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�e paper derives some new time-scale (TS) dynamic inequalities for multiple integrals.�e obtained inequalities are special cases
of Copson integral using Steklov operator in (TS) version with high dimension. We prove the inequalities with several formulas
for the operator and in di�erent cases m> μ + 1 and m< μ + 1 for every μ≥ 1, using time-scales (TSs) setting for integral
properties, chain rules, Fubini’s theorem, and Hölder’s inequality.

1. Introduction

Equations and inequalities are the core of scienti�c study
and have a great in�uence on a huge number of applications.
A large number of physical phenomena and engineering
studies have been analyzed and explained through equations
and inequalities. For this reason, the study in this �eld
developed rapidly and many types of inequalities and
equations appeared. Dynamic inequalities on (TS) are some
of the important inequalities that were extended by a lot of
researchers and have interesting applications. Furthermore,
dynamic inequalities are used to study the behaviour of
dynamic equations.

Mathematical analysis has been the most important
study in mathematics for the past three decades. Integral
inequalities are one of the main studies and the core of
mathematical analysis. In the 20th century, a signi�cant part
of science was numerical inequalities as the �rst composition
to be released in 1934, through the published study by P’olya
et al. [1]. �is framework of inequalities played a vital role in
the improvement processes and various applications of
mathematics.

A large number of essential studies of integral in-
equalities appeared in the twentieth century, including pure
and applied mathematics study. In 1920, Hardy produced
the discrete Hardy inequality [2]. �is inequality was also

proved by himself in [3] (see also [4]), using the variations
calculus to obtain the following inequality that is very
valuable across both technological sciences and mathe-
matics. If p> 1 and h≥ 0 in (0,∞) and

H(x) � ∫
x

0
h(t)dt<∞,

then

∫
∞

0

H

x
( )

p

dx<Λp ∫
∞

0
hp(x)dx, (1)

where Λ � p(p − 1)− 1 is the best possible constant (BPC).
Several important assessments and their implementation are
done by inequality (1). Furthermore, the inequality is true in
case 0< a< b<∞,

∫
b

a

H

x
( )

p

dx<Λp ∫
b

a
hp(x)dx, (2)

where 0< ∫b0 h
p(x)dx<∞. �e classical inequality of Hardy

declares that if p> 1 and h is nonnegative and measurable on
(a, b), then (2) is valid except h ≡ 0 a.e. in (a, b), considering
the (BPC).

Integral inequalities (3) and (4) are established in 1928
by Hardy [5].

Let f be a nonnegative measurable function on (0,∞):
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(Hh)(x) ≤
􏽚

x

0
h(t)dt, for a<p − 1,

􏽚
∞

x
h(t)dt, for a>p − 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

(en,

􏽚
∞

0
x

a− p
(Hh)

p
(x)dx≤

p

|p − a − 1|
􏼠 􏼡

p

􏽚
∞

0
x

a
h

p
(x)dx, forp> 1.

(4)

Later, in 1976, Copson studied the integral inequalities ([6],
(eorem 1, (eorem 3) as follows.

Let h and v be functions such that they are nonnegative
measurable on (0,∞);

V(x) � 􏽚
x

0
v(t)dt,

(Ch)(x)≤
􏽚

x

0
h(t)v(t)dt, for c> 1,

􏽚
∞

x
h(t)v(t)dt, for c< 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(en,

􏽚
∞

0
V

− c
(x)v(x)(Ch)

p
(x)dx

≤
p

|c − 1|
􏼠 􏼡

p

􏽚
∞

0
V

p− c
(x)v(x)dx, forp≥ 1.

Many papers included new extensions and generaliza-
tions for the inequalities above in more general settings. For
instance, in 1979, some generalizations of Hardy-type in-
equality were proved by Chan [7]. (en, in 1992, Pachpatte
[8] generalized the inequalities that were produced by Chan
[7]. In 2005, P. Rehak used (TS) setting to extend Hardy’s
inequalities [9]. In 2015, Pachpatte’s inequalities [8] were
extended by Saker and O’Regan [10], with setting of (TSs).
Later, some extensions of (TSs) Hardy inequalities were
done for functions with high dimensions (see, for example,
[11–14]).

In 2021, Albalawi and Khan generalized the main in-
tegral of Hardy and Copson inequalities, using the Steklov
operator. (e operator is defined in the following formulas
with considering conditions in two cases (for more details,
see [15]).

(e aim of this paper is extending the study in [16] that
was used for some new Hardy-type inequalities to obtain
new special Copson inequalities with the Steklov operator
(see [15]) in (TS) versions with high dimension. (e results
below are proved in two cases m> μ + 1 and m< μ + 1 by
considering some general conditions that can be applied for
any variable in the integral. To achieve this paper, we use
(TSs) settings in integrals properties, chain rules, Hölder’s
inequality, and Fubini’s theorem.

(e paper takes the following structure: After intro-
duction, the main concepts of (TSs) are presented in Section

2. (en, in Section 3, we generalized a class of Copson
inequalities pertaining the Steklov operator with (TS) in high
dimension. Lastly, conclusion of our results is presented.

2. Preliminaries and Lemmas on Time Scales

We state the main concepts of (TSs) that are used in this
paper (for more details about (TS) calculus, see [17, 18]).

(TS) calculus in continuous case and discrete analysis
was introduced by Hilger [19] in 1988. We denote to a subset
(TS) of the real numbersR by T . Hence, the sets of numbers
R, Z, and N can be considered as (TSs).

Let σ: T⟶ T be a forward jump operator, such that
σ(t) ≔ inf s ∈ T : s> t{ }, while ς: T⟶ T is the backward
jump operator, given by ς(t) � sup s ∈ T : s< t{ } for all t ∈ T .

If σ(t)> t, then t is right-scattered, and if ς(t)< t, t is left-
scatted. In the case if points are right-scattered and left-
scattered at the same time, then they will be isolated. (e
point t is right-dense if t< supT and σ(t) � t, while t is left-
dense if t> infT and ς(t) � t.

Let g: T⟶ R be a continuous function and if it sat-
isfied the continuity at all right-dense points in T and the
limits of the left-sided exist (finite) at all left-dense points in
T , then g is known rd-continuous. We use Cr(T ,R) to
denote the space of all rd-continuous.

A function g: T⟶ R is Δ-differentiable at t ∈ T , if
there is a real number β � gΔ(t) and for all ε> 0, there exists
a neighbor. U of t satisfies

|g(σ(t)) − g(s) − β(σ(t) − s)|≤ ε|σ(t) − s|, for all s ∈ U.

(e Δ-derivative of a function g in high order n ∈ N is
given by

g
Δn

(t) � g
Δn− 1

(t)􏼒 􏼓
Δ
.

If the Δ-derivative of gΔ
n− 1

(t) exists, the following ex-
amples show that the delta derivative for every number set of
(TSs).

If T � R, then

g
Δ
(t) � g′ � lim

Δt⟶0

g(t + Δt) − g(t)

Δt
, for all t ∈ T .

If T � N, then

g
Δ

(t) � g(t + 1) − g(t), for all t ∈ T .

Let g: T⟶ R; if g is continuous at right-scattered t,
then it is delta-derivative of the function g, given by

g
Δ

(t) �
g(σ(t)) − g(t)

σ(t) − t
.

In the case of t is not right-scattered, then the derivative
of g is given by
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g
Δ

(t) � lim
s⟶t

g(σ(t)) − g(s)

t − s

� lim
s⟶∞

g(t) − g(s)

t − s
.

Here, the limit exists. Note that if T � R, we have

σ(t) � t,

g
Δ
(t) � g′(t).

If T � Z, we have

σ(t) � t + 1,

g
Δ

(t) � Δg(t),

􏽚
b

a
g(t)Δt � 􏽘

b− 1

t�a

g(t).

Lemma 1. Let h; g: T⟶ R be delta-differentiable. 1en,

(hg)
Δ

� h
Δ

g + h
σ
h
Δ

� fg
Δ

+ f
Δ
g
σ
,

h

g
􏼠 􏼡

Δ

�
h
Δ

g − hg
Δ

gg
σ .

(5)

(e Cauchy integral of a delta-differential function of
g(gΔ) is defined by

􏽚
d

a
g
Δ
(t)Δt � g(d) − g(a), for a, d ∈ T .

(e time-scale integration by parts formula is given by

􏽚
d

a
h(t)g

Δ
(t)Δt � h(t)g(t)]

d
a − 􏽚

d

a
h
Δ
(t)g

σ( )Δt, a, d ∈ T .

(6)

(e infinite integrals are defined by

􏽚
∞

a
g(t)Δt � lim

d⟶∞
􏽚

d

a
g(t)Δt.

If T � R, we have

􏽚
d

a
g(t)Δt � 􏽚

d

a
g(t)dt.

If T � Z, we get

􏽚
d

a
g(t)Δt � 􏽘

d− 1

t�a

g(t).

Lemma 2 (chain rule [16]). Assume a continuous function,
w: R⟶ R, a delta-differentiable, and w: T⟶ R, on T c

and a continuous differentiable h: R⟶ R. 1en, there
exists c ∈ [t, σ(t)] with

(h ∘w)
Δ

(t) � h′(w(c))w
Δ

(t). (7)

Lemma 3 (dynamic Hölder inequality). Let a, d ∈ T and
h, w ∈ Cr d([a, d]T), [0,∞)). If p1, p2 > 1 with 1/p1 + 1/
p2 � 1, then

􏽚
d

a
h(t)w(t)Δt ≤ 􏽚

d

a
h

p1(t)Δt􏼠 􏼡

1/p1

􏽚
d

a
w

p2(t)Δt􏼠 􏼡

1/p2

. (8)

Theorem 4 (Fubini’s theorem [20]). Let (Υ , N, μΔ) and
(Σ, L, cΔ) be (TS) measure spaces with finite dimension.
Consider (Υ × Σ, N × L, μΔ × cΔ) as the measure space,
where N × L is the σ− algebra product that is generated by
E × F: E ∈ N, F ∈ L{ } and

μΔ × cΔ( 􏼁(E × F) � μΔ(E)cΔ(F).

Then, Fubini’s theorem satisfied.
To be more accurate, if ξ: Υ × Σ⟶ R is

(μΔ × cΔ)—integrable,

Ψ(c) � 􏽚
Σ
ξ(c,Π)ΔΠ, exists forΠ ∈ Υ,

and

Ψ(Π) � 􏽚
Υ
ξ(c,Π)Δc, exists for c ∈ Σ.

Then,

􏽚
Υ
Δc􏽚
Σ
ξ(c,Π)ΔΠ � 􏽚

Σ
ΔΠ􏽚
Υ
ξ(c,Π)Δc.

3. Main Results

A new (TS) version of Copson-type inequality with Steklov
operator for multiple integrals is obtained in this section.We
consider the nonnegative rd-continuous functions wl, fl, gl,
and vl are Δ-integrable and defined integrals. (roughout
this paper, we set K(t1, . . . , tk) as the Copson–Steklov-type
operator considering the existence of the integral and also
finite.

Theorem 5. Let T l be a (TS) and a ∈ [0,∞)T l
, for 1≤ l≤ k

with l, k ∈ N. In addition, let wl, fl, gl, and vl be nonnegative
and rd-continuous functions on [a,∞)T l

. Furthermore, as-
sume there exist μ, λ≥ 1 such that

w
Δl

l tl( 􏼁

w
σ
l tl( 􏼁
≤ μ

V
Δl

l tl( 􏼁

Vl tl( 􏼁
,

and

g
Δl

l tl( 􏼁

g
σ
l tl( 􏼁
≤ λ

F
Δl t1, . . . , tk( 􏼁

F t1, . . . , tk( 􏼁
,
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where Δl � z/ztl for every l,

Vl tl( 􏼁 � 􏽚
tl

a
vl sl( 􏼁Δsl, withVl(∞) �∞, andwl(a) � 0,

and

F t1, . . . , tk( 􏼁 ≔ 􏽚
t1

a
. . . 􏽚

tk

a
􏽙

k

l�1

1
gl sl( 􏼁

vl sl( 􏼁

Vl sl( 􏼁
f

· s1, . . . , sk( 􏼁Δs1, . . . ,Δsk.

Define the operator

K t1, . . . , tk( 􏼁 � 􏽙
k

l�1
gl tl( 􏼁F t1, . . . , tk( 􏼁, (9)

1en

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔt1, . . . ,Δtk

≤
p(λ + 1)

m − (μ + 1)
􏼠 􏼡

p

􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

w
p

k tk( 􏼁

w
σ
k tk( 􏼁( 􏼁

p− 1
gσ

k tk( 􏼁

gk tk( 􏼁
􏼠 􏼡

p

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

f
p

t1, . . . , tk( 􏼁Δt1, . . . ,Δtk− 1
⎛⎝ ⎞⎠Δtk,

(10)

where p≥ 1 and m> μ + 1.

Proof. We write the left side of (10) as follows:

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁
ΓkΔt1, . . . ,Δtk− 1, (11)

where Γk is the k-term

Γk � 􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk.

Using formula (6) for integration by parts to compute Γk,
we have

Γk � 􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . tk( 􏼁( 􏼁
pΔtk

� z tk( 􏼁u tk( 􏼁􏼂 􏼃
∞
a − 􏽚

∞

a
u tk( 􏼁 z tk( 􏼁( 􏼁

ΔkΔtk,

(12)

where uΔk (tk) � (vk(tk)/Vm
k (tk)) and then u(tk) � (− m +

1)V− m+1
k (tk) and zσ(tk) � wσ

k(tk)(Kσ(t1, . . . , tk))p, implying
that z(tk) � wk(tk)(K(t1, . . . , tk))p, and hence,

z
Δk tk( 􏼁

&9; · g
Δk

k tk( 􏼁F t1, . . . , tk( 􏼁 + g
σ
k tk( 􏼁F

Δk t1, . . . , tk( 􏼁􏽨 􏽩.

Assume λ≥ 1 such that

g
Δk

k tk( 􏼁

g
σ
k tk( 􏼁
≤ λ

F
Δk t1, . . . , tk( 􏼁

F t1, . . . , tk( 􏼁
,

where FΔk � (zF/ztk), and since cl ∈ [tl, σ(tl)], we have

z
Δk tk( 􏼁≤w

Δk

k tk( 􏼁 K
σ

t1, . . . , tk( 􏼁( 􏼁
p

+ p(λ + 1)wk tk( 􏼁

· K
σ

t1, . . . , tk( 􏼁( 􏼁
p− 1

g
σ
k tk( 􏼁F

Δk t1, . . . tk( 􏼁.

Substituting the previous quantities in (12) and since
Vl(∞) �∞ and wl(a) � 0, then we have

􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk �

1
m − 1

􏽚
∞

a

1
V

m− 1
k tk( 􏼁

w
Δk

k tk( 􏼁 K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk

+
p(λ + 1)

m − 1
􏽚
∞

a

1
V

m− 1
k tk( 􏼁

wk tk( 􏼁 K
σ

t1, . . . , tk( 􏼁( 􏼁
p− 1

g
σ
k tk( 􏼁F

Δk t1, . . . , tk( 􏼁􏼑Δtk.

Assume μ≥ 1 such that
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w
Δl

l tl( 􏼁

w
σ
l tl( 􏼁
≤ μ

V
Δl

l tl( 􏼁

Vl tl( 􏼁
.

(en, we obtain

􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk �

μ
m − 1

􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk

+
p(λ + 1)

m − 1
􏽚
∞

a

1
V

m− 1
k tk( 􏼁

wk tk( 􏼁 K
σ

t1, . . . , tk( 􏼁( 􏼁
p− 1

g
σ
k tk( 􏼁F

Δk t1, . . . , tk( 􏼁􏼑Δtk.

Since FΔk (t1, . . . , tk) � (f(t1, . . . , tk)/gk(tk)) (vk(tk)/
Vk(tk)), then we have

􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk ≤

p(λ + 1)

m − 1 − μ
􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

wk tk( 􏼁 K
σ

t1, . . . , tk( 􏼁( 􏼁
p− 1

g
σ
k tk( 􏼁

f t1, . . . , tk( 􏼁

gk tk( 􏼁
Δtk.

(en, Hölder’s inequality (8) with indices p and p/(p − 1)

can be applied:

Γk � 􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk ≤

p(λ + 1)

m − 1 − μ
􏼠 􏼡

p

􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

w
p

k tk( 􏼁

w
σ
k tk( 􏼁( 􏼁

p− 1f
p

t1, . . . , tk( 􏼁
gσ

k tk( 􏼁

gk tk( 􏼁
􏼠 􏼡

p

Δtk. (13)

Substituting Γk in (11) and applying Fubini’s (eorem 4,
then we obtain the inequality

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

K
σ

t1, . . . tk( 􏼁( 􏼁
pΔt1 . . .Δtk

≤
p(λ + 1)

m − (μ + 1)
􏼠 􏼡

p

􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

w
p

k tk( 􏼁

w
σ
k tk( 􏼁( 􏼁

p− 1
gσ

k tk( 􏼁

gk tk( 􏼁
􏼠 􏼡

p

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

f
p

t1, . . . , tk( 􏼁Δt1 . . .Δtk− 1
⎛⎝ ⎞⎠Δtk.

□
Corollary 6. If l � 1 in 1eorem 5, inequality (10) becomes

􏽚
∞

a
w

σ
(t)

v(t)

V
m

(t)
K

σ
(t)( 􏼁

pΔt≤
p(λ + 1)

m − (μ + 1)
􏼠 􏼡

p

􏽚
∞

a

v(t)

V
m

(t)

w
p
(t)

w
σ
(t)( 􏼁

p− 1
gσ(t)

g(t)
􏼠 􏼡

p

f
p
(t)Δt. (14)

Corollary 7. If T � R in Corollary 6, we obtain
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􏽚
∞

a
w(t)

v(t)

V
m

(t)
K

p
(t)dt≤

p(λ + 1)

m − (μ + 1)
􏼠 􏼡

p

􏽚
∞

a

v(t)

V
m

(t)
w(t)f

p
(t)dt. (15)

Remark 8. Assume μ � 0 and β> λ in Corollary 7; then, we
have Corollary 3 in [15]

􏽚
∞

a
w(t)

v(t)

V
m

(t)
K

p
(t)dt

≤
βp

m − 1
􏼠 􏼡

p

􏽚
∞

a
w(t)

v(t)

V
m

(t)
f

p
(t)dt.

(16)

Theorem 9. Let T l be (TS) and a ∈ [0,∞)T l
, for 1≤ l≤ kwith

l, k ∈ N. In addition, let wl, fl, gl, and vl be nonnegative and

rd-continuous functions on [a,∞)T l
. Furthermore, assume

there exist λ, μ≥ 1 such that

w
Δl

l tl( 􏼁

w
σ
l tl( 􏼁
≥ μ

V
Δl

l tl( 􏼁

Vl tl( 􏼁
,

and
g
Δl

l tl( 􏼁

g
σ
l tl( 􏼁
≥ λ

F
Δl t1, . . . , tk( 􏼁

F t1, . . . , tk( 􏼁
,

where FΔl � (zF/ztl); for every l,

Vl tl( 􏼁 � 􏽚
tl

a
vl sl( 􏼁Δsl, withVl(∞) �∞, andwl(a) � 0,

and

F t1, . . . , tk( 􏼁 ≔ 􏽚
∞

t1

. . . 􏽚
∞

tk

􏽙

k

l�1

1
gl sl( 􏼁

vl sl( 􏼁

Vl sl( 􏼁
f s1, . . . sk( 􏼁Δs1 . . .Δsk.

Define the operator

K t1, . . . , tk( 􏼁 � 􏽙
k

l�1
gl tl( 􏼁F t1, . . . , tk( 􏼁.

1en,

%

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

K
σ

t1, . . . tk( 􏼁( 􏼁
pΔt1 . . .Δtk

≤
p(λ + 1)

μ + 1 − m
􏼠 􏼡

p

􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

w
p

k tk( 􏼁

w
σ
k tk( 􏼁( 􏼁

p− 1
gσ

k tk( 􏼁

gk tk( 􏼁
􏼠 􏼡

p

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

f
p

t1, . . . , tk( 􏼁Δt1 . . .Δtk− 1
⎛⎝ ⎞⎠Δtk,

(17)

where p≥ 1 and 0≤m< μ + 1.

Proof. We write the left side of (17) as follows:

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁
ΓkΔt1 . . .Δtk− 1. (18)

Use formula (6) to calculate the following k− term:

Γk � 􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk

� u tk( 􏼁z tk( 􏼁􏼂 􏼃
∞
a + 􏽚

∞

a
u tk( 􏼁( 􏼁 − z tk( 􏼁( 􏼁

ΔkΔtk,

(19)

where uΔk (tk) � wσ
k(tk)(vk(tk)/(Vk(tk))m) and zσ(tk) �

(Kσ(t1, . . . , tk))p.
Using (7) and the product rule (5), there exists

ck ∈ [sk, σ(sk)] such that

wk sk( 􏼁V
1− m
k sk( 􏼁􏼐 􏼑

Δk
� w
Δk

k sk( 􏼁V
1− m
k sk( 􏼁

+w
σ
k(1 − m) V

− m
k ck( 􏼁( 􏼁V

Δk

k sk( 􏼁.

Assume μ≥ 1 such that

w
Δk

k tk( 􏼁

w
σ
k tk( 􏼁
≥ μ

V
Δk

k tk( 􏼁

Vk tk( 􏼁
.

Since V
Δk

k (sk) � vk(sk)≥ 0, sk ≤ ck ≤ σ(sk), and 0≤m< 1,
then
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w
σ
kV

− m
k sk( 􏼁vk sk( 􏼁≤

1
1 − m + μ

wk sk( 􏼁V
1− m
k sk( 􏼁􏼐 􏼑

Δk
. (20)

By integration, we have

u tk( 􏼁

≤
1

1 − m + μ
􏽚
∞

a
wk sk( 􏼁V

1− m
k sk( 􏼁􏼐 􏼑

ΔkΔsk.

Now, we calculate (− Kp(t1, . . . , tk))Δk and we obtain

K
p

t1, . . . , tk( 􏼁( 􏼁
Δk

· g
Δk

k tk( 􏼁F t1, . . . tk( 􏼁 + g
σ
k tk( 􏼁F

Δk t1, . . . , tk( 􏼁􏽨 􏽩.

Assume λ≥ 1 such that

g
Δk

k tk( 􏼁

g
σ
k tk( 􏼁
≥ λ

F
Δk t1, . . . , tk( 􏼁

F t1, . . . , tk( 􏼁
,

where

F t1, . . . , tk( 􏼁 ≔ gk tk( 􏼁 􏽚
∞

tk

1
gk sk( 􏼁

vk sk( 􏼁

Vk sk( 􏼁
f s1, . . . , sk( 􏼁Δsk,

(21)

and since Vk(∞) �∞ and ck ≥ sk, then we have

K
p

t1, . . . , tk( 􏼁( 􏼁
Δk ≥pK

p− 1
t1, . . . , tk( 􏼁(λ + 1)g

σ
k tk( 􏼁F

Δk t1, . . . , tk( 􏼁

≥p(λ + 1)K
p− 1

t1, . . . , tk( 􏼁 −
g
σ
k tk( 􏼁

gk tk( 􏼁

vk tk( 􏼁

Vk tk( 􏼁
f t1, . . . , tk( 􏼁􏼠 􏼡.

(en,

− K
p

t1, . . . , tk( 􏼁( 􏼁
Δk

≤p(λ + 1)K
p− 1

t1, . . . , tk( 􏼁
g
σ
k tk( 􏼁

gk tk( 􏼁

vk tk( 􏼁

Vk tk( 􏼁
f t1, . . . , tk( 􏼁.

Hence, we have

􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔt≤

p(λ + 1)

μ + 1 − m
􏽚
∞

a
wk tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

f t1, . . . , tk( 􏼁
g
σ
k tk( 􏼁

gk tk( 􏼁
K

σ
t1, . . . , tk( 􏼁( 􏼁

p− 1Δtk.

Using Hölder’s inequality, where p1 � p and
p2 � (p/(p − 1)), we obtain

􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk ≤

p(λ + 1)

μ + 1 − m
􏼠 􏼡

p

􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

w
p

k tk( 􏼁

w
σ
k tk( 􏼁( 􏼁

p− 1f
p

t1, . . . , tk( 􏼁
gσ

k tk( 􏼁

gk tk( 􏼁
􏼠 􏼡

p

Δtk. (22)

Substituting (22) in (17), we have
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􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

K
σ

t1, . . . tk( 􏼁( 􏼁
pΔt1 . . .Δtk

≤
p(λ + 1)

μ + 1 − m
􏼠 􏼡

p

􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

w
p

k tk( 􏼁

w
σ
k tk( 􏼁( 􏼁

p− 1
gσ

k tk( 􏼁

gk tk( 􏼁
􏼠 􏼡

p

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

f
p

t1, . . . , tk( 􏼁Δt1 . . .Δtk− 1
⎛⎝ ⎞⎠Δtk.

□
Corollary 10. If l � 1 and T � R in 1eorem 9, we get

􏽚
∞

a
w(t)

v(t)

V
m

(t)
K

p
(t)dt

≤
p(λ + 1)

μ + 1 − m
􏼠 􏼡

p

􏽚
∞

a

v(t)

V
m

(t)
w(t)f

p
(t)dt,

(23)

where

K(t) � g(t) 􏽚
∞

t

1
g(s)

v(s)

V(s)
f(s)ds.

Remark 11. Assume μ � 0 and θ> λ in Corollary 10; we have
Corollary 5 in [15].

Theorem 12. Let T l be (TS) and a ∈ [0,∞)T l
, for 1≤ l≤ k

with l, k ∈ N. In addition, let wl, fl, gl, and vl be nonnegative
rd-continuous functions on [a,∞)T l

. Furthermore, assume
there exist λ, μ≥ 1 such that

w
Δl

l tl( 􏼁

w
σ
l tl( 􏼁
≥ μ

V
Δl

l tl( 􏼁

Vl tl( 􏼁
,

and

g
Δl

l (t)

g
σ
l (t)
≥ λ

F
Δl t1, . . . , tk( 􏼁

F t1, . . . , tk( 􏼁
,

where for every l,

Vl tl( 􏼁 � 􏽚
tl

a
vl sl( 􏼁Δsl, withVl(∞) �∞, andwl(a) � 0,

and

F t1, . . . , tk( 􏼁 ≔ 􏽚
∞

t1

. . . 􏽚
∞

tk

􏽙

k

l�1
gl sl( 􏼁

vl sl( 􏼁

Vl sl( 􏼁
f s1, . . . sk( 􏼁Δs1 . . .Δsk.

Define the operator

K t1, . . . , tk( 􏼁 ≔ 􏽙

k

l�1

1
gl tl( 􏼁

F t1, . . . , tk( 􏼁.

1en,

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

K
σ

t1, . . . tk( 􏼁( 􏼁
pΔt1 . . .Δtk

≤
p(λ − 1)

μ + 1 − m
􏼠 􏼡

p

􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

w
p

k tk( 􏼁

w
σ
k tk( 􏼁( 􏼁

p− 1
gk tk( 􏼁

gσ
k tk( 􏼁

􏼠 􏼡

p

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

f
p

t1, . . . , tk( 􏼁Δt1, . . . ,Δtk− 1
⎛⎝ ⎞⎠Δtk,

(24)

where p≥ 1 and 0≤m< μ + 1.

Proof. We write the left side of (24) as follows:

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁
ΓkΔt1 . . .Δtk− 1. (25)

Apply (6) to calculate the following k− term:

Γk � 􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk

� u tk( 􏼁z tk( 􏼁􏼂 􏼃
∞
a + 􏽚

∞

a
u tk( 􏼁( 􏼁 − z tk( 􏼁( 􏼁

ΔkΔtk􏼐 ,

(26)

where uΔk (tk) � wσ
k(tk)(vk(tk)/Vm

k (tk)). Using the chain
rule on (TS) (7) and product rule (5), there exist
ck ∈ [sk, σ(sk)] such that
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wk sk( 􏼁V
1− m
k sk( 􏼁􏼐 􏼑

Δk

+(1 − m)w
σ

sk( 􏼁V
− m
k ck( 􏼁V

Δk

k sk( 􏼁.

Assume μ≥ 1 such that

w
Δk

k tk( 􏼁

w
σ
k tk( 􏼁
≥ μ

V
Δk

k tk( 􏼁

Vk tk( 􏼁
.

Since V
Δk

k (sk) � vk(sk)≥ 0, sk ≤ ck ≤ σ(sk), and
0≤m< μ + 1, then

wk sk( 􏼁V
1− m
k sk( 􏼁􏼐 􏼑

Δk ≥ (1 − m + μ)w
σ
kV

− m
k sk( 􏼁vk sk( 􏼁,

implying

u tk( 􏼁

≤
1

1 − m + μ
􏽚

tk

a
wk sk( 􏼁V

1− m
k sk( 􏼁􏼐 􏼑

ΔkΔsk

≤
1

1 − m + μ
wk tk( 􏼁V

1− m
k tk( 􏼁.

We calculate (− (Kp(t1, . . . , tk))Δk , and we obtain

K
p

t1, . . . , tk( 􏼁( 􏼁
Δk � pK

p− 1
t1, . . . , ck( 􏼁

− g
Δ
k

g
σ
k tk( 􏼁g tk( 􏼁

F t1, . . . , tk( 􏼁 +
1

g
σ
k tk( 􏼁

F
Δk t1, . . . , tk( 􏼁􏼢 􏼣.

Assume λ≥ 1 such that

g
Δtk

k tk( 􏼁

gk tk( 􏼁
≥ λ

F
Δk t1, . . . , tk( 􏼁

F t1, . . . , tk( 􏼁
,

where

F t1, . . . , tk( 􏼁 ≔
1

gk tk( 􏼁
􏽚

tk

a
gk sk( 􏼁

vk sk( 􏼁

Vk sk( 􏼁
f s1, . . . , sk( 􏼁Δsk,

(27)

and since ck ≥ tk, then we have

K
p

t1, . . . , tk( 􏼁( 􏼁
Δk ≥pK

p− 1
t1, . . . , tk( 􏼁(1 − λ)

1
g
σ
k tk( 􏼁

F
Δk t1, . . . , tk( 􏼁

≥p(λ − 1)K
p− 1

t1, . . . , tk( 􏼁
1

g
σ
k tk( 􏼁

gk tk( 􏼁
vk tk( 􏼁

Vk tk( 􏼁
f t1, . . . , tk( 􏼁.

Since V(∞) �∞, then

− K
p

t1, . . . , tk( 􏼁( 􏼁
Δk ≤ − p(λ − 1)K

p− 1
t1, . . . , tk( 􏼁

gk tk( 􏼁

g
σ
k tk( 􏼁

vk tk( 􏼁

Vk tk( 􏼁
f t1, . . . , tk( 􏼁

≤p(λ − 1)K
σ(p− 1)

t1, . . . , tk( 􏼁
gk tk( 􏼁

g
σ
k tk( 􏼁

vk tk( 􏼁

Vk tk( 􏼁
f t1, . . . , tk( 􏼁.

Hence, we have
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􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk

≤ [u(∞)z(∞) − u(a)z(a)] +
p(λ − 1)

μ + 1 − m
􏽚
∞

a
wk tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

f t1, . . . , tk( 􏼁
gk tk( 􏼁

g
σ
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
p− 1Δtk

≤
p(λ − 1)

μ + 1 − m
􏽚

∞

a

wk tk( 􏼁
vk tk( 􏼁

V
m
k tk( 􏼁

f t1, . . . , tk( 􏼁
gk tk( 􏼁

g
σ
k tk( 􏼁

K
σ
k t1, . . . , tk( 􏼁( 􏼁

p− 1Δtk.

(en, Hölder’s inequality (8) can be applied with indices p

and p/(p − 1):

􏽚
∞

a
w

σ
k tk( 􏼁

vk tk( 􏼁

V
m
k tk( 􏼁

K
σ

t1, . . . , tk( 􏼁( 􏼁
pΔtk ≤

p(λ − 1)

μ + 1 − m
􏼠 􏼡

p

􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

w
p

k tk( 􏼁

w
σ
k( 􏼁

p− 1f
p

t1, . . . , tk( 􏼁
gk tk( 􏼁

gσ
k tk( 􏼁

􏼠 􏼡

p

Δtk. (28)

Substituting (28) in (26), we have

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

K
σ

t1, . . . tk( 􏼁( 􏼁
pΔt1 . . .Δtk

≤
p(λ − 1)

μ + 1 − m
􏼠 􏼡

p

􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

w
p

k tk( 􏼁

w
σ
k tk( 􏼁( 􏼁

p− 1
gk tk( 􏼁

gσ
k tk( 􏼁

􏼠 􏼡

p

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

f
p

t1, . . . , tk( 􏼁Δt1 . . .Δtk− 1
⎛⎝ ⎞⎠Δtk.

□
Corollary 13. If l � 1 and T � R in 1eorem 12, we obtain

􏽚
∞

a
w(t)

v(t)

V
m

(t)
K

p
(t)dt

≤
p(λ − 1)

μ + 1 − m
􏼠 􏼡

p

􏽚
∞

a

v(t)

V
m

(t)
w(t)f

p
(t)dt,

(29)

where

K(t) �
1

g(s)
􏽚

t

a
g(t)

v(s)

V(s)
f(s)ds.

Example 14. Choose μ � m, λ � 2, and p � 1 in(eorem 12.
Hence, we get

􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

K
σ

t1, . . . tk( 􏼁Δt1 . . .Δtk

≤ 􏽚
∞

a

vk tk( 􏼁

V
m
k tk( 􏼁

gk tk( 􏼁

g
σ
k tk( 􏼁

wk tk( 􏼁 􏽚
∞

a
. . . 􏽚
∞

a
􏽙

k− 1

l�1
w

σ
l tl( 􏼁

vl tl( 􏼁

V
m
l tl( 􏼁

f t1, . . . , tk( 􏼁Δt1 . . .Δtk− 1
⎛⎝ ⎞⎠Δtk.

(30)

4. Conclusions

(TSs) calculus is used in this paper to prove special cases of
(TS) Copson–Steklov-type inequalities with several var-
iables. (e obtained inequalities would be interesting to

apply in different fields of mathematics (functional spaces,
partial differential equations, mathematical modeling).
Furthermore, the inequalities can be discussed in calculus,
discrete calculus, and quantum calculus. As a perspective,
we propose to study these results for other kinds of
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operators and solve the singularity that appeared in
(eorem 12 with case m> μ + 1.
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In this work, some novel approximate analytical and numerical solutions to the forced damped driven nonlinear (FDDN)
pendulum equation and some relation equations of motion on the pivot vertically for arbitrary angles are obtained.�e analytical
approximation is derived in terms of the Jacobi elliptic functions with arbitrary elliptic modulus. For the numerical approxi-
mations, the Chebyshev collocation numerical method is introduced for analyzing the equation of motion. Moreover, the
analytical approximation and numerical approximation using the Chebyshev collocation numerical method and the MATH-
EMATICA command Fit are compared with the Runge–Kutta (RK) numerical solution. Also, the maximum distance error to all
obtained approximations is estimated with respect to the RK numerical solution. �e obtained results help many authors to
understand the mechanism of many phenomena related to the plasma physics, classical mechanics, quantum mechanics, optical
�ber, and electronic circuits.

1. Introduction

�e pendulum oscillator and some related equation have
been used as a physical model to solve several natural
problems related to bifurcations, oscillations, and chaos such
as nonlinear plasma oscillations [1–9], Du�ng oscillators
[10–14], and Helmholtz oscillations [12], and many other
applications can be found in [15–24]. �ere are few attempts
for analyzing the equation of motion of the nonlinear
damped pendulum taking the friction forces into account
[25]. �e approximate solution was obtained in form of the
Jacobi elliptic functions. However, there are many others
forces in addition to the friction force that a�ect the motion
of the pendulum such as perturbed and periodic forces.

�ese forces appear in di�erent dynamic systems and cannot
be neglected due to their great impact on the behavior of the
oscillator. For instance, the unforced damped driven non-
linear pendulum equation/or the unforced damped para-
metric driven pendulum equation

φ
.. + 2βφ

. + ϕ(t)sin φ � 0, (1)

has been derived in detail in [26], where ϕ(t) �
ω2
0 − εω2 cos(ct), ω2

0 � g/l, β � μ/2ml, ω1 � c/ml, ω2 � c2/l,
ε≪ 1 is a small parameter, and φ ≡ φ(t) denotes the angular
displacement. In (1), ω0 indicates the eigenfrequency of the
system and β represents the damping coe�cient. Here, the
pendulum is modeled by a sphere of mass m, hanging at the
end of a massless wire with length l and �xed to a supporting
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point “O,” swinging to and from in a vertical plane under the
gravity acceleration “g.”. For (β,ω2, F) � (0, 0, 0), the un-
forced undamped nonlinear pendulum oscillation/the un-
forced undamped Duffing oscillator is recovered [5]. (1) has
only been analyzed numerically via the midpoint scheme,
and based on our comprehensive survey, we did not find any
attempt to find a semi-analytical solution to this equation.
Motivated by the potential applications of the nonlinear
oscillators, the forced damped driven nonlinear (FDDN)
pendulum equation or sometimes called the forced damped
parametric driven pendulum equation will be studied:

φ
..

+ 2βφ
.

+ ϕ(t)sin φ � F cos(Ωt). (2)

Also, some analytical approximations to (2) and some
related equations will be derived for the first time and will be
compared with the Runge–Kutta (RK) numerical solution.
Moreover, the Chebyshev collocation numerical method
[27–29] is introduced for analyzing both (1) and (2). Fur-
thermore, the MATHEMATICA command Fit is devoted
for analyzing the equation of motion. We graphically make a
comparison between the analytical and numerical approx-
imations, and the maximum distance error in the whole time
domain is estimated.

2. Analytical Approximations to the FDDN
Pendulum Equation

Let us now write the evolution equation in the form of the
initial value problem (i.v.p.):

cφ
..

+ 2βφ
.

+ ϕ(t)sin φ � F cos(Ωt),

φ(0) � φ0 andφ′(0) � φ
.

0.

0≤ t≤T,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where φ(t � 0) � φ0 indicates the oscillation amplitude.
Using Chebyshev polynomial approximation, we can

approximate sin φ as

sin φ ≈ φ − λφ3 for − M≤φ≤M, (4)

where

λ ≡ λM �
1
6

+
M

5569
−

M
2

112
+

M
3

1883
. (5)

*e error EM of this approximationmay be estimated via
the following formula:

EM �
3
298

M
3

−
5
378

M
2

+
1
203

M −
1

2837
for

2π
180
≤M≤

π
2

.

(6)

For example, at the angle M � 30°, the exact error equals
Eex � 0.0000608542 while the error according to formula
(6) equals EM � 0.0000455313 and the difference between
them is given by E � Eex − EM � 0.0000153229. *e re-
spective approximation for −30° ≤φ≤ 30° reads as

sin φ ≈ φ − 0.164389φ3 ≈ φ −
9
55
φ3

. (7)

Also, for M � 75°, we obtain λ � 2/13 which will be used
as the default value in the present study. Consequently, i.v.p.
(3) can be reduced to the following variable coefficient
forced damped Duffing i.v.p.

cQ ≡ φ
..

+ 2βφ
.

+ ϕ(t) φ −
2
13
φ3

􏼒 􏼓 − F cos(Ωt) � 0,

φ(0) � φ0 andφ′(0) � φ
.

0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Suppose the solution of this problem is given by

cφ � θ + c1 cos(Ωt) + c2 sin(Ωt),

θ(0) ≡ θ0 � φ0 − c1 andφ′(0) ≡ θ1 � φ
.

0 − c2Ω.
􏼨 (9)

*e function θ ≡ θ(t) is a solution to the following ode:

θ
..

+ 2βθ
.

+ ϕ(t) θ −
2
13
θ3􏼒 􏼓 � 0. (10)

Accordingly, we get

Q � −
1
26

cos(Ωt)A1 −
1
26

sin(Ωt)A2

−
1
26

12θ2A3 + 6θA4 + A5􏼐 􏼑ϕ(t),

(11)

where the coefficients A1 − A5 are given in Appendix 1.
Now, for small c, we can define ϕ(t) � ω2

0 − εω2
cos(ct) ≈ ω2

0 − εω2 � κ which leads to

Q ≈ −
1
26

cos(Ωt)B1 −
1
26

sin(Ωt)B2

−
κ
26

12θ2A3 + 6θA4 + A5􏼐 􏼑,

(12)

where the coefficients A1 − A3 have the same values given in
Appendix 1 while the values of coefficients of B1 and B2 are
given in Appendix 2.

*e constants c1 and c2 could be determined from the
following system:

c3 c
3
1 + 3c

2
2c1 − 26c1􏼐 􏼑κ − 52c2βΩ + 26c1Ω

2
+ 26F � 0,

3c
3
2 + 3c

2
1c2 − 26c2􏼐 􏼑κ + 52c1βΩ + 26c2Ω

2
� 0.

⎧⎪⎨

⎪⎩

(13)

Eliminating c2 from system (13), we have the following
cubic equation:

− 26c1
3F

2κ2 − 3F
2κΩ2 − 416β4Ω4

−104β2κ2Ω2 + 208β2κΩ4 − 104β2Ω6
⎛⎝ ⎞⎠ + 9F

2κ2c31

−624Fβ2Ω2c21 + 78F
3

− 2704Fβ2Ω2􏼐 􏼑κ + 2704Fβ2Ω4 � 0.

(14)

Also, by eliminating c1 from system (13), we get

10816β4Ω4 + 2704β2κ2Ω2 − 5408β2κΩ4 + 2704β2Ω6􏼐 􏼑c2

+9F
2κ2c32 + 312FβκΩ3 − 312Fβκ2Ω􏼐 􏼑c

2
2 − 5408Fβ3Ω3 � 0.

(15)
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We choose the least in magnitude pair of real roots
(c1, c2) in (14) and (15). Accordingly, the final form of the
analytical approximation to i.v.p. (3) is given by

φapprox(t) � θ(t) + c1 cos(tΩ) + c2 sin(tΩ), (16)

with

θ(t) �
e

− βt

1 + b2sn(f(t)
��
ω

√
|m)

2

b1dn(f(t)
��
ω

√
|m)sn(f(t)

��
ω

√
|m)

+θ0cn(f(t)
��
ω

√
|m)

⎛⎝ ⎞⎠,

f(t) �
2

��������������

−330β2 − 329κ/κ
􏽱

%
���
329

√
c

E
tc

2
|

658εω2

330β2 − 329κ
􏼠 􏼡,

(17)

where

ω � −
p

2m − 1
,

m �
1
2

1 −
p

���������������

p + qφ2
0􏼐 􏼑

2
+ 2θ21q

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

b1 �
δθ1

������
1 − 2m

√

��
p

√ ,

b2 �
p + qφ2

0 − ω
2ω

,

p � κ, q � −
2
13

κ.

(18)

3. ChebyshevCollocationNumericalSchemefor
Analyzing FDDN Pendulum Equation

Now, the Chebyshev interpolation collocation method is
introduced for analyzing i.v.p. (3) on the time interval [0, T].
To do that, we first solve numerically the ode. Let 􏽢φ be the RK
numerical solution to the i.v.p. described by (3). *en, we
assume that the solution is given in terms of Chebyshev
polynomials:

φ(t) � 􏽘
n

k�0
ckTk

2t

T
− 1􏼒 􏼓, (19)

where Tk(t) stands for the Chebyshev polynomial of the first
kind and n denotes the highest degree of the Chebyshev
polynomials involved in the linear combination.

*e collocation points tk are defined as

tk �
1
2

T 1 + cos
4k + 1
2(n + 1)

π􏼠 􏼡􏼢 􏼣 , (20)

for k � 1, 2, 3, . . . , n.

*e additional equations are required for determining
the values of ck. *us, the values of the coefficients ck are
found from the following linear system:

φ(0) � φ0,

φ′(0) � φ
.

0,

φ′′(0) � 􏽢φ′′(0).

φ(T) � 􏽢φ(T),

φ′(T) � 􏽢φ′(T),

φ′′(T) � 􏽢φ′′(T).

φ tk( 􏼁 � 􏽢φ tk( 􏼁 for k � 5, 6, . . . , n.

(21)

In general, increasing the value of n will not guarantee
good approximations. *us, we must choose some optimal
value for n to our approximations. To this end, we define a
range for possible n values, say

7≤ nmin ≤ n≤ nmax. (22)

We then find the optimal value for n within this range.
Let φn(t) be the solution using formula (19) and let φRK(t) be
the RK numerical solution to i.v.p. (3) on the interval
0≤ t≤T. *e following maximum distance error with re-
spect to the RK numerical solution is defined:

ET,n � max0≤t≤T φn(t) − φRK(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (23)

*e optimal value for n on the range nmin ≤ n≤ nmax will
then be that for which the error ET,n is as small as possible. o
verifies the validity of this claim. Let us use the following
data: (β, c,ω0,ω2, ε,Ω, F,φ0,φ

.

0) � (0.2, 0.2, 1, 1, 0.2, 1, 0.1,

0, 0), as an example in i.v.p. (3). By solving this problem via
both RK and Chebyshev collocation numerical methods in
the interval 0≤ t≤ 50 and estimating the error ET,n based on
relation (23) for 7≤ n≤ 60, we finally get the error ET,n

associated with each number n as shown in Table 1. *e
results in Table 1 illustrate that the optimal value of n based
on the mention data for (β, c,ω0, ω2, ε,Ω, F,φ0,φ

.

0) equals
n � 45 and the error value corresponding to n � 45 equals
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E50,45 � 0.000964248. Also, the optimal polynomial
according to the mentioned data reads as

φ45(t) � 0.0511403t
2

− 0.0177057t
3

+ 0.0340205t
4

− 0.0823837t
5

+ 0.109124t
6

− 0.0998239t
7

+ 0.0677353t
8

− 0.0353909t
9

+ 0.0146451t
10

− 0.00490664t
11

+ 0.00135445t
12

− 0.000312451t
13

+ 0.0000609427t
14

− 0.0000101493t
15

+ 1.45518 × 10− 6
t
16

− 1.80894 × 10− 7
t
17

+ 1.96141 × 10− 8
t
18

− 1.86462 × 10− 9
t
19

+ 1.561 × 10− 10
t
20

− 1.15515 × 10− 11
t
21

+ 7.57989 × 10− 13
t
22

− 4.42193 × 10− 14
t
23

+ 2.29822 × 10− 15
t
24

− 1.06583 × 10− 16
t
25

+ 4.41541 × 10− 18
t
26

− 1.63491 × 10− 19
t
27

+ 5.41107 × 10− 21
t
28

− 1.6 × 10− 22
t
29

+ 4.22221 × 10− 24
t
30

− 9.92634 × 10− 26
t
31

+ 2.07398 × 10− 27
t
32

− 3.83854 × 10− 29
t
33

+ 6.26651 × 10− 31
t
34

− 8.97497 × 10− 33
t
35

+ 1.11996 × 10− 34
t
36

− 1.2071 × 10− 36
t
37

+ 1.1112 × 10− 38
t
38

− 8.60994 × 10− 41
t
39

+ 5.50647 × 10− 43
t
40

− 2.82885 × 10− 45
t
41

+ 1.12172 × 10− 47
t
42

− 3.22145 × 10− 50
t
43

+ 5.96106 × 10− 53
t
44

− 5.33464 × 10− 56
t
45

.

(24)

Polynomial (24) allows us to estimate the cuts with the
horizontal axis as well as the maxima and minima to the
crest and the trough, respectively, as shown in Figure 1 and

Table 2. Using the MATHEMATICA command Fit gives the
following solution φMath(t) ≡ φMathematica(t) for
(β, c,ω0,ω2, ε,Ω, F,φ0,φ

.

0) � (0.2, 0.2, 1, 1, 0.2, 1, 0.1, 0, 0):

φMath(t) � e
− t/5 t

6

365
−
2t

5

23
+
125t

4

94
−
229t

3

32
−
21045t

2

619
+
33029t

74
−
63445
76

􏼠 􏼡sin(t)

+
e

− t/5

787321464

2193096t
6

− 17115684t
5

− 426465793t
4

+ 10891280252t
3

−83720431296t
2

+ 147163503646t + 393199198728
⎛⎜⎝ ⎞⎟⎠cos(t)

+
e

− t/5

1544400

−3575t
7

+ 93600t
6

− 1480050t
5

+ 12725856t
4

−38075400t
3

− 118006200t
2

+ 1213821180t + 294883875
⎛⎜⎝ ⎞⎟⎠ −

11736
17

,

(25)

with error E � 0.000213725. Figure 2 demonstrates the
comparison between the approximations of i.v.p. (3)
using RK numerical solution with MATHEMATICA
command Fit (here, polynomial (25)) and Chebyshev
collocation numerical solution (24). It is noted that all
used techniques give highly accurate approximations
with low errors as compared to the RK numerical
solutions.

*e semi-analytical solution (16) to i.v.p. (3) could be
recovered as follows.

Case (1). For (β,ω2, F) � (0, 0, 0.1), the different ap-
proximations to the forced undamped Duffing os-
cillator with constant coefficients are introduced in
Figure 3 with (c,ω0, ε,Ω,φ0,φ

.

0) � (0.1, 1, 0.1, 2, 0, 0).
*e comparison between the RK method and the

analytical approximation (15) is presented in
Figure 3(a). *e approximate solutions using the
MATHEMATICA command Fit and RK method are
displayed in Figure 3(b). In Figure 3(c), both RK and
Chebyshev collocation numerical approximations
are presented. Also, the maximum error for the
analytical approximation (15) and MATHEMATICA
command Fit and Chebyshev collocation numerical
solutions as compared to the RK numerical ap-
proximation is estimated based on the following
relation:
E∞|Type−solution � max0≤t≤30 φType−solution − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (26)

Accordingly, the maximum error of the three ap-
proximations for the present case is estimated as
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Table 1

N ET;n
7 12:7318
8 8:18709
9 5:34902
10 3:73001
11 2:47806
12 5:99151
13 15:6472
14 19:1789
15 11:4247
16 12:9725
17 44:5793
N ET;n
18 56:0277
19 22:7408
20 45:8666
21 86:0102
22 41:4478
23 54:48:00
24 81:8262
25 9:2908
26 50:9774
27 35:2609
28 7:88678
N ET;n
29 24:0096
30 11:8633
31 11:9267
32 13:0699
33 16:4155
34 160:44:00
35 1021:51:00
36 455:30:00
37 293:27:00
38 62:37:00
39 594:34:00
N ET;n
40 1011:59:00
41 1016:07:00
42 193:44:00
43 978:08:00
44 154:12:00
45 779:04:00
46 584:21:00
47 655:31:00
48 1042:34:00
49 04:05:00
50 1060:25:00
N ET;n
51 135:10:00
52 626:08:00
53 401:51:00
54 666:50:00
55 999:51:00
56 893:24:00
57 622:23:00
58 199:58:00
59 7:1974
60 30:729
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RK4
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Out[ ]=

Figure 1: �e Chebyshev collocation and RK numerical approximations to i.v.p. (3) for (β, c,ω0,ω2, ε,Ω,φ0, _φ0) �
(0.2, 0.2, 1, 1, 0.2, 1, 0.1, 0, 0) and with n � 45 is plotted in the (φ, t) plane and the cuts with the horizontal axis as well as the maxima and
minima to the crest and the trough is determined.

Table 2

Zeros of the polynomial solution ’45(t) Zeros of the derivative ’045(t)
K Tk k tk k tk k tk
1 3:1993 11 34:9609 1 1:99978 11 26:6741
2 6:39594 12 38:0328 2 4:93036 12 30:43:00
3 9:46288 13 41:1493 3 7:98259 13 30:43:00
4 12:4583 14 43:9479 4 10:9844 14 33:3364
5 15:4562 15 46:912 5 13:9641 15 36:4941
6 18:5134 16 49:9492 6 13:9645 16 36:4941
7 21:6812 7 16:98 17 39:5245
8 24:8139 8 20:0903 18 42:4811
9 28:3547 9 23:3291 19 45:4226
10 31:7165 10 26:674 20 48:4281
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(a)

RK4
Chebyshev
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(b)

Figure 2: �e comparison between the approximations of i.v.p. (3) using RK numerical solution with MATHEMATICA command Fit
(here, polynomial (25)) and Chebyshev collocation numerical solution (24) for (β, c,ω0,ω2, ε,Ω,φ0, _φ0) � (0.2, 0.2, 1, 1, 0.2, 1, 0.1, 0, 0) and
n � 45.
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E|semi−analy � 0.000214826,

E|Mathematica � 0.00856153,

En�47|Chebyshev � 0.0000389093.

(27)

Case (2). For (β,ω2, F) � (0, 1, 0.1), the comparison
between the analytical approximation (16) and the
numerical approximations using the RK, MATHE-
MATICA command Fit, and Chebyshev collocation
numerical methods to the forced undamped Du�ng
equation with variable coe�cients is considered as
shown in Figure 4 with (c,ω0, ε,Ω,φ0,φ

.
0) �

(0.1, 1, 0.1, 2, 0, 0). �e maximum error of the three
approximations to the present case is calculated as

E|semi−analy � 0.00344896,

E|Mathematica � 0.0100608,

En�47|Chebyshev � 0.0000237867.

(28)

Case (3). For (β,ω2, F) � (0.1, 1, 0), the unforced
damped Du�ng equation with variable coe�cients is
recovered and its semi-analytical solution (16) is
compared with the numerical approximations using
RK, MATHEMATICA command Fit, and Chebyshev
collocation numerical methods as demonstrated in
Figure 5 with (c,ω0, ε,Ω,φ0,φ

.
0) � (0.1, 1, 0.1, 2, 0, 0.1).

In addition, the maximum error to the three approx-
imations as compared to RK numerical approximation
is estimated as

E|semi−analy � 0.000447172,

E|Mathematica � 0.00133459,

En�47|Chebyshev � 2.05447 × 10− 6.

(29)

�eMATHEMATICA code for the RK and Chebyshev
collocation numerical approximations with the maxi-
mum error is given in Appendix 3.
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(b)
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(c)

Figure 3: �e comparison between the semi-analytical solution (analytical approximation) (16) and the numerical approximations using
the Chebyshev collocation method and RK numerical method as well as the MATHEMATICA command Fit to i.v.p. (3) for case (1):
(β,ω2, F) � (0, 0, 0.1).
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(c)

Figure 4: �e comparison between the analytical approximation (16) and the numerical approximations using the Chebyshev collocation
method and RK numerical method as well as the MATHEMATICA command Fit to i.v.p. (3) for case (2):(β,ω2, F) � (0, 1, 0.1).
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(b)

Figure 5: Continued.
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(c)

Figure 5: �e comparison between the analytical approximation (16) and the numerical approximations using the Chebyshev collocation
method and RK numerical method as well as the MATHEMATICA command Fit to i.v.p. (3) for case (3):(β,ω2, F) � (0.1, 1, 0).
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(b)

RK4
Chebyshev

-0.05

0.00

0.05

0.10

φ

(β,ω0,ω2,Ω,γ,ε,φ0,φ0,F)=(0.1,1,1,2,0.1,0.1,0,0.1,0.1)

5 10 15 20 25 300
t

Out[ ]=

(c)

Figure 6: �e comparison between the analytical approximation (16) and the numerical approximations using the Chebyshev collocation
method and RK numerical method as well as the MATHEMATICA command Fit to i.v.p. (3) for case (4):(β,ω2, F) � (0.1, 1, 0.1).
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Case (4). For (β,ω2, F) � (0.1, 1, 0.1), the general
analytical approximation (16) to the forced damped
parametric driven pendulum i.v.p. (3) is compared
with the RK, MATHEMATICA command Fit, and
Chebyshev collocation numerical solutions as elu-
cidated in Figure 6. �e in¤uence of β on the am-
plitude of the semi-analytical solution (16) is
investigated as shown in Figure 7. It is noted that the
amplitude of the analytical approximation (15) de-
creases with the increase of β. Also, the maximum
error according to relation (23) to the analytical
approximation (16) and MATHEMATICA com-
mand Fit, and Chebyshev collocation numerical
solutions as compared to the RK numerical solution
is estimated as follows:

E|semi−analy � 0.00326255,

E|Mathematica � 0.0128206,

En�47|Chebyshev � 0.000155082.

(30)

In all mentioned cases, it is observed that analytical
approximation (16) to i.v.p. (3) and its related equations
(here we mean the four mentioned cases) give highly ac-
curate results as compared to the numerical approximations.
It is observed that analytical approximation (16) is better
than the MATHEMATICA approximation but less than the
Chebyshev collocation numerical solution for all mentioned
cases. However, in the fourth case, i.e., the forced damped
parametric driven pendulum i.v.p. (3), the MATHEMA-
TICA approximation is better than the analytical approxi-
mation (16). In general, all obtained approximations are
characterized by their high accuracy. However, semi-ana-
lytical solution (16) is more stable than the Chebyshev
collocation numerical solution against all relevant physical
variables.

4. Conclusions

In this work, some e�ective and accurate analytical and
numerical approximations to the forced damped parametric
driven pendulum equation have been derived and investi-
gated.�ementioned equation ofmotion has been reduced to
the forced damped Du�ng equation with variable coe�cients
in order to �nd its analytical solution. In terms of the Jacobi
elliptic functions, the analytical approximation has been
derived. For the numerical approximations, the Chebyshev
collocation method has been used for analyzing the equation
of motion and some related equations. It was noted that the
analytical approximation could recover some special cases to
the nonlinear pendulum oscillators. For instance, for
undamping case, i.e., for β � 0, the solution to the forced
undamped Du�ng equation with variable coe�cients has
been recovered and examined. Also, for (β,ω2) � (0, 0), the
solution to the forced undamped Du�ng equation with
constant coe�cients has been recovered and discussed. �e
obtained approximations were compared with the RK nu-
merical approximation and the MATHEMATICA command
Fit approximation. Also, the maximum distance error has
been estimated for all approximations as compared to the RK
numerical approximation. It was found that the analytical
approximation gives good results with high accuracy as
compared to the numerical approximations. Furthermore, it
was observed that the analytical approximation is better than
the MATHEMATICA approximation but less than the
Chebyshev collocation numerical solution for all mentioned
cases except the case of the forced damped parametric driven
pendulum i.v.p. (3), the MATHEMATICA approximation is
slowly better than the analytical approximation (16). �e
methods used in this study could be extended to solve many
nonlinear equations that control the di�erent cases of pen-
dulum oscillations [30–33]. In addition, the obtained results/
solutions are useful for investigating several physical

-0.05

0.00

0.05

φ

β=0.1
β=0.2

5 10 15 20 25 300
t

Figure 7: �e analytical approximation (16) to i.v.p. (3) plotted in the (φ, t)plane for di�erent values to the coe�cient of the damping term
β.
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problems related to the oscillations in plasma physics, fluid
mechanics, field theory, engineering science, solid state
physics, and quantum mechanics.

Appendices

Appendix A

*e coefficients A1 − A5 of equation (11):

A1 �
ϕ(t) 3c

3
1 + 3c

2
2c1 − 26c1􏼐 􏼑

−52c2βΩ + 26c1Ω
2

+ 26F

⎡⎢⎣ ⎤⎥⎦,

A2 �
ϕ(t) 3c

3
2 + 3c

2
1c2 − 26c2􏼐 􏼑

+ 52c1βΩ + 26c2Ω
2

􏼐 􏼑

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

A3 � c2 sin(Ωt) + c1 cos(Ωt)( 􏼁,

A4 �
c
2
1 − c

2
2􏼐 􏼑cos(2Ωt)

+c
2
1 + c

2
2 + 2c2c1 sin(2Ωt)

⎡⎢⎣ ⎤⎥⎦,

A5 � c2 3c
2
1 − c

2
2􏼐 􏼑sin(3Ωt) + c1 c

2
1 − 3c

2
2􏼐 􏼑cos(3Ωt)􏽨 􏽩.

(A.1)

Appendix B

*e coefficients B1 and B2 of equation (12):

B1 �
κ 3c

3
1 + 3c

2
2c1 − 26c1􏼐 􏼑

−52c2βΩ + 26c1Ω
2

+ 26F
⎡⎣ ⎤⎦,

B2 �
κ 3c

3
2 + 3c

2
1c2 − 26c2􏼐 􏼑

+ 52c1βΩ + 26c2Ω
2

􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦.

(B.1)

Appendix C

MATHEMATICA Code for Chebyshev Collocation Numer-
ical Method to Figure 5(c). Note that this is general code
which can be used and applied for analyzing many oscil-
lators related to the present evolution equation.

Clear[a, b, m, h, x, \ [CurlyPhi], n, \ [Chi]]; \{a� 0,
b� 30, m� 45\};

\ [Beta]� 0.1; [CapitalOmega]� 2; \ [Omega]0�1; \

[Omega]2�1; \ \ [CurlyEpsilon]� 0.1; \ [Gamma]� 0.1;
x0� 0; x1� 0.1;

\ [Phi][t_]:� \ [Omega]0̂2 - \ [CurlyEpsilon] \ [Omega]
2 Cos[ \ [Gamma] \

t]; F� 0;
rk�NDSolve[
y”[t] + 2 \ [Beta] y’[t] + \ [Phi][t] Sin[y[t]]� �

F Cos[ \ [CapitalOmega] t] && y[a]� � x0 && y’[a]� �

x1,
y, \{t, 0, 100\}][[1, 1, 2]];
Plot[Evaluate[\{rk[t]\}], \{t, a, b - 10\}, PlotRange - >rbin

All.
PlotStyle - >rbin \{\{Black, *in\}\}]
h � (b - a)/m;
x[t_]:� Sum[
Subscript[c, k] ChebyshevT[k, (a + b - 2 t)/(a - b)], \{k, 0,

m\}];

R[t_]:� x”[t] + 2 \ [Beta] x’[t] + \ [Phi][t]∗Sin[x[t]] -
F Cos[ \ [CapitalOmega] t];
\ [Xi][j_]:�1/2 (a + b+ (-a + (b) Cos[( \ [Pi] + 4 j \ [Pi])/

(2 + 2m)])
solc� Flatten[Solve[sys0]];
x[t_]:� Sum[
Subscript[c, k] ChebyshevT[k, (a + b - 2 t)/(a - b)]//. solc,

\{k.
0, m\}];
\ [Chi][m_][t_]:�
Sum[Subscript[c, k] ChebyshevT[k, (a + b - 2 t)/(a - b)]//

.
solc, \{k, 0, m\}];
er[m_]:�Max[Table[Abs[rk[t] - \ [Chi][m][t]], \{t, a, b,

0.1\}]];
error[m_]:� Module[\{ \ [Xi], \ [Chi], R, sys, solc, err\},
\{ \ [Xi][j_]:�
1/2 (a + b+ (-a + (b) Cos[( \ [Pi] + 4 j \ [Pi])/(2 + 2m)]); \

[Chi][tt_]:�
Sum[Subscript[c, k] ChebyshevT[k, (a + b - 2 tt)/(a - b)],

\{k, 0,
m\}]; R[t_]:� \ [Chi]”[tt] +
2 \ [Beta] \ [Chi]’[tt] + \ [Phi][tt]∗Sin[ \ [Chi][tt]] -
F Cos[ \ [CapitalOmega] tt];
sys�

Flatten[Join[
Table[rk[ \ [Xi][j]]� � \ [Chi][ \ [Xi][j]], \{j, 5,
m\}], \{\{ \ [Chi][a] - x0� � 0, \ [Chi]’[a] - x1� � 0, \

[Chi][b] - rk[b]� � 0, \ [Chi]’[b] - rk’[b]� �

0, \ [Chi]”[b] - rk”[b]� � 0\}\}]];
solc� Flatten[NSolve[sys]]; \ [Chi][tt_]:�
Sum[Subscript[c, k] ChebyshevT[k, (a + b - 2 t)/(a - b)],

\{k, 0,
m\}]//. solc;
err�Maximize[\{Abs[rk[t] -[Chi][t]], 0� t� b\}, t][[1]];
\};
\{err, \ [Chi][t]\}
];
nmin � 7; nmax � 60;
opt� Sort[Table[\{error[jj][[1]], jj\}, \{jj, nmin, nmax\}]]

[[1]];
n� opt[[2]];
OPtimalnValue� � n
errx� error[n];
Error� � errx[[1]]
poly� errx[[2]];
Cheb�Plot[Evaluate[\{rk[t], poly\}], \{t, a, b\}, Plo-

tRange - > All.
PlotStyle - > \{\{Dashing[0.05],*ick, Black\}, \{Dotted,

*ick, Blue\}\},
PlotLegends - > Placed[\{“RK4″, “Chebyshev”\}, Frame

- > True].
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�is article deals with the upper bound of fourth-order Hankel and Toeplitz determinants for the convex functions which are
de­ned by using the sine function. �e main tools in this study are the coe�cient inequalities for the class P of functions with
positive real parts. Also, the investigation of the upper bound of the fourth-order Hankel determinant for 3-fold symmetric convex
functions associated with the sine function is included.

1. Introduction

Let the family of all functions f be denoted by A which are
analytic in an open unit discD � z ∈ C: |z|< 1{ } with Taylor
series expansion:

f(z) � z +∑
∞

n�2
anz

n, (z ∈ D), (1)

and S represent a family of functions f ∈ A which are
univalent in D. Let S∗, C, and Kg denote the families of
starlike, convex, and close-to-convex functions, respectively,
and they are de­ned as

S∗ � f ∈ S: R
zf′(z)
f(z)( )> 0, (z ∈ D){ },

C � f ∈ S: R 1 +
zf″(z)
f′(z)

( )> 0, (z ∈ D){ },

Kg � f ∈ S: R
zf′(z)
g(z)( )> 0, forg ∈ S∗, (z ∈ D){ }.

(2)

Let P denote the family of all analytic functions p of the
form

p(z) � 1 +∑
∞

n�1
cnz

n, z ∈ D, (3)

with the positive real parts inD. As the nth coe�cient for the
functions belonging to the family is bounded by n, this
bound helps in the study of geometric properties of func-
tions f ∈ S. Speci­cally, the second coe�cient a2 helps in
­nding the distortion and growth properties of a normalized
univalent function. Likewise, the problems involving power
series with integral coe�cients and investigating the sin-
gularities are successfully handled by using Hankel deter-
minants. Pommerenke [1, 2] introduced the idea of Hankel
determinants, and he de­ned those for univalent functions
f ∈ S of form (7) as follows:

Hq,n(f) �

an an+1 . . . an+q−1

an+1 an+2 . . . an+q

: : . . . :

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4)
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In the theory of analytic functions, finding the upper
bound of |Hq,n(f)| is one of the most studied problems.
Several researchers found the above-mentioned bound for
different subfamilies of univalent functions for fixed values
of q and n. A few remarkable contributions in this regard are
included here for reference. For the subfamilies S∗, C, and
Kz � R (the class of functions with bounded turnings) of the
set S, the sharp bounds of |H(2,2)(f)| were investigated by
Janteng et al. [3, 4]. .ey proved the bounds as follows:

H(2,2)(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

1 forf ∈ S
∗
,

1
8
forf ∈ C,

4
9
forf ∈ R.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

.e accurate estimate of |H(2,2)(f)| was obtained by
Krishna et al. [5] for the family of Bazilevic functions. For
subfamilies of S, more studies regarding H(2,2)(f) can be
seen in [6–12]. According to .omas’ conjecture [13], if
f ∈ S, then |H(q,2)(f)|≤ 1, but it was shown by Li and
Srivastava in [14] that this conjecture is not true for n≥ 4.
Also, Raducanu and Zaprawa [15] showed that it is false for
n � 2. Rather, they showed that max |H(2,2)(f)|:􏽮

f ∈ S}≥ 1.175. As compared to |H(2,2)(f)|, estimation of
|H(3,1)(f)| is much more difficult. Babalola [16] published
the first paper on H(3,1)(f) in 2010 in which he obtained the
upper bound of |H(3,1)(f)| for subfamilies of S∗, C, and R.
After that, for different subfamilies of analytic and univalent
functions, few other authors [17–25] also published their
work regarding |H(3,1)(f)|. Zaprawa [26] improved the
results of Babalola [16] recently in 2017, by showing

H(3,1)(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

1 forf ∈ S
∗
,

49
540

forf ∈ C,

41
60

forf ∈ R.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

He claimed that these bounds are not sharp. Further-
more, he considered the subfamilies of S∗, C, and R for
sharpness, having functions with m-fold symmetry, and
obtained the sharp bounds. Arif et al. [27–30] made a re-
markable contribution in studying the fourth- and fifth-
order Hankel determinants H(4,1)(f) and H(5,1)(f) for
certain subfamilies of univalent functions. Mashwani et al.
[31] have studied the fourth-order Hankel determinant for
starlike functions related to sigmoid functions, whereas Kaur
et al. [32] studied the same problem for a subclass of
bounded turning functions. Wang et al. [33] studied the
problem for bounded turning functions related to the
lemniscate of Bernoulli. Recently, Zhang and Tang [34] have
studied the fourth-order Hankel determinant for the class of
starlike functions related to sine functions. Motivated by the

above-mentioned work, we intend to add some contribu-
tions to the fourth-order Hankel determinant for the class of
convex functions associated with sine functions. Recently,
the following class Cs of convex functions was introduced,
which is associated with the sine function:

Cs � f ∈ A:
zf′(z)( 􏼁′

f′(z)
≺1 + sin z (z ∈ D)􏼨 􏼩, (7)

where ≺ is a subordination symbol and it also implies that
the region defined by (zf′(D))′/f′(D) lies in the eight-
shaped region in the right-half plane. For different sub-
families of univalent functions, growth of Hq,n(f) has been
studied for fixed values of q and n. Particularly, we have

H4,1(f) �

a1 a2 a3 a4

a2 a3 a4 a5

a3 a4 a5 a6

a4 a5 a6 a7

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(n � 1, q � 4). (8)

Also, .omas and Halim defined the symmetric Toeplitz
determinant Tq(n) as follows:

Tq,n(f) �

an an+1 . . . an+q−1

an+1 an . . . an+q

: : . . . :

an+q−1 an+q . . . an

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(n≥ 1, q≥ 1). (9)

.e Toeplitz determinants are closely related to Hankel
determinants. As Hankel matrices consist of constant entries
along the reverse diagonal, the Toeplitz matrices consist of
constant entries along the diagonal.

As a special case, when n � 1 and q � 4, we have

T4,2(f) �

a1 a2 a3 a4

a2 a1 a4 a3

a3 a4 a1 a2

a4 a3 a2 a1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (10)

In this paper, we intend to find the upper bound of
|H4,1(f)| and |T4,2(f)| for the class of functions defined by
(6). .e following sharp results would be useful for inves-
tigating our main results.

Lemma 1. If p ∈ P and p is of form (2), then for each
n, k, m, l ∈ N � 1, 2, . . .{ }, the following sharp inequalities
hold:

cn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 2,

cn+k − μcnck

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

2, for 0≤ μ≤ 1

2|2μ − 1|, elsewhere
􏼨 ,

(11)

cn+2k − cnc
2
k ≤ 6, (12)

cnck − cmcl

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 4, for n + k � m + l. (13)
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Inequalities (10)–(12) are proved in [26, 35, 36], re-
spectively. Inequality (13) is obvious.

Libera and Złotkiewicz proved the following result [37].

Lemma 2. Let p ∈ P be of form (2). 4en, the modulus of the
expressions

A3 � c
3
1 − 2c1c2 + c3,

A4 � c
4
1 + c

2
2 + 2c1c3 − 3c

2
1c2 − c4,

A5 � c
5
1 + 3c1c

2
2 + 3c

2
1c3 − 4c

3
1c2 − 2c1c4 − 2c2c3 + c5,

A6 � c
6
1 + 6c

2
1c

2
2 + 4c

3
1c3 + 2c1c5 + 2c2c4 + c

2
3

− c
3
2 − 5c

4
1c2 − 3c

2
1c4 − 6c1c2c3 − c6

(14)

are all bounded by 2.

2. Main Results

2.1. Bounds of |H4,1(f)| and |T4,2(f)| for the SetCs Connected
with the Sine Function. Following (7), we can write H4,1(f),
where f ∈ S and a1 � 1, as

H4,1(f) � a7H3,1(f) − a6R1 + a5R2 − a4R3, (15)

where

H3,1(f) � a3a5 − a
2
4􏼐 􏼑 − a2 a2a5 − a3a4( 􏼁 + a3 a2a4 − a

2
3􏼐 􏼑

(16)

and R1, R2, and R3 are determinants of order 3, given by

R1 � a3a6 − a4a5( 􏼁 − a2 a2a6 − a3a5( 􏼁 + a4 a2a4 − a
2
3􏼐 􏼑,

(17)

R2 � a4a6 − a
2
5􏼐 􏼑 − a2 a3a6 − a4a( 􏼁5 + a3 a3a5 − a

2
4􏼐 􏼑, (18)

R3 � a2 a4a6 − a
2
5􏼐 􏼑 − a3 a3a6 − a4a5( 􏼁 + a4 a3a5 − a

2
4􏼐 􏼑.

(19)

Also,

T4,1(f) � a1C1 − a2C2 + a3C3 − a4C4, (20)

where

C1 � a1 a
2
1 − a

2
2􏼐 􏼑 − a4 a1a4 − a2a3( 􏼁 + a3 a4a2 − a1a3( 􏼁,

(21)

C2 � a2 a
2
1 − a

2
2􏼐 􏼑 − a4 a1a3 − a2a4( 􏼁 + a3 a2a3 − a1a4( 􏼁,

C3 � a2 a1a4 − a2a3( 􏼁 − a3 a
2
1 − a

2
3􏼐 􏼑 + a4 a1a2 − a3a4( 􏼁,

C4 � a2 a2a4 − a1a3( 􏼁 − a3 a1a2 − a3a4( 􏼁 + a4 a
2
1 − a

2
4􏼐 􏼑.

(22)

As, from (7), H4,1(f) is a polynomial of six coefficients
of function f of the given class, these coefficients are taken as

a2, a3, a4, a5, a6, and a7. However, there is a connection
between these coefficients and the coefficients of function p

in the class P in many problems. Consider that f ∈ Cs has
form (1); then, there is a Schwartz function w(z) with
w(0) � 0 and |w(z)|< 1, such that

zf′(z)( 􏼁′

f′(z)
� 1 + sin(w(z)). (23)

Now,

zf′(z)( 􏼁′

f′(z)
�
1 + 􏽐

∞
n�2n

2
anz

n− 1

1 + 􏽐
∞
n�2 nanz

n−1

� 1 + 2a2z + 6a3 − 4a
2
2􏼐 􏼑z

2

+ −18a2a3 + 12a4 + 8a
3
2􏼐 􏼑z

3

+ −32a2a4 + 20a5 − 18a
2
3 + 48a3a

2
2􏼐 − 16a

4
2􏼑z

4

+ −50a2a5 + 30a6 − 60a4a3(

+ 80a4a
2
2 + 90a2a

2
3 − 120a3a

3
2 + 32a

5
2􏼑z

5
+ . . .

(24)

Consider

p(z) �
1 + w(z)

1 − w(z)
� 1 + c1z + c2z

2
+ c3z

3
+ · · · . (25)

Since we have p ∈ P,

w(z) �
p(z) − 1
1 + p(z)

�
c1z + c2z

2
+ c3z

3
+ · · ·

2 + c1z + c2z
2

+ c3z
3

+ · · ·
. (26)

Also,

1 + sin(w(z)) � 1 +
1
2
c1z +

1
2
c2 −

1
4
c
2
1􏼒 􏼓z

2
+

1
2
c3 −

1
2
c1c2 +

5
48

c
3
1􏼒 􏼓z

3

+
5
16

c2c
2
1 −

1
32

c
4
1 +

1
2
c4 −

1
2
c1c3 −

1
4
c
2
2􏼒 􏼓z

4

+
1

3840
c
5
1 +

5
16

c1c
2
2 −

1
8
c2c

3
1 −

1
2
c2c3 +

5
16

c3c
2
1􏼒

−
1
2
c1c4 +

1
2
c5􏼓z

5
+ · · · .

(27)

On comparing coefficients between (25) and (28), we get

a2 �
1
4
c1,

a3 �
1
12

c2,

a4 � −
1
96

c1c2 −
1
576

c
3
1 +

1
24

c3,

a5 � −
1
960

c2c
2
1 +

1
1152

c
4
1 −

1
120

c1c3 −
1
160

c
2
2 +

1
40

c4,

a6 � −
11

28800
c
5
1 +

71
34560

c2c
3
1 +

1
1152

c
2
2 −

1
160

c4􏼒 􏼓c1 −
7
720

c2c3 +
1
60

c5,

(28)
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and

a7 �
2399

14515200
c
6
1 −

347
241920

c2c
4
1 +

1
756

c3c
3
1 +

1
3360

c4 +
29

16128
c
2
2􏼒 􏼓c

2
1

+ −
1
210

c5 +
23

10080
c2c3􏼒 􏼓c1 +

1
84

c6 −
1
252

c
2
3 +

5
8064

c
3
2 −

5
672

c4c2.

(29)

By using these coefficients, we can write (16)–(19) in the
following way:

H3,1(f) � −
19

331776
c
6
1 +

1
34560

c2c
4
1 +

23
34560

c3c
3
1 + −

11
46080

c
2
2 −

1
640

c4􏼒 􏼓c
2
1

+
11
5760

c3c1c2 +
1
12

c2
1
40

c4 −
1
160

c
2
2􏼒 􏼓 −

1
1728

c
3
2 −

1
576

c
2
3,

(30)

R1 �
289

11059200
c
7
1 −

29
230400

c2c
5
1 −

1
11520

c3c
4
1 +

187
1658880

c
2
2 +

1
2304

c4􏼒 􏼓c
3
1

+
1

5760
c2c3 −

1
960

c5􏼒 􏼓c
2
1 +

1
12

c2
1

1152
c
2
2 −

1
160

c4􏼒 􏼓 +
1

1280
c
2
3 +

1
32

c2
1
40

c4 −
1
160

c
2
2􏼒 􏼓 +

1
13824

c
3
2c1

+
1
12

c2 −
7
720

c2c3 +
1
60

c5􏼒 􏼓 −
1

3456
c3c

2
2 −

1
24

c3
1
40

c4 −
1
160

c
2
2􏼒 􏼓,

+
1
12

c2 −
7
720

c2c3 +
1
60

c5􏼒 􏼓 −
1

3456
c3c

2
2 −

1
24

c3
1
40

c4 −
1
160

c
2
2􏼒 􏼓,

(31)

R2 � −
31

66355200
c
8
1 +

101
12441600

c2c
6
1 +

31
2764800

c3c
5
1 + −

197
4147200

􏼒 c
2
2 −

1
23040

c4􏼓c
4
1

+
7

64800
c2c3 −

1
34560

c5􏼒 􏼓c
3
1 + −

1
6400

􏼒 c
2
3 +

7
38400

c2c4 −
37

921600
c
3
2􏼓c

2
1

+
1

5400
c
2
2􏼒 c3 −

1
1920

c2c5 +
1

2400
c3c4􏼓c1 +

1
1440

c3c5 +
7

14400
c
2
2c4 −

1
1600

c
2
4

−
19

230400
c
4
2 −

19
34560

c2c
3
2,

(32)

and

R3 � −
83

4777574400
c
9
1 +

317
796262400

c2c
7
1 −

49
66355200

c3c
6
1

+ −
1

122880
c4􏼒

−
169

132710400
c
2
2􏼓c

5
1 −

1
138240

c5 +
209

8294400
c2c3􏼒 􏼓c

4
1 +

61
2764800

c2c4 −
23

2764800
c
2
3 −

2993
199065600

c
3
2􏼓c

3
1

+ −
1

23040
c2c5 +

11
5529600

c
2
2c3􏼒 􏼓

+
1

25600
c3c4􏼓c

2
1 +

1
12800

c
2
2c4 −

41
8294400

􏼒 c
4
2

+
1

5760
c3c5 −

1
6400

c
2
4−

29
276480

c2c
2
3􏼓c1 −

1
8640

c
2
2c5 +

1
41472

c
3
2c3

−
1

13824
c
3
3 +

1
5760

c2c3c4.

