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1. Background

The fourth industrial revolution of the water sector complies
with the objectives of Water 4.0 by employing digital tech-
nology for flexible, reliable, and competitive water manage-
ment [1, 2]. Digitization and automation are used to
promote and strengthen the water-human-data nexus, espe-
cially to maintain efficient wastewater treatment technolo-
gies [3, 4]. The digital support systems allow for collecting
a sufficient amount of data with nonexcessive field sampling
and monitoring [5, 6]. This advantage would further save
time and effort, viz., avoiding workers’ exposure to dust, air-
borne bacteria, and endotoxins, for data collection and
assessment [7, 8]. Because the adsorption process has been
widely used for removing heavy metals, dyes, turbidity, and
organic compounds in wastewater treatment, its perfor-
mance optimization and prediction by advanced modeling
techniques should be comprehensively investigated [9, 10].
Hence, this Special Issue represents the utilization of the
adsorption technique to remove various pollutants from
wastewater, focusing on the application of artificial intelli-
gence techniques to simulate and forecast the pollutants’
removal efficiencies. This Special Issue also attempts to show
that applying the advanced and innovative computational
tools in various adsorption-based wastewater treatment sys-
tems would overcome the drawbacks of conventional model-
ing and statistical methods.

2. Summaries of Accepted Articles

Reynel-Ávila et al. [11] represented a review of the artificial
neural network (ANNs) applications for modeling, simula-
tion, and optimization of the adsorption process for organic
and inorganic pollutant reduction. The study demonstrated
that ANN had been widely used in more than 250 papers
reported in the Web of Science® database to predict the
adsorption performance and the related isotherm and
kinetic parameters for either batch or dynamic operation.
The review concluded that the ANN-based modeling of
adsorption systems was efficient for resolving complex
engineering problems due to achieving both technical and
economic advantages.

Yadav et al. [12] used incense stick ash to prepare Ca-
rich zeolite, which was characterized in terms of gismondine
(Ca2Al4Si4O16·9H2O). A computational model was used to
estimate the electronic properties and density of states of gis-
mondine (Ca2Al4Si4O16·9H2O), indicating the successful
synthesis of Ca-based zeolites. The Ca-exchanged zeolite
was further employed to remove heavy metals and alkali
metals from fly ash aqueous phases. The removal efficiencies
of these metals were about 27.6% for Cu, 64.1% for Cd,
80.0% for Cr, 20.5% for Co, 23.4% for Ni, 48.8% for Zn,
73.5% for Ba, 27.6% for Ca, 64.1% for Mg, 32.5% for Mn,
and 62.6% for Al within 120min adsorption time.
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Kumi et al. [13] represented the application of the pyrol-
ysis process to convert sewage sludge into biochar. The bio-
char elemental composition was modified by adding eggshell
waste, generating an adsorbent suitable for toluene and
xylene (TX) removals. The removal efficiencies of T and X
reached 79.1% and 86.6%, respectively, at pH = 10, biochar
dosage = 2 g/L, and initial TX of 40mg/L for 1 h adsorption
time. The economic feasibility of the proposed adsorption
system was estimated, equivalent to a 6.9 yr payback period.
Isotherm and kinetic models were used for fitting the
adsorption data and suggesting the removal mechanisms.

Alhothali et al. [14] represented the application of artifi-
cial intelligence prediction models and statistical methods to
simulate and optimize the removals of chemical oxygen
demand (COD) and total organic carbon (TOC) via biochar
adsorbent. Biochar was prepared from the pyrolysis of tea
leaves at 700°C for 2 h under an inert atmosphere (N2 gas).
Each modeling method was composed of 3 inputs (pH, dos-
age, and adsorption time) and 2 outputs (COD and TOC
removals). The highest removal efficiencies of 83.0% for
COD and 98.3% for TOC were achieved at biochar dosage
= 25mg/L and pH = 10 within 35min. The study demon-
strated that the highest predictive accuracy was maintained
by adaptive neuro-fuzzy interference (ANFIS), followed by
artificial neural network (ANN) and response surface meth-
odology (RSM).

Suditu et al. [15] investigated the application of artificial
intelligence-related models to optimize and predict the color
removal efficiency by adsorption onto activated carbon. The
adsorbent material showed a decolorization efficiency of
39.92%, using the RSM method with optimum factors of bro-
mocresol green color = 5:135mg/L and adsorbent dosage =
1:58 g/L within 62.74min. An ANN model with 2 hidden
layers was employed to optimize the adsorption process,
improving the decolorization performance to more than 99%.

Mostafa et al. [16] used the adsorption process to remove
organic pollutants (expressed by biochemical oxygen
demand; BOD) from wastewater. For this purpose, zero-
valent iron nanoparticles were prepared and encapsulated
into cellulose acetate, giving CA/nZVI adsorbent. The adsor-
bent material was characterized for surface morphology, ele-
mental composition, and surface functional groups and used
for BOD uptake. The highest BOD removal efficiency was
96.4% at initial concentration = 100mg/L, 200 rpm agitation,
and 3 g/L CA/nZVI dosage. The adsorption system should
also be operated at a wastewater pH of around 7 within
30min. Further, the factors affecting the adsorbent perfor-
mance toward pollution reduction were optimized by qua-
dratic regression model and ANN. The highest predictive
performance (R2: 0.972 and Adj-R2: 0.971) was achieved by
the ANN model using 10 neurons in the hidden layer and
“trainlm” learning algorithm as a back-propagation training
function. The proposed models also demonstrated that the
highest influential factor was solution pH followed by adsor-
bent dosage.

We hope that this Special Issue can assist relevant aca-
demic and industry researchers in meeting the requirements
of the Internet of Things (IoT) and the fourth industrial rev-
olution for wastewater treatment by adsorption.

Conflicts of Interest

The guest editors declare that they have no conflicts of inter-
est regarding the publication of this editorial.

Acknowledgments

The lead editor would like to thank all the authors who sub-
mitted their valuable contributions and anonymous reviewers
who carefully scrutinized and evaluated the articles submitted.
He would also like to thank the chief editor of Adsorption Sci-
ence & Technology, Prof. Ashleigh Fletcher, for providing this
opportunity and lots of guidance throughout the process. The
lead editor also would like to acknowledge Nasr Academy for
Sustainable Environment (NASE).

Mahmoud Nasr
Nadeem Khan
Mika Sillanpää

References

[1] H. Efendic, L. Becirovic, A. Deumic, and L. Pokvic, “Biosen-
sors in monitoring public health: industry 4.0 applications - a
review,” IFAC-PapersOnLine, vol. 55, no. 4, pp. 38–44, 2022.

[2] L. David, N. Nwulu, C. Aigbavboa, and O. Adepoju, “Integrat-
ing fourth industrial revolution (4IR) technologies into the
water, energy & food nexus for sustainable security: a biblio-
metric analysis,” Journal of Cleaner Production, vol. 363, arti-
cle 132522, 2022.

[3] M. Nasr, K. Mohamed, M. Attia, and M. Ibrahim, “Sustainable
management of wastewater treatment plants using artificial
intelligence techniques,” in Soft Computing Techniques in Solid
Waste and Wastewater Management, pp. 171–185, Elsevier,
2021.

[4] V. Hernández-Chover, L. Castellet-Viciano, A. Bellver-
Domingo, and F. Hernández-Sancho, “The potential of digita-
lization to promote a circular economy in the water sector,”
Water, vol. 14, no. 22, p. 3722, 2022.

[5] L. Heijnen, G. Elsinga, M. de Graaf, R. Molenkamp,
M. Koopmans, and G. Medema, “Droplet digital RT-PCR to
detect SARS-CoV-2 signature mutations of variants of concern
in wastewater,” Science of the Total Environment, vol. 799, arti-
cle 149456, 2021.

[6] K. Nam, S. Heo, S. Kim, and C. Yoo, “A multi-agent AI
reinforcement-based digital multi-solution for optimal opera-
tion of a full-scale wastewater treatment plant under various
influent conditions,” Journal of Water Process Engineering,
vol. 52, article 103533, 2023.

[7] H. Kwon, H.-J. Kang, Y. Park, and J. Bae, “Optimization of a
sequencing batch reactor with the application of the Internet
of Things,” Water Research, vol. 229, article 119511, 2023.

[8] M. Bahramian, R. Dereli, W. Zhao, M. Giberti, and E. Casey,
“Data to intelligence: the role of data-driven models in waste-
water treatment,” Expert Systems with Applications, vol. 217,
article 119453, 2023.

[9] C. Li, Y. Lin, X. Li, J. Cheng, and C. Yang, “Cupric ions induc-
ing dynamic hormesis in duckweed systems for swine waste-
water treatment: quantification, modelling and mechanisms,”
Science of the Total Environment, vol. 866, article 161411,
2023.

2 Adsorption Science & Technology



[10] D. Vaghela, A. Pawar, N. Panwar, and D. Sharma, “Modelling
and optimization of biochar-based adsorbent derived from
wheat straw using response surface methodology on adsorp-
tion of Pb2+,” International Journal of Environmental
Research, vol. 17, no. 1, p. 9, 2023.

[11] H. Reynel-Ávila, I. Aguayo-Villarreal, L. Diaz-Muñoz et al., “A
review of the modeling of adsorption of organic and inorganic
pollutants from water using artificial neural networks,”
Adsorption Science & Technology, vol. 2022, article 9384871,
pp. 1–51, 2022.

[12] V. Yadav, N. Choudhary, D. Ali et al., “Experimental and com-
putational approaches for the structural study of novel Ca-rich
zeolites from incense stick ash and their application for waste-
water treatment,” Adsorption Science and Technology,
vol. 2021, article 6066906, pp. 1–12, 2021.

[13] A. Kumi, M. Ibrahim, M. Fujii, and M. Nasr, “Petrochemical
wastewater treatment by eggshell modified biochar as adsor-
bent: atechno-economic and sustainable approach,” Adsorp-
tion Science and Technology, vol. 2022, article 2323836,
pp. 1–13, 2022.

[14] A. Alhothali, H. Khurshid, M. Mustafa, K. Moria, U. Rashid,
and O. Bamasag, “Evaluation of contemporary computational
techniques to optimize adsorption process for simultaneous
removal of COD and TOC in wastewater,” Adsorption Science
and Technology, vol. 2022, article 7874826, pp. 1–16, 2022.

[15] G. Suditu, E. Drǎgoi, A. Aposticǎ et al., “Artificial intelligence-
based tools for process optimization: case study—bromocresol
green decolorization with active carbon,” Adsorption Science
and Technology, vol. 2022, article 8110436, pp. 1–15, 2022.

[16] M. Mostafa, A. Mahmoud, M.Mahmoud, andM. Nasr, “Com-
putational-based approaches for predicting biochemical oxy-
gen demand (BOD) removal in adsorption process,”
Adsorption Science and Technology, vol. 2022, article
9739915, pp. 1–15, 2022.

3Adsorption Science & Technology



Research Article
Artificial Intelligence-Based Tools for Process Optimization: Case
Study—Bromocresol Green Decolorization with Active Carbon

Gabriel Dan Suditu ,1 Elena Niculina Drăgoi ,1,2 Alexandra Georgiana Apostică,1

Andra Maria Mănăilă,1 Veronica Mădălina Radu,1 Adrian Cătălin Puițel ,1

and Mircea Teodor Nechita 1

1Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University
of Iaşi, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
2Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iaşi, Bd. Prof.
Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania

Correspondence should be addressed to Mircea Teodor Nechita; mircea-teodor.nechita@academic.tuiasi.ro

Received 10 March 2022; Accepted 14 July 2022; Published 30 July 2022

Academic Editor: Mahmoud Nasr

Copyright © 2022 Gabriel Dan Suditu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This study highlights the benefits of optimizing the decolorization of bromocresol green (a colorant/pH indicator widely used in
the industry, whose degradation produces toxic byproducts) by adsorption on active carbon. A set of experiments were planned
and performed based on the design of experiments methodology for the following parameters: the colorant concentration (0.009-
0.045 g/L), the amount of adsorbent (0.5-3 g/L), and the contact time (60-240min). Modeling and optimization strategies were
employed to determine the working conditions leading to efficiency maximization. Using the response surface methodology,
the optimum values of the primary process parameters were established. In addition, a modified bacterial foraging
optimization algorithm was applied as an alternative optimizer in combination with artificial neural networks in order to
determine multiple combinations of parameters that can lead to maximum process efficiency. Different solutions were obtained
with the considered strategies, and the maximum efficiency obtained was >99%. The study emphasizes that adsorption on
active carbon is an effective method for bromocresol green decolorization in wastewater that can be further improved using
advanced optimization methods.

1. Introduction

For thousands of years, the dyes and the pigments used were
derived from natural sources. Only in the middle of the 19th

century, when the natural resources were insufficient to ful-
fill the increasing demand, did the genuine industry of syn-
thetic dyes and pigments start to grow [1–6]. Nowadays,
the production of dyes and pigments has reached millions
of tons per year [7], and almost every industry is a con-
sumer. On a global scale and in a relatively short time, such
tremendous growth generated massive amounts of air,
water, and soil pollutants [8–11].

Many manufacturing branches generate colored indus-
trial wastewaters such as dye industries, Kraft bleaching, tan-

nery, textiles, pulp and paper, food processing, cosmetics,
and pharmaceuticals [12, 13]. Consequently, over the years,
numerous physicochemical treatments and decolorization
methods have been proposed [14, 15]: coagulation and floc-
culation [16], electrocoagulation [17], adsorption [18–21],
wet oxidation [22], ozonation [23], photochemical degrada-
tion [24], biodegradation [25], and other advanced oxidation
processes [22], with each method having its own advantages
and drawbacks [26]. To be competitive, all these methods
must evolve with the technical progress and the continuous
tightening of the environmental standards and regulations
[27]. In this view, there are a series of directions that focus
on (i) finding new, more effective technologies [28, 29], (ii)
combining existing methods to increase their effectiveness
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[30–33], and (iii) optimizing existing technologies to
increase the efficiency and decrease the operation costs [34,
35].

One of the classical approaches with multiple applica-
tions in the optimization of industrial wastewater treatments
[23, 24, 36–38] is the response surface method (RSM) based
on central composite design (CCD), proposed in the ‘60s by
Box and Hunter [39]. RSM is based on a collection of statis-
tical and mathematical techniques (helpful in developing,
improving, and optimizing processes) that is widely used
to design an experiment, explain the main interaction effects
of the independent variables, and determine the optimal
conditions using a limited number of experiments [40–42].
On the other hand, artificial neural networks (ANNs),
although proposed roughly during the same period as
RSM, has recorded in the latest years a series of break-
throughs that demonstrated their extraordinary potential
to model complex systems with highly nonlinear interac-
tions. Therefore, ANNs have a large area of applicability,
being applied to many fields. Examples in the adsorption
area include (i) ultrasonic-assisted adsorption [43], (ii) dye
adsorption [44], and (iii) heavy metal biosorption [45].
However, despite their advantages and capabilities, ANNs
suffer from several drawbacks related to the model type
and hyperparameter tuning [46, 47], which depend on the
problem’s characteristics. In this context, neuroevolution
(combining ANNs with evolutionary-based algorithms) is a
strategy that can be used to overcome these problems, with
the hyperparameter optimization being performed by the
optimization strategy.

For the optimization step of this study, a population-
based algorithm represented by bacterial foraging optimiza-
tion (BFO) was used. BFO [48] is a bioinspired metaheuris-
tic that mimics the foraging behavior of E. coli. Among the
multitude of nature-inspired algorithms [49], BFO distin-
guished itself as an efficient approach. Its simplicity, ease
of use, and efficiency in solving a wide range of problems
represent the main reasons for selecting BFO from the mul-
titude of algorithms from its class [34] and applying it as an
alternative approach to RSM for optimizing the considered
process. Furthermore, it was successfully applied to various
synthetic [50, 51] and real-world problems [52].

Various types of adsorbents: conventional [53, 54], non-
conventional [55], ion-exchange [56], and biosorbents [57],
were employed in decolorization of dye-polluted wastewa-
ters [58]. Although rather costly, activated carbon is gener-
ally recognized as one of the most efficient adsorbents that
can be successfully used for various colored or noncolored
pollutants [26].

Typically, the chemicals that generate the effluent’s color
absorb light, directly impacting photosynthesis. They also
reduce visibility, making it more difficult for microorgan-
isms to eat or reproduce [59]. Bromocresol green (BCG) is
a member of the triphenylmethane (anionic) family and
has a variety of applications as a pH indicator, DNA tracer,
and tracking dye in the weaving industry (cotton, flax) [60,
61]. However, the three benzene rings’ molecular structure
makes it difficult to degrade once released into wastewater
naturally. As a result, there are numerous studies related to

its complete removal and/or decolorization using various
methods [62–66]. Among these, two strategies attract much
attention: advanced oxidation processes (AOPs) and adsorp-
tion on activated carbons (AC) or other materials such as
chitin [61] or polymers [67]. The AOPs usually involve
chemically assisted UV irradiation [68, 69] and/or heteroge-
neous photocatalysis [70, 71]. As for the active carbon-based
materials, the focus is on preparing activated carbon from
various low-value natural materials [72, 73] using pyrolysis
and, in some cases, additional chemical activation [34].
Although this method is one of the most cost-effective, the
properties of the resulting AC are highly dependent upon
the conditions under which the raw material is produced
(soil quality, precipitation, temperature, etc.).

As a result, this research focuses on commercial AC with
controlled and repeatable properties. This research is aimed
at evaluating the AC’s capacity for BCG decolorization and
underlining that process optimization using artificial
intelligence-based strategies can improve process efficacy.
In this context, the interaction among three parameters
(the BCG concentration, the amount of adsorbent, and the
contact time) and their influence on the process yield was
analyzed, modeled, and optimized using RSM, ANNs, and
a BFO-based approach. The variant of BFO used in this
work is a modified, improved version. In order to distinguish
between the two versions, the standard algorithm will be
referred to as BFO, while the modified version will be
denoted as iBFO. Graphical response surface and contour
plots were used to identify the best operating conditions.
This work’s novelty consists of applying classic (RSM) and
newer modeling and optimization methods (ANNs, iBFO)
for improving the bromocresol green decolorization using
active carbon. Moreover, to the author’s knowledge, iBFO
has never been applied to such a process.

2. Materials and Methods

2.1. Work Plan. This study is aimed at showing that even
classical and well-known processes (e.g., colorant adsorption
on active carbon) can be improved by using a combination
of (i) standard approaches for planning, modeling, and opti-
mization and (ii) artificial intelligence techniques that com-
bine ANNs with bioinspired metaheuristic optimizers.
Consequently, the knowledge about the considered process
was gathered through experimental analysis and planned
using a design of experiment (DOE) approach. Then, the
process was modeled using two approaches (RSM and
ANNs). Finally, the process optimization was performed
by two distinct strategies (RSM and iBFO). Figure 1 presents
the main workflow of data and the interconnection between
all the applied strategies.

2.2. Materials. BCG powder (analytical purity, supplied by S.
C. ChimReactiv Ltd.) and bidistilled water were used to pre-
pare the dye solutions. Irregular-shape particles of active
carbon, supplied by Romcarbon S.A., were used to perform
the experiments. Before performing the experiments, the
particles were washed several times with bidistilled water
to remove surface impurities, dried at 120°C for 24 h, and
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classified by sieving; the average diameter ranges between 2.5
and 3.15mm.

The main characteristics of the commercial active car-
bon (Table 1) were investigated by Secula et al. [74]. In addi-
tion, for this study, SEM images were registered (Figure 2).
The captured images emphasized the parallel arrangement
of the pores and their size similarity (Figure 2(b)). In addi-
tion, the micropores are perpendicularly placed on the
macropores (Figure 2(a)).

2.3. Experimental Design. In order to determine the optimal
parameters for BCG decolorization, three independent vari-
ables were considered based on the experience of our previ-
ous studies [34, 75]. Table 2 presents the considered
variables, their unit of measure, and the considered range
used in the experimental phase based on DOE.

The UV-Vis spectra and the absorbance values were
recorded using a JASCO V-550 UV-Vis spectrophotometer.
Disposable disc filters of 0.45μm were used for particle sep-
aration during solution sampling. The morphologies of the
AC particles were observed using a Vega-Tescan scanning
electron microscope.

Following the DOE procedure proposed by Box and
Hunter [39], a minimum number of relevant experiments
were statistically identified (Table 3) and further used in
the experimental analysis.

2.4. Experimental Procedure. Batch adsorption experiments
were performed using 100mL solution samples with the
required BCG concentration without additional pH adjust-
ments. The solutions were mixed with an adequate amount
of active carbon for a well-defined time, according to the
data presented in Table 3. In order to avoid settling, the
slurry was constantly stirred during all the experiments.

The AC performances were characterized by measuring
the rate of BCG decolorization by adsorption.

Since one of its typical applications is the pH indicator,
the BCG is highly sensitive to pH deviations. The pH
increase from being acidic to basic leads to a color variation
ranging from yellow to green and blue. The UV-Vis spec-
trum of BCG also varies with the pH change. BCG’s acid
and basic forms display an isosbestic point in their UV-Vis
spectrum, around 515 nm [68, 76]. Zaggout [76] and Fassi
et al. [68] show that at acidic and natural pH, the most
intense band is at around 614 nm, while at basic pH, the
most intense band is shifted to around 444nm. The pH sen-
sitivity of BCG, certified by the spectroscopic versatility, is
highlighted in various literature reports. Many authors
working with BCG reported different values of the reference
band (Table 4). Some followed the band at 440nm, while
others tracked it at 614nm.

During this study, the absorbance values at 412nm
(Figure 3(a)) were used to analyze the process course. BCG
concentration was calculated from an absorbance versus
concentration calibration curve with an R2 value of
0.99677 (Figure 3(b)). It is worth mentioning that the cali-
bration curve failed from linearity when parallel measure-
ments were done at 617 nm (results not shown).

The efficiency of BCG decolorization η (%) was calcu-
lated using the following equation:

η %½ � = BCG0 − BCGt

BCG0 , ð1Þ

Selected
process

parameters

Design of
experiments

Response
surface

methodology

Response
surface

methodology

Bacterial
foraging

optimization

Experimental study

Modelling Optimization

Reduced number
of solution

Multiple solutions
Artificial

neural
networks

+ random
 experim

ents

Figure 1: Workflow for the application of the different strategies used in this work.

Table 1: The specific surface areas and porous characteristics of
commercial activated carbon.

Physical properties Characteristics Value

Surface

BET surface 1403m2/g

External surface 38m2/g

Total surface 631m2/g

Volume

Mean pore size 1.62 nm

Specific microporous volume 0.48 cm3/g

Total microporous volume 0.66 cm3/g
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where BCG0 and BCGt are the BCG (g/L) concentrations at
the time t = 0 and at the time t = t.

2.5. Bacterial Foraging Optimization. BFO is an optimization
technique inspired by the foraging behavior of E. coli bacte-
ria. In order to provide solutions to a specific problem, it
simulates the evolution of a series of potential solutions
using a set of specific mechanisms that include chemotaxis,
reproduction, elimination, and dispersal (Figure 4).

All these steps are repeated until a stop criterion is
reached. For the standard BFO, this stop criterion is repre-
sented by the number of dispersal steps (Ned). In this work,
the stop criterion combines two criteria, and the algorithm
stops when one of them becomes true. These criteria are
(i) the number of dispersal steps and (ii) the number of func-
tion evaluations (FEs). The reason for this modification
relies on the fact that FEs can be relatively easily set as a stop
criterion for almost all bioinspired metaheuristics and can be
further used for comparison purposes, while the number of
internal repetitions an algorithm performs does not correctly
show the computational resources consumed versus the effi-
ciency of the solution provided.

As can be observed from Figure 3, there is a close inter-
connection between the steps of the algorithm. The most
iterated step is chemotaxis, which represents the movement

of bacteria from food-scarce areas to affluent areas through
swimming and tumbling. This is done by all bacteria (which,
for the sake of simplicity, will be further referred to as indi-
viduals, and the colony of bacteria will be referred to as pop-
ulation) several times indicated by the Nc parameter. In the
BFO algorithm, the mechanism used for food searching is
associated with the repellent-attraction biological princi-
ple [79].

In the reproduction step, the individuals are sorted based
on their fitness (a function that measures the individual’s fit-
ting to the environment). After that, the best individuals
reproduce, while the worst ones are removed. This is per-
formed Nre times, during which the population will be cen-
tered on several clusters and the overall diversity reduced.
Therefore, to simulate the migration of bacteria into a new
environment, with a probability indicated by a parameter
(ped), some individuals are randomly replaced with new ones
(the elimination-dispersal step).

In the initial BFO, ped has a fixed value; therefore, as the
population evolves, the probability of replacing good indi-
viduals is the same as replacing worse individuals. As a
result, individuals located in the vicinity of the global opti-
mum can be replaced with individuals far from the opti-
mum. Thus, potentially good solutions to the problem at
hand can be lost. In order to avoid this aspect, in this work,
ped is modified adaptively (equation (2)). This modification
represents the main idea of the iBFO variant used in this
work.

ped =

fitmin + fitavg
fitmax + fitmin

,  if the objective is fitnessminimization,

fitmax − fitavg
fitmax − fitmin

,  if the objective is fitnessmaximization,
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Figure 2: SEM images of the commercial AC: pore size, shape, and alignment.

Table 2: Designated variables and their variation range for BCG
decolorization with active carbon.

Independent variables Measure units
Range

Symbol
From To

BCG concentration g/L 0.009 0.045 BCG

Adsorbent amount g/L 0.5 3 AA

Contact time min 60 240 CT
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where fitmin, fitmax, and fitavg are the minimum, maximum,
and average of the fitness of all individuals in the population.

In order to determine the optimal conditions for the
considered process, two models were considered: (i) the
regression equations determined using the RSM-based
approach and (ii) ANNs. In the second case, the ANNs, on
their own, required a series of optimization to determine
their best parameters. Thus, in this work, iBFO is applied
to perform two optimization types: process and model
optimization.

Regarding process optimization, the process parameters
are evolved and then fed into the considered model to gen-
erate the necessary predictions. On the other hand, in the
case of ANN optimization, the necessary ANN parameters
are directly encoded into a vector containing real numbers
and then fed into the iBFO. This encoding is necessary
because iBFO cannot directly work with ANN structures.
Even though in neuroevolution, both topology (structure
and organization of the neurons) and training can be per-
formed by the optimizer, in this work, iBFO performs only

Table 3: Designated variables and their variation range for BCG decolorization with active carbon.

No.
Input variables

Response η (%)
Type1

BCG (g/L) AA (g/L) CT (min)
Real Coded2 Real Coded2 Real Coded2

1 O1 0.045 1 3.006 1 240 1 27.96

2 O2 0.009 1 3.004 −1 240 1 31.94

3 O3 0.045 1 3.002 1 60 −1 21.54

4 O4 0.009 1 3.002 −1 60 −1 28.95

5 O5 0.045 −1 0.506 1 240 1 13.37

6 O6 0.009 −1 0.506 −1 240 1 23.77

7 O7 0.045 −1 0.5 1 60 −1 9.23

8 O8 0.009 −1 0.501 −1 60 −1 32.21

9 S1 0.049 0 1.754 α 150 0 18.27

10 S2 0.0051 0 1.752 −α 150 0 44.60

11 S3 0.027 0 1.753 0 259.35 α 28.31

12 S4 0.027 0 1.757 0 40.65 −α 16.33

13 S5 0.027 α 3.27 0 150 0 21.23

14 S6 0.027 −α 0.23 0 150 0 12.16

15 C1 0.027 0 1.752 0 150 0 21.50

16 C2 0.027 0 1.752 0 150 0 21.59

17 C3 0.027 0 1.75 0 150 0 22.50

18 C4 0.027 0 1.754 0 150 0 24.32
1O = orthogonal design points; S = axial or star points; C = center points. 2-1 = low value, 1 = high value, 0 = center value, and −α, α = star point value.

Table 4: Literature reported BCG reference bands.

Authors Tracked band (nm) Ref.

Ghaedi et al.; this work 412 [62]; this work

Özdemir et al. 424 [63]

Salmalian et al. 430 [65]

Khan et al. 438 [73]

Bhanuprakash and Belagali; Murmu et al.; Shokrollahi et al. 442 [60, 64, 77]

Fassi et al.; Fassi et al. 444 [68, 69]

Palazzolo et al. 404 and 617 [78]

Bai et al. 613 [66]

Liu et al. 614 [61]

Chaleshtori et al. 616 [70]

Palazzolo et al. 617 [78]

Ying et al. 620 [71]

Torğut and Demirelli 623 [67]
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a topology determination. The training procedure is the
standard approach used in the Keras framework for the
ANN model implementation in combination with Adam, a
stochastic optimizer based on scaled gradient updates. The
type of model considered is sequential. The entire software
implementation (iBFO and ANNs) was performed in
Python.

3. Results and Discussions

3.1. Response Surface Method. The parameters that directly
affect the efficiency of the decolorization process are BCG,
AA, and CT, as presented in Table 2. In order to study the
combined outcome of these three factors, experiments were
performed, varying their values in carefully chosen intervals
(Table 2), following a statistically designed experimental
routine (Table 3). The experimental results were analyzed
and interpreted using the MINITAB 17.1.0 software pack-

age. The full quadratic model obtained (equation (3)) had
an R2 of 90.34% and an adjusted R2 of 79.47%.

η %½ � = 42:85 − 1741 · BCG − 0:0236 · CT + 7:04 · AA
+ 17631 · BCG2 − 0:000056 · CT2 − 2:72 · AA2

+ 1:231 · BCG · CT + 122:1 · BCG · AA + 0:0154 · CT · AA:

ð3Þ

By setting one parameter at a constant value, preferable
to the value in the middle of the designated interval of vari-
ation, three-dimensional plots (surface plots) were drawn as
presented in Figures 5(a)–5(c).

Such exposure of the parameter variation allows the
visualization of maximum and/or minimum points, which
leads to accurate identification of the optimal values, high-
lighting the impact of the selected parameters on the decol-
orization efficiency.
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Figure 3: Chemical structure of BCG: (a) UV-Vis spectra and absorbance; (b) concentration calibration curve.
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Figure 5: Surface and contour plots: (a) efficiency vs. BCG (g/L) and AA (g/L) at CT = 150 min; (b) efficiency vs. AA (g/L) and CT (min) at
BCG = 0:02702 g/L; (c) efficiency vs. BCG (g/L) and CT (min) at AA = 1:75 g/L.
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Figure 6: (a) Three-dimensional response surface displaying the effects of BCG and CT on the process efficiency. (b) Two-dimensional
contour plot showing the effects of BCG and CT on the process efficiency.
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The 3D (three-dimensional) surface plots and contour
plots were used to graphically describe decolorization effi-
ciency at different values of the main process parameters.
The interactive effect of bromocresol concentration and con-
tact time for an adsorbent concentration of 1.75 g/L is illus-
trated in Figures 6(a) and 6(b). The active carbon performs
better at lower BCG concentrations. The prolongation of
contact time after reaching the equilibrium does not have
positive outcomes towards decolorization efficiency.

The combined effect of AA and BCG after 150min CT
on the efficiency is depicted in Figures 7(a) and 7(b). It can
be observed that the percentage of adsorbed BCG is
increased with raising the adsorbent dosage especially at
lower BCG values. The growing of the adsorbent amount
besides a 2.5 g/L threshold does not improve the adsorption
yield.

Finally, the evolution of the decolorization efficiency as a
function of the contact time and the adsorbent amount is
presented in Figure 8, where the interactive effect of these
two parameters is studied at fixed values of BCG. As
expected, raising the adsorbent amount and the contact time
leads to an increase in BCG retention percentage.

According to the RSM method, the optimal values of the
considered variables are BCG = 5:135 E − 03 g/L, AA = 1:58

Table 5: Optimization results obtained with BFO and RSM for typical and extrapolation cases.

Case Sol. no. AA (g/L) CT (min) BCG (g/L) η (%)

(i) Typical (-1,1 from DOE)∗

1 1.683 81 0.010000 34.2

2 1.830 235 0.010086 34.0

3 1.632 122 0.010413 33.9

4 1.819 151 0.010711 33.8

5 1.948 216 0.011115 33.4

(ii) Extrapolation (−α, α from DOE)∗

6 1.844 197 0.005111 39.3

7 2.112 212 0.005184 39.1

8 2.018 99 0.007150 37.3

9 1.485 123 0.007219 37.1

10 1.162 79 0.007698 36.0
∗ − α, -1, 0, 1, and α are the coding levels for the values from Table 3.
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Figure 9: Evolution of the MSE in the training and validation phases for the best model obtained.

Table 6: Optimization results based on the ANN model.

Case
Sol.
no.

AA (g/
L)

CT
(min)

BCG (g/
L)

η
(%)

(i) Model limits

1 0.110 4080 0.001730 99.9

2 1.012 3862 0.001490 95.8

3 1.188 1813 0.000330 93.0

4 0.188 1737 0.000330 92.5

5 2.771 3551 0.043100 92.3

(ii) (-1,1) from
DOE∗

6 1.777 237 0.009000 45.6

7 1.685 235 0.009800 43.9

8 1.687 227 0.011010 43.9

9 1.795 238 0.009070 43.8

10 1.353 155 0.027460 37.1

(iii) (−α, α) from
DOE∗

11 1.844 197 0.005111 39.3

12 2.112 212 0.005184 39.1

13 2.243 202 0.006830 37.4

14 1.485 123 0.007219 37.1

15 1.162 79 0.007698 36.0
∗ − α, -1, 0, 1, and α are the coding levels for the values from Table 3.
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g/L, and CT = 62:74 min that lead to 39.92% process
efficiency.

As observed, there is a complex interdependency
between the process parameters. Therefore, the standard
analysis of the variation of efficiency considering two param-
eters at once does not provide a complete picture regarding
the output parameters’ lowest or highest surface points. Fur-
thermore, since the RSM performs the optimization by set-
ting some parameters fixed and varying only a few (usually
just one parameter), the search space is not efficiently
explored, and there is the possibility that other solutions
can be found. Thus, iBFO was applied to perform an exhaus-
tive search and identify promising high-efficiency regions.

The optimal results attained with this method (39.92%)
are comparable to those reported in other studies focusing
on the decolorization of bromocresol green with different
types of active carbon. For example, in [73], the maximum
efficiency of active charcoal from pine cones doped with
Co was 41.86%.

3.2. Bacterial Foraging Optimization. Two cases were con-
sidered for process optimization using bacterial foraging
optimization: (i) the statistical model determined using
RSM and (ii) an ANN model. However, the determina-
tion of the ANN model is, in its turn, an optimization
problem, and thus, iBFO was also applied for model
optimization. In both the model and process optimiza-
tion, the settings for the iBFO parameters were the
same: Nc = 20, Ns = 5, Nre = 8, Ned = 20, and the initial
value for ped = 0:25.

3.2.1. RSM-Based Optimization. Using the regression model
determined by the RMS approach (equation (3)), iBFO was
applied to determine if additional optimal points could be
found by thoroughly searching the search space indicated
by the process parameters. To this means, the maximum
process efficiency was identified based on AA, CT, and BCG.

As iBFO is flexible and permits an easy alteration of the
intervals for the process parameters, multiple optimization
cases were considered: (i) typical (when the minimum and
maximum values for the independent variables are identical
to the experiments, coded -1 and 1 from the DOE planning)
and (ii) extrapolation (where the limits are set to −α and α
from the DOE planning). Thus, in each considered case,
ten runs were performed. From the multitude of solutions
(from the vicinity of the optimum) provided by iBFO, for
each case, Table 5 presents the best five combinations of
parameters that optimize the process.

As observed in Table 5, the iBFO algorithm provided
various solutions indicating a high capability of exploring
the search space and finding promising areas. Depending
on the specific requirements at a given time, the end user
or the process manager can select a different optimization
solution. Compared to the RSM approach, the iBFO, in
combination with the statistical model, provided results sim-
ilar in terms of efficiency. However, iBFO generated multiple
solutions in the vicinity of the optimum, indicating that the
interaction between parameters is complex and that different
combinations of parameters lead to the same efficiency.

3.2.2. ANN-Based Optimization. In this case, the iBFO role is
to determine the optimal topology that best fits the

Table 7: Comparison of several adsorbents’ efficiency in decolorizing BCG.

Adsorbent Considered process parameters Optimization method
η
(%)

Ref.

Acid-treated charcoal
(ACT) UV irradiation time, catalyst dosage, recycled catalyst dosage. —

16.85
[73]

Co-adsorbed ACT 40.5

AC derived from rice husk
Contact time, temperature, adsorbent dosage, pH, and initial

concentration
— 93 [72]

Chitin nanofibers
Contact time, temperature, adsorbent dosage, pH, and initial

concentration
IBM SPSS statistics; one-

way ANOVA
92.75 [65]

Zeolitic imidazolate
framework (ZIF-11)

pH, stirring speed, contact time, temperature — 89 [80]

Almond husk
pH, adsorbent dosage, contact time, and initial and final

concentration
— 97.5 [77]

Rice straw biochar Biochar, pyrolysis temperature, solution pH, biochar dosage, initial
dye concentration, and contact time

—
80

[81]
Rice husk biochar 50

Activated biosorbent
Phragmites karka

pH, agitation speed, contact time, biosorbent dosage, initial dye
concentration, temperature

— 99.99 [64]

Fe3O4/MIL-88A
nanocomposite

Contact time, adsorbent dosage, initial concentration — 70 [82]

Commercial active carbon Contact time, adsorbent dosage, initial concentration

Differential evolution 99.83

[75]RSM 97.77

Differential search 99.99

Commercial active carbon Contact time, adsorbent dosage, initial concentration
RSM 39.3 This

workiBFO >99
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considered process. The sequential ANNs considered in this
work are trained using a supervised approach, and thus, the
experimental data describing the process is used for hyper-
parameter tuning. However, as the number of experiments
resulting from the standard DOE planning is relatively
small, a series of random experiments were performed to
increase the number of points that can be included in the
training/testing phase. As a result, the efficiency was mea-
sured for a more extended period compared with the DOE
plan. Thus, compared with the RSM strategy, the ANN
model can predict without extrapolating a higher number
of parameter combinations.

In order to perform the model determination, the stan-
dard data processing techniques used in the machine learn-
ing area were applied: (i) data normalization, (ii) data
randomization, and (ii) data splitting. For data normaliza-
tion, all the experimental points were normalized in the
[-1,1] interval to ensure that no specific process parameter
significantly influences the model based on the order of
magnitude for its values. After that, to ensure that training
is not performed on a subgroup of points, the data is ran-
domly assigned to one of the phases: training/testing. The
percentage of training data is 75%, and 25% is for testing.

After data processing, iBFO was applied to determine the
best-suited model. This suitability is measured by the fitness
function, which in the case of ANN determination is repre-
sented by the Mean Squared Error (MSE) in the training
phase. The elements evolved by iBFO are strictly related to
topology (hidden layers and neurons in each hidden layer).
As the current iBFO version works with a population of
fixed dimension, which for the current case corresponds to
a limit on the number of hidden layers, based on a series
of preliminary analyses, it was set to 5. Furthermore, the
activation function for each neuron from the hidden layer
is set to ReLU, while the activation function for the output
layer is linear. Finally, in order to train each identified topol-
ogy, the Adam optimizer was considered.

The best model obtained had two hidden layers with 33
and 22 neurons, respectively. The MSE was 16.14 in the
training phase and 26.7 in the testing phase. The average
absolute error and the correlation were 9.14% and 0.962
for training and 10.73% and 0.961 for testing. A comparison
between the experimental and predicted values for the test-
ing data is presented in Figure 9. As it can be observed, for
most exemplars, the differences are relatively small, indicat-
ing the model’s capability to capture the process efficiently.

iBFO and the determined ANN were then utilized to
optimize the process. Table 6 presents the best five solutions
provided by the model. In this case, two situations were con-
sidered: (i) when the limits for the search are the ones
obtained through the supplementary experiments performed
to expand the dataset, (ii) when the limits are set as in the
DOE approach (-1,1), and (iii) when the limits are set to
(−α, α).

As seen in Table 6, the results considering the extended
limits allow the identification of conditions that lead to
~100% efficiency. Regarding cases where the (-1,1) interval
was considered, the solutions provided with the ANN-
based model have a higher efficiency than those obtained

with the RSM-based model. On the other hand, for the ð−
α, αÞ, the solutions provided had a similar efficiency. There-
fore, the results obtained in this case are similar to those pre-
sented in the literature. For example, in [72], for an active
carbon produced from rice husks, the maximum efficiency
was 93%.

Overall, the results obtained with iBFO when using both
the RSM and the ANN-based models indicate that the opti-
mizer can explore the search space and identify distinct solu-
tions in the vicinity of the optimum. Furthermore, this
variety can support a large area of use cases where a specific
parameter can be limited within the desired interval (consid-
ering a maximum efficiency and a minimization of con-
sumed resources).

3.3. Comparison with Other Adsorbents. Several adsorbents
have been used for BCG decolorization/removal from waste-
water. Most of them are active carbons/charcoals prepared
from various lignocellulosic biomass. Chitins, polymers,
and various nanocomposites were also used, as presented
in Table 7.

Most authors report the direct influence of individual
process parameters on decolorization efficacy, such as adsor-
bent dosage, contact time, initial BCG concentration, pH,
and temperature. However, only a few show optimization
studies that report the conjugate influence of the process
parameters and classify them in order of their significance
for the process.

4. Conclusions

This study applied various modeling and optimization strat-
egies to BCG decolorization on commercial activated carbon
with the scope of demonstrating that the application of new
approaches from the artificial intelligence area can provide
optimal solutions. The methodologies included conventional
(RSM) and nonconventional artificial intelligence methodol-
ogies (ANNs and a modified version of bacterial foraging
optimization). iBFO was utilized as an optimizer for the
model and process, with its adaptability and capabilities sub-
stantiating the favorable results obtained.

First, in order to consume the minimum resources (time,
chemicals, etc.), the DOE methodology was applied to pro-
gram a minimal number of statistically relevant experiments.
Then, the most used strategy encountered in literature
(RSM) was applied. Using the MINITAB 17.1.0 software
suite, the findings were analyzed and interpreted and a sta-
tistical model was determined and then used for process
optimization, with the maximum efficiency obtained being
39.92% at BCG = 5:135 E − 03 g/L, AA = 1:58 g/L, and CT
= 62:74 min. Compared with the experimental data
obtained for the ½−α, α� DOE limits, this optimal value is
close, but lower. This can be explained by the RSM-based
model error (R2 = 90:34%). These results point out that this
approach is not able to find better solutions.

To further test if the issue of not finding better solutions
than the experimental data is related to the optimization
strategy or to the model, the statistical model was applied
in combination with iBFO. While the maximum efficiency
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obtained was similar when using the same statistic model,
iBFO could find multiple distinct combinations of parame-
ters that lead to the same efficiency. This proved the capabil-
ity of the optimizer to explore the search space efficiently
and identify the regions with promising potential (local
and global minima). These results also pointed out that
within the considered DOE limits of ½−α, α�, a higher effi-
ciency could not be obtained.

Thus, a series of additional random experiments were
performed and, together with the DOE plan, were used to
determine an ANN model. First, its optimized topology (2
hidden layers with 33 neurons in the first one and 22 neu-
rons in the second one) was identified using the iBFO
approach. Then, it is applied to optimize the process consid-
ering different limitations for parameters. In this case, condi-
tions that lead to >99% efficiency were identified, proving
that even the classical processes can be further improved
when good strategies are applied.

The strategy of starting with standard approaches and
then when they fail to provide improved solutions to replace
them with novel strategies from the area of artificial intelli-
gence demonstrated that process modeling and optimization
are not a straightforward fit-all approach and that there are
cases where multiple variants must be tested before reaching
an acceptable solution. The good results of the current case
study pave the way for the advanced optimization of other
types of processes, with a significant economic and industrial
impact.
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Predicting the adsorption performance to remove organic pollutants from wastewater is an essential environmental-related topic,
requiring knowledge of various statistical tools and artificial intelligence techniques. Hence, this study is the first to develop a
quadratic regression model and artificial neural network (ANN) for predicting biochemical oxygen demand (BOD) removal
under different adsorption conditions. Nanozero-valent iron encapsulated into cellulose acetate (CA/nZVI) was synthesized,
characterized by XRD, SEM, and EDS, and used as an efficient adsorbent for BOD reduction. Results indicated that the medium
pH and adsorption time should be adjusted around 7 and 30min, respectively, to maintain the highest BOD removal efficiency
of 96.4% at initial BOD concentration ðCoÞ = 100mg/L, mixing rate = 200 rpm, and adsorbent dosage of 3 g/L. An optimized
ANN structure of 5–10–1, with the “trainlm” back-propagation learning algorithm, achieved the highest predictive performance
for BOD removal (R2: 0.972, Adj-R2: 0.971, RMSE: 1.449, and SSE: 56.680). Based on the ANN sensitivity analysis, the relative
importance of the adsorption factors could be arranged as pH > adsorbent dosage > time ≈ stirring speed > Co. A quadratic
regression model was developed to visualize the impacts of adsorption factors on the BOD removal efficiency, optimizing pH at
7.3 and time at 46.2min. The accuracy of the quadratic regression and ANN models in predicting BOD removal was
approximately comparable. Hence, these computational-based methods could further maximize the performance of CA/nZVI
material for removing BOD from wastewater under different adsorption conditions. The applicability of these modeling
techniques would guide the stakeholders and industrial sector to overcome the nonlinearity and complexity issues related to the
adsorption process.

1. Introduction

Recently, adsorption has been employed in several types of
research as an efficient and reliable process for wastewater treat-
ment [1–3]. The adsorption systems neither consume a lot of
electricity nor generate large amounts of sludge [4, 5]. More-
over, the adsorbent material could be appropriately synthesized
to provide effective adsorption sites to capture the pollutants

from wastewater [6, 7]. However, the adsorption process is
highly influenced by several operational factors such as time,
pH, and mixing speed [8]. The correlation between these envi-
ronmental factors and pollutant removal efficiency could be
described by nonlinear and complex modeling methods [9].
Hence, more studies are required to investigate the applicability
of various statistical tools and artificial intelligence techniques
for predicting adsorption performance.
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Artificial neural network (ANN) models have been used
in recently published studies as a proper method to describe
the adsorption performance in relation to operational condi-
tions [10–12]. The architecture of ANN is composed of mul-
tiple processing elements (or units) arranged in layers. These
units, known as neurons, are highly interconnected and
work in parallel to solve complex problems and get relevant
relationships among the input attributes. For instance, Mah-
moud et al. [13] found that an ANN model could simulate
and predict phosphate removal in adsorption experimenta-
tion, showing a predictive accuracy of R2: 0.976. Several
operational factors such as solution pH, adsorbent dosage,
and mixing speed were used in the adsorption process,
showing that pH was the most influential attribute [13].
Hamdy et al. [14] also demonstrated that the removal effi-
ciency of methylene blue (MB) dye from wastewater could
be explained by several adsorption factors incorporated into
an ANN model (R2: 0.931). These input attributes included
medium pH, initial MB level, and adsorption time; among
them, time was the most influential factor [14].

Several researchers have also used regression models and a
combination of statistical tools to predict the treatment perfor-
mance under different operational factors. For example,
Fawzy et al. [15] used a quadratic regression model to predict
the Ni(II) removal efficiency via adsorption onto plant bio-
mass. The quadratic equation described the correlation
between Ni(II) and several inputs (e.g., pH, biomass dosage,
and adsorption time) with high predictive accuracy of R2 =
0:837 [15]. Their study demonstrated that the statistical
model could appropriately illustrate the interaction among
the input parameters and the shape of the input-output
curve [15]. In another study, Fawzy et al. [16] employed a qua-
draticmodel to predict the Cd(II) removal efficiency via adsorp-
tion onto Gossypium barbadense waste. Total Cd(II) removal
was achieved under the optimized condition of pH = 7:61, bio-
sorbent diameter = 0:125–0.25mm, and biosorbent dosage =
24:74g/L within 109.77min at initial CdðIIÞ = 50mg/L [16].

Given the aforementioned aspects, the application of the
computational approaches to describe the adsorption pro-
cess is an essential point of research. However, further inves-
tigations are required to verify the implementation of ANN
and quadratic models to predict organic matter removal.
This objective would offer a feasible and sustainable approach
to domestic wastewater treatment.

Hence, this research focused on predicting and optimiz-
ing the BOD removal performance in adsorption experi-
mentation by a computational-based approach (quadratic
regression and ANN models). In particular, the study objec-
tives are fourfold: (1) characterization of adsorbent material
synthesized by the entrapment of nanozero-valent iron into
cellulose acetate polymer (CA-nZVI), i.e., this material has
been widely used in the adsorption system due to its proper
mechanical strength, thermal stability, and accessibility; (2)
use of the CA-nZVI adsorbent to reduce organic matter
from wastewater, expressed by BOD, i.e., BOD is considered
the standard criterion for assessing the organic pollution of
domestic wastewater; (3) describe the influence of various
adsorption factors, i.e., pH, adsorbent dosage, time, mixing

rate, and initial BOD concentration (Co), on BOD removal
efficiency; and (4) employ computational techniques, i.e.,
ANN and polynomial regression models, to predict and
optimize the adsorption process.

2. Materials and Methods

2.1. Preparation of Adsorbent Material. For preparing an
iron solution, around 0.0037 M of ferric chloride hexahy-
drate (FeCl3·6H2O; 98.5% pure, Arabic lab.) was dissolved
in 60 mL of a mixture of 4 (ethanol; C2H6O, 95% pure,
World Co.) : 1 (deionized water). In parallel, 0.7564 g
of reducing sodium borohydride (NaBH4; 99% pure, Win
lab.) was dissolved in 200 mL of deionized water to pre-
pare the NaBH4 solution. Further, the reducing NaBH4 solu-
tion was placed in a burette and added drop by drop into the
prepared iron solution. Black iron nanoparticles precipitate
as a result of the direct reaction (Equation ((1)). The iron
nanoparticles, known as nZVI, were then washed with dis-
tilled water and dried at 75°C for 5 h:

2FeCl3 aqð Þ + 6NaBH4 aqð Þ + 18H2O⟶ 2Fe0 sð Þ
+ 21H2 gð Þ + 6B OHð Þ3 aqð Þ + 6NaCl aqð Þ: ð1Þ

Further, the prepared nZVI was capsulated into cellulose
acetate (CA; 99%, Oxford) polymer, using the phase inver-
sion approach [17]. Briefly, at room temperature, 4 g of CA
was dissolved in 25mL dimethylformamide (DMF; 99.99%,
Fisher Chemical) solution and then mixed at 300 rpm until
complete dissolution (within approximately 60min). About
0.4 g of nZVI was mixed into the dissolved CA solution for
10min before being cast into a gelation bath. The prepara-
tion of the gelation bath included 2L of nonsolvent distilled
water, 2wt% DMF, and 0.2wt% sodium lauryl sulphate
(SLS). The prepared CA/nZVI beads (around 3–4mm in
diameter) were collected and washed with distilled water
and then used for the adsorption experimentation.

2.2. Preparation of BOD Containing Solution (Adsorbate).
Raw wastewater samples were collected from a sewage treat-
ment plant located in New Cairo, Egypt. The samples were
analyzed for BOD and subjected to different dilution regimes
with ultrapure water. Working stock solutions with BOD
concentrations of about 100, 200, 300, 400, and 500mg/L
were prepared and used for the individual experiments.

