1000) overnight at 4°C without agitation. After that,
membranes were washed five times for 10 minutes with
TBST (containing 0.1%, v/v Tween-20) with agitation and
incubated for 2 h at room temperature with the appropriate
secondary antibody (peroxidase-conjugated goat anti-rabbit
IgG, Booster Biological Technology, Pleasanton, CA, USA,
1 : 2000), with agitation. Next, they were washed again with
TBST, five times for 10min at room temperature. Protein
loading was controlled using a monoclonal rabbit antibody
against β-actin (Cell Signaling, Leiden, Netherlands,
1 : 1000). Chemiluminescent substrate for Horseradish Per-
oxidase- (HRP-) labeled reporter molecules (Roti®-Lumin,
Carl Roth GmbH+ Co. KG) was used for protein detection.
The light was detected after then using Image Quant LAS
500 chemiluminescence CCD camera (GE Healthcare UK
Ltd., Buckinghamshire, HP7 9NA, UK). The bands were
examined densitometrically using ImageJ, an image analysis
system (National Institutes of Health, Bethesda, USA) which
evaluated the relative amount of protein staining and quanti-
fied the results in terms of density. The results of treatment
with olive leaf EAE+TOL 20d and EAE+TOL 30d were nor-
malized related to the EAE 20d and EAE 30d, respectively.

2.9. Statistical Analysis. The data were evaluated with Statis-
tica (data analysis software system), version 13 (TIBCO Soft-
ware Inc., 2017, Palo Alto, CA, USA). The distribution of
data was tested for normality using the Kolmogorov–Smir-
nov test. Differences between groups were assessed with
either one-way analysis of variance (ANOVA) followed by
the post hoc Scheffé test or Mann–Whitney U test. For eval-
uation of death frequency between the EAE and EAE+TOL
groups, we used Fisher’s exact test. Pearson correlation (r)
was used for determining the association between Iba-1 and
SIRT1 cerebral protein expressions within immunofluores-
cence images.

The data are expressed as mean ± SD and the level of
significance is set at p < 0:05.

3. Results

EAE was induced in genetically susceptible DA rats, which
were then treated with olive leaf therapy. The clinical course
and the expression profiles of the following proteins (SIRT1,
Iba-1, iNOS, CD206, PLP, SOD1, SOD2, and GPX1), bio-
chemical activity (GPX and SOD), and peroxidation level
(as TBARS) were examined in the brain, and the data were
compared with the findings in untreated EAE rats and
untreated control rats.

3.1. Olive Leaf Therapy Attenuates the Clinical Course and
Reduces Death Frequency during EAE. The EAE control
group of rats (EAE 30d; n = 16) and EAE rats treated with

4 Oxidative Medicine and Cellular Longevity



olive leaf (EAE 30d+TOL; n = 16) were monitored daily dur-
ing the period of 30 days to evaluate the effects of therapy of
olive leaf on the clinical course of the disease.

The intensity of the clinical course of EAE was attenuated
in a group of animals treated with olive leaf (EAE+TOL)
(Figure 1(a)). The onset of clinical symptoms in the EAE
+TOL group was one day after the onset in the EAE group.
Furthermore, the clinical scores/symptoms were rising faster
in the EAE group during the first five days with a maximum
mean score of 3:0 ± 0:0 that reached at the peak of disease.
The maximum mean score in the EAE+TOL group that
reached at the peak of disease was 2:1 ± 0:8. The first relapse
in the EAE group lasted for 3 days with a minimum mean
score of 2:5 ± 0:0, unlike the relapse in the EAE+TOL group
that lasted for 7 days with a minimum mean score of 0:4 ±
0:5 (Figure 1(a)). During the 30 days after immunization,
death occurred in 14 from 16 rats in the EAE group, unlike
in the EAE+TOL group, where only 2 from 16 rats died, with
a significant difference of p = 0:011 (Figure 1(b)).

3.2. Biochemical Analysis. TBARS level and SOD and GPX
activity are presented in Figure 2. The level of lipoperoxida-
tion as TBARS is expressed as nM/mg protein of MDA
(Figure 2(a)). The level of MDA changed significantly
(p < 0:001) in all examined groups. TBARS were significantly
higher in the EAE groups according to the duration of the ill-
ness (p < 0:001 for EAE 20d and p = 0:001 for EAE 30d).
Therapy with olive leaf (TOL) in the EAE groups signifi-
cantly decreased TBARS level (p = 0:009 for EAE+TOL 20d
and p = 0:001 for EAE+TOL 30d).

Total SOD activity changed related to all examined
groups and increased in EAE treated groups (EAE+TOL
20d and EAE+TOL 30d) compared to the untreated control
(EAE 20d and EAE 30d), but not significantly (Figure 2(b)).
As presented, in the EAE 20d postimmunization group,
SOD activity was significantly lower than that in the EAE

30d (p = 0:043). The same trend was found in the EAE
groups treated with olive leaf polyphenols (p = 0:033).

Total GPX activity changed significantly related to all
examined groups (p < 0:001) (Figure 2(c)). The EAE groups
treated with olive leaf polyphenols showed that GPX activity
increased significantly in the group EAE+TOL 20d compared
to the EAE 20d group (p < 0:001) as well as in the EAE+TOL
30d group (p < 0:001) compared to the EAE 30d group.
These results showed that therapy with OLP affected the
increase of endogenous antioxidants in the rat brain during
EAE and also reduced lipoperoxidation. Our results showed
significant alterations in the antioxidant defenses, especially
in the second remission. In addition, the differences were
found also in relation to the duration of illness, where the
application of OLP can be beneficial to long therapies.

3.3. Western Blot Analysis of SOD1, SOD2, GPX1, SIRT1, and
Iba-1. Although total SOD activity was lower in the EAE
groups and higher in the OLP-treated groups with EAE
(Figure 3(b)), we believe that the differences in the protein
abundance exist in cytosolic SOD1 (Cu-Zn) and mitochon-
drial SOD2 (MnSOD) in the rat brain. To determine this
alteration, rat brain protein extracts were analyzed with west-
ern blot analysis (Figures 3(b) and 3(c)). Therapy with OLP
significantly changed cytosolic SOD1 only at the 30th day
(p = 0:048) and in the mitochondrial SOD2 at both the 20th

and 30th days after induced EAE (p < 0:001 and p < 0:001,
respectively). All analyzed groups had the SOD2/SOD1 ratio
less than 1.0, after normalizing to the sum of the untreated
control group for SOD1 and SOD2, except the EAE+TOL
30d group (the ratio is 1.013). On the other hand, the SOD2/-
SOD1 ratio was lower in the EAE 20d group (the ratio is
0.814). Thus, we suggested that EAE reduced SOD2 abun-
dance (and activity) in the mitochondria, and OLE therapy
enhanced SOD2 in the mitochondria, especially in the remis-
sion phase (at 30 days postimmunization). We conclude that
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Figure 1: Clinical course and death frequency in the EAE and EAE+TOL groups. (a) The clinical course in the EAE (n = 16) and EAE+TOL
(n = 16) rat groups. Values are presented as mean ± SD (Mann–Whitney U test) using EAE scores of each animal for every day. (b)
Death/survival frequency during 30 days after EAE induction. Values are presented as a number of animals per group (Fisher’s exact test);
∗p < 0:05.
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EAE progression alters the cytosolic SOD1 and mitochon-
drial SOD2 protein levels. In addition, OLP therapy effect
seems to be compensatory on the mitochondrial SOD2
protein level due to the loss of the specific activity of mito-
chondrial SOD2 to reduce the deleterious effect of the mito-
chondrial superoxide.

GPX1 is found in the cytosol and mitochondria to
remove a large amount of generated superoxide. We did
not find significant changes in the expression of GPX1 in

the EAE+TOL 20d group; however, a significant increase of
GPX1 expression was found in the EAE+TOL 30d group
(p = 0:005) (Figure 3(d)).

The western blotting analysis demonstrated that SOD1,
SOD2, and GPX1 expressions in OLP-treated EAE rat brain
were higher compared to those in EAE animals without the
OLP treatment and even higher than those in the untreated
control. These data also suggested that the neuroprotective
effect of OLP is carried out through its effect on SOD1,
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Figure 2: Biochemical assays in the rat brain. (a) The concentration of MDA (nM/mg protein), (b) the activity of SOD (U/mg protein), and
(c) the activity of GPX (U/mg protein) in the healthy untreated group (control), in the groups induced EAE after 20 days (EAE 20d) and 30
days (EAE 30d) postimmunization and EAE groups with olive leaf therapy (EAE+TOL 20d and EAE+TOL 30d). For each group, values are
presented as themean ± SD of five rats per group. One-way ANOVA followed by the post hoc Scheffé test was used for the statistical analysis:
∗p < 0:05, ∗∗p < 0:01, and ∗∗∗ p < 0:001.
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SOD2, and GPX1, not only in the acute phase of the disease
(20th day) but in the remission period as well (on the 30th

day postimmunization). Therefore, the effectiveness of OLP
therapy can be proposed, at least in part, to increase levels
of these antioxidant enzymes in the brain in vivo.

However, the SOD1 and SOD2 protein expression
obtained by immunofluorescence revealed a different pattern
at the tissue distribution level. Higher SOD1 cell upregulation,
including in neurons and microglia, was found in different
brain regions (i.e., cortex, hippocampus, and subventricular
zone) in rats without the TOL treatment or EAE control rats

(see Suppl. Figure 2). Furthermore, the SOD2 expression
was upregulated in microglia surrounding lesions in the
brain stem from rats without the TOL treatment as well
(see Suppl. Figure 3), but not elsewhere.

3.4. Olive Leaf Therapy Stimulates Cerebral SIRT1 Expression
during EAE. Profiling of cerebral SIRT1 protein by immuno-
histochemistry and western blot showed significant upregu-
lation at the 20th day after EAE induction in rats treated
with olive leaf therapy (Figures 3(e) and 4) and greater than
that in untreated EAE rats. The data obtained by
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Figure 3: Immunoblot of SOD1, SOD2, GPX1, SIRT1, and Iba-1 in the isolated rat brain proteins. Cell lysate proteins (50 μg) were
immunoblotted using β-actin as the loading control. (a) Representative western blot images of the target proteins. The expression of (b)
SOD1, (c) SOD2, (d) GPX1, (e) SIRT1, and (f) Iba-1 is shown at the normalized expression level of EAE. For each group, values are
presented as the mean ± SD of five rats per group. One-way ANOVA followed by the post hoc Scheffé test was used for the statistical
analysis: ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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immunohistochemistry clearly showed that SIRT1 expres-
sion was markedly upregulated (Figures 4(a) and 4(b)) in
the EAE+TOL 20d group of rats in comparison with findings
in the untreated control and untreated EAE group of rats in
the following locations: in the hippocampus/dentate gyrus
(Figures 4(a) A D, G, J, M and 4(b): p < 0:001, p < 0:001),
in the ependymal, subependymal, and subventricular area
(Figures 4(a) B, E, H, K, N and 4(b): p < 0:001, p < 0:001),
and in the cortex (Figures 4(a) C, F, I, L, O and 4(b): p =
1:000, p = 0:038). The western blot showed, as presented in

Figure 5(e), that therapy of olive leaf activated brain SIRT1
in both relapse (20th day) and remission (30th day) phase of
the EAE, compared to the same phases in the untreated
EAE groups (p = 0:009 and p = 0:016, respectively). Interest-
ingly, the findings from the relapse phase (20th day) showed
higher expression of brain SIRT1 than those from the remis-
sion phase (30th day) for normalized values related to
untreated control (48% greater for EAE 20d than EAE 30d
and 50% greater for EAE+TOL 20d than EAE+TOL 30d)
(data not shown). The immunohistochemical findings
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Figure 4: Polyphenols from olive leaf extract induce the upregulation of SIRT1 in different brain regions (hippocampus, ependyma,
subventricular zone (SVZ), and cortex). (a) Representative immunofluorescent pictures show staining with anti-SIRT1 antibody in
paraffin-embedded sections of the brain tissue obtained from DA rats: (A–C) untreated, (D–F) with induced EAE and the second attack
(on the 20th day postinduction), (G–I) with induced EAE and treated with the olive leaf therapy (TOL) till the 20th day postinduction, (J–
L) with induced EAE and the second remission (on the 30th day postinduction), and (M–O) with induced EAE and treated with TOL on
the 30th day postinduction. (b) SIRT1 immunoreactivity in different brain regions. The immunofluorescent staining quantification was
performed using Cell F v3.1 software analysis (12 ROI/4μmslice × 3 slices/rat × 5 rats/group). Values are expressed as mean gray value ±
SD. One-way ANOVA followed by the post hoc Scheffé test: ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. Scale bars indicate 50μm.
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showed the higher expression level of brain SIRT1 in the
relapse phase (20th day) as well than that in the remis-
sion phase (30th day), especially in the dentate gyrus
(Figures 4(a) M and 4(b); p < 0:001) and subventricular
zone (Figures 4(a) N and 4(b): p < 0:001).

3.5. Olive Leaf Therapy Stimulates Cerebral Iba-1 Expression
during EAE. To detect the microglia during the olive leaf
therapy, a protein marker Iba-1 was used in immunohisto-
chemistry and western blot analyses. The immunohisto-
chemistry showed significant upregulation of Iba-1 on the
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Figure 5: Polyphenols from olive leaf induce the upregulation of Iba-1 in different brain regions (hippocampus, ependyma, subventricular
zone (SVZ), and cortex). (a) Representative immunofluorescent pictures show staining with anti-Iba-1 antibody in paraffin-embedded
sections of the brain tissue obtained from DA rats: (A–C) untreated, (D–F) with induced EAE and second attack (on the 20th day
postinduction), (G–I) with induced EAE and treated with the therapy of olive leaf (TOL) till the 20th day postinduction, (J–L) with
induced EAE and the second remission (on the 30th day postinduction), and (M–O) with induced EAE and treated with TOL on the 30th

day postinduction. (b) Iba-1 immunoreactivity in different brain regions. The immunofluorescent staining quantification was performed
using Cell F v3.1 software analysis (12 ROI/4μmslice and 3 slices/rat × 5 rats/group). Values are expressed as mean gray value ± SD. One-
way ANOVA followed by the post hoc Scheffé test: ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. Scale bars indicate 50μm.
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20th and 30th days after EAE induction in rats treated with
TOL (Figures 5(a) G, H, I, M, N, and O) and greater than that
in untreated EAE rats (Figures 5(a) and 5(b)). The data
obtained by immunohistochemistry clearly showed that
Iba-1 expression was markedly upregulated in the EAE
+TOL 20d group of rats in comparison with the findings in
the untreated control and untreated EAE group of rats in
the following locations: in the hippocampus/dentate gyrus
(Figures 5(a) A, D, G, J, and M and 5(b): p < 0:001, p <
0:001), in the ependymal, subependymal, and subventricular
area (Figures 5(a) B, E, H, K, and N and 5(b): p < 0:001,
p < 0:001), and in the cortex (Figures 5(a) C, F, I, L, and O
and 5(b): p < 0:001, p = 0:001). As shown with WB analysis,
therapy of olive leaf activated Iba-1 in the EAE 20d
(p = 0:013) and EAE 30d groups (p = 0:010) (see Figure 3(f)).
Compared to the untreated control, Iba-1 was reduced for
1.8% in the EAE 20d group and 32.3% in the EAE 30d group.
In addition, therapy with olive leaf polyphenols enhanced
Iba-1 expression for 33% in the EAE+TOL 20d and decreased
Iba-1 expression for 6.5% in the group EAE+TOL 30d (data
not shown). The immunohistochemical findings showed
the higher expression level of Iba-1 marker in the relapse
phase (20th day) as well than that in the remission phase
(30th day), but only in the dentate gyrus (Figures 5(a) M
and 5(b); p < 0:001).

3.5.1. Coexpression of Iba-1 and SIRT1 in the Brain. Immu-
nofluorescent analyses confirmed coexpression of Iba-1 with
SIRT1 in the different brain regions (Figure 6), especially in
EAE rats treated with the therapy of olive leaf (TOL)
(Figures 6(a) G, H, I, N, and O). A number of Iba-1+SIRT1+

cells per mm2 of brain tissue are most abundant in EAE rats
treated with TOL till the 20th day after EAE induction
(Figure 6(b)), especially in the subventricular zone
(Figure 6(a) H, arrows) compared to the untreated EAE
20d (hippocampus: p < 0:001; SVZ: p < 0:001; and cortex:
p = 0:081) and control groups of rats (hippocampus: p <
0:001; SVZ: p < 0:001; and cortex: p = 0:039) (Figure 6(b)).
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Figure 6: In the cerebral hippocampus, subventricular zone (SVZ), and cortex of rats treated with the therapy of olive leaf (TOL), microglia
cells that abundantly express SIRT1 are present. (a) Representative immunofluorescent pictures show the relationship between SIRT1+ and
Iba-1+ microglia cells in DA rats: (A–C) untreated, (D–F) with induced EAE and the second attack (on the 20th day postinduction), (G–I) with
induced EAE and treated with TOL till the 20th day postinduction, (J–L) with induced EAE and the second remission (on the 30th day
postinduction), and (M–O) with induced EAE and treated with TOL on the 30th day postinduction. (b) A number of Iba-1+ SIRT1+ cells
were manually counted in the area of interest (0:014mm2/4 μmslice × 3 slices/rat × 5 rats/group). Values are expressed as mean gray value
± SD of a number of cells per mm2. One-way ANOVA followed by the post hoc Scheffé test: ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. Scale
bars indicate 20μm.

Table 1: Pearson correlations (r) between Iba-1 and SIRT1 cerebral
expressions.

Variable
SIRT1
(SVZ)

SIRT1
(hippocampus)

SIRT1
(cortex)

Iba-1 (SVZ) 0.85∗ / /

Iba-1
(hippocampus)

/ 0.85∗ /

Iba-1 (cortex) / / 0.61∗

∗Denotes statistical significance at p < 0:05. Iba-1 and SIRT expressions were
correlated using the average gray intensity level of immunofluorescent
staining.
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3.5.2. Correlation of Iba-1 and SIRT1 in the Brain. The SIRT1
expression strongly correlated with the Iba-1 expression in
the SVZ region (r = 0:85, p < 0:001), hippocampal region
(r = 0:85, p < 0:001), and cortex region (r = 0:61, p < 0:001)
(Table 1).

3.6. Myelin Integrity Is Reduced in EAE Untreated Rats
Compared to EAE Rats Treated with Olive Leaf.Myelin integ-
rity was assessed by PLP immunostaining which differed sig-
nificantly between the untreated control group, untreated
EAE groups, and EAE groups treated with olive leaf (EAE
+TOL) when analyzed (mean gray value ± SD; one-way

ANOVA followed by the post hoc Scheffé test PLP; p <
0:001). PLP immunostaining was significantly lower in the
untreated EAE 20d group vs. the treated EAE+TOL 20d
group (p < 0:001) and vs. the untreated control group
(p < 0:001) (Figure 7).

This was accompanied by a corresponding increase in the
cellular content of the 18 kDa isoform of MBP at the 30th day
compared to the 20th day after inducing EAE (see Suppl.
Figure 4B). In addition, MBP expression was significantly
greater in rats treated with olive leaf polyphenols at the 20th

day of induced EAE. However, we did not find higher MBP
after the olive leaf treatment on the 30th day (Suppl.
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Figure 7: Polyphenols from olive leaf extract induce the upregulation of PLP in different brain regions (hippocampus, cortex, and white
matter). (a) Representative immunohistochemical pictures show staining with anti-PLP antibody in paraffin-embedded sections of the
brain tissue obtained from DA rats: (A–C) untreated, (D–F) with induced EAE and the second attack (on the 20th day postinduction), (G–
I) with induced EAE and treated with polyphenols till the 20th day postinduction, (J–L) with induced EAE and the second remission (on
the 30th day postinduction), and (M–O) with induced EAE and treated with polyphenols on the 30th day postinduction. (b) PLP
immunoreactivity in different brain regions. The immunohistochemical staining quantification was performed using Cell F v3.1 software
analysis (12ROI/4μmslice × 3 slices/rat × 5 rats/group) of representative cortex photomicrographs (C, G, K, O, T). Values are expressed as
mean gray value ± SE. One-way ANOVA followed by the post hoc Scheffé test: ∗∗∗p < 0:001. Scale bars in horizontal order indicate 500 μm
(for the hippocampus), 200 μm (for the cortex), 50μm (for the cortex), and 50μm (for the white matter).
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Figure 4C). Since the content of MBP in the brain tissue is a
quantitative indicator of the myelin membrane integrity and
that myelin also depends on its characteristic lipid contents,
therefore, we assume that olive leaf polyphenols attenuate
myelin sheath destruction through suppression of the
oxidative changes, as well as affect the regulation of
lipogenesis. This was supported by the expression of both
myelin proteins (PLP and MBP).

3.7. Olive Leaf Therapy Influences Microglial M1 to M2
Phenotypic Switch in the Subventricular Zone. To investigate
the effect of olive leaf therapy on microglial M1 and M2 phe-
notypes, the immunohistochemical staining and number of
Iba+ CD206+ (M2) and Iba+ iNOS+ (M1) cells in the subven-
tricular zone were determined and compared to the EAE and
untreated control groups. TOL significantly decreased the
number of microglial M1 cells in the EAE+TOL 20d group

compared to both EAE groups (EAE 20d and EAE 30d; p <
0:001, p < 0:001) (Figures 8(a) and 8(b)). Furthermore,
TOL significantly increased the number of microglial M2
cells in the EAE+TOL 20d and EAE+TOL 30d groups com-
pared to both EAE groups (EAE 20d and EAE 30d; p <
0:001, p = 0:046) and untreated group (p < 0:001, p < 0:001)
(Figures 9(a) and 9(b)). Taken together, these results indicate
that olive leaf therapy not only reduces M1 cells but also pro-
motes microglial polarization toward the M2 alternative
phenotype.

4. Discussion

With this study, we present that therapy with olive leaf poly-
phenols downregulates the EAE and provides neuroprotec-
tion through the attenuation of the clinical course, reduces
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Figure 8: (a) Representative immunofluorescent pictures show the relationship between iNOS+ and Iba-1+ (M1) microglia cells in the
subventricular zone: untreated, with induced EAE and the second attack (on the 20th day postinduction), with induced EAE and treated
with TOL till the 20th day postinduction, with induced EAE and the second remission (on the 30th day postinduction), and with induced
EAE and treated with TOL on the 30th day postinduction. (b) The number of Iba-1+ iNOS+ was manually counted in the area of interest
(0:053mm2/4μmslice × 3 slices/rat × 5 rats/group). Values are expressed as mean gray value ± SD of a number of cells per mm2. One-way
ANOVA followed by the post hoc Scheffé test: ∗∗∗p < 0:001. Scale bars indicate 50μm and 20 μm (insets).
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oxidative stress, regulates microglia and SIRT1, and preserves
myelin in the CNS.

Multiple sclerosis (MS) is a chronic inflammatory and
neurodegenerative disease of the brain and spinal cord char-
acterized by focal lesions of inflammation, axonal loss, glio-
sis, and demyelination that affect the white and gray matter
[41, 42]. Studies which include EAE, an animal model of
MS, have demonstrated that microglia/macrophages actively
participate in the pathogenesis of EAE progression [43, 44].
In MS patients, the destruction of myelin in the CNS is
associated with activated microglia, which is thought to
be involved in the disease pathogenesis [45]. However,
other studies indicate that microglia activation counteracts
pathological processes by providing neurotrophic and
immunosuppressive factors and promoting recovery [46,
47] since the microglia are highly heterogeneous immune

cells with a continuous spectrum of activation states [48].
The so-called proinflammatory (M1 phenotype) and the
anti-inflammatory (M2 phenotype) microglia are at the
opposite ends of this spectrum [49]. The proinflammatory
microglia by the activation of T-lymphocytes release pro-
teolytic enzymes, cytokines, oxidative products, and ROS,
which affect the development of neurodegeneration in
MS. Furthermore, the anti-inflammatory microglia secrete
anti-inflammatory cytokines and growth factors that pro-
mote oligodendrocyte progenitor proliferation, differentia-
tion, and remyelination and protect neurons from damage
[50–53]. Finally, a block in the proinflammatory to anti-
inflammatory switch has been hypothesized to contribute
to remyelination failure in chronic inactive MS lesions
[54]. Thus, our interest is related to the investigations of
phytochemicals as possible microglia-targeted therapy for
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Figure 9: (a) Representative immunofluorescent pictures show the relationship between CD206+ and Iba-1+ (M2) microglia cells in the
subventricular zone: untreated, with induced EAE and the second attack (on the 20th day postinduction), with induced EAE and treated
with TOL till the 20th day postinduction, with induced EAE and the second remission (on the 30th day postinduction), and with induced
EAE and treated with TOL on the 30th day postinduction. (b) The number of Iba-1+ CD206+ cells was manually counted in the area of
interest (0:053mm2/4 μmslice × 3 slices/rat × 5 rats/group). Values are expressed as mean gray value ± SD of a number of cells per mm2.
One-way ANOVA followed by the post hoc Scheffé test: ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗ p < 0:001. Scale bars indicate 50μm and 20 μm
(insets).
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achieving an efficient treatment strategy for MS. As an
example for the treatment of relapsing-remittingMS is “Food
and Drug Administration-” (FDA-) approved glatiramer ace-
tate which mediates neuroprotective effects by inducing an
anti-inflammatory microglial M2 phenotype [55].

However, there are little reports about OLP impact on
MS or its animal model EAE. The major bioactive phenolic
compound in the olive leaf is oleuropein, while other bioac-
tives are present in the minority [56]. In general, due to the
presence of a wide number of bioactive compounds and their
synergism, their biological activity is higher than the alone
individual.

As described in the study by Miljković et al. [57], the
effect of dry olive leaf extract was mediated through the
reduction of encephalitogenic cell numbers generated in
draining lymph nodes, as well as through inhibition of IFN-
g and IL-17 production by the cells infiltrating the CNS.

The main phenolic compound of the OLP extract oleur-
opein is able to exert, in an indirect way, its antioxidant
action by stimulating the expression of intracellular antioxi-
dant enzymes via the activation of nuclear factor erythroid
2-related factor 2 (NrF2) transcription, as well as by increas-
ing the level of nonenzymatic antioxidants [58]. In addition,
Park et al. [59] suggested a role for oleuropein in controlling
microglial cell activation and as a potential drug candidate
for inflammation-mediated neurodegenerative disorders. In
our study, we investigated the impact of OLP on microglia
with its possible polarization and on the cerebral SIRT1 pro-
tein expression. In addition, the impact of OLP on myelin
integrity and measure oxidative stress parameters (SOD
and GPX activity, lipoperoxidation level as TBARS) was
studied as a correlation to antioxidative characteristics of
OLP.

Investigating the mechanism of action of natural poly-
phenols has revealed that they modulate the cell response
to oxidative stress via oxidative as well as several other cellu-
lar signalling pathways, including regulation of microglia and
SIRT1 protein expression [30]. ROS, which if produced in
excess lead to oxidative stress, have been implicated as medi-
ators of demyelination and axonal and mitochondria damage
as well, in both MS and its animal models [2, 30]. Endoge-
nous antioxidant enzymes can counteract to oxidative stress
by conferring protection against oxidative damage. Except
for the fact that macrophages and microglial cells exhibit
high ROS production in EAE compared to control [60], they
produce high levels of superoxide as well in all affected brain
areas [61]. Some studies reported that oligodendrocytes are
more susceptible to ROS-mediated damage than astrocytes
or macrophages [62] due to the high levels of iron found in
them, which react with hydrogen peroxide and form the
highly toxic peroxynitrite. Next, low levels of glutathione in
oligodendrocytes reduce the expression of SOD2 (MnSOD)
[63, 64]. Hydrogen peroxide, produced in peroxisomes of oli-
godendrocytes during the period of active remyelination,
affects negatively the long-term repair of myelin and thus
causes progression of the disease [65].

Here, we showed that antioxidant enzymes, including
SOD1 and SOD2, and GPX1 are markedly downregulated
in whole EAE brains compared to normal brain tissue from

the control EAE animals. However, by analyzing the tissue
distribution of SOD1 and SOD2 proteins, we revealed a dif-
ferent pattern, which is consistent with the study from van
Horssen et al. [13, 66]. They reported that antioxidant
enzymes, including SOD1 and SOD2, catalase, and heme
oxygenase 1, are markedly upregulated in actively demyelin-
ating MS lesions compared to normal-appearing white mat-
ter and white matter tissue of the control brains. Hence,
they explained that enhanced antioxidant enzymes are due
to an adaptive defense mechanism, which reduces ROS-
induced cellular damage. Another study reported about
impaired antioxidant enzymes in terms of high activity of
catalase and decreased activity of MnSOD in peripheral
blood mononuclear cells (PBMCs) from patients with
relapsing-remitting multiple sclerosis (RRMS) compared to
healthy controls [67]. In addition, Stojanović et al. [68]
described that in EAE rats, GSH level and SOD activity were
decreased in whole encephalitic mass (WEM) and cerebel-
lum homogenates compared to those in untreated control
animals.

In our study, the pathological CNS changes in EAE were
successfully attenuated by the olive leaf polyphenol applica-
tion: TBARS were reduced, GPX and SOD activity was
enhanced, and in addition, mitochondrial SOD2, cytosolic
SOD1, and GPX1 expression levels were increased. Following
that, we suggest that the olive leaf polyphenols have the neu-
roprotective effects and could be successful in the therapy of
MS. As reported, SOD2 overexpression, as well as lower
immune infiltration, could play a key role in managing
underlying pathogenesis of MS and reducing disease severity
[69]. Considering that mitochondrial oxidative stress in the
CNS affects the modulation of SOD2 function and neurolog-
ical disorders in neurodegenerative diseases such as stroke,
Alzheimer’s disease (AD), Parkinson’s disease (PD), and
age-related loss of cognitive function, we suppose that con-
sumption of olive leaf tea and olive leaf supplements could
help in slowing the progression of the disease.

Many studies have already proved the potential ability of
natural polyphenols to inhibit and prevent both acute and
chronic neurodegenerative diseases, including AD and PD,
by decreasing neuronal damage or death [30, 34, 70, 71].
These active compounds are able to modulate cell redox state
[72] through the direct action on enzymes, proteins, recep-
tors, and different signalling pathways [73, 74], as well as to
interfere with biochemical homeostasis [75, 76]. It has been
shown that some of these effects are related to epigenetic
modifications of the chromatin [30, 77].

It is described how epigenetic effect of certain cell pro-
teins is due to their ability to deacetylate many transcription
factors and thus regulate cell survival, inflammation, and
immune function, including neurodegeneration as well [78].

Sirtuin 1 is one such protein, a member of the sirtuin
superfamily of histone deacetylases (HDACs), and it is now
established that it can directly or indirectly influence the
redox property of the cell [23] and reduce oxidative stress
through regulation of FOXO3a. The deacetylation of
FOXO3a leads to the upregulation of catalase and MnSOD
[78]. Sirtuins are NAD+-dependent epigenetic and metabolic
regulators, which have crucial roles in the physiology of the
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CNS, immune system, and metabolism. Based on these facts,
SIRTs are crucial candidates of therapeutic targets in MS.

Although a large number of studies have focused on
sirtuins’ functions in health and diseases, the relevance of
sirtuins in MS or its animal models is not clear. There are
numerous investigations that used disease protective agents
and measured SIRT1 level.

Many previous reports of both in vitro and in vivo studies
have proved that natural polyphenols, including those from
olive leaf extract, have antioxidant and anti-inflammatory
properties via modulating important signalling pathways
such as NF kappaB, COX-2, and iNOS [29, 79]. Moreover,
recently, it was shown that the upregulation of microglial
SIRT1, via the phenolic compound protocatechuic acid,
inhibited the release of inflammatory mediators and amelio-
rated microglial activation-induced neuron death [29].

The polyphenols are responsible for many health benefi-
cial effects mediated via epigenetic chromatin modifications
[78] and can also activate SIRT1 [30]. Therefore, it is possible
that the activation of SIRT1 by polyphenols and the resulting
inhibitory effects on NF-kappa B and MAPK signalling path-
ways with a concomitant decrease in release of inflammatory
mediators such as TNF-α and IL-6 are responsible for the
claimed beneficial effect of these compounds including neu-
roprotection [78–82].

Our results show upregulated SIRT1 in different brain
regions of EAE rats treated with olive leaf (Figure 4) (cortex,
hippocampus, ependymal, and subventricular zone). How-
ever, this upregulation is seen not only in microglia
(Figure 6 and Table 1) but also in other cells like neurons,
glial, ependymal, and endothelial cells (Figure 4), which is
in accordance with other studies investigating SIRT1 expres-
sion [83–85]. Still, further investigation on SIRT1 expression
in certain cell types in different brain regions is needed for
better understanding of its role in proliferation or differenti-
ation during the processes of oligodendrogenesis or
neurogenesis.

The data presented in our report are generally in line with
the updated knowledge about the antioxidant and anti-
inflammatory properties of natural polyphenols, including
those from olive leaf [86, 87].

Our hypothesis is based on our findings that SIRT1 is
upregulated in microglia and that the most abundant
microglia in the brain of EAE rats treated with TOL are
anti-inflammatory M2 type or Iba-1+ CD206+ microglia as
seen in Figure 9. These data are shown here only in the
subventricular zone as this brain region has gone through
the most changes regarding microglial upregulation. In
opposite, the subventricular zone had downregulation of
proinflammatory M1 type or Iba-1+ iNOS+ microglia
(Figure 8). These data are in high agreement with evidence
showing that polyphenols may suppress inflammation medi-
ated by M1 phenotype and influence macrophage metabo-
lism by promoting oxidative pathways and M2 polarization
of active macrophages [88].

Microglia may also sense signals from the surrounding
environment and have regulatory effects on neurogenesis
and oligodendrogenesis in the subventricular zone and the
subgranular zone of the hippocampal dentate gyrus [89].

However, which exact signals and cytokines are involved in
this process during EAE and during the treatment with
OLE should be broadly investigated.

Furthermore, our data showed preserved myelin integrity
(Figure 7), which is in correlation with the upregulated
SIRT1 and increased superoxide dismutase (SOD) and gluta-
thione peroxidase (GPX) activity found in the brain of EAE
rats treated with olive leaf (Figure 2). These findings are sup-
ported by already known evidence that SIRT1 antioxidant
properties are mediated via modulation of SOD and GPX
enzymes [90–93], which prevent the generation of free radi-
cals [94] that cause demyelination during EAE [2].

Clinical signs were coincident with the reduction of MBP
in the cortex, while in rats receiving OLP the onset of the
disease was delayed and clinical signs were reduced. This
amelioration of clinical signs was accompanied by sustained
levels of MBP. Busto et al. [95] reported that ellagic acid pro-
tects from myelin-associated sphingolipid loss in the cortex
in EAE, suggesting a neuroprotective effect. Our results
showed that OLP significantly increased 18 kDa MBP at the
20th day, while decreased at the 30th day (Supplementary
Figure 4C), but not significantly. We assume that therapy
with OLP should be constant throughout the course of the
disease to reduce MBP loss. The animals did not receive
therapy from the 20th to the 30th day, which reflected on
the level of MBP.

Finally, our results demonstrate that TOL attenuates the
clinical course of EAE, and the possible mechanisms include
reduction of oxidative stress, upregulation of SIRT1 in the
brain tissue including microglial cells, upregulation of the
anti-inflammatory M2 type of microglia, and preservation
of the myelin integrity. These data support the idea that
OLE may be an effective therapeutic approach for treating
MS and other neurodegenerative diseases as well.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors have declared no conflict of interest.

Authors’ Contributions

JG and TGK performed all in vivo experiments; TGK
performed immunohistochemistry; JG performed western
blotting; JG and TGK designed the research study and wrote
the paper, analyzed and reviewed the results, and approved
the final version of the manuscript. Jasminka Giacometti
and Tanja Grubić-Kezele contributed equally to this work.

Acknowledgments

This work has been supported by the University of Rijeka
(number: uniri-prirod-18-46).

16 Oxidative Medicine and Cellular Longevity



Supplementary Materials

Supplementary Figure S1: pilot experiments for the best
study design. Different concentrations or different kinds of
administration, i.e., (1) EAE+TEA: only the olive leaf tea ad
libitum (oleuropein 1.5mg/mL) (light blue line); (2) EAE
+EXTRACT×3+TEA: olive leaf extract i.p. (45.96mg/kg 3
times every second day) together with olive leaf tea ad libi-
tum (yellow line); (3) EAE+EXTRACT×10: olive leaf
extract i.p. (45.96mg/kg/day for 10 days) alone (gray line);
and (4) EAE+EXTRACT×10+TEA: olive leaf extract i.p.
(45.96mg/kg/day for 10 days) together with olive leaf tea
ad libitum (oleuropein 1.5mg/mL) (orange line). Dark blue
line represents EAE without any treatment. The best results
or the highest amelioration of clinical symptoms we get
with the fourth option or 45.96mg/kg/day for 10 days i.p.
together with olive leaf tea ad libitum and we decided to
use it in further investigation (orange line in the figure).
The values are presented as mean of EAE scores of each
animal for every day. Supplementary Figure S2: in the cere-
bral hippocampus, subventricular zone (SVZ), and cortex
of rats treated with polyphenols from olive leaf extract,
microglia cells that express less SOD1 are present. Repre-
sentative immunofluorescent pictures show relationship
between SOD1+ cells and Iba-1+ microglia cells in DA rats
(arrows point the SOD1+Iba-1+ cells): (a–c) untreated, (d–f
) with induced EAE and second attack on the 20th day
postinduction, (g–i) with induced EAE and treated with
polyphenols till the 20th day postinduction, (j–l) with
induced EAE on the 30th day postinduction, and (m–o)
with induced EAE and treated with polyphenols on the
30th day postinduction. Scale bars indicate 20μm. Supple-
mentary Figure S3: representative immunofluorescent pic-
tures show the relationship between SOD2 and Iba-1+

microglia cells in the inflamed area of the brain stem:
untreated, with induced EAE and the second attack (on
the 20th day postinduction), with induced EAE and treated
with TOL till the 20th day postinduction, with induced
EAE and the second remission (on the 30th day postinduc-
tion), and with induced EAE and treated with TOL on the
30th day postinduction. Scale bars indicate 50μm. Supple-
mentary Figure S4: immunoblot of myelin basic protein
(MBP) in the isolated rat brain proteins. Cell lysate proteins
(50μg) were immunoblotted using β-actin as the loading
control. (A) Representative western blot image of the target
protein. (B) The expression of mean MBP is shown at the
normalized expression level. (C) The expression of MBP
is shown at the normalized expression level of the EAE. For
each group, values are presented as themean ± SD of five rats
per group. One-way ANOVA followed by the post hoc
Scheffé test was used for the statistical analysis: ∗∗p < 0:01
and ∗∗∗p < 0:001. (Supplementary Materials)
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Zanthoxylum bungeanum pericarp is a commonly used herbal medicine in China with effects of anti-inflammatory and analgesic,
improving learning and memory ability, while hydroxy-α-sanshool (HAS) is the most important active ingredient of Z. bungeanum
pericarps. The purpose of this study was to investigate the neuroprotective effect of HAS and its related possible mechanisms using
a H2O2-stimulated PC12 cell model. CCK-8 assay results showed that HAS had a significant protective effect on H2O2-stimulated
PC12 cells without obvious cytotoxicity on normal PC12 cells. Flow cytometry and fluorescence microscope (DAPI staining and
DCFH-DA staining) indicated that HAS could reduce the H2O2-induced apoptosis in PC12 cells via reduction of intracellular
ROS and increase of mitochondrial membrane potential (MMP). Subsequently, results of malondialdehyde (MDA), superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) determination suggested that HAS could increase the
enzyme activities of SOD, CAT, and GSH-Px whereas it could decrease the MDA contents in H2O2-stimulated PC12 cells.
Furthermore, the western blotting assays showed that HAS could upregulate the expressions of p-PI3k, Akt, p-Akt, and Bcl-2,
while it could downregulate the expressions of cleaved caspase-3 and Bax in H2O2-stimulated PC12 cells. Collectively, it could
be concluded according to our results that HAS possesses protective potentials on H2O2-stimulated PC12 cells through
suppression of oxidative stress-induced apoptosis via regulation of PI3K/Akt signal pathway.

1. Introduction

Increasing evidences have revealed that oxidative stress is
closely related to neurodegenerative diseases, such as Parkin-
son’s disease and Alzheimer’s disease. In the body, excessive
reactive oxygen species (ROS) is commonly considered the
main cause corresponding to oxidative stress [1–3]. ROS,
such as hydrogen peroxide (H2O2), superoxide anions, and
hydroxyl radicals, can stimulate cells which cause structural
damage including lipid peroxidation and DNA and protein
oxidation, promote oxidative stress, and disrupt the redox
balance of the body, as well as change the normal function
and morphology of cells [4]. There are a variety of antioxidant
systems in cells, while the synergistic antioxidant effect is
mainly achieved by eliminating intracellular ROS to prevent
oxidative damage to the body [5]. In fact, oxidant/antioxidant

levels are critical for neurodegeneration or neuroprotection, in
which enzymes such as superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GSH-Px) constitute the
key antioxidant defenses [6]. Excessive ROS not only is closely
related to mitochondrial dysfunction but also can increase
intracellular Ca2+ concentration and activate some intracellu-
lar apoptotic pathways. Among them, the PI3K/Akt signaling
pathway is closely correlated to it, which is also involved in the
changes of Bcl-2 family proteins and the activation of caspase
family proteins [7].

It is no doubt that herbal medicines are beneficial for
treating various diseases with low toxic and side effects.
Zanthoxylum bungeanum, belonging to the Rutaceae family,
is a known medicinal plant widely distributed in China. Z.
bungeanum pericarp is a known spice in China and widely
used in cooking because of its unique fragrance and taste
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[8, 9]. According to the Compendium of Materia Medica, it
can be used to treat various diseases such as vomiting, path-
ogenic wind, and toothache [10, 11]. In addition, modern
pharmacological and phytochemical evidences have found
that essential oil in Z. bungeanum pericarps has a variety
of pharmacological effects, including antitumor effects,
anti-inflammatory effects, and antibacterial and insecticidal
activities [12–16]. In addition, the unsaturated fatty acid
amides in Z. bungeanum pericarps, such as hydroxy-α-san-
shool (HAS), hydroxy-β-sanshool, and hydroxy-γ-sanshool,
also have wide-spectrum pharmacological activities, includ-
ing hypolipidemic and hypoglycemic effects and anti-
inflammatory and neurotrophic effects [17, 18]. Further
studies have also shown that HAS has an antioxidant effect
and can improve scopolamine-induced learning and mem-
ory impairments in rats [19, 20]. Consequently, we specu-
lated that HAS may have neuroprotective potentials, and
the present study was aimed at investigating the protective
effect of HAS and its related possible mechanisms using a
H2O2-stimulated PC12 cell model.

