
Mobile Information Systems

Artificial Intelligence for Mobile 
Health Data Analysis and Processing

Lead Guest Editor: Giovanna Sannino
Guest Editors: Nizar Bouguila, Giuseppe De Pietro, and Antonio Celesti



Artificial Intelligence for Mobile Health Data
Analysis and Processing



Mobile Information Systems

Artificial Intelligence for Mobile Health Data
Analysis and Processing

Lead Guest Editor: Giovanna Sannino
Guest Editors: Nizar Bouguila, Giuseppe De Pietro,
and Antonio Celesti



Copyright © 2019 Hindawi. All rights reserved.

This is a special issue published in “Mobile Information Systems.” All articles are open access articles distributed under the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Editorial Board

Mari C. Aguayo Torres, Spain
Ramon Aguero, Spain
Markos Anastassopoulos, UK
Marco Anisetti, Italy
Claudio Agostino Ardagna, Italy
Jose M. Barcelo-Ordinas, Spain
Alessandro Bazzi, Italy
Luca Bedogni, Italy
Paolo Bellavista, Italy
Nicola Bicocchi, Italy
Peter Brida, Slovakia
Carlos T. Calafate, Spain
María Calderon, Spain
Juan C. Cano, Spain
Salvatore Carta, Italy
Yuh-Shyan Chen, Taiwan
Wenchi Cheng, China
Massimo Condoluci, Sweden
Antonio de la Oliva, Spain
Almudena Díaz Zayas, Spain

Filippo Gandino, Italy
Jorge Garcia Duque, Spain
L. J. García Villalba, Spain
Michele Garetto, Italy
Romeo Giuliano, Italy
Prosanta Gope, UK
Javier Gozalvez, Spain
Francesco Gringoli, Italy
Carlos A. Gutierrez, Mexico
Ravi Jhawar, Luxembourg
Peter Jung, Germany
Adrian Kliks, Poland
Dik Lun Lee, Hong Kong
Ding Li, USA
Juraj Machaj, Slovakia
Sergio Mascetti, Italy
Elio Masciari, Italy
Maristella Matera, Italy
Franco Mazzenga, Italy
Eduardo Mena, Spain

Massimo Merro, Italy
Jose F. Monserrat, Spain
Raul Montoliu, Spain
Mario Muñoz-Organero, Spain
Francesco Palmieri, Italy
José J. Pazos-Arias, Spain
Marco Picone, Italy
Vicent Pla, Spain
Amon Rapp, Italy
Daniele Riboni, Italy
Pedro M. Ruiz, Spain
Michele Ruta, Italy
Stefania Sardellitti, Italy
Filippo Sciarrone, Italy
Floriano Scioscia, Italy
Michael Vassilakopoulos, Greece
Laurence T. Yang, Canada
Jinglan Zhang, Australia



Contents

Artificial Intelligence for Mobile Health Data Analysis and Processing
Giovanna Sannino , Nizar Bouguila , Giuseppe De Pietro, and Antonio Celesti
Editorial (2 pages), Article ID 2673463, Volume 2019 (2019)

Computer-Assisted Diagnosis for Diabetic Retinopathy Based on Fundus Images Using Deep
Convolutional Neural Network
Yung-Hui Li , Nai-Ning Yeh, Shih-Jen Chen , and Yu-Chien Chung
Research Article (14 pages), Article ID 6142839, Volume 2019 (2019)

ProMe: A Mentoring Platform for Older Adults Using Machine Learning Techniques for Supporting the
“Live and Learn” Concept
Giorgos Kostopoulos, Katja Neureiter, Dragos Papatoiu, Manfred Tscheligi, and Christos Chrysoulas
Research Article (8 pages), Article ID 9723268, Volume 2018 (2019)

User Evaluation of the Smartphone Screen Reader VoiceOver with Visually Disabled Participants
Berglind F. Smaradottir , Jarle A. Håland , and Santiago G. Martinez
Research Article (9 pages), Article ID 6941631, Volume 2018 (2019)

Mobile Hardware-Information System for Neuro-Electrostimulation
Vladimir S. Kublanov , Mikhail V. Babich , and Anton Yu. Dolganov
Research Article (7 pages), Article ID 2168307, Volume 2018 (2019)

WearableDL: Wearable Internet-of-Things and Deep Learning for Big Data Analytics—Concept,
Literature, and Future
Aras R. Dargazany , Paolo Stegagno , and Kunal Mankodiya
Review Article (20 pages), Article ID 8125126, Volume 2018 (2019)

Artificial Intelligence to Prevent Mobile Heart Failure Patients Decompensation in Real Time:
Monitoring-Based Predictive Model
Nekane Larburu , Arkaitz Artetxe, Vanessa Escolar, Ainara Lozano, and Jon Kerexeta
Research Article (11 pages), Article ID 1546210, Volume 2018 (2019)

http://orcid.org/0000-0001-7856-8761
http://orcid.org/0000-0001-7224-7940
http://orcid.org/0000-0002-0475-3689
http://orcid.org/0000-0001-9798-1578
http://orcid.org/0000-0001-9817-003X
http://orcid.org/0000-0002-4560-1227
http://orcid.org/0000-0002-9316-9096
http://orcid.org/0000-0002-2339-0828
http://orcid.org/0000-0001-6584-4544
http://orcid.org/0000-0001-7077-6611
http://orcid.org/0000-0003-2318-9144
http://orcid.org/0000-0002-7268-0434
http://orcid.org/0000-0003-1241-5732
http://orcid.org/0000-0001-6423-0823
http://orcid.org/0000-0003-0248-7783


Editorial
Artificial Intelligence for Mobile Health Data Analysis
and Processing

Giovanna Sannino ,1 Nizar Bouguila ,2 Giuseppe De Pietro,1 and Antonio Celesti3

1National Research Council of Italy (CNR), Naples, Italy
2Concordia Institute for Information Systems Engineering, Montreal, Canada
3University of Messina, Messina, Italy

Correspondence should be addressed to Giovanna Sannino; giovanna.sannino@icar.cnr.it

Received 30 December 2018; Accepted 31 December 2018; Published 22 January 2019

Copyright © 2019 Giovanna Sannino et al. $is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

$is special issue is devoted to the application of artificial
intelligence for mobile health data analysis and processing.
All papers in this issue went through the standard reviewing
process of Mobile Information Systems.

$is special issue is motivated by recent advances in
mobile health. Indeed, Internet-of-things (IoT) is changing
eHealth and especially mobile Health (m-Health) systems.
Currently, more and more fixed and mobile medical devices
are installed in patients’ personal body networks and
medical devices, and the surrounding clinical/home envi-
ronments collect and send a huge amount of heterogeneous
health data to healthcare information systems for their
analysis. In this context, machine learning and data mining
techniques are becoming extremely important in many real-
life problems. Many of these techniques have been developed
for health data processing and analysis on mobile devices.
Several mobile applications based on these techniques have
emerged as an essential technology for improving the quality
of medical diagnosis and treatments of many illnesses as well
as many health disorders.

Existing techniques used for processing health data can
be broadly classified into two categories: (a) non-Artificial
Intelligence (AI) systems and (b) Artificial Intelligence
systems. Even though non-AI techniques are less complex in
nature, most of the systems suffer from the drawbacks of
inaccuracy and lack of convergence. Hence, these systems
are generally replaced by AI-based systems which are much
superior to the conventional systems. AI techniques are
mostly hybrid in nature and include artificial neural

networks (ANNs), fuzzy theory, and evolutionary algo-
rithms. Although most of the techniques are theoretically
sound, their potential is not fully explored for practical
applications. Many of the computational applications still
depend on non-AI systems, which limit their practical usage.

$e goal of this special issue is to present some appli-
cations of machine learning and data mining techniques on
practical mobile health applications.

In N. Larburu et al.’s paper, the authors describe and
analyze an approach to prevent mobile heart failure patients
decompensation in real time via a monitoring-based pre-
dictive model. $e proposed approach is based on mobile
clinical data of 242 heart failure patients collected for a
period of 44months in the public health service of Basque
Country (Osakidetza).$e authors obtained the best pre-
dictive model as a combination of alerts based on moni-
toring data and a questionnaire with a Näıve Bayes classifier
deploying Bernoulli distribution. $is predictive model is
shown to reduce significantly the false alerts.

In L. Yung-Hui et al.’s paper, the authors propose a
computer-assisted diagnosis approach for diabetic reti-
nopathy based on fundus images using a deep convolutional
neural network (DCNN). Unlike the traditional DCNN
approach, the authors replace the commonly used max-
pooling layers with fractional max pooling. Using their
approach, the authors achieved a recognition rate up to
86.17% which outperforms the state of the art. With the
developed technique, the authors developed an app called
“Deep Retina.” Equipped with this app and a handheld
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ophthalmoscope, an average person can take fundus image
and obtain immediate result, calculated by the developed
algorithm.

In their manuscript, V. S. Kublanov et al. describe or-
ganizational principles of a mobile hardware-informational
system based on a multifactorial neuroelectrostimulation
device. $e system is implemented with two blocks. $e first
one forms spatially distributed field of low-frequency
monopolar pulses between two multielement electrodes in
the neck region and the second one which constitutes the
specialized control interface performed by a smartphone.

In G. Kostopoulos et al.’s paper, the authors describe a
mentoring platform for older adults developed using ma-
chine learning techniques to support the “live and learn”
concept. $is platform called “ProMe” supports different
opportunities for informal communication through a
number of functionalities such as video, text-chat, e-mail,
blogs, and forums. It provides also to end users the op-
portunity to take different kinds of mentoring roles.

B. F. Smaradottir et al. present in their manuscript a user
evaluation of VoiceOver, a built-in screen reader in Apple
Inc. products, with a detailed analysis of the gesture in-
teraction, familiarity and training by visually disabled users,
and system response. $e evaluation was done by six par-
ticipants with prescribed visual disability in a usability
laboratory under controlled conditions. $e data collected
via this evaluation have been analyzed using a mixed
methods approach based on quantitative and qualitative
measures.

In A. R. Dargazany et al.’s paper, the authors introduce
the concept of wearable deep learning (WearableDL) which
is a unifying conceptual architecture inspired by the human
nervous system, offering the convergence of deep learning,
Internet-of-things, and wearable technologies. In the pro-
posed architecture, the brain represents deep learning for
cloud computing and big data processing, the spinal cord
represents Internet-of-things for fog computing and big data
transfer, and the peripheral sensory and motor nerves
represent wearable technologies as edge devices for big data
collection.

We would like to thank the authors for their contri-
butions and the reviewers of the papers for their help in
bringing this issue to its current form.
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Diabetic retinopathy (DR) is a complication of long-standing diabetes, which is hard to detect in its early stage because it only
shows a few symptoms. Nowadays, the diagnosis of DR usually requires taking digital fundus images, as well as images using
optical coherence tomography (OCT). Since OCT equipment is very expensive, it will benefit both the patients and the oph-
thalmologists if an accurate diagnosis can be made, based solely on reading digital fundus images. In the paper, we present a novel
algorithm based on deep convolutional neural network (DCNN). Unlike the traditional DCNN approach, we replace the
commonly used max-pooling layers with fractional max-pooling. Two of these DCNNs with a different number of layers are
trained to derive more discriminative features for classification. After combining features from metadata of the image and
DCNNs, we train a support vector machine (SVM) classifier to learn the underlying boundary of distributions of each class. For
the experiments, we used the publicly available DR detection database provided by Kaggle. We used 34,124 training images and
1,000 validation images to build ourmodel and tested with 53,572 testing images.*e proposed DR classifier classifies the stages of
DR into five categories, labeled with an integer ranging between zero and four. *e experimental results show that the proposed
method can achieve a recognition rate up to 86.17%, which is higher than previously reported in the literature. In addition to
designing amachine learning algorithm, we also develop an app called “Deep Retina.” Equipped with a handheld ophthalmoscope,
the average person can take fundus images by themselves and obtain an immediate result, calculated by our algorithm. It is
beneficial for home care, remote medical care, and self-examination.

1. Introduction

*e global cost of treating adult diabetes and its induced
chronic complications is USD 850 billion in 2017. Diabetic
retinopathy (DR) is one of the most common and serious
complications of diabetes mellitus and is a leading cause of
low vision and blindness in working-age adults [1, 2]. *e
International Diabetes Foundation (IDF) estimated that the
global population with diabetes in 2017 was 451 million and
over one-third of the population had DR [3], representing a
tremendous population at risk of visual impairment or
blindness. By 2045, the worldwide prevalence of diabetes is
expected to increase to 693 million people [3]. In addition,
almost half (49.7%) of all people living with diabetes remain

undiagnosed for years because of silent symptoms [3].
However, long-term high blood sugar levels ultimately
destroy blood vessels and nerves, leading to complications,
such as cardiovascular disease and blindness. Detection and
treatment of DR in the early stage will prevent its devel-
opment or progression.

*e diagnosis and severity of DR are based on retinal
examination. Clinically, the classification of DR can be di-
vided into two categories: (1) nonproliferative diabetic
retinopathy (NPDR) with exudation and ischemia in dif-
ferent severity but without retinal neovascularization, and
(2) proliferative diabetic retinopathy (PDR), which is
characterized by neovascularization with or without its
complications of traditional retinal detachment and the
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initial appearance of vitreous hemorrhage. Microvascular
diseases of NPDR include microaneurysms, retinal dot and
blot hemorrhages, lipid exudates, venous beading change,
and intraretinal microvascular abnormalities (IRMA). Based
on the degree and extent of these lesions, NPDR can be
divided into three levels: mild NPDR presents with
microaneurysms or few retinal hemorrhages; moderate
NPDR shows more severe microaneurysms, hemorrhage or
soft exudate, but not reaching the level of severe NPDR,
which is associated with marked retinal hemorrhage in 4
quadrants, venous beading in at least 2 quadrants and IRMA
in at least 1 quadrant. Table 1 summarizes the DR category
with its manifestation.

Manual grading by ophthalmologists has been the
mainstay of DR screening in the past decades. However, due
to the expanding population with diabetes and the recent
advances in technology, automated detection of DR offers
the potential to provide an efficient and cost-effective ap-
proach to screening. Current commercialized automated
retinal image analysis systems (ARIAs), such as iGradingM,
Retmarker, and EyeArt, focus on differentiating diseased/no
disease, or detection of referable DR [5, 6]. Nonetheless,
ARIAs are currently not sufficiently sophisticated to classify
different levels of DR, which means that identifying the
subtle change between levels is still a challenging task for the
technique of medical image analysis. Figure 1 shows example
fundus images for each lesion.

In addition to the accuracy of medical image pro-
cessing, the mobility and portability of medical examina-
tion equipment are of equal importance. Currently, the
acquisition of digital fundus images requires the cooper-
ating patient to sit in front of the fundus camera in the
room, with ambient lighting minimized or turned off. *e
patient needs to look forward at the camera at a fixed light
and use infrared fundus imaging to focus on the area of
interest. Many nonmydriatic cameras have software that
automatically detects the posterior pole of the eye and takes
a picture when it is focused behind the eye. *e RGB image
sensor still requires a flash to capture images in the visible
light spectrum. However, the digital fundus imagers most
popularly used in the clinics are bulky and expensive, as
shown in Figure 2, which limit its capability for large-scale
screening.

One of the major goals for this study, besides increasing
the classification accuracy using artificial intelligence, is to
come up with a new system framework for DR screening.
*e new framework combines the advantages of mobile
computing, cloud computing, big data, and artificial in-
telligence. *e components of the proposed framework can
be described as following:

(i) Mobile block: *e fundus image acquisition is
achieved using a hand-held fundus imager, coupled
with a self-developed iPhone APP. *e imager is
small and light-weighted. It can be carried inside a
backpack. *e deployment of such devices is ex-
tremely convenient. *e portable nature due to its
small form factors and light-weight can benefit the
medical service for remote rural areas.

(ii) Cloud block:*e proposed system does not sacrifice
its computational performance for its portability.
*anks to the architecture of cloud computing, the
core of the computational resources is moved to the
cloud and can be scaled up flexibly as the request
increases. We developed highly efficient deep
learning algorithm which runs on cloud server and
is able to respond to the diagnosis request within 10
seconds.

(iii) Big data block: *e cloud-based architecture also
helps to collect big data. As more and more end
devices (hand-held fundus camera) are being used,
the number of fundus images that passed into the
cloud will increase accordingly. By storing all of
these fundus image data, we are able to make good
use of such big dataset, such as machine learning
model retraining, new feature exploration, or cross-
domain data-mining for different types of ophal-
mological diseases.

In summary, in this paper, we propose a new system
framework for DR screening, based on artificial intelligence,
mobile computing, cloud computing, and big data analytics.
Figure 3 shows an illustration of the proposed system. Such
system is a new paradigm for telemedical service and will
benefit rural areas where the medical resources are
insufficient.

In the following sections, we will gradually unveil our
ideas and show the experimental results. In Section 2, we
performed related literature review for important algorithms
for the foundation of DR classification, which is retinal vessel
segmentation. In Section 3, we performed related literature
review for DR detection. In Section 4, we illustrated the
proposed deep learning and machine learning algorithms in
full details. We show the experimental results in Section 5
and discuss some important findings in Section 6. Finally, a
conclusion is given in Section 7.

2. Literature Review of Retina
Vessels Segmentation

In the process of identifying DR, it is pivotal to locate the
retinal vessels. If the vessels position can be correctly known,
we can determine whether the patient is suffering from DR
based on information about the precise location and
thickness of the vessels. However, vessel tracking is a
complex process because of the many other substances
besides vessels in fundus images. Numerous vessel seg-
mentation methods have been proposed, which can be
broadly divided into five categories: vascular tracking,
matched filtering, morphological processing, deformation
models, and machine learning.

2.1. Methods of Vascular Tracking. Methods of vascular
tracking are based on the continuous structure of vessels, by
starting at an initial point and following the vessels until no
further vessels are found.*e critical factor in this procedure
is the setting of the initial point, as this will affect the
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accuracy of vessel segmentation. Currently, setting the initial
point can be done either artificially or automatically.

*e earliest adaptive vascular tracking method was
proposed by Liu and Sun [7] in 1993, which extracts the
vasculature from X-ray angiograms. First, given an initial
point and direction within a vessel, the authors apply an
“extrapolation-update” scheme that involves estimating
local vessel trajectories. Once a vessel fragment has been
tracked, it is removed from the image. *is procedure is
repeated until the vascular tree has been extracted. *e
drawbacks of this strategy are that due to the algorithm used,
the user must set the vessel starting points and that the
approach does not seem adaptable to three-dimensional
extraction. In 1999, an automatic vascular tracking
method was developed by Can et al. [8]. *is strategy mainly
collects pixel wide vascular local minimum points (usually in
the middle of a vessel) to perform tracking. Vlachos and
Dermatas [9] suggested a multiscale line tracking method
with morphological postprocessing. Yin et al. [10] proposed
a retinal vascular tree extraction, based on iterative tracking
and Bayesian method.

*e advantage of vascular tracking is that it can provide
local information about characteristics, such as the

diameter/width and direction of vessels. However, the
vascular tracking performance can be easily affected by
crossing or branching of vessels, which reduces the iden-
tification efficiency.

2.2. Methods of Matched Filtering. Matched filtering
methods employ multiple matched filters for extraction, so
designing proper filters is essential to detect vessels. Since the
gray-scale distribution of fundus vessels is in keeping with
Gaussian, an intuitive method exists that uses the maximum
response of images after filtering to find vessel points. As the
diameter/width of vessels is diverse, a multiscale Gaussian
filter method is often used for vessel tracking.

In 1989, Chaudhuri et al. [11] pioneered the application
of Gaussian filters in vessel tracking, by using some vascular
characteristics, such as the fact that vessels are darker than
the background, the width of the vessels ranges from 2 to 10
pixels, and the vessels grow from the optic disc into a radial
shape. *erefore, Chaudhuri et al. [11] designed two-
dimensional Gaussian filters that can detect vessels in 12
different directions. However, this method needs large
computation, and some of the dark lesions are similar to the

Table 1: Classification of diabetic retinopathy [4].

Category Level Manifestation

Nonproliferative diabetic retinopathy (NPDR)

1 Few microaneurysms or hemorrhage

2 Microaneurysms, hemorrhages, soft exudates, venous
beading

3
Severe retinal hemorrhage in ≥4 quadrants, or venous
beading change in ≥2 quadrants, or mild intraretinal

microvascular abnormality in ≥1 quadrant
Proliferative diabetic retinopathy (PDR) 4 Neovascularization of retina or optic disc

(a) (b) (c)

(d) (e)

Figure 1: Examples of fundus images showing different lesions. (a) 0 level (normal), (b) level 1, (c) level 2, (d) level 3, and (e) level 4.
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characteristic of vessels, causing tracking errors. Hoover
et al. [12] described an improvedmethod that considers local
and regional characteristics of vessels to separate blood
vessels in retinal images and iteratively determine whether
the current point is a vessel point.

After such improvement, a large number of studies of
reformed filters have been developed. Jiang and Mojon [13]
promoted a generalized threshold method based on a
multithreshold detection. Zhang et al. [14] improved the
matching filtering method by applying a local vessel cross
section analysis, using local bilateral thresholding. Li et al.
[15] suggested a multiscale production of the matched filter,
to enhance the extraction of tiny vessels.

2.3. Methods of Morphological Processing. Morphological
processing facilitates the segmentation and identification of
target objects by analyzing and processing structural ele-
ments in a binary image. *us, linear and circular elements
of blood vessels can be selected, isolating the desired
structure instead of the background image. In addition,

morphological processing can also smooth and fill the image
contour with the advantage of antinoise. However, this
method overrelies on structural elements and does not make
good use of characteristics of vessels.

According to vessel characteristics, Zana and Klein [16]
introduced a mathematical morphology-based algorithm
that allows separating the vessels from all possible un-
desirable patterns. Building on this approach, Ayala et al.
[17] proposed using different average fuzzy sets. In Miri and
Mahloojifar [18], fundus images were analyzed by the use of
curvelet transform and morphological reconstruction of
multistructural elements to enhance the boundaries and
determine the vascular ridge. Karthika and Marimuthu [19]
combined curvelet transform and morphological re-
construction of multistructural elements, with strongly
connected component analysis (SCCA) to segment and
identify vessels.

2.4. Methods of Deformation Models. First introduced by
Kass et al. [20] in 1988, the key benefit of deformation

Level 0
Level 1
Level 2
Level 3
Level 4

Level 4

Big data
collection

Online
training

Deep learning
algorithm on

cloud computing
platform

Image acquisition
on mobile device

Figure 3: *e proposed framework. It is composed of mobile block (image acquisition), cloud block (deep learning algorithm on cloud
computing platform) and big data block (big data collection and training).

Figure 2: Commercialized fundus camera used in the clinics. *e machine is bulky and expensive, making it difficult for large-scale
screening.
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models is the ability to produce smooth parametric curves or
surfaces. Two categories of deformation models are iden-
tified: parametric deformation and geometric deformation.
Parametric deformation models are also called active con-
tour or snake models (set of points each with an associated
energy). *rough the external and internal forces acting on
the snake, the snake model can change its shape and
smoothness toward the desired structure. In 2007, Espona
et al. [21] used a parametric deformation model method on
fundus images and promoted an improved method with
morphological segmentation. With the assistance of mor-
phological vessel segmentation, the snake model expands to
the contour of the obtained vessels until the local energy
function is minimal. Another deformation model method
called ribbon of twins (ROT), which combines ribbon snakes
and double snakes, was proposed by Al-Diri and Hunter
[22]. Each twin consists of two snakes, one inside and one
outside the vessel edges. *e double snake model then at-
tempts to integrate the pairs of twins on the vessel borders
into a single ribbon and calculate the vessel width.

*ere are several shortcomings in parametric de-
formation models. For instance, the segmentation results
depend on the initial contour, and difficulties arise when
extending from low to high dimensions and in segmenting
complex objects. Geometric deformation can well solve the
problems caused by parametric deformable models. Geo-
metric deformable models are based on deformation curve
evolution theory and have no strict requirement on the
position of the initial contour, which increases the robust-
ness of the method and allows it to be extended to high
dimensions. Zhang et al. [23] proposed an automatic vessel
segmentation method, which uses nonlinear orthogonal
projection to capture the characteristics of retinal blood
vessels and obtained an adaptive local thresholding algo-
rithm for blood vessel segmentation. Zhao et al. [24] sug-
gested a retinal vessel segmentation method that employs a
region-based active contour model with a level set imple-
mentation and a region growing model.

2.5. Methods of Deformation Model. Machine learning is an
algorithm that teaches computers to learn to achieve goals
automatically, by building generative or discriminative
models from accumulated datasets. Machine learning can be
divided into supervised learning and unsupervised learning.
*e supervised learning methods learn to achieve goals
based on ground-truth, which means that during the
training stage, the training data used to train the model come
with a “label” that can be used by the machine learning
algorithm to differentiate the data. Applying such paradigm
in the problem of DR, it means that when using supervised
learning, one needs to mark all of the pixels belonging to
vessels in advance, whereas the unsupervised learning
method does not need to mark them beforehand.

For supervised learning, Cesar and Jelinek [30] and
Leandro et al. [31] proposed a supervised classification with
two-dimensional Gabor wavelet. Each pixel has a feature
vector that consists of the gray-scale feature and responses of
distinct sizes of two-dimensional Gabor wavelet. Ricci and

Perfetti [25] proposed a segmentation method for retinal
vessels based online manipulation and support vector
classification. Since the features are extracted by two
orthogonal vertical lines, it reduces the features and
training samples in supervised learning. A supervised
method using neural network was proposed by Marin
et al. [26], which has one input layer, three hidden layers,
and one output layer. Each pixel in the image is repre-
sented by a seven-dimensional feature vector to train the
network. Shanmugam and Banu [27] used an extreme
learning machine (ELM) to detect retinal vessels by
creating a seven-dimensional feature vector based on
gray-scale features and invariant moments and using ELM
to segment vessels. In 2015, Wang et al. [28] raised a new
hierarchical retinal vascular segmentation, including
three steps: preprocessing, hierarchical feature extraction,
and integration classification. It involves using simple
linear iterative clustering (SLIC) to perform super-pixel
segmentation and randomly selecting a pixel to represent
the entire super-pixel, as a more easy and efficient means
of extracting features.

For unsupervised learning, in 1998, Tolias and Panas
[32] created an automatic and unsupervised segmentation
method based on blurred fundus images, which used fuzzy
C-means (FCM) to find initial candidate points. Xie and Nie
[33] proposed a segmentation method based on a genetic
algorithm and FCM. Salazar-Gonzalez et al. [29] used
methods of vector flow to segment retinal vessels.

Table 2 is a summary about the performance comparison
between different existing methods.

