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A range of new user interfaces and systems have been
developed as novel and relevant tools in neurorehabilitation,
allowing the implementation and exploration of new rehabil-
itation approaches and protocols to be complemented and to
improve upon traditional methods.

In this special issue bothmedical and engineering aspects
of these tools as well as state-of-the-art research trends have
been addressed in order to explore these types of solutions
and how they can support and/or extend current clinical or
home-based rehabilitation practices. The issue provides six
original research articles by some of the leading experts in the
field, covering development studies and studies investigating
evidence of the effectiveness of new technologies, devices,
specific applications, and treatment methodologies.

The paper of F. Trincado-Alonso et al. presents a study
on the development of new strategies based on virtual reality
(VR) that can provide additional information to clinicians
regarding rehabilitation assessment. It includes the definition
of set of metrics combining kinematic data in order to obtain
parameters of reaching amplitude, joint amplitude, agility,
accuracy, and repeatability during the evaluation sessions.

W. Chinthammit et al. report a pilot study that employs
a prototype telerehabilitation system called “Ghostman”. It is
a visual augmentation system designed to allow a physical
therapist and patient to inhabit each other’s viewpoint in
an augmented real-world environment. The presented initial
results look promising and suitable to be used in the field of
stroke rehabilitation.

J. R. Octavia and K. Coninx focus on integrating adap-
tivity and personalization in rehabilitation training for mul-
tiple sclerosis patients. Their findings showed that adaptive
personalized training trajectories have been successfully pro-
vided. Furthermore, they report on the development of posi-
tive social interaction during the collaborative rehabilitation
training.

A. M. Fenuta and A. L. Hicks present a detailed com-
parison of two commercial rehabilitation treadmills in terms
of oxygen demand and muscle activation during therapy.
Important and clear indications on the use of both devices
have been stated in the paper’s conclusions.

C. Cortes et al. provide a mathematical formulation and
implementation of a method to estimate the limb posture in
VR and robotic assisted rehabilitation systems. Additionally,
they present the details of a VR game platform for stroke
rehabilitation and the quantitative assessment of the method
during the analytic training of the elbow and wrist.

Finally, the paper of D. A. G. Galeano et al. proposes
a novel balance training platform which combines postural
analysis with synergistic electrical muscle stimulation and
is based on low-cost gaming interfaces. Results include the
technical validation of the platform using mediolateral and
anteroposterior sways as basic balance training therapies.

As the editors of this special issue, we hope that readers
will find these articles representative of the state-of-the-art
in novel user interfaces for neurorehabilitation. This special
issue highlights the latest research and developments in this
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important research field and the contributions it has made
to improve treatment outcomes for patients, clinical research
methodology, and the development of many practical appli-
cations.
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New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is
required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton
devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the
patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method
to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and
the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical
formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for
the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the
method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate
avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist
analytic rehabilitation.

1. Introduction

Robotic and VR technologies are important components of
the modern neurorehabilitation systems for pathologies such
as stroke or spinal cord injury [1–3]. In this field, our general
research has two main goals:

(a) to improve the assessment of the rehabilitation
progress through precise estimation of the patient
kinematics. This is the focus of this paper;

(b) to optimize the rehabilitation processes by using the
kinematic (and other) patient models. This opti-
mization includes hybrid technologies (e.g., robotics,
virtual reality, functional electrical stimulation [4],
etc.). Even though this domain is very important for
rehabilitation, we see it as a natural consequence of (a)
and we concentrate on (a) at this time.

In the mentioned scenario, the proper estimation of the
patient limb posture is a fundamental prerequisite for the
following:

(1) design and control of the advanced robotic exoskele-
tons which provide assistance to the patient during
motor rehabilitation [5, 6],

(2) animation of realistic avatars representing the patient
in virtual reality (VR) scenarios (e.g., games, bionics),
and

(3) acquisition of kinematic data of the patient during
the training exercises to assess improvement along the
therapy.

This paper presents a method for estimation of limb
posture from the exoskeleton posture. Notice that such an
estimation is not trivial, since the limb is not rigid, is not
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standard, and has kinematic topology different from the
exoskeleton topology.

Our method delivers limb postures estimates to
strengthen and to enable downstream applications in robotic
rehabilitation (among others, using VR [4]).

1.1. Robotic-Based Motor Rehabilitation Therapy. The inclu-
sion of robotic devices in motor rehabilitation therapies has
been increasing over the last decade.The robot-assisted ther-
apies complement conventional rehabilitation by providing
intensive, repetitive, task-specific, and interactive treatment.
All these factors contribute to a more effective rehabilitation
[7–9].

Robotic-assisted therapy has been shown to improve
active movement, strengthening, and coordination in stroke
patients [10]. The majority of clinical studies have reported
that robot-assisted therapy can ease impairments and lower
disabilities of the affected patient [11]. Moreover, evidence
suggests that task-oriented exercises using robotic devices
produce significant improvements in recovering lost abilities
[12].

Combining these exercises with VR games makes the
therapy more attractive to the patient, increasing motivation
and treatment effects [4, 13]. It is important that these games
are designed to be consistent with the principles of physical
therapy and adjustable to the level of impairment [14].

A central element in designing a therapy is the feedback
that patients receive. To achieve relatively permanent changes
in the capability of producing skilled action, it is crucial to
provide the patient with proper feedback in order to produce
a positive impact on the neural mechanism promotingmotor
learning [15].

Feedback includes all the sensory information as the
result of a movement and it is divided into two classes:
(1) intrinsic or inherent feedback, which is information
captured by human sensory systems as a result of the normal
production of the movement, and (2) extrinsic or augmented
feedback, which is information that supplements intrinsic
feedback [15, 16]. Robotic-assisted therapy with VR games
including animated realistic avatars may improve the quality
and specificity of extrinsic feedback that the patient receives.

From the perspective of the therapist, robotic devices can
be used to obtain quantitative metrics for the assessment of
the improvement of the patient.The kinematic information of
the affected limb during the exercises is required to compute
several evaluation metrics, such as joint amplitudes, speeds,
movement smoothness, and directional control.

1.2. Case Study Armeo Exoskeleton. Our proposed therapy
uses the Armeo Spring exoskeleton for the upper limb
intervention (Figure 1). We find the following limitations of
this system.

(1) Currently, the gaming platform provides an elemen-
tary assessment of the patient performance with
metrics such as Hand Path Ratio [17] and joint range
of motion, which are only available in certain games
of the Armeo proprietary platform. We propose a
continuous quantification of the patient performance

Figure 1: Armeo Spring orthosis.

along the treatment therapies, involving metrics that
are highly correlated with the functional recovery of
the patient.

(2) Currently, the games only provide the patient with
feedback of his hand position. We propose to provide
a 3-dimensional representation of the arm, which
would help the patient to immerse in the VR environ-
ment.

The kinematic data provided by the exoskeleton samples
the angular position of its joints. Such information cannot
be used directly to represent the human arm, since the
patient limb and the exoskeleton kinematic models differ
significantly.

This paper presents a method to estimate the posture
of the limb by using the kinematic data provided by the
exoskeleton. We propose to solve the limb’s inverse kinemat-
ics (IK) problem extended with the kinematic constraints of
the exoskeleton fixations on the limb.This extended problem
is solved in real time with standard robotic libraries. In this
manner, we aim to overcome the limitations of the Armeo
system regarding to the feedback and assessment of the
patient.

This paper is organized as follows: Section 2 presents
a brief literature review. Section 3 addresses the formal
statement of the problem and the proposed method to solve
it. Section 4 discusses the implementation of our approach
and its use in VR games. Section 5 presents the evaluation
methodology of our approach in the realm of motor reha-
bilitation. Section 6 informs and discusses the results of the
experiments conducted using our solution strategy. Section 7
concludes the paper and identifies future developments.

2. Literature Review

Several estimation methods and human models have been
proposed in the literature to solve the problemof limbposture
estimation. Next, we present a brief review of developments
in these areas.
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2.1. Limb Posture Estimation

2.1.1. Free Movement Scenario. Most of the existing work on
limb posture estimation focuses on free movement scenarios.
We define a free movement scenario as a situation in which
the patient limb does not wear an exoskeleton or interact with
any other robotic interface. Under the mentioned conditions,
the literature that addresses upper limb posture estimation
considers tasks in which the human subject has to reach a
desired object. Therefore, these approaches are designed to
estimate the posture of the upper limb based on a given target
position and orientation of the hand.

Statistical [18, 19], IK [20–22], and direct optimization
[23–28] methods are the most used approaches to estimate
the limb posture [29].

Statistical or data-based approaches model the human
kinematics with regressive models from empirical data [30].
Factors such as the size of the database of captured motions
[31] and the characteristics of the population involved in
the experiments impact the accuracy and usefulness of these
models.

Kinematic approachesmodel the human limbswith links,
joints of different degrees of freedom, and end-effectors [27].
The IK problem is then solved with either closed-form or
numerical methods. The quality of the kinematic model and
the convergence speed and robustness of the approach used
to solve the IK problem directly affect the accuracy of the
estimations.

Optimization approaches require a nontrivial function to
minimize, which actually leads to the desired configuration
(typically, a minimal energy one [31]). When optimization is
used to solve an IK problem, additional constraints can be
easily included in the formulation [26–28].

Approaches combining optimization-based and statis-
tical models have been also proposed to overcome the
individual limitations of optimization and statistical methods
[31, 32]. Naturally, the composed method requires a high-
quality dataset of motions and the formulation of proper
objective and constraints functions.

2.1.2. Robotic-Assisted Scenario. There is a shortage in the
literature addressing posture estimation of the human limb
while interactingwith an exoskeleton. Although exoskeletons
are designed with the ultimate goal of minimizing their kine-
matic differences with human limbs and interact seamlessly
with them, the following factors influence the humanmotion
patterns and therefore the posture of the limb:

(1) the mechanic design of the exoskeleton (inertia, back
drivability, friction, joint motion limits, etc.).

(2) the type of assistance that the exoskeleton provides
(passive, active, and assist-when-needed).

(3) the performance of the exoskeletonmotion controller.
Here, using a naive one-to-one mapping between the
joint angles of the human limb and exoskeleton leads
to poor positioning results [33].

References [6, 21] propose the computation of the arm’s
IK by using a disambiguation criteria for its redundancy

which chooses a swivel angle such that the palm points to
the head region. This methodology is suitable for real-time
implementation and it is used in the control strategy of the
active 7-DOF exoskeleton developed by the authors’ research
team [34]. The authors report that the mean error in the
estimation of the swivel angle is less than 5 degrees. The
magnitude of the errors in the estimation of the wrist, elbow,
and GH-joint angles is not reported.

References [6, 21] do not consider the motions of the
clavicle and scapula (which affect the position of the GH-
joint center) in the estimation of the posture of the arm, as
they assume the position of the GH-joint center to be known.
Therefore, this approach should not be used in cases in which
the position of the GH-joint center cannot be determined
from data provided by the exoskeleton (e.g., Armeo Spring)
or by any additional motion capture system.

Other common methods to estimate the posture of
human limbs cannot be used or are impractical in robotic-
assisted scenarios. For example, inertial and magnetic mea-
surement systems (IMMSs) presented in [35, 36] are unusable
because the magnetic disturbances produced by the metallic
components of the exoskeleton corrupt the magnetic sensor
measurements.

If optical tracking systems are used, arrays of markers
need to be attached to the patient in order to measure the
limb joint angles. Occlusions of such markers are frequently
produced by the mechanic structure of the exoskeleton when
performing the rehabilitation exercises. To overcome the
occlusions of the markers, a redundant setup is necessary
[29].This limitationmakes the use of optical tracking systems
cumbersome for frequent use in the rehabilitation therapy.

2.2. Human Model. A central element in human posture
estimation is the human kinematic model itself. Simple
models based on hierarchies of links and lower kinematic
pairs can be found in [27, 37–40]. These approaches results
are convenient for real-time tasks and for implementation.
However, more elaboratedmodels should be used to describe
complex kinematic relationships [41], such as the shoulder
rhythm [42]. On the other hand, musculoskeletal models
reported in [43–45] offer better accuracy for dynamics
computations, since they include forces from muscles and
ligaments.

The selection of the human kinematics model rests not
only on the kinematic statement of the problem, but also on
the compromise between accuracy and speed required in a
particular application.

2.3. Conclusions of Literature Review. Although the methods
designed to estimate the posture of the upper limb (in absence
of a robotic interface) reviewed in Section 2.1.1 could be
used in robotic-assisted rehabilitation, we have not found any
actual implementation of them in this context. Usage of these
methods without any change in their design parameters in
robotic-assisted applications may lead to erroneous posture
estimations, given the influence of the exoskeleton on human
motion patterns. Therefore, the validity of these methods
in the robotic-assisted scenario remains to be proven. An
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additional limitation of these methods is that only few of
them have been validated quantitatively by determining the
errors in their estimations.

On the other hand, the few posture estimation
approaches that address limb interaction with an exoskeleton
(Section 2.1.2) have been designed to specifically solve the
arm posture estimation problem, limiting their usability in
posture estimation of other human limbs.

In response to the mentioned issues, in this paper we
present the following:

(1) a method that can be applied, in a general manner,
to solve the limb posture estimation problem using
kinematic data provided by the exoskeleton attached
to the limb,

(2) the implementation of our proposed method for
the upper limb posture estimation using the Armeo
Spring exoskeleton, and

(3) the quantitative validation of our proposedmethod by
determining the estimation errors during the training
of meaningful upper limb rehabilitation exercises.

3. Materials and Methods

3.1. ProblemDescription. In this section, we state the problem
of estimating the joint angles of the patient limb during
robotic-assisted rehabilitation therapy from the kinematic
information provided by the robot. The elements that are
considered inputs to the problem are the following: (1)
the geometry and topology (e.g., the Denavit-Hartenberg
parameters [46]) of the exoskeleton and the human limb,
(2) a known configuration of the angles of the joints of the
exoskeleton, (3) the kinematic constraints imposed by the
fixations of the exoskeleton over the patient limb (which
result from wearing the exoskeleton), and (4) the constraints
that govern the posture of the patient limb while interacting
with the exoskeleton, which are related to mechanical and
control factors of the exoskeleton that influence the patient
movement. The goal of the proposed algorithm is to find the
approximate joint angles of the patient limb, such that the
mentioned constraints are met.

This problem can be formally stated as follows.

Given

(1) the kinematic model of the exoskeleton 𝑅(𝐿
𝑅
, 𝐽
𝑅
),

where 𝐿
𝑅
and 𝐽
𝑅
are sets of links and joints, respec-

tively,

(a) 𝐿
𝑅
= {𝑙
𝑅0
, . . . , 𝑙
𝑅𝑓+1

};
(b) 𝐽
𝑅
= {𝑗
𝑅0
, . . . , 𝑗

𝑅𝑓
}:

(i) 𝑁(𝑗
𝑅𝑖
) denotes the degrees of freedom

(DOF) of 𝑗
𝑅𝑖
;

(ii) V
𝑅𝑖

= {𝜃
1
, . . . , 𝜃

𝑁(𝑗𝑅𝑖
)
} is a vector that

contains the angles of each DOF of 𝑗
𝑅𝑖
(𝑖 ∈

[0, 𝑓]);
(c) 𝑅 is an open kinematic chain. Therefore, 𝑙

𝑅𝑖
and

𝑙
𝑅𝑖+1

are connected by joint 𝑗
𝑅𝑖
, where 𝑖 ∈ [0, 𝑓];

(d) the vector 𝑞
𝑅
∈ R𝑛, 𝑛 = ∑

𝑓

𝑖=0
𝑁(𝑗
𝑅𝑖
), contains

the set of independent coordinates that defines
a configuration of 𝑅 uniquely:

(i) 𝑞
𝑅
= {V
𝑅0
, . . . , V

𝑅𝑖
, . . . , V

𝑅𝑓
};

(ii) 𝑞
𝑅𝑡
represents the state of 𝑞

𝑅
in instant 𝑡 and

its value is known;

(2) a human patient with a kinematic model of his limb
𝐻(𝐿
𝐻
, 𝐽
𝐻
), where 𝐿

𝐻
and 𝐽

𝐻
are sets of links and

joints, respectively,

(a) 𝐿
𝐻
= {𝑙
𝐻0
, . . . , 𝑙
𝐻𝑔+1

};
(b) 𝐽
𝐻
= {𝑗
𝐻0
, . . . , 𝑗

𝐻𝑔
}:

(i) 𝑁(𝑗
𝐻𝑖
) denotes the DOF of 𝑗

𝐻𝑖
;

(ii) V
𝐻𝑖

= {𝜃
1
, . . . , 𝜃

𝑁(𝑗𝐻𝑖
)
} is a vector that

contains the angles of each DOF of 𝑗
𝐻𝑖
(𝑖 ∈

[0, 𝑔]);

(c) 𝐻 is an open kinematic chain. Therefore, (𝑙
𝐻𝑖
)

and (𝑙
𝐻𝑖+1

) are connected by joint (𝑗
𝐻𝑖
), where 𝑖 ∈

[0, 𝑔];
(d) the vector 𝑞

𝐻
∈ R𝑘, 𝑘 = ∑

𝑔

𝑖=0
𝑁(𝑗
𝐻𝑖
), contains

the set of independent coordinates that defines
a configuration of𝐻 uniquely:

(i) 𝑞
𝐻
= {V
𝐻0
, . . . , V

𝐻𝑖
, . . . , V

𝐻𝑔
};

(ii) the 𝑖th element of 𝑞
𝐻
, 𝜃
𝑖
, is subject to

ℎ
𝑖
(𝜃
𝑖
) = 𝜃min𝑖 ≤ 𝜃

𝑖
≤ 𝜃max𝑖 (𝑖 ∈ [0, 𝑘 − 1]);

(iii) 𝑞
𝐻𝑡

represents the state of 𝑞
𝐻
in instant 𝑡

and its real value is unknown;

(3) a set of passive mechanisms 𝑀 = {𝑚
0
, . . . , 𝑚

𝑝
} that

connect 𝑅 and𝐻:

(a) 𝑚
𝑖
(𝑖 ∈ [0, 𝑝]) connects 𝑙

𝑅𝑎
(𝑎 ∈ [0, 𝑓 + 1]) and

𝑙
𝐻𝑏

(𝑏 ∈ [0, 𝑔 + 1]);
(b) 𝑚

𝑖
imposes a movement constraint of 𝑁(𝑚

𝑖
)-

DOF to 𝑙
𝐻𝑏

with respect to 𝑙
𝑅𝑎
;

(c) the set 𝐶(𝑀) = {𝑐
0
, . . . , 𝑐

𝑝
} contains vector-

valued functions 𝑐
𝑖
(𝑞
𝐻𝑡
, 𝑞
𝑅𝑡
) ∈ R𝑁(𝑚𝑖) (𝑖 ∈

[0, 𝑝]) that model the kinematic constraint
imposed by𝑚

𝑖
;

(d) each 𝑐
𝑖
(𝑞
𝐻𝑡
, 𝑞
𝑅𝑡
) is an equality constraint of the

form 𝑐
𝑖
(𝑞
𝐻𝑡
, 𝑞
𝑅𝑡
) = 0;

(4) a set of vector-valued constraint functions 𝐷 =

{𝑑
0
, . . . , 𝑑

𝑠
} that intend to represent the performance

measures that govern the posture of the limb in a
specific situation:

(a) each 𝑑
𝑖
(𝑞
𝐻𝑡
) (𝑖 ∈ [0, 𝑠]) is an equality constraint

of the form 𝑑
𝑖
(𝑞
𝐻𝑡
) = 0;

(b) the dimension of the 𝑑
𝑖
vector is denoted by

dim(𝑑
𝑖
).
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Figure 2: Exoskeleton kinematic model.

Goal is as follows

(1) to find the vector 𝑞
𝐻𝑡

∈ R𝑘, which approximates 𝑞
𝐻𝑡

such that

(a) 𝑐
𝑖
(𝑞
𝐻𝑡
, 𝑞
𝑅𝑡
) = 0 ∀𝑖 ∈ [0, 𝑝];

(b) ℎ
𝑗
(𝜃
𝑗
) = 𝜃min𝑗 ≤ 𝜃

𝑗
≤ 𝜃max𝑗 ∀𝑗 ∈ [0, 𝑘 − 1];

(c) 𝑑
𝑢
(𝑞
𝐻𝑡
) = 0 ∀𝑢 ∈ [0, 𝑠].

To solve this problem, a method based on IK of the
limb has been developed.The following sections describe the
methodology implemented.

3.2. Kinematic Modeling of the Exoskeleton. The Armeo
Spring (Figure 1) is a passive exoskeleton (orthosis) that
supports the weight of the arm of the patient. The level of
support provided by the system springs can be adjusted,
regulating the effort of the patient arm to overcome gravity.
The exoskeleton has a total of seven angle sensors to measure
the position of its rotational joints and one pressure sensor to
measure the gripping force at the hand [47].

We built a kinematic model of the Armeo Spring
(Figure 2), which contains both prismatic and revolute joints.
The prismatic joints of the exoskeleton allow adjusting it
to the different sizes of the patients, and they remain fixed
during the training.

Our implementation models the links and joints of the
Armeo exoskeleton and creates a hierarchical structure of
them.

Although the Armeo exoskeleton presents a parallelo-
gram mechanism in its kinematic chain, the exoskeleton can
be modeled with a serial chain extended with a dependency
equation among the joints used to represent the parallel
mechanism.

GH joint

Shoulder
complex

Elbow
joint

Wrist joint

Figure 3: Human upper body kinematic model.

3.3. Kinematic Modeling of the Human Upper Body. Figure 3
shows the kinematic model of the human upper body that
we created for this application. The joints of the model are
represented with green color. The upper limb is highlighted
using links in light green color.

Our upper body model (33-DOF) includes joints of the
spine, shoulder complex, elbow, and wrist. It is based on the
ones presented in [27–29, 38, 39, 48], which have been widely
used in the area of human posture estimation. The main
advantages of those models are their easy implementation
and their suitability for solving the posture estimation prob-
lem in real time, which is one of themain requirements of our
application. A weakness of those kinematic models is that the
glenohumeral (GH) joint is modeled with a kinematic chain
of three concurrent revolute joints, orthogonal to each other.
In this way, the rotation of the GH joint is parameterized
with Euler angles and suffers from gimbal lock [49]. In
order to avoid this limitation, the GH joint is represented
in our model with a spherical joint, such that other rotation
parameterizations (e.g., quaternion or exponential map) can
be used.

Although there aremore complex and accurate kinematic
models of the upper body, the results obtained in [39],
in a scenario where the subject does not interact with an
exoskeleton in an application that is not related to motor
rehabilitation, show that posture estimations for the upper
limb can be obtained with a reasonable accuracy by using
their original model.

The neutral or rest posture of the arm is defined with the
arm fully extended along the body as in [50]. The range of
motion of the joints of the arm obtained in [34] (derived
from a motion study during the execution of activities of
daily living) is used as reference to establish the joint limits
of our model, which correspond to constraint 2(d)(ii) in the
list presented in Section 3.1.

3.4. Modeling the Kinematic Constraints of Interaction of
the Upper Limb and the Exoskeleton. The Armeo provides
fixations for the human limb. These fixations introduce
constraints on the position and orientation of the coordinate
systems attached to the arm, forearm, and hand.
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Mismatch of the positions of the
coordinate systems

coordinate
systemcoordinate

system

Arm fixation
Arm

(a) Small error while meeting the arm fixation con-
straint

Match of the positions of the
coordinate systems

(b) Negligible error while meeting the arm fixation
constraint

Figure 4: Constraint modeling the interaction of the Armeo’s arm fixation.

There are several factors that affect the satisfaction of the
constraints during the execution of the exercises. This set
includes (1) deformation of the coupling mechanisms and (2)
uncertainty or errors in the modeling of the human upper
limb. Therefore, these constraints are exactly met only under
ideal conditions and in practice they do not capture all the
details of the real interaction. However, as we prove, they
suffice to obtain a reasonable accuracy in the estimation of
the limb posture.

3.4.1. Arm Constraint. The arm fixation imposes a position
(3-DOF) constraint on the human arm.The point on the arm
that follows the position of the fixation is determined by an
initialization process between the 𝑅 and𝐻 kinematic chains
(see Section 3.6).

In our model, the fixations are modeled as rigid bodies.
However, the exoskeleton fixations are made of flexible
materials, such that their geometry is deformed when large
forces are applied on them.

The arm fixation suffers significant deformationwhen the
arm is moved towards a horizontal configuration (e.g., when
performing a complete stretching of the arm along the sagittal
or frontal plane). In those cases, the coordinate system at
the exoskeleton arm fixation center undergoes a translation,
resulting from the deformation of the fixation mechanism
that is not reproduced by our model.

To deal with this kind of situations, the weights of
constraints representing fixations that suffer less deformation
than other ones are adjusted such that they receive more
importance when solving the IK problem. In this way, the
limb posture is estimated meeting the constraints that model
with more fidelity the observed behavior. In this case, the
weight of the arm constraint is lower than the ones belonging
to the forearm and arm restrictions.

Figure 4 shows the human arm (blue transparent cylin-
der) with the fixation of the exoskeleton for the arm (black

transparent ring) around it. The constraint imposed by this
fixation to the arm is represented by the matching of (a)
human arm (white disk) versus (b) fixation (yellow disk)
coordinate systems. Figures 4(a) and 4(b) correspond to
unsatisfied and satisfied constraints, respectively.

3.4.2. Forearm Constraint. The forearm fixation imposes
a 3-DOF position constraint on the human forearm. The
point on the human forearm that moves together with the
fixation is determined in the initializing stage. Additionally,
the fixation is able to rotate around its longitudinal axis,
according to the forearm pronation/supinationmovement (1-
DOF orientation constraint). The rotation angle is measured
with an encoder. The forearm constraint forces the human
wrist flexion/extension axis to be approximately aligned with
the exoskeleton’s wrist joint axis.

3.4.3. Hand Constraint. The hand constraint forces the
human hand to follow the position and orientation (6-DOF)
of the Armeo hand grip.The patient exercises while grabbing
the handle of the exoskeleton. The mechanic design of the
Armeo avoids the slippage of the hand with respect to the
axis of the handle during the execution of the exercises. As
with the previous fixations, the point on the hand where the
coordinate system of the hand is located is calculated in the
initialization stage.

3.4.4. Shoulder Constraint. The shoulder constraint does not
belong to the set of movement restrictions imposed by the
coupling mechanisms of the Armeo. Instead, it is related to
the restrictions intended to produce a natural posture of the
upper limb considering also the influence of the exoskeleton
on the patient movements. This constraint helps to choose
one of the multiple configurations of the human kinematic
chain that comply with the other categories of constraints.
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Figure 5: Effect of the shoulder constraint in the upper limb posture estimation.
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Figure 6: State of the kinematic chains before the initialization
process (notation in Table 1).

Currently, it is implemented to attract the GH joint to a
position (3-DOF position constraint) below the first joint of
the Armeo (𝑗

𝑅0
joint represented with symbol𝐴 in Figure 6),

which does not suffer any translation during the training of
the patient. By keeping the GH joint near 𝑗

𝑅0
comfortable

postures for the spine and arm can be achieved.
Figure 5 shows that the shoulder constraint prevents

the excessive motion of the joints of the spine, which is a
compensatory movement that should be also avoided during
the rehabilitation therapy. The shoulder constraint is central
to proper posture estimation during shoulder abduction.

3.5. Inverse Kinematics. Given a desired pose (position and
orientation) vector 𝑇

𝑟
∈ R6 for the end-effector of an open

kinematic chain 𝑟, the IK problem is to find the vector of
angles of the robot’s joints 𝑞

𝑟
∈ R𝑁 (where𝑁 corresponds to

the DOFs of 𝑟), such that the difference 𝑒 = 𝑇
𝑟
− 𝑋
𝑟
between

𝑇
𝑟
and the actual pose of the end-effector of 𝑟, 𝑋

𝑟
∈ R6,

approaches zero.
There are several approaches to solve this problem,

including analytic [51] and numerical methods [52, 53]. The
iterative strategy used to solve the IK problem is based on
the Jacobian matrix of the manipulator 𝑍(𝑞

𝑟
), which linearly

relates the velocity of the end-effector and the joints by

𝑋
𝑟
= 𝑍 (𝑞

𝑟
) ̇𝑞
𝑟
. (1)

Table 1: Glossary related to the Figure 6.

Symbol Description
𝐴 𝑗

𝑅0

𝐵 𝑗
𝑅2

𝐶 Arm fixation coordinate system
𝐷 Forearm fixation coordinate system
𝐹 Armeo hand grip coordinate system
𝑎 Human arm end-effector coordinate system
𝑏 Human forearm end-effector coordinate system
𝑐 Human hand end-effector coordinate system

By replacing Δ𝑋
𝑟
for 𝑒 in (2), which is obtained by

discretizing (1), the necessary Δ𝑞
𝑟
to approximate 𝑇

𝑟
is

obtained:

Δ𝑞
𝑟
= 𝑍(𝑞

𝑟
)
−1
Δ𝑋
𝑟
. (2)

Notice that 𝑍(𝑞
𝑟
) may not be square (consider, e.g., a

kinematic chain with more than 6-DOF) or invertible. In
those cases, the pseudoinverse and damped least squares
(DLS) methods (among others) can be used to obtain Δ𝑞

𝑟
,

such that ‖𝑒‖ is minimized. The pseudoinverse method is
computationally faster than the DLS but tends to be unstable
when the robot approaches a singular configuration.TheDLS
method offers more robustness (specially when 𝑇

𝑟
is out of

reach) at the cost of a slower convergence [52].

3.5.1. Relation among End-Effectors and Targets. The afore-
mentioned strategy to solve the IK problem can also be used
in situations in which the manipulator has more than one
end-effector. In this case, the error vector 𝑒 is given by 𝑒 =

{𝑇
𝑟1
− 𝑋
𝑟1
, . . . , 𝑇

𝑟𝑖
− 𝑋
𝑟𝑖
, . . . , 𝑇

𝑟Nee
− 𝑋
𝑟Nee

} where Nee is the
number of end-effectors of the robot. Notice that vector 𝑒

𝑖
=

𝑇
𝑟𝑖
− 𝑋
𝑟𝑖
is not necessarily a point ∈ R6. For example, if only

the position (and not the orientation) of the 𝑖th end-effector
is specified, 𝑒

𝑖
∈ R3.

In our application, the formulation of the IK problem
with multiple end-effectors and targets can be used to
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represent the constraints discussed in Section 3.4. In this
way, each constraint can be represented by a target and
end-effector pair. The coordinate frames of the end-effectors
𝑋
𝐻𝑖
(𝑞
𝐻𝑡
) (𝑖 ∈ [1, . . . ,Nee]) are attached to the human limb,

so their position and orientation depend on the current
configuration of the limb, 𝑞

𝐻𝑡
. The coordinate frames of the

targets of the limb 𝑇
𝐻𝑖
(𝑞
𝑅𝑡
) (𝑖 ∈ [1, . . . ,Nee]) are attached to

the exoskeleton such that they are transformed according to
its current configuration 𝑞

𝑅𝑡
. Then, the IK problem is solved

for the limb, finding 𝑞
𝐻𝑡
such that 𝑒

𝑖
= ‖𝑇
𝐻𝑖
(𝑞
𝑅𝑡
)−𝑋
𝐻𝑖
(𝑞
𝐻𝑡
)‖ ≈

0 (𝑖 ∈ [1, . . . ,Nee]). Notice that if 𝑒
𝑖
represents a kinematic

constraint, 𝑒
𝑖
∈ R𝑁(𝑚𝑖) where 𝑖 ∈ [0, 𝑝]. Otherwise, 𝑒

𝑖

represents a restriction related to the natural posture of the
limb, and therefore 𝑒

𝑖
∈ Rdim(𝑑𝑖), where 𝑖 ∈ [0, 𝑠], and Nee =

𝑝 + 𝑠 + 2.
Notice that, due to modeling inaccuracies of the kine-

matic chains or the constraints, it is possible that for a
configuration 𝑞

𝑅𝑡
some constraints cannot be satisfied within

the desired tolerance. That situation can be interpreted as
if some targets 𝑇

𝐻𝑖
(𝑞
𝑅𝑡
) are not reachable. It is important

that the method used to solve the IK problem handles this
situation robustly, avoiding oscillations. For this reason the
DLS method was used.