2. Materials and Methods

2.1. Materials and Chemicals. Hydroxy-α-sanshool (HAS)
(purity was higher than 98%) used in the present study was
isolated from the Z. bungeanum pericarps and supplied by
the PUSH Bio-Technology (Chengdu, China). Fetal bovine
serum (FBS) and horse serum (HS) were purchased from the
Hyclone Co. (Logan, UT, USA). H2O2 was purchased from
Chengdu Chron Chemicals Co. Ltd. (Chengdu, China).
RPMI-1640 culture medium, phosphate-buffered saline
(PBS), and 0.25% trypsin-EDTA (1x) were purchased from
Gibco Co. (Grand Island, NY, USA). Dimethyl sulfoxide
(DMSO), cell counting kit-8 (CCK-8), BCA protein assay
reagents, and primary antibodies for Bcl-2, Bax, and cleaved
(C) caspase-3 were purchased from Boster Biol. Tech.
(Wuhan, China). Primary antibodies for PI3K, phosphoryla-
tion- (p-) PI3K, AKT, and p-AKT were obtained from the
ImmunoWay Biotechnology Co. (Suzhou, China). The assay
kits for DCFH-DA, MDA, and SOD and horseradish peroxi-
dase- (HPR-) conjugated secondary antibody were purchased
from the Beyotime Institute of Biotechnology (Haimen,
China). The assay kits for LDH, CAT, and GSH-PX were pur-
chased from the Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). The 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetra-
ethyl-imidacarbocyanine iodide (JC-1) was obtained from
the Jiangsu KeyGen Biotech. (Nanjing, China). All other
reagents used in the experiments were of analytical grade.

2.2. Cell Culture and Treatment. The PC12 cells were pur-
chased from Wuhan Pu-nuo-sai Life Technology Co. Ltd.
(Wuhan, China) and used throughout the study. PC12 cells
were cultured in RPMI-1640 medium containing 5% FBS
(v/v), 5% horse serum, penicillin (100 units/mL), and strepto-
mycin (100μg/mL) at 37°C in a humidified atmosphere of
5% CO2. Cells were subcultured twice a week, and only those
in the exponential growth phase were used in experiments.

PC12 cells were pretreated with different concentrations
of HAS (15, 30, and 60μM) for 2 hours and then incubated

with 90μM H2O2 for another 4 hours. The control group
was administered with the same amount of 1640 medium
and then stimulated with H2O2. HAS was solubilized with
DMSO and subsequently diluted in culture medium with
the final concentration of DMSO less than 0.1% (v/v).

2.3. Determination of Cell Viability. Cell counting kit-8 was
used to test cell activity. Before the formal experiment, the
cytotoxicity of HAS on PC12 cells was first investigated.
Briefly, PC12 cells were cultured in 96-well plates with 1 ×
104 cells per well and incubated with PC12 cells with 6.5-
120μM of HAS for 24 hours. Subsequently, CCK-8 solution
was added to each well and cells were kept in a humidified
atmosphere of 5% CO2 at 37

°C for 1 hour. Finally, the optical
density (OD) values at 450mm were measured by a micro-
plate reader (Bio-Rad, Hercules, CA, USA). After that,
PC12 cells were pretreated with different concentrations of
HAS (7.5-120μM) for 1-4 hours and then incubated with
90μM H2O2 for another 4 hours to select the optimal work-
ing concentration of HAS for the further experiments.

After selecting the optimal time and concentration of
HAS, the cells were incubated at 37°C for 24 hours, pretreated
with HAS (final concentrations in the well were 15, 30, and
60μM) for 2 hours, and then stimulated with H2O2 (final con-
centration was 90μM) for 4 hours. The control group was
administered with the same amount of 1640 medium, while
the positive group was incubated with 100μM vitamin C
and then stimulated with H2O2.

2.4. Nuclear Staining with DAPI. PC12 cells were seeded in 6-
well plates with a density of 1 × 105 per well. The cells were
incubated at 37°C for 24 hours and pretreated with HAS
(final concentrations in the well were 15, 30, and 60μM) or
100μM vitamin C for 2 hours and then stimulated with
H2O2 (final concentration was 90μM) for 4 hours. Subse-
quently, the cells were washed twice with PBS and then fixed
with 10% paraformaldehyde in each well. After fixation, the
cells were stained with DAPI solution, incubated at room
temperature for 5min, and then washed three times with
PBS. Finally, the staining of the cells was observed under a
fluorescence microscope (Olympus, IX-83, Tokyo, Japan).

2.5. Apoptosis Assay by Flow Cytometer. For the apoptosis of
PC12 cells, the Annexin V/FITC kit was used. The cells were
incubated in 6-well plates with a density of 1 × 105 per well
and given different concentrations of HAS (final concentra-
tions in well were 15, 30, and 60μM) or 100μM vitamin C
and H2O2 as described above. Subsequently, cells were col-
lected and washed twice with PBS at 4°C, while the supernatant
was removed by centrifugation. At the final concentration,
the cells were suspended with 500μL binding buffer and
incubated with 5μL Annexin V-FITC and 5μL PI for 15
minutes at room temperature; then a FACSCanto II Flow
cytometer (BD Company, New York, NY, USA) was used
to detect cell apoptosis.

2.6. Assessment of Mitochondrial Membrane Potential. The
decrease of intracellular mitochondrial membrane potential
(MMP, ΔΨm) can be used as an important indicator of mito-
chondrial dysfunction, JC-1 is commonly considered as an
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ideal probe to evaluate ΔΨm. At a hyperpolarized membrane
potential, JC-1 aggregates in the mitochondrial matrix to
form polymers that emit red fluorescence; while when it is
at the depolarized membrane potential, JC-1 only emits
green fluorescence as a monomer. Therefore, the fluores-
cence transformation will directly reflect the ΔΨm changes.
Consequently, in our present study, PC12 cells were seeded
in 6-well plates and treated as described in the individual
experiment, then incubated with JC-1 at 37°C in the dark
for 15min. After washing the cells twice with PBS, the cells’
fluorescence was measured by a using a laser confocal
microscopy (Leica, SP8 SR, Wetzlar, Germany).

2.7. Detection of Intracellular ROS Accumulation in PC12
Cells. In an oxidized environment, DCFH-DA can be trans-
formed into green fluorescent DCFH in the cell and the intra-
cellular ROS could be monitored by fluorescent probe
DCFH-DA. Briefly, cells were incubated in 6-well plates with
different pretreatment or stimulation. Subsequently, the
supernatant was removed and cells were incubated with
DCFH-DA (10μM) for 20min at 37°C in a dark environ-
ment and followed by washing for three times with PBS.
Intracellular ROS was analyzed by measuring the fluores-
cence intensity of DCF with a FACSCanto II Flow cytometer
(BD Company, New York, NY, USA).

2.8. Determination of MDA, SOD, GSH-Px, and CAT in
H2O2-Induced PC12 Cells. The cells were incubated in 6-
well plates and given different concentrations of HAS and
H2O2 as described above. The supernatants were removed;
then cells were washed with PBS for three times. Subse-
quently, the cells were lysed by lysis buffer, which was col-
lected and centrifuged to obtain the total cell protein.
Protein concentrations, MDA level, and activities of SOD,
GSH-Px, and CAT were determined using commercial assay
kits according to the manufacturer’s instructions.

2.9. Western Blotting Assay. After treating as described in the
individual experiment, cells were harvested and total proteins
were extracted using RIPA lysis buffer. The protein concentra-
tions were determined using BCA protein assay reagents; sub-
sequently, the total protein (30μg) was separated by 12% SDS-
PAGE, then transferred to the PVDF membrane. After block-
ing by sealing fluid (5% skimmed milk), the PVDFmembrane
was incubated overnight with diluted primary antibodies of C-
caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt (dilution
1 : 1000), respectively, at 4°C. Subsequently, the PVDF mem-
brane was incubated with HPR-conjugated secondary anti-
body (1 : 5000) at room temperature for 1 hour. Finally, the
protein bands were stained with ECL detection kits, and β-
actin was used as the internal reference. Image analysis soft-
ware ImageJ (version 1.51, National Institutes of Health,
MD, USA) was used for gray analysis.

2.10. Determination of Cell Viability after the Inhibition of
Signaling Pathway. To further examine the role of the
PI3K/Akt signaling pathway in HAS protecting PC12 cells
from H2O2 stimulation, we used a chemical inhibitor
LY294002 to inhibit the expression of the PI3K/Akt signaling
pathway by CCK-8. In this part, the HAS group was incu-

bated with 60μM HAS and 90μM H2O2, and the HAS
+LY294002 group was pretreated with 20μM LY294002 for
1 hour and then incubated 60μM HAS and 90μM H2O2,
while the LY294002 group was only treated with LY294002
and H2O2.

2.11. Statistical Analysis. Data are presented as the mean ±
standard deviations (SD). Statistical comparisons except the
seizure rate were made by Student’s t-test or one-way analy-
sis of variance (ANOVA) using GraphPad Prism 5 software
(GraphPad Software Inc., La Jolla, CA). P < 0:05 was consid-
ered the significant level.

3. Results

3.1. HAS Protects the Cell Viability of H2O2-Stimulated PC12
Cells. As can be seen from the Figure 1(b), HAS at the con-
centration ranging from 7.5 to 120μMhad no obvious effects
on the viability of PC12 cells and the viability of all groups
was approximate. In addition, CCK-8 assay results showed
that 90μM H2O2 treatment could significantly decrease the
viability of PC12 cells, making them 40% lower than the nor-
mal group (P < 0:01) (Figures 1(a) and 1(d)). What is more, it
can be seen from Figure 1(c) that the optimal working time
for HAS was 2 hours. Importantly and interestingly, pretreat-
ment with HAS (15, 30, 60, and 120μM) for 2 hours could
significantly concentration-dependently increase the cell via-
bility of H2O2-stimulated PC12 cells, compared to the con-
trol PC12 cells (P < 0:01) (Figures 1(a) and 1(d)).

3.2. HAS Suppresses Apoptosis in H2O2-Stimulated PC12
Cells. To evaluate the apoptosis of PC12 cells, DAPI staining
and flow cytometric assay with Annexin V-FITC/PI staining
were utilized. As shown in Figure 2(a), nuclear morphologi-
cal changes of the H2O2-stimulated PC12 cells were exam-
ined by staining with cell permeable DNA dye DAPI. For
normal PC12 cells, PC12 cells were alive and the cell nucleus
was round and intact with faint DAPI staining. However,
after stimulation with 90μMH2O2 for 2 h, nuclear shrinkage
or condensation and improved brightness could be obviously
observed in the cell nucleus, indicating characteristic apopto-
tic features appeared. Interestingly, pretreatment with
100μM vitamin C or HAS (15, 30, and 60μM) significantly
attenuated the apoptosis induced by H2O2 in PC12 cells,
compared to the control PC12 cells. Besides that, we also
found the protective effect of 60μM HAS was approximated
to 100μM vitamin C.

Moreover, the further results of flow cytometric assay also
confirmed the DAPI staining experiment. After induction with
90μMH2O2, the apoptosis rate of PC12 cells sharply increased
to 48.74% compared with the normal group 2.21% (P < 0:01).
However, pretreatment with 100μM vitamin C or different
concentrations of HAS (15, 30, and 60μM) for 2 hours signif-
icantly improved the apoptosis induced by H2O2 stimulation
(P < 0:01) with an obvious concentration-dependent manner,
compared to the control PC12 cells (Figure 2(b)).

Besides, we also used JC-1 probe to detect the loss of ΔΨm
in PC12 cells exposed to H2O2. ΔΨm was determined accord-
ing to the green/red fluorescence ratio in PC12 cells. As shown
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in Figure 3, after incubation with 90μMH2O2 for 2h, the green
fluorescence of the PC12 cells increased sharply, and the ratio
of green/red fluorescence became more than 80%. All of these
indicated an obvious decline of ΔΨm. However, pretreatment
with 100μM vitamin C or HAS (15, 30, and 60μM) reversed
the green/red ratio significantly, while 60μM HAS could
exploit the advantages to the full (Figure 3). All the above
results suggested that HAS could significantly suppress H2O2-
stimulated apoptosis in PC12 cells.

3.3. HAS Decreases the H2O2-Stimulated ROS Generation in
PC12 Cells. Results of the above studies revealed that HAS
could suppress H2O2 stimulation-induced apoptosis in
PC12 cells. Importantly, cells stimulated by H2O2 will pro-
duce excessive ROS, which is also an important cause of cell
apoptosis [5, 21]. To investigate the possible mechanisms for
the antiapoptotic effects of HAS on H2O2-induced PC12
cells, we determined the ROS generation in PC12 cells. We
used the fluorescence probe DCFH-DA to further explore
whether HAS could prevent H2O2-stimulated ROS genera-
tion and resulting oxidative stress. As can be seen from the
Figure 4, it was found that when the cells were exposed to
90μM H2O2, the ROS produced in the cells increased

sharply, compared to the normal cells (P < 0:01). However,
pretreatment with 100μM vitamin C or HAS (15, 30, and
60μM) significantly reduced the intracellular ROS accumu-
lation in H2O2-induced PC12 cells, compared to the control
cells (P < 0:01).

3.4. HAS Enhances the Activities of ROS Scavenging Enzymes
in H2O2-Stimulated PC12 Cells. Intracellular MDA, SOD,
GSH-Px, and CAT are commonly used biomarkers for the
evaluation of the oxidative stress level of cells or tissues
[21–23]. Thus, to clarify whether HAS protects PC12 cells
from H2O2 induced damage through antioxidant action or
not, we studied the effect of HAS on MDA production and
activities of ROS scavenging enzymes (SOD, GSH-Px, and
CAT) in H2O2-stimulated PC12 cells. As shown in
Figure 5, an extremely significant increase in MDA was
observed in PC12 cells exposed to 90μM H2O2 for 2 hours
(P < 0:01), compared to the normal cells. However, this
growth trend was greatly alleviated by pretreatment with
100μM vitamin C or HAS (15, 30, and 60μM) for 2 hours
(P < 0:01), compared to the control cells. On the other hand,
the amount of antioxidant enzymes including SOD, GSH-Px,
and CAT is reduced sharply in H2O2-stimulated PC12 cells
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Figure 1: Protective effects of HAS on the cell viability of H2O2-stimulated PC12 cells. (a) The represented cell morphology of PC12 cells with
different treatment (×100). (b) Effects of HAS on cell viability of normal PC12 cell. (c) Effects of HAS on cell viability of H2O2-induced PC12
cells under different concentration and time. (d) Effects of HAS pretreatment for 2 hours on cell viability of H2O2-induced PC12 cells. HAS:
hydroxy-α-sanshool; Norm.: normal. The values were represented as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group.
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(P < 0:01), compared with the normal cells. At the same time,
the content of the three enzymes can be increased to different
degrees by incubating the cells with HAS for 2 hours
(P < 0:01). All the above results indicate that HAS treatment
might be beneficial for protecting PC12 cells from the H2O2-
caused damage through enhancement of activities of ROS
scavenging enzymes.

3.5. HAS Regulates the Expressions of Caspase-3, Bax, and
Bcl-2 in H2O2-Stimulated PC12 Cells. In order to explore
the molecular mechanism for antiapoptotic effects of HAS
on H2O2-stimulated PC12 cells, western blotting assays were
carried out to detect the expressions of caspase-3, Bax, and
Bcl-2 in cells. The Bcl-2 family proteins are key regulatory
factors in mitochondrial-mediated apoptosis, which are
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Figure 2: Effects of HAS on apoptosis in H2O2-stimulated PC12 cells. (a) Apoptotic assay by DAPI staining and observed under a 100x
microscope. (b) Apoptotic assay by flow cytometry. Vitamin C (100 μM) was used as the positive control. The values were represented as
the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group.
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Figure 3: Effects of HAS on the ΔΨm in PC12 cells (×100). Cells were pretreated with vitamin C (100 μM) or HAS (15, 30, and 60 μM) for 2 h
and then incubated in the presence of H2O2 (90 μM) for 4 h. ΔΨm was measured using a JC-1 assay kit and observed using a laser confocal
microscopy under a 100× microscope. HAS: hydroxy-α-sanshool. The values were represented as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the
control group.
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Figure 4: Effects of HAS on ROS levels of H2O2-stimulated PC12 cells. PC12 cells were treated with vitamin C (100 μM) or HAS (5, 30, and
60μM) for 2 h, subsequently subjected to H2O2 (90 μM) for 4 h. The intracellular ROS level was determined by the flow cytometry (FCM)
assay. The values were represented as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group.

6 Oxidative Medicine and Cellular Longevity



divided into two categories: proapoptotic proteins (Bax, Bim,
Bak, etc.) and antiapoptotic proteins (Bcl-2, Bcl-xl, Mcl-1,
etc.) [24]. As shown in Figure 6(a), compared to the normal
cells, 90μM H2O2 stimulation significantly downregulated
the antiapoptotic protein of Bcl-2 in PC12 cells (P < 0:01),
while upregulating the proapoptotic proteins of Bax and
cleaved casepase-3 (P < 0:01). However, the present results
also showed that HAS (15, 30, and 60μM) and 100μM vita-
min C could reverse abovementioned changes and upregu-
lated Bcl-2 (P < 0:01) whereas they could downregulate
caspase-3 in H2O2-stimulated PC12 cells (P < 0:01), com-
pared to the control cells. Besides these, Bax could be down-
regulated by treatment with 100μM vitamin C or HAS at
the concentrations of 30 and 60μM in H2O2-stimulated
PC12 cells (P < 0:01), compared to the control cells.

3.6. HAS Regulates the Expressions of PI3K, p-PI3K, Akt, and
p-Akt in H2O2-Stimulated PC12 Cells. The PI3K/Akt signal
pathway is essential for the survival of neurons related to sup-
pression of apoptosis [25]. In our present results as shown in
Figure 6(b), it was found that expressions of Akt, p-Akt, and
p-PI3K in PC12 cells were significantly decreased after stim-

ulation with H2O2 for 2 hours (P < 0:01), compared to the
normal cells. However, pretreatment with HAS (15, 30, and
60μM) and 100μM vitamin C significantly upregulated the
p-Akt and p-PI3K in PC12 cells (P < 0:01), compared to
the control cells. Besides, pretreatment with HAS (30 and
60μM) could also significantly upregulate Akt in H2O2-stim-
ulated PC12 cells (P < 0:01), compared to the control PC 12
cells, while PI3K expression difference was not statistically
significant. These results suggested that HAS may possess
protective potentials on H2O2-stimulated PC12 cells via the
PI3K/Akt pathway.

To further explore whether the PI3K/Akt pathway is the
key in the protective effect of HAS, we used a chemical inhib-
itor LY294002 to inhibit the expression of the PI3K/Akt sig-
naling pathway. As shown in Figure 7, after incubation with
90μM H2O2, the viability of PC12 cells dropped to nearly
40%; the LY294002 group was approximated to it. Besides
that, the HAS group could increase the viability of PC12
cells to 60%, while the HAS/LY294002 group just
increased a little. All of these data showed that HAS pos-
sessed protective potentials on H2O2-stimulated PC12 cells
via the PI3K/Akt pathway.
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Figure 5: Effects of HAS on SOD, GSH-Px, MDA, and CAT in H2O2-stimulated PC12 cells. The levels of MDA and activities of SOD, CAT,
and GSH-Px were determined by commercial assay kits. PC12 cells were treated with vitamin C (100 μM) or HAS (15, 30, and 60 μM) for 2 h,
subsequently subjected to H2O2 (90 μM) for 4 h. The values were represented as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group.
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4. Discussion

Hydroxy-α-sanshool (HAS) is a promising natural monomer
of unsaturated fatty acid amide isolated from the Z. bungea-
num pericarps with lots of bioactivities, such as hypolipidemic

and hypoglycemic effects, improving learning and memory
effects. As part of our continuing research on this compound,
to the best of our knowledge, the present study provides the
first evidence that HAS can protect PC12 cells from H2O2-
induced damage through the suppression of apoptosis.
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Figure 6: Effects of HAS on protein expressions of caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt in H2O2-stimulated PC12 cells. PC12
cells were treated with HAS (15, 30, and 60μM) or 100 μM vitamin C for 2 h, subsequently subjected to H2O2 (90 μM) for 4 h. Protein
expressions of caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt were determined by western blotting, and β-actin was used as the
internal reference. The values were represented as the mean ± SD (n = 3). ∗∗P < 0:01 vs. the control group.
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Previous researches revealed that PC12 cell, a rat photo-
chromogenic cell line, has some neuronal characteristics and
similar physiology and pathology of the nerve cells, and in addi-
tion, H2O2 possesses high cell membrane transmittance; conse-
quently, H2O2-stimulated PC12 cells commonly considered an
ideal cell model for studying pathology and screening candidate
drugs of neurodegenerative diseases, such as Alzheimer’s dis-
ease (AD) and epilepsy [26–28]. Thus, the PC12 cell line was
selected as the experimental cell model in our present study.
According to relevant research, many free radicals are generated
during the development of neurodegenerative diseases, and
some of the reactive oxygen species (ROS) can cause oxidative
damage to nerve tissues and eventually lead to apoptosis or even
necrosis of neurons [29, 30]. Therefore, ROS play an important
role in the apoptosis caused by oxidative stress. As an important
member of the ROS family, H2O2 can easily cross cell mem-
branes to generate hydroxyl radicals, which are highly toxic
and can cause serious damage to cells and attack biomolecules,
ultimately leading to apoptosis or necrosis [31–33]. Therefore,
in this study, H2O2 was used to stimulate PC12 cells to simulate
the occurrence and development of neurodegenerative diseases
caused by oxidative stress. According to CCK-8 assay, after
stimulation with H2O2, cell viability of the PC12 cells decreased
by 60%; however, pretreatment with HAS reversed the decrease
of cell viability induced by H2O2.

For the neurodegenerative diseases, the excessive ROS
can lead to direct oxidative damage of molecules, followed
by cell dysfunction and apoptosis [5, 34]. Our present inves-
tigation found that H2O2 stimulation resulted in excessive
ROS accumulation in PC12 cells, and interestingly, HAS pre-
treatment could decrease the excessive ROS in PC12 cells
caused by H2O2. Malondialdehyde (MDA), a product of lipid
peroxidation, would be significantly increased when exposed
to oxidative stimulation, which is also considered a bio-
marker of oxidative stress and also causes damage to the cell

membrane [22, 23]. In addition, there are various ROS scav-
enging enzymes in living organisms, among which the most
important are the superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GSH-Px). Under physi-
ological conditions, they jointly maintain the redox balance
in the body [35]. In vivo, SOD can catalyze the conversion
of superoxide anions into H2O2, GSH-Px can reduce toxic
peroxides to nontoxic hydroxyl compounds, and CAT can
promote the further conversion of H2O2 into oxygen and
water [36, 37]. According to our results, H2O2-stimulated
PC12 cells produced excessive MDA, accompanied by signif-
icantly decreased activity of SOD, GSH-Px, and CAT. Inter-
estingly, pretreatment with HAS can decrease the MAD
level whereas it can increase the activities of SOD, GSH-Px,
and CAT in stimulated PC12 cells. In previous reports, exces-
sive intracellular ROS produced by mitochondria could also
lead to mitochondrial dysfunction through oxidative stress-
induced apoptosis, and MMP is a sensitive indicator of mito-
chondrial function [38, 39]. In our results, after H2O2 stimu-
lation, significant apoptosis and reduced cell survival as well
as declined ΔΨm can be found in PC12 cells. In addition,
intracellular ROS accumulation increased after H2O2 stimu-
lation, which further promoted the loss of ΔΨm. Besides, as
expected, H2O2-induced cell apoptosis events in PC12 cells
can be blocked by pretreatment with HAS. All these results
suggested that HAS might be beneficial for protecting
H2O2-stimulated PC12 cells from ROS-induced apoptosis.

Currently, increasing evidences have suggested that the
PI3K/AKT signal pathway plays a crucial role in cell survival
and development as well as ROS-induced cell apoptosis [40,
41]. In addition, the PI3K/AKT pathway shows significant
antioxidant activity in central and peripheral neurons and
can be considered a potential therapeutic target for neurode-
generative diseases, participating in the cellular protective
mechanism of ROS-induced cell damage [39]. AKT is a
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serine/threonine kinase activated by recruitment to the
plasma membrane and is a key mediator of PI3K-mediated
signal transduction [42, 43]. As is shown in Figure 8, the
direct results of PI3K phosphorylation is the phosphorylation
of AKT, which further affects the expression of Bcl-2 and Bax
proteins. Bcl-2 and Bax are a group of proteins closely related
to mitochondrial mediated apoptosis, among which the anti-
apoptotic protein Bcl-2 is a channel protein located on the
mitochondrial membrane, which can inhibit the proapopto-
tic effect of Bax [44]. Activated p-AKT increased the expres-
sion of Bcl-2 and decreased the expression of Bax. In normal
PC12 cells, these entire proteins in this signal pathway would
be in a dynamic balance [45]. Our results showed that HAS
pretreatment could upregulate the proteins of PI3K/Akt sig-
naling (p-PI3K, Akt, and p-Akt) and antiapoptotic proteins
of Bcl-2, whereas it could downregulate the apoptotic pro-
teins (caspase-3 and Bax), compared to the PC12 without
HAS treatment.

5. Conclusion

In summary, our study suggested that the hydroxy-α-san-
shool (HAS) possesses protective potentials on H2O2-stimu-
lated PC12 cells by suppression of oxidative stress-induced
apoptosis through the regulation of the PI3K/Akt signal
pathway. Our results provide scientific evidences that HAS
might be considered in the development of a new drug for
treating neurodegenerative diseases related to excessive apo-
ptosis induced by oxidative stress.
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Bushen Tiansui Formula (BSTSF) is a traditional Chinese medicine prescription. It has been widely applied to treat Alzheimer’s
disease (AD) in the clinic; however, the mechanisms underlying its effects remain largely unknown. In this study, we used a rat AD
model to study the effects of BSTSF on cognitive performance, and UPLC-MS/MS-based metabolomic and lipidomic analysis was
further performed to identify significantly altered metabolites in the cerebral cortices of AD rats and determine the effects of
BSTSF on the metabolomic and lipidomic profiles in the cerebral cortices of these animals. The results revealed that the levels of 47
metabolites and 30 lipids primarily associated with sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid
metabolism were significantly changed in the cerebral cortices of AD rats. Among the altered lipids, ceramides,
phosphatidylethanolamines, lysophosphatidylethanolamines, phosphatidylcholines, lysophosphatidylcholines, phosphatidylserines,
sphingomyelins, and phosphatidylglycerols showed robust changes. Moreover, 34 differential endogenous metabolites and 21
lipids, of which the levels were mostly improved in the BSTSF treatment group, were identified as potential therapeutic targets of
BSTSF against AD. Our results suggest that lipid metabolism is highly dysregulated in the cerebral cortices of AD rats, and BSTSF
may exert its neuroprotective mechanisms by restoring metabolic balance, including that of sphingolipid metabolism,
glycerophospholipid metabolism, alanine, aspartate, and glutamate metabolism, and D-glutamine and D-glutamate metabolism.
Our data may lead to a deeper understanding of the AD-associated metabolic profile and shed new light on the mechanism
underlying the therapeutic effects of BSTSF.

1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative
disorder of the central nervous system characterized by pro-
gressive memory loss, cognitive impairment, abnormal
behavior, and personality disorders. Dementia, including
that related to AD, is the fifth leading cause of death world-
wide, and 40–50 million people are thought to be affected
by this condition [1], making it a major and increasing global

health challenge. However, an effective treatment for AD
remains elusive [2].

Traditional Chinese medicines (TCMs) have been used in
the treatment of dementia for thousands of years. The
Bushen Tiansui Formula (BSTSF, also known as “Naoling
decoction”) is derived from Sagacious Confucius’ Pillow
Elixir, a classic Chinese medicinal formula mainly used to
treat cognitive decline [3]. This formula comprises six herbs,
including Epimedium acuminatum Franch. (Yinyanghuo),
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Fallopia multiflora (Thunb.) Harald. (Heshouwu), Polygala
tenuifolia Willd. (Yuanzhi), Acorus tatarinowii Schott. (Shi-
changpu), Plastrum testudinis (Guiban), and Ossa draconis
(Longgu). We recently showed that BSTSF could improve
learning and memory deficits in AD model rats through reg-
ulating serum lipid metabolism and the amino acid metabolic
pathway [4]. However, the mechanism underlying the thera-
peutic effects of BSTSF, especially its effects on metabolic
stress and impaired lipid metabolism in brain tissue, is poorly
understood.

Senile plaques, neurofibrillary tangles, and lipid granule
accumulation were the three defining neuropathological
features in the cerebral cortex of AD patients identified in
the original analysis by Alois Alzheimer [5]. Subsequently,
a large number of studies have shown that beta-amyloid
(Aβ) plaques accumulate in the cerebral cortex in the early
stages of AD [6–8]. These observations highlight that the
cerebral cortex is the main pathological region in brain tissue
of AD. The prefrontal cortex (PFC) is implicated in cognitive
processes including working memory, temporal processing,
decision-making, flexibility, and goal-oriented behavior [9].
Alterations in prefrontal cortex (PFC) function and abnor-
malities in its interactions with other brain areas (i.e., the hip-
pocampus) have been related to Alzheimer’s disease (AD)
[10]. Several potential biomarkers have been proposed for
preclinical AD and are mainly related to lipid metabolism.
Perturbations of sphingolipid metabolism in brain tissue
are consistently associated with endophenotypes across pre-
clinical and prodromal AD, indicating that sphingolipids
may be biologically relevant biomarkers for early AD detec-
tion [11]. Moreover, phosphatidylcholine breakdown may
be mediated by phospholipase A2, leading to significantly
elevated levels of glycerophosphocholine in human cerebro-
spinal fluid [12], while amino acids such as valine, arginine,
and histidine are also associated with AD [13, 14]. These
observations suggest that severe metabolic disorder and dys-
regulated lipid metabolismmay have an important role in the
pathogenesis of AD.

In this study, an ultra-high-performance liquid
chromatography-mass spectrometry- (UHPLC-MS-) based
metabolomic and lipidomic analysis was performed in cere-
bral cortices of control and AD model rats. Furthermore,
the therapeutic effects of BSTSF and the mechanism underly-
ing its ameliorating effects on the pathogenesis of AD were
also explored for the first time using a metabolomic strategy.
This study may provide a basis for a better understanding of
the AD metabolic profile and novel insight into the clinical
utility of BSTSF.

2. Material and Methods

2.1. Preparation of BSTSF. The six herbs (H. epimedii, P. mul-
tiflorum, tortoise plastron, O. draconis, P. tenuifolia, and R.
acori graminei) comprising BSTSF were mixed at a ratio of
3 : 3 : 4 : 4 : 2 : 2. To ensure the quality of the herbal medicine,
all herbs were obtained from the TCM pharmacy of the Sec-
ond Xiangya Hospital of Central South University (CSU,
Changsha, China) and were authoritatively identified by Pro-
fessor Suiyu Hu. For details of the preparation and quality

control of lyophilized powder, refer to our previous publica-
tion [15].

2.2. Animals and Experimental Design. Adult male Sprague-
Dawley rats, weighing 180–220 g, used in our experiments,
were purchased from the Laboratory Animal Centre of Cen-
tral South University (Changsha, China). All animal experi-
ments were performed following guidelines from the
Committee on the Ethics of Animal Experiments of Central
South University. Rats were housed under standard animal
house conditions and randomly allocated into one of three
groups: sham, AD, and BSTSF. For the AD and BSTSF
groups, rats were injected intracerebroventricularly with olig-
omeric Aβ1-42 to generate a validated ADmodel, as we previ-
ously described [16]. The sham rats were injected bilaterally
with the vehicle into the lateral ventricles. According to our
previous study, the BSTSF group was intragastrically admin-
istrated with 27 g/kg BSTSF once daily from 1 to 28 days,
whereas the sham and AD groups were intragastrically
administrated with an equal volume of distilled water. By
referring to the calculation formula from the Experiment
Methodology of Pharmacology, the conversion factor between
rats (200 g) and humans (70 kg) is 0.018; therefore, the calcu-
lated gavage dose of BSTSF for rats is about 9 g/kg/d. Our
previous study explored the efficacy of three doses
(9 g/kg/d, 27 g/kg/d, and 54 g/kg/d) of this prescription, and
the result demonstrated that BSTSF owns optimal efficacy
when it is administered at three times the regular dose; there-
fore, a dose of 27 g/kg/d was chosen for the experiments in
the current study [15].

2.3. Morris Water Maze Test. The Morris water maze
(MWM) test was used to assess the hippocampus-
dependent learning and memory ability of the rats, as
described in our previous study with minor modifications
[17]. In brief, a spatial acquisition test was carried out from
the 24th to 28th days after Aβ1-42 infusion, and animals were
subjected to a five-day memory acquisition experiment to
assess their spatial learning ability. Subsequent spatial probe
experiments were conducted on day 29, to determine rat spa-
tial memory retention ability. We applied SuperMaze video
tracking and analysis systems to analyze experimental
parameters (XR-XM101, Shanghai Softmaze Information
Technology Co. Ltd., China).

2.4. UPLC-TripleTOF/MS-Based Metabolomics

2.4.1. Sample Preparation. After the MWM test, the prefron-
tal cortices were harvested and immediately washed with pre-
cooled physiological saline and stored at −80°C for further
analysis. Samples (50mg) were accurately weighed, and the
metabolites extracted using 400μL of a methanol : water
(4 : 1, v/v) solution. The mixture was allowed to settle at
−20°C and treated using a high-throughput Wonbio-96c tis-
sue crusher (Shanghai Wanbo Biotechnology Co., Ltd.,
China) at 60Hz for 6min, vortexed for 30 s, and sonicated
at 40 kHz for 10min at −20°C. This step was performed three
times. The samples were placed at −20°C for 30min to pre-
cipitate the proteins. After centrifugation at 13,000× g at
4°C for 15min, the supernatants were carefully transferred
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to sample vials for LC-MS/MS analysis. The pooled quality
control (QC) sample was prepared by mixing equal volumes
of all the samples.

2.4.2. Acquisition of LC-MS/MS Data. Metabolites were pro-
filed using a UPLC-MS/MS-based platform. Chromato-
graphic separation of the metabolites was performed on an
ExionLC™ AD system (AB Sciex, USA) equipped with an
ACQUITY UPLC BEH C18 column (100mm × 2:1mm i.d.,
1.7μm) (Waters, Milford, CT, USA). The mobile phase con-
sisted of 0.1% formic acid in water (solvent A) and 0.1% for-
mic acid in acetonitrile : isopropanol (1 : 1, v/v) (solvent B).

The solvent gradient program was as follows: from 0 to
3min, 95% (A) : 5% (B) to 80% (A) : 20% (B); from 3 to
9min, 80% (A) : 20% (B) to 5% (A) : 95% (B); from 9 to
13min, 5% (A) : 95% (B) to 5% (A) : 95% (B); from 13 to
13.1min, 5% (A) : 95% (B) to 95% (A) : 5% (B); and from
13.1 to 16min, 95% (A) : 5% (B) to 95% (A) : 5% (B). The
sample injection volume was 20μL, and the flow rate was
set to 0.4mL/min. The column temperature was maintained
at 40°C. All these samples were stored at 4°C during the anal-
ysis. The UPLC system was coupled to a quadrupole time-of-
flight mass spectrometer (TripleTOF™ 5600+; AB Sciex)
equipped with an electrospray ionization (ESI) source
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Figure 1: Effects of BSTSF on spatial learning and memory deficiency in AD rats. (a) Representative images of the swim paths and (b) time
needed to reach the hidden platform. (c) Time spent in the target quadrant was measured for analysis of spatial memory function, and (d)
representative images of the frequency of crossing the target platform within 90 seconds are shown. Data are expressed as the mean ± SD
(n = 5 per group; escape latency was analyzed by repeated measures analysis of variance (ANOVA); other data were analyzed by one-way
ANOVA followed by least significant difference tests). ∗p < 0:05, ∗∗p < 0:01 vs. sham group; #p < 0:05, ##p < 0:05 vs. AD group.
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Figure 2: Continued.
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operating in positive and negative modes. The optimal condi-
tions were set as follows: source temperature, 500°C; curtain
gas (CUR), 30 psi; ion sources GS1 and GS2, both 50 psi; ion-
spray voltage floating (ISVF), −4000V in negative mode and
5000V in positive mode; declustering potential, 80V; and
rolling collision energy (CE), 20–60V for MS/MS analysis.
Data acquisition was performed in the Data-Dependent
Acquisition (DDA) mode. The detection was carried out over
a mass range of 50–1000m/z.

2.4.3. Data Processing. After UPLC-MS/MS analysis, the raw
data were imported into Progenesis QI 2.3 (Nonlinear
Dynamics, Waters) for peak detection and alignment. The
preprocessing results generated a data matrix that consisted
of the retention time (RT), mass-to-charge ratio (m/z) values,
and peak intensity. After filtering, half of the minimum
metabolite values were imputed for specific samples in which
the metabolite levels fell below the lower limit of quantitation
and each metabolic feature was normalized by sum. The
internal standard was used for data QC (reproducibility),
and metabolic features with a QC relative standard
deviation ðRSDÞ > 30% were discarded. Following normali-
zation and imputation, statistical analysis was performed on
log-transformed data to identify significant differences in
metabolite levels between comparable groups. The mass
spectra of these metabolic features were identified by using
the accurate mass, MS/MS fragment spectra, and isotope
ratio difference searched in reliable metabolite databases
such as the Human Metabolome Database (HMDB) (http://
www.hmdb.ca/) and Metlin Database (https://metlin.scripps
.edu/). Specifically, the mass tolerance between the measured
m/z values and the exact mass of the components of interest
was ±10 ppm. For metabolites confirmed by MS/MS, only
those with a MS/MS fragment score above 30 were consid-

ered confidently identified. Otherwise, metabolites were only
tentatively assigned.

2.4.4. Statistical Analysis.Multivariate statistical analysis was
performed using the ropls (version1.6.2) R package from Bio-
conductor on the Majorbio Cloud Platform (https://cloud
.majorbio.com) and SIMCA-P 14.1 (Umetrics, Umea, Swe-
den). Unsupervised principal component analysis (PCA)
was applied to obtain an overview of the metabolic data, gen-
eral clustering, trends, and outliers. All the metabolite vari-
ables were scaled to unit variances before PCA. Orthogonal
partial least squares discriminant analysis (OPLS-DA) was
used to determine global metabolic changes between compa-
rable groups. All the metabolite variables were scaled using
Pareto scaling before the OPLS-DA. Model validity was eval-
uated from model parameters R2 and Q2, which provide
information for the interpretability and predictability,
respectively, of the model and avoid the risk of overfitting.
Variable importance in the projection (VIP) was calculated
in the OPLS-DA model. p values were estimated with paired
Student’s t-tests for single-dimensional statistical analysis.
Significance among groups was assumed with VIP scores >
1 and p values < 0.05.

2.4.5. Metabolic Pathway Analysis. Significantly altered
metabolite data were imported into MetaboAnalyst 3.5
(https://www.metaboanalyst.ca) to investigate the therapeutic
mechanisms related to BSTSF treatment. The impact value
threshold calculated from pathway topology analysis was set
to 0.10, and a raw p value < 0.05 was regarded as significant.

2.5. UHPLC-Obitrap/MS-Based Lipidomics

2.5.1. Sample Preparation. Prefrontal cortex tissue (300mg)
was slowly thawed at 4°C and homogenized in 200μL of
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Figure 2: Multivariate statistical analysis of cerebral cortex metabolomics: (a) PCA 3D score plots of metabolomic data in the cerebral cortex
and (b, c) OPLS-DA score plots between each two groups in positive- and negative-ion modes, respectively.
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Table 1: Differentially expressed endogenous metabolites between groups sham and AD and their change trends in all groups.