3. Literature Review of Diabetic
Retinopathy Detection

Although extracting vessels before detecting DR with machine
learning can achieve high accuracy, it is time-consuming to
create the marked ground-truth for retinal vessels. Another
paradigm is to train the computer to automatically learn how to
distinguish levels of DR by reading retinal images directly,
without performing vessel segmentation. In 2000, Ege et al. [34]
proposed an automatic analysis of DR by different statistical
classifiers, including Bayesian, Mahalanobis, and k-nearest
neighbor. Silberman et al. [35] introduced an automatic de-
tection system for DR and reported an equal error rate of 87%.
Karegowda et al. [36] tried to detect exudates in retinal images
using back-propagation neural networks (BPN). *eir features
were decided by two methods: decision trees and genetic al-
gorithmswith correlation-based feature selection (GA-CFS). In
their experiment, the best BPN performance showed 98.45%
accuracy. Kavitha and Duraiswamy [37] did some research on
automatic detection of hard and soft exudates in fundus im-
ages, using color histogram thresholding to classify exudates.
*eir experiments showed 99.07% accuracy, 89% sensitivity,
and 99% specificity. In 2014, de la Calleja et al. [38] used local
binary patterns (LBP) to extract local features and artificial
neural networks, random forest (RF), and support vector
machines (SVM) for detection. In using a dataset containing 71
images, their best result achieved 97.46% accuracy with RF.
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4. Material and Methods

We propose an automatic DR detection algorithm, based on
DCNN, fractional max-pooling [39], SVM [40], and
teaching-learning-based optimization (TLBO) [41]. Specif-
ically, we train two DCNN networks with fractional max-
pooling, combining their prediction results using SVM and
optimizing the SVM parameters with TLBO. *e reason for
training two distinct networks is that different network
architectures may have their unique advantages in feature
space representation. By training two DCNNs and com-
bining their features, the prediction accuracy can be further
enhanced. Another important factor impacting the recog-
nition rate is the parameter of classifiers. We propose to
optimize the SVM parameters using TLBO.We illustrate the
image preprocessing methods in Section 4.1 and present the
fractional max-pooling, SVM, and TLBO, in Sections 4.2,
4.3, and 4.4, respectively.

4.1. Preprocessing. Given the vessels in the original fundus
images are mostly not very clear, and the size of each
fundus image may differ, it is essential to preprocess images
so that they have the same size and the visibility of the
vessels is improved. *ere are three steps in preprocessing.
*e first is to rescale images to the same size. Since the
fundus images are circular, we rescale the input images so
that the diameter of the fundus images becomes 540 pixels.
After rescaling, the local average color value is subtracted
from the rescaled images, and another transformation is
performed so that the local average is mapped to 50% gray-
scale in order to remove the color divergence caused by
different ophthalmoscopes. Last but not least, because
boundary effects may occur in some images, we remove the

periphery by clipping 10% from the border of the images.
Figure 4 shows the original fundus image and the image
after preprocessing.

4.2. Fractional Max-Pooling. Pooling is a procedure that
turns the input matrix Min × Nin into a smaller Mout ×

Nout output matrix. *e purpose is to divide the input
matrix into multiple pooling regions (Pi,j):

pi ⊂ 1, 2, 3, . . . , Min  for each i ∈ 1, . . . , Mout ,

pj ⊂ 1, 2, 3, . . . , Nin  for each j ∈ 1, . . . , Nout ,

Pi,j � pi × pj.

(1)

*e pooling results are computed according to pooling
type:

Outputi,j �
Oper

(k, l) ∈ Pi,j

Inputk,l. (2)

In equation (2), “Oper” refers to a particular mathe-
matical operation. For example, if max-pooling is used, the
operation will be to take the maximum of the input region.
For average pooling, the average of the input region is taken.
For such a network that requires tremendous learning, it is
preferable to use as many hidden layers as possible. In this
work, the pooling layer used in our networks is fractional
max-pooling instead of general max-pooling.

Fractional max-pooling is a pooling scheme that
makes the size of the output matrix equivalent to fractional
times that of the input matrix after pooling, i.e.,
Nin � αNout, α≥ 0, α ∉ Z. To describe the general

Table 2: Performance comparison.

Method Year Reference Sn Sp Acc AUC Database

Vascular tracking 2010 [9] 0.7468 0.9551 0.9285 — DRIVE
2012 [10] 0.6887 0.9562 0.9290 — STARE

Matched filtering
2009 [14] 0.6611 0.9848 0.9497 — STARE

2012 [15] 0.7191 0.9687 0.9407 — STARE
0.7154 0.9716 0.9343 — DRIVE

Morphological processing 2011 [18] 0.7352 0.9795 0.9458 — DRIVE
2014 [19] 0.7862 0.9815 0.9598 — DRIVE

Deformation model

2007 [21] 0.6634 0.9682 0.9316 — DRIVE

2009 [23] — 0.9736 0.9087 — STARE
— 0.9772 0.9610 — DRIVE

2014 [24] 0.7187 0.9767 0.9509 — STARE
0.7354 0.9789 0.9477 — DRIVE

Machine learning

2007 [25] — — 0.9584 0.9602 STARE
— — 0.9563 0.9558 DRIVE

2011 [26] 0.6944 0.9819 0.9526 — STARE
0.7067 0.9801 0.9452 — DRIVE

2013 [27] 0.8194 0.9679 0.9725 — DRIVE

2014 [28] 0.8104 0.9791 0.9813 0.9751 STARE
0.8173 0.9733 0.9767 0.9475 DRIVE

2014 [29] 0.7887 0.9633 0.9441 — STARE
0.7512 0.9684 0.9412 — DRIVE

Sn: sensitivity, Sp: specificity, Acc: accuracy, AUC: area under curve.
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pooling regions, let (xi)
Mout
i�0 and (yj)

Nout
j�0 be two increasing

integer sequences starting with one and ending with Min or
Nin. *ese two sequences are used in pooling steps, as
described in Figures 5 and 6.

Pi,j � xi−1, xi − a  × yj−1, yj − b . (3)

*e constants, a and b in equation (3), stand for the
overlapping length and the width of the pooling window,
respectively. Figure 5 is a simple example of overlapping
pooling. Figure 6 illustrates different pooling region types.

After fractional max-pooling, the pooling window size is
still integers, but the global pooling size will change. Namely,
fractional max-pooling does not directly change the pooling
window into a fractional scale. Instead, it uses windows of
variable size to achieve fractional pooling. *e generation of x

and y sequences can be random or pseudorandom. Pseudo-
random sequences generate more stable pooling regions than
random sequences and can also achieve higher accuracy [39].

4.3. Support Vector Machine (SVM). SVM is a supervised
learning method used for classification and regression
analysis. SVM can find the hyperplane or decision boundary
defined by the solution vector w, which not only separates
the training vectors but also works well with unseen test
data. To improve its generalization ability, SVM selects
decision boundaries based on maximizing margins between
classes.

Figure 7 illustrates the idea. Suppose there are n points in
a binary dataset:

x1
�→

, y1( , . . . , xn
�→

, yn( , (4)

where yi is the data label, which can be 1 or −1, indicating
the class to which xi

→ belongs. We need to find the optimized
hyperplane, such that the distance between the hyperplane
and its nearest point xi

→ is maximized. A hyperplane can be
written as equation (5) based on x

→:

w
→

· x
→− b � 0, (5)

where w
→ is the normal vector of the hyperplane, and the

value of b/‖w
→

‖ decides the margin of hyperplane from the
training data point along the normal vector w

→.

(a) (b)

(c) (d)

Figure 4: Image before and after the preprocessing stage. (a, b) images before preprocessing stage; (c, d) images after preprocessing stage.

x = {1, 2, 3, 4, 5}, y = {1, 2, 4, 5}, a = 0, b = 1
P1,1 = [x1−1, x1 − 0] × [y1−1, y1 − 1] = [1, 2] × [1, 2]
P1,2 = [x1−1, x1 − 1] × [y2−1, y2 − 1] = [1, 2] × [2, 3]

Figure 5: An overlapping example. *e blue solid line indicates
pooling region P1,1 while the red dotted line shows the P1,2.
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For yi, whose value is 1, the data must satisfy
w
→

· x
→− b≥ 1, and for yi, whose value is −1, w

→
· x
→− b≤−1

has to be satisfied. Combining these two conditions, we get

yi(w
→

· x
→− b)≥ 1. (6)

*e goal is to maximize b/‖w
→

‖ according to the constrain
of equation (6) in order to derive the optimized decision
hyperplane for classification.

Sometimes, the training data might not be able to be
perfectly separated using linear boundaries.*erefore, in the
SVM formulation, we need to introduce the error metric ε
and the cost parameter C, as shown in equation (7). *e goal
now becomes to minimize

1
2

w
→

· w
→

+ C 
N

i�1
εi. (7)

Subject to

w
→

· xi
→

+ b≥ 1− εi if w
→

· xi
→> b,

w
→

· xi
→

+ b≤−1 + εi if w
→

· xi
→< b,

εi > 0.

(8)

*e performance of SVM is influenced by two main
parameters, the first one is C, which is a tunable parameter in
equation (7). *e other one is c, which is used in the radial
basis function (RBF) kernel to map data into a higher di-
mensional space before training and classification. *e RBF
kernel can be defined as

K xi, xj  � e
−c xi−xj



2

, (9)

where c denotes the width of the Gaussian envelope in a
high-dimensional feature space.

4.4. Teaching-Learning-Based Optimization (TLBO).
TLBO, an evolution-based optimization algorithm, was
proposed by Rao et al. [41], in 2011. *e concept of TLBO is
inspired by the evolution of the learning process when a
group or a class of learners learn a target task. *ere are two

ways of learning in groups or classes: (1) learning from the
guidance of the teacher and (2) learning from other learners.
*e procedure of TLBO can be divided into two phases, as
described below in Sections 4.4.1 and 4.4.2.

4.4.1. Teacher Phase. In the whole population, the teacher
(Xteacher) can be considered as the best solution. Namely,
learners learn from the teacher in the teacher phase. In this
phase, the teacher strives for enhancing the results of other
individuals (Xi) by increasing the mean result of the
classroom. *is can be described as adjusting Xmean to
approximate Xteacher. In order to maintain a stochastic
nature during the optimization process, two randomly
generated parameters, r and TF, are applied in each iteration
for the solution Xi as

Xnew � Xi + ri Xteacher −TFXmean( , (10)

TF � round[1 + rand(0, 1)]. (11)

In equation (10), ri is a randomly selected number in the
range of 0 and 1. Moreover, Xnew and Xi are the new and
existing solutions at iteration i, respectively. TF in equation
(11) is a teaching factor which can be either 1 or 2.

a = 1, b = 1

x = {1, 2, … }, y = {1, 2, … }

x = {1, 3, … }, y = {1, 2, … }

x = {1, 2, … }, y = {1, 3, … }

P1,1 = [x1−1, x1 − 1] × [y1−1, y1 − 1] = [1, 1] × [1, 1]

P1,1 = [x1−1, x1 − 1] × [y1−1, y1 − 1] = [1, 2] × [1, 1]

P1,1 = [x1−1, x1 − 1] × [y1−1, y1 − 1] = [1, 1] × [1, 2]

Figure 6: Different pooling types when both a and b equal to one.*e left side shows the equations for pooling condition and computation
of pooling region. Pictures on the right side indicate regions before and after pooling.

w · x
 – 

b =
 1

w · x
 – 

b =
 0

w · x
 – 

b =
 –1

Figure 7: Example of decision boundary hyperplane with two
classes of samples.
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4.4.2. Learner Phase. *e learners gain their knowledge by
interacting with each other. *erefore, an individual learns
new information if other individuals have more knowledge
than him or her. In this phase, the student Xi interacts
randomly with another student Xj (i≠ j) in order to en-
hance his or her knowledge. Equation (12) shows that if Xi is
better than Xj (i.e., f(Xj)>f(Xi) for minimization
problems), Xj is moved toward Xi. Otherwise, it is moved
away from Xi.

Xnew �
Xi + ri Xi −Xj , f Xj >f Xi( ,

Xi + ri Xj −Xi , f Xi( >f Xj ,

⎧⎪⎨

⎪⎩
(12)

If the new solution Xnew to the problem is better than the
old ones, the new solution Xnew will be recorded as the best
solution. After updating the status of each learner, a new
iteration begins. A stop criterion, based on the iteration
number or the difference of the cost function, can be set to
stop the iteration properly. *e flowchart of TLBO is shown
in Figure 8.

5. Result

Our fundus image data is from the database provided by one
of the Kaggle contests; entitled “Identify signs of diabetic
retinopathy in eye images” [42]. In this database, there are
about 90,000 images. We separate 1000 images from the
training dataset to be the validation dataset. *e detailed
information of each dataset is shown in Table 3, and our two
network architectures are shown in Figure 9.

Our proposed method uses two DCNNs with fractional
max-pooling layers. For every input fundus image, the two
DCNN will output a vector of size 1 × 5, representing the
probability distribution of the prediction for each lesion
(category). *e probability distribution, together with other
values, forms a feature with dimensionality 24. *e 24
features are described as follows:

(i) DCNN probabilities of each lesion, respectively (5
features)

(ii) Averages of R, G, and B channel values within 50% ∗
50% center cropped image (3 features)

(iii) Widths and heights of 50% ∗ 50% center cropped
image (2 features)

(iv) Overall standard deviation of the original image and
50% ∗ 50% centered cropped image, Laplacian-
filtered image (2 features)

(v) In total, there are 12 features for one fundus
image. We then append another 12 features from
the fundus image of the other eye of the same
subject. *erefore, the overall length of the feature
vector is 24 for one fundus image. *e 24 feature
vectors of dimensionality are used as input vec-
tors of SVM

*e 24-dimensional vector is used to train a multiclass
SVM (five classes), whose parameters are optimized using
the TLBO method. We implemented the method described

in [39] and used it as the baseline. *e baseline system uses
similar features with a scheme of ensemble classifier (RF).

We used the validation set data to optimize the pa-
rameter set (C, c) in SVM using TLBO. *e upper and
lower bounds of the parameter are set within [0, 100]. We
ran 50 iterations with 50 students.

Our final accuracy for five-class classification task of
DR is 86.17% and the accuracy for the binary class
classification task is 91.05%. Labels for five-class classi-
fication are normal, NPDR level 1, NPDR level 2, NPDR
level 3, and PDR while labels for binary class classifi-
cation are normal and abnormal. For binary classifica-
tion, its sensitivity is 0.8930 while the specificity is
0.9089. Except counting accuracy, we also do a T-test for
our binary class classification. *e T-test is also called the
Student’s t-test. It is a statistical hypothesis test, in which
the test statistic follows a Student’s t-distribution.
Usually, the t-test is used to compare whether there is a
significant difference between two groups of data and
assists in judging the data divergence. In doing a paired
samples t-test with results from binary class classification
and random judgment, its outcome is 1 for the hypothesis
test result, zero for the p value and [0.3934, 0.4033] for
the confidence interval, under null hypothesis at the 5%
significant level.

*e hypothesis test result is an index that tells whether
two data come from the same distribution or not. If the data
come from the same distribution, the value of the hypothesis
test result will be close to 0. On the contrary, if the data
resources are distinct, the result will be close to 1, which
means there is a differentiation between the data.*e p value
is the probability of accepting the assumption that there is a
difference between two data may be wrong.*e smaller the p

value, the more reason that there is a disparity between data.
Also, we designed an app called “Deep Retina,” pro-

viding personal examination, remote medical care, and early
screening. Figure 10 shows our app interfaces. After
choosing a fundus image that the user wants to check, it will
send the image to our server and use our designed machine
learning method. It takes about 10 s (depends on network
speed) to get the result, which will be presented as the
probability of each lesion. With a handheld device, in-
dividuals can do the initial examination at the district office
or even at home. More importantly, it can benefit some
remote areas that lack medical resources.

6. Discussion

6.1. Accuracy Improvement. Table 4 shows the accuracy
comparison when using different classifiers and pa-
rameter optimization methods on each dataset. Using the
default parameters with SVM (without optimization),
accuracies in both validation and test sets are higher than
that of the RF [39]. If we optimize the parameters using
the default parameter searching method provided in the
LIBSVM software package, though it achieves very high
accuracy in the five-fold cross validation experiment, the
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validation and test accuracies are even lower than the
default one. From this result, we believe that overfitting
arises when optimizing parameters in SVM.

Table 5 shows the confusion matrix of the classification
results from the two DCNN networks (before performing
SVM classification). Network 1 is the architecture shown on

Yes

No

Reject

Yes

No

No

Yes

Yes

Start

Initial students, terminal criterion

i = 1 

Calculate mean of each design variables

Identify best teacher/solution

Based on best teacher/solution to modify
Xnew,i = Xold,i + differencei = Xold,i +

ri (Xteacher – (TF)mean)

Randomly select any solution Xj (Xj ≠ Xi)

i = i + 1

Final value of solution and end

Is new solution better than existing?
f (Xnew,i) > f (Xold,i)?

Is Xi better than Xj?
f (Xi) > f (Xj)?

Is new solution better than existing?
f (Xnew,i) > f (Xold,i)?

Is termination criteria satisfied?
f (Xnew,i) > f (Xold,i)?

No

Yes

No

Xnew,i = Xold,i + ri (Xi – Xj)

Xi = Xnew,i

Xnew,i = Xold,i + ri (Xj – Xi)

i ≤ N ?

Xi = Xnew,i

Figure 8: TLBO flowchart.
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the left side of Figure 9, and network 2 is the one on the right
side. From Table 5, it shows that the lesion classifications of 0
and 2 are better than the other categories. For lesion 1, most
of the prediction results are incorrect. Also, for lesions 3 and
4, the majority of the results are misclassifications that are
classified into lesion 2.

Table 6 shows the confusion matrix of the classification
results using the full procedure of the proposed method
(using SVM with TLBO). Table 7 displays the difference
between Tables 5 and 6, which serves as a performance
comparison between the two methods (using DCNN only
and DCNN + SVM + TLBO). From the table, every class,
except class 0 and overall accuracy, is increased in network 1.
For network 2, each accuracy, except class 3, is increased.
*e decline in accuracy of class 3 is mainly caused by

misclassification of class 2. Table 8 shows the confusion
matrix of the classification results using the baseline method
as reported in [39], for comparison purposes.

6.2. Deep Learning vs Traditional Classification Methods.
Many traditional classification methods try to solve the
problem of DR detection by (1) using image processing to
capture symptoms in fundus images and then (2) building a
classifier to make decisions based on the detected symptoms
(1). *e shortcoming of image processing methods is that the
manifestations of the symptoms are random across different
images; therefore, it is extremely time-consuming and re-
quires intense efforts to label the locations of the symptoms.
Abiding by the new philosophy that comes with the emer-
gence of the deep learning technology, our proposed method
is trying to learn how to make decisions directly from the
image data itself. Different than the former approaches, our
images only need to be labeled with lesion number instead of
labeling symptom locations. Consequently, it saves consid-
erable time during the database preprocessing stage. On top of
the classification results by the two DCNN networks, we use
SVM optimized by TLBO to generate an improved outcome,
and we achieve 86.17% accuracy. Our result is better than the
first-place winner in the Kaggle competition. It shows that our
research result is the state-of-the-art.

6.3. Limitation. In our current datasets, the number of
images of lesions 3 and 4 is not sufficient to train a network,
which is a limitation of the proposed method.*erefore, one
of our future works is to develop deeper collaborative re-
lations with hospitals and clinics to acquire more data of
lesions 3 and 4. With more data, we believe the classification
accuracy will be further increased. In addition, from our
result, we found that it is hard to differentiate the images
between lesions 0 and 1. *erefore, when we collect new
data, it is desirable to collect more images belonging to
lesions 0 and 1. Also, we can attempt to use a different
network architecture for this problem.

7. Conclusion

It is feasible to train a deep learning model for automatic
diagnosis of DR, as long as we have enough data for sta-
tistical model training. Furthermore, the database prepa-
ration stage only needs a categorical label for each training
image. It does not require detailed annotation for retinal
vessel tracking in every image. Hence, it is time-efficient
compared to the traditional machine learning-based method
for automatic diagnosis of DR. *e final accuracy can
achieve 86.17% and 91.05% for five-class and binary class
classifications, respectively.

*e sensitivity and specificity of binary classification are
0.8930 and 0.9089, respectively, which is a satisfactory result.
Furthermore, we developed an automatic inspection app
that can be used in both personal examination and remote
medical care. With more image data collected, we expect the
accuracy can be even more enhanced, further improving our
system.

Table 3: Detailed information of each dataset.

Dataset # of images
DR lesions

0 1 2 3 4
Train 34124 73% 6% 15% 3% 3%
Validation 1000 70% 8% 15% 4% 3%
Test 53572 74% 7% 15% 2% 2%
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Figure 9: Architecture of the two DCNN networks that we used.
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Table 4: Accuracy comparison when using different classifiers and different parameter optimization methods on each dataset.

Dataset
Method

SVM RF [39]
Without optimization Default parameter searching TLBO

Five-fold cross validation (using training data) 88.744% 96.5724% — —
Validation data 85.4% 79.6% — 84.7%
Test data 86.1177% 81.0573% 86.17% 86.02%

Table 5: Confusion matrix of the classification results from the two DCNN networks, before performing SVM classification.

Determined level
Ground-truth level

Network 1 Network 2
0 1 2 3 4 0 1 2 3 4

0 39031 2693 2361 75 160 38310 2233 1617 51 78
1 118 438 185 0 1 327 735 290 1 3
2 339 626 5058 738 392 790 786 5509 620 345
3 0 0 170 332 102 4 1 338 486 185
4 43 5 85 69 551 100 7 105 56 595
Accuracy (%) 98.74 11.64 64.36 27.35 45.69 96.91 19.54 70.01 40.03 49.34
Overall accuracy (%) 84.76 85.18

(a) (b) (c) (d)

Figure 10: App interfaces.

Table 6: Confusion matrix of the classification results using the full procedure of the proposed method (using SVM with TLBO).

Determined level
Ground-truth level

SVM optimized with TLBO
0 1 2 3 4

0 38611 2233 1513 44 80
1 312 831 349 1 1
2 570 696 5706 701 393
3 3 0 215 408 123
4 35 2 76 60 609
Accuracy (%) 97.67 22.09 72.60 33.61 50.50
Overall accuracy (%) 86.17
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It is well known what an important role employment plays in our lives and how it influences our everyday life. With the help of
employment, all of us as individuals manage to create our personal and social net that not only gives meaning and financial
security but also heavily affects our social status, contributes to self-esteem, and plays a vital role on the way our social re-
lationships at work and (not only) are formed. Being work active even after the retirement time has been found to have mostly
useful and positive effects. Age groups that are in the after retirement age group (65 and more) and keep working can significantly
improve their mental health since they feel that there are still things to offer to others. ProMe aims to provide a unique framework
for the people being in this transitional phase of their life, from work to retirement, thus playing a vital role in supporting their
mental health and well-being. ProMe provides a platform for the younger generation to benefit from the accumulated professional
and formal knowledge and experience of the older. In this way, ProMe supports professional intergenerational cooperation and
mentoring, bringing together older adults with younger generations.

1. Introduction

Employment offers an opportunity to use one’s skills and
experience and to maintain social contacts beyond re-
tirement, enhancing self-esteem by providing one’s expertise
to and for others. Activities such as voluntary work
(e.g., helping others) and programs that bridge employment
and retirement (i.e., any kind of paid occupation between a
person’s career and the withdrawal from labor force) have
been shown to enhance one’s well-being and quality of live.
(e effects of demographic aging show that constant de-
crease on the share of people of working age compared to an
increasing relative number of those who are retired. (is
demographic shift requires society to reconsider the role

older adults’ play in a society, even after retirement. In the
Organisation for Economic Co-operation and Development
(OECD) countries, it is common for workers to take early
retirement, leaving the labor market before the standard
pension eligibility age. (is, in turn, leads to an increasing
number of economically inactive people relative to those
who are economically active. ProMe [1] aims to change
perceptions on aging and the vocational activities of older
adults. It offers an innovative solution that is designed to
serve intergenerational dialogue, lifelong learning, and, on
top of those, creating value among generations. It will also
play a vital role on themental health of the elderly since there
are numerous studies specifically pointing out the impor-
tance of work in the elderly (after retirement) [2–7].
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Based on these reflections, ProMe aims in providing
meaningful work opportunities in the life of older adults, in
order to smoothly pass from work to retirement and what
after that. During their working life (or no), adults accu-
mulated a lot of knowledge in domains related with their
work and beyond. Our vision is to harness this and to
achieve professional intergenerational cooperation and
mentoring via our proposed platform, bringing together
older adults with younger generations. Especially in the work
context, mentoring is considered a valuable approach,
e.g., to enhance the diffusion of expert knowledge within a
working group or an organisation.

ProMe is based on theoretical concepts for mentoring
[8, 9]. modern (professional) social networks (e.g., Xing,
ResearchGate, and LinkedIn) try to promote strengthening
social relations among people who share interests and ac-
tivities though their mechanisms. Apart form the above,
ProMe offers the opportunity for older adults’ meaningful
occupation on a voluntary basis through taking an active role
as a mentor. (is is feasible by encouraging them to share
their knowledge and experience with younger generations
who are eager to learn, trying to include the ones that not
only seeking a career but also a more general life advice.

(rough ProMe, older adults will be able to continue
working thus allowing them to be and play an active role in
social and working life, even after their retirement. In this
way, added value for the society and economy is created. We
consider mentoring as “walking alongside” a person—sharing
expertise, values, and skills. It entails informal communica-
tion, including voluntary engagement, mutual respect, shared
responsibility, and empowerment of thementee, resulting in a
mutually beneficial relationship. It can be described as a
process for the informal transmission of knowledge, ranging
from accompanying a person over a longer period
(e.g., preparing a project or settling in a new company) to
simply providing advice or information regarding specific
topics (e.g., when applying for a new job).

ProMe provides an effective way of bringing together
people in a long term and effectively relationship they need
for developing a shared and transparent psychological
contract they both commit to. “(e term psychological
contract is used to describe a set of individual beliefs or set of
assumptions about promises voluntarily given and accepted
in the context of a voluntary exchange relationship between
two or more parties” [10]. “Psychological contract theory
suggests that we shift the focus fromwhat one expects to gain
from the relationship to what one feels he or she is obligated
to provide in the relationship. (. . .) understanding these
obligations might provide valuable insight into why some
specific functions are provided and others are not, especially
with regard to structural characteristics of the relationship,
such as the level of formality” [9]. In such collaborative
relationships, you have two and sometimes even more, if we
are talking for instance for a learning network multiple,
psychological contracts: a psychological mentoring contract
of a “requester of support” contains the obligations each of
the involving parts owe each other [11]. For an effective
collaborative relationship, it is important that both
psychological contracts are compatible and preferably

transparent for both parties (so forming a shared contract).
Even though, a possible lack of agreement on the mutual
obligations does not mean that there is no psychological
contract. An important point to remember is that psycho-
logical contracts are conceptualized as an individual’s per-
ceptions of mutual obligations and that actual agreement on
the contract terms is not a requirement for a psychological
contract to exist [12]. (ere is the possibility for an indi-
vidual to form a type of psychological contract with someone
he/she considers to be a supporter (or protégé) without the
other party to develop a similar psychological contract with
them. In this scenario, there is the possibility that the col-
laborative relationship will not be productive and long
lasting [11]. Associated with the promises each party makes
with another are mutual obligations and expectations, and
depending on each party’s beliefs about these promises, a
psychological contract is subject to variations in expecta-
tions about that contract, i.e., matches and mismatches [13],
which may affect the potential for each party’s expectations
being met. If beliefs and assumptions and their underlying
promises are clear for all involved parties, it is more likely the
expectations will be met. We highly believe that valid “in-
formation” about what each part expects and what to be
expected of them, as they get involved in one of the three
collaborative relationships, will play a vital role to the quality
and the sustainability of that collaborative relationship.

