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Smartwatches are increasingly popular in our daily lives. Motion gestures are a common way of interacting with smartwatches, e.g.,
users can make a movement in the air with their arm wearing the watch to trigger a specific command of the smartwatch. Motion
gesture interaction can compensate for the small screen size of the smartwatch to some extent and enrich smartwatch-based
interactions. An important aspect of motion gesture interaction lies in how to determine the start and end of a motion gesture.
This paper is aimed at selecting gestures as suitable delimiters for motion gesture interaction with the smartwatch. We designed six
gestures (“shaking wrist left and right,” “shaking wrist up and down,” “holding fist and opening,” “turning wrist clockwise,”
“turning wrist anticlockwise,” and “shaking wrist up”) and conducted two experiments to compare the performance of these six
gestures. Firstly, we used dynamic time warping (DTW) and feature extraction with KNN (K-nearest neighbors) to recognize these
six gestures. The average recognition rate of the latter algorithm for the six gestures was higher than that of the former. And with
the latter algorithm, the recognition rate for the first three of the six gestures was greater than 98%. According to experiment one,
gesture 1 (shaking wrist left and right), gesture 2 (shaking wrist up and down), and gesture 3 (holding fist and opening) were
selected as the candidate delimiters. In addition, we conducted a questionnaire data analysis and obtained the same conclusion.
Then, we conducted the second experiment to investigate the performance of these three candidate gestures in daily scenes to
obtain their misoperation rates. The misoperation rates of two candidate gestures (“shaking wrist left and right” and “shaking wrist
up and down”) were approximately 0, which were significantly lower than that of the third candidate gesture. Based on the above
experimental results, gestures “shaking wrist left and right” and “shaking wrist up and down” are suitable as motion gesture
delimiters for smartwatch interaction.

» <

1. Introduction

Smartwatches have become a popular device in people’s
daily life [1]. People can use smartwatches in many day-to-
day activities such as checking emails and sending and
receiving messages [2]. Besides, smartwatches are also con-
venient for health management, e.g., sleep and heart rate
monitoring [3, 4].

The questions of how to improve smartwatch interaction
has attracted much attention in the HCI field. Currently,
most popular commercial smartwatches such as Apple
Watch still rely on touch interaction, physical buttons, and
voice input [5]. These interaction methods are limited by
screen size and environments, restricting the application of

smartwatches to a wider extent. Therefore, smartwatches
need new interaction methods to improve usability [6].
Motion gestures have potential advantages for smart-
watch interaction [7]. For example, a user can draw a circle
in the air with the wrist wearing a smartwatch to trigger a
specific command of the smartwatch. Compared with inter-
action methods such as touchscreens, motion gesture inter-
action is less likely to be limited by the size of the screen.
However, motion gesture interaction needs to address two
main challenges. The first one is how to effectively obtain
motion gesture data. Popular motion gesture recognition
systems rely on cameras to capture gesture images or sensors
such as gyroscopes and accelerometers to collect user action
data [8-11]. Since smartwatches are mainly worn on the
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wrist and move along with the wrist, we can use in-built sen-
sors of smartwatches to collect gesturing data. Compared to
gesture images captured using a camera, sensor data requires
fewer computational resources to collect and can be used to
identify gesture delimiters more effectively. The second one
is how to determine the start and end of an intended gesture
[12]. In the process of motion gesture interaction, the smart-
watch needs to continuously record movement data, both
nonuser-intended (e.g., the wrist keeps swinging while
walking) and user-intended (performing defined gestures).
Therefore, we need to specify the start and end of the
intended gesture. There are two common ways. First, the
user clicks the button to determine the start and end of a
motion gesture [13], which usually requires the nonwatch-
wearing hand to perform the click. This could interrupt
the interaction flow. Second, the user performs a defined
gesture as a delimiter. The defined delimiter is used to distin-
guish the gestures that the user intends to input from unin-
tended ones. The delimiter should be significantly different
from the common actions and other gestures to avoid false
recognition and should be simple enough to perform. We
use delimiters to determine the start and end of a gesture,
which allows for a more natural way of user interaction
and requires no additional hardware than using buttons.

This study is aimed at selecting suitable motion gestures
as delimiters for smartwatches to improve smartwatch inter-
action in low power consumption and natural way. We first
selected six candidate gestures: “shaking wrist left and right,”
“shaking wrist up and down,” “holding fist and opening,”
“turning wrist clockwise,” “turning wrist anticlockwise,”
and “shaking wrist up” (Figure 1). Then, we conducted two
experiments to evaluate the performance of these gestures
as motion gesture delimiters. Considering the relatively low
computing power of the watch and the requirement for fast
and stable delimiter recognition, we used DTW (dynamic
time warping) [14] and feature extraction with KNN
(K-nearest neighbors) [15] to perform gesture recognition
based on the data collected by the inbuilt gyroscopes and
accelerometers of smartwatches. Results showed that “shak-
ing wrist left and right,” “shaking wrist up and down,” and
“holding fist and opening” achieved significantly higher rec-
ognition rates than “turning wrist clockwise,” “turning wrist
anticlockwise,” and “shaking wrist up.” In addition, we con-
ducted a usability evaluation to support this conclusion.
Hence, we further evaluated the performance of the former
three gestures in daily scenes in terms of misoperation rates.
“Shaking wrist left and right” and “shaking wrist up and
down” had a misoperation rate of approximately 0, which
could be primarily considered as the delimiters for smart-
watch interaction.

2. Related Work

2.1. Motion Gesture Data Collection and Gesture Recognition.
Motion gesture data collection for wearable devices usually
relies on sensors. For example, EMG sensors [16, 17] or pres-
sure sensors [18] can be used to collect data generated by hand
movements. However, current smartwatches do not have such
sensors. Instead, it is common to use inbuilt sensors such as
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FIGURE 1: Six delimiter candidates. Gesture (a): “shaking wrist left
and right”; gesture (b): “shaking wrist up and down”; gesture (c):
“holding fist and opening”; gesture (d): “turning wrist clockwise”;
gesture (e): “turning wrist anticlockwise”; and gesture (f):
“shaking wrist up.”.

accelerometers and gyroscopes to sense wrist movement and
collect gesture data [19-21]. Our study also used these sensors
for gesture data collection.

There are many methods for motion gesture recognition.
Usually, feature extraction is carried out for gesture data,
and neural network algorithms such as CNN, RNN, FNN,
and HMM are trained for gesture recognition [22-26]. In
our study, DTW (dynamic time warping) [14] and feature
extraction + KNN(K-nearest neighbors) [15] are used for
gesture recognition, respectively, as they need low sensor
requirements and low computational requirements.

DTW can match two sequences of different lengths so
that the minimum distance between the two sequences can
be calculated. Then, the matching result can be compared
based on this distance. The DTW algorithm has the advan-
tages of short computation time. Sensors on smartwatches
commonly collect gesture data at a fixed time interval. Two
gesture data to be compared may have different lengths
and cannot be matched directly. The DTW algorithm can
be used to match data sequences of different lengths. And
the distance and similarity between the two sequences of
sample and template are calculated.

The feature extraction + KNN algorithm extracts some
features of the whole set of gesture data and classifies the
gesture data according to these features for gesture recogni-
tion. KNN calculates the distance between the sample X and
the template samples and takes the top K template samples
closest to it. If the top K samples have the most samples
belonging to category R, then sample X also belongs to cat-
egory R. K is usually an odd number not greater than 20.



Wireless Communications and Mobile Computing

Different K values generally lead to different classification
results. Therefore, an optimal K value should be selected
according to the results. The classification of template sam-
ples needs to be accurate as possible to ensure the correct
classification of test samples.

2.2. Motion Gesture Interaction and Gesture Delimiters.
Motion gestures are a promising way to interact with wear-
able devices [19, 27, 28]. Gesture interaction is especially
suitable for mobile devices, such as changing the screen dis-
play direction by tilting the phone [29] and moving the cur-
sor with gestures [30]. In addition, gesture interaction can
also achieve more complex operations, such as text input
with gestures on smartwatches [31], identity authentication
by recognizing user gestures [32], and access data on virtual
bookshelves around users [33].

An important step of using motion gestures is to sepa-
rate normal smartwatch motion from a user’s intended
input. A common way to achieve it is to press button [13],
but such a way requires both hands for interaction, which
may not be always feasible. [34] collected IMU data to recog-
nize three distinct phases of gesture entry: the start, middle,
and end of a gesture motion for mobile devices. [35] used a
dedicated delimiter sensor to detect the start and end of a
gesture, which requires additional device support. [36] pro-
posed a method for evaluating smartwatch delimiters using
DTW, but using only accelerometers as data. Previous
research has proposed to use double flip (ie., rotating a
smartphone along its long side to flip it twice) [12]. How-
ever, such a delimiter may not be applicable to wrist-worn
devices, as it is in constant motion and therefore more error-
prone. To find proper gesture delimiters for smartwatch
interaction, our study considered six gesture candidates and
examined their performance with two experiments.

3. Candidate Gesture Delimiters

Gesture delimiters applicable to smartwatch interaction
should satisfy the following requirements:

(i) Easy to recognize: the smartwatch system needs to
recognize gesture delimiters with high accuracy

(ii) Easy to learn: the user can learn gesture delimiters
easily and recall them without much effort

(iii) Easy to perform: gesture delimiters would be per-
formed frequently; so, they should have simple
and should not lead to high hand and arm fatigue

To satisfy these requirements, six gestures were selected
as candidate delimiters in our study. A pilot experiment with
6 right-handed participants was conducted to measure the
average time of performing these gestures.