2.3. Batch Studies on Adsorption. Batch experiments were
conducted to determine the effects of adsorption factors on
the BOD removal efficiency. For this objective, a one-fac-
tor-at-a-time approach was used to prepare the batch assays
statistically (Table 1). The factors (pH, CA/nZVI dosage,
time, stirring rate, and Co) and the associated range values
were selected following the approaches of previous studies
[18–20]. After each experimental run, the percentage of
BOD removal (R) and the quantity of sorbed BOD were cal-
culated by Equations (2) and (3). All tests were performed in
triplicate, and the average values were recorded:
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R %ð Þ = C0 − Ce

C0

� �
× 100, ð2Þ

qe mg/gð Þ = C0 − Ceð ÞV
M

, ð3Þ

where Co and Ce refer to the initial and equilibrium BOD con-
centrations (in mg/L), respectively, qe represents the equilib-
rium adsorption capacity (mg/g), V is aqueous phase volume
(L), and M represents the adsorbent’s dry mass (mg).

2.4. Analytical Analysis. The concentrations of BOD in the
aqueous solutions were determined using the procedures of
Standard Methods for the Examination of Water and Waste-
water [21]. An X-ray diffractometer (PANalytical’s, X’Pert
PRO MRD, Netherlands) was used to determine the X-ray
diffraction (XRD) patterns of the synthesized nZVI. The
XRD equipment was operated with current and voltage
levels of 30 mA and 40 kV, respectively. A copper (Cu)
K-alpha radiation with a wavelength ðλÞ = 1:5406 Å
was used to record the XRD patterns in a 40–90° range (step
size of 0.02°) [14]. The XRD spectra were used to estimate
the crystallite size of the prepared nanoparticles, following
Scherrer’s formula:

D =
K λ

β  cos  
, ð4Þ

where D is the average crystal size, K is the nanoparticle
shape factor, θ is the peak diffraction angle, β is pure diffrac-
tion broadening, and λ is the X-ray wavelength.

The nanoparticles’ surface morphology was measured by
a scanning electron microscope (Philips SEM, Quanta 250
field emission gun (FEG), USA). The elemental composition
of nZVI was analyzed using energy-dispersive spectroscopy
(EDS) in conjunction with SEM at a high magnification of
16kx. For determining the pH at the point of zero charge
(pHPZC), the solution pH was incrementally adjusted from
2 to 12 using either 1N H2SO4 or 1N NaOH (pHi) in a
100mL Erlenmeyer flask. About 0.1 g of nZVI was added
to the flasks and kept at 23°C for 24h, and then, the final
pH readings were recorded (pHf).

2.5. Computational-Based Studies

2.5.1. Artificial Intelligence Neural Networks. Figure 1 shows
the ANN architecture used to predict BOD removal from a
given dataset of five input variables (pH, adsorbent dose,
time, stirring rate, and Co), forming 25 experimental runs.

The ANN model is composed of three subsequent layers, i.e.,
an input layer with 5 neurons, a hidden layer with multiple
neurons (m), and the last layer with a single neuron. Each
node in the hidden layer is interconnected with a number of
weighted signals from the neurons of the 5-length input vector
(P5×1). In particular, the inputs were weighted using a m × 5
weight matrix (Wm×5) and summed up, giving the formula
ofΣWm×5 · P5×1. This expression was added to am-length bias
(bm×1), and then, a tangent sigmoid (tansig) transfer function
was employed to generate an output; am×1 = tansigðΣWm×5 ·
P5×1 + bm×1Þ. This output was weighted using a 1 ×m weight
matrix (W1×m), and then, a 1-length bias (b1×1) was added.
Finally, a linear (purlin) transfer function was used to generate
a single neuron in the output layer using the formula of a1×1
= purlinðΣW1×m · am×1 + b1×1Þ. The “tansig” transfer func-
tion limits the output between −1 and +1, whereas the “purlin”
function generates outputs in the −∞ to +∞ range [22]. The
ANN output was compared with the actual BOD removal effi-
ciencies, and the network weights and biases were adapted
until reaching the best predictive performance. The total data
describing the inputs-target correlations were randomly sepa-
rated into three subgroups: training (70%), validation (15%),
and testing (15%).

During the ANN learning phase with a back-
propagation technique, the weights and biases were adjusted
using several epochs (trials). The mean squared error (MSE)
between the ANN output and measured BOD removal
reached its minimum value at the best network performance.
This feed-forward ANN model was used for its simplicity
(no cycles or loops) to describe complex input-output rela-
tionships and to cope with the weighting adjustment issues
[23]. In this study, the number of neurons (m) and the train-
ing algorithms were optimized to develop the most suitable
ANN architecture. The MATLAB (R2015a) software was
used to perform all the ANN computations.

2.5.2. Regression Analysis. A quadratic regression model
(Equation (5)) was developed to predict BOD removal and
estimate the optimum adsorption condition. Moreover, the
results of the polynomial model were used to visualize the
correlation between BOD removal and the adsorption fac-
tors. The model parameters were estimated based on the
least square method [24] to fit the BOD removal data. The
goodness-of-fit criteria (R2 andAdj‐R2) were used to assess
the predictive accuracy of the quadratic model [25]. The t
-test was used to verify the significance level (α = 0:05)
among the adsorption variables [26]. The MATLAB
(R2015a) software was used to conduct all the statistical cal-
culations:

Table 1: Operating conditions of batch adsorption experiments for BOD removal.

Experimental assay pH Dosage (g/L) Time (min) Stirring rate (rpm) Co (mg/L)

Effect of pH 3–11 3 25 200 300

Effect of adsorbent dose 7 1–5 25 200 300

Effect of contact time 7 3 5–60 200 300

Effect of stirring rate 7 3 25 100–500 300

Effect of BOD concentration 7 3 25 200 100–500
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Y = β0 + βi xið Þ + βii xið Þ2, ð5Þ

where Y is the BOD removal efficiency predicted using the
inputs (xi), β0 is the model intercept, and βi andβii represent
the constants associated with the linear and squared forms of
the inputs, respectively.

3. Results and Discussion

3.1. Characterization of nZVI. Figure 2(a) shows the XRD
pattern in the 2θ range of 40–90° for the prepared nZVI.
Two peaks were recorded at 2θ ≈ 44:6 and 64.9° for planes
Fe (110) and Fe (200), respectively. The results of XRD dem-
onstrated the dominance of zero-valent iron (Fe0) in the pre-
pared nanoparticles. Comparable XRD peaks related to
nZVI characterization have been reported elsewhere [13,
27]. Based on Scherrer’s equation, the particle size of the
prepared nZVI adsorbent ranged from 23 to 59 nm, obeying
the results provided by the SEM morphological study
(Figure 2(b)). In particular, the SEM image of the synthe-
sized nZVI showed a heterogeneous and irregular pore
structure with particle sizes ranging from 33 to 56 nm. Addi-
tionally, many pores were observed in the prepared nano-
particles, facilitating the diffusion and mass transfer of
molecules inside the nanomaterial [28]. The SEM image also
showed the presence of larger nanoclusters (agglomerated
particles), which could be assigned to the magnetic forces
existing between the iron nanoparticles. Similar chainlike
aggregates and surface tension properties have also been
reported while preparing the nZVI material [29]. The EDS
analysis observed the presence of iron, gold, and oxygen

with an elemental weight content of 51.49%, 34.53%, and
13.98, respectively (Figure 2(c)). The oxygen element could
be generated from the oxidation reaction with air and/or
water in the outer layer of nZVI. The oxide formation on
the nanoparticles’ surface layer has also been reported [30].
Moreover, the detection of the Au signal in EDS could assign
to the sample coating with a gold layer, following the labora-
tory analytical procedure [31]. The plot of ΔpH versus pHi
indicated that the pHPZC of nZVI could be determined
around 7.5 (Figure 2(d)). At this pHPZC, the net surface
charge of nZVI became zero, where the nZVI surface would
be positively charged at pH < pHPZC and negatively charged
at pH > pHPZC [32]. Moreover, at pH > pHPZC, the nZVI
particles could partially disaggregate because of surface
charge repulsion [33].

3.2. Effect of Operating Conditions on BOD Removal. The
BOD removal efficiency varied considerably in response to
the change in the adsorption factors (Figure 3). For instance,
adapting the solution pH to 7–8 would provide a suitable
condition for BOD reduction (Figure 3(a)). This pH range
complied with the pHPZC, supporting the involvement of
strong attractive and binding forces to remove organic
impurities. Moreover, the optimum pH condition would
facilitate the generation of hydroxyl radicals (⋅OH) to
degrade and oxidize a series of organic compounds [29].
However, decreasing the pH level below pHPZC was associ-
ated with unsatisfactory BOD removal, probably due to the
dissolution and/or separation of Fe from nZVI [34]. The
BOD removal efficiency was also maximized (above 90%)
at pH of 7 in an adsorption process using mixed adsorbent

Adsorption experimentation
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CA/nZVI dosage

Adsorption time

Stirring rate

Initial BOD

1
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BOD removal
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Figure 1: Flowchart of feed-forward back-propagation ANN model for predicting BOD removal efficiency using five adsorption factors, i.e.,
solution pH, CA/nZVI dosage, time, stirring speed, and initial BOD concentration.
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Figure 2: Continued.
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carbon [35]. Their study also demonstrated that the alka-
line condition (pH > pHPZC) would promote the abun-
dance of OH− ions to hinder the diffusion of organic
ions [35].

The BOD removal efficiency was also enhanced by
increasing the CA/nZVI dosage for the 1–5 g/L range
(Figure 3(b)). For instance, the BOD removal efficiency
improved from 66.3% to 83.2% when the CA/nZVI dosage
increased from 1.0 g/L to 5.0 g/L, respectively. Increasing
the adsorbent dosage provided more vacant sites to capture
large amounts of organic ions. Similar behavior was
observed for organic matter removal via an adsorption sys-
tem with wood fly ash (adsorbent), showing an increase in
BOD removal from 4 to 24% with elevating the dosage from
20 to 160 g/L, respectively [36]. Their study demonstrated
that raising the adsorbent dosage was accompanied by
greater surface area and carbon content, finally promoting
higher sorption of organic pollutants [36].

The adsorption time within the range of 5–60min also
influenced the BOD removal efficiency (Figure 3(c)). A
high BOD reduction (61.5%) occurred rapidly within the
first 10min, assigning to the availability of a large number
of vacant sites at the initial stage. This BOD removal
reached 76.8% after 25min and then slightly increased to
81.2% after 60min (Figure 3(c)). It could be observed that
the adsorption process started to reach the equilibrium
state after 25min due to nZVI saturation. This time was
shorter than 60min used to remove BOD with an effi-
ciency of 91.3% via adsorption onto green synthesized
nanomaterials [37].

The BOD removal efficiency also varied according to the
rate of mixing nZVI particles in the aqueous solutions
(Figure 3(d)). The mixing speed of about 200–300 rpm was
suitable to improve BOD removal due to facilitating the
transfer and diffusion of organic ions through the nZVI
pores. However, increasing the mixing speed over 300 rpm
would not be recommended in the adsorption process, prob-
ably due to further desorption of the captured contaminants
under fast agitation. Moreover, the operational cost of the
adsorption system would be expensive due to the surplus
electricity input to reach 500 rpm.

The results in Figure 3(e) depict that increasing Co in the
100–500mg/L range was associated with a drop in BOD
removal from 96.4% to 61.5%. Most vacant adsorption sites
are available for entrapping organic ions at low Co, in agree-
ment with previous results [27, 37, 38]. Increasing Co tends
to provide a driving force to overcome the mass transfer
resistance of solute onto nZVI. However, at a high Co condi-
tion, the adsorption capacity of nZVI would suffer from
increased competition among organic ions and blockage of
the available active sites [10]. This finding verifies the slight
reduction in the adsorption performance at an excessive Co.

3.3. BOD Removal by Different Adsorbents Reported in the
Literature. Table 2 includes the removal efficiencies of
BOD using various adsorbent materials reported in the liter-
ature compared to CA/nZVI applied in this study. For
example, Mahmoud et al. [37] used soft black tea to prepare
nZVI, which removed 91.3% of BOD at pH8, stirring rate
200 rpm, and adsorbent dosage 3.2 g/L within 60min. To
avoid the unmanaged disposal of wood residues, Laohapra-
panon et al. [36] used wood fly ash to remove BOD via batch
sorption experiments. Their study achieved BOD removal of
24% using an ash dosage of 160 g/L within 20min. Due to its
high carbon content and quite accessibility, date palm waste
was used to prepare activated carbon, which is further
employed for organic matter adsorption [39]. Their study
showed that 1 g/L of this activated carbon could eliminate
92.8% of BOD at pH = 6:0, agitation rate = 400 rpm, and
25°C within 150min [39]. It could be noticed that nZVI
exhibited higher BOD reduction than the application of agri-
cultural wastes. This finding could be assigned to the dual
effects of adsorption and degradation caused by nZVI.

3.4. Isotherm and Kinetic Studies. Three isotherm models
were used to describe the adsorption equilibrium between
organic pollutants and CA/nZVI (Figure 4(a)). These models
were Langmuir [40] (Equation (6)), Freundlich [41] (Equation
(7)), and Tempkin and Pyzhev [42] (Equation (8)):

Ce
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1
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� �
Ce +

1
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Figure 2: Characterization of the prepared CA/nZVI adsorbent (a) XRD, (b) SEM, (c) EDS, and (d) pHPZC.
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log qeð Þ = 1
n

� �
log Ceð Þ + log KFð Þ, ð7Þ

qe = BT ln ATð Þ + BT ln Ceð Þ, ð8Þ

where qe is the number of biological pollutants adsorbed in the
form of BOD at equilibrium per gram of CA/nZVI (mg/g) cor-
responding to the equilibrium BOD concentration (Ce, in mg/
L), Qm (mg/g), and KL (L/mg) which are the Langmuir model
parameters, 1/n and KF ((mg/g) ðL/mgÞ1/n) are the Freundlich
model parameters, and BT (J/mol) andAT (L/g) are the Temp-
kin and Pyzhev model parameters.

Table 3 lists the values of isotherm parameters and the
corresponding fitting accuracies (R2 values). A low R2 of
0.881 obtained by fitting the adsorption data to the Lang-
muir model suggested that BOD removal by nZVI could
not follow the monolayer adsorption hypothesis [43]. The
Freundlich model achieved a sufficient fitting accuracy
(R2 = 0:994) to describe the adsorption isotherm. This
goodness-of-fit indicates that multilayer adsorption and het-
erogeneous sites could facilitate BOD removal by CA/nZVI
[44]. The 1/n and KF values were 0.285 and 23.014 (mg/g)
ðL/mgÞ1/n, indicating that the adsorption of organic ions
onto CA/nZVI was preferable under the experimental con-
ditions. A high R2 value (0.985) was also observed using
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Figure 3: Influences of adsorption factors on BOD removal efficiency: (a) solution pH, (b) adsorbent dosage, (c) contact time, (d) stirring
rate, and (e) initial adsorbate concentration.
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Table 2: Removal efficiencies of BOD using various adsorbent materials reported in literature.

Adsorbent
Experimental factor

Removal
efficiency (%)

ReferenceAdsorbent dosage
(g/L)

pH
Co

(mg/L)
Time
(min)

Stirring rate
(rpm)

Wood fly ash 160 1.4 15001 20 600 24
Laohaprapanon

et al. [36]

FeSO4·7H2O coagulant 2.0 5 25500 30 200/50 78 Hossain et al. [46]

nZVI from black tea extract 3.2 8.0 365 60 200 91.3
Mahmoud et al.

[37]

Activated carbon prepared from date
palm waste

1.0 6.0 14 150 400 92.8 Nayl et al. [39]

CA/nZVI 3.0 7.0 100 30 200 96.4 This study

Mixed adsorbent carbon 35 7 505 150 600 99.1
Devi and Dahiya

[35]

Commercial activated carbon 40 2 505 180 600 99.5
Devi and Dahiya

[35]
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Figure 4: Fitting of adsorption data to (a) isotherm models and (b) kinetic models.

Table 3: Results of isotherm and kinetic studies for BOD removal by CA/nZVI adsorbent.

Model Parameter Fitting formula Fitting accuracy (R2)

Langmuir isotherm
Qm = 88:496mg/g
KL = 0:155 L/mg
RL = 0:013–0.060

Qe = 13:755Ce/ 1 + 0:155Ceð Þ 0.881

Freundlich isotherm
1/n = 0:285

KF = 23:014 mg/gð Þ L/mgð Þ1/n Qe = 23:014Ce
0:285 0.994

Tempkin and Pyzhev isotherm
BT = 17:009 J/mol
AT = 1:630 L/g Qe = 17:009ln 1:630Ceð Þ 0.985

Pseudo-first-order kinetic
Qe = 42:442mg/g
k1 = 0:0791/min

Qt = 42:442 1 – exp −0:079tð Þ½ � 0.997

Pseudo-second-order kinetic
Qe = 86:207mg/g

k2 = 0:003 g/mg/min
Qt = 23:202t/ 1 + 0:269tð Þ 0.984
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the Tempkin and Pyzhevisotherm model, signifying a good
fit with the experimental data. The estimated Tempkin and
Pyzhev parameters (BT = 17:009 J/mol ; AT = 1:630 L/g) were
assigned to the occurrence of physical adsorption and uni-
form distribution of bounding energies for BOD removal.

The pseudo-first-order (PFO) (Equation (9)) and
pseudo-second-order (PSO) (Equation (10))) kinetic models
[45] were used to quantitatively describe the kinetic adsorp-
tion of organic impurities onto CA/nZVI:

log qe − qtð Þ = log qeð Þ − k1
2:303

t, ð9Þ

t
qt

=
1

k2 × q2e 
+

1
qe
t, ð10Þ

where k1 (1/min) and k2 (g/mg/min) are the PFO and PSO
constants, respectively, and qt (mg/g) and qe (mg/g) repre-
sent the amount of adsorbed molecules at time t and equilib-
rium, respectively.

The plot of qe vs. t shows the applicability of the adsorp-
tion kinetic models for fitting the experimental data
(Figure 4(b)). This fitting reveals that the interaction
between organic pollutants and CA/nZVI for BOD removal
is influenced by the physisorption and chemisorption path-
ways. In another kinetic adsorption study [39], a chemisorp-
tion reaction was dominant for removing BOD by activated
carbon. Hossain et al. [46] also demonstrated that the
removal of BOD from palm oil mill effluent by coagula-
tion/adsorption using FeSO4·7H2O followed the PSO kinetic
modeling.

3.5. Artificial Neural Network (ANN) for
Adsorption Computation

3.5.1. ANN Optimization. Table 4 lists the predictive perfor-
mances of several ANN structures derived by altering the
number of hidden layer neurons and the back-propagation

learning algorithm. The input layer (with 5 neurons)
received data from the five adsorption factors. Only one hid-
den layer was used in these ANNs to avoid an overcomplex
network’s architecture and obey the optimality criterion
(e.g., save computational cost, minimize MSE, and fasten
the learning speed). The output layer included a single node,
and hence, the ANN configuration could be expressed as 5
–m – 1. The network performance was unsatisfactory for
small m, probably due to a lower learning capability caused
by the insufficient computational neurons. It was also found
that 10 neurons yielded the highest R2 values, where a fur-
ther increase in the number of neurons would cause more
fitted functions and prolong the computation time. Hence,
local minima or overfitting might affect the ANN training
process by either elevating or lowering the number (m)
beyond 10 neurons, finally leading to an imprecise fit. More-
over, Levenberg-Marquardt (trainlm) yielded the best
goodness-of-fit statistics compared with other learning algo-
rithms. The “trainlm” training function is one of the fastest
back-propagation algorithms to adapt the weight and bias
values [22]. Although some functions such as “trainbfg”
showed high R2 values for the training dataset, R2 of the val-
idation and testing procedures were unsatisfactory. Accord-
ingly, the “trainlm” training function with m = 10 neurons
was selected for the optimized network configuration.

3.5.2. ANN Training, Validation, and Test. During network
optimization, the predictive accuracies for the training, vali-
dation, and testing processes were recorded (Figure 5(a)). In
these figures, the theoretical and best regression fittings are
given by the dashed and solid lines, respectively. These pro-
cesses showed R2 values of 0.975, 0.926, and 0.998 for the
optimum ANN structure (5–10–1), respectively. The overall
R2 value was 0.972, in which the ANN model would explain
97.2% of variability within the BOD removal efficiencies via
a linear regression model. Figure 5(b) shows the validation
checks during training that stopped at epoch number 6. This
epoch corresponded to a validation check of 6, in which the

Table 4: Determining the best ANN predictive performance by adapting the number of hidden layer neurons and the back-propagation
learning algorithm.

ANN structure Back-propagation learning algorithm
Coefficient of determination (R2) Goodness of fit
Training Validation Testing R2 Adj-R2 RMSE SSE

5–3–1 trainlm 0.992 0.579 0.931 0.740 0.730 3.067 254.000

5–5–1 trainlm 0.174 0.980 0.830 0.198 0.168 3.088 257.500

5–8–1 trainlm 0.908 0.955 0.910 0.914 0.911 2.207 131.500

5–10–1 trainlm 0.975 0.926 0.998 0.972 0.971 1.449 56.680

5–15–1 trainlm 0.752 0.430 0.819 0.741 0.731 4.103 454.500

5–20–1 trainlm 0.992 0.994 0.684 0.910 0.908 2.831 216.400

5–10–1 trainbfg 0.960 0.992 0.924 0.960 0.949 1.729 80.690

5–10–1 traingdm 0.228 0.598 0.399 0.246 0.218 2.359 150.200

5–10–1 traingda 0.823 0.740 0.968 0.824 0.819 3.175 272.300

5–10–1 traincgb 0.169 0.441 0.027 0.127 0.095 10.940 3234.000

5–10–1 traincgf 0.835 0.918 0.507 0.815 0.809 3.762 382.100

5–10–1 trainoss 0.904 0.891 0.982 0.906 0.903 2.696 196.200

5–10–1 trainscg 0.000 0.005 0.264 0.000 -0.037 10.290 2860.000

9Adsorption Science & Technology



60

60

70

70

80

80

90

90

Y 
= 

0.
96

 ×
 ta

rg
et

 +
 2

.4

Target

Training: R2 = 0.975

60

60

70

70

80

80

90

90

Y 
= 

1.
1 
×

 ta
rg

et
 –

 8
.5

Target

Validation: R2 = 0.926

60

60

70

70

80

80

90

90

Y 
= 

1.
1 
×

 ta
rg

et
 –

 9
.1

Target

Test: R2 = 0.998

60

60

70

70

80

80

90

90

Y 
= 

0.
96

 ×
 ta

rg
et

 +
 2

.3

Target

All: R2 = 0.972

(a)

102

101

100

G
ra

di
en

t

Gradient = 2.653, at epoch 6

10– 2

10– 3

10– 4

μ

μ = 0.001, at epoch 6

Validation checks = 6, at epoch 6
6

4

2

0
0 1 2 3 4 5 6

Va
l f

ai
l

6 Epochs

(b)

Figure 5: Continued.

10 Adsorption Science & Technology



errors were repeated six times before the process termina-
tion. During the 6 error repetitions (Figure 5(c)), the
MSE of the training dataset dropped due to the fact that
“trainlm” is an efficient algorithm to improve the learning
of ANN subjected to complex relationships [47]. For
instance, the ANN parameters (weights and biases) were
appropriately adjusted during training. The validation
curve initiated to rise after epoch 0, giving the best valida-
tion performance at the minimum MSE of 8.644. Based on
the validation plot, the ANN model would overfit the data

after epoch 0, giving unsatisfactory generalization power.
The testing curve gradually declined until epoch 2,
followed by a slight rise; where the MSE between the pre-
dicted and target outputs increased. The MSE of the test-
ing dataset implied that the ANN model could predict
BOD removal using new input records not seen during
training and validation. Based on the network perfor-
mance during training, validation, and test, the optimum
weights and biases were determined at epoch 0 to give
precise results when importing new input data.
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Figure 5: Performance of ANN model for predicting BOD removal efficiency: (a) regression plot, (b) validation checks, (c) best validation,
and (d) relative importance. The number of data points in the training, cross-validating, and testing sets had 70%, 15%, and 15%
proportions, respectively.

11Adsorption Science & Technology



3.5.3. ANN Applicability for Adsorption Studies. In this
study, a three-layer feed-forward back-propagation ANN
with a “trainlm” training algorithm and 5–10–1 architecture
was the optimized artificial intelligence model. This model
would be beneficial in predicting the adsorption perfor-
mance to remove BOD under varying environmental condi-
tions. Moreover, the obtained weights (W10×5 andW1×10)
and thresholds (b10×1 and b1×1) would be used to determine
the relative importance of the input factors. This step was
achieved by partitioning the network’s connection weights,
as reported elsewhere [47, 48].

Figure 5(d) shows each experimental factor’s relative
importance, where the solution pH experienced the most
influence on the BOD removal efficiency. Accordingly, the
medium pH should be adjusted to around 7.5 for maintain-
ing the highest adsorption performance. Controlling and
adjusting the medium pH would be essentially considered
to design and scale up the adsorption system. The relative
importance of adsorbent dosage, time, and mixing speed
was almost comparable at around 18%. Lower relative
importance for Co could be assigned to the efficient adsorp-
tion process for the investigated range of BOD (100–500mg/
L). Moreover, all the relative importance percentages were
satisfactory, implying that no input factor could be excluded
during the adsorption experimentation.

3.6. Quadratic Regression Model for Adsorption
Computation. Table 5 lists the statistical results generalized
from the t-test analysis for predicting BOD removal
(response variable). The model’s performance showed a reli-
able goodness-of-fit with R2 of 0.973 and Adj-R2 of 0.959.
Adj-R2 was approximately comparable to R2, which could
be assigned to the importance of the selected parameters in
describing the adsorption process. Moreover, significant
(p < 0:05) results were observed for the linear correlations
of x1, x2, x3, and x5, suggesting that the BOD removal effi-
ciency would be improved with incrementing pH, dosage,
and time. Moreover, an increase in Co tended to reduce
the BOD removal significantly (p < 0:05) because the
vacant adsorbent sites would be exhausted by increasing

the BOD concentration. The model output also showed
significant correlations with the quadratic forms of x1, x3
, and x5. Hence, a quadratic linear concave up curve would
be visualized for the plot of BOD removal against each pH
and time. This curve indicated that the improvement of
BOD removal after certain values of pH and time would
be insignificant (p > 0:05). The optimum values of these
parameters were numerically assigned as 7.3 and
46.2min, respectively. Moreover, a quadratic linear convex
down shape would be noticed for the plot of BOD
removal versus Co because increasing the BOD concentra-
tion would deteriorate the adsorption performance of CA/
nZVI. The plot of the BOD removal vs. mixing rate
showed a “flat” curve, assigning to the insignificant
(p > 0:05) influence of the input “x4” on the model
response. This “flat” pattern could be attributed to the
narrow range of stirring rate during the investigation,
making it imprecise to demonstrate a considerable rela-
tionship. Accordingly, the mixing rate was selected as
100 rpm to reduce the cost of the adsorption process.

3.7. Model Verification. The accuracy of the developed com-
putational models to predict BOD removal under new condi-
tions was estimated. In particular, additional 25 experimental
runs were performed by varying the adsorption factors,
followed by the analysis of BOD concentrations. In parallel,
these inputs were incorporated into the quadratic and ANN
models to predict the corresponding BOD removal efficien-
cies. The average of the absolute differences between the
experimental results and model outputs was used to estimate
themean absolute error (MAE). The results in Table 6 demon-
strate that the MAE values for the ANN and quadratic regres-
sion models were 0.73% and 1.91%, respectively. Apparently,
both models showed a promising ability to predict the BOD
removal efficiencies remarkably close to experimental values.
However, the ANN model was more reliable and robust than
the quadratic regression method in providing the predictions
closer to the measured data. Each of the modeling techniques
has advantages, regarding the prediction, optimization, and
recognition applications in wastewater treatment processes.

Table 5: t statistics and p values for coefficients of the quadratic regression model to predict BOD removal efficiency. Significant level at
p < 0:05. Goodness-of-fit indices are R2 = 0:973 and Adj-R2 = 0:959, with MSE = 3:096 and DFE = 18.

Variable Beta SE t ratio Prob > tj j Effect

Constant β0: 33.0635 9.049 3.654 0.002 Significant

pH β1: 6.2763 1.202 5.222 0.000 Significant

Dosage β2: 6.2479 2.070 3.019 0.007 Significant

Time β3: 1.7217 0.123 14.022 0.000 Significant

Rate β4: 0.0496 0.027 1.805 0.088 Insignificant

Co β5: -0.1421 0.021 -6.866 0.000 Significant

pH × pH β11: -0.4274 0.084 -5.110 0.000 Significant

Dosage × dosage β22: -0.3297 0.332 -0.992 0.334 Insignificant

Time × time β33: -0.0186 0.002 -10.551 0.000 Significant

Mixing ×mixing β44: -0.0001 0.000 -1.286 0.215 Insignificant

Co × Co β55: 0.0001 0.000 2.549 0.020 Significant
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However, ANN is able to overcome some shortages that
could arise during regression analysis implementation. In
particular, the input factors do not require a statistical
experimental design to train the ANN model (compared
to the regression analysis that only provides first- or
second-order polynomial models). ANN as a soft comput-
ing technique and a black-box model depends on the anal-
ysis of available data to simulate any form of nonlinearity.
In parallel, the regression models utilize a small number
of experiments to generate manifold information, provide
graphical illustrations for input-output relationships, and
establish significance analysis. Hence, the authorities are
encouraged to develop and scale up these modeling
approaches in real-scale wastewater adsorption systems.

4. Conclusions

This study focused on the application of computational-
based techniques to predict BOD removal in an adsorption
process. The adsorbent material was characterized by XRD,
SEM, and EDS, showing a successful preparation of Fe nano-
particles in the zero-valent state. The highest BOD removal

efficiency (96.4%) was observed at pH = 7, adsorbent
dosage = 3 g/L, mixing rate = 200 rpm, and Co = 100mg/L
within 25min. A quadratic regression model was developed
to enhance BOD reduction, showing optimum pH of 7.3 and
time of 46.2min, equivalent to a BOD removal efficiency of
over 99%. Moreover, an ANN structure was properly opti-
mized as 5–10–1 with the “trainlm” back-propagation learn-
ing algorithm to predict BOD removal (R2: 0.972, Adj-R2:
0.971). The results of the computational-based studies
revealed that the adjustment of medium pH at the 7–8
range would be essentially considered to design and scale
up the adsorption system. The results also showed that
the ANN model (MAE 0.73%) was more reliable than
the quadratic regression model (MAE 1.91%) in predicting
the BOD removal efficiency; however, both models main-
tained acceptable predictive accuracies. Hence, both
modeling approaches would be employed to guide the
stakeholders and industrial sector to overcome the nonlin-
earity and complexity issues associated with the adsorption
process. Further studies are required to apply these ANN
and quadratic models to enhance organic pollution reduc-
tion at a large scale.

Table 6: Verification of quadratic regression and ANN models for predicting BOD removal using additional experimental runs.

Run
Experimental parameters∗ BOD removal efficiency (%) Absolute error (%)

x1 x2 x3 x4 x5 Actual ANN Quadratic regression model ANN Quadratic regression model

1 3 3 25 200 300 69.0 69.0 67.5 0.0 1.5

2 5 3 25 200 300 70.6 70.6 73.2 0.0 2.6

3 6 3 25 200 300 72.7 75.4 74.8 2.7 2.1

4 7 3 25 200 300 76.8 76.8 75.5 0.0 1.3

5 8 3 25 200 300 75.8 74.4 75.4 1.4 0.4

6 9 3 25 200 300 71.4 71.4 74.4 0.0 3.0

7 11 3 25 200 300 70.9 70.9 69.9 0.0 1.0

8 7 1 25 200 300 66.3 66.3 65.7 0.0 0.6

9 7 2 25 200 300 70.5 70.5 70.9 0.0 0.4

10 7 4 25 200 300 79.4 79.4 79.5 0.0 0.1

11 7 5 25 200 300 83.2 83.2 82.8 0.0 0.4

12 7 3 5 200 300 50.7 54.5 52.3 3.8 1.6

13 7 3 10 200 300 61.5 61.5 59.5 0.0 2.0

14 7 3 15 200 300 67.3 67.3 65.8 0.0 1.5

15 7 3 20 200 300 72.4 72.2 71.1 0.2 1.3

16 7 3 30 200 300 77.9 81.0 79.0 3.1 1.1

17 7 3 60 200 300 81.0 81.0 80.5 0.0 0.5

18 7 3 25 100 300 73.0 73.0 73.6 0.0 0.6

19 7 3 25 300 300 78.9 78.9 75.5 0.0 3.4

20 7 3 25 400 300 79.1 79.1 73.5 0.0 5.6

21 7 3 25 500 300 79.0 76.7 69.4 2.3 9.6

22 7 3 25 200 100 96.4 96.4 96.0 0.0 0.4

23 7 3 25 200 200 88.9 93.2 84.7 4.3 4.2

24 7 3 25 200 400 67.4 66.9 68.3 0.5 0.9

25 7 3 25 200 500 61.5 61.5 63.1 0.0 1.6

Mean absolute error (MAE) (%) 0.73 1.91
∗x1 is pH; x2 is adsorbent dose (g/L); x3 is contact time (min); x4 is stirring rate (rpm); x5 is initial concentration (mg/L).
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Nomenclature

ANN: Artificial neural network
BOD: Biochemical oxygen demand
CA: Cellulose acetate
CA/nZVI: Nanozero-valent iron encapsulated into cellu-

lose acetate
DMF: Dimethylformamide
EDS: Energy-dispersive spectroscopy
FeCl3·6H2O: Ferric chloride hexahydrate
MAE: Mean absolute error
MSE: Mean squared error
NaBH4: Sodium borohydride
PFO: Pseudo-first-order
PSO: Pseudo-second-order
SEM: Scanning electron microscope
SLS: Sodium lauryl sulphate
XRD: X-ray diffraction.
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This study was aimed at evaluating the artificial neural network (ANN), genetic algorithm (GA), adaptive neurofuzzy interference
(ANFIS), and the response surface methodology (RSM) approaches for modeling and optimizing the simultaneous adsorptive
removal of chemical oxygen demand (COD) and total organic carbon (TOC) in produced water (PW) using tea waste biochar
(TWBC). Comparative analysis of RSM, ANN, and ANFIS models showed mean square error (MSE) as 5.29809, 1.49937, and
0.24164 for adsorption of COD and MSE of 0.11726, 0.10241, and 0.08747 for prediction of TOC adsorption, respectively. The
study showed that ANFIS outperformed the ANN and RSM in terms of fast convergence, minimum MSE, and sum of square
error for prediction of adsorption data. The adsorption parameters were optimized using ANFIS-surface plots, ANN-GA
hybrid, RSM-GA hybrid, and RSM optimization tool in design expert (DE) software. Maximum COD (88.9%) and TOC
(98.8%) removal were predicted at pH of 7, a dosage of 300mg/L, and contact time of 60 mins using ANFIS-surface plots. The
optimization approaches showed the performance in the following order: ANFIS-surface plots>ANN-GA>RSM-GA>RSM.

1. Introduction

With an increase in the world population, industrialization,
and urbanization, the evaluation of water resources and
monitoring of their quality have become a significant con-
cern in hydroenvironmental science. Various contaminants
are being released continuously into water resources and
causing the degradation of aquatic animals’ habitat and
freshwater quality up to a greater extent [1, 2]. Attempts
have been made to establish strategies for the safe removal
of contaminants in wastewaters, e.g., coagulation-floccula-

tion, photocatalytic treatment, electrocoagulation, adsorp-
tion, and oxidation [3, 4]. However, in comparison to
other methods, adsorption has gained prominence due to
its high operating speed, design stability, cost-effectiveness,
and robustness [5, 6].

The adsorption process is influenced by various operat-
ing variables, including contact time between adsorbent
and adsorbate, adsorbent particle size, pollutant concentra-
tion, and pH of the solution. It has been noted that building
an automated and optimized adsorption treatment process is
complex in wastewater treatment plants (WWTP) due to the
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following reasons: (i) complex nature of adsorption process,
(ii) nonlinear interactions between the operating variables,
and (iii) drastic changes in pollutant’s concentrations [7].
Therefore, mathematical models are needed to understand,
optimize, and quantify the interactions between the operat-
ing variables. Modeling and simulation can save time,
reagents, and delayed analysis by avoiding multiple time-
consuming experimental runs of the process. Classical and
linear mathematical models can not completely model and
simulate the adsorption results. Recently, response surface
methodology (RSM) has been used to model a wide variety
of adsorption processes, but it has been found to have lim-
ited application when the data is minimum. Therefore, to
interrelate the adsorption operating variables with output
removal efficiencies of the pollutants and automate the
WWTP, advanced computer-simulated models are neces-
sary. Automation and optimization of the adsorption pro-
cess can help in saving workforce, cost, and resources [8].

Artificial Intelligence (AI) is an advanced computer-
based simulation technology. It was first implemented in
the mid-1950s in the world of computer science. After that,
many more robust and realistic AI-based techniques were
developed in engineering to solve challenging problems
and provide real-world implementations, whereas tradi-
tional or conventional methods were inadequate or unsuc-
cessful [7, 9]. The application of AI techniques in the water
treatment sector and optimization process has recently
gained attention [10]. AI-based methods, such as
knowledge-based structures and fuzzy logics (FIS), including
adaptive neurofuzzy interface systems (ANFIS) [11], particle
swarm optimization (PSO) [12, 13], genetic algorithm (GA)
[14, 15], and artificial neural network (ANN) [16, 17], have
been applied recently in water treatment and adsorption
optimization systems. Such as optimization of the adsorp-
tion process of various dyes [18–24], metals [8, 14, 25, 26],
and organic matter [27] has been reported in the literature
using ANN, ANFIS, and RSM methods. However, limited
studies have been found for the application of ANN, GA,
and ANFIS for modeling and optimization of chemical oxy-
gen demand (COD) and total organic carbon (TOC) adsorp-
tive removal in produced water (PW).

The PW is one of the largest wastewater streams
obtained during oil and gas exploration. Contaminants in
PW change significantly depending on the source of their
disposal. However, recently organic contaminants in PW
have become the highest priority pollutants and need to be
treated on a priority basis [28]. The COD and TOC are sig-
nificant parameters for analyzing organic contaminants in
PW and have been commonly used to represent the effluent
water quality (WQ) [29, 30]. Hence, for the safe disposal of
PW, these parameters need to be reduced significantly.

Most of the studies in the literature are performed on
synthetic waters, which cannot be used efficiently for auto-
mation of oil and gas reservoirs’ effluent treatment plants.
Hence, there is a gap in the literature regarding the appli-
cation of ANN, GA, and ANFIS in the adsorption field
utilising PW. This research work was aimed at designing,
implementing, comparing, and evaluating the ANN, GA,
and ANFIS approach to remove COD and TOC in PW.

Tea waste biochar (TWBC) had been used as an adsorbent
in batch studies under the control of three factors, i.e., pH,
adsorbent dosage, and contact time. The ANN and ANFIS
results were compared with RSM results. It is expected
that this study would help to scale up the industrial appli-
cation of the adsorption process for COD and TOC
removal in PW.

2. Materials and Methods

2.1. Materials. Tea leaves waste was used for the preparation
of biochar (BC). The waste was collected from local Malay-
sian restaurants. High range (HR) COD vials were obtained
from Avanti’s laboratory items supplier in Malaysia. The
water sample was taken from a South-East Asian oil and
gas company.

2.2. Characterization of PW. The PW was filtered to remove
suspended solids using a suction filtration unit. The filtered
water was characterized for initial COD and TOC concen-
tration. COD was measured using the USEPA reactor diges-
tion method. Briefly, 2mL of filtered PW sample was added
to the high range COD vial. The vial was capped, mixed, and
kept in a preheated digester at 150°C for 2 hrs. An empty vial
prepared using 2mL pure water was also observed in the
digester. After 2 hrs, the concentration of COD (mg/L) was
measured using USEPA method 800 under program 430,
using HACH DR 2800 spectrophotometer. TOC in PW
was measured using the Shimadzu TOC-L/SSM-5000A ana-
lyzer. The pH value of PW was found out using the OHAUS
pH meter, and it was about 8 ± 0:2.

2.3. Preparation and Characterization of Biochar. The
TWBC was prepared using our previously reported method
[31]. Briefly, the tea leaves were washed and all impurities
were removed. Before pyrolysis, the leaves were soaked over-
night in phosphoric acid. The soaked leaves were dried and
pyrolyzed at 700°C for 2 hrs in the presence of N2 gas. The
obtained TWBC was washed, dried in an oven for 24 hrs,
and stored in a desiccator. The surface characteristics of
the TWBC were determined using a ZEISS scanning electron
microscope with energy-dispersive X-ray spectroscopy
(SEM-EDX) mapping and a 15 kV accelerating voltage.

2.4. Design of Experiments Using RSM. The RSM-based poly-
nomial Box–Behnken Design (BBD) in design expert (DE)
software (Stat-Ease, version 12) was used for the design of
adsorption batch experiments. Three independent variables
were taken as inputs, including initial pH of PW, contact
time, and dosage of TWBC. Adsorptive removal efficiencies
of COD and TOC were taken as outputs. The design was
chosen at three stages of low (-1), center (0), and high (1)
points (Table 1), giving a total of 13 experimental runs.

2.5. Adsorption Batch Experiments. According to the design
of experiments obtained through BBD, 13 batch experiments
were conducted to investigate the effects of initial solution
pH, adsorbent dosage, and contact time on COD and TOC
removal in PW. The adsorbent was applied in varying
amounts (25−300mg/L) for 100mL of PW at varying initial
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pH (3− 10) and contact times (10−60 mins). The water was
stirred at 220 rpm at a temperature of 20 ± 5°C using a mag-
netic stirrer. The initial and final COD and TOC concentra-
tions were measured before and after each experiment. All
data were measured in three replicates, and the average value
was recorded. The removal efficiencies were determined
using the formula given as follows:

Removal efficiency %ð Þ = Initial concentration − Final concentration
Initial concentration

× 100,

ð1Þ

where initial and final concentrations refer to COD and
TOC amounts in mg/L before and after the adsorption
experiment, respectively.

2.6. Modelling of Artificial Neural Network (ANN). Artificial
neural networks (ANNs) are well known for their ability to
research and organize large amounts of data. It is influenced
by the brain, neurological system, neuronal learning, and
reaction mechanism [18].

MATLAB R2021a was used to create a three-layer feed-
forward neural network (FFNN). A FFNN network has no
loops or cycles because all data is solely delivered forward
[32]. For training the network, three inputs in the input
layer, 2–20 neurons in the hidden layer, and two outputs
in the output layer were taken. The input layer was given
pH, TWBC dosage (mg/L), and contact time (min) as inde-
pendent variables. The output layer had two dependent var-
iables showing the removal efficiency of COD (%) and TOC
(%), as shown in Figure 1. The neurons in the hidden layer
were connected to the inputs and outputs through weights
(w) and biases (b). In Figure 1, the symbol i represents the
ith input in the input layer (1≤i≤3), j represents the jth neu-
ron in the hidden layer (1≤j≤n), and k represents the kth out-
put in the output layer (1≤k≤2). wi,j represents the weights
from the input layer to the hidden layer, and wj,k represents
the hidden layer to output layer weights, where n represents
the total number of neurons in the hidden layer.

Training a network aims to reduce the error between the
network’s outputs and the target values. The training proce-
dure reduces the error by modifying the weights and biases
of the network. The ANN architecture was repeatedly
trained to select the best suitable number of neurons, train-
ing algorithm, weights, and biases to predict COD and
TOC removal efficiencies. A total of 13 data sets were taken
through batch experiments for COD and TOC removal effi-
ciencies, respectively. 70% data was used to train the model
and 15% for validation and testing, respectively. For all data
sets in ANN, the symmetric sigmoid transfer function (tan-

sig) was used in the hidden layer. The linear transfer func-
tion (purelin) was used at the output node for the
simulation and prediction of COD and TOC elimination.

The suitable number of neurons in the hidden layer was
selected based on the hit and trial method using 2−20 neu-
rons. As for performance criteria, minimum mean square
error (MSE) and simulation time were taken.

After selecting the no. of neurons, the network was eval-
uated for various algorithms. The backpropagation (BP)
algorithms were chosen for the network’s training. It is a
first-order gradient descent technique to model the experi-
mental data [33]. The three BP algorithms named Elman
BP (EBP), Cascade Forward BP (CFBP), and Levenberg
Marquardt BP (LMBP) were evaluated for their perfor-
mance, and the best algorithm was taken for the training
purpose.

In order to train the ANN model, input values are mul-
tiplied by connection weights, followed by bias addition. The
same procedure is used for the output layer, with the hidden
layer’s output acting as the input. After training the ANN
model, it was tested and validated. The goal was to achieve
an overall correlation coefficient (R) of nearly 1. The rela-
tionship between inputs and outputs can be expressed
through Equation (2) [34].

y = f xð Þ = 〠
n

j=1
wj,k 〠

m

i=1
wi,j:x + bj

 ! !
+ bk

 !
, ð2Þ

where y shows the output variable and x denotes the
input variable, and n represents the number of neurons in
the hidden layer and m is the number of input variables. w
and b are the weights and biases between the layers. i, j,
and k represent the input order number, hidden neuron
order number, and output order number, respectively.

2.7. Modelling of Adaptive Neurofuzzy Interference System
(ANFIS). Fuzzy systems have some advantages over tradi-
tional approaches, particularly where ambiguous data is
involved. Recently, fuzzy systems have gained popularity as
alternative methods for information processing [35].

As illustrated in Figure 2, the fuzzy inference system
(FIS) used in ANFIS was created in MATLAB R2021a using
a neurofuzzy designer. The Sugeno-type ANFIS design con-
sisted of four hidden layers: fuzzification layer, inference
layer, defuzzification layer, and output layer [36]. For each
output, a total of 13 data sets were used to train the model.
Data were randomly divided into training (70%), testing,
and checking data (30%). Three variables (pH, TWBC dos-
age, and contact time) were selected as inputs and removal
efficiency of COD, and TOC were taken as targets. Mini-
mum numbers of membership functions (mf) were selected
based on minimum MSE. Optimization of the model was
done based on backpropagation and least square estimation.
FIS and optimization methods were selected based on error
minimization.

2.8. Modelling of Response Surface Methodology (RSM). The
experimental data collected through batch tests were

Table 1: Ranges of variables for the design of experiments.

Factor Variables Level

-1 0 1

A pH 3 6 10

B Adsorbent dosage (mg/L) 25 162.5 300

C Contact time (min) 10 35 60
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subjected to the second-order polynomial regression model.
As a polynomial model based on the quadratic equation, the
response Y can be connected to the independent variables.
At the middle of the pattern, one center point was used to
approximate the total error. The quadratic regression equa-
tion used to extract the expected response results is given

as follows:

Y = β0 + 〠
m

p=1
βp + 〠

m

p=1
βppx

2
p +〠

q=1
〠
p=1

βqpxqxp + ε: ð3Þ
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The output is expressed here by Y , while variables are
written in the form of xq and xp.m shows the number of var-
iables examined. Β0, βp, βpp, and βqp, are classified as a con-
stant coefficient, linear coefficient of interaction, coefficient
of quadratic interaction, and the interaction coefficient of
the 2nd order terms, respectively. Furthermore, the F-test
and p values were used to determine the validity of each
element.

To determine the adequacy of the established model and
the statistical importance of the constant regression coeffi-
cients, the analysis of variance (ANOVA) was applied [37].
ANOVA analyzed the interactive, individual, and quadratic
effects of input variables using TWBC on the removal effi-
ciency of COD and TOC. Using the p value with a 95% trust
rating, the model terms were evaluated. The F-value was
used to analyze the sensitivity of the coefficients in regres-
sion. Also, to verify the adequacy of the formula, the coeffi-
cient of determination (R2) value was compared to the
adjusted R2 value.

2.9. Performance Evaluation of the Models. The performance
of the AI techniques (ANN and ANFIS) and RSM for pre-
diction of adsorption data were evaluated using statistical
equations, i.e., (i) the coefficient of determination (R2) Equa-
tion (4), (ii) the sum of squared error (SSE) Equation (5),
and (iii) mean squared error (MSE) Equation (6) [32, 38].
The value of R2 should lie between 0 and 1. A value near 1
shows a good correlation between the experimental and
model-simulated data sets. The SSE has values ranging from
0 to 1, while the best value is closer to 0 [39]. The minimum
value of MSE is taken as the best value [40]. Following equa-
tions were used to measure the errors:

R2 = 1 −
∑r

l=1 ypred,l − yexp,l
� �2

∑r
l=1 ypred,l − ym
� �2 , ð4Þ

SSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r
〠
r

l=1
ypred,l − yexp,l
� �2s

, ð5Þ

MSE =
1
r
〠
r

l=1
ypred,l − yexp,l
� �2

, ð6Þ

where Ypred and Yexp denote the predicted and experi-
mental values, respectively. r denotes the total number of
values in data. The mean value of the response is denoted
by ym.

2.10. Optimization of the Adsorption Process

2.10.1. Development of ANN-GA. ANN and genetic algo-
rithm (GA) hybrid were used for the optimization purpose
using MATLAB optimization tool. Multiobjective optimiza-
tion using GA (gamultobj) was taken as solver, and the ANN
output equation (Equation (2)) was taken as an objective
function. The algorithm had the following attributes: (i)
population type of double vector; (ii) population size of 50;

(iii) creation and mutation functions were constraint depen-
dent; and (iv) crossover fraction of 0.8. The algorithm was
run for optimization further. The goal was to maximize the
COD and TOC removal efficiency.

2.10.2. Development of ANFIS Surface Plots. For the optimi-
zation of adsorption data through ANFIS, 2D surface plots
were generated for pH range 3−10, dosage 25−300mg/L,
and contact time 10−60 min. Optimal values of the input
variables were obtained through the surface plots.

Table 2: Experimental design matrix using the RSM technique
with the experimental values for COD and TOC removal efficiency.

Run
order

pH
Dosage

Contact
time

COD removal
efficiency

TOC removal
efficiency

(mg/L) (min) (%) (%)

1 10 162.5 60 30:61 ± 3 83:13 ± 3

2 3 162.5 60 75:27 ± 3 91:52 ± 3

3 6.5 25 60 58:94 ± 3 89:34 ± 3

4 6.5 300 60 89:87 ± 3 96:87 ± 3

5 6.5 162.5 35 70:57 ± 3 88:35 ± 3

6 10 25 35 83:04 ± 3 98:39 ± 3

7 6.5 25 10 68:83 ± 1 88:75 ± 3

8 3 162.5 10 52:12 ± 3 93:13 ± 3

9 3 25 35 60:96 ± 3 88:78 ± 3

10 10 162.5 10 78:3 ± 3 94:6 ± 3

11 3 300 35 55:89 ± 3 90:07 ± 3

12 10 300 35 62:92 ± 3 92:19 ± 3

13 6.5 300 10 57:12 ± 2 88:32 ± 3

13 6.5 300 10 57:12 ± 2 88:32 ± 3

Table 3: Performance evaluation of ANN based on number of
neurons and algorithms.

Parameters MSE R2

No. of neurons

1 0.01 0.789

2 0.004 0.872

3 0.006 0.842

4 0.008 0.812

5 0.0002 0.998

6 0.0009 0.891

7 0.0005 0.997

8 0.0006 0.994

9 0.0008 0.991

10 0.0001 0.999

Algorithm

Cascade-forward backpropagation (CFBP) 0.4 0.7

Levenberg-Marquardt backpropagation (LMBP) 0.0001 0.99

Bayesian regularization (BR) 0.04 0.85

Scaled conjugate gradient (SCG) 0.001 0.91
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Figure 4: Training of ANN model.