3.5.2. Joints and Constraint Weights. References [38, 39] state
that givingmore importance to some of themodel joints over
others, by assigning weights to the joints, allows estimating
more accurately the posture of the human limb.

Let us assume that 𝑤
𝐽𝑖
is the weight of joint 𝐽

𝐻𝑖
and that

joints 𝐽
𝑐
and 𝐽

𝑑
can contribute to the movement of end-

effector 𝑖 to diminish 𝑒
𝑖
. Then, if 𝑤

𝐽𝑐
> 𝑤
𝐽𝑑
, the displacement

that 𝐽
𝑐
performs is larger than the one done by 𝐽

𝑑
. This means

that 𝐽
𝑐
is preferred to be moved over 𝐽

𝑑
to reach a desired

target.
In our model, the weights of the joints of the upper

body were adjusted such that the joints on the spine of
the model perform small displacements in comparison with
the movement performed by the shoulder, elbow, and wrist
joints.

On the other hand, applying weights to the error vector 𝑒
gives more importance to reach a specific target over others.
In our approach, this translates into giving some constraints
more importance than others. Let us define with 𝑤

𝑐𝑖
(𝑖 ∈

[0, 𝑝]) the weight of the 𝑐
𝑖
constraint and with𝑤

𝑑𝑢
(𝑢 ∈ [0, 𝑠])

the weight of 𝑑
𝑢
constraint.

In our model, high weights were adjusted for the kine-
matic constraints imposed by the exoskeleton fixations (𝑤

𝑐𝑖
≈

1.0). Otherwise, low weights (𝑤
𝑑𝑖
≈ 0.2) were assigned to the

other type of constraints.
There are different formulations of the DLS method that

incorporate weights for the joints and error vector (e.g., [54]).
In V-REP, the following DLS formulation is used to solve
IK problems. The angles of the joints of the human model
are given by 𝑞

𝐻𝑡
= √𝑊𝑞𝑞𝐻𝑡𝑤

, where 𝑞
𝐻𝑡𝑤

= 𝑍
∗

𝑤
𝑒
𝑤
and

𝑍
∗

𝑤
= 𝑍
𝑡

𝑤
(𝑍
𝑤
𝑍
𝑡

𝑤
+ 𝛼𝐼)

−1. The weighted Jacobian matrix is
given by 𝑍

𝑤
= 𝑍√𝑊𝑞, where𝑊𝑞 = diag{𝑤

0
, . . . , 𝑤

𝑘−1
}. Here,

if 𝑤
𝑎
and 𝑤

𝑏
are related to 𝐽

𝐻𝑖
(e.g., a joint with DOFs > 1),

𝑤
𝑎

= 𝑤
𝑏
= 𝑤
𝐽𝑖
. The weighted error vector is given by

𝑒
𝑤

= 𝑊
𝑒
𝑒, where 𝑊

𝑒
= diag{𝑤

0
, . . . , 𝑤V−1} and V =

∑
𝑝

𝑖=0
𝑁(𝑚
𝑖
) + ∑

𝑠

𝑗=0
dim(𝑑

𝑗
). If 𝑤

𝑎
and 𝑤

𝑏
are related to the

same 𝑐
𝑖
constraint, 𝑤

𝑎
= 𝑤
𝑏

= 𝑤
𝑐𝑖
. This also applies

for weights related to constraints 𝑑
𝑢
. However, independent

weights can be assigned for the position and orientation
components of a constraint.

3.6. Initialization of the Kinematic Chains. To accurately
estimate the limb posture, it is required to properly couple
the human and exoskeleton kinematic models. To do so, we
require to correctly position the end-effectors of the human
kinematic model with respect to the arm, forearm, and hand
coordinate systems. These end-effectors must be positioned
such that they are able to move together with the coordinate
systems of the fixations of the exoskeleton model (targets).
Notice that the position of the end-effectors with respect to
the links of the humanmodel changes according to the actual
patient and exoskeleton dimensions.

Figure 6 depicts a state in which the human and exoskele-
ton models are decoupled. The correct position and orien-
tation of the coordinate systems of the end-effectors of the
human model have not been calculated, and, therefore, they
do notmatch the position and orientation of the exoskeleton’s
fixations coordinate systems.

The initialization of the kinematic chains requires a refer-
ence pose of the exoskeleton in which (a) the human joints
angles can be determined accurately and (b) the exoskele-
ton’s fixations undergo negligible deformation, reducing the
uncertainty about the position of the human model end-
effectors.

The pose of the exoskeleton that meets the mentioned
requirements is the one in which the flexion/extension of the
shoulder and elbow take place in the sagittal plane (Figure 6).
In this pose, the position of the human GH joint with respect
to the exoskeleton base can be easily determined because the
joints of the spine and shoulder complex are in their rest
position.

The coupling process involves the following steps.

(1) Position the exoskeleton model such that the joint
𝑗
𝑅0

lies above the human GH joint. Adjust the height
of the exoskeleton model such that 𝑗

𝑅2
is at the

level of the human GH joint. These instructions are
prescribed by the manufacturer of exoskeleton to use
it with the actual patient.

(2) Compute the arm flexion and abduction angles such
that the arm passes through the origin of the arm
fixation coordinate system. Adjust the origin of the
arm end-effector coordinate system to match the
origin of the arm fixation.

(3) With the position of the elbow joint defined, compute
the elbow flexion and the GH internal rotation angles
such that the forearm passes through the origin of the
exoskeleton forearm fixation. Adjust the origin of the
forearm end-effector coordinate system to match the
origin of the forearm fixation.
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Figure 7: Result of the initialization procedure.

(4) Compute the wrist extension angle such that the
human hand is able to grasp the exoskeleton’s hand
grip. Adjust the hand end-effector to match the
position of the Armeo’s end-effector at the hand grip.

(5) Calculate the forearm pronation/supination angle
such that the wrist’s extension/flexion axis matches
the orientation of the Armeo’s hand grip longitudi-
nal axis with respect to the human forearm prona-
tion/supination axis.

(6) Adjust the human forearm and hand end-effector
coordinate systems to match the orientation of the
forearm and Armeo’s end-effector coordinate sys-
tems, respectively.

The result of the initialization process is depicted in
Figure 7.

4. Implementation

To implement the proposed method the virtual robot experi-
mentation platform (V-REP) was used [55], which is an open
source robotics simulator. V-REP provides tools to easily
and efficiently create kinematic models of rigid multibody
systems and to solve IKproblems.Using the simulator, a scene
was created, which contains both the human upper body
and Armeo kinematic models (Figures 2 and 3). The weights
of the human kinematic model were adjusted (Section 3.5.2)
and the simulator’s IK module was configured to include the
kinematic constraints (Section 3.4).

The source code of the simulator was compiled, modified,
and integrated into our rehabilitation platform. Custom
classes and functions were programmed to allow easy data
exchange among the Armeo, the rehabilitation game plat-
form, and the IK module of the simulator.

The limb posture estimation process consists of the
following steps.

(1) Obtain the angles of the Armeo’s joints by using hard-
ware and software interfaces provided by HOCOMA
AG [47].

(2) Use the obtained angles to update the joints angles of
the Armeo’s kinematic model in the simulator.

(3) Retrieve the angles of the joints of the human model
computed by the simulator’s IK module.

Computing the inverse kinematics of our upper limb
kinematic model, once the Armeo model is updated in
the simulator with the real joint measurements of the
exoskeleton, takes less than 4ms on a 2.13Ghz dual-core
CPU.Therefore, the implementedmethod is suitable for real-
time posture estimation without using high-performance
hardware.

After the joint estimates are produced, we use them to
update the patient avatar in VR games. We also store them
in a database for a posterior patient assessment.

Figure 8 presents a user test of the limb posture esti-
mation algorithm feeding the Armeo kinematic model in
the simulator (in real time) with the Armeo Spring joint
positions measured by its encoders. This figure presents the
posture of the test subject and Armeo Spring in parallel with
estimations of the user posture in the simulator. The test
subject performed

(a) reaching exercises, in which the subject recreated the
postures of his arm to reach and grab objects that
are close to his body (Figure 8(a)).These exercises are
frequently practiced during the arm rehabilitation;

(b) extreme region exercises, in which the subject posi-
tioned his hand in the boundaries of his arm
workspace (Figure 8(b)).These exercises are challeng-
ing for the subject and are less likely to occur during
the therapies due to the exercises difficulty.

4.1. VR Games. Currently, we have implemented two types
of games for the robotic-assisted upper limb rehabilitation
therapy. The first type of games focuses on the rehabilitation
of reaching movements. The second type of games addresses
the rehabilitation of analytic movements of the GH, elbow,
and wrist joints.

4.1.1. Reaching Rehabilitation. Reaching rehabilitation is per-
formed by training the movements that are required to reach
and grasp objects with the hand. These exercises involve
several joints of the upper limb, and, therefore, they are
considered complex.

To train these exercises, we have programmed a game in
which the patient controls the movement of a virtual human
arm by moving his own arm (Figure 9(a)). The target of the
patient is to reach a specific object (e.g., cube) in the scene,
grab it, and bring it to a releasing area (e.g., green circle).

4.1.2. Analytic Movements Rehabilitation. According to
motor learning theories, the training of analytic movements
constitutes the first step into learning complex motor tasks.
In such a step, simple movements involving few DOFs of the
limb are practiced [56–58].

For this scenario, we have programmed a game
(Figure 9(b)) in which the patient controls the position
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(a) (b)

Figure 8: Test subject in parallel with estimations of his posture in the simulator. (a) shows reaching exercises and (b) shows extreme region
exercises.

(a) Reaching game

(b) Analytic game (c) Medical interface

Figure 9: Games and medical interface.
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of a spaceship, along the horizontal axis of the screen, by
performing 1-DOF movements with the wrist, elbow, or GH
joint. The target of the game is that the patient positions the
spaceship under an alien that moves along a vertical path
from the top to the bottom of the screen. When the position
of the spaceship is correct, it fires a gun and destroys the
alien.

For both games, the limitations of the mobility of the
patient are identified in a calibration phase, guarantying
that the target of the games is properly located. Other
game parameters (number of executions, max execution
time per task, target size, etc.) are adjusted through the
medical interface (Figure 9(c)). The medical interface allows
the physician to select the games for the training, configure its
parameters, and reviewmetrics related to the performance of
the patient during a game.

The VR games were programed with the OpenScene-
Graph API [59], which allows animating deformable virtual
objects and creating scenes with dynamic simulations using
the Bullet Physics package. The graphic rendering of the VR
game runs at 30 frames per second using a ATI Radeon HD
4600GPU, which is a midrange graphic card.

During the therapy, the patient sees the VR scene. The
kinematic models are used for IK computations and they are
not displayed.

5. Evaluation

In order to determine the accuracy of our developedmethod,
the joint angles of 4 voluntary healthy male test subjects
(average age 34 years) were measured by using an optical
tracking system and compared with the angles obtained from
our posture estimation algorithm during the execution of
typical (in this case, analytic movements) robotic-assisted
rehabilitation exercises. As discussed in Section 4.1.2, the
rehabilitation of analytic movements is a necessary step
before addressing the rehabilitation of complex motor tasks.

The specific exercises performed by the test subjects were
(1) wrist flexion/extension (WFE),
(2) elbow flexion/extension (EFE),
(3) forearm pronation/supination (FPS),
(4) simultaneous elbow flexion/extension and forearm

pronation/supination (SEFEFPS).
The evaluation of our method has been conducted with-

out performing any previous setting or automatic adjustment
of the weights or other parameters of the approach in
order to reduce the estimation errors. However, algorithm
training might be used in the future to improve the method’s
performance.

5.1. Measurement of the Upper Limb Joint Angles. A detailed
explanation of the method that was used to measure the
human joint angles would merit an additional manuscript.
Nevertheless, a basic description of this method is provided
next.

In order to measure the limb joint angles of the test
subject, we use a Polaris Spectra optical tracking system

Table 2: Installation of the reference and mobile rigid bodies in the
evaluation.

Angle to measure Reference rigid body
installed on

Mobile rigid body
installed on

WFE Forearm Hand
EFE Upper arm Forearm
FPS Upper arm Forearm

Reference
rigid body

Mobile rigid body

Figure 10: Setup for the quantitative assessment of the estimation
errors in elbow flexion/extension exercise.

(OTS) [60]. In order to track the limb movements, it is
necessary to install on test subject limb a set of rigid bodies
with passive markers. By detecting these passive markers
(reflective spheres), the OTS is able to compute the position
and orientation of each rigid body.

One rigid body (reference rigid body) is used as the
coordinate system of reference for the measurements of the
OTS. The position and orientation of the other rigid bodies
(mobile rigid bodies) are computed with respect to the
reference rigid body.

The reference and mobile rigid bodies are installed on
different arm segments (i.e., upper arm, forearm, and hand)
according to the joint angle to be measured. Table 2 shows
the installation of the reference and mobile rigid bodies for
each of the joint angles that we measured. Figure 10 shows
the configuration of the rigid bodies to measure the elbow
flexion/extension angle.

In order to measure the human joint angles, we have
adapted the method presented in [61], which is originally
proposed to be used with IMMSs, to implement it by using
an OTS. In [61] it is proposed to measure the joint angles by
following the next steps.

(1) Compute a reference coordinate system for the joint
of interest. A subset of the axes of the resulting
coordinate system match the axes of rotation of
the joint. The position and orientation of the joint
coordinate system are defined with respect to the
reference rigid body.

(2) Compute the orientation of the mobile rigid body
with respect to the joint coordinate system.

(3) Compute the joint angles that result from rotations of
the mobile rigid body by using Euler-angles decom-
position. The rotations of the mobile rigid body are
caused by the exercising of the subject joint.
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To build an orthogonal right-handed coordinate system
of reference for the joint, we identify each axis of rotation of
the joint, as proposed in [61].

To identify each rotation axis of the joint, we use the
instant helical axismethod described in [62]. A rotational axis
of the joint is computed from the kinematic data of themobile
rigid body while the subject performs 1-DOF movements of
the joint.

In contrast to the proposal presented in [61] to compute
the wrist joint coordinate system, we build this coordinate
system by identifying only the flexion/extension axis, given
that the ulnar/radial deviation cannot be trained with the
Armeo Spring.

Accuracy of the Limb Joint Angles Measurement Method. In
motor rehabilitation, goniometry is the standard method to
measure the angle at the patient joints. This is a manual
method, and, therefore, its efficacy depends on the examiner
experience [63]. One of the limitations of this method is
that it provides a resolution (minimal detectable change) in
measuring limb joint angles of about 8 degrees [64]. In other
words, this method should not be used to measure angles
smaller than 8 degrees because in those cases measurements
present large uncertainty.

Alternative approaches to measure the patient limb joint
angles are IMMS-based methods. One of the methods that
provide better accuracy than goniometry is presented in [35].
Thismethod provides ameasurement accuracy characterized
by a RMSE of less than 3.6 degrees. The authors of the
mentioned work conclude that this accuracy is proper for
measuring elbow and shoulder angles of clinical relevance in
ambulatory settings.

In tests with an artificial 1-DOF joint, the method to
measure the limb joint angles that we have adapted from [61]
allowed us to estimate the joint angle with a RMSE smaller
than 1 degree. According to a comparison with the accuracy
provided by the reviewed methods, we conclude that the
method proposed by [61] to measure the limb posture is
valid to determine the accuracy of our proposed limb posture
estimation method.

5.2. Protocol. Table 3 summarizes the main features of the
evaluation that we have conducted.

For each trial of the evaluation exercises we performed
the following steps.

(1) Compute the joint coordinate system corresponding
to the evaluation exercise (Section 5.1).

(2) Instruct the subject to perform the corresponding
evaluation exercise until the number of desired joint
angle measurements is taken.

(3) Compute the RMSE in the estimation of each joint
angle by comparing the measured angle with the
estimation provided by our algorithm.

(4) Compute the ROM of the subject movements from
the measured angles.

During the execution of the evaluation exercises the
amplitude, speed and the number of cycles of the movements

Table 3: Summary of main features of the evaluation tests.

Number of
test subjects

Number of
exercises

performed by
each test subject

Number of
trials per
exercise

Joint angles
measurements

per trial

4

4 (WFE, EFE,
FPS, and
SEFEFPS)

4 2960 at 66.6Hz

Table 4: Estimation errors in wrist flexion/extension exercise (units
in degrees).

Subject Average WFE RMSE Average WFE ROM
1 1.137 53.389

2 1.432 54.824

3 3.282 63.869

4 3.555 53.977

Average 2.351 56.265

Table 5: Motion features for subjects 1 and 3 in WFE exercise.

Aspect Subject 1 Subject 3
Average angular speed (deg/s) 26 82

Time delay (ms) 15 60

in each trial were left to the discretion of each test subject. In
the evaluation, the VR games were not executed, given that
they are not necessary to assess the accuracy of the posture
estimation algorithm. Furthermore, in this way the influence
of the VR games on the subject movement amplitude, speed,
and repetitions is avoided, which derives a richer variety of
movement features in the evaluation exercises.

However, it is worth mentioning that the joint limits of
the exoskeleton, the need to avoid occlusions of the passive
markers on the rigid bodies attached to the test subject, and
the limited detection volume of the OTS do constrain the
subject’s movements.

6. Results and Discussion

In this section, we present the results of the experiments
described in Section 5. Tables 4, 6, 7, and 8 (angles expressed
in degrees) present the average RMSE obtained in the estima-
tion of the angle of interest by using our proposed algorithm.
Each table presents the average ROM of the movement
performed by each test subject. The average RMSE and ROM
metrics mentioned previously are obtained from the 4 trials
that each subject performed for each exercise. The last row in
the tables presents the average values of each of the computed
metrics for all subjects.

N.B.: in this section we compare our results against freely
moving subject cases reported in the literature. We resort
to such free movement cases since we found no reports
concerning estimations errors of the wrist or elbow angles in
limbs constrained with exoskeletons.
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Table 6: Estimation errors in elbow flexion/extension exercise (units in degrees).

Subject Av. EFE RMSE Av. EFE ROM Av. FPS RMSE Av. FPS ROM
1 1.636 36.948 0.980 4.148

2 1.553 33.897 1.408 4.921

3 2.815 49.333 2.187 5.216

4 4.381 36.442 1.128 7.160

Average 2.596 39.150 1.426 5.361

Table 7: Estimation errors in forearm pronation/supination exercise (units in degrees).

Subject Av. EFE RMSE Av. EFE ROM Av. FPS RMSE Av. FPS ROM
1 1.221 5.799 1.965 70.453

2 1.799 7.395 2.639 48.500

3 1.627 9.691 4.147 90.527

4 1.132 2.459 4.568 37.717

Average 1.445 6.336 3.330 61.799

Table 8: Estimation errors in simultaneous elbow flexion/extension and forearm pronation/supination exercise (units in degrees).

Subject Av. EFE RMSE Av. EFE ROM Av. FPS RMSE Av. FPS ROM
1 2.224 35.762 2.707 59.878

2 2.773 40.837 3.037 58.441

3 5.212 47.850 4.429 55.228

4 2.679 36.654 2.158 59.673

Average 3.222 40.276 3.083 58.305

6.1. Wrist Flexion/Extension. Table 4 presents angle estima-
tion statistics for wrist flexion and extension. The ROM
exercised by the subjects presents small variability and seems
not to correlate with RSME. However, we did observe that
subjects 1 and 2 performed slow movements while subjects
3 and 4 moved fast. Such a difference reflects on the RMSE
values.

To elaborate this point, we present in Figure 11 the history
of the measured versus estimated angle, for subjects 1 and
3. The sampling span is 250 (approx. 3.75 seconds). The
motion features of the movements shown in Figure 11 are
summarized in Table 5. In such table, the time delay aspect
refers to the time delay that the estimations provided by our
algorithm present with respect to the measured angles. The
time delay is larger when the subject moves fast. This causes
the increment in the RMSE estimation values.

These results suggest that the response speed of our
algorithm, given a change in theArmeo joint angles caused by
the movement of the human subject, allows providing better
estimates when the subject moves slowly (as in rehabilita-
tion therapy). In our algorithm, the response speed largely
depends on the damping constant used in the DLSmethod to
solve the limb’s IK. By using a smaller damping constant in the
DLSmethod, the response speed can be improved, sacrificing
some stability.

Nevertheless, the average RMSE obtained for all subjects
shows a better performance of our method with respect
to [39], an optimization-based approach which presents

errors around 3.5 degrees. Compared to [36], which presents
a IMMS-based method to estimate the wrist angles with a
RMSE of less than 3 degrees, our results are slightly better.

6.2. Elbow Flexion/Extension. In flexion and extension of
elbow (Figure 12, Table 6), involuntary movement along the
pronation/supination axis is not avoided. Therefore, small
excursions in this DOF were observed.

For all subjects, our method overestimates the amplitude
of rotational movements about the flexion/extension axis,
when compared against themeasured values (see Figure 12(a)
for subject 2).

Our method performs better than the one in [39],
in which the reported mean error in estimating the flex-
ion/extension angle is approximately 14 degrees. Compared
to the approach in [35], which uses a IMMS-based method
and presents a RMSE of 3.6 degrees in estimating elbow
and shoulder angles, our method also presents better perfor-
mance.

We include in Table 6 the estimation statistics for prona-
tion/supination angle in order to illustrate the perfor-
mance of our method with small angular displacements.
Figure 12(b) displays the estimation and measurement of
pronation/supination angle for a trial of subject 2. In this fig-
ure, we observe that there is an underestimation of the angle.
However, it must be taken into account that estimation errors
for small ROMs are in the same order of the measurement
method accuracy (RMSE 1 degree).



14 BioMed Research International

Measured angle
Estimated angle

850 900 950 1000 1050 1100

−10

−20

−30

0

10

20

30

Samples

(d
eg

)

(a) Motion of subject 1

850 900 950 1000 1050 1100
−45

−20

−10

0

10

5

−40

−35

−30

−5

−15

−25

Samples

(d
eg

)

Measured angle
Estimated angle

(b) Motion of subject 3

Figure 11: Motion patterns of subjects 1 and 3 during a trial of wrist flexion/extension.

500 1000 1500 2000 2500 3000

Samples

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Measured F/E angle
Estimated F/E angle

(d
eg

)

(a) Estimation results of the flexion/extension angle

−5

−4

−3

−2

0

1

2

3

4

−1

500 1000 1500 2000 2500 3000

Estimated P/S angle

Samples

Measured P/S angle

(d
eg

)

(b) Estimation results of the pronation/supination angle

Figure 12: Estimation results of the elbow angles during flexion/extension for trial of subject 2.

6.3. Forearm Pronation/Supination. Table 7 and Figure 13
show the statistics of our method for forearm prona-
tion/supination angle estimation. We remark that motion
in the elbow flexion/extension axis may occur during the
forearm pronation/supination exercise. Therefore, we also
report (in Table 7 and Figure 13) the estimation results for the
small angular movements around the flexion/extension axis.

The average RMSE in the estimation of the prona-
tion/supination DOF of our method presents an accuracy
similar to the one of [35] (RMSE 3.6 degrees).

Figure 13 shows the elbow angles estimation results for
a trial of the FPS exercise of subject 1. Figure 13(a) shows
that estimations in the flexion/extension DOF, in which
small movements were performed, do not present the oscil-
lations of the measured angle (RMSE 1.175 degrees). On the
other hand, Figure 13(b) shows that estimations of the pro-
nation/supination angle are very close to themeasured values.

For the pronation/supination angle, the worse estima-
tions were obtained for subject 4, who performed short but
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Figure 13: Estimation results of the elbow angles during pronation/supination for a trial of subject 1.
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Figure 14: Estimation results of the elbow angles during simultaneous flexion/extension and pronation/supination for a trial of subject 4.

very fast movements, affecting the estimation accuracy as
described in Section 6.1.

According to results presented here and in Section 6.2,
it seems that for small movements the estimation approach
is slightly more sensitive to movements in the prona-
tion/supination DOF than on the flexion/extension DOF.

6.4. Simultaneous Elbow Flexion/Extension and Forearm
Pronation/Supination. The objective of this exercise is to
evaluate how simultaneous movements of both DOFs of the
elbow affect the angle estimations for this joint. The results

are presented in Table 8. In this table, it is shown that, for both
elbow DOFs, the average of the RMSE for all the subjects is
similar to the one presented in [35] (RMSE 3.6 degrees).

This result also suggests that, during the performance of a
functional rehabilitation exercise, such as reaching, in which
simultaneous flexion/extension and pronation/supination
movement are necessary, the accuracy of the estimations
would remain in an adequate range.

Figure 14 presents the estimation results of a trial of this
exercise of subject 4. In this figure, it can be observed that
estimations follow closely the measured angles.
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7. Conclusions and Future Work

This paper presents a method that can be applied to estimate
the posture of the human limbs during the interaction with
exoskeletons by solving the limb IK problem extended with
the kinematic constraints of the exoskeleton fixations on the
limb. The few approaches in the literature that deal with
limb posture estimation in a robotic-assisted scenario are
specifically designed to estimate the arm posture. In contrast,
the method that we propose provides a general formulation,
which is not specific to any human limb or exoskeleton.
Our method is based on inverse kinematics and it can be
implemented using standard robotics libraries.

In this paper, we have also shown the implementation of
themethod to provide upper limb posture estimations, in real
time, using the Armeo Spring.We have also presented the use
of the resulting limb postures estimations in the animation of
avatars in VR rehabilitation games.

We have evaluated the accuracy of the estimations of our
method during the performance of analytic rehabilitation
exercises of the wrist and elbow. The obtained results show
that our approach presents an accuracy that is better than the
one provided by goniometry, which is the traditional method
to measure the patient angles in motor rehabilitation. Com-
pared to the accuracy provided by IMMSs-based methods,
which are considered enough accurate to measure clinical
relevant limb joint angles in nonrobotic-assisted scenarios,
we have obtained very similar results.

Based on the mentioned results, we conclude that our
approach can be used to (a) provide an estimation of the pose
of the human upper limbwith enough accuracy to be used for
avatar animation in VR games and (b) obtain the kinematic
data for the patient assessment during analytic training of the
elbow and wrist.

Future work includes (a) the exploration of other
approaches to model the flexible fixations of the exoskeleton,
(b) the definition of a set of weights for the human model
joints that represent the movement features of a set of human
subjects, and (c) a quantitative assessment of the performance
of our method in a functional rehabilitation scenario.

Nomenclature

Clavicle: One of the bones of the shoulder girdle. It
is located at the root of the neck

DLS: Damped least squares
DOF: Degree of freedom
EFE: Elbow flexion/extension
FPS: Forearm pronation/supination
GH: Glenohumeral
Humerus: Upper arm bone
IK: Inverse kinematics
IMMSs: Inertial and magnetic measurement

systems
OTS: Optical tracking system
RMSE: Root mean square error
ROM: Range of motion
Scapula: One of the bones of the shoulder girdle. It

connects the humerus with the clavicle

SEFEFPS: Simultaneous EFE and FPS
VR: Virtual reality
V-REP: Virtual robot experimentation platform
WFE: Wrist flexion/extension
V: Total number of constraints of the IK

problem (V ∈ N)

𝑒: IK error vector (𝑒 ∈ RV
)

𝑘: Total DOFs of the human kinematic model
(𝑘 ∈ N)

𝑛: Total DOFs of the exoskeleton kinematic
model (𝑛 ∈ N)

𝑍: Jacobian matrix of the IK problem
(𝑍 ∈ RV×𝑘)

𝐼: V × V identity matrix
𝑊
𝑞
: Diagonal matrix of joints weights

(𝑊
𝑞
∈ R+
𝑘×𝑘)

𝑊
𝑒
: Diagonal matrix of constraints weights

(𝑊
𝑒
∈ R+

V×V)
𝑞
𝐻𝑡
: Vector of joint angles of the human

kinematic model in instant 𝑡 (𝑞
𝐻𝑡
∈ R𝑘)

𝑞
𝑅𝑡
: Vector of joint angles of the exoskeleton

kinematic model in instant 𝑡 (𝑞
𝑅𝑡
∈ R𝑛)

𝛼: Damping factor of DLS method (𝛼 ∈ R+).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research is a part of the HYPER Project funded by
CONSOLIDER-INGENIO 2010, Spanish Ministry for Sci-
ence and Innovation.

References

[1] J. W. Krakauer, “Motor learning: its relevance to stroke recovery
and neurorehabilitation,” Current Opinion in Neurology, vol. 19,
no. 1, pp. 84–90, 2006.

[2] S. V. Adamevich, A. S.Merians, R. Boian et al., “A virtual reality-
based exercise system for hand rehabilitation post-stroke,”
Presence: Teleoperators and Virtual Environments, vol. 14, no. 2,
pp. 161–174, 2005.

[3] R. Riener, T. Nef, and G. Colombo, “Robot-aided neurore-
habilitation of the upper extremities,” Medical & Biological
Engineering & Computing, vol. 43, no. 1, pp. 2–10, 2005.

[4] A. De Mauro, E. Carrasco, D. Oyarzun et al., “Advanced hybrid
technology for neurorehabilitation: the HYPER project,” in
Advances in Robotics and Virtual Reality, T. Gulrez and A.
Hassanien, Eds., vol. 26 of Intelligent Systems Reference Library,
pp. 89–108, Springer, Berlin, Germany, 2012.
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Balance control plays a key role in neuromotor rehabilitation after stroke or spinal cord injuries. Computerized dynamic
posturography (CDP) is a classic technological tool to assess the status of balance control and to identify potential disorders. Despite
the more accurate diagnosis generated by these tools, the current strategies to promote rehabilitation are still limited and do not
take full advantage of the technologies available. This paper presents a novel balance training platform which combines a CDP
device made from low-cost interfaces, such as the NintendoWii Balance Board and the Microsoft Kinect. In addition, it integrates
a custom electrical stimulator that uses the concept of muscle synergies to promote natural interaction. The aim of the platform
is to support the exploration of innovative multimodal therapies. Results include the technical validation of the platform using
mediolateral and anteroposterior sways as basic balance training therapies.

1. Introduction

Balance control is a critcal aspect for the growing elderly
population and one of the first rehabilitation goals after spinal
cord injury (SCI) and stroke [1].

Generally, balance control rehabilitation consists of the
execution of specific movements (sway, inclination) or the
adoption of static postures. In some therapeutic scenarios,
electrical stimulation is also used to promote the recruitment
of the muscles that take part in balance control. Recently the
use of robotics devices has been also proposed, without yet
generating a significant impact on the clinical practice. In
this scenario, computerized dynamic posturography (CDP)
is a valuable tool to measure balance control and to assess
neuromotor recovery through a rehabilitation process.

In this paper, we present a novel multimodal tool for
balance control training of elderly and neurologically injured
people. The system makes use of the concept of muscle
synergies, in the attempt to achieve a closer and more natural
interaction with the central nervous system (CNS) of the
patient, possibly resulting in better rehabilitation outcomes.

The document is structured as follows. A detailed intro-
duction on the motivations behind the development of the
platform is given in Sections 1.1, 1.2, and 1.3. Section 2
describes how the paradigm of muscle synergies is applied to
postural control rehabilitation. In Sections 3 and 4, the tech-
nical details of the systemare presented,with special attention
to the importance of timing and synchronization between the
multiple interfaces and devices used. In Section 5, the results
of the technical validation are presented. In Section 6, we
discuss the concepts and features of our platform and present
our conclusions.

1.1. Evaluation of Postural and Balance Control. CDP can
be considered as an objective assessment tool of postural
control. It allows us to know a subject’s ability to integrate
information from the visual, vestibular, and somatosensory
systems or possible alterations of these systems. It enables
the assessment of multiple pathologies that can manifest
as loss of balance control, vestibular diseases (Meniere’s
disease, positional vertigo, and vestibular neuritis among
others), or neurological diseases (multiple sclerosis, brain
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trauma, etc.) [2]. Posturography is usually used to design and
implement tailored retraining program balance using visual
feedback techniques based on diagnosed sensory deficits
and functional capacity of the patient. Besides all these
advantages and applications, posturographic systems enable
the physician to monitor the evolution of subject treatment
and help to evaluate the effectiveness of the prescribed
therapy [1, 3].

