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Processes and systems of fractional order recently attract
research interests. This special issue collects 18 papers with
respect to dynamical processes and systems of fractional
order, their computations, and their applications.

Fractional-order models and problems are the main
focus of this issue. The recent progress in calculus and
symbolic computation has open new frontiers in Engineering
applications, in Physics, and in Technology, thus enabling
facing challenging problems such as nonlinear problems,
scale depending problems, noninteger dimensional prob-
lems, and nondifferentiable functions. In different fields
of research, there is an urgent demand for fractals; for
instance, new materials with extreme mechanical behavior
or traffic optimization problems in communications can be
suitably investigated by using fractal theory and beyond.
Fractal theory, originally based on the analysis of functions
with strange behaviors like the self-similar functions or the
recursively defined unsmooth paths, which fill in the plane,
was developing in the last decade by handling more complex
fractal-like phenomena in science, nature, and biology. For
instance, fractals in science were studied in signals, com-
munications, and fractures in materials. Fractals in nature
arise along the coast line, geomorphology, and tree branches.
Fractals in biology were observed and studied in the heath
beats, blood vessels, brain activity, and DNA. There follows
that nearly every phenomenon in nature, when observed at a
suitable scale or investigated by a scientific model, looks like
a fractal and the corresponding model is fractional.

M. Li and W. Zhao’s paper entitled “Solving Abel’s type
integral equation with Mikusinski’s operator of fractional

order” gives a novel explanation of the integral equation of
Abel’s type from the point of view ofMikusinski’s operational
calculus. Y.-M.Wang’s paper “Maximumnorm error estimates
of ADI methods for a two-dimensional fractional subdiffusion
equation” discusses two alternating direction implicit finite
difference methods for solving a two-dimensional fractional
subdiffusion equation, providing an explicit error estimate
for each of the two methods in the discrete maximum
norm. J.-S. Duan’s paper “The periodic solution of fractional
oscillation equation with periodic input” exhibits that their
results are similar to the case of a damped oscillation with
a periodic input in the integer-order case. In addition, the
paper introduces the fractional resonance frequency. The
paper by X.-M. Yang and Z.-L. Deng that is in the title
“A point source identification problem for a time fractional
diffusion equation” develops an effective numerical algorithm
to recover both the intensities and locations of unknown
point sources from final measurements when an inverse
source identification problem for a time fractional diffusion
equation is considered.

The paper by M. H. Heydari et al. is entitled “Chebyshev
wavelets method for solution of nonlinear fractional integrodif-
ferential equations in a large interval.” It develops an efficient
Chebyshev wavelets method for solving a class of nonlinear
fractional integrodifferential equations in a large interval and
presents a new technique for computing nonlinear terms in
equations of such type. L. Liu’s paper entitled “Interval wavelet
numerical method on Fokker-Planck equations for nonlin-
ear random system” proposes an interval wavelet numer-
ical method for nonlinear random systems using interval
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Shannon-Gabor wavelet interpolation operator. Two types
of equations, namely, a Fokker-Planck-Kolmogorov equation
for nonlinear oscillators and a time fractional Fokker-Planck
equation, are taken as examples to illustrate the effectiveness
and efficiency of the proposed method. S.-L. Mei and D.-
H. Zhu’s paper entitled “Interval Shannon wavelet collocation
method for fractional Fokker-Planck equation” presents a
method of an adaptive interval interpolation wavelet.

The paper by H. S. Alkhaldi et al., entitled “Vibration
control of fractionally-damped beam subjected to a moving
vehicle and attached to fractionally-damped multiabsorbers,”
presents promising results inmechanics and theoretic physics
with respect to the dynamic response of Bernoulli-Euler
homogeneous isotropic fractionally damped simply sup-
ported beam.Thepaper by S.Wen et al., which is entitled “The
study of fractional order controller with SLAM in the humanoid
robot,” presents a fractional-order PI controller with SLAM
method.The proposed method was used in the simulation of
navigation of NAO humanoid robot from Aldebaran.