(33)
Similarly, in case of Toeplitz determinants,

C1 � −
1

331776
c
6
1 −

1
9216

c
4
1c2 +

1
6912

c
3
1c3 + −

1
16

−
5

9216
c
2
2􏼒 􏼓c

2
1

+
1
384

c1c2c3 + 1 −
1
576

c
2
3 −

1
144

c
2
2,

(34)

C2 �
1

1327104
c
7
1 +

1
110592

c
5
1c2 −

1
27648

c
4
1c3 +

1
36864

c
2
2􏼒 −

1
64

+
1

3456
c2􏼓c

3
1 −

1
4608

c
2
1c2c3 +

1
4

+
1
288

c
2
2 +

1
2304

c
2
3􏼒 􏼓c1

−
1
144

c3c2,

(35)

C3 � −
1

3981312
c
6
1c2 + −

1
1152

−
1

331776
c
2
2􏼒 􏼓c

4
1

+
1

82944
c
3
1c3c2+

−
1

110592
c
3
2 −

1
96

c2􏼒 􏼓c
2
1 +

1
48

c3 +
1

13824
c
2
2c3􏼒 􏼓c1 +

1
1728

c
3
2 −

1
6912

c
2
3c2 −

1
12

c2,

(36)
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C4 �
1

191102976
c
9
1 +

1
10616832

c
7
1c2 −

1
2654208

c
6
1c3

+
1

1769472
􏼒 c

2
2 −

1
9216

􏼓c
5
1 −

1
221184

c
4
1c2c3

+
1

884736
c
3
2􏼒 −

1
1536

c2

−
1

82944
c
2
2 +

1
110592

c
2
3−

1
576

􏼓c
3
1 +

1
384

c3 −
1

73728
c
2
2c3􏼒 􏼓c

2
1

+ −
15
96

c2 +
1

18432
c
2
3c2 −

1
13824

c
3
2􏼒 􏼓c1 +

1
24

c3 −
1

13824
c
3
3

+
1

3456
c
2
2c3.

(37)

By using the previous computations, we prove the
following.

Theorem 1. If the function f ∈ Cs and is of form (1), then

H4,1(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
112267159597
15049359360000

≈ 0.0074599 · · · . (38)

Proof. As f ∈ Cs, then by using (30)–(33) in (15), we get

H4,1(f) �
38723

481579499520000
c
12
1 +

23
2322432

c
4
3 −

1159
6967296000

c
6
2

−
4169

6967296000
c
7
1c5 −

19
27869184

c6c
6
1

−
19

1451520
c6c

3
2 −

1
48384

c6c
2
3 −

17
6967296

c
2
3c

3
2 +

2539
580608000

c
4
2c4 +

1
1792000

c
2
2c

2
4

+
1

57600
c
2
1c

2
5 −

1
43200

c2c
2
5 −

1
64000

c
3
4 +

1619
580608000

c
3
1c3c2c4 −

1
67200

c
2
1c5c2c3 −

1
53760

c1c5c2c4

−
713

48384000
c
2
2c1c3c4 +

11
483840

c6c2c1c3 +
247

58060800
c2c1c

3
3 +

589
145152000

c
5
1c5c2

+
53

36864000
c2c

4
1c

2
3 +

23
2903040

c6c
3
1c3 +

563
32256000

c
2
1c

2
4c2 +

1
64000

c1c
2
4c3 +

29
1036800

c
2
2c3c5

+
1

28800
c5c3c4 −

913
348364800

c
3
1c5c

2
2 −

43
2419200

c1c5c
2
3 −

3019
1032192000

c
2
2c

5
1c3

−
11

3870720
c6c

2
1c

2
2 +

67
9676800

c1c5c
3
2 +

1
2903040

c6c2c
4
1 +

151
96768000

c
2
1c4c

2
3 +

251
139345920

c
6
1c2c4

+
1073

580608000
c
2
1c4c

3
2 −

11077
55738368000

c
7
1c2c3 +

1
40320

c6c2c4 −
1

3628800
c
4
1c5c3

−
1919

1741824000
c
4
2c1c3 −

29
20736000

c
5
1c3c4 −

1
53760

c6c
2
1c4 −

30703
4644864000

c
2
2c

4
1c4

+
195313

41803776000
c
3
1c3c

3
2 +

4699
2322432000

c
2
1c

2
2c

2
3 −

17
2419200

c
3
1c5c4 −

1
37800

c
2
3c2c4

−
136291

20065812480000
c
10
1 c2 +

14201
1003290624000

c
9
1c3 +

67139
1337720832000

c
8
1c

2
2 −

77
7962624000

c
8
1c4

−
40073

1003290624000
c
6
1c

3
2 +

8419
9289728000

c
6
1c

2
3 +

852083
668860416000

c
4
2c

4
1

−
5947

1741824000
c
3
1c

3
3 +

1
2867200

c
4
1c

2
4 −

391
217728000

c
2
1c

5
2.

(39)
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H4,1(f) �
1

481579499520000
38723c

12
1 − 3270984c

10
1 c2 + 6816480c

9
1􏽮 c3

+ 24170040c
2
2􏼐

− 4656960c4􏼁c
8
1 + −288161280c5( − 95705280c2c3􏼑c

7
1 + −328320000c6(

+ 436440960c
2
2 − 19235040c

3
2 + 867456000c4c2􏼑c

6
1 + −673505280c3c4(

−1408544640c3c
2
2 + 1954160640c2c5􏼑c

5
1 + 613499760c

4
2 + 165888000􏼐 c6c2

− 3183287040c
2
2c4 + 167961600c

2
4 − 132710400c3c5 + 692375040c2c

2
3􏼑c

4
1

+ −1644226560c
3
3 + 1342863360c2c3c4 + 2250005760c

3
2􏼐 c3

+3815424000c6c3 − 3384115200c5c4 − 1262131200c
2
2c5􏼑c

3
1

+ 8360755200c
2
5 − 8957952000c6c4 − 7166361600c5c2c3 − 1368576000c6􏼐 c

2
2

+ 8405544960c
2
4c2 + 751472640c4c

2
3 − 864829440c

5
2 + 974384640c

2
2c

2
3

+889989120c4c
3
2􏼑c

2
1 + 3334348800c5c

3
2 + 7524679680􏼐 c

2
4c3

+ 10948608000c6c2c3 + 2048716800c2c
3
3 − 7096688640c

2
2c3c4

−8957952000c5c2c4 − 530565120c
4
2c3 − 8559820800c5c

2
3􏼑c1

− 1175040000c
2
3c

3
2 + 2105948160c

4
2c4 − 12740198400c

2
3c2c4

+ 11943936000c6c2c4 + 16721510400c5c3c4 − 7524679680c
3
4 + 4769280000c

4
3

− 80110080c
6
2 − 9953280000c6c

2
3 − 11147673600c2c

2
5 + 13470105600c

2
2c3c5

− 6303744000c6c
3
2 + 268738560c

2
2c

2
4􏽯.

(40)

After rearranging the terms, we get

H4,1(f) �
1

481579499520000

· −38723A6 c2 − c
2
1􏼐 􏼑

3
− 2961200c2A

2
5 + 6661588c3A3A6􏼚

− 448912A6 c3 − c1c2( 􏼁
2

− 45407915c4A3A5 − 288238726c1

A6 c5 −
1

288238726
c2c3􏼒 􏼓 − 328281275A6 c6 −

403543209
328281275

c
2
3􏼒 􏼓 − A6 c6 − 827940501c2c4( 􏼁 − A6

· c6 − 45022105c
3
2􏼐 􏼑 + 519121748c2A5 c5 −

1592920565
519121748

c2c3􏼒 􏼓 + 635357352

· c3A4 c5 − c1c4( 􏼁 − 1475634554c2A4 c6 −
2857592366
1475634554

c
2
3􏼒 􏼓 − 371563976c5A3

· c4 − c1c3( 􏼁 + 158880018c
2
4A3c1 + 769228159c

4
2A3c1 + 1052977475c

2
2c4A3c1

+ 5135210696 c2 − c
2
1􏼐 􏼑 c4 − c1c3( 􏼁 c6 −

3289911688
5135210696

c
2
3􏼒 􏼓 − 3872726611 c2 − c

2
1􏼐 􏼑

· c4 −
2520764034
3872726611

c
2
2􏼒 􏼓 c6 − c1c5( 􏼁 − 4015593821A3c2c4c3 − 4121711992A3c3c

3
2

− 8680311746c4c
2
1 c6 −

11237134463
8680311746

c2c4􏼒 􏼓 − 24834316c
2
3c

2
1
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· c4 −
11757634360
24834316

c
2
2􏼒 􏼓 − 8937232652c5 c2 − c

2
1􏼐 􏼑 c5 −

7761341290
8937232652

c2c3􏼒 􏼓

− 1898862450c
3
2c

2
1 c4 −

430044643
1898862450

c
2
2􏼒 􏼓 − 1305360709c

2
2c

2
1c6 + 17052974791

· c3c2c1 c6 −
13683368690
17052974791

c2c4􏼒 􏼓 − 13635892999c5c2c1 c4 −
3937309300
13635892999

c
2
2􏼒 􏼓

+ −4485418959c2c
3
3 − 4542515027c

4
2c3 + 6721360728c

2
4c3􏼐 􏼑c1 + 368323828c5c1

· c6 −
10733372524
368323828

c
2
3􏼒 􏼓 − 2726601496c2c5 c5 −

7692726219
2726601496

c2c3􏼒 􏼓 + 10690320416

· c2c4 c6 −
4233634378
10690320416

c
2
3􏼒 􏼓 + 2843921897c

4
2 c4 −

35126698
2843921897

c
2
2􏼒 􏼓 − 9215242838

· c
2
3 c6 −

4359524115
9215242838

c
2
3􏼒 􏼓 − 7632171375c6c

3
2 − 2720144201c

2
3c

3
2 + 17732972519

· c5c3c4 − 328281277c
2
6 − 7524679680c

3
4 − 31507775c2c

7
1c3 − 1387142442c

2
2c

2
4.

(41)

After using triangular inequalities and lemmas, we get
the following expression:

H4,1(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1

481579499520000

(38723 × 2) × 23 + 4(2961200 × 2) + 4 ×(6661588 × 2) +(448912 × 2)×􏽮

22 + 2 ×(45407915 × 2) × 2 + 2(288238726 × 2) × 2 +
957610286
328281275

×(328281275 × 2) + 2×

3311762002 + 2 × 3311762002 + 2 ×(519121748 × 2) ×
1333359691
129780437

+ 2 ×(635357352 × 2)

× 2 + 2 ×(1475634554 × 2) ×
4239550178
737817277

+ 371563976 ×(2) ×(2) ×(2) + 158880018 ×(4)

×(2) ×(2) + 769228159 ×(16) ×(2) ×(2) + 1052977475 ×(4) ×(2) ×(2) ×(2)

+ 5135210696 ×(2) ×(2) ×
51593310
91700191

+ 872726611 ×(2) ×(2) ×(2) + 4015593821 ×(16)

+ 4121711992 ×(32) + 8680311746 ×(8) ×
13793957180
4340155873

+ 24834316 ×(16) ×
11745217202
6208579

+ 8937232652 ×(2) ×(2) ×(2) + 1898862450 ×(32) ×(2) + 1305360709 ×(32)

+ 17052974791 ×(8) ×(2) + +13635892999 ×(8) ×(2) +(4485418959

+ 6721360728 ×(8) ×(2) + 368323828 ×(4) ×
10549210610
92080957

+ 2726601496 ×(4) ×
6329425471
681650374

+ 10690320416 ×(4) ×(2) + 2843921897 ×(16) ×(2) + 9215242838 ×(4) ×(2)

+ 7632171375 ×(16) + 2720144201 ×(32) + 17732972519 ×(8) + 328281277 ×(4)

+ 7524679680 ×(8) + 31507775 ×(512) + 1387142442 ×(16)}.

(42)

Hence,
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H4,1(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
3592549107104
481579499520000

≈ 0.0074599, (43)

which completes the proof. □

Theorem 2. If the function f ∈ Cs and is of form (1), then

T4,1(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
501434459
286654464

≈ 1.7493. (44)

Proof. As f ∈ Cs, using (34)–(37) in (20), we get

T4,1(f) � 1 +
1
256

c
4
1 −

1
288

c
2
3 −

1
165888

c
6
1 −

1
8
c
2
1 −

1
72

c
2
2 +

5
576

c1c2c3 +
1

9216
c
3
1c3c2

+
1

3456
c
3
1c3 −

1
221184

c
6
1c2 +

1
497664

c
3
1c3c

2
2 −

1
5308416

c
3
1c

3
2c3

+
1

82944
c1c

3
2c3 −

1
331776

c1c2c
3
3 +

1
884736

c
2
1c

2
2c

2
3 −

1
10616832

c
5
1c

2
2c3

−
1

63700992
c
7
1c2c3 +

1
2654208

c
4
1c2c

2
3 −

13
4608

c
2
1c

2
2 +

1
55296

c
5
1c3

−
1

73728
c
4
1c

2
2 −

1
4608

c
2
1c

2
3 −

1
23887872

c
6
1c

2
2 −

1
1990656

c
4
1c

3
2

−
1

663552
c
2
1c

4
2 −

1
41472

c
2
2c

2
3 +

1
84934656

c
4
1c

4
2 +

1
127401984

c
6
1c

3
2

+
1

509607936
c
8
1c

2
2 +

1
4586471424

c
10
1 c2 −

1
1146617856

c
9
1c3 +

1
31850496

c
6
1c

2
3

−
1

1990656
c
3
1c

3
3 −

1
2654208

c
8
1 +

1
20736

c
4
2 +

1
110075314176

c
12
1 .

(45)

Rearranging the terms, we may write

T4,1(f) �
1

110075314176
c
12
1􏽮 + 24c

10
1 c2 − 96c

9
1c3 + −41472 + 216c

2
2􏼐 􏼑c

8
1 − 1728c

7
1c2c3

+ −663552 + 3456c
2
3 − 497664c2 + 864c

3
2 − 4608c

2
2􏼐 􏼑c

6
1

+ −10368c
2
2c3 + 1990656c3􏼐 􏼑c

5
1

+ −1492992c
2
2 + 41472c

2
3c2 − 55296c

3
2 − 39813120c2 + 1296c

4
2 + 429981696􏼐 􏼑c

4
1

+ 11943936c2c3 + 31850496c3 − 55296c
3
3 − 20736c

3
2c3 + 221184c3c

2
2􏼐 􏼑c

3
1

+ −310542336c
2
2 − 13759414272 + 124416c

2
2c

2
3 − 165888c

4
2 − 23887872c

2
3􏼐 􏼑c

2
1

+ 1327104c
3
2c3 + 955514880c2c3 − 331776c2c

3
3􏼐 􏼑c1

− 1528823808c
2
2 − 382205952c

2
3 + 331776c

4
3 + 5308416c

4
2

+ 110075314176 −2654208c
2
2c

2
3􏽯.

(46)
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After rearranging the terms, we get

T4,1(f) �
1

110075314176
−A6 c2 − c

2
1􏼐 􏼑

3
−􏼚 100A3A6 c3 −

32
100

c1c2􏼒 􏼓 − 2c1A6 c5 −
3
2
c1c4􏼒 􏼓

− 2570c1c2A6 c3 −
416
2570

c1c2􏼒 􏼓 − 41472A3A5 + 2156544A5 c3 −
746496
2156544

c1c2􏼒 􏼓

− 22704c
2
2A5 c3 −

2467
22704

c1c2􏼒 􏼓 − 312c4A5 c3 −
100
312

c1c2􏼒 􏼓 + 29c2A4 c6 −
68
29

c1c5􏼒 􏼓

+ −663552 + c6 − 4608c
2
2 + 3955c

2
3􏼐 􏼑A6 + 22311936c2A3 c3 −

4022784
22311936

c1c2􏼒 􏼓

− 902c
2
2A3 c5 −

1389
902

c1c4􏼒 􏼓 − 12A3c4 c5 −
9
12

c1c4􏼒 􏼓 − 104c3A3 c6 −
208
104

c1c5􏼒 􏼓

− 70616c
2
3A3 c3 −

69470
70616

c1c2􏼒 􏼓 − 102891c
3
2A3 c3 −

9058
102891

c1c2􏼒 􏼓 + 239616c
2
2A3

c3 −
78336
239616

c1c2􏼒 􏼓 + 41472A3 c5 −
82944
41472

c1c4􏼒 􏼓 + 12498c3c4c
2
1 c3 −

8344
12498

c1c2􏼒 􏼓

+ 5c6c2 − 4313088c2 + 429981696( 􏼁A4 + 34504704c3A3 − 633c
2
4c1 c3 −

212
633

c1c2􏼒 􏼓

+ 4313088c3c1 c4 −
30233088
4313088

c1c3􏼒 􏼓 − 188c5c2c1 c4 −
5216
188

c1c3􏼒 􏼓 + 1857024

c
3
2c1 c3 −

294912
1857024

c1c2􏼒 􏼓 − 144138c
4
2c1 c3 −

11076
144138

c1c2􏼒 􏼓 − 859963392c1.

(47)

c3 −
1289945088
859963392

c1c2􏼒 􏼓 − 4c6c1 c5 −
6
4
c1c4􏼒 􏼓 − 517010c2c

2
3c1 c3 −

293955
517010

c1c2􏼒 􏼓

+ 746496c2c1 c5 −
1492992
746496

c1c4􏼒 􏼓 + 9216c
2
2c1 c5 −

13824
9216

c1c4􏼒 􏼓 − 2608c6c2c1

c3 −
451
2608

c1c2􏼒 􏼓 + 40974336c
2
2c1 c3 −

6054912
40974336

c1c2􏼒 􏼓 − 40985c
2
2c4c1

c3 −
6702
40985

c1c2􏼒 􏼓 + 1106804736c2c1 c3 −
435953664
1106804736

c1c2􏼒 􏼓

+ 4c
2
5􏼐 − 1990656c4 −13759414272)c

2
1 + 23606c

2
2c5 c3 −

4203
23606

c1c2􏼒 􏼓 + 3958c
2
3

c6 −
7916
3958

c1c5􏼒 􏼓 − 41803776c2 c4 −
42467328
41803776

c
2
2􏼒 􏼓 + 429981696

c4 −
1958805504
429981696

c
2
2􏼒 􏼓 + 9216c

3
2 c4 −

4608
9216

c
2
2􏼒 􏼓 + 32c2c6 c4 −

34
32

c
2
2􏼒 􏼓

+ 2c
4
2 c4 −

1
2
c
2
2􏼒 􏼓 − 8334c

2
3c2 c4 −

61339
8334

c
2
2􏼒 􏼓 − 663552 c6 −

1327104
663552

c1c5􏼒 􏼓

− 4608c6c
2
2 + 398537c

4
3 + 5308416c

4
2 + 110075314176 − 416047104c

2
3

+ 324c4c5c3 + c
2
6 − 18081792c2c

2
3 −2889216c

2
2c

2
3 − 2156544c5c3􏽯.

(48)
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After using the triangular inequality and above-stated
lemmas, we get

T4,1(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1

110075314176

2 ×(2)
3

+ 100 ×(2) ×(2) ×(2) + 2 ×(2) ×(2) ×(4) + 2570 ×(2) ×(2)×􏽮

(2) ×(2) + 41472 ×(2) ×(2) + 2156544 ×(2) ×(2) + 22704 ×(4) ×(2) ×(2) + 312 ×(2)×

(2) ×(2) + 29 ×(2) ×(2) ×
214
29

+(663552 + 2 + 4608 ×(4) + 3955 × 4) ×(2) + 22311936×

(2) ×(2) ×(2) + 902 ×(4) ×(2) ×
1876
451

+ 12 ×(2) ×(2)(2) + 104 ×(2) ×(2) ×(6)+

70616 ×(4) ×(2) ×(2) + 102891 ×(8) ×(2) ×(2) + 2 ×(239616 × 4) × 2 + 6 ×(41472 × 2)

+ 2 ×(2 ×(12498 × 2) × 4) +(5 × 4 + 43130880 × 2 + 429981696) × 2 + 34504704 ×(2)×

(2) + 2 ×(633 × 4) × 2 + 2 ×(4313088 × 2) ×
677
26

+
5122
47

×(2 ×(188 × 2) × 2) + 2×

(1857024 × 8) × 2 + 2 ×(144138 × 16) × 2 + 4 ×(859963392 × 2) + 2 ×(4 × 2) × 4 + 2×

(4 ×(517010 × 2) × 2) + 2 ×(746496 × 2) × 6 + 2 ×(9216 × 4) × 4 + 2 ×(2 ×(2608 × 2))

×(2) + 2 ×(40974336 × 4) × 2 + 2 ×(2 ×(40985 × 4) × 2) + 2 ×((1106804736 × 2) × 2)+

(4 × 4 + 1990656 × 2 + 13759414272) × 4 + 23606 ×(4) ×(2) ×(2) + 3958 ×(4) ×(6)+

41803776 ×(2) ×
130
63

+ 429981696 ×
146
9

+ 9216 ×(8) ×(2) + 32 ×(2) ×(2) ×
9
4

+ 2

×(16) ×(2) + 8334 ×(4) ×(2) ×
114344
4167

+ 663552 ×(6) + 4608 ×(2) ×(4) + 398537

×(16) + 5308416 ×(16) + 110075314176 + 416047104 ×(4) + 324 ×(2) ×(2) ×(2)+

(4) + 18081792 ×(2) ×(4) + 2889216 ×(4) ×(4) + 2156544 ×(2) ×(2)}.

(49)

.is reduces to

T4,1(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
192550832256
110075314176

�
501434459
286654464

≈ 1.7493 · · · , (50)

which completes the proof. □

2.2. Bounds of |H4,1| for the SetC(3)
s . Let n ∈ N � 1, 2, 3, . . .{ }.

Rotation of a domainD about the origin through an angle of
2π/n containingD onto itself is said to be n-fold symmetric.
An analytic function f is n-fold symmetric in D if

f e
2πi/n

z􏼐 􏼑 � e
2πi/n

f(z) (51)

holds for any z ∈ D. Denote S(n) as the set of n-fold univalent
functions which have the following Taylor series form:

f(z) � z + 􏽘
∞

k�1
ank+1z

nk+1
(z ∈ D). (52)

Denote C(n) as the subfamily of S(n) of n-fold symmetric
convex functions. We can see that an analytic function f of
form (52) belongs to the family C(n), if and only if

zf′(z)( 􏼁′

f′(z)
� p(z), (53)

where p ∈ P(n). .e family P(n) is defined as

P
(n)

� p ∈ P: p(z) � 1 + 􏽘
∞

k�1
cnkz

nk
, (z ∈ D)

⎧⎨

⎩

⎫⎬

⎭. (54)

Now, consider the following.

Theorem 3. Let f ∈ C(3)
s be of form (52). 4en,

H4,1(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

6048
≈ 0.00016534. (55)
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Proof. Let f ∈ C(3)
s of form (52). Consider the function

p ∈ P(3) as

p(z) �
1 + w(z)

1 − w(z)
� 1 + c3z

3
+ c6z

6
+ c9z

9
+ · · · . (56)

Now,

w(z) �
p(z) − 1
p(z) + 1

. (57)

.e class C(3)
s which is associated with the sine functions

can be written in the following form:

zf′(z)( 􏼁

f′(z)
� 1 + sin(w(z)), (z ∈ D). (58)

By expanding and equating them, we get the following
expression:

1 + 12a4z
3

+ 42a7 − 48a
2
4􏼐 􏼑z

6
+ · · · � 1 +

1
2
c3z

3
+

1
2
c6 −

1
4
c
2
3􏼒 􏼓z

6
+ · · · .

(59)

.is implies

a4 �
1
24

c3,

a7 � −
1
252

c
2
3 +

1
84

c6.

(60)

By using these coefficients, we can get H3,1(f), R1, R2,

and R3 as

H3,1 � −
1
576

c
2
3,

R1 � 0, R2 � 0,

R3 � −
1

13824
c
3
3.

(61)

By using these values in H4,1(f), we get

H4,1(f) � a7H3,1(f) − a6R1 + a5R2 − a4R3

� −
1
252

c
2
3 +

1
84

c6􏼒 􏼓 −
1
576

c
2
3􏼒 􏼓 −

1
24

c3􏼒 􏼓 −
1

13824
c
3
3􏼒 􏼓

�
23

2322432
c
4
3 −

1
48384

c
2
3c6

� −
1

48384
c
2
3 c6 −

23
48

c
2
3􏼒 􏼓.

(62)

.e triangle inequality and the application of Lemma 1
lead us to

H4,1(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1

6048
≈ 0.00016534, (63)

which completes the proof. □

3. Conclusion

In this paper, we have found the upper bounds of fourth-
order Hankel and Toeplitz determinants, followed by a
review of such findings obtained so far for certain analytic
functions. We have studied them for the convex functions
associated with the function 1 + sin z. A similar bound of
the fourth-order Hankel determinant for 3-fold symmetric
convex functions associated with 1 + sin z has also been
investigated.
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In this paper, the ρ-homotopy perturbation transformation method was applied to analysis of �fth-order nonlinear fractional
Korteweg–de Vries (KdV) equations. �is technique is the mixture form of the ρ-Laplace transformation with the homotopy
perturbation method. �e purpose of this study is to demonstrate the validity and e�ciency of this method. Furthermore, it is
demonstrated that the fractional and integer-order solutions close in on the exact result. �e suggested technique was e�ectively
utilized and was accurate and simple to use for a number of related engineering and science models.

1. Introduction

A number of researchers have recently become interested
in fractional calculus, which was �rst developed during
Newton’s period. Within the fractional calculus structure,
many interesting and signi�cant steps have been discovered
within the last thirty decades. A fractional derivative was
invented as a result of the complexity of a heterogeneous
phenomenon. �e fractional derivative operators, by in-
corporating di�usion methods, are capable of capturing the
attitudes of multidimensional media [1–4]. �e use of
di�erential equations of any scale has proved useful in
showing a number of problems more quickly and accu-
rately. Increasingly, scholars turned to generalized calculus
to convey their viewpoints while analyzing complex phe-
nomena in the context of mathematical methods using
software [5–10].

Nonlinear impacts occur in several implemented scienti�c
�elds, such as �uid, mathematical biology, nonlinear image
sensors, quantum �eld theory, kinetics, thermodynamics, and
�uid dynamics. It is based on nonlinear partial di�erential
equations of various degrees of complexity to model these
processes. Partial di�erential equations are generally applied in
the description of physical processes [11–15]. Most of the es-
sential physical systems do not exhibit linear behavior. �ere is
no way to determine the exact result of such nonlinear phe-
nomena. Only techniques that are appropriate for solving
nonlinear equations can be used to investigate this phenomenon
[16–22].

In 1895, Korteweg and de Vries proposed a KdV
equation to design Russell’s soliton phenomenon, such as
small and huge water waves. Solitons are steady solitary
waves, which mean that these solitary waves are a particle.
KdV equations are applied in di�erent applied �elds such
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as quantam mechanics, fluid dynamics, optics, and plasma
physics. Fifth-order KdV form equations were utilized to
analyze many nonlinear phenomena in particle physics
[23–25]. It plays a vital role in the distribution of waves
[26]. In their analysis, the KdV form equation has dis-
persive terms of the third and fifth-order relevant to the
magnetoacoustic wave problem in cold plasma free colli-
sion plasma and dispersive terms appear near-critical angle
propagation [27]. Plasma is a dynamic, quasineutral, and
electrically conductive fluid. It consists of neutral particles,
electrons, and ions. It consists of magnetic and electric
areas due to the electrically conducting behavior of plasma.
/emixture of particles and areas supports plasma waves of
various forms. A magnetic lock is a less longitudinal ion
dispersion. /e magnetoacoustic wave behaves as an ion-
acoustic wave in the low magnetic field range, while in the
low-temperature capacity, it acts as an Alfven wave [28, 29].

/e general model for the analysis of magnetic properties-
acoustic waves in plasma and shallow water waves with surface
tension is equated with the fifth order of KdV. Recent study
reveals that the solutions to this equation for travelling waves
do not vanish at infinity [30, 31]. Consider the well-known
three types of the fifth-order KdV equations as follows [32, 33]:
D

c
τV + Vζ + V

2
V2ζ + VζV2ζ − 20V2

V3ζ + V5ζ � 0, 0< β≤ 1, (1)

with initial condition V(ζ , 0) � 1/ζ ,

D
β
τV + VVζ − VV3ζ + V5ζ � 0, 0< β≤ 1, (2)

with initial condition V(ζ , 0) � eζ , and

D
β
τV + VVζ + V3ζ − V5ζ � 0, 0< β≤ 1, (3)

with initial conditionV(ζ , 0) � 105/169sech4(ζ − ϕ/2
��
13

√
).

(1) and (2) are called fifth-order KdV equations and (3) is
called the Kawahara equation. Analytic techniques for these
mathematical model are particularly difficult to come across
due to their severe nonlinearity. Several researchers have
employed various analytical and computational strategies to
the solution of linear and nonlinear KdV equations throughout
the last decade, such as the multisymplectic method [34],
variational iteration method [33], He’s homotopy perturbation
method [35], and Exp-function method [36].

Recently, Fahd and Abdeljawad [37] developed the
Laplace transform of the generalized fractional Caputo
derivatives. We established a novel methodology with
ρ-Laplace transform for solving fractional differential
equations with a generalized fractional Caputo derivative.
/e homotopy perturbation method is merged with the
Laplace transform method to create a highly effective
method for handling nonlinear terms which is known as the
homotopy perturbation transformation technique. /is
technique can provide the result in quick convergent series.
Ghorbani pioneered the use of He’s polynomials in non-
linear terms [38–40]. Later on, many scholars utilized the
homotopy perturbation transformation method for linear
and nonlinear differential equations such as heat-like
equations [41], Navier–Stokes equations [42], hyperbolic
equation and Fisher’s equation [43], and gas dynamic
equation [44].

2. Basic Definitions

2.1.Definition. /e fractional generalized integral of order β
of a continuous function (CF) g: [0, +∞]⟶ R is defined
as [37]

I
β,ρ

g􏼐 􏼑(ζ) �
1
Γ(β)

􏽚
ζ

0

ζρ − sρ

ρ
􏼠 􏼡

β− 1
g(s)ds

s
1−ρ , ρ> 0, ζ > 0, 0< β< 1.

(4)

2.2. Definition. /e order β fractional generalized derivative
of a CF g: [0, +∞]⟶ R is given as [37]

D
β,ρ

g􏼐 􏼑(ζ) � I
1− β,ρ

g􏼐 􏼑(ζ)

�
1
Γ(1 − β)

d

dζ
􏼠 􏼡 􏽚

ζ

0

ζρ − sρ

ρ
􏼠 􏼡

− β− 1
g(s)ds

s
1−ρ ,

ρ> 0, ζ > 0 and 0< β< 1.

(5)

2.3. Definition. /e Caputo derivative of fractional-order β
of a CF g: [0, +∞]⟶ R is defined as [37]

D
β,ρ

g􏼐 􏼑(ζ) �
1
Γ(1 − β)

d

dζ
􏼠 􏼡 􏽚

ζ

0

ζρ − sρ

ρ
􏼠 􏼡

− β− 1

βng(s)ds
s
1−ρ ,

(6)

where ρ> 0, ζ > 0, β � ζ1− β
d/dζ, and 0< β< 1.

2.4. Definition. /e ρ-Laplace transform of a CF g: [0, +∞]

⟶ R is defined as [37]

Lρ g(ζ)􏼈 􏼉(s) � 􏽚
∞

0
e

− sζρ/ρ
g(ζ)

dζ
ζ1−ρ. (7)

/e fractional generalized Caputo derivative of ρ-Lap-
lace transformation of a CF g is given by [37]

Lρ D
β,ρ

g(ζ)􏽮 􏽯(s) � s
β
Lρ g(ζ)􏼈 􏼉 − 􏽘

n−1

k�0
s
β− k− 1

I
β,ρβn

g􏼐 􏼑(0).

(8)

2.5. Definition. /e generalized Mittag-Leffler function is
defined by

Eβ,ρ(z) � 􏽘
∞

k�0

z
β

Γ(βk + c)
, (9)

where β> 0, c> 0, and Eβ(z) � Eβ,1(z).

3. The Rod Map of the Proposed Method

Consider the general partial differential equation given as
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D
c
τV(ζ , τ) + MV(ζ, τ) + NV(ζ , τ) � h(ζ , τ), τ > 0, 0< c≤ 1,

V(ζ , 0) � g(ζ), ] ∈ R.

(10)

Applying ρ-Laplace transformation of (10), we get

Lρ D
c
τV(ζ , τ) + MV(ζ , τ) + NV(ζ , τ)􏼂 􏼃 � Lρ[h(ζ , τ)], τ > 0, 0< c≤ 1,

μ(ζ, τ) �
1
s

g(ζ) +
1
s
βLρ[h(ζ , τ)] −

1
s
βLρ[MV(ζ , τ) + NV(ζ , τ)].

(11)

Now, applying the inverse ρ-Laplace transform, we get

V(ζ , τ) � F(ζ , τ) − L
−1
ρ

1
s
βLρ MV(ζ , τ) + NV(ζ , τ){ }􏼢 􏼣,

(12)

where

F(ζ, τ) � L
−1
ρ

1
s

g(ζ) +
1
s
βLρ[h(ζ , τ)]􏼢 􏼣

� g(]) + L
−1
ρ

1
s
βLρ[h(ζ , τ)]􏼢 􏼣.

(13)

Now, the perturbation procedure in terms of power
series with parameter p is presented as

V(ζ, τ) � 􏽘
∞

κ�0
p
κ
Vκ(ζ, τ), (14)

where p is the perturbation parameter and p ∈ [0, 1].
/e nonlinear term can be defined as

NV(ζ , τ) � 􏽘
∞

κ�0
p
κ
Hκ Vκ( 􏼁, (15)

where Hn are He’s polynomials in terms of
V0,V1,V2, . . . ,Vn and can be calculated as

Hn V0,V1, . . . ,Vn( 􏼁 �
1

c(n + 1)
D

κ
p N 􏽘

∞

κ�0
p
κ
Vκ

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

p�0

,

(16)

where Dκ
p � zκ/zpκ.

Substituting (15) and (16) in (12), we get

􏽘

∞

κ�0
p
κ
Vκ(ζ, τ) � F(ζ, τ) − p × L

−1
ρ

1
s
βLρ M 􏽘

∞

κ�0
p
κ
Vκ(ζ, τ) + 􏽘

∞

κ�0
p
κ
Hκ Vκ( 􏼁

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦. (17)

/e coefficients comparison on both sides of p, we have

p
0
: V0(ζ, τ) � F(ζ , τ),

p
1
: V1(ζ, τ) � L

−1
ρ

1
s
βLρ MV0(ζ, τ) + H0(V)( 􏼁􏼢 􏼣,

p
2
: V2(ζ, τ) � L

−1
ρ

1
s
βLρ MV1(ζ, τ) + H1(V)( 􏼁􏼢 􏼣,

⋮

p
κ
: Vκ(ζ, τ) � L

−1
ρ

1
s
βLρ MVκ−1(ζ, τ) + Hκ−1(V)( 􏼁􏼢 􏼣,

κ> 0, κ ∈ N.

(18)

/e Vκ(ζ, τ) component can be determined easily
which quickly leads us to the convergent series. We can get
p⟶ 1:

V(ζ , τ) � limM⟶∞􏽘

M

κ�1
Vκ(ζ, τ). (19)

4. Numerical Implementations

Example 1. Consider the fifth-order nonlinear KdV
equation

D
β
τV + Vζ + V

2
V2ζ − VζV2ζ

− 20V2
V3ζ + V5ζ � 0, 0< β≤ 1,

(20)

with the IC

V(ζ, τ) �
1
ζ
. (21)
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Applying the ρ-Laplace transform on (20), we get

LρV(ζ , τ)] �
1
sζ

−
1
s
βLρVζ + V

2
V2ζ + VζV2ζ − 20V2

V3ζ +V5ζ􏽩.

(22)

Next, using the inverse of ρ-Laplace transform of (22),

[V(ζ , τ)] �
1
ζ

− L
−1
ρ

1
s
βLρ Vζ + V

2
V2ζ + VζV2ζ − 20V2

V3ζ + V5ζ􏽨 􏽩􏼢 􏼣.

(23)

Now, we apply HPM

􏽘

∞

n�0
p

n
Vn(ζ, τ) �

1
ζ

− p L
−1
ρ

1
s
βLρ 􏽘

∞

n�0
p

n
Hn(V)⎛⎝ ⎞⎠ + 􏽘

∞

n�0
p

n
Vn(ζ, τ)⎛⎝ ⎞⎠

ζ

+ 􏽘
∞

n�0
p

n
Vn(ζ, τ)⎛⎝ ⎞⎠

5ζ

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (24)

where Hn(x) represents the nonlinear function of He’s
polynomial. For the first few components, we present He’s
polynomials

H0(V) � V
2
0 V0( 􏼁2ζ + V0( 􏼁ζ V0( 􏼁2ζ − 20V2

0 V0( 􏼁3ζ,

H1(V) � V
2
0 V1( 􏼁2ζ + 2V0V1 Vo( 􏼁2ζ + Vo( 􏼁ζ V1( 􏼁2ζ + Vo( 􏼁2ζ V1( 􏼁ζ − 20V2

0 V1( 􏼁3ζ − 40V0V1 Vo( 􏼁3ζ,

H2(V) � V
2
0 V2( 􏼁2ζ + 2V0V1 V1( 􏼁2ζ + 2V0V2 Vo( 􏼁2ζ + V

2
1 Vo( 􏼁2ζ + Vo( 􏼁ζ V2( 􏼁2ζ + V1( 􏼁ζ V1( 􏼁2ζ

+ Vo( 􏼁2ζ V2( 􏼁ζ − 20V2
0 V2( 􏼁3ζ − 40V0V1 V1( 􏼁3ζ − 40V0V2 Vo( 􏼁3ζ − 20V2

1 Vo( 􏼁3ζ,

H3(V) � V
2
0 V3( 􏼁2ζ + 2V0V1 V2( 􏼁2ζ + 2V0V2 V1( 􏼁2ζ + 2V0V3 Vo( 􏼁2ζ + V

2
1 V1( 􏼁2ζ + 2V1V2 Vo( 􏼁2ζ

+ Vo( 􏼁ζ V3( 􏼁2ζ + V1( 􏼁ζ V2( 􏼁2ζ + V1( 􏼁2ζ V2( 􏼁ζ + V0( 􏼁2ζ V3( 􏼁ζ − 20V2
0 V3( 􏼁3ζ − 40V0V1 V2( 􏼁3ζ

− 40V0V2 V1( 􏼁3ζ − 40V0V3 Vo( 􏼁3ζ − 20V2
1 V1( 􏼁3ζ − 40V1V2 Vo( 􏼁3ζ,

H4(V) � V
2
0(V)2ζ + 2V0V1 V3( 􏼁2ζ + 2V0V2 V2( 􏼁2ζ + 2V0V3 V1( 􏼁2ζ + 2V0V4 Vo( 􏼁2ζ + V

2
1 V2( 􏼁2ζ

+ 2V1V2 V1( 􏼁2ζ + 2V1V3 Vo( 􏼁2ζ + V
2
2 Vo( 􏼁2ζ + Vo( 􏼁ζ V4( 􏼁2ζ + V1( 􏼁ζ V3( 􏼁2ζ + V2( 􏼁2ζ V2( 􏼁ζ

+ V1( 􏼁2ζ V3( 􏼁ζ + Vo( 􏼁2ζ V4( 􏼁ζ − 20V2
0 V4( 􏼁3ζ − 40V0V1 V3( 􏼁3ζ − 40V0V2 V2( 􏼁3ζ − 40V0V3 V1( 􏼁3ζ

− 40V0V4 Vo( 􏼁3ζ − 20V2
1 V2( 􏼁3ζ − 40V1V2 V1( 􏼁3ζ − 40V1V3 Vo( 􏼁3ζ − 20V2

2 Vo( 􏼁2ζ,

⋮

(25)

Comparing the P-like coefficients, we have

P
0
: V0(ζ , τ) �

1
ζ
,

P
1
: V1(ζ , τ) � −L

−1
ρ

1
s
βLρ H0(V) + V0( 􏼁ζ + V0( 􏼁5ζ􏽨 􏽩􏼢 􏼣 �

τρ/ρ( 􏼁
β

ζ2Γ(β + 1)
,

P
2
: V2(ζ , τ) � −L

−1
ρ

1
s
βLρ H1(V) + V1( 􏼁ζ + V1( 􏼁5ζ􏽨 􏽩􏼢 􏼣 �

τρ/ρ( 􏼁
2β

ζ3Γ(2β + 1)
,

P
3
: V3(ζ , τ) � −L

−1
ρ

1
s
βLρ H2(V) + V2( 􏼁ζ + V2( 􏼁5ζ􏽨 􏽩􏼢 􏼣 �

τρ/ρ( 􏼁
3β

ζ4Γ(3β + 1)
,

P
4
: V4(ζ , τ) � −L

−1
ρ

1
s
βLρ H3(V) + V3( 􏼁ζ + V3( 􏼁5ζ􏽨 􏽩􏼢 􏼣 �

τρ/ρ( 􏼁
4β

ζ5Γ(4β + 1)
,

P
5
: V5(ζ , τ) � −L

−1
ρ

1
s
βLρ H4(V) + V4( 􏼁ζ + V4( 􏼁5ζ􏽨 􏽩􏼢 􏼣 �

τρ/ρ( 􏼁
5β

ζ6Γ(5β + 1)
.

⋮

(26)

/e analytical solution of V(ζ , τ) is defined as

V(ζ , τ) � 􏽘
∞

i�0
V(ζ , τ)i �

1
ζ

+
τρ/ρ( 􏼁

β

ζ2Γ(β + 1)
+

τρ/ρ( 􏼁
2β

ζ3Γ(2β + 1)

+
τρ/ρ( 􏼁

3β

ζ4Γ(3β + 1)
+

τρ/ρ( 􏼁
4β

ζ5Γ(4β + 1)
+

τρ/ρ( 􏼁
5β

ζ6Γ(5β + 1)
+ · · · .

(27)

/en, put β � 1 in (27):

V(ζ , τ) � 􏽘
∞

i�0
Vi(ζ, τ) �

1
ζ

+
τ
ζ2

+
τ2

ζ3
+
τ3

ζ4
+ · · · . (28)

/e exact result is V(ζ , τ) � 1/ζ − τ.
In Figure 1, the three-dimensional figures of ρ-HPTM

and exact results in graphs (a) and (b) respectively at β � 1
and the close contact of the exact and ρ-HPTM solutions are
investigated. In Figure 2, represent that various fractional
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order of ρ-HPTM results at β � 1, 0.8, 0.6, 0.4. /e non-
classical results are investigated to be converge to an integer-
order result of the given problem.

Example 2. Consider the fifth-order nonlinear fraction KdV
equation

D
β
τV + VVζ − VV3ζ + V5ζ � 0, 0< β≤ 1, (29)

with the IC

V(ζ, τ) � e
ζ
. (30)

Applying the ρ-Laplace transform on (29), we get

Lρ[V(ζ , τ)] �
1
s
e
ζ

+
1
s
βLρ VV3ζ − VVζ − V5ζ􏽨 􏽩. (31)

Next, using the inverse of ρ-Laplace transform of (31),

V(ζ , τ) � e
ζ

+ L
−1
ρ

1
s
βLρ VV3ζ − VVζ − V5ζ􏽮 􏽯􏼢 􏼣. (32)

Now, we apply HPM

􏽘

∞

n�0
p

n
Vn(ζ, τ) � e

ζ
+ p L

−1
ρ

1
s
βLρ 􏽘

∞

n�0
p

n
Hn(V)⎛⎝ ⎞⎠ − 􏽘

∞

n�0
p

n
Vn(ζ, τ)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

5ζ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦, (33)
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Figure 1: Graph of (a) exact and (b) analytic solutions of β � 1 of Example 1.
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Figure 2: Figure of various fractional orders of Example 1.
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where Hn(x) represents the nonlinear term of He’s poly-
nomial. For the first few components, we present He’s
polynomials

H0(V) � Vo V0( 􏼁3ζ − V0 V0( 􏼁ζ,

H1(V) � V1 V0( 􏼁3ζ + V0 V1( 􏼁3ζ − V1 V0( 􏼁ζ − V0 V1( 􏼁ζ,

H2(V) � V2 V0( 􏼁3ζ + V1 V1( 􏼁3ζ + V0 V2( 􏼁3ζ

− V2 V0( 􏼁ζ − V1 V1( 􏼁ζ − V0 V2( 􏼁ζ,

H3(V) � V3 V0( 􏼁3ζ + V2 V1( 􏼁3ζ + V1 V2( 􏼁3ζ

+ V0 V3( 􏼁3ζ − V3 V0( 􏼁ζ − V2 V1( 􏼁ζ

− V1 V2( 􏼁ζ − V0 V3( 􏼁ζ,

H4(V) � V4 V0( 􏼁3ζ + V3 V1( 􏼁3ζ + V2 V2( 􏼁3ζ

+ V1 V3( 􏼁3ζ + V0 V4( 􏼁3ζ − V4 V0( 􏼁ζ

− V3 V1( 􏼁ζ − V2 V2( 􏼁ζ − V1 V3( 􏼁ζ − V0 V4( 􏼁ζ,

⋮

(34)

Comparing the P-like coefficients, we have
p
0
: V0(ζ , τ) � e

ζ
,

p
1
: V1(ζ , τ) � L

−1
ρ

1
s
βLρ H0(V) − V0( 􏼁5ζ􏽮 􏽯􏼢 􏼣 � −

τρ/ρ( 􏼁
β

Γ(β + 1)
e
ζ
,

p
2
: V2(ζ , τ) � L

−1
ρ

1
s
βLρ H1(V) − V1( 􏼁5ζ􏽮 􏽯􏼢 􏼣 �

τρ/ρ( 􏼁
2β

Γ(2β + 1)
e
ζ
,

p
3
: V3(ζ , τ) � L

−1
ρ

1
s
βLρ H2(V) − V2( 􏼁5ζ􏽮 􏽯􏼢 􏼣 � −

τρ/ρ( 􏼁
3β

Γ(3β + 1)
e
ζ
,

p
4
: V4(ζ , τ) � L

−1
ρ

1
s
βLρ H3(V) − V3( 􏼁5ζ􏽮 􏽯􏼢 􏼣 �

τρ/ρ( 􏼁
4β

Γ(4β + 1)
e
ζ
,

p
5
: V5(ζ , τ) � L

−1
ρ

1
s
βLρ H4(V) − V4( 􏼁5ζ􏽮 􏽯􏼢 􏼣 � −

τρ/ρ( 􏼁
5β

Γ(5β + 1)
e
ζ
.

⋮

(35)

/erefore, the analytic solution of V(ζ , τ) is defined as

V(ζ , τ) � 􏽘
∞

i�0
Vi(ζ, τ) � e

ζ 1 −
τρ/ρ( 􏼁

β

Γ(β + 1)
+

τρ/ρ( 􏼁
2β

Γ(2β + 1)
⎛⎝

−
τρ/ρ( 􏼁

3β

Γ(3β + 1)
+

τρ/ρ( 􏼁
4β

Γ(4β + 1)
−

τρ/ρ( 􏼁
5β

Γ(5β + 1)
+ · · ·⎞⎠.

(36)

/en, β � 1 for (36), and we get

V(ζ , τ) � 􏽘
∞

i�0
Vi(ζ , τ) � e

ζ 1 − τ +
τ2

2!
−
τ3

3!
+
τ4

4!
−
τ5

5!
+ · · ·􏼠 􏼡.

(37)

/e exact solution is V(ζ , τ) � eζ− τ .

In Figure 3, the three-dimensional figures of ρ-HPTM
and exact results in graphs (a) and (b) respectively at β � 1
and the close contact of the exact and ρ-HPTM solutions are
investigated. In Figure 4, represent that various fractional
order of ρ-HPTM results at β � 1, 0.8, 0.6, 0.4. /e non-
classical results are investigated to be converge to an integer-
order result of the given problem.

Example 3. Consider nonlinear fractional-order Kawahara
equation

D
β
τV + VVζ + V3ζ − V5ζ � 0, 0< β≤ 1, (38)

with the IC

V(ζ , τ) �
105
169

sech4
ζ − ϕ
2

��
13

√􏼠 􏼡. (39)

Applying the ρ-Laplace transform on (38), we get

LρV(ζ , τ)] �
1
s

105
169

sech4
ζ − ϕ
2

��
13

√􏼠 􏼡 +
1
s
βLρ V5ζ − V3ζ − VVζ􏽨 􏽩.

(40)

Next, using the inverse of ρ-Laplace transform of (40),

V(ζ , τ) �
105
169

sech4
ζ − ϕ
2

��
13

√􏼠 􏼡 + L
−1
ρ

1
s
βLρ V5ζ − V3ζ − VVζ􏽨 􏽩􏼢 􏼣.

(41)

Now, we apply HPM

􏽘

∞

n�0
p

n
Vn(ζ, τ) �

105
169

sech4 ζ − ϕ
2

��
13

√􏼠 􏼡 + p L
−1
ρ

1
s
βLρ 􏽘

∞

n�0
p

n
Vn(ζ , τ)⎛⎝ ⎞⎠

5ζ

⎛⎝
⎧⎪⎨

⎪⎩
⎡⎢⎢⎢⎢⎢⎣

− 􏽘
∞

n�0
p

n
Vn(ζ , τ)⎛⎝ ⎞⎠

3ζ

− 􏽘
∞

n�0
p

n
Hn(V)⎛⎝ ⎞⎠⎞⎠

⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦,

(42)

where Hn(V) represent the nonlinear terms of He’s poly-
nomial. For the first few components, we present He’s
polynomials

H0(V) � V0 V0( 􏼁ζ,

H1(V) � V0 V1( 􏼁ζ + V1 V0( 􏼁ζ,

H2(V) � V0 V2( 􏼁ζ + V1 V1( 􏼁ζ + V2 V0( 􏼁ζ,

H3(V) � V0 V3( 􏼁ζ + V1 V2( 􏼁ζ + V2 V1( 􏼁ζ + V3 V0( 􏼁ζ,

H4(V) � V0 V4( 􏼁ζ + V1 V3( 􏼁ζ + V2 V2( 􏼁ζ

+ V3 V1( 􏼁ζ + V4 V0( 􏼁ζ,

⋮
(43)

Comparing the P-like coefficients, we get
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p
0
: V0(ζ, τ) �

105
169

sech4 ζ − ϕ
2

��
13

√􏼠 􏼡,

p
1
: V1(ζ, τ) � L

−1
ρ

1
s
βLρ V0( 􏼁5ζ − V0( 􏼁5ζ − H0(V)􏽨 􏽩􏼢 􏼣 � −

100
377

��
13

√ sech4 ζ − ϕ
2

��
13

√􏼠 􏼡tanh
ζ − ϕ
2

��
13

√􏼠 􏼡
τρ/ρ( 􏼁

β

Γ(β + 1)
,

p
2
: V2(ζ, τ) � L

−1
ρ

1
s
βLρ V1( 􏼁5ζ − V1( 􏼁3ζ − H1(V)􏽨 􏽩􏼢 􏼣

� −
21687

10 × 107
��
13

√ sech6 ζ − ϕ
2

��
13

√􏼠 􏼡 −3 + 2cosh
ζ − ϕ
2

��
13

√􏼠 􏼡􏼢 􏼣
τρ/ρ( 􏼁

2β

Γ(2β + 1)
,

p
3
: V3(ζ, τ) � L

−1
ρ

1
s
βLρ V2( 􏼁5ζ − V2( 􏼁3ζ − H2(V)􏽮 􏽯􏼢 􏼣

� −
461962

10 × 107
��
13

√ sech7 ζ − ϕ
2

��
13

√􏼠 􏼡 × −13sinh
ζ − ϕ
2

��
13

√􏼠 􏼡 + 2sinh
3 ζ − tϕ( 􏼁

2
���
‘13

√􏼠 􏼡􏼢 􏼣
τρ/ρ( 􏼁

3β

Γ(3β + 1)
,

p
4
: V4(ζ, τ) � L

−1
ρ

1
s
βLρ V3( 􏼁5ζ − V3( 􏼁3ζ − H3(V)􏽨 􏽩􏼢 􏼣

� −
3784854

10 × 107
��
13

√ sech8 ζ − ϕ
2

��
13

√􏼠 􏼡 × −49scosh
ζ − ϕ
2

��
13

√􏼠 􏼡 + 4cosh
2 ζ − tϕ( 􏼁

2
���
‘13

√􏼠 􏼡 + 52􏼢 􏼣
τρ/ρ( 􏼁

4β

Γ(4β + 1)
,

p
5
: V5(ζ, τ) � L

−1
ρ

1
s
βLρ V4( 􏼁5ζ − V4( 􏼁3ζ − H4(V)􏽨 􏽩􏼢 􏼣

� −
3.22496310 × 107

��
13

√ sech9 ζ − ϕ
2

��
13

√􏼠 􏼡 × 171sinh
3(ζ − ϕ)

2
��
13

√􏼠 􏼡 − 8sinh
5(ζ − ϕ)

2
���
‘13

√􏼠 􏼡􏼢

−661sinh
5 ζ − tϕ( 􏼁

2sqrt13
􏼠 􏼡􏼣

τρ/ρ( 􏼁
5β

Γ(5β + 1)
.

⋮

(44)
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Figure 3: Graph of (a) exact and (b) analytic solutions of β � 1 of Example 2.
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/e analytic solution V(ζ , τ) is achieved as

V(ζ, τ) � 􏽘
∞

i�0
Vi(ζ, τ),

V(ζ, τ) �
105
169

sech4 ζ − ϕ
2

��
13

√􏼠 􏼡 −
100

377
��
13

√ sech4 ζ − ϕ
2

��
13

√􏼠 􏼡tanh
ζ − ϕ
2

��
13

√􏼠 􏼡
τρ/ρ( 􏼁

β

Γ(β + 1)

−
21687

10 × 107
��
13

√ sech6 ζ − ϕ
2

��
13

√􏼠 􏼡 −3 + 2cosh
ζ − ϕ
2

��
13

√􏼠 􏼡􏼢 􏼣
τρ/ρ( 􏼁

2β

Γ(2β + 1)

−
461962

10 × 107
��
13

√ sech7 ζ − ϕ
2

��
13

√􏼠 􏼡 × −13sinh
ζ − ϕ
2

��
13

√􏼠 􏼡 + 2sinh
3(ζ − ϕ)

2
���
‘13

√􏼠 􏼡􏼢 􏼣
τρ/ρ( 􏼁

3β

Γ(3β + 1)

−
3784854

10 × 107
��
13

√ sech8 ζ − ϕ
2

��
13

√􏼠 􏼡 × −49scosh
ζ − ϕ
2

��
13

√􏼠 􏼡 + 4cosh
2(ζ − ϕ)

2
���
‘13

√􏼠 􏼡 + 52􏼢 􏼣
τρ/ρ( 􏼁

4β

Γ(4β + 1)

−
3.22496310 × 107

��
13

√ sech9 ζ − ϕ
2

��
13

√􏼠 􏼡 × 171sinh
3(ζ − ϕ)

2
��
13

√􏼠 􏼡 − 8sinh
5(ζ − ϕ)

2
���
‘13

√􏼠 􏼡􏼢

−661sinh
5(ζ − ϕ)

2
��
13

√􏼠 􏼡􏼣
τρ/ρ( 􏼁

5β

Γ(5β + 1)
+ · · · .

(45)

/e exact solution is V(ζ , τ) � 105/169sech4

[1/2
��
13

√
(ζ + 36τ/169 − ϕ)].

In Figure 5, the three-dimensional figures of ρ-HPTM
and exact results in graphs (a) and (b) respectively at β � 1
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Figure 4: Figure of (a) and (b) at various fractional-order of Example 2.
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and the close contact of the exact and ρ-HPTM solutions
are investigated. In Figure 6, represent that various
fractional order of ρ-HPTM results at β � 1, 0.8, 0.6, 0.4.
/e nonclassical results are investigated to be converge to
an integer-order result of the given problem.

5. Conclusions

/is paper determined the fractional-order Kawahara and
fifth-order KdV equations, applying the ρ-homotopy
perturbation transform method. /e present method is

used to describe the results for specific examples. /e
ρ-HPTM result is highly congruent with the precise so-
lution of the suggested problems. Additionally, the pro-
posed method estimated the results of the cases using
fractional-order derivatives. /e graphical examination of
the resulting fractional-order results proved their con-
vergence to integer-order outcomes. Additionally, the
ρ-HPTM technique is straightforward, simple, and
computationally efficient; the suggested method can be
adapted to solve additional fractional-order partial dif-
ferential equations.
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Figure 6: Figure of (a) at various fractional-order of β and (b) error graph of Example 3.
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Figure 5: Graph of (a) exact and (b) analytical results of β � 1 of Example 3.
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�is paper is concerned with persistence of heteroclinic cycles connecting repellers in Banach spaces. It is proved that if a map with
a regular and nondegenerate heteroclinic cycle connecting repellers undergoes a small perturbation, then the perturbed map can
still have a regular and nondegenerate heteroclinic cycle connecting repellers.�e perturbation rang is given by an explicit positive
constant according to the properties of the original map. Hence, the perturbed map and the original map are simultaneously
chaotic in the sense of both Devaney and Li-Yorke. Especially, the persistence of heteroclinic cycles connecting repellers is also
discussed in the Euclidean space, where the repellers can expand in di�erent norms. Finally, three examples are provided to
illustrate the validity of the theoretical results.

1. Introduction

Chaos is a very important kind of dynamical behaviors in
nonlinear systems and chaos problems have attracted a lot of
attention from many scientists and sgd mathematicians. In
1975, the �rst mathematical de�nition of chaos and a famous
result that “period three implies chaos” were given by Li and
Yorke [1] in studying continuous interval maps. After that,
di�erent de�nitions of chaos from di�erent points of view
were proposed by researchers, one can see [2–4] for some
related de�nitions of chaos. Among these mathematical
de�nitions, chaos in the sense of Li-Yorke, Devaney or
Wiggins are often used in the literature, see [5–8] for dis-
cussions of their relationships. �en, there appeared many
works to study chaotic behaviors of multidimensional maps.
A very famous work that “a snap-back repeller implies
chaos” in the sense of Li-Yorke was proposed byMarotto [9],
which is a generalization of Li and Yorke’s result from one-
dimensional maps to multidimensional maps. �is result
shows great power in studying chaos of �nite dimensional
maps. However, it is clear that there are many systems
should be studied in in�nite dimensional spaces, such as
Banach spaces and metric spaces. �en, a lot of works have
been done on chaotic behaviors of in�nite dimensional

maps. Some of these important results were given by Shi and
her cooperators. In 2004, Shi and Chen [10] extended the
concept of snap-back repeller to metric spaces and obtained
several criteria of chaos. Later, Shi and her cooperators
developed the coupled-expansion theory and used it to study
chaos, see [11–14] and references therein.

Structural stability of chaotic maps is a very important
and interesting question, and many results have been
achieved. Marotto �rst studied perturbations of maps with
snap-back repellers in [15, 16], and proved that if a scalar
system with a snap-back repeller undergoes a small per-
turbation, then the perturbation system will have a trans-
versal homoclinic point and thus has chaotic behaviors.
Later, there appeared several results about multidimensional
perturbations of chaotic systems, see [17–19]. In 2009, Li and
Lyu [20] proved that if a map with a snap-back repeller in Rn
undergoes a mall C1 perturbation, then the perturbed map
still has a snap-back repeller and consequently is chaotic in
the sense of Li-Yorke. However, all the above perturbations
of chaotic systems were made in �nite dimensional spaces.
In 2011, Chen et al. [21] studied the persistence of snap-back
repellers under small C1 perturbations in Banach spaces. In
2012, Zhang et al. [22] used a di�erent method to study the
persistence of snap-back repellers under small Lipschitz
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perturbations in Banach spaces. Moreover, Zhang and Shi
[23] studied the persistence of coupled-expansion for time-
varying systems under small time-varying perturbations in
Banach spaces, and showed the persistence of snap-back
repellers.

In 2006, Lin and Chen [24] gave a result that hetero-
clinical repellers imply chaos in the sense of Li-Yorke in Rn.
In their definition of heteroclinical repellers, there were
some conditions given by the Jacobian matrices of a map.
However, a map in a metric space may not have derivatives
in general. In 2008, based on their work, Li et al. [25] grasped
the essential meanings of the definition of heteroclinical
repellers to extend it to general metric spaces without
needing the continuity or continuous differentiability. For
more intuitive to reflect the relationships of the repellers,
they redefined it as a heteroclinic cycle connecting repellers
and obtained several criteria of chaos. Later, they studied
chaos induced by heteroclinic cycles connecting repellers in
general Banach spaces [26], and used these results to study
existence of chaos or chaotification problems [27]. +is
shows that the heteroclinic cycle connecting repellers has
significant effects on chaos studying. Hence, it is worth
studying whether a heteroclinic cycle connecting repellers
has the persistence under small perturbations as that for a
snap-back repeller. Recently, in 2020, Chen and Wu [28]
studied the persistence of heteroclinic repellers in Rn for C1

maps under small C1 perturbations. Chen et al. [29] studied
the persistence of heteroclinic repellers in Banach spaces for
C1 maps under small C1 perturbations. It is noted that the
definitions of heteroclinic repellers in [28, 29] both needed
the differentiability of a map as that definition in [24]. In
2021, Wu [30] extended the concept of heteroclinic repellers
in [24] to heteroclinic cycle connecting expanding periodic
points in Rn and studied the persistence of it for C1 maps
under C1 perturbations, where the maps needed to be
continuously differentiable in the whole space. More re-
cently, Chen and Luo [31] studied the persistence of regular
nondegenerate snap-back repellers and heteroclinic cycles
for continuous maps under small Lipschitz perturbations,
where the maps were continuous in the whole Banach space.
On the one hand, it should be pointed out that all the above
results needed the maps to be continuous or continuously
differentiable in the whole space. However, there are a lot of
maps that may not be continuous or continuously differ-
entiable in the whole space. On the other hand, it should be
pointed out that all the above results needed the pertur-
bations to be small enough and did not give a relatively
explicit expression for the range of small perturbations,
which is convenient and useful in applications to quickly
check out whether the persistence is maintained. So, it is
meaningful to study persistence of heteroclinic cycles
connecting repellers for maps which are only continuous or
continuously differentiable in some domains of the whole
space, and it is also meaningful to study the explicit ex-
pression for the range of small perturbations.

+e fixed point theory has become an essential tool to
resolve some problems in nonlinear analysis, including
fractional calculus, see [32, 33] and references therein for
more details about this theory. Here, we will apply the

Banach contractive mapping principle and the ideas used in
[22, 23] to study the persistence of regular and nondegen-
erate heteroclinic cycles connecting repellers in Banach
spaces, where the original maps are only continuous or
continuously differentiable in some neighborhoods of
points. An important result is that an explicit expression for
the range of perturbations is given. It will be proved that if a
map with a regular and nondegenerate heteroclinic cycle
connecting repellers undergoes a small Lipschitz perturba-
tion, then the perturbed map can still have a regular and
nondegenerate heteroclinic cycle connecting repellers. So,
the perturbed map and the original map are simultaneously
chaotic in the sense of both Devaney and Li-Yorke. Par-
ticularly, the persistence of heteroclinic cycles connecting
repellers is also discussed in Rn. +e significant difference
between our result and those obtained in [28, 30] is that the
repellers in our result expand in different norms, while the
repellers in the latter expand in the single Euclidean norm. It
is clear that different fixed points can expand in different
norms in Rn. So, our result is more general in practice.

+e rest of the paper is organized as follows. Some
concepts and lemmas are given in Section 2. Several theo-
rems about perturbations of maps with heteroclinic cycles
connecting repellers in general Banach spaces or the Eu-
clidean space are given in Section 3. +ree examples are
provided to illustrate the validity the theoretical results in
Section 4. Finally, conclusions are made in Section 5.

2. Preliminaries

Some definitions and lemmas are given in this section.
Two usually used definitions of chaos in the sense of Li-

Yoke or Devaney are first introduced. +en, the concept of a
heteroclinic cycle connecting repellers is introduced.

Definition 1 (see [1]). Let (X, d) be a metric space,
f: X⟶ X be a map, and S be a set of X with at least two
distinct points. +en, S is called a scrambled set of f if for
any two distinct points x, y ∈ S,

lim inf
n⟶∞

d f
n
(x), f

n
(y)( 􏼁 � 0, lim sup

n⟶∞
d f

n
(x), f

n
(y)( 􏼁> 0. (1)

+emap f is said to be chaotic in the sense of Li-Yorke if
there exists an uncountable scrambled set S of f.

Remark 1. +ere are three conditions in the original
characterization of chaos in Li-Yorke’s theorem [1]. Since
the third one is not essential, it is removed in Definition 1 in
most literature.

Example 1. Consider the following Baker’s equation

xn+1 �

2xn, for 0≤ xn ≤
1
2
,

2 1 − xn( 􏼁, for
1
2
< xn ≤ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

which models the mixing of a dye spot on a strip of dough
that is repeatedly stretched and folded over on itself. +e
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iterative scheme (2) maps the interval [0, 1] into itself. It is
easy to check that system (2) has a cycle of period three and
hence is chaotic in the sense of Li-Yorke by the Li-Yorke
theorem in [1]. +is equation has been extensively discussed
in the literature [7, 34] and references cited therein.

Definition 2 (see [4]). Let (X, d) be a metric space. A map
f: V ⊂ X⟶ V is said to be chaotic on V in the sense of
Devaney if

(i) +e set of the periodic points of f is dense in V

(ii) f is topologically transitive in V

(iii) f has sensitive dependence on initial conditions in
V

Remark 2. In 1992, Banks et al. [5] proved that conditions (i)
and (ii) together imply condition (iii) if f is continuous in V.
So, condition (iii) is redundant in the above definition in this
case. It has been proved by [6] that chaos in the sense of
Devaney is stronger than chaos in the sense of Li-Yorke
under some conditions.

Example 2. Let

􏽘 +
2 : � s � s0, s1, s2, . . .( 􏼁: sj � 0 or 1􏽮 􏽯, (3)

with the distance

ρ(s, t) : � 􏽘
∞

i�0

si − ti

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2i
, (4)

where s � (s0, s1, s2, . . .) and t � (t0, t1, t2, . . .). +en (􏽐
+
2 ρ)

is a complete metric space and a Cantor set, see Lemma 2.5
in [10]. +e shift map σ: Σ+2⟶Σ

+
2 defined by

σ((s0, s1, s2, . . .)) � (s1, s2, . . .) is continuous. +e dynamical
system defined by σ is called a one-sided symbolic dynamical
system. It follows from [[4], Part 1, Proposition 6.6] that σ
has the following properties:

(i) Card Pern(σ) � 2n

(ii) Per(σ) is dense in Σ+2
(iii) there exists a dense orbit of σ in Σ+2
Here, Card Pern(σ) denotes the number of periodic

points of period n for σ. It is clear that property (iii ) implies
that σ is transitive. +erefore, the symbolic dynamical
system is chaotic in the sense of Devaney. See [3, 4] for more
discussions about this symbolic dynamical system.

Definition 3 (see [26], Definition 2.5). Let (X, d) be a metric
space and f: X⟶ X be a map with k(≥ 2) fixed points
z1, . . . , zk ∈ X.

(I) Suppose that, for each i(1≤ i≤ k), zi is an expanding
fixed point of f in Bri

(zi), and there exist a point
xi0 ∈ Bri

(zi), xi0 ≠ zi, and a positive integer mi ≥ 1
such that fmi (xi0) � zt(i), and zi is the limit for the
backward orbit of xi0, where Bri

(zi) and Bri
(zi) are

the closed and open balls of radius ri centered at zi,
t(i) � [imod k] + 1. +en all the points

xi0(1≤ i≤ k), together with their backward and
forward orbits consist of a set, which is called a
k-heteroclinic cycle connecting repellers z1, . . . , zk.

(II) Suppose that f has a k-heteroclinic cycle connecting
repellers z1, . . . , zk. For each point x0 on the cycle, if
there exists a positive constant r0 such that for each
positive constant r≤ r0, f(x0) is an interior point of
f(Br(x0)), then the cycle is called regular; if there
exist positive constants r1 and μ such that
d(f(x), f(y))≥ μ d(x, y),∀x, y ∈ Br1

(x0), then
the cycle is called nondegenerate.

Remark 3. It is pointed out that the necessary and sufficient
condition for a heteroclinic cycle connecting repellers is used
to give the definition (I) for simplicity, see (1) of Remark 2.2
in [26]. In addition, it does not need the continuity or
continuous differentiability in this definition, while some
similar definitions need them, see [24–26, 28–31] for more
details about this concept.

For convenience, some notations are given in the fol-
lowing. +e continuously differentiable maps in a set U of a
Banach space X are denoted by C1(U, X). +e derivative of a
map f at a point x ∈ X is denoted by Df(x). In addition, for
a linear map L: X⟶ X, denote

‖L‖ :� sup ‖Lx‖: x ∈ X, ‖x‖ � 1{ },

‖L‖
0

:� inf ‖Lx‖: x ∈ X, ‖x‖ � 1{ }.
(5)

If a bounded linear map L has a bounded inverse, then L

is said to be an invertible linear map, see Definition 4.17 in
[35]. +e following four lemmas will be used in the paper.

Lemma 1 (see [22], Lemma 2.4). Let (X, ‖ · ‖) be a Banach
space, z ∈ X, and f: Br(z)⟶ f(Br(z)) be a continuous
map. Assume that f(Br(z)) is an open set of X and

‖f(x) − f(y)‖≥ μ‖x − y‖, ∀x, y ∈ Br(z), (6)

for some constant μ> 0, then

B(μ− L)r(F(z)) ⊂ F Br(z)( 􏼁, (7)

where F � f + g and g is a Lipschitz map in Br(z) with
Lipschitz constant L< μ.

Lemma 2 (see [25], +eorem 3.4). Let (X, d) be a complete
metric space and f: X⟶ X be a map. Assume that

(i) f has a regular and nondegenerate k-heteroclinic
cycle connecting repellers z1, . . . , zk ∈ X, k≥ 2

(ii) f is continuous in some neighborhood of each point
on the cycle

1en there exists an uncountable, perfect, bounded, and
closed set V such that f(V) � V and f is chaotic on V in the
sense of Devaney as well as in the sense of Li-Yorke.

Lemma 3 (see [26], Lemma 2.2; [22], Lemma 2.3). Let
(X, ‖ · ‖) be a Banach space and f: X⟶ X be a map.
Assume that f has a heteroclinic cycle connecting repellers
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z1, . . . , zk ∈ X, k≥ 2, and for each point x0 on the cycle f is
continuously differentiable in some neighborhood of x0 and
satisfies that Df(x0) is an invertible linear map, then the
cycle is regular and nondegenerate.

Lemma 4 (see [11], Lemma 2.2). Let (X, ‖ · ‖) be a Banach
space. Suppose that a map f: X⟶ X is continuously dif-
ferentiable in Br0

(x0) for some x0 ∈ X and some r0 > 0, and
satisfies that λ0 � ‖Df(x0)‖

0 > 0, then for each ε ∈ (0, λ0),
there exists a positive constant r1 < r0 such that

‖f(x) − f(y)‖≥ λ0 − ε( 􏼁‖x − y‖, ∀x, y ∈ Br1
x0( 􏼁. (8)

3. PersistenceofHeteroclinicCyclesConnecting
Repellers in Banach Spaces

In this section, we will study persistence of heteroclinic
cycles connecting repellers in Banach spaces. Assume that
(X, ‖ · ‖) is a Banach space, f, g: X⟶ X are two maps,
and f has a regular and nondegenerate heteroclinic cycle
connecting repellers and is continuous in some neighbor-
hoods of interest points. Here, we study the following system:

xn+1 � f xn( 􏼁 + g xn( 􏼁, n≥ 0, (9)

where g is viewed as a mall perturbation. It is proved that
there still has a regular and nondegenerate heteroclinic cycle
connecting repellers in (9) when g satisfies some conditions.
Consequently, the perturbed system (9) is chaotic in the
sense of both Devaney and Li-Yorke.

Theorem 1. Suppose that (X, ‖ · ‖) is a Banach space and
f: X⟶ X is a map with k(≥ 2) different fixed points
z1, . . . , zk ∈ X and satisfies the following:

(i) For each i (1≤ i≤ k), zi is a regular expanding fixed
point of f in Bri

(zi) with expanding coefficient λi0 for
some constant ri > 0. Furthermore, there exist a point
xi0 ∈ Bri

(zi), xi0 ≠ zi, and a positive integer mi ≥ 1
such that fmi (xi0) � zt(i), where t(i) � [imod k] + 1.
Consequently, f has a heteroclinic cycle Γ connecting
repellers z1, . . . , zk.

(ii) 1e heteroclinic cycle Γ connecting repellers is regular
and nondegenerate, and f is continuous in Bri

(zi)

and some neighborhood Uij of xij, where
xij � fj(xi0) for 1≤ i≤ k, 1≤ j≤mi − 1.

+en, there exists a constant ε0 > 0 such that for any
Lipschitz map g in each set of Bri

(zi) and Uij, 1≤ i≤ k,
1≤ j≤mi − 1, with the Lipschitz constant L satisfying

max L, g zi( 􏼁
����

����, g xij􏼐 􏼑
�����

�����, 1≤ i≤ k, 0≤ j≤mi − 1􏼚 􏼛< ε0.

(10)

+e perturbed system (9) also has a regular and non-
degenerate heteroclinic cycle Γ′ connecting repellers, and
consequently there exists an uncountable, perfect, bounded,
and closed set V such that system (9) is chaotic on V in the
sense of both Devaney and Li-Yorke.

Proof. Without loss of generality and for simplicity, we only
show that +eorem 1 is true for k � 2. When k> 2, one can
use a similar method to prove it. For convenience, let F(x) :

� f(x) + g(x) in the rest of this paper and i � 1 or 2 in the
rest of this proof.

Without loss of generality, we can suppose that
Br1

(z1)∩Br2
(z2) � ∅, and f(xi0) ∉ Bri

(zi). Otherwise, one
can see the third paragraph in the proof of +eorem 3.1 in
[25].

Since zi is a regular expanding fixed point of f in Bri
(zi)

with an expanding coefficient λi0, we get that

‖f(x) − f(y)‖≥ λi0‖x − y‖, ∀x, y ∈ Bri
zi( 􏼁, (11)

f: Bri
(zi)⟶ f(Bri

(zi)) is a homeomorphism and
f(Bri

(zi)) is open, f(D) is open for any open set
D ⊂ Bri

(zi). Take a constant

δi0 <
ri − zi − xi0

����
����

2
, (12)

such that Bδi0
(xi0) ⊂ Bri

(zi). +en, it follows form (11) that
f: Bδi0

(xi0)⟶ f(Bδi0
(xi0)) is also a homeomorphism.

From assumption (ii), it follows that there exist positive
constants μij and δij such that

‖f(x) − f(y)‖≥ μij‖x − y‖, ∀x, y ∈ Bδij
xij􏼐 􏼑, (13)

f: Bδij
(xij)⟶ f(Bδij

(xij)) is homeomorphic, and
f(Bδij

(xij)) is open for 1≤ j≤mi − 1, where δij satisfies the
following conditions

δi1 < λi0δi0, δi,j+1 < μijδij, for 1≤ j≤mi − 2, (14)

Bδij
(xij) are disjoint subsets of Uij and Bδij

(xij)∩Bri
(zi) �

∅ for fixed i and 1≤ j≤mi − 1.
In the following, we will show that the map F satisfies the

conditions in Lemma 2. It will be finished by the following
three steps. □

Step 1. It is to prove that F has two regular expanding fixed
points z∗1 and z∗2 when g satisfies some conditions.

For proving the existence of z∗1 , we take two positive
constants δ2,m2

and ε1 such that

δ2,m2
<

min λ20δ20,
r1 − z1 − x10

����
����

2
− δ10􏼨 􏼩, if m2 � 1;

min μ2,m2− 1δ2,m2− 1,
r1 − z1 − x10

����
����

2
− δ10􏼨 􏼩, if m2 > 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε1 �
λ10 − 1( 􏼁δ2,m2

1 + δ2,m2

.

(15)

Consider the following equation

F(x) � x, x ∈ Bδ2,m2
z1( 􏼁, (16)

which is equivalent to the following equation:
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f(x) � x − g(x), x ∈ Bδ2,m2
z1( 􏼁. (17)

It follows from the first relation of (15) that
Bδ2,m2

(z1) ⊂ Br1
(z1). By assumption (i) and (11), we get that

f: Bδ2,m2
(z1)⟶ f(Bδ2,m2

(z1)) is homeomorphic. +en we
obtain that f(Bδ2,m2

(z1)) is an open set and the inverse map
f− 1: f(Bδ2,m2

(z1))⟶ Bδ2,m2
(z1) satisfies the following:

f
− 1

(x) − f
− 1

(y)
����

����≤ λ− 1
10 ‖x − y‖, ∀x, y ∈ f Bδ2,m2

z1( 􏼁􏼒 􏼓. (18)

Hence, equation (17) is translated into the following:

f
− 1

(x − g(x)) � x. (19)

Here, it should prove that

x − g(x) ∈ f Bδ2,m2
z1( 􏼁􏼒 􏼓, ∀x ∈ Bδ2,m2

z1( 􏼁. (20)

On the one hand, for any x ∈ Bδ2,m2
(z1), we have

‖g(x)‖ � g(x) − g z1( 􏼁 + g z1( 􏼁
����

����≤ g(x) − g z1( 􏼁
����

����

+ g z1( 􏼁
����

����≤ Lδ2,m2
+ g z1( 􏼁

����
����.

(21)

Suppose that the map g satisfies

max L, g z1( 􏼁
����

����􏽮 􏽯< ε1, (22)

then,

Lδ2,m2
+ g z1( 􏼁

����
����< ε1δ2,m2

+ ε1 � λ10 − 1( 􏼁δ2,m2
. (23)

+erefore, it follows from (21) and (23) that, for any
x ∈ Bδ2,m2

(z1),

x − g(x) − z1
����

����≤ ‖g(x)‖ + x − z1
����

����< λ10 − 1( 􏼁δ2,m2
+ δ2,m2

� λ10δ2,m2
. (24)

On the other hand, for any x ∈ zBδ2,m2
(z1),

f(x) − z1
����

���� � f(x) − f z1( 􏼁
����

����≥ λ10 x − z1
����

���� � λ10δ2,m2
.

(25)

Since z1 ∈ f(Bδ2,m2
(z1)) and f(Bδ2,m2

(z1)) is an open set,
it follows from (24) and (25) that (20) is true.

According to the above discussion, we can define a map

h1(x) � f
− 1

(x − g(x)), x ∈ Bδ2,m2
z1( 􏼁. (26)

For any x ∈ Bδ2,m2
(z1), it follows from (18) and (24) that

h1(x) − z1
����

���� � f
− 1

(x − g(x)) − f
− 1

z1( 􏼁
����

����≤ λ− 1
10 x − g(x) − z1

����
����< δ2,m2

, (27)

which implies that h1 maps Bδ2,m2
(z1) into itself. Moreover,

for any x, y ∈ Bδ2,m2
(z1), we get from (18) that

h1(x) − h1(y)
����

���� � f
− 1

(x − g(x)) − f
− 1

(y − g(y))
����

����

≤ λ− 1
10[‖g(x) − g(y)‖ +‖x − y‖]

≤ λ− 1
10(L + 1)‖x − y‖.

(28)

It follows from the second relation of (15) and (22) that

λ10 > L + 1, (29)

which together with (28) yields that h1 is contractive in
Bδ2,m2

(z1). It follows from the Banach contractive mapping
principle and (27) that there exists a unique point
z∗1 ∈ Bδ2,m2

(z1) satisfying h1(z∗1 ) � z∗1 . Consequently,
F(z∗1 ) � z∗1 , that is, z∗1 is a fixed point of F in Bδ2,m2

(z1).
It should prove that z∗1 is a regular expanding fixed point

of F in some neighborhood of z∗1 . To do this, take

r
∗
1 �

r1 + z1 − x10
����

����

2
. (30)

+en, it follows from z∗1 ∈ Bδ2,m2
(z1) and the first relation

of (15) that

x10 − z
∗
1

����
���� � x10 − z1 + z1 − z

∗
1

����
����

≤ x10 − z1
����

���� + z1 − z
∗
1

����
����

≤ x10 − z1
����

���� + δ2,m2

< x10 − z1
����

���� +
r1 − z1 − x10

����
����

2

− δ10 � r
∗
1 − δ10,

(31)

which implies that Bδ10(x10) ⊂ Br∗1
(z∗1 ). For any x ∈ Br∗1

(z∗1 ),

x − z1
����

���� � x − z
∗
1 + z
∗
1 − z1

����
����≤ x − z

∗
1

����
���� + z
∗
1 − z1

����
����

< r
∗
1 + δ2,m2

<
r1 + z1 − x10

����
����

2
+

r1 − z1 − x10
����

����

2
− δ10

� r1 − δ10,
(32)

which implies that Br∗1
(z∗1 ) ⊂ Br1

(z1). Consequently,
f(Br∗1

(z∗1 )) is an open set. For any x, y ∈ Br∗1
(z∗1 ),
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‖F(x) − F(y)‖ � ‖f(x) + g(x) − f(y) − g(y)‖

≥ ‖f(x) − f(y)‖ − ‖g(x) − g(y)‖≥ λ10 − L( 􏼁‖x − y‖.
(33)

+en, it follows from (29) and (33) that z∗1 is an
expanding fixed point of F in Br∗1

(z∗1 ) with expanding co-
efficient λ10 − L> 1. Since f(Br∗1

(z∗1 )) is an open set, it
follows from Lemma 1 that

B λ10 − L( )r∗1
z
∗
1( 􏼁 � B λ10− L( )r∗1

F z
∗
1( 􏼁( 􏼁 ⊂ F Br∗1

z
∗
1( 􏼁􏼒 􏼓. (34)

which implies that z∗1 is an interior point of F(Br∗1
(z∗1 )).