(i) Gesture 1: shaking wrist left and right. As shown in
Figure 1(a), the user shakes the wrist twice with a
small movement from side to side, and that the
mean time of performing this gesture was 0.76s

(ii) Gesture 2: shaking wrist up and down. As shown in
Figure 1(b), the user slightly shakes his wrist twice
from top to bottom. The average execution time of
this gesture was 0.72s

(iii) Gesture 3: holding fist and opening. As shown in
Figure 1(c), the user clenches all fingers together
and then opens them. The average execution time
of this gesture was 0.55s

(iv) Gesture 4: turning wrist clockwise. As shown in
Figure 1(d), the user makes a fist and rotates the fist
90 degree clockwise. The average execution time
was 1.13s

(v) Gesture 5: turning wrist anticlockwise. As shown in
Figure 1(e), the user makes a fist and rotates the fist
90 degree counterclockwise. The average time taken
for gesture 5 was 1.10s

(vi) Gesture 6: shaking wrist up. As shown in Figure 1(f),
the user shakes the wrist upward significantly. Com-
pared with the up-and-down shake of gesture 2, the
movement range of gesture 6 is larger. The average
time for performing gesture 6 was 0.53s

Gestures 4 and 5 were designed based on the double flip
gesture [12], which has been verified as a usable delimiter for
mobile phone interaction. We would like to exam if gestures
4 and 5 would be feasible as a delimiter for smartwatch
interaction.

4. Experiment One: Delimiter Recognition with
DTW and Feature Extraction + KNN

We conducted an experiment to evaluate the effectiveness of
the six delimiter candidates. The experiment consisted of
two parts. First, we examined recognition rates of the six
delimiters with DTW and feature extraction + KNN algo-
rithms. Then, we evaluated the usability of the six delimiters
according to subjective questionnaires.

4.1. Experimental Apparatus and Participants. The experi-
ment was conducted with a Huawei Watch 2 smartwatch,
which had a 1.2-inch round AMOLED display with a resolu-
tion of 390 x 390 pixels, a speed sensor, and a gyroscope sen-
sor. The program was written in Python. In the experiment,
sensor data of the smartwatch were recorded as gesture data,
including the three axes of the acceleration and gyroscope
sensors. Samples were recorded at 20 ms intervals.

There were a total of 10 participants (8 males) with an
average age of 22.6 years. Each participant was asked to per-
form each gesture 30 times while wearing a smartwatch. Six
of the students participated in the pilot study of gesture
selection. Others did not have experience using smart-
watches. All participants were right-handed and wore the
smartwatch on their right hand. To obtain better results,
we let the experimenter wear the watch with their dominant
hand. Since the two hands are symmetrical, it should be
reasonable to generalize the results from the right hand to
the left hand.



In total, we collected 1800 gesture samples from 10 par-
ticipants. We selected one sample per person per gesture for
training, which means 60 samples for training and the
remaining 1740 gestures for testing.

4.2. Data Preprocessing

4.2.1. Smoothing. Due to hand jitter and false operation of
the user, the collected sensor data had a lot of noise.
Figure 2(a) shows the raw data of gesture 1 collected from
the x-axis of the accelerometer, which have many burrs
and spikes. The burrs and spikes would reduce the accuracy
and increase the difficulty of gesture segmentation and fea-
ture extraction. Smoothing filtering algorithms can reduce
the noise.

There are many algorithms for smoothing filtering, e.g.,
moving average filter, median filter, and Gaussian filter.
The algorithm of moving average filter was chosen in this
study because it is relatively simple but effective. The moving
average filter calculates the average value within a window
and collects new data for each movement. The window
slides forward, and the average value is calculated as the
valid data. Figure 2(b) shows the data from Figure 2(a) after
smoothing and filtering. It can be seen that after the moving
average filter, the burrs and spikes in the data are effectively
reduced.

4.2.2. Gesture Segmentation. In this experiment, we collected
continuous three-axis acceleration sensors and three-axis
gyroscope sensor data. The data collected by the sensors
include unintended-gesture data and intended-gesture data.
Gesture segmentation needs to extract valid gesture data
from these data. Figure 3 shows part of the collected data
of one trial of performing gesture 1. The data from 0 to 3,
4 to 6, and 7.5 to 8.55s are not related to the delimiter, and
the rest data is valid delimiter data. It can be seen that when
the participant is performing the delimiter, the collected data
is fluctuating significantly; when the participant is not per-
forming the gesture, the collected data is fluctuating gently.
So, we can rely on this feature to segment gestures.

We used differential methods to implement gesture seg-
mentation. Differential methods can effectively show the
volatility of data and have the advantages of easy implemen-
tation and running in real-time. A differential method is per-
formed to obtain the total change data of two sensors, and
then the start and end of the gesture are calculated by com-
paring the total change of two sensors with the preset
threshold value. The main steps of gesture segmentation
using the differential method are as follows.

Calculate the data variation: the formula for calculating
the variation is as follows:

Aay = |x = X5 | + [V = Vi | + 12— 2 s (1)

where x, y,, and z; represent the values of the sensor in
the x, y, and z axis at the k — th data point, respectively. Since
the data collected in this experiment come from two differ-
ent sensors, it is necessary to calculate the variation of two
sensors and add the two variations to obtain the total varia-

Wireless Communications and Mobile Computing

tion AA;. To make the system more robust, we use the sim-
ple moving average algorithm (SMA) with a window size of
3 (W =3) to smooth the gesture data. The mean of the k-th
and subsequent W —1 data points is denoted as SMA,,
which is the k-th data point after smoothing. SMA, is calcu-
lated as Eq. (2).

1 k+W
SMA, = o Y A4 (2)
k

Calculate the threshold: Figure 4 shows the data after dif-
ferential processing in a trial. The results show the fluctua-
tion of the data. The more intense the fluctuation, the
more likely the data from valid gestures. For data lasting
more than eighty seconds, the differential value fluctuations
appear twenty times, and each fluctuation corresponds to
the data variation of the gesture’s six-axis data in Figure 3.
To effectively identify the valid gesture interval, two thresh-
olds need to be set: “Start” represents the start threshold, and
“End” represents the end threshold. And to filter out the
noise and the integrity of the gesture data, “Start” should
be greater than “End.”

Since the fluctuation range of gestures is different, the
thresholds of gestures are also different. The threshold values
selected for gestures are calculated based on our experimen-
tal data, as shown in Table 1. For example, when we segment
the differential data of gesture 1 in Figure 4, we first detect
the differential value 0.9 as the beginning of the gesture,
and then we mark the end of the gesture when the differen-
tial value drops to 0.6. Generally, the greater the fluctuation
range of a gesture, the greater the data variation, the larger
difference between the “Start” and “End” thresholds, and
vice versa.

Result of segmentation is as follows: Figure 5(a) shows
the fluctuation graph of a valid gesture after the segmenta-
tion of Figure 3. Figure 5(b) shows the fluctuation graph of
a single valid gesture data for gesture 2. It can be seen that
the trends of the sensor data for gesture 1 and 2 are different
due to the different trajectories of gesture movement. Hence,
we can perform gesture recognition based on the data
characteristics.

In addition to the data trend, features such as mean, var-
iance, and peak-to-peak values can also reflect the differ-
ences in this data. Figure 6 shows the mean and variance
between gestures 1 and 2 on different axes. The data for ges-
tures 1 and 2 are very different, except for the average values
over the acceleration z-axis. Hence, we can recognize ges-
tures based on such feature differences.

4.3. Classification Methods. This study uses both DTW and
feature extraction with KNN methods for gesture recognition.
Although these are traditional methods, they are easy to
implement and suitable for fast recognition of delimiters on
smartwatches with low computational power. Future work
will consider other algorithms to cater for other requirements
of gesture interaction (e.g., higher recognition accuracy).

4.3.1. DTW. Dynamic time warping (DTW) is a simple
recognition algorithm based on the idea of dynamic
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speech recognition, which has the advantages of low comput-
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ing time cost and few templates compared with other recogni-
tion algorithms. As with speech, the data generated by each

person performing the gesture is different. Different perform-
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FIGURE 3: Part of the data collected in an experiment.
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First, the system creates an N x M matrix D, where the
number of rows N represents the number of frames of the
sample sequence to be recognized, and the number of col-
umns M represents the number of frames of the template
sequence, i.e., the sample sequence to be identified is T
=[T,, T,... T,_;, T,], and the template sequence is R=[R,
R,..R,,_;, R,]. T, is the feature of the n-th frame with the
frame length f. Similarly, R,, represents the feature of the
m-th frame of the template with the frame length f. Since
this experiment collects six-axis data from two sensors, the
length of each frame is 6, i.e., f =6, which represents the
acceleration three-axis coordinate and gyroscope three-axis
coordinate. D;; represents the shortest distance between

node i of T and node j of R. The Dy, is the shortest distance

=
E

EERTIRE R v R v IR TR S PV g e between two sequences.
— = AN N N <t n O O N N ®©
Time (s) Then, we calculate Dij. Since the two sample sequences
are not equal in length, we use the nonlinear matching
Ficure 4: Differential processing result. method in DTW. As shown in Figure 7, we take T as the
horizontal axis and R as the vertical axis and draw a grid dia-
gram in the coordinate system. The intersection points in
TasLE 1: Gesture threshold. the grid represent the distance between the template at
Gesture Start End frame m and the sample to be identified at frame n. We find
the shortest path from (0, 0) to (N, M) based on the thought
Gesture 1 0.9 . of dynamic programming. The point (i,, j,,) is the optimal
Gesture 2 L1 0.4 point decided by (i,_1,j,,)> (i jpu_1)> (1> jm_y)> and the best
Gesture 3 0.56 0.1 choice based on the previous section of the path. Thus, we
Gesture 4 0.27 0.18  have D(j, ) as follows:
Gesture 5 0.2 0.1
Gesture 6 1 0.2

D(in’jm) =min {D(in—l’jm)’ D(in’jm—l)’

(3)
D(in—l’jm—l)} + d(in’jm)’
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FIGURE 6: Variance and mean of gesture 1 and gesture 2.

where d(i,, j,,) is the distance between two sequences
at (m,n). This experiment uses the 2-norm algorithm,
the Euclidean distance, to calculate the distance between
two vectors.