Metabolite m/z Rt
(min)

HMDB
ID

PubChem
ID

AD vs. sham
ADa BSTSFb

VIP p FC

ESI+

Tangeritin 373.1267 5.3139 0030539 68077 2.374 0.001 0.591 ↓∗ ↑

Cer(d18:1/16:0) 538.5199 11.3614 0000790 5283564 1.953 0.004 0.750 ↓∗ ↑

Candicidin 566.289 7.6092 0015283 10079874 1.493 0.031 0.835 ↓∗ ↑

Cer(d18:1/24:1(15Z)) 648.6289 13.1778 0004953 5283568 1.468 0.035 0.871 ↓∗ —

GlcCer(d14:1/20:0) 700.5725 11.005 — 70699223 1.257 0.043 0.883 ↓∗ ↑

Galbeta-Cer(d18:1/20:0) 778.6169 12.1307 — 44260150 1.564 0.012 0.902 ↓∗ ↑

Cer(d18:1/18:0) 566.5511 11.9439 0004950 5283565 2.03 0.004 0.929 ↓∗ —

Sphinganine 302.3053 7.4398 0000269 91486 1.656 0.014 0.949 ↓∗ —

LysoPE(16:1(9Z)/0:0) 452.2772 7.6754 0011504 52925129 1.644 0.021 0.976 ↓∗ ↑

PE(18:1(9Z)/16:0) 759.565 8.4109 0009055 9546802 2.422 0.001 0.977 ↓∗ —

LysoPC(16:1(9Z)/0:0) 494.3241 7.5904 0010383 24779461 1.4 0.041 0.986 ↓∗ ↑

PI(20:4(5Z,8Z,11Z,14Z)/0:0) 621.303 7.8276 — 42607497 1.679 0.023 0.986 ↓∗ ↑

LysoPE(0:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 548.2745 7.6944 0011496 53480945 1.603 0.043 0.989 ↓∗ ↑

Oleamide 563.5505 8.9533 0002117 5283387 2.205 0.001 1.003 ↑∗ —

Cer(d18:0/22:0) 665.6552 10.5332 0011765 5283575 1.564 0.01 1.004 ↑∗ ↓∗

Desmethylclomipramine 301.1428 13.9123 0060947 622606 1.551 0.026 1.005 ↑∗ ↓

Phytol 360.3263 13.3117 0002019 5280435 1.649 0.017 1.007 ↑∗ ↓

PE(15:0/14:1(9Z)) 680.4797 10.8995 0008888 52924158 1.879 0.014 1.017 ↑∗ ↓∗

Cotinine glucuronide 416.1429 0.768 0001013 3398121 1.78 0.025 1.024 ↑∗ ↓

13Z-Docosenamide 338.3424 9.7988 — 5365371 1.091 0.05 1.027 ↑∗ ↓

PI(18:0/0:0) 601.3349 9.4901 — 42607495 1.735 0.011 1.027 ↑∗ —

L-a-Lysophosphatidylserine 526.3142 9.1446 — 28040605 1.827 0.002 1.029 ↑∗ —

S-Adenosylmethionine 399.1444 0.5786 0001185 34755 1.358 0.033 1.038 ↑∗ ↓

Rollinecin A 663.4538 11.419 0030438 177320 1.881 0.005 1.046 ↑∗ —

Jubanine B 762.3905 6.2048 0030206 101316795 1.692 0.011 1.052 ↑∗ ↓

Sinapoylspermine 409.2812 6.1949 0033479 131751433 1.891 0.005 1.052 ↑∗ ↓

Latrepirdine 352.2404 12.5435 0240240 197033 1.828 0.002 1.059 ↑∗ ↓

Ecgonine methyl ester 232.1546 12.0323 0006406 104904 2.296 0.001 1.085 ↑∗ —

Xestoaminol C 230.248 6.1084 — 14756407 1.128 0.044 1.087 ↑∗ ↓

Fasciculic acid B 678.4588 7.1307 0036438 196808 1.434 0.011 1.140 ↑∗ ↓∗

ESI-

Citbismine A 639.1921 3.8775 0041086 131753020 1.875 0.007 0.840 ↓∗ ↑∗

Cer(d18:1/20:0) 638.5713 12.6161 0004951 5283566 2.051 0.004 0.916 ↓∗ ↑

Glucosylceramide (d18:1/18:0) 772.5938 11.5561 0004972 11958364 1.543 0.009 0.929 ↓∗ ↑

1-O-Beta-D-glucopyranosyl-2,3-di-O-
palmitoylglycerol

775.5571 11.6171 0031680 10462651 1.902 0.005 0.941 ↓∗ —

PE(16:1(9Z)/P-16:0) 672.4954 11.2227 0008982 53479605 1.331 0.038 0.954 ↓∗ —

PC(18:1(11Z)/18:2(9Z,12Z)) 771.5158 10.4438 0010620 53480619 1.676 0.027 0.962 ↓∗ ↑

PE(15:0/22:0) 806.5909 11.8787 0008907 52924172 1.69 0.025 0.974 ↓∗ —

PS(20:1(11Z)/18:0) 838.5596 12.6161 0112545 52925649 2.134 0.006 0.977 ↓∗ —

4-Nitrophenol 138.02 3.6423 0001232 980 1.926 0.015 1.014 ↓∗ ↑∗

PC(18:1(11Z)/20:4(5Z,8Z,11Z,14Z)) 852.5756 10.6464 0008081 53478741 1.665 0.019 1.019 ↑∗ ↓
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water. Then, 240μL of precooled methanol was added to the
homogenate which was then vortexed for 10 s, mixed with
800μL of MTBE, vortexed again for 10 s, and finally soni-
cated for 20min. The mixture was left at room temperature
for 30min and then centrifuged (14,000× g, 10°C, 10min).
The upper layer was collected and dried using nitrogen.
The samples were redissolved in 200μL of a 90% isopropano-
l/acetonitrile solution and then centrifuged (14,000× g, 10°C,
10min) before MS analysis. The supernatants were trans-
ferred into sample vials to be injected and analyzed by
UHPLC-Obitrap/MS. The QC was prepared by mixing equal
volumes of all the samples.

2.5.2. Acquisition of LC-MS/MS Data. The UHPLC-Obit-
rap/MS analysis was performed in a UHPLC system (Nexera
LC-30A, Shimadzu) and with a Q Exactive Plus mass spec-
trometer (Thermo Scientific). The UPLC autosampler tem-
perature was set at 10°C, and the injection volume for each
sample was 3μL. Column temperature was maintained at
45°C. The velocity was 300μL/min. The mobile phase con-
sisted of acetonitrile and water (3 : 2) with 10mM ammo-
nium formate and 0.1% formic acid (solvent A) and
isopropanol and acetonitrile (9 : 1) with 10mM ammonium
formate and 0.1% formic acid (solvent B). Mass spectrometry
was performed in an either positive (ESI+) or negative
(ESI−) electrospray ionization mode. The conditions for
positive- and negative-ion modes were as follows: heater
temperature, 300°C; sheath gas flow rate, 45 arb; auxiliary
gas flow rate, 15 arb; sweep gas flow rate, 1 arb; spray volt-
age, 3.0 kV and 2.5 kV, respectively; capillary temperature,
350°C; S-lens RF level, 50% and 60%, respectively; and
MS1 scan range: 200–1800m/z. MS1 spectra were acquired
with a target mass resolving power (RP) of 70,000 at m/z
200, and MS2 spectra were acquired with a target mass RP
of 17,500 at m/z 200.

2.5.3. Data Processing. LipidSearch software (version 4.1,
Thermo Scientific) was used for peak identification, lipid
identification (secondary identification), peak extraction,
peak alignment, and quantitative processing. The main
parameters were as follows: precursor tolerance, 5 ppm;

product tolerance, 5 ppm; and product ion threshold, 5%.
Lipid molecules with RSD > 30% were deleted.

2.6. Statistical Analysis. All data are presented as mean ±
standard error of themean (SEM) and were analyzed using
SPSS 22.0 software (IBM Corp., Armonk, NY, USA). Stu-
dent’s t-test was carried out for comparisons between two
groups, whereas ANOVA was conducted for comparisons
of repeated measures. p < 0:05 was defined as indicating a
statistically significant difference.

3. Results

3.1. BSTSF Ameliorates Learning and Memory Deficits of
Aβ1-42-Induced AD Rats. First, we examined the effects of
BSTSF on learning and memory ability in AD model rats
using the MWM test. As shown in Figures 1(a) and 1(b),
escape latency time gradually decreased in all groups over
time; however, rats in the BSTSF group had significantly
lower escape latency than those in the AD group during the
last three training days. These results indicate that BSTSF
can significantly alleviate the impaired learning ability
induced by Aβ1–42. In the probe test, AD rats crossed the
platform fewer times and spent less time in the target quad-
rant, suggesting that their memory capacity was significantly
decreased, while BSTSF treatment significantly reversed
these defects in AD rats (Figures 1(c) and 1(d)). Together,
these results suggested that BSTSF treatment can ameliorate
Aβ1–42-induced spatial learning and memory impairment.

3.2. Cerebral Cortex Metabolomics

3.2.1. Metabolite Identification and Multivariate Statistical
Analysis. In this study, we identified 228 metabolites in a
positive-ion mode and 287 in a negative-ion mode. An unsu-
pervised PCA recognition model was generated for the whole
dataset to evaluate the clustering trend of the samples with
multidimensional data. The clustered QC samples confirmed
the repeatability and stability of the instrument and the reli-
ability of the data in the current research (Figure 2(a)). The
separation between the AD and sham groups could be clearly
observed in the PCA 3D patterns in both negative- and

Table 1: Continued.

Metabolite m/z Rt
(min)

HMDB
ID

PubChem
ID

AD vs. sham
ADa BSTSFb

VIP p FC

PE(18:3(9Z,12Z,15Z)/22:1(13Z)) 840.5778 10.9036 0009172 53479688 1.712 0.01 1.022 ↑∗

GDP 442.0154 0.883 0001201 135398619 1.617 0.006 1.042 ↑∗ —

Luteolin 6-C-glucoside 8-C-arabinoside 655.1563 11.4852 0029258 131750830 1.708 0.046 1.067 ↑∗ ↓

Digoxigenin bisdigitoxoside 631.3473 10.9633 0060818 92999 1.397 0.045 1.155 ↑∗ ↓

Blasticidin S 459.1466 4.0897 0030452 170012 1.823 0.016 1.221 ↑∗ —

Cefotaxime 490.0302 4.0897 0014636 5742673 1.656 0.043 1.715 ↑∗ —

Deacetylnomilin 509.1563 3.6723 0035684 90472146 1.548 0.018 0.591 ↓∗ —

Abbreviations: AD: Alzheimer’s disease; Rt (min): retention time; VIP: variable importance; FC: fold change. Fold change was calculated as relative intensity
obtained from group sham/group AD, and a value less than 1 indicates a decrease in the metabolites of group AD. The levels of potential biomarkers were
labeled with “↓” (downregulated) and “↑” (upregulated) (∗p < 0:05). aChange trend compared with the sham group. bChange trend compared with the AD
group.
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positive-ion modes, which demonstrated that the AD model
can be successfully induced by Aβ1-42 and there was a severe
metabolic disorder in the AD model rats. Furthermore, we
also noted a trend towards separation between the BSTSF

and AD groups, indicating that metabolism was significantly
altered after 28 days of BSTSF administration. A supervised
OPLS-DA pattern recognition method was applied to iden-
tify the overall metabolic differences between two groups.

Table 2: Differentially expressed endogenous metabolites between groups BSTSF and AD and their change trends in all groups.

Metabolite m/z Rt
(min)

HMDB
ID

PubChem
ID

BSTSF vs. AD
ADa BSTSFb

VIP p FC

ESI+

5′-Methylthioadenosine 342.0866 2.1028 0001173 439176 1.779 0.028 0.962 ↑ ↓∗

1-(Hydroxymethyl)-5,5-dimethyl-2,4-
imidazolidinedione

123.0551 1.3183 0031670 67000 1.923 0.031 0.981 ↑ ↓∗

Buddledin A 277.1805 6.8324 — 5281514 2.010 0.022 0.953 ↑ ↓∗

C16 sphinganine 274.2742 5.8082 — 5283572 2.003 0.029 0.981 ↑ ↓∗

D-Glutamine 147.0762 0.7581 0003423 145815 1.907 0.032 0.987 ↑ ↓∗

Cer(d18:0/22:0) 665.6552 10.5332 0011765 5283575 2.332 0.007 0.995 ↑∗ ↓∗

Fasciculic acid B 678.4588 7.1307 0036438 196808 1.923 0.021 0.833 ↑∗ ↓∗

L-Carnitine 162.1123 0.7298 0000062 10917 2.276 0.005 0.981 ↑ ↓∗

Methyl 10-undecenoate 199.1691 6.5087 0029585 8138 1.762 0.038 0.992 ↑ ↓∗

PE(15:0/14:1(9Z)) 680.4797 10.8995 0008888 52924158 2.101 0.017 0.987 ↑∗ ↓∗

N-Acetylproline 190.1068 5.3884 0094701 66141 1.920 0.028 0.987 ↑ ↓∗

N-Succinyl-L,L-2,6-diaminopimelate 273.1097 14.0721 0012267 25202447 1.759 0.038 1.007 ↑∗

Peperinic acid 205.0849 6.1559 0038181 156203 2.192 0.008 1.013 — ↑∗

2-Octenyl butyrate 199.1693 7.5996 0038081 124355627 1.989 0.019 1.045 ↓ ↑∗

Glycinoeclepin A 510.2488 5.5944 0037037 19007174 1.914 0.022 1.020 ↓ ↑∗

L-Aspartic acid 134.0446 0.9605 0000191 5960 1.741 0.040 1.008 ↓ ↑∗

Monoisobutyl phthalic acid 205.085 5.9735 0002056 92272 2.182 0.008 1.028 ↓ ↑∗

N-Acetyl-L-aspartic acid 351.1035 0.9605 0000812 65065 2.425 0.003 1.018 ↓ ↑∗

ESI-

3-Oxo-4,6-choladienoic acid 415.2505 14.0629 0000476 5283992 2.242 0.007 0.981 ↑ ↓∗

Acetyl-DL-leucine 172.0975 2.7628 — 1995 2.152 0.012 0.882 ↑ ↓∗

Camellianin A 655.1471 10.0921 0029908 5487343 2.046 0.020 0.985 ↑ ↓∗

Furanofukinin 293.1751 5.9909 0036640 78385403 1.662 0.042 0.981 ↑ ↓∗

Glycerol 2-(9Z,12Z-octadecadienoate) 0041511 15607291 1.992 0.025 0.871 — ↓∗

Indinavir 648.3376 11.0497 0014369 5362440 1.912 0.029 0.972 ↓∗

Methylisocitric acid 241.0113 0.73 0006471 5459784 1.897 0.036 0.939 ↑ ↓∗

N-Acetyl-D-phenylalanine 206.0817 3.0047 — 101184 1.863 0.027 0.887 ↑ ↓∗

N-Hexacosanoylglycine 498.4148 9.9473 0062678 91828268 1.704 0.046 0.798 ↑ ↓∗

PS(20:3(5Z,8Z,11Z)/22:4(7Z,10Z,13Z,16Z)) 896.518 12.6161 0112616 131819845 1.904 0.031 0.955 — ↓∗

Sodium tetradecyl sulfate 275.1677 7.6509 0014607 23665770 1.752 0.032 0.841 ↑ ↓∗

Tetracosahexaenoic acid 393.2201 6.0111 0002007 6439582 1.912 0.033 1.290 ↓ ↑∗

4-Nitrophenol 138.02 3.6423 0001232 980 1.675 0.034 1.028 ↓∗ ↑∗

Amphotericin B 922.4847 10.5551 0014819 5280965 2.121 0.016 1.102 ↑∗

Citbismine A 639.1921 3.8775 0041086 131753020 1.609 0.038 1.710 ↓∗ ↑∗

PE-NMe(15:0/18:0) 754.5181 11.0497 0113019 131820134 1.896 0.021 1.051 ↓ ↑∗

Abbreviations: BSTSF: Bushen Tiansui Formula; AD: Alzheimer’s disease; Rt (min): retention time; VIP: variable importance; FC: fold change. Fold change was
calculated as average relative quantitation obtained from group BSTSF/group AD, and a value less than 1 indicates a decrease in the metabolites of group BSTSF.
The levels of potential biomarkers were labeled with “↓” (downregulated) and “↑” (upregulated) (∗p < 0:05). aChange trend compared with the sham group.
bChange trend compared with the AD group.
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Figure 3: Heatmap of metabolites. (a) Heatmap analysis of the identified metabolites between groups sham and AD. (b) Heatmap analysis of
the identified metabolites between groups BSTSF and AD. The blue band indicates a decreased level of metabolite, and the red band indicates
an increased level of metabolite.
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As shown in Figure 2(b) (positive-ion mode) and Figure 2(c)
(negative-ion mode), a significant trend towards separation
was observed between every two groups.

3.2.2. Potential Metabolite Biomarkers in AD and Effect of
BSTSF on AD.Metabolites with VIP scores > 1:0 and p values
< 0.05 were defined as potential biomarkers. As shown in
Table 1, forty-seven (24 upregulated and 23 downregulated)
differential endogenous metabolites were identified between
the AD and sham groups. After BSTSF administration, the
levels of five metabolites changed significantly, including
those of PE(15:0/14:1(9Z)), Cer(d18:0/22:0), fasciculic acid
B, citbismine A, and 4-nitrophenol. 14 downregulated
metabolites in the AD group compared with the sham group
were increased after treatment with BSTSF, and 16 upregu-
lated metabolites were decreased after administration with
BSTSF. As shown in Table 2, thirty-four (12 upregulated
and 22 downregulated) differential endogenous metabolites
were identified between the BSTSF and AD groups. The dif-
ferential metabolite dataset was imported into R (version
3.4.1) to generate a heatmap. Figures 3(a) and 3(b) show

the 47 differential metabolites between the sham and AD
groups and the 34 differential metabolites between the AD
and BSTSF groups, as well as the relative changes in the con-
centration of the metabolites in the different groups.

3.2.3. Analysis of Metabolic Pathways. Metabolic pathway
analysis was conducted with MetaboAnalyst 3.5 to further
explore the pathogenesis of AD and the possible mecha-
nism by which BSTSF treatment ameliorates this disease.
The 47 differential endogenous metabolites between the
sham and AD groups were mainly involved in sphingoli-
pid metabolism, glycerophospholipid metabolism, linoleic
acid metabolism, and alpha-linolenic acid metabolism
(Table 3). The 34 differential endogenous metabolites
between the BSTSF and AD groups were primarily asso-
ciated with alanine, aspartate, and glutamate metabolism,
D-glutamine and D-glutamate metabolism, arginine bio-
synthesis, and glycosylphosphatidylinositol (GPI) anchor
biosynthesis (Table 4). Figure 4 illustrates the differential
metabolites classified through the HMDB database. The
different colors in each pie chart represent different

Table 3: Metabolite pathway changes between sham and AD groups.

No. Pathway Hits Total p −Log pð Þ FDR p Impact

1 Sphingolipid metabolism 3 21 0.0011 0.0901 0.46248

2 Glycerophospholipid metabolism 3 36 0.0052 5.2518 0.21999 0.21631

3 Linoleic acid metabolism 1 5 0.0506 2.9834 1 0

4 Alpha-linolenic acid metabolism 1 13 0.1266 2.0663 1 0

5 Glycosylphosphatidylinositol (GPI) anchor biosynthesis 1 14 0.1357 1.997 1 0.00399

6 Cysteine and methionine metabolism 1 33 0.2925 1.2293 1 0.05271

7 Arachidonic acid metabolism 1 36 0.3147 1.1562 1 0

8 Arginine and proline metabolism 1 38 0.3291 1.1115 1 0

9 Purine metabolism 1 65 0.4979 0.69746 1 0.02939

Hits represent the matched number of metabolites in one pathway. p represents the original p value calculated from the enrichment analysis. FDR p represents
the p value adjusted using the false discovery rate.

Table 4: Metabolite pathway changes between BSTSF and AD groups.

No. Pathway Hits Total p −Log pð Þ FDR p Impact

1 Alanine, aspartate, and glutamate metabolism 2 28 0.0156 4.157 1 0.3101

2 D-Glutamine and D-glutamate metabolism 1 6 0.0419 3.1725 1 0

3 Arginine biosynthesis 1 14 0.0953 2.3509 1 0

4 Glycosylphosphatidylinositol (GPI) anchor biosynthesis 1 14 0.0953 2.3509 1 0.00399

5 Nicotinate and nicotinamide metabolism 1 15 0.1017 2.2851 1 0

6 Histidine metabolism 1 16 0.1082 2.2238 1 0

7 Pantothenate and CoA biosynthesis 1 19 0.1273 2.0615 1 0

8 Beta-alanine metabolism 1 21 0.1398 1.9678 1 0

9 Cysteine and methionine metabolism 1 33 0.2114 1.554 1 0.02089

10 Glycerophospholipid metabolism 1 36 0.2284 1.4765 1 0.10449

11 Aminoacyl-tRNA biosynthesis 1 48 0.2933 1.2265 1 0

Notes: hits represent the matched number of metabolites in one pathway. p represents the original p value calculated from the enrichment analysis. FDR p
represents the p value adjusted using the false discovery rate.
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HMDB classifications, and the area represents the relative
proportion of metabolites in the classification. The figure
further shows that 60.61% of the differential metabolites
between the AD and sham groups were lipid metabolites,

indicative of significant changes in the levels of lipid
metabolites in the cerebral cortices of AD rats. After
BSTSF intervention, 35.71% of the differential metabolites
were classified as significantly altered lipids.

HMDB compound classification
(sham vs AD)

Lipids and lipid-like
molecules: 60.61%

Phenylpropanoids and polyketides: 9.09%

Organic oxygen compounds: 6.06%

Organoheterocyclic  compounds: 6.06%
Alkaloids and derivatives: 3.03%

Benzenoids: 3.03%
Nucleosides, nucleotides, and analogues: 3.03%

Organic acids and derivatives: 3.03%
Organic nitrogen  compounds: 3.03%

Organooxygen compounds: 3.03%

Lipids and lipid-like molecules

Phenylpropanoids  and polyketides

Organoheterocyclic compounds
Nucleosides, nucleotides, and analogues Organic oxygen compounds

Alkaloids and derivatives

Benzenoids

Organic acids and derivatives

Organic nitrogen compounds
Organooxygen compounds

(a)

HMDB compound classification
BSTSF vs AD

Lipids and lipid-like
molecules: 35.71%

Phenylpropanoids and polyketides: 3.57%

Organoheterocyclic  compounds: 10.71%

Benzenoids: 7.14%

Nucleosides, nucleotides, and analogues: 3.57%

Organic acids and derivatives: 32.14

Organic nitrogen compounds: 3.57%
Organic oxygen compounds: 3.57%

Lipids and lipid-like molecules

Phenylpropanoids   and polyketides
Organoheterocyclic compoundsNucleosides, nucleotides, and analogues
Organic oxygen compounds
BenzenoidsOrganic acids and derivatives

Organic nitrogen compounds

(b)

Figure 4: HMDB database classification: (a) differential metabolites between groups sham and AD in HMDB database classification and (b)
differential metabolites between groups BSTSF and AD in HMDB database classification.
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Figure 5: Continued.
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3.3. Cerebral Cortex Lipidomics

3.3.1. Lipid Identification and Multivariate Statistical
Analysis. In this study, we identified 1191 lipid species from
31 lipid subclasses. The PCA 3D score plot chart
(Figure 5(a)) shows a trend towards separation between the
three groups. The clustered QC samples confirmed the
repeatability and stability of the instrument and the reliability
of the data. Moreover, OPLS-DA was performed to identify
the pattern of separation. As shown in Figure 5(b) (posi-
tive-ion mode) and Figure 5(c) (negative-ion mode), there
was a clear trend towards separation between the sham and
AD groups and between the AD and BSTSF groups. This sug-
gested that lipid metabolism was dysregulated in the cerebral
cortices of AD rats, and this dysregulation could be amelio-
rated by BSTSF administration.

3.3.2. Identification of the Differential Lipid Metabolites in
Cerebral Cortex Samples between the Sham and AD Groups
and the BSTSF and AD Groups. VIP scores > 1 and p
values < 0.05 were used to determine the significantly
altered lipid metabolites between the sham and AD groups
and the BSTSF and AD groups. As shown in Table 5, the
concentrations of 30 lipids changed markedly after being
induced by Aβ1-42 while those of 21 lipids were altered
after BSTSF administration. Interestingly, ceramide levels,
including those of Cer(d18:1/18:0), Cer(d18:2/20:2),
Cer(d36:0), and Cer(d20:1/18:0), and PC(18:0/20:4) and
PE(16:0p/22:6) were substantially higher in the AD group
than in the sham group, whereas the levels of all these
metabolites were significantly reduced in BSTSF-treated
rats. PS(20:3/22:6) was downregulated in the AD group
compared with the sham group; however, its level was
markedly upregulated with BSTSF treatment (Figure 6).

4. Discussion

In the present study, we found that the cerebral cortex of the
AD rats has a distinct metabolomic profile, including the dys-
regulated sphingolipid metabolism, glycerophospholipid
metabolism, linoleic acid metabolism, and alpha-linolenic
acid metabolism. The lipidomic analysis indicated that
sphingolipids and glycerophospholipids, such as Cer (cer-
amide), PE (phosphatidylethanolamine), LPE (lysophospha-
tidylethanolamine), and PC (phosphatidylcholine), are
dysregulated in the brain of AD rats. Moreover, the results
indicated that BSTSF treatment could restore some dysregu-
lation metabolites and abnormal lipid metabolism in the
cerebral cortex of AD rats, especially involving lipid and
amino acid metabolism (Figure 7).

Lipid homeostasis plays important roles in the central
nervous system, including the maintenance of cell membrane
structure, signal transduction, and being components of lipid
rafts [18–20]. Our study identified sphingolipids as a class of
lipid metabolites that are closely related to the pathology of
AD. As the key intermediates in sphingolipid metabolism,
we found that the levels of Cer(d18:0/22:0, d18:1/18:0,
d18:2/20:2, d36:0, d20:1/18:0) were markedly upregulated in
the AD group when compared with the sham-treated group.
Some studies demonstrated that elevated Cer levels in reac-
tive astrocytes were associated with neuroinflammation [21]
and can promote the overproduction and aggregation of
Aβ through their effects on lipid rafts [22]. Interestingly,
the Cer levels were significantly reduced after BSTSF admin-
istration and may act as a putative therapeutic target of
BSTSF in AD. In addition, sphingomyelins (SMs) were a sub-
class of sphingolipids, and it also enriched in the central ner-
vous system. They are important constituents of lipid rafts
[23] and play a critical role in neuronal cell signaling [24].
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Figure 5: Multivariate statistical analysis of cerebral cortex lipidomics: (a) PCA 3D score plots of lipidomic data in the cerebral cortex and (b,
c) OPLS-DA score plots between each two groups in positive- and negative-ion modes, respectively.
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Table 5: Differentially expressed lipids detected by LC-MS/MS.

Lipid ion Class Ion formula m/z Rt (min)
AD vs. sham BSTSF vs. AD

p VIP FC p VIP FC

ESI+

Cer(d18:1/24:1) Cer C42 H82 O3 N1 648.6289 18.24252 0.016 1.420 1.373 — — —

PE(20:3e) PE C25 H46 O7 N1 P1 Na1 526.2904 3.140912 0.004 1.102 1.646 — — —

Cer(d18:1/18:0) Cer C36 H72 O3 N1 566.5507 15.29891 0.007 6.805 1.529 0.002 1.724 0.646

Cer(d20:1/18:0) Cer C38 H76 O3 N1 594.582 16.73516 0.003 1.898 1.507 — — —

LPC(16:0) LPC C24 H51 O7 N1 P1 496.3398 4.266847 0.041 2.016 1.533 — — —

Cer(d18:2/20:2) Cer C38 H70 O3 N1 588.535 15.19771 0.033 3.174 1.304 0.003 2.537 0.747

LPC(18:0) LPC C26 H55 O7 N1 P1 524.3711 5.993806 0.046 1.211 1.417 — — —

PC(32:1e) PC C40 H81 O7 N1 P1 718.5745 14.22706 — — — 0.007 1.014 0.718

PC(38:4) PC C46 H85 O8 N1 P1 810.6007 13.76129 — — — 0.011 3.016 0.872

PE(16:0p/20:4) PE C41 H75 O7 N1 P1 724.5276 13.45675 — — — 0.018 2.391 0.778

Cer(d18:2/18:0) Cer C36 H70 O3 N1 564.535 14.0985 — — — 0.021 1.147 0.784

PE(37:1p) PE C42 H82 O7 N1 P1 Na1 766.5721 13.06318 — — — 0.030 1.838 0.735

PS(18:1/22:6) PS C46 H77 O10 N1 P1 834.528 11.2969 — — — 0.033 1.718 0.663

PC(34:1e) PC C42 H85 O7 N1 P1 746.6058 15.56148 — — — 0.042 2.541 1.515

ESI-

PS(20:3/22:6) PS C48 H75 O10 N1 P1 856.5134 11.75541 0.030 1.406 0.815 0.021 1.537 1.279

SM(d16:1/18:0) SM C40 H80 O8 N2 P1 747.5658 11.40332 0.020 1.280 0.817 — — —

Cer(d18:1/16:0) Cer C35 H68 O5 N1 582.5103 12.79807 0.009 1.942 1.367 — — —

Cer(d15:0/20:1) Cer C36 H70 O5 N1 596.5259 13.38667 0.004 1.052 1.439 — — —

Cer(d36:0) Cer C37 H74 O5 N1 612.5572 14.35006 0.002 2.378 1.598 0.002 1.160 0.704

Cer(d16:0/21:1) Cer C38 H74 O5 N1 624.5572 14.49407 0.014 1.254 1.464 — — —

Cer(d20:1/18:0) Cer C39 H76 O5 N1 638.5729 15.25846 0.002 4.956 1.382 0.008 2.903 0.811

Cer(d18:1/22:0) Cer C41 H80 O5 N1 666.6042 16.5813 0.000 1.921 1.404 — — —

Cer(d18:1/22:1) Cer C41 H78 O5 N1 664.5885 15.15109 0.018 1.171 1.486 — — —

Cer(d18:1/23:0) Cer C42 H82 O5 N1 680.6198 17.28717 0.001 1.368 1.431 — — —

Cer(d18:1/24:0) Cer C43 H84 O5 N1 694.6355 17.99214 0.002 1.893 1.423 — — —

Cer(d18:1/24:1) Cer C43 H82 O5 N1 692.6198 16.51347 0.014 3.881 1.372 — — —

LPC(16:0) LPC C25 H51 O9 N1 P1 540.3307 3.236844 0.000 1.157 1.460 — — —

LPC(18:0) LPC C27 H55 O9 N1 P1 568.362 4.929942 0.016 1.612 1.386 — — —

LPC(18:1) LPC C27 H53 O9 N1 P1 566.3463 3.43383 0.002 1.347 1.474 — — —

LPC(20:4) LPC C29 H51 O9 N1 P1 588.3307 2.702941 0.023 1.167 1.610 — — —

LPE(20:4) LPE C25 H43 O7 N1 P1 500.2783 2.830786 0.002 1.657 1.552 — — —

LPE(22:6) LPE C27 H43 O7 N1 P1 524.2783 2.696826 0.002 2.536 1.640 — — —

PC(18:0/20:4) PC C47 H85 O10 N1 P1 854.5917 12.64714 0.004 1.505 1.103 0.007 1.605 0.907

PC(16:0/22:5) PC C47 H83 O10 N1 P1 852.576 12.042 0.046 1.805 1.422 — — —

PE(16:0p/22:6) PE C43 H73 O7 N1 P1 746.513 11.99096 0.016 3.248 1.112 0.009 3.056 0.902

PE(18:1p/22:6) PE C45 H75 O7 N1 P1 772.5287 12.0979 0.009 1.202 1.104 — — —

PG(42:6) PG C48 H82 O10 N0 P1 849.5651 11.75907 0.022 1.445 1.248 — — —

PC(16:0/20:4) PC C45 H81 O10 N1 P1 826.5604 11.53414 — — — 0.005 1.825 0.887

PE(18:0p/20:4) PE C43 H77 O7 N1 P1 750.5443 13.11735 — — — 0.009 2.226 0.894

PE(18:0/22:4) PE C45 H81 O8 N1 P1 794.5705 13.64911 — — — 0.017 1.971 0.905

PS(18:0/22:6) PS C46 H77 O10 N1 P1 834.5291 13.47165 — — — 0.027 1.376 2.309

PE(34:1e) PE C39 H77 O7 N1 P1 702.5443 13.497 — — — 0.030 1.789 1.250

PE(18:0/20:4) PE C43 H77 O8 N1 P1 766.5392 12.85352 — — — 0.038 2.780 0.924

PS(18:0/18:1) PS C42 H79 O10 N1 P1 788.5447 12.64461 — — — 0.044 2.484 1.284

Notes: BSTSF: Bushen Tiansui Formula; AD: Alzheimer’s disease; RT (min): retention time; VIP: variable importance; FC: fold change. Fold change was
calculated as average relative quantitation obtained from group 1/group 2, and a value less than 1 indicates a decrease in the metabolites of group 1.
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Importantly, SMs have been associated with amyloidogenic
processing of the amyloid precursor protein (APP) [25].
Here, we showed that the levels of SM(d16:1/18:0) were
downregulated in AD brains when compared with those
from the sham-treated group.

Glycerophospholipids were the second major class of
lipid metabolites found to be related to AD pathology and
BSTSF therapeutic mechanisms in the present study. Con-
centrations of glycerophospholipids have been associated
with the severity of amyloid and neurofibrillary pathology

in AD [26]. In this study, the levels of PE(15:0/14:1(9Z)),
PE(16:0p/22:6), LPE(0:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)),
PC(18:1(11Z)/20:4(5Z,8Z,11Z,14Z)), PC(18:0/20:4), and
PS(20:3/22:6) were dysregulated in AD rats when compared
with those of rats in the sham group; however, this dysregu-
lation was ameliorated after BSTSF treatment. A related
study showed that BACE1 silencing restored PE derivatives
such as LPE and etherphosphatidylethanolamine and
reduced PLA2 phosphorylation, which favored cellular
homeostasis and cognitive function recovery in the
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Figure 6: Changes in the relative signal intensities of differential lipids in the rat cerebral cortex from different groups.
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hippocampus of triple transgenic AD mice [27]. Similar to
our findings, the level of PC was increased in cerebrospi-
nal fluid from AD patients and was associated with
aberrant cerebrospinal fluid Aβ1−42 values, which may
be indicative of loss of membrane function and neurode-
generation in the early stages of cognitive dysfunction
[14]. Our data confirmed that the concentrations of
PC(18:1(11Z)/20:4(5Z,8Z,11Z,14Z)) and PC(18:0/20:4) were
increased in the cerebral cortex of the AD rat, which may
facilitate the aggregation of Aβ. Treatment with BSTSF may
reduce Aβ aggregation through modulation of related PCs.
Myelin is enriched in PS in brain tissue, and the docosahex-
aenoic acid (DHA) content of neuronal PS is of functional
importance. Lower PS concentration can reduce the sensitiv-
ity of postsynaptic membranes to neurotransmitters such as
acetylcholine [28]. PE was also reported to reduce reactive
oxygen species levels and protect neuron membranes from
oxidative damage [29]. One study found that PS supple-
mentation significantly improved memory, information
processing, and the ability to perform daily activities in
elderly people [30]. Our data showed that the concentration
of PS(20:3/22:6) was markedly upregulated in BSTSF-
treated AD rats, which might ameliorate AD pathology by
improving sensitivity to neurotransmitters and reducing
oxidative damage.

The metabolites of sphingolipids and glycerophospholi-
pids both belonged to phospholipid metabolism. So there
was a serious disturbance of phospholipid metabolism in
brain tissue of AD. Related research confirmed that ApoE
proteins are critical determinants of brain phospholipid
homeostasis. The phospholipid dysregulation contributes to
ApoE4-associated cognitive deficits in AD pathogenesis
[31]. APOE4 has been identified as the most prevalent
genetic risk factor for AD [32], and it could exacerbate the
intraneuronal accumulation of Aβ [33] and plaque deposi-
tion in the brain parenchyma [34]. Therefore, BSTSF might
treat AD through regulating the APOE4 and phospholipid
metabolism.

Additionally, we observed that the level of oleamide was
upregulated in AD rats while that of tetracosahexaenoic acid
was downregulated after BSTSF administration, and both of
these lipids have roles in fatty acid metabolism. Oleamide
has been found to accumulate in the cerebrospinal fluid of
sleep-deprived cats and mice [35] and is an important regu-
latory lipid in the brain and central nervous system. Olea-
mide regulates the sleep-wake cycle, memory, locomotion,
and pain perception and exhibits anti-inflammatory, anxio-
lytic, and neuroprotective properties [36]. Oleamide levels
were shown to be increased in the plasma of AD patients
[37]. A recent study indicated that DHA is both a product
and a precursor of tetracosahexaenoic acid [38], while other
investigations have shown that dietary DHA administration
can exert protective effects against Aβ production, plaque
deposition, and cerebral amyloid angiopathy in an aged
mouse model of AD, as well as increasing cerebral blood vol-
ume [39, 40]. This indicates that BSTSF might regulate DHA
and increase tetracosahexaenoic acid treating AD.

In the current study, the level of S-adenosylmethionine
(SAM) was significantly upregulated in the cerebral cortex

of the AD rat, indicative of aberrant amino acid metabo-
lism in AD. S-Adenosylmethionine is generated through
the activity of methionine adenosyltransferases, and more
than 50 endogenous substances in the body, including
phosphatidylcholine, need SAM as the methyl donor.
Homocysteine is formed by SAM demethylation. A related
study showed that an elevated total homocysteine baseline
serum level during six years was associated with an
increased risk of dementia and AD, and the putative
mechanism was associated with loss of total brain tissue
volume and brain atrophy [41, 42]. Therefore, increased
SAM concentrations in the AD brain may lead to higher
levels of homocysteine, resulting in the loss of total brain
tissue volume and brain atrophy. We found that BSTSF
ameliorated AD pathology mainly through the alanine,
aspartate, and glutamate metabolic pathway and the D-
glutamine and D-glutamate metabolic pathway that is
involved in regulating amino acid metabolism. N-Acetyl-
L-aspartic acid (NAA) and L-aspartic acid are involved
in the alanine, aspartate, and glutamate metabolic path-
way. NAA is a biomarker for neuronal damage in the
human brain during neurodegeneration [43], and reduced
cortical levels of NAA were shown to be correlated with
clinical scales of dementia severity [44]. L-Aspartic acid also
functions as a neurotransmitter. D-Glutamine forms part of
the D-glutamate metabolic pathway and is converted from
glutamate by astrocytes in the brain [45]. Glutamate, as an
excitatory neurotransmitter, is released decarboxylated by
neurons to yield the inhibitory neurotransmitter gamma-
aminobutyric acid (GABA) [46]. Numerous studies have
shown that the level of GABA is closely associated with AD
[47, 48]. D-Glutamine and GABA could be putative thera-
peutic targets of BSTSF in AD.

Through integrated metabolic and lipidomic analyses,
we revealed the metabolic dysregulation in the cerebral
cortex of the AD rat, as well as the metabolism-related
therapeutic effects of BSTSF on AD. However, this study
had some limitations. First, we only obtained a relative
quantification of metabolite levels based on untargeted
metabolomic analysis. Absolute quantitation of critical
metabolites performed by targeted metabolomics is needed
in future research. Second, numerous metabolites are
regulated by BSTSF; however, the associated molecular
mechanisms are not well understood and will be the basis
of our future research.

5. Conclusions

The metabolic disturbance in the cerebral cortex of the AD
rat is primarily associated with sphingolipid metabolism,
glycerophospholipid metabolism, linoleic acid metabolism,
and fatty acid metabolism. Moreover, BSTSF ameliorates
the severity of AD by regulating phospholipid metabolism,
maintaining fatty acid metabolism, and balancing amino
acid metabolism. Our research highlighted some important
mechanisms involved in the pathogenesis of AD and
revealed the metabolism-related therapeutic effects of
BSTSF on AD.
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Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore,
antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We
investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced
in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala
himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100.
Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3mg/kg) was used for induction of SAD in
mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100mg/kg/day) for 21 days. Neurobehavioral tests were
conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly
excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia
significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted
a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with
western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant
protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the
amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for
neuroinflammatory and neurodegenerative diseases such as SAD.

1. Introduction

Age-related neurodegenerative diseases like Alzheimer’s dis-
ease (AD) are on the rise. AD is a disorder characterized by
progressive deterioration of cognition and memory, and it
accounts for 60-80% of all dementia cases [1]. Among the
elderly, the most common type of AD is sporadic Alzhei-
mer’s disease (SAD), a type that involves the central nervous
system’s progressive degeneration [2]. Several pathways have
been examined as possible targets for SAD, including the
oxidative stress, amyloidogenic, inflammatory, and autoph-
agy pathways.

One of the earliest changes in AD brains is the appear-
ance of oxidative stress markers, which precedes the accumu-
lation of neurofibrillary tangles and visible amyloid deposits
[3]. Oxidative stress is implicated in many disorders like
chronic inflammation, AD, and Parkinson’s disease [4].
The brain’s neurons have high rates of energy production
and oxygen consumption, making them extremely sensitive
to excessive generation of reactive oxygen species (ROS)
and oxidative damage [5].

In AD brains, normally solid amyloid β (Aβ) and tau
proteins assemble into amyloid-like filaments called plaques
and tangles. The manner by which Aβ accumulates in the
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central nervous system and triggers cell disease is currently
unresolved, but a suggested mechanism by which Aβ may
damage neurons and cause neuronal death includes ROS
generation during Aβ self-aggregation. When this process
was observed in vitro on neuron membranes, it ultimately
led to mitochondrial impairment, excessive calcium influx,
and synaptic membrane depolarization [6, 7].

Neurodegenerative diseases like AD are also accompa-
nied by neuroinflammation. The inflammatory response of
neurons has been linked with the transcription factor NF-
κB. In normal conditions, NF-κB forms an inactive cyto-
plasmic complex with IκBα, its inhibitor. When NF-κB is
stimulated, however, it can induce the transcription of
inflammatory target genes such as interleukin-1β (IL-1β),
interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α),
and cyclooxygenase-2 (COX-2). In addition, neuroinflam-
mation has been linked with autophagy in neurodegenera-
tive diseases. Neuroinflammation can result in a deficit of
autophagy that exacerbates neurodegeneration and, con-
versely, a disruption of autophagy during pathological
conditions can initiate or intensify neuroinflammation
[8]. In human AD and in mouse models of AD, decreased
autophagy has been observed and found to contribute to
pathological build-up of tau aggregates [9]. Autophagy is
known to be regulated by mTOR, rapamycin’s mammalian
target, andmTOR inhibitionhasbeen found toprevent neuro-
inflammation in a mouse model of cerebral palsy [10]. More-
over, in a study of rat cortices subjected to ischemic brain
injury, it has been shown that GSK-3β inhibition suppresses
neuroinflammation through autophagy activation [11].

Pharmacological management of AD has been limited
to date. In 2007, long-term use of nonsteroidal anti-
inflammatory drugs (NSAIDs) was considered to be linked
with a reduced probability of developing AD [12]. NSAIDs
were also indicated by evidence to potentially reduce
amyloid-plaque-related inflammation, but high adverse
events caused a suspension of trials [13]. AD risk has
not been found to decrease with any medications or sup-
plements [13], and unfortunately, current treatments for
AD that are FDA-approved offer only symptomatic relief
and are not able to cure or delay the disease [1].

Recently, antioxidants have received increased atten-
tion in preventing the onset of AD by reducing oxidative
stress insult [14, 15]. Furthermore, there has been an
acceleration in the search for and use of drugs and dietary
supplements from plants, due in part to the health benefits
that have been found in phytochemicals whose uses have
been documented in traditional medicine [16]. Compo-
nents of the traditional Chinese medicinal mushroom
called yamabushitake promote nerve growth factor synthe-
sis in cultured astrocytes [17, 18] as well as improving
mild cognitive impairment in humans [19]. The gotsukora
plant has traditionally been used for dementia and mem-
ory improvement [20, 21], and its extracts have been
shown to improve memory retention in rodents [22], to
alter amyloid beta pathology in the hippocampi of a
mouse model of AD, and to modulate the oxidative stress
response involved in AD-related neurodegeneration [23].
Diosgenin, a plant-derived steroidal sapogenin, has been

shown to exert anticancer effects [24], improve aging-
related cognitive deficits [25], and relieve diabetic neurop-
athy [26]. Recently, it was proven that diosgenin improves
memory function and reduces axonal degeneration in AD
mouse models [20, 27]. Amla (Emblica officinalis), the
Indian gooseberry, has been shown to exert diverse neuro-
protective pharmacodynamic actions [28]; to have potent
radical scavenging effects [29]; to have a high degree of
neuroprotective potential in a panel of bioassays that
targeted protein glycation, carbonyl stress, acetylcholines-
terase inhibition, oxidative stress, Aβ fibrillation, and
neuroinflammation [30]; and to improve the acetylcholines-
terase activity, brain antioxidant enzymes, and cognitive
functions in a rat model of AD [31]. Finally, kothala him-
butu (Salacia reticulata) has been shown to protect against
deleterious cognitive changes in young streptozotocin-
induced diabetic rats [32] and against mercury toxicity in
mice hippocampi [33].

