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Root cause identification of performance degradation within distributed systems is often a difficult and time-consuming task,
yet it is crucial for maintaining high performance. In this paper, we present an execution trace-driven solution that reduces
the efforts required to investigate, debug, and solve performance problems found in multinode distributed systems. The
proposed approach employs a unified analysis method to represent trace data collected from the user-space level to the
hardware level of involved nodes, allowing for efficient and effective root cause analysis. This solution works by extracting
performance metrics and state information from trace data collected at user-space, kernel, and network levels. The
multisource trace data is then synchronized and structured in a multidimensional data store, which is designed specifically
for this kind of data. A posteriori analysis using a top-down approach is then used to investigate performance problems
and detect their root causes. In this paper, we apply this generic framework to analyze trace data collected from the
execution of the web server, database server, and application servers in a distributed LAMP (Linux, Apache, MySQL, and
PHP) Stack. Using industrial level use cases, we show that the proposed approach is capable of investigating the root
cause of performance issues, addressing unusual latency, and improving base latency by 70%. This is achieved with
minimal tracing overhead that does not significantly impact performance, as well as Oðlog nÞ query response times for
efficient analysis.

1. Introduction

When performance degradation occurs within a distributed
system, it can have multiple causes. For instance, it may be
caused by insufficient system resources, a problem in the
network layer, a bug in the software code within a connect-
ing node, incorrect input data, or the misconfiguration of
one of the active modules or nodes. The situation gets more
serious when we notice that it is not easy to locate the prob-
lem in the system, as it is running continuously in parallel
with other software and machines that cannot be stopped
for debugging.

Therefore, most issues within distributed systems are
hard to recognize and investigate. Active monitoring of dis-
tributed system execution using runtime information can be
helpful in this matter [1–3]. The runtime execution data,

which is usually collected by logging and tracing tools, can
help monitor the actual executions of systems, detect possi-
ble runtime problems, and hopefully pinpoint their root
causes. Tracing is a method that consists of collecting execu-
tion logs from a system at runtime [4]. Unlike profiling,
which usually provides statistics about a time range, tracing
can display the state of the system at various levels, including
the active processes, running system calls, function call
stack, network usages, and active elements of disk queues
at different time points, e.g., when a latency problem is
detected in the system [5].

There are already trace-based solutions to debug perfor-
mance problems of distributed systems [5–7], however,
extracting the root cause of a performance problem requires
much more depth than these solutions can provide since
they mainly rely on a single level of data, either kernel,
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user-space, or network level [8]. Conversely, we present a
trace-oriented solution that monitors the system in several
layers (from the application layer to the driver layer), to
improve visibility. The proposed solution uses trace data
gathered from Linux Trace Toolkit Next Generation
(LTTng), a low-overhead kernel and user-space tracer [4].
The traces collected from the different components of the
distributed system are synchronized together based on an
event matching algorithm so that all events are related to a
unified clock. Our approach is generic and can be used to
debug different distributed system issues, from problems in
web servers to network file systems. However, our focus in
this paper is mostly on web servers (distributed or central-
ized) and more specifically the Linux, Apache, MySQL,
and PHP (LAMP) Stack. We instrument the different LAMP
stack modules and provide tracing probes to collect runtime
information from the web server, application server(s), data-
base server(s), and from the client(s).

The collected trace is analyzed using a stateful top-down
approach using a historical data-store that is built while the
trace is first read. This data-store keeps track of the state of
the system throughout execution and includes metrics from
the various system layers which it measures, aggregates, and
organizes. Its purpose is to give users an overview of the sys-
tem and to help pinpoint any bottlenecks or performance
misbehaviors. This data-store uses a tree structure with
search complexity of Oðlog nÞ which is efficient for recover-
ing the desired analysis data, without having to reread the
substantial trace events every time the user selects a new area
or system resource (e.g., a CPU, a process, or a virtual
machine) to analyze. The database can be used to compare
metric values from different points of execution to deter-
mine if there is misbehavior (e.g., an unexpectedly high
response time or resource overload) at any time during exe-
cution. Upon discovery of problematic symptoms in the first
overview step, the next analysis phase is to dig deeper into
the problem using the information gathered and analyzed
from the other layers, to investigate and detect the root cause
of the problem.

The main contributions of the paper are

(i) A generic, top-down, and multi-level analysis solu-
tion to detect and locate performance bottlenecks
of distributed systems

(ii) Using an optimized data structure to store the state
of the system for the trace duration, which makes
the analysis much more interactive afterward

(iii) A unified data collection approach to trace the dif-
ferent components of the LAMP stack (Linux,
Apache (web server), MySQL (database server),
and PHP (application server)) to efficiently collect
the required run time execution data for a whole-
chain web request analysis

The remainder of the paper is organized as follows: we
discuss the related work of distributed system and web
server performance analysis in Section 2, followed by the
architecture of our performance analysis method in Section

3. In Section 4, we highlight the usefulness and functionality
of our work through some real-world use-cases. We evaluate
the overhead of our proposed method in Section 5 and con-
clude with a look at some interesting future work.

2. Related Work

A distributed system is a system whose processes and
threads are running on multiple computers with different
configurations. The possible incompatibility in the runtime
environments makes the debugging of performance problems
more difficult. Runtime execution data, collected by tracing
tools, can helpmonitor the system execution, detecting perfor-
mance problems, and uncovering their root causes.

Tracing is a method that consists of collecting execution
logs from a system at runtime [9, 10]. The payload of a trace
event usually contains the event name, the ID of the proces-
sor on which the event is executed, the timestamp, and the
arguments. A trace event can be a system call, a function call,
a signal, an IRQ, etc. Unlike debugging, where the program
is executed step by step to get its current state, tracing col-
lects data during the execution, and the trace file is often
analyzed offline. The overhead of tracing should be minimal
to preserve the normal behavior of the system.

Linux Trace Toolkit Next Generation (LTTng) [4] is an
open-source Linux tracing tool initially developed by DOR-
SAL (Distributed Open Reliable Systems Analysis Lab
(DORSAL) http://www.dorsal.polymtl.ca) to provide very
low-overhead tracing capabilities. It is packaged as an out-
of-tree kernel module, and it is available in all major Linux
distributions. LTTng supports kernel and user-space tracing,
which is useful to correlate high-level application events
with low-level kernel events to support a multilevel trace-
based analysis. Execution traces can be used to study the
runtime behavior of software applications. Daoud and
Dagenais [11] proposed a trace-based framework to provide
detailed workload characterizations of Java virtual machines.
Surveys of trace-based dynamic analyses methods including
different applications of multilevel execution traces in soft-
ware analyses are presented in [10, 12].

Some previous works have applied kernel tracing to aid
in distributed system performance monitoring. For instance,
in [13], vectors representing system call sequences are cre-
ated and used along with machine learning classification
algorithms to identify anomalies. This work demonstrates
how valuable kernel tracing can be in the identification of
CPU or memory-related problems. Furthermore, in [14],
Ates et al. utilize tracing methods to identify regions of high
performance variability for the purposes of automatically
enabling additional instrumentation. By including user-
space and network level trace data, one can go beyond per-
formance degradation identification and conduct precise
root cause analysis within a distributed system.

Google Dapper [15], a tracing framework for distributed
systems, works by instrumenting the RPC (remote proce-
dure call) libraries to trace distributed requests. In this sys-
tem, a unique identifier is assigned to each request at the
entry point and is used to follow the request through the
whole distributed system. This unique ID is used to
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temporarily join and relate the components interacting to
serve the request. At the visualization time, a request is
drawn recursively in a trace tree timeline, including spans
and arrows, where each span includes the basic unit of work
and arrows display the communication and interactions
between spans. While Dapper is an excellent tool to break
down a request into all its components, it does not offer
much information to analyze the problem’s root causes.

Pinpoint [6] monitors call request paths and clusters
them into success and failure groups, to find latency-
anomalous components. However, the fault may come from
the operating system and not the software components, in
which case this tool will not offer interesting insight.

Spectroscope [7] is aimed at diagnosing performance
changes by comparing request flows. It applies root cause
analysis by comparing the way the system services requests
from different normal and problematic periods. Spectro-
scope extracts critical paths of requests from the normal
and problematic parts of the system execution and groups
the similar paths into a cluster using k-mean algorithms.
The clusters correspond to different types of requests and
the critical paths within a cluster show different ways of han-
dling the same type of requests. They use data from only a
single layer, whereas our approach uses several.

TraceCompare [5] uses a similar idea but leaves the
selection of normal and slow requests to users, where they
can see all requests in side-by-side distributions and can
choose any two areas to compare. TraceCompare [5]
extracts critical paths of requests and converts them to an
enhanced calling context tree (ECCT). It then extracts a dif-
ferential flame graph from the various requests to compare
the differences. By comparing two different requests, a user
can get the detailed differences of their executions and pos-
sibly figure out the reasons for the latency of the slow
request. Although it uses traces from several levels, it
depends on comparing various executions, which is different
from our proposal.

In this paper, we address the runtime issues which may
occur in the different modules, nodes, or layers of distributed
systems (i.e., LAMP stack including a web server, a database
server, and an application server). We collect trace data from
multiple levels (application, system call, disk block layer, and
network layer). The data from each layer has its specificity
and should be processed based on the characteristics of that
layer. A comparison of using user-space and kernel-space
trace data in software anomaly detection is presented in
[16]. The separate analysis of different layers of kernel data
is studied in [10], while the processing of system call traces
is reviewed in [17]. Another important layer is the physical
storage (disk) layer. The performance of disk operations
may directly affect the performance of applications. Differ-
ent applications, like web and database servers, usually pro-
vide a user-space caching mechanism to reduce disk
accesses, but it is still impossible to hold all the required data
in memory, and accesses to disk are necessary at some point.
The storage subsystem itself is composed of different layers:
the virtual file system (VFS), the file system (ext4, ext2, btrfs,
etc.), the block layer, and the disk driver. A user-space appli-
cation requests I/O operations through system calls, and

these requests go down through the layers until they reach
the disk drive where they get processed. Daoud and Dagen-
ais [11] proposed a comprehensive Linux tool to recover
high-level storage metrics from low-level trace events col-
lected at different layers of the storage subsystem. Similar
tools like Oracle ZFS Storage Software [18] and IBM XIV
[19] are available in other operating systems.

Many storage debugging tools can be used to debug stor-
age issues. The traditional tools like iostat and iotop provide
information about disk activity, and the processes causing
this activity, by parsing the kernel statistics available in the
proc file system. This information is useful to monitor disk
activity, but it cannot be used to debug difficult problems.
Block-level tracing provides a more precise solution to
debug disk performance. Tracers like Blktrace [20] provide
low-level information about I/O requests and the behavior
of the disk scheduler, but this information is usually very
detailed and difficult to analyze manually. Visualization
tools like Seekwatcher [21], IOprof [22], and BTT [23] can
be used to read the trace files generated by blktrace and to
generate storage metrics from them. However, the visibility
of blktrace is limited to the block layer, and it does not cover
the other layers of the storage subsystems.

All the above studies review different aspects of trace-
based analysis. However, they lack a unified way to analyze
multilevel multinode trace data, which we address. We pro-
pose a solution to collect execution data from different layers
and different sources, process them, extract the required
information, and place them in a common data store to
use in a posteriori analysis phase. This analysis synchronizes
the data and performs a global analysis based on the com-
mon features (i.e., clock time and process names) between
the data at different layers and from different sources.

3. Architecture

A distributed system is composed of different computers
interconnected through the network. To ensure a compre-
hensive analysis, it is important to collect traces at different
levels: user-space level, kernel level, and network level. The
collected information is then sent to an automated tool for
unified analysis. The general architecture of the proposed
solution is presented in Figure 1. The next section will pro-
vide a detailed description of each of those components.

3.1. Data Collection

3.1.1. User-Space Tracing. User-space tracing is a technique
to collect program runtime data by probing the different
points of application code. It can be used for anomaly and
fault localization in software code. Developers can embed
different probes (tracepoints) in the important parts of the
software code to get execution logs at runtime when the exe-
cution reaches them. Then, by analyzing these logs, users
can understand what is actually happening in the different
parts of the software.

However, it is also possible to trace a user-space applica-
tion without changing its source code. To do so, the core
library is replaced with a wrapper library and the program
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calls the functions from the new wrapper library using LD_
PRELOAD or other interception techniques. The wrapper
library in turn calls the functions from the original library
but includes some tracing before and after. Figure 2 shows
this technique. Arrow number 1 shows the original path
between the program and the library. Arrows 2 and 3 show
the new calling path going through the wrapper library.

In the first phase of the technique proposed in this paper,
the core of the LAMP stack (Linux, Apache, MySQL/Mar-
iaDB, and PHP) was changed to support tracing. A few tra-
cepoints have been added to the libraries of the different
modules to ensure that all important aspects of the LAMP
stack are covered. Using this modified core of the LAMP
stack, users can trace their web applications without needing
to change their program source code.

For Apache, we have written a module to trace Apache
requests. For each request, it records the start and end times,
in addition to all the details about each request (e.g., client
IP, file accessed, method, and user-agent).

In PHP, the core functions are changed to enable tracing
at the request level, function call level, and code execution
level. For each request, it records the start and end times
and details such as client IP, files accessed, methods, and
ports. For each function call, it records the filename, func-
tion name, class name, and status of the function execution.
For each execution, it records the line number, file and func-
tion names, and execution status. These LAMP extensions
(both the Apache module and the PHP extension) are
open-source (https://github.com/naser/) and available for
public use.
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Figure 1: General architecture of the proposed multilevel analysis.
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Figure 2: User-space tracing using the wrapping method.
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MariaDB (a fork of MySQL) is also instrumented to
trace database connections, commands, and queries. Using
these tracepoints, it is possible to gather precise runtime
information about query execution, query response time,
latency, or time elapsed in different parts of the query execu-
tion steps (e.g., query parsing, query caching, and query real
execution).

What is important to note is that when the tracepoints
have not been chosen for tracing or are disabled, they do
not execute any tracing code, so they impose no additional
overhead. When they are enabled, they may incur some very
low overhead. We measure this additional overhead cost in
Section 5. Using the mentioned tracepoints, we can debug
the whole LAMP stack. For each request, we can give the exact
time elapsed in each part of the stack and what fraction of the
request time was spent in Apache, PHP, or the database. This
means we can locate the potential bottlenecks of any request.

3.1.2. Kernel Tracing. System calls form a boundary between
the user-space and the kernel-space. They are used by the
applications to interact with the operating system and hard-
ware resources. Tracing the system call layer provides useful
information, which can be used to analyze the behavior of
the system and to evaluate its performance. Detecting prob-
lematic calls is done by tracing the entry and exit of each sys-
tem call and calculating its duration. In the context of our
analysis, we need to monitor all system calls related to I/O
operations (opening and creating files, write/read opera-
tions, reposition file offset, duplicate file descriptor, etc.).

System call events provide limited visibility about what is
happening inside the storage subsystem. For example, a
READ system call may return quickly because the data was
found in the page cache, not because the disk offers good
performance. To get a wider visibility, it is important to trace
lower-level events that give more precise information about
storage activity. The three important components to be con-
sidered in a deep storage performance analysis are the file
system, the page cache, and the block layer.

The file system is the key component of the operating
system responsible for storing and retrieving data from stor-
age. It presents the data to the user-space applications in
terms of files and internally keeps the match between each
file and its physical location on disk. Typical file system
operations are creating, reading, writing, and deleting a file.
System calls are the entry points to the file system. For exam-
ple, a read system call is directly linked to the read handler
defined by the file system to struct file_operations. In addi-

tion to the basic operations, the file system uses many
advanced mechanisms to ensure the coherence and security
of the data. Some interesting file system events that can be
used for a detailed analysis include inode creation and dele-
tion, starting and processing writing operations, and when
the file system journal starts to commit an operation.

The page cache is used to store data in the main mem-
ory, to minimize disk I/O operations. The file system always
tries to recover the required data from the page cache before
issuing a read request to the disk. The same happens for
writing operations: the data is written to the page cache
before being transferred to the disk asynchronously by the
write-backmechanism. In Linux, the page cache is represented
as a Radix Tree, since it provides a good search complexity. It
is possible to evaluate the page cache lookup efficiency by trac-
ing the entry and exit of find_get_page. However, in our anal-
ysis, we decided to generate a trace event only when a cache
miss happens. The reasoning behind this decision was two-
fold. First, tracing all cache lookup operations adds too much
overhead to the system. Second, the lookup time is insignifi-
cant compared to the cache miss handling time.

The block layer is the operating system component
responsible for I/O request management. By instrumenting
the block layer, we can get very precise information about
I/O requests that are being processed, and how they are
managed by the disk scheduler. We follow the I/O request
and collect trace events from creation, through the waiting
and dispatch queues, to completion by the disk drive.

The request latency can be broken into three main parts,
as shown in Figure 3. The preparation time is the time
needed to create the request data structure. The waiting time
is the time during which the request resides in the waiting
queue. The service time is the time taken by the disk drive
to handle the request.

3.1.3. Kernel Modules Tracing. The Linux kernel offers many
helper functions to facilitate driver development. For exam-
ple, disk drivers typically use the exported functions of the
block layer to manage requests and waiting queues. How-
ever, information may be needed from inside the driver
and, for that, additional instrumentation is required. In the
case of storage devices, it is important to know exactly when
the interaction with the hardware happens. Four tracepoints
are used for this:

(i) scsi_dispatch_cmd_start is executed when the
request is sent to the disk controller

Process context

Waiting queue

Dispatch queue

Preparation
time

Waiting
time

Service time

Block_getrq Block_rq_insert

Block_rq_issue

Block_rq_complete

Figure 3: Request latency.
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(ii) scsi_dispatch_cmd_error is executed if the request
delivery has failed

(iii) scsi_dispatch_cmd_done is executed if the command
was handled correctly by the disk drive

(iv) scsi_dispatch_cmd_timeout is executed if the disk
drive does not respond in time

3.1.4. Network Tracing. Network communication is an
important part of a distributed system. Latency in the trans-
mission of network packets has a direct impact on the perfor-
mance of the system. In such cases, the application must be
blocked until the required information is transmitted through
the network. To get precise information about network
latency, we based our analysis on many network-related sys-
tem calls such as connect(), accept(), and shutdown().

Network tracing is also used to synchronize traces
between different machines. LTTng recovers event time-
stamps using the monotonic clock provided by the kernel
of the traced machine. The absence of a global clock analysis
in a distributed system is challenging and may even cause
messages to seemingly be received before being issued (mes-
sage inversion). The convex hull algorithm was proposed by
Jabbarifar et al. [24] to solve this problem. The idea is to use
event matching between different hosts to unify the clock
sources. The couple {inet_sock_local_out, inet_sock_local_
in} can be used for synchronization in the case of a distrib-
uted system because one event triggers the other and they
share a common ID in their payload.

3.2. Data Analysis. Trace events usually contain very detailed
information about the runtime behavior of the system,
which is essential in the detection of hard problems. How-
ever, trace files are often very large, and pinpointing a prob-
lem inside them is not an easy task. An automated analysis
system should be used to read the trace and generate
higher-level, easier to understand information.

Data-driven abstraction is an abstraction method that
consists of generating compound events by grouping low-
level trace events. Ezzati-Jivan and Dagenais [10] proposed
an approach that aims to summarize trace files based on a

pattern library. The idea is to replace semantically-related
trace events with a compound event like SEND_NET-
WORK_PACKET or WAIT_ON_MUTEX. This method
improves the legibility of the trace but the oversimplification
may hide important details, making the detection of some
problems impossible. In the case of distributed systems, the
problems are usually at a very low level; a deeper analysis
is therefore required.

Metric-based abstraction is another approach that helps to
identify problems without reducing the precision of the analy-
sis. Ametric is computed from one ormany trace events, and a
hierarchy of metrics can be defined so that a high-level metric
is computed from lower-level metrics. Performance metrics
are very useful for an efficient top-down approach. This tech-
nique is useful in our case: the troubleshooter can pinpoint the
origin of the problem by looking at different metrics provided
from the different layers. It starts by monitoring high-level
metrics, and, when something unexpected happens, it goes
down to see what happens at a deeper level of detail.

3.2.1. Proposed Architecture. In this section, we propose a
generic architecture to process and analyze trace events pro-
vided from different layers. This architecture is illustrated in
Figure 4.

3.2.2.Multilevel Correlator. It is the component responsible for
getting the trace data from the different layers and synchroniz-
ing it. If the trace events are gathered from the same machine,
the synchronization is based on the event timestamps. LTTng
follows the monotonic time-base of the Linux kernel to reli-
ably recover the exact time of each event [4].

The Linux kernel has two internal clocks: CLOCK_REAL-
TIME and CLOCK_MONOTONIC. CLOCK_REALTIME
(kernel function do_gettimeofday) tracks the wall clock and
gets updated and corrected by the Network Time Protocol
(NTP) daemon and is not monotonic. CLOCK_MONO-
TONIC represents the absolute elapsed wall-clock time since
the machine boot time (which is an optional fixed prior time
point). CLOCK_MONOTONIC, therefore, monitors more
closely the hardware timers and does not jump in time.
CLOCK_MONOTONIC is generally used for tracing, since it
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Data model
generator

Multi-level
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Network
trace
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trace
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Figure 4: Data analyzer architecture.
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is precise, has a fine granularity, and is most consistent across
small and large time intervals. Moreover, the fact that it is
monotonic avoids the ambiguity present for timestamps with
CLOCK_REALTIME, when the clock is adjusted backwards.

LTTng follows the second approach, like CLOCK_
MONOTONIC. However, to be safe from integer arithmetic
imprecision, it directly reads and outputs the CPU time-
stamp counters which include the most accurate CPU cali-
bration frequency and leaves the other integer arithmetic
operations to the trace postprocessing analysis tools like
Trace Compass or Babeltrace.

This time-base guarantees a partial ordering of events,
even if the events are generated by different CPUs. The syn-
chronization is more complex if the traces are collected from
different machines. In this case, the causality between events
is the only way to get a partial ordering, which is enough for
the analysis. The fully incremental convex hull synchroniza-
tion algorithm [24] is used to solve the problem of trace syn-
chronization in distributed systems. The algorithm is based
on matching an event a from one trace and an event b from
the other. The couple {a,b} must satisfy the following
requirement:

(i) a triggers b

(ii) a and b must have a common value in their payload

(iii) Every event b must have a corresponding event a in
the other trace

For example, if PHP and MariaDB are installed on dif-
ferent machines, the traces can be synchronized using the
matching events {send_req,req_start} and {req_end,
receive_req}, as shown in Figure 5.

3.2.3. Data Model Generator. Detecting a performance bot-
tleneck is a complex operation. To analyze the trace, users
have to navigate horizontally by selecting different time
regions and vertically by zooming in on regions of interest.
Computing the metrics every time the user selects a new time
range is a very slow operation because it requires rereading the
same events again and again to generate the statistics.

To avoid this extra computation, we decided to use a
stateful approach in which the state of the system is kept
in an incremental database when the trace is read for the
first time. Every time a new time range is selected, the met-
rics can be quickly retrieved from the database, without
reading the trace file.

Using a memory-based data-structure like Segment-tree
or R-tree is not a viable solution, since trace files may be
huge and the model generated cannot be kept in memory.
On the other hand, disk-based solutions like relational data-
bases are not tailored to tracing and provide a very slow
response time in that context, as shown in Section 5.3.

Here, we use the modeled state system a custom-build
database to keep track of the execution states of the different
components of the system during its execution. The main
components of the modeled state system are the attribute
tree and the state history tree. The attribute tree represents
the resource hierarchy of the system, and each node can be
accessed using an absolute or relative path. A sample of
the attribute tree used in our analysis is shown in Figure 6.
For example, we can easily access the queue length of the
TCP stack using the path/network/tcp_queue/queue_length.

The state history tree saves the state of the system on the
disk in terms of nodes. A node is defined by a key, a time
range, and a state, where the key is the path of the system
component in the attribute tree. States are added continu-
ously into a node until it is full and a new sibling is created,
as shown in Figure 7. The state history tree offers a fast query
time (Oðlog nÞ where n is the number of nodes), making it
very convenient for an interactive analysis when a big trace
is involved.

Formally, every event EV is a tuple like ðr1,⋯, rnÞ which
represents an interaction between a set of system resources,
e.g., processors, files, disks, processes, and network sockets at
a specific timestamp ti, and with one or more output values
like vi ∈N .

EV = ti, r1,⋯, rn, v1,⋯, vmð Þ ti ∈ Tj , r j ∈ SR, vk ∈N
� �

,

T t t ∈Njf g,
SR = SystemResources:

8>><
>>:

ð1Þ
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Figure 5: Trace synchronization in a distributed system.
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Figure 6: Attribute tree.
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For example, an event like (t1, p1, read, fd1, cpu0, 100)
shows that at time t1, process p1 reads 100 bytes from a file
associated with the file descriptor fd1, while running on cpu0.

A trace TR may be seen as a set of ordered events. Events
in a trace are ordered by their timestamp, and no two dis-
tinct events have the same time value:

TR = ei ∣ ei ∈ EV, i < j⟶ tei < tej

n o
: ð2Þ

An abstract event, which we also call “State Change,” is a
high-level event that is built by grouping some raw level
events. Each state has a duration, a key, and a value associ-
ated with that attribute for the given time duration. Abstract
events (state changes) can be used to denote high-level con-
cepts like an active network connection, a process blocked, a
process running, and a CPU preempted. In summary, each
state change is associated with time duration and contains
a key and a value. For instance, the state change of “an active
network connection” includes a key (i.e., the network con-
nection socket id or the source and destination IP
addresses), a value (i.e., active), and time duration (e.g., t1
to t2) during which the state value is valid for the key.

TimeDurationTD = ti, t j
� �

∣ ti, t j ∈N , ti < t j
� �

,

SV = tdi, ati, við Þ ∣ tdi ∈ TD, ati ∈Attributes, vi ∈Nf g,
State Database SD = svi ∣ svi ∈ SVf g:

8>><
>>:

ð3Þ

As shown in the above equations, each state value svi
includes a time range, an attribute, and a value. The attribute
is a way to describe an aspect of a system resource. For
example, an attribute fd shows a file descriptor (i.e., an
aspect) of a file (i.e., a system resource). Other examples
are the id of a process or a thread, the CPU core number,
the address of a socket, the parent PID of a process, and so
on.

Analysis AN is a function from the trace events TR to
the state values database SD.

Analysis AN : TR⟶ SV: ð4Þ

For instance, the analysis to extract the CPU utilization
of each process ðCPUAðpiÞÞ may contain data like the fol-
lowing:

TD = ti, t j½ � ∣ ti, t j ∈N , ti < t jf g,
PR = pi ∣ pi ∈ SystemProcessesf g,
CUs = tdi, pi, við Þ ∣ tdi ∈ TD, pi ∈ PR, vi ∈Nf g,
CPUA pið Þ: TR⟶ CUs:

8>>>>><
>>>>>:

ð5Þ

Each analysis (like the analysis CPUA in the previous
example) has a set of different mapping rules to convert
events to state values. Depending on the analysis, the type
of input events, and their effect on the state of the system
attributes, the rules can take the form of a simple “if-then-
else” or a complex transition pattern. The rules can be
defined in the analysis tool source code, in the form of JAVA
code, or can be specified dynamically using XML patterns.
The possibility to define the analysis rules in XML form
allows defining complex transitions from the trace events
to states, to fulfill the requirements of specific use cases
and problems.

RL = ei ⟶ svið Þ ∣ ei ⊂ TR, svi ⊂ SDf g, ð6Þ

AN = r ∣ r ∈ RLf g: ð7Þ
In the same way, we wrap all the analysis belonging to

the same host into a container called a model. A model is
a set of analyses, for a specific system, which can be used
to reason about the underlying system from different points
of view. A Model Cloud, in turn, is the superset of all exist-
ing models: a container for all analyses of all tracing systems
(Figure 8).

Model CloudMDC = ani ∣ ani ∈ANf g, ð8Þ

AS :
Attributes of a specific system

host
,

MDC = ani ∣ ani ∈AN, Aani ∈ASf g,
ModelMDs ⊂MDC:

8>>><
>>>:

ð9Þ

Using the proposed model, users may aim to trace a dis-
tributed system, spanning different nodes (virtual machines
or physical hosts). After tracing all machines, analyses for
each are performed and a model for each is built. All such
models together constitute a Model Cloud. The generated
Model Cloud is then used in the analysis phase to render
user-friendly views.

3.2.4. Multilevel Analyzer. As mentioned earlier, analyses for
a model can be defined using JAVA code, recompiled into
the tool before opening the trace, or can be dynamically
defined using XML language patterns. The resulting model
can be huge if many distributed nodes are involved, and
opening all of them may slow down the trace analysis.
Therefore, the analyses are partitioned into two main cate-
gories: base and subsidiary. The base analyses are those that
are required to render the basic views (like control flow, his-
togram, etc.) and are executed when the trace is first opened.
The subsidiary analyses, however, are not opened with the
trace and are executed only upon a specific user request.

State 1 State 2 State 3 State 4

0 120

35

0 34 35 72 73 100 101 120

120

Figure 7: State history tree.
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This prevents the system from being slow when the trace is
opened for the first time. Users can nonetheless see a list
of the available analyses and can execute them whenever
they want.

3.2.5. Generic Detection Algorithm. As explained above, the
data collected from different sources is synchronized using
timing and causality relationships with the multilevel corre-
lator, and then modeled and saved in the State History data-
base by the Data Model Generator. The multilevel analyzer
recovers the data from the generated data model and uses an
advanced algorithm to help the user detect performance bot-
tlenecks. Bottlenecks can reside in any system layer. For exam-
ple, in the case of a web server, the latency can reside in the
web engine, the database, the network, the storage subsystem,
etc. A good strategy is to start by analyzing the high-level
layers and then go deeper if a problem is detected. The generic
detection algorithm used by our tool is described in Algo-
rithm 1 and shown graphically in Figure 9 to find latency
problems in the context of a web server.

This algorithm is based on a top-down approach. It
starts by computing high-level metrics from the user-space
tracepoints. If an anomaly is detected, it is important to
know if the problem resides in the application itself or if it
is caused by the environment. An anomaly is detected if a
web request takes longer than the normal distribution. We
collect statistics about the number of requests, the latency,
and the type of requests, and we use that as a baseline with
which we compare. The moment we detect a request that
took a longer time than normal, we consider it as abnormal
and we use the proposed analysis for further investigation.

To this end, the tool looks at the user-kernel boundary and
checks if there is a specific system call that caused the
latency. In such a case, we can use the kernel system calls
to uncover the deeper reason for the latency.

In Figure 9, we describe in more detail how a problem is
detected in the context of a web server. If a web request is
slow (slower than a threshold), it can be because of the
user-space logic (e.g., a long loop in the application code);
in this case, no system calls are involved. However, the slow-
ness may also be caused by a long system call, for example, a
read syscall. In this case, the two main reasons are possible.
The file is big and needs a lot of time to be read or the file
is small, but there is disk contention, which makes it slow
to read. To uncover the root cause, kernel events are needed,
in addition to system calls. Figure 9 describes the decision
process for this detection.

The procedure shown in Algorithm 1 covers system calls
and other types of events at several levels of the execution.
The term multilevel here means the different LAMP stack
layers (Apache/PHP/MySQL), and also user-space/system
calls/kernel. An operation can be slow because many com-
putations have to be done on the CPU, or because it is read-
ing a big file, or because it is waiting for a network packet,
etc. The only way to know the reason for the latency is to
have full visibility about what is happening in the system
and to use the provided algorithm to narrow down the rea-
son for the slowness.

The proposed method is implemented in Trace Compass
[25] (an open-source trace viewing and analysis tool), under
the name of Trace Compass Incubator and is available to the
public [25].
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Figure 8: Trace events to analysis to model to Model Cloud.
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Input:
User-space Tracepoints
System calls
Kernel Tracepoints
Events relationships map
Output: Problem
Compute high level metrics from user-space tracepoints
If user-space latency detected

Find the system calls that caused the latency
If system calls latency detected then

Get the kernel events related to the problematic system calls
If kernel anomaly detected
Problem⟵Kernel

Else
Problem⟵ System calls

End
Else

Problem⟵User − space
End

Else
Problem⟵NONE

End

Algorithm 1: Generic detection algorithm.

Is the web page
slow?

No latency
detected

Is there a slow
PHP request?

The latency
resides in the
web engine

Does it invlove
a database
request?

The latency
resides in PHP

Is the process
blocked on a long

system call?

The latency is
caused by the

userspace logic

(ii) Disk operation
(i) Network

The latency is
caused by:

(iii) Futex
(iv) etc.

The latency
resides in the

database

No

No

No

No

Yes

Yes

Yes

Yes

Figure 9: Decision diagram.
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4. Use Cases

The architecture we are proposing is generic and can detect
performance problems in distributed systems, regardless of
their precise architecture. It can be a distributed database,
a computing cluster, a distributed file system, a distributed
web server, etc. In this section, we present a detailed use case
where the proposed solution was used to find some perfor-
mance issues, difficult to detect using other monitoring tools.

The users of a web server complained about some long
response times. The architecture of the server was as follows:
a first machine runs Apache 2.4.23, and PHP 5.4, and is con-
nected to a remote database server running MariaDB 10.2
(shown in Figure 10).

Our objective is to answer two main questions:

(i) Base Latency. Why is the web site always slow?

A web page is supposed to be processed in 20ms (20ms
being the average response time of other similar web sites on
the same hardware), but in our case, the processing takes at
least 50ms.

(ii) Unusual Latency. Why is the response time much
slower sometimes, but fine at other times?

The processing time is sometimes 10x more than usual.

4.1. Base Latency. A website may be slow for different rea-
sons. It may be a misconfiguration or a problem on the
web server, application server, database layer, network layer,

or in the host machine operating system. Therefore, finding
the root cause without having precise runtime information
from each module would be impossible or very difficult. In
this use case, we investigated different areas with our pro-
posed tool and identified the root cause of the problem.

We had problems with a website running the MediaWiki
(https://www.mediawiki.org) engine, taking 10 to 15 seconds
of loading time. Apache logs were only showing that the
response times are high, without helping us to pinpoint the
problem. MariaDB slow query logs were also showing
nothing.

Using our proposed method, we can see the different
layers, having enough details at each level to investigate
problems. We were able to see the response time for each
request, including the portion clasped in each module sepa-
rately. From this view, we found that the application layer
(i.e., PHP) seems to be the bottleneck (or at least the first
place to investigate) because it consumed the largest portion
of the response time. This leads us to look at the PHP level to
see if there is a problem.

Looking at the top function calls for the problematic
server showed that all requests go to functions called wp_∗
which are functions from an installed WordPress. It was sur-
prising to see WordPress here because the Mediawiki engine
is a completely separate application and does not need any
other application like WordPress. More investigations in
the analysis data show that a WordPress module is installed
to unify the authentication of two related sites, one running
Mediawiki and the other WordPress, both being based on
PHP sessions.

In other words, each MediaWiki request keeps checking
the PHP session to see if there is an authenticated user in
WordPress, to let them sign into the Mediawiki engine,
which was taking around 70% percent of each request. By
changing the module source code and commenting out the
part that was continuously checking the session, we could
confirm that the problem was because of this module.

Moreover, our tool helped us to uncover problems in
other layers as well, like the database layer. We saw that
some requests spent around 50% of their time in the data-
base layer. We used our MySQL layer data to dig deeper into
these requests.

We found a database connection that had some update
queries that take time and look costly. Expanding on this
view, we can easily see which queries take a longer time than
others. Looking at the queries, we noticed that the update
queries are for gathering statistics about the WordPress
component of the site. By looking at the installed WordPress
plugins, and disabling the statistics plugin, we could solve
the problem of these requests as well.

The above use cases, which are only a few samples out of
many possible analyses with our tool, show that, with the
proposed methods and tools, we can quickly see the mod-
ules, requests, pages, and database tables involved in the
problem. It then becomes relatively easy to understand the
situation and to solve any unexpected behavior by disabling
the problematic nonrequired default modules, or by modify-
ing the configuration that had seemed interesting at first but
added much latency.

Client

Apache web
server

+
PHP

MariaDB

Figure 10: Web server architecture.
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4.2. Unusual Latency. In the previous use case, after detect-
ing and solving the latency problem, we were able to get a
much better response time. To ensure that everything was
working as expected, we used ApacheBench to stress the
website. A scatter chart of response times is presented in
Figure 11.

The response time of the server is unstable. Most web
requests are processed in 10ms. However, in some cases,
the processing takes much more time. Figure 11 shows three
main categories of requests:

(C1) A latency of 10ms. Most requests belong to this
category.

(C2) A latency of (180ms, 220ms).
(C3) A latency of (600ms, 800ms).
The user-space trace provided by the LAMP tracing

module is not enough to understand this problem. More
precise information from the operating system is needed
for a deeper analysis.

One of the major factors that can affect the speed of the
website is the storage device access, whether to process data-
base queries or to load static web pages. Disk caching plays a
major role in reducing the frequency of disk accesses, by
keeping the required data in memory. Many web servers
and database engines implement a user-space cache, and
others rely on the operating system cache. User-space cach-

ing is generally more efficient since the caching mechanism
is tailored by the database itself.

Our tool can generate precise information about cache
hits/misses that happen in the context of the webserver,
based on system calls and block events. The computation
is performed as follows: a read operation starts with the
event syscall_entry_read and ends with syscall_exit_read. If
all the required data is found in the cache, no disk operation
is observed. Otherwise, block device requests will be created
to recover the missing information from the disk. The miss
ratio is the amount of data read from the disk divided by
the amount returned by the read system call. For example,
the miss ratio of Figure 12 can be computed as follows:

MissRatio = Size Req1ð Þ + Size Req2ð Þ
Size READð Þ : ð10Þ

And therefore,

HitRatio = 1 −MissRatio

=
Size READð Þ − Size Req1ð Þ + Size Req2ð ÞÞ

Size READð Þ :
ð11Þ

Figure 13 shows that there is a clear correlation between
the response time and the cache hit ratio. Two cases, with
respect to Figure 14, are to be considered:

(1) Web Requests That Are Fully Served from the Cache.
These requests are the fastest ones and they corre-
spond to category (C1). All the data required is pres-
ent in the cache and no disk access is required

(2) Web Requests That Are Partially or Totally Served
from the Disk (Cache Hit Ratio between 0% and
30%). These requests correspond mainly to catego-
ries (C2) and (C3).