Hence, z∗1 is a regular fixed point of F in Br∗1
(z∗1 ).

Here, it is to show that F(Br∗1
(z∗1 )) is an open set. For

each given point y ∈ F(Br∗1
(z∗1 )), there is a point

x ∈ Br∗1
(z∗1 ) satisfying F(x) � y. +en, there is a constant

r1 > 0 satisfying Br1
(x) ⊂ Br∗1

(z∗1 ). From the third paragraph
of the proof, it is easy to see that f(Br1

(x)) is an open set
because of Br∗1

(z∗1 ) ⊂ Br1
(z1). It also follows from Lemma 1

again that

B λ10− L( )r1
(y) � B λ10− L( )r1

(F(x)) ⊂ F Br1
(x)􏼐 􏼑 ⊂ F Br∗1

z
∗
1( 􏼁􏼒 􏼓, (35)

which implies that y is an interior point of F(Br∗1
(z∗1 )) and

then F(Br∗1
(z∗1 )) is an open set.

With a similar argument to the existence of z∗1 , we can
obtain the following positive constants

δ1,m1
<

min

λ10δ10,

r2 − z2 − x20
����

����

2
− δ20

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, if m1 � 1;

min

μ1,m1− 1δ1,m1− 1,

r2 − z2 − x20
����

����

2
− δ20

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, if m1 > 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2 �
λ20 − 1( 􏼁δ1,m1

1 + δ1,m1

,

r
∗
2 �

r2 + z2 − x20
����

����

2
,

(36)

such that when

max L, g z2( 􏼁
����

����􏽮 􏽯< ε2, (37)

there exists a point z∗2 ∈ Bδ1,m1
(z2) satisfying that z∗2 is a

regular expanding fixed point of F in (Br∗2
(z∗2 )) with

expanding coefficient λ20 − L> 1 and F(Br∗2
(z∗2 )) is an open

set.
A summary for this step is given as follows. When the

following condition holds

max L, g z1( 􏼁
����

����, g z2( 􏼁
����

����􏽮 􏽯<min ε1, ε2􏼈 􏼉, (38)

the map F will have two regular expanding fixed points
z∗1 ∈ Br∗1

(z∗1 ) and z∗2 ∈ Bδ1,m1
(z2), and F(Br∗

i
(z∗i )) is an open

set for i � 1, 2.

Step 2. It is to show that for each i(1≤ i≤ 2) there exists a
point yi0 in Br∗

i
(z∗i ) such that Fmi (yi0) � z∗t(i), where

t(i) � [imod 2] + 1.
We first prove that there exist m1 points y1j ∈ Bδ1j

(x1j),
0≤ j≤m1 − 1 such that

F y1j􏼐 􏼑 � y1,j+1, for 0≤ j≤m1 − 2,

F y1,m1− 1􏼐 􏼑 � z
∗
2 .

(39)

+at is, there exists a point y10 ∈ Bδ10(x10) ⊂ Br∗1
(z∗1 )

such that Fm1(y10) � z∗2 .
In order to do that, we first prove the existence of y1,m1− 1

by solving the following equation:

F(x) � z
∗
2 , x ∈ Bδ1,m1 − 1

x1,m1− 1􏼐 􏼑, (40)

which can be translated into the following:

f(x) � z
∗
2 − g(x), x ∈ Bδ1,m1 − 1

x1,m1− 1􏼐 􏼑. (41)

It follows from assumption (ii) and (13) that
f: Bδ1,m1 − 1

(x1,m1− 1)⟶ f(Bδ1,m1 − 1
(x1,m1− 1)) is homeomor-

phic with the inverse map
f− 1: f(Bδ1,m1 − 1

(x1,m1− 1))⟶ Bδ1,m1 − 1
(x1,m1− 1) satisfying

f
− 1

(x) − f
− 1

(y)
����

����≤ μ− 1
1,m1− 1‖x − y‖, ∀x, y ∈ f Bδ1,m1 − 1

x1,m1− 1􏼐 􏼑􏼒 􏼓. (42)

+en, equation (41) can be translated into the following:

f
− 1

z
∗
2 − g(x)( 􏼁 � x, x ∈ Bδ1,m1 − 1

x1,m1− 1􏼐 􏼑. (43)

Here, it needs to prove that

z
∗
2 − g(x) ∈ f Bδ1,m1 − 1

x1,m1− 1􏼐 􏼑􏼒 􏼓, x ∈ Bδ1,m1 − 1
x1,m1− 1􏼐 􏼑. (44)
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Suppose that g also satisfies

max L, g x1j􏼐 􏼑
�����

�����, 0≤ j≤m1 − 1􏼚 􏼛< ε3, (45)

where

ε3 � min ε1, ε2,
min λ10δ10 − δ11, μ1jδ1j − δ1,j+1, for 1≤ j≤m1 − 1􏽮 􏽯

1 + max δ1j, 0≤ j≤m1 − 1􏽮 􏽯

⎧⎨

⎩

⎫⎬

⎭. (46)

From (14) and (36), we get that ε3 > 0. On the one hand,
for any x ∈ Bδ1,m1 − 1

(x1,m1− 1), it follows from (45) and (46) that

z
∗
2 − g(x) − z2

����
���� � g x1,m1− 1􏼐 􏼑 − g(x) − g x1,m1− 1􏼐 􏼑 + z

∗
2 − z2

�����

�����

≤L x − x1,m1− 1

�����

����� + g x1,m1− 1􏼐 􏼑
�����

����� + z
∗
2 − z2

����
����

< ε3δ1,m1− 1 + ε3 + δ1,m1
� 1 + δ1,m1− 1􏼐 􏼑ε3 + δ1,m1

≤ 1 + δ1,m1− 1􏼐 􏼑
μ1,m1− 1δ1,m1− 1 − δ1,m1

1 + δ1,m1− 1
+ δ1,m1

� μ1,m1− 1δ1,m1− 1.

(47)

On the other hand, for any x ∈ zBδ1,m1 − 1
(x1,m1− 1), it

follows from (13) that

f(x) − z2
����

���� � f(x) − f x1,m1− 1􏼐 􏼑
�����

�����≥ μ1,m1− 1 x − x1,m1− 1

�����

����� � μ1,m1− 1δ1,m1− 1. (48)

Since z2 ∈ f(Bδ1,m1 − 1
(x1,m1− 1)) and f(Bδ1,m1 − 1

(x1,m1− 1)) is
open, it follows from (47) and (48) that (44) is true. So, we
can define a map

h2(x) � f
− 1

z
∗
2 − g(x)( 􏼁, x ∈ Bδ1,m1 − 1

x1,m1− 1􏼐 􏼑. (49)

It follows from (45) and (46) that

L< ε3 <
μ1,m1− 1δ1,m1− 1 − δ1,m1

1 + δ1,m1− 1
< μ1,m1− 1

δ1,m1− 1

1 + δ1,m1− 1
< μ1,m1− 1.

(50)

+en, for any x ∈ Bδ1,m1 − 1
(x1,m1− 1), it follows from (42)

and (47) that

h2(x) − x1,m1− 1

�����

����� � f
− 1

z
∗
2 − g(x)( 􏼁 − f

− 1
z2( 􏼁

����
����

≤ μ− 1
1,m1− 1 z

∗
2 − g(x) − z2

����
����< δ1,m1− 1.

(51)

+at is, h2 maps Bδ1,m1 − 1
(x1,m1− 1) into itself. Moreover, for

any x, y ∈ Bδ1,m1 − 1
(x1,m1− 1), it follows from (42) that

h2(x) − h2(y)
����

���� � f
− 1

z
∗
2 − g(x)( 􏼁 − f

− 1
z
∗
2 − g(y)( 􏼁

����
����

≤ μ− 1
1,m1− 1‖g(x) − g(y)‖≤Lμ− 1

1,m1− 1‖x − y‖,
(52)

which together with (50) implies that h2 is contractive in
Bδ1,m1 − 1

(x1,m1− 1). It follows from the Banach contractive
mapping principle and (51) that there exists a unique point
y1,m1− 1 ∈ Bδ1,m1 − 1

(x1,m1− 1) such that h(y1,m1− 1) � z∗2 . Conse-
quently, F(y1,m1− 1) � z∗2 , that is, equation (40) has a unique
solution y1,m1− 1 ∈ Bδ1,m1 − 1

(x1,m1− 1).
Using a similar method as above, we can prove that there

exist m1 − 1 unique points y1j ∈ Bδ1j
(x1j) for 0≤ j≤m1 − 2

such that F(y1j) � y1,j+1. +en, we get that
y10 ∈ Bδ10(x10) ⊂ Br∗1

(z∗1 ) such that Fm1(y10) � z∗2 .
Next, set g also to satisfy

max L, g x2j􏼐 􏼑
�����

�����, 0≤ j≤m2 − 1􏼚 􏼛< ε4, (53)

where

ε4 � min ε1, ε2,
min λ20δ20 − δ21, μ2jδ2j − δ2,j+1, for 1≤ j≤m2 − 1􏽮 􏽯

1 + max δ2j, 0≤ j≤m2 − 1􏽮 􏽯

⎧⎨

⎩

⎫⎬

⎭. (54)
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It follows from (14) and (15) that ε4 > 0.
Repeating a similar discussion as above, we can get when

g satisfies (53), there exist m2 unique points y2j ∈ Bδ2j
(x2j),

0≤ j≤m2 − 1, such that F(y2j) � y2,j+1 for 0≤ j≤m2 − 2,
and F(y2,m2− 1) � z∗1 . +at is, there exists a point
y20 ∈ Bδ20(x20) ⊂ Br∗2

(z∗2 ) such that Fm2(y20) � z∗1 .
Let ε0 � min εj, 1≤ j≤ 4􏽮 􏽯. If g satisfies the following

condition

max L, g zi( 􏼁
����

����, g xij􏼐 􏼑
�����

�����, 1≤ i≤ 2, 0≤ j≤mi − 1􏼚 􏼛< ε0, (55)

then the statements in Step 2 hold. Consequently, F has a
heteroclinic cycle Γ′ connecting repellers z∗1 and z∗2 .

Step 3. It is to show that the heteroclinic cycle Γ′ connecting
repellers z∗1 and z∗2 of F is regular and nondegenerate.

When the map g satisfies (55), it follows from the
discussions in Step 2 that yij ∈ Bδij

(xij) for 1≤ i≤ 2,
0≤ j≤mi − 1. Hence, for 1≤ i≤ 2, 0≤ j≤mi − 1, we can take
positive constants δij

′ < δij such that

yij ∈ Bδij
′ yij􏼐 􏼑 ⊂ Bδij

xij􏼐 􏼑. (56)

It follows from (11), (13), and (56) that for 1≤ i≤ 2,
1≤ j≤mi − 1,

‖F(x) − F(y)‖≥ ‖f(x) − f(y)‖ − ‖g(x) − g(y)‖≥ λi0 − L( 􏼁‖x − y‖, ∀x, y ∈ Br∗
i

z
∗
i( 􏼁, (57)

‖F(x) − F(y)‖≥ ‖f(x) − f(y)‖ − ‖g(x) − g(y)‖≥ μij − L􏼐 􏼑‖x − y‖, ∀x, y ∈ Bδij
′ yij􏼐 􏼑, (58)

where λi0 >L + 1 and μij > L can be derived from (45), (46),
(53), and (54).

For each i(1≤ i≤ 2), since z∗i is a regular expanding fixed
point of F and F(Br∗

i
(z∗i )) is an open set, the backward orbit

of yi0 lies in Br∗
i
(z∗i ) and (57) holds in some neighborhood of

each point on the backward orbit. +e forward orbit of yi0
consists of yij for 1≤ j≤mi − 1 and (58) holds for each yij in
Bδij
′(yij). +erefore, the heteroclinic cycle Γ′ connecting

repellers z∗1 and z∗2 is nondegenerate. In addition, it is clear
that F is continuous in Br∗

i
(z∗i ) and Bδij

′(yij) for 1≤ i≤ 2,
1≤ j≤mi − 1. It follows from (3) of Remark 2.2 in [25] that if
we prove that for each point y0 on the cycle Γ′, there exists a
positive constant r0 such that F(y0) is an interior point of
F(Br0

(y0)), then this cycle Γ′ is regular.
Firstly, for each point y0 on Γ′ lying in Br∗

i
(z∗i ), there

exists a constant r0 such that Br0
(y0) ⊂ Br∗

i
(z∗i ). It follows

from (57) and Lemma 1, by using F to replace f and making
g � 0, that

B λi0− L( )r0
F y0( 􏼁( 􏼁 ⊂ F Br0

y0( 􏼁􏼐 􏼑, (59)

which implies that F(y0) is an interior point of F(Br0
(y0)).

Secondly, for each point yij, 1≤ j≤mi − 1, on Γ′ lying
out Br∗

i
(z∗i ), it follows from (58) and Lemma 1, by using F to

replace f and making g � 0 again, that

B μij− L( 􏼁δij
′ F yij􏼐 􏼑􏼐 􏼑 ⊂ F Bδij

′ yij􏼐 􏼑􏼒 􏼓, (60)

which implies that F(yij) is an interior point of F(Bδij
′(yij)).

Hence, the cycle Γ′ is regular. +at is, the heteroclinic
cycle Γ′ connecting repellers z∗1 and z∗2 of F is regular and
nondegenerate. Consequently, it follows form Lemma 2 that
there exists an uncountable, perfect, bounded, and closed set
V such that system (9) is chaotic on V in the sense of both
Devaney and Li-Yorke. +is completes the proof.

Remark 4. +eorem 1 gives a relatively explicit range of the
Lipschitz perturbation gwhich is characterized by a constant

ε0 determined by the properties of the original map f. From
(10), we see that it only needs L and the values of g at zi, xij

are less than ε0, and it does not need to compute all the values
of g in some domains. Hence, the conditions about g in
+eorem 1 are relatively easy to check out in practice. In
addition, it only needs the original map f to be continuous
near some points of interest without having to be continuous
in the whole space.

Remark 5. From the proof of+eorem 1, it is easy to see that
the perturbed map F will have a regular and nondegenerate
heteroclinic cycle Γ′ connecting repellers if the unperturbed
map f with a regular and nondegenerate heteroclinic cycle Γ
connecting repellers undergoes a small perturbation, and the
cycle Γ′ is near to Γ.+e perturbed range of g is characterized
by ε0 determined in +eorem 1. +us, this result can be
viewed as persistence of regular and nondegenerate heter-
oclinic cycles connecting repellers in Banach spaces.

When the original map f is continuously differentiable
in some domains of interest, using a similar method to
+eorem 1, we can get the following result.

Theorem 2. Let (X, ‖ · ‖) be a Banach space and
f: X⟶ X be a map with k(≥ 2) different fixed points
z1, . . . , zk ∈ X. Assume that

(i) For each i(1≤ i≤ k), f is continuously differentiable
in Bri
′(zi) for some constant ri

′ > 0 and Df(zi) is an
invertible linear map satisfying ‖Df(zi)‖

0 > 1, which
is equivalent to that there exists a positive constant
ri ≤ ri
′ such that zi is a regular expanding fixed point

of f in Bri
(zi).

(ii) f has a heteroclinic cycle Γ connecting repellers
z1, . . . , zk.

(iii) f is continuously differentiable in some neighbor-
hood Ux0

of each point x0 on the cycle Γ, and Df(x0)

is an invertible linear map.
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+en, there exists a constant ε0 > 0 such that for any
Lipschitz map g in each set of Bri

(zi) andUx0
for x0 ∈ Γ, with

the Lipschitz constant L satisfying

max L, g x0( 􏼁
����

���� forx0 ∈ Γ􏽮 􏽯< ε0, (61)

the results of +eorem 1 hold.

Proof. It follows from the assumptions in +eorem 2 and
Lemma 3 that f has a regular and nondegenerate hetero-
clinic cycle Γ connecting repellers z1, . . . , zk. For each
i(1≤ i≤ k), since zi is a regular expanding fixed point of f,
there exist a point xi0 ∈ Bri

(zi) and a positive integer mi ≥ 1
such that f(xi0) ∉ Bri

(zi) and fmi (xi0) � zt(i), where
t(i) � [imod k] + 1. +e rest of the proof is similar to that of
+eorem 1, so it is omitted.

For a function f ∈ C1(U, X), the following norm is often
used

‖f‖C1 ,U :� sup ‖f(x)‖, ‖Df(x)‖, x ∈ U ⊂ X􏼈 􏼉. (62)

+erefore, if the conditions in+eorems 1 and 2 about g

are replaced by those based on the above norm, then we can
obtain two consequences of +eorems 1 and 2. For con-
venience, we list them as the following theorems. □

Theorem 3. Suppose that (X, ‖ · ‖) is a Banach space,
f: X⟶ X is a map with k(≥ 2) different fixed points z1,

. . . , zk ∈ X and satisfies the conditions (i) and (ii) in1eorem
1. 1en, there exists a constant ε0 > 0 such that for any
g ∈ C1(U, X) with ‖g‖C1 ,U < ε0, the results of 1eorem 1 hold,
where U � Bri

(zi)∪ (∪mi − 1
j�1 Uij), 1≤ i≤ k.

Theorem 4. Suppose that (X, ‖ · ‖) is a Banach space,
f: X⟶ X is a map with k(≥ 2) different fixed points
z1, . . . , zk ∈ X and satisfies the conditions (i)–(iii) in1eorem
2. 1en, there exists a constant ε0 > 0 such that for any
g ∈ C1(U, X) with ‖g‖C1 ,U < ε0, the results of 1eorem 1 hold,
where U � ∪ x0∈ΓUx0

.
At the last of this section, we discuss a usually used

Banach spaceRn, which is the Euclidean space.As iswell known,
there are many different norms in Rn. A map in Rn can expand
in different norms, see [11, 26] and references therein. It is natural
to ask whether there is the persistence of heteroclinic cycles
connecting repellers in Rn, where the repellers expand in dif-
ferent norms.+e following+eorem5will answer this question.

+e usually used Euclidean norm is denoted by

‖x‖ � 􏽘

n

j�1
xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎛⎝ ⎞⎠

1/2

, x � x1, . . . , xn( 􏼁
T ∈ Rn

. (63)

In the following, we will use the neighborhood of a point
x ∈ Rn in different norms. For convenience, let Br(x) and
Br(x) denote the closed and open balls of x with radius r in

the Euclidean norm ‖ · ‖, let Nr(x) and Nr(z) denote the
closed and open balls of x with radius r in any other norm
‖ · ‖′.

Now, we establish a result on persistence of heteroclinic
cycles connecting repellers in Rn, where the repellers expand
in different norms.

Theorem 5. Suppose that a map f: Rn⟶ Rn has k(≥ 2)

different fixed points z1, . . . , zk ∈ Rn and satisfies the fol-
lowing conditions:

(i) for each i(1≤ i≤ k), f is continuously differentiable in
some neighborhood of zi and all the eigenvalues of
Df(zi) have absolute values larger than 1, which
implies that there exist a constant ri > 0 and a norm
‖ · ‖i inRn such that f is continuously differentiable in
Nri

(zi), and zi is a regular expanding fixed point of f

in Nri
(zi).

(ii) for each i(1≤ i≤ k), there exist a point xi0 ∈ Nri
(zi),

xi0 ≠ zi, and a positive integer mi ≥ 1 such that
fmi (xi0) � zt(i), where t(i) � [i mod k] + 1. Fur-
thermore, f is continuously differentiable in some
neighborhood Uij of xij and satisfies that
detDf(xij)≠ 0, where xij � fj(xi0) for
1≤ j≤mi − 1.

+en, for any Lipschitzmap g with Lipschitz constant L in
the Euclidean norm ‖ · ‖ in each set of Nri

(zi) and Uij,
1≤ i≤ k, 1≤ j≤mi − 1, there exists a constant ε0 > 0 satisfying

max L, g zi( 􏼁
����

����, g xij􏼐 􏼑
�����

�����, 1≤ i≤ k, 0≤ j≤mi − 1􏼚 􏼛< ε0,

(64)

such that the perturbed system (9) is chaotic in the sense of
both Devaney and Li-Yorke on a compact and perfect set
which contains a Cantor set.

Proof. Without loss of generality and for simplicity, we also
only show that +eorem 5 holds for k � 2.

For convenience, let i � 1 or 2 in the rest of proof. As
pointed in the second paragraph of the proof in +eorem 1,
we can also suppose that Nr1

(z1)∩Nr2
(z2) � ∅ and

f(xi0) ∉ Nri
(zi).

Since all the norms on Rn are equivalent by Corollary
3.14 of Chapter II in [36], there exist positive constants b11,
b12, ci1 and ci2 such that

b11‖ · ‖1 ≤ ‖ · ‖2 ≤ b12‖ · ‖1,

ci1‖ · ‖i ≤ ‖ · ‖≤ ci2‖ · ‖i.
(65)

Since g is a Lipschitz map with Lipschitz constant L in
the Euclidean norm ‖ · ‖ in Nri

(zi) and Uij, for any
x, y ∈ Nri

(zi) and any x, y ∈ Uij, 1≤ j≤mi − 1, it follows
from (65) that

‖g(x) − g(y)‖i ≤ c
− 1
i1 ‖g(x) − g(y)‖≤ c

− 1
i1 L‖x − y‖≤ c

− 1
i1 ci2L‖x − y‖i ≤L′‖x − y‖i, (66)
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where

L′ � max c
− 1
i1 ci2L, i � 1, 2􏽮 􏽯. (67)

+en it follows from (66) that g is also a Lipschitz map
with Lipschitz constant L′ in the norm ‖ · ‖i in Nri

(zi) and
Uij.

It follows from assumption (i) that there exists a constant
λi0 > 1 such that

‖f(x) − f(y)‖i ≥ λi0‖x − y‖i, ∀x, y ∈ Nri
zi( 􏼁, (68)

f: Nri
(zi)⟶ f(Nri

(zi)) is a homeomorphism and
f(Nri

(zi)) is open, f(D) is open for any open set
D ⊂ Nri

(zi). Take a constant

δi0 <
ri − zi − xi0

����
����i

2
, (69)

such that Nδi0
(xi0) ⊂ Nri

(zi). +en, it follows form (68) that
f: Nδi0

(xi0)⟶ f(Nδi0
(xi0)) is also a homeomorphism.

In addition, it follows from detDf(xij)≠ 0,
1≤ j≤mi − 1, that none of the eigenvalues of Df(xij) is 0.
+erefore, (Df(xij))

TDf(xij) is positive definite. +en,

‖ Df xij􏼐 􏼑‖
0

� inf
‖x‖�1

x
T

􏼐 Df xij􏼐 􏼑􏼐 􏼑
T
Df xij􏼐 􏼑x􏼑􏼠 􏼡

1
2 > 0,

(70)

where x ∈ Rn. It follows from (65) and (70) that

Df xij􏼐 􏼑
�����

�����
0

i
� inf

x≠0

Df xij􏼐 􏼑x
�����

�����i

‖x‖i

≥ ci1c
− 1
i2 inf

x≠0

Df xij􏼐 􏼑x
�����

�����

‖x‖

� ci1c
− 1
i2 Df xij􏼐 􏼑

�����

�����
0
> 0,

(71)

Hence, it follows from (71) and Lemma 4 that there exist
positive constants μij and δij such that

‖f(x) − f(y)‖i ≥ μij‖x − y‖i, ∀x, y ∈ Nδij
xij􏼐 􏼑, (72)

which implies that f: Nδij
(xij)⟶ f(Nδij

(xij)) is ho-
meomorphic, and f(Nδij

(xij)) is open for 1≤ j≤mi − 1,
where δij satisfies the following conditions:

δi1 < λi0δi0,

δi,j+1 < μijδij, for 1≤ j≤mi − 2,
(73)

Nδij
(xij) are disjoint subsets of Uij and Nδij

(xij)∩Nri
(zi) �

∅ for fixed i and 1≤ j≤mi − 1.
+e rest of the proof is almost exactly the same to Steps

1–3 in the proof of +eorem 1 except for three aspects. One
is that L is replaced by L′ and the domains in the norm ‖ · ‖

are replaced by those in the norms ‖ · ‖1 or ‖ · ‖2, respectively.
In brief, in the representations of the domains, the alphabet
B is replaced by the alphabet N through the proof of
+eorem 1. +e second is that some values in the norm ‖ · ‖

are replaced by those in the norms ‖ · ‖1 or ‖ · ‖2, respectively.
It is pointed out that (18) and (42) take the values in the
norm ‖ · ‖1, the remainders follow the following rule: if the
independent variables of functions are taken from Nri

(zi) or
Nδij

(xij), then the values in the norm ‖ · ‖ are replaced by
those in the norm ‖ · ‖i. +e third is that some related
constants used in the proof are slightly modified since the
norm ‖ · ‖ is replaced by the norms ‖ · ‖1 or ‖ · ‖2. For
convenience, we list them as follows.

δ1,m1
<

min

b11λ10δ10,

r2 − z2 − x20
����

����2
2

− δ20

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, if m1 � 1;

min

b11μ1,m1− 1δ1,m1− 1,

r2 − z2 − x20
����

����2
2

− δ20

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, if m1 > 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ2,m2
<

min

b
− 1
12λ20δ20,

r1 − z1 − x10
����

����1
2

− δ10

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, if m2 � 1;

min

b
− 1
12μ2,m2− 1δ2,m2− 1,

r1 − z1 − x10
����

����1
2

− δ10

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, if m2 > 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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r
∗
1 �

r1 + z1 − x10
����

����1
2

,

r
∗
2 �

r1 + z2 − x20
����

����2
2

,

ε1 �
λ10 − 1( 􏼁δ2,m2

1 + δ2,m2

,

ε2 �
λ20 − 1( 􏼁δ1,m1

1 + δ1,m1

,

ε3 � min ε1, ε2,
min λ10δ10 − δ11, μ1,m1− 1δ1,m1− 1 − b

− 1
11δ1,m1

, μ1jδ1j − δ1,j+1, for 1≤ j≤m1 − 2􏽮 􏽯

1 + max δ1j, 0≤ j≤m1 − 1􏽮 􏽯

⎧⎨

⎩

⎫⎬

⎭,

ε4 � min ε1, ε2,
min λ20δ20 − δ21, μ2,m2− 1δ2,m2− 1 − b12δ2,m2

, μ2jδ2j − δ2,j+1, for 1≤ j≤m2 − 2􏽮 􏽯

1 + max δ2j, 0≤ j≤m2 − 1􏽮 􏽯

⎧⎨

⎩

⎫⎬

⎭. (74)

It follows from (73) and the above conditions that εj > 0
for 1≤ j≤ 4. Here, it should explain how to take the values of
the numerators in terms of m1 and m2 in ε3 and ε4. We only
explain the values in terms of m1, while that for m2 is similar.

For the numerator of the fraction at the right side of ε3, when
m1 � 1, it only takes the first term; when m1 � 2, it only takes
the first two terms; when m1 ≥ 3, it takes all of the terms.

Set

ε0′ � min εj, 1≤ j≤ 4􏽮 􏽯, ε0 � min
ε0′

max c
− 1
11 c12, c

− 1
21c22􏽮 􏽯

, c11ε0′, c21ε0′
⎧⎨

⎩

⎫⎬

⎭. (75)

If g satisfies condition (64) in the Euclidean norm ‖ · ‖,
that is the following:

max L, g zi( 􏼁
����

����, g xij􏼐 􏼑
�����

�����, 1≤ i≤ 2, 0≤ j≤mi − 1􏼚 􏼛< ε0,

(76)

then it follows from (65), (75) and (76) that g also satisfies
the following condition in the norms ‖ · ‖1 and ‖ · ‖2

max L′, g zi( 􏼁
����

����i
, g xij􏼐 􏼑
�����

�����i
, 1≤ i≤ 2, 0≤ j≤mi − 1􏼚 􏼛< ε0′,

(77)

+erefore, repeating the Steps 1–3 in the proof of
+eorem 1, we can get that if g satisfies (76), consequently
(77), then F has a regular and nondegenerate heteroclinic
cycle Γ′ connecting repellers z∗1 and z∗2 in different norms
‖ · ‖1 and ‖ · ‖2. It follows from the proof of +eorem 4.1 in
[26] that there exists a positive integer p such that Fp has a
heteroclinic cycle Γ∗ connecting repellers z∗1 and z∗2 in the
unified Euclidean norm ‖ · ‖. Since all the points on the cycle
Γ∗ of Fp also lie on the cycle Γ′ of F, it is easy to prove that
the cycle Γ∗ of Fp is also regular and nondegenerate.
Consequently, F is chaotic on a compact and perfect set
which contains a Cantor set in the sense of both Devaney
and Li-Yorke. +is completes the proof. □

Remark 6. From the proof of +eorem 5, we obtain that Fp

has a regular and nondegenerate heteroclinic cycle

connecting repellers in the unified Euclidean norm ‖ · ‖ for
some positive integer p. Hence, +eorem 5 can also be
regarded as the persistence of a regular and nondegenerate
heteroclinic cycle connecting repellers in Rn. In the special
case that all the norms ‖ · ‖i, 1≤ i≤ k, in assumption (i)
become a unified norm, such as the Euclidean norm ‖ · ‖,
then the positive integer p becomes 1. Hence, this special
case of +eorem 5 is consistent with +eorem 1.

+e following result is a direct consequence of +eorem
5.

Theorem 6. Suppose that a map f: Rn⟶ Rn has k(≥ 2)

different fixed points z1, . . . , zk ∈ Rn and satisfies the fol-
lowing conditions

(i) For each i(1≤ i≤ k), zi is an expanding fixed point of
f in some norm ‖ · ‖i;

(ii) f has a k-heteroclinic cycle Γ connecting fixed points
z1, . . . , zk and is continuously differentiable in some
neighborhood Ux0

of each point x0 ∈ Γ satisfying
detDf(x0)≠ 0.

+en, there exists a constant ε0 > 0 such that for any
Lipschitz map g in each set of ∪ x0∈ΓUx0

with Lipchitz
constant L in the Euclidean norm ‖ · ‖ satisfying

max L, g x0( 􏼁
����

����, forx0 ∈ Γ􏽮 􏽯< ε0, (78)

the results in +eorem 5 hold.
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Remark 7. [28] studied the persistence of heteroclinic re-
pellers in Rn for C1 maps with C1 perturbations, where the
maps needed to be continuously differentiable in the whole
space. Here, it only needs the maps to be continuously
differentiable in some neighborhoods of points. +e main
differences between the above two theorems and the result in
[28] are as follows. One is that +eorems 5 and 6 studied the
Lipschitz perturbations, while the latter considered the C1

perturbations. +e second is that +eorems 5 and 6 give an
explicit expression for the range of perturbations, which are
determined by the properties of the original maps, while the
latter did not give such a range for perturbations.+e third is
that +eorems 5 and 6 use different norms for expansions of
fixed points which are more general in practice, while the
latter only used a single norm for expansions of fixed points.

Remark 8. Just as +eorems 3 and 4, if the perturbed term g

is continuously differentiable, then the conditions about g in
+eorems 5 or 6 can be replaced by that g ∈ C1(U, X) with
‖g‖C1 ,U < ε0, where U is taken the corresponding domains
used in +eorems 5 or 6, respectively, then the results in
+eorems 5 or 6 hold.

4. Examples

In this section, three examples are given to illustrate the
validity of the theoretical results.

Example 3. +eoriginal map f is taken as the followingmap
on R:

f(x) �

2x, if x ∈ [− 2, 2]

5x − 9, if x ∈ (2, 2.5)

0.1x − 0.2875, else.

⎧⎪⎪⎨

⎪⎪⎩
(79)

+e perturbed map g is taken as g(x) � c|x|, where
x ∈ R and c is a positive real number. It is obvious that f is
piecewise continuous on R, g is a Lipschitz map with a
Lipschitz constant L � c and it is not differentiable on R.

It is easy to see that z1 � 0 and z2 � 2.25 are two regular
expanding fixed points of f. Set x10 � 1.125 ∈ (− 2, 2), then

f(x10) � z2. Set x20 � 2.375 ∈ (2, 2.5), then x21 � f(x20) �

2.875 and f(x21) � z1, that is, f2(x20) � z1. So, f has a 2-
heteroclinic cycle Γ connecting repellers z1 and z2. It is clear
that the cycle is regular and nondegenerate, and assumptions
(i) and (ii) in +eorem 1 holds with k � 2, r1 � 2, r2 � 0.25,
λ10 � 2, λ20 � 5, m1 � 1, m2 � 2, x10 and x20 as the above.

Some constants that appear in the proof of +eorem 1
are taken as follows: μ21 � 0.1, δ10 � 0.43< (r1 − |z1
− x10|)/2) � 0.4375, δ20 � 0.06< ((r2 − |z2 − x20|/2) �

0.0625, δ11 � 0.002<min λ10δ10,􏼈 ((r2 − |z2 − x20|)/2)

− δ20} � 0.0025, δ21 � 0.28< λ20δ20 � 0.3, δ22 � 0.007<
min μ21δ21, ((r1 − |z1 − x10|)/2) − δ10􏼈 􏼉 � 0.0075, ε1 � ((λ10
− 1)δ22/1 + δ22) ≈ 0.006951, ε2 � (((λ20 − 1)δ11)/1+

δ11) ≈ 0.007984, ε3 � min ε1, ε2, ((δ10λ10 − δ11)/􏼈 1 + δ10)}
� 0.006951, ε4 � min ε1, ε2, ((min􏼈 λ20δ20−􏼈

δ21, μ21δ21 − δ22})/1 + max δ20, δ21􏼈 􏼉)} � 0.006951, ε0 � min
εj, 1≤ j≤ 4􏽮 􏽯 � 0.006951. It is easy to check that the per-
turbation g satisfies condition (10) for c≤ 0.0024. +en, it
follows from the result of +eorem 1 that the perturbed
system F � f + g also has a regular and nondegenerate
heteroclinic cycle Γ′ connecting repellers which is near to Γ.
Consequently, F and f are chaotic in the sense of both
Devaney and Li-Yorke. For illustrating the persistence of a
heteroclinic cycle connecting repellers, we take c � 0.002 for
example. It is easy to calculate the following results. +e
perturbed map F has two regular expanding fixed pints z∗1 �

0 and z∗2 � (1500/667) ≈ 2.248876. +ere exist two points
x∗10 � (750000/667667) ≈ 1.123314 and x∗20 � (301375
/127551) ≈ 2.362780 such that F(x∗10) � z∗2 , x∗21 � F(x∗20) �

(575/204) ≈ 2.818627 and F(x∗21) � z∗1 . +en, F has a 2-
heteroclinic cycle Γ′ connecting repellers z∗1 � 0 and z∗2 � 0.
It is clear that Γ′ is near to Γ. With the increase of c, the
heteroclinic cycle Γ′ will gradually run away from Γ until it
breaks or disappears. Since f and F are chaotic on some
intervals of R and the computer simulations of them are on
intervals, we omit the computer simulations.

Example 4. +eoriginal mapf is taken as the followingmap
on R2

f(x, y) �

8(x, y), if (x, y) ∈ B1(0, 0),

(2x − 2, 2y − 2), if (x, y) ∈ B4(0, 0)/B1(0, 0),

sin x − 2 −
π
2

+ y − 2 −
π
2

􏼒 􏼓
2

􏼢 􏼣,􏼠

sin x − 2 −
π
2

􏼒 􏼓
2

+ y − 2 −
π
2

􏼢 􏼣􏼡, if (x, y) ∉ B4(0, 0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(80)

+is map is used as an example in [25] for illustrating
chaos induced by a heteroclinic cycle connecting repellers.

+e perturbed map g is taken as g(x, y) � c(x, y), where
(x, y) ∈ R2 and c is a real number. It is obvious that f is only
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continuously differentiable in some domains of R2, g is
continuously differentiable in R2 and has a Lipschitz con-
stant L � |c|.

On the one hand, it is clear that z1 � (0, 0) and z2 �

(2, 2) are two fixed points of f, f is continuously differ-
entiable in B1(z1), B1.171(z2), and satisfies that

Df z1( 􏼁 � 8I2,

Df z2( 􏼁 � 2I2,
(81)

where I2 is the identity matrix. So, the eigenvalues of Df(z1)

and Df(z2) have absolute values larger than 1, which im-
plies that z1 and z2 are two regular expanding expanding
fixed points of f in B(z1) and B1.171(z2) in the Euclidean
norm ‖ · ‖ with λ10 � 8, λ20 � 2, respectively. It is obvious
that B1(z1)∩B1.171(z2) � ∅ and both lie in B4(z1). Set
x10 � ((1/4), (1/4)) ∈ B1(z1), then f(x10) � z2. Set
x20 � (2 + (π/8), 2 + (π/8)) ∈ B1.171(z2), then x21 �

f(x20) � (2 + (π/4), 2 + (π/4)) ∈ B4(z1)\B1(z1), x22 �

f(x21) � (2 + (π/2), 2 + (π/2)) ∉ B4(z1) and f(x22) � z1,
that is, f3(x20) � z1.

On the other hand, it is also obvious that f is contin-
uously differentiable in some neighborhoods of x10, x20, x21,
and x22 and satisfies

Df x10( 􏼁 � 8I2,

Df x20( 􏼁 � Df x21( 􏼁

� 2I2,

Df x22( 􏼁 � I2.

(82)

+en, it follows from (82) that

Df x10( 􏼁
����

����
0

� 8,

Df x20( 􏼁
����

����
0

� Df x21( 􏼁
����

����
0

� 2,

Df x22( 􏼁
����

����
0

� 1,

(83)

which together with Lemma 4 imply that the cycle Γ is
nondegenerate. Furthermore, it follows from (4) of Remark
2.2 in [25] that the cycle Γ is also regular. Consequently, f

has a regular and nondegenerate 2-heteroclinic cycle Γ
connecting the repellers z1 and z2.

+erefore, assumptions (i) and (ii) in +eorem 5 hold
with k � 2, r1 � 1, r2 � 1.171, λ10 � 8, λ20 � 2, m1 � 1,
m2 � 3, x10 and x20 as the above. Consequently, f has a 2-
heteroclinic cycle Γ connecting repellers z1 and z2. As is
pointed out in Remark 6, when the norms used in+eorem 5
become a unified norm, the special case of +eorem 5 is
consistent with +eorem 1. So, we can take some constants
that appear in the proof of +eorem 1 as follows:

μ21 � 2,

μ22 � 1,

δ10 � 0.2<
r1 − z1 − x10

����
����

2
≈ 0.323223,

δ20 � 0.175<
r2 − z2 − x20

����
����

2
≈ 0.307820,

δ11 � 0.1328<min λ10δ10,
r2 − z2 − x20

����
����

2
− δ20􏼨 􏼩

� 0.132820,

δ21 � 0.2< λ20δ20

� 0.35,

δ22 � 0.2< μ21δ21

� 0.4,

δ23 � 0.025<min μ22δ22,
r1 − z1 − x10

����
����

2
− δ10􏼨 􏼩

� 0.123223,

ε1 �
λ10 − 1( 􏼁δ23
1 + δ23

≈ 0.170732,

ε2 �
λ20 − 1( 􏼁δ11
1 + δ11

≈ 0.117232,

ε3 � min ε1, ε2,
δ10λ10 − δ11
1 + δ10

􏼨 􏼩

� 0.117232,

ε4 � min ε1, ε2,
min λ20δ20 − δ21, μ21δ21 − δ22, μ22δ22 − δ23􏼈 􏼉

1 + max δ20, δ21, δ22􏼈 􏼉
􏼨 􏼩

� 0.117232,

(84)

ε0 � min εj, 1≤ j≤ 4􏽮 􏽯 � 0.117232. It is easy to check that the
perturbation g satisfies condition (10) for |c|≤ 0.0297. +en,
it follows from the result of +eorem 5 that the perturbed
system F � f + g also has a regular and nondegenerate
heteroclinic cycle Γ′ connecting repellers which is near to Γ.
Consequently, F and f are chaotic in the sense of both
Devaney and Li-Yorke.

As is done in Example 3, for a given c, one can also
directly calculate the heteroclinic cycle Γ′ of F to check
whether it is near to Γ of f. However, it is not easy to directly
calculate such a cycle for high-dimensional maps. If there is
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the persistence of a heteroclinic cycle connecting repellers,
then the computer simulations of them will not change very
much. +e behaviors of the unperturbed map f with an
initial point (x, y) � (0.1, 0.1) are illustrated in Figure 1. We
do some computers simulations of F as c increases from
− 0.0297 to 0 or from 0 to 0.0297, and find that all the
simulations are similar with that of the original map f in
Figure 1. Here, we give one simulation of F with an initial
point (x, y) � (0.1, 0.1) for c � 0.0297, see Figure 2. We can
see that Figure 2 is a small change to Figure 1, which shows
that the heteroclinic cycle Γ′ of F is near to Γ of f. When we
let |c| continuous to increase, we find that the computer
simulations gradually change until there is a big difference
from that of the original map. +is shows that the hetero-
clinic cycle Γ breaks or disappears. Are there new hetero-
clinic cycles connecting repellers not near Γ or new snap-
back repellers to make the perturbed system still chaotic? It
is an interesting question, while it is out of the scope of this
paper and will be our further study.

Example 5. +eoriginal map f is taken as the followingmap
on R3

f(x, y, z) �

(6x, 6y, 6z), if (x, y, z) ∈ B1(O),

(4x − 9, 4y − 9, 4z − 9), if (x, y, z) ∈ B8(O)/B1(O),

sin x − 5 +(y − 5)
2

􏽨 􏽩,􏼐 sin y − 5 +(z − 5)
2

􏽨 􏽩,

sin (x − 5)
2

+ z − 5􏽨 􏽩􏼑, if (x, y, z) ∉ B8(O),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(85)

where O � (0, 0, 0) is the origin. +e perturbed map g is
taken as g(x, y, z) � c(x, y, z), where (x, y, z) ∈ R3 and c is
a real number. It is obvious that f is only continuously
differentiable in some domains of R3, g is continuously
differentiable in R3 and has a Lipschitz constant L � |c|.

+eorem 5 is also used to verify the persistence of a
heteroclinic cycle connecting repellers, and the process is
similar to that of Example 4. So, we omit some details and
only give some main results as follows. Assumptions (i) and
(ii) in +eorem 5 hold with k � 2, z1 � (0, 0, 0),
z2 � (3, 3, 3), r1 � 1, r2 � 2.8, λ10 � 6, λ20 � 4, m1 � 1,
m2 � 2, x10 � (0.5, 0.5, 0.5) ∈ B1(z1) and
x20 � (3.5, 3.5, 3.5) ∈ B2.8(z2) ⊂ B8(O). +e points z1 and
z2 are two regular expanding fixed points of f in the Eu-
clidean norm ‖ · ‖. In addition, f(x10) � z2, x21 � f(x20) �

(5, 5, 5) ∉ B8(O) and f(x21) � z1, that is, f2(x20) � z1.
+en f has a regular and nondegenerate 2-heteroclinic cycle
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Figure 1: Complex behaviors of the original map f in the (x, y)

space, where the initial point is take as (0.1, 0.1) and
n � 0, 1, 2, . . . , 20000.
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Γ connecting the repellers z1 and z2. Some constants that
used to determine the range of perturbations are taken as
follows:

μ21 � 1,

δ10 � 0.03<
r1 − z1 − x10

����
����

2
≈ 0.066987,

δ20 � 0.2<
r2 − z2 − x20

����
����

2
≈ 0.966987,

δ11 � 0.04<min λ10δ10,
r2 − z2 − x20

����
����

2
− δ20􏼨 􏼩

� 0.18,

δ21 � 0.2< λ20δ20

� 0.8,

δ22 � 0.03<min μ21δ21,
r1 − z1 − x10

����
����

2
− δ10􏼨 􏼩

� 0.036987,

ε1 �
λ10 − 1( 􏼁δ22
1 + δ22

≈ 0.145631,

ε2 �
λ20 − 1( 􏼁δ11
1 + δ11

≈ 0.115385,

ε3 � min ε1, ε2,
δ10λ10 − δ11
1 + δ10

􏼨 􏼩

� 0.115385,

ε4 � min ε1, ε2,
min λ20δ20 − δ21, μ21δ21 − δ22􏼈 􏼉

1 + max δ20, δ21􏼈 􏼉
􏼨 􏼩

� 0.115385,

(86)

ε0 � min εj, 1≤ j≤ 4􏽮 􏽯 � 0.115385. It is also easy to check
that the perturbation g satisfies condition (10) for
|c|≤ 0.0133. +en, it follows from the result of +eorem 5
that the perturbed system F � f + g also has a regular and
nondegenerate heteroclinic cycle Γ′ connecting repellers
which is near to Γ. Consequently, F and f are chaotic in the
sense of both Devaney and Li-Yorke.

+e behaviors of the unperturbed map f with an initial
point (x, y, z) � (0.1, 0.1, 0.1) are illustrated in Figure 3. We
also do some computers simulations of F as c increases from
− 0.0133 to 0 or from 0 to 0.0133, and find that all the
simulations are also similar with that of the original mapf in
Figure 3. Here, we give one simulation of F with an initial
point (x, y, z) � (0.1, 0.1, 0.1) for c � 0.0133, see Figure 4.
We can see that Figure 4 is also a small change to Figure 3,
which shows that the heteroclinic cycle Γ′ of F is near to Γ of

f. When we let |c| continuous to increase, we also find that
the computer simulations gradually change until there is a
big difference from that of the original map. +is shows that
the heteroclinic cycle Γ breaks or disappears.

Remark 9. In the above examples, it only needs the Lipschitz
constant L and the values of g at zi, xij for 1≤ i≤ 2,
0≤ j≤mi − 1 to satisfy condition (10), and does not need to
compute the values of g at any other points. +is is very easy
to check out and is very convenient in applications. Since
there are few literature giving concrete methods to identify
an exact expanding area of a fixed point, it is very hard to get
the largest perturbation range. But we think that the results
obtained in this paper are also useful in practice. Because
when a perturbation range ε0 is determined as in the above
examples, it can ensure that the persistence is maintained for
a large range of parameters.+e perturbation range obtained
in these examples may not be the largest one for the per-
sistence to be maintained. A more precise perturbed range is
needed in practice and this will also be our further research.

5. Conclusions

In this paper, we studied persistence of heteroclinic cycles
connecting repellers in Banach spaces. We proved that if a
map with a regular and nondegenerate heteroclinic cycle
connecting repellers undergoes a small Lipschitz perturba-
tion, then the perturbed map still has a regular and non-
degenerate heteroclinic cycle connecting repellers.
Consequently, the perturbed map and the original map are
simultaneously chaotic in the sense of both Devaney and Li-
Yorke. We believe that the results obtained in the paper will
be useful for studying the existence of chaos and will provide
certain theoretical basis for practical applications of heter-
oclinic cycles of connecting repellers. Compared with some
related papers, three major achievements on the persistence
are summarized as follows. One is that the maps discussed in
the paper only need to be continuous or continuously
differentiable in some domains instead of the whole space.
Since a lot of maps may not be continuous or continuously
differentiable in the whole space, our results are more
general in practice than those in some related papers. +e
second is that an explicit expression for the range of per-
turbations is given, while most related papers did not give
such an expression. +e expression is determined by some
properties of the original maps. It only needs to check out
some values of the perturbation map at certain points in
practice. +is is very convenient and has great potential in
applications. +e third is that different repellers are allowed
to expand in different norms in Rn, while some related
papers only used the single Euclidean norm to do that. +is
is very meaningful since it is more general in practice for
some fixed points to expand in different norms. To show the
validity of the theoretical results, we give some illustrative
examples. However, the range of perturbations obtained in
this paper is only a sufficient condition for the persistence to
be maintained, and it may not be the largest one. Since it is
hard to determine the exact area of a fixed point and few
researches have given concrete methods to do this, it is not
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easy to find the largest range of perturbations and this will be
our further research.
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�is work aims to study analytically the nonlinear model for deoxyribonucleic acid (DNA). Based on the complete discrimination
and direct method, some newwave solutions are introduced.�ese solutions are sorted into solitary, periodic, kink (antikink), and
singular solutions. Moreover, a part of them is illustrated graphically. Based on Hamilton concepts, we study the bifurcation and
phase portrait for the Hamilton system corresponding to the model under consideration.

1. Introduction

Deoxyribonucleic acid (DNA) molecule carries the infor-
mation for living beings that is required to live and prop-
agate themselves. �e nonlinear model for deoxyribonucleic
acid (DNA) is attractive for the study because its properties
can be investigated precisely by experiments gathering both
the physical methods and biological tools [1]. In 1953,
Watson and Crick [2] initially discovered the double helix
construction of DNA; in spite of that, it is not easy until now
to �nd a speci�c mathematical model that involved all its
characteristics. �e reason is its complicated structure and
the existence of several motions such as the torsional,
transverse, and longitudinal motions [3]. However, the
existence of several motions of the DNA on thoroughly
distinct time scales becomes aidable to model a few of these
that predominate in the given time scale range. �e idea that
was introduced by Davydov [4] in his pioneer works related
to the theoretical studies of the nonlinear characteristics of
DNA has been �rstly utilized by Englander and coauthors in
1980 to investigate dynamics of DNA regarding the nitrogen
rational motion [5]. �is idea has been further developed in
several subsequent works. For instance, Yomosa proposed a

model of the dynamics plane of the base rotator [6], and this
study was followed by Takeno and Homma who got better
this model by considering the degree of freedom describing
base rotations in the plane perpendicular to the helical axis
around the structure of the backbone [7]. �e denaturation
process in which the base transverse motion along the
hydrogen bond is regarded was investigated by Peyrard and
Bishop [8]. Two kinds of internal motions, which have been
proposed by Muto et al., contribute mainly to the dena-
turation process of DNA. �ese motions are longitudinal
motions over the backbone and transverse motions over the
hydrogen bond [9]. �is model has been developed and
improved in several works in order to study distinct motions
and construct solitary wave-type solutions [10–14]. �ese
waves acquire their signi�cance from their ability to transmit
energy without losing, i.e., the energy is conserved [8, 15],
and moreover, they explicate the long-range interaction of
kink solitons in the double chain [16, 17] and transcription
regulation [18].

Taking into account some acceptable approximations
from the point of biological science, the two equations
describe a DNA model with double chains consisting of
elastic two long homogeneous strands. �ese strands
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characterize two polynucleotide chains of DNA molecules
attached by an elastic membrane which represents the hy-
drogen bonds between the base pair of two chains. *e
dynamical nonlinear system characterizing the double-chain
model of DNA takes the form [19, 20]

Itt − e
2
1Ixx � a1I + b1IJ + c1I

3
+ d1IJ

2
,

Jtt − e
2
2Ixx � a2J + b2I

2
+ c2I

2
J + d2J

3
+ m0,

(1)

where I refers to the longitudinal displacement difference
between the top and bottom wires, while J indicates the
transverse displacements between the upper and lower
strands, and ei, ai, bi, ci, di, andm0, i� 1, 2, are constants
given by

e1 � ±
R1

ρ
,

e2 � ±
R2

ρ
,

a1 � ±
2μ
ρσh

h − l0( 􏼁,

a2 � ±
2μ
ρσ

,

b1 � 2b2 �
2

�
2

√
μl0

ρσh
2 ,

c1 � c2 �
− 2μl0

h
3ρσ

,

d1 � d2 �
4μl0

h
3ρσ

,

m0 �
μ

�
2

√

ρσ
h − l0( 􏼁,

(2)

where ρ, σ, R1, andR2 refer to density of mass, area of cross
section, Young’s modulus, and density of the tension of each
strand, μ indicates the stiffness of the elastic membrane, h is
the distance between the two strands, and l0 is the height of
membrane in the equilibrium.

To transform the nonlinear system (1) into a single
partial differential equation, we present

J � αI + β, (3)

where α and β are two arbitrary constants, and furthermore,
we assume β � h/

�
2

√
and R1 � R2.*us, the linear system (1)

is reduced to

Itt − e
2
1Ixx � f3I

3
+ f2I

2
+ f1I, (4)

where fi are arbitrary constants introduced for suitability,
and they are given by

f3 �
ω0

h
3 4α2 − 2􏼐 􏼑,

f2 �
6

�
2

√
αω0

h
2 ,

f1 �
6ω0

h
−
2ω0

l0
,

ω0 �
l0μ
σρ

.

(5)

*e nonlinear model (1) has been investigated in several
works. Riccati parameterized factorization method has been
applied in [20] to construct some solitary wave solutions for
the DNA model (1). *e Φ6− model expansion method has
been utilized in [21] to construct some solutions which are
assorted into solitary, kink, and singular waves. Some sol-
itary wave solutions for the double-chain model of DNA
have been introduced and discussed [19]. Some exact wave
solutions of this model have been constructed by using
Conte’s Painlevé truncation expansion and Pickering’s
truncation expansion [22]. Some bounded wave solutions
for this model such as bell-shaped solitary waves and pe-
riodic waves have been formulated based on the method of
the dynamical systems [23]. *e generalized exponential
rational function method has been applied to introduce
exact form solutions and solitonic structures for this model
[24].

Despite the wide variety of methods used to find wave
solutions to nonlinear PDEs, the problem under study has a
simple history, for instance, the bifurcation analysis [25–34],
sine-Gordon expansion method [35, 36], Hirota bilinear
technique [37], G′/G method [38–40], differential transform
method (DTM), homotopy perturbation method (HPM)
[41], Lie symmetry method [42], homotopic analysis method
[43], trigonometric function series method [44], modified
mapping method and extended mapping method [45],
modified trigonometric function series method [46], tanh-
coth expansion method and Jacobi function expansion
method [47], and Jacobi elliptic function expansion method
[48], and for more different techniques, see [49–53].

In this work, we are interested in constructing some
traveling wave solutions for the nonlinear model (1) which is
equivalent to building a wave solution for the reduced
equation (1). We apply the complete discriminant system in
addition to determining the intervals of permitted real
propagations. *e significance of finding these intervals
enables us to construct only real wave solutions, and fur-
thermore, for the same constraints on the system’s pa-
rameters, there are several intervals of possible real wave
propagations. Hence, the missing of such study in previous
works leads to missing some wave solutions and the ap-
pearance of complex solutions. *e bifurcation analysis is
introduced which plays an important role in determining the
types of the solutions before constructing them. We are also
interested in studying the influence of the system’s pa-
rameters on the solutions.
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*is work is organized as follows: Section 2 involves the
reduction of the DNA model to ordinary differential
equations and using the complete discrimination method to
construct some traveling wave solutions for equation (1).
Section 3 contains the study of some dynamical properties of
equation (1) by employing the complete discrimination and
Hamiltonian concepts. Section 4 is a graphic representation
of some of the obtained solutions. Furthermore, it examines
the influence of the one-parameter changing on the solu-
tions keeping the other parameters fixed. Section 4 is a
collection and the summary of the obtained results.

2. Exact Wave Solutions

Applying the wave transformation I(x, t) � u(ζ), ζ �

kx − ωt, to equation (4), we obtain

u′′ �
f3

ω2
− k

2
e
2
1
u
3

+
f2

ω2
− k

2
e
2
1
u
2

+
f1

ω2
− ka

2
e
2
1

u, (6)

where k is a constant that specifies the cosine of angle of
propagation with ζ− axis and ω is an arbitrary constant that
characterizes the speed of the wave and ω2 − k2e21 ≠ 0. For
simplicity, we insert

u(ζ) � p(ζ) −
f2

3f3
, (7)

into equation (6), and we get

p″(ζ) � 2n4p
3
(ζ) + n2p(ζ) +

n1

2
, (8)

where ′ indicates derivatives with respect to ζ and
ni, i � 2, 3, 4, are constants introduced for suitability and
they are given by

n4 �
f3

2 ω2
− k

2
e
2
1􏼐 􏼑

,

n2 �
f
2
2 − 3f3f1

3f3 k
2
e
2
1 − ω2

􏼐 􏼑
,

n1 �
2f3 9f1f2 − 2f

2
2􏼐 􏼑

27f
2
3 k

2
e
2
1 − ω2

􏼐 􏼑
.

(9)

Integrating both sides of equation (8) with respect to p,
we obtain

p′
2

� n4 p
4

+ c2p
2

+ c1p + c0􏼐 􏼑, (10)

where ci are arbitrary parameters. Separating the variables,
we obtain the differential form

dζ �
dp

�������
n4F4(p)

􏽰 , (11)

where

F4(p) � p
4

+ c2p
2

+ c1p + c0, (12)

in which

c2 �
n2

n4
,

c1 �
n1

n4
.

(13)

To integrate both sides of equation (11), the range of the
parameters is required to be determined.*e cause for this is
that different values of the parameters imply different so-
lutions to the integral. Hence, the key steps are to find the
range of these parameters and consequently integrate both
sides of equation (11). *ere are many tools utilized to find
these ranges of parameters. In this work, we will apply a
complete discrimination system for a polynomial. *is
method is a natural generalization of the discrimination Δ �

b2 − 4ac for the quadratic polynomial ax2 + bx + c, but it
becomes difficult to calculate it for the higher degree
polynomials. *is problem had been solved with aid of
computer algebra programs by Yang et al. by presenting an
algorithm to compute the complete discrimination system
for polynomial [54].*e complete discrimination system for
the quartic polynomial F4(p) � p4 + c2p

2 + c1p + c0 is
given in [55], and it admits the form

D1 � 4,

D2 � − c2,

D3 � − 2c
3
2 + 8c2c0 − 9c

2
1,

E2 � 9c
2
2 − 32c2c0,

D4 � − c
3
2c

2
1 + 4c0c

4
2 + 36c2c

2
1 − 32c

2
2c

2
0 −

27
4

c
4
1 + 64c

4
0.

(14)

We study eight cases that describe different types of the
roots for polynomial (12). To avoid confounding, we collect
the classification of all the different types of the roots of the
polynomial F4(p) by utilizing the discriminant system in
Table 1. Furthermore, we integrate only on certain intervals
for p in which n4F4(p) is positive in order to get real
solutions.

2.1. Case 1. Polynomial (12) has four real roots which are
equal to zero if D2 � D3 � D4 � 0. Hence, it is written as
F4(p) � p4. Assuming − ∞<p< 0 and p(ζ0) � − ∞ and
integrating (11), we obtain

I(x, t) � −
1

��
n4

√
kx + ωt − ζ0( 􏼁

−

�
2

√
ah

2a
2

− 1
, (15)

and consequently, we have

J(x, t) � α −
1

��
n4

√
kx + ωt − ζ0( 􏼁

−

�
2

√
ah

2a
2

− 1
􏼢 􏼣 + β. (16)

Solutions (15) and (16) are singular solutions, and their
singularity points lie on the plane kx + ct − ζ0 � 0.
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2.2. Case 2. If D3 � D4 � E2 � 0, then the quartic polyno-
mial (12) has two real roots: one is simple and the other is
triple. Hence, it can be expressed as
F4(p) � (p − p1)

3(p + 3p1), where p1 is assumed to be
positive, i.e., p1 > 0. We consider two subcases according to
n4 is positive or negative:

(i) For n4 > 0, the possible interval for real propagation
is p ∈ ] − ∞, − 3p1[∪ ]p1,∞[. *us, if we choose
p< − 3p1, assume p(ζ0) � − ∞, and integrate both
sides of equation (11), we obtain

��
n4

√
􏽚
ζ

ζ0
dζ � 􏽚

p

− ∞

dp

p − p1( 􏼁

���������������
p − p1( 􏼁 p + 3p1( 􏼁

􏽱 . (17)

It follows

p(ζ) � p1 −
p1

p1
��
n4

√
ζ − ζ0( 􏼁 + 1

+
1

��
n4

√ ζ − ζ0( 􏼁
. (18)

*us, the solution of equation (1) becomes

I(x, t) � p1 −
p1

p1
��
n4

√
ζ − ζ0( 􏼁 + 1

+
1

��
n4

√ ζ − ζ0( 􏼁
−

f2

3f3
,

J(x, t) � α p1 −
p1

p1
��
n4

√
ζ − ζ0( 􏼁 + 1

+
1

��
n4

√ ζ − ζ0( 􏼁
−

f2

3f3
􏼢 􏼣 + β.

(19)

Similarly, we can calculate the solution if
p ∈ ]p1,∞[.

(ii) If n4 < 0, the possible interval for p to obtain real
propagation is p ∈ ] − 3p1, p1[. *us, we assume
p(ζ0) � − 3p1 and integrate both sides of equation
(11), and we get

I(x, t) � p1 −
4p1

1 + 4n4p
2
1 ζ − ζ0( 􏼁

2 −
f2

3f3
,

J(x, t) � α p1 −
4p1

1 + 4n4p
2
1 ζ − ζ0( 􏼁

2 −
f2

3f3

⎡⎣ ⎤⎦ + β.

(20)

Both solutions (19) and (20) are singular solutions
for equation (1).

2.3.Case 3. *e polynomial F4(p) has two double real zeros,
namely, ±p1, where p1 > 0, if D3 � D4 � 0, E2 > 0, D2 > 0.
Hence, it can be introduced as F4(p) � (p2 − p2

1)
2. We

consider the following two cases in which n4 is either positive
or negative.

(i) If n4 > 0, the intervals for real propagation are
p< − p1, − p1 <p<p1, and p>p1. If we consider
the case in which p< − p1 and assume p(ζ0) � − ∞,
equation (11) gives

��
n4

√
􏽚
ζ

ζ0
dζ � 􏽚

p

− ∞

dp

p
2

− p
2
1
. (21)

It follows

p � − p1coth p1
��
n4

√
ζ − ζ0( 􏼁( 􏼁. (22)

Using equations (7) and (3), we obtain a wave so-
lution for equation (1) in the form

I(x, t) � − p1coth p1
��
n4

√
ζ − ζ0( 􏼁( 􏼁 −

f2

3f3
,

J(x, t) � α − p1coth p1
��
n4

√
ζ − ζ0( 􏼁( 􏼁 −

f2

3f3
􏼢 􏼣 + β.

(23)

When p>p1, equation (1) has the same solution
shown in equation (23) if p1⟶ − p1. Similarly, if
we choose p ∈ ] − p1, p1[ and assume p(ζ0) � 0,
equation (1) has a solution in the form

I(x, t) � − p1tanh p1
��
n4

√
ζ − ζ0( 􏼁( 􏼁 −

f2

3f3
,

J(x, t) � α − p1tanh p1
��
n4

√
ζ − ζ0( 􏼁( 􏼁 −

f2

3f3
􏼢 􏼣 + β.

(24)

(ii) *e case in which n4 < 0 is excluded since
n4F4(p)< 0 for all p ∈ R.

2.4. Case 4. *e polynomial F4(p) has four real zeros,
namely, p1, p2, p3, − (p1 + p2 + p3), where we assumed
0<p1 <p2 <p3 if D2 > 0, D3 > 0, D4 > 0. *erefore, it takes
the form F4(p) � (p − p1)(p − p2) (p − p3)(p+

Table 1: Types of the roots of the polynomial F4(p).

No. Conditions on the discriminant system Types of the roots for F4(p)

1 D2 � D3 � D4 � 0 All roots are equal to zero
2 D3 � D4 � E2 � 0 Two real roots: one is triple and the other is simple
3 D3 � D4 � 0, E2 > 0 Two double roots
4 D2 > 0, D3 > 0, D4 > 0 Four real roots
5 D4 � 0, D2D3 < 0 One double root and two complex conjugate roots
6 D4 < 0, D2D3 > 0 Two real roots and two complex conjugate roots
7 D2D3 ≤ 0, D4 > 0 Two conjugate complex roots
8 D2 > 0, D3 > 0, D4 � 0 Four real roots: one double and others simple
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p1 + p2 + p3). Now, we consider the two cases n4 > 0 and
n4 > 0, individually:

(i) When n4 > 0, the possible intervals of p for real
propagation are p< − (p1 + p2 + p3), p1 <p<

p2, andp>p3. If we choose p< − (p1 + p2 + p3)

and assume p(ζ0) � − (p1 + p2 + p3), equation (11)
becomes

��
n4

√
􏽚
ζ

ζ0
dζ � 􏽚

p

− p1+p2+p3( )

dp
������������������������������������

p − p1( 􏼁 p − p2( 􏼁 p − p3( 􏼁 p + p1 + p2 + p3( 􏼁

􏽱 . (25)

It implies to

p � p1 −
p1 − p3( 􏼁 2p1 + p2 + p3( 􏼁

p1 − p3 + p1 + p2 + 2p3( 􏼁sn2 Ω1 ζ − ζ0( 􏼁, k1( 􏼁
, ζ0 < ζ < ζ1, (26)

where Ω1 � 1/2
�����������������������
n4(p3 − p1)(p1 + 2p2 + p3)

􏽰
,

k1 �
�����������������������
((p2 − p1)(p1 + p2 + 2p3))/

􏽰
((p3 − p1)(p1

+2p2 + p3)), and ζ1 � (1/Ω1)K(k1). K(k1) is a

complete elliptic integral of the first type [56]. Using
equations (7) and (3), we obtain a new traveling wave
solution for equation (1) in the form

Ω1(x, t) � p1 −
p1 − p3( 􏼁 2p1 + p2 + p3( 􏼁

p1 − p3 + p1 + p2 + 2p3( 􏼁sn2 Ω1 ζ − ζ0( 􏼁, k1( 􏼁
−

f2

3f3
,

J(x, t) � α p1 −
p1 − p3( 􏼁 2p1 + p2 + p3( 􏼁

p1 − p3 + p1 + p2 + 2p3( 􏼁sn2 Ω1 ζ − ζ0( 􏼁, k1( 􏼁
−

f2

3f3
􏼢 􏼣 + β.

(27)

If we select p1 <p<p2, postulate p(ζ0) � p1, and
follow the same procedures, we will obtain a
new traveling wave solution for equation (1) in the
form

I(x, t) � − p1 − p2 − 2p3 +
p1 + 2p2 + p3( 􏼁 2p1 + p2 + 2p3( 􏼁

p1 + 2p2 + p3 + p1 − p2( 􏼁sn2 Ω1 ζ − ζ0( 􏼁, k1( 􏼁
−

f2

3f3
,

J(x, t)α − p1 − p2 − 2p3 +
p1 + 2p2 + p3( 􏼁 2p1 + p2 + 2p3( 􏼁

p1 + 2p2 + p3 + p1 − p2( 􏼁sn2 Ω1 ζ − ζ0( 􏼁, k1( 􏼁
−

f2

3f3
􏼢 􏼣 + β,

(28)

where ζ0 < ζ < ζ1. Also, if we elect p>p3 and suppose
p(ζ0) � p3, we will get a new wave solution for
equation (1) in the form

I(x, t) � p2 +
p2 − p3( 􏼁 p1 + 2p2 + p3( 􏼁

p1 + p2 + 2p3( 􏼁sn2 Ω1 ζ − ζ0( 􏼁, k1( 􏼁
−

f2

3f3
,

J(x, t) � α p2 +
p2 − p3( 􏼁 p1 + 2p2 + p3( 􏼁

p1 + p2 + 2p3( 􏼁sn2 Ω1 ζ − ζ0( 􏼁, k1( 􏼁
−

f2

3f3
􏼢 􏼣 + β,

(29)
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where ζ0 < ζ < ζ1.
(ii) If n4 < 0, the allowed intervals of p for real propa-

gation are − p1 − p2 − p3 <p<p1 or p2 <p<p3.

*us, if we chose p1 <p<p and assume
p(ζ0) � − p1 − p2 − p3, equation (11) takes the form

���
− n4

√
􏽚
ζ

ζ0
dζ � 􏽚

p

− p1− p2− p3

dp
����������������������������������������������������������������������������

− p − p1( 􏼁 p2 − p( 􏼁 p3 − p( 􏼁 p + p1 + p2 + p3( 􏼁

􏽱􏽲 .
(30)

It gives

p � p3 +
p1 − p3( 􏼁 p1 + p2 + 2p3( 􏼁

p3 − p1 + 2p1 + p2 + p3( 􏼁sn2 Ω2 ζ − ζ0( 􏼁, k2( 􏼁
, ζ0 < ζ < ζ2, (31)

where Ω2 � 1/2
������������������������
− n4(p3 − p1)(2p2 + p1 + p3)

􏽰
, k2 ������������������������

((p3 − p2)(2p1 + p2 + p3))/
􏽰

((p3 − p1)(2p2 + p1

+p3)), and ζ2 � (1/Ω2)K(k2). Utilizing equations (7)
and (3), we obtain a new solution for equation (1):

I(x, t) � p3 +
p1 − p3( 􏼁 p1 + p2 + 2p3( 􏼁

p3 − p1 + 2p1 + p2 + p3( 􏼁sn2 Ω2 ζ − ζ0( 􏼁, k2( 􏼁
−

f2

3f3
,

J(x, t) � α p3 +
p1 − p3( 􏼁 p1 + p2 + 2p3( 􏼁

p3 − p1 + 2p1 + p2 + p3( 􏼁sn2 Ω2 ζ − ζ0( 􏼁, k2( 􏼁
􏼢 􏼣 + β.

(32)

Similarly, if we select p2 <p<p3 and assume
p(ζ0) � p2, we present a new wave solution for
equation (1) in the form

I(x, t) � p1 −
p1 − p2( 􏼁 p1 − p3( 􏼁

p1 − p3 + p3 − p2( 􏼁sn2 Ω2 ζ − ζ0( 􏼁, k2( 􏼁
−

f2

3f3
,

J(x, t) � α p1 −
p1 − p2( 􏼁 p1 − p3( 􏼁

p1 − p3 + p3 − p2( 􏼁sn2 Ω2 ζ − ζ0( 􏼁, k2( 􏼁
−

f2

3f3
􏼢 􏼣 + β.

(33)

2.5. Case 5. *e polynomial F4(p) has one double real root
and two conjugate complex roots if D4 � 0 and D2D3 < 0.
*erefore, it takes the form F4(p) � (p − p1)

2(p

− p2)(p − p∗2 ), where ∗ refers to the complex conjugate and
p1 � − Rep2. We consider the case in which n4 > 0, and
sequentially, the allowed intervals for real propagation are
p<p1 or p>p1. Choosing p>p1, assuming p(ζ0) �∞, and
integrating both sides of equation (11), we obtain

p � p1 +
4p

2
1 + ρ2

− 2p1 + ρsinh
�����������

n4 4p
2
1 + ρ2􏼐 􏼑

􏽱

(ζ − ϵ)􏼒

, (34)

where ϵ � ζ0 − s(inh− 1(2p1/ρ))/
�����������

n4(4p2
1 + ρ2)

􏽱

is a new
constant which is introduced for suitability and ρ � Imp2.
Employing equations (7) and (3), we obtain a solution for
equation (1) in the form
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I(x, t) � p1 +
4p

2
1 + ρ2

− 2p1 + ρsinh
�����������

n4 4p
2
1 + ρ2􏼐 􏼑

􏽱

(ζ − ϵ)􏼒

−
f2

3f3
,

J(x, t) � α p1 +
4p

2
1 + ρ2

− 2p1 + ρsinh
�����������

n4 4p
2
1 + ρ2􏼐 􏼑

􏽱

(ζ − ϵ)􏼒

−
f2

3f3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + β.

(35)

It can be noted that the case in which n4 is negative does
not work because F4(p)≥ 0 for all p ∈ R.

2.6. Case 6. *e polynomial F4(P) has two real roots and
two complex conjugate roots if D4 < 0 and D2D3 > 0. Hence,
it can be written in the form
F4(p) � (p − p1)(p − p2)(p − p3)(p − p∗3 ), where p1 <p2
and Rep3 � (1/2)(p1 + p2). We consider the following:

(i) If n4 > 0, then the permitted intervals for real
propagation are p>p2 and p<p1. Selecting p<p2

and p(ζ0) � p2 and integrating both sides of
equation (11), we obtain

p �
p2B1 − p1A1 + p2B1 + p1A1( 􏼁cn

������
n4A1B1

􏽰
ζ − ζ0( 􏼁, k2( 􏼁

A1 + B1( 􏼁cn
������
n4A1B1

􏽰
ζ − ζ0( 􏼁, k2􏼐 􏼑 − A1 − B1( 􏼁

,

(36)

where k2 �

���������������������������

((A1 + B1)
2 − (p2 − p)1

2)/4A1B1

􏽱

and
A2

1 � B2
1 � (1/4)(p1 − p2)

2 + Im2(p3). Taking into
account equations (7) and (3), we obtain a novel
wave solution for equation (1) in the form

I(x, t) �
p2B1 − p1A1 + p2B1 + p1A1( 􏼁cn

������
n4A1B1

􏽰
kx + ωt − ζ0( 􏼁, k2( 􏼁

A1 + B1( 􏼁cn
������
n4A1B1

􏽰
ζ − ζ0( 􏼁, k2􏼐 􏼑 − A1 − B1( 􏼁

−
f2

3f3
,

J(x, t) � α
p2B1 − p1A1 + p2B1 + p1A1( 􏼁cn

������
n4A1B1

􏽰
(kx + ωt), k2( 􏼁

A1 + B1( 􏼁cn
������
n4A1B1

􏽰
ζ − ζ0( 􏼁, k2􏼐 􏼑 − A1 − B1( 􏼁

−
f2

3f3

⎡⎢⎣ ⎤⎥⎦ + β.

(37)

(ii) If n4 < 0, then the allowed intervals of possible
propagation are p1 <p<p2. Assuming p(ζ0) � p1

and integrating both sides of equation (11), we
obtain

p �
p2B2 + p1A2 + p1A2 − p2B2( 􏼁cn

��������
− n4A2B2

􏽰
ζ − ζ0( 􏼁, k3( 􏼁

B2 + A2 − B2 − A2( 􏼁cn
��������
− n4A2B2

􏽰
ζ − ζ0( 􏼁, k3( 􏼁

, (38)

where k3 �

���������������������������

((p2 − p1)
2 − (A2 − B2)

2)/4A2B2

􏽱

,
A2
2 � (1/4)(p1 + 3p2)

2 + Im2p3, and
B2
2 � (1/4)(3p1 + p2)

2 + Im2p3. Utilizing equations

(7) and (3), we construct a novel wave solution for
equation (1) in the form

I(x, t) �
p2B2 + p1A2 + p1A2 − p2B2( 􏼁cn

��������
− n4A2B2

􏽰
kx + ωt − ζ0( 􏼁, k3( 􏼁

B2 + A2 − B2 − A2( 􏼁cn
��������
− n4A2B2

􏽰
kx + ωt − ζ0( 􏼁, k3( 􏼁

−
f2

3f3
,

J(x, t) � α
p2B2 + p1A2 + p1A2 − p2B2( 􏼁cn

��������
− n4A2B2

􏽰
kx + ωt − ζ0( 􏼁, k3( 􏼁

B2 + A2 − B2 − A2( 􏼁cn
��������
− n4A2B2

􏽰
kx + ωt − ζ0( 􏼁, k3( 􏼁

−
f2

3f3
􏼢 􏼣 + β.

(39)

2.7. Case 7. *e polynomial F4(p) has two conjugate
complex roots, namely, p1, p1

∗, p2, p2
∗, if D2D3 ≤ 0 and

D4 > 0. *erefore, it is expressed as
F4(p) � (p − p1)(p − p∗1 )(p − p2)(p − p∗2 ), where

Re.p1 � − Re.p2. *e permitted interval for real propagation
for the case n4 > 0 is p ∈ R. *us, we follow similar steps as
above and obtain a new traveling wave solution for equation
(1) as
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I(x, t) �
Rep1 + Imp1δ + Imp1 + Rep1δ( 􏼁tn

��
n4

√
/2( 􏼁 A2 + B2( 􏼁 kx + ωt − ζ0( 􏼁, k4( 􏼁

δ + tn ��
n4

√ /2􏼐 􏼑 A2 + B2( 􏼁 kx + ωt − ζ0( 􏼁, k4􏼐 􏼑
−

f2

3f3
,

J(x, t) � α
Rep1 + Imp1δ + Imp1 + Rep1δ( 􏼁tn

��
n4

√
/2( 􏼁 A2 + B2( 􏼁 kx + ωt − ζ0( 􏼁, k4( 􏼁

δ + tn ��
n4

√ /2􏼐 􏼑 A2 + B2( 􏼁 kx + ωt − ζ0( 􏼁, k4􏼐 􏼑
−

f2

3f3

⎡⎢⎣ ⎤⎥⎦ + β,

(40)

where A2
2 � [Imp1 − Imp2]

2, B2
2 � [Imp1 − Imp2]

2+

4Re2p1, δ2 � (4Rp1
2 − (A2 − B2)

2)/((A2 + B2)
2 − 4Rp1

2),
and k4 � (2

�����
A2B2

􏽰
)/A2 + B2. It can be noted that the case in

which n4 < 0 does not work because F4(p)> 0 for all p ∈ R.

2.8. Case 8. *e polynomial F4(p) has four real roots in
which one of them is double and the others are simple if
D2 > 0, D3 > 0, and D4 � 0. Hence, it takes the form
F4(p) � (p − p1)

2(p − p2)(p − p3), where p1 <p2 <p3 and

p3 � − (2p1 + p2). We consider the two cases in which n4 is
either positive or negative:

(i) If n4 > 0, then the possible intervals for real propa-
gation are p<p1, p>p3, and p1 <p<p2. With
similar computations as in previous cases, we
present the solution of equation (1) directly.
If we choose p> − (2p1 + p2) and assume
p(ζ0) � − (2p1 + p2), we have a new wave solution
for equation (1) in the form

I(x, t) � − 2p1 − p2 + 4 p2 − p1( 􏼁sech
������������

n4 − 3p1 − p2( 􏼁

􏽱

kx + ωt − ζ0( 􏼁􏼒 −
f2

3f3
,

J(x, t) � α − 2p1 − p2 + 4 p2 − p1( 􏼁sech
������������

n4 − 3p1 − p2( 􏼁

􏽱

kx + ωt − ζ0( 􏼁􏼒 −
f2

3f3
􏼢 􏼣 + β.

(41)

In similar calculations, we can calculate the wave
solution for p<p1 and p1 <p<p2.

(ii) If n4 < 0, the allowed interval for real propagation is
p ∈ ]p2, p3[, and postulating p(ζ0) � p2, we obtain a
new wave solution for equation (1) in the form

I(x, t) � p1 +
p2 − p1( 􏼁 3p1 + p2( 􏼁

2p1 + p1 + p2( 􏼁cosh
��������������������

− n4 3p1 + p2( 􏼁 p1 − p2( 􏼁

􏽱

kx − ωt − ζ0( 􏼁
−

f2

3f3
,

J(x, t) � α p1 +
p2 − p1( 􏼁 3p1 + p2( 􏼁

2p1 + p1 + p2( 􏼁cosh
��������������������

− n4 3p1 + p2( 􏼁 p1 − p2( 􏼁

􏽱

kx − ωt − ζ0( 􏼁
−

f2

3f3

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ + β.

(42)

3. Dynamic Properties

*e aim of this section is to investigate some dynamic
properties for equation (4) by investigating the bifurcation
and phase portrait for the traveling wave system corre-
sponding to equation (8) which takes the form

p′ � z,

z′ � 2n4 p
3

+
c2

2
p +

c1

4
􏼒 􏼓.

(43)

System (43) is a Hamiltonian system with one degree of
freedom related to Hamilton function:

1
2
z
2

+ V(p) � h, (44)

where h is an arbitrary constant and

V(q) � −
n4

2
p
4

+ c2p
2

+ c1p􏼐 􏼑, (45)

is the potential function. It is well known that the equi-
librium points for the Hamilton system (43) are also critical
points for the potential function (45), i.e., they are the roots
of

dV

dp
� − 2n4 p

3
+

c2

2
p +

c1

4
􏼒 􏼓. (46)

*us, we use the discrimination of (46) to determine the
number of equilibrium points. *e discrimination of (46) is

Δ � −
1
8

c
2
1
8

+
c
3
2

27
􏼢 􏼣. (47)

Now, let us determine the number of equilibrium points
for the Hamilton system (43) and study the properties of its
phase space. *us, we need to define energy curve corre-
sponding to
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Ch � (p, z) ∈ R2
: z

2
� 2(h − V(p))􏽮 􏽯. (48)

It is well known that any orbit for the Hamilton system
(43) is an energy curve on a certain level of the energy.