CDP is based on the idea that the oscillations of the
center of pressure (CoP) reflect the postural instability [4]. In
line with this hypothesis, the American Medical Association
(AMA) has included the monitoring and assessment of CoP
trajectories as one of the methods that allows us to objectify
deficits or disabilities of postural control. The American
Academy of Neurology affirms that CoP monitoring is a
useful clinical tool for the analysis of human balance [5].
The CoP is measured by means of force platforms [6], which
record forces and moments in the three orthogonal axes. The
information is collected by a computer application and used
to calculate parameters and indexes from the displacement of
the CoP trajectory.

The main drawback of CDP systems is the cost of the
equipment. The second major drawback is that there is no
agreement in the literature regarding the validity, importance,
and relevance of certain postural parameters and indexes
obtained by these posturography tools and their relationship
with neuromotor disorders.

In the framework of the project HYPER, which is aimed
at developing new therapies based on novel neuroprosthetic
and neurorobotic solutions, we developed a low-cost postur-
ography and balance training system, composed of inexpen-
sive components like the Wii Balance Board, the Microsoft
Kinect, and an electrostimulator. The Wii Balance Board
is responsible for obtaining registration of the CoP during
testing, whereas the Microsoft Kinect provides online and
offline posturography measurements (skeletal tracking). The
electrostimulator, called TEREFES [7], provides appropriate
muscle stimulation by means of electrical current. All details
of the designed posturography system can be found in [8].
Latest changes to this posturography system that are not
included in [8] are simplified architecture of the skeleton
tracking in 3D with Kinect using SkeletonPainter3D [9]
(see Figures 1 and 2) and user interface changes in posturog-
raphy software.

1.2. Rehabilitation of Postural Control. Current efforts in
rehabilitation research are increasingly focused on the inte-
gration of neuroscientific knowledge in order to develop new
effective means of neurorehabilitation based on a deeper
understanding of the human control system. At the same
time, the recent advances in low-cost technology permit
us to complement the basic rehabilitation protocols with
new techniques, such as the Rhythmic Weight Shift (RWS)
Test [10], the use of functional electrostimulation (FES) [11],
robotic devices according to the assisted as needed (AAN)
paradigm [12], and virtual reality systems [13].

The RWS Test consists to follow a target reference that
moves sinusoidally in themedial-lateral or anterior-posterior
axis. This test is included in most commercial posturography

Figure 1: 3D skeleton tracking with Kinect.

Rhythmic and directional test

Pressure center

X(cm)

Y(cm)

Remaining time (s) = 2

Figure 2: Patient’s reference during the rhythmic and directional
test.

platforms [14–16]. Used as a training, RWS exercises can
generate several benefits as improved balance and reduced
risk of falls. Positive effects can extend to other tasks as
improved gait kinematics and walking and appears to indi-
rectly contribute to the social insertion of the patient in the
community [17].

Functional electrical stimulation (FES) therapy consists
in the application of electrical pulses of current used tran-
scutaneous or surface electrodes, in order to promote the
execution of functionalmovements. In recent years, advances
in microelectronics and electrode manufacturing led to the
development of more powerful, flexible, and smart elec-
trostimulators [7, 18–20]. New FES systems are capable of
handling electrode arrays and enable the implementation
of more complex control algorithms to generate dynamic
stimulation patterns [21]. Despite these advances, very few
solutions reached the clinical practice. The main unresolved
problems of FES-based interventions are related to muscle
fatigue, coordination of multiple muscular patterns, selectiv-
ity of muscles, and functional stability of human-machine
interfaces. The controlled application of electrical currents
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into the body provides both therapeutic and functional
benefits. FES can help to avoid atrophy of affected muscles
and uppermotor neurons and in conjunction with a dynamic
activity can improve cardiopulmonary health. There is also
growing evidence that FES can improve functional move-
ments, such as running or jumping. Electrical stimulation
also has influence on the central nervous system (CNS),
probably due tomultimodal afferent signals occurring during
stimulation. This fact can promote the reorganization of the
primary motor cortex [22–24] and change the recruitment
techniques of spinal motor neuron pools, [25, 26]. These
evidences encouraged the scientific community to use FES
as a tool to guide and promote plasticity and adaptation of
motor skills to new conditions after stroke or SCI [7].

Assisted as needed (AAN) is one of the emerging reha-
bilitation paradigms currently proposed in rehabilitation
robotics [27]. According to this paradigm, the machine is
intended to simulate the operation of a therapist during the
execution of a motor task, providing assistance only if the
patient is not able to execute the movement correctly by
him or herself. Most implementations follow fixed profiles in
terms of kinematic or dynamic patterns; that is, the patient
is asked to follow a fixed path which is assumed to be the
correct one. According to [21], this fixed-trajectory approach
has two main drawbacks: (i) it does not take into account
the specificity of the patient, since the reference trajectory is
fixed for all users, and (ii) it ignores the implications ofmuscle
activity within the therapy, by acting only at a kinematic level.

1.3. Muscle Synergies and Rehabilitation. The rehabilitation
paradigm of the presented platform is based on the recent
theory of muscle synergies [28]. From a biomechanical
point of view, the human body is a redundant system of
many degrees of freedom. The efficient and robust control
generated by the CNS is still not sufficiently understood
[29]. Recent neurological research hypothesizes that the CNS
incorporates a library ofmotor activationmodules in order to
exert specific and commonmotor tasks by contributing to the
synchronized activation of different muscles. These modules
are called muscle synergies, and their combination can lead

tomore complex and functional muscle activation patterns at
the spinal level, while maintaining a relatively simple control
at higher centers.

Mathematically, muscle synergies can be expressed by the
following equation,which describes the activation of amuscle
𝑚
𝑖
(𝑡):

𝑚
𝑖 (𝑡) =

𝐾

∑

𝑗

ℎ
𝑗 (𝑡) 𝑤𝑗𝑖, (1)

where 𝑚
𝑖
(𝑡) is the time function of muscle activation (EMG

signal) for muscle 𝑖, 𝑤
𝑗𝑖
is the coefficient of 𝑗th synergy to

the 𝑖th muscle, ℎ
𝑗
(𝑡) is the temporal function of the neuronal

command 𝑗, and 𝐾 is the number of synergies. This concept
is shown diagrammatically in Figure 3.

In its complete form,M = H ×W, whereM is a matrix of
1×𝑁 (𝑁muscles),H is a matrix of 1×𝐾 (𝐾 neural modules),
andW is an array of𝐾 ×𝑁.

This process of decomposition and distribution of muscle
activation reduces the computational requirements of motor
control and possibly influences the learning of new motor
tasks [30]. According to this hypothesis, the brain recruits
muscle groups (synergies) in spite of controlling individual
muscles independently. It has been demonstrated that the
composition of muscle synergies depends on the motor
task and can be affected by neuromotor pathologies [5].
According to [27], taking a set of synergies as a reference for a
rehabilitation task may have two innovative potential effects:

(i) improving neural plasticity, since the therapeutic
action is located at the level of muscle activation,
which is closer to the CNS with respect to kinematics;

(ii) adapting to subject-specific kinematics constraints,
since synergies mainly depend on the functional goal
and not on biomechanical constraints.

These potential effects are motivated by three key prop-
erties of muscle synergies. First, muscle synergies have been
found to be consistent among subjects despite the precise
kinematic trajectory [31, 32]. Second, they can be trained and
are prone to change if task conditions change [33–35]. Finally,
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they somehow codify functional movements, so they can be
used to train specific rehabilitation targets [36].

2. Synergies and Balance Control Training
Based on Sway Movements

According to [5], the application of the concept of muscle
synergies in clinical settings is twofold. In the diagnosis of
neuromotor disorders, it may provide access and an overall
view of motor control information at a higher level than
muscular activity. In the rehabilitation field, it can help in the
effective design of better training and rehabilitation therapies,
for instance, in combination with an FES system. In order
to define a reference set of synergies, a series of experiments
were conducted to study healthy subjects during RWS in the
mediolateral (ML) and anteroposterior (AT) directions [5].

This experiment was designed to measure the trajectory
of the CoP of 6 healthy subjects (3 men and 3 women),
during the rhythmic postural sway in the ML and AT
directions.The CoP was measured using a CDP platform, the
Neurocom Smart Equitest, which is depicted in Figure 4.
The patient’s visual reference was replaced by an auditory
reference, a digital metronome, indicating the expected fre-
quency of the movements. This change was motivated by the
intention of increasing the VAF of the synergies [5]. During
the execution of this test, electromyographic signals (EMG)
were acquired using a 16-wireless channel electromyograph
(ZeroWire). Three sway frequencies were defined (low =
0.167, medium = 0.25, and high = 0.5Hz). The sway fre-
quencies obtained by the patients are shown in Table 1. The
algorithm NNMF (nonnegative matrix factorization) was
used to extract the values of H and W. The EMG signal
reconstructed using H and W (1) has then been compared
with the original one. The quality of the reconstruction was
expressed with the variance accounted for (VAF) [5].

Results revealed that two synergymodules are responsible
for more than 90% of VAF (Figure 5) for all subjects in all
conditions. This study showed evidences that support the
existence of consistent modular control in healthy volunteers
while doing lateral sway movements. Similarities can be seen
in terms of number of modules, composition of synergies,
and time-varying activations. Twomodules representmost of
the variability of the EMG for all subjects. Coefficient values
are similar for different frequencies. This fact suggests that
the muscle coordination and muscle synergies are not much
influenced by the movement speed.

The comparison between subjects suggests high similarity
in muscle synergies modules. However, a dedicated analysis
should be performed to confirm this hypothesis. With the
synergies modules found for these tasks, we proceeded with
the development of a multimodal tool for balance control
training.

3. Training Platform

In this section, we present a low-cost training platform for
balance control.The contribution of this tool relies on the use
of muscle synergies and multimodal interfaces. The system

(a) (c)

(b)

Figure 4: On the left, there is an instrumented subject on the
NeuroComSmart Equitest (Oregon,USA).On the top-right, there is
the visual interface of the patient. It represents the current exercise,
indicating with a stylized dark man the current position of the
CoP of the patient and with a yellow sun the target position of the
exercise. On the bottom-right, there is a detail of the dynamometric
platform the forces applied by the user to determinate CoP position
[5].

Table 1: Target and mean sway frequency of CoP for all subjects.
Values are expressed in Hz [5].

Target frequency 0.17Hz 0.25Hz 0.5Hz
Measured frequency (ML) 0.18 ± 0.03 0.26 ± 0.04 0.47 ± 0.11
Measured frequency (AT) 0.18 ± 0.03 0.25 ± 0.04 0.46 ± 0.12

is based on a previously developed low-cost posturography
platform [8]. It includes inexpensive components, such as
the Wii Balance Board (WBB), the Microsoft Kinect, the
TEREFES electrostimulator [7], and a central PC running a
synergistic control algorithm driven by the position of the
CoP of the subject. The kinematic information of the CoP is
retrieved bymeans of theMicrosoftKinect and theWBB.This
set of interfaces enables the development of close and open
loop training tasks, using different type of interaction and
information.The system includes a visual feedback (monitor)
and an auditory reference (digitalmetronome).The proposed
architecture is shown in Figure 6.

3.1.Wii Balance Board. TheWBB is an input devicemanufac-
tured by Nintendo. It is a wireless device that communicates
with the Wii console using the Bluetooth standard. It has
a dimension of 45 × 26.5 cm and contains four pressure
sensors located in each corner to measure the force in
the vertical direction. The performance of WBB has been
already studied in the literature [37–40], and the general
conclusions are that the WBB can replace conventional force
platform in slow range movements (0.01Hz–10Hz). These
movements do not require a higher resolution. The platform
specifications fulfill all requirements for our application and
studies.
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Figure 6: (a) Proposed platform architecture and (b) functional description diagram including the different components: the posturography
system (balance control assessment) and the FES system (balance control training and rehabilitation).

3.1.1. Connectivity. A specific study to analyze the connection
jitter of the received data by the WBB was carried out in
the literature [8]. The result shows that the sample frequency
responds to a nonparametric probability distribution with a
mean value given at 100Hz.This result matches the sampling
period specified by themanufacturer. In thementioned study
[8], it is also shown that the probability that the sample
frequency being greater or equal than 50Hz. is 94.02%. Test
condition has been fully described in the paper.

3.1.2. Accuracy and Reliability. Consistent documentation
about the force and center of pressure (CoP) accuracy and

reliability of theWBB is not available. However, [41] reported
that the force measurements total uncertainly was within
±9.1 N and that theCoP locationwaswithin±4.1mmbetween
different WBBs [41]. They also found that the measurement
repeatability of both parameters are ±4.5N and ±1.5mmwith
eachWBB.They suggest that theWBBmay be useful for low-
resolution measurements but should not be considered as a
replacement for laboratory-grade force plates.

In golden standard commercials force plates, sensors
register forces and moments in 3D. These force plates are
accurate and durable and recordings are independent of
temperature and stable along time.The disadvantages are low
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portability due to mass (10–45 kg) and mounting require-
ments and their cost (US$ 15000–20000). Commercial low-
cost platforms usually have the same quantity of pressure
sensor, asWBB does.The difference between these systems is
the resolution accuracy and possibility of 3D force measure-
ments. However, for CoP assessment, a pressure platform is
enough and there is no need for a 3Ddynamometric platform.
Typically, commercial platforms have a resolution less than
0.2mm. According to [42], the CoP resolution of the WBB is
approximately 0.5mm.

The estimation of CoP using WBB has a drawback. The
shear forces and moments cannot be taken into account.
As a consequence, these additional forces are neglected
and problems may arise when trying to assess dynamic
movements or static forces applied in the horizontal plane.

3.1.3. Library. A library called Wiimotelib permits us to link
the WBB system with other Wii accessories and is pro-
grammed in C# language. Using this library we can connect
with the device and get all WBB data (CoP displacement,
battery status, etc.) as a burst of events that the WBB sends
continuously to the PC. There is also a community called
Wiibrew [43] that provides support for developers regarding
these libraries and the devices.

3.2. FES System. The TEREFES was proposed within the
framework of the TERERE and HYPER projects [7]. The
TEREFES electrostimulator provides up to 32 stimulation
channels driven by controllable, stable, and close loop current
sources. In addition, the system is portable and flexible. It
is powered by 4 AA batteries and includes a USB com-
munication interface (1Mbps) that allows its configuration
via external software. Monophasic and biphasic stimulation
signal can be obtained across the 32 available channels.These
channels are divided into two independent groups of 16
channels each that can be stimulated simultaneously. The
TEREFES has a current range of 0–150mA, pulse width of
0–5ms, high frequency stimulation of 100Hz, andmaximum
stimulation voltage of 250V.

A synergistic FES controller was already proposed in
[44]. Following these concepts, an upgrade of firmware of
TEREFES has been done in order to meet technical specifi-
cations required by the experimental validation. Two param-
eters could be changed while stimulating muscle synergies:
amplitude and pulse-width. All the changes in the parameters
can be performed while the stimulation is running. This
feature allows us to develop dynamic stimulation algorithms.

4. Timing and Synchronization of
the Multimodal Interface

The proposed platform can be a seen as a control system,
characterized by a strong human-machine interaction. This
interaction, specifically the one related to FES, is control-
oriented, meaning that FES is prone to generate motor effects
in users. In many cases, a hard real-time system would be
the best solution for this type of application. However, in this
scenario, where many different and distributed technologies

are combined together, the development or use of a real-
time architecture may compromise the use of these low-cost
components.

The system was developed for training balance control
during ML and AP sway movements and works as follows.
Prior to the training session, four variables should be defined
(i) H and W (activation and synergy) matrices, as obtained
from human experiments; (ii) the mapping between the
columns of W (muscles) and the TEREFES’ channels (0–
31); (iii) the maximum current for each channel, Imax; and
(iv) the frequency of the sway movement. According to
the selected frequency, the system computes a reference
signal, namely, theCoP reference trajectory,which the subject
should follow during the training session. The system uses a
digital metronome to help subjects to synchronize with this
reference signal during the session. The system continuously
calculates the neural command for every point of the CoP
reference trajectory and, according to this value, it computes
corresponding current pulses to be applied to each muscle at
a given time. All this process is illustrated in Figure 7.

The synergistic controller is responsible for calculating
the muscle activations as a function of CoP coordinates and
for controlling the currents to be applied to muscles through
the TEREFES. So far, it works in an open loop manner.
This means that the synergistic controller only considers the
CoP reference to calculate muscles activations.Themeasured
CoP provided by the WBB is just used to provide visual
feedback to the user. The synergistic controller runs in the
PC. It is an application developed in C# Visual Studio
2012. In order to calculate the desired muscle activations,
the controller uses synergies (W) and activation coefficients
(H) obtained during ML and AT experiments previously
described. Because of the cyclical nature of the sinusoidal
reference, the neural commandswere calculated as a function
of the percentage of the sway cycle. Each point of the sine
wave corresponds to a certain percentage of the sway period
and also to a specific neural command value. Thus, there is a
direct mapping between current position value of CoP and
neural commands. Specifically, the neural commands were
calculated with a variation of 1% of the sway period, getting a
total of 100 samples per cycle.

The system assumes that the patient starts at a certain
point of the sway cycle, usually where the CoP trajectory
is zero, meaning approximately 75% of the sway cycle, as
shown in Figure 7. It is further assumed that a therapist or a
robotic system ensures that the patient follows the simulated
reference. The application allows us to compare online the
measured CoP trajectory by theWBB with the one generated
by the system.Thus, the therapist and the user can know how
synchronized the current movement and the reference signal
are.

The synergistic controller has to keep a precise timing
in order to control effectively and periodically the TEREFES
stimulation parameters. This is achieved by using the Stop-
watch class of C#. This class allows us to measure execution
times with high precision. Each time this timer expires, the
synergisitc controller calculates the percentage of the sway
cycle based on the current amplitude of the CoP trajectory.
The result is transformed again into the correspodding
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Figure 7: Functional diagram of the synergistic controller implemented in the PC.

stimulation parameters that are afterwards transmitted to
the TEREFES. Once the TEREFES receives new modulation
parameters, it immediately updates its parameters.

Since the controller is running over non-real-time oper-
ating systems and communicates with the TEREFES using
also a non-real-time communication technology (USB), the
systems take advantage of real-time TEREFES hardware to
implement a timing monitor to verify that the stimulation
parameters are updated periodically in a precise manner.
Thus, the systems know when the timing requirements are
and can stop the control/stimulation signals.

The system also includes a second synchronization tool
thatmonitors the differences between the reference local CoP
and the real user CoP, so that user and therapist can train
prior to the synergistic stimulation.

The synergistic controller has several other functions, as
summarized in the following part.

(1) Capture. It continuously receives WBB samples at an
average frequency of 100Hz.

(2) Show. The program displays the trajectory of CoP, the
sampling period of the WBB, the current percentage
of sway cycle, and the precise timing of TEREFES
configuration.

(3) Save. The application saves all the data that has been
acquired, calculated, or received, inMATfiles that can
be later exported to MATLAB for further analysis.

(4) Debugging. The application has implemented a serial
terminal, allowing the user to send and receive
TEREFES commands.
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(5) Configuration. The application allows the configura-
tion of several parameters, such as the frequency of
the stimulation of the TEREFES, the refresh rate of
synergies, test duration, the mode of operation of the
TEREFES (single burst or continuous mode), and the
amplitude and frequency of the sine wave reference.

5. Results

In this section, we present the preliminary results of our
platform. We carried out two experiments. The first one was
aimed at verifying the performance of the system in terms
of timing, focusing in particular on the limitations of the
non-real-time architecture running onWindows.The second
experiment was designed to validate the proposed system
with the ultimate goal of generating correct FES timulation
patterns according to the concept of muscle synergies. The
following sections detail these two experiments.

5.1. System Performance. There are two fundamental param-
eters of the system.The first one is the frequency stimulation
of the TEREFES (𝐹

𝑡
).The devicemust continuously stimulate

at a certain frequency (usually in the range of 40–50Hz).
This frequency is fixed and controlled autonomously within
the TEREFES.The second important parameter is the refresh
rate of muscle synergies (𝐹

𝑠
), which should be lower than

𝐹
𝑡
but large enough to sample every variation of neural

commands during the sway cycle. Fromprevious experiment,
we observed that there is high correlation between the
frequency of the reference sine wave and the frequency of
neural commands [5]. Considering that voluntary postural
sway frequency usually lies below 0.5Hz, a synergy frequency
of 5–10Hz may be enough for these movements.

Different tests of 50 seconds duration were performed.
In each test, the TEREFES frequency was set to 𝐹

𝑡
=

40Hz (implies a period 𝑇
𝑡
= 1/𝐹

𝑡
= 25ms). Four fre-

quencies for synergy modulation have been chosen: 𝐹
𝑠
=

{1, 5, 10, 20}Hz meaning that synergy update period was
𝑇
𝑠𝐸
= {1000, 200, 100, 50}ms, respectively. The reference sine

wave was set at a frequency of 0.1 Hz for all tests.
We defined the period of synergies (𝑇

𝑠
) as the period

which take to the operating system to refresh the new value to
the TEREFES. In fact, 𝑇

𝑠
= 1/𝐹

𝑠
, where 𝐹

𝑠
is the frequency of

synergies. Given the randomnature of the period of synergies
(the controller is running on a nonreal operating system), we
analyze the performance of the system in all listed conditions.
The values of the random variable 𝑇

𝑠
were measured in the

C# application, using the methods of the classStopwatch
and the TEREFES with a 500 𝜇 timer accuracy. The results
were analyzed with theDistribution Fitting Tool in
MATLAB R2011a.

Since 𝑇
𝑠𝐸
= {1000, 200, 100, 50}ms are the expected

values (configured) of the synergies period, we analyze the
probability that the random variable 𝑇

𝑠
is less than or equal

to 𝑇
𝑠𝐸
± 𝑇
𝑡
, where 𝑇

𝑡
= 25ms for all conditions. That is, how

likely 𝑇
𝑠
is below (or postponed to) its expected value during

stimulation.

Table 2: Probabilistic analysis of synergy update period measured
in the TEREFES. 𝑇

𝑡
= 25ms and 𝑇

𝑠𝐸
= 1/𝐹

𝑠𝐸
.

Parameters Frequency 𝐹
𝑠𝐸

20Hz 10Hz 5Hz 1Hz
𝑃(𝑇
𝑠
≤ 𝑇
𝑠𝐸
+ 𝑇
𝑡
) 98.87% 99.19% 97.99% 98%

𝑃(𝑇
𝑠
≤ 𝑇
𝑠𝐸
− 𝑇
𝑡
) 0.82% 1.41% 0.8% 6%

Table 3: Probabilistic analysis of the synergy period update mea-
sured in C# with Stopwatch. 𝑇

𝑡
= 25ms and 𝑇

𝑠𝐸
= 1/𝐹

𝑠𝐸
.

Parameters Frequency 𝐹
𝑠𝐸

20Hz 10Hz 5Hz 1Hz
𝑃(𝑇
𝑠
≤ 𝑇
𝑠𝐸
+ 𝑇
𝑡
) 98.88% 98.39% 98% 99.99%

𝑃(𝑇
𝑠
≤ 𝑇
𝑠𝐸
− 𝑇
𝑡
) 0.71% 2.6% 1.6% 2%

This tolerance window for 𝑇
𝑠𝐸
is acceptable if we analyze

the behavior of the FES system. The FES system generates
a pulse train for 𝑁 stimulation channels (1). Stimulation of
each channel (current pulse) occurs every𝑇

𝑡
. If a new synergy

value is obtained, the stimulation parameters of every channel
are updated. However, if this update takes place during an
on-going stimulation, only those channels, which were not
stimulated yet, are affected by these new values.This behavior
allows us to establish a tolerance of stimulation period,
because it is not possible to establish perfect synchronization
between non-real-time systems. Also because the frequency
of the TEREFES is much higher than synergies frequency,
changes during a period of TEREFES are not relevant in
obtaining the envelope of the stimulation signal.

The results are shown in Figure 8. The high probability
(>95%) that the update of the synergies occurs before the
expiry of a further period of TEREFES and the lowprobability
(<3%) that the update occurs before the stimulation period
represent a metric for the good performance of the platform.
High similarity between the results obtained with TEREFES
and Stopwatch is also observed.

Two random variables affect the accuracy of themeasures
fromTEREFES and Stopwatch: the shipping time of the serial
data and the time that elapses until the TEREFES updates its
parameters with the new values received.

The results of the experiments are summarized in Tables 2
and 3. For all frequencies, a concentration greater than 95% of
the density of the samples around 𝑇

𝑠𝐸
±𝑇
𝑡
was observed.This

implies an uncertainty of awindowof stimulation (𝑇
𝑡
) around

the expected value (right and left). This result is explained
graphically in Figure 9.

5.2. Reconstruction of EMG Envelopes. This section shows
the next validation step aimed to demonstrate that the stim-
ulation signal provided by the TEREFES produces similar
muscle contractions as those obtained by the synergistic
neural commands, as observed in human experiments.

The validation experiment can be divided into the follow-
ing steps.

(1) Simulation of H and W. Neuronal commands
and synergies have been simulated in MATLAB
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Figure 8: Cumulative distribution function of synergies period for (a) 𝑇
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= 50ms (𝐹
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Figure 9: Stimulation patterns for three channels. CDFs are displayed around the expected synergies period (𝑇
𝑠𝐸
).

(Figure 10) and then loaded into the application as
MAT files. For this test, three neural modules and 8
stimulation muscles were considered.

(2) Configuration of Parameters. A sinusoid reference
with an amplitude of 10 cm and 0.1Hz frequency was
used. Stimulation was performed at a frequency of
40Hz, and the synergy frequency was 20Hz. Test
duration was set to 50 seconds.

(3) Data Collection. During stimulation, the TEREFES
monitors the timing of the overall system. To do
this, the device measures the elapsed time between

consecutive reception of new stimulation parameters
sent by the synergistic controller.Themeasured value
is sent back to the controller. These values are stored
in the application in dynamic lists.

(4) Data Analysis. When the test is complete, we can
export all the data collected in MAT files. They
include synergies period measured by Stopwatch and
TEREFES, WBB data arrival periods, values of CoP
displacements, and a diferent kind of vector which
measures the point in time when events occur in the
execution time. For instance, we use Stopwatch class



10 BioMed Research International

0 10 20 30 40 50 60 70 80 90 100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Sway cycle (%)

N
eu

ro
na

l c
om

m
an

ds

Module 1
Module 2

Module 3

(a)

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Number of muscle

C
oe

ffi
ci

en
ts 

of
 sy

ne
rg

ie
s

Module 1
Module 2

Module 3

1 2 3 4 5 6 7 8

(b)

Figure 10: (a) Neural Commands. (b) Coefficients synergies simulated in MATLAB.

timers to know (i) when the configured execution
time is finished, (ii) when a new data from the
WBB arrive, (iii) when a new frame is sent to the
TEREFES; and (iv) when the new synergy period
value measured by the TEREFES arrives. All of these
data were previously recorded in dynamic lists when
the test was run.

Using temporary values (when we send a new frame to
the TEREFES), it is possible to simulate in MATLAB the
outputs obtained with the FES system during the test. In this
simulation we considered the resolution of the TEREFES,
which means that the TEREFES output simulated is the same
as that generated.

In Figure 11, the output generated by the TEREFES for
a single channel (corresponding to muscle 1) is shown. The
output signals are modulated in amplitude according to the
theoretical values of reconstructed EMG envelopes obtained
for healthy subjects (according to (1)). To retrieve the EMG
envelope signal, a low pass filter is applied to the TEREFES
outputs. The butterworth filter was designed in MATLAB,
and the filter parameters were set, as shown in Algorithm 1.

The filter represents roughly the low-pass behavior of
the skin-muscle system. The resulting signal of the designed
filter is shown in Figure 12.The theoretical EMG envelope for
muscle 1 (according to the (1)) is plotted in blue, the envelope
signal for the TEREFES output (adjusted to resolution of
782.7𝜇A) is inmagenta, and the envelope obtained by filtering
the TEREFES signal is in red.The similarity between the first
and last signals allows us to demonstrate that the stimulation
patterns obtained with the synergistic controller represent
in a good manner the muscle activation used previously to
obtain these stimulation patterns.

6. Discussion

In this work, we presented an innovative balance training
system, which combines postural analysis with synergistic
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Figure 11: TEREFES output current for muscle 1. The signal is
modulated in amplitude according to M = H × W × Imax during
50 seconds.

electrical muscle stimulation. The experiments presented
here were mainly focused on testing the timing and synchro-
nization performance of the system. Timing is a particularly
crucial aspect, because the proposed system is made of
commercial off-the-shelf technology, which prevents them
from having real-time performance. Several efforts were
dedicated to get the best timing performance of the system.
For instance, two timing and synchronization monitors
were implemented in a distributed way, to robustly verify
that timing is correct during training sessions. The system
succeeded in providing synergistic EMG profiles, but only in
an open-loop fashion.

Closed loop control might be needed depending on the
rehabilitation task strategy. For example, the system could
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Fs = 20000; % Sampling Frequency

Fpass = 3; % Passband Frequency

Fstop = 10; % Stopband Frequency

Apass = 10; % Passband Ripple (dB)

Astop = 100; % Stopband Attenuation (dB)

match = ‘stopband’; % band to match exactly

% construct an FDESIGN object and call its BUTTER method.

h = fdesign.lowpass (Fpass, Fstop, Apass, Astop, Fs);

Hd = design(h, ‘butter’, ‘MatchExactly’,match);

y = filter(Hd, IoutTerefes);

Algorithm 1
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Figure 12: Comparison between normalized EMGs envelopes for muscle 1.

stimulate according to the current user’s CoP and not as
a function of a predefined reference. In such closed-loop
configuration, a better and deeper knowledge regarding the
effective sensing-to-actuation time is needed. According to
the literature, this time can be approximately 100ms, which
lies in the same order of magnitude of the system control
frequency imposed by the different modules (WBB and
TEREFES).This immediately shows that a close loop strategy
would be very challenging, at least based on a sample to
sample feedback.

Regarding the multimodal interfaces, it is worth to
mention that the human-machine system communicates
through kinematic, CoP, auditory, visual, and electric signals.
The potential use and further impact of this multimodal
interfaces have not been explored yet. Despite these aspects,
an important outcome of this work is the development of a
flexible and powerful tool for the assessment and training of
balance control using off-the-shelf technologies.

The potential impact of the introduction of novel con-
cepts and platforms for balance training is huge but still not
completely defined. The use of muscle synergies paradigm as
a basis for the rehabilitation paradigm represents the most
scientific innovative aspect behind this work and still needs to
be deeply explored. In order to test this approach, new tools
are needed, and the one here proposed may be one of them.
The objective of this paper is to provide the technological tool
to explore this rehabilitation approach, but further trials are
needed to define its effectiveness.

The impact of FES on internal neuromotor mechanisms
is still far from being understood, and its use in rehabilitation
may vary depending on the therapy. There is evidence of
cause-effect relationship, but no extensive description is
provided in the literature. The therapy based on electros-
timulation can be either applied in an efferent way (mostly
functional) or afferent. For both types of electrostimulation,
devices are the same, and the difference is mainly in the
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amplitude of the current signals. In this paper, we always
mention the stimulation as a functional one, that is, FES.
While the developed system supports both types of stimula-
tions (afferent or efferent), the stimulation profile is another
open research variable to be explored.

7. Conclusions

In this paper, we have presented a multimodal low-cost tool
for training human balance control following a muscle syn-
ergy theory scheme. The system consists of a combination of
off-the-shelf technologies such as the Wii Balance Board and
the Kinect, an electrostimulator and a software application
running in a PC.

In this work, we focused on mediolateral (ML) and
anteroposterior (AP) voluntary postural sways. For this
purpose, the synergy modules described in [5] were used as
an input of the system. Based on this information, the system
stimulates the muscle synergistically.

The synergy-based controller architecture is based on
three non-real-time elements (a) Wii Balance Board; (b) the
operating system; and (c) the TEREFES (FES system). The
interaction between these off-the-shelf systems was studied
and evaluated in this paper. The performance results showed
in this paper are expressed in terms of the probability
distribution function of timing and synchronization among
components. The outcomes of these studies were as follows.

(i) The system can stimulate with a frequency up to
50Hz.This frequency rangemeets the requirement of
FES control system available in the scientific literature
[7].