The cache hit analysis was useful to understand the ori-
gin of the slowness of some requests. However, the differ-
ence between categories (C2) and (C3) is still unknown.
Why do (C3) requests take more time to get the required
information from the disk? To answer this question, a more
detailed analysis at the level of the storage subsystem should
be performed. It is important to understand why an I/O
request is sometimes slower than usual. Our tool gives very
detailed information about the I/O scheduler, such as the
length of the waiting queue and the identity of the processes

syscall_entry_read

System calls Read

Req1 Req2Kernel layer

syscall_exit_read

block_rq_issue block_rq_complete

Figure 12: Cache miss ratio.
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generating I/O requests during a selected time range. Com-
puting the waiting queue is done based on the events
block_rq_insert and block_rq_complete, as shown in
Figure 15.

Our tool was able to show that the difference between
(C2) and (C3) is that (C3) requests are processed when the
disk drive is busy processing other requests using a process
called backup.sh. This process is copying server files to a
backup medium for recovery purposes in case of failure.

5. Evaluation

It is crucial to minimize the overhead of tracing to avoid
having biased results. A high overhead can change the nor-

mal behavior of the system, which makes the solution unus-
able in production systems.

The analysis cost is another important factor that must
be taken into account. Building the state system database
must be performed in a reasonable time to improve the user
experience. The trace files are often very large and inspecting
them must be done efficiently.

This section shows the different tests realized to ensure
that our tool has low overhead under different circumstances.

5.1. Environment. The tests are executed in a machine with
the following configuration.

Fast request
(C1) Open mmap

Open mmap

Writev

Writev WAIT_FOR_IO WritevSlow request
(C2) and (C3)

Figure 14: Difference between fast and slow requests.
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Figure 15: Queue length computation.
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(a) Hardware configuration:

(i) Intel i7-4790 CPU @ 3.60GHz

(ii) 32GB RAM

(b) Software configuration:

(i) Linux kernel version 4.4

(ii) LTTng 2.7

(iii) Apache 2.4.23, PHP 5.4, and MariaDB 10.2

5.2. Tracing Cost. The performance analysis is achieved
using a real configuration composed of an Apache Web
server and a MariaDB database. The workloads applied are

generated using ab (ApacheBench), and the traces are col-
lected using LTTng 2.7. ApacheBench is used to simulate
the behavior of many clients navigating throughout the site.
The experiment is performed using different numbers of cli-
ents (between 1 and 1000) with the following configurations:

(i) No Tracing. The tracing is disabled

(ii) Required Events. Only events required for the anal-
yses are activated

(iii) All Events in Memory. All kernel and user-space
events are activated and the trace is kept in memory

(iv) All Events. All kernel and user-space events are acti-
vated and the trace is written to the disk

The results of the experiment are presented in Figure 16.
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The graph shows that enabling the required events does
not have a significant impact on the website’s performance.
The server can process about 30000 requests per second in
both cases. The impact of tracing becomes significant if all
tracepoints (including kernel tracepoints) are activated. Ker-
nel tracing appends a lot of system details to the trace and
increases the overhead. In the case where the kernel tracing
is enabled, the processing speed goes down to 21000 if the
trace is written in memory, and 19000 if it is written to the
disk. Writing data to the disk does not add much overhead,
because it is done asynchronously using a separate process.
Please note that in Figure 16, for some points, the ust-
tracing acts slightly better than the no-tracing case. This
should not have happened if they were running under iden-
tical conditions. However, there is always some variability in
operating system execution (interrupts, scheduling, memory
page faults...). In that case, since the overhead of tracing a

relatively small number of ust events is almost negligible,
this overhead is difficult to measure, being smaller than the
operating system variability.

The experiment is conducted on a Drupal website where
serving a web request requires executing 30 k lines of code
on average. We repeated the test on a benchmark of 65 mil-
lion lines of code, to test if executing more lines of code will
make a big difference. Figure 17 shows the response time in
three different cases: (1) when all UST trace events are
enabled, (2) when all trace events are enabled except the
PHP line-execution events (ust_PHP:execution_start, ust_
PHP:execution_end), and (3) tracing is disabled.

As shown in Figure 17, when there are 65 million lines of
code (which is very rare for a web application), the response
time is twice as long with tracing, compared to when there is
no tracing (or minimum tracing). This is predictable because
there are two PHP events activated and triggered for the
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execution of each PHP line of code, which provides very
detailed information but increases the response time. How-
ever, when the line execution events are disabled (i.e., the
min-LTTng case), the response time becomes almost the
same as when tracing is disabled, showing that UST tracing
does not impose a significant performance overhead.

5.3. Analysis Cost. As mentioned earlier, the proposed tech-
nique uses a tree-based data structure to store the system
state, extracted from the raw trace events, at different time
points, to be used later in the analysis phase. Since the state
database offers a fast query response time (Oðlog nÞ), locat-
ing the required data within the (usually considerable) trace
data becomes faster, leading to efficient analysis and faster
graphical rendering. In this section, we evaluate the costs
of using this database and compare it to a spatial database
like PostgreSQL, which can store multidimensional data on
the disk, enabling it to store state intervals for large trace
files.

First, we look at the time needed to extract the required
state from the trace events and construct the state database.
Figure 18 shows the time required to construct the attribute
tree and state database. It compares the different cases. Not
surprisingly, the fastest time is for the case where the system
only reads the trace events without parsing and analyzing
them. The second fastest case is when the system reads the
traces, analyses them, extracts states but stores them only
in memory and not on disk, therefore, no disk I/O is
involved. The worst case is when the state database is built
and written to disk.

As Figure 18 shows, the I/O required to write the data-
base to disk is the most time-consuming part.

We then compare the construction time of the state
database using our solution, with the one using the Post-
greSQL database. Figure 19 shows that PostgreSQL takes a
much longer time than the state database, especially with
larger trace files.

We also compared the disk usage and the full query time
between the two databases (Figures 20 and 21). PostgreSQL
requires more disk space to save the data and takes more
time to serve full queries.

The results above show that even if PostgreSQL provides
highly optimized mechanisms to manage generic data sets, it
cannot beat the performance of a special-purpose database
such as the state database. The state database is tailored to
trace files, and it stores the data in ways that make it quickly
accessible while using minimal disk space.

6. Conclusion

We have presented a unified analysis method for studying
trace data gathered from different layers and sources. The
concept is to analyze the collected data, based on the rela-
tions between the layers (timestamp, process id, etc.). Our
solution extracts the required information from the raw
input data and stores it in a multidimensional data store
where it can then be analyzed.

This solution has been evaluated by real-world web
applications experiencing performance degradation (i.e.,

MediaWiki, Drupal, and WordPress). For instance, when a
website is running slow or when there is an unexpected
latency. The solution uses trace data from multiple layers
and helps uncovering the root cause(s) of the problem.

Since the proposed solution works by gathering runtime
data from different layers; which contains valuable informa-
tion about the different aspects of the running system; it can
be utilized to investigate a wider variety of problems, includ-
ing network attacks and host-based anomalies. This work
would also benefit from a multilevel visualization display
of the analyses data. Both will be investigated as future work.

Data Availability

All the data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

We would like to gratefully acknowledge the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC), Prompt, Ericsson, and EfficiOS for funding this
project.

References

[1] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and
R. N. Chang, “vpath: precise discovery of request processing
paths from black-box observations of thread and network
activities,” in In Proceedings of the 2009 Conference on USENIX
Annual Technical Conference, USENIX’09, Berkeley, CA, USA,
2009.

[2] E. Thereska, B. Salmon, J. Strunk et al., “Stardust: tracking
activity in a distributed storage system,” ACM SIGMETRICS
Performance Evaluation Review, vol. 34, no. 1, pp. 3–14, 2006.

[3] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda,
“Panappticon: event-based tracing to measure mobile applica-
tion and platform performance,” in 2013 International Confer-
ence on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), Montreal, QC, Canada, 2013.

[4] M. Desnoyers and M. R. Dagenais, “The lttng tracer: a low
impact performance and behavior monitor for gnu/linux,” In
OLS (Ottawa Linux Symposium), vol. 2006, pp. 209–224, 2006.

[5] F. Doray and M. Dagenais, “Diagnosing performance varia-
tions by comparing multi-level execution traces,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 28, no. 2,
pp. 462–474, 2016.

[6] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: problem determination in large, dynamic internet
services,” in Proceedings International Conference on Depend-
able Systems and Networks, pp. 595–604, Washington, DC,
USA, June 2002.

[7] R. R. Sambasivan, A. X. Zheng, M. De Rosa et al., “Diagnosing
performance changes by comparing request flows,” in In Pro-
ceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pp. 43–56, Berkeley,
CA, USA, 2011.

16 Wireless Communications and Mobile Computing



[8] D. J. Dean, H. Nguyen, P. Wang, X. Gu, A. Sailer, and
A. Kochut, “Perfcompass: online performance anomaly fault
localization and inference in infrastructure-as-a-service
clouds,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 27, no. 6, pp. 1742–1755, 2016.

[9] M. Bligh, M. Desnoyers, and R. Schultz, “Linux kernel debug-
ging on google sized clusters,” in Proceedings of the Linux Sym-
posium, pp. 29–40, Ottawa, Ontario, Canada, 2007.

[10] N. Ezzati-Jivan and M. R. Dagenais, “Multi-scale navigation of
large trace data: a survey,” Concurrency and Computation:
Practice and Experience, vol. 29, no. 10, article e4068, 2017.

[11] H. Daoud andM. Dagenais, “Multilevel analysis of the java vir-
tual machine based on kernel and userspace traces,” Journal of
Systems and Software, vol. 167, article 110589, 2020.

[12] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension
through dynamic analysis,” IEEE Transactions on Software
Engineering, vol. 35, no. 5, pp. 684–702, 2009.

[13] I. Kohyarnejadfard, D. Aloise, M. R. Dagenais, and M. Shakeri,
“A framework for detecting system performance anomalies
using tracing data analysis,” Entropy, vol. 23, no. 8, p. 1011,
2021.

[14] E. Ates, L. Sturmann, M. Toslali et al., “Association for Com-
puting Machinery,” in An automated, crosslayer instrumenta-
tion framework for diagnosing performance problems in
distributed applications. In Proceedings of the ACM Symposium
on Cloud Computing, SoCC ‘19, pp. 165–170, New York, NY,
USA, 2019.

[15] B. H. Sigelman, L. Andr’e Barroso, M. Burrows et al.,Dapper, a
large-scale distributed systems tracing infrastructure, Technical
report, Google, Inc., 2010, https://research.google.com/
archive/papers/dapper-2010-1.pdf.

[16] S. S. Murtaza, A. Sultana, A. Hamou-Lhadj, and M. Couture,
“On the comparison of user space and kernel space traces in
identification of software anomalies,” in 2012 16th European
Conference on Software Maintenance and Reengineering,
pp. 127–136, Szeged, Hungary, March 2012.

[17] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, “Graph summa-
rization methods and applications,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1–34, 2018.

[18] B. Gregg, “Visualizing system latency,” Communications of the
ACM, vol. 53, no. 7, pp. 48–54, 2010.

[19] O. Rodeh, H. Helman, and D. Chambliss, “Visualizing block io
workloads,” ACM Transactions on Storage, vol. 11, no. 2, 2015.

[20] A. D. Brunelle, Block i/o layer tracing:blktracehttp://duch.mi-
muw.edu.pl/∼lichota/09-10/Optymalizacja-open-source/Mate-
rialy/10%20-%20Dysk/gelatoICE06aprblktracebrunellehp.pdf.

[21] C. Mason, Seekwatcherhttp://oss.oracle.com/∼mason/
seekwatcher.

[22] B. Donie, Ioprofhttps://github.com/01org/ioprof.

[23] A. Brunellehttps://usermanual.wiki/Document/bttmanual
.1495776143/view.

[24] M. Jabbarifar, M. Dagenais, and A. Shameli-Sendi, “Online
incremental clock synchronization,” Journal of Network and
Systems Management, vol. 23, no. 4, pp. 1034–1066, 2015.

[25] Eclipse trace compasshttps://www.tracecompass.org.

17Wireless Communications and Mobile Computing

https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
http://oss.oracle.com/<mason/seekwatcher
http://oss.oracle.com/<mason/seekwatcher
https://github.com/01org/ioprof
https://usermanual.wiki/Document/bttmanual.1495776143/view
https://usermanual.wiki/Document/bttmanual.1495776143/view
https://www.tracecompass.org


Research Article
Energy-Efficient Resource Allocation for NOMA-Enabled
Internet of Vehicles

Xin Chen ,1 Zhuo Ma,1 Teng Ma,2 Xu Liu,2 and Ying Chen1

1School of Computer Science, Beijing Information Science & Technology University, Beijing, China
2School of Automation, Beijing Information Science & Technology University, Beijing, China

Correspondence should be addressed to Xin Chen; chenxin@bistu.edu.cn

Received 7 May 2021; Revised 10 August 2021; Accepted 25 August 2021; Published 16 September 2021

Academic Editor: Yong Zhang

Copyright © 2021 Xin Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of Internet of vehicles (IoV) technology, the distribution of vehicles on the highway becomes more
dense and the highly reliable communication between vehicles becomes more important. Nonorthogonal multiple access
(NOMA) is a promising technology to meet the multiple access volume and the high reliability communication demands of
IoV. To meet the Vehicle-to-Vehicle (V2V) communication requirements, a NOMA-based IoV system is proposed. Firstly, a
NOMA-based resource allocation model in IoV is developed to maximize the energy efficiency (EE) of the system. Secondly,
the established model is transformed into a Markov decision process (MDP) model and a deep reinforcement learning-based
subchannel and power allocation (DSPA) algorithm is designed. An event trigger block is used to reduce computation time.
Finally, the simulation results show that NOMA can significantly improve the system performance compared to orthogonal
multiaccess, and the proposed DSPA algorithm can significantly improve the system EE and reduce the computation time.

1. Introduction

With the rapid development of vehicle wireless communica-
tion technology, Internet of vehicles (IoV) has a broad devel-
opment prospect [1]. Among the various applications
generated by IoV, security applications are undoubtedly of
the highest priority because they impact on the safety of the
vehicles directly [2]. Vehicle-to-Vehicle (V2V) communica-
tion as a key technology in intelligent transportation system
(ITS) that could meet the strict latency and reliability
requirements of safety applications has attracted continuous
academic attention [3].

V2V communication is aimed at communicating
directly between vehicles with extremely low latency and
ultrahigh reliability, which could guarantee the quality of
service (QoS) requirements of security applications [4]. In
general, device-to-device (D2D) communication provides
the principle of direct propagate information between adja-
cent devices, which could greatly reduce latency and trans-
mission energy consumption. Therefore, D2D technology
is commonly used as the basis for V2V communication.

That is why the 3rd Generation Partnership Project (3GPP)
developed V2V communication principles based on D2D
technology [5] in the long-term evolutionary (LTE) system.
However, it has been shown that the QoS requirements of
V2V communication cannot always be guaranteed under this
principle. The reason is D2D communication following this
principle is based on orthogonal multiple access (OMA) [6],
a technology that does not make full use of spectrum resource
and has difficulty in solving interference problems due to the
increase in vehicles. When vehicles are deployed densely,
IoV system would suffer from severe congestion, which affects
the performance of the system.

Such problems have been solved with the rise of 5th gen-
eration (5G) mobile networks. 5G introduces nonorthogonal
multiple access (NOMA) technology that allows a resource
block to be assigned to multiple users, thus greatly expand-
ing the amount of access to the network [7]. In some cases,
such as uplink communication intensive scenarios, NOMA-
enabled system has a significant performance improvement
compared to OMA system. The cost of extended access is that
NOMA actively introduces interference information and
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requires reducing the impact of interference by successive
interference cancelation (SIC) techniques [8]. Compared to
OMA system, NOMA is more complex to decode at the
receiver side, but after adopting SIC and other technologies,
it is beneficial to the whole system performance. SIC technol-
ogy decodes the received signal level by level and removes it
after successful decoding to reduce the interference to the
undecoded signal. In NOMA-enabled IoV system, the perfor-
mance of V2V communication can be significantly improved.

Due to its advantages over OMA, NOMA is widely used
in ultradense network (UDN), mobile edge computing
(MEC), IoV, and other environments [9, 10]. Currently,
NOMA has great potential to expand network access and
improve network performance, but there are still some issues
that need to be addressed. There have been many works
introducing NOMA technology for resource allocation and
interference management. In these works, the optimization
of system throughput and the QoS requirements for V2V
communication have been mainly considered. However,
NOMA extends the number of user accesses through channel
multiplexing, which increases the difficulty of channel alloca-
tion. In addition, the power allocation scheme becomes more
complex due to the interference introduced by NOMA, and
the overall system power consumption should be considered
in the resource allocation scheme. Besides, literature [11] has
analyzed the SIC technique and pointed out that, due to the
complexity of implementation, normally two users could
share the same subchannel at most.

To solve the above problem, we study the resource allo-
cation problem for high energy efficiency (EE) in IoV sys-
tems. We describe the scenario of the NOMA-enabled IoV
system and present the resource allocation problem for max-
imizing the system EE. Due to the complexity of the system
and the high computational dimensionality of the direct
solution, we transform the optimization problem into a
Markov decision process (MDP) and use deep reinforce-
ment learning (DRL) method to solve it. The main contribu-
tions of this paper are as follows:

(i) We investigate the problem of resource allocation in
IoV system. The NOMA technology is introduced
to meet the demand for multivehicle access, and
the implementation of uplink SIC technology is pre-
sented. By allocating the channel and power
resources of vehicles, we propose an optimization
goal of maximizing the system EE

(ii) We transform the optimization goal into a problem
of resource allocation strategy based on MDP and
propose a DRL-based subchannel and power alloca-
tion (DSPA) algorithm to solve it. Specifically, the
deep Q network (DQN) method is used to solve
the subchannel selection and the deep deterministic
policy gradient (DDPG) method is used to solve the
power allocation problem. The event trigger block is
used to reduce the computation time

(iii) We simulate and analyze the designed algorithm.
The simulation results show that the performance
of the NOMA-enabled IoV system is more suitable

for multiple vehicle access situations than OMA,
and the DSPA algorithm can effectively enhance
the system EE and reduce the computation time

The rest of this paper is organized as follows. In Section
2, we analyze the work related to this paper. The system
model and problem formulation are given in Section 3. In
Section 4, we transform the optimization problem into an
MDP model and design the DSPA algorithm for solving it.
In Section 5, the proposed resource allocation method is
simulated and analyzed. Section 6 is the conclusion.

2. Related Work

Due to the variability of QoS requirements for vehicle users,
the resource allocation problem in vehicle networks has
attractive research value and has received extensive attention
from researchers for years [12, 13]. Since the high speed
movement of vehicles in IoV makes it difficult to obtain
accurate and fast channel change information, Guo et al.
[14] obtained the time delay of V2V link in steady state
based on Markov process and determine the optimal trans-
mit power for each possible spectrum and finally allocated
the spectrum resource by dichotomous matching method
to maximize the system data transmission rate. Chen et al.
[15] developed an online network slice resource allocation
strategy that can meet the demand for QoS requirements
for IoV applications and maximize system capacity. Liang
et al. [16] designed a multi-intelligent DQN algorithm to
allocate spectrum and power for each V2V link and maxi-
mize the total system throughput. Yang et al. [17] studied
the design frame structure for V2V communication in IoV
and proposed a semipersistent frame scheduling algorithm,
which greatly meets the needs of V2V communication.

Resource allocation for IoV system can also be combined
with MEC. Chen et al. [18] considered the dynamics of com-
putational task arrival and wireless channel state in the MEC
scenario and jointly optimized task and computational
resource allocation to minimize system energy consumption
while guaranteeing the upper limit of queue length. Zhao
et al. [19] studied the collaborative offloading strategy of
edge clouds in IoV and designed a distributed computational
offloading and resource allocation algorithm to optimize the
joint benefits of offloading and resource allocation. The
problem of joint allocation of spectrum, computation, and
storage resources in MEC-based IoV was studied by Peng
et al. [20]. Since the problem has a high computational
complexity, the authors transformed the problem using rein-
forcement learning (RL) method and solved it with a hierar-
chical learning architecture to obtain the optimal resource
allocation decision.

By introducing NOMA technology in IoV scenery, the
system performance will be further improved. Di et al. [21]
proposed a resource allocation scheme in IoV broadcast sce-
narios, using NOMA to reduce latency and improve data
acceptance probability. The main idea of this scheme is a
centralized channel selection strategy and a distributed
power allocation strategy. The packet reception probability
is significantly improved by this scheme. Liu et al. [22]

2 Wireless Communications and Mobile Computing



studied the optimal power allocation problem in broadcast
and multicast transmission schemes in half-duplex
NOMA-based IoV scenarios and proposed a bifurcation-
based power allocation algorithm that significantly improves
the system throughput compared with the OMA scheme.

3. System Model and Problem Formulation

3.1. System Model. We consider a multivehicle highway sce-
nario where one base station is located at the center and the
radius of the base station coverage is D, as shown in Figure 1.
The time domain is uniformly divided into multiple time
slots, and the length of each slot is τ. We denote m as the
index for the m-th moving vehicle on the highway where
m ∈ f1, 2,⋯,Mg, and the maximum travel speed of the
vehicle is vmax. At each time slot t, there are N (N <M)
vehicles that send the required security information to
the surrounding vehicles within its communication range
through up to one subchannel. Such communications are
based on V2V communication, and this transmission vehi-
cles are denoted as VT user; the set of all VT users is N .
During each time slot t, the number of VT users jN ðtÞj
obeys a Poisson distribution

Pr N tð Þ
��� ��� = n

n o
=

αVTτð Þn
n!

exp −αVTτð Þ, n = 0, 1, 2,⋯,

ð1Þ

where αVT denotes the arrival intensity of VT users in
terms of VTs per second.

A right-angle coordinate system is established with the
base station as the origin, and the position of each vehicle
is denoted by ðam, bmÞ. All vehicles are traveling in one
direction with speed vm, and the coverage radius of V2V
communication is dmax. The total available bandwidth for
the D2D communication is Wall and is divided equally into
K nonorthogonal subchannels, each bandwidthW =Wall/K .

Due to the dense vehicle coverage, when multiple VT
users send messages through the same subchannel simulta-
neously, the receiving vehicles (denoted as VR) located in
the common coverage area of theseVTusersmay receivemes-
sages with large interference. NOMA allows multiple vehicles
to transmit information through the same channel simulta-
neously, and the VR users use SIC technology to decode the
received information and reduce the cochannel interference.

We denote ℕl as the set of all VT users that can be
received by the receiving vehicle VRl, i.e., ℕl = f1 ≤ n ≤N ∣

dn,l ≤ dmaxg, where dn,l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbn − blÞ2 + ðan − alÞ2

q
is the

distance between VTn and VRl. In time slot t, the signal
received by the receiving vehicle VRl on subchannel k (SCk) is

y tð Þ
l,k = 〠

n∈ℕl

α
tð Þ
n,k

ffiffiffiffiffiffiffi
p tð Þ
n,k

q
h tð Þ
n,l,ks

tð Þ
n + z tð Þ

l , ð2Þ

where αðtÞn,k is a binary variable that indicates the subchannel

selected byVTn. Specifically, α
ðtÞ
n,k = 1 ifVTn transmits through

SCk, and αðtÞn,k = 0 otherwise. pðtÞn,k is the transmitted power of

VTn in time slot t, sðtÞn denotes the modulation symbol, and
ztl represents the additive white Gaussian noise (AWGN) for
VRl which obeys the complex Gaussian distribution with var-

iance σ2l , that is, z
ðtÞ
l ~CN ð0, σ2l Þ. hðtÞn,l,k denotes the coefficient

of SCk from VTn to VRl. Specifically, h
ðtÞ
n,l,k = gðtÞn,l · PL

−1ðdðtÞn,l Þ,
where gðtÞ

n,l denotes Rayleigh fading channel gain, and PL−1

ðdðtÞn,l Þ = βðdðtÞn,l Þ
−φ

represents the path loss function with the
shadowing component β and the power decay exponent φ.

We map the mobility of the vehicle to the change in the
position of the vehicle. Since there is short length of time
slots, it can be assumed that the position of the vehicles in
time slot t does not change, so the distance of any two vehi-
cles dm,m′ remains constant in time slot t. The position of the
vehicle needs to be recalculated at the beginning of the time
slot t + 1. According to Equation (2), the distance between
vehicles is further mapped to the change in channel gain,
so we assume that the channel gain also remains within
one time slot, while it changes in the adjacent time slots.
Thus, the SINR between VTn and VRl over SCk in time slot
t without SIC technology can be expressed as

Γ
tð Þ
n,l,k =

p tð Þ
n,l h

tð Þ
n,l,k

��� ���2
σ2
l +∑n′∈ℕl ,n′≠n p

tð Þ
n′ ,l h

tð Þ
n′ ,l,k

��� ���2 , ð3Þ

where σ2l = E½jzðtÞl j2� is the noise power on SCk and jhðtÞn,l,kj
2
is

the channel gain. The data rate of SCk between VTn and VRl
without SIC technique can be expressed as

R tð Þ
n,l,k =W · log2 1 + Γ

tð Þ
n,l,k

� �
: ð4Þ

In the uplink NOMA system, the superimposed signal

yðtÞn,l received by VRl needs to have a certain clarity between
the different signals in order to eliminate interference. Since
the channels between each VTn and VRl are different, the
signals sent by each VT user in the uplink experience a dif-
ferent channel gain. Therefore, among the superimposed

signals yðtÞn,l , the VT user with the best channel quality may
have the strongest received power, and VRl decodes this
VT signal first, i.e., the decoding order of VRl is from VT
users with good channel quality to those with poor channel
quality. Otherwise, it has to allocate higher power for VT
users with poor channel quality to improve their received
power, which will reduce EE. Assuming that there are N
VT users sending messages to VRl over SCk and the order
of the channel gains between each VT user and VRl is

h tð Þ
1,l,k

��� ���2 ≥ h tð Þ
2,l,k

��� ���2≥⋯≥ h tð Þ
n,l,k

��� ���2 ≥ h tð Þ
n+1,l,k

��� ���2≥⋯≥ h tð Þ
N ,l,k

��� ���2:
ð5Þ
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According to the SIC decoding rules, VRl firstly decodes
VT users with n′ < n and eliminates VTn′ interference sym-
bols when decoding VTn, but not eliminate VTn”ðn′′ > nÞ
interference symbols. Therefore, the SINR between VTn
and VRl over SCk in time slot t with SIC technology can
be expressed as

g
Γ

tð Þ
n,l,k =

p tð Þ
n,l h

tð Þ
n,l,k

��� ���2
σ2
l +∑n′∈ℕl

′ p
tð Þ
n′ ,l h

tð Þ
n′ ,l,k

��� ���2 , ð6Þ

where ℕl′= fn′ ∈ℕ ∣ jhðtÞ
n′ ,l,kj < jhðtÞn,l,kjg represents a set of

interfering VT users.
Considering the QoS requirements of VT users, VRl can

successfully decode the information delivered by VTn
through subchannel SCk which also needs to satisfy the

transmission rate RðtÞ
n,l,k not below the rate threshold, i.e.,

RðtÞ
n,l,k ≥ Rmin. Otherwise, VRl will not be able to decode the

information. We assume that the transmission rate RðtÞ
n,l,k =

0 in this case. Then, the data rate of SCk between VTn and
VRl can be expressed as

R tð Þ
n,l,k =

W · log2 1 + g
Γ

tð Þ
n,l,k

� �
, R tð Þ

n,l,k ≥ Rmin,

0, otherwise:

8><>: ð7Þ

Therefore, the total rate of the NOMA-enabled IoV
system in time slot t can be expressed as

R tð Þ = 〠
K

k=1
〠
L

l=1
〠
n∈ℕl

R tð Þ
n,l,k, ð8Þ

where L is the sum of VR users in time slot t.
SIC technique in NOMA-enabled IoV system has been

investigated in [11]. At the VR side, as the maximum num-
ber of VT users who are multiplexing the same subchannel
increases, the difficulty of SIC technology increases dramat-
ically. To avoid excessive SIC complexity for VR users, in
this paper, we assume that each VT user delivers informa-
tion to at most one VR user during each slot. In addition,
it also reduces transmission errors.

3.2. Problem Formulation. In NOMA-enabled IoV system,
data transmission rate and system power consumption are
both important parameters to measure system performance.
Our goal is to minimize the overall power consumption of
all VT users while maintaining the system transmission rate,
i.e., transmitting more bits per unit Joule. Therefore, we set
the optimization objective as the ratio of the overall trans-
mission rate to the total transmit power of VT users, i.e.,
EE, which can be expressed as

EE tð Þ =
R tð Þ

P tð Þ
sum + Pc

, ð9Þ
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Figure 1: NOMA-based IoV system scenario.
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where PðtÞ
sum =∑K

k=1 ∑
N
n=1 p

ðtÞ
n,k denotes the sum transmitted

power for all VT users in time slot t and Pc is additional
circuit power consumption.

Thus, the optimization problem can be expressed
mathematically as

max
α

tð Þ
n,k ,p

tð Þ
n,l,k

� 	EE tð Þ

s:t: C1 :  〠
K

k=1
α

tð Þ
n,k + α

tð Þ
n′ ,k

� �
≤ 1

n, n′
n o

∈ 1 ≤ n, n′ ≤N ∣ d tð Þ
n,n′ < dmax

n o
C2 :  〠

N

n=1
α

tð Þ
n,k ≤Umax, ∀k ∈ SC

C3 :  α
tð Þ
n,k ∈ 0, 1f g, ∀n ∈N ,∀SCk ∈ SC

C4 : L tð Þ
n

��� ��� ≡ 1, ∀n ∈N

C5 :  0 ≤ 〠
K

k=1
p tð Þ
n,k ≤ PVT

max, ∀n ∈N :

ð10Þ

Constraint C1 indicates that two vehicles within the com-
munication range cannot pass messages to each other, i.e.,
VTn cannot pass messages to VTn’ within its communication
range. This is because of the half-duplex nature that no two
vehicles can receive a message at the same time as it is passed,
according to [21]. To reduce the SIC complexity at the
receiver side, we assume that each subchannel SCk is multi-
plexed by at most Umax VT users and that each VT user
delivers information to at most one VR user within its
communication range during slot t, which are reflected in
constraints C2, C3, and C4. Constraint C5 limits the thresh-
old of transmit power for VT users.

4. DRL-Based Subchannel and Power
Allocation Algorithms

The optimization problem in (10) is nonconvex and NP
hard, which has a complex system with high computational
dimensionality. The problem requires exponential levels of
time complexity for direct computation of all possible sub-
channel selections and power allocations, which is difficult
to implement in practice. Therefore, we use reinforcement
learning methods to select the subchannel selection and
power allocation strategies of maximizing EE. We first trans-
form the resource allocation problem in NOMA-enabled
IoV system into an MDP-based resource allocation problem
and then solve the model using DRL methods.

4.1. Optimize Problem Conversion. In the proposed NOMA-
enabled IoV system, the system state in each time slot t + 1
depends only on the actions, including subchannel selection
and power allocation, made by the VT users in time slot t.
Therefore, we transform the developed model for maximiz-
ing EE into a resource allocation model based on MDP

and then solve it through the DRL method. The state space
S, action space A, and reward R of the MDP model are
defined below, respectively.

4.1.1. State Space. The system state information can be
described jointly by the system data transmission rate and
the energy consumption. Thus, the system state space S
includes the transmission rates between all VT users and
the corresponding VR users, as well as the transmission
power of all VT users, and this information is the basis for
this resource allocation. Since we assume that each VT user
transmits information to only one VR user, during time slot
t, the state st ∈ S can be expressed as follows:

st = R tð Þ
1 , R tð Þ

2 , R tð Þ
3 ,⋯,R tð Þ

N , p tð Þ
1 , p tð Þ

2 , p tð Þ
3 ,⋯,p tð Þ

N

n o
: ð11Þ

4.1.2. Action Space. The action space A includes all possible

subchannel choices for each VT user, αðtÞn,k, as well as the

choice of transmit power, pðtÞn,k. In time slot t, action at can
be expressed as

at = a1t , a
2
t

� 	
,

a1t = α
tð Þ
1,1,⋯,α tð Þ

n,k,⋯,α tð Þ
N ,K

n o
,

a2t = p tð Þ
1,1,⋯,p tð Þ

n,k,⋯,p tð Þ
N ,K

n o
:

ð12Þ

4.1.3. Reward. We denote the reward for selecting the action
at under state st as EE of the current system, which can be
calculated by Equation (9). Specifically, for rt ∈ R, it can be
expressed as

rt = EE tð Þ: ð13Þ

The goal of reinforcement learning is to find the optimal
policy π∗ through multiple iterations to achieve the maxi-
mum long-term discounted reward

Rt = E rt + γrt+1 + γ2rt+2+⋯

 �

= E 〠
∞

i=0
γirt+i

" #
, ð14Þ

where γ ∈ ½0, 1Þ is the discount factor. When γ is equal to 0,
only the current reward has been considered, while the sub-
sequent has been ignored. As γ increases, the system will
focus more with long-term discount rewards.

The reward function can be set to satisfy the requirement
of receiving a higher reward when the agent chooses to
perform an action that makes the system EE larger and
otherwise receives a lower reward or even receives zero
reward. After several rounds of iterations, the agent will
gradually choose the policy that can obtain higher rewards,
i.e., a better resource allocation policy.

4.2. Event Trigger. The framework of the proposed DSPA
algorithm is shown in Figure 2. During the process of inter-
acting with the environment, the agent selects and executes
an action at based on the environment’s current state st ,
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after which the state st becomes state st+1, and the agent gets
a reward rt given by the environment. Then, the agent exe-
cutes a new action at+1 according to a certain policy π based
on the new state and the reward. After a long iterative pro-
cess, the agent will get an optimal policy π∗ that earns the
most reward.

Policy π is a mapping of the state space S to the action
space A. Specifically, π = S⟶A. Considering the state-
action value function of the action Q : S ×Q⟶ R that
represents the expected reward for performing action a with
policy π in state s, i.e.,

Qπ s, að Þ = Eπ 〠
i=0

γirt+i ∣ st = s, at = a

( )
= Eπ rt + γt+1 + γ2rt+2+⋯∣st = s, at = a

� 	
= Eπ rt + γQπ st+1 + at+1ð Þ ∣ st = s, at = af g
=〠

s′
P s, a, s′
� �

R s, a, s′
� �

+ γQπ s′, a′
� �� �

:

ð15Þ

For the established MDP model, the ultimate goal is to
find an optimal policy π∗ that can be satisfied as Qπ∗

≥Qπ

for all policy π. The optimal action-value function can be
expressed as

Q∗ s, að Þ =〠
s′
P s, a, s′
� �

R s, a, s′
� �

+ γ max
a′

Q∗ s′, a′
� �� �

:

ð16Þ

Equation (16) is the Bellman equation, which indicates
that when the agent makes an optimal decision, the obtained
Q value must be the expected reward for the optimal action
in that state.

For the MDP model, the schemes to obtain the optimal
policy π∗ mainly include model-based approaches and
model-free approaches. Since a part of the prior knowledge,
such as transfer probability, is unknown in the NOMA-
enabled IoV system, it is necessary to use the model-free
approach RL to obtain statistical information of the unknown
model. DRL combines RL with deep neural networks (DNN)
and solves high-dimensional state and action space problems
by DNN, which is widely used in IoV systems.

However, solving the MDP model using the DRL
method is still time costly, as it takes more time to update
the neural network weight parameters, generate the actions,
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and calculate the rewards. Several methods have been
proposed for reducing the computation time. In [23], the
authors propose an event trigger module, which is a control-
ler that updates the neural network parameters only when
the system state deviates from a certain level. Such method
can effectively reduce the computation time, so we introduce
it into our DSPA algorithm.

In NOMA-enabled IoV systems, there may be two adja-
cent time slots in which the system states are similar or even
identical, and then, the action selection corresponding to
these two states should also be the same. So when the
DNN outputs the action in the first time slot, the same
action in the next time slot can be executed directly without
the DNN. Referring to Lemma 1 in [24], we give a proof for
this consideration.

Theorem 1. For two consecutive states st and st+1, their cor-
responding optimal actions at and at+1 should be the same
when st = st+1.

Proof. According to Equation (16), after obtaining the opti-
mal state-action value function Q∗ðs, aÞ for all states, by
using the greedy strategy, the optimal actions at and at+1
corresponding to states st and st+1 can be expressed as

a∗t = arg max
a∈A

Q∗ st , að Þ,

a∗t+1 = arg max
a∈A

Q∗ st+1, að Þ,
ð17Þ

where A represents the action space of two actions. Assum-
ing that st = st+1, we can obtain

a∗t = arg max
a∈A

Q∗ st , að Þ = arg max
a∈A

Q∗ st+1, að Þ = a∗t+1, ð18Þ

which proves our assumption.

Based on the above assumption, we add the event trigger
module into the DRL framework as a way to decide whether
to output new actions by using the neural network. Specifi-
cally, the previous state �s and the corresponding action �a
are stored in the event trigger. The new state st is firstly com-
pared with �s; if the difference between the two is less than a
certain threshold, �a is directly output as the action of state st .
Otherwise, the DNN outputs the action a according to state
st , and �s and �a are replaced with st and at . Using the binary
variable ζ as the event trigger decision, specifically,

ζ =
1, st −�sk k2 ≥ ρ,

0, otherwise,

(
ð19Þ

where ρ is the threshold, ζ = 1 means outputting action at
through the neural network, and ζ = 0 means obtaining
action �a stored in the event trigger.

4.3. DRL-Based Resource Allocation Framework. In the pro-
posed DSPA algorithm, the subchannel selection action,
i.e., a1t in Equation (12), is obtained by the DQN method.

Since the transmission power is a continuous interval, we
use the DDPG method for power allocation, i.e., a2t in
Equation (12).