In this study, we examine the cogno-protective effects of
an antioxidant product called Antia whose components
include yamabushitake, gotsukora, diosgenin, amla, and
kothala himbutu. These components are treated together
with the hydroferrate fluid MRN-100 to generate Antia.
Long-term administration of MRN-100 revealed its protec-
tive effect against age-associated oxidative stress [34] and
against oxidative damage in human leukemia cells and in
endothelial cells [35]. Recent studies on Antia have shown
its ability to reverse mitochondrial dysfunction caused by
oxidative stress in human peripheral blood lymphocytes
[36]. In light of the above-mentioned neuroprotective effects
of Antia’s plant components, we hypothesized that Antia
would have beneficial effects on the pathways relevant to
AD, namely, the oxidative stress, amyloidogenic, inflamma-
tory, and autophagy pathways. We studied the effect of Antia
on mice induced with SAD via intracerebroventricular (ICV)
injection of streptozotocin (STZ); this is a well-established
animal model of SAD based on brain resistance to insulin
[37] and imitates the age-related pathology of SAD in
humans such as memory impairment, oxidative stress, neu-
roinflammation, and neurodegeneration [38]. Here, we pres-
ent behavioral, biochemical, and western blot experiments in
support of our hypothesis.

2. Materials and Methods

2.1. Animals. Adult male albino mice 25-30 g in weight
were provided by the animal facility of the Faculty of
Pharmacy, Cairo University, Egypt. For one week before
conducting the study, the mice were allowed to acclimate.
Mice were housed in a controlled environment with con-
stant temperature (25 ± 2°C), relative humidity of 60 ± 10%,
and a 12/12h light/dark cycle. Standard chow diet and water
were allowed ad libitum. Every effort was made to minimize
mice suffering and to reduce the mice number used. This
study was approved by the Ethics Committee for Animal
Experimentation and complied with the recommendations
of the National Institutes of Health Guide for Care and Use
of Laboratory Animals (2011).
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2.2. Chemicals. STZ was purchased from Sigma-Aldrich Co.
(St Louis, MO, USA). STZ was dissolved in saline solution
(0.9% NaCl) and injected ICV at a volume of 10μL by the
freehand method. Antia was dissolved in saline solution in
three doses: 25mg/kg equivalent to the adult dose (4 table-
ts/day), 50mg/kg, and 100mg/kg. It was then administered
intraperitoneally (i.p.) at a volume of 0.1mL/20 g-mouse.
Each day, fresh drug solutions were prepared. Equivalent vol-
umes and administration routes were used for the control
group’s saline injections. All other chemicals were of the
highest analytical grade.

2.3. Antia. Antia is a natural compound derived from a vari-
ety of mushrooms and plants, including the edible yama-
bushitake mushroom, the gotsukora and kothala himbutu
plants, diosgenin (an extract from the tubers of Dioscorea
wild yam), and amla (Indian gooseberry). The ingredients
are treated with an iron-based fluid called MRN-100.
MRN-100 is made from phytosin and is an iron-based com-
pound derived from bivalent and trivalent ferrates (hydrofer-
rate fluid). The exact chemical composition of Antia is still
under active investigation. Antia was provided by ACM
Co., Ltd, Japan. Antia was prepared in distilled water (DW)
with the concentration of MRN-100 at about 2 × 10−12 mol/L.

2.4. Induction of SAD. SAD was induced by ICV injection of
STZ (3mg/kg) into the lateral ventricle of mice according to
the freehand procedure [39] and as updated byWarnock [40]
to avoid the probability of cerebral vein penetration.
Anesthetization of mice was carried out with thiopental
(5mg/kg, i.p.). Their heads were stabilized with downward
pressure above the ears, and a needle was directly inserted
through the skin and skull into the lateral ventricle. The
bregma was located by visualizing an equilateral triangle
between the center of the skull and the eyes, allowing the nee-
dle to be inserted approximately 1mm lateral to this point.
Normal behavior was observed one minute after injection.

2.5. Experimental Design. The experimental design is illus-
trated in Figure 1. Mice were divided randomly into five
groups containing 12 animals each. Group I (sham con-
trol): mice received ICV injection once and intraperitoneal
(i.p.) saline injection for 21 consecutive days and served as
the sham control group. Group II (STZ): mice received
STZ (3mg/kg, ICV) once and served as a model for
SAD [41]. Group III (STZ+Antia 1): mice received STZ
(3mg/kg, ICV) followed by Antia (25mg/kg, i.p.) after five
hours and then every day for 21 consecutive days. Group
IV (STZ+Antia 2): mice received STZ (3mg/kg, ICV)
followed by Antia (50mg/kg, i.p.) after five hours and then
every day for 21 consecutive days. Group V (STZ+Antia 3):
mice received STZ (3mg/kg, ICV) followed by Antia
(100mg/kg, i.p.) after five hours and then every day for 21
consecutive days. 24 h after the end of treatments, neurobe-
havioral tests were carried out, including object recognition
and Morris water maze (MWM) tests, sequentially arranged
from the least to most stressful. Testing was performed dur-
ing animals’ light cycle under top illumination to minimize
circadian variability. No mortality was observed among all

the animals in different groups during the experimental
period of 21 days.

2.6. Acute Toxicity Study. The acute toxicity of Antia was
evaluated in mice using the up and down procedure accord-
ing to the Organization for Economic Cooperation and
Development (OECD), guideline no. 423, 2001 [42].

Mice received Antia starting at a dose of 2 g/kg. The
animals were observed for toxic symptoms continuously
for 24 hours and then maintained for additional 20 days
with daily observations.

2.7. Behavioral Assessments

2.7.1. Object Recognition Test. Long-term memory and cog-
nition were assessed via the object recognition test [43]. In
this study, the performed tests took place over three consec-
utive days. On day one (the habituation phase), each mouse
was individually placed into a wooden box of dimensions
30 × 30 × 30 cm3 for 30min in order to adapt to the sur-
rounding environment. Day two was designed for familiari-
zation or training, where two wooden cubes identical in
shape, color, and size were placed in opposite corners of the
box, 2 cm from the walls. Each mouse was placed in the mid-
dle of the box and was left to explore these two objects for
10min. On day three, testing took place. A novel object that
was different from the identical cubes in shape, size, and
color was used to replace one of the two identical cubes. Each
mouse was exposed again to these two objects for 5min. 70%
ethanol was used to clean objects between animal experi-
ments to ensure that odor cues did not guide behavior. All
locations and objects were adjusted to decrease biases due
to inclinations for particular objects or locations. Mice were
always placed in the box confronting the same wall, and mice
were unable to physically move the objects. The animals’
behavior was video-recorded and the following parameters
were calculated:

(1) Discrimination index: temporal difference between
exploring the novel object and the familiar object
divided by the total time used to explore both objects.
The measurement varies between -1 and +1, where a
negative (positive) score indicates that more (less)
time was used to explore the familiar object, and a
score of zero indicates no preference

(2) Preference index: time spent by the animal exploring
the novel object as a percentage of the total time
exploring both objects

2.7.2. Morris Water Maze Test. Spatial learning and memory
was assessed via the Morris water maze (MWM) test [44].
The maze consisted of stainless-steel circular tanks (210 cm
in diameter, 51 cm high) filled with water (25 ± 2°C, 35 cm
deep) and divided into four quadrants. A submerged black
platform (10 cm width, 28 cm height) was placed in a target
quadrant 2 cm below the surface of the water. This platform
remained at a consistent position during the time of training
and the test. A nontoxic purple dye was added to the water to
obscure any visible evidence of the platform’s position. Trials
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for memory acquisition (120 s/trial) were performed 2x/day
over four consecutive days, with a period between trials of
at least 15min. For each acquisition trial, mice were left free
to locate the hidden platform in the target quadrant. If a
mouse located the platform, it was allowed to rest there for
20 s, while if a mouse failed to locate the platform within
120 s, it was gently guided to the platform and allowed to rest
there for 20 s. The mean escape latency was measured as the
time taken by each mouse to locate the hidden platform and
was used as an index of learning or acquisition. On day five,
the mice were given a probe-trial session. The platform was
taken out of the pool and each mouse was given 60 s to probe
the pool. The time each mouse spent in the target quadrant of
the previously placed platform was measured as an indicator
of memory or retrieval.

2.8. Brain Processing. After behavioral testing, cervical dis-
location was used to euthanize mice and brains were rap-
idly dissected and washed with ice-cold saline. The
hippocampi (n = 6) were excised from each brain on an
ice-cold glass plate. The hippocampus was homogenized
in ice-cold saline to prepare 10% homogenates. These were
split into several aliquots and stored at -80°C. The other
hippocampus was stored at -80°C to be used for western
blot analysis.

2.9. Biochemical Measurements

2.9.1. Determination of Oxidative Stress Biomarkers. Hippo-
campal lipid peroxidation was estimated by measuring
malondialdehyde (MDA) levels. MDA was determined by
measuring the thiobarbituric acid reactive substances as

described in [45]. Brain glutathione (GSH) content was
measured spectrophotometrically using Ellman’s reagent as
described in [46]. The results are expressed as mmol/mg
protein.

2.9.2. Determination of Inflammatory Biomarkers and
Amyloid β1-42. Hippocampal TNF-α, IL-6 levels, NF-κB
p65, and β-amyloid1-42 were measured using mouse ELISA
kits purchased from RayBiotech Inc. (Norcross, GA, USA)
and R&D Systems Inc. (Minneapolis, USA), respectively.
The procedures were performed according to the manufac-
turers’ instructions. Results are presented as pg/mg protein
for TNF-α, IL-6, NF-κB p65, and β-amyloid1-42.

2.9.3. Western Blot Analysis. Protein solutions were extracted
from brain tissues, after which equal protein amounts (20–
30μg of total protein) were separated by SDS-PAGE (10%
acrylamide gel) and transferred to polyvinylidene difluoride
membranes (Pierce, Rockford, IL, USA) with a Bio-Rad
Trans-Blot system. Western blot immunodetection was per-
formed by incubating membranes for 1 h at room tempera-
ture with blocking solution comprised of 20mM Tris-Cl,
pH 7.5, 150mMNaCl, 0.1% Tween 20, and 3% bovine serum
albumin. Membranes were incubated overnight at 4°C with
one of the following primary antibodies: P-JAK2 (Tyr
1007/1008), P-STAT3 (Tyr 705), IκBα, GSK-3β, mTOR,
COX-2, or β-actin, obtained from Thermo Fisher Scientific
Inc. (Rockford, IL, USA). Peroxidase-labelled secondary
antibodies were added after washing, and the membranes
were incubated at room temperature for 1 h. ChemiDoc™
imaging system with Image Lab™ software version 5.1
(Bio-Rad Laboratories Inc., Hercules, CA, USA) was used
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to analyze the band intensity. Results are presented in
arbitrary units after normalization to levels of the β-actin
protein.

2.9.4. Determination of Protein Content. The method of
Bradford was used to measure protein content. All results
are expressed as tissue concentration per mg protein.

2.10. Statistical Analysis. The presented data are mean ± S:E:
One-way analysis of variance (ANOVA) followed by the
Tukey-Kramer multiple comparison test was used in data
analysis. GraphPad Prism software (version 6; GraphPad
Software, Inc., San Diego, CA, USA) was used for statistical
analysis and the creation of graphical presentations. Signifi-
cance levels of all statistical tests are set at p < 0:05.

3. Results

The acute toxicities of the tested Antia were studied, and
the results showed no general behavior changes, toxicity,
and mortality in test animals up to the dose level of
2 g/kg during a 24 h period, thus indicating that this sub-
stance had no toxicity.

The effects of Antia on the behavioral and biochemical
functions of ICV-STZ-treated mice were measured with neu-
robehavioral tests and biochemical analysis of the hippocam-
pal content. The effects of STZ and Antia (25, 50, and
100mg/kg) on neurobehavioral tests were carried out within
24 h after the last day of Antia injection. The Morris water
maze was used to examine the possible protective effect of
Antia treatment on ICV-STZ-injected mice. As illustrated
in Figure 2(a) for the mean escape latency (MEL), mice in dif-
ferent groups took different times to escape on day 2. STZ-
treated mice took 1.63 times as long to escape on day 2 as
compared to sham control mice. Treatment of STZ-injected
mice with Antia, however, took only 1.08 times as long as
sham control mice on day 2. These results were further con-
firmed in the subsequent days 3 and 4. The study of the effect
of Antia on the time mice spent in the target quadrant of the
Morris water maze (Figure 2(b)) showed that STZ-treated
mice spent only 25.4% of the time in the quadrant in compar-
ison with sham control mice, while treatment of STZ-
injected mice with 25, 50, and 100mg/kg of Antia spent
72.5%, 75.8%, and 85.4% of the time, respectively, in compar-
ison with sham control mice.

The effect of STZ and Antia was further examined
through the discrimination and preference indices of the
novel object recognition test. The discrimination index was
decreased in STZ-induced SAD mice when compared to the
sham control group, but it was significantly increased after
Antia administration (25, 50, and 100mg/kg) as compared
to the STZ group in a dose-dependent manner. In addition,
the time spent exploring the novel object was lower in
ICV-STZ-injected mice by 63% compared to the sham
control group, reflecting a lower preference index. Antia
administration (25, 50, and 100mg/kg) normalized the
preference index, indicating that Antia-treated mice pre-
ferred the novel object over the familiar object in a dose-
dependent manner (Figure 2(c)).

Several biochemical analyses of the hippocampal content
in ICV-STZ-treated mice were conducted in order to exam-
ine the ability of Antia to attenuate the amyloidogenic,
inflammatory, autophagy, and oxidative stress pathways.
Measurements of the protective effect of Antia treatments
on the levels of malondialdehyde (MDA) and glutathione
(GSH) hippocampal content were carried out. Results in
Figure 3(a) show that STZ-treated mice had a GSH level that
was 15.5% of the GSH level of sham control mice. On the
other hand, treatment of STZ-injected mice with Antia
showed an elevation in the GSH content in a dose-
dependent manner that maximized at 78.7% of the control
GSH level for 100mg/kg Antia treatment. Results of the
levels of MDA hippocampal content show significantly
higher levels of MDA in ICV-STZ-injected mice as compared
with sham control mice by a factor of 4.3-fold. On the other
hand, Alzheimer’s mice with Antia showed an elevation in
the MDA content of only 3.5-fold, 2.5-fold, and 1.8-fold for
mice receiving Antia at doses of 25, 50, and 100mg/kg,
respectively (Figure 3(b)).

The effect of ICV-STZ injection on the hippocampal
content of anti-inflammatory cytokines was also examined
in the presence and absence of Antia treatment. Two cyto-
kines were examined: TNF-α and IL-6. Results in Figure 4
show that STZ model mice exhibited a significant increase
in TNF-α and IL-6 cytokine expression as compared with
sham control, but Antia treatment suppressed this induction
in a dose-dependent fashion, reaching the control’s level at
100mg/kg. A similar trend can also be seen in the hippocam-
pal content of NF-κB p65. Results in Figure 4 show increased
levels of NF-κB p65 in STZ-treated mice and its gradual
decrease after treatment with Antia.

Since amyloid β makes up Alzheimer’s disease plaques,
we examined the effect of Antia on Amyloid β1–42 hippocam-
pal content in ICV-STZ-injected mice. Results depicted in
Figure 5 show that STZ model mice exhibited an approxi-
mately 4-fold increase in the expression of amyloid β as com-
pared with sham control mice. However, amyloid β levels
were significantly decreased after treatment with Antia. The
effect was dose-dependent and reached its lowest levels at
100mg/kg.

We further examined protein expression. The levels of
phosphorylation of STAT and JAK protein expression are a
well-established method used in Alzheimer’s research. We
examined whether treatment with Antia suppresses the
phosphorylation of STAT expression in STZ mice. As
expected, the levels of phosphorylation of STAT protein
expression were significantly increased when compared with
sham control mice. However, treatment of STZ mice with
Antia caused a significant inhibition in the phosphorylation
level of STAT3 (Figure 6(a)). A similar trend in results was
observed with JAK2 protein expression. Antia treatment
resulted in a significant inhibition in the phosphorylation
level of JAK2 due to of STZ injection (Figure 6(a)). These
results indicate the protective effect of Antia for the JAK2/-
STAT3 pathway.

Earlier studies have shown that glycogen synthase kinase-
3 (GSK-3) phosphorylates tau protein, the primary compo-
nent of neurofibrillary tangles. GSK-3β inhibition presents
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a newmethod for reducing the formation of both neurofibril-
lary tangles and amyloid plaques, two of Alzheimer’s dis-
ease’s pathological hallmarks [47]. Results in Figure 6(b)
show that STZ-treated mice had a higher expression of
GSK-3β level that was 7-fold larger than the GSK-3β level
of sham control mice. Antia treatment, however, resulted in
a dramatic inhibition in the expression of GSK-3β that was
approximately 3-fold of the control. Results in Figure 6(b)
also show that STZ-treated mice had an approximately 6.5-
fold larger IκBα level expression than the sham control mice,
whereas Antia treatment resulted in a dramatic inhibition
in the expression of IκBα that was approximately 2.8-fold
of the control.

Several studies have shown that mTOR, rapamycin’s
mammalian target, may contribute to amyloid β- and tau-
induced neurodegeneration [48]. Earlier studies showed that
AD cases had higher levels than the control of mTOR phos-
phorylated at Ser2481 in the medial temporal cortex [49, 50].
Results in Figure 6(c) showed that STZ-injected mice exhib-
ited significantly increased levels of the p-mTOR and p-AKT
protein expression that were 5-6 fold greater than the level of
sham control mice, respectively, but treatment with Antia
reversed that increase and brought it close to that of the con-
trol values.

Finally, COX-2 is an important enzyme in inflammatory
processes. Results in Figure 6(d) show that STZ-treated mice
exhibited a significant induction in COX-2 expression of
about 6-fold compared to sham control mice. Treatment

with Antia, however, significantly reduced the expression of
COX-2 to 150%-300%.

4. Discussion

The present study’s results demonstrate that the antioxidant
Antia exerts protective effects for mice induced with SAD.
The constituents of Antia have previously been shown to
possess various neuroregenerative and protective properties.
Yamabushitake mushrooms have been shown to synthesize
nerve growth factor [51–53]; gotsukora extracts reduce the
amyloid β levels in the Alzheimer-stricken brains of labora-
tory animals [23]; diosgenin enhances the cognitive perfor-
mance of mice [27]; amla acts as a potent antioxidant with
strong neuroprotective effects and cognitive enhancement
properties [28–31]; and kothala himbutu protects against
deleterious cognitive changes in young diabetic rats [32]
and against mercury toxicity in mice hippocampi [33]. Here,
Antia is shown to attenuate cognitive dysfunction in the
mouse model by targeting several linked pathways, including
the amyloidogenic, inflammatory, autophagy, and oxidative
stress pathways.

In the present study, induction of SAD in mice by STZ
induced a significant cognitive decline in the Morris water
maze and novel object recognition tests. ICV injection of
STZ is an experimental model that mimics the progressive
pathology of SAD similar to human brains [38]. STZ-
treated mice showed significant memory and learning
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deficits, as shown by the mice’s noticeable inability to dis-
criminate between novel and familiar objects in the novel
object recognition tasks and Morris water maze test. This is
in harmony with previous studies [54, 55]. However, the pro-
found elevation in escape latency during the acquisition trial
and the time spent in the target quadrant during the probe
trail in the Morris water maze test, as well as the increase in
discrimination and preference indices in the novel object rec-
ognition test, proved that Antia prevented the STZ-induced
impairments of spatial and short-term memory. This
improvement in the object recognition memory deficit could
be attributed to the previously proven effects of several of
Antia’s ingredients. For example, it has been shown that dios-
genin has an antiamyloidogenic effect [27, 56] and that Her-

icium erinaceus has a strong neuroprotective effect against
neuronal loss and dementia in AD [57, 58]. Furthermore,
oral administration of dried yamabushitake mushroom pow-
der has been demonstrated to effectively improve mild cogni-
tive impairment in humans [19].

STZ administration significantly increased the hippo-
campal content expression of NF-κB and anti-inflammatory
cytokines, namely, IL-6 and TNF-α. NF-κB plays a pivotal
role in neurons’ inflammatory responses by inducing the
transcription of inflammatory target genes, including COX-
2, TNF-α, IL-6, and IL-1β [59]. TNF-α is involved in
systemic inflammation, and in particular, it is involved in
AD-related brain neuroinflammation as well as amyloido-
genesis via β-secretase regulation. Moreover, increased IL-6
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expression in the brain is linked with the profound neuro-
pathological changes found with Alzheimer’s and Parkin-
son’s disease [60]. NF-κB has also been demonstrated to
regulate the expression of BACE-1, the rate-limiting
enzyme responsible for amyloid β production. The Janus
Kinase/Signal Transducers and Activators of Transcription
(JAK/STAT) signaling pathway emerged in the 1980s as
the pathway mediating interferon signaling. Neuroinflam-
mation is accompanied by diseases, and JAK2/STAT3
pathway activation leads to pathogenic inflammation.
Thus, targeting the JAK2/STAT3 pathway can be used as

a protective therapy for neuroinflammatory and neurode-
generative diseases like AD.

In the present study, administration of Antia was shown
to have a significant anti-inflammatory effect, as demon-
strated by decreasing the levels of all measured inflammatory
cytokines as well as dramatically inhibiting the expression of
phosphorylated STAT3 and JAK2. The STAT3/JAK2 path-
way has been linked to TNF-α production [61, 62]. The sig-
nificant inhibition of TNF-α and NF-κB might be caused by
the action of Hericium erinaceus, known as yamabushitake,
which has been demonstrated to contribute to transcriptional
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regulation of adhesion molecules and numerous cytokines
including TNF-α and IL-6 [63, 64].

Neuroinflammation has been linked to a deficit of
autophagy, which may contribute to neurodegeneration [8].
mTOR, rapamycin’s mammalian target, is known to regulate
autophagy along with protein kinase B (Akt) [65]. Several
studies emphasize the close link between cognitive impair-
ment in AD and mTOR signaling and the presence of amy-
loid β plaques [66–69]. Furthermore, in human and rat
studies of AD, autophagy activation has been linked to

GSK-3β inhibitors and its deficit has been found to play a
role in pathological tau aggregate accumulation [9, 11].

Treatment with Antia reversed the elevated expression of
mTOR, Akt, IκBα, and GSK-3β levels after STZ injection and
brought it closer to that of the control. Recent reports found
that increasing neurons’ axonal density with diosgenin
significantly improved cognitive function. This could be
achieved through modulation of the PI3K-Akt pathway, a
pathway that plays a key role in axon regeneration by regulat-
ing local protein translation via the mTOR pathway [27, 70].
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Moreover, it was proven recently that amla, a major con-
stituent of Antia, exerted a significant modulation of the
p-AKT/GSK-3β pathway, resulting in a decline of phos-
phorylated tau and amelioration of cognitive deficits [71].

Results of this study showed that Antia increases GSH
and decreases lipid peroxidation in STZ-treated mice. Pre-
vious research showed that the generation of ROS via
amyloid β during self-aggregation may damage neurons
and cause neuronal death [72]. Lipid peroxidation is con-
sidered to be a major outcome of injury mediated by free
radicals that directly damages membranes, and increased
lipid peroxidation has been found in AD patients’ brains
[73, 74]. Treatment of STZ-treated mice with Antia
improved the oxidative stress parameters. This might be
due to its previously known ability to reverse oxidative-
stress-induced mitochondrial dysfunction and apoptosis
[36]. In addition, Centella asiatica, commonly known as
gotsukora, and MRN-100 have been found previously to
provide multiple mechanisms for altering Alzheimer’s
brain pathology such as protection from DNA fragmenta-
tion due to oxidative stress, decreased lipid peroxidation,
and the exhibition of noticeable free radical scavenging
properties [23, 34]. GSH is an antioxidant that can prevent
damage caused by ROS and may protect against oxidative
and neurotoxic degeneration of oligomeric amyloid β [75, 76].

It could be concluded from the present study that Antia
exerts a significant protection against sporadic AD induced
by ICV injection of STZ. This effect is achieved through tar-
geting the amyloidogenic, inflammatory, and oxidative stress
pathways. The JAK2/STAT3 pathway played a protective
role for the induced neuroinflammation, which is mediated
through modulation of the Akt/mTOR/GSK-3β pathway.
To our knowledge, this is the first work done to investigate
the protective effect of Antia against neurodegenerative dis-
eases such as SAD.
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Polysaccharides from the pulps (CAP) and seeds (CAS) of Crataegus azarolus L. var. aronia were extracted by hot water method.
Both polysaccharides were characterized by scanning electron microscopy (SEM), Congo red test, FT-IR spectroscopy, and their
antioxidant, α-amylase, antiacetylcholinesterase, and antibacterial activities were evaluated. CAP showed the highest total
carbohydrate (82.35%) and uronic acid (29.39%) contents. The Congo red test revealed the lack of triple-helical conformation
for both polysaccharides. The comparison of both infrared spectra indicated similar patterns with the presence of typical bands
of polysaccharides. However, the microstructure of both samples indicated differences when analyzed by SEM. CAP displayed
higher antioxidant, α-amylase, and acetylcholinesterase inhibitory activities. Besides, CAP showed the strongest antimicrobial
effects against seven microorganisms and, notably, the Gram-positive bacteria. Overall, the results suggest that polysaccharides
from C. azarolus L. var. aronia may be considered as novel sources of antioxidants and recommended as enzyme inhibitory
agents in food and pharmaceutical industries.

1. Introduction

Polysaccharides are biomacromolecules widely distributed in
algae, plants, animals, and microorganisms. Plant polysac-
charides have proved to be potential sources of natural
antibacterial, antioxidants, immunomodulatory, antitumor,
hepato-cardioprotective, and neuroprotective compounds
[1–3]. They have been increasingly applied because they are
sourced naturally, and they impart less toxicity, biodegrad-
ability, and fewer side effects than synthetic ones. Polysac-
charides are also widely used as emulsifiers, gelling agents,
thickeners, and fat replacers in functional food, cosmetics
industries, and biological medicine, including drug delivery
and tissue engineering [4]. Over the past decade, there has
been a wave of studies into finding new sources of polysac-
charides that could hotspot a potential technological interest
over existing commercial polysaccharides.

The genus Crataegus spp., which belongs to the Rosaceae,
is largely distributed in Africa, North Europe, and North
America [5]. This genus is commonly known as hawthorn
in English and Zaarour in Arabic. The fruits of Crataegus
spp. are commonly eaten as edible food. In addition, fruits,
leaves, and flowers have long been used as a traditional med-
icine to cure various diseases such as asthma, insomnia, flu,
coughs, and bronchitis, and headache, respiratory, and car-
diovascular problems [6, 7]. Previous research has shown
that hawthorn exerts a variety of pharmacological effects,
including antioxidant, antidiabetic, antimicrobial, antiviral,
anti-inflammatory, antithrombotic, antihyperlipidemic, car-
dioactive, hepatoprotective, and hypotensive activities [8].
Numerous biochemical studies have demonstrated that haw-
thorn is a valuable source of bioactive components (e.g., min-
erals, sugar alcohols, phenolic acids, essential oil, organic
acids, tannins, vitamin, flavonoids, and polysaccharides) [8,
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9]. Polysaccharides and oligosaccharides extracted from the
fruits and flowers of Crataegus spp. possess various human
health-promoting effects, such as anticoagulant (for C.
monogyna) [10] and hypolipidemic activities (for C. pinnati-
fida) [11]. Likewise, several reports have demonstrated the
antioxidant and probiotic properties of polysaccharides
extracted from C. pinnatifida [12, 13].

Among plant species Crataegus azarolus L. var. aronia
(Yellow Azarole) is native to the Mediterranean countries,
which have long been used in Tunisian traditional medicines
to prevent cancer, diabetes, sexual weakness, and cardiovascu-
lar diseases [14]. Previous studies revealed that the leaves,
flowers, and fruits of C. azarolus had various biological activi-
ties including antimicrobial, antioxidant, antihyperglycemic,
and antihyperlipidemic activities [15, 16]. These potential
health benefits are related to their high content in many natural
active compounds, such as flavonoids, minerals, sugar alcohols,
carotenoids, polyphenols, amino acids, and tannins [14, 17].

However, to the best of our knowledge, none of the pre-
vious studies have focused on the extraction of polysaccha-
rides from C. azarolus L. var. aronia and the evaluation of
their antioxidant, antibacterial, α-amylase, and acetylcholin-
esterase inhibition properties. In this study, two polysaccha-
rides from C. azarolus were extracted and structurally
characterized preliminarily. Then, their biological activities
in vitro were evaluated.

2. Materials and Methods

2.1. Plant Material. Fresh fruits of Crataegus azarolus L. var.
aronia were collected from Gafsa (Northwestern Tunisia, 36°

46′ 34″ N latitude and 8° 41′ 05″ E longitude) between
October and November 2018. The plant was identified
by Professor Elkadri Lefi, at the Department of Biology,
Faculty of Sciences of Gafsa, Tunisia. A voucher specimen
(MSE 0795) was deposited at the herbarium in the Faculty
of Sciences Gafsa, Tunisia. The pulps and seeds of the
fruits were separated, dried, and crushed individually to
obtain a fine powder.

2.2. Extraction of CAS and CAP. The powdered pulps and
seeds (60 g, each) were defatted with 95% ethanol and petro-
leum ether with continuous stirring for 24h. The residues
were dried and then extracted with hot water at 90°C for
5 h (three-time, 3 × 5 h). Following centrifugation at
4500 rpm for 10min, the supernatants were mixed with
95% cold ethanol (3: 1, v/v) at 4°C overnight. Precipitates
were dissolved in distilled water and deproteinized using
Sevag reagent (chloroform/butanol 4: 1, v/v). The deprotei-
nized mixture was dialyzed for 3 days (with 3500Da cut-off,
Spectra/Por™, Fisher Scientific, Illkirch, France) and lyophi-
lized toobtain thewater-soluble polysaccharides fromC. azar-
olus seeds and pulps named, respectively, CAS and CAP.

Finally, the CAP and CAS extraction yields were
calculated.

2.3. Characterization of CAS and CAP

2.3.1. Chemical Composition. Total carbohydrates were
assessed using the phenol–sulfuric acid method [18], and

concentrations were determined against the glucose stan-
dard. The total neutral sugar, total phenolic compounds,
and uronic acid contents were estimated using, respectively,
the sulfuric resorcinol method [19], Folin-Ciocalteu method
[20], and m-hydroxydiphenyl test [21]. The protein content
was determined using the Bradford method [22], and con-
centrations were estimated against the bovine serum albumin
standard. Ash content was determined according to AOAC
methods [23].

2.3.2. Infrared Spectroscopic Analysis (FT-IR). CAP and CAS
were individually mixed with potassium bromide powder
and pressed into pellets. The spectra were analyzed using
Fourier transform infrared spectrophotometer (Shimadzu,
FT-IR-8400S spectrophotometer equipped with IR solution
version 1.10) in the range of 400–4000 cm-1.

2.3.3. Scanning Electron Microscopy. CAP and CAS were
examined by scanning electron microscopy (SEM) model
JEOL (JSM-IT100). Each dried polysaccharide was mounted
on a metal stub and was sputtered with gold. The images
were observed at different magnifications (35x and 250x).

2.3.4. Helix-Coil Transition Analysis. The conformational
structure of CAP and CAS was analyzed using the Congo
red assay [24]. In brief, the two polysaccharides (2mg/mL
each) were individually mixed with 2mL of 100μM Congo
red solution. Different volumes of NaOH solution (2M) were
added to the mixture to achieve a final concentration of 0-
0.5M. Meanwhile, the solution prepared without adding
polysaccharides was considered as the control. The maxi-
mum UV-vis absorption was measured from 250 to 550nm
using Analytik Jena spectrophotometer.

2.4. Antioxidant Activity

2.4.1. DPPH Radical Scavenging Activity. The scavenging
capacity of CAP and CAS against DPPH radical was assayed
using the method of Bersuder et al. [25]. Aliquots of polysac-
charides (500μL) at different concentrations (0.1-4mg/mL)
were mixed with DPPH solution (125μL, 0.2mM) and
deionized water (375μL), then incubated for 1 h in the dark.
The positive standards (butylated hydroxytoluene and vita-
min C) were prepared using the same procedure. The absor-
bance was measured at 517 nm. The scavenging activity of
DPPH radicals was calculated according to

Scavenging activity %ð Þ = AbsControl −AbsSample
AbsControl

× 100: ð1Þ

2.4.2. H2O2 Scavenging Activity. The scavenging capacity of
CAP and CAS against H2O2 radical was conducted according
to the modified procedure of Liu et al. [26]. Briefly, 0.5mL of
CAP and CAS at various concentrations (0.1, 0.5, 1.5, 2.5, 3,
and 4mg/mL) were individually mixed with 0.1M phosphate
buffer (1.2mL, pH7.4) and 40mM H2O2 solution (0.3mL),
then incubated for 10min at room temperature. The positive
standard in this assay was vitamin C. The absorbance of each
sample was measured at 230 nm. The scavenging activity of
H2O2 radicals was calculated according to Equation (1).
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2.4.3. Fe2+-Chelating Activity. The chelating capacity of fer-
rous ions by CAP and CAS was assessed using ferrozine
reagent procedure as described previously with slight modifi-
cations [27]. Solution of polysaccharides (500μL) at different
concentrations (0.1-4mg/mL) were mixed with 2mM FeCl2
(100μL), 5mM ferrozine (200μL), and deionized water
(200μL) and incubated for 10min at 25°C. In the control
solution, the sample was replaced by deionized water. The
positive standard in this assay was EDTA (ethylenediamine-
tetraacetic acid). The ferrous ion chelation activity was calcu-
lated according to Equation (1).

2.4.4. Lipid Peroxidation Inhibition Activity. The inhibition
effect of CAP and CAS on lipid peroxidation was carried
out as described by Yen and Hsieh [28] using mice liver
homogenate as the lipid-rich media, FeCl2–H2O2 as inducer,
and ascorbic acid as the standard. The livers of Swiss albinos
mice obtained from the departmental animal house at the
Faculty of Sciences Gafsa were dissected, washed, and
homogenized into ice-cold Tris-HCl buffer (1%, pH7.4).
The resulting reaction mixture was centrifuged for 30min
at 9000 rpm at 4°C. Aliquots (500μL) were mixed with solu-
tions of polysaccharides (500μL) at different concentrations
(0.5-6mg/mL), then 50μL of FeCl2 (0.5mmol/L) and H2O2
(0.5mmol/L) was added to start lipid peroxidation. After
incubation for 30min at 37°C, the trichloroacetic acid
(500μL, 20%) was added to precipitate proteins, and the mix-
ture was centrifuged. The thiobarbituric acid (1mL, 0.8%)
was added to the obtained supernatant, then heated in boil-
ing water for 9min. The absorbance of the supernatant was
recorded at 532 nm. The inhibition was calculated using

Inhibition rate %ð Þ = 1 − A1 −A2ð Þ
A0 × 100, ð2Þ

where A0 and A1 were, respectively, the absorbance without
and with the test sample, and A2 was the absorbance without
liver homogenate.

2.5. Enzyme Inhibitory Activity Assays

2.5.1. Acetylcholinesterase Inhibition. The antiacetylcholi-
nesterase effects of CAP and CAS on AChE was analyzed
using the modified procedure of Ellman et al. [29]. Briefly,
a mixture of 300μL (50mM) Tris-HCl buffer pH8, 100μL
of each polysaccharide, and 30μL AChE solutions was well
shaken and incubated for 15min. Then, 130μL of AChI
(acetylthiocholine iodide) and 440μL of (3mM) DTNB
(5,5′-Dithiobis-(2-nitrobenzoic acid)) were added. Galanta-
mine was used as the positive control. The absorbance was
measured at 412 nm.

The inhibition activity was calculated using

Inhibition activity %ð Þ = 1 − ES
E

× 100: ð3Þ

ES and E were the respective activity of enzyme with and
without the test sample.

2.5.2. α-Amylase Inhibition. The α-amylase inhibitory activ-
ity of CAP and CAS was assessed as described by Oboh
et al. [30] with minor modifications. Firstly, 500μL of differ-
ent concentrations (0.1-5mg/mL) of each polysaccharide
prepared in PBS (20mM) were mixed with α-amylase
(500μL, 1.0U/mL) prepared in NaCl (6.0mM) and incu-
bated for 10min at 37°C. Then, potato starch solutions
(500μL, 1%) was added to the mixture and re-incubated for
10min at 37°C. Finally, the reaction was stopped using
1mL of dinitrosalicylic acid (DNS) reagent and heated in
boiling water for 5min. The absorbance of the resulting mix-
ture was measured at 520nm. The acarbose was used as the
positive control.

The inhibitory activity was estimated as follows:

Inhibition %ð Þ = Abs520control −Abs520 sample
AbsA1control

× 100:

ð4Þ

2.6. Antibacterial Activity

2.6.1. Microorganisms. Microorganisms used in this study
represent pathogenic species commonly associated with
sanitary relevance. These bacterial organisms, including
Gram-positive and Gram-negative, are the main source
that causes severe infections in humans. Antibacterial
activity of polysaccharides was tested against Gram-
positive and Gram-negative bacterial strains from the
American Type Culture Collection. The test organisms
used here are as follows: Escherichia coli (ATCC 35218),
Enterococcus faecalis (ATCC 29212), Pseudomonas aeruginosa
(ATCC 27853), Listeria monocytogenes (ATCC 19117),
Klebsiella pneumoniae (ATCC 13883), Staphylococcus
aureus (ATCC 25923), Bacillus cereus (ATCC 11778), and
Salmonella typhimurium (ATCC 23564).

2.6.2. Disc Diffusion Assay. Antibacterial activity of CAP and
CAS (15mg/mL) was performed by disc diffusion method.
The suspensions of bacteria (200μL, 106CFU/mL, with
CFU/mL of bacterial cells estimated by absorbance at
600 nm) were spread on Mueller–Hinton (MH) agar
(Sigma-Aldrich) already cast into Petri dishes. Next, impreg-
nated sterile paper discs (6mm diameter, 1mm thickness)
with 10μL of each polysaccharide were deposited individu-
ally on Petri dishes, then incubated for 24 h at 37°C. The
antimicrobial activity was evaluated by measuring the inhi-
bition zone surrounding the discs (mm) using vernier cali-
per (accuracy 0.02mm). Gentamicin at 20μg/disc was used
as the positive control.

2.6.3. Minimum Inhibitory Concentration (MIC). TheMIC of
different polysaccharides was performed using the 96-well
microdilution method as previously described by Gullon
et al. [31]. The microorganism suspension was prepared in
order to obtain a final cell density of about 106CFU/mL.
Serial dilutions of each polysaccharide from 1.56 to
25mg/mL were prepared using MH broth. Subsequently,
100μL of the diluted samples were distributed into the
microplate. To the above dilutions, equal volumes (100μL)
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of the different bacterial suspensions (106CFU/mL) were
added. Plates were then incubated at 37°C for 24 h. The
MIC was considered as the lowest concentration of drugs
or substances able to inhibit any visible microbial growth.

2.7. Statistical Analysis. Statistical analysis was performed
using the SPSS version 18.0 software. All data were analyzed
using a one-way analysis of variance (ANOVA) (Tukey test).
All values are expressed as mean ± standard deviation (SD)
and p < 0:05 considered significant.

3. Results and Discussion

3.1. Extraction Yields and Physicochemical Property of
Polysaccharides. The extraction yields and chemical compo-
sition of the crude polysaccharides CAS and CAP obtained
from C. azarolus seeds and pulps, respectively, are summa-
rized in Table 1. The extraction yield of CAP (6.92%) was
higher than that of CAS (2.58%). Pawlaczyk-Graja [10]
reported that the extraction yield of polysaccharides from
C. monogyna flowers and fruits ranged from 16.7 to 4.1%.
Our results were in line with previous reports suggesting that
the differences in species, conditions, and type of extraction
procedure could influence the extraction yield of polysaccha-
rides [32]. CAP and CAS showed relative high ash content

(3.08% in CAP and 3.99% in CAS). This high content could
be related to the presence of residual inorganic salt after the
purification of polysaccharides. Protein contents were
0.83% and 5.68% for CAP and CAS, respectively. CAP
showed 82.35% of carbohydrate and 52.86% of neutral sugar
contents, which were higher than those of CAS (64.93% of
carbohydrate and 45.25% of neutral sugar). Uronic acid con-
tents were 29.49% for CAP and 19.68% for CAS suggesting
the presence of acidic polysaccharides [33].

3.2. FT-IR Spectrometric Analysis. For quick evaluation of the
important functional groups and linkage of polysaccharides,
the FT-IR spectrum of CAP and CAS was performed, and
results are illustrated in Figure 1. The comparison of both
spectra indicated similar patterns. Both spectra showed
broad peaks at around 3396 cm-1 which were ascribed to
the stretching vibration of hydroxyl groups in the constituent
sugar residues [34]. The peaks at approximately 2924 and
1242 cm-1 were related to the C–H asymmetric stretching
vibration [35]. The peak located at 1537 cm-1 suggested the
presence of phenolic groups [36]. The absorbance peaks at
about 1743 cm-1, 1689 cm-1, and 1522 cm-1 were attributed
to carboxyl and carboxylate vibrations, showing the presence
of uronic acids [37, 38], which was verified by chemical anal-
ysis. The region at around 1000–1200 cm-1 indicates the

Table 1: Global composition of CAP and CAS extracted from Crataegus azarolus.

Yield
(%, w/w)

Carbohydrate
(%, w/w)

Neutral
sugar

(%, w/w)
Proteins
(%, w/w)

Uronic acid
(%, w/w)

Polyphenolics
(%, w/w)

Ash
(%, w/w)

CAP 6:92 ± 0:15b 82:35 ± 0:23b 52:86 ± 0:19b 0:83 ± 0:01b 29:49 ± 0:04b 1:10 ± 0:01b 3.03± 0.08a

CAS 2:58 ± 0:05a 64:93 ± 0:41a 45:25 ± 0:31a 5:68 ± 0:05a 19:68 ± 0:10a 2:13 ± 0:16a 3.99±0.04b

Values are means ± SD of three separate experiments. Different letters indicate a comparison between the two polysaccharides at a level of p < 0:05.
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Figure 1: Fourier-transform infrared spectroscopy spectra of CAS and CAP.
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presence of pyranose [39]. The characteristic absorptions at
854 cm-1 and 921 cm-1 might be attributed to the existence
of α and β configurations in CAP and CAS [40].

3.3. SEM Analysis. The microstructure of the two samples
indicated differences when analyzed by SEM at different mag-
nifications (35x and 250x) (Figure 2). CAS consisted of many
small particles in aggregation with irregular shape and dimen-
sions [41], whereas CAP has a relatively uniform surface with
schistose substances. Nep and Conway [42] reported that the
method of the preparation of the plant material may affect the
shape and surface topology of polysaccharides.