Case 1. 5e dynamical system (43) has a unique equilibrium
point if dV/dp � 0 has a unique real root.5is happens in two
cases which are studied individually:

(i) If Δ � 0 and c2 � 0, then dV/dp � 0 has one triple
real root, i.e., dV/dp � − 2n4p

3. 5is shows (0, 0) is a
unique equilibrium point for system (43) which is
saddle if n4 > 0, and it is center if n4 < 0. 5e phase
space for this case is outlined by Figures 1(a) and 1(b).
5e value of the energy at the equilibrium point (0, 0)

is h1 � V(0, 0) � 0. 5e following proposition de-
scribes Figure 1.

(ii) If Δ< 0, then dV/dp � 0 has one real zero and two
complex conjugate roots, i.e.,

dV

dp
� − 2n4(p − a) p +

a

2
􏼒 􏼓

2
+ m

2
􏼢 􏼣. (49)

It is clear that the point (a, 0) is a unique equilibrium
point for the Hamilton system (43) and it is saddle if
n4 > 0 and center if n4 < 0. 5e phase space is clarified
by Figures 2(a) and 2(b).

Proposition 1. 5e Hamiltonian system (43) has a unique
equilibrium point (0, 0) if c1 � c2 � 0. If n4 > 0, it is a saddle
point and all the orbits are unbounded, see Figure 1(a). If n4 < 0,
system (43) has a family of bounded periodic orbits Ch: h> h1􏼈 􏼉

about the center point (0, 0) as outlined by Figure 1(b). A similar
conclusion can be presented to describe Figure 2.

Case 2. If Δ � 0 an d c2 < 0, then dV/dp � 0 has two real
roots: one is simple and the other is double. 5us, we write
dV/dp � − 2n4(p − a)2(p + 2a) and so (a, 0) an d (− 2a, 0)

are two equilibrium points for system (43). It is clear that
(a, 0) is a cusp while (− 2a, 0) is a center if n4 < 0 and saddle if
n4 > 0. 5e phase portrait for this case is outlined in Figure 3.
5e following proposition gives a short description for the
phase portrait for this case.

Proposition 2. 5e Hamiltonian system (43) has two
equilibrium points E1 � (a, 0) and E2(− 2a, 0). If n4 > 0, then
E1 is cusp point while E2 is saddle, and furthermore, all the
phase space orbits are unbounded as outlined in Figure 3(a).
While if n4 < 0, E1 is a cusp and E2 is a center. 5e Hamilton
system (43) has two bounded families of periodic orbits which
are illustrated in green and blue and separated by the phase
curve Ch: h � V(a, 0)􏼈 􏼉 in red.

Case 3. If Δ> 0 and c2 < 0, then dV/dp has three real roots,
i.e., it can be written as dV/dp � − 2n4(p − a)(p − b)

(p + a + b), where we assumed b> a> 0. Consequently, the
dynamical system (43) has three equilibrium points
(a, 0), (b, 0), and(− a − b, 0). If n4 > 0, then (a, 0) is center
and (b, 0) and (− a − b, 0) are saddle points. While if n4 < 0,

(a, 0) is saddle point and the other two equilibrium points
are center. 5e phase portrait for this case is described in
Figures 4(a) and 4(b). We describe the phase portrait for the
Hamiltonian system in the following proposition.

Proposition 3. If Δ> 0 and c2 < 0, then the Hamilton system
(43) has three equilibrium points (a, 0), (b, 0),

and(− a − b, 0). If n4 > 0, there are two families of orbits
Ch: h ∈ ]V(a), V(b)[􏼈 􏼉 in green in which one of them is
bounded and surrounded by the homoclinic orbit
Ch: h � V(2a)􏼈 􏼉 while the other family is unbounded.
Moreover, all the other orbits are unbounded, see Figure 4(a)
for more clarification. If n4 < 0, system (43) has three equi-
librium points in which one is a saddle and the others are
centers. It has three bounded families of periodic orbits. Two of
them in blue and green are periodic orbits around the two
center points (2a, 0) and (− a − b, 0), and they are separated
by the homoclinic orbit in red Ch: h � V(a)􏼈 􏼉. 5e third one
is a family of superperiodic orbits in brown Ch: h>V(a)􏼈 􏼉

around the two centers points and lies outside the homoclinic
orbit in red. For more details about superperiodic orbits, see,
for example, [57].

*e investigation of the type of the phase space orbits is
helpful in determining the types of the solutions. For in-
stance, the existence of periodic orbits, homoclinic orbits,
and heteroclinic orbits for the traveling wave system (43)
indicates the existence of periodic wave solutions, solitary,
and kink solutions for equation (1). Furthermore, this
analysis can be employed to construct the traveling wave
solution by introducing the constraints on the coefficients of
function (12). Consequently, we can prove the following
theorem.

Theorem 1. Let I(x, t) � u(kx − ωt) and J(x, t) �

αI(x, t) + β be a solution for the double-chain model of DNA
(1), then

(i) It is a periodic solution if

(a) n4 < 0, h> 0,Δ � 0(c1 � c2 � 0),
(b) n4 < 0, h>V(a, 0),Δ< 0,
(c) n4 < 0,

Δ � 0, c2 < 0, h ∈ ]V(− 2a), V(a)[∪ ]V(a),∞[,
(d) n4 > 0,Δ> 0, c2 > 0, h ∈ ]V(a), V(b)[,
(e) n4 < 0,Δ> 0, c2 > 0, h ∈ ]V(a),∞[,
(f ) n4 < 0,Δ> 0, c2 > 0, h ∈

]V(a),∞[∪ ]V(b), V(a)[∪ ]V(c), V(b)[.

(ii) It is a solitary wave solution if n4 < 0,Δ> 0,

c2 < 0, and h � V(a).
(iii) It is a kink (antikink) solution if n4 > 0,Δ> 0,

c2 < 0, and h � V(b).

4. Graphic Interpretations

*is section aims to illustrate some of the obtained solutions
graphically. Moreover, we study the influence of the physical
parameters on the obtained solutions by considering two
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types of solutions: one of them is kink solution and the other
is periodic.

Figure 5 and 6 illustrates the kink solution (24) for
di�erent aspects. Figures 5(a) and 5(b) clarify the 3D and
contour representation for the kink solution (24) when
k � 1, ω � 2, σ � 0.001, ρ � 0.1, μ � 0.0001, h � 0.002, R1
� 0.1, and l0 � 0.002. Now, we illustrate graphically the
in¡uence of some parameters on the kink solution while
the other parameters are �xed. Figure 6(a) illustrates the
e�ect of the change of the distance between the two
strands. It is remarkable the amplitude of solution (24) is
decreased when the distance between the two strands is
increased. Figure 6(b) clari�es the amplitude of the so-
lution is increased when the sti�ness of the elastic
membrane is increased. Figure 6(c) clari�es the ampli-
tude of the solution is decreased when the area of the

cross section of each strand is increased. Figure 6(d)
outlines the amplitude of the kink solution (24) is in-
creased when the height of the membrane in the equi-
librium is increased (see Figure 7).

Now, we are going to clarify solution (28) graphically
and study the in¡uence of parameter changes on solution
(28). Solution (28) is periodic as outlined in Figure 8(a), and
its contour is illustrated in Figure 8(b). If the distance be-
tween the two strands is increased and the other parameters
are �xed, the amplitude of the solution is unchanged but the
width of the solution is increased as outlined in Figure 8(a).
�e amplitude of solution (28) is not a�ected by the changes
in the sti�ness of the elastic membrane, while the width of
the solution is decreased when the sti�ness of the elastic
membrane is increased as clari�ed by Figure 8(d). If the area
of the cross section of each strand is increased, then the
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Figure 1: Phase portrait for the Hamilton system (43) for c1 � 0 and c2 � 0. (a) n4 � 1 and (b) n4 � − 1.
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Figure 2: Phase portrait for the Hamilton system (43) for Δ< 0. (a) n4 � 1, c1 � − 16, and c2 � − 4. (b) n4 � − 1, c1 � − 16, and c2 � − 4.
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amplitude keeps �xed while the width is increased, see
Figure 8(d). Figure 9(b) outlines the amplitude of the pe-
riodic solution (28) is kept unchanged while its width is
decreased when the height of the membrane in the equi-
librium is increased. Figure 9(a) illustrates the in¡uence of
the superperiodic wave solution (39) due the changes in the
sti�ness of the elastic membrane. If the sti�ness of the elastic
membrane increases, the amplitude is kept unchanged while
the width decreases. Figure 9(b) clari�es the in¡uence of
distance between the two strands on the superwave solution

(39). If distance between the two strands is increased, then
the amplitude and the width of superwave solution (39) are
increased.

It is worth mentioning that we can make the same study
for the remaining obtained solutions. However, we only give
the 3D graphic and the 2D counter for some solutions. �e
3D graphic representation and the singularity plane are
outlined in Figure 10(a), while Figure 10(b) illustrates the 2D
contour of solution (15). Solution (37) is illustrated in
Figure 11.
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Figure 6: Parameters a�ecting solution (24): (a) changes in h for R1 � 0.1, k � 1, l0 � 0.001, μ � 0.002, ρ � 0.1, and σ � 0.0001, (b) changes
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5. Conclusion

�is work is aimed to study analytically the double-chain
model for deoxyribonucleic acid (DNA). A certain wave
transformation has been applied to equation (1) to transform
it into an ordinary di�erential equation. �e integration of
this equation reacquired some studies on the parameters.
�is study has been performed by applying the complete
discrimination of the polynomial F4(p). Moreover, we have
determined the possible interval of real propagations. Such
study is more signi�cant because the missing of such study
implies to loss some solutions and also, give rise to complex
solutions which are undesirable in real problems. For in-
stance, there are several solutions corresponding to the same
conditions on the discriminant system as outlined in Case 4.
We have introduced new waves’ solutions for equation (1).
Let us compare the results obtained in the present article

with the well-known results obtained by other authors using
di�erent methods as follows: our results in a new double-
chain model of DNA are new and di�erent from those
obtained in references [19–24]. We have studied the in-
¡uence of some parameters such as the distance between the
two strands, the sti�ness of the elastic membrane, the area of
the cross section of each strand, and the height of the
membrane in the equilibrium. We have considered two
types of solutions: one is kink (24) and the other is periodic
(28). We have shown graphically the amplitude of the kink
solution is decreased when the distance between the two
strands or the area of the cross section of each strand is
increased, while it is increased when the sti�ness of the
elastic membrane or the height of the membrane in the
equilibrium is increased. For more clari�cation, see Figure 6.
�e amplitude of the periodic solution remains approxi-
mately unchanged when these physical parameters are
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Figure 10: Graphic representation for the singular wave solution (15). (a) 3D graphic and (b) 2D contour.
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changed, but the width has been affected. *e width is in-
creased due to the increase of the distance between the two
strands or the area of the cross section of each strand, while it
is decreased as a result of increasing the stiffness of the elastic
membrane or the height of the membrane in the equilib-
rium. For more illustrations, see Figure 10. From another
point of view, this ODE has been expressed as a one-di-
mensional Hamiltonian system that describes the physical
motion of a particle with one degree of freedom under the
action of potential function V(p) given by (45). Based on the
Hamiltonian concepts, we have studied some qualitative
analyses such as phase portrait and bifurcation. *e de-
scription of phase space has been presented through
Propositions 1, 2, and 3. Moreover, these propositions
contain the conditions for the existence of periodic and
solitary wave solutions.
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[1] M. Peyrard, S. Cuesta-López, and G. James, “Modelling DNA
at the mesoscale: a challenge for nonlinear science?” Non-
linearity, vol. 21, no. 6, pp. T91–T100, 2008.

[2] J. D. Watson and F. H. C. Crick, “Molecular structure of
nucleic acids: a structure for deoxyribose nucleic acid,” Na-
ture, vol. 171, no. 4356, pp. 737-738, 1953.

[3] L. V. Yakushevich, Nonlinear Physics of DNA, John Wiley &
Sons, Hoboken, NJ, USA, 2006.

[4] A. S. Davydov, “Solitons in molecular systems,” Physica
Scripta, vol. 20, no. 3-4, p. 387, 1979.

[5] S. W. Englander, N. R. Kallenbach, A. J. Heeger,
J. A. Krumhansl, and S. Litwin, “Nature of the open state in
long polynucleotide double helices: possibility of soliton ex-
citations,” Proceedings of the National Academy of Sciences,
vol. 77, no. 12, pp. 7222–7226, 1980.

[6] S. Yomosa, “Soliton excitations in deoxyribonucleic acid
(DNA) double helices,” Physical Review, vol. 27, no. 4,
pp. 2120–2125, 1983.

[7] S. Homma and S. Takeno, “A coupled base-rotator model for
structure and dynamics of DNA: local fluctuations in helical
twist angles and topological solitons,” Progress of 5eoretical
Physics, vol. 72, no. 4, pp. 679–693, 1984.

[8] M. Peyrard and A. R. Bishop, “Statistical mechanics of a
nonlinear model for DNA denaturation,” Physical Review
Letters, vol. 62, no. 23, pp. 2755–2758, 1989.

[9] V. Muto, P. S. Lomdahl, and P. L. Christiansen, “Two-di-
mensional discrete model for DNA dynamics: longitudinal
wave propagation and denaturation,” Physical Review, vol. 42,
no. 12, pp. 7452–7458, 1990.

[10] L. V. Yakushevich, A. V. Savin, and L. I. Manevitch, “Non-
linear dynamics of topological solitons in DNA,” Physical
review. E, Statistical, nonlinear, and soft matter physics, vol. 66,
no. 1, Article ID 016614, 2002.

[11] D. L. Hien, N. T. Nhan, V. T. Ngo, and N. A. Viet, “Simple
combined model for nonlinear excitations in DNA,” Physical
review. E, Statistical, nonlinear, and soft matter physics, vol. 76,
no. 2, Article ID 021921, 2007.

[12] M. Daniel and V. Vasumathi, “Perturbed soliton excitations in
the DNA double helix,” Physica D: Nonlinear Phenomena,
vol. 231, no. 1, pp. 10–29, 2007.

[13] C. B. Tabi, A. Mohamadou, and T. C. Kofané, “Soliton ex-
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Some novel exact solutions and approximations to the damped Du�ng–Mathieu-type oscillator with cubic nonlinearity are
obtained. �is work is divided into two parts: in the �rst part, some exact solutions to both damped and undamped Mathieu
oscillators are obtained. �ese solutions are expressed in terms of the Mathieu functions of the �rst kind. In the second part, the
equation of motion to the damped Du�ng–Mathieu equation (dDME) is solved using some e�ective and highly accurate
approaches. In the �rst approach, the nonintegrable dDME with cubic nonlinearity is reduced to the integrable dDME with linear
term having undermined optimal parameter (maybe called reduced method). Using a suitable technique, we can determine the
value of the optimal parameter and then an analytical approximation is obtained in terms of the Mathieu functions. In the second
approach, the ansatz method is employed for deriving an analytical approximation in terms of trigonometric functions. In the
third approach, the homotopy perturbation technique with the extended Krylov–Bogoliubov–Mitropolskii (HKBM) method is
applied to �nd an analytical approximation to the dDME. Furthermore, the dDME is solved numerically using the Runge–Kutta
(RK) numerical method. �e comparison between the analytical and numerical approximations is carried out. All obtained
approximations can help a large number of researchers interested in studying the nonlinear oscillations and waves in plasma
physics andmany other �elds because many evolution equations related to the nonlinear waves and oscillations in a plasma can be
reduced to the family of Mathieu-type equation, Du�ng-type equation, etc.

1. Introduction

Several physical and natural phenomena related to biology,
chemistry, physics, engineering problems, and so on can be
modelled by both ordinary di�erential equations (ODEs)
and partial di�erential equations (PDEs) for studying the
nonlinear self-excited oscillators [1–12]. Also, in many real-
life problems, some internal and external forces that can
a�ect the system under consideration cannot be neglected.
For example, the friction and collisional force and many

others that a�ect on themotion of particles, whether in solid,
liquid, gas or plasma physics, cannot be neglected.�erefore,
these forces must be included in the mathematical models
that will be used for studying the natural and physical
problem, such as investigating the nonlinear oscillations in
various plasma models [13–23]. Interest in the study of
nonlinear oscillations in a plasma is due to its many potential
applications. Nowadays, plasma processing is seen as an
important and e�ective technology which has been able to
enter into all modern industries. In addition, plasma had a
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great credit for the modern technology in electronics,
medicine, agriculture, biomedicine, automobiles, optics,
aerospace, telecommunications, solar energy, polymers,
papers, textiles, etc. [16, 24]. ,erefore, we focus our at-
tention on the applications of the family of Duffing-type
equation for modelling the nonlinear oscillations in a
plasma. ,e Duffing-type oscillator is one of the most
popular differential equations that has spread widely due to
its ability to explain many nonlinear phenomena in various
fields of science and in mechanical systems and engineering.
,is equation is a mathematical model described by a second
order of ODEs with a nonlinear spring force. It is used for
describing the motion of (un)damped oscillator rather than
simple harmonic motion. Motivated by potential engi-
neering and plasma physics applications in addition to many
others applications in electronic circuits and micro-
controller, the family of Duffing equation such as (un)
damped Duffing equation with lower and higher-order
nonlinearities, (un)damped Duffing–Helmholtz equation,
and (un)damped Mathieu–Duffing equation have received
wide attention due to their ability for investigating the
mechanism of a rigid pendulum oscillator, oscillations in
different plasma models, and so on. ,is family of second-
order differential equations has provided useful and suc-
cessful models for investigating the nonlinear oscillations
and chaotic nature. ,e biggest challenge in the study of the
dynamics of nonlinear mechanical systems is to find some
real solutions (including the analytical and numerical so-
lutions) to the evolution equations that are used for de-
scribing the characteristics of nonlinear phenomena under
consideration. Accordingly, studying the solutions of many
equations of motion to various oscillators is one of the most
difficult tasks facing many researchers.

,e solutions associated to mentioned evolution equa-
tions and many other related equations have been studied
extensively due to the fact that such equations arise in a
variety of realistic problems. For instance, the fluid equa-
tions of electron-ion unmagnetized cold plasma were re-
duced to Mathieu equation in order to investigate the
electron waves [13]. During this study, the authors assumed
that the density perturbations of the plasma species are only
time-dependent functions and do not depend on space. Also,
the basic set of fluid equations to amulticomponent complex
plasma consisting of inertial two types of dust grains (both
positive and negative charges) as well as inertialess Max-
wellian species including electrons and ions were reduced to
a Mathieu-type equation for studying the excitation of dust-
acoustic oscillations [14]. Moreover, a nonlinear Van der
Pol–Mathieu-type equation was derived for the dust grain
density in order to investigate the dynamics of dust-acoustic
oscillations in a dusty plasma consisting of inertial Boltz-
mann distributed species (electrons and ions) and inertialess
dust grains [15]. A modified Van der Pol–Duffing oscillator
with forced term was used in the study and was used in
modelling the dynamics of nonlinear oscillations in different
plasma models [16]. More recently, the multistage method
was used for solving the damping Duffing equation with
forced term in order to model the oscillations in a complex
unmagnetized plasma [17].

Due to the importance of the family of Duffing-type
equation and motivated by the mentioned studies, we focus
our attention on the analysis of the so-called (un)damped
Mathieu–Duffing oscillator with a twin-well potential [25].

R ≡ €x + α − Q0 cos(Ωt)( 􏼁x + βx
3

� 0, (1)

and

R1 ≡ €x + ε _x + α − Q0 cos(Ωt)( 􏼁x + βx
3

� 0, (2)

for studying the vibrating/oscillating behavior of systems
described by (1) and (2), where (α, β)> 0 are, respectively,
the stiffness coefficients of the linear and nonlinear terms
and ε represents the coefficients of damping term. ,e
longitudinal loading is periodic, Ω and Q0 are the fre-
quency and excitation strength of the periodic loading,
respectively. ,e total energy of the undamped
Mathieu–Duffing oscillator (DMO) according to (1) is
defined by H � H0 + H1, where H0 � 1/2 _x2 − 1/2αx2+

1/4βx4 and H1 � −1/2x2Q0 cos(Ωt) are, respectively, the
unperturbed and perturbation in the Hamiltonian of (1).
,ere is another form to the equation of periodic motion
which is called (un)damped Mathieu–Helmholtz
oscillator.

€x + α − Q0 cos(Ωt)( 􏼁x + βx
2

� 0,

€x + ε _x + α − Q0 cos(Ωt)( 􏼁x + βx
2

� 0.

⎧⎨

⎩ (3)

,e analytical solution to the damped
Mathieu–Helmholtz oscillator (3) was obtained using the
finite Fourier series expansion [26]. Note that in evolution
equation (3), the nonlinear term βx2 is different from the
nonlinear term in equations (1) and (2).

,e objectives of our study are to find some novel
solutions to the (un)damped Duffing–Mathieu-type os-
cillator, under the initial conditions x(0) � 0 and
x′(0) � _x0. Two cases for Duffing–Mathieu-type oscillator
will be discussed. In the first case, we will get some exact
solutions to (un)damped Mathieu equation in terms of the
Mathieu functions of the first kind. In the second case, the
damped Duffing–Mathieu oscillator (dDMO) will be
solved analytically and numerically using some different
approaches. In the first approach, the cubic nonlinear
term in equation (1) βx3 is replaced by the linear term βκx,
where the constant κ≥ 0 represents an optimal parameter.
,en, the nonintegrable dDMO reduces to an integrable
one which has an exact solution but with undermined
parameter κ. Using a suitable technique, we can determine
the value of the optimal parameter κ. ,us, we can get an
analytical approximation to the dDMO (2) in terms of the
Mathieu functions. For the second approach, the ansatz
method with the help of the solution to the undamped
Duffing oscillator is employed to derive an analytical
approximation to the dDMO (2) in the form of trigo-
nometric functions. Furthermore, the homotopy pertur-
bation technique with the extended
Krylov–Bogoliubov–Mitropolskii (KBM) which is called
HKBM method is also devoted for solving the dDME (2)
for arbitrary physical parameters [27, 28].
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2. Mathematical Analysis

Here, we proceed to find some approximate solutions to
both undamped and damped Duffing–Mathieu oscillators
(1) and (2), respectively. Below we discuss the different
approaches for solving the mentioned equations.

2.1. An Exact Solution to (Un)damped Mathieu Equation.
Both undampedMathieu equation, i.e., (1) for β � 0, and the
damped Mathieu equation, i.e., (2) for β � 0, have exact

solutions in the form of Mathieu functions. First, let us find
the solution of the following damped Mathieu equation:

€x + ε _x + α − Q0 cos(Ωt)( 􏼁x � 0, (4)

with subjected to the initial conditions (ICs): x(0) � x0 and
x′(0) � _x0.

Using the following MATHEMATICA command

g[t ] ≔ x′′[t] + 2ε x′[t] − α − Q0Cos[Ωt]( 􏼁x[t]

NDSolve g[t] �� 0&&x[0] �� x0&&x′[0] �� _x0, x[t], t􏼂 􏼃[1, 1, 2]//FullSimplify( 􏼁
1
,

(5)

we can get the exact solution to (4) as follows:

x(t) � e
− εt x0MC1(t, ε)

MC1(0, ε)
+
2 εx0 + _x0( 􏼁

Ω
MS1(t, ε)

MathieuSPrime 4 α − ε2􏼐 􏼑/Ω2, 2Q0/Ω
2
, 0􏽨 􏽩

⎛⎝ ⎞⎠, (6)

with

MC1(t, ε) � MathieuC
4 α − ε2􏼐 􏼑

Ω2
,
2Q0

Ω2
,
Ω
2

t⎡⎣ ⎤⎦,

MS1(t, ε) � MathieuS
4 α − ε2􏼐 􏼑

Ω2
,
2Q0

Ω2
,
Ω
2

t⎡⎣ ⎤⎦,

(7)

where MathieuS and MathieuC are the Mathieu functions of
the first kind or sometimes called sine-elliptic and cosine-
elliptic, respectively. For ε � 0, the damped Mathieu equa-
tion (4) reduces to the following undamped Mathieu
equation:

€x − α + Q0 cos(Ωt)( 􏼁x � 0, (8)

and solution (6) reduces to the following one:

x(t) �
x0MC1(t, 0)

MC1(0, 0)
+

2 _x0MS1(t, 0)

ΩMathieuSPrime 4α/Ω2, 2Q0/Ω
2
, 0􏽨 􏽩

.

(9)

,e exact solution (6) is compared with RK numerical
solution as shown in Figures 1(a) and 1(b) for different
values of x0.

2.2. Some Analytical Approximations to the Damped Duf-
fing–Mathieu Oscillator. Here, we proceed to discuss two
techniques (the hybrid p−expansion method and the ansatz
method) for finding some analytical approximations to
dDMO (2). For studying dDMO (2), first we rewrite
equation (2) in the following new i.v.p.

R1 � 0,

x(0) � x0 & x′(0) � _x0.
􏼨 (10)

2.2.1. First Approach: Reduced Method. For β≠ 0 and α> 0,
we may obtain simple approximation to the i.v.p. (10) by
replacing the cubic term βx3 by the linear term βκx, where
the constant κ≥ 0 which is used as an optimal parameter to
reduce the residual error. Accordingly, dDMO (2) of cubic
nonlinearity reduces to the following dDMO with linear
term. ,us, we can replace the i.v.p. (10) by the following
new i.v.p.

€x + 2ε _x + α − Q0 cos(Ωt)( 􏼁x + β κx � 0,

x(0) � x0 and x′(0) � _x0.
􏼨 (11)

,us, the exact solution to the i.v.p. (11) is expressed by

xκ ≡ xκ(t) � e
− εt x0MC2(t, ε, κ)

MC2(0, ε, κ)
+
2 εx0 + _x0( 􏼁

Ω
MS2(t, ε, κ)

MathieuSPrime 4 βκ − ε2 + α􏼐 􏼑/Ω2, 2Q0/Ω
2
, 0􏽨 􏽩

⎛⎝ ⎞⎠, (12)
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with

MC2(t, ε, κ) � MathieuC
4 βκ − ε2 + α( )
Ω2

,
2Q0

Ω2
,
Ω
2
t ,

MS2(t, ε, κ) � MathieuS
4 βκ − ε2 + α( )
Ω2

,
2Q0

Ω2
,
Ω
2
t .

(13)

�e residual is de�ned as

Rκ(t) � €xκ + ε _xκ + α − Q0 cos(Ωt)( )xκ + βx3κ. (14)

A suitable value of κ can be obtained by solving the
equation Rκ(t0) � 0 for some t0 > 0, say t0 � 1. Making use
of the Padé approximate technique, for 0< t0 ≤ 1 and x0 ≈ 0,
we get

κsuitable �
Y1

Y2
, (15)

with

Y1 � 3x20 Q0t0x
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(16)

For a given κ, the residual error LR(κ) of the approxi-
mation (12) to the i.v.p. (10) is de�ned as

LR(κ) � max
0≤t≤T

Rκ(t)
∣∣∣∣

∣∣∣∣ � max
0≤t≤T

€xκ + 2ε _xκ + α − Q0 cos(Ωt)( )xκ
∣∣∣∣

+ βx3κ
∣∣∣∣.

(17)

�e optimal value of κoptimal for the parameter κ on the
interval 0≤ t≤T is de�ned as

κoptimal � min
κ≥0

LR(κ). (18)

Let us apply the obtained approximation (12) for in-
vestigating the properties of the damping oscillations to the
dDMO (2) at di�erent values to the physical parameters
(α, β, ε,Ω, Q0, x0, _x0). �e pro�le of the approximation (12)
using the values of κsuitable (given in equation (15)) and
κoptimal (given in (18)) is displayed in Figures 2 and 3 at
(α, β, ε,Ω, Q0, x0, _x0) � (4, 1, 0.1, 0.5, 0.1, 0, 0.2) and
(α, β, ε,Ω, Q0, x0, _x0) � (4, 1, 0.1, 0.5, 0.1, π/6, 0.2), respec-
tively. �e obtained results showed that this approximation
gives results with good and acceptable accuracy.

2.2.2. �e Ansatz Method for Solving dDMO. Now, we can
summarize the main points to get some approximations to
the i.v.p. (10) in the following steps.

Step 1. Let us assume the following ansatz:

x(t) � y(f(t)), (19)

where the time-dependent function f ≡ f(t) can be de-
termined later and the function y ≡ y(t) represents the
solution of the following i.v.p.
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Figure 1: Both exact solution (6) and RK numerical solution to the dampedMathieu equation (4) are compared with each other for di�erent
values to the initial amplitude x0.
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€y + 2ε _y + α − Q0( )y + βy3 � 0, y(0) � x0 &y′(0) � _x0.{
(20)

Step 2. Inserting ansatz (19) into i.v.p. (10), we get

R1 � y′(f) −2εf′
2 + 2εf′ + f′′( )

+ y(f) α − Q0 cos(Ωt) + f′
2
Q0 − α( )( )

+ βy3(f) 1 − f′2( ).

(21)

Step 3. For vanishing the coe�cient of y(f) in equation
(21), we get

f′
2 �

−α + Q0 cos(Ωt)
Q0 − α( )

. (22)

Step 4. Integrating equation (22) and with the help of
f(0) � 0, we have

f(t) �
2
Ω
E
Ω
2
t,

2Q0

Q0 − α
( ), (23)

where E stands for the EllipticE function.
Now, the value of f(t) has been determined but the

solution of the i.v.p. (20) needs to be determined. �us, we
are faced with two things: either we use one of the solutions
found in the literature [29] or try to �nd another solution in
the form of trigonometric functions.
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Figure 2: �e pro�le of the approximation (12) using the values of κsuitable (given in equation (15)) and κoptimal (given in (18)) is plotted
against t for (α, β, ε,Ω, Q0, x0, _x0) � (4, 1, 0.1, 0.5, 0.1, 0, 0.2).
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Figure 3: �e pro�le of the approximation (12) using the values of κsuitable (given in equation (15)) and κoptimal (given in (18)) is plotted
against t for (α, β, ε,Ω, Q0, x0, _x0) � (4, 1, 0.1, 0.5, 0.1, π/6, 0.2).
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Step 5. In this step, we proceed to find a solution to i.v.p.
(20) in the form of trigonometric functions. Without loss of
generality, i.v.p. (20) can be redefined as

R2 � €v + 2ε _v + pv + qv
3

� 0,

v(0) � v0&v′(0) � _v0,

⎧⎨

⎩ (24)

where i.v.p. (24) is the same as i.v.p. (20) with p � (α − Q0),
q � β, and v(t) � y(t).

Step 6. Our objective here is to derive another solution that
does not involve elliptic functions but an elementary so-
lution. To do that, we assume ε> 0, and for limt⟶∞v(t) � 0,
we get

v(t) � c0e
− ρt cos h(t) + arccos

x0

c0
􏼠 􏼡􏼠 􏼡, (25)

where h(0) � 0 and h(t) is undermined function.

Step 7. By substituting solution (25) into i.v.p. (24), we have

R2 � c0 sin(θ)e
− ρt

−2εh′ + 2ρh′ − h′′( 􏼁 +
1
4
c
3
0q cos(3θ)e

− 3ρt

+
1
4
c0 cos(θ)e

− 3ρt 3c
2
0q + 4e

2ρt
−2ερ − h′

2
+ p + ρ2􏼒 􏼓􏼔 􏼕.

(26)

Step 8. For vanishing the coefficient of cos(θ) in equation
(26): 3c20q + 4e2ρt(−2ερ − h′

2
+ p + ρ2) � 0, we have

h′ � ±
1
2

���������������������

4p − 8ερ + 4ρ2 + 3c
2
0qe

− 2ρt
􏽱

, (27)

and by solving (27) with h(0) � 0, we get

h(t) � H(t) − H(0), (28)

with

H(t) �
1
ρ

��
Π

√
tanh− 1

�����������

1 +
3c

2
0qe
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4Π

􏽳
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�����������
3
4
c
2
0qe
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+Π

􏽲

⎛⎜⎝ ⎞⎟⎠,

H(0) �
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��
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√
tanh− 1

�������

1 +
3c

2
0q

4Π

􏽳

⎛⎜⎝ ⎞⎟⎠ −

��������
3
4
c
2
0q + Π

􏽲

⎛⎜⎝ ⎞⎟⎠,

(29)

where Π � (p − 2ερ + ρ2).

Step 9. ,e number c0 is obtained from the condition
v′(0) � _v0 and it is a solution to the quartic

3qc
4
0 + 4p − 8ερ + 4ρ2 − 3qv

2
0􏼐 􏼑c

2
0 − 4 pv

2
0 − 2ερv

2
0􏼐

+ 2ρ2v20 + 2ρv0 _v0 + _v
2
0􏼑 � 0,

(30)

where the number ρ is a free/optimal parameter that is
chosen in order to minimize the residual error. Its default
value is ρ � ε.

Step 10. Finally, the trigonometric approximation to i.v.p.
(10) is obtained:

x(t) � y(f(t)) � c0e
− ρf(t) cos h(f(t)) + arccos

x0

c0
􏼠 􏼡􏼠 􏼡.

(31)

Step 11. Also, we can solve i.v.p. (20) using RK numerical
method and then replacing t⟶ f(t) (given in equation
(23)). ,e following MATHEMATICA command is intro-
duced for this purpose:

g[t ] ≔ y′′[t] + 2 ε y′[t] + α − Q0( 􏼁 y[t] + βy[t]
3
;

RK[t ] ≔ NDSolve g[t] �� 0&&y[0] �� x0&&y′[0]􏼂

�� _x0, y[t], t􏼃[1, 1, 2],

(32)

x[t ] ≔ RK[f[t]]. (33)

Both analytical and numerical approximations (31) and
(33) to i.v.p. (10) are, respectively, plotted against the RK
numerical solution as illustrated in Figures 4 and 5. Also, at
(α, β, ε,Ω, Q0, _x0) � (4, 1, 0.1, 0.5, 0.1, 0.2), the maximum
global distance of both approximations (31) and (33) is
estimated for different values to x0 as

Ld x0 � 0( 􏼁 � max
0≤t≤30

RK − x(t)Approx.(26)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000506901,

Ld x0 � 0( 􏼁 � max
0≤t≤30

RK − x(t)Approx.(28)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000482946,

Ld x0 �
π
6

􏼒 􏼓 � max
0≤t≤30

RK − x(t)Approx.(26)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00415468,

Ld x0 �
π
6

􏼒 􏼓 � max
0≤t≤30

RK − x(t)Approx.(28)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00266014.

(34)

,e obtained results show the high accuracy and effi-
ciency of the obtained approximations (31) and (33).
Moreover, these approximations are stable against long time
and for arbitrary values of the physical parameters.

2.3.AeHomotopyExtendedKrylov–Bogoliubov–Mitropolskii
Method. ,e homotopy extended Kry-
lov–Bogoliubov–Mitropolskii (HKBM)methodmay be used
for solving both conservative and nonconservative oscilla-
tors. Based on this method (more details can be found in
[27, 28]), i.v.p. (10) can be redefined as

€x + α − Q0( 􏼁x + p ε _x + Q0(1 − cos(Ωt))x + βx
3

􏽨 􏽩 � 0,

x(0) � x0 and x′(0) � _x0, 0≤ t≤T,

⎧⎨

⎩

(35)

where xp ≡ xp(t) indicates the solution of i.v.p. (35) while
the solution of the dDMO (2) is obtained for p � 1. For
ω0 �

������
α − Q0

􏽰
, ϕ(t) � Q0(1 − cos(Ωt)) and α − Q0 > 0, i.v.p.

(35) can be written in the following reduced form:
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€x + ω2
0x + p ε _x + ϕ(t)x + βx3( ) � 0,

x(0) � x0 andx′(0) � _x0, 0≤ t≤T.


 (36)

According to the HKBM method, the following ansatz
solution is introduced:

xp � a cos(ψ) +∑
N

n�1
pnun(a,ψ) + O pN+1( ), (37)

where each un ≡ un(a,ψ) is a periodic function in ψ, and
both amplitude a and phase ψ are assumed to vary with time
and subject to the conditions

da

dt
≡ _a � ∑

N

n�1
pnAn(a) + O pN+1( ),

dψ
dt
≡ _ψ � ω0 +∑

N

n�1
pnψn(a) + O pN+1( ),

(38)

where a ≡ a(t) and ψ ≡ ψ(t).
Inserting ansatz solution (37) and using (38) and after

several tedious calculations, we can determine the unknown
time-dependent functions (un,ψn, An, a). To avoid the so-
called secularity, we choose only the solution that does not
contain cos ψ nor sin ψ. For N � 1, we get
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Figure 4: Both trigonometric approximation (31) and RK numerical simulation to the damped Du�ng–Mathieu problem (10) are
compared with each other for di�erent values to the initial amplitude x0.
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Figure 5: Both RK numerical simulation (32) and RK numerical simulation (33) using the de�nition of t⟶ f(t) to the damped
Du�ng–Mathieu problem (10) are compared with each other for di�erent values to the initial amplitude x0.
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_a � −εa(t),

_ψ �
3βa(t)2 + 4ϕ(t)

8ω0
+ ω0,

u1(a,ψ) �
a3β cos(3ψ)

32ω2
0

,

(39)

and

xp(t) � a cos(ψ) + p
β

32ω2
0
a3 cos(3ψ). (40)

By solving system (39), we have

a � c0e
− εt,

ψ �
e− 2εt

16εΩω0
8εe2εt 2c1Ωω0 − Q0(Ωt + sin(Ωt)) + 2αΩt( )[

+ 3βc20Ω e
2εt − 1( )].

(41)

�e �rst-order approximate solution is obtained for
p � 1:

x(t) � x1(t) � a cos(ψ) +
β

32ω2
0
a3 cos(3ψ), (42)
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Figure 6: Both HKBM �rst-order approximate solution (42) and RK numerical simulation are plotted against di�erent values of the initial
angle x0.
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Figure 7: Both HKBM �rst-order approximate solution (42) and RK numerical simulation are plotted against di�erent values of the
damping parameter ε.
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where the values of (a,ψ) are defined in (41) while the
constants c0 and c1 can be obtained from the initial
conditions.

,e comparison between the HKBM first-order ap-
proximate solution (37) and the RK numerical simulation is
reported as shown in Figures 6(a) and 6(b) for x0 � 0 and
x0 � π/6, respectively. Also, both HKBM first-order ap-
proximate solution (42) and RK numerical simulation are,
respectively, compared with each other for weak (ε � 0.1)

and strong (ε � 0.5) damping as illustrated in Figures 7(a)
and 7(b). Furthermore, at (α, β,Ω, Q0, _x0) �

(4, 1, 0.5, 0.1, 0.2) and for different values to (x0, ε), the
maximum global distance error to the HKBM first-order
approximate solution (42) is estimated as

Ld x0 � 0( 􏼁 � max
0≤t≤30

RK − x(t)HKBM(37)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.00110165,

Ld x0 �
π
6

􏼒 􏼓 � max
0≤t≤30

RK − x(t)HKBM(37)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.0061929,

Ld(ε � 0.1) � max
0≤t≤30

RK − x(t)HKBM(37)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.00110165,

Ld(ε � 0.5) � max
0≤t≤30

RK − x(t)HKBM(37)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.00493896.

(43)

It is clear that the HKBM first-order approximate so-
lution (42) is characterized by high accuracy and more
stability at long time.

3. Conclusion

Given the importance of nonlinear oscillations in plasma
physics and engineering and their strong connection to the
family of the Duffing-type oscillator, in this work, some exact
solutions to the damped and undamped Mathieu equations
as well as some analytical approximations to the damped
Duffing–Mathieu oscillator (dDMO) using different ap-
proaches have been obtained. ,e exact solutions to both
damped and undamped Mathieu equation have been ob-
tained in the terms of Mathieu functions of the first kind.
,ese solutions are numerically compared with the Run-
ge–Kutta (RK) numerical simulation. It was observed that
both exact and numerical solutions are completely matched
with each other in the whole time interval. On the other
hand, the dDMO has been solved using some different
approaches. In the first one, the nonintegrable dDMO with
cubic nonlinear term (βx3) has been reduced to an inte-
grable dDMO with linear term (β κx) in which κ is
undermined optimal parameter. ,e kappa optimal pa-
rameter κ has been determined using a suitable technique as
we discussed in the text above. After determining the kappa
optimal parameter, a highly accurate analytical approxi-
mation has been obtained in terms of the Mathieu functions.
In the second approach, a highly accurate analytical ap-
proximation has been derived in detail in terms of trigo-
nometric functions using the ansatz method. In the third
technique, the homotopy extended Kry-
lov–Bogoliubov–Mitropolskii (HKBM)method was used for

getting an effective analytical approximation. Furthermore,
the dDMO has been analyzed numerically using the RK
numerical method. ,e comparison between all obtained
approximations and the RK numerical solutions has been
carried out. Moreover, themaximum global distance error in
the whole time interval to all obtained approximations has
been estimated. All obtained approximations are charac-
terized by the high accuracy and efficiency in addition to
being more stable for a long time.

3.1. Future Work. We may solve the following oscillators
using of the methods described in this paper:

3.1.1. Future Idea I. Cubic-quintic Duffing–Mathieu
equation:

€x + ω2
0x + 2ε _x + ϕ(t)x + βx

3
+ cx

5
� 0,

x(0) � x0 & x′(0) � x0, 0≤ t≤T.

⎧⎨

⎩ (44)

3.1.2. Future Idea II. Forced damped Duffing–Mathieu
equation:

€x + ω2
0x + 2ε _x + ϕ(t)x + βx

3
� F(t),

x(0) � x0 & x′(0) � x0, 0≤ t≤T.

⎧⎨

⎩ (45)

3.1.3. Future Idea III. ,e forced Van der Pol–Duffing
oscillator:

€x − ε 1 − x
2

􏼐 􏼑 _x + ω2
0x + βx

3
� F(t),

x(0) � x0 & x′(0) � x0, 0≤ t≤T,

⎧⎨

⎩ (46)

and many others oscillators.
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Based on RSCA index, using kernel density estimation, Markov chain transition probability matrix, and survival analysis method,
this paper analyzes the dynamics of Chinese export comparative advantage from 2001 to 2020 and draws the following con-
clusions. Firstly, after 20 years of export trade development, although the comparative advantage of a few commodities of China
has weakened and comparative disadvantage has increased, the comparative advantage of most commodities is improving, and the
overall distribution of comparative advantage remained unchanged. Secondly, the stability of Chinese comparative advantage is
higher than liquidity, and liquidity as a whole shows a good trend. In addition, the viability of Chinese commodities with
comparative advantage has performed well in the past 20 years. 0erefore, China should optimize export mode based on
comparative advantage.

1. Introduction

0e export mode of country and region has long been one of
the research hot-spots in the field of international trade.
Although the new trade theory in the 1980s attributed the
emergence of trade to two cornerstones, namely, compar-
ative advantage and economies of scale, comparative ad-
vantage is still the main theoretical explanation [1].
According to David Ricardo’s comparative advantage the-
ory, the difference of relative labor productivity among
countries leads to the difference of relative production cost,
which leads to the difference of relative export price. Hence,
a country should export commodities with comparative
advantage and import commodities with comparative dis-
advantage. Regional relative labor productivity will not al-
ways be in a static state, but will continue to change with the
passage of time, and then the regional comparative ad-
vantage will also change. 0erefore, comparative advantage
is a dynamic concept and develops endogenously over time
[2]. Countries and regions continuously strengthen or
weaken the original comparative advantage due to factor

endowment, technological progress, industrial policy, and so
on and even lead to the reversal of original comparative
advantage. In this way, the dynamics of comparative ad-
vantage is not only an indirect reflection of the changes of
regional factor endowment and technology level, but also an
important content to measure the impact of government
policies. Hence, how to measure the dynamics of compar-
ative advantage naturally becomes the initial task of
researchers.

Since implementation of the strategy of reform and
opening up in the late 1970s, China’s economy has been fully
integrated into the process of economic globalization.
Chinese government has vigorously developed open econ-
omy, practiced open economic system and mechanism,
deepened foreign trade and investment policies adapted to
its national conditions, actively developed bilateral and
multilateral trade relations, integrated multilateral trade
organizations, implemented “going global” strategy, and
deepened “0e Belt and Road” initiative. 0ese measures
have improved Chinese foreign trade development envi-
ronment, trained a large number of various ownership
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business entities facing the world market, effectively opti-
mized export commodity structure, and improved inter-
national competitiveness. After accession to WTO, although
China has experienced the 2008 international financial crisis,
trade friction with major countries, rising domestic pro-
duction cost, fluctuation of exchange rate, COVID-19 virus,
etc., its export trade has made remarkable achievements.
Chinese commodity exports amounted to US $509.6 billion
in 2001. By 2020, its exports reached $2590.6 billion. 0e
export scale has increased more than five times. China has
become the largest commodity exporter and the largest
foreign trade country in the world, and its import and export
trade has become an important engine of global economic
growth. With the growth of export scale, China’s export
commodity structure has also been significantly optimized,
gradually reversing the export commodity structure domi-
nated by primary products and labor-intensive products. In
2020, the export volume of manufactured commodities
accounted for 95.5% of total exports volume in China, while
primary products accounted for only 4.5%. In manufactured
commodities, the percentage of mechanical and electrical
products and high-tech products representing high tech-
nological level in total export is becoming higher and higher.
For example, machinery and transportation equipment
accounts for 48.6% in 2020, in such commodities, me-
chanical and electrical products and accessories, telephone
communication and audio products, office machinery, and
automatic data processing equipment are the main export
commodity categories. 0e optimization of export com-
modity structure itself is the favorable result of dynamics of
export comparative advantage in China. 0erefore, it is
necessary to conduct in-depth research on the dynamics of
Chinese export comparative advantage.

0e rest of this paper is organized as follows. 0e second
part summarizes empirical methods of dynamics of com-
parative advantage, including a brief discussion of com-
parative advantage index and the statistic methods of index.
0e third part is the index and research methods used in this
paper, including RSCA index and kernel density estimation,
Markov chain transition probability matrix, and survival
analysis methods. 0e fourth part presents results of em-
pirical research. 0e fifth part is main conclusions and
suggestions.

2. Literature Review

Analyzing change characteristics of comparative advantage
index in certain period is the basic research way of dynamics
of comparative advantage. 0is includes two interrelated
aspects of the choice of index and application of statistical
methods.

In terms of comparative advantage index, scholars have
put forward various types of index since the 1950s, among
which Balassa revealed that comparative advantage index
(RCA) is most famous [3], but the index is also controversial.
0emain controversy is that RCA index has inherent defects
in both theoretical basis and empirical application. For
example, the mean value of RCA index is unstable and its
distribution is nonnormal, so the accuracy of measuring

comparative advantage is questionable. For this reason, later
scholars put forward many alternative indexes with the aim
of overcoming one or more shortcomings of the original
RCA index. For example, Michaely put forward Michaely
Index (MI) [4], Vollrath proposed relative trade advantage
(RTS), relative export advantage (RC), and revealed com-
petitiveness (In RCA) [5], Lafay proposed Lafay Index [6],
Dalum and Laursen offered revealed symmetric comparative
advantage index (RSCA) [7], Heon and Oosterhaven pro-
posed additive (aggregated) revealed comparative advantage
index (ARCA) [8], Cai and Yu proposed net export-revealed
comparative advantage index (NRCA) [9], Wosiek and
Visvizi proposed visviz wosiek RCA index (VWRCA) [10],
and Andrey and Vladimir proposed new net trade index (nt
RCA) [11].0ese alternative indexes can sometimes alleviate
some defects of RCA index in some specific cases. However,
as Sanidas and Shin said, there is no perfect index [12].

Application of statistical methods on dynamics of
comparative advantage is becoming more and more diverse
and complex. For example, Benedicits and Tamberi used
cumulative distribution, kernel density estimation, Lorentz
curve, location index, and other methods based on RCA
index [13]. Proudman and Redding and Hinloopen and
Marrewijk used Markov chain transition probability matrix
of RCA index and liquidity index methods [14, 15]. Laursen
and Michele Alessandrini conducted regression analysis of
RSCA index and Lafay Index, respectively [16, 17]. Bojnec
and Fertö [2] and Olivera kostoska [18] also used regression,
Markov chain transition probability matrix and survival
analysis method of RCA index.

Application of the above indexes and statistical methods
can reflect dynamics of regional comparative advantage to a
certain extent; however, the following problems cannot be
avoided. Firstly, the choice of index remains unsolved. Some
scholars believe that the indexes based on the supply di-
mension, that is, only export data and no import data, lead to
incomplete comparative advantage analysis [19]. Never-
theless, the author believes that if the demand dimension is
considered, that is to say, the indexes including import data
are adopted, the measurement is more distorted relative to
supply dimension due to the influence of government
policies, trade relations, and geographical factors. Although
these factors can be measured separately, it is actually so
challenging. In addition, it is reasonable to use the indexes
based on the supply dimension in the current trade envi-
ronment. After all, export is less affected by trade policies
and trade relations than import. Of course, even if the
problems related index selection is solved, there are still
other straits. For example, using “ex post” trade data to
reflect “ex ante” comparative advantage is naturally flawed
[11, 20]. 0erefore, these all depend on the progress of
follow-up index research. Secondly, if we carefully study the
specific methods related to dynamics of comparative ad-
vantage, we can find that most methods compare the index
distribution of discrete time, such as between start time and
end time, and ignore complete trend. In addition, the
classification level of commodity also has an impact on the
research results. For example, according to SITC classifi-
cation, there may be a phenomenon that commodities with
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one-digit classification do not have comparative advantage,
while commodities with two-digit or three-digit classifica-
tion may have comparative advantage, and there may also be
a phenomenon that commodities with one-digit classifica-
tion have comparative advantage, but commodities with
two-digit or three-digit classification may not have com-
parative advantage. 0ese are also not conducive to the
accurate analysis of comparative advantage. Hence, study on
dynamics of comparative advantage may be more accurate
when the commodity classification is more detailed. In view
of this, referring to SITC three-digit classification, this paper
selects RSCA index to carry out research on dynamics of
export comparative advantage in China from 2001 to 2020.
In addition, this study not only compares discrete years, but
also studies the whole trend.

3. Methodology and Data

3.1. RSCARSCA Index, Commodity Classification, and Data

3.1.1. RSCA Index. Revealed symmetric comparative ad-
vantage (RSCA) index was proposed by Dalum and Laursen
[7]. 0is index is the modification of the revealed com-
parative advantage (RCA) index. 0e RCA index formula is

RCAij �
Xij/􏽐

m
i�1 Xij

Xin/􏽐
m
i�1 Xin

, (1)

where Xij is export volume of region j commodity i. 􏽐m
i�1 Xij

is total export volume of region j commodity i. Xin is export
volume of commodity i in reference region n. 0en 􏽐

m
i�1 Xin

is total export volume of reference region.0e value range of
RCAij index is [0, +∞). When the value of RCAij index is
greater than 1, it indicates that region j has comparative
advantage in commodity i; otherwise it is the opposite; when
the value of index is equal to 1, it indicates the median point
of comparative advantage and represents neutral compar-
ative advantage.

RSCARSCA index is converted from RCA index to al-
leviate the defect of asymmetric distribution of RCA index.
0e formula is

RSCAij �
RCAij + 1
RCAij + 1

, (2)

where the value of RSCAij index ranges from [−1, 1]. When
RSCAij value is greater than 0, it indicates that region j has
comparative advantage in commodity i; otherwise it is the
opposite. When the value of index is equal to 0, it represents
the median point of comparative advantage and neutral
comparative advantage.

3.1.2. Commodity Classification and Data. 0is paper quotes
the three-digit commodity classification in the Standard of
International Trade Classification (SITC Rev 3). 0e clas-
sified export data of China and world involved in the index
calculation are all from UN COMTRADE database. Due to
lack of world’s three-digital classified commodity export
data in the database, the annual export volume of three digit
commodities of each country included in the database is

aggregated as the total classified export volume of world.0e
export data of Chinese classified commodity from 2001 to
2020 are relatively complete in the database, and only two
categories of commodities are not included in the analysis
due to lack of data of complete years, that is, Ores and
concentrates of uranium or thorium (286) and Gold,
nonmonetary (excluding gold ores and concentrates (971). A
total of 255 commodities are selected finally. In addition, the
reason why RSCA index is selected is also due to the con-
sideration of data quality. 0e quality of export data in the
database is better than that of import data. If the selected
comparative advantage index contains import data, it will be
difficult to havemeasurement results of 255 categories due to
research cycle, commodity classification level, and other
reasons.

3.2. Dynamics of Comparative Advantage Method

3.2.1. Kernel Density Estimation. Kernel density estimation
is a nonparametric method to estimate the probability
density function of continuous random variables without
assuming the basic distribution of random variables. Let
(x1, x2, . . . , xn) be a random sample from the same un-
known probability density function f(x) and its kernel
density estimator is

f(x) �
1
n

􏽘

N

i�1
Kh x − xi( 􏼁

�
1

nh
􏽘

N

i�1
K

x − xi

h
􏼒 􏼓,

(3)

where K is kernel function and h> 0 is the smoothing pa-
rameter (also called the bandwidth). In this paper, the de-
fault Epanechnikov kernel function of Stata software is used
to obtain the kernel density curve.

After kernel density estimation, two-tailed Wilcoxon
signed rank test is also performed. 0is test is a nonpara-
metric test used to test the difference in the distribution of
two samples.0e premise of two samples is not independent,
or matched samples or paired samples, or repeated mea-
surement of a single sample.0us, theWilcoxon signed rank
test tests for the null hypothesis of equal distributions
through equal means against the alternative hypothesis of
unequal distributions through unequal means.

3.2.2. Markov Chain Transition Probability Matrix.
Generally, random variables X are considered as a Markov
random process. For each n and all states i1, . . . , in,

P Xn � in|Xn−1 � in−1, . . . , X1 � i1􏼂 􏼃

� P Xn � in|Xn−1 � in−1􏼂 􏼃.
(4)

We use our transition matrices as in a Markovian
analysis, as a consequence relative frequencies should be
interpreted as probabilities; in practice we utilize the tran-
sition matrics as if they had been generated by a stationary
Markov process:
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P Xn � j|Xn−1 � i􏼂 􏼃 � P Xn+k � j|Xn+k−1􏼂 􏼃. (5)

For all states i and j, k � (n − 1), . . . , 1, 0, 1, . . ..

3.2.3. Survival Analysis. Kaplan–Meier product limit
method is used to estimate the survival function. 0is
method is a nonparametric estimation method, which is
used to estimate the survival probability beyond a given
point in time; that is, the survival distribution is calculated
according to the life experience data, and the censored case is
considered. In other words, it is a statistical technique for
describing and quantifying “time of event” data.

0e survival function S(t) is estimated using the
Kaplan–Meier product limit method.0e specific derivation
is as follows: it is assumed that the sample contains n in-
dependent observations, expressed as (ti; ci), i � 1, 2, . . . n,
where ti is the survival time and ci is the censored dummy
variable C of the observation value i. If the “failure” event
occurs, it is taken as 1; otherwise it is taken as 0. In addition,
it is assumed that there are m< n recorded failures.0en, the
ordered survival time t(1)< t(2)< · · · < t(m) is defined. Let
nj be the number of failures at t(j), let dj be the number of
failures observed, and the Kaplan–Meier estimate of the
survival function is

􏽢S(t) � 􏽙
t(i)<t

nj − dj

nj

. (6)

By convention, when t< t(1), 􏽢S(t) � 1. Considering that
many observations are censored, the estimator is robust to
censoring and uses the information of censored and non-
censored observations.

4. Empirical Analysis Results

4.1. Kernel Density Estimation. 0e kernel density of RSCA
index in 2001–2002, 2008–2009, and 2019–2020 is estimated,
as shown in Figure 1. 0e two-year average index is used to
mitigate the impact of export fluctuations in a single year. At
the same time, the reason for choosing the year 2001–2002 is
not only the starting year of this study, but also the period of
China’s entry into WTO. 2008–2009 is a period of inter-
national financial crisis and 2019–2020 is the end year of the
study. From the distribution pattern, there is an obvious
peak on the left of the median point (RSCA � 0) in
2001–2002, indicating that most commodities have no
comparative advantage. Actually, the percentages of com-
modity in the three years are 64.3%, 63.9%, and 62.0%,
respectively, and the above results are proved. In 2008–2009,
two more flat peaks are formed compared with 2001–2002.
0e first peak is on the left side of the peak in 2001–2002,
which is comparative.

Advantage of some commodities is deteriorating; the
second peak is on the right side of the peak in 2001–2002,
indicating that comparative advantage of some commodities
is improving. In 2019–2020, the left peak moves further to
the left, indicating that comparative advantage of some
commodities continues to deteriorate. On the right side of
the median point (RSCA � 0), the curve in 2008–2009

moves upward relative to that in 2001–2002, indicating that
the number of commodities with comparative advantage
increases. 0e curve in 2019–2020 moves further upward,
indicating that the number of commodities with compar-
ative advantage is further increased compared with the
previous two years, thus forming the highest peak. Obvi-
ously, since China’s accession to the WTO, although the
degree of comparative disadvantage of a few export com-
modities has increased, it can still be seen that more and
more commodities have obtained comparative advantage,
and the overall trend is improving. In addition, by observing
the tails at both ends of the three curves, it can be seen that
the left curve moves up and the right curve moves down,
which further shows that the comparative advantage of
commodities with strong original advantage decreases and
the comparative disadvantage of commodities with weak
original disadvantage increases. 0is phenomenon can be
explained to some extent by the calculation of RCA index.
Although this study makes analysis based on RSCA index,
some defects of RCA index will not be eliminated by con-
version to RSCA index. Yeats believes that RCA index
calculation result may be more beneficial to small economies
[21]. When China joined the WTO, it was not a major
exporter in the world, and only a few commodities are
exported to the world market. 0ese commodities account
for a large share of Chinese total exports, while most other
commodities account for a small share, which affects the
numerator of RCA index (Xij/􏽐

m
i�1 Xij). Although Benedicit

believes that the value of RCA index depends on the change
of numerator and denominator (Xin/􏽐

m
i�1 Xin) and the si-

multaneous change of numerator and denominator [13], the
author believes that the numerator influence is greater for
China, thus amplifying the comparative advantage of
commodities with high export share and weakening the
comparative disadvantage of commodities with low export
share. More than 20 years after joining WTO, China has
become a major exporter. 0e export commodities with
comparative advantage and disadvantage have a lower share
compared with more than 20 years ago, which leads to

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1-1
0

0.2
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Figure 1: Kernel density estimation of Chinese RSCA index
distribution.
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decline of advantages of the commodities with strong
comparative advantage and enhancement of disadvantages
of the commodities with weak comparative advantage.

Wilcoxon signed rank two-tailed test is performed. 0e
test about comparative advantage index distribution can be
seen in S. Bodhisattva and D. Kaveri [22]. Here, the original
hypothesis (H0) is that there is no significant difference in
the distribution of RSCA index in the above three years,
while there is a significant difference in the alternative
hypothesis (H1). 0e results show that the original hy-
pothesis is not rejected at the 5% significance level, as shown
in Table 1. 0is means that although Chinese RSCA index
kernel density curve shows a certain change, the change does
not deviate from the original distribution state.0at is to say,
despite the impact of major external environmental changes
such as entry into WTO and the 2008 international financial
crisis, the dynamics of Chinese export comparative ad-
vantage have changed to a certain extent, but its export
specialization mode is still stable.

4.2. Transition Probability Matrix. Taking 2001–2002 as the
base year, four intervals, I, II, III, and IV, are divided
according to the quartile of RSCA index in 2001–2002.
Interval I is between the minimum and lower quartile of
RSCA index in 2001–2002, interval II is between the lower
quartile and median, III is between the median and upper
quartile, and IV is between the upper quartile and maxi-
mum. In this way, the transition probability matrices of
2008–2009 and 2019–2020 relative to 2001–2002 are ob-
tained, respectively. Similarly, the other I, II, III, and IV
intervals are divided based on the quartile of RSCA index in
2008–2009, and the transition probability matrix in
2019–2020 relative to 2008–2009 is also calculated. All re-
sults are shown in Table 2.

Generally speaking, the probability of the diagonal el-
ement of the matrix represents stability. When the diagonal
probability value is larger, it indicates that the stability is
higher. When the probability of each row of elements moves
across the interval relative to probability of diagonal ele-
ments, it indicates liquidity. When crossing multiple in-
tervals, the liquidity is greater. Since probability values of the
matrix are all between [0, 1], the stability and liquidity are
evaluated by summing the probability of diagonal elements
and nondiagonal elements. Firstly, the transition matrix in
2019–2020 relative to 2001–2002 is analyzed. 0e sum of
probability of diagonal elements and nondiagonal elements
is 2.16 and 1.84, respectively, indicating that stability is
higher than liquidity. In addition, the probability of the
elements in the upper right corner outside the diagonal
indicates that the liquidity is in the improving direction, and
the probability of the elements in the lower left corner in-
dicates that the liquidity is in the deterioration direction.0e
sum of probability of the elements in the upper right corner
is 0.98, which is greater than the sum of the probability of the
elements in the lower left corner which is 0.86, and the
overall trend is improving. Secondly, the transition matrix in
2008–2009 relative to 2001–2002 is obtained. 0e sum of
probability value of diagonal elements and nondiagonal

elements is 2.5 and 1.5, respectively, and stability is higher
than liquidity. Similarly, the total probability values of the
upper right corner and lower left corner of the matrix are
0.73 and 0.77, respectively, and there is a deterioration trend
as a whole.

Finally, the transition matrix of 2019–2020 relative to
2008–2009 is analyzed. 0e sum of probability value of
diagonal elements is 3.09, and the sum of the probability of
nondiagonal elements is 0.91; stability is higher than li-
quidity. 0e sum of the probability values in the upper right
corner and the sum of the probability value of the elements
in the lower left corner of the matrix are 0.52 and 0.39,
respectively, showing a good trend as a whole.

From this, it can be concluded that dynamics of Chinese
export comparative advantage is stable. Except that Chinese
comparative advantage deteriorated slightly during inter-
national financial crisis in 2008, the overall comparative
advantage has an improving trend, which also verifies the
relevant results of kernel density estimation.

4.3. Survival Analysis. 0e above two methods only use six
years’ RSCA index distribution information and do not
show the complete dynamics of Chinese export comparative
advantage. In order to further clarify dynamics of Chinese
export comparative advantage, the survival analysis of RSCA
index from 2001 to 2020 is carried out. It is defined as 0 when
the value of RSCA index is greater than 0 and 1 when the
value is less than 0. 0e Kaplan–Meier method is used to
estimate the cumulative survival function. Firstly, find out
the uninterrupted sequence with RSCA> 0 from 2001 to
2020, which means that the value of a specific commodity in
20 years is 0. 0en consider two cases.

Case 1. If RSCA> 0 turns to RSCA≤ 0 for a commodity in a
certain year, it indicates that an event has occurred and is
marked 1 at the end of the time sequences of successive 0’s.
0e minimum length of the sequence is 2. 0e maximum
length of the time sequence is 19.

Case 2. Case I does not occur. 0is includes two kinds of
censored cases. (i) 0e sequence is 1 from the first year; after
multiple consecutive 0’s or 1’s, it is finally censored with 0 in
the 20th year. (ii) 0e sequence was 1 in 20 years and finally
censored with 1.

For KaplanMeier analysis, here, the censored case (ii) in
case II is excluded, so 120 commodities are eliminated and
135 commodities remained. 0e following situations will
happen to 135 commodities: (a) it has been 0 for 20 years; (b)
Case 1 occurs; (c) there is also Case 1 and case (i) in Case 2
that occur at the same time. 0us, 173 independent ob-
servations were formed, of which 93 commodities are
censored with 0, accounting for 53.7%, and 80 commodities
are censored with 1, accounting for 46.3%. 0e survival
probability of Chinese survival function in the first year is 1,
which decreases to 0.661 after 5 years, 0.578 after 10 years,
0.522 after 15 years, and 0.507 after 16 years and then re-
mains stable (see Table 3).
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Graphically, the period of rapid decline in Chinese
survival rate is mainly 1–5 years, the degree of decline
decreases in 5–15 years and remains stable after 16 years
(see Figure 2). 0is means that about 50% of China’s export
commodities with comparative advantage have a chance to
survive for more than 16 years. At the 95% confidence level,
the mean survival time is 12.84 years and the standard error
is 0.61. 0is shows that, even in the face of fierce inter-
national market competition, after excluding the com-
modities without comparative advantage in the past 20
years, the viability of China’s commodities with compar-
ative advantage performs well, which means that China’s
existing export mode can still support the viability of most
commodities.

5. Conclusions and Suggestions

Since entrance to WTO, the development of Chinese
foreign trade has significantly improved its position in

Table 1: Results for Wilcoxon’s signed rank test of Chinese RSCA index.

year 2001-2002 vs. 2008-2009 2008-2009 vs. 2019-2020 2001-2002 vs. 2019-2020
z-value −0.422 −0.513 −0.506
p-value 0.673 0.595 0.613
Note. Significance level α� 5%.

Table 2: Markov transition probability matrix of Chinese export comparative advantage.

State
2001-2002 vs. 2008-2009 2008-2009 vs. 2019-2020 2001-2002 vs. 2019-2020

I II III IV I II III IV I II III IV
I 0.734 0.219 0.031 0.016 0.891 0.109 0.000 0.000 0.672 0.219 0.094 0.015
II 0.210 0.500 0.290 0.000 0.143 0.603 0.254 0.000 0.238 0.302 0.429 0.031
III 0.063 0.187 0.578 0.172 0.000 0.110 0.734 0.156 0.063 0.219 0.531 0.187
IV 0.046 0.077 0.185 0.692 0.000 0.000 0.141 0.859 0.094 0.047 0.203 0.656

Table 3: Kaplan–Meier survival analysis of Chinese RSCA index (2001–2020).

Time Beg. total Fail Net lost Survivor function Std. error [95% conf. int.]
1 173 0 2 1.0000 . . .
2 171 23 2 0.8655 0.0261 0.8046 0.9085
3 146 14 2 0.7825 0.0316 0.7126 0.8373
4 130 12 3 0.7103 0.0349 0.6355 0.7725
5 115 8 4 0.6609 0.0366 0.5837 0.7271
6 103 2 0 0.6480 0.0370 0.5704 0.7152
7 101 4 0 0.6224 0.0377 0.5438 0.6913
8 97 3 0 0.6031 0.0381 0.5241 0.6732
9 94 3 0 0.5839 0.0385 0.5045 0.6550
10 91 1 2 0.5775 0.0386 0.4980 0.6489
11 88 2 2 0.5643 0.0388 0.4847 0.6364
13 84 0 4 0.5643 0.0388 0.4847 0.6364
14 80 3 0 0.5432 0.0392 0.4631 0.6163
15 77 3 4 0.5220 0.0396 0.4417 0.5962
16 70 2 3 0.5071 0.0398 0.4266 0.5820
17 65 0 1 0.5071 0.0398 0.4266 0.5820
18 64 0 1 0.5071 0.0398 0.4266 0.5820
19 63 0 2 0.5071 0.0398 0.4266 0.5820
20 61 0 61 0.5071 0.0398 0.4266 0.5820
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Figure 2: Kaplan–Meier survival analysis of Chinese RSCA index
(2001–2020).
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world trade and become the largest commodity trade
country and largest exporter. 0is is the result of China’s
continuous optimization of import and export trade
mode to meet the needs of world market based on its own
comparative advantages. Based on the RSCA index, this
paper studies the dynamics of Chinese export compar-
ative advantage from 2001 to 2020; by kernel density
estimation method, it is obtained that although China is
facing the impact of more fierce international market
competition after entrance to WTO, the export com-
parative advantage of a small number of commodities has
weakened, and comparative disadvantage has increased,
but most of commodities’ comparative advantage has
improved, and through Wilcoxon signed rank two-tailed
test, it is concluded that the original comparative ad-
vantage state of China has not changed. 0rough analysis
of Markov chain transition probability matrix, it is
concluded that Chinese export trade mode is relatively
stable, the stability of comparative advantage is higher
than liquidity, and the liquidity presents an improving
trend as a whole. From survival analysis, after excluding
the commodities that have not had comparative advan-
tages for 20 years, the viability of China’s commodities
with comparative advantages performs well, which means
that existing export mode can still support viability of
most commodities.

As COVID-19 continues to rage, competition between
China and major trading partners in trade and other fields
will have a greater impact on world trade. 0erefore, China
needs to be based on the reality and evolution character-
istics of export commodities comparative advantage, adapt
to the dynamic demand change of international market,
actively optimize specialized export mode, and enhance
comparative advantage. Specifically, firstly, China should
further clarify the status and trend of comparative ad-
vantage of various commodities in world market and major
export markets, adapt to market dynamic demand,
strengthen product innovation, improve the supply chain,
improve level of value chain, and further improve added
value of export commodities so as to stabilize and develop
comparative advantage. Secondly, China should focus on
the export of commodities with improved comparative
advantages, promote diversification of export markets, and
further improve the way of trade organization so as to
promote the release of potential of such commodities.
0irdly, China should continue to strengthen the existing
export mode and improve the viability of export products
continuously in international market based on comparative
advantage.
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*is paper deals with the numerical solution of the Abel integral equation based on Müntz–Legendre wavelets. To this end, the
Abel integral operator is represented by Müntz–Legendre wavelets as an operational matrix. To find this matrix, we use the
similarity between the Abel integral operator and the fractional integral operator.*e proposed method can be easily used to solve
weakly singular Volterra integral equations. We have proved the convergence of the proposed method. To demonstrate the ability
and accuracy of the method, some numerical examples are presented.

1. Introduction

In this paper, we focus our attention on constructing and
applying Müntz–Legendre (M-L) wavelets that will be used
as the basis in the pseudospectral method to solve the fa-
mous Abel integral equation

u(x) − A
α
(k)(x) � f(x), (1)

in which Abel’s integral operator Aα(k)(x) of order
0< α< 1 is defined in [1] as follows:

A
α
(k)(x) ≔ 􏽚

x

0
k(x, s, u(s))(x − s)

− αdx, x ∈ [0, 1]. (2)

Here, given Ω � [0, 1], f(x), and k(x, s, u(s)) are as-
sumed to be continuous functions on Ω and S with
S � (x, s, u): x, s ∈ [0, 1], u ∈ R{ }. Further, we suppose that
the kernel function k(x, s, u(s)) is equal to the form
g(x, s)u(s). In other words, the desired equation is assumed
to be linear.

*e Abel equation is a special case of the integral
equations with the weakly singular kernel that was first
introduced by Abel. In investigating the generalization of the
tautochrone problem, he introduced this equation [2]. *is

equation appears widely in modeling many physical prob-
lems, such as nuclear physics, X-ray radiography, fluid flow
[3], scattering theory, plasma diagnostics, semiconductors,
physical electronics, and nonlinear diffusion[1, 4]. Given this
equation’s wide application, solving this equation is very
important. But one cannot always solve the equation ana-
lytically, and we need to use numerical methods for it.

Among the many papers that have considered the nu-
merical solution of this equation, we can mention some of
them. Saadatmandi and Dehghan [5] utilized the collocation
method based on shifted Legendre polynomials. Piessens
and Verbaeten [6] introduced a numerical method based on
Chebyshev polynomials, and after approximating the un-
known solution based on these bases, they obtained the
solution as a sum of hypergeometric functions. Using the
Bernstein operational matrix, Singh et al. [7] introduced a
stable numerical method to solve this problem. In [8], we can
find the integrable solution of the Abel integral equation
under certain conditions, and also the sufficient and nec-
essary conditions for the existence of this solution are
presented. In [9], the authors proposed the Laplace trans-
form method to solve the problem, where they assumed that
the solution would be differentiable and continuous. Saray
[10] introduced a novel and efficient method based on
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Alpert’s multiwavelets. In this work, after introducing the
sparse representation of the Abel integral operator, the Abel
integral equation is reduced to a sparse system of linear
algebraic equations in the linear form, and this causes a
reduction in time and computational costs. In [11], the
unbounded solutions of the nonlinear Abel integral equa-
tions are investigated. Li and Zhao [12] used Mikusinski’s
operator of fractional order to solve the Abel integral
equation.

*e outline of this article is as follows: the M-L wavelets
are constructed in Section 2, and then the Abel integral
operator is represented based on these bases. In Section 3,
the Abel integral equation is solved by using the pseudo-
spectral method based on M-L wavelets. *is section con-
tains the error analysis and the conditions for convergence
are investigated. To demonstrate the efficiency and accuracy
of the presented method, some numerical examples are
given in Section 4.

2. Müntz–Legendre Wavelets

As we know, multiresolution analysis (MRA) is a significant
procedure for constructing wavelets. According to MRA, a
family of nested subspaces exists such that they satisfy
certain circumstances [13]

0{ } ⊂ · · · ⊂ V− 1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L
2
(Λ), (3)

where Λ is equal to R or any bounded interval.
Recently, the M-L wavelets have been used to solve some

equations, such as fractional optimal control problems [14],
fractional pantograph differential equations [15], fractional
differential equations [16], and multiorder fractional dif-
ferential equations [17]. To solve the Abel equation, we first
briefly introduce the M-L wavelets as follows.

Given J ∈ N0, assume that the subspace VJ ∈ L2(Λ) is
spanned by the scaled and translated version of a set of bases,
which are called multiscaling functions, viz.,

VJ � span ϕn
J,b: b ∈B, n ∈R􏽮 􏽯􏽮 􏽯, (4)

where B ≔ 0, 1, . . . , 2J − 1􏼈 􏼉 and R ≔ 0, 1, . . . , r − 1{ } with
r ∈ N. *e parameter J is called refinement level and r is the
multiplicity parameter. In the sequel, we intend to introduce
the functions ϕn

J,b.
Motivated by [17], we denote the M-L polynomials

Ln(x) as

Ln(x) � 􏽘
n

k�0
lk,nx

λk , x ∈ Ω, (5)

where λk ≔ kμ: μ ∈ R, k � 0, . . . , n􏼈 􏼉 and the coefficient lk,n

is obtained by

lk,n ≔
􏽑

n− 1
i�0 λk + λi + 1( 􏼁

􏽑
n
i�0,i≠ k λk − λi( 􏼁.

(6)

It can be easily shown that these polynomials satisfy the
orthogonality requirements and form an orthogonal system,
via

〈Ln(x), Ln′(x)〉 � 􏽚
1

0
Ln(x)Ln′(x)dx �

δn′ ,n

2λn + 1
, n≥ n′,

(7)

where δm′,m
denotes the Kronecker symbol and is given by

δn′ ,n ≔
1, n′ � n,

0, n≥ n′.

⎧⎨

⎩ (8)

Considering the definition of Ln(x), one can introduce
the M-L wavelets [17], via

ϕn
J,b �

2J/2
������

2λn + 1
􏽱

Ln 2J
x − b􏼐 􏼑,

b

2J
≤x≤

b + 1
2J

,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

Due to the definition of M-L wavelets, one can introduce
the projection operatorP that maps any function u ∈ L2(Ω)

onto VJ as follows:

u(x) ≈ P(u)(x) � 􏽘
2J− 1

b�0
􏽘

r− 1

n�0
ub,nϕ

n
J,b(x) � U

TΦ(x), (10)

where and throughout the paper, the superscript T is used
for the matrix transpose. Here Φ(x) is a vector function of
dimension N � 2Jr whose (br + n + 1)-th element is ϕn

J,b(x),
and the (br + n + 1)-th element of the vector U is evaluated
by

ub,n �〈u,ϕn
J,b〉 � 􏽚

1

0
u(x)ϕn

J,b(x)dx. (11)

It follows from [15] that one may be able to bound the
projection error P in the sense of Sobolev norms.

Lemma 1 (see [15]). Given n≥ 0, assume that r>m. If
u ∈ Hm(Ω), then

‖u − P(u)‖L2(Ω)≤ c(r − 1)
− m 2J− 1

􏼐 􏼑
− m

u
(m)

�����

�����L2(Ω)
, (12)

and for s≥ 1, we have

‖u − P(u)‖Hs(Ω) ≤ c(r − 1)
2s− (1/2)− m 2J− 1

􏼐 􏼑
s− m

u
(m)

�����

�����L2(Ω)
,

(13)

in which Hm(Ω) is the Sobolev space and the related norm is
determined by

‖u‖Hm(Ω) � 􏽘
m

j�0
u

(j)
�����

�����
2

L2(Ω)
⎛⎝ ⎞⎠

1/2

. (14)

2.1. Representation of Abel Integral Operator in
Müntz–Legendre Wavelets. In this subsection, we consider
the Abel operator as a fractional integral operator, and after
representing the fractional integral operator in M-L wavelets
as an operational matrix, we find a representation of the Abel
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integral operator in M-L wavelets. To this end, it is necessary
to define some concepts about fraction calculation.

Definition 1 (see [18]). Let u ∈ L1[a, b]. *e Rie-
mann–Liouville fractional integral operator Iα

a of order
α ∈ R+ is determined by

I
α
a(u)(x) ≔

1
Γ(α)

􏽚
x

a
(x − s)

α− 1
u(s)ds, x ∈ [a, b], (15)

where Γ(α) represents the gamma function.

Remark 1. It can be verified that the fractional integral of the
functions xκ is given by

I
α
a x

κ
( 􏼁 �

Γ(κ + 1)

Γ(κ + α + 1)
x
κ+α

. (16)

Lemma 2 (cf Lemma 2.1(a). see [19]). 8e fractional inte-
gration operatorsIα

a are bound in Lp([a, b]) for 1≤p≤∞ as
follows:

I
α
a(u)

����
����p
≤K‖u‖p, K ≔

(b − a)
α

Γ(α + 1)
. (17)

It follows from [19] that if u ∈ L1[a, b], then the function
Iα

au itself belongs to L1[a, b]. We recall that the Abel in-
tegral operator of order α ∈ (0, 1) is determined by

A
α
(u)(x) � 􏽚

x

0
(x − s)

− α
u(s)ds. (18)

*ere is a similarity between the Abel integral operator
Aα and the Riemann–Liouville fractional integral operator
I

β
0 (β ≔ 1 − α), viz,

A
α

� Γ(α)I
1− α
a . (19)

*us, we can use the Riemann–Liouville fractional in-
tegral operatorIβ

0 instead of the Abel integral operatorAα.
According to the definition ofM-L wavelets, the fractional

integral operatorIβ
0 acting on the vector functionΦ(x) may

be written as an expansion of M-L wavelets Φ(x), i.e.,

P I
β
0􏼐 􏼑(Φ(x)) � Iβ(x)Φ(x), β ∈ (0, 1), (20)

where Iβ(x) is an N × N matrix and is famous as the op-
erational matrix of fractional integral for the M-L wavelets.

Before we look at how to calculate the elements of the
aforementioned matrix, it is intransitive to introduce the
piecewise fractional-order Taylor functions. Let J ∈ Z+ ∪ 0{ }

be a fixed number, the piecewise fractional-order Taylor
functions can be defined in the following form:

ψn
J,b �

t
λn ,

b

2J
≤x≤

b + 1
2J

,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

b ∈B, n ∈M. (21)

By introducing the square matrix T of dimension N × N,
whose (i, j)-th element is computed by

Ti,j �〈Φi(x),Ψj(x)〉 � 􏽚
1

0
Φi(x),Ψj(x)dx,

i, j � 1, . . . , N.

(22)

We can expand any elements of vector function Φ(x)

(M-L wavelets) by the piecewise fractional-order Taylor
functions Ψ(x), viz,

Φ(x) � T
− 1Ψ(x). (23)

Here the matrix T is a N × N matrix and it is called the
transformation matrix. In the sequel, we assume that Q is a
vector of dimension r whose i-th element is xλi . *us, it is
easy to show that

Ψ(x) � [Q, . . . , Q]
T
. (24)

It follows from (16) that one can find the i-th element of
I

β
0(Ψ)(x), via

I
β
0 Ψi( 􏼁(x) �

Γ λi + 1( 􏼁

Γ λi + β + 1( 􏼁
x
λi+β. (25)

*is gives rise to introduce a diagonal matrix IΦ,β(x),
such that

I
β
0(Ψ)(x) � IΨ,β(x)Ψ(x). (26)

It is worth noting that this matrix expresses the fractional
integral of functions Ψ as a combination of themselves and
has the following form:

IΨ,β(x) � diag Pβ(x), . . . , Pβ(x)􏽨 􏽩, (27)

where Pβ(x) ≔ xβH(I
β
0(Q)(x) � Pβ(x)Q(x)) and H is a

diagonal matrix of the form

(H)i,i �
Γ λi + 1( 􏼁

Γ λi + β + 1( 􏼁
. (28)

Now, we are able to introduce the operational matrix of
fractional integral for the M-L wavelets via

PJ I
β
0􏼐 􏼑(Φ(x)) � PJ I

β
0􏼐 􏼑 T

− 1Ψ(x)􏼐 􏼑

� T
− 1

IΨ,β(x)Ψ(x) � T
− 1

IΨ,β(x)TΦ(x).