4.3.1. DQN-Based Subchannel Selection Method. In the DQN
algorithm, the Q function is approximated by DNN and the
Q value is approximated by the DNN weight parameter θ.
The Q value is updated by minimizing the loss function to
update the parameter θ; the loss function can be defined as

L θð Þ = E TargetQ −Q s, a, θð Þð Þ2
 �
, ð20Þ

where

TargetQ = r s, að Þ + γ max
a′

Q s′, a′, θ′
� �

: ð21Þ

According to Equations (20) and (21), the gradient
descent method can be used to solve for the weight parame-
ter θ. DQN uses the current network to evaluate the current
value function and uses the target network to generate the
target value in Equation (21). The combination of these
two networks can decouple the current Q value and the
target Q value to some extent, which in turn improves the
stability of the algorithm.

The DQN algorithm further introduces an experience
replay mechanism to solve the problem of high sample
coupling. At each step, the data of the intelligent body
interacting with the environment, i.e., the current state s,
action a, reward r, and next state s′, are stored in the expe-
rience pool. The data can later be drawn from the experi-
ence pool for training.

The introduction of the experience replay mechanism
makes it easier to store the feedback data and allows training
samples to be drawn by random sampling, reducing the high
coupling between samples. Furthermore, this mechanism
can also solve the problems of nonindependent correlation
and nonstationary distribution among data in reinforcement
learning, which reduces the convergence difficulty of the
network model.

4.3.2. DDPG-Based Power Allocation Method. The DQN
method is able to solve large-scale state space problems,
but its limitation is that it can only solve discrete action space
problems, so it is not feasible to use the DQNmethod tomake
choices in continuous power intervals. For this case, we use
the DDPG method for power allocation. DDPG is a DRL
method based on value function and policy gradient, which
can effectively solve the problem of high-dimensional and
continuous action space. The method generates a determinis-
tic action directly through a DNN network named actor, i.e.,

μ st ∣ ω
μð Þ ≈ μ∗ stð Þ, ð22Þ
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where μ∗ðstÞ is the optimal behavior policy and ωμ is the
parameter of actor network. The resulting actions are then
evaluated by a DNN network called critic, with the aim of
minimizing the loss function. The loss function is

L ωQ� 

= E Q st , at ∣ ωQ� 


− yt
� 
2h i

, ð23Þ

where

yt = rt + γQ′ st+1, μ′ st+1 ∣ ω
μ′

� �
∣ ωQ′

� �
: ð24Þ

Similar to DQN, two independent target networks,
namely, the target actor network and the target critic net-
work, are introduced to further improve the stability of
learning. The parameters of the target network are related
to the current network and updated in real time, with the
update criterion

ωQ′ = δωQ + 1 − δð ÞωQ′ ,

ωμ′ = δωμ + 1 − δð Þωμ′ ,
ð25Þ

where δ≪ 1 is used to limit the change rate of the target
value and improve the stability of DNN training.

Based on the above theory, the DSPA algorithm in the
NOMA-enabled IoV system is shown in the algorithm.

5. Simulation Experiments and Analysis

5.1. Simulation Environment. In this section, we conduct
simulation experiments on the proposed resource allocation
scheme and analyze the results. The simulation experiments
are conducted on Windows 10 operating platform with Intel
i5-8300H CPU, NVIDIA 1050Ti GPU, and 16G memory
size and based on Python 3.7 and use the TensorFlow 1.13
framework. All networks contain two hidden layers with
128 and 64 neurons, respectively. Following the 3GPP stan-
dard and existing studies, we set the parameters to meet the
simulation requirements of the NOMA-enabled IoV system,
as shown in Table 1.

5.2. Parameter Analysis

5.2.1. Learning Rate. In the DSPA algorithm, the learning
rate is an extremely important hyperparameter. Generally
speaking, the larger learning rate, the faster convergence
speed, but will ignore the optimal solution due to premature
convergence, and the convergence value is normally lower
than the global optimal value. As the learning rate
approaches zero, the speed of obtaining the optimal policy
π∗ decreases gradually and could not obtain the optimal
solution quickly. This is because the learning rate controls
the size of the optimization gradient step, too large learning
rate will lead to too large gradient step, ignoring the optimal
solution, while too small learning rate will lead to too small
step, requiring more time to converge. Therefore, it is first
necessary to choose a suitable learning rate.

We set the values of learning rate as 0.1, 0.01, and 0.001,
respectively. The simulation results are shown in Figure 3.
When the learning rate is 0.1, the algorithm obtains the
maximum EE of 2.8Mbit/Joule after about 400 iterations.
The EE after convergence is not much different between
learning rates 0.01 and 0.001, both of which are about
3.2Mbit/Joule. However, the optimal value is obtained after
500 iterations with the learning rate of 0.01, while the learn-
ing rate of 0.001 requires 700 rounds of iterations. In order
to take into account the convergence speed and quality, we
set the learning rate to 0.01 in the following simulation.

5.2.2. Discount Factor. Figure 4 shows the impact of different
discount factors on the convergence of the system EE. We
set the values of the discount factor γ as 0.1, 0.5, and 0.9,
respectively. As the number of iterations increase, the system
EE gradually leveled off. The system EE for each of the three
discount factors is maximized after about 500 iterations,
when the EE is 3.0Mbit/Joule, 3.1Mbit/Joule, and 3.2Mbit/-
Joule, respectively. The comparison leads to the conclusion
that the smaller γ, the more system focuses on the current
reward, and the larger the γ, the more system focuses on
the long-term reward. Our goal is to maximize the long-
term discounted rewards of the system, so we choose γ =
0:9 for the following simulation.

5.2.3. Transmission Rate Thresholds. We compare the effect
of different transmission rate thresholds Rmin on the system
EE, as shown in Figure 5. According to Equation (7), when

the transmission rate RðtÞ
n,l,k < Rmin, VRl cannot successfully

decode the information from VTn, and we set RðtÞ
n,l,k = 0 in

this case. That is, PðtÞ
n,l,k > 0 but RðtÞ

n,l,k = 0, which will seriously
affect the system EE. We set Rmin as 0Mbps, 0.1Mbps,
0.5Mbps, and 1Mbps, respectively. Simulation results show
that the system EE is maximum when Rmin = 0. In this case,
all messages are decoded successfully as valid messages.
However, this setting is not reasonable considering the
QoS demand of VT users. The increase of Rmin indicates that
the QoS demand of VT users becomes more strict, and more
messages are discarded as invalid messages because they
cannot meet the QoS requirement; the system EE gradually
decreases as a result. In the following simulations, we choose
Rmin = 0:1Mbps because the QoS demand of most VT users
can be satisfied.

5.3. Comparison Experiments

5.3.1. Comparison on SIC Technology.We compare the EE of
the NOMA-enabled IoV system with SIC technology, the
NOMA-enabled IoV system without SIC technology, and
the OMA IoV system with different vehicles, as shown in
Figure 6. It can be seen that when the system contains only
10 vehicles, whether to use SIC technology has less impact
on the system EE, while OMA system has the lowest EE.
This is because when there are fewer vehicles, the probability
of two VT users occupying the same subchannel is lower and
only a small amount of interference is generated at the
receiving end. The increase of the total number of vehicles
means that there are more VT users that need to transmit
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information; under the condition of a certain number of
subchannels, the EE of all three approaches gradually
decreases, the EE of the system with SIC technology is
always the highest, and the EE of the system without
SIC technology is gradually lower than the EE of the
OMA approach. The reason is that NOMA actively intro-
duces interference, the large number of VT users multi-
plexing the same subchannel, the stronger interference
received of VR user, and not using SIC technology can
lead to disastrous results.

5.3.2. Comparison on Event Trigger Block. Next, we analyze
the event trigger block by comparing the impact of the event
trigger block on the system EE. The threshold ρ of the event
trigger module is set to 0.1, and the results are shown in
Figure 7. In a variety of different situations, the event trigger
block has little impact on the system EE.

1: Initialize the Q network weight parameters θ
2: Initialize the actor and critic network weight parameters ωQ and ωμ

3: Initialize the weight parameters of the target network θ′ ⟵ θ, target actor network ωQ′ ⟵ ωQ, and target critic network ωμ

⟵ ωμ′

4: Initialize replay memory D and event trigger block �s, �a
5: for episode = 1, M do
6: Initialize random noise ϱt
7: Initialize the state of the NOMA-enabled IoV system s1
8: for t = 1, T do
9: Calculate the difference between �s and st according to Equation (19)
10: if ζ = 1 then
11: Select action a1t according to the DQN method
12: Select action a2t according to the DDPG method
13: Replace �s and �a in the event trigger with st and at = fa1t , a2t g
14: else
15: Output the action at = �a
16: end if
17: Perform at , get reward rt and new state st+1
18: Store sample ðst , at , rt , st+1Þ into replay memory D

19: Sampling samples ðsi, ai, ri, si+1Þ from replay memory D

20: Update the Q network, actor network, and critic network weight parameters θ, ωQ, and ωμ

21: Update the target network, target actor network, and target critic network weight parameters θ′ ⟵ θ, ωQ′ ⟵ ωQ, and

ωμ ⟵ ωμ′

22: end for
23: end for

Algorithm 1: DRL-based resource allocation algorithm.

Table 1: Parameter setting in simulation.

Parameter Value

K 5

M 10MHz

τ 1ms

D 500m

dmax 50m

PVT
max 23 dBm

vmax 36 km/h

σ2 -114 dBm

Selectable power levels 10

Pathloss model LOS in WINNER +B1

Fast fading Rayleigh fading
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Figure 3: Impact of learning rate.
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Figure 8 reflects the average computation time for the
three comparisons. As can be seen from the figure, the aver-
age computation time per execution increases as the number
of vehicles increases, and the event trigger block effectively
reduces the computation time. Such result shows that
although the event trigger block costs extra time to compute
the environment similarity, it can reduce some unnecessary
neural network computations, which take more time.

We further compared the impact of event trigger thresh-
olds ρ on the system EE, and the results are shown in
Figure 9. It can be seen that when the threshold ρ is equal

to 0.1, it only slightly decreases the system EE. Combining
Figures 7–9, choosing an appropriate threshold ρ can reduce
the computation time of the DSPA algorithm with a slight
reduction in system performance.

5.3.3. Comparison with Other Algorithms. Finally, we com-
pare the system EE of the DSPA, DQN, and random method
under different numbers of vehicles, and the results are
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Figure 4: Impact of discount factor γ.
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shown in Figure 10. In the DQN method, we discrete the
transmission power uniformly into 10 levels to meet the
demand of DQN for discrete action space. The random
algorithm indicates that the VT user randomly selects the
channel and transmit power each time. As shown in
Figure 10, we can see that the system EE decreases for all
three algorithms. For both the DSPA algorithm and the
DQN algorithm, the system EE decreases faster when the
number of vehicles first increases and then gradually
decreases. The reason is that, when the system interference
is low, adding vehicles causes a significant change in system

interference; with the gradual increase of vehicles, the
change of system interference gradually flattens out. The
system EE of the DQN algorithm is lower than that of our
proposed DSPA framework because in the DSPA algorithm
we use the DDPG method to select among continuous
power intervals, while in the DQN algorithm we can only
select among discrete 10 power levels. We believe that the
performance of the DQN algorithm will be improved if the
power selection levels in the DQN algorithm are increased.
However, this would increase the action dimension of the
DQN algorithm and take a lot of time. The system EE using
the random algorithm is always the lowest due to the
random selection of subchannels and transmission power
at each step, which can produce catastrophic results.

6. Conclusion

In this paper, we study the NOMA-enabled resource alloca-
tion problem in IoV system. Firstly, we have maximized the
system EE by allocating channel resources and power
resources for VT users to reduce transmission power con-
sumption on the basis of guaranteed system transmission
rate. Secondly, we have transformed the resource allocation
problem of maximizing EE into an MDP model. Finally,
we designed a DSPA algorithm to obtain the subchannel
selection and power allocation strategies for maximizing
system EE and used the event trigger block to reduce the
computation time. Simulation results show that the
NOMA-enabled IoV system outperforms the OMA sys-
tem, and the proposed resource allocation scheme can sig-
nificantly improve the system EE compared to other
schemes and reduce the computation time. In future work,
we will study other NOMA-enabled resource allocation
strategies and consider the introduction of mobile edge
computing in IoV.
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High-speed data transmission enabled by photonic network-on-chip (PNoC) has been regarded as a significant technology to
overcome the power and bandwidth constraints of electrical network-on-Chip (ENoC). This has given rise to an exciting new
research area, which has piqued the public’s attention. Current on-chip architectures cannot guarantee the reliability of PNoC,
due to component failures or breakdowns occurring, mainly, in active components such as optical routers (ORs). When such
faults manifest, the optical router will not function properly, and the whole network will ultimately collapse. Moreover, essential
phenomena such as insertion loss, crosstalk noise, and optical signal-to-noise ratio (OSNR) must be considered to provide fault-
tolerant PNoC architectures with low-power consumption. The main purpose of this manuscript is to improve the reliability of
PNoCs without exposing the network to further blocking or contention by taking the effect of backup paths on signals sent over
the default paths into consideration. Thus, we propose a universal method that can be applied to any optical router in order to
increase the reliability by using a reliable ring waveguide (RRW) to provide backup paths for each transmitted signal within the
same router, without the need to change the route of the signal within the network. Moreover, we proposed a simultaneous
transmission probability analysis for optical routers to show the feasibility of this proposed method. This probability analyzes all
the possible signals that can be transmitted at the same time within the default and the backup paths of the router. Our research
work shows that the simultaneous transmission probability is improved by 10% to 46% compared to other fault-tolerant optical
routers. Furthermore, the worst-case insertion loss of our scheme can be reduced by 46.34% compared to others. The worst-case
crosstalk noise is also reduced by 24.55%, at least, for the default path and 15.7%, at least, for the backup path. Finally, in the
network level, the OSNR is increased by an average of 68.5% for the default path and an average of 15.9% for the backup path,
for different sizes of the network.

1. Introduction

The on-chip networking fabric, generally introduced as
networks-on-chip (NoCs), has become a restricting factor
in terms of efficiency and power dissipation as the movement
toward many-core processors proceeds [1, 2]. This is mostly
due to electrical interconnects’ intrinsic technical shortcom-
ings in scaling energy and latency at the same level as transis-
tors. As a result, the photonic network-on-chip was proposed
as a potential networking architecture for future multiproces-
sor systems [3–5]. Photonic network-on-chip improves the
intercore connectivity performance even more than ENoCs
by using the advantages of silicon photonics technology, such

as the high bandwidth, low end-to-end (ETE) delay, less
energy consumption, and less crosstalk [6–8].

Topologies and optical routers are the most significant
component of the photonic network-on-chip architecture.
Therefore, several network topologies have been documented
in the literature [9, 10]. One of the main components of pho-
tonic interconnects is optical routers, which connect a local
core to the neighbouring nodes and are critical components
in the development of a variety of photonic interconnections.
As a result, they define the communication’s precision and
effectiveness. Many optical routers have been also reported
in [11–14]. However, none of these designs provide an alter-
native path to transmit data when faults occur.
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Faults can occur in any circuit, and photonic circuitries
are not an exception. Although photonic networks are resil-
ient to radiation-induced transient faults [15], it is still vul-
nerable to thermal variation (TV), process variation (PV),
and ageing [16–18]. Process variation is affected by devia-
tions from the manufacturing standard, which can lead to
system failure. Moreover, active materials, as well as items
with a high thermal variation, usually age more quickly
[19]. Faults may occur in the microring resonators (MRs),
waveguides, routers, and other optical components. Photode-
tectors, for example, have a higher failure rate compared to
passive components like waveguides [19]. Furthermore, since
a single MR failure will cause the entire message to be
misrouted or lost, PNoCs are particularly susceptible to
single-point failures. These misrouted or lost messages, even
those small ones used for cache coherence, may have a huge
impact on the network performance. This puts the reliability
of communications in photonic network-on-chips in jeop-
ardy. Since the system in critical mission applications must
operate correctly under all conditions, high reliability is
needed. This led many researchers to investigate the reliabil-
ity of optical routers intensively [20–23], since they are the
major active components of the network. However, the
designs reported in these papers neglect the effect of backup
paths on signals sent over the default paths.

In this manuscript, we propose a universal heuristic
scheme to construct N-port fault-tolerant optical routers
for photonic networks-on-chip. This scheme can be imple-
mented to any size of optical routers to ensure the reliability
of the network. This implementation does not expose the
original optical router to some contention or further blocking
issues. In this method, we implement a reliable ring wave-
guide with a restricted number of MRs to any optical router
in order to provide a backup path for any unreliable port-
to-port communication. Furthermore, signals sent over the
provided backup path have no effect on signals sent over
the main path within the original router. The suggested
scheme is then used to optimize some of the most well-
known optical routers for different topologies, such as mesh
and torus topologies. This helps to decrease the failure prob-
ability of the optical router. This manuscript also proposes a
simultaneous transmission analysis method for optical
routers, which will show the feasibility of our proposed solu-
tion. In addition, we have made the following additional con-
tributions to our previous work [24]: (1) in this manuscript,
the RRW-based scheme mentioned in our previous work
[24] is further modified to be more practical for different
types of optical routers. (2) The proposed scheme is imple-
mented to more types of nonreliable optical routers, as well
as provide a case study. (3) In our previous work [24], we
did not consider the reliability analysis of the optical router.
In this work, we provide a detailed mathematical analysis
and compare the failure probability of different fault-
tolerant optical routers. (4) This manuscript introduces a
mathematical simultaneous transmission analysis for optical
routers to demonstrate that the blocking occurs while using
the backup path provided by the fault-tolerant optical router
architecture. (5) Unlike the previous conference version [24],
this work uses a special simulator called VPIphotonics

Design Suite (VPI) to simulate the optical router and provide
analytical results such as insertion loss. (6) The previous
work [24] only considers the router level evaluation. How-
ever, we consider the router and network level evaluation in
this manuscript. As a conclusion, our major contributions
in this manuscript are summarized as follows:

(i) Proposing a universal scheme architecture to build
fault-tolerant optical routers from the standard orig-
inal ones by using a reliable ring waveguide and lim-
ited number of MRs to increase the path diversity
and provide backup paths

(ii) Providing a traffic configuration in RRW-based
optical routers, along with a case study

(iii) Analysing the reliability parameters of different well-
known optical routers using our proposed scheme

(iv) Developing a simultaneous transmission probability
to prove the feasibility of our fault-tolerant scheme

(v) Improving the OSNR of the network. Our proposed
RRW-based optical routers can improve network-
level OSNR by an average of 68.5% for the default
path and an average of 15.9% for the backup path
under different network sizes

The rest of this manuscript has been organized as follows.
We summarized the existing solutions for reliability issues in
Section 2. The main structure of the proposed architecture
and the traffic configuration are provided in Section 3. Sec-
tion 4 presents a case study and illustrates the communica-
tion mechanism within routers using this scheme. Section 5
evaluates the proposed method compared to some other reli-
able optical routers for different network architectures; more-
over, it analyzes the insertion loss and crosstalk noise of
several routers in the router and network level.

2. Related Work

If one or more of an optical router’s components fail for any
reason, the optical router loses its effectiveness. The PNoC
reliability issues have been discussed in a few papers. Since
the system’s reliability is endangered by a variety of factors,
thus each of these papers has focused their efforts on one or
more of these issues.

Thermal variance has a significant impact on the reso-
nant wavelength of an MR, putting the reliability of on-chip
interconnection in jeopardy. Via temperature profiling, Li
et al. [25] investigated the effects of thermal change on the
efficiency of on-chip optical data transmission. They also
showed the relationship between temperature fluctuations,
power usage, and contact reliability in PNoC. The authors
in [26] suggested the SAFT-PHENIC, a thermal-aware
fault-resilient hybrid optoelectrical on-chip interconnection.
This paper reports a mesh-based fault-aware routing algo-
rithm that is aimed at reducing thermal variance around
the chip by using a traffic-aware approach to spread the load
and avoid using some individual nodes. To mitigate defects,
the authors of [22] suggested a low-power thermal-resilient
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ONoC (RONoC) and studied the thermal variation of on-
chip power delivery.

Process variation is the second major problem, which can
lead to photonic system failure or inaccurate data transmis-
sion. The process variation is affected by critical physical fab-
rication defects caused by lithography imperfections and etch
nonuniformity in photonic components [27]. Via proper
arrangement among MRs and wavelengths with a low power
requirement, an Integer Linear Programming (ILP) problem
called “MinTrim” attempted to address the dilemma of wave-
length shifting of MRs due to PV [28].

In PNoC, several academic papers deal with system-level
fault-tolerant techniques. Rerouting the optical signal has
been studied by several scholars [20, 21]. One disadvantage
of this solution is that it often reroutes traffic in the same
way that it induces traffic in one place, while ignoring the
problematic routers entirely. The authors in [17, 29] sug-
gested a fault-tolerant 3D ONoC with a smaller number of
redundant MRs in very important paths. Furthermore, in
[5, 23], the authors created a highly stable OR system for
PNoCs. They expanded the number of alternative restore
routes by adding minimal hardware redundancy to their pre-
vious OR, ensuring that standard communications could still
be maintained. They also reported that their FTRA-NR fault-
tolerant node reuse algorithm would find the best restore
route within each faulty OR. Although both of the designs
in [23, 29] increase the number of MRs for reliability pur-
poses, they cause extra contention and insertion loss, since
they use more resources (e.g., MRs) to reroute faulty signals
in many cases. Similarly, the authors in [30] proposed a
framework to construct fault-tolerant optical routers by
using redundant MRs to provide extra paths. However, this
framework is applied manually and does not have a regular
rule to fit all types of optical routers, as well as provide more
blocking as the previous two proposed ORs.

In this manuscript, we present a universal method for
improving the reliability of any optical router without expos-
ing it to any contention or blocking issues. This approach
connects any optical router to a reliable ring waveguide with
a small number of MRs as a backup path for any faulty port-
to-port transmission. Furthermore, signals sent over the
backup path have no effect on signals sent over the default
path.

3. Fault-Tolerant Optical Router Architecture

3.1. Photonic Switching Elements. Optical routers have some
irreplaceable elements such as MRs, waveguides, optical ter-
minators (OTs), and basic switching elements (BSEs). OTs
are optical devices that avoid the reflection of light in the
waveguide. Waveguides act as a medium allowing optical sig-
nals to be transmitted from one port to another. They are the
equivalent of wires in ENoCs. MRs are used to modulate
optical signals as well as switch them. The combination of
two waveguides and one or two MRs can construct a basic
switching element. Depending on the location of the MRs
and waveguides, the BSE can be a crossing switching element
(CSE) or a parallel switching element (PSE) as shown in
Figure 1. If an MR is connecting two parallel waveguides, it

is called a PSE. Contrarily, if an MR or two MRs are connect-
ing two crossed waveguides, it is called a CSE. If the MR con-
necting these two waveguides is powered on, it will have an
on-state resonance wavelength λon and will switch any opti-
cal signal passing through it such as in Figures 1(b) and
1(d). Otherwise, if it is powered off, it will have an OFF-
state resonance wavelength λoff and the optical signal will
pass through the MR without being switched as shown in
Figures 1(a) and 1(c).

3.2. RRW Structure. The reliable ring waveguide is a universal
scheme to construct fault-tolerant optical routers that guar-
antees a backup path for each faulty port-to-port communi-
cation within the same router. RRW scheme is constructed
by implementing a single ring waveguide and some MRs to
any optical router. If either of the original router’s compo-
nents malfunction for any reason, the ring waveguide serves
as a backup path. The ring waveguide should be placed at
the beginning and end of each input and output port, respec-
tively, as seen in Figure 2(a). This avoids any possible contra-
dictions with the original structure of the optical router while
also simplifying the process. In addition, as seen in the figure,
the MRs are located at each waveguide crossing created by
the intersections of the ring waveguide and the input or out-
put waveguides of the original optical router. Depending on
the location of the input port and the output port regarding
the port itself, the location of the MR is decided to be on
the left side or the right side of the input/output waveguide
of the port. Figures 2(a) and 2(b) show an example of both
methods. When the input waveguide is located on the left
side of the port and the output waveguide is on the right side
of the port, one MR must be placed on the left side of the
input waveguide of the port to provide an add point to the
ring waveguide and another MR must be placed on the right
side of the output waveguide of the port to create a drop point
to the ring waveguide. Quite the opposite, if the input wave-
guide is located on the right side of the port and the output

Add

Add Add

Drop

Drop
(c)

Drop

ThroughInput

Input Input

Add Drop

Through

ThroughThrough

Off-state MR On-state MR

Input

Waveguide

Microring resonator

Optical signal

(d)

(a) (b)

Figure 1: Basic switching elements: (a) off-state PSE, (b) on-state
PSE, (c) off-state CSE, and (d) on-state CSE.
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waveguide is on the left side of the port, one MR must be
located on the right side of the input waveguide of the port
to work as an add point to the ring waveguide and another
MR must be placed on the left side of the output waveguide
of the port to act as a drop point to the ring waveguide. Drop
points are where the MR downloads the signal inserted into
another waveguide from the input waveguide, while add
points are where the MR uploads the signal from another
waveguide to the output waveguide [31].

It is worth mentioning that the location of the input and
output waveguides regarding the port must be the same
among the whole router in order to implement RRW prop-
erly. Moreover, depending on the location of the MR in
regard to the input and output waveguides of each port, the
data flow within the RRW is either clockwise or counter-
clockwise, but never both at the same time. When the MR
is placed on the left side of the input waveguide and the right
side of the output waveguide, the data flow will be clockwise.
Otherwise, it will be counterclockwise as depicted in
Figure 2(b).

Depending on the ports of the optical router, the total
number of MRs in an n × n RRW-based optical router
including the additional MRs is given by

MRtotal = MRorg + 2n, ð1Þ

where MRorg is the total number of MRs in the original opti-
cal router and n is the number of ports in the optical router.
Furthermore, 2n is the number of MRs increased due to
RRW scheme. Similarly, the total number of waveguides,
waveguide crossings, waveguide bends, and optical termina-
tors including the waveguides, waveguide crossings, and
waveguide bends added by the ring waveguide is given by
the following four equations, respectively:

Wtotal =Worg + 1, ð2Þ

Ctotal = Corg + 2n, ð3Þ

Btotal = Borg + 4, ð4Þ

T total = Torg, ð5Þ
whereWorg, Corg, Borg, and Torg are the total number of wave-
guides, waveguide crossings, waveguide bends, and optical
terminators utilized in the original optical router, respec-
tively. Additionally, n is the number of ports in it, and 2n is
the number of waveguide crossings increased after imple-
menting the RRW scheme.

In case of component failure, the router will utilize the
reliable ring waveguide to provide a backup path for data
transmission, rather than using the default path. Further-
more, only a single signal is permitted to be transmitted alone
the ring waveguide at a time. In other words, the reliable ring
waveguide is only capable of transmitting one defective signal
at a time. Lastly, the backup path’s communications would
never impact any other communications on the default path.

Given that the original optical router is strictly nonblock-
ing, the only blocking that may happen would be either in the
ring waveguide or at its intersections with the original router.
However, our architecture ensures that it is implemented
only at the beginning and end of each port, with an add point
at the beginning of the input waveguide of a port and a drop
point at the end of the output waveguide of the same port. As
a result, it ensures that the add points are still ahead of the
drop points to avoid overlapping [31].

This architecture offers an alternate path for the majority
of faulty communication paths. In the router, each commu-
nication pair has two paths for data sharing. As a result, there
is more route diversity for reliability purposes.

3.3. Traffic Configuration in RRW. In this subsection, we
demonstrate how traffic is configured within RRW architec-
ture. As previously mentioned, our architecture allows each
router to function normally. Thus, we, here, illustrate that
the signals flow within the RRW. Signals can be either prop-
agated clockwise or counterclockwise, depending on the
location of the MRs with regard to the input or output port.
We here consider the case in whichMRs are located at the left

Port 1 Port 2 Port 3

Port 6

Original waveguides
Reliable ring waveguide
Backup MRs
Signal flow direction

Port 7
The original

optical router
structure

Port 5

Port 4

Port 1 Port 2 Port 3

(a) (b)

The original
optical router

structure

Port 6 Port 5

Port 7 Port 4

Figure 2: The reliable ring waveguide architecture: (a) clockwise RRW and (b) counterclockwise RRW.
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side of the input waveguide and the right side of the output
waveguide; thus, the flow of signals should be clockwise as
shown in Figure 2(a).

For each port-to-port communication within RRW, the
MR configuration is given as follows:

Ii ⟶Oj : R2i, R2j−1, ð6Þ

where Ii is the input of i
th port andOj is the output of j

th port.
Furthermore, R2i is the MR located at the input of the ith port,
and R2j−1 is the MR located at the output of the jth port.

Since for any n × n optical router, the output matrix is
given by Equation (7) or Equation (8):

OUTPUT = switchmatrix · INPUT, ð7Þ

O1

O2

O3

⋮

On

2
666666664

3
777777775
= switchingmatrix ·

I1

I2

I3

⋮

In

2
666666664

3
777777775
: ð8Þ

According to Equation (8), the switching matrix of the
backup bath in any n × n RRW-based optical router is pre-
sented as

Switchingmatrix RRWð Þ =

0 R2R3 R2R5 ⋯ R2R2n−1

R4R1 0 R4R5 ⋯ R4R2n−1

R6R1 R6R3 0 ⋯ R6R2n−1

⋮ ⋮ ⋮ ⋱ ⋮

R2nR1 R2nR3 R2nR5 ⋯ 0

2
666666664

3
777777775
:

ð9Þ

Therefore, the matrix function of RRW is given by

O1

O2

O3

⋮

On

2
666666664

3
777777775
=

0 R2R3 R2R5 ⋯ R2R2n−1

R4R1 0 R4R5 ⋯ R4R2n−1

R6R1 R6R3 0 ⋯ R6R2n−1

⋮ ⋮ ⋮ ⋱ ⋮

R2nR1 R2nR3 R2nR5 ⋯ 0

2
666666664

3
777777775
·

I1

I2

I3

⋮

In

2
666666664

3
777777775
,

ð10Þ

where 0 denotes that there is no communication between
these ports, since no U-turns are allowed. U-turns are the
turns in which the signal is transmitted from the input of a
port to the output of the same port. Moreover, R is the ON-
state MRs along RRW to establish a backup path from any
one particular port to any other particular port. In the
absence of faults, the signal will be transmitted according to
the original switching matrix of the router itself. The follow-
ing section will further illustrate this switching mechanism
and MR configuration of RRW.

4. Case Study

In this section, we implement RRW in a well-known nonreli-
able optical router. Figure 3(a) presents an example of a non-
reliable 5 × 5 optical router, proposed in [31], whereas
Figure 3(b) shows the same OR after implementing our pro-
posed scheme. As shown, the ring waveguide does not affect
the functionality or connections of the original optical router
yet increases the path diversity. Meanwhile, it adds some
insertion loss and crosstalk to the original router, which is a
slight increment compared to other reliable optical routers,
as will be further illustrated in the following sections.

Since the input waveguide is located on the left side of the
port and the output waveguide is on the right side of the port,
we here use the method in Figure 2(a) to implement RRW
into this router. MRs should be located on the left side of
the input port and on the right side of the output port. Thus,
the flow of signals is going on clockwise.

Given that this router has 15 original MRs, 15 waveguide
crossings, and 5 waveguides, thus, according to Equation (1),
the total number of MRs in this router after implementing
RRW will beMRtotal = 15 + 2 × 5 = 25. Similarly, using Equa-
tion (2) and Equation (3), the total number of waveguides
used is Wtotal = 5 + 1 = 6 and the total number of waveguide
crossings will be Ctotal = 15 + 2 × 5 = 25, respectively.

According to the labelled MRs in Figure 3(b), the switch-
ing matrix function of RRW in this 5 × 5 optical router is
given as

O1

O2

O3

O4

O5

2
666666664

3
777777775
=

0 R2R3 R2R5 R2R7 w

w 0 R4R5 R4R7 R4R9

R6R1 w 0 R6R7 R6R9

R8R1 R8R3 w 0 R8R9

R10R1 R10R3 R10R5 w 0

2
666666664

3
777777775
·

I1

I2

I3

I4

I5

2
666666664

3
777777775
,

ð11Þ

where 0 means no U-turn connections can be established
and w means that waveguides are provided to realize this
communication and thus no need for reliable MRs to
realize it.

Furthermore, Table 1 lists all the possible communica-
tion pairs and denotes the corresponding MRs to realize
them. The table presents the default paths as well as the reli-
able paths using RRW. The default path (also known as the
original path) is presented first, then the reliable path (also
known as the backup path). In the table, “w” signifies a path
that does not require the activation of any MR, whereas “-”
means a port cannot send itself. The table shows that for each
communication pairs, there must be two paths at least. One
of them is used as a backup path if and only if a malfunc-
tioned MR is detected. For example, if port 2 is requesting
to communicate with port 5 as shown in Figure 4, R16 should
be turned on in order to switch the light signal from the input
waveguide of port 2 to the output waveguide of port 5. How-
ever, in the presence of faulty MRs, the optical router has to
take the backup path, which is represented by the reliable

5Wireless Communications and Mobile Computing



ring waveguide. Thus, two MRs should be switched on in
order to transmit the light signal within the reliable ring
waveguide. The exact MRs can be decided by Equation (6).
Since in this case i = 2 and j = 5, the on-status MRs are R4

and R9. The light signal will be switched immediately using
the first backup MR (i.e., R4) and will be propagating along
the reliable ring waveguide without interfering with the sig-
nals in the default paths, such as the signal transmitted from
port 3 to port 4, until it will be coupled by R9 to be ejected at
the output of port 4. Therefore, RRW-based ORs are deemed
to be nonblocking optical routers. Although in this case the
backup path uses more resources and tend to have more
insertion loss and crosstalk, this method can provide simulta-
neous transmission in the default path along with the backup
path. In other words, this method does not disturb the nor-
mal flow of signals for reliability purposes. This will be fur-
ther illustrated in the following section.

5. Performance Evaluation and Analysis

In this section, we evaluate the performance of RRW-based
optical routers using the theoretical analysis and simulation
evaluations using VPIphotonics Design Suite (VPI) [32].

To evaluate the performance of our architecture, we
implement the reliable ring waveguide into several nonreli-
able optical routers proposed in [31, 33–38]; two of them
are presented in Figure 5, and we compare them with 7 × 7
and 5 × 5 FTTDOR proposed in [29] and the NRFT optical
router in [23] and some other fault-tolerant optical routers
presented in [30].
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Figure 3: An example of implementing the reliable ring waveguide to the 5 × 5 optical router in [31].

Table 1: Resonator configuration in the 5 × 5 optical router proposed in [31] after implementing RRW.

From-to Out 1 Out 2 Out 3 Out 4 Out 5

In 1 - R11; R2, and R3 R12; R2, and R5 R13; R2, and R7 w

In 2 w - R14; R4, and R5 R15; R4, and R7 R16; R4, and R9

In 3 R19; R6, and R1 w - R17; R6, and R7 R18; R6, and R9

In 4 R21; R8, and R1 R22; R4, and R3 w - R20; R8, and R9

In 5 R23; R10, and R1 R24; R10, and R3 R25; R10, and R5 w -
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Figure 4: An example of communications in both the default and
the backup paths in an RRW-based OR.
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Table 2 compares the features of the proposed fault-
tolerant scheme compared with some previously proposed
fault-tolerant optical routers for different sizes. The table
shows that RRW-based optical routers increase the reliability
in the cost of increasing the number of MRs in some cases,
especially when compared to 7 × 7 optical routers. However,
RRW-based optical routers provide the least maximum num-
ber of ON-state MRs where a signal will pass through while
traveling within the router in both the default and backup
paths compared to other 7 × 7 optical routers. On the other
hand, when compared to 5× 5 optical routers, RRW-based
optical routers have either the same number of additional
backup MRs, such as in RRW-Crux and RRW-Cygnus, or
less additional backup MRs, such as in RRW-crossbar. Simi-
lar to 7 × 7 optical routers, 5 × 5 RRW-based optical routers
still provide the least maximum number of ON-state MRs
where a signal passes through while being transmitted from
one port to the other within the router.

5.1. Network Reliability Analysis. In this section, we analyze
the reliability of the network using our design. The analysis
is a modified version of the analysis presented in [23]. More-
over, this section shows the probability of our design function-
ing well, when the optical router is suffering from some faulty
MRs. This can be evaluated using the following equation:

Rtotal =
YNw

i=1
Rw ið Þ ×

YNOR

j=1
ROR jð Þ: ð12Þ

In this analysis, multiple faults are introduced into some
MRs of the optical router in a random pattern, to examine
whether the optical signals are properly received by the desired
output port of the router or not. Rtotal is the entire network
reliability; Nw and NOR are the number of optical waveguides
and the number of the optical routers used within the network,
respectively. Similarly, Rw and ROR denote the reliability of the
ith optical waveguide and the jth optical router in the network,
respectively. Unlike active components such as MRs, passive
components such as waveguides are constantly in normal sta-
tus and not prone to failures. Thus, the reliability of wave-
guides is the same throughout the network and can be
ignored and set to be 1. Therefore, we neglect the optical wave-

guide reliability and focus on the reliability of optical routers
within the network.

One major reason for optical router failures is a broken
MR. Thus, given the reliability p of an MR (events of faulty
MRs are independent of each other), the reliability of the
optical router is given by

ROR = 1 − 〠
R

m=0
∂m

R

m

 !
1 − pð Þm pð ÞR−m: ð13Þ

The number of simultaneously faultyMRs is denoted bym,
whereas R represents the total number of MRs within the opti-
cal router (i.e., the MRs in the original router design and the
backup MR added by RRW). Furthermore, the probability of
an OR failure caused by m faulty MRs is presented by ∂m.

Since our scheme uses the same optical router to tolerate
physical faults occurring in the router, such as faults caused
by thermal variations, the failure probability of our RRW-
based optical router in the presence of m faulty MRs is illus-
trated as follows:

∂m =
∑P

k=1
MRk

m

 !

R

m

 ! × 100 %ð Þ: ð14Þ

Equation (14) shows that the failure probability of an opti-
cal router is given by dividing the number of cases in which an
optical signal is misrouted from its proper direction when one
or several faulty MRs are introduced, by the cumulative num-
ber of cases in which m MRs out of an optical router’s entire
MRs (i.e., R, which includes both the original and the backup
MRs) are unreliable. In the equation, k refers to the kth path
among the P sets of possible paths within the optical router,
and MRk denotes the number of MRs along the path k.