Table 4: Weights and biases for ANN model.

Weights from input
1 to hidden layer
wi,j

Weights from input
2 to hidden layer

wi,j

Weights from input
3 to hidden layer

wi,j

Weights from
hidden layer to
output 1 wj,k

Weights from
hidden layer to
output 2 wj,k

Biases for
hidden layer

bj

Biases for
output layer

bk
w1,1 = −1:157
w1,2 = −1:8344
w1,3 = 0:72447
w1,4 = 0:74183
w1,5 = −2:8229
w1,6 = 2:3265
w1,7 = 1:5054
w1,8 = 0:65708
w1,9 = −2:4848
w1,10 = 3:1325
w1,11 = 3:5646
w1,12 = 2:0214

w2,1 = 2:0135
w2,1 = 1:4641
w2,1 = 1:0304
w2,1 = −3:2745
w2,1 = −0:6843
w2,1 = −1:6772
w2,1 = −2:3961
w2,1 = 2:5639
w2,1 = −1:169
w2,1 = −0:5409
w2,1 = −1:3943
w2,1 = −0:1438

w3,1 = 0:9782
w3,1 = −2:2931
w3,1 = 2:8132
w3 1 = −0:0515
w3,1 = 1:5581
w3 1 = −1:1571
w3,1 = −0:7552
w3,1 = −2:1007
w3,1 = −1:1492
w3,1 = 0:4161
w3 1 = −0:0107
w3,1 = 2:2269

w1,1 = 1:5125
w2,1 = 0:24355
w3,1 = 0:98934
w4,1 = 1:2401

w5,1 = −0:01233
w6,1 = −0:57107
w7,1 = −0:58306
w8,1 = 0:46212
w9,1 = −0:9444
w10,1 = 1:0595
w11,1 = −0:2883
w12,1 = 0:5544

w1,2 = −0:6018
w2,2 = 0:5023
w3,2 = 0:6861
w4,2 = 0:6152
w5,2 = 0:7447
w6,2 = 0:2616
w7,2 = −0:8805
w8,2 = 0:1041
w9,2 = −0:6083
w10,2 = 0:8042
w11,2 = 0:2258
w12,2 = 0:1560

3.7538
2.5117
-2.9508
-1.3429
0.67837
-0.0693
1.26

0.51291
-2.1602
2.2443
1.9193
2.8432

-1.4341
0.042027
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2.10.3. Development of RSM Surface Plots and RSM-GA.
Using the DE software, three-dimensional surface and two-
dimensional contour plots were created to visualize the rela-
tionship between the process factors and their correspond-
ing effect on the output response. Optimal conditions were
calculated after the model was completely analyzed. The
numerical method was used under the optimization option
in the Design Export software. For all independent variables
“in range” options were chosen (e.g., pH3−10, biochar dos-
age 25−300mg/L, and contact time 10−60min) while the
“maximize” alternative was chosen for COD and TOC
elimination.

RSM was also hybridized with GA in MATLAB R2021a
using the response equations as the objective function.
Response equation was obtained through the RSM model.
GA parameters were the same as stated above. The opti-
mized input values were obtained.

3. Results and Discussion

3.1. Characteristics of BC. The SEM-EDX images of TWBC
are presented in Figure 3. Figures 3(a) and 3(b) showed that
TWBC had many open pores available for adsorption of
COD and TOC. The activating agent (phosphoric acid)
seems to create an etched texture, as well as volatile matter
decomposition [41]. The AC surfaces are uneven due to
the etching, with significant porosity and roughness, indicat-
ing a desirable textural property of AC [42]. The mesopores
available at the surface seem to cause capillary condensation
as well as transferring adsorptive into the micropores, hence

increasing the AC’s adsorption capacity. The elemental com-
position in Figure 3(c) showed that TWBC had 80.8% of car-
bon and 16.2% oxygen content. The high carbon content
showed good carbonization of TWBC. Small impurities of
Ca and K were also observed in the TWBC.

3.2. Characterization of PW. The concentration of COD in
the PW was about 1400mg/L, which was much higher than
the safe discharge limit of COD in effluents reported as
150mg/L. The initial concentration of TOC in PW was
433.9mg/L. It was also higher than the safe discharge limit
of TOC in effluents, e.g., 30mg/L. The COD>TOC indicated
that the PW sample contained a substantial amount of
chemically oxidizable organic and inorganic molecules. Oil
and grease content can be found to attribute to the higher
COD and TOC in PW, followed by suspended solids,
organic acids, aromatic compounds, carbonyl compounds,
anions, phenols, and metals [43].

3.3. Experimental Results. The experimental results of
removal efficiencies for COD and TOC are presented in
Table 2. A total of 13 batch experiments were conducted,
and 26 data points were obtained. The results were used
for the modeling of ANN, ANFIS, and RSM models.

Input

Inputmf Rule Outputmf

Output

Logical operation
and
or
not

Figure 5: Schematic diagram of optimized ANFIS.

Table 5: Modeling performance of ANFIS.

Output Training MSE Testing MSE Checking MSE

COD 0.3626 0.49414 0.00000001

TOC 0.33281 0.69148 0.00001
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3.4. Modelling and Training of ANN. The neural network
tool (nntool) was used in MATLAB R2021a for training of
the ANN model. Among 26 data points collected from batch
experiments, 18 points were selected for the training purpose
and the remaining points were used for the testing and val-
idation of the model.

12 no. of neurons, LMBP algorithm with trainlm train-
ing function, and tan sigmoid (tansig) transfer function were
found most suitable to fit the experimental data. The no. of
neurons and algorithm were selected based on the best per-
formance measured as minimum MSE and highest regres-
sion analysis coefficient (R2) as shown in Table 3.

After the selection of ANN architecture parameters,
the model was applied for experimental data prediction.
The trained model had a correlation coefficient of 0.985
with the experimental data as shown in Figure 4. The
MSE value was 0.0001 which showed that the model had
a minimum error and was significant. For the validation
of the model, the remaining 15% points were tested and
removal efficiency was found out, which had an R-value
of 0.999. It showed that the model was well trained and
could be used effectively for the prediction of COD and
TOC adsorption on biochar. The model was further
applied for the 15% data set for the prediction of COD

and TOC adsorption, and an R-value of 1 was obtained
for the predicted data. The overall efficiency of ANN
model was 0.989 (Figure 4).

The weights and biases of the trained ANN model at 12
neurons and LMBP algorithm are given in Table 4. wi,j rep-
resents the weights from the input layer to hidden layer, wj,k
represents the weights from hidden layer to the output layer,
bj represents the biases added at hidden layer, and bk repre-
sents the biases added at the output layer of ANN model.

3.5. Modelling and Training of ANFIS. Sugeno-type subclus-
tering FIS was generated for three inputs (26 data points)
and two outputs (COD and TOC removal efficiency). 70%
data was used for the training of the model. Membership
functions were taken as 13 in numbers for each input vari-
able and guassmf type. The range of influence was tested
from 0 to 1 value. A minimum error was obtained at the
value of 0.00001. Whereas, squash factor, accept ratio, and
rejection ratio were 1.25, 0.5, and 0.15, respectively. The
backpropagation method was taken as the optimization
method due to the minimum RMSE of training data as com-
pared to the backpropagation method. The optimized sche-
matic diagram of ANFIS generated is shown in Figure 5.
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Figure 6: Modeling results using ANFIS for (a) CD removal efficiency and (b) TOC removal efficiency.
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A total of 1000 no. of epochs were taken, and the model
was trained several times for each output. The ANFIS training
parameters were as follows: (i) number of nodes = 110; (ii)
number of linear parameters = 52; (iii) number of nonlinear
parameters = 78; (iv) total number of parameters = 130; (v)
number of training data pairs: 13; (vi) number of checking
data pairs: 6; and (vii) number of fuzzy rules = 13. The model
was well trained after 10000 epochs for COD and 5000 epochs
for TOC output. The minimum MSEs obtained for COD and
TOC are given in Table 5. The model was tested and checked
for the remaining 30% of experimental data.

Minimum MSE was obtained for both COD and TOC
removal efficiencies after repeated training (Figure 6). It
showed that model was well trained and could be used for pre-
diction or optimization of adsorption data. The performance
of the model was better in understanding the behavior of
TOC removal as compared to COD removal. The reason can
be low variance in TOC data as compared to COD.

3.6. Modelling of RSM Using BBD and Statistical Analysis. In
the BBD design, three variables (pH, dosage, and contact

time) were given as inputs. COD and TOC removal efficien-
cies were given as a response for analyzing the experimental
data in design expert software. The generated runs and their
experimental outputs are given in Table 2. The results of
analysis of variance (ANOVA) are given in Table 6. It pre-
dicts the reliability of the applied design and correlation
between various variables and their significance. A p value
shows the significance of the results if it is less than 0.05. A
higher p value shows that the data is insignificant to predict
the behavior of variables. It can be seen in Table 6 that the
overall model was significant for the removal of COD and
TOC using biochar. The model F-values of 10.87 and
44.12 for COD and TOC removal efficiencies, respectively,
implied that the model was significant, and there were only
3.74% and 0.50% chances that an F-value this large could
occur due to noise. Adequate precision measures the signal
to noise ratio. A ratio greater than 4 is desirable. Here, the
ratio of 11.51 and 25.046 indicated an adequate signal and
indicated that the model could be used to navigate the design
space. The terms A, B, C, AB, AC, BC, and A2 were signifi-
cant model terms. The results of COD and TOC were fitted

Table 6: ANOVA for removal efficiencies using RSM.

(a) COD removal efficiency

Source Sum of squares df Mean square F-value p value

Model 2248.685 9 249.8539 10.87023 0.037405 Significant

A-pH 548.6328 1 548.6328 23.86902 0.016399

B-dosage 235.9878 1 235.9878 10.26697 0.049173

C-contact time 627.6425 1 627.6425 27.30644 0.013633

AB 0.0081 1 0.0081 0.000352 0.020142

AC 46.58063 1 46.58063 2.026554 0.024975

BC 84.73203 1 84.73203 3.686383 0.015064

A2 276.9487 1 276.9487 12.04903 0.040312

B2 117.588 1 117.588 5.115827 0.108743

C2 9.984229 1 9.984229 0.434378 0.556921

Residual 68.95543 3 22.98514

Cor Total 2317.64 12

(b) TOC removal efficiency

Source Sum of squares df Mean square F-value p value

Model 202.2155 9 22.46839 44.11838 0.004961 Significant

A-pH 12.37531 1 12.37531 24.29986 0.016003

B-dosage 5.6448 1 5.6448 11.08399 0.044744

C-contact time 25.52551 1 25.52551 50.12128 0.005796

AB 5.29 1 5.29 10.38732 0.048476

AC 15.72123 1 15.72123 30.86981 0.0115

BC 7.29 1 7.29 14.31447 0.032367

A2 75.276 1 75.276 147.8101 0.001198

B2 2.057432 1 2.057432 4.039924 0.137989

C2 3.693889 1 3.693889 7.253231 0.074214

Residual 1.527825 3 0.509275

Cor Total 203.7433 12
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Figure 7: Surface plots for COD and TOC removal efficiencies using RSM (a) pH~dosage~COD removal efficiency (b) pH~contact
time~COD removal efficiency (c) dosage~contact time~COD removal efficiency (d) pH~dosage~TOC removal efficiency (b) pH~contact
time~TOC removal efficiency (c) dosage~contact time~TOC removal efficiency.
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by a quadratic equation given in Equations (7) and (8),
respectively:

COD = +62:92 + 8:28A + 5:43B + 8:86C − 0:00450AB
− 3:41AC − 4:60BC − 11:01A2 + 7:17B2 + 2:09C2:

ð7Þ

TOC = +92:19 + 1:24A + 0:84B + 1:79C − 1:15AB
− 1:98AC + 1:35BC − 5:74A2 + 0:9488B2 + 1:27C2:

ð8Þ
In terms of coded factors, Equations (7) and (8) can be

used to predict responses for various ranges of each factor.
The three-dimensional surface plots of variables and

their interaction are shown in Figure 7. Figure 7(a) shows
that higher removal of COD can be achieved at higher values

of dosages and pH within the selected range of parameters.
Whereas for TOC adsorption, the removal efficiency
decreased after pH 7 (Figure 7(d)). A similar trend has been
observed in Figures 7(b) and 7(e) that higher contact times
and higher pH was suitable to achieve the maximum
removal of COD whereas TOC removal was maximum at
middle points of the data range. The interaction plots of dos-
age and contact time (Figures 7(c) and 7(f)) suggested that
higher dosage and contact time were suitable for the maxi-
mum removal of COD and TOC onto TWBC.

The correlation between COD and TOC removal efficien-
cies predicted and real values using RSMwas quite strong. The
R2 values of the COD and TOC correlation plots were 0.999
and 0.999, respectively. Figures 8(a) and 8(b) represent the
correlation plots of predicted and actual data whereas normal
plots of residuals are represented in Figures 8(c) and 8(d). It
showed that the model could be used satisfactorily for the pre-
diction and optimization of the actual data set.
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Figure 8: RSM model predicted vs actual data plots and normal residual plots. (a) Predicted and experimental values for COD removal
efficiency. (b) Predicted and experimental values for TOC removal efficiency. (c) Normal percentage probability with respect to
standardized residuals for COD removal efficiency. (d) Normal percentage probability with respect to standardized residuals for COD
removal efficiency.
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3.7. Optimization of Adsorption Process Using Trained ANN,
ANFIS, and RSM. For optimizing process parameters, the
GA approach was combined with the ANN model to maxi-
mize COD and TOC removal efficiency. The optimum con-
ditions for the COD and TOC removal process were as
follows: 6.5 pH, 298.5mg/L dosage of biochar, and 60min
contact time. The relationship between removal efficiency
and iteration showed that the removal efficiency achieved
the maximal value after 121 iterations and remained con-
stant. The COD and TOC removal performance obtained
under optimum conditions was 89.80% and 98.9%. The
values were confirmed in the lab and obtained as 89:3 ± 3%
and 97:95 ± 3%.

For the prediction of adsorption data through ANFIS,
surface plots were generated. Optimized value was obtained
at pH value of 7, the dosage of 300mg/L, and contact time
60mins. The removal achieved at the optimized parameters
was 88.9% and 98.8% for COD and TOC, respectively. The
experimental value for the found variables was 89:3 ± 3%
and 97:95 ± 1:5%. It shows that the model well predicted
the optimized value.

Optimal conditions using RSM were found after the
model was completely analyzed. Optimized values were
obtained at pH 6.5, dosage 300mg/L, and contact time
60min, with COD and TOC elimination of maximum as
89.859% and 98.390%, respectively. The viability of the
model and the existence of ideal conditions were confirmed
by a strong agreement between the experimental COD
(89:87 ± 2%) and the predicted COD (89.859%) perfor-
mance. The model predicted value was also confirmed for
TOC removal efficiency as 96:87 ± 3% (experimental) and
98.390% (predicted) values.

The RSM-GA optimization was performed using Equa-
tions (7) and (8) as an objective function in GA using
MATLAB. GA quickly trained and found the optimum
values as pH of 6.6, TWBC dosage as 300mg/L, and contact
time of 60min with removal efficiencies of COD and TOC as
89.86% and 97.2%, respectively.

3.8. Comparison of ANN, ANFIS, and RSM for Prediction of
COD and TOC Adsorption Data. All three models applied
for the adsorption data were well trained for COD and
TOC removal efficiencies using pH, the dosage of TWBC,
and contact time as input variables and COD and TOC as
output variables. All models well fitted the adsorption data
and were further applied for the prediction of experimental
data. It was observed that the model’s predicted values were
near to the experimental data (Table 7). Further perfor-
mance of the models was analyzed using Equations (4)–(6)
for error analysis of predicted data. The analysis is given in
Table 7. Analysis showed that RSM, ANN, and ANFIS had
error values of 2.301, 1.2249, and 0.49157 for SSE and
5.29809, 1.49937, and 0.24164 for MSE, respectively, for
the adsorption of COD onto biochar. For prediction of
TOC adsorption using three models, the error values were
as follows: 0.34243, 0.32001, and 0.29576 for SSE and
0.11726, 0.10241, and 0.08747 for MSE. The run time of
ANFIS was only 100 seconds for 100 epochs whereas ANN
took 120 seconds for 100 epochs. ANFIS proved to be a
highly efficient tool in MATLAB for the modeling and pre-
diction and optimization of adsorption data. The error anal-
ysis and coefficient of determination of three models
determined that ANFIS>ANN>RSM in performance for
the prediction of COD and TOC adsorption on the biochar.

Table 7: Experimental and predicted results of COD and TOC adsorption using RSM, ANN, and ANFIS and statistical analysis of predicted
results.

Sr.
no.

COD removal efficiency TOC removal efficiency
(%) (%)

pH
Dosage
(mg/L)

Contact time
(min)

Actual
Predicted
RSM

Predicted
ANN

Predicted
ANFIS

Actual
Predicted
RSM

Predicted
ANN

Predicted
ANFIS

1 10 162.5 60 30.6 33.45 30.694 30.6 83.1 82.71 83.192 83.1

2 3 162.5 60 75.2 73.36 76.937 75.3 91.5 92.11 88.589 91.5

3 6.5 25 60 58.9 56.84 61.511 58.9 89.3 89.16 87.386 89.3

4 6.5 300 60 89.9 89.86 89.260 90.2 96.9 98.39 96.061 96.8

5 6.5 162.5 35 70.5 67.73 70.546 70.6 88.3 88.77 88.340 88.3

6 10 25 35 83.0 81.87 83.002 83 98.3 98.39 98.331 98.4

7 6.5 25 10 68.8 72.84 68.770 68.8 88.7 88.33 88.728 88.8

8 3 162.5 10 52.1 53.29 52.206 52.1 93.1 93.13 93.146 93.1

9 3 25 35 60.9 61.89 60.936 61 88.7 88.95 88.783 88.8

10 10 162.5 10 78.3 80.21 78.469 78.3 94.6 94.01 95.313 94

11 3 300 35 55.8 57.99 55.832 55.9 90.0 90.25 90.043 89.4

12 10 300 35 62.9 62.92 62.893 62.9 92.1 92.19 92.183 93.2

13 6.5 300 10 57.1 56.19 57.157 57.12 88.3 88.15 88.342 88.3

R2 0.969 0.9920 0.9986 0.9924 0.9932 0.9943

SSE 2.3017 1.2244 0.4915 0.3424 0.3200 0.2957

MSE 5.2980 1.4993 0.2416 0.1172 0.1024 0.0874
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Whereas for the optimization of adsorption data, ANN and
ANFIS performed better as there were no specific limits for
the input and output variables like RSM. Also, for both AI
methods, no specific design of experiments was needed. It
helped the models to analyze the correlation between inputs
and outputs in a broader range. Enhanced efficiency of RSM
may be obtained using larger data points. However, AI
methods are innovative and include a variety of parameters
to understand the nonlinear adsorption data.

4. Conclusions

To obtain the optimized results for COD and TOC adsorp-
tion using ANFIS, surface plots were generated. The BC
was used in this study to model and optimize the adsorption
process using computational techniques. COD and TOC
removal efficiencies were taken as the representation of
reduction in organic pollutants in the wastewater. Batch tests
were performed using pH, dosage, and contact time as input
variables. The experimental results were modeled and opti-
mized using RSM, ANN, and ANFIS models. BBD was used
for the RSM model, and ANOVA was used to predict the
model significance. ANN model was modeled using 3 lay-
ered, feed-forward Levenberg-Marquardt backpropagation
(LMBP) algorithm and 12 no. of neurons. ANFIS was gener-
ated of Sugeno type using subclustering FIS type. The exper-
imental data was successfully optimized using the three
models. For optimization of adsorption data, ANN and
RSM models were hybridized with GA. Optimized values
were well matched with the experimental results. ANFIS
showed minimum run time and highest performance as
compared to other models. Error analysis and coefficient of
determination of three models determine the ANFI-
S>ANN>RSM in performance for the prediction of COD
and TOC adsorption onto the biochar. However, AI
methods predicted the optimized values at a broader range
of input data which was not possible with RSM. No specific
design of experiments was needed for AI methods and once
trained can be used for prediction at any range of data.
Hence, it can be stated that the AI methods can be used
more effectively for the automation of the COD and TOC
adsorption process for wastewater treatment.
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The application of artificial neural networks on adsorption modeling has significantly increased during the last decades. These
artificial intelligence models have been utilized to correlate and predict kinetics, isotherms, and breakthrough curves of a wide
spectrum of adsorbents and adsorbates in the context of water purification. Artificial neural networks allow to overcome some
drawbacks of traditional adsorption models especially in terms of providing better predictions at different operating conditions.
However, these surrogate models have been applied mainly in adsorption systems with only one pollutant thus indicating the
importance of extending their application for the prediction and simulation of adsorption systems with several adsorbates (i.e.,
multicomponent adsorption). This review analyzes and describes the data modeling of adsorption of organic and inorganic
pollutants from water with artificial neural networks. The main developments and contributions on this topic have been
discussed considering the results of a detailed search and interpretation of more than 250 papers published on Web of Science
® database. Therefore, a general overview of the training methods, input and output data, and numerical performance of
artificial neural networks and related models utilized for adsorption data simulation is provided in this document. Some
remarks for the reliable application and implementation of artificial neural networks on the adsorption modeling are also
discussed. Overall, the studies on adsorption modeling with artificial neural networks have focused mainly on the analysis of
batch processes (87%) in comparison to dynamic systems (13%) like packed bed columns. Multicomponent adsorption has not
been extensively analyzed with artificial neural network models where this literature review indicated that 87% of references
published on this topic covered adsorption systems with only one adsorbate. Results reported in several studies indicated that
this artificial intelligence tool has a significant potential to develop reliable models for multicomponent adsorption systems
where antagonistic, synergistic, and noninteraction adsorption behaviors can occur simultaneously. The development of
reliable artificial neural networks for the modeling of multicomponent adsorption in batch and dynamic systems is
fundamental to improve the process engineering in water treatment and purification.

1. Introduction

The removal of pollutants from industrial process streams,
groundwater, and wastewaters has an undoubtedly impor-
tance in terms of sustainability and human health protection

[1, 2]. Adsorption is a key treatment method for facing the
current challenges of water depollution. In particular, it is
a proven and well-known technology for water purification
due to its both technical and economic advantages [3–7].
The recent advances on adsorption for water treatment have
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mainly focused on the preparation and evaluation of new
materials with outstanding adsorption capacities for the
removal of different pollutants like dyes, heavy metals, geo-
genic compounds, pharmaceuticals, and other emerging
toxic chemicals [8–20]. Actually, there is a wide spectrum
of adsorbents that have been prepared and assessed to
remove inorganic and organic compounds from aqueous
solutions. Adsorption properties of these novel adsorbents
have been determined experimentally using batch adsorbers
and/or packed bed columns, which are the typical operating
modes of this purification method.

Experimental studies with batch adsorbers allow to
quantify the adsorption kinetics and isotherms as well as
other important thermodynamic parameters associated to
the adsorbent performance. Batch adsorbers are useful for
establishing the maximum adsorption capacities for the
adsorbate(s)-adsorbent system under ideal and controlled
conditions since the experimental data are obtained at the
thermodynamic equilibrium where the mass transfer resis-
tances are reduced [21, 22]. Note that the adsorption pro-
cesses in batch condition are not commonly employed for
the treatment of real fluids at large scale since equipment
with significant dimensions and long operating times is
required. The packed bed adsorption columns are the most
appropriate option for treating real fluids at industrial scale
operation including the adsorbent regeneration [23]. Break-
through curves obtained in packed-bed columns are funda-
mental to determine the maximum adsorption capacities at
dynamic operating conditions and the analysis of mass
transfer phenomena on the adsorbent performance.

Process systems engineering of adsorption for water
treatment requires the development of reliable models to pre-
dict the corresponding kinetic, thermodynamics, and mass
transfer parameters of the system at hand. The adsorption
modeling offers valuable data for the operation, control, opti-
mization, and design of water purification equipment. For
instance, the modeling of adsorption processes is fundamen-
tal to estimate the adsorbent performance at both dynamic
and batch operating conditions, to optimize the adsorption
process variables, to perform a sensitivity analysis of process
conditions on the adsorption performance, and to analyze
other design issues that are required to improve the operating
costs and removal efficacy in water treatment [24–27].
Herein, it is necessary to highlight that the adsorption pro-
cesses in liquid phase are highly dependent on the type, vari-
ety, and concentration of adsorbate(s) contained in the fluid,
the fluid physicochemical characteristics (e.g., ionic strength,
temperature, and pH), the operational conditions of adsorber
(e.g., stirring rate, adsorbent dosage, bed height, flow rate,
and residence time), and the adsorbent physicochemical
properties (e.g., particle size, surface chemistry, and textural
parameters). Therefore, the modeling of adsorption process
is a multivariable problem that involves nonlinear relation-
ships between the input and output variable(s). These math-
ematical characteristics imply that the reliable correlation
and prediction of adsorption processes are challenging, espe-
cially for multicomponent systems [28–30].

Overall, the available adsorption models can be classified
in theoretical, semitheoretical, and empirical, and they can

be also in the form of analytical and differential equations.
Some reviews have analyzed specific adsorption equations
[31–34], and results reported in a number of studies have
also illustrated their limitations and advantages [28, 29, 33,
35–38]. In particular, the drawbacks of adsorption models
are magnified when they are applied in multicomponent
solutions. The simultaneous presence of several compounds
to be adsorbed from the fluid can affect the adsorbent behav-
ior due to their antagonic, synergic, and noninteraction
effects [39–41]. These adsorption effects depend significantly
on the properties of the adsorbates dissolved in the fluid and
their concentrations. Multicomponent adsorption models
derived from the traditional equations of Langmuir, Freun-
dlich, or Sips are regarded as empirical approaches that
can fail to simulate adsorption systems with several adsor-
bates. Consequently, it is important to develop and improve
the available modeling tools for analyzing the multicompo-
nent adsorption involved in the treatment and purification
of real-life fluids.

Artificial intelligence-based models are an alternative to
improve the simulation of adsorption processes for water
treatment. Several authors have recognized the contribution
of this type of models to obtain better correlations and esti-
mations of the adsorption of inorganic and organic adsor-
bates in single and multicomponent solutions [42–47]. The
artificial neural networks (ANN) have been introduced as
an effective and reliable approach to overcome the problems
associated to the simulation of adsorption systems especially
those corresponding to fluids with more than one adsorbate
at different operating conditions [43, 46, 48, 49]. ANN are
based on human brain structures and capable to represent
the nonlinear interactions between a set of input and output
variable(s) of a given system without considering a sophisti-
cated theory [50]. They have been employed to resolve engi-
neering problems such as fault detection, prediction of
materials properties, soil degradation analysis, water treat-
ment modeling, data reconciliation, process modeling, and
control [50–54]. The advantages of ANN (e.g., reliable corre-
lation, simplicity, versatility, and prediction capabilities) to
handle multivariable problems with nonlinear behavior have
justified their application in the analysis and simulation of
adsorption processes [50, 52, 55–58].

In this direction, this review covers the ANN-based
modeling of adsorption processes in dynamic and batch
operating schemes. The objective of this review was to
provide the readers a general perspective of the develop-
ments, contributions, and opportunities on the modeling
of adsorption data with artificial neural networks. A brief
description of the theory and basis of ANN is provided in
the first section of this review. The modeling of kinetic, iso-
therms, and breakthrough curves with ANN is analyzed
and discussed. Some important guidelines concerning the
parameter estimation problem to be resolved for ANN
training, the selection of the input and output variables to
be modeled with ANN, the details of its numerical imple-
mentation in terms of adsorption data correlation and pre-
diction, and some challenges to be faced and resolved
besides perspectives on this topic are also covered in this
manuscript.
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2. Brief Introduction of Artificial
Neural Networks

ANN were initially developed using the concept for artificial
intelligence with the aim of simulating the activities and
functions of nervous system and human brain in terms of
memorizing and learning [48, 59]. They came from the
analogy made between the human brain and computer pro-
cessing. Basically, ANN are a computational system that
replicates the function of the brain to carry out a specific
task [60]. Input value(s) (i.e., independent variables of the
system under study) are provided to the network and are
manipulated via internal mathematical operations to pro-
duce an output value(s) (i.e., dependent variables of the sys-
tem under study) [60]. ANN are considered as black-box
models useful when a mathematical relationship between
the output and input variables is not available to describe
the phenomenon to be analyzed and/or where the tradi-
tional models may fail [61, 62]. ANN contain multiple inter-
connected nonlinear processing elements that “learn” to
represent and extrapolate the nonlinear relationships
between the dependent and independent variables of the
case of study [48].

Mathematically, ANN are composed of simple elements
to perform the calculations where these elements are inter-
connected with a certain topology or structure. The percep-
tron (neuron) is the simplest elements of a network. The
basic model of a neuron is illustrated in Figure 1(a) and is
integrated by the next components [63, 64]: (1) a set of syn-
apses, which are the inputs of a neuron given by a weighted
vector; (2) an adder that simulates the neuron body and gets
the level of arousal; and (3) an activation function that gen-
erates the output if it reaches the level of excitement and
restricts the output level, thus, avoiding the network conges-
tion. Formally, the neuron output (y) in ANN is given by
the expression

yi = 〠
n

j=1
wijsj +wi0

 !
, ð1Þ

where n indicates the number of inputs to the neuron i, and
φ denotes the excitation or activation function [65, 66]. The
argument of the activation function is the linear combina-
tion of the neuron inputs. Considering the set of entries s
and weights W of the neuron i as a vector of dimension n
+ 1, Equation (1) can be defined as follows

yi = φ WT
i s

� �
,

s = −1, s1, s2,⋯, sn½ �T ,

wi = wi0,wi1,⋯,win½ �T :

ð2Þ

ANN can be classified into static and dynamic networks
where the first one has a broad range of application mainly
due to its characteristic of not change with respect to time.
Dynamic networks are applied for those problems that have

changes with respect of time [67, 68]. Multilayer ANN are
widely utilized because they resemble the structures of
human brain and can be spread with forward and backward
configurations where the selection depends on the case of
study [69, 70]. Particularly, the multilayer ANN with for-
ward spread has been successfully applied in the correlation
and prediction of batch and dynamic adsorption processes
[6, 11, 27, 41, 57, 71–80].

A multilayer ANN structure includes an input layer,
one or more hidden layers, and an output layer, see
Figure 1(b). Input layer contains the independent variables
of the case of study, while the output layer corresponds to
the corresponding dependent variables. The structure defi-
nition of a multilayer ANN seeks to reduce the problems
associated to the prediction of nonlinear behavior of a mul-
tivariable system. Therefore, an important issue is to estab-
lish the suitable ANN architecture (i.e., the number of
hidden layers and their neurons). This task is commonly
based on a trial-error approach. In this sense, the theorem
of Kolmogorov [81] indicates that “the number of neurons
in the hidden layer need not be larger than twice the num-
ber of entries.” Hecht-Nielsen et al. [82] proposed the next
equation to estimate the number of neurons in the hidden
layers of ANN [83]:

h −
2
3

� �
n +mð Þ, ð3Þ

where h is the number of hidden layer neurons, n is the
number of entries, and m is the number of hidden layers
used in the ANN, respectively. Equation (3) suggests that
the number of neurons required in the hidden layer should
be h < 2n. For the case of a multilayer structure with a sin-
gle hidden layer, it has been recommended that the number
of neurons should be 2/3 of the corresponding number of
entries [84, 85].

The next step for building an ANN model is the appli-
cation of excitation or activation function(s). These func-
tions are required to spread the information and used
for ANN training (i.e., the adjustment of the correspond-
ing synaptic weights to model the system at hand) [86,
87]. There are different excitation/activation functions
where the most common ones are the tangential sigmoidal
(Equation (4)), logarithmic (Equation (5)), and radial basis
(Equation (6))

φ = e−wi + ewi

e−wi + ewi
, ð4Þ

φ =
1

1 + e−wi
, ð5Þ

φ = 〠
N

i=1
wiΦ w −wcik kð Þ: ð6Þ

The radial basis function is commonly used for
dynamic systems and can be utilized in nondynamic pro-
cesses but at the expense of increasing the computation
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and data processing time [88–91]. Note that there are
different radial functions, for example:

Gaussian

Φ wð Þ = ew
2
i : ð7Þ

Multiquadratic

Φ wð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w2

i

q
: ð8Þ

Inverse multiquadratic

Φ wð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w2

i

p : ð9Þ

Polyharmonic

Φ wð Þ =wk
i k = 1, 3, 5,⋯,

Φ wð Þ =wk
i ln wið Þ k = 2, 4, 6,⋯:

ð10Þ

After selecting the excitation/activation function(s), it is
necessary to train the ANN model. This training can be per-
formed with different approaches but the most common one
is the training of back-propagation (BP), which has been the
basis to apply other numerical methods like Levenberg-

Maquart (LM) and Broyden-Fletcher-Goldfarb-Shannon
(BFGS) [92–95], or even more sophisticated optimization
algorithms like the metaheuristics also known as stochastic
optimizers [96, 97]. BP algorithm is used to define the
parameters of a multilayer ANN with a fixed architecture
with the aim of “learning” the system behavior. An optimi-
zation algorithm is required to minimize the sum of errors
between the ANN output values and the given target values
of the system to be modeled. Interested readers on advance
topics of ANN, its characteristics and developments are
encouraged to consult the reviews of Basheer and Hajmeer
[73], Abraham [66], Poznyak et al. [98], Alam et al. [99],
Gopinath et al. [29], Chong et al. [97], and Aani et al. [100].

Finally, ANN have been combined and/or hybridized
with other numerical approaches to resolve complex engi-
neering problems. Stochastic global optimization methods
(e.g., particle swarm optimization, genetic algorithm, cuckoo
search, and ant colony optimization), fuzzy logic, and prin-
cipal component analysis have been employed to improve
the performance of ANN modeling in several fields includ-
ing adsorption [29, 96–102].

3. Applications of ANNs to Model the
Adsorption of Water Pollutants

A wide variety of theoretical and empirical models have
been proposed to analyze, correlate, and predict adsorption

Σ
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Figure 1: Illustration of (a) neuron element and (b) structure of a multilayer artificial neural network (ANN).
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processes. However, these models are generally based on
restrictive assumptions and theories, which can limit signifi-
cantly their application [7]. For instance, the traditional
adsorption isotherms like Langmuir and Freundlich have
adjustable parameters that neglect the impact of solution
temperature or pH on the adsorption capacities at equilib-
rium. These traditional models have been extended to handle
the multicomponent adsorption but their errors are signifi-
cant for those systems with the simultaneous presence of
antagonistic and synergistic adsorption effects [31, 34, 38,
103, 104]. Other examples corresponded to statistical physics
models that are theoretical equations utilized to estimate
physicochemical parameters of adsorption processes but
with the limitation of neglecting the role of solution pH or
other fluid characteristics. Similar remarks can be formulated
for the conventional kinetic equations (e.g., pseudofirst and
pseudosecond order models) or even mass transfer models.
Therefore, ANN are an alternative to overcome these disad-
vantages and also to develop improved versions with better
correlation and prediction capabilities. However, it is conve-
nient to remark that ANN can be considered as black-box
(i.e., empirical) models that are effective for correlation and
prediction but without providing an additional theoretical
understanding of the system under analysis. This drawback
of ANN can be partially resolved via its hybridization with
theoretical adsorption models [105, 106].

Mathematically, the performance of an adsorption
system is a nonlinear function depended on the adsorbent
properties, chemistry of adsorbate(s), operating conditions,
fluid properties, and equipment configuration. This nonlin-
ear functionality can be modeled using ANN based on the
fact that there is no a limitation to incorporate all the
independent variables affecting the adsorption system, see
Figure 2. ANN can also predict the performance of multi-
component adsorption systems where the adsorption capac-
ities or other performance metrics, like the concentration
profiles of breakthrough curves, of all adsorbates are incor-
porated as output variables.

For the preparation of the current manuscript, a litera-
ture review was performed in Web of Science® database
using the keywords “adsorption,” “water,” and “artificial
neural network(s).” All articles found with these keywords
were scrutinized to identify papers out of the scope of this
review. Several references were identified with a significant
lack of information in terms of type of characteristics of
ANN, input and output data, and other relevant points,
which were discarded for the analysis and discussion. This
review covers more than 250 papers related to ANN model-
ing of adsorption data. For illustration, Figure 3 provides an
overview of paper published on ANN and adsorption of
water pollutants since 1999 to 2021 (July) according to
Web of Science® database using the keywords. It is clear that
the number of publications about this topic has continuously
increasing where a diversity of adsorption systems (i.e.,
adsorbents, adsorbates, process configurations, and operat-
ing conditions) has been analyzed via ANN with different
topologies, activation functions, and training methods
including hybrid approaches. This set of publications has
briefly described and discussed to provide an overview of

the advantages, limitations, and current challenges on the
adsorption modeling using ANN. Consequently, this section
summarizes the main findings on the application of ANN for
the modeling of kinetics, isotherms, and breakthrough curves
obtained in the adsorption of different water pollutants.

3.1. Kinetic and Isotherms. Batch adsorption tests are
required to quantify kinetics and isotherms thus characteriz-
ing the performance of adsorption processes. First applica-
tions of ANN in adsorption modeling were associated to
the correlation and prediction of kinetics and isotherms.
Tables 1 and 2 summarize the ANN modeling of kinetic
and equilibrium studies for the adsorption of several pollut-
ants from water. For instance, the adsorption data of arsenic,
dyes, fluorides, heavy metals, pesticides, and organic com-
pounds using activated carbons, bone char, lignocellulosic
biomasses, clays, nanocomposites, hydrogels, and metal-
organic frameworks have been modeled with ANN. These
experimental studies have covered different operating condi-
tions (e.g., 20–60 °C and pH 1–11) and a broad spectrum of
adsorption capacities (3-270mg/g). Several input variables
have been considered in the ANN modeling such as pH,
temperature, adsorbent dosage, contact time, initial concen-
tration, physicochemical properties of the pollutant(s), and
adsorbent, among others. Adsorption systems with one pol-
lutant (i.e., adsorbate) dominate in the literature (~87%),
and a limited number of multicomponent adsorption studies
with two or more pollutants have been reported although
the recognized capabilities of ANN to handle multiresponse
processes. A brief description of representative studies on
ANN modeling of kinetics and isotherms for different water
pollutants is provided below.

Brasquet and Le Cloirec [107] were pioneers in the
modeling of batch adsorption data with ANN. These authors
formulated the question “why use neural networks in
adsorption processes?” thus determining that ANN can be
excellent predictors for this separation process if properly
implemented. They studied the adsorption of 368 organic
compounds on three activated carbons and used an ANN
with four input variables: molecular size and flexibility with
the variable 3Xp (0–10.33), molecular volume and topology
of insaturation and heteroatoms with the variable 2Xvp (0–
9.58), the critical dimension with the variable 6Xvp (0–
5.06), and a dummy variable “D” (-1.15–1.08). ANN with
three neurons in the hidden layer were applied considering
log ðqe/CeÞ as the output variable where qe is the equilibrium

Adsorbent properties
qe,i

Pollutants properties

Adsorption conditions

Process configuration

Input variables Output variables

ANN model

[F−]outlet
[F−]Feed

Figure 2: Input and output variables of an adsorption process that
can be incorporated in ANN modeling.
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adsorption capacity and Ce is the adsorbate equilibrium
concentration [108]. These authors used 333 quantitative
structure-activity relationship (QSAR) data for learning
and 35 for testing of ANN from Blum et al. [109]. They used
a classical neural network with BP algorithm as a training
method and hyperbolic tangent sigmoid as activation func-
tion. This study concluded that an excessive number of neu-
rons in the hidden layer was not necessary to achieve
satisfactory modeling results with R2 = 0:875. It was also
analyzed the impact of the number of neurons on the
ANN overtraining.

Chu and Kim [110] compared the modified Langmuir
model and feed-forward ANN for the prediction of com-
petitive adsorption of cadmium and copper by a plant bio-
mass. Equilibrium adsorption data at pH 4-5 and 25 °C
were taken from Pagnanelli et al. [111] where a mutual
suppression of the adsorption of both metals occurred in
the binary metallic system due to the competition for the
binding sites of this adsorbent. Input variables for ANN
modeling were the copper and cadmium equilibrium con-
centrations (0.124–2.243mmol/L) and pH, while the ANN
outputs were the copper and cadmium adsorption capaci-
ties (0.006–0.165mmol/g). ANN training was performed
with 83.3% of data set, while the remaining 16.7% was uti-
lized for testing. The logistic sigmoid function was applied
in neuron activation. The best ANN configuration con-
sisted of 1 hidden layer with 10 neurons and BP training.
These models were compared using the relative errors
where the best values were obtained for the ANN thus out-
performing the data correlation with the modified Lang-
muir model.

Singh et al. [112] employed an adapted neural fuzzy
model and a BP-ANN for the prediction of cadmium adsorp-
tion by hematite. Specifically, a 3-layered feed-forward
BP-ANN was employed where the input variables were the
cadmium concentration (44.48–88.96μmol/L), agitation rate
(50–125 rpm), pH (9.2), temperature (20.5–40.5 °C), and
contact time (29–222min), while the output variable was
the final cadmium concentration (43–103μmol/L). The
training database consisted of 15 datasets. The activation
functions were the logistic sigmoid and symmetric Gaussian

for classical ANN model and hybrid neural fuzzy model,
respectively. Results showed that the cadmium adsorption
depended on the five input variables. The hybrid neuro-
fuzzy model (R2 = 0:96) provided better predictions of the
cadmium adsorption than BP-ANN (R2 = 0:88).

ANN were used by Aber et al. [113] for modeling the
kinetic adsorption data of the acid orange 7 dye using pow-
dered activated carbon. In the kinetics experiments, the
effect of initial concentration (150-350mg/L) and pH (2.8-
10.5) was evaluated. Input variables were the initial concen-
tration (150–350mg/L), pH (2.8–10.5), and contact time
(75-600min), while the final concentration after adsorption
(5.48–178mg/L) was the output variable to obtain the
ANN model. Conventional adsorption kinetic equation
(i.e., pseudosecond order) and feed-forward BP-ANN with
3-2-1 neurons and logistic sigmoid and hyperbolic tangent
sigmoid functions were used for modeling the experimental
data. A total of 219 experimental data were employed with
146 for training and 73 for prediction. The performance of
these models was assessed, and ANN achieved the lowest
mean relative error (5.81%). This study concluded that
ANN was a predictive approach that could replace conven-
tional kinetic models.

Yetilmezsoy and Demirel [114] proposed the use of a
three-layer ANN for predicting the removal of lead with
antep pistachio shells. The input variables were the adsor-
bent dosage (2–16 g/L), contact time (5–120min), tempera-
ture (30–60 °C), pH (2–9), and lead initial concentration
(5–100mg/L), while the output variable was the lead
removal (26.45-98.70%). 34, 16, and 16 data were used for
training, validation, and testing, respectively. Tangent sig-
moid function at the hidden layer and a linear function at
the output layer were used, while LM algorithm was the best
alternative for ANN modeling. This ANN model was able to
fit the adsorption data showing a minimum value of the
mean square error of 2:28 × 10−04 and R2 = 0:94. Sensitivity
analysis revealed that pH was the most influencing variable
on the metal adsorption where a maximum lead removal
of 99% was obtained.

Three-layer feed-forward ANN was used to model the
adsorption kinetics of auramine O by activated carbon
[115]. ANNwere trained using the parameters obtained from
the pseudosecond order kinetic equation. LM method was
employed to train ANN with the next input variables: initial
dye concentration (85–200mg/L), contact time (1–120min),
agitation speed (400–800 rpm), temperature (305–333K),
initial solution pH (3–8), and activated carbon mass (0.3–
1.8 g). The output variable was the dye adsorption capacity.
The best ANN architecture was 6-7-1 with linear and hyper-
bolic tangent sigmoid activation functions. Overall, the
difference of mean squared errors between the ANN and
the pseudosecond order kinetic model varied only by <2%.
This study was among the early attempts to combine ANN
and a traditional kinetic adsorption equation to improve
the adsorption modeling.

Garza-González et al. [116] proposed an approach to
compare ANN and conventional isotherm models in the
methylene blue adsorption by Spirulina sp. Simulated
annealing and genetic algorithms were applied with ANN
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Figure 3: Survey of papers published on the ANN modeling of the
adsorption of inorganic and organic pollutants from water. Source:
Web of Science (July 2021).
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with two hidden layers and hyperbolic tangent sigmoid
function. Temperature (25–50 °C), pH (2–8), and adsorbent
dosage (1.2–10 g/L) were used as input neurons, while the
adsorption capacities (3.09–66.98mg/g) or the removal effi-
ciency (23.56–86.89%) were considered as the output neu-
rons. Results showed that genetic algorithm outperformed
simulated annealing. Sensitivity analysis indicated that the
removal efficiency was impacted by the operating variables
as follows: pH > adsorbent dosage > temperature, while the
adsorption capacity was depended on adsorbent dosage >
pH > temperature. Finally, the experimental isotherms
indicated a maximum adsorption capacity of 900mg/g.
The optimized ANN model outperformed significantly the
Fritz-Schlunder equation.

Yang et al. [96] proposed the application of ANN and
genetic algorithm to determine the importance of adsorption
variables (e.g., initial dye concentration, time, temperature,
and pH) on the adsorption of dyes congo red and acid black
172 by Penicillium YW01 biomass. Experimental results
showed that the maximum adsorption capacities of this bio-
mass were 411.53mg/g for congo red and 225.38mg/g for
acid black 172. This dye separation process was endothermic
and pH dependent. Adsorption kinetics were modeled with
the pseudosecond order and Weber-Morris models, and
the isotherms were fitted with Langmuir equation. ANN
modeling was performed with 129 experimental data divided
in 77, 26, and 26 for training, validation, and testing. The
input variables were the contact time (5–360min), initial
dye concentration (50–800mg/L), pH (1–10), and tempera-
ture (20–40 °C), while the output variable was the dye
adsorption capacity (21.45–411.53mg/g). R2 values > 0.99
were obtained for the prediction of congo red and acid black
172 adsorption using ANN and genetic algorithm. This
combined approach was more effective than ANN. The
authors concluded that the initial adsorbate concentration
and temperature showed the highest impact on the adsorp-
tion of both dyes.

Response surface methodology (RSM) and ANN were
used to model the lead removal from industrial sludge leach-
ate using red mud [117]. pH (3–7), contact time (5–60min),
and adsorbent mass (1.25–10 g/L) were the input variables,
and the lead removal was the output variable. Box–Behnken
design (BBD) was utilized for RSM and to obtain the data
involved in ANN training. From this experimental design,
the lead removal ranged from 38.84 to 96.82% where adsor-
bent dosage was the main operating variable followed by the
contact time and pH. Feed-forward multilayer ANN with
hyperbolic tangent sigmoid and logistic sigmoid functions
and 3-12-1 architecture was used to predict the lead
removal. R2 and root mean squared error were used as the
statistical metrics to assess the model performance. Both
ANN and RSM models were satisfactory to correlate the
experimental data of this adsorption system but with an evi-
dent advantage of ANN for predictive purposes.

Masood et al. [118] applied an ANN to predict the
removal of total chromium using Bacillus sp. Experimental
results showed that this removal process was pH dependent
achieving a maximum adsorption capacity of 50mg/g
according to the equilibrium data, which were fitted to

Freundlich equation. Feed-forward BP-ANN with three
layers and logistic sigmoid activation function was employed
in data analysis. Solution pH (4–9), contact time (2–6h), and
initial adsorbate concentration (100–400mg/L) were the
input layer variables, while the adsorption capacity (16.5–
50mg/g) was the output variable. 360 data from adsorption
experiments were utilized for training (80%), testing (10%),
and validation (10%). Modeling errors and R2 were utilized
to test the ANN accuracy. A minimum root mean squared
error of 0.0001 and R2 = 0:971 were obtained for ANN with
10 neurons. It was identified that pH was the most influenc-
ing factor to model the chromium removal followed by the
adsorbate concentration and contact time.

Savic et al. [119] proposed a comparative study of a cen-
tral composite design (CCD) and multilayer ANN to model
and optimize the adsorption of iron on bentonite clay. This
experimental design consisted of 16 tests, and results showed
that the adsorption efficiency ranged from 71.24 to 89.85%
at pH 7 and room temperature. For the ANN modeling,
the training sample was 80%, and the test sample was 20%.
The initial metal concentration (17.09–51.91mg/L), contact
time (10–120min), and adsorbent concentration (1000–
7000mg/L) corresponded to the input layer, and the metal
removal was the output layer where the ANN architecture
was 3-9-1 with radial basis activation function. 3D and con-
tour plots for CCD and ANN were obtained. Multilayer
ANN showed higher R2 and lower errors than CCD thus
confirming its better prediction performance.

The performance of 9 adsorbents obtained from dead
fungal biomass was analyzed in the adsorption of reactive
black 5 from aqueous solution [120]. Adsorption isotherms
and kinetics were quantified to study the adsorption mech-
anisms. ANN were utilized to predict the impact of adsor-
bent textural parameters and physicochemical properties
on the dye adsorption capacities. Experimental adsorption
capacities of these adsorbents were 34.18-179.26mg/g. The
pseudosecond order and Langmuir equations were suitable
to fit the experimental kinetics and isotherms, respectively.
BP-ANN was used with the next input variables: pH (1–
9), contact time (5–360min), initial dye concentration
(50–250mg/L), BET area (0.0698–0.7656m2/g), pore volume
(1:62 × 10−04 – 2:40 × 10−03 m3/g), pore diameter (4.21–
4.70 nm), nitrogen content (2.29–4.70%), carbon content
(45.78–60.21%), and hydrogen content (9.18–7.20%), while
the output variable was the adsorption capacities (0.65–
172.67mg/g). 135, 45, and 45 experimental data were utilized
for training, validation, and testing. LM algorithm was the
training method with a feed-forward BP-ANN with 3 layers.
A sensitivity analysis was performed via the Garson method
obtaining the next tendency for tested input variables: pH
ð22%Þ > nitrogen content of adsorbent ð16%Þ > adsorbate
concentration ð15%Þ > carbon content of adsorbent ð10%Þ.
The authors concluded that the adsorption capacities were
affected by the chemical composition and not by the surface
area of these adsorbents.

Bingöl et al. [121] carried out a comparison between the
multiple linear regression and the adaptive neuro-fuzzy
inference system (ANFIS) for the cadmium adsorption with
date palm seeds. This analysis considered 20 experiments to
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assess the effect of adsorbent mass (0.05–0.5 g), initial adsor-
bate concentration (5–100mg/L), and pH (2–6) on the
adsorption capacity (0.01-4.18mg/g). ANFIS was trained
with 50% of the experimental data, and the remaining 50%
was utilized in testing. Results showed R2 = 0:9843 for
ANFIS and R2 = 0:7594 for the multiple linear regression.
These authors concluded that the multiple linear regression
could not represent the nonlinearity of this adsorption pro-
cess, and ANFIS was a better modeling alternative.