Z. Wang and L. Yan’s paper “The S-transform of sub-fBm
and an application to a class of linear subfractional BSDEs”
studies be a subfractional Brownian motion with index 0 <
𝐻 < 1. M. Li’s paper entitled “Power spectrum of generalized
fractional Gaussian noise” gives the Fourier transform of the
generalized fractional Gaussian noise (GfGn). By GfGn, one
means that the autocorrelation function of GfGn is equipped
with fractional lag. Hence, it is a kind of noise equipped with
two indexes, the Hurst parameter 0 < 𝐻 < 1 and the index of
fractional lag that is less than or equals 1 but greater than 0.

Z. Liao’s paper with the title “Low-dosed X-ray computed
tomography imaging by regularized fully spatial fractional-
order Perona-Malik diffusion” proposes a new fractional-
order Perona-Malik Diffusion (FOPMD) algorithm for noise
suppressing. The algorithm has the advantages of both
regularization and FOPMD. It has good abilities in singu-
larities preserving while suppressing noise. S. Hu’s paper
entitled “External fractional-order gradient vector Perona-
Malik diffusion For sinogram restoration of low-dosed X-
ray computed tomography” presents a novel fractional-order
diffusion scheme, named external fractional-order gradient
vector Perona-Malik diffusion, which has advantage in avoid-
ing artifacts, dark resulting images, and speckle effect. The
paper by W.-S. Chen et al. is entitled “Geometric distribution
weight information modeled using radial basis function with
fractional order for linear discriminant analysis method.” It
introduces the radial basis function (RBF) with fractional
order to model the geometric distribution weight informa-
tion of the training samples and proposes a novel geometric
distribution weight information-based Fisher discriminant
criterion. The paper by B. Chen et al. entitled “A fast region-
based segmentation model with Gaussian kernel of fractional
order” proposed the Gaussian kernel of fractional order for
image processing. The paper by J. Yang et al. “Extraction of
affine invariant features using fractal” presents an approach
for extracting affine invariant features based on fractal for
object classification.

The paper by W. Huang et al., in the title of “Distance-
based routing strategy for traffic transport in spatial networks,”
proposes a novel distance-based routing strategy in spatial

scale-free networks. X. Sun and J. Liu’s paper “Weak conver-
gence for a class of stochastic fractional equations driven by
fractional noise” gives the analysis of the issue about the weak
convergence of a class of stochastic fractional equations with
the excitation of fractional Gaussian noise.
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We consider a class of stochastic fractional equations driven by fractional noise on (𝑡, 𝑥) ∈ [0, 𝑇]× [0, 1] 𝜕𝑢/𝜕𝑡 = 𝐷
𝛼

𝛿
𝑢+𝑓(𝑡, 𝑥, 𝑢) +

𝜕
2

𝐵
𝐻

(𝑡, 𝑥)/𝜕𝑡 𝜕𝑥, with Dirichlet boundary conditions.We formally replace the random perturbation by a family of sequences based
on Kac-Stroock processes in the plane, which approximate the fractional noise in some sense. Under some conditions, we show
that the real-valued mild solution of the stochastic fractional heat equation perturbed by this family of noises converges in law, in
the space C([0, 𝑇] × [0, 1]) of continuous functions, to the solution of the stochastic fractional heat equation driven by fractional
noise.

1. Introduction

In recent years, there has been considerable interest in
studying fractional equations due to interesting properties
and applications in various scientific areas including image
analysis, risk management, and statistical mechanics (see
Droniou and Imbert [1] and Uchaikin and Zolotarev [2]
for a survey of applications). Much effort has been devoted
to apply the fractional calculus to mathematical problems
in science and engineering. For example, Chen et al. [3]
and Li et al. [4] studied the fractional-order networks and
Li [5] investigated fractal time series. More works on the
fields can be found in [6–12] and the references therein.
Stochastic partial differential equation involving fractional
Laplacian operator (which is an integrodifferential operator)
has been studied by many authors. For example, Mueller [13]
and Wu [14] proved the existence of a solution of stochastic
fractional heat and Burgers equation perturbed by a stable
noise, respectively. Other related references are Chang and
Lee [15], Truman and Wu [16], Liu et al. [17], Wu [18], and
the references therein.