In most cases, whenm = 0 orm = 1, i.e., no faulty MRs or
only 1 faulty MR, the optical router still can manage to func-
tion as normal. This means that ∂0 = 0 and ∂1 = 0, since no
misrouting is happening in the OR. However, when the num-
ber of faulty MRs increases to 2, i.e., m = 2, most fault-
tolerant routers will start facing some misrouting difficulties,
and when there are more than two faulty MRs, this
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Figure 5: Some fault-tolerant optical routers based on RRW: (a) RRW-Crux and (b) RRW-Cygnus.
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phenomenon is referred to as a state–space explosion prob-
lem. Thus, we here present the failure probability of different
optical routers when 2 faulty MRs occur in the router.

Depending on the position of the faulty MR, the failure
probability can be increased or decreased drastically. As a
result, we computed all the possible positions for the faulty
MRs (according to Table 1) and presented the average results
in Figure 6. For instance, for RRW-based Cygnus, there exist
26 MRs, including 16 original MRs and 10 redundant MRs.
The number of scenarios in which there exist two malfunc-

tioned MRs is given by
26
2

 !
. Moreover, there exist sixteen

cases in which the signal is deflected due to the presence of
two malfunctioned MRs. Therefore, the probability of failure

of this router is 16/
26
2

 !
= 4:9%. Accordingly, Figure 6

shows that RRW-based optical routers enjoy less failure prob-
ability compared to the 5 × 5 FTTDOR, which has the worst
failure probability of 5.79%. On the other hand, the failure
probability of RRW-Cygnus, RRW-Crossbar, RRW-Crux,
RRW-ODOR, RRW-OXY, and RRW-OR is 4.9%, 4.59%,
5.19%, 5.19%, 5.19%, and 5.19%, respectively.

5.2. Simultaneous Transmission Analysis. Most of the pro-
posed fault-tolerant optical router designs have addressed
the reliability issue of the OR at the blocking expense. In
other words, these architectures provide backup paths for
most or all possible communication pairs; however, these
backup paths block other default communication pairs
within the optical router, which means that in several archi-
tectures, simultaneous transmission is not supported. Thus,
in this manuscript, we propose a simultaneous transmission
probability analysis for optical routers.

The probability of simultaneous transmission within the
router using the default path can be calculated by obtaining
the blocking probability of each possible communication
pairs as follows:

Tsim = 1 − ∑P
i=1 B/nð Þ
P

, ð15Þ

where T sim is the simultaneous transmission in the router; i
denotes the ith path among P, which is the set of possible
paths within the optical router; and ðB/nÞ refers to the aver-
age probability of blocked paths out of all the possible simul-
taneous paths in the router, which is set to be n at most, for
every n × n optical router. Since most of these optical routers
are nonblocking architectures in general, we will only con-
sider, here, the case of one faulty MR in the router, to check
the possible simultaneous signal transmission within the
router. For example, for FT-Crux, there is an average of 1.8
possible blocked default paths and there are 16 sets of possi-
ble paths in the router; thus, Tsim = 1 − ð1:8/16Þ = 0:887.

Figure 7 depicts the probability of simultaneous signal
transmission using the default path of several fault-tolerant
routers and compares them to our scheme. It is so clear that
NRFT suffers the most among other optical routers; this can
be explained by the fact that this router is not a nonblocking
router in general. This means that signals transmitted simul-
taneously within the router using default paths are blocking
each other. On the other hand, most of the rest of the routers
are nonblocking routers originally. However, since they use
the same waveguides to transmit signals, blocking occurs,
unlike RRW-based optical routers, because RRW-based opti-
cal routers are using the ring waveguide instead of the origi-
nal waveguides in the router, which avoids conflicts and
guarantees that the simultaneous signal transmission within
the default path stays in a nonblocking state at all times.

5.3. Simulation Analysis. The simulation in this section is
curried out using VPIphotonics Design Suite (VPI) [31].
The simulation results can illustrate the effect of various opti-
cal router design parameters, such as waveguide size and MR
radius. As a result, this platform can provide simulation
results that are closer to fabrication [39].

Table 3 demonstrates the parameter setting interface of
all the four modules used to build the optical router consid-
ered in the case study and shown in Figure 3. These four
modules are straight waveguide, waveguide bends, waveguide
crossings, and crossing switching elements (CSEs).

Our simulation analysis is divided into three parts. First,
we have simulated the original router without implementing

Table 2: Design features of several fault-tolerant optical routers compared to RRW-based scheme.

Routers Default MRs Additional MRs Total MRs Max. No. ON-MRs (default) Max. No. ON-MRs (backup)

7 × 7 RO-Uni 26 14 40 1 2

7 × 7 RO-Votex 24 14 38 1 2

7 × 7 FTTDOR 22 10 32 2 3

7 × 7 NRFT 20 8 28 4 5

5 × 5 RRW-crossbar 20 10 30 1 2

5 × 5 FT-crossbar 20 13 33 1 3

5 × 5 RRW-ODOR 12 10 22 1 2

5 × 5 FT-ODOR 12 10 22 1 3

5 × 5 RRW-Crux 12 10 22 1 2

5 × 5 FT-Crux 12 10 22 1 3

5 × 5 RRW-Cygnus 16 10 26 1 2

5 × 5 FT-Cygnus 16 10 26 1 3
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the reliable ring waveguide scheme. As mentioned earlier and
shown in Figure 3(a), the original optical router is made up of
15 MRs, 15 waveguide crossings, and 9 waveguide bends.
According to the sequence of these components, we constructed
the optical router using the corresponding module. In the sim-
ulation, we evaluate the insertion loss of each port-to-port com-
munication. Figure 8 displays the worst-case insertion loss

results, including power spectra for all of the five output ports.
The worst-case IL occurs when the optical signal is traveling
from theWest port to the East port, since it passes through four
OFF-state MRs, four waveguide crossings, one bend, and one
ON-state MR. From the results shown in (Figure 8), the maxi-
mum insertion loss of the original optical router is -2.1dB for
optical signal at the frequency of 193.44THz.

Second, we simulated the default path of the original
router after implementing the reliable ring waveguide
scheme. As depicted earlier in Figure 3(b), the RRW-based
optical router has a total of 25 MRs, 25 waveguide crossings,
and 13 waveguide bends. The RRW-based optical router is
built up as shown in Figure 3. Figure 9 depicts the results of
the worst-case insertion loss after evaluating all five commu-
nication pairs. The worst-case IL in RRW occurs when the
optical signal is traveling from the West port to the East port
as well, since it still passes through similar optical devices as
the previously mentioned ones. The only difference is the 2
CSEs located at the beginning and the end of the default path.
The results show that the maximum insertion loss of the
RRW-based optical router when the optical signal is using
the default path is -2.6 dB for optical signal at the frequency
of 193.44THz.
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Figure 6: Failure probability of several fault-tolerant optical routers.
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Figure 7: The probability of simultaneous signal transmission using the default path.

Table 3: The component parameters in the simulation
environment.

Parameter Value

Waveguide height 220 nm

Waveguide width 450 nm

Waveguide length 1 cm

Waveguide’s refractive index 3.5

Surface roughness 10-9

Radius of waveguide bends 5μm

Radius of MRs 5μm

Gap in CSEs 170 nm

Laser power 1mW
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Third, we run the simulation on the backup path of the
RRW-based optical router. Similar to the simulation in the
second part, the RRW-based optical router has a total of 25
MRs, 25 waveguide crossings, and 13 waveguide bends. How-
ever, in this simulation, the optical signal in the worst case
will pass through four OFF-state MRs, four waveguide cross-
ings, two bends, and two ON-state MRs. Figure 10 presents
the simulation result of the worst-case insertion loss after
evaluating all five communication pairs. This worst-case
insertion loss happens while transmitting fromWest to East,
too. The findings in the figure indicate that the maximum
insertion loss of the RRW-based optical router when the
optical signal is using the backup path is -3.6 dB for optical
signal at the frequency of 193.44THz.

Although the insertion loss increases using the backup
path provided by RRW, the default path is still having an
acceptable increment compared to the original router as
shown in the previous figures. The figures show that the
worst-case insertion loss of the default path has increased
by -0.5 dB using RRW and the worst-case insertion loss using
the backup path is -1.5 dB more than the default path in the
original router.

Similarly, in the following two sections, we will further
introduce detailed insertion loss and crosstalk noise results
of more architectures in the router and the network levels.

5.4. Insertion Loss. We here evaluate more optical routers
using RRW compared to others proposed in [23, 29, 30] in
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Figure 8: Power spectra of the optical router at all five output ports under the worst-case insertion loss.
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Figure 9: Power spectra of the RRW-based optical router using the default path, at all five output ports under the worst-case insertion loss.
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the same method as [40]. We evaluate the insertion loss (IL)
of the other optical routers in Figure 5 and show the worst-
case IL in both the default and the backup paths. Moreover,
to evaluate the backup path of each router, we assume that
only one MR fails at a time.

Let us, first, consider the optical routers used in 3D net-
works and compare them together since they have the same
size. Moreover, since the NRFT and FTTDOR are based on
XYZ routing algorithm, whereas the universal router in
[31] and Votex in [35] are fully connected routers, we first
optimize them by reducing the unused MRs of the unused
communication pairs from the architecture, then implement
RRW scheme. In fully connected optical routers, all input
ports can communication with all output ports, whereas
XYZ optical routers connect inputs with higher priority to
outputs with the same priority or less priority. Thus, the
routers are optimized by reducing the MRs used for unused
communications, such as the communications from up to
West/East/North/South.

Table 4 presents the maximum, average, and minimum
port-to-port IL of all evaluated optical routers. From the table,
the NRFT optical router utilizes two separated optical routers,
which are a 6 × 6 OR and a 3 × 3 OR for intra- and interlayer
interconnections, respectively. Therefore, the minimum port-
to-port IL (-0.12dB) would occur in the smaller router from
the up port to the down port and vice versa. Similarly, the
minimum port-to-port insertion loss in 7 × 7 FTTDOR is
-0.115dB, which occurs in the communication from the up
port to the down port as well, since the up and down wave-
guides in FTTDOR are only connected to themselves and
the IP core but not to others. Nonetheless, the minimum
port-to-port insertion loss of the RRW-based optimized uni-
versal router (RO-Uni) is -0.53 dB for both the default and
backup paths, and the minimum port-to-port IL of the
RRW-based optimized Votex (RO-Votex) is -0.59 dB and
-0.73dB for the default path and the backup path, respectively.
Although the first two mentioned routers could introduce the
minimum insertion loss, routers based on our method enjoy

the least average and worst-case port-to-port insertion
losses. RO-Uni introduces the least average IL (-0.75dB)
in the default path and -1.101dB IL for the backup path.
On the other hand, the average ILs of RO-Votex are
-0.87 dB and -1.127dB for both the default and the backup
paths, respectively. The average IL of 7 × 7 FTTDOR is low
as well, with -0.76 dB and -0.98dB for both the default and
the backup paths, respectively. However, NRFT has the
highest average IL for both the default and backup paths,
with -0.93 dB and -1.48 dB, respectively. In terms of the
worst-case insertion loss, RRW-based routers introduce
the least IL, with -1.28 dB and -1.45 dB in RO-Votex and
-0.955dB and -1.36dB in RO-Uni for the default and the
backup paths, respectively. On the other hand, the worst-
case ILs in 7 × 7 FTTDOR are -1.365dB and -2.245dB
and in NRFT are -2.185dB and -2.705dB for the default
and backup paths, respectively.

Now, we consider routers with the size of 5 × 5. Since the
5 × 5 Crux and 5 × 5 Cygnus are originally not fault-tolerant
optical routers, thus we implement our RRW scheme and
compare it with the fault-tolerant architectures designed
based on them and proposed in [30]. Table 4 shows that opti-
cal routers based on RRW encounter a slightly more inser-
tion loss in the minimum and the average insertion loss,
which can be regarded as 6.6%. However, the 5 × 5 RRW-
based optical routers encounter the least worst-case insertion
loss in the back up path, with a 25% less insertion loss than
the one encountered by FT-Crux and a 30.4% less insertion
loss than FT-Cygnus.

Figures 11 and 12 depict the port-to-port insertion loss of
FT-Crux, RRW-Crux, FT-Cygnus, and RRW-Cygnus for
both the default and the backup paths. The numbers 0, 1, 2,
3, and 4 denote the ports from the injection/ejection port,
North, East, South, to West, respectively. From both figures,
we can notice that the maximum insertion loss of FT-Crux is
mainly introduced when the signal is sent out of the injection
port, whereas in FT-Cygnus, the maximum insertion loss is
introduced by the North port.
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5.5. Crosstalk Noise. Here, we present the crosstalk compari-
sons of several optical routers; moreover, consider the worst-
case OSNR of 2D mesh network using RRW and another
reliable router. Similar to the previous section, the crosstalk
of the longest path is obtained similar to the method in [40].

Figure 13 depicts the crosstalk noise of 7 × 7 RO-Uni
default and backup paths and 7 × 7 FTTDOR default and
backup paths for each port-to-port communication pair.
The numbers 0, 1, 2, 3, 4, 5, and 6 are the injection/ejection

port, East, down, South, West, up, and North, respectively.
The results show that the RRW-based router reduces the
worst-case crosstalk noise by 39.9% for the backup path
and 24.55% for the default path. Furthermore, this figure
reports that RO-Uni introduces the least crosstalk noise in
several communication pairs.

On the other hand, Figure 14 presents the crosstalk noise
of the 5 × 5 FT-Crux and 5 × 5 RRW-Crux for each commu-
nication. It is clear that the worst-case noise is introduced by

Table 4: The insertion loss comparison of optical routers based on our method and other reliable optical routers for port-to-port
communications.

Routers Maximum IL (dB) Minimum IL (dB) Average IL (dB)
Default Backup Default Backup Default Backup

7 × 7 RO-Uni -0.955 -1.36 -0.53 -0.53 -0.75 -1.101

7 × 7 RO-Votex -1.28 -1.45 -0.59 -0.73 -0.87 -1.127

7 × 7 FTTDOR -1.365 -2.245 -0.115 -0.115 -0.76 -0.98

7 × 7 NRFT -2.185 -2.705 -0.12 -0.12 -0.93 -1.48

5 × 5 RRW-crux -0.77 -1.29 -0.23 -0.23 -0.56 -0.9

5 × 5 FT-crux -0.71 -1.72 -0.15 -0.15 -0.51 -0.73

5 × 5 RRW-Cygnus -0.86 -1.28 -0.28 -0.28 -0.64 -0.98

5 × 5 FT-Cygnus -0.8 -1.84 -0.22 -0.22 -0.57 -0.94
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FT-Crux while using the default path. The results show that
the RRW-based router reduces the worst-case crosstalk noise
by 46.7% for the default path and 15.7% for the backup path.
Furthermore, RRW-Crux has the least crosstalk noise in
many port-to-port communications.

The performance of different sizes of mesh network is
evaluated using FT-Crux and RRW-Crux for several longest
paths in the network and compared them to take out the
worst-case crosstalk among all. Figure 15 illustrates the
worst-case OSNR of FT-Crux and RRW-Crux for different
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sizes of the network. The figure shows that the OSNR of FT-
Crux using both the default and the backup paths and RRW-
Crux using backup path is decreasing drastically as the net-
work gets bigger in size. RRW-Crux increases the OSNR by
an average of 68.5% for the default path and an average of
15.9% for the backup path compared to FT-Crux default
and backup paths, respectively, for the size of 4 × 4, 6 × 6, 8
× 8, 10 × 10, and 12 × 12 2D mesh.

6. Conclusions

Reliability of an optical router is a hot topic for researchers. It
determines the efficiency and performance of the network.
We proposed a universal method that is easily implemented
to an optical router for reliability purposes. The method does
not expose the optical router to further contention or block-
ing problems. In this method, we implement a reliable ring
waveguide (RRW) with a specific number of MRs, which is
2n, to any n × n optical router to provide an alternative path
for any faulty communication. Another important feature of
the proposed method is that signals transmitted using the
alternative path do not affect the transmitted signals using
the original path. Moreover, we proposed a simultaneous
transmission analysis for optical routers to show the feasibil-
ity of our method.

The results show that the failure probability of RRW-
based optical routers is at most 5.19% (which is the failure
probability of RRW-ODOR) compared with FTTDOR which
has a failure probability of 5.79%. The simultaneous trans-
mission in RRW-based optical routers is improved by at least
10% compared to FT-OXY and at most 46% compared to
NRFT. The chapter also provides a case study by implement-
ing RRW scheme on one of the well-known optical routers.
The simultaneous results using VPIphotonics Design Suite
(VPI) is providing results that are closer to fabrication. It
shows that the worst-case insertion loss of the default path
is increased by -0.5 dB using RRW and the worst-case
insertion-loss using the backup path is increased by -1.5 dB
compared to the default path in the original router. Further-
more, the worst-case insertion loss of RRW-based optical
routers can be reduced by 46.34% at most for 7 × 7 optical
routers and 30.2% at most for 5 × 5 optical routers. RO-Uni
reduces the worst-case crosstalk noise by 24.55% and 39.9%
for the default and backup paths, respectively, compared to
FTTDOR. RRW-Crux reduces the worst-case crosstalk noise
by 46.7% for the default path and 15.7% for the backup path
compared to FT-Crux. Finally, RRW-Crux increases the
OSNR by an average of 68.5% for the default path and an
average of 15.9% for the backup path compared to FT-Crux
default and backup paths, respectively, for the size of 4 × 4,
6 × 6, 8 × 8, 10 × 10, and 12 × 12 2D mesh. In the future
work, we aim to combine the architecture design with a rout-
ing algorithm to further improve the network reliability.

Data Availability

All data can be obtained from the author.

Disclosure

This paper is an extended version of a previously presented
one in the International Symposium on Parallel Architec-
tures Algorithms and Programming [24].

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Key R&D
Program of China under Grant No. 2018YFE0202800, the
National Natural Science Foundation of China under Grant
Nos. 61634004 and 61934002, the Natural Science Founda-
tion of Shaanxi Province for Distinguished Young Scholars
under Grant No. 2020JC-26, and the Open Project Program
of the State Key Laboratory of Mathematical Engineering
and Advanced Computing under Grant No. 2019A01. This
work was supported by the Youth Innovation Team of
Shaanxi Universities, as well.

References

[1] M. Baharloo, R. Aligholipour, M. Abdollahi, and A. Khonsari,
“ChangeSUB: a power efficient multiple network-on-chip
architecture,” Computers & Electrical Engineering, vol. 83, arti-
cle 106578, 2020.

[2] S. Borkar, “Role of interconnects in the future of computing,”
Journal of Lightwave Technology, vol. 31, no. 24, pp. 3927–
3933, 2013.

[3] Q. Cai, W. Hou, C. Yu, P. Han, L. Zhang, and L. Guo, “Design
and OPNET implementation of routing algorithm in 3D opti-
cal network on chip,” in 2014 IEEE/CIC International Confer-
ence on Communications in China (ICCC), Shanghai, China,
2015.

[4] W. Hou, G. Lei, Q. Cai, and L. Zhu, “3D Torus ONoC: topol-
ogy design, router modeling and adaptive routing algorithm
(invited talk),” in 2014 13th International Conference on Opti-
cal Communications and Networks (ICOCN), Suzhou, China,
2014.

[5] P. Guo, W. Hou, L. Guo, Q. Cai, Y. Zong, and D. Huang, “Reli-
able routing in 3D optical network-on-chip based on fault
node reuse,” in International Workshop on Reliable Networks
Design & Modeling, Munich, Germany, 2015.

[6] S. Werner, J. Navaridas, and M. Lujan, “Designing low-power,
low-latency networks-on-chip by optimally combining electri-
cal and optical links,” in IEEE International Symposium on
High Performance Computer Architecture, Austin, TX, USA,
2017.

[7] T. Barwicz, H. Byun, F. Gan et al., “Silicon photonics for com-
pact, energy-efficient interconnects [invited],” Journal of Opti-
cal Networking, vol. 6, no. 1, pp. 63–73, 2007.

[8] M. Abdollahi and S. Mohammadi, “Insertion loss-aware appli-
cation mapping onto the optical Cube-Connected Cycles
architecture,” Computers & Electrical Engineering, vol. 82, arti-
cle 106559, 2020.

[9] W. Yang, Y. Chen, Z. Huang, H. Zhang, H. Gu, and C. Yu, “A
survey of multicast communication in optical network-on-

14 Wireless Communications and Mobile Computing



chip (ONoC),” in International Symposium on Parallel Archi-
tectures, Algorithms and Programming, Singapore, 2020.

[10] L. Guo, W. Hou, and P. Guo, “Designs of 3D mesh and torus
optical network-on-chips: topology, optical router and routing
module,” China Communications, vol. 14, no. 5, pp. 17–29, 2017.

[11] S. Sun, V. Narayana, I. Sarpkaya et al., “Hybrid photonic-
plasmonic non-blocking broadband 5×5 router for optical net-
works,” IEEE Photonics Journal, vol. 10, no. 2, pp. 1–12, 2018.

[12] X. Shi, N. Wu, F. Ge, G. Yan, Y. Xing, and X. Ma, “Srax: a low
crosstalk and insertion loss 5×5 optical router for optical net-
work-on-chip,” in IECON - 45th Annual Conference of the
IEEE Industrial Electronics Society, pp. 3102–3105, Lisbon,
Portugal, 2019.

[13] M. R. Yahya, N. Wu, Z. Fang, F. Ge, and M. H. Shah, “A low
insertion loss 5 × 5 optical router for mesh photonic
network-on-chip topology,” in 2019 IEEE conference on sus-
tainable utilization and development in engineering and tech-
nologies (CSUDET), pp. 164–169, Penang, Malaysia, 2019.

[14] M. Fadhel, H. Gu, and W. Wei, “DORR: a DOR-based non-
blocking optical router for 3D photonic network-on-chips,”
EICE Transactions on Information & Systems, vol. E104.D,
no. 5, pp. 688–696, 2021.

[15] R. Kappeler, Radiation testing of micro photonic components
Stagiaire Project Report, ESA/ESTEC. Ref. No. EWP 2263,
2004.

[16] Y. Ye, Z. Wang, P. Yang et al., “System-level modeling and
analysis of thermal effects in WDM-based optical networks-
on-chip,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 33, no. 11, pp. 1718–
1731, 2014.

[17] M. C. Meyer, A. B. Ahmed, Y. Okuyama, and A. B. Abdallah,
“FTTDOR: microring fault-resilient optical router for reliable
optical network-on-chip systems,” in 2015 IEEE 9th Interna-
tional Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), Turin, Italy, 2015.

[18] I. Datta, D. Datta, and P. P. Pande, “Design methodology for
optical interconnect topologies in NoCs with BER and trans-
mit power constraints,” Journal of Lightwave Technology,
vol. 32, no. 1, pp. 163–175, 2013.

[19] H. U. Zhan-Shuo, F. Y. Hung, K. J. Chen, S. J. Chang, W. K.
Hsieh, and T. Y. Liao, “Improvement in thermal degradation
of ZnO photodetector by embedding silver oxide nanoparti-
cles,” Functional Materials Letters, vol. 6, no. 1, p. 1350001,
2013.

[20] P. Loh andW. J. Hsu, “Design of a viable fault-tolerant routing
strategy for optical-based grids,” in International Symposium
on Parallel and Distributed Processing and Applications, Berlin,
Heidelberg, 2003.

[21] X. Qi, Q. Feng, Y. Chen, D. Qiang, and D. Wenhua, “A fault
tolerant bufferless optical interconnection network,” in Eigth
IEEE/ACIS International Conference on Computer & Informa-
tion Science, Shanghai, China, 2009.

[22] M. Tinati, S. Koohi, and S. Hessabi, “Low-overhead thermally
resilient optical network-on-chip architecture,” Nano Com-
munication Networks, vol. 20, pp. 31–47, 2019.

[23] P. Guo, W. Hou, L. Guo et al., “Fault-tolerant routing mecha-
nism in 3D optical network-on-chip based on node reuse,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 3, pp. 547–564, 2020.

[24] M. Fadhel, L. Huang, and H. Gu, “RRW: a reliable ring
waveguide-based optical router for photonic network-on-

chips,” in International Symposium on Parallel Architectures,
Algorithms and Programming, Singapore, 2021.

[25] H. Li, H. Gu, Y. Yang, and Z. Zhu, “Impact of thermal effect on
reliability in optical network-on-chip,” Optik - International
Journal for Light and Electron Optics, vol. 124, no. 20,
pp. 4172–4176, 2013.

[26] M. Meyer, Y. Okuyama, and A. B. Abdallah, “SAFT-PHENIC:
a thermal-aware microring fault-resilient photonic NoC,” The
Journal of Supercomputing, vol. 74, no. 9, pp. 4672–4695, 2018.

[27] X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson,
“Process variation in silicon photonic devices,” Applied Optics,
vol. 52, no. 31, pp. 7638–7647, 2013.

[28] Y. Xu, J. Yang, and R. Melhem, “Tolerating process variations
in nanophotonic on-chip networks,” in 39th Annual Interna-
tional Symposium on Computer Architecture (ISCA), Portland,
OR, USA, 2012.

[29] M. Meyer, Y. Okuyama, and A. B. Abdallah, “Microring fault-
resilient photonic network-on-chip for reliable high-
performance many-core systems,” The Journal of Supercom-
puting, vol. 73, no. 4, pp. 1567–1599, 2016.

[30] M. Abdollahi and S. Mohammadi, “Vulnerability assessment
of fault-tolerant optical network-on-chips,” Journal of Parallel
and Distributed Computing, vol. 145, pp. 140–159, 2020.

[31] R. Min, R. Ji, Q. Chen, L. Zhang, and L. Yang, “A universal
method for constructing N-port nonblocking optical router
for photonic networks-on-chip,” Journal of Lightwave Tech-
nology, vol. 30, no. 23, pp. 3736–3741, 2012.

[32] https://www.vpiphotonics.com.

[33] H. Gu, K. H. Mo, J. Xu, and W. Zhang, “A low-power low-cost
optical router for optical networks-on-chip in multiprocessor
systems-on-chip,” in 2009 IEEE Computer Society Annual
Symposium on VlSI, pp. 19–24, Tampa, FL, USA, 2009.

[34] Y. Xie, M. Nikdast, J. Xu et al., “Crosstalk noise and bit error
rate analysis for optical network-on-chip,” in 47th ACM/EDA-
C/IEEE Design Automation Conference, pp. 657–660, Ana-
heim, CA, USA, 2010.

[35] K. Zhu, H. Gu, Y. Yang, W. Tan, and B. Zhang, “A 3D multi-
layer optical network on chip based on mesh topology,” Pho-
tonic Network Communication, vol. 32, no. 2, pp. 293–299,
2016.

[36] H. Gu, X. Jiang, and W. Zheng, “A novel optical mesh
network-on-chip for gigascale systems-on-chip,” in IEEE Asia
Pacific Conference on Circuits & Systems, pp. 1728–1731,
Macao, China, 2008.

[37] H. Gu, X. Jiang, and W. Zheng, “ODOR: a microresonator-
based high-performance low-cost router for optical net-
works-on-chip,” in Proceedings of the 6th IEEE/ACM/IFIP
International Conference on Hardware/software Codesign &
System Synthesis, pp. 203–208, Atlanta, GA, USA, 2008.

[38] A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded
microresonator-based matrix switch for silicon on-chip optical
interconnection,” Proceedings of the IEEE, vol. 97, no. 7,
pp. 1216–1238, 2009.

[39] J. Zhao, H. Li, H. Gu, and X. Diao, “Model-based platform for
design space exploration in single-microring-based silicon
photonic interconnects on chip,” Optics Communications,
vol. 453, article 124375, 2019.

[40] Y. Xie, M. Nikdast, J. Xu et al., “Formal worst-case analysis of
crosstalk noise in mesh-based optical networks-on-chip,”
IEEE Trans VLSI Syst, vol. 21, no. 10, pp. 1823–1836, 2013.

15Wireless Communications and Mobile Computing

https://www.vpiphotonics.com


Research Article
Towards an Elastic Fog-Computing Framework for IoT Big Data
Analytics Applications

Linh Manh Pham ,1,2,3 Truong-Thang Nguyen,2 and Tien-Quang Hoang 4

1Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,
Hanoi, Vietnam
2Institute of Information Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
3VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
4Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Xuan Hoa, Vinh Phuc, Vietnam

Correspondence should be addressed to Linh Manh Pham; linhmp@vnu.edu.vn

Received 3 May 2021; Revised 8 June 2021; Accepted 28 July 2021; Published 15 August 2021

Academic Editor: Yong Zhang

Copyright © 2021 Linh Manh Pham et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

IoT applications have been being moved to the cloud during the last decade in order to reduce operating costs and provide more
scalable services to users. However, IoT latency-sensitive big data streaming systems (e.g., smart home application) is not suitable
with the cloud and needs another model to fit in. Fog computing, aiming at bringing computation, communication, and storage
resources from “cloud to ground” closest to smart end-devices, seems to be a complementary appropriate proposal for such type
of application. Although there are various research efforts and solutions for deploying and conducting elasticity of IoT big data
analytics applications on the cloud, similar work on fog computing is not many. This article firstly introduces AutoFog, a fog-
computing framework, which provides holistic deployment and an elasticity solution for fog-based IoT big data analytics
applications including a novel mechanism for elasticity provision. Secondly, the article also points out requirements that a
framework of IoT big data analytics application on fog environment should support. Finally, through a realistic smart home use
case, extensive experiments were conducted to validate typical aspects of our proposed framework.

1. Introduction

1.1. Deployment of IoT Big Data Analytics Applications in the
Context of Fog Computing. The last decade has seen the
emerging of cloud computing as a trendy technology and
business model bringing to incremental value for cloud
stakeholders. At the side of service consumers, this value
comes from saving both deployment time and investment
cost on IT infrastructure, offloading it to cloud service pro-
viders. Taking advantage of virtualization technology, hard-
ware resources at data centers are shared by infrastructure
service providers and sold to customers with a reasonable
price. Platform or application services built on top of virtual
resources now are delivered to the hands of cloud consumers
with invoices billed by fine-grained time or resource unit like
in the water or electric power industries.

However, Internet of Things (IoT) applications are not
appropriate to be converted completely into services of the
cloud computing model. For example, latency-sensitive IoT
applications such as big data analytics (BDA for short) sys-
tems require prompt responses to outliers which need to be
within several milliseconds or even microseconds in some
special emergency cases. Moreover, these BDA systems can
create petabytes of data that are not practical to stream back
and forth between cloud data centers and end-devices. With
this kind of application, it is better to keep some of their com-
ponents staying at centralized clouds and move some of them
down to the edge close to end-devices. The components at
the edge should take care of operations requiring fast
responses or reducing a huge amount of data which may con-
sume much bandwidth if transferred over a wide area net-
work. On the contrary, the components on the cloud is
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often responsible for compute-intensive long-running tasks
on permanent data storage.

The fog-computing model, aiming at bringing computa-
tion, communication, and storage resources from “cloud to
ground” closest to end-devices, seems to be an appropriately
complementary proposal for such type of application. This
model encourages developers to divide their applications into
more fine-grained components deployed in the nodes
throughout from the cloud, fog, to end-device strata as
shown in Figure 1. The position of a component depends
on specific tasks that this component has to be in charge of
and whether its tasks are latency-sensitive or not.

Elasticity is a characteristic of cloud according to NIST [1].
Many cloud applications provide elasticity features to accom-
modate scalability and adapt to changes in demand. Unlike
in the cloud, implementing elasticity for IoT applications in
the fog is not an easy task, especially for BDA ones. An
elasticity-supported platform for this kind of application must
provide the ability to modelize all heterogeneous software and
hardware components participating in these applications and
distribute them throughout strata from the cloud, fog, to
end-devices. The components of these modelized applications
should be migrated horizontally between fog nodes or verti-
cally between cloud and fog strata where there is an increase
or decrease in the density of the end-devices. These compo-
nents should be also duplicated where workloads from the
end-devices increase. To avoid vendor lock-in issues, those
components also should be moved flexibly among IoT service
providers when needed. Application programming interfaces
need to be provided so that intercommunication among com-
ponents can transparently cross boundaries created by differ-
ent communication protocols.

In short, we are lacking a holistic fog framework which
allows IoT BDA service providers to deploy and conduct
elasticity on their applications to adapt fluctuation of big data
workload coming from various IoT end-devices.

1.2. Our Contributions. Before talking about our contributions,
we discuss dedicated features that a fog elasticity framework
should support in addition to the features inherited from the
cloud.

First, a distributed application needs to be modelized
before its automatic deployment. In cloud computing, a stan-
dard modeling domain-specific language such as TOSCA [2]
or Camel [3] is enough to abstract both software and hard-
ware components of application services. However, in cloud
computing, it is often that only a small set of concepts need
to be described such as “cloud provider,” “virtual machine,”
or “hosting server.” These sets of terms need to be extended
to fulfill the demand of describing a large of new concepts
of fog computing coming from widely heterogeneous com-
ponents such as gateway, set-top box, base station, physical
machine, and cloudlet.

Secondly, mobility is a conspicuous characteristic of end-
devices in fog computing. The end-devices can move or are
moved physically from this geographical area to another
one such as vehicles and smartphones or eliminated at one
place and replaced logically at another position such as
short-lived wireless sensors. Along with these movements,

some components located at the upper strata of a fog applica-
tion such as fog or cloud nodes should be moved or migrated
correspondingly. An elasticity controller for fog-based appli-
cations needs to provide modules to take the end-device
mobility and its migrated workload into consideration.

In the third place, software or hardware components in fog
do not always stay with the same provider. They can be dis-
tributed horizontally between fog providers or vertically across
both fog and cloud providers. Moreover, one component can
be found in the fog at this moment but can be migrated to
the cloud at another time when some input conditions vary.
Therefore, the cloud/fog federation to break the vendor lock-
in issue is another concern for developers of fog elasticity tools.

Finally, fog computing’s ecosystem is dominated by mil-
lions of chatty embedded devices with thousands kind of
communication protocols. On the other hand, complex
applications have many components which need to be inter-
connected to enhance automation and autonomy. These
interconnections can be either fog-fog, fog-cloud, cloud-
cloud, fog-devices, or cloud-devices. Providing mechanisms
for interconnection between the components is one of the
critical missions of a modern fog elasticity platform.

Supporting such extended requirements needs a holistic
framework that can catch the required aspects of configura-
tion to deliver a highly automated system for managing any
IoT BDA application on the fog. In this paper, we present
AutoFog, which supports the transformation of complex
applications to fog-based ones as well as supports their large-
scale automatic deployment and scaling. The transformation
is smooth and less time-consuming, thanks to the reuse and
extension of an existing domain-specific language (DSL) [4]
and off-the-shelf components (COTS). Besides the extension
of the DSL, another contribution is the introduction of a
mechanism for automatic deployment and elasticity provi-
sioning which automatically implements all the predefined
component instances as well as monitors and conducts all
the elasticity strategies in fog environment. The last one is a
runtime system ensuring that the deployed fog application is
properly globally configured while scaling the application
model such as adding, removing, or migrating component
instances including fog/cloud nodes. We also have imple-
mented a prototype for the framework and conducted exten-
sive experiments to evaluate AutoFog in deploying and
scaling a real-world IoT BDA application on typical aspects
that a fog-computing elasticity framework should resolve.

The rest of this article is organized as follows. Section 2
describes a real-world complex IoT BDA use case as a fog-
based application that we use throughout this paper. Section
3 discusses important modules of our proposed framework.
Section 4 presents our mechanism for dynamic deployment
and elasticity provision of IoT applications. Section 5 reports
some extensive experiments performed on a prototype of
AutoFog serving as a proof of concept of our work. Finally, sec-
tion 6 presents related work, and section 7 concludes the paper.

2. Use Case

In fog computing, components of an application are not only
divided into tiers but also distributed to the three strata:
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cloud, fog, and end-devices. We consider in this section a use
case of a complex IoT BDA application which is divided into
strata as shown in Figure 2. The components of the application
can appear at positions marked by package icons. It is an
energy management application for smart homes. In the
application model, the smart home center manages and mon-
itors the power consumption of multiple houses in a district.

There may have thousands of end-devices that consume
electricity serving for human regular activities in the houses.
Some mobile end-devices can be moved between the houses
such as smartphones, laptops, and vehicles. This movement
can cause temporarily peak demand in some discrete houses.
In each household of a house, many IoT smart plugs are
implemented to measure the energy consumption of end-
devices. A smart plug is installed between the electrical smart
device and the wall power outlet. A range of sensors is
equipped in a smart plug to measure various values of associ-
ated power consumption. These raw data from thousands of
smart plugs are sent to local agencies of the smart home center
located closest to the corresponding houses for preprocessing
or abnormal detection. Fog nodes in clusters, cloudlets, or pri-
vate clouds are implemented in the local agencies to perform
these operations. If an anomaly such as an unusual peak load
or an outage is detected at this step, corresponding reactions
are triggered from the application components distributed to
the fog nodes. These reactions can be sending a simple notifi-
cation to the administrator or adding more electric power
from renewable energy sources to fulfill a peaking consump-
tion demand. To ensure that these operations are fast and
timely, the connection from the local agencies to the houses
must be ensured by high-speed local transmission lines.

The preprocessed data are sent to more compute-
intensive nodes in the cloud for further analysis to generate
more valuable information such as energy consumption pre-

diction during a period. The processed data and generated
information can be stored permanently in cloud storage for
long-running batch-processing tasks which may need to be
conducted later. The IoT BDA application for energy man-
agement in smart homes is the real-world example used
throughout this article.

3. AutoFog Architecture

As mentioned, fog computing adds an intermediate stratum
between cloud and end-devices resulting in participation of
more heterogeneous and fine-grained resources. In general,
AutoFog architecture detailing in Figure 3 is composed of
modules distributed into 4 layers: design, orchestration, elas-
ticity, and infrastructure.

3.1. Design Layer. The design layer allows users to abstract
and generalize complex distributed applications into applica-
tion models using concepts defined by the framework. At
heart of this layer is AutoFog DSL, a domain-specific lan-
guage evolving from [4], which supports the description of
hardware and software components of the application model
and its fine-grained resources arranged hierarchically. In this
language, the abstraction of a software component is called a
software type. Similar software types can be generated from a
software type template. These templates are stored in a soft-
ware type catalog of the design layer. A software type is
instantiated into software instance which is the running ver-
sion of this type. Software instance inherits all the parameters
and default values of its software type.