The short distance Dy, between the template R and the
sample T indicates that the template R has a high similarity
with T, which means they may come from the same gesture
set. By calculating the shortest distance between the sample
to be detected and multiple templates, we can get the best
matching gesture based on the maximum similarity, i.e.,
the shortest matching distance. The algorithmic process of
gesture recognition using DTW is shown in Figure 8.

4.3.2. K-Nearest Neighbor. The K-nearest neighbor algo-
rithm (KNN) is a simple method in data mining, and its
key idea is that if a sample has K nearest samples, most of
which belong to class R, then the sample also belongs to class
R. The selection of K has a significant impact on the overall
classification result; so, an optimal K value should be
selected based on comparative experiments, and K is usually
an odd number no greater than 20.

In general, the label of the template data is known, but
the label of the test sample is unknown. The system calcu-
lates distance (similarity) between the test samples and the
templates by Euclidean distance and selects K nearest sam-
ples. Based on the class of K nearest samples, the system

finds the most occurring class R, which is the label of the test
sample. The algorithm described as follows:

(1) Calculating the distance between the test sample and
the template data

(2) Sorting in ascending order by distance
(3) Selecting the K nearest samples

(4) Calculating the occurrence frequency of the class of
K nearest samples

(5) According to the class and occurrence frequency of
K nearest samples, the class R with the highest
occurrence frequency is selected, which is the class
of test sample

4.4. Results

4.4.1. Result Analysis of DTW. After the preprocessing step
in Section 5.2, we used the DTW algorithm to perform ges-
ture recognition. The DTW algorithm depends on the
results of matching with templates. To eliminate recognition
errors caused by inaccurate templates, we used 10 templates
per gesture and took the average value. That is, there were 10
templates R for each gesture, and we need to calculate the
distance of the test gesture T from these templates R and
take the mean values of them as the final distance between
the test gesture T and the training sample. The DTW algo-
rithm is shown in Figure 7.

The DTW algorithm can easily recognize gestures, but it
has a high computational cost. Although the time for DTW
to recognize a single gesture data is short, it took signifi-
cantly longer times when the amount of gesture data
increases. In this experiment, 100 samples were collected
for each gesture, and it took about 3 minutes to calculate
the recognition result for each gesture data set. Although
the approximate FastDTW algorithm can be considered, it
reduces the running time at the expense of lowering recogni-
tion rate. In order to achieve a high recognition rate and
short recognition time for a single gesture, the classic
DTW algorithm was used in this study.

Figure 9 shows the recognition rate of each gesture. Since
the motion range of gesture 3 is relatively slight, it is easily



Wireless Communications and Mobile Computing

12 — (N, M)

11

10

0 1 2 3 4 5 6 7 8 9 10 11 12 T

F1GURE 7: Nonlinear matching method in DTW.

Matching with all
gesture templates

Template R;
Template Ry

[ Calculate all distance ]

|

[ Obtain smallest distance ]
|

[Obtain Matched Template]-—
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confused with other gestures. After excluding gesture 3,
Figure 10 shows the recognition rates of other gestures. It
can be found that gesture 6 (shaking wrist up) and gesture
2 (shaking wrist up and down) are easily misidentified due
to their high similarity in movement.

4.4.2. Result Analysis of Feature Extraction with KNN. After
the preprocessing step in Section 5.2, we used the feature
extraction + KNN algorithm for delimiter recognition. We
needed to extract features from the data and then performed
delimiter recognition based on the KNN algorithm.

We considered 30 features for our purpose. For x, y, and
z axis of the accelerometer and gyroscope, we used the fea-
tures of average value, variance, peak-to-peak, and inter-
quartile. Besides, for the accelerometer and gyroscope, we
used the correlation coefficient between x-axis and y-axis,

between x-axis and z-axis, and between y-axis and z-axis.
We then examined if using a subset of the 30 features could
achieve similar recognition rates as using the 30 features. We
employed the ExhaustiveSearch method provided on WEKA
(Waikato Environment for Knowledge Analysis). This
method finds a result with the highest recognition rate in
the full set and all subsets. By combining it with evaluation
strategies (CfsSubsetEval), we found that using all 30 fea-
tures could obtain the highest recognition rate. Therefore,
all the 30 features were adopted for further analysis with
the KNN algorithm.

The K value of KNN has a significant impact on the
experimental results, the estimation, and approximation
errors. The K value is usually an small odd number to bal-
ance the estimation and approximation errors. The K value
was set as 1, 3, 5, and 7 in this study. Table 2 shows the result
of recognition rates for the six gestures with the four K
values. After a comprehensive comparison, the gesture rec-
ognition rate with K =1 should have the highest recognition
accuracy. As shown in Figure 11, the recognition results of
feature extraction with KNN are much better than the
traditional DTW algorithm, e.g., the recognition rates of
gestures 1, 2, and 3 reached 0.99. Overall, the recognition
rates of gestures 4, 5, and 6 are lower than gestures 1, 2,
and 3. We hence further look at the false recognition results
of the three gestures.

Figure 12 shows that the false recognition results of ges-
tures 4 and 5 are very similar. 86% of the false recognition
results of gesture 4 were recognized as gesture 5, and 98%
of the false recognition results of gesture 5 were recognized
as gesture 4. By analyzing the motion trend of gestures 4
and 5, we found that the difference between gestures 4 and
5 only lies in the direction of rotation, which is weakly
reflected in the data of x- and z-axes of gyroscope. The range
of motion and the amount of change of different axes of the
sensor are not greatly affected by the direction. Therefore,
the recognition algorithm of feature extraction with KNN
cannot distinguish well the differences between gestures 4
and 5. 84% of the false recognition results for gesture 6 were
recognized as gesture 2. This is largely due to similar ranges
of motion, i.e., gesture 2 was performed with a small jitter,
and gesture 6 with too little range performed by the user
was recognized as gesture 2. If the range of the upward fling
of gesture 6 is defined with a threshold, then the fatigue of
performing gesture 6 would increase and could not be suit-
able for some people.

Moreover, we deployed the algorithm on Huawei Watch
2 with Snapdragon Wear 2100 processor and tested the algo-
rithm execution time. We used the time module in Java to
check the time consumption of feature extraction and the
KNN for the test set and then got 12.1ms and 3.5ms for
every sample. The algorithm’s low computing power
requirements further contribute to the deployment and
research of smartwatch delimiter research on mobile devices.

4.4.3. Impact of Gestures with Different Execution Times. We
turther discuss the influence of gestures with different execu-
tion times on recognition accuracy. Our system can reliably
achieve a high recognition rate for gestures with different
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FiGURE 11: The accuracy of KNN when K =5.

execution times from 0.4s to 2s. In the experiment, every
participant performed six gestures with as fast as possible,
standard, and as slow as possible speed. To test the accuracy
of the KNN algorithm for gestures with different execution
times, we collected data from another five participants (three
males and two females) with the same setting of experiment
one. Table 3 shows the accuracy for gestures with different
execution times. We observe that the accuracy is similar
for gestures with fast and standard execution times, while
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Ficure 12: Confusion matrix graph generated using KNN when
K =5.

there is a slight decrease in accuracy at shorter execution
times. The speed limit of performing the gestures may lead
to this difference. The time difference between gestures with
fast and standard execution speed is slight (from 0.1 to 0.3 s),
leading to similar accuracy. However, the time difference
between gestures with slow and standard execution speed
is more significant (from 0.4 to 1s), resulting in slightly
lower accuracy. Generally, our system achieves a high recog-
nition rate for gestures with different execution times,
benefiting from the five features together.

4.5. Questionnaire Data Analysis

4.5.1. Questionnaire Settings. After completing the experi-
ment task, each participant was asked to fill in a question-
naire to rate the six delimiters on 5-point Likert scales
regarding “easy to learn,” “easy to perform,” “accurate to
recognize,” “avoid misoperation,” and “suitable as the delim-
iter” (5 for the highest preference and 1 for the lowest pref-
erence). We created the questionnaire through an online
website and then sent it to each participant through commu-
nication applications. Participants fill out the questionnaire
via their smartphones or personal computers.

The questionnaire uses a 5-point Likert scale. The 5-
point Likert scale has five options with five different scores
according to the user’s level of agreement, often with scores
of 5,4, 3, 2, and 1. The user chooses suitable options accord-
ing to their degree of conformity to the declarative state-
ments, and we calculate the total score according to the
score assigned to each option of the scale for subsequent
analysis. The declarative statements comprise unfavorable
and favorable statements. In this experiment, the options
indicate five different levels of strongly agree to disagree,
and the scores are 5, 4, 3, 2, and 1 if it is a favorable state-
ment and 1, 2, 3, 4, and 5 if it is an unfavorable statement.
The gesture with the highest score represents the most
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TABLE 3: Accuracy of feature extraction with KNN for gestures with different execution times.

Execution time Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 Gesture 6

Short 0.95 0.98 1 0.7 0.56 0.77

Standard 1 0.98 1 0.64 0.46 0.79

Long 1 0.88 1 0.6 0.45 0.75

suitable defining gesture from the user’s subjective feeling
perspective. In designing the questionnaire, it needs to set
declarative statements in terms of fatigue, speed of perform-
ing gestures, guessability, gesture recognition accuracy, and
user’s subjective perception, as shown in Table 4.