(ii) The system can handle and modify while running
the stimulation frequency in range of 1–20Hz. These
frequencies are fast enough for balance training since
it is a slow movement. The highest frequency of
the sinusoidal reference trajectory is 0.5Hz (sway
movement).

(iii) The uncertainty of synergy sampling/update period is
approximately±25ms (elapsed time between sampled
reference trajectory and updated stimulation pulses).
It was also demonstrated that the envelope recon-
struction is not affected by this uncertainty.

Despite non-real-time performance, the tool showed
an acceptable timing and synchronization among modules.
These operation ranges are enough for these training scenar-
ios. To get a better online feedback regarding these issues,
a monitor of real-time performance was implemented to
measure the timing and synchronization between modules.

The system uses multimodal interfaces to get kinematic
and CoP information of user and to provide auditory,
visual, and electrical signals to the user and the therapist.
The interface also includes important features for training
purposes, like online graphs of signals, data session storage,
and a configuration interface to tailor training for each user.

Future work will be focused on the application of the pro-
posed platform in clinical settings. In particular, preclinical
studies in neurologically injured people, for example, spinal

cord injured and stroke patients, will be addressed to evaluate
the rehabilitation potential of synergistic FES.
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Any rehabilitation involves people who are unique individuals with their own characteristics and rehabilitation needs, including
patients suffering fromMultiple Sclerosis (MS).The prominent variation ofMS symptoms and the disease severity elevate a need to
accommodate the patient diversity and support adaptive personalized training to meet every patient’s rehabilitation needs. In this
paper, we focus on integrating adaptivity andpersonalization in rehabilitation training forMSpatients.We introduced the automatic
adjustment of difficulty levels as an adaptation that can be provided in individual and collaborative rehabilitation training exercises
for MS patients. Two user studies have been carried out with nine MS patients to investigate the outcome of this adaptation. The
findings showed that adaptive personalized training trajectories have been successfully provided to MS patients according to their
individual training progress, which was appreciated by the patients and the therapist.They considered the automatic adjustment of
difficulty levels to provide more variety in the training and to minimize the therapists involvement in setting up the training. With
regard to social interaction in the collaborative training exercise, we have observed some social behaviors between the patients and
their training partner which indicated the development of social interaction during the training.

1. Introduction

Multiple Sclerosis (MS) is an autoimmune, chronic, and
progressive disease of the central nervous systemof humans.
People withMS suffer fromdamaged nerves which lead to the
progressive interference with functions that are controlled by
the nervous system such as vision, speech, walking, writing,
and memory, causing severe limitations of functioning in
daily life. To date, no cure has been found for MS yet.
Therefore, for MS patients, the aim of rehabilitation training
is different compared to any other disease. Rehabilitation
training will not completely recover MS patients; however, it
may improve their functional mobility and quality of life.

People who are in need of any kind of rehabilitation
are individuals with their own characteristics and needs.
Although they might be subjected to the same background
cause for rehabilitation, the stage of their condition or the
severity of their disease may differ which requires different

treatments and forms of rehabilitation. In the case of MS, the
individual differences among its patients are quite prominent
due to the great variation of MS symptoms and the impact
levels of the disease. For example, their physical abilities,
which are largely influenced by the degree ofmuscleweakness
experienced by the patients, differ a lot. The difference
in physical abilities has an impact on the course of the
rehabilitation training. Some training tasks may be difficult
for some patients because of their limited capabilities due to
their high degree of muscle weakness, while other patients
experience less problems in performing those tasks.

During rehabilitation, each patient progresses in different
ways; thus, the training exercises must be tailored to each
individual differently. For example, the difficulty of an exer-
cise should increase faster for those who are progressing well
compared to those who are having trouble performing the
exercise.The condition of patientsmay also change over time:
it can deteriorate according to the progress of the disease or
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it can improve as a result of the treatment and rehabilitation
efforts.This change of condition should be taken into account
to ensure providing the right level of rehabilitation training
to the patient at the right time. Therefore, due to the
diversity among MS patients, it would be unwise to offer the
same rehabilitation training to every patient. This situation
demands a suited, personalized rehabilitation training to
meet every patient’s needs.

To acquire a good result of rehabilitation, it is necessary
to maintain patient motivation. Generally, rehabilitation
involves the same training exercises that should be performed
repetitively and for a long period of time. Using games as
the training platform has been considered to maintain and
enhance patients’ motivation during rehabilitation, especially
collaborative games in which social interaction is incorpo-
rated. However, the usage of game-like training exercise is not
the ultimate solution. Some patients may feel less motivated
when finding the game to be too easy or too difficult
or when reaching a certain point in the training where
they become bored with the game. Therefore, rehabilitation
training should be set at an appropriate level of challenge or
difficulty to maintain the motivation of patients. This raises
the need of adaptivity in the rehabilitation training to ensure
the effectiveness of the rehabilitation.

Our work focuses on the idea of integrating adaptivity
and personalization into the rehabilitation training for MS
patients and investigating to what extent the adaptive person-
alized training may contribute to a successful neurological
rehabilitation. This paper firstly discusses the survey of
related work concerning adaptation in rehabilitation train-
ing, followed by a description of our rehabilitation system
developed to support personalized rehabilitation training
for MS patients. We further elaborate on the investigation
of integrating the adaptivity of automatic difficulty level
adjustment in the rehabilitation training for MS patients,
including the user studies carried out with a group of MS
patients to acquire their feedback.

2. Related Work

In this section, we first provide a brief overview of research
which has studied adaptation in rehabilitation training. We
then discuss several works which have investigated the usage
of virtual environments as the platform for rehabilitation
training. Lastly, we describe a number of studies which
combined both and attempted to integrate adaptation in
virtual environments for rehabilitation training.

2.1. Adaptation in Rehabilitation Training. The integration of
adaptation in rehabilitation training has been the focus of
several studies [1–4]. These studies have mainly investigated
the integration of adaptivity in robot-assisted rehabilitation
training which aimed at providing a personalized training
to the patients according to their individual characteristics,
needs, and abilities. Moreover, the adaptivity is intended
to facilitate an automated training system to minimize the
therapist’s effort in manually adjusting the rehabilitation
training.

Jezernik et al. [1, 4] studied the adaptation in rehabilita-
tion training of locomotion for stroke and spinal cord injured
patients. An automated treadmill training system was intro-
duced using a robotic rehabilitation device to increase the
training duration and reduce the physiotherapists’ effort. A
clinical study on six spinal cord injured patients showed that
the treadmill training with adaptive gait patterns increases
the motivation of the patient and gives him/her the feeling
that they are controlling themachine rather than themachine
controlling them. Kahn et al. [2] described the integration
of adaptive assistance into guided force training as part of
the upper extremity rehabilitation for chronic stroke patients.
An adaptive algorithm was developed to individually tailor
the amount of assistance provided in completing the training
task. This algorithm has been evaluated with one patient
in a two-month training program which showed significant
improvements in the patient’s arm function reflected by the
performance increase of functional activities of daily living
such as tucking a shirt and stabilizing a pillow. Kan et al. [3]
presented an adaptive upper-limb rehabilitation robotic sys-
tem for stroke patients which accounts for the specific needs
and abilities of different patients. Using the decision theo-
retic model, the system autonomously facilitates upper-limb
reaching rehabilitation by tailoring the exercise parameters
and estimating the patient’s fatigue based on the observation
in his/her compensation or control ofmovements.The system
performance was evaluated by comparing the decisionsmade
by the system with those of a human therapist. Overall, the
therapist agreed with the system decisions approximately
65% of the time and also thought the system decisions were
believable and could envision this system being used in both
a clinical and home setting.

2.2. Virtual Environments for Rehabilitation Training. An-
other emerging technology that has been widely applied in
rehabilitation is the virtual environment technology. Vir-
tual environments provide a variety of potential benefits
for many aspects of rehabilitation training. Schultheis and
Rizzo [5] discussed a number of advantages for the use of
virtual environments in rehabilitation. One key benefit is
that virtual environments are rather naturalistic or “real-
life” environments, which may allow the users or patients
to be immersed within the environment and “forget” that
they are in a rehabilitation training session. Within virtual
environments, patients are also facilitated to perform the
rehabilitation training tasks using 3D interaction, which gives
a close resemblance to the actual movements in the real
world. Schultheis and Rizzo [5] also pointed out that virtual
environments facilitate the design of individualized training
environments where therapists can better tailor the training
exercises based on an individual’s abilities and needs, and
they can also easily apply gradual increments of difficulty and
challenge. Another benefit is that virtual environments allow
the introduction of gaming factors into the rehabilitation
scenario to enhance motivation of patients.

Holden [6] provided a thorough overview of the use
of virtual environments in the field of motor rehabilitation.
In the context of motor rehabilitation, several studies have
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shown that patients with motor impairments are able to train
their motor skills in virtual environments and transfer these
abilities to the real world. Furthermore, these studies have
also indicated that motor learning in a virtual environment
may be superior to that in a real environment, for example,
a study described in Webster et al. [7] which compared
two groups of patients with stroke and unilateral neglect
syndrome in a wheelchair training program. The group
which had trained in a virtual environment hit significantly
fewer obstacles with their wheelchair during the real world
obstacle avoidance test than the group which only trained
in a real environment. Another study described in Jaffe
et al. [8] investigated chronic stroke patients in a training
to avoid obstacles during walking. Patients using a virtual
environment-based training showed greater improvement in
a fast paced velocity test in comparison to the patients who
trained in the real world.

In Holden [6], an extensive description of the various
virtual environments that have been developed for reha-
bilitation purposes of patients was provided. This includes
rehabilitation for stroke (upper and lower extremity training
and spatial and perceptual-motor training), acquired brain
injury, Parkinson’s disease, orthopedic disorders, vestibular
disorders (balance training), wheelchair mobility training,
and functional activities of daily living training. A review on
these research initiatives showed that a wide variety of clinical
applications using virtual environments has been developed
and tested. Mainly, the virtual environments consist of scenes
that were designed to be simple, therapeutically meaningful
tasks to the targeted patients such as making coffee, lifting a
cup to the mouth, using an automated teller machine (ATM),
and way-finding. Virtual environments have been considered
not as a treatment for motor rehabilitation in itself but more
as a new technological tool that can be exploited to enhance
motor rehabilitation training.

Over the past few years, there is an increasing research
interest in the development of virtual environments for use
in stroke rehabilitation. Virtual environments are considered
beneficial in stroke rehabilitation because they enable more
precisely controlled training settings, intensive practice with
easier repetition of tasks, automatic recording of training
progress, and more enjoyable and compelling interaction
for the patients. Some researchers developed virtual envi-
ronments based on the literal translation of activities of
daily living such as self-feeding, bathing, and dressing or
grooming. For example, Edmans et al. [9] developed a virtual
environment to train a self-feeding task (i.e., making a hot
drink). An evaluation study with 50 stroke patients showed
that their performance of hot drink-making in the real world
and in the virtual environment were correlated, which may
indicate the usefulness of such virtual environment as a
rehabilitation tool for stroke patients.

Other researchers chose to enclose the rehabilitation
tasks in game-like exercises, with the purpose of adding
fun and challenges into rehabilitation training to increase
or maintain the patient’s motivation. For instance, Alankus
et al. [10] developed a series of home-based stroke reha-
bilitation games which make use of inexpensive devices
feasible for home use such as Wii remotes and webcams.

Two examples of the games are the helicopter game in
which the patients have to maneuver a flying helicopter
using their arm to avoid hitting buildings and to collect
fuel cells in the air and the baseball catch game in which
the patients have to differentiate balls and control the
baseball glove to catch baseballs and avoid basketballs. The
preliminary evaluation with one therapist and four stroke
patients showed that the games motivated the patients and
they used the right motions required for the rehabilitation
training. Saposnik et al. [11] described the first randomized
clinical trial on the effectiveness of virtual reality using
the Wii gaming system, namely, VRWii, on the arm motor
improvement in stroke rehabilitation.The results showed that
the VRWii gaming technology represented a feasible, safe,
and potentially effective alternative to facilitate rehabilitation
therapy and enhance motor function recovery in stroke
patients.

2.3. Adaptation in Virtual Environments for Rehabilitation
Training. As previously discussed in Section 2.1, it is essential
to provide a personalized rehabilitation training which is
suited according to the individual characteristics of patients.
Patients involved in rehabilitation have a wide range of needs
and abilities which may benefit from integrating adaptivity
into their rehabilitation training. Adaptivity enables offering
a tailored training with minimal efforts from the human
therapists as it decreases the dependence on them to continu-
ously monitor the patient’s progress and manually adjust the
training program.

Several studies mentioned in Section 2.2 have acknowl-
edged the potential of developing virtual environment appli-
cations for the purpose of rehabilitation training. These
applicationsmay also benefit from adaptivity since it allows to
dynamically adjust the parameters of the virtual environment
as the training tool to provide a suited, personalized training
to every patient based on his/her current needs and abilities.
It may also be necessary to integrate adaptivity in virtual
environments for rehabilitation training due to the fact that
the complex 3D interaction may introduce extra difficulties
and eventually influence patients’ performance during the
training sessions. Adaptivity may reduce this effect by adjust-
ing the virtual environment according to the patient’s level of
interaction.

This section discusses several previous studies which
highlighted the integration of adaptation in virtual environ-
ments that were developed for the purpose of rehabilitation
training. Ma et al. [12] stated that virtual reality systems for
rehabilitation can benefit a group of patients with a great
diversity through adaptation. In their study, several adaptive
virtual reality games for rehabilitation of stroke patients
with upper limb motor disorders have been developed.
The information of patient performance is used to enable
automatic progression between difficulty levels in the games.
The elements of the games are designed to be adaptive and
to change dynamically according to how well or badly the
patient is performing. An initial evaluation from patients
showed positive feedback since they enjoyed training while
playing the game and they felt more motivated.
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Cameirão et al. [13] have developed an adaptive virtual
reality based gaming system for the upper extremities reha-
bilitation of acute stroke patients. They proposed a multitask
adaptive rehabilitation system that provides a task-oriented
training with graded complexity. The basic training consists
of a virtual reality game where flying spheres move towards
the patient. These objects have to be intercepted using
the virtual arms which are controlled by the patient’s arm
movements. As the first task, the patients have to perform
the hitting task to train range of movement and speed. The
second task is the grasping task to train finger flexure and
then finally the placing task to train grasp and release is the
last task. Based on the individual performance of the patient
during training, the difficulty of the task is adapted by mod-
ulating several parameters such as the speed of the spheres,
the interval of appearance between consecutive spheres, and
the range of dispersion in the field. The impact of the system
on the recovery of patients was evaluated with 14 patients.
The results suggested that the system induces a sustained
improvement during therapy with observed benefits in the
performance of activities of daily living.

Barzilay and Wolf [14] developed an online biofeedback-
based adaptive virtual training system for neuromuscular
rehabilitation. The system employs an artificial intelligence
learning system that learns from real-time biofeedback and
produces online new patient-specific virtual physiotherapy
missions. In the training, the patient is asked to follow the
virtual tasks (i.e., trajectories) displayed to him/her by mak-
ing upper limb movements accordingly. The performance is
thenmodeled by tracking and recording their kinematics and
muscle activity (measured through electromyography (EMG)
signals) using amotion tracking system. Based on this trained
model, the system changes and adapts the task displayed
to the patient which results in a new virtual trajectory as
the training exercise. This adaptive loop of the system is
continuously repeated to provide a real-time adaptive reha-
bilitation virtual training system for better neuromuscular
rehabilitation.

According to Holden [6], the use of mixed reality, which
combines physical and virtual environments, in rehabilitation
training can provide adaptive scenes for interactive practice
and feedback that engage the patient physically and mentally.
Duff et al. [15] presented an adaptive mixed reality rehabilita-
tion training system to help improve the reachingmovements
of patients who suffer hemiparesis from stroke. The system
provides real-time, multimodal, customizable, and adaptive
feedback based on the movement patterns of the patient’s
affected arm and torso during the reaching movement. The
kinematic data is used to assess the movement and adapt
the parameters linked to the feedback presentation and the
physical environment that determines the type of task. The
feedback is provided via innovative visual and musical forms
that present a stimulating, enriched environment for the
patient’s training. For example, the audio feedback in the
form of music is intended to encourage patients to perform
the desired reaching movements. The velocity of the patient’s
hand controls the rhythm of the music; when the patient is
moving too slow, the music is played with a slower rhythm
and when the patient moves with nonsmooth acceleration

or deceleration, there will be abrupt changes in the pace
of the music. Additionally, the sequence and intensity of
tasks can also be adapted to better address each patient’s
rehabilitation needs. After trainingwith the interactivemixed
reality system, three chronic stroke patients showed improved
reachingmovements. Integratingmixed reality environments
into the training was argued to promote an easier bridging in
motor learning between the virtual and physical worlds. In
one of their following research, Baran et al. [16] presented
the design of a home-based adaptive mixed reality system
for stroke rehabilitation. The system, which consists of a
custom table, chair, and media center, is designed to be easily
integrated into any home to provide an engaging long-term
reaching task therapy for stroke patients.

2.4. Summary of Related Work. In this section, we have
discussed several research efforts, which have mainly inves-
tigated the integration of adaptivity in robot-assisted reha-
bilitation training. Besides providing a personalized training,
the adaptivity integrated in the studies was intended to
minimize the dependence from the therapists for manually
adjusting the rehabilitation training. Virtual environment
technology has been considered to be beneficial and widely
applied in rehabilitation. We also have discussed a number
of research initiatives that used virtual environments as part
of the rehabilitation training platform and demonstrated the
patients’ ability to train in virtual environments and transfer
the trained skills to the real world. Furthermore, we have
described several studies which have attempted to integrate
adaptivity in the virtual environment training system for
achieving better results and patient’s engagement in reha-
bilitation. Mostly, the adaptivity takes form in automatically
adjusting the parameters of the virtual environment to alter
the difficulty levels in the rehabilitation exercises based on the
patient’s current training performance and training progress.

We observed that previous studies mainly focused on
robot-assisted rehabilitation training for stroke patients. In
our work, we aim to develop a haptic-based rehabilitation
system (combining robot-assisted rehabilitation and virtual
environments technologies) to support a systematic and per-
sonalized upper limb rehabilitation training for MS patients.

3. Rehabilitation for Multiple Sclerosis

Rehabilitation for people withMSmainly aims for improving
their functional mobility and quality of life, rather than
attaining their full recuperation from the disease. This is due
to the fact that MS is an incurable illness. In the past, physical
training was not advised for MS patients due to the opinion
that it would advance the deterioration. Now, however,
performing physical training is often part of therapy and
rehabilitation efforts for MS patients in parallel with taking
medications. A number of studies have shown beneficial
effects of physical training inMS regarding lower limbmuscle
strength, exercise tolerance level, functional mobility (i.e.,
balance and walking), and quality of life, while no harmful
effects were reported [17, 18].
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Little research has investigated the therapeutic value of
upper limb, in particular arm, rehabilitation for MS patients.
Upper limb rehabilitation is considered important since
upper extremity dysfunction strongly influences the capacity
of MS patients to perform several activities of daily living
(ADL) such as self feeding (e.g., eating, filling, or drinking
a cup of coffee), bathing, grooming, dressing, and taking
medications.

3.1. Robot-Assisted Upper Limb Rehabilitation. Keys to a suc-
cessful neurological rehabilitation are training duration and
training intensity [19]. As time dedicated to upper limb
training may be limited in a formal training session, addi-
tional therapeutic modalities may be necessary to enable
MS patients to train independently of the therapist. Robot-
assisted rehabilitation and virtual environment technologies
have been considered to be promising to provide an effective,
independent upper limb rehabilitation training [20, 21].
Robot-assisted rehabilitation allows high-intensity, repetitive,
task-specific, and interactive treatment of the impaired upper
limb. Virtual environments facilitate patients to perform the
training tasks with their upper limb using 3D interaction,
which gives a close resemblance to the real movements in the
real world.

In the context of a European research project (INTER-
REG-IV program “Rehabilitation robotics II”), we investigate
the effects of robot-assisted upper limb rehabilitation training
forMSpatients.Ourwork combined two technologies, robot-
assisted rehabilitation and virtual environments, by first
investigating the feasibility of using a phantom haptic device
for arm rehabilitation in MS patients [22, 23]. Further, a
complete haptic-based rehabilitation system, I-TRAVLE, was
developed to support a systematic and personalized upper
limb rehabilitation training for MS patients [24].

I-TRAVLE (Individualized, Technology-supported, and
Robot-Assisted Virtual Learning Environments) consists of a
hardware and software system setup as depicted in Figure 1.
Themain component of the hardware system is a haptic robot,
the MOOG HapticMaster, that functions as both input and
output devices. As an input device, it allows patients to inter-
act with the software applications that deliver the training
exercises. As an output device, it provides haptic feedback
during the training by guiding or hindering the patient’s
arm movement with exerted forces. The HapticMaster is
equipped with a peripheral device, the ADL Gimbal, where
the patients’ hand is placed and secured using the attached
brace while performing the training exercises. A large display,
a full HD 40󸀠󸀠 Samsung TV screen, is used as a visual display
to project the training exercises and is placed behind the
HapticMaster approximately 1.5m in front of the patient. A
complete description of the I-TRAVLE hardware systemwith
the adjustments made for the context of MS training can be
found in de Weyer et al. [25].

The main components of the software system of our
I-TRAVLE system are the training exercises, the patient
interface, the therapist interface, and the central database.
Two types of training exercises were developed, namely,
the basic and the advanced training exercises. We will

Figure 1: I-TRAVLE system setup.

(a) Basic training

(b) Advanced training

Figure 2: The patient interface.

discuss the training exercises in Section 3.2. The patient
interface, as shown in Figure 2, is created to enable patients
to independently start performing and navigating through
the exercises predefined by the therapist. Figure 2(a) shows
how the patient interface looks like in the basic training and
Figure 2(b) shows the interface for the advanced training.
Another interface was developed for the therapist, as shown
in Figure 3, to manage the user data, personalize therapy
sessions, and review the data logged from the performed
training exercises. The central database stores all the data
about the training exercises and patients’ performance. A
more detailed description of the I-TRAVLE software system
can be found in Notelaers et al. [26].
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Figure 3: The therapist interface.

Several other researches have been done in the course of
the I-TRAVLE system development regarding the influence
of visual aspects on the capabilities of MS patients. People
with MS often suffer from visual system disorders and cog-
nitive dysfunctions, which may influence their capabilities
while navigating in a virtual environment. Van den Hoogen
et al. [27] investigated the impact of visual cues such as
shading on navigation tasks in a virtual environment for
MS patients. The study showed that the addition of shade
below patients’ current position in the virtual environment
improves speed during the task and reduces the time spent
on the task. Van den Hoogen et al. [28] discussed a study
to comparatively test the effectiveness of two characteristics
of virtual environments, namely, the stereo visualization and
the graphic environment, in rehabilitation training when
utilizing a 3D haptic interaction device. The experiment
results showed that the use of stereoscopy within a virtual
training environment for neurorehabilitation of MS patients
is most beneficial when the task requires movement in depth.
Furthermore, the use of 2.5D in the graphic environment
implemented showed the highest efficiency and accuracy in
terms of patients’ movements.

3.2. Individual Training Exercises for Upper Limb Rehabilita-
tion. To keep up the motivation of patients and strive for a
successful rehabilitation trajectory, it is essential to give them
training exercises that are meaningful in supporting their
functional recovery [29]. The development of the I-TRAVLE
training approach was inspired by the T-TOAT (technology-
supported task-oriented arm training) method of Timmer-
mans et al. [30]. T-TOAT is a technology supported (but
not haptic) training which allows integration of daily tasks.
Similar to the T-TOATmethod, I-TRAVLEdivides an activity
of daily living (ADL) into skill components and trains the
skill components, first every component separately and later
several components combined.

The I-TRAVLE training exercises were designed based
on the skill components that patients need to train related
to their upper limb rehabilitation. Two types of training
exercises are provided, namely, basic training exercises which
include only one skill component and also advanced training
exercises which combine multiple skill components. Seven
basic training exercises were developed in I-TRAVLE as

(a) The lifting exercise

(b) The transporting exercise

(c) The rubbing exercise

Figure 4:The basic training exercises for upper limb rehabilitation.

follows: pushing, pulling, reaching, turning, lifting, trans-
porting, and rubbing. Figure 4 shows three examples of the
basic training exercises: lifting (Figure 4(a)), transporting
(Figure 4(b)), and rubbing (Figure 4(c)).

In the advanced training exercises, several skill compo-
nents were combined into a game-like training exercise as
illustrated in Figure 5. Until now, four advanced training
exercises have been designed as follows: penguin paint-
ing (Figure 5(a)), arkanoid (Figure 5(b)), egg catching, and
flower watering. Normally in a therapy session, a patient first
trains with several basic training exercises. Depending on the
progress of the patient, the therapy session can be continued
with the games (i.e., advanced training exercises).

One example of the advanced or game-like training
exercises is the penguin painting game as illustrated in
Figure 5(a). This game was designed based on two skill
components: lifting and transporting. Lifting is one of the
important skill components in the upper limb rehabilitation
for MS patients. In the penguin painting game, the patient
has to collect as many points as possible within a certain
time period by painting as many penguins as possible with
the right color. Figure 6 illustrates how the penguin painting
game is played. On the left side, there are two shelves with
penguins waiting to be painted. The patient has to select one
penguin from a shelf (Figure 6(a)) and paint it according to
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(a) The penguin painting game

(b) The arkanoid game

Figure 5: The advanced training exercises for upper limb rehabili-
tation.

the color of its belly. To paint, the patient needs to bring the
penguin to the corresponding buckets by dipping it into the
bottom to paint the lower part of the penguin (Figure 6(b))
and continue dipping it into the top bucket to paint the upper
part of the penguin (Figure 6(c)). While painting, the patient
must hold the penguin long enough to effectively apply the
color and train for stabilization in this way. At some points
during the game, a devil that tries to capture the penguin
appears (Figure 6(d)) andmust be avoided in order to not lose
the penguin already in hand. Every time the patient finishes
painting a penguin, the colored penguin must be transported
to the exit platform on the right side (Figure 6(e)).

The aforementioned training exercises discussed in this
section are designed to be part of individual rehabilitation
training for MS patients. This means that the patient will
perform the training exercises on his/her own. In this case,
the role of the therapist is to determine which training exer-
cises the patient has to perform and also to personalize the
therapy sessions according to the patient’s current condition
and needs. In another case, the therapist will extend his/her
role to not only manage the therapy sessions but also take an
active part in the therapy sessions by collaborating with the
patient in performing the training exercises. This so-called
collaborative rehabilitation training will be further discussed
in the next section.

3.3. Collaborative Training Exercises for Social Rehabilitation
Program. Typically exercises in robot-assisted rehabilitation
involve a patient training on his/her own (with a therapist’s

supervision) and performing repetitive movements for a cer-
tain time period predetermined by the therapist. Even when
gaming elements are integrated in the training exercises,
it is crucial to exploit a variety of motivational techniques
to avoid bored patients and patients that are stopping the
therapy due to the high intensity and repetitiveness of
the exercises. Therefore, we explore different motivational
aspects to increase the patient’s engagement in the therapy.

Social support has been demonstrated to be beneficial for
the engagement andmotivation of patients in a rehabilitation
context. Van den Hoogen et al. [32] have performed a study
on rehabilitation needs of stroke patients, which indicated
that social support is critical for patient motivation in order
to adhere to the necessary regime of rehabilitation exercises
in the chronic phase of stroke. In addition to using games,
patient’s motivation during rehabilitation can be maintained
and further enhanced through the incorporation of social
interaction into the training exercises offered in the rehabili-
tation program.

During rehabilitation, patients can receive social support
from different groups in their social network not only from
their familymembers and friends but also fromother support
groups such as their therapists, caregivers, or fellow patients.
These people can extend their form of social support to
the patients by actively participating in the therapy sessions.
This support can be manifested in two different forms:
sympathy and empathy [33, 34]. Both depend on the types
of relationships built based on shared emotions and sense
of understanding between the persons. Two possible social
scenarios can exist in this context.

(1) Sympathetic. This social situation occurs when a
person shows the ability to understand and to support
the condition or experience of the patient with com-
passion and sensitivity. For example, healthy family
members and close friends may be able to show
sympathy towards MS patients.
One can imagine a situation, where a patient is
visited by a family member (e.g., a daughter). This
family member could show her sympathetic support
through her help in the rehabilitation programby per-
forming the collaborative training exercise together
with the patient.

(2) Empathetic. This social situation happens when a
person shows the ability to coexperience and relate to
the thoughts, emotions, or experience of the patient
without them being directly communicated. Other
fellow patients can easily have empathy towards MS
patients due to the resemblance of their condition.
One can imagine a situation, where two patients are
supporting each other by training together at the same
time through the collaborative exercise, which makes
the training more pleasant and fun.

Social interaction can be incorporated in the rehabili-
tation training by providing a social play medium which
requires a patient to collaborate with his/her supporting
partner in performing the training exercises. Thus, the idea
is that the patient will keep being engaged and stay motivated
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(a) Selecting a penguin from a shelf

(b) Painting the lower part of the penguin (c) Painting the upper part of the penguin

(d) Avoiding the devil (e) Releasing the painted penguin to the exit
platform

Figure 6: Illustration of the penguin painting game.

in training by collaborating with other people as a training
partner. By this, we extend the individual rehabilitation
training to a collaborative rehabilitation training, where the
training exercises involve collaboration and participation of
more than only a single MS patient.

Vanacken et al. [31] have explored the possibility of social
rehabilitation training by designing a simple collaborative
game-like training exercise, as shown in Figure 7. A collab-
orative balance pump game was created (Figure 7(a)), where
two people “play” together during the therapy session. The
goal of the game is to collect all stars, which represent points,
by hitting them with a ball rolling over a beam. Both players
have to collaboratively control and balance the height of

both sides of the beam by pumping each side of it in turns.
Figure 7(b) illustrates the setup of the social rehabilitation
training session in a sympathetic scenario, where a patient
plays the collaborative balance pump game with a family
member. To produce the pumping gesture, the patient uses a
HapticMaster and the healthy person uses aWiiMote as input
devices.

An informal user study has revealed that most patients
and therapists liked and enjoyed training with the collab-
orative balance pump game described in Vanacken et al.
[31]. Inspired by this, we developed another collaborative
training exercise, social maze, which hasmore game elements
and variations [35]. This collaborative training game was
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(a) The collaborative balance pump training exercise

(b) Sympathetic social scenario: a patient training in
companion of a family member

Figure 7: Example of a collaborative training exercise for MS
patients. Vanacken et al. [31]

Figure 8: The social maze game.

designed based on several skill components (see Section 3.2)
that MS patients need to train related to their upper limb
rehabilitation: lifting, transporting, turning, pushing, and
reaching. Figure 8 depicts our social maze with all game
elements. The goal of this game is to collect all symbols,
which represent points, by picking up each symbol and
bringing it to the collecting bin. The elements of the game
were purposively designed so that two players (i.e., a patient
and his/her training partner) have to collaborate as such to

(a)
Selecting
a symbol

(b) Collecting the symbols in the bin

(c) Avoiding the
laser beam

(d)
Demolishing
the bomb

(e) Avoiding the
devil

(f)
Surmounting
the rotator

(g) Gaining lives with the connecting heart

Figure 9: Illustration of the social maze game.

achieve the goal. Without collaboration, it is impossible to
finish the game.