AutoFog DSL also proposes terms of container type and
container instance. A container type represents a physical
or virtual hardware component/device hosting software
instances at runtime. It is worth mentioning that a small
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end-device or a huge cloud data center can also be repre-
sented by a container type. Like software type templates, con-
tainer type templates also can be stored in a container type
catalog. Container instance is a container type in running
state. The software instances instantiated from the same type
can be distributed into multiple container instances of differ-
ent container types. Moreover, software instances of different
software types may collocate on the same container instance.
Each software instance contains a reference to the container
instance on which it is running.

Relations between software types (i.e., horizontal rela-
tionship) can be defined in the application model by series
of “exported” and “imported” configuration variables. While
an exported variable is a structure that a component exposes
to remote components using it, an imported variable is a
structure containing configuration information required by
a component to initialize a service. Receiving the imported
structure to boot is mandatory or not depending on specific
software types.

Another kind of relation supported in AutoFog DSL is
the parent-child relationship between a software type and
its containers (i.e., vertical relationship). This relation in
cloud applications is usually a simple map between the soft-
ware components and their hosts (e.g., virtual machines).
With fog-computing applications, it is often that a software
component is deployed inside multiple levels of software
and hardware containers. For example, a Tomcat war file is
contained inside a Tomcat server, the Tomcat server, in turn,
is packed in a Docker container, and a Docker container is
hosted in a virtual machine of a cloudlet or a physical
machine of a fog cluster. AutoFog DSL supports such a com-
plex description to fulfill the gap when defining very hetero-
geneous resources of fog-computing applications.

In AutoFog, an application is a collection containing
descriptions of container types, container instances, software
types, software instances, and vertical/horizontal relations.
An excerpt of the IoT BDA application model under Auto-
Fog DSL is depicted in Figures 4 and 5. As shown in the
figures, the means used for installation and configuration of
the software instances in the container must be defined such
as Bash, Chef, or Puppet. Corresponding to the selected tech-
nology, some scripting files defining operations on how to
install and configure the software on the container may need
to be provided along with the application model.

3.2. Orchestration Layer. Since a completed model of the fog-
based application is sent to the orchestration layer, the model
is parsed, and the life cycle of the application is managed and
ensured by Application Manager (AM). It also checks the
application’s current state (not deployed, deploying, deployed
and stopped, starting, deployed and started, stopping, etc.).
Through this module, the running application can be updated
by adding/removing types and instances to/from current
application model. Application Manager has a global view of
the application, all software components, and the links
between them, but it does not intervene in the physical deploy-
ment of software components and containers. A copy of the
current global view is sent to Placement Manager (PM) to
compute a placement plan when the application is initialized
or updated. Placement Manager supports various kinds of
solvers such as constraint programming-based solvers,
heuristics-based solvers, learning automata-based allocator,
and metasolvers. The users need to select one of the supported
solvers depending on what is more important to them, accu-
racy or performance. Another module in this layer isMonitor-
ing Manager which is used to monitor states of container
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instances using heartbeats and notify the administrator that
the container went down.

3.3. Elasticity Layer. The core components of this layer are
Deployment Manager (DM) and Elasticity Controller (EC).
They are modules coordinating the physical deployment of
the application across containers. They must ensure all soft-
ware instances are deployed with the correct configuration in
hierarchical container instances. The DM instantiates con-
tainers through the provider’s API, and the EC manages the
deployment and scaling of the software types on the con-
tainers. Another mission of the DM is ensuring the federation
between infrastructure providers. To do this, heterogeneous
infrastructures from these providers must be abstracted. In
the cloud, the DM must ensure that the software instances
hosted in different containers belonging to various cloud pro-
viders work as in the same provider. To avoid vendor lock-in
issues, some access lists may need to be added according to
each provider’s policy. In fog, this federation needs to be
enforced not only among cloud providers but also between
cloud and fog providers. Therefore, AutoFog provides a flexi-
bly plug-in mechanism to add and abstract different cloud/fog

providers. It provides a general AutoFog API with critical
infrastructure primitives including the creation and deletion
of software or container instances as well as minimal informa-
tion about their states. These general requests will be trans-
lated and sent to specific cloud/fog providers’ APIs, thanks
to their corresponding infrastructure plug-ins. Thus AutoFog
is completely independent of any fog/cloud infrastructure.

Right after a software instance is switched to running
state, the EC maintains an admin topic on aMessaging Server
to keep track of all components. The EC, therefore, plays an
important role since it constitutes the entrance for both the
initial configuration and the upcoming scale(s). Briefly, this
module has the responsibility of elasticity control of the com-
ponents it manages.

3.4. Infrastructure Layer. Installation and configuration of soft-
ware at the Infrastructure layer are done by AutoFog Agents.
An agent is a lightweight software installed in advance inside
a container instance to manage the installation and elasticity
of software instances of this container. Therefore, each agent
only knows about the local components of its hosted container.
In general, it is responsible for carrying out communication on
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behalf of its container. A software instance is configured by the
agent using the configuration connector specified in its corre-
sponding software type. Additionally, the agents publish vari-
ables a software instance exports (i.e., exported vars) and
variables this instance imports (i.e., imported vars) to corre-
sponding topics in the messaging server. The agents communi-
cate with each other and with the remaining AutoFog modules,
thanks to communication channels in the messaging server.

A messaging protocol has also been implemented based
on exchanging asynchronous messages and publishing/sub-
scribing message topics which allows the upper layers to
dynamically add/remove containers as well as software com-
ponents to a running application. Using messaging services
to exchange messages promotes interoperability between

application components. All communication protocols used
by fog hardware components need to be abstracted and con-
verted to uniform messages supported by the message server.
Currently, AutoFog implements RabbitMQ as its unique
messaging service. Supports for other messaging brokers or
services can be added to AutoFog as new plug-ins. In the fol-
lowing section, we describe how AutoFog manages its appli-
cations at runtime.

4. Dynamic Deployment and
Elasticity Provision

In this section, we describe how AutoFog can be used to
install and manage the IoT BDA application mentioned in

Figure 4: Types of IoT BDA application described by AutoFog DSL.
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section 2. We depict in Figure 6 various steps required to
deploy the IoT BDA application and conduct elasticity on
the Fog using AutoFog. Below are details of these steps:

(1) The model of the fog application is sent to AutoFog
to be deployed. Figures 4 and 5 represent the IoT
BDA application model under AutoFog DSL.
Figure 4 shows the different software and container
types of the application. As depicted, we describe
some software and container types such as Storm
cluster [5] (Figure 4, lines 5-13), Cassandra [6]
(Figure 4, lines 30-41), and OpenHAB [7] (Figure 4,
lines 16-27). The model first is parsed by the AM
module to generate a provider-independent model
(PIM). The PIM then goes through the constraint-
problem solvers of the PM module to generate a
provider-specific model (PSM) describing which
containers belonging to which infrastructure of plat-
form providers will host the software components

(2) The PSM is sent to the DMmodule at the beginning of
this step. The DM, through the local General API,
contacts the infrastructure/platform API to ask for
the instantiation of container instances. For example,
in the case of the IoT BDA application, we initially
deploy one Nimbus instance (Figure 5, lines 3-14),
one Cassandra instance (Figure 5, lines 17-22), and
one OpenHAB instance (Figure 5, lines 25-30). These
instances are deployed on container types named
“Cloudlet-node” (Docker [8]) on the fog or “VM-
EC2” on the cloud. The users can either specify explic-
itly the name of a hosting container instance for a spe-
cific software instance or leave this task for the solvers.
At the end of the step, the infrastructure/platform pro-
viders instantiate the container instances

(3) Each container instance has a message queue in the
messaging server. The DM asks the EC to include soft-
ware instance definition and corresponding scripting

Figure 5: Instances of IoT BDA application described by AutoFog DSL.
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files onto the message queues including the EC queue.
When containers are started up and running, they
receive information of instances that they are in charge
of from the messaging server and start to install them

(4) All software and container instances of the application
take part in the application-wide configuration after
being installed. The imported and exported variables
are exchanged, and when an event triggers elasticity
actions, they are scaled out/in automatically. This
ensures the correctness of the elasticity mechanism.

From now on, container instances are autonomous and
independent from other modules of AutoFog. They can
exchange information with each other, thanks to correspond-
ing topics in the messaging server. This decentralized
approach allows the application to work even when errors
occur on the EC.

5. Evaluation

We implemented a prototype of AutoFog framework and
conducted several experiments validating its functionality
in terms of auto deployment and elasticity. The Smart Home
BDA application in section 2 is chosen as the deployment’s
target of the framework.

5.1. Experiment Setup. The modules of AutoFog and software
components of the smart home BDA application were devel-
oped to be packaged easily into Docker containers. These con-
tainers are orchestrated by the Kubernetes cluster [9]
implemented in our homegrown infrastructure at the VNU
University of Engineering and Technology (VNU-UET). Each
Kubernetes pod is configured to contain only one container.
The experimental implementation is depicted in Figure 7. In
our implementation, fog nodes are ensured by Kubernetes

and Cloud nodes are provisioned by OpenStack [10]. Because
Kubernetes can provide both elasticity function and fog node,
it works at both elasticity and infrastructure layers of AutoFog
architecture. We have also created different Docker images
which are all embedded an AutoFog agent beforehand:

(i) AutoFog image contains main modules of AutoFog
such as AM, PM, DM, and EC. This image is used
for AutoFog nodes at both Fog and Cloud strata

(ii) Storage image contains an instance of Cassandra, a
NoSQL distributed database management system.
It supports handling large amounts of data across
many nodes with a highly available service. Its data
model allows incremental modifications of rows.
This image is used to instantiate the storage nodes
where permanent data of the smart home BDA
application are stored at the cloud stratum

(iii) StormMaster/worker images represent for two types
of Storm nodes: Nimbus master node and Supervi-
sor worker node at fog strata. The master node man-
ages cluster of Storm Supervisor nodes where Storm
topology is submitted to execute. Storm topology is
composed of Spouts who pump data to the topology
and Bolts who consume and process the data in par-
allel from Spouts

(iv) OpenHAB image includes an OpenHAB message
binding which gathers measurements from smart
plugs and forwards them to the Storm cluster. Open-
HAB nodes created from this image working as edge
gateways locate at the border between end-device
and fog strata

(v) Message server image contains a RabbitMQ server to
asynchronously handle message queuing telemetry
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transport (MQTT) messages back and forth in the
system. MQTT is a lightweight communication pro-
tocol broadly used for IoT applications [11]. This
image is used for message server nodes at both fog
and cloud strata.

In our experiments, the input data are synthesized from a
practical data source provided by DEBS grand challenge 2014
[12]. The dataset contains over 4055 million of measurements
for 2125 smart plugs deployed in multiple houses in Germany.
The full data cover a period of one month in September 2013.
We have developed an end-device image including a program
which regenerates measurements retrieved from the DEBS
dataset.

All the practical deployment times are calculated over 20
different runs to get the mean. A new container is needed for
each software instance. The time in Table 1 covers the instan-
tiation of the container, the initial configuration of the soft-
ware until they reach states from which they can be started.
For example, Storm Master (Nimbus) is the one whose
instances take the longest time to deploy with ≈248 seconds
on average.

The initial deployment contains one Cassandra storage
node at the cloud stratum, one Storm Master node and one
to two Storm Supervisor nodes working at fog stratum, two
OpenHAB nodes working as edge gateways, and a maximum
of 40 end-device nodes. Modules of AutoFog and its message

server are grouped into one node called AutoFog node. The
selection of these software components is just one of many
specific combinations of IoT BDA applications. Other com-
binations can also be used in the experiments without losing
the generality and validity of the AutoFog architecture.

5.2. Storm Topology. Storm is one of components of the
smart home BDA application. Thus, Storm can be described
by AutoFog DSL at the design layer and deployed and man-
aged by submodules of both orchestration and elasticity
layers. Storm topology to process the DEBS IoT data is
shown in Figure 8. The topology is composed of 5 compo-
nents as follows.
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Figure 7: The experimental implementation of the smart home BDA application.

Table 1: Deployment time of five smart home BDA’s instances over
20 runs.

Software types Mean 99th percentile

Storm Master 248:05 ± 6:4 221:16 ± 9:4
Storm Supervisor 112:02 ± 16:1 125:53 ± 12:3
OpenHAB 145:43 ± 8:9 154:21 ± 9:7
RabbitMQ 112:71 ± 14:8 118:04 ± 11:2
Cassandra 103:88 ± 11:6 98:09 ± 8:5
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(i) Spout_data: it has the function to create MQTT cli-
ents that connect to the message broker, subscribe
to predetermined topics, receive data from the bro-
ker, separate the data into meaningful fields, and
then send them to the back Bolts for processing

(ii) Bolt_split: it has the function to read data sent from
Spout_data, read the timestamp field, divide the data
into time slices with predetermined window sizes
according to the system’s needs (1 minute, 5
minutes, to 120 minutes), and then send it to Bolt_
avg for further processing

(iii) Bolt_avg: its function is to receive data from Bolt_
split to calculate the average amount of electricity
that the device uses in time slice with predetermined
window sizes according to the needs of the system (1
minute, 5 minutes, to 120 minutes). The data after
calculating will be saved to RAM memory and then
sent to Bolt_sum for further processing. In addition,
Bolt_avg stores the average data of the energy con-
sumed by each device in the local database. The data
stored on the database will be released to save mem-
ory to ensure the long-term operation of the system

(iv) Bolt_sum: it has the function to add the total energy
used of all the equipment in the house to calculate the
total amount of electricity consumed by that house in
the time slice with predetermined window sizes accord-
ing to the needs of the system. Similar to Bolt_avg, Bolt_
sum stores the average data of the energy consumed by
each house in a local database. The data stored on the
database will also be released to save memory to ensure
the long-term operation of the system

(v) Bolt_forecast: it has the function that uses data from
previous time slice to predict energy usage value of
next two time slices and then save it to database.

To vary IoT workload to the Storm topology, in the Bolt_
forecast, we implement three prediction models making
short-term electric load forecast of smart IoT devices. The
utilization of these models causes differences in the amount
of input tuples used in Storm’s Bolts, especially in Bolt_avg,
Bolt_sum, and Bolt_forecast. In the first model, time is
divided into time slices, and the load average of any future
time slice is predicted based on the average electric load of
the previous ith time slices having the same timeframe of
all preceding days. Assuming we predict the average load of
the second time slice Pðtsi+2Þ from the current slide tsi, the
formula used is

P tsi+2ð Þ = avgLoad tsið Þ +median avgLoad tsj
� �� �

2 : ð1Þ

In formula (1): avgLoadðtsiÞ is the average load of current
time slice tsi, avgLoadðtsjÞ is the average load of time slices tsj
—time slices of previous days have the same timeframe as
slice tsi—and medianðavgLoadðtsjÞÞ is the median of all pre-
vious time slices tsj.

With the second model, avgLoadðtsjÞ is the average load
of all previous time slices in the same day up to the current
time slice. For the third one, avgLoadðtsjÞ is average load of
time slices of previous weeks having the same timeframe as
slice tsi on the same date.

5.3. Result. We publish messages from the smart home data-
set to the Storm topology of the smart home IoT application.
In Bolt_forecast, we change the prediction models, and
results measured on Storm Nimbus Master node represent-
ing many experimental runs are shown in Figure 9. The time
on the x-axis is the execution time for experimental system to
publish all messages from the DEBS data files and process
these messages through Bolts of the Storm topology. The
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Figure 8: Storm topology of the smart home BDA application.
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green, red, and blue lines represent the first, second, and third
prediction models, respectively. The execution time of the
blue one lasts about 20 minutes with the average CPU usage
is quite different from time to time, averaging approximately
30%. The average throughput at the end of data processing is
about 2306 messages per second. As for the green and red
ones, the CPU usage is roughly the same, maintaining at
65-70%, and at a time spike can be as high as 75-80%. The
time to publish and process data with the first model is about
41 minutes, greater than the second one which is about 32.5
minutes. The average throughput at the end of data process-
ing of the first and second models is about 1040 and 1317
messages per second, respectively. The main reason for the
difference in execution time is that the prediction models
use different amounts of historical data leading to various
computation times in the Bolts. The predicting results of all
three prediction models are depicted in Figure 10.

We see in Figure 9 that both the first and second models
exhibit the average CPU usages higher than 75%. Therefore,
elasticity strategies can be applied to reduce the average CPU
usage and at the same time shorten the execution time. To per-
form elasticity, two techniques can be implemented on Kuber-
netes: Vertical Pod Autoscaler and Horizontal Pod Autoscaler.

Horizontal Pod Autoscaler (HPA) is a technique to auto-
matically increase or decrease the number of Kubernetes
pods by collecting and evaluating CPU usage metrics from
the Kubernetes Metrics Server. The number of pods will be
in the range min and max which are set when generating
HPA. The HPA is implemented as a Kubernetes API
resource and as a controller. Every 15 seconds, the controller
periodically checks and adjusts the number of pods so that
the observed average CPU usage matches the value specified
by the user. HPA calculates the number of pods based on a
formula where Ceil() is the rounding function:

#RequiredPods = Ceil #CurrentPods × PresentValue
ExpectedValue

� �
:

ð2Þ

Vertical Pod Autoscaler (VPA) is a technique that auto-
matically increases and decreases resources such as CPU
and memory for pods depending on the needs of the pods.
Technically, VPA does not dynamically change resources
for existing pods; instead, it checks the managed pods to
see if the resources are set correctly and, if incorrectly,
removes them so that the controller can create other pods
with updated configurations.

5.3.1. Horizontal Elasticity. Without loss of generality, we
conduct HPA with the first model only. A HPA object for
the deployment and the pod “StormWorker” are built with
the following limits: When the average CPU usage greater
than 75% will trigger an auto scale up increasing number of
StormWorker pods, it will do a scale down to decrease the
number of pods. When the used RAM memory over 3GB
(75%) will perform auto scale up, it will do a scale down.
The minimum and maximum numbers of pods are 1 and 5,
respectively. Elasticity results are shown in Figure 11. The
horizontal scaling mechanism responds very quickly and
works quite smoothly to changes in pod’s CPU resource
usage even when resource usage spikes during very small
amount of time. This mechanism does not cause downtime
of the Storm workers during use. We see that the average
CPU usage and execution time are reduced to 40% and 36.5
minutes in the case of using elasticity comparing to 75%
and 41 minutes in the case of not using elasticity.

5.3.2. Vertical Elasticity. By default, for stability, the VPA will
not perform an automatic update of pod resources if the
number of pod copies is less than 2. So two pods are created
with each pod configuration as following: the minimum
resource is 0.5 CPU core and 1GB RAM; the maximum
resource is 1 CPU core and 2GB RAM. Next, a VPA object
is created for pods with updateMode=Auto. After the pods
are created, the IoT load is injected to the two pods with
input messages from the DEBS dataset. The obtained results
are depicted in Figure 12. Each line with a specific color is a
representation of a pod containing the running container of
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Figure 9: CPU usage over time of processing smart home dataset with three prediction models. The green, red, and blue lines represent the
first, second, and third prediction models.
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Figure 10: Continued.
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Storm worker. After vertical elasticity actions, two pods
(orange, blue) with minimum configuration are replaced by
two new pods with maximum configuration (green, red),
respectively. It is obvious that the average CPU usage is
reduced significantly.

At the moment, Kubernetes did not have a mechanism
for updating resources directly on a running pod; replicating
pod is the only way. Therefore, VPA can probably bring
unexpected downtime for the Storm worker. When VPA cre-
ates new pods and causes downtime in about 30 seconds,

0

1000

2000

3000

4000

5000

6000

7000

9000

8000

20
13

/0
9/

09
 0

0:
00

->
00

:0
5

20
13

/0
9/

09
 0

0:
25

->
00

:3
0

20
13

/0
9/

09
 0

0:
50

->
00

:5
5

20
13

/0
9/

09
 0

1:
15

->
01

:2
0

20
13

/0
9/

09
 0

1:
40

->
01

:4
5

20
13

/0
9/

09
 0

2:
05

->
02

:1
0

20
13

/0
9/

09
 0

2:
30

->
02

:3
5

20
13

/0
9/

09
 0

2:
55

->
03

:0
0

20
13

/0
9/

09
 0

3:
20

->
03

:2
5

20
13

/0
9/

09
 0

3:
45

->
03

:5
0

20
13

/0
9/

09
 0

4:
10

->
04

:1
5

20
13

/0
9/

09
 0

4:
35

->
04

:4
0

20
13

/0
9/

09
 0

5:
00

->
05

:0
5

20
13

/0
9/

09
 0

5:
25

->
05

:3
0

20
13

/0
9/

09
 0

5:
50

->
05

:5
5

20
13

/0
9/

09
 0

6:
15

->
06

:2
0

20
13

/0
9/

09
 0

6:
40

->
06

:4
5

20
13

/0
9/

09
 0

7:
05

->
07

:1
0

20
13

/0
9/

09
 0

7:
30

->
07

:3
5

20
13

/0
9/

09
 0

7:
55

->
08

:0
0

20
13

/0
9/

09
 0

8:
20

->
08

:2
5

20
13

/0
9/

09
 0

8:
45

->
08

:5
0

20
13

/0
9/

09
 0

9:
10

->
09

:1
5

20
13

/0
9/

09
 0

9:
35

->
09

:4
0

20
13

/0
9/

09
 1

0:
00

->
10

:0
5

20
13

/0
9/

09
 1

0:
25

->
10

:3
0

20
13

/0
9/

09
 1

0:
50

->
10

:5
5

20
13

/0
9/

09
 1

1:
15

->
11

:2
0

20
13

/0
9/

09
 1

1:
40

->
11

:4
5

20
13

/0
9/

09
 1

2:
05

->
12

:1
0

20
13

/0
9/

09
 1

2:
30

->
12

:3
5

20
13

/0
9/

09
 1

2:
55

->
13

:0
0

20
13

/0
9/

09
 1

3:
20

->
13

:2
5

20
13

/0
9/

09
 1

3:
45

->
13

:5
0

20
13

/0
9/

09
 1

4:
10

->
14

:1
5

20
13

/0
9/

09
 1

4:
35

->
14

:4
0

20
13

/0
9/

09
 1

5:
00

->
15

:0
5

20
13

/0
9/

09
 1

5:
25

->
15

:3
0

20
13

/0
9/

09
 1

5:
50

->
15

:5
5

20
13

/0
9/

09
 1

6:
15

->
16

:2
0

20
13

/0
9/

09
 1

6:
40

->
16

:4
5

20
13

/0
9/

09
 1

7:
05

->
17

:1
0

20
13

/0
9/

09
 1

7:
30

->
17

:3
5

20
13

/0
9/

09
 1

7:
55

->
18

:0
0

20
13

/0
9/

09
 1

8:
45

->
18

:5
0

20
13

/0
9/

09
 1

8:
20

->
18

:2
5

20
13

/0
9/

09
 1

9:
10

->
19

:1
5

20
13

/0
9/

09
 1

9:
35

->
19

:4
0

20
13

/0
9/

09
 2

0:
00

->
20

:0
5

20
13

/0
9/

09
 2

0:
25

->
20

:3
0

20
13

/0
9/

09
 2

0:
25

->
20

:5
5

20
13

/0
9/

09
 2

1:
15

->
21

:2
0

20
13

/0
9/

09
 2

1:
40

->
21

:4
5

20
13

/0
9/

09
 2

2:
05

->
22

:1
0

20
13

/0
9/

09
 2

2:
30

->
22

:3
5

20
13

/0
9/

09
 2

2:
55

->
23

:0
0

20
13

/0
9/

09
 2

3:
20

->
23

:2
5

20
13

/0
9/

09
 2

3:
45

->
23

:5
0

Load of house 0
Forecast of house 0

(c)

Figure 10: Results of all three prediction models. (a)The first model. (b)The second model. (c)The third model.
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Figure 11: CPU resources are automatically scaled horizontally; 5 lines represent 5 StormWorker pods.
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there is a certain amount of messages lost during that time
that depends on the speed of publishing. After that, the suc-
ceeding connections could be functioning normal.

6. Related Work

6.1. General Frameworks for Fog-Based IoT BDA Applications.
For almost a decade since the introduction of fog computing,
many frameworks have been being proposed to support fog-
based IoT BDA applications. Almost all frameworks own
one [13–18] or multiple fog orchestrators (FO) [19–21] oper-
ating at the orchestration layer. With the former, FO must
have holistic view of fog resources and connect to all fog nodes
in the framework. Multiple FO can resolve the scalability issue
of the single one but might incur some overhead from com-
munication between these FO.

Chen et al. propose a FA2ST (fog-as-a-service technology)
fog framework supporting any kind of IoT application [14].
On-demand discovery of fog service is provided to figure out
if a connected fog node’s resource is currently available when
an IoT request comes. In another research, an IoV-fog infra-
structure is defined to provide supports to overworked RSUs
of UAVs [16]. Such a RSU can trigger a deployment of
UAV, and data is migrated to this UAV to decrease response
latency and increase the IoV computation. Storm, a stream
processing platform, is extended by Cardellini et al. to enable
a distributed IoT resource scheduler which is latency aware
[13]. Fog nodes in this extension have knowledge of resource
availability of each other and thus ensures QoS of IoT service
distribution. Donassolo et al. propose FITOR, a Fog-IoT
ORchestrator which monitors the fog infrastructure and keeps
track of every fog resources anytime [15]. It helps to deploy the
IoT data to fog nodes automatically. Foggy framework intro-
duced by Yigitoglu et al. allows the deployment of IoT task
requests to an appropriate fog node having available resources

and satisfying several QoS requirements such as priority,
latency, and privacy [18]. In the same vein, Foggy FOC uses
MQTT protocol to monitor all fog resources [17]. To increase
future deployment, it has a mechanism to store historical IoT
workloads and requirements.

To increase security and reliability, Fogbus [20], a scal-
able fog framework, partitions fog nodes into various roles
including computing, gateway, repository, and broker nodes.
A defective fog node can be restored by repository nodes and
taken over by other fog nodes. A blockchain solution is
applied to validate dependability of IoT data sources. Fog
nodes are clustered into colonies in research of Skarlat et al.
[19]. In their fog architecture, FO of each colony keeps all
fog available resource information. IoT requests firstly are
allocated to fog nodes in a colony. If the colony does not have
enough resources, the FO will find another colony to fulfill
the tasks through transferring the requests using REST API.
It also can propagate the requests to the cloud stratum if
appropriate. Data migration between fog nodes and RSUs
in an IoV-fog application is considered by Zhang et al. [21].
Multiple fog nodes in a region are grouped into a cluster
and managed by a coordinator (FO). If a vehicle moves to a
new region, an IoT module may be handed over to another
fog cluster to avoid interrupted IoT processing.

Although these frameworks are aimed at satisfying
deploying and provisioning fog resources using one or multi-
ple FO, they do not take elasticity feature into account as in
our research.

6.2. Elasticity Frameworks for Fog-Based IoT BDA Applications.
Although a large number of frameworks are proposed for fog-
based IoT BDA applications, not many studies consider
elasticity for this kind of application. Mobile fog [22] proposes
a scaling mechanism where overloaded workloads are resolved
by fog nodes created dynamically. It also properly distributes
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IoT data to these new fog nodes. Moreover, its API data
migration is suitable for ambulant IoT devices like smart
phones, cameras, and vehicles. To enable elasticity for IoT data
stream processing applications using container, Wu et al.
modify Kubernetes HPA to adapt at runtime the deployment
of containerized BDA applications to the estimated load
arrival rate [23]. In a similar way, Netto et al. scale Docker
containers in Kubernetes using a state machine approach
[24]. Adaptive AI services run on IoT gateways and fostered
on the cloud are enabled by Elastic-IoT-Fog (EiF), a flexible
fog-computing framework [25]. EiF virtualizes an IoT service
layer platform and orchestrates various fog nodes. The feasi-
bility of elasticity feature in EiF is depicted via an example of
intelligent traffic flow management and monitoring, in which
network slicing units and respective resource elasticity are
dynamic provisioned. Zanni et al. present and report the eval-
uation of a system consisting of virtual services in a combined
fog, cloud, and IoT environments with various device settings
[26]. By using geometric monitoring, the paper proposes an
original solution to dynamically scale and provision the
resources for the fog-computing layer. Elasticity is expressed
in aspect of moving and redeploying more mobile compo-
nents to the fog nodes closest to the targeted end-devices.
Wang et al. design a three-tier edge computing system archi-
tecture to dynamically route data to proper edge servers and
elastically adjust their computing capacity for the real-time
urban surveillance applications [27]. Moreover, the paper also
introduces schemes of workload balance and resource redistri-
bution in emergency situations. The EU ELASTIC project is
aimed at developing a software architecture for extreme-
scale BDA in fog-computing ecosystems [28]. With the archi-
tecture, ELASTIC supports elasticity across the fog compute
strata while fulfilling communication, real-time, energy, and
secure properties.

The above-mentioned studies and solutions bring elastic-
ity feature for the resources of IoT BDA applications on fog-
computing environment but do not mention the automatic
deployment of these applications based on the description
of given software/hardware components and deployment
plans as the function provided by AutoFog.

7. Conclusion

We have presented AutoFog, a framework with a four-layer
architecture, which supports transformation of IoT BDA
applications to elastic fog-based ones and automatic deploy-
ment of these applications on fog environment. A mecha-
nism of elasticity provision is integrated into the framework
to enable adaptation to changes of workload from IoT smart
devices. The transformation is more smooth and less time-
consuming through the reuse and extension of an existing
domain-specific language and off-the-shelf components.
The validating experiments with the practical smart home
use case were conducted with Kubernetes for fog nodes and
OpenStack for cloud nodes. The results show that the imple-
mentation of AutoFog framework accompanied by our pro-
posed elasticity mechanism is more flexible and faster when
there was fluctuations in managed resources.
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When using differential privacy to publish high-dimensional data, the huge dimensionality leads to greater noise. Especially
for high-dimensional binary data, it is easy to be covered by excessive noise. Most existing methods cannot address real
high-dimensional data problems appropriately because they suffer from high time complexity. Therefore, in response to the
problems above, we propose the differential privacy adaptive Bayesian network algorithm PrivABN to publish high-dimensional
binary data. This algorithm uses a new greedy algorithm to accelerate the construction of Bayesian networks, which reduces the
time complexity of the GreedyBayes algorithm from OðnkCk+2

m+1Þ to Oðnm4Þ. In addition, it uses an adaptive algorithm to adjust
the structure and uses a differential privacy Exponential mechanism to preserve the privacy, so as to generate a high-quality
protected Bayesian network. Moreover, we use the Bayesian network to calculate the conditional distribution with noise and
generate a synthetic dataset for publication. This synthetic dataset satisfies ε-differential privacy. Lastly, we carry out
experiments against three real-life high-dimensional binary datasets to evaluate the functional performance.

1. Introduction

Various data are continuously collected and stored in differ-
ent information systems with the continuous development of
information technology. In the actual application process,
people often encounter various data, such as medical, market
trade, and travel track. These data usually have hundreds or
thousands of attribute dimensions, and some are even higher.
If these data are released, it may cause the leakage of sensitive
personal information because high-dimensional data usually
contain numerous personal privacy information. Therefore,
this requires consideration of some measures to protect these
information. However, protecting data privacy while ensur-
ing data availability is a very challenging problem. The main
reason is that the publishing space formed will grow expo-
nentially as the attribute dimension increases.

The traditional privacy protection methods are mainly
k-anonymity [1], ðα, kÞ-anonymity [2], t-closeness [3], l-diver-

sity [4], etc. However, all of these methods require special
attack assumptions and knowledge background as support.
It cannot be applied to general scenarios. Nevertheless, the
data processed by techniques, such as differential privacy
[5] and random disturbance [6, 7], do not need to make a
series of conditional assumptions for the attacker and can
be applied to various problem scenarios universally. Therefore,
in recent years, such related technologies, especially differential
privacy, have received increasing attention. Differential privacy
is a typical data perturbation technique that perturbs informa-
tion by adding noise that satisfies a specific distribution into
the data. The disturbing data still retains the original statistical
characteristics, but the attacker cannot reconstruct the real orig-
inal data.

Many high-dimensional data publishing methods based
on differential privacy are available, but these methods can
only solve the problem to a certain extent, some problems still
exist: first, these methods usually deal with the dimensional
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disasters caused by high-dimensional data by converting
them into low-dimensional data forcibly. This will cause
serious information loss.

Second, the time complexity of these methods is generally
too high. Although it can handle data of any dimension,
in theory, it can only handle low dimension in the actual
operation process. Because it takes such a long time, it
cannot satisfy the need for higher-dimensional data.

Third, although most existing methods can handle high-
dimensional binary data, it is easy for these methods to add
too much noise, which leads to the data being completely
covered, thus affecting the accuracy of publishing.

To address the challenges above, we propose the Pri-
vABN algorithm, which is a high-dimensional binary data
publishing method. Our main contributions are presented
as follows:

(1) Instead of directly adding noise to the data, we use
the Bayesian network method to avoid the impact
of the dimensional disaster. In this way, the increase
of global sensitivity with attribute dimension can be
avoided, and the dimensional disaster can be solved
effectively

(2) To reduce the total time complexity of the algorithm
and enable it to process real high-dimensional data, a
construction algorithm ABN is proposed by using a
greedy algorithm, adaptive algorithm, and differen-
tial privacy index mechanism

(3) We propose a synthetic data generation algorithm
SDG by using the characteristics of binary data and
the topological order of the Bayesian network. This
algorithm can reduce the magnitude of added noise
and prevent excessive noise from covering the actual
value

2. Materials and Methods

The materials and methods section should contain sufficient
detail so that all procedures can be repeated. It may be
divided into headed subsections if several methods are
described.

3. Related Work

So far, many differential privacy publishing methods for
high-dimensional data are available. Aiming at the privacy
protection of high-dimensional binary data, Qardaji et al.
[8] proposed the PriView method. This method assumes that
all attributes are independent of each other and, then,
answers user queries by constructing a set of low-
dimensional noisy views, thereby reducing the impact of
dimensional disasters. Zhang et al. [9, 10] proposed the
PrivBayes method, which was directed at the issue of high-
dimensional data privacy release. This method assumes that
all attributes have a certain correlation and, then, constructed
a Bayesian network between the attributes of the dataset by a
greedy algorithm. Next, the Bayesian network is used to
calculate the noisy joint distribution among attributes, and

this joint distribution was utilized to generate a synthetic
dataset for release. Based on the PrivBayes method, a
series of derivative methods, such as weighted PrivBayes
[11], Jtree [12], PrivHD [13], and PrivMN [14], has been
proposed one after another. Wang et al. [11] set up a
method for calculating attribute weights. They think that
the importance of different attributes is different, and they
will choose these important attributes first when building a
Bayesian network. Chen et al. [12] used sparse vector sam-
pling techniques to explore the relationships among attri-
butes. Then, these relationships are used to build a Markov
network (a special Bayesian network). Based on the Markov
network, the joint tree algorithm is used to accelerate the
solution of joint distribution, and the differential privacy pro-
tection is realized by adding Laplace noise to the joint distri-
bution. Subsequently, Zhang et al. [13] introduced high-pass
filtering technology based on the Jtree method to accelerate
the construction of the Markov network. Finally, the PrivMN
method, which is also based on the Markov network, is pro-
posed by Wei et al. [14] to solve the joint distribution among
attributes. The difference is that the approximate reasoning
method is used in the calculation of the joint distribution.

The above analysis suggests that most of the existing
methods consider how to construct the Bayesian or Markov
network better to obtain a higher-precision joint distribution,
and reducing publishing errors. However, these methods
have high time complexity, which makes it impossible to pro-
cess real high-dimensional data in practical applications.
Moreover, the constructed Bayesian network still cannot
reflect the true distribution well because of the degree’s limi-
tation. Therefore, this study proposes the PrivABN algorithm
to solve the problems above.

4. Theorems and Definition

4.1. Differential Privacy

Definition 1 (ε-differential privacy). Let D,D′ ∈ χd be two
neighboring datasets, i.e., D and D′ differ in only one record.
Giving a randomized mechanism A, if A satisfies ε-differen-
tial privacy, the following is true:

Pr A Dð Þ =O½ � ≤ exp εð Þ × Pr A D′
� �

=O
h i

, ð1Þ

where ε is the privacy budget and the smaller the privacy
budget is, the higher the degree of privacy protection will
be. Pr ½AðDÞ =O� and Pr ½AðD′Þ =O� represent the probabil-
ity that the algorithm A outputs as on the data set D and D′,
respectively.

Generally, Laplace [15] and Exponential mechanism [16] can
realize differential privacy. Both of these mechanisms disturb
the value or selection of the original data by generating noise.
The magnitude of the generated noise is related to the global
sensitivity of the query function.
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Definition 2 (global sensitivity (see [15])). Let f : D⟶ℝn

be the query function. The global sensitivity is defined as

Δf =max
D,D′

f Dð Þ − f D′
� ���� ���

p
, ð2Þ

where D and D′ are two neighboring datasets and k:kp is the
p-norm, which is a more commonly used 1-norm. Generally,
the greater the global sensitivity is, the greater the noise gen-
erated by the mechanism and the impact on the algorithm
results will be.

Theorem 1 (Laplace mechanism (see [15])). Let f : D⟶ℝn

be the query function. Giving a randomized mechanism A, ifA
satisfies ε-differential privacy, the following is true:

A Dð Þ = f Dð Þ + Lap Δf /εð Þ, ð3Þ

where LapðΔf /εÞ is the noise variable that satisfies the Laplace
distribution and where Lap ∼ Laplaceð0, Δf /εÞ. Equation (3)
shows that the larger the privacy budget ε or the smaller the
global sensitivity Δf is, the smaller the noise generated will be.

Theorem 2 (Exponential mechanism (see [16])). Let the score
function uðxÞ denote the score of x. Giving a random algo-
rithm A, if A satisfies ε-differential privacy, the following is
true:

A Dð Þ = Oi ∣ Pr A Dð Þ =Oi½ � ∈ exp εu Oið Þ
2Δu

� �� �
, ð4Þ

where Δu is the global sensitivity of the score function uðxÞ.
This formula means that for each output resultOi of algorithm
A, a probability of exp ðε ⋅ uðOiÞ/ð2ΔuÞÞ being selected is likely
to exist. The higher the score of Oi is, the greater the probabil-
ity of being selected will be.