The application of ANN and gene expression program-
ming (GEP) was studied by Çelekli et al. [122] in the pre-
diction of the adsorption of lanaset red G dye using low-
cost lentil straw. They applied a three-layer BP-ANN with
1 input layer consisting of 4 input neurons, namely, adsor-
bent particle size (125–500μm), pH (1–4), contact time (0–
360min), and adsorbate concentration (50–800mg/L), and
an output layer corresponding to the adsorption capacity
(30.57–271.12mg/g). The training algorithm was the quick
propagation method with the logistic sigmoid function
where the data were divided in training (784), validation
(184), and testing (184). The maximum adsorption capac-
ity of this adsorbent was 271.12mg/g. R2 values were
0.999, 0.989, and 0.989 for ANN, pseudosecond order,
and GEP models, respectively. Therefore, ANN was the
best to adjust the experimental data. Solution pH and ini-
tial dye concentration were the operating variables with a
significant impact on the adsorption of this organic
pollutant.

Khajeh and Hezaryan [120] employed a hybrid ant
colony optimization and ANN for the simulation and opti-
mization of manganese and cobalt adsorption on SiO2 nano-
particles. Feed-forward multilayer ANN was utilized where
pH (7.5–10.5), adsorbent dosage (0.05–0.015 g), contact time
(10–30min), and the concentration of 1-(2-pyridylazo)-2-
naphthol (0.5–1.5mol/L) were the input neurons, while the
removal of manganese and cobalt (29–99%) was the output
neuron. Tangent sigmoid and linear activation functions
were used. LM algorithm was employed in ANN training
where 57 experimental data were split into 64, 18, and 18%
for training, validation, and testing, respectively. The exper-
imental conditions optimized with the ant colony optimiza-
tion were well predicted with ANN thus obtaining R2 = 0:94
and 0.98 and a root mean square error of 0.0979 and 0.04 for
manganese and cobalt, respectively.

Multilayer feed-forward ANN and genetic algorithm
were applied to analyze the effect of several operating
parameters on the adsorption of eosin Y dye by Co2O3-acti-
vated carbon [123]. The experimental maximum adsorption
capacity was 555.56mg/g at 25 °C and pH 3. A three-layer
ANN with linear and tangent sigmoid functions were tested.
LM method was the training algorithm. Input neurons
included the adsorbent dosage (0.005 – 0.02 g), initial adsor-
bate concentration (30 – 80 mg/L), and contact time (0.5–
30min), while the removal percentage (%) was the output
neuron. 70% of experimental data was used for training,
15% for validation, and 15% for testing. The lowest values
of mean squared error (0.00015) and highest R2 (0.9991) of
ANN and genetic algorithm confirmed their suitability to
model this adsorption system.

Çoruh et al. [124] proposed the use of nonlinear auto-
regressive model with exogenous input (NARX) neural
network for predicting the zinc adsorption on activated
almond shell. This model was developed considering as
input variables the adsorbent dosage (0.125–4.0 g), pH
(2–10), particle size (0.23–2.0mm), and initial metal con-
centration (15–100mg/L), where the output layer consisted
of 2 neurons, i.e., adsorption capacity (mg/g) and removal
percentage. These authors indicated that NARX was a
dynamic recurrent model that converged faster and gener-
alized better than other ANN. NARX architecture was 4-
10-2 with a tangent sigmoid function and BP algorithm
with a gradient descent momentum optimization. The per-
formance of this model was tested thus obtaining a
mean squared error < 0:001, and numerical results showed
that NARX was successfully to model this batch adsorp-
tion system.

Mendoza-Castillo et al. [125] implemented a classical
BP-ANN for modeling the adsorption isotherms and kinet-
ics of four heavy metals (i.e., lead, cadmium zinc, and
nickel) on several lignocellulosic wastes (i.e., jacaranda fruit,
plum kernels, and nut shells). These authors discussed that
the heavy metal adsorption on lignocellulosic biomasses
was a complex process with highly nonlinear interactions
among the adsorbent characteristics, the physicochemical
properties of adsorbates, and the removal operating condi-
tions. The input data were the biomass specific surface area
(23–33m2/g), the biomass contents of cellulose (29.54–
50.16%), hemicellulose (21.46–25.87%), and lignin (26.58–
20.50%), the concentration of acidic groups (0.87–
1.14mmol/g), the molecular weight (58.69–207.20 g/mol),
hydrated ionic radii (4.01–3.30Å), electronegativity (1.60–
1.90), and hydration energy (-1485–-2106 kJ/mol) of tested
heavy metals, the initial metal concentration (40 and
100mg/L), or equilibrium metal concentration (20–
250mg/L) depending on kinetics or isotherms were ana-
lyzed. The experimental adsorption capacities (1-7mg/g)
of all heavy metals were considered as the ANN outputs.
Different structures of ANN were assessed in terms of input
variables where 70% of experimental data were used for
training, 15% for testing, and 15% for validation. Linear
and tangent sigmoid activation functions were used with
one hidden layer and 10 neurons to avoid model overfitting.
Results of the mean relative errors and R2 showed that this
ANN fitted properly the experimental data. The lignin con-
tent, acidic group amount, molecular weight, and hydration
energy of heavy metals were the main factors affecting the
adsorption process.

Nia et al. [123] reported the reactive orange 12 adsorp-
tion on gold nanoparticle-activated carbon and its modeling
with ANN using an imperialist competitive algorithm. Neu-
ral Network Toolbox of MATLAB R2011a was utilized in
this study. LM and BP algorithm were utilized. The input
variables for ANN modeling were the adsorbent amount,
contact time, and dye initial concentration, while the output
variable was the dye removal (%). 168 experimental data
were used for training and 72 for testing. ANN model with
9 hidden neurons showed R2 = 0:972 and a mean squared
error of 0.0007 for this adsorption system.

23Adsorption Science & Technology



A hybrid approach using principal component analysis
and ANN was proposed by Zeinali et al. [43] for modeling
the competitive adsorption of brilliant green and methylene
blue by graphite oxide nanoparticles. The experimental
results indicated that the dye adsorption was pH dependent
where the maximum adsorption capacities were 410 and
129.41mg/g for methylene blue and brilliant green, respec-
tively. Dye adsorption was inhibited by the presence of the
second dye molecule in the aqueous solution. Adsorption
data were divided in 100 for training and 40 for testing of
ANN model. Input variable was the equilibrium concentra-
tion (mg/L) of dye mixture, and the output variable was
concentrations (mg/L). Tangent sigmoid and linear activa-
tion functions with BP algorithm were used for ANN. The
optimal ANN architecture included 10 neurons with R2 >
0:9944 and mean squared error < 0:0674. The competitive
isotherms were fitted with the conventional equations and
the extended Freundlich model adjusted properly the data.
Finally, the principal component analysis and ANN were
effective for the simultaneous modeling of the adsorption
capacity of brilliant green and methylene blue in binary
solutions.

The ternary adsorption of three dyes (i.e., methylene
blue, crystal violet, and brilliant green) on MnO2-loaded
activated carbon was optimized and predicted with RSM
and ANN [126]. Specifically, CCD and a three-layer feed-
forward structure for RSM and ANN were used, respectively.
Different ANN training algorithms were tested where the
LM method was the most suitable. Hyperbolic tangent sig-
moid and linear functions were used for hidden and output
layers, respectively. 90 experimental data were divided into
70% for training, 15% for testing, and 15% for validating.
R2 and modeling errors were used to test the performance
of the ANN model. Results indicated that ANN outper-
formed RSM with R2 > 0:99.

A novel quantum BP multilayer ANN was implemented
by Bhattacharyya et al. [127] to predict the adsorption of
iron by calcareous soil. Specifically, the quantum computing
is based on the principles of quantum mechanics with oper-
ations like superposition and entanglement. Superposition
is the characteristic of dynamical equations, while the
entanglement is the property that produces a nonlocal
interaction among bipartite correlated states. 6-6-1 topology
was used for the multilayer ANN and the quantum-based
ANN. The input variables were the initial adsorbate con-
centration (1.5–15mg/L), adsorbent amount (0.01–0.11 g/
mL), pH (2-10), contact time (20–180min), stirring rate
(100–300 rpm), and temperature (303-330K), while the
output variable was the iron removal (39.56–97.34%). Tan-
gent and sigmoid activation functions were evaluated. Cal-
culations demonstrated that the architecture of quantum
ANN was superior to multilayer ANN for describing this
adsorption process. The adsorbent achieved a maximum
adsorption capacity of 2.475mg/g, and the removal process
depended on solution pH and temperature.

Darajeh et al. [128] carried out a comparative study
between wavelet ANN and RSM to optimize the adsorption
of copper, nickel, and lead onto a magnetic/talc nanocom-
posite. This ANN used wavelet functions as an alternative

to the conventional sigmoid activation function. The initial
adsorbate concentration (32–368mg/L), adsorbent dosage
(0.07–0.13 g), and adsorption time (13–147 s) were the input
variables, and the removal percentages (21.6–98.5%) of these
adsorbates were the output variables. This ANN was trained
with 13 data, and the incremental BP, batch BP, quick-prop-
agation, genetic algorithm, and LM were applied and
assessed to obtain the best network. The best architecture
was the incremental BP with 3-14-3 with R2 = 0:982 −
0:993. It was concluded that the initial adsorbate concentra-
tion was the most influential factor (35.16%) on the heavy
metal adsorption followed by the adsorbate dosage. This
alternative ANN was more suitable than RSM to predict
the adsorption process.

The adsorption of cadmium on rice straw was modeled
with ANFIS [129]. As the authors stated, this model
combined the advantages of both fuzzy systems and ANN.
The influence of initial cadmium concentration (10 and
100mg/L), solution pH (2 and 7), and adsorbent mass (0.1
and 0.5 g/L) was analyzed. These operating conditions were
the ANFIS input variables, and the output variable was the
removal efficiency (%). LM method was utilized for ANN
training where the data were distributed in 70% for training
and 30% for validation. Hyperbolic tangent activation func-
tion was used with an architecture of 3-6-1. ANFIS showed
that the initial cadmium concentration had the highest
impact on the adsorption followed by pH and adsorbent
dose. This model achieved R2 = 0:99 for training, 0.82 for
validation, and 0.97 for testing, respectively.

The individual and simultaneous ultrasonic-assisted
removal of malachite green and methylene blue dyes by a
magnetic ɤ-Fe2O3-loaded activated carbon were studied by
Asfaram et al. [130] including its modeling with RSM and
ANN. A feed-forward BP ANN was used with the next
input variables: pH (4.5-7.5), initial dye concentration (10-
20 mg/L), sonication time (3-5), and adsorbent mass
(0.01-0.02 g). Dye removal (%) was the output variable.
Hyperbolic tangent sigmoid function was used in hidden
layer, and linear activation function was applied in output
layer. 50 data were divided for training, testing, and valida-
tion (70/15/15 %) where LM was the training method. R2

and different error functions were applied to test the ANN
performance. Both RSM and ANN were capable of predict-
ing the dye adsorption with high values of R2 but ANN out-
performed RSM.

Esfandian et al. [8] tested ANN using the experimental
data of the removal of pesticide diazinon using acid-
treated zeolite and modified zeolite by Cu2O nanoparticles.
Experimental results indicated that these zeolites showed
adsorption capacities of 15.10 and 61.73mg/g, respectively.
Adsorption depended on pH and temperature where an
exothermic process was identified. Data modeling was per-
formed considering pH (3-8), initial adsorbate concentra-
tion (50–120mg/L), adsorbent dosage (0.05–0.35 g), and
contact time (10–105min) as input variables, and the target
variable was the removal efficiency (%). Experimental data
was divided in training (70%), validation (15%), and testing
(15%). In this study, the multilayer feed-forward ANN with
7 hidden layer neurons and sigmoid function was utilized.
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This ANN showed the lowest modeling errors and was suit-
able to fit the experimental data of this adsorption system.

Fawzy et al. [131] also proposed the use of ANFIS to
establish the impact of operational parameters on the nickel
and cadmium adsorption by Typha domingensis biomass.
Five variables were analyzed: pH (2–8), adsorbent dosage
(2.5–40 g/L), particle size (0.25–1.0mm), contact time (5–
150min), and metal concentration (25–300mg/L). The out-
put variable was the metal removal efficiency (%). Experi-
mental data showed that this biomass achieved a maximum
adsorption capacity of 4.51 and 28.49mg/g for nickel and
cadmium at pH 6 and 25 ± 3°C, respectively. ANFIS training
was carried out with a hybrid methodology consisting of a
combination of the least-squares method and the BP gradient
descent method where the Sugeno-type fuzzy inference sys-
tem was applied. Results indicated that the initial concentra-
tion and pH had a significant influence on the metal
adsorption. ANFIS was useful to identify the role of these
operational parameters.

Ghaedi et al. [132] studied the application of ANN-
particle swarm optimization approach for the modeling of
methyl orange removal on lead oxide nanoparticles-loaded
activated carbon. The input ANN variables were the contact
time, adsorbent dosage, and dye concentration, while the
output variable was the removal of methyl orange (%).
ANN training was performed with LM algorithm using 270
data and 90 data for testing. ANN-PSOmodeling with 6 neu-
rons in the hidden layer offered the best results (R2 = 0:9685).

Gomez-Gonzalez et al. [133] utilized ANN to model the
lead adsorption by coffee ground. Its performance was com-
pared with traditional equations as Langmuir and Freun-
dlich. Specifically, pattern search, simulated annealing, and
genetic algorithm were used to adjust the parameters of
Langmuir and Freundlich and then to compare with ANN.
Tangent sigmoid function was used with ANN (3 layers)
and LM training. Input neuron was the equilibrium concen-
tration, and the adsorption capacity (mg/g) was the output
neuron. The architecture used was 1-13-1 for pH 3 and 1-
4-1 for pH 4 and 5. Experimental data were distributed in
70% for training, 15% for validation, and 15% for testing
with a tangent sigmoid activation function. A maximum
adsorption capacity of 22.9mg/g was obtained with coffee
ground at pH 5 and 30 °C. These authors concluded that
pattern search was the best optimization method, and
ANN outperformed the conventional isotherm equations
used in adsorption.

Podstawczyk and Witek-Krowiak [134] studied the mal-
achite green adsorption using a novel composite. Specifi-
cally, the rapeseed meal was modified with magnetic
nanoparticles. Adsorption kinetic data were modeled with
the surface diffusion, pseudosecond order, and pseudofirst
order models as well as ANN. These authors proposed a
feed-forward ANN with 2-3-1 topology that was trained
with LM method. The input variables were the adsorption
time (0–270min) and pH (4–6), while the adsorption capac-
ity (0–40mg/g) was the output variable. ANN outperformed
the conventional kinetic equations showing R2 = 0:995. Dye
adsorption isotherm indicated a maximum adsorption
capacity of 836.2mg/g.

Ahmadi et al. [135] tested random forest, radial basis
function ANN and CCD polynomial model to simulate and
optimize the ultrasonic-assisted removal of brilliant green
with ZnS nanoparticles loaded on activated carbon. In partic-
ular, the random forest is based on decision trees and uses
voting for classification and averaging for regression and pre-
dictions. The effect of several operational conditions such as
adsorbent dosage (10–30mg), initial adsorbate concentration
(4–20mg/L), and sonication time (2–6min) on the removal
efficiency (15.4–100%) was evaluated. Experimental data
were divided in 70% for training and 30% for validation.
Results showed that these approaches were suitable for data
fitting. However, the random forest outperformed the other
models. The optimized adsorption conditions allowed to
achieve 98% of brilliant green removal.

Asfaram et al. [136] applied RSM, ANN, and radial basis
function neural network (RBFNN) to model and predict the
efficiency of Mn@CuS/ZnS nanocomposite-loaded activated
carbon to remove malachite green and methylene blue dyes
in binary adsorption systems assisted by ultrasound. The
effect of pH (4-8), initial dye concentration (5-25mg/L), son-
ication time (1-5min), and adsorbent mass (0.01-0.03 g) on
the dye removal percentage was tested. For ANN modeling,
32 experiments were used and randomly divided in 70%
(training), 15% (testing), and 15% (validating) where LM
algorithm was the best training method. Hyperbolic tangent
sigmoid and linear functions with a BP algorithm were
applied. For RBFNN, the Kernel stone algorithm was used
as training method with 70% of data for training and 30%
for testing. The results demonstrated the effectiveness of
these models to predict the binary adsorption with the next
tendency RBFNN > ANN > RSM with R2 values of 0.9984-
0.9997, 0.9787-0.9997, and 0.917-0.9850, respectively.

The removal of indigo carmine and safranin-O using
nanowires loaded on activated carbon was analyzed by Dast-
khoon et al. [137]. Models based on RSM, multilayer ANN,
and Doolittle factorization algorithm were tested for this
adsorption system. CCD experimental design of 4 factors
and 5 levels with a total of 30 experiments was employed.
ANN model consisted of 3 layer feed-forward with tangent
sigmoid and linear functions. Input neurons were the indigo
carmine concentration (4–16mg/L), safranin-O concentra-
tion (4–16mg/L), adsorbent mass (20–40mg), and sonica-
tion time (1–5min), while the neuron output was the
removal of these dyes (71.91–96.32%). Hyperbolic tangent
sigmoid was the activation function. Doolittle factorization
algorithm consisted of a factorized matrix that contained
all the experimental data. Modeling results indicated that
ANN offered a better precision in comparison to the other
models, although Doolittle factorization algorithm was fas-
ter. The sensitivity analysis showed that the sonication time
was the most important parameter. The maximum adsorp-
tion capacities were 29.09 and 37.85mg/g for indigo carmine
and safranin-O, respectively.

Parveen et al. [138] evaluated the support vector regres-
sion, multiple linear regression and ANN model to predict
the chromium adsorption on maize brain waste. The effect
of adsorption time (10-180min), initial adsorbate concen-
tration (200-300mg/L), pH (1.4–8.5), and temperature (20-
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40 °C) on the adsorption capacity (mg/g) was analyzed. For
support vector regression model, the Gaussian radial basis
function was selected as the kernel function. 124 data were
utilized: 80% for training and 20% for testing. ANN with a
topology 4-10-1 was used where the experimental data were
divided in 65% for training, 15% for validations, and 20%
for testing where the kernel function was used as activation
function. Results indicated that the support vector regression
model was the best to predict the chromium adsorption
capacity with the highest R2 (i.e., 0.9986), followed by ANN
(R2 = 0:9331) and multiple linear regression (R2 = 0:8955),
respectively.

Natural and modified clinoptilolite were tested in the
fluoride adsorption from aqueous solutions, and the model-
ing was performed via the hybridization of ANN with Lang-
muir and pseudosecond order equations [105]. Specifically,
ANN was employed to calculate the parameters of pseudose-
cond order and Langmuir equations, and the adsorption
capacities were determined with these parameters and the
corresponding adsorption equation. A feed-forward ANN
was used where the input layer contained the temperature,
time, and initial fluoride concentration for the adsorption
kinetics and initial fluoride concentration, pH, and tempera-
ture for the adsorption isotherms. The output layer corre-
sponded to the adjustable parameters of tested adsorption
kinetic and isotherm equations. Experimental data were
divided in 70% for training and 30% for validation and test-
ing where a logistic sigmoid activation function was also uti-
lized. This hybrid ANN model outperformed the classical
adsorption equations showing R2 from 0.95 to 0.99. These
authors also indicated that the classical equations failed to
predict the experimental data in some particular operating
conditions. The maximum experimental adsorption capaci-
ties of these zeolites were 5.3 and 12.4mg/g at 40 °C and
pH 6, respectively.

Yildiz [139] reported the use of ANN for the modeling of
zinc adsorption on peanut shells. Input variables were the
initial solution pH, initial zinc concentration, and adsorbent
dosage, and the output variable was the adsorbed amount of
zinc. ANN with an architecture 3-16-1 and BP were utilized
where Matlab® was the software employed in these calcula-
tions. 12, 4, and 4 data were used for training, testing, and
validation of ANN. Overall, this ANN showed satisfactory
results in adsorption data modeling.

Ghosal and Gupta [140] studied the application of ANN
and Pareto front analysis for fluoride removal using Al/oliv-
ine. The impact of solution pH, agitation rate, temperature,
contact time, initial fluoride concentration, and adsorbent
dosage was studied. ANN modeling was performed with
these input variables, and the output variables were the
adsorption capacity and removal efficiency. LM was selected
as the training algorithm. Finally, the results of ANN showed
R2 > 0:99 and mean square errors of 2.035 and 0.018 for the
removal efficiency and adsorption capacity, respectively.

Karri and Sahu [141] tested the use of palm kernel shell
derived-activated carbon for the zinc removal. RSM and par-
ticle swarm optimization-ANN were compared to obtain the
optimal removal. First, RSM and CCD were utilized to cor-
relate the zinc removal with the independent variables: pH

(2-8), adsorbent mass (2-20 g/L), initial adsorbate concentra-
tion (10-100mg/L), contact time (15-75min), and tempera-
ture (30-70 °C). Different training algorithms as LM-BP,
gradient descent, resilient BP, and gradient descent with
adaptive linear regression were assessed. A feed-forward
ANN and PSO were employed to obtain better estimations
of this adsorption system. Several learning methods and
topologies were analyzed, and the optimal ANN model was
obtained with LM-BP training and 5-6-1 topology. Particle
swarm optimization and ANN outperformed the RSM
approach.

Mendoza-Castillo et al. [28] studied and discussed the
advantages and limitations of ANN for the modeling of mul-
ticomponent adsorption of heavy metals on bone char.
Experimental isotherms of single, binary, ternary, and qua-
ternary solutions of copper, nickel, cadmium, and zinc were
quantified experimentally and employed in ANN modeling.
A multilayer feed-forward ANN was utilized with 141 data
divided in 70% for training, 20% for testing, and 10% for val-
idation. Input layer included the initial concentration of the
metals in the solution, while the equilibrium concentration
and adsorption capacity were analyzed as the output layer.
Experimental results showed that the heavy metal adsorp-
tion in single solutions followed the tendency: copper >
nickel > cadmium > zinc. The adsorption in multimetallic
systems showed an antagonistic effect caused by the pres-
ence of other coions. ANN showed a proper fit of multicom-
ponent systems with R2 ≥ 0:96. However, these results
depended on the activation function and selected output
variable. Specifically, the use of equilibrium concentration
was not recommended because this extensive variable can
generate wrong predictions (i.e., desorption behavior not
observed in the experimental data) for this adsorption sys-
tem. These authors concluded that intensive variables such
as the adsorption capacity must be utilized in ANN model-
ing with the aim of generating reliable predictions. Results
of this study also revealed that a proper ANN training and
architecture are fundamental for a reliable prediction of the
complex adsorption behavior in multicomponent systems.

Naderi et al. [142] applied a hybrid model consisting of
simulated annealing and ANN to optimize and predict the
crystal violet dye removal on centaurea stem. RSM was used
to find the best experimental conditions. The maximum
adsorption capacity was 476.19mg/g. ANN with 6-10-1
topology and tangent sigmoid and linear activation functions
was employed to model the adsorption data. This network
was trained with the feed-forward BP algorithm where 32
data were divided in 80% for training and 20% for validation
and testing. Input neurons were pH (5–13), temperature (20-
40 °C), contact time (5–25min), initial dye concentration
(20-300mg/L), and adsorbent dosage (3–15 mg), while the
dye removal (%) was the output variable. R2 of RSM
(0.9942) and simulated annealing-ANN (0.9968) was very
similar but the lowest prediction errors were obtained with
the approach based on ANN.

The ultrasonic-assisted binary adsorption of sunset yel-
low and sidulfine blue dyes on oxide nanoparticles loaded
on activated carbon was optimized and modeled with RSM
and ANN [143]. A total of 26 experiments were performed
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where the effects of sonication time (6-12min), adsorbent
dosage (0.016-0.030 g), pH (7), and initial dye concentration
(8-16mg/L) on the dye removal percentage were tested. 17
BP algorithms were evaluated with ANN where LM and
resilient methods were the best. The performance of these
models was statistically compared by considering R2, root
mean squared error, mean absolute error, and absolute aver-
age deviation. Results showed that ANN (R2 > 0:999) out-
performed RSM (R2 ~ 0:986).

The modeling of adsorption of salicylic acid on SiO2/
Al2O3 nanoparticles was performed by Arshadi et al. [144]
with ANN. In this study, the input variables were the initial
salicylic acid concentration (5–1000mg/L), initial solution
pH (1–12), contact time (0.25–30min), temperature (15–
80 °C), and adsorbent dosage (0.25–10). The output variable
was the adsorption capacity of salicylic acid (mg/g). ANN
architecture of 5-12-1 was utilized. Results indicated that
the ANN-based simulation of the adsorption of this com-
pound was satisfactory obtaining R2 = 0:9841.

Gadekar and Ahammed [145] tested a hybrid RSM and
ANN model in the prediction of blue 79 dye removal using
aluminum-based water treatment residuals. RSM was used
to identify the optimum experimental conditions to achieve
a high dye removal, and these data were employed to train
ANN. ANN with 4-4-1 topology, tangent sigmoid, and lin-
ear activation functions was used. For ANN training, LM,
gradient descent, and scaled conjugate BP algorithms were
utilized. 45 data were employed in training (60%), validation
(20%), and testing (20%). ANN input layer contained the
adsorbent dose (10–30 g/L), initial pH (3–5), initial dye con-
centration (25–75mg/L), and final pH (3.01–5.80). Dye
removal (31.2-52%) was the ANN output neuron. Results
indicated that ANN and RSM were a reliable alternative to
predict the removal of this dye.

Ghaedi et al. [146] modeled the simultaneous ultrasonic-
assisted ternary adsorption of rose bengal, safranin O, and
malachite green dyes on copper oxide nanoparticles sup-
ported on activated carbon. ANN with 3 layers was applied
where the initial dye concentrations (8-12mg/L), pH (6-8),
adsorbent dosage (0.05-0.025 g), and sonication time (2-
4min) were the input variables, while the output variable
was the dye removal percentage (18.2-92.67%). LM and BP
were employed as learning method. Hyperbolic tangent sig-
moid and linear functions were utilized at hidden and out-
put layers. High R2 of ANN (>0.99) revealed a satisfactory
fitting of tested experimental data.

The multicomponent adsorption of nitrobenzene, phe-
nol, and aniline from a ternary aqueous system using gran-
ulated activated carbon was studied by Jadhav and
Srivastava [147]. ANN was tested with BP and different acti-
vation functions. The equilibrium concentrations of nitro-
benzene (0.003–0.8mmol/L), aniline (0.01–1.6mmol/L),
and phenol (0.01–1.8mmol/L) were the input variables,
and the adsorption capacities were the output variable.
Adsorption data were divided in 50% for training and 50%
for testing. R2 and mean squared errors were used to verify
the model performance. ANN model accurately predicted
(R2 > 0:99) the ternary adsorption in comparison to other
models.

Similarly, Nasab et al. [148] proposed a hybrid model
consisting of genetic algorithm and ANN to predict the
adsorption of crystal violet on chitosan/nanodiopside. CCD
with 5 levels and 4 factors (30 experiments) was chosen to
obtain the optimal dye removal. The input variables for the
ANN model were pH (4.5–8.5), contact time (15–55min),
initial dye concentration (15-35mg/L), and adsorbent
amount (0.001–0.01 g), while the output variable was the
dye removal (%). Feed-forward ANN with hyperbolic
tangent sigmoid and linear activation functions and LM
algorithm were employed. 70, 15, and 15% of experimental
data were used in training, validation, and testing, respec-
tively. The maximum dye removal was 99.5%. Genetic
algorithm was applied to identify the optimal factors for
obtaining the maximum adsorption. Results of ANN-
genetic algorithm showed a higher R2 (0.9708) than that of
RSM (0.9652). Overall, both approaches provided accurate
dye removal percentages.

Sharafi et al. [149] reported the phenol adsorption from
aqueous solution using scoria stone modified with different
acids (e.g., nitric, acetic, and phosphoric). Modeling of
adsorption data was performed with RSM and ANN. Clonal
selection algorithm was used with ANN modeling where the
input variables were the phenol concentration, adsorbent
dosage, and contact time. The output variable was the phe-
nol removal. Overall, both RSM and ANN showed satisfac-
tory results in data correlation.

Sadeghizadeh et al. [150] used ANFIS to predict the lead
adsorption with a hydroxyapatite/chitosan nanocomposite.
This adsorbent showed a maximum adsorption capacity of
225mg/g, and this removal process was also endothermic.
Concerning the data modeling, the input variables were tem-
perature (25–55 °C), adsorption time (15–360min), shaker
velocity (80–400 rpm), adsorbent amount (0.05–1.5 g), initial
lead concentration (0–5000mg/L), pH (2–6), and hydroxy-
apatite concentration (15–75%). Output variable was the
lead adsorption capacity (mg/g) where 57 experimental data
were modeled (38 for training and 19 for testing). ANFIS
was able to predict the lead adsorption with R2 = 0:999.

Takdastan et al. [6] used ANN to model the cadmium
adsorption on modified oak waste. Kinetic and isotherms
were quantified to characterize the effect of adsorption oper-
ating conditions. Experimental results revealed that the
adsorption increased with temperature, initial concentra-
tion, adsorbent dosage, and pH. Isotherms were modeled
with Liu, Temkin, Redlich-Peterson, Freundlich, and Lang-
muir equations, while the kinetics were fitted to intraparticle
diffusion, pseudosecond and pseudo-first order, Elovich, and
Avrami fractional order equations. Raw adsorbent and the
NaOH-modified adsorbent had a maximum adsorption
capacity of 155.9 and 771.4mg/g, respectively. A feed-
forward BP-ANN was applied using pH (2–8), contact time
(5–240min), adsorbent dosage (0.1–10 g/L), cadmium initial
concentration (25–100mg/L), and temperature (10–40 °C)
in the input layer with a hidden layer of 8 neurons, and
the cadmium removal (16–92.4% for ROW and 26–99.5%
for AOW) was in the output ANN layer. 219 experimental
data were employed in training (153), validation (33), and
testing (33). R2 > 0:999 for ANN modeling where pH had
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the highest impact on cadmium removal, while the adsorp-
tion temperature showed a slight effect.

ANN were used to model the lead adsorption on rice
husks treated with HNO3 [151]. Specifically, a feed-
forward BP-ANN and LM training were used. The input
variables of ANN were the adsorbent dosage, initial lead
concentration, and contact time, and the output variable
was the lead adsorption capacity. These authors concluded
that the adsorption modeling with ANN was effective.

The adsorption of 6 heavy metals (arsenic, nickel, cad-
mium, lead, zinc, and copper) on 44 biochars obtained from
lignocellulosic feedstocks was modeled using a multilayer
ANN and random forest [152]. 353 adsorption data were
collected from literature, and 14 input variables were studied
and divided in 4 sets (adsorbent properties, initial heavy
metal concentration, operational conditions, and heavy
metal properties), while the removal efficiency was the out-
put variable. ANN architecture included 14 input neurons,
8-28 hidden neurons, and 1 output neuron with sigmoid
activation function. Results showed that random forest out-
performed in 28% the ANN performance with R2 = 0:973. It
was concluded that biochar characteristics were the most
important variables in heavy metal adsorption. Surface area
did not show a significant impact on the metal removal.

Afolabi et al. [47] reported the use of ANN to model the
pseudosecond order kinetics of the paracetamol adsorption
using orange peel-activated carbon. The experimental condi-
tions used as input variables were the initial paracetamol
concentration (10–50mg/L), contact time (0–330min), and
temperature (30–50 °C), and the output variable was the
pseudosecond order kinetics. ANN with different hidden
neurons, training algorithms, and activation functions were
used for the data modeling. A total of 495 data were used
(i.e., 330 for training and 165 for testing). Results showed
the impact of training algorithms and activation functions
on the ANN performance. The best ANN showed R2 ≅ 1.

The removal of lead, cadmium, nickel, and zinc using a
natural zeolite was modeled with ANN, multivariate nonlin-
ear regression, particle swarm optimization-adaptive neuro-
fuzzy inference system, genetic programming (GP), and the
least squares support-vector machine [10]. The input model-
ing variables were the initial and equilibrium solution pH, sil-
ica concentration, molecular weight, first ionization energy,
hydrated ionic radii, and electronegativity of tested metals.
The adsorption capacity of heavy metals of the zeolite was
the output variable. Results showed that ANN outperformed
traditional adsorption equations with R2 = 0:9948. Other
tested models also offered a satisfactory data correlation.

Gopinath et al. [29] proposed the use of ANN with a
homogeneous surface diffusion model to analyze the single,
binary, and ternary adsorption kinetics of acid orange, acid
blue, caffeine, acetaminophen, and benzotriazole on acti-
vated carbon. The mass transfer model considered bulk dif-
fusion in the fluid phase and surface diffusion via the
internal adsorbent structure. Note that these phenomena
are not considered by the conventional pseudosecond and
pseudofirst order models. Feed-forward ANN with 5 layers
was utilized. Input variables were the type of adsorbent (car-
bon labelled and active char products), pH (3–8), tempera-

ture (25–45 °C), initial concentration (100–300mg/L), and
ratio of mass/volume (0.8–2 g/L), while the output variable
was the removal efficiency (%). Tangent sigmoid and linear
activation functions were used. Datasets were distributed in
90, 5, and 5 for training, testing, and validation, respectively,
where ANN was trained with LM algorithm. R2 of 0.999,
0.986, and 0.993 were obtained using the mass transfer
model and ANN for single, binary, and ternary systems,
respectively. Results of this study proved the advantages of
ANN in the simulation of multicomponent adsorption
kinetics considering more complex models based on mass
transfer phenomena.

The treatment of water polluted with atenolol, cipro-
floxacin, and diazepam in presence of COD and ammonia
was performed in a sequencing batch reactor with a com-
posite adsorbent consisted of bentonite, zeolite, biochar,
and cockleshell mixed with Portland cement [11]. Contact
time (2-24 h) and initial pharmaceutical concentration (1-
5mg/L) were the input variables for ANN modeling, while
the output variable was the pharmaceutical removal (90.3%
for atenolol, 95.5% for ciprofloxacin, and 95.6% for diaze-
pam). ANN with three layers (2-5-1) was utilized where
the model performance using the mean squared sum errors
and R2. Data were divided in training (60%), validation
(20%), and testing (20%), and LM was used for ANN train-
ing. Overall, ANN showed R2 > 0:99 for the modeling of
this system.

The single and competitive adsorption of acid blue 9 and
allura red AC on chitosan-based hybrid hydrogels were
modeled with ANN [7]. Experimental data indicated that
acid blue 9 was better adsorbed than allura red on five adsor-
bents. In binary dye solutions, an antagonistic adsorption
was observed. Input layer of ANN with the initial concentra-
tion of both dyes (0-0.126mmol/L and 0–0.201mmol/L for
acid blue 9 and allura red AC, respectively), carbonaceous
mass percentage of adsorbent (0-10% g/g), adsorbent poros-
ity (0.724–0.880), and contact time (0–200min). All experi-
mental data were used for training (70%), validation (15%),
and testing (15%). Several topologies were investigated, and
the best ANN architecture was 5-10-10-10-2 with tangent
sigmoid activation function. R2 > 0:99 and root mean square
error of 0.119 thus indicating that ANN could be an effective
model to predict the adsorption of dyes by these hybrid
hydrogels.

Franco et al. [153] applied the ANN and ANFIS to ana-
lyze the indium adsorption on 10 adsorbents: commercial
activated carbon, multiwalled carbon nanotubes, chitin, chi-
tosan, and other lignocellulosic agroindustrial wastes. The
indium adsorption capacities of these materials ranged from
8.20 to 1000mg/g. Modeling was performed considering the
next input variables: specific surface area (0.85–200.40m2/g),
pH of point of zero charge (4.5–7), adsorbent dosage (0.05–
2.0 g/L), and contact time (5–120min). Output variable was
the indium adsorption capacity. 1200 data were employed
in the modeling where 70% for training and 30% for testing
and/or validation. ANFIS utilized the Sugeno type with 4 hid-
den layers, while ANN was used with a 4-4-1 topology. ANN
obtained R2 = 0:9913 and a mean squared error of 1 × 10–03.
On the other hand, ANFIS achieved R2 = 0:9998 and a mean
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squared error of 8:42 × 10–05. Both models were capable of
predicting the adsorption data.

Nayak and Pal [154] employed ANN for the prediction
of nile blue A dye adsorption with overripe Abelmoschus
esculentus seeds. CCD with 31 experiments was utilized to
optimize the dye adsorption where the effect of adsorbent
dosage (1–9 g/L), initial adsorbate concentration (140–
750mg/L), pH (2-9), and contact time (5–125min) was
tested. The maximum dye adsorption capacity was
71.78mg/g. ANN with 3 layers and BP algorithm was used.
ANN architecture included 4 input neurons (contact time,
pH, initial dye concentration, and adsorbent dosage), one
output neuron (adsorption capacity), and 12 hidden neu-
rons. 31 experiments (including 16 factorial points, 8 axial
points, and 7 replicates) were divided in training (70%), val-
idation (15%), and testing (15%), and tangent sigmoid acti-
vation function was used. R2 and modeling errors were the
metrics to analyze the ANN performance. Sensitivity analy-
sis demonstrated that pH and contact time were the most
important parameters in this adsorption system. This adsor-
bent showed a maximum adsorption capacity of 105mg/g
according to the experimental isotherms.

Thirunavukkarasu and Nithya [155] reported the
removal of acid orange 7 using CaO/CeO2 and its modeling
via RSM and ANN. The input variables for ANN were the
adsorption temperature (301–338K), contact time (0–
300min), initial concentration of acid orange 7 (10–50mg/
L), adsorbent dose (0.02–0.2 g), and initial solution pH (2–
12). The output variable was the dye removal (%). LM and
BP were used in ANN training where the best architecture
was 5-10-1. ANN results indicated a satisfactory modeling
with a root mean square error of 0.3020.

Qi et al. [156] employed RSM, ANN-genetic algorithm,
and ANN-particle swarm optimization to analyze the meth-
ylene blue adsorption on mesoporous rGO/Fe/Co nanohy-
brids. The effect of pH (2–6), temperature (20–40 °C),
contact time (3–15min), and initial dye concentration
(200–600mg/L) on the dye adsorption was analyzed using
a CCD consisting of 30 experiments. The experimental
results showed that the nanohybrids achieved a maximum
dye removal of 89.41%, while a maximum adsorption capac-
ity of 909.1mg/g was obtained from the Langmuir isotherm.
ANN with 3 layers, BP algorithm, and linear and tangent
sigmoid activation functions was utilized. For the case of
ANN-genetic algorithm, its parameters were population
size = 20, crossover rate = 0:8, number of generations = 100,
and mutation probability = 0:01. On the other hand, the
parameters of particle swarm optimization were maximum
inertia weight = 0:9, minimum inertia weight = 0:3, global
learning coefficient = 2, individual learning coefficient = 2,
maximum iteration = 50, and swarm size = 20. The absolute
errors between the experimental and predicted values were
2.88, 0.52, and 1.35 for CCD, ANN-particle swarm optimi-
zation, and ANN-genetic algorithm, respectively. Therefore,
ANN–particle swarm optimization was the best option for
this adsorption system.

In the study of Samadi-Maybodi and Nikou [79], ANN
was used to predict the sarafloxacin adsorption on magne-
tized metal-organic framework Fe3O4/MIL-101(Fe). RSM

with CCD of 30 experiments was used to optimize the
removal efficiency obtaining a maximum value of 88.26%.
A multilayer ANN with three layers was employed where
the input variables were the solution pH (3-11), initial con-
centration (10–50mg/L), adsorbent dosage (5–25mg), and
contact time (15–45min), while the removal percentage
(35.73–88.26%) was the output variable. LM was the training
method with sigmoid tangent hyperbolic function for input
to hidden layers and linear transfer function for hidden to
output layers, while ANN was assessed using R2 and mean
squared error. Overall, ANN was reliable for predicting the
sarafloxacin removal with R2 = 0:9861.

Netto et al. [157] applied ANFIS and ANN to model the
adsorption equilibrium of silver, cobalt, and copper on three
zeolites ZSM-5, ZHY, and Z4A. Adsorption experiments
were conducted at different temperatures. The input vari-
ables for the models were the Si/Al ratios of zeolites (50:
50, 71:29, 90:3), molecular weights of metal ions (58.93–
107.87 g/mol), temperature (298-328K), and initial adsor-
bate concentration (0–300mg/L), while the equilibrium
adsorption capacities of these metals were the output vari-
ables. ANN was tested with two training functions (LM-BP
and Bayesian regularization BP). The linear and hyperbolic
tangent sigmoid functions were utilized. For the case of
ANFIS, the Gaussian curve was the input function, and the
tune sugeno-type was used for training. 324 experimental
data were divided in 85% for training and 15% for testing.
The performance of ANN and ANFIS was analyzed with dif-
ferent statistical metrics. Overall, both models predicted
accurately the adsorption data where ANFIS was slightly
better. Z4A zeolite showed the best adsorption capacities
where silver was more adsorbed in comparison to cobalt
and copper.

Other recent studies on the ANN modeling of adsorp-
tion isotherms and kinetics include the fluoride adsorption
on rice husk-derived biochar modified with Fe or Zn [158],
the removal of brilliant green dye using mesoporous Pd–Fe
magnetic nanoparticles immobilized on reduced graphene
oxide [15], the adsorption of diazinon pesticide on a mag-
netic composite clay/graphene oxide/Fe3O4 [159], the
removal of crystal violet and methylene blue on magnetic
iron oxide nanoparticles loaded with cocoa pod carbon com-
posite [160], the arsenide removal employing mesoporous
CoFe2O4/graphene oxide nanocomposites [161], the adsorp-
tion of perfluorooctanoic acid on copper nanoparticles and
fluorine-modified graphene aerogel [17], the uptake of
dicamba (3,6-dichloro-2-methoxy benzoic acid) by MIL-
101(Cr) metal-organic framework [16], the phosphorous
adsorption on polyaluminum chloride water treatment
residuals [162], the use of iron doped-rice husk for the chro-
mium adsorption/reduction [163], the removal of methyl
orange dye by an activated carbon derived from Acalypha
indica leaves [164], the lead adsorption by a hydrochar
obtained from the KOH activated Crocus sativus petals
[165], the adsorption of the cefixime antibiotic using
magnetic composite beads of reduced graphene oxide-
chitosan [13], the use of graphene oxide-cyanuric acid nano-
composite for the lead adsorption [14], the arsenic removal
by an adsorbent consisting of iron oxide incorporated
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carbonaceous nanomaterial derived from waste molasses
[12], the fluoride adsorption by chemically activated carbon
prepared from industrial paper waste [18], the methylene
blue adsorption with polyvinyl alcohol/carboxymethyl
cellulose-based hydrogels [166], the modeling of adsorption
properties of biochar and resin for the removal of organic
compounds [167], and the removal of lead from waster with
a magnetic nanocomposite [168].

3.2. Breakthrough Curves. The dynamic adsorption experi-
ments provide important engineering information about
the adsorption process especially for real-scale applications.
Breakthrough curves are commonly represented via the ratio
of effluent adsorbate(s) concentration(s) and feed adsor-
bate(s) concentration(s) (i.e., Ci/C0,i) versus the operating
time or treated volume. These curves characterize the adsor-
bent performance at dynamic operating conditions. Overall,
the breakthrough curves of water pollutants can correspond
to symmetric and asymmetric profiles depending on the
process operating conditions (e.g., feed flow, residence time,
and column length) and the impact of mass transfer phe-
nomena. The modeling of asymmetrical breakthrough is
more challenging because the conventional models like
Thomas and Yang equations are limited because they were
developed to handle the ideal “S” profile expected and
desired for adsorption columns. Therefore, ANN have been
utilized to improve the correlation and prediction of break-
through curves of the adsorption of water pollutants. ANN
modeling of breakthrough curves has covered the adsorption
of fluoride, dyes, heavy metals, pesticides, organic com-
pounds, and phosphates with bone char, activated carbon,
graphene, biochar, zeolites, biomasses, composites, nanoma-
terials, and other adsorbents like agroindustrial wastes. Dif-
ferent operating conditions such as temperature (15–50 °C),
feed flow (0.5–30mL/min), and pH (2–9) have been tested
in the modeling of breakthrough curves in aqueous solutions
with one or more adsorbates. Details of several studies on
the ANN modeling of dynamic adsorption process for differ-
ent pollutants and adsorbents are shown in Tables 3 and 4. A
brief description of the main findings and representative
studies of the ANN-based breakthrough adsorption model-
ing are provided in this subsection.

Texier et al. [169] proposed the application of a multi-
layer ANN to model the breakthrough curves of the adsorp-
tion of lanthanide ions (La, Eu, and Yb) using an
immobilized Pseudomonas aeruginosa in polyacrylamide
gel and a fixed-bed adsorber. The effect of superficial liquid
velocity (0.76–2.29m/h), particle size (125–500μm), influent
concentration (2–6mM), and bed depth (250–400mm) on
the adsorption capacities was analyzed. Experimental break-
through curves showed that the maximum bed adsorption
capacities were 208μmol/g for La, 219μmol/g for Eu, and
192μmol/g for Yb in single aqueous solutions. ANN model-
ing was performed considering the next input variables: ini-
tial concentration (2–6mM), bed depth (250 and 330mm),
operating time (min), and the modified Reynolds number.
Ratio C/C0 was the output variable. BP algorithm was used
in ANN training where the activation function of the hidden
layer was the hyperbolic tangent. Training and validation

were carried out with 392 adsorption data, and 40 additional
data were used for testing the ANN performance. Root mean
square error was used as the statistical metric to analyze the
calculations with ANN. Results showed that the prediction
ability of ANN was satisfactory for the first zone of the break-
through curve, which corresponded to the zone before the
breakthrough point. These authors also concluded that it
should be necessary to extend the experimental column data-
base to improve the ANN performance with the objective of
predicting reliably all the zones of breakthrough curves.

Park et al. [170] modeled the breakthrough curves of
chromium adsorption using a column packed with brown
seaweed Ecklonia biomass. These authors discussed the
effect of the operating parameters (feed concentration, initial
concentration, pH, flow rate, and temperature) on the
adsorption of this priority water pollutant. The experimental
results showed that this biomass achieved an adsorption
capacity of 50.2mg/g by the 274th bed. Chromium adsorp-
tion reduced with pH decrements, and this removal process
was endothermic. ANN modeling was done with the next
input variables: influent chromium concentration (100–
200mg/L), biomass concentration (70–140 g/L), pH (2), flow
rate (10–20mL/min), temperature (25–45 °C), and the bed
number (i.e., flow rate operating time/total column volume).
Chromium concentration of treated fluid (0–200mg/L) was
utilized in the output ANN layer. 127 data were utilized
for obtaining the ANN model with hyperbolic tangent func-
tion in the hidden layers and a linear function in the output
layer. The performance of the feed-forward BP-ANN was
assessed. Root mean square errors ranged from 2.52 to
3.20, thus, indicating that ANN was successful to model
the breakthrough curves of chromium adsorption.

The adsorption breakthrough curves of 3 pesticides
(namely, atrazine, atrazine-desethyl, and triflusulfuron-
methyl) using 5 commercial activated carbon filters were
modeled by Faur et al. [171]. Experimental isotherms of
pesticides in aqueous solutions and natural waters were car-
ried out in single and competitive adsorption between pes-
ticide and natural organic matter. In a second stage, the
breakthrough curves of pesticide were quantified for solu-
tions with only one adsorbate. 15 variables were identified
and ranked, in order of decreasing relevance and impact
on the pesticide adsorption, by Gram-Schmidt orthogonali-
zation. A static feed-forward ANN was used with the next
input variables: micropore volume (%), mesopore volume
(cm3/g), solubility (g/L), molecular weight (g/mol), initial
concentration (mg/L), initial total organic carbon, flow
velocity (m/h), time (min), Freundlich constants K
(ðmg/gÞðL/mgÞ1/n), and 1/n and elimination of natural
organic matter (%). Also, a recurrent ANN was used with
the next inputs: solubility (g/L), molecular weight (g/mol),
initial concentration (mg/L), initial total organic carbon,
secondary micropore volume (%), ðC/C0Þðk−1ÞT , isotherm
constants like K (ðmg/gÞðL/mgÞ1/n) and 1/n. In both
models, the output variable was C/C0. 9749 data were
employed and distributed in 67% for training and model
selection and 33% for the final testing. ANN provided reli-
able predictions with R2 > 0:981 and a rootmean square
error < 0:035. However, the recurrent ANN outperformed

30 Adsorption Science & Technology



T
a
bl
e
3:
Su
m
m
ar
y
of

th
e
A
N
N

m
od

el
in
g
of

th
e
ad
so
rp
ti
on

of
w
at
er

po
llu

ta
nt
s
at

dy
na
m
ic
op

er
at
in
g
co
nd

it
io
ns
.

A
ds
or
be
nt

A
ds
or
ba
te

A
N
N

m
od

el
E
xp
er
im

en
t

D
at
a
us
ed

(T
ra
in
in
g-

T
es
ti
ng
-

V
al
id
at
io
n)

In
pu

t
va
ri
ab
le
s

O
ut
pu

t
va
ri
ab
le
s

P
ol
lu
ta
nt

re
m
ov
al

R
ef
er
en
ce

B
on

e
ch
ar

N
ap
ro
xe
n

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
al
go
ri
th
m

(2
-1
0-
1)

Fi
xe
d-
be
d

98
-2
1-
21

C
0,
m
,t

C
t/
C
0

3.
2
m
g/
g

[3
6]

B
on

e
ch
ar

A
ci
d
bl
ue

25
,a
ci
d

bl
ue

74
,r
ea
ct
iv
e

bl
ue

4

Fe
ed

fo
rw

ar
d
ne
tw
or
k

ba
ck

pr
op

ag
at
io
n

(5
-1
0-
3)

K
in
et
ic
,

eq
ui
lib

ri
um

an
d
fi
xe
d-
be
d

70
-1
5-
15

C
0,
pH

,t
,r
at
io

M
/W

,T
A
ds
or
pt
io
n

ca
pa
ci
ty

an
d

C
t/
C
0

A
B
25

34
.9
1
m
g/
g,

A
B
74

32
.1
7
m
g/
g,

R
B
4
27
.9
8
m
g/
g

[3
8]

M
on

tm
or
ill
on

it
e–
ir
on

ox
id
e
co
m
po

si
te

C
s1
+
an
d
Sr

2+

H
yb
ri
d
Fr
eu
nd

lic
h

is
ot
he
rm

-A
N
N

Le
ve
nb

er
g-
M
ar
qu

ar
dt

ba
ck

pr
op

ag
at
io
n

(4
-2
5-
1)

Fi
xe
d-
be
d

80
-0
-2
0

C
0,
t,
D
b,

F
C
t

~
20

m
g/
L

[4
2]

D
at
e
pa
lm

bi
oc
ha
r

O
rt
ho

-c
re
so
l
an
d

ph
en
ol

Fe
ed

fo
rw

ar
d
an
d

no
nl
in
ea
r
re
gr
es
si
on

ge
ne
ra
liz
ed

de
ca
y-
fu
nc
ti
on

Fi
xe
d-
be
d

–
C
0,
F,

D
b,

m
,t

R
es
id
ua
l

co
nc
en
tr
at
io
n

–
[4
9]

A
ct
iv
at
ed

ca
rb
on

,
A
m
be
rl
it
e
X
A
D
-2

R
ha
m
no

lip
id

B
ac
k
pr
op

ag
at
io
n

(4
-6
-1
)

Fi
xe
d-
be
d

66
.7
-0
-3
3.
3

F,
D
b,

C
0,
t

C
t/
C
0

–
[5
0]

M
ac
ro
po

ro
us

re
si
ns

So
la
ne
so
l

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
w
it
h
gr
ad
ie
nt

de
sc
en
t

Fi
xe
d-
be
d

33
1-
14
8-
0

C
0,
F,

t,
R
at
io

of
H
ei
gh
t/

D
ia
m
et
er
,b

ed
vo
id

vo
lu
m
e
fr
ac
ti
on

,p
ar
ti
cl
e

vo
id

vo
lu
m
e
fr
ac
ti
on

,P
s,

B
E
T
ar
ea

C
t

11
0
m
g/
m
L

[5
5]

B
on

e
ch
ar

Fl
uo

ri
de

H
yb
ri
d
m
od

el
ba
se
d
on

T
ho

m
as

eq
ua
ti
on

an
d

fe
ed

fo
rw

ar
d
A
N
N

(3
-1
8-
18
-1
)

Fi
xe
d-
be
d

19
2-
96
-9
6

C
0,
m
,t

C
t/
C
0

2.
52

m
g/
g

[5
7]

P
se
ud

om
on

as
ae
ru
gi
no

sa
im

m
ob
ili
ze
d
in

po
ly
ac
ry
la
m
id
e
ge
l

La
,E

u
an
d
Y
b

M
ul
ti
-L
ay
er

pe
rc
ep
tr
on

(6
-3
-1
)

Fi
xe
d-
be
d

39
2
da
ta

C
0,
D
b,

su
pe
rfi
ci
al
liq

ui
d

ve
lo
ci
ty

ba
se
d
on

em
pt
y

co
lu
m
n,

R
ey
no

ld
s
nu

m
be
r

C
t/
C
0

19
0
μm

ol
/g

[1
69
]

B
ro
w
n
se
aw

ee
d
E
ck
lo
ni
a

bi
om

as
s

C
r6
+

Fe
ed
-f
or
w
ar
d
ba
ck
-

pr
op

ag
at
io
n
(6
-5
-3
-1
)

Fi
xe
d-
be
d

12
7
da
ta

C
0,
m
,p

H
,D

b,
F,

T
C
t

50
.2
m
g/
g

[1
70
]

E
uc
al
yp
tu
s
ca
m
al
du

le
ns
is

ba
rk
s

B
as
ic
bl
ue

41
,

re
ac
ti
ve

bl
ac
k
5

M
ul
ti
-L
ay
er

P
er
ce
pt
ro
n

(3
-5
-1
)

Fi
xe
d-
be
d

–
V
ol
um

e
of

w
at
er
,D

b,
C
0

C
t/
C
0

B
B
41

16
2.
2
m
g/
g,

R
B
5
4.
8
m
g/
g

[1
72
]

P
os
id
on

ia
oc
ea
ni
ca

(L
.)

