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Nonlinear analysis has been used in many practical applica-
tion fields, such as nonlinear fitting, economics, optimiza-
tion, convergence, engineering, hydrodynamics, parameter
estimating, function approximating, and elasticity. There
are many achievements on nonlinear analysis that have
been obtained by authors. However, there still exist lots
of challenging problems, such as the large-scale problems,
fast algorithm, and convergence, since the complex of the
nonlinear object function on its variables cannot be obviously
determined in many cases. So the research and application
space of nonlinear analysis are broad.

The issue invites investigators to contribute original
research articles as well as review articles that will help in
understanding the important new developments in nonlinear
analysis and its applications with a particular emphasis on
the following potential topics. There exist many special topics
including the nonlinear analysis: optimization, variation
analysis, economical models, fixed point theory, numerical
methods, convergence, nonlinear equations, semidefinite
programming, polynomial optimization, tensor computa-
tion, image processing, and so forth.

The research papers are welcome with new ideas or good
numerical experiments. (1) New methods for nonlinear anal-
ysis are encouraged, such as the new formulas on conjugate
gradient methods, quasi-Newton methods, limited memory

quasi-Newton method, trust region methods, and SQP meth-
ods; convergence results of algorithms are established which
is needed. (2) Numerical experiments should be done to
improve the theory idea: for unconstrained optimization
problems, the CUTEr problems should be tested [1, 2] in
Table 1. For nonlinear equations problems, there are many
problems [3–7] that are listed in Table 2.

We hope that readers of this special issue will find not only
convergence results and updated reviews on the common
nonlinear analysis, but also important open problems to
be resolved such as new formulas in optimization meth-
ods, new algorithms for variation analysis and new models
for economic problems. Moreover, large-scale problems in
nonlinear equations, semidefinite programming, and image
processing are tested to turn out the performance of the new
methods.
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2 Abstract and Applied Analysis

Table 1

Problems names Character
ARGLINA, ARGLINB, ARGLINC, BDQRTIC, BROWNAL, BROYDN7D, BRYBND CHAINWOO, CHNROSNB,
COSINE, CRAGGLVY, CURLY10, CURLY20, DIXMAANA, DIXMAANB, DIXMAANC, DIXMAAND,
DIXMAANE, DIXMAANF, DIXMAANG, DIXMAANH DIXMAANI, DIXMAANJ, DIXMAANL, DIXON3DQ,
DQDRTIC, DQRTIC, EDENSCH EG2, ENGVAL1, ERRINROS, EXTROSNB, FLETCBV2, FLETCHCR,
FREUROTH GENHUMPS, GENROSE, INDEF, LIARWHD, MANCINO, MSQRTALS, MSQRTBLS
NONCVXU2, NONDIA, NONDQUAR, PENALTY1, PENALTY2, POWELLSG POWER, QUARTC,
SCHMVETT, SENSORS, SINQUAD, SPARSINE, SPARSQUR SPMSRTLS, SROSENBR, TESTQUAD, TOINTGSS,
TQUARTIC, TRIDIA VARDIM, VAREIGVL, and WOODS

Academic

DECONVU, FMINSRF2, FMINSURF, MOREBV, TOINTGOR, and TOINTQOR Modeling

Table 2

Functions names Optimization value
Exponential function 1, exponential function 2, trigonometric function, singular function, logarithmic function,
Broyden tridiagonal function, trigexp function, strictly convex function 1, linear function-full rank, penalty function,
variable dimensioned function, tridiagonal system, five-diagonal system, extended Freudenstein and Roth function,
discrete boundary value problem, Troesch problem, and so forth

0
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[6] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, “Testing
unconstrained optimization software,” ACM Transactions on
Mathematical Software, vol. 7, no. 1, pp. 17–41, 1981.

[7] S. M. Roberts and J. S. Shipman, “On the closed form solution
of Troesch’s problem,” Journal of Computational Physics, vol. 21,
no. 3, pp. 291–304, 1976.



Research Article
A Smoothing Inexact Newton Method for
Nonlinear Complementarity Problems

Zhong Wan,1,2 HuanHuan Li,2 and Shuai Huang2

1State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
2School of Mathematics and Statistics, Central South University, Changsha, Hunan, China

Correspondence should be addressed to Zhong Wan; wanmath@163.com

Received 15 September 2014; Accepted 15 December 2014

Academic Editor: Neculai Andrei

Copyright © 2015 Zhong Wan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A smoothing inexact Newton method is presented for solving nonlinear complementarity problems. Different from the existing
exact methods, the associated subproblems are not necessary to be exactly solved to obtain the search directions. Under suitable
assumptions, global convergence and superlinear convergence are established for the developed inexact algorithm, which are
extensions of the exact case. On the one hand, results of numerical experiments indicate that our algorithm is effective for the
benchmark test problems available in the literature. On the other hand, suitable choice of inexact parameters can improve the
numerical performance of the developed algorithm.

1. Introduction

In the study of equilibria problems from economics, engi-
neering, and management sciences, a complementarity prob-
lem (CP) often appears as the prominent mathematical model
of the equilibria problems. Thus, it is the most practical
interest to develop a robust and efficient algorithm for solving
CP in the past decades (see the very recently published book
[1] and the references therein). In this paper, we consider
a nonlinear complementarity problem (denoted by NCP(𝐹),
for short): find a vector 𝑥 ∈ R𝑛 such that

𝑥 ≥ 0, 𝐹 (𝑥) ≥ 0, 𝑥
𝑇

𝐹 (𝑥) = 0, (1)

where 𝐹 : R𝑛 → R𝑛 is continuously differentiable function.
Due to the extensive applications, NCP(𝐹) has attracted great
attention of researchers (see, e.g., [2, 3] and the references
therein). On the one hand, there have been many theoretical
results on the existence of solutions and their structural
properties. On the other hand, many attempts have been
made to develop implementable algorithms for the solution
of NCP(𝐹).

A popular way to solve the NCP(𝐹) is to reformulate (1)
to a nonsmooth equation via an NCP-function. Function 𝜙 :

R2 → R is said to be the NCP-function if

𝜙 (𝑎, 𝑏) = 0 ⇐⇒ 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎𝑏 = 0. (2)

Define Φ : R𝑛 → R𝑛, given by

Φ(𝑥) = (

𝜙(𝑥
1
, 𝐹
1
(𝑥))

𝜙(𝑥
2
, 𝐹
2
(𝑥))

...

𝜙(𝑥
𝑛
, 𝐹
𝑛
(𝑥))

) . (3)

Then, problem (1) is equivalent to

Φ (𝑥) = 0. (4)

Thus, any efficient algorithm for solving (4) can be directly
applied to find the solution of problem (1).

Smoothing method is a fundamental approach to solve
the nonsmooth equation (4). In this connection, one can
see, for example, [4–16]. The basic idea of this method is to
construct a smooth function to approximate Φ. Let 𝜇 > 0
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2 Abstract and Applied Analysis

be a given smoothing parameter. We define a continuously
differentiable functionΦ

𝜇
: R𝑛 → R𝑛 such that for any𝜇 > 0

and 𝑥 ∈ R𝑛 there holds
󵄩󵄩󵄩󵄩󵄩
Φ (𝑥) − Φ

𝜇
(𝑥)

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, as 𝜇 󳨀→ 0. (5)

Then, problem (4) is approximated by a smooth equation:

Φ
𝜇
(𝑥) = 0. (6)

Let {𝜇𝑘} be a given positive sequence which tends to 0. Then,
we can obtain an approximate solution of (4) by solving (6)
with 𝜇 = 𝜇𝑘.

Recently, there are many different smoothing functions
being employed to smooth the problem (4). Among them, the
Fischer-Burmeiste function and the minimum function are
two popular ones, which are defined by

𝜙 (𝑎, 𝑏) = 𝑎 + 𝑏 − √𝑎2 + 𝑏2, ∀ (𝑎, 𝑏) ∈ R
2

, (7)

𝜙 (𝑎, 𝑏) = min {𝑎, 𝑏} , ∀ (𝑎, 𝑏) ∈ R
2

, (8)

respectively. With the 2-norm of (𝑎, 𝑏) in the Fischer-
Burmeiste function being replaced by a more general 𝑝-norm
with 𝑝 ∈ (1,∞), Chen and Pan proposed a family of new
NCP-function in [6]. By combining the Fischer-Burmeiste
function and the minimum function, Liu and Wu presented
a smoothing function in [11] as follows:

𝜙
𝜃
(𝑎, 𝑏) = 𝑎 + 𝑏 − √𝜃(𝑎 − 𝑏)

2

+ (1 − 𝜃) (𝑎2 + 𝑏2),

𝜃 ∈ [0, 1] ∀ (𝑎, 𝑏) ∈ R
2

.

(9)

In [13], a symmetric perturbed Fischer-Burmeister function
is constructed:

𝜙(𝜇, 𝑎, 𝑏) = (1 + 𝜇) (𝑎 + 𝑏)

− √(𝑎 + 𝜇𝑏)
2

+ (𝑏 + 𝜇𝑎)
2

+ 𝜇2,

∀ (𝜇, 𝑎, 𝑏) ∈ R
3

.

(10)

Very recetly, in [15], a more general smoothing function with
the 𝑝-norm (𝑝 ∈ (1,∞)) was presented. It is shown that for
the nonmonotone smoothing Newton algorithm developed
in [14] the numerical performance of algorithm is greatly
improved if 𝑝 = 1.1.

In this paper, we first write (8) as

min{𝑎, 𝑏} =
1

2
(𝑎 + 𝑏 − |𝑎 − 𝑏|), ∀ (𝑎, 𝑏) ∈ R

2

, (11)

then, we intend to investigate a new smoothing method of | ⋅ |,
and in virtue of this new method, we will design a smoothing
inexact Newton algorithm to solve the obtained smooth
equations. Since an inexact parameter at each iteration is
admissive to obtain an inexact Newton search direction,
the developed algorithm is more helpful to numerical com-
putation than the similar ones available in the literature.
By suitably choosing a sequence of inexact parameters in

advance, numerical performance of the developed algorithm
in this paper can be improved. On the other hand, without
the assumption of strict complementarity, we can establish
the theory of convergence for our algorithm, which is weaker
than that in the existing results.

The rest of this paper is organized as follows. In Section 2,
we study a smoothing method of the absolute function.
Section 3 is devoted to development of a smoothing inexact
Newton algorithm to solve the nonlinear complementar-
ity problem. In Section 4, the global convergence and the
superlinear convergence are established. Numerical results
are reported in Section 5. Some final remarks are made in
Section 6.

The following notions will be used throughout this paper.
For any vector or matrix𝐴,𝐴𝑇 denotes the transposition of𝐴.
R𝑛 denotes the space of 𝑛-dimensional real vectors. R𝑛

+
and

R𝑛
++

denote the nonnegative and the positive subspaces inR𝑛,
respectively. For any vector ] ∈ R𝑛, diag{]

𝑖
: 𝑖 ∈ 𝑁} denotes a

diagonal matrix, whose 𝑖th diagonal element is ]
𝑖
and vec{]

𝑖
:

𝑖 ∈ 𝑁} the vector ], 𝑁 represents the set {1, 2, . . . , 𝑛}. 𝐼

represents the identity matrix with a suitable dimension. ‖ ⋅ ‖
stands for the 2-norm. For any 𝛼, 𝛽 ∈ R

++
, 𝛼 = 𝑂(𝛽) and

𝛼 = 𝑜(𝛽) represent that 𝛼/𝛽 is uniformly bounded and that
𝛼/𝛽 tends to zero as 𝛽 → 0, respectively.

2. Smoothing the Absolute Function

In this section, we will study a smoothing method of the
absolute function.

We first present a function 𝜑
𝜇
: 𝑅 → 𝑅, given by

𝜑
𝜇
(𝑡) =

2

𝜋
arctan( 𝑡

𝜇
). (12)

It is clear that

lim
𝜇→0

+

𝜑
𝜇
(𝑡) =

{{

{{

{

1, if 𝑡 > 0,

0, if 𝑡 = 0,

−1, if 𝑡 < 0.

(13)

Note that the generalized derivative of the absolution
function | ⋅ | is calculated by

sign (𝑡) =

{{

{{

{

1, if 𝑡 > 0,

[−1, 1] , if 𝑡 = 0,

−1, if 𝑡 < 0.

(14)

We can conclude that, except for 𝑡 = 0, 𝜑
𝜇
(𝑡) is a good

approximation to the generalized derivative of |𝑡| with a
sufficiently small 𝜇. Actually, the following result was proved
in [17].

Proposition 1. For any given constant 𝛼 > 0, there is a con-
stant 𝑀

𝛼
> 0 independent of 𝜇 and 𝑡 such that

0 ≤ sign (𝑡) − 𝜑
𝜇
(𝑡) ≤ 𝑀

𝛼
𝜇, ∀𝑡 : 𝑡 ≥ 𝛼, ∀𝜇 > 0,

0 ≤ 𝜑
𝜇
(𝑡) − sign (𝑡) ≤ 𝑀

𝛼
𝜇, ∀𝑡 : 𝑡 ≤ −𝛼, ∀𝜇 > 0.

(15)
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By Proposition 1, to obtain an approximation of |𝑡|, we
calculate the integral of 𝜑

𝜇
:

∫𝜑
𝜇
(𝑡) 𝑑𝑡 =

2

𝜋
∫ arctan( 𝑡

𝜇
)𝑑𝑡

= 𝑡𝜑
𝜇
(𝑡) −

1

𝜋
𝜇 ln(1 +

𝑡
2

𝜇2
) ≜ 𝜙

𝜇
(𝑡) .

(16)

Then, it is natural that we use 𝜙
𝜇
(𝑡) to approximate |𝑡|.

Actually, we have the following result (see [17]).

Proposition 2. (1) For any 𝜇 > 0, it holds that

|𝑡| ≤ 𝜙
𝜇
(𝑡) , ∀𝑡 ∈ 𝑅. (17)

The above inequality holds strictly for all 𝑡 ̸= 0.
(2) For any 𝑡 ∈ 𝑅𝑛, lim

𝜇→0
+𝜙
𝜇
(𝑡) = |𝑡|.

(3) lim
𝜇→0

+ dist(𝜙󸀠
𝜇
(𝑡), 𝜕ℎ(𝑡)) = 0, where ℎ(𝑡) = |𝑡| and

dist(V, 𝑆) denotes the distance from the point V to the set 𝑆.

3. A Smoothing Inexact Newton
Algorithm for NCP(𝐹)

In this section, we will develop a smoothing inexact Newton
algorithm for solving a smooth equation obtained by refor-
mulating the NCP(𝐹).

Since

min{𝑥
𝑖
, 𝐹
𝑖
(𝑥)} =

1

2
(𝑥
𝑖
+ 𝐹
𝑖
(𝑥) −

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝐹
𝑖
(𝑥)

󵄨󵄨󵄨󵄨) ≜ 𝜙
𝑖
(𝑥) ,

(𝑖 ∈ 𝑁) ,

(18)

we construct an approximation of 𝜙
𝑖
(𝑥) by Proposition 2,

defined by

𝜙
𝑖
(𝜇, 𝑥)

=
1

2
(𝑥
𝑖
+ 𝐹
𝑖
(𝑥) − 𝜙

𝜇
(𝑥
𝑖
− 𝐹
𝑖
(𝑥)))

=
1

2
(𝑥
𝑖
+ 𝐹
𝑖
(𝑥) −

2

𝜋
(𝑥
𝑖
− 𝐹
𝑖
(𝑥)) arctan(

𝑥
𝑖
− 𝐹
𝑖
(𝑥)

𝜇
)

+
1

𝜋
𝜇 ln(1 +

(𝑥
𝑖
− 𝐹
𝑖
(𝑥))
2

𝜇2
)).

(19)

Define Φ
𝜇
: 𝑅
𝑛

→ 𝑅
𝑛, given by

Φ
𝜇
(𝑥) = (

𝜙
1
(𝜇, 𝑥)
...

𝜙
𝑛
(𝜇, 𝑥)

) . (20)

Then, Φ(𝑥) = 0 is approximated by a smooth equation:

Φ
𝜇
(𝑥) = 0. (21)

Remark 3. The above smoothing method has been used to
deal with NCP(𝐹) in [17]. Then, by solving a generalized
Newton equation:

∇Φ
𝜇
(𝑥
𝑘

)
𝑇

𝑑 + Φ (𝑥
𝑘

) = 0, (22)

so as to obtain a search direction 𝑑 at 𝑘-iteration for the
developed algorithm in [17]. Different from the standard
Newton method,Φ(𝑥

𝑘

) is employed to replaceΦ
𝜇
(𝑥
𝑘

) in (22).

Taking into account the advantage of the standard
smoothing Newton method (see, e.g., [12, 15, 16, 18]) in adjust-
ing the the value of smoothing parameter automatically, we
further transform problem (21) into a smooth optimization
problem.

Denote 𝑧 = (𝜇, 𝑥) ∈ R
++

× R𝑛. We define a function 𝐻 :

R
++

×R𝑛 → R
++

×R𝑛 by

𝐻(𝑧) = (
𝜇

Φ (𝑧)
) (23)

with Φ(𝑧) = (𝜙
1
(𝑧), 𝜙
2
(𝑧), . . . , 𝜙

𝑛
(𝑧))
𝑇. Then, corresponding

to any solution 𝑥∗ of (21), 𝑧∗ = (0, 𝑥∗) is an optimal solution
of the following minimization problem:

minΨ (𝑧) ≜ ‖𝐻(𝑧)‖
2

= 𝜇
2

+ ‖Φ(𝑧)‖
2

. (24)

Conversely, if 𝑧∗ = (𝜇∗, 𝑥∗) is an optimal solution of problem
(24) with Ψ(𝑧∗) = 0, then, 𝑥∗ solves the system of (21).

Next, we focus on developing an efficient algorithm to
solve problem (24). Before presentation of such an algorithm,
we further investigate the properties of problem (24). The
following definitions are useful to describe the properties of
𝐻.

Definition 4. A matrix 𝑀 ∈ R𝑛×𝑛 is said to be a 𝑃
0

matrix if
all principal minors of 𝑀 are nonnegative.

Definition 5. A function 𝐹 : R𝑛 → R𝑛 is said to be a 𝑃
0

function if for all 𝑥, 𝑦 ∈ R𝑛 with 𝑥 ̸= 𝑦, there holds that

max
𝑖∈𝑁

(𝑥
𝑖
− 𝑦
𝑖
)[𝐹
𝑖
(𝑥) − 𝐹

𝑖
(𝑦)] ≥ 0. (25)

Definition 6 (see [19, 20]). Suppose that Ψ : R𝑛 → R𝑛

is a locally Lipschitz continuous function, which has the
generalized Jacobian 𝜕Ψ(𝑥) in the sense of Clarke [21], it is
said to be semismooth (or strongly semismooth) at a point
𝑥 ∈ R𝑛 if and only if for any 𝑉 ∈ 𝜕Ψ(𝑥 + ℎ), as ℎ → 0,

󵄩󵄩󵄩󵄩󵄩
𝑉ℎ − Ψ

󸀠

(𝑥, ℎ)
󵄩󵄩󵄩󵄩󵄩
= 𝑜 (‖ℎ‖) , (or 𝑂(‖ℎ‖

2

)),

󵄩󵄩󵄩󵄩󵄩
Ψ(𝑥 + ℎ) − Ψ(𝑥) − Ψ

󸀠

(𝑥, ℎ)
󵄩󵄩󵄩󵄩󵄩
= 𝑜 (‖ℎ‖) , (or 𝑂(‖ℎ‖

2

)).

(26)

We now prove the following results.
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Lemma 7. Let 𝑧 = (𝜇, 𝑥) and 𝐻 be defined by (23). Then,
consider the following:

(i) 𝐻 is continuously differentiable at any 𝑧 = (𝜇, 𝑥) ∈

R
++

×R𝑛 with its Jacobian matrix

𝐻
󸀠

(𝑧) = (
1 0

𝐴 (𝑧) 𝐵 (𝑧)
) , (27)

where

𝐴 (𝑧) =
1

2
vec{1

𝜋
ln(1 +

(𝑥
𝑖
− 𝐹
𝑖
(𝑥))
2

𝜇2
) : 𝑖 ∈ 𝑁},

𝐵 (𝑧) =
1

2
(𝐼 − 𝐷(𝑧) + (𝐼 + 𝐷(𝑧))𝐹

󸀠

(𝑥)),

𝐷 (𝑧) =
2

𝜋
diag{arctan(

𝑥
𝑖
− 𝐹
𝑖
(𝑥)

𝜇
) : 𝑖 ∈ 𝑁}.

(28)

Furthermore, if 𝐹 is a 𝑃
0
-function, then, 𝐻󸀠 is nonsin-

gular for any 𝜇 > 0.

(ii) 𝐻 is locally Lipschitz continuous and semismooth on
R𝑛+1.

Proof. (i) Since Φ is continuous differentiable at any 𝑧 =

(𝜇, 𝑥) ∈ R
++

× R𝑛, then 𝐻 is continuous differentiable. For
any 𝜇 > 0, by straightforward calculation, it yields (27) from
the definition of 𝐻.

Note that, for all 𝑖 ∈ 𝑁, −1 < 𝐷(𝑧)
𝑖𝑖

< 1. It is clear that
𝐼 − 𝐷(𝑧) and 𝐼 + 𝐷(𝑧) are two positive diagonal matrices.
Since 𝐹 is a 𝑃

0
-function, 𝐹󸀠 is also a 𝑃

0
-matrix for all 𝑥 ∈ R𝑛.

Thus, the principal minors of the matrix (𝐼 + 𝐷(𝑧)) 𝐹󸀠(𝑥) are
nonnegative. By Definition 4, we know that the matrix (𝐼 +

𝐷(𝑧)) 𝐹
󸀠(𝑥) is a𝑃

0
-matrix. From Theorem 3.3 in [7], it follows

that the matrix 𝐵(𝑧) is nonsingular. Then, it is concluded that
the matrix 𝐻

󸀠(𝑧) is nonsingular.
(ii) It is clear that 𝐻 is locally Lipschitz continuous and

semismooth on R𝑛+1. The proof is completed.

With the properties of 𝐻 in Lemma 7, we first present
an algorithm to solve problem (24) similar to the idea in
[18, 22–25].

Algorithm 8 (a smoothing inexact Newton method).

Step 0. Choose constants 𝛿, 𝛾 ∈ (0, 1), 𝜎 ∈ (0, 1/2), 𝜇
0

> 0

such that 𝜇
0
𝛾 < 1. Given an initial point 𝑥0 ∈ R𝑛, choose a

sequence {𝜃
𝑘
} ⊂ R

++
such that 𝜃

𝑘
∈ (0, 1 − 𝜇

0
𝛾). Set 𝑧0 :=

(𝜇
0
, 𝑥0) and 𝑘 := 0.

Step 1. If ‖𝐻(𝑧𝑘)‖ = 0, then the algorithm stops. Otherwise,
compute

𝛽 (𝑧
𝑘

) := 𝛾min{1, Ψ(𝑧
𝑘

)},

ℎ (𝑧
𝑘

) := (𝜇
0
𝛽(𝑧
𝑘

), 𝜃
𝑘
Φ(𝑧
𝑘

)).

(29)

Step 2. Compute Δ𝑧
𝑘 := (Δ𝜇𝑘, Δ𝑥𝑘) ∈ 𝑅 × 𝑅𝑛 by

𝐻(𝑧
𝑘

) + 𝐻
󸀠

(𝑧
𝑘

) Δ𝑧
𝑘

= ℎ (𝑧
𝑘

) . (30)

Step 3. Set 𝛼
𝑘

:= 𝛿𝑚𝑘 , where 𝑚
𝑘

is the smallest nonnegative
integer 𝑚 such that

Ψ(𝑧
𝑘

+ 𝛿
𝑚

Δ𝑧
𝑘

) ≤ [1 − 2𝜎(1 − 𝜇
0
𝛾 − 𝜃
𝑘
)𝛿
𝑚

]Ψ (𝑧
𝑘

) . (31)

Step 4. Set 𝑧𝑘+1 := 𝑧𝑘 +𝛼
𝑘
Δ𝑧𝑘 and 𝑘 := 𝑘+ 1. Return to Step 1.

Remark 9. Similar to the idea in [26], we develop Algorithm 8
by incorporating an inexact parameter 𝜃

𝑘
at each iteration

to obtain an inexact Newton direction of search in (30).
Generally, we choose a sequence {𝜃

𝑘
} in advance, such that

lim
𝑘→∞

𝜃
𝑘
= 0. Suitable choice of {𝜃

𝑘
} can be used to improve

the numerical performance of Algorithm 8 by generating an
inexact Newton direction Δ𝑧𝑘 in Step 2 of Algorithm 8. The
difference between Algorithm 8 and that developed in [26]
lies in the distinct smoothing method. In [26], instead of the
smoothing function (19), the Fischer-Burmeister function is
adopted.

On the other hand, without the assumption of strict
complementarity, we will establish the theory of global and
local superlinearly convergences for Algorithm 8 in Section 4
under weaker conditions than the existing results.

If 𝜃
𝑘

≡ 0, then, Algorithm 8 reduces to a smoothing
Newton algorithm, which is similar to that developed in [18].
However, the definition of ℎ in this paper is different from
that in [18].

Denote

Ω := {𝑧 = (𝜇, 𝑥) ∈ R
𝑛+1

: 𝜇 ≥ 𝜇
0
𝛽(𝑧)}. (32)

The following result shows that Algorithm 8 is well-
defined.

Theorem 10. Suppose that 𝐹 is a continuous differentiable 𝑃
0
-

function.

(1) For the system of linear equations (30) in the unknown
variable Δ𝑧𝑘, there exists a unique solution.

(2) In finitely many back-tracking steps, 𝛼
𝑘
in Step 3 of

Algorithm 8 is obtained to satisfy (31).
(3) Let {𝑧𝑘} be the sequence generated by Algorithm 8.

Then, for all 𝑘 > 0, 𝑧𝑘 ∈ Ω.

Proof. We prove the first result.
Since 𝐹 is a continuously differentiable 𝑃

0
-function, it

follows from Lemma 7 that the matrix 𝐻󸀠 is nonsingular at 𝑧𝑘
as 𝜇
𝑘
> 0. It implies that the system of linear equations (30) in

the unknown variable Δ𝑧𝑘 has a unique solution. Thus, Step
2 of Algorithm 8 is well-defined.

We now prove the second result.
By (30), we have

Δ𝜇
𝑘
= −𝜇
𝑘
+ 𝜇
0
𝛽 (𝑧
𝑘

) . (33)
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From the definitions of Ψ(𝑧𝑘) and 𝛽(𝑧𝑘), it follows that, for all
𝑘 ≥ 0,

𝛽 (𝑧
𝑘

) ≤ 𝛾Ψ(𝑧
𝑘

)
1/2

,

𝜇
𝑘
≤ Ψ(𝑧

𝑘

)
1/2

.

(34)

Thus, for any 𝛼 ∈ (0, 1)

(𝜇
𝑘
+ 𝛼Δ𝜇

𝑘
)
2

= [(1 − 𝛼)𝜇
𝑘
+ 𝛼𝜇
0
𝛽(𝑧
𝑘

)]
2

= (1 − 𝛼)
2

𝜇
2

𝑘
+ 2 (1 − 𝛼) 𝛼𝜇

0
𝜇
𝑘
𝛽 (𝑧
𝑘

)

+ 𝛼
2

𝜇
2

0
𝛽(𝑧
𝑘

)
2

≤ (1 − 𝛼)
2

𝜇
2

𝑘
+ 2𝛼𝜇

0
𝛾Ψ (𝑧

𝑘

) + 𝑂 (𝛼
2

) .

(35)

Denote

𝜑 (𝛼) = Φ (𝑧
𝑘

+ 𝛼Δ𝑧
𝑘
) − Φ (𝑧

𝑘

) − 𝛼Φ
󸀠

(𝑧
𝑘

) Δ𝑧
𝑘

. (36)

Since Φ is continuous differentiable at 𝑧 ∈ R
++

× R𝑛, then
‖𝜑(𝛼)‖ = 𝑜(𝛼); we conclude from (36) that

󵄩󵄩󵄩󵄩󵄩
Φ(𝑧
𝑘

+ 𝛼Δ𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
Φ(𝑧
𝑘

) + 𝛼Φ
󸀠

(𝑧
𝑘

)Δ𝑧
𝑘

+ 𝜑(𝛼)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛼 + 𝛼𝜃

𝑘
)Φ(𝑧
𝑘

) + 𝜑(𝛼)
󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼 + 𝛼𝜃
𝑘
)
2󵄩󵄩󵄩󵄩󵄩
Φ(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑜 (𝛼) .

(37)

It yields

Ψ(𝑧
𝑘

+ 𝛼Δ𝑧
𝑘
)

= 𝜇
2

𝑘+1
+
󵄩󵄩󵄩󵄩󵄩
Φ(𝑧
𝑘

+ 𝛼Δ𝑧
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼)
2

𝜇
2

𝑘
+ 2𝛼𝜇

0
𝛾Ψ (𝑧

𝑘

)

+ (1 − 𝛼 + 𝛼𝜃
𝑘
)
2󵄩󵄩󵄩󵄩󵄩
Φ(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑜 (𝛼) + 𝑂 (𝛼
2

)

≤ (1 − 𝛼 + 𝛼𝜃
𝑘
)
2

Ψ(𝑧
𝑘

) + 2𝛼𝜇
0
𝛾Ψ (𝑧

𝑘

) + 𝑜 (𝛼)

≤ Ψ (𝑧
𝑘

) − 2𝛼 (1 − 𝜃
𝑘
) Ψ (𝑧

𝑘

)

+ 𝛼
2

(1 − 𝜃
𝑘
)
2

Ψ(𝑧
𝑘

) + 2𝛼𝜇
0
𝛾Ψ (𝑧

𝑘

) + 𝑜 (𝛼)

≤ [1 − 2(1 − 𝜇
0
𝛾 − 𝜃
𝑘
)𝛼]Ψ (𝑧

𝑘

) + 𝑜 (𝛼) .

(38)

Since 𝜃
𝑘
< 1−𝜇

0
𝛾, there exists a constant 𝛼 ∈ (0, 1) such that,

for any 𝛼 ∈ (0, 𝛼] and 𝜎 ∈ (0, 1), there holds that

Ψ(𝑧
𝑘

+ 𝛼Δ𝑧
𝑘

) ≤ [1 − 2𝜎 (1 − 𝜇
0
𝛾 − 𝜃
𝑘
) 𝛼]Ψ (𝑧

𝑘

) . (39)

This demonstrates that Step 3 of Algorithm 8 is well-defined
at each iteration.

Finally, we prove 𝑧
𝑘 ∈ Ω for all 𝑘 > 0.

It is clear that𝜇
0
𝛽(𝑧0) ≤ 𝜇

0
𝛾 ≤ 𝜇
0
. In other words, 𝑧0 ∈ Ω.

Suppose that 𝑧𝑘 ∈ Ω as 𝑘 ≥ 1. Then, 𝜇
𝑘
≥ 𝜇
0
𝛽(𝑧𝑘). By (31), we

get Ψ(𝑧𝑘) ≥ Ψ(𝑧𝑘+1); then 𝛽(𝑧𝑘) ≥ 𝛽(𝑧𝑘+1). By (33), we have

𝜇
𝑘+1

= (1 − 𝛼) 𝜇
𝑘
+ 𝛼𝜇
0
𝛽 (𝑧
𝑘

)

≥ (1 − 𝛼) 𝜇
0
𝛽 (𝑧
𝑘

) + 𝛼𝜇
0
𝛽 (𝑧
𝑘

)

≥ 𝜇
0
𝛽 (𝑧
𝑘

) ≥ 𝜇
0
𝛽 (𝑧
𝑘+1

) .