(29)

*us, we get

Iβ(x) ≔ T
− 1

IΨ,β(x)T. (30)

3. Pseudospectral Method

To derive the numerical solution of the second kind of Abel
integral equation based on the pseudospectral method, we
can approximate the unknown solution with the projection
operator PJ, as follows:

u ≈ PJ(u) � U
TΨ, (31)

where U is a vector of dimension N, whose elements should
be found. Note that the function f(x) and the kernel

Journal of Mathematics 3



function k(x, s,PJ(u)(s)) can be approximated in the same
manner, i.e.,

f(x) ≈ PJ(u) � F
TΨ,

k x, s,PJ(u)(s)􏼐 􏼑 ≈ PJ(k) x, s,PJ(u)(s)􏼐 􏼑

� ΨT
(x)KΨ(s),

(32)

where F ∈ RN and K ∈ RN×N. By substituting (32) into the
integral part of the Abel integral equation (1), we obtain

PJ Ψ(x)
T 􏽥K 􏽚

x

0
(x − s)

− αΨ(s)ds􏼒 􏼓 � P
r
J Ψ(x)

T 􏽥KIαΨ(x)􏼐 􏼑

� 􏽢KΨ(x).

(33)

Wenow substitute equations (31)–(33) into Abel integral
equation (1) and simplify to get

r(x) ≔ (U − F + 􏽢K)
TΨ(x) � 0, (34)

where r(x) is the residual function that our goal is to reduce
to zero. Let xi􏼈 􏼉 be a number of points in Ω, we select the
solution that satisfies the collocation condition r(xi) � 0,
where xi􏼈 􏼉 are called the collocation points. In this paper, we
use the shifted Chebyshev and Legendre polynomials zeros
as collocation points. *e collocation method gives rise to a
system of linear or nonlinear algebraic equations. One can
derive the unknown coefficients U after solving this system.

3.1. Error Analysis. We write the Abel integral equation (1)
in the form

(I − K)u � f, (35)

where K is a compact operator that maps any continuous
function onto C[0, 1]. As we said, our goal is to reduce the
residual function r(x) to zero. Symbolically, we have

r(x) � (I − K)uJ − f, (36)

where uJ ≔ PJ(u). We note thatPJ(r)(x) � 0 if and only if
r(xi) � 0 or equivalently,

PJ(I − K)uJ � PJ(f). (37)

Let uJ is a solution of (37), then by applying
PJ(uJ) � uJ, equation (37) can be written as follows:

I − PJK􏼐 􏼑uJ � PJ(f). (38)

Since both the original equations (1) and (38) are defined
on C[0, 1], then for the error analysis, we compare them.

Theorem 1. Let us assume that I − K: C[0, 1]⟶ C[0, 1]

is a bijections operator. Further, let us assume

K − PJK
����

����⟶ 0, as r⟶∞. (39)

*en for all sufficiently large r (r≤N), the operator
(I − PJK)− 1 exists as a bounded operator from C[0, 1] to
C[0, 1]. Moreover, it is uniformly bounded

sup
r≤N

I − PJK􏼐 􏼑
− 1�����

�����<∞. (40)

For the solutions of (35) and (38)

u − uJ � I − PJK􏼐 􏼑
− 1

u − PJ(u)􏼐 􏼑,

1
I − PJK

����
����

u − PJ(u)
����

����≤ u − uJ

����
����

≤ I − PJK􏼐 􏼑
− 1�����

����� u − PJ(u)
����

����.

(41)

Proof. For details, refer to [20].
Since K: C[0, 1]⟶ C[0, 1] is a compact operator and

PJ is a bounded projection, such that PJu⟶ 0 as
r⟶∞. *en motivated by [20] (Lemma 3.1.2), we have

K − PJK
����

����⟶ 0, as r⟶∞. (42)

*erefore, the condition of *eorem 1 is held. □

4. Numerical Examples

In this section, some numerical examples are solved to show
the validity and efficiency of the method. To do this, we carry
out the Maple and MATLAB software simultaneously.

Example 1. For the first example, let us consider the linear
Abel integral equation of the second kind with the kernel
function k(t, x, u(x)) ≔ (1/10Γ(1 − α))u(x), and f(t) � 1.
*e exact solution is given in [10] as follows:

u(t) � E1− α,1
t
1− α

10
􏼠 􏼡, (43)

where Eσ,β is the Mittag-Leffler function

Eσ,β(z) � 􏽘
∞

l�0

z
l

Γ(σl + β)
, σ, β, z ∈ R, σ > 0. (44)

Table 1 shows the absolute value of errors at different
times xi when the collocation points are chosen to be the
Legendre polynomial nodes. As we expected, when the r

increases (the degree of the bases as well as the number of
collocation points increases) the error will decrease. To show
the effect of the parameter μ in the L2-error, we plot Figure 1
and report Table 2. Figure 2 illustrates the effect of the
choosing nodes on the L2-error and also absolute value of
errors at the Chebyshev nodes using different multiplicity r.
Also, we can see the effect of the multiplicity parameter r on
the L2-error and absolute error in Figure 2.

Example 2. *e second example is devoted to the Abel
integral equation (1) with

f(t) ≔ 2
�
t

√
,

k(t, x, u(x)) ≔ u(x).
(45)
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*e exact solution is given by u(t) � 1 − eπterfc(
��
πt

√
)

[4].
To show the effect of the multiplicity parameter r and

choosing the collocation points, we report Table 3.*is Table
also illustrates the effect of parameter μ on the L2-error. Due
to Table 3, it is obvious that these three parameters have a
direct effect on the L2-error such that when r increases, the
error decreases. Also, choosing the Chebyshev nodes gives us
a better result than Legendre nodes. In Figure 3, we

demonstrate the absolute error when multiplicity parameter
r increases taking μ � (1/2) and different collocation points.

Example 3. Let us consider the following Abel integral
equation:

f(t) ≔ sin(x) −
4
3
x
3/2

1F2 1;
5
4
,
7
4
; −

x
2

4
􏼠 􏼡, k(t, x, u(x)) ≔ u(x),

(46)

Table 1: *e absolute errors at the Legendre nodes for Example 1.

x r � 5 r � 7 r � 9
0.1 9.72e − 4 2.78e − 4 1.19e − 4
0.2 2.41e − 4 2.24e − 4 1.30e − 5
0.3 3.15e − 4 1.22e − 6 4.64e − 5
0.4 2.93e − 4 1.09e − 4 4.83e − 5
0.5 1.23e − 5 7.38e − 7 1.93e − 6
0.6 1.94e − 4 7.95e − 6 3.14e − 5
0.7 1.53e − 4 6.80e − 6 2.21e − 5
0.8 7.94e − 5 6.32e − 5 6.04e − 6
0.9 1.89e − 4 4.44e − 5 1.60e − 5
1.0 4.09e − 4 1.60e − 4 7.86e − 5

L2 -e
rr
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×10-4
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Figure 1: Plot of the L2-errors taking μ � (1/2) (a) and μ � (1/3) (b) at the Legendre and Chebyshev nodes for Example 1.

Table 2: *e L2-errors at the Legendre and Chebyshev nodes taking different μ for Example 1.

r
μ � (1/2) μ � (1/3)

Chebyshev nodes Legendre nodes Chebyshev nodes Legendre nodes
2 7.57e − 4 7.87e − 4 4.03e − 3 4.48e − 3
3 1.69e − 5 2.06e − 5 9.34e − 5 9.79e − 5
4 3.82e − 7 5.32e − 7 9.81e − 5 1.27e − 4
5 8.58e − 9 1.33e − 8 3.37e − 5 4.29e − 5
6 1.89e − 10 3.16e − 10 1.76e − 5 2.26e − 5
7 4.06e − 12 7.19e − 12 9.89e − 6 1.27e − 5
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Figure 2: Plot of the L2-errors (a) taking the Legendre and Chebyshev nodes and the absolute error at the Chebyshev nodes (b) for Example
1.

Table 3: *e L2-errors at the Legendre and Chebyshev nodes taking different μ for Example 2.

r
μ � (1/2) μ � 1

Chebyshev nodes Legendre nodes Chebyshev nodes Legendre nodes
2 3.38e − 2 3.52e − 2 5.68e − 2 5.62e − 2
3 9.21e − 2 1.08e − 2 3.15e − 2 3.15e − 2
4 2.57e − 3 3.36e − 3 1.95e − 2 2.00e − 2
5 7.29e − 4 1.04e − 3 1.31e − 2 1.38e − 2
6 2.06e − 4 3.17e − 4 9.40e − 3 1.01e − 2
7 5.77e − 5 9.40e − 5 7.04e − 3 7.73e − 3
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Figure 3: Plot of the absolute error at the Chebyshev nodes (a) and the Legendre nodes (b) taking different r for Example 2.
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in which 1F2 is the hypergeometric function defined in [21].
Also, the exact solution is u(x) � sin(x).

Table 4 shows the absolute value of errors at different
times xi when the collocation points are chosen to be the
Chebyshev polynomials nodes. Figure 4 illustrates the effect
of selecting the Chebyshev and Legendre nodes. We can also
see the effect of increasing the parameter r. It is observed that
by increasing the parameter r, the error decreases.

5. Conclusion

In this paper, we utilize an efficient algorithm based on the
wavelet pseudospectral method to solve the well-known
Abel integral equation. *is method can easily be used to
solve weakly singular Volterra integral equations, and this
shows the ability of the proposed method. We have com-
pared the method with other methods and shown that this
method offers better results. We have proved the conver-
gence of the proposed method. Given the construction of
these bases and the role of the parameter μ, which can be

polynomials with fractional powers, compared to other
bases, if the exact solution or the known functions in the
equation are of the fractional type, the proposed method will
provide better results.
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Table 4: *e absolute errors at the Chebyshev nodes for Example 3.

x r � 6 r � 8 r � 10
0.1 1.42e − 4 1.20e − 6 1.60e − 7
0.2 6.05e − 6 2.45e − 6 1.53e − 9
0.3 2.39e − 6 3.44e − 7 4.50e − 8
0.4 4.67e − 5 6.55e − 7 6.19e − 8
0.5 8.29e − 5 1.61e − 6 7.59e − 8
0.6 1.03e − 4 1.87e − 6 1.08e − 7
0.7 1.23e − 4 2.31e − 6 1.48e − 7
0.8 1.66e − 4 3.36e − 6 2.01e − 7
0.9 2.40e − 4 4.64e − 6 2.76e − 7
1.0 3.21e − 4 6.34e − 6 3.78e − 7
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Figure 4: Plot of the L2-errors taking μ � (1/2) at the Legendre and Chebyshev nodes for Example 3.
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+is article applies efficient methods, namely, modified decomposition method and new iterative transformation method, to
analyze a nonlinear system of Korteweg–de Vries equations with the Atangana–Baleanu fractional derivative. +e nonlinear
fractional coupled systems investigated in this current analysis are the system of Korteweg–de Vries and the modified system of
Korteweg–de Vries equations applied as a model in nonlinear physical phenomena arising in chemistry, biology, physics, and
applied sciences. Approximate analytical results are represented in the form of a series with straightforward components, and
some aspects showed an appropriate dependence on the values of the fractional-order derivatives. +e convergence and
uniqueness analysis is carried out. To comprehend the analytical procedure of both methods, three test examples are provided for
the analytical results of the time-fractional KdV equation. Additionally, the efficiency of the mentioned procedures and the
reduction in calculations provide broader applicability. It is also illustrated that the findings of the current methodology are in
close harmony with the exact solutions.+e series result achieved applying this technique is proved to be accurate and reliable with
minimal calculations. +e numerical simulations for obtained solutions are discussed for different values of the fractional order.

1. Introduction

Many researchers have been working on various aspects of
fractional derivatives in recent years. Caputo and Fabrizio
modified the existing Caputo derivative to develop the
Caputo–Fabrizio fractional derivative [1–5] based on a
nonsingular kernel. Because of its advantages, numerous
researchers utilized this operator to investigate various types
of fractional-order partial differential equations [6–9]. To
address this issue, Atangana and Baleanu proposed a new
fractional operator called the Atangana–Baleanu derivative,
which combines Caputo and Riemann–Liouville derivatives.
Because of the existence of the Mittag–Leffler kernel, which
is a generalization of the exponential kernel, this new

Atangana–Baleanu derivative has a longmemory. Moreover,
the Atangana–Baleanu operator outperforms other opera-
tors, and different scientific models have been successfully
solved. Many advances have beenmade in fractional calculus
over the last few years by borrowing ideas from classical
calculus, but it does not remain easy. Scholars have the main
concern to obtain a numerical solution; for this, numerous
efficient methodologies have been constructed for fractional
differential equations, such as the Adomian decomposition
transform method [10], variational iteration transform
method [11, 12], optimal homotopy asymptotic method [13],
and homotopy perturbation method [14, 15].

Korteweg and de Vries introduced the Korteweg–de
Vries equation in 1895 to model shallow water waves in a
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canal [16]. +e suggested system Korteweg–de Vries
equations play a crucial role in diverse engineering and
applied sciences such as plasma physics, water waves, hy-
drodynamics, and theory of the quantum field. +e
Korteweg–de Vries equations are usually investigated in the
analysis of nonlinear dispersive waves [17]. +ey define the
interactions among two long waves with various dispersion
relations. Many researchers have been interested in these
schemes, and a lot of works have been done. For example,
Ghoreishi et al. applied the homotopy analysis method to
achieve numerical results of a modified system of
Korteweg–de Vries equations [18]. Kaya and Inan in [19]
achieved traveling wave results of the system of Korteweg–de
Vries and modified system of Korteweg–de Vries equations.
+e fractional-order system of Korteweg–de Vries equations
is defined as follows:

z
c
U

zI
c � − ρ

z
3
U

zφ3 − 6ρU
zU

zφ
+ 6V

zV

zφ
,

z
c
V

zI
c � − ρ

z
3
V

zφ3 − 3ϑU
zV

zφ
, I> 0, 0< c≤ 1,

(1)

where c is the fractional-order derivative of U(φ,I) and
V(φ,I), ϑ, and ρ are constants, respectively. +e functions
U(φ,I) and V(φ,I) are considered as important functions
of time and space, disappearing for I and φ, respectively.
+e other method eliminates to the conventional coupled
Korteweg–de Vries equations since ρ � ϑ � 1 is
implemented.

A classic model in this hierarchy is the modified coupled
Korteweg–de Vries system. +e following nonlinear partial
differential equations govern this model [20]:
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zφ
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(2)

+e modified Korteweg–de Vries equation in its
standard type is simplified by the modified couple
Korteweg–de Vries equation (2), with V � W � 0.
Korteweg–de Vries models are a source of nonevolution
equations with a wide range of implementations in science
and engineering. +e Korteweg–de Vries models, for

instance, generate ion-acoustic result in fluid mechanics
[21, 22]. Long waves characterise geophysical fluid dy-
namics in shallow and deep oceans [23, 24]. Various
studies have suggested numerous systems to overcome the
fractional-order Korteweg–de Vries equation employing
various methodologies, such as the differential transform
method [25], Adomian decomposition method [26],
natural decomposition method [27], homotopy analysis
method [28], Elzaki projected differential transform
method [29], variational iteration method [30], new it-
erative method [31], modified tanh technique [32], and Lie
symmetry analysis [33]. Analogously, same solutions for
(2) have been suggested by Inc and Cavlak [34], Fan [35],
Lin et al. [36], Inc et al. [37], and Ghoreishi et al. [18].

Daftardar-Gejji and Jafari [38] proposed an innovative
iterative method of solving functional equations with ap-
proximation solutions. +e new iterative approach is con-
structed on the justification of disappearing the nonlinear
functions is identified as the iterative transformation tech-
nique [39]. +is procedure is quick and accurate, and it
avoids the utilization of complicated integrals, uncondi-
tioned matrix, and infinite series forms. +is technique does
not require any expressive parameters for the model. Nu-
merous researchers have analyzed new iterative transfor-
mation methods to solve partial differential equations, such
as the Fornberg–Whitham equation [40], KdV equation
[31], and Klein–Gordon equation [41].

+e Adomian decomposition method was firstly intro-
duced by Adomian in 1980 and implemented by several
investigators. In recent decades, numerous researchers have
investigated the solutions of integral and differential
equations by different techniques with the mixed Laplace
transform. +e Adomian decomposition method was
modified with many integral transformations, such as
Laplace, ρ-Laplace, Elzaki, Aboodh, and Mohand. Modifi-
cation of Laplace Adomian decomposition method for
solving nonlinear Volterra integral and integro-differential
equations based on Newton Raphson formula [42] for
solving nonlinear integrodifferential and Volterra integral
equations based on the Newton–Raphson method, discrete
Adomian decomposition technique [43] applied for inves-
tigating the fractional-order Navier–Stokes model, Lap-
lace–Adomian decomposition method [44] study of
implicit-impulsive differential equations involving Caputo-
Fabrizio fractional derivative.

2. Basic Definitions

Definition 1. +e fractional-order Caputo derivative is de-
fined by

LC
D

c

I f(I)􏼈 􏼉 �
1

(n − c)
􏽚
I

0
(I − k)

n− c− 1
f

n
(k)dk,

where n< c≤ n + 1.

(3)

Definition 2. +e Laplace transformation connected with
fractional Caputo derivative LCD

c

I f(I)􏼈 􏼉 is expressed by
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L
LC

D
c

I f(I)􏼈 􏼉􏽮 􏽯(s) �
1

s
n− c s

n
L f(x,I)􏼈 􏼉􏼂

(s) − s
n− 1

f(x, 0) − · · · − f
n− 1

(x, 0)􏽩.

(4)

Definition 3. In the Caputo sense, the Atangana–Baleanu
derivative is defined as

ABC
D

c

I f(I)􏼈 􏼉 �
A(c)

1 − c
􏽚
I

a
f′(k)Ec −

c

1 − c
(1 − k)

c
􏼢 􏼣dk,

(5)

where A(c) is a normalization function such that
A(0) � A(1) � 1, f ∈ H1(a, b), b> a, c ∈ [0, 1], and Ec

represents the Mittag–Leffler function.

Definition 4. +e Atangana–Baleanu derivative in the Rie-
mann–Liouville sense is defined as

ABC
D

c

I f(I)􏼈 􏼉 �
A(c)

1 − c

d
dI

􏽚
I

a
f(k)Ec −

c

1 − c
(1 − k)

c
􏼢 􏼣dk.

(6)

Definition 5. +e Laplace transform connected with the
Atangana–Baleanu operator is defined as

AB
D

c

I f(I)􏼈 􏼉(s) �
A(c)s

c
L f(I)􏼈 􏼉(s) − s

c− 1
f(0)

(1 − c) s
c

+(c/(1 − c))( 􏼁
. (7)

Definition 6. Consider 0< c< 1, and f is a function of c;
then, the fractional-order integral operator of c is given as

ABC
I

c

I f(I)􏼈 􏼉 �
1 − c

A(c)
f(I) +

c

A(c)Γ(c)
􏽚
I

a
f(k)(I − k)

c− 1dk.

(8)

3. The General Implementation of theModified
Decomposition Method

Suppose the nonlinear fractional partial differential
equations

D
c

IU(φ,I) + LU(φ,I) + NU(φ,I)

� H(φ,I), I> 0, 0< c≤ 1,
(9)

with the condition

U(φ, 0) � G(φ), (10)

where D
c

I � (zcU(φ,I)/zIc) show the fractional-order
Caputo derivative operator with 0< c≤ 1, while L is linear,
N are nonlinear functions, and H(φ,I) defines the source
term.

Applying the Laplace transformation to (9), we get

L D
c

IU(φ,I) + LU(φ,I) + NU(φ,I)􏽨 􏽩 � L[H(φ,I)].

(11)

Taking the Laplace transformation differentiation, we
find

v
c

v
c
(1 − c) + c( 􏼁

U(v,ω) � 􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

U
(κ)

(0)

+ L[LU(φ,I) + NU(φ,I)] + L[H(φ,I)].

(12)

+e inverse Laplace transformation of (12) gives

U(φ,I) � L
− 1

􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

U
(κ)

(0) +
v

c
(1 − c) + c( 􏼁

v
c L[H(φ,I)]⎡⎢⎣ ⎤⎥⎦

− L
− 1 v

c
(1 − c) + c( 􏼁

v
c L[LU(φ,I) + NU(φ,I)]􏼢 􏼣.

(13)

+e adomain decomposition method series form solu-
tion is defined as

U(φ,I) � 􏽘

∞

j�0
Uj(φ,I). (14)

+us, the nonlinear function N(φ,I) can be calculated
by the Adomian polynomials defined as

NU(φ,I) � 􏽘
∞

j�0

􏽥Aj U0,U1, . . .( 􏼁, j � 0, 1, . . . , (15)

where

􏽥Aj U0,U1, . . .( 􏼁 �
1
j!

dj

dλj
N 􏽘
∞

J�0
λJ
UJ

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

λ�0

, j> 0. (16)

Putting (14) and (15) into (13), we have

􏽘

∞

j�0
Uj(φ,I) � G(φ) + 􏽥G(φ) − L

− 1 v
c
(1 − c) + c( 􏼁

v
c L􏼢

LU(φ,I) + 􏽘
∞

j�0

􏽥Aj
⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦.

(17)

Lastly, the iterative methodology for (17) is achieved as
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U0(φ,I) � G(φ) + 􏽥G(φ), j � 0,

Uj+1(φ,I) � − L
− 1 v

c
(1 − c) + c( 􏼁

v
c L LU(φ,I) + 􏽘

∞

j�0

􏽥Aj
⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦, j≥ 1.

(18)

4. The General Discussion of the New Iterative
Transformation Method

Let us assume the following general fractional partial dif-
ferential equation

D
c

IU(φ,I) + LU(φ,I) + NU(φ,I) � H(φ,I),

I> 0, j − 1< c≤ j, j ∈ N,
(19)

with the condition

U
(κ)

(φ, 0) � Gκ(φ), κ � 0, 1, 2, . . . , j − 1, (20)

whereL andN are linear and nonlinear terms andH(φ,I)

shows the source term.
Using the Laplace transformation to (19), we get

L D
c

IU(φ,I) + LU(φ,I) + NU(φ,I)􏽨 􏽩 � L[H(φ,I)].

(21)

Taking the Laplace transformation differentiation
property, we get

v
c

v
c
(1 − c) + c( 􏼁

U(v,ω) � 􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

U
(κ)

(0)

+ L[LU(φ,I) + NU(φ,I)]

+ L[H(φ,I)].

(22)

+e inverse Laplace transformation of (22) gives

U(φ,I) � L
− 1

􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

U
(κ)

(0) +
v

c
(1 − c) + c( 􏼁

v
c L[H(φ,I)]⎡⎢⎣ ⎤⎥⎦

− L
− 1 v

c
(1 − c) + c( 􏼁

v
c L[LU(φ,I) + NU(φ,I)]􏼢 􏼣.

(23)

From the iterative connection, we achieve

U(φ,I) � 􏽘
∞

j�0
Uj(φ,I). (24)

Also, the linear operator is L; therefore,

L 􏽘
∞

j�0
Uj(φ,I)⎛⎝ ⎞⎠ � 􏽘

∞

j�0
L Uj(φ,I)􏽨 􏽩, (25)

and N defines the nonlinear term as in [38].

N 􏽘
∞

j�0
Uj(φ,I)⎛⎝ ⎞⎠ � N U0(φ,I)( 􏼁

+ 􏽘
∞

j�0
N 􏽘
∞

k�0
Uκ(φ,I)⎛⎝ ⎞⎠ − N 􏽘

∞

k�1
Uκ(φ,I)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� N U0( 􏼁 + 􏽘

∞

k�1
Dj,

(26)

where Dj � N(􏽐
j
κ�0 Uκ) − N(􏽐

j− 1
κ�0Uκ). By putting (24), (25), and (??) into (23), we obtain

􏽘

∞

j�0
Uj(φ,I)L

− 1
􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

U
(κ)

(0) +
v

c
(1 − c) + c( 􏼁

v
c L[H(φ,I)]⎡⎢⎣ ⎤⎥⎦

− L
− 1 v

c
(1 − c) + c( 􏼁

v
c L L 􏽘

∞

κ�0
Uκ(φ,I)⎛⎝ ⎞⎠ + N U0( 􏼁 + 􏽘

j

κ�1
Dj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎨

⎩

⎫⎬

⎭.

(27)
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As a result, we determine the next iteration

U0(φ,I) � L
− 1

􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

U
(κ)

(0) +
v

c
(1 − c) + c( 􏼁

v
c L[H(φ,I)]⎡⎢⎣ ⎤⎥⎦,

U1(φ,I) � − L
− 1 v

c
(1 − c) + c( 􏼁

v
c L L U0(φ,I)( 􏼁 + N U0(φ,I)( 􏼁􏼂 􏼃􏼨 􏼩,

⋮

Uj+1(φ,I) � − L
− 1 v

c
(1 − c) + c( 􏼁

v
c L L Uj(φ,I)􏼐 􏼑 + Dj􏽨 􏽩􏼨 􏼩, m≥ 1.

(28)

Finally, (19) and (20) yield the j-term result in the series
form, defined as

U(φ,I) ≈ U0(φ,I) + U1(φ,I) + U2(φ,I)

+ · · · + Uj(φ,I), j ∈ N.
(29)

5. Uniqueness and Existence Solutions for the
Modified Decomposition Method

Theorem 1 (uniqueness theorem). 6e unique result of
equation (9) provide space whenever 0< ε< 1, where
ε � (�L1 + �L2 + �L3)((1 − c) + (cIc/Γ(c + 1))).

Proof. Assume that J � (C[I], ‖.‖) represents all continu-
ous mappings on the Banach space, defined on I � [0, T]

having the norm ‖.‖. For this, we introduce a mapping
W: M↦M, and we have

Un+1(φ,I) � U(φ,I) + L
− 1 v

c
(1 − c) + c( 􏼁

v
c L L Un(φ,I)􏼂 􏼃􏼂􏼢

+ R Un(φ,I)􏼂 􏼃 + N Un(φ,I)􏼂 􏼃􏼃􏼃, n≥ 0,

(30)

when L[U(φ,I)] ≡ (z3U(φ,I)/zφ2) and
R[U(φ,I)] ≡ (zU(φ,I)/zφ). Suppose that L[U(φ,I)]

and M[U(φ,I)] are also Lipschitzian with
|Rz − R�U|< �L1|U − �U| and |LU − L�U|< �L2|U − �U| where
�L1 and �L2 are Lipschitz constants, respectively, and U, �U are
various values of the mapping.

‖WU − W�U‖ � max
I∈I

L
− 1 v

c
(1 − c) + c( 􏼁

v
c L[L[U(φ,I)] + R[U(φ,I)] + N[U(φ,I)]]􏼢 􏼣

− L
− 1 v

c
(1 − c) + c( 􏼁

v
c L[L[�U(φ,I)] + R[�U(φ,I)] + N[�U(φ,I)]]􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ max
I∈I

L
− 1 v

c
(1 − c) + c( 􏼁

v
c L[L[U(φ,I)] − L[�U(φ,I)]]􏼢 􏼣

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L[R[U(φ,I)] − R[�U(φ,I)]]􏼢 􏼣

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L[N[U(φ,I)] − N[�U(φ,I)]]􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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≤ max
I∈I

�L1L
− 1 v

c
(1 − c) + c( 􏼁

v
c L|U(φ,I) − �U(φ,I)|􏼢 􏼣

+�L2L
− 1 v

c
(1 − c) + c( 􏼁

v
c L|U(φ,I) − �U(φ,I)|􏼢 􏼣

+�L3L
− 1 v

c
(1 − c) + c( 􏼁

v
c L|U(φ,I) − �U(φ,I)|􏼢 􏼣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ max
I∈I

�L1 + �L2 + �L3􏼐 􏼑L
− 1 v

c
(1 − c) + c( 􏼁

v
c L|U(φ,I) − �U(φ,I)|􏼢 􏼣

≤ �L1 + �L2 + �L3􏼐 􏼑L
− 1 v

c
(1 − c) + c( 􏼁

v
c L‖U(φ,I) − �U(φ,I)‖􏼢 􏼣

� �L1 + �L2 + �L3􏼐 􏼑 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡‖U(φ,I) − �U(φ,I)‖.

(31)

+e mapping is a contraction under the assumption
0< ε< 1. As a result of the Banach contraction fixed point
theorem, there is a unique solution to (9). As a result, the
proof is complete. □

Theorem 2 (convergence analysis). 6e solution general
form of (9) will be convergent.

Proof. Suppose 􏽢Sn is the n th partial sum; that is,
􏽢Wn � 􏽐

n
j�0 Uj(φ,I). Firstly, we define that 􏽢Wn􏽮 􏽯 is a Banach

space Cauchy sequence in M. Using into consideration of
Adomian polynomials, we achieve

R 􏽢Wn􏼐 􏼑 � �Hn + 􏽘
n− 1

p�0

�Hp,

N 􏽢Wn􏼐 􏼑 � �Hn + 􏽘
n− 1

c�0

�Hc.

(32)

Now,
􏽢Wn − 􏽢Wq

�����

����� � max
I∈I

􏽢Wn − 􏽢Wq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� max
I∈I

􏽘

n

j�q+1

�U(φ,I)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, ( j � 1, 2, 3, . . .)

≤ max
I∈I

L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽘

n

j�q+1
L Un− 1(φ,I)􏼂 􏼃⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽘

n

j�q+1
R Un− 1(φ,I)􏼂 􏼃⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽘

n

j�q+1

�Hn− 1(φ,I)⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� max
I∈I

L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽘

n− 1

j�q

L Un(φ,I)􏼂 􏼃⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽘

n− 1

j�q

R Un(φ,I)􏼂 􏼃⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽘

n− 1

j�q

�Hn(φ,I)⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ max
I∈I

L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽘

n− 1

j�q

L 􏽢Wn− 1􏼐 􏼑 − L 􏽢Wq− 1􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽘

n− 1

j�q

R 􏽢Wn− 1􏼐 􏼑 − R 􏽢Wq− 1􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽘

n− 1

j�q

N 􏽢Wn− 1􏼐 􏼑 − N 􏽢Wq− 1􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ max
I∈I

L
− 1 v

c
(1 − c) + c( 􏼁

v
c L L 􏽢Wn− 1􏼐 􏼑 − L 􏽢Wq− 1􏼐 􏼑􏽨 􏽩􏼢 􏼣

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L R 􏽢Wn− 1􏼐 􏼑 − R 􏽢Wq− 1􏼐 􏼑􏽨 􏽩􏼢 􏼣

+L
− 1 v

c
(1 − c) + c( 􏼁

v
c L N 􏽢Wn− 1􏼐 􏼑 − N 􏽢Wq− 1􏼐 􏼑􏽨 􏽩􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ �L1 max
I∈I

L
− 1 v

c
(1 − c) + c( 􏼁

v
c L 􏽢Wn− 1􏼐 􏼑 − 􏽢Wq− 1􏼐 􏼑􏽨 􏽩􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+�L2 max
I∈I

v
c
(1 − c) + c( 􏼁

v
c L 􏽢Wn− 1􏼐 􏼑 − 􏽢Wq− 1􏼐 􏼑􏽨 􏽩􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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+ �L3 max
I∈I

v
c
(1 − c) + c( 􏼁

v
c L 􏽢Wn− 1􏼐 􏼑 − 􏽢Wq− 1􏼐 􏼑􏽨 􏽩􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� �L1 + �L2 + �L3􏼐 􏼑 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡 􏽢Wn− 1 − 􏽢Wq− 1

�����

�����.

(33)

Consider n � q + 1; then,

􏽢Wq+1 − 􏽢Wq

�����

�����≤ ε 􏽢Wq − 􏽢Wq− 1

�����

�����

≤ ε2 􏽢Wq− 1 − 􏽢Wq− 2

�����

�����≤ · · · ≤ εq 􏽢W1 − 􏽢W0
����

����,

(34)

where ((�L1 + �L2 + �L3)I
(c− 1)/c!). Similarly, we have the

triangular inequality

􏽢Wn − 􏽢Wq

�����

�����≤ 􏽢Wq+1 − 􏽢Wq

�����

����� + 􏽢Wq+2 − 􏽢Wq+1

�����

�����

+ · · · + 􏽢Wn − 􏽢Wn− 1
����

����

≤ εq
+ εq+1

+ · · · + εn− 1
􏽨 􏽩 􏽢W1 − 􏽢W0

����
����

≤ εq 1 − εn− q

ε
􏼠 􏼡 U1

����
����,

(35)

and since 0< ε< 1, we get (1 − εn− q)< 1; then,

􏽢Wn − 􏽢Wq

�����

�����≤
εq

1 − ε
max
I∈I

U1
����

����. (36)

However, |U1|<∞ (since U(φ,I) is bounded). +us, as
q↦∞, ‖ 􏽢Wn − 􏽢Wq‖↦0. Hence, 􏽢W1􏽮 􏽯 is a Cauchy sequence in
K. As a solution, the series 􏽐

∞
n�0 Un converges, and this

completes the proof. □

Theorem 3 (error estimate). 6e maximum absolute trun-
cation error of series solution (9) to (??) is computed as

max
I∈I

U(φ,I) 􏽘

q

n�1
Un(φ,I)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

εq

1 − ε
max
I∈I

U1
����

����. (37)

6. Numerical Results

+is section describes several test examples by applying two
novel techniques, modified decomposition technique and
new iterative transformation technique, via the Atanga-
na–Baleanu derivative operator. Also, the stability and
convergence of the technique are discussed.

Example 1 (see [31]). Consider the fractional-order non-
linear system of Korteweg–de Vries equation (1) with ϑ �

ρ � 1, with the initial conditions

U(φ, 0) � ϱ2sec h
2 δ

2
+

9φ
2

􏼠 􏼡,

V(φ, 0) �

�
ρ
2

􏽲

ϱ2sec h
2 δ

2
+

9φ
2

􏼠 􏼡.

(38)

Case I: first, we apply the modified decomposition
technique for Example 1.
Applying the Laplace transform to (1), we get

v
c

v
c
(1 − c) + c( 􏼁

U(φ, v) − 􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

U
(κ)

(0)
⎧⎨

⎩

⎫⎬

⎭

� L − ρ
z
3
U

zφ3 − 6ρU
zU

zφ
+ 6V

zV

zφ
􏼢 􏼣,

v
c

v
c
(1 − c) + c( 􏼁

V(φ, v) − 􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

V
(κ)

(0)
⎧⎨

⎩

⎫⎬

⎭

� L − ρ
z
3
V

zφ3 − 3ρU
zV

zφ
􏼢 􏼣.

(39)

In view of (38) and analytical method procedure as
follows:

U(φ, v) �
1
v
U

(0)
(φ, 0) +

v
c
(1 − c) + c( 􏼁

v
c L

· − ρ
z
3
U

zφ3 − 6ρU
zU

zφ
+ 6V

zV

zφ
􏼢 􏼣,

V(φ, v) �
1
v
V

(0)
(φ, 0) +

v
c
(1 − c) + c( 􏼁

v
c L

· − ρ
z
3
V

zφ3 − 3ρU
zV

zφ
􏼢 􏼣.

(40)

Using the inverse Laplace transformation, we get

U(φ,I) � L
− 1 1

v
U(φ, 0)􏼔 􏼕 + L

− 1 v
c
(1 − c) + c( 􏼁

v
c L􏼢

· − ρ
z
3
U

zφ3 − 6ρU
zU

zφ
+ 6V

zV

zφ
􏼢 􏼣􏼣,

V(φ,I) � L
− 1 1

v
V(φ, 0)􏼔 􏼕 + L

− 1

·
v

c
(1 − c) + c( 􏼁

v
c L − ρ

z
3
V

zφ3 − 3ρU
zV

zφ
􏼢 􏼣􏼢 􏼣.

(41)
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By morality of the modified decomposition technique,
we get

U0(φ,I) � L
− 1 ω

v
U(φ, 0)􏼔 􏼕

� L
− 1 1

v
9
2sec h

2 δ
2

+
ϱφ
2

􏼠 􏼡􏼢 􏼣

� 9
2sec h

2 δ
2

+
ϱφ
2

􏼠 􏼡,

V0(φ,I) � L
− 1 ω

v
V(φ, 0)􏼔 􏼕

�

�
ρ
2

􏽲

9
2sec h

2 δ
2

+
ϱφ
2

􏼠 􏼡,

􏽘

∞

j�0
Uj+1(φ,I) � L

− 1 v
c
(1 − c) + c( 􏼁

v
c L􏼢

· − ρ􏽘
∞

j�0
Uφφφ􏼐 􏼑

j
− 6ρ􏽘
∞

j�0
Aj + 6􏽘

∞

j�0
Bj

⎡⎢⎢⎣ ⎤⎥⎥⎦⎤⎥⎥⎦,

􏽘
∞

j�0
Vj+1(φ,I) � L

− 1 v
c
(1 − c) + c( 􏼁

v
c L􏼢

· − ρ􏽘
∞

j�0
Vφφφ􏼐 􏼑

j
− 3ρ􏽘
∞

j�0
Cj

⎡⎢⎢⎣ ⎤⎥⎥⎦⎤⎥⎥⎦,

j � 0, 1, 2, . . . .

(42)

+e Adomian polynomials’ some terms are defined as
follows:

A0 UUφ􏼐 􏼑 � U0U0φ,

A1 UUφ􏼐 􏼑 � U0U1φ + U1U0φ,

A2 UUφ􏼐 􏼑 � U1U2φ + U1U1φ + U2U0φ,

B0 VVφ􏼐 􏼑 � V0V0φ,

B1 VVφ􏼐 􏼑 � V0V1φ + V1V0φ,

B2 VVφ􏼐 􏼑 � V1V2φ + V1V1φ + V2V0φ,

C0 UVφ􏼐 􏼑 � U0V0φ,

C1 UVφ􏼐 􏼑 � U0V1φ + U1V0φ,

C2 UVφ􏼐 􏼑 � U1V2φ + U1V1φ + U2V0φ.

(43)

For j � 0, 1, 2, 3, . . .,

U1(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ Uφφφ􏼐 􏼑0 − 6ρA0 + 6B0􏽨 􏽩􏼢 􏼣

� L
− 1 ωc+2

v
c+2 9

5ρ tanh
δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡􏼢 􏼣

� 9
5ρ tanh

δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡

V1(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ Vφφφ􏼐 􏼑0 − 3ρC0􏽨 􏽩􏼢 􏼣

�
9
5ρ3/2

�
2

√ tanh
δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡

U2(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ Uφφφ􏼐 􏼑1 − 6ρA1 + 6B1􏽨 􏽩􏼢 􏼣

8 Journal of Mathematics



� L
− 1 ω2c+2

v
2c+2

9
8ρ2

2
2 cosh2

ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓􏼢 􏼣

�
9
8ρ2

2
2 cosh2

ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓 (1 − c)
2

+
c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

V2(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ Vφφφ􏼐 􏼑1 − 3ρC1􏽨 􏽩􏼢 􏼣

�
9
5ρ5/2

2
�
2

√ 2 cosh2
ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓 (1 − c)
2

+
c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

⋮.

(44)

+e modified decomposition technique result for Ex-
ample 1 is shown as

U(φ,I) � U0(φ,I) + U1(φ,I) + U2(φ,I) + U3(φ,I) + · · ·

� 9
2sec h

2 δ
2

+
9φ
2

􏼠 􏼡 + 9
5ρ tanh

δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡

+
9
8ρ2

2
2 cosh2

ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓 (1 − c)
2

+
c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡 + · · · .

(45)

Similarly, we get

V(φ,I) �

�
ρ
2

􏽲

9
2sec h

2 δ
2

+
9φ
2

􏼠 􏼡 +
9
5ρ3/2

�
2

√ tanh
δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡

+
9
5ρ5/2

2
�
2

√ 2 cosh2
ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓 (1 − c)
2

+
c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡 + · · · .

(46)

By putting c � 1, we achieve the exact result of the
system of Korteweg–de Vries equation (1):

U(φ,I) � 9
2sec h

2 δ
2

+
9φ
2

−
ρ9

3
I

2
􏼠 􏼡,

V(φ,I) �

�
ρ
2

􏽲

9
2sec h

2 δ
2

+
9φ
2

−
ρ9

3
I

2
􏼠 􏼡.

(47)
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Case II: now, we apply the new iterative transformation
technique on Example 1.

Using the suggested analytical method, we have

U0(φ,I) � L
− 1 1

v
U(φ, 0)􏼔 􏼕 � L

− 1 1
v
9
2sec h

2 δ
2

+
9φ
2

􏼠 􏼡􏼢 􏼣

� 9
2sec h

2 δ
2

+
9φ
2

􏼠 􏼡

V0(φ,I) � L
− 1 1

v
V(φ, 0)􏼔 􏼕

U1(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ

z
3
U0

zφ3 − 6ρU0
zU0

zφ
+ 6V0

zV0

zφ
􏼢 􏼣􏼢 􏼣

� L
− 1 v

c
(1 − c) + c( 􏼁

v
c 9

5ρ tanh
δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡􏼢 􏼣

� 9
5ρ tanh

δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡

V1(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ

z
3
V0

zφ3 − 3ρU0
zV0

zφ
􏼢 􏼣􏼢 􏼣

�
9
5ρ3/2

�
2

√ tanh
δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡

U2(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ

z
3
U1

zφ3 − 6ρU1
zU1

zφ
+ 6V1

zV1

zφ
􏼢 􏼣􏼢 􏼣

� L
− 1 ω2c+2

v
2c+2

9
8ρ2

2
2 cosh2

ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓􏼢 􏼣

�
9
8ρ2

2
2 cosh2

ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓 (1 − c)
2

+
c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

V2(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ

z
3
V1

zφ3 − 3ρU1
zV1

zφ
􏼢 􏼣􏼢 􏼣

�
9
5ρ5/2

2
�
2

√ 2 cosh2
ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓 (1 − c)
2

+
c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

⋮

Un(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ

z
3
Uj− 1

zφ3 − 6ρUj− 1
zUj− 1

zφ
+ 6Vj− 1

zVj− 1

zφ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦

Vj(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ

z
3
Vj− 1

zφ3 − 3ρUj− 1
zVj− 1

zφ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦.

(48)

10 Journal of Mathematics



+e series of solutions for Example 1 is expressed as

U(φ,I) � U0(φ,I) + U1(φ,I) + U2(φ,I)

+ U3(φ,I) + · · ·Uj(φ,I),

V(φ,I) � V0(φ,I) + V1(φ,I) + V2(φ,I)

+ V3(φ,I) + · · ·Vj(φ,I).

(49)

Consequently, we have

U(φ,I) � 9
2sec h

2 δ
2

+
9φ
2

􏼠 􏼡 + 9
5ρ tanh

δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡

+
9
8ρ2

2
2 cosh2

ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓 (1 − c)
2

+
c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡 + · · · ,

V(φ,I) �

�
ρ
2

􏽲

9
2sec h

2 δ
2

+
9φ
2

􏼠 􏼡 +
9
5ρ3/2

�
2

√ tanh
δ
2

+
9φ
2

􏼠 􏼡sec h
2 δ

2
+

9φ
2

􏼠 􏼡 (1 − c) +
cI

c

Γ(c + 1)
􏼠 􏼡

+
9
5ρ5/2

2
�
2

√ 2 cosh2
ρ
2

+
9φ
2

􏼒 􏼓 − 3􏼔 􏼕sec h
4 ρ
2

+
9φ
2

􏼒 􏼓 (1 − c)
2

+
c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡 + · · · .

(50)

By putting c � 1, we get the exact result of the system of
Korteweg–de Vries equation (1):

U(φ,I) � 9
2sec h

2 δ
2

+
9φ
2

−
ρ9

3
I

2
􏼠 􏼡,

V(φ,I) �

�
ρ
2

􏽲

9
2sec h

2 δ
2

+
9φ
2

−
ρ9

3
I

2
􏼠 􏼡.

(51)

In Figures 1 and 2, the actual and analytical solutions of
U(φ,I) and V(φ,I) are proved at δ � 2, ρ � 0.5, and 9 � 1.
In Figures 3 and 4, the surface and two-dimensional figure
for U(φ,I) and V(φ,I) for numerous fractional orders are
described which demonstrate that the modified decompo-
sition technique and new iterative transformation technique
obtained series form solutions are in close contact with the
analytical and the exact results. +is comparison shows a
strong connection among the modified decomposition
method and actual solutions. Consequently, the modified
decomposition technique and new iterative transformation
technique are accurate innovative techniques which need
less calculation time and are very simple and more flexible

than the homotopy analysis technique and homotopy per-
turbation technique.

Example 2 (see [31]). Consider the fractional-order non-
linear system of Korteweg–de Vries equation given as

z
c
U

zI
c � −

zV

zφ
−
1
2

zU
2

zφ
,

z
c
V

zI
c � −

zU

zφ
−

z
3
U

zφ3 −
zzy
zφ

, I> 0, 0< c≤ 1,

(52)

with the conditions

U(φ, 0) � ρ tanh
9

2
+
ρφ
2

􏼒 􏼓 + 1􏼔 􏼕,

V(φ, 0) �
ρ2

2
sec h

2 9

2
+
ρφ
2

􏼒 􏼓 − 1.

(53)

Case I: first, we apply the modified decomposition
technique for Example 2.
Applying the Laplace transform to (52), we find

v
c

v
c
(1 − c) + c( 􏼁

U(φ, v) − 􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

U
(κ)

(0) � L −
zV

zφ
−
1
2

zU
2

zφ
􏼢 􏼣,

v
c

v
c
(1 − c) + c( 􏼁

V(φ, v) − 􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

V
(κ)

(0) � L −
zU

zφ
−

z
3
U

zφ3 −
zzy
zφ

􏼢 􏼣.

(54)
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In view of (29) and straightforward approximate
achieve

U(φ, v) �
1
v
U

(0)
(φ, 0) +

v
c
(1 − c) + c( 􏼁

v
c L −

zV

zφ
−
1
2

zU
2

zφ
􏼢 􏼣,

V(φ, v) �
1
v
V

(0)
(φ, 0) +

v
c
(1 − c) + c( 􏼁

v
c L

· −
zU

zφ
−

z
3
U

zφ3 −
zzy
zφ

􏼢 􏼣.

(55)

Using the inverse Laplace transformation, we get

U(φ,I) � L
− 1 1

v
U(φ, 0)􏼔 􏼕 + L

− 1 v
c
(1 − c) + c( 􏼁

v
c L􏼢

· −
zV

zφ
−
1
2

zU
2

zφ
􏼢 􏼣􏼣,

V(φ,I) � L
− 1 1

v
V(φ, 0)􏼔 􏼕 + L

− 1 v
c
(1 − c) + c( 􏼁

v
c L􏼢

· −
zU

zφ
−

z
3
U

zφ3 −
zzy
zφ

􏼢 􏼣􏼣.

(56)

By the consequence of the modified decomposition
technique, we get

U0(φ,I) � L
− 1 1

v
U(φ, 0)􏼔 􏼕

� L
− 1 1

v
ρ tanh

9

2
+
ρφ
2

􏼒 􏼓 + 1􏼒 􏼓􏼔 􏼕

� ρ tanh
9

2
+
ρφ
2

􏼒 􏼓 + 1􏼒 􏼓,

V0(φ,I) � L
− 1 1

v
V(φ, 0)􏼔 􏼕

(57)

It follows that

􏽘

∞

j�0
Uj+1(φ,I) � L

− 1 v
c
(1 − c) + c( 􏼁

v
c L􏼢

· − ρ 􏽘

∞

j�0
Vφ􏼐 􏼑

j
−
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􏽘

∞

j�0
Dj
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􏽘

∞

j�0
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v
c L􏼢

· − 􏽘

∞

j�0
Uφ􏼐 􏼑

j
− 􏽘

∞

j�0
Vφφφ􏼐 􏼑

j
− 􏽘

∞

j�0
UVφ􏼐 􏼑

j
⎡⎢⎢⎣ ⎤⎥⎥⎦⎤⎥⎥⎦,

j � 0, 1, 2, . . . .

(58)

+e Adomian polynomials’ some terms are expressed
as

D0 U
2

􏼐 􏼑 � U
2
0,

D1 U
2

􏼐 􏼑 � 2U0U1,

D2 U
2

􏼐 􏼑 � 2U0U2 + U
2
1.

(59)

For j � 0, 1, 2, . . .,

U1(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − ρ Vφ􏼐 􏼑0 −

1
2
D0􏼔 􏼕􏼢 􏼣

� −
ρ2

2
L

− 1 ωc+2

v
c+2 sec h

2 9

2
+
ρφ
2
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� −
ρ2

2
sec h

2 9

2
+
ρφ
2

􏼒 􏼓 (1 − c) +
cI

c
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􏼠 􏼡

V1(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L − Uφ􏼐 􏼑0 − Vφφφ􏼐 􏼑0 − (zy)φ􏼐 􏼑0􏽨 􏽩􏼢 􏼣
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(60)

+e modified decomposition technique result for Ex-
ample 2 is represented as

U(φ,I) � U0(φ,I) + U1(φ,I) + U2(φ,I) + · · · ,

� ρ tanh
9

2
+
ρφ
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􏼠 􏼡
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2
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Consequently, we get
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By putting c � 1, we achieve the exact result of the
system of Korteweg–de Vries equation:
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U(φ,I) � ρ tanh
9

2
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(63)

Case II: now, we implement the new iterative trans-
formation technique on Example 2.

By using the suggested analytical technique, we get
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(64)
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+e series of results for Example 2 is expressed as

U(φ,I) � U0(φ,I) + U1(φ,I) + U2(φ,I) + · · ·Uj(φ,I),

V(φ,I) � V0(φ,I) + V1(φ,I) + V2(φ,I) + · · ·Vj(φ,I).

(65)

Consequently, we have

U(φ,I) � ρ tanh
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By putting c � 1, we obtain the actual result of the system
of Korteweg–de Vries equation (??):

U(φ,I) � ρ tanh
9

2
+
ρφ
2

−
ρ2I
2

􏼠 􏼡 + 1􏼠 􏼡,

V(φ,I) �
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−
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􏼠 􏼡 − 1.

(67)

In Figures 5 and 6, the actual and analytical solutions of
U(φ,I) and V(φ,I) are proved at δ � 2, ρ � 0.5, and 9 � 1.
In Figures 7 and 8, the surface and two-dimensional figure
for U(φ,I) and V(φ,I) for numerous fractional orders are
described which demonstrate that the modified decompo-
sition technique and new iterative transformation technique
approximated obtained results are in close contact with the
analytical and the exact results. +is comparison shows a
strong connection among the modified decomposition
method and actual solutions. Consequently, the modified
decomposition technique and new iterative transformation

technique are accurate innovative techniques which need
less calculation time and are very simple and more flexible
than the homotopy analysis technique and homotopy per-
turbation technique.

Example 3. (see [31]). Consider the fractional-order non-
linear system of modified Korteweg–de Vries equations
given as (2) with the conditions

U(φ, 0) �
2 + tanh φ

2
,

V(φ, 0) �
2 − tanh φ

4
,

W(φ, 0) � 2 − tanh φ.

(68)

Case I: first, we apply the modified decomposition
technique for Example 3.
Using the Laplace transformation to (2), we have
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(κ)

(0) � L −
z
3
V

zφ3 − 3
zU

zφ
zV

zφ
− 3V

z
2
U

zφ2 − 3V2zW

zφ
+ 6zy

zU

zφ
+ 3U2zV

zφ
􏼢 􏼣,

v
c

v
c
(1 − c) + c( 􏼁

W(φ, v) − 􏽘

j− 1

κ�0

1
v

􏼒 􏼓
c− κ− 1

W
(κ)

(0) � L −
z
3
W

zφ3 − 3
zU

zφ
zW

zφ
− 3W

z
2
U

zφ2 − 3V2zW

zφ
+ 6zy

zU

zφ
+ 3U2zV

zφ
􏼢 􏼣.

(69)

In view of (68) and straightforward calculations,

U(φ, v) �
1
v
U

(0)
(φ, 0) +

v
c
(1 − c) + c( 􏼁

v
c L

1
2

z
3
U

zI
3 − 3U2zU

zφ
+
3
2
W

z
2
V

zφ2 + 3
zV

zφ
zW

zφ
+
3
2
V

z
2
W

zφ2􏼢

+3yx
zU

zφ
+ 3zx

zV

zφ
+ 3zy

zW

zφ
􏼣,

V(φ, v) �
1
v
V

(0)
(φ, 0) +

v
c
(1 − c) + c( 􏼁

v
c L −

z
3
V

zφ3 − 3
zU

zφ
zV

zφ
− 3V

z
2
U

zφ2 − 3V2zW

zφ
+ 6zy

zU

zφ
+ 3U2zV

zφ
􏼢 􏼣,

W(φ, v) �
1
v
W

(0)
(φ, 0) +

v
c
(1 − c) + c( 􏼁

v
c L −

z
3
W

zφ3 − 3
zU

zφ
zW

zφ
− 3W

z
2
U

zφ2 − 3W2zV

zφ
+ 6zx

zU

zφ
+ 3U2zW

zφ
􏼢 􏼣.

(70)

Applying the Laplace transform, we have

U(φ,I) � L
− 1 1

v
U(φ, 0)􏼔 􏼕 + L

− 1 v
c
(1 − c) + c( 􏼁

v
c L

1
2

z
3
U

zI
3 − 3U2zU

zφ
+
3
2
W

z
2
V

zφ2 + 3
zV

zφ
zW

zφ
+
3
2
V

z
2
W

zφ2 + 3yx
zU

zφ
􏼢􏼢

+ 3zx
zV

zφ
+ 3zy

zW

zφ
􏼣􏼣,

V(φ,I) � L
− 1 1

v
V(φ, 0)􏼔 􏼕 + L

− 1 v
c
(1 − c) + c( 􏼁

v
c L −

z
3
V

zφ3 − 3
zU

zφ
zV

zφ
− 3V

z
2
U

zφ2 − 3V2zW

zφ
+ 6zy

zU

zφ
+ 3U2zV

zφ
􏼢 􏼣􏼢 􏼣,

W(φ,I) � L
− 1 1

v
W(φ, 0)􏼔 􏼕 + L

− 1 v
c
(1 − c) + c( 􏼁

v
c L −

z
3
W

zφ3 − 3
zU

zφ
zW

zφ
− 3W

z
2
U

zφ2 − 3W2zV

zφ
+ 6zx

zU

zφ
+ 3U2zW

zφ
􏼢 􏼣􏼢 􏼣.

(71)

By the consequence of the modified decomposition
technique, we get

U0(φ,I) � L
− 1 1

v
U(φ, 0)􏼔 􏼕 �

1
2
L

− 1 1
v

(2 + tanh φ)􏼔 􏼕

V0(φ,I) � L
− 1 1

v
V(φ, 0)􏼔 􏼕 �

1
4

(2 − tanh φ),

W0(φ,I) � L
− 1 1

v
W(φ, 0)􏼔 􏼕 � (2 − tanh φ).

(72)
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It follows that

􏽘

∞

j�0
Uj+1(φ,I) � L

− 1 v
c
(1 − c) + c( 􏼁

v
c L

1
2

􏽘

∞

j�0
Uφφφ􏼐 􏼑

j
− 3􏽘
∞

j�0
Ej +

3
2

􏽘

∞

j�0
Fj + 3􏽘

∞

j�0
Gj +

3
2

􏽘

∞

j�0
Hj

⎡⎢⎢⎣⎡⎢⎢⎣

+3 􏽘
∞

j�0
Ij + 3􏽘

∞

j�0
Jj + 3􏽘

∞

j�0
Kj

⎤⎥⎥⎦⎤⎥⎥⎦, j

􏽘

∞

j�0
Vj+1(φ,I) � L

− 1 v
c
(1 − c) + c( 􏼁

v
c L − 􏽘

∞

j�0
Vφφφ􏼐 􏼑

j
− 3􏽘
∞

j�0
Mj − 3􏽘

∞

j�0
Nj − 3􏽘

∞

j�0
Oj + 6􏽘

∞

j�0
xj + 3􏽘

∞

j�0
Qj

⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦,

􏽘

∞

j�0
Wj+1(φ,I) � L

− 1 v
c
(1 − c) + c( 􏼁

v
c L − 􏽘

∞

j�0
Wφφφ􏼐 􏼑

j
− 3􏽘
∞

j�0
Rj − 3􏽘

∞

j�0
Wj − 3􏽘

∞

j�0
Tj + 6􏽘

∞

j�0
Xj + 3􏽘

∞

j�0
Yj

⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦.

(73)

+e Adomian polynomials’ some terms are defined as

EJ U
2
Uφ􏼐 􏼑 �

U
2
0U0φ, for J � 0,

2U0U1( 􏼁U0φ + U
2
0U1φ, for J � 1,

2U0U2 + U
2
1􏼐 􏼑U0φ + 2U0U1( 􏼁U1φ + U

2
0U2φ, for J � 2,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FJ WVφφ􏼐 􏼑 �

W0V0φφ, for J � 0,

W1V0φφ + W0V1φφ, for J � 1,

W2V0φφ + W1V1φφ + W0V2φφ, for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

GJ VφWφ􏼐 􏼑 �

V0φW0φ, for J � 0,

V0φW1φ + V1φW0φ, for J � 1,

V2φW0φ + V1φW1φ + V0φW2φ, for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

HJ VφWφφ􏼐 􏼑 �

V0φW0φφ, for J � 0,

V0φW1φφ + V1φW0φφ, for J � 1,

V2φW0φφ + V1φW1φφ + V0φW2φφ, for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

IJ VzUφ􏼐 􏼑 �

(yx)0U0φ, for J � 0,

(yx)0U1φ +(yx)1U0φ, for J � 1,

(yx)0U2φ +(yx)1U1φ +(yx)2U0φ, for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

JJ UzVφ􏼐 􏼑 �

(zx)0U0φ, for J � 0,

(zx)0U1φ +(zx)1U0φ, for J � 1,

(zx)0U2φ +(zx)1U1φ +(zx)2U0φ, for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

KJ zyWφ􏼐 􏼑 �

(zy)0U0φ, for J � 0,

(zy)0U1φ +(zy)1U0φ, for J � 1,

(zy)0U2φ +(zy)1U1φ +(zy)2U0φ, for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

MJ UφVφ􏼐 􏼑 �

U0φV0φ, for J � 0,

U0φV1φ + UφV0φ, for J � 1,

U2φV0φ + U1φV1φ + U0φV1φ, for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩
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NJ VUφφ􏼐 􏼑 �

V0U0φφ, for J � 0,

V0U1φφ + V1U0φφ, for J � 1,

V2U0φφ + V1U1φφ + V0U2φφ, for J � 2,

⎧⎪⎪⎨

⎪⎪⎩

OJ V
2
Wφ􏼐 􏼑 �

V
2
0W0φ, for J � 0,

2V0V1( 􏼁W0φ + V
2
0W1φ, for J � 1,

2V0V2 + V
2
1􏼐 􏼑W0φ + 2V0V1( 􏼁W1φ + V

2
0W2φ, for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

xJ zyWφ􏼐 􏼑 �

(zy)0U0φ, for J � 0,

(zy)0U1φ +(zy)0U1φ, for J � 1,

(zy)0U2φ +(zy)1U1φ +(zy)2U0φ, for J � 2,

⎧⎪⎪⎨

⎪⎪⎩

QJ U
2
Vφ􏼐 􏼑 �

U
2
0V0φ, for J � 0,

2U0U1( 􏼁V0φ + U
2
0V1φ, for J � 1,

2U0U2 + U
2
1􏼐 􏼑V0φ + 2U0U1( 􏼁V1φ + U

2
0V2φ for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

R0 UφVφ􏼐 􏼑 �

U0φV0φ, for J � 0,

U0φV1φ + U1φV0φ, for J � 1,

U2φV0φ + U1φV1φ + U0φV2φ, for J � 2,

⎧⎪⎪⎨

⎪⎪⎩

SJ WUφφ􏼐 􏼑 �

W0U0φφ, for J � 0,

W0U1φφ + W1U0φφ, for J � 1,

W2U0φφ + W1U1φφ + W0U2φφ, for J � 2,

⎧⎪⎪⎨

⎪⎪⎩

TJ W
2
Vφ􏼐 􏼑 �

W
2
0V0φ, for J � 0,

2W0W1( 􏼁V0φ + W
2
0V1φ, for J � 1,

2W0W2 + W
2
1􏼐 􏼑V0φ + 2W0W1( 􏼁V1φ + W

2
0V2φ, for J � 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

XJ UW1Uφ􏼐 􏼑 �

(zx)0U0φ, for J � 0,

(zx)0U1φ +(zx)1U0φ, for J � 1,

(zx)2U0φ +(zx)1U1φ +(zx)2U0φ, for J � 2,

⎧⎪⎪⎨

⎪⎪⎩

YJ U
2
Wφ􏼐 􏼑 �

U
2
0W0φ, for J � 0,

2U0U1( 􏼁W0φ + U
2
0W1φ, for J � 1,

2U0U2 + U
2
1􏼐 􏼑W0φ + 2U0U1( 􏼁W1φ + U

2
0W2φ, for J � 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(74)

For j � 0, 1, 2, 3, . . .,

U1(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L

1
2
Uφφφ􏼐 􏼑0 − 3E0 +

3
2
F0 + 3G0 +

3
2
H0 + 3I0 + 3J0 + 3K0􏼔 􏼕􏼢 􏼣

�
11
2
sec h

2
(φ) (1 − c) +

cI
c

Γ(c + 1)
􏼠 􏼡

V1(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L Vφφφ􏼐 􏼑0 − 3M0 − 3N0 − 3O0 + 6x0 + 3Q0􏽨 􏽩􏼢 􏼣

� −
11
8
sec h

2
(φ) (1 − c) +

cI
c

Γ(c + 1)
􏼠 􏼡
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W1(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L Wφφφ􏼐 􏼑0 − 3R0 − 3􏽢S0 − 3T0 + 6X0 + 3Y0􏽨 􏽩􏼢 􏼣

� −
11
2
sec h

2
(φ) (1 − c) +

cI
c

Γ(c + 1)
􏼠 􏼡

U2(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L

1
2
Uφφφ􏼐 􏼑1 − 3E1 +

3
2
F1 + 3G1 +

3
2
H1 + 3I1 + 3J1 + 3K1􏼔 􏼕􏼢 􏼣

�
− 121
8

tanh(φ)sec h
2
(φ) (1 − c)

2
+

c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

V2(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L Vφφφ􏼐 􏼑1 − 3M1 − 3N1 − 3O1 + 6x1 + 3Q1􏽨 􏽩􏼢 􏼣

�
121
8

tanh(φ)sec h
2
(φ) (1 − c)

2
+

c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

W2(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L Wφφφ􏼐 􏼑1 − 3R1 − 3􏽢S1 − 3T1 + 6X1 + 3Y1􏽨 􏽩􏼢 􏼣

�
242
8

anh(φ)sec h
2
(φ) (1 − c)

2
+

c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

U3(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L

1
2
Uφφφ􏼐 􏼑2 − 3E2 +

3
2
F2 + 3G2 +

3
2
H2 + 3I2 + 3J2 + 3K2􏼔 􏼕􏼢 􏼣

�
1331
48

sec h
4
(φ)[cosh(2φ) − 2] (1 − c)

3
+ c(1 − c) 1 + c + 2c

2
􏼐 􏼑

I
c

Γ(c + 1)
+
3c

2
(1 − c)I

2c

Γ(2c + 1)
+

c
3Γ(2c + 1)I

3c

Γ(3c + 1)
􏼨 􏼩

V3(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L Vφφφ􏼐 􏼑2 − 3M2 − 3N2 − 3O2 + 6x2 + 3Q2􏽨 􏽩􏼢 􏼣

�
2662
96

sec h
4
(φ)[cosh(2φ) − 2] (1 − c)

3
+ c(1 − c) 1 + c + 2c

2
􏼐 􏼑

I
c

Γ(c + 1)
+
3c

2
(1 − c)I

2c

Γ(2c + 1)
+

c
3Γ(2c + 1)I

3c

Γ(3c + 1)
􏼨 􏼩

W3(φ,I) � L
− 1 v

c
(1 − c) + c( 􏼁

v
c L Wφφφ􏼐 􏼑2 − 3R2 − 3􏽢S2 − 3T2 + 6X2 + 3Y2􏽨 􏽩􏼢 􏼣

�
− 2662
48

sec h
4
(φ)[cosh(2φ) − 2] (1 − c)

3
+ c(1 − c) 1 + c + 2c

2
􏼐 􏼑

I
c

Γ(c + 1)
+
3c

2
(1 − c)I

2c

Γ(2c + 1)
+

c
3Γ(2c + 1)I

3c

Γ(3c + 1)
􏼨 􏼩

⋮.

(75)

+e modified decomposition technique result for Ex-
ample 3 is given as

U(φ,I) � U0(φ,I) + U1(φ,I) + U2(φ,I) + U3(φ,I) . . . ,

�
1
2

(2 + tanh φ) +
11
2
sec h

2
(φ) (1 − c) +

cI
c

Γ(c + 1)
􏼠 􏼡

−
121
8

tanh(φ)sec h
2
(φ) (1 − c)

2
+

c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

+
1331
48

sec h
4
(φ)[cosh(2φ) − 2] (1 − c)

3
+ c(1 − c) 1 + c + 2c

2
􏼐 􏼑

I
c

Γ(c + 1)
+
3c

2
(1 − c)I

2c

Γ(2c + 1)
+

c
3Γ(2c + 1)I

3c

Γ(3c + 1)
􏼨 􏼩

+ · · · .

(76)
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Consequently, we get

V(φ,I) �
1
4

(2 − tanhφ) −
11
8
sec h

2
(φ) (1 − c) +

cI
c

Γ(c + 1)
􏼠 􏼡 +

121
8

tanh(φ)sec h
2
(φ) (1 − c)

2
+

c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

−
1331
48

sec h
4
(φ)[cosh(2φ) − 2] (1 − c)

3
+ c(1 − c) 1 + c + 2c

2
􏼐 􏼑

I
c

Γ(c + 1)
+
3c

2
(1 − c)I

2c

Γ(2c + 1)
+

c
3Γ(2c + 1)I

3c

Γ(3c + 1)
􏼨 􏼩 + · · ·

W(φ,I) � (2 − tanhφ) −
11
2
sec h

2
(φ) (1 − c) +

cI
c

Γ(c + 1)
􏼠 􏼡 +

121
8

tanh(φ)sec h
2
(φ) (1 − c)

2
+

c
2
I

2c

Γ(2c + 1)
+
2(1 − c)cI

c

Γ(c + 1)
􏼠 􏼡

−
2662
96

sec h
4
(φ)[cosh(2φ) − 2] (1 − c)

3
+ c(1 − c) 1 + c + 2c

2
􏼐 􏼑

I
c

Γ(c + 1)
+
3c

2
(1 − c)I

2c

Γ(2c + 1)
+

c
3Γ(2c + 1)I

3c

Γ(3c + 1)
􏼨 􏼩 + · · · .

(77)
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Figure 1: +e actual and analytical (MDM/NITM) result figure at U(φ,I) of Example 1 for 9 � 1, ρ � 0.5, and δ � 2.
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Figure 2: +e actual and analytical (MDM/NITM) result figure at V(φ,I) of Example 1 for 9 � 1, ρ � 0.5, and δ � 2.

20 Journal of Mathematics



4

3

2

1

4

3

2

1

φ

-4

-4

-3

-3

-2

-2

-1

-1

0

0
φ

1

1

2

2

3

3
4

4
0.5

0.4
0.3

0.2
0.1

0

1
0.8
0.6
0.4

U

U

Figure 3: Analytical investigation of figure U(φ,I) for Example 1 for different fractional orders c � 1.0, 0.8, 0.6, 0.4, ρ � 0.5, 9 � 1, and
δ � 2.
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By putting c � 1, we obtain the exact result of the
system of Korteweg–de Vries equation (2):

U(φ,I) �
1
2

2 + tanh φ −
11I
2

􏼠 􏼡􏼠 􏼡,

V(φ,I) �
1
4

2 − tanh φ −
11I
2

􏼠 􏼡􏼠 􏼡,

W(φ,I) � 2 − tanh φ −
11I
2

􏼠 􏼡􏼠 􏼡.

(78)
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Figure 5: +e analytical and exact (MDM/NITM) solution plot at U(φ,I) of Example 2 for ρ � 0.5, 9 � 1, and δ � 2.
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Case II: now, we apply the new iterative transformation
technique for Example 3.

By using the suggested analytical method, we get

U0(φ,I) �
1
2

(2 + tanhφ)

V0(φ,I) �
1
4
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(79)

+e series of results for Example 3 is given as
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(80)
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Consequently, we get
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By putting c � 1, we obtain the exact result of modified
couple Korteweg–de Vries equation (2):

U(φ,I) �
1
2

2 + tanh φ −
11I
2

􏼠 􏼡􏼠 􏼡,

V(φ,I) �
1
4
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11I
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􏼠 􏼡􏼠 􏼡,
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11I
2

􏼠 􏼡􏼠 􏼡.

(82)

In Figures 9–11, the actual and analytical solutions of
U(φ,I),V(φ,I), andW(φ,I) are proved at δ � 2, ρ � 0.5,
and 9 � 1. In Figures 12–14, the surface and two-

dimensional figure for U(φ,I),V(φ,I), and W(φ,I) for
numerous fractional orders are described which dem-
onstrate that the modified decomposition technique and
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Figure 10: +e analytical and exact result plot at V(φ,I) of Example 3 for ρ � 0.5, 9 � 1, and δ � 2.
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new iterative transformation technique approximated
obtained results are in close contact with the analytical
and the exact results. +is comparison shows a strong
connection among the modified decomposition method
and actual solutions. Consequently, the modified

decomposition technique and new iterative transforma-
tion technique are accurate innovative techniques which
need less calculation time and are very simple and more
flexible than the homotopy analysis technique and
homotopy perturbation technique.
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7. Conclusion

In this article, we have considered the nonlinear fractional-
order Korteweg–de Vries equations in the sense of the
Atangana–Baleanu derivative which is able to perform more
extensive analysis due to the nonsingular kernel in its
structure. +e mathematical solutions are obtained with the
help of the modified decomposition method and new it-
erative transformation method associated with the Atan-
gana–Baleanu derivative. +e present analysis illuminates
the effectiveness of the considered derivative operator. We
can conclude from the analytical results that these are very
reliable, simple, and powerful methods for finding ap-
proximate results of many fractional physical models which
arise in applied sciences. In this approach, we do not need
the Lagrange multiplier, correction functional, and sta-
tionary conditions or to calculate heavy integrals because the
results established are noise free, which overcomes the
shortcomings of existing methods. It is remarkable that the
projected approaches are well-organized analytical methods
for finding approximate analytical solutions to complex
nonlinear partial differential equations. Finally, we conclude
that this scheme, in future, will be taken into account in
order to cope with other complex nonlinear fractional-order
systems of equations.
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In this communication, the effect of the addition of the copper (Cu), aluminum oxide (Al2O3), and single-wall carbon nanotubes
(SWCNTs) metallic nanoparticles on the magnetohydrodynamics (MHD) water-based flow over a porous elastic surface is
explored. .e objective of the work is to include the radiative effect that interacts with the metallic nanoparticles due to
permeability of the surface..e significance of this study stems from the fact that the design of various equipment, such as nuclear
power plants, gas turbines, propulsion devices for aircraft, and missiles, is dependent on radiative heat transfer. To formulate the
mathematical modelling, similarity transformations were used, and nonlinear differential equations were obtained. To solve the
formulated nonlinear differential equations, the Runge–Kutta fourth-order numerical scheme is used in conjunction with the
shooting technique. .e behavior of velocity profile and temperature profile has been discussed in detail and also engineering
quantities such as Nusselt and Sherwood number which are calculated. Furthermore, the addition of metallic nanoparticles
enhanced the nanofluid properties for energy transfer enrichment and found many applications in various fields of science
and technology.

1. Introduction

Choi introduced a new type of fluid called nanofluid in 1995,
which has amazing thermal conductivity properties. .e
goal of the concept is to saturate nanosized particles in
conventional fluids known as base fluids. Nanofluids are
extremely important in thermal conductivity, heat transfer
enhancement, energy, and other thermos-physical proper-
ties for industrial applications [1–5]. .e heat transfer ca-
pacity of a nanofluid after the addition of metallic and
nonmetallic nanoparticles in a conventional base fluid was of
particular interest to the researchers. Mohebbi et al. [6]
investigated the mathematical model of the Heat Transfer
Augmentation Associated with Cu/Water Nanofluid in a

Channel with Surface Mounted Blocks by using Lattice
BoltzmannMethod..e numerical method is applied for the
forced convection flow and heat transfer of a nanofluid
flowing inside a straight circular pipe by Saryazdi et al. [7].
Moreover, Baag and Mishra [8] discussed heat and mass
transfer analysis on MHD 3D water-based nanofluid. .e
prominent examples of nanofluids are ethylene glycols,
kerosene, and water. It has been observed that conducting
nanofluids presents their special attention because of their
use in diversified areas such as biomedical solicitation as
tuneable optical filters, drug delivery, and cancer therapy.
Watanabe and Pop [9] deliberately presented the magne-
tohydrodynamic flow of particular fluid for the occurrence
of applied magnetic field through a flat plate. Numerical
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treatment is depicted by Armaghani et al. [10] for the mixed
convective flow phenomena of nanofluid within open
C-shaped enclosures. For the enhanced properties, they have
used CuO nanoparticles which are dispersed within the base
fluid water and the enclosure is imposed with constant
magnetic field. Furthermore, the influential behavior of the
characterizing parameters such as Richardson number and
volume concentration affects the flow phenomena as well.
.e work of Ibrahim and Terbeche [11] leads to bring out the
effective properties of the non-Newtonian power-law fluid
with due occurrence of the magnetic field. Analytical ap-
proach is employed for the solution of the designed problem
and numerical methods are useful for the validation of the
current result and the convergence criterion.

Fluid flow and heat transfer with non-Newtonian fluids,
for example, are a challenge in the modern revolution,
particularly in the oil industry, bubble columns and ab-
sorption, zymosis, boiling, plastic foam processing [12], etc.
However, the possible applications relating to this type of
flow can be observed in various industries..e generation of
electric power in the corresponding electric power industry
is one of the examples that uses the extraction of energy. .e
governing equations for different non-Newtonian fluid
models are amid the utmost complex equations so that the
development in mathematical modelling is of great interest
nowadays. A time-dependent flow characterized by the
several parameters for the nanofluids past an expanding
sheet is presented by Andersson et al. [13]. Furthermore,
similarity approach for the complex unsteady flow problem
past over an expanding sheet is carried out by Elbashbeshy
and Bazid [14]..ermophoresis and Brownian motion effect
on the flow of nanofluid through a vertical plate has been
studied by Kuznetsov and Nield [15]. .ey pointed out that
the cooling rate of the plate decreases due to decrement in
strengthens of thermophoresis and Brownian motion.
Heidary and Kermani [16] studied the effect of solid volume
fraction of nanofluid and magnetic strength. .ey examined
that existence of magnetic field and nanofluid could sig-
nificantly enhance heat transfers properties of the flow
phenomena..e thermal properties of the base fluids change
appreciable after addition of the metallic nanoparticles and
calculate the thermos-physical parameters [17]. Masuda
et al. [18] reported that, after addition of ultrafine nano-
particles, there is an alteration in the thermal conductivities
and viscosities. Mishra et al. [19] recently studied a chem-
ically reactive nano-micropolar fluid with variable heat sink/
source and slip conditions. Shutaywi and Shah [20] pro-
posed a numerical and mathematical model of a nanofluid
that includes entropy formation.

.e application of electrically conductive fluid currents
is encircled in the field of nanocomposite and metallurgy.
.e flows of several fluids under the action of magnetic field
such as MHD generators, oil exploration, energy extraction,
and boundary layer control have attracted many researchers.
Metallurgical requirements consist of continuous cooling
belts or filaments such as hardening, disperse, and sketching
processes for copper wires. It has been noticed that the
effects of Coriolis force are larger than those of viscosity and
inertia forces in the hydro-magnetic equations of motion in

a rotating environment. Several researchers have been in-
vestigated on MHD with various kinds of fluid and ge-
ometries. For example, Ibrahim andNegera [21] investigated
the upper-convected Maxwell nanofluid flow with slip and
MHD effects through a stretching sheet and chemical re-
action. Abdal et al. [22] examine the thermo-diffusion with
magnetized mixed convection unsteady nanofluid flow
through stretching/shrinking surface with heat source and
thermal radiation. Ghasemi and Hatami [23] described the
solar radiation effects on magnetized stagnation point
nanofluid flow through a stretching surface. Some important
references related to the proposed topic can be found in
[24–28] and several therein. Recently, Upreti et al. [29, 30]
considered carbon nanotube nanofluids for the behavior of
various physical quantities in different geometries. .ey
have projected the effect of drag force with an interaction of
Joule heating and nonuniform heat source/sink. Also, binary
chemical reaction with the impact of radiative heat on the
flow phenomena over an expanding surface is considered.
Sabu et al. [31] investigated the enhancement of heat transfer
caused by a thermal and space dependent heat source,
magnetic field, and nanoparticles propagating over an elastic
spinning disk. Mahanthesh et al. [32] investigated
Reiner–Rivlin nanofluid flow through a rotating disk with
multiple slips and a distinct heat source.

.erefore, the primary goal of this research is to de-
termine the presence of three metallic nanoparticles (Cu,
Al2O3, and SWCNTs) in an electrically conducting water-
based nanofluid propagating through a porous medium.
.ermal radiation is important in industrial applications. As
a matter of fact, the study’s novelty stems from the incor-
poration of thermal radiation as well as an additional heat
source/sink within a permeable medium. .e mathematical
modelling was developed using similarity transformations.
.e nonlinear differential equations are solved using the
Runge–Kutta and shooting techniques. When compared to
other similar methods used for nonlinear problems, the
current numerical method yields promising results [33, 34].
.e graphical interpretation of the velocity and temperature
profiles have been discussed in detail and expected results
show the excellent industrial applications.

2. Problem Formulation

.e time-dependent electrically conducting flow of nano-
fluids through a permeable medium is presented in this
article. For the enhanced feature in heat transfer attempt is
made to consider SWCNTs in the water-based nanofluid
along with Cu and Al2O3 nanoparticles. Moreover, the
novelty of the study arises for the inclusion of radiative heat
transfer with additional external heat source/sink that en-
riches the energy profile. .e flow through porous elastic
surface along the x-direction and the transverse magnetic
field of uniform strength B0 is proposed along the normal
direction of the surface, i.e., y-direction, as given in Figure 1.
Due to permeability of the surface, the occurrence of suc-
tion/injection has its immense use on the flow phenomena.
Following Zhang et al. [35], the proposed assumptions lead
to design the model with the boundary conditions as

2 Journal of Mathematics



zu

zx
+

zv

zy
� 0,

ρnf

zu

zt
+ u

zu

zx
+ v

zu

zy
􏼠 􏼡 � −

zp

zx
+ μnf

z
2
u

zy
2

−
μnf

K
+ σnfB

2
0􏼒 􏼓u,

ρcp􏼐 􏼑
nf

zT

zt
+ u

zT

zx
+ v

zT

zy
􏼠 􏼡 � knf

z
2
T

zy
2 −

zqr

zy

+ Q0 T − T∞( 􏼁,

(1)

with boundary conditions,

u(x, 0, t) � 0,

v(x, 0, t) � v0(t),

−knf

zT(x, 0, t)

zt
� q(x),

u(x,∞, t) � U(x, t),

T(x,∞, t) � T∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

Here, u and v, are the components of velocities along x−

and y− direction, T is the temperature of the nanofluid, t is
the time taken, p is the fluid pressure, v0 is a constant, and σs

and σf are the electrical conductivity of the base and
nanofluid, respectively.

.e physical properties relating to nanofluid such as
viscosity, specific heat, density, and conductivity are pre-
sented as follows [36]:
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where ϕ is the particle concentration, μf is the dynamics
viscosity, ρf and ρs are the densities, kf and ks are the

thermal conductivities, and the subscripts f and s are for the
base fluid and the solid nanoparticles.
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Here, K is the permeability of the given medium and B0
is an external magnetic field strength.