B
io
m
as
s

M
et
hy
le
ne

bl
ue

M
ul
ti
-L
ay
er

fe
ed

fo
rw

ar
d

(3
-1
5-
1)

Fi
xe
d-
be
d

60
8-
30
4-
30
4

F,
D
b,

t
C
t/
C
0

48
2.
6
m
g/
g

[1
73
]

H
yd
ra
te
d
fe
rr
ic
ox
id
e-

ba
se
d
na
no

co
m
po

si
te

P
ho

sp
ha
te

T
hr
ee
-l
ay
er

fe
ed
-f
or
w
ar
d

ba
ck
-p
ro
pa
ga
ti
on

(4
-(
6-
20
)-
1)

E
qu

ili
br
iu
m

an
d
fi
xe
d-
be
d

75
-2
5-
0

B
at
ch
:p

H
,C

0,
T
,m

,
D
yn
am

ic
:p

H
,C

0,
T
,F

,D
b

R
em

ov
al

effi
ci
en
cy
,C

t
99
.5
0%

[1
74
]

A
ct
iv
at
ed

ca
rb
on

Fi
xe
d-
be
d

10
6-
20
-2
0

D
b,

F,
C
0,
T

C
t/
C
0

–
[1
75
]

31Adsorption Science & Technology



T
a
bl
e
3:
C
on

ti
nu

ed
.

A
ds
or
be
nt

A
ds
or
ba
te

A
N
N

m
od

el
E
xp
er
im

en
t

D
at
a
us
ed

(T
ra
in
in
g-

T
es
ti
ng
-

V
al
id
at
io
n)

In
pu

t
va
ri
ab
le
s

O
ut
pu

t
va
ri
ab
le
s

P
ol
lu
ta
nt

re
m
ov
al

R
ef
er
en
ce

P
he
no

l,
2-

ch
lo
ro
ph

en
ol
,4
-

ni
tr
op

he
no

l

M
ul
ti
-l
ay
er
ed

fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n

A
lu
m
in
um

-d
op

ed
bo
ne

ch
ar

Fl
uo

ri
de

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
(3
-2
-1
)

Fi
xe
d-
be
d

47
4-
23
7-
23
7

F,
C
0,
t

C
t/
C
0

18
.5
m
g/
g

[1
76
]

N
an
ofi

be
rs
,r
ic
e
po

lis
h,

liv
in
g
ba
ci
llu

s,
w
al
nu

t
hu

sk
,b

la
ck

cu
m
in
,o

le
ife
ra

se
ed
,h

ya
ci
nt
h
ro
ot
,fl

ax
m
ea
l

an
d
ri
ce

st
ra
w

A
s3
+
,P

b2
+
,C

u2
+
,

R
ed

G

Fe
ed
-f
or
w
ar
d
ba
ck

pr
op

ag
at
io
n
pe
rc
ep
tr
on

(5
-(
6-
16
)-
1)

Fi
xe
d-
be
d

21
5-
0-
47

R
at
io

of
th
e
co
nt
ac
t
ti
m
e

to
th
e
m
ax
im

um
ti
m
e,
B
E
T

ar
ea
,r
ot
at
io
n
of

pa
ck
in
g,
ra
ti
o

of
in
er
ti
a
to

vi
sc
os
it
y,
m
as
s
ra
ti
o

of
po

llu
ta
nt
s
to

pa
ck
in
g
pe
r

un
it
vo
lu
m
e

N
or
m
al
iz
ed

ad
so
rp
ti
on

ca
pa
ci
ty

–
[1
79
]

P
on

ga
m
ia

Z
n2

+
M
ul
ti
la
ye
r
pe
rc
ep
tr
on

Le
ve
nb

er
g
M
ar
qu

ar
dt

ba
ck

pr
op

ag
at
io
n
(3
-7
-1
)

R
SM

(C
C
D
)

60
-2
0-
20

pH
,C

0,
T
,m

,F
,D

b
R
em

ov
al

pe
rc
en
ta
ge

66
.2
9
m
g/
g

[1
80
]

Ja
ck
fr
ui
t,
m
an
go

an
d

ru
bb
er

le
av
es

C
d2

+
H
yb
ri
d
ar
ti
fi
ci
al
ne
ur
al

ne
tw
or
k–

ge
ne
ti
c

al
go
ri
th
m

Fi
xe
d-
be
d

70
-2
0-
10

C
0,
F,

D
b,

t
R
em

ov
al

pe
rc
en
ta
ge

98
.2
6%

[1
81
]

A
ct
iv
at
ed

ca
rb
on

fr
om

le
av
es

of
C
al
ot
ro
pi
s

G
ig
an
te
a

M
et
hy
le
ne

bl
ue

A
N
FI
S

Fi
xe
d-
be
d

40
-2
0-
0

C
0,
D
b,

pH
,F

,T
R
em

ov
al

pe
rc
en
ta
ge

–
[1
82
]

So
di
um

do
de
cy
l
su
lfa
te

m
od

ifi
ed

gr
ap
he
ne

C
u2

+
,M

n2
+

A
rt
ifi
ci
al
ne
ur
al
ne
tw
or
k

(3
-5
-1
)

Fi
xe
d-
be
d

–
T
,p

H
,m

,C
0

R
em

ov
al

effi
ci
en
cy

C
u2

+
48
.8
3
m
g/
g,

M
n2

+
45
.6
2
m
g/
g

[1
83
]

A
ct
iv
at
ed

ca
rb
on

P
he
no

l,
to
lu
en
e,

be
nz
en
e,
ca
ff
ei
ne
,

ci
pr
ofl

ox
ac
in
,

fl
um

eq
ui
ne
,

di
cl
of
en
ac

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
(8
-4
5-
1)

Fi
xe
d-
be
d

47
61
-5
95
-

59
5

M
ol
ar

w
ei
gh
t,
C
0,
F,

D
b,

P
s,

su
rf
ac
e
ar
ea
,p

or
e
di
am

et
er
,t

C
t/
C
0

–
[1
84
]

N
aO

H
-m

od
ifi
ed

ri
ce

hu
sk

M
et
hy
le
ne

bl
ue

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
(3
-1
3-
1)

Fi
xe
d-
be
d

50
-2
5-
25

F,
D
b,

t
C
t

10
1.
32

m
g/
g

[2
09
]

Si
lv
er

na
no

pa
rt
ic
le
s

M
et
hy
le
ne

bl
ue

H
yb
ri
d
ar
ti
fi
ci
al
ne
ur
al

ne
tw
or
k–

pa
rt
ic
le
sw

ar
m

op
ti
m
iz
at
io
n
(6
-1
4-
1)

Fi
xe
d-
be
d

75
-1
3-
12

pH
,m

,s
am

pl
e
fl
ow

,s
am

pl
e

vo
lu
m
e,
el
ue
nt

vo
lu
m
e

an
d
el
ue
nt

fl
ow

R
em

ov
al

pe
rc
en
ta
ge

99
.4
0%

[2
11
]

Li
gh
t
ex
pa
nd

ed
cl
ay

ag
gr
eg
at
e
(L
E
C
A
)

A
ni
lin

e
Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n

(3
-(
2-
7)
-(
2-
5)
-2
)

Fi
xe
d-
be
d

29
8-
0-
12
2

t,
F,

in
fl
ue
nt

ch
em

ic
al

ox
yg
en

de
m
an
d

R
ea
ct
or

effi
ci
en
cy
,C

t
90
%

[2
92
]

Sh
el
ls
of

su
nfl

ow
er

C
u2

+
M
ul
ti
-l
ay
er
ed

ne
ur
al

ne
tw
or
k
ba
ck

pr
op

ag
at
io
n

(7
:7
-5
-1
:1
)

Fi
xe
d-
be
d

16
2-
81
-8
1

t,
C
0,
m
,p

H
,F

,D
b,

P
s

C
t/
C
0

25
.9
5
m
g/
g

[2
93
]

C
ry
st
al
vi
ol
et

Fi
xe
d-
be
d

50
-2
5-
25

F,
D
b,

t
C
t

77
.1
8
m
g/
g

[2
94
]

32 Adsorption Science & Technology



T
a
bl
e
3:
C
on

ti
nu

ed
.

A
ds
or
be
nt

A
ds
or
ba
te

A
N
N

m
od

el
E
xp
er
im

en
t

D
at
a
us
ed

(T
ra
in
in
g-

T
es
ti
ng
-

V
al
id
at
io
n)

In
pu

t
va
ri
ab
le
s

O
ut
pu

t
va
ri
ab
le
s

P
ol
lu
ta
nt

re
m
ov
al

R
ef
er
en
ce

C
it
ri
c-
ac
id
-m

od
ifi
ed

ri
ce

st
ra
w

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
(3
-1
7-
1)

Z
in
c
ox
id
e
na
no

pa
rt
ic
le
s–

ch
it
os
an

M
et
hy
lo

ra
ng
e

C
uc
ko
o
Se
ar
ch
–A

N
N

Le
ve
nb

er
g–
M
ar
qu

ar
dt

(5
-1
1-
1)

Fi
xe
d-
be
d

29
-0
-1
2

pH
,v
ol
um

e
of

el
ut
io
n

so
lv
en
t,
m
,F

,e
lu
ti
on

so
lv
en
t

R
em

ov
al

pe
rc
en
ta
ge

48
1
m
g/
g

[2
95
]

A
lg
in
at
e-
ba
se
d
co
m
po

si
te

N
i2
+

T
hr
ee
-l
ay
er
ed

fe
ed
-

fo
rw

ar
d
(4
-1
0-
2)

D
yn
am

ic
22
-5
-5

C
0,
m
,t
,p

H

A
ds
or
pt
io
n

ca
pa
ci
ty

an
d

R
em

ov
al

pe
rc
en
ta
ge

24
8.
7
m
g/
g

[2
96
]

H
ya
ci
nt
h
ro
ot

P
b2

+

M
ul
ti
-l
ay
er

pe
rc
ep
tr
on

w
it
h
Le
ve
nb

er
g–

M
ar
qu

ar
dt

ba
ck
-

pr
op

ag
at
io
n
(4
-(
2-
20
)-
1)

Fi
xe
d-
be
d

53
4
da
ta

F,
D
b,

t
C
t

10
.9
4
m
g/
g

[2
97
]

H
yd
ro
us

fe
rr
ic
ox
id
e

Fl
uo

ri
de

H
yb
ri
d
m
od

el
ba
se
d
on

T
ho

m
as

eq
ua
ti
on

-
A
N
N

Fi
xe
d-
be
d

–
C
0,
m
,t

C
t/
C
0

6.
71

m
g/
g

[2
98
]

Sh
el
ls
of

su
nfl

ow
er

C
o2

+
M
ul
ti
-l
ay
er
ed

fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n

(7
-5
-1
)

Fi
xe
d-
be
d

14
7-
74
-7
4

C
0,
t,
m
,p

H
,F

,D
b,

P
s

C
t/
C
0

11
.6
8
m
g/
g

[2
99
]

Si
lic
a-
m
ol
ec
ul
ar

im
pr
in
ti
ng

C
ho

le
st
er
ol

Fe
ed

fo
rw

ar
d
ba
ck
-

pr
op

ag
at
io
n
Le
ve
nb

er
g-

M
ar
qu

ar
dt

Fi
xe
d-
be
d

50
-2
5-
25

D
b,

t,
F

R
em

ov
al

effi
ci
en
cy

67
.8
0%

[3
00
]

B
ac
ill
us

su
bt
ili
s
be
ad
s

C
d2

+

T
w
o
la
ye
r
fe
ed

fo
rw

ar
d

ba
ck

pr
op

ag
at
io
n

co
m
bi
ne
d
w
it
h
th
e

T
ho

m
as

an
d
Y
an

m
od

el
s

(6
-(
2-
22
)-
1)

Fi
xe
d-
be
d

27
3-
59
-5
9

C
0,
t,
D
b,

m
,c
ol
um

n
in
te
rn
al

di
am

et
er

of
co
lu
m
n

C
t/
C
0

10
4.
2
m
g/
g

[3
01
]

A
ct
iv
at
ed

ca
rb
on

D
ye
s

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n

(4
-(
9-
12
-8
)-
1)

Fi
xe
d-
be
d

15
6-
0-
52

H
ig
h
gr
av
it
y
fa
ct
or
,l
iq
ui
d

R
ey
no

ld
s
nu

m
be
r,
ad
so
rp
ti
on

ti
m
e
to

th
e
m
ax
im

um
ad
so
rp
ti
on

ti
m
e
an
d
pa
ck
in
g
de
ns
it
y
to

liq
ui
d
co
nc
en
tr
at
io
n

N
or
m
al
iz
ed

ad
so
rp
ti
on

ca
pa
ci
ty

–
[3
02
]

Ig
ni
m
br
it
e

Fe
3+

M
ul
ti
-l
ay
er
ed

ba
ck

pr
op

ag
at
io
n
(6
-4
-1
)

Fi
xe
d-
be
d

29
3-
14
7-
14
7

C
0,
t,
m
,p

H
,F

,D
b,

P
s

C
t/
C
0

3.
65

m
g/
g

[3
03
]

Sp
he
ri
ca
ln

an
os
ca
le

ze
ro
va
le
nt

ir
on

on
ce
llu

lo
se

P
ho

sp
ha
te

M
ul
ti
la
ye
r
pe
rc
ep
tr
on

ba
ck

pr
op

ag
at
io
n

Fi
xe
d-
be
d

–
C
0,
pH

,t
,T

R
em

ov
al

pe
rc
en
ta
ge

56
1.
m
g/
g

[3
04
]

O
liv
e
st
on

e,
pi
ni
on

sh
el
l

C
u2

+
A
N
N

-F
uz
zy

In
fe
re
nc
e

Sy
st
em

Fi
xe
d-
be
d

–
F,

C
0,
D
b,

t
C
t/
C
0

O
liv
e
st
on

e
5.
06

m
g/
g,
pi
ni
on

sh
el
l

7.
14

m
g/
g

[3
05
]

N
om

en
cl
at
ur
e:
ce
nt
ra
lc
om

po
si
te

de
si
gn

(C
C
D
),
de
pt
h
of

be
d
(D

b)
,fl

ow
ra
te

(F
),
in
le
t
co
nc
en
tr
at
io
n
(C

0)
,m

as
s
of

be
d
(m

),
ou

tle
t
co
nc
en
tr
at
io
n
(C
t)
,a
nd

re
sp
on

se
su
rf
ac
e
m
et
ho

do
lo
gy

(R
SM

).

33Adsorption Science & Technology



T
a
bl
e
4:
Su
m
m
ar
y
of

th
e
A
N
N

m
od

el
in
g
of

th
e
m
ul
ti
co
m
po

ne
nt

ad
so
rp
ti
on

of
w
at
er

po
llu

ta
nt
s
at

dy
na
m
ic
op

er
at
in
g
co
nd

it
io
ns
.

A
ds
or
be
nt

A
ds
or
ba
te

A
N
N

m
od

el
E
xp
er
im

en
t

D
at
a
us
ed

(T
ra
in
in
g-

T
es
ti
ng
-

V
al
id
at
io
n)

In
pu

t
va
ri
ab
le
s

O
ut
pu

t
va
ri
ab
le
s

P
ol
lu
ta
nt
s
re
m
ov
al

R
ef
er
en
ce

B
io
ch
ar

C
d2

+
,N

i2
+
,Z

n2
+
,C

u2
+

Fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n,

fe
ed

fo
rw

ar
d
ba
ck

pr
op

ag
at
io
n
w
it
h
di
st
ri
bu

te
d

ti
m
e
de
la
y,
C
as
ca
de

fo
rw

ar
d,

E
lm

an

Fi
xe
d-
be
d

99
4-
21
3-

21
3

C
0,
t

C
t/
C
0

C
d2

+
5.
17

m
m
ol
/g
,N

i2
+

2.
01

m
m
ol
/g
,Z

n2
+

4.
38

m
m
ol
/g
,C

u2
+

5.
40

m
m
ol
/g

[4
1]

D
at
e
pa
lm

bi
oc
ha
r

O
rt
ho

-c
re
so
l

an
d
ph

en
ol

Fe
ed
-f
or
w
ar
d
an
d
no

nl
in
ea
r

re
gr
es
si
on

ge
ne
ra
liz
ed

de
ca
y-
fu
nc
ti
on

Fi
xe
d-
be
d

co
lu
m
n

–
C
0,
F,

D
b,

m
,t

R
es
id
ua
l

co
nc
en
tr
at
io
n

–
[4
9]

C
hi
to
sa
n/
ze
ol
it
e

B
is
ph

en
ol

A
,

ca
rb
am

az
ep
in
e,

ke
to
pr
of
en
,

to
na
lid

e

T
hr
ee
-l
ay
er

fe
ed
-f
or
w
ar
d

Le
ve
nb

er
g
M
ar
qu

ar
dt

(2
-4
-1
)

Fi
xe
d-
be
d,

R
SM

(C
C
D
)

60
-2
0-
20

C
0,
pH

A
ds
or
pt
io
n

ca
pa
ci
ty

B
is
ph

en
ol

A
37
.1
1
m
g/
g,

ca
rb
am

az
ep
in
e
41
.2
4

m
g/
g,
ke
to
pr
of
en

5.
92

m
g/
g,
to
na
lid

e
3.
61

m
g/
g

[7
7]

A
ct
iv
at
ed

ca
rb
on

P
es
ti
ci
de
s

St
at
ic
an
d
re
cu
rr
en
t
ne
ur
al

ne
tw
or
k
(1
3-
6-
1)
,(
8-
3-
1)

Fi
xe
d-
be
d

60
44
-0
-

37
05

So
lu
bi
lit
y,
m
ol
ec
ul
ar

w
ei
gh
t,

C
0,
in
it
ia
lt
ot
al
or
ga
ni
c

ca
rb
on

,F
re
un

dl
ic
h

pa
ra
m
et
er
s,
se
co
nd

ar
y

m
ic
ro
po

re
vo
lu
m
e,
C
/C
o

at
ti
m
e
(k
-1
) T

N
or
m
al
iz
ed

co
nc
en
tr
at
io
n

C
/C

0
at

ti
m
e
k T
.

16
0
m
g/
g

[1
71
]

B
on

e
ch
ar

C
u2

+
,Z

n2
+

Fe
ed
-f
or
w
ar
d
ne
tw
or
k
an
d

ba
ck
pr
op

ag
at
io
n
al
go
ri
th
m

Fi
xe
d-
be
d

50
4-
10
8-

10
8
si
ng
le
,

10
08
-2
16
-

21
6
bi
na
ry

M
et
al
pr
op

er
ti
es

(m
ol
ec
ul
ar

w
ei
gh
t,
el
ec
tr
on

eg
at
iv
it
y
an
d

io
ni
c
ra
di
us
),
C
0,
F,

D
b,

t
C
t/
C
0

C
u2

+
51
.8
m
g/
g,
Z
n2

+

41
.1
m
g/
g

[1
77
]

B
on

e
ch
ar

C
d2

+
,N

i2
+
,Z

n2
+

Fu
zz
y
A
N
N

Fi
xe
d-
be
d

70
-1
5-
15

C
0,
hy
dr
at
io
n
en
er
gy
,

el
ec
tr
on

eg
at
iv
it
y,
hy
dr
at
ed

io
ni
c
ra
di
i,
m
ol
ec
ul
ar

w
ei
gh
t

C
t/
C
0

–
[1
78
]

R
ic
e
br
an

A
s3
+
,A

s5
+

M
ul
ti
-l
ay
er

fe
ed
-f
or
w
ar
d

ba
ck
-p
ro
pa
ga
ti
on

,
Le
ve
nb

er
g-
M
ar
qu

ar
dt

ba
ck
-p
ro
pa
ga
ti
on

(4
-7
-5
-1
),

(3
-5
-7
-1
)

E
qu

ili
br
iu
m

an
d
fi
xe
d-

be
d,

R
SM

/C
C
D
)

41
-0
-1
0

B
at
ch
:p

H
,C

0,
T
,m

;
D
yn
am

ic
:D

b,
F,

C
0

A
ds
or
pt
io
n

ca
pa
ci
ty

A
s3
+
41
.5
5
μg
/g
,

A
5+

45
.6
0
μg
/g

[3
06
]

A
ni
on

ba
se

re
si
n

R
es
id
ua
lc
ol
or

in
pa
lm

oi
lm

ill
effl

ue
nt

W
av
el
et

A
N
N

(3
-6
-1
)

Fi
xe
d-
be
d

70
da
ta

pH
,F

,D
b

R
es
id
ua
lc
ol
or

w
as

th
e

ex
pe
ri
m
en
ta
l

re
sp
on

se

4.
63

m
g/
g

[3
07
]

N
om

en
cl
at
ur
e:
ce
nt
ra
lc
om

po
si
te

de
si
gn

(C
C
D
),
de
pt
h
of

be
d
(D

b)
,fl

ow
ra
te

(F
),
in
le
t
co
nc
en
tr
at
io
n
(C

0)
,m

as
s
of

be
d
(m

),
ou

tle
t
co
nc
en
tr
at
io
n
(C
t)
,a
nd

re
sp
on

se
su
rf
ac
e
m
et
ho

do
lo
gy

(R
SM

).

34 Adsorption Science & Technology



the static ANN particularly for the breakthrough and sat-
uration zones. Note that this behavior was expected since
the dynamic character of the adsorption process was con-
sidered in the recurrent ANN. Operating conditions and
pesticide properties exhibited a significant impact on this
adsorption process according to both ANN models, while
the adsorbent properties showed a low impact on the pes-
ticide removal.

Balci et al. [172] used the bed depth service time model
and multilayer ANN for the correlation of breakthrough
curves of the adsorption of reactive black 5 and basic blue
41 on Eucalyptus camaldulensis barks. The input variables
were the volume of water treated (0.04–32.4 L), bed depth
(5–20 cm), and dye concentration (100-400mg/L), while
the output variable was the final concentration of treated
water (mg/L). These authors proposed a multilayer percep-
tron ANN with 3-5-1 architecture to model this adsorption
process. This ANN was able to fit the adsorption data show-
ing low modeling errors. They concluded that ANN was
effective in the modeling, prediction, and estimation of
adsorption processes.

Cavas et al. [173] applied the Thomas equation and
ANN for modeling the breakthrough curves of methylene
blue adsorption via Posidonia oceanica dead leaves. These
authors used a multilayer feed-forward ANN with LM algo-
rithm. Data modeling was performed considering the next
input variables: bed height (3–9 cm), flow rate (3.64–
7.28mL/min), and time (min), while the effluent methylene
blue concentration was the output. 1215 experimental data
were used to train and test the performance of ANN with
a hyperbolic tangent sigmoid activation function. Results
showed that this ANN outperformed Thomas equation with
R2 = 0:998 and a mean square error lower than 0.001453.

Tovar-Gómez et al. [57] applied a hybrid neural network
model and conventional adsorption models to predict the
breakthrough curves of fluoride adsorption on two commer-
cial bone chars. This study introduced the development of a
hybrid approach based on ANN to improve the prediction of
breakthrough curves with traditional adsorption equations.
In particular, ANN was used to estimate the parameters of
Thomas equation, and these estimated parameters were used
to calculate the corresponding concentration profiles of
asymmetric breakthrough curves. Input data for the hybrid
ANN were the feed fluoride concentration (9–40mg/L), col-
umn operating time (12.7-178.0 h), and feed flow rate
(0.198–0.396 L/h). The output variable was the ratio C/C0
for fluoride adsorption. All experimental data of two bone
chars (186 and 198 for these bone chars) were used for train-
ing (75%) and 25% remaining data for verification and test-
ing. A feed-forward ANN with two hidden layers with 18
neurons was chosen. This study utilized the classical BP
algorithm for ANN training and the sigmoid activation
function. This hybrid Thomas-ANN model outperformed
the traditional Thomas equation showing the lowest mean
square error thus reflecting its better accuracy for correlating
and predicting the fluoride adsorption breakthrough curves.
This study opened the possibilities of improving the perfor-
mance of traditional breakthrough equations via their
hybridization with ANN.

A comparison between hybrid Freundlich and wave
propagation model with ANN was carried out to simulate
the breakthrough curves of cesium and strontium on
montmorillonite-iron oxide composite [42]. For ANN
modeling, the input variables were the column operating
time (min), feed concentration (2–50mg/L), bed height (5–
15 cm), and feed flow rate (0.5–8mL/min), while the output
variable was the outlet concentration. LM algorithm was
applied in ANN training. ANN showed root mean square
error values of 0.321–0.561 with R = 0:99 for the modeling
of breakthrough curves of cesium and strontium adsorption.

A three-layer feed-forward BP-ANN was applied to
model the adsorption of phosphate by hydrated ferric
oxide-based nanocomposite in a fixed bed column [174].
ANN with tangent sigmoid and linear activation functions
was able to predict the performance of this adsorption sys-
tem. Input variables were pH (3–9), sulfate concentration
(0.42–1.68mM), phosphate (0.042–0.084mM), and temper-
ature (15–35 °C). Removal efficiency (%) was the output var-
iable. A feed-forward BP-ANN with 3 layers, 20 neurons,
quasi-Newton training algorithm, and logistic sigmoid acti-
vation function was utilized. Overall, this surrogate model
was suitable to predict the breakthrough curves, but it failed
to follow the trend of some experimental data. The authors
concluded that high-quality experimental data were required
to obtain reliable predictions of dynamic adsorption
systems. However, the characteristics of the studied break-
through curves were well described by this ANN
(R2 = 0:9931).

Masomi et al. [175] studied the dynamic adsorption of 4-
nitrophenol, 2-chlorophenol, and phenol using activated
carbon obtained from pulp and paper mill sludge where
ANN was also applied to model this removal process. The
experimental variables were bed height (2, 4, and 6 cm
equivalent to 0.1, 0.2, and 0.3 g of activated carbon), feed
flow rate (2, 3.5, and 5mL/min), feed concentration (50–
400mg/L), and temperature (20, 3,5 and 50 °C). C/C0 from
the breakthrough curves was the output variable for ANN.
An architecture with several hidden layers and neurons
was employed. 106 data were utilized for training, 20 for
testing, and 20 for validation. The authors concluded that
the use of ANN satisfactorily predicted the dynamic adsorp-
tion of phenol compounds.

Rojas-Mayorga et al. [176] performed a comparative
study of the prediction of asymmetric breakthrough curves
of fluoride adsorption on a modified bone char. The tradi-
tional models of Yan and Thomas, mass transfer model,
and ANN were assessed. ANN input variables were the
operating time (8–24 h), fluoride feed concentration (10–
100mg/L), and flow rate (0.18–0.36 L/h), while the output
variable was the ratio of C/C0 for fluoride removal. 948
experimental data were divided in 50, 25, and 25% for
training, validation, and testing. Modeling results showed
that ANN outperformed other models to predict these
breakthrough curves. In fact, the model performance was
ANN >mass transfermodel > Thomas andYan equations.
Due to the asymmetry of fluoride breakthrough curves, the
Thomas and Yan equations showed the worst fitting. In
fact, the main advantage of ANN relied on its capabilities
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to model asymmetric breakthrough curves that commonly
occur during water treatment.

Reynel-Avila et al. [38] applied an ANN model to ana-
lyze and characterize the adsorption of anionic dyes (i.e.,
reactive blue 4, acid blue 74, and acid blue 25) using fixed-
bed columns packed with bone char. ANN modeling was
performed considered dye feed concentration (50–300mg/
L), column operating time (2-448min), molecular weight
of the dye (g/mol), adsorption temperature (30–40 °C), and
dye molecular dimensions (X = length, Y = width, Z =
depth, Å) as the input neurons. Output neuron was associ-
ated to the profile C/C0 of the breakthrough curves. Adsorp-
tion experimental data and BP algorithm were used for
training (70%), validation (15%), and testing (15%). Experi-
mental results indicated that the maximum adsorption
capacities of bone char were 34.91, 32.2, and 27.9mg/g for
acid blue 25, acid blue 74, and reactive blue 4 molecules,
respectively. ANN was reliable to correlate the adsorption
profile of packed bed columns with R2 > 0:99. In particular,
the molecular dimensions of dyes were relevant in the
dynamic adsorption with this adsorbent.

A stratified adsorption column packed with bone char
was used for the binary adsorption of cadmium and zinc
where the data modeling was performed with ANN [177].
Results showed that the use of this adsorber configuration
reduced the antagonistic effects present in binary metallic
systems and outperformed the conventional fixed-bed col-
umns. A feed-forward BP-ANN was applied to model the
binary breakthrough adsorption curves. Input variables were
the molecular weight (g/mol), electronegativity and hydrated
ionic radius (Å) of heavy metals, feed concentration of both
adsorbates (100-200mg/L), feed flow rate (4-6mL/min),
stratified bed length (5–15 g), and the column operating time
(0-750min), while the profiles C/C0 for both metals were the
output variables. ANN was able to fit the highly asymmetric
behavior of cadmium and zinc breakthrough curves. These
authors indicated that the breakthrough zone was challeng-
ing due to ANN showed the highest modeling errors. This
study highlighted a limitation of ANN to model asymmetric
breakthrough curves in multicomponent adsorption systems.

Gordillo et al. [178] reported the study of dynamic fuzzy
ANN for the simulation of a fixed bed adsorption of zinc,
nickel, and cadmium on bone char in single and bimetallic
systems. Experimental dynamic adsorption studies were per-
formed at pH 5 and 30 °C with feed concentrations of 2–
60mg/L in single and binary systems. Breakthrough curves
were employed to calculate several parameters of fixed-bed
columns. The modeling of concentration profiles via ANN
considered the next input variables: initial feed concentra-
tion, hydration energy, electronegativity, hydrated ionic
radii, and molecular weight of tested metals besides the col-
umn operating time. The output variables were the ratios
C/C0 for both metals. 3 hidden layers were employed in
the ANN architecture where 70% of experimental data were
utilized for training, 15% for validation, and 15% for testing.
Results of this study indicated that this ANN was effective to
represent the main characteristics and behavior of the break-
through curves in the heavy metal adsorption in single and
binary systems with antagonistic adsorption.

Liu et al. [179] performed the ANN modeling of a collec-
tion of experimental data reported in the literature for the
adsorption of copper, chromium, and methylene blue on dif-
ferent waste residues (i.e., rice husk, tamarind fruit shell, and
catla fish scales) using a rotating packed bed. Cascade-
forward BP-ANN, Elman BP-ANN, and feed-forward BP-
ANN were employed in this study. Experimental data were
divided in 82 and 18% for training and testing, respectively.
The input variables were the Reynolds number, ratio of con-
tact time to maximum contact time, average high gravity
factor, ratio of particle size to bed height, and ratio of feed
concentration to packing density. The ratio of adsorption
capacity at given time to the maximum adsorption capacity
was the output variable. Tangent hyperbolic sigmoid func-
tion and a topology with 5 neurons in the hidden layer were
utilized. Feed-forward BP-ANN showed the highest R2

values and better accuracy followed by Cascade-forward
BP-ANN and Elman BP-ANN.

Moreno-Pérez et al. [41] analyzed and discussed the
capabilities and limitations of feed-forward BP-ANN, feed-
forward BP-ANN with distributed time delay, cascade for-
ward ANN, and Elman ANN for the modeling of multicom-
ponent adsorption of heavy metals on bone char. The
dynamic adsorption of these heavy metals generated asym-
metric breakthrough curves, which were difficult to model
with traditional adsorption equations. Twenty breakthrough
curves were obtained for the adsorption of zinc, nickel,
copper, and cadmium and their combinations in multime-
tallic solutions. Initial concentration of column feed (0.52–
0.85mmol/L) and column operating time (0–8h) was the
input variables, while the concentration profiles C/C0 were
the output variable. 1420 experimental data were divided
into 70, 15, and 15% for training, validation, and testing of
these ANN models. LM, Bayesian regularization, and scaled
conjugate gradient were used and assessed as training
algorithms. Experimental results showed that the highest
adsorption capacities were obtained for copper in single
and multicomponent solutions, which were 2.15-
5.14mmol/g. An antagonistic adsorption was identified in
the solutions containing two or more heavy metals, which
competed for the binding sites of the adsorbent surface.
ANN performance depended on the hidden layers and their
neurons, activation function, and training algorithm. Cas-
cade forward ANN outperformed the other tested ANN
models. Note that feed-forward BP-ANN is the most used
ANN in adsorption literature but it could fail in the model-
ing of high asymmetric breakthrough curves of both single
and multicomponent systems.

Shanmugaprakash et al. [180] developed an ANN model
and optimized the zinc adsorption using Pongamia oil cake
in both batch and dynamic systems. CCD was employed to
improve both batch (31 experiments) and dynamic adsorp-
tion (20 experiments). A multilayer ANN with a topology
of 3-7-1 and tangent sigmoid and linear activation functions
was used. LM algorithm was the training method. For the
column modeling, the input variables were the feed flow rate
(5–15mL/min), feed concentration (50–500mg/L), and bed
height (4–12 cm), while the output variable was the adsorp-
tion capacity (13.58–66.29mg/g). This adsorbent had an
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adsorption capacity of 66.29mg/g, and ANN outperformed
RSM modeling with R values of 0.99 and 0.84, respectively.

Cadmium adsorption on green adsorbents (i.e., jackfruit,
mango and rubber leaves) in a down-flow fixed-bed columns
was studied by Nag et al. [181]. They used a hybrid model
ANN-genetic algorithm for the simulation and optimization
of this adsorption process where the influence of bed height,
flow rate, and initial concentration was determined. ANN
model used the type of adsorbent, bed height (3–9 cm), feed
flow rate (10–25mL/min), column operating time (5–
600min), and feed concentration (20–80mg/L) as input var-
iables. Cadmium percentage removal (6–99.95%) was the
output variable. 556 experimental data were divided in 70,
20, and 10% for training, validation, and testing, respec-
tively. ANN modeling was done with the hyperbolic tangent
activation function. Cadmium adsorption capacities
followed the next trend: jackfruit > mango > rubber. The
adsorption of this metal depended on the operating param-
eters thus achieving a maximum removal of 98.26% at opti-
mized conditions. This ANN model showed R2 ≥ 0:997.

Vakili et al. [77] applied ANN to model the removal of
organic micro-pollutants (tonalide, ketoprofen, carbamaze-
pine, and bisphenol) with fixed-bed columns packed with
chitosan/zeolite. 30 experiments from CCD were employed
to optimize the removal of these pollutants. A three-layer
feed-forward ANN with 2-4-1 topology was used where the
input variables were pH (4–8) and adsorbate concentration
(0.5–2mg/L), and the removal percentage (47.3–96.1%) was
the output variable. LM algorithm was used for ANN train-
ing with several activation function as linear, hyperbolic tan-
gent, and logistic sigmoid. This ANN showed a high accuracy
with R2 = 0:993 − 0:999 indicating that it can be used to opti-
mize the adsorption process of organic micropollutants.

Anbazhagan et al. [182] analyzed the application of
ANFIS and ANN for the methylene blue adsorption using
activated carbon from leaves of Calotropis Gigantea
(CGLAC) in a fixed–bed column. Different experimental
conditions were tested including the initial concentration
of methylene blue (100–500mg/L), bed height (1-2 cm),
solution pH (2-10), flow rate (3.5-6.5mL), and temperature
(303-333K). These operating conditions were also used as
inputs in the ANN analysis, while the methylene blue
removal was the output variable. 60 experimental data were
used for ANN where 40 were employed for training and 20
for prediction. Bed Depth Service Time, Yoon-Nelson, Wol-
broska, Adams-Bohar,t and Thomas models were also
employed to model this adsorption column. Results showed
that ANN was effective to predict the adsorption of methy-
lene blue in dynamic operating conditions.

Yusuf et al. [183] predicted the copper and manganese
adsorption on surfactant decorated graphene packed in a
down-flow bed column using ANN. Breakthrough curves
were determined to identify the saturation time and bed
adsorption capacity. The optimum adsorption capacities
were 48.83 and 45.62mg/g for copper and manganese,
respectively, at bed height of 3 cm. A multilayer feed-
forward ANN with hyperbolic tangent sigmoid function
and a quick propagation algorithm were used. ANN model
with 4-5-1 topology obtained R2 > 0:996 for both heavy

metals where the input variables were the adsorbent dosage
(0.01–0.1 g), initial concentration (25–250mg/L), tempera-
ture (25–50 °C), and pH (2–5), and the output variable was
the heavy metal removal percentage.

ANN modeling of the adsorption of phenolic com-
pounds on activated date palm biochar in a down-flow
fixed-bed column was studied by Dalhat et al. [49]. Break-
through curves at several operating conditions were deter-
mined and modeled with ANN and nonlinear regression
generalized decay function model. A two-layer feed-
forward ANN was used with next input data: bed height
(10–40 cm), adsorbent mass (21.8–87.0 g), feed initial con-
centration (10–100mg/L), feed flow rate (5–30mL/min),
and column operating time (0–720min). Output data were
the final effluent concentration or the ratio C/C0. Adsorp-
tion data was divided in 70% for training, 15% for validation,
and 15% for testing. LM algorithm was used for ANN train-
ing with hyperbolic tangent sigmoid activation function.
Adsorption capacities were 560.55 and 647.28mg/g for
orto-cresol and phenol, respectively. ANN outperformed
the nonlinear regression model to fit the dynamic adsorption
data. The use of final effluent concentration as output vari-
able offered better adjustments that those with C/C0. Sensi-
tivity analysis revealed that column operating time and
feed initial concentration were the most relevant parameters
for the adsorption of these pollutants.

Finally, the modeling of simultaneous dynamic adsorp-
tion of organic pollutants (e.g., phenol, toluene, benzene,
caffeine, ciprofloxacin, flumequine, and diclofenac) on acti-
vated carbon was carried out with ANN [184]. A set of 15
systems with 5951 data collected from published papers were
used to build the ANN model where the input variables were
the molar mass (78.11-361.37 g/mol), initial concentration
(0.00019-500mg/L), feed flow rate (0.05-456.62mL/min),
bed height (2-200 cm), adsorbent particle diameter (0.1-
2.4mm), specific surface area (678-2869m2/g), average pore
diameter (1.29-3015 nm), and operating time (0-57170min),
while the ratio C/C0 was the output variable. ANN was
implemented using BP algorithm for learning with logistic
sigmoid and hyperbolic tangent sigmoid as activation func-
tions for hidden and output layers, respectively. The data
were divided into 80% for learning, 10% for testing, and
10% for validation. ANN architecture was 8-45-1. Modeling
results demonstrated the applicability of ANN to predict
these dynamic adsorption systems with R = 0:997, root mean
square error of 0.029, and absolute deviation of 1.81%. The
sensitive analysis showed that all variables impacted the sys-
tem performance where the flow rate and specific surface
area were the most relevant.

4. Remarks on the Application of ANN for a
Reliable Adsorption Modeling

This literature review indicates that the application of ANN
for the modeling and correlation of adsorption data has been
successfully adopted as an alternative approach to overcome
the limitations of traditional models. Unfortunately, it has
been identified that several published papers contain com-
mon mistakes related to the ANN implementation thus

37Adsorption Science & Technology



affecting the quality and reliability of developed models and
the corresponding conclusions obtained from them in the
adsorption modeling.

First, the output variables used in ANN modeling must
be intensive variables especially for multicomponent adsorp-
tion systems. Several studies have reported the ANN training
with removal percentages or final adsorbate concentrations
as the output variables especially in batch adsorption sys-
tems. They are extensive variables whose values are directly
related to the adsorbent amount and, consequently, the
ANN-based models can learn incorrectly the system perfor-
mance thus providing wrong estimations. In particular,
Mendoza-Castillo et al. [28] have demonstrated that the
use of extensive variables in the ANN modeling of binary,
ternary, and quaternary antagonistic adsorption of heavy
metal ions generated inaccurate estimations of the adsorp-
tion isotherms where a desorption process was erroneously
predicted. It is convenient to indicate that the selection of
proper output variables for ANN training will be more rele-
vant for systems with multiple adsorbates that could display
simultaneously different multicomponent adsorption behav-
iors. One example is the simultaneous adsorption of heavy
metals and acid dyes where this system has the presence of
both synergistic and antagonistic adsorption. Overall, the
adsorption capacities should be the output variable used in
the ANN modeling especially for real fluids (e.g., industrial
effluents and groundwater) where several adsorbates could
interact with the adsorbent utilized as separation medium.

After defining the ANN architecture (i.e., the number of
neurons and layers), ANN training should be performed to
determine the corresponding model parameters. This train-
ing relies on the resolution of a parameter estimation prob-
lem that is characterized by the presence of multiple
solutions (i.e., a global optimization problem should be
resolved). Training methods used in ANN-based adsorption
modeling are commonly based on the application of local
optimization methods, which are effective to find a set of
the ANN parameters but their numerical performance is
strongly related to the initial estimates, and there is no guar-
antee to find the global optimal solution that corresponds to
the best data modeling. Under this scenario, the ANN
parameters obtained with conventional training methods
generally correspond to a local optimum of the objective
function used. The identification of the ANN parameters
via the traditional training algorithms (e.g., LM method)
should imply several calculations with different initial esti-
mates to identify the best solution based on results from
proper statistical metrics. Therefore, ANN training should
be recognized as a global optimization problem that requires
reliable optimizers for its resolution. Stochastic global opti-
mization methods like differential evolution, particle swarm
optimization, genetic algorithm, and other recent metaheur-
istics are an alternative to solve the parameter identification
of ANN training. Some studies on adsorption research have
applied these optimizers as already discussed in Section 3 of
this review. However, it is important to remark that the
ANN training based on these optimizers will imply a signif-
icant increment on the computer time of the adsorption data
modeling.

Another common failure identified in several adsorption
studies is the ANN training with a limited number of exper-
imental data. Overall, the increment of hidden layers and
their neurons will improve the ANN performance thus
reducing the modeling errors and increasing the determina-
tion coefficient (R2). But the number of ANN parameters to
be determined on the model training should be significantly
lower than the number of available experimental data with
the aim of obtaining a reliable ANN model from a statistical
point of view. With this in mind, the verification of ANN
overtraining is a relevant issue that should be also analyzed
in adsorption modeling. This step is usually not considered
in the papers reported on the ANN-based adsorption model-
ing. As a general rule, the authors should select the ANN
architecture with the least number of parameters that offered
the best data fitting and modeling errors. These remarks also
apply for hybrid models obtained from the combination of
adsorption equations and ANN.

5. Conclusions

Artificial neural networks have proved to be a useful numer-
ical approach to develop new models for the adsorption
analysis. Several studies have demonstrated that ANN-
based models can outperform the traditional equations for
the correlation and prediction of isotherms, kinetics, and,
in less extent, breakthrough curves. ANN-based models have
been widely applied in the analysis and modeling of adsorp-
tion systems with one water pollutant. There are few studies
on the multicomponent adsorption modeling with ANN,
which are mainly related to the removal of heavy metals,
dyes, and other few organic pollutants. Therefore, the appli-
cation of ANN-based models in the analysis and simulation
of multicomponent adsorption systems is an interesting
topic to be studied and analyzed in forthcoming papers.
Also, the studies related to the modeling of dynamic adsorp-
tion systems involving several adsorbates should be
increased to complement the characterization of the capabil-
ities and limitations of ANN in this configuration mode,
which is fundamental for industrial and real-life applica-
tions. Literature review also indicated that several authors
have reported the utilization of ANN with extensive vari-
ables (e.g., removal percentages or final adsorbate concentra-
tions) as the output variables thus generating models that
could predict wrongly the performance of adsorption system
under analysis. ANN training with intensive adsorption var-
iables is fundamental and mandatory to obtain reliable
model for the process design of fluids with multiple adsor-
bates. The overtraining and the application of global optimi-
zation methods in the training stage are key issues to be
analyzed and resolved during the adsorption data modeling
via ANN. Data sets with a suitable amount of experimental
information of adsorption systems are also required to
obtain reliable ANN models from a statistical perspective.
In this context, it is convenient to remark that the main
drawback of ANN-based models relies on their limitation
to provide a theoretical understanding of the physical and
chemical phenomena present to the systems to be modeled.
These models are considered as black-box and empirical
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approaches that are effective for both data correlation and
prediction and, consequently, they can be employed as sur-
rogate model when the theoretical models are not proper
to simulate the adsorption system at hand. The hybridiza-
tion of ANN with theoretical-based adsorption equations is
an option to face this drawback and to develop advanced
models. Overall, this artificial intelligence tool has a signifi-
cant potential to overcome the limitations of traditional
adsorption models for real fluids where several adsorbates
are present thus causing different removal behaviors.

Data Availability

Data of this paper are available on request to the corre-
sponding author.

Conflicts of Interest

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

References

[1] A. H. Khan, H. A. Aziz, N. A. Khan et al., “Impact, disease
outbreak and the eco-hazards associated with pharmaceutical
residues: a critical review,” International Journal of Environ-
mental Science and Technology, vol. 19, no. 1, pp. 677–688,
2022.

[2] M. A. Mazhar, N. A. Khan, A. H. Khan et al., “Upgrading
combined anaerobic-aerobic UASB-FPU to UASB-DHS sys-
tem: cost comparison and performance perspective for devel-
oping countries,” Journal of Cleaner Production, vol. 284,
article 124723, 2021.

[3] G. Crini, “Kinetic and equilibrium studies on the removal of
cationic dyes from aqueous solution by adsorption onto a
cyclodextrin polymer,” Dyes and Pigments, vol. 77, no. 2,
pp. 415–426, 2008.

[4] E. A. Dil, M. Ghaedi, A. M. Ghaedi et al., “Modeling of qua-
ternary dyes adsorption onto ZnO-NR-AC artificial neural
network: Analysis by derivative spectrophotometry,” Journal
of Industrial and Engineering Chemistry, vol. 34, pp. 186–197,
2016.

[5] M. Tanzifi, M. T. Yaraki, M. Karami et al., “Modelling of dye
adsorption from aqueous solution on polyaniline/carboxy-
methyl cellulose/TiO2 nanocomposites,” Journal of Colloid
and Interface Science, vol. 519, pp. 154–173, 2018.

[6] A. Takdastan, S. Samarbaf, Y. Tahmasebi, N. Alavi, and A. A.
Babaei, “Alkali modified oak waste residues as a cost-effective
adsorbent for enhanced removal of cadmium from water:
Isotherm, kinetic, thermodynamic and artificial neural net-
work modeling,” Journal of Industrial and Engineering Chem-
istry, vol. 78, pp. 352–363, 2019.

[7] P. S. Pauletto, J. O. Gonçalves, L. A. A. Pinto, G. L. Dotto, and
N. P. G. Salau, “Single and competitive dye adsorption onto
chitosan-based hybrid hydrogels using artificial neural net-
work modeling,” Journal of Colloid and Interface Science,
vol. 560, pp. 722–729, 2020.

[8] H. Esfandian, A. Samadi-Maybodi, M. Parvini, and
B. Khoshandam, “Development of a novel method for the
removal of diazinon pesticide from aqueous solution and

modeling by artificial neural networks (ANN),” Journal of
Industrial and Engineering Chemistry, vol. 35, pp. 295–308,
2016.

[9] M. Ashrafi, M. A. Chamjangali, G. Bagherian, and
N. Goudarzi, “Application of linear and non-linear methods
for modeling removal efficiency of textile dyes from aqueous
solutions using magnetic Fe3O4 impregnated onto walnut
shell,” Spectrochimica Acta Part A: Molecular and Biomolecu-
lar Spectroscopy, vol. 171, pp. 268–279, 2017.

[10] A. Dashti, F. Amirkhani, M. Jokar, A. H. Mohammadi, and
K. W. Chau, “Insights into the estimation of heavy metals
ions sorption from aqueous environment onto natural zeo-
lite,” International Journal of Environmental Science and
Technology, vol. 18, pp. 1773–1784, 2020.

[11] A. Mojiri, A. Ohashi, N. Ozaki, Y. Aoi, and T. Kindaichi,
“Integrated anammox-biochar in synthetic wastewater treat-
ment: performance and optimization by artificial neural net-
work,” Journal of Cleaner Production, vol. 243, article 118638,
2020.

[12] J. Baruah, C. Chaliha, B. K. Nath, and E. Kalita, “Enhancing
arsenic sequestration on ameliorated waste molasses nanoad-
sorbents using response surface methodology and machine-
learning frameworks,” Environmental Science and Pollution
Research, vol. 28, no. 9, pp. 11369–11383, 2021.

[13] Z. Cigeroglu, G. Kucukyildiz, B. Erim, and E. Alp, “Easy prep-
aration of magnetic nanoparticles-rGO-chitosan composite
beads: Optimization study on cefixime removal based on
RSM and ANN by using Genetic Algorithm Approach,” Jour-
nal of Molecular Structure, vol. 1224, article 129182, 2021.

[14] D. Ghadirimoghaddam, M. Gheibi, and M. Eftekhari, “Gra-
phene oxide-cyanuric acid nanocomposite as a novel adsor-
bent for highly efficient solid phase extraction of Pb2+

followed by electrothermal atomic absorption spectrometry;
statistical, soft computing and mechanistic efforts,” Interna-
tional Journal of Environmental Analytical Chemistry, vol. 1,
pp. 1–22, 2021.

[15] Y. Hou, J. M. Qi, J. W. Hu,W. Q. Ruan, Y. Q. Xiang, and X. H.
Wei, “Decolorizing brilliant green by mesoporous Pd-Fe
magnetic nanoparticles immobilized on reduced graphene
oxide: artificial neural network modeling,” International
Journal of Environmental Science and Technology, vol. 1,
2021.