On the other hand, weak convergence to Brownian
motion, fractional Brownian motion, and related stochastic
processes have been considered extensively since the work

of Taqqu [19] and Delgado and Jolis [20]. Recently, many
researchers are interested in studying weak convergence of
stochastic differential equation. Some surveys could be found
in Bardina et al. [21], Boufoussi andHajji [22], andMellall and
Ouknine [23]. Bardina et al. [21] studied the convergence in
law, in the spaceC([0, 𝑡] × [0, 1]) of continuous functions, of
the solution of

𝜕𝑋
𝑛

𝜕𝑡
(𝑡, 𝑥) −

𝜕
2

𝑋
𝑛

𝜕𝑥2
(𝑡, 𝑥) = 𝜃

𝑛
(𝑡, 𝑥) , (1)

with vanishing initial data and Dirichlet boundary condi-
tions, towards the solution of

𝜕𝑋

𝜕𝑡
(𝑡, 𝑥) −

𝜕
2

𝑋

𝜕𝑥2
(𝑡, 𝑥) = 𝑊 (𝑡, 𝑥) , (2)

where (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1] and 𝜃
𝑛
is a noisy input

which converges to white noise𝑊. Mellall and Ouknine [23]
considered the quasilinear stochastic heat equation on [0, 1]

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) −

𝜕
2

𝑢

𝜕𝑥2
(𝑡, 𝑥) = 𝑏 (𝑢 (𝑡, 𝑥)) +

𝜕
2

𝐵
𝐻

(𝑡, 𝑥)

𝜕𝑡 𝜕𝑥
, (3)

with Dirichlet boundary conditions

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) = 0, 𝑡 ∈ [0, 𝑇] , (4)
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and initial condition 𝑢(0, 𝑥) = 𝑢
0
(𝑥), 𝑥 ∈ [0, 1], where

𝜕
2

𝐵
𝐻

(𝑡, 𝑥)/𝜕𝑡𝜕𝑥 is a fractional noise with Hurst parameter
𝐻 ∈ (1/2, 1).

Motivated by these works, we consider the weak conver-
gence for the following stochastic fractional heat equation
driven by fractional noise on (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1]:

𝜕𝑢

𝜕𝑡
= 𝐷
𝛼

𝛿
𝑢 + 𝑓 (𝑡, 𝑥, 𝑢) +

𝜕
2

𝐵
𝐻

(𝑡, 𝑥)

𝜕𝑡 𝜕𝑥
,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) = 0,

(5)

where 𝐷
𝛼

𝛿
is the fractional Laplacian operator with respect

to the spatial variable, to be defined in Section 2 which was
recently introduced by Debbi [24] and Debbi and Dozzi [25],
and 𝐵

𝐻

(𝑡, 𝑥) is a fractional noise on [0, 𝑇] × [0, 1] with Hurst
index 𝐻 > 1/2 defined on a complete probability space
{Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃}. Actually, we understand (5) in the sense
of Walsh [26], and so one can present a mild formulation of
(5) as follows:

𝑢 (𝑡, 𝑥) = ∫

1

0

𝐺
𝛼,𝛿

(𝑡, 𝑥 − 𝑦) 𝑢
0
(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫

1

0

𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑓 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫

1

0

𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝐵
𝐻

(𝑑𝑠, 𝑑𝑦) ,

(6)

where 𝐺
𝛼,𝛿

(⋅, ∗) denotes the Green function associated with
(5).

The rest of this paper is organized as follows. In Section 2,
we begin by making some notation and by recalling some
basic preliminaries which will be needed later. In Section 3,
we will prove weak limit theorems for (5) in space C([0, 𝑡] ×

[0, 1]). Most of the estimates of this paper contain unspecified
constants. An unspecified positive and finite constant will
be denoted by 𝐶, which may not be the same in each
occurrence. Sometimes we will emphasize the dependence of
these constants upon parameters.

2. Preliminaries

In this section, we briefly recall some basic definitions of
fractional noise and Green function.

2.1. Fractional Noise. For each 𝑡 ∈ [0, 𝑇], let F𝐻
𝑡

be the
𝜎-field generated by the random variables {𝐵

𝐻

(𝑡, 𝐴), 𝑡 ∈

[0, 𝑇], 𝐴 ∈ B[0, 1]} and the sets of probability zero, and
denote by P the 𝜎-field of progressively measurable subsets
of [0, 𝑇] × Ω.