3.4. Triple-Helical Conformation Analysis. The Congo red is a
sensitive technique to confirm the conformational structure
of the polysaccharides as a triple-helical structure [43]. In
general, when a polysaccharide with a triple-helical confor-
mation is mixed with Congo red, the λmax will shift towards
a longer wavelength [33]. But this λmax will decrease rapidly
with the increase of NaOH concentrations (Figure 3). Our
results showed that the λmax of Congo red-CAP complex
and Congo red-CAS complex presented a comparable shift
trend as Congo red alone once the concentration of NaOH
increased from 0 to 0.5mol/L, suggesting no triple-helical
conformation for both polysaccharides.

3.5. In Vitro Antioxidant Activities Analysis

3.5.1. DPPH Radical Scavenging Activity. The scavenging
rates of DPPH radicals by both polysaccharides increased
with the increase of concentrations ranging from 0.1 to
4mg/mL (Figure 4(a)). The scavenging effects attained max-
imum values of 83.2% and 63.74% for CAP and CAS, respec-

tively, at the concentration of 4mg/mL. It can be seen that the
scavenging capacity of C. azarolus polysaccharides to DPPH
radicals was similar to other polysaccharides. For example,
polysaccharides extracted from Crataegus pinnatifida Bunge
(CPPu) have been reported to have a DPPH radical scaveng-
ing activity of 87.4% at a concentration of 5mg/mL [44]. CAS
had lower efficacy to scavenge DPPH (SC50 = 2:56mg/mL)
than CAP (SC50 = 1:47mg/mL). However, the free radical
scavenging ability of CAP and CAS was lower than that of
the positive control (vitamin C, SC50 = 0:47mg/mL). The

Figure 2: Scanning electron micrographs of polysaccharides from CAP and CAS (1: magnification 35x, scale bar 500μm; 2: magnification
250x, scale bar 100 μm).
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DPPH radical scavenging ability of CAP and CAS was higher
than that of polysaccharide extracted from the fruits ofMorus
nigra [45] but lower than that from Nitrari retusa fruit poly-
saccharide [3]. Previous studies suggested that the content of
uronic acid is a key factor in the antioxidant effects of polysac-
charides [46, 47]. Our study showed that CAP and CAS con-
tained 29.49 and 19.68% uronic acid, respectively, which
might serve as an important factor in the antioxidant capacity
of both polysaccharides. Moreover, Blois [48] has demon-
strated that hydroxyl groups are involved in the higher DPPH
radical scavenging ability, which was consistent to our study.

3.5.2. H2O2 Scavenging Activity. H2O2 scavenging effect of
CAP and CAS are illustrated in Figure 4(b). Clearly, there
was a dose-dependent relationship between each polysaccha-
ride concentrations and the antioxidant activity. The scav-
enging efficiencies of CAP, CAS, and vitamin C at 4mg/mL
were 82.48%, 66.51%, and 90.25%, respectively. The SC50
value of the CAP was 1.34mg/mL, which was 2.39-fold lower
than that of CAS, indicating that CAP is a more potent rad-
ical scavenger than CAS. In the literature, there are no studies
on the H2O2 scavenging effect of the Crataegus species pre-
sented in the present study. In comparison with polysaccha-

rides extracted from the fruits of other species, the antiradical
activity of CAP was found near to that of Lycium europaeum
(SC50 = 1:19mg/mL) [49] and lower than that of Nitraria
retusa (SC50 = 2:03mg/mL) [3]. Previous studies reported
that the scavenging abilities of polysaccharides might depend
on functional groups as COOH and OH present in saccha-
rides structures [50], which was similar to the present study.

3.5.3. Ferrous Ion-Chelating Activity. Metal ions (Cu2+, Pb2+,
and Fe2+) are well known to be engaged in the generation
of free radicals and indirectly contribute to lipid peroxida-
tion and DNA damage. The Fe2+-chelating activity of the
CAP and CAS was evaluated, and results are illustrated
in Figure 4(c). Both polysaccharides exhibited good
concentration-dependent ferrous ion-chelating ability. The
chelating potential increased with increasing concentration
up to 4mg/mL and was always stronger for CAP than CAS.
This might be due to a stronger chelating ability for CAP
compared to CAS. At 4mg/mL, the chelating potential of
CAP, CAS, and EDTA were 88.43%, 76.53%, and 96.76%,
respectively. The EC50 values of CAP and CAS were 1.38
and 2.28mg/mL, respectively, which were higher than that
of EDTA (0.51mg/L). In the literature, there are no studies
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Figure 4: Antioxidant activities of CAP and CAS with different methods. (a) DPPH scavenging activity; (b) H2O2 scavenging activity; (c)
Fe2+-chelating activity; (d) lipid peroxidation inhibition activity. Positive controls consisted of Vit C, BHT, and EDTA (vitamin C,
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on the Fe2+-chelating activity of the Crataegus species pre-
sented in the present study. The ferrous ion-chelating ability
of CAP was found to be close to that of polysaccharides
extracted from Malva aegyptiaca (EC50 = 1:15mg/mL) [51].
It has been reported that biomolecules including some func-
tional groups like COH can easily chelate ferrous (Fe2+) ions.
In addition, the substances, which own two ormore functional
groups of OH, COOH, SH, S, CO, and O, had a structure-
function relationship [52]. Accordingly, the chelating activity
of CAP and CAS might be in part linked to the presence
of the strong Fe2+-chelating groups in their structure.

3.5.4. Liver Lipid Peroxidation Inhibition Activity. Lipid per-
oxidation is widely recognized as a key process in diverse dis-
eases [26]. In the literature, there are no studies on the lipid
peroxidation inhibition activity of the Crataegus species pre-
sented in the present study. The effects of both polysaccha-
rides on FeCl2–H2O2-induced lipid peroxidation in mice
liver are illustrated in Figure 4(d). The result showed that
liver lipid peroxidation was effectively inhibited by CAS
and CAP at all tested concentrations. At 6mg/mL, the inhibi-
tion effects of CAP, CAS, and vitamin C were 70.07%,
54.32%, and 96.57%, respectively. The EC50 values of the
CAP and CAS were 4.44 and 5.52mg/mL, respectively, which
were lower than that of vitamin C (2.29mg/mL). It has been
documented that the protective effects of natural antioxi-
dants (like polysaccharides) on lipid peroxidation induced
by Fe2+/H2O2 system might be assigned to their scavenging
abilities on H2O2 and OH radical [53]. Another report [26]
revealed that polysaccharides with high metal ion-chelating
activities are able to inhibit peroxidation by interfering with
the free radical reaction chains.

3.6. Enzyme Inhibitory Activity Assays

3.6.1. Acetylcholinesterase (AChE) Inhibition. Alzheimer’s
disease (AD) is an example of a neurodegenerative disease
which affects the memory. One of the goals of AD treatment
is to increase the level of acetylcholine in the brain by inhibit-

ing the activity of AChE [54]. Due to the lack of effective
treatments for AD and the considerable side effects associ-
ated with the use of neuroprotective drugs, researchers are
constantly looking for new and more effective therapies
from medicinal plants to improve the loss of neuronal
cells and brain restoration [55, 56]. Natural antioxidants
have been often evinced to have beneficial effects in the
prevention of memory impairment. Several investigations
have demonstrated the neuroprotective and antioxidant
effects of phenolic compounds extracted from hawthorn
seeds [57, 58]. These properties were explained by their
inhibitory effects on lipid peroxidation and free radicals.
Other studies have demonstrated the anticholinesterase
activity of phenolic compounds isolated from C. oxya-
cantha [59]. However, the enzyme inhibitory effect of
polysaccharides from these plants has not yet been
reported. In this study, the effects of both polysaccharides
extracted from C. azarolus on AChE inhibitory activities
are presented in Figure 5(a). The inhibitory effect of
CAP and CAS was proportional to the concentration
(10-120μg/mL). The inhibitory effect of CAS was 55.46%
at a concentration of 120μg/mL, which was weaker than
the CAP (71.03%) under the same concentration. As sum-
marized in Table 2, CAP displayed important AChE
inhibitory activity (EC50 = 61:56 μg/mL) as compared to
CAS (EC50 = 115:94 μg/mL). In this study, the anticholin-
esterase drug galantamine (an alkaloid isolated from the
bulbs and flowers of Galanthus caucasicus and FDA-
approved drug) was used as a positive control. Results
showed that the activity of CAP was less than that of galan-
tamine (EC50 = 10:53 μg/mL). AChE inhibitory activity of
CAP and CAS were higher than those of Physalis alkekengi
and Flammulina velutipes polysaccharides [60, 61]. This
implies that CAS and CAP could be potential inhibitors of
AChE and beneficial for human memory. The modulation
of the cholinergic system could be one of the pharmacolog-
ical mechanisms used by Crataegus to improve memory
problems. In this inhibitory mechanism, polysaccharides
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Figure 5: Enzyme inhibitory activities of CAP and CAS with various concentrations. (a) AChE inhibitory activity; (b) α-amylase inhibitory
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(inhibitors) bind to the same active site as the enzyme
substrate, and this implies a nonmetabolizable response [62].

3.6.2. α-Amylase Inhibition. Among the available procedures,
inhibition of α-amylase has seemed to be an important ther-
apeutic target for the prevention and management of type 2
diabetes mellitus [63]. When the activity of α-amylase is
inhibited, the increase of blood glucose concentrations can
be delayed. There were a few researches on the inhibition
activity of α-amylase by Crataegus sp. extracts [8]. As far as
we know, the present study is the first to describe the
in vitro antidiabetic effects of polysaccharides from C. azaro-
lus. As illustrated in Figure 5(b), both polysaccharides dis-
played α-amylase inhibitory activity in a dose-dependent
manner at the range from 0.1 to 5.0mg/mL. The EC50 value
of CAP was about 1.81mg/mL, which was more effective
than that of CAS (EC50 = 3:01mg/mL) but less effective than
that of acarbose (EC50 = 0:82mg/mL) (Table 2). The inhibi-
tory effects of polysaccharides from C. azarolus were similar
to that from Diaphragma juglandis fructus [64], but also
more efficient than that from Corbicula fluminea [65] and
blackcurrant fruits [66], which have been demonstrated as
potent antihyperglycemic agents in vivo. Authors have sug-
gested that the high antihyperglycemic capacity of polysac-
charides was related to their structure, the configuration of
glycosidic bonds, monosaccharide composition, and the high
uronic acid content. Other studies have shown that the inhi-
bition mechanism could be that the carboxyl group and the
hydroxyl group of polysaccharides could react with the
amino acid residues of the digestive enzymes, which caused
a reduction in the α-amylase activity [67].

3.7. Antimicrobial Activity. Antimicrobial activity of CAP
and CAS tested against seven microorganisms is summarized

in Table 3. The result evidenced that the antibacterial effect of
both polysaccharides varied with bacterial species. The inhi-
bition zone diameter of the two polysaccharides against
tested bacteria ranged from 10.16 to 16.65mm and from
8.61 to 11.66mm for CAP and CAS, respectively. CAP
revealed the best antimicrobial effect against L. monocyto-
genes and B. cereus. However, CAS displayed the highest
inhibition activity toward E. faecalis. Moderate antibacterial
activity was observed against K. pneumoniae with inhibition
zones of 10.16 and 9.16mm for CAP and CAS, respectively.
The antimicrobial activity of polysaccharides was also
estimated as minimal inhibitory concentration (MIC)
(Table 3). Results proved that Gram-positive bacteria were
more sensitive to both polysaccharides than Gram-negative.
These findings were in accordance with previously published
searches [68, 69]. They reported that the outer membrane of
Gram (-) bacteria may act as a barrier against hyperacidifica-
tion, which would result in differences in the resistance of
Gram-positive and Gram-negative bacteria to the action of
antimicrobial drugs. The mechanisms related to the antimi-
crobial activity of polysaccharides were still not clear and
deserve to be deepened. The broad-spectrum antimicrobial
potential of CAP and CAS may be explained by their higher
total sugar contents [48]. He et al. [70] reported that the inhi-
bition effect of polysaccharides may be explained by their
abilities to induce the disruption of the cell wall of bacteria
and to enhance ion permeability leading cell death. Further,
DNA might be decomposed into small fragment after the
polysaccharide has penetrated into the cell, which can make
the bacteria unable to develop resistance. The best activity
against Listeria monocytogenes was observed with CAP
(MIC < 1:56mg/mL). In the literature, there are no studies
on the antimicrobial activity of the Crataegus species pre-
sented in the present study. The results of MICs denoted that

Table 2: Inhibition activity (IC50 values) of CAS and CAP on studied enzymes.

CAP CAS Galantamine Acarbose

AChE (IC50, μg/mL) 61:56 ± 0:64b 115:94 ± 4:68c 10:53 ± 0:23a —

α-Amylase (IC50, mg/mL) 1:81 ± 0:03b 3:01 ± 0:08c — 0.82±0.04a

Values are means ± SD of three separate experiments. Different letters indicate a comparison between the samples at a level of p < 0:05.

Table 3: The antimicrobial activity and MICs of CAP and CAS.

Microorganism
Diameters of inhibition zone (mm) MICs (mg/mL)
CAP CAS CAP CAS

Gram negative

Escherichia coli (ATCC 35218) 12:48 ± 0:02 11:25 ± 0:05 3.12 6.25

Klebsiella pneumoniae (ATCC 13883) 10:16 ± 0:04 9:16 ± 0:07 6.25 12.5

Salmonella typhimurium (ATCC 23564) 13:21 ± 0:01 11:62 ± 0:02 1.56 3.12

Gram positive

Bacillus cereus (ATCC 11778) 14:49 ± 0:01 8:61 ± 0:02 1.56 3.12

Listeria monocytogenes (ATCC 19117) 16:65 ± 0:05 11:4 ± 0:11 <1.56 1.56

Staphylococcus aureus (ATCC 25923) 12:36 ± 0:04 10:15 ± 0:05 3.12 6.25

Enterococcus faecalis (ATCC 29212) 13:95 ± 0:05 11:66 ± 0:04 3.12 1.56

MIC: minimum inhibitory concentration. Values are means ± SD of three separate experiments.
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MIC values of polysaccharides from C. azarolus found in this
study were lower than those obtained in previous findings,
which were on the order of 6.25 and 25mg/mL for polysac-
charide from Saussurea controversa and from 3.12 to
100mg/mL for polysaccharide from Lallemantia royleana,
respectively [71, 72].

4. Conclusion

In the present study, two polysaccharides (CAP and CAS)
were extracted from C. azarolus fruits, and their physiochem-
ical properties were characterized using FT-IR, SEM, and
Congo red test. Results of FT-IR analysis indicated that
CAP and CAS have similar functional groups that are typical
of polysaccharides. Both polysaccharides were devoid of heli-
cal conformation. CAP had the highest H2O2 and DPPH rad-
icals scavenging activities and maximum chelating activity on
ferrous ion. In vitro CAP remarkably decreased liver lipid
peroxidation levels induced by FeCl2–H2O2. Both polysac-
charides successfully inhibited AChE and α-amylase activi-
ties and exhibited effective antimicrobial properties against
seven pathogenic bacteria. Altogether, our studies suggest
that C. azarolus fruits can be further used in food production
as a useful natural antioxidant ingredient. Nevertheless, addi-
tional studies deserve to be carried out which will elucidate a
clear structure-activity relationship.
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Mitochondrial dysfunction and oxidative stress characterize major factors involved in the activation of complex processes
corresponding to apoptosis-mediated neuronal senescence of dopaminergic neurons (DA) in Parkinson’s disease (PD). Here, we
evaluated the molecular mechanisms participating in the treatment of a 1-methyl-4-phenyl-1,2,3,6-tetrahydopyridine- (MPTP-)
intoxicated PD mouse model in response to chlorogenic acid (CGA). The results indicate that CGA treatment significantly
improved the motor coordination of the MPTP-intoxicated mice. CGA also alleviated the fall in activity of mitochondrial
complexes I, IV, and V in accordance with ameliorating the level of superoxide dismutase and mitochondrial glutathione in the
midbrain of MPTP-induced mice. CGA inhibited the activation of proapoptotic proteins including Bax and caspase-3, while
elevating the expression of antiapoptotic protein like Bcl-2 consequently preventing the MPTP-mediated apoptotic cascade. The
study also revealed the improved phosphorylation state of Akt, ERK1/2, and GSK3β which was downregulated as an effect of
MPTP toxicity. Our findings signify that CGA may possess pharmacological properties and contribute to neuroprotection
against MPTP induced toxicity in a PD mouse model associated with phosphorylation of GSK3β via activating Akt/ERK
signalling in the mitochondrial intrinsic apoptotic pathway. Thus, CGA treatment may arise as a potential therapeutic candidate
for mitochondrial-mediated apoptotic senescence of DA neurons in PD.

1. Introduction

Research has made it quite prominent that aging plays a
prime factor in the onset and progression of the sporadic
form of the neurodegenerative disorder Parkinson’s disease
(PD) characterized by the progressive depletion in the
dopaminergic (DA) neurons along with the formation
and accumulation of Lewy bodies primarily in the sub-
stantia nigra pars compacta (SNpc) region of the midbrain
and striatum [1, 2]. While the exact mechanism of PD is
yet to be elucidated, promising evidences indicate that oxi-
dative stress and mitochondrial dysfunction play a crucial
part in its pathogenesis [3–5]. Lewy body formation, com-

prising aggregates of abnormal or misfolded α-synuclein
protein, is a hallmark feature of both familial and sporadic
forms of PD. α-Synuclein undergoes aggregation predomi-
nantly in the cytoplasm of the neurons present in SN and
leads to multifactorial etiopathogenesis of PD [6, 7].
Numerous pathogenic signals including increased oxidative
stress, mitochondrial impairment, ubiquitin-proteasomal
dysfunction, and activation of apoptotic cascade along
with progressive loss of DA neurons cause the pathogene-
sis of PD [8, 9]. The clinical evidences from PD patients
show the formation of free radicals consisting of reactive
oxygen species (ROS), reactive nitrogen species (RNS),
mitochondrial dysfunction, adenosine triphosphate (ATP)
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depletion, and the initiation of caspase-mediated apoptotic
cascade in the SN [10].

At the present time, the chief treatment options for PD
are dopamine agonists or L-DOPA which simply provide
symptomatic relief and show less efficiency with prolonged
use resulting in disabling fluctuations and dyskinesias [11].
Therefore, finding treatments with neuroprotective potential
against PD in correspondence with effectiveness in relieving
symptoms is the main therapeutic target for slowing disease
progression. Emerging evidences prove the vital role of apo-
ptosis in PD pathogenesis. Hence, the apoptotic pathway
can be prohibited by providing neuroprotection through
the use of phytochemicals [12, 13].

Various cell culture models and animal models of PD
have been developed using environmental neurotoxins
including rotenone, 6-hydroxydopamine, and 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) [14]. The
charged metabolite of MPTP is 1-methyl-4-phenylpyridi-
nium (MPP+) acting as the main toxic agent against the DA
neurons in the brain of MPTP-intoxicated in vivo models
[15, 16]. MPP+ readily enters the nigrostriatal neurons via
dopamine transporters and affects the SN neuronal loss con-
tributing to striatal dopamine depletion further causing a
parkinsonian syndrome. It also disturbs the mitochondrial
membrane potential causing mitochondrial stress. It is
reported to be an inhibitor of complex I of the electron trans-
port chain (ETC) and contributes to considerable oxidative
stress along with ATP depletion, consequently leading to
neuronal loss [17]. MPP+ activates the proapoptotic proteins,
making the mitochondrial membrane permeable for cyto-
chrome c to be released into the cytosol. Associated signalling
inactivates protein kinases (MAPKs) which might have a
neuroprotective role.

Akt and ERK signalling pathways play crucial parts in
neuroprotection via cell differentiation, proliferation, sur-
vival, and apoptosis [18, 19]. Numerous recent researches
have highlighted the neuroprotective role of plant-based
compounds and polyphenols in PD against neurotoxins
and neuroinflammation, by promoting cell survival through
their antioxidative, anti-inflammatory, and immunomodula-
tory effects [20–22]. Evidences prove the pivotal role of poly-
phenols in replenishing the neurons via increased activity of
ETC, regulating the effects on redox potential, and restrain-
ing the apoptosis as a result of increased mitochondrial bio-
genesis [23–25]. CGA, a type of phenolic acid, is reported
to demonstrate antiapoptotic, anti-inflammatory, antioxida-
tive, neurotrophic, anticancerous, and neuroprotective prop-
erties. CGA is formed as an ester of the cinnamic acids
including caffeic acid and quinic acid forming the second
major component of coffee after caffeine [26–28]. In our pre-
vious study, we reported the antioxidative and anti-
inflammatory property of CGA against the neurotoxic effect
of MPTP in mice [26]. The present study was undertaken to
assess the neuroprotective effect of CGA in an MPTP-
induced PD mouse model via modulation of Akt, ERK1/2,
and GSK3β signalling pathways. Under this context, the
effect of CGA was evaluated against MPP+-mediated DA
neuronal injury in MPTP-intoxicated mice showing its neu-
roprotective role via the activation of Akt and ERK1/2 signal-

ling pathways by inhibiting the mitochondrial dysfunction.
Our findings may be helpful in designing a CGA-based treat-
ment strategy against PD.

2. Chemical and Reagents

2.1. Reagents and Antibodies. Mannitol, sodium dihydrogen
phosphate, bovine serum albumin (BSA), oxidized cyto-
chrome c, digitonin, disodium hydrogen phosphate, potas-
sium chloride, ammonium chloride, and reduced
nicotinamide adenine dinucleotide phosphate (NADPH)
were purchased from Sisco Research Laboratories (SRL,
Mumbai, India). MPTP, DABCO, 5,5-dithiobis 2-
nitrobenzoic acid (DTNB), normal goat serum (NGS), and
chlorogenic acid were obtained from Sigma-Aldrich (St.
Louis, MO, United States). Sucrose and sodium carbonate
were purchased from Merck (Darmstadt, Germany), and
EGTA and sodium dodecyl sulphate (SDS) were obtained
from HiMedia (Mumbai, India). Glycylglycine buffer,
sodium fluoride, paraformaldehyde, Tris buffer, and trichlo-
roacetic acid were bought from LobaChemie, India. Primary
antibodies for Akt, p-Akt, caspase-3, ERK, p-ERK, and Bcl-2
were acquired from Abcam Life Science, Biogenuix Medsys-
tems Pvt. Ltd. (New Delhi, India), and primary antibodies
for GSK3β, p-GSK3β, TH, β-actin, and Bax were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, United
States).

2.2. Experimental Animals. The experiment was conducted
using male Swiss albino mice (25 ± 5 g), obtained from the
Institute of Medical Sciences’ animal facility, Banaras Hindu
University, Varanasi (India). The mice were kept in clean
polypropylene cages with constant light-dark cycles of 12 h
prior to the start of experiment. Mice were provided with
ad libitum water and standard diet pellet until the dosing
was completed. The experimental protocol was established
according to the Animal Ethics Committee’s guidelines of
Banaras Hindu University, Varanasi, India.

2.2.1. Animal Dosing. Experimental animals were random-
ized into four groups: control, MPTP, MPTP+CGA, and
CGA (n = 10/group). The dosing was administered in accor-
dance with our previous study with some modifications [26].
The mice in the control group received normal saline orally,
once consequently for 24 days. In MPTP+CGA and CGA
groups, the oral administration of 50mg/kg of CGA was
done, once daily for 24 days. Except for the control and
drug-only groups, all the mice received MPTP (30mg/kg)
intraperitoneally, dissolved in normal saline for five consecu-
tive days (from the 20th to 24th day of CGA dosing). After
completion of dosing, a behavioral test was performed from
the 25th to 28th day, and thereafter, mice were sacrificed to
isolate the brains for the mitochondrial dysfunction assay,
Western blotting, and immunohistochemical analysis.

2.2.2. Behavioral Test. To assess the effect of MPTP intoxica-
tion on motor function impairment in the parkinsonian
mouse model, four behavioral tests were conducted, includ-
ing the rotarod test, pole test, catalepsy test, and traction test.
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2.2.3. Rotarod Test. The training for 3 consecutive days was
given to the animals from all the groups at a speed of 5 rpm
for the rotarod test. Thereafter, the time on the rotarod for
each animal was noted down for maximum 5min. The test
was done four times, and finally, the average time for which
the mice stayed on the rotarod was noted down [29]. After
the completion of dosing, the rotarod test was again con-
ducted and the time spent on the instrument was noted down
for each mouse.

2.2.4. Pole Test. Bradykinesia in PD mouse models is usually
evaluated by this test [30]. The test was done after the last
MPTP injection was given. Mice were supported on the top
of a pole (diameter 10mm, height 52 cm, with a rough sur-
face). The T-turn (time to turn) was recorded accordingly
to the time taken by mice to step down the length of the pole.

2.2.5. Traction Test. Equilibrium and the muscle strength are
measured by performing the traction test [30], and it was also
conducted on the same day as the pole test. The forepaws of a
mouse were located on a suspended horizontal bar, while its
hind limb placements were scored from 1 to 3, with the
lowest score indicating the severe motor and balance impair-
ment. The following criteria were used to evaluate the score:
the score was 3, if both hind limbs seized the bar, while it was
2 or 1, if one or no hind limb seized the bar, respectively.

2.2.6. Catalepsy Test. Catalepsy is a state of the behavioral test
that characterizes the muscle stiffness in which the mice fail
to change its posture which is imposed to them and is esti-
mated by making the animals to stand on a wooden platform
where their hind limbs were placed on a wood and forelimbs
on the ground [31]. The intensity of catalepsy was measured
when a mouse moved its hind limbs from a wooden platform
(3 cm). The mice were adapted for 3min, and if the latency
exceeds more than 180 sec, the test was ended.

2.3. Mitochondrial Parameter Analysis

2.3.1. Isolation of Mitochondria. Differential centrifugation
was done to isolate the mitochondrial pellet from the mouse
brain [32]. The midbrain regions of the mice were homoge-
nized in homogenizing buffer, prepared by mixing 5mM
HEPES, 225mM mannitol, 1mM ethylene glycol tetra acetic
acid (EGTA), 75mM sucrose, and 1mg/ml BSA (pH 7.4).
Centrifugation of the homogenates was done at 2,000 g for
30min at 4°C. The pellet was disposed, and the supernatant
obtained was again set to centrifugation for 10min at
12,000 g. The resultant pellet constituting the mixture of
mitochondria and synaptosomes was dissolved in the
homogenizing buffer containing digitonin (0.02%). Crude
mitochondrial fraction was finally obtained by the centrifu-
gation of the suspended mixture for 10min at 12,000 g.
Homogenizing buffer without BSA and EGTA was used to
wash the crude mitochondrial fraction twice, and finally,
the resuspension was done in phosphate buffer (50mM, pH
7.4). The Bradford assay was performed to estimate proteins
in all the samples. The assays were done within 24 h of the
mitochondrial isolation using 20μg proteins.

2.3.2. Complex I-III Assay. The assay of complexes I-III was
done by incorporating the method of Sood et al. in our study
[33]. In this assay, the catalytic oxidation of NADH to NAD+

is done by subsequently reducing cytochrome c. The reaction
mixture was prepared by the addition of glycylglycine buffer
(0.2M, pH 8.5), NADH (6mM in 2mM glycylglycine buffer),
and cytochrome c (10.5mM). 20μg mitochondrial protein
was added to the reaction mixture, and the absorbance
change was recorded at 550nm for 2min. At 340 nm, the
extinction coefficient for NADH is 6.22/mM/cm. The activity
of the enzyme was expressed in terms of nmol NADH oxidi-
zed/min/mg protein.

2.3.3. Complex IV Assay. Complex IV activity was deter-
mined by measuring the oxidation of reduced cytochrome c
by complex IV at 550 nm [33]. The reaction mixture con-
sisted of mitochondrial protein (20μg) along with 10mM
phosphate buffer (pH 7.4), reduced cytochrome c, and potas-
sium ferricyanide. Cytochrome c (oxidized) solution
(10mg/ml) was used to prepare cytochrome c (reduced), by
adding few crystals of sodium borohydride in it. Absorbance
change was monitored for about 3min. The activity of com-
plex IV was calculated in nmol cytochrome c oxidized/-
min/mg of protein.

2.3.4. Complex V Assay. Griffiths and Houghton’s method
was used to perform the mitochondrial ATPase test [34].
In this assay, the amount of inorganic phosphorus liber-
ated is measured that is obtained by the hydrolysis of
ATP to ADP. The incubation of the reaction mixture
(1.0ml) containing the mitochondrial sample and ATPase
buffer (2mM MgCl2, 5mM ATP, and 50mM Tris HCl,
pH 8.5) was done for 5min at 30°C. After the addition
of 10% TCA, the reaction mixture was spun at 3,000 g
for 10min. Phosphorus was assayed, and the results were
expressed as nmol inorganic phosphate (Pi) liberated/-
min/mg protein.

2.3.5. Mitochondrial GSH. Mitochondrial GSH (reduced)
content was estimated by using the mitochondrial protein
sample (20μg) suspended in phosphate buffer. The addition
of 25% trichloroacetic acid (TCA) was done to the samples,
followed by a brief centrifugation at 1,500 g. The supernatant
was collected, and 5,5-dithiobis 2-nitrobenzoic acid (DTNB)
was added that reacts with thiol groups to form 2-nitro-
5mercapto benzoic acid. Absorbance was recorded at
412 nm. Further, commercially available GSH was used to
prepare the standard curve, and the amount was expressed
as mmol of GSH/g mitochondrial protein [35].

2.3.6. Manganese SOD. The activity of manganese superoxide
dismutase (Mn-SOD) was estimated by adding hydrogen
peroxide that selectively inhibits Cu/Zn-SOD, in order to dis-
tinguish the enzyme’s activity from that of Cu/Zn-SOD. The
reaction mixture consists of sodium carbonate (50mM),
EDTA (0.1mM), Triton-X (0.6%), and NBT (90mM) and
hydroxylamine hydrochloride [35]. Hydroxylamine hydro-
chloride undergoes photooxidation to produce superoxide
that further reduces nitroblue tetrazolium (NBT) in the reac-
tion medium, and this reaction was inhibited by SOD. The
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reading was taken at 560nm for 3min, and the SOD activity
was expressed as units. The one enzymatic unit of SOD was
defined as the amount of enzyme required for 50%
inhibition.

2.4. Western Blot (WB) Analysis. The SN of the mouse brain
was homogenized using the lysis buffer (RIPA) and agitated
for 2 h at 4°C. The homogenate was centrifuged
(12,000 rpm, 30min) to collect the supernatant, and the
Bradford assay was performed to quantify the protein con-
centration. The total protein extract (50μg) was loaded onto
the polyacrylamide gels. After electrophoresis, proteins were
transblotted to PVDFmembranes and sequentially incubated
overnight at 4°C with Bax (1 : 1000), Bcl-2 (1 : 800), caspase-3
(1 : 1000), p-Akt (1 : 1000), Akt (1 : 1000), p-ERK1/2
(1 : 1000), ERK1/2 (1 : 800), p-GSK3β (1 : 1000), GSK3β
(1 : 1000), and β-actin (1 : 1000) and then with a horseradish
peroxidase- (HRP-) conjugated secondary antibody for 2 h at
room temperature. TBST washing (twice) separated each
step. Blots were visualized using the DAB system (buffer
+substrate+chromogen), and for each band, the relative den-
sity was calculated with respect to that of β-actin. Quantity
One software (Windows, Bio-Rad) was used to indicate the
expression of relative density.

2.5. Immunohistochemistry (IHC). Mice from each group
were sacrificed using pentobarbital perfused intracardially
with chilled 0.9% saline solution and further using 4% para-
formaldehyde solution (prepared in 0.1M phosphate-
buffered saline, pH 7.4). Again, paraformaldehyde (10%)
was used to postfix the brains overnight, and further, 30%
sucrose solution was used to immerse the brains. Using the
standard protocol, immunohistochemical staining was per-
formed for TH, p-Akt, p-Erk1/2, and p-GSK3β [36]. Coronal
brain sections were cut to 20μm thickness using a cryotome
(Leica, Wetzlar, Germany). Tissue sections were washed with
0.01M PBS (pH 7.4) 2 × 10 min, followed by 1h blocking
with 10% NGS in PBST and then 1% BSA-PBST. The sec-
tions were rinsed with PBS and incubated with primary anti-
bodies for TH (1 : 1000), p-Akt1 (1 : 500), p-ERK1/2 (1 : 500),
and p-GSK3β (1 : 500) at 4°C (16h). The brain sections were
then treated with FITC-conjugated (for anti-mice primary)
and TRITC-conjugated (for anti-rabbit primary) secondary
antibodies (diluted in 1% BSA-PBS) at room temperature
(2 h). Tissue sections were washed thrice at each step with
1% BSA-PBS and PBS, respectively, and mounted with poly-
vinyl alcohol with DABCO. Images were captured with a
fluorescent microscope (Nikon, Thermo Fisher Scientific).
All images were then processed by ImageJ software (NIH,
United States). Results expressed as a % area were reported.

2.6. Statistical Analysis. The analysis of data was done by one-
way analysis of variance (ANOVA) using the Student–New-
man–Keuls test and by Student’s two-tailed t-test using
GraphPad Prism software. The results are expressed as the
mean ± SEM. p values < 0.05 were considered statistically
significant.

3. Results

3.1. Behavioral Parameter Analysis. The results from our
study suggested that the MPTP-intoxicated animal falls early
from the rotarod in comparison to the control (p < 0:001,
Figure 1(a)). On the other hand, when CGA was adminis-
tered to the MPTP-treated mice, the time on the rotarod
was significantly increased (p < 0:001). The pole test clued
that MPTP-treated mice showed prolonged locomotor activ-
ity time (p < 0:01 Figure 1(b)). The time duration was short-
ened significantly (p < 0:01) in pretreated mice with CGA,
suggesting that bradykinesia induced by MPTP was allevi-
ated by CGA treatment. Results of the traction test
(Figure 1(c)) showed that PD mice have decreased strength
and latency time as their hind limb grip score was lower
(p < 0:01) than that of the control group. However, pretreat-
ment with CGA increased the traction score (p < 0:05). This
indicates that prophylactic treatment with CGA could miti-
gate the initial lesions induced by MPTP. Catalepsy was
observed among the MPTP group of mice after MPTP injec-
tion. Latency in the catalepsy test among the MPTP group
showed increased tendency with time (p < 0:001,
Figure 1(d)), and the observed data was of considerable dif-
ference from that of the control group, while the mice treated
with CGA showed little latency time (p < 0:001) than the
MPTP-intoxicated group. Any significant changes did not
appear in the neurobehavioral activity between the control
and CGA-alone-treated animals. Thus, results have sug-
gested that CGA improved the neurobehavioral lesion of
MPTP-injected PD mice.

3.2. CGA Modulates MPTP-Induced Mitochondrial ETS
Impairment in Mice. Oxidative phosphorylation in mito-
chondria produces ATP as energy, and this process requires
the organized action of five enzyme complexes located in
the inner membrane. Catastrophic consequences can be
observed by any defect in these energy-generating complexes,
not only because of the ATP loss but also due to the down-
stream functional loss. Therefore, the consequences of MPTP
intoxication on the energy metabolism in the mouse brain
were studied. MPTP being a known complex I inhibitor of
the electron transport chain (ETC) was analysed to study
its effect on the activities of various complexes in the respira-
tory chain. As Figure 2 depicted, the effect of CGA treatment
on MPTP induced alterations in the complex I-III
(Figure 2(a)), IV (Figure 2(b)), and V activities
(Figure 2(c)). There was significant attenuation in the activi-
ties of complexes I-III (p < 0:01), complex IV (p < 0:01), and
complex V (p < 0:001) in MPTP-intoxicated PD mice as
compared to control mice. CGA administration before
MPTP intoxication to the animals helped improve the activ-
ities of complexes I-III (p < 0:01), complex IV (p < 0:01), and
complex V (p < 0:001) in comparison with MPTP-
intoxicated mice. No potential change was observed when
the control group was treated with CGA.

3.3. Mitochondrial Glutathione and Superoxide Dismutase
Level Analysis. Further, the increase in oxidative stress result-
ing in the reduced function of ETC leads to the utilization of

4 Oxidative Medicine and Cellular Longevity



mitochondrial GSH (mtGSH, reduced) and reduction in
activity of Mn-SOD (Figures 3(a) and 3(b)). In the MPTP-
treated group, a significant reduction (p < 0:001) in the levels
of mtGSH was observed when compared to the control
group. Consequently, a decline in the Mn-SOD activity
(p < 0:001) was also analysed with MPTP intoxication
(Figure 2(b)). On the other hand, CGA has reduced the
ROS generation and ameliorated the function of ETS which
has ultimately increased the level of mtGSH (p < 0:001) and
Mn-SOD (p < 0:001) significantly.

3.4. CGA Inhibited the MPTP-Induced Activation of
Mitochondrial Apoptosis Signalling in SN of Mice. Various

apoptosis-linked molecules were investigated to study the
effect of CGA on MPTP-induced cell apoptosis rate
(Figures 4(a)–4(c)). The MPTP-intoxicated group showed a
considerable increment in the Bax/Bcl-2 ratio (p < 0:001) as
compared to the control group whereas in CGA-treated PD
mice, the Bax/Bcl-2 ratio (p < 0:001) was observed to be signif-
icantly reduced, which shows the antiapoptotic property of
CGA in the parkinsonian mouse model (Figure 4(b)). The
expression level of cleaved caspase-3 (p < 0:01) was observed
to be elevated in the SN of PD mice whereas attenuated
expression of cleaved caspase-3 (p < 0:05) was observed in
the drug-treated group, which shows the antiapoptotic prop-
erty of CGA in the parkinsonian mouse model (Figure 4(c)).
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Figure 1: Mouse behavioral analysis. CGAmediated alteration in the neurobehavior of MPTP-injected mice. (a) Time on the rotarod test. (b)
T-turn time in the pole test. (c) Traction score in the traction test. (d) Cataleptic test. Values are represented in the form of mean ± SEM
(n = 10). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. Results were studied using the one-way ANOVA and further using the Newman-Keuls test.
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3.5. CGA Ameliorates the Dysregulation of Akt and ERK
Activation and GSK3β Phosphorylation in the MPTP-
Induced Parkinsonian Mouse Model. Expression of Akt,
ERK1/2, and GSK3β was examined by WB (Figures 4(a)
and 4(d)–4(f)) and immunohistochemical analysis tech-
niques (Figures 5–7). Akt and ERK1/2 are the major down-
stream key components of the MAPK signalling pathway.
Our WB data emphasised that MPTP treatment significantly
attenuated the p-Akt/Akt ratio (p < 0:001) compared with
the control group, whereas in CGA treatment, the p-Akt/Akt
ratio (p < 0:01) was observed to be elevated in PD mice
(Figure 4(d)). Similar results were also observed through
the IHC technique showing reduced Akt phosphorylation
in MPTP-treated mice (p < 0:001) whereas increased p-Akt
was observed in the case of CGA-treated PD mice
(Figure 5). Furthermore, WB results depicted downregula-
tion in the p-ERK1/2/ERK1/2 ratio in MPTP-treated mice
(p < 0:001). On the contrary, the p-ERK1/2/ERK1/2 ratio
(p < 0:001) was upregulated in CGA-treated PD mice
(Figure 4). Likewise, in IHC, the ERK1/2 phosphorylation
was seen to be decreased on MPTP intoxication (p < 0:001)
whereas CGA treatment has significantly increased the phos-
phorylation of ERK1/2 (p < 0:001) (Figure 7).

GSK3β has recently been linked to the mitochondrial
intrinsic apoptosis. The WB result for GSK3β revealed a
reduced p-GSK3β/GSK3β ratio (p < 0:001) in MPTP-
intoxicated mice whereas in CGA-treated PD mice, the ratio
of p-GSK3β/GSK3β was seen to be increased (p < 0:001,
Figure 4(f)). To further confirm the results, IHC was per-
formed presenting a substantial decrease in GSK3β phos-
phorylation after MPTP treatment in comparison with the
control group (p < 0:01). On the other hand, CGA adminis-

tration leads to the enhanced phosphorylation of GSK3β
when compared to that of MPTP-intoxicated mice
(p < 0:001, Figure 6).

3.6. CGA Ameliorates MPTP-Induced Degeneration of TH-
Positive DA Neurons in SN of PD Mice. IHC of TH was per-
formed to assess the loss of DA neurons in SN of MPTP-
intoxicated mice (Figure 8). The data obtained in this study
reveals the significant reduction of DA neurons in SN of an
MPTP-intoxicated mouse as compared to control
(p < 0:001). Alternatively, CGA pretreatment has done a sig-
nificant increment in the expression of TH (p < 0:01) in SNpc
of an MPTP-intoxicated mouse as compared with the
MPTP-induced PD mouse model. Therefore, CGA adminis-
tration was beneficial in protecting the DA neurons from
MPTP-induced toxicity, as suggested by our findings.

4. Discussion

PD occurs due to multiple factors, and various pathways
interact to induce the neurotoxic pathways that result in the
loss of DA neurons in SN [6, 9]. The pathways that lead to
neurodegeneration are influenced by each other, yet their
contribution is independent of each other. All the involved
processes work in an interdependent manner influencing
one another and finally leading to the neuronal senescence
[37, 38]. Hence, neuroprotection in the case of PD can only
be achieved when combination of drugs or treatments target-
ing the collective pathways is used for PD therapy. In this
context, it has been seen that CGA shows multiple biological
effects such as antioxidant, anti-inflammatory, neuroprotec-
tive, and neurotrophic activities [27, 39–41]. In this study,
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Figure 2: CGAmediated alterations on mitochondrial complexes I-III (a), IV (b), and V (c) of the electron transport chain in the midbrain of
mice. Values are represented in the form ofmean ± SEM (n = 5). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. Results were studied using the one-
way ANOVA and further using the Newman-Keuls test.
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CGA act as a potent neuroprotective agent by preventing
mitochondrial dysfunction and suppressing the apoptotic
death of DA neurons. Also, these neuroprotective effects of
CGA were found to be mediated by Akt, ERK1/2, and GSK3β
pathways. Different behavioral tests such as pole, catalepsy,
rotarod, and traction tests have helped determine severe
motor abnormalities in MPTP-intoxicated PD animal
models [42–45] (Figure 1). Similar coordination deficits
and motor impairment were also seen in our study too upon
MPTP toxicity in mice, thereby validating our mouse model
of PD in accordance with previous researches, whereas the
neurobehavioral lesion was found to be alleviated by CGA
as suggested by the behavioral tests which is in correspon-
dence with earlier reports [30, 46–48].