As can be seen in Figure 8, the game area is divided
into two. In each part, the player, represented by a fish-
like avatar, can move around his/her own maze to col-
lect the symbols. Figure 9 illustrates how the social maze
game is performed. First, the player has to select a symbol
(Figure 9(a)). Once the players pick up a symbol, they can
place it in the collecting bin (Figure 9(b)) to earn points.
Along the way, there are some obstacles such as the laser
beams that need to be avoided (Figure 9(c)), the bombs that
need to be demolished (Figure 9(d)), the devil that may not
be encountered (Figure 9(e)), and the rotators that need to be
surmounted (Figure 9(f)). Demolishing the bombs demands
a tight collaboration between the players, where one player
has to push the bomb trigger (lifting skill component) in
order to destroy the bomb blocking the way of the other
player. To pass the rotator, the players must enter it and
perform the turning movement (turning skill component)
to rotate it. When the players are hit by the laser beam or
the devil, they will lose a life represented by a heart. To
gain more lives, the players must attain the connecting heart
(Figure 9(g)).
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3.4. Personalization in I-TRAVLE. The diversity of MS
patients raises the need for personalization in their reha-
bilitation training. The differences in physical abilities, MS
symptoms, and disease progression bring an influence to the
patients’ condition and their rehabilitation needs. Therefore,
offering the same training trajectory to MS patients is a
straightforward, yet unwise, approach. A personalized train-
ing that complies to each patient’s characteristics becomes a
necessity to accommodate the patient diversity and ensure
an effective and satisfactory rehabilitation. The I-TRAVLE
system has been developed with a concern for supporting
personalization in upper limb rehabilitation training for
MS patients. An exploratory study on the personalization
aspects has been discussed in Notelaers et al. [36]. The first
aspect considered in the personalization infrastructure of I-
TRAVLE was the workspace determination of patients. Due
to the difference in patients’ abilities in using their upper
limb, some patients may have a smaller range of motion than
the others. Based on the measurement of their active range
of motion (AROM), the setup of the training program can
be adjusted accordingly to ensure that the effort required to
perform the training exercises is within the capability of the
patient and no impossible or harmful arm movements were
necessary.

Within I-TRAVLE, normally the therapist manually
determines the training program and its exercise parameters
in the therapist interface (see Figure 3) to present suitably
challenging, individualized rehabilitation training. The ther-
apist can set up a training program according to the patient’s
desire to train certain activities of daily living. For example,
when the patient prefers to train his/her ability of drinking
a cup of coffee (i.e., self feeding), the therapist can choose
the suitable skill components such as reaching, lifting, and
transporting. Providing customizable parameters of these
skill components ensures personalization to better suit the
patients’ capabilities. A personalized training program with
the appropriate difficulty level according to the patients’
abilities can be established. For instance, to achieve the
training of more fine-grained arm movements, the therapist
can customize the parameters of the lifting exercise to a
higher difficulty. Several kinds of parameters are adjustable,
for instance, related to visual or haptic feedback.The amount
of haptic feedback that is given when the patient has to
follow a certain path in the virtual world influences how
easy or how difficult it is for the patient to stay on the path.
Figure 4(a) shows the lifting exercise. The green line shows
the ideal path the patient has to follow to bring the green
disc to the target through theHapticMaster.When the patient
deviates too much from the ideal path, the line and disc
become orange and finally red (as shown for the transporting
exercise in Figure 4(b) to encourage the patient to correct
her path. Another example of feedback that is parameterized
is illustrated for the skill component rubbing in Figure 4(c).
The patient has to move the disc between the two walls of
the tube. Haptic feedback makes the inside of the walls either
smooth or course grained, so that it is either easy or hard for
the patient to slide the disc next to the walls.

Not only the parameters of the skill components can be
customized but also personalization can take place in the

gaming level. Figure 5(a) shows the penguin painting game.
To make the lifting easier, the weight of the penguins can be
adjusted. In the arkanoid game (Figure 5(b)), the viscosity
of the bar pushing back the ball is also an adjustable haptic
parameter.

However, the customization of exercise parameters is
dependent on the therapist’s judgement and requires the
therapist to monitor the difficulty levels and preset param-
eters during the training session and to intervene to adjust if
needed.There might be times when the therapist is not aware
of the need for adjusting the training program according to
the patient’s progress or when the therapist finds a limited
time to set up a new training program customized to the
patient’s current ability. This dependency can be minimized
without a conscious effort from the therapist through the
integration of adaptivity. Adaptivity enables the system to
automatically adjust itself in such a way to support the
different context of each patient’s rehabilitation training.
Tailoring the right training challenge in the right timewithout
any interference from the therapist can be provided by auto-
matically adjusting the difficulty level of the training exercises
according to the patient’s current training performance [37].

4. Towards Adaptive Personalized
Rehabilitation Training: Automatic
Difficulty Level Adjustment

The focus in this work is how we can enhance our person-
alization strategy by integrating adaptivity into the rehabili-
tation training, both in individual and collaborative training
exercises, forMS patients. Due to the diversity ofMS patients,
every patient has a different physical ability and condition
which may influence the course of their training. For exam-
ple, one patient might find it very difficult to perform a
specific training task, while the other finds it quite easy to
perform it. We also have to take into account that every
patient progresses differently. It could be the case that one
patient may progress slower than the other in performing
the rehabilitation training tasks. With adaptation, we aim to
keep the patients continue on training at their ease and ensure
no major barriers inhibit their interaction during training.
For that purpose, we propose the adaptivity of automatically
adjusting the difficulty level of the training exercise to be
investigated in this study.

To achieve an optimal training experience for MS
patients, we were inspired by the flow theory of Csikszent-
mihalyi [38] to keep the balance between difficulty level and
patient performance. As illustrated in Figure 10, we would
like to make sure that a patient stays within the “optimal
training zone,” where the difficulty level of exercise given to
a patient is balanced with his current performance. In the
optimal zone, the patient will not experience overtraining or
undertraining [39]. Overtraining happens when the patient
is asked to perform the exercises with a high difficulty level
while his/her performance is still low; thus, the patient ismost
likely to find the training too difficult and may not be able
to perform the training. On the other hand, undertraining
happens when a low difficulty level is given to a patient who
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Figure 10: Balancing the difficulty level and patient performance.

has a high performance which makes the training not that
challenging anymore.

As an optimization strategy to achieve such personalized
training, we propose providing the ability to automatically
and dynamically adjust the difficulty of the exercise to
avoid boredom, provide suitable challenge, and minimize
the therapist’s involvement as well. This can be done by
creating automatic difficulty adjustments according to the
patient’s performance and progress in the exercise. For this
purpose, we need to establish a user model by capturing the
patient’s performance metrics (e.g., task completion times,
scores, and errors) during the exercises and making use of
that information to infer the short-term training progress of
the patient. This can be considered as a sort of performance-
evaluationmechanism. Once established, we can put the user
model into practice by applying it to enable adapting the
difficulty level whenever necessary. Based on the information
from the user model, we can adjust the difficulty of the
exercise by making it harder or easier.

In this study, we investigate the possibility of providing
automatic difficulty level adjustment in two training exercises
of our I-TRAVLE system, namely, the penguin painting game
and the social maze game, through two user studies that we
have carried out with several MS patients.

5. Adaptive Difficulty in Individual Training:
The Penguin Painting Game

The penguin painting game is an individual training exercise
that was designed as part of the upper limb rehabilitation
for MS patients and focuses on training the skill components
of lifting and transporting. The goal of this game is to paint
penguins with the right color as many as possible within
a certain time period (see Section 3.2). At the beginning
of the training, every patient starts from an initial level as
shown in Figure 11. After two consecutive training sessions,
the training progress of the patient is determined based on
his/her performance in each session.

Figure 11: The penguin painting game: initial level.

If no significant difference of the performance is shown
between the training sessions, it is considered that the patient
is training on an appropriate level and adaptation will not
be triggered. If the patient shows a decrease in his/her
performance between the sessions, a lower difficulty level will
be automatically offered to the patient in the next session. On
the other hand, if an increase of the patient’s performance
is shown between the training sessions, the system will
automatically provide a level with a higher difficulty in the
next session.

We define seven different difficulty levels by altering the
following game parameters accordingly (see Table 1):

(i) size of penguin: how big the penguins are (small/
large);

(ii) speed of devil: how fast the devil moves (slow/medi-
um/fast);

(iii) frequency of devil: how frequent the devil appears
(infrequent/normal/frequent);

(iv) length of stabilization: the time required to hold the
penguin still (short/normal/long);

(v) obstacle wall: addition of an obstacle wall along the
way (no/yes);

(vi) amount of coloring buckets: how many coloring buck-
ets exist (2/3/4);

(vii) width of coloring bucket: how big the coloring buckets
are (narrow/wide);

(viii) exit platform: addition of another exit platform which
requires patients to place the colored penguins to the
size-corresponding platforms (no/yes).

As shown in Figure 12, three different levels are designed
as the easy levels in the penguin painting game. Level −1
(Figure 12(a)) is easier than the initial level. Then, one level
easier is Level −2 (Figure 12(b)) with Level −3 (Figure 12(c))
being the easiest level. Figure 14 illustrates the three difficult
levels in the penguin painting game. Level 1 (Figure 13(a)) is
more difficult than the initial level. Then, one level higher is
Level 2 (Figure 13(b)) with Level 3 (Figure 13(c)) being the
most difficult level.
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Table 1: Overview of the penguin painting game parameters in the different difficulty levels.

Game parameter Difficulty level
Level −3 Level −2 Level −1 Level 0 Level 1 Level 2 Level 3

Size of penguin All small 90% small 70% small 50% small 30% small 10% small All large
10% large 30% large 50% large 70% large 90% large

Speed of devil Slow Slow Medium Medium Medium Fast Fast
Frequency of devil Infrequent Infrequent Normal Normal Normal Frequent Frequent
Length of stabilization Short Short Normal Normal Normal Long Long
Obstacle wall No No No No No Yes Yes
Amount of coloring bucket 2 2 3 3 3 4 4

Width of coloring bucket All wide

Bottom: 1
wide, 1
narrow

Bottom: 2
wide, 1
narrow

Bottom: 1
wide, 2
narrow

Bottom: 1
wide, 2
narrow

Bottom: 2
wide, 2
narrow All narrow

Top: 1 wide, 1
narrow

Top: 2 wide, 1
narrow

Top: 2 wide, 1
narrow

Top: 1 wide, 2
narrow

Top: All
narrow

Exit platform No No No No Yes Yes Yes

(a) Level −1 (b) Level −2

(c) Level −3

Figure 12: The easy levels in the penguin painting game.

To determine the patient’s training progress, it is neces-
sary to obtain information of his/her training performance
and make a comparison over the last two training sessions.
The patient’s performance of each training session is calcu-
lated as a function of the following performance metrics.

(1) Task Completion Time.
Howmuch time does the patient take to complete one
task (i.e., select and transport a penguin)?
How much is the slope of task completion times in
one training session?

(2) Score.
What score does the patient achieve in one game
session?

(3) Error.
How many times does the patient make errors (i.e.,
hitting the devil, painting with the wrong color)?

(4) Pause.
Howmany times does the patient make pause actions
(i.e., motionless period between steps for longer than
2 seconds)?

(5) Distance.
What is the distance traveled by the patient to com-
plete one task (i.e., select and transport a penguin)?
Howmuch is the slope of the distance traveled in one
training session?
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(a) Level 1 (b) Level 2

(c) Level 3

Figure 13: The difficult levels in the penguin painting game.

5.1. User Study 1: Automatic Adjustment of Difficulty Level
in the Penguin Painting Game. We have integrated the
adaptation of automatic adjustment of difficulty levels in
the penguin painting game. This results in seven difficulty
levels which differ in the exercise parameters as described in
Section 5 (see Table 1). We expect that supporting adaptivity
in the adjustment of difficulty levels of the training exercises
will not only deliver a personalized training to each MS
patient but also provide suitable challenge, enable less bore-
dom, andminimize the therapist’s involvement.Therefore, we
carried out a user study to investigate the outcome of integrat-
ing adaptive difficulty into the penguin painting game.

5.1.1. Participants. For the user studies in this research, we
recruited a group of participants which consists of nine
patients of the Rehabilitation and MS Centre in Overpelt
(Belgium) who all suffer from upper limb dysfunction due
to MS and were willing to participate in both user studies.
The patients were 6 males and 3 females with an average age
of 60 years, ranging from 47 to 72 years old. The duration
since theMS diagnosis varies between 3 and 34 years, with an
average of 20.5 years. Six of them used the left hand to operate
the HapticMaster in training, while the other three used their
right hand. Table 2 shows the personal information of each
MS patient participating in this research. To have an overview
of the severity of their upper limb dysfunction, we obtained
their clinical measures as shown in Table 3: upper limb
strength (motricity index [40]), upper limb functional capac-
ity (action research arm test [41]), and arm motor function
scores (Brunnstrom Fugl-Meyer proximal and distal [42]).

In this first user study, only 8 patients of the group par-
ticipated. Patient 9 was unable to participate due to his health
condition.

Table 2: Personal information of MS patients in the user studies.

Patient Gender Age (years) Diagnosis
duration (years)

Training hand

1 Male 64 14 Left
2 Female 58 3 Left
3 Male 71 10 Right
4 Female 47 14 Right
5 Male 57 27 Left
6 Male 55 27 Left
7 Female 64 25 Right
8 Male 56 30 Left
9 Male 72 34 Left

Table 3: Clinical characteristics of MS patients in the user studies.

Patient MI ARAT BFM-prox BFM-dist
1 76 41 25 40
2 83 56 36 29
3 84 46 32 28
4 76 56 36 30
5 55 41 23 21
6 47 7 18 24
7 72 18 31 25
8 60 30 27 24
9 50 1 12 7
MI: motricity index (maximal score = 100); ARAT: action research arm
test (maximal score = 57); BFM-prox: Brunnstrom Fugl-Meyer proximal
score (maximal score = 66); BFM-dist: Brunnstrom Fugl-Meyer distal score
(maximal score = 66).
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(a) The patient trained at the initial level (b) The patient’s training was
adapted to a higher difficulty
level

Figure 14: The setup of user study: automatic difficulty level adjustment in the penguin painting game (e.g., 2 exit platforms in the difficult
level).

5.1.2. Procedure. The user study consisted of seven sessions:
two elicitation sessions and five adaptive sessions; all took
place on the same day. In the elicitation sessions, participants
were asked to perform the penguin painting game in the
initial level (see Figures 11 and 14(a)). After two elicitation
sessions, the performance metrics of the participant were
calculated to determine the progress of his/her training.
Based on the information about the training progress over
these elicitation sessions, it will be determined for the first
adaptive session whether or not the difficulty level should
be adapted. Throughout the adaptive sessions, participants
were offered an adaptive personalized training in terms of the
adjustment of difficulty levels. Three possibilities can happen
over the course of five adaptive sessions: stay at the same level,
go one level lower, or go one level higher (see Figure 14(b)).

The duration of each session is 3 minutes. After each
adaptive session, participants were asked to rate their sub-
jective perception on enjoyment, boredom, challenge, frus-
tration, and fun, on a 5-point scale rating (e.g., 1 not at all
to 5 very much) based on their experience of performing
the adaptive penguin painting game. Averagely, the user
study lasted for about 30 minutes per participant. Figure 14
illustrates the setup of this user study.

5.1.3. Results. We have applied the adaptation of automatic
difficulty level adjustment in the penguin painting game,
which provided an adaptive personalized training for each
participant. Consequently, the training trajectory was differ-
ent for every participant during the five adaptive sessions.
For each session, the participant can experience staying at
the same difficulty level, going to a lower level, or going
to a higher level, depending on his/her individual perfor-
mance. Figure 15 shows the personalized training trajectory
for each patient as a result of integrating the adaptive
difficulty level adjustment in the penguin painting game.
As can be observed, no patient had the same trajectory
as the other patient due to the fact that every patient
progressed differently. This finding confirms the need for
adaptation. Further, we analyzed how adaptation influenced

the subjective perception on enjoyment, boredom, challenge,
frustration, and fun, across the sessions. Due to the small
number of samples and observations in this user study, we
used the nonparametric methods for the statistical analysis.

Based on the patients’ subjective responses, we calculated
the average ratings of enjoyment, boredom, challenge, frus-
tration, and fun, for the three conditions of adaptation (go to
a lower level, stay at the same level, and go to a higher level)
as shown by Figure 16. Kruskal-Wallis test showed that no
significant differences were found for Enjoyment, Frustration,
and Fun between the different conditions of adaptations.This
indicates that patients perceived the same level of enjoyment,
frustration, and fun eventhough the system introduced an
automatic adaptation of difficulty levels in the training
exercises. Patients rated a high level of enjoyment and fun
(above 4) and a low level of frustration (below 2) in all the
conditions.

However, there is a significant difference found for Bore-
dom (H(2) = 15.651, 𝑃 < 0.001; 2 for condition 1, 1.33 for
condition 2, and 1 for condition 3) and Challenge (H(2) =
24.376, 𝑃 < 0.001; 2 for condition 1, 2.89 for condition 2, and
4.25 for condition 3). Mann-Whitney pairwise comparison
tests showed that patients felt significantly less bored and
more challenged when the training was adapted to a higher
level compared to when they had to adapt to a lower level or
stayed at the same level (𝑃 < 0.001).

Furthermore, we observed that some patients have
noticed the automatic adaptation to be related to their
training progress and they liked the diversity of difficulty
levels. We did not inform about the implemented adaptation
to the patients before or during the user study. A couple of
therapists appreciated the automatic adaptation as it provided
the patients with more variety in the training and also
gave them more freedom to train on their own without
any interference from the therapist to manually adjust the
exercise parameters. This kind of adaptation could be useful
to determine an appropriate level to start training on a certain
day according to the patients condition on that day, thus less
determined by the previous training or the therapist.
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Figure 15: Adaptive personalized training trajectory in the penguin painting game.
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Figure 16: Patient’s subjective rating with respect to adaptation.

Figure 17: The social maze game: initial level.

6. Adaptive Difficulty in Collaborative
Training: The Social Maze Game

The social maze game is a collaborative training exercise that
was designed to train several skill components such as lifting,
transporting, turning, pushing, and reaching.The goal of this
game is to collect all symbols by picking up each symbol and
bringing it to the collecting bin (see Section 3.3). To achieve
this, the patient should pair and closely collaborate with
his/her training partner (e.g., a therapist, family member, or
fellow patient). At the beginning of the training, every pair
starts from an initial level as depicted in Figure 17.

The same performance-evaluation and adaptation mech-
anism with the penguin painting game is implemented. First,
we obtain an indication of the patient’s training progress
by comparing the training performance of the last two
training sessions. When no training progress is indicated,
no adaptation will be triggered and the pair will stay at the
same level. When a training progress is indicated, a higher
difficulty level will be automatically offered to the pair in
the next session. When a training decline is indicated, the
system will automatically switch to a lower difficulty level
in the next session. It is important to mention here that
although collaborative training exercises involve two persons,
we mainly focus the adjustment of difficulty level based on

the patients’ progress in the training since they hold the core
function in the rehabilitation. Particularly in the sympathetic
scenario, we do not take into account the progress of a healthy
person as the training partner since his/her role is solely
supporting the rehabilitation training of the patient.

We define eight difficulty levels ranging from very easy to
very difficult. As shown in Figure 18, three different levels are
designed as the easy levels in the social maze game with Level
−3 (Figure 18(c)) being the easiest level. Figure 19 illustrates
the four difficult levels in the social maze game with Level 4
(Figure 19(d)) being the most difficult level.

To adjust the difficulty levels, we alter the following game
parameters in each level accordingly (see Table 4):

(i) viscosity of movement: how high the viscosity is (very
low/low/normal/high/very high);

(ii) speed of devil: how fast the devil moves
(slow/medium/fast);

(iii) length of laser beam: how long the laser beam lasts
(short/normal/long);

(iv) friction of bomb: the degree of friction that the bomb
has (no friction/less friction/much friction);

(v) friction of wall: the degree of friction that the wall has
(no friction/less friction/much friction).

In the social maze game, four performance metrics are
employed to determine the patient’s training progress as
follows.

(1) Speed.
How fast can the patient complete one task (i.e., select
and transport a symbol)?

(2) Score.
What score does the patient achieve in one game
session?

(3) Error.
How many times does the patient make errors (i.e.,
hitting the devil, hitting the laser beam)?

(4) Pause.
Howmany times does the patient make pause actions
(i.e., motionless period between steps for longer than
2 seconds)?

6.1. User Study 2: Automatic Adjustment of Difficulty Level in
the Social Maze Game. We have integrated the adaptation of
automatic adjustment of difficulty levels in the social maze
game. To investigate how patients perceive the outcome of
this adaptation, we carried out the second user study with our
group of participants as described in Section 5.1.1.

6.1.1. Participants. All nine patients of the group participated
in this user study. More information on these participants
can be found in Table 2 for their personal information and
Table 3 for their clinical characteristics. In this user study,
we applied the sympathetic scenario of social rehabilitation
training, where a patient collaborates with his/her therapist in



BioMed Research International 17

(a) Level −1 (b) Level −2

(c) Level −3

Figure 18: The easy levels in the social maze game.

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

Figure 19: The difficult levels in the social maze game.

Table 4: Overview of the social maze game parameters in the different difficulty levels.

Game parameter Difficulty level
Level −3 Level −2 Level −1 Level 0 Level 1 Level 2 Level 3 Level 4

Viscosity of movement Very low Low Low Normal Normal High High Very high
Speed of devil Slow Slow Slow Medium Medium Fast Fast Fast
Length of laser beam Short Short Short Normal Normal Long Long Long
Friction of bomb No No No Less Less Much Much Much
Friction of wall No No No Less Less Much Much Much
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Figure 20: The setup of user study: automatic difficulty level adjustment in the social maze game.

performing the social maze game. Only one therapist, whom
every patient has a good relationshipwith, participated in this
user study.TheNovint Falconwas used as the input device for
the therapist. All patients used the HapticMaster as the input
device.

6.1.2. Procedure. Similar to the previous study described
in Section 5.1.2, the user study consisted of seven sessions:
two elicitation sessions and five adaptive sessions. In the
elicitation sessions, pairs of participants (i.e., one patient and
the therapist) were asked to perform the social maze game in
the initial level (see Figure 17). After two elicitation sessions,
the performance metrics of the patient were calculated to
determine the progress of his/her training. Depending on the
observation of the training progress, the system will deter-
mine how the difficulty level should be adjusted throughout
the adaptive sessions. There can be three possible results of
the adaptation: stay at the same level, go one level lower, or go
one level higher.

After each adaptive session, patients were asked to rate
their subjective perception on difficulty and enjoyment, on a
5-point scale rating (e.g., 1 not at all to 5 very much) based
on their experience of performing the social maze game.
Averagely, the user study lasted for about 30 minutes per
participant. Figure 20 illustrates the setup of this user study.

6.1.3. Results. We have applied the adaptation of automatic
difficulty level adjustment in the social maze game. Since
the adaptation resulted in a personalized training, each
patient had a unique training trajectory which differs from
each other during the adaptive sessions. Figure 21 shows the
personalized training trajectory for each pair of participants
as a result of integrating adaptive difficulty in the social maze
game. No pair of participants had exactly the same trajectory
as the other, which confirms the need for adaptation based
on the patient’s individual performance. We analyzed how
adaptation influenced the subjective perception on difficulty
and enjoyment across the sessions. We used the nonpara-
metric statistics because of the small number of samples and
observations in this user study.

Based on the patients’ subjective responses, we calculated
the average ratings of perceived difficulty and perceived
enjoyment, for the three conditions of adaptation as shown
by Figure 22. Kruskal-Wallis test showed that significant
differences were found for perceived difficulty (H(2) = 13.062,
𝑃 < 0.001; 1.64 for condition 1, 2.08 for condition 2, and
2.96 for condition 3) and perceived enjoyment (H(2) = 9.439,
𝑃 < 0.05; 3.91 for condition 1, 3.67 for condition 2, and
3.09 for condition 3). This indicates that patients perceived
the difficulty and enjoyment differently across the conditions
of adaptation. Mann-Whitney pairwise comparison tests
showed that patients perceived the training to be more
difficult and less enjoyable when the training was adapted to
a higher level compared to when they had to adapt to a lower
level (𝑃 < 0.05).

The finding which showed that as the levels got more dif-
ficult the patients perceived the training to be less enjoyable is
somewhat different than our previous finding where patients
perceived the samehigh level of enjoyment despite the change
in difficulty levels. We think that social effect plays a role
in this case. In a collaborative training session, the patients
might have felt more social pressure to perform as good as
the training partner. They might have feared that they will
hinder the collaboration if they perform less well. However,
additional investigation is needed to confirm this thought.
Another possible explanation is that the differences among
the difficulty levels were quite prominent. This calls for a
further investigation to find a subtler difference of difficulty
that maintains the patient’s enjoyment in training.

With regard to social interaction, we believe that the
social maze game has become a social play medium between
patients and their therapist. We have observed some rele-
vant behaviors which indicated the development of social
interaction during the collaborative rehabilitation training.
Figure 23 depicts two examples of behaviors shown by the
pairs of participants throughout the training sessions. The
most shown behavior during the social maze game was the
act of discussing strategy (Figure 23(a)). It was pretty obvious
that the nature of the training exercise requires the two
participants to closely collaborate and discuss their strategy
and necessary actions. This behavior happened throughout
the whole session, sometimes followed by the act of looking
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Figure 21: Adaptive personalized training trajectory in the social maze game.
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Figure 22: Patient’s subjective rating with respect to adaptation.

(a) Discussing strategy at the end of a session (b) Mimicking each other

Figure 23: Different behaviors observed during the social maze game.

at each other. At the beginning and during the session,
participants discussed what actions they should perform
and the best way to perform them. At the end of the
session, participants briefly reviewed their previous session
and how they should perform better on the next session.
In some participants, we can also observe the behavior of
unconsciously mimicking each other during the strategy
discussion (Figure 23(b)). Throughout the sessions, we can
observe that all participants showed other behaviors such
as smiling, laughing, and chuckling. This mostly happened
when one of them made an error such as encountering the
devil or hitting the laser beam. A couple of participants
tended tomake jokes during the training session that resulted
in both of them laughing at each other.

7. Discussion

Our work has presented an investigation to integrate adaptiv-
ity and personalization into individual rehabilitation training
and collaborative rehabilitation training for MS patients.
Typically rehabilitation training is individual, where a MS
patient performs the training exercises alone under the
supervision of a therapist. However, rehabilitation training
can take place in a collaborative setting as well, where
performing the training exercises involves more than only a
single MS patient. By changing the nature of rehabilitation
training to be collaborative, we can enhance the patient’s

motivation and also support social interaction between the
patient and his/her training partner (e.g., a family member,
friend, or therapist).

We have discussed and implemented the adaptation
of automatic difficulty level adjustment in both individual
training (i.e., the penguin painting game) and collaborative
training (i.e., the social maze game). Two user studies have
been carried out to investigate the outcome of this adaptation.
Overall, we can conclude that providing adaptive difficulty
in the training exercises has delivered an adaptive person-
alized training to each MS patient according to his/her own
individual training progress. Patients and the therapist have
appreciated the automatic adaptation of difficulty levels and
considered it to provide more variety in the training and also
give the patients more freedom to train on their own without
any interference from the therapist to manually adjust the
exercise parameters. This kind of adaptation could be useful
to determine an appropriate level to start training on a certain
day according to the patient’s condition on that day, thus less
determined by the previous training or the therapist.

Moreover, we have observed the development of social
interaction between patients and their training partner dur-
ing the course of the collaborative rehabilitation training
exercises. While performing the social maze game collabo-
ratively, they have showed several particular behaviors such
as smiling, laughing or chuckling, looking at each other,
and discussing strategy. We realized that the adaptation in
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the collaborative training exercise has been implemented
with a focus on the patient’s needs and characteristics despite
the existence of a training partner. In the sympathetic social
scenario, it may be interesting to investigate how or what
kinds of adaptation can facilitate the family member or
the therapist to achieve a more engaging and motivating
collaboration with the patient. For the empathetic social
scenario, we also need to investigate how the different types
of adaptation can accommodate the needs and characteristics
of another patient as a training partner.

It is not our focus to carry out an in-depth investigation
on the adaptation algorithm used in these user studies. We
were more interested to observe the patients’ response with
respect to the automatic adjustment of difficulty levels. We
realize that amore accurate andwell-defined algorithm could
be provided. Therefore, further investigation is needed to
optimize the adaptation algorithm which also matches the
judgment of therapists on the trigger and timing of adapta-
tion. Another next step is to extend our investigation of inte-
grating adaptivity and personalization into MS rehabilitation
training to other types of adaptation that may help patients
during the course of their training, for example, automatically
adjusting the assistance level based on the detected muscle
fatigue. In some cases, the muscle fatigue might develop
during long training; thus, it might be necessary to provide
the patients with some assistance to help them perform the
task and continue their training.

8. Conclusion

This paper has discussed our investigation on the notion
of integrating adaptivity and personalization into individual
and collaborative rehabilitation training for MS patients. We
have strived for developing adaptive personalized training
games by introducing the automatic adjustment of difficulty
levels in the penguin painting game (individual training)
and the social maze game (collaborative training). The user
studies showed that none of the MS patients experienced
the same training trajectory as the other. This confirms that
every patient progresses differently, which encourages the
need for adaptation. Adaptive personalized training, which
was delivered to every MS patient according to his/her own
individual training progress, has shown to be beneficial and
much appreciated. The automatic adjustments of difficulty
levels in the training games were also considered to provide
more variety in the training and more freedom to train
independently.
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Body weight supported locomotor training uses neuroplasticity principles to improve recovery following a spinal cord injury (SCI).
Steady state locomotion using the same body weight support (BWS) percent was compared in 7 males (42.6 ± 4.29 years) with
incomplete SCI andmatched (gender, age) noninjured controls (42.7± 5.4 years) using the Lokomat,Manual Treadmill, and ZeroG.
The VO2000, Polar Heart Rate (HR)Monitor, and lower limb electromyography (EMG) electrodes were worn during the 2-minute
sessions. Oxygen uptake (VO

2
) and HR were expressed as percentage of peak values obtained using progressive arm ergometry;

VO
2
was also expressed relative to resting metabolic equivalents (METS). Filtered EMG signals from tibialis anterior (TA), rectus

femoris (RF), biceps femoris (BF), andmedial gastrocnemius (MG)were normalized to ZeroG stepping.The Lokomat required 30%
ofVO

2
peak (2METS) compared to∼54% (3METS) forManual Treadmill and ZeroG sessions. HRwas 67%of peak during Lokomat

sessions compared to ∼83% for Manual Treadmill and ZeroG. Muscle activation was higher in treadmill conditions compared to
the ZeroG primarily due to increased BF activity. At the same level of BWS, locomotion using the Manual Treadmill or the ZeroG
is more aerobically demanding than the Lokomat. Treadmill modalities encourage greater hip extensor activation compared to
overground locomotion.

1. Introduction

Body weight supported locomotor training (e.g., treadmill) is
a modern approach to spinal cord injury (SCI) rehabilitation,
which provides an interactive, task-specific training envi-
ronment that is believed to promote “rewiring” of synaptic
connections [1–3]. The amount of loading experienced by
an individual is manipulated in an attempt to compensate
for uncontrolled spinal reflexes and motor losses associated
with the injury. In doing so, these interventions offer the
possibility of including gait retraining earlier in rehabilitation
programming. Research suggests that the eventual transfer
to unsupported overground walking is limited to those
with incomplete SCI (American Spinal Injury Association
Scale (AIS) C-D) as they benefit from retained brain-body
connections, particularly with the cerebellum [4]. Presently,
there are a variety of training devices available for individuals
to consider using during rehabilitation (Figure 1). Alexeeva

and colleagues [5] suggest that an effective intervention to
improve locomotor ability in this subpopulation is over-
ground locomotor training with 30% body weight support
(BWS) that takes place 1 hour per day, 3 times per week, for
10 weeks in duration. It is important to note, however, that
optimal training strategies to enhance locomotor function
have yet to be established for individualswith incomplete SCI.

Locomotion targets the lower limbs and has an associated
metabolic cost, which can be reduced by unloading an
individual through the use of a harness. Following tread-
mill training, normalization of the gait pattern is possible
allowing individuals to become more efficient at completing
the task of walking [6, 7]. In fact, there is evidence to
suggestmetabolic cost decreases by asmuch as 68% following
training in individuals with SCI [8]. To our knowledge, only
one study [9] has simultaneously collected metabolic and
EMG measurements during robotic and therapist assisted
treadmill locomotion in individuals with incomplete SCI.
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(a) (b)

Figure 1: (a) Body weight supported training devices used during walking sessions; from left to right: Manual Treadmill, Lokomat, and
ZeroG. All devices provided body weight support (BWS) through a harness. The Andago GmbH treadmill (Loko) was used for robotic
assisted (Lokomat) and unassisted (Manual Treadmill) walking sessions. The ZeroG had a custom series elastic actuator that traveled along
an overhead trolley, which provided dynamic BWS while individuals performed overground walking sessions. (b) Manual Treadmill sessions
normally completed with therapist assistance (not provided in this study) at both legs. The Andago GmbH treadmill is used during these
sessions without the robotic orthosis providing individuals with greater degrees of freedom during training.