(40)

The last inequality implies that the desired result holds for
𝑘+ 1. By mathematical induction method, we concluded that
𝑧𝑘 ∈ Ω for all 𝑘 > 0.

We have completed the proof of Theorem 10.

Remark 11. By Theorem 10, we know that Algorithm 8 is well-
defined, and either it stops in finitely many steps or generates
an infinite sequence {𝑧𝑘 = (𝜇

𝑘
, 𝑥𝑘)} with 𝜇 ∈ R

++
and 𝑧𝑘 ∈ Ω

for all 𝑘 ≥ 0. In the subsequent section, we will analyze the
convergence of this sequence.

4. Convergence

In this section, we will establish the global convergence and
the superlinear convergence for Algorithm 8.

We first prove the following result.

Lemma 12. Let Φ
𝜇
be defined by (20). If 𝐹 is a 𝑃

0
-function,

then, for any 𝜇 > 0, Φ
𝜇
is coercive in 𝑥. That is,

lim
‖𝑥‖→∞

󵄩󵄩󵄩󵄩󵄩
Φ
𝜇
(𝑥)

󵄩󵄩󵄩󵄩󵄩
󳨀→ +∞. (41)

Proof. As ‖𝑥‖ → ∞, there exists a vector sequence {𝑥𝑘}

which is unbounded. Then, there is a component 𝑖
0

∈

{1, 2, . . . , 𝑛} such that {𝑥𝑘
𝑖
0

} is unbounded.
Define an index set 𝐽 = {𝑖 ∈ 𝑁 : {𝑥

𝑘

𝑖
} is unbounded}.

Then, 𝐽 is a nonempty set. Without loss of generality, we
assume that {|𝑥𝑘

𝑗
|} → +∞, for all 𝑗 ∈ 𝐽.

Let the sequence {𝑥𝑘} be defined by

𝑥
𝑘

𝑖
= {

0, if 𝑖 ∈ 𝐽,

𝑥𝑘
𝑖
, if 𝑖 ∉ 𝐽,

𝑖 ∈ 𝑁.

(42)

Then, it is clear that {𝑥𝑘} is bounded. Since 𝐹 is a 𝑃
0
-

function, by Definition 5, we have

0 ≤ max
𝑖∈𝑁

{(𝑥
𝑘

𝑖
− 𝑥
𝑘

𝑖
) [𝐹
𝑖
(𝑥
𝑘

) − 𝐹
𝑖
(𝑥
𝑘

)]}

= max
𝑖∈𝐽

{𝑥
𝑘

𝑖
[𝐹
𝑖
(𝑥
𝑘

) − 𝐹
𝑖
(𝑥
𝑘

)]}

= 𝑥
𝑘

𝑗
[𝐹
𝑗
(𝑥
𝑘

) − 𝐹
𝑗
(𝑥
𝑘

)] ,

(43)

where 𝑗 is one of the indices at which the max is attained.
Since 𝑗 ∈ 𝐽, and 𝑗 can be supposed to be independent of 𝑘, we
know |𝑥𝑘

𝑗
| → +∞ as 𝑘 → +∞.
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Next, we continue the proof in the following six direc-
tions.

Case 1 (𝑥𝑘
𝑗

→ +∞ and 𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘) → +∞). Since {𝐹

𝑗
(𝑥𝑘),

𝑘 ∈ 𝑁} is bounded by the continuity of 𝐹
𝑗

and the definition
of 𝑥𝑘, we know that 𝐹

𝑗
(𝑥𝑘) 󴀀󴀂󴀠 −∞ from (43). Thus,

ln(1 +
(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))

2

𝜇2
) 󳨀→ +∞. (44)

It yields
󵄨󵄨󵄨󵄨󵄨
𝜙
𝑗
(𝜇, 𝑥
𝑘

)
󵄨󵄨󵄨󵄨󵄨

=
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑘

𝑗
+ 𝐹
𝑗
(𝑥
𝑘

)

−
2

𝜋
(𝑥
𝑘

𝑗
− 𝐹
𝑗
(𝑥
𝑘

)) arctan(
𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘)

𝜇
)

+
1

𝜋
𝜇 ln(1 +

(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))
2

𝜇2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ +∞.

(45)

Case 2 (𝑥𝑘
𝑗

→ −∞ and 𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘) → +∞). It is clear that

𝐹
𝑗
(𝑥
𝑘

) − 𝑥
𝑘

𝑗
󳨀→ −∞,

ln(1 +
(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))
2

𝜇2
) 󳨀→ +∞.

(46)

In virtue of

lim
𝑢→−∞

ln (1 + 𝑢2)

𝑢
= 0, (47)

we obtain
󵄨󵄨󵄨󵄨󵄨
𝜙
𝑗
(𝜇, 𝑥
𝑘

)
󵄨󵄨󵄨󵄨󵄨

=
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑘

𝑗
+ 𝐹
𝑗
(𝑥
𝑘

)

−
2

𝜋
(𝑥
𝑘

𝑗
− 𝐹
𝑗
(𝑥
𝑘

)) arctan(
𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘)

𝜇
)

+
1

𝜋
𝜇 ln(1 +

(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))

2

𝜇2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐹
𝑗
(𝑥
𝑘

) − 𝑥
𝑘

𝑗
)

+
𝜇

2𝜋
ln(1 +

(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))

2

𝜇2
) + 𝑥

𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ +∞.

(48)

Case 3 (𝑥𝑘
𝑗

→ +∞ and 𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘) → −∞). In the same

reason as in Case 1, 𝐹
𝑗
(𝑥𝑘) 󴀀󴀂󴀠 −∞. Thus,

ln(1 +
(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))

2

𝜇2
) 󳨀→ +∞. (49)

It yields

󵄨󵄨󵄨󵄨󵄨
𝜙
𝑗
(𝜇, 𝑥
𝑘

)
󵄨󵄨󵄨󵄨󵄨

=
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑘

𝑗
+ 𝐹
𝑗
(𝑥
𝑘

)

−
2

𝜋
(𝑥
𝑘

𝑗
− 𝐹
𝑗
(𝑥
𝑘

)) arctan(
𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘)

𝜇
)

+
1

𝜋
𝜇 ln(1 +

(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))
2

𝜇2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑘

𝑗
+

𝜇

2𝜋
ln(1 +

(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))

2

𝜇2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ +∞.

(50)

Case 4 (𝑥𝑘
𝑗

→ −∞ and 𝑥𝑘
𝑗
−𝐹
𝑗
(𝑥𝑘) → −∞). Similar to Case

2, we can obtain

󵄨󵄨󵄨󵄨󵄨
𝜙
𝑗
(𝜇, 𝑥
𝑘

)
󵄨󵄨󵄨󵄨󵄨

=
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑘

𝑗
+ 𝐹
𝑗
(𝑥
𝑘

)

−
2

𝜋
(𝑥
𝑘

𝑗
− 𝐹
𝑗
(𝑥
𝑘

)) arctan(
𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘)

𝜇
)

+
1

𝜋
𝜇 ln(1 +

(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))
2

𝜇2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑘

𝑗
+

𝜇

2𝜋
ln(1 +

(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))
2

𝜇2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑥
𝑘

𝑗
− 𝐹
𝑗
(𝑥
𝑘

)) +
𝜇

2𝜋
ln(1 +

(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))

2

𝜇2
)

+ 𝐹
𝑗
(𝑥
𝑘

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ +∞.

(51)
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Case 5 (𝑥𝑘
𝑗

→ +∞ and 𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘) is bounded). On the one

hand, it is clear that

𝑤 = −
2

𝜋
(𝑥
𝑘

𝑗
− 𝐹
𝑗
(𝑥
𝑘

)) arctan(
𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘)

𝜇
)

+
1

𝜋
𝜇 ln(1 +

(𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘))

2

𝜇2
)

(52)

is bounded. On the other hand, 𝑥𝑘
𝑗

→ +∞ and 𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘)

is bounded; we know 𝐹
𝑗
(𝑥𝑘) → +∞. Thus, 𝑥𝑘

𝑗
+ 𝐹
𝑗
(𝑥𝑘) →

+∞. It yields

󵄨󵄨󵄨󵄨󵄨
𝜙
𝑗
(𝜇, 𝑥
𝑘

)
󵄨󵄨󵄨󵄨󵄨
=

1

2

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑘

𝑗
+ 𝐹
𝑗
(𝑥
𝑘

) + 𝑤
󵄨󵄨󵄨󵄨󵄨
󳨀→ +∞. (53)

Case 6 (𝑥𝑘
𝑗

→ −∞ and 𝑥𝑘
𝑗
− 𝐹
𝑗
(𝑥𝑘) is bounded). Similar to

Case 5, it is easy to prove that |𝜙
𝑗
(𝜇, 𝑥𝑘)| → +∞.

The proof is completed.

Remark 13. By Lemma 12, we can remove the assumption that
the level set of the merit function is bounded. In addition,
different from [13, 22, 27], the result of Lemma 12 is obtained
in this paper for the nonsymmetric smoothing function.

Before statement of main results, we need the following
assumption.

Assumption 14. The solution set 𝑆 of NCP(𝐹) (1) is nonempty
and bounded.

Remark 15. Assumption 14 is a relatively weak condition to
ensure the convergence of Algorithm 8. For example, in [26],
it is assumed that the level sets

𝐿 (𝑧
0

) = {𝑧 ∈ 𝑅
𝑛+1

, Φ (𝑧) ≤ Φ (𝑧
0
)} (54)

are bounded to prove the convergence of algorithm. Up to our
knowledge, for the Fischer-Burmeister smoothing function,
(54) is proved to be true under the condition that 𝐹 in
NCP(𝐹) (1) is a uniform 𝑃-function.

However, with our smoothing method, we can prove that
(54) holds. Since the proof is only involved with the condition
that 𝐹 is a 𝑃

0
-function, Assumption 14 is weaker than that in

[26].

With Lemma 12 and Assumption 14, we are now in a
position to establish the convergence theory for Algorithm 8.

Theorem 16. Let {𝑧
𝑘 = (𝜇

𝑘
, 𝑥𝑘)} be the iteration sequence

generated by Algorithm 8. Under Assumption 14, the following
statements are true.

(i) {Ψ(𝑧𝑘)} and {𝜇
𝑘
} generated by Algorithm 8 are two

monotonically decreasing and bounded sequences,
whose limits are 0.

(ii) Any accumulation point of {𝑧𝑘} is a solution of (24).

(iii) Under Assumption 14, {𝑧𝑘} has at least one accumula-
tion point 𝑧∗ = (𝜇

∗
, 𝑥∗) with 𝐻(𝑧∗) = 0 and 𝑥∗ ∈ 𝑆.

Proof. (i) From Steps 2 and 3 of Algorithm 8, it is clear that
{Ψ(𝑧𝑘)}, {𝛽(𝑧𝑘)}, and {𝜇

𝑘
} are three monotonically decreasing

and bounded sequences.
(ii) By Lemma 12, we conclude that the sequence {𝑧

𝑘} is
bounded. Then, without loss of generality, we suppose that as
𝑘 → ∞, there exists 𝑧∗ such that

𝑧
𝑘

󳨀→ 𝑧
∗

, 𝛽 (𝑧
𝑘

) 󳨀→ 𝛽
∗
, Ψ (𝑧

𝑘

) 󳨀→ Ψ
∗
, 𝜇
𝑘

󳨀→ 𝜇
∗
.

(55)

If Ψ
∗
> 0, then, by the definition of 𝛽(𝑧𝑘), 𝛽

∗
> 0 and 𝜇

∗
> 0.

From Lemma 7, it follows that 𝐻󸀠(𝑧∗) is nonsingular. Thus,
there exist a closed neighborhood 𝑁(𝑧∗) and a constant 𝛼 ∈

(0, 1], such that, for any 𝑧 ∈ 𝑁(𝑧∗) and nonnegative integer
𝑚 satisfying 𝛿

𝑚

∈ (0, 𝛼], the following inequality holds true:

Ψ(𝑧
𝑘

+ 𝛿
𝑚

Δ𝑧
𝑘

) ≤ [1 − 2𝜎 (1 − 𝜇
0
𝛾 − 𝜃
𝑘
) 𝛿
𝑚

] Ψ (𝑧
𝑘

) . (56)

If 𝑘 is large enough such that 𝑚𝑘 ≤ 𝑚 and 𝛿
𝑚
𝑘

≥ 𝛿
𝑚, then,

Ψ(𝑧
𝑘+1

) ≤ [1 − 2𝜎 (1 − 𝜇
0
𝛾 − 𝜃
𝑘
) 𝛿
𝑚
𝑘

]Ψ (𝑧
𝑘

)

≤ [1 − 2𝜎 (1 − 𝜇
0
𝛾 − 𝜃
𝑘
) 𝛿
𝑚

] Ψ (𝑧
𝑘

) .

(57)

Therefore, as 𝑘 → ∞, it follows from Ψ
∗
> 0 that

2𝜎 (1 − 𝜇
0
𝛾 − 𝜃
𝑘
) ≤ 0. (58)

It contradicts (1−𝜇
0
𝛾−𝜃
𝑘
) > 0. We conclude that Ψ(𝑧𝑘) → 0

and 𝜇
𝑘

→ 0.
(iii) By Assumption 14, we know that Φ−1(0) is nonempty

and bounded. Thus, {𝑧𝑘} has at least one accumulation point
𝑧∗ = (𝜇

∗
, 𝑥∗) with 𝐻(𝑧∗) = 0 and 𝑥∗ ∈ 𝑆.

Theorem 17. Suppose that Assumption 14 is satisfied and
𝑧∗ = (𝜇

∗
, 𝑥∗) is an accumulation point of the sequence {𝑧𝑘}

generated by Algorithm 8. If all 𝑉 ∈ 𝜕𝐻(𝑧∗) are nonsingular,
then, {𝑧𝑘} converges to 𝑧∗ superlinearly; that is, ‖𝑧𝑘+1 − 𝑧∗‖ =

𝑜(‖𝑧𝑘 − 𝑧∗‖). Moreover, 𝜇
𝑘+1

= 𝑜(𝜇
𝑘
).

Proof. By Theorem 16, we have 𝐻(𝑧∗) = 0 and 𝑥∗ ∈ 𝑆.
Because all 𝑉 ∈ 𝜕𝐻(𝑧∗) are nonsingular, it follows that for
all 𝑧𝑘 sufficiently close to 𝑧

∗,

󵄩󵄩󵄩󵄩󵄩󵄩
𝐻
󸀠

(𝑧
𝑘

)
−1󵄩󵄩󵄩󵄩󵄩󵄩

= 𝑂 (1) . (59)

From Lemma 7, it follows that 𝐻(⋅) is semismooth at 𝑧∗.
Hence, for all 𝑧𝑘 sufficiently close to 𝑧∗, we have

󵄩󵄩󵄩󵄩󵄩
𝐻 (𝑧
𝑘

) − 𝐻 (𝑧
∗

) − 𝐻
󸀠

(𝑧
𝑘

) (𝑧
𝑘

− 𝑧
∗

)
󵄩󵄩󵄩󵄩󵄩
= 𝑜(

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑘

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩
).

(60)
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On the other hand, Lemma 7 implies that 𝐻(⋅) is locally
Lipschitz continuous near 𝑧∗. Therefore, for all 𝑧𝑘 sufficiently
close to 𝑧∗, we have

󵄩󵄩󵄩󵄩󵄩
𝐻 (𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩
= 𝑂(

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑘

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩
). (61)

Since lim
𝑘→∞

𝜃
𝑘
= 0, it is concluded that 𝜃

𝑘
‖𝐻(𝑧𝑘)‖ = 𝑜‖𝑧𝑘−

𝑧∗‖. Thus, by the definitions of ℎ(𝑧) and 𝛽(𝑧), we have
󵄩󵄩󵄩󵄩󵄩
ℎ (𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩
≤

󵄨󵄨󵄨󵄨󵄨
𝜇
0
𝛽(𝑧
𝑘

)
󵄨󵄨󵄨󵄨󵄨
+
󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘
Φ(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩

≤ 𝜇
0
𝛾Ψ (𝑧

𝑘

) + 𝜃
𝑘

󵄩󵄩󵄩󵄩󵄩
𝐻(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩

= 𝑜(
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑘

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩
).

(62)

Then, in view of (59), (60), and (62), it is obtained that
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑘

+ Δ𝑧
𝑘

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑘

+ 𝐻
󸀠

(𝑧
𝑘

)
−1

[−𝐻 (𝑧
𝑘

) + ℎ (𝑧
𝑘

)] − 𝑧
∗
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝐻
󸀠

(𝑧
𝑘

)
−1󵄩󵄩󵄩󵄩󵄩󵄩

⋅ (
󵄩󵄩󵄩󵄩󵄩
𝐻(𝑧
𝑘

) − 𝐻(𝑧
∗

) − 𝐻
󸀠

(𝑧
𝑘

)(𝑧
𝑘

− 𝑧
∗

)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
ℎ(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩
)

= 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑘

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩
) .

(63)

On the other hand, from (61), it follows that

Ψ(𝑧
𝑘

+ Δ𝑧
𝑘

)

=
󵄩󵄩󵄩󵄩󵄩
𝐻(𝑧
𝑘

+ Δ𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩

2

= 𝑂(
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑘

+ Δ𝑧
𝑘

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩

2

) = 𝑜(
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑘

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩

2

)

= 𝑜 (
󵄩󵄩󵄩󵄩󵄩
𝐻(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩

2

) = 𝑜(Ψ(𝑧
𝑘

)).

(64)

Thus, as 𝑧
𝑘 sufficiently close to 𝑧∗, we have 𝑧𝑘+1 = 𝑧𝑘 + Δ𝑧𝑘.

It yields

𝜇
𝑘+1

= 𝜇
𝑘
+ Δ𝜇
𝑘
= 𝜇
0
𝛾
󵄩󵄩󵄩󵄩󵄩
𝐻(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩

2

. (65)

In virtue of (65), we obtain

𝜇
𝑘+1

𝜇
𝑘

=

󵄩󵄩󵄩󵄩󵄩
𝐻(𝑧𝑘)

󵄩󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝐻(𝑧𝑘−1)
󵄩󵄩󵄩󵄩
2
=

𝑜(Ψ(𝑧𝑘−1))

Ψ (𝑧𝑘−1)
. (66)

As 𝑧𝑘 sufficiently close to 𝑧∗, we know𝜇
𝑘+1

= 𝑜(𝜇
𝑘
). The proof

has been completed.

5. Numerical Experiments

In this section, we test the numerical performance of
Algorithm 8 for solving benchmark test problems in NCP.

Algorithm 8 is implemented in MATLAB2008a on a PC
2.00 GHZ CPU with 2.00 GB RAM with the operation system

of Windows 7. Throughout the experiments, the parameters
in Algorithm 8 are chosen as follows:

𝜇
0
= 0.01, 𝜎 = 0.25, 𝛿 = 0.85, 𝛾 = 0.2, 𝜃

𝑘
=

1

4𝑘+1
.

(67)

We use ‖𝐻(𝑧𝑘)‖ < 10−8 as the termination criterion.
Numerical results are reported in Tables 1–9, where we

use the following denotations for conciseness:

IT: the number of iterations,
ST: the initial point 𝑥0,
CT: the CPU time depleted by the algorithm,
𝑥∗: a solution of the NCP,
𝑥𝑘: the final value of 𝑥,
𝑜: zero vector with 𝑛 dimension,
𝑒: unit vector with 𝑛 dimension,
F: The algorithm fails to get a solution.

The test problems are from the literature (see, e.g., [22, 27,
28]).

Problem 1. In problem (1), 𝑥 ∈ R3 and 𝐹(𝑥) : R3 → R3 is
given by

𝐹 (𝑥) = (

𝑥
2

𝑥
3

−𝑥
2
+ 𝑥
3
+ 1

) . (68)

This problem has infinitely many solutions (0, 𝜆, 0), where
𝜆 ∈ [0, 1]. The test results are listed in Table 1 by using differ-
ent initial points.

Problem 2 (modified Mathiesen problem). In problem (1),
𝑥 ∈ R4 and 𝐹(𝑥) : R4 → R4 is given by

𝐹 (𝑥) = (

(

−𝑥
2
+ 𝑥
3
+ 𝑥
4

𝑥
1
−

(4.5𝑥
3
+ 2.7𝑥

4
)

(𝑥
2
+ 1)

5 − 𝑥
1
−

(0.5𝑥
3
+ 0.3𝑥

4
)

(𝑥
3
+ 1)

3 − 𝑥
1

)

)

. (69)

This problem has infinitely many solutions (𝜆, 0, 0, 0),
where 𝜆 ∈ [0, 3]. The solutions are degenerate for 𝜆 = 0

or 𝜆 = 3 and nondegenerate for 𝜆 ∈ (0, 3). With different
starting points, we report results in Table 2.

Problem 3 (Kojima-Shindo problem). In problem (1), 𝑥 ∈ R4

and 𝐹(𝑥) : R4 → R4 is given by

𝐹 (𝑥) = (

3𝑥2
1
+ 2𝑥
1
𝑥
2
+ 2𝑥2
2
+ 𝑥
3
+ 3𝑥
4
− 6

2𝑥2
1
+ 𝑥
1
+ 𝑥2
2
+ 10𝑥

3
+ 2𝑥
4
− 2

3𝑥2
1
+ 𝑥
1
𝑥
2
+ 2𝑥2
2
+ 2𝑥
3
+ 9𝑥
4
− 9

𝑥2
1
+ 𝑥2
2
+ 2𝑥
3
+ 3𝑥
4
− 3

) . (70)
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Table 1: Numerical results of Problem 1.

ST IT 𝑥𝑘 |𝑥𝑇𝑦| ‖𝐻𝑘‖ CPU
𝑜 4 (0, 0.0000, 0) 4.83𝐸 − 09 8.38𝐸 − 09 0.085
𝑒 5 (0, 0.4998, 0) 3.44𝐸 − 11 3.97𝐸 − 11 0.103
10𝑒 6 (0, 1.0000, 0) 1.05𝐸 − 11 9.09𝐸 − 12 0.124
−𝑒 5 (0, 0.0023, 0) 2.09𝐸 − 09 3.61𝐸 − 09 0.105
−10𝑒 6 (0, 0.0071, 0) 2.49𝐸 − 11 4.28𝐸 − 11 0.124
−100𝑒 6 (0, 0.0399, 0) 1.50𝐸 − 09 2.50𝐸 − 09 0.125

Table 2: Numerical results of Problem 2.

ST IT 𝑥𝑘 |𝑥𝑇𝑦| ‖𝐻𝑘‖ CPU
𝑒 5 (0.37, 0, 3, 0) 1.27𝐸 − 08 3.91𝐸 − 09 0.304
𝑜 5 (0, 0, 0, 0) 6.59𝐸 − 11 3.81𝐸 − 11 0.292
−2𝑒 6 (0.002, 0, 0, 0) 1.32𝐸 − 08 3.31𝐸 − 09 0.356
−11𝑒 6 (1.85, 0, 0, 0) 1.06𝐸 − 08 2.64𝐸 − 09 0.416
−20𝑒 6 (0.05, 0, 0, 0) 1.38𝐸 − 08 3.46𝐸 − 09 0.366

Table 3: Numerical results of Problem 3.

ST IT 𝑥𝑘 |𝑥𝑇𝑦| ‖𝐻𝑘‖ CPU
𝑒 6 𝑥

2
2.99𝐸 − 08 1.42𝐸 − 09 0.679

10𝑒 7 𝑥
2

3.54𝐸 − 08 1.77𝐸 − 09 0.729
102𝑒 8 𝑥

2
3.02𝐸 − 08 1.54𝐸 − 09 0.877

103𝑒 9 𝑥
1

1.07𝐸 − 08 9.99𝐸 − 09 0.965

Table 4: Solution of Problem 4 with random initial points.

ST IT |𝑥𝑇𝑦| ‖𝐻𝑘‖ CPU
𝑒 18 8.52𝐸 − 10 1.49𝐸 − 10 5.539
𝑜 22 2.50𝐸 − 10 4.38𝐸 − 11 6.538
−𝑒 38 3.41𝐸 − 09 5.96𝐸 − 10 11.306
rand(5, 1) 16 4.20𝐸 − 10 7.35𝐸 − 11 4.796

Table 5: Numerical results of Problem 5.

ST IT |𝑥𝑇𝑦| ‖𝐻𝑘‖ CPU
𝑜 6 1.38𝐸 − 08 4.97𝐸 − 09 0.858
𝑒 7 5.21𝐸 − 09 1.89𝐸 − 09 1.109
−𝑒 7 1.32𝐸 − 08 4.77𝐸 − 09 1.003
−10𝑒 7 1.32𝐸 − 08 4.77𝐸 − 09 0.990
−102𝑒 8 1.32𝐸 − 08 4.76𝐸 − 09 1.142
−10
3

𝑒 8 1.32𝐸 − 08 4.76𝐸 − 09 1.079
−104𝑒 9 1.40𝐸 − 08 2.47𝐸 − 09 1.268

Table 6: Numerical results of Problem 6.

ST IT |𝑥𝑇𝑦| ‖𝐻𝑘‖ CPU
𝑒 7 4.01𝐸 − 11 1.39𝐸 − 11 0.248
10𝑒 9 8.61𝐸 − 09 2.97𝐸 − 09 0.358
10
2

𝑒 10 1.13𝐸 − 09 3.91𝐸 − 10 0.316
103𝑒 9 2.45𝐸 − 09 8.48𝐸 − 10 0.359
−𝑒 8 2.46𝐸 − 11 8.51𝐸 − 12 0.294
−10𝑒 15 9.46𝐸 − 12 3.28𝐸 − 12 0.504
−103𝑒 24 8.96𝐸 − 10 3.10𝐸 − 10 0.759
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Table 7: Numerical results of Problem 7.

𝑛 IT |𝑥𝑇𝑦| ‖𝐻𝑘‖ CPU
128 8 1.30𝐸 − 10 1.48𝐸 − 09 0.040
256 8 1.15𝐸 − 10 1.90𝐸 − 09 0.155
512 9 1.55𝐸 − 11 3.50𝐸 − 10 1.010
800 10 1.99𝐸 − 11 6.44𝐸 − 10 2.701
1000 10 1.58𝐸 − 11 4.99𝐸 − 10 4.738

Table 8: Effect of inexact parameter in Problem 3.

ST 𝜃
𝑘

IT |𝑥𝑇𝑦| ‖𝐻𝑘‖ CPU

𝑒

0 6 7.95𝐸 − 09 3.89𝐸 − 10 0.70
0.2 6 1.46𝐸 − 08 7.27𝐸 − 10 0.66
0.4 7 1.30𝐸 − 09 8.41𝐸 − 11 0.73
0.6 9 4.77𝐸 − 09 4.60𝐸 − 10 0.91
0.8 13 7.14𝐸 − 08 4.05𝐸 − 09 1.33

102𝑒

0 F F F F
0.2 8 2.97𝐸 − 08 1.52𝐸 − 09 0.92
0.4 10 4.25𝐸 − 12 1.71𝐸 − 12 1.12
0.6 10 8.98𝐸 − 09 1.43𝐸 − 09 1.01
0.8 15 3.66𝐸 − 08 6.99𝐸 − 09 1.57

This problem has one degenerate solution 𝑥
1
= (√6/2, 0,

0, 1/2)𝑇 and one nondegenerate solution 𝑥
2

= (1, 0, 3, 0)
𝑇.

We use different initial points and the test results are listed in
Table 3.

Problem 4. In problem (1), 𝑥 ∈ R5 and 𝐹(𝑥) = (𝐹
1
(𝑥), . . . ,

𝐹
5
(𝑥))
𝑇 where

𝐹
𝑖
(𝑥) = 2 exp(

5

∑
𝑖=1

(𝑥
𝑖
− 𝑖 + 2)

2

)(𝑥
𝑖
− 𝑖 + 2), 𝑖 = 1, . . . , 5.

(71)

This problem has one solution (0, 0, 1, 2, 3). We use dif-
ferent starting points and the last initial point 𝑥0 is randomly
generated whose elements are in the interval (0, 1). The test
results are listed in Table 4.

Problem 5. In problem (1), 𝑥 ∈ R7 and 𝐹(𝑥) : R7 → R7 is
given by

𝐹 (𝑥) =
(
(
(

(

2𝑥
1
− 𝑥
3
+ 𝑥
5
+ 3𝑥
6
− 1

𝑥
2
+ 2𝑥
5
+ 𝑥
6
− 𝑥
7
− 3

−𝑥
1
+ 2𝑥
3
+ 𝑥
4
+ 𝑥
5
+ 2𝑥
6
− 4𝑥
7
+ 1

𝑥
3
+ 𝑥
4
+ 𝑥
5
− 𝑥
6
− 1

−𝑥
1
− 2𝑥
2
− 𝑥
3
− 𝑥
4
+ 5

−3𝑥
1
− 𝑥
2
− 2𝑥
3
+ 𝑥
4
+ 4

𝑥
2
+ 4𝑥
3
− 1.5

)
)
)

)

. (72)

The test results are listed in Table 5 by using different
initial points.

Problem 6. In problem (1), 𝑥 ∈ R4 and 𝐹(𝑥) : R4 → R4 is
given by

𝐹 (𝑥) = (

𝑥3
1
− 8

𝑥
2
− 𝑥
3
+ 𝑥3
2
+ 3

𝑥
2
+ 𝑥
3
+ 2𝑥3
3
− 3

𝑥
4
+ 2𝑥3
4

). (73)

In this problem, 𝐹(𝑥) is a𝑃
0
-function. It has only one solution

(2, 0, 1, 0). With different initial points, the results are listed in
Table 6.

Problem 7. In problem (1), 𝑥 ∈ R𝑛 and 𝐹(𝑥) = 𝑀𝑥 + 𝑞 with

[𝑀]
𝑖𝑖
= 4(𝑖 − 1) + 1, 𝑖 = 1, 2, . . . , 𝑛,

[𝑀]
𝑖𝑗
= [𝑀]

𝑖𝑖
+ 1, 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑗 = 𝑖 + 1, . . . , 𝑛,

[𝑀]
𝑗𝑖

= [𝑀]
𝑗𝑗

+ 1, 𝑗 = 1, 2, . . . , 𝑛 − 1, 𝑖 = 𝑗 + 1, . . . , 𝑛,

𝑞 = (−1, −1, . . . , −1)
𝑇

.

(74)

This problem has only solutions 𝑥∗ = (1, 0, . . . , 0)
𝑇. From

the initial point𝑥0 = (1, 1, . . . , 1)
𝑇, we solve this problem with

different dimensions. The test results are listed in Table 7.
In the end of this section, we intend to test the effect of

the inexact parameter 𝜃
𝑘

on the efficiency of Algorithm 8.
In Tables 8 and 9, for Problems 3 (not a 𝑃

0
-function) and

6, we take different values of 𝜃
𝑘
, 𝜃
𝑘
= 0, 0.2, 0.4, 0.6, 0.8, and

implement Algorithm 8 to find the solutions of Problems 3
and 6, respectively.
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Table 9: Effect of inexact parameter in Problem 6.

ST 𝜃
0

IT |𝑥𝑇𝑦| ‖𝐻𝑘‖ CPU

𝑒

0 6 2.01𝐸 − 09 6.78𝐸 − 10 0.22
0.2 6 1.18𝐸 − 08 4.06𝐸 − 09 0.22
0.4 7 7.50𝐸 − 11 4.66𝐸 − 11 0.27
0.6 9 1.32𝐸 − 11 1.99𝐸 − 10 0.27
0.8 13 9.29𝐸 − 09 7.16𝐸 − 09 0.39

10𝑒

0 F F F F
0.2 8 9.13𝐸 − 09 3.15𝐸 − 09 0.28
0.4 10 9.03𝐸 − 11 3.11𝐸 − 11 0.34
0.6 11 7.19𝐸 − 12 4.06𝐸 − 11 0.36
0.8 14 8.25𝐸 − 09 9.51𝐸 − 09 0.44

From Tables 8 and 9, it is revealed that, for 𝜃
𝑘

=

0 (which corresponds to the smoothing exact Newton
method), Algorithm 8 may fail for some initial points. On the
other hand, a suitable value of inexact parameter may greatly
improve the efficiency of Algorithm 8.