Based on these considerations and the pivotal role of
mentoring, the ProMe framework/platform is supporting
different opportunities for informal communication
through a number of functionalities, like video/text-chat,
email, blogs, and forums. Apart from the aforementioned
means of informal communication, ProMe provides
potential-end users with the opportunity to take over dif-
ferent kinds of “mentoring roles.” Recognizing the diverse
aspects of mentoring, different types/roles of mentors and
mentees, have been considered based on someone’s expe-
rience (please also check Section 4, regarding the system
architecture).

(e remainder of this paper is organized as follows.
Section 2 surveys related work in the area. Section 3 presents
a representative use case of the proposed framework. Section
4 provides an insight on the internal architecture of the
system. In Section 5, the proposed recommendation system
is presented, while Section 6 concludes the paper and
provides future directions.

2. State of the Art

(ere are numerous web-based platforms currently available
that aim to match and guide mentors and protégés, for
example, connecting graduates with a mentor to contem-
plate on one’s career or to support students to achieve their
goals. Most of these services also have partnerships, with
colleges, universities, or professional societies to increase
resources at a local level and expand mentoring pro-
gramming and opportunities. In contrast to these solutions,
ProMe does not only provide an opportunity to match
mentor and mentee, but facilitates contact by means of the
different functionalities (e.g., video conferencing and text
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chat) that are offered via the platform on different devices. It
provides a flexible communication environment and allows
mentoring independent of time and space, which is cur-
rently only realized by a small number of online e-mentoring
services, like Horsesmouth [14] and Senior Engage [15].

(e Aware [16] project proposes a telematics platform for
older adults to prepare them for the transition to retirement
by allowing sharing knowledge tomaintain an active role after
retirement. It also provides a training module to acquire
expertise in using information and communication tech-
nologies (ICTs) and services over Internet. ProMe approach
offers different opportunities for maintaining meaningful
occupation not only in the transition to retirement but also
beyond. Besides sharing knowledge ProMe aims at supporting
intergenerational learning so that both, older adults and
younger generations, benefit from the solution.

E-mentoring [17] provides Internet-based education,
social, and corporate email-based mentoring, while ProMe
provides a variety of different mentor roles (according to
users’ capabilities) and suitable communication opportu-
nities for the mentor and the mentee (e.g., text/video-chat,
forum, and blog).

(e Hear Me [18] project connects retirees with young
adults who have not completed their secondary education
and lack the qualifications for meaningful employment. Also
provides cognitive and practical education for older adults to
become mentors for youths at risk. Our approach not only
focuses on a specific group of mentees but also addresses
interested mentees from all generations. ProMe is not
intended to be an education tool but considers older adults
as competent to get active on the platform, focusing on
supporting them to share knowledge and skills.

(e Horsemouth [14] project aims in the creation of a
public value through the exchange of experiences and
knowledge concerning all areas of life (e.g., work and
learning). ProMe from the other side focuses on facilitating
the exchange of professional knowledge supporting the older
adults in continuing and managing an occupational lifestyle.

Horizons Unlimited [19] platform provides mentoring
and coaching programs for personal and professional de-
velopment through matching mentors and mentees. ProMe
supports autonomy and independence by allowing older
adults to get active as a mentor according to one’s own
expertise. Tailored specifically to the needs of older adults
creates value for the target group by addressing a variety of
user experience and acceptance factors (curiosity, motiva-
tion, usefulness, accessibility, flexibility, etc.).

(eMentor [20] project aims for young people between
the ages of 6 and 18, supports and guides them to build
productive and as much as possible meaningful lives, and
also matches mentor and mentees. (e ProMe approach
goes beyond matching mentor and mentee by providing
different roles and means of communication. Mentor Net
[21] aims at connecting students in engineering and science
with mentors in industry. It helps students to achieve their
goals through e-mentoring. ProMe encourages mentoring
between all age groups. It not only focuses on supporting
the mentee but aims at fostering mutually beneficial
relationships.

(e Senior Engage [15] approach offers an opportunity
for retired professionals to share knowledge and experiences
with younger professionals to reduce isolation. It uses dif-
ferent means of communication such as video/text chat, and
email. (e ProMe approach from the other side not only
offers an opportunity to exchange knowledge and experi-
ences but also is based on a concept of mentoring, providing
a variety of different mentoring roles and continuously
supporting the mentoring relationship. It is also worth
mentioning that it is not built from scratch and uses existing
social structures people are embedded in (e.g., Xing and
Linkedin).

3. Use Case Scenario

Susan is 58 years old in the transition to her retirement. She
has more than thirty years of experience working in a
marketing department of a large company and has gained a
significant amount of knowledge and expertise throughout
the years. Although Susan is looking forward to having more
time to spend with her two grandchildren and to pursue her
hobbies, she is also thinking about potential opportunities
for future occupation to maintain purpose in her life. Susan
does not see herself as being an “old person” but as vital and
active, and she wants to continue working to some extent,
probably on a voluntary basis. Her greatest fear is that she is
no longer needed and that all the knowledge she gained
throughout the years is lying fallow.

Recently, Susan was invited by her company to give a
presentation on marketing strategies based on her knowl-
edge and experience. She enjoyed being involved and would
like to continue this kind of activity. At this event, Susan
heard about the ProMe platform and its use in sharing
professional knowledge with younger generations. She be-
came curious and had a look at the platform. As she could
easily access the platform with her LinkedIn account, she
logged in and explored the different opportunities and
functionalities it provides. She extended her profile, in-
dicating information about her professional knowledge and
experience and what kind of mentoring roles she could
imagine taking over. (e intelligent expert system (agent)
provided suggestions for potential mentees, searching for
expertise in the area of marketing and she started looking at
the several interesting profiles. She did not initially want to
take over a specific mentoring role, and she simply started
posting some ideas on marketing strategies on the ProMe
platform. She obtained interesting feedback from the young
students; they were enthusiastic about the blog posts. Fol-
lowing this initial success, she decided to take over the role of
a leader after a few weeks. With the easy to use function-
alities of the ProMe platform, she started to offer training via
video conferencing where she discusses business concepts
and ideas with young people. Susan really enjoys it and
notices that, in addition to sharing her thoughts and ex-
perience, she is also learning new ideas from the young
mentees (a two-way process).

Susan wanted to find out more about the different
mentoring roles she could become involved with and took
the online “Mentor-Check.” Apart from her interests,
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expertise, and knowledge she already indicated when
extending her profile, the Mentor-Check included questions
about the time she could imagine investing being a mentor
on the ProMe platform.

(e results indicated that she had the skill set required to
be the perfect buddy. She really liked the idea of accom-
panying a younger person, e.g., a marketing graduate
starting their first job out of college. Again, the agent
supported her in easily finding mentees looking for a mentor
in the area she had expertise in. She reviewed the suggested
profiles of young people who were searching for a buddy and
decided to get in contact with a young woman who was
going to start her first big project on her own. (ey worked
together to establish the management concept, using
working tools (e.g., calendar to coordinate appointments),
concepts, and communication and collaboration tools such
as video-chat, email, orWhiteboard, allowing brainstorming
together on a first concept. Susan has been working together
with her mentee for several months and was perfectly
supported by the functionalities provided on the ProMe
platform according to the specific needs of this mentoring
relationship. Also, after her mentee had successfully started
her project, they stayed in contact via the platform for
further support in everyday businesses.

4. System Architecture

(e actual ProMe platform users are considered users with
different characteristics on the systems. Figure 1 provides an
overview of the different roles in the ProMe system.

(i) Guest/anonymous users: guest/anonymous users
are users that can access publicly available sections
of the portal without any need for authentication/
authorization. For example, they can have access to
the homepage where they can find what the project
is about and success stories.

(ii) Registered users: as registered users, we consider
those users that have to follow the normal sign-in
procedure when trying to access the platform.
Registered users are in position to access more
personalized (restricted) content and make use the
tools that the ProMe platform can offer, based on
the role they serve. (ree types of registered users
exist, considering their roles and attributes in the
project. In the scope of the ProMe project, we have
identified two types of users: one that acts as a
receiver and another that acts as a provider. (ose
two pairs of user were considered best for the scope
of the project in user testing and experts evaluation.

(iii) Provider user: provider users are those users that
based on their previous professional experience can
choose a suitable role(s) from the list of roles or by
doing a “Mentor-check,” i.e., based on its profile
(expertise, interests, etc.).

(a) Mentor
(b) Advisor

(iv) Receiver user: receiver userhas the role of a par-
ticipant in the activities initiated by the providers.

(a) Mentee
(b) Advisee

(v) Administrators: administrators are users that can
perform administrative tasks in the system.

(e ProMe system is in position to adequately provide
users a modern way of communication; thus easily exchange
useful learning materials. In Figure 2, we can see all the
different levels that the ProMe platform is based on.

Right in the middle and high up, there is the presentation
level. (e presentation level contains those components
needed so as the ProMe platform to be in position to deliver
services to the users. (ese components delivers the graphic
interface for the users to access the platform, and platform
information that will allow any external systems to gain
access to provided services.(e described graphical interface
is heavily based on up-to-date frameworks like HTML5 or
CSS3. Web services are exposed using REST [22].

(e service level contains services for implementation of
the business flow. (e aforementioned set of services can be
used by the integration and presentation service blocks in
order to provide the needed for the end user functionality. (i)
Search in portal: it provides an easy and user friendly way for
navigation throughout the platform. (ii) Posting content: it
provides an easy way to place/post comments on the forum,
and/or there is the option to upload extra educational
material. (iii) Creating an account: a new user will be in
position to create an account and become a registered user.
(iv) Calendar of events: users are in position to organize an
event and even invite others. (v) Alerts: a user can make use
of the alerts feature so as to receive useful notifications. (vi)
Evaluation tests: it provides the option for the users to take
by using the platform. (vii) Video conference: the platform
users have the opportunity to communicate with each other
using audio and/or video means. (e suggested solution for
the platform, also meeting the identified need, is the
BigBlueButton.

External services consist of applications which ProMe
uses in order to deliver personalized services to any external
users. (i) Web interface: a web interface is considered as the
mediator between the actual user and any software that
exists on a web server. (ii) Web services: web service is

User

Anonymous
user

Authenticated
user

Provider Receiver

Mentor Advisor Mentee Advisee

Figure 1: ProMe platform users.
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considered to be a software system, supporting interoperable
machine-to-machine interaction over a network. (iii) In-
tegration services: integration services include all those extra
services that the ProMe platform needs to communicate
with any external services. (iv) Communications protocol:
communication protocols deal with all the exchanging
messages. (v) Transformation services: data transformation
services (or DTS) is a set of objects and utilities to allow the
reading and writing to the system’s databases. (e sub-
components of the DTS objects are called DTS tools. (vi)
Management of web pages: administrators of the systems
have the right to manage the content of the web page. (vii)
Single sign-on (SSO): Single sign-on is supported thus
allowing the users of the platform to make use of the same
credentials to access different applications supported by the
platform. (viii) Users profile management: it provides the
rights for administrators to enable or disable a user account.

5. Recommendation System

Building a highly adaptive recommendation system is
crucial for our system. (e system will be in position to
provide recommendations to the users based on historical
data, taking into account each user’s personal characteristics
and needs. Some information about adaptive recommen-
dation systems can be found in [23]. (e very basic in-
gredients for the development of a more precise
recommendation system are as follows: trust, similarity, and
reputation. When we are talking about trust, what in essence
we are trying to capture is the user’s trustworthiness. When
dealing with similarity, capturing the level of proximity
amongst users is the target. And when discussing about
reputation, what other users are thinking about a specific use
is targeted. A system which can make use of those three
ingredients will be in position to provide accurate recom-
mendations about services that someone using the platform
is interested for; for example, a user that is in position to give
insight to others based on his/her experience. (e three
aforementioned ingredients can possibly give answers to the
next questions. (i) How valid is a review provided by a user?

(ii) Can, for example, a mentor address mentee’s needs? (iii)
What the online community thinks of him/her?

ProMe is in position to provide accurate (to the platform
user) recommendations. (is is possible by implementing
algorithms to adequately cope with the vast amount of data
coming from Internet, by implementing customized algo-
rithms for analyzing the incoming data, and by designing
and implementing the needed for the user behavior analysis
and recommendation algorithms. Figure 3 provides an in-
sight on the abstract architecture/functionality of ProMe’s
recommendation engine. By simply following the data flow,
anyone easily understands the interactions taking place
among the various subcomponents. Initially, a user is asking
for possible recommendations with the use of a query, which
is then passed to the actual recommender component. Based
on historical user activities, the recommender component
“calculate” the following ingredients: (i) trust, (ii) reputa-
tion, and (iii) similarity. Based on the above “calculations,”
the ProMe platform is in position to provide the end user
with the needed recommendations.

Community structure is the base for ProMe’s recom-
mendation engine. (e central idea of the community
structure is that a community can be depicted as a graph. In
this graph, users and items are considered to be the nodes,
and on the edges, their relationships are placed. In this way,
we can easily weight the edges of the graph, and we can also
add several features to them, for example, creation time and
number of interactions with other nodes.

ProMe is proposing the “walking” across the edges of the
graph. So, the level of their trust is in essence the actual
length of a walk between two nodes. In the case of no path
among two nodes, recommendation can be based on rep-
utations. Figure 4 presents the actual model.

A trust relation from node i to node j indicates how
much trust i places in j. Considering the recommendation
problem in trust networks, such as ProMe, is how can we
recommend (predict) a trustworthy mentor (i.e., i) to a
mentee (i.e., j). Let us start with a simple case where all nodes
(edges) have the same trust value 1. For example, Figure 5
illustrates a trust network (TN1), which contains the
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neighbours of mentor M1. Among all the agents except M1’s
neighbours M2 and M3, M4 is the most possible candidate
because it is connected by two neighbours of M1.

Figure 6 presents an example of a trust network (TN2),
which shares the same topology as TN1 except TN2 has trust
values (rather than 1) at its nodes (edges). Unlike the result
in Figure 5, although M5 has fewer connections with M1’s
neighbours than M4, M5 has the highest similarity score
because the trust value of its only connection is much
stronger than the trust values of M4’s connections. Note that
M3 (not considered as a recommendation because it is al-
ready a neighbour of M1) also has a high similarity score
because it is connected by M2 (M1’s neighbour) with a high
trust value.

5.1. Mining and Machine Learning Aspects. In the machine
learning field, complexity and diversity can be handled using
the “Black Box” principle. Based on this principle every
machine learning method is expected to fit a simple mold.

(e ProMe recommendation engine/component will be
responsible to gather any data coming out of the queries and
constructing the actual dataset to be used for training and
testing the machine learning algorithm. (e recommenda-
tion engine/component supports the following three
procedures:

(1) To establish a safe connection with the actual
databases

(2) To query the databases and receive the data
(3) To save the data in a proper, for the machine learning

algorithm, format

Despite the fact that each algorithm is different from the
others, the following five steps should be followed
throughout the development and application phase:

(1) Data collection: data collection refers to the actual
method to be followed in order to collect the data.
Data can be collected with the use of APIs, RSS feed,
through (sensor) devices that can collect and
transmit the data, etc.

(2) Data preparation: data preparation is one of the most
important steps. Data should be in a suitable format
to be fed to an algorithm. Algorithms may need the
provided features to follow a specific format. Some
work only with features and/or variables in string
format, while others ask for data to be integers.

(3) Training the algorithm: in the training the algorithm
step, we provide the algorithmwith the data from the
previous step, and as an outcome, we expect to gain a
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much deeper and extended insight into the provided
data. In the case of unsupervised learning and since
we do not have a specific value to target, no training
step takes place.

(4) Testing the algorithm: In the testing the algorithm,
the evaluation of the algorithm is taking place. When
we are referring to supervised learning, someone
usually has known values to evaluate the algorithm.
For example, ground truth data to be checked against
the performance of the algorithm. Support and
confidence should be used in unsupervised learning,
in order to check if it is successful or not.

(5) Usage: in this final step, we check the algorithm’s
implementation in practice. Of course, there is al-
ways the need to continuously check if the afore-
mentioned four steps are delivering as expected.

5.2. Recommendation System Testing. (e recommendation
system is the system responsible for the three from the end
steps in the previously described sequence of actions (steps 3
to 5). (e recommendation system is providing the whole
framework with the needed functionality in order to (i)
receive the data, (ii) to feed the machine learning algorithm,
and (iii) to provide a better insight for them. (e ultimate
target for a machine learning algorithm is to spot any in-
teresting relationships when working with the dataset. But
how do we quantify interesting relationships? First, we
should find a frequent itemset, and second, we should
measure any interesting relationships in association rules.

Algorithms, like Apriori [24], can be used to enhance the
recommendation system with extra association rules, thus
providing an even more robust system. Apriori is based on
the principle that if an item is not frequent, that automat-
ically suggests that supersets containing that specific item are
not frequent too (Algorithm 1). What plays a vital role on
how to test and measure is the user’s population. (e bigger
the dataset, the bigger the quality which can be achieved.

6. Conclusions

(e basic scope of the ProMe project was to design and
eventually bring to life a platformwhich will be in position to
provide the needed tools so as mentoring and of course
knowledge sharing among older and younger generations to
be feasible. Another target of the framework is to assist older
adults throughout the transition phase, from full-time
employment to retirement. (us supporting their mental
health and quality of life. Last but not least, to provide equal
importance is the continuity in knowledge and experience
passing from the older ones to the younger generation.
Results till now show that users consider the platform useful
and easy to use.

ProMe is in position to provide accurate (to the platform
user) recommendations. (is is possible by implementing
algorithms to adequately cope with the vast amount of data
coming from Internet, by implementing customized algo-
rithms for analyzing the incoming data, and by designing
and implementing the needed for the user behavior analysis

and recommendation algorithm. Initially a user is asking for
possible recommendations with the use of a query, which is
then passed to the actual recommender component. Based
on historical user activities, the recommender component
“calculate” the following ingredients: (i) trust, (ii) reputa-
tion, and (iii) similarity. Based on the above “calculations”
the ProMe platform is in position to provide the end user
with the needed recommendations.

ProMe is now a working online service platform for
mentoring, which focuses on intergenerational cooperation. It
enables adults after retirement to pass their their professional
formal and tacit knowledge to younger adults, who can benefit
from this valuable asset, e.g., when starting their own career.
Mentoring is a win-win situation for all parties involved. (e
mentor has the opportunity to help changing another per-
son’s life by sharing knowledge and experience. (e mentee
can be sure to be supported in walking towards a self-defined
goal by someone experienced and professional. (e ProMe
platform provides a matching system that connects mentors/
mentees accordingly to their needs and expectations. A va-
riety of communication and collaboration tools are offered
that support mentor/mentee to successfully work together.

Data Availability

(e data are coming from an insurance company in Greece,
which was really happy to assist in the validation of the
proposed architecture/platform. Unfortunately, the data
cannot be available due to their nature. (e data used to
support the findings of this study are currently under em-
bargo, while the research findings are commercialized.
Requests for data, (6/12 months) after publication of this
article, will be considered by the corresponding author.
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(1) Ck: Candidate itemset of size k
(2) Lk: frequent itemset of size k
(3) Ll � {frequent items};
(4) for (k � 1; Lk! � ∅; k + +) do begin
(5) Ck+l � Candidate generated form Lk;
(6) for each transaction t in database do
(7) increment the count of all candidates in
(8) Ck+l that are contained in t
(9) Lk+l � candidates in Ck+l with min_support
(10) end
(11) return ∪kLk;

ALGORITHM 1: (e Apriori algorithm.
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Touchscreen assistive technology is designed to support speech interaction between visually disabled people and mobile devices,
allowing hand gestures to interact with a touch user interface. In a global perspective, the World Health Organization estimates
that around 285 million people are visually disabled with 2/3 of them over 50 years old. *is paper presents the user evaluation of
VoiceOver, a built-in screen reader in Apple Inc. products, with a detailed analysis of the gesture interaction, familiarity and
training by visually disabled users, and the system response. Six participants with prescribed visual disability took part in the tests
in a usability laboratory under controlled conditions. Data were collected and analysed using a mixed methods approach, with
quantitative and qualitative measures. *e results showed that the participants found most of the hand gestures easy to perform,
although they reported inconsistent responses and lack of information associated with several functionalities. User training on
each gesture was reported as key to allow the participants to perform certain difficult or unknown gestures.*is paper also reports
on how to perform mobile device user evaluations in a laboratory environment and provides recommendations on technical and
physical infrastructure.

1. Introduction

Since the last decade, touchscreen technology has been
increasingly used not only across multiple types of devices,
such as smartphones and tablets [1–3], but also in photo-
copying machines, automated teller machines (ATMs), and
ticket machines in bus, railway stations, and airports. Re-
views from the perspective of human factors and ergonomics
and studies of people with developmental disabilities
pointed out the relevance of the specific context of system
interaction in order to maximize safety, performance, and
user satisfaction [4] and the need for more research [5].
Touchscreens require the use of fingers and a choreography
of gestures for interaction between the user and the device’s
user interface (UI) [6, 7]. However, this type of screen in-
teraction can represent a challenge for visually disabled users
where the screens are designed for a visual feedback while
using the system [8].

*e World Health Organization (WHO) estimates that
the number of people with visual disability is around 285
million globally and that about 2/3 of them are older than 50
years [9, 10]. Traditionally, visually disabled people have used
different assistive technology devices, such as an external
keyboard, a braille terminal, or a screen reader that provides
speech feedback related to the visual elements on the screen.
Mobile phones with physical buttons are still functional for
many visually disabled people because of the surface and the
rugosity of the buttons that provide palpable guidance when
using the device. However, this type of communication device
has become less popular in favour of smartphones with
touchscreens that currently dominate the market. Smart-
phones with touchscreen interaction do mainly incorporate
visual and sound feedback for communication with the user.
*is type of communication represents a challenge for the
UI navigation to visually disabled people who do not see the
screen with sufficient details and buttons without tactile
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feedback [11]. Several solutions are available in the market to
improve the accessibility of smartphone technology for vi-
sually disabled people [12–14]. Some of these solutions are
standalone products, and others are used in conjunction with
other technology. One of the products available is VoiceOver
[12], the integrated screen reader in Apple Inc. products.
VoiceOver allows users to interact with the UI through
gestures and with speech feedback to guide the navigation.
*e screen reader has been included in Apple Inc. products
since April 2005 in Mac OS X 10.4, since June 2009 in iPhone
3GS OS 3.0, and in iPad OS 3.2 since its introduction in April
2010. VoiceOver has to be activated in the device’s settings,
and when activated, the device provides a speech feedback
when a user interacts using hand gestures on the touchscreen.
*ere are different gestures that can be performed on the UI,
and they provide immediate feedback interpreted by the
screen reader. For instance, tap with one finger and drag will
read the item in the cursor (selected), and four-finger tap near
the top of the screen will read the first item at the top. *e
gestures must be made with the fingers, and the screen reader
does not respond to voice commands or sense motion.

In this context, the research project “Visually impaired
users touching the screen—A user evaluation of assistive
technology” aimed at evaluating the accessibility and us-
ability of a screen reader for touchscreens in smartphones
[15]. *is paper presents the results from the evaluation of
the usability and the accessibility of the screen reader
VoiceOver (iOS 7.1.2), which is an integrated functionality
in iPhone mobile devices. In addition, the paper provides
recommendations on technical and physical infrastructure
to perform an evaluation of mobile devices in a laboratory
environment.

*e three research questions (RQs) targeted by this study
were as follows:

RQ1: What is the user experience of visually disabled
users when interacting with the VoiceOver?
RQ2: How is the VoiceOver screen reader response to a
set of 16 performed hand gestures during a user
evaluation?
RQ3: What technical infrastructure can be suitable for
an evaluation of mobile assistive technology with vi-
sually disabled users?

Following this introduction, the research methodology
and the technical test infrastructure are described. *e re-
sults are presented based on the user evaluation outcomes
and experience related to the test infrastructure. Further-
more, a discussion of the main results is provided followed
by a summary of the research contributions and conclusions.

2. Materials and Methods

A mixed methods research approach was employed in the
evaluation of the screen reader [16–18], with quantitative
and qualitative measures. *e evaluation was conducted in
three phases: (1) individual user training at the participant’s
home and introduction to the gestures a few days before
the test, supplied with a written instruction sent by e-mail;

(2) a usability test in a controlled laboratory environment
including a pretest interview for collecting participant
background information; and (3) a posttest interview for
qualitative analysis of the test output. *e research team had
three members whose background was health technology,
educational training with assistive technology, and clinical
practice. All research team members had professional ex-
perience in working with people with visual disabilities.

In the initial preparation of the study, phone interviews
were made with three key informants with expertise in visual
disabilities, who worked at the Norwegian State Agency for
Special Needs Education Service (StatPed) [19]. *e goal of
the interviews with the key informants was to gather insights
on assistive technology for visually disabled people. Based on
the interviews, a pilot test of the evaluation was prepared
with a comparison of Android and Apple tablet devices. Two
voluntary members from the Norwegian Association of the
Blind and Partially Sighted [20] participated in the pilot test,
running several tasks. Afterwards, a focus group interview
was conducted in order to better understand the interactions
and any of the problems that the users found. In the phone
interviews and also in the pilot test, the informants explained
that their experience was that the smartphone iPhone was
the most commonly used and preferred device among their
peers, also visually disabled people. Based on that in-
formation, an iPhone 4 (iOS 7.1.2) device was chosen for the
study (the device can be seen in Figure 1) because it was
widely available and had the VoiceOver screen reader in-
tegrated. *e tasks were inspired by the standard gestures’
descriptions in the VoiceOver guide manual [21].

2.1. Recruitment of Participants. *e recruitment of par-
ticipants was made in collaboration with the Norwegian
Association of the Blind and Partially Sighted [20]. In ad-
dition, the professional network of one of the researchers
with expertise in teaching and user training of assistive
technology was used to support the recruitment process.*e
first contact made with the participants was a phone con-
versation to inform them about the study. *e second
contact was an e-mail with information about the study and
a consent form to be signed by each participant. Six visually
disabled people were recruited to participate in the user
evaluation, see Table 1 for distribution of participants. *ey
had a mean age of 42.8 years and an average of 1.9 years of
user experience with VoiceOver. All the participants had
previous experience with using a screen reader for desktop
and/or laptop computers.

2.2. Test Procedure. In the first phase of the evaluation, each
participant had individual user training at home (Figure 2)
on 16 specific hand gestures for screen interaction. *e
individual user training lasted 15–30 minutes (with an av-
erage of 21.7 minutes), led by amember of the research team.
*e gestures that a user knew in advance and which ones
were learned during the training were registered during the
training session.