In addition, in designing and proving to meet the differ-
ential privacy algorithm, an important combination of differ-
ential privacy needs to be used.

Property 1 (sequential composition (see [17])). Giving a data-
set D and a set of differential privacy algorithms A1ðDÞ, A2ð
DÞ,⋯, AmðDÞ and the algorithm AiðDÞ satisfies εi-differen-
tial privacy. Moreover, the random processes of any two
algorithms are independent of each other. Then, the combi-
nation of these algorithms A satisfies ∑m

i=1 εi-differential
privacy.

4.2. Bayesian Network. Bayesian network is a probabilistic
graph model, mainly used to explore the relationship
between a group of objects. Usually, a directed acyclic
graph is used to represent the Bayesian network. The nodes
in the graph represent objects, and the edges represent
relationships.

In general, giving a set of attributes set S = fS1, S2,⋯,Smg,
its joint distribution can be expressed as

Pr S½ � = Pr S1½ � ⋅ ⋯ ⋅ Pr Sm ∣ S1,⋯,Sm−1½ �: ð5Þ

Through the Bayesian network constructed by the attri-
bute set, its joint distribution can be approximated as

Pr S½ � ≈ PrN S½ � =
Ym
i=1

Pr Si ∣Πi½ �, ð6Þ

whereΠi is the parent node set of node Si. If the constructed
Bayesian network can represent the relationship between
attributes well, then PrN ½S�⟶ Pr ½S�.

Therefore, how to build a better Bayesian network is
important.

4.3. Conditional Entropy. Conditional entropy can be used to
measure the degree of interdependence among attributes.
The larger the value, the higher the degree of dependence
between attributes.

Definition 3 (conditional entropy). Giving two discrete ran-
dom variables X ∈ fx1, x2,⋯,xng and Y ∈ fy1, y2,⋯,ymg, the
conditional entropy between them is

I X, Yð Þ = 〠
n

i=1
〠
m

j=1
Pr xi, yj
h i

lb
Pr xi, yj
h i

Pr xi½ � Pr yj
h i , ð7Þ

where Pr ½xi, yj� is the joint distribution probability value of
X = xi and Y = yj.

Equation (7) shows that when IðX, YÞ⟶ 0, there is
Pr ½xi, yj�⟶ Pr ½xi� Pr ½yj�, that is, variables X and Y are
close to independent of each other.

5. The PrivABN Algorithm

In Table 1, the meanings of the commonly used symbols in
this section are provided, and the other symbols are
explained when used.

5.1. Differential Privacy Bayesian Network Algorithm. Zhang
et al. [9] proposed a conditional entropy-based degree Bayes-
ian network construction algorithm GreedyBayes in Priv-
Bayes. The main idea of this algorithm is to select a pair of
the largest conditional entropy to join the current Bayesian
network each time.

The GreedyBayes algorithm is a common algorithm used
to construct Bayesian networks, and its implementation is
shown in Algorithm 1.

Considering that Zhang et al. [9, 10] did not provide the
time complexity formula of the algorithm in the article, this
study demonstrates the time complexity of the GreedyBayes
algorithm.
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Theorem 3. The time complexity of the GreedyBayes algo-
rithm is OðnkCk+2

m+1Þ.

Proof. The time consumption of the GreedyBayes algorithm
is mainly concentrated in the for loop of Step 3. The for loop
is executed a total of m − 1 times, and each time jS \ V j ⋅ Ck

V
pairs of ðSi,ΠiÞ are generated. Therefore, a total of

m − 1ð Þ ⋅ C1
1+⋯+ m − dð Þ ⋅ Ck

k+⋯+Ck
m−1

= 2m − k − 2ð Þ k − 1ð Þ
2 + Ck+1

k+1 + Ck+1
k+2+⋯+Ck+1

m ,

= 2m − k − 2ð Þ k − 1ð Þ
2 + Ck+2

m+1:

ð8Þ

ðSi,ΠiÞ pairs will be generated in the whole process. In
the worst case, whenk + 2 = ðm + 1Þ/2, any k ∈N+ holds for

2m − k − 2ð Þ k − 1ð Þ
2 = 3k + 4ð Þ k − 1ð Þ

2 < Ck+2
m+1

= 2 ⋅ k + 2ð Þð Þ!
k + 2ð Þ!ð Þ2

= k + 3ð Þ ⋅ k + 4ð Þ⋯ 2k + 3ð Þ ⋅ 2k + 4ð Þ
1 ⋅ 2⋯ k + 1ð Þ ⋅ k + 2ð Þ :

ð9Þ

For each ðSi,ΠiÞ pair, the conditional entropy size
needs to be calculated, and each calculation takes OðnkÞ
time. Therefore, the total time complexity of the algorithm
is OðnkCk+2

m+1Þ.

Evidently, due to the influence of time complexity, the
GreedyBayes algorithm can only be applied when the num-
ber of attributes m is small or the maximum degree k of the
Bayesian network is small.

To process real high-dimensional data, a more complex
Bayesian network is constructed. This paper proposes a
simple and efficient Bayesian network construction algo-
rithm ABN. This algorithm only needs the time complex-
ity of Oðnm4Þ to construct a complete Bayesian network.

In order to more intuitively illustrate the advantages of
the ABN algorithm in time performance, we take a dataset
containing 50 attributes as an example. When the maximum
degree k of the Bayesian network is 5, 10, 15, 20, 25, the num-

ber of ðSi,ΠiÞ pairs enumerated by the GreedyBayes algo-
rithm and ABN algorithm are shown in Table 2.

It can be seen that, assuming, the computer can calcu-
late the mutual information of 10,000 ðSi,ΠiÞ pairs per
second. When the maximum degree k = 10, it already takes
184 days of uninterrupted processing to complete. When
k = 25, even the computer cannot solve it, because it
requires a total of 728 years and 11 days of uninterrupted
processing to complete the task. However, the ABN algo-
rithm can find a relatively good ðSi,ΠiÞ pair no matter
how much k value is; it only takes 250 times. This is very
valuable in practical application.

The specific implementation of the ABN algorithm is
shown in Algorithm 2.

In addition to solving the problem of the GreedyBayes’s
execution efficiency, the ABN algorithm also introduces an
Exponential mechanism of differential privacy to disturb
the Bayesian network construction process to solve privacy
leakage caused by the Bayesian network.

It can be seen from the algorithm flow that the ABN algo-
rithm removes the limitation of the maximum degree of the
Bayesian network. And adopt the way of adaptively selecting
the number of degree of each node in the network, which
makes the network structure become more complex and
diverse. The resulting network contains more information,
and the synthetic data generated from the network is more
likely to match the real data.

The main difference between the ABN algorithm and the
GreedyBayes algorithm is that the former uses a greedy algo-
rithm GParentSet with time complexity of Oðnm2Þ to solve
the optimal parent attribute set under each in-degree of the
current attribute Si. Compared with the ABN algorithm, the
GreedyBayes algorithm traverses the values of all parent
attribute sets through brute force enumeration every time it
searches for the optimal parent attribute set. Actually, in this
process, a lot of repeated and useless calculations are
performed. Therefore, the ABN algorithm adopts the memo-
rization, and its characteristics are suitable for the optimal
substructure. On the premise of ensuring the best solution,
it can greatly reduce the repetitive and useless calculation
process and improve the construction speed of the Bayesian
networks.

The specific implementation of the GParentSet algorithm
is shown in Algorithm 3.

In this algorithm, dp½S, i� is a set of attributes, which
indicates that the current attribute S has selected i attri-
butes as the best choice of parent attributes. In fact, when
the GParentSet algorithm is executed in the new round,
dp½S, i� has recorded the optimal parent set selection in
this state in the previous round. Therefore, for this round,
we only need to care about the selection of the newly
added parent attribute f a in the previous round.

In the ABN algorithm, in Step 5, each candidate attri-
bute Si and its optimal parent attribute set fΠi,1,⋯,Πi,i‐1g
under various in-degree values are all added to the set Ω.
In Step 6, it is selected through the differential privacy Expo-
nential mechanism. This process does not limit the maxi-
mum in-degree of the Bayesian network. Among all the
optional degrees, the degree with the greater amount of

Table 1: Table of notations.

Notation Description

D Original data set

~D Synthetic data set

S D’s attribute set

n Number of records in D

m Number of attributes of D

N Bayesian network
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conditional entropy is easier to be selected. We do not need
to control the structure of the resulting Bayesian network.
Its construction is an adaptive process toward greater condi-
tional entropy. This method is more flexible and reasonable
than the traditional method of constructing Bayesian net-
works that requires a fixed network’s maximum in-degree.
Considering that the maximum in-degree of the Bayesian
network constructed by this method is not fixed, it will adjust
adaptively according to different datasets. Moreover, it will
adjust in the direction of making the conditional entropy of
the entire Bayesian network larger.

The ABN algorithm uses the differential privacy Expo-
nential mechanism in Step 6. Its idea is to select the ðS,ΠÞ
pairs currently added to the Bayesian network based on prob-
ability. We use conditional entropy I as the scoring function
of the Exponential mechanism uðS,ΠÞ = IðS,ΠÞ. The greater
the conditional entropy of the ðS,ΠÞ air, the higher the scor-
ing function value and the greater the probability of being
selected.

Zhang et al. [10] proved in the article that the global
sensitivity of conditional entropy on binary data is

ΔI = 1
n
lbn + n − 1

n
lb n
n − 1 : ð10Þ

Although they further gave a scoring function F with
lower global sensitivity in the article, its global sensitivity
is ΔF = 1/n. However, the time complexity required to
calculate the scoring function is Oðn2mÞ, which can only
be applied when the attribute dimension m is small.

Therefore, we do not adopt this method and still uses
conditional entropy as the scoring function.

Step 6 will be executed m − 1 times, each time the Expo-
nential mechanism is used to select a ðS,ΠÞ pair from Ω to
join the Bayesian network. From Property 1, we know that
each choice needs to consume a part of the privacy budget.
Here, we use the average division method to allocate the
privacy budget, that is, ε1 is divided equally intom − 1 shares.
Then, combined with the Exponential mechanism, we can
obtain the expression of PcðS,ΠÞ as

Pc S,Πð Þ = exp ε1u S,Πð Þ/ 2 m − 1ð Þ ⋅ Δuð Þð Þ
∑ Si ,Πið Þ∈Ωexp ε1u Si,Πið Þ/ 2 m − 1ð Þ ⋅ Δuð Þð Þ :

ð11Þ

Finally, proving that the ABN algorithm satisfies ε1-dif-
ferential privacy. The final output of the algorithm is a Bayes-
ian networkN . In Step 6, the Exponential mechanism is used
to select the currently added attribute node and its parent
attribute set node. This operation disturbs the construction
of the Bayesian network. According to Theorem 2, this step
satisfies ε1-differential privacy. Moreover, the entire ABN
algorithm satisfies ε1-differential privacy because no other
operations involve the use of the original dataset D.

5.2. Differential Privacy Synthetic Data Release. The Bayesian
network can simplify the calculation of the joint distribution
between attributes to a large extent, and the better the Bayes-
ian network is, the closer the joint distribution is to the true
value. However, if the Bayesian network is directly used to
calculate the joint distribution between attributes, it may still
cause privacy leakage. Therefore, we need to perturb the
calculated joint distribution further to achieve the purpose
of protecting privacy.

Zhang et al. [9] used the NoisyConditionals algorithm
to realize the secure calculation of Bayesian networks. This
algorithm adds Laplace noise into the joint distribution
Pr ½S,Π� to obtain the joint distribution Pr∗½S,Π� with
noise. Although this algorithm can ensure that the obtained
joint distribution meets the differential privacy protection,
its joint distribution may become very sparse, and the origi-
nal probability value will generally be small when the

Input: data set D, attribute set S, maximum in-degree k
Output: synthetic data set ~D
1: Initialize N =∅, V =∅;
2: Randomly select an attribute from the attribute set S as S1, add ðS1,∅Þ toN , and add S1 to the vertex set V ;
3: for i = 2 to m do
4: Initialize collection Ω =∅;

5: For each Si ∈ S/V and Πi ∈
V

k

 !
, add ðSi,ΠiÞ to Ω;

6: Select ðSi,ΠiÞ with the largest mutual information from Ω and join N , add Si to V ;
7: end for
8: return N .

Algorithm 1: GreedyBayes Algorithm.

Table 2: Eumeration times of Greedybayes algorithm and ABN
algorithm.

k Ck+2
m+1 m2

5 ≈1:16 × 108 =250

10 ≈1:59 × 1011 =250

15 ≈1:48 × 1013 =250

20 ≈1:56 × 1014 =250

25 ≈2:30 × 1014 =250
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attribute dimension increases. At this time, if Laplace noise is
directly added into these smaller probability values, then it
may cause the problem that the noise completely covers the
true value, and seriously affecting the accuracy of the release.

Therefore, we do not directly use a joint distribution like
the NoisyConditionals algorithm. Instead, we use conditional
distribution to generate synthetic data because of the charac-
teristics of binary data with only 0 and 1. The main reason is
that when the distribution is a conditional distribution, we
have the following equation:

Pr Si = 0 ∣Πi½ � + Pr Si = 1 ∣Πi½ � = 1: ð12Þ

According to the equation, we can infer that at least one
relatively large conditional probability value exists in the
conditional distributions Pr ½Si = 0 ∣Πi� and Pr ½Si = 1 ∣Πi�.
In this way, if noise is directly added into the conditional
probability, then at least one larger conditional probability
will not be covered by the noise. Even if the conditional prob-
ability is completely covered by noise, it has minimal effect
on the accuracy of the final release. The reason is that if such
a conditional probability exists, then its probability value
must be very small or negligible relative to another probabil-
ity value. Therefore, even after normalization, they can still
reflect the original distribution law.

Nevertheless, synthetic data can still be generated. The
traditional method is to generate it directly through joint
distribution, but it still has the same problems as data

sparseness. So this study uses conditional distribution to
generate synthetic data. To this end, we design a synthetic
data generation algorithm SDG. The main idea of the SDG
algorithm is to use the conditional distribution of the node
and its parent node to generate synthetic data according to
the topological order of the Bayesian network.

The specific implementation of the SDG algorithm is
shown in Algorithm 4.

The synthetic data ~D generated by the SDG algorithm
can make the attacker unable to infer a specific record in
the original dataset D; thus, it protects the personal pri-
vacy information in the data from being leaked.

Finally, proving that the SDG algorithm satisfies ε2-dif-
ferential privacy. The algorithm adds Laplace noise Lapð2m/
ðn ⋅ ε2ÞÞ to each conditional distribution Pr ½Si ∣Πi� in Step 5
and obtains the conditional distribution Pr∗½Si ∣Πi� with
noise. Then, these conditional distributions are used to gener-
ate synthetic data for release. According to Theorem 2, this
process satisfies ε2-differential privacy. Moreover, because no
other subsequent steps involve the use of the original data
setD, the entire SDG algorithm satisfies ε2-differential privacy.

5.3. Differential Privacy Adaptive Bayesian Network
Algorithm. The PrivABN algorithm can be divided into two
independent steps:

(1) Through the ABN algorithm, construct a Bayesian
network N which satisfies differential privacy for

Input: data set D, attribute set S, privacy budget ε1
Output: Bayesian network N

1: Initialize N =∅, V =∅;
2: Randomly select an attribute from the attribute set S as S1, add ðS1,∅Þ to N , and S1 to V , f a = S1;
3: for i = 2 to m do
4: Initialize collection Ω =∅;
5: For each, find Πi = fΠi,1,⋯,Πi,i‐1g⟵GParentSetðSi, f a, iÞ and then add ðSi,Πi,1Þ,⋯, ðSi,Πi,i−1Þ to Ω;
6: Use the Exponential mechanism with privacy budget ε1/ðm − 1Þ to select a ðSi,Πi,jÞ from Ω to add to N with probability
PcðS,ΠÞ, and add Si to V , f a = Si;
7: end for
8: return N .

Algorithm 2: ABN Algorithm.

Input: current attribute S, new parent attribute f a, maximum in-degree k
Output: optimal parent attribute set Π = fΠ1,⋯,Πkg
1: Initialize Π =∅;
2: for i = 1 to k do
3: Π′ = dp½S, i − 1� ∪ f a;
4: Π″ = dp½S, i�;
5: dp½S, i� = Π′ IðS,Π′Þ ≥ IðS,Π″Þ

Π″ IðS,Π′Þ < IðS,Π″Þ

(
;

6: Add dp½S, i� to Π;
7: end for
8: return Π.

Algorithm 3: GParentSet Algorithm.
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the original dataset D, and extract the noise condi-
tional distribution P∗ from the Bayesian network

(2) Through the SDG algorithm, generate a synthetic
dataset ~D for release, according to the topological
order of the Bayesian networkN and the conditional
distribution P∗ with noise

The specific implementation process of the PrivABN
algorithm is shown in Algorithm 5.

In the PrivABN algorithm, the subalgorithms ABN
and SDG involve the use of the original dataset D.
According to property 1, in order for the PrivABN algo-
rithm to satisfy ε-differential privacy, privacy budgets must
be allocated for these two subalgorithms first. According
to the analysis in the previous chapters of this paper, the
privacy budget ε1 and ε2 will, respectively, correspond to
the two noise distributions exp ðε1uðS,ΠÞ/ð2ðm − 1Þ ⋅ ΔuÞÞ
and Lapð2m/ðn ⋅ ε2ÞÞ. The first noise distribution aims to
make the value of ε1/ð2ðm − 1Þ ⋅ ΔuÞ (with the nondependent
uðS,ΠÞ) as large as possible. The second noise distribution
aims to make the value of 2m/ðn ⋅ ε2Þ as small as possible.
By simplifying the two formulas above, we can obtain

max ε1
2 m − 1ð Þ ⋅ Δu
� �

=max ε1 ⋅
1

2 m − 1ð Þ ⋅ 1/nð Þlbn + n − 1/nð Þlb n/n − 1ð Þð Þ
� �

≈max ε1 ⋅
n

2 m − 1ð Þ
� �

,

min 2m
n ⋅ ε2

� �
=min 1

ε2
⋅
2m
n

� �
=max ε2 ⋅

n
2m

� �
: ð13Þ

From the simplified results, the proportions of the two
privacy budgets that need to be allocated are roughly the
same. Therefore, we adopt an even distribution strategy to
allocate the privacy budget ε.

Finally, proving that the PrivABN algorithm satisfies
ε-differential privacy. It can be seen that the ABN algo-

rithm and SDG algorithm satisfy ε1-differential privacy
and ε2-differential privacy. Apart from the above two algo-
rithms, the PrivABN algorithm has no other place that
involves the use of the original data set D. Therefore,
according to property 1, the PrivABN algorithm satisfies
ðε1 + ε2Þ-differential privacy.

6. Experiences

6.1. Experiences Environment. The experimental platform is a
4-core Intel i5-6300HQ CPU (2.3GHz), 8GB memory, Win-
dows 10 operating system, and the compilation environment
is Dev-C++5.11. Our experiments use the C++ programming
language to implement all the methods, among which the
implementation of the Bayesian network refers to the rele-
vant code of the paper experiment by Zhang et al. [10].

6.2. Datasets. Our experiments use three real-world datasets,
NLTCS, ACS, and Retail. NLTCS [18] is an American long-
term care survey record that includes the daily life and med-
ical conditions of 21,574 elderly disabled persons. ACS [19] is
the global census data released by IPUMS-USA, which
records 47,461 pieces of personal information. Retail [20] is
88,162 shopping records in the US retail market. Each record
contains items purchased by it, a total of 16,469 categories of
goods, from which we have retained the top 50 best-selling
goods. The specific information of these three data sets is
shown in Table 3.

6.3. Evaluation. For each set of experiments, we will compare
the L1 error (mean error) between the generated synthetic
dataset ~D and the original dataset D. Moreover, the L2 error
is caused by the same number of α‐way queries on these two
datasets.

Definition 4 (L1 error). The L1 error between the original
dataset D and the synthetic dataset ~D is

L1 D, ~D
	 


=
∑N

i=1∑
M
j=1 D

jð Þ
i − ~D

jð Þ
i

��� ���
N

, ð14Þ

Input: data set D, Bayesian network N , privacy budget ε2
Output: synthetic data set ~D
1: Initialize P∗ =∅;
2: for i = 1 to m do
3: Calculate the joint distribution Pr ½Si,Πi� and the marginal distribution Pr ½Πi�;
4: Calculate conditional distribution Pr ½Si ∣Πi� = Pr ½Si,Πi�/Pr ½Πi�;
5: Add Laplace noise Lapð2m/n ⋅ ε2Þ to Pr ½Si ∣Πi� to get Pr∗½Si ∣Πi�;
6: Reset the negative value in Pr∗½Si ∣Πi� to 0, normalize other values, and then addP∗;
7: end for
8: Traverse the node Si according to the topological order of the Bayesian network N ;
9: Obtain the noisy conditional distribution Pr∗½Si ∣Πi� from P∗, and update the value of each record attribute Si in ~D according to the
conditional distribution;
10: return ~D.

Algorithm 4: SDG Algorithm.
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where DðjÞ
i is the value of the jth row of the ith experiment

using the original dataset and ~D
ðjÞ
i is the value of the jth row

of the ith experiment using the synthetic dataset. N is the
number of experiments, and M is the number of rows of
the dataset.

Definition 5 (L2 error). Let the α‐way edge table generate by
the original dataset D through the ith query is TiðDÞ, and the
α‐way edge table generate by the synthetic dataset ~D is Tið~DÞ;
the L2 error between them is

L2 D, ~D
	 


=
∑N

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

j=1 T jð Þ
i Dð Þ − T jð Þ

i
~D
	 
� �2r

N
, ð15Þ

where TðjÞ
i is the value of the jth row of the α‐way edge

table generated by the ith query, N is the number of
queries, and M is the number of rows of the edge table.

6.4. Result Analysis. The first part of the experiments is to
analyze the availability of the PrivABN method. To know
the size of the noise generated by the PrivABN method in a
noise-free environment, we set up the NoPrivABN method
without differential privacy protection for comparison. We
will conduct 100 random repeated experiments on NLTCS
and ACS. We set the privacy budget ε to 0.001, 0.005, 0.01,
0.05, 0.1, and 1.0. The experimental results will be verified
by 200 random α‐way queries, the values of which are 3, 7,
and 12. We will test their performance on L1 error and L2
error. The experimental results are shown in Figure 1.

Figure 1 shows that the PrivABN algorithm only needs a
very small privacy budget. When ε = 0:05, it is very close to
the effect of NoPrivABN, which shows that the PrivABN
algorithm has high availability.

Moreover, as the privacy budget ε increases, the error
generated by PrivABN gradually approaches the error of
NoPrivABN, which is in line with the differential privacy

law. This finding further verified the credibility of the
experiment.

Another finding is that the PrivABN algorithm without
differential privacy protection will produce certain errors.
The reason is that the algorithm itself generates a synthetic
dataset based on the Bayesian network and conditional
distribution. The process of constructing the Bayesian net-
work itself may produce certain errors, and the process of
generating synthetic data through conditional distribution
is probabilistic, thereby resulting in the production of certain
errors. Therefore, taking the error of NoPrivABN as the
lower bound is in line with the experimental standard.

Finally, the performance of PrivABN on different α‐way
queries under the same dataset is observed. Their overall
trend of change and their turning points are also the same.
Their error sizes under different privacy budgets do not differ
greatly, and they are basically the same within a certain error
range. Therefore, we can consider that the stability of
PrivABN in the face of different conditional parameters is a
manifestation of the PrivABN’s remarkable robustness.

According to the L1 errors and L2 errors between the
generated synthetic dataset and the original dataset, PrivABN
only needs a very small privacy budget to achieve the effect of
NoPrivABN. To know this threshold more accurately, we
further subdivide the value of the privacy budget. We set
the privacy budget to increase from 0.05 to 0.5 in increments
of 0.025 and from 0.5 to 1.0 in increments of 0.1. Then,
experiments with 3‐way query under the NLTCS and ACS
datasets, respectively (from the previous experimental
conclusions, it can be known that PrivABN has better robust-
ness, and its error under different α‐way queries is not much
different, so only one query needs to be compared). The
experimental results are shown in Figure 2.

Figure 2 shows that when the privacy budget is 0.4
(NLTCS dataset) and 0.225 (ACS dataset), the L2 error is
lower than the error bar of 0.01. This finding shows that
the PrivABNmethod only needs to consume a very small pri-
vacy budget to achieve good privacy protection. Therefore,
we can definitely believe that privabn has high availability.

From another point of view, the PrivABN algorithm only
needs to give a small amount of privacy budget. It can achieve
a good privacy protection effect and can greatly reduce the
error of differential privacy protection. This is the reason
for its high availability.

In the second part of the experiments, the performance of
PrivABN on the real high-dimensional dataset Retail is ana-
lyzed. To reflect the pros and cons of the results better, the
experiments will be compared with these three methods,
namely, PriView [8], PrivBayes [9], and Jtree [12]. We will
conduct 100 repeated random experiments on the Retail
dataset and set the privacy budget ε to 0.1 and 1.0. The exper-
imental results will be verified by 200 random α‐way queries,
where α values correspond to 4, 6, and 8. We will test their
performance on L2 errors. The experimental results are
shown in Figure 3.

Figure 3 shows that under different privacy budgets, the
PrivABNmethod performs significantly better than the three
other methods on the Retail dataset. Further, when the pri-
vacy budget is small (ε = 0:1), the PrivABNmethod performs

Input: dataset D, attribute set S, privacy budget ε
Output: synthetic data set ~D
1: ε1 = ε/2, ε2 = ε/2;
2: N ⟵ABNðD, S, ε1Þ;
3: ~D⟵ SDGðD,N , ε2Þ;
4: return ~D.

Algorithm 5: PrivABN Algorithm.

Table 3: Description of datasets.

Dataset Type Cardinality Dimensionality Domain size

NLTCS Binary 21 574 16 216

ACS Binary 47 461 23 223

Retail Binary 88 162 50 250
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significantly better than the other three methods. When the
privacy budget is large (ε = 1:0), PrivABN is still superior to
the other three methods, but it is not different from the JTree
method. This is in line with the law of differential privacy,
because as the privacy budget continues to increase, the
degree of privacy protection of the algorithm will continue
to decline, until the implementation result is consistent with
that of the algorithm without differential privacy protection.
Therefore, it can be seen that the accuracy of the probabilistic
graph model itself built by the Privabn method is better than

that of the model built by the JTree method. Compared with
the model built by the PrivBayes method, the accuracy is
much better. This further verifies that the improvement strat-
egies proposed in this paper are effective and have achieved
good results.

Moreover, with the increase in α‐way query dimension,
the variation range of L2 error of the PrivABN method is sig-
nificantly smaller than those of the three other methods.
Therefore, we can further infer that the PrivABN method
has higher availability and better robustness.
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Figure 1: Error analysis with or without privacy protection—1.
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Figure 2: Error analysis with or without privacy protection—2.

9Wireless Communications and Mobile Computing



7. Conclusion

Private releasing of high-dimensional data has been a
research hotspot and a challenge in the field of differential
privacy. This study proposes an efficient and low-noise
differential privacy publishing method called PrivABN for
high-dimensional binary data. The method uses the ABN
algorithm to construct the Bayesian network over the dataset
quickly and adaptively while using the differential privacy
Exponential mechanism to protect the privacy of the Bayes-
ian network during the construction. Subsequently, the
SDG algorithm uses the differential privacy Laplace mecha-
nism to initially extract the noisy conditional distribution
from the Bayesian network and then uses these conditional
distributions and the Bayesian network topology to generate
synthetic data for release. By performing experiments on
three real data sets, we demonstrate that PrivABN deserves
higher usability and robustness than existing methods.

The main focus for our future work will be continually
on the differential privacy publication of high-dimensional
data. We will investigate the differential privacy publica-
tion of high-dimensional nonbinary data and explore the
issue of differential privacy publication in a streaming
high-dimensional data environment.

Data Availability

NLTCS is an American long-term care survey record that
includes the daily life and medical conditions of 21,574
elderly disabled persons. ACS is the global census data
released by IPUMS-USA, which records 47,461 pieces of
personal information. Retail is 88,162 shopping records in
the US retail market.
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With the continuous development of computer and network technology, the large-scale and clustered operations of drones have
gradually become a reality. How to realize the reasonable allocation of UAV cluster combat tasks and realize the intelligent
optimization control of UAV cluster is one of the most challenging difficulties in UAV cluster combat. Solving the task
allocation problem and finding the optimal solution have been proven to be an NP-hard problem. This paper proposes a CSA-
based approach to simultaneously optimize four objectives in multi-UAV task allocation, i.e., maximizing the number of
successfully allocated tasks, maximizing the benefits of executing tasks, minimizing resource costs, and minimizing time costs.
Experimental results show that, compared with the genetic algorithm, the proposed method has better performance on solving
the UAV task allocation problem with multiple objectives.

1. Introduction

With the rapid development of Internet of Things and 5G com-
munication technologies, UAV systems are increasingly used
in the military field and UAV operations have become an
important part of modern military operations. Single-UAV
combat often lacks support, guarantee, and target cover, and
it usually requires an overall force to complete combat mis-
sions. Task allocation is one of the most important problems
that need to be solved in multi-UAV operations, and it directly
affects the efficiency and profitability of operations. Finding the
optimal solution of the task allocation problem has been
proven to be NP-hard, and the solving difficulty increases
exponentially with the scale of UAV cluster and tasks. Further-
more, task allocation is often a multiobjective optimization
problem, which makes the model more complicated, e.g.,
simultaneously maximizing the number of tasks to be per-
formed, maximizing the benefits of performing tasks, minimiz-
ing time costs, and minimizing resource consumption.

Many methods for solving the task allocation problem
have been proposed, which can be roughly divided into four
categories: graph theory [1], integer linear programming [2],
state space search [3], and Artificial Intelligence (AI) methods

such as genetic algorithm, particle swarm algorithm, simulated
annealing, and ant colony algorithm [4–8]. Most methods in
the first three categories are complete search algorithms. These
algorithms can get the optimal solution, but they require a lot
of computing resources and time cost, and it is impractical to
apply them to a large-scale problem. AI methods cannot
guarantee an optimal solution, but they usually can obtain a
local-optimal solution [9] within a reasonable period of time.
The above algorithms often optimize a certain goal, such as
task revenue [10] or time/resource cost [11].

Artificial immune system (AIS) is an emerging research
direction of computational intelligence. A clone selection
algorithm (CSA) is proposed based on related immune prin-
ciples [12–14]. This algorithm is widely used in function
optimization [15] (e.g., multimodal optimization and contin-
uous function optimization), pattern recognition [16, 17]
(e.g., binary character and face recognition), and scheduling
problems [18]. Compared with those complete search algo-
rithms, CSA has some advantages and is convenient for prac-
ticality and engineering. At the same time, CSA can be used
to solve multiobjective problems. Comparing CSA with the
GA [19–21], the main difference is the way the population
evolves. In the GA, the population evolves through crossover

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 5518927, 9 pages
https://doi.org/10.1155/2021/5518927

https://orcid.org/0000-0003-0568-2218
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5518927


and mutation, and in the CSA, cell reproduction is asexual,
with each offspring produced by one cell being an exact copy
of its parents, and mutation and selection are made through
these offspring. This paper proposes to use CSA to optimize
four objectives in UAV task allocation, i.e., maximizing the
number of successfully assigned tasks, maximizing the benefits
of executing tasks, minimizing resource cost, and minimizing
time cost, and comprehensively considers the time constraints,
resource constraints, and functional constraints in real-world
scenarios. Comparing with the brute-force search algorithm
and genetic algorithm, experimental results show that the pro-
posed method could achieve better performance on solving
high-dimensional multiobjective task allocation problems.

The remaining sections of this paper are organized as
follows: Section 2 introduces the description of task alloca-
tion problems; Section 3 present the details of the proposed
method; Section 4 presents the experimental results and our
analysis; the proposed work is summarized in Section 5.

2. Problem Description

Task allocation involves many objects and related attributes.
This section will give a formal representation of the elements,
goals, and constraints involved in task allocation [22, 23] to
facilitate later expression.

2.1. Task Allocation

(1) UAV: as the code of military operations, UAV is
expressed as U = fu1, u2,⋯, umg, where ui repre-
sents UAV i ði = 1,⋯,mÞ and m is the number of
UAVs. The initial position of the UAV is expressed
as Pu = fpu1, pu2,⋯, pumg, where pui represents
the initial position of the UAV i. The ammunition
and fuel carried by each UAV are expressed as
ResU = fresu1,⋯, resumg, where resui represents
the number of resources carried by the UAV i.

(2) Task: as a combat task and an indivisible unit, the
task is expressed as T = ft1, t2,⋯, tng, where t j repre-
sents the task j ðj = 1,⋯, nÞ and n is the number of
tasks. The initial position of the task is expressed as
Pt = fpt1, pt2,⋯, ptng, where ptj represents the ini-
tial position of task j. The execution of each task
requires certain resources to be consumed, which is
expressed as ResT = frest1,⋯, restng, where rest j
represents the resources consumed by task j.
Performing each task will obtain a different task rev-
enue expressed as Reward = freward1,⋯, rewardng,
where reward j represents the revenue of executing
task j. The validity period of each task is limited by
time. Each task has the earliest start execution time
early j and the latest start execution time late j; the
executable range of each task is expressed as TR = f
½early1, late1�,⋯, ½earlyn, laten�g, where ½early j, latej�
is the executable range of task j. It tasks different time
to execute different tasks; the time consumed to
execute the task is expressed as Time = ftimei,⋯,

timeng, where timej represents the time consumed
to execute task j.

(3) Execution sequence: a task is executed by only one
drone. The execution sequence of the UAV is repre-
sented as Su = fsu1,⋯, sumg. Among them, sui rep-
resents the execution sequence of UAV i, where sui
is composed of corresponding tasks, specifically rep-
resented as sui = ftxtytqtztdg, where 0 < x, y, q, z, d
≤ n. |sui| is the number of tasks executed by the
UAV i, and they are, respectively, task x, task y, task
q, task z, and task d. suij is the jth task in the execu-
tion sequence of the UAV i. According to the posi-
tion of the task in the execution sequence, the
corresponding task can be expressed as tx = sui1, ty
= sui2, tq = sui3, tz = sui4, and td = sui5.

(4) Task allocation: UAV and task are the two subjects of
allocation. Since a task can only be performed by one
UAV, the allocation relationship can be expressed as
A = fa1,⋯, ang, where aj represents the assignment
relationship of the task j. If task j is not assigned to
a drone, then aj = NULL, and if assigned, it means
the inequality aj ≠NULL. At the same time, the
assignment to the relevant UAV can be obtained
one step further, expressed as aj = ui; it means that
task j is assigned to UAV i for execution.

2.2. Optimization Objective.With the basic description of the
above basic elements, we further derive the definition of
objectives to be optimized in UAV task allocation problems.

(1) Maximize the number of successfully assigned tasks:

target1 = max∀A 〠
n

j=1
aj ≠NULL

� �
, ð1Þ

where aj ≠NULL is true; the return value is 1; otherwise, the
value is 0.

(2) Maximize the benefits of performing tasks:

target2 = max∀A 〠
n

j=1
aj ≠NULL

� �
× reward j: ð2Þ

(3) Minimize resource cost:

target3 = min∀Su 〠
m

i=1
arrive cost pui, sui1ð Þð Þ

+ 〠
suij j

j=2
arrive cost sui j−1ð Þ, suij

� �� �
+ 〠

suij j

j=1
ressui j ,

ð3Þ
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where arrive costðpui, sui1Þ represents the resource consumption
cost required to execute the first task in the task sequence from
agent i to agent.

(4) Minimize time consumption:

target2 = min∀Su max 〠
m

i=1
time cost sui, suij jð Þ, ð4Þ

where time costðsui, jsuijÞ represents the time; it tasks for the
UAV ri to execute the tasks in the si sequence.

2.3. Constraints. In real-world scenarios, there are often some
constraints in task allocation problems. In this paper, we
mainly consider the following common constraints [16]:

(1) Time constraint: a UAV can only successfully execute
the task when it starts within the executable time
range of the task. For the execution sequence Sui of
the UAV ui, the constraint is as follows:

For j = 1,

time constraintTi1 = arrivetime pui ,1ð Þ = traveltime pui ,sui1ð Þ ≤ latesui1 :

ð5Þ

For j = 2,⋯, ∣ Sui ∣ ,

time constraintTij = arrivetime ui ,jð Þ

= time suij
� �

+ traveltime pui ,sui jð Þ ≤ latesui1 :

ð6Þ

(2) Resource constraints: UAV tasks are limited by its
own resources. For the execution sequence Sui of
UAV ui, the time constraints are as follows:

For j = 1,⋯, ∣ Sui ∣ ,

assets constraintRij = resourcecost pui ,jð Þ

= travelcsot pui ,sui1ð Þ + 〠
j

k=2
restsuik ≤ resui:

ð7Þ

(3) Functional constraints: in real scenarios, different
types of UAVs have different functions and therefore
perform different tasks. This constraint is explained
from the perspective of drones and tasks:

(i) From the perspective of agents, for i = 1,⋯,m,

function constraintUi = txty ⋯ tztd
� �

, ð8Þ

The constraint indicates that agent i can only execute task
x, task y, task z, and task d due to functional limitations,
where 0 < x, y, q, z, d ≤ n.

(ii) From the perspective of tasks, for j = 1,⋯, n,

function constraintTj = ue,⋯, uf

� �
: ð9Þ

This shows that the constraint indicates that task j can
only be executed by UAV e, UAV f , etc. due to functional
limitations, where 0 < e, f ≤m.

3. The Proposed Method

The CSA algorithm is a kind of the artificial immune system,
which mainly contains ideas such as clone selection, receptor
editing, and antibody circulation supplement mechanism
and selects mature antibody cells through affinity, and uses a
limited gene library to identify endlessly changing antigens.
The CSA algorithm simulates immune mechanisms such as
clone selection and amplification of antibodies, high-
frequency mutations, and receptor editing during the immune
response process of the immune system, so that it has strong
self-learning, self-organization, and adaptive capabilities.
Optimization-related fields are widely used. In this paper,
the distribution plan of the UAV is mainly coded into anti-
body cells, and the final Pareto solution set is obtained through
continuous iteration of antibodies [24, 25] (described in detail
in Section 3.5).