4.5.2. Experimental Results. We used the chi-square statistics
method to calculate the differences of delimiters in the mea-
sures. Regarding “easy to learn” and “easy to perform,” par-
ticipants generally regarded that the six delimiters were quite
similar. These gestures were simple in form; so, participants
thought they were all easy to learn and perform. However, in
terms of “accurate to recognize,” “avoid misoperation,” and
“suitable as the delimiter,” the scores of gestures 1, 2, and 3
were significantly higher than other gestures (all p < 0.05),
and there was no significant difference between the three
gestures (all p > 0.05). In addition, in the questionnaire, par-
ticipants who regarded gestures 1, 2, and 3 suitable for defin-
ing gestures account for 30%, 40%, and 30%, respectively. By
combining the above results, the three gestures were selected
as the suitable delimiters for further consideration.

Gesture 3 has the highest score, 40% of people thought
it was easy to learn, and 60% of people thought it was
suitable as a defined gesture. And the recognition rate of
gesture 3 was 0.99 by the feature extraction with the
KNN recognition algorithm; so, the gesture was considered
as the best defined gesture.

The scores of gestures 1 and 2 are high, and the recogni-
tion rates of two gestures by the feature extraction with the
KNN recognition algorithm are both 0.99. In the question-
naire survey, 20% of people thought that gesture 1 was suit-
able as the defining gesture, and 60% thought that gesture 2
was suitable as the defining gesture. In a comprehensive
view, gesture 1 (shaking wrist right and left) and gesture 2
(shaking wrist up and down) can also be selected as the best
defining gestures.

5. Experiment Two: Misoperation
Rate of Delimiters

In this experiment, we aimed to investigate misoperation
rate of delimiters in representative daily activities. According
to experiment one, gesture 1 (shaking wrist left and right),
gesture 2 (shaking wrist up and down), and gesture 3
(holding fist and opening) were selected as the candidate
delimiters to be tested in this experiment.

5.1. Experimental Settings. The experimental equipment and
participants were the same with experiment one.

5.2. Experimental Tasks. We evaluated misoperation rates of
the three delimiters in three common scenes in our lives:
walking, running, and standing up and sitting down. As a
controlled study, we could not cover all daily activities.
Instead, we selected three representative activities, that is,
walking, running, and standing up and sitting down, to test
the misoperation rate of three delimiters. The three scenar-
ios can cover basic day-to-day activities. The data were col-
lected from the participants, who wore the smartwatch to
perform ten steps of walking, ten steps of running, and ten
times of standing up and sitting down.

As experiment one, we processed the sensor data by the
data preprocessing step and then recognized the gesture data
to see whether participants accidentally performed gesture 1,
2, and 3 in the three scenes, so as to obtain the misoperation
rate of gestures.

5.3. Experimental Results. According to experiment one, the
feature extraction with KNN was faster and had better rec-
ognition performance than the DTW algorithm. Thus, the
feature extraction with KNN was selected as the gesture rec-
ognition algorithm in this experiment. The misoperation
rates are shown in Table 5.

The misoperation rate of gestures 1 and 2 is 0 in all
scenarios. Gesture 3 had 0 in the running and walking
scenarios, but 21% in the standing up and sitting down
scenario. Therefore, in most scenarios, gestures 1 and 2 are
more suitable as the delimiter than gesture 3.

6. Discussion

This study examined six gestures as delimiters for motion
gesture interaction with smartwatches. We evaluated the
performance of the six delimiters to select the proper ones.
First, we used DTW and feature extraction with KNN to
obtain gesture recognition accuracy for the delimiters. It is
concluded that the feature extraction with KNN has a higher
recognition rate for the gesture data, and its recognition rate
for gestures 1, 2, and 3 exceeds 0.98. In addition, we checked
he misoperation rate of gestures 1, 2, and 3 in three daily
scenes. The misoperation rate of the three gestures in the
scenarios of walking and running is 0. For standing up and
sitting down, the misoperation rate of gestures 1 and 2 is
0, but the misoperation rate of gesture 3 is 21%. Therefore,
gesture 1 (shaking wrist left and right) and gesture 2
(shaking wrist up and down) should be more suitable as
delimiters for motion gesture interaction on smartwatches.
Despite excluding gesture 3 as a delimiter, its excellent
recognition accuracy and outstanding performance in the
questionnaire still prove its importance as a motion gesture.
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TABLE 4: Average rating of each gesture for each measure.

Measure Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 Gesture 6

Easy to learn 4.3 4.2 44 4.2 4.3 4.2

Easy to perform 4.5 4.4 4.4 4.1 4.1 44

Accurate to recognize 4.5 4.5 4.1 3.1 3.1 33

Avoid misoperation 42 42 4.1 2.9 3.0 33

Suitable as delimiter 4.5 4.4 43 33 3.2 37
TaBLE 5: Misoperation rate of gestures 1, 2, and 3. gesture 2 are suitable as motion gesture delimiters for smart-

watch interaction.

Scenario Gesture 1 Gesture 2 Gesture 3

Running 0 0 0 Data Availability

Walking 0 0 0

Standing up and sitting down 0 0 0.21 We collected gesture data from ten participants, including

We can further improve our work in the following direc-
tions. First, for recognition algorithms, only two basic algo-
rithms were used for gesture recognition in this paper. We
need to test other algorithms, e.g., recognition algorithms
based on the hidden Markov model. Second, for experimen-
tal design, this paper only designed six candidate gestures for
experiments, and there may be other more suitable defined
gestures. Third, participants can be selected from different
ages, genders, and occupations. More user data and wider
coverage of subjects help to draw more accurate conclusions.
Fourth, for the obtained defined gestures, the experiments in
this paper were conducted under lab conditions. Consider-
ing that the defined gestures are often used together with
common action gestures, their practical applications in
motion gesture interaction need to be further investigated.
Finally, gesture data collection is susceptible to the environ-
ment. The sensors that collect the data also produce a certain
amount of errors, and even the way the user wears smart-
watches could affect collected data. Advances in wearable
devices can mitigate the impact of these problems and
improve the usability of gesture interaction, and the devel-
opment of gesture interaction can also promote the progress
and popularity of wearable devices.

7. Conclusion

This paper is aimed at selecting suitable gestures as the
delimiter for smartwatch motion gesture interaction. To this
end, this study firstly selected six candidate gestures (gesture
1: shaking wrist left and right; gesture 2: shaking wrist up
and down; gesture 3: holding fist and opening; gesture 4:
turning wrist clockwise; gesture 5: turning wrist anticlock-
wise; gesture 6: shaking wrist up). We conducted two
experiments to evaluate the performance of the above six
candidate delimiters. We used DTW and feature extraction
with KNN to recognize these delimiters. Results showed that
gestures 1, 2, and 3 achieved high recognition rate. In the
second experiment, during the common scenes in our life,
the misoperation rate of gestures 1 and 2 is 0, but the miso-
peration rate of gesture 3 is 21%. Therefore, gesture 1 and

eight men and two women, through sensors in smartwatches.

Additional Points

Research Highlights. (i) A study was conducted to investigate
motion gesture delimiters for smartwatch interaction. (ii)
“shaking wrist left and right” and “shaking wrist up and
down” can serve as delimiters for motion gesture interaction
with smartwatches. (iii) Feature extraction with KNN pro-
vided higher recognition accuracy than the DTW algorithm.
(iv) The study provides insights into designing gesture-based
delimiters for smartwatch interaction.
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Real-time tactical sign language recognition enables communication in a silent environment and outside the visual range, and
human-computer interaction (HCI) can also be realized. Although the existing methods have high accuracy, they cannot be
conveniently implemented in a portable system due to the complexity of their models. In this paper, we present MyoTac, a
user-independent real-time tactical sign language classification system that makes the network lightweight through knowledge
distillation, so as to balance between high accuracy and execution efficiency. We design tactical convolutional neural networks
(TCNN) and bidirectional long short-term memory (B-LSTM) to capture the spatial and temporal features of the signals,
respectively, and extract the soft target with knowledge distillation to compress the scale of the neural network by nearly four
times without affecting the accuracy. We evaluate MyoTac on 30 tactical sign language (TSL) words based on data from 38
volunteers, including 25 volunteers collecting offline data and 13 volunteers conducting online tests. When dealing with new
users, MyoTac achieves an average accuracy of 92.67% and the average recognition time is 2.81 ms. The obtained results show
that our approach outperforms other algorithms proposed in the literature, reducing the real-time recognition time by 84.4%

with higher accuracy.

1. Introduction

Gestures are one of the most commonly used ways for
humans to convey their expectations [1]. In the transmission
of information, gestures often account for a very large pro-
portion. Tactical sign language (TSL) is the gestures utilized
in combat operations, using the movements of arms, fingers,
and palms to communicate. By recognizing TSL, simple ges-
tures can be applied to deliver rich semantic information to
interact with devices, and people can also communicate in a
silent environment and beyond the visual range. The tradi-
tional gesture recognition is based on computer vision [2,
3], but the situation on the battlefield is so complex that
image-based approach is not competent as it may be seri-
ously affected by lighting, shadows, and background. In
addition, the required infrastructure is inconvenient for
users and not suitable for carrying around. On the contrary,

it is more convenient to use the armband with electromyo-
graphy (EMG) signal acquisition and inertial measurement
unit (IMU) to collect the signal data. Among classifiers, deep
neural network (DNN) has been widely implemented in ges-
ture recognition [4, 5] due to its hidden layer extract buried
features automatically. Because the gestures of tactical sign
language are very complex, the system needs to balance both
the motion capture accuracy and real-time operating speed.
A lightweight model with fewer parameters is essential.
However, DNN models for gesture recognition typically
stack layers to improve accuracy, resulting in a large model,
sacrificing the speed of real-time operation.