We denote byE the set of step functions on [0, 𝑇]× [0, 1].
Let H be the Hilbert space defined as the closure of E with
respect to the scalar product

⟨1
[0,𝑡]×𝐴

, 1
[0,𝑠]×𝐵

⟩
H

= |𝐴 ∩ 𝐵| 𝑅
𝐻
(𝑡, 𝑠) , (7)

where covariance kernel𝑅
𝐻
(𝑡, 𝑠) = (1/2)[𝑡

2𝐻

+𝑠
2𝐻

−|𝑡−𝑠|
2𝐻

]

and |𝐴| denotes the Lebesgue measure of the set 𝐴.

According to Nualart and Ouknine [27], the mapping
1
[0,𝑡]×𝐴

→ 𝐵
𝐻

(𝑡, 𝐴) can be extended to an isometry between
H and the Gaussian space 𝐻

1
(𝐵
𝐻

) associated with 𝐵
𝐻 and

denoted by

𝜑 󳨃󳨀→ 𝐵
𝐻

(𝜑) := ∫

[0,𝑡]×𝐴

𝜑 (𝑠, 𝑦) 𝐵
𝐻

(𝑑𝑠, 𝑑𝑦) . (8)

Define the linear operator𝐾∗
𝐻
: E 󳨃→ 𝐿

2

([0, 𝑇]) by

𝐾
∗

𝐻
(𝜑) = 𝐾

𝐻
(𝑇, 𝑠) 𝜑 (𝑠, 𝑥)

+ ∫

𝑇

𝑠

(𝜑 (𝑟, 𝑥) − 𝜑 (𝑠, 𝑥))
𝜕𝐾
𝐻

𝜕𝑟
(𝑟, 𝑠) 𝑑𝑟,

(9)

where𝐾
𝐻
is the square integrable kernel given by

𝐾
𝐻
(𝑡, 𝑠)

:=

{{{{

{{{{

{

𝑐
𝐻
(𝑡 − 𝑠)

𝐻−1/2

+ 𝐶
𝐻
𝑠
1/2−𝐻

×∫

𝑡

𝑠

(𝑢 − 𝑠)
𝐻−3/2

(1 − (
𝑠

𝑢
)

1/2−𝐻

)𝑑𝑢, 0 < 𝑠 ≤ 𝑡,

0, otherwise,
(10)

with 𝑐
𝐻
= (2𝐻Γ(3/2 − 𝐻)/Γ(𝐻 + 1/2)Γ(2 − 2𝐻))

1/2, and one
can get

𝜕𝐾
𝐻

𝜕𝑡
(𝑡, 𝑠) = 𝑐

𝐻
(
1

2
− 𝐻)(

𝑡

𝑠
)

𝐻−1/2

(𝑡 − 𝑠)
𝐻−3/2

. (11)

Moreover, the kernel𝐾
𝐻
satisfies the following property:

∫

𝑠∧𝑡

0

𝐾
𝐻
(𝑡, 𝑟) 𝐾

𝐻
(𝑠, 𝑟) 𝑑𝑟 = 𝑅

𝐻
(𝑡, 𝑠) , (12)

𝑅
𝐻
(𝑡, 𝑠) being the covariance kernel of the fractional Brown-

ian motion.Then, for any pair of step functions 𝜑 and 𝜓 inE
we have

⟨𝐾
∗

𝐻
(𝜑) , 𝐾

∗

𝐻
(𝜓)⟩
𝐿
2
([0,𝑇]×[0,1])

= ⟨𝜑, 𝜓⟩
H
, (13)

because

(𝐾
∗

𝐻
1
[0,𝑡]×𝐴

) (𝑠, 𝑥) = 𝐾
𝐻
(𝑡, 𝑠) 1

[0,𝑡]×𝐴
(𝑠, 𝑥) . (14)