3.1. Basic Framework. In this section, the basic program flow
chart of the algorithm will be given, as shown in Figure 1.

It can be seen that the CSA model is relatively simple and
convenient for coding operation. The main steps are
described as follows:

(1) First, randomly initialize the UAV task allocation
solution, organize the execution sequence of each
UAV, and evaluate the affinity function of each anti-
body, and set the number of antibodies toN

(2) Judging the number of iterations, when it reaches a
certain number (maxGen is the maximum number),
the algorithm ends the output distribution plan

(3) Perform cloning operations on the current popula-
tion, which involves the number of clones and the
proportion of clones selected according to their
affinity

(4) The cloned antibody is mutated according to the
affinity ratio of the cloned individual

(5) SelectNfrom the original population and the cloned
population 2Nfor the next iteration

3Wireless Communications and Mobile Computing



(6) Repeat steps (2)–(5). This is a simple program
description process of the algorithm, and each pro-
cess will be described in detail below

3.2. Encoding of Antibody. An important part of using evolu-
tionary algorithms is to encode real-world problems into
antibodies, which are feasible solutions to allocation prob-
lems. For the CSA algorithm, the concept of antibody is very
important, and the code of the antibody also determines the
actual optimization effect of the algorithm. These solutions
are composed of the execution sequence of each UAV. These
components are called “genes,” and their practical meaning is
the actual distribution execution sequence of the UAV. Here
is a specific description of the encoding rule [22]. For exam-
ple, Table 1 shows an example of 3 drones and antibody
codes composed of 10 tasks.

The following information can be obtained from the
coding example in the figure above. From the functional con-
straints of the UAV, function constraintU1 = f1, 7, 2, 4g,
function constraintU2 = f3, 6, 4, 5g, and function constrain
tU3 = f8, 9, 2,10,1g. From the perspective of the functional
constraints of the task, function constraintT2 = f1, 3g, and
function constraintT3 = f2g. This kind of coding is directly
based on the functional constraints of the drone, reducing a
lot of useless calculations and judgments, which is conducive
to improving efficiency. At the same time, it can also get
su1 ⊆ f1, 7, 2, 4g, su2 ⊆ f3, 6, 4, 5g, and su3 ⊆ f8, 9, 2,10,1g.
We know the actual execution sequence that the UAV finally
allocates must be a subset of the UAV’s functional con-
straints. At the same time, there are some shortcomings in
this coding. As far as t2 is concerned, due to its simultaneous
existence in the functional constraints of u1 and u3 (in simple
terms, there is a many-to-many relationship between the
UAV and the task), it is difficult for the algorithm to choose
who performs the more excellent, simple processing is car-
ried out in the encoding here, and it is stated that the UAV
with lower encoding will be executed first; that is to say, if

u1 is not limited in resources and time, t2 can be executed
first, and then t2 in the function constraint of u3 fails; if the
u1 constraint is not satisfied, u3 starts to judge the conditions
for executing t2.

3.3. Cloning, Mutation, and Selection. The original CSA algo-
rithm selects cloned antibodies according to the degree of
affinity. Most antibodies with higher affinity are cloned for
mutation in order to produce better individuals; a small num-
ber of antibodies with poor affinity are cloned to prevent
mutation. The algorithm enters the local optimum to improve
the quality of the solution. Such a strategy is in line with the
realistic model and has a certain optimization effect; however,
because the problem is a multiobjective optimization, each
solution may evolve into a Pareto solution. Therefore, under
this problem model, we assume that each antibody in each
original population will be cloned according to its affinity to
change the following individuals.

The mutation operation is performed in the cloned indi-
vidual. The main operation of mutation is to randomly
change part of the gene in the antibody. The algorithm
mutates according to the degree of affinity. It is assumed that
individuals with higher affinity have higher quality solutions,
individuals with higher clone affinity have a lower mutation
rate, and individuals with lower affinity have a higher muta-
tion rate. This is because the quality of individual solutions
with high affinity has been further optimized. Less variation
is to maintain the quality of its own solutions and to explore
around the solution at the same time; while individuals with
low affinity undergo a lot of variation to let it explore a larger
solution space. This also means that individuals with less
affinity change fewer gene segments, while individuals with
greater affinity change more. The detailed change parameters
will be given in the experimental part.

3.4. Affinity Function. The four objectives in Section 2 are
normalized, and the corresponding constraints are added to
the calculation of the affinity function. When evaluating each
individual x, the following affinity function can be used:

(1) The value of the first objective can be calculated by
the following formula:

affinity1 xð Þ = 1:0 − ∑m
i=1e1 xið Þ

n
, ð10Þ

where xi = i1,⋯, ib and e1ðxiÞ are calculated by

e1 xið Þ = 〠
b

w=1
h iwð Þ, ð11Þ

Start

i<maxGen?

Initialization

Cloning

Choice

Variation

End

Figure 1: Flow chart of CSA [12].

Table 1: Example of antibody coding.

UAV 1 UAV 2 UAV 3

1 7 2 4 3 6 4 5 8 9 2 10 1
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where

h iwð Þ =
if viw has been allocated,

0, or arrival time xEi + iw, xEi
�� �� + 1

� �
> lateiw , or resource cost xEi + iw, xEi

�� �� + 1
� �

> resi,

1, otherwise,

8>><
>>:

ð12Þ

and it judges whether viw can be added to the current execu-
tion sequence of ui, x

E
i (it is the initial empty set) is the current

execution sequence of ai, and xEi + iw means adding iw to xEi

(2) The value of the second objective can be calculated by
the following formula:

affinity2 xð Þ = 1:0 −
∑m

i=1e2 xið Þ
∑n

i=1rewardi
, ð13Þ

where e2ðxiÞ =∑b
w=1hðiwÞ × rewardiw

(3) The value of the third objective can be calculated by
the following formula:

affinity3 xð Þ = 〠
m

i=1

e3 xið Þ
m ×max r

, ð14Þ

where max r represents the maximum amount of resources
carried by the drone, e3ðxiÞ =∑k

w=1hðiwÞ × ðtravel costðplast,
pviwÞ + rescostiwÞ, and plast represents the location of the last task
assigned to ui (when w = 1, plast represents the location of ui)

(4) The value of the forth objective can be calculated by
the following formula:

affinity4 xð Þ =maxmi=1
e4 xið Þ

m ×max t
, ð15Þ

among them, max t is the longest time to complete and
e4ðxiÞ =∑k

w=1hðiwÞ × ðtravel timeðplast, pviwÞ + timecostiwÞ
It is worth noting that not all tasks encoded in antibodies

can be successfully assigned to drones, and the order in which
drones perform tasks is implicit in the antibody. Through
above transformation, we can input the individual into the
four functions in formulas (10)–(15) to facilitate the evalua-
tion of the individual.

3.5. Multiobjective Optimal Solution Set. Since in the case of
multiobjective, each individual has multiple attributes (each
task is identified as an attribute in the coding here); the com-
parison between two individuals cannot simply use the size
relationship. Therefore, this section will briefly introduce
the basis of multiobjective optimization.

3.5.1. Domination Relationship. In the domination relation-
ship between different individuals, let x and y be two different

individuals in the multiobjective optimization population, if
the following two conditions are met:

(1) For all subgoals (referred to as four goals in this arti-
cle), x is no worse than y, that is, f kðxÞ ≤ f kðyÞðk = 1
, 2,⋯, rÞ

(2) There is at least a certain subgoal that makes x better
than y. It is expressed as ∃l ∈ f1, 2,⋯, rg, which
satisfies f lðxÞ < f lðyÞ

At this time, x is called nondominated and y is domi-
nated, where x dominates y. It can be symbolized as x ≺ y.
If x and y do not meet the above conditions, it proves that
there is no dominant relationship between the two.

3.5.2. Pareto Solution Set. It can be obtained from the above
dominance relationship that all individuals in a population
can be sorted by the definition of dominance relationship,
but because some solution sets may not have dominance rela-
tionships, these solution sets are in the same position.
Through these characteristics, a solution set can be obtained.
Each individual z in this solution set satisfies

(1) Individuals in the population are dominated by it,
expressed as z ≺ p, p ∈ A

(2) Other individuals cannot dominate it; that is, there is
no dominance relationship between the two,
expressed as z ⊀ q, q ⊀ z, q ∈ B

In (1) and (2), A ∩ B =∅, and A ∪ B =U .
At the end of the experiment, we will select the Pareto-

based multiobjective optimal solution set as the task alloca-
tion plan, in which the subobjectives compared between
individuals can refer to the affinity function.

4. Experimental Results

This section will demonstrate the effectiveness of the method
proposed in this article through experimental comparison
and conclusion analysis.

4.1. Experimental Environment. The experimental environ-
ment of this article is as follows: Window 10 operating
system 64-bit professional edition, Intel i7-7600U CPU,
clocked at 2.80GHz, memory 8G, and the programming envi-
ronment is Visual Studio 2010.

Table 2: Parameter settings.

Parameter name Value

Hypermutation ratio [0.2, 0.5, 0.8, 1]

Population size 200

Number of iterations 1000

Number of clones 1

Recombination ratio [0, 0.5]

Optimization number 4
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Figure 2: Continued.
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First, randomly generate relevant agent and task data. In
order to facilitate comparative experiments, randomly gener-
ate test data in the preparation phase. In order to simulate the
experiment, supposing the initial test position of each UAV is
pui = ðx, yÞði = 1⋯mÞ, x and y are random integers between
½0,100Þ; the earliest possible execution time early j is a random
number between ½0,100�, and the latest execution time latej is
a random number between [early j,150); the time required to
execute the task time j is random number between [1,10); the

resources consumed to execute the task restj is a random
number between [0,100); the revenue of the task reward j is
a random number between [0,1) [22]. For functional con-
straints, this article assumes that each task must have one
or more drones that can perform it. After a certain number
of iterations, the overall UAV and task change. We make cor-
responding changes to the antibody through the change
information. In order to facilitate the experiment, it is
assumed that the time cost and resource cost of transmission
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Figure 2: distribution of Pareto solution sets for different scales of problems.
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have a linear relationship with distance. The experimental
parameters of the main CSA algorithm are shown in Table 2.

4.2. Comparison of Results of Different Algorithms. In this
paper, the CSA algorithm and the GA algorithm are consis-
tent with the experimental test data. The algorithm parame-
ter environment and parameters are as shown in the
subsection. Four sets of task allocation test data of different
scales will be carried out to compare the final Pareto set.
Figure 2 shows the two algorithms ðm = 5, n = 10Þ, ðm = 20,
n = 50Þ, ðm = 50, n = 200Þ, and ðm = 200, n = 1000Þ, respec-
tively. The distribution of Pareto solution set. Table 3
compares the dominance of the Pareto solution set.

It can be observed from Figure 2 that in the comparative
experiments of different scales, the number of nondominated
solutions of the CSA algorithm is more, and the distribution
area of the solutions is wider, which also means that the
diversity is better, from the analysis in Table 3. It can be
obtained that the solution of the CSA algorithm is generally
better than that of the GA algorithm. This trend becomes
more obvious with the increase of scale. The main reason is
that the mutation strategy of the CSA algorithm is better than
the mutation strategy of the GA; the CSA variation dynami-
cally changes individuals with the degree of affinity, while the
GA algorithm only performs a small amount of mutation on
the basis of crossover and variation range is often small,
resulting in a small exploration pace, and the dynamic
change of the variation range is beneficial to improve the effi-
ciency of the solution. The experimental results just proved
this point.

4.3. Results on Different Ratios of Tasks to UAVs. In this sec-
tion, the results of CSA algorithm on different ratios of tasks
to UAVs are presented, i.e., n = 100, 150, 200, and 250, when
m = 50. Since there are many Pareto solutions and it is
impossible to compare all the solutions, there is only one of
the similar data (i.e., if the difference between two data is

within 0.05 in f1, f2, f3, f4). Table 4 compares the experimen-
tal results of different ratios.

According to Section 3.4, the smaller the target value of
f1, f2, f3, f4, the better the optimization effect. In Table 4, it
can be seen that in the comparative experiments of different
ratios, when the number of UAVs remains the same, as the
task scale increases rapidly, the difficulty of solving the prob-
lem is further increased. It will lead to a decrease in the num-
ber of nondominated solutions and a decrease in quality (the
values of f1, f2, f3, f4 continue to increase), which is in line
objective facts. Combining this, in order to maximize the
number of tasks successfully assigned, maximize the benefits
of tasks execution, minimize the resource costs, and mini-
mize the time costs, the ratio of drones and tasks must be
balanced as much as possible. Increase the number of drones
as much as possible to optimize the allocation plan, when
considering the constraints of many conditions.

5. Conclusion

In order to solve the problem of UAV combat task allocation,
this paper proposes a clone selection algorithm based on the
artificial immune system; this algorithm simultaneously opti-
mizes four objectives, namely, maximizing the number of
tasks successfully assigned, maximizing the benefits of tasks
execution, minimizing the resource costs, and minimizing
the time costs. And the effectiveness of method is proved by
experimental comparison. In the later stage, the comparison
algorithm model will be improved mainly by the high-
dimensional multiobjective optimization strategy of genetic
algorithm (for example, niche strategy and reference point
based on hyperplane), and the gene recombination of clone
selection algorithm will be added to optimize the CSA algo-
rithm to further improve the quality of solutions.

Data Availability

All the data can be generated according to the steps described
in our paper, and readers can also ask for the data by contact-
ing cxj_dna@yeah.net.
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Table 3: Comparison results of different algorithms.

Problem scale
GA

(No. of nondominated solutions)
CSA

(number of nondominated solutions)
No. of solutions

(GA dominates CSA)
No. of solutions

(CSA dominates GA)

5_10 14 31 0 1

20_50 43 87 0 5

50_200 57 88 0 3

200_1000 59 93 0 6

Table 4: Optimization objective results for different ratios of tasks
to UAVs.

Problem
scale

Number of
nondominated

solutions

Min
f1

Min
f2

Min
f3

Min
f4

50_100 21 0.2500 0.2402 0.0802 0.6804

50_150 16 0.4733 0.4227 0.0988 0.7448

50_200 13 0.5750 0.5479 0.1026 0.7358

50_250 11 0.6680 0.6200 0.1111 0.7001
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In this paper, we propose a newmobility management network, i-FP, to be used in the smart factory that continues to develop in the
Fourth Industrial Revolution. i-FP was created to solve the current local mobility management problem of legacy frameworks. MN
(mobile node) refers to a mobile device in a manufacturing environment that includes workers, production facilities, and AGV. To
allow mobile nodes (MNs) to move from one domain to another, i-FP uses three network entities: LFA (Local Factory Anchor),
FAG (Factory Access Gateway), and MN, as an extended concept of PMIPv6. Among the three network entities in i-FP, LFA
and FAG can act as edge intelligence devices to reduce the handover latency of the MNs. i-FP also uses IP header-swapping
mechanisms to prevent traffic overhead and enhance network throughput. We evaluate new framework i-FP, PMIPv6, and
HMIPv6, which are legacy protocols of local mobility management, in various ways and evaluate three schemes. We confirm
that i-FP works better than do the other network methods used in the smart factory.

1. Introduction

Globally, countries are rapidly changing in the Fourth Indus-
trial Revolution. The governments of major countries are
striving to become leaders of the Fourth Industrial Revolu-
tion by means of differentiated policy support. In particular,
manufacturing-based companies are focusing on changes to
upgrade their general factories to smart factories. Various
research attempts are made on existing manufacturing pro-
cesses, such as Cyber Physics System (CPS) [1, 2], robotics,
3D printing, edge computing, and cyber-security technolo-
gies [3]. Because these key technologies are applied across
all manufacturing areas, innovations are emerging that dra-
matically increase the competitiveness of manufacturing.

Edge computing has become an integral part of the smart
factory that emerged with the development of cloud comput-
ing. Edge computing became edge intelligence, where
research was conducted on how AI (Artificial Intelligence)
delivers data analysis [4]. Accordingly, data gathering uses
wired and wireless methods for data analysis, and it is a
recent trend that it is designed wirelessly to allow flexible

movement of workers, mobile shelves, and production facil-
ities in the smart factory [5, 6]. Thus, in the manufacturing
industry, wireless network connectivity continues to be a
challenge. Wireless and mobile communication network
technologies play a major role in creating diverse environ-
ments in manufacturing industries. With the growing impor-
tance for new wireless networks for the smart factory, new
technologies have been developed, leading to the emergence
of a variety of hierarchical mobility frameworks.

In wireless network frameworks, the mobility of users is
typically divided into intradomain and interdomain move-
ments. These mobilities correspond to the global mobility pro-
tocol [7] and the local mobility [8, 9] of the wireless network.
Whereas the global mobility protocols maintain the connec-
tivity to the factory beyond the scope of the domain as a user’s
movement, local mobility protocols operate through a distri-
bution of the restricted region within the domain.

When a network user, who accesses and receives from a
mobile network with IPv6 [10–12], accesses another net-
work, the network transmits traffic from the original domain
using the global mobility protocol to manage the network
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that first access from the outside. It uses a local mobility pro-
tocol delivering traffic within a domain in succession, and
enabling users can successfully communicate. Global and
local mobility enables users to leverage seamless and flexible
communication.

Global mobility protocols used to manage user mobility
include F-PMIPv6 (Fast Proxy Mobile) [13, 14], HMIPv6
[15], TeleMIP [16], and HIP [17]. This paper focuses on
the processes of global mobility and local mobility. Among
the global mobility protocols, PMIPv6 [18, 19] and HMIPv6
[20] use traffic to locate target addresses in the network and
to access top-level gateways. This is applied to the smart fac-
tory [21–24], which is divided into connecting the factory
with the factory and connecting the mobile with the mobile.
However, when applying the global mobility protocol to
communications between adjacent mobile devices, the traffic
is less efficient. We propose a new mobile network protocol
to improve the problem of protocols in smart factories. The
protocol to be used in the smart factory is i-FP, an acronym
for “Intelligent Factory PMIPv6.”

i-FP has three main objectives in total. (i) It provides rout-
ing services optimized for traffic in the domain. The routing
optimization (RO) service enables rapid retrieval of communi-
cation paths between peers to deliver optimized traffic in the
domain. (ii) It utilizes wireless links to reduce network traffic
overhead. Efficient traffic management by wireless links can
improve the performance of wireless networks, as the existing
limited bandwidth overloads wireless applications. (iii) We
introduce i-FP to reduce the cost to reduce the domain topol-
ogy. We apply i-FP to the smart factory to improve the perfor-
mance of existing applied local mobility protocols when
connecting to the web. It adds IP header swap technology to
prevent traffic overhead in the network. To evaluate the per-
formance of i-FP, we compare the newly proposed framework
with other frameworks related to the local mobility protocol.
Based on the result, we prove that i-FP is an effective technique
in the local domain of the smart factory.

In short, the key contributions of the study are provided
as follows.

(i) Propose a new effective architecture, including
gateways with edge intelligence capabilities within
a smart factory environment

(ii) The proposed i-FP incorporates the architecture of
HMIPv6 and PMIPv6, while leveraging IP swapping
mechanisms to effectively reduce tunneling costs
and latency

(iii) It is possible to effectively respond to mobility
processing by performing what mobile nodes need
to do directly on the gateway

(iv) Since protocol data is only transmitted over wired
networks, i-FP does not generate signaling costs on
wireless links, minimizing data loss and data costs
on wireless links

(v) Finally, interactive connection of the factory cloud
and the factory anchor within domains allows flexi-

ble management of the mobile nodes in the inte-
grated system

In this paper, Section 2 introduces associated research,
Section 3 discusses the architecture and procedures of the
proposed framework, Section 4 evaluates the performance
of the proposed technique, and Section 5 provides a conclu-
sion based on performance evaluation results.

2. Related Work

In this section, we review existing research work related to
our research to help readers understand the importance of
mobile communication management and the latest technol-
ogy trends in the smart factory. Convergence of IT and OT
technologies is discussed in Smart Manufacturing Overview.
In Edge Intelligence, we describe the edge computing that is
the key technology applied to i-FP. Finally, we explain the
FPMIPv6 and HMIPv6 which were used for mobility support
in smart manufacturing.

2.1. Smart Manufacturing Overview. During the Fourth
Industrial Revolution, the smart factory is becoming a very
important element. General factories, consisting of produc-
tion facilities, control systems, and factory management sys-
tems, are automated methods of the Third Industrial
Revolution. With the advent of the Fourth Industrial Revolu-
tion, general factories are becoming smarter. Automation has
been made intelligent by means of the fusion of IT and OT
technologies [25], and intensive research is being conducted
on data generation and analysis in terms of production facil-
ities and production management by adding sensors and IoT
technologies to production facilities [26, 27].

As illustrated in Figure 1, hyperconnections, digital inte-
gration, automation, integration, and data are keywords in
smart factory fields. The collected big data is analyzed by
AI technology or applied to machine learning. Robots coop-
erate with workers to add productivity, and IoT is used as a
data collector. Based on technologies, the smart factory has
been developed into an intelligent system that can achieve
strategic goals, such as productivity, quality, and customer
service in the entire production process, including design,
development, manufacturing, distribution, and logistics
[28]. To this end, various information exchanges by means
of communication between devices and between devices
and humans are essential for a smart factory, since the factory
has centralized control over production facilities so far.

In order to establish a flexible production system of a
smart factory, an organic response of production facilities is
essential. Modular production equipment, as well as IoT
technologies, can be changed according to the production
process, so that production can be customized to meet con-
sumer demands [29]. Development of mobile communica-
tion is essential for data communication and data analysis
of this modular equipment.

2.2. Edge Intelligence. Edge intelligence (EI) is a concept that
defines the communication, computing, and storage capabil-
ities of a particular infrastructure that are closest to local unit
users on a distributed network. The term “edge intelligence”
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was represented by Zhou et al.’s [4] research. “Edge” is a phys-
ical location representation in which data is generated and
processed. In other words, an edge means that there is a con-
trol device and computing device. Recent research has shown
that devices equipped with small computers are changing to
IoT and IIoT. These devices operate with AI capabilities. Data
processing devices in edge fields are used for intelligent collec-
tion of data, analysis, aggregation, and application. Edge intel-
ligence uses edge computing [30] to support these edge devices
in analysis performed on AI and ML models. Intelligent edges
break traditional client-server models that are typically
“double or thin” for clients, and servers are those that have
the ability to process, analyze, and protect data.

Edge intelligence has three main entities: connectivity,
computation, and control. This edge intelligence allows
manufacturing systems to connect to each other over a wire-
less or wired network. This computing approach intercon-
nects a specific range of workers, managers, smart facilities,
robots, sensors, and AGVs and also applies to a wide range
of connections, such as smart factory [31].

Fully connected edge intelligence systems can collect,
manage, analyze, and archive large amounts of data through
interdistributed computing. This local unit of computing can
be combined with the cloud system to improve or replace
computing power. Edge computing is performed mostly by
edge servers (or IIoT gateways) that are part of IT equipment
[32]. These servers can be half racks, two blades, or industrial
embedded PCs. It is applicable to certain business services
that require control of calculated insights from these local
units and can also be extended to the cloud. Intelligent edges
can perform control mechanisms for these local units and
devices on the edges.

Cloud computing is a powerful solution if you want an
Internet connection, but its use is very limited if it requires
real-time data processing and communicating restrictions
exist. Edge intelligence lets you keep some or all data close
to where it was created, rather than sending it to a remote
data center or cloud server for processing. Therefore, we
want to intelligently manage communication to mobile
devices moving within the smart factory by leveraging
edge-computable entities [33].

2.3. Mobility Support for Smart Manufacturing. The
FPMIPv6 is the “Fast Proxy Mobile IPv6” implementation
of FMIPv6 in PMIPv6 environments, enabling high-speed
handover. The mobile node (MN) detects mobile signals
and preemptive Mobile Access Gateway (pMAG) for trans-
port and prepares the MN’s handover via HI (Handover Ini-
tiation) and HAck (Handover-Acknowledgement) messages.
In the preparation phase, a bidirectional tunnel is formed
between the pMAG and the new Mobility Access Gateway
(nMAG). During the time when communication with MN
is lost, data from LMA is buffered from pMAG to nMAG.
When MN is connected to nMAG, packet data buffered by
nMAG is sent to MN to prevent packet data loss due to
separation during handover to facilitate communication.
The mode of FPMIPv6 is divided into two: prediction and
response.

In predictive handovers, the full handover begins by the
MN detecting the need for handovers and delivering a hand-
over indication message to the pMAG on its own. In reactive
handover, on the other handovers, MN detects the need for
handovers and performs a network reentry process directly
into the target network, and handovers are initiated by
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nMAG before pMAG recognizes the need for handovers. In a
handover scenario, the MN basically uses a previable access
network (pAN).

It is assumed that the situation is communicating with
the pMAG. Before the MN moves, it sends a side message
about moving to the pAN, including the information nAN
MN-ID. Upon receipt of the message, the pAN sends HI
messages, including MN-ID and nAN-ID, to the pMAG to
inform the MN movement.

The pMAG transmits HI messages (including informa-
tion from MN and LMA) to the nMAG. Upon receiving the
HI message, the nMAG sends a HAck (Handover-Acknowl-
edgement) to the pMAG. Upon receiving HAck messages,
the pMAG forms a two-way tunnel with the nMAG. When
a two-way tunnel is formed, the pMAG transmits packets
stored in the MN to the nMAG and is stored in the nMAG
buffer.

After the handover (L2), when the MN is connected to
the nMAG, the MN sends packets from the nMAG and the
nMAG binds the MN by sending a Proxy Binding Update
(PBU) message to the LMA. After LMA receives a PBU mes-
sage, it registers the status information of the MN in the
Binding Cache Entry (BCE) and sends a Proxy Binding
Acknowledgement (PBA) message to the nMAG. The bind-
ing process of MN is completed after the LMA has received
a full PBA message over the nMAG. This content is schema-
tized in Figure 2.

PMIPv6 is an IPv6-based mobility-enabled protocol for
mobile nodes. The signal and routing state settings of the
mobility node are performed by entities in the network.
The main entities of PMIPv6 are MAG (Mobility Access

Gateway) and LMA (Local Mobility Anchor). The role of
LMA is responsible for the reachability of topology anchor
points on mobile nodes and mobile node home network pre-
fixes (HNP). The LMAmanages information about MNs and
has the right to manage topology anchor points for home
network prefix information to be assigned to MN. MAG is
the access link to which the mobile node is connected, and
on behalf of the mobile node, it performs mobility manage-
ment of the MN through the LMA and bidirectional passage-
ways. MAG detects MN’s entry and exit within the network
and recommends binding registration tasks for LMA. The
technique for supporting the mobility of MN in the network
using the PMIPv6 protocol is shown in Figure 3.

Hierarchical Mobile IPv6 (HMIPv6) is a method pro-
posed by the IETF (Internet Engineering Task Force) as a
way to reduce the handover delay that occurs when a mobile
node moves in MIPv6. HMIPv6 is a protocol that reduces
signaling caused by handover of a mobile node by locally
managing the movement of the mobile node and reduces
the delay and signaling overhead caused by HMIPv6 during
binding update. HMIPv6 requires a binding update to HA
(home agent) and CN (Corresponding Node) when MN
moves to another subnet.

If the MN is far from HA or CN, the binding update pro-
cedure causes unnecessary delay and signaling overhead. The
access network is hierarchically structured in HMIPv6 to
solve this problem. HMIPv6 can reduce signaling costs
caused by user mobility and scalability in the growing net-
work in managing local mobility and has separated global
mobility management and local mobility. Global mobility is
still managed by HMIPv6, but local mobility within the local
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domain is managed from the MAP, which is a local mobility
management agent. Therefore, since movement in the MAP
region is unnecessary in HA and CN, the delay and signaling
overhead in HMIPv6 needed to maintain or manage infor-
mation about it can be greatly reduced. The contents are
shown in Figure 4.

However, there are many protocols, such as CIP [34],
HAWAII [35], HMIPv6, Tele MIP, RDMA [36], and
PMIPv6. For example, CIP and HAWAII force a strict tree
structure in the domain topology. The hierarchical structure
is based on a mobility agent, and all routers must be involved
in mobility signaling. Therefore, CIP and HAWAII are
expensive to implement, because all routers in the domain
need to be upgraded. Other protocols, such as HMIPv6, Tel-
eMIP, RDMA, and PMIPv6, do not require the participation
of all routers in mobility signaling. Instead, a mobility agent
as a topology anchor point and an access router as an exter-
nal agent are introduced. By means of the cooperation of the
mobility agent and the access router, the above protocols can
deliver traffic to the moving users in the local domain. Even
though these protocols do not require much functionality
within the domain topology, they suffer from severe routing
problems with intradomain traffic. If a user attempts to send
a packet to a peer communicating in the same domain, the
packet is first delivered to the domain gateway router and
forwarded to the peer with which the user is communicating.

Multimedia applications such as online games are popu-
lar nowadays, and triangular routing paths cause additional
transmission delays and waste bandwidth resources.
HMIPv6, RDMA, and TeleMIP share similar delivery proce-
dures and mobility signaling. These protocols use the
domain’s special address for global mobility and binding of
network-specific addresses for domain forwarding. HMIPv6,
RDMA, TeleMIP, and PMIPv6 are not network-enabled
mobility, and they use only one address for domain routing
and binding. Network support schemes can help PMIPv6 to
reduce signal cost.

3. Edge Intelligence-Based Hierarchical
Mobility Support for Smart Manufacturing

3.1. System Architecture. i-FP has four main entities,
including the features of HMIPv6 and PMIPv6 to work
better. i-FP contains four entities to enhance the network
environment and performance of smart manufacturing using
LFA, FAG, MN, and cloud. MN refers to mobile devices that
include workers, production facilities, and AGV in the
manufacturing environment, and LFA and FAG include the
functions of edge intelligence. We propose the i-FP of a smart
factory containing these major entities. The overall architec-
ture can be found in Figure 5.

Various messages related to i-FP mobility support are
used in the mobility management protocol. When analyzing
mobility models, the following message sizes should be con-
sidered: MAG and LMA used in FPMIPv6 are used as the
basis for FAG and LFA in i-FP. The first entity is LFA. The
LFA performs the same role as the proxy home agent (HA)
for MN. When MN is moved to the local domain, FAG
receives traffic on behalf of MN and sends traffic to the link

where MN is located. FAGs with edge computing function
receive traffic on behalf of MN when MN is moved to the
local domain and send traffic to MN’s location link.

To make this possible, i-FP uses two types of addresses,
RCoA (Regional Care of Address) and LCoA (Link Care of
Address), which are the same way as HMIPv6 manages the
MN. RCoA is the address obtained from MN when MN first
enters the local domain. The address obtained from MN,
RCoA, serves as the ID card for MN in the local domain.
The MN also displays the location via the RCoA and updates
HA or peers in communicating. If the MN moves within the
local domain, the RCoA remains fixed. Therefore, it is not
necessary for MN to send once binding update messages to
HA or peers during communicating that does not deviate
from the local domain. However, for this reason, RCoA can
identify the domain in which MN is located but is not
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affected by updates in intradomain movements. This means
that it is not known whether the RCoA is connected to the
FAG. Therefore, i-FP uses the address LCoA to obtain a more
detailed location. LCoA is the same address as MN’s location
and is updated whenever MN is repositioned so that it always
has accurate location information.

The LFA manages the RCoA and LCoA for MN. When
the LFA receives traffic on the direction of MN, the LFA
changes the target of the packet from RCoA to LCoA. The
reason for using LCoA is that MN can quickly and accurately
identify the stationary gateway in the domain. When the tar-
get of the packet changes to LCoA, the LFA sends the
updated packet to the FAG with the MN connected. Because
LCoA contains accurate location information for MN, MN

can successfully receive packets. The binding of the RCoA
and LCoA in LFA allows the i-FP to accurately and quickly
transfer traffic from the MN to the domain. However, LFA
cannot manage the local mobility of the domain.

Therefore, i-FP uses FAG, a second entity, to manage the
transfer of MN. FAG is the access router (AR) of the local
domain and is responsible for the i-FP’s wireless network.
FAG interconnects various APs that provide wireless links
to the network. When the MN is connected to the FAG net-
work, the FAG sends a Request Registration (RR) message to
the MN to the LFA. If the MN is an authorized user, the FAG
grants MN the authority to allow access. For example, the
FAG specifies a new LCoA for MN and forwards MN’s traffic
to the corresponding radio link. If an MN attempts to send a
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packet to another MN located in the i-FP domain, the FAG
updates the packet’s destination address and ensures that
the packet is routed to the peer of the MN over the optimal
path. Packet delivery procedures are described in detail in
the following sections.

The third entity in i-FP is MN. MN is a roaming wireless
device that includes workers, production facilities, and AGV
included in the factory local domain. HMIPv6 and PMIPv6
use IP tunneling techniques in the local domain, while i-FP
uses IP swapping mechanisms. IP switching agents are
located between the data layer and the network layer on all
MNs in the i-FP domain. This agent is used to process IP
headers for MN traffic.

The IP swapping agent changes the packet target LCoA to
RCoA when MN receives the packet and then sends the
packet to the network layer. When a packet is sent to a net-
work layer, the IP swapping agent simultaneously updates
the source address of the packet to the LCoA of the MN. In
this way, MN can maintain connectivity even if the domain
is moved to a different network. Detailed operating proce-
dures for IP swapping mechanisms can be found in “TMSP:
Terminal Mobility Support Protocol” [37]. i-FP uses IP
swapping technology, so there is no need for additional IP
headers as there are no tunneling cost and latency.

i-FP uses the same LMA and MAG and MN as PMIPv6
to manage mobility. Although i-FP uses more IP addresses
than PIMPv6, IPv6 is not a big problem because it has
enough IP addresses. While HMIPv6 generates protocol sig-
nal costs on wired and wireless links, PMIPv6 and i-FP do
not generate signal costs on wireless links, and protocol data
is transmitted only on wired networks. Therefore, PMIPv6
and i-FP do not generate wireless bandwidth overhead on
handover.

The last entity, factory cloud, is associated with the LFA
in each domain. MN’s mobility information is stored within
the integrated system, cloud. A two-way bridge is formed
between factory cloud and LFA. A formed bridge provides
a flexible connection of information between each domain,
which groups LFAs located in each domain. Nonprocessable
computational processing with FAG and edge computing
applied to the LFA within the local domain is sent to factory
cloud via the LFA. The transmitted data is processed and
analyzed through high-end computing in cloud. This facili-
tates the handling of handovers of i-FPs within the local
domain.

3.2. Operation Procedure. Adding the concept of cloud to the
smart factory, we configure the system structure in Figure 5.
We have configured systems that connect to the cloud to con-
struct cloud-based edge computing and have preconditions
for applications that correspond to the configured network
to be provided. Cloud servers are configured using Open-
Stack, and edge computing is located in local units to form
cloud-based edge computing. IoT data is also stored on cloud
storage in real time. When configuring gateways and servers
between real-time storage, you configure nodes at the end of
the application to act as controllers. Finally, IoT detection
data is stored through the gateway and analyzed by the
server. The application layer to which storage and analytics

data are applied configures servers by node for real-time
processing.

3.3. Registration Procedure. It acquires RCoA when the MN
first accesses the network before performing the registration
procedure on the i-FP network. When MN acquires RCoA,
DHCP or Stateless Configuration (SC) is used. The following
RCoA is registered with the global mobility agent. RCoA does
not change while MN is in the domain. Thus, a global mobil-
ity protocol is maintained within the domain. Figure 5 shows
the registration procedure since MN obtained RCoA.

As the MN proceeds with the handover, the newly con-
nected FAG sends a Router Advertisement (RA) message to
the MN. RA messages serve as keys for MN to acquire LCoA
in the new FAG. The FAG then binds the RCoA and LCoA
obtained from the MN within the local domain and sends
the information to the LFA with the binding information to
the Local Binding Update (LBU) message. If LFA allows
LBU messages, the binding entry is set between RCoA and
LCoA. This information is used for the domain and domain
communication. The LFA sends a Local Binding Acknowl-
edgement (LBA) message to the FAG. As soon as the FAG
receives the LBA, the registration process is completed and
the MN is able to transmit packets from a new location. i-
FP is divided into traffic between domains and traffic within
the domain. If MNs are in different local domains, their traf-
fic is between domains. Otherwise, the traffic is within the
domain. Traffic handover in i-FP is described as follows.

3.4. Intradomain Handover. The traffic delivery within a
domain involves address management at the FAG. When
MN1 transmits a packet to MN2, the IP swapping agent
(ISM) of MN1 updates the original source to the LCoA and
sends the packet to the FAG1. The FAG1, which is the first
hop on the transmission path, updates the destination of
the packet to the LCoA of the MN2. Because it is a packet
transmission within the domain, it does not pass through
the LFA and sends the packet directly to the FAG2 by refer-
ring to the LCoA. The FAG2 that receives the packet through
the LCoA recognizes that the destination of the packet is the
MN that is connected to it, so the FAG2 changes the address
of the packet source into the RCoA that is the original
address. Last, if the packet is sent to the MN2, the IP swap-
ping agent of the MN2 changes the destination of the packet
to the RCoA. Then, the packet is transmitted to the MN2. If
the MN2 processes the transmitted packet and then again
transmits the response message to the MN1, the IP swapping
mechanism of the wireless link changes the address of the
MN2 to the LCoA and transmits the packet to the FAG2.

Because the FAG2 is a packet movement in the domain,
the MAG2 changes the destination address to the LCoA
and transmits the packet to the FAG1. Because the FAG1 to
which the packet is delivered recognizes that the destination
indicates the MN that manages itself, it changes the destina-
tion source address to the RCoA that is the original address
and delivers the packet to the MN1. Before the MN1 receives
the packet, the IP swapping mechanism of the wireless link
changes the destination address, which is the address of the
MN1, to the RCoA that is the original address and delivers
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the packet. Because of this procedure, if the mobile node,
such as MN1 or MN2, knows only the original address, it
can exchange the packet without other functional require-
ments with the packet address management mechanism in
the domain. This procedure is shown in Figure 6.