*e second phase was executed in a usability laboratory.
One of the researchers acted as the moderator and sat down
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beside the test participant. *e participants were informed
about the subsequent test and signed a consent form before
the test began. Demographic information and user experi-
ence with specific technical devices were also collected. Each
user evaluation followed the same test plan, with a set of 16
tasks related to the use of gestures for touchscreen in-
teraction.*emoderator guided through the tasks and asked
the participants to speak out loudly during the task solving
(Figure 3) following a think aloud protocol [22–24].

*e task solving was followed by a posttest individual
interview (third phase). *e participants were asked to score
the gesture performance and task solving, choosing among
three categories: “easy,” “medium,” or “difficult.” In addition,
problems or obstacles observed or reported were discussed.
*e interviews also covered the general user experience with
the smartphone and the first-time use of the VoiceOver.

Each test session (second and third phases) lasted be-
tween 90 and 120 minutes, and a total of six test sessions
were run across three separate days.

2.3. Technical and Physical Test Infrastructure. *e evalua-
tion was executed in the usability laboratory at the Centre for
eHealth of the University of Agder, Norway [25]. *e us-
ability laboratory consisted of two rooms; one test room and
one control room, connected through a one-waymirror with
visualisation towards the test room. In the test room, the
moderator was placed together with a test participant, and in
the control room, two observers followed the test from
monitors and directly through the one-way mirror. *e
technical and physical infrastructure is described in Figure 4.

For replicability and information purposes, the technical
material and equipment used during the study are presented
below grouped by rooms.

Test room:

(i) Apple Inc. iPhone 4 MD128B/A iOS 7.1.2 with
VoiceOver activated

(ii) Fixed camera: Sony BRCZ330 HD 1/3 1CMOS P/T/
Z 18x optical zoom (72x with digital zoom) colour
video camera

(iii) Portable camera: Sony HXR-NX30 series
(iv) Apple Inc. iPad MD543KN/A iOS 8.1 for additional

sound recording
(v) Sennheiser e912 condenser boundary microphone
(vi) Landline phone communication

Control room:

(i) Stationary PC: HP Z220 CMT workstation, Intel
Core i7-3770. CPU@3.4GHz, 24GB RAM, Win-
dows 7 Professional SP1 64 bit

(ii) Monitor: 3x HP Compaq LA2405x
(iii) Remote controller: Sony IP Remote Controller RM-

IP10
(iv) Streaming: 2x Teradek RX Cube-455 TCP/IP 1080p

H.264
(v) Software Wirecast 4.3.1
(vi) Landline phone communication

Figure 1: *e smartphone used in the test.

Table 1: *e background of the test participants.

Participants
n � 6 Age Gender Device

familiarity

Years of
VoiceOver

use

Self-graded
skill

1 60 Female iPhone 1.5 Medium
2 31 Male iPhone 1.5 Advanced
3 27 Female iPhone 1 Medium
4 30 Male iPod 3 Advanced
5 48 Female iPhone 2 Medium
6 61 Male iPhone 2.5 Advanced

Figure 2: User training of VoiceOver gestures at a participant’s
home.

Figure 3: *e moderator (left) guiding a participant (right)
through the task solving in the test room.

Mobile Information Systems 3



2.4. Data Collection. *e test sessions were audio-visually
recorded in a F4V video file format.*e recordings from two
audio-visual sources were merged into one video file using
the software Wirecast v.4.3.1 [26], with multiple video
perspectives and one single audio channel. *e files were
exported to the Windows Media Video (WMV) format and
then imported to the qualitative software tool QSR NVivo 10
[27]. *e recordings were transcribed verbatim and cate-
gorized for a qualitative content analysis [28]. Quantitative
measurements of the time and number of attempts in the
task solving were made as a part of the analysis of the re-
cordings. In addition, the research team made annotations
during the test sessions that were included in the data
collection (Figure 5).

2.5. Ethical Approval. *e Norwegian Centre for Research
Data [29] approved this study with the project number
40636. All participants received verbal and written in-
formation about the project and confidential treatment of
their collected data. *ey were informed that their partic-
ipation was voluntary, and each participant signed a consent
form. *e participants were aware that they could withdraw
at any time without reason. In that case, their data would be
consequently withdrawn and deleted. For health and safety
reasons, each test participant was thoroughly informed
about the physical environment before entering the test
room and the participants were never left alone in the
laboratory facilities.

3. Results

All six participants went through the laboratory test. *e test
results are presented divided into three categories: user
training, quantitative metrics from the user tests, and
qualitative outcome of the posttest interviews.

3.1. Pretest User Training. *e familiarity with the Voice-
Over gestures registered in the user training is presented in
Table 2. *e registration showed that all participants knew
the double tap gesture (number 4) and three-finger flick to
the left or right (number 10). 5 out 6 were familiar with the

one-finger tap gestures (numbers 1–3). For gesture num-
bers 6 and 7, the four-finger tap at the top or the bottom of
the screen, 5 out of 6 participants did not know them in
advance.

3.2. User Evaluations. *e quantitative measurements from
the user evaluations are presented in Table 3, separated in six
columns. *e first column describes the 16 VoiceOver
standard gestures that were used to solve the associated task.
*e tasks are described in the second column. *e third
column displays the average number of attempts needed for
the task solving. *e fourth column shows the task solving
average time that was used, measured in seconds. *e fifth
column presents the system response to the gesture inter-
action differentiated in the categories “consequent” and
“inconsequent” speech feedback. Consequent speech feed-
back refers to sufficient and adequate information in the
system response and inconsequent feedback to insufficiency
or lack of information in the system response. In usability
studies, the task accuracy is often categorized into completed
or not completed task [23, 30]. In this particular test, there
was an additional variable related to the task performance,
which was the feedback that the system provided when
a participant performed a specific action. *e categories
chosen were therefore “consequent feedback” or “inconse-
quent feedback” to the specific hand gesture performed. *e
“consequent feedback” referred to the system appropriately

Participant Moderator
Monitor

Observer 1 Observer 2

Observation and
audio-video

recording system

Monitor
Master

monitor

Test device

1-way mirror

VLAN

Landline

Tablet sound
backup
bbll

Landline
Camera control
(position, zoom)

Wired
microphone

Fixed
camera

Portable
camera and
microphone

Figure 4: *e technical and physical test infrastructure.

Figure 5: *e control room showing the visual access to the test
room through the one-way mirror.
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providing feedback that corresponded to the hand gesture
performed by a participant. *e “inconsequent feedback”
referred to a system feedback that did not correspond to the

hand gesture performed by a participant of absence of
any feedback. *e sixth column specifies the type of in-
consequent response occurred.

Table 2: Familiarity per participant with the VoiceOver gestures in the pretest user training.

Gesture P#1 P#2 P#3 P#4 P#5 P#6
(1) Tap with one finger, lift and tap again Yes Yes Yes Yes Yes Yes
(2) Tap with one finger and drag Yes Yes Yes Yes Yes Yes
(3) Tap with one finger and swipe to right or left Yes Yes No Yes Yes Yes
(4) One-finger double tap Yes Yes Yes Yes Yes Yes
(5) Split-tap: touch one finger and then tap with a second finger No Yes No Yes No No
(6) Four-finger tap at the top of the screen No No No No No Yes
(7) Four-finger tap at the bottom of the screen No No No No No Yes
(8) Two-finger flick up Yes Yes No Yes No No
(9) Two-finger flick down Yes Yes No Yes No No
(10) *ree-finger flick to the left or right Yes Yes Yes Yes Yes Yes
(11) *ree-finger tap No Yes No Yes No No
(12) Two-finger rotate Yes Yes No Yes Yes Yes
(13) Flick up and down with one finger Yes Yes No Yes No Yes
(14) *ree-finger double tap Yes No Yes Yes Yes Yes
(15) *ree-finger triple tap Yes Yes No Yes Yes Yes
(16) Two-finger double tap Yes Yes No Yes Yes Yes
P � participant.

Table 3: Quantitative metrics of the user evaluations.

Gesture Task Average no.
of attempts

Average time
for task solving

in seconds

System
speech
feedback

Specification

(1) Tap with one finger, lift
and tap again

Speak the item in the cursor:
find the app Map 24.2 28 Consequent

(2) Tap with one finger and
drag

Speak the item in the cursor:
find the app Clock 14.3 13.8 Consequent

(3) Tap with one finger and
swipe to right or left

Speak the item in the cursor:
find the app Calendar 22 16.5 Consequent

(4) One-finger double tap Open the app Calendar 1 1 Consequent
(5) Split-tap: touch one
finger and then tap with a
second finger

Open the app Weather 1 1 Consequent

(6) Four-finger tap at the
top of the screen Read the item at the top 3.7 16.8 Consequent

(7) Four-finger tap at the
bottom of the screen Read the item at the bottom 9.2 27 Consequent

(8) Two-finger flick up Read the current page starting
at the top 1.2 1.2 Consequent,

except once
*e screen reader did not

read

(9) Two-finger flick down Read from the cursor to the
end of the current page 1 1 Consequent

(10) *ree-finger flick to the
left or right

Change to the next page in the
start screen and back 2.8 6.7 Inconsequent

*e screen reader did not
consequently read the

next page

(11) *ree-finger tap Read where the cursor is 1.8 3.5 Inconsequent
*e screen reader did not

read the cursor
(application’s name)

(12) Two-finger rotate Rotor: find the setting for the
speed of the speech feedback 10.3 13.3 Consequent

(13) Flick up and down with
one finger

Rotor: adjust the speed of the
speech feedback 1.5 2.8 Consequent

(14) *ree-finger double tap Mute VoiceOver 1.2 1.7 Consequent
(15) *ree-finger triple tap Turn the screen curtain on 1.3 2.8 Consequent

(16) Two-finger double tap Terminate a phone call 3.6 1.8 Inconsequent *e system did not
terminate the phone call
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*e performance of three different one-finger tap ges-
tures (tasks 1–3) for speaking the item in the cursor required
many attempts to succeed. *e system response was con-
sequent.*e double tap and slit-tap gestures (tasks 4-5) were
easy and fast to perform for the participants. *e gesture
four-finger tap at the top and bottom of the screen (tasks 6-
7) were reported as technically difficult to perform by the
participants, which was also indicated by the time for the
task solving. *e gestures two-finger flick up and down to
read the page from top or bottom (tasks 8-9), were easy to
perform and showed consequent speech feedback. *e
three-finger flick and tap gestures (tasks 10-11) were re-
ported as easy to perform, but there was inconsequent
system response related to insufficiency in the speech
feedback when trying to inform about the current page. For
the rotor-related tasks, 12 and 13, two of the participants
needed several attempts (7 and 41) for finding the rotor
settings, but adjusting the speed of the speech feedback was
easier. *e gestures three-finger double and triple tap (tasks
14-15) were easy to perform and with a quick task solving.
*e two-finger double tap in task 16, to terminate a phone
call, was easy to perform but there was inconsequent
feedback from the system and the phone call was not ter-
minated in three out of six tests.

3.3. Posttest Interviews. *e participants graded the per-
formance of gestures and task solving (Table 4) during the
individual posttest interview.

Five of the gestures in the task solving were categorized
“easy” to perform, such as the one-finger double tap and the
three-finger double and triple taps. Six gestures were cate-
gorized as “easy” or “medium,” such as the one-finger flick
up and down and three-finger tap. *ere were gestures that
were categorized as “difficult” by two participants, such as
the four-finger tap at the bottom and the top of the screen
and the two-finger double tap. *e task for the two-finger
double tap was termination of a phone call, and in the
interviews, the participants confirmed that during the test

but also in general, the gesture was associated with in-
consistency from the system. For the rotor-related gestures,
one participant emphasised the importance of user training
to succeed with the specific use of the rotor function.

Regarding the first-time user experience, all participants
needed user training to be able to start using the smartphone
and for activation of the screen reader VoiceOver. *ree had
family or friends that helped them with the first-time use:
one went to a course organized by the Norwegian Associ-
ation of the Blind and Partially Sighted and two found it out
by themselves explaining that VoiceOver as such provides
user training and guidance by informing about which
gesture to perform for an action. Four participants stated: It
was a bit complicated with first-time set up of the new phone
with apple-id and activation of VoiceOver, besides that it is
easy to use. [. . .] After user training, when I understood how
the system worked, I found it easy to use. [. . .] 5e functions
make sense, and there is a logical structure. [. . .] It was
terrible in the beginning, because I knew none of the gestures
and I wanted to throw the phone away, but the price stopped
me from doing it . . . now I find it fantastic!

Two participants highlighted the benefits of the smart-
phone: I like that I can buy it myself in the store, I did not need
to apply for and receive assistive technology from the mu-
nicipal services. [. . .]5is is the first device I use with built-in
accessibility, as the screen reader is included.

Two participants described how the use of the screen
reader had increased their self-management: I feel more
included in the society, now I can use the Internet and check
the same apps as other people do, such as Facebook, weather
forecast and reading news. [. . .] It is a feeling of freedom when
the phone can read messages for you when you are outdoors,
before I had to ask people I did not know about reading from
the screen if I received a message, I can now manage it myself
and that is a new world for me. In addition, one participant
expressed: VoiceOver has made my life much easier and I
have become much more independent. Everyone with a visual
impairment should use a phone with it.

Table 4: *e grading of the task solving made by the participants in the posttest interview (n � 6).

Gesture Associated task Easy Medium Difficult
(1) Tap with one finger, lift and tap again Speak the item in the cursor: find the app Map 4 1 1
(2) Tap with one finger and drag Speak the item in the cursor: find the app Clock 5 1
(3) Tap with one finger and swipe to right or left Speak the item in the cursor: find the app Calendar 6
(4) One-finger double tap Open the app Calendar 6
(5) Split-tap: touch one finger and then tap
with a second finger Open the app Weather 4 2

(6) Four-finger tap at the top of the screen Read the item at the top 3 1 2
(7) Four-finger tap at the bottom of the screen Read the item at the bottom 4 1 1
(8) Two-finger flick up Read the current page starting at the top 3 2 1
(9) Two-finger flick down Read from the cursor to the end of the current page 6
(10) *ree-finger flick to the left or right Change to the next page in the start screen and back 5 1
(11) *ree-finger tap Read where the cursor is 5 1

(12) Two-finger rotate Rotor: find the setting for the speed of the speech
feedback 5 1

(13) Flick up and down with one finger Rotor: adjust the speed of the speech feedback 5 1
(14) *ree-finger double tap Mute VoiceOver 6
(15) *ree-finger triple tap Turn the screen curtain on 6
(16) Two-finger double tap Terminate a phone call 3 1 2
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However, user text input with the VoiceOver keyboard
was reported as complicated by four participants, and, for
this reason, those participants preferred to use an external
keyboard. Another participant stated: It was hard in the
beginning with the virtual keyboard, but with some training I
overcame the difficulties. Five participants told that they
preferred to use at home a desktop or laptop computer with
reading list because the text input was quicker than in the
smartphone and relying on the latter when they were out of
home. Two participants expressed that it was easier for them
to navigate on a small screen when compared to a larger
tablet screen.

4. Discussion

*is paper has presented a user evaluation of the Apple
screen reader VoiceOver (iOS 7.1.2) with six visually dis-
abled participants. *e aim was to identify challenges
related to the performance of the standard VoiceOver
gestures and evaluate the associated system response.
Considering the sensory limitation of the target user group,
the screen reader was expected to be intuitive with an
optimal presentation of the functionality and distribution
of the UI. *e study showed that most of the gestures were
easy to perform for the participants; however, some ges-
tures were unfamiliar to the participants, especially those
connected to the rotor function.*e possibility of receiving
individual user training before the evaluation was an ad-
vantage to succeed with the practical use of those gestures.
*e system appropriately responded to the users’ hand
gestures, but inconsistent responses and lack of informa-
tion were reported in the two-finger flick up, three-finger
flick to the left or right, three-finger and double-finger taps.
*e three research questions (RQs) formulated at the be-
ginning of this paper are answered below based on the
results from the study.

RQ1 asked about the user experience when interacting
with the VoiceOver. *e user experience with VoiceOver in
general was positive, as the function was described to in-
crease the self-management and support independence.
Most of the gestures were both reported and observed as easy
to perform, with some exceptions. *e two most difficult
ones reported by the participants were the four-finger tap
and the two-finger double tap gestures. *e gesture made
using four-finger tap on the bottom or on the top of the
screen to, respectively, read the content of the UI from either
side was explicitly reported as difficult to perform.

RQ2 asked about the system response to the 16 hand
gestures made on the touchscreen mobile device. *e speech
feedback appropriately responded during the test with useful
information for participants to navigate through the UI, but
a few inconsistent responses on correctly performed gestures
were registered such as with the two-finger double tap to
terminate a phone call. *e phone call was terminated
correctly only in 3 out of 6 tests and can be considered as a
weakness in the system with a negative consequence for the
users since speaking on the phone is one of the most fre-
quently used functions. Other user problems identified were
related to the gesture made by three-finger flick to the left or

right for swiping between screens where the speech feedback
was inconsistent and lacked information.

RQ3 asked about recommended technical infrastructure
in evaluations of mobile assistive technology with visually
disabled users. A suitable infrastructure would be the one
that optimizes the data collection and allows an effective
retrospective analysis under more demanding conditions
than other user evaluations. In addition, the comfort, safety,
and trust of the visually disabled test participants are crucial
to avoid interference and distortion with the test results. *e
described technical and physical infrastructure in Figure 4
serves as an example of a controlled scenario for an eval-
uation with the same type of technology and participants.
*e video recordings require a sufficient quality allowing us
to zoom in the user interface and the finger interactions in
details. A professional software video program is needed to
substantially reduce the speed for optimal viewing and
retrospective analysis. In addition, the data should be col-
lected with synchronized audio and video signals because
streaming over a network usually incorporates latency. *e
synchronization is of high importance for the retrospective
analysis, as the gestures and finger interactions with a mobile
device’s screen are often made at high speed. Another issue
experienced and specific for tests with visually disabled
participants was that that the sound from the VoiceOver
interfered and overlapped with the sound from the test
participant and the moderator in the recordings from the
table microphone unit. *is might complicate the retro-
spective analysis, and based on that experience, we rec-
ommend using several microphones to record the sound
sources separately.

*is study of the screen reader VoiceOver had some
limitations such as the number of test participants (n � 6)
and tests were conducted only in a usability laboratory
setting. However, the number of the participants with a
distribution in their ages and smartphone skills meaning-
fully represented the user group of visually disabled users of
smartphones. Other studies have shown that a small number
of participants in usability studies can be sufficient for
having valid results [31–33]. *e laboratory setting allowed
the collection of detailed research data under controlled
conditions. *e collected data material was thoroughly
analysed in detail to study the interaction between the vi-
sually disabled user and the UI touchscreen. Furthermore,
the application of mixed method research, combining lab-
oratory tests with detailed interviews, provided insights into
the user experiences, as well as benefits and barriers of using
the VoiceOver function.

5. Conclusions

*is study was made as a part of the project “Visually
impaired users touching the screen—A user evaluation of
assistive technology” that aimed at evaluating the usability
and accessibility of the screen reader VoiceOver. *e main
contribution of this study lies in the detailed analysis of the
interaction with gestures between the visually disabled
participants and the screen reader, preceding the responses
from the system. In general, most of the hand gestures were
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easy to perform for the participants, although user training
played a key role for the understanding and successful per-
formance of specifically complex gestures. Without training,
participants could not have been able to perform such ges-
tures. *e system response and speech feedback were in most
cases correct, but some functionalities of the system might be
improved. *e results presented are in line with other studies
on assistive technologies and visually disabled users [34–36].
*e methodological procedures with the use of mixed
methods, combining quantitative laboratory test with quali-
tative interviews and observations, can be recommended to
other studies of similar characteristics. *e test procedure
with user training on the specific hand gestures in advance
reduced thememory load in the laboratory test situation, as all
the participants were familiar with the gestures and could
focus on performing the tasks. *e application of a think
aloud protocol in the usability laboratory together with
posttest interviews is strongly recommended for other studies
related to touchscreen assistive technology because they may
provide a more comprehensive result.

In terms of future work, it is proposed to validate the
laboratory results in the field and address research with a
larger sample size focusing on text input and navigation
using VoiceOver on a smartphone or tablet device. A
comparison between the screen readers VoiceOver from
Apple Inc. and TalkBack, which is mainly developed for
Android devices, could illustrate differences across different
platforms.*e integration of VoiceOver in the Apple Watch
provides new opportunities of studying user-friendliness
and accessibility for visually disabled users. A comparison
of the use of VoiceOver on a desktop or laptop computer
which are generally more command based could be easily
made in a similar usability laboratory. Finally, newer models
of iPhone to date, such as 8 and Xs, provide more tactile
feedback through vibration during interactions than pre-
vious versions and the impact of those functions for visually
disabled users would be interesting to evaluate.
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)e article describes organizational principles of the mobile hardware-informational system based on the multifactorial neuro-
electrostimulation device. )e system is implemented with two blocks: the first block forms the spatially distributed field of low-
frequency monopolar current pulses between two multielement electrodes in the neck region. Functions of the second block,
specialized control interface, are performed by a smartphone. Information is exchanged between two blocks through a telemetric
channel. )e mobile hardware-informational system allows to remotely change the structure of the current pulses field, to control
its biotropic characteristics and to change the targets of the stimulation. Moreover, it provides patient data collection and
processing, as well as access to the specialized databases. )e basic circuit solutions for the neuro-electrostimulation device,
implemented by means of microcontroller and elements of high-level hardware integration, are described. )e prospects of
artificial intelligence and machine learning application for treatment process management are discussed.

1. Introduction

What has the twenty-first century brought to the humanity?
Scientific and technological progress in modern society has
led to an increase in the duration and improvement of the
quality of human life, as well as maintenance of high effi-
ciency and intellectual activity. )ese processes are taking
place at a time of growing mental stress caused by unstable
economic development and unpredictable crisis situations,
local wars, interethnic conflicts, and natural disasters. )e
health of the population, which is the basis of the well-being
and harmony of human civilization, is deteriorating. )e
most disturbing is the growth of chronic stress and mental
disorders, personality disorders. As a result, a person is
losing the ability of efficient information processing, cog-
nitive control, and decision-making, the basic mechanisms
of the social version are violated. In the field of neurology
and psychiatry, there has been a catastrophic increase in the
number of lost years due to movement, coordination,
sensitivity, speech, intelligence, and memory disorders [1].

As noted by World Health Organization, among 56.9
million deaths worldwide in 2016, ischemic heart disease and
stroke are the world’s biggest killers, accounting for
a combined 15.2 million deaths. )ese diseases have
remained the leading causes of death globally in the last 15
years. Deaths due to dementias more than doubled between
2000 and 2016, making it the 5th leading cause of global
deaths in 2016 compared to 14th in 2000 [2].

Every year, more than 795,000 people in the United
States have a stroke. About 87% of all strokes are ischemic
strokes, in which blood flow to the brain is blocked. Stroke is
a leading cause of serious long-term disability. Stroke re-
duces mobility in more than half of stroke survivors age 65
and over. Stroke costs the United States an estimated $34
billion each year. )is total includes the cost of health care
services, medicines to treat stroke, and missed days of work
[3].

)e most common approach for treating such diseases is
a neuroprotective therapy, which helps normalize and
strengthen the physiological activity of brain tissue. During
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neuroprotective therapy, medicines are predominantly used.
But physiotherapeutic methods of restorative medicine can
be also applied [4].

Of all the variety of physical fields andmethods, the most
promising are spatially distributed fields of monopolar low-
frequency current pulses whose structure and characteristics
are adequate to endogenous processes in the human body
[5–8].

2. Materials and Methods: Multifactorial
Neuro-Electrostimulation of Neck
Nervous Structures and Organization
of Control Process

Personalized multidisciplinary approach to the organization
of the patient’s treatment process is promising for increase of
the neuro-electrostimulation effectiveness. It implies to
actively use neuro-electrostimulation in addition to various
procedures of neurorehabilitation for triggering mecha-
nisms of neuroplasticity in management of the brain
functional processes [9].

)e choice of the neck as a target for neuro-
electrostimulation is determined by the location in it:
centers of segmental control for vital functions (cervical
sympathetic ganglia) and the conducting pathways of the
suprasegmental centers of the homeostasis regulation
(glossopharyngeal and vagus nerves and their branches, as
well as the cervical plexus of the spinal nerves) [10]. In the
deep muscles of the neck there are nodes of the sympathetic
trunk, formed by the nervous processes of the autonomic
nuclei of the spinal cord. )e upper, middle, and lower
(stellate) sympathetic nodes have numerous branches that
enable sympathetic innervation of glands, meninges, ves-
sels of the head, neck, and spine. )e afferent fibers of the
spinal plexus located on the posterior surface of the neck
pass through the posterior horns of the spinal cord and end
in the sensitive nuclei of the brainstem and the reticular
formation. Near the main arteries of the neck lies the vagus
nerve. )e nuclei of the vagus nerve are located in the
brainstem and are common to the glossopharyngeal nerve.
)ey have extensive connections with the hypothalamus,
olfactory system, and reticular formation. Together, the
glossopharyngeal and vagus nerves activate parasympathetic
innervation of most organs. Nerve formations in the neck
are closely related to the brainstem, through which they
have two-way links to the pons, middle brain, cerebellum,
thalamus, hypothalamus, and cerebral cortex. )e presence
of these relations ensures the involvement of the neck
nervous structures in the analysis of sensory stimuli, the
regulation of the muscle tone, and autonomic and higher
integrative functions [11].

With electrostimulation of the cervical spinal plexus,
branches of the vagus nerve, nervus accessorius, and
glossopharyngeal nerve, the gray matter of the brainstem
can be stimulated along the afferent pathways. )rough
the reticular formation, the effect in this case extends to
the thalamic structures and the cerebral cortex. )e
stimulation of the nodes of the sympathetic trunk makes it

possible to influence both the vascular tone of the cerebral
arteries and the autonomic nuclei of the spinal cord. As
a result of these actions, it is possible to influence various
functional processes in the brain tissues, modulate au-
tonomic processes, and influence motor control and
cognitive functions.

)e next step in creating a promising neuro-
electrostimulator suitable for providing comprehensive re-
habilitation is the selection of the best solutions for orga-
nizing the architecture of the neuro-electrostimulator,
taking into account the characteristics of the conducting
pathways of the neck nervous formations.

3. Results: Selection of Basic Circuit,
Engineering, Hardware, and
Software Solutions

)e analysis of tasks that are implemented in modern
physiotherapy devices for recovery medicine shows that, as
a rule, two tasks are performed in them:

(1) Formation of a physical field in the problem area of
the body

(2) Regulation of characteristics of the physical field,
which form a biological effect

Generally, such devices are constructed as the single
block units and tend to have relatively high mass-
dimensional characteristics [12–15].

Let us note that operationally, the first task is func-
tionally “tied” to the patient and the second to the physician.
In our case, we divide the neuroelectrostimulation device
into two blocks, one of which will solve only the first task; the
second block will only solve the second task. )e in-
formation exchange between them will be provided by
a telemetric communication channel, like Bluetooth. )en,
according to this principle, a new architecture of the
promising neuro-electrostimulator can be organized, which
will make it compact and mobile [16]. )is applies equally to
the first block and to the second.