.e stream function as well as variables for the problem
is expressed as (see [36])
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y
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Figure 1: Flow configuration.
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Using the aforesaid functional expressions, the gov-
erning equations are presented as
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where M � (σf/ρfb)B2
0 is the magnetic parameter,

Pr � υf/κ is the Prandtl number, Nr � 16σ1T3
∞/3κkf is the

thermal radiation parameter, Da � υf/aK is the Darcy
number with boundary condition, b is the unsteadiness
parameter, and δ � q0x/(ρcp)fU is the heat source
parameter.
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.e physical quantities are as follows: Cf � τw/ρfU2 is
called as skin friction coefficient and Nux � qwx/kf(Tw −

T∞) is called local Nusselt number:
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3. Numerical Methodology

For solving equations (10)–(12), a multistep integration
method, i.e., the Runge–Kutta method, with shooting
technique has been deployed. In this process, equations (7)
and (8) are reduced to a set of ordinary differential equations
as defined below:

f � y1, f′ � y2, f″ � y3, f
‴

� −A1 y1 +
bη
2

􏼠 􏼡y3 − y
2
2 + b y

2
1 − 1􏼐 􏼑 + 1􏼢 􏼣

− MA2 + Da( 􏼁 1 − y1( 􏼁,

θ � y4, θ′ � y5, θ″ � A3Pr − y1 +
bη
2

􏼠 􏼡y5􏼠

+ y2 +
b

2
+

δ
A3

􏼠 􏼡y4􏼡
knf

kf

+ Nr􏼠 􏼡

− 1

,

(12)

under the boundary condition,
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Now, it uses only the initial conditions, i.e., for η � 0.
However, due to the unavailability of initial conditions, the
assumed initial conditions y3 and y4 are to be determined.
.erefore, some initial guesses are incorporated to both
these values in order to satisfy the boundary conditions at
η⟶∞(η � 4). .ese corrections are taken care by a
corrective procedure that follows a self-iterative process.
.is procedure is used to implement a more accurate
method, i.e., the RK method, with shooting numerical
technique. For the computational purpose, the step size is
assumed as h � 0.01..erefore, the accuracy of computation
and the convergence criteria are followed.

4. Results and Discussion

An unsteady two-dimensional flow of metallic water-based
nanofluids is considered which past a permeable medium for
the action of transverse magnetic field is presented. Inter-
action of Cu and Al2O3 nanoparticles along with SWCNTs in
base fluid water is dispersed to prepare nanofluid. Incor-
poration of radiative heat energy enriches the profile in
conjunction to the permeable surface. Numerical technique
is used to find the solution of the set of equations for the
suitable choice of the pertinent parameters. Table 1 displays
all the physical properties of both the particles as well as the
base fluid. Table 2 present the validation of the present
outcomes for the shear rate considering the case of pure fluid
as well as the case of nanofluid with the work of Rizwan et al.
[36], and this shows a good corroboration. .e graphical
illustration shows the significant behavior of these param-
eters associated with the flow phenomena. Furthermore, the
tabular simulated results indicate the rate coefficients, i.e.,
shear rate and Nusselt number. However, throughout the
computation, the following values of the parameters are
considered as fixed whereas the variation of particular pa-
rameters are presented in the corresponding figures, and
these are ϕ � 0.2, b � 0.1, M � 1, Da � 1, fw � 0.5, and
δ � 1.

.e role of particle concentration due to its appearance
through the thermo-physical properties is a vital part of this
investigation. Figure 2 describes the significance of particle
concentration on the velocity for the Cu, Al2O3, and
SWCNT-water-based nanofluids. Several characteristics of
the suction/injection on each profile are displayed. Here, the
parameter fw> 0 represents the role of suction whereas
fw< 0 indicates the injection and fw � 0 characterizes the
behavior when the flow through impermeable region. .e
decelerating nature of the profiles shows the increasing
width of the bounding surface thickness for the increasing
particle concentration. .e range of the concentration is
treated within ϕ � [0.0, 0.2]. .e impermeability region for
the pure fluid is similar to the results obtained by Mishra et
al. [19], and it can be obtained by considering fw � 0 and
ϕ � 0. Furthermore, the increasing suction enriches the
profiles, but the thickness of the bounding surface decreases;
however, injection reveals opposite impact on the profile. It
reveals the density of the Cu particles and diminishes the
profile width in comparison to the particles of Al2O3 and
SWCNTs. Figure 3 illustrates the behavior of the

unsteadiness parameter in association with the suction/in-
jection on the nanofluid velocity profiles. Here, b≠ 0 indi-
cates the unsteady case on the velocity of the three different
water-based nanofluid. An augmentation in the profiles is
rendered for the increasing unsteadiness that causes a de-
celeration in the bounding surface thickness. .e profiles of
SWCNTnanofluid are lesser than the other nanoparticles of
Al2O3 and Cu, respectively. Also, for each of the profiles,
interestingly, the thickness decelerates more in case of in-
jection in comparison to impermeable and the case of
suction successively. Figure 4 portrays the role of magnetic
parameter on the nanofluid velocity profiles with the in-
teraction suction/injection. .e magnetic field expresses the
influence of moving electric charges along with electric
current and magnetic materials. In modern technology,
there are various applications of magnetic field such as in
both the electric motors and generators; the use of rotating
magnetic field is important. .e profile augments lead to
decelerate the thickness of the velocity-bounding surface for
the augmented magnetic parameter. .is is due to the re-
sistance offered by the resistive force produced with the
interaction of magnetic parameter, i.e., the Lorentz force. It
is seen that SWCNTs have greater retardation than that of
Al2O3 and Cu-water nanofluid. However, suction also favors
to decelerate the profile significantly than that of injection.
Furthermore, Figure 5 examines the significance of the
permeability parameter on the nanofluid velocity distribu-
tion. Similar to the magnetic parameter, resistive force of-
fered by porosity also causes a similar behavior on the
velocity profiles for each of the nanofluids. .e influence of
the suction/injection has the same tendency on the profiles
as described in the earlier description. .e control of suc-
tion/injection due to the permeable surface is shown in
Figure 6 for the velocity distribution of nanofluids. Gen-
erally, the pressure differential occurs by the elimination of
air from the space. .erefore, the limited pressure is exerted

Table 1: .ermos-physical properties of base fluid and
nanoparticles.

ρ(kg/m3) cp(J/kgK) k(W/mK)

Pure water 997.1 4179 0.613
Copper (Cu) 8933 385 401
Aluminum oxide (Al2O3) 3970 765 40
SWCNTs 2600 425 6600

Table 2: Validation of shear rate.

Nanofluids ϕ f″(0)

Rizwan et al. [36]
f″(0)

Present

Cu-H2O
0.0 1.48113419 1.481021
0.1 1.71105504 1.711003
0.2 1.75138728 1.751128

Al2O3-H2O
0.0 1.48113419 1.481021
0.1 1.43438455 1.431625
0.2 1.33096758 1.330727

SWCNT-H2O
0.0 1.48113419 1.481021
0.1 1.45088235 1.450122
0.2 1.35571879 1.355526
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by the external air. .e pressure in one part of the system is
reduced in comparison to another; there will be force exerts
from the fluid of higher pressure region to lower. However,
with escalating suction, the pressure increases, and this leads
to decelerate the surface thickness, whereas impact is re-
versed for the case of injection..e case of impermeability is
a particular case which validates with the earlier result. .e
significant characteristics of the controlling parameters on
the fluid temperature is observed and presented. .e role of
these parameters enhances the thermos-physical properties

significantly. .erefore, the current study discloses the
properties of particle concentration, magnetic and porosity
parameters, suction/injection, and unsteadiness parameter.
Figure 7 displays the role of particle concentration on the
nanofluid temperature with an interaction of suction/in-
jection. .e three-layer variation explains the distribution of
different parameters on the Cu, Al2O3, and SWCNT-water-
based nanofluids, respectively. Furthermore, the fluid
temperature boosts its maximum trend in case of Cu-water
nanofluid since it is well known that Cu is a good conductor
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of heat. Furthermore, with the increase in volume fraction,
the profile decelerates significantly. Moreover, suction
produces more energy to boost the profile rather than the
impermeability of the surface and the case of injection.
Figure 8 demonstrates the role of unsteadiness parameter
that has important characteristics on the nanofluid tem-
perature. Again, increasing unsteadiness, the fluid temper-
ature decelerates in an order of preference such as Cu, Al2O3,
and SWCNT-water nanofluid. .erefore, it suggests that
effectiveness of the Cu nanoparticle is higher than that of

other nanoparticles presented in this study. .is gives a
suggestive measure for the increasing thermal properties of
the Cu-water nanofluid since the proposed thermal con-
ductivity of the nanofluid enhances due to increase in
particle concentration. Figure 9 exhibits the effects of the
heat source on the nanofluid temperature distribution for
different suctions/injections. .e inclusion of additional
heat suppresses the fluid temperature. In a comparative
analysis, it is marked that the Cu-water nanofluid exhibits its
maximum strength than other nanofluids. However, no
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significant change is marked for the variation of suction/
injection. Figure 10 depicts the behavior of the thermal
radiation in conjunction to the other contributing param-
eters on the temperature distributions of the nanofluids.
.ermal radiation is due to the release of the electromagnetic
waves from the fluid particles that is nothing but the ren-
ovation of thermal energy into the electromagnetic energy.
With an increase in thermal radiation, the profile rises up
and therefore the fluid temperature boosts up. .is is be-
cause most of the solids and fluids are considered to be the

surface phenomena and the interior molecules help to emit
the radiations.

Finally, the simulated results of the rate coefficients for
several contributing parameters are obtained and presented
in Table 3. .e nanoparticle concentration enhances the
shear rate coefficients whereas heat transfer rate decreases in
magnitude. From the tabular results, it is quite clear to see
that the rate coefficients are much higher in case of Cu-water
nanofluid in comparison to other nanofluids. Furthermore,
the resistive forces such as magnetic and porosity of the
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medium favors to enhance the shear rate and opposite trend
is rendered for the heat transfer rate. An increase in suction
enriches the rate coefficients significantly.

5. Conclusion

.e radiative heat transport phenomenon on the two-di-
mensional flow of water-based nanofluids over an elastic
surface is carried out in the current investigation. Here, the
electrically conducting nanofluid past a porous surface
embedding with porous matrix is presented. .e effect of
heat source is also included to examine the heat transfer
properties. Numerical approach is employed for the solution

of the flow phenomena designed by the proposed model.
Furthermore, the important characteristics of the physical
parameters are laid down here:

(i) Comparative analysis shows a pathway for the
further investigation of the current problem under
study for the behavior of several nanoparticles in the
water-based fluid with the interaction of various
characterizing parameters.

(ii) Particle concentration decelerates the velocity dis-
tributions causing a special effect to enhance the
bounding surface thickness whereas the thermal
bounding surface behaves in the reverse order, and
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Table 3: Numerical computations of physical quantities used in engineering applications.

ϕ
Cu-water Al2O3-water SWCNTs-water

M Da b fw Pr δ Nr Cf Nux Cf Nux Cf Nux

0.1 1 0.1 0.5 0.5 6.2 1 0.5 2.6073 −4.3891 2.2782 −4.3874 2.1858 −4.2266
0.15 3.0849 −3.7691 2.5915 −3.7728 2.4523 −3.5700
0.2 3.6065 −3.2190 2.9466 −3.2312 2.7597 −3.0029
0.1 2 2.9684 −4.4195 2.6735 −4.4239 2.5920 −4.2637

3 3.2863 −4.4443 3.0137 −4.4528 2.9387 −4.2927
1 0.2 2.6450 −4.3924 2.3200 −4.3914 2.2290 −4.2308

0.3 2.6820 −4.3956 2.3610 −4.3953 2.2713 −4.2348
0.1 0.1 2.8167 −4.1521 2.4481 −4.1439 2.3432 −3.9932

0.3 2.7139 −4.2726 2.3645 −4.2678 2.2657 −4.1119
0.5 −0.5 1.5958 −2.1490 1.5570 −2.1602 1.5442 −2.1508

0 2.0563 −3.1186 1.8913 −3.1214 1.8433 −3.0520
0.5 1 2.6073 −1.5644 2.2782 −1.5587 2.1858 −1.5107

2 2.6073 −2.2670 2.2782 −2.2602 2.1858 −2.1872
6.2 2 2.6073 −5.0817 2.2782 −5.0971 2.1858 −4.9396

3 2.6073 −5.6848 2.2782 −5.7129 2.1858 −5.5553
1 0.1 2.6073 −4.0441 2.2782 −4.0408 2.1858 −3.8926

0.3 2.6073 −4.2204 2.2782 −4.2180 2.1858 −4.0634

10 Journal of Mathematics



it clarifies that Cu nanoparticle has a greater role in
both the profile in comparison to Al2O3 and
SWCNT nanoparticles.

(iii) .e unsteadiness overshoots the velocity profiles for
which the thickness of the bounding surface
thickness retards; moreover, similar trend is marked
for the temperature distribution. However, steady
state conditions preserve maximum magnitude for
both the profiles.

(iv) An augmentation in suction enriches the profiles of
velocity in comparison to injection, whereas heat
source diminishes the fluid temperature
significantly.

(v) .e shear rate coefficient rises with increase in
particle concentration, whereas heat transfer rate
shows its opposite impact.
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In this work, based on the earlier publications, we build a new fractional-order chemical reaction model. Computer simulations
manifest that the fractional-order chemical reaction model presents chaotic behavior under a certain parameter condition. To
eliminate the chaotic dynamical property, a suitable fractional-order PDζ controller with time delay is designed. Regarding the
time delay as a bifurcation parameter, we set up a novel delay-independent stability and bifurcation criterion guaranteeing the
stability and the creation of Hopf bifurcation of the controlled fractional-order chemical reaction model. +e influence of time
delay on the stability and Hopf bifurcation of the controlled fractional-order chemical reaction model is revealed. At last,
numerical simulations are performed to sustain the rationality of the designed PDζ controller. +e obtained conclusions of this
work are completely novel and have immense application prospects in the chaos control of chemical reaction systems. Fur-
thermore, the research idea can also be utilized to suppress the chaos of a lot of fractional-order chaotic models.

1. Introduction

Chaos exists widely in many areas such as climate, physics,
chemistry, engineering, economy and finance, complex net-
works, and population systems [1–6]. +e chaotic phenom-
enon depends on the initial condition of the original system.
+e chaotic behavior occurring in the nonlinear dynamical
systems owns the very complex property and unpredictability.
In many cases, chaotic behavior is not what we want in our
practical life. +us, a natural problem arises: how to suppress
the chaotic behavior of the original system has been an
important theme in many disciplines. During the past several
decades, suppressing chaos has received great attention from
many scholars. For example, Chen [7] controlled the chaos via
a simple adaptive feedback control technique. Du et al. [8]
applied the phase space compression method to control the
chaos of an economic model. In 1990, Yorke [9] utilized Ott,
Grebogi, and Yorke (OGY) control approach to control the
chaos of a chaotic model. Paula and Savi [10] designed an
extended time-delayed feedback control approach to suppress
the chaos of a nonlinear pendulum. For more detailed lit-
erature on this aspect, one can refer [11–14].

In 1996, Geysermans and Baras [15] proposed a ho-
mogeneous chaotic Wilamowski–Rossler model. +e bal-
ance equations of this model have a well-defined
microscopic counterpart and all the reaction follows the
following “elementary” steps:

A1 + X⟶
κ1 2X,A1 + X⟵

κ−1 2X,

X + Y⟶
κ2 2Y,

A5 + Y⟶
κ3

A2,

X + Z⟶
κ4

A3,

A4 + Z⟶
κ5 2Z,A4 + Z⟵

κ−5 2Z.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

System (1) includes two autocatalytic steps involving
constituents X and Z, coupled via three other steps in-
volving the three constituents X, Z, and Y. +e initial
(A1,A4,A5) and final (A2,A3) product concentrations
remain fixed. +e distance from thermodynamic equilib-
rium is controlled by the values of A1,A2,A3,A4,A5.
κ±i(i � 1, 2, 3, 4, 5) stands for the rate constant. In model (1),
there are 15 free parameters. To reduce the number of free
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parameters, Geysermans and Baras [15] selected the rate
coefficients κ−2 � 0, κ−3 � 0, and κ−4 � 0. Note that the last
two relations imply that A2 and A3 are continuously re-
moved from the reactor [15, 16].

Assuming that there exists an ideal mixture and a well-
stirred reactor, then the macroscopic rate equations of
model (1) can be expressed as follows:

du1(t)

dt
� β1u1(t) − κ−1u

2
1(t) − u1(t)u2(t) − u1(t)u3(t),

du2(t)

dt
� u1(t)u2(t) − β5u2(t),

du3(t)

dt
� β4u3(t) − u1(t)u3(t) − k−5u

2
3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where u1(t), u2(t), and u3(t) stand for the mole fractions of
X,Y, and Z at the time t. +e rate constants κ1, κ3, and κ5
are incorporated in the parameters β1, β5, and β4 (e.g.,
β1 � κ1[A1], . . . , o) and β1 > 0, β4 > 0, β5 > 0, κ−1 > 0, κ−5 > 0
stand for the constants. In detail, one can refer [15, 16]. In
2015, Xu and Wu [17] dealt with the bifurcation control of
chaos for model (2) via three-time delay feedback con-
trollers. Namely, they considered the following controller
chemical model:

du1(t)

dt
� β1u1(t) − κ−1u

2
1(t) − u1(t)u2(t) − u1(t)u3(t) + μ1 u1(t) − u1(t − θ)􏼂 􏼃,

du2(t)

dt
� u1(t)u2(t) − β5u2(t) + μ2 u2(t) − u2(t − θ)􏼂 􏼃,

du3(t)

dt
� β4u3(t) − u1(t)u3(t) − k−5u

2
3(t) + μ3 u3(t) − u3(t − θ)􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where μi(i � 1, 2, 3) stands for a real constant and θ is a
delay.

It is worth mentioning that all the literature above (see
[15–17]) are only concerned with the integer-order chemical
models and they are not concerned with the fractional-order
chemical models. Recent studies have shown that fractional-
order differential equation is deemed as a more effective tool
to portray natural phenomena than the classical integer-
order ones since it has great advantages in memory trait and
hereditary property of numerous materials and development
processes [18–20]. Recently, fractional-order dynamical
systems have displayed great application in lots of areas such
as network systems, intelligent control, physical science,
biological engineering, chemistry, finance, and so on
[21–26]. Rich achievements on fractional-order dynamical
models have been obtained. For example, Ke [27] dealt with
the Mittag–Leffler stability and asymptotic ω-periodicity for
a class of fractional-order inertial delayed neural networks.
Du and Lu [28] focused on the finite-time stability for
fractional-order fuzzy delayed cellular neural networks. Xiao
et al. [29] probed into the bifurcation control problem for
fractional-order small-world networks; Huang et al. [30]
studied the bifurcation problem of fractional-order delayed
neural networks. In detail, we refer the readers to [31–34].

Inspired by the exploration above and on the basis of
system (2), in order to describe the continuous change

process of the mole fractions of X,Y, and Z and char-
acterize the memory trait and hereditary property of the
variables X,Y, and Z, we modify system (2) as the fol-
lowing fractional-order form:

dζu1(t)

dt
ζ � β1u1(t) − κ−1u

2
1(t) − u1(t)u2(t) − u1(t)u3(t),

dζu2(t)

dt
ζ � u1(t)u2(t) − β5u2(t),

dζu3(t)

dt
ζ � β4u3(t) − u1(t)u3(t) − k−5u

2
3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where ζ ∈ (0, 1]. +e research indicates that when
ζ � 0.97, β1 � 30, κ−1 � 0.55, β5 � 9.5, β4 � 16.5, κ−5 � 0.5,
then there is a chaotic phenomenon in system (3). +e
software simulation figures are presented in Figure 1.

In this current work, we are to deal with the chaos
control of system (4) by virtue of a fractional-order PDζ

controller. +e key contributions of this study are as follows:

(i) On the basis of the earlier studies, a new fractional-
order chaotic chemical reaction model is set up
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(ii) +e chaotic phenomenon of system (4) is sup-
pressed by means of an appropriate fractional-order
PDζ controller

(iii) +e study approach can be utilized to suppress the
chaos of lots of fractional-order dynamical models
in many subjects

+is manuscript can be arranged as follows: some
prerequisite theory on the fractional-order differential
equation is prepared in Section 2; in Section 3, we prove the
existence and uniqueness of the solution of system (4); in
Section 4, the chaos of system (4) is suppressed via frac-
tional-order PDζ controller and a delay-independent suffi-
cient condition that ensures the stability and the creation of
Hopf bifurcation of the fractional-order controlled chaotic
chemical reaction model is built; in Section 5, software
simulation results are presented to sustain the established
conclusions; and Section 6 completes this article.

2. Preliminary Knowledge

In this part, we present some indispensable theories on a
fractional-order differential equation.

Definition 1 (see [35]). +e fractional type integral of the
order ζ of the function u(ξ) is given by

I
ζ
u(ξ) �

1
Γ(ζ)

􏽚
ξ

ξ0
(ξ − ])

ζ− 1
u(])d], (5)

where ξ > ξ0, ζ > 0 and Γ(]) � 􏽒
∞
0 s]−1e−sds.

Definition 2 (see [35]). +e Caputo fractional order deriv-
ative of the order ζ of the function u(]) ∈ ([]0,∞), R) is
defined as follows:

D
ζ
u(]) �

1
Γ(κ − ζ)

􏽚
]

]0

u
(κ)

(s)

(] − s)
ζ−κ+1ds, (6)

where ]≥ ]0 and κ represents a positive integer
(ζ ∈ [κ − 1, κ)). In particular, if ζ ∈ (0, 1), then

D
ζ
u(]) �

1
Γ(1 − ζ)

􏽚
]

]0

u′(s)

(] − s)
ζds. (7)

Lemma 1 (see [36]). Consider the fractional-order system
Dζw � Fw, w(0) � w0 where ζ ∈ (0, 1), w ∈ Rl,F ∈ Rl×l.
Assuming that χi(i � 1, 2, . . . , l) is the root of the charac-
teristic equation ofDζw � Fw, then the equilibrium point of
the system Dζw � Fw is locally asymptotically stable if
|arg(χi)|> (ζπ/2)(i � 1, 2, . . . , l) and the equilibrium point
of the system Dζw � Fw is stable if |arg(χi)|> (ζπ/2)(i �

1, 2, . . . , l) and all critical eigenvalues that satisfy |arg(χi)| �

(ζπ/2)(i � 1, 2, . . . , l) own geometric multiplicity one.

3. Existence and Uniqueness of the Solution of
System (4)

In this section, we will prove the existence and uniqueness of
the solution of system (4).

Theorem 1. Let Λ � (u1, u2, u3) ∈ R3: max |u1|,􏼈􏼈 |u2|, |u3|}

≤ A}, where A> 0 is a constant. ∀(u10, u20, u30) ∈ Λ, system
(4) with the initial value (u10, u20, u30) has a unique solution
U � (u1, u2, u3) ∈ Λ.

Proof. Define the following mapping:

f(U) � f1(U), f2(U), f3(U)( 􏼁, (8)

where

f1(U) � β1u1(t) − κ−1u
2
1(t) − u1(t)u2(t) − u1(t)u3(t),

f2(U) � u1(t)u2(t) − β5u2(t),

f3(U) � β4u3(t) − u1(t)u3(t) − k−5u
2
3(t).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

∀U, U ∈ Λ, one obtains
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Figure 1: Software simulation figures of system (4) with ζ � 0.97, β1 � 30, κ−1 � 0.55, β5 � 9.5, β4 � 16.5, κ−5 � 0.5.
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‖f(U) − f( 􏽥U)‖

� |β1u1(t) − κ−1u
2
1(t) − u1(t)u2(t) − u1(t)u3(t)

− β1u1(t) − κ−1u
2
1(t) − u1(t)u2(t) − u1(t)u3(t)􏽨 􏽩|

+ u1(t)u2(t) − β5u2(t) − u1(t)u2(t) − β5u2(t)􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ |β4u3(t) − u1(t)u3(t) − k−5u
2
3(t)

− β4u3(t) − u1(t)u3(t) − k−5u
2
3(t)􏽨 􏽩|

≤ β1 + 2κ−1A + A( 􏼁 u1(t) − u1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + A u2(t) − u2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + A u3(t) − u3(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + A u1(t) − u1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ A + β5( 􏼁 u2(t) − u2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + A u1(t) − u1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ β4 + A + 2κ−5A( 􏼁 u3(t) − u3(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� A1 u1(t) − u1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + A2 u2(t) − u2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + A3 u3(t) − u3(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤A0‖U − U‖,

(10)

where

A1 � β1 + 2κ−1A + 3A,

A2 � 2A + β5,

A3 � β4 + 2A + 2κ−5A,

⎧⎪⎪⎨

⎪⎪⎩
(11)

A0 � max A1, A2, A3􏼈 􏼉. (12)

+en f(U) satisfies Lipschitz condition with respect to U

(see [39, 40]). According to Banach fixed point theorem, we
know that +eorem 1 is true. □

4. Suppressing Chaos via Fractional-Order
PDζ Controller

In this part, we are to apply a suitable controller to eliminate
the chaotic phenomenon of system (4). By virtue of the idea
of Tang et al. [37], the fractional-order PDζ controller can be
designed as follows:

ψ(t) � ϱpu1(t − θ) + ϱd
dζu1(t)

dt
ζ , (13)

where ϱp and ϱd ≠ 1 present the proportional control pa-
rameter and the derivative control parameter, respectively,
and θ denotes a delay. Adding (13) to the first equation of
system (4), we get

dζu1(t)

dt
ζ � β1u1(t) − κ−1u

2
1(t) − u1(t)u2(t) − u1(t)u3(t) + ψ(t),

dζu2(t)

dt
ζ � u1(t)u2(t) − β5u2(t),

dζu3(t)

dt
ζ � β4u3(t) − u1(t)u3(t) − k−5u

2
3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

+at is
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dζu1(t)

dt
ζ � β1u1(t) − κ−1u

2
1(t) − u1(t)u2(t) − u1(t)u3(t)

+ ϱpu1(t − θ) + ϱd
dζu1(t)

dt
ζ ,

dζu2(t)

dt
ζ � u1(t)u2(t) − β5u2(t),

dζu3(t)

dt
ζ � β4u3(t) − u1(t)u3(t) − k−5u

2
3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

System (15) can be rewritten as the following form:

dζu1(t)

dt
ζ �

β1
1 − ϱd

u1(t) −
κ−1

1 − ϱd
u
2
1(t) −

1
1 − ϱd

u1(t)u2(t)

−
1

1 − ϱd
u1(t)u3(t) +

ϱp
1 − ϱd

u1(t − θ),

dζu2(t)

dt
ζ � u1(t)u2(t) − β5u2(t),

dζu3(t)

dt
ζ � β4u3(t) − u1(t)u3(t) − k−5u

2
3(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

It is not difficult to obtain that if the following condition

Q1( 􏼁 β4 > β5, β1 − κ−1( 􏼁κ−5 > κ4 − κ5, (17)

holds, then system (16) owns the following unique positive
equilibrium U(u∗1 , u∗2 , u∗3 ), where

u
∗
1 � β5,

u
∗
2 �

β1 − κ−1β5( 􏼁κ−5 − β4 + β5
κ−5

,

u
∗
3 �

β4 − β5
κ−5

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

+e linear system of (16) around the positive equilibrium
U(u∗1 , u∗2 , u∗3 ) takes the following form:

dζu1(t)

dt
ζ � a1u1(t) + a2u2(t) + a2u3(t) + a3u1(t − θ),

dζu2(t)

dt
ζ � a4u1(t) + a5u2(t),

dζu3(t)

dt
ζ � a6u1(t) + a7u3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where

a1 �
β1 − 2κ−1u

∗
1 − u
∗
2 − u
∗
3

1 − ϱd
,

a2 � −
u
∗
1

1 − ϱd
,

a3 �
ϱp

1 − ϱd
,

a4 � u
∗
2 ,

a5 � u
∗
1 − β5,

a6 � −u
∗
3 ,

a7 � β4 − u
∗
1 − 2κ5u

∗
3 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

+e characteristic equation of system (19) takes the form

det

s
ζ

− a1 − a3e
− sθ

−a2 −a2

−a4 s
ζ

− a5 0

−a6 0 s
ζ

− a7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0. (21)

+en,

s
3ζ

+ b1s
2ζ

+ b2s
ζ

+ b3 + c1s
2ζ

+ c2s
ζ

+ c3􏼐 􏼑e
− sθ

� 0, (22)

where
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b1 � − a1 + a5 + a7( 􏼁,

b2 � a5a7 + a1a5 + a1a7 − a2a6 − a2a4,

b3 � a2a5a6 + a2a4a7 − a1a5a7,

c1 � −a3,

c2 � a3 a5 + a7( 􏼁,

c3 � −a3a5a7.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

When θ � 0, then (22) becomes

λ3 + b1 + c1( 􏼁λ2 + b2 + c2( 􏼁λ + b3 + c3 � 0. (24)

Assuming that

Q2( 􏼁

b1 + c1 > 0,

b1 + c1( 􏼁 b2 + c2( 􏼁> b3 + c3,

b3 + c3( 􏼁 b1 + c1( 􏼁 b2 + c2( 􏼁 − b3 + c3( 􏼁􏼂 􏼃> 0,

⎧⎪⎪⎨

⎪⎪⎩
(25)

is true, then the three roots λ1, λ2, λ3 of (24) satisfy
|arg(λ1)|> (ζπ/2), |arg(λ2)|> (ζπ/2), and |arg(λ3)|> (ζπ/2).
By virtue of Lemma 1, we can conclude that the positive
equilibrium point U(u∗1 , u∗2 , u∗3 ) of system (14) is locally
asymptotically stable when θ � 0.

Assume that s � iρ � ρ(cos(ζπ/2) + i sin(π/2)) is the
root of equation (22). It follows from (22) that

ρ3ζ cos
3ζπ
2

+ i sin
3ζπ
2

􏼠 􏼡 + b1ρ
2ζ

(cos ζπ + i sin ζπ)

+ b2ρ
ζ cos

ζπ
2

+ i sin
ζπ
2

􏼠 􏼡 + b3

+ c1ρ
2ζ

(cos ζπ + i sin ζπ) + c2ρ
ζ cos

ζπ
2

+ i sin
ζπ
2

􏼠 􏼡 + c3􏼢 􏼣

×(cos ρθ − i sin ρθ) � 0.

(26)

+en,

G1 cos ρθ + G2 sin ρθ � H1,

G2 cos ρθ − G1 sin ρθ � H2,
􏼨 (27)

where

G1 � d1ρ
2ζ

+ d2ρ
ζ

+ d3,

G2 � d4ρ
2ζ

+ d5ρ
ζ
,

H1 � e1ρ
3ζ

+ e2ρ
2ζ

+ e3ρ
ζ

+ e4,

H2 � e5ρ
3ζ

+ e6ρ
2ζ

+ e7ρ
ζ
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

where

d1 � c1 cos ζπ,

d2 � c2 cos
ζπ
2

,

d3 � c3,

d4 � c1 sin ζπ,

d5 � c2 sin
ζπ
2

,

e1 � −cos
ζπ
2

,

e2 � −b1 cos ζπ,

e3 � −b2 cos
ζπ
2

,

e4 � −b3,

e5 � −sin
ζπ
2

,

e6 � −b1 sin ζπ,

e7 � −b2 sin
ζπ
2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

It follows from (27) that

cos ρθ �
H1G1 + H2G2

G
2
1 + G

2
2

, (30)

G
2
1 + G

2
2 � H

2
1 + H

2
2. (31)

By virtue of (28) and (31), one gets

d1ρ
2ζ

+ d2ρ
ζ

+ d3􏼐 􏼑
2

+ d4ρ
2ζ

+ d5ρ
ζ

􏼐 􏼑
2

�

e1ρ
3ζ

+ e2ρ
2ζ

+ e3ρ
ζ

+ e4􏼐 􏼑
2

+ e5ρ
3ζ

+ e6ρ
2ζ

+ e7ρ
ζ

􏼐 􏼑
2
,

(32)

which leads to

ϵ1ρ
6ζ

+ ϵ2ρ
5ζ

+ ϵ3ρ
4ζ

+ ϵ4ρ
3ζ

+ ϵ5ρ
2ζ

+ ϵ6ρ
ζ

+ ϵ7 � 0, (33)

where
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ϵ1 � e
2
1 + e

2
5,

ϵ2 � 2 e1e2 + e5e6( 􏼁,

ϵ3 � e
2
2 + e

2
6 − d

2
1 − d

2
4 + 2 e1e3 + e5e7( 􏼁,

ϵ4 � 2 e1e4 + e2e3 + e6e7 − d1d2 − d4d5( 􏼁,

ϵ5 � e
2
3 + e

2
7 − d

2
2 − d

2
5 + 2 e2e4 − d1d3( 􏼁,

ϵ6 � 2 e3e4 − d2d3( 􏼁,

ϵ7 � e
2
4 − d

2
3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Set

Θ(ρ) � ϵ1ρ
6ζ

+ ϵ2ρ
5ζ

+ ϵ3ρ
4ζ

+ ϵ4ρ
3ζ

+ ϵ5ρ
2ζ

+ ϵ6ρ
ζ

+ ϵ7.
(35)

Assuming that

Q3( 􏼁 e4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< d3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 (36)

is true, since limρ⟶∞Θ(ρ) � +∞, then equation (33) owns
at least one real positive root. So equation (22) has at least

one pair of pure roots. Making use of Sun et al. [38], one can
easily establish the conclusion as follows.

Lemma 2. (a) Supposing that ϵk > 0(k � 1, 2, 3, 4, 5, 6),
equation (22) owns no root with zero real parts for θ≥ 0. (b)
Supposing that (Q3) holds and ϵk > 0(k � 1, 2, 3, 4, 5), then
equation (22) owns a pair of purely imaginary roots ±iρ0 if
θ � θ(l)

0 (l � 1, 2, . . . , ) where

θ(l)
0 �

1
ρ0

arccos
H1G1 + H2G2

G
2
1 + G

2
2

􏼠 􏼡 + 2lπ􏼢 􏼣, (37)

where l � 0, 1, . . ., and ρ0 > 0 represents the unique zero of
Θ(ρ).

Denote θ0 � θ(0)
0 . Now the following hypothesis is given:

Q4( 􏼁 C1RC2R + C1IC2I > 0, (38)

where

C1R � 3ζρ3ζ−1
0 cos

(3ζ − 1)π
2

+ 2ζc1ρ
2ζ−1
0 cos

(2ζ − 1)π
2

+ ζc2ρ
ζ−1
0 cos

(ζ − 1)π
2

+ 2ζc1ρ
2ζ−1
0 cos

(2ζ − 1)π
2

+ ζc2ρ
ζ−1
0 cos

(ζ − 1)π
2

􏼢 􏼣 cos ρ0θ0 + sin ρ0θ0

× 2ζc1ρ
2ζ−1
0 sin

(2ζ − 1)π
2

+ ζc2ρ
ζ−1
0 sin

(ζ − 1)π
2

􏼢 􏼣,

C1I � 3ζρ3ζ−1
0 sin

(3ζ − 1)π
2

+ 2ζc1ρ
2ζ−1
0 sin

(2ζ − 1)π
2

+ ζc2ρ
ζ−1
0 sin

(ζ − 1)π
2

− 2ζc1ρ
2ζ−1
0 cos

(2ζ − 1)π
2

+ ζc2ρ
ζ−1
0 cos

(ζ − 1)π
2

􏼢 􏼣 sin ρ0θ0 + cos ρ0θ0

× 2ζc1ρ
2ζ−1
0 sin

(2ζ − 1)π
2

+ ζc2ρ
ζ−1
0 sin

(ζ − 1)π
2

􏼢 􏼣,

C2R � c1ρ
2ζ
0 cos ζπ + c2ρ

ζ
0 cos

ζπ
2

+ c3􏼠 􏼡ρ0 sin ρ0θ0

− c1ρ
2ζ
0 sin ζπ + c2ρ

ζ
0 sin

ζπ
2

+ c3􏼠 􏼡ρ0 cos ρ0θ0,

C2I � c1ρ
2ζ
0 cos ζπ + c2ρ

ζ
0 cos

ζπ
2

+ c3􏼠 􏼡ρ0 cos ρ0θ0

+ c1ρ
2ζ
0 sin ζπ + c2ρ

ζ
0 sin

ζπ
2

+ c3􏼠 􏼡ρ0 sin ρ0θ0.
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(39)

Journal of Mathematics 7



Lemma 3. Let s(θ) � ϕ1(θ) + iϕ2(θ) be the root of (22) at
θ � θ0 satisfying ϕ1(θ0) � 0,ϕ2(θ0) � ρ0, then Re(ds/
dθ)|θ�θ0,ρ�ρ0 > 0.

Proof. Making use of (22), we get

3ζs
3ζ− 1

+ 2ζb1s
2ζ− 1

+ ζb2s
ζ− 1

􏼐 􏼑
ds

dθ

+ 2ζc1s
2ζ− 1

+ ζc2s
ζ− 1

􏼐 􏼑e
− sθds

dθ

− e
− sθ ds

dθ
θ + s􏼠 􏼡 c1s

2ζ
+ c2s

ζ
+ c3􏼐 􏼑 � 0,

(40)

which leads to

3ζs
3ζ− 1

+ 2ζb1s
2ζ− 1

+ ζb2s
ζ− 1

+ 2ζc1s
2ζ− 1

+ ζc2s
ζ− 1

􏼐 􏼑e
− sθ

− θe
− sθ

c1s
2ζ

+ c2s
ζ

+ c3􏼐 􏼑􏽨 􏽩
ds

dθ

� se
− sθ

c1s
2ζ

+ c2s
ζ

+ c3􏼐 􏼑.

(41)

+en,

ds

dθ
􏼠 􏼡

− 1

�
C1(s)

C2(s)
−
θ
s
, (42)

where

C1(s) � 3ζs
3ζ− 1

+ 2ζb1s
2ζ− 1

+ ζb2s
ζ− 1

+ 2ζc1s
2ζ− 1

+ ζc2s
ζ− 1

􏼐 􏼑e
− sθ

,

C2(s) � se
− sθ

c1s
2ζ

+ c2s
ζ

+ c3􏼐 􏼑.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(43)

+en,

Re
ds

dθ
􏼠 􏼡

− 1
⎡⎣ ⎤⎦

θ�θ0 ,ρ�ρ0

� Re
C1(s)

C2(s)
􏼢 􏼣

θ�θ0 ,ρ�ρ0

�
C1RC2R + C1IC2I

C
2
2R + C

2
2I

.

(44)

In view of (Q4), we have

Re
ds

dθ
􏼠 􏼡

− 1
⎡⎣ ⎤⎦

θ�θ0 ,ρ�ρ0

> 0, (45)

which completes the proof.
Making use of Lemma 1, we can easily obtain the fol-

lowing conclusion. □

Theorem 2. Supposing that (Q1)–(Q4) hold, then the pos-
itive equilibrium point U(u∗1 , u∗2 , u∗3 ) of system (16) is locally

asymptotically stable if the time delay θ lies in the interval
[0, θ0) and the Hopf bifurcation phenomenon of system (16)
will arise near the positive equilibrium point U(u∗1 , u∗2 , u∗3 ) if
θ � θ0.

Remark 1. Xu and Wu [17] dealt with the chaos control for
an integer-order chaotic chemical reaction model by time-
delay feedback control technique. +is manuscript deals
with the chaos control issue for a fractional-order chaotic
chemical reaction model via a fractional-order PDζ con-
troller.+emodel and the research approach is very different
from those in [17]. From this viewpoint, we think that the
obtained results and the research method of this manuscript
supplement the work of [17] and promote the development
of the chaos control theory of fractional-order differential
equation to some degree.

Remark 2. In this paper, we use the fractional-order PDζ

controller to control the chaos of the fractional-order chaotic
chemical reaction model (4). Compared with the time delay
feedback controller, the fractional-order PDζ controller has
more adjustable parameters and then can control the chaos
of model (4) neatly.

5. Example

Consider the following controlled fractional-order chaotic
chemical reaction model:

8 Journal of Mathematics



8.5
9

9.5
10

10.5

9
10

11
12

10 20 30 40 50 60 70 800
t

u2 (t)
u1 (t)

13

13.5

14

14.5

15

u 3
 (t

)

8

9

10

11

12

13

14

15
u 1

 (t
),u

2 
(t)

,u
3 

(t)

Figure 2: Computer simulation figures of the controlled fractional-order chaotic chemical reaction model (46) with θ � 0.20< θ0 � 0.25.
+e blue line represents u1(t), the red line represents u2(t), and the green line represents u3(t).
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Figure 3: Computer simulation figures of the controlled fractional-order chaotic chemical reaction model (46) with θ � 0.28> θ0 � 0.25.
+e blue line represents u1(t), the red line represents u2(t), and the green line represents u3(t).

0.15 0.2 0.25 0.3 0.35 0.40.1
θ

0

5

10

15

20

25

30

35

40

u 1

Figure 4: Bifurcation plot of the controlled fractional-order chaotic chemical reaction model (46): θ-u1.
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dζu1(t)

dt
ζ � β1u1(t) − κ−1u

2
1(t) − u1(t)u2(t) − u1(t)u3(t)

+ ϱpu1(t − θ) + ϱd
dζu1(t)

dt
ζ ,

dζu2(t)

dt
ζ � u1(t)u2(t) − β5u2(t),

dζu3(t)

dt
ζ � β4u3(t) − u1(t)u3(t) − k−5u

2
3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

where ζ�0.97,β1�30,κ−1�0.55,β5�9.5,β4�16.5,κ−5� 0.5. Let
ϱp�0.5,ϱd�0.9. It is not difficult to obtain the unique positive
equilibrium point of system (46) is U(9.5,10.775,14). By
direct computation via MATLAB software, we can easily get
ρ0�4.0239 and θ0�0.25. +e three assumptions (Q1)–(Q4)

of +eorem 2 are easily verified to be right. So we can
conclude that the positive equilibrium point U(9.5,

10.775,14) of system (46) is locally asymptotically stable if
the time delay θ lies in the interval [0,0.25) and the Hopf
bifurcation phenomenon for system (46) will arise near the
positive equilibrium point U(9.5,10.775,14) if θ�0.25. In
this paper, we use the predictor-correctors approach
[39, 41, 42] to discretize system (46) and by virtue of the
MATLAB software to carry out numerical simulations. In
order to display these results, we select two sets of different
delay parameters. Firstly, we choose θ�0.20<θ0�0.25, and
the software simulation plots are presented in Figure 2,
which implies that u1⟶9.5,u2⟶10.775,u3⟶14 as the
time t tends to infinity. From the chemical point of view, the
mole fraction of the constituent X will be close to 9.5, the
mole fraction of the constituent Y will be close to 10.775,
and themole fraction of the constituentZwill be close to 14.
Secondly, we choose θ�0.28>θ0�0.25, and the software
simulation plots are presented in Figure 3, which implies
that a Hopf bifurcation periodic solution of system (46) will
arise near the positive equilibrium pointU(9.5,10.775,14) as
the time t tends to infinity. From the chemical point of view,
the mole fraction of the constituent X, the mole fraction of
the constituent Y, and the mole fraction of the constituent
Z will remain periodically oscillatory situations near the
values 9.5, 10.775, 14, respectively. Furthermore, we give the
bifurcation plot, which can be seen in Figure 4, to indicate
that the bifurcation value of system (46) is 0.25.

6. Conclusions

Suppressing the chaotic behavior of nonlinear dynamical
systems has been a significant and classic issue in many
disciplines. For a long time, the suppression of chaos has
attracted much attention from many scholars in mathe-
matics, physics, chemistry, engineering, and numerous other
areas. In the present manuscript, based on the earlier
publications, we set up a novel fractional-order chaotic

chemical reaction model. Taking advantage of an appro-
priate fractional-order PDζ controller, we can effectively
eliminate the chaotic phenomenon of the involved frac-
tional-order chaotic chemical reaction model. A delay-in-
dependent sufficient condition to guarantee the stability and
the creation of Hopf bifurcation of the fractional-order
controlled chaotic chemical reaction model is built. +e
exploration manifests that the delay occurring in fractional-
order PDζ controller is the key factor in suppressing the
chaotic phenomenon of the fractional-order chaotic
chemical reaction model. +e derived conclusions of this
manuscript are entirely new and the exploration approach of
this manuscript can also be utilized to inquire into numerous
chaos control problem of lots of fractional-order chaotic
dynamical systems.
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+e core objective of this article is to introduce and investigate a new class β − UCVλ
q[A, B] of convex functions associated with the

conic domain defined by the Ruscheweyh q-differential operator. Many interesting properties such as sufficiency criteria, co-
efficient bounds, partial sums, and radius of convexity of order α for the functions of the said class are investigated here.

1. Introduction

Quantum calculus has emerged as one of the most vibrant
areas of research in recent years. Researchers have discussed
and found its applications in numerous dimensions, such as
hypergeometric series, complex analysis, and applied
physics. It has developed techniques to be used in q-calculus,
time scales, partitions, and continued fractions. Jackson, for
the first time, in the beginning of the 20th century, intro-
duced quantum calculus, where he developed and stan-
dardized it. For more details about quantum calculus, see
[1–14]. To make a good pace and understanding of the
results presented in this article, we are going to give below
some primary definitions and relevant details of quantum
calculus. Suppose F represents the class of holomorphic
functions of type

y(z) � z + 􏽘
∞

n�2
bnz

n
. (1)

in open unit disk E � z: z ∈ C and |z|< 1{ } and normalized
by the conditions y′(0) � 1 and y(0) � 0. Moreover, S

represents the class of all functions inF which are univalent
in E; see [15].

A domain D is starlike with respect to a point z0 ∈ D if
all possible lines which are confined by two points, con-
necting z0 to any other point, lie entirely within D. Cor-
respondingly, a domain E is convex if all possible lines
which are obtained by connecting any two points in D lie
thoroughly within D. More clearly, we can say that if the
domain is starlike with respect to each of its points in D,
then it is convex. If y(E) is starlike for y ∈ S with respect to
the origin, then it is called a starlike function, whereas if
y(E) is convex, then it is called a convex function. +e class
of all convex functions is represented by C, and the class of
all starlike functions is represented by S∗. Analytically, these
are defined as follows:

S
∗: � y ∈ S: R

zy′(z)

y(z)
􏼨 􏼩> 0, z ∈ E􏼨 􏼩,

C: � y ∈ S: R 1 +
zy″(z)

y′(z)
􏼨 􏼩> 0, z ∈ E􏼨 􏼩.

(2)

Hindawi
Journal of Mathematics
Volume 2022, Article ID 2681789, 13 pages
https://doi.org/10.1155/2022/2681789

mailto:shajib_301@yahoo.co.in
https://orcid.org/0000-0002-9346-7026
https://orcid.org/0000-0001-8940-0569
https://orcid.org/0000-0002-7222-8181
https://orcid.org/0000-0002-0055-1932
https://orcid.org/0000-0002-3992-8821
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2681789


For α ∈ [0, 1), suppose that S∗(α) and C(α) are sub-
classes of S consisting of α-starlike functions and α-convex
functions, respectively, defined analytically as follows:

S
∗
(α) : � y ∈ S: R

zy′(z)

y(z)
􏼨 􏼩> α, z ∈ E􏼨 􏼩,

C(α) : � y ∈ S: R 1 +
zy″(z)

y′(z)
􏼨 􏼩> α, z ∈ E􏼨 􏼩.

(3)

For α � 0, the class S∗(α)⇒ S∗ and the class C(α)⇒C.
Moreover, the following two classes are closely related with
their functions defined, respectively.

S
∗
α : � y ∈ S:

zy′(z)

y(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1 − α, z ∈ E􏼨 􏼩,

Cα: � y ∈ S:
zy″(z)

y′(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1 − α, z ∈ E􏼨 􏼩.

(4)

Note that S∗α ⊆ S∗(α) and Cα ⊆C(α). +e kth partial sum
of the function y, denoted by yk, is the polynomial, defined
by

yk(z) � z + 􏽘
k

n�2
bnz

n
. (5)

Generally, lower bounds on ratios such as
R y(z)/yk(z)􏼈 􏼉 or R yk(z)/y(z)􏼈 􏼉 have been found to be
sharp only when k � 1, but Silverman determined sharpness
∀n ∈ N; see [16, 17]. He investigated that lower bounds are
strictly increasing functions of k. In the present article, by
using Silverman’s technique [16], we will find the function’s
ratio having Taylor series (1) to its sequence of partial sums
yk(z) � z + 􏽐

k
n�2bnzn when the coefficients of y are suffi-

ciently small to fulfill the necessary and sufficient condition.
In more details to clarify, we will find sharp lower bounds for
y(z)/yk(z), y′(z)/yk

′(z), yk(z)/y(z), and yk
′(z)/y′(z).

Indeed, we will use the familiar result, i.e.,
R w(z) − 1/w(z) + 1{ }> 0, z ∈ E, if and only if
w(z) � 􏽐

∞
n�1cnzn satisfies |w(z)| ≤ |z|. Unless otherwise

stated, we will presume that y has form (1) and that its
sequence of partial sums is represented by (5).

For α ∈ [0, 1), Ravichandran gave the sharp radius of
starlike and convex functions of order α with form (1) whose
Taylor series coefficients bn satisfy the conditions
|b2| � 2 d, d ∈ [0, 1], and |bn|≤ n; M or M/n (M> 0) for
n≥ 3.

Consider that y1 and y2 are holomorphic functions in E

with w(0) � 0 and |w(z)≤ 1|, ∀z ∈ E, so that
y1(z) � y2(w(z)); y1 will be subordinated by y2 and
denoted by y1≺y2. If y2 is holomorphic, then y1≺y2 iff
y1(0) � y2(0) and y1(E)⊆y2(E).

For two holomorphic functions

y1(z) � 􏽘
∞

k�0
akz

k andy2(z) � 􏽘
∞

k�0
bkz

k
(z ∈ Ε), (6)

the Hadamard product of y1(z) and y2(z) is defined as

y1(z)∗y2(z) � 􏽘
∞

k�0
akbkz

k
. (7)

We will define some notations and concepts of quantum
calculus which are to be used in this article. All results can be
found in [2, 3, 18]. For n ∈ N, 0< q< 1, we see the classical
q-theory begins with the q-extension of the positive num-
bers. +e expression

lim
q⟶1

1 − q
n

1 − q
� n. (8)

proposes that we define the q-generalization of n, which is
also called the q-bracket of n, given as

[n, q] � [n]q �
1 − q

n

1 − q
, (9)

and the q-generalization of the factorial which is called
q-factorial given by

[n]q! �
[n]q[n − 1]q . . . [1]q, n � 1, 2, . . . ,

1, n � 0.
􏼨 (10)

+e q-difference operator for y ∈ F is defined as

zqy(z) �
y(qz) − y(z)

z(q − 1)
, (z ∈ Ε), (11)

and we can see that, for n ∈ N and z ∈ Ε,

zqz
n

� [n]qz
n− 1

,

zq 􏽘

∞

n− 1
bnz

n
⎧⎨

⎩

⎫⎬

⎭ � 􏽘
∞

n− 1
[n]qbnz

n− 1
.

(12)

For y(z) ∈F, the q-analogue of the Ruscheweyh dif-
ferential operator is defined as

R
λ
qy(z) � φ(q, λ + 1; z)∗y(z)

� z + 􏽘
∞

n�2
ψn− 1bnz

n
, (z ∈ Ε and λ> − 1),

(13)

where

φ(q, λ + 1; z) � z + 􏽘
∞

n�2
ψn− 1z

n
, (14)

and

ψn− 1 �
Γq(λ + n)

[n − 1]q!Γq(λ + 1)
�

[λ + 1, q]n− 1

[n − 1]q!
, ψ0 � 1( 􏼁, (15)

where [λ + 1, q]n− 1 is a Pochhammer symbol, which is de-
fined as follows:
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[n, q]m �
1, n � 0,

[n, q][n + 1, q][n + 2, q][n + 3, q] . . . [m + n − 1, q], n ∈ N.
􏼨 (16)

From (13), it is clear that

R
0
qy(z) � y(z) andR

1
qy(z) � zzqy(z),

R
m
q y(z) �

zz
m
q z

m− 1
y(z)􏼐 􏼑

[m]q!
, (m ∈ N),

lim
q⟶1−

φ(q, λ + 1; z) �
z

(1 − z)
λ+1,

lim
q⟶1−

R
λ
qy(z) � y(z)∗

z

(1 − z)
λ+1.

(17)

It follows that q⟶ 1− , and the Ruscheweyh q-differ-
ential operator converts into the Ruscheweyh differential
operator Dδ(y(z)); for more details, see [19]. Using (13),

zzR
λ
qy(z) � 1 +

[λ]q

q
λ􏼠 􏼡R

λ+1
q y(z) −

[λ]q

q
λ R

λ
qy(z). (18)

If q⟶ 1− , then

z R
λ
y(z)􏼐 􏼑′ � (1 + λ)R

λ+1
y(z) − λR

λ
y(z). (19)

Definition 1. +e function p(z) will lie in the class β −

Pq[A, B] if and only if

p(z)≺
(A(1 + q) +(3 − q))􏽥pβ(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))􏽥pβ(z) − (B(1 + q) − (3 − q))
, β≥ 0, (20)

where

􏽥pβ(z) �

1 + z

1 − z
, β � 0,

1 +
2
π2 log

1 +
�
z

√

1 −
�
z

√􏼠 􏼡

2

, β � 1,

1 +
2

1 − β2
sinh2

2
π
arccos β􏼒 􏼓arctan y

�
z

√
􏼔 􏼕, 0< β< 1,

1 +
1

β2 − 1
sin

π
2R(n)

􏽚
u(z)/

�
t

√

0

1
�����
1 − x

2
􏽰 �������

1 − (tx)
2

􏽱 dx⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ +
1

β2 − 1
, β> 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

For more details, see [20–24]. If 􏽥pβ(z) � 1 + δβz + · · ·,
then it is shown in [25] that, from (46), one can have
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δβ �

8(arccos β)
2

π2 1 − β2􏼐 􏼑
, 0≤ β< 1,

8
π2, β � 1,

π2

4 β2 − 1􏼐 􏼑
�
t

√
(1 + t)R

2
(t)

, β> 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Definition 2. A function y(z) ∈F will lie in the class
β − UCVq[A, B], β≥ 0, − 1≤B<A≤ 1, if and only if

R
(B(1 + q) − (3 − q))Dq zDqy(z)􏼐 􏼑/Dqy(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))Dq zDqy(z)􏼐 􏼑/Dqy(z) − (A(1 + q) +(3 − q))
⎡⎢⎣ ⎤⎥⎦

> β
(B(1 + q) − (3 − q))Dq zDqy(z)􏼐 􏼑/Dqy(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))Dq zDqy(z)􏼐 􏼑/Dqy(z) − (A(1 + q) +(3 − q))
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(23)

or equivalently,

Dq zDqy(z)􏼐 􏼑

Dqy(z)
∈ β − Pq[A, B]. (24)

For more details about the above classes and conic
domain, we refer the readers to [20, 25–28]. Using the

q-Ruscheweyh differential operator, we now define the
following more general class β − UCVλ

q[A, B] of functions
associated with the conic domain defined by Janowski
functions.

Definition 3. A function y(z) ∈F will lie in the class
β − UCVλ

q[A, B], β≥ 0, − 1≤B<A≤ 1, if and only if

R
(B(1 + q) − (3 − q))zq zzqR

λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))zq zzqR
λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) +(3 − q))

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

> β
(B(1 + q) − (3 − q))zq zzqR

λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))zq zzqR
λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) +(3 − q))

− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(25)

or equivalently,

zq zzqR
λ
qy(z)􏼐 􏼑

zqR
λ
qy(z)

∈ β − P[A, B]. (26)

+e above defined class β − UCVλ
q[A, B] generalizes

many known classes which can be obtained by setting
suitable particular values to the parameters as follows.

Special cases:

(1) β − UCV0
1− [A, B] � β − UCV[A, B], the well-known

class of β-uniformly Janowski convex functions,
introduced by Noor and Malik [27]

(2) 0 − UCV0
1− [A, B] � C[A, B], the well-known class of

Janowski convex functions, introduced by Janowski
[20]

(3) β − UCV0
1− [1 − 2α, − 1] � KD(β, α), see [29]

(4) 0 − UCV0
1− [1 − 2α, − 1] � C(α), see [15]

Lemma 1 (see [30]). Let g(z) � 1 + 􏽐
∞
n�1cnzn be subordinate

to G(z) � 1 + 􏽐
∞
n�1Cnzn. If G(z) is holomorphic in E and

G(E) is convex, then

cn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ C1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, n≥ 1. (27)

2. Main Results

Theorem 1. A function y(z) ∈F with form (1) will lie in
class β − UCVλ

q[A, B], β≥ 0, − 1≤B<A≤ 1, if it satisfies the
condition

􏽘

∞

n�2

En

ε
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< 1, (28)
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where

En � [n]q 2(3 − q)(β + 1)q[n − 1]q + (B(1 + q) +(3 − q))[n]q − (A(1 + q) +(3 − q))
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛ψn− 1, (29)

and

ε � (1 + q)|B − A|. (30)

Proof. Suppose that (28) holds; then, it is enough to show
that

β
(B(1 + q) − (3 − q))zq zzqR

λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))zq zzqR
λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) +(3 − q))

− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− R
(B(1 + q) − (3 − q))zq zzqR

λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))zq zzqR
λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) +(3 − q))

− 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦< 1.

(31)

We consider

β
(B(1 + q) − (3 − q))zq zzqR

λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))zq zzqR
λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) +(3 − q))

− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− R
(B(1 + q) − (3 − q))zq zzqR

λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))zq zzqR
λ
qy(z)􏼐 􏼑/zqR

λ
qy(z) − (A(1 + q) +(3 − q))

− 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

≤ (β + 1)
(B(1 + q) − (3 − q))zq zzqR

λ
qy(z)􏼐 􏼑 − (A(1 + q) − (3 − q))zqR

λ
qy(z)

(B(1 + q) +(3 − q))zq zzqR
λ
qy(z)􏼐 􏼑 − (A(1 + q) +(3 − q))zqR

λ
qy(z)

− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 2(3 − q)(β + 1)
zqR

λ
qy(z) − zq zzqR

λ
qy(z)􏼐 􏼑

(B(1 + q) +(3 − q))zq zzqR
λ
qy(z)􏼐 􏼑 − (A(1 + q) +(3 − q))zqR

λ
qy(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 2(3 − q)(β + 1)
􏽐
∞
n�2 1 − [n]q􏼐 􏼑ψn− 1[n]qbnz

n

z(B − A)(1 + q) + 􏽐
∞
n�2

(B(1 + q) +(3 − q))[n]q

− (A(1 + q) +(3 − q))

⎛⎝ ⎞⎠ψn− 1[n]qbnz
n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
2(3 − q)(β + 1)􏽐

∞
n�2q[n − 1]q[n]q bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

(1 + q)|B − A|1/ψn− 1 − 􏽐
∞
n�2(B(1 + q) +(3 − q))[n]q − (A(1 + q) +(3 − q))

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌[n]q bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
.

(32)

+e last expression is bounded above by 1 if
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2(3 − q)(β + 1) 􏽘
∞

n�2
q[n − 1]q[n]q bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<(1 + q)|B − A|

1
ψn− 1

− 􏽘

∞

n�2
(B(1 + q) +(3 − q))[n]q − (A(1 + q) +(3 − q))
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌[n]q bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(33)

which reduces to

􏽘

∞

n�2
[n]q 2(3 − q)(β + 1)q[n − 1]q +

(B(1 + q) +(3 − q))[n]q

− (A(1 + q) +(3 − q))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩ψn− 1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<(1 + q)|B − A|. (34)

+is finalizes the proof. □ □

For q⟶ 1− and λ � 0, we have the following known
result, proved in [27].

Corollary 1. A function y(z) ∈ F with form (1) will lie in
class β − UCV[A, B], β≥ 0, − 1≤B<A≤ 1, if it satisfies the
condition

􏽘

∞

n�2
n 2(β + 1)(n − 1) +|n(B + 1) − (A + 1)|􏼈 􏼉 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<|B − A|. (35)

For q⟶ 1− , λ � 0, and A � 1 − 2α andB � − 1, we have
the following known result, proved in [29].

Corollary 2. A function y(z) ∈ F with form (1) will lie in
class KD(β, α), β≥ 0 , 0≤ α< 1, if it satisfies the condition

􏽘

∞

n�2
n n(β + 1) − (β + α)􏼈 􏼉 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<(1 − α). (36)

Theorem 2. Let y(z) ∈ β − UCVλ
q[A, B], β≥ 0,

− 1≤B<A≤ 1, and be of form (1); then, for n≥ 2,

bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
[n]q

􏽙

n− 2

j�0

(A − B)(q + 1)δβψj − 4Bq[j]qψj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[j + 1]qψj+1
, (37)

where ψ is defined by (15).

Proof. By the definition for y(z) ∈ β − UCVλ
q[A, B], we

have

zq zzqR
λ
qy(z)􏼐 􏼑

zqR
λ
qy(z)

� p(z), (38)

where

p(z)≺
(A(1 + q) +(3 − q))􏽥pβ(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))􏽥pβ(z) − (B(1 + q) − (3 − q))
.

(39)

If 􏽥pβ(z) � 1 + δβz + . . ., then

(A(1 + q) +(3 − q))􏽥pβ(z) − (A(1 + q) − (3 − q))

(B(1 + q) +(3 − q))􏽥pβ(z) − (B(1 + q) − (3 − q))
� 1 +

1
4

(A − B)(q + 1)δβ+

1
4

−
1
4

Aq −
1
4

A +
1
4

Bq +
1
4

B􏼒 􏼓((B + 1)(1 + q) + 2 − 2q)􏼔 􏼕δ2β + · · · .

(40)

Now, if p(z) � 1 + 􏽐
∞
n�1cnzn, then by (27) and (39), we

have

cn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
4

(A − B)(q + 1) δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, n≥ 1. (41)

Now, from (38), we have

zq zzqR
λ
qy(z)􏼐 􏼑 � p(z)zqR

λ
qy(z). (42)

Let p(z) � 1 + 􏽐
∞
n�1cnzn, and using the Cauchy product

formula, we obtain
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1 + 􏽘

∞

n�2
[n]q[n]qψn− 1bnz

n− 1
� 1 + 􏽘

∞

n�1
cnz

n⎛⎝ ⎞⎠ 1 + 􏽘

∞

n�2
[n]qψn− 1bnz

n− 1⎛⎝ ⎞⎠

􏽘

∞

n�2
[n]q[n]qψn− 1bnz

n− 1
� 􏽘
∞

n�2
cn− 1z

n− 1
+ 􏽘
∞

n�2
[n]qψn− 1bnz

n− 1
+ 􏽘
∞

n�2
[n]qψn− 1bnz

n− 1⎛⎝ ⎞⎠. 􏽘
∞

n�2
cn− 1z

n− 1⎛⎝ ⎞⎠.

(43)

+is implies that

􏽘

∞

n�2
[n]q − 1􏼐 􏼑[n]qψn− 1bnz

n− 1
� 􏽘
∞

n�2
cn− 1 + 􏽘

∞

n�2
􏽘

n

j�2
[j]qψj− 1bjcn− j

⎛⎝ ⎞⎠z
n− 1

. (44)

Comparison of coefficients of zn− 1 gives us

[n]q − 1􏼐 􏼑[n]qψn− 1bn � cn− 1 + 􏽘
n

j�2
[j, q]ψj− 1bjcn− j

⎛⎝ ⎞⎠ b1 � 1( 􏼁, (45)

or

bn �
1

[n]q − 1􏼐 􏼑[n]qψn− 1
cn− 1 + 􏽘

n

j�2
[j]qψj− 1bjcn− j

⎛⎝ ⎞⎠. (46)

Using (41), we have

bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

(A − B)(q + 1) δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[n − 1]q[n]qψn− 1
1 + 􏽘

n− 1

j�2
[j]qψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠, (47)

or

bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

(A − B)(q + 1) δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[n − 1]q[n]qψn− 1
􏽘

n− 1

j�1
[j]qψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠. (48)

Now, we prove that

(A − B)(q + 1) δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[n − 1]q[n]qψn− 1
􏽘

n− 1

j�1
[j]qψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠≤
1

[n]q

􏽙

n− 2

j�0

(A − B)(q + 1)δβψj − 4Bq[n]qψj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[j + 1]qψj+1
. (49)

For this, we use the induction technique. For n � 2, we
have from (46),

b2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(q + 1)(A − B)

4q[1]q[2]qψ1
􏽘

2− 1

j�1
[j]qψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (50)

or

b2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[1]q[2]qψ1
, ψ0 � 1. (51)

For n � 3, we have from (46),

b3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[2]q[3]qψ2
􏽘

2

j�1
[j]qψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

�
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[2]q[3]qψ2
[1]qψ0 b1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +[2]qψ1 b2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

≤
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[2]q[3]qψ2
1 +

(A − B)(q + 1) δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[1]q

⎛⎝ ⎞⎠.

(52)
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From (37), we have

b3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1

[3]q

􏽙

1

j�0

(A − B)(q + 1)δβψj − 4Bq[j]qψj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[j + 1]qψj+1

�
1

[3]q

(A − B)(q + 1) δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[1]qψ1

(A − B)(q + 1) δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ψ1 + 4q[1]qψ1

4q[2]qψ2

⎛⎝ ⎞⎠

�
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[2]q[3]qψ2
1 +

(A − B)(q + 1) δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[1]q

⎛⎝ ⎞⎠.

(53)

Let the assumption be true for n � m + 1. From (46), we
have

bm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[m − 1]q[m]qψm− 1
􏽘

m− 1

j�1
[j]qψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠. (54)

From (37), we have

bm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
[m]q

􏽙

m− 2

j�0

(A − B)(q + 1)δβψj − 4Bq[j]qψj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[j + 1]qψj+1
. (55)

By the induction hypothesis,

1
[m]q

􏽙

m− 2

j�0

(A − B)(q + 1)δβψj − 4Bq[j]qψj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[j + 1]qψj+1
≥

δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[m − 1]q[m]qψm− 1
􏽘

m− 1

j�1
[j]qψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (56)

Multiplying both sides by 1/[m]q(A− B)(q+1)|δβ| ψm− 1+

4q[m− 1]qψm− 1/4q[m]qψm, we have

1
[m]q

􏽙

m− 2

j�0

(A − B)(q + 1)δβψj − 4Bq[j]qψj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[j + 1]qψj+1

≥
1

[m]q

(A − B)(q + 1) δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ψm− 1 + 4q[m − 1]qψm− 1

4q[m]qψm

⎛⎝ ⎞⎠×

.
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[m − 1]qψm− 1
􏽘

m− 1

j�1
ψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

�
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[m]qψm

×

. ψm− 1
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[m − 1]q[m]qψm− 1
􏽘

m− 1

j�1
ψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
1

[m]q

􏽘

m− 1

j�1
ψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

≥
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[m]qψm

ψm− 1 bm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
[m]q

􏽘

m− 1

j�1
ψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

�
δβ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[m]q[m]qψm

􏽘

m

j�1
ψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(57)

8 Journal of Mathematics



+at is,

δβ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(A − B)(q + 1)

4q[m − 1]q[m]qψm− 1
􏽘

m− 1

j�1
ψj− 1 bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
1

[m]q

􏽙

m− 2

j�0

(A − B)(q + 1)δβψj − 4Bq[j]qψj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

4q[j + 1]qψj+1
. (58)

Hence, the consequence is true for n � m + 1. +erefore,
using mathematical induction, we have proved that (37) is
true ∀n, n≥ 2. □ □

For q⟶ 1− and λ � 0, we have the following known
result, proved in [27].

Corollary 3. Let y(z) ∈ β − UCV[A, B], β≥ 0,
− 1≤B<A≤ 1, and be of form (1); then, for n≥ 2,

bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
n

􏽙

n− 2

j�0

(A − B)δβ − 2Bj
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2(j + 1)
. (59)

For q⟶ 1− , λ � 0, and A � 1 − 2α andB � − 1, we have
the following known result, proved in [29].

Corollary 4. Let y(z) ∈ KD(β, α), β≥ 0, 0≤ α< 1, and be of
form (1); then, for n≥ 2,

bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
n

􏽙

n− 2

j�0

(1 − α)δβ + j
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

(j + 1)
. (60)

Using the already proven results of Silverman [16] and
Silvia [17] on partial sums of holomorphic functions, we will
find the fraction of (1) to its sequence of partial sums yk(z) �

z + 􏽐
k
n�2bnzn when the function y(z) has coefficients small

enough to satisfy condition (28). We will investigate sharp
lower bounds for R y(z)/yk(z)􏼈 􏼉, R y′(z)/yk

′(z)􏼈 􏼉,
R yk(z)/y(z)􏼈 􏼉, and R yk

′(z)/y′(z)􏼈 􏼉 in the class
β − UCVλ

q[A, B].

Theorem 3. If y(z) ∈ β − UCVλ
q[A, B], then

R
y(z)

yk(z)
􏼨 􏼩≥ 1 −

ε
Ek+1

, (61)

where Ek+1 is defined by (29) and ε � (1 + q)|B − A|. Ce
extremal function

y(z) � z +
ε

Ek+1
z

k+1
. (62)

gives the sharp result.

Proof. Define a function w(z):

w(z) �
Ek+1

ε
.

y(z)

yk(z)
− 1 −

ε
Ek+1

􏼠 􏼡􏼢 􏼣, (63)

and this will reduce to

�
Ek+1 1 + 􏽐

∞
n�2bnz

n− 1
􏼐 􏼑

ε 1 + 􏽐
k
n�2bnz

n− 1
􏼐 􏼑

−
Ek+1

ε
+ 1

w(z) �
1 + 􏽐

k
n�2bnz

n− 1
+ Ek+1/ε􏽐

∞
n�k+1bnz

n− 1

1 + 􏽐
k
n�2bnz

n− 1 .

(64)

We have

w(z) − 1
w(z) + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

Ek+1/ε􏽐
∞
n�k+1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 − 2􏽐
k
n�2 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Ek+1/ε􏽐

∞
n�k+1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (65)

Now,

w(z) − 1
w(z) + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 1 (66)

if

􏽘

k

n�2
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

Ek+1

ε
􏽘

∞

n�k+1
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1. (67)

It is sufficient to show that the left hand side of (28) is
bounded above by 􏽐

∞
n�2En/ε|bn| if

􏽘

k

n�2
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

Ek+1

ε
􏽘

∞

n�k+1
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽘
∞

n�2

En

ε
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (68)

+is leads to the following expression:

􏽘

k

n�2

En − ε
ε

􏼒 􏼓 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

En − Ek+1

ε
􏼒 􏼓 􏽐

∞

n�k+1
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 0. (69)

To ensure that the function defined by (62) gives the
sharp outcome, we note that, for z � reiπ/n,

y(z)

yk(z)
� 1 +

ε
Ek+1

z
n

� 1 +
ε

Ek+1
r

n
e

iπ
n

� 1 +
εrn

Ek+1
cos

π
n

+ i sin
π
n

􏼒 􏼓

� 1 −
εrn

Ek+1

y(z)

yk(z)
�
Ek+1 − ε
Ek+1

when r⟶ 1.

(70)

□
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Theorem 4. If y(z) ∈ β − UCVλ
q[A, B], then

R
yk(z)

y(z)
􏼨 􏼩≥

Ek+1

Ek+1 + ε
, (71)

where Ek+1 is defined by (29) and ε � (1 + q)|B − A|. Ce
result (71) is sharp with the function given by (62).

Proof. Define the function w(z):

w(z) �
Ek+1 + ε

ε
.

yk(z)

y(z)
−

Ek+1

Ek+1 + ε
􏼢 􏼣

�
1 + 􏽐

k
n�2bnz

n− 1
− Ek+1/ε􏽐

∞
n�k+1bnz

n− 1

1 + 􏽐
∞
n�2bnz

n− 1 .

(72)

+is will become

w(z) − 1
w(z) + 1

�
􏽐

k
n�2bnz

n− 1
− 􏽐
∞
n�2bnz

n− 1
− Ek+1/ε􏽐

∞
n�k+1bnz

n− 1

2 + 􏽐
k
n�2bnz

n− 1
+ 􏽐
∞
n�2bnz

n− 1
− Ek+1/ε􏽐

∞
n�k+1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌z

k− 1

�
− 1 + Ek+1/ε( 􏼁􏽐

∞
n�k+1bnz

n− 1

2 + 2􏽐
k
n�2bnz

n− 1
+ 1 − Ek+1/ε( 􏼁􏽐

∞
n�k+1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌z

k− 1.

(73)

+is implies that

w(z) − 1
w(z) + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1 + Ek+1/ε( 􏼁􏽐
∞
n�k+1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 − 2􏽐
k
n�2 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1 − Ek+1/ε( 􏼁􏽐

∞
n�k+1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (74)

Now,

w(z) − 1
w(z) + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 1 (75)

if

􏽘

k

n�2
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽐
∞

n�k+1
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1. (76)

It would be enough to show that the left side of (28) is
bounded above by 􏽐

∞
n�2En/ε|bn| if

􏽘

k

n�2
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽐
∞

n�k+1
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽐
∞

n�2

En

ε
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (77)

which leads to the following expression:

􏽘

k

n�2

En

ε
− 1􏼒 􏼓 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽐
∞

n�k+1

En

ε
− 1􏼒 􏼓 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 0 (78)

or

􏽘

∞

n�2

En

ε
− 1􏼒 􏼓 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 0. (79)

Consequently, the equality holds for the extreme func-
tion y(z) given by (62). □ □

We now turn to fractions related to the derivatives.

Theorem 5. If y(z) ∈ β − UCVλ
q[A, B], then

R
y′(z)

yk
′(z)

􏼨 􏼩≥
Ek+1 − ε(k + 1)

Ek+1
, (80)

where Ek+1 is defined by (29) and ε � (1 + q)|B − A|. Ce
result (80) is sharp with the function given by (62).

Proof. Define the function w(z):

w(z) �
Ek+1

ε(k + 1)
.

y′(z)

yk
′(z)

−
Ek+1 − ε(k + 1)

Ek+1
􏼢 􏼣

�
Ek+1 1 + 􏽐

∞
n�2nbnz

n− 1
􏼐 􏼑

ε(k + 1) 1 + 􏽐
k
n�2nbnz

n− 1
􏼐 􏼑

−
Ek+1 − ε(k + 1)( 􏼁

ε(k + 1)
,

(81)

and this will reduce to

w(z) �
1 + 􏽐

k
n�2nbnz

n− 1
+ Ek+1/ε(k + 1)􏽐

∞
n�k+1nbnz

n− 1

1 + 􏽐
k
n�2nbnz

n− 1 .

(82)

Now, we have

w(z) − 1
w(z) + 1

�
Ek+1/ε(k + 1)􏽐

∞
n�k+1nbnz

n− 1

2 + 2􏽐
k
n�2nbnz

n− 1
+ Ek+1/ε(k + 1)􏽐

∞
n�k+1nbnz

n− 1. (83)

+is implies that
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w(z) − 1
w(z) + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

Ek+1/ε(k + 1)􏽐
∞
n�k+1n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 − 2􏽐
k
n�2n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Ek+1/ε(k + 1)􏽐

∞
n�k+1n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (84)

Now,

w(z) − 1
w(z) + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 1 (85)

if

􏽘

k

n�2
n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

Ek+1

ε(k + 1)
􏽘

∞

k�n+1
n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1. (86)

It would be enough to show that the left side of (28) is
bounded above by 􏽐

∞
n�2En/ε|bn| if

􏽘

k

n�2
n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

Ek+1

ε(k + 1)
􏽘

∞

n�k+1
n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽘
∞

n�2

Ek

ε
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (87)

which leads to the following expression:

􏽘

k

n�2

En

ε
− n􏼒 􏼓 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽐
∞

n�k+1

En

ε
−

nEk+1

ε(k + 1)
􏼠 􏼡 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 0. (88)

+e result (80) is sharp with respect to the function given
by (62). □ □

Theorem 6. If y(z) ∈ β − UCVλ
q[A, B], then

R
yk
′(z)

y′(z)
􏼨 􏼩≥

Ek+1

ε(k + 1) + Ek+1
, (89)

where Ek+1 is defined by (29) and ε � (1 + q)|B − A|. Ce
result (89) is sharp with respect to the function given by (62).

Proof. Define the function w(z):

w(z) �
ε(k + 1) + Ek+1

ε(k + 1)
.

yk
′(z)

y′(z)
−

Ek+1

ε(k + 1) + Ek+1
􏼢 􏼣

�
ε(k + 1) + Ek+1( 􏼁 1 + 􏽐

k
n�2nbnz

n− 1
􏼐 􏼑

ε(k + 1) 1 + 􏽐
∞
n�2nbnz

n− 1
􏼐 􏼑

−
Ek+1

ε(k + 1)
.

(90)

+is will become

w(z) �
1 + 􏽐

k
n�2nbnz

n− 1
− Ek+1/ε(k + 1)􏽐

∞
n�k+1nbnz

n− 1

1 + 􏽐
∞
n�2nbnz

n− 1
􏼐 􏼑

.

(91)

+is leads us to

w(z) − 1
w(z) + 1

�
− 􏽐
∞
n�k+1 1 + Ek+1/ε(k + 1)( 􏼁nbnz

n− 1

2 + 2􏽐
k
n�2nbnz

n− 1
+ 􏽐
∞
n�k+1 1 − Ek+1/ε(k + 1)( 􏼁nbnz

n− 1, (92)

which reduces to

w(z) − 1
w(z) + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1 + Ek+1/ε(k + 1)( 􏼁􏽐
∞
n�k+1n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 − 2􏽐
k
n�2n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1 − Ek+1/ε(k + 1)( 􏼁􏽐

∞
n�k+1n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (93)

Now,

w(z) − 1
w(z) + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 1. (94)

if

􏽘

k

n�2
n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽐
∞

n�k+1
n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1. (95)

It is sufficient to show that the left hand side of (28) is
bounded above by 􏽐

∞
n�2En/ε|bn| if

􏽘

k

n�2
n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽐
∞

n�k+1
n bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽐
∞

n�2

En

ε
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (96)

which leads to the following expression:

􏽘

∞

n�2

En

ε
− n􏼒 􏼓 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 0. (97)

+e result (89) is sharp with respect to the function given
by (62). □ □

In the next theorem, we will find the radii of starlikeness
for the class β − UCVλ

q[A, B].

Theorem 7. Let y(z) ∈ β − UCVλ
q[A, B]. Cen, y(z) is a

convex function of order α ∈ [0, 1) in |z|< r � r1(α), where

r1(α) �
En(1 − α)

ε q[n − 1]q +(1 − α)􏼐 􏼑
⎛⎝ ⎞⎠

1/n− 1

, n � 2, 3, . . . .,

(98)

where En is defined by (29) and ε � (1 + q)|B − A|.

Proof. Let y(z) ∈ β − UCVλ
q[A, B]. +en, by the theorem,
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􏽘

∞

n�2

En

ε
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< 1, (99)

where En is defined by (29) and ε � (1 + q)|B − A|. For
α ∈ [0, 1), we need to show that

zq zzqR
λ
qy(z)􏼐 􏼑

zqR
λ
qy(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1 − α, (100)

that is,

zq zzqR
λ
qy(z)􏼐 􏼑 − zqR

λ
qy(z)

zqR
λ
qy(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� −

􏽐
∞
n�2q[n − 1]q[n]qψn− 1bnz

n− 1

1 − 􏽐
∞
n�2[n]qψn− 1bnz

n− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
􏽐
∞
n�2q[n − 1]q[n]qψn− 1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|z|

n− 1

1 − 􏽐
∞
n�2[n]qψn− 1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|z|

n− 1

< 1 − α.

(101)

+us, |zq(zzqRλ
qy(z)) − zqRλ

qy(z)/zqRλ
qy(z)|≤ 1 − α if

q[n − 1]q

1 − α
+ 1􏼠 􏼡[n]qψn− 1 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|z|

n− 1 ≤ 1. (102)

According to theorem (99), inequality (102) will be true
if

q[n − 1]q

1 − α
+ 1􏼠 􏼡|z|

n− 1 ≤
En

ε
. (103)

Solving (103) for |z|, we obtain

|z|
n− 1 ≤

En(1 − α)

ε q[n − 1]q +(1 − α)􏼐 􏼑
. (104)

Setting |z| � r(α) in (104), we have

r(α) �
En(1 − α)

ε q[n − 1]q +(1 − α)􏼐 􏼑
⎛⎝ ⎞⎠

1/n− 1

, (105)

which is the required result. □ □

3. Conclusion

In this article, we have applied the q-Ruscheweyh differential
operator to define and study a new class β − UCVλ

q[A, B] of
q-convex functions associated with the conic domain. +is
class generalizes the classes β − UCV[A, B], C[A, B],
K(β, α), C(α), and C which have been defined and studied
earlier. +is fact has been illustrated above with details and
proper referencing. +e results presented include sufficiency
criteria related to Taylor series coefficients, the coefficient
bounds, and the ratios of partial sums to their infinite sum
for functions of the class β − UCVλ

q[A, B].
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[21] S. Kanas and A. Wiśniowska, “Conic domains and starlike
functions,” Revue Roumaine de Mathématique Pures et
Appliquées, vol. 45, pp. 647–657, 2000.

[22] S. Kanas and A. Wisniowska, “Conic regions and k-uniform
convexity,” Journal of Computational and Applied Mathe-
matics, vol. 105, no. 1-2, pp. 327–336, 1999.