From the numerical results, we conclude as follows:

(1) In Tables 1–7, the choice of initial point only incurs
weak impact on the CPU time and the iteration
number of Algorithm 8. It indicates that the devel-
oped algorithm in this paper is robust even if for the
randomly generated initial point.

(2) From the results in Tables 8 and 9, the inexact param-
eter 𝜃
𝑘

may play critical role in improve the numerical
performance of Algorithm 8.

6. Final Remarks

In this paper, a smoothing inexact Newton method has been
proposed for solving nonlinear complementarity problems
based on a new smoothing function. Then, an implementable
algorithm was developed. Under a suitable assumption, the
global convergence and the superlinear convergence have
been established for the algorithm. Results of numerical
experiments indicate that our algorithm is effective for the
benchmark test problems available in the literature.
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We consider the parametric weak vector equilibrium problem. By using a weaker assumption of Peng and Chang (2014), the
sufficient conditions for continuity of the solution mappings to a parametric weak vector equilibrium problem are established.
Examples are provided to illustrate the essentialness of imposed assumptions. As advantages of the results, we derive the continuity
of solution mappings for vector optimization problems.

1. Introduction

It is well known that the vector equilibrium problem provides
a unified model of several classes of problems, including vec-
tor variational inequality problems, vector complementarity
problems, vector optimization problems, and vector saddle
point problems. There are many papers which have discussed
the existence results for different types of vector equilibrium
problems (see [1–3] and references therein).

In 2008 Gong [4] studied parametric vector equilibrium
problems. Based on a scalarization representation of the
solution mapping and the property involving the union of
a family of lower semicontinuous set-valued mappings of
Cheng and Zhu [5], they established the sufficient conditions
for the continuity of the solution set mapping for the mixed
parametric monotone weak vector equilibrium problems in
topological vector spaces. In the same year, Gong and Yao [6]
discussed the lower semicontinuity of the efficient solution
mappings to a parametric strong vector equilibrium problem
with 𝐶-strict monotonicity of a vector-valued function, by
using a scalarization method and density result. In 2009, Xu
and Li [7] presented a new proof of lower semicontinuity of
the set of efficient solutions to a parametric strong vector
equilibrium problem, which is different from the one used
in [6]. In 2010, Chen and Li [8] discussed and improved

the lower semicontinuity and continuity results of efficient
solution mappings to a parametric strong vector equilib-
rium problem in [4, 6], without the uniform compactness
assumption. By virtue of the scalarization technique, [4, 6–
8] have discussed the lower semicontinuity, in the case that
𝜉-efficient solution set is a singleton. However, in practical,
the 𝜉-solution set may not be singleton but a general set.
Recently, by using a weak assumption, Peng and Chang
[9] discussed the lower semicontinuity of solution maps for
parametric weak vector equilibrium problem under the case
that the 𝜉-efficient solution mapping may not be single-
valued as follows. Unfortunately, the results obtained in the
corresponding papers [4, 6–9] cannot be used in the case of
vector optimization problems. Hence, in this paper, we study
the lower semicontinuity of the set of efficient solutions for
parametric weak vector equilibrium problems when the 𝜉-
efficient solution set is a general set. Moreover, our theorems
can apply for vector optimization problems.

The structure of the paper is as follows. Section 2 presents
the efficient solutions to parametric weak vector equilibrium
problems and materials used in the rest of this paper. We
establish, in Section 3, a sufficient condition for the continuity
of the efficient solution mappings. We give some examples
to illustrate that our main results are different from the
corresponding ones in the literature. Section 4 is reserved
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for an application of the main result to a weak vector
optimization problem.

2. Preliminaries

Throughout this paper, if not otherwise specified, 𝑋, 𝑌 will
denote two real Hausdorff topological vector spaces, and 𝑍 a
real topological space, and𝑀 a nonempty subset of𝑍. Let𝑌∗
be the topological dual space of 𝑌. Let 𝐶 ⊂ 𝑌 be a pointed,
closed, and convex cone with int𝐶 ̸= 0. Let

𝐶
∗

:= {𝜉 ∈ 𝑌
∗

: 𝜉 (𝑦) ≥ 0, ∀𝑦 ∈ 𝐶} (1)

be the dual cone of 𝐶. Denote the quasi-interior of 𝐶∗ by 𝐶♮;
that is,

𝐶
♮

:= {𝜉 ∈ 𝑌
∗

: 𝜉 (𝑦) > 0, ∀𝑦 ∈ 𝐶 \ {0}} . (2)

Since int𝐶 ̸= 0, the dual cone 𝐶∗ of 𝐶 has a weak∗ compact
base. Let 𝑒 ∈ int𝐶. Then,

𝐵
∗

𝑒
:= {𝜉 ∈ 𝐶

∗

: 𝜉 (𝑒) = 1} (3)

is a weak∗ compact base of 𝐶∗.
Let 𝑁(𝜇

0
) ⊂ 𝑀 be neighborhoods of considered points

𝜇
0
. Let 𝐴 : 𝑀 󴁂󴀱 𝑋 be a set-valued mapping and let 𝑓 :

𝑋 × 𝑋 ×𝑀 → 𝑌 be a vector-valued mapping.
For each𝜇 ∈ 𝑁(𝜇

0
), we consider the following parametric

weak vector equilibrium problem (PWVEP): find 𝑥 ∈ 𝐴(𝜇),
such that

𝑓 (𝑥, 𝑦, 𝜇) ∉ − int𝐶, ∀𝑦 ∈ 𝐴 (𝜇) . (4)

Let 𝑆(𝜇) be the efficient solution set of (4); that is,

𝑆 (𝜇) := {𝑥 ∈ 𝐴 (𝜇) : 𝑓 (𝑥, 𝑦, 𝜇) ∉ − int𝐶, ∀𝑦 ∈ 𝐴 (𝜇)} .
(5)

For each 𝜉 ∈ 𝐶∗ \ {0} and 𝜇 ∈ 𝑁(𝜇
0
), let 𝑆

𝜉
(𝜇) denote the set

of 𝜉-efficient solution set to (4); that is,

𝑆
𝜉
(𝜇) := {𝑥 ∈ 𝐴 (𝜇) : 𝜉 (𝑓 (𝑥, 𝑦, 𝜇)) ≥ 0, ∀𝑦 ∈ 𝐴 (𝜇)} . (6)

Throughout this paper, we always assume 𝑆(𝜇) ̸= 0 for all
𝜇 ∈ Λ. Now, we recall the definition of semicontinuity of set-
valued mappings. Let Λ and 𝑋 be two topological spaces, 𝐹 :
Λ → 2𝑋 a set-valued mapping, and 𝜆 ∈ Λ.

Definition 1 (see [10]). (i)𝐹 is said to be lower semicontinuous
(l.s.c.) at 𝜆 if, for any open set𝑈 satisfying𝑈∩𝐹(𝜆) ̸= 0, there
exists 𝛿 > 0 such that 𝐹(𝜆) ∩ 𝑈 ̸= 0, for all 𝜆 ∈ 𝐵(𝜆, 𝛿).

(ii) 𝐹 is said to be upper semicontinuous (u.s.c) at 𝜆 if, for
any open set 𝑈 satisfying 𝐹(𝜆) ⊂ 𝑈, there exists 𝛿 > 0 such
that 𝐹(𝜆) ⊂ 𝑈, for all 𝜆 ∈ 𝐵(𝜆, 𝛿).

Proposition 2 (see [11, 12]). (i) 𝐹 is l.s.c. at 𝜆 if and only if, for
any net {𝜆

𝛼
} ⊂ Λ with 𝜆

𝛼
→ 𝜆 and any 𝑥 ∈ 𝐹(𝜆), there exists

𝑥
𝛼
∈ 𝐹(𝜆

𝛼
) such that 𝑥

𝛼
→ 𝑥.

(ii) If 𝐹 has compact values (i.e., 𝐹(𝜆) is a compact set for
each 𝜆 ∈ Λ), then 𝐹 is u.s.c. at 𝜆 if and only if, for any net
{𝜆
𝛼
} ⊂ Λ with 𝜆

𝛼
→ 𝜆 and for any 𝑥

𝛼
∈ 𝐹(𝜆

𝛼
), there exists

𝑥 ∈ 𝐹(𝜆) and a subnet {𝑥
𝛽
} of {𝑥

𝛼
} such that 𝑥

𝛽
→ 𝑥.

Definition 3. Let 𝑋 and 𝑌 be two vector spaces. Let 𝐵 be a
nonempty subset of 𝑋. A vector-valued function 𝜑 : 𝐵 → 𝑌

is said to be

(a) 𝐶-strictly convex on a convex subset 𝐾 of 𝐵, if

𝑡𝜑 (𝑥) + (1 − 𝑡) 𝜑 (𝑦) ∈ 𝜑 (𝑡𝑥 + (1 − 𝑡) 𝑦) + int𝐶,

∀𝑥, 𝑦 ∈ 𝐾 with 𝑥 ̸= 𝑦, ∀𝑡 ∈ (0, 1) ;
(7)

(b) 𝐶-convex on a convex subset 𝐾 of 𝐵, if

𝑡𝜑 (𝑥) + (1 − 𝑡) 𝜑 (𝑦) ∈ 𝜑 (𝑡𝑥 + (1 − 𝑡) 𝑦) + 𝐶,

∀𝑥, 𝑦 ∈ 𝐾, ∀𝑡 ∈ [0, 1] ;
(8)

(c) 𝐶-convexlike on convex subset 𝐾 of 𝐵, if, for any 𝑥
1
,

𝑥
2
∈ 𝐾 and any 𝑡 ∈ [0, 1], there exist 𝑥

3
∈ 𝐾 such that

𝑡𝑓(𝑥, 𝑥
1
, 𝜇) + (1 − 𝑡)𝑓(𝑥, 𝑥

2
, 𝜇) ∈ 𝑓(𝑥, 𝑥

3
, 𝜇) + 𝐶.

Obviously, we get that

(𝑎) 󳨐⇒ (𝑏) 󳨐⇒ (𝑐) . (9)

Next, we recall the definitions of monotonicity which are
in common use in review literature.

Definition 4. Let 𝑋 and 𝑌 be two vector spaces. Let 𝐵 be a
nonempty subset of𝑋. A bifunction 𝑓 : 𝐵×𝐵 → 𝑌 is said to
be

(i) monotone on subset 𝐾 of 𝐵, if

𝑓 (𝑥, 𝑦) + 𝑓 (𝑦, 𝑥) ∈ −𝐶, ∀𝑥, 𝑦 ∈ 𝐾; (10)

(ii) strictly monotone on subset 𝐾 of 𝐵, if 𝑓 is monotone
and

𝑓 (𝑥, 𝑦) + 𝑓 (𝑦, 𝑥) ∈ − int𝐶, ∀𝑥, 𝑦 ∈ 𝐾, 𝑥 ̸= 𝑦. (11)

Remark 5. It is clear that (ii) implies (i) but the converse is
not true. An easy example is that 𝑓(𝑥, 𝑦) = 𝑔(𝑦)−𝑔(𝑥) for all
𝑥, 𝑦 ∈ 𝐵 where 𝑔 : 𝐵 → 𝑌; we see that 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) =
(𝑔(𝑦) − 𝑔(𝑥)) + (𝑔(𝑥) − 𝑔(𝑦)) = 0

𝑌
∉ − int𝐶 for all 𝑥, 𝑦 ∈ 𝐾.

Now, we collect two vital lemmas.

Lemma 6 (see [13]). Suppose that for each 𝜇 ∈ 𝑀 and 𝑥 ∈

𝐴(𝜇), 𝑓(𝑥, 𝐴(𝜇), 𝜇) + 𝐶 is a convex set; then

𝑆 (𝜇) = ⋃

𝜉∈𝐶
∗
\{0}

𝑆
𝜉
(𝜇) . (12)

Lemma 7 (see [14, Theorem 2, p. 114]). The union Γ = ∪
𝑖∈𝐼
Γ
𝑖

of a family of l.s.c. set-valued mappings Γ
𝑖
from a topological

space𝑋 to a topological space𝑌 is also l.s.c. set-valuedmapping
from𝑋 to𝑌 is also l.s.c. set-valuedmapping from𝑋 to𝑌, where
𝐼 is an index set.
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3. Main Results

In this section, we present the continuity of the efficient
solution mapping to PWVEP.

Theorem 8. Let 𝜇
0
∈ 𝑀 be a considered point for (PWVEP).

Suppose that the following conditions are satisfied:

(i) 𝐴(⋅) is continuous with nonempty compact convex
values at 𝜇

0
;

(ii) 𝑓(⋅, ⋅, ⋅) is continuous on 𝐵 × 𝐵 ×𝑀;
(iii) 𝑓(⋅, ⋅, 𝜇

0
) is monotone on 𝐴(𝜇

0
);

(iv) 𝑓(𝑥, ⋅, 𝜇
0
) is 𝐶-strictly convex on 𝐴(𝜇

0
).

Then, for each 𝜉 ∈ 𝐶∗ \ {0}, 𝑆
𝜉
(⋅) is continuous on 𝜇

0
.

Proof. We first prove that 𝑆(⋅) is lower semicontinuous at 𝜇
0
.

Suppose the contrary that there exists a 𝜉󸀠 ∈ 𝐶∗ \ {0} such
that 𝑆

𝜉
󸀠(⋅) is not l.s.c. at 𝜇

0
. Then there exists a net {𝜇

𝛼
} with

𝜇
𝛼
→ 𝜇
0

and 𝑥
0
∈ 𝑆(𝜇

0
) such that for any 𝑥

𝛼
∈ 𝑆
𝜉
󸀠(𝜇
𝛼
),

𝑥
𝛼
󴀀󴀂󴀠 𝑥
0
. Since 𝑥

0
∈ 𝑆
𝜉
󸀠(𝜇
0
), we have 𝑥

0
∈ 𝐴(𝜇

0
) and

𝜉
󸀠

(𝑓 (𝑥
0
, 𝑦, 𝜇
0
)) ≥ 0, ∀𝑦 ∈ 𝐴 (𝜇

0
) . (13)

By the lower semicontinuity of 𝐴(⋅) at 𝜇
0
, there exists a net

{𝑥
𝛼
} ⊂ 𝐴(𝜇

𝛼
) such that 𝑥

𝛼
→ 𝑥
0
.

For any 𝑦
𝛼
∈ 𝑆(𝜇

𝛼
), by the upper semicontinuity and

compactness of 𝐴(⋅) at 𝜇
0
, we get that there exists 𝑦

0
∈ 𝐴(𝜇

0
)

and a subsequence {𝑦
𝛼
𝑖

} of {𝑦
𝛼
} such that 𝑦

𝛼
𝑖

→ 𝑦
0
, denoted

by {𝑦
𝑖
}. We have

𝜉
󸀠

(𝑓 (𝑦
𝑖
, 𝑥
𝑖
, 𝜇
𝑖
)) ≥ 0 ∀𝑖, 𝜉

󸀠

(𝑓 (𝑥
0
, 𝑦
0
, 𝜇
0
)) ≥ 0. (14)

By continuity of 𝜉󸀠 and 𝑓(⋅, ⋅, ⋅) on 𝐵 × 𝐵 ×𝑀, we get that

𝜉
󸀠

(𝑓 (𝑦
0
, 𝑥
0
, 𝜇
0
)) ≥ 0. (15)

We want to show that 𝑥
0
= 𝑦
0
. Assume that 𝑥

0
̸= 𝑦
0
, then by

strict convexity of 𝑓(𝑥, ⋅, 𝜇
0
) and linearity of 𝜉󸀠 imply that

0 ≤ 𝜉
󸀠

(𝑓(𝑥
0
,
1

2
𝑥
0
+
1

2
𝑦
0
, 𝜇
0
))

<
1

2
𝜉
󸀠

(𝑓 (𝑥
0
, 𝑦
0
, 𝜇
0
)) +

1

2
𝜉
󸀠

(𝑓 (𝑦
0
, 𝑥
0
, 𝜇
0
)) ,

0 ≤ 𝜉
󸀠

(𝑓(𝑦
0
,
1

2
𝑥
0
+
1

2
𝑦
0
, 𝜇
0
))

<
1

2
𝜉
󸀠

(𝑓 (𝑦
0
, 𝑥
0
, 𝜇
0
)) +

1

2
𝜉
󸀠

(𝑓 (𝑦
0
, 𝑦
0
, 𝜇
0
)) .

(16)

Monotonicity assumption of 𝑓(⋅, ⋅, 𝜇
0
) implies that

0 <
1

2
𝜉
󸀠

(𝑓 (𝑥
0
, 𝑥
0
, 𝜇
0
)) +

1

2
𝜉
󸀠

(𝑓 (𝑦
0
, 𝑥
0
, 𝜇
0
))

≤
1

2
𝜉
󸀠

(𝑓 (𝑦
0
, 𝑥
0
, 𝜇
0
)) ,

0 <
1

2
𝜉
󸀠

(𝑓 (𝑦
0
, 𝑥
0
, 𝜇
0
)) +

1

2
𝜉
󸀠

(𝑓 (𝑦
0
, 𝑦
0
, 𝜇
0
))

≤
1

2
𝜉
󸀠

(𝑓 (𝑦
0
, 𝑥
0
, 𝜇
0
)) .

(17)

This implies that

0 < 𝜉
󸀠

(𝑓 (𝑦
0
, 𝑥
0
, 𝜇
0
)) , (18)

0 < 𝜉
󸀠

(𝑓 (𝑦
0
, 𝑥
0
, 𝜇
0
)) . (19)

Adding (18) and (19), it follows from linearity of 𝜉󸀠 and
monotonicity of 𝑓 that

0 < 𝜉
󸀠

(𝑓 (𝑥
0
, 𝑦
0
, 𝜇
0
) + 𝑓 (𝑦

0
, 𝑥
0
, 𝜇
0
)) ≤ 0. (20)

This is impossible by the contradiction assumption. This
proof is complete.

Before comparing our result with the result of [9], we first
recall that result as follows.

Theorem 9 (see [9, Theorem 3.1]). Let 𝜇
0

∈ 𝑀 be a
considered point for (PWVEP). Suppose that the following
conditions are satisfied:

(i) 𝐴(⋅) is a mapping with nonempty compact convex
valued and continuous at 𝜇

0
;

(ii) for each 𝜇 ∈ 𝑀, (𝑥, 𝑦) 󳨃→ 𝑓(𝑥, 𝑦, 𝜇) is continuous on
𝐵 × 𝐵;

(iii) for any 𝑥, 𝑦 ∈ 𝐴(𝜇
0
), if 𝑥 ̸= 𝑦, then 𝑓(𝑥, 𝑦, 𝜇

0
) +

𝑓(𝑦, 𝑥, 𝜇
0
) ∈ − int𝐶.

Then, for each 𝜉 ∈ 𝐶∗ \ {0}, 𝑆
𝜉
(⋅) is l.s.c. at 𝜇

0
.

Remark 10. In [9], they assumed the condition of 𝐶-strict
monotonicity (or called𝐶-strongly monotone in [6, 7]) at the
considered point 𝜇

0
. In the case, the 𝜉-solution set may be

a general set, but not a singleton. Unfortunately, that result
of [9] cannot be used in the case of vector optimization
problems. Theorem 8 discusses the lower semicontinuity of
the 𝜉-solution mappings. Compared with Theorem 3.1 of [9],
assumption (iii) of Theorem 8 is relaxed from assumption
(iii) in Theorem 3.1 in [9]. An advantage Theorem 8 is that
it works for vector optimization problems. However, in some
situations Theorem 8 is applicable while Theorem 3.1 in [9] is
not, as shown by the following example.

Example 11. Let𝑋 = 𝑍 = R,𝑌 = R2,𝐶 = R2
+
,𝑀 = [1, 2] be a

subset of𝑍. Let𝜇
0
= 1 ∈ 𝑀 be a considered point for (PVEP).

Let 𝐴 : 𝑀 → 𝑋 be a mapping defined by 𝐴(𝜇) = [1, 2] and
let 𝑓 : 𝑋 × 𝑋 ×𝑀 → 𝑌 be a mapping defined by

𝑓 (𝑥, 𝑦, 𝜇) = (𝑥 (𝜇𝑦
2

− 𝑥
2

) , 𝜇 (𝑦
2

− 𝑥
2

)) . (21)

It is clear that 𝑓 is monotone on 𝐴(𝜇
0
), but not satisfied

condition (iii) in Theorem 3.1 of [9]. Indeed, for each 𝑥, 𝑦 ∈

𝐴(𝜇
0
) = [1, 2], we have

𝑓 (𝑥, 𝑦, 𝜇
0
) + 𝑓 (𝑦, 𝑥, 𝜇

0
)

= (𝑥 (𝑦
2

− 𝑥
2

) , 𝑦
2

− 𝑥
2

) + (𝑦 (𝑥
2

− 𝑦
2

) , 𝑥
2

− 𝑦
2

)

= (− (𝑥
3

− 𝑥
2

𝑦 − 𝑥𝑦
2

+ 𝑦
3

) , 0) .

(22)
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Also,𝑓(𝑥, ⋅, 𝜇
0
) satisfy𝐶-strictly convex on𝐴(𝜇

0
). Indeed, for

any 𝑡 ∈ (0, 1) and 𝑦
1
, 𝑦
2
∈ 𝐴(𝜇

0
), we have

𝑡𝑓 (𝑥, 𝑦
1
, 𝜇
0
) + (1 − 𝑡) 𝑓 (𝑥, 𝑦

2
, 𝜇
0
)

− 𝑓 (𝑥, 𝑡𝑦
1
+ (1 − 𝑡) 𝑦

2
, 𝜇
0
)

= 𝑡 (𝑥 (𝑦
2

1
− 𝑥
2

) , 𝑦
2

1
− 𝑥
2

)

+ (1 − 𝑡) (𝑥 (𝑦
2

2
− 𝑥
2

) , 𝑦
2

2
− 𝑥
2

)

− (𝑥 ((𝑡𝑦
1
+ (1 − 𝑡) 𝑦

2
)
2

− 𝑥
2

) ,

(𝑡𝑦
1
+ (1 − 𝑡) 𝑦

2
)
2

− 𝑥
2

)

= (𝑥 (𝑡𝑦
2

1
+ (1 − 𝑡) 𝑦

2

2
) − 𝑥 (𝑡𝑦

1
+ (1 − 𝑡) 𝑦

2
)
2

,

𝑡𝑦
2

1
+ (1 − 𝑡) 𝑦

2

2
− (𝑡𝑦
1
+ (1 − 𝑡) 𝑦

2
)
2

) ∈ int𝐶.
(23)

Let 𝜉 = (1, 0) ∈ 𝐶∗ \ {0}. We directly compute that 𝑆
𝜉
(𝜇) =

[1, √𝜇], for each 𝜇 ∈ 𝑀. Thus, we can easily get that 𝑆
𝜉
(𝜇󸀠) =

[1, √𝜇󸀠] is a general set-valued one for each 𝜇󸀠 ∈ 𝑁(𝜇
0
) ∩

𝑀 \ {𝜇
0
} (where 𝑁(𝜇

0
) is any neighborhood of 𝜇

0
), but not

a singleton. Moreover, by Theorem 8, we can get that 𝑆
𝜉
(⋅) is

l.s.c. at 𝜇
0
.

However, to relax the condition (iii) in [9], we add the
condition of strict convexity of 𝑓. The following example
illustrates that the strict convexity of 𝑓 is needed.

Example 12. Let𝑋 = 𝑍 = R,𝑌 = R2,𝐶 = R2
+
,𝑀 = [0, 1] be a

subset of𝑍. Let𝜇
0
= 1 ∈ 𝑀 be a considered point for (PVEP).

Let 𝐴 : 𝑀 → 𝑋 be a mapping defined by 𝐴(𝜇) = [0, 1] and
let 𝑓 : 𝑋 × 𝑋 ×𝑀 → 𝑌 be a mapping defined by

𝑓 (𝑥, 𝑦, 𝜇) = (𝜇𝑥 (𝑦 − 𝑥) , 𝜇 (𝑦 − 𝑥)) . (24)

It is clear that𝑓 is monotone on𝐴(𝜇
0
) and𝑓(𝑥, ⋅, 𝜇

0
) also does

not satisfy𝐶-strictly convex on𝐴(𝜇
0
). Let 𝜉 = (1, 0) ∈ 𝐶∗\{0}.

It follows from direct computation that

𝑆 (𝜇) = {
[0, 1] , if 𝜇 = 0,
{0} , if 𝜇 ∈ (0, 1] .

(25)

Clearly, we see that 𝑆(⋅) is not l.s.c. at 𝜇
0
. Hence, the assumed

strict convexity of 𝑓 is essential.

Theorem 13. Let 𝜇
0
∈ 𝑀 be a considered point. Suppose that

the following conditions are satisfied:

(i) 𝐴(⋅) is continuous with nonempty compact convex
values at 𝜇

0
;

(ii) 𝑓(⋅, ⋅, ⋅) is continuous on 𝐵 × 𝐵 ×𝑀;
(iii) 𝑓(⋅, ⋅, 𝜇

0
) is monotone on 𝐴(𝜇

0
);

(iv) for each 𝑥 ∈ 𝐴(𝜇
0
), 𝑓(𝑥, ⋅, 𝜇

0
) is 𝐶-strictly convex on

𝐴(𝜇
0
);

(v) for each 𝜇 ∈ 𝑀 and 𝑥 ∈ 𝐴(𝜇),𝑓(𝑥, ⋅, 𝜇) is𝐶-convexlike
on 𝐴(𝜇).

Then, 𝑆(⋅) is l.s.c. at 𝜇
0
.

Proof. Since, for each 𝜇 ∈ 𝑀 and for each 𝑥 ∈ 𝐴(𝜇), 𝑓(𝑥, ⋅, 𝜇)
is𝐶-convexlike on𝐴(𝜇),𝐹(𝑥, 𝐴(𝜇), 𝜇)+𝐶 is convex. It follows
from Lemma 6 that

𝑆 (𝜇) = ⋃

𝜉∈𝐶
∗
\{0}

𝑆
𝜉
(𝜇) . (26)

By Theorem 8, for each 𝜉 ∈ 𝐶∗ \ {0
𝑌∗
}, 𝑆
𝜉
(⋅) is l.s.c. at 𝜇

0
.

Therefore, by Lemma 7 it implies that 𝑆(⋅) is l.s.c. at 𝜇
0
. This

completes the proof.

Now, we give an example to illustrate that our result
improves that of [9].

Example 14. Let𝑋 = 𝑍 = R,𝑌 = R2,𝐶 = R2
+
,𝑀 = [1, 2] be a

subset of𝑍. Let𝜇
0
= 1 ∈ 𝑀 be a considered point for (PVEP).

Let 𝐴 : 𝑀 → 𝑋 be a mapping defined by 𝐴(𝜇) = [𝜇, 6] and
let 𝑓 : 𝑋 × 𝑋 ×𝑀 → 𝑌 be a mapping defined by

𝑓 (𝑥, 𝑦, 𝜇) = (𝑥 (𝜇𝑦
2

− 𝑥
2

) , 𝜇 (𝑦
2

− 𝑥
2

)) . (27)

It is clear that 𝑓 is monotone on 𝐴(𝜇
0
), but not satisfied 𝐶-

strict monotone on 𝐴(𝜇
0
). Also, 𝑓(𝑥, ⋅, 𝜇

0
) satisfy 𝐶-strictly

convex on 𝐴(𝜇
0
). It follows from direct computation that

𝑆(𝜇) = [𝜇, 𝜇√𝜇], for each 𝜇 ∈ 𝑀. Thus, we can easily get
that 𝑆

𝜉
(𝜇󸀠) = [𝜇󸀠, 𝜇󸀠√𝜇󸀠] is a general set-valued one for each

𝜇󸀠 ∈ 𝑁(𝜇
0
) ∩ 𝑀 \ {𝜇

0
} (where 𝑁(𝜇

0
) is any neighborhood of

𝜇
0
), but not a singleton. Moreover, by Theorem 13, we can get

that 𝑆
𝜉
(⋅) is l.s.c. at 𝜇

0
.

Theorem 15. Let 𝜇
0
∈ 𝑀 be a considered point. Suppose that

the following conditions are satisfied:

(i) 𝐴(⋅) is continuous with nonempty compact convex
values at 𝜇

0
;

(ii) 𝑓(⋅, ⋅, ⋅) is continuous on 𝐵 × 𝐵 ×𝑀.

Then, 𝑆(⋅) is u.s.c. at 𝜇
0
.

Proof. Suppose the contrary that 𝑆(⋅) is not upper semicon-
tinuous at 𝜇

0
. Then, there exist an open neighborhood 𝑈 of

𝑆(𝜇
0
) and a net {𝜇

𝛼
: 𝛼 ∈ Λ} converging to 𝜇

0
such that

𝑆 (𝜇
𝛼
) ̸⊆ 𝑈, ∀𝛼 ∈ Λ. (28)

Then there exists some 𝑥
𝛼
∈ 𝑆(𝜇
𝛼
) such that

𝑥
𝛼
∉ 𝑈, ∀𝛼 ∈ Λ. (29)

Since 𝑥
𝛼
∈ 𝑆(𝜇

𝛼
), we have 𝑥

𝛼
∈ 𝐴(𝜇

𝛼
). By the assumption,

𝐴(⋅) is u.s.c. with compact valued at 𝜇
0
, then we have that

there exists subnet {𝑥
𝛼
𝛽

} such that 𝑥
𝛼
𝛽

→ 𝑥∗.
We will show that 𝑥∗ ∈ 𝑆(𝜇

0
); suppose the contrary that

𝑥∗ ∉ 𝑆(𝜇
0
). Then there exists 𝑦∗ ∈ 𝐴(𝜇

0
) such that

𝑓 (𝑥
∗

, 𝑦
∗

, 𝜇
0
) ∈ − int𝐶. (30)
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Since𝐴(⋅) is l.s.c. at 𝜇
0

and 𝑦∗ ∈ 𝐴(𝜇
0
) and 𝜇

𝛼
→ 𝜇
0
, we have

that there exists 𝑦
𝛼
∈ 𝐴(𝜇

𝛼
) such that 𝑦

𝛼
→ 𝑦∗. It follows

from 𝑦
𝛼
∈ 𝐴(𝜇

𝛼
) that

𝑓 (𝑥
𝛼
, 𝑦
𝛼
, 𝜇
𝛼
) ∉ − int𝐶 ∀𝛼. (31)

By (ii) it implies that 𝑓(𝑥∗, 𝑦∗, 𝜇
0
) ∉ − int𝐶, which leads to a

contradiction with (30). Hence, we have 𝑥∗ ∈ 𝑆(𝜇
0
) ⊆ 𝑈.

Since 𝑥
𝛼
→ 𝑥∗ and 𝑈 is an open set, there exists some

𝛼
0
∈ Λ such that

𝑥
𝛼
∈ 𝑈, ∀𝛼 ≥ 𝛼

0
, (32)

which leads to contradiction with (29). Thus 𝑆(⋅) is u.s.c. at
𝜇
0
.

The following theorem is directly obtained from Theo-
rems 13 and 15.