)e implementation of the first block as compact and
mobile one is quite realistic, as only the following compo-
nents are mandatory:

(i) Two multielement electrodes, between which a spa-
tially distributed field of current pulses is formed

(ii) Multichannel impulse current source, whose
functions are performed by two multiplexers and
a controlled current source

(iii) Accumulator
(iv) Bluetooth transmitter
(v) Flash memory
(vi) Microcontroller unit

Core features of the first block:

(a) Number of partial cathodes: 13
(b) Number of anodes: 13
(c) Mass, 200 g
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(d) Dimensions, 90 × 50 × 18.5 mm
(e) Current pulse amplitude, 0–15 mA
(f) Partial pulse duration, 15–60 μs
(g) Modulation frequency, 5–150 Hz
(h) Minimal time of autonomic work, 24 h
(i) Accumulator charging socket, USB Mini B

Diagram of the neuro-electrostimulator is presented on
Figure 1, photo of the first block on Figure 2, and photo of
the first block’s printed circuit board on Figure 3.

)e flowchart of the first block functioning algorithm is
shown on Figure 4.

)e program of the algorithm application is imple-
mented as a set of tasks. Tasks that are not critical to the
launch period are performed in the main program loop.
Such tasks include first block unit testing, synchronizing
cathodes pattern, and stimulation targets between first and
second blocks, calculating amplitude for each cathode.

)e tasks that are critical to the launch period include
starting a new pulse packet and starting a new partial pulse
inside pulse packet. )is tasks forms current pulses field
structure, sets up biotropic parameters, and determines
stimulation targets. )e critical to the launch period tasks
has a higher priority and their starts are initiated by in-
terrupt signals from the built-in microcontroller
peripherals.

)e current pulses field structure changing is possible
only in a determined time points.

t �
a

]
+ n∗ τ, (1)

where a ∈ N, n ∈ N, 0≤ n≤K, K is the number of partial
cathodes participating in field structure, τ is the partial pulse
duration, and T�1/v is the current pulses field structure
modulating period.

When the current pulses field structure changing time
point t occurs, microcontroller in the first block performs
the following steps:

(1) Switching off the current partial cathode and
switching on the new one according to neuro-
electrostimulation program. If the current partial
cathode is the last one in accordance with neuro-
electrostimulation program, then a new partial
cathode will not be connected.

(2) If the anode needs to be changed according to the
neuro-electrostimulation program or by the physi-
cian’s command from the second block, the current
connected anode will be disconnected and a new
anode will be connected.

(3) If current amplitude and time characteristics of
current pulses field structure (such as modulating
period T, partial impulse duration τ, and partial
impulse amplitude A) differ from the target ones,
then the characteristics is changing according to
following equations:

Ai+1 �

Atarget, Ai −Atarget



<ΔA,

Ai + ΔA, Ai + ΔA <Atarget,

Ai −ΔA, Ai −ΔA >Atarget,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ti+1 �

Ttarget, Ti −Ttarget



<ΔT,

Ti + ΔT, Ti + ΔT <Ttarget,

Ti −ΔT, Ti −ΔT >Ttarget,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

τi+1 �

τtarget, τi − τtarget


<Δτ ,

τi + Δτ , τi + Δτ < τtarget,

τi −Δτ , τi −Δτ > τtarget.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

)e use of restrictions on the growth rate of the current
pulses field structure parameters of neuro-
electrostimulation avoids the appearance of patient’s pain-
ful sensations during treatment procedure. )e application
for control of the field structure of current pulses and its
characteristics of a microcontroller makes it possible to
implement a large number of programs for neuro-
electrostimulation.

Aforementioned computational procedures are required
to implement the functions of the second block: when
specifying the structure of the spatially distributed field of
current pulses and the characteristics of this field, as well as
the formation of various commands. )ese tasks can be
handled on the basis of a computer or any specialized
computation units that, in essence, will perform the func-
tions of a specialized interface of the neuro-
electrostimulator. To ensure the compactness and mobil-
ity of this specialized interface, we have chosen
a smartphone.

)e second unit of the neuro-electrostimulator is
implemented in the form of an original cross-platform
application for mobile devices based on Android, iOs,
and Windows Phone. )e application is structurally
implemented in the form of two activities: the search for the
first block and the control of the stimulation process. To
organize the operation of the telemetric communication
channel, the Bluetooth low energy API is used. In this case,
a virtual control panel for the medical process is formed,
which allows the physician to monitor the battery charge
level in real time, the telemetry communication channel
serviceability, the current pulse field structure, their bio-
tropic parameters, and the position of the stimulation tar-
gets. Figure 5 shows a picture of specialized neuro-
electrostimulator interface display in the virtual control
panel mode of the treatment process.

)us, the implementation of a neuro-electrostimulator
in the form of two blocks will allow for the performance of
the functions of restorative medicine:

(1) For a patient to form a spatially distributed field
of current pulses for the organization of a multifac-
torial neuro-electrostimulation of the neck nervous
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(2) For the physician to obtain wide opportunities for
virtual management and control of the medical
process, including the following:

(a) In real time to monitor the operation of the first
block of the neuro-electrostimulator, including
monitoring the level of charge of its battery

(b) Change the structure of the spatially distributed
field of current pulses in the neck region, their
parameters (amplitude, frequency, and duration)

(c) Choose targets for the impact in the projection of
the sympathetic trunk, carotid plexus, cervical

spinal plexus, vagus nerve, nervus accessories and
branches of the glossopharyngeal nerve by
selecting respectable functioning anodes

(d) Change the number of partial cathodes partici-
pating in the formation of the field

(e) Control the formation of a spatially distributed
field of current pulses in the neck region in
several patients (up to 10) via a telemetry channel
using a single smartphone

(f) Use the potential of telemedicine technology
through the organization of remote monitoring
of the rehabilitation process by highly qualified
medical personnel

Processor

Flash memory

Microcontroller unit

Bluetooth transmitter Bluetooth transmitter

Accumulator

Multichannel pulse
current source

Multielement
electrodes

First block

Second block

Figure 1: Diagram of the neuro-electrostimulator.

Figure 2: )e first block of the neuro-electrostimulator

Figure 3: Printed circuit board of the first block.

Start

First block units testing

Synchronizing cathodes pattern and
stimulation target with the second block

Calculating impulse amplitude
for each cathode

Current connected cathode changing
and also anode changing if necessary

Current field characteristics synchronizing
between two blocks and characteristics

changing on the first block

Field changing
time point is reached?

No

Yes

Figure 4: )e first block functioning algorithm.

4 Mobile Information Systems



(g) Ensure the collection and processing of data on
changes in the functional status of patients with
an option to monitor the treatment process

(h) Access to specialized databases of neuro-
rehabilitation, storing personalized information
about the course of the treatment process

)e structure of such specialized database, named the
neuro-electrostimulation service, implemented as a database
model in the notation “Entity-Relationship” is shown in
Figure 6.

Core elements of the database are entities (tables):

(i) «Physician», having lines physician_id; Name,
Surname

(ii) «Patient», having lines patient_id; Name, Surname;
Age; Sex; physician_id

(iii) «Procedure», having lines procedure_id, phys-
ician_id, patient_id, Date, procedure type (exami-
nation, neuro-electrostimulation procedure, functional
load), device_id

(iv) «Device», having lines device_id, physician_id,
patient_id, Stimulation features

(v) «Data», having lines data_id, physician_id,
patient_id, procedure_id, Data type (arterial pres-
sure, electrocardiography signal, biochemical tests,
psychological tests), Content

)e proposed structure provides quick access to in-
formation on the treatment process available for a particular
patient, allows storing and systematizing registered data, and
making decisions for management of treatment based on
this data. )e use of such a database allows the formation of
complex search queries that can be used for further analysis
and processing.

4. Discussion: Prospects of Artificial
Intelligence Application for
Neurorehabilitation Management

At present, high hopes are placed on the use of artificial
intelligence and machine learning for use in the diagnosis
and control of the therapeutic process [17–19]. )us, in our
early work on the clinical example of arterial hypertension, it
was shown that the application of quadratic discriminant
analysis and methods for selecting diagnostic features of
heart rate variability signals allows not only to perform
express diagnostics of arterial hypertension, but also to
evaluate the effectiveness of the therapeutic process with the
use of neuro-electrostimulation [20]. )us, it is possible to
create an information decision support system for
a physician.

)e use of artificial intelligence in determining the
paradigm of rehabilitation personally for each patient is
made possible by taking into account the opportunities of
telemedicine. As noted earlier, the specialized interface of
the neuro-electroimulator control is implemented as an
application for a smartphone. A smartphone can interact
with a global computer network. )is allows not only to
transmit the information generated in the neuro-
electrostimulator, but also to obtain information from the
specialized databases, to support the decision-making of the
physician in treatment. )us, the aforementioned in-
formation decision support system can be integrated with
the neuro-electrostimulation service for the purpose of in-
formation exchange. )e interaction of the neuro-
electrostimulation service with the information decision
support system provides express diagnostics of the cardio-
vascular system regulation disorders.

Creation of the neuro-electrostimulation service allows
to close the contour of the physician and patient interaction
and implements the functions of the biotechnical system for
neurorehabilitation. )e structural diagram of the bio-
technical system is shown in Figure 7.

Such biotechnical system implements a number of
principles of the patient-oriented approach in health care,
such as personalized medicine and active involvement of the
patient in the medical process. )e presence of the neuro-
electrostimulation service solves the problem of storing
registered diagnostic data centrally on the server of the
medical institution, simultaneous work with several patients

Figure 5: Specialized neuro-electrostimulator interface display.
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and effective use of the resources of the medical institution,
and protection of patients’ personal data from un-
authorized access. )e result of the interaction between the
neuro-electrostimulation service and the information de-
cision support system is the processing and automated
analysis of the patient’s data by means of machine learning
to obtain express assessments for the diagnosis of arterial
hypertension and the effectiveness of the therapeutic
process, tracking the dynamics of changes in patient data,
and information support by means of artificial intelligence
for a physician.

5. Conclusion

As suggested in the article, principles of organization, cir-
cuit, and engineering solutions allowed to create mobile and
compact hardware-information system for neuro-
rehabilitation. Application of artificial intelligence and
machine learning opens possibilities for treatment process
management in accordance with the personalized medicine
principles.

At present, the neuro-electrostimulation device has
undergone clinical approbation in the treatment of de-
pressive anxiety disorders, children with attention deficit
disorder, and rehabilitation of patients after traumatic brain
injuries. Clinical studies have shown that in comparison
with known methods, a higher effectiveness of treatment is
achieved through involvement in the regulatory process in
addition to the autonomic nervous system and brain
structures responsible for cognitive, motor, visual, auditory,
vestibular, and other brain functions. )ese results are
presented in more detail in the specialized publications of
our physician co-authors [21, 22].
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'is work introduces Wearable deep learning (WearableDL) that is a unifying conceptual architecture inspired by the human
nervous system, offering the convergence of deep learning (DL), Internet-of-things (IoT), and wearable technologies (WT) as
follows: (1) the brain, the core of the central nervous system, represents deep learning for cloud computing and big data
processing. (2) 'e spinal cord (a part of CNS connected to the brain) represents Internet-of-things for fog computing and big
data flow/transfer. (3) Peripheral sensory and motor nerves (components of the peripheral nervous system (PNS)) represent
wearable technologies as edge devices for big data collection. In recent times, wearable IoTdevices have enabled the streaming of
big data from smart wearables (e.g., smartphones, smartwatches, smart clothings, and personalized gadgets) to the cloud servers.
Now, the ultimate challenges are (1) how to analyze the collected wearable big data without any background information and also
without any labels representing the underlying activity; and (2) how to recognize the spatial/temporal patterns in this unstructured
big data for helping end-users in decision making process, e.g., medical diagnosis, rehabilitation efficiency, and/or sports
performance. Deep learning (DL) has recently gained popularity due to its ability to (1) scale to the big data size (scalability); (2)
learn the feature engineering by itself (no manual feature extraction or hand-crafted features) in an end-to-end fashion; and (3)
offer accuracy or precision in learning raw unlabeled/labeled (unsupervised/supervised) data. In order to understand the current
state-of-the-art, we systematically reviewed over 100 similar and recently published scientific works on the development of DL
approaches for wearable and person-centered technologies. 'e review supports and strengthens the proposed bioinspired
architecture of WearableDL. 'is article eventually develops an outlook and provides insightful suggestions for WearableDL and
its application in the field of big data analytics.

1. WearableDL: Conceptual Architecture

Wearable DL is a concept derived from a holistic com-
parison between the evolving big data system and the human
nervous system (NS) in terms of architecture and func-
tionalities. Although the human NS is a biological mecha-
nism, it essentially inspires the convergence, collaboration,
and coordination of three key elements such as wearable tech
(WT), Internet of things (IoT), and deep learning (DL) in the
development of big data system for actionable outcomes and
informed decision making.

'e article views the big data system with respect to its
close resemblance with the human nervous system (NS).'e
NS is responsible for coordinating the actions such as the
transmissions of signals to and from the human body,
identification, perception, decisionmaking, and information
storage [1]. Similarly, the big data system (or model) is
evolving and conversing various domains such as wearable
sensors, edge computing, fog computing, cloud computing,
and deep learning (DL) to achieve equivalent functions such
as signal communication, perception, decision making,
analytics, and storage. As the complexity of the big data
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system rises, it becomes important to understand the ar-
chitectural and functional components of the NS.'is could
guide us to develop more improved and sophisticated
version of a big data system.

1.1. A Brief Overview of the HumanNervous System. 'e NS
is composed of two subsystems:

(1) Central nervous system (CNS) consists of the brain
and spinal cord

(2) Peripheral nervous system (PNS) consists of nerves
with sensory and motor fibers

1.1.1. PNS. 'e end elements of PNS are sensory and motor
fibers which are connected to the parts and organs of the
body. 'e sensory fibers sense various sensations including
pressure, temperature, and pain on the body and sends
them to the nerves leading to the spinal cord (a part of
CNS). 'e motor fibers receive the commands from the
CNS to actuate and activate the muscles and organs. 'e
bundle of fibers which collectively forms nerves connected
to the spinal cord relay the information back and forth
between CNS and PNS.

1.1.2. CNS. 'e spinal cord is a part of CNS which serves
two purposes:

(1) It acts as a bidirectional relay for the signals to flow
between the body and the brain. 'is function
supports the NS to make centralized decisions.

(2) 'e spinal cord also coordinates the reflexes in which
the decisions are made in real-time to avoid delays in
critical conditions. A simple example of the reflex is
removing the hands from a hot object.

'e ultimate top layer of CNS is the human brain made
of approximately 100 billion neurons [1]. Each neuron
connects to one or more other neurons. 'e brain receives
the signals from the spinal cord and other sensor organs such
as eyes, nose, tongue, and ears. 'e brain processes the
incoming signals and makes decisions. It generates com-
mands that pass through the spinal cord to the PNS. 'e
commands activate the muscles or organs of the body. Apart
from the processing and decision making, the brain also
stores the information that is used in a short or long-term
decision making process.

1.2.PNSvsWearableTech/WearableEdgeDevices forBigData
Collection and Application (Actions). WT is comparable to
the sensory and motor fibers of PNS because of the
following:

(i) Fibers are the carriers of the information similar to
WiFi backbone in WT

(ii) WT is located onto the periphery of IoTarchitecture,
interacting with the environment for sensing and
actuation

For example, modern smartwatches come with built-in
sensors such as heart rate, motion, ambient light, and also
actuators including touch screen, audio speakers, and tactile
(or haptic) feedback. Edge devices, such as smartphones, act
similar to the nerves (as part of PNS). 'e smartphone
receives the data from the connected smartwatch sensors
and also commands the smartwatches to alert the wearers
through the actuations on haptic, visual, or audio feedback.
'is helps us collect the sensor data and send them to the
upper layer such as edge devices.

1.3. CNS-SpinalCord vs IoTandFogGateways for theBigData
Flow and Local Intelligence. IoT and fog gateways are
equivalent to the spinal cord in CNS (Figure 1) as follows:

(1) Big data transfer (flow) between PNS (sensory and
motory nerves) and the brain (the central processing
and intelligence unit)

(2) Local intelligence for locally responding to some
stimuli such as extreme heat and pain

As described earlier, the spinal cord plays an im-
portant role in reacting and responding to some specific
stimuli such as feeling pain and reacting to the pain,
e.g., caused by extreme heat. It is also responsible to
deliver the motor response and reactions from our brain
to the PNS (our motor actuators and muscles) for any
dynamic (kinematic) movement (motion) internally and
externally, i.e., inside our body or outside. IoT in-
telligence, as a local intelligence, is functioning similar to
the spinal cord. For example, the smartwatch sensor data
can be processed onto fog gateways which are located in
homes or hospitals away from the centralized cloud
servers. In this case, the sensor data are processed on the
gateway for the local decision support in time-critical
applications, e.g., the sensor data streams could help
the detection of a fall event in an elderly person living
alone at home. In this way, the fog or IoTgateway provides
reflex-type services to alert appropriate individuals such
as medical personnel or caretakers to respond to the event
immediately. 'is reduces the potential delays in time-
sensitive events.

1.4. CNS-Brain vs DL and Cloud Computing for Big Data
Analytics. 'e cloud computing servers are equivalent to
the physical architecture of the brain, and the DL-based big
data analytics resembles the function of the brain. 'e
human brain is a centralized processor to receive the in-
coming stimulus from the spinal cord (connected to PNS) or
other sensor organs. Upon receiving, it perceives and makes
decisions on how and when to respond to the stimuli. It also
stores the information. Similarly, the cloud computing
servers receive the big data from WT via fog computing.
Upon receiving, it uses high-performance computers to
apply DL methods (explained in the next section) that help
in decision making. Very similar to the brain, the cloud
computers derive when and how to respond to the incoming
queries. It often stores the sensor data to learn the patterns
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and create historical database to enable informed decision
making in the future.

1.5. Outline and Contributions. In this article, we endeavor
to describe the benefits and challenges associated with the
use of DL in the wearable big data. We have conducted
a thorough survey of more than 100 literatures related to DL
and its applications in wearable IoT. 'e survey allowed us
to create a holistic picture combining wearable sensors, IoT,
DL, and big data. 'is work’s key contributions are struc-
tured as follows:

(i) Section 2 provides an overview of wearable IoT
including the concept, its different categories of
wearable IoT devices, and its future direction in
a nutshell.

(ii) Section 3 provides a research roadmap for DL
thorough understanding of its past, its present, and
its future. Here, we focus on how understanding the
human brain, specifically neocortex, links to the
development of the artificial intelligence (AI) and
how that is mainly divided into three areas: ML, DL,
and Cortical Learning (CL) which are covered in
this section.

(iii) Section 4 emphasizes on the recent similar work
applications of WearableDL in big data analytics.

Over 100 recently published literatures were
reviewed and included in this section to correlate
with the paradigms of WearableDL and its
applications.

(iv) Section 5 projects WearableDL future research and
application direction in association with the wear-
able big data.

2. Wearable Internet-of-Things

In 1965, an observation, later regarded as Moore’s law, esti-
mated that the number of transistors on integrated circuits (IC)
doubles every two years [2]. Moore’s law prediction played an
important role in the semiconductor industry and motivated
the evolution of miniaturized yet high performance computing
(HPC) chips which revolutionized the modern world. 'is
evolution caused an explosion in the production of electronic
devices and therefore brought a limitless expansion in the use
and applicability of the computing chips that today drive smart
wearable devices, smartphones, personal computers, smart
homes, and smart cities along with WiFi, Internet, and other
communication devices. As a result of the aforementioned
evolution, explosion, and expansion, the wearable devices are
booming in the market, and therefore, we witness the growth
of personalized big data that hold a significant value to the
end-users including citizens, communities, hospitals, and
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governments to improve health or performance, reduce
medical cost, and increase efficiency [3].

2.1. Wearable Devices Categories. Overall, the wearable de-
vices can be categorized into three main classes (Figure 2):

(1) Implantable devices: these devices are implanted
inside the body for a long period of time, e.g., cardiac
pacemaker and deep brain stimulator are implanted
for 5–10 years to provide current to specific organs.

(2) Wearable contact devices: this is the largest category
among the three types. 'ese devices are targeted to
stay on the body unobtrusively to collect various
parameters including heart rate, physical activity,
body temperature, muscular activity, blood/tissue
oxygenation, and other physiological parameters.
'e most common devices in this category are
smartwatches, smart clothing, smart footwear, fit-
ness trackers, HR chest belts, and ECG Holter
monitors.

(3) Wearable ambient monitors: these devices are made
to sense outside environment instead of the body’s
physiological state. Google glasses (smart glasses) are
a simple example of this category, in which, a wearable
camera allows to record the surrounding scenes [4].

2.2. Wearable IoT: Convergence of Wearable Devices and
Internet-of-6ings (IoT). 'e convergence and deployment
of wearable devices, Internet-of-things (IoT), and cloud
computing together allow us to record, monitor, and store
a wide range of the big data from individuals such as per-
sonalized health and wellness data, body vital parameters,
physical activity, and behaviors, which are all critical data
indicating the quality and the trend of daily life [5]. In the
past, wearable devices were a stand-alone system. However,
bringing wearable devices into the framework of IoTmakes
it possible to stream the data from an individual to a cen-
tralized location such as cloud servers. 'e continuous
accumulation of the wearable data becomes a massive big
data [6] that, in general, are a set of sequential time-series
signals and logs containing biometrical, behavioral, physi-
ological, and biological information depending on the na-
ture of wearable devices categorized above. One of the key
objectives of collecting the wearable big data is to support
remote or on-site decision making by detecting symptoms,
events, and anomalies, or by producing contextual aware-
ness [7].

2.3.Wearable Data Categories. Wearable biosensing devices
can collect a large variety of physiological data continuously,
all-day long and in any-place health, mental, and activity
status monitoring. 'ese multiparameter physiological
sensing systems provide us with reliable and crucial mea-
surements for supporting online decision making by
detecting the symptoms and producing contextual aware-
ness [8]. A wide range of wearable data in biomedical and
health is provided by this overview [9].

2.4. Emerging Unobtrusive Wearable Devices. Wearable
sensors can be either woven or integrated into clothing, ac-
cessories, and the living environment, such that individuals’
or patients’ data can be collected in their daily life. According
to an overview [10], four emerging unobtrusive wearable
technologies (WT) which are essential for collecting the in-
dividuals’ health data are the following:

(1) Unobtrusive sensing methods
(2) Smart textile technology
(3) Flexible-stretchable-printable electronics
(4) Sensor fusion

2.5.DataReliability. Data reliability strongly depends on the
type of collected data and specifically on the category of the
collected wearable data in general. In the wearable DL
scenario, it is not the role of the wearable devices to assess
data reliability. A presifting of the data, particularly in case of
structured data, can be implemented directly on the device
by embedding data sifting policies dictated by a prior in-
teraction with medical specialist, physicians, and studies.
However, data reliability should be assessed at IoT and DL
level as discussed later.

3. Artificial Intelligence

Artificial Intelligence (AI) is ultimately the ability to re-
construct the human biological intelligence for modern
machines. AI domain is currently divided into three active
learning-based areas of research: machine learning (ML)
[11, 12], deep learning (DL) [13], and cortical learning (CL)
[14] (Figure 3).

3.1. Cortical Learning. Cortical learning (CL) is inspired
from our cortical structure (i.e., based on studying the
neocortex) and coined by Hawkins et al. [14, 15] from
https://numenta.com/Numenta. 'e cortical area is the
largest part of the brain in humans and monkeys compared
to other species and the main source of our intelligence
[14, 16].'e CL algorithm/approach (CLA), inspired by the
architecture of the human cortex [14, 17], is applied to an
approach called hierarchical temporal memory (HTM)
[16, 18–20]. Cortex learns the spatial and temporal patterns
in the sequential data, e.g., for visual perception, spoken
language comprehension, manipulating objects, and nav-
igation in a complex 3D world [17].

3.2. Machine Learning. Machine learning is the mother
subject for deep learning and many other statistical or
probabilistic analysis approaches but not necessarily related
to CL which is neuroscience-based endeavor for AI (com-
putational neuroscience or systematic neuroscience). ML is
mostly referring to shallow ML approaches which are not
scalable to the data size. 'is set of shallow artificial learning
algorithms [11, 12] helps machine directly learn from the
data, model the data, and generate machine intelligence.
ML is highly founded on mathematics, e.g., linear algebra,
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calculus, statistics, probability, and stochastic optimization
approaches such as evolutionary algorithms (EA) andMonte
Carlo search. Some of the ML limitations are as follows:

(1) It is very broad and often mathematically proved but
not biologically inspired. 'is is a problem since
biologically inspired algorithms often are proved to
be extremely powerful and robust such as genetic
algorithms. On top of that, AI is targeting biological
intelligence at the first place and ultimately aims to
replicate/reconstruct our biological intelligence,
human intelligence.

(2) It is often shallow and not scalable to the data size,
i.e., as the data size or dimensionality grows expo-
nentially (big data problem), the traditional ML
approaches (e.g., SVM) can not scale up the data size.
'is causes a problem so-called under-fitting which
means there are not enough parameters in the
learning approach for approximating the best fitting
function.

(3) It is also hard to apply it to high-dimensional data
directly. 'at is why we have to apply dimension
reduction to the data first by either manually do the
feature extraction or engineering (hand-crafted
features) and then apply the ML approach to the
data features with the reduce dimensionality.

(4) ML approach accuracy and robustness for noisy data
is almost not comparable to DL approaches sinceML
approaches are learning from few examples or small
training data compared to DL approaches which are
capable of learning from massive dataset (big data).

3.3. Deep Learning. DL approaches differ from shallow ML
algorithms in terms of scalability, i.e., depth (number of
hidden layers) and width (number of cells or units or
neurons in each layer). DL (or deep ML) is a scalable ML
approach capable of scaling to the data size in terms of high
number of data samples or data dimensionality. DL is ap-
plied to artificial neural networks (ANN or NN) and that is
why it is also known as deep neural networks (DNN)
[13, 21]. DL is the ability to learn the deep architectures of
NN using backpropagation (BP) [22, 23]. Error back-
propagation [24] is the dominant training approach for NN
which was proposed in 1986 for training multilayer per-
ceptrons (MLP) which is backpropagation of the resulting
error between the predicted output and the given labels into
the network for fine-tuning the weighs in order to minimize
the loss/cost function in a nonconvex surface. DL is loosely
inspired by the visual cortex [25–27]. It is mimicking our
brain [27] in terms of learning and recognizing the spatial
and temporal patterns (or spatiotemporal) in the data. DNN
are basically deep hierarchical layers of perceptrons [28], as
artificial neurons, for representation and regression learning
[29, 30].

4. Deep Learning

'e research question of ”How can the massive wearable big
data be analyzed to produce actionable outcomes?” is dif-
ficult to answer when the wearable big data is heterogeneous,
unlabeled, and unstructured. 'is means the wearable big
data seeks unsupervised learning methods that can not only
analyze the data but also identify helpful patterns leading to
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informed decision making. In recent years, deep learning
(DL) has been established as a new area of machine learning
research which aims to advance artificial intelligence [13]. A
plethora of studies provide evidence that DL has achieved
state-of-the-art results in various fields related to compu-
tational intelligence and big data including computer vision
and image processing [31], speech processing [32], natural
language processing (NLP), and machine translation
[33, 34]. Similarly, these DL advancements bring a new
promise to analyze the unsupervised wearable big data in
order to recognize the spatial and temporal patterns related
to health, wellness, medical condition, sports performance,
and safety (Table 1).