The key pathogenic events of PD mainly constitute oxi-
dative stress and mitochondrial dysfunction, and these two
further lead to the onset of cell apoptosis [49, 50]. The neuro-
toxin MPTP serves as an excellent animal model for PD as it
mimics the symptoms of PD extensively. The neurotoxin
after crossing the blood-brain barrier (BBB) is acted upon
by monoamine oxidase B to get converted into MPP+ and
enters into DA neurons specifically via the dopamine trans-
porter. MPP+ is the toxic metabolite of MPTP, and its accu-
mulation inside the neurons leads to the inhibition of
complex I of mitochondria and induces the ROS generation
and depletion of ATP, prompting to the loss of the DA neu-
rons [51, 52]. Both in vivo and in vitro models have been
studied for the effects of antioxidants on the reduced mito-
chondrial dysfunction along with the enhanced growth of
certain bioactive compounds in the mitochondria [53, 54].
In this study, MPTP intoxication reduced the activity of com-
plexes I-III, complex IV, and complex V of ETS (Figure 2).
Thus, the pattern of electron transfer was disturbed byMPTP

toxicity, which has led to the reduction in the effectiveness of
the enzymes NADH dehydrogenase and cytochrome oxidase
causing structural damage to the mitochondria leading to its
dysfunction. Further, because of the reduced functioning of
ETC, oxidative stress arises triggering the reduced activity
of Mn-SOD and excessive consumption of mitochondrial
GSH (mtGSH, reduced). A research done by Davey et al. in
1998 proposed that the reduced activity of complex I occurs
because of the depletion in the level of GSH in PC12 cells,
which also leads to the abolition of the threshold effect [55].
The mechanism involved in the threshold hindrance of com-
plexes I-III by the GSH level is still unknown. The antioxi-
dant GSH is known to protect the mitochondria from lipid
peroxidation [56], and hence, its depletion might make com-
plexes I-III prone to the attack of the free radicals. Also, in
previous researches, it has been described that the depleted
level of GSH causes the degeneration and enlargement of
the brain mitochondria [57] and induces the reduced activity
of complex IV in the purified brain mitochondrial prepara-
tions [58]. The decreased level of the reduced glutathione
or the generation of reactive oxygen and nitrogen species
by the activated glial cells might be the main factors for the
decline in complex IV activity. Moreover, mitochondrial
damage also takes place by the production of NO as a result
of inflammation-mediated expression of iNOS induction,
which causes the loss of the cytochrome oxidase pathway
by producing RNS consequently inducing protein nitration
in the ETC. Moreover, various in vivo studies have reported
the pivotal role of GSH in protecting DA neurons against
the adverse effects of MPTP on PD [59, 60]. Therefore, the
findings suggest that the fall in the reduced GSH level
increased the sensitization of mitochondria against the addi-
tional metabolic insult resulting in its dysfunction and cell
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Figure 3: Alterations in mitochondrial antioxidant defence in respective treatment groups. (a) Mitochondrial reduced glutathione level. (b)
Mitochondrial superoxide dismutase level. Values are represented in the form ofmean ± SEM (n = 5). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
Results were studied using the one-way ANOVA and further using the Newman-Keuls test.
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death. However, in our study, CGA was found to be potent in
maintaining the appropriate activity of the ETC complexes
(Figure 3). Furthermore, as reflected by the enhanced levels
of reduced mtGSH and Mn-SOD, CGA was also effective in
reducing the burden on the mitochondrial antioxidative
defence by inhibiting the generation of the ROS. Thus, the
ability of CGA to improve the activities of the complexes of
ETC might be due to increased availability of reduced gluta-
thione which is known to be the primary defence of mito-
chondrial functions.

The mitochondrion, an intracellular powerhouse, plays
various crucial roles including energy production, free reac-
tive oxygen and nitrogen species production along with crit-
ically modulating the apoptosis, and cell survival which are
essential factors of aging. During the pathological alterations,

the leakage of cytochrome c and various proapoptotic mole-
cules in the cytoplasm from the mitochondria, as a result of
the mitochondrial membrane permeabilization, induces the
cascade of events leading to cell death [61]. Mitochondrial
dysfunction is generally estimated by measuring the mem-
brane potential which is found impaired in the intrinsic apo-
ptotic pathway [62]. The regulation of caspase activation is
maintained as a result of the equilibrium between the expres-
sion levels of proapoptotic and prosurvival proteins in the
Bcl-2 family [63], although Bcl-2 and Bax have contrasting
functions while being from the same Bcl-2 family. While
Bcl-2 is known for its antiapoptotic activity, Bax exhibits
the proapoptotic function [64]. Numerous studies have sug-
gested that the neurotoxin MPTP disturbs the balance of
Bax/Bcl-2, which increases the activity of caspase-3 in the
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Figure 4: (a–f) Relative expression of Bax, Cas-3, Bcl-2, p-Akt, p-ERK1/2, and p-GSK3β in SN of mice was studied using the Western blot
technique and densitometry analysis of proteins. CGA suppressed MPTP-induced apoptosis via Akt, GSK3β, and ERK1/2 signalling
pathways in parkinsonian mice. It has normalized the deregulated expression of Bax, Bcl-2, and Cas-3 in MPTP-injected mice (a, b). β-
Actin protein served as an internal control. Values are represented in the form of mean ± SEM (n = 5). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p <
0:001. Results were studied using the one-way ANOVA and further using the Newman-Keuls test. Abbreviations: CGA: chlorogenic acid;
MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; SEM: standard error of the mean.
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Figure 5: Immunohistochemical staining to analyse the expression of p-Akt in SN of different experimental groups. CGA administration
enhanced the expression of p-Akt in SN of parkinsonian mice (20x magnification after staining). Values are expressed as mean ± SEM
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Figure 6: Immunohistochemical staining to analyse the expression of p-GSK3β in SN of different experimental groups (a, b). Profound
expression of p-GSK3β in the CGA-administered group compared to the MPTP-intoxicated PD mice (20x). Values are represented as
mean ± SEM (n = 5). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. Results were studied using the one-way ANOVA and further by the
Newman-Keuls test.
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DA neurons [65, 66]. The release of apoptogenic proteins like
cytochrome c into the cytosol from mitochondria mediates
the activation of caspase-3 which occurs because of the loss
of membrane integrity by the action of Bax, hence leading
to cell death. Both in vivo and in vitro studies have suggested

the increased expression of caspase-3 upon MPTP toxicity
[67]. The activation of caspase-9 provokes the initiation of
the apoptotic cascade on the release of cytochrome c into
the cytosol after mitochondrial dysfunction. As a result,
caspase-3 gets activated by changing the morphology of
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Figure 7: Immunohistochemical staining to analyse the expression of p-ERK1/2 in SN of different experimental groups. Upregulated
expression of p-ERK1/2 due to CGA administration in parkinsonian mice (20x). Values are represented as mean ± SEM (n = 5). ∗p < 0:05,
∗∗p < 0:01, and ∗∗∗p < 0:001. Results were studied using the one-way ANOVA and further by the Newman-Keuls test.
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by the Newman-Keuls test.
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mitochondria leading to apoptosis [68]. However, CGA
treatment has protected the DA neurons from MPTP-
induced toxicity and inhibited the apoptosis (Figure 4).

Different cellular processes like growth, proliferation,
survival, and apoptosis are regulated by the phosphorylation
of some key proteins such as Akt, ERK1/2, and GSK3β [69,
70]. The activation of Akt is found to be linked with the sur-
vival pathways of various cell types including neuronal cells
as reported in several in vitro studies. Moreover, the survival
of different neurons is linked with different neurotrophic fac-
tors, whose activation is mediated by Akt [71–73]. Also,
transfection with a constitutively activated form of Akt is
observed to promote the survival of the neurons without
any other support whereas the cultured neurons were found
to be dead when the activation of the kinase was interfered
[74]. Studies from different sources have suggested the role
of GSK3β in the modulation of apoptosis, and the inhibition
of GSK3β has protected the DA neurons fromMPTP toxicity
as suggested by different cell and animal models of PD [45,
75, 76]. The localization of GSK3β has been mainly observed
in the cytosol, but its expression in lower amounts has also
been seen in the nucleus and mitochondria [77, 78]. Further-
more, it is also linked with the regulation of the mitochon-
drial cell death pathway by eliciting numerous stressful
conditions within the neurons [78]. Researchers have also
suggested that inhibition of GSK3β rescues the DA neurons
from MPTP toxicity, indicating its association with the path-
ogenesis of PD [45, 76]. The neurotoxin MPTP has been
found to decrease the phosphorylation of Akt and GSK3β
as suggested by previous studies, leading to the death of the
DA neurons [70, 79]. MPTP-induced cell injury is mediated
by GSK3β, which is the downstream target of Akt [75, 80].
Mitochondrial dysfunction is seen to be facilitated by GSK3β,
and its inhibition prevents the loss of neurons mediated by
the suppression of proapoptotic proteins [76, 81]. In accor-
dance with previous studies, MPTP has decreased the phos-
phorylation of Akt (Figures 4 and 5) and GSK3β (Figures 4
and 6), and CGA on the other hand has protected Akt and
GSK3β from dephosphorylation in the MPTP-intoxicated
mouse model. It has been observed that Akt controls the
phosphorylation of GSK3β and thereby inhibits its activity
[82]. MAPK signalling pathways also play a pivotal role in
many cellular events, such as proliferation, differentiation,
and apoptosis. The three major MAPK subfamilies have been
chiefly characterized including ERK, JNK, and p38 [83].
Among them, ERK is known to enhance the DA neuronal
survival rate, as in SH-SY5Y cells, the phosphorylation of
ERK was seen to be suppressed after 4 h of MPP+ toxicity
[84, 85]. Our study also shows the dephosphorylation of
ERK upon MPTP intoxication, while the neuroprotective
agent CGA was potent in abolishing the neurotoxic effect in
the PD mouse model (Figures 4 and 7).

TH immunoreactivity in this study was performed to
examine the CGA-mediated alterations on the functions of
DA neurons in the SN of the MPTP-intoxicated parkinso-
nian mouse model [86] (Figure 8). Our immunohistochemi-
cal study has shown the reduction expression of TH-positive
DA neurons in SN of an MPTP-intoxicated mouse, i.e., the
characteristic feature of PD, as suggested by numerous

reports [44, 60, 86]. However, CGA has rescued this debilitat-
ing effect and hence conferred about protecting the DA neu-
rons against MPTP-induced neurodegeneration in the mouse
model of PD.

Hence, our results have therefore suggested that the neu-
roprotective effect of CGA is mediated by the GSK3β
phosphorylation-associated Akt/ERK pathway and is potent
in inhibiting the mitochondrial intrinsic apoptosis due to
MPTP toxicity in the mouse brain.

5. Conclusion

This study demonstrates the neuroprotective effect of CGA
against MPTP-induced apoptotic cell death in mice. The
Bax/Bcl-2 ratio, mitochondrial dysfunction, and expression
of caspase-3 were seen to be significantly increased on MPTP
intoxication. Furthermore, the phosphorylation of Akt,
ERK1/2, and GSK3β was also reduced by the neurotoxic
action of MPTP. However, CGA was potent in protecting
the neurons against MPTP-induced cytotoxicity through
the phosphorylation of GSK3β via activation of Akt and
ERK1/2 signalling pathways in the mouse model of PD.
Thus, this study helps to understand the neuroprotective
mechanism of CGA in PD which can be further explored
for clinical interventions.
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Parkinson’s disease (PD) is a neurodegenerative disease characterized by the gradual loss of dopaminergic (DA) neurons in the
substantia nigra (SN) and the formation of intracellular Lewy bodies (LB) in the brain, which aggregates α-synuclein (α-Syn) as
the main component. The interest of flavonoids as potential neuroprotective agents is increasing due to its high efficiency and
low side effects. Baicalin is one of the flavonoid compounds, which is a predominant flavonoid isolated from Scutellaria
baicalensis Georgi. However, the key molecular mechanism by which Baicalin can prevent the PD pathogenesis remains unclear.
In this study, we used bioinformatic assessment including Gene Ontology (GO) to elucidate the correlation between oxidative
stress and PD pathogenesis. RNA-Seq methods were used to examine the global expression profiles of noncoding RNAs and
found that C/EBPβ expression was upregulated in PD patients compared with healthy controls. Interestingly, Baicalin could
protect DA neurons against reactive oxygen species (ROS) and decreased C/EBPβ and α-synuclein expression in pLVX-Tet3G-
α-synuclein SH-SY5Y cells. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mouse model, the results
revealed that treatment with Baicalin improved the PD model’s behavioral performance and reduced dopaminergic neuron loss
in the substantia nigra, associated with the inactivation of proinflammatory cytokines and oxidative stress. Hence, our study
supported that Baicalin repressed C/EBPβ via redox homeostasis, which may be an effective potential treatment for PD.

1. Background

Oxidative stress has been implicated as a key contributor to
the progression of Parkinson’s disease (PD) [1]. Because of
the presence of enzymes such as tyrosine hydroxylase (TH)
andmonoamine oxidase (MAO), the neurotransmitter dopa-
mine can be a major source of oxidative stress [2]. Although
the human brain comprises less than 5% of total body weight,
over 20% of the whole body’s total oxygen is supplied to it,
with part of oxygen subsequently converted into reactive
oxygen species (ROS) [3]. Oxidative stress is considered as
the common underlying source that leads to cellular dysfunc-
tion and demise, the idiopathic and genetic causes of PD [3,
4]. Overexpression of oxidative stress may lead to excitotoxi-

city, mitochondrial dysfunction, protein misfolding and
aggregation, and cellular apoptosis, which are all in vitro
indicators of PD [5]. It is also believed that the increased
levels of oxidized lipids are the common underlying mecha-
nism that leads to dopaminergic neuronal loss in the substan-
tia nigra (SN) and motor dysfunctions in PD patients [6].

α-Synuclein accumulates in Lewy bodies, which is the
hallmark in PD pathology and leads to neurodegeneration
and the progression of the clinical symptoms [7]. Although
its exact role in neuropathology is unclear, evidence suggests
that overexpression of α-synuclein might lead to oxidative
stress [8] and neuroinflammation [9]. Then, oxidative stress
can modulate the α-synuclein structure, leading to other for-
mations of the protein, including fibrils and oligomers [10],
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the latter of which can develop into positive regulation of
ROS. The phosphorylation of α-synuclein at Ser-129, the
major phosphorylation site, has been demonstrated from an
animal model study to produce neurotoxic effects [11].
Moreover, oxidative stress leading to ROS production and
α-synuclein aggregation is one of the proposed mechanisms
for the death of dopaminergic neurons in PD patients [12].

It is also notable that the mitochondrial complex I dam-
age is demonstrated to be one of the primary PD pathological
animal models due to the administration of mitochondrial
toxins, such as MPTP and rotenone, leading to the formation
of α-synuclein aggregates and oxidative stress [13]. Methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochon-
drial complex I inhibitor, is metabolized into the toxin 1-
methyl-4-phenylpyridine (MPP+) by monoamine oxidase B
(MAO-B) and later taken up by dopaminergic neurons,
which finally lead to neuronal death and ROS production
[14]. In rats, chronic administration of rotenone caused
selective nigral dopaminergic neuron loss and a significant
reduction in complex I activity while at the same time, the
ROS level increased [15]. Altogether, these findings suggest
that mitochondrial respiratory chain impairment, in particu-
lar, complex I deficiency, and the subsequent increase in ROS
production may directly contribute to the pathology of PD.

Usually, it is mitochondria’s ability to produce ATP
appropriately in response to energy demands [16]. Mean-
while, the transcription factor CCAAT/enhancer-binding
protein beta (C/EBPβ), which is expressed in the brain, is also
involved in the regulation of ATP synthesis [17]. Remark-
ably, C/EBPβ−/− mice exhibit resistance to excitotoxicity-
induced neuronal cell death, which indicates that C/EBPβ
might regulate gene expression implicated in brain damage
[18].

There have been many reports discussing effective anti-
oxidant treatment for PD, as well as conventional com-
pounds that possessed antioxidant activity [19, 20].
Therefore, it is reasonable to suggest that targeting oxidative
stress may be an effective strategy for PD medicine. Natural
compounds have always been attractive targets for discover-
ing new drug candidates, and many flavonoid derivatives are
effective in preventing oxidative stress [21]. For instance,
Hesperidin, the main flavanone derivative of citrus fruits,
can alleviate cognitive impairment and oxidative stress in a
mouse model of Alzheimer’s disease [22]. Similarly, myrici-
trin, a flavonoid isolated from Chinese bayberry bark and
fruit, demonstrated a protective effect on MPP+ induced
mitochondrial dysfunction in a DJ-1-dependent manner in
SN4741 cells [23]. Taking into account information about
flavonoids, the focus of our paper is to discuss Baicalin, which
is also the flavonoid derivatives, the principal component in
the roots of Scutellaria radix, known as Huang Qin in Chi-
nese traditional medicine [21, 24]. In recent years, several
studies have shown that Baicalin displays a potent neuropro-
tective effect in various in vitro and in vivo models of neuro-
nal injuries [25]. In particular, Baicalin effectively prevents
neurodegenerative diseases through various pharmacological
mechanisms, including antiexcitotoxicity, antiapoptosis, and
anti-inflammation, promoting the expression of neuronal
protective factors [26]. However, the mechanism of which

Baicalin can inhibit neurodegeneration and regulate redox
homeostasis is unclear. In this study, we used RNA-Seq to
examine the global expression profiles of noncoding RNAs
in PD patients and healthy controls, and then, we demon-
strated that Baicalin could protect cells from neurotoxicity
in vitro and in vivo. Subsequently, Gene Ontology analysis
displayed that, compared with the healthy controls, many
processes overrepresented in PD patients were related to glu-
cocorticoid receptor binding and cellular response to oxida-
tive stress. Our study may help extend understanding of the
roles of oxidative stress and provide new research directions
for PD.

2. Materials and Methods

2.1. Cell Lines and Cell Culture. Human cell line pLVX-
Tet3G-α-synuclein SH-SY5Y was provided by Dr. Jingxing
Zhang and supplemented with G418 (100μg/ml). The cells
were cultured in 1640 medium (Life Technologies, USA),
supplemented with 10% fetal bovine serum (Hyclone,
USA), penicillin (100U/ml), and streptomycin (100U/ml)
(ABAM Life Technologies, California, USA). Cell cultures
were maintained in 5% CO2 and air humidified in a 37°C
incubator [27].

2.2. Chemicals and Reagents. Baicalin was purchased from
the company (Sigma, USA), and the stock solutions were pre-
pared in dimethyl sulfoxide (DMSO) (Sigma, USA). For
in vivo experiments, Baicalin was dissolved in sterile PBS.

2.3. Bioinformatic Analysis. Differentially expressed genes
(DEGs) were determined from a treated versus control com-
parison of log2-transformed expression measurements using
the R package (http://www.bioconductor.org/packages/
release/bioc/html/edgeR.html), and the resulting p values
were adjusted using Benjamini and Hochberg’s approach
for controlling the false discovery rate (FDR) [28]. Differen-
tially expressed genes (DEGs) with statistical significance
were identified through volcano plot filtering. The thresholds
for DEG were absolute log2 fold change > 1 and p value <
0.01. Hierarchical clustering was performed using pheatmap
package in R. To understand the potential biological func-
tions of DEGs, we used clusterProfiler on R platform
(https://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html). GO terms with corrected p value less
than 0.05 were considered significantly enriched by DEGs.

2.4. Quantitative Real-Time PCR. Total RNA was extracted
using a TRIzol reagent (Invitrogen, California, USA) accord-
ing to the manufacturer’s instructions. Reverse transcription
was performed with SuperScript III reverse transcriptase
(Life Technologies, #18080085), and primers were designed
and purchased from TaqMan: CEBPB (Hs00270923_s1),
Cebpb (Mm00843434_s1), SNCA (Hs00240906_m1), Snca
(Mm01188700_m1), Il1b (Mm00434228_m1), Il6
(Mm00446190_m1), TNF-α (Mm00443258_m1), and TGFβ
(Mm01178820_m1). Real-time PCR was performed with a
TaqMan Universal Master Mix Kit (Life Technologies,
#4304473) by ABI 7500 Fast Real-Time PCR System. The rel-
ative quantification of the target genes was calculated by the
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comparative cycle threshold (CT) (2−ΔΔCT) method. The
expression of GAPDH was used as an endogenous control.
The relative quantification of gene expression was calculated
by the 2-ΔΔCT method. All tests were performed in triplicate
[29].

2.5. Protein Extraction and Western Blot Analysis. After the
cell treatment under different conditions, the cells were har-
vested and the total proteins were extracted. Equal amounts
of the proteins were loaded on SDS-PAGE gels, and the west-
ern blot assays were performed as previously described. α-
Synuclein (#610787, BD Biosciences, USA), α-synuclein pS-
129 (ab51253, Abcam, USA), p-C/EBPβ (#3084, CST,
USA), C/EBPβ (#7962, Santa Cruz, USA), TH (#2792 CST,
USA), and cleaved caspase-3 (#9664, CST, USA) were used
at a final concentration of 1mg/ml and were incubated over-
night at 4°C in the presence of 5% nonfat milk powder. β-
Actin (#3700, CST, USA) was used as the loading control
[30].

2.6. Cell Viability Assay. Cell cytotoxicity was assessed
in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide (MTT) assay. After different treat-
ments, 20μl of MTT (5mg/ml in PBS, Sigma, USA) was
added to each well and the plates were incubated for 2 h.
The resulting formazan product was dissolved with DMSO,
and the absorbance at a wavelength of 490nm was read using
a microplate reader (BioTek Instruments Inc., USA) [31]. All
tests were performed in triplicate.

2.7. Intracellular ROS Measurement. The level of intracellular
reactive oxygen species (ROS) was detected by the DCFH-
DA method. After different treatments, cells were collected
and then incubated with 10μM DCFH-DA (ROS dye,
#C6827, Invitrogen, USA) for 1 hour at 37°C. The fluores-
cence intensity was measured by a microplate reader (BioTek
Instruments Inc., USA) with settings at excitation and emis-
sion equal to 485/535 nm, and all tests were performed in
triplicate [32].

2.8. Lactate Dehydrogenase (LDH) Cytotoxicity Assay. The
level of LDH was detected by LDH assay kits (Promega Cor-
poration, USA). After different treatments, the 100μl cell
medium of each sample was collected and incubated with
50μl of the CytoTox 96® Reagent for 30 minutes at room
temperature. Then, 50μl of Stop Solution was added to each
well, and the absorbance at 490 nm was recorded. All tests
were performed in triplicate.

2.9. Protein Carbonyl Assay Measurements and GSH/GSSG
Ratio. After different treatments, the protein carbonyl level
and GSH/GSSG ratio were measured from cell homogenates
using a Protein Carbonyl Assay Kit (#ab126287, Abcam,
Cambridge, MA, USA) and GSH/GSSG-Glo™ (Promega
Corporation, USA), respectively, according to the manufac-
turer’s guidelines [33]. All tests were performed in triplicate.

2.10. JC-1 Mitochondrial Membrane Potential Assay. After
different treatments, the cells were washed by PBS and
stained with 10μM JC-1 (Cayman, USA) for 1 hour at

37°C. Finally, the cells were photographed with a fluores-
cence microscope (Nikon, Japan) at Ex488nm/Em535 nm
and Ex 540mm/Em570 nm [34].

2.11. In Vivo Mouse Model Experiments.Male C57BL/6 mice
(weighing 20–30 g) were purchased from Shanghai SLAC
Laboratory Animal, housed, andmaintained at constant tem-
perature and humidity with a 12 h light/dark cycle in Tongji
University. Three-month-old mice (8 per group) were
injected a daily i.p. injection of MPTP (30mg/kg) or saline
treatment for 5 days [35] and then i.p. injection with
20mg/kg and 40mg/kg Baicalin for 2 weeks. Motor impair-
ments were tested with rotarod tests and grid tests after Bai-
calin treatment (8 mice per group). In the rotarod tests, mice
were trained for 2min at a speed of 4 r.p.m. and then per-
formed eight trials for a maximum of 5min with increasing
speed starting from 4 r.p.m. to 40 r.p.m. The fall-off time
was recorded. For inverted grid tests, mice were placed in
the center of a 30 × 30 cm screen with 1 cm wide mesh. The
screen was inverted head-over-tail and placed on supports
40 cm above an open cage with deep bedding. Mice were
timed until they released their grip or remained for 60 s.

2.12. Tissue Preparation. After 2 weeks of treatment and
behavior test, mice (3 per group) intended for immunofluo-
rescence (IF) staining and immunohistochemistry (IHC)
analysis were euthanasia and transcardially perfused with
PBS followed by 4% paraformaldehyde (PFA) in PBS. Brains
were postfixed for 24 h in 4% PFA at 4°C and transferred to a
solution of 30% sucrose in PBS for 24h at 4°C. The coronal
section of SN and STR was sectioned as 30μm free-floating
sections on a cryostat (Leica CM3050) and kept in PBS at
4°C [36]. The mouse brains intended for cell lysis (2 per
group) and mRNA (3 per group) were transcardially per-
fused with ice-cold PBS and later performed western blotting
and quantitative real-time PCR individually.

2.13. Immunofluorescence Staining. The number of TH- and
GFAP-positive cells in the substantia nigra was estimated
using a random sampling stereological counting method.
Images were sampled from at least four different points
within each substantia nigra section [37]. TH (ab6211),
GFAP (ab7260), and DAPI (ab104139) were from Abcam,
USA. All immunoreactive cells were counted regardless of
the intensity of labeling. The slides were photographed with
a fluorescence microscope (Nikon, Japan).

2.14. Immunohistochemistry Staining. Sections were pre-
pared, and the expression of 4-HNE in the striatum and sub-
stantia nigra was assessed using a technique that has been
reported previously [38]. In brief, the endogenous peroxidase
activity was inactivated with 10%methanol and 3% hydrogen
peroxide (H2O2) solution in PBS, pH 7.4, for 10min, and
nonspecific binding was blocked with 10% normal serum in
TBS containing 0.5% Triton X-100. The sections were incu-
bated overnight at 4°C with anti-4-HNE antibody (1 : 200
dilution in 1% normal serum in PBS containing 0.5% Triton
X-100; ab46545, Abcam). The sections were then incubated
with HRP-conjugated secondary antibody for 1 h. The slides
were identified following DAB incubation for 10min at room
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temperature. Finally, photographs were taken using a micro-
scope (Nikon, Japan).

2.15. Statistical Analysis.Data visualization and analysis were
performed with GraphPad Prism 6 (GraphPad Software Inc.,
La Jolla, CA, USA). Statistical analysis was performed using
either Student’s t-test or one-way ANOVA. Significant differ-
ence among groups was assessed as ∗p < 0:05, ∗∗p < 0:01, and
∗∗∗p < 0:001.

3. Results

3.1. The Functional Annotation of Bioinformatic Analysis in
PD Patients. To profile differentially expressed mRNAs of
PD patients and healthy controls, we obtained blood samples
from both groups. Then, the whole-genome sequencing and
alteration were analyzed. The mRNA was upregulated or
downregulated, respectively, by more than twofold in PD
patients vs. healthy controls (p < 0:05) (Figure 1(a)). Among
them, the results showed that C/EBPβ was upregulated in PD
patient blood samples compared with healthy controls
(Figure 1(b)). Gene Ontology (GO) is a commonly used bio-
informatic tool that provides comprehensive information on
gene function of individual genomic products based on
defined features [39]. This analysis was performed to estab-
lish the role of enrichment in molecular functions (MF), bio-
logical processes (BP), and cellular components (CC) in the
interaction networks of C/EBPβ. The enrichment analysis
showed that for biological processes in the C/EBPβ system,
most of the genes were enriched at “cellular response to oxi-
dative stress.” The cellular component analysis showed that
most of the genes were “nuclear chromatin.” The typical
molecular functions were “glucocorticoid receptor binding”
and “protein heterodimerization activity” (Figure 1(c)).
Hence, these results indicated that oxidative stress can be
an effective target for PD research and presented more possi-
ble research directions for in-depth investigation.

3.2. Baicalin Inhibits the Toxicity and Oxidative Stress in
pLVX-Tet3G-α-Synuclein SH-SY5Y Cell Lines. To examine
the neurotoxicity of α-synuclein in vitro, the Doxycycline
inducible pLVX-Tet3G-α-synuclein stable cell line was con-
structed, and the transfected efficiency was validated by
mRNA and western blotting, as presented in Figures 2(a)
and 2(b). To identify natural compounds capable of inhibit-
ing the toxicity, we initiated a cell-based assay to screen che-
micals extracted from Chinese herbal medicine [25]. The
toxicity was evaluated by the release of lactate dehydrogenase
(LDH). We found that 25μM or 50μM groups of Baicalin
(Figure 2(c)) showed the significant ability (p = 0:036 and p
= 0:02 individually) to protect cells from Dox-induced cell
death (Figure 2(d)). Further study indicated that Baicalin
exerted the protection effect on Dox-induced cells in a
dose-dependent manner (Figure 2(e)). The quantitative oxi-
dative stress level analysis showed that the 50μM Baicalin
group decreased the ROS level (Figure 2(f)) (p = 0:007) and
carbonyl expression (Figure 2(g)) (p=0.039) while increasing
the GSH/GSSH level (p = 0:048) (Figure 2(h)) compared to
the Dox-induced group. Hence, Baicalin inhibited toxicity

and balanced the redox homeostasis in pLVX-Tet3G-α-
synuclein SH-SY5Y cell lines.

3.3. Baicalin Protects against Dox-Induced Mitochondrial
Dysfunctions. To determine whether Baicalin possesses the
preventive effects against mitochondrial dysfunctions,
parameters of mitochondrial function were studied in
pLVX-Tet3G-α-synuclein SH-SY5Y cell lines. Mitochondrial
membrane potential (ΔψM) is an important parameter of the
mitochondrial function used as an indicator of cell health
[40]. JC-1 is a dye that can selectively enter into mitochon-
dria and reversibly change color from green to red as the
membrane potential increases [41]. In Figure 3(a), Dox-
induced JC-1 monomers were detected, which means that
damaged or unhealthy cells were upregulated. On the other
hand, increasing the concentration of Baicalin could induce
JC-1 aggregates (healthy cells), especially at 50μM
(p = 0:024). These results indicated that Baicalin could pro-
tect membrane potential from Dox-induced toxicity. To
assess whether Baicalin regulates CEBPB and SNCA mRNA
expression, we conducted quantitative RT-PCR (qRT-PCR)
assays with pLVX-Tet3G-α-synuclein SH-SY5Y cells and
found that CEBPB and SNCA were upregulated after DOX
treatment and it can be reversed by Baicalin in a dose-
dependent way (Figure 3(b)). Immunoblotting showed that
TH proteins revealed a dose-dependent elevation while p-
C/EBPβ, C/EBPβ, α-synuclein, and α-synuclein pS129
decreased in pLVX-Tet3G-α-synuclein SH-SY5Y cells upon
Baicalin treatment. The results demonstrated that Baicalin
could reverse Dox-induced α-synuclein aggregation. Inter-
estingly, Dox-induced caspase-3 activation indicates that
active oxidative stress triggers apoptosis. On the other hand,
Baicalin reduced caspase-3 activation in a dose-dependent
manner (Figure 3(c)).

3.4. Baicalin Protects Dopaminergic Neurons and Rescues
Motor Dysfunction against MPTP-Induced Neurotoxicity In
Vivo. To investigate the in vivo roles of Baicalin, three-
month-old C57BL mice (8 per group) were treated with
MPTP (i.p., 30mg/kg) or saline for 5 days. Motor behavioral
tests showed that MPTP incurred significant motor disorder,
which was ameliorated upon two weeks of 20mg/kg and
40mg/kg Baicalin treatment. Remarkably, in the 40mg/kg
Baicalin group, MPTP elicited in the rotarod test (p = 0:042
) and grid test (p = 0:047) were significantly less severe than
the control group (Figures 4(a) and 4(b)), supporting the fact
that Baicalin was highly neuroprotective and prevented
MPTP-elicited motor dysfunctions in mice. We also moni-
tored dopaminergic neuron loss after Baicalin treatment.
Immunofluorescence staining showed that dopaminergic
neurons in SN were substantially diminished by MPTP as
compared to the vehicle group. Again, Baicalin attenuated
the loss of dopaminergic neurons (Figure 4(c)). The maximal
neuroprotective effects occurred with the 40mg/kg Baicalin
group (p = 0:012).

3.5. Baicalin Regulates the Redox Balance in the MPTP
Treatment Group. For manifesting the oxidative stress in Par-
kinson’s disease, we employed 4-HNE staining, one of the
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Figure 1: Expression profiles and Gene Ontology (GO) terms for differentially expressed mRNAs between PD patients and healthy control
blood samples. (a) Volcano analysis exhibited differentially expressed mRNAs. Blue dots illustrated downregulated genes, and red dots
illustrated upregulated genes. (b) C/EBPβ was upregulated in PD patient samples compared to healthy control samples. (c) GO
enrichment analysis for biological processes, cellular component, and molecular function in the interaction networks of C/EBPβ.
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most bioactive and studied lipid peroxidation biomarkers
[42]. IHC analysis demonstrated that Baicalin group mice
possessed the least oxidative stress among the experimental
groups, provoked by MPTP treatment, in alignment with
its prominent neuroprotective activity in the striatum and
substantia nigra (Figure 5(a)). We observed that Cebpb
(p = 0:021) and Snca (p = 0:0042) mRNA expression
decreased after 40mg/kg Baicalin treatment in SN compared
to the MPTP group (Figure 5(b)). Immunoblotting analysis
revealed the comparable protein levels expressed in the

mouse brains. MPTP treatment elicited prominent dopami-
nergic neuronal TH loss, which was partially alleviated by
Baicalin. As expected, α-synuclein pS129, α-synuclein, p-
C/EBPβ, and C/EBPβ were strongly upregulated in the
MPTP group after Baicalin treatment (Figure 5(c)). Hence,
Baicalin possesses strong antioxidative activity, rescuing
dopaminergic neurons from MPTP-induced cell death.

3.6. Baicalin Protects against Neuroinflammation and
Oxidative Stress Triggered by MPTP Treatment. Activated
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Figure 2: Baicalin inhibited toxicity and oxidative stress in pLVX-Tet3G-α-synuclein SH-SY5Y cell lines. (a) The mRNA level of α-synuclein
in pLVX-Tet3G-α-synuclein SH-SY5Y stable cell line. (b) The protein level of α-synuclein in pLVX-Tet3G-α-synuclein SH-SY5Y stable cell
line. (c) The chemical structure of Baicalin. (d) The LDH level of Baicalin. (e) Cell viability by MTT assay. (f) The ROS level, (g) carbonyl
expression, and (h) GSH/GSSG level of Baicalin. The pLVX-Tet3G-α-synuclein SH-SY5Y cells were incubated with various concentrations
(0–50 μM) of Baicalin for 24 h. All data represented the mean and standard error of three independent experiments. ∗p < 0:05; ∗∗p < 0:01;
∗∗∗p < 0:001.
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Figure 3: Continued.
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microglia and increased levels of inflammatory mediators are
detected in the striatum of deceased PD patients [43, 44];
meanwhile, a large body of animal studies supports the con-
tributory role of inflammation in dopaminergic cell loss [45].
Quantification of neuroinflammation revealed that IL-1β, IL-
6, and TNF-α mRNA levels were decreased after Baicalin
treatment, while the TGF-β mRNA level was increased
(Figure 6(a)). Increased expression of GFAP is considered
as markers of ROS production and the inflammatory process.
In Figure 6(b), immunofluorescence staining of GFAP in the
striatum showed a remarkably higher expression of GFAP-
positive astrocytes in MPTP treatment when compared to
the saline group (p = 0:0025). However, Baicalin decreased
the GFAP-positive cells as well (p = 0:032). Again, our results
indicated that Baicalin reduced oxidative stress in the MPTP
treatment group.

4. Discussion

Over thousands of years, Chinese herbs have been used by
the Chinese pharmacologists as treatment of diseases, includ-
ing cancer [46], climacteric syndrome [47], schizophrenia
[48], Alzheimer’s disease [49], and Parkinson’s disease [50].

Baicalin is one of the most important flavonoid compounds,
which is mainly isolated from the root of Scutellaria baicalen-
sis Georgi, which is an indispensable Chinese medicinal herb
[51]. Besides, Baicalin does not display any significant toxic-
ity to the mice at a dose even of 15 g/kg [52], which indicates
its low toxicity, making it highly acceptable and safe for
application in humans. However, one major limitation in
the clinical application of Baicalin is their poor oral bioavail-
ability and low aqueous solubility. There is increasing evi-
dence that Baicalin plays an important role in various
diseases, such as cardiovascular disease, depression, Alzhei-
mer’s disease, and Parkinson’s disease. Baicalin alleviates car-
diac dysfunction and myocardial remodeling in a chronic
pressure overload mouse model [53]. In AD, Baicalin can
reduce Alzheimer-like pathological changes and memory
impairment caused by amyloid β1-42. Jin et al. reported that
Baicalin can reduce cognitive impairment and protect neu-
rons from microglia-mediated neuroinflammation
TLR4/NF-κB signaling [54]. In a recent study, Baicalin inhib-
ited TLR4 expression through the PI3K/AKT/FoxO1 path-
way and improved depression-like behavior [55].
Noticeably, Baicalein, which is the aglycone of Baicalin,
inhibits α-synuclein fibrillation and disaggregates the
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Figure 3: Baicalin protected Dox-induced mitochondrial dysfunction. (a) The representative image of pLVX-Tet3G-α-synuclein SH-SY5Y
cell with an accumulation of JC-1 staining after incubation with various concentrations (0–50μM) of Baicalin for 24 h. Scale bars: 50μm.
(b) The mRNA level of pLVX-Tet3G-α-synuclein SH-SY5Y cells treated with various concentrations (0–50μM) of Baicalin for 24 h. (c)
Western blot analysis of pLVX-Tet3G-α-synuclein SH-SY5Y cell treated with various concentrations (0–50μM) of Baicalin for 24 h. All
data represented the mean and standard error of three independent experiments. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.

8 Oxidative Medicine and Cellular Longevity



preformed fibrils [56]. The medical mechanism of Baicalin
inhibiting α-synuclein aggregates is still unclear. In our
experiment, an in vitro experimental model, Baicalin
(50μM) protected pLVX-Tet3G-α-synuclein SH-SY5Y cells
against Dox-induced toxicity and also prevented the loss of
cell viability (Figure 2(e)). Other researchers also found that
lack of α-synuclein in mice is associated with reduced vulner-
ability to MPTP and reduced dopaminergic neuronal cell
death [57]. The previous study also showed that abnormal
posture, gait, and stiffness of the limbs are directly related
to the loss of dopaminergic neurons, which is the root cause
of PD [58]. Baicalin and deferoxamine can reduce iron accu-
mulation in SN of Parkinson’s disease rats [59]. In our
results, we showed that Baicalin blocked α-synuclein expres-
sion and aggregation and protected dopaminergic neurons
and rescues motor dysfunction against MPTP-induced neu-
rotoxicity in vivo (Figure 4); presumably, Baicalin’s therapeu-
tic efficacy might partially result from its inhibition against α-
synuclein.

Additionally, Baicalin may sustain redox homeostasis by
protecting mitochondrial systems after treating with MPP+
[60]. Maintaining homeostasis is essential for preventing

and curing disease [61]. Unbalanced homeostasis with the
more oxidized environment, for example, higher oxidative
stress, facilitated more cell death. In our research, Baicalin
inactivated ROS (25μM and 50μM) production, carbonyl
expression, and lactate dehydrogenase (LDH) level, mean-
while, alternated in GSH/GSSG ratio (Figures 2(d) and 2(f
)–2(h)), facilitating a dramatically less oxidized environment
for cell survival. Interestingly, Baicalein was effective in
blocking the Dox-induced toxicity on the mitochondrial
membrane potential (Figure 3(a)), resulting in increased
ATP synthesis.

Currently, with the advent of next-generation sequencing
technologies, RNA-Seq is gradually replacing microarrays for
the detection of transcript expression profiling [62].
Although a lot of papers reported the RNA networks in PD,
microarray methods were primarily employed [63, 64]. In
this study, we used RNA-Seq to examine the global expres-
sion profiles of noncoding RNAs. Using RNA-Seq technol-
ogy, we found that C/EBPβ was upregulated in PD patient’s
blood samples (Figure 1(b)). Moreover, the target mRNAs
of differentially expressed mRNAs were mostly involved in
“glucocorticoid receptor binding,” “cellular response to
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Figure 4: Baicalin protected dopaminergic neurons and rescues motor dysfunction against MPTP-induced neurotoxicity in vivo. (a) Rotarod
tests and (b) grid tests were conducted by a blinded observer after two weeks of 20mg/kg and 40mg/kg Baicalin treatment. Data were the
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Figure 5: Baicalin protected dopaminergic neuron oxidative stress against MPTP treatment. (a) Immunohistochemical analysis for
assessment of 4-HNE in the substantia nigra (SN) and striatum of saline, MPTP, MPTP+20mg/kg Baicalin, and MPTP+40mg/kg Baicalin
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0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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oxidative stress,” and “protein localization to the mitochon-
dria” (Figure 1(c)). These results were partly consistent with
those of our data. Also, RNA-Seq data showed new findings
in that regulation of “protein heterodimerization” and
“nuclear chromatin” were involved in the pathogenesis of
PD, which are interesting targets for further investigation.

Our previous work demonstrated that CEBP/β, which is
the transcription factor of α-synuclein andMAO-B, mediates
the pathogenesis of Parkinson’s disease [65]. C/EBPβ is one

of the family members of transcription factors in the basic-
leucine zipper (bZIP) class. In glial cells, C/EBPβ regulates
the proinflammatory program. Because of its role in neuroin-
flammation, C/EBPβ is a potential target for the treatment of
neurodegenerative disorders [66]. In our study, Baicalin
repressed DOX-induced C/EBPβ level and α-synuclein as
indicated in mRNA and protein level (Figures 3(b) and
3(c)). In addition, it was demonstrated that Baicalin inhibited
MPTP-triggered inflammatory mediators, including the
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Figure 6: Baicalin protected against neuroinflammation and oxidative stress triggered by MPTP treatment. (a) IL-1β, IL-6, TNF-α, and TGF-
β mRNA levels of SN measured by q-RTPCR in saline, MPTP, and MPTP+40mg/kg Baicalin groups. (b) Immunofluorescence staining to
detect the expression of the glial fibrillary acidic protein- (GFAP-) positive astrocyte (green) in saline, MPTP, and MPTP+40mg/kg
Baicalin groups. Scale bars: 100 μm. All data represented the mean and standard error of three independent experiments. ∗p < 0:05; ∗∗p <
0:01; ∗∗∗p < 0:001.