As a consequence, the operator 𝐾
∗

𝐻
provides an isometry

between the Hilbert space H and 𝐿
2

([0, 𝑇] × [0, 1]). Hence,
the Gaussian family {𝑊(𝑡, 𝐴), 𝑡 ∈ [0, 𝑇], 𝐴 ∈ B[0, 1]}

defined by

𝑊(𝑡, 𝐴) = 𝐵
𝐻

((𝐾
∗

𝐻
)
−1

(1
[0,𝑡]×𝐴

)) (15)

is a space-timewhite noise, and the process𝐵𝐻 has an integral
representation of the form

𝐵
𝐻

(𝑡, 𝑥) = ∫

𝑡

0

∫

𝑥

0

𝐾
𝐻
(𝑡, 𝑠)𝑊 (𝑑𝑠, 𝑑𝑦) . (16)
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Now, we can present a mild formulation of (5) as follows:

𝑢 (𝑡, 𝑥) = ∫

1

0

𝐺
𝛼,𝛿

(𝑡, 𝑥 − 𝑦) 𝑢
0
(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫

1

0

𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑓 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦)𝑊 (𝑑𝑠, 𝑑𝑦) .

(17)

That is, the last term of (6) is equal to

∫

𝑡

0

∫

1

0

𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝐵
𝐻

(𝑑𝑠, 𝑑𝑦)

= ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦)𝑊 (𝑑𝑠, 𝑑𝑦) .

(18)

2.2. Green Function. In this subsection, we will introduce
the nonlocal factional differential operator𝐷𝛼

𝛿
defined via its

Fourier transformF by

F (𝐷
𝛼

𝛿
𝜑) (𝜉) = −

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝛼 exp(−𝑖𝛿𝜋
2
sgn (𝜉))F (𝜑) (𝜉) . (19)

In this paper, we will assume that |𝛿| ≤ min{𝛼−[𝛼]
2
, 2+[𝛼]

2
−

𝛼}, 𝑖 = 1, . . . , 𝑑, [𝛼]
2
, is the largest even integer less or equal

to 𝛼 (even part of 𝛼), and 𝛿 ∈ 2N + 1.
The operator 𝐷𝛼

𝛿
is a closed, densely defined operator on

𝐿
2

(R) and it is the infinitesimal generator of a semigroup
which is in general not symmetric and not a contraction.This
operator is a generalization of various well-known operators,
such as the Laplacian operator (when 𝛼 = 2), the inverse of
the generalized Riesz-Feller potential (when 𝛼 > 2), and the
Riemann-Liouville differential operator (when |𝛿| = 2 + [𝛼]

2

or |𝛿| = 𝛼−[𝛼]). It is self-adjoint only when 𝛿 = 0 and, in this
case, it coincides with the fractional power of the Laplacian.
We refer the readers to Debbi [24], Debbi andDozzi [25], and
Komatsu [28] for more details about this operator.

According toKomatsu [28],𝐷𝛼
𝛿
can be represented for 1 <

𝛼 < 2 by

𝐷
𝛼

𝛿
𝜑 (𝑥) = ∫

R

𝜑 (𝑥 + 𝑦) − 𝜑 (𝑥) − 𝑦𝜑
󸀠

(𝑥)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

1+𝛼

× (𝜅
𝛿

−
1
(−∞,0)

(𝑦) + 𝜅
𝛿

+
1
(−0,+∞)

(𝑦)) 𝑑𝑦

(20)

and for 0 < 𝛼 < 1 by

𝐷
𝛼

𝛿
𝜑 (𝑥) = ∫

R

𝜑 (𝑥 + 𝑦) − 𝜑 (𝑥)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

1+𝛼

× (𝜅
𝛿

−
1
(−∞,0)

(𝑦) + 𝜅
𝛿

+
1
(−0,+∞)

(𝑦)) 𝑑𝑦,

(21)

where 𝜅𝛿
−
and 𝜅𝛿
+
are two nonnegative constants satisfying 𝜅𝛿

−
+

𝜅
𝛿

+
> 0 and 𝜑 is a smooth function for which the integral

exists, and 𝜑
󸀠 is its derivative. This representation identifies

it as the infinitesimal generator for a nonsymmetric 𝛼-stable
Lévy process.