Deep learning (DL) is exponentially gaining interest in
research and development (R&D) community at academia
and industry as they are also being heavily invested on by
giant software and hardware companies such as Google,
Nvidia, and Intel [35–37].

4.1. Deep Learning History: Receptive Fields of Neurons In-
spired from Cat’s Visual Cortex. Simple-cells and complex-
cells [38] were found in the receptive fields of single neurons
in the cat’s visual cortex. 'e discovery of receptive fields of
neurons in the cat’s visual cortex [38] contributed enor-
mously to NN, AI, computer vision, and neuroscience
community (demonstrated visually with timeline in
Figure 4).

4.2. Deep Learning History: 6e First Conceptual
Architecture—Cognitron and Neocognitron. 'e discovery
of simple and complex cells was followed by the introduction
of cognitron and neocognitron (by Fukushima et al. in 1975
[39, 42–44]). Neocognitron (as the first proposed deep NN
architecture) was the inspiration behind the introduction of
the convolutional neural networks (CNNs) by LeCun in
1989 [45] (as shown in the past part of the timeline in
Figure 4). Cognitron and neocognitron (Fukushima et al.
[39, 42, 43]) were introduced as self-organizing multilayered
neural networks. 'e proposed cognitron and neocognitron
architectures, by Fukushima [42, 43], is composed of the
simple-cells and complex-cells inside the CNN architecture.

4.3. Deep Learning History: Neural Networks.
Schmidhuber’s survey [46] thoroughly reviews the history of
DL in NN since the birth of ANN along with different types
of learning approaches applied to DNN architectures such as
unsupervised learning (UL), supervised learning (SL), and
reinforcement learning (RL). It also discusses evolutionary
algorithms (EA) and optimization approaches (e.g., genetic
algorithms) along with the learning algorithms for mini-
mizing mean squared error (MSE) and sum of squared error
(SSE).

4.4. Deep Learning Math Foundation: Artificial Neural Net-
works Universal Approximation6eorem. ANN is a univer-
sal function approximator based on the universal
approximation theorem [23, 47–49]. 'is theorem proves
that ANN, even with a single hidden layer of finite size, can
approximate any continuous functions [47]. 'is approxi-
mation theorem [47] is applicable to high-dimensional as
well as low-dimensional function approximations [23]. For
example, 2-dimensional-CNN (2D-CNN) or 3-dimensional-
CNN (3D-CNN) for image and point-cloud classification
(high-dimensional 2D or 3D data) was compared to feed-
forward neural network (FFNN) for a low-dimensional
time-series signal classification. In this case, CNN con-
tains much more parameters for high-dimensional function
approximation compared to FFNN which is a low-
dimensional function and containing much less parameters.

4.5. Deep Learning Applications: Recent Breakthroughs and
State-of-the-ArtResults. DL has achieved the state-of-the-art
results in many fields such as computer vision, speech
processing, and machine translation as the following:

(1) A breakthrough in 2012 for computer vision using
DL: deep convolutional neural nets (CNN), LeNet by
LeCun in 1989 [45], proved to be enormously effi-
cient in an end-to-end image classification and
analysis [31].

(2) A breakthrough in 2012 for speech processing us-
ing DL: another important breakthrough, almost in
the same year as Krizhevsky [31], was applying DL
to TIMIT, massive dataset for speech recognition
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[32]. Microsoft immediately started adopting and
applying this approach to its own AI assistant,
Cortana for Windows 10 [32].

(3) Google brain project—'e first large-scale DL
project in 2012: this project, as a large scale dis-
tributed deep networks led by Dean et al. [50], ap-
plied deep belief network (DBN) to massive data
from Youtube (videos of cats) using 16,000 com-
puters in distributed parallel configuration. 'is

large-scale implementation of DBN, on distributed
parallel computing platforms, successfully recog-
nized cats in videos after watching millions of cat
videos on Youtube without any supervision or
teaching signals (unsupervised setting).

(4) Bridging the gap between human-level translation
and machine translation in NLP by Google neural
machine translation: Google neural machine trans-
lation (GNMT) [33, 34] is as an end-to-end DLmodel

Table 1: 'e AI domain and DL review table.

Learning-based AI
approach

Data-based learning approach

Unsupervised learning (UL) for
unlabeled data

Supervised learning (SL) for labeled
data

Reinforcement learning (RL) for
rewarded labeled data (labeled data

with cost function)
Cortical learning
(CL):
neuroscience of
brain cortex
(cortical areas)

Sequence learning: hierarchical
temporal memory (HTM) and

cortical learning algorithm (CLA)
— —

Machine learning
(ML):
shallow ML

Dimension reduction: principle
component analysis (PCA) and
independent component analysis
(ICA), clustering: expectation

maximization (EM), K-means, K-
nearest neighbors (KNN),

approximate nearest neighbor
(ANN), and fast library for

approximate nearest neighbor
(FLANN)

Linear discriminant analysis (LDA),
random forest, search trees (Monte

Carlo search), artificial neural
network (ANN) or multilayer
perceptron (MLP), and support

vector machine (SVM)

Q-learning, policy-learning, and
inverse RL (IRL)

Deep learning (DL):
deep ML

Deep unsupervised learning (DUL):
restricted Boltzmann machine

(RBM), deep belief network (DBN),
deep Boltzmann machine (DBM),
autoencoder (AE), variational
autoencoder (VAE), generative
adversarial network (GAN), and

sequence learning

Deep supervised learning (DSL):
Feed-forward neural network
(FFNN), deep neural network

(DNN), spike neural network (SNN),
sequence-to-sequence learning,
recurrent neural network (vanilla
RNN), long short-term memory
(LSTM), convolutional LSTM

(ConvLSTM), and gated recurrent
unit (GRU)

Deep reinforcement learning (DRL):
Deep Q-Network (DQN), AlphaGo,
and inverse DRL (inverse RL &

GAN)

Big data analytics: big 
datasets (cloud/servers) 

and GPUs (HPC)

Application domain: WIoT 
(wearable IoT)

PresentPast Future

Concept: WearableDL inspired from human nervous 
system

Literature: WIoT and deep learning for big data analytics

Application of WearableDL in wearable health data, 
wearable sport data, etc.

Visual cortex by 
Hubel and Wiesel [38]

NeoCognitron by 
Fukushima and Miyake [39]

Backprop by Rumelhart [24]

Capsule networks by 
Sabour et al. [40]

STDP-backprop by 
Bartunov et al. [41]

HTM (cortical learning) 
by Hawkins and 

Numenta [16]

CNN (deep learning) 
by LeCun et al. [13]

Figure 4:'e simplified research roadmap for DL: (past) how it was inspired by visual cortex research, (present) how it is related to wearable
IoTand big data analytics, and (future) how it is connected to cortical learning. 'e related works mentioned/included in this figure are the
following: visual cortex by Hubel and Wiesel [38]; neocognitron by Fukushima and Miyake [39]; Backprop by Rumelhart et al. [24]; CNN
(deep learning) by LeCun et al. [13]; Capsule networks by Sabour et al. [40]; STDP-backprop by Bartunov et al. [41]; HTM (cortical learning)
by Hawkins et al. [16].
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for automated translation which has outperformed
the conventional phrase-based translation systems by
far. 'e proposed GNMT [33, 34] system requires big
computational power (big compute) and massive
datasets (big data) for both training and translation
inference for building big model (big net).

4.6.DeepLearningArchitectures. Some of the important and
famous DNN architectures are the following:

(1) Feed-forward neural network (FFNN): this is the
simplest NN, also known as multilayer perceptron
(MLP), with feed-forward connections. FFNN is also
referred to as fully connected network (FCN) inside
CNN architectures.

(2) Convolutional neural network (CNN): CNN is
loosely inspired by the cat’s visual cortex [38]. It was
initially proposed as Cognitron [42] and Neo-
cognitron [39]. CNN architecture was initially ap-
plied to digit recognition and trained using BP by
LeCun in 1989 [45]. 'is CNN architecture is also
referred to LeNet [45].

(3) Deep belief network (DBN), Deep Boltzmann Ma-
chines, and Restricted Boltzmann Machines (RBM):
DBN was initially proposed and trained using
backpropagation by Hinton et al. [51, 52] as a deep
unsupervised learning (DUL) approach using greedy
pre-trained stacked up layers of RBM.

(4) Autoencoder (AE): AE is another DUL approach for
dimensionality reduction [53] and data compression.
Variational AE (VAE) [54] is another recent version
of AE which improved the AE precision in gener-
ating images and data as a generative model using
Bayesian distribution.

(5) Spike neural network (SNN): 'is type of NN is
mimicking the Spike stimulation of brain inside the
ANN, i.e., loosely inspired from how Spikes are
activating neurons in our biological NN (brain).

(6) Deep Q-networks (DQN): DQN [55, 56] is the first
deep reinforcement learning (DRL) approach pro-
posed by Google DeepMind. 'is DL approach
achieved human-level control in playing variety of
Atari games.

4.7. Deep Learning Dominant Training Approach:
Backpropagation. DL is mainly related to the algorithms for
learning big and deep NN architectures. BP is dominantly
the learning algorithm used in DL [29, 57] which is the main
power behind the scalability of DL architectures such as
CNN and DBN. DL is coined mainly by LeCun et al. in 2015
[13]. Goodfellow et al. [21] published a book providing
a thorough explanation of DL theory and approaches.

4.8. Deep Learning Categories and Subdomains. 'e DL
approaches, regardless of their application domains, are
mainly categorized into three dominant groups (the same as

ML): deep unsupervised learning (DUL), deep supervised
learning (DSL), and deep reinforcement learning (DRL).
'ere are also some subcategories (subdomains) which are
currently the active area of research in DL as well such as
transfer learning (TL), semisupervised learning, learning-
by-demonstration, and imitation learning.

4.9. Deep Learning Biological and Neurological Inspiration
Related to Backpropagation. BP (proposed by Rumelhart
et al. [24, 29, 57]) in DL is supported neurologically by
random synaptic in Lillicrap et al. [26]. Lillicrap et al. [26]
argues that BP is functioning similar to an error feedback
neuron for error optimization (minimization). Yasmin and
DiCarlo [25] also provide another strong biological foun-
dation for BP and CNN architecture in DL. 'ey demon-
strate visually how the goal-oriented convolutional
hierarchical layers are inspired from sensory cortex.

4.10. Deep Supervised Learning. DSL is divided into three
categories [46]: FFNN & CNN, recurrent neural network
(RNN), and the hybrid one (combination of both: con-
volutional long short-term memory (LSTM) and convolu-
tional RNN).

4.10.1. Feed-Forward Neural Network and Convolutional
Neural Network. FFNN was also traditionally known as
MLP. FFNN, so-called FCN, is often the last two years inside
CNN architecture in DSL. CNNwas at first applied to optical
character recognition (OCR), specifically for digit recogni-
tion, and trained using BP by LeCun et al. in 1989 [45]. 'is
CNN, named LeNet after LeCun et al. [45], was brought back
to the attention in 2012 after reducing the classification-error
rate almost in half in Imagenet contest by Alexnet, named
after Krizhevsky et al. [31].

4.10.2. Recurrent Neural Network and Long Short-Term
Memory. LSTM was proposed by Hochreiter and
Schmidhuber in 1997 [58]. LSTM was successfully trained
using BP through time (BPTT) unlike vanilla RNN which
was heavily suffering from the problem of vanishing gradient
and exploding gradients [59]. LSTM-based RNN is often
applied to sequential learning for temporal pattern
recognition.

4.10.3. Hybrid DL: Convolutional LSTM (ConvLSTM).
Xingjian et al. [60] proposed convolutional LSTM
(ConvLSTM) as a hybrid approach which is a combination
or an integrated version of CNN [13] and RNN (LSTM [58]).
In this regard, Zhang et al. [61] show reliable results using
hybrid approach for speech recognition. Residual bi-
directional ConvLSTM [61] is a very deep network including
bidirectional LSTM and CNN with residual connections for
an end-to-end speech recognition which is an efficient and
powerful deep hybrid model for acoustic speech recognition.
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4.11. Deep Unsupervised Learning. DUL focuses on un-
labeled big data which are abundantly available nowadays on
the web. Bengio et al. [62] review DUL approaches and
provide new perspectives on them. Yeung et al. [63] propose
an approach for learning the big unlabeled data existing on
web (i.e., also referred to as wild). Rupprecht et al. in 2016
[64] also propose a DUL framework for the unlabeled big
data as new methodology of learning multiple hypothesis.
Mirza et al. [65] provide a DUL architecture for the gen-
eralization of the aligned features, specifically to perform TL
across multiple task domains.

4.11.1. Deep Belief Network, Restricted Boltzmann Machine,
and Google Brain Project. DBN is, in fact, the stacked up
layers of pretrained restricted Boltzmann machine (RBM).
In 2012, Google brain project (as a ”large scale distributed
deep networks”) led by Dean et al. [50], was applying DBN
using massive data from Youtube videos on cats and
16,000 computers in distributed parallel configuration.
'is large-scale implementation of DBN, on distributed
parallel computing platforms, successfully recognized cats
in videos after watching millions of cat videos on Youtube
without any supervision or teaching signals, i.e., entirely
accomplished in unsupervised setting (DUL). When DBN
is trained on a massive dataset (big data) as DUL, it can
learn how to probabilistically reconstruct its inputs. DBN
layers (layers of representation) can act as feature de-
tectors (extractors) on inputs [32, 50, 51, 66]. After this
learning step, a DBN can be further trained in a supervised
way to perform classification [32, 51] for TL.

4.11.2. Generative Adversarial Networks (GANs).
Goodfellow et al. [67] proposed GAN as two networks which
are competing against each other. One of these networks is
generator and another one is discriminator. 'e generator
tries to produce fake input data similar to the real one to fool
the discriminator. 'is adversarial training performed on
GANs is entirely based on game theory.

4.11.3. Autoencoders. AE is an unsupervised DL architecture
for DUL applied to denoising, dimensionality reduction
[53], data compression, and image or data generation
(generative models). VAE [54] is an improved AE as
a generative model using Bayesian distribution. It can also be
trained and transferred to a DSL architecture (TL) for
classification and regression purposes [68].

4.12. Deep Learning (DL) and Reinforcement Learning (RL)
Started Getting Published in Nature: Quick Review of the
Recent Years Progress. 'is part briefly walks you through
how DL and RL were combined/accomplished with an in-
credible speed since 2015 only and only from Nature
publication perspective:

(1) In 2015, deep learning (DL) models found their way
into Nature publications by producing incredible
results in AI [13].

(2) At the same year, neuroscientists found a very in-
teresting relationship between goal-driven DL
models and our sensory cortex in the brain [25]. 'is
was a huge leap toward biological inspiration of deep
reinforcement learning models.

(3) In that year, one DL-based AI agent created
super-human-level performance in many Atari
games [55]. 'is approach, so-called Deep
Q-Networks (DQN), demonstrated least human-
level control (performance) in playing many Atari
games [56]. 'is was the birth of deep re-
inforcement learning (DRL) because of the
combination of RL (initially proposed by Sutton
in 1984 [69]) and DL [13].

(4) In 2016 (one year later), another DL-based AI agent,
AlphaGo, dominated the Go game by only watching
the previously human-played Go games [70].
AlphaGo (Silver et al. from Google DeepMind in
2016 [70]) made a considerable impact on DRL
community by dominating the game of Go (a Chi-
nese ancient chess-like game) using two deep co-
operative networks [70]: deep policy network and
deep value network (DQN [55]). 'e policy network
was basically recommending the next possible moves
(actions) and the value network (i.e., Q-network)
evaluate the moves intuitively based on the previous
experiences. Eventually Q-network (value-network)
picks the most valuable move based on the selected
move with maximum rewarded value. 'e co-
operative networks in AlphaGo [70] are cooperating
with each other on contrary with GAN.

(5) Recently, AlphaGo Zero [71] started learning the Go
game from scratch only-and-only by playing in a try-
and-error fashion and even beats the previous
AlphaGo eventually.

(6) Finally, an important implementation of grid-like
cells in mice [72] can loosely demonstrate how the
navigation is performed using these grid-like cells
and how they are represented in artificial agents.
'ese Grid cells were discovered in 2005 by Wills
et al. [73] and a team of scientists in Norway [74].
'ey were awarded the 2014 Nobel Prize for their
discoveries of cells that constitute a local/global
positioning system in the brain.

DRL has opened a new frontier in AI so-called artificial
general intelligence (AGI) which is exponentially growing
and succeeding in demonstrating human-level and even
super-human level performance not even in playing Atari
games but in robotics [75] and other domains performing
complex task such as imitation learning or learning by
demonstration:

(1) Combining inverse RL and GANs: since GAN is
a generative model to maximize the reward function
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to fool a discriminator network, it is related to RL in
terms of learning how to maximize the reward
function. In RL, learning the reward function for an
observed action is coined as inverse reinforcement
learning (IRL). Finn et al. [76] show that IRL [77–79]
is equivalent to GAN [67] by highlighting the
mathematical connection between them.

(2) Generative adversarial imitation learning (GAIL): it
is the combination of GANs and imitation learning
[80].'is model is also introduced earlier in 2016 by
Baram et al. [81] as model-based adversarial imi-
tation learning. 'ese models generally aim to
model human behaviors and motives using IRL [82]
which is dominantly targeting lack of reward of
function for variety of complex task or the difficulty
of defining a reward function for these tasks rather
than learning a reward function for them.

Another recent development in DRL is applying RNNs,
specifically LSTM [58], for learning the temporal de-
pendencies since the RL tasks are all sequential, known as
generative RNNs. In this regard, Schmidhuber team is one
for the main fore-frontiers by introducing the world
models [83]. A beautiful combination of GAIL and gen-
erative RNNs are proposed very recently in Zhu et al. [84]
in order to apply these RNN-based GAIL models for di-
verse visuomotor skills, specifically in robotics manipula-
tion across both simulation and real domains. In this
direction, generative query networks (GQN) [85] have
shown very promising results in terms of an agent pre-
dicting how the environment would look like taken
a specific action. GQN is another great combination of
RNN, GAN, and imitation learning.

5. WearableDL: Literature Review

Feature extraction is the key in understanding and modeling
the repetitive patterns of the collected physiological and
behavioral data. Traditionally hand-crafted features were
extracted based on the expert knowledge, which were labor-
intensive and time-consuming, for classification or re-
gression purposes. Moreover, the manual feature extraction
process does not scale well when the wearable data is
growing rapidly in size temporally (number of samples in
time) or spatially (number of dimensions). 'at is why our
article aims to explore DL approaches since they are capable
of scaling to the data size. In this section, we review the
literature related to DL approaches for analyzing different
types of wearable data as demonstrated and mapped briefly
in this Table 2.

5.1. Embedding DL in Mobile, Wearable, and IoT Devices.
Lane et al. [86] presents a study on embedded DL in
wearables, smartphones, and IoT devices in order to build
the knowledge of the performance characteristics, resource
requirements, and the execution bottlenecks for DL models.
Regarding DL for mobile, wearable, and embedded sensory
applications, DL requires a significant amount of device (and

processor) resources. 'e limited availability of memory,
computation, and energy on mobile and embedded plat-
forms is a serious problem for powerful DL approaches.

5.1.1. SparseSep: Large-Scale-Embedded DL in Smartphones.
SparseSep [87] leverages the sparsification of fully connected
layers and separation of convolutional kernels to reduce the
resource requirements of DL algorithms. SparseSep [87]
allows large-scale DNN (with fully connected layers and with
convolutional layers) to run and execute efficiently on
mobile and embedded hardware with minimal impact on
inference accuracy.

5.1.2. DeepX and Demo: Embedded DL Execution
Accelerator. DeepX [89] is a software accelerator for effi-
cient embedded DL execution. DeepX significantly lowers
the wearable resources (e.g., memory, computation, and
energy) required by DL which is a severe bottleneck to
mobile (smartphone) adoption. DeepX [89] is an embedded
efficiently executable large-scale DL model on mobile
(smartphone) processors versus the existing cloud-based
offloading. Demo [92] and DeepX [89–91] are good case
studies for adapted and embedded low-powered DL software
for mobile devices and smartphones, specialized for wear-
able and behavioral big data analytics.

5.1.3. Embedded DL for Wearable Multimodal Sensor Data
Fusion and Integration. Radu et al. [6] used smartphone and
smartwatch for human or user activity recognition (HAR).
Data integration and fusion, using DL from smartphone and
smartwatch, is the focus of this work [6]. DL, specifically
RBM, is proposed in [6] for integration (or fusion) of sensor
data from multiple sensors (different modalities). Bhatta-
charya and Lane [7] performed a smartwatch-centric HAR
using DL, specifically RBM. Behavior and context recog-
nition tasks related to smartwatches (such as transportation
mode, physical activities, and indoor/outdoor detection)
using DL (RBM) is performed and focused in [7]. Although
DL-based (RBM) human activity recognition outperforms
other alternatives, DL resource consumption is unacceptably
high for constrained WT devices like smartwatches.
'erefore, a complementary study is conducted in Bhatta-
charya and Lane [7] related to the overhead of DL (RBM
models) on smartwatches.

5.1.4. DeepEye: Embedded DL in Wearables with Built-in
Camera for Wearable Image Analytics. Wearables with
built-in camera provide us with the opportunities to record
our daily activities from different perspectives and angles.
'is is potentially useful in terms of a low vision over our
daily lives. DeepEye [93] is a match-box sized wearable
camera capable of running multiple cloud-scale-embedded
DL models in the device for almost real-time image analysis
without offloading them to the cloud. DeepEye [93] is
powered by a commodity wearable processor to address the
bottleneck of executing multiple DL models (CNN) on
wearable limited resources with specifically limited runtime
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memory. Chen et al. [95] propose an embedded deep CNN
into iOS smartphones by maximizing data reusability for
approaching the high bandwidth burden in DL, specifically
the convolution layers of CNN. 'e effective data reuse
makes it possible to parallelize all the computing threads
without data loading latency. Chen et al. [95] enhance the
capability of DL on local iOS mobile (smartphone) devices.

5.1.5. DeepEar: Embedded DL in Smartphones for Audio
Signal Analytics. Regarding mobile audio sensing and
analysis, DL has radically changed related audio modeling
domains like speech recognition [146]. DeepEar [94] is

a framework for mobile audio sensing using DL, which is
trained in an unsupervised setting using a large-scale un-
labeled dataset (big audio data) from 168 place visits. With
2.3M parameters, DeepEar [94] is more robust to back-
ground noise compared to conventional approaches in the
wearables, specifically in smartphones (mobile devices).

5.2. Embedded DL in Mobile Sensing Framework. Lane et al.
[97] is a survey on mobile sensing architecture composed of
sensing, learning, and distribution. 'is survey [97] reviews
the existing mobile phone sensing algorithms, applications,
and systems related to the architectural framework for

Table 2: 'e reviewed literature table.

Wearable data

DL approach

DSL: FFNN, MLP, DNN, CNN
DUL: DBN, RBM, AE, VAE,
GAN, sequence learning, DRL:
DQN, AlphaGo, Deep IRL

DSL: RNN, LSTM, GRU,
ConvLSTM, sequence-to-

sequence learning

Embedding DL in mobile,
wearable, and IoT devices

Lane et al. [86], SparseSep
[87, 88], DeepX [89–91], Demo

[92], DeepEye [93]
DeepEar [94] —

Embedded DL for wearable
multimodal sensor data fusion
and integration

— Radu et al. [6], Bhattaharya and
Lane [7] —

Embedded DL in wearables with
built-in cameras for wearable
image analysis

Chen et al. [95], DeepEye [93] — —

Embedding DL in iOS mobile
devices Chen et al. [95] — —

Embedded DL in smartphones
for audio signal analytics — DeepEar [94] —

Embedded DL in mobile sensing
framework Harari et al. [96] Survey [97], Lane and Georgiev

[7, 98], Radu et al. [6] DeepSense [99], DeepSpy [100]

Mobile crowdsensing framework Harari et al. [96] Survey [97], Lane and Georgiev
[7, 98], Radu et al. [6] DeepSense [99], DeepSpy [100]

Time-series data — Survey [101] Gamboa [102]
Mobile big data (MBD) DeepSpace [103] Alsheikh et al. [104, 105] —
Mobile wireless sensor network
(WSN) data — Marjovi et al. [106] —

EEG data Stober et al. [107–110] Wulsin et al. [111], Narejo et al.
[112], Stober et al. [107, 113] Ma et al. [114]

Physiological data — Wang and Shang [115] —
Big data Najafabadi et al. [116, 117] — —
Image and signal data Xie et al. [118] Xie et al. [118] —
Multimodal sequential data VINet [119, 120] — VINet [119, 120]
Mobile gait analytics Hannink et al. [121–123] — —
Embedded DL for inertial data
analytics

Survey [124], Ravi et al.
[125–127] Survey [124] Survey [124]

Embedding DL in low-power
devices for health care

Survey [124], Ravi et al.
[125–127] Survey [124] Survey [124]

Electronic health-care records
data Survey [128] DeepPatient [129], Miotto et al.

[130, 131], Survey [128]

Gram [132], Choi et al.
[133–135], DoctorAI [136],

Survey [128]
Electronic medical records data Deepr [137] Nemati [138] DeepCare [139]
ECG data Shashikumar [140] — —
Cybersecurity data — — DeepSpy [100]
Smartglass and smartglove data Advani [4] — —

Wearable 3D point cloud data Poggi et al. [141, 142], Ji et al.
[143] — —

Multimodal physiological data — Du et al. [144] Alhanai and Ghassemi [145]
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mobile phone sensing research. Harari et al. [96] discusses
the potentials and limits of smartphones in collecting
wearable biometric and physiological data for behavioral
science since smartphones help us enormously collect
continuous behavioral data in our daily lives without
attracting any attention. 'e collected continuous be-
havioral data includes social interactions, daily activities
(physical activity), and mobility patterns. Harari et al. [96]
look at the practical guidelines for facilitating the use of
smartphones as a behavioral observation tool in psycho-
logical science. Lane and Georgiev [98] provide a low-
power embedded DL using a smartphone System-on-Chip
(SoC). 'is work highlights the critical need for further
exploration of DL in mobile sensing towards robust and
efficient wearable sensor data inference. DeepSense [99]
is a DL framework to address the noisy mobile sensor data
and feature engineering problems in mobile sensing.
DeepSense [99] integrates CNN and RNN to extract
temporal and spatial patterns in the mobile sensor data
dynamics for car tracking, HAR, and user identification.