In this paper, we present MyoTac, a user-independent
high-real-time tactical sign language classification system
that makes the network lightweight through knowledge dis-
tillation and replacement of the fully connected layer (FCL),
so as to balance high accuracy and execution efficiency at the
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same time. Knowledge distillation refers to transferring the
knowledge in an ensemble of models to a single model [6].
We utilize a portable device, Myo, which enables data trans-
mitting via Bluetooth Low Energy (BLE). The Myo armband
acquires 8-channel EMG signals and 9-channel IMU signals,
including 3-channel accelerometer signals, 3-channel gyro-
scope signals, and 3-channel orientation signals. When peo-
ple wear the Myo armband, our system converts the data
received into commands, so that machines can understand
human intentions and complete HCI interaction naturally
and harmoniously.

Based on the excellent performance of DNN in the fields
of image recognition, speech classification, and natural lan-
guage processing, we develop a hybrid neural network to
recognize 30 types of TSL. First, the multimodal mixed data
is input into TCNN network to obtain the global character-
istics of each channel. Then, the learnt features are input
into the B-LSTM to model the temporal features. By training
the large model, the knowledge in the large model can be
extracted. The soft target obtained from the large model
can be combined with the actual label to train the small
model. Through the rich information entropy of the soft tar-
get, our small model can acquire more knowledge and thus
obtain a higher accuracy rate.

In order to evaluate the classification effect of MyoTac,
we invited 25 volunteers to test 30 commonly used tactical
sign languages and collected 37,500 samples. Volunteers
only need to wear the Myo armband on their left arm and
repeat the arm and finger movements. By fusing the IMU
and EMG signals to comprehensively analyse the fine move-
ments of the arms and fingers, as well as upsampling for
fusion, some gestures that cannot be distinguished by a sin-
gle signal can be more accurately distinguished. When deal-
ing with new users, MyoTac achieves an average accuracy of
92.67%. These results prove the superiority of our algorithm.
In order to further reduce the scale of the model and
improve the real-time recognition speed, we also compare
the large model with the small model obtained through
knowledge distillation. The results prove the excellent effect
of lightening through knowledge distillation.

The contributions of this paper are summarized as
follows:

(1) We propose a multimodal hybrid neural network
that combines TCNN and B-LSTM, to realize the
classification of user-independent EMG signals of
tactical sign language with multichannel correlation
and time-varying. The TCNN part extracts spatial
features of different channels, and B-LSTM extracts
temporal correlation under time series

(2) A novel method based on knowledge distillation is
presented to lightweight the TCNN and B-LSTM
network, considering the generalization ability of
the adopted model can be transferred from a large
model to a small model. This method can reduce
the space complexity and time complexity of the net-
work, achieving a higher accuracy under the same
network scale
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(3) We design a nonintrusive real-time tactical sign
language recognition system, which can be used
for silent human-computer interaction on the bat-
tlefield as well as the common sign language recog-
nition (code is available at https://github.com/
YifanZhangchn/MyoTac.git). It only requires the
participants to wear the Myo armband and carry
out military sign language movements without any
other pretraining, allowing them to convey instruc-
tions to the machine. In addition, we collected a
TSL data set with 30 symbol samples and conducted
real-time gesture recognition experiments. Experi-
ments on our sign language recognition and network
lightweight methods show its excellent recognition
performance

The remainder of this paper is organized as follows. We
first review related research in Section 2, followed by mate-
rials and methods in Section 3, including the data set, signal
processing, and the specific deep neural networks. Section 4
presents the results, and Section 5 presents the discussion.
Finally, the conclusions of the paper are drawn in Section 6.

2. Related Work

This section reviews the related research in sign language
recognition and lightweight neural network.

2.1. Sign Language Recognition. To the best of our knowl-
edge, the classifiers for sign language recognition mainly
include traditional machine learning methods [7, 8] and
neural network models. In the early work, the researchers
extracted handcrafted features and put them into classical
machine learning classifiers. Wang et al. extracted shape,
depth, and bone trajectory features of the hand to recognize
independent gestures through support vector machines
(SVM) [9, 10]. Zhuang et al. fused the signal of SEMG and
accelerometer on the back of the hand and extracted
posture-related features into the linear discriminant analysis
(LDA) model to recognize 18 isolated Chinese sign language
(CSL) signs [11]. K-nearest neighbour (K-NN) algorithm
[12, 13] is also commonly used in recent research. Manually
extracting features requires expert domain knowledge, in-
depth analysis and heuristic thinking about the problem, as
well as combining and experimenting with various refined
features, which increases the difficulty of obtaining features
with higher matching degrees. The classic machine learning
model is a miniature, but it is difficult to construct and select
features, so there are problems of low accuracy and weak
generalization.

Since the neural network does not need to manually
extract features, it can get some hidden features difficult to
detect and manual sort, resulting in widely using in sign
language recognition [14]. Liu et al. [15] constructed 100
Chinese sign language datasets to capture the motion trajec-
tories of four skeletal joints and input the data into LSTM
model. Liang et al. merged multimodal video streams and
applied a 3D-CNN model to extract spatial and temporal
features in real-time to capture motion information [16].
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In addition to analysing gestures through image or video
data, biological signals have also been widely used [17-19].
Among them, back-propagation (BP) based neural network,
pulse-coupled neural network (PCNN) [20], and probabilis-
tic neural network (PNN) [21] is adopted for the recognition
of these complex data. Chen et al. [22] divided the overlap-
ping data segment with a size of 8 x 52 through a sliding
window of 260 ms and applied the continuous wavelet trans-
form (CWT) with a scale of 32 to transform the data into the
time-frequency domain. Then, they built a compact CNN
model named EMGNet. This model can be used to distin-
guish static gestures, but it is not enough to infer temporal
tactical sign language gestures. The hybrid neural network
obtained by combining the recurrent neural network
(RNN) and multinetwork model [23] is applied to distin-
guish the EMG signals acquired from different sign language
actions with high accuracy. Zhang et al. [24] presented Myo-
Sign which combines the signals of industrial sensor and
EMG sensor. MyoSign proposed a system for inferring
American Sign Language and constructed a model integrat-
ing multimodel CNN and CTC. However, this kind of porta-
ble deep learning system applied to distinguish bioelectric
signals usually contains a large number of parameters, which
affects its real-time performance.

2.2. Lightweight Neural Network. With the emergence of dif-
ferent types of neural networks, the function of neural net-
works is becoming more and more powerful, as well as the
scale is also expanding. In order to improve the operation
efficiency of neural network and deploy it in small embed-
ded devices or mobile devices, the network must be light-
weight. At present, the lightweight methods of neural
network are mainly reflected in two aspects, namely, light-
weight network models and network lightweight methods.

The former is mainly achieved by changing the convolu-
tion mode and exchanging information between different
convolution layers. The SqueezeNet model of Berkeley Stan-
ford [25] employs the stacking idea of the visual geometry
group (VGG) network, emphasizing the application of a 1
x 1 convolution kernel to compress feature maps. Google’s
Mobilenet model [26] uses the depth-wise separation filter
instead of the traditional convolution method. The Shuftle-
net model [27] draws on the idea of dividing the convolu-
tional layer into two parts of the MobileNet model,
retaining the depth-wise layer to convolve a single channel,
and then introducing the shuffle layer to shuffle the channels
to ensure the circulation of feature map information in dif-
ferent channels.

The latter is chiefly the method to reduce the space com-
plexity and time complexity of the model by compressing
the number and depth of the parameters without obvious
influence on the accuracy of the existing network model.
Pruning is one of the most commonly used model compres-
sion methods [28], and its premise is the overparameteriza-
tion of deep neural networks. Hao et al. [29] combined the
loss with the regulator in training to make weight sparse;
then, the importance of the parameters is evaluated accord-
ing to the absolute value in order to remove the parameters
whose importance is lower than the threshold. Quantization

is another useful method, which takes the high precision of
parameters as the premise. Gupta et al. [30] used two rough
methods to realize parameter quantization. One is rounding
up nearby, and the other is rounding up or down according
to a certain probability.

3. Materials and Methods

3.1. Dataset. To evaluate the performance of the recognition
system, we selected 30 tactical sign language gestures com-
monly used for data collection. The selected 30 gestures
(see Table 1) are divided into 5 categories. Twenty-five
volunteers (18 males, 7 females, age: 25.2 + 1.2 yr, height:
173.3 + 8.1 cm, weight: 64.5 £ 10.8kg) are recruited in our
experiment. Each volunteer wears the Myo armband at the
forearm of the left hand (see Figure 1), because TSL is
performed with one hand on the left hand. EMG and IMU
signals are collected synchronously. The signal data collec-
tion consists of raising hands, corresponding tactical sign
language movements and arm relaxation movements.

Before data collection, we inform the volunteers of the
purpose of the study, the collection procedure, and the dura-
tion of collection. During data collection, each subject was
required to wear a Myo armband in the same position and
in the same orientation of the left hand. They completed
the corresponding tactical sign language gestures within 2
seconds and rested for 1 second. Volunteers were required
to repeat the above steps 50 times. A total of 37500 samples
are collected, and standard Myo software development kit
(SDK) is leveraged to collect sensor data.

3.2. MyoTac System Architecture. MyoTac is a user-
independent sign language recognition system, which can
complete the classification of 30 military sign language com-
mands in real-time. Figure 2 shows the structure of the system.
The left side of Figure 2 performs the offline model training.
The data is collected by a portable sensor device, Myo, and
then transmitted in real-time via BLE. EMG data and IMU
data are divided into 2-second segments, and after the data
is synchronized by upsampling, they are merged into a 17 x
400 matrix. The 17 channels correspond to 9 IMU signals plus
8 signals from EMG sensors. 400 is the amount of time series
data collected within 2s at a collection rate of 200 Hz. The
formatted data is first put into the TCNN network to extract
hidden spatial features. Then, B-LSTM collects context infor-
mation from multiple different timing modules. In the field
of knowledge distillation, soft targets are interpreted as the
output obtained after training complex networks, while hard
targets refer to the real label of data [31]. Finally, combined
with soft target and hard target, the scale of the network is
reduced by 86.3%, and the running time is reduced by 33.6%
compared with the MyoTac-original model.