These researchers determined that voluntary effort is required
during robotic-assisted locomotion to achieve metabolic
costs and hip flexor activity similar to those associated
with therapist-assisted locomotion. It was suggested that
therapist-assisted treadmill training programs should be used
as progressions from robotic-assisted sessions.

The purpose of this study was to investigate oxygen
demand and muscle activation patterns at the same level
of BWS while individuals with incomplete SCI completed
a locomotor training session using (a) the treadmill with
robotic assistance (Lokomat), (b) the treadmill without ther-
apist assistance (Manual Treadmill), and (c) an overground
training system (ZeroG). It was hypothesized that the highest
levels of oxygen uptake and muscle activation would occur
during locomotion using the ZeroG and this would be
higher in persons with incomplete SCI versus gender and age
matched able-bodied adults.

2. Methods

2.1. Participants. Adults (18–65 years of age) with SCI were
eligible to participate if their injury was (a) chronic (1 + year)
or (b) incomplete (AIS C-D, sensory and/or motor function
at S4/5) and (c) if they could comfortably complete walking
sessions using theAndagoGmbH treadmill (Loko, Germany)
with manual and robotic (LokomatPro, Hocoma, Switzer-
land) assistance, as well as overground using the ZeroG
(ZeroG; Aretech, LLC, Ashburn, VA). Each participant with
a SCI was gender and age (±5 years) matched to an able-
bodied adult, who served as the control group. For the ZeroG
session, participants were required to be able to walk with
less than or equal to 68 kg (150 lbs) offset, as this was the
maximum amount of dynamic BWS (constant rope tension)
the machine could provide. Participants did not consume
any food (except water) in the four hours preceding testing
and did not consume caffeine or alcohol or participate in
strenuous exercise in the 24 hours prior. Familiarization with
the laboratory environment, equipment, and test procedures
occurred during prescreening.Written informed consent was

obtained fromall participantswith a protocol approved by the
McMaster Research Ethics Board.

2.1.1. Baseline Assessments. At the first session, demographic
and anthropometric measures of height (cm) and weight (kg)
were recorded. Lower length measurements were taken to
properly fit individuals to the Lokomat and individuals were
fitted to harnesses for the respective devices. The amount of
BWS to be used for all walking sessions was determined to be
the percentage of body weight offset that allowed individuals
to take steps using the ZeroG without excessive knee flexion.

Participants performed a VO
2
peak test to volitional

fatigue on an electronically braked arm ergometer (AngioV2;
Lode BV, Groningen, The Netherlands) using a previously
described protocol [10]. Oxygen uptake (AEI Metabolic
System (Moxus) software, Pittsburgh, PA) and heart rate
(Polar T31 Heart RateMonitor; Polar Electro Inc.,Woodbury,
NY, USA) were sampled at 30-second epochs and rating
of perceived exertion (RPE) using Borg’s 0–10 scale [11]
was assessed every minute to gauge subjective perception
of physical effort both centrally (heart and breathing) and
peripherally (arms).

Following peak arm ergometry testing, participants were
strapped into the robotic limbs of the Lokomat and completed
maximal lower limb isometric strength measures of hip and
knee flexion/extension using the L-FORCE v2.0 software
module (Lokomat SystemV5.0).The L-FORCE v2.0 has been
technically and clinically validated [12].

2.1.2. Body Weight Supported Walking Sessions. The subse-
quent 3 body weight supported walking sessions all used
the same amount of support that had been established at
the first session using the ZeroG (see Baseline Assessments).
Participants completed walking trials in a randomized order
using the Andago GmbH treadmill system (with or without
the Lokomat) or overground ZeroG. EMG electrodes (Delsys
Trigno Wireless EMG Surface Electrodes, Delsys, Boston,
MA) were placed on tibialis anterior (TA), rectus femoris
(RF), biceps femoris (BF), and medial gastrocnemius (MG)
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muscles of both legs. Footswitches (Delsys Wireless Force
Sensitive Resistors, Delsys, Boston, MA) were placed on
the bottom of both feet (sensor on base of first toe and
calcaneus, resp.) to synchronize the muscle activation signals
with heel strike as the subject walked. The subjects put on
a Polar HR Monitor and then were fitted to the appropri-
ate harness and device settings based on the prescreening
evaluation and randomization order. Then the participant
was attached to the portable metabolic cart (MedGraphics
V02000, Medical Graphics Corp., St. Paul, MN) using the
patented preVent mask. Resting measures (5 minutes) were
taken before and after each walking session; oxygen uptake
(sampled in 30-second epochs), HR, and brachial blood
pressure were recorded at 1, 3, and 5 minutes. Participants
walked at a comfortable self-selected speed at the same
level of BWS regardless of the device until steady state
exercise conditions (stabilized oxygen uptake and heart rate
values; ±5mL/kg/min and ±5 BPM, resp.) were achieved (∼2
minutes). Participantswere then asked to complete additional
2 minutes of steady state walking to allow for collection
of oxygen uptake, HR, RPE, and muscle activity. Oxygen
uptake and HR were recorded at 30-second epochs and
RPE (central and peripheral; anchored to VO

2
peak test)

using Borg’s 0–10 scale was monitored every minute. Muscle
activity was continuously monitored throughout steady state
walking sessions and collected using EMGworks Acquisition
software program (Delsys EMGworks 4.0, Delsys, Boston,
MA). For the Lokomat walking trial, all participants were
asked to contribute as much as possible to the “walking
motion”; the Guidance Force Control system was set to
100% for all sessions indicating full robotic assistance. When
the robotic orthosis was not used, participants stepped on
the treadmill without assistance and no corrections were
made by assisting therapists to normalize stepping patterns.
Participants were allowed to use the bilateral handrails on
the treadmill to maintain postural stability, although they
were asked to minimize upper-extremity weight bearing.
Following all sessions, regardless of randomization order,
participants were required to take a couple of steps using
the ZeroG in order to have muscle activity data to normalize
and control for potential day-to-day variation in EMG signal
conduction and/or electrode placement. For all walking
trials, able-bodied participants completed 2-minute steady
state sessions (a) at baseline (0BWS) and (b) at a percentage of
BWS determined by their matched SCI participant (% BWS).

2.2. Data Analysis. MOXUS (AEIMetabolic System (Moxus)
software, Pittsburgh, PA) and VO2000 (Medical Graphics
Corp., St. Paul, MN) software programs were used for anal-
ysis of peak and walking VO

2
metabolic measures, respec-

tively. Oxygen consumption during walking sessions using
the Lokomat, Manual Treadmill, and ZeroG devices was
expressed relative to resting metabolic equivalents (METS),
which are considered 2.7mL/kg/min and 3.5mL/kg/min
for SCI and CON, respectively [13]. EMGworks Analysis
(Delsys EMGworks 4.0, Delsys, Boston, MA) was used for
analysis and filtering of muscle activity signals; the rectified
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Figure 2: VO
2
peak test variables for SCI and CON. Relative VO

2

peak (mL/kg/min), peak heart rate (HR) expressed in beats per
minute (BPM), and maximum power achieved (Watts). Values are
mean ± SE.

EMG records were low-pass filtered using a second order
Butterworth filter.

2.2.1. Statistical Analysis. SPSS 17.0 (Chicago, IL) software
program was used for statistical analysis of acquired data.
The Shapiro-Wilk test was used to test for normality of the
data due to the small sample size; nonparametric statistics
were used where appropriate. Statistical significance was set
at 𝑃 < 0.05 for all analyses. Bonferroni’s correction was used
for post hoc testing when necessary. All reported values are
expressed as mean ± standard error.

Repeated measures ANOVAs were conducted on the
steady state cardiovascular data normalized to (a) resting
(METS) and (b) VO

2
peak. Repeated measures ANOVAs

were conducted on the filtered rootmean square (RMS)mus-
cle activity signals over 3 consecutive gait cycles normalized
to ZeroG filtered activity signals at the same level of BWS for
each given day. ForCON, this analysiswas completed for both
baseline (0 BWS) andmatched (%BWS) conditions. Bivariate
correlations (Pearson) were conducted for participants with
SCI to investigate potential relationships between the amount
of required BWS and flexion: extension isometric strength at
the hip and knee, respectively. One-way ANOVAs were used
to look at differences between SCI and CON.

3. Results

3.1. Baseline Assessments. Seven individuals with incomplete
SCI and seven gender-and-age matched controls participated
in the study. No significant differences were found between
SCI and CON with respect to demographic or aerobic peak
measures from the arm ergometer test (Table 1, Figure 2).The
average amount of BWS thatwas used for thewalking sessions
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Figure 3: Relationship of the lower limb flexion: extension strength
ratios (at the hip and knee) determinedusing LForce on the Lokomat
with the percentage of body weight support (BWS) required for
locomotion using the ZeroG in participants with SCI. Open circles
and solid line indicate the relationship at the hip. Closed squares and
dashed line indicate the relationship at the knee. 𝑃 < 0.05 =∗.

was 41.3% ± 10.16% (Table 1). A strong positive correlation
(𝑅2 = 0.72) was found between the flexion: extension
strength ratio at the hip in participants with SCI and the
amount of BWS required to complete the overgroundwalking
session; the higher the flexion: extension ratio, the more sup-
port that was required (Figure 3). The greater contributor to
this relationship at the hip joint was the decrease in isometric
hip extension strength compared to flexion strength (𝑅2 =
−0.69 versus 𝑅2 = −0.36).

3.2. Body Weight Supported Walking Sessions. All 7 matched
pairs completed the Manual Treadmill and ZeroG walking
sessions; one participant in the SCI group did not complete
the Lokomat walking session due to spasticity (exaggerated
stretch reflexes). All participants reached steady state within
2 minutes of walking.

3.2.1. Aerobic Demand Expressed Relative to Resting Values.
Lokomat sessions resulted in significantly lower MET values
when compared to the Manual Treadmill or ZeroG sessions
(Figure 4). The highest MET values were attained during
ZeroG walking, although these were not statistically different
compared to theManual Treadmill, for both SCI and controls
(3.0 ± 0.30 versus 2.8 ± 0.16 and 2.2 ± 0.24 versus 1.8 ± 0.32,
resp.). Individuals with SCI achieved a significantly higher
MET value compared to CON during the Manual Treadmill
session (2.8 ± 0.16 versus 1.8 ± 0.32).

3.2.2. Aerobic Demand Expressed Relative to Peak Values.
Cardiovascular measures were expressed relative to percent-
age of peak values obtained during the arm ergometer test
(Figure 5).

𝑉𝑂
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Figure 4: Metabolic equivalents (METS) for SCI and CON during
locomotion with body weight support (BWS). Solid line indicates
significance between device comparisons, and dashed line indi-
cates significance between group comparisons. 𝑃 < 0.05 = ∗,
𝑃 < 0.01 =∗∗, and 𝑃 < 0.001 =∗ ∗ ∗.

(e.g., 30.1% ± 10.06% versus 52.9% ± 17.60% versus 54.7% ±
16.42%, resp.) for participants with SCI (Figure 5(a)). Dif-
ferences between groups existed during the Lokomat session
only, with participants with SCI requiring a significantly
greater percentage of peak VO

2
compared to CON (30.1% ±

10.06% versus 14.4% ± 6.32%).

HR. Lokomat sessions resulted in significantly lower HRs
(expressed as a percentage of peak) in comparison to the
Manual Treadmill or ZeroG sessions (e.g., 67.3% ± 4.77%
versus 80.8% ± 1.95% versus 84.7% ± 3.03%, resp.) for
participants with SCI (Figure 5(b)). Individuals with SCI
achieved a significantly higher percentage of peak HR values
compared to CON during all 3 walking sessions (average of
77.7% ± 3.57% versus 52.3% ± 1.09% across trials).

RPE. Lokomat sessions were perceived to be significantly
less demanding when compared to the Manual Treadmill or
ZeroG sessions (e.g., central RPE: 0.5 ± 0.19 versus 3.7 ± 1.28
versus 3.8 ± 1.14; peripheral RPE: 0.7 ± 0.18 versus 4.1 ± 0.64
versus 5.1±1.18) for participants with SCI. Additionally, indi-
viduals with SCI perceived the Manual Treadmill and ZeroG
sessions to be significantly more demanding compared to
CON (e.g., central RPE: 3.7±1.28 versus 0.9±0.14; 3.76±1.14
versus 1.0 ± 0.00; peripheral RPE: 4.1 ± 0.64 versus 0.9 ± 0.86;
5.1 ± 1.18 versus 1.0 ± 0.00).

3.2.3. Muscle Activity Expressed Relative to Walking While
Using the ZeroG. Nonstatistically significant differences in
muscle activity gait parameters were found between the three
devices (Figures 6 and 7). For individuals with SCI, average
muscle activation tended to be higher for both treadmill
conditions compared to the ZeroG session, which could be
attributed to increases in TA and BF activity. Conversely,
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Table 1: Demographic variables for SCI and CON.

SCI CON Between groups
(𝑃-value)Mean ± Standard error Range Mean ± Standard error Range

Age (years) 42.6 ± 4.29 23–55 42.7 ± 5.40 20–58 0.98
Height (cm) 179.1 ± 1.56 173–184 177.5 ± 2.91 168–190 0.84
Weight (kg) 89.6 ± 6.39 81.2–107.6 84.8 ± 5.88 69.4–112.1 0.52
BMI (kg/m2) 27.9 ± 2.03 20.6–36 26.1 ± 1.46 20.6–31.1 0.48
BWS (kg) 37.8 ± 9.62 10–68 32.8 ± 7.40 10–68 0.67
BWS (%) 41.3 ± 10.16 12–83 41.3 ± 10.16 12–83 1.00
Time since injury (years) 4.0 ± 0.62 2–7 N/A N/A
SCI: incomplete spinal cord injury; CON: matched controls; BMI: body mass index; BWS: body weight support.
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Figure 5: Cardiovascular measures ((a) VO
2
, (b) HR) during locomotion with body weight support (BWS) expressed as percentage of

peak values obtained from the arm ergometer test. Solid line indicates significance between device comparisons, and dashed line indicates
significance between group comparisons. 𝑃 < 0.05 = ∗, 𝑃 < 0.01 = ∗∗, and 𝑃 < 0.001 = ∗ ∗ ∗.

the ZeroG session tended to require greatermuscle activation
compared to the treadmill sessions for CON. The only
statistically significant difference between groups occurred
during the Lokomat session, which elicited greater relative
TA activation for participants with SCI compared to CON
(128.3% ± 35.07% versus 36.0% ± 8.22%).

4. Discussion

Themain objective of this studywas to compare physiological
responses during 2 minutes of steady state locomotion at
the same level of BWS while using the Lokomat, Manual
Treadmill, and ZeroG. It was hypothesized that ZeroG
locomotion would be the most physiologically demanding
session for individuals with incomplete SCI as it most
resembles unsupported overground walking. As expected
walking sessions were physiologically more demanding for
individuals with SCI compared to CON. Contrary to what
was hypothesized, both the Manual Treadmill and ZeroG

sessions were considered significantlymore demanding com-
pared to the Lokomat, with no significant differences between
the two sessions.

4.1. Baseline Assessments. VO
2
peak values obtained from the

men with incomplete SCI (1.7 ± 0.27 L/min) were compared
to normative physical capacity values.Therewas nodifference
in VO

2
peak between individuals with paraplegia or tetraple-

gia whose capacities were fair and excellent, respectively,
based on the literature [14]. Peak VO

2
values from able-

bodied participants (2.2 ± 0.15 L/min) were similar to those
reported by van Loan and colleagues [15] (2.1 L/min) and
more recent unpublished data from our lab (2.4 L/min).
Interestingly, the peak aerobic data in this study was similar
between the two groups, which are contrary to other studies
indicating that those with SCI usually obtain lower values
[16] due to a decreased amount of active muscle mass and
sympathetic tone limiting venous “muscle pumping” action
and the ability to increase oxygen uptake [17]. Zwiren and
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Figure 6: Muscle activity of independent muscle groups during
treadmill locomotion with body weight support (BWS) normalized
to ZeroG stepping with the same BWS. TA indicates tibialis anterior,
RF indicates rectus femoris, BF indicates biceps femoris, MG
indicates medial gastrocnemius, AVG indicates average muscle
activity over a gait cycle, and 1GC indicates gait cycle completion
time. Dashed line at 100 = value obtained while walking on the
ZeroG. Statistically significant between group (SCI versus CON)
comparisons 𝑃 < 0.05 = ∗.

Bar-Or [18], however, found no significant differences in VO
2

max in matched wheelchair-active and normal active sub-
jects, suggesting that conditioning levels of the participants in
the current study may have been more similar than typically
expected (e.g., two participants with SCI were competitive
athletes).

We used the L-Force module in the Lokomat to assess
lower extremity isometric strength of the hip and knee. The
reduced hip extension and knee flexion strength measures
obtained from participants with SCI compared to CON
are in agreement with previous studies which suggest that
this population has difficulty voluntarily activating muscle
below the lesion level making weight bearing and toe-
clearance during gait difficult [19]. Further investigation
into the flexion: extension strength ratio at both the hip
and knee determined that a positive correlation existed
between flexion: extension strength at the hip (primarily due
to a reduction in hip extensor isometric strength) and the
percentage of BWS required to complete an overground
walking session using the ZeroG. The importance of the hip
extensors for locomotion is in agreementwith a study byYang
and colleagues [20], who found that manual muscle testing
scores for the hamstrings in addition to the quadriceps were
the strongest predictors of responsiveness to body weight
supported gait training. In fact, responders on average had
twice the volitional muscle strength as that of nonresponders.
Whether the isometric strength measures obtained from
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Figure 7: Ratio of rootmean square (RMS)muscle activity across all
muscle groups (𝜇V) to oxygen uptake (%VO
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peak) between devices

for SCI and CON. Mean ± standard error.

the L-Force module of the Lokomat are able to predict
responsiveness to body weight supported gait training, how-
ever, requires further investigation. This may provide a
useful tool to therapists in terms of exercise prescription,
determining readiness for locomotor training, as well as
monitoring rehabilitation progression.

4.2. Randomized Body Weight Supported Sessions

4.2.1. BodyWeight Support. Theaverage amount of BWSused
during the walking sessions was 41.3%, with only three of
the seven participants with SCI able to complete walking
sessions with the recommended less than 30%BWS [1].These
lower levels of support have been shown to better resemble
independent overground walking patterns while allowing
individuals to better maintain upright posture.

4.2.2. Metabolic Demand. Previous research has indicated
the robotic orthosis results in lower metabolic costs (approx-
imately 20%) compared to the Manual Treadmill [21], with
the potential to minimize these differences if the participant
is encouraged to exert maximal effort [9]. In this study,
despite encouraging participants to maximally contribute to
the walking motion in all walking conditions differences in
metabolic costs were evident, with the Lokomat resulting in
the lowest metabolic demand (approximately 23.8% of VO

2

peak for the SCI group) compared to the Manual Treadmill
and ZeroG sessions, which had similar oxygen costs. While
thismay suggest that perhaps participants were not providing
maximal efforts during these sessions, it is also important
to note that in order to standardize walking conditions
between participants 100% Guidance Force was set on the
robotic orthosis which may have limited the ability for our
participants to exert a maximal effort. Further, the study
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by Israel and colleagues [9] provided therapist assistance
during treadmill sessions, an option that was not provided for
participants in this study. Other features of the Lokomat that
could have contributed to the differences in metabolic costs
include posterior support assisting with forward propulsion
and stability at the pelvis and trunk. The evidence from
this study suggests that the use of the robotic orthosis is
not entirely passive, with increases in oxygen uptake evident
during training sessions, which according to Krewer and
colleagues [22] can be attributed to loading during stance
phase resulting in associated muscle activation.

In order to complete a walking session using the over-
ground device at the same level of BWS, the participants with
SCI required three times resting metabolic rate while their
matched controls only required double. The walking sessions
completed with the ZeroG and Manual Treadmill sessions
required greater than 50% of VO

2
peak values for the SCI

group (e.g., 55% and 53% of VO
2
peak, resp.). This would

suggest that walking using the aforementioned devices may
be above the anaerobic threshold [23, 24] for people with SCI,
resulting in reduced endurance and earlier onset of fatigue. In
contrast, the ZeroG and Manual Treadmill sessions required
only 32% and 26% of peak oxygen uptake for the CON group.
This is consistent with evidence obtained by Waters and
colleagues [25] who found that individuals without mobility
impairments require minimal effort during walking with
rates of oxygen consumption of 30% of maximum aerobic
capacity.The similarity in oxygen costs between the treadmill
session without the robotic orthoses and the overground
walking session in CON is in agreement with evidence in
able-bodied populations which suggest that no significant
differences exist in energy expenditure between treadmill
and overground walking at controlled velocities [23]. It is
important to note that walking velocity in this study was
not controlled, although all participants received the same
instruction to walk at a comfortable speed. Oxygen uptake
while walking overground in this study was 41.8% higher in
SCI compared to noninjured adults, which is similar to earlier
work which found the rate of oxygen uptake while walking to
be 38% higher in SCI compared to CON [26]. In the present
study individuals with incomplete SCI had 36.5% higher
HR compared to CON during overground walking sessions
which is slightly greater than the 24% greater increase found
during walking by Teixeira da Cunha-Filho and colleagues
[27].

4.2.3. Muscle Activity. Muscle activity for SCI tended to be
greater with the treadmill than the ZeroG due to increases in
TA and BF activity. For the SCI group, the “foot lifters” used
with the Lokomat may have provided afferent feedback to the
spinal cord during gait encouraging dorsiflexion. Evidence
from this study supports this as Lokomat sessions resulted
in greater TA activation in SCI compared to CON.While the
“foot lifters” usedwith the robotic orthosismayhave provided
beneficial feedback for the SCI group, reduced EMG activity
of TA during gait in the CON groupmay have occurred using
this same device as the foot lifters may have inhibited normal
activation of this muscle group.

It has been suggested that muscles with greater cortical
projections such as TA and more proximal muscles such as
the hamstrings [28] are the most affected in individuals with
SCI following bodyweight supported training [29]. Improved
hip extension with training is common with treadmill train-
ing as the belt encourages hip extension forcing individuals
to “pull up” (e.g., increasing knee flexion) during swing. The
large variability in BF activation in this study may be an
indicator of potential responders to body weight supported
training. Gorassini and colleagues [7] showed increased TA
and hamstring muscle activation during treadmill walking
only in responders. While responders increased amplitude of
hamstring activity, burst duration decreased resulting in less
cocontraction with quadriceps activation. Thus, the ability
to modify muscle activation patterns after SCI may predict
responsiveness to training.

Unlike the SCI group, muscle activity for CON tended
to be greater with overground sessions rather than treadmill
sessions, as well as having higher TA activation during sup-
portedManual Treadmill versus Lokomat sessions. Muscular
work associated with forward propulsion is thought to be
a primary determinant of the metabolic costs of walking
in subjects without neurological injury [9] which would be
greater when using the ZeroG compared to the treadmill
sessions, especially when the robotic orthosis is used. As
previously mentioned, “foot lifters” used with the robotic
orthosis may have inhibited normal activation of TA for the
CONgroup, resulting in the obtained differences between the
two treadmill modalities.

While both groups were able to successfully complete
all walking sessions greater muscle activity was evident
during treadmill sessions in the SCI group compared to
during ZeroG sessions for the CON group. This may provide
evidence in support of the idea of motor equivalence [30].
Essentially this principle suggests that a given motor task
goal (e.g., walking) can be achieved using different muscle
synergies.This is advantageous for individuals with lesions to
the spinal cord as they can take advantage of the redundancies
of the neuromuscular system to accomplish motor tasks.
For example, individuals with SCI may require use of their
arms and/or axial muscles for support during swing phase,
essentially completing the same phase of gait but at a greater
energy cost due to the involvement of additionalmusculature.
As an individual progresses with training, neuronal coupling
of movement (e.g., incorporation of arm swing) will provide
additional sensory feedback to help generate temporally
appropriate muscle activity patterns [31]. From a therapeu-
tic perspective, therefore, body weight supported training
interventions help individuals to learn to produce newmotor
strategies in a controlled settingwith the hopes of transferring
this rehearsed pattern to unsupported overground walking.

4.3. Limitations. Thenumber of participants in this studywas
arguably small; however, the inclusion criteria of having the
ability to take independent steps using the ZeroG limited
the available sample pool. Therefore, the generalizability of
these findings may be applicable only to individuals with
higher levels of motor function following an incomplete SCI.



8 BioMed Research International

It has been demonstrated in the literature that gait kinematics
similar to baseline walking (0% BWS) can be maintained
when 30 percent or less support is provided [5]. Recent
work from our lab, specifically looking at changes in muscle
activation with increased amounts of BWS using the ZeroG
in able-bodied adults, found significant reductions in muscle
activity when 40 or more percent of body weight was offset
by the device without altering the muscle activation pattern
during gait [31]. It is important to note that 3 of the 7
participants with incomplete SCI would have been unable to
independently complete the walking sessions if <40% BWS
was provided on the ZeroG. Whether these individuals can
obtain the recommended ranges of support with training is
an area of future investigation and will help determine if the
comparison between devices is minimized at lower levels of
support.

The Lokomat was programmed to providemaximal assis-
tance to the legs during all phases of gait (e.g., 100%Guidance
Force) in order to standardize the Guidance Force, therefore
these results are only relevant to Lokomat sessions completed
under these conditions. It is anticipated that decreasing the
Guidance Forcewill increase physiological demand; however,
whether these changes result in statistically nonsignificant
differences between the two treadmill conditions has yet to
be determined.

Participants were allowed to use the treadmill handrails
or the arms of the therapist during the overground session
for balance but were discouraged to use them for weight
bearing. Without the use of arm swing, individuals were
unable to take advantage of neuronal coupling, which may
have influenced lower extremity muscle activity [32]. While
attempts weremade to ensure consistent upper-extremity use
across stepping conditions no objective measures of force
(e.g., force plates on handrails) were made to ensure this.

Finally, the inability to control walking speed, particularly
with respect to the overground walking session, may have
influenced the results obtained, as reduced speed has been
associated with increased signal variability and decreased
muscle activation. According to Winter [33], changes in
walking speed affect the acceleration of lower limbs during
gait, primarily activity at the hip and knee versus the ankle.
Therefore, while our EMG recordings may have been differ-
entially affected by not having control over this factor (e.g., RF
and BF greater than TA and MG), it would have been close
to impossible to control walking speed during the ZeroG
sessions.

5. Conclusions

The objective of this study was to compare oxygen demand
and muscle activation between the Lokomat, Manual Tread-
mill, and ZeroG. Consistent with our hypothesis, walking
sessions were more demanding for participants with SCI
compared toCON.Contrary to our hypothesis theZeroGwas
not considered the most physiologically demanding session,
with both the ZeroG andManual Treadmill sessions eliciting
significantly greater VO

2
values compared to the Lokomat.

In addition, contrary to what was expected, the ZeroG did

not elicit significantly greater lower limb muscle activity in
the four muscle groups included in this investigation. The
evidence from this study would suggest a benefit to using
the Lokomat to work on isolated hip extension strength.
Therapists can take advantage of the feedback system of
the device, the greater BF activation of this treadmill-based
exercise, as well as having the ability to conduct longer
sessions due to the decreased cardiovascular and muscular
demands imposed on the patient using the robotic device.
The Manual Treadmill and ZeroG should then be used as
more intense progressions where hip extension can continue
to be encouraged while using the treadmill and additional
components of gait (e.g., balance and torso stability) can be
focused on while using the overground device.
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The aim of this study was to develop new strategies based on virtual reality that can provide additional information to clinicians
for the rehabilitation assessment. Virtual reality system Toyra has been used to record kinematic information of 15 patients with
cervical spinal cord injury (SCI) while performing evaluation sessions using the mentioned system. Positive correlation, with a
moderate and very strong association, has been found between clinical scales and kinematic data, considering only the subscales
more closely related to the upper limb function. A set of metrics was defined combining these kinematic data to obtain parameters
of reaching amplitude, joint amplitude, agility, accuracy, and repeatability during the evaluation sessions of the virtual reality system
Toyra. Strong and moderate correlations have been also found between the metrics reaching and joint amplitude and the clinical
scales.

1. Introduction

It has been estimated that the prevalence of spinal cord injury
(SCI) is 223–755 per million inhabitants, with an incidence of
10.4–83 per million inhabitants per year [1]. Fifty percent of
the patients with SCI are diagnosed as complete, and in one-
third of the patients, the SCI is reported as tetraplegic.

In patients with tetraplegia, the arm and hand function
is affected to a different degree, depending on the level and
severity of the injury [2].

Several studies have shown that the improvement in
upper extremity function is one of the greatest needs in
patients with tetraplegia [3]. In this respect, therapy of the
upper extremities in people with tetraplegia plays a key role
during the rehabilitation.

Virtual reality (VR) has emerged in the rehabilitation
context in an effort to promote task oriented and repetitive
movement training of motor skills while using a variety of

stimulating environments [4]. This approach can increase
patient motivation, while extracting objective and accurate
information enables the patient’s progress to be monitored.

The aim of VR is to create a feeling of immersion within
the simulated environment so that the patient’s behaviour
during the game resembles as much as possible the one that
he would have in the real world.

There are different technologies of motion capture that
permit the transfer of the actual movement of the patient to a
virtual environment.One of them is the inertialmeasurement
technology. There are several advantages of using inertial
measurement systems (IMUs) as motion capture systems for
VR applications, since they are compact, light, resistant to
environmental interference, and easy to wear.

VR technology increases the range of possible tasks,
partly automating and quantifying therapy procedures and
improving patient motivation using real-time task evaluation
and reward [5]. It also permits the standardization of tasks
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and the recording of kinematic data during the execution of
these tasks, making it an interesting tool for assessment of the
rehabilitation progress.

Evaluation of the SCI patient’s functional status is usually
carried out by means of clinical scales, although they have a
high subjective component depending on the observer who
scores the test. Therefore, a better understanding of human
movement requires more objective testing and accurate anal-
ysis of motion to describe the armmovements more precisely
and specifically during functional testing. Kinematic analysis
is one such method [6].

Clinical scales are not very sensitive to slight improve-
ments in functionality and also they are not able to establish
the biomechanical characteristics that explain the clinical
changes in the scores obtained by the patients during their
rehabilitation. Thus, it is important to find the kinematic
parameters that correlate with clinical scales. In a previous
study from our group, correlations were already found
between kinematic data and clinical scales [7]. These scales
inform about global disability, but they include specific items
related to upper limb impairment.Therefore it seems relevant
to go deeper in the analysis trying to obtain a more specific
correlation between kinematics and functionality.

It is important to underline that kinematic data by them-
selves are not always sufficiently clear and understandable
for clinicians in order to reliably evaluate a patient. However,
combining them to obtain new metrics could enhance their
potentiality as tools for physical assessment.

The objectives of the present study are (i) to analyze the
correlations between kinematic data after performing upper
limb tasks included in the VR system Toyra and upper limb
clinical scales; (ii) to define kinematic metrics based on data
recorded by the VR system Toyra that could offer additional
information to clinicians; and (iii) to analyze the correlation
between the defined kinematic metrics and clinical scales by
applying them to a group of 15 patients with tetraplegia.

2. State-of-the-Art

2.1. Kinematic Metrics. Quantification of upper extremity
movements has been researched since many years ago. One
of the first studies in this field was carried out by Fitts in 1954
with the aimof analyzing the speed-accuracy trade-off and, as
a result, calculating the performance and an index of difficulty
of a task from three parameters: the time spent on performing
the movement, the distance, and the size of the object to be
reached [8].

The interest in obtaining parameters that could provide
relevant information to clinicians from the quantification of
the upper extremity movements is relatively recent. To this
aim, there are some studies that analyzed the movements
performed by patients with neurological disorders during
reaching tasks and also while drawing [9–11]. There are also
studies inwhich a basic activity of daily living (ADL) has been
analyzed, such as the drinking task, in people with stroke [12]
or SCI [13].

Some of the kinematic parameters calculated to obtain
information that could be clinically relevant are the time

spent on the task, velocity, and range of motion during the
movement [6, 13, 14]; the correlation between shoulder and
elbow joint angles, that indicates the coordination during
reaching tasks [11–13]; and the number of peaks in the speed
profile of the hand during the movement, with lower values
indicating smoother trajectories [12].