The handover of the MN in the domain sends an L2 sig-
nal, which means that the MN is about to do a handover to
the pFAG to which it is first connected. The pFAG recognizes
this signal sent to nFAG, which is expected to hand over the
HI message to prepare the handover with the LCoA of the
MN. The nFAG that delivers the MI message generates
nLCoA, which will be newly assigned, and puts the LCoA
and nLCoA in the message, which demands to be preregis-
tered to the LFA, and transmits it. If the LFA receives the
pre-BU message, it carries out the user certification to the
AAA server, so that it maps the certified users with the RCoA
and nLCoA information and preregisters them temporarily.
Then, the LFA sends the pre-BA message to the nFAG to
complete the registration. The nFAG that receives the mes-
sage transmits the HAck message to pFAG to show that the
handover is ready.

The pFAG that receives the HAck transmits the traffic
that is transmitted to it to the nFAG and carries out the buff-
ering. The pFAG puts the DeReg BU messages in the LCoA
and sends them to the LMA in order to cancel the registra-
tion of the MN immediately; then, the LFA identifies it and
updates the LCoA to nLCoA, so that it formally registers
the MN, which is preregistered to the nFAG. As the response
to it, the DeReg BU message is delivered to the pFAG, which
transmits the response message to the L2 message to the MN.
The MN transmits the RS message to the nFAG to demand
the access. Because the nFAG registers the MN in advance,
it can immediately put the nLCoA, which is the new LCoA
address, in the RA and send it and then transmits the traffic
that has just been buffered. The handover in the domain is
completed by this procedure, and the MN can communicate
with the nFAG. This procedure is shown in Figure 7.

3.5. Intradomain Handover. The traffic movement between
other domains, which is different from the traffic movement
in a domain, operates as follows. If the original MN sends the
CN bymeans of the wireless network in order to request data,
the wireless link operates the IP swapping mechanism before
the packet arrives and changes the source address of the
packet to the RCoA, which can be recognized even by the
external domain. The packet with the changed address
arrives at the FAG, which sends the packet as is to the LFA
that is the local domain gateway. Because the destination of
the packet is the CN that is an external domain, the LFA
again converts the source address of the packet to the RCoA
and sends it the CN, which processes it and then sends the
response message for it to the RCoA.

Next, the CN receives the packet from the LFA and con-
verts it to the LCoA, which is topologically identical, in order
to send it to the internal domain. Then, the CN transmits the
packet to theMAG that has the correspondingMN. The FAG
delivers the packet to the MN and converts the address,
which has already become the LCoA for the IP swapping
mechanism which is antecedently operated, to the original
RCoA and transmits it to the MN. By means of the IP con-
verting mechanism in the domain, in the i-FP, the MN is
involved in the IP change, or while it does not have to know
it, the MN can exchange the packet with external domains.
This is shown in Figure 8.

The handover between domains sends the L2 message to
the pFAG to which it is originally connected, which means
that the connection is about to be discontinued. The pFAG
that receives the message transmits the RCoA of theMNwith
the HI message to the nFAG of the domain that expects the
connection. The nFAG, which identifies the message, trans-
mits the pre-BU message with the RCoA and the nLCoA,
which is the newly assigned address, in order to preregister
the MN to the nLFA to which it belongs. The nLFA receives
the pre-BU message and carries out the user certification at
the AAA server. If the message passes the certification, the
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nLFA generates the nRCoA, saves it with the nLCoA, and lets
it be preregistered. The LFA, as the response to it, transmits
the pre-BA message with the nRCoA to the nFAG.

The nFAG that receives it then transmits the HAck mes-
sage, which means that the handover is completely ready, to
the pFAG. The pFAG that receives the message transmits the
traffic that is delivered to it, and the nFAG buffers the trans-
mitted traffic. After that, the pFAG, in order to cancel the
connection of the MN, puts the LCoA in the DeReg-BU mes-
sage and transmits it. The pLFA tells the nLFA to formally
register the preaccessed MN, along with the RCoA. Then,

the nLFA identifies the nRCoA by using the mapped RCoA
and nRCoA, registers the nRCoA formally, and then sends
the response message to the pLFA. The pLFA that receives
the response message sends the DeReg BA message to the
pFAG and informs the cancellation of the registration.

The nFAG transmits the response message to the L2 mes-
sage, in which the MN transmits for the first time and then
transmits the RS message to request the access to the nFAG.
The nFAG receives the message, puts the newly assigned
address of nRCoA and nLCoA in the RA message, and trans-
mits them to the MN. After that, the nFAG transmits the
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buffered traffic data to the MN. The handover between
domains is completed in these processes, and the fast connec-
tion and communication of the MN and the nFAG become
possible. This is shown in Figure 9.

4. Performance Analysis

In this section, we conducted performance evaluations with
mathematical modeling of the newly proposed i-FP,
HMIPv6, and PMIPv6. This analysis objective is to minimize
the costs arising from the network. Network costs are defined
by message size and hop distance (bandwidth aspect). Each
modeling was analyzed under the same conditions and
ignored router processing costs. Table 1 shows parameters
for mobile protocols used in performance analysis.

4.1. The Number of Routing Hops.Wemeasure the number of
traffic routing hops in the first performance analysis. The pri-
mary goal of i-FP is to provide the best routing route for
intradomain traffic. This analysis compares the number of
routing hops for intradomain traffic of the three protocols.
At the same time, we compare and evaluate the transmission
delay of intradomain traffic. The GR (Global Router) for the
domain is located in the factory cloud (FC).

The number of routing hops of the three protocols is sim-
ilarly set for domain internal traffic. When a packet is sent
from CN, the FC in the domain receives the packet list. FC
then forwards the packet to the new MN-connected AR.
The AR sends packets over the radio link to the MN. There-
fore, the number of routing hops can be expressed as 5, in
which HX−Y means the number of routing hops for node X
and node Y . HMIPv6 and PMIPv6 require packets to be for-
warded by FC. The FC encapsulates the packet and forwards
it to the MN’s current location.

Therefore, traffic inside the HMIPv6 and PMIPv6
domains causes triangular routing problems. However, the

number of routing hops in the domain in i-FP is different
from the traditional method. If an i-FP MN tries to forward
a packet to another MN, the packet arrives at AR1 and for-
wards the traffic to AR2, where AR2 is located. Finally, AR2
forwards the packet with MN2. i-FP has fewer routing hops
than HMIPv6 and PMIPv6 because packets are forwarded
on the shortest path. Equations (1)–(3) represent the number
of interdomain routing hops for HMIPv6, PMIPv6, and i-FP,
and (4)–(6) represent the number of routing hops for the
domain. FAGs for PMIPv6 can be configured as bridges for
mobile nodes if MN1 and MN2 are on the same FAG net-
work. The local routing optimization mechanism reduces
forwarding delays.

HHMIPv6
Inter =HCN−FC +HFC−AR +HAR−MN, ð1Þ

HPMIPv6
Inter =HCN−FC +HFC−AR +HAR−MN, ð2Þ

Hi‐FP
Inter =HCN−FC +HFC−AR +HAR−MN, ð3Þ

HHMIPv6
Intra =HMN1−AR1 +HAR1−FC1 +HFC1−AR2 +HAR2−MN2,

ð4Þ
HPMIPv6

Intra =HMN1−AR1 +HAR1−FC1 +HFC1−AR2 +HAR2−MN2,
ð5Þ

Hi‐FP
Intra =HMN1−AR1 +HAR1−FC1 +HAR2−MN2: ð6Þ

4.2. The Number of Routing Hops. The protocol signal cost is
incurred in updating location information as MNmoves, and
usage is proportional to the amount of packets. Signal costs
include RS (Router Solicitation) messages, BU (Binding
Update) messages, and BA (Binding Acknowledgement)
messages. The cost of the protocol signal, which is the cost
of the handover procedure, is expressed as Cs. Cs is expressed
as (7). P is the probability of one handover per t unit time.
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Hmn is expressed as Hmn = 1 − p with the probability of a
handover to the MN. s is the total size of the protocol packets
used for the handover procedure. m is the number of mobile
nodes that exist in a domain per hour. The cost of HMIPv6,
PMIPv6, and i-FP signals can be calculated by (8)–(10).

CS = 〠
∞

n=1
n∗pn ∗ 1 − pð Þ ∗m ∗

s
t
, ð7Þ

CHMIPv6
S = 〠

∞

n=1
n∗pn∗ 1 − pð Þ∗m∗ RBU + RBA + RS + RA

t
,

ð8Þ

CPMIPv6
S = 〠

∞

n=1
n∗pn∗ 1 − pð Þ ∗m ∗

PBU + PBA + RS + RA
t

,

ð9Þ

Ci‐FP
S = 〠

∞

n=1
n∗pn∗ 1 − pð Þ∗m ∗

RS + RA
t

: ð10Þ

4.3. Handover Delay. If an MN handover is transmitted from
one network to another, the MN may not be able to receive
traffic. When the MN handover is moving through the net-
work, MN’s information is transmitted and MN cannot
receive traffic. The time during which traffic is not received
is called a handover delay. There are usually three possible
causes of handovers. First, the MN’s previously connected
communication is broken when the MN moves to a different
network. The MN should then be connected to a different
radio link than before. Thus, DL2 represents the handover
delay that occurs during the L2 link switching phase. MN gets

a new IP address after being linked to a new network. DIP
indicates the time it takes for MN to acquire a new IP
address. The time generated during the IP acquisition phase
has a significant impact on the handover delay. There is a
prestudied mechanism to solve these problems [38–41].
Specifying an optimized IP address allows the MN to obtain
an IP address without the need for Duplicate Address Detec-
tion (DAD). i-FP is designed to leverage these mechanisms to
allow MN to establish optimized IP addresses in new net-
works. Finally, MN gets a new IP address and sends an LU
message. DLU is the time spent completing a location infor-
mation update. DLU is primarily affected by the physical dis-
tance between MN and the agent. Thus, DLU is managed by a
local mobility protocol that uses proxy HA in the domain.
The handover delay is based on these variables and is
expressed as expression (11).

We compared and evaluated the performance of
PMIPv6, HMIPv6, and i-FP on the same network with DL2.
The three protocols have different DIPs. PMIPv6 does not
change the IP address of MN in the new network, so the value
of DIP is zero. However, the values of DIP for i-FP and
HMIPv6 are larger than 0 because MN must set a new
address. In both protocols, MN takes time to automatically
set MN’s address according to RA messages when it moves
to a new network. RA messages are sent by the AP at every
interval. DHMIPv6

IP has a random value. If the time is the same
mobile time, then the average value of DHMIPv6

IP becomes A/2.
Di‐FP

IP has the same value as DHMIPv6
IP . The three protocols DLU

are also different. HMIPv6 changes the location message
between MN and MAP, creating a tunnel after the handover
procedure. The tunnel generation time WMN−MAP between
MN and MAP is the same as the one-way transmission time
TMN−MAP of MN and MAP. Therefore, in HMIPv6, DLU is
equal to 2 ∗ TMN−MAP +WMN−MAP. In PMIPv6, DLU is used
to change update messages between MAG and LMA. In
PMIPv6, a tunnel is formed between MAG and LMA in
PMIPv6, just as a tunnel is created between MN and MAP
in HMIPv6. The time required to create a tunnel between
MAG and LMA is WFAG−LMA. The update message transfer
time from MAG to LMA is TFAG−LFA. In PMIPv6, DLU is

Table 1: Parameter values for performance analysis.

Variable name Value Variable name Value

HCN−FC 2 HAR1−AR2 1

HFC−AR 1 i‐FPBU 96

HAR−MN 1 i‐FPBA 96

HMN1−AR1 1 i‐FPRouterSol 44

HAR1−FC1 1 i‐FPRouterAdv 68

HFC1−AR2 1 i‐FPREU 142

HAR2−MN2 1 HMIPv6RBU 80

HMIPv6RBA 60 PMIPv6PBA 88

HMIPv6RouterSol 44 PMIPv6RouterSol 44

HMIPv6RouterAdv 68 PMIPv6RouterAdv 68

PMIPv6PBU 88 TMAG−LMA 100

DL2 100 WMAG−LMA 300

A 10 TMN−LFA 200

TMN−MAP 100 L1P Header 100

WMN−MAP 300 HMAP−MN 2

HLMA−MAG 1 U 10000

R 1000
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Figure 10: Average number of routing hops.
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defined as 2 ∗ TFAG−LFA +WFAG−LFA. For i-FP, no tunnel cre-
ation between MN and LFA is required. Thus, Di‐FP

IP is repre-
sented by 2 ∗ TMN−LFA which is the MN and LFA
bidirectional communication time. The handover latency of
the three protocols is expressed in expressions (12)–(14),
respectively. A is the interval between adjacent response
messages.

DHO =DL2 +DIP +DLU, ð11Þ

DHMIPv6
HO =DL2 +

A
2 + 2 ∗ TMN−MAP +WMN−MAP, ð12Þ

DPMIPv6
HO =DL2 + 0 + 2 ∗ TFAG−LFA +WFAG−LFA, ð13Þ

Di‐FP
HO =DL2 +

A
2 + 2 ∗ TMN−LFA: ð14Þ

4.4. Traffic Overhead. Finally, we compare the results by mea-
suring the traffic overhead of HMIPv6, PMIPV6, and i-FP.
HMIPv6 and PMIPv6 send traffic by IP tunneling technology.
Tunneling headers cause overhead of user data in the network.
Coverhead is the value of traffic overhead. Coverhead = LIPHeader
∗H denotes the traffic overhead of the three protocols. The
length of the IP tunnel is defined as LIPHeader. H is the number
of hops the packet traverses in the local domain. The data rate
is R bps and the packet size of user data isU ; the overhead cost
of HMIPv6, PMIPv6, and i-FP can be expressed as

CHMIPv6
overhead = LIPHeader ∗HMAP−MN ∗

R
U
, ð15Þ

CPMIPv6
overhead = LIPHeader ∗HLFA−FAG ∗

R
U
, ð16Þ

Ci‐FP
overhead = 0: ð17Þ

4.5. Numerical Results. We evaluated the difference in perfor-
mance between HMIPv6, PMIPv6, and i-FP with various con-
ditions and obtained numerical results for routing hops, traffic
signaling cost, handover delay, and traffic overhead. We ana-
lyze the numerical results of each evaluation method in the
order mentioned. i-FP has the fewest routing hops, and the

average number of routing hops of PMIPv6 is smaller than
that of HMIPv6. δ represents the ratio of the intradomain
traffic Fintra divided by the sum of the intradomain traffic
Fintra and the interdomain traffic Finter, which means δ =
Fintra/ðFinter + FintraÞ. In Figure 10, we can see that the average
number of routing hops of i-FP is lower than the other two
protocols.

Figure 11 shows the total signal cost as MN increases. As
a number of MNs initiated by handover increase, all three
protocols increase the signal cost. However, i-FP increases
to a slower slope than PMIPv6 and HMIPv6. Therefore, i-
FP is more cost-effective because of its lower signal cost than
PMIPv6 and HMIPv6.

The performance of the handover delay for each protocol
is evaluated according to the total cost of the MN. The larger
the handover delay, the greater the packet loss in the hand-
over procedure. The total cost until packet reception is com-
plete is used to measure the handover delay of the three
protocols. In Figure 12, we can see that the latency of PMIPv6
and HMIPv6 is more than doubled as MN increases com-
pared to the incidence cost of i-FP.

To measure the total cost of traffic overhead for each
technique, we evaluated a number of MNs performing hand-
over as variables. From the traffic overhead evaluation, we see
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Figure 11: Traffic signaling cost.
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that i-FP is maintained regardless of the number of MNs per-
forming handovers, because it uses the IP swapping mecha-
nism without IP tunneling, and HMIPv6 and PMIPv6
perform IP tunneling. Therefore, it can be confirmed that
the overhead increases as a number of MNs performing
handover increase. Since a number of MNs increase
compared to those of HMIPv6, PMIPv6 increases rapidly.
The contents are shown in Figure 13.

Session-to-mobility ratio (SMR) was utilized to evaluate
the total cost of the network. SMR is calculated by dividing
the session arrival rate by the head-off rate. We classified
SMR into two types, increasing the accuracy of the evalua-
tion. If the value of SMR is large, the session activity is higher
than the hand off speed. It is shown that i-FP has had little
impact on the increase in SMR compared to other networks
and has the lowest total cost. This is shown in Figure 14.

5. Conclusion

We proposed a new i-FP based on the features of HMIPv6
and PMIPv6 networks. We also address the cost issues aris-
ing from network architectures for MNs used in smart fac-
tory environments. Based on the proposed i-FP, HMIPv6,
and PMIPv6 modeling, we analyzed and evaluated the net-
work cost minimization. Comparing the cost and traffic over-
head of packet data transmission, we demonstrate that i-FP,
which appears to be the lowest in local units, is the enhanced
technique. Therefore, we confirm that i-FP is the most suit-
able mobile network protocol framework for application in
smart factory environments due to low data loss and low
latency. Furthermore, through an optimization system of
cross-domain handover via edge computing, the cost com-
pared to existing techniques is also relatively low, which
increases satisfaction. This can be the basis for judging that
i-FP is the best solution for local mobile network environ-
ments in smart factory environments. Adding to the analysis
of the cloud environment, the following work envisions
additional research to build an integrated system to analyze
performance compared to existing technologies.
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Modern supercomputers are massively parallel systems: they embody thousands of computing nodes and sometimes several
millions. The torus topology has proven very popular for the interconnect of these high-performance systems. Notably, this
network topology is employed by the supercomputer ranked number one in the world as of November 2020, the supercomputer
Fugaku. Given the high number of compute nodes in such systems, efficient parallel processing is critical to maximise the
computing performance. It is well known that cycles harm the parallel processing capacity of systems: for instance, deadlocks
and starvations are two notorious issues of parallel computing that are directly linked to the presence of cycles. Hence, network
decycling is an important issue, and it has been extensively discussed in the literature. We describe in this paper a decycling
algorithm for the 3-dimensional k-ary torus topology and compare it with established results, both theoretically and
experimentally. (This paper is a revised version of Antoine Bossard (2020)).

1. Introduction

The supercomputers of the 21st century are massively paral-
lel systems: they embody thousands of compute nodes. Some
recent devices even include several millions of nodes (e.g.,
10,649,600 nodes for the Sunway TaihuLight as of November
2020’s TOP500 list [1]). The interconnection of these com-
pute nodes is thus a critical issue so as to maximise the paral-
lel processing performance and thus the machine
performance overall. Thanks to its advantageous topological
properties, such as regularity, the torus network topology has
proven very popular for the interconnect of modern super-
computers. For example, the supercomputer ranked number
one in the world in the November 2020 TOP500 ranking, the
supercomputer Fugaku built by Fujitsu and RIKEN, employs
the torus topology to connect its nodes (Tofu interconnect D
[2]). The IBM Blue Gene/L and Blue Gene/P, Cray Titan
(Gemini interconnect [3]), and Fujitsu SORA-MA (Tofu
interconnect 2 [4]) are other examples of supercomputers
based on the torus topology.

It is well known that parallel processing is harmed by the
presence of cycles: they are at the source of the deadlock, live-
lock, and starvation notorious resource allocation issues [5].
Notably, because it has important implications for parallel

processing, the decycling problem, also known as the mini-
mum feedback vertex set problem, has been extensively
addressed in the literature. Karp has shown that finding a
decycling set of minimum size (i.e., an optimal decycling
set) in any graph is NP-complete [6]. For instance, Fomin
et al. have described an algorithm that solves this problem
in any graph in Oð1:7548nÞ time [7]. Furthermore, polyno-
mial solutions have been described for several particular clas-
ses of graphs such as 3-regular graphs [8], convex bipartite
graphs [9], permutation graphs [10], and hypercube-based
networks [11, 12]. Among others, the size of an optimal decy-
cling set (i.e., the decycling number) in the case of cubes and
grids has been discussed in [13, 14] and for hypercubes in
[15]. We describe in this paper a polynomial time decycling
algorithm for a 3-dimensional k-ary torus network. One
should note that while the case of a grid as mentioned above
seems close, or at least related, to the case of the torus which
we investigate hereinafter, the wrap-around edges of the
torus invalidate the grid decycling approach (refer to the next
section for additional details).

The rest of this paper is organised as follows. Notations,
definitions, and previous results are recalled in Section 2.
The decycling algorithm is presented in Section 3, including
the proof of its correctness and complexity analysis.
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Theoretical and empirical evaluations are conducted in
Section 4. Finally, concluding remarks are given in Section 5.

2. Preliminaries

We recall in this section several notations, definitions, and
previously established results. The set of the vertices of a
graph G is denoted by VðGÞ, and the set of its edges by EðG
Þ. A path in a graph G is a subgraph of G that is an alternating
sequence of distinct vertices and edges. Such a vertex–edge
sequence but whose two terminal vertices are the same vertex
is called a cycle. The length of a path or cycle is its number of
edges. A graph that contains no cycle is said to be acyclic and
is isomorphic to a tree.

Definition 1. An n-dimensional k-ary torus, denoted by Tðn
, kÞ, with n ≥ 1 and k ≥ 1, consists in the kn vertices induced
by the set f0, 1,⋯, k − 1gn. Two vertices u = ðu0, u1,⋯,
un−1Þ and v = ðv0, v1,⋯, vn−1Þ of a Tðn, kÞ are adjacent if
and only if there exists j (0 ≤ j < n) such that ∀i (0 ≤ i < n, i
≠ j) ui = vi and uj = vj ± 1ðmod kÞ.

A torus Tðn, kÞ is thus a regular graph of degree 2n, of
diameter nbk/2c and has nkn edges. An essential torus prop-
erty is next recalled.

Property 2. For a dimension δ (0 ≤ δ < n), aTðn, kÞ consists in k
subtori Ti,δðn − 1, kÞ (0 ≤ i < k). Each subtorus Ti,δðn − 1, kÞ is
induced by the kn−1 vertices ðu0, u1,⋯, uδ−1, i, uδ+1,⋯, un−1Þ
of Tðn, kÞ with ujð0 ≤ j < n, j ≠ δÞ the vertex coordinate for the
dimension j and i the vertex coordinate for the dimension δ.

A torus Tð2, 3Þ is shown in Figure 1(a) and its recursive
structure is illustrated in Figure 1(b).

Next, previously established results are recalled.
Beineke and Vandell have established a lower bound on

the size of a decycling set for any graph [16]. This result is
recalled in Theorem 3 below.

Theorem 3 (see [16]). Given a graph G = ðV , EÞ of maximum
degree Δ, any decycling set S ofG satisfies the following relation:

Sj j ≥ Ej j − Vj j + 1
Δ − 1

� �
: ð1Þ

Wewere unaware until very recently (after the publication
of [17]) that Pike and Zou have shown how to calculate a decy-
cling set of minimum size for a 2-dimensional torus in [18].
The corresponding result is recalled in Theorem 4 below.

Theorem 4 (see [18]). In a Tð2, kÞ with k ≥ 3, a decycling set
Sk of minimum size with

Sk
��� ��� =

3k
2

= 6, k = 4,

k2 + 2
3

& ’
, otherwise,

8>>>><
>>>>:

ð2Þ

can be found in Oðk2Þ time.

3. The Case of a Tð3, kÞ
We describe in this section the details of our approach to
decycle a 3-dimensional k-ary torus Tð3, kÞ.
3.1. Algorithm Description. We give below a constructive
proof in the form of a decycling algorithm whose input is
an arity k (k ≥ 1) and which outputs a decycling set Sk.

The main idea is to consider one dimension δ to reduce
Tð3, kÞ into k 2-dimensional subtori as per Property 2 and
to alternate for each such subtorus the optimal decycling of
a Tð2, kÞ (i.e., Theorem 4) and two other decycling methods
of a Tð2, kÞ which induce a graph with no edge.

The case k = 1 is trivial: Tð3, 1Þ consists of one unique
vertex and is thus acyclic; S1 =∅ is thus a decycling set for
this trivial graph. A Tð3, 2Þ is isomorphic to a 3-
dimensional hypercube; S2 = fð0, 0, 0Þ, ð1, 1, 0Þ, ð1, 1, 1Þg is
thus an optimal decycling set by Theorem 3. Hence, we can
now assume that k ≥ 3.

Step 1. We distinguish the two cases k even and k odd.
Case k even:
Define two decycling sets Sk1, S

k
2 in a two-dimensional k

-ary torus Tð2, kÞ as follows:

Sk1 = i, jð Þ ∈ V T 2, kð Þð Þ 0 ≤ i, j ≤ k − 1, i + j ≡ 1 mod 2ð Þjf g,
Sk2 = i, jð Þ ∈ V T 2, kð Þð Þ 0 ≤ i, j ≤ k − 1, i + j ≡ 0 mod 2ð Þjf g:

ð3Þ

In other words, the set Sk1 is induced by the vertices of T
ð2, kÞ that are taken in one particular “quincunx” manner,
and the set Sk2 by the vertices of Tð2, kÞ that are taken in the
other “quincunx” manner. Precisely, we have Sk2 =VðTð2, kÞ
Þ \ Sk1 and Sk1 =VðTð2, kÞÞ \ Sk2.

The sets Sk1 and Sk2 when k = 4 are illustrated in
Figures 2(a) and 2(b), respectively; they consist in the red
vertices.

Case k odd:
Define two decycling sets Sk1, S

k
2 in a two-dimensional k

-ary torus Tð2, kÞ as follows:

Sk1 = i, jð Þ ∈ V T 2, kð Þð Þ 0 ≤ i, j ≤ k − 1, i + jjf
≡ 1 mod 2ð Þg ∪ i, k − 1ð Þ 0 ≤ i ≤ k − 1jf g ∪ k − 1, ið Þ 0 ≤ i ≤ k − 1jf g,

Sk2 = i, jð Þ ∈ V T 2, kð Þð Þ 0 ≤ i, j ≤ k − 1, i + jjf
≡ 0 mod 2ð Þg ∪ i, k − 1ð Þ 0 ≤ i ≤ k − 1jf g ∪ k − 1, ið Þ 0 ≤ i ≤ k − 1jf g:

ð4Þ
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In other words, the set Sk1 is induced by the vertices of T
ð2, kÞ that are taken in one particular “quincunx” manner
and also includes the vertices of the top row and those of
the right row. The sets Sk1 and Sk2 when k = 5 are illustrated
in Figures 3(a) and 3(b), respectively; they consist in the red
vertices.

Step 2. Let δ = 0 and consider the k subtori Ti,δð2, kÞ
(0 ≤ i ≤ k − 1) as per Property 2. Define Sk0 the optimal decy-
cling set of Tð2, kÞ as induced by Theorem 4. We distinguish
the three cases that are induced by the value of k mod 3.

Case k ≡ 0ðmod 3Þ:
Decycle each subtorus Ti,δð2, kÞð0 ≤ i ≤ k − 1Þ with the

vertex set Ski mod 3 (see Figure 4). In this figure, where there
can be edges on the third dimension between two subtori,
sample edges are shown.

Case k ≡ 1ðmod 3Þ:
Decycle each subtorus Ti,δð2, kÞð0 ≤ i ≤ k − 2Þ with the

vertex set Ski mod 3 and Tk−1,δð2, kÞ with the vertex set Sk2
(see Figure 5). Again in this figure, where there can be edges
on the third dimension between two subtori, sample edges
are shown.

Case k ≡ 2ðmod 3Þ:
Decycle each subtorus Ti,δð2, kÞð0 ≤ i ≤ k − 2Þ with the

vertex set Ski mod 3 and Tk−1,δð2, kÞ with the vertex set Vð
Tk−1,δð2, kÞÞ (see Figure 6). Again in this figure, where there
can be edges on the third dimension between two subtori,
sample edges are shown.

3.2. Correctness and Complexities. In this section, we prove
the correctness of the proposed algorithm and establish its
complexities.

Theorem 5. In a 3-dimensional k-ary torus Tð3, kÞ (k ≥ 1), a
decycling set Sk of 0 vertex when k = 1, 3 vertices when k = 2,
and in the other cases with

Sk
��� ��� =

k
k2 + 2
� �

/3
� �

+ k2

3
, k ≡ 0 mod 3ð Þ,

30, k ≡ 1 mod 3ð Þ, k = 4,

k − 1ð Þ k2 + 2
� �

/3
� �

+ k2

3
+ k2

2
, k ≡ 1 mod 3ð Þ, k > 4

k + 1ð Þ k2 + 2
� �

/3
� �

+ k2

3
, k ≡ 2 mod 3ð Þ,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ

when k is even, and with

Sk
��� ��� =

k
k2 + 2
� �

/3
� �

+ k2 + 2k − 1

3
, k ≡ 0 mod 3ð Þ,

k − 1ð Þ k2 + 2
� �

/3
� �

+ k2 + 2k − 1

3
+ k2 − 1

2
+ k, k ≡ 1 mod 3ð Þ,

k − 2ð Þ k2 + 2
� �

/3
� �

+ k2 + 2k − 1

3
+ 3k2 − 1

2
+ k, k ≡ 2 mod 3ð Þ,

8>>>>>>>><
>>>>>>>>:

ð6Þ

when k is odd can be found in optimal Oðk3Þ time.

Proof. The cases induced by k ≤ 2 are trivial; they have
already been shown at the beginning of Section 3.1. So, we
can assume k ≥ 3.

By definition, the subgraph of Tð2, kÞ induced by the ver-
tices of the set VðTð2, kÞÞ \ Sk1 has no edge. And similarly, the
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Figure 1: (a) A torus Tð2, 3Þ. (b) A torus has a recursive structure: a Tð2, 3Þ consists in three subtori Tð1, 3Þ.
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Figure 2: The sets Sk1 (a) and Sk2 (b) as defined in a Tð2, kÞ when k = 4; they consist in the red vertices.
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subgraph of Tð2, kÞ induced by the vertices of the set VðTð
2, kÞÞ \ Sk2 has no edge either.

Hence, by definition of the algorithm, each subtorus
Ti,δð2, kÞ (0 ≤ i ≤ k − 1) is acyclic. Moreover, the only edges
on the third dimension are at a vertex of a graph induced
by a subtorus decycled with Sk0. Consider two such graphs
induced by a subtorus decycled with Sk0, say the graphs that
correspond to Ti,δð2, kÞ and T j,δð2, kÞ where i < j and j − i
minimal. In the case k ≡ 0ðmod 3Þ, we have j − i = 3 and the
greatest such j is k − 3. And since for every edge on the third
dimension the vertex that is not in a graph induced by a sub-

torus decycled with Sk0 is inside a graph induced by a subtorus
that has no edge, the resulting graph is acyclic. In the case k
≡ 1ðmod 3Þ, we have j − i = 3 and the greatest such j is k −
4. So, again and for the same reason, the resulting graph is acy-
clic. In the case k ≡ 2ðmod 3Þ, we have j − i = 3 and the great-
est such j is k − 2, so there could be a path on the third
dimension between a vertex of Tk−2,δð2, kÞ (i.e., the rightmost
graph induced by Sk0) and of T0,δð2, kÞ (which is also induced
by Sk0). However, all the vertices of Tk−1,δð2, kÞ are removed, so
there is no such path and the resulting graph is thus acyclic.

The set Sk1 and the set S
k
2 each have k2/2 vertices when k is

even and ðk − 1Þ2/2 + ð2k − 1Þ = ðk2 − 1Þ/2 + k when k is
odd. They can thus each be calculated in Oðk2Þ time.
By Theorem 4, the set Sk0 has 3k/2 vertices when k = 4
and dðk2 + 2Þ/3e vertices otherwise, and this set can be
calculated in Oðk2Þ time.

Hence, in a Tð3, kÞ, a decycling set Sk with jSkj = kðjSk0j
+ jSk1j + jSk2jÞ/3 when k ≡ 0ðmod 3Þ, jSkj = ðk − 1ÞðjSk0j + jSk1j
+ jSk2jÞ/3 + jSk2j when k ≡ 1ðmod 3Þ, and jSkj = ðk − 2ÞðjSk0j +
jSk1j + jSk2jÞ/3 + jSk0j + k2 when k ≡ 2ðmod 3Þ can be found in
Oðk3Þ time. By further distinguishing the two cases k even
and k odd, we obtain the expected set sizes.
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2

Figure 4: An illustration of the case k ≡ 0ðmod 3Þ with k = 6. The selected decycling set for each of the Ti,δð2, kÞ (0 ≤ i ≤ k − 1) subtori is given
below it. Where there can be edges on the third dimension between two subtori, sample edges are shown.
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Figure 5: An illustration of the case k ≡ 1ðmod 3Þ with k = 7. The selected decycling set for each of the Ti,δð2, kÞ (0 ≤ i ≤ k − 1) subtori is given
below it. Where there can be edges on the third dimension between two subtori, sample edges are shown.
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Figure 6: An illustration of the case k ≡ 2ðmod 3Þ with k = 5. The
selected decycling set for each of the Ti,δð2, kÞ (0 ≤ i ≤ k − 1)
subtori is given below it. Where there can be edges on the third
dimension between two subtori, sample edges are shown.
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Figure 3: The sets Sk1 (a) and Sk2 (b) as defined in a Tð2, kÞ when k = 5; they consist in the red vertices.
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From Theorem 3, we have in a Tð3, kÞ that jSj ≥ ð3k3 −
k3 + 1Þ/5 = ð2k3 + 1Þ/5. Therefore, Oðk3Þ is optimal time.

4. Discussion

In this section, we discuss the obtained theoretical results and
compare them with experimental data.

4.1. Comparison with the Lower Bound.We investigate in this
section how close the size of the generated decycling set is to
the lower bound given by Theorem 3. Figure 7 shows the
values obtained from Theorem 3 and Theorem 5. Let us recall
that the result of Theorem 3 is a lower bound on the size of a
decycling set, and not necessarily the size of an optimal decy-
cling set. So, the difference plotted in Figure 7 is given for ref-
erence, and it shows that the size of the obtained decycling set
is promising, possibly optimal in some cases, given that it is
rather close, and sometimes equal, to the lower bound of
Theorem 3.

One can also notice that the size of the decycling set gen-
erated by the proposed algorithm is never smaller than the
lower bound of Theorem 3. If that were the case, this would
indicate a hole in the proposed algorithm.

4.2. Comparison with the Results of a Computer Experiment.
We have implemented a stochastic decycling algorithm in
order to compare the obtained theoretical results with those
obtained experimentally. As recalled in introduction, this is
an NP-complete problem; hence, the graph decycling imple-
mentation we use only approximates the size of an optimal
decycling set. This implementation follows the method
described in [19]. The stochastic implementation was run
1,000 times.

The values obtained from Theorem 5 and the computer
experiment are shown in Table 1. The minimum size and
the average size of the decycling set generated by the stochas-
tic implementation are given. The values from Theorem 3—a
lower bound on the size of a decycling set, and not necessarily
the size of an optimal decycling set—are also given for
reference.

From these results, it can be noticed that the proposed
algorithm beats the stochastic implementation on each of
all its 1,000 runs at k ≡ 2ðmod 4Þ and is equal or very nearly
equal to it at k ≡ 0ðmod 4Þ. In other words, when k is even,
our proposal induces a smaller or nearly equal decycling set
than the best decycling set found after 1,000 runs. And when
k is odd, as k increases, the size difference between our
proposal and the stochastic implementation continuously
decreases, and at k = 9, our proposal beats the stochastic
implementation when considering the average value of its
1,000 runs.

And, of course, the complexity of the stochastic imple-
mentation is always prohibitive [19], especially compared to
the worst-case time complexity of the proposal (Oðk3Þ, see
Theorem 5). These are very positive results which quantita-
tively show the significance of the proposal. For reference,
in the case k = 10, the stochastic implementation took more
than 2.5 hours to complete the 1,000 runs on a midrange
computer (Intel Core i5-1035G7 CPU, 8GB RAM).

Finally, it can also be noticed that the size of the decycling
set generated by the proposed algorithm in a Tð3, kÞ isOðknÞ.
Besides, by Theorem 4, the size of an optimal decycling set in
a Tð2, kÞ is also OðknÞ. This is yet another positive indicator
of the performance of our proposal.

5. Concluding Remarks

The torus topology is nowadays ubiquitous in supercomput-
ing. It is the network topology of choice for the interconnect
of massively parallel systems: it is for instance employed by
the supercomputer ranked number one in the world as of
November 2020, the supercomputer Fugaku. Besides, it is
common knowledge that cycles in the network of compute
nodes harm parallel processing, and this is one reason why
the decycling problem—NP-complete—has been extensively
addressed in the literature. We have described in this paper a
decycling algorithm for a torus Tð3, kÞ. Thanks to the recur-
sive property of the torus topology, this proposal can be used
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Figure 7: Investigating how close the size of the decycling set
generated is to the lower bound of Theorem 3.

Table 1: Comparison of the size of the decycling set obtained with
the proposed method in a Tð3, kÞ with that of the experimentally
generated decycling sets. The theoretical lower bound is also given
for reference.

Arity k
Proposal

(Theorem 5)

Experiment
(minimum

size)

Experiment
(average size)

Lower bound
(Theorem 3)

3 18 14 14.71 11

4 30 30 33.85 26

5 85 60 65.86 51

6 98 106 113.85 87

7 189 171 180.46 138

8 258 257 269.15 205

9 378 371 383.21 292

10 452 505 526.01 401
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to decycle parts (i.e., subtori) of a torus of higher dimension,
which as explained will consequently facilitate parallel pro-
cessing. Precisely, we have given a constructive proof of a
decycling set Sk for a torus Tð3, kÞ where Sk has kðjSk0j + 2j
Sk1jÞ/3 vertices when k ≡ 0ðmod 3Þ, ðk − 1ÞðjSk0j + 2jSk1jÞ/3 + j
Sk1j vertices when k ≡ 1ðmod 3Þ, ðk − 2ÞðjSk0j + 2jSk1jÞ/3 + jSk0j
+ k2 vertices when k ≡ 2ðmod 3Þ with Sk0 an optimal decy-
cling set in Tð2, kÞ, jSk1j = k2/2 when k even, and jSk1j = ðk2 −
1Þ/2 + k when k odd and can be obtained in Oðk3Þ optimal
time. We have formally evaluated the proposed algorithm
and conducted evaluation experiments to compare it to con-
ventional approaches. The obtained results have quantita-
tively shown the significance of the proposal.

Regarding future works, refining the proposed decycling
algorithm so that the generated decycling set includes a
smaller number of vertices is a first meaningful objective.
Then, it will be very interesting to investigate, for instance,
as explained above by using the recursive property of the
torus topology, how to rely on the obtained results to produce
nontrivial decycling sets for tori of higher dimensions.
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