The right side of Figure 2 shows the online recognition.
We adopt the model that was trained offline to process the
new data so we can evaluate the real-time performance of
the system. New users do not need to register or perform
any other processing, just wear an armband on their left arms,
and perform corresponding military sign language actions.
The system will detect the short-term energy value of EMG



TaBLE 1: The selected TSL gestures are divided into 5 categories.

Category Gestures
People Male, female, commander, hostage, suspect, you, me
Come on, hear, see, advance, message received, hurry
Action up, stop, cover me, not understand, understand, squat
down, ignore

Weapon Pistol, rifle, automatic weapon, shotgun, car
Position Doorway, corner

. Assemble, single column, two-way column, one-way
Formation

line

FIGURE 1: The wearing position of Myo.

data in real-time. When the value rises to the threshold, it will
be regarded as a user action, and the corresponding activity
segment will be intercepted. The data of EMG and IMU are
also merged into a matrix and input into our offline trained
model. The system will output the classification results and
the time taken for identification in real-time.

3.3. Data Segmentation and Fusion Method of Upsampling.
The data obtained from Myo armband has been denoised
by filtering and eliminating power frequency interference.
The commonly used methods include Butterworth filter to
remove high-frequency and low-frequency interference,
wavelet denoising, and band stop filtering at 50Hz to
remove power frequency interference.

The EMG signal from Myo and the corresponding short-
term energy (see Figure 3) show two similar partial waves
when participant performs actions two times. These parts
contained in two dotted line boxes are valid data. The time
to complete a military sign language action generally does
not exceed 2 seconds. Therefore, we set the effective opera-
tion time to 2 seconds. During the data collection, our pro-
gram reminds the volunteers of the beginning and end of
each two-second period. Through the analysis of the data
of each gesture, it is easily seen that the short-term energy
will reach a higher value during the arm activity phase.
The short-term energy of EMG signal at time ¢ is defined as

m=t+(T-1) [i=7 2
Ef)= Y | Yabs(S(mwm-n)|, (1)
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where T is the window size, S;(m) is the EMG time domain
signal of i™ channel, and w(t) is the window function, which
we set as rectangular windows. Therefore, in the recognition
part, we set a sliding time window to continuously monitor
the short-term energy of the EMG data. When the short-
term energy exceeds the threshold, it is judged as the active
segment of the signal. In the case that the EMG signal
sampling rate is 200 Hz and the number of channels is 8,

we obtain an EMG signal matrix Rg’f;gm containing the
active segment. It can be seen as a picture with a resolution
of 8 x 400.

In the tactical sign language instruction set, there are a
numerous number of sign language instructions with the
same arm movements and the inconsistent finger move-
ments. For example, both “me” and “female” gestures raise
the hand to chest, and likewise “hurry up” and “shotgun”
gestures both raise the arm to move up and down. Similarly,
there are also some movements where the finger movements
are invariable with distinct arm movements. For example,
“suspect” and “message received” gestures are both three fin-
gers cocked. “You” and “me” commands are the index finger
to straighten and the other fingers to bend. “Pistol” and
“rifle” are gestures with index finger and thumb to make a
gun. Only when both the IMU signals is applied to distin-
guish the obvious movements of the arm, and the EMG sig-
nals are used to discriminate explicit movements of the
fingers, different sign language instructions can be better dis-
tinguished. As the sampling rate of the inertial sensor is
50 Hz and the number of channels is 9, there is a data matrix

R%i,’féoo) corresponding to inertial signal. Because of the dif-

ference in sampling rate of the inertial sensor and the

EMG signal, the upsampling method is adopted. The data

matrix Rg\féoo) is obtained by linear interpolation of inertial

sensor data to ensure the time synchronization of sampling

data. At each sampling point, by combining data matrix

RS and matrix R we get matrix R17<4%) which

fused 9 channel inertial sensitive samples and 8 channel
EMG samples. Data processing is illustrated in Algorithm 1.

3.4. TCNN Model Construction Based on Correlation
between Channels. The traditional method extracts the arti-
ficially designed features which refer to the signal features
calculated according to the sensor data. They can be inde-
pendently selected to be input into the machine learning
classifier, such as mean absolute value (MAV), root mean
square (RMS), zero crossing (ZC), and waveform length
(WL). However, it is not always possible to directly find
remarkable manual features that can be well generalized to
different sensors and users. Based on the superior perfor-
mance of convolutional neural networks (CNN), it is used
to process multimode sensor signals. In order to reflect the
timing property (see Section 3.4 for details), we separate
the matrix R(17x400)

ces R(17x80)

The muscle signal generated during arm movement can
reflect the intensity of muscle activities. As shown in
Figure 4, (a) and (b) represent the eight-channel time-

into five clips, and there are 5 data matri-
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FIGURE 2: System architecture of MyoTac.
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domain signal and frequency-domain signal of two “see
gestures, and (c) and (d) are the signals of “two-way col-
umn” gestures. We found that when the gesture “see” is per-
formed, the muscles around channel 4 and channel 7 are
more active, and the generated signals are more concen-
trated in the frequency range of 60-100 Hz. For “two-way
column,” the muscles near channels 3 and 7 are more active,
and the EMG signal collected on channel 3 is also distributed
in the low-frequency domain. It is worth noting that because
the noise of EMG signal will be caused by power frequency
interference at 50 Hz and its harmonics, the built-in algo-
rithm of the Myo armband filters out the power frequency
interference, so the distribution of all signals around 50 Hz
is attenuated. The EMG signals and frequency domain sig-
nals generated by the same gesture in the time domain are
very similar, while that of different gestures are quite
different.

Figure 5 shows the distribution of the forearm muscles of
the human body. When performing tactical sign language,
muscle fibres are activated to generate electrical signals,
which are transmitted to the surface of the skin. The elec-
trode pads of Myo armband are attached to the surface of
the skin, so the signals collected by each electrode pad are
the superposition of signals generated by multiple muscle
fibres. We analyse the correlation between EMG data chan-
nels and find that the Pearson coefficients of adjacent chan-
nels are all greater than 0.3, while the Pearson values
between nonadjacent channels are not more than 0.2. This
is consistent with the fact that the electrical signals captured
by adjacent electrode sheets are relatively similar.

In order to master the data relationship between differ-
ent channels, we design a 3-layer TCNN (see Figure 6). In
the first layer, we use the d x 3 convolution filter to obtain
the characteristics of the signal matrix. We find that when
d is set to 1, the information of each channel is processed
separately, and the highest degree of discrimination is
achieved. Then, the second layer (1 x 3) filter is used to learn
the high-level representation. After the convolutional layer
has extracted the data features, researchers in [32] adopt
the FCL to adjust the tensor to 2" so that it can be input to
the next stage of the RNN layer. Due to the large number
of parameters in the FCL, the scale of the model will be
greatly increased. Therefore, we adjust the size of the feature
map to (1 x16) through a (17 x 3) convolutional filter. We
apply a maximum pooling layer to each convolutional layer
to simplify computational complexity of the network. For all
layers, we wield rectified linear unit (RELU) as the activation
function. RELU can optimize the gradient dissipation prob-
lem in deep neural networks, thereby speeding up the learn-
ing speed.

At the end of the TCNN network module, a flattening
layer is applied. The flattening layer is used to flatten the
output of the previous convolutional layer in order to input
features into the B-LSTM module.

3.5. Construction of Bidirectional-LSTM Network Based on
Temporal Correlation. Both the EMG signal and the IMU
signal describe all the movements during the whole-time
sequence. Here, we give the EMG signals of the action
“doorway” and “assemble” as examples for illustration. Part
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Input: Real time EMG data Sgy, IMU data Sppqy, short time energy threshold H
Output: Fused matrix R'7**%°
1: For each t>0.05s do
=t+(T-1 i= 2
2 EO=Y VS abs(Spei(m)w(m - 1)
3 If E(t) > H then
4 REA0. =8 1i6(£-0.05:t +1.95)
5: RYA0:=S 0 16(t-0.05:t +1.95)
6: RYED:=Interp (R31Y)
7 R0 merge (R, 1)
8 Return R!7*400
9: End
10: End for

ArLGoriTHM 1: Data processing algorithm.

(a) and part (b) (see Figure 7) describe the actions “door-
way” and “assemble,” respectively. The expression of “door-
way” in TSL is to raise your hand and use your index finger
up, left, and then down to draw the shape of a door. When
the hand moves in different directions, the most active mus-
cle mass will change, and the signal strength obtained
through different channels will change accordingly. In part
(a), it is obvious that three active waveforms are correspond-
ing to the signals when the hand moves in three directions.

The sign language expression of “assemble” is to raise your
hand, extend your index finger to the sky, and turn it twice
before retracting. The signal in (b) is divided into four seg-
ments, which correspond to the raising of the hand, the first
rotation, the second rotation, and the withdrawal. The wave-
forms of the signals in the middle two segments are similar,
and the signals of each channel are sequentially active as
they rotate. Due to the high correlation between the signal
and time, we divide the signals received into five segments
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of EMG.
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FiGURE 6: The architecture of TCNN.

for processing in RNN and displayed the dynamic behaviour
over time series.

RNN is a neural network capable of processing sequence
information. The connections between nodes form a
directed graph along the sequence. LSTM, which has input
gate, forgotten gate, and update gate to minimize the impact
of long-term dependencies, can only be calculated based on
the previous information. But many gestures in tactical sign
language have the same way of expression at the beginning.
In such cases, the inability of LSTM to access future infor-
mation may cause recognition errors. Therefore, we
deployed a B-LSTM as the temporal modelling layer. B-
LSTM includes two LSTM layers, which are opposite in the
time domain. This makes the output of a certain node
depend on both the previous and the subsequent hidden
layer state of the sequence at the same time, which ensures
that the sign language classification at a certain point in time
depends on the entire sequence.