In neurological rehabilitation, the assessment of upper
limbmotor recovery should include smoothness, efficacy, and
efficiency of the movement [10]. In this study, metrics related
to these characteristics of themovement have been proposed.

(i) Efficacy: the percentage of the task successfully com-
pleted by patient’s voluntary movement.

(ii) Accuracy: the spatial deviation between the path
followed by the patient’s hand and the theoretical tra-
jectory (in other studies it has been named “trajectory
error”).

(iii) Efficiency: it is a measure of the ratio between the
length of the hand’s path during the movement and
the length of the theoretical trajectory.

(iv) Smoothness: it is computed from the speed profile
of the hand during the movement as the number of
peaks.

These metrics are more easily applicable to reaching move-
ments in which the theoretical hand’s path is considered as
the straight line between the starting point and the target
location.

Most of themetrics proposed are ameasure of the error or
deviation between two variables. So, for example, smoothness
as the number of peaks is a measure of error, since a higher
number of peaks are related to a less smooth movement. The
same occurs in accuracy and efficiency metrics, in which
a decrease in these metrics indicates an improvement in
motor performance for a functional task. For that reason, it
seems necessary to obtain parameters that could be directly
proportional to the patient’s functional status [15].

2.2. Clinical Scales. There are plenty of scales in the literature
which pretend to assess the patients in order to detect func-
tional changes during the upper limb rehabilitation process
[16]. These assessment scales include grasping, holding, and
manipulating objects, which require the recruitment and
complex integration of muscle activity from shoulder to
fingers.

The upper extremity motor function tests are classified in
the following categories: (1) strength tests; (2) functional tests;
and (3) ADL tests [17]. In this section, only the clinical scales
that were used in this study and those that will be mentioned
in the “Discussion” section are described.

2.2.1. Strength Tests. The evaluation of key muscle groups
is important to identify the motor level in patients with
tetraplegia. Motor index gives a rapid overall indication
of a patient’s limb impairment using principal components
analysis (Hotelling’s method), where the large number of
movementswas reduced to onemovement at each jointwhich
represented the general strength of movement at the joint
[18].
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2.2.2. Functional Tests. Jebsen Taylor Test of Hand Function
[19] is a scale which pretends to assess the hand disability
and improvement in hand function gained by therapeutic
procedures in patients with hand disabilities, but due to
the kind of activities proposed in the test it is necessary
to have a relatively high degree of dexterity to complete
it.

The Action Research Arm (ARA) test provides a rapid
yet reliable and standardized performance test appropriate for
use in assessing recovery of upper limb but it is solely used in
stroke patients.

The Fugl-Meyer Assessment (FMA) was developed to
measure sensorimotor stroke recovery based on Twitchell
and Brunnstrom’s concept of sequential stages of motor
return in patients with hemiplegic stroke [20].

The Motor Activity Log (MAL) is a scripted, structured
interview that was developed by Taub et al. to measure
the effects of constraint-induced movement (CI) therapy on
use of the more-impaired arm outside the laboratory in
individuals with stroke [21].

2.2.3. ADL Tests. Two of the most used ADL evaluations
for patients with tetraplegia are the functional independence
measure (FIM) and the spinal cord independence measure
II (SCIM II). These tests are validated and reliable and show
strong correlation with each other [22].

Thepurpose of the FIM is themeasurement of the severity
of the patient’s disability and the outcomes of medical reha-
bilitation in patients. The FIM has a good clinical interrater
agreement in patients undergoing inpatient medical reha-
bilitation (ICC = 0.97). FIM scores were significantly lower
in complete C4 tetraplegics than in C6 tetraplegics, which
indicated that the FIM is sensitive enough to differentiate
between different levels of injury [17].

The SCIM scale was developed specifically for SCI per-
sons in order to make the functional assessments of persons
with paraplegia or tetraplegia more sensitive to changes. The
SCIM has a good interrater reliability (𝑟 = 0.98). Besides,
the sensitivity of the SCIM is higher than the sensitivity of
the FIM, showing in patients with tetraplegia that this scale
missed 22% of the functional changes detected by the SCIM
[17].

Regarding the kind of patients of this study, with a
complete SCI at levels between C5 and C8, motor index, FIM,
and SCIM tests were considered as the most suitable and,
therefore, they have been chosen for this study.

3. New Assessment Metrics

3.1. Captured RawKinematic Data. For the kinematic capture
process, a motion capture system based on inertial sensors,
MTx Xsens Company (Xsens Inc., Netherlands), has been
used. In this application, 5 inertial sensors were located on
the head, trunk, arm, forearm, and hand. The placement of
the sensors can be seen in Figure 1.

A biomechanical model was developed, previously
reported, based on inertial sensor data and upper limb

(UL) anthropometric data. The MTx includes triaxis
accelerometers, gyroscopes, and magnetometers. As long
as the inertial sensors only provide information on the
orientation of each body segment, a biomechanical model
is required to calculate the angular magnitudes of clinical
relevance on the basis of each orientation. The kinematic
model used was based on the Euler method; thus the results
depend on the sequence of rotations used. The kinematic
chain proposed in this model consists of 7 DoF: three in
the shoulder joint (flexion-extension, abduction-adduction,
and external-internal rotation); two in the elbow joint
(flexion-extension and pronation-supination); and two in
the wrist (palmar-dorsal flexion and radial-ulnar deviation).
More details about this biomechanical model applied here
have been previously described [23].

The kinematic assessment protocol consists of the exe-
cution of an Evaluation Session with the VR System Toyra.
This session comprises 14 exercises whose principal objective
is to assess the patient’s functional capacity, based on the
record of the kinematic variables during the execution of
analytical movements of the UL joints in each of its degrees
of freedom. The same therapist carried out the Evaluation
Sessions on all patients in order to minimize the errors
due to the different placements of the sensors by different
therapists. In Figure 2, the position of a patient in front of the
screen during the execution of a session with Toyra can be
seen.

Joint ranges of motion (ROM) of shoulder, elbow, and
wrist were analysed with the mathematics software tool
MATLAB (Matrix House, Cambridge, UK), thus obtain-
ing 14 different kinematic variables: step-by-step shoulder
abduction (AbdshoulderS), complete shoulder abduction
(AbdshoulderC), step-by-step shoulder flexion (Flexshoul-
derS), complete shoulder flexion (FlexshoulderC), shoulder
rotation (Rotshoulder), step-by-step elbow flexion (Flexel-
bowS), complete elbow flexion (FlexelbowC), elbow exten-
sion (Extelbow), elbow supination (Supelbow), elbow prona-
tion (Proelbow), wrist extension (Extwrist), wrist flexion
(Flexwrist), wrist radial deviation (Raddevwrist), and wrist
ulnar deviation (Uldevwrist). The “step-by-step” variables
have been measured during exercises in which the goals that
the patients have to reach appear on the screen sequentially
from the bottom to the top of the screen in such a way that
they have to perform discrete movements and stay in the
object for one second, approximately, thus requiring a certain
degree of control of the muscles involved in this movement,
whereas for the “complete” variables, all goals are displayed
at the same time, so that the patients perform a continuous
trajectory. The reason to measure separately these two kinds
of variables is that “step-by-step” movements require holding
the arm in a fixed position, so that the patient needs to exert
the task with greater control movement. Depending on the
level of SCI, some patients can be able to perform complete
movements but not the step-by-step ones.

Ranges of Motion (ROM) have been calculated from the
14 kinematic variables previously mentioned as the difference
between the maximum and the minimum value reached by
the patients during each specific exercise.
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Figure 1: Placement of inertial sensors: (a) frontal view; (b) posterior view. The sensors were located on the trunk (1), the back of the head
(2), the right arm (3), the forearm (4), and the hand (5) [23].

Figure 2: Patient performing a Toyra session.

3.2. New Kinematic Metrics. Five different metrics have been
defined based on the kinematic data obtained during the
Toyra sessions.

(i) Joint Amplitude. It has been defined as the sum of the
ROMs obtained by a patient normalized by the correspond-
ing ROM obtained by a healthy subject, defined as “ideal
ROM”:

JA =
∑
𝑖=14

𝑖=1
𝑘
𝑖
⋅ ROM

𝑖

∑
𝑖=14

𝑖=1
𝑘
𝑖
⋅ idealROM

𝑖

⋅ 100 [%] , (1)

where ROM
𝑖
(∘) = degrees covered by the joint under study

(it is important to remark that each exercise of the session has
been designed to check the performance of a single joint. For
example, the exercise of shoulder abduction will measure the
shoulder’s ability, despite the fact that some other joints are,
to a lesser extent, also involved in this movement) and 𝑘

𝑖
=

weighting coefficients of the exercises, chosen to give more
importance to the ones that are more linked with the motor
abilities of the patient.

(ii) Reaching Amplitude. It has been defined as the range that
the patient is able to reach at the three different axes (𝑋,𝑌,𝑍).
The 𝑋-axis has been established horizontally, parallel to the
screen, the 𝑌-axis horizontally, perpendicular to the screen,
and the 𝑍-axis is vertical, parallel to the screen.

It is expected that, as long as a patient with SCI is able
to reach further the objects that surround him, he would get
more autonomy and functionality

.

It is calculated at each axis as the difference between the
maximum and the minimum value of the position of the
patient’s hand, getting a range of reaching for each exercise
while the patient is carrying out the three-dimensionalmove-
ments required by the task.Then, these ranges of reaching are
summed and normalized by the sum of ranges obtained by a
healthy subject. Finally, the three values obtained for each of
the three axes are weighted according to their contribution:

RA=
𝑗=3

∑

𝑗=1

𝑘
𝑗
⋅

∑
𝑖=14

𝑖=1
max (ℎ

𝑗𝑖
) −min (ℎ

𝑗𝑖
)

∑
𝑖=14

𝑖=1
max (ideal ℎ

𝑗𝑖
) −min (ideal ℎ

𝑗𝑖
)

⋅ 100 [%] ,

(2)

where 𝑘
𝑗
= weighting coefficient to assign to each axis

a different contribution to the total reach amplitude and
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ℎ
𝑗𝑖
= trajectory of the hand’s position at each axis 𝑗 for each

exercise 𝑖 carried out by the patient. Ideal ℎ
𝑗𝑖
= trajectory of

the hand’s position at each axis 𝑗 for each exercise 𝑖 carried
out by a healthy subject.

Depending on the value assigned to 𝑘
𝑗
(where 𝑗 = 1 the

𝑋-axis, 𝑗 = 2 the 𝑌-axis, and 𝑗 = 3 the 𝑍-axis), it is pos-
sible to compute the reaching amplitude separately for each
direction.

(iii) Accuracy. It has been calculated considering 2 param-
eters: mean distance from the trajectory performed by the
patient’s hand to the ideal trajectory of the hand performed by
a healthy subject (𝑑mean) and the maximum distance between
these 2 trajectories (𝑑max). Consider

Ac = 100 −
𝑖=14

∑

𝑖=1

2 ⋅ 𝑑mean𝑖 ⋅ (1 +
𝑑mean𝑖
𝑑max𝑖
) . (3)

The idea of this formula is to penalize the accuracy of those
trajectories that present several peaks of deviation in respect
to the ideal trajectory. If they have a few peaks, 𝑑mean will not
be affected to a great extent by these peaks, so that 𝑑mean ≪
𝑑max, and thus the penalization for the accuracy would be
approximately 2𝑑mean.

However, if there are a lot of peaks of deviation, 𝑑mean
will be affected by these values, so that 𝑑mean will increase.
Consider as an example an extreme case in which there were
so many peaks of deviation that 𝑑mean ≈ 𝑑max; then the
penalization for the accuracy would be 4𝑑mean, much higher
than in the previous case.

In order to obtain values in percentages, as in the previous
metrics, accuracy has been normalized by the value of
accuracy obtained by a healthy subject:

Acnorm =
Ac

Acideal
⋅ 100 [%] . (4)

(iv) Agility. It has been considered that an agile movement
should not only be fast but also precise. To this aim, this
metric takes into consideration three parameters: accuracy
(as defined in the previousmetric), angular velocity, and time
needed to execute the task. Consider

Ag = 100 −
𝑖=14

∑

𝑖=1

(20 ⋅ (𝑑mean𝑖/𝑑max𝑖) + 30 ⋅ (Vmax𝑖/Vmean𝑖)

+50 ⋅ (𝑡
𝑖
/𝑡ideal𝑖)) × 100

−1
,

(5)

where 𝑑mean𝑖 (m) = mean distance from the trajectory
performed by the patient’s hand to the ideal trajectory of the
hand performed by a healthy subject, 𝑑max𝑖 (m) = maximum
distance between the trajectory performed by the patient’s
hand and the ideal trajectory of the hand performed by a
healthy subject, Vmax𝑖 (

∘/s) = maximum angular velocity of
the joint under study in each exercise, Vmean𝑖 (

∘/s) = mean
angular velocity of the joint under study in each exercise, 𝑡

𝑖

(s) = time spent by the patient on performing the exercise 𝑖,
and 𝑡ideal (s) = time spent by a healthy subject on performing
the exercise 𝑖.

The first term of the agility penalization is the one regard-
ing the accuracy error and it has been already explained in the
previous metric.

The second term is regarding angular velocity. A very high
maximum angular velocity is considered as a penalization,
unless the mean velocity is also high. The reason to calculate
it in this way is that patients with a badly preserved func-
tionality will carry out the exercises quite slowly, obtaining
a low mean angular velocity, but they will also carry out
uncontrolled movements, for example, dropping the arm,
thus getting a high maximum angular velocity. Therefore,
it is important to evaluate the relationship between the
maximum and the mean angular velocity, not only one of
them separately.

The third term takes into account the time spent by
the patient on performing the exercise in relation with the
time spent by a healthy subject on performing the same
exercise.

In order to obtain values in percentages, as in the previous
metrics, agility has been normalized by the value of accuracy
obtained by a healthy subject:

Agnorm =
Ag

Agideal
⋅ 100 [%] . (6)

(v) Repeatability. It computes the inverse of the area com-
prised between the upper and the lower envelopes of the
repetitions of the same movement during a session:

𝑅 = 𝑘 ⋅

𝑖=8

∑

𝑖=1

𝑘
0

𝐴
𝑖
⋅ (1 + (1/𝑛rep))

, (7)

where 𝐴
𝑖
= area comprised between the upper and the lower

envelopes of the repetitions of the exercise 𝐼 and 𝑘, 𝑘
0
=

normalizing coefficients used to adjust the scale. Here 𝑘 =
1000 and 𝑘

0
have been used. 𝑛rep = number of repetitions for

each exercise (it is necessary that all exercises have the same
number of repetitions).

For this metric, only exercises 1 to 8 have been used.
They are step-by-step shoulder abduction, complete shoulder
abduction, step-by-step shoulder flexion, complete shoulder
flexion, step-by-step elbow flexion, complete elbow flexion,
elbow extension, and shoulder rotation. These exercises are
the ones that require the patient to perform a determined
trajectory to accomplish the task, so the trajectories of
different repetitions should be similar if the task has been
correctly executed. Area𝐴

𝑖
has been computed by calculating

the upper and the lower envelopes along time of all repetitions
of the kinematic variable corresponding to exercise 𝑖. For
example, for the first exercise, shoulder abduction curve
along time has been used, as it can be seen in Figures 3 and 4.

Area comprised in each exercise is being weighted by the
number of repetitions (𝑛rep) because the area tends to increase
with the number of repetitions used.

The idea is that, as long as the patient improves his
performance, he should be able to repeat more accurately
the same task; thus the area between the envelopes should
decrease.
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Figure 3: Example of the curves of shoulder abduction recorded
during 2 repetitions of the same movement by a patient.
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Figure 4: Example illustrating the calculation of the repeatability for
the 2 repetitions previously shown in Figure 3.

4. Evaluation Method

4.1. Participants. Fifteen subjects (11males and 4 femaleswith
complete spinal cord injury; mean age 35.33±14.4 years, 4.8±
2.37 months since injury) participated in the study. Subject’s
demographic and clinical characteristics are shown inTable 1.

Eligible participants met the following criteria: (1) at least
18 years of age; (2) less than 12 months from the injury; (3)
motor complete spinal cord injury according to the ASIA’s
impairment scale at the level of C5 to C8 (A-B ASIA level
[24]); (4) no history of traumatic or cognitive pathology that
can affect the Upper Limb (UL) movements; (5) normal or
corrected-to-normal vision and hearing; (6) no history of
technology addiction; and (7) no history of epilepsy and
pregnancy. Each subject gave informed consent voluntarily
which were approved by the Local Ethics Committee.

4.2. Data Collection and Analysis. Subjects remained seated
in their own wheelchair in front of the screen. A total of five
MTx IMUs were used to capture movements of the dominant
UL, wirelessly connected (Bluetooth) to a computer via
a digital data bus (Master Xbus), which was responsible
for the synchronization, data collection, and transmission.
The IMUs were strategically placed on the trunk, the back
of the head, the arm, the forearm, and the hand [23].

Each subject received an explanation about how to per-
form the activity, which consisted of reaching the different
goals that appear sequentially on the screen. Subjects were
instructed to perform each of the 14 analytic movements
required including complete and step-by-step shoulder,
elbow, and wrist motion required. A sampling frequency of
25Hz was used for the MTx IMUs recordings. The subjects
cyclically executed each exercise three times. The mean of
these three recordings yielded the final measurement value
for each subject.

As it has been described in the “new kinematic metrics”
section, some of the metrics require some data recorded
from healthy subjects in order to compare the results of the
metrics with a reference value, thus yielding a final value
expressed in percentage with respect to the healthy reference.
In order to obtain these reference values, a group of five
healthy subjects (2 males and 3 females, mean age of 29 years
and standard deviation of 6.041) was previously registered.
The following parameters were extracted from the healthy
subjects and then averaged to obtain the reference values:
ROMs, trajectories, time spent on each exercise, and absolute
value for the metrics.

Neurological examinations of all the patients were per-
formed according to the ASIA standards [24].The functional
examination was done by using three scales. The first scale
was SCIM II, which has 16 items divided into three functional
areas: self-care, respiration and sphincter management, and
mobility. Total score can vary from 0 (minimal) to 100 (maxi-
mal) [25]. Only the self-care subscore has been considered in
this study, because it has been previously shown to be more
closely related with the upper limb function [26]. From now
on, this subscale will be named self-care SCIM.

The second assessment scale was the UL part of motor
index scale (UL MI), which assesses power and range of
the followingmovements: shoulder abduction, elbow flexion,
and pinch between the thumb and index finger. The total
score is rated between 0 (no movement) and 100 (normal
movement [27]. The total score of the scale and also each
of the subscores: shoulder abduction (UL MI AbdShoulder),
elbow flexion (UL MI Flexelbow), and pinch (UL MI Pinch)
has been evaluated.

The third scale was functional independence measure
(FIM), which consists of 18 items organized in six categories,
four corresponding to motor functions (self-care items,
sphincter control, mobility items, and locomotion) and two
corresponding to cognitive functions (communication and
social cognition). The lowest and highest scores of the total
ranged from 18 to 126 [28]. As in the SCIM, only the self-
care subscore has been taken into account. From now on, this
subscale will be named self-care FIM.

Both the kinematic assessmentwith Toyra and the clinical
evaluation were carried out for each patient with a maximum
difference of 2 days.

Descriptive analysis including means and standard devi-
ations (SD) for continuous variables was initially performed
to characterize each subject and also each group of sub-
jects considering the neurological level of injury (C5–C8).
The Pearson correlation coefficient was used to correlate
kinematic ROMs with clinical and functional variables.
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Table 1: Demographic and clinical characteristics of the sample analysed.

Sex (male)† 11 (73.33)
Age (years)∗ 35.33 (14.40)
Time since injury (months)∗ 4.80 (2.37)
Dominance (right)† 9 (60)
ASIA (A)† 9 (60)
Etiology (trauma)† 14 (93.33)
Level of neurological injury (C5–C8)† C5 = 7 (46.66) C6 = 4 (26.66) C7 = 3 (20) C8 = 1 (6.66)
∗Continuous variables are expressed as mean and standard deviation values. †Categorical variables are expressed as frequency and percentage of the sample
analyzed.

Table 2: Shoulder kinematics per level of injury (mean ± SD).

AbdshoulderS AbdshoulderC FshoulderS FshoulderC Rotshoulder
C5
𝑛 = 7

73.184 ± 28.436 72.402 ± 36.022 103.506 ± 53.465 107.957 ± 41.308 114.707 ± 31.245

C6
𝑛 = 4

95.903 ± 34.925 122.465 ± 26.207 157.989 ± 28.381 138.222 ± 56.126 89.824 ± 22.948

C7
𝑛 = 3

102.218 ± 52.31 113.985 ± 45.117 165.138 ± 32.002 152.904 ± 21.112 108.454 ± 47.901

C8
𝑛 = 1

137.787 ± 12.10 152.151 ± 13.21 178.582 ± 12.34 175.32 ± 14.25 130.843 ± 12.120

Table 3: Elbow kinematics per level of injury (mean ± SD).

FelbowC Extelbow FelbowS Supelbow Proelbow
C5
𝑛 = 7

118.624 ± 15.864 126.714 ± 19.974 111.632 ± 27.046 162.411 ± 85.775 146.391 ± 17.788

C6
𝑛 = 4

129.835 ± 10.935 145.311 ± 25.908 125.537 ± 22.501 126.215 ± 9.024 185.726 ± 58.672

C7
𝑛 = 3

132.846 ± 6.68 145.044 ± 9.539 131.95 ± 2.635 142.297 ± 31.714 178.916 ± 39.569

C8
𝑛 = 1

112.46 ± 13.23 151.505 ± 32.12 116.905 ± 12.23 122.997 ± 24.12 183.384 ± 21.14

A significance level of 𝑃 less than 0.05 has been used.
All statistical analysis was performed with Matlab (The
Mathworks Inc., Natick, MA, USA).

5. Results

Kinematics recorded by Toyra (the 14 kinematic variables
already mentioned) were obtained for each patient and
averaged by levels of neurological injury. These averages can
be seen in Tables 2, 3, and 4.

Values obtained by all patients in the clinical scales SCIM,
UL MI, and FIM have also been obtained and averaged by
level of injury, showing the results in Table 5.

Positive strong correlations between kinematic variables
and clinical scales have been found in the following param-
eters: self-care SCIM and shoulder flexion step-by-step (𝑟 =
0.776, 𝑃 = 0.00067), self-care SCIM, and complete shoulder
flexion (𝑟 = 0.74, 𝑃 = 0.0016), UL MI and shoulder flexion
step-by-step (𝑟 = 0.714, 𝑃 = 0.0028), and UL MI and
complete shoulder flexion (𝑟 = 0.712, 𝑃 = 0.0029).

Positive moderate correlations between kinematic vari-
ables and clinical scales have been found in the following
parameters: self-care SCIM and shoulder abduction step-by-
step (𝑟 = 0.548, 𝑃 = 0.034), self-care SCIM and complete
shoulder abduction (𝑟 = 0.518, 𝑃 = 0.048), self-care SCIM
and ulnar deviation (𝑟 = 0.551, 𝑃 = 0.033), UL MI and
shoulder abduction step-by-step (𝑟 = 0.547, 𝑃 = 0.035), self-
care FIM and shoulder abduction step-by-step (𝑟 = 0.675,
𝑃 = 0.0113), and self-care FIM and complete shoulder flexion
(𝑟 = 0.618, 𝑃 = 0.0243). Results are shown in Table 6.

The metrics developed were applied to patients group.
In Figures 5, 6, 7, and 8 the results are shown averaging the
values of the metrics by levels of injury.

The metrics developed in this study have been applied
to 15 patients; then the obtained values with the clinical
scales’ scores were compared. As it can be seen in Table 7,
strong positive correlation has been foundbetween themetric
joint amplitude and the self-care SCIM (𝑟 = 0.797, 𝑃 =
0.000375) and between this metric and the subscale UL MI
AbdShoulder (𝑟 = 0.861, 𝑃 = 0.00003).
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Table 4: Wrist kinematics per level of injury (mean ± SD).

Extwrist Flexwrist Raddevwrist Uldevwrist
C5
𝑛 = 7

57.204 ± 11.602 44.053 ± 17.086 24.878 ± 10.11 23.155 ± 11.656

C6
𝑛 = 4

44.275 ± 21.867 47.589 ± 13.546 20.796 ± 8.173 25.851 ± 15.579

C7
𝑛 = 3

77.045 ± 9.831 65.793 ± 8.925 36.476 ± 2.415 42.669 ± 1.238

C8
𝑛 = 1

56.002 ± 12.02 54.004 ± 11.23 23.656 ± 11.21 34.868 ± 10.25

Table 5: Clinical subscales of self-care SCIM, UL MI, and self-care
FIM per level of injury (mean ± SD).

Self-care SCIM UL MI Self-care FIM
C5
𝑛 = 7

2 ± 1.414 66.429 ± 20.999 10 ± 2.828

C6
𝑛 = 4

3 ± 1.414 64.25 ± 17.115 13 ± 9.539

C7
𝑛 = 3

5 ± 1.732 69 ± 19.079 12 ± 2

C8
𝑛 = 1

8 ± 0 93 ± 0 16 ± 0

Table 6: Correlations found between kinematic variables recorded
by VR system Toyra and clinical subscales.

Self-care SCIM UL MI Self-care FIM

AbdshoulderS 𝑟 = 0.548
∗

𝑟 = 0.547
∗
𝑟 = 0.675

∗

𝑃 = 0.034 𝑃 = 0.035 𝑃 = 0.0113

AbdshoulderC 𝑟 = 0.518
∗

𝑟 = 0.385 𝑟 = 0.551

𝑃 = 0.048 𝑃 = 0.157 𝑃 = 0.074

FshoulderS 𝑟 = 0.776
∗∗∗

𝑟 = 0.714
∗∗

𝑟 = 0.476

𝑃 = 0.00067 𝑃 = 0.0028 𝑃 = 0.1

FshoulderC 𝑟 = 0.74
∗∗

𝑟 = 0.712
∗∗
𝑟 = 0.618

∗

𝑃 = 0.0016 𝑃 = 0.0029 𝑃 = 0.0243

Udwrist 𝑟 = 0.551
∗

𝑟 = 0.336 𝑟 = 0.165

𝑃 = 0.033 𝑃 = 0.221 𝑃 = 0.59

∗
𝑃 < 0.05.
∗∗
𝑃 < 0.01.
∗∗∗
𝑃 < 0.001.

There were moderate positive correlations between the
following parameters: joint amplitude and self-care FIM (𝑟 =
0.591, 𝑃 = 0.0335), reaching amplitude (𝑌-axis) and self-care
FIM (𝑟 = 0.708, 𝑃 = 0.00673), reaching amplitude (Z-Axis)
and UL MI (𝑟 = 0.552, 𝑃 = 0.0457), reaching amplitude
(𝑍-Axis) and UL MI AbdShoulder (𝑟 = 0.551, 𝑃 = 0.0332),
reaching amplitude (𝑍-Axis) and ULMI Flexelbow (𝑟 = 0.52,
𝑃 = 0.0467), and reaching amplitude (𝑍-Axis) and self-care
FIM (𝑟 = 0.681, 𝑃 = 0.01).

There was also a moderate negative correlation between
agility and UL MI AbdShoulder (𝑟 = −0.536, 𝑃 = 0.0397).

0

20

40

60

80

100

120

C5 C6 C7 C8

(%
)

Level of injury

Joint amplitude

Figure 5: Kinematic metric joint amplitude per level of injury
(mean ± SD). It is expressed in percentage with respect to the
reference value of healthy subjects.
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Figure 6: Kinematic metric accuracy per level of injury (mean ±
SD). It is expressed in percentage with respect to the reference value
of healthy subjects.

6. Discussion

The present study shows that the kinematic data recorded by
VR system Toyra correlate with clinical scales specific for the
upper limb function, which is in line with preliminary results
of our group [7]. Some metrics have been defined based on
these kinematic data, showing promising results in terms of
clinically relevant information, as it has been demonstrated
by the correlation found between some of themetrics and the
self-care subscales.
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Table 7: Correlations between kinematic metrics and clinical subscales.

Self-care SCIM UL MI UL MI AbdShoulder UL MI Flexelbow UL MI Pinch Self-care FIM

Joint amplitude 𝑟 = 0.797
∗∗∗

𝑟 = 0.513 𝑟 = 0.861
∗∗∗

𝑟 = 0.292 𝑟 = 0.276 𝑟 = 0.591
∗

𝑃 = 0.000375 𝑃 = 0.05 𝑃 = 0.00003 𝑃 = 0.291 𝑃 = 0.32 𝑃 = 0.0335

Reaching amplitude (total) 𝑟 = −0.068 𝑟 = 0.376 𝑟 = −0.041 𝑟 = −0.024 𝑟 = 0.346 𝑟 = 0.539

𝑃 = 0.811 𝑃 = 0.167 𝑃 = 0.883 𝑃 = 0.931 𝑃 = 0.207 𝑃 = 0.057

Reaching amplitude (𝑋-axis) 𝑟 = −0.374 𝑟 = 0.05 𝑟 = −0.393 𝑟 = −0.23 𝑟 = 0.14 𝑟 = 0.019

𝑃 = 0.17 𝑃 = 0.858 𝑃 = 0.147 𝑃 = 0.409 𝑃 = 0.0619 𝑃 = 0.952

Reaching amplitude (𝑌-axis) 𝑟 = 0.217 𝑟 = 0.4 𝑟 = 0.258 𝑟 = 0.005 𝑟 = 0.315 𝑟 = 0.708
∗∗

𝑃 = 0.17 𝑃 = 0.139 𝑃 = 0.354 𝑃 = 0.986 𝑃 = 0.252 𝑃 = 0.0067

Reaching amplitude (𝑍-axis) 𝑟 = 0.474 𝑟 = 0.523
∗

𝑟 = 0.551
∗

𝑟 = 0.52
∗

𝑟 = 0.315 𝑟 = 0.681
∗

𝑃 = 0.075 𝑃 = 0.0457 𝑃 = 0.0332 𝑃 = 0.0467 𝑃 = 0.252 𝑃 = 0.01

Accuracy 𝑟 = −0.239 𝑟 = −0.174 𝑟 = −0.364 𝑟 = −0.442 𝑟 = −0.062 𝑟 = −0.283

𝑃 = 0.391 𝑃 = 0.535 𝑃 = 0.182 𝑃 = 0.099 𝑃 = 0.828 𝑃 = 0.349

Agility 𝑟 = −0.259 𝑟 = −0.248 𝑟 = −0.536
∗

𝑟 = −0.463 𝑟 = −0.081 𝑟 = −0.338

𝑃 = 0.351 𝑃 = 0.373 𝑃 = 0.0397 𝑃 = 0.082 𝑃 = 0.775 𝑃 = 0.26

∗
𝑃 < 0.05.
∗∗
𝑃 < 0.01.
∗∗∗
𝑃 < 0.001.

0

20

40

60

80

100

120

C5 C6 C7 C8

(%
)

Level of injury

Agility

Figure 7: Kinematic metric agility per level of injury (mean ± SD).
It is expressed in percentage with respect to the reference value of
healthy subjects.

This study supports the use of such VR systems not only
as rehabilitation tools but also as an objective assessment
tool of the user’s performance, providing data with potential
clinical relevance. The different degree of correlation found
between the clinical scales and the kinematic variables yields
interesting information that can be used in two directions.
One is to analyse in minute resolution the patients’ physical
state, trying to use this information to complement the
clinical scales scores and to design treatments that encourage
the training of the joints more linked with a functional
improvement.The second onewould be to develop predictive
models that could offer the clinician an estimation of the clin-
ical scale score expected for a patient, thus adding objective
data that could facilitate the and to follow the progression of
a patient. Some previous studies go in this direction [9, 29].

The highest positive correlation between clinical scales
and kinematic variables was found in the step-by-step shoul-
der flexion. As it was previously mentioned, the step-by-
step kinematic variables require higher muscle control, and
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Figure 8: Kinematic metric repeatability per level of injury (mean ±
SD). It is expressed in absolute value. It has been calculated only for
levels C5, C6, and C7 because the number of registers for C8 level
was not sufficient to establish a reliable value. For the same reason,
the reference value of healthy subjects for this metric has not been
calculated.

this could be the reason of the high correlation of this
variable with the functionality. Together with the moderate
correlations found in the shoulder abduction, these results
suggest the importance of the shoulder range ormovement in
patients with SCI, which is consistent with previous studies
that established that shoulder muscle strength, in patients
with tetraplegia, is an important determinant of functional
ability level [30].