[16] H. A. Isiyaka, K. Jumbri, N. S. Sambudi et al., “Experimental
and modeling of dicamba adsorption in aqueous medium
using MIL-101(Cr) metal-organic framework,” Processes,
vol. 9, no. 3, p. 419, 2021.

[17] L. Liu, N. Che, S. Wang, Y. Liu, and C. Li, “Copper nanopar-
ticle loading and F doping of graphene aerogel enhance its
adsorption of aqueous perfluorooctanoic acid,” ACS Omega,
vol. 6, no. 10, pp. 7073–7085, 2021.

[18] S. Mukherjee, B. Kamila, S. Paul, B. Hazra, S. Chowdhury,
and G. Halder, “Optimizing fluoride uptake influencing
parameters of paper industry waste derived activated car-
bon,” Microchemical Journal, vol. 160, article 105643, 2021.

[19] P. Ziarati, P. Kozub, S. Vambol et al., “Kinetics of Cd, Co and
Ni adsorption from wastewater using red and black tea leaf
blend as a bio-adsorbent,” Ecological Questions, vol. 32,
pp. 59–70, 2020.

[20] A. H. Khan, H. A. Aziz, N. A. Khan et al., “Pharmacueticals of
emerging concern in hospital wastewater: removal of ibupro-
fen and ofloxacin drugs using MBBR method,” International
Journal of Environmental Analytical Chemistry, 2021.

39Adsorption Science & Technology



[21] S. Afshin, Y. Rashtbari, M. Vosough et al., “Application of
Box-Behnken design for optimizing parameters of hexavalent
chromium removal from aqueous solutions using Fe3O4
loaded on activated carbon prepared from alga: Kinetics
and equilibrium study,” Journal of Water Process Engineer-
ing, vol. 42, article 102113, 2021.

[22] F. A. Tapouk, R. Nabizadeh, S. Nasseri et al., “Embedding of
L-arginine into graphene oxide (GO) for endotoxin removal
from water: modeling and optimization approach,” Colloids
and Surfaces A: Phyisicochemical and Engineering Aspects,
vol. 607, article 125491, 2020.

[23] L. Lv, Y. Zhang, K. Wang, A. K. Ray, and X. S. Zhao, “Model-
ing of the adsorption breakthrough behaviors of Pb2+ in a
fixed bed of ETS-10 adsorbent,” Journal of Colloid and Inter-
face Science, vol. 325, no. 1, pp. 57–63, 2008.

[24] V. C. Taty-Costodes, H. Fauduet, C. Porte, and Y. S. Ho,
“Removal of lead (II) ions from synthetic and real effluents
using immobilized _Pinus sylvestris_ sawdust: Adsorption
on a fixed-bed column,” Journal of Hazardous Materials,
vol. 123, no. 1-3, pp. 135–144, 2005.

[25] M. C. Ramirez, M. Pereira da Silva, S. G. L. Ferreira, and O. E.
Vasco, “Mathematical models applied to the Cr(III) and
Cr(VI) breakthrough curves,” Journal of Hazardous Mate-
rials, vol. 146, no. 1-2, pp. 86–90, 2007.

[26] A. A. Babaei, A. Khataee, E. Ahmadpour, M. Sheydaei,
B. Kakavandi, and Z. Alaee, “Optimization of cationic dye
adsorption on activated spent tea: equilibrium, kinetics, ther-
modynamic and artificial neural network modeling,” Korean
Journal of Chemical Engineering, vol. 33, no. 4, pp. 1352–
1361, 2016.

[27] P. S. Pauletto, G. L. Dotto, and N. P. Salau, “Optimal artificial
neural network design for simultaneous modeling of multi-
component adsorption,” Journal of Molecular Liquids,
vol. 320, 2020.

[28] D. I. Mendoza-Castillo, H. E. Reynel-Ávila, F. J. SÁnchez-
Ruiz, R. Trejo-Valencia, J. E. Jaime-Leal, and A. Bonilla-Pet-
riciolet, “Insights and pitfalls of artificial neural network
modeling of competitive multi-metallic adsorption data,”
Journal of Molecular Liquids, vol. 251, pp. 15–27, 2018.

[29] A. Gopinath, B. G. Retnam, A. Muthukkumaran, and
K. Aravamudan, “Swift, versatile and a rigorous kinetic
model based artificial neural network surrogate for single
and multicomponent batch adsorption processes,” Journal
of Molecular Liquids, vol. 297, article 111888, 2020.

[30] P. S. Pauletto, S. F. Lütke, G. L. Dotto, and N. P. Salau, “Fore-
casting the multicomponent adsorption of nimesulide and
paracetamol through artificial neural network,” Chemical
Engineering Journal, vol. 412, article 127527, 2021.

[31] K. Koopal, W. Tan, and M. Avena, “Equilibrium mono-
and multicomponent adsorption models: from homoge-
neous ideal to heterogeneous non-ideal binding,” Advances
in Colloid and Interface Science, vol. 280, article 102138,
2020.

[32] E. D. Revellame, D. L. Fortela, W. Sharp, R. Hernandez, and
M. E. Zappi, “Adsorption kinetic modeling using pseudo-
first order and pseudo-second order rate laws: a review,”
Cleaner Engineering and Technology, vol. 1, article 100032,
2020.

[33] T. Liu, Y. Lawluvy, Y. Shi et al., “Adsorption of Cadmium and
Lead from Aqueous Solution Using Modified Biochar: A
Review,” Journal of Environmental Chemical Engineering,
vol. 10, no. 1, article 106502, 2022.

[34] M. Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari,
and M. Sillanpaa, “Adsorption Isotherm Models: A Compre-
hensive and Systematic Review (2010-2020),” Science of Total
Environment, vol. 10, no. 1, article 106502, 2021.

[35] X. Luo, Z. Zhang, P. Zhou, Y. Liu, G. Ma, and Z. Lei, “Syner-
gic adsorption of acid blue 80 and heavy metal ions (Cu2+/Ni2
+) onto activated carbon and its mechanisms,” Journal of
Industrial and Engineering Chemistry, vol. 27, pp. 164–174,
2015.

[36] H. E. Reynel-Avila, D. I. Mendoza-Castillo, A. Bonilla-Petri-
ciolet, and J. Silvestre-Albero, “Assessment of naproxen
adsorption on bone char in aqueous solutions using batch
and fixed-bed processes,” Journal of Molecular Liquids,
vol. 209, pp. 187–195, 2015.

[37] M. A. Martín-Lara, G. Blázquez, M. Calero, A. I. Almendros,
and A. Ronda, “Binary biosorption of copper and lead onto
pine cone shell in batch reactors and in fixed bed columns,”
International Journal of Mineral Processing, vol. 148,
pp. 72–82, 2016.

[38] H. E. Reynel-Avila, D. I. Mendoza-Castillo, and A. Bonilla-
Petriciolet, “Relevance of anionic dye properties on water
decolorization performance using bone char: Adsorption
kinetics, isotherms and breakthrough curves,” Journal of
Molecular Liquids, vol. 219, pp. 425–434, 2016.

[39] N. P. Jovic-Jovicic, A. D. Milutinovic-Nikolic, M. J. Zunic
et al., “Synergic adsorption of Pb2 + and reactive dye – RB5
on two series of organomodified bentonites,” Journal of Con-
taminant Hydrology, vol. 150, pp. 1–11, 2013.

[40] H. E. Reynel-Avila, D. I. Mendoza-Castillo, A. A. Olumide,
and A. Bonilla-Petriciolet, “A survey of multi-component
sorption models for the competitive removal of heavy metal
ions using bush mango and flamboyant biomasses,” Journal
of Molecular Liquids, vol. 224, pp. 1041–1054, 2016.

[41] J. Moreno-Pérez, A. Bonilla-Petriciolet, D. I. Mendoza-Cas-
tillo, H. E. Reynel-Ávila, Y. Verde-Gómez, and R. Trejo-
Valencia, “Artificial neural network-based surrogate model-
ing of multi-component dynamic adsorption of heavy metals
with a biochar,” Journal of Environmental Chemical Engi-
neering, vol. 6, no. 4, pp. 5389–5400, 2018.

[42] A. Ararem, A. Bouzidi, B. Mohamedi, and O. Bouras,
“Modeling of fixed-bed adsorption of Cs+ and Sr2+ onto
clay-iron oxide composite using artificial neural network
and constant-pattern wave approach,” Journal of Radioanaly-
tical and Nuclear Chemistry, vol. 301, no. 3, pp. 881–887,
2014.

[43] N. Zeinali, M. Ghaedi, and G. Shafie, “Competitive adsorption
of methylene blue and brilliant green onto graphite oxide nano
particle following: derivative spectrophotometric and principal
component-artificial neural network model methods for their
simultaneous determination,” Journal of Industrial and Engi-
neering Chemistry, vol. 20, no. 5, pp. 3550–3558, 2014.

[44] K. Aghajani and H. A. Tayebi, “Adaptive neuro-fuzzy infer-
ence system analysis on adsorption studies of reactive red
198 from aqueous solution by SBA-15/CTAB composite,”
Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, vol. 171, pp. 439–448, 2017.

[45] H. Askari, M. Ghaedi, K. Dashtian, and M. H. Azghandi,
“Rapid and high-capacity ultrasonic assisted adsorption of
ternary toxic anionic dyes onto MOF-5-activated carbon:
artificial neural networks, partial least squares, desirability
function and isotherm and kinetic study,” Ultrasonics Sono-
chemistry, vol. 37, pp. 71–82, 2017.

40 Adsorption Science & Technology



[46] N. M. Mahmoodi, M. Mohsen Taghizadeh, and
A. Taghizadeh, “Mesoporous activated carbons of low-cost
agricultural bio-wastes with high adsorption capacity: prepa-
ration and artificial neural network modeling of dye removal
from single and multicomponent (binary and ternary) sys-
tems,” Journal of Molecular Liquids, vol. 269, pp. 217–228,
2018.

[47] I. C. Afolabi, S. I. Popoola, and O. S. Bello, “Modeling
pseudo-second-order kinetics of orange peel-paracetamol
adsorption process using artificial neural network,” Chemo-
metrics and Intelligent Laboratory Systems, vol. 203, article
104053, 2020.

[48] W. Kaminski, K. Kusmierek, and A. Swiatkowski, “Sorption
equilibrium prediction of competitive adsorption of herbi-
cides 2, 4-D and MCPA from aqueous solution on activated
carbon using ANN,” Adsorption, vol. 20, no. 7, pp. 899–904,
2014.

[49] M. A. Dalhat, N. D. Mu’azu, and M. H. Essa, “Generalized
decay and artificial neural network models for fixed-bed phe-
nolic compounds adsorption onto activated date palm bio-
char,” Journal of Environmental Chemical Engineering,
vol. 9, no. 1, article 104711, 2021.

[50] C. E. A. Padilha, C. A. A. Padilha, D. F. S. Souza, J. A. Oliveira,
G. R. Macedo, and E. S. Santos, “Prediction of rhamnolipid
breakthrough curves on activated carbon and amberlite
XAD-2 using artificial neural network and group method
data handling models,” Journal of Molecular Liquids,
vol. 206, pp. 293–299, 2015.

[51] D. M. Himmelblau, “Accounts of experiences in the applica-
tion of artificial neural networks in chemical engineering,”
Industrial & Engineering Chemistry Research, vol. 47,
no. 16, pp. 5782–5796, 2008.

[52] T. Zarra, M. G. Galang Jr., F. Ballesteros, V. Belgiornoa, and
N. V. Vincenzo, “Environmental odour management by arti-
ficial neural network - A review,” Environment International,
vol. 133, article 105189, Part B, 2019.

[53] P. Sihag, M. R. Sadikhani, V. Vambol, S. Vambol, A. K. Prab-
hakar, and N. Sharma, “Comparative study for deriving
stage-discharge-sediment concentration relationships using
soft computing techniques,” Journal of Achievements in
Materials and Manufacturing Engineering, vol. 2, no. 104,
pp. 57–76, 2021.

[54] S. Golbaz, R. Nabizadeh, M. Rafiee, and M. Yousefi, “Com-
parative study of RSM and ANN for multiple target optimiza-
tion in coagulation/precipitation process of contaminated
waters: mechanism and theory,” International Journal of
Environmental Analytical Chemistry, vol. 1, 2020.

[55] X. Du, Q. Yuan, J. Zhao, and Y. Li, “Comparison of general
rate model with a new model–artificial neural network model
in describing chromatographic kinetics of solanesol adsorp-
tion in packed column by macroporous resins,” Journal of
Chromatography, vol. 1145, no. 1-2, pp. 165–174, 2007.

[56] H. Karimi and F. Yousefi, “Correlation of vapour liquid equi-
libria of binary mixtures using artificial neural networks,”
Chinese Journal of Chemical Engineering, vol. 15, no. 5,
pp. 765–771, 2007.

[57] R. Tovar-Gómez, M. R. Moreno-Virgen, J. A. Dena-Agui-
lar, V. Hernández-Montoya, A. Bonilla-Petriciolet, and
M. A. Montes-Morán, “Modeling of fixed-bed adsorption
of fluoride on bone char using a hybrid neural network
approach,” Chemical Engineering Journal, vol. 228,
pp. 1098–1109, 2013.

[58] M. Tanzifi, M. T. Yaraki, A. D. Kiadehi et al., “Adsorption of
amido black 10B from aqueous solution using polyaniline/
SiO2 nanocomposite: experimental investigation and artifi-
cial neural network modeling,” Journal of Colloid and Inter-
face Science, vol. 510, pp. 246–261, 2018.

[59] S. M. Asl, M. Ahmadi, M. Ghiasvand, A. Tardast, and R. Kata,
“Artificial neural network (ANN) approach for modeling of
Cr(VI) adsorption from aqueous solution by zeolite prepared
from raw fly ash (ZFA),” Journal of Industrial and Engineer-
ing Chemistry, vol. 19, no. 3, pp. 1044–1055, 2013.

[60] V. Brocardo de León, B. A. Ferraz, C. Z. Brusamarello,
G. Petroli, M. Domenico, and F. Batista, “Artificial neural
network for prediction of color adsorption from an industrial
textile effluent using modified sugarcane bagasse: characteri-
zation, kinetics and isotherm studies,” Environmental Nano-
technology, Monitoring & Management, vol. 14, article
100387, 2020.

[61] K. R. Raj, A. Kardam, J. K. Arora, and S. Srivastava, “An
application of ANN modeling on the biosorption of arsenic,”
Waste and Biomass Valorization, vol. 4, no. 2, pp. 401–407,
2013.

[62] H. E. Reynel-Avila, A. Bonilla-Petriciolet, and G. de la Rosa,
“Analysis and modeling of multicomponent sorption of
heavy metals on chicken feathers using Taguchi’s experimen-
tal designs and artificial neural networks,” Desalination and
Water Treatment, vol. 55, no. 7, pp. 1885–1899, 2015.

[63] J. J. Hopfield, “Artificial neural networks,” Circuits and
Devices Magazine, IEEE, vol. 4, no. 5, pp. 3–10, 1988.

[64] B. Yegnanarayana, Artificial neural networks, vol. 476, PHI
Learning Pvt. Ltd, 2009.

[65] P. J. Drew and J. R. Monson, “Artificial neural networks,”
Surgery, vol. 127, no. 1, pp. 3–11, 2000.

[66] A. Abraham, “Artificial Neural Networks,” in Handbook of
measuring system design, John Wiley and Sons, 2005.

[67] K. S. Narendra and K. Parthasarathy, “Identification and con-
trol of dynamical systems using neural networks,” IEEE
Transactions on Neural Networks, vol. 1, no. 1, pp. 4–27,
1990.

[68] K. Mäkisara, O. Simulates, J. Kangas, and T. Kohonen, Artifi-
cial Neural Networks, vol. 2, Elsevier, 2014.

[69] M. Gupta, L. Jin, and N. Homma, Static and Dynamic Neural
Networks: From Fundamentals to Advanced Theory, vol. 752,
John Wiley & Sons, 2004.

[70] Y. M. Chiang, L. C. Chang, and F. J. Chang, “Comparison of
static-feedforward and dynamic-feedback neural networks
for rainfall-runoff modeling,” Journal of Hydrology, vol. 290,
no. 3-4, pp. 297–311, 2004.

[71] B. A. Pearlmutter, “Learning state space trajectories in recur-
rent neural networks,” Neural Computation, vol. 1, no. 2,
pp. 263–269, 1989.

[72] W. T. Miller, P. J. Werbos, and R. S. Sutton, Neural Networks
for Control, vol. 525, MIT Press, 1995.

[73] I. A. Basheer and M. Hajmeer, “Artificial neural networks:
fundamentals, computing, design, and application,” Journal
of Microbiological Methods, vol. 43, no. 1, pp. 3–31, 2000.

[74] J. Ye, X. Cong, P. Zhang et al., “Operational parameter impact
and back propagation artificial neural network modeling for
phosphate adsorption onto acid-activated neutralized red
mud,” Journal of Molecular Liquids, vol. 216, pp. 35–41, 2016.

[75] M. Tanzifi, S. H. Hosseini, A. D. Kiadehi et al., “Artificial neu-
ral network optimization for methyl orange adsorption onto

41Adsorption Science & Technology



polyaniline nano-adsorbent: Kinetic, isotherm and thermo-
dynamic studies,” Journal of Molecular Liquids, vol. 244,
pp. 189–200, 2017.

[76] M. K. Uddin, R. A. K. Rao, and K. V. Mouli, “The artificial
neural network and box-behnken design for Cu2+ removal
by the pottery sludge from water samples: equilibrium,
kinetic and thermodynamic studies,” Journal of Molecular
Liquids, vol. 266, pp. 617–627, 2018.

[77] M. Vakili, A. Mojiri, T. Kindaichi et al., “Cross-linked chito-
san/zeolite as a fixed-bed column for organic micropollutants
removal from aqueous solution, optimization with RSM and
artificial neural network,” Journal of Environmental Manage-
ment, vol. 250, article 109434, 2019.

[78] N. Messikh, N. Bougdah, S. Bousba, and F. Djazi, “Modeling
the adsorption of chlorobenzene on modified bentonite using
an artificial neural network,” Current Research in Green and
Sustainable Chemistry, vol. 3, article 100026, 2020.

[79] A. Samadi-Maybodi and M. Nikou, “Removal of sarafloxacin
from aqueous solution by a magnetized metal-organic frame-
work; artificial neural network modeling,” Polyhedron,
vol. 179, article 114342, 2020.

[80] Z. U. Zango, A. Ramli, K. Jumbri et al., “Optimization
studies and artificial neural network modeling for pyrene
adsorption onto UiO-66(Zr) and NH2-UiO-66(Zr) metal
organic frameworks,” Polyhedron, vol. 192, article 114857,
2020.

[81] A. N. Kolmogorov, “The representation of continuous func-
tions of many variables by superposition of continuous func-
tions of one variable and addition,” in Akademii Doklady
Akademii Nauk SSSR, vol. 114, pp. 953–956, Russian Acad-
emy of Sciences, 1957.

[82] R. Hecht-Nielsen, “Theory of the backpropagation neural
network,” in Neural Networks, 1989. IJCNN, pp. 593–605,
International Joint Conference on IEEE, 1989.

[83] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feed-
forward networks are universal approximators,” Neural net-
works, vol. 2, no. 5, pp. 359–366, 1989.

[84] R. Hecht-Nielsen, Neurocomputing, vol. 433, Addison-Wes-
ley, 1990.

[85] A. M. Chen and R. Hecht-Nielsen, “On the geometry of as a
feedforward/feedback controller neural network weight
spaces,” in Artificial Neural Networks, pp. 1–4, Second Inter-
national Conference, 1991.

[86] T. Kohonen, “Self-organized formation of topologically cor-
rect feature maps,” Biological Cybernetics, vol. 43, no. 1,
pp. 59–69, 1982.

[87] K. Mehrotra, C. K. Mohan, and S. Ranka, Elements of Artifi-
cial Neural Networks, MIT Press, Cambridge, MA, 1997.

[88] G. Cybenko, “Approximation by superpositions of a sigmoi-
dal function,” Mathematics of Control Signals and Systems,
vol. 2, no. 4, pp. 303–314, 1989.

[89] S. Hashem, “Sensitivity analysis for feedforward artificial
neural networks with differentiable activation functions,”
International Joint Conference on Neural Networks, vol. 1,
pp. 419–424, 1992.

[90] W. Shen, X. Guo, C. Wu, and D.Wu, “Forecasting stock indi-
ces using radial basis function neural networks optimized by
artificial fish swarm algorithm,” Knowledge-Based Systems,
vol. 24, no. 3, pp. 378–385, 2011.

[91] R. Rojas, Neural networks: a systematic introduction, vol. 502,
Springer Science & Business Media, 2013.

[92] J. Leonard and M. A. Kramer, “Improvement of the backpro-
pagation algorithm for training neural networks,” Computers
& Chemical Engineering, vol. 14, pp. 337–341, 1990.

[93] H. White, Artificial neural networks: approximation and
learning theory, vol. 320, Blackwell Publishers, Inc, 1992.

[94] A. T. C. Goh, “Back-propagation neural networks for model-
ing complex systems,” Artificial Intelligence in Engineering,
vol. 9, no. 3, pp. 143–151, 1995.

[95] S. S. Haykin, Neural networks and learning machines, vol. 3,
Pearson Education, Upper Saddle River, 2009.

[96] Y. Yang, G. Wang, B. Wang et al., “Biosorption of Acid Black
172 and Congo Red from aqueous solution by nonviable
_Penicillium_ YW 01: Kinetic study, equilibrium isotherm
and artificial neural network modeling,” Bioresource Technol-
ogy, vol. 102, no. 2, pp. 828–834, 2011.

[97] H. Y. Chong, H. J. Yap, S. C. Tan, K. S. Yap, and S. Y. Wong,
“Advances of metaheuristic algorithms in training neural net-
works for industrial applications,” Soft Computing, vol. 25,
no. 16, pp. 11209–11233, 2021.

[98] A. Poznyak, I. Chairez, and T. Poznyak, “A survey on artifi-
cial neural networks application for identification and control
in environmental engineering: biological and chemical sys-
tems with uncertain models,” Annual Reviews in Control,
vol. 48, pp. 250–272, 2019.

[99] G. Alam, I. Ihsanullah, M. Naushad, and M. Sillampaa,
“Applications of artificial intelligence in water treatment for
optimization and automation of adsorption processes: recent
advances and prospects,” Chemical Engineering Journal,
vol. 427, article 130011, 2022.

[100] S. A. Aani, T. Bonny, S. W. Hasan, and N. Hilal, “Can
machine language and artificial intelligence revolutionize
process automation for water treatment and desalination?,”
Desalination, vol. 458, pp. 84–96, 2019.

[101] Z. Ye, J. Yang, N. Zhong, X. Tu, J. Jia, and J. Wang, “Tackling
environmental challenges in pollution controls using artificial
intelligence: a review,” Science of the Total Environment,
vol. 699, article 134279, 2020.

[102] B. Pomeroy, M. Grile, and B. Likozar, “Artificial neural net-
works for bio-based chemical production or biorefining: a
review,” Renewable and Sustainable Energy Reviews,
vol. 153, article 111748, 2022.

[103] B. Noroozi and G. A. Sorial, “Applicable models for multi-
component adsorption of dyes: a review,” Journal of Environ-
mental Sciences, vol. 25, no. 3, pp. 419–429, 2013.

[104] S. V. Manjunath, R. Baghel, and M. Kumar, “Antagonistic
and synergistic analysis of antibiotic adsorption on Prosopis
juliflora activated carbon in multicomponent systems,”
Chemical Engineering Journal, vol. 381, article 122713, 2020.

[105] B. G. Saucedo-Delgado, D. A. De Haro-Del Rio, L. M. Gon-
zÁlez-Rodríguez et al., “Fluoride adsorption from aqueous
solution using a protonated clinoptilolite and its modeling
with artificial neural network-based equations,” Journal of
Fluorine Chemistry, vol. 204, pp. 98–106, 2017.

[106] J. A. Rodríguez-Romero, D. I. Mendoza-Castillo, H. E.
Reynel-Avila et al., “Preparation of a new adsorbent for
the removal of arsenic and its simulation with artificial
neural network-based adsorption models,” Journal of Envi-
ronmental Chemical Engineering, vol. 8, no. 4, article
103928, 2020.

[107] C. Brasquet and P. Le Cloirec, “QSAR for organics adsorption
onto activated carbon in water: what about the use of neural

42 Adsorption Science & Technology



networks?,” Water Research, vol. 33, no. 17, pp. 3603–3608,
1999.

[108] C. Brasquet and P. Le Cloirec, “Effects of activated carbon
cloth surface on organic adsorption in aqueous solutions:
use of statistical methods to describe mechanisms,” Lang-
muir, vol. 15, no. 18, pp. 5906–5912, 1999.

[109] D. J. Blum, I. H. Suffet, and J. P. Duguet, “Quantitative
structure-activity relationship using molecular connectivity
for the activated carbon adsorption of organic chemicals in
water,” Water Research, vol. 28, no. 3, pp. 687–699, 1994.

[110] K. H. Chu and E. Y. Kim, “Predictive modeling of competitive
biosorption equilibrium data,” Biotechnology and Bioprocess
Engineering, vol. 11, no. 1, pp. 67–71, 2006.

[111] F. Pagnanelli, M. Trifoni, F. Beolchini, A. Exposito, L. Toro,
and F. Veglio, “Equilibrium biosorption studies in single
and multi-metal systems,” Process Biochemistry, vol. 37,
no. 2, pp. 115–124, 2001.

[112] T. N. Singh, V. K. Singh, and S. Sinha, “Prediction of cad-
mium removal using an artificial neural network and a
neuro-fuzzy technique,” Mine Water and the Environment,
vol. 25, no. 4, pp. 214–219, 2006.

[113] S. Aber, N. Daneshvar, S. M. Soroureddin, A. Chabok, and
K. Asadpour-Zeynali, “Study of acid orange 7 removal from
aqueous solutions by powdered activated carbon and model-
ing of experimental results by artificial neural network,”
Desalination, vol. 211, no. 1-3, pp. 87–95, 2007.

[114] K. Yetilmezsoy and S. Demirel, “Artificial neural network
(ANN) approach for modeling of Pb(II) adsorption from
aqueous solution by Antep pistachio ( _Pistacia Vera_ L.)
shells,” Journal of Hazardous Materials, vol. 153, no. 3,
pp. 1288–1300, 2008.

[115] K. V. Kumar and K. Porkodi, “Modelling the solid-liquid
adsorption processes using artificial neural networks trained
by pseudo second order kinetics,” Chemical Engineering Jour-
nal, vol. 148, no. 1, pp. 20–25, 2009.

[116] M. T. Garza-González, M. M. Alcalá-Rodríguez, R. Pérez-Eli-
zondo et al., “Artificial neural network for predicting biosorp-
tion of methylene blue by Spirulina sp,” Water Science &
Technology, vol. 63, no. 5, pp. 977–983, 2011.

[117] F. Geyikçim, E. Kılıç, S. Çoruh, and S. Elevli, “Modelling of
lead adsorption from industrial sludge leachate on red mud
by using RSM and ANN,” Chemical Engineering Journal,
vol. 183, pp. 53–59, 2012.

[118] F. Masood, M. Ahmad, M. A. Ansari, and A. Malik, “Predic-
tion of biosorption of total chromium by Bacillus sp. using
artificial neural network,” Bulletin of Environmental Contam-
ination and Toxicology, vol. 88, no. 4, pp. 563–570, 2012.

[119] I. M. Savic, S. T. Stojiljkovic, I. M. Savic, S. B. Stojanovic, and
K. Moder, “Modeling and optimization of Fe(III) adsorption
from water using bentonite clay: comparison of central com-
posite design and artificial neural network,” Chemical Engi-
neering & Technology, vol. 35, no. 11, pp. 2007–2014, 2012.

[120] M. Khajeh and S. Hezaryan, “Combination of ACO-artificial
neural network method for modeling of manganese and
cobalt extraction onto nanometer SiO2 from water samples,”
Journal of Industrial and Engineering Chemistry, vol. 19,
no. 6, pp. 2100–2107, 2013.

[121] D. Bingöl, M. Inal, and S. Çetintaş, “Evaluation of copper bio-
sorption onto date palm (Phoenix dactyliferaL.) seeds with
MLR and ANFIS models,” Industrial & Engineering Chemis-
try Research, vol. 52, no. 12, pp. 4429–4435, 2013.

[122] A. Çelekli, H. Bozkurt, and F. Geyik, “Use of artificial neural
networks and genetic algorithms for prediction of sorption of
an azo-metal complex dye onto lentil Straw,” Bioresource
Technology, vol. 129, pp. 396–401, 2013.

[123] R. Nia, M. Ghaedi, and A. M. Ghaedi, “Modeling of reactive
orange 12 (RO 12) adsorption onto gold nanoparticle- acti-
vated carbon using artificial neural network optimization
based on an imperialist competitive algorithm,” Journal of
Molecular Liquids, vol. 195, pp. 219–229, 2014.

[124] S. Çoruh, F. Geyikçi, E. Kılıç, and U. Çoruh, “The use of
NARX neural network for modeling of adsorption of zinc
ions using activated almond shell as a potential biosor-
bent,” Bioresource Technology, vol. 151, pp. 406–410, 2014.

[125] D. I. Mendoza-Castillo, N. Villalobos-Ortega, A. Bonilla-Pet-
riciolet, and J. C. Tapia-Picazo, “Neural network modeling of
heavy metal sorption on lignocellulosic biomasses: effect of
metallic ion properties and sorbent characteristics,” Indus-
trial & Engineering Chemistry Research, vol. 54, pp. 443–
453, 2015.

[126] A. Asfaram, M. Ghaedi, S. Hajati, and A. Goudarzi, “Ternary
adsorption ontoMnO2 nanoparticle-loaded activated carbon:
derivative spectrophotometry and modeling,” RSC Advances,
vol. 88, pp. 72300–72320, 2015.

[127] S. Bhattacharyya, S. Bhattacharjee, and N. K. Mondal, “A
quantum backpropagation multilayer perceptron (QBMLP)
for predicting iron adsorption capacity of calcareous soil
from aqueous solution,” Applied Soft Computing, vol. 27,
pp. 299–312, 2015.

[128] N. Darajeh, H. R. Masoumi, K. Kalantari et al., “Optimization
of process parameters for rapid adsorption of Pb(II), Ni(II),
and Cu(II) by magnetic/talc nanocomposite using wavelet
neural network,” Research on Chemical Intermediates,
vol. 42, no. 3, pp. 1977–1987, 2016.

[129] M. Nasr, A. D. Mahmoud, M. Fawzy, and A. Radwan, “Arti-
ficial intelligence modeling of cadmium(II) biosorption using
rice straw,” Applied Water Science, vol. 7, no. 2, pp. 823–831,
2017.

[130] A. Asfaram, M. Ghaedi, S. Hajati, and A. Goudarzi, “Synthe-
sis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic
assisted dyes adsorption: Modeling and optimization,” Ultra-
sonics Sonochemistry, vol. 32, pp. 418–431, 2016.

[131] M. Fawzy, M. Nasr, S. Adel, H. Nagy, and S. Helmi, “Environ-
mental approach and artificial intelligence for Ni(II) and
Cd(II) biosorption from aqueous solution using Typha dom-
ingensis biomass,” Ecological Engineering, vol. 95, pp. 743–
752, 2016.

[132] A. M. Ghaedi, M. Ghaedi, A. R. Pouranfard et al., “Adsorp-
tion of triamterene on multi-walled and single-walled carbon
nanotubes: artificial neural network modeling and genetic
algorithm optimization,” Journal of Molecular Liquids,
vol. 216, pp. 654–665, 2016.

[133] R. Gomez-Gonzalez, F. J. Cerino-Córdova, A. M. Garcia-León,
E. Soto-Regalado, N. E. Davila-Guzman, and J. J. Salazar-
Rabago, “Lead biosorption onto coffee grounds: comparative
analysis of several optimization techniques using equilibrium
adsorption models and ANN,” Journal of the Taiwan Institute
of Chemical Engineers, vol. 68, pp. 201–210, 2016.

[134] D. Podstawczyk and A.Witek-Krowiak, “Novel nanoparticles
modified composite eco-adsorbents–A deep insight into
kinetics modelling using numerical surface diffusion and arti-
ficial neural network models,” Chemical engineering research
and design, vol. 109, pp. 1–17, 2016.

43Adsorption Science & Technology



[135] M. H. Ahmadi, M. Ghaedi, F. Yousefi, and M. Jamshidi,
“Application of random forest, radial basis function neural
networks and central composite design for modeling and/or
optimization of the ultrasonic assisted adsorption of brilliant
green on ZnS-NP-AC,” Journal of Colloid and Interface Sci-
ence, vol. 505, pp. 278–292, 2017.

[136] A. Asfaram, M. Ghaedi, M. H. Azqhandi, A. Goudarzi, and
S. Hajati, “Ultrasound-assisted binary adsorption of dyes
onto [email protected] CuS/ZnS- NC-AC as a novel adsor-
bent: Application of chemometrics for optimization and
modeling,” Journal of Industrial and Engineering Chemistry,
vol. 54, pp. 377–388, 2017.

[137] M. Dastkhoon, M. Ghaedi, A. Asfaram, M. H. Azqhandi, and
M. K. Purkait, “Simultaneous removal of dyes onto nano-
wires adsorbent use of ultrasound assisted adsorption to
clean waste water: chemometrics for modeling and optimiza-
tion, multicomponent adsorption and kinetic study,” Chemi-
cal Engineering Research and Design, vol. 124, pp. 222–237,
2017.

[138] N. Parveen, S. Zaidi, and M. Danish, “Development of SVR-
based model and comparative analysis with MLR and ANN
models for predicting the sorption capacity of Cr(VI),” Pro-
cess Safety and Environmental Protection, vol. 107, pp. 428–
437, 2017.

[139] S. Yildiz, “Artificial neural network (ANN) approach for
modeling Zn(II) adsorption in batch process,” Korean Jour-
nal of Chemical Engineering, vol. 34, no. 9, pp. 2423–2434,
2017.

[140] S. Ghosal and A. Gupta, “Sorptive equilibrium profile of fluo-
ride onto aluminum olivine ½ðFexMg1−xÞ2SiO4� composite
(AOC): physicochemical insights and isotherm modeling by
non-linear least squares regression and a novel neural-
network-based method,” Journal of Environmental Science
and Health, Part A, vol. 53, no. 12, pp. 1102–1114, 2018.

[141] R. R. Karri and J. N. Sahu, “Modeling and optimization by
particle swarm embedded neural network for adsorption of
zinc (II) by palm kernel shell based activated carbon from
aqueous environment,” Journal of Environmental Manage-
ment, vol. 206, pp. 178–191, 2018.

[142] P. Naderi, M. Shirani, A. Semnani, and A. Goli, “Efficient
removal of crystal violet from aqueous solutions with Cen-
taurea stem as a novel biodegradable bioadsorbent using
response surface methodology and simulated annealing:
Kinetic, isotherm and thermodynamic studies,” Ecotoxicology
and Environmental Safety, vol. 163, pp. 372–381, 2018.

[143] J. Pooralhossini, M. A. Zanjanchi, M. Ghaedi, A. Asfaram, and
B. Azqhandi, “Statistical optimization and modeling approach
for azo dye decolorization: combined effects of ultrasound
waves and nanomaterial-based adsorbent,” Applied Organo-
metallic Chemistry, vol. 32, no. 3, p. e4205, 2018.

[144] M. Arshadi, M. K. Abdolmaleki, H. Eskandarloo, and
A. Abbaspourrad, “A supported dendrimer with terminal
symmetric primary amine sites for adsorption of salicylic
acid,” Journal of Colloid and Interface Science, vol. 540,
pp. 501–514, 2019.

[145] M. R. Gadekar and M. M. Ahammed, “Modelling dye
removal by adsorption onto water treatment residuals using
combined response surface methodology-artificial neural
network approach,” Journal of Environmental Management,
vol. 231, pp. 241–248, 2019.

[146] A. M. Ghaedi, S. Karamipour, A. Vafaei, M. Baneshi, and
V. Kiarostami, “Optimization and modeling of simultaneous

ultrasound-assisted adsorption of ternary dyes using copper
oxide nanoparticles immobilized on activated carbon using
response surface methodology and artificial neural network,”
Ultrasonics – Sonochemistry, vol. 51, pp. 264–280, 2019.

[147] A. Jadhav and V. C. Srivastava, “Multicomponent adsorption
isotherm modeling using thermodynamically inconsistent
and consistent models,” AIChE Journal, vol. 65, no. 11,
pp. 1–12, 2019.

[148] S. G. Nasab, A. Semnani, A. Teimouri, M. J. Yazd, T. M. Isfa-
hani, and S. Habibollahi, “Decolorization of crystal violet
from aqueous solutions by a novel adsorbent chitosan/nano-
diopside using response surface methodology and artificial
neural network-genetic algorithm,” International Journal of
Biological Macromolecules, vol. 124, pp. 429–443, 2019.

[149] K. Sharafi, M. Pirsaheb, V. Gupta et al., “Phenol adsorption
on scoria stone as adsorbent - Application of response surface
method and artificial neural networks,” Journal of Molecular
Liquids, vol. 274, pp. 699–714, 2019.

[150] A. Sadeghizadeh, F. Ebrahimi, M. Heydari,
M. Tahmasebikohyani, F. Ebrahimi, and A. Sadeghizadeh,
“Adsorptive removal of Pb (II) by means of hydroxyapatite/
chitosan nanocomposite hybrid nanoadsorbent: ANFIS
modeling and experimental study,” Journal of Environmental
Management, vol. 232, pp. 342–353, 2019.

[151] S. Ullah, M. Assiri, A. Al-Sehemi et al., “Characteristically
insights, artificial neural network, (ANN), equilibrium, and
kinetic studies of PB(II) ion adsorption on rice husks treated
with nitric acid,” International Journal of Environmental
Research, vol. 14, pp. 43–60, 2020.

[152] X. Zhu, X. Wang, and Y. S. Ok, “The application of machine
learning methods for prediction of metal sorption onto bio-
chars,” Journal of Hazardous Materials, vol. 378, article
120727, 2019.

[153] D. S. Franco, F. A. Duarte, N. P. Salau, and G. L. Dotto,
“Analysis of indium (III) adsorption from leachates of LCD
screens using artificial neural networks (ANN) and adaptive
neuro-fuzzy inference systems (ANIFS),” Journal of Hazard-
ous Materials, vol. 384, article 121137, 2020.

[154] A. K. Nayak and A. Pal, “Statistical modeling and perfor-
mance evaluation of biosorptive removal of Nile blue A by
lignocellulosic agricultural waste under the application of
high- strength dye concentrations,” Journal of Environmental
Chemical Engineering, vol. 8, no. 2, article 103677, 2020.

[155] A. Thirunavukkarasu and R. Nithya, “Adsorption of acid
orange 7 using green synthesized CaO/CeO2 composite: an
insight into kinetics, equilibrium, thermodynamics, mass
transfer and statistical models,” Journal of the Taiwan Insti-
tute of Chemical Engineers, vol. 111, pp. 44–62, 2020.

[156] J. Qi, Y. Hou, J. Hu, W. Ruan, Y. Xiang, and X. Wei, “Decon-
tamination of methylene Blue from simulated wastewater by
the mesoporous rGO/Fe/Co nanohybrids: artificial intelli-
gence modeling and optimization,”Materials Today Commu-
nications, vol. 24, article 100709, 2020.

[157] M. S. Netto, J. S. Oliveira, N. P. G. Salau, and G. L. Dotto,
“Analysis of adsorption isotherms of Ag+, Co+2, and Cu+2

onto zeolites using computational intelligence models,” Jour-
nal of Environmental Chemical Engineering, vol. 9, no. 1, arti-
cle 104960, 2021.

[158] K. Yadav and S. Jagadevan, “Influence of torrefaction and
pyrolysis on engineered biochar and its applicability in
defluoridation: Insight into adsorption mechanism, batch
adsorber design and artificial neural network modelling,”

44 Adsorption Science & Technology



Journal of Analytical and Applied Pyrolysis, vol. 154, article
105015, 2021.

[159] N. Sohrabi, R. Mohammadi, H. R. Ghassemzadeh, and S. S.
Seyedloo, “Equilibrium, kinetic and thermodynamic study
of diazinon adsorption from water by clay/GO/Fe3O4:
Modeling and optimization based on response surface meth-
odology and artificial neural network,” Journal of Molecular
Liquids, vol. 328, article 115384, 2021.

[160] P. Thomas, N. P. Rumjit, C. W. Lai, and M. R. Johan, “EDTA
functionalised cocoa pod carbon encapsulated SPIONs via
green synthesis route to ameliorate textile dyes - Kinetics, iso-
therms, central composite design and artificial neural net-
work,” Sustainable Chemistry and Pharmachy, vol. 19,
article 100349, 2021.

[161] X. Wu, J. Hu, X. Wang, L. Xin, C. Li, and X. Wei, “Effective
Removal of Arsenide from Aqueous Solutions Using Meso-
porous CoFe2O4/Graphene Oxide Nanocomposites Assisted
by Artificial Intelligence,” Carbon Letters, vol. 31, no. 6,
pp. 1163–1178, 2021.

[162] R. Duan and C. Fedler, “Modeling phosphorus adsorption
onto polyaluminium chloride water treatment residuals,”
Water Supply, vol. 21, no. 1, pp. 458–469, 2021.

[163] V. Singh, J. Singh, and V. Mishra, “Development of a cost-
effective, recyclable and viable metal ion doped adsorbent
for simultaneous adsorption and reduction of toxic Cr (VI)
ions,” Journal of Environmental Chemical Engineering,
vol. 9, no. 2, article 105124, 2021.

[164] A. J. Veeraragavan, R. Shanmugavel, N. Abraham,
D. Subramanian, and S. Pandian, “Kinetic studies validated
by Artificial Neural Network simulation for the removal of
dye from simulated waste water by the activated carbon pro-
duced from Acalypha indica leaves,” Environmental Technol-
ogy & Innovation, vol. 21, article 101244, 2021.

[165] S. Rasam, M. K. Moraveji, A. Soria-Verdugo, and A. Salimi,
“Synthesis, characterization and absorbability of Crocus sati-
vus petals hydrothermal carbonized hydrochar and activated
hydrochar,” Chemical Engineering and Processing – Process
Intensification, vol. 159, article 108236, 2021.

[166] A. H. Alibak, M. Khodarahmi, P. Fayyazsanavi, S. M. Aliza-
deh, A. J. Hadi, and E. Aminzadehsarikhanbeglou, “Simula-
tion the adsorption capacity of polyvinyl alcohol/
carboxymethyl cellulose based hydrogels towards methylene
blue in aqueous solutions using cascade correlation neural
network (CCNN) technique,” Journal of Cleaner Production,
vol. 337, article 130509, 2022.

[167] Y. Zhao, D. Fan, Y. Li, and F. Yang, “Application of machine
learning in predicting the adsorption capacity of organic
compounds onto biochar and resin,” Environmental
Research, vol. 208, article 112694, 2022.

[168] K. Zeng, K. Hachem, M. Kuznetsova et al., “Molecular
dynamic simulation and artificial intelligence of lead ions
removal from aqueous solution using magnetic-ash-
graphene oxide nanocomposite,” Journal of Molecular Liq-
uids, vol. 347, article 118290, 2022.

[169] A. C. Texier, Y. Andrès, C. Faur-Brasquet, and P. Le Cloirec,
“Fixed-bed study for lanthanide (La, Eu, Yb) ions removal
from aqueous solutions by immobilized Pseudomonas aerugi-
nosa: experimental data and modelization,” Chemosphere,
vol. 47, no. 3, pp. 333–342, 2002.

[170] D. Park, Y. S. Yun, D. S. Lee, S. R. Lim, and J. M. Park, “Col-
umn study on Cr(VI)-reduction using the brown seaweed

Ecklonia biomass,” Journal of HazardousMaterials, vol. B137,
pp. 1377–1384, 2006.

[171] C. Faur, A. Cougnaud, G. Dreyfus, and P. Le Cloirec, “Model-
ling the breakthrough of activated carbon filters by pesticides
in surface waters with static and recurrent neural networks,”
Chemical Engineering Journal, vol. 145, no. 1, pp. 7–15, 2008.

[172] B. Balci, O. Keskinkan, and M. Avci, “Use of BDST and an
ANN model for prediction of dye adsorption efficiency of
Eucalyptus camaldulensis barks in fixed-bed system,” Expert
Systems with Applications, vol. 38, no. 1, pp. 949–956, 2011.

[173] L. Cavas, Z. Karabay, H. Alyuruk, H. Doğan, and G. K.
Demir, “Thomas and artificial neural network models for
the fixed-bed adsorption of methylene blue by a beach waste
Posidonia oceanica (L.) dead leaves,” Chemical Engineering
Journal, vol. 171, no. 2, pp. 557–562, 2011.

[174] Y. Zhang and B. Pan, “Modeling batch and column phos-
phate removal by hydrated ferric oxide-based nanocomposite
using response surface methodology and artificial neural net-
work,” Chemical Engineering Journal, vol. 249, pp. 111–120,
2014.

[175] M. Masomi, A. A. Ghoreyshi, G. D. Najafpour, and A. R. B.
Mohamed, “Dynamic adsorption of phenolic compounds
on activated carbon produced from pulp and paper mill
sludge: experimental study and modeling by artificial neural
network (ANN),” Desalination and Water Treatment,
vol. 55, no. 6, pp. 1453–1466, 2015.

[176] C. K. Rojas-Mayorga, A. Bonilla-Petriciolet, F. J. Sánchez-
Ruiz et al., “Breakthrough curve modeling of liquid-phase
adsorption of fluoride ions on aluminum-doped bone char
using micro-columns: effectiveness of data fitting
approaches,” Journal of Molecular Liquids, vol. 208,
pp. 114–121, 2015.

[177] L. E. Hernández-Hernández, A. Bonilla-Petriciolet, D. I.
Mendoza-Castillo, and H. E. Reynel-Ávila, “Antagonistic
binary adsorption of heavy metals using stratified bone char
columns,” Journal of Molecular Liquids, vol. 241, pp. 334–
346, 2017.

[178] F. A. Gordillo-Ruiz, F. J. Sánchez-Ruiz, D. Mendoza-Castillo,
H. E. Reynel-Avila, and A. Bonilla-Petriciolet, “Dynamic
fuzzy neural network for simulating the fixed-bed adsorption
of cadmium, nickel and zinc on bone char,” International
Journal of Environmental Science and Technology, vol. 15,
no. 5, pp. 915–926, 2018.

[179] Z. W. Liu, F. N. Liang, and Y. Z. Liu, “Artificial neural net-
work modeling of biosorption process using agricultural
wastes in a rotating packed bed,” Applied Thermal Engineer-
ing, vol. 140, pp. 95–101, 2018.

[180] M. Shanmugaprakash, S. SVenkatachalam, K. Rajendran, and
A. Pugazhendhi, “Biosorptive removal of Zn(II) ions by Pon-
gamia oil cake (Pongamia pinnata) in batch and fixed-bed
column studies using response surface methodology and arti-
ficial neural network,” Journal of Environmental Manage-
ment, vol. 227, pp. 216–228, 2018.

[181] S. Nag, N. Bar, and S. K. Das, “Sustainable bioremadiation of
Cd(II) in fixed bed column using green adsorbents: applica-
tion of Kinetic models and GA-ANN technique,” Environ-
mental technology & innovation, vol. 13, pp. 130–145, 2019.

[182] S. Anbazhagan, V. Thiruvengatam, and K. Kulanthai, “Adap-
tive neuro-fuzzy inference system and artificial neural net-
work modeling for the adsorption of methylene blue by
novel adsorbent in a fixed-bed column method,” Iranian

45Adsorption Science & Technology



Journal of Chemistry and Chemical Engineering, vol. 39,
pp. 75–93, 2020.

[183] M. Yusuf, K. Song, and L. Li, “Fixed bed column and artificial
neural network model to predict heavy metals adsorption
dynamic on surfactant decorated graphene,” Colloids and
Surfaces A, vol. 585, article 124076, 2020.

[184] Y. Mesellem, A. E. H. Abdallah, M. Laidi, S. Hanini, and
M. Hentabli, “Artificial neural network modelling of multi-
system dynamic adsorption of organic pollutants on activated
carbon,” Journal of Chemists and Chemical Engineers of Cro-
atia, vol. 70, no. 1-2, pp. 1–12, 2021.

[185] A. E. Dil, M. Ghaedi, A. Ghaedi, A. Asfaram, M. Jamshidi,
and M. K. Purkait, “Application of artificial neural net-
work and response surface methodology for the removal
of crystal violet by zinc oxide nanorods loaded on activate
carbon: kinetics and equilibrium study,” Journal of the Tai-
wan Institute of Chemical Engineers, vol. 59, pp. 210–220,
2016.

[186] M. Dolatabadi, M. Mehrabpour, M. Esfandyari, H. Alidadi,
and M. Davoudi, “Modeling of simultaneous adsorption of
dye and metal ion by sawdust from aqueous solution using
of ANN and ANFIS,” Chemometrics and Intelligent Labora-
tory Systems, vol. 181, pp. 72–78, 2018.

[187] Y. Y. Yang, Z. L. Li, G. Wang, X. P. Zhao, D. E. Crowley, and
Y. H. Zhao, “Computational identification and analysis of the
key biosorbent characteristics for the biosorption process of
reactive black 5 onto fungal biomass,” PLoS One, vol. 7,
no. 3, article e33551, 2012.

[188] L. Achenie, M. A. Butkus, D. Grasso, C. P. Schulthess,
T. Morris, and J. Hyde, “A comparative study of neural net-
work and mechanistic models for surface complexation,”
Advances in Environmental Research, vol. 5, no. 2, pp. 137–
143, 2001.

[189] K. V. Kumar, K. Porkodi, R. L. A. Rondon, and F. Rocha,
“Neural network modeling and simulation of the solid/liquid
activated carbon adsorption process,” Industrial & Engineer-
ing Chemistry Research, vol. 47, no. 2, pp. 486–490, 2008.

[190] N. Prakash, S. A. Manikandan, L. Govindarajan, and
V. Vijayagopal, “Prediction of biosorption efficiency for the
removal of copper(II) using artificial neural networks,” Jour-
nal of Hazardous Materials, vol. 152, no. 3, pp. 1268–1275,
2008.

[191] K. P. Singh, P. Ojha, A. Malik, and G. Jain, “Partial least
squares and artificial neural networks modeling for predict-
ing chlorophenol removal from aqueous solution,” Chemo-
metrics and Intelligent Laboratory Systems, vol. 99, no. 2,
pp. 150–160, 2009.

[192] A. R. Khataee, G. Dehghan, A. Ebadi, M. Zarei, and
M. Pourhassan, “Biological treatment of a dye solution by
Macroalgae Chara sp.: Effect of operational parameters,
intermediates identification and artificial neural network
modeling,” Bioresource Technology, vol. 101, no. 7,
pp. 2252–2258, 2010.

[193] A. Çelekli and F. Geyik, “Artificial neural networks (ANN)
approach for modeling of removal of Lanaset Red G on
Chara contraria,” Bioresource Technology, vol. 102, no. 10,
pp. 5634–5638, 2011.