Let𝐺
𝛼,𝛿

(𝑡, 𝑥) be the fundamental solution of the following
Cauchy problem:

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) = 𝐷

𝛼

𝛿
(𝑡, 𝑥) ,

𝑢 (0, 𝑥) = 𝛿
0
(𝑥) , 𝑡 > 0, 𝑥 ∈ R,

(22)

where 𝛿
0
(⋅) is the Dirac distribution. By Fourier transform,

we see that 𝐺
𝛼,𝛿

(𝑡, 𝑥) is given by

𝐺
𝛼,𝛿

(𝑡, 𝑥)

=
1

2𝜋
∫

R

exp (−𝑖𝑧𝑥 − 𝑡|𝑧|
𝛼 exp (−𝑖𝛿𝜋

2
sgn (𝑧))) 𝑑𝑧.

(23)

The relevant parameters 𝛼, called the index of stability, and
𝛿 (related to the asymmetry), improperly referred to as the
skewness, are real numbers satisfying |𝛿| ≤ min{𝛼 − [𝛼]

2
, 2 +

[𝛼]
2
− 𝛼}, and 𝛿 = 0 when 𝛿 ∈ 2N + 1.
Let us list some known facts on 𝐺

𝛼,𝛿
(𝑡, 𝑥) which will be

used later on (see, e.g., Debbi [24] andDebbi andDozzi [25]).

Lemma 1. Let 𝛼 ∈ (0,∞)/{N}; one has the following:

(1) the function 𝐺
𝛼,𝛿

(𝑡, ⋅) is not in general symmetric
relatively to 𝑥 and it is not everywhere positive;

(2) for any 𝑠, 𝑡 ∈ (0,∞) and 𝑥 ∈ R,

𝜕
𝑛

𝜕𝑥𝑛
𝐺
𝛼,𝛿

(𝑡, 𝑥) = (𝑠)
−(𝑛+1)/𝛼

𝐺
𝛼,𝛿

(𝑠
−1

𝑡, 𝑠
−1/𝛼

𝑥) , (24)

or equivalently,

𝜕
𝑛

𝜕𝑥𝑛
𝐺
𝛼,𝛿

(𝑡, 𝑥) = (𝑡)
−(𝑛+1)/𝛼

𝐺
𝛼,𝛿

(1, (𝑡)
−1/𝛼

𝑥) ; (25)

(3) 𝐺
𝛼,𝛿

(𝑠, ⋅)∗𝐺
𝛼,𝛿

(𝑡, ⋅) = 𝐺
𝛼,𝛿

(𝑠+𝑡, ⋅) for any 𝑠, 𝑡 ∈ (0,∞);

(4) For 𝑛 ≥ 1, there exist some constants 𝐶 and 𝐶
𝑛
> 0

such that, for all 𝑥 ∈ R,

󵄨󵄨󵄨󵄨𝐺𝛼,𝛿 (1, 𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶

1

1 + |𝑥|
1+𝛼

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑛

𝜕𝑥𝑛
𝐺
𝛼,𝛿

(1, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
𝑛

|𝑥|
𝛼+𝑛−1

(1 + |𝑥|
𝛼+𝑛

)
2
;

(26)

(5) ∫𝑇
0

∫
R
|𝐺
𝛼,𝛿

(𝑡, 𝑥)|
𝜆

𝑑𝑡 𝑑𝑥 < ∞ if and only if 1/𝛼 < 𝜆 <

𝛼.
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3. Main Results and Its Proof

Our aim is to prove that themild solution of (5), given by (17),
can be approximated in law in the space C([0, 𝑡] × [0, 1]) by
the processes

𝑢
𝑛
(𝑡, 𝑥) = ∫

1

0

𝐺
𝛼,𝛿

(𝑡, 𝑥 − 𝑦) 𝑢
0
(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫

1

0

𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑓 (𝑠, 𝑦, 𝑢
𝑛
(𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,

(27)

where {𝜃
𝑛
(𝑡, 𝑥)}

𝑛∈N is a weak approximation of a Brownian
sheet; that is, {𝜃

𝑛
(𝑡, 𝑥)}

𝑛∈N, (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1] is a family of
Kac-Stroock processes in the plane which is square integral
a.s., defined by

𝜃
𝑛
(𝑡, 𝑥) = 𝑛√𝑡𝑥(−1)

𝑁
𝑛
(𝑡,𝑥)

, 𝑛 ∈ N, (28)

𝑁
𝑛
(𝑡, 𝑥) = 𝑁(√𝑛𝑡, √𝑛𝑥) and {𝑁(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1]}

is a standard Poisson process in plane.