Data needs to be divided into multiple sequences, and
the B-LSTM network accepts data of one sequence at a time.
We divide the data into 3, 4, 5, 6, 8, and 100 parts, respec-
tively, for experiments, and the model achieve best accuracy

when divided into five parts. The action information con-
tained in the data also includes five parts: rest, raise the
arm, sign language action, put down the arm, and rest. The
specific way proposed to divide it into five parts is to trans-
form the 17 x 400 data into a 17 x5 x 80 continuous time
series matrix before convolution (see Figure 8). And each
convolution only processes one matrix of data at a time.
After getting the output of the TCNN network, these time
series blocks are recombined as primary data and subse-
quently input into the bidirectional LSTM network. After
the LSTM Layers, we use a dropout layer to reduce overfit-
ting. The dropout rate is adjusted from 0.2 to 0.5 in a param-
eter selection experiment, and 0.5 is the optimal choice.
Here, the FCL is commonly used to integrate data input
into the softmax layer. In addition, in order to avoid the use
of the FCL, we try to reshape the output feature map of the
B-LSTM to (1x1x256) and turn it into (1 X1 x 30)
through a convolution, where 30 is the number of classifica-
tions. And then the map feature is fed into the softmax after
reshaping. But in fact, the model size of the two methods is
almost the same, so the conventional method is still used.
Finally, we apply the softmax function to normalize the



Wireless Communications and Mobile Computing

T T T T
1.00 1.25 1.50 1.75

2.00
Time (s)
ch5
—— cheé
ch7
ch8

10
100 -
50
0 -
_50
-100 A
T T T T
0.00 0.25 0.50 0.75

—— chl

ch2

—— ch3

—— ch4
100
50
0 -
_50
-100 A

T T T T
0.00 0.25 0.50 0.75

—— chl

ch2

—— ch3

—— ch4

T T T T
1.00 1.25 1.50 1.75

2.00
Time (s)
ch5
—— ché
ch7
ch8

(®)

FiGure 7: EMG waveforms of “doorway” and “assemble.”

output vector, which is then interpreted as the classification
probability of the symbol label with index k.

3.6. Lightweight Network through Knowledge Distillation.
People intuitively obtain knowledge from fixed real targets,
which hinders the abstract view of extracting knowledge,
that is, knowledge is a mapping from input vector to output
vector [33], which can be extracted from a bulky model set
to a small model. The bulky model can be a series of individ-
ually trained models or a single but large model. When the
cumbersome model is trained, we can deploy another type
of training, namely, knowledge distillation, to transfer the
knowledge learned from the large model to the student
model. Due to the knowledge transfer relationship between
the model, the method of knowledge distillation is also called
the teacher-student neural network. Especially when recog-
nizing military sign language and the target user has never
appeared before, the transferred knowledge has better distin-

guishing performance because it is liberated from specific
instances.

When neural networks conduct classification training,
softmax function output s; is typically applied. The loss func-
tion is defined as

exp (s;/T)
Z exp (s; IT)’

Zt log (2)

where t; represents target label. If the real value belongs to
category i, t; equals 1; otherwise, ¢; equals 0. T is the distilla-
tion intensity that is set to 1 during training and testing, and
set to 8 during distillation. A higher T value produces a rel-
atively softer simulation target. We first train a model simi-
lar to the final model, but with more convolution kernels
and larger parameters. By training this model, we can obtain
knowledge about the degree of similarity between actions.
After that, we use the same training set to train the small
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Figure 9: Confusion matrices of the testing results.

model. The logit of the bulky model contains a lot of infor-
mation and can transfer its generalization ability to the small
model, so that the small model has sufficient classification
ability. Combined with a distillation intensity value T, the
soft target provided by the small model is obtained as shown
in Equation (2). The hard target refers to the actual action
corresponding to the signal in the training set. Since the
information entropy of soft targets is higher, each training
instance provides much more information than hard targets.
There are two ways to employ soft target and hard target at
the same time. The first way is to use real targets to modify
the model obtained by soft target training. While the other
is to use the weighted average of two objective functions.
Considering soft and hard targets in a comprehensive way
enables the small model to match the soft target provided
by the bulky model while predicting the real target and
achieves the best results.

4. Results

4.1. Results of Signal Fused. First, we discuss the importance
of fusing the signals of EMG sensors and IMU sensors. In
order to fully capture the fine arm and finger movements,
we fused the inertial sensor data and the EMG signal data
together. Figure 9 shows the confusion matrices, respec-
tively, when only the EMG signals are used, only the IMU
signals are used, and the fusion signals are used. The overall
recognition accuracy of the thirty gestures in each case was
48.2%, 69.1%, and 92.4%. Table 2 lists the accuracy of tacti-
cal sign language in three cases. From Table 2, it is obvious
that for some gestures, such as “commander,” it is impossi-
ble to distinguish when the EMG signal or the IMU signal
is adopted alone, but the accuracy is greatly improved when
two signals are combined. Therefore, the IMU signal and the
EMG signal are complementary to each other for the
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TaBLE 2: Accuracy of different signal inputs.

Tag Gestures EMG IMU Fused signals
0 Male 98.0% 8.0% 99.8%
1 Female 50.0% 98.0% 99.8%
2 Commander 34.0%  50.0% 84.0%
3 Hostage 22.0% 60.0% 90.0%
4 Suspect 12.0% 20.0% 94.0%
5 You 99.8% 98.0% 99.8%
6 Me 60.0% 54.0% 96.0%
7 Come on 56.0% 12.0% 36.0%
8 Hear 4.0% 8.0% 42.0%
9 See 98.0% 98.0% 98.0%
10 Advance 96.0%  86.0% 96.0%
11 Message received 0.0% 6.0% 98.0%
12 Hurry up 58.0% 88.0% 90.0%
13 Stop 96.0% 0.0% 99.8%
14 Cover me 12.0% 99.8% 99.8%
15 Not understand 86.0%  99.8% 99.8%
16 Understand 0.0% 58.0% 96.0%
17 Squat down 20.0% 1.0% 99.8%
18 Ignore 8.0% 98.0% 99.8%
19 Pistol 24.0% 92.0% 82.0%
20 Rifle 94.0% 99.8% 99.8%
21 Automatic weapon 4.0% 98.0% 88.0%
22 Shotgun 0.0% 58.0% 90.0%
23 Car 26.0% 96.0% 99.8%
24 Doorway 52.0% 99.8% 98.0%
25 Corner 99.8% 99.8% 99.8%
26 Assemble 98.0% 98.0% 99.8%
27 Single column 1.0% 90.0% 99.8%
28 Two-way column 98.0%  98.0% 99.8%
29 One-way line 40.0%  99.8% 98.0%

measurement of muscle activities and the evaluation of arm
movements, realizing the accurate recognition of sign lan-
guage instructions.

Zhang et al. [24] apply multi-CNN networks to extract
the features of the accelerometer, gyroscope, orientation,
and EMG sensors and then merge the resulting tensor to
carry out the information interaction between the modals,
which is also a signal fusion method. According to this
method, we establish a three-layer CNN for each sensor
and merge the output of multi-CNN into a multichannel
tensor. We pass multichannel tensor through the convolu-
tional layer, flattening layer, and dropout layer and inputted
it into the LSTM network to extract temporal features. Tak-
ing the data of volunteer 25 as the test set, the comparison
between above method and our method is shown in
Figure 10. It can be seen that the best accuracy of a single
convolutional network (our) with the upsampling method
is 92.67%, higher than multi-CNN. It is mainly because the
two types of data after upsampling are well synchronized,
and the characteristics are not strongly correlated in each
channel.

Wireless Communications and Mobile Computing

4.2. Comparison of Classification Systems. We use leave-one-
user-out cross-validation to evaluate the recognition accu-
racy of MyoTac in 30 TSL gestures, as shown in Figure 11.
The recognition accuracy of no. 1 and no. 21 volunteers is
relatively high, because their movements and postures are
accurate. No. 8 volunteers’ recognition accuracy rate is
slightly lower than that of others, since her arm is too thin
to keep the armband in the same position. In addition, vol-
unteer no. 11 has a large body weight and a high amount
of fat, resulting in a relatively low accuracy. Mainly speaking,
the average accuracy of 25 volunteers is 92.4%, and the stan-
dard deviation is 2.3%. Different volunteers not only have
differences in the outer shape of the arm, including fat thick-
ness and arm circumference, but also different behaviour
habits, including the power of the action and some subtle
movement differences. But MyoTac can still achieve satisfac-
tory results. Moreover, the recognition accuracy of volun-
teers is above 88%. This illustrates the generalization ability
of MyoTac across users.

In order to further prove the accuracy and high real-time
performance, our model is compared with several state-of-
the-art researches [22, 24]. Researchers have applied deep
learning methods to the field of EMG signal and gesture rec-
ognition and have explored several effective network
frameworks.

EMGNet [22] builds a compact CNN model to process
the time-frequency data and get the classification results.
We choose it for comparison as it also reduces the weight
of gesture classification model base on EMG signal. MyoSign
[24] is an American Sign Language recognition system
which inputs the processed data into a complicated model.
In order to realize end-to-end sign language recognition,
they added a 10-width connectionist temporal classification
(CTC) beam decoder at the end of the model.