[194] H. Eroglu, M. Aktan, and G. Akkaya, “Artifical neural net-
work (ANN) modeling and analysis of radioactive gallium-
67 adsorption from aqueous solution with waste acorns
ofQuercus ithaburensis,” Journal of Chemical & Engineering
Data, vol. 56, no. 5, pp. 1910–1917, 2011.

[195] A. K. Giri, R. K. Patel, and S. S. Mahapatra, “Artificial neural
network (ANN) approach for modelling of arsenic (III) bio-
sorption from aqueous solution by living cells of Bacillus
cereus biomass,” Chemical Engineering Journal, vol. 178,
pp. 15–25, 2011.

[196] A. R. Khataee, G. Dehghan, M. Zarei, E. Ebadi, and
M. Pourhassan, “Neural network modeling of biotreatment
of triphenylmethane dye solution by a green macroalgae,”
Chemical Engineering Research and Design, vol. 89, no. 2,
pp. 172–178, 2011.

[197] A. R. Khataee, M. Zarei, G. Dehghan, E. Ebadi, and
M. Pourhassan, “Biotreatment of a triphenylmethane dye
solution using a Xanthophyta alga: modeling of key factors
by neural network,” Journal of the Taiwan Institute of Chem-
ical Engineers, vol. 42, no. 3, pp. 380–386, 2011.

[198] U. Özdemir, B. Özbay, S. Veli, and S. Zor, “Modeling adsorp-
tion of sodium dodecyl benzene sulfonate (SDBS) onto poly-
aniline (PANI) by using multi linear regression and artificial
neural networks,” Chemical Engineering Journal, vol. 178,
pp. 183–190, 2011.

[199] N. G. Turan, B. Mesci, and O. Ozgonenel, “Artificial neural
network (ANN) approach for modeling Zn(II) adsorption
from leachate using a new biosorbent,” Chemical Engineering
Journal, vol. 173, no. 1, pp. 98–105, 2011.

[200] J. K. Arora and S. Srivastava, “Simulation and optimization of
biosorption studies for prediction of sorption efficiency of
Leucaena Leucocephala seeds for the removal of Ni (II) from
Waste Water,” Chemistry of Phytopotentials: Health, Energy
and Environmental Perspectives, vol. 53, pp. 253–257, 2012.

[201] D. Bingöl, M. Hercan, S. Elevli, and E. Kiliç, “Comparison of
the results of response surface methodology and artificial
neural network for the biosorption of lead using black
cumin,” Bioresource Technology, vol. 112, pp. 111–115, 2012.

[202] A. Çelekli, S. S. Birecikligil, F. Geyik, and H. Bozkurt, “Predic-
tion of removal efficiency of Lanaset Red G on walnut husk
using artificial neural network model,” Bioresource Technol-
ogy, vol. 103, no. 1, pp. 64–70, 2012.

[203] S. K. Deshmukh, “Indigo dye removal by using coconut shell
adsorbent and performance evaluation by artificial neural
network,” Engineering and Technology, pp. 255–263, 2012.

[204] M. Dutta, P. Ghosh, and J. K. Basu, “Application of artificial
neural network for the decolorization of direct blue 86 by
using microwave assisted activated carbon,” Journal of the
Taiwan Institute of Chemical Engineers, vol. 43, no. 6,
pp. 879–888, 2012.

[205] S. Elemen, E. P. Kumbasar, and S. Yapar, “Modeling the
adsorption of textile dye on organoclay using an artificial
neural network,” Dyes and Pigments, vol. 95, no. 1, pp. 102–
111, 2012.

[206] A. Kardam, K. R. Raj, J. K. Arora, and S. Srivastava, “Artificial
neural network modeling for biosorption of Pb (II) ions on
nanocellulose fibers,” BioNanoScience, vol. 2, no. 3, pp. 153–
160, 2012.

[207] A. R. Khataee, A. Movafeghi, S. Torbati, S. Y. SalehiLisar, and
M. Zarei, “Phytoremediation potential of duckweed (Lemna
minor L.) in degradation of C.I. Acid Blue 92: Artificial neural
network modeling,” Ecotoxicology and Environmental Safety,
vol. 80, pp. 291–298, 2012.

[208] K. V. Shetty, L. Namitha, S. N. Rao, andM. Narayani, “Exper-
imental investigation and artificial neural network-based
modeling of batch reduction of hexavalent chromium by
immobilized cells of newly isolated strain of chromium-

46 Adsorption Science & Technology



resistant bacteria,”Water Air & Soil Pollution, vol. 223, no. 4,
pp. 1877–1893, 2012.

[209] S. Chowdhury and P. D. Saha, “Artificial neural network
(ANN) modeling of adsorption of methylene blue by
NaOH-modified rice husk in a fixed-bed column system,”
Environmental Science and Pollution Research, vol. 20,
no. 2, pp. 1050–1058, 2013.

[210] M. Dutta and J. K. Basu, “Application of artificial neural net-
work for prediction of Pb(II) adsorption characteristics,”
Environmental Science and Pollution Research, vol. 20,
no. 5, pp. 3322–3330, 2013.

[211] M. Khajeh, M. Kaykhaii, and A. Sharafi, “Application of PSO-
artificial neural network and response surface methodology
for removal of methylene blue using silver nanoparticles from
water samples,” Journal of Industrial and Engineering Chem-
istry, vol. 19, no. 5, pp. 1624–1630, 2013.

[212] K. R. Raj, A. Kardam, J. K. Arora, S. Srivastava, andM.M. Sri-
vastava, “Prediction of the As(III) and As(V) abatement
capacity of zea mays cob powder: ANN modelling,” National
Academy Science Letters, vol. 36, no. 1, pp. 41–47, 2013.

[213] K. R. Raj, A. Kardam, J. K. Arora, S. Srivastava, andM.M. Sri-
vastava, “Adsorption behavior of dyes from aqueous solution
using agricultural waste: modeling approach,” Clean Technol-
ogies and Environmental Policy, vol. 15, no. 1, pp. 73–80,
2013.

[214] Z. Shahryari, A. Mohebbi, A. S. Goharrizi, and A. A. For-
ghani, “Application of artificial neural networks for formula-
tion and modeling of dye adsorption onto multiwalled
carbon nanotubes,” Research on Chemical Intermediates,
vol. 39, no. 8, pp. 3595–3609, 2013.

[215] M. F. Ahmad, S. Haydar, A. A. Bhatti, and A. J. Bari, “Appli-
cation of artificial neural network for the prediction of bio-
sorption capacity of immobilized Bacillus subtilis for the
removal of cadmium ions from aqueous solution,” Biochem-
ical Engineering Journal, vol. 84, pp. 83–90, 2014.

[216] P. Assefi, M. Ghaedi, A. Ansari, M. H. Habibi, and M. S.
Momeni, “Artificial neural network optimization for removal
of hazardous dye Eosin Y from aqueous solution using
Co2O3-NP-AC: isotherm and kinetics study,” Journal of
Industrial and Engineering Chemistry, vol. 20, no. 5,
pp. 2905–2913, 2014.

[217] S. Chattoraj, N. K. Mondal, B. Das, P. Roy, and B. Sadhukhan,
“Carbaryl removal from aqueous solution by Lemna major
biomass using response surface methodology and artificial
neural network,” Journal of Environmental Chemical Engi-
neering, vol. 2, no. 4, pp. 1920–1928, 2014.

[218] D. S. Dlamini, A. K. Mishra, and B. B. Mamba, “Artificial
neural network simulations and experimental results:
removal of trichlorophenol from water using Chromolaena
odorata stem,” Water SA, vol. 40, no. 2, pp. 369–378, 2014.

[219] A. Esmaeili and A. A. Beni, “A novel fixed-bed reactor design
incorporating an electrospun PVA/chitosan nanofiber mem-
brane,” Journal of Hazardous Materials, vol. 280, pp. 788–
796, 2014.

[220] M. Ghaedi, A. M. Ghaedi, F. Abdi, M. Roosta, R. Sahraei, and
A. Daneshfa, “Principal component analysis-artificial neural
network and genetic algorithm optimization for removal of
reactive orange 12 by copper sulfide nanoparticles-activated
carbon,” Journal of Industrial and Engineering Chemistry,
vol. 20, no. 3, pp. 787–795, 2014.

[221] M. Ghaedi, A. M. Ghaedi, E. Negintaji, A. Ansari, and
F. Mohammadi, “Artificial neural network - Imperialist com-

petitive algorithm based optimization for removal of sunset
yellow using Zn(OH)2 nanoparticles-activated carbon,” Jour-
nal of Industrial and Engineering Chemistry, vol. 20, no. 6,
pp. 4332–4343, 2014.

[222] M. Ghaedi, A. M. Ghaedi, A. Ansari, F. Mohammadi, and
A. Vafaei, “Artificial neural network and particle swarm opti-
mization for removal of methyl orange by gold nanoparticles
loaded on activated carbon and Tamarisk,” Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy,
vol. 132, pp. 639–654, 2014.

[223] M. Ghaedi, N. Zeinali, A. M. Ghaedi, M. Teimuori, and
J. Tashkhourian, “Artificial neural network-genetic algorithm
based optimization for the adsorption of methylene blue and
brilliant green from aqueous solution by graphite oxide nano-
particle,” Spectrochimica Acta Part A: Molecular and Biomo-
lecular Spectroscopy, vol. 125, pp. 264–277, 2014.

[224] M. Ghaedi, R. Hosaininia, A. M. Ghaedi, A. Vafaei, and
F. Taghizadeh, “Adaptive neuro-fuzzy inference system
model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto
gold nanoparticales-activated carbon,” Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy, vol. 131,
pp. 606–614, 2014.

[225] D. Gnanasangeetha and S. D. Thambavani, “Neural network
modeling of placid ZNO nanoparticle as a sensible adsorbent
for removal of as(III) ions ingrained on activated silica using
acalypha indica (ZNO-NPS-AS-AI),” International Journal
of ChemTech Research, vol. 6, pp. 3546-3547, 2014.

[226] A. Hassani, F. Vafaei, S. Karaca, and A. R. Khataee, “Adsorp-
tion of a cationic dye from aqueous solution using Turkish
lignite: kinetic, isotherm, thermodynamic studies and neural
network modeling,” Journal of Industrial and Engineering
Chemistry, vol. 20, no. 4, pp. 2615–2624, 2014.

[227] J. Kabuba, A. Mulaba-Bafubiandi, and K. Battle, “Neural net-
work technique for modeling of Cu (II) removal from aque-
ous solution by clinoptilolite,” Arabian Journal for Science
and Engineering, vol. 39, no. 10, pp. 6793–6803, 2014.

[228] H. Karimi and M. Ghaedi, “Application of artificial neural
network and genetic algorithm to modeling and optimization
of removal of methylene blue using activated carbon,” Jour-
nal of Industrial and Engineering Chemistry, vol. 20, no. 4,
pp. 2471–2476, 2014.

[229] M. Khajeh and K. Dastafkan, “Removal of molybdenum
using silver nanoparticles from water samples: particle swarm
optimization–artificial neural network,” Journal of Industrial
and Engineering Chemistry, vol. 2, pp. 3014–3018, 2014.

[230] D. Krishna and R. P. Sree, “Artificial neural network (ANN)
approach for modeling chromium (VI) adsorption from
aqueous solution using a borasus flabellifer coir powder,”
International Journal of Applied Science and Engineering,
vol. 3, pp. 177–192, 2014.

[231] R. Maurya, T. Ghosh, C. Paliwal et al., “Biosorption of meth-
ylene blue by de-oiled algal biomass: equilibrium, kinetics
and artificial neural network modelling,” PLoS One, vol. 9,
no. 10, article e109545, 2014.

[232] G. K. Parshetti, S. Chowdhury, and R. Balasubramanian,
“Hydrothermal conversion of urban food waste to chars for
removal of textile dyes from contaminated waters,” Biore-
source Technology, vol. 161, pp. 310–319, 2014.

[233] S. Ramalingam, L. Parthiban, and P. Rangasamy, “Biosorp-
tion modeling with multilayer perceptron for removal of lead
and zinc ions using crab shell particles,” Arabian Journal for
Science and Engineering, vol. 39, no. 12, pp. 8465–8475, 2014.

47Adsorption Science & Technology



[234] A. A. Seolatto, T. D. Martins, R. Bergamasco, C. R. G.
Tavares, E. S. Cossich, and E. A. da Silva, “Biosorption study
of Ni2+ and Cr3+ by sargassum filipendula: kinetics and equi-
librium,” Brazilian Journal of Chemical Engineering, vol. 31,
no. 1, pp. 211–227, 2014.

[235] K. Singh, J. K. Arora, T. J. M. Sinha, and S. Srivastava, “Func-
tionalization of nanocrystalline cellulose for decontamination
of Cr(III) and Cr(VI) from aqueous system: computational
modeling approach,” Clean Technologies and Environmental
Policy, vol. 16, no. 6, pp. 1179–1191, 2014.

[236] T. Shojaeimehr, F. Rahimpour, M. A. Khadivi, and
M. Sadeghi, “A modeling study by response surface method-
ology (RSM) and artificial neural network (ANN) on Cu2+

adsorption optimization using light expended clay aggregate
(LECA),” Journal of Industrial and Engineering Chemistry,
vol. 20, no. 3, pp. 870–880, 2014.

[237] Y. Yang, X. Lin, B. Wei, Y. Zhao, and J. Wang, “Evaluation of
adsorption potential of bamboo biochar for metal-complex
dye: equilibrium, kinetics and artificial neural network
modeling,” Environmental Science and Technology Interna-
tional Journal, vol. 11, no. 4, pp. 1093–1100, 2014.

[238] Y. Yasin, F. Ahmad, M. Ghaffari-Moghaddam, and
M. Khajeh, “Application of a hybrid artificial neural
network-genetic algorithm approach to optimize the lead
ions removal from aqueous solutions using intercalated
tartrate-Mg-Al layered double hydroxides,” Environmental
Nanotechnology, Monitoring & Management, vol. 1-2,
pp. 2–7, 2014.

[239] J. Ye, P. Zhang, E. Hoffmann et al., “Comparison of response
surface methodology and artificial neural network in optimi-
zation and prediction of acid activation of bauxsol for phos-
phorus adsorption,” Water Air & Soil Pollution, vol. 225,
no. 12, p. 2225, 2014.

[240] P. Banerjee, S. Sau, P. Das, and A. Mukhopadhayay, “Optimi-
zation and modelling of synthetic azo dye wastewater treat-
ment using Graphene oxide nanoplatelets: characterization
toxicity evaluation and optimization using artificial neural
network,” Ecotoxicology and Environmental Safety, vol. 119,
pp. 47–57, 2015.

[241] A. Çelekli, H. Bozkurt, and F. Geyik, “Artificial neural net-
work and genetic algorithms for modeling of removal of an
azo dye on walnut husk,” Desalination andWater Treatment,
vol. 57, no. 33, pp. 15580–15591, 2016.

[242] A. Esmaeili and A. A. Beni, “Novel membrane reactor design
for heavy-metal removal by alginate nanoparticles,” Journal
of Industrial and Engineering Chemistry, vol. 26, pp. 122–
128, 2015.

[243] A. M. Ghaedi, M. Ghaedi, and P. Karami, “Comparison of
ultrasonic with stirrer performance for removal of sunset yel-
low (SY) by activated carbon prepared from wood of orange
tree: artificial neural network modeling,” Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy, vol. 138,
pp. 789–799, 2015.

[244] M. Ghaedi, E. Shojaeipour, A. Ghaedi, and R. Sahraei, “Iso-
therm and kinetics study of malachite green adsorption onto
copper nanowires loaded on activated carbon: artificial neu-
ral network modeling and genetic algorithm optimization,”
Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, vol. 142, pp. 135–149, 2015.

[245] M. Ghaedi, A. Ansari, F. Bahari, A. Ghaedi, and A. Vafaei, “A
hybrid artificial neural network and particle swarm optimiza-
tion for prediction of removal of hazardous dye brilliant

green from aqueous solution using zinc sulfide nanoparticle
loaded on activated carbon,” Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, vol. 137,
pp. 1004–1015, 2015.

[246] M. Ghaedi, A. Daneshfar, M. Ahmadi, and M. Momeni,
“Artificial neural network-genetic algorithm based optimiza-
tion for the adsorption of phenol red (PR) onto gold and tita-
nium dioxide nanoparticles loaded on activated carbon,”
Journal of Industrial and Engineering Chemistry, vol. 21,
pp. 587–598, 2015.

[247] A. Ghosh, P. Das, and K. Sinha, “Modeling of biosorption of
Cu(II) by alkali-modified spent tea leaves using response sur-
face methodology (RSM) and artificial neural network
(ANN),” Applied Water Science, vol. 5, no. 2, pp. 191–199,
2015.

[248] M. Maghsoudi, M. Ghaedi, A. Zinali, A. M. Ghaedi, and
M. H. Habibi, “Artificial neural network (ANN) method for
modeling of sunset yellow dye adsorption using zinc oxide
nanorods loaded on activated carbon: Kinetic and isotherm
study,” Spectrochimica Acta Part A: Molecular and Biomolec-
ular Spectroscopy, vol. 134, pp. 1–9, 2015.

[249] S. Mandal, S. S. Mahapatra, M. K. Sahu, and R. Patel, “Artifi-
cial neural network modelling of As(III) removal from water
by novel hybrid material,” Process Safety and Environmental
Protection, vol. 93, pp. 249–264, 2015.

[250] S. Mandal, S. S. Mahapatra, and R. K. Patel, “Enhanced
removal of Cr(VI) by cerium oxide polyaniline composite:
Optimization and modeling approach using response surface
methodology and artificial neural networks,” Journal of Envi-
ronmental Chemical Engineering, vol. 3, no. 2, pp. 870–885,
2015.

[251] N. K. Mondal, R. Bhaumik, B. Das et al., “Neural network
model and isotherm study for removal of phenol from aque-
ous solution by orange peel ash,” Applied Water Science,
vol. 5, no. 3, pp. 271–282, 2015.

[252] M. S. Petrović, T. D. Šoštarić, L. L. Pezo et al., “Usefulness of
Ann-basedmodel for copper removal from aqueous solutions
using agro industrial waste materials,” Chemical Industry &
Chemical Engineering Quarterly, vol. 21, no. 2, pp. 249–259,
2015.

[253] A. Ramazanpour, S. Hojati, A. Azimi, M. Farzadiana, and
A. Khataee, “Enhanced hexavalent chromium removal
from aqueous solution using a sepiolite- stabilized zero-
valent iron nanocomposite: Impact of operational parame-
ters and artificial neural network modeling,” Journal of the
Taiwan Institute of Chemical Engineers, vol. 49, pp. 172–
182, 2015.

[254] A. Ronda, M. A. Martín-Lara, A. I. Almendros, A. Pérez, and
G. Blázquez, “Comparison of two models for the biosorption
of Pb(II) using untreated and chemically treated olive stone:
experimental design methodology and adaptive neural fuzzy
inference system (ANFIS),” Journal of the Taiwan Institute
of Chemical Engineers, vol. 54, pp. 45–56, 2015.

[255] P. Roy, U. Dey, S. Chattoraj, D. Mukhopadhyay, and N. K.
Mondal, “Modeling of the adsorptive removal of arsenic(III)
using plant biomass: a bioremedial approach,” Applied Water
Science, vol. 1, pp. 1–15, 2015.

[256] S. Saraf and V. K. Vaidya, “Statistical optimization of bio-
sorption of reactive orange 13 by dead biomass of Rhizopus
arrhizus NCIM 997 using response surface methodology,”
International Journal of Industrial Chemistry, vol. 6, no. 2,
pp. 93–104, 2015.

48 Adsorption Science & Technology



[257] B. Singh, N. Bar, and S. K. Das, “The use of artificial neural
network (ANN) for modeling of Pb(II) adsorption in batch
process,” Journal of Molecular Liquids, vol. 211, pp. 228–
232, 2015.

[258] M. Sharifzadeh and R. H. Alizadeh, “Artificial neural network
approach for modeling of mercury adsorption from aqueous
solution by Sargassum Bevanom algae,” International Journal
of Engineering Transactions B: Applications, vol. 28,
pp. 1124–1133, 2015.

[259] U. Yurtsever, M. Yurtsever, I. A. Şengil, and N. K. Yılmazço-
ban, “Fast artificial neural network (FANN) modeling of
Cd(II) ions removal by valonia resin,” Desalination and
Water Treatment, vol. 56, pp. 83–96, 2015.

[260] M. Jamshidi, M. Ghaedi, K. Dashtian et al., “Highly efficient
simultaneous ultrasonic assisted adsorption of brilliant green
and eosin B onto ZnS nanoparticles loaded activated carbon:
artificial neural network modeling and central composite
design optimization,” Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy, vol. 153, pp. 257–267, 2016.

[261] R. Khandanlou, H. R. Masoumi, M. B. Ahmad, K. Shameli,
M. Basri, and K. Kalantari, “Enhancement of heavy metals
sorption via nanocomposites of rice straw and Fe3O4 nano-
particles using artificial neural network (ANN),” Ecological
Engineering, vol. 91, pp. 249–256, 2016.

[262] S. S. Madan, K. L. Wasewar, and S. L. Pandharipande,
“Modeling the adsorption of benzeneacetic acid on CaO2
nanoparticles using artificial neural network,” Resource-Effi-
cient Technologies, vol. 2, pp. S53–S62, 2016.

[263] S. Mondal, K. Bobde, K. Aikat, and G. Halder, “Biosorptive
uptake of ibuprofen by steam activated biochar derived from
mung bean husk: Equilibrium, kinetics, thermodynamics,
modeling and eco- toxicological studies,” Journal of Environ-
mental Management, vol. 182, pp. 581–594, 2016.

[264] D. Podstawczyk, A. Witek-Krowiak, A. Dawiec, and
A. Bhatnagar, “Biosorption of copper(II) ions by flax meal:
empirical modeling and process optimization by response
surface methodology (RSM) and artificial neural network
(ANN) simulation,” Ecological Engineering, vol. 83,
pp. 364–379, 2015.

[265] P. S. Ardekani, H. Karimi, M. Ghaedi, A. Asfaram, and M. K.
Purkait, “Ultrasonic assisted removal of methylene blue on
ultrasonically synthesized zinc hydroxide nanoparticles on
activated carbon prepared from wood of cherry tree: experi-
mental design methodology and artificial neural network,”
Journal of Molecular Liquids, vol. 229, pp. 114–124, 2017.

[266] M. Baziar, A. Azari, M. Karimaei et al., “MWCNT-Fe3O4 as a
superior adsorbent for microcystins LR removal: investiga-
tion on the magnetic adsorption separation, artificial neural
network modeling, and genetic algorithm optimization,”
Journal of Molecular Liquids, vol. 241, pp. 102–113, 2017.

[267] E. A. Dil, M. Ghaedi, A. Asfaram, S. Hajati, F. Mehrabi, and
A. Goudarzi, “Preparation of nanomaterials for the
ultrasound-enhanced removal of Pb2+ ions and malachite
green dye: chemometric optimization and modeling,” Ultra-
sonics Sonochemistry, vol. 34, pp. 677–691, 2017.

[268] S. Mondal, K. Aikat, K. Siddharth et al., “Optimizing raniti-
dine hydrochloride uptake of Parthenium hysterophorus
derived N-biochar through response surface methodology
and artificial neural network,” Process Safety and Environ-
mental Protection, vol. 107, pp. 388–401, 2017.

[269] S. Roy, S. Manna, S. Sengupta, A. Ganguli, S. Goswami, and
P. Das, “Comparative assessment on defluoridation of waste

water using chemical and bio-reduced graphene oxide: batch,
thermodynamic, kinetics and optimization using response
surface methodology and artificial neural network,” Process
Safety and Environmental Protection, vol. 111, pp. 221–231,
2017.

[270] D. K. Singh, D. K. Verma, Y. Singh, and S. H. Hasan, “Prep-
aration of CuO nanoparticles using Tamarindus indica pulp
extract for removal of As(III): Optimization of adsorption
process by ANN-GA,” Journal of Environmental Chemical
Engineering, vol. 5, no. 1, pp. 1302–1318, 2017.

[271] M. Zafar, N. V. Vinh, S. K. Behera, and H. S. Park, “Ethanol
mediated As(III) adsorption onto Zn-loaded pinecone bio-
char: experimental investigation, modeling, and optimization
using hybrid artificial neural network-genetic algorithm
approach,” Journal of environmental sciences, vol. 54,
pp. 114–125, 2017.

[272] I. Ali, O. M. L. Alharbi, Z. A. Alothman, A. Y. Badjah,
A. Alwarthan, and A. A. Basheer, “Artificial neural network
modelling of amido black dye sorption on iron composite
nano material: kinetics and thermodynamics studies,” Jour-
nal of Molecular Liquids, vol. 250, pp. 1–8, 2018.

[273] P. S. Ghosal, K. V. Kattil, M. K. Yadav, and A. K. Gupta,
“Adsorptive removal of arsenic by novel iron/olivine com-
posite: insights into preparation and adsorption process by
response surface methodology and artificial neural network,”
Journal of Environmental Management, vol. 209, pp. 176–
187, 2018.

[274] L. P. Lingamdinne, J. Singh, J. S. Choi et al., “Multivariate
modeling via artificial neural network applied to enhance
methylene blue sorption using graphene-like carbon material
prepared from edible sugar,” Journal of Molecular Liquids,
vol. 265, pp. 416–427, 2018.

[275] P. R. Souza, G. L. Dotto, and N. P. Salau, “Artificial neural
network (ANN) and adaptive neuro-fuzzy interference sys-
tem (ANFIS) modelling for nickel adsorption onto agro-
wastes and commercial activated carbon,” Journal of Environ-
mental Chemical Engineering, vol. 6, no. 6, pp. 7152–7160,
2018.

[276] M. Solgi, T. Najib, S. Ahmadnejad, and B. Nasernejad, “Syn-
thesis and characterization of novel activated carbon from
Medlar seed for chromium removal: experimental analysis
and modeling with artificial neural network and support vec-
tor regression,” Resource-Efficient Technologies, vol. 3,
pp. 236–248, 2017.

[277] S. A. Abdulhussein and A. I. Alwared, “The use of artificial
neural network (ANN) for modeling of Cu (II) ion removal
from aqueous solution by flotation and sorptive flotation pro-
cess,” Environmental Technology & Innovation, vol. 13,
pp. 353–363, 2019.

[278] C. Cojocaru, P. Samoila, and P. Pascariu, “Chitosan-based
magnetic adsorbent for removal of water-soluble anionic
dye: artificial neural network modeling and molecular dock-
ing insights,” International Journal of Biological Macromole-
cules, vol. 123, pp. 587–599, 2019.

[279] N. Ghasemi and S. Rohani, “Optimization of cyanide removal
from wastewaters using a new nano-adsorbent containing
ZnO nanoparticles and MOF/Cu and evaluating its efficacy
and prediction of experimental results with artificial neural
networks,” Journal of Molecular Liquids, vol. 285, pp. 252–
269, 2019.

[280] C. A. Igwegbe, L. Mohmmadi, S. Ahmadi et al., “Modeling of
adsorption of methylene blue dye on Ho-CaWO4

49Adsorption Science & Technology



nanoparticles using response surface methodology (RSM)
and artificial neural network (ANN) techniques,” Methods
X, vol. 6, pp. 1779–1797, 2019.

[281] N. Mahmoodi-Babolan, A. Heydari, and
A. Nematollahzadeh, “Removal of methylene blue via bioin-
spired catecholamine/starch superadsorbent and the effi-
ciency prediction by response surface methodology and
artificial neural network-particle swarm optimization,” Bior-
esource Technology, vol. 294, p. 122084, 2019.

[282] Z. U. Ahmad, L. Yao, Q. Lian, F. Islam, M. E. Zappi, and D. D.
Gang, “The use of artificial neural network (ANN) for model-
ing adsorption of sunset yellow onto neodymium modified
ordered mesoporous carbon,” Chemosphere, vol. 256,
p. 127081, 2020.

[283] A. Albalasmeh, M. A. Gharaibeh, O. Mohawesh et al., “Char-
acterization and artificial neural networks modelling of meth-
ylene blue adsorption of biochar derived from agricultural
residues: effect of biomass type, pyrolysis temperature, parti-
cle size,” Journal of Saudi Chemical Society, vol. 24, no. 11,
pp. 811–823, 2020.

[284] A. A. Faisal, Z. S. Nassir, L. A. Naji, M. Naushad, and
T. Ahamad, “A sustainable approach to utilize olive pips for
the sorption of lead ions: numerical modeling with aid of arti-
ficial neural network,” Sustainable Chemistry and Pharmacy,
vol. 15, p. 100220, 2020.

[285] L. T. N. Nguyen, Q. Bui, and T. T. Khieu, “Artificial neu-
ral network modeling for congo red adsorption on
microwave-synthesized akaganeite nanoparticles: optimiza-
tion, kinetics, mechanism, and thermodynamics,” Environ-
mental Science and Pollution Research, vol. 28, no. 8,
pp. 9133–9145, 2020.

[286] A. Mojiri, J. Zhou, M. Vakili, and H. Le, “Removal perfor-
mance and optimisation of pharmaceutical micropollutants
from synthetic domestic wastewater by hybrid treatment,”
Journal of Contaminant Hydrology, vol. 235, article 103736,
2020.

[287] M. R. Fagundes-Klen, P. Ferri, T. D. Martins, C. R. G.
Tavares, and E. A. Silva, “Equilibrium study of the binary
mixture of cadmium-zinc ions biosorption by the Sargassum
filipendula species using adsorption isotherms models and
neural network,” Biochemical Engineering Journal, vol. 34,
no. 2, pp. 136–146, 2007.

[288] R. M. Aghav, S. Kumar, and S. N. Mukherjee, “Artificial neu-
ral network modeling in competitive adsorption of phenol
and resorcinol from water environment using some carbona-
ceous adsorbents,” Journal of Hazardous Materials, vol. 188,
no. 1-3, pp. 67–77, 2011.

[289] E. Tomczak, “Application of ANN and EA for description of
metal ions sorption on chitosan foamed structure–Equilib-
rium and dynamics of packed column,” Computers and
Chemical Engineering, vol. 35, no. 2, pp. 226–235, 2011.

[290] S. L. Pandharipande and A. R. Deshmukh, “Artificial neural
network approach for modeling of Ni(II) adsorption from
aqueous solution using aegel marmelos fruit shell adsorbent,”
International Journal of Engineering Sciences & Emerging
Technologies, vol. 4, pp. 27–36, 2013.

[291] S. Hajati, M. Ghaedi, Z. Mahmoudi, and R. Sahraei, “SnO2
nanoparticle-loaded activated carbon for simultaneous
removal of acid yellow 41 and sunset yellow; derivative spec-
trophotometric, artificial neural network and optimization
approach,” Spectrochimica Acta Part A: Molecular and Bio-
molecular Spectroscopy, vol. 150, pp. 1002–1012, 2015.

[292] M. Delnavaz, B. Ayati, and H. Ganjidoust, “Prediction of
moving bed biofilm reactor (MBBR) performance for the
treatment of aniline using artificial neural networks
(ANN),” Journal of Hazardous Materials, vol. 179, no. 1-3,
pp. 769–775, 2010.

[293] E. Oguz and M. Ersoy, “Removal of Cu2+ from aqueous solu-
tion by adsorption in a fixed bed column and neural network
modelling,” Chemical Engineering Journal, vol. 164, no. 1,
pp. 56–62, 2010.

[294] S. Chakraborty, S. Chowdhury, and P. D. Saha, “Artificial
neural network (ANN) modeling of dynamic adsorption of
crystal violet from aqueous solution using citric-acid-
modified rice (Oryza sativa) straw as adsorbent,” Clean Tech-
nologies Environmental Policy, vol. 15, no. 2, pp. 255–264,
2013.

[295] M. Khajeh and A. R. Golzary, “Synthesis of zinc oxide
nanoparticles-chitosan for extraction of methyl orange from
water samples: Cuckoo optimization algorithm-artificial neu-
ral network,” Spectrochimica Acta Part A: Molecular and Bio-
molecular Spectroscopy, vol. 131, pp. 189–194, 2014.

[296] A. A. Oladipo and M. Gazi, “Nickel removal from aqueous
solutions by alginate-based composite beads: central compos-
ite design and artificial neural network modeling,” Journal of
Water Process Engineering, vol. 8, pp. e81–e91, 2015.

[297] T. Mitra, B. Singha, N. Bar, and S. K. Das, “Removal of Pb(II)
ions from aqueous solution using water hyacinth root by
fixed-bed column and ANNmodeling,” Journal of Hazardous
Materials, vol. 273, pp. 94–103, 2014.

[298] T. Nur, P. Loganathan, T. C. Nguyen, S. Vigneswaran,
G. Singh, and J. Kandasamy, “Batch and column adsorption
and desorption of fluoride using hydrous ferric oxide: solu-
tion chemistry and modeling,” Chemical Engineering Journal,
vol. 247, pp. 93–102, 2014.

[299] E. Oguz and M. Ersoy, “Biosorption of cobalt(II) with sun-
flower biomass from aqueous solutions in a fixed bed column
and neural networks modelling,” Ecotoxicology and Environ-
mental Safety, vol. 99, pp. 54–60, 2014.

[300] G. R. Oliveira, A. V. Santos, A. S. Lima, C. M. Soares, and
M. S. Leite, “Neural modelling in adsorption column of
cholesterol-removal efficiency frommilk,” LWT-Food Science
and Technology, vol. 64, no. 2, pp. 632–638, 2015.

[301] M. F. Ahmad and S. Haydar, “Evaluation of a newly devel-
oped biosorbent using packed bed column for possible appli-
cation in the treatment of industrial effluents for removal of
cadmium ions,” Journal of the Taiwan Institute of Chemical
Engineers, vol. 62, pp. 122–131, 2016.

[302] W. Li, S. Wei, W. Jiao, G. Qi, and Y. Liu, “Modelling of
adsorption in rotating packed bed using artificial neural net-
works (ANN),” Chemical engineering research and design,
vol. 114, pp. 89–95, 2016.

[303] E. Oguz, “Fixed-bed column studies on the removal of Fe3+

and neural network modelling,” Arabian Journal of Chemis-
try, vol. 10, no. 3, pp. 313–320, 2017.

[304] M. Arshadi, M. K. Abdolmaleki, H. Eskandarloo, M. Azizi,
and A. Abbaspourrad, “Synthesis of highly monodispersed,
stable, and spherical NZVI of 20-30 nm on filter paper for
the removal of phosphate from wastewater: batch and col-
umn study,” Sustainable Chemistry & Engineering, vol. 6,
no. 9, pp. 11662–11676, 2018.

[305] M. Calero, I. Iáñez-Rodríguez, A. Pérez, M. A. Martín-Lara,
and G. Blázquez, “Neural fuzzy modelization of copper
removal from water by biosorption in fixed-bed columns

50 Adsorption Science & Technology



using olive stone and pinion shell,” Bioresource Technology,
vol. 252, pp. 100–109, 2018.

[306] D. Ranjan, D. Mishra, and S. H. Hasan, “Bioadsorption of
arsenic: an artificial neural networks and response surface
methodological approach,” Industrial & Engineering Chemis-
try Research, vol. 50, no. 17, pp. 9852–9863, 2011.

[307] M. M. Bello, M. M. Nourouzi, L. C. Abdullah, T. S. Choong,
Y. S. Koay, and S. Keshani, “POME is treated for removal of
color from biologically treated POME in fixed bed column:
applying wavelet neural network (WNN),” Journal of Haz-
ardous Materials, vol. 262, pp. 106–113, 2013.

51Adsorption Science & Technology



Research Article
Petrochemical Wastewater Treatment by Eggshell Modified
Biochar as Adsorbent: Atechno-Economic and
Sustainable Approach

Andy G. Kumi ,1 Mona G. Ibrahim ,1,2 Manabu Fujii ,1,3 and Mahmoud Nasr 1,4

1Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City,
Alexandria 21934, Egypt
2Environmental Health Department, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt
3Civil and Environmental Engineering Department, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan
4Sanitary Engineering Department, Faculty of Engineering, Alexandria University, P.O. Box 21544, Alexandria 21526, Egypt

Correspondence should be addressed to Mahmoud Nasr; mahmmoudsaid@gmail.com

Received 26 November 2021; Revised 15 January 2022; Accepted 27 January 2022; Published 14 February 2022

Academic Editor: Chinenye Adaobi Igwegbe

Copyright © 2022 Andy G. Kumi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Petrochemical industrial wastewater (PIW)contains toluene and xylene (TX), and various organic and inorganic pollutants,
causing severe risks to human health if improperly released into the environmental matrices. For the long-term reliability of
environmental conservation, this study illustrates the interlinkage between PIW treatment and the three pillars of sustainable
development. Sewage sludge biochar was modified with eggshell, showing a relatively high fixed C content (increase in
carbonization degree), and small O/C and N/C ratios. The prepared biochar was employed for TX adsorption in mono-
component solutions, giving removal efficiencies of 79.1% (T) and 86.6% (X), at pH=10, adsorbent dosage =2 g/L, and Co =
40mg/L within 60min. The main adsorption mechanism was physisorption, including precipitation/pore-filling, π-π dispersive
interaction, and van der Waals force. The modified biochar also treated real PIW under five adsorption/regeneration cycles,
providing essential steps toward large-scale applications. According to an economic feasibility estimation, the biochar
application for treating 1 m3 of PIW would offer a payback period of 6.9 yr. The study outputs could be linked to the
restoration of water-related ecosystems, biochar modification for industrial applications, and climate change mitigation,
adopting the 2030 agenda and its sustainable development goals (SDGs).

1. Introduction

Petrochemical manufacturing industries generate large
amounts of wastewater composed of aromatic hydrocarbons
and organic solvents, e.g., toluene and xylene (TX) [35]. The
TX compounds of petrochemical industrial wastewater
(PIW) are considered slowly biodegradable and highly toxic,
imposing harmful and emerging threats on human health
[31]. The unsafe disposal of these hydrocarbons would dam-
age the human organs and central nervous system, or could
even cause death at high doses [24]. Because PIW should be
managed properly using sustainable and feasible pathways,
its treatment should be investigated regarding the environ-
mental and economic points of view.

Various physicochemical methods have been adopted to
treat PIW, providing a rapid process accompanied by conve-
nient operation and control. Unlike in biological systems,
the physicochemical-based processes could withstand fluctu-
ating temperature patterns and complex discharges within a
shorter treatment time [9]. Among thephysicochemical
treatment techniques, adsorption is becoming a cost-effec-
tive, simple, andenvironmentally friendly option to mitigate
PIW-related pollution [1]. Adsorption is not considered an
energy-intensive technique because it does not usually
require aeration, heating, and/or mixing [16]. Adsorption
does not also suffer from sludge handling and management
due to the utilization of low quantities of chemical reagents,
providing an economically feasible approach [28]. Previous
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researchers have investigated the treatment of PIW by
adsorption onto crumb rubber [3], graphene [16], Na-P1
zeolite [5], silica [24], biocomposite [1], carbon nanotubes
[4], and solid waste biochar [15]. Based on these studies,
the adsorbent should be abundantly available, eco-friendly,
and prepared with a cheap materialfor providing a stand-
alone wastewater treatment system.

In most developing countries, wastewater treatment pro-
cesses generate large amounts of sewage sludge that could
pose serious burdens tothe environment (soil and ground-
water) [25]. A proper and smart waste (e.g., sludge) manage-
ment system should be outlined according to the sustainable
development goals (SDGs), tackling multiple environmental,
economic, and social aspects [8]. Waste sludge could be uti-
lized as a renewable biomass to produce biochar (a carbon-
rich material) via pyrolysis [27]. Biochar has been employed
as an innovative and effective adsorbent for removing aque-
ous contaminants such as complex organic compounds fro-
mindustrial effluents [11]. However, under improper sludge
pyrolysis, biochar might be unable to capture large amounts
of pollutants due to the associated insufficient surface area
and poor porosity [14]. Adding food residues and optimiz-
ing the pyrolysis temperature are efficient options to modi-
fythe texture, surface functional groups, molecular
structure, and pore-size distribution of biochars [22, 32].
For example, eggshell wastescould be utilized for providing
multiple functional groups and mineral components (cal-
cite) to biochars [6]. This pattern would enhance the intrin-
sic features and pore structure of biochars to improve the
adsorption performance.

A significant gap exists in the literature regarding the
relationship between biochar manufacturing, SDGs, and
economic feasibility, which should be comprehensively
addressed. Hence, this study is the first toillustrate the inter-
linkage between PIW treatmentand the three pillars of sus-
tainability via the techno-economic feasibility of a modified
biochar adsorbent. In particular, the study objectives are
fourfold (i) characterize biocharproduced from sludge and
eggshell wastes, (ii) determine optimum pyrolysis tempera-
ture, effects of adsorption conditions on TX removal, and
suggested adsorption mechanisms, (iii) test the synthesized
biochar for treating real PIW under successive adsorption/
regeneration cycles, and (iv) highlight the achievable SDGs,
environmental considerations, and economic feasibility
associated with the study outputs.

2. Materials and Methods

2.1. Wastewater Preparation/Collection. The synthetic
medium was prepared by initially dissolving calculated vol-
umes of each of T and X compounds in a small amount of
methanol, not exceeding 1% in the stock solutions. The stan-
dard stock solutions (1000mg/L of each of T and X) were
dilutedwith appropriate amounts of distilled water to pre-
pare mono-component systems (T and X: 40 – 200mg/L).
The suspension pH was regulatedby adding either 0.1M
NaOH or 0.1M HCl solutions. For treatingreal PIW, a pet-
rochemical industry situated in Alexandria, Egypt, was
selected to collect the wastewater samples. The received

PIW samples were directly used in the adsorption treatment
assays without further adjustments. All solutions were stored
in glass-stoppered bottles under the dark condition at 4°C.
All reagents and solvents were of analytical grade (Sigma–
Aldrich; >99% purity) and used without further purification.

2.2. Biochar Adsorbentpreparation. Sewage sludge was col-
lected from the Alexandria East wastewater treatment plant
(WWTP) located in Alexandria, Egypt. All the sludge sam-
ples were oven-dried (100°C for 24 hrs), and then screened
using a 60-mesh sieve. Sludge pyrolysis was performed in
an oxygen-deprived condition using a muffle furnace (Asahi
Rika tabletop, AMF-25N, Japan) to prepare the raw biochar
(BC) material. The pyrolysis temperatures were investigated
at300, 350, 400, 450, 500, and 550°C with a 5°C/min heating
rate for 60min, based on the methods of earlier reports [2,
39]. These biochars were labelled as BC300, BC350, BC400,
BC450, BC500, and BC550, respectively. The raw biochars
(300–550°C) were examined for TX adsorption, and the best
pyrolysis temperature was selected to prepare eggshell-
modified biochar (EMBC), following our previous study [18].

2.3. Adsorption Experiment. In the first experiment, single-
component sorption assayswere performed in 250mL flasks
under 100 rpm stirring rate at room temperature (25± 2°C).
The influences of adsorption factorson TX removal were sta-
tistically investigated using a one-factor-at-a-time method.
Briefly, the first run was conducted by varying the pH values
from 2 to 12 at adsorbent dosage = 1 g/L and Co=100mg/L
within 60min. The optimized pH was used in the second
assay at Co=100mg/L for 60min with increasing the adsor-
bent dosagefrom 2 to 10 g/L. Theseoptimum pH and dosage
values were further used to operate the adsorption system
for 60min with varying Co from 40 to 200mg/L.The opti-
mum pH, adsorbent dosage, and Co were used in the fourth
experimental assay to investigate the influence of adsorption
time (5–240min) on TX removal. The measured TX concen-
trations were used to estimate the adsorption performance
in Eqs. (1) and (2).

R = Co − Ce

Co
× 100 ð1Þ

q = Co − Ceð Þ × V
m

ð2Þ

where R is the adsorbate removal percentage (%), q is uptake
capacity (mg adsorbate/g biochar), Co and Ce are the initial
and equilibrium adsorbate concentrations (mg/L), respec-
tively, m is biochar mass (g), and V is the flask working vol-
ume (L).

The second experiment was conducted to determine the
adsorption performance and stability of biochar for real
PIW treatment. For this purpose, five adsorption/regenera-
tion cycles were conducted to assess biochar reusability.
Before each re-adsorption trial, the utilized biochar was
washed with methanol and then dried overnight at 105°C.
All experiments were conducted in triplicate, and the aver-
age results were recorded.
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2.4. Analytical Analysis. Biochars were characterized for
their specific surface area and pore-size distribution using
the methods of Brunauer–Emmett–Teller (BET) and the
Barrett–Joyner–Halenda (BJH) [23].BELSORP-mini II
instrument (BEL Japan, Inc.) was assigned for measuring
the N2 adsorption–desorption isotherms at 77K, following
Shaheen et al. [27]. Proximate analysis and pH of biochars
were determined as adapted from Fidel et al. [10]. X-ray dif-
fractometer (XRD) (Shimadzu Xlab 6100, Kyoto, Japan) was
used to analyze the biochar crystallinity over a 2θ range of 5–
80° (0.02° step size @ 12°C/min). The XRD instrument was
operated with Cu-Kα radiation (λ=1.5406Å) at 40 kV and
30mA.A Fourier Transform Infrared (FTIR) spectroscopy
(Vertex 70, Bruker Optics Inc., Ettlingen, Germany) was
used to detect the shift in peak wavenumbers associated with
the adsorption process. The change in FTIR bands was
recorded over the 4000–400 1/cm region. The surface mor-
phology of biochars was characterized by scanning electron
microscopy (SEM, JSM-6010LV JEOL, Tokyo, Japan).
Energy Dispersive X-ray analysis in conjunction with the
SEM instrument was employed to provide information ofthe
biochars’ elemental composition (e.g., C, N, and O), follow-
ing the procedures reported elsewhere [2, 15]. For identify-
ing the benzene, T, ethylene, and X components, the liquid
samples were treated through a 0.22μm filter (Whatman
syringe filters). The resulting filtrates were analyzed byGas
Chromatography-Mass Spectrometry (GC-MS), with a
QP2010 PLUS system (Shimadzu, Japan) and helium as a
carrier gas.

3. Results and Discussion

3.1. Biochar Characterization

3.1.1. Biochar Yield Andnutrient Content. Table 1 represents
the variation in the properties and nutrient availability of
biochars under different pyrolysis temperature conditions.
The pyrolysis temperature substantially affected the yield
of biochars. For instance, at 300°C the biochar yield was
66.1%, representing about 2-folds the yield at 450°C. The
negative correlation between the biochar yield and the

pyrolysis temperature could be ascribed to the thermal
decomposition and gasification of the sludge components,
such as volatile compounds and other non-carbon elements
[32]. The volatilization of organic acids under high-
temperature conditions also contributed to the rise in pH
values (Table 1). Shaaban et al. [26] reported that elevated
pyrolysis temperatures would increase the amounts of basic
OH groups on the biochar surface, accompanied byelimi-
nating various acidic functional groups. Increasing the total
surface basicity of biochars, owing to organic acid decom-
position, at elevated pyrolysis temperatures has also been
verified [25]. However, increasing the pyrolysis temperature
to550°C provided an insignificant (p> 0.05) impact on the
biochar yield, assigning that the carbonization process was
almost completed.

Table 1 also revealed that biochars contained nutrient
species (e.g., N, S, and Ca) that have probably been embed-
ded in the components of the collected sewage sludge. The
reduction of the C, N, and O fractions for biochars pyrolyzed
at 300–550°C could be ascribed to the pyrogenic decomposi-
tions and emission of volatile matters at elevated tempera-
tures [26]. Hence, a high proportion of nutrientswould be
maintained in biochars synthesizedat low pyrolysis tempera-
tures. The variation of the nitrogen properties with tempera-
ture (Table 1) could be assigned to the loss of volatile
nitrogen species, such as ammonia or volatile amines, obtain-
ing stable pyridine compounds at elevated temperatures [14].
Moreover, the C/N ratio of the biochar products varied as a
result of carbonization along with the conversion and trans-
formation of the organic nitrogen fractions [30]. The change
in the O/C ratio between 0.10 and 0.23 could be linked to
the degree of polarity [2], attaining a minimum O/C ratio of
0.10 at 550°C. A low O/C ratio at elevated pyrolysis tempera-
tures is an indication of the high aromatic nature (i.e., the aro-
matic linkages were more stable) of the investigated biochars
[30]. This O/C range is comparable to O/C 0.07 – 0.27 for
biochar-based crop residues [2], but lower than O/C 0.59 –
0.71 for biochars obtained from digested sludge [32].

3.1.2. BET Surface Area. Increasing the pyrolysis tempera-
ture from 300 to 550°C provided a positive impact on

Table 1: Physiochemical, BET surface area and pore properties of biochars produced at various pyrolysis temperatures (300–550°C).

Properties BC 300 BC 350 BC 400 BC 450 BC 500 BC 550

Yield (wt. %) 66.10 54.20 45.82 38.60 38.55 38.09

pH 7.87 8.13 8.49 8.68 8.76 8.88

C (w/w %) 84.79 77.55 73.4 69.28 65.56 67.43

N (w/w %) 5.90 5.56 5.23 4.71 4.18 4.16

O (w/w %) 18.09 17.82 15.68 12.62 9.86 6.73

C/N ratio 14.37 13.95 14.03 14.71 15.68 16.21

O/C ratio 0.21 0.23 0.21 0.18 0.15 0.10

S (w/w %) 0.92 0.48 2.13 3.82 2.94 1.79

Ca (w/w %) 3.40 3.79 7.69 7.81 7.62 9.00

BET (m2/g) 0.227 0.282 1.266 22.680 27.240 52.210

Total pore volume (cm3/g) 0.00562 0.00745 0.00919 0.02962 0.01087 0.03238

Average pore size (nm) 14.00 12.60 12.20 1.29 1.27 1.23
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theBET surface area, which improved from 0.23 to 52.21m2/
g, respectively (Table 1). This BET surface area is higher
than that (2.0–3.2m2/g) of biochar prepared from poultry
litter [30]. For the preparation of rice husk biochars [28],
the BET surface area was increasedfrom 45.2 to 193.1m2/g
with raising the pyrolysis temperature from 500 to 700°C,
respectively. Comparable patterns were noticed for the total
pore volume (Table 1), which could be linked to a high
degree of carbonization and the release of most volatiles with
elevating the temperature from 300 to 550°C.These observa-
tions were also confirmed by the BET N2 adsorption/desorp-
tion assays and BJH pore-size distribution of different
biochars (Figure 1(a)), implying the presence of mesopores
and micropores. The pore-size distribution of BC 300–
400°Cwas within the 2–50nm range, denoting a mesoporous
material classification. The pore-size of biochars BC 450–
550°C obeyed the micropores region (< 2nm). Based on the
aforementioned results, a high pyrolysis temperature would
develop the biochar surface area, i.e., an essential property
for entrapping high amounts of molecules via the pore-filling
mechanism [26]. Additionally, an increase in pyrolysis tem-
perature would provide an appropriate condition for attaining
a high ash content and a stable physicochemical quality, which
complied with the study by Song and Guo [30].