Theorem 16. Let 𝜇
0
∈ 𝑀 be a considered point. Suppose that

the following conditions are satisfied:

(i) 𝐴(⋅) is continuous with nonempty compact convex
values at 𝜇

0
;

(ii) 𝑓(⋅, ⋅, ⋅) is continuous on 𝐵 × 𝐵 ×𝑀;
(iii) for each 𝑥 ∈ 𝐴(𝜇

0
), 𝑓(𝑥, ⋅, 𝜇

0
) is 𝐶-strictly convex on

𝐴(𝜇
0
);

(iv) for each 𝜇 ∈ 𝑀 and 𝑥 ∈ 𝐴(𝜇),𝑓(𝑥, ⋅, 𝜇) is𝐶-convexlike
on 𝐴(𝜇);

(v) 𝑓(⋅, ⋅, 𝜇
0
) is monotone on 𝐴(𝜇

0
).

Then, 𝑆(⋅) is continuous at 𝜇
0
.

4. Vector Optimization Problem

Since the parametric weak vector equilibrium problem
(PWVEP) contains the parametric weak vector optimization
problems, we can derive from Theorem 17 direct conse-
quences. We denote the ordering induced by 𝐶 as follows:

𝑥 ≤ 𝑦 iff 𝑦 − 𝑥 ∈ 𝐶;

𝑥 < 𝑦 iff 𝑦 − 𝑥 ∈ int𝐶.
(33)

The ordering ≥ and the ordering > are defined similarly. Let
𝑔 : 𝑋 × 𝑀 → 𝑌 be a vector-valued mapping. For each 𝜇 ∈

𝑀, consider the problem of parametric weak optimization
problem (PWVOP) finding 𝑥

0
∈ 𝐴(𝜇) such that

𝑔 (𝑦, 𝜇) − 𝑔 (𝑥
0
, 𝜇) ∉ − int𝐶, ∀𝑦 ∈ 𝐴 (𝜇) . (34)

Setting 𝑓(𝑥, 𝑦, 𝜇) = 𝑔(𝑦, 𝜇) − 𝑔(𝑥, 𝜇), PWVEP becomes a
special case of PWVOP.

For each 𝜇 ∈ 𝑀, the efficient solution set of (34) is
denoted by

𝑆
OP
(𝜇) := {𝑥 ∈ 𝐴 (𝜇) : 𝑔 (𝑦, 𝜇)

−𝑔 (𝑥
0
, 𝜇) ∉ − int𝐶, ∀𝑦 ∈ 𝐴 (𝜇)} .

(35)

The 𝜉-efficient solution set of (34) is

𝑆
OP
𝜉
(𝜇) := {𝑥 ∈ 𝐴 (𝜇) : 𝜉 (𝑔 (𝑦, 𝜇))

≥ 𝜉 (𝑔 (𝑥
0
, 𝜇)) , ∀𝑦 ∈ 𝐴 (𝜇)} .

(36)

We directly obtain the following theorem from Theo-
rem 16.

Theorem 17. Let 𝜇
0
∈ 𝑀 be a considered point. Suppose that

the following conditions are satisfied:

(i) 𝐴(⋅) is continuous with nonempty compact convex
values at 𝜇

0
;

(ii) 𝑔(⋅, ⋅) is continuous on 𝐵 ×𝑀;

(iii) for each 𝑥 ∈ 𝐴(𝜇
0
), 𝑔(⋅, 𝜇

0
) is 𝐶-strictly convex on

𝐴(𝜇
0
);

(iv) for each 𝜇 ∈ 𝑀 and 𝑥 ∈ 𝐴(𝜇), 𝑔(⋅, 𝜇) is 𝐶-convexlike
on 𝐴(𝜇).

Then, 𝑆(⋅) is continuous at 𝜇
0
.

The following example illustrates that the strict convexity
cannot be dropped.

Example 18. Let𝑋 = 𝑍 = R, 𝑌 = R, 𝐶 = [0, +∞),𝑀 = [0, 1]

be a subset of 𝑍. Let 𝜇
0
= 0 ∈ 𝑀 be a considered point for

PWVOP. Let 𝐴 : 𝑀 → 𝑋 be a mapping defined by 𝐴(𝜇) =
[0, 1] and let 𝑔 : 𝑋 ×𝑀 → R be a mapping defined by

𝑔 (𝑥, 𝜇) = (𝜇𝑥, 𝜇𝑥) . (37)

It is clear that 𝑔 does not satisfy 𝐶-strictly convex on 𝐴(𝜇
0
).

It follows from direct computation that

𝑆
OP
(𝜇) = {

[0, 1] , if 𝜇 = 0,
{0} , if 𝜇 ∈ (0, 1] .

(38)

Clearly, we see that 𝑆(⋅) is not l.s.c. at 𝜇
0
. Hence, the assumed

strict convexity of 𝑔 is essential.

5. Conclusions

In this paper, we study the lower semicontinuity of the set
of efficient solutions for parametric weak vector equilibrium
problems when the 𝜉-efficient solution set is a general set.
Moreover, our theorems can apply for vector optimization
problems.
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We develop the Newton-Kantorovich method to solve the system of 2×2 nonlinear Volterra integral equations where the unknown
function is in logarithmic form. A new majorant function is introduced which leads to the increment of the convergence interval.
The existence and uniqueness of approximate solution are proved and a numerical example is provided to show the validation of
the method.

1. Introduction

Nonlinear phenomenon appears in many scientific areas
such as physics, fluid mechanics, population models, chem-
ical kinetics, economic systems, and medicine and can be
modeled by system of nonlinear integral equations. The
difficulty lies in finding the exact solution for such system.
Alternatively, the approximate or numerical solutions can
be sought. One of the well known approximate method is
Newton-Kantorovich method which reduces the nonlinear
into sequence of linear integral equations. The the approxi-
mate solution is then obtained by processing the convergent
sequence. In 1939, Kantorovich [1] presented an iterative
method for functional equation in Banach space and derived
the convergence theorem for Newton method. In 1948,
Kantorovich [2] proved a semilocal convergence theorem
for Newton method in Banach space, later known as the
Newton-Kantorovich method. Uko and Argyros [3] proved
a weak Kantorovich-type theorem which gives the same
conclusion under the weaker conditions. Shen and Li [4] have

established the Kantorovich-type convergence criterion for
inexact Newton methods, assuming that the first derivative
of an operator satisfies the Lipschitz condition. Argyros [5]
provided a sufficient condition for the semilocal convergence
of Newton’s method to a locally unique solution of a nonlinear
operator equation. Saberi-Nadjafi and Heidari [6] introduced
a combination of the Newton-Kantorovich and quadrature
methods to solve the nonlinear integral equation of Urysohn
type in the systematic procedure. Ezquerro et al. [7] studied
the nonlinear integral equation of mixed Hammerstein type
using Newton-Kantorovich method with majorant principle.
Ezquerro et al. [8] provided the semilocal convergence of
Newton method in Banach space under a modification of the
classic conditions of Kantorovich. There are many methods
of solving the system of nonlinear integral equations, for
example, product integration method [9], Adomian method
[10], RBF network method [11], biorthogonal system method
[12], Chebyshev wavelets method [13], analytical method [14],
reproducing kernel method [15], step method [16], and single
term Wlash series [17]. In 2003, Boikov and Tynda [18]
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implemented the Newton-Kantorovich method to the follow-
ing system:

𝑥 (𝑡) − ∫
𝑡

𝑦(𝑡)

ℎ (𝑡, 𝜏) 𝑔 (𝜏) 𝑥 (𝜏) 𝑑𝜏 = 0,

∫
𝑡

𝑦(𝑡)

𝑘 (𝑡, 𝜏) [1 − 𝑔 (𝜏)] 𝑥 (𝜏) 𝑑𝜏 = 𝑓 (𝑡) ,

(1)

where 0 < 𝑡
0
≤ 𝑡 ≤ 𝑇, 𝑦(𝑡) < 𝑡, and the functions ℎ(𝑡, 𝜏),

𝑘(𝑡, 𝜏) ∈ 𝐶
[𝑡
0
,𝑇]×[𝑡

0
,𝑇]

, 𝑓(𝑡), 𝑔(𝑡) ∈ 𝐶
[𝑡
0
,𝑇]

, and (0 < 𝑔(𝑡) < 1).
In 2010, Eshkuvatov et al. [19] used the Newton-Kantorovich
hypothesis to solve the system of nonlinear Volterra integral
equation of the form

𝑥 (𝑡) − ∫
𝑡

𝑦(𝑡)

ℎ (𝑡, 𝜏) 𝑥
2

(𝜏) 𝑑𝜏 = 0,

∫
𝑡

𝑦(𝑡)

𝑘 (𝑡, 𝜏) 𝑥
2

(𝜏) 𝑑𝜏 = 𝑓 (𝑡) ,

(2)

where 𝑥(𝑡) and 𝑦(𝑡) are unknown functions defined on
[𝑡
0
,∞), 𝑡

0
> 0, and ℎ(𝑡, 𝜏), 𝑘(𝑡, 𝜏) ∈ 𝐶

[𝑡
0
,∞]×[𝑡

0
,∞]

, 𝑓(𝑡) ∈

𝐶
[𝑡
0
,∞]

. In 2010, Eshkuvatov et al. [20] developed the modified
Newton-Kantorovich to obtain an approximate solution of
system with the form

𝑥 (𝑡) − ∫
𝑡

𝑦(𝑡)

𝐻(𝑡, 𝜏) 𝑥
𝑛

(𝜏) 𝑑𝜏 = 0,

∫
𝑡

𝑦(𝑡)

𝐾 (𝑡, 𝜏) 𝑥
𝑛

(𝜏) 𝑑𝜏 = 𝑓 (𝑡) ,

(3)

where 0 < 𝑡
0
≤ 𝑡 ≤ 𝑇, 𝑦(𝑡) < 𝑡, and the functions 𝐻(𝑡,

𝜏), 𝐾(𝑡, 𝜏) ∈ 𝐶
[𝑡
0
,∞]×[𝑡

0
,∞]

, 𝑓(𝑡) ∈ 𝐶
[𝑡
0
,∞]

, and the unknown
functions 𝑥(𝑡) ∈ 𝐶

[𝑡
0
,∞]

, 𝑦(𝑡) ∈ 𝐶1
[𝑡
0
,∞]

, 𝑦(𝑡) < 𝑡.
In this paper, we consider the systems of nonlinear

integral equation of the form

𝑥 (𝑡) − ∫
𝑡

𝑦(𝑡)

ℎ (𝑡, 𝜏) log |𝑥 (𝜏)| 𝑑𝜏 = 𝑔 (𝑡) ,

∫
𝑡

𝑦(𝑡)

𝑘 (𝑡, 𝜏) log |𝑥 (𝜏)| 𝑑𝜏 = 𝑓 (𝑡) ,

(4)

where 0 < 𝑡
0
≤ 𝑡 ≤ 𝑇, 𝑦(𝑡) < 𝑡, 𝑥(𝑡) ̸= 0, ℎ(𝑡, 𝜏), ℎ

𝜏
(𝑡, 𝜏),

𝑘(𝑡, 𝜏), 𝑘
𝜏
(𝑡, 𝜏) ∈ 𝐶(𝐷) and the unknown functions 𝑥(𝑡) ∈

𝐶[𝑡
0
, 𝑇], 𝑦(𝑡) ∈ 𝐶1[𝑡

0
, 𝑇] to be determined, and 𝐷 = [𝑡

0
, 𝑇] ×

[𝑡
0
, 𝑇].
The paper is organized as follows, in Section 2, Newton-

Kantorovich method for the system of integral equations (4)
is presented. Section 3 deals with mixed method followed
by discretizations. In Section 4, the rate of convergence of
the method is investigated. Lastly, Section 5 demonstrates the
numerical example to verify the validity and accuracy of the
proposed method, followed by the conclusion in Section 6.

2. Newton-Kantorovich Method for the System

Let us rewrite the system of nonlinear Volterra integral equa-
tion (4) in the operator form

𝑃 (𝑋) = (𝑃
1
(𝑋) , 𝑃

2
(𝑋)) = 0, (5)

where 𝑋 = (𝑥(𝑡), 𝑦(𝑡)) and

𝑃
1
(𝑋) = 𝑥 (𝑡) − ∫

𝑡

𝑦(𝑡)

ℎ (𝑡, 𝜏) log |𝑥 (𝜏)| 𝑑𝜏 − 𝑔 (𝑡) ,

𝑃
2
(𝑋) = ∫

𝑡

𝑦(𝑡)

𝑘 (𝑡, 𝜏) log |𝑥 (𝜏)| 𝑑𝜏 − 𝑓 (𝑡) .

(6)

To solve (5) we use initial iteration of Newton-Kantorovich
method which is of the form

𝑃
󸀠

(𝑋
0
) (𝑋 − 𝑋

0
) + 𝑃 (𝑋

0
) = 0, (7)

where 𝑋
0
= (𝑥
0
(𝑡), 𝑦
0
(𝑡)) is the initial guess and 𝑥

0
(𝑡) and

𝑦
0
(𝑡) can be any continuous functions provided that 𝑡

0
<

𝑦(𝑡) < 𝑡 and 𝑥(𝑡) ̸= 0.
The Frechet derivative of 𝑃(𝑋) at the point 𝑋

0
is defined

as

𝑃
󸀠

(𝑋
0
)𝑋

= ( lim
𝑠→0

1

𝑠
[𝑃
1
(𝑋
0
+ 𝑠𝑋) − 𝑃

1
(𝑋)] ,

lim
𝑠→0

1

𝑠
[𝑃
2
(𝑋
0
+ 𝑠𝑋) − 𝑃

2
(𝑋)])

= ( lim
𝑠→0

1

𝑠
[𝑃
1
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) − 𝑃

1
(𝑥
0
, 𝑦
0
)] ,

lim
𝑠→0

1

𝑠
[𝑃
2
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) − 𝑃

2
(𝑥
0
, 𝑦
0
)])

= ( lim
𝑠→0

[
𝜕𝑃
1
(𝑥
0
, 𝑦
0
)

𝜕𝑥
𝑠𝑥 +

𝜕𝑃
1
(𝑥
0
, 𝑦
0
)

𝜕𝑦
𝑠𝑦

+
1

2
(
𝜕
2𝑃
1

𝜕𝑥2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥
2

+ 2
𝜕2𝑃
1

𝜕𝑥𝜕𝑦
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥𝑦

+
𝜕2𝑃
1

𝜕𝑦2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠𝑦

2

)] ,
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lim
𝑠→0

1

𝑠
[
𝜕𝑃
2

𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕𝑃
2

𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(
𝜕2𝑃
2

𝜕𝑥2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥
2

+ 2
𝜕2𝑃
2

𝜕𝑥𝜕𝑦
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥𝑦

+
𝜕2𝑃
2

𝜕𝑦2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠𝑦

2

)])

= (
𝜕𝑃
1
(𝑥
0
, 𝑦
0
)

𝜕𝑥
𝑥 +

𝜕𝑃
1
(𝑥
0
, 𝑦
0
)

𝜕𝑦
𝑦,

𝜕𝑃
2
(𝑥
0
, 𝑦
0
)

𝜕𝑥
𝑥 +

𝜕𝑃
2
(𝑥
0
, 𝑦
0
)

𝜕𝑦
𝑦) .

(8)

Hence,

𝑃
󸀠

(𝑋
0
)𝑋 = (

𝜕𝑃
1

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

𝜕𝑃
1

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

𝜕𝑃
2

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

𝜕𝑃
2

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

)(
𝑥

𝑦
) . (9)

From (7) and (9) it follows that

𝜕𝑃
1

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

(Δ𝑥 (𝑡)) +
𝜕𝑃
1

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

(Δ𝑦 (𝑡))

= −𝑃
1
(𝑥
0
(𝑡) , 𝑦
0
(𝑡)) ,

𝜕𝑃
2

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

(Δ𝑥 (𝑡)) +
𝜕𝑃
2

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

(Δ𝑦 (𝑡))

= −𝑃
2
(𝑥
0
(𝑡) , 𝑦
0
(𝑡)) ,

(10)

where Δ𝑥(𝑡) = 𝑥
1
(𝑡)−𝑥

0
(𝑡), Δ𝑦(𝑡) = 𝑦

1
(𝑡)−𝑦

0
(𝑡), and (𝑥

0
(𝑡),

𝑦
0
(𝑡)) is the initial given functions. To solve (10) with respect

to Δ𝑥 and Δ𝑦 we need to compute all partial derivatives:

𝜕𝑃
1

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

= lim
𝑠→0

1

𝑠
(𝑃
1
(𝑥
0
+ 𝑠𝑥, 𝑦

0
) − 𝑃
1
(𝑥
0
, 𝑦
0
))

= lim
𝑠→0

1

𝑠
[𝑠𝑥 (𝑡)

− ∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏) (log 󵄨󵄨󵄨󵄨𝑥0 (𝜏) + 𝑠𝑥 (𝜏)
󵄨󵄨󵄨󵄨

− log 󵄨󵄨󵄨󵄨𝑥0 (𝜏)
󵄨󵄨󵄨󵄨) 𝑑𝜏]

= 𝑥 (𝑡) − ∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏)
𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏,

𝜕𝑃
1

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

= lim
𝑠→0

1

𝑠
(𝑃
1
(𝑥
0
, 𝑦
0
+ 𝑠𝑦) − 𝑃

1
(𝑥
0
, 𝑦
0
))

= lim
𝑠→0

1

𝑠
[∫
𝑦
0
(𝑡)+𝑠𝑦(𝑡)

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏) log 󵄨󵄨󵄨󵄨(𝑥0 (𝜏))
󵄨󵄨󵄨󵄨 𝑑𝜏]

= ℎ (𝑡, 𝑦
0
(𝑡)) log 󵄨󵄨󵄨󵄨𝑥0 (𝑦0 (𝑡))

󵄨󵄨󵄨󵄨 𝑦 (𝑡) ,

(11)

and in the same manner we obtain

𝜕𝑃
2

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

= ∫
𝑡

𝑦
0
(𝑡)

𝑘 (𝑡, 𝜏)
𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏,

𝜕𝑃
2

𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

= −𝑘 (𝑡, 𝑦
0
(𝑡)) log 󵄨󵄨󵄨󵄨𝑥0 (𝑦0 (𝑡))

󵄨󵄨󵄨󵄨 𝑦 (𝑡) .

(12)

So that from (10)–(12) it follows that

Δ𝑥 (𝑡) − ∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏)
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ℎ (𝑡, 𝑦
0
(𝑡)) log 󵄨󵄨󵄨󵄨𝑥0 (𝑦0 (𝑡))

󵄨󵄨󵄨󵄨 Δ𝑦 (𝑡)

= ∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏) log 󵄨󵄨󵄨󵄨𝑥0 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏 − 𝑥

0
(𝑡) + 𝑔 (𝑡) ,

∫
𝑡

𝑦
0
(𝑡)

𝑘 (𝑡, 𝜏)
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏

− 𝑘 (𝑡, 𝑦
0
(𝑡)) log 󵄨󵄨󵄨󵄨𝑥0 (𝑦0 (𝑡))

󵄨󵄨󵄨󵄨 Δ𝑦 (𝑡)

= −∫
𝑡

𝑦
0
(𝑡)

𝑘 (𝑡, 𝜏) log 󵄨󵄨󵄨󵄨𝑥0 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏 + 𝑓 (𝑡) .

(13)

Equation (13) is a linear, and, by solving it for Δ𝑥 and Δ𝑦, we
obtain (𝑥

1
(𝑡), 𝑦
1
(𝑡)). By continuing this process, a sequence

of approximate solution (𝑥
𝑚
(𝑡), 𝑦
𝑚
(𝑡)) can be evaluated from

𝑃
󸀠

(𝑋
0
) Δ𝑋
𝑚
+ 𝑃 (𝑋

𝑚
) = 0, (14)

which is equivalent to the system

Δ𝑥
𝑚
(𝑡) − ∫

𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏)
Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ℎ (𝑡, 𝑦
0
(𝑡)) log 󵄨󵄨󵄨󵄨𝑥0 (𝑦0 (𝑡))

󵄨󵄨󵄨󵄨 Δ𝑦𝑚 (𝑡)

= ∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏) log 󵄨󵄨󵄨󵄨𝑥0 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏 − 𝑥

0
(𝑡) + 𝑔 (𝑡) ,

∫
𝑡

𝑦
0
(𝑡)

𝑘 (𝑡, 𝜏)
Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

− 𝑘 (𝑡, 𝑦
0
(𝑡)) log 󵄨󵄨󵄨󵄨𝑥0 (𝑦0 (𝑡))

󵄨󵄨󵄨󵄨 Δ𝑦𝑚 (𝑡)

= −∫
𝑡

𝑦
0
(𝑡)

𝑘 (𝑡, 𝜏) log 󵄨󵄨󵄨󵄨𝑥0 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏 + 𝑓 (𝑡) ,

(15)

whereΔ𝑥
𝑚
(𝑡) = 𝑥

𝑚
(𝑡)−𝑥
𝑚−1

(𝑡) andΔ𝑦
𝑚
(𝑡) = 𝑦

𝑚
(𝑡)−𝑦
𝑚−1

(𝑡),
𝑚 = 1, 2, 3, . . ..
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Thus, one should solve a system of two linear Volterra
integral equations to find each successive approximation.
Let us eliminate Δ𝑦(𝑡) from the system (13) by finding the
expression of Δ𝑦(𝑡) from the first equation of this system and
substitute it in the second equation to yield

Δ𝑦 (𝑡) =
1

𝐻 (𝑡)
[∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏) [
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

+ log 󵄨󵄨󵄨󵄨𝑥0 (𝜏)
󵄨󵄨󵄨󵄨] 𝑑𝜏

− [Δ𝑥 (𝑡) + 𝑥
0
(𝑡) − 𝑔 (𝑡)]] ,

𝐺 (𝑡) [∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏) [
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

+ log 󵄨󵄨󵄨󵄨𝑥0 (𝜏)
󵄨󵄨󵄨󵄨] 𝑑𝜏

− [Δ𝑥 (𝑡) + 𝑥
0
(𝑡) − 𝑔 (𝑡)]]

= ∫
𝑡

𝑦
0
(𝑡)

𝑘 (𝑡, 𝜏)
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏

− ∫
𝑡

𝑦
0
(𝑡)

𝑘 (𝑡, 𝜏) log 󵄨󵄨󵄨󵄨𝑥0 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏 + 𝑓 (𝑡) ,

(16)

where 𝐺(𝑡) = 𝑘(𝑡, 𝑦
0
(𝑡))/ℎ(𝑡, 𝑦

0
(𝑡)) and 𝐻(𝑡) = 1/[ℎ(𝑡,

𝑦
0
(𝑡)) log |𝑥

0
(𝑦
0
(𝑡))|], and the second equation of (16) yields

Δ𝑥 (𝑡) − ∫
𝑡

𝑦
0
(𝑡)

𝑘
1
(𝑡, 𝜏)

Δ𝑥 (𝜏)

𝑥
0
(𝜏)

𝜏 = 𝐹
0
(𝑡) , (17)

where

𝑘
1
(𝑡, 𝜏) = ℎ (𝑡, 𝜏) −

𝑘 (𝑡, 𝜏)

𝐺 (𝑡)
,

𝐺 (𝑡) =
𝑘 (𝑡, 𝑦

0
(𝑡))

ℎ (𝑡, 𝑦
0
(𝑡))

, 𝑘 (𝑡, 𝑦
0
(𝑡)) ̸= 0 ∀𝑡 ∈ [𝑡

0
, 𝑇] ,

𝐹
0
(𝑡) = ∫

𝑡

𝑦
0
(𝑡)

𝑘
1
(𝑡, 𝜏) log 󵄨󵄨󵄨󵄨𝑥0 (𝜏)

󵄨󵄨󵄨󵄨 𝑑𝜏 − 𝑥
0
(𝑡) + 𝑔 (𝑡) +

𝑓 (𝑡)

𝐺 (𝑡)
.

(18)

In an analogous way,Δ𝑦
𝑚
(𝑡) andΔ𝑥

𝑚
(𝑡) can be written in the

form

Δ𝑦
𝑚
(𝑡)

=
1

𝐻 (𝑡)
[∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏)
Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ∫
𝑡

𝑦
𝑚−1
(𝑡)

ℎ (𝑡, 𝜏) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏

−Δ𝑥
𝑚
(𝑡) − 𝑥

𝑚−1
(𝑡) + 𝑔 (𝑡)] ,

(19)

Δ𝑥
𝑚
(𝑡) − ∫

𝑡

𝑦
0
(𝑡)

𝑘
1
(𝑡, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏 = 𝐹
𝑚−1

(𝑡) , (20)

where

𝐹
𝑚−1

(𝑡) = ∫
𝑡

𝑦
𝑚−1
(𝑡)

𝑘
1
(𝑡, 𝜏) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝜏)

󵄨󵄨󵄨󵄨 𝑑𝜏 − 𝑥
𝑚−1

(𝑡)

+ 𝑔 (𝑡) +
𝑓 (𝑡)

𝐺 (𝑡)
.

(21)

3. The Mixed Method (Simpson
and Trapezoidal) for Approximate Solution

At each step of the iterative process we have to find the
solution of (18) and (20) on the closed interval [𝑡

0
, 𝑇]. To do

this the grid (𝜔) of points 𝑡
𝑖
= 𝑡
0
+ 𝑖ℎ, 𝑖 = 1, 2, 3, . . . , 2𝑁,

ℎ = (𝑇−𝑡
0
)/2𝑁 is introduced, and by the collocation method

with mixed rule we require that the approximate solution
satisfies (18) and (20). Hence

Δ𝑥
𝑚
(𝑡
0
) = −𝑥

𝑚−1
(𝑡
0
) + 𝑔 (𝑡

0
) +

𝑓 (𝑡
0
)

𝐺 (𝑡
0
)
, (22)

Δ𝑥
𝑚
(𝑡
2𝑖
) − ∫
𝑡
2𝑖

𝑦
0
(𝑡
2𝑖
)

𝑘
1
(𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

= 𝐹
𝑚−1

(𝑡
2𝑖
) , 𝑖 = 1, 2, . . . , 𝑁.

(23)

On the grid (𝜔) we set V
2𝑖
= 𝑦
0
(𝑡
2𝑖
), suct that

𝑡V
2𝑖

= {
𝑡V
2𝑖

, 𝑡
0
≤ 𝑦
0
(𝑡
2𝑖
) < 𝑡
2𝑖−2

,

𝑡
2𝑖
, 𝑡
2𝑖−2

≤ 𝑦
0
(𝑡
2𝑖
) < 𝑡
2𝑖
.

(24)

Consequently, the system (23) can be written in the form

Δ𝑥
𝑚
(𝑡
2𝑖
) − ∫
𝑡V
2𝑖

𝑦
0
(𝑡
2𝑖
)

𝑘
1
(𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

−

𝑖−1

∑
𝑗=V
2𝑖

∫
𝑡
2𝑗+2

𝑡
2𝑗

𝑘
1
(𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

= 𝐹
𝑚−1

(𝑡
2𝑖
) , 𝑖 = 1, 2, . . . , 𝑁.

(25)

By computing the integral in (26) using tapezoidal formula
on the first integrals and Simpson formula on the second
integral, we consider two cases.

Case 1. When V
2𝑖

̸= 2𝑖, 𝑖 = 1, 2, . . . , 𝑁, then

Δ𝑥
𝑚
(𝑡
2𝑖
) =

𝐹
𝑚−1

(𝑡
2𝑖
) + 𝐴 (𝑖) + 𝐵 (𝑖) + 𝐶 (𝑖)

1 − ((𝑡
2𝑖
− 𝑡
2𝑖−2

) /6 ⋅ 𝑥
0
(𝑡
2𝑖
)) 𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑖
)
,

(26)
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where

𝐴 (𝑖) = 0.5 (𝑡V
2𝑖

− 𝑦
0
(𝑡
2𝑖
))

× [𝑘
1
(𝑡
2𝑖
, 𝑡V
2𝑖

)
Δ𝑥
𝑚
(𝑡V
2𝑖

)

𝑥
0
(𝑡V
2𝑖

)
+ 𝑘
1
(𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

×
Δ𝑥
𝑚
(𝑡V
2𝑖

) (𝑡V
2𝑖

− 𝑦
0
(𝑡
2𝑖
))

(𝑡V
2𝑖

− 𝑡V
2𝑖−2

) (𝑥
0
(𝑦
0
(𝑡
2𝑖
)))

+ 𝑘
1
(𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

×
Δ𝑥
𝑚
(𝑡V
2𝑖−2

) (𝑦
0
(𝑡
2𝑖
) − 𝑡V

2𝑖−2

)

(𝑡V
2𝑖

− 𝑡V
2𝑖−2

) (𝑥
0
(𝑦
0
(𝑡
2𝑖
)))

] ,

𝐵 (𝑖) =

𝑖−2

∑
𝑗=V
2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× [𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑗
)
Δ𝑥
𝑚
(𝑡
2𝑗
)

𝑥
0
(𝑡
2𝑗
)

+ 4𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑗+1

)
Δ𝑥
𝑚
(𝑡
2𝑗+1

)

𝑥
0
(𝑡
2𝑗+1

)

+ 𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑗+2

)
Δ𝑥
𝑚
(𝑡
2𝑗+2

)

𝑥
0
(𝑡
2𝑗+2

)
] ,

𝐶 (𝑖) =
(𝑡
2𝑖
− 𝑡
2𝑖−2

)

6
[𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑖−2

)
Δ𝑥
𝑚
(𝑡
2𝑖−2

)

𝑥
0
(𝑡
2𝑖−2

)

+ 4𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑖−1

)
Δ𝑥
𝑚
(𝑡
2𝑖−1

)

𝑥
0
(𝑡
2𝑖−1

)
] .

(27)

Case 2. When V
2𝑖
= 2𝑖, 𝑖 = 1, 2, . . . , 𝑁, then

Δ𝑥
𝑚
(𝑡
2𝑖
) =

𝐷
1
(𝑖)

𝐷
2
(𝑖)

, (28)

where

𝐷
1
(𝑖) = 𝐹

𝑚−1
(𝑡
2𝑖
) + 0.5𝑘

1
(𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

× [
Δ𝑥
𝑚
(𝑡
2𝑖−2

)

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

(𝑡
2𝑖
− 𝑦
0
(𝑡
2𝑖
)) (𝑦
0
(𝑡
2𝑖
) − 𝑡
2𝑖−2

)

𝑡
2𝑖
− 𝑡
2𝑖−2

] ,

𝐷
2
(𝑖) = [1 − 0.5 (𝑡

2𝑖
− 𝑦
0
(𝑡
2
))

𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑖
)

𝑥
0
(𝑡
2𝑖
)

− 0.5𝑘
1
(𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

(𝑡
2𝑖
− 𝑦
0
(𝑡
2𝑖
))
2

𝑥
0
(𝑦
0
(𝑡
2𝑖
)) (𝑡
2𝑖
− 𝑡
2𝑖−2

)
] .

(29)

Also, to compute Δ𝑦
𝑚
(𝑡) on the grid (𝜔), (18) can be re-

presented in the form

Δ𝑦
𝑚
(𝑡
2𝑖
) =

1

𝐻 (𝑡
2𝑖
)

× [∫
𝑡
2𝑖

𝑦
0
(𝑡
2𝑖
)

ℎ (𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ∫
𝑡
2𝑖

𝑦
𝑚−1
(𝑡
2𝑖
)

ℎ (𝑡
2𝑖
, 𝜏) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝜏)

󵄨󵄨󵄨󵄨 𝑑𝜏

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ] .