5.3. DL for Time-Series Data Analytics. In many real-world
applications (e.g., speech recognition or sleep stage classi-
fication), data are collected over the course of time. 'is
time-series data contains temporal patterns related to dif-
ferent classes of behaviors (behavior prediction). Hand-
crafted features are expensive to extract since they require
the expert knowledge of the field. 'at is why DUL offers
powerful feature learning for time-series data analysis and
forecast (prediction). Since wearable data are often collected
as time-series signal data, DL plays an important role for
learning and recognizing (inference) the temporal pattern
in this data. In this aspect, LSTM [58] is dominating other
DL approaches. A review of the recent developments, in
DUL for time-series data, is given by Längkvist et al. [101]
and Gombao [102]. Although DL has shown promising
performance in modeling the static data (e.g. computer
vision and image classification [31]), applying them to
time-series data has not yet been well-studied and ex-
plored (understudied). Längkvist et al. [101] and Gombao
[102] provide current challenges, projects, and works that
either applied DL to time-series data analysis or modified
the DL to account for the current challenges in time-series
data.

5.4. DL for Mobile Big Data Analytics. 'e availability
smartphones and IoT gadgets led to the recent mobile big
data (MBD) era. Collecting MBD is profitable if there is
learning methods for analytics to recognize the hidden
spatial and temporal patterns from the collected MBD.
Alsheikh et al. [104] propose DL in MBD analytics as
a scalable learning framework over Apache Spark. Mobile
crowdsensing is an efficient MBD collection approach
combining the crowd intelligence, smartphones, wearables,
and IoT devices (gadgets). Regarding MBD analytics,
Alsheikh et al. [105] focuses on the accuracy and privacy
aspects of mobile and people-centric crowdsensing as a true
MBD collection approach by service providers. DeepSpace,

Ouyang et al. [103], is a DL approach for MBD analytics
applied to predicting human trajectory by understanding
their mobility patterns. DeepSpace [103] is composed of two
models: course and fine prediction models.

5.5. DL for Mobile Wireless Sensor Network Data Analytics.
Marjovi et al. [106] explains how to collect data using mobile
wireless sensor network (WSN) on public transportation
vehicles and analyzing them using DL (AE) for temporal
pattern recognition.

5.6. DL for EEG Data Analytics. Stober et al. [107–110, 113]
are applying DL approaches for classifying and recognition
of EEG recordings for rhythm perception. It specifically
applied stacked AE and CNN on the collected EEG data to
distinguish the rhythms on a group and individual partic-
ipants. Given the EEG data, Stober et al. [107–110, 113] use
DL for detection and classification of EEG signal in terms
types and genres. Wulsin et al. [111] also model EEG
waveform data (brain time-series signal) for anomaly
measurement, detection, and recognition (classification)
using DL approaches, specifically DBN. Narejo et al. [112]
classify EEG data (brain time-series signal) for eye states
using DUL, specifically DBN and AE. DL for compressed
sensing, in brain-computer interface (BCI), is demonstrated
in Ma et al. [114] for extracting the motion-onset visual
evoked potential (mVEP) BCI features. Ma et al. [114]
combine DL with compressed sensing to analyze discrim-
inative mVEP features to improve the mVEP BCI perfor-
mance. Ma et al. [114] demonstrate DL effectiveness for
extracting the mVEP feature for compressed sensing in BCI
systems.

5.7. DL for Physiological Data Analytics. Wang and Shang
[115] modeled physiological data (time-series biometric
signals) using DL, specifically DBN. DBN, as a DUL ap-
proach, can automatically extract features from raw phys-
iological data of multiple channels. Using the pretrained
DBN, Wang and Shang [115] built multiple classifiers to
predict the levels of arousal, valance, and liking based on the
learned features. Based on the experimental results, DBN is
applied to raw physiological data effectively learns relevant
features, emotional patterns, and predict emotions.

5.8. DL for Big Data Analytics. Big data analytics and DL are
two highly focused areas in the data science. Big data is the
result of collecting massive amounts of data with useful
information in different domains such as national in-
telligence, cybersecurity, fraud detection, marketing, and
medical informatics [147]. DL can extract high-level ab-
stractions as data representation layers through a hierar-
chical learning process. A key benefit of DL is the analysis
through learning the massive amounts of unsupervised data.
'is key benefit makes DL an extremely valuable tool for big
data analytics since the available raw data are largely un-
labeled, unannotated, and uncategorized. Najafabadi et al.
[116, 117] explore howDL is utilized for big data analytics by
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extracting complex patterns from massive volumes of data,
semantic indexing, data tagging, fast information retrieval,
and simplifying discriminative tasks. Najafabadi et al.
[116, 117] also investigate DL in terms of analyzing the
streaming data, high-dimensional data, scalability of models,
and distributed computing.

5.9. DL for Mobile Gait Analytics. Hannink et al. [121–123]
estimate mobile stride length in human gait using DL,
specifically deep CNN. Spatial gait pattern recognition and
mobile gait analysis are performed in [121–123] to address
motor impairment in neurological disease. Deep CNN is
used for stride length estimation to map stride-specific in-
ertial sensor data to the resulting stride length.

5.10. EmbeddedDL for InertialDataAnalytics. In Ravi et al.’s
studies [124–127], DL is applied to inertial sensor data
analysis for real-time human activity recognition &
classification.

5.11. DL for Electronic Healthcare Records Data Analytics.
dos Santos et al. [128] discuss DL applications in health-care
management and diagnostics as most of the studies suggest
DL for clinical diagnosis due to its accurate pattern rec-
ognition of disease in electronic medical records (EMR).
Based on Dos Santos and Carvalho [128], DL assists in
medical decisions, the accuracy of the diagnosis, andmedical
treatment recommendations. DL for clinical data analysis is
discussed in Miotto et al. [129–131]. DeepPatient [129] is an
application of DL for massive patient electronic health-care
records (EHR) data analytics and prediction. Miotto et al.
[129, 131] clearly demonstrate the transition from ML ap-
proaches [130] to DL due to the fact that DL overperformed
ML on patients’ massive EHR datasets. Choi et al.
[132–134, 136] review DL approaches and applications for
EHR for population health research.

5.12. DL for Electronic Medical Records Data Analytics.
An electronic medical record (EMR) is a digital paper chart
containing the patient’s medical history. Personalized pre-
dictive medicine requires modeling of patient illness and
care processes long-term temporal patterns.

5.12.1. DeepCare: Personalized Medicine Recommender
System. DeepCare [139] analyze and recognize the patients’
EMRs long-term temporal patterns. Health-care observa-
tions, recorded in EMRs, are episodic and irregular in time.
EMRs are collected via health-care observations, patient’s
disease, and personal care history. DeepCare [139] reads
EMRs, predicts future medical outcomes, and recommends
proper medications. DeepCare models patient health state
trajectories with explicit memory of illness. Built on LSTM
[58], DeepCare introduces time parameterizations to handle
irregular timing by moderating the forgetting and consol-
idation of illness memory.

5.12.2. Deepr: Deep Record for EMR Data Analytics.
Nguyen et al. [137] propose DeepR (deep record) for ana-
lyzing the massive EMRs in medicine. DeepR [137] is
a predictive system for analyzing EMRs and detecting
predictive regular clinical motifs from irregular episodic
records. DeepR is an end-to-end DL system to extract
features from EMRs and predicts automatically any future
risk and transforms a record into a sequence of discrete
elements separated by coded time gaps and hospital
transfers.

5.12.3. Deep Reinforcement Learning for Clinical EMR Data
Analysis in Medication Dosing. Nemati et al. [138] optimizes
medication dosing from suboptimal clinical examples using
the DRL approach. A clinician-in-the-loop sequential
decision-making framework [138] is proposed for an in-
dividualized dosing policy of each patient’s evolving clinical
phenotype using the publicly available MIMIC II intensive
care unit database with a DRL that learns an optimal heparin
dosing policy from sample dosing trails and their associated
outcomes in large EMRs. 'e proposed DRL system [138]
demonstrates that a sequential modeling approach, learned
from retrospective data, could potentially be used at the
bedside to derive individualized patient dosing policies.

5.13. DL for ECGData Analytics. Wearables have enormous
potential to provide low-risk and low-cost long-term
monitoring of electrocardiography (ECG), but these sig-
nals highly suffer from significant movement-related noise.
Shashikumar et al. [140] present DL-based atrial fibrillation
(AF) detection in a sequence of short windows with sig-
nificant movement artifact. Pulsatile photoplethysmo-
graphic (PPG) data and triaxial accelerometry were captured
using a multichannel wrist-worn device. A single-channel
electrocardiogram (ECG) was recorded (for rhythm verifi-
cation only) simultaneously. A DL approach was developed
on these data to classify AF from wrist-worn PPG signals. A
continuous wavelet transform was applied to the PPG data,
and CNN was trained on the derived spectrograms to detect
AF.

5.14. DL for Cybersecurity Data Analytics. DeepSpying [100]
is a mobile-sensing framework for data collection andDL for
data analytics in information security (i.e., cybersecurity)
domain to protect individual privacy. DeepSpying [100]
pioneers WT-based data collection and DL-based data
analysis for patient’s information security and privacy
protection.

5.15. DL for Smartglass and Smartglove Data Analytics.
Advani et al. [4] build a multitask AI visual-assistance
system for assisting visually impaired people in grocery
shopping using smart glass, smart glove, and shopping carts
for providing auditory and tactile feedback. 'is AI system
[4] is part of the visual cortex on Silicon project aimed at
developing interfaces, algorithms, and hardware platforms
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to assist the visually impaired with a focus on grocery
shopping.

5.16. DL for Wearable 3D Point Cloud Data Processing and
Analytics. Poggi et al. [141, 142] recognize the crosswalk
(i.e., crosswalk recognition) on the route using DL for point
cloud processing (i.e., 3D data learning) with a suitable
wearable mobility aid for the visually impaired people. Poggi
and Mattoccia [142] present a wearable mobility aid for the
visually impaired individuals using embedded 3D vision and
DL-based approach. Poggi et al. [141] relies on an RGBD
camera and FPGA embedded in a wearable eyeglass for
effective point cloud data processing with a compact and
lightweight embedded computer. 'e computer also pro-
vides feedback to the user using a haptic interface as well as
audio messages. Poggi et al. [141] does crosswalk recognition
for several visually impaired users as a crucial requirement in
an effective design of a mobility aid. Poggi et al. [141]
propose a system to detect and categorize crosswalks by
leveraging on point-cloud processing and DL techniques. Ji
et al. [143] processes 3D data using CNN for HAR. 'ey
develop a novel 3D CNN model for action recognition of
both the spatial and the temporal patterns using 3D con-
volutions for capturing the motion information encoded in
multiple adjacent frames. 'ey also apply the developed
models to HAR in the real-world environment of airport
surveillance videos.

5.17. DL for Multimodal Physiological Data Analytics. Du
et al. [144, 145] discuss the effects of DL in mortality pre-
diction. In these works [144, 145], a combination of audi-
tory, text, and physiological signals are utilized to predict the
mood (happy or sad) of 31 narrations from subjects engaged
in personal story-telling. 'ey extracted 386 audio and 222
physiological features (using the Samsung wearable sim-
band) from the data. A subset of 4 audio, 1 text, and 5
physiologic features was identified using sequential forward
selection (SFS) for inclusion in DNN. 'ese features in-
cluded subject movement, cardiovascular activity, energy in
speech, probability of voicing, and linguistic sentiment
(i.e., negative or positive).

6. WearableDL: Future Insights

We have presented a biologically inspired architecture
”WearableDL” for the wearable big data analytics that re-
sembles the human NS. We also reviewed briefly the current
frontiers in AI, specifically DL approaches and architecture.
We carefully selected more than 100 recently published
research articles related to WearableDL architecture with
focus on DL, IoT, and WT (Section 4). Although Weara-
bleDL meets with obstacles and challenges, we believe that it
could be practically and potentially useful especially when
the wearable data are massive (volume), heterogeneous
(variety), and sampled at different frequency (velocity). In
this section, we intend to provide our future view of
“WearableDL” challenges and its potential application to
wearable big data analytics.

6.1. Health Insurance Decision Making. DL brings a great
promise and could increase the value of the wearable big data
by making them actionable, e.g., health insurance companies
thrive on the data to minimize the cost. 'erefore, it be-
comes extremely important that they learn more about their
customers and their lifestyles. 'ey are also interested in
knowing the information such as how often their customers
perform physical activity such as walking, jogging, or other
exercises. 'e health insurance industry wants to track if
their customers have smoking or drinking habits. Due to the
promise of accuracy, precision, and efficiency, the applica-
tion of DL on personalized wearable data can play a major
role to estimate the insurance policy cost and also to give
rebates if their customers cultivate healthy habits [148]. 'e
trend of a data-driven health insurance policy has already
been considered in many countries including North
America, Europe, and Asia.

6.2. High Performance in Sports and Athletics. Another area
that will be impacted by DL is the billion-dollar sports in-
dustry. 'e performance of athletes is not only a moment of
pride for their country or state team but also an economical
model and therefore the athletes strive to outperform. Today,
they use WT in their training to improve their performance
inch by inch [149]. Such precision in their performance also
demands WT to offer fine-grain quality in the measurement
of body’s kinematic motion such as agility and balance and
physiological parameters such as heart rate, oxygenation, and
muscular strength. Various DL methods can be applied to
analyze highly sampled wearable big data and extract the
actionable information to improve sports performance. DL
could also help detect sports injuries during the game or in the
training, so effective decisions are made in time.

6.3. Supporting Elderly Population. Aging population across
the globe is a well-known phenomenon. By 2030, 20% or
more population will be 65+ years of age [150].'is indicates
that we will need to seek technological solutions to support
senior citizens who are more prone to disorders, severe
health conditions, and injuries due to decaying physical and
mental capabilities. In the last decade, WT have specifically
been targeted to provide health-care services and com-
fortable assisted living. However, it is not enough to just
collect the data fromWT. It is equally important to make the
WTpersonalized to the specific condition experienced by an
elderly individual. DL could fill this gap by learning the daily
patterns in the wearable big data and by offering the decision
makers the relation between the historic and current data. In
this way, DL could lead the prediction of underlying health
conditions which are often not detected by WT alone.

6.4. Challenges. Although DL comes with several promises
for the wearable big data, it also needs to overcome a number
of barriers and obstacles for its wide spread adoption.

6.4.1. Unlabeled Wearable Big Data. 'is is a very common
important problem when it comes to analyzing the wearable
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big data since this data are often collected in a complete
unlabeled or unannotated fashion. 'at is why UL is be-
coming an important scope for applying DL to the collected
big data. As reviewed and talked about, this scope is often
known as DUL and it is still an active area of research,
specifically when it comes to wearable big data which are
time-series and sequential. Sequence learning is one of the
attractive ways approaching this problem using LSTM,
RNN, and ConvLSTM.

6.4.2. Computational Bottlenecks, Demand, and Complexity.
Currently, deep models face the burden of computational
demand to achieve exceptional performance on large-size
datasets. 'ese models are currently aimed to run on cloud
servers. However, fog computers which require lightweight
algorithms will demand new type of DL models that learn
from small datasets. As also mentioned in Section 4 and
Table 2, embedding DL into mobile, wearable, and IoT
devices has two important bottlenecks: memory bandwidth
for matrices and computational power for matrix multi-
plication operation in parallel or distributed setting.

6.4.3. Data Reliability. In many situations, data collected by
wearable devices can be affected by noise and error due to
nonideal collection setting, particularly for structured and
complex data. In this regard, the wearable devices can be
designed to perform a presifting and prefiltering of the data.
'erefore, DL can be applied to identify and isolate the cor-
rupted data in the decision-making process. DL can generalize
the data in an extraordinary way and that is how it can isolate
the corrupted/noisy data and identify the distinctive, repetitive,
and robust spatiotemporal pattern in such data.

Abbreviations

AGI: Artificial general intelligence
AI: Artificial intelligence
ANN: Artificial neural net
Backprop: Backpropagation
BCI: Brain-computer interface
BP: Backpropagation
BPTT: Backpropagation through time
CL: Cortical learning
CLA: Cortical learning algorithm
ConvLSTM: Convolutional LSTM
CNN: Convolutional neural net or ConvNet
CNS: Central nervous system
DBN: Deep Boltzmann machine
DBS: Deep brain stimulation
DL: Deep learning
DRL: Deep reinforcement learning
DSL: Deep supervised learning
DNN: Deep neural network
DQN: Deep Q-network
DUL: Deep unsupervised learning
EA: Evolutionary algorithm
ECG: Electrocardiography
EEG: Electroencephalography

EM: Expectation maximization
EMG: Electromyography
EMR: Electronic medical record
FCN: Fully connected network
FFNN: Feed-forward neural network
FLANN: Fast library for approximate nearest neighbor
FPGA: Field programmable gate arrays
GAN: Generative adversarial nets
GNMT: Google neural machine translation
GPU: Graphical processing unit
GQN: Generative query network
GRU: Gated recurrent units
HR: Heart rate
HPC: High-performance computing
HTM: Hierarchical temporal memory
HAR: Human activity recognition
IoT: Internet-of-'ings
IRL: Inverse reinforcement learning
IC: Integrated circuits
ICA: Independent component analysis
KNN: K-nearest neighbors
LDA: Linear discriminant analysis
LSTM: Long short-term memory
ML: Machine learning
MLP: Multilayer perceptron
MBD: Mobile big data
MSE: Mean-squared error
NS: Nervous system
NN: Neural net
NLP: Natural language processing
PNS: Peripheral nervous system
PCA: Principle component analysis
RBM: Restricted Boltzmann machine
RL: Reinforcement learning
RNN: Recurrent neural nets
STDP: Spike-time-dependent plasticity
SNN: Spike neural net
SL: Supervised learning
SSE: Sum of squared error
SVM: Support vector machine
TL: Transfer learning
UL: Unsupervised learning
VAE: Variational autoencoder
WIoT: Wearable Internet-of-things
WT: Wearable tech.
WearableDL: Wearable deep learning.
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Rapid advances in ICT and collection of large amount of mobile health data are giving room to new ways of treating patients.
Studies suggest that telemonitoring systems and predictive models for clinical support and patient empowerment may improve
several pathologies, such as heart failure, which admissions rate is high. In the current medical practice, clinicians make use of
simple rules that generate large number of false alerts. In order to reduce the false alerts, in this study, the predictive models to
prevent decompensations that may lead into admissions are presented. )ey are based on mobile clinical data of 242 heart failure
(HF) patients collected for a period of 44 months in the public health service of Basque Country (Osakidetza). )e best predictive
model obtained is a combination of alerts based on monitoring data and a questionnaire with a Naive Bayes classifier using
Bernoulli distribution. )is predictive model performs with an AUC � 67% and reduces the false alerts per patient per year from
28.64 to 7.8. )is way, the system predicts the risk of admission of ambulatory patients with higher reliability than current alerts.

1. Introduction

Since these early days, the advances on ICT have given a huge
opportunity to telemedicine applications and new e-Health
services [1]. Along with this phenomenon are the large
quantities of mobile data that are being collected and pro-
cessed these days.)e growth in these two areas are leading in
advanced health-care systems that not only provide contin-
uous support to clinicians or informal care givers (e.g., family
members), but also to patients. In this context, telemedicine
systems that monitor ambulatory patients and guide them in
their daily routine are emerging. Nevertheless, often all the
potential of the mobile-health data used to support clinical
professionals and patients is not sufficiently exploited. Other
times, the exploited clinical data, in the form of, for example,
predictive models to identify patients at high risk, are not
applied in a real setting to support clinicians and patients.

Studies suggest that artificial intelligence by means of pre-
dictive models and telemonitoring systems for clinical sup-
port and patient empowerment may improve several
pathologies [2], such as heart failure.

Heart failure (HF) is a clinical syndrome caused by
a structural and/or functional cardiac abnormality. HF
patients suffer decompensations, which is defined by
Mangini et al. [3] as a clinical syndrome in which a structural
or functional change in the heart leads to its inability to eject
and/or accommodate blood within physiological pressure
levels, thus causing a functional limitation and requiring
immediate therapeutic intervention [3]. Hence, de-
compensations may lead in hospital admissions, which in
this study are defined as emergency admissions and hospital
admissions, and home interventions. As Ponikowski et al.
presented in [4], the prevalence of HF depends on the
definition applied, but it is approximately 1-2% of the adults
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in developed countries, rising to more than 10% among
people >70 years of age. Hence, due to the aging population,
an increase in the number of HF patients is expected in the
future. )erefore, predicting the risk of a patient to suffer
a decompensation may prevent admissions and read-
missions, improving both patient care and hospital man-
agement, which has a high impact on costs and clinical
professionals time. )e first step to predict the risk of de-
compensation is to telemonitor ambulatory patients. Next,
we need reliable systems to assess the risk. Most telemedicine
systems apply alerts or rule-based systems to detect potential
complications of ambulatory patients [5–8]. But these
usually contain large number of false alerts, and hence, these
systems are not trustworthy (Table 1).

Our hypothesis is that with the usage of artificial in-
telligence (AI) by means of, for instance, predictive models,
it is possible to detect decompensations of ambulatory pa-
tients and reduce false alerts. In this context, this research
extends the study for readmissions detection [9] and
presents predictive models of a telemedicine system for heart
failure patients, called INCAR. INCAR has been developed
to (i) be generally applicable in HF patients, (ii) improve the
clinical practice by developing an accurate system that de-
tects the risk of decompensation and suggest actions to
prevent them on time, (iii) allow professionals to maintain
an efficient and personalized support and follow-up of
patient, (iv) give patients support when required and guide
them in risk situations, informing clinicians accordingly,
and (v) reduce HF patients admission and readmission rate,
which have a high economic impact.

)is paper focuses on the development of predictive
models to detect decompensations, and it is structured as
follows: First, the Related Work section summarizes the state
of the art on telemedicine systems for heart failure and the
role of predictive models on telemedicine systems.Materials
section presents the database used in this study and the
characteristics of the dataset. Methods presents the applied
methods to assess the risk of an ambulatory HF patient to
suffer a decompensation that may lead into admission. In
Results, the outcomes obtained for each of the developed
predictive models is presented. Finally, Discussion presents
the results and limitations of the study, and Conclusion gives
a summary of the contributions and future work.

2. Related Work

2.1. Telemedicine Systems for HF Patients. Being HF a dis-
ease with high prevalence and high readmission rate, the
usage of telemedicine systems in this area is common [7].
Chaudhry et al. [2] telemonitored patients by means of
telephone-based interactive voice-response system and
concluded that the simple phone-based telemonitorization
does not improve the outcomes (i.e., readmission, death).
Nevertheless, most of current telemonitoring systems do not
simply implement telephone-based monitorization, but also
the transmission of mobile health data, such as bodyweight,
heart rate, and blood pressure [7]. Besides, more advanced
noninvasive systems transfer electrocardiograph (ECG) trac-
ings, oxygen saturation, and physical activity (e.g., pedometer)

data. Apart from noninvasive telemedicine systems, invasive
systems enable the transfer of variables measured invasively,
such as transthoracic impedance and pulmonary and left atrial
pressures. But literature studies do not present significantly
better results when implementing invasive measurements into
their telemedicine systems in terms of HF decompensation
prevention. Nonetheless, some benefits have been presented
when applying impedance instead of weight for detecting HF
patients early decompensation, as presented by Abraham et al.
[5] and Gyllensten et al. [6].

2.2. Alerts forHF Patients. Most studies implement “simple”
alerts to prevent decompensations based on these data. One
of the implemented techniques is Rule of5umb (RoT) based
on simple rules (i.e., when a measurement goes beyond or
below a given threshold or when they are based on simple
difference between the current value of an attribute and
a previous measurement that occurs a predefined number of
days in the past) [5–8]. Other studies, such as Zhang et al.
[7], Gyllensten et al. [6], and Ledwidge et al. [8], make also
use of more sophisticated techniques, such as the Moving
Average (MA) or similar techniques that calculate the var-
iations applied to usually weight. )e Cumulative Sum
(CUMSUM), applied by Adamson et al. [10], is typically used
for detecting changes and implies that when a continuous
variation of a measurement is produced over time, that
tendency will result in an alert. Additionally, Gilliam et al.
[11], apply the multivariate method, which consists on the
usage of several data elements that are incorporated into
a multivariate logistic regression model to form the prob-
ability of an event occurring. From the studied papers, we
could conclude that each type of alert may work best
depending on the applied attribute. For instance, techniques
related with MA work best when applied to weight. On the
other hand, CUMSUM is one of the best methods when
applied to transthoracic or intrathoracic impedance.

Table 1 presents the results of different studies that de-
termine whether a monitored HF patient will have a de-
compensation, usually implementing alerts. Due to the large
number of days that do not end in an admission, evenwhen the
computed specificity values are high, the number of false
positives could remain too high for the clinical practice, so it is
not an optimal testing value in this scope. Taken into account
this limitation, based on the literature studies, we could con-
sider the number of false alerts per patient per year (FA/pt-y) as
de facto standard to determine the number of false positives.
However, as shown in Table 1, some of the studies present the
specificity value for determining how well the no admissions
are detected using own techniques to compute it.

2.3. Predictive Models on Telemedicine Systems. As shown
above, most telemedicine systems apply alerts or rule-based
systems to detect potential complications of ambulatory
patients. )is is not only present in the context of HF, but
also in diabetes, atrial fibrillation, and other clinical domains
[12, 13]. Hence, there is a lack of the usage of collected data
that could lead in more accurate solutions by means of, for
instance, predictive models.
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Several studies in the context of HF develop predictive
models to determine whether a patient will be readmitted within
30 days after discharge [14–20]. )ese predicting models make
use of baseline information of patients, such as age, sex, or left
ventricular injection fraction, but not daily (or weekly) tele-
monitored patient mobile data, such as weight, heart rate, or
blood pressure, which could be crucial for detecting and pre-
venting an ambulatory patient admission. In several telemedi-
cine studies applied in diverse pathologies, such as chronic
obstructive pulmonary disease [21, 22] and preeclampsia [23],
predictive models have been successfully applied. However, in
the context of HF, limited studies apply predictive models. Lafta
et al. [24] is one of these studies that using several telemonitored
attributes (i.e., heart rate, systolic blood pressure, diastolic blood
pressure, mean arterial pressure, and oxygen saturation) applied
basic time series prediction algorithm, regression-based time
series prediction algorithm, and hybrid time series prediction
algorithm.)e obtained results showed that up to 75% and 98%
of accuracy values could be obtained across different patients
under three algorithms, but still the accuracy value is not ob-
jective enough to determine how well the system performs.

)e presented study goes beyond the state of the art and
applies classifiers based on alerts applied in current medical
practice and state-of-the-art studies. Additionally, this study
makes use of baseline information and ambulatory tele-
monitored information to build an integral telemedicine
system that applies predictive models with double goal: assess
ambulatory patients’ admission risk to provide both patients
and clinicians the appropriate guidance to prevent potential
decompensations that may lead to hospital admissions.

3. Materials

3.1. Database. )e public hospital OSI Bilbao-Basurto
(Osakidetza), located in Basque Country (Spain), has been
gathering HF patients’ information from June 2014 until

February 2018 (44 months) to closely monitor HF patients.
For the present study, the dataset contained a cohort of 242
HF patients. Clinicians have collected baseline data
(i.e., information collected by a clinician when the patient is
diagnosed, Table 2), ambulatory patient monitored data
(i.e., information collect from three to seven times per week,
Tables 3 and 4), and patients admissions information
(i.e., emergency admissions, hospital admissions, and home
care interventions that are associated to HF associated with
a patient decompensation).