In a previous study in which correlations between
kinematics and clinical scales were also studied [22], no
correlation was found between shoulder range of motion
and any clinical scales. However, the methodology that was
used in that study is quite different than the one presented
here, because the patients performed only one kind of
reaching and grasp task, without using anyVR system, so that
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the reaching and grasp task did not encourage them to reach
their maximum values of range of motion in all directions.
In contrast with that study, here the patients carry out a
wide variety of tasks, because the goals to reach are displayed
in some different locations around the patient. This is one
of the advantages of VR, which permits measurement of
the patient’s kinematics during different tasks without the
difficulties of setting up a new physical environment for each
task.

The only kinematic variable not related with the shoulder
that showed positive correlation with clinical scales was the
ulnarwrist deviation.This result could be due to the tenodesis
effect, an anatomical consequence of the SCI very common in
patients with level of injury C6 or C7 that entails a high wrist
range of motion during the execution of the activities of daily
living (ADL) [31].

Regarding the kinematic metrics developed in this study,
the higher correlation obtained between the joint ampli-
tude and the clinical scales, in comparison with any of
the correlations obtained between the same scales and the
isolated kinematic variables, suggests that the combination
of kinematic variables could offer more clinically relevant
information than when individually presented.

The strong positive correlation between joint amplitude
and the SCIM scale and also the upper limb abduction
shoulder subscore shows that this metric could be a good
indicator of functionality. A similar result was obtained in
[29], where the range of motion was found to affect to a large
extent the performance of a model that predicts the clinical
score from the kinematic recordings of a therapeutic robotic
arm.

Reaching amplitude along the 𝑍-axis shows moderate
correlations with four of the clinical scores or subscores
(UL MI global, UL MI Abdshoulder, UL MI Flexelbow,
and self-care FIM scale). As it has been defined, the 𝑍-
axis goes vertically upwards, so that the movements in this
direction require a higher force, and thus this ability could
be closely related to the clinical measurements. Also reaching
amplitude along the 𝑌-axis shows a positive correlation with
self-care FIM scale. The 𝑌-axis was defined horizontally,
perpendicular to the screen, and it is thereby the direction
in which some of the ADL considered in the FIM scale take
place, like eating or grooming. This could be the rationale of
this correlation.

The negative correlation that showed the agility with
the UL MI AbdShoulder was unexpected, and it could
indicate that the normalization by the mean velocity used to
calculate this metric could not have been enough to coun-
teract the presence of involuntary movements, very common
in patients with SCI, that usually lead to the appearance
of high velocity peaks. Further filtering strategies and an
optimization of the metric’s parameters will be necessary to
improve this metric.

With respect to the metric accuracy, no correlation
with clinical scores was found, in contrast with a previous
report, where there were strong correlations between ametric
called “trajectory error,” with similar foundations to the
one presented here [32]. We believe that the clinical scales
(self-care SCIM, self-care FIM, and UL MI) used in our

study do not encompass the specific information that this
metric provides. Maybe other methods could be used in
further researches to evaluate its validity. For example, in the
mentioned study, clinical scales Fugl-Meyer, Motor Activity
Log, Action Research Arm Test, and Jebsen-Taylor Hand
Function Test were used. These scales are likely to measure
aspects more related to the accuracy of movements than the
ones used here.

These metrics present some limitations, such as the dif-
ferent number of patients in each group of injury. Therefore,
it will be necessary in future researches to increase the
number of patients in order to have a sufficient number to
compare the averages of each level of injury. It could be also
interesting to apply this metrics and kinematic analysis when
the patients are performing more functional tasks such as
ADLs in VR environments, not only analytical movements
as in the evaluation session presented here.

7. Conclusions

It has been shown that some of the kinematic data extracted
by aVR systembased on IMUsmotion capture systems have a
clinicalmeaning. It has also been shown that the combination
of these variables could providemore information than when
separately used. For this purpose, a set of kinematic metrics
has been defined, showing promising results in some of them.
It seems very important to give clinicians the chance to obtain
clinical relevant information from technological applications
of rehabilitation. This could facilitate the use of such devices
in clinical settings.
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Terrer, and D. Torricelli, “Functional upper limb evaluation
of daily activities in people with neurological disorders,” in
Functional Upper Limb Evaluation of Daily Activities in People
with Neurological Disorders, C. V. Jean Baptiste Giroux, Ed., pp.
55–76, Nova Science Publishers, 2013.

[17] J. H. Van Tuijl, Y. J. M. Janssen-Potten, and H. A. M. See-
len, “Evaluation of upper extremity motor function tests in
tetraplegics,” Spinal Cord, vol. 40, no. 2, pp. 51–64, 2002.

[18] C. Collin and D. Wade, “Assessing motor impairment after
stroke: A Pilot Reliability Study,” Journal of Neurology Neuro-
surgery and Psychiatry, vol. 53, no. 7, pp. 576–579, 1990.

[19] R. H. Jebsen, N. Taylor, R. B. Trieschmann, M. J. Trotter, and
L. A. Howard, “An objective and standardized test of hand
function,” Archives of Physical Medicine and Rehabilitation, vol.
50, no. 6, pp. 311–319, 1969.

[20] M. H. Rabadi and F. M. Rabadi, “Comparison of the action
research arm test and the fugl-meyer assessment as measures
of upper-extremity motor weakness after stroke,” Archives of
Physical Medicine and Rehabilitation, vol. 87, no. 7, pp. 962–966,
2006.

[21] G. Uswatte, E. Taub, D. Morris, M. Vignolo, and K. McCulloch,
“Reliability and validity of the upper-extremity motor activity
log-14 for measuring real-world arm use,” Stroke, vol. 36, no. 11,
pp. 2493–2496, 2005.

[22] E. W. A. Cacho, R. De Oliveira, R. L. Ortolan, R. Varoto, and
A. Cliquet Jr., “Upper limb assessment in tetraplegia: clinical,
functional and kinematic correlations,” International Journal of
Rehabilitation Research, vol. 34, no. 1, pp. 65–72, 2011.

[23] A. Gil-Agudo, A. De los Reyes-Guzmán, I. Dimbwadyo-Terrer
et al., “An inertial sensor-basedmotion tracking system for clin-
ical upper limb rehabilitation,” Neural Regeneration Research,
vol. 8, no. 19, pp. 1773–1782, 2013.

[24] R. J. Marino, T. Barros, F. Biering-Sorensen et al., “International
standards for neurological classification of spinal cord injury,”
The Journal of Spinal Cord Medicine, vol. 26, pp. S50–S56, 2003.

[25] A. Catz, M. Itzkovich, E. Agranov, H. Ring, and A. Tamir,
“SCIM—spinal cord independence measure: a new disability
scale for patients with spinal cord lesions,” Spinal Cord, vol. 35,
no. 12, pp. 850–856, 1997.

[26] C. Rudhe and H. J. A. Van Hedel, “Upper extremity function
in persons with tetraplegia: relationships between strength,
capacity, and the spinal cord independence measure,” Neurore-
habilitation and Neural Repair, vol. 23, no. 5, pp. 413–421, 2009.

[27] G. Demeurisse, O. Demol, and E. Robaye, “Motor evaluation
in vascular hemiplegia,” European Neurology, vol. 19, no. 6, pp.
382–389, 1980.

[28] B. B. Hamilton, J. A. Laughlin, C. V. Granger, and R. M.
Kayton, “Interrater agreement of the seven level Functional
Independence Measure (FIM),” Archives of Physical Medicine
and Rehabilitation, vol. 72, p. 790, 1991.

[29] J. Zariffa, N. Kapadia, J. L. K. Kramer et al., “Relationship
between clinical assessments of function and measurements
from an upper-limb robotic rehabilitation device in cervical
spinal cord injury,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 20, no. 3, pp. 341–350, 2012.

[30] T. Fujiwara, Y. Hara, K. Akaboshi, and N. Chino, “Relationship
between shoulder muscle strength and functional indepen-
dence measure (FIM) score among C6 tetraplegics,” Spinal
Cord, vol. 37, no. 1, pp. 58–61, 1999.

[31] I. Laffont, E. Briand, O. Dizien et al., “Kinematics of prehension
and pointing movements in C6 quadriplegic patients,” Spinal
Cord, vol. 38, no. 6, pp. 354–362, 2000.

[32] O. Celik, M. K. O’Malley, C. Boake, H. S. Levin, N. Yozbatiran,
and T. A. Reistetter, “Normalized movement quality measures
for therapeutic robots strongly correlate with clinical motor
impairment measures,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 18, no. 4, pp. 433–444, 2010.



Research Article
Ghostman: Augmented Reality Application for
Telerehabilitation and Remote Instruction of
a Novel Motor Skill

Winyu Chinthammit,1 Troy Merritt,1 Scott Pedersen,2 Andrew Williams,3

Denis Visentin,3 Robert Rowe,1 and Thomas Furness4

1 Human Interface Technology Laboratory Australia (HIT Lab AU), School of Engineering and ICT,
University of Tasmania, Launceston, Tas 7250, Australia

2 Active Work Laboratory, Faculty of Education, University of Tasmania, Launceston, Tas 7250, Australia
3 School of Health Sciences, University of Tasmania, Launceston, Tas 7250, Australia
4Human Interface Technology Laboratory (HIT Lab), University of Washington, Seattle, WA 98195, USA

Correspondence should be addressed to Winyu Chinthammit; winyu.chinthammit@utas.edu.au

Received 28 January 2014; Revised 12 March 2014; Accepted 13 March 2014; Published 15 April 2014

Academic Editor: Alessandro De Mauro

Copyright © 2014 Winyu Chinthammit et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper describes a pilot study using a prototype telerehabilitation system (Ghostman). Ghostman is a visual augmentation
systemdesigned to allow a physical therapist and patient to inhabit each other’s viewpoint in an augmented real-world environment.
This allows the therapist to deliver instruction remotely and observe performance of a motor skill through the patient’s point of
view. In a pilot study, we investigated the efficacy of Ghostman by using it to teach participants to use chopsticks. Participants
were randomized to a single training session, receiving either Ghostman or face-to-face instructions by the same skilled instructor.
Learning was assessed by measuring retention of skills at 24-hour and 7-day post instruction. As hypothesised, there were no
differences in reduction of error or time to completion between participants using Ghostman compared to those receiving face-
to-face instruction. These initial results in a healthy population are promising and demonstrate the potential application of this
technology to patients requiring learning or relearning of motor skills as may be required following a stroke or brain injury.

1. Introduction

To minimise ongoing disability and its associated costs,
rehabilitation following surgery, stroke, or a musculoskeletal
injury typically requires a course of frequent consultations
with allied health professionals to determine and direct a
treatment during the rehabilitation period [1]. Ageing is
associated with increased disability. As the population ages
the need for rehabilitation services will increase, placing
additional stress on health services staff and budgets [2]. In
addition, costs associated with transporting patients long dis-
tances and associated decreases in productivity, particularly
for patients from rural areas, will add to the community
burden of delivering appropriate services. This will place
increasing stress on health services and consequently thera-
peutic solutions need to become more flexible in delivery.

Best practice face-to-face instruction involves the thera-
pist describing the movement with focus on key areas, per-
forming the movement observed by the trainee and then the
trainee practising the movement while the trainer provides
verbal feedback on performance, and in some cases manually
assisting the target movement. In this situation it has been
demonstrated that facilitation of the patient’s movement
or motor performance is a critical part of the prescribed
exercise [3]. In contrast, the lower end of the therapeutic scale
may involve patients only receiving brief instruction in the
therapist’s office and then being sent home to practice the
new skills by themselves with only a printed sheet of verbal
instructions provided by the therapist to consult (sometimes
with model drawings). Alarmingly, the latter example is
the most common and is usually attributed to high patient
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caseloads and limited availability of specialists concentrated
within geographical locations outside of metropolitan areas.

Telerehabilitation combines telecommunication, sensing
and display technologies, and computing technologies to
enable rehabilitation to be conducted at a distance [4]. A
telerehabilitation system can increase the reach of a therapist,
by enabling them to deliver instruction and assess patient
performance remotely. To facilitate this increase in reach
and reduction in cost, a system must allow the therapist to
perform these services remotely.That is, by reducing the need
for patient travel, the cost of accessing rehabilitation services
is reduced. There is also a lower chance of further injury
and less discomfort for the patient, which may also reduce
the impact on the patient’s caregiver. By using technology
to measure and assess the patient’s performance, less time is
needed for assessment and, consequently, the efficiency of the
therapist may also be improved. By improving the intensity of
therapy sessions, greater functional gains can occur [5].

Video-based approaches allow for the remote delivery of
instruction and themonitoring of patient performance [6, 7].
Another approach is to capture patient performance and
display it in a virtual environment. Performance capture can
be achieved via sensor-based approaches, such as data gloves
[8, 9] and electromagnetic trackers [8, 10–12], or vision-based
approaches such as a webcam [13] or marker tracking [14–
16]. This performance information can be displayed in a
completely virtual environment [10] or augmented into the
real world [14].

Virtual reality (VR) and augmented reality (AR) are
potential methods of delivering rehabilitative health services
remotely. Both have been effective in the delivery of finger
and hand rehabilitation after stroke [17, 18] while VR has
also been shown to result in significant improvements in
motor function and laterality index score in chronic stroke
patients [19]. VR systems have been effectively implemented
in telerehabilitation [20] and for remote training [21]. AR
systems have been shown to be capable of measuring task-
completion time, compactness of task, and speed of hand
movement by capturing the patients’ handmovements whilst
moving a tangible object [14] or with marker-based tracking
[15]. Khademi et al. [16] used haptic feedback in conjunction
with AR to measure stiffness in a user’s arm.

There is evidence that training outcomes are positive
when users utilised a first-person viewpoint [7, 22]. Yang
et al. used a VR approach with “ghost” metaphor and a
first-person viewpoint. The motions of trainer/trainee were
captured and recreated entirely in the virtual environment
in which the trainer operated. However, the use of the VR
approach prevents the trainer to view the real environment,
which raises concerns in safety issues and a lack of ability
to view other subtle visual cues in the environment such as
other parts of the limbs not being tracked/targeted. Kumagai
et al. [7] used an AR approach. While it is rendered with a
first-person viewpoint, the trainer/trainee was viewing the
scene via external computer monitors, as a result, causing
a viewpoint displacement between the physical limbs and
displayed limbs. The displacement requires users to perform
an additional cognitive step, a hand-eye coordination oper-
ation (similar to using a computer mouse to move a cursor

on the display screen). Nevertheless, the benefit of the first-
person view is still evident and likely due to the fact that
there is a more direct and correct transfer of proprioceptive
information [22], which leads to the core of our proposed
Ghostman Design.

2. Ghostman Design

This paper discusses proof of concept of our proposed
telerehabilitation system, called “Ghostman.” Ghostman is
a wearable visual augmentation system in egocentric view
through which users can observe their own movement being
overlaid with a “ghost” image of the instructor’s body in
real time. Unlike Yang and Kim [22], the Ghostman uses
an AR approach, in which the viewing of the real-world
environment is preserved. This allows the users to “inhabit”
the other’s viewpoint, in a technique we call inhabiting
visual augmentation, illustrated in Figure 2. The use of AR
technology enables Ghostman to closely match sensory
modalities of the user such as correct and natural visual
cues. The Ghostman makes use of a wearable display, a
head mounted display (HMD), which helps minimize the
viewpoint displacement between the rendered limbs and the
actual limbs. By wearing an HMD, trainees can intuitively
mimic the movements of the trainer by observing both their
own and the trainer’s movements simultaneously through
the use of colocated overlaying AR images. An HMD with a
pair of inbuilt stereoscopic cameras is connected to a desktop
computer, which processes and renders the video, as well as
providing network communication.

Ghostman consists of two subsystems: one is operated by
a trainee (patient) and the other by a trainer (therapist), as
illustrated in Figure 1.The two subsystems communicate over
the internet network, which enables Ghostman to be applied
remotely in telepresence applications. Each of the Ghostman
subsystems consists of an AR HMD (Vuzix 920AR) that
contains a pair of 640 × 480 liquid crystal displays (LCD), a
pair of 640 × 480 video cameras, and 3 degrees-of-freedom
(DoF) orientation sensors (pitch, yaw, and roll). Each camera
is located directly in front of the LCD for each eyeminimizing
the eye displacement between the display viewpoint and
the camera viewpoint, allowing the user to effectively “see
through” the HMD with a video see-through AR view.
A key design for Ghostman is its ability to visually align
the viewpoints of the two HMDs. In order to achieve this
posture alignment, one would have to capture the complete
movement (6 DoF: 3 orientations and 3 translations) of the
heads and hands of both trainer and trainee. However, in this
initial study, our aim was to study the performance of a given
task with a focus on using the inhabiting visual augmentation
technique. Therefore, we decided to limit our task with only
orientation head movement to simplify our setup; as a result,
our Ghostman proof-of-concept system used only the HMD
inbuilt orientation sensor to generate a navigation cue (shown
at the top right-handed corner in Figure 2) within the HMD
display to allow the trainer to align his head orientation
with the trainee’s prior to the instructions being given.
Furthermore, in order to properly visually align the body
parts of the trainer and the trainee, we would have to rescale
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Figure 1: Ghostman setup.
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Figure 2: Inhabiting visual augmentation.

the overlaid remote limb (depending upon if it is a trainer
or trainee) to match the scale of the local limb (undistorted)
prior to the overlaying process. The rescaling process is a
complicated process, which requires the system to estimate
the size of the limbs (e.g., the length of forearm, fingers, and
position of elbow) of both trainer/trainee and then rescale the
remote limb tomatch the local limb in real time.However, the
focus of this initial study is on the effectiveness of using an
inhabiting visual augmentation technique; consequentially,
we simplified the setup by assuming the size of the limb
(i.e., hand) is the same across all users and therefore there is
no rescaling required. It is worth noting that this limb size
assumption is not detrimental to this pilot study, as the only
visible limb is the hand and lower part of the forearm; thus
the effect of rescaling is very small.

Learning by imitation is a key motor learning strategy
that has been used previously to evaluate telerehabilitation
systems [23].WithGhostman, the trainee can learn themove-
ments of the trainer by simultaneously observing both his/her
own and the trainer’s movements through the use of real-
time overlaying images. Furthermore, Ghostman works in
reciprocal fashion allowing the trainer to provide corrective
movement feedback in real time.

Ghostman provides a unique environment in delivering
movement instructions in egocentric view with a method
of integrating description (audio), performance/practice
(visual), and assistance/correction (evaluation).With its real-
time capability, Ghostman also has the advantage of having
the timing of movements as a natural feature of the system,
overcoming one of the obstacles when learning a new skill.
Therefore, Ghostman might provide an alternative solution
in providing therapeutic instructions where more traditional
face-to-face methods are difficult to negotiate.

For the cost analysis, each Ghostman system costs
approximately $3,000 (AUD) to implement with current
hardware. The current cost may not really be suitable for
large-scale deployment to patients’ home but could be more
practical to a remote healthcare community facility where it
would only require patients to travel for a short distance.

3. Pilot Study

To prove the concept of system a pilot study was conducted
to determine the effectiveness of Ghostman in comparison
to a best practice method used by physio- and occupational
therapists to deliver a complex motor learning sequence to
patients. A key component of rehabilitation is the teaching of
simple motor skills. The teaching of these skills requires time
and expertise of a therapist. The availability and cost of these
demands are leading to the use of a telerehabilitation model
to reach a wider population of potential clients. The results
of this study might provide valuable information regarding
the effectiveness of this innovation for motor skill learning,
with important implications for the delivery of therapy in an
e-health environment.

The aim of this studywas to determine the effectiveness of
using Ghostman in assisting individuals to learn to perform
a novel motor skill using their dominant hand (manipulating
chopsticks). The use of chopsticks is a task that can be
described as a novel skill that can be learnt within a few
minutes and can lead to various levels of expertise. Due to



4 BioMed Research International

the limitations of the field of view of the Ghostman HMD’s
cameras, this task was deemed suitable for instructional
purposes.

We hypothesise that novice individuals, who use Ghost-
man to shadow a skilled performer in real time, will be as
effective in learning chopstick manipulation technique as
individuals who will be similarly trained using a traditional
therapeutic method of observing and receiving feedback
from a skilled performer in a face-to-face clinical environ-
ment. Thus, we tested the null hypothesis with the aim to
accept this hypothesis demonstrating that the two types of
service delivery are not significantly different in terms of
motor learning a novel skill. Due to the limited availability
of rehabilitation patients we chose to conduct this pilot study
on a healthy population using a convenient sample to provide
data for proof of concept of this telerehabilitation.

4. Experiment Design

A randomised controlled pilot study was conducted to evalu-
ate the efficacy of theGhostmanprototype as a tool for remote
teaching of a novel motor skill using chopsticks. Participants
were randomised to receive one teaching session with a
skilled instructor delivering the lesson via traditional face-
to-face interaction or delivering the lesson via an inhabiting
visual augmentation system (Ghostman).

4.1. Inclusion Criteria. Adult participants were self-identified
as right-handed, as the skilled instructor was right-handed.
All participants, who were unfamiliar with using chopsticks
(≤ once per year), were recruited through the use of flyers
advertising the study.

4.2. Exclusion Criteria. Individuals with previously diag-
nosed dementia or who were unable to comprehend English,
individuals with neurological disorders that may affect their
ability to learn motor skills, and individuals who had any
other conditions preventing use of their right hand were
excluded from the study.

4.3. Protocol. Degree of handedness was assessed using
a widely used and validated inventory [24]. The testing
protocol was designed to follow standard motor learning
experiment principles that separate actual skill learning from
performance improvements through the use of retention
tests [25]. The protocol involved a 7-minute training session
and four identical performance tests that were performed
at four different sequential times: prior to training (pretest),
5 minutes after training (posttest), 24 hours after training
(retention 1), and 7 days after training (retention 2). In each
of the tests, participants were seated in front of two identical
shallow bowls at a distance of 30 cm from the edge of the
table where the participant seated (Figure 3—experiment
setup). The source bowl was placed 15 cm to the left side
of the participant’s midline (xiphoid process) and contained
20 small plastic blocks, all of similar size. The target bowl,
which was placed 15 cm to the right side of the participant’s
midline, was initially empty. Participants were presented with

Source bowl

Chopsticks

Target bowl

Figure 3: Experiment setup.

a pair of chopsticks and instructed to transfer all the blocks
one at a time to the target bowl. The instructor replaced
all dropped pieces back into the source bowl. Total skill
errors, the primary dependent variable, were defined as any
drops (either within the source bowl or in transit between
the two bowls) or gripping errors within the source bowl.
The number of skill errors made during each test session
was recorded. When blocks were dropped in transit, the
instructor collected the errant piece and placed it in the
source bowl by handwhile the participant continued with the
task by attempting to move the next piece. Task completion
time, the secondary dependent variable, was measured using
a stopwatch to record the time taken to successfully transfer
20 blocks from the source bowl to the target bowl.

Both groups received standardised training from the
same expert instructor. The only difference was the method
of delivery: Ghostman or face-to-face. The training sessions
commenced with instruction on how to hold chopsticks,
followed by how to pick up objects with chopsticks. Partici-
pants then proceeded to perform a series of practice exercises
using blocks of various sizes and received ongoing feedback
about their performance from the instructor continuously
throughout the seven-minute training session. No feedback
was provided during the testing sessions. Ghostman partic-
ipants were located within the same room as the instructor
who was concealed behind a screen, whereas the face-to-face
participants had the instructor sitting next to the participant
for the duration of the training session. Video recordings of
the hand movement and a top view of the test area (i.e., table,
bowls) weremade of each testing and training session for later
analysis.

A user experience questionnaire was provided to assess
user perceptions of the instruction methods. Participants
were provided a questionnaire to rate their perceptions of
the training methods. The five following statements were
presented and answered using a 5-point Likert scale, with
anchors of 5 corresponding to strong agreement with the
statement and 1 indicating strong disagreement with the
statement:

(1) the instructions I was given were easy to follow,

(2) the instructions helped me learn how to use chop-
sticks,
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Figure 4: Group by test descriptive statistics (mean ± standard
deviation) for total skills errors (frequency count).

(3) the instructor clearly showed me how to hold the
chopsticks,

(4) the training programme helped me to learn how to
use chopsticks,

(5) I feel I am better able to use chopsticks than before the
study.

4.4. Data Analysis. Demographic data were compared at
baseline using independent samples t-tests. Questionnaire
data were analysed using independent samples t-tests to
determine any group differences. A 2 (group) X 4 (test)
mixed design ANOVA with repeated measures on the last
factor was used to test for significant differences for the two
dependent variables (total skill error and task completion
time) separately, with an alpha level set at 0.05. All statistics
were analyzed using IBM SPSS Statistics package version 22.
Descriptive statistics were reported as means and standard
deviations.

5. Results

Preliminary data were collected from 12 participants (6
Ghostman/6 face-to-face), except for the questionnaire data
where data were obtained for only five Ghostman partici-
pants. There were no differences between the two groups for
any variable at baseline (Table 1).

Regarding the primary dependent variable, there was no
significant interaction (𝐹(3, 30) = 0.55, 𝑃 = 0.65) or main
effects for group (𝐹(1, 10) = 0.40,𝑃 = 0.54) or test (𝐹(3, 30) =
1.00, 𝑃 = 0.40) for total skill errors (Figure 4).

As illustrated in Figure 4, the Ghostman group improved
their total skill errors throughout the study as can be
interpreted in themean values from pretest (𝑀 = 6.33±6.28)
to posttest (𝑀 = 5.83 ± 1.94) to 24-hour retention (𝑀 =
4.67±1.63) to seven-day retention (𝑀 = 4.33±3.20), whereas
the face group got worse from pretest (𝑀 = 5.50 ± 2.43) to
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Figure 5: Group by test descriptive statistics (mean ± standard
deviation) for task completion time (seconds).

Table 1: Comparison of demographic data between the treatment
groups (mean ± standard deviation).

Variable Ghostman Face-to-face Significance (𝑃)
Gender (M/F) 4/2 4/2
Age (years) 36.7 ± 11.8 42.2 ± 14.7 0.49
Experience
(previous uses) 0.2 ± 0.4 1.0 ± 1.5 0.23

Right handedness
(%) 74.1 ± 23.6 93.6 ± 9.9 0.09

posttest (𝑀 = 7.67±2.58), showed slight improvements after
24 hours (𝑀 = 6.00 ± 3.29), and finally returned to baseline
performance after seven days (𝑀 = 5.50 ± 3.45) although
none of these differences were significant.

Similarly, for the task completion timedependent variable
there was no significant interaction (𝐹(3, 30) = 0.85, 𝑃 =
0.48) or main effects for group (𝐹(1, 10) = 0.11, 𝑃 = 0.75)
or test (𝐹(3, 30) = 2.23, 𝑃 = 0.10) (Figure 5). The detail data
of Figure 5 are as follows: pretest (Ghostman:𝑀 = 70.50 ±
16.05, face-to-face:𝑀 = 72.50 ± 27.42), posttest (Ghostman:
𝑀 = 62.33 ± 12.37, face-to-face: 𝑀 = 69.67 ± 23.19), 24-
hour retention (Ghostman: 𝑀 = 64.33 ± 28.12, face-to-
face: 𝑀 = 60.17 ± 16.57), and 7-day retention (Ghostman:
𝑀 = 57.50 ± 12.29, face-to-face:𝑀 = 65.50 ± 14.90)

Finally, there were no differences between groups for any
of the Likert scale statements regarding user perceptions of
the training methods (Table 2).

6. Discussion

The primary outcome of this study (Figures 4 and 5) demon-
strated that Ghostman is as effective, in terms of reduction
in skill errors and improvements in task completion time,
as current best practice face-to-face instruction for learning
a novel skill (null hypothesis). Moreover, from the user
experience questionnaires (Table 2), participants also felt
Ghostman training was as effective as face-to-face training.
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Table 2: Group by statement descriptive statistics (mean ± standard
deviation) for questionnaire data (5-point Likert scale).

Ghostman
(𝑛 = 5)

Face-to-face
(𝑛 = 6)

Significance
(𝑃)

Statement 1 4.60 ± 0.55 4.67 ± 0.52 0.84
Statement 2 4.20 ± 0.84 4.50 ± 0.55 0.51
Statement 3 4.80 ± 0.45 4.83 ± 0.41 0.90
Statement 4 4.40 ± 0.55 4.17 ± 0.75 0.57
Statement 5 4.60 ± 0.55 4.17 ± 0.98 0.38

This provided early evidence that the inhabiting visual
augmentation (Ghostman) could be an effective technique
for motor learning in a telerehabilitation context. As this is
the first study of its kind using telerehabilitation to test the
learning of novel skills and there is no previous data for
comparison, this pilot study provides promising results for
future studies.

Previously, home-based rehabilitation has been demon-
strated to be more cost effective than hospital-based reha-
bilitation [26]. Traditionally, both forms of rehabilitation
involve colocation of a therapist and a patient in the same
setting, which involves costs associated with transport of
the patient/therapist to the setting. The results of the cur-
rent study indicate that Ghostman is an effective learning
tool, which provides further support for the efficacy of a
telerehabilitation approach. In addition, telerehabilitation has
real potential to reduce cost of rehabilitation delivery by
reducing time and travel-related expenses for practitioners
and patients alike. However, the cost effectiveness of telereha-
bilitation delivery has yet to be established [27].Moreover, the
Ghostman telerehabilitation system requires further, larger-
scale investigations into the efficacy of this system with
clinical populations requiring physical rehabilitation, such as
stroke patients or those suffering Parkinson’s disease.

6.1. Limitations. Caution in interpreting these data is war-
ranted due to the small, convenient sample size used in this
study (𝑛 = 12). As a result, it might be suggested that the
lack of statistically significant difference in outcomes between
the two training methods might be due to the study being
underpowered and thereby making Ghostman appear to be
as effective a learning tool as traditional methods. To test
the theory that the study was underpowered thereby making
Ghostman appear more effective than it is, we conducted
post hoc power calculations on the data obtained in this
study. These analyses demonstrated that, on the basis of
existing data, a total of 508 participants would be required to
yield a statistically significant difference in changes in error
rate, while 840 participants would be required to produce
a statistically significant difference in changes in time to
complete the task. In addition, there were greater mean
improvements in learning (24-hour and 7-day retention tests)
as identified by reductions in skill errors and task completion
time when using Ghostman indicating that obtaining a
sample size of that projected magnitude would be likely
to demonstrate Ghostman to be a more effective learning

tool than face-to-face instruction. Another limitation of the
study was the training period. Training consisted of a single
7-minute session, regardless of the group. This may not
have been a long enough exposure to produce significant
improvements in participants. However, this brief amount of
training time is consistent with the instruction time typically
utilized by therapists when first meeting with new patients.
Finally, participants that have been used in this research have
been drawn from a healthy population. As such, it is difficult
to claim that the technique is valid without examining its
efficacy with participants that are currently completing a
course of rehabilitation.

7. Conclusions

This paper describes our proposed telerehabilitation system
(Ghostman) and a pilot study using Ghostman for remotely
teaching a novel motor skill. Findings from the pilot study
indicated that Ghostman is as effective for motor learning,
in terms of reduction in skill errors and improvements in
task completion time, as the current best practice face-to-face
training. This suggests that Ghostman could be an effective
technique for telerehabilitation and for remote instruction
of novel motor skill learning applications by physio- and
occupational therapists. Given the difficulties that rural
and remote communities experience in gaining face-to-face
access to health professionals, this outcome holds promise for
future development of this technology.

While the early results are encouraging, further devel-
opment of the Ghostman system and larger-scale studies
are required to determine its efficacy in telerehabilitation
context. The future development on the current Ghostman
system will address the following three main areas: (1) the
limited field of view of the camera and of the display (HMD),
(2) the rescaling of the remote user’s limb (to match with
the (undistorted) local limb), and (3) the reduction of the
unit cost for large-scale deployment. With these technical
improvements, the Ghostman system can then be tested in
a large group of participants with more comprehensive case
studies that includes expanding ranges of the user movement
and working with full-bodied tasks. Ultimately, this would
provide valid evidence that the system is ready for real patient
trials.
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