(30)

Let us set V
2𝑖
= 𝑦
0
(𝑡
2𝑖
) and 𝑢

2𝑖
= 𝑦
𝑚−1

(𝑡
2𝑖
) and

𝑡V
2𝑖

=
{

{

{

𝑡
2𝑖
, 𝑡
2𝑖−2

≤ 𝑦
0
(𝑡
2𝑖
) < 𝑡
2𝑖
,

𝑡V
2𝑖

, 𝑡
0
≤ 𝑦
0
(𝑡
2𝑖
) < 𝑡
2𝑖−2

,

𝑡
𝑢
2𝑖

=
{

{

{

𝑡
2𝑖
, 𝑡
2𝑖−2

≤ 𝑦
𝑚−1

(𝑡
2𝑖
) < 𝑡
2𝑖
,

𝑡
𝑢
2𝑖

, 𝑡
0
≤ 𝑦
𝑚−1

(𝑡
2𝑖
) < 𝑡
2𝑖−2

.

(31)

Then (30) can be written as

Δ𝑦
𝑚
(𝑡
2𝑖
) =

1

𝐻 (𝑡
2𝑖
)

× [∫
𝑡V
2𝑖

𝑦
0
(𝑡
2𝑖
)

ℎ (𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+

𝑖−1

∑
𝑗=V
2𝑖

∫
𝑡
2𝑗+2

𝑡
2𝑗

ℎ (𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ∫
𝑡
𝑢
2𝑖

𝑦
𝑚−1
(𝑡
2𝑖
)

ℎ (𝑡
2𝑖
, 𝜏) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝜏)

󵄨󵄨󵄨󵄨 𝑑𝜏

+

𝑖−1

∑
𝑗=𝑢
2𝑖

∫
𝑡
2𝑗+2

𝑡
2𝑗

ℎ (𝑡
2𝑖
, 𝜏) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝜏)

󵄨󵄨󵄨󵄨 𝑑𝜏

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ] ,

(32)

and by applying mixed formula for (32) we obtain the follow-
ing four cases.
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Case 1. When V
2𝑖

̸= 2𝑖 and 𝑢
2𝑖

̸= 2𝑖, we have

Δ𝑦
𝑚
(𝑡
2𝑖
)

=
1

𝐻 (𝑡
2𝑖
)

× [

[

0.5 (𝑡V
2𝑖

− 𝑦
0
(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡V
2𝑖

)
Δ𝑥
𝑚
(𝑡V
2𝑖

)

𝑥
0
(𝑡V
2𝑖

)

+ ℎ (𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

Δ𝑥
𝑚
(𝑦
0
(𝑡
2𝑖
))

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

)

+

𝑖−1

∑
𝑗=V
2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑗
)
Δ𝑥
𝑚
(𝑡
2𝑗
)

𝑥
0
(𝑡
2𝑗
)

+ 4ℎ (𝑡
2𝑖
, 𝑡
2𝑗+1

)
Δ𝑥
𝑚
(𝑡
2𝑗+1

)

𝑥
0
(𝑡
2𝑗+1

)

+ ℎ (𝑡
2𝑖
, 𝑡
2𝑗+2

)
Δ𝑥
𝑚
(𝑡
2𝑗+2

)

𝑥
0
(𝑡
2𝑗+2

)
)

+ 0.5 (𝑡
𝑢
2𝑖

− 𝑦
𝑚−1

(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
𝑢
2𝑖

) log 󵄨󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑡𝑢2𝑖)
󵄨󵄨󵄨󵄨󵄨

+ ℎ (𝑡
2𝑖
, 𝑦
𝑚−1

(𝑡
2𝑖
)) log 󵄨󵄨󵄨󵄨(𝑥𝑚−1 (𝑦𝑚−1 (𝑡2𝑖)))

󵄨󵄨󵄨󵄨 )

+

𝑖−1

∑
𝑗=𝑢
2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑗
) log (𝑥

𝑚−1
(𝑡
2𝑗
))

+ 4ℎ (𝑡
2𝑖
, 𝑡
2𝑗+1

) log 󵄨󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑡2𝑗+1)
󵄨󵄨󵄨󵄨󵄨

+ ℎ (𝑡
2𝑖
, 𝑡
2𝑗+2

) log 󵄨󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑡2𝑗+2)
󵄨󵄨󵄨󵄨󵄨
)

− Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ]

]

.

(33)

Case 2. If V
2𝑖
= 2𝑖 and 𝑢

2𝑖
̸= 2𝑖, then

Δ𝑦
𝑚
(𝑡
2𝑖
)

=
1

𝐻 (𝑡
2𝑖
)

× [

[

0.5 (𝑡
2𝑖
− 𝑦
0
(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑖
)
Δ𝑥
𝑚
(𝑡V
2𝑖

)

𝑥
0
(𝑡
2𝑖
)

+ ℎ (𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

Δ𝑥
𝑚
(𝑦
0
(𝑡
2𝑖
))

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

)

+ 0.5 (𝑡
𝑢
2𝑖

− 𝑦
𝑚−1

(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
𝑢
2𝑖

) log 󵄨󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑡𝑢2𝑖)
󵄨󵄨󵄨󵄨󵄨

+ ℎ (𝑡
2𝑖
, 𝑦
𝑚−1

(𝑡
2𝑖
)) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑦𝑚−1 (𝑡2𝑖))

󵄨󵄨󵄨󵄨 )

+

𝑖−1

∑
𝑗=𝑢
2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑗
) log 󵄨󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑡2𝑗)

󵄨󵄨󵄨󵄨󵄨

+ 4ℎ (𝑡
2𝑖
, 𝑡
2𝑗+1

) log 󵄨󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑡2𝑗+1)
󵄨󵄨󵄨󵄨󵄨

+ ℎ (𝑡
2𝑖
, 𝑡
2𝑗+2

) log 󵄨󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑡2𝑗+2)
󵄨󵄨󵄨󵄨󵄨
)

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ]

]

.

(34)

Case 3. When V
2𝑖

̸= 2𝑖 and 𝑢
2𝑖
= 2𝑖, we get

Δ𝑦
𝑚
(𝑡
2𝑖
)

=
1

𝐻 (𝑡
2𝑖
)

× [

[

0.5 (𝑡V
2𝑖

− 𝑦
0
(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡V
2𝑖

)
Δ𝑥
𝑚
(𝑡V
2𝑖

)

𝑥
0
(𝑡V
2𝑖

)

+ ℎ (𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

Δ𝑥
𝑚
(𝑦
0
(𝑡
2𝑖
))

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

)
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+

𝑖−1

∑
𝑗=V
2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑗
)
Δ𝑥
𝑚
(𝑡
2𝑗
)

𝑥
0
(𝑡
2𝑗
)

+ 4ℎ (𝑡
2𝑖
, 𝑡
2𝑗+1

)
Δ𝑥
𝑚
(𝑡
2𝑗+1

)

𝑥
0
(𝑡
2𝑗+1

)

+ ℎ (𝑡
2𝑖
, 𝑡
2𝑗+2

)
Δ𝑥
𝑚
(𝑡
2𝑗+2

)

𝑥
0
(𝑡
2𝑗+2

)
)

+ 0.5 (𝑡
2𝑖
− 𝑦
𝑚−1

(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑖
) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑡2𝑖)

󵄨󵄨󵄨󵄨

+ ℎ (𝑡
2𝑖
, 𝑦
𝑚−1

(𝑡
2𝑖
)) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑦𝑚−1 (𝑡2𝑖))

󵄨󵄨󵄨󵄨 )

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ]

]

.

(35)

Case 4. If V
2𝑖
= 2𝑖 and 𝑢

2𝑖
= 2𝑖, then

Δ𝑦
𝑚
(𝑡
2𝑖
)

=
1

𝐻 (𝑡
2𝑖
)

× [

[

0.5 (𝑡
2𝑖
− 𝑦
0
(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑖
)
Δ𝑥
𝑚
(𝑡
2𝑖
)

𝑥
0
(𝑡
2𝑖
)

+ ℎ (𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

Δ𝑥
𝑚
(𝑦
0
(𝑡
2𝑖
))

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

)

+ 0.5 (𝑡
2𝑖
− 𝑦
𝑚−1

(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑖
) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑡2𝑖)

󵄨󵄨󵄨󵄨

+ ℎ (𝑡
2𝑖
, 𝑦
𝑚−1

(𝑡
2𝑖
)) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝑦𝑚−1 (𝑡2𝑖))

󵄨󵄨󵄨󵄨 )

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ]

]

.

(36)

Thus, (32) can be computed by one of (33)–(36) according to
the cases.

4. The Convergence Analysis of the Method

On the basis of general theorems of Newton-Kantorovich
method [21, Chapter XVIII] for the convergence, we state the
following theorem regarding the successive approximations
described by (18)–(20).

First, consider the following classes of functions:

(i) 𝐶
[𝑡
0
,𝑇]

the set of all continuous functions 𝑓(𝑡) defined
on the interval [𝑡

0
, 𝑇],

(ii) 𝐶
[𝑡
0
,𝑇]×[𝑡

0
,𝑇]

the set of all continuous functions 𝜓(𝑡, 𝜏)
defined on the region [𝑡

0
, 𝑇] × [𝑡

0
, 𝑇],

(iii) 𝐶 = {𝑋 : 𝑋 = (𝑥(𝑡), 𝑦(𝑡)) : 𝑥(𝑡), 𝑦(𝑡) ∈ 𝐶
[𝑡
0
,𝑇]
},

(iv) 𝐶<
[𝑡
0
,𝑇]

= {𝑦(𝑡) ∈ 𝐶1
[𝑡
0
,𝑇]

: 𝑦(𝑡) < 𝑡}.

And define the following norms

‖𝑥‖ = max
𝑡∈[𝑡
0
,𝑇]

|𝑥 (𝑡)| ,

‖Δ𝑋‖
𝐶
= max {‖Δ𝑥‖

𝐶
[𝑡
0
,𝑇]

,
󵄩󵄩󵄩󵄩Δ𝑦

󵄩󵄩󵄩󵄩𝐶
[𝑡
0
,𝑇]

} ,

‖𝑋‖
𝐶
1 = max {‖𝑥‖

𝐶
[𝑡
0
,𝑇]

,
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠
󵄩󵄩󵄩󵄩󵄩𝐶
[𝑡
0
,𝑇]

} ,

󵄩󵄩󵄩󵄩󵄩
𝑋
󵄩󵄩󵄩󵄩󵄩𝐶

= max {‖𝑥‖
𝐶
[𝑡
0
,𝑇]

,
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝐶
[𝑡
0
,𝑇]

}

‖ℎ (𝑡, 𝜏)‖ = 𝐻
1
,

󵄩󵄩󵄩󵄩󵄩
ℎ
󸀠

𝜏
(𝑡, 𝜏)

󵄩󵄩󵄩󵄩󵄩
= 𝐻
󸀠

1
,

‖𝑘 (𝑡, 𝜏)‖ = 𝐻
2
,

󵄩󵄩󵄩󵄩󵄩
𝑘
󸀠

𝜏
(𝑡, 𝜏)

󵄩󵄩󵄩󵄩󵄩
= 𝐻
󸀠

2
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑥
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
𝑡∈[𝑡
0
,𝑇]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑥
0
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑐
1
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑥2
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
𝑡∈[𝑡
0
,𝑇]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑥2
0
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑐
2
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝐺 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
𝑡∈[𝑡
0
,𝑇]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝐺 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑐
3
,

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 = max
𝑡∈[𝑡
0
,𝑇]

󵄨󵄨󵄨󵄨𝑥0 (𝑡)
󵄨󵄨󵄨󵄨 = 𝐻
3
,

󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠

0

󵄩󵄩󵄩󵄩󵄩
= max
𝑡∈[𝑡
0
,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

0
(𝑡)

󵄨󵄨󵄨󵄨󵄨
= 𝐻
󸀠

3
,

min
𝑡∈[𝑡
0
,𝑇]

󵄨󵄨󵄨󵄨𝑦0 (𝑡)
󵄨󵄨󵄨󵄨 = 𝐻
4
,

󵄩󵄩󵄩󵄩log󵄩󵄩󵄩󵄩 = max
𝑡∈[𝑡
0
,𝑇]

󵄨󵄨󵄨󵄨log (𝑥 (𝑡))󵄨󵄨󵄨󵄨 = 𝐻
5
,

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 = max
𝑡∈[𝑡
0
,𝑇]

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨 = 𝐻
6
,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 = max
𝑡∈[𝑡
0
,𝑇]

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 = 𝐻
7
.

(37)

Let

𝜂
1
= max {𝐻

1
𝑐
2
(𝑇 − 𝐻

4
) ,𝐻
1
𝑐
1
, 𝐻
󸀠

1
𝐻
5
+ 𝐻
1
𝐻
󸀠

3
𝑐
1
,

𝐻
2
𝑐
2
(𝑇 − 𝐻

4
) ,𝐻
2
𝑐
1
, 𝐻
󸀠

2
𝐻
5
+ 𝐻
2
𝐻
󸀠

3
𝑐
1
} .

(38)
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Let us consider real valued function

𝜓 (𝑡) = 𝐾 (𝑡 − 𝑡
0
)
2

− (1 + 𝐾𝜂) (𝑡 − 𝑡
0
) + 𝜂, (39)

where 𝐾 > 0 and 𝜂 are nonnegative real coefficients.

Theorem 1. Assume that the operator 𝑃(𝑋) = 0 in (5) is de-
fined in Ω = {𝑋 ∈ 𝐶([𝑡

0
, 𝑇]) : ‖𝑋 − 𝑋

0
‖ ≤ 𝑅} and has

continuous second derivative in closed ball Ω
0
= {𝑋 ∈ 𝐶([𝑡

0
,

𝑇]) : ‖𝑋 − 𝑋
0
‖ ≤ 𝑟} where 𝑇 = 𝑡

0
+ 𝑟 ≤ 𝑡

0
+ 𝑅. Suppose the

following conditions are satisfied:

(1) ‖Γ
0
𝑃(𝑋
0
)‖ ≤ 𝜂/(1 + 𝐾𝜂),

(2) ‖Γ
0
𝑃󸀠󸀠(𝑋)‖ ≤ 2𝐾/(1+𝐾𝜂), when ‖𝑋−𝑋

0
‖ ≤ 𝑡−𝑡

0
≤ 𝑟,

where 𝐾 and 𝜂 as in (39). Then the function 𝜓(𝑡) defined by
(39) majorizes the operator 𝑃(𝑋).

Proof. Let us rewrite (5) and (39) in the form

𝑡 = 𝜙 (𝑡) , 𝜙 (𝑡) = 𝑡 + 𝑐
0
𝜓 (𝑡) , (40)

𝑋 = 𝑆 (𝑋) , 𝑆 (𝑋) = 𝑋 − Γ
0
𝑃 (𝑋) , (41)

where 𝑐
0
= −1/𝜓󸀠(𝑡

0
) = 1/(1 + 𝐾𝜂) and Γ

0
= [𝑃󸀠(𝑋

0
)]
−1.

Let us show that (40) and (41) satisfy the majorizing
conditions [21, Theorem 1, page 525]. In fact

󵄩󵄩󵄩󵄩𝑆 (𝑋0) − 𝑋
0

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩−Γ0𝑃 (𝑋

0
)
󵄩󵄩󵄩󵄩 ≤

𝜂

1 + 𝐾𝜂
= 𝜙 (𝑡

0
) − 𝑡
0
, (42)

and for the ‖𝑋−𝑋
0
‖ ≤ 𝑡 − 𝑡

0
with the Remark in [21, Remark

1, page 504] we have

󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠

(𝑋)
󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠

(𝑋) − 𝑆
󸀠

(𝑋
0
)
󵄩󵄩󵄩󵄩󵄩

≤ ∫
𝑋

𝑋
0

󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠󸀠

(𝑋)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑋 = ∫

𝑋

𝑋
0

󵄩󵄩󵄩󵄩󵄩
Γ
0
𝑃
󸀠󸀠

(𝑋)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑋

≤ ∫
𝑡

𝑡
0

𝑐
0
𝜓
󸀠󸀠

(𝜏) 𝑑𝜏 = ∫
𝑡

𝑡
0

2𝐾

1 + 𝐾𝜂
𝑑𝜏

=
2𝐾

1 + 𝐾𝜂
(𝑡 − 𝑡
0
) = 𝜙
󸀠

(𝑡) .

(43)

Hence 𝜓(𝑡) = 0 is a majorant function of 𝑃(𝑋) = 0.

Theorem2. Let the functions𝑓(𝑡), 𝑔(𝑡) ∈ 𝐶
[𝑡
0
,𝑇]
, 𝑥
0
(𝑡) ∈ 𝐶1[𝑡

0
,

𝑇], 𝑥
0
(𝑦
0
(𝑡)) ̸= 0, 𝑥2

0
(𝑡) ̸= 0, and the kernels ℎ(𝑡, 𝜏), 𝑘(𝑡, 𝜏) ∈

𝐶1
[𝑡
0
,𝑇]×[𝑡

0
,𝑇]

and (𝑥
0
(𝑡), 𝑦
0
(𝑡)) ∈ Ω

0
; then

(1) the system (7) has unique solution in the interval [𝑡
0
,

𝑇]; that is, there exists Γ
0
, and ‖Γ

0
‖ ≤ ∑

∞

𝑗=1
(𝑐
1
𝐻
1
+

𝑐
1
𝑐
3
𝐻
2
)𝑗((𝑇 − 𝐻

4
)
𝑗−1

/(𝑗 − 1)!) = 𝜂
2
,

(2) ‖Δ𝑋‖ ≤ 𝜂/(1 + 𝐾𝜂),

(3) ‖𝑃󸀠󸀠(𝑋)‖ ≤ 𝜂
1
,

(4) 𝜂 > 1/𝐾 and 𝑟 < 𝜂 + 𝑡
0
,

where 𝐾 and 𝜂 as in (39). Then the system (4) has unique
solution 𝑋

∗ in the closed ball Ω
0
and the sequence 𝑋

𝑚
(𝑡) =

(𝑥
𝑚
(𝑡), 𝑦
𝑚
(𝑡)),𝑚 ≥ 0 of successive approximations

Δ𝑦
𝑚
(𝑡) =

1

𝐻 (𝑡)
[∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏)
Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ∫
𝑡

𝑦
𝑚−1
(𝑡)

ℎ (𝑡, 𝜏) log 󵄨󵄨󵄨󵄨𝑥𝑚−1 (𝜏)
󵄨󵄨󵄨󵄨 𝑑𝜏

−Δ𝑥
𝑚
(𝑡) − 𝑥

𝑚−1
(𝑡) + 𝑔 (𝑡) ] ,

Δ𝑥
𝑚
(𝑡) − ∫

𝑡

𝑦
0
(𝑡)

𝑘
1
(𝑡, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏 = 𝐹
𝑚−1

(𝑡) ,

(44)

whereΔ𝑥
𝑚
(𝑡) = 𝑥

𝑚
(𝑡)−𝑥
𝑚−1

(𝑡) andΔ𝑦
𝑚
(𝑡) = 𝑦

𝑚
(𝑡)−𝑦
𝑚−1

(𝑡),
𝑚 = 2, 3, . . ., and 𝑋

𝑚
converge to the solution 𝑋∗. The rate of

convergence is given by

󵄩󵄩󵄩󵄩𝑋
∗

− 𝑋
𝑚

󵄩󵄩󵄩󵄩 ≤ (
2

1 + 𝐾𝜂
)

𝑚

(
1

𝐾
) . (45)

Proof. It is shown that (7) is reduced to (17). Since (17) is a
linear Volterra integral equation of 2nd kind with respect to
Δ𝑥(𝑡) and since 𝑘(𝑡, 𝑦

0
(𝑡)) ̸= 0, ∀𝑡 ∈ [𝑡

0
, 𝑇] which implies

that the kernel 𝑘
1
(𝑡, 𝜏) defined by (18) is continues it follows

that (17) has a unique solution which can be obtained by
the method of successive approximations. Then the function
Δ𝑦(𝑡) is uniquely determined from (16). Hence the existence
of Γ
0

is archived.
To verify that Γ

0
is bounded we need to establish the resol-

vent kernel Γ
0
(𝑡, 𝜏) of (17), so we assume the integral operator

𝑈 from 𝐶[𝑡
0
, 𝑇] → 𝐶[𝑡

0
, 𝑇] is given by

𝑍 = 𝑈 (Δ𝑥) , 𝑍 (𝑡) = ∫
𝑡

𝑦
0
(𝑡)

𝑘
2
(𝑡, 𝜏) Δ𝑥 (𝜏) 𝑑𝜏, (46)

where 𝑘
2
(𝑡, 𝜏) = 𝑘

1
(𝑡, 𝜏)/𝑥

0
(𝜏), and 𝑘

1
(𝑡, 𝜏) is defined in (18).

Due to (46), (17) can be written as

Δ𝑥 − 𝑈 (Δ𝑥) = 𝐹
0
. (47)

The solution Δ𝑥∗ of (47) is expressed in terms of 𝐹
0

by means
of the formula

Δ𝑥
∗

= 𝐹
0
+ 𝐵 (𝐹

0
) , (48)

where 𝐵 is an integral operator and can be expanded as a
series in powers of 𝑈 [21, Theorem 1, page 378]:

𝐵 (𝐹
0
) = 𝑈 (𝐹

0
) + 𝑈
2

(𝐹
0
) + ⋅ ⋅ ⋅ + 𝑈

𝑛

(𝐹
0
) + ⋅ ⋅ ⋅ , (49)

and it is known that the powers of 𝑈 are also integral opera-
tors. In fact

𝑍
𝑛
= 𝑈
𝑛

, 𝑍
𝑛
(𝑡) = ∫

𝑡

𝑦
0
(𝑡)

𝑘
(𝑛)

2
(𝑡, 𝜏) Δ𝑥 (𝜏) 𝑑𝜏,

(𝑛 = 1, 2, . . .) ,

(50)

where 𝑘(𝑛)
2

is the iterated kernel.
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Substituting (50) into (48) we obtain an expression for the
solution of (47):

Δ𝑥
∗

= 𝐹
0
(𝑡) +

∞

∑
𝑗=1

∫
𝑡

𝑦
0
(𝑡)

𝑘
(𝑗)

2
(𝑡, 𝜏) 𝐹

0
(𝜏) 𝑑𝜏. (51)

Next, we show that the series in (51) is convergent uniformly
for all 𝑡 ∈ [𝑡

0
, 𝑇]. Since

󵄨󵄨󵄨󵄨𝑘2 (𝑡, 𝜏)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘
1
(𝑡, 𝜏)

𝑥
0
(𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ (𝑡, 𝜏)

𝑥
0
(𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘 (𝑡, 𝜏)

𝑥
0
(𝜏) 𝐺 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐
1
𝐻
1
+ 𝑐
1
𝑐
3
𝐻
2
.

(52)

Let 𝑀 = 𝑐
1
𝐻
1
+ 𝑐
1
𝑐
3
𝐻
2
; then by mathematical induction we

get

󵄨󵄨󵄨󵄨󵄨
𝑘
(2)

2
(𝑡, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ ∫
𝑡

𝑦
0
(𝑡)

󵄨󵄨󵄨󵄨𝑘2 (𝑡, 𝑢) 𝑘2 (𝑢, 𝜏)
󵄨󵄨󵄨󵄨 𝑑𝑢 ≤

𝑀2 (𝑡 − 𝐻
4
)

(1)!
,

󵄨󵄨󵄨󵄨󵄨
𝑘
(3)

2
(𝑡, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ ∫
𝑡

𝑦
0
(𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑘
2
(𝑡, 𝑢) 𝑘

(2)

2
(𝑢, 𝜏)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑢 ≤

𝑀3 (𝑡 − 𝐻
4
)
2

(2)!
,

...

󵄨󵄨󵄨󵄨󵄨
𝑘
(𝑛)

2
(𝑡, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ ∫
𝑡

𝑦
0
(𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑘
2
(𝑡, 𝑢) 𝑘

(𝑛−1)

2
(𝑢, 𝜏)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑢

≤
𝑀𝑛 (𝑡 − 𝐻

4
)
𝑛−1

(𝑛 − 1)!
,

(𝑛 = 1, 2, . . .) ;

(53)

then

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩 = max
𝑡∈[𝑡
0
,𝑇]

∫
𝑡

𝑦
0
(𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑘
(𝑛)

2
(𝑡, 𝜏)

󵄨󵄨󵄨󵄨󵄨
𝑑𝜏 ≤

𝑀𝑛 (𝑇 − 𝐻
4
)
(𝑛−1)

(𝑛 − 1)!
.

(54)

Therefore the 𝑛th root test of the sequence yields

𝑛√‖𝑈𝑛‖ ≤
𝑀(𝑇 − 𝐻

4
)
1−1/𝑛

𝑛√(𝑛 − 1)!
󳨀󳨀󳨀→
𝑛→∞

0. (55)

Hence 𝜌 = 1/lim
𝑛→∞

𝑛√‖𝑈𝑛‖ = ∞ and a Volterra integral
equations (17) has no characteristic values. Since the series
in (51) converges uniformly (48) can be written in terms of
resolvent kernel of (17):

Δ𝑥
∗

= 𝐹
0
+ ∫
𝑡

𝑦
0
(𝑡)

Γ
0
(𝑡, 𝜏) 𝐹

0
(𝜏) 𝑑𝜏, (56)

where

Γ
0
(𝑡, 𝜏) =

∞

∑
𝑗=1

𝑘
(𝑗)

2
(𝑡, 𝜏) . (57)

Since the series in (57) is convergent we obtain

󵄩󵄩󵄩󵄩Γ0
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝐵 (𝐹
0
)
󵄩󵄩󵄩󵄩 ≤

∞

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗
󵄩󵄩󵄩󵄩󵄩
≤

∞

∑
𝑗=1

𝑀
𝑗 (𝑇 − 𝐻)

𝑗−1

(𝑗 − 1)!
≤ 𝜂
2
. (58)

To establish the validity of second condition, let us represent
operator equation

𝑃 (𝑋) = 0, (59)

as in (41) and its the successive approximations is

𝑋
𝑛+1

= 𝑆 (𝑋
𝑛
) , (𝑛 = 0, 1, 2, . . .) . (60)

For initial guess 𝑋
0

we have

𝑆 (𝑋
0
) = 𝑋

0
− Γ
0
𝑃 (𝑋
0
) . (61)

From second condition of (Theorem 1) we have

󵄩󵄩󵄩󵄩Γ0𝑃 (𝑋
0
)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑆 (𝑋0) − 𝑋
0

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑋1 − 𝑋

0

󵄩󵄩󵄩󵄩 = ‖Δ𝑋‖ ≤
𝜂

1 + 𝐾𝜂
.

(62)

In addition, we need to show that ‖𝑃󸀠󸀠(𝑋)‖ ≤ 𝜂
1

for all
𝑋 ∈ Ω

0
where 𝜂

1
is defined in (38). It is known that the

second derivative 𝑃
󸀠󸀠

(𝑋
0
)(𝑋,𝑋) of the nonlinear operator

𝑃(𝑋) is described by 3-dimensional array 𝑃󸀠󸀠(𝑋
0
)𝑋𝑋 =

(𝐷
1
, 𝐷
2
)(𝑋,𝑋), which is called bilinear operator; that is,

𝑃󸀠󸀠(𝑋
0
)(𝑋𝑋) = 𝐵(𝑋

0
, 𝑋,𝑋) where

𝑃
󸀠󸀠

(𝑋
0
) (𝑋,𝑋)

= lim
𝑠→0

1

𝑠
[𝑃
󸀠

(𝑥
0
+ 𝑠𝑋) − 𝑃

󸀠

(𝑋
0
)]

= { lim
𝑠→0

1

𝑠
[(

𝜕𝑃
1

𝜕𝑥
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) −

𝜕𝑃
1

𝜕𝑥
(𝑥
0
, 𝑦
0
)) 𝑥

+ (
𝜕𝑃
1

𝜕𝑦
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) −

𝜕𝑃
1

𝜕𝑦
(𝑥
0
, 𝑦
0
)) 𝑦] ,

lim
𝑠→0

1

𝑠
[(

𝜕𝑃
2

𝜕𝑥
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) −

𝜕𝑃
2

𝜕𝑥
(𝑥
0
, 𝑦
0
)) 𝑥

+ (
𝜕𝑃
2

𝜕𝑦
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) −

𝜕𝑃
2

𝜕𝑦
(𝑥
0
, 𝑦
0
)) 𝑦]}
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= { lim
𝑠→0

1

𝑠
[(

𝜕
2𝑃
1

𝜕𝑥2
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕2𝑃
1

𝜕𝑦𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(
𝜕3𝑃
1

𝜕𝑥3
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥
2

+ 2
𝜕3𝑃
1

𝜕𝑥2𝜕𝑦
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥𝑦

+
𝜕3𝑃
1

𝜕𝑦2𝜕𝑥
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑦))𝑥

+ (
𝜕2𝑃
1

𝜕𝑥𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕2𝑃
1

𝜕𝑦2
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(

𝜕3𝑃
1

𝜕𝑥2𝜕𝑦
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥
2

+ 2
𝜕3𝑃
1

𝜕𝑥𝜕𝑦2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥𝑦

+
𝜕3𝑃
1

𝜕𝑦3
(𝑥
0
+ 𝜃𝑠𝑥, 𝛿𝑠𝑦) 𝑠

2

𝑦
2

))𝑦] ,

lim
𝑠→0

1

𝑠
[(

𝜕
2𝑃
2

𝜕𝑥2
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕2𝑃
2

𝜕𝑦𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(
𝜕3𝑃
2

𝜕𝑥3
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥
2

+ 2
𝜕3𝑃
2

𝜕𝑥2𝜕𝑦
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥𝑦

+
𝜕3𝑃
2

𝜕𝑦2𝜕𝑥
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑦))𝑥

+ (
𝜕2𝑃
2

𝜕𝑥𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕2𝑃
2

𝜕𝑦2
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(

𝜕3𝑃
2

𝜕𝑥2𝜕𝑦
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥
2

+ 2
𝜕3𝑃
2

𝜕𝑥𝜕𝑦2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2

𝑥𝑦

+
𝜕3𝑃
2

𝜕𝑦3
(𝑥
0
+ 𝜃𝑠𝑥, 𝛿𝑠𝑦) 𝑠

2

𝑦
2

))𝑦]}

= (
𝜕2𝑃
1

𝜕𝑥2
(𝑥
0
, 𝑦
0
) 𝑥𝑥 +

𝜕2𝑃
1

𝜕𝑦𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑦𝑥

+
𝜕2𝑃
1

𝜕𝑥𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑥𝑦 +

𝜕2𝑃
1

𝜕𝑦2
(𝑥
0
, 𝑦
0
) 𝑦𝑥,

𝜕2𝑃
2

𝜕𝑥2
(𝑥
0
, 𝑦
0
) 𝑥𝑥 +

𝜕2𝑃
2

𝜕𝑦𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑦𝑥

+
𝜕2𝑃
2

𝜕𝑥𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑥𝑦 +

𝜕2𝑃
2

𝜕𝑦2
(𝑥
0
, 𝑦
0
) 𝑦𝑥) ,

(63)

where 𝜃, 𝛿 ∈ (0, 1), so we have

𝑃
󸀠󸀠

(𝑋
0
) (𝑋,𝑋) = (𝐷

1
𝐷
2
) (

𝑥

𝑦
)(

𝑥

𝑦
) , (64)

where

𝐷
1
= (

𝜕2𝑃
1

𝜕𝑥2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

𝜕2𝑃
1

𝜕𝑦𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

𝜕2𝑃
1

𝜕𝑥𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

𝜕2𝑃
1

𝜕𝑦2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

),

𝐷
2
= (

𝜕2𝑃
2

𝜕𝑥2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

𝜕2𝑃
2

𝜕𝑦𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

𝜕2𝑃
2

𝜕𝑥𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

𝜕2𝑃
2

𝜕𝑦2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥
0
,𝑦
0
)

).