Besides vital signs, a questionnaire is also included into the
telemonitoring system to ask patients about their condition,
with potential impact on decompensation prediction (Table 4).

3.2. Characteristics of Ambulatory Patients Dataset. In the
whole study, 242 patients have been enrolled from June 2014
until February 2018. Of these 242 patients, one patient has
been excluded as it is a cirrhotic man who often has in-
terventions of evacuational paracentesis due to a liver pa-
thology not related to HF. )ere is an average follow-up of
13.5 ± 9.11 months. In this time period, there have been 254
decompensations of which 202 are considered as predict-
able, since 52 decompensations do not have previous tele-
monitoring information (i.e., less than 3 times in the last
week before the decompensation).

4. Methods

Following the methodology applied for the generation of the
predictive models is presented: (i) training and testing
dataset construction, (ii) application of alerts implemented
in current clinical setting, (iii) selection of the alerts for the
study, (iv) generation of the dataset to apply the machine
learning classifiers, and (v) the application and comparison
of different classifiers.

Table 1: Summary of decompensation detection studies.

Study Data type Dataset Method Results

Zhang et al. [7] Weight
135 patients;
1964 days
monitoring

RoT Se � 58.3%, Sp � 54.1%

MACD Se � 20.4%, Sp � 89.4% (AUC � 0.55%)

Gyllensten et al. [6]

Weight 91 patients;
10 months

RoT Se � 20%, Sp � 90%
MACD Se � 33%, Sp � 91%

CUMSUM Se � 13%, Sp � 91%

Noninvasive transthoracic
bioimpedance

91 patients;
10 months

RoT Se � 13%, Sp � 91%
MACD Se � 13%, Sp � 91%

CUMSUM Se � 13%, Sp � 91%
Adamson et al. [10] Blood pressure 274 patients CUMSUM Se � 83.1%, FA � 4.1/pt-y

Abraham et al. [5]

Intrathoracic
impedance

156 patients;
537 ±

312 days
RoT Se � 76.4%; FA � 1.9/pt-y

Weight 156 patients;
537 ± 312 days RoT Se � 21%; FA � 4.3/pt-y

Ledwidge et al. [8] Weight 87 patients;
23.9 ± 12 weeks

RoT Se � 21%; Sp � 86%
HeartPhone

algorithm (based on MA) Se � 82%; Sp � 68%

Gilliam et al. [11] Multivariate 201 patients Se � 41%; FA � 2/pt-y
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4.1. SplittingTrainingandTestingDatasets. To build and test
a predictive model, the clinical data are divided in
training and testing datasets. )e training dataset is used
to develop the model, and once it is finished, the resulting
model is tested with the testing dataset. )is way, the
overfitting is prevented, and it is possible to check
whether the created model will generalize well. )e whole
dataset is from telemonitored patients starting from June
of 2014 until February 2018. )e training dataset contains
132 predictable decompensations (i.e., with at least 3
monitorizations in the last week before a de-
compensations) out of 174 patients, with an average
follow-up per patient of 13.47 ± 7.47 months. )e testing
set contains 70 predictable decompensations out of 162
patients, with an average follow-up per patient of 5.41 ±
3.48 months.

4.2. Applied Alerts for Ambulatory Patients Admission.
)e alerts implemented in current medical practice are used
as a filtering method to obtain the instances for training and
building the classifiers. )is way, we discard the days when

there is no sign of destabilization of any attribute, leading
into a more balanced dataset.)erefore, this section presents
the different types of alerts that are implemented in medical
practice and their performance to select the optimal ones to
be applied in our study.

4.2.1. Generic Alerts. )e following tables describe the
alerts that are being implemented in OSI Bilbao-Basurto
Hospital and their sensitivity (Se) and false alerts per pa-
tient per year (FA/pt-y) when applied to the training
dataset. )ey are differentiated into “yellow” and “red”
alerts, being these last ones more restrictive and, therefore,
more critical.

Simple Rules. Table 5 presents the rules based on each pa-
rameter individually. )e alerts’ thresholds presented in
Table 5 are the generic ones. But based on personalized
clinical cases, clinicians modified some patients’ alerts
thresholds. For example, if a patient’s O2Sat values are al-
ways lower than 90, but the patient is stable, the O2Sat alerts
are adapted. )is study uses the adapted alerts.

Weight Tendency. Besides simple rules, OSI Bilbao-
Basurto Hospital also checks the tendency of weight
values in order to trigger an alarm (Table 6). )is weight
change “red” (“yellow”) alert performs with a Se value of 0.52
(0.64) and a FA/pt-y of 9.55 (16.38).

Questionnaire. Additionally, OSI Bilbao-Basurto Hos-
pital clinicians make use of the questionnaire (Table 4) and
apply the following alert based on the answers from the
questionnaire: if three or more answers are the wrong ones,
the questionnaire alert would trigger. )is alert achieves

Table 2: Baseline characteristics of the study population.

Characteristics Description Median ± SD (percentage)
Age )e age of the patient (years) 78 ± 10.9
Height )e height of the patient (mm) 162.37 ± 10.34
Sex )e sex of the patient (men/women) 57% men

Smoker If the patient smokes, did smoke, and now do not or
never has smoked 15.35% do smoke, 22% did smoke (not now)

LVEF Left ventricular ejection fraction (%) 42.4 ± 15.21
First diag Years since first diagnosis 5.8 ± 7.04

Implanted device
If implanted device (peacemaker, implanted

cardioverter defibrillator, and cardiac
resynchronisation therapy)

22.7%

Need oxygen If the patient needs oxygen 4.7%
Barthel Barthel scale 82.98 ± 15.23

Gijón [25] Sociofamily assessment scale in the elderly that allows
the detection of risk situations or social problems. 7.47 ± 2.29

Laboratory
Urea Urea (mg/dl) 75.12 ± 37.8
Creatinine Creatinine (mg/dl) 1.3 ± 0.54
Sodium Sodium (mEq/L) 140.12 ± 4.14
Potassium Potassium (g/dl) 4.28 ± 0.74
Haemoglobin Haemoglobin (g/dl) 13 ± 9.6
Comorbidities
Rhythm If sinus rhythm, AF or atrial fluter Sinus: 37.1%
Atrial fibrillation If the patient has atrial fibrillation (AF) 57.4%
Pacemaker If the patient has a pacemaker 14.5%

Table 3: Ambulatory patients monitored characteristics of the
study population.

Characteristics Description
SBP Systolic blood pressure (mmHg)
DBP Diastolic blood pressure (mmHg)
O2Sat Oxygen saturation (%)
HR Heart rate (bpm)
Weight Body weight (kg)
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a Se of 0.31 and FA/pt-y of 9.55. To determine which are the
questions that perform best, Table 7 presents the Se and
FA/pt-y for each of them based on each possible answer.

)e answers of “Worse” in the questions of n1 and n5
(Table 4) result in very good predictors of the de-
compensations considering Se and FA/pt-y values. Ques-
tions n3, n4, n6, and n7 also have predictive power, but not
as good as n1 and n5. )e other questions cannot be
considered as alerts, because of their low/null prediction
capacity (Table 7).

4.2.2. Implemented Alerts Based on Moving Average. As
presented in the Related Work section, weight-associated
alerts have been improved, and hence, tendency rules for
weight have been substituted for a more advanced method,

based on moving average. Moving Average Convergence
Divergence (MACD) algorithm calculates the difference
between the average value taken from two windows and
generates an alert when this difference exceeds a prespecified
threshold. Following the same moving average (MA) con-
cept, a similar method is implemented which consists on the
following (Figure 1):

(i) a: immediate previous days (starting from the
checking day and continuing backwards) over
which the average is calculated

(ii) b: previous days (starting from at least the latest day
from a and continuing backwards) over which the
average should be calculated

(iii) d: distance between the last day of a and first day
from b

(iv) Difference threshold (THR): size of difference be-
tween a and b average that should generate an alert

In Figure 2, different scores for each possible variable’s
value for the MA alert are presented. )e tested and illus-
trated results are from all possible combinations of the
following variable’s values: a � (2, 3, 7), b � (3, 4, 7, 14), d �

(0, 1, 3, 7), and THR � (0.2, 0.5, 0.75, 1, 1.5, 1.8, 2, 3).
After representing all the results of the MA algorithm and

applying the Youden index [26], the optimal value of these
combinations is the one obtained with a � 2, b � 3, d � 0, and
THR � 0.75 (green dot in Figure 2). )is alert achieves Se
value of 0.56 and FA/pt-y of 11.06 in the training set, similar
to the results of the already alert-implemented weight alert.
But based on the literature [6–8], this latest one is best.

4.3. Selection ofAlerts for InstancesGeneration. To obtain the
right dataset of instances, the best combination of alerts is
sought. Once the alerts are selected, when at least one of
these alerts is triggered, the patient data of that day are used
to build the dataset for machine learningmodel building (see
Built Dataset for Machine Learning Classifiers). In Table 8,
the results of the combinations of different alerts are
presented.

R1 refers to the sum of MA weight alert and the two
best alerts from the questionnaire related to ankle (n5) and

Table 5: Simple rules implemented by Osakidetza.

Parameter
to study

)reshold
number

Type of
alert Se FA/pt-y

SBP

<95 Yellow 0.28 11.4>150
<85 Red 0.08 1.4>180

DBP

<60 Yellow 0.23 9.1>100
<50 Red 0.04 0.9>110

HR

<55 Yellow 0.30 11.2>90
<50 Red 0.08 1.4>110

O2Sat <94 Yellow 0.15 3
<90 Red 0.39 13.5

Table 4: Ambulatory patients questionnaire.

n Tag Question Possible answer
1 Well-being Comparing with the previous 3 days, I feel: B/W/S∗
2 Medication Is the medication affecting me well? Yes/No

3 New medication During the previous 3 days, did I take any medication
without my clinicians’ prescription? Yes/No

4 Diet and exercise
Am I following the diet and exercise

recommendations provided by my clinician and
nurse?

Yes/No

5 Ankle In the last 3 days, my ankles are: B/W/S∗
6 Walks Can I go walking like previous days? Yes/No

7 Shortness of breath Do I have fatigue or shortness of breath when I lay
down in the bed? Yes/No

8 Mucus Do I notice that I started coughing of with phlegm? Yes/No
∗B/W/S � better/worse/same.

Table 6: Weight alerts implemented by Osakidetza.

Parameter
to study

Time
period

Minimum
(kg)

Maximum
(kg)

Type of
alert

Weight change
5 days 1 2 Yellow
3 days 1 25 Red
5 days 2 25 Red
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well-being (n1) (Tables 4 and 7). If some of these alerts are
triggered, R1 is also triggered. R2 refers to the R1 plus the
yellow alerts of SBP, DBP, O2Sat, and HR (Table 5). Finally,
R3 refers to R2 plus the questions n3, n4, n6, and n7 from
Table 4. Since R2 (Table 8) detects almost all de-
compensations (95%), though FA/pt-y is quite high (FA/pt-y
� 51.12), this is the one used to generate the instances for the
machine-learning classifiers.

4.4. Built Dataset forMachine-Learning Classifiers. Next, the
attributes that are considered for each of the instances and
that are applied in the classifiers are presented. Note that the
applied attributes come from (i) the telemonitoring dataset,
(ii) the baseline dataset, and (iii) the readmission dataset.

(i) Telemonitoring dataset:

(a) )e value of SBP, DBP, HR, O2Sat attributes,
and, in the case of the weight, the values of the
MA algorithm

(b) )e number of consecutive alerts for each type
of alert:

(1) Yellow alerts: the number of yellow alerts
that have been triggered in the previous
consecutive days related to SBP, DBP, HR,
and O2Sat (4 attributes)

(2) Red alerts: the number of red alerts that have
been triggered in the previous consecutive

days related to SBP, DBP, HR, and O2Sat (4
attributes)

(3) MA: the number of alerts that have been
triggered in the previous consecutive days
for the MA algorithm (1 attribute)

(c) Questionnaires: the answers of the 8 questions
of the questionnaire, shown in Table 7 (8
attributes)

(ii) Baseline dataset: the baseline information of the
patient shown in Table 2 (24 attributes)

(iii) Readmissions dataset: whether in the moment of the
instance is about a readmission, i.e., if the last 30
days, the patient has discharged because HF (1
attribute)

4.5.AppliedMachine-LearningClassifiers. In this section, we
briefly describe the main classification algorithms that were
used during the experiments carried out in this work. Since
classifier definitions are well known in the literature, we will
provide just a summary overview about them.

4.5.1. Naı̈ve Bayes. Naive Bayes methods follow the “naive”
assumption that the components of the feature vectors are
statistically independent, so that the posterior probability of
the class can be approximated as

p(y ∣ x) �
p(y)

n
i p xi ∣ y( ( 

p(x)
, (1)

where p(xi) is the likelihood of the i-th feature, and p(y) the
a priori probability of the class. )e Gaussian Naive Bayes
assumes that the likelihood follows a Gaussian distribution,
where the mean and standard deviation of each feature are
estimated from the sample. On the other hand, the Bernoulli
Naive Bayes assumes Bernoulli’s distribution in the pa-
rameters, and hence, it estimates the probability of p(xi ∣ y)

following this last distribution.

4.5.2. Decision Tree. Decision Trees (DTs) [27, 28] are built
by recursive partitioning of the data space using a quanti-
tative criterion (e.g., mutual information, gain-ratio, gini
index), maybe followed by a pruning process to reduce
overfitting. Tree leaves correspond to the probabilistic as-
signment of data samples to classes. One of the most popular
implementations of the algorithm is C4.5 [27], which is an
extension of the previous ID3 [29] algorithm. At each node,
the algorithm selects the feature that best splits the samples
according to the normalized information gain.

4.5.3. Random Forest. Random forest [30] is an ensemble
classifier consisting of multiple decision trees trained using
randomly selected feature subspaces. )is method builds
multiple decision trees at the training phase. Often,
a pruning process is applied to reduce both tree complexity
and training data overfitting. In order to predict the class of
a new instance, it is put down to each of these trees. Each tree

Table 7: Questionnaire questions’ performance.

n Tag Answer Se FA/pt-y

1 Well-being
Same 0.88 120.7
Better 0.42 90.8
Worse 0.37 2.7

2 Medication Yes 1 210
No 0.05 3.8

3 New medication Yes 0.15 5.3
No 1 209

4 Diet and exercise Yes 1 203
No 0.22 11.18

5 Ankle
Same 0.86 114
Better 0.44 96
Worse 0.35 2.9

6 Walks Yes 0.99 196
No 0.37 18

7 Shortness of breath Yes 0.41 19.93
No 0.96 194

8 Mucus Yes 0.44 60.5
No 0.84 153.5

ab d

Figure 1: Representation of the applied MA algorithm.
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gives a prediction (votes) and the class having most votes
over all the trees of the forest will be selected (majority
voting). )e algorithm uses the bagging method [31], where
each tree is trained using a random subset (with re-
placement) of the original dataset. In addition, each split
uses a random subset of features.

4.5.4. Support Vector Machine. Support vector machines
(SVMs) [32, 33] look for the set of support vectors that allow
to build the optimal discriminating surface in the sense of
providing the greatest margin between classes. In this way,
the decision function can be expressed in terms of the
support vectors only:

f(x) � sign  αiyiK si, x(  + w0 , (2)

where K(xi, xj) ≡ �(xi)T�(xj) is a kernel function, αi is
a weight constant derived from the SVM process, and the si

is the support vector [33]. Nonlinear kernel functions filling
some conditions allow to map a nonlinearly separable
discrimination problem into a linearly separable equivalent
problem in higher dimensional space.

4.5.5. Neural Network. Multilayer Perceptron (MLP) is
a neural network that consists of at least three layers of
nodes, namely: (i) an input layer, (ii) one or more hidden
layers, and (iii) an output layer. )e input layer consists of
a set of neurons that represents input features. )e hidden
layer transforms the outputs of the input layer by means of
nonlinear activation functions. )e output layer collects the
values of the hidden layer and builds the output value. )e
model is trained using backpropagation, and it can classify
data that is not linearly separable.

4.5.6. Class Balancing. In this work, like in many other
supervised classification problems, imbalanced class distri-
bution leads to important performance evaluation issues and
problems to achieve desired results. )e underlying problem
with imbalanced datasets is that classification algorithms are
often biased towards the majority class and hence, there is
a higher misclassification rate of the minority class instances.
Although there are several methods that can be used to tackle
the class imbalance problem, we have followed an over-
sampling approach. Random oversampling is the simplest
oversampling method, which consists of randomly replicating
minority class samples. Despite its simplicity, this method
leads easily to overfitting, since it generates exact copies of
existing instances [34]. In order to deal with such problems,
we have used a more sophisticated technique, namely, syn-
thetic minority oversampling technique (SMOTE). )is
method over samples the minority class by creating synthetic
instances based on its nearest neighbours [35].

Depending on the percentage of synthetic samples that
want to be generated (in respect to the original minority class
instances), some, or all, minority samples are selected.
Having specified beforehand the number of nearest
neighbours k, for each sample, the k nearest neighbours are
found using the Euclidean distance. Once the nearest
samples are selected, a random value between 0 and 1 is
generated and multiplied to the distance of each feature
between the actual instance and the neighbour. In other
words, the vector of coefficients of a random convex linear
combination is generated and applied to the k nearest
neighbours to create a new sample.

5. Results

)is section presents the results obtained after the devel-
opment of the machine learning classifiers presented in
Applied Machine-Learning Classifiers and the final results of
the selected classifier in the testing dataset.

5.1. Validation Method. Although there are many ways to
assess the generalization ability of a ML model, such as
cross-validation, time series can be problematic for such
validation techniques, as there is an ordered timeline factor
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Figure 2: Representation of several MA to determine the Younden index.

Table 8: Inclusion Criterion performance.

Rules Description of the rules Se FApy
R1 Weight + ankle + well-being 0.79 15.33
R2 R1 + yellow 0.95 51.12
R3 R2 + questionnaire alerts 1 84.5
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to be considered. Henceforth, we use cross-validation on
a rolling basis [36], as it is explained in Figure 3.

)e training set is separated in the five sets shown in
Figure 3.)e number written inside the blocks is the number
of decompensations corresponding to that period, which is
the reason why the dates (on top) are chosen. )e splits are
not exactly equitable, since all the predecessors of a de-
compensation must fit within the same block. In Step 1, the
classifier is trained in the first block (55 decompensations)
and tested in the next block (17 decompensations) getting
the score for Step 1. Following, in Step 2, the classifier is
trained in Step 1 and tested in the new one (19 de-
compensations), getting the score for Step 2. Repeating the
same with Step 3 and Step 4, we get four scores. It is sup-
posed that the first step is the more unstable, as there are less
data to train the classifiers, but, while the training set in-
creases, it is believed that the results will become stable, and
the score will converge to its real testing value.

)e score value used to test the classifiers is the area
under the ROC curve (AUC) [37], a measure that evaluates
the balance between sensitivity and specificity and that gets
an accurate estimation even in moderately imbalanced
datasets, which is our case. )e AUC value is used to check
how well the classifiers perform and consequently select the
best one. To test the global predictive model, we use Se and
FA/pt-y which are the ones used in the literature.

5.2. Classifiers Comparison. In this section, the results of the
classifiers explained in Applied Machine-Learning Classifiers
are presented applied for the training dataset. Additionally,
the rolling cross-validation method, presented above, is
applied to avoid the overfitting. )is way, the classifier(s)
with best outcomes and generalizable (and therefore, stable)
can be selected for the predictive model.

In Figure 4, the AUC values of each classifier are il-
lustrated for each of the steps defined in the rolling cross-
validation method. )e points are the mean of the AUCs
achieved in each case, with its standard deviation drawn with
whiskers. High standard deviation value indicates that the
classifier is less generalizable, while low standard deviation
hints a stable classifier.

It is expected that the AUCs values converge as the
number of steps grow, although with the available dataset,
there are a trend of significative improvement in the second
step and a worsening trend in the third one. However,
Figure 4 clearly shows that the best classifiers are Näıve
Bayes (NB) with Bernoulli method and the random forest
(RF). NB classifier has lower AUC value than RF, but the
standard derivation is almost negligible, and the trend
through the steps is more stable. Hence, it is expected that its
performance will not vary significantly over time with new
data. RF gets the best scores, but is unstable, and it has high
standard derivations. Henceforth, NB with Bernoulli
method and RF classifiers are selected to validate the models.

Decision tree and SGD classifiers give the lowest results.
)e other three classifiers (NB with Gaussian distribution,
SVM, andMLP classifiers) perform better, but not as good as
the selected two.

5.3. Final Results

5.3.1. Alerts Performance. Since the alerts are used to gen-
erate the instances for the machine-learning classifiers (see
Selection of Alerts for Instances Generation), first, the per-
formance of these in the testing dataset is presented
(Table 9).

Comparing these results (Table 9) with the obtained in
the training set (Table 5), the weight-associated alerts get
worse result. In the case of the questionnaire alerts (Ta-
ble 10), there is a general worsening comparing with the
training set (Table 7). Hence, it is possible to get worse
results than the expected when testing the predictive model
in the testing set.

5.3.2. Validation Results. In the current medical practice,
their alerts all together obtain the following results: Se � 0.76
and FA/pt-y � 28.64 with the red alerts plus the question-
naire alert, and Se � 1 and FA/pt-y � 88.41 with the yellow
alerts plus the questionnaire alert.

After applying the R2 alerts in the testing dataset (see
Selection of Alerts for Instances Generation section), the
selected machine learning classifiers achieved the following
AUC values: NB with Bernoulli, AUC � 0.67 and RF, AUC �

0.62. As it was expected, NB with Bernoulli maintains the
AUC value in accordance with the results obtained in the
training dataset, and in the case of RF, due to the classifier
instability, the score deteriorates (Figure 4).

Once the classifier is selected and trained, the results are
given depending on the probability of the patient to suffer
a decompensation. For that, the probability given by the
classifier (0 if none of the alerts of the inclusion criterion is
triggered) is split in terciles. Each tercile is associated with
a colour: if the probability is less than 0.33, “green” group; if
the probability is between 0.33 and 0.66, “yellow” group; and
if it is upper than 0.66, “red” group. )is way, the clinicians
can base their decisions on the risk group. Setting the
probabilities of the classifiers to the risk groups, the results
achieved are the next (Table 11).

As presented in Table 11, the RF classifier results in
a poor predictive model. However, NB reaches acceptable
scores comparing with literature studies that have similar
attributes (see sectionAlerts for HF Patients). Comparing the
obtained results in the “red” group to the current medical
practice, though NB (in the red group) gets 38% less of Se
(0.76⟶ 0.47) value, it achieves 72% less of FA/pt-y (28.64
⟶ 7.8) value. Henceforth, this predictive model improves
the results of the actual alerts method and it is more reliable.

6. Discussion

Current medical practice may use sensitive alerts, that al-
though they detect most of the decompensations due to their
high sensitivity, they also have too many false alerts.
)erefore, the main goal of this study is the reduction of
these false alerts. )is study has shown an improvement
from current alerts system implemented in the hospital. )e
system reduces the number of false alerts notably, from 28.64
FA/pt-y of the current medical practice to even 7.8 FA/pt-y
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for the “red” group, which is denoted as the most restrictive
group. )is last result is achieved with the predictive model
built by applying NB with Bernoulli to the combination of
telemonitoring alerts and questionnaire alerts (R2). How-
ever, as expected, the application of machine learning
techniques entails a decrement on sensitivity values. )e
result obtained in this study for the “red” group is Se � 0.47,
while the alerts used in the current medical practice applied
to the same testing dataset achieve Se � 0.76. Despite this Se
worsening, it is notorious that the FA/pt-y has much higher
decrement, with which we conclude that this new predictive
model improves the current medical practice. Moreover,
when comparing the obtained results with the state of the

Step 1 Step 2 Step 3
Steps

Step 4

0.7

0.6

0.5

AU
Cs

Classifiers
Decision tree
Naïve Bayes: Bernoulli
Naïve Bayes: Gaussian
Neural network

Random forest
Stochastic gradient descent
Support vector machines

Figure 4: AUC values of the classifiers (colours) depending on the steps (axis x).

Table 9: Alerts’ performance in the testing set.

Alert tag Colour alert Se FA/pt-y
Weight — 0.4 13.36

SBP Yellow 0.49 18.9
Red 0.1 2.44

DBP Yellow 0.34 15.4
Red 0.07 1.3

HR Yellow 0.37 19.7
Red 0.06 3.1

O2Sat Yellow 0.5 27.27
Red 0.2 4.2

Table 10: Questionnaire alerts’ performance in the testing set.

Question tag Answer Se FA/pt-y
Well-being Worse 0.25 2.9
New Medication Yes 0.13 5.2
Diet and exercise No 0.16 8.75
Ankle Worse 0.13 2.86
Walks No 0.4 24.7
Shortness of breath Yes 0.43 21.9

55 17 19 21 20 70

2015-06-12 2015-10-09 2016-04-12 2016-08-04 2017-01-03

Training set Testing set

Step 1

Step 2

Step 3

Step 4

Figure 3: Cross-validation on a rolling basis applied in the study.

Table 11: Results of the predictive models.

Group
Random forest Näıve Bayes

Se FA/pt-y Se FA/pt-y
Green 1 79 0.75 59.4
Yellow 0.08 1.29 0.41 13.2
Red 0 0.11 0.47 7.8

Mobile Information Systems 9



art, the Se values are similar or better to these studies that do
not consider transthoracic impedance (Table 1). Especially
considering that in the SoA, most of the studies reduce the
real FA/pt-y concatenating the neighbour alerts, since they
assume that once an alert has been triggered, the clinician
will take action, and hence, next consecutive alerts will not
be triggered.

)e current study also presents some limitations. Firstly,
as presented in Characteristics of Ambulatory Patients
Dataset, there are patients that did not monitor regularly. As
a consequence, from 254 decompensations during this
telemonitored period, only 202 of them had 3 or more
measurements during the last week previous to the ad-
mission, and hence, could be used in our study. )e rest did
not have even 3 measurements, and hence, they were not
predictable.

Secondly, as the clinical data used in the study are from
Caucasian patients, the model may perform differently in
different settings, such as in non-Caucasian population.
Finally, we must stress that heart failure is a very complex
disease with multiple factors, and its predictiveness is
complex. Nevertheless, larger amount of data and the reg-
istration of all type of decompensations is key to improve the
current model.

7. Conclusion and Future Work

)is article presents the methodology to develop predictive
models for HF decompensations prediction based on am-
bulatory patients’ telemonitored data, extending the study
for readmissions detection [9].

)e results on these studies have been successfully
implemented in a telemedicine system, called INCAR. )is
way INCAR provides the patient with the confidence of
being monitored and guided with an advanced technology
and clinical professionals’ supervision.

Currently, new devices that monitor physical activity
and sleeping quality are incorporated in the telemonitoring
program in order to determine whether these features could
have an impact in the results and improve the outcome. To
finish, we will study the possibility of including in the tel-
emonitoring plan a new device that monitors transthoracic
impedance, and explore raising deep learning techniques,
which have demonstrated their good performance and may
improve the presented results.
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