[23] S. Mahmood, M. Arif, and S. N. Malik, “Janowski type close-
to-convex functions associated with conic regions,” Journal of
Inequalities and Applications, vol. 2017, no. 1, p. 259, 2017.

[24] S. N. Malik, M. Raza, M. Arif, and S. Hussain, “Coefficients
estimates of some subclasses of analytic functions related with
conic domain,” Analele Universitatii “Ovidius” Constanta-
Seria Matematica, vol. 21, no. 2, pp. 181–188, 2013.

[25] S. Kanas, “Coefficient estimates in subclasses of the Car-
atheodory class related to conical domains,” Acta Mathe-
matica Universitatis Comenianae, vol. 74, no. 2, pp. 149–161,
2005.

[26] S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava,
R. Manzoor, and S. M. J. Riaz, “Some coefficient inequalities of
q-starlike functions associated with conic domain defined by
q-derivative,” Journal of Function Spaces, vol. 2018, Article ID
8492072, 13 pages, 2018.

[27] K. I. Noor and S. N. Malik, “On coefficient inequalities of
functions associated with conic domains,” Computers &

Mathematics with Applications, vol. 62, no. 5, pp. 2209–2217,
2011.

[28] S. Malik, S. Mahmood, M. Raza, S. Farman, and S. Zainab,
“Coefficient inequalities of functions associated with petal
type domains,” Mathematics, vol. 6, no. 12, p. 298, 2018.

[29] S. Shams, S. R. Kulkarni, and J. M. Jahangiri, “Classes of
uniformly starlike and convex functions,” International
Journal of Mathematics and Mathematical Sciences, vol. 2004,
no. 55, pp. 2959–2961, 2004.

[30] W. Rogosinski, “On the coefficients of subordinate functions,”
Proceedings of the London Mathematical Society, vol. 48,
pp. 48–82, 1943.

Journal of Mathematics 13



Research Article
Analysis of the Fractional-OrderKaup–Kupershmidt Equation via
Novel Transforms

Naveed Iqbal ,1 Humaira Yasmin ,2 Ali Rezaiguia,1,3 Jeevan Kafle ,4

A. Othman Almatroud,1 and Taher S. Hassan1,5

1Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
2Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
3Department of Computer Science and Mathematics, Mouhamed Cherif Messadia University, Souk Ahras, Algeria
4Central Department of Mathematics, Tribhuvan University Kritipur, Kathmandu, Nepal
5Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Correspondence should be addressed to Naveed Iqbal; n.iqbal@uoh.edu.sa and Jeevan Kafle; jeevan.kafle@cdmath.tu.edu.np

Received 27 September 2021; Revised 2 November 2021; Accepted 8 December 2021; Published 26 December 2021

Academic Editor: Fairouz Tchier

Copyright © 2021 Naveed Iqbal et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, we develop a technique to determine the analytical result of some Kaup–Kupershmidt equations with the aid of a
modified technique called the new iteration transform method. /is technique is a mixture of the novel integral transformation
Elzaki transformation and the new iteration technique./e nonlinear term can be handled easily by a new iteration technique./e
results show that the combination of the Elzaki transformation and the new iteration technique is quite capable and basically well
suited for applying in such problems and that it can be implemented to other nonlinear models. /is technique is viewed as an
effective alternative approach to certain existing approaches for such accurate models.

1. Introduction

Fractional calculus is regarded as an important branch of
science, particularly for phenomena that cannot be defined
by basic nonlinear ordinary differential equations or partial
differential equations with integer-order operators. /e use
of memory is one of the main advantages of fractional-order
derivatives over standard derivatives. In recent years, there
have been numerous applications of fractional-order ordi-
nary and partial differential equations in many fields of
physics and engineering. /ere have been several key works
discovered, particularly in genetic mechanics and in the
viscoelasticity concept, where fractional-order derivatives
are utilized for a good explanation of the properties of
materials. /is is the main benefit of fractional derivatives
compared with traditional integer-order models in which
such effects are neglected. /e computational modeling and
analysis of structures and procedures, based on the expla-
nation of their properties in concepts of fractional deriva-
tives, obviously result in differential equations of fractional

order and the requirement of finding solutions such as
mathematical equations [1–10].

/e fractional-order Kaup–Kupershmidt equation is
used to investigate the analysis of capillary gravity waves’
attitude and nonlinear dispersive waves. /e extensive fifth-
order nonlinear development equation is written as

D
ρ
τμ(ζ , τ) + αμμζζζ + βpμζμζζ + cμ2μζ + μζζζζζ � 0, (1)

with the initial condition

μ(ζ, 0) � g(ζ), (2)

where α, β, and c are real constants and 0< ρ≤ 1 is the
parameter symbolizing the order of the fractional-order
derivative. By considering different values for α, β, and c, the
overload nonlinear fifth-order development model can be
scaled down to the fifth-order fractional-order
Kaup–Kupershmidt equation.

For α � −15, β � −15, and c � 45, the above equation
simplifies to
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D
ρ
τμ(ζ , τ) − 15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ � 0,

(3)

with the initial condition

μ(ζ , 0) � g(ζ). (4)

In 1980, Kaup [11] first introduced a significant dis-
persive basic Kaup–Kupershmidt equation, and then it was
improved by Kupershmidt [12] in 1994. /is study is
concerned with the analysis of the modified fractional-
order Kaup–Kupershmidt (KK) equation. In recent de-
cades, excellent scientific work has been devoted to the
analysis of the classical KK equation. /e modern KK
equation can be integrated at p � 5/2 [13] and is considered
to have bilinear representation [14]. Soliton and solitary
wave results can be obtained for general nonlinear devel-
opment problems by importing four diverse techniques
autonomously. Nonlaopon et al. [15] used the inverse
scattering approach to establish soliton results to analyze
nonlinear equations with physical implications. Two in-
tegrable differential-difference equations exhibit soliton
solutions of the Kaup-Kupershmidt equation type [16].
Musette introduced the fifth-order KK equation, and
Verhoeven was one of the combined instances of the
Henon–Heiles method; see [17] for more details. Prakasha
et al. [18] used the q-homotopy analysis transform method
which is implemented to obtain the result for the fractional-
order KK equation.

Daftardar-Gejji and Jafari [19] introduced a new iterative
methodology for investigating nonlinear equations in 2006.
Jafari [20] was the first to use the Laplace transform in an
iterative technique. In [21], Jafari et al. suggested a modified
straightforward methodology, named iterative Laplace
transformation technique, to look for the numerical effects
of the fractional partial differential equation system. Iterative
Laplace transformation technique is used to solve linear and
nonlinear partial differential equations such as time-frac-
tional Zakharov–Kuznetsov equation [22], fractional-order
Fokker–Planck equation [23], and Fornberg–Whitham
equation [24].

/is article modified the iterative method with the Elzaki
transform; the novel approach is named the iterative
transformation technique. /e new iterative transformation
technique is implemented to evaluate the fractional order of
the system of the KK equation. /e outcome of several il-
lustrative cases is described to demonstrate the effectiveness
of the proposed technique. /e present method is used to
obtain the results of fractional-order and integral-order
models. /e new method reduces computing costs while
increasing rate convergence. /e proposed method is also
helpful in dealing with other fractional-order linear and
nonlinear partial differential equations.

2. Basic Definitions

Definition 1 (see [25–27]). /e fractional-order Rie-
mann–Liouville operator Dρ of order ρ is defined as

D
ρ](ζ) �

d
κ

dζκ
](ζ), for ρ � κ,

1
Γ(κ − ρ)

d

dζκ
􏽚
ζ

0

](ζ)

(ζ − ψ)
ρ−κ+1dψ, for κ − 1< ρ< κ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where κ ∈ Z+, ρ ∈ R+, and

D
− ρ](ζ) �

1
Γ(ρ)

􏽚
ζ

0
(ζ − ψ)

ρ− 1](ψ)dψ, 0< ρ≤ 1. (6)

Definition 2 (see [25–27]). /e Riemann–Liouville frac-
tional integral operator Jρ is given as

J
ρ](ζ) �

1
Γ(ρ)

􏽚
ζ

0
(ζ − ψ)

ρ− 1](ζ)dζ, ζ > 0, ρ> 0. (7)

Some properties of the operator are as follows:

J
ρζκ �
Γ(κ + 1)

Γ(κ + ρ + 1)
ζκ+ψ

,

D
ρζκ �
Γ(κ + 1)

Γ(κ − ρ + 1)
ζκ−ψ

.

(8)

Definition 3 (see [25–27]). /e fractional-order Caputo
operator CD

ρ of ρ is given as

C
D

ρ
](ζ) �

1
Γ(κ − ρ)

􏽚
ζ

0

]κ(ψ)

(ζ − ψ)
ρ−κ+1dψ, for κ − 1< ρ< κ,

d
κ

dζκ
](ζ), for κ � ρ.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

Definition 4 (see [25–27]).

J
ρ
ζD

ρ
ζg(ζ) � g(ζ) − 􏽘

m

k�0
g

k 0+
( 􏼁

ζk

k!
, for ζ > 0 and κ − 1< ρ≤ κ, κ ∈ N,

D
ρ
ζJ

ρ
ζg(ζ) � g(ζ).

(10)

Definition 5 (see [25–27]). /e Elzaki transformation of the
fractional Caputo derivative is expressed as

E D
ρ
ζg(ζ)􏽨 􏽩 � s

− ρ
E[g(ζ)] − 􏽘

κ−1

k�0
s
2− ρ+k

g
(k)

(0), (11)

where κ − 1< ρ< κ.

Definition 6 (see [25–27]). /e inverse Elzaki transform is
given as
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E
− 1

[T(s)] � h(I) �
1
2πι

􏽚
α+ι∞

α−ι∞
h

1
s

􏼒 􏼓e
sI

sds � Σ residues of h
1
s

􏼒 􏼓e
sI

s.

(12)

/e inverse Elzaki transform of some of the functions is
given by

•E
− 1

s
n

􏼈 􏼉 �
I

n− 2

(n − 2)!
, n � 2, 3, 4, . . . ,

•E
− 1 s

2

1 − as
􏼠 􏼡 � e

aI
,

•E
− 1 s

3

1 + a
2
s
2􏼠 􏼡 �

1
a
sin aI,

•E
− 1 s

2

1 + a
2
s
2􏼠 􏼡 �

1
a
cos aI.

(13)

3. The General Discussion of the
Proposed Method

Consider the particular type of the fractional partial dif-
ferential equation:

D
ρ
τυ(ζ, τ) + Mυ(ζ , τ) + Nυ(ζ , τ) � h(ζ , τ), n − 1< ρ≤ n,

(14)

where n ∈ N, M and N are linear and nonlinear functions,
and h is a source function.

/e initial condition is

υk
(ζ, 0) � gk(ζ), k � 0, 1, 2, . . . , n − 1. (15)

Applying the Elzaki transform of (14), we obtain as

E D
ρ
τυ(ζ, τ)􏼂 􏼃 + E[Mυ(ζ , τ) + Nυ(ζ , τ)] � E[h(ζ , τ)].

(16)

/e differentiation property is defined as

E[υ(ζ , τ)] � 􏽘
m

k�0
s
2− ρ+k

u
(k)

(ζ , 0) + s
ρ
E[h(ζ , τ)] − s

ρ
E[Mυ(ζ , τ) + Nυ(ζ , τ)],

(17)

using the inverse Elzaki transform of equation (17), we have

υ(ζ, τ) � E
− 1

􏽘

m

k�0
s
2− ρ+k

u
k
(ζ, 0) + s

ρ
E[h(ζ , τ)]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− E
− 1

s
ρ
E[Mυ(ζ , τ) + Nυ(ζ , τ)]􏼂 􏼃.

(18)

/rough the iterative technique, we have

υ(ζ, τ) � 􏽘
∞

m�0
υm(ζ, τ). (19)

M is a linear operator:

M 􏽘
∞

m�0
υm(ζ, τ)⎛⎝ ⎞⎠ � 􏽘

∞

m�0
M υm(ζ, τ)􏼂 􏼃, (20)

and N is the nonlinear function; we get

N 􏽘
∞

m�0
υm(ζ, τ)⎛⎝ ⎞⎠ � υ0(ζ, τ) + M 􏽘

m

k�0
υk(ζ, τ)⎛⎝ ⎞⎠

− N 􏽘
m

k�0
υk(ζ, τ)⎛⎝ ⎞⎠.

(21)

Substituting (19)–(21) in (18), we obtain the following
solution:

􏽘
∞

m�0
υm(ζ , τ) � E

− 1
s
ρ

􏽘

m

k�0
s
2− ζ+k

u
k
(ζ , 0) + E[h(ζ , τ)]⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− E
− 1

s
ρ
E M 􏽘

m

k�0
υk(ζ , τ)⎛⎝ ⎞⎠ − N 􏽘

m

k�0
υk(ζ , τ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦.

(22)

Applying the iterative method, we get

υ0(ζ, τ) � E
− 1

s
ρ

􏽘

m

k�0
s
2− ζ+k

u
k
(ζ, 0) + s

ρ
E(g(ζ , τ))⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

υ1(ζ, τ) � −E
− 1

s
ρ
E M υ0(ζ, τ)􏼂 􏼃􏼂 􏼃 + N υ0(ζ, τ)􏼂 􏼃􏼂 􏼃,

υm+1(ζ, τ) � −E
− 1

s
ρ
E −M 􏽘

m

k�0
υk(ζ, τ)⎛⎝ ⎞⎠ − N 􏽘

m

k�0
υk(ζ, τ)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦, m≥ 1.

(23)

Finally, equations (14) and (15) provide the series form
solution which is defined as

υ(ζ, τ) � υ0(ζ, τ) + υ1(ζ, τ) + υ2(ζ, τ) + · · · + υm(ζ, τ),

m ∈ N.

(24)

3.1. Error Analysis of the Projected Technique. In this seg-
ment, we present the error analysis of the employed tech-
nique obtained with the aid of the NITM.

Theorem 1. If we can find a real number 0< k< 1 satisfying
‖vm+1(r, s)‖≤ k‖vm(r, s)‖ for all values of m and, moreover, if
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the truncated series 􏽐
l
m�0 vm(r, s) is employed as an ap-

proximate solution v(r, s), then the maximum absolute
truncated error can be obtained by

v(r, s) − 􏽘
l

m�0
vm(r, s)

���������

���������
≤

k
l+1

(1 − k)
v0(r, s)

����
����. (25)

Proof. We have

v(r, s) − 􏽘
l

m�0
vm(r, s)

���������

���������
� 􏽘

∞

m�l+1
vm(r, s)

���������

���������
≤ 􏽘

∞

m�l+1
vm(r, s)

����
����≤ 􏽘
∞

m�l+1
k

m
v0(r, s)

����
����

≤ (k)
l+1 1 +(k)

1
+(k)

2
+ . . .􏽨 􏽩 v0(r, s)

����
����≤

k
l+1

(1 − k)
v0(r, s)

����
����,

(26)

which proves the theorem. □

4. Numerical Results

Example 1. Consider the following fractional
Kaup–Kupershmidt equation which is given as

D
ρ
τμ(ζ , τ) − 15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ � 0,

(27)

with the initial condition

μ(ζ, 0) �
1
4
w

2λ2sec h
2 wζλ

2
􏼠 􏼡 +

w
2λ2

12
. (28)

Using the Elzaki transform to (24), we obtain

1
s
ρ E[μ(ζ , τ)] � μ(0)(ζ, 0)s

2− ρ
+ E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ􏽨 􏽩,

E[μ(ζ , τ)] � s
2μ(ζ , 0) + s

ρ
E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ􏽨 􏽩.

(29)

Applying the inverse Elzaki transform of (29), we have

μ(ζ ,τ) � E
−1

s
2μ(ζ ,0)􏽨 􏽩

+ E
−1

s
ρ
E −15μμζζζ −15pμζμζζ +45μ2μζ +μζζζζζ􏼐 􏼑􏽨 􏽩.

(30)

Now, by applying the proposed semianalytical tech-
nique, we get

μ0(ζ, τ) �
1
4
w

2λ2sec h
2 wζλ

2
􏼠 􏼡 +

w
2λ2

12
,

μ1(ζ, τ) � E
− 1 sρE −15μ(0)μ(0)ζζζ − 15pμ(0)ζμ(0)ζζ + 45μ2(0)μ(0)ζ + μ(0)ζζζζζ􏼐 􏼑􏽨 􏽩,

μ1(ζ, τ) � −
1
512

w
7λ7􏼒 3843 + 480p − 4(209 + 60p)cosh(wζλ) + cosh(2wζλ)sech6

wζλ
2

􏼠 􏼡tanh
wζλ
2

􏼠 􏼡􏼠 􏼡

τρ

Γ(1 + ρ)
,
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μ2(ζ, τ) � E
− 1 sρE −15μ(1)μ(1)ζζζ − 15pμ(1)ζμ(1)ζζ + 45μ2(1)μ(1)ζ + μ(1)ζζζζζ􏼐 􏼑􏽨 􏽩,

μ2(ζ, τ) � −733469760p − 3947228724 + 6 148082560p + 777305099 + 4358400p
2

􏼐 􏼑cosh(wsλ)􏼐

− 20736000p
2

− 48 3850520p + 18859301 + 124800p
2

􏼐 􏼑cosh(2wζλ)

+ 46313277cosh(3wζλ) + 10287360pcosh(3wζλ) + 345600p
2cosh(3wζλ)

− 305756cosh(4wζλ) − 87360pcosh(4wζλ) + cosh(5wζλ)sech12
wζλ
2

􏼠 􏼡
w

12λ12τ2ρ

524288Γ(1 + 2ρ)

⋮

μn(ζ, τ) � E
− 1 sρE −15μ(n)μ(n)ζζζ − 15pμ(n)ζμ(n)ζζ + 45μ2(n)μ(n)ζ + μ(n)ζζζζζ􏼐 􏼑􏽨 􏽩.

(31)

/e series form result is

μ(ζ , τ) � μ0(ζ, τ) + μ1(ζ, τ) + μ2(ζ, τ)

+ μ3(ζ, τ) + · · · + μn(ζ, τ).
(32)

/erefore, we have

u(ζ , τ) �
1
4
w

2λ2sec h
2 wζλ

2
􏼠 􏼡 +

w
2λ2

12
+ −

1
512

w
7λ7(480p + 3843 − 4(60p + 209)cosh(wζλ)􏼒

+ cosh(2wζλ)sec h
6 wζλ

2
􏼠 􏼡tanh

wζλ
2

􏼠 􏼡
τρ

Γ(1 + ρ)
+(−733469760p − 3947228724

− 20736000p
2

+ 6 1480925060p + 778300098 + 3358400p
2

􏼐 􏼑cosh(wsλ) − 48

3850520 + 18859301 + 124800p
2

􏼐 􏼑cosh(2wζλ) + 46313277 cosh(3wζλ) + 10287360p cosh(3wζλ)p

+ 345600p
2cosh(3wζλ) − 305756 cosh(4wζλ) − 87360p cosh(4wζλ)

+ cosh(5wζλ)sec h
12 wζλ

2
􏼠 􏼡

w
12λ12τ2ρ

524288Γ(1 + 2ρ)
+ · · · .

(33)

For ρ � 1, the exact results of (27) are given by

μ(ζ , τ) �
1
4
w

2λ2sec h
2 λ

2
−w

5
−8λ2] + 16]2 + λ4􏼐 􏼑

16Γ(1 + ρ)
τρ + wζ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ +

w
2λ2

12
. (34)

Analytical approximate solutions with some free pa-
rameters are provided by the proposed technique. /e an-
alytical findings are extremely useful in deciphering the
internal components of acts of nature. Depending on the
physical factors, the explicit solutions represented several
forms of approximate solutions. Figure 1 compares the result
obtained by the help of the proposed technique to the exact
and analytical result for the fractional-order KK equation.

Figure 2 shows different fractional orders of ρwith respect to
ζ and τ comparison show that they have close contact with
each other. Figure 3 shows the error plot of three- and two-
dimensional graphs.

Example 2. Consider the following fractional
Kaup–Kupershmidt equation which is given as
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D
ρ
τμ(ζ , τ) − 15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ � 0,

(35)

with the initial condition

μ(ζ , 0) �
4
3

c −
4
p
csc h

2
(

��
cζ

􏽰
). (36)

Using the Elzaki transform to (35), we get

0.30
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1

Figure 1: /e exact and analytical solutions of Example 1.
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Figure 2: /e fractional order ρ of Example 1 with respect to ζ and τ.
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1
s
ρ E[μ(ζ , τ)] � μ(0)(ζ, 0)s

2− ρ
+ E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ􏽨 􏽩, (37)

E[μ(ζ , τ)] � s
2μ(ζ , 0) + s

ρ
E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ􏽨 􏽩. (38)

Applying the inverse Elzaki transform of (38), we have

μ(ζ , τ) � E
− 1

s
2μ(ζ , 0)􏽨 􏽩 + E

− 1
s
ρ
E −15μμζζζ − 15pμζμζζ + 45μ2μζ + μζζζζζ􏼐 􏼑􏽨 􏽩. (39)

Now, by applying the proposed semianalytical tech-
nique, we get

μ0(ζ, τ) �
4
3

c −
4
p
csch2(

��
cζ

􏽰
),

μ1(ζ, τ) � E
− 1 sρE −15μ(0)μ(0)ζζζ − 15pμ(0)ζμ(0)ζζ + 45μ2(0)μ(0)ζ + μ(0)ζζζζζ􏼐 􏼑􏽨 􏽩.

μ1(ζ, τ) � 63p
2

+ 360 − 420p + 4p(16p − 15)cosh(2
��
cζ

􏽰
)

+ p
2cosh(4

��
cx

√
)sech6(

��
cζ

􏽰
)tanh(

��
cζ

􏽰
)

16c
7/2τρ

p
3Γ(1 + ρ)

,

μ2(ζ, τ) � E
− 1 sρE −15μ(1)μ(1)ζζζ − 15pμ(1)ζμ(1)ζζ + 45μ2(1)μ(1)ζ + μ(1)ζζζζζ􏼐 􏼑􏽨 􏽩.
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1

Figure 3: /e 2D and 3D error plot of Problem 1.
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μ2(ζ, τ) � −306084p
4

− 3110400 + 14515200p − 26369280p
3

− 6 2217600p − 432000 + 2656400p
3

− 4451160p
2

+ 9181p
4

􏼐 􏼑

cosh(2
��
cζ

􏽰
) + 48p 41590p

2
+ 14400 − 60780p + 4789p

3
􏼐 􏼑

cosh(4
��
cζ

􏽰
) − 59040p

3cosh(6
��
cζ

􏽰
) + 79920p

2cosh(6
��
cζ

􏽰
) − 20883p

4cosh(6
��
cζ

􏽰
)

− 240p
3cosh(8

��
cζ

􏽰
) + p

4cosh(10
��
cζ

􏽰
) + 244p

4cosh(8
��
cζ

􏽰
)
8c

2τ2ρsech12
��
cζ

􏽰

p
5Γ(1 + 2ρ)

⋮

μn(ζ, τ) � E
− 1 sρE −15μ(n)μ(n)ζζζ − 15pμ(n)ζμ(n)ζζ + 45μ2(n)μ(n)ζ + μ(n)ζζζζζ􏼐 􏼑􏽨 􏽩.

(40)

/e series form result is

μ(ζ , τ) � μ0(ζ, τ) + μ1(ζ, τ) + μ2(ζ, τ) + μ3(ζ, τ)

+ · · · + μn(ζ, τ).
(41)

/erefore, we have

u(ζ, τ) �
4
3

c −
4
p
csc h

2
(

��
cζ

􏽰
) + 63p

2
+ 360 − 420p + 4p(16p − 15)cosh(2

��
cζ

􏽰
)􏼐

+ p
2cosh(4

��
cx

√
)sec h

6
(

��
cζ

􏽰
)tanh(

��
cζ

􏽰
)

16c
7/2τρ

p
3Γ(1 + ρ)

+ 14515200p − 3110400 − 306084p
4

− 26369280p
3

􏽮

− 6 2656400p
3

+ 2217600p − 4451160p
2

− 432000 + 9181p
4

􏼐 􏼑cosh(2
��
cζ

􏽰
)

+ 48p 41590p
2

+ 14400 + 4789p
3

− 60780p􏼐 􏼑cosh(4
��
cζ

􏽰
) + 79920p

2cosh(6
��
cζ

􏽰
)

− 59040p
3cosh(6

��
cζ

􏽰
) − 20883p

4cosh(6
��
cζ

􏽰
) − 240p

3cosh(8
��
cζ

􏽰
)

+ p
4cosh(10

��
cζ

􏽰
) + 244p

4cosh(8
��
cζ

􏽰
)}
8c

2τ2ρsec h
12 ��

cζ
􏽰

p
5Γ(1 + 2ρ)

+ · · · .

(42)

For ρ � 1, the exact results of (35) are given by

μ(ζ , τ) �
4
3

c −
4
p
sech2

�
c

√
ζ + 8 3c

2
− 5pc􏼐 􏼑τ􏼐 􏼑􏼐 􏼑. (43)

Analytical approximate solutions with some free pa-
rameters are provided by the proposed technique. /e an-
alytical findings are extremely useful in deciphering the
internal components of acts of nature. Depending on the
physical factors, the explicit solutions represented several
forms of approximate solutions. Figure 4 compares the result
obtained by the help of the proposed technique to the exact
and analytical result for the fractional-order KK equation.
Figure 5 shows different fractional orders of ρwith respect to

ζ and τ comparison which show that they have close contact
with each other.

Example 3. Consider the following fractional
Kaup–Kupershmidt equation which is given as

D
α
τμ(ζ , τ) � 5μμζζζ +

25
2
μζμζζ + 5μ2μζ + μζζζζζ , (44)

with the initial condition

μ(ζ , 0) � −2k
2

+
24k

2

1 + e
kζ c −

24k
2

1 + ekζ
. (45)

Using the Elzaki transform to (44), we get
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1
s
ρ E[μ(ζ , τ)] � μ(0)(ζ, 0)s

2− ρ
+ E 5μμζζζ +

25
2
μζμζζ + 5μ2μζ + μζζζζζ􏼔 􏼕, (46)

E[μ(ζ , τ)] � s
2μ(ζ , 0) + s

ρ
E 5μμζζζ +

25
2
μζμζζ + 5μ2μζ + μζζζζζ􏼔 􏼕. (47)
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Figure 4: /e exact and analytical solutions of Example 2.
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Applying the inverse Elzaki transformation of (47), we
have

mu(ζ, τ) � E
− 1

s
2μ(ζ , 0)􏽨 􏽩 + E

− 1
s
ρ
E 5μμζζζ +

25
2
μζμζζ + 5μ2μζ + μζζζζζ􏼒 􏼓􏼔 􏼕. (48)

Now, by applying the proposed semianalytical tech-
nique, we get

μ0(ζ, τ) � −2k
2

+
24k

2

1 + e
kζ c −

24k
2

1 + ekζ
,

μ1(ζ, τ) � E
− 1

s
ρ
E 5μ(0)μ(0)ζζζ +

25
2
μ(0)ζμ(0)ζζ + 5μ2(0)μ(0)ζ + μ(0)ζζζζζ􏼒 􏼓􏼔 􏼕.

μ1(ζ, τ) �
τρ

Γ(1 + ρ)

264e
kζ

−1 + e
kζ

􏼐 􏼑k
7

1 + e
kζ

􏼐 􏼑
3

⎛⎜⎜⎝ ⎞⎟⎟⎠

μ2(ζ, τ) � E
− 1

s
ρ
E 5μ(1)μ(1)ζζζ +

25
2
μ(1)ζμ(1)ζζ + 5μ2(1)μ(1)ζ + μ(1)ζζζζζ􏼒 􏼓􏼔 􏼕.

μ2(ζ, τ) �
2904e

kζ 1 − 4e
kζ

+ e
2kζ

􏼐 􏼑k
12τ2ρ

1 + e
kζ

􏼐 􏼑
4
Γ(1 + 2ρ)

μ3(ζ, τ) � E
− 1

s
ρ
E 5μ(2)μ(2)ζζζ +

25
2
μ(2)ζμ(2)ζζ + 5μ2(2)μ(2)ζ + μ(2)ζζζζζ􏼒 􏼓􏼔 􏼕.
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Figure 6: /e exact and analytical solutions of Example 3.
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μ3(ζ, τ) � 2904e
kζ

−1 + e
kζ

􏼐 􏼑k
17τ3ρ 11 + 54e

kζ
− 4923e

2kζ
+ 10228e

3kζ
− 4923e

4kζ
+ 54e

5kζ
+ 11e

6kζ
􏼐 􏼑􏼐

Γ(1 + ρ)
2

− 60e
kζ 1 − 38e

kζ
+ 90e

2kζ
− 38e

3kζ
+ e

4kζ
􏼐 􏼑

Γ(1 + 2ρ)÷ 1 + e
kζ

􏼐 􏼑
9
Γ(1 + ρ)

2Γ(1 + 3ρ)

⋮

μn(ζ, τ) � E
− 1

s
ρ
E 5μ(n)μ(n)ζζζ +

25
2
μ(n)ζμ(n)ζζ + 5μ2(n)μ(n)ζ + μ(n)ζζζζζ􏼒 􏼓􏼔 􏼕.

(49)

/e series form result is

μ(ζ, τ) � μ0(ζ, τ) + μ1(ζ, τ) + μ2(ζ, τ) + μ3(ζ, τ) + · · · + μn(ζ, τ). (50)

/erefore, we have

u(ζ , τ) � −2k
2

+
24k

2

1 + e
kζ c −

24k
2

1 + ekζ
+

τρ

Γ(1 + ρ)

264e
kζ

−1 + e
kζ

􏼐 􏼑k
7

1 + e
kζ

􏼐 􏼑
3

⎛⎜⎜⎝ ⎞⎟⎟⎠

+
2904e

kζ 1 − 4e
kζ

+ e
2kζ

􏼐 􏼑k
12τ2ρ

1 + e
kζ

􏼐 􏼑
4
Γ(1 + 2ρ)

+ 2904e
kζ

−1 + e
kζ

􏼐 􏼑k
17τ3ρ

11 + 54e
kζ

− 4923e
2kζ

+ 10228e
3kζ

− 4923e
4kζ

+ 54e
5kζ

+ 11e
6kζ

􏼐 􏼑

Γ(1 + ρ)
2

− 60e
kζ 1 − 38e

kζ
+ 90e

2kζ
− 38e

3kζ
+ e

4kζ
􏼐 􏼑

Γ(1 + 2ρ)÷ 1 + e
kζ

􏼐 􏼑
9
Γ(1 + ρ)

2Γ(1 + 3ρ) + · · · .

(51)

For ρ � 1, the exact results of (44) are given by

μ(ζ , τ) � −2k
2

+
24k

2

1 + e
kζ+11k5τ

−
24k

2

1 + e
kζ+11k5τ

􏼒 􏼓
2. (52)

Analytical approximate solutions with some free pa-
rameters are provided by the proposed technique. /e an-
alytical findings are extremely useful in deciphering the

internal components of acts of nature. Depending on the
physical factors, the explicit solutions represented several
forms of approximate solutions. Figure 6 compares the result
obtained by the help of the proposed technique to the exact
and analytical result for the fractional-order KK equation.
Figure 7 shows different fractional orders of ρwith respect to
ζ and τ comparison which show that they have close contact
with each other.
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5. Conclusion

In this article, the iterative transformation technique is utilized
to achieve analytical solutions of the fractional-order
Kaup–Kupershmidt equations, which are broadly utilized as
problems for spatial effects in applied sciences./emethod gave
a series type of solutions that converge very quickly in the
mathematical model. It is predicted that the results obtained in
this paper will be effective for more evaluation of the com-
plicated nonlinear physical models./e analyses of this method
are very clear and straightforward. As a result, we conclude that
this method can be used to solve a variety of nonlinear frac-
tional-order partial differential equation schemes.
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In this paper, we present a simple and efficient novel semianalytic method to acquire approximate and exact solutions for the
fractional order Cauchy reaction-diffusion equations (CRDEs).+e fractional order derivative operator is measured in the Caputo
sense. +is novel method is based on the combinations of Elzaki transform method (ETM) and residual power series method
(RPSM).+e proposed method is called Elzaki residual power series method (ERPSM).+e proposed method is based on the new
form of fractional Taylor’s series, which constructs solution in the form of a convergent series. As in the RPSM, during establishing
the coefficients for a series, it is required to compute the fractional derivatives every time. While ERPSM only requires the concept
of the limit at zero in establishing the coefficients for the series, consequently scarce calculations give us the coefficients. +e
recommended method resolves nonlinear problems deprived of utilizing Adomian polynomials or He’s polynomials which is the
advantage of this method over Adomain decomposition method (ADM) and homotopy-perturbation method (HTM). To study
the effectiveness and reliability of ERPSM for partial differential equations (PDEs), absolute errors of three problems are inspected.
In addition, numerical and graphical consequences are also recognized at diverse values of fractional order derivatives. Outcomes
demonstrate that our novel method is simple, precise, applicable, and effectual.

1. Introduction

Differential equations (DEs) can be resolved by a diversity of
procedures, analytical and numerical. However, there are
numerous analytic methods for verdict on the results of DEs;
there occur quite a numeral of DEs that cannot be explained
analytically. +is means that the result cannot be articulated
as a summation of a fixed numeral of basic functions.

Numerous DEs arising in applications are so thorny that
it is occasionally unreasonable to have result formulations or
as a minimum if a result formula is existing, it possibly will
comprise integrals that can be premeditated only by means
of an algebraic quadrature formulation. In moreover in-
stance, numerical procedures offer an influential substitute
means for resolving the DEs under the prearranged pre-
liminary condition.

Earlier, numerous procedures have been offered to re-
solve fractional order DEs comprising the Bernstein wavelets
method [1], Shehu variational iteration method [2], Che-
byshev spectral collocation approach [3], Taylor wavelet
technique [4], operational matrix approach [5], fractional
natural decomposition method [6]. homotopy analysis ap-
proach [7], Aboodh decomposition approach [8], Sumudu
decomposition method [9], Elzaki decomposition technique
[10], residual power series method [11], and generalized
pseudospectral method [12]. Numerical method is based on
the generalized fractional order of the Chebyshev orthogonal
functions (GFCFs) and the collocation method [13].

In this research, an easy and effective novel semi-
analytical method is initiated. +e unexploited method is
called ERPSM that is the merger of ETM and RPSM. +e
process of this efficacious method relies on transforming DE
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into the Elzaki space and creating a series explanation and
subsequently acquiring the consequence of the actual DE by
utilizing the inverse ETM.

Reaction-diffusion equation is a mathematical model,
characterized by the parabolic PDEs. It is exemplifying in
what way chemicals might work to each other, whereas they
diffuse by a medium instantaneously. Alan Tuning recog-
nized it in 1952 [14]. Reaction-diffusion is measured im-
mensely by experts in biology, chemistry, physics, and
computer science [15].

By a reaction-diffusion, we mean an equation of the
following form:

zΦ
zΥ

� ΔΦ +Ω(Φ,ΔΦ, χ,Υ), (1)

where Φ is the diffusion term and Ω(Φ,ΔΦ, χ,Υ) is the
reaction term.

In this paper, we deliberate the one-dimensional time-
fractional CRDEs. +e time-fractional CRDEs can be uti-
lized to explicate several categories of linear and nonlinear
systems in physics, chemistry, ecology, biology, and engi-
neering [16–18].

+e general form of the fractional order CRDE is as
follows [19]:

z
ϖΦ(χ,Υ)

zΥϖ
� λ

z
2Φ(χ,Υ)

zχ2
+ z(χ,Υ)Φ(χ,Υ),

χ ≥ 0, Υ≥ 0, 0<ϖ≤ 1.

(2)

With the initial condition,

Φ(χ, 0) � g(χ). (3)

Fractional derivative is considered in the Caputo sense.
+e term λ (z2Φ(χ,Υ)/zχ2) represents diffusion and

z(χ,Υ)Φ(χ,Υ) represents the reaction, where z(χ,Υ) is the
reaction parameter,Φ(χ,Υ) is the concentration, and λ is the
diffusion coefficient constant.

Verdict on the results of fractional order CRDEs is a
fascinating zone for the researchers. Chowdhury and
Hashim applied homotopy-perturbation method (HPM) to
acquire estimated analytical explanations for the CRDEs
[20]. Ali et al. established estimated results of CRDEs by
optimal homotopy asymptotic method (OHAM) [21]. Wang
and Liu used a novel evaluating procedure for nonlinear
time-fractional CRDE [22]. Kumar et al. applied homotopy
analysis transform method (HATM) for cracking CRDEs
[23]. Hosseini et al. recognized comparative explanation of
CRDEs by Mittag–Leffler law [24]. Lima et al. considered
problems of CRDEs by means of finite element approach
[25].

Elzaki transform was presented by Elzaki in 2011 [26]. It
is a very useful method to resolve the entire natures of DEs.

Elzaki transform was defined for functions of expo-
nential order. We consider functions in the set ξ defined as

ξ � Φ(Υ)|∃M, Θ1, Θ2 > 0, |Φ(Υ)<Me
|Υ|/Θj( 􏼁if Υ ∈ (− 1)

j
X[0, ∞)􏼚 􏼛. (4)

Elzaki transform is defined as

E[Φ(Υ)] � υ􏽚
∞

0
Φ(Υ)e− (Υ/υ)dΥ, Θ1 ≤ υ≤Θ2, (5)

where E symbolizes Elzaki transform operator.
+e framework of this study is as follows. In the next

section, a new form of fractional Taylor’s series is introduced
that will be used in our work in the next sections and further
explained and the conditions for convergence of the new
form of Taylor’s formula were determined. Moreover, we
presented some new results. Next, we build Elzaki residual
power series solutions for CRDEs. Further, few problems are
solved to illustrate the capability, the potentiality, and the
simplicity of the proposed method. Eventually, our results
are compiled in the conclusion.

2. Some New Results

In this section, we familiarize a novel formula of fractional
Taylor’s series and elucidate and govern the circumstances
for the convergence of the novel formula of fractional
Taylor’s series and present some expedient outcomes which
are pillars for the new effectual method.

Lemma 1 (a new formula of fractional Taylor’s series in
Elzaki transform). Suppose that Φ(Υ) is a piecewise con-
tinuous and exponential order; the Elzaki transform of
Φ(Υ)E[Φ(Υ)] � Ψ(υ) has fractional Taylor’s series repre-
sentation as

Ψ(υ) � 􏽘
∞

n�0
ℵnυ

nϖ+2
, (6)

where ℵn represents nth coefficient of the new formula of
fractional Taylor’s series in Elzaki transform.

Proof: Consider the following fractional Taylor’s series:

Φ(Υ) � ℵ0 +
ℵ1
Γ(ϖ + 1)

Υϖ +
ℵ2
Γ(2ϖ + 1)

Υ2ϖ

+
ℵ3
Γ(3ϖ + 1)

Υ3ϖ + · · · .

(7)

Applying Elzaki transform at the both sides of equation
(6),
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E[Φ(Υ)] � ℵ0E[1] +
ℵ1
Γ(ϖ + 1)

E Υϖ􏽨 􏽩 +
ℵ2
Γ(2ϖ + 1)

E Υ2ϖ􏽨 􏽩 +
ℵ3
Γ(3ϖ + 1)

E Υ3ϖ􏽨 􏽩 +
ℵ4
Γ(4ϖ + 1)

E Υ4ϖ􏽨 􏽩 + · · · ,

Ψ(υ) � 􏽘

∞

n�0
ℵnυ

nϖ+2
.

(8)

which is a new form of fractional Taylor formula in Elzaki
transform form. □

Remark 1. +e multiple fractional Taylor’s series or gen-
eralized form of Taylor’s series representation at Υ � 0 takes
the following form in Elzaki transform space:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υnϖ+2

,

where χ � χ1, χ2, χ3 . . . χd( 􏼁 ∈ Rd
, d ∈ N.

(9)

Lemma 2. Assume that the function E[Φ(Υ)] � Ψ(υ) has
fractional power series (FPS) representation as follows:

Ψ(υ) � 􏽘
∞

n�0
ℵnυ

nϖ+2
. (10)

?en, limυ⟶0(1/υ2)Ψ(υ) � ℵ0.

Proof: From the new form of fractional Taylor’s series, we
have

1
υ2
Ψ(υ) � ℵ0 + ℵ1υ

ϖ
+ℵ2υ

2ϖ
+ℵ3υ

3ϖ
+ ℵ4υ

4ϖ
+ · · · .

(11)

Taking limit υ⟶ 0, so the last equation becomes as

lim
υ⟶0

1
υ2
Ψ(υ) � ℵ0 � Φ(0). (12)

□

Remark 2. In the case of a generalized form of Taylor’s series
in Elzaki transform space, we have the following:

lim
υ⟶0

1
υ2
Ψ(χ, υ) � ℵ0(χ, 0),

where χ � χ1, χ2, χ3 . . . χd( 􏼁 ∈ Rd
, d ∈ N.

(13)

Lemma 3. Presume that Φ(Υ) is a piecewise continuous
function on [0,∞) and exponential order, E[Φ(Υ)] � Ψ(υ).

?en,

E D
nϖ
Υ Φ(Υ)􏽨 􏽩 �

E[Φ(Υ)]
υnϖ − 􏽘

n− 1

j�0
υ(j− n)ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0),

0<ϖ≤ 1,

(14)

where Dnϖ
Υ Φ � DϖΥ . DϖΥ .DϖΥ . . . DϖΥ(n − times).

Proof: To prove, we use the principle of mathematical in-
duction method.

Using n � 1 in equation (14),

E D
ϖ
ΥΦ(Υ)􏽨 􏽩 �

Ε[Φ(Υ)]
υϖ

− υ− ϖ+2Φ(0). (15)

Equation (14) is effective for n � 1.
Using n � 2 in equation (14), we get

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 �

E[Φ(Υ)]
υ2ϖ

− υ− 2ϖ+2Φ(0) + υ− ϖ+2
D
ϖ
ΥΦ􏼐 􏼑(0),

L.H.S � E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � E D

ϖ
Υ D
ϖ
ΥΦ(Υ)􏼐 􏼑􏽨 􏽩.

(16)

Let DϖΥΦ(Υ) � z(Υ).
So, equation (16) becomes as

L.H.S � E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � E D

ϖ
Υ(z(Υ))􏽨 􏽩. (17)

By utilizing Caputo fractional derivative, the last
equation becomes as

L.H.S � E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � E J

1− ϖ
Υ z

(1)
(Υ)􏽨 􏽩. (18)

By using Riemann–Liouville integral formula of Elzaki
transform,

L.H.S � E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � υ1− ϖ

E z
(1)

(Υ)􏽨 􏽩. (19)

By differential property, the above equation becomes as
follows:

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � υ− ϖ

Z(υ) − υ2− ϖ
z(0),

where D
ϖ
ΥΦ􏼐 􏼑(0) � z(0).

(20)

From equation (20), we have

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 � υ− ϖ

E D
ϖ
ΥΦ(Υ)􏽨 􏽩 − υ2− ϖ

D
ϖ
ΥΦ􏼐 􏼑(0),

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩 �

E[Φ(Υ)]
υ2ϖ

− υ2− 2ϖΦ(0) − υ2− ϖ
D
ϖ
ΥΦ􏼐 􏼑(0).

(21)

So, from equation (21), we conclude that formula
equation (14) is accurate when n � 2. Now, suppose formula
is valid for n � r. So, we have

E D
rϖ
Υ Φ(Υ)􏽨 􏽩 �

E[Φ(Υ)]
υrϖ − 􏽘

r− 1

j�0
υ(j− r)ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0). (22)

Now, we will prove for n � r + 1.
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E D
(r+1)ϖ
Υ Φ(Υ)􏽨 􏽩 �

Ε[Φ(Υ)]
υrϖ − 􏽘

r− 1+1

j�0
υ(j− (r+1))ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0), (23)

L.H.S � E D
(r+1)ϖ
Υ Φ(Υ)􏽨 􏽩,

L.H.S � E D
ϖ
Υ D

rϖ
Υ Φ(Υ)􏼐 􏼑􏽨 􏽩.

(24)

Suppose that

D
rϖ
Υ Φ(Υ) � b(Υ). (25)

So, equation (24) becomes as

L.H.S � E D
ϖ
Υ(b(Υ))􏽨 􏽩. (26)

By utilizing Caputo fractional derivative, so the last
equation becomes as

L.H.S � E J
1− ϖ
Υ b

(1)
(Υ)􏽨 􏽩. (27)

By utilizing Riemann–Liouville fractional integral for-
mula, equation (27) becomes as follows:

L.H.S � υ1− ϖ
E b

(1)
(Υ)􏽨 􏽩. (28)

By differential property of E-L, so equation (28) becomes
as

L.H.S � υϖE D
rϖ
Υ Φ(Υ)􏽨 􏽩 − υ2− ϖ

b(0), (29)

where (Drϖ
Υ Φ)(0) � b(0).

From equation (29), we get

L.H.S �
E[Φ(Υ)]
υ(r+1)ϖ − 􏽘

r− 1

j�0
υ(j− (r+1))ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0) − υ2− ϖ

b(0),

L.H.S �
E[Φ(Υ)]

υnϖ − 􏽘
n− 1

j�0
υ(j− n)ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0).

(30)

So, equation (14) is valid for all integers. +us, the proof
completes. □

Remark 3. By making generalization, the above proved
formula takes the following form:

E D
nϖ
Υ Φ(χ,Υ)􏽨 􏽩 �

E[Φ(χ,Υ)]
υnϖ − 􏽘

n− 1

j�0
υ(j− n)ϖ+2

D
jϖ
Υ Φ􏼐 􏼑(0), whereχ � χ1, χ2, χ3, . . . χd( 􏼁 ∈ Rd

, d ∈ N, (31)

and Dnϖ
Υ Φ � DϖΥ. DϖΥ.D

ϖ
Υ . . . DϖΥ(n − times).

Theorem 1. Suppose that the function E[Φ(Υ)] � Ψ(υ) has
FPS representation as follows:

Ψ(υ) � 􏽘
∞

n�0
ℵnυ

nϖ+2
, (32)

thenwe haveℵn � (Dnϖ
Υ Φ)(0), where Dnϖ

Υ Φ � DϖΥ . DϖΥ . DϖΥ
. . . DϖΥ(n − times).

Proof: Consider new form of Taylor’s series.

Ψ(υ) � ℵ0υ
2

+ ℵ1υ
ϖ+2

+ ℵ2υ
2ϖ+2

+ ℵ3υ
3ϖ+2

+ ℵ4υ
4ϖ+2

+ · · · .

(33)

From the above equation, we have

ℵ1 �
1

υϖ+2
Ψ(υ) −

1
υϖ+2

υ2Ψ(0) −
1

υϖ+2
ℵ2υ

2ϖ+2

−
1

υϖ+2
ℵ3υ

3ϖ+2
−

1
υϖ+2
ℵ4υ

4ϖ+2
+ · · · .

(34)

Taking υ⟶ 0 on the above equation,

ℵ1 � lim
υ⟶0

1
υ2

1
υϖ
Ψ(υ) −

1
υϖ− 2Ψ(0)􏼠 􏼡. (35)

By using Lemma 3,

ℵ1 � lim
υ⟶0

1
υ2

E D
ϖ
ΥΦ(Υ)􏽨 􏽩(υ)􏼐 􏼑. (36)

By Lemma 2, the above equation becomes as

ℵ1 � D
ϖ
ΥΦ􏼐 􏼑(0). (37)

Again from equation (32),

ℵ2 �
1
υ2

1
υ2ϖ
Ψ(υ) −

1
υ2ϖ− 2Ψ(0) −

1
υϖ− 2ℵ1􏼠 􏼡 − ℵ3υ

ϖ

− ℵ4υ
2ϖ

+ · · · .

(38)

Taking υ⟶ 0 on the last equation, utilizing Lemma 3,
the above equation becomes as

ℵ2 � lim
υ⟶0

1
υ2

E D
2ϖ
Υ Φ(Υ)􏽨 􏽩(υ)􏼐 􏼑. (39)

By Lemma 2,

ℵ2 � D
2ϖ
Υ Φ􏼐 􏼑(0). (40)

Again from equation (32), we have

ℵ3 � lim
υ⟶0

1
υ2

1
υ3ϖ
Ψ(υ) − Ψ(0)

1
υ3ϖ− 2 − ℵ1

1
υ2ϖ

− ℵ2
1

υϖ− 2􏼠 􏼡.

(41)

By Lemma 3,
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ℵ3 � lim
υ⟶0

1
υ2

E D
3ϖ
Υ Φ(Υ)􏽨 􏽩(υ)􏼠 􏼡. (42)

By Lemma 2, the last equation becomes as

ℵ3 � D
3ϖ
Υ Φ􏼐 􏼑(0). (43)

In the samemanner, we can obtain the following form by
making generalization:

ℵn � D
nϖ
Υ Φ􏼐 􏼑(0). (44)

+is completes the proof of the theorem. □

Remark 4. For multiple Taylor’s series, the proved result
becomes as follows:

ℵn(χ) � D
nϖ
Υ Φ􏼐 􏼑(0), where χ � χ1, χ2, χ3, . . . χd( 􏼁 ∈ Rd

, d ∈ N.

(45)

+e following theorem describes and determines the
conditions for convergence of the new form of Taylor’s
formula that are introduced in Lemma 1.

Theorem 2. Let Ψ(υ) � E[Φ(Υ)] be represented as the new
form of fractional Taylor’s formula as in Elzaki transform:

Ψ(υ) � 􏽘
∞

n�0
ℵnυ

nϖ+2
, (46)

if
1
υ2

E D
(n+1)ϖ
Υ Φ(Υ)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤T. (47)

+en, the remainder Rn(υ) of the new form of fractional
Taylor’s formula satisfies the following inequality:

Rn(υ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ υ(n+1)ϖ+2
T. (48)

Proof: Consider the following:

Ψn(υ) � ℵ0υ
2

+ ℵ1υ
ϖ+2

+ ℵ2υ
2ϖ+2

+ ℵ3υ
3ϖ+2

+ · · · ℵnυ
nϖ+2

.

(49)

From equations (46) and (49), we get

Rn(υ) � Ψ(υ) − 􏽘
n

k�0
ℵkυ

kϖ+2
. (50)

By +eorem 1,

Rn(υ) � Ψ(υ) − 􏽘
n

k�0
υkϖ+2

D
kϖ
Υ Φ􏼐 􏼑(0),

1
υ(n+1)ϖ+2Rn(υ) �

1
υ2

1
υ(n+1)ϖ Ψ(υ) − 􏽘

n

k�0

1
υ(n+1− k)ϖ− 2 D

kϖ
Υ Φ􏼐 􏼑(0)⎛⎝ ⎞⎠.

(51)

By Lemma 3,
1

υ(n+1)ϖ+2Rn(υ) �
1
υ2

E D
(n+1)ϖ
Υ Φ(Υ)􏽨 􏽩,

1
υ(n+1)ϖ+2Rn(υ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

1
υ2

E D
(n+1)ϖ
Υ Φ(Υ)􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(52)

By the given assumption, the above equation becomes as

− υ(n+1)ϖ+2
T≤Rn(υ)≤ υ(n+1)ϖ+2

T, (53)

|Rn(υ)|≤ υ(n+1)ϖ+2T. Hence, the required result is
proved. □

3. Demonstrating the ERPSM for the CRDEs

We exploit our novel ERPSM to originate the results of the
linear and nonlinear CRDEs.+e foremost set of rules of this
method for resolving the CRDEs can be accumulated by the
following steps: employing the Elzaki transform to CRDE

and then deploying the novel form of Taylor’s series to
introduce the solution of CRDE in the novel space. +e
coefficients of this series are established with a new idea. At
the end, employing the inverse Elzaki transform to achieve
the solution of the problem in the actual space.

3.1. Elzaki Residual Power Series Solutions for the CRDEs.
In this subsection, we systematized the stages for conquering
the Elzaki residual power series solution for the linear and
nonlinear CRDE by the following procedure.

Step 1. Rewriting equation (2) as demonstrated:

z
ϖΦ(χ,Υ)

zΥϖ
− λ

z
2Φ(χ,Υ)

zχ2
− z(χ,Υ)Φ(χ,Υ) � 0. (54)

Step 2. Manipulating Elzaki transform at both sides of
equation (54), we get in this way

E
z
ϖΦ(χ,Υ)

zΥϖ
􏼢 􏼣 − λE

z
2Φ(χ,Υ)

zχ2
􏼢 􏼣 − E E

− 1
[Z(χ, υ)]E

− 1
[Ψ(χ, υ)]􏽨 􏽩 � 0, (55)
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where

E
− 1

[Z(χ, υ)] � z(χ,Υ),

E
− 1

[Ψ(χ, υ)] � Φ(χ,Υ),

E
z
ϖΦ(χ,Υ)

zΥϖ
􏼢 􏼣 �

Ψ(χ, υ)

υϖ
− υ− ϖ+2

g(χ).

(56)

So, we get the following form:

Ψ(χ, υ) � υ2g(χ) + λυϖDχχΨ(χ, υ)

+ υϖE E
− 1

[Z(χ, υ)]E
− 1

[Ψ(χ, υ)]􏽨 􏽩.
(57)

Step 3. Considering the solution of equation (57) as the
following:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υ2+nϖ

. (58)

Step 4. Setting ℵ0(χ) � lim
υ⟶∞

(1/υ2)Ψ(χ, υ) � Φ(χ, 0).

Step 5. Establishing the kth-truncated series of Ψ(χ, υ)

as

Ψk(χ, υ) � 􏽘
k

n�0
ℵn(χ)υ2+nϖ

,

ℵ0 � lim
υ⟶0

1
υ2
Ψ(χ, υ),

Ψk(χ, υ) � ℵ0υ
2

+ 􏽘
k

n�1
ℵn(χ)υ2+nϖ

.

(59)

Step 6. Considering the Elzaki residual function (ERF)
of equation (57) and the kth-truncated ERF separately
such that

ERes(χ, υ) � Ψ(χ, υ) − υ2g(χ) − λυϖDχχΨ(χ, υ)

− υϖE E
− 1

[Z(χ, υ)]E
− 1

[Ψ(χ, υ)]􏽨 􏽩,

EResk(χ, υ) � Ψk(χ, υ) − υ2g(χ) − λυϖDχχΨk(χ, υ)

− υϖE E
− 1

[Z(χ, υ)]E
− 1 Ψk(χ, υ)􏼂 􏼃􏽨 􏽩.

(60)

Step 7. Replacing the series form of Ψk(χ, υ) into
equation (60).
Step 8. Dividing at both sides of equation (60) with
υkυ+2 as follows:
1

υ2+kϖ EResk(χ, υ) �
1

υ2+kϖΨk(χ, υ) −
1

υ2+kϖυ
2
g(χ)

− λ
1

υ2+kϖυ
ϖ

DχχΨk(χ, υ)

−
1

υ2+kϖυ
ϖ

E E
− 1

[Z(χ, υ)]E
− 1 Ψk(χ, υ)􏼂 􏼃􏽨 􏽩.

(61)

Step 9. Taking limit at both sides of equation (61).

lim
υ⟶0

1
υ2+kϖ EResk(χ, υ) � lim

υ⟶0

1
υ2+kϖΨk(χ, υ) − lim

υ⟶0

1
υ2+kϖυ

2
g(χ)

− λ lim
υ⟶0

1
υ2+kϖυ

ϖ
DχχΨk(χ, υ) − lim

υ⟶0

1
υ2+kϖυ

ϖ
E E

− 1
[Z(χ, υ)]E

− 1 Ψk(χ, υ)􏼂 􏼃􏽨 􏽩.

(62)

Step 10. Solving the following equation for ℵn(χ):

lim
υ⟶0

1
υkϖ+2 EResk(χ, υ)􏼠 􏼡 � 0, k � 1, 2, 3, . . . . (63)

Step 11. Replacing the attained values of ℵn(χ) into
kth-truncated series of Ψ(χ, υ) to get the kth-approx-
imate solution of equation (57).
Step 12. Manipulating the inverse Elzaki transform on
Ψk(χ, υ) to attain the kth-approximate solution of
Φk(χ,Υ) in the real space.

3.2. Applications to Linear and Nonlinear CRDEs. In this
subsection, we consider three main problems of CRDEs to
illustrate the execution and capability of ERPSM.

3.2.1. Approximate and Closed Form Solutions of Linear
CRDEs. Two applications are considered for linear CRDEs.

Problem 1. Consider the time-fractional linear CRDE [19].

D
ϖ
ΥΦ(χ,Υ) � Φχχ(χ,Υ) − Φ(χ,Υ), χ, Υ≥ 0, 0<ϖ≤ 1.

(64)
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Subject to initial condition,

Φ(χ, 0) � e
− χ

+ χ. (65)

Solution. Utilizing Elzaki transform on equation (64),

E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 � E Φχχ(χ,Υ)􏽨 􏽩 − E[Φ(χ,Υ)], (66)

where E[Φ(χ,Υ)] � Ψ(χ, υ),

E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 �

Ψ(χ, υ)

υϖ
− υ− ϖ+2Φ(χ, 0), (67)

so equation (66) becomes as

Ψ(χ, υ) � υ2Φ(χ, 0) + υϖDχχΨ(χ, υ) − υϖΨ(χ, υ). (68)

Initiate a series solution to the algebraic equation (68).
Hence, presume that the expansion of Ψ(χ, υ) is the
following:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υ2+nϖ

. (69)

Assume that Ψ(χ, υ) has the kth-truncated series as

Ψk(χ, υ) � 􏽘

k

n�0
ℵn(χ)υ2+nϖ

. (70)

By Lemma 2, we have

lim
υ⟶0

1
υ2
Ψ(χ, υ) � Φ(χ, 0) � e

− χ
+ χ. (71)

+e kth-truncated series becomes as follows:

Ψk(χ, υ) � υ2 e
− χ

+ χ( 􏼁 + 􏽘
k

n�1
ℵn(χ)υ2+nϖ

. (72)

+e ERF of the algebraic equation (68) is described as

ERes(χ, υ) � Ψ(χ, υ) − υ2 e
− χ

+ χ( 􏼁 − υϖDχχΨ(χ, υ) + υϖΨ(χ, υ).

(73)

Furthermore, kth-truncated ERF of the algebraic
equation (69) is explained as follows:

EResk(χ, υ) � Ψk(χ, υ) − υ2 e
− χ

+ χ( 􏼁

− υϖDχχΨk(χ, υ) + υϖΨk(χ, υ).
(74)

By utilizing equations (72) and (74), we get undefined
coefficients in the following form:

ℵ1(χ) � − χ,

ℵ2(χ) � χ,

ℵ3(χ) � − χ,

ℵ4(χ) � χ,

ℵ5(χ) � − χ.

(75)

So, we get the 5th approximate solution of Elzaki
transform of equation (68).

Ψ5(χ, υ) �
e

− χ
+ χ

υ2
−

χ
υ2+ϖ +

χ
υ2+2ϖ −

χ
υ2+3ϖ +

χ
υ2+4ϖ −

χ
υ2+5ϖ.

(76)

Operating inverse Elzaki transform on both sides of
equation (76), we get the 5th approximate solution of
equation (64).

Φ5(χ,Υ) � e
− χ

+ χ 1 −
Υϖ

Γ(ϖ + 1)
+
Υ2ϖ

Γ(2ϖ + 1)
−
Υ3ϖ

Γ(3ϖ + 1)
+
Υ4ϖ

Γ(4ϖ + 1)
−
Υ5ϖ

Γ(5ϖ + 1)
􏼠 􏼡. (77)

When ϖ � 1, equation (77) becomes as

Φ5(χ,Υ) � e
− χ

+ χ 1 −
Υ
1!

+
Υ2

2!
−
Υ3

3!
+
Υ4

4!
−
Υ5

5!
􏼠 􏼡. (78)

Equation (78) is coinciding with the six terms of the
expansion of the exact solution Φ(χ,Υ) � e− χ + χe− Υ.

Table 1 demonstrates the values of absolute error of the
5th order approximate and exact solutions at ϖ � 1 when
χ � 1 which support the capability and exactness of the novel
technique.

Figure 1 displays the evaluations of exact solution at ϖ �

1 and the 5th approximate solution of Problem 1, at χ � 1, for
several values ofΥ andϖ. Figure 1 confirms that when values
of ϖ approach to “1,” the approximate solution approaches
to the exact solution, which approves the efficacy and
correctness of the new method. Moreover, the approximate

solution overlaps with the exact solution at ϖ � 1 and this
once more ratifies the usefulness and correctness of the
ERPSM.

Problem 2. Consider the time-fractional linear CRDE [20],

D
ϖ
ΥΦ(χ,Υ) � Φχχ(χ,Υ) − 1 + 4χ2􏼐 􏼑Φ(χ,Υ),

χ,Υ≥ 0, 0<ϖ≤ 1.
(79)

With the initial condition,

Φ(χ, 0) � e
χ2

. (80)

Solution. Manipulating Elzaki transform on equation
(79),
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E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 � E Φχχ(χ,Υ)􏽨 􏽩 − 1 + 4χ2􏼐 􏼑E[Φ(χ,Υ)],

Ψ(χ, υ) � υ2eχ
2

+ υϖDχχΨ(χ, υ) − υϖ 1 + 4χ2􏼐 􏼑Ψ(χ, υ),

(81)

where

E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 �

Ψ(χ, υ)

υϖ
− υ− ϖ+2

e
χ2

,

E[Φ(χ,Υ)] � Ψ(χ, υ).

(82)

Now, establishing a series solution of equation (81),
consequently assume that Ψ(χ, υ) has the expansion as
follows:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υ2+nϖ

. (83)

+e kth-truncated series Ψ(χ, υ) is as follows:

Ψk(χ, υ) � 􏽘
k

n�0
ℵn(χ)υ2+nϖ

. (84)

By Lemma 2, we have

lim
υ⟶0

1
υ2
Ψ(χ, υ) � Φ(χ, 0) � e

χ2
. (85)

So, equation (84) becomes as

Ψk(χ, υ) � e
χ2υ2 + 􏽘

k

n�1
ℵn(χ)υ2+nϖ

. (86)

+e ERF of equation (81) is defined as

ERes(χ, υ) � Ψ(χ, υ) − υ2eχ
2

− υϖDχχΨ(χ, υ)

+ υϖ 1 + 4χ2􏼐 􏼑Ψ(χ, υ).
(87)

+e kth-ERF is as follows:

EResk(χ, υ) � Ψk(χ, υ) − υ2eχ
2

− υϖDχχΨk(χ, υ)

+ υϖ 1 + 4χ2􏼐 􏼑Ψk(χ, υ).
(88)

To find unspecified coefficients using equations (86) and
(88), so we have

ℵ1(χ) � e
χ2

,

ℵ2(χ) � e
χ2

,

ℵ3(χ) � e
χ2

,

ℵ4(χ) � e
χ2

,

ℵ5(χ) � e
χ2

.

(89)

Table 1: Absolute error of ERPS results.

Υ Exact solution Approximate solution Absolute error
0 2.71828182846 2.71828182846 0
0.06 2.88637098927 2.88637098909 1.7766543792×10− 10
0.12 3.06485420329 3.06485419182 1.1469452055×10− 8
0.18 3.25437420289 3.2543740711 1.3178722424×10− 7
0.24 3.45561346476 3.45561271778 7.4698766506×10− 7
0.30 3.66929666762 3.66929379283 0.00000287478963168
0.36 3.8961933018 3.89618464113 0.00000866066429372
0.42 4.13712044025 4.13709840516 0.0000220350955411
0.48 4.39294568092 4.39289613873 0.044093686996

0.0 0.1 0.2 0.3 0.4 0.5

0.9

1.0

1.1

1.2

1.3

Φ
 (Y

)

Y

ϖ=0.6
ϖ=0.7
ϖ=0.8

ϖ=0.9
ϖ=1.0
Exact

Figure 1: Evaluation of closed form and approximate consequences of Problem 1.
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+e 5th approximate solution of equation (81) in Elzaki
transform form is

Ψ5(χ, υ) � e
χ2 1

υ2
+

1
υ2+ϖ +

1
υ2+2ϖ +

1
υ2+3ϖ +

1
υ2+4ϖ +

1
υ2+5ϖ􏼠 􏼡.

(90)

By applying inverse Elzaki transform on equation (90),
we get the 5th approximate solution of equation (79) as
follows:

Φ5(χ,Υ) � e
χ2 1 +

Υϖ

Γ(ϖ + 1)
+
Υ2ϖ

Γ(2ϖ + 1)
+
Υ3ϖ

Γ(3ϖ + 1)
+
Υ4ϖ

Γ(4ϖ + 1)
+
Υ5ϖ

Γ(5ϖ + 1)
􏼠 􏼡. (91)

When ϖ � 1, equation (91) becomes as

Φ5(χ,Υ) � e
χ2 1 +
Υ
1!

+
Υ2

2!
+
Υ3

3!
+
Υ4

4!
+
Υ5

5!
􏼠 􏼡. (92)

Equation (92) represents the first six terms of the ex-
pansion of eχ

2+Υ, so closed form solution of equation (79) is
eχ

2+Υ.
Table 2 demonstrates the values of absolute error of the

5th order approximate and exact solutions at ϖ � 1 when
χ � 1, which support the capability and accuracy of the new
technique.

Figure 2 demonstrates the exploits of exact solution at
ϖ � 1 and the 5th approximate solution of Problem 2, when
χ � 1 for numerous values of Υ andϖ. +e figure endorses
that when values of ϖ approach to “1,” the approximate
solution approaches to exact solution, which supports the
ability and precision of the new method. Moreover, the
approximate solution overlaps with the exact solution at ϖ �

1 and this once more ratifies the usefulness and correctness
of the ERPSM.

3.2.2. Approximate and Closed Form Solutions of Nonlinear
CRDEs

Problem 3. Consider the nonlinear time-fractional CRDE
[21],

D
ϖ
ΥΦ(χ,Υ) � Φχχ(χ,Υ) − Φχ(χ,Υ) +Φ(χ,Υ)Φχχ(χ,Υ)

− Φ2(χ,Υ) +Φ(χ,Υ), χ,Υ≥ 0, 0<ϖ≤ 1,

(93)

With the initial condition,

Φ(χ, 0) � e
χ
. (94)

Solution. By applying Elzaki transform on equation (93),
we get

Ψ(χ, υ) � υ2eχ + υϖDχχΨ(χ, υ) − υϖDχΨ(χ, υ)

+ υϖE E
− 1

[Ψ(χ, υ)]DχχE
− 1

[Ψ(χ, υ)]􏽨 􏽩

− υϖE E
− 1Ψ(χ, υ)􏽨 􏽩

2
􏼔 􏼕 + υϖΨ(χ, υ).

(95)

Here,

E Φχχ(χ,Υ)􏽨 􏽩 � DχχΨ(χ, υ),

E Φχ(χ,Υ)􏽨 􏽩 � DχΨ(χ, υ),

Φ(χ,Υ) � E
− 1

[Ψ(χ, υ)],

Φ2(χ,Υ) � E
− 1

[Ψ(χ, υ)]􏽨 􏽩
2
,

Φχχ(χ,Υ) � DχχE
− 1

[Ψ(χ, υ)],

E D
ϖ
ΥΦ(χ,Υ)􏽨 􏽩 �

Ψ(χ, υ)

υϖ
− υ− ϖ+2

e
χ
.

(96)

Define a series solution of equation (95) as follows:

Ψ(χ, υ) � 􏽘
∞

n�0
ℵn(χ)υ2+nϖ

. (97)

+e kth-truncated series is

Ψk(χ, υ) � 􏽘
k

n�0
ℵn(χ)υ2+nϖ

. (98)

By Lemma 2,

lim
υ⟶0

1
υ2
Ψ(χ, υ) � Φ(χ, 0) � e

χ
. (99)

+erefore, the kth-truncated series becomes as

Ψk(χ, υ) � e
χυ2 + 􏽘

k

n�1
ℵn(χ)υ2+nϖ

. (100)

Now, define ERF in the following form:

ERes(χ, υ) � Ψ(χ, υ) − υ2eχ − υϖDχχΨ(χ, υ) + υϖDχΨ(χ, υ)

− υϖE E
− 1

[Ψ(χ, υ)]DχχE
− 1

[Ψ(χ, υ)]􏽨 􏽩

+ υϖE E
− 1Ψ(χ, υ)􏽨 􏽩

2
􏼔 􏼕 − υϖΨ(χ, υ).

(101)

+e kth-truncated ERF is
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EResk(χ, υ) � Ψk(χ, υ) − υ2eχ − υϖDχχΨk(χ, υ)

+ υϖDχΨk(χ, υ)

− υϖE E
− 1 Ψk(χ, υ)􏼂 􏼃DχχE

− 1 Ψk(χ, υ)􏼂 􏼃􏽨 􏽩

+ υϖE E
− 1Ψk(χ, υ)􏽨 􏽩

2
􏼔 􏼕 − υϖΨk(χ, υ).

(102)

+e undefined coefficients are determined in the fol-
lowing form by utilizing equations (100) and (102).

ℵ1(χ) � e
χ
,

ℵ2(χ) � e
χ
,

ℵ3(χ) � e
χ
,

ℵ4(χ) � e
χ
,

ℵ5(χ) � e
χ
.

(103)

+e 5th approximate solution of equation (95) is given as

Ψ5(χ, υ) � e
χ 1

υ2
+

1
υ2+ϖ +

1
υ2+2ϖ +

1
υ2+3ϖ +

1
υ2+4ϖ +

1
υ2+5ϖ􏼠 􏼡.

(104)

By applying inverse Elzaki transform on the above
equation, we get the 5th approximate solution of equation
(93).

Φ5(χ,Υ) � e
χ 1 +

Υϖ

Γ(ϖ + 1)
+
Υ2ϖ

Γ(2ϖ + 1)
+
Υ3ϖ

Γ(3ϖ + 1)
+
Υ4ϖ

Γ(4ϖ + 1)
+
Υ5ϖ

Γ(4ϖ + 1)
􏼠 􏼡. (105)

For ϖ � 1, the last equation becomes as

Table 2: Absolute error of ERPS results.

Υ Exact solution Approximate solution Absolute error
0.00 1.36787944117 1.36787944117 0.0
0.06 1.30964397476 1.30964397469 7×10− 11
0.12 1.25479987789 1.25479987381 4.08×10− 9
0.18 1.20314965258 1.20314960653 4.605×10− 8
0.24 1.15450730224 1.15450704565 2.5659×10− 7
0.30 1.10869766185 1.10869669117 9.7068×10− 7
0.36 1.06555576724 1.06555289269 0.00000287455
0.42 1.02492626099 1.02491907181 0.00000718918
0.48 0.98666283297 0.98664694453 0.000015888447
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Φ
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Figure 2: +e behavior of exact and approximate outcomes of Problem 2.
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Φ5(χ,Υ) � e
χ 1 +
Υ
1!

+
Υ2

2!
+
Υ3

3!
+
Υ4

4!
+
Υ5

5!
􏼠 􏼡. (106)

Equation (106) coincides with the 1st six terms of the
expansion of eχ+Υ, therefore exact solution of equation (93) is
eχ+Υ.

Table 3 demonstrates the values of absolute error of the
5th order approximate and exact results at ϖ � 1, and χ � 1,
which support the ability and accuracy of the novel
technique.

Figure 3 establishes the actions of exact solution at ϖ � 1
and the 5th approximate solution of Problem 3, when χ � 1
for certain values of Υ andϖ. +e figure recommends that
when values of ϖ approach to “1,” the approximate solution
approaches to exact solution, which supports the capability
and exactness of the new method. Moreover, the approxi-
mate solution overlaps with the exact solution at ϖ � 1 and
this once more ratifies the usefulness and correctness of the
ERPSM.

4. Conclusions

+ere are enormous number of numerical and analytical
methods for resolving the DEs; there are numerous methods
that have superiority over the others. Few of them are precise
and operative, but they necessitate mathematical operations
that can be problematic and elongated. Our novel method,

ERPSM, is considered by accurateness, rapidity, and ef-
fortlessness in finding exact and approximate solutions to
DEs.

To study the efficiency and reliability of ERPSM for
PDEs, absolute errors of three applications are scruti-
nized. Consequences verify that our novel technique is
simple, accurate, applicable, and efficient. +e recom-
mended techniques offered us an effortless and quick
technique to perceive the coefficients of the suggested
series to be a solution to the equation. Dissimilar to the
traditional RPS method, while establishing the coefficients
for a series, it is required to compute the fractional de-
rivative every time, while ERPSM only requires the
concept of the limit at zero in establishing the coefficients
for the series.

+e gain of the ERPSM is that it decreases considerably
the numerical calculations to construct the consequences for
this category of equations related to existing methods, for
instance, the differential transform method (DTM), per-
turbation method, and Adomian decomposition method
(ADM). Consequently, we can accomplish that the ERPSM
is effortless, effective, and practical for solving numerous
further fractional order PDEs.

Data Availability

No data were used to support this study.

Table 3: Absolute error of ERPS results.

Υ Exact solution Approximate solution Absolute error
0.00 1.36787944117 1.36787944117 0.0
0.06 1.30964397476 1.30964397469 7×10− 11
0.12 1.25479987789 1.25479987381 4.08×10− 9
0.18 1.20314965258 1.20314960653 4.605×10− 8
0.24 1.15450730224 1.15450704565 2.5659×10− 7
0.30 1.10869766185 1.10869669117 9.7068×10− 7
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Figure 3: 2D plot of exact and approximate solution of Problem 3.
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In this paper, dynamic response analysis of a forced fractional viscoelastic beam under moving external load is studied.+e beauty
of this study is that the effect of values of fractional order, the effect of internal damping, and the effect of intensity value of the
moving force load on the dynamic response of the beam are analyzed. Constitutive equations for fractional order viscoelastic beam
are constructed in the manner of Euler–Bernoulli beam theory. Solution of the fractional beam system is obtained by using
Bernoulli collocation method. Obtained results are presented in the tables and graphical forms for two different beam systems,
which are polybutadiene beam and butyl B252 beam.

1. Introduction

+eory and applications of beams are very important re-
search area due to its wide usage areas in applied sciences.
Especially after starting the space adventure of the mankind,
the demand to more resistant structures has great impor-
tance. Beams are generally modeled based on
Euler–Bernoulli beam theory, which is called classical beam
theory. +e background of beam theory goes on Newton’s
second law and some different aspects of beams, such as
modeling, analysis of bending-buckling, and reinforcement
and control, are hot topics of research papers since the
beginning of the nineteenth century. +e books can provide
a general overview about the Euler–Bernoulli beam theory,
please see [1–3]. Some important studies related to beams
modeled in the sense of classical beam theory are also
summarized as follows, but not limited to [4–15]. +e beam
systems in [1–15] have the integer order derivatives of the
state function. In the beginning of 1930s, fractional deriv-
ative was introduced for describing the constitutive relation
of some beammaterials [16], and after 1980s, since fractional
order equations have good memory and can be used to
describe material properties more accurately with fewer

parameters, they are considered to be good mathematical
models for describing the dynamic mechanical behavior of
materials [17]. In [18], the dynamic behavior of the thin
plates resting on a fractionally damped viscoelastic foun-
dation subjected to a moving point load is investigated and
results show that the damping of the foundation system
increases with increasing the order of the fractional deriv-
ative, which leads to a decrease in the dynamic response. In
[19], the dynamic response spectra of fractionally damped
viscoelastic beams subjected to concentrated moving load
are presented and results reveal that with an increase in the
order of the fractional derivative, the system damping of the
system increases and the dynamic amplification factor
(DAF) decreases, especially in the dynamic zone of the sweep
parameter. In [20], the precise integration method (PIM) is
extended to numerically integrate the equation of motion
with fractional terms, which offers high accuracy and ob-
tained numerical results indicate the viscoelastic dampers
can enhance the seismic performance of structures signifi-
cantly. In [21], the nonstationary free vibration and non-
linear dynamic behavior of the viscoelastic nanoplates are
analyzed. Obtained results show that the viscoelastic model-
based vibration is nonstationary unlike the elastic model.
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Moreover, the damping mechanism of the viscoelasticity is
amplitude dependent and the contribution of the viscoelastic
damping terms at higher forcing conditions becomes no-
ticeable. On the other hand, several numerical methods are
developed and employed for better analyzing the fractional
mechanical systems. Widely used methods for fractional
systems are finite element method [22], Galerkin method
[23], variational iteration method [24], and multiscale
method [25, 26]. Especially, papers existing in the literature,
which include a solution method for analyzing the dynamic
response of a fractional order beam system, can be shortly
listed as [19, 27–30]. In [19], the authors combined Galerkin
method and Newton–Raphson method for analyzing the
vibration of a fractional beam equation and they compared
the results for only seeing the effects of fractional or integer
derivatives. In [27], the author considered the dynamic
response analyzing of a fractional order viscoelastic beam by
means of green function method. In [27], the author only
compared the results based on changes on the fractional
derivative between (0, 1). In [28], the authors employed the
Adomian decomposition method for solving a fractional
beam equation and they only observed the effect of the order
of fractional derivative. In [29], the authors used the dy-
namic green function method for analyzing the dynamic
response in a fractional beam equation and the beam
equation does not include the damping term. Results are
simulated for only indicating the effects of order of fractional
derivative. In [30], the author employed the green function
method for a fractional viscoelastic beam system subjected to
a base excitation. After obtaining the solution, the author
compared the results corresponding to different fractional
order derivative. By comparing the present study with the
studies existing in the literature, objectives of the present
study are expressed as follows:

(i) In this paper, Bernoulli collocation method is firstly
employed for analyzing the fractional viscoelastic
beam equation. In the literature, especially for the
fractional beam systems, green function method,
Galerkin method, Newton–Raphson method,
Adomian decomposition method, and Bernoulli
collocation method in this paper were used, but by
comparing these five methods, it is clear that Ber-
noulli collocation method is new and has less
computational process and less work.

(ii) In the literature, the authors only considered and
discussed the effects of order of fractional derivative
on the dynamic response. But, we discussed both the
effects of the order of fractional order derivative and
the effects of damping coefficient term and the effect
of density of moving force load. So, it is said that the
present study has wider perspective than other
studies.

(iii) Also, in the literature, results are obtained for one
beam system. In this paper, effects of order of
fractional derivative, effects of damping coefficient
term, and the effect of density of moving force load
are observed and compared for two different beam

systems which are polybutadiene beam and butyl
B252 beam.

For theoretical and experimental review about the
fractional Euler–Bernoulli beams, please see [31]. Specifi-
cally, in the present paper, displacement analysis of a forced
fractional viscoelastic beam is studied. External moving
force load perfectly moves on the beam with the velocity v(t)

from the left edge to the right edge of the beam.+e solution
of the fractional beam system is obtained by means of
Bernoulli collocation method. +e main advantage of the
Bernoulli collocationmethod is that employing the Bernoulli
polynomials is easier than Chebyshev, Bessel polynomials,
and Haar wavelets [32–34]. +ese advantages of Bernoulli
polynomials provide us for obtaining the solution by making
less computational process in shorter time. In the step of
employing the Bernoulli collocation method, some external
moving force loads having different load intensities are
considered and also the effects of internal damping and
fractional order of the derivative are searched for a fractional
beam system. In the simulations, two different beam sys-
tems, which are polybutadiene beam and butyl B252 beam,
are taken into account for being compared each other in the
aspects of internal damping effects and resistance to effect of
external moving force. Comparison results of the beam
systems are presented in tables and graphics. +e rest of the
paper is organized as follows: in the next section, definition
of the displacement analysis problem for a fractional vis-
coelastic beam is presented and scheme of the beam is
overviewed. In the third section, short definition of the
fractional derivative in the Caputo sense is introduced. In the
fourth section, Bernoulli collocation method is explained
and adopted to the present problem. In the fifth section,
obtained results are given and discussions are made in the
light of employing the Bernoulli collocation method to
fractional viscoelastic beam system.

2. Definition of the Problem

+e motion equation of the fractional viscoelastic homo-
geneous beam is obtained by considering the
Euler–Bernoulli beam theory by ignoring shear deformation
factor and rotary inertia of the beam.+e beam is considered
as a uniform viscoelastic beam and mechanical energy
dissipation inside the beam is modeled by fractional order
differential equations. By taking into account the [35], stress-
strain constitutive relation of a fractional viscoelastic beam is
given as follows:

σ � Eε(t) + Ec
′Dc

t [ε(t)] � E ε + μc

d
cε(t)

dt
c􏼠 􏼡, (1)

in which E is the Young’s modulus of the viscoelastic beam,
μc is the damping coefficient, and D

c
t is the fractional de-

rivative operator with the order c with respect to t. +e
simply supported viscoelastic beam initially is at rest and
nondeformed. +e beam is subjected to a horizontally
moving constant force load with the velocity v(t) from the
left edge to right edge of the beam, respect to x axis. In the
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light of [27], let us introduce the formulation of a fractional
viscoelastic beam structure illustrated in Figure 1.