(65)

Then the norms of every components of 𝐷
1

and 𝐷
2

have the
estimate

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕2𝑃
1

𝜕𝑥2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
‖𝑋‖≤1,‖𝑋‖≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

𝑦
0
(𝑡)

ℎ (𝑡, 𝜏)
𝑥 (𝜏)

𝑥2
0
(𝜏)

𝑥 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐻
1
𝑐
2
(𝑇 − 𝐻

4
) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕2𝑃
1

𝜕𝑥𝜕𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
‖𝑋‖≤1,‖𝑋‖≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ℎ (𝑡, 𝑦

0
(𝑡))

𝑥 (𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐻
1
𝑐
1
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕2𝑃
1

𝜕𝑦𝜕𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
‖𝑋‖≤1,‖𝑋‖≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ℎ (𝑡, 𝑦

0
(𝑡))

𝑥 (𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐻
1
𝑐
1
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕2𝑃
1

𝜕𝑦2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
‖𝑋‖≤1,‖𝑋‖≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[ℎ
󸀠

𝜏
(𝑡, 𝑦
0
(𝑡)) log 󵄨󵄨󵄨󵄨𝑥0 (𝑦0 (𝑡))

󵄨󵄨󵄨󵄨

+ ℎ (𝑡, 𝑦
0
(𝑡))

𝑥
󸀠

0
(𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

]

× 𝑦 (𝑡) 𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐻
󸀠

1
𝐻
5
+ 𝐻
1
𝐻
󸀠

3
𝑐
1
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕2𝑃
2

𝜕𝑥2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
‖𝑋‖≤1,‖𝑋‖≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

𝑦
0
(𝑡)

𝑘 (𝑡, 𝜏)
𝑥 (𝜏)

𝑥2
0
(𝜏)

𝑥 (𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐻
2
𝑐
2
(𝑇 − 𝐻

4
) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕2𝑃
2

𝜕𝑥𝜕𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
‖𝑋‖≤1,‖𝑋‖≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−𝑘 (𝑡, 𝑦

0
(𝑡))

𝑥 (𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐻
2
𝑐
1
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕2𝑃
2

𝜕𝑦𝜕𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
‖𝑋‖≤1,‖𝑋‖≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−𝑘 (𝑡, 𝑦

0
(𝑡))

𝑥 (𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐻
2
𝑐
1
,
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󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕2𝑃
2

𝜕𝑦2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= max
‖𝑋‖≤1,‖𝑋‖≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[𝑘
󸀠

𝜏
(𝑡, 𝑦
0
(𝑡)) log 󵄨󵄨󵄨󵄨𝑥0 (𝑦0 (𝑡))

󵄨󵄨󵄨󵄨

+ 𝑘 (𝑡, 𝑦
0
(𝑡))

𝑥
󸀠

0
(𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

]

× 𝑦 (𝑡) 𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐻
󸀠

2
𝐻
5
+ 𝐻
2
𝐻
󸀠

3
𝑐
1
.

(66)

Therefore, all the second derivatives exist and are bounded:
󵄩󵄩󵄩󵄩󵄩
𝑃
󸀠󸀠

(𝑋)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜂
1
. (67)

Since 𝜓(𝑡) majorizes operator 𝑃(𝑋) and utilizing the second
condition of (Theorem 1) we get

󵄩󵄩󵄩󵄩󵄩
Γ
0
𝑃
󸀠󸀠

(𝑋)
󵄩󵄩󵄩󵄩󵄩
≤

2𝐾

1 + 𝐾𝜂
. (68)

Let us consider the discriminant of equation 𝜓(𝑡) = 0:

𝐷 = 𝐾
2

𝜂
2

− 2𝐾𝜂 + 1 = (𝑘𝜂 − 1)
2

, (69)

and the two roots of𝜓(𝑡) = 0 are 𝑟
1
= 1/𝐾+𝑡

0
and 𝑟
2
= 𝜂+𝑡

0
;

therefore, when 𝑟
1
< 𝑟 < 𝑟

2
implies

𝜓 (𝑟) ≤ 0, (70)

then under the assumption of the fourth condition, that is,
1/𝐾 + 𝑡

0
is the unique solution of 𝜓(𝑡) = 0 in [𝑡

0
, 𝑇] and the

condition in (70) [21, Theorem 4, page 530] implies that𝑋∗ is
the unique solution of operator equation (5) [21, Theorem 6,
page 532] and

󵄩󵄩󵄩󵄩𝑋
∗

− 𝑋
0

󵄩󵄩󵄩󵄩 ≤ 𝑡
∗

− 𝑡
0
, (71)

where 𝑡∗ is the unique solution of 𝜓(𝑡) = 0 in [𝑡
0
, 𝑟].

To show the rate of convergence let us write the equation
𝜓(𝑡) = 0 in a same form as in (40) then its successive
approximation is

𝑡
𝑚+1

= 𝜙 (𝑡
𝑚
) , 𝑚 = 0, 1, 2, . . . . (72)

To estimate the difference between 𝑡∗ and successive approx-
imation 𝑡

𝑚
:

𝑡
∗

− 𝑡
𝑚
= 𝜙 (𝑡

∗

) − 𝜙 (𝑡
𝑚−1

) = 𝜙
󸀠

(𝑡
𝑚
) (𝑡
∗

− 𝑡
𝑚−1

) , (73)

where 𝑡
𝑚
∈ (𝑡
𝑚−1

, 𝑡∗) and

𝜙
󸀠

(𝑡) = 1 + 𝑐
0
𝜓
󸀠

(𝑡) =
2𝐾

1 + 𝐾𝜂
(𝑡 − 𝑡
0
) ; (74)

therefore

𝜙
󸀠

(𝑡
𝑚
) =

2𝐾

1 + 𝐾𝜂
(𝑡
𝑚
− 𝑡
0
)

≤
2𝐾

1 + 𝐾𝜂
(𝑡
∗

− 𝑡
0
) =

2

1 + 𝐾𝜂
;

(75)

then

𝑡
∗

− 𝑡
𝑚
≤

2

1 + 𝐾𝜂
(𝑡
∗

− 𝑡
𝑚−1

) ,

𝑡
∗

− 𝑡
𝑚−1

≤
2

1 + 𝐾𝜂
(𝑡
∗

− 𝑡
𝑚−2

) ;

...

𝑡
∗

− 𝑡
1
≤

2

1 + 𝐾𝜂
(𝑡
∗

− 𝑡
0
) ,

(76)

consequently,

𝑡
∗

− 𝑡
𝑚
≤ (

2

1 + 𝐾𝜂
)

𝑚

1

𝐾
; (77)

it implies

󵄩󵄩󵄩󵄩𝑋
∗

− 𝑋
𝑚

󵄩󵄩󵄩󵄩 ≤ (𝑡
∗

− 𝑡
𝑚
) ≤ (

2

1 + 𝐾𝜂
)

𝑚

1

𝐾
. (78)

5. Numerical Example

Consider the system of nonlinear equation

𝑥 (𝑡) − ∫
𝑡

𝑦(𝑡)

𝑡𝜏 log (|𝑥 (𝜏)|) 𝑑𝜏 = 𝑒
𝑡

−
𝑡2

3
,

∫
𝑡

𝑦(𝑡)

𝜏 log (|𝑥 (𝜏)|) 𝑑𝜏 =
𝑡

3
, 𝑡 ∈ [10, 15] .

(79)

The exact solution is
𝑥
∗

(𝑡) = 𝑒
𝑡

,

𝑦
∗

(𝑡) =
3√𝑡3 − 𝑡,

(80)

and the initial guesses are

𝑥
0
(𝑡) = 𝑒

10

(𝑡 − 9) ,

𝑦
0
(𝑡) = 0.6𝑡 + 4.

(81)

Table 1 shows that 𝑥
𝑚
(𝑡) coincides with the exact 𝑥∗(𝑡)

from the first iteration whereas only six iterations are needed
for 𝑦
𝑚
(𝑡) to be very close to 𝑦∗(𝑡). Notations used here are

as follows: 𝑁 is the number of nodes, 𝑚 is the number of
iterations, and 𝜖

𝑥
= max

𝑡∈[10,15]
|𝑥
𝑚
(𝑡) − 𝑥∗(𝑡)| and 𝜖

𝑦
=

max
𝑡∈[10,15]

|𝑦
𝑚
(𝑡) − 𝑦∗(𝑡)|.

6. Conclusion

In this paper, the Newton-Kantorovich method is developed
to solve the system of nonlinear Volterra integral equations
which contains logarithmic function. We have introduced
a new majorant function that leads to the increment of
range of convergence of successive approximation process.
A new theorem is stated based on the general theorems
of Kantorovich. Numerical example is given to show the
validation of the method. Table 1 shows that the proposed
method is in good agreement with the theoretical findings.
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Table 1: Numerical results for (79).

𝑁 = 20, ℎ = 0.25

𝑚 𝜖
𝑥

𝜖
𝑦

1 0.00 0.0029
2 0.00 4.3597𝐸 − 006

3 0.00 3.1061𝐸 − 008

4 0.00 1.0140𝐸 − 009

5 0.00 1.2541𝐸 − 010

6 0.00 3.9968𝐸 − 011
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We give some improved convergence results about the smoothing-regularization approach to mathematical programs with
vanishing constraints (MPVC for short), which is proposed in Achtziger et al. (2013). We show that the Mangasarian-Fromovitz
constraints qualification for the smoothing-regularization problem still holds under the VC-MFCQ (see Definition 5) which is
weaker than the VC-LICQ (see Definition 7) and the condition of asymptotic nondegeneracy. We also analyze the convergence
behavior of the smoothing-regularization method and prove that any accumulation point of a sequence of stationary points for the
smoothing-regularization problem is still strongly-stationary under the VC-MFCQ and the condition of asymptotic nondegeneracy.

1. Introduction

We consider the following mathematical program with van-
ishing constraints:

min 𝑓 (𝑧)

s.t. 𝑔
𝑖
(𝑧) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚;

ℎ
𝑗
(𝑧) = 0, 𝑗 = 1, 2, . . . , 𝑝;

𝐻
𝑖
(𝑧) ≥ 0, 𝑖 = 1, 2, . . . , 𝑙;

𝐺
𝑖
(𝑧)𝐻
𝑖
(𝑧) ≤ 0, 𝑖 = 1, 2, . . . , 𝑙,

(1)

where 𝑓 : 𝑅𝑛 → 𝑅, 𝑔 : 𝑅𝑛 → 𝑅𝑚, ℎ : 𝑅𝑛 → 𝑅𝑝 and
𝐺,𝐻 : 𝑅𝑛 → 𝑅𝑙 are all continuously differentiable functions.

The MPVC was firstly introduced to the mathematical
community in [1]. It plays an important role in some fields
such as optimization topology design problems in mechani-
cal structures [1] and robot path-finding problems with logic
communication constraints in robot motion planning [2].
The major difficulty in solving problem (1) is that it does
not satisfy some standard constraint qualifications at the
feasible points so that the standard optimization methods are
likely to fail for this problem. The MPVC has attracted much
attention in the recent years. Several theoretical properties

and different numerical approaches for MPVC can be found
in [1–12]. Very recently, in [3], the authors have proposed
a smoothing-regularization approach to mathematical pro-
grams with vanishing constraints. Their basic idea is to
reformulate the characteristic constraints of the MPVC via
a nonsmooth function and to eventually smooth it and
regularize the feasible set with the aid of a certain smoothing
and regularization parameter 𝜀 > 0 such that the resulting
problem is more tractable and coincides with the original
program for 𝜀 = 0. Under the VC-LICQ and the condition
of asymptotic nondegeneracy, the convergence behaviors of
a sequence of stationary points of the smoothing-regularized
problems have been investigated.

In this note, we give some improved convergence results
about the smoothing-regularization approach to mathemati-
cal programs with vanishing constraints in [3]. We show that
these properties still hold under the weaker VC-MFCQ and
the condition of asymptotic nondegeneracy. The smoothing-
regularization problems satisfy the standard MFCQ, which
guarantees the existence of Lagrange multipliers at local
minima; the sequence of multipliers is bounded, and the limit
point is still strongly-stationary.
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The rest of the note is organized as follows. In Section 2,
we review some concepts of the nonlinear programming and
the MPVC and present the smoothing-regularization method
for (1), which is proposed in [3]. In Section 3, we give the
improved convergent properties. We close with some final
remarks in Section 4.

For convenience of discussion, some notations to be used
in this paper are given. The 𝑖th component of 𝐺 will be
denoted by 𝐺

𝑖
; 𝑋 denotes the feasible set of problem (1). For

a function 𝑔 : 𝑅𝑛 → 𝑅𝑚 and a given vector 𝛼 ∈ 𝑅𝑛, we use
𝐼
𝑔
(𝑧) = {𝑖 : 𝑔

𝑖
(𝑧) = 0} and supp(𝛼) = {𝑖 : 𝛼

𝑖
̸= 0} to denote

the active index set of 𝑔 at 𝑧 and the support of 𝛼, respectively.

2. Preliminaries

Firstly, we will introduce some definitions about the following
optimization problem:

min 𝑓 (𝑧)

s.t. 𝑔 (𝑧) ≤ 0,

ℎ (𝑧) = 0,

(2)

where 𝑓 : 𝑅𝑛 → 𝑅, 𝑔 : 𝑅𝑛 → 𝑅𝑚, ℎ : 𝑅𝑛 → 𝑅𝑝 are all
continuously differentiable functions. 𝐹 denotes the feasible
set of problem (2).

Definition 1. A point 𝑧 ∈ 𝐹 is called a stationary point if
there are multipliers 𝜆, 𝜇 such that (𝑧, 𝜆, 𝜇) is a KKT point
of (2); that is, the multipliers satisfy 𝜆 ∈ 𝑅𝑚

+
and 𝜇 ∈ 𝑅𝑝 with

𝜆
𝑖
𝑔
𝑖
(𝑧) = 0 for all 𝑖 = 1, 2, . . . , 𝑚, and

∇𝑓 (𝑧) +

𝑚

∑
𝑖=1

𝜆
𝑖
∇𝑔
𝑖
(𝑧) +

𝑝

∑
𝑖=1

𝜇
𝑖
∇ℎ
𝑖
(𝑧) = 0. (3)

Definition 2. A feasible point 𝑧 of (2) is said to satisfy the
Mangasarian-Fromovitz constraint qualification (MFCQ for
short) if the gradients {∇ℎ

𝑖
(𝑧) | 𝑖 = 1, 2, . . . , 𝑝} are linearly

independent and there is a 𝑑 ∈ 𝑅𝑛 such that

∇𝑔
𝑖
(𝑧)
𝑇

𝑑 < 0 (𝑖 ∈ 𝐼
𝑔
(𝑧)) ,

∇ℎ
𝑖
(𝑧)
𝑇

𝑑 = 0 (𝑖 = 1, 2, . . . , 𝑝) .

(4)

Definition 3 (see [13]). A finite set of vectors {𝑎
𝑖
| 𝑖 ∈ 𝐼

1
}∪{𝑏
𝑖
|

𝑖 ∈ 𝐼
2
} is said to be positive-linearly dependent if there exists

(𝛼, 𝛽) ̸= 0 such that

∑
𝑖∈𝐼
1

𝛼
𝑖
𝑎
𝑖
+ ∑
𝑖∈𝐼
2

𝛽
𝑖
𝑏
𝑖
= 0, 𝛼

𝑖
≥ 0, ∀𝑖 ∈ 𝐼

1
. (5)

If the above system only has a solution (𝛼, 𝛽) = 0, we say
that these vectors are positive-linearly independent.

By using Motzkin’s theorem of the alternatives in [14], we
can obtain the following property.

Lemma 4. A point 𝑧 ∈ 𝐹 satisfies the MFCQ if and only if the
gradients

{∇𝑔
𝑖
(𝑧) | 𝑖 ∈ 𝐼

𝑔
(𝑧)} ∪ {∇ℎ

𝑖
(𝑧) | 𝑖 = 1, 2, . . . , 𝑝} (6)

are positive-linearly independent.

Now, we borrow notations from mathematical programs
with complementarity constraints to define the following sets
of active constraints in an arbitrary 𝑧 ∈ 𝑋 as follows:

𝐼
+
(𝑧) = {𝑖 | 𝐻

𝑖
(𝑧) > 0} ,

𝐼
0
(𝑧) = {𝑖 | 𝐻

𝑖
(𝑧) = 0} ,

𝐼
+0

(𝑧) = {𝑖 | 𝐻
𝑖
(𝑧) > 0, 𝐺

𝑖
(𝑧) = 0} ,

𝐼
+−

(𝑧) = {𝑖 | 𝐻
𝑖
(𝑧) > 0, 𝐺

𝑖
(𝑧) < 0} ,

𝐼
0+

(𝑧) = {𝑖 | 𝐻
𝑖
(𝑧) = 0, 𝐺

𝑖
(𝑧) > 0} ,

𝐼
00

(𝑧) = {𝑖 | 𝐻
𝑖
(𝑧) = 0, 𝐺

𝑖
(𝑧) = 0} ,

𝐼
0−

(𝑧) = {𝑖 | 𝐻
𝑖
(𝑧) = 0, 𝐺

𝑖
(𝑧) < 0} .

(7)

Definition 5 (see [1]). A feasible point 𝑧 for (1) satisfies the
vanishing constraints Mangasarian-Fromovitz constraints
qualification (VC-MFCQ for short) if

∇ℎ
𝑖
(𝑧) (𝑖 = 1, 2, . . . , 𝑝) ,

∇𝐻
𝑖
(𝑧) (𝑖 ∈ 𝐼

0+
(𝑧) ∪ 𝐼

00
(𝑧))

(8)

are linearly independent and there exists a vector 𝑑 ∈ 𝑅𝑛 such
that

∇ℎ
𝑖
(𝑧)
𝑇

𝑑 = 0 (𝑖 = 1, 2, . . . , 𝑝) ,

∇𝐻
𝑖
(𝑧)
𝑇

𝑑 = 0 (𝑖 ∈ 𝐼
0+

(𝑧) ∪ 𝐼
00

(𝑧)) ,

∇𝑔
𝑖
(𝑧)
𝑇

𝑑 < 0 (𝑖 ∈ 𝐼
𝑔
(𝑧)) ,

∇𝐻
𝑖
(𝑧)
𝑇

𝑑 > 0 (𝑖 ∈ 𝐼
0−

(𝑧)) ,

∇𝐺
𝑖
(𝑧)
𝑇

𝑑 < 0 (𝑖 ∈ 𝐼
+0

(𝑧)) .

(9)

Similar to Lemma 4, we can also deduce the following result.

Lemma 6. A point 𝑧 ∈ 𝑋 satisfies the VC-MFCQ if and only
if the gradients

{∇𝑔
𝑖
(𝑧) | 𝑖 ∈ 𝐼

𝑔
(𝑧)}

∪ {∇ℎ
𝑖
(𝑧) | 𝑖 = 1, 2, . . . , 𝑝}

∪ {−∇𝐻
𝑖
(𝑧) | 𝑖 ∈ 𝐼

0−
(𝑧)}

∪ {∇𝐺
𝑖
(𝑧) | 𝑖 ∈ 𝐼

+0
(𝑧)}

∪ {∇𝐻
𝑖
(𝑧) | 𝑖 ∈ 𝐼

00
(𝑧) ∪ 𝐼

0+
(𝑧)}

(10)

are positive-linearly independent. In other words, theMPVC at
𝑧 satisfies the VC-MFCQ if and only if there does not exist a
vector (𝜆

𝐼
𝑔
(𝑧)

, 𝜇, 𝛼
𝐼
0−
(𝑧)

, 𝛼
𝐼
00
(𝑧)∪𝐼
0+
(𝑧)

, 𝛽
𝐼
+0
(𝑧)

) ̸= 0 with 𝜆
𝑖
≥ 0
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for all 𝑖 ∈ 𝐼
𝑔
(𝑧), 𝛼

𝑖
≥ 0 for all 𝑖 ∈ 𝐼

0−
(𝑧), and 𝛽

𝑖
≥ 0 for all

𝑖 ∈ 𝐼
+0

(𝑧) such that

∑

𝑖∈𝐼
𝑔
(𝑧)

𝜆
𝑖
∇𝑔
𝑖
(𝑧) +

𝑙

∑
𝑖=1

𝜇
𝑖
∇ℎ
𝑖
(𝑧)

− ∑

𝑖∈𝐼
0−
(𝑧)

𝛼
𝑖
∇𝐻
𝑖
(𝑧) + ∑

𝑖∈𝐼
00
(𝑧)∪𝐼
0+
(𝑧)

𝛼
𝑖
∇𝐻
𝑖
(𝑧)

+ ∑

𝑖∈𝐼
+0
(𝑧)

𝛽
𝑖
∇𝐺
𝑖
(𝑧) = 0

(11)

holds true.

Definition 7 (see [1]). A feasible point 𝑧 for (1) satisfies the
vanishing linear independence constraints qualification (VC-
LICQ for short) if and only if

∇ℎ
𝑖
(𝑧) (𝑖 = 1, 2, . . . , 𝑝) ,

∇𝑔
𝑖
(𝑧) (𝑖 ∈ 𝐼

𝑔
(𝑧)) ,

∇𝐺
𝑖
(𝑧) (𝑖 ∈ 𝐼

+0
(𝑧)) ,

∇𝐻
𝑖
(𝑧) (𝑖 ∈ 𝐼

0
(𝑧))

(12)

are linearly independent.

Remark 8. It is easy to see that the VC-LICQ implies the VC-
MFCQ. Moreover, the VC-LICQ (VC-MFCQ) is weaker than
the MPVC-LICQ (MPVC-MFCQ) (See [7]).

Definition 9. Let 𝑧 be a feasible point for the problem (1), then

(a) 𝑧 is said to be weak-stationary if there exist multiplier
vectors 𝜆 ∈ 𝑅𝑚, 𝜇 ∈ 𝑅𝑝, and 𝑢, V ∈ 𝑅𝑙 such that

∇𝑓 (𝑧) + ∇𝑔(𝑧)
𝑇

𝜆 + ∇ℎ(𝑧)
𝑇

𝜇

− ∇𝐻(𝑧)
𝑇V + ∇𝐺(𝑧)

𝑇

𝑢 = 0,

𝜆 ≥ 0, 𝑧 ∈ 𝑋, 𝜆
𝑇

𝑔 (𝑧) = 0,

V
𝑖
= 0 (𝑖 ∈ 𝐼

+
(𝑧)) ,

V
𝑖
≥ 0 (𝑖 ∈ 𝐼

0−
(𝑧)) ,

V
𝑖

free (𝑖 ∈ 𝐼
0+

(𝑧) ∪ 𝐼
00

(𝑧)) ,

𝑢
𝑖
= 0 (𝑖 ∈ 𝐼

+−
(𝑧) ∪ 𝐼

0−
(𝑧) ∪ 𝐼

0+
(𝑧)) ,

𝑢
𝑖
≥ 0 (𝑖 ∈ 𝐼

+0
(𝑧) ∪ 𝐼

00
(𝑧)) .

(13)

(b) 𝑧 is said to be strongly-stationary, if it is weak-
stationary and

𝑢
𝑖
= 0, V

𝑖
≥ 0, 𝑖 ∈ 𝐼

00
(𝑧) . (14)

Finally, we give the smoothing-regularization method
of Problem (1), which is proposed in [3]. According to
[3], with the help of a positive parameter, the MPVC (1)
is approximated by the following smoothing-regularization
problem:

min 𝑓 (𝑧)

s.t. 𝑔 (𝑧) ≤ 0, ℎ (𝑧) = 0,

𝑟
𝜀
(𝑧) ≤ 𝜀,

(15)

where

𝑟
𝜀
(𝑧) = (

𝑟
𝜀,1

(𝑧)
...

𝑟
𝜀,𝑙

(𝑧)

) ,

𝑟
𝜀,𝑖

(𝑧) =
1

2
(𝐺
𝑖
(𝑧)𝐻
𝑖
(𝑧) + √(𝐺

𝑖
(𝑧)𝐻
𝑖
(𝑧))
2

+ 𝜀2

+ √(𝐻
𝑖
(𝑧))
2

+ 𝜀2 − 𝐻
𝑖
(𝑧)) .

(16)

In order to give our improved convergence analysis, the
following concept of asymptotic nondegeneracy is necessary.

Definition 10 (see [3]). Let 𝑧 be feasible for the MPVC (1).
Then a sequence {𝑧

𝑘
} of feasible points for (15) converging

to 𝑧 as 𝜀
𝑘

↓ 0 is called asymptotically nondegenerate, if any
accumulation point of {∇𝑟

𝜀
𝑘
,𝑖
(𝑧
𝑘
)} is different from 0 for each

𝑖 ∈ 𝐼
+0

(𝑧) ∪ 𝐼
0
(𝑧).

3. Some Improved Convergence Properties

In this section, we will consider the improved conver-
gence properties of a sequence of stationary points for the
smoothing-regularization problem (15). Firstly, we discuss
the constraint qualification of (15).

For convenience of discussion, we give the following
notations:

𝑎
𝜀,𝑖

(𝑧) = 𝐻
𝑖
(𝑧) +

𝐺
𝑖
(𝑧)𝐻
𝑖
(𝑧)
2

√𝐺
𝑖
(𝑧)
2

𝐻
𝑖
(𝑧)
2

+ 𝜀2
,

𝑏
𝜀,𝑖

(𝑧) = 𝐺
𝑖
(𝑧) +

𝐺
𝑖
(𝑧)
2

𝐻
𝑖
(𝑧)

√𝐺
𝑖
(𝑧)
2

𝐻
𝑖
(𝑧)
2

+ 𝜀2
+

𝐻
𝑖
(𝑧)

√𝐻
𝑖
(𝑧)
2

+ 𝜀2
− 1,

𝐼
𝑟
𝜀

(𝑧) = {𝑖 : 𝑟
𝜀,𝑖

(𝑧) = 𝜀} .

(17)

To show that the Mangasarian-Fromovitz constraints qualifi-
cation for the problem (15) holds under some conditions, the
following lemma palys a very important role.

Lemma 11. Let 𝑧 be feasible for (1) such that the VC-MFCQ is
satisfied at 𝑧 and the sequence {𝑧

𝑘
} of feasible points for (15)
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converging to 𝑧 as 𝜀
𝑘

↓ 0 is asymptotically nondegenerate.
Then, for sufficiently large 𝑘, the set of vectors

∇𝑔
𝑖
(𝑧
𝑘
) , 𝑖 ∈ 𝐼

𝑔
(𝑧) ,

∇ℎ
𝑖
(𝑧
𝑘
) , 𝑖 = 1, 2, . . . , 𝑝,

− (𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0−

(𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0

(𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ (𝐼
0+

(𝑧) ∪ 𝐼
00

(𝑧))

(18)

are positive-linearly independent.

Proof. Since𝑔, ℎ, 𝐺,𝐻 are all continuous, for sufficiently large
𝑘, we have

𝐼
𝑔
(𝑧
𝑘
) ⊆ 𝐼
𝑔
(𝑧) , 𝐼

ℎ
(𝑧
𝑘
) ⊆ 𝐼
ℎ
(𝑧) . (19)

Because the VC-MFCQ holds, the gradients

{∇𝑔
𝑖
(𝑧) | 𝑖 ∈ 𝐼

𝑔
(𝑧)}

∪ {∇ℎ
𝑖
(𝑧) | 𝑖 = 1, 2, . . . , 𝑝}

∪ {−∇𝐻
𝑖
(𝑧) | 𝑖 ∈ 𝐼

0−
(𝑧)}

∪ {∇𝐺
𝑖
(𝑧) | 𝑖 ∈ 𝐼

+0
(𝑧)}

∪ {∇𝐻
𝑖
(𝑧) | 𝑖 ∈ 𝐼

00
(𝑧) ∪ 𝐼

0+
(𝑧)}

(20)

are positive-linearly independent by Lemma 6, taking into
account that

(𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0−

(𝑧)) ⊆ 𝐼
0−

(𝑧) ,

(𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0

(𝑧)) ⊆ 𝐼
+0

(𝑧) ,

(𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0+

(𝑧)) ∪ (𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
00

(𝑧))

⊆ 𝐼
00

(𝑧) ∪ 𝐼
0+

(𝑧) .

(21)

In view of the condition of asymptotic nondegeneracy, we
know that 𝑎

𝜀
𝑘
,𝑖
(𝑧
𝑘
) ̸= 0, 𝑏

𝜀
𝑘
,𝑖
(𝑧
𝑘
) ≈ 0 for all 𝑖 ∈ 𝐼

+0
(𝑧) and

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ≈ 0, 𝑏

𝜀
𝑘
,𝑖
(𝑧
𝑘
) ̸= 0 for 𝑖 ∈ 𝐼

0
for all sufficiently large 𝑘.

Similar to the proof of Proposition 2.2 in [15], we know that
the set of vectors

∇𝑔
𝑖
(𝑧
𝑘
) , 𝑖 ∈ 𝐼

𝑔
(𝑧) ,

∇ℎ
𝑖
(𝑧
𝑘
) , 𝑖 = 1, 2, . . . , 𝑝,

− (𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0−

(𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0

(𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ (𝐼
0+

(𝑧) ∪ 𝐼
00

(𝑧))

(22)

are positive-linearly independent for all sufficiently large 𝑘.
The proof is completed.

Based on the above lemma, we can show the following
theorem.

Theorem 12. Let 𝑧 be feasible for (1) such that the VC-MFCQ
is satisfied at 𝑧 and the sequence {𝑧

𝑘
} of feasible points for (15)

converging to 𝑧 as 𝜀
𝑘

↓ 0 is asymptotically nondegenerate.
Then, for sufficiently large 𝑘, Problem (15) satisfies the standard
MFCQ at 𝑧

𝑘
.

Proof. Taking Lemma 11 into account, we know that the set of
vectors

∇𝑔
𝑖
(𝑧
𝑘
) , 𝑖 ∈ 𝐼

𝑔
(𝑧) ,

∇ℎ
𝑖
(𝑧
𝑘
) , 𝑖 = 1, 2, . . . , 𝑝,

− (𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0−

(𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0

(𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ (𝐼
0+

(𝑧) ∪ 𝐼
00

(𝑧))

(23)

are positive-linearly independent for sufficiently large 𝑘.
We now prove that the standard MFCQ holds at 𝑧

𝑘
for

Problem (15) for sufficiently large 𝑘. In view of Lemma 4, we
have to show that

0 = ∑

𝑖∈𝐼
𝑔(𝑧𝑘)

𝜆
𝑘

𝑖
∇𝑔
𝑖
(𝑧
𝑘
) +

𝑝

∑
𝑖=1

𝜇
𝑘

𝑖
∇ℎ
𝑖
(𝑧
𝑘
)

+

𝑙

∑
𝑖=1

𝛾
𝑘

𝑖
(𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
))

(24)
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with 𝜇𝑘 ∈ 𝑅𝑝 and 𝜆𝑘, 𝛾𝑘 ≥ 0 holds for the zero vector. To see
this, we rewrite (24) as

0 = ∑

𝑖∈𝐼
𝑔(𝑧𝑘)

𝜆
𝑘

𝑖
∇𝑔
𝑖
(𝑧
𝑘
) +

𝑝

∑
𝑖=1

𝜇
𝑘

𝑖
∇ℎ
𝑖
(𝑧
𝑘
)

− ∑

𝑖∈𝐼
𝑟𝜀
𝑘

(𝑧𝑘)∩𝐼0−(𝑧)

𝛾
𝑘

𝑖
(−𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

−𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
))

+ ∑

𝑖∈𝐼
𝑟𝜀
𝑘

(𝑧𝑘)∩𝐼+0(𝑧)

𝛾
𝑘

𝑖
(𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
))

+ ∑

𝑖∈𝐼
𝑟𝜀
𝑘

(𝑧𝑘)∩(𝐼0+(𝑧)∪𝐼00(𝑧))

𝛾
𝑘

𝑖
(𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)) .