11Oxidative Medicine and Cellular Longevity



classical proinflammatory triad of IL-1β, IL-6, and TNF-α
(Figure 6(a)). Notably, Baicalin was involved in the regula-
tion of proinflammatory gene expression in glial activation,
especially GFAP expression, and played a key role in the
reduction of neurotoxic effects by inactivating microglia
(Figure 6(b)).

There may be some other limitations to our study that
should be shortly mentioned: (1) Further studies are neces-
sary to reveal how Baicalin regulates the inactivation of glial
cells in PD models. (2) Although flavonoids are nonspecific
inhibitors [67], our future research will focus on this basis
and look for structural elements with high specificity and
beneficial effects in PD treatment.

5. Conclusions

Our data strongly supported that the analysis of the gene
expression profile may enable the identification of targets
for PD diagnosis and treatment. The results confirmed that
C/EBPβ and oxidative stress played important roles in the
progression of PD. Meanwhile, Baicalin functioned as an
antioxidant for dictating the expression of C/EBPβ and regu-
lated oxidative stress in the pLVX-Tet3G-α-synuclein SH-
SY5Y cell model and MPTP treatment mouse model, further
indicating Baicalin’s neuroprotective effect in neurotoxin-
triggered Parkinson’s disease.

Data Availability

The data used to support the findings of this study have not
been made available because the data also form part of an
ongoing study.

Ethical Approval

All applicable international, national, and/or institutional
guidelines for the care and use of animals were followed.

Consent

All subjects agreed to be in the study, and biological speci-
mens were obtained after informed consent with approval
from Shanghai Tongji Hospital.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Kecheng Lei and Yijue Shen contributed equally to this work.
They carried out the experiment and wrote the manuscript.
Yijing He and Weifang Tong helped with animal work.
Jingxing Zhang offered the cell lines. Liwen Zhang and
Yichun Xu performed the analytic calculations. Lingjing Jin
supervised the project. Kecheng Lei and Yijue Shen are co-
first authors.

Acknowledgments

The authors would like to thank Dr. Keqiang Ye from Emory
University for revising the manuscript. This article is sup-
ported by the “National Key R&D Program of China”
(2018YFC1314700 and 2018YFA0108000), National Natural
Science Foundation of China (81974196 and 81873779),
Shanghai municipal medical and health excellent academic
leaders training program (2017BR029), and China Postdoc-
toral Science Foundation (2018M632168).

References

[1] M. Al Shahrani, S. Heales, I. Hargreaves, and M. Orford, “Oxi-
dative stress: mechanistic insights into inherited mitochon-
drial disorders and Parkinson’s disease,” Journal of Clinical
Medicine, vol. 6, no. 11, p. 100, 2017.

[2] N. Mahy, N. Andrés, C. Andrade, and J. Saura, “Age-related
changes of MAO-A and -B distribution in human and mouse
brain,” Neurobiology, vol. 8, no. 1, pp. 47–54, 2000.

[3] G. F. Crotty, A. Ascherio, and M. A. Schwarzschild, “Targeting
urate to reduce oxidative stress in Parkinson disease,” Experi-
mental Neurology, vol. 298, Part B, pp. 210–224, 2017.

[4] D. N. Hauser and T. G. Hastings, “Mitochondrial dysfunction
and oxidative stress in Parkinson's disease andmonogenic par-
kinsonism,” Neurobiology of Disease, vol. 51, pp. 35–42, 2013.

[5] C. W. Olanow, “The pathogenesis of cell death in Parkinson's
disease–2007,” Movement Disorders, vol. 22, no. S17,
pp. S335–S342, 2007.

[6] A. Barzilai and E. Melamed, “Molecular mechanisms of selec-
tive dopaminergic neuronal death in Parkinson's disease,”
Trends in Molecular Medicine, vol. 9, no. 3, pp. 126–132, 2003.

[7] W. J. Schulz-Schaeffer, “The synaptic pathology of α-synuclein
aggregation in dementia with Lewy bodies, Parkinson’s disease
and Parkinson’s disease dementia,” Acta Neuropathologica,
vol. 120, no. 2, pp. 131–143, 2010.

[8] M. Hashimoto, L. J. Hsu, E. Rockenstein, T. Takenouchi,
M. Mallory, and E. Masliah, “α-Synuclein protects against oxi-
dative stress via inactivation of the c-Jun N-terminal kinase
stress-signaling pathway in neuronal cells,” Journal of Biologi-
cal Chemistry, vol. 277, no. 13, pp. 11465–11472, 2002.

[9] E. C. Hirsch, S. Vyas, and S. Hunot, “Neuroinflammation in
Parkinson's disease,” Parkinsonism & Related Disorders,
vol. 18, pp. S210–S212, 2012.

[10] V. N. Uversky, “A protein-chameleon: conformational plastic-
ity of α-synuclein, a disordered protein involved in neurode-
generative disorders,” Journal of Biomolecular Structure and
Dynamics, vol. 21, no. 2, pp. 211–234, 2003.

[11] O. S. Gorbatyuk, S. Li, L. F. Sullivan et al., “The phosphoryla-
tion state of Ser-129 in human α-synuclein determines neuro-
degeneration in a rat model of Parkinson disease,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 105, no. 2, pp. 763–768, 2008.

[12] K. J. Barnham, C. L. Masters, and A. I. Bush, “Neurodegener-
ative diseases and oxidative stress,” Nature Reviews Drug Dis-
covery, vol. 3, no. 3, pp. 205–214, 2004.

[13] R. Betarbet, T. B. Sherer, and J. T. Greenamyre, “Animal
models of Parkinson's disease,” BioEssays, vol. 24, no. 4,
pp. 308–318, 2002.

12 Oxidative Medicine and Cellular Longevity



[14] N. Schmidt and B. Ferger, “Neurochemical findings in the
MPTP model of Parkinson's disease,” Journal of Neural Trans-
mission, vol. 108, no. 11, pp. 1263–1282, 2001.

[15] C. M. Testa, T. B. Sherer, and J. T. Greenamyre, “Rotenone
induces oxidative stress and dopaminergic neuron damage in
organotypic substantia nigra cultures,” Molecular Brain
Research, vol. 134, no. 1, pp. 109–118, 2005.

[16] M. D. Brand and D. G. Nicholls, “Assessing mitochondrial
dysfunction in cells,” Biochemical Journal, vol. 435, no. 2,
pp. 297–312, 2011.

[17] Q. Du, Z. Tan, F. Shi et al., “PGC1α/CEBPB/CPT1A axis pro-
motes radiation resistance of nasopharyngeal carcinoma
through activating fatty acid oxidation,” Cancer Science,
vol. 110, no. 6, pp. 2050–2062, 2019.

[18] Z.-H. Wang, K. Gong, X. Liu et al., “C/EBPβ regulates delta-
secretase expression and mediates pathogenesis in mouse
models of Alzheimer's disease,” Nature Communications,
vol. 9, no. 1, article 1784, 2018.

[19] K. Aquilano, S. Baldelli, G. Rotilio, and M. R. Ciriolo, “Role of
nitric oxide synthases in Parkinson’s disease: a review on the
antioxidant and anti-inflammatory activity of polyphenols,”
Neurochemical Research, vol. 33, no. 12, pp. 2416–2426, 2008.

[20] The Parkinson Study Group, “Effects of tocopherol and depre-
nyl on the progression of disability in early Parkinson's dis-
ease,” New England Journal of Medicine, vol. 328, no. 3,
pp. 176–183, 1993.

[21] M. R. de Oliveira, S. F. Nabavi, S. Habtemariam, I. E. Orhan,
M. Daglia, and S. M. Nabavi, “The effects of baicalein and bai-
calin on mitochondrial function and dynamics: a review,”
Pharmacological Research, vol. 100, pp. 296–308, 2015.

[22] D. Wang, L. Liu, X. Zhu, W. Wu, and Y. Wang, “Hesperidin
alleviates cognitive impairment, mitochondrial dysfunction
and oxidative stress in a mouse model of Alzheimer’s disease,”
Cellular and Molecular Neurobiology, vol. 34, no. 8, pp. 1209–
1221, 2014.

[23] Z. Cai, W. Zeng, K. Tao, F. Lu, G. Gao, and Q. Yang, “Myrici-
trin alleviates MPP+-induced mitochondrial dysfunction in a
DJ-1-dependent manner in SN4741 cells,” Biochemical and
Biophysical Research Communications, vol. 458, no. 2,
pp. 227–233, 2015.

[24] K. Sowndhararajan, P. Deepa, M. Kim, S. J. Park, and S. Kim,
“Neuroprotective and cognitive enhancement potentials of
baicalin: a review,” Brain Sciences, vol. 8, no. 6, p. 104, 2018.

[25] J. Dong, Y. Zhang, Y. Chen et al., “Baicalin inhibits the lethality
of ricin in mice by inducing protein oligomerization,” Journal
of Biological Chemistry, vol. 290, no. 20, pp. 12899–12907,
2015.

[26] W. Liang, X. Huang, andW. Chen, “The effects of baicalin and
baicalein on cerebral ischemia: a review,” Aging and Disease,
vol. 8, no. 6, pp. 850–867, 2017.

[27] E. H. Ahn, D.W. Kim, M. J. Shin et al., “PEP-1–ribosomal pro-
tein S3 protects dopaminergic neurons in an MPTP-induced
Parkinson's disease mouse model,” Free Radical Biology and
Medicine, vol. 55, pp. 36–45, 2013.

[28] Y. Xing, Z. Zhao, Y. Zhu, L. Zhao, A. Zhu, and D. Piao, “Com-
prehensive analysis of differential expression profiles of
mRNAs and lncRNAs and identification of a 14-lncRNA prog-
nostic signature for patients with colon adenocarcinoma,”
Oncology Reports, vol. 39, no. 5, pp. 2365–2375, 2018.

[29] K. Lei, X. Liang, Y. Gao et al., “Lnc-ATB contributes to gastric
cancer growth through a miR-141-3p/TGFβ2 feedback loop,”

Biochemical and Biophysical Research Communications,
vol. 484, no. 3, pp. 514–521, 2017.

[30] K. Lei, W. du, S. Lin et al., “3B, a novel photosensitizer, inhibits
glycolysis and inflammation via miR-155-5p and breaks the
JAK/STAT3/SOCS1 feedback loop in human breast cancer
cells,” Biomedicine & Pharmacotherapy, vol. 82, pp. 141–150,
2016.

[31] K. Lei, S. Tan, W. Du et al., “3B, a novel of photosensitizer,
exhibited anti-tumor effects via mitochondrial apoptosis path-
way in MCF-7 human breast carcinoma cells,” Tumor Biology,
vol. 36, no. 7, pp. 5597–5606, 2015.

[32] E. H. Ahn, D. W. Kim, M. J. Shin et al., “PEP-1-PEA-15 pro-
tects against toxin-induced neuronal damage in a mouse
model of Parkinson's disease,” Biochimica et Biophysica Acta
(BBA)-General Subjects, vol. 1840, no. 6, pp. 1686–1700, 2014.

[33] S. Luo, K. Lei, D. Xiang, and K. Ye, “NQO1 is regulated by
PTEN in glioblastoma, mediating cell proliferation and oxida-
tive stress,” Oxidative Medicine and Cellular Longevity,
vol. 2018, Article ID 9146528, 16 pages, 2018.

[34] H. Ding, Y. Xiong, J. Sun, C. Chen, J. Gao, and H. Xu, “Asiatic
acid prevents oxidative stress and apoptosis by inhibiting the
translocation of α-synuclein into mitochondria,” Frontiers in
Neuroscience, vol. 12, p. 431, 2018.

[35] Z. Li, X. Bao, X. Bai et al., “Design, synthesis, and biological
evaluation of phenol bioisosteric analogues of 3-hydroxymor-
phinan,” Scientific Reports, vol. 9, no. 1, article 2247, 2019.

[36] R. Svarcbahs, U. H. Julku, and T. T. Myöhänen, “Inhibition of
prolyl oligopeptidase restores spontaneous motor behavior in
the α-synuclein virus vector–based Parkinson's disease mouse
model by decreasing α-synuclein oligomeric species in mouse
brain,” Journal of Neuroscience, vol. 36, no. 49, pp. 12485–
12497, 2016.

[37] H. Jiang, S. U. Kang, S. Zhang et al., “Adult conditional knock-
out of PGC-1α leads to loss of dopamine neurons,” eNeuro,
vol. 3, no. 4, pp. ENEURO.0183–ENEU16.2016, 2016.

[38] R. Jia, T. Kurita-Ochiai, S. Oguchi, and M. Yamamoto, “Peri-
odontal pathogen accelerates lipid peroxidation and athero-
sclerosis,” Journal of Dental Research, vol. 92, no. 3, pp. 247–
252, 2013.

[39] Gene Ontology Consortium, “The Gene Ontology (GO) data-
base and informatics resource,”Nucleic Acids Research, vol. 32,
no. 90001, pp. 258D–2261, 2004.

[40] B. Acton, A. Jurisicova, I. Jurisica, and R. Casper, “Alterations
in mitochondrial membrane potential during preimplantation
stages of mouse and human embryo development,”Molecular
Human Reproduction, vol. 10, no. 1, pp. 23–32, 2004.

[41] M. V. Martin, D. Fiol, E. Zabaleta, and G. Pagnussat, “Arabi-
dopsis thaliana embryo sac mitochondrial membrane potential
stain,” Bio-Protocol, vol. 4, no. 10, 2014.

[42] M. Guichardant and M. Lagarde, “Analysis of biomarkers
from lipid peroxidation: a comparative study,” European Jour-
nal of Lipid Science and Technology, vol. 111, no. 1, pp. 75–82,
2009.

[43] A. Hald and J. Lotharius, “Oxidative stress and inflammation
in Parkinson's disease: is there a causal link?,” Experimental
Neurology, vol. 193, no. 2, pp. 279–290, 2005.

[44] K. Kaur, J. S. Gill, P. K. Bansal, and R. Deshmukh, “Neuroin-
flammation - Amajor cause for striatal dopaminergic degener-
ation in Parkinson's disease,” Journal of the Neurological
Sciences, vol. 381, pp. 308–314, 2017.

13Oxidative Medicine and Cellular Longevity



[45] P. Whitton, “Inflammation as a causative factor in the aetiol-
ogy of Parkinson's disease,” British Journal of Pharmacology,
vol. 150, no. 8, pp. 963–976, 2007.

[46] M. McCulloch, C. See, X. J. Shu et al., “Astragalus-based Chi-
nese herbs and platinum-based chemotherapy for advanced
non-small-cell lung cancer: meta-analysis of randomized tri-
als,” Journal of Clinical Oncology, vol. 24, no. 3, pp. 419–430,
2006.

[47] S. Eisenhardt and J. Fleckenstein, “Traditional Chinese medi-
cine valuably augments therapeutic options in the treatment
of climacteric syndrome,” Archives of Gynecology and Obstet-
rics, vol. 294, no. 1, pp. 193–200, 2016.

[48] J. Rathbone, L. Zhang, M. Zhang et al., “Chinese herbal medi-
cine for schizophrenia: cochrane systematic review of rando-
mised trials,” The British Journal of Psychiatry, vol. 190,
no. 5, pp. 379–384, 2007.

[49] T.-Y. Wu, C.-P. Chen, and T.-R. Jinn, “Traditional Chinese
medicines and Alzheimer’s disease,” Taiwanese Journal of
Obstetrics and Gynecology, vol. 50, no. 2, pp. 131–135, 2011.

[50] L.-W. Chen, Y.-Q. Wang, L.-C. Wei, M. Shi, and Y.-S. Chan,
“Chinese herbs and herbal extracts for neuroprotection of
dopaminergic neurons and potential therapeutic treatment of
Parkinson’s disease,” CNS & Neurological Disorders - Drug
Targets, vol. 6, no. 4, pp. 273–281, 2007.

[51] Q. Zhao, X.-Y. Chen, and C. Martin, “Scutellaria baicalensis,
the golden herb from the garden of Chinese medicinal plants,”
Science Bulletin, vol. 61, no. 18, pp. 1391–1398, 2016.

[52] X. Zhang, Q. Cheng, and Y. Zhang, “Acute toxicity test of bai-
calin capsule in mice,” Journal of Medical Research, 2006.

[53] Y. Zhang, P. Liao, M.’. Zhu et al., “Baicalin attenuates cardiac
dysfunction and myocardial remodeling in a chronic
pressure-overload mice model,” Cellular Physiology and Bio-
chemistry, vol. 41, no. 3, pp. 849–864, 2017.

[54] X. Jin, M. Y. Liu, D. F. Zhang et al., “Baicalin mitigates cogni-
tive impairment and protects neurons from microglia-
mediated neuroinflammation via suppressingNLRP3 inflam-
masomes andTLR4/NF‐κB signaling pathway,” CNS Neurosci-
ence & Therapeutics, vol. 25, no. 5, pp. 575–590, 2019.

[55] L.-T. Guo, S.-Q. Wang, J. Su et al., “Baicalin ameliorates
neuroinflammation-induced depressive-like behavior through
inhibition of toll-like receptor 4 expression via the
PI3K/AKT/FoxO1 pathway,” Journal of Neuroinflammation,
vol. 16, no. 1, p. 95, 2019.

[56] M. Caruana, T. Högen, J. Levin, A. Hillmer, A. Giese, and
N. Vassallo, “Inhibition and disaggregation of α-synuclein
oligomers by natural polyphenolic compounds,” FEBS Letters,
vol. 585, no. 8, pp. 1113–1120, 2011.

[57] P. Klivenyi, D. Siwek, G. Gardian et al., “Mice lacking alpha-
synuclein are resistant to mitochondrial toxins,” Neurobiology
of Disease, vol. 21, no. 3, pp. 541–548, 2006.

[58] P. Eichhammer, M. Johann, A. Kharraz et al., “High-frequency
repetitive transcranial magnetic stimulation decreases ciga-
rette smoking,” Journal of Clinical Psychiatry, vol. 64, no. 8,
pp. 951–953, 2003.

[59] P. Xiong, X. Chen, C. Guo, N. Zhang, and B. Ma, “Baicalin and
deferoxamine alleviate iron accumulation in different brain
regions of Parkinson's disease rats,” Neural Regeneration
Research, vol. 7, article 2092, 2012.

[60] A. J. Y. Guo, R. C. Y. Choi, A. W. H. Cheung et al., “Baicalin, a
flavone, induces the differentiation of cultured osteoblasts,”

Journal of Biological Chemistry, vol. 286, no. 32, pp. 27882–
27893, 2011.

[61] F. Ursini, M. Maiorino, and H. J. Forman, “Redox homeosta-
sis: the Golden Mean of healthy living,” Redox Biology, vol. 8,
pp. 205–215, 2016.

[62] S. Tarazona, F. García-Alcalde, J. Dopazo, A. Ferrer, and
A. Conesa, “Differential expression in RNA-seq: a matter of
depth,” Genome Research, vol. 21, no. 12, pp. 2213–2223, 2011.

[63] S. Mandel, O. Weinreb, and M. B. H. Youdim, “Using cDNA
microarray to assess Parkinson's disease models and the effects
of neuroprotective drugs,” Trends in Pharmacological Sciences,
vol. 24, no. 4, pp. 184–191, 2003.

[64] K. Häbig, M. Walter, S. Poths, O. Riess, and M. Bonin, “RNA
interference of LRRK2–microarray expression analysis of a
Parkinson’s disease key player,” Neurogenetics, vol. 9, no. 2,
pp. 83–94, 2008.

[65] Z. Wu, Y. Xia, Z. Wang et al., “C/EBPβ/δ-secretase signaling
mediates Parkinson's disease pathogenesis via regulating tran-
scription and proteolytic cleavage of α-synuclein and MAOB,”
Molecular Psychiatry, 2020.

[66] M. Pulido-Salgado, J. M. Vidal-Taboada, and J. Saura,
“C/EBPβ and C/EBPδ transcription factors: Basic biology
and roles in the CNS,” Progress in Neurobiology, vol. 132,
pp. 1–33, 2015.

[67] B. Wright, J. P. E. Spencer, J. A. Lovegrove, and J. M. Gibbins,
“Insights into dietary flavonoids as molecular templates for the
design of anti-platelet drugs,” Cardiovascular Research, vol. 97,
no. 1, pp. 13–22, 2013.

14 Oxidative Medicine and Cellular Longevity



Research Article
Apigenin Protects Mouse Retina against Oxidative Damage by
Regulating the Nrf2 Pathway and Autophagy

Yuanzhong Zhang,1 Yan Yang,2 Haitao Yu,3 Min Li,4 Li Hang,1 and Xinrong Xu 1

1Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of
Chinese Medicine), Nanjing 210029, China
2Department of Ophthalmology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
3School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
4Department of Ophthalmology, Liyang Branch of Jiangsu Province Hospital of Chinese Medicine, Liyang 213300, China

Correspondence should be addressed to Xinrong Xu; 13851641312@qq.com

Received 27 March 2020; Accepted 29 April 2020; Published 14 May 2020

Guest Editor: Francisco Jaime B. Mendonça Junior

Copyright © 2020 Yuanzhong Zhang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Oxidative stress is a critical factor in the pathology of age-related macular degeneration (AMD). Apigenin (AP) is a flavonoid with
an outstanding antioxidant activity. We had previously observed that AP protected APRE-19 cells against oxidative injury in vitro.
However, AP has poor water and fat solubility, which determines its low oral bioavailability. In this study, we prepared the solid
dispersion of apigenin (AP-SD). The solubility and dissolution of AP-SD was significantly better than that of the original drug,
so the oral bioavailability in rats was better than that of the original drug. Then, the effects of AP-SD on the retina of a model
mouse with dry AMD were assessed by fundus autofluorescence (FAF), optical coherence tomography (OCT), and electron
microscopy; the results revealed that AP-SD alleviated retinopathy. Further research found that AP-SD promoted the nuclear
translocation of Nrf2 and increased expression levels of the Nrf2 and target genes HO-1 and NQO-1. AP-SD enhanced the
activities of SOD and GSH-Px and decreased the levels of ROS and MDA. Furthermore, AP-SD upregulated the expressions of
p62 and LC3II in an Nrf2-dependent manner. However, these effects of AP-SD were observed only in the retina of Nrf2 WT
mice, not in Nrf2 KO mice. In addition, the therapeutic effect of AP-SD was dose dependent, and AP did not work. In
conclusion, AP-SD significantly enhanced the bioavailability of the original drug and reduced retinal oxidative injury in the
model mouse of dry AMD in vivo. The results of the underlying mechanism showed that AP-SD upregulated the expression of
antioxidant enzymes through the Nrf2 pathway and upregulated autophagy, thus inhibiting retinal oxidative damage. AP-SD
may be a potential compound for the treatment of dry AMD.

1. Introduction

Age-related macular degeneration (AMD) is a leading cause
of vision loss in the elderly. Clinically, AMD falls into two
categories: dry AMD and wet AMD. The dry AMD presents
as retinal pigment proliferation or depigmentation, drusen,
and advanced geographic atrophy. The wet AMD is charac-
terized by choroidal neovascularization (CNV), leading to
retinal exudation and hemorrhage, and eventually severe
visual impairment. In recent years, the treatment of wet
AMD has made significant progress due to the widespread
use of antivascular endothelial growth factor (VEGF) drugs

[1]. Currently, there are no effective treatment options for
dry AMD.

A large number of evidences indicate that oxidative dam-
age of retinal pigment epithelium (RPE) is a main etiology of
AMD. The RPE cell has abundant mitochondria and pro-
duces a large amount of reactive oxygen species (ROS) in a
high-oxygen environment [2]. In addition, one of the major
functions of RPE is the phagocytosis and degradation of pho-
toreceptor outer segments (POS). POS is rich in unsaturated
fatty acids, and the part being not degraded by RPE forms
lipofuscin, which increases ROS generation while exposed
to light [3]. The nuclear factor E2-related factor 2 (Nrf2)
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pathway is a primary system employed by the RPE to neu-
tralize oxidative stress and maintain cellular homeostasis
[4]. In a physiological condition, Nrf2 is constitutively tar-
geted for degradation by the multisubunit, E3 ubiquitin
lipase KEAP1. Oxidative stress dissociates KEAP1 and stabi-
lizes Nrf2. The transcription factor rapidly translocates to the
nucleus, heterodimerizes with Maf proteins, and binds to the
antioxidant response elements (AREs) in the promoters of its
cognate target genes, inducing the expression of genes encod-
ing heme oxygenase-1 (HO-1), quinone oxidoreductase-1
(NQO-1), glutathione peroxidase (GSH-Px), superoxide dis-
mutase (SOD), and catalase (CAT). These enzymes can
quickly scavenge ROS and protect the body from injuries
caused by active substances or toxic substances [5]. Thus,
the activation of the Nrf2 pathway could reduce the oxidative
damage of RPE, suggesting that the Nrf2 pathway is a poten-
tial target for AMD treatment [6].

As Nrf2 pathway does, autophagy keeps cellular homeo-
stasis in situations of oxidative stress; therefore, its failure is
associated with aging and many diseases, such as cancer, car-
diovascular diseases, and neurodegenerative diseases [7]. The
impairment of autophagy has been shown to be one cause of
the development and progression of AMD [8]. Impaired
autophagy significantly reduced the degradation of POS,
leading to a deposit of undegraded POS under RPE, and
finally an increase of ROS generation [9, 10]. The autophagy
is increased and the Nrf2 pathway is activated at the same
time while the cell is in oxidative stress. Polyunsaturated fatty
acids rapidly increase the generation of ROS in RPE and
upregulate the expression of Nrf2 and SQSTM1/p62 proteins
[11]. Studies have shown that many inducers of the Nrf2
pathway can also induce autophagy [12–14]. Correspond-
ingly, a deficiency of Nrf2 reduces SQSTM1/p62 expression
[15]. Clearly, there is a strong correlation between autophagy
and Nrf2 pathways, which makes sense for AMD.

Apigenin (AP) is a bioactive flavonoid which is obtained
from several fruits and vegetables. AP has been reported to
exhibit antioxidant, anti-inflammatory, and anticancer activ-
ities [16, 17]. Our previous study has shown that AP exhib-
ited protective effects on ARPE-19 cells against tert-butyl
hydroperoxide- (t-BHP-) induced oxidative injury, which
were associated with its antioxidant properties dependent
upon the activation of Nrf2 signaling [18]. However, AP
has the disadvantages of poor water and fat solubility and
low bioavailability. Studies have indicated that the prepara-
tion of solid dispersion could significantly increase the solu-
bility and dissolution rate of drugs, which can further
enhance the bioavailability of drugs [19, 20]. In the current
study, we prepared the solid dispersion of apigenin (AP-
SD), determined its bioavailability in rats, and evaluated its
protective effects on retinal injury induced by oxidative stress
in Nrf2 WT and Nrf2 KO mice.

2. Materials and Methods

2.1. Chemicals, Reagents, and Antibodies. Apigenin was from
Sigma Chemical (St. Louis, MO, USA). Polyvinylpyrrolidone
(PVP K30) was from J&K Chemical Ltd. (Shanghai, China).
Hydroquinone (HQ) was from Alfa Aesar (Heysham, Lanca-

shire, UK). The primary antibodies used in western blot were
obtained from the following source: Nrf2, HO-1, NQO-1,
p62, GAPDH, and Lamin B (Abcam, UK) and LC3 (Cell Sig-
naling Technology, USA); the secondary antibody Goat Anti-
Rabbit IgG/HRP was from (Abcam, UK).

2.2. Preparation of AP-SD. With the orthogonal experiment,
we assigned PVP K30 as the carrier to prepare the solid dis-
persion of AP, the mass ratio of AP and PVK V30 is 1: 9,
and anhydrous ethanol is used as the reaction solvent to
prepare AP-SD. Briefly, AP and PVK V30 at a mass ratio
of 1 : 9 were dissolved in absolute ethanol of adequate vol-
ume with full mixing. After the mixture was evaporated in
vacuo and vacuum drying at 50°C, the AP-SD was obtained
for experiments.

We then determined the standard curve of AP-SD. The
chromatographic conditions were Waters 600 Cl8 column,
methanol-0.1% CH3COONa solution (v/v 60 : 40) as the
mobile phase, 337 nm wavelength, 1.0mL/min flow velocity,
40°C column temperature, and 10μL sample size. The con-
trol solution was prepared according to following the proce-
dures. AP of 10mg was dissolved in ethanol and volumed in
50mL volumetric flask, and thereby the AP control solution
at a concentration of 1mg/mL was obtained. Anhydrous eth-
anol was used to dilute the control solution to yield a series of
solutions at 1, 2, 4, 8, 16, and 32μg/mL. Each solution of
10μL was injected into a high-performance liquid chromato-
graph (HPLC, Waters 600, USA) for measurement of the
peak area. Concentrations of AP (½C�) were marked at the
horizontal ordinate and peak areas (A) at the longitudinal
coordinate giving the standard curve equation: A = 32786:6
× ½C� − 160:4 (R = 0:9991), linear range 0.56-32.7μg/mL.

2.3. Determination of Solubility. AP and AP-SD (equivalent
to 10mg of AP) were precisely weighted and added into
100mL conical flask, and then, distilled water/chloroform
of 20mL was added. The solutions were incubated in a
25°C thermostatic oscillator for 24 hr. Each sample of 5mL
was filtered through a 0.45μm microporous membrane.
The successive filtrate of 10μL was subjected to HPLC anal-
yses. Control solution of 10μL at 8μg/mL was spontaneously
analyzed by HPLC. The equilibrium solubility of both sam-
ples in water and chloroform was measured, respectively,
based on the peak area.

2.4. Determination of Dissolution Rate. AP and AP-SD (both
containing 10mg pure AP) were evenly dispersed in the dis-
solution medium (phosphate buffer saline, pH7.4, 37°C, V
= 900mL) and centrifuged at 100 r/min. Each sample of
5mL was collected at the time points of 5, 10, 15, 20, 30,
45, 60, and 90min, respectively, and subjected to filtration.
The successive filtrate of 1mL was volumed in 10mL volu-
metric flask with distilled water. HPLC analyses were used,
and mass concentrations were calculated through introduc-
ing a peak area into the standard curve equation followed
by calculation of the cumulative dissolution percentage.

2.5. Determination of Plasma Concentrations of AP. Twelve
Sprague Dawley rats (Model Animal Research Centre of
Nanjing University (Nanjing, China) were randomly divided
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into two groups: the AP and AP-SD groups (n = 6). Rats of
both groups were intragastrically administrated with corre-
sponding drugs containing pure AP at 50mg/kg. Blood sam-
ples were collected from orbit at time points of 0.25, 0.5, 1, 2,
4, 8, 12, and 24hr of each rat. After adding heparin, blood
samples were centrifuged at 3000 r/min for 15min, and the
supernatants were collected for examination. 200μL plasma
was mixed with 600μL of silybin solution (internal standard,
13.3μg/mL in methanol) and vortex mixed for 5min. After
centrifugation for 5min at 10000 r/min, the supernatant
was collected. The rest of the residue was extracted with
another 300μL of methanol by vortex mixing for 5min and
centrifuged for 5min at 10000 r/min again, and the obtained
supernatant was pooled together with the previous superna-
tant. Then, the total supernatant was dried under a nitrogen
flow at 35°C and the obtained residues were reconstituted
with 200μL of methanol. After centrifugation for another
5min at 10000 r/min, an aliquot of 20μL supernatant was
analyzed by HPLC for determining drug concentrations.
Maximum plasma concentration (Cmax) and time to reach
maximum concentration (Tmax) were obtained directly
from the concentration-time curve; area under the plasma
concentration-time curve from zero to the time of the final
sample measurement (AUC0-24) was calculated using the
statistical software GraphPad Prism 5 (GraphPad Software
Inc., CA, USA).

2.6. Animal Experimental Procedures. C57BL/6 mice (6
months old, bodyweight 25-33 g, Nrf2 WT and KO) were
obtained from theModel Animal Research Centre of Nanjing
University (Nanjing, China). All mice were domesticated
under a 12h light/dark cycle at a controlled temperature
(25°C) with free access to food and tap water. Nrf2 WT mice
were divided into 6 groups: the aging control, model control,
AP 60 (60mg/kg), and AP-SD groups (20, 40, and 60mg/kg).
Nrf2 KO mice were divided into 3 groups: the aging control,
model control, and AP-SD 60 groups (60mg/kg). The doses
were defined by the content of pure AP in the solid dispersion
and were determined by preliminary experiments. Animals
were treated according to the following procedures: aging
control mice were fed normal diet for 9 months; model con-
trol mice were fed normal diet during months 1-3, high-fat
diet and intake of HQ dissolved in the drinking water
(0.8%) during months 4-6, normal diet and intragastric
administration with 0.5% CMC-Na suspension daily during
months 7-9. For the treated group mice, model control mice
were intragastrically administrated with corresponding
drugs (suspended in 0.5% CMC-Na) at the last 3 months.
All experimental procedures were approved by the institu-
tional and local committee for the care and use of animals,
and all animals received humane care according to the
National Institutes of Health (USA) guidelines.

2.7. Fundus Autofluorescence. The mice were anesthetized
using a ketamine (120mg/kg body weight) and xylazine
(8mg/kg body weight) intraperitoneal injection, and the
pupil was fully dilated with tropicamide phenylephrine eye
drops (Kanda Pharmaceutical, Japan). The mouse was placed
on the table with its head in the chinrest. To maintain corneal

hydration and improve image quality, the viscoelastic mate-
rial (Viscoat, Alcon-Couvreur, Belgium) was smeared on
the cornea covering with a coverslip. A 90D noncontact slit
lamp lens was fixated directly in front of the confocal scan-
ning laser ophthalmoscope (Heidelberg Engineering, Heidel-
berg, Germany). Fluorescence was excited using a 488nm
argon laser or a 790 nm diode laser. As Charbel Issa did
[21], images were recorded using the ART mode for the
quantitative analysis of fundus autofluorescence (FAF); the
mean grey level on mouse FAF images was measured using
ImageJ software (version 1.52, NIH, Bethesda, USA).

2.8. Optical Coherence Tomography. Like the FAF assess-
ment, the animal was anesthetized, the pupil fully dilated,
and the viscoelastic material was smeared on the cornea cov-
ering with a coverslip; then, a 90D noncontact slit lamp lens
was placed in front of an optical coherence tomography
(OCT) device (Cirrus HD-OCT 4000, Carl Zeiss Meditec,
Dublin, CA); cross-sectional images of the retina were under-
taken. The average thickness of the mouse retina was
obtained using the macular cube scan mode according to
the methods reported by Song [22].

2.9. Transmission Electron Microscopy. Eyeballs were fixed in
4% paraformaldehyde for 20min. The cornea, lens, and vitre-
ous were removed. The yye wall tissue (2 × 4mm) was
excised from the bilateral area of the optic disc and fixed with
glutaral/osmic acid, coated with epoxy resins, and sectioned.
After double staining with uranyl acetate and lead citrate, the
sections were examined with transmission electron micro-
scope (Tecnai G2 Spirit BioTWIN; FEI, Hillsboro, OR, USA)
and images were taken. The area of the sediment beneath
RPE was determined according to the methods reported by
Edward [23]. Briefly, images were opened in ImageJ software
and calibrated using the embedded scale bar. The region of
the sediment was drawn using free selection tool, and the
area was measured. The thickness of the Bruch membrane
(BrM) was directly measured by electron microscopy.

2.10. Measurements of ROS, MDA, and Antioxidant
Enzymes. The retina was isolated, and tissue homogenates
were prepared via centrifugation at 4°C, 3000 r/min for
10min. Levels of ROS were determined using the DCFH-
DA method. Levels of MDA were measured using the thio-
barbituric acid method. In addition, activities of SOD and
GSH-PX were measured using the corresponding enzyme-
linked immunosorbent assay kits at the wavelength of 450
and 412 nm, respectively. Kits above were from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China), and
experiments were performed according to the instructions
provided by the manufactures.

2.11. Western Blot Analysis. The mouse retina/choroid tissue
was lysed in the RIPA buffer containing a protease inhibitor.

For examining the Nrf2 expression, nuclear and cytoplas-
mic proteins were separated using a Bioepitope Nuclear and
Cytoplasmic Extraction Kit (Bioworld Technology, St. Louis
Park, MN, USA) following themanufacturer’s guidelines. Pro-
teins (50μg/well) were separated by SDS-polyacrylamide gel
and transferred to a PVDF membrane (Millipore, Burlington,
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MA, USA). After blocking with 5% skimmilk in Tris-buffered
saline containing 0.1% Tween 20, the membranes were incu-
bated with primary corresponding primary antibodies. The
blots were then incubated with a secondary antibody (anti-
rabbit horseradish peroxidase-conjugate/anti-mouse HRP-
conjugate), and the protein bands were visualized using a
chemiluminescence reagent (Millipore, Burlington, MA,
USA). Equivalent loading was confirmed using an antibody
against GAPDH for total proteins and against Lamin B for
nuclear proteins. The levels of target protein bands were den-
sitometrically determined using Quantity One 4.4.1.

2.12. Statistical Analysis. Data were presented as mean ± SD,
and results were analyzed using GraphPad Prism 5 software.
The significance of difference was determined by Student’s
t-test for comparison between two groups and one-way
ANOVA with post hoc Tukey’s test for comparison between
multiple groups. A value of p < 0:05 was considered to be sta-
tistically significant.

3. Results

3.1. AP-SD Increases the Solubility and Dissolution of AP In
Vitro. We determined the equilibrium solubility of AP and
AP-SD in water and chloroform. The results showed that
the equilibrium solubility of AP-SD in both water and chlo-
roform was significantly higher than that of AP (Table 1).
Determination of the dissolution rate showed that AP-SD
had significantly higher cumulative dissolution rates than
AP at each time points (Figure 1).

3.2. AP-SD Enhances the Absorption of AP In Vivo. We
obtained the plasma concentration-time curve of AP and
AP-SD in rats (Figure 2). Cmax, Tmax, and AUC0~24 for AP
and AP-SD were calculated with ImageJ software (Table 2).
The results showed that AP-SD had better bioavailability
than AP.

3.3. AP-SD Alleviated Pathological Changes of the Retina.
In clinical, fundus AF and OCT are the most used nonin-
vasive means for monitoring of dry AMD [24, 25]. Fundus
AF generated with wavelength between 500 and 750nm is
dominated by RPE lipofuscin, a complex mixture of fluoro-
phores being accumulated in the RPE after phagocytosis of
POS [26]. Therefore, AF intensity indicates the level of lipo-
fuscin in vivo in the RPE. Spectral-domain- (SD-) OCT pro-
vides high-quality, cross-sectional images of the retina
including RPE with resolution approaching histology per-
formed with light microscopy [27]. To evaluate the therapeu-
tic effects of AP-SD, we established a dry AMDmouse model
that mimics three risk factors for AMD in humans: aging,
hyperlipidemia, and smoking (HQ is abundant in cigarette
smoke) [28]. HQ, an electrophilic, could inhibit the binding
of BACH1 with Nrf2, thus activating the Nrf2 pathway
[29]. Our results showed that AF intensity in model mice
was significantly enhanced compared with that in aging mice,
and in Nrf2KO mouse higher than in Nrf2WT mice. AF
intensity was attenuated after treatment with AP-SD in
Nrf2WT mice (Figures 3(a) and 3(b)). Correspondingly, the
images of OCT scanning showed that the outer layer struc-

ture of the retina including photoreceptors, RPE, and Bruch
membrane (BrM) became unclear, and the retina was thin-
ner in model mice compared with aging mice, more signif-
icant in Nrf2 KO mice than in Nrf2 WT mice (Figure 4).
Treatment with AP-SD could restore the retinal structure
in Nrf2WT mice.

We further observed the retinal ultrastructure; the results
demonstrated that there were undigested phagosomes
(Figure 5(a)) and autophagosome (Figure 5(b)) present in
the RPE of the model mouse. There were obvious sediments
under RPE and thickened BrM in the model mice compared
to the aging mice, and it is more severe in Nrf2 KOmice. AP-
SD reduced the area of the sediment and thinned BrM in
Nrf2WT mice (Figure 6). In particular, AP-SD only allevi-
ated retinopathy in Nrf2 WT mice and had no effects in
Nrf2 KO mice. In addition, the therapeutic effect of AP-SD
was dose dependent, and AP did not work. Collectively, these
data indicated that AP-SD more potently improved patho-
logical changes of the retina in Nrf2 WT model mice with
dry AMD.

3.4. AP-SD Induced Nrf2 Nuclear Translocation and
Increased Antioxidant Gene Expression. To explore the
underlying mechanism for AP-SD reducing retinopathy in
model mice with dry AMD, we first assessed the effects of
AP-SD on Nrf2 pathway. As shown in Figure 7(a), the level
of nuclear Nrf2 was increased and the level of cytoplasmic
Nrf2 was reduced in model mice compared with those in
aging mice. AP-SD decreased the level of cytoplasmic Nrf2
and increased the level of nuclear Nrf2 in a dose-effect man-
ner, indicating that AP-SD promoted Nrf2 nuclear transloca-
tion (Figure 7(b)). Furthermore, we examined the ability of
AP-SD to upregulate the expressions of the targeted genes
of Nrf2, upon its increased nuclear translocation. The expres-
sions of HO-1 and NQO-1 were upregulated in the Nrf2 WT
model mice and downregulated in the Nrf2 KO model mice,
compared with those in aging mice (Figure 8(a)). AP-SD
dose dependently increased the expressions of HO-1 and
NQO-1 in Nrf2 WTmice but had no effects in Nrf2 KOmice
as expected (Figure 8(b)).

3.5. AP-SD Restored Activities of SOD and GSH-Px Enzyme
and Decreased Levels of SOD and MDA. We measured the
activity of SOD and GSH-Px enzyme in mouse, two impor-
tant antioxidant enzymes of the retina. The results showed
that the activities of SOD and GSH-Px were significantly
decreased in Nrf2 WT model mice and are more remarkable
in Nrf2 KO model mice. AP-SD dose dependently restored

Table 1: Equilibrium solubility of AP of both dosage forms (37°C,
n = 3).

Solvents
Concentration (μg/mL)

AP AP-SD

Water 1:33 ± 0:15 352:09±22:56∗∗

Chloroform 2:18 ± 0:21 1:43 × 103±187:11∗∗

Significance: ∗∗p < 0:01 versus AP.
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the activities of SOD and GSH-Px in Nrf2 WT mice, not in
Nrf2 KO mice (Figures 9(a) and, 9(b)). ROS is a by-product
of cellular oxidative phosphorylation and its level is consis-
tent with oxidative stress. ROS causes lipid peroxidation of
the biomembrane, which leads to the production of a large
amount of MDA [2]. Therefore, we examined the levels of
ROS and MDA in the mouse retina. The results showed that
the levels of ROS and MDA were significantly elevated in
Nrf2 WT and Nrf2 KO model mice, but higher in Nrf2 KO
mice. AP-SD decreased the ROS and MDA levels in dose-
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Table 2: Pharmacokinetic parameters of AP after oral
administration of pure AP and AP-SD in rats (dose 50mg/kg, n =
6, mean ± SD).