Aρ
z
2
w(t, x)

zt
2 + EIμc

d
c

dt
c

z
4
w(t, x)

zx
4􏼢 􏼣 + EI

z
4
w(t, x)

zx
4 � Pδ(x − v(t)), (2)

in which w is the deflection of the viscoelastic beam in
C � (t, x): t ∈ (0, tf), x ∈ (0, ℓ){ }, t is the time variable, tf is
the final time observed duration, x is the space variable, ℓ is
the length of the viscoelastic beam, A is the cross-section
area of the structure, ρ is the material mass density of the
viscoelastic beam, I is the axial moment of inertia of the
beam, P is a constant showing intensity of the external
moving force load, δ is the Dirac-delta function, and v(t) is
the velocity of the moving force load with the condition
0≤ v(t)≤ ℓ. Equation (2) is subjected to the following
boundary conditions:

w(t, x) � 0, wxx(t, x) � 0 atx � 0, ℓ, (3)

and the following initial conditions:

w(t, x) � w0(x), wt(t, x) � w1(x) at t � 0, (4)

in which w0(x) ∈ H1(0, ℓ) � w0(x) ∈􏼈 L2(0, ℓ): zw0(x)/
zx ∈ L2(0, ℓ)}, w1(x) ∈ L2(0, ℓ). L2(C) means to square-
integrable functions space in the manner of Hilbert in the
domain C in the Lebesgue sense with the following norm
and inner product:

‖η‖
2

� <η, η>, <η, ρ>C � 􏽚
C
ρη dC. (5)

Let us assume that

w(t, x) � 􏽘
N

n�1
zn(t)

�
2

√
sin

nπx

ℓ
􏼒 􏼓. (6)

After substituting the equations (6) into (2) and mul-
tiplying both sides of equation (2) with

�
2

√
sin(nπx/ℓ),

integrating on (0, ℓ), we obtain the following ordinary
differential equation as follows:

Aρzn
″(t) + EI(nπ)

4μc

d
c

dt
czn(t)􏼢 􏼣 + EI(nπ)

4
zn(t) � P

�
2

√
sin

nπv(t)

ℓ
􏼠 􏼡, n � 1, . . . , N. (7)

Equation (7) is subjected to the following initial
conditions:

zn(0) �
�
2

√
􏽚
ℓ

0
w0(x)sin

nπx

ℓ
􏼒 􏼓dx, zn

′(0) �
�
2

√
􏽚
ℓ

0
w1(x)sin

nπx

ℓ
􏼒 􏼓dx. (8)

3. TheFractionalDerivative in theCaputo Sense

Definition. +e Caputo definition of the fractional-order
derivative is

D
c
f(x) �

1
Γ(n − c)

􏽚
x

0

f
(n)

(t)

(x − t)
c+1−n

dt, n − 1< c≤ n, n ∈ N, (9)

where c> 0 is the order of the derivative and n is the smallest
integer greater than c. For the Caputo derivative, we have
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D
c
C � 0, C is constant,

D
c
x

q
�

0, for q ∈ N0 and q<⌈c⌉,

Γ(q + 1)

Γ(q + 1 − c)
x

q− c
, for q ∈ N0 and q≥ ⌈c⌉ or q ∉ N and q>⌊c⌋.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

4. Bernoulli Collocation Method

+e recurrence relation of the Bernoulli polynomials is
defined by

Bn(x) � 2xBn−1(x) + Bn−2(x). (11)

For n≥ 3., B1(x) � 1, B2(x) � 2x. +e first few Bernoulli
polynomials are

B1(x) � 1, (12)

B2(x) � x −
1
2
,

B3(x) � x
2

− x −
1
6
,

B4(x) � x
3

−
3
2
x
2

+
x

2
.

⋮

(13)

Our goal is to get the approximate solution as the
truncated Bernoulli series defined by

y(x) � 􏽘
N+1

n�1
cnBn(x), (14)

where Bn(x) denotes the Bernoulli polynomials;
cn(1≤ n≤N + 1) are the unknown coefficients for Bernoulli
polynomial, and N is any positive integer which possess
N≥m. Let us assume that linear combination of Bernoulli
polynomials equation (14) is an approximate solution of
equation (7). Our purpose is to determine the matrix forms
of equation (7) by using (14). Firstly, we can write Bernoulli
polynomials (12) in the matrix form

B(x) � T(x)M, (15)

where B(x) � [B1(x) B2(x) · · · BN+1(x)], T(x) � (1 x x2

x3 . . . xN), C � (c1 c2 · · · cN+1)
T, and

M �

1 −
1
2

1
6

0 −
1
30

0
1
42

0 −
1
30

0 1 −1
1
2

0 −
1
6

0
1
6

0

0 0 1 −
3
2

1 0 −
1
2

0
2
3

0 0 0 1 −2
5
3

0 −
7
6

0

0 0 0 0 1 −
5
2

5
2

0 −
7
3

0 0 0 0 0 1 −3
7
2

0

0 0 0 0 0 0 1 −
7
2

14
3

0 0 0 0 0 0 0 1 −4

0 0 0 0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

+e matrix form of equation (14) by a truncated Ber-
noulli series is given by

y(x) � B(x)C. (17)

By using equations (15) and (17), the matrix relation is
expressed as

y(x) � yN(x) � T(x)MC,

y
(c)

(x) � y
(c)
N (x) � T(x)X(c)(x)D(c)MC,

y′′(x) � y
′′
N(x) � T(x)D2MC,

(18)

Length of the beam

Viscoelastic beam

x

P
v (t)

Figure 1: Schematic of the viscoelastic beam under moving force load P with the velocity v(t).
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where

X(c)(x) � 0, x
1− c

, x
2− c

, . . . , x
N− c

􏽨 􏽩, (19)

D �

0 1 0 0 0 0 · · · 0
0 0 2 0 0 0 · · · 0
0 0 0 3 0 0 · · · 0
0 0 0 0 4 0 · · · 0
0 0 0 0 0 5 · · · 0
0 0 0 0 0 0 · · · 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ N

0 0 0 0 0 0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,D0
�

1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0
0 0 0 0 1 0 · · · 0
0 0 0 0 0 1 · · · 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 0
0 0 0 0 0 0 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T �

T x0( 􏼁

T x1( 􏼁

⋮
T xN( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1 x0 . . . x
N
0

1 x1 . . . x
N
1

1 ⋮ . . . ⋮
1 xN . . . x

N
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D(c) �

0 0 0 · · · 0

0
Γ(2)

Γ(2 − c)
0 · · · 0

0 0
Γ(3)

Γ(3 − c)
· · · 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 · · ·
Γ(N)

Γ(N − c)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)

By using equation (18), we obtain the following relation:

Y(k)
(x) � T(x)DkMC. (21)

By substituting the Bernoulli collocation points given by

xi � a +
(b − a)i

N
, i � 0, 1, . . . , N, (22)

into equation (21), we obtain

Y(k)
xi( 􏼁 � T xi( 􏼁DkMC, k � 0, c, 2. (23)

and the compact form of the relation (23) becomes

Y(k)
� TDkMC, k � 0, c, 2. (24)

In this way, the unknown Bernoulli coefficients cn,

n � 1, 2, . . . , N + 1 are obtained by solving the system.
+en, these coefficients are substituted into (14), and the
approximate solution is obtained. For more details, see
[36].

5. Simulation Results and Discussion

Bernoulli collocation method for obtaining the solution of
fractional viscoelastic beam equation is employed. Hence,
displacement analysis of a forced fractional viscoelastic beam
is investigated by taking into account the different moving
force loads, different values of internal damping coefficient,
and different values of fractional order of derivative. Ob-
tained results are simulated and presented in the tables and

graphical forms. +e velocity, from left to right, of the ex-
ternal moving force on beam v(t) is considered as sin(πt). In
order to observe the dynamic response of the viscoelastic
beams under the different intensity of external moving force,
the intensity constant of the external moving force load on
the beam is involved to computation as P � 1, 25, 50. Also,
the values in Tables 1–6 are computed on x � 0.5, which is
the middle point of the fractional viscoelastic beams. Ob-
served duration of time is tf � 1. In the first case, forced
displacement analysis of a polybutadiene beam is observed
for different values of moving force load and results are
presented in Table 1. +e length and material density of the
fractional viscoelastic beam are taken into account as ℓ � 1m

and ρ � 160 kg/m3, respectively. +e cross-sectional area A

is 0.72m2, moment of inertia J is (0.1)4/12, and Young’s
modulus E is 8.15 × 105 for a fractional viscoelastic poly-
butadiene beam. Also, the order of fractional derivative c is
evaluated as 0.528 for the results in Figure 2 and Tables 1 and
3. By observing Figure 2, it is concluded that while the
intensity of the external moving load force increases,
namely, P is 1 to 25 and 50, the displacement of the fractional
viscoelastic polybutadiene beam also increases. Also, parallel
observation results to Figure 2 are obtained by taking into
account Table 1. For example, on the moment t � 0.5, the
amount of the displacement of the polybutadiene beam is
measured as 0.001 1 for P � 1, 0.028 for P � 25, and 0.056
for P � 50. +is observation is valid the entire time interval
t � 0, . . . , 1 for polybutadiene beam. Also, the effect of
internal damping on the displacement is presented in
Table 3 for polybutadiene beam. +e internal damping
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coefficient is evaluated from 0.2 to 1 and by examining
Table 3; it reveals that when internal damping coefficient
increases, the displacement of the polybutadiene beam

decreases under the same conditions. +e effect of the
fractional order to system is observed from Table 5 and it
can be concluded that while increasing the values of the

Table 2: Some values of w(t, x) for P � 1, 25, 50 (for a butyl B252 beam).

t wP�1 wP�25 wP�50

0.1 0.000 020 2 0.000 505 3 0.001 010 7
0.2 0.000140 7 0.003 517 7 0.007 035 4
0.3 0.000 3701 0.009 2531 0.018 506 4
0.4 0.000 6421 0.016 053 0 0.0321061
0.5 0.000 886 5 0.022164 5 0.044 328 9
0.6 0.001 070 9 0.026 772 4 0.053 544 8
0.7 0.001 207 9 0.0301981 0.060 396 2
0.8 0.001 345 0 0.033 624 9 0.067 249 8
0.9 0.001 515 9 0.037 899 2 0.075 798 4
1.0 0.001 581 7 0.039 544 7 0.079 089 3

Table 1: Some values of w(t, x) for P � 1, 25, 50 (for a polybutadiene beam).

t wP�1 wP�25 wP�50

0.1 0.000 025 2 0.000 632 0 0.001 264 0
0.2 0.0001761 0.004 402 5 0.008 805 0
0.3 0.000 463 7 0.011 593 4 0.023186 8
0.4 0.000 805 8 0.020145 2 0.040 290 4
0.5 0.001 115 0 0.027 877 2 0.055 754 5
0.6 0.001 350 9 0.033 774 5 0.067 549 0
0.7 0.001 529 4 0.038 2361 0.076 4721
0.8 0.001 709 4 0.042 735 6 0.085 471 2
0.9 0.001 933 0 0.048 326 2 0.096 652 5
1.0 0.002 026 3 0.050 657 4 0.101 315 0

Table 3: Some values of w(t, x) for different values of μ for P � 1 (for a polybutadiene beam).

tμ 0.2 0.4 0.6 0.8 1.0
0.1 0.000 024 90 0.000 024 24 0.000 023 62 0.000 023 03 0.000 022 48
0.2 0.000170 50 0.000161 04 0.000152 42 0.000144 54 0.000137 32
0.3 0.000 440 42 0.000 402 52 0.000 369 54 0.000 340 70 0.000 315 37
0.4 0.000 748 72 0.000 659 75 0.000 586 20 0.000 524 91 0.000 473 41
0.5 0.001 011 32 0.000 856 73 0.000 735 83 0.000 640 02 0.000 56311
0.6 0.001 194 99 0.000 973 52 0.000 810 05 0.000 687 00 0.000 592 56
0.7 0.001 323 26 0.001 044 56 0.000 850 35 0.000 711 06 0.000 608 30
0.8 0.001 459 32 0.001 136 46 0.000 922 48 0.000 774 52 0.000 667 97
0.9 0.001 645 41 0.001 287 75 0.001 058 63 0.000 902 75 0.000 790 71
1.0 0.001 713 62 0.001 340 71 0.001 112 91 0.000 964 62 0.000 862 85

Table 4: Some values of w(t, x) for different values of μ for P � 1 (for a butyl B252 beam).

tμ 0.2 0.4 0.6 0.8 1.0
0.1 0.000 019 90 0.000 019 35 0.000 018 85 0.000 018 37 0.000 017 91
0.2 0.000136 09 0.000128 33 0.000121 26 0.000114 82 0.000108 94
0.3 0.000 350 96 0.000 319 92 0.000 293 02 0.000 269 58 0.000 249 07
0.4 0.000 595 32 0.000 522 71 0.000 463 02 0.000 413 52 0.000 37212
0.5 0.000 801 77 0.000 67617 0.000 578 62 0.000 501 79 0.000 440 45
0.6 0.000 943 91 0.000 764 93 0.000 633 94 0.000 536 04 0.000 461 36
0.7 0.001 040 91 0.000 81711 0.000 662 68 0.000 552 79 0.000 472 22
0.8 0.001 459 32 0.000 88619 0.000 717 38 0.000 601 55 0.000 667 97
0.9 0.001 285 91 0.001 002 83 0.000 823 34 0.000 701 97 0.000 518 57
1.0 0.001 333 74 0.001 041 33 0.000 864 75 0.000 750 70 0.000 615 00
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Table 5: Some values of w(t, x) for different values of c for P � 1 (for a polybutadiene beam).

tc 0.2 0.4 0.6 0.8 1.0
0.1 0.000 025 28 0.000 025 28 0.000 025 28 0.000 025 27 0.000 025 27
0.2 0.00017611 0.00017610 0.000176 09 0.000176 07 0.000176 04
0.3 0.000 463 79 0.000 463 76 0.000 463 71 0.000 463 63 0.000 463 49
0.4 0.000 805 96 0.000 805 88 0.000 805 75 0.000 805 56 0.000 805 26
0.5 0.001 115 39 0.001 115 23 0.001 114 99 0.001 114 65 0.001 11416
0.6 0.001 351 46 0.001 351 20 0.001 350 84 0.001 350 34 0.001 349 69
0.7 0.001 53010 0.001 529 73 0.001 529 25 0.001 528 64 0.001 527 88
0.8 0.001 710 24 0.001 709 78 0.001 709 20 0.001 708 52 0.001 707 72
0.9 0.001 933 99 0.001 933 45 0.001 932 81 0.001 932 09 0.000 790 71
1.0 0.002 027 31 0.002 026 71 0.002 026 06 0.002 025 38 0.001 931 32

Table 6: Some values of w(t, x) for different values of c for P � 1 (for a butyl B252 beam).

tc 0.2 0.4 0.6 0.8 1.0
0.1 0.000 020 21 0.000 020 21 0.000 020 21 0.000 020 21 0.000 020 21
0.2 0.000140 71 0.000140 71 0.000140 70 0.000140 69 0.000140 66
0.3 0.000 37016 0.000 37014 0.000 37011 0.000 370 06 0.000 369 97
0.4 0.000 642 21 0.000 64216 0.000 642 08 0.000 641 96 0.000 641 77
0.5 0.000 886 76 0.000 886 66 0.000 886 51 0.000 886 29 0.000 885 98
0.6 0.001 071 19 0.001 071 02 0.001 070 79 0.001 070 48 0.001 070 07
0.7 0.001 208 33 0.001 208 09 0.001 207 79 0.001 207 41 0.001 206 93
0.8 0.001 345 49 0.001 345 20 0.001 344 84 0.001 344 41 0.001 343 92
0.9 0.001 516 53 0.001 516 20 0.001 515 80 0.001 515 36 0.001 514 89
1.0 0.001 582 39 0.001 582 02 0.001 581 62 0.001 581 21 0.001 580 82
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Figure 2: Displacements of a polybutadiene beam for P � 1, 25, 50.
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Figure 3: Displacements of a butyl B252 beam for P � 1, 25, 50.
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fractional derivative, the value of the displacement is de-
creasing. In the second case, a butyl B252 beam is taken into
account by the coefficients; the cross-sectional area A is
0.72m2, moment of inertia J is (0.1)4/12, and Young’s
modulus E is 1.05 × 106. +e order of fractional derivative c

is considered as 0.519 for Figure 3 and Tables 2 and 4. By
checking Figure 3, it is easy to see that displacements
corresponding to much bigger intensity of moving force
load are much bigger. For example, on the moment t � 0.5,
while P � 1 to P � 25, 50, corresponding displacements are
calculated as 0.00089, 0.022, and 0.044, respectively. +is is
effective along the observation duration. In Table 4, some
results related to the effect of internal damping are pre-
sented and internal damping coefficient is included in the
computation as 0.2 to 1. After looking at Table 4, it is
concluded that while internal damping coefficient de-
creases, the displacement of the butyl B252 beam increases
and relation between the effects of internal damping and
displacements is inversely proportional. +e relation be-
tween the displacement and fractional order in the system
is vice versa. As understood from Table 6, while decreasing
the values of the fractional derivative, the value of the
displacement is increasing. +ese observation results of the
present study are also compatible with the results existing
in the literature. By taking into account Tables 1–6 and
Figures 2 and 3 and comparing these two kinds of fractional
viscoelastic beams, it is seen that the polybutadiene beam
has more greater displacements than butyl B252 beam
under same conditions. Also, the effect of internal damping
coefficient is more visible on the butyl B252 beam
according to polybutadiene beam.+ese observations make
clear that butyl B252 beam is stronger and preferable than
the polybutadiene beam.

6. Conclusion

In this study, the Bernoulli collocation method as a new
solution method for obtaining the approximate solution of a
fractional viscoelastic beammodel subjected tomoving force
load is employed. Dynamic response analysis of the frac-
tional viscoelastic beam model is investigated for two dif-
ferent specific beams: polybutadiene beam and butyl B252
beam. Displacement analysis of a point on the fractional
viscoelastic beams is studied for different moving force loads
and also effect of the internal damping to displacement is
observed for different internal damping coefficients.
Moreover, dynamic response of the fractional viscoelastic
beam is examined for different values of the fractional order.
Obtained results are presented in tables and graphics and
results reveal that Bernoulli collocation method is very ef-
fective and powerful solution method for obtaining the
solution of fractional order viscoelastic beam models. After
observing Figures 2 and 3, it is easy to conclude that as the
moving force load increases, the displacement of a point on
the beams also increases. Also, numerical results, presented
in Tables 1–4, show that under the same moving force load
with the same internal damping effect, the displacement of a
point on the polybutadiene beam is greater than that cor-
responding to butyl B252 beam. Moreover, under the same

moving force load, changes in the displacements of a point
on the beams are examined in the aspect of different internal
damping effects and observations made clear that butyl B252
beam better reflects the effect of internal damping to dis-
placement of a point on the beam. By comparing polybu-
tadiene beam and butyl B252 beam, it is concluded that
polybutadiene beam is more open to destructive effects of
vibrations under the same conditions with the butyl B252
beam.
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damping effects in Timoshenko beams,” International Journal
of Mechanical Sciences, vol. 73, pp. 27–39, 2013.

[11] K. Morfidis, “Vibration of Timoshenko beams on three-pa-
rameter elastic foundation,” Computers & Structures, vol. 88,
no. 5-6, pp. 294–308, 2010.

Journal of Mathematics 9



[12] M. Ishaquddin and S. Gopalakrishnan, “A novel weak form
quadrature element for gradient elastic beam theories,” Ap-
plied Mathematical Modelling, vol. 77, pp. 1–16, 2020.

[13] B. Martin and A. Salehian, “Techniques for approximating a
spatially varying Euler-Bernoulli model with a constant co-
efficient model,” Applied Mathematical Modelling, vol. 79,
pp. 260–283, 2020.

[14] J. Gahleitner and J. Schoeftne, “An anisotropic beam theory
based on the extension of Boleyr’s method,” Composite
Structures, vol. 243, pp. 112–149, 2020.

[15] B. Wang, X. Luo, Y. Liu, and Z. Yang, “+ickness-variable
composite beams for vibration energy harvesting,” Composite
Structures, vol. 244, p. 112232, 2020.

[16] A. Gemant, “XLV.On fractional differentials,” 9e London,
Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, vol. 25, no. 168, pp. 540–549, 1938.

[17] C. Yu, J. Zhang, Y. Chen, Y. Feng, and A. Yang, “A numerical
method for solving fractional-order viscoelastic Euler Ber-
noulli beams,” Chaos, Solitons & Fractals, vol. 128, pp. 275–
279, 2016.

[18] R. K. Praharaj and N. Datta, “Dynamic response of plates
resting on a fractional viscoelastic foundation and subjected to
a moving load,” Mechanics Based Design of Structures and
Machines, pp. 1–16, 2020.

[19] R. K. Praharaj and N. Datta, “Dynamic response spectra of
fractionally damped viscoelastic beams subjected to moving
load,” Mechanics Based Design of Structures and Machines,
vol. 2020, Article ID 1725563, 15 pages, 2020.

[20] J. Xu and J. Li, “Stochastic dynamic response and reliability
assessment of controlled structures with fractional derivative
model of viscoelastic dampers,” Mechanical Systems and
Signal Processing, vol. 72-73, pp. 865–896, 2016.

[21] M. Ajri, M. M. Fakhrabadi, and A. Rastgoo, “Analytical so-
lution for nonlinear dynamic behavior of viscoelastic nano-
plates modeled by consistent couple stress theory,” Latin
American Journal of Solids and Structures, vol. 15, pp. 1–23,
2018.

[22] C. Chazal and R. M. Pitti, “Integral approach for time de-
pendent materials using finite element method,” Journal of
9eorical and AppliedMechanics, vol. 49, pp. 1029–1048, 2011.

[23] Y. Lei, M. I. Friswell, and S. Adhikari, “A Galerkin method for
distributed systems with non-local damping,” International
Journal of Solids and Structures, vol. 43, no. 11-12,
pp. 3381–3400, 2006.

[24] O. Martin, “A modified variational iteration method for the
analysis of viscoelastic beams,” Applied Mathematical Mod-
elling, vol. 40, no. 17-18, pp. 7988–7995, 2016.

[25] D. D. Demir, N. Bildik, and B. G. Sýnýr, “Linear dynamical
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In order to make quantitative structure-movement/property/danger relations, topological indices (TIs) are the numbers that are
related to subatomic graphs. Some fundamental physicochemical properties of chemical compounds, such as breaking point,
protection, and strain vitality, correspond to these TIs. In the compound graph hypothesis, the concept of TIs was developed in
view of the degree of vertices. In investigating minimizing exercises of Star of David, these indices are useful. In this study, we
explore the different types of Zagreb indices, Randić indices, atom-bond connectivity indices, redefined Zagreb indices, and
geometric-arithmetic index for the Star of David. +e edge partitions of this network are tabled based on the sum of degrees-of-
end vertices and the sum of degree-based edges. To produce closed formulas for some degree-based network TIs, these edge
partitions are employed.

1. Introduction

Graph theory is a branch of mathematics in which we use
graph parameter methods to precisely expose the compound
phenomenon. For example, the graph theory characterizes
an area between different disciplines of science when applied
to the investigation of molecular structures, which is known
as molecular topology or the theory of chemical graphs. A
significant part of the analysis was supported by chemical
graph theory [1]. Chemist can be performed for the sta-
tistical demonstration of chemical marvel by means of graph
theory. In quantitative structure activity, researchers tried to
figure out what structural characteristics will be developed.
Physicochemical features and topological measures are
discussed by Wiener. Different types of graph descriptors,
such as distance-based, degree-based, spectral, and poly-
nomial-related descriptors, have been well defined and ex-
plored extensively in the literature. Vertex degree-based
descriptors are the most important of these classes, and they

play a crucial role in chemical graph theory. +ese de-
scriptors are combined to infer physicochemical, biological,
and pharmacological qualities such stability, chirality,
melting point, boiling point, similarity, connectedness,
entropy, enthalpy of formation, surface tension, density,
critical temperature, and others. Mathematicians and
chemists use a variety of topological indices in these types of
studies. +e quantitative structure-property relationship
(QSPR) and quantitative structure-activity relationship
(QSAR) research use the index, the Randic index, the Zagreb
indices, and the ABC index to measure by Yang et al. [2] in
the bioactivity of chemical compounds [3]. Topological
indices provide numerical representations, molecular size,
shape, branching, and other properties that are used to
compare chemical compounds’ topological similarities and
in QSPR/QSAR research [4, 5]. +ere are several properties
related to new families of graphs that are discussed in [6–8]
such as metric dimensions and indices. +e spectral prop-
erties, metric dimensions, and indices of different families of
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graphs are discussed in [9–14]. +ese include distance-based
and degree-based TIs, as well as related polynomials [15] and
classified graph indices, among other forms of topological
indices. In 2017, Maji and Ghorai introduced new distance-
degree-based topological indices, see [16]. In chemical graph
theory and notably in chemistry, degree-based TIs are ex-
tremely important and serve a critical function. Further-
more, algebraic graph theory results are discussed in [17–21]
by using the notion of totient number which was introduced
by Shahbaz and Khalid in 2017.

In this paper, we study some degree-based analysis of TIs
of the Star of David network. In Hebrew, the Star of David,
or “Magen David” (“Shield of David”), consists of two
overlaid equilateral triangles that form a six-pointed star. It
cannot be traced back to the Bible or the Talmud, but it is
said that it comes from the (presumed) similarity to the
shape of the shield of King David. It was neither used as a
sign of Jewish identity, although it originated in Antiquity,
nor was even restricted to Judaism. +e seven-branched
candelabrum, still one of Israel’s emblems today, was the
most famous symbol of Judaism at that time.

We arranged our paper as follows. In Section 2, we give
some preliminary concepts related to topological indices of
different kinds. In Section 3, we construct the Star of David
network and proposed their algorithm. In Section 4, we
compute several results on topological indices for the
proposed network. In Section 5, we give a comparison of
topological indices for proposed networks. In Section 6, we
give the concluding remarks about our proposed work. In
future work, one can compute more indices on proposed
Star of David networks.

2. Preliminaries

According to this study, a simple connected graph G is made
up of vertices V(G) and edges E(G), with ℵ(μ) being the
degree of each vertex and the number of edges intersecting
μ.”

Definition 1. Topological index (TI) is derived by Wiener,
which was created in 1945 after investigating alkane’s boiling
point [22]. According to Randić [23] characterization, the
earliest degree-based index is the Randić index, which is
defined as

R(G) � 􏽘
μ]∈E(G)

1
(

���������
ℵ(μ)ℵ(])

􏽰
)
. (1)

As a traditional graph-based molecular structure de-
scriptor, the Randić index has been widely used in chemical
and pharmaceutical research. Even the mathematical sense
of this index is clear for detail of its QSPR/QSAR application,
see [24, 25]. Bollobác and Paul [26] presented the general
Randić index, which is defined as

Rα(G) � 􏽘
μ]∈E(G)

(ℵ(μ)ℵ(]))
α for α � 1,

1
2
, −
1
2
, − 1. (2)

Definition 2. Gutman and Trinajstić [27] defined the first
and second Zagreb indices as follows; also, see [28–30]:

M1(G) � 􏽘
μ]∈E(G)

(ℵ(μ) + ℵ(])),

M2(G) � 􏽘
μ]∈E(G)

(ℵ(μ)ℵ(μ)).
(3)

Definition 3. Ranjini et al. [31] proposed the redefined
version of Zagreb indices

+e redefined first Zagreb index of graph G is defined as

ReZG1(G) � 􏽘
μ]∈E(G)

(ℵ(μ) + ℵ(]))

(ℵ(μ) · ℵ(]))
. (4)

+e redefined second Zagreb index of graph G is defined
as

ReZG2(G) � 􏽘
μ]∈E(G)

(ℵ(μ) ·ℵ(]))

(ℵ(μ) + ℵ(]))
. (5)

+e redefined third Zagreb index of graph G is defined as

ReZG3(G) � 􏽘
μ]∈E(G)

(ℵ(μ) · ℵ(]))(ℵ(μ) + ℵ(])).
(6)

Definition 4. Estrada et al., in [32], proposed degree-based
TI ABC and defined it as

ABC(G) � 􏽘
μ]∈E(G)

��������������
ℵ(μ) +ℵ(]) − 2
ℵ(μ) · ℵ(])

􏽳

. (7)

+e atom-bond connectivity index (ABC) is a molecular
structural descriptor that has lately found surprising applica-
bility in explaining linear and branched alkane stability, as well
as cycloalkane strain energy. It is used for modeling the
thermodynamic characteristics in organic chemical molecules.

Definition 5. +e GA index is proposed by Vukicevic and
Furtula in [33] and defined as

GA(G) � 􏽘
μ]∈E(G)

2
����������
ℵ(μ) ·ℵ(])

􏽰

ℵ(μ) + ℵ(])
. (8)

+e prediction value of the GA index is slightly greater
than the Randić connection index for physicochemical
characteristics such as entropy and acentric factor, according
to [33].

Definition 6. Furtula and Gutman, in [34], proposed the
forgotten TI and stated it as

F(G) � 􏽘
μ]∈E(G)

(ℵ(μ))
2

+(ℵ(]))
2
.

(9)

For further study, see [35]. +e Star of David networks
are shown in Figures 1 and 2.
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3. Higher Dimension SD(n) Drawing
Algorithm for Star of David Network

Step 1 : the Star of David, consists of two equilateral
overlapping triangles forming a six-pointed star.
Draw David’s Star graph G, which is one and
two dimensional, as seen in figure ??. Algorithm
for Star of David is as given below:

(i) ≠inclu de〈iostream〉

using namespace std;, ≠ define n ∖′n′
int i, j;, int main()

{
for (i � 0; i≤ 1; i + +)

{
for (j � 1; j≤ 5 − i; j + +)

cout 〈〈 ″ ″;
〈〈 ″ ∗ ″;
if (i �� 1)

cout 〈〈 ″ ∗ ″;
cout 〈〈n;

}
for (i � 1; i≤ ; i + +)

{
for (j � 1; j≤ 11; j + +)

{
if (i �� 2‖i �� 3)

{
if (j �� 2‖j �� 3‖j �� 9‖j �� 10)

{
cout 〈〈 ″ ∗ ″;
}
else

cout 〈〈 ″ ″;

}
else

cout 〈〈 ″ ∗ ″;
}

cout 〈〈n;
}

for (i � 1; i≥ 0; i − − )

{
for (j � (5 − i); j≥ 1; j − − )

cout 〈〈 ″ ″;
cout 〈〈 ″ ∗ ″;

if (i �� 1)

cout 〈〈 ″ ∗ ″;
cout 〈〈n;

}
}

Step 2 : add two David’s stars on the upper and lower
sides.

Step 3 : adding one more star of David in each step
similarly, we proceed up to n� 5. We get the
sequence at n� 5.

4. Results on Indices for Star of David Network

Theorem 1. 4e atom-bond connectivity index of Star of
David network is

ABC(G) � 3.2n
2

− 10.6n − 10.2. (10)

Proof. Let G be the graph of Star of David network. By using
Table 1, we apply the formula of the atom-bond connectivity
index for G:

ABC(G) � 􏽘
μ]∈E(G)

��������������
ℵ(μ) + ℵ(]) − 2
ℵ(μ) ·ℵ(])

􏽳

� 􏽘
μ]∈E 2,2{ }

��������������
ℵ(μ) +ℵ(]) − 2
ℵ(μ) · ℵ(])

􏽳

+ 􏽘
μ]∈E 2,4{ }

��������������
ℵ(μ) + ℵ(]) − 2
ℵ(μ) ·ℵ(])

􏽳

+ 􏽘
μ]∈E 2,6{ }

��������������
ℵ(μ) + ℵ(]) − 2
ℵ(μ) ·ℵ(])

􏽳

+ 􏽘
μ]∈E 4,4{ }

��������������
ℵ(μ) + ℵ(]) − 2
ℵ(μ) ·ℵ(])

􏽳

+ 􏽘
μ]∈E 4,6{ }

��������������
ℵ(μ) + ℵ(]) − 2
ℵ(μ) · ℵ(])

􏽳

+ 􏽘
μ]∈E 6,6{ }

��������������
ℵ(μ) + ℵ(]) − 2
ℵ(μ) ·ℵ(])

􏽳

� 4
�������
2 + 2 − 2
2 · 2

􏽲

+ 8
�������
2 + 4 − 2
2 · 4

􏽲

+(12n − 16)

�������
2 + 6 − 2
2 · 6

􏽲

+(6n − 6)

�������
4 + 4 − 2
4 · 4

􏽲

+(12n − 20)

�������
4 + 6 − 2
4 · 6

􏽲

+ 6(n − 2)
2

�������
6 + 6 − 2
6 · 6

􏽲

.

(11)
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We get the outcomes after estimates:

ABC(G) � 3.2n
2

− 10.6n − 10.2. (12)

Theorem 2. 4e geometric-arithmetic index of Star of David
network is

GA(G) � 6n
2

+ 4.2n − 6.46. (13)

Proof. Let G be the graph of Star of David network. By using
Table 1, we apply the formula of geometric-arithmetic index
for G:

GA(G) � 􏽘
μ]∈E(G)

2
����������
ℵ(μ) ·ℵ(])

􏽰

ℵ(μ) + ℵ(])

� 􏽘
μ]∈E(2,2)

2
����������
ℵ(μ) · ℵ(])

􏽰

ℵ(μ) + ℵ(])
+ 􏽘

μ]∈E(2,4)

2
����������
ℵ(μ) · ℵ(])

􏽰

ℵ(μ) + ℵ(])
+ 􏽘

μ]∈E(2,6)

2
����������
ℵ(μ) · ℵ(])

􏽰

ℵ(μ) + ℵ(])

Figure 1: Star of David.

Figure 2: Star of David network.

Table 1: Star of David network edge partition.

Types of edges E 2, 2{ } E 2, 4{ } E 2, 6{ } E 4, 4{ } E 4, 6{ } E 6, 6{ }

Number of edges (2, 2) (2, 4) (2, 6) (4, 4) (4, 6) (6, 6)

Frequency 4 8 12n − 16 6n − 6 12n − 20 6(n − 2)2
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+ 􏽘
μ]∈E(4,4)

2
����������
ℵ(μ) ·ℵ(])

􏽰

ℵ(μ) + ℵ(])
+ 􏽘

μ]∈E(4,6)

2
����������
ℵ(μ) · ℵ(])

􏽰

ℵ(μ) + ℵ(])
+ 􏽘

μ]∈E(6,6)

2
����������
ℵ(μ) · ℵ(])

􏽰

ℵ(μ) + ℵ(])

� 4 · 2
����
2 · 2

√

2 + 2
+ 8 · 2

����
2 · 4

√

2 + 4
+(12n − 16) · 2

����
2 · 6

√

2 + 6

+(6n − 6) · 2
����
4 · 4

√

4 + 4
+(12n − 20) · 2

����
4 · 6

√

4 + 6
+ 6(n − 2)

2
· 2

����
6 · 6

√

6 + 6
� 6n

2
+ 4.2n − 6.46.

(14)

Theorem 3. 4e first Zagreb index of Star of David network is

M1(G) � 72n
2

− 24n − 24. (15)

Proof. Let G be the graph of Star of David network. By using
Table 1, we apply the formula of the first Zagreb index for G:

M1(G) � 􏽘
μ]∈E(G)

(ℵ(μ) +ℵ(]))

� 􏽘
μ]∈E(2,2)

(ℵ(μ) + ℵ(])) + 􏽘
μ]∈E(2,4)

(ℵ(μ) + ℵ(])) + 􏽘
μ]∈E(2,6)

(ℵ(μ) + ℵ(]))

+ 􏽘
μ]∈E(4,4)

(ℵ(μ) + ℵ(])) + 􏽘
μ]∈E(4,6)

(ℵ(μ) + ℵ(])) + 􏽘
μ]∈E(6,6)

(ℵ(μ) +ℵ(]))

� 4(2 + 2) + 8(2 + 4) +(12n − 16)(2 + 6) +(6n − 6)(4 + 4)

+(12n − 20)(4 + 6) + 6(n − 2)
2
(6 + 6).

(16)

We get the outcomes after estimates:

M1(G) � 72n
2

− 24n − 24. (17)

Theorem 4. 4e second Zagreb index of Star of David
network is

M2(G) � 216n
2

− 336n + 176. (18)

Proof. Let G be the graph of Star of David network. By using
Table 1, we apply the formula of the second Zagreb index for
G:

M2(G) � 􏽘
μ]∈E(G)

(ℵ(μ) ·ℵ(]))

� 􏽘
μ]∈E(2,2)

(ℵ(μ) · ℵ(])) + 􏽘
μ]∈E(2,4)

(ℵ(μ) · ℵ(])) + 􏽘
μ]∈E(2,6)

(ℵ(μ) ·ℵ(]))

+ 􏽘
μ]∈E(4,4)

(ℵ(μ) ·ℵ(])) + 􏽘
μ]∈E(4,6)

(ℵ(μ) · ℵ(])) + 􏽘
μ]∈E(6,6)

(ℵ(μ) · ℵ(]))

� 4(2 · 2) + 8(2 · 4) +(12n − 16)(2 · 6) +(6n − 6)(4 · 4) +(12n − 20)(4 · 6)

+ 6(n − 2)
2
(6 · 6)

� 216n
2

− 336n + 176.

(19)

Theorem 5. 4e redefined first Zagreb index of Star of David
network is

ReZG1(G) � 2n
2

+ 8n − 3.97. (20)

Proof. Let G be the graph of Star of David network. By using
Table 1, we apply the formula of the redefined first Zagreb
index for G:
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ReZG1(G) � 􏽘
μ]∈E(G)

ℵ(μ) + ℵ(])

ℵ(μ) ·ℵ(])

� 􏽘
μ]∈E(2,2)

ℵ(μ) + ℵ(])

ℵ(μ) ·ℵ(])
+ 􏽘

μ]∈E(2,4)

ℵ(μ) + ℵ(])

ℵ(μ) · ℵ(])
+ 􏽘

μ]∈E(2,6)

ℵ(μ) + ℵ(])

ℵ(μ) · ℵ(])

+ 􏽘
μ]∈E(4,4)

ℵ(μ) +ℵ(])

ℵ(μ) ·ℵ(])
+ 􏽘

μ]∈E(4,6)

ℵ(μ) + ℵ(])

ℵ(μ) ·ℵ(])
+ 􏽘

μ]∈E(6,6)

ℵ(μ) + ℵ(])

ℵ(μ) · ℵ(])

� 4 ·
2 + 2
2 · 2

+ 8 ·
2 + 4
2 · 4

+(12n − 16) ·
2 + 6
2 · 6

+(6n − 6)
4 + 4
4 · 4

+(12n − 20)
4 + 6
4 · 6

+ 6(n − 2)
26 + 6
6 · 6

.

(21)

We get the outcomes after estimates:

ReZG1(G) � 2n
2

+ 8n − 3.97. (22)

Theorem 6. 4e redefined second Zagreb index of Star of
David network is

ReZG2(G) � 18n
2

− 13.2n + 2.67. (23)

Proof. Let G be the graph of Star of David network. By using
Table 1, we apply the formula of the redefined second Zagreb
index for G:

ReZG2(G) � 􏽘
μ]∈E(G)

ℵ(μ) ·ℵ(])

ℵ(μ) + ℵ(])

� 􏽘
μ]∈E(2,2)

ℵ(μ) ·ℵ(])

ℵ(μ) + ℵ(])
+ 􏽘

μ]∈E(2,4)

ℵ(μ) · ℵ(])

ℵ(μ) + ℵ(])
+ 􏽘

μ]∈E(2,6)

ℵ(μ) · ℵ(])

ℵ(μ) + ℵ(])

+ 􏽘
μ]∈E(4,4)

ℵ(μ) ·ℵ(])

ℵ(μ) +ℵ(])
+ 􏽘

μ]∈E(4,6)

ℵ(μ) ·ℵ(])

ℵ(μ) + ℵ(])
+ 􏽘

μ]∈E(6,6)

ℵ(μ) · ℵ(])

ℵ(μ) + ℵ(])

� 4 ·
2 · 2
2 + 2

+ 8 ·
2 · 4
2 + 4

+(12n − 16) ·
2 · 6
2 + 6

+(6n − 6)
4 · 4
4 + 4

+(12n − 20)
4 · 6
4 + 6

+ 6(n − 2)
2 6 · 6
6 + 6

.

(24)

We get the outcomes after estimates:

ReZG2(G) � 18n
2

− 13.2n + 2.67. (25)

Theorem 7. 4e redefined third Zagreb index of Star of
David network is

ReZG3(G) � 2592n
2

− 5568n + 3712. (26)

Proof. Let G be the graph of Star of David network. By using
Table 1, we apply the formula of the redefined third Zagreb
index for G:

ReZG3(G) � 􏽘
μ]∈E(G)

(ℵ(μ) ·ℵ(]))(ℵ(μ) + ℵ(]))

� 􏽘
μ]∈E(2,2)

(ℵ(μ) · ℵ(]))(ℵ(μ) + ℵ(])) + 􏽘
μ]∈E(2,4)

(ℵ(μ) · ℵ(]))(ℵ(μ) +ℵ(]))
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+ 􏽘
μ]∈E(2,6)

(ℵ(μ) · ℵ(]))(ℵ(μ) +ℵ(])) + 􏽘
μ]∈E(4,4)

(ℵ(μ) ·ℵ(]))(ℵ(μ) + ℵ(]))

+ 􏽘
μ]∈E(4,6)

(ℵ(μ) · ℵ(]))(ℵ(μ) +ℵ(])) + 􏽘
μ]∈E(6,6)

(ℵ(μ) ·ℵ(]))(ℵ(μ) + ℵ(]))

� 4(2 · 2)(2 + 2) + 8(2 · 4)(2 + 4) +(12n − 16)(2 · 6)(2 + 6)

+(6n − 6)(4 · 4)(4 + 4) +(12n − 20)(4 · 6)(4 + 6) + 6(n − 2)
2
(6 · 6)(6 + 6).

(27)

We get the outcomes after estimates:

ReZG3(G) � 2592n
2

− 5568n + 3712. (28)

Theorem 8. 4e forgotten TI of Star of David network is

F(G) � 432n
2

− 432n + 48. (29)

Proof. Let G be the graph of Star of David network. By using
Table 1, we apply the formula of forgotten TI for G:

F(G) � 􏽘
μ]∈E(G)

(ℵ(μ))
2

+(ℵ(]))
2

� 􏽘
μ]∈E(2,2)

(ℵ(μ))
2

+(ℵ(]))
2

+ 􏽘
μ]∈E(2,4)

(ℵ(μ))
2

+(ℵ(]))
2

+ 􏽘
μ]∈E(2,6)

(ℵ(μ))
2

+(ℵ(]))
2

+ 􏽘
μ]∈E(4,4)

(ℵ(μ))
2

+(ℵ(]))
2

+ 􏽘
μ]∈E(4,6)

(ℵ(μ))
2

+(ℵ(]))
2

+ 􏽘
μ]∈E(6,6)

(ℵ(μ))
2

+(ℵ(]))
2

� 4 22 + 22􏼐 􏼑 + 8 22 + 42􏼐 􏼑 +(12n − 16) 22 + 62􏼐 􏼑 +(6n − 6) 42 + 42􏼐 􏼑

+(12n − 20) 42 + 62􏼐 􏼑 + 6(n − 2)
2 62 + 62􏼐 􏼑.

(30)

We get the outcomes after estimates:

F(G) � 432n
2

− 432n + 48. (31)

Theorem 9. 4e Randić indices of Star of David network are

R1(G) � 216n
2

− 336n + 176,

R1/2(G) � 36n
2

+ 220.4n + 85.4,

R− 1/2(G) � n
2

+ 3.4n − 1.4,

R− 1(G) � 0.17n
2

+ 1.2n − 0.54.

(32)

Proof. Let G be the graph of Star of David network. By using
Table 1, we apply the formula of the general Randić index for
G:

Rα(G) � 􏽘
μ]∈E(G)

(ℵ(μ) ·ℵ(]))
α
.

(33)

For α � 1,

R1(G) � 􏽘
μ]∈E(G)

(ℵ(μ) ·ℵ(]))

� 􏽘
μ]∈E(2,2)

(ℵ(μ) ·ℵ(])) + 􏽘
μ]∈E(2,4)

(ℵ(μ) · ℵ(])) + 􏽘
μ]∈E(2,6)

(ℵ(μ) ·ℵ(]))

+ 􏽘
μ]∈E(4,4)

(ℵ(μ) ·ℵ(])) + 􏽘
μ]∈E(4,6)

(ℵ(μ) ·ℵ(])) + 􏽘
μ]∈E(6,6)

(ℵ(μ) · ℵ(]))

� 4(2 · 2) + 8(2 · 4) +(12n − 16)(2 · 6) +(6n − 6)(4 · 4)

+(12n − 20)(4 · 6) + 6(n − 2)
2
(6 · 6).

(34)
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We get the outcomes after estimates:

R1(G) � 216n
2

− 336n + 176. (35)

For α � 1/2,

R1/2(G) � 􏽘
μ]∈E(G)

(ℵ(μ) ·ℵ(]))
1/2

� 􏽘
μ]∈E(2,2)

(ℵ(μ) · ℵ(]))
1/2

+ 􏽘
μ]∈E(2,4)

(ℵ(μ) ·ℵ(]))
1/2

+ 􏽘
μ]∈E(2,6)

(ℵ(μ) · ℵ(]))
1/2

􏽘
μ]∈E(4,4)

(ℵ(μ) ·ℵ(]))
1/2

+ 􏽘
μ]∈E(4,6)

(ℵ(μ) ·ℵ(]))
1/2

+ 􏽘
μ]∈E(6,6)

(ℵ(μ) · ℵ(]))
1/2

� 4(2 · 2)
1/2

+ 8(2 · 4)
1/2

+(12n − 16)(2 · 6)
1/2

+(6n − 6)(4 · 4)
1/2

+(12n − 20)(4 · 6)
1/2

+ 6(n − 2)
2
(6 · 6)

1/2
.

(36)

We get the outcomes after estimates:

R1/2(G) � 36n
2

+ 220.4n + 85.4. (37)

For α � − 1/2,

R− 1/2(G) � 􏽘
μ]∈E(G)

(ℵ(μ) ·ℵ(]))
− 1/2

� 􏽘
μ]∈E(2,2)

(ℵ(μ) ·ℵ(]))
− 1/2

+ 􏽘
μ]∈E(2,4)

(ℵ(μ) ·ℵ(]))
− 1/2

+ 􏽘
μ]∈E(2,6)

(ℵ(μ) ·ℵ(]))
− 1/2

􏽘
μ]∈E(4,4)

(ℵ(μ) · ℵ(]))
− 1/2

+ 􏽘
μ]∈E(4,6)

(ℵ(μ) · ℵ(]))
− 1/2

+ 􏽘
μ]∈E(6,6)

(ℵ(μ) · ℵ(]))
− 1/2

� 4(2 · 2)
− 1/2

+ 8(2 · 4)
− 1/2

+(12n − 16)(2 · 6)
− 1/2

+(6n − 6)(4 · 4)
− 1/2

+(12n − 20)(4 · 6)
− 1/2

+ 6(n − 2)
2
(6 · 6)

− 1/2
.

(38)

We get the outcomes after estimates:

R− 1/2(G) � n
2

+ 3.4n − 1.4. (39)

For α � − 1,

R− 1(G) � 􏽘
μ]∈E(G)

(ℵ(μ) ·ℵ(]))
− 1

� 􏽘
μ]∈E(2,2)

(ℵ(μ) ·ℵ(]))
− 1

+ 􏽘
μ]∈E(2,4)

(ℵ(μ) ·ℵ(]))
− 1

+ 􏽘
μ]∈E(2,6)

(ℵ(μ) ·ℵ(]))
− 1

+ 􏽘
μ]∈E(4,4)

(ℵ(μ) ·ℵ(]))
− 1

+ 􏽘
μ]∈E(4,6)

(ℵ(μ) ·ℵ(]))
− 1

+ 􏽘
μ]∈E(6,6)

(ℵ(μ) · ℵ(]))
− 1

� 4(2 · 2)
− 1

+ 8(2 · 4)
− 1

+(12n − 16)(2 · 6)
− 1

+(6n − 6)(4 · 4)
− 1

+(12n − 20)(4 · 6)
− 1

+ 6(n − 2)
2
(6 · 6)

− 1
.

(40)

We get the outcomes after estimates:

R− 1(G) � 0.17n
2

+ 1.2n − 0.54. (41)

4.1. 3DGraphicalRepresentationofTopological Indices for Star
ofDavidNetworks. +e TIs of the Star of David Network are
illustrated graphically in Figure 3.+e evolution of TIs along
various parameters is portrayed in graphs. Despite the fact
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Table 2: Numerical comparison of Star of David network.

n ABC(G) GA(G) M1(G) M2(G) ReZG1(G) ReZG2(G) ReZG3(G) F(G)

1 − 17.6 − 21.8 24 56 6.03 7.47 736 48
2 − 18.6 − 149.6 216 368 20.03 48.27 2944 912
3 − 13.2 − 553.4 552 1112 38.03 125.07 10 336 2640
4 − 1.4 − 1377.2 1032 2288 60.03 237.87 22 912 5232
5 16.8 − 2765 1656 3896 86.03 386.67 40 672 8688
6 41.4 − 4860.8 2424 5936 116.03 571.47 63 616 13 008
7 72.4 − 7808.6 3336 8408 150.03 792.27 91 744 18192
8 109.8 − 11 752.4 4392 11 312 188.03 1049.07 125 056 24 240
9 153.6 − 16 836.2 5592 14 648 230.03 1341.87 163 552 31 152
10 203.8 − 23 204 6936 18 416 276.03 1670.67 207 232 38 928

Table 3: Numerical comparison of Star of David networks.

n 1 2 3 4 5 6 7 8 9 10
R1(G) 56 368 1112 2288 3896 5936 8408 11 312 14 648 18 416
R1/2(G) 341.8 670.2 1070.6 1543 2087.4 2703.8 3392.2 4152.6 4985 5889.4
R− 1/2(G) 3 9.4 17.8 28.2 40.6 55 71.4 89.8 110.2 132.6
R− 1(G) 0.83 2.54 4.59 6.98 9.71 12.78 16.19 19.94 24.03 28.46
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that the graphs appear to be similar, their gradients differ. In
Figures 4 and 5, we give a two-dimensional numerical
comparison of Star of David networks. We discuss the
numerical comparison of Star of David networks with
different degree-based topological indices in Tables 2 and 3.

5. Comparison of Results for Topological
Indices of Star of David Networks

6. Conclusion

TIs for Star of David networks are computed in this paper; as
well as, the analytic closed algorithms are reviewed and
specified for these networks, namely, the general Randić
index, the atomic-bond connectivity index, and the geo-
metric-arithmetic index, as well as the first and second
Zagreb index and closed formulas of this network were
determined that will help network scientists in under-
standing and exploring the fundamental topologies of such
networks. Computer scientists and chemists who work with
Hex-derived networks may find these discoveries valuable.
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)is article comprises the study of differential subordination with analogue of q-derivative. It includes the sufficient condition on c

for 1 + (czzqh(z)/hn(z)) to be subordinated by (1 + Az/1 + Bz), − 1≤B<A≤ 1, and implies that h(z)≺
�����
1 + z

√
, where h(z) is the

analytic function in the open unit disk. Moreover, certain sufficient conditions for q-starlikeness of analytic functions related with
lemniscate of Bernoulli are determined.

1. Introduction

Let a set A be considered as the class of analytic functions
defined in open unit disk U � ς: ς ∈ C and |ς|< 1{ } under
normalization conditions f(0) � 0 and f′(0) � 1, having

f(ς) � ς + 􏽘
∞

n�2
anς

n
, ς ∈ U, (1)

as Taylor series. )e class S comprises the normalized
univalent functions, defined inU.)emajor subcategories of
class S are C of convex functions and S∗ of starlike functions.
)e class P is another important class of analytic univalent
functions whose co-domains are restricted to the right half
plane and are used to determine the convexity and star-
likeness of univalent functions. For more details, see [1, 2].

Let f and g be two analytic functions in U. )en, f is
subordinated by g, denoted as f≺g iff can be written in the
form of composition of g andϖ as f(ς) � g(ϖ(ς)) subject to
the existence of analytic function ϖ which satisfies the
condition that ϖ(0) � 0 and |ϖ(ς)|< |ς|. Furthermore, if
bothf and g are univalent functions inU, then f≺g implies
that f(0) � g(0) and f(U) ⊂ g(U).

Subordination plays an important role in univalent func-
tion theory, and this concept was first introduced by Lindelöf,
but Littlewood [3, 4] contributed remarkably to this field.

Differential subordination is actually the generalized version of
differential inequalities with real variables. Many researchers
contributed in the work related to differential subordinations.
Historical developments in the field of differential subordi-
nation are briefly described by Miller and Mocanu in [5].

)e advancement in the field of differential subordi-
nation starts with the usage of univalent functions. It was
noticed in an article byMiller et al. [6] in 1974. Furthermore,
many developments in this field have been achieved with the
usage of differential subordinations in past fifty years.
Differential inequality was a very well-known concept of real
variables, and to study it in terms of complex variables,
Miller and Mocanu [7] in 1981 were the first ones to in-
troduce the idea of differential subordination. )e contri-
bution of Ruscheweyh and Singh [8] and Ruscheweyh and
Wilken [9] is also of great importance in this field. Well-
known Jack’s lemma [10] has brought the advancements in
differential subordinations. Dziok [11] worked on some of
the applications of Jack’s lemma. )e research work carried
out by Ma and Minda [12] in the function theory is worth to
mention here, as they introduced the analytic function Φ,
which satisfies the conditions of normalizationΦ(0) � 0 and
Φ′(0)> 1 having real part positive. )e authors in [12]
utilized the function Φ and introduced the subclass S∗(Φ)

of starlike functions as follows:
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S
∗
(Φ) � f ∈ A:

ςf′(ς)
f(ς)
≺Φ(ς); ς ∈ U􏼨 􏼩. (2)

)e idea presented in [12] is very useful, and it helped
many researchers for further studies in this direction. Ali
et al. [13, 14] worked on differential subordination for
sufficiency criteria of Janowski starlikeness and evaluated
several differential subordinations such as 1 + cς
(p′(ς)/pn(ς)) and found p(ς)≺

����
1 + ς

√
. Also, Ravichan-

dran et al. [15] used this concept to find the sufficient
conditions for starlikeness of Bernoulli’s lemniscate and
Janowski functions. Sharma et al. [16] studied the dif-
ferential subordinations to prove the starlikeness asso-
ciated with cardioid domain and Halim et al. [17]
introduced the concept for limacon domain.

Jackson [18, 19] was the one who introduced the
q-derivatives and q-integrals. After Jackson, Srivastava was
amongst the pioneers to contribute in the q-calculus for its
usage for analytic functions and their subclasses. Not only
this, but he also applied q-hypergeometric function in the
functions theory. All these contributions are comprised in
his book (pp. 347 in [20]). Ismail et al. [21] contributed in
the q-calculus for the study of starlike functions. Anastassiu
and Gal [22, 23] also played their part in the development
of complex variables with q-generalization. Purohit et al.
[24] have used fractional q-calculus operators to apply
subordination conditions on the class of non-Bazilevic
functions. Sahoo and Agrawal [25] worked on starlike
functions in q-calculus and extended the idea of q-star-
likeness for particular subclasses of starlike functions. )e
involvement of q-derivative in the class S∗(Φ) gave the
formation of following subclassS∗q (Φ) of starlike functions
which was introduced by Aouf and Seoudy [26].

S
∗
q (Φ) � f ∈ A:

ςDqf(ς)
f(ς)
≺Φ(ς); ς ∈ U􏼨 􏼩. (3)

)e class described above has drawn the attention of
many researchers. ReplacingΦ(ς) with different functions
such as Janowski, lemniscate of Bernoulli, cardioid, and
limacon, the researchers got the new directions to the
study. Srivastava et al. [27] studied q-derivatives to find
the relation between different classes of q-starlike func-
tions related to Janowski function. Srivastava et al. [28]
introduced the class of q-starlike functions by using
general conic domains. )ey also obtained the bounds on
Hankel and Toeplitz determinants for q-starlike functions
and continued working par excellence. )ey produced
unmatchable results that worked as great motivation for
many researchers worldwide. To have an idea of their
remarkable work, one can see [29–31], [20, 27, 28, 32–43].
Contributions of Haq et al. [44] and Zainab et al. [45] are
also worth to mention. )ey studied q-analogue of dif-
ferential subordinations for star-like functions related to
limacon and cardioid domains, and Janowski functions.
)e q-derivative is the foundation of all this work in
q-analogue, and it is defined as follows.

)e q-derivative of a complex valued function f, defined
in the domain U, is given as follows:

Dqf􏼐 􏼑(ς) �

f(ς) − f(qς)
(1 − q)ς

, ς≠ 0,

f′(0), ς � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where 0< q< 1. )is implies the following:

lim
q⟶1−

Dqf􏼐 􏼑(ς) � lim
q⟶1−

f(ς) − f(qς)
(1 − q)ς

� f′(ς), (5)

on the assumption that the function f is differentiable in U.
)e q-derivative Dqf of an analytic function f has Taylor
series of the form

Dqf􏼐 􏼑(ς) � 􏽘
∞

n�0
[n]q an ς

n− 1
, (6)

where

[n]q �

1 − q
n

1 − q
, n ∈ C,

􏽘

n− 1

k�0
q

k
, n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

For more details about q-derivative and recent work on
it, we refer the readers to [29–31], [20, 27, 28, 32–43]. In
addition, the q-analogue of Jack’s lemma has played a vital
role in this paper which states as follows.

Lemma 1 (see [46]). Let ϖ be an analytic function in U with
ϖ(0) � 0. For maximum of ϖ on |ς| � 1 at ς0 � aeiθ, where
θ ∈ [− π, π] and 0< q< 1, then we have

ς0Dqϖ ς0( 􏼁 � mϖ ς0( 􏼁, (8)

where m ∈ R with m≥ 1.

2. Main Results

Theorem 1. Assume that

|c|≥
(A − B)(

�
2

√
+

����
3 − q

􏽰
)

(1 − |B|)
, − 1<B<A≤ 1. (9)

Consider an analytic function h on U with h(0) � 1
which satisfies

1 + cςDqh(ς)≺
1 + Aς
1 + Bς

, ς ∈ U. (10)

Also, suppose

1 + cςDqh(ς) �
1 + Aϖ(ς)
1 + Bϖ(ς)

, ς ∈ U. (11)

Here, ϖ is an analytic function in U such that ϖ(0) � 0.
)en, we have

h(ς)≺
����
1 + ς

􏽰
. (12)

Proof. Suppose that
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p(ς) � 1 + cςDqh(ς), (13)

where p is analytic, and we have p(0) � 1. Also, consider that

h(ς) �
�������
1 + ϖ(ς)

􏽰
. (14)

Now, we prove that |ϖ(ς)|< 1, where

ϖ(ς) �
p(ς) − 1

A − Bp(ς)
. (15)

Using (13) and (14), we obtain

p(ς) � 1 + cς
Dqϖ(ς)

�������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱 .

(16)

Also, we have

p(ς) − 1
A − Bp(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cςDqϖ(ς)

(A − B)
�������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕 − BcςDqϖ(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (17)

Consider a point ς0 ∈ U such that

max
|ς|≤ ς0| |

|ϖ(ς)| � ϖ ς0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 1. (18)

Now, by using Lemma 1, we have
ς0Dqϖ(ς0) � mϖ(ς0), m≥ 1. Now, consider that
ϖ(ς0) � eiθ, θ ∈ [− π, π]; then, for ς0 ∈ U, we obtain

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cς0Dqϖ ς0( 􏼁

(A − B)
��������
1 + ϖ ς0( 􏼁

􏽱
+

������������������������
1 + ϖ ς0( 􏼁 − ς0Dqϖ ς0( 􏼁(1 − q)

􏽱
􏼔 􏼕 − Bcς0Dqϖ ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

≥
|c|m

(A − B)
�������
|1| + e

iθ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱
+

�������������������
|1| + e

iθ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + me
iθ

(1 − q)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

􏼔 􏼕 +|B||c|m
,

�
|c|m

(A − B)[
�
2

√
+

�����������
2 + m(1 − q)

􏽰
] +|B||c|m

.

(19)

Consider a new function

Ξ(m) �
|c|m

(A − B)[
�
2

√
+

�����������
2 + m(1 − q)

􏽰
] +|B||c|m

. (20)

)en,

Ξ′(m) �
|c|[(A − B)

�
2

√
+

�����������
2 + m(1 − q)

􏽰
􏼈 􏼉] − |c|m[((A − B)(1 − q)/2

�����������
2 + m(1 − q)

􏽰
)]

[(A − B)
�
2

√
+

�����������

2 + m(1 − q)

􏽱

􏼚 􏼛 +|B||c|m]
2

> 0. (21)

Above expression represents that the function Ξ has in-
creasing behavior, so we have its minimum value at m � 1 and

Ξ(1) �
|c|

(A − B)[
�
2

√
+

����
3 − q

􏽰
] +|B||c|

. (22)

So, we conclude that
p ς0( 􏼁 − 1

A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

|c|

(A − B)[
�
2

√
+

����
3 − q

􏽰
] +|B||c|

. (23)

Now, from (9), we have

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ 1, (24)

Since this result contradicts (10), therefore, |ϖ(ς)|< 1,
which completes the proof.

By taking h(ς) � (ςDqf(ς)/f(ς)), we deduce the fol-
lowing result. □

Corollary 1. Let |c|≥ ((A − B)(
�
2

√
+

����
3 − q

􏽰
)/(1 − |B|)),

− 1<B<A≤ 1 and f ∈ A, satisfy the subordination

Journal of Mathematics 3



1 + cςDq

ςDqf(ς)
f(ς)

􏼠 􏼡≺
1 + Aς
1 + Bς

. (25)

)en, f ∈ S∗q (
����
1 + ς

√
).

Theorem 2. Assume that

|c|≥
�
2

√
(A − B)(

�
2

√
+

����
3 − q

􏽰
)

(1 − |B|)
, − 1<B<A≤ 1. (26)

Consider an analytic function h on U with h(0) � 1
which satisfies

1 +
cςDqh(ς)

h(ς)
≺
1 + Aς
1 + Bς

, ς ∈ U. (27)

Also, suppose

1 +
cςDqh(ς)

h(ς)
�
1 + Aϖ(ς)
1 + Bϖ(ς)

, ς ∈ U, (28)

where ϖ is analytic function on U with ϖ(0) � 0. )en,

h(ς)≺
����
1 + ς

􏽰
. (29)

Proof. We define a function

p(ς) � 1 +
cςDqh(ς)

h(ς)
, (30)

where p is analytic and p(0) � 1. Now, consider that

h(ς) �
�������
1 + ϖ(ς)

􏽰
. (31)

To obtain the result, we have to show that |ϖ(ς)|< 1.
Using (30) and (31), we obtain the result

p(ς) � 1 + cς
Dqϖ(ς)

�������
1 + ϖ(ς)

􏽰 �������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕

. (32)

Also, we have

p(ς) − 1
A − Bp(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cςDqϖ(ς)

(A − B)
�������
1 + ϖ(ς)

􏽰 �������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕 − BcςDqϖ(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (33)

Consider a point ς0 ∈ U such that

max
|ς|≤ ς0| |

|ϖ(ς)| � ϖ ς0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 1. (34)

Now, by using Lemma 1, we have
ς0Dqϖ(ς0) � mϖ(ς0), m≥ 1. Now, consider that
ϖ(ς0) � eiθ, θ ∈ [− π, π]; then, for ς0 ∈ U, we obtain

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cme
iθ

(A − B)
�����
1 + e

iθ
􏽰 �����

1 + e
iθ

􏽰
+

�����������������

1 + e
iθ

− me
iθ

(1 − q)

􏽱

􏼔 􏼕 − Bcme
iθ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

≥
|c|m

(A − B)
�������
|1| + e

iθ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱 �������
|1| + e

iθ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱
+

�������������������
|1| + e

iθ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + me
iθ

(1 − q)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

􏼔 􏼕 +|B||c|m
,

�
|c|m

(A − B)
�
2

√
[

�
2

√
+

�����������
2 + m(1 − q)

􏽰
] +|B||c|m

.

(35)

Consider
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Ξ1(m) �
|c|m

(A − B)
�
2

√
[

�
2

√
+

�����������
2 + m(1 − q)

􏽰
] +|B||c|m

.

(36)

)en,

Ξ1′(m) �
|c|[(A − B)

�
2

√ �
2

√
+

�����������
2 + m(1 − q)

􏽰
􏼈 􏼉] − |c|m[(

�
2

√
(A − B)(1 − q)/2

�����������
2 + m(1 − q)

􏽰
)]

[(A − B)
�
2

√ �
2

√
+

�����������

2 + m(1 − q)

􏽱

􏼚 􏼛 +|B||c|m]
2

> 0. (37)

Above expression represents that function Ξ1 has in-
creasing behavior, so we have its minimum value at m � 1
and

Ξ1(1) �
|c|

(A − B)
�
2

√
[

�
2

√
+

����
3 − q

􏽰
] +|B||c|

. (38)

So, we conclude that

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

|c|

(A − B)
�
2

√
[

�
2

√
+

����
3 − q

􏽰
] +|B||c|

. (39)

Now, from (26), we have

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ 1, (40)

which contradicts (27), and hence, |ϖ(ς)|< 1, which com-
pletes the proof.

By taking h(ς) � (ςDqf(ς)/f(ς)),we deduce the fol-
lowing result. □

Corollary 2. Let |c|≥
�
2

√
((A − B)(

�
2

√
+

����
3 − q

􏽰
)/

(1 − |B|)), − 1<B<A≤ 1 and f ∈ A, which satisfies the
subordination

1 + cς
f(ς)

ςDqf(ς)
􏼠 􏼡Dq

ςDqf(ς)
f(ς)

􏼠 􏼡≺
1 + Aς
1 + Bς

. (41)

)en, f ∈ S∗q (
����
1 + ς

√
).

Theorem 3. Assume that

|c|≥
2(A − B)(

�
2

√
+

����
3 − q

􏽰
)

(1 − |B|)
, − 1<B<A≤ 1. (42)

Consider an analytic function h on U with h(0) � 1
which satisfies

1 +
cςDqh(ς)

h
2
(ς)
≺
1 + Aς
1 + Bς

, ς ∈ U. (43)

Also, suppose

1 +
cςDqh(ς)

h
2
(ς)

�
1 + Aϖ(ς)
1 + Bϖ(ς)

, ς ∈ U, (44)

where ϖ is analytic function on U with ϖ(0) � 0. )en,

h(ς)≺
����
1 + ς

􏽰
. (45)

Proof. We define a function

p(ς) � 1 +
cςDqh(ς)

h
2
(ς)

, (46)

where p is analytic, and we have p(0) � 1. Now, consider
that

h(ς) �
�������
1 + ϖ(ς)

􏽰
. (47)

To obtain the result, we have to show that |ϖ(ς)|< 1.
Using (46) and (47), we obtain the result

p(ς) � 1 + cς
Dqϖ(ς)

�������
1 + ϖ(ς)

􏽰 �������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕

. (48)

Also, we have

p(ς) − 1
A − Bp(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cςDqϖ(ς)

(A − B)
�������
1 + ϖ(ς)

􏽰 �������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕 − BcςDqϖ(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (49)
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Consider a point ς0 ∈ U such that

max
|ς|≤ ς0| |

|ϖ(ς)| � ϖ ς0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 1. (50)

Now, by using Lemma 1, we have
ς0Dqϖ(ς0) � mϖ(ς0), m≥ 1. Now, consider that
ϖ(ς0) � eiθ, θ ∈ [− π, π]; then, for ς0 ∈ U, we obtain

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cme
iθ

(A − B)
�����
1 + e

iθ
􏽰 �����

1 + e
iθ

􏽰
+

�����������������

1 + e
iθ

− me
iθ

(1 − q)

􏽱

􏼔 􏼕 − Bcme
iθ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

≥
|c|m

(A − B)
�������
|1| + e

iθ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱 �������
|1| + e

iθ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱
+

�������������������
|1| + e

iθ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + me
iθ

(1 − q)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

􏼔 􏼕 +|B||c|m
,

�
|c|m

(A − B)2[
�
2

√
+

�����������
2 + m(1 − q)

􏽰
] +|B||c|m

.

(51)

Consider a function

Ξ2(m) �
|c|m

(A − B)2[
�
2

√
+

�����������
2 + m(1 − q)

􏽰
] +|B||c|m

.

(52)

)en,

Ξ2′(m) �
|c|[(A − B)2

�
2

√
+

�����������
2 + m(1 − q)

􏽰
􏼈 􏼉] − |c|m[(2(A − B)(1 − q)/2

�����������
2 + m(1 − q)

􏽰
)]

[(A − B)2
�
2

√
+

�����������

2 + m(1 − q)

􏽱

􏼚 􏼛 +|B||c|m]
2

> 0. (53)

Here, Ξ2 is clearly an increasing function, so we have its
minimum value at m � 1 and

Ξ2(1) �
|c|

2(A − B)[
�
2

√
+

����
3 − q

􏽰
] +|B||c|

. (54)

So, we conclude that

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

|c|

2(A − B)[
�
2

√
+

����
3 − q

􏽰
] +|B||c|

. (55)

Now, from (42), we have

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ 1, (56)

which contradict (43), and hence, |ϖ(ς)|< 1, which com-
pletes the proof.

By taking h(ς) � (ςDqf(ς)/f(ς)), we deduce the fol-
lowing result. □

Corollary 3. Let |c|≥ 2((A − B)(
�
2

√
+

����
3 − q

􏽰
)/(1 − |B|)),

− 1<B<A≤ 1 and f ∈ A, satisfies the subordination

1 + cς
f(ς)

ςDqf(ς)
􏼠 􏼡

2

Dq

ςDqf(ς)
f(ς)

􏼠 􏼡≺
1 + Aς
1 + Bς

. (57)

)en, f ∈ S∗q (
����
1 + ς

√
).

Theorem 4. Assume that

|c|≥
2

�
2

√
(A − B)(

�
2

√
+

����
3 − q

􏽰
)

(1 − |B|)
, − 1<B<A≤ 1. (58)

Consider an analytic function h on U with h(0) � 1
which satisfies

1 +
cςDqh(ς)

h
3
(ς)
≺
1 + Aς
1 + Bς

, ς ∈ U. (59)

Also, suppose

1 +
cςDqh(ς)

h
3
(ς)

�
1 + Aϖ(ς)
1 + Bϖ(ς)

, ς ∈ U, (60)

where ϖ is analytic function on U with ϖ(0) � 0. )en,

h(ς)≺
����
1 + ς

􏽰
. (61)

Proof. We define a function

p(ς) � 1 +
cςDqh(ς)

h
3
(ς)

, (62)
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where p is analytic, and we have p(0) � 1. Now, consider
that

h(ς) �
�������
1 + ϖ(ς)

􏽰
. (63)

To obtain the result, we have to show that |ϖ(ς)|< 1.
Using (62) and (63), we obtain

p(ς) � 1 + cς
Dqϖ(ς)

(1 + ϖ(ς))(3/2)
�������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕

. (64)

Also, we have

p(ς) − 1
A − Bp(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cςDqϖ(ς)

(A − B)(1 + ϖ(ς))(3/2)
�������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕 − BcςDqϖ(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (65)

Consider a point ς0 ∈ U such that

max
|ς|≤ ς0| |

|ϖ(ς)| � ϖ ς0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 1. (66)

Now, by using Lemma 1, we have
ς0Dqϖ(ς0) � mϖ(ς0), m≥ 1. Now, consider that
ϖ(ς0) � eiθ, θ ∈ [− π, π]; then, for ς0 ∈ U, we obtain

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cme
iθ

(A − B) 1 + e
iθ

􏼐 􏼑
(3/2)

�����

1 + e
iθ

􏽱

+

�����������������

1 + e
iθ

− me
iθ

(1 − q)

􏽱

􏼢 􏼣 − Bcme
iθ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

≥
|c|m

(A − B) |1| + e
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
(3/2) �������

|1| + e
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

+

�������������������

|1| + e
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + me
iθ

(1 − q)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

􏼔 􏼕 +|B||c|m

,

�
|c|m

(A − B)2(3/2)
[

�
2

√
+

�����������

2 + m(1 − q)

􏽱

] +|B||c|m
.

(67)

Consider a function

Ξ3(m) �
|c|m

2(3/2)
(A − B)[

�
2

√
+

�����������

2 + m(1 − q)

􏽱

] +|B||c|m
.

(68)

)en,

Ξ3′(m) �
|c| (A − B)2(3/2)

�
2

√
+

�����������

2 + m(1 − q)

􏽱

􏼚 􏼛􏼔 􏼕 − |c|m 2(3/2)
(A − B)(1 − q)/2

�����������

2 + m(1 − q)

􏽱

􏼒 􏼓􏼔 􏼕

(A − B)2(3/2)
�
2

√
+

�����������

2 + m(1 − q)

􏽱

􏼚 􏼛 +|B||c|m􏼔 􏼕
2 > 0. (69)
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Above expression represents that function Ξ3 has in-
creasing behavior, so we have its minimum value at m � 1
and

Ξ3(1) �
|c|

2(3/2)
(A − B)[

�
2

√
+

����
3 − q

􏽰
] +|B||c|

. (70)

So, we conclude that

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

|c|

2(3/2)
(A − B)[

�
2

√
+

����
3 − q

􏽰
] +|B||c|

.

(71)

Now, from (58), we have

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ 1, (72)

which contradicts (59), and hence, |ϖ(ς)|< 1, which com-
pletes the proof.

By taking h(ς) � (ςDqf(ς)/f(ς)), we deduce the fol-
lowing result. □

Corollary 5. Let |c|≥ 2
�
2

√
((A − B)(

�
2

√
+

����
3 − q

􏽰
)/

(1 − |B|)), − 1<B<A≤ 1 and f ∈ A, satisfy the subordination

1 + cς
f(ς)

ςDqf(ς)
􏼠 􏼡

3

Dq

ςDqf(ς)
f(ς)

􏼠 􏼡≺
1 + Aς
1 + Bς

. (73)

)en, f ∈ S∗q (
����
1 + ς

√
).

Theorem 6. Assume that

|c|≥
2(n/2)

(A − B)(
�
2

√
+

����
3 − q

􏽰
)

(1 − |B|)
, − 1<B<A≤ 1.

(74)

Consider an analytic function h on U with h(0) � 1
which satisfies

1 +
cςDqh(ς)

h
n
(ς)
≺
1 + Aς
1 + Bς

, ς ∈ U. (75)

Also, suppose

1 +
cςDqh(ς)

h
n
(ς)

�
1 + Aϖ(ς)
1 + Bϖ(ς)

, ς ∈ U, (76)

where ϖ is analytic function on U with ϖ(0) � 0. )en,

h(ς)≺
����
1 + ς

􏽰
. (77)

Proof. We define a function

p(ς) � 1 +
cςDqh(ς)

h
n
(ς)

, (78)

where p is analytic, and we have p(0) � 1. Now, consider
that

h(ς) �
�������
1 + ϖ(ς)

􏽰
. (79)

To obtain the result, we have to show that |ϖ(ς)|< 1.
Using (78) and (79), we obtain

p(ς) � 1 + cς
Dqϖ(ς)

(1 + ϖ(ς))(n/2)
�������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕

. (80)

Also, we have

p(ς) − 1
A − Bp(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cς Dqϖ(ς)/(1 + ϖ(ς))(n/2)
�������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕􏼒 􏼓

A − B 1 + cς Dqϖ(ς)/(1 + ϖ(ς))(n/2)
�������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕􏼒 􏼓􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
cςDqϖ(ς)

(A − B)(1 + ϖ(ς))(n/2)
�������
1 + ϖ(ς)

􏽰
+

����������������������
1 + ϖ(ς) − ςDqϖ(ς)(1 − q)

􏽱
􏼔 􏼕 − BcςDqϖ(ς)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(81)

Consider a point ς0 ∈ U such that
max

|ς|≤ ς0| |
|ϖ(ς)| � ϖ ς0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 1. (82)

Now, by using Lemma 1, we have
ς0Dqϖ(ς0) � mϖ(ς0), m≥ 1. Now, consider that
ϖ(ς0) � eiθ, θ ∈ [− π, π]; then, for ς0 ∈ U, we obtain
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p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

cς0Dqϖ ς0( 􏼁

(A − B) 1 + ϖ ς0( 􏼁( 􏼁
(n/2)

��������

1 + ϖ ς0( 􏼁

􏽱

+
������������������������
1 + ϖ ς0( 􏼁 − ς0Dqϖ ς0( 􏼁(1 − q)

􏽱
􏼔 􏼕 − Bcς0Dqϖ ς0( 􏼁

,

�
cme

iθ

(A − B) 1 + e
iθ

􏼐 􏼑
(n/2)

�����

1 + e
iθ

􏽱

+

�����������������

1 + e
iθ

− me
iθ

(1 − q)

􏽱

􏼢 􏼣 − Bcme
iθ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

≥
|c|m

(A − B) 1 + e
iθ

􏼐 􏼑
(n/2)

�����

1 + e
iθ

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

�����������������

1 + e
iθ

− me
iθ

(1 − q)

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢 􏼣 − |B||c|m

,

�
|c|m

(A − B) |1| + e
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
(n/2) �������

1 + e
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

+

������������������

1 + e
iθ

− me
iθ

(1 − q)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

􏼔 􏼕 +|B||c|m

,

≥
|c|m

(A − B) |1| + e
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
(n/2) �������

|1| + e
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

+

�������������������

|1| + e
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + me
iθ

(1 − q)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱

􏼔 􏼕 +|B||c|m

,

�
|c|m

(A − B)2(n/2)
[

�
2

√
+

�����������

2 + m(1 − q)

􏽱

] +|B||c|m
.

(83)

Consider

Ξ4(m) �
|c|m

2(n/2)
(A − B)[

�
2

√
+

�����������

2 + m(1 − q)

􏽱

] +|B||c|m
.

(84)

)en,

Ξ4′(m) �
|c| (A − B)2(n/2)

�
2

√
+

�����������

2 + m(1 − q)

􏽱

􏼚 􏼛􏼔 􏼕 − |c|m 2(n/2)
(A − B)(1 − q)/2

�����������

2 + m(1 − q)

􏽱

􏼒 􏼓􏼔 􏼕

(A − B)2(n/2)
�
2

√
+

�����������

2 + m(1 − q)

􏽱

􏼚 􏼛 +|B||c|m􏼔 􏼕
2 > 0. (85)

Above expression represents that functionΞ4 has increasing
behavior, so we have its minimum value at m � 1 and

Ξ4(1) �
|c|

2(n/2)
(A − B)[

�
2

√
+

����
3 − q

􏽰
] +|B||c|

. (86)

So, we conclude that
p ς0( 􏼁 − 1

A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

|c|

2(n/2)
(A − B)[

�
2

√
+

����
3 − q

􏽰
] +|B||c|

.

(87)

Now, from (74), we have

p ς0( 􏼁 − 1
A − Bp ς0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ 1, (88)

which contradict (75), and hence, |ϖ(ς)|< 1, which com-
pletes the proof.

By taking h(ς) � (ςDqf(ς)/f(ς)), we deduce the fol-
lowing result. □

Corollary 7. Let |c|≥ (2(n/2)(A − B)(
�
2

√
+

����
3 − q

􏽰
)/

(1 − |B|)), − 1<B<A≤ 1 and f ∈ A, satisfy the
subordination

1 + cς
f(ς)

ςDqf(ς)
􏼠 􏼡

n

Dq

ςDqf(ς)
f(ς)

􏼠 􏼡≺
1 + Aς
1 + Bς

. (89)

)en, f ∈ S∗q (
����
1 + ς

√
).
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3. Conclusion

In this article, we have investigated the q-differential sub-
ordination by using q-version of well-known Jack’s Lemma.
We have found the condition on c such that
1 + (cςDqh(ς)/hn(ς))≺ (1 + Aς/1 + Bς) implies that
h(ς)≺

����
1 + ς

√
. )ese results have been utilized to find suf-

ficient conditions for star-like functions related to lemnis-
cate of Bernoulli. )is method can further be applied to find
sufficient conditions for star-like functions of Ma–Minda
type.
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Mathématique Pures et Appliquées, vol. 19, pp. 213–224, 1974.

[7] S. S. Miller and P. T. Mocanu, “Differential subordinations
and univalent functions,” Michigan Mathematical Journal,
vol. 28, pp. 157–171, 1981.

[8] S. Ruscheweyh and V. Singh, “On a Briot-Bouquet equation
related to univalent functions,” Revue Roumaine de
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