These two models are compared with MyoTac in the
MyoDataSet [34] and the tactical sign language instruction
data set we collected. MyoDataSet is a seven-category data
set collected by Myo, including seven gestures: neutral, hand
close, wrist extension, ulnar deviation, hand open, wrist flex-
ion, and radial deviation. In the first case, after shuffle the
MyoDataSet, the training set and the test set are divided at
a ratio of 7/3. Then, in the second case, the data of two vol-
unteers of different genders in MyoDataSet are used as test
set, while the data of others are used as training set. There
is also user-independent data set division on our tactical sign
language instruction set data. For MyoSign proposed by
Zhang et al., since the data set and model-related parameters
are not disclosed in this paper, we use our tactical sign lan-
guage instruction set to perform the same training set and
test set division to compare the two models. In terms of
parameters, including training batches, total epochs, and
learning rate, both models use the same values. The compar-
ison results are shown in Table 3, and the accuracy of the
specific iterative process of the three models when using
our military sign language instruction data set is shown in
Figure 12.

From Table 3, it can be found that our model has a
higher accuracy than other methods. The gestures collected
by MyoDataSet remain static during the collection process,
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TaBLE 3: Comparison results of 3 models.
Model Accuracy Accuracy Accuracy (our Model Processing time (our
(MyoDataSet) (MyoDataSet + user independent) dataset) size dataset)
EMGNet 94.3% 82% 13.1% 744k —
MyoSign — — 91.3% 17.0M 18 ms
MyoTac 98.1% 85% 92.4% 3.7M 2.37 ms

while the tactical sign language commands correspond to
changing movements. It can be seen from Table 3 that
although the model of EMGNet is small, it sacrifices the abil-
ity to process time-varying data containing timing informa-
tion, and the accuracy of distinguishing tactical sign
language is only slightly greater than random. Our method
can handle both dynamic data and static data splendidly.

The experimental results prove the necessity of combining
B-LSTM to establish a time dynamic model. Compared with
MyoSign, we find that our model reduces the model param-
eters through knowledge distillation and replacement of the
FCL, while maintaining a high accuracy. MyoSign uses 3D
convolution, which has one more dimension, and the total
amount of calculation to obtain the output of this layer is
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also one more dimension than 2D convolution, which slows
down the calculation speed of the model. Moreover, CTC is
usually applied to the scene where the fixed-length sequence
is converted to the variable-length sequence. It is not
completely applicable to the sign language classification
problem where the output is fixed-length and further
reduces the processing time.

4.3. Results of Knowledge Distillation. In this section, we
evaluate the effect of knowledge distillation on the light-
weight of hybrid networks. First, we train a single cumber-
some network to complete the recognition model and then
use the distillation intensity value T to convert the output
of the model into a soft target with rich information entropy,
which is provided to the small model for learning. Table 4
compares several different ways of training small models.
Here, we use the data of one volunteer with the highest accu-
racy in cross training as the test set, and the data of other
volunteers as the training set. We first evaluate the results
of using only soft targets and get an accuracy of 94.2%,
followed by the assessment of applying hard labels with
accuracy of 95.6%. Then, we apply both the hard target
and soft target, including the weighted average of both tar-
gets and hard target correction which is to train the model
with the soft target and to revise with the following hard tar-
get. The accuracy of the two methods is 97.1% and 97.0%,
respectively.

From Table 4, it can be concluded that the application of
soft targets alone for training has the worst effect, followed
by the use of hard targets alone. Combining soft targets
and hard targets to train small models can achieve better
training effects. The highest accuracy rate is obtained by
the weighted average of soft targets and hard targets, in
which we use a relative weight of 0.8 on the cross-entropy
for the hard targets. It is considered that soft targets define
a rich similarity structure over the gesture, that is, they con-
tain rich information of different gestures which are more

TABLE 4: Accuracy of training small models in different ways.

Algorithm Accuracy
Soft target 0.942
Hard target 0.962
Weighted average of soft and hard targets 0.971
Hard target correction 0.970

TaBLE 5: Comparison between original model and small model.

Algorithm Runtime (ms) Parameter (M)
MyoTac-original 3.57 27.0
MyoTac-small 2.62 7.1
MyoTac-without FCL 2.37 37

similar and whose differences are greater, so the small model
can learn knowledge quickly during training. It is similar to
that students can start learning expeditiously under the
guidance of a teacher. However, due to the large gap between
the soft target and the real label, the complete application of
the soft target for training leads to a large deviation. Just like
a student who only listens to the teacher’s teaching without
self-study, he cannot succeed. When soft targets and hard
targets are combined for training, the small model has both
soft targets to provide rich knowledge and hard targets to
provide accurate classification. Similar to students who com-
bine teacher guidance and their own diligence, they can
reach the highest level of knowledge.

We evaluate the runtime and model size of 3 models (see
Table 5): the original MyoTac model, the model after knowl-
edge distillation, and the model without FCL. Volunteers
can only make one sign language action, so the inference
model only needs to process and classify one original test
data in a certain period of time. The parameter of the smal-
lest model is only 3.7 M, and the average running time of all
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gesture is 2.37 ms. Without affecting the accuracy, it has fas-
ter computing speed and smaller storage scale than before.

4.4. Results of Real-Time Recognition. In order to achieve
natural human-computer interaction, MyoTac must be able
to complete sign language inference in real-time. The capac-
itance of the lithium battery used in Myo armband is
220 mAh, and the average measured current during opera-
tion is about 9mA. Therefore, the battery duration of the
system is about 24.4 hours. We verified the online operation
with 13 participants who were new users to our system.
Before the experiment, participants were asked to learn the
tactical sign language gestures to avoid the influence of non-
standard actions on the recognition results. During the
experiment, participants were asked to select one of the
thirty tactile sign language pictures without repetition until
all 30 gestures were tested. Each participant performs the
above process four times.

The experimental results are shown in Figures 13 and 14.
The overall average accuracy of real-time military sign lan-

guage inference is 92.67%, and the average runtime is
2.81 ms. For 53.3% gestures in TSL, the accuracy of inference
is higher than 95% in this experiment. The accuracy of all
gestures except “message received” is higher than 75%. The
“message received” gesture has the largest number of incor-
rect judgements, and the accuracy rate is only 63.46%. This
is because the arm movement trajectory of “message
received” is the same as that of “heard,” “pistol,” and “two-
way column,” which leads to that finger movements have
to be involved in the inference. However, the finger move-
ments of “message received” and “hearing” are also awfully
similar. The signals recognized by the eight-channel Myo
armband are not enough to distinguish the extremely similar
finger movements under the influence of larger movements.

5. Discussion

This study proposes a lightweight hybrid neural network
that achieves tactical sign language classification by using
the multimodal data of EMG and IMU. When the user is
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new to our system, the accuracy of real-time classification
will not be reduced. This study proves that neural network
has high redundancy, and the parameters and network
layers can still be reduced while achieving high accuracy.
Moreover, the reasonable neural network structure which
is combined with data can achieve better classification per-
formance under the same numbers of parameters. In the
network lightweight, the method of combining soft target
with hard target in knowledge distillation is adopted. It also
proves that the soft target which obtained by training the
large model in knowledge distillation can be used to guide
the training of small models and can be applied to the mixed
neural network of the convolution layer and BLSTM layer.

The results of this study also show that the increase of
data is beneficial to the accuracy of the algorithm. The
amount of data in the test set is changed to test the recogni-
tion of the same subject. The result is that with the increase
of training set data, the accuracy of the action is positively
correlated. This is because the key information of gesture
movement is extracted, and the difference of movements
among different groups can also be recognized by the net-
work. At the same time, the importance of standardizing
the acquisition signal is also obvious. When collecting the
first experimental data set, the way different participants
wore Myo armbands was not specified in detail. This vari-
able greatly affects the classification results of data, so that
we refined some criteria of data collection and rebuilt the
second data set.

Section 4.2 discusses the necessity of signal fusion. The
EMG signal obtained at 200 Hz sampling rate must be fused
with IMU signal to achieve better classification effect. How-
ever, it is possible to use only the EMG signals for classifica-
tion. Since the EMG signals can distinguish more precise
finger movements, there should be a certain degree of divi-
sion for arm movements. One of the reasons we need to fuse
IMU signal is that the frequency of useful signal of EMG sig-
nal is 0-500Hz, while the sampling rate of Myo is only
200 Hz.

The experiments in terms of network compression are
not sufficient. We will conduct further research on training
methods that combine soft and hard targets. It is planned
to evaluate the accuracy of the step-by-step training method
and train each stage separately without affecting the weight
of the second-stage network. For the distillation intensity
value T for distilling out the soft target, the optimal value
was not obtained. In addition, due to the particularity of
the convolutional network used, methods such as depth-
wise convolution and channel pruning can also be mixed
for further network compression.

Although the experimental results are satisfactory, there
still exists limitation of MyoTac. For example, with regard to
some people with thin arms, the installation is unable to be
fixed on the arm stably, resulting in unstable signals. Second,
the new gesture cannot be dynamically adapted. In the
future, we will struggle to change the classification model
to form a miniaturized adaptive classification system. In
addition, we will design a multimodal sensor suitable for
various arm thickness to make the system more robust. In
the application of sign language recognition, the volunteers
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sat to collect data. We also analysed the standing situation
and found that it has little effect on the analysis results.
For the application scenario of walking, because the signal
of inertial sensor will be distorted by movement, it may need
a separate sensor to measure the influence of walking and
correct the signal data.

6. Conclusions

We present MyoTac, a sign language recognition system
based on EMG, which uses EMG and IMU multimodal sig-
nal fusion to classify sign language through a knowledge dis-
tillate lightweight neural network. We collected the standard
tactical sign language data from 25 volunteers and com-
pleted a multimodal data set. A convolution combined B-
LSTM hybrid network is designed, as well as the reduction
for scale of the network by knowledge distillation and less
use of FCL. Our system can effectively distinguish different
sign languages on the premise of user independence. The
average accuracy of real-time classification inference is
92.67%, and the average real-time running time is 2.81 ms.
The encouraging performance of MyoTac proves its poten-
tial for silent human-computer interaction applications.

Data Availability

Data is available at https://github.com/YifanZhangchn/
MyoTac.git.
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