Parameters AP AP-SD

Cmax (μg/mL) 0.27 1.52∗∗

Tmax (hr) 2.0 1∗

AUC0-24 (μgh/mL) 3.10 7.68∗∗

Significance: ∗p < 0:05, ∗∗p < 0:01 versus AP.
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Figure 3: Representative images of fundus AF excited at 488 (a) and 790 nm (b) in Nrf2 WT and KO mice. AF intensity in model mice was
significantly enhanced compared with that in agingmice, and in Nrf2 KOmice higher than in Nrf2WTmice. AF intensity was decreased after
treatment with AP-SD in Nrf2 WT mice, but not in Nrf2 KO mice. ※※p < 0:01, model control versus aging control; #p < 0:05, ##p < 0:01, AP-
SD versus model control; @p < 0:05, AP-SD 60 versus AP-SD 40. Data are means ± standard deviation (n = 5).
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effect manner in Nrf2 WT mice, not in Nrf2 KO mice
(Figures 10(a) and 10(b)).

3.6. AP-SD Increased p62 Protein Expression and Regulated
Autophagy in an Nrf2-Dependent Manner. The p62 protein
and LC3 have been widely regarded as markers for autopha-
gic activity. p62 is used as a marker of autophagic degrada-
tion [30] and LC3-II serves as a marker for autophagosome
formation [31]. Autophagy increases often coincides with
the induction of the Nrf2 pathway in stressed conditions
[32]. Based on these findings, we assessed whether Nrf2
directly upregulated the expression of p62. As shown in
Figure 10(a), the upregulation of p62 expression was only
found in Nrf2 WT model mice, but not in Nrf2 KO model
mice, compared with the aging mice. Under the same condi-
tions, Nrf2 levels in the nucleus significantly increased in
Nrf2 WT model mice, as shown in the previous results.
Our findings are consistent with those of several reports
[33, 34]. In addition, AP-SD dose dependently increased
p62 expression in Nrf2 WT mice, not in Nrf2KO mice
(Figure 11(b)). Meanwhile, the upregulation of LC3 II
expression was also only shown in Nrf2 WT mice, but not
in Nrf2 KO mice, compared with the aging mice. In Nrf2
WT mice (Figure 11(a)), the expression of LC3 II increased
in dose-dependent manner after treatment with AP-SD,
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Figure 4: Representative images of OCT in Nrf2 WT and KOmice. Outer layer structure of the retina was unclear and the retina was thinner
in model mice compared with aging mice, more significant in Nrf2 KO mice. Treatment with AP-SD dose dependently restored the retinal
structure in Nrf2 WT mice and did not in Nrf2 KO mice. ※※p < 0:01, model control versus aging control; #p < 0:05, ##p < 0:01, AP-SD versus
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Figure 5: Transmission electron microscopy showed that there
were undigested phagosomes (a, white arrow) and autophagosome
(b, orange arrow) present in the RPE of the model mouse. POS:
photoreceptor outer segment; Mt: mitochondria; BrM: Bruch
membrane.
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but there was no significant change in Nrf2 KO mice
(Figure 11(b)). Together, these results imply that Nrf2 is a
mediator of the activation of autophagy in the model mice
with dry AMD.

4. Discussion

Up to now, no therapy options are approved for the treat-
ment of dry AMD. Several pathways, including oxidative
stress, deposits of lipofuscin, and chronic inflammation,
seem to play important roles in the pathogenesis of dry
AMD and represent possible targets [35]. Oxidative stress
has been suggested to be a critical component of AMD path-
ogenesis. Many reports demonstrated that natural products
are able to decrease the occurrence of several diseases
induced by oxidative injury, including AMD [36, 37]. Dietary
supplements containing high dose of antioxidants and min-
erals (vitamins C and E, β-carotene, and zinc) delayed the
progression of AMD intermediate to advanced stages [38].
Quercetin, lutein, zeaxanthin, and hesperetin have also been
shown to have the potential to prevent AMD progress [39–

41]. It has been reported that AP plays a protective role in
treating diseases associated with the oxidative process, such
as cardiovascular and neurological disorders [42, 43]. How-
ever, like other flavonoids, AP has poor solubility in water
and fat, therefore having low bioavailability. PVP, a hydro-
philic excipient, could convert drugs to an amorphous form,
and immensity enhances the solubility and dissolution of
drugs [44, 45]. In this study, we prepared AP-SD with PVP
K30; the results showed that the formation of solid dispersion
increased the solubility and dispersion of AP, so the oral bio-
availability of AP-SD was better than that of AP in rats. We
then used dry AMD model mouse to verify the benefits of
AP-SD in improving bioavailability. The results showed that
AP-SD could reduce retinopathy, while AP could not, indi-
cating that the formation of solid dispersion reasonably
enhanced the protective effects of AP on the mouse retina
on account of the increased bioavailability.

Recently, the Nrf2 pathway was considered a key contrib-
utor to the response to increased oxidative stress in RPE.
Nrf2 knockout mouse has been shown to induce AMD-like
pathological changes, manifested by the accumulation of
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Figure 6: Representative images of TEM in Nrf2 WT and KO mice. There were obvious sediments under RPE (orange area) and thickened
BrM (black arrow) in model mice compared to the aging mice, and it is more severe in Nrf2 KOmice. AP-SD reduced the area of the sediment
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lipofuscin, drusen, choroidal neovascularization and accu-
mulation of the autophagosome [46]. In this study, similar
lesions were showed in the retina of the model mouse. Acti-
vation of the Nrf2 pathway could have a therapeutic potential
in protecting RPE cells against oxidative stress, so it may be
beneficial for dry AMD [47]. Based on this point, we have
previously reported that AP protected ARPE-19 cells against
oxidative injury by the activation of Nrf2 signaling in vitro.
In the present study, the effects of AP were validated in
model mouse of dry AMD in vivo. The upregulation of
Nrf2 expression and nuclear translocation were observed
in Nrf2 WT mice. AP-SD promoted Nrf2 nuclear transloca-
tion, upregulated the expression of Nrf2 and targeted protein
HO-1 and GCL, restored activities of SOD and GSH-PX,
and decreased the levels of ROS and MDA in Nrf2 WT mice.
As expected, similar results were not observed in Nrf2 KO
mice. In conclusion, our findings suggested that AP-SD pro-
tected the retina against oxidative injury via activation of the
Nrf2 signaling pathway.

It was reported that AP regulate autophagy. For example,
AP promoted autophagy through the mTOR/AMPK/ULK1
pathway and could play an antidepressant effect [48], inhib-
ited the growth of cisplatin-resistant colon cancer cells by

inducing autophagy and apoptosis [49], and restored impair-
ment of autophagy and downregulation of unfolded protein
response regulatory proteins in keratinocytes exposed to
ultraviolet B radiation [50]. Studies have suggested that p62
protein is regulated by oxidative stress and is a transcrip-
tional target of Nrf2 [51, 52]. This study focused on the effect
of AP on autophagy pathway in the retina of model mice and
the relationship between the p62 expression, autophagy, and
Nrf2 pathway. The results showed that the expression of p62
and LC3 in Nrf2 KO mice were significantly lower than that
in Nrf2 WT mice. In Nrf2 WT mice, AP-SD dose depen-
dently upregulated the expression of p62 and LC3 but had
no effect in Nrf2KO mice. Our finding suggested that AP-
SD upregulated the autophagy in an Nrf2-dependent man-
ner. It has been well known that the nuclear translocation
of Nrf2 is increased and the expression of Nrf2 is upregulated
in oxidative stress. Nrf2 could regulate the transcription of
autophagy genes, such as p62, ULK1, Atg7 and GABAR-
APL1, Atg2B, Atg5, and Atg4D, because there is an ARE
sequence in their promoter regions. The expressions of sev-
eral autophagy markers (including LC3) were decreased in
Nrf2-deficient mice [33, 53]. However, it has been reported
that trehalose upregulate Nrf2 and autophagy in a p62-
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Figure 7: AP-SD promoted Nrf2 nuclear translocation. (a) The level of nuclear Nrf2 was increased and the level of cytoplasmic Nrf2 was
reduced in model mice compared with those in aging mice. (b) AP-SD decreased the level of cytoplasmic Nrf2 and increased the level of
nuclear Nrf2. ※※p < 0:01, model control versus aging control; ##p < 0:01, AP-SD versus model control; @p < 0:05, @@p< 0.01, AP-SD 60
versus AP-SD 40. Data are means ± standard deviation (n = 5).
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Figure 9: AP-SD restored the activities of SOD and GSH-Px. The activities of SOD (a) and GSH-Px (b) were decreased in Nrf2 WT model
mice and more remarkable in Nrf2 KO model mice. AP-SD restored the activities of SOD and GSH-Px in Nrf2 WT mice, not in Nrf2 KO
mice. ※※p < 0:01, model control versus aging control; #p < 0:05, ##p < 0:01, AP-SD versus model control; @@p < 0:01, AP-SD 60 versus AP-
SD 40. Data are means ± standard deviation (n = 5).
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Figure 8: AP-SD upregulated the expressions of the targeted genes of Nrf2. (a) The expressions of HO-1 and NQO-1 were upregulated in the
Nrf2WTmodel mice and downregulated in Nrf2 KOmodel mice, compared with those in aging mice. (b) AP-SD increased the expressions of
HO-1 and NQO-1 in Nrf2 WT mice but not in Nrf2 KO mice. ※※p < 0:01, model control versus aging control;#p < 0:05, ##p < 0:01, AP-SD
versus model control; @p < 0:05, AP-SD 60 versus AP-SD 40. Data are means ± standard deviation (n = 5).
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Figure 10: AP-SD decreased the ROS and MDA levels. The levels of ROS (a) and MDA (b) were significantly elevated in Nrf2 WT and Nrf2
KO model mice, but higher in Nrf2 KO mice. AP-SD decreased the ROS and MDA levels in Nrf2 WT mice, not in Nrf2 KO mice. ※※p < 0:01,
model control versus aging control; #p < 0:05, ##p < 0:01, AP-SD versus model control; @@p < 0:01, AP-SD 60 versus AP-SD 40. Data are
means ± standard deviation (n = 5).
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Figure 11: AP-SD regulated autophagy. (a) The expressions of p62 and LC3 II were upregulated in Nrf2 WTmodel mice, but not in Nrf2 KO
model mice, compared with those in aging mice. (b) AP-SD increased the expressions of p62 and LC3 II in Nrf2 WT mice, but not in
Nrf2 KO mice. ※p < 0:05, ※※p < 0:01, model control versus aging control;#p < 0:05, ##p < 0:01, AP-SD versus model control; @@p < 0:01,
AP-SD 60 versus AP-SD 40. Data are means ± standard deviation (n = 5).

11Oxidative Medicine and Cellular Longevity



dependent manner in oxidative stress [12]. Therefore, the
underlying mechanism of AP regulating the Nrf2 pathway
and autophagy remains to be further studied.

In summary, AP-SD significantly enhanced the bioavail-
ability of the original drug and reduced retinal oxidative
injury in model mouse of dry AMD in vivo. Meanwhile, we
provided evidence that AP not only activates Nrf2 pathway
but also upregulates p62 and autophagy. AP-SD upregu-
lated the expressions of antioxidant enzymes through the
Nrf2 pathway and upregulated the autophagy in an Nrf2-
dependent manner to suppress retinal oxidative damage.
The results suggest that AP-SD is a potential compound for
the treatment of dry AMD.
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Glutamic acid (Glu) is a worldwide flavor enhancer with various positive effects. However, Glu-induced neurotoxicity has been
reported less. Tetrastigma hemsleyanum (TH), a rare herbal plant in China, possesses high medicinal value. More studies paid
attention to tuber of TH whereas vine part (THV) attracts fewer focus. In this study, we extracted and purified flavones from
THV (THVF), and UPLC-TOF/MS showed THVF was consisted of 3-caffeoylquinic acid, 5-caffeoylquinic acid, quercetin-3-O-
rutinoside, and kaempferol-3-O-rutinoside. In vitro, Glu caused severe cytotoxicity, genotoxicity, mitochondrial dysfunction,
and oxidative damage to rat phaeochromocytoma (PC12) cells. Conversely, THVF attenuated Glu-induced toxicity via MAPK
pathways. In vivo, the neurotoxicity triggered by Glu restrained the athletic ability in Caenorhabditis elegans (C. elegans). The
treatment of THVF reversed the situation induced by Glu. In a word, Glu could cause neurotoxicity and THVF owns potential
neuroprotective effects both in vitro and in vivo via MAPK pathways.

1. Introduction

Glutamic acid (Glu), as one of the basic amino acids, is
widely applied in industry. Glu is involved in many crucial
chemical reactions in the body and plays an important role
in protein metabolism in organisms [1]. Meanwhile, it is
ubiquitous in the human diet; as a flavor enhancer and food
additive in food field, Glu is wildly used to improve the taste
of beverages and foods and preserves the freshness of animal
food [2, 3]. For example, sodium glutamate, commonly
known as monosodium glutamate, is a typical flavor agent
that can be used alone or with other amino acids [4]. In addi-
tion, studies have proven that Glu is an excellent hair-
generating agent. Ottersen et al. reported that Glu effectively
promoted the proliferation of hair papilla cells; besides, it can
also expand blood vessels and accelerated blood circulation,

resulting in hair regeneration [5, 6]. It has also been esti-
mated that Glu poses the ability to reduce wrinkles [7]. As
an auxiliary drug for liver diseases, Glu is taken and com-
bined with blood ammonia to form glutamine, which can
relieve the toxic effect of ammonia in the metabolic process,
thus preventing and treating hepatic coma [8, 9]. Besides,
brain tissue cannot oxidize amino acids except glutamate,
and therefore, glutamine can be used as an energy substance
to improve the function of the brain [10, 11]. As a supple-
ment to the nerve center and cerebral cortex, Glu exhibits a
certain effect on the treatment of concussion, nerve damage,
epilepsy, and mental retardation [12, 13]. Data show that Glu
peaks the largest productive amino acid variety worldwide.

Although Glu shows an irreplaceable role in various
fields, it may also turn from a protective agent to a neuro-
toxin in many cases. A growing number of studies have
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found that the Glu is closely associated with the etiology and
pathology of many neurological and psychiatric disorders,
such as cerebral ischemia, epilepsy, Alzheimer’s disease,
Huntington’s disease, schizophrenia, and Pico disease [14].
Oxidative stress caused by Glu is an important cause of neu-
rodegenerative diseases [15, 16], high concentration of Glu
inhibits cysteine/glutamate antiporter or system x-CT in
neuronal cells, causes calcium overload that interferes with
mitochondrial respiratory chain function, thereby inhibiting
cystine uptake and causing intracellular glutathione (GSH)
deprivation and ROS accumulation, and ultimately leading
to cell necrosis or apoptosis [17, 18]. Moreover, studies have
shown that the caspase-dependent apoptotic pathway is
related with Glu-neurotoxicity [19].

Natural plant extracts are attracting researchers’ atten-
tion because of their safety, nontoxicity, and various biologi-
cal activities [20]. Many natural plants have been already
proved to exhibit various bioactive capacities such as antiox-
idative activity, anti-inflammatory activity, hypolipidemic
effects, and even antitumor capacity [20]. Tetrastigma hem-
sleyanum Diels et. Gilg (TH), initially used for folk treatment
of cancer (Li et al., 2019), is now not only a traditional Chi-
nese medicine but also a type of functional food. Previous
studies have shown that TH has antioxidant, anti-inflamma-
tory, anticancer, and immunomodulatory properties that can
effectively treat high fever, infantile febrile seizures, pneumo-
nia, asthma, hepatitis, rheumatism, menstrual disorders, sore
throats, and sores [21, 22]. It has reported that TH contains
many phytochemicals, such as flavonoids, phenolic acids,
polysaccharides, and phytosterols, resulting in its various
biologically activities such as anti-inflammatory, antioxidant,
antiproliferative, antitumor, and antiviral effects [22–24].
However, there are fewer studies that paid attention to vine
of TH, which is usually regarded useless and often discarded
as a by-product, resulting in a waste of source.

In this study, we have extracted and purified the THVF,
then identified and characterized the main compounds of
THVF by UPLC-TOF/MS. In addition, we adopted the
PC12 cell line and evaluated the protective effects of the
THVF against damage induced by Glu in vitro. Meanwhile,
western blot assay was conducted to unearth the underlying
mechanism and the possible signal pathways involved in
the protective effects. Furthermore, we assessed THVF’s pos-
sible protective effects for Caenorhabditis elegans (C. elegans)
against Glu-induced injury and its potential function in nem-
atode physiological activity.

2. Materials and Methods

2.1. Extraction and Purification of THVF. T. hemsleyanum
vines were first washed, dried, smashed into powder, and
extracted with 80% ethanol at 45°C for 90min by ultraso-
nication (with the ratio of material and solution in 1 : 5).
The above extraction produce was repeated three times.
Then, the filtered fluid was collected and settled at 4°C
overnight. On the second day, the filtrate was centrifuged
at 4000 r/min for 10min to gain the supernatants. Then,
the supernatants were evaporated to concentrate under
reduced pressure at 45°C, the concentrations were later

centrifuged at 10000 r/min, and then the supernatants
were loaded onto an equilibrated AB-8macroporous resin
column (Ø3:2 × 60 cm) for further purification. Finally,
the eluted fluid was evaporated and lyophilized and later
stored at -80°C for further research.

2.2. Identification of THVF. An Ultra Performance Liquid
Chromatography (UPLC) system (Waters, Milford, MA,
USA) equipped with a triple-Time-of-Flight mass spec-
trometry (TOF/MS) system (AB SCIEX, Triple TOF 5600+,
Framingham, MA, USA) on a Promosil C18 column
(4:6mm × 250mm, 5μm) was used to identify flavonoid
compounds. The ingredients of the mobile phase are acetoni-
trile (A) and 0.1% aqueous formic acid (B). The linear gradi-
ent of phase B was 0−1min (95%), 1−21min (95–85%), 21
−46min (85–75%), 46–56min (75–95%), and 56−60min
(95%). The flow rate was 0.8mL/min, and the injection
amount was 5μL. The mass spectrometry was operated in a
negative ion mode at a temperature of 550°C, and the source
voltage was 4.5 kV. Ions were recorded from m/z 100–1500,
and the wavelength for the ultraviolet (UV) detector was set
as 280nm.

2.3. Cell Culture and Treatments. PC12 cell line was obtained
from Shanghai Institute of Cell Biology (Shanghai, China)
and cultured in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin-streptomycin solution in an incubator with
5% CO2 at 37

°C. THVF powder was always freshly dissolved
in DMEM with 10% FBS before use. After being cultured for
24 h, the cells were washed with phosphate-buffered saline
(PBS) twice and then pretreated with different concentra-
tions of THVF for another 24 hours. Later, Glu (20mM)
was added for 24 h in the absence/presence of different con-
centrations of THVF.

2.4. Cell Viability Assays. The assays of cell viability were
carried out according to our previous protocol [21].
PC12 cells were seeded onto a 96-well plate, and 3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
(MTT) diluted with serum-free DMEM at a final concentra-
tion of 0.5mg/mL was added to each well after different treat-
ments. After 4 h of incubation at 37°C, the formazan
precipitate was dissolved in 150μL of dimethyl sulfoxide
(DMSO) and shook for 15 minutes and the absorbance was
measured at 570nm with a spectrophotometer. The viability
of the untreated group was regarded as 100%, and each exper-
iment was repeated at least three times.

2.5. Fluorescent Probes Staining for PC12 Cells. After cell
treatment, serum-free DMEM, respectively, containing 6
kinds of fluorescent probes were applied, including 2,7-
dichlorofluorescein diacetate (DCFH-DA), DHE, aphtha-
lene-2,3-dicarboxaldehyde (NDA), Rhodamine 123, 10-N
nonyl acridine orange (NAO), and Hoechst 33258. Cells were
washed twice in PBS buffer after treatments and incubated in
free-serum DMEM containing the probe at 37°C for 30min.
Then, cells were washed three times with PBS buffer and
detected on a fluorescence microscope (Nikon) with different
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filters at identical acquisition settings. Image-Pro Plus 6.0
software was adopted to analyze the densitometry.

2.6. Determination of the Level of SOD, MDA, and GSH. Cells
were treated with different treatments, after washing with
PBS buffer twice, 500μL WB/IP cell lysis buffer was added,
and cells were scratched and collected. An ultrasonic shred-
der and centrifuge (Sigma, USA) were used, and the superna-
tants were collected for further assay. SOD, MDA, and GSH
contents were determined with assay kits purchased from
Beyotime Biotechnology (Jiangsu, China).

2.7. Western Blot. Total protein of cells was prepared using
the WB/IP lysis buffer (Beyotime Biotechnology, Jiangsu,
China). Equal amounts of protein were subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to polyvinylidene fluoride (PVDF)
membranes. Membranes were probed with primary antibod-
ies, and primary antibodies against p-p38 mitogen-activated
protein kinase (MAPK), p38 MAPK, p-JNK, c-Jun N-
terminal kinase JNK, and β-actin were purchased from
Abcam (Shanghai, China). They were detected with
horseradish-peroxidase-conjugated secondary antibodies
using the enhanced chemiluminescence (ECL) detection sys-
tem. β-Actin was used as a loading control, and ImageJ soft-
ware was used to analyze densitometry.

2.8. C. Elegans Strains and Treatment. C. elegans bristol N2
(wild-type) was provided by Dr. Du (Zhejiang University,
China). The mutants were maintained at 20°C on a standard
nematode growth medium (NGM) with E. coli OP50 as food
resources. To collect eggs, adult animals on NGM were dis-
solved in bleaching solution. Then, the eggs were transferred
into a new plate for hatching and synchronized at the same
period.

Synchronized L3 stage C. elegans were collected and
transferred to NGM containing THVF of different concen-
trations (2.5, 5, and 10μg/mL). After 24-hour treatments,
20mM of glutamate was added while the concentration of
TVE kept the same as before.

2.9. Determination of Survival Rate, Body Length, and Body
Width. The survival rate assays were performed in the 24-
well plates. A total of 40 young nematodes were raised in each
well with culture medium (NaCl 3.1 g/L, KCl 2.4 g/L, choles-
terol 1mg/L), and E. coli OP50 was added for food supply. 0,
2.5, 5, and 10μg/mL THVF were added into medium, respec-
tively. After treating for 24h, 20mM Glu was later added for
another 24 h. Survival rate was defined as survival rate ð%Þ
= the living wormnumbers after treatment/total worm
numbers before treatment ∗ 100%:

The survival rate in the control group was regarded as
100% when calculated. Meanwhile, the photos of C. elegans
were captured by a microscope and animals’ body length
and body width were measured by Auto CAD.

2.10. Locomotion Behavior Assay. Head thrash and body
bend assays were used to evaluate locomotion behavior abil-
ity of nematodes. Once, head thrash was defined as a change
in the direction of bending in the mid body which was

counted for 1min. A body bend was defined as a change in
the direction of the part of nematodes corresponding to the
posterior bulb of the pharynx along the y-axis, assuming that
the long axis of the body was the x-axis (n = 30 per replicate;
three replicates per group).

2.11. Visualization of ROS, Superoxide, and GSH. Tomeasure
the level of ROS, superoxide, and GSH, three fluorescence
probes (DCFE-DA, DHE, and NDA) were added, respec-
tively. Images of animals were obtained through a fluores-
cence microscope.

2.12. Statistical Analysis. Data were expressed as mean ±
standard deviations ðSDsÞ from at least three independent
experiments. Significant differences were determined by
one-way analysis of variance (ANOVA) followed by the mul-
tiple comparison at p < 0:05. Significant differences were all
analyzed using SPSS. Densitometry analyses were performed
using Image-Pro Plus 6.0 software.

3. Results

3.1. The Main Compounds of THVF. UPLC-TOF/MS results
showed that THVF was composed of four main compounds;
we numbered these four compounds as peak 1, 2, 3, and 4
(Figure 1(a)). As Figure 1(b) illustrated, peak 1 with a molec-
ular ion at m/z 191.0506 [quinic acid-H]- was identified as
C16H18O9 while a series of fragments of m/z 191.0561,
179.0345, 161.0242, 127.0403, and 85.0315 appeared in peak
2 secondary mass spectrum (Figure 1(c)). According to
TOF/MS results and previous studies, peaks 1 and 2 were
deduced as 3-caffeoylquinic acid and 5-caffeoylquinic acid
[21, 25]. Peak 3 with a retention time at 33.923min and frag-
ment atm/z 301[M-H-146-162]- was identified as quercetin-
3-O-rutinoside. Furthermore, the relative molecular mass of
peak 4 was 594, and a fragment of m/z 309 was lost at m/z
285 [M-H-308]- that could correspond to the loss of one ruti-
noside and peak 7 could be kaempferol-3-O-rutinoside.
Therefore, it could be deduced that THVF is consisted of 3-
caffeoylquinic acid, 5-caffeoylquinic acid, quercetin-3-O-
rutinoside, and kaempferol-3-O-rutinoside.

3.2. THVF Alleviated Oxidative Stress Caused by Glu.
According to the results of MTT assay (Figure 1(f)), we
found that the concentration range of 0.78–25μg/mL showed
no toxicity to PC12 cells. Thus, we choose 2.5, 5, 10, and
20μg/mL of THVF for further study. DNA damage is a key
feature of cytotoxicity [26]. Therefore, Hoechst 33258, a spe-
cific DNA fluorescence probe, was adopted to assess nuclear
fragmentation. As shown in Figure 2(a), the number of high
light blue dots was markedly elevated after Glu stimulation
while THVF treatments decreased such light dots at a dose-
related manner.

Besides genotoxicity, Glu further caused intracellular
redox disturbance, resulting in overproduction of ROS [27].
Since plant flavones were regarded as a potent free radical
scavenger both in vitro and in vivo [28], we tested the intra-
cellular ROS level in the presence or absence of THVF by
DCFH-DA, a specific ROS fluorescence probe. An enhanced
DCF fluorescence intensity was observed in Glu-treated cells

3Oxidative Medicine and Cellular Longevity



0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
−50

0

50

100

1
2

3

4

150

200

250

300

350

400

450

min

mAU

(a)

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Mass/charge, Da

0
2000
4000
6000
8000

10000
12000In

te
ns

ity

14000
16000
18000
20000
22000
24000
26000
28000 191.0565

135.0458

179.0353

134.0378
353.0898161.024585.0317 127.0406

(b)

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
Mass/charge, Da

0.0e0

5.0e3

1.0e4

1.5e4

2.0e4

In
te

ns
ity

2.5e4

3.0e4

3.5e4
191.0561

85.0315 161.0242127.0403
179.0345

353.0890

(c)

Figure 1: Continued.
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compared with the control group (Figures 2(a) and 2(b)).
Intriguingly, 10 and 20μg/mL THVF significantly declined
the ROS level, with the DCF fluorescence intensity
decreased to 0.18 and 0.15, respectively. Meanwhile, DHE,
a unique probe of intracellular superoxide anion radicals,

was further used to analyze O2
- contents. Similar findings

were got, Glu significantly raised the mean DHE fluores-
cence intensity of PC12 cells (Figures 2(a) and 2(b)). In
contrast, the intervention of THVF helped scavenging the
overproduced O2

- with the DHE fluorescence intensity
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Figure 1: HPLC elution profile of compounds in THVF and effects of THVF on cytotoxicity in PC12 cells. (a) The liquid chromatography
profile of THVF. The peak numbers were labeled according to the retention times. (b) MS/MS information for peak 1. (c) MS/MS information
for peak 2. (d) MS/MS information for peak 3. (e) MS/MS information for peak 4. (f) PC12 cell viability was measured by the MTT method
after treated with THVF at different concentrations for 24 h (n = 6).
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declined. Superoxide dismutase (SOD) is an antioxidant
metalloenzyme that specifically acts as a disproportionation
catalyst to suppress superoxide anion radical generation
[29]. As Figure 2(c) demonstrated, Glu severely inhibited
activity of SOD in PC12 cells. Fortunately, THVF reversed
this situation and 20μg/mL THVF could even recover the

SOD activity similar to control. These dates jointly revealed
the protective effect of THVF under Glu-induced toxicity.

3.3. THVF Relieved Mitochondrial Dysfunction Induced by
Glu. ROS is often regarded as a by-product of mitochondrial
dysfunction [30], and mitochondrial dysfunction could
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Figure 2: Effects of THVF on Glu-induced oxidative damage in PC12 cells (n = 3). (a) Hoechst 33258, DCFH-DA, DHE staining for
genotoxicity, ROS, and O2

−. (b) The quantitative data of panel DCFH-DA and DHE. (c) SOD activity of PC12 cells with or without Glu
and THVF treatments. THVF-treated cells were inoculated in different concentrations of THVF for 24 hours, and then, 20mM Glu was
added for a total of 24 hours. Cells without Glu and THVF were used as negative control group. Cells treated with Glu alone were used as
a glu group. Images were captured with a fluorescence microscope in the same settings. All the fluorescence images were quantified in the
whole field with the background removed and represented by normalized fluorescence (y-axes) via Image-Pro Plus 6.0 (n = 3). Significance
analysis was carried out according to the one-way ANOVA test, and different letters in figures mean statistically significant differences
among the groups (a, b, c, etc., were labeled from large to small and once columns containing a same word means statistically
insignificant, otherwise means statistically significant, p < 0:05).
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further accelerate the progression of various diseases, such as
atherosclerosis, diabetes, Alzheimer’s disease, and Parkin-
son’s disease [31]. Based on these findings, we suspected that
THVF might provide a defense effect to the toxicity via
recovering mitochondrial function. RH123 fluorescence
probe is specific for mitochondrial membrane potential
(MMP) detection and NAO is for mitochondrial membrane
lipid peroxidation (MMLP), respectively. As Figure 3(a)
illustrated, a Rh123 fluorescence intensity decline could be
observed with the stimulation of Glu, suggesting the
decreased MMP, which is usually regarded as prerequisite
and a landmark event in early apoptosis. Similarly, the
NAO fluorescence intensity was markedly suppressed by
Glu, indicating the disturbed MMLP. However, after THVF
treatments, NAO intensity increased compared with Glu-
treated cells. Malondialdehyde (MDA) is a crucial product
of MMLP, and its production can aggravate damage and
leading to aging and resistance physiology [32]. Consistent
with previous results, Glu stimulation triggered MDA pro-
duction and accumulation in PC12 cells while 2.5μg/mL
was sufficient to decrease intracellular MDA content. Mito-
chondrial dysfunction could further facilitate consumption
of glutathione (GSH), and NDA fluorescence intensity
reduction was found after Glu stimulation. Conversely,
THVF treatments increased intensity significantly, suggest-

ing the alleviation of mitochondrial damage and enhancement
of antioxidative ability. Based on these results, we believe
THVF exerted a beneficial effect against Glu-induced mito-
chondrial dysfunction.

3.4. THVF Promoted Cell Proliferation Inhibited by Glu.
Besides genotoxicity, ROS generation, and mitochondrial
dysfunction, Glu also directly induce PC12 cells apoptosis.
B-cell lymphoma-2 (Bcl-2) protein family is closely related
to apoptosis [33]. As Figure 4(a) showed, Glu upregulated
the Bax expression and suppressed the protein level of Bcl-
2, which manifested the apoptotic state of PC12 cells.
Besides, the production level of caspase-9 was also increased
to 3-fold of control. However, we found THVF obviously
down-regulated expressions of Bax, caspase-9, and up-
regulated Bcl-2 levels at a dose-dependent manner. PCNA
plays a crucial role in cell proliferation and regulating cell
cycle [34]. Consists with previous results, Glu significantly
inhibited the expression of PCNA, indicating the damage
of PC12 cell proliferation caused by Glu. On the contrary,
THVF reversed such inhibition and up-regulated PCNA
level to 2 times of control. These results suggested that
THVF reversed apoptosis induced by Glu and facilitated cell
proliferation.
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Figure 3: Effect of THVF on Glu-induced mitochondrial dysfunction in PC12 cells (n = 3). (a) Mitochondrial membrane potential,
mitochondrial membrane lipid peroxidation, and GSH alterations of PC12 cells in the presence of Glu and THVF under different
treatments and were incubated with RH123, NAO, and NDA probes. (b) The quantitative data of panel (a). Images were captured with a
fluorescence microscope in the same settings. All the fluorescence images were quantified in the whole field with the background removed
and represented by normalized fluorescence (y-axes) via Image-Pro Plus 6.0 (n = 3). Significance analysis was carried out according to
one-way ANOVA test and different letters in figures mean statistically significant differences among the groups (a, b, c, etc., were labeled
from large to small and once columns containing a same word means statistically insignificant, otherwise means statistically
significant, p < 0:05).

7Oxidative Medicine and Cellular Longevity



3.5. The Protective Effect of THVF Involved in MAPK
Pathways. As an important transmitter of signals from the
cell surface to the interior of the nucleus, MAPKs can be
activated by different extracellular stimuli such as cyto-
kines, hormones, and cellular stress [35]. Figure 4(b)
showed that with the stimulation of Glu, the phosphoryla-
tion of JNK, ERK, and p38 was upregulated. However,
after THVF treatments, downregulation of phospho-p38
and phosphor-ERK was observed. Meanwhile, though

THVF had both inhibited the expression level of total
JNK and p-JNK, the ratio of p-JNK/JNK had not changed
compared to Glu-induced cells. Based on these results, we
deduced that THVF protect PC12 cells from toxicity via
ERK/p38 pathways.

3.6. THVF Recovered the Locomotory Ability of C. elegans.
With short lifespan and low cost, C. elegans is regarded
as an ideal in vivo model to study toxicity [36]. As shown
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Figure 4: THVF treatment altered expressions of proteins in PC12 cells. (a) Western blot bands of Bax, Bcl-2, caspase-9, PCNA, and β-actin
(n = 3). (b) Western blot bands of MAPKs. p-JNK, p-p38, and p-ERK represent phosphorylation of JNK, p38, and ERK. (c) Relative
expressions of Bax, Bcl-2, caspase-9, PCNA, p-JNK, p-p38, p-ERK, JNK, p38, and ERK. The images were quantified by ImageJ software,
the intensity of bands was corrected by β-actin (n = 3), and vertical lines in the histogram represent SDs of three replicates. Significance
analysis was carried out according to the one-way ANOVA test, and different letters mean statistically significant differences among the
groups (a, b, c, etc., were labeled from large to small and once columns containing a same word means statistically insignificant, otherwise
means statistically significant, p < 0:05).
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in Figures 5(a) and 5(b), both Glu and THVF had not
affected the survival rate, body length, and body width of
nematode. However, Glu stimulation caused severe dam-
age to nematodes’ locomotory ability. Our results showed
significant decreases in body bends and head thrashes of
C elegans after exposure to Glu (Figures 5(c) and 5(d)),
implying the neurotoxicity of Glu, while THVF partly
recovered the locomotory abilities of nematodes. Based
on these results, our results demonstrated that Glu could
induce considerably severe locomotor defects and THVF

was capable to protect nematodes from Glu-induced neu-
rotoxicity (Figure 5(e)).

3.7. THVF Protected C. elegans from Glu-Induced Oxidative
Stress. In in vitro study, Glu induced oxidative toxicity to
PC12 cells and THVF effectively alleviated oxidative stress.
To confirm whether THVF could help prevent from oxida-
tive damage in vivo, we used DCF, DHE, and NDA probes
to measure intracellular ROS, O2

−, and GSH depletion in C.
elegans, respectively. Figure 6 demonstrated that the

0
20
40
60
80

100
120

N
2 

su
rv

ia
l r

at
e (

%
)

A A A A A

0

200

400

600

800

1000

Bo
dy

 le
ng

th
 (𝜇

m
)

THVF (𝜇g/mL) THVF (𝜇g/mL) THVF (𝜇g/mL)

Bo
dy

 w
id

th
 (𝜇

m
)A A A A A

0

10

20

30

40
A A A A A

B

con glu 2.5 5 10 con glu 2.5 5 10 con glu 2.5 5 10 20

(a)

Control Glu 2.5 𝜇g/mL 5 𝜇g/mL 10 𝜇g/mL 

(b)

THVF (𝜇g/mL)

0

50

100

150

H
ea

d 
th

ra
sh

es
 (m

in
-1

)

A AB AB
BC

con glu 2.5 5 10

(c)

THVF (𝜇g/mL)

H
ea

d 
be

nd
s (

20
 s-1

)

con glu 2.5 5 10
0

10

20

30

40 A

B B

C

B

(d)

Glutamate acid Glutamate acid

THVFDamaged locomotory ability

Neuretoxixity

Recovered locomotory ability

(e)

Figure 5: Effect of THVF on Glu-induced toxicity in C. elegans (n = 30). (a) Survival rate, body length, and body width of different groups in
N2. (b) Representative photographs of C.elegans with different treatments. (c) Head thrashes of different groups in N2. (d) Body-bending
frequency of different groups in N2. (e) Scheme illustration of Glu and THVF on nematode locomotory activity. Significance analysis was
carried out according to the one-way ANOVA test, and different letters show statistically significant differences among the groups
(p < 0:05).
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treatment of Glu remarkably increased the mean DCF fluo-
rescence intensity whereas the addition of THVF restored
the mean DCF fluorescence intensity as expected at a
dose-related manner. Moreover, Glu enhanced the level of
O2

− and facilitated the GSH depletion in nematodes. On
the contrary, THVF intervention suppressed the generation
of O2

- and restrained GSH depletion. These results above
suggested that THVF could attenuate Glu-induced oxida-
tive damage in C. elegans.

4. Discussion

The Chinese have used certain seaweeds to enhance the
flavor of food for some 2,000 years. In 1908, the flavor-
enhancing agent was identified as glutamic acid [37]. Nowa-
days, Glu has been applied to a large amount of industrial
production with its various applications such as flavor
enhancer, wrinkles reducer, energy supplier, and neuro-
therapeutic agent. However, the toxicity especially neuro-
toxicity of Glu has been continuously uncovered recently.
Many studies have revealed that natural products are able
to help alleviate toxicity and protect from outer stimulation.
TH is a traditional Chinese herb and food with various con-
firmed bioactive functions, while TH vine is usually regarded
useless and often discarded as a by-product, resulting in a
waste of source. We extracted and purified the flavones of
TH and use UPLC-TOF/MS to characterized the main com-
pounds of THVF. Results showed that THVF was composed
of 3-caffeoylquinic acid, 5-caffeoylquinic acid, quercetin-3-
O-rutinoside, and kaempferol-3-O-rutinoside.

With extreme versatility for pharmacological manipula-
tion, ease of culture, and the large amount of background
knowledge on their proliferation and neuro characterization,
rat phaeochromocytoma (PC12) cells have been widely used
as a model for neural research [38]. Glu caused severe geno-
toxicity to PC12, hereby triggered enhanced ROS generation
and overproduction of O2

-, which were by-products of mito-

chondrial dysfunction induced by Glu. Additionally, Glu
inhibited the SOD enzyme activity and then increased the
MDA accumulation as results. Conversely, THVF attenuated
the Glu-induced toxicity by alleviating the genotoxicity,
relieving oxidative stress, and recovering mitochondrial
functions. It is implying that cell death in central nervous sys-
tem irregulating may play a part in an etiology of cancer,
AIDS, autoimmune diseases, and degenerative diseases such
as Alzheimer’s disease (AD), amyotrophic lateral sclerosis
(ALS), and Huntington’s disease. Similarly, PC12 cell prolif-
eration was inhibited by Glu with down-regulation of PCNA
and Bcl-2, as well as up-regulation of Bax and caspase-9, sug-
gesting the apoptosis of cells. As expected, THVF recovered
the cell proliferate ability and enhanced the expression levels
of PCNA, Bcl-2.

Mitogen-activated protein kinase (MAPK), as an impor-
tant transmitter of signal transmission from the cell surface
to the interior of the nucleus, plays a key role in stress
response [35]. Glu markedly activated the phosphorylation
of p38, JNK, and ERK. Nevertheless, down-regulation of
p38 phosphorylation was found in THVF treated cells. Con-
sidering p38 MAPK is vital in immune response to stress and
cell survival [39], THVF can inactivate, at least partly, the p38
MAPK pathway. Besides, THVF suppressed the expression
of Glu-induced ERK over-phosphorylation. Previous studies
have reported that ERKs, as a downstream protein of various
growth factors (EGF, NGF, PDGF), regulate cell prolifera-
tion, differentiation, and survival. It acts like a receptor of sig-
nals from growth factors, mitogens, and environmental
stimuli and then regulates nuclear transcription factors
through the ERK signal cascade [40]. Thus, THVF might
help protect PC12 cells from Glu-induced toxicity by sup-
pressing over-phosphorylation of ERK and p38.

It has been proved that neurotransmitters and their
metabolism, vesicle circulation, and synaptic transmission
are highly conserved, and all 302 neurons of the nematode
have been well studied, which makes C. elegans an ideal
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Figure 6: Fluorescence staining for C. elegans (n = 30). (a) DCFH-DA staining for ROS alteration. (b) DHE staining for O2
−alteration. (c)

NDA staining for GSH contents. Images were captured with a fluorescence microscope in the same settings (n = 6).
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model to learn neurotoxicity and behavior in vivo [41]. Loco-
motor behaviors require the control of neural circuits [42].
Our results implied that Glu toxicity might be involved in
the disruption of motor control function or appropriate syn-
aptic contacts between neurons and muscle cells. As C. ele-
gans lacks afunctional blood-brain barrier, Glu could
quickly diffuse into the nervous system and directly produce
neurotoxic actions, resulting in damaged head thrashes and
body bends. Fortunately, here THVF turned to be a neuro-
protective agent and recovered the locomotory ability of
nematodes. Consistent with in vitro results, Glu elevated
the intracellular ROS, O2

− generation, and GSH depletion
in nematodes and THVF prevented larvae from Glu-
toxicity. However, it is unclear whether MAPK pathways
are also involved in the THVF-treated nematodes, and fur-
ther research is needed to confirm the inner mechanism in
C. elegans level.

5. Conclusion

In this study, we focus on Glu neurotoxicity rather than
its wide applications and well-known protective effects.
As results illustrated, Glu caused damage to PC12 cells
and C. elegans while THVF, flavones extracted, and puri-
fied from TH vine was able to protect Glu-induced toxicity
via MAPK pathways. These data provide a novel insight
and raise worthwhile questions about the Glu-accompanied
side-toxicity and THVF potential neuroprotective effects
both in vitro and in vivo, as well as MAPK pathways’ role
in neurotoxicity.
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