(25)

In view of the condition of asymptotic nondegeneracy,
applying the positive linear independence of vectors from
(23) to (25) and (19), one gets

𝜆
𝑘

𝑖
= 0 (𝑖 ∈ 𝐼

𝑔
(𝑧
𝑘
)) ,

𝜇
𝑘

𝑖
= 0 (𝑖 = 1, 2, . . . , 𝑝) ,

𝛾
𝑘

𝑖
= 0 (𝑖 ∈ 𝐼

𝑟
𝜀
𝑘

(𝑧
𝑘

) ∩ 𝐼
0−

(𝑧)) ,

𝛾
𝑘

𝑖
= 0 (𝑖 ∈ 𝐼

𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0

(𝑧)) ,

𝛾
𝑘

𝑖
= 0 (𝑖 ∈ 𝐼

𝑟
𝜀
𝑘

(𝑧
𝑘

) ∩ (𝐼
0+

(𝑧) ∪ 𝐼
00

(𝑧))) .

(26)

The proof is completed.

Remark 13. In Theorem 12, by relaxing the condition of the
VC-LICQ, we show that the VC-MFCQ and the condition
of asymptotic nondegeneracy imply that the smoothing-
regularization problems satisfy the standard MFCQ. Hence,
Theorem 12 is an improved version of Lemma 5.6 in [3].

To establish the relations between the solutions of the
original problem and those of the smoothing-regularization
problem under the VC-MFCQ and the condition of asymp-
totic nondegeneracy, we give the following key lemma.

Lemma 14. Let 𝜀
𝑘

> 0 be convergent to zero. Suppose that
{𝑧
𝑘
} is a sequence of stationary points of Problem (15) with

𝜀 = 𝜀
𝑘
and (𝜆𝑘, 𝜇𝑘, 𝛾𝑘) being the corresponding multiplier

vectors. If 𝑧 is an accumulation point of the sequence {𝑧
𝑘
} such

that the VC-MFCQ holds at 𝑧 and the condition of asymptotic
nondegeneracy for {𝑧

𝑘
} is satisfied, then the sequence of

multipliers {(𝜆𝑘, 𝜇𝑘, 𝛾𝑘)} is bounded.

Proof. It follows from Theorem 12 that, for sufficiently large
𝑘, there exist lagrangian multiplier vectors (𝜆

𝑘, 𝜇𝑘, 𝛾𝑘) such
that

∇𝑓 (𝑧
𝑘
) +

𝑚

∑
𝑖=1

𝜆
𝑘

𝑖
∇𝑔
𝑖
(𝑧
𝑘
) +

𝑝

∑
𝑖=1

𝜇
𝑘

𝑖
∇ℎ
𝑖
(𝑧
𝑘
)

+

𝑙

∑
𝑖=1

𝛾
𝑘

𝑖
∇𝑟
𝜀
𝑘
,𝑖
(𝑧
𝑘
) = 0,

(27)

𝜆
𝑘
≥ 0, supp (𝜆

𝑘

) ⊆ 𝐼
𝑔
(𝑧
𝑘
) ,

𝛾
𝑘
≥ 0, supp (𝛾

𝑘

) ⊆ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) .

(28)

From (27), we have

∇𝑓 (𝑧
𝑘
) + ∑
𝑖∈supp(𝜆

𝑘
)

𝜆
𝑘

𝑖
∇𝑔
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝜇

𝑘
)

𝜇
𝑘

𝑖
∇ℎ
𝑖
(𝑧
𝑘
)

+ ∑

𝑖∈supp(𝛾
𝑘
)∩𝐼
0−
(𝑧)

𝛾
𝑘

𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ ∑

𝑖∈supp(𝛾
𝑘
)∩𝐼
0−
(𝑧)

𝛾
𝑘

𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)

+ ∑

𝑖∈supp(𝛾
𝑘
)∩𝐼
+0
(𝑧)

𝛾
𝑘

𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ ∑

𝑖∈supp(𝛾
𝑘
)∩𝐼
+0
(𝑧)

𝛾
𝑘

𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)

+ ∑

𝑖∈supp(𝛾
𝑘
)∩(𝐼
0+
(𝑧)∪𝐼
00
(𝑧))

𝛾
𝑘

𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ ∑

𝑖∈supp(𝛾
𝑘
)∩(𝐼
0+
(𝑧)∪𝐼
00
(𝑧))

𝛾
𝑘

𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) = 0.

(29)

We can define

𝛽
𝑘

𝑖
= {

−𝛾𝑘
𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) , 𝑖 ∈ supp (𝛾𝑘) ∩ 𝐼

0−
(𝑧) ;

0, otherwise,

𝛾
𝑘

𝑖
= {

𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) , 𝑖 ∈ supp (𝛾𝑘) ∩ 𝐼

+0
(𝑧) ;

0, otherwise,

]𝑘
𝑖
= {

𝛾
𝑘

𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) , 𝑖 ∈ supp (𝛾𝑘) ∩ (𝐼

0+
(𝑧) ∪ 𝐼

00
(𝑧)) ;

0, otherwise.
(30)
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Noting that with 𝛽𝑘
𝑖
, 𝛾𝑘
𝑖
, and ]𝑘

𝑖
, (27) can be rewritten as

0 = ∇𝑓 (𝑧
𝑘
) +

𝑚

∑
𝑖=1

𝜆
𝑘

𝑖
∇𝑔
𝑖
(𝑧
𝑘
)

+

𝑝

∑
𝑖=1

𝜇
𝑘

𝑖
∇ℎ
𝑖
(𝑧
𝑘
) +

𝑙

∑
𝑖=1

𝛽
𝑘

𝑖
(−∇𝐻

𝑖
(𝑧
𝑘
))

+

𝑙

∑
𝑖=1

𝛾
𝑘

𝑖
∇𝐺
𝑖
(𝑧
𝑘
) +

𝑙

∑
𝑖=1

]𝑘
𝑖
∇𝐻
𝑖
(𝑧
𝑘
)

+ ∑

𝑖∈supp(𝛾
𝑘
)∩(𝐼
0+
(𝑧)∪𝐼
00
(𝑧))

𝛾
𝑘

𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ ∑

𝑖∈supp(𝛾
𝑘
)∩𝐼
+0
(𝑧)

𝛾
𝑘

𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)

+ ∑

𝑖∈supp(𝛾
𝑘
)∩𝐼
0−
(𝑧)

𝛾
𝑘

𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) .

(31)

The following objective is to prove that the sequence
{(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾

𝑘

, ]𝑘, 𝛾𝑘
𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

)} is bounded.
Assume that the sequence {(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾

𝑘

, ]𝑘,
𝛾𝑘
𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

)} is unbounded. Then, there exists a
subset 𝐾 such that

󵄩󵄩󵄩󵄩󵄩
(𝜆
𝑘

, 𝜇
𝑘

, 𝛽
𝑘

, 𝛾
𝑘

, ]𝑘, 𝛾𝑘
𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

)
𝐾

󵄩󵄩󵄩󵄩󵄩

󳨀→ +∞ (𝑘 󳨀→ +∞) .

(32)

So the corresponding normed sequence converges:

(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾
𝑘

, ]𝑘, 𝛾𝑘
𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

)

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾

𝑘

, ]𝑘, 𝛾𝑘
𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

)
󵄩󵄩󵄩󵄩󵄩󵄩

→
𝑘∈𝐾

(𝜆, 𝜇, 𝛽, 𝛾, ], 𝛾
𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

) ̸= 0.

(33)

Combined with (31), it yields

0 =

𝑚

∑
𝑖=1

𝜆
𝑖
∇𝑔
𝑖
(𝑧) +

𝑝

∑
𝑖=1

𝜇
𝑖
∇ℎ
𝑖
(𝑧)

+

𝑙

∑
𝑖=1

𝛽
𝑖
(−∇𝐻

𝑖
(𝑧)) +

𝑙

∑
𝑖=1

𝛾
𝑖
∇𝐺
𝑖
(𝑧) +

𝑙

∑
𝑖=1

]
𝑖
∇𝐻
𝑖
(𝑧) ,

(34)

that is,

0 = ∑
𝑖∈supp(𝜆)

𝜆
𝑖
∇𝑔i (𝑧) + ∑

𝑖∈supp(𝜇)
𝜇
𝑖
∇ℎ
𝑖
(𝑧)

+ ∑
𝑖∈supp(𝛽)

𝛽
𝑖
(−∇𝐻

𝑖
(𝑧)) + ∑

𝑖∈supp(𝛾)
𝛾
𝑖
∇𝐺
𝑖
(𝑧)

+ ∑
𝑖∈supp(])

]
𝑖
∇𝐻
𝑖
(𝑧) ,

(35)

where 𝜆 ≥ 0 and, for all 𝑘 ∈ 𝐾 being large enough,

supp (𝜆) ⊆ 𝐼
𝑔
(𝑧
𝑘
) ⊆ 𝐼
𝑔
(𝑧) ,

supp (𝛽) ⊆ supp (𝛽
𝑘

) ⊆ (supp (𝛾
𝑘

) ∩ 𝐼
0−

(𝑧)) ⊆ 𝐼
0−

(𝑧) ,

supp (𝛾) ⊆ supp (𝛾
𝑘

)

⊆ (supp (𝛾
𝑘

) ∩ 𝐼
+0

(𝑧)) ⊆ 𝐼
+0

(𝑧) ,

supp (]) ⊆ supp (]𝑘)

⊆ (supp (𝛾
𝑘

) ∩ (𝐼
00

(𝑧) ∪ 𝐼
0+

(𝑧)))

⊆ 𝐼
00

(𝑧) ∪ 𝐼
0+

(𝑧) .

(36)

We can prove that (𝜆, 𝜇, 𝛽, 𝛾, ]) ̸= 0. Actually, if (𝜆, 𝜇,

𝛽, 𝛾, ]) = 0, then, for at least one 𝑖 ∈ 𝐼
+0

(𝑧) ∪ 𝐼
0+

(𝑧) ∪

𝐼
00
(𝑧) ∪ 𝐼

0−
(𝑧), 𝛾
𝑖

̸= 0. Without loss of generality, assume
that 𝛾

𝑖
̸= 0 for an 𝑖 ∈ 𝐼

+0
(𝑧), then, for all 𝑘 sufficiently large,

𝛾𝑘
𝑖

̸= 0. Consequently, 𝛾𝑘
𝑖

= 𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) for those 𝑘. Taking

into account the condition of asymptotic nondegeneracy, for
𝑖 ∈ 𝐼
+0

(𝑧), we have

𝛾
𝑖
= lim
𝑘∈𝐾

𝛾
𝑘

𝑖
= lim
𝑘∈𝐾

𝛾
𝑘

𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ̸= 0, (37)

which contradicts the assumption 𝛾 = 0.
By Lemma 6, we know that (𝜆, 𝜇, 𝛽, 𝛾, ]) ̸= 0 contradicts

the fact that the VC-MFCQ holds at 𝑧. Thus, the sequence
{(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾

𝑘

, ]𝑘, 𝛾𝑘
𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

)} is bounded.
Again, noting the condition of asymptotic nondegeneracy

and the definitions of 𝛽𝑘
𝑖
, 𝛾
𝑘

𝑖
, ]𝑘
𝑖
, we can prove that the

sequence of multipliers {(𝜆𝑘, 𝜇𝑘, 𝛾𝑘)} are bounded. The proof
is completed.

Based on Lemma 14, similar to the proof of Theorem 5.3
in [3], we can obtain the following convergence result.

Theorem 15. Let 𝜀
𝑘

> 0 be convergent to zero. Suppose
that {𝑧

𝑘
} is a sequence of stationary points of Problem (15)

with 𝜀 = 𝜀
𝑘
. If 𝑧 is an accumulation point of the sequence

{𝑧
𝑘
} such that the VC-MFCQ holds at 𝑧 and the condition

of asymptotic nondegeneracy for {𝑧
𝑘
} is satisfied, then 𝑧 is a

strongly-stationary point of Problem (1).

Remark 16. In Theorem 15, by replacing the condition of
the VC-LICQ, we prove that any accumulation point of
stationary points for the smoothing-regularization problem
is still strongly-stationary under the VC-MFCQ and the
condition of asymptotic nondegeneracy. Hence, Theorem 15
includes Theorem 5.3 in [3] as a special case.

4. Concluding Remarks

In this note, we have shown that the VC-LICQ assumption
can be replaced by the weaker VC-MFCQ condition in order
to get the strong stationarity for the smoothing-regularization
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approach to mathematical programs with vanishing con-
straints, which is proposed in [3]. We have also shown that the
VC-MFCQ implies that the smoothing-regularization prob-
lems satisfy the standard MFCQ. While it seems possible to
prove that many other VC-tailored constraint qualifications
imply that the corresponding standard constraint qualifica-
tion holds for the smoothing-regularization problem, it is an
open question whether one can further relax the VC-MFCQ
assumption to get strong stationarity in the limit.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by NNSF (nos. 11371073, 11461015,
11361018) of China, Guangxi Natural Science Foundation (no.
2014GXNSFFA118001), and Guangxi Fund for Distinguished
Young Scholars (no. 2012GXSFFA060003).

References

[1] W. Achtziger and C. Kanzow, “Mathematical programs with
vanishing constraints: optimality conditions and constraint
qualifications,” Mathematical Programming, vol. 114, no. 1, pp.
69–99, 2008.

[2] C. Kirches, A. Potschka, H. G. Bock, and S. Sager, “A parametric
active set method for quadratic programs with vanishing con-
straints,” Technical Report, Interdisciplinary Center for Scientic
Computing, University of Heidelberg, Heidelberg, Germany,
2012.

[3] W. Achtziger, T. Hoheisel, and C. Kanzow, “A smoothing-
regularization approach to mathematical programs with van-
ishing constraints,” Computational Optimization and Applica-
tions, vol. 55, no. 3, pp. 733–767, 2013.

[4] W. Achtziger, C. Kanzow, and T. Hoheisel, “On a relax-
ation method for mathematical programs with vanishing con-
straints,” GAMM-Mitteilungen, vol. 35, no. 2, pp. 110–130, 2012.

[5] D. Dorsch, V. Shikhman, and O. Stein, “Mathematical programs
with vanishing constraints: critical point theory,” Journal of
Global Optimization, vol. 52, no. 3, pp. 591–605, 2012.

[6] T. Hoheisel and C. Kanzow, “On the Abadie and Guignard
constraint qualifications for mathematical programmes with
vanishing constraints,”Optimization, vol. 58, no. 4, pp. 431–448,
2009.

[7] T. Hoheisel and C. Kanzow, “Stationary conditions for mathe-
matical programs with vanishing constraints using weak con-
straint qualifications,” Journal of Mathematical Analysis and
Applications, vol. 337, no. 1, pp. 292–310, 2008.

[8] T. Hoheisel and C. Kanzow, “First- and second-order opti-
mality conditions for mathematical programs with vanishing
constraints,”Applications ofMathematics, vol. 52, no. 6, pp. 495–
514, 2007.

[9] T. Hoheisel, C. Kanzow, and J. V. Outrata, “Exact penalty
results for mathematical programs with vanishing constraints,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no.
5, pp. 2514–2526, 2010.

[10] T. Hoheisel, C. Kanzow, and A. Schwartz, “Convergence of a
local regularization approach for mathematical programmes
with complementarity or vanishing constraints,” Optimization
Methods & Software, vol. 27, no. 3, pp. 483–512, 2012.

[11] A. F. Izmailov and A. L. Pogosyan, “Optimality conditions and
Newton-type methods for mathematical programs with vanish-
ing constraints,”Computational Mathematics andMathematical
Physics, vol. 49, no. 7, pp. 1128–1140, 2009.

[12] A. F. Izmailov and M. V. Solodov, “Mathematical programs
with vanishing constraints: optimality conditions, sensitivity,
and a relaxation method,” Journal of Optimization Theory and
Applications, vol. 142, no. 3, pp. 501–532, 2009.

[13] C. Davis, “Theory of positive linear dependence,” TheAmerican
Journal of Mathematics, vol. 76, no. 4, pp. 733–746, 1954.

[14] O. L. Mangasarian, Nonliear Programming, McGraw-Hill, New
York, NY, USA, 1969, reprinted by SIAM, Philadelphia, Pa, USA,
1994.

[15] L. Qi and Z. Wei, “On the constant positive linear dependence
condition and its application to SQP methods,” SIAM Journal
on Optimization, vol. 10, no. 4, pp. 963–981, 2000.



Research Article
A Limited Memory BFGS Method for Solving Large-Scale
Symmetric Nonlinear Equations

Xiangrong Li, Xiaoliang Wang, and Xiabin Duan

College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China

Correspondence should be addressed to Xiangrong Li; xrli68@163.com

Received 21 June 2014; Accepted 14 July 2014; Published 5 August 2014

Academic Editor: Gonglin Yuan

Copyright © 2014 Xiangrong Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A limited memory BFGS (L-BFGS) algorithm is presented for solving large-scale symmetric nonlinear equations, where a
line search technique without derivative information is used. The global convergence of the proposed algorithm is established
under some suitable conditions. Numerical results show that the given method is competitive to those of the normal BFGS
methods.

1. Introduction

Consider

ℎ (𝑥) = 0, 𝑥 ∈ R
𝑛

, (1)

where ℎ : R𝑛 → R𝑛 is continuously differentiable, the
Jacobian ∇ℎ(𝑥) of 𝑔 is symmetric for all 𝑥 ∈ R𝑛, and 𝑛

denotes the large-scale dimensions. It is not difficult to see
that if 𝑔 is the gradient mapping of some function 𝑓 : R𝑛 →
R, problem (1) is the first order necessary condition for the
problem min

𝑥∈R𝑛𝑓(𝑥). Furthermore, considering

min𝑓 (𝑢) s.t. 𝑎 (𝑢) = 0, (2)

where 𝑎 is a vector-valued function, then the KKT conditions
can be represented as the system (1) with 𝑥 = (𝑢, V) and
ℎ(𝑢, V) = (∇𝑓(𝑢) + ∇𝑎(𝑢)V, 𝑎(𝑢)), where V is the vector of
Lagrange multipliers. The above two cases show that problem
(1) can come from an unconstrained problem or an equality
constrained optimization problem in theory. Moreover, there
are other practical problems that can also take the form
of (1), such as the discretized two-point boundary value
problem, the saddle point problem, and the discretized
elliptic boundary value problem (see Chapter 1 of [1] in
detail). Let 𝜃 be the norm function 𝜃(𝑥) = (1/2)‖ℎ(𝑥)‖2; then

problem (1) is equivalent to the following global optimization
problem:

min 𝜃 (𝑥) 𝑥 ∈ R
𝑛

, (3)
where ‖ ⋅ ‖ is the Euclidean norm.

In this paper we will focus on the line search method for
(1), where its normal iterative formula is defined by

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (4)

where 𝑑
𝑘

is the so-called search direction and 𝛼
𝑘

is a ste-
plength along 𝑑

𝑘
. To begin with, we briefly review some

methods for 𝛼
𝑘
.

(i) Normal Line Search (Brown and Saad [2]). The stepsize 𝛼
𝑘

is determined by

𝜃 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝜃 (𝑥

𝑘
) ≤ 𝜎𝛼

𝑘
∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
, (5)

where 𝜎 ∈ (0, 1) and∇𝜃(𝑥
𝑘
) = ∇ℎ(𝑥

𝑘
)ℎ(𝑥
𝑘
). The convergence

is proved and some good results are obtained. We all know
that the nonmonotone idea is more interesting than the
normal technique in many cases. Then a nonmonotone line
search technique based on this motivation is presented by
Zhu [3].

(ii) Nonmonotone Line Search (Zhu [3]). The stepsize 𝛼
𝑘

is
determined by

𝜃 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝜃 (𝑥

𝑙(𝑘)
) ≤ 𝜎𝛼

𝑘
∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
, (6)
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𝜃(𝑥
𝑙(𝑘)
) = max

0≤𝑗≤𝑚(𝑘)
{𝜃(𝑥
𝑘−𝑗
)},𝑚(0) = 0,𝑚(𝑘) = min{𝑚(𝑘−

1) + 1,𝑀} (for 𝑘 ≥ 1), and 𝑀 is a nonnegative integer.
The global convergence and the superlinear convergence
are established under mild conditions, respectively. It is not
difficult to see that, for the above two line search techniques,
the Jacobian matrix ∇ℎ

𝑘
must be computed at each iteration,

which obviously increase the workload and the CPU time
consumed. In order to avoid this drawback, Yuan and Lu [4]
presented a new backtracking inexact technique.

(iii) A New Line Search (Yuan and Lu [4]). The stepsize 𝛼
𝑘

is
determined by

󵄩󵄩󵄩󵄩ℎ(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩ℎ(𝑥𝑘)

󵄩󵄩󵄩󵄩
2

+ 𝛿𝛼
2

𝑘
ℎ
𝑇

𝑘
𝑑
𝑘
, (7)

where 𝛿 ∈ (0, 1) and ℎ
𝑘
= ℎ(𝑥

𝑘
). They established the

global convergence and the superlinear convergence. And the
numerical tests showed that the new line search technique is
more effective than those of the normal line search technique.
However, these three line search techniques can not directly
ensure the descent property of 𝑑

𝑘
. Thus more interesting line

search techniques are studied.

(iv) Approximate Monotone Line Search (Li and Fukushima
[5]). The stepsize 𝛼

𝑘
is determined by

𝜃 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝜃 (𝑥

𝑘
) ≤ − 𝛿

1

󵄩󵄩󵄩󵄩𝛼𝑘𝑑𝑘
󵄩󵄩󵄩󵄩
2

− 𝛿
2

󵄩󵄩󵄩󵄩𝛼𝑘ℎ𝑘
󵄩󵄩󵄩󵄩
2

+ 𝜖
𝑘

󵄩󵄩󵄩󵄩ℎ𝑘
󵄩󵄩󵄩󵄩
2

,
(8)

where 𝛼
𝑘
= 𝑟𝑖𝑘 , 𝑟 ∈ (0, 1), 𝑖

𝑘
is the smallest nonnegative

integer 𝑖 satisfying (8), 𝛿
1
> 0 and 𝛿

2
> 0 are constants, and

𝜖
𝑘

is such that
∞

∑
𝑘=0

𝜖
𝑘
< ∞. (9)

The line search (8) can be rewritten as
󵄩󵄩󵄩󵄩ℎ(𝑥𝑘 + 𝛼𝑑𝑘)

󵄩󵄩󵄩󵄩
2

≤ (1 + 𝜖
𝑘
)
󵄩󵄩󵄩󵄩ℎ𝑘

󵄩󵄩󵄩󵄩
2

− 𝛿
1

󵄩󵄩󵄩󵄩𝛼ℎ𝑘
󵄩󵄩󵄩󵄩
2

− 𝛿
2

󵄩󵄩󵄩󵄩𝛼𝑑𝑘
󵄩󵄩󵄩󵄩
2

;
(10)

it is straightforward to see that as 𝛼 → 0, the right-hand
side of the above inequality goes to (1 + 𝜖

𝑘
)‖ℎ
𝑘
‖
2. Then it is

not difficult to see that the sequence {𝑥
𝑘
} generated by one

algorithm with line search (8) is approximately norm descent.
In order to ensure the sequence {𝑥

𝑘
} is norm descent, Gu et

al. [6] presented the following line search.

(v) Monotone Descent Line Search (Gu et al. [6]). The stepsize
𝛼
𝑘

is determined by
󵄩󵄩󵄩󵄩ℎ(𝑥𝑘 + 𝛼𝑘𝑑𝑘)

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩ℎ𝑘

󵄩󵄩󵄩󵄩
2

≤ − 𝛿
1

󵄩󵄩󵄩󵄩𝛼𝑘ℎ𝑘
󵄩󵄩󵄩󵄩
2

− 𝛿
2

󵄩󵄩󵄩󵄩𝛼𝑘𝑑𝑘
󵄩󵄩󵄩󵄩
2

,
(11)

where 𝛼
𝑘
, 𝛿
1
, and 𝛿

2
are similar to (8).

In the following, we present some techniques for 𝑑
𝑘
.

(i) Newton Method. The search direction 𝑑
𝑘

is defined by

∇ℎ (𝑥
𝑘
) 𝑑
𝑘
= −ℎ (𝑥

𝑘
) . (12)

Newton method is one of the most effective methods since
it normally requires a fewest number of function evaluations
and is very good at handling ill-conditioning. However, its
efficiency largely depends on the possibility to efficiently solve
a linear system (12) which arises when computing. Moreover,
the exact solution of the system (12) could be too burdensome
or is not necessary when 𝑥

𝑘
is far from a solution [7]. Thus the

quasi-Newton methods are proposed.

(ii) Quasi-Newton Method. The search direction 𝑑
𝑘

is defined
by

𝐵
𝑘
𝑑
𝑘
+ ℎ
𝑘
= 0, (13)

where 𝐵
𝑘

is the quasi-Newton update matrix. The quasi-
Newton methods represent the basic approach underlying
most of the Newton-type large-scale algorithms (see [3, 4, 8],
etc.), where the famous BFGS method is one of the most
effective quasi-Newton methods, generated by the following
formula:

𝐵
𝑘+1

= 𝐵
𝑘
−
𝐵
𝑘
𝑠
𝑘
𝑠𝑇
𝑘
𝐵
𝑘

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

+
𝑦
𝑘
𝑦
𝑘

𝑇

𝑦
𝑘

𝑇𝑠
𝑘

, (14)

where 𝑠
𝑘
= 𝑥
𝑘+1

− 𝑥
𝑘

and 𝑦
𝑘
= ℎ
𝑘+1

− ℎ
𝑘

with ℎ
𝑘
= ℎ(𝑥

𝑘
)

and ℎ
𝑘+1

= ℎ(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
). By (11) and (14), Yuan and Yao [9]

proposed a BFGS method for nonlinear equations and some
good results were obtained. Denote 𝐻

𝑘
= 𝐵
−1

𝑘
, and then (14)

has the inverse update formula represented by

𝐻
𝑘+1

= 𝐻
𝑘
−
𝑦
𝑘

𝑇 (𝑠
𝑘
− 𝐻
𝑘
𝑦
𝑘
) 𝑠
𝑘
𝑠𝑇
𝑘

(𝑦
𝑘

𝑇𝑠
𝑘
)
2

+
(𝑠
𝑘
− 𝐻
𝑘
𝑦
𝑘
) 𝑠𝑇
𝑘
+ 𝑠
𝑘
(𝑠
𝑘
− 𝐻
𝑘
𝑦
𝑘
)
𝑇

(𝑦
𝑘

𝑇𝑠
𝑘
)
2

= (𝐼 −
𝑠
𝑘
𝑦
𝑘

𝑇

𝑦
𝑘

𝑇𝑠
𝑘

)𝐻
𝑘
(𝐼 −

𝑦
𝑘
𝑠𝑇
𝑘

𝑦
𝑘

𝑇𝑠
𝑘

) +
𝑠
𝑘
𝑠𝑇
𝑘

𝑦
𝑘

𝑇𝑠
𝑘

.

(15)

Unfortunately, both the Newton method and the quasi-
Newton method require many space to store 𝑛 × 𝑛 matrix
at every iteration, which will prevent the efficiency of the
algorithm for problems, especially for large-scale problems.
Therefore low storage matrix information method should be
necessary.

(iii) Limited Memory Quasi-Newton Method. The search
direction 𝑑

𝑘
is defined by

𝑑
𝑘
= −𝐻
𝑘
ℎ
𝑘
, (16)

where 𝐻
𝑘

is generated by limited memory quasi-Newton
method, where the famous limited memory quasi-Newton
method is the so-called limited memory BFGS method.
The L-BFGS method is an adaptation of the BFGS method
for large-scale problems (see [10] in detail), which often



Abstract and Applied Analysis 3

requires minimal storage and provides a fast rate of linear
convergence. The L-BFGS method has the following form:

𝐻
𝑘+1

= 𝑉
𝑇

𝑘
𝐻
𝑘
𝑉
𝑘
+ 𝜌
𝑘
𝑠
𝑘
𝑠
𝑇

𝑘

= 𝑉
𝑇

𝑘
[𝑉
𝑇

𝑘−1
𝐻
𝑘−1
𝑉
𝑘−1

+ 𝜌
𝑘−1
𝑠
𝑘−1
𝑠
𝑇

𝑘−1
]𝑉
𝑘
+ 𝜌
𝑘
𝑠
𝑘
𝑠
𝑇

𝑘

= ⋅ ⋅ ⋅

= [𝑉
𝑇

𝑘
⋅ ⋅ ⋅ 𝑉
𝑇

𝑘−𝑚̃+1
]𝐻
𝑘−𝑚̃+1

[𝑉
𝑘−𝑚̃+1

⋅ ⋅ ⋅ 𝑉
𝑘
]

+ 𝜌
𝑘−𝑚̃+1

[𝑉
𝑇

𝑘−1
⋅ ⋅ ⋅ 𝑉
𝑇

𝑘−𝑚̃+2
]

× 𝑠
𝑘−𝑚̃+1

𝑠
𝑇

𝑘−𝑚̃+1
[𝑉
𝑘−𝑚̃+2

⋅ ⋅ ⋅ 𝑉
𝑘−1
] + ⋅ ⋅ ⋅ + 𝜌

𝑘
𝑠
𝑘
𝑠
𝑇

𝑘
,

(17)

where 𝜌
𝑘
= 1/𝑠𝑇

𝑘
𝑦
𝑘
, 𝑉
𝑘
= 𝐼 − 𝜌

𝑘
𝑦
𝑘
𝑠𝑇
𝑘
, 𝑚̃ > 0 is an integer,

and 𝐼 is the unit matrix. Formula (17) shows that matrix𝐻
𝑘

is
obtained by updating the basic matrix𝐻

0
𝑚̃ times using BFGS

formula with the previous 𝑚̃ iterations. By (17), together with
(7) and (8), Yuan et al. [11] presented the L-BFGS method
for nonlinear equations and got the global convergence. At
present, there are many papers proposed for (1) (see [6, 12–
15], etc.).

In order to effectively solve large-scale nonlinear equa-
tions and possess good theory property, based on the above
discussions of 𝛼

𝑘
and 𝑑

𝑘
, we will combine (11) and (16) and

present a L-BFGS method for (1) since (11) can make the norm
function be descent and (16) need less low storage. The main
attributes of the new algorithm are stated as follows.

(i) A L-BFGS method with (11) is presented.

(ii) The norm function is descent.

(iii) The global convergence is established under appropri-
ate conditions.

(iv) Numerical results show that the given algorithm is
more competitive than the normal algorithm for
large-scale nonlinear equations.

This paper is organized as follows. In the next section, the
backtracking inexact L-BFGS algorithm is stated. Section 3
will present the global convergence of the algorithm under
some reasonable conditions. Numerical experiments are
done to test the performance of the algorithms in Section 4.

2. Algorithms

This section will state the L-BFGS method in association with
the new backtracking line search technique (11) for solving (1).

Algorithm 1.

Step 0. Choose an initial point 𝑥
0
∈ R𝑛, an initial symmetric

positive definite matrix 𝐻
0
∈ R𝑛×𝑛, positive constants 𝛿

1
, 𝛿
2
,

constants 𝑟, 𝜌 ∈ (0, 1), and a positive integer 𝑚
1
. Let 𝑘 := 0.

Step 1. Stop if ‖ℎ
𝑘
‖ = 0.

Step 2. Determine 𝑑
𝑘

by (16).

Step 3. If
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘 + 𝑑𝑘)

󵄩󵄩󵄩󵄩 ≤ 𝜌
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩 , (18)

then take 𝛼
𝑘
= 1 and go to Step 5. Otherwise go to Step 4.

Step 4. Let 𝑖
𝑘

be the smallest nonnegative integer 𝑖 such that
(11) holds for 𝛼 = 𝑟𝑖. Let 𝛼

𝑘
= 𝑟𝑖𝑘 .