3.1.3. XRD Pattern. The crystallinity of biochars synthesized
at different pyrolysis temperatures was estimated using the
XRD analysis (Figure 1(b)). The XRD patterns of biochars
BC 300–550°C exhibited the predominance of two main
crystalline minerals, i.e., quartz (SiO2) and calcite (CaCO3).
Similarly, Kraiem et al. [17] indicated the occupancy of
quartz and calcite in biochar prepared from the pyrolysis
of waste fish fats at a temperature of 500°C. The XRD peaks
observed at 2θ approximately of 20.9°, 36.6°, 50.2°, and 60.0°

could be associated with (100), (110), (112) and (121) planes
of SiO2, respectively [13]. This result suggests that SiO2 was
the main crystalline phase for all biochars pyrolyzed
throughout the temperature 300–550°C range. Some peaks
of quartz for BC450–550 were higher than those for
BC300–400, indicating the increment of quartz crystalliza-
tion in biochars when the heating temperature increased.
However, the peak intensities of calcite decreased with an
increase in temperature, which could be due to decomposing
carbonaceous materials (calcite) after thermal treatment
with elevated temperatures [26]. The presence of calcite in
all biochar samples would elucidate the pH distribution
within the alkaline range (Table 1), as previously recognized
by Yuan et al. [34]. Similarly, Fidel et al. [10] demonstrated
that the intensities of XRD peaks ascribed to the mineral
content (e.g., sylvite, calcite, and dolomite) of biochar were
diminished under a high thermal treatment condition.

3.1.4. FTIR and Functional Groups. Figure 1(c) shows the
functional groups on the biochar surface treated at various-
pyrolysistemperatures (300–550°C). The intensity of peaks
between 3270 and 3380 1/cmdecreased largely withincreas-
ing the pyrolysis temperature. This finding suggested that
the organic O−H group was unstable at elevated tempera-
tures, probably due to the biochar structure dehydration

[14]. Similarly, the reduction in peak intensities at 3250–
3400 1/cm under higher temperature conditions could be
associated with decomposing the organic nitrogen (N−H)
groups in amines and amides. This finding could also
explain the variation in the C/N ratio along with the pyroly-
sis temperature, as previously listed in Table 1. Thedomi-
nance of alkyl and oxygenated functional groups (e.g., C–
O–C, COOH, −OH, and C=O)for BC300°C indicated that
the biochar surface was more aliphatic at lower pyrolysis
temperature. However, the structures of BC400–550°C were
more aromaticat higher pyrolysis temperature (>400°C)
because of the dehydroxylation and volatilization process,
supporting crystallization [20]. Again, this finding complied
with the XRD pattern (Figure 1(b)), suggesting that biochars
were more crystalline at higher pyrolysis temperatures.
Hence, the arrangement of carbon structures was adjusted
from aliphatic to aromatic, with raising the pyrolysis tem-
perature from 300 to 550°C. Moreover, some adsorption
bands between 2850 and 2950 1/cm for BC300–400°C were
gradually disappeared at pyrolysis temperatures over 400°C
dueto the instability of the aliphatic hydrocarbon (–CHx)
groups. The change in C=O stretching (around 1700 1/cm)
with temperature could be ascribed to the formation of some
conjugated aromatic carbonyl/carboxyl groups at exceeding
the pyrolysis temperature over 300°C[39]. A slight change
in the peak intensity at 1604 1/cm with elevating the pyrol-
ysis temperature could be associated with the stability of
conjugated aromatic ring stretching of C=C groups [22],
viz., this observation also supports the decrease of O/C ratio
(see Table 1). Moreover, the biochar surface would be more
hydrophobic at elevated temperatures because of the evolve-
ment of oxygen functional groups via gasification [20, 26].
Accordingly, the −OH, −NH, and−CH3 groups were unsta-
ble, with a concomitant increase in aromaticity at elevated
temperatures. The decrease in the polar functional groups
for BC400–550°C revealed the establishment of a condensed
and carbonized structure owing to higher mass loss
(Figure 1(c)). The presence of more functional groups
(Figure 1(d)) for EMBC, viz., alkane (CH2 and CH3bands),
aromatic (C=C stretching), esters (S-OR) group, and alcohol
(OH stretch andH-bonded), would be usefulto form interac-
tions and complexations with the adsorbate compounds.

3.1.5. SEM. Figure 2 shows the surface morphologies of the
biochar samples (BC300–550°C). The SEM micrographs
clearly indicated the development of irregular and uneven
biochar surfaces with channels and well-defined and vacant
pores. A smooth textureand incomplete decomposition were
noticed for BC300 – 400°C. However, the surfaceroughness
and intensity increased for BC450 – 550°C, suggesting an
improved porosity. This finding could be ascribed to the
release of volatiles during carbonization with elevating the
pyrolysis temperature [37].

3.2. Toluene and Xylene (TX)Removals in Single-
Solute System

3.2.1. Effect of pH on TX Adsorption. Figure 3(a) shows the
influence of solution pH on TX adsorption by biochars
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Figure 1: Biochar adsorbent characterization: (a) BET nitrogen adsorption/desorption isotherms and BJH pore-size distribution, (b) XRD
patterns of BC 300–550°C, (c) FTIR spectra of BC 300–550°C before adsorption, and (d) FTIR spectra of BC 550°C and EMBC 550°C after
adsorption.
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(BC and EMBC). For BC, the T removal efficiency improved
from 46.8 to 75.1%, with an increase in the solution pH from
2 to 10, respectively, suggesting that pH around 10 was
favourable for the adsorption process. At the pH10 condi-
tion, the X removal efficiency was comparable toT and
reached 73.4%. The EMBC adsorbent attained better adsorp-
tion capabilities compared with BC, exhibiting the highest
removal efficiencies of82.1% for T and 86.1% for X. At lower
pH, the high concentration and mobility of H+ ions tended
to generate extremely protonated sorption sites [9], causing
electrostatic repulsion to hinder the TX uptake ability. The
data in Figure 3(a) also revealed that a further increase in
solution pH over 10 caused an insignificant (p> 0.01)
enhancement in the removal efficiencies of the TX adsor-
bate. This result could be ascribed to the competition
between the adsorbate molecules and hydroxide (OH-) ions
for the active sites occupying the biochar surface [21]. The
point of zero charge (pHPZC) also showed a zero electrical
charge density on the biochar surface at a solution pH of
about 10 (Supplementary Figure S1). In another study,
Jayawardhana et al. [15] found that pH conditions of 8.3
and 9.0 were favorable for the adsorption of toluene and
m-xylene onto biochar prepared from municipal solid waste.

The affinity of EMBC towards TX adsorption over a
wide pH scalecould be ascribed to the increase in the degree
of ionization of surface functional groups (see Figure 1(d))

essential for binding the hydrophobic TX compounds with
the biochar adsorbent. Moreover, the TX removalsundervar-
ious pH conditions implied the occurrence of additionalad-
sorption mechanisms such as π-π bonding interaction and
hydrophobic interaction [37].

3.2.2. Effect of Biochar Dosage on TX Adsorption. Figure 3(b)
represents the influence of biochar dosage on TX removal by
BC and EMBC. The removal efficiencies were improved
from 77.8 to 84.1% for T and from 80.2 to 87.8% for X with
increasing the EMBC dosage from 2 to10 g/L, respectively.
These efficiencies were higher than the adsorption patterns
attainedusing the unmodified BC biochar. The increase in
the number of active adsorption sites on biochars, following
the increment in biochar dosage, tended to uptake additional
amounts of TX molecules [31]. Due to the insignificant
(p>0.05) variation in the TX removal efficiencies within the
range of biochar dosage investigated, 2 g/L was selected for
further investigations. This selection would minimize the
requirement of chemical regeneration, disposal of exhausted
adsorbents, and operational and maintenance issues.

3.2.3. Effect of Initial Concentration (Co) on TX Adsorption.
Figure 3(c) shows the effect of Co on TX adsorption at the
optimum factors (pH=10, biochar dosage =2 g/L, and
time= 60min). For the EMBC adsorbent, an increase in

BC300 BC350 BC400

BC450 BC500 BC550

EMBC After adsorption

Figure 2: SEM of biochar and modified biochar adsorbents prepared under different pyrolysis conditions (300–550°C).
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Co from 40 to 200mg/L, respectively, caused a significant
(p< 0.05) drop in the removal efficiencies of T from 79.1
to 39.0% and Xfrom 86.6 to 42.4%. These data were better
than the removal efficiencies observed when using raw BC
biochars as an adsorbent material (Figure 3(c)). The nega-
tive correlation between the TX removal efficiency and Co
could be ascribed to the low ratio of adsorption sites-to-
TX molecules (or the full occupancy of the available
adsorption sites) at elevated Co [3]. Moreover, the active
binding sites of biochars would be saturated with an
increase inthe TX concentrations [33], suggesting that the
removal efficiencies of the TX molecules by biochars were
dependent on theCo 40–200mg/L range.

3.2.4. Effect of Adsorption Time on TX Adsorption.
Figure 3(d) shows the effect of adsorption time on the
removal percentage of TX by biochars (BC and EMBC) at
pH=10 and dosage=2 g/L.For the EMBC material, the
removal efficiencies of T and X were 69.6 and 72.1% at
adsorption time=120min, respectively. These removal effi-
ciencies were insignificantly (p> 0.05) improved to 74.4
and 79.0%, respectively, with anadditional increase in
adsorption time to 240min. The rapid enhancement in TX
adsorption within the initial 120min could be ascribed to
the accessibility of large amounts of vacant active sites
[35]. The slight increase in the removal efficiencies after
120min could be attributed to (i) a reduction in the number
of vacant active sites of biochars [5], and (ii) a formation of
repulsion between the adsorbate molecules [15]. A fast

removal rate, followed by a reduced pattern indicated a
two-step adsorption process [33].

These results depicted that the equilibrium condition for
adsorbing TX onto biochars would occur after a contact time
of 120min. A longer equilibrium time of 24 h was reported
for the adsorption of T and X onto zeolite Na-P1, with
removal efficiencies of 55% and 77–99%, respectively [5].
Jayawardhana et al. [15] found that about 5 h was suitable
to attain an equilibrium time for adsorbing toluene and m-
xylene by municipal solid waste biochar.

3.2.5. Adsorption Mechanisms. The results of adsorption iso-
therms revealed that the TX adsorbates were strongly
attached to the EMBC surface via higher binding energy,
as compared with BC (supplementary Figure S2; Table S1).
Moreover, X had a better adsorption intensity or degree of
favorability for adsorption than T. The TX molecules
would form a uniform monolayer on the biochar surface
within specific sites having equivalent sorption energy. In
addition, all binding sites on biochars have equal affinity
for the TX sorbate.

The adsorption favourability followed the order of X>T,
and X needed a shorter time than T to attain a specific frac-
tional uptake (supplementary Figure S3; Table S2). This
pattern could be linked to an increase in both molecular
weight (X 106.17g/mol>T 92.14 g/mol) and hydrophobicity
(X 2.77 – 3.15>T 2.69), and a decrease in water solubility (X
175 – 198mg/L<T 515mg/L) [5]. A similar arrangement of
adsorption favourability was established for the adsorption of
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Figure 3: Effect of operational conditions on toluene and xylene (TX) removal efficiencies: (a) solution pH, (b) biochar dosage, (c) initial TX
concentration, and (d) adsorption time.
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TX ontosilica-based adsorbents [24] and multiwall carbon
nanotubes [4]. Moreover, a higher affinity for X removal
could be associated with the presence of two methyl groups
connected to the benzene ring, augmenting the interaction
with the biochar surface [16]. The reusability and recyclability
of TX-loaded biochars were attained for five consecutive
adsorption-desorption cycles (supplementary Figure S4).

According to the overall observation above, the adsorp-
tion of TX onto biochars could be graphically represented
by Figure 4.

These adsorption mechanisms, occurring either in series
or in parallel, could be summarized as follows:

(a) Monolayer adsorptiononto nearly homogenous
binding sites, and no interaction would occur among
adsorbate species, as revealed by the high fitting
accuracy of the Langmuir isotherm model (see sup-
plementary Figure S2 and Table S1).

(b) Precipitation and pore-filling, as depictedby the
physical properties of adsorbents having many pores
of different sizes (micropores and mesopores)
(Table 1 and Figures 1 and 2).

(c) Electrostatic interactions due to the significant influ-
ence of solution pHon TX removal (Figure 3(a)), and
the corresponding variation in electric charges (solu-
tion pH vs. biochar pHPZC).

(d) Hydrogen bonding interaction with carboxyl and
ester carbonyl groups of biochars

(e) π-π dispersive interaction between carboxylic
oxygen-atom of biochar (electron-donor) and the
aromatic ring of TX (electron-acceptor).

(f) Van der Waals sorption interaction between TX aro-
matic ring and electron-donating functional groups,
as depicted by the surface functional group changes
after adsorption (Figure 1(d)).

(g) Multiple diffusion mechanisms (surface/porediffu-
sions), as revealed by thekinetic model parameters
(see supplementary Figure S3; Table S2).

(h) A minor contribution of chemisorption

3.3. Real Petrochemical Wastewaterapplication. The treat-
ment of real PIW by biochars is an essential step towards
the practical use of sludge-based adsorbents for industrial-
scale applications. Wastewater samples collected from a pet-
rochemical industry were composed of TOC=127.4±
6.1mg/L, benzene = 94.1± 4.6mg/L, T= 340.2± 13.0mg/L,
ethylene= 457.0± 32.0mg/L, and X=55.2± 3.4mg/L, repre-
senting a multi (competitive) aqueous solution. After the
first adsorption cycle, the reductions of TOC, benzene, T,
ethylene, and X denoted C/Co=0.61, 0.66, 0.61, 0.78, and
0.61, respectively, within 60min (Figure 5(a) - 5(e)). Further,
the EMBC material was regenerated and subjected to PIW
(i.e., second cycle within60 min). TheC/Co values were chan-
ged to 0.67, 0.73, 0.64, 0.80, and 0.66, respectively, suggesting
a slight decline in the adsorption performance. After five
regeneration cycles, the removal efficiencies of TOC, ben-
zene, T, ethylene, and X decreased by 51.6%, 58.3%, 43.9%,
66.6%, and 48.8%, respectively. The decline in the biochar
adsorption performance along with the successive adsorp-
tion/regeneration cycles could be ascribed to (i) the loss of
the adsorbent active binding sites, and/or (ii) the presence
of multiple anions and cations in the real-world industrial
discharges [3, 24]. With a goodregeneration ability, this high
adsorption capacity validates the application of biochar-
based adsorption as a tertiary treatment phase for real PIW.

3.4. Application Prospects and Cost Estimation. The environ-
mental and economic aspects relating to the adsorption sys-
tem were described for both BC and EMBC to determine the
feasibility and cost-effectiveness of the adsorbent material.
The cost estimation was derived as reported byHamdy
et al. (2019) and Mahmoud et al. [21]. The calculations in
Table 2 were represented with a precision of ±10% due to
variations in local currency among countries used for
assumptions.

3.4.1. Total Capital Investment (TCI). The total capital
investment (TCI) refers tothe sum of money spent on build-
ings and equipment to establish the project objectives [36].
TCI can be calculated in terms of fixed capital cost (FCC)
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Figure 4: Possible mechanisms for adsorption of TX onto biochars.
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and working capital cost (WCC). As listed in Table 2, FCC
was presumed regarding the land footprint, building of the
offices and laboratories, electro-mechanical equipment, and
piping and fitting, as reported by Elhafez et al. [7]. The low
land and building costs were assigned to the financial sup-
port of the local government, attaining a “Waste Recycling”
program. The equipment cost of EMBC was higher than that
of BC due to the use of additional machines for handling,

washing, drying, and crushing the eggshell waste [29]. The
installation and construction processes were estimated as
50% of the equipment cost. Accordingly, the FCC values
were 4.20 USD/m3 for BC and5.60 USD/m3 for EMBC.
The WCC of the project was assigned to 6.5% of the FCC
and regeneration costs, denoting the financing expenses
used to run the adsorption process on a daily basis. Hence,
the WCC values used to maintain the daily operations were
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0.41 USD/m3 for BC and 0.55 USD/m3 for EMBC. In this
regard, the synthesis of BC and EMBC adsorbents entailed
TCI values of 6.71 and 8.95 USD/m3, respectively. A high-
erTCI of EMBC could be linked to the additional prepara-
tion procedures, including washing, drying/heating, and
milling/sieving steps.

3.4.2. Annual Operation Cost (AOC). The annual operation
cost (AOC) was estimated on a yearly basis, concerning
raw material, utilities, operating labor, laboratory cost, main-
tenance and repair, and necessary extra costs [36]. The com-
ponents of AOC were derived based on an operating time of
336 days per year, viz., 8-h shifts per day, 7 days per week,
and 48 weeks per year, including 5 weeks for maintenance.
The cost of raw material depended on sewage sludge and
eggshells required for the pyrolysis process, as well as
reagents (e.g., about 9 USD for each liter of H2SO4 95%
and 10 USD for each kg of pure NaOH) [29]. The sewage
sludge is not always available for free, and the chemicals
were purchased from local chemical suppliers. Table 2 also
lists the cost of utilities, including tariff levels of 0.12 USD/
m3 for water supply and 0.03 USD/kWh for electricityre-
quirement [9]. The operators and workers earned low hourly
wages as the adsorption process is relatively simple and
requires little experiencefor operation [12]. Extra costs

include adsorbent regeneration and recycling, and waste
released during the preparation process. The maintenance
and insurance expenses required for the regular repairing
of damages were equivalent to 2% and 1% of FCC, respec-
tively. According to the above calculations and data obtained
from previous studies, the AOC of 0.98 USD/m3/y for BC
and 1.30 USD/m3/y for EMBC could be determined.

3.4.3. Net Profit and Payback Period. The annual revenue
could be obtained from selling the adsorbent material for
removing toxic species with high concentrations [36]. The
annual profitability should also includethe prices paid by
the municipality to treat industrial wastewater, avoiding
negative environmental consequences from releasing the
contaminants via uncontrolled pathways [9]. Referring to
the real market and contacts with potential customers, the
EMBC price could reach up to 0.32 USD/kg compared with
0.15 USD per kg of BC for industrial applications. These
prices could be compared with 0.09–0.33, 0.60, and 1.50
USD/kg forwood biochar, zeolite, and activated carbon,
respectively [27]. The estimated values corresponded to a
cost of about 8 USD to eliminate 1 kg of TX pollutantsfrom
the environment (i.e., calculated from dividing the adsorbent
price in USD/kg by adsorption capacity in mg/g). Hence, the
net profit (NP) values were 0.74 and 1.54 USD/m3/y for BC

Table 2: Primary techno-economic estimation for producing biochars to treat wastewater-containing aromatic hydrocarbons, with ±10%
precision.

Item BC EMBC Unit

Calculation of total capital investment (TCI) in USD/m3

Building and construction 0.97 1.23 USD/m3

Equipment purchase and installation 1.51 2.02 USD/m3

Instrumentation and control 0.71 0.90 USD/m3

Electrical system 0.67 1.01 USD/m3

Piping system 0.34 0.45 USD/m3

Fixed capital cost (FCC) 4.20 5.60 USD/m3

Regeneration and recycling system 2.10 2.80 USD/m3

Working capital cost (WCC) 0.41 0.55 USD/m3

Total capital investment (TCI) 6.71 8.95 USD/m3

Calculation of annual operation cost (AOC) in USD/m3/yr

Raw material and chemicals 0.17 0.23 USD/m3/yr

Waste generation and disposal 0.23 0.29 USD/m3/yr

Utilities (water and electricity) 0.25 0.31 USD/m3/yr

Extra cost 0.22 0.30 USD/m3/yr

Maintenance 0.08 0.11 USD/m3/yr

Insurance 0.04 0.06 USD/m3/yr

Annual operation cost (AOC) 0.98 1.30 USD/m3/yr

Calculation of net profit (NP in USD/m3/yr) and payback period (years)

Annual profitability and revenue 1.49 2.48 USD/m3/yr

Benefits of tertiary treated wastewater 0.23 0.36 USD/m3/yr

Net profit (NP) 0.74 1.54 USD/m3/yr

Tax 0.11 0.23 USD/m3/yr

Net profit (after tax) 0.62 1.30 USD/m3/yr

Payback period =TCI/net profit (after tax) 10.74 6.86 Years
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and EMBC, respectively. Further, the adsorption process was
economically evaluated using the payback period; i.e., a gen-
eral criterion obtained from TCI divided by NP. The pay-
back periods (after 15% local tax) were 10.7 years for BC
and 6.9 years for EMBC. These periodsare shorter than the-
project lifetime (i.e., 15 years), signifying a profitability
scheme. In addition, the payback period of EMBC wasshor-
ter than that of BC because the modified biochar-related
project would recover its initial investment rapidly.

3.5. Sludge-Based Biochar Technology for Meeting Sustainable
Development Goals (SDGs). The increasingly stringent envi-
ronmental regulations have strongly imposed the researchers
to find viable and economically feasible scenarios for indus-
trial effluent treatment. Table 3 summarizes the number of
SDGs that could be relevant to the study objectives. In this
work, the EMBC adsorbent showed appropriate PIW treat-
ment under repeated adsorption-regeneration (five) cycles,
expressing a good reusable and recycling ability for industrial
applications. This property would reduce the environmental
risks caused by industrial effluents; hence, goal 6 (Clean
Water and Sanitation) and goal 14 (Life below Water) could
be partially achieved. The study also represented the utiliza-
tion of material of natural origin (eggshells) for synthesizing
biochar with unique properties, such as a low O/C ratio (see
Table 1). Hence, no toxic chemicals or reagents were used
during preparation, implying that biochar would act as a
competitive and sustainable resource. The prepared biochar
would have other applications such as soil quality improve-
ment, catalysts, additives for anaerobic digestion/compost-
ing, and reducing GHG emissions. These applications have
been comprehensively reviewed by Zhang et al. [38]. The
public should have adequate education, skills, and awareness
about the potential human health, socio-economic, and envi-
ronmental advantagesassociated with biochar production.
Proper mass media, advertisements, and programs should
transfer the understanding of biochar-based projects to the

public sector, especially in developing countries. The social
benefit relevant to achievable SDGs should ensure jobs crea-
tion, awareness, education, and the standard of living.

3.6. Progress and Future Perspectives. Because the reusability
of exhausted biochars is essential under real PIW wastewater
applications, further studies are required to develop a conve-
nient and economical regeneration method. Various ther-
mal, biological, micro-wave, and ultrasound methods could
be used to enhance the biochar regeneration process by lib-
erating the complex organic contaminations. Several param-
eters, such as breakthrough time, desorption cycles and
capacity, and bed exhaustion time, should be optimized to
improve the regeneration efficiency. Moreover, the solvent
used as an eluting agent for biochar regeneration should be
appropriately selected based on its concentration, volume,
and preferable pH condition, improving the economic via-
bility of the adsorption/desorption cycles. The ability of bio-
chars to eliminate other compounds in PIW such as ethylene
glycol, formaldehyde, tetrachloroethylene, and 1,3-butadiene
by adsorption should be further investigated.

4. Conclusions

The current worksuccessfully synthesized and characterized
sludge-based biochars having high aromaticity, carboniza-
tion degree, and quartz crystallization. Biochar adsorbent
showed high performance for removing toluene and xylene
pollutants with efficiencies of 79.1% and 86.6% at solution
pH=10, biochar dosage of 2 g/L, and Co=40mg/L within
60min. The proposed adsorption mechanism also revealed
a high ability to remove petroleum hydrocarbons from both
synthetic and real PIW. Moreover, the synthesized biochar
exhibited an economic benefit for industrialization with a
payback period=6.9 yr. The interlinkagesbetween PIW
treatment and SDGs (e.g., SDG 3, SDG 6, SDG 9, and SDG
14) were identified via (i) reducing the environmental risks

Table 3: Possible achievement of SDGs relevant to the study outputs.

SDG Description

Goal 2: Zero hunger
Biochar can improve agricultural soil fertility and facilitate soil carbon sequestration, increasing crop
productivity. This advantage is essential to ensure sustainable food production systems and raise

the incomes of small-scale food suppliers.

Goal 6: Clean water
and sanitation

Biochar can be applied in wastewater treatment by eliminating (or immobilizing) heavy metals, dyes,
oils, and organic and inorganic pollutants from aqueous solutions. This benefit would protect and
restore water-related ecosystems, improve decentralized wastewater treatment systems, minimize

nutrient leaching during irrigation, and enhance the sanitation in rural communities.

Goal 7: Affordable
and clean energy

The elevated carbon content in biochar increases the energy value compared with traditional cooking
fuels (e.g., firewood). Moreover, energy and synthetic gas are typically generated during biochar

production. Hence, biochar could be an ideal alternative source of energy, especially for remote areas
with limited electricity access [11].

Goal 9: Industry, innovation
and infrastructure

Biochar synthesized from pyrolysis can act as direct catalysts in various industrial applications, which
have been covered by Lee et al. [19]. These applications have also been outlined by the Biochar

Industry Technology Innovation Strategic Alliance of China-BITISAC.

Goal 13: Climate action
Generally, N-based fertilizers are associated with N2O emissions. Hence, the biochar application in

agricultural fields to reduce excessive fertilizers would mitigate the GHG emission.

Goal 14: Life below water
According to the biochar-goal 6 description, biochar has additional benefits in protecting marine and

coastal ecosystems from pollution (i.e., enriching life in water).
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caused by industrial effluents, (ii) utilizing eggshell residues
and sewage sludge for biochar preparation, avoiding waste
disposal issues, (iii) synthesizing a cost-effective EMBC
adsorbent showing a twofold increase in the specific surface
area than conventional biochars, improving biochar produc-
tion technology, and (iv) raising public awareness about
waste management.
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At present, chemical Si/Al sources are mainly used as precursor materials for the manufacturing of zeolites. Such precursor
materials are quite expensive for commercial synthesis. Here, we have reported the synthesis of Ca-based zeolite from incense
stick ash waste by the alkali-treatment method for the first time. Incense stick ash (ISA) was used as a precursor material for
the synthesis of low Si zeolites by the alkali-treatment method. The as-synthesized zeolites were characterized by various
instruments like particle size analyzer (PSA), Fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission
scanning electron microscope (FESEM), electron diffraction spectroscopy (EDS), transmission electron microscopy (TEM), and
X-ray fluorescence (XRF). FTIR and XRD helped in the identification of the microstructure and crystalline nature of the
zeolites and also confirmed the synthesis of Ca-based zeolite with two thetas at 25.7°. The microscopic analysis by FESEM and
TEM exhibited that the size of synthesized Ca-rich zeolites varies from 200 to 700 nm and they are aggregated and cuboidal in
shape. Additionally, structural, electronic, and density of states’ characteristics of gismondine (Ca2Al4Si4O16·9H2O) structures
were evaluated by computational simulations (first principle, density functional theorem). The structural optimization of
structures was carried out in the first stage under the lowest condition of total energy and forces acting on atoms for the lattice
constant, as well as the available experimental and theoretical findings. The present research approach predicted the
transformation of ISA waste into a value-added mineral, i.e., zeolite, which was further used for the removal of both heavy
metals and alkali metals from fly ash-based wastewater using inductively coupled plasma-optical emission spectroscopy (ICP-OES).

1. Introduction

Zeolites are crystalline aluminosilicates having elements either
from group I or II as counter ions [1]. Zeolites mainly consist
of Al, Si, and O, which forms their basic framework [2]. The
structure of zeolites comprises the framework of [SiO4]

4_

and [AlO4]
5 tetrahedra linked to each other at the corners

by sharing their oxygen [3, 4]. The tetrahedral 3D network
of zeolites has a lot of voids and spaces in them [5], and these
voids supplement the characteristics to the zeolites, for
instance, the adsorption of molecules in the huge internal
channels [6, 7]. Zeolites can be readily dehydrated and

Hindawi
Adsorption Science & Technology
Volume 2021, Article ID 6066906, 12 pages
https://doi.org/10.1155/2021/6066906

https://orcid.org/0000-0001-5448-7676
https://orcid.org/0000-0002-1847-6520
https://orcid.org/0000-0002-8236-9156
https://orcid.org/0000-0002-9022-7887
https://orcid.org/0000-0002-8903-6653
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6066906


rehydrated [8] and are used as cation exchangers [9], soil
decontamination [9, 10], and molecular sieves [11]. The
unique and remarkable properties of zeolites viz. porous
nature, negative charge, water-insoluble, higher melting point,
and water trapping property [12–14] make them a potential
material as an adsorbent [15] for wastewater treatment [16],
as fertilizers in agriculture [17], and as an ion exchanger
[18–26]. Based on their origin, zeolites can be of two types,
i.e., natural or synthetic [27, 28]. Synthetic zeolites are synthe-
sized in laboratory conditions by optimizing the conditions.

Presently, for commercial production, synthetic zeolites
are preferred over natural zeolites, as they can be modified
as per the need of the industry. Moreover, synthetic zeolites
are more precise, ordered, crystalline, and uniform in size of
the particles. However, the synthesis of zeolites from Al- and
Si-rich chemical sources is not economical [29]. On the
other hand, natural zeolites are present in nature in the form
of volcanic ashes [30, 31], sedimentary rocks [32], clay and
kaolins [33, 34], fly ash [28, 35], bauxite minerals [36], and
other earthy materials which may reduce the cost of the zeo-
lites but purity remains a major concern. Incense stick ash
(ISA) being a waste material of household and religious
places can act as a source of zeolites owing to its similar
composition to the natural zeolites [37, 38]. Yet to date, no
attempt has been made by the scientific community for the
synthesis of zeolites from overlooked waste like ISA [39].
Every day, tons of incense sticks are consumed at religious
places and homes in countries like China, Thailand, Japan,
Burma, and India for deity purposes which in turn produces
ISA. The burning of incense stick leaves behind ashes as a
residue that has to be disposed of in the river or other water
sources especially in India where it holds religious values
and is considered holy [40, 41]. Indian incense stick ash
has high Ca, Mg, Fe, Si, and Al content where Ca and Mg
alone constitute 50-60% total weight of the ash [42–44],
while silica is 20% and alumina is 5-10% forming 25-30%
of the total weight. All these elements are essential for the
synthesis of zeolites [35]. So, instead of disposing the ashes
into the river, it can be utilized for the synthesis of zeolites
which may have potential to treat wastewater and protect
the environment.

ISA was employed in the synthesis of zeolites, by the
alkali-treatment method under laboratory conditions. As
per our knowledge, ISA-based synthesis of zeolites has been
reported for the first time over here. The synthesized zeolites
were characterized by particle size analyzer (PSA), Fourier
transform infrared (FTIR), field emission scanning electron
microscope (FESEM), electron diffraction spectroscopy
(EDS), transmission electron microscopy (TEM), X-ray dif-
fraction (XRD), and X-ray fluorescence (XRF). The synthe-
sized zeolites belong to the sodalite class and are crystalline,
aggregated, and cuboidal in shape with size ranging from
200nm to 700nm. Further, the potential of synthesized zeo-
lites was explored for the removal of heavy metals and alkali
metals from fly ash aqueous solutions with respect to time
using inductively coupled plasma-optical emission spectros-
copy (ICP-OES) analysis. In conclusion, the utilization of
ISA for zeolites will reduce the disposal problem of ISA and
water pollution.

2. Materials and Methods

2.1. Materials. Incense stick ash, Conc. HCl (RENKEM),
Conc. H2SO4 (RENKEM), NaOH (SRL), ethanol (SRL,
India), round bottom flasks, 100ml beakers, Whatman filter
paper no. 42 (Axiva, India), and reflux condenser were used.

2.2. Method. The incense stick ash was transferred in a
100ml beaker and washed 2-3 times with distilled water to
eliminate the carbon and other unburnt particles. Further,
from the ISA slurry, ferrous fractions were extracted using
an external neodymium magnet [44]. Removal of ferrous
from ash enhances the zeolitic property as it interferes with
the transformation of zeolites [45]. The nonferrous fractions
were dried either at room temperature or in an oven at 60°C
till complete dryness. Thereafter, the nonferrous part was
treated with 2N H2SO4 in a round-bottomed (RB) flask in
solid to liquid ratio of 1 : 10 at room temperature (RT). The
mixture was continuously stirred using a magnetic stirrer
under reflux. It removes the excess of Ca in the form of chlo-
rides from the ash. The residue was collected by centrifuging
the mixture at 7000 rpm for 5 minutes and discarding the
supernatant.

The dried residue was further treated with 2N-6N
H2SO4 at 95°C under stirring in a reflux condenser which
removes Al from the ash by dissolving it at higher tempera-
ture. Further, the residue was collected by centrifuging the
mixture at 7000 rpm for 5 minutes. The supernatant was
removed, and the residue was washed 2-3 times with distilled
water to eliminate any acidic moieties.

Further, in a RB flask, the dried residue was treated
with 4-8M NaOH in a ratio of 1 : 5 at 95°C along with con-
tinuous stirring for 90 minutes under reflux. The residue
was collected by centrifuging the mixture at 7000 rpm for
10 minutes. The residue was collected, and the supernatant
was discarded. The final residue was washed 2-3 times
using distilled water to eliminate any NaOH or NaCl parti-
cles from the surface and dried in a hot air oven at 60°C.
The complete schematic process for synthesis of zeolites
from ISA is shown in Figure 1.

2.2.1. Preparation of 20% Fly Ash Aqueous Solutions. 50-
gram fly ash was weighed and mixed with the 250ml distilled
water in a plastic bottle, and the mixture was placed inside a
horizontal shaker at 200 rpm for 24-48 hours. After the time
interval, the mixture was allowed to settle down at RT and
filtered usingWhatman filter paper no. 42 where the aqueous
solution was retained while the residue was discarded. The
aqueous solution was stored in a glass bottle which was used
as a source of heavy and alkali metals.

2.2.2. Batch Adsorption Study of Heavy and Alkali Metals
from CFA Aqueous Solutions. Batch adsorption study was
conducted for the remediation of heavy and alkali metals
from aqueous solutions of fly ash using ISA synthesized
zeolites. For this, 150ml of CFA aqueous solution was trans-
ferred in a 250ml Erlenmeyer flask. To this aqueous solu-
tion, 9mg synthesized zeolites were added. The mixture
was kept in an incubator shaker at 150 rpm and 25°C. An
aliquot of the sample was collected initially at time 0 minute
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while the final sample was collected after 120 minutes. Both
the samples were analyzed by the ICP-OES for the detection
of the concentration of various heavy and alkali metals after
the specified time.

2.3. Characterization of Ca-Rich Zeolites. X-ray fluorescence
spectroscopy (XRF) was used for the analysis of major ele-
mental oxides of Ca-rich zeolites. The analysis was done to
detect the chemical content of the zeolite sample, and for
that, 5 grams of Ca-rich zeolite powder sample was taken
and measured with PANalytical Epsilon 5, The Netherlands,
fitted with a 4 KW with 60 kV, 125mA, Rh anode X-ray
tube. FTIR analysis was carried out using PerkinElmer,
“Spectrum 6500” (USA) by solidifying the samples with
KBr pellets at a resolution of 2 cm-1. The mid-IR region,
i.e., from 400-4000 cm-1, provided the transmission mea-
surement. The particle size measurement and distribution
of the ISA sample were analyzed by Malvern Zetasizer, Z-
90 (UK), particle size analyzer with a detection range of
0.1 nm to 300 microns, and it was analyzed by three average
runs. The FESEM-EDS helps in revealing the size and eter-
nal features, porosity, and shape of the synthesized
calcium-rich zeolites. The surface structural analysis of zeo-

lites was analyzed by the FESEM, Nova, NANOSEM 450
(FEI, USA), besides trace and minor elements by the EDS
analysis using Oxford elemental analyzer attached with it.
The XRD patterns of the calcium-rich zeolites were obtained
using a D-8 Advance, Bruker (Germany), instrument that
analyzed the sample in powdered form to confirm the nature
and class of the synthesized zeolites. The XRD patterns were
recorded in the 2-theta range of 5-70, with a step size of 0.02
and a time of 2 seconds/step at 30 kV and a current of
30mA. The HRTEM was used for the identification of mor-
phological details of zeolites, d-spacing, and diffraction pat-
tern. The zeolite was dispersed into the double-distilled
water and sonicated for 10 minutes, and using the drop cast
method, a thin layer was deposited on carbon-coated copper
grids which were analyzed by FEI Model Tecnai G2 20 Twin
(200 kV) (USA).

3. Results and Discussion

The basic chemical composition of ISA comprises oxides
such as CaO (49.6%), SiO2 (20.3%), Al2O3 (4.7%), Fe2O3
(4.28%), MgO (3.9%), and K2O (8.2%), making it a suitable
material for the synthesis of the zeolite [44]. The Si/Al ratio
of ISA was four which indicates a higher amount of silica in
the ISA. Through alkali activation and simultaneous heating,
the silica phase (15-20%) existing in ISA participates in the
zeolitization process by dissolving into the solution whereas
quartz or mullite remains in the nonreactive mineral phase
[46]. Materials with higher Ca content form calcium hydrox-
ide in aqueous media, and owing to its lower water solubil-
ity, Ca forms calcium carbonate during zeolitization [46].
During this step, there is a rise in the pH of the solution,
due to calcium hydroxide along with NaOH; moreover, Ca
substitutes the native Na+ ions in the sodium zeolites with
Ca2+ ions; hence, it may generate some calcium-exchanged
zeolites [46, 47]. The ISA treatment with the NaOH hydro-
thermal method synthesizes zeolites by the following mech-
anism or chemical reactions:

ISA + xmoldm−3NaOH⟶
Time,Δ

Zeolite + Residum ð1Þ

3.1. FTIR for Identification of Functional Groups of Zeolites.
FTIR spectroscopy is an important analytical technique that
is used for the identification of the functional groups present
in the synthesized zeolites. On the basis of functional group,
a zeolite can be classified into its specific class along with
XRD and EDS data. Figure 2 shows a typical FTIR spectrum
of ISA-based Ca-rich zeolite products like calcium carbonate
which shows polymorphism [48]. The bands around
460 cm-1 are attributed to the interstitial pore formation
in the synthesized zeolites [49–52]. The bands around
1135 cm-1 are ascribed to the silicate bond Si-O-Si [53, 54],
while sharper and deeper nature of the bands indicates
enhanced crystallinity of the synthesized zeolites [55]. The
bands near 1600cm-1 are due to the -OH molecule, and
another band near 3435 cm-1 is because of the bending vibra-
tion of the water molecule in the samples [56]. Incidentally,
broader transmittance bands are detected between 3450 and

2-3 times washing with
distilled water 

Magnetic separation of
ferrous 

2 N H2SO4
Treatment, 25 ºC
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Washing with D/W

Drying
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Centrifugation
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Figure 1: Schematic flowchart for zeolite synthesis from ISA.
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3440cm-1 and centered at 3435 cm-1 which can be assigned to
an asymmetrical O-H- stretching linked to Na+, Ca2+, Si4+,
and/or Al3+ [57].

This indicates that there is bridging between Si and Al
tetrahedra by the –OH ion. However, hydrated aluminum
silicates comprised of such OH- bonding in the end products

also exist. The stretching vibrations near 3450 cm-1 and
bending vibrations at 1640-1620 cm-1 in the end products
suggest zeolite crystallization and higher cation exchange
capacity (CEC) [58].

3.2. PSA for the Particle Size Distribution of Zeolites. Figure 3
shows the particle size distribution of calcium zeolite parti-
cles. The average particle size is 1568 nm while the graph
displays two peaks, a major peak at 1694 nm and a minor
peak near 4851 nm. The PSA shows a larger particle size as
compared to the TEM (200-700 nm) due to the fact that in
PSA there is a formation of hydrodynamic layer (includes
core and molecules adsorbed over the surface) around the
nanoparticle which gives overall larger particle size [59].
Moreover, TEM analysis requires a dry sample; however,
PSA uses a sample in a solvated state where solvent mole-
cules associate with the nanoparticle surface to form a
hydration layer [60], while calculating the particle size using
TEM, this hydration layer is absent over the nanoparticle
surface; hence, the obtained particle size was comparatively
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lower [61]. The PDI of the particle is 0.210 which proves that
the particles are monodispersed in the solvent.

3.3. XRD for Phase Identification and Confirmation of Zeolite
Synthesis. The XRD diffractogram in Figure 4 revealed the
minerals and crystalline nature of the Ca-zeolite which
shows a major intensity peak at 25° and several minor
intensity peaks at 31.6, 38.9, 41.7, and 48.95°. The forma-
tion of zeolites was determined based on the peak at 25°

and d-spacing values. The most common Ca-based zeolites
are gismondine (Ca2Al4Si4O16·9H2O) which have the char-
acteristic peaks at 21.7°, 26.6°, and 27.9° and the peak at
32.6° could be due to calcite [62].

3.4. XRF Analysis of Zeolites for Chemical Composition of
Zeolites. XRF technique is the most reliable technique for
the detection of major elemental oxides present in a sample.
Figure 5 shows a typical XRF spectrum of an ISA-based zeo-
lite material, whose elemental composition is provided in
Table 1. The spectra clearly show that the zeolite has the
highest amount of Ca, followed by potassium, Fe, Silica,
Mg, and Al. Higher Ca content confirms the presence of
Ca-based zeolites. But the lower value of Al indicates that
the zeolite needs to be supplemented with Al from outsource
to maintain the Si/Al ratio. Lower Al content, i.e., 5-8%, in
ISA can be maintained during the zeolitization step [62].
The resultant zeolite is low Si/Al-based zeolites [63]. The
Ca-based zeolite nature is also supported by the FTIR and
FESEM-EDS.

3.5. Morphological Analysis of ISA and Ca-Rich Zeolites by
FESEM-EDS. Figures 6(a) and 6(b) show the FESEM

micrographs of incense stick ash which shows irregularly
shaped particles displaying higher aggregation. The size of
the particles is mainly in microns, i.e., 1-12 microns. The
aggregated particles are carbon- and calcium-rich particles
which are also evident from XRF. The ISA particles are
mainly dominated by the Ca and carbon particles. The
brighter regions are metal-rich regions like Al, Si, Fe, and
Ca while the darker rich regions are carbon-rich regions.
Figure 6(g) is the EDS spot of the zeolites while Figure 6(h)
is the EDS spectra and elemental composition table of the
synthesized calcium-rich zeolites from ISA. The EDS spectra
are showing mainly Ca, O, C, and S while Al and Si are pres-
ent in a much lesser amount. Ca, O, Si, and Al indicate the
formation of Ca-based zeolites mainly gismondine [64]. C
and S are present as impurities which can be attributed due
to the improper washing of the zeolite sample. As ISA has
high Ca and C, so the synthesized Ca-based zeolite has both
the elements in higher amount.

The absence of ferrous from EDS elemental composition
analysis indicates the removal of most of the ferrous parti-
cles, which have a positive effect on the property of zeolites
[65] since ferrous may interfere with the purity of the
zeolites.

3.6. TEM Analysis for Morphology of Synthesized Calcium-
Rich Zeolites. At the time of exposure of zeolites with the
electron beams, there is a possibility of damage and charging
of zeolites, so there is a requirement of sophisticated tech-
niques such as high-resolution TEM for visualization [66].
The TEM micrographs shown in Figures 7(a)–7(d) reveal
the morphology similar to the FESEM, where the cuboidal-
shaped particles have lengths varying between 200nm and
700 nm and a width ranging from 100nm to 300 nm.
Besides, there are several aggregations of smaller particles
which are visible as brighter particles under the TEM field.
The first three images depict Ca-rich zeolite particles in
groups, while Figures 7(d) and 7(e) show two and single
particle, respectively. In both, the image particles are cuboi-
dal in shape, while in Figure 7(e), the dimension of a single

Figure 5: XRF spectra of Ca-rich zeolites.

Table 1: Major chemical components of calcium-rich zeolites by
XRF.

Al Si Fe Ca Mg K

9.684 586.197 888.618 44060.21 10.112 2826.267
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: FESEM images of (a, b) incense stick ash, (c–f) calcium-rich zeolites, (g) EDS spot, and (h) EDS spectra.
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particle is 250 nm wide and 700nm long. The crystal images
of zeolite are overlapping to some extent; the edges of the
crystal are obvious. Moreover, the scattering area electron
diffraction (SAED) pattern in Figure 7(f) shows that the par-
ticles have polycrystalline nature.

The Ca-based or Ca-rich zeolites have several advantages
over Na-based zeolites. The application of Na-based zeolite
is restricted in soil and water and is not an appropriate mate-
rial to be used in agricultural- and aqua-based products as

(a) (b)

(c) (d)

(e) (f)

Figure 7: TEM micrographs of (a–e) calcium-rich zeolites and (f) SAED pattern.

Table 2: Heavy metal concentration after different time intervals.

Time Concentration (mg/l)
Minutes Cu Cd Cr Co Ni Pb Zn

0 1.340 0.092 0.15 0.293 0.833 0.014 4.49

120 0.97 0.033 0.03 0.233 0.638 -0.034 2.30
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higher sodium content enhances the salinity and sodicity of
the soil/water [67]. The challenging problems in such situa-
tions are (a) to reduce the harsh conditions of Na-based ISA
zeolites during its application in soil and water and (ii) to
increase the Ca-exchanged zeolites. So the synthesized zeo-
lites from the ISA will solve the problem associated with
these issues.

3.7. Remediation of Heavy Metals and Alkali Metals by Ca-
Rich Zeolites. Here, the dosage of the zeolite particles was
fixed, i.e., 10mg in 200ml solution of the wastewater. The
remediation of heavy (Cd, Mn, Zn, Pb, Al, Cu, Co, Cr, and
Ni) and alkali metals (Ca, Mg, Ba, and Al) by adsorption
process in a multicomponent system was performed by
shake flask method in an incubator shaker. The percent
removal of heavy metals was calculated by the following
formula:

Removal% = Co − Cfð ÞCo½ � × 100, ð2Þ

where Co and Cf are the initial and equilibrium concen-
tration (ppm) of metal ions in solution, respectively.

The removal efficiency of all the seven heavy metals
(Cu, Co, Ni, Pb, Cr, Zn, and Cd) decreased, in the solu-
tion after 2 hours as shown in Table 2, while the value
of Pb reached below the detection level of ICP-OES as
the Pb concentration was already less in the wastewater
solution in comparison to the other heavy metals. More-
over, higher electronegativity of Pb can also be a contrib-
uting factor [68]. In the process of metal ion adsorption,
the elemental property of electronegativity becomes highly
significant as higher electronegativity is responsible for the
stronger covalent formation of metals with O atoms situ-
ated on the surface of zeolites [69].

As far as the remediation of the nonheavy metals (Ba,
Ca, Mg, Mn, and Al) is concerned, a reduction in the value
of Ba, Ca, Mg, Mn, and Al was noticed after 2 hours as
shown in Table 3. All these are alkali metals that are present
significantly in fly ash, and their disposal into the river or
other water bodies will increase the alkalinity or hardness
of water [70]. So zeolites can be an efficient and economical
adsorbent for the removal of alkali metals from wastewater
[70]. Here, the adsorption of both heavy metals and alkali
metals takes place on the surface of zeolite particles due to
the electrostatic attraction and coordination. Several investi-
gators have also reported the remediation of numerous
heavy metals from wastewater by nanoadsorbents due to
electrostatic attraction and coordination [71]. The zeolite
surface is positively charged at neutral or slightly acidic
pH, which gives rise to PZC repulsion to cations. The coor-

dination between CH on the zeolite surface and the bivalent
metal ions is responsible for the adsorption of cations on the
zeolites. Such phenomenon of adsorption and deposition
was observed because the fly ash aqueous solutions are a
multicomponent system where several heavy metals and
nonheavy metals compete for the limited adsorption sites.
Once these binding sites are occupied, there is a healthy
competition among ions and nonmetallic ions, which results
in desorption of the heavy metals.

4. Computation Approach

A theoretical simulation to investigate the structural, elec-
tronic, and density of states’ characteristics of gismondine
(Ca2Al4Si4O16·9H2O) structures was carried out. Figure 8
shows the estimated theoretical models using first principles,
density functional theory calculations [72] as implemented
in the Quantum Espresso program [73]. Interaction of
atomic cores and valence electrons utilizing the extremely
soft pseudopotential technique is proposed by Vanderbil
[73]. Perdew-Burke-Ernzerhof (PBE) [74] exchange correla-
tional functional was used to solve the Kohn–Sham equation
[75], using the generalized gradient approximation [76]. It
has shown its ability to replicate ground state energy charac-
teristics across a broad range of a variety of crystals that are
similar to the experimental findings. An electronic wave
function was added. 70Ry energy cutoff values at particular
k-points were produced by the 18 × 18 × 18Monkhorst-Pack
mesh in the Brillouin zone for gismondine (Ca2Al4-
Si4O16·9H2O) structures. The energy convergence threshold
between two successive steps was maintained at 10-6 eV,
and the maximal Hellmann-Feynman force acting on each
atom was kept to a minimum [77] less than 0.001 eV.
Finally, the optimized structures were utilized to compute
the electronic and density of states’ properties calculated in
the present study.

4.1. Electronic and PDOS Structure Calculation. In Figure 9,
the structural optimization of gismondine (Ca2Al4Si4O16·
9H2O) structures was carried out in the first stage under
the lowest condition of total energy and forces acting on
atoms for the lattice constant, as well as the available
experimental [78] and theoretical findings. The computed
value of the lattice constant agrees well with observed values
[78] and differs by less than 1% from other theoretical work
[79]. The differences can be attributed to the differences in
calculating methods.

To better comprehend the electronic characteristics, the
density of states (DOS) and projected DOS (PDOS) are
computed, since they may explain the cause for bandgap
modulation and the gap of gismondine (Ca2Al4Si4O16·
9H2O) structures was in 4.734 eV. The DOS and PDOS of
Ca, Al, Si, and O atoms are shown in Figure 9. The picture
clearly shows that s, p, and d are the most contributed
energy in the formation of gismondine type zeolite; the Ca
and Al d orbital is the strong peak at Fermi level just above
the conduction band maxima (CBM) in the range 0 to -8 eV,
as well as some density contribution near the valence band
minima (VBM) in the region 4 eV to 18 eV. This additional

Table 3: Concentration of nonheavy metals after different time
intervals.

Time Concentration (mg/l)
Minutes Ba Ca Mg Mn Al

0 1.02 1.340 0.092 5.540 152.0

120 0.27 0.97 0.033 3.74 56.9
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peak results from the contribution of 2s and 2p orbital elec-
trons in Ca and Al at both CBM and VBM. The 3d orbit
electron of Si and O has a little effect on the VBM between
-11 and -20 eV.

5. Conclusion

Increasing global awareness towards environmental issues
acts as a driving force towards the recovery of value-added
minerals from waste materials. The present paper focuses
on the green synthesis of zeolites using incense stick ash
waste. The synthesis of zeolites from the household waste

incense stick ash is justified as the waste, whose disposal
causes environmental problem especially in water, is utilized.
The obtained Ca-rich zeolites were cuboidal in shape with
size between 200 and 700nm as revealed by TEM analysis.
The zeolites were microporous and crystalline in nature suit-
able as an adsorbent material for the remediation of contam-
inants present in water. The other analysis results such as
FTIR, PSA, XRD, and XRF also confirmed the successful
synthesis of zeolites from ISA. The present work effectively
draws possibility to utilize the ISA for the synthesis of Ca-
rich zeolites. Besides, theoretical calculations were also
established for the band structure and density of states’

a

c

b

Figure 8: The crystal structure of gismondine (Ca2Al4Si4O16·9H2O).
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characteristics of gismondine (Ca2Al4Si4O16·9H2O) struc-
tures. The structural optimization was carried out in the first
stage under the lowest condition of total energy and forces
acting on atoms for the lattice constant. The bandgap of
gismondine structures was in 4.734 eV. The quality of the
fabricated zeolite product strongly relies on environmental
treatments and the strength of the raw materials [80]. The
ISA-based zeolites have the potential to remediate both
heavy and alkali metals from wastewater. Hence, the ISA-
based synthesis of zeolites is an efficient, low-cost, and green
chemistry-based method that opens a new possibility in the
field of material science and catalysis.
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