Step 5. Let the next iterative be 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 6. Let 𝑚̃ = min{𝑘+1,𝑚
1
}. Put 𝑠

𝑘
= 𝑥
𝑘+1

−𝑥
𝑘
= 𝛼
𝑘
𝑑
𝑘

and
𝑦
𝑘
= ℎ
𝑘+1

− ℎ
𝑘
. Update 𝐻

0
for 𝑚̃ times to get 𝐻

𝑘+1
by (17).

Step 7. Let 𝑘 := 𝑘 + 1. Go to Step 1.

In the following, to conveniently analyze the global
convergence, we assume that the algorithm updates 𝐵

𝑘
(the

inverse of 𝐻
𝑘
) with the basically bounded and positive

definite matrix 𝐵
0

(𝐻
0
’s inverse). Then Algorithm 1 with 𝐵

𝑘

has the following steps.

Algorithm 2.

Step 2. Determine 𝑑
𝑘

by

𝐵
𝑘
𝑑
𝑘
= −ℎ
𝑘
. (19)

Step 6. Let 𝑚̃ = min{𝑘 + 1,𝑚
1
}. Put 𝑠

𝑘
= 𝑥
𝑘+1

− 𝑥
𝑘
= 𝛼
𝑘
𝑑
𝑘

and 𝑦
𝑘
= ℎ
𝑘+1

− ℎ
𝑘
. Update 𝐵

0
for 𝑚̃ times; that is, for 𝑙 =

𝑘 − 𝑚̃ + 1, . . . , 𝑘 compute

𝐵
𝑙+1

𝑘
= 𝐵
𝑙

𝑘
−
𝐵𝑙
𝑘
𝑠
𝑙
𝑠𝑇
𝑙
𝐵𝑙
𝑘

𝑠𝑇
𝑙
𝐵𝑙
𝑘
𝑠
𝑙

+
𝑦
𝑙
𝑦
𝑙

𝑇

𝑦
𝑙

𝑇𝑠
𝑙

, (20)

where 𝑠
𝑙
= 𝑥
𝑙+1

− 𝑥
𝑙
, 𝑦
𝑙
= ℎ
𝑙+1

− ℎ
𝑙
, and 𝐵𝑘−𝑚̃+1

𝑘
= 𝐵
0

for all 𝑘.

Remark 3. Algorithms 1 and 2 are mathematically equivalent.
Throughout this paper, Algorithm 2 is given only for the
purpose of analysis, so we only discuss Algorithm 2 in theory.
In the experiments, we implement Algorithm 1.

3. Global Convergence

Define the level set Ω by

Ω = {𝑥 | ‖ℎ (𝑥)‖ ≤
󵄩󵄩󵄩󵄩ℎ (𝑥0)

󵄩󵄩󵄩󵄩} . (21)

In order to establish the global convergence of Algorithm 2,
similar to [4, 11], we need the following assumptions.

Assumption A. 𝑔 is continuously differentiable on an open
convex set Ω

1
containing Ω. Moreover the Jacobian of 𝑔 is

symmetric, bounded, and positive definite on Ω
1
; namely,

there exist positive constants 𝑀 ≥ 𝑚 > 0 satisfying

‖∇ℎ (𝑥)‖ ≤ 𝑀 ∀𝑥 ∈ Ω
1
,

𝑚‖𝑑‖
2

≤ 𝑑
𝑇

∇ℎ (𝑥) 𝑑 ∀𝑥 ∈ Ω
1
, 𝑑 ∈ R

𝑛

.
(22)
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Assumption B. 𝐵
𝑘

is a good approximation to ∇𝑔
𝑘
; that is,

󵄩󵄩󵄩󵄩(∇ℎ𝑘 − 𝐵𝑘) 𝑑𝑘
󵄩󵄩󵄩󵄩 ≤ 𝜖

󵄩󵄩󵄩󵄩ℎ𝑘
󵄩󵄩󵄩󵄩 , (23)

where 𝜖 ∈ (0, 1) is a small quantity.

Remark 4. Assumption A implies
󵄩󵄩󵄩󵄩𝑦𝑘

󵄩󵄩󵄩󵄩 ≤ 𝑀
󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩 , 𝑦

𝑘

𝑇

𝑠
𝑘
≥ 𝑚

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩
2

. (24)

The relations in (24) can ensure that 𝐵
𝑘+1

generated by
(20) inherits symmetric and positive definiteness of 𝐵

𝑘
. Thus,

(19) has a unique solution for each 𝑘. Moreover, the following
lemma holds.

Lemma 5 (see Theorem 2.1 in [16] or see Lemma 3.4 of [11]).
Let Assumption𝐴 hold and let {𝛼

𝑘
, 𝑑
𝑘
, 𝑥
𝑘+1
, 𝑔
𝑘+1
} be generated

by Algorithm 2. Then, for any 𝑟
0
∈ (0, 1) and 𝑘 ≥ 0, there are

positive constants 𝛽
𝑗
, 𝑗 = 1, 2, 3; the following relations

𝛽
2

󵄩󵄩󵄩󵄩𝑠𝑖
󵄩󵄩󵄩󵄩
2

≤ 𝑠
𝑇

𝑖
𝐵
𝑖
𝑠
𝑖
≤ 𝛽
3

󵄩󵄩󵄩󵄩𝑠𝑖
󵄩󵄩󵄩󵄩
2

,
󵄩󵄩󵄩󵄩𝐵𝑖𝑠𝑖

󵄩󵄩󵄩󵄩 ≤ 𝛽1
󵄩󵄩󵄩󵄩𝑠𝑖
󵄩󵄩󵄩󵄩 (25)

hold for at least ⌈𝑟
0
𝑘⌉ values of 𝑖 ∈ [0, 𝑘].

By Assumption B, similar to [4, 9, 11, 15], it is easy to get
the following lemma.

Lemma 6. Let Assumption 𝐵 hold and let {𝛼
𝑘
, 𝑑
𝑘
, 𝑥
𝑘+1
, ℎ
𝑘+1
}

be generated by Algorithm 2. Then 𝑑
𝑘
is a descent direction for

𝜃(𝑥) at 𝑥
𝑘
; that is, ∇𝜃(𝑥

𝑘
)
𝑇

𝑑
𝑘
< 0 holds.

Based on the above lemma, by Assumption B, similar to
Lemma 3.8 in [2], we can get the following lemma.

Lemma 7. Let Assumption B hold and let {𝛼
𝑘
, 𝑑
𝑘
, 𝑥
𝑘+1
, ℎ
𝑘+1
}

be generated by Algorithm 2. Then {𝑥
𝑘
} ⊂ Ω. Moreover, {‖ℎ

𝑘
‖}

converges.

Lemma 8. Let Assumptions A and B hold. Then, in a finite
number of backtracking steps, Algorithm 2 will produce an
iterate 𝑥

𝑘+1
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Proof. It is sufficient for us to prove that the line search (11)
is reasonable. By Lemma 3.8 in [2], we can deduce that, in a
finite number of backtracking steps, 𝛼

𝑘
is such that

󵄩󵄩󵄩󵄩ℎ(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩
2

≤ 𝛿𝛼
𝑘
ℎ(𝑥
𝑘
)
𝑇

∇ℎ (𝑥
𝑘
) 𝑑
𝑘
,

𝛿 ∈ (0, 1) .
(26)

By (19), we get

∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
= ℎ(𝑥

𝑘
)
𝑇

∇ℎ (𝑥
𝑘
) 𝑑
𝑘

= ℎ(𝑥
𝑘
)
𝑇

[(∇ℎ (𝑥
𝑘
) − 𝐵
𝑘
) 𝑑
𝑘
− ℎ (𝑥

𝑘
)]

= ℎ(𝑥
𝑘
)
𝑇

(∇ℎ (𝑥
𝑘
) − 𝐵
𝑘
) 𝑑
𝑘
− ℎ(𝑥
𝑘
)
𝑇

ℎ (𝑥
𝑘
) .

(27)

Thus

∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
+
󵄩󵄩󵄩󵄩ℎ𝑘

󵄩󵄩󵄩󵄩
2

≤ ℎ(𝑥
𝑘
)
𝑇

(∇ℎ (𝑥
𝑘
) − 𝐵
𝑘
) 𝑑
𝑘

≤
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(∇ℎ (𝑥𝑘) − 𝐵𝑘) 𝑑𝑘

󵄩󵄩󵄩󵄩 .

(28)

By Assumption B, we have

∇𝜃(𝑥
𝑘
)
𝑇

𝑑
𝑘
≤
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩(∇ℎ (𝑥𝑘) − 𝐵𝑘) 𝑑𝑘

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩
2

≤ − (1 − 𝜖)
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩
2

.

(29)

Using (19) again and 𝛼
𝑘
≤ 1, we obtain

𝛼
𝑘
ℎ(𝑥
𝑘
)
𝑇

∇ℎ (𝑥
𝑘
) 𝑑
𝑘
≤ −𝛼
𝑘
(1 − 𝜖)

󵄩󵄩󵄩󵄩ℎ(𝑥𝑘)
󵄩󵄩󵄩󵄩
2

= −
(1 − 𝜖)

2𝛼
𝑘

󵄩󵄩󵄩󵄩𝛼𝑘ℎ𝑘
󵄩󵄩󵄩󵄩
2

−
(1 − 𝜖)

2𝛼
𝑘

󵄩󵄩󵄩󵄩𝛼𝑘𝐵𝑘𝑑𝑘
󵄩󵄩󵄩󵄩
2

≤ −
(1 − 𝜖)

2

󵄩󵄩󵄩󵄩𝛼𝑘ℎ𝑘
󵄩󵄩󵄩󵄩
2

−
𝛽2
2
(1 − 𝜖)

2

󵄩󵄩󵄩󵄩𝛼𝑘𝑑𝑘
󵄩󵄩󵄩󵄩
2

.

(30)

Setting 𝛿
1
∈ (0, 𝛿((1 − 𝜖)/2)) and 𝛿

2
∈ (0, 𝛿(𝛽2

2
(1 − 𝜖)/2))

implies (11). This completes the proof.

Remark 9. The above lemma shows that Algorithm 2 is well
defined. By a way similar to Lemma 3.2 and Corollary 3.4 in
[5], it is not difficult to deduce that

𝛼
𝑘
≥

𝛽
2
𝑟

𝛽2
1
𝜎
1
+ 𝜎
2
+𝑀2

(31)

holds; we do not prove it anymore. Now we establish the
global convergence theorem.

Theorem 10. Let Assumptions A and B hold. Then the
sequence {𝑥

𝑘
} generated by Algorithm 2 converges to the unique

solution 𝑥∗ of (1).

Proof. Lemma 7 implies that {‖ℎ
𝑘
‖} converges. If

lim
𝑘→∞

󵄩󵄩󵄩󵄩ℎ𝑘
󵄩󵄩󵄩󵄩 = 0, (32)

then every accumulation point of {𝑥
𝑘
} is a solution of

(1). Assumption A means that (1) has only one solution.
Moreover, since Ω is bounded, {𝑥

𝑘
} ⊆ Ω has at least one

accumulation point. Therefore {𝑥
𝑘
} itself converges to the

unique solution of (1). Therefore, it suffices to verify (32).
If (18) holds for infinitely many 𝑘’s, then (32) is trivial.

Otherwise, if (18) holds for only finitely many 𝑘’s, we conclude
that Step 3 is executed for all 𝑘 sufficiently large. By (11), we
have

𝛿
1

󵄩󵄩󵄩󵄩𝛼𝑘ℎ𝑘
󵄩󵄩󵄩󵄩
2

+ 𝛿
2

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩ℎ𝑘

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩ℎ𝑘+1

󵄩󵄩󵄩󵄩
2

. (33)

Since {‖ℎ
𝑘
‖} is bounded, by adding these inequalities, we get
∞

∑
𝑘=0

󵄩󵄩󵄩󵄩𝛼𝑘ℎ𝑘
󵄩󵄩󵄩󵄩
2

< ∞,

∞

∑
𝑘=0

󵄩󵄩󵄩󵄩𝛼𝑘𝑑𝑘
󵄩󵄩󵄩󵄩
2

< ∞. (34)

Then we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝛼𝑘ℎ𝑘
󵄩󵄩󵄩󵄩 = 0, (35)

which together with (31) implies (32). This completes the
proof.
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4. Numerical Results

This section reports numerical results with Algorithm 1
and normal BFGS algorithm. The test problems with the
associated initial guess 𝑥

0
are listed with

ℎ (𝑥) = (𝑓
1
(𝑥) , 𝑓

2
(𝑥) , . . . , 𝑓

𝑛
(𝑥))
𝑇

. (36)

Problem 1. Exponential function 1:

𝑓
1
(𝑥) = 𝑒

𝑥
1
−1

− 1,

𝑓
𝑖
(𝑥) = 𝑖 (𝑒

𝑥
𝑖
−1

− 𝑥
𝑖
) , 𝑖 = 2, 3, . . . , 𝑛.

(37)

Initial guess: 𝑥
0
= (1/𝑛2, 1/𝑛2, . . . , 1/𝑛2)

𝑇.

Problem 2. Exponential function 2:

𝑓
1
(𝑥) = 𝑒

𝑥
1 − 1,

𝑓
𝑖
(𝑥) =

𝑖

10
(𝑒
𝑥
𝑖 + 𝑥
𝑖−1

− 𝑖) , 𝑖 = 2, 3, . . . , 𝑛.
(38)

Initial guess: 𝑥
0
= (1/𝑛2, 1/𝑛2, . . . , 1/𝑛2)

𝑇.

Problem 3. Trigonometric function:

𝑓
𝑖
(𝑥) = 2(𝑛 + 𝑖 (1 − cos𝑥

𝑖
) − sin𝑥

𝑖
−

𝑛

∑
𝑗=1

cos𝑥
𝑗
)

× (2 sin𝑥
𝑖
− cos𝑥

𝑖
) , 𝑖 = 1, 2, 3, . . . , 𝑛.

(39)

Initial guess: 𝑥
0
= (101/100𝑛, 101/100𝑛, . . . , 101/100𝑛)

𝑇.

Problem 4. Singular function:

𝑓
1
(𝑥) =

1

3
𝑥
3

1
+
1

2
𝑥
2

2
,

𝑓
𝑖
(𝑥) = −

1

2
𝑥
2

𝑖
+
𝑖

3
𝑥
3

𝑖
+
1

2
𝑥
2

𝑖+1
, 𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = −

1

2
𝑥
2

𝑛
+
𝑛

3
𝑥
3

𝑛
.

(40)

Initial guess: 𝑥
0
= (1, 1, . . . , 1)

𝑇.

Problem 5. Logarithmic function:

𝑓
𝑖
(𝑥) = ln (𝑥

𝑖
+ 1) −

𝑥
𝑖

𝑛
, 𝑖 = 1, 2, 3, . . . , 𝑛. (41)

Initial guess: 𝑥
0
= (1, 1, . . . , 1)

𝑇.

Problem 6. Broyden tridiagonal function [17, pages 471-472]:

𝑓
1
(𝑥) = (3 − 0.5𝑥

1
) 𝑥
1
− 2𝑥
2
+ 1,

𝑓
𝑖
(𝑥) = (3 − 0.5𝑥

𝑖
) 𝑥
𝑖
− 𝑥
𝑖−1

+ 2𝑥
𝑖+1

+ 1,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = (3 − 0.5𝑥

𝑛
) 𝑥
𝑛
− 𝑥
𝑛−1

+ 1.

(42)

Initial guess: 𝑥
0
= (−1, −1, . . . , −1)

𝑇.

Problem 7. Trigexp function [17, page 473]:

𝑓
1
(𝑥) = 3𝑥

3

1
+ 2𝑥
2
− 5 + sin (𝑥

1
− 𝑥
2
) sin (𝑥

1
+ 𝑥
2
) ,

𝑓
𝑖
(𝑥) = − 𝑥

𝑖−1
𝑒
𝑥
𝑖−1
−𝑥
𝑖 + 𝑥
𝑖
(4 + 3𝑥

2

𝑖
) + 2𝑥

𝑖+1

+ sin (𝑥
𝑖
− 𝑥
𝑖+1
) sin (𝑥

𝑖
+ 𝑥
𝑖+1
) − 8,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = −𝑥

𝑛−1
𝑒
𝑥
𝑛−1
−𝑥
𝑛 + 4𝑥

𝑛
− 3.

(43)

Initial guess: 𝑥
0
= (0, 0, . . . , 0)

𝑇.

Problem 8. Strictly convex function 1 [18, page 29]: ℎ(𝑥) is the
gradient of ℎ(𝑥) = ∑𝑛

𝑖=1
(𝑒𝑥𝑖 − 𝑥

𝑖
). Consider

𝑓
𝑖
(𝑥) = 𝑒

𝑥
𝑖 − 1, 𝑖 = 1, 2, 3, . . . , 𝑛. (44)

Initial guess: 𝑥
0
= (1/𝑛, 2/𝑛, . . . , 1)

𝑇.

Problem 9. Linear function-full rank:

𝑓
𝑖
(𝑥) = 𝑥

𝑖
−
2

𝑛

𝑛

∑
𝑗=1

𝑥
𝑗
+ 1. (45)

Initial guess: 𝑥
0
= (100, 100, . . . , 100)

𝑇.

Problem 10. Penalty function:

𝑓
𝑖
(𝑥) = √10−5 (𝑥

𝑖
− 1) , 𝑖 = 1, 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = (

1

4𝑛
)

𝑛

∑
𝑗=1

𝑥
2

𝑗
−
1

4
.

(46)

Initial guess: 𝑥
0
= (1/3, 1/3, . . . , 1/3)

𝑇.

Problem 11. Variable dimensioned function:

𝑓
𝑖
(𝑥) = 𝑥

𝑖
− 1, 𝑖 = 1, 2, 3, . . . , 𝑛 − 2,

𝑓
𝑛−1

(𝑥) =

𝑛−2

∑
𝑗=1

𝑗 (𝑥
𝑗
− 1) ,

𝑓
𝑛
(𝑥) = (

𝑛−2

∑
𝑗=1

𝑗 (𝑥
𝑗
− 1))

2

.

(47)

Initial guess: 𝑥
0
= (1 − (1/𝑛), 1 − (2/𝑛), . . . , 0)

𝑇.

Problem 12. Tridiagonal system [19]:

𝑓
1
(𝑥) = 4 (𝑥

1
− 𝑥
2

2
) ,

𝑓
𝑖
(𝑥) = 8𝑥

𝑖
(𝑥
2

𝑖
− 𝑥
𝑖−1
) − 2 (1 − 𝑥

𝑖
)

+ 4 (𝑥
𝑖
− 𝑥
2

𝑖+1
) , 𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = 8𝑥

𝑛
(𝑥
2

𝑛
− 𝑥
𝑛−1
) − 2 (1 − 𝑥

𝑛
) .

(48)

Initial guess: 𝑥
0
= (12, 12, . . . , 12).
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Table 1

Nr. Dim Algorithm 1 Normal BFGS algorithm
NI/NG GN Time NI/NG GN Time

Problem 1

500 24/25 9.908338e − 05 2.901619e + 01 23/87 NaN 1.950013e + 00
1000 9/10 5.697414e − 05 5.366434e + 01 23/87 NaN 1.124767e + 01
1500 9/10 3.363290e − 05 1.689803e + 02 NI > 1000 Inf 8.094892e + 01
2000 9/10 2.706880e − 05 3.880213e + 02 NI > 1000 Inf 1.550962e + 02

Problem 2

500 8/16 3.660478e − 05 6.926444e + 00 60/390 NaN 7.269647e + 00
1000 8/16 6.406401e − 05 4.513109e + 01 40/314 NaN 2.857938e + 01
1500 9/17 7.655321e − 05 1.689959e + 02 33/258 NaN 7.102726e + 01
2000 9/17 9.651851e − 05 3.881617e + 02 29/226 NaN 1.410717e + 02

Problem 3

500 18/33 7.747640e − 06 2.110694e + 01 NI > 1000 5.905028e + 04 1.220396e + 02
1000 17/32 8.381440e − 05 1.270472e + 02 NI > 1000 1.577282e + 05 5.830069e + 02
1500 17/32 6.658002e − 05 3.975217e + 02 NI > 1000 2.929920e + 05 1.645561e + 03
2000 17/32 5.689277e − 05 9.154451e + 02 NI > 1000 4.345902e + 05 3.776363e + 03

Problem 4

500 809/3134 9.614778e − 05 1.113785e + 03 9/73 NaN 1.107607e + 00
1000 960/3894 9.865549e − 05 8.674373e + 03 8/65 NaN 5.725237e + 00
1500 197/695 8.562547e − 05 5.509394e + 03 8/65 NaN 1.584970e + 01
2000 220/676 9.847745e − 05 1.418851e + 04 8/65 NaN 3.584903e + 01

Problem 5

500 6/7 4.925073e − 06 4.305628e + 00 6/7 4.925073e − 06 7.488048e − 01
1000 6/7 6.747222e − 06 2.725337e + 01 6/7 6.747222e − 06 4.477229e + 00
1500 6/7 8.176417e − 06 8.352294e + 01 6/7 8.176417e − 06 1.340049e + 01
2000 6/7 9.391335e − 06 1.925364e + 02 6/7 9.391335e − 06 3.001459e + 01

Problem 6

500 96/97 9.183793e − 05 1.272812e + 02 65/66 9.473359e − 05 8.346053e + 00
1000 17/18 7.206980e − 05 1.263140e + 02 63/64 8.700852e − 05 4.623870e + 01
1500 17/18 6.663689e − 05 3.956965e + 02 63/64 9.605270e − 05 1.402917e + 02
2000 17/18 6.136239e − 05 9.107026e + 02 64/65 8.724048e − 05 3.194588e + 02

Problem 7

500 14/15 7.551200e − 05 1.533490e + 01 52/53 9.761790e − 05 6.333641e + 00
1000 15/16 5.530847e − 05 1.084051e + 02 55/63 8.871231e − 05 3.985826e + 01
1500 14/15 8.445286e − 05 3.119708e + 02 60/68 7.722045e − 05 1.336617e + 02
2000 15/16 4.705617e − 05 7.805354e + 02 13/63 NaN 5.564556e + 01

Problem 8

500 6/7 4.600878e − 05 4.196427e + 00 6/7 2.375490e − 05 7.020045e − 01
1000 6/7 6.434846e − 05 2.658257e + 01 6/7 3.327487e − 05 4.461629e + 00
1500 6/7 7.851881e − 05 8.319533e + 01 6/7 4.062329e − 05 1.335369e + 01
2000 6/7 9.049762e − 05 1.928484e + 02 6/7 4.683284e − 05 2.985859e + 01

Problem 9

500 2/10 2.027911e − 10 5.460035e − 01 NI > 1000 4.514037e + 117 1.037407e + 01
1000 2/10 2.666034e − 10 2.698817e + 00 NI > 1000 6.383813e + 117 2.861058e + 01
1500 2/10 1.379742e − 09 8.330453e + 00 NI > 1000 7.818542e + 117 5.319634e + 01
2000 2/10 1.701735e − 09 1.942212e + 01 NI > 1000 9.028075e + 117 8.375694e + 01

Problem 10

500 435/2865 5.154286e − 05 5.901362e + 02 41/210 NaN 3.806424e + 00
1000 637/4215 5.701191e − 05 5.749432e + 03 67/425 NaN 3.689424e + 01
1500 303/1914 4.003848e − 05 8.526469e + 03 63/491 NaN 1.146919e + 02
2000 473/3281 3.558910e − 05 3.074095e + 04 64/499 NaN 2.622845e + 02

Problem 11

500 1/2 0.000000e + 00 1.092007e − 01 1/2 0.000000e + 00 1.560010e − 01
1000 1/2 0.000000e + 00 7.956051e − 01 1/2 0.000000e + 00 6.864044e − 01
1500 1/2 0.000000e + 00 2.277615e + 00 1/2 0.000000e + 00 2.324415e + 00
2000 1/2 0.000000e + 00 5.101233e + 00 1/2 0.000000e + 00 5.210433e + 00

Problem 12

500 260/800 1.654459e − 05 3.509398e + 02 8/51 NaN 7.800050e − 01
1000 324/1053 8.997051e − 05 2.902289e + 03 8/51 NaN 5.226033e + 00
1500 254/829 1.257117e − 05 7.123224e + 03 8/51 NaN 1.583410e + 01
2000 372/1353 9.331122e − 05 2.414117e + 04 8/51 NaN 3.046700e + 01
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Table 1: Continued.

Nr. Dim Algorithm 1 Normal BFGS algorithm
NI/NG GN Time NI/NG GN Time

Problem 13

500 96/209 9.194537e − 05 1.287632e + 02 10/74 NaN 1.185608e + 00
1000 53/89 5.718492e − 05 4.531049e + 02 10/74 NaN 6.021639e + 00
1500 NI > 1000 1.180195e + 10 2.835008e + 04 10/74 NaN 1.790891e + 01
2000 54/132 3.919816e − 05 3.337298e + 03 10/74 NaN 4.031066e + 01

Problem 14

500 18/68 5.826508e − 05 2.076373e + 01 16/115 NaN 6.240040e − 01
1000 18/68 8.239959e − 05 1.357989e + 02 16/115 NaN 3.354021e + 00
1500 19/69 5.002681e − 05 4.532921e + 02 16/115 NaN 9.765663e + 00
2000 19/69 5.774900e − 05 1.042820e + 03 16/115 NaN 2.148134e + 01

Problem 15

500 8/9 6.870902e − 05 6.910844e + 00 22/23 8.899350e − 05 2.667617e + 00
1000 7/8 7.203786e − 05 3.561503e + 01 16/17 9.828207e − 05 1.174688e + 01
1500 7/8 4.809670e − 05 1.122739e + 02 13/14 9.654107e − 05 2.903179e + 01
2000 7/8 3.609946e − 05 2.583845e + 02 11/12 9.465949e − 05 5.519315e + 01

Problem 16

500 0/1 0.000000e + 00 0.000000e + 00 0/1 0.000000e + 00 0.000000e + 00
1000 0/1 0.000000e + 00 0.000000e + 00 0/1 0.000000e + 00 0.000000e + 00
1500 0/1 0.000000e + 00 1.560010e − 02 0/1 0.000000e + 00 0.000000e + 00
2000 0/1 0.000000e + 00 1.560010e − 02 0/1 0.000000e + 00 1.560010e − 02

Problem 13. Five-diagonal system [19]:

𝑓
1
(𝑥) = 4 (𝑥

1
− 𝑥
2

2
) + 𝑥
2
− 𝑥
2

3
,

𝑓
2
(𝑥) = 8𝑥

2
(𝑥
2

2
− 𝑥
1
) − 2 (1 − 𝑥

2
) + 4 (𝑥

2
− 𝑥
2

3
) + 𝑥
3
− 𝑥
2

4
,

𝑓
𝑖
(𝑥) = 8𝑥

𝑖
(𝑥
2

𝑖
− 𝑥
𝑖−1
) − 2 (1 − 𝑥

𝑖
) + 4 (𝑥

𝑖
− 𝑥
2

𝑖+1
) + 𝑥
2

𝑖−1

− 𝑥
𝑖−2

+ 𝑥
𝑖+1

− 𝑥
2

𝑖+2
, 𝑖 = 3, 4, . . . , 𝑛 − 2,

𝑓
𝑛−1

(𝑥) = 8𝑥
𝑛−1

(𝑥
2

𝑛−1
− 𝑥
𝑛−2
) − 2 (1 − 𝑥

𝑛−1
)

+ 4 (𝑥
𝑛−1

− 𝑥
2

𝑛
) + 𝑥
2

𝑛−2
− 𝑥
𝑛−3
,

𝑓
𝑛
(𝑥) = 8𝑥

𝑛
(𝑥
2

𝑛
− 𝑥
𝑛−1
) − 2 (1 − 𝑥

𝑛
) + 𝑥
2

𝑛−1
− 𝑥
𝑛−2
.

(49)

Initial guess: 𝑥
0
= (−2, −2, . . . , −2).

Problem 14. Extended Freudentein and Roth function (𝑛 is
even) [20]: for 𝑖 = 1, 2, . . . , 𝑛/2

𝑓
2𝑖−1

(𝑥) = 𝑥
2𝑖−1

+ ((5 − 𝑥
2𝑖
) 𝑥
2𝑖
− 2) 𝑥

2𝑖
− 13,

𝑓
2𝑖
(𝑥) = 𝑥

2𝑖−1
+ ((1 + 𝑥

2𝑖
) 𝑥
2𝑖
− 14) 𝑥

2𝑖
− 29.

(50)

Initial guess: 𝑥
0
= (6, 3, 6, 3, . . . , 6, 3).

Problem 15. Discrete boundry value problem [21]:

𝑓
1
(𝑥) = 2𝑥

1
+ 0.5ℎ

2

(𝑥
1
+ 𝑡)
3

− 𝑥
2
,

𝑓
𝑖
(𝑥) = 2𝑥

𝑖
+ 0.5ℎ

2

(𝑥
𝑖
+ 𝑡𝑖)
3

− 𝑥
𝑖−1

+ 𝑥
𝑖+1
,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = 2𝑥

𝑛
+ 0.5ℎ

2

(𝑥
𝑛
+ 𝑡𝑛)
3

− 𝑥
𝑛−1
,

𝑡 =
1

𝑛 + 1
.

(51)

Initial guess: 𝑥
0
= (𝑡(𝑡 − 1), 𝑡(2𝑡 − 1), . . . , 𝑡(𝑛𝑡 − 1)).

Problem 16. Troesch problem [22]:

𝑓
1
(𝑥) = 2𝑥

1
+ 󰜚ℎ
2 sin 𝑡 (󰜚𝑥

1
) − 𝑥
2
,

𝑓
𝑖
(𝑥) = 2𝑥

𝑖
+ 󰜚ℎ
2 sin 𝑡 (󰜚𝑥

𝑖
) − 𝑥
𝑖−1

− 𝑥
𝑖+1
,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑓
𝑛
(𝑥) = 2𝑥

𝑛
+ 󰜚ℎ
2 sin 𝑡 (󰜚𝑥

𝑛
) − 𝑥
𝑛−1
,

𝑡 =
1

𝑛 + 1
, 󰜚 = 10.

(52)

Initial guess: 𝑥
0
= (0, 0, . . . , 0).

In the experiments, the parameters in Algorithm 1 and
the normal BFGS method were chosen as 𝑟 = 0.1, 𝜌 = 0.5,
𝑚
1
= 6, 𝛿

1
= 𝛿
2
= 0.001, 𝐻

0
and is the unit matrix. All

codes were written in MATLAB r2013b and run on PC with
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6600@2.40 GHz Core 2 CPU processor and 4.00 GB memory
and Windows 7 operation system. We stopped the program
when the condition ‖ℎ(𝑥)‖ ≤ 10−4 was satisfied. Since
the line search cannot always ensure the descent condition
𝑑𝑇
𝑘
ℎ
𝑘
< 0, uphill search direction may occur in the numerical

experiments. In this case, the line search rule maybe fails. In
order to avoid this case, the stepsize 𝛼

𝑘
will be accepted if

the searching time is larger than eight in the inner circle for
the test problems. We also stop this program if the iteration
number arrived at 1000. The columns of the tables have the
following meaning.

Dim: the dimension. NI: the total number of itera-
tions.
NG: the number of the norm function evaluations.
Time: the CPU time in second.
GN: the normal value of ‖ ℎ(𝑥) ‖ when the program
stops.
NaN: not-a-number, impling that the code fails to get
a real value.
Inf: returning the IEEE arithmetic representation for
positive infinity or infinity which is also produced by
operations like dividing by zero.

From the numerical results in Table 1, it is not difficult
to show that the proposed method is more successful than
the normal BFGS method. We can see that there exist many
problems which can not be successfully solved by the normal
BFGS method. Moreover, the normal BFGS method fails to
get real value for several problems. Then we can conclude that
the presented method is more competitive than the normal
BFGS method.
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