Theorem 2. Let {𝜃
𝑛
(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇]×[0, 1]}, 𝑛 ∈ N, be the

Kac-Stroock processes in the plane. Assume that 𝑢
0
: [0, 1] →

R is a continuous function and 𝑓 satisfies the following linear
growth conditions:

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝐶 (1 + |𝑢|) (29)

and uniformly Lipschitz conditions
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑢) − 𝑓 (𝑡, 𝑥, 𝑢)

󵄨󵄨󵄨󵄨 ≤ 𝐶 |𝑢 − V| . (30)

Then, the family of stochastic processes {𝑢
𝑛
, 𝑛 ∈ N} defined

by (27) converges in law, as 𝑛 tends to infinity, in the space
C([0, 𝑇] × [0, 1]), to the mild solution 𝑢 of (5), given by (17).

In order to prove Theorem 2, we will focus on the linear
problem, which is amount to establish the convergence in law,
in the spaceC([0, 𝑇] × [0, 1]), of the solutions of

𝜕𝑋
𝑛

𝜕𝑡
−
𝜕
2

𝑋
𝑛

𝜕𝑥2
=

𝜕
2

𝐵
𝐻

𝑛

𝜕𝑡 𝜕𝑥
, (31)

with vanishing initial data and Dirichlet boundary condi-
tions, toward the solution of

𝜕𝑋

𝜕𝑡
−
𝜕
2

𝑋

𝜕𝑥2
=

𝜕
2

𝐵
𝐻

𝜕𝑡 𝜕𝑥
, (32)

where the solutions of (31) and (32) are, respectively, given by

𝑋
𝑛
(𝑡, 𝑥) = ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,

(33)

𝑋(𝑡, 𝑥) = ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦)𝑊 (𝑑𝑠, 𝑑𝑦) . (34)

In the following, we need two results which can be found
in Bardina et al. [21]. The first one leads to the tightness in
C([0, 𝑇] × [0, 1]) of a family.

Lemma 3. Let {𝑋
𝑛
, 𝑛 ∈ N} be a family of random variables

taking values in C([0, 𝑇] × [0, 1]). The family of the laws of
{𝑋
𝑛
, 𝑛 ∈ N} is tight, if there exist 𝑝󸀠, 𝑝 > 0, 𝛿 > 2, and a

constant 𝐶 such that

sup
𝑛≥1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛 (0, 0)

󵄨󵄨󵄨󵄨

𝑝
󸀠

< ∞, (35)

and, for every 𝑡, 𝑡󸀠 ∈ [0, 𝑇] and 𝑥, 𝑥
󸀠

∈ [0, 1],

sup
𝑛≥1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑛
(𝑡
󸀠

, 𝑥
󸀠

) − 𝑋
𝑛
(𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

< 𝐶(
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

− 𝑥
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠

− 𝑡
󵄨󵄨󵄨󵄨󵄨
)
𝛿

.

(36)

The second one is a technical lemma.

Lemma 4. Denote by 𝜃
𝑛
(𝑡, 𝑥) the Kac-Stroock kernels; for any

even 𝑛 ∈ N, there exists a constant𝐶
𝑛
, such that, for any 𝑡

1
, 𝑡
2
∈

[0, 𝑇] and 𝑥
1
, 𝑥
2
∈ [0, 1] satisfying 0 < 𝑡

1
< 𝑡
2
< 2𝑡
1
and

0 < 𝑥
1
< 𝑥
2
< 2𝑥
1
, one can get

sup
𝑛≥1

𝐸[(∫

𝑡
2

𝑡
1

∫

𝑥
2

𝑥
1

𝑓 (𝑠, 𝑥) 𝜃
𝑛
(𝑠, 𝑥) 𝑑𝑥 𝑑𝑠)

𝑛

]

≤ 𝐶
𝑛
(∫

𝑡
2

𝑡
1

∫

𝑥
2

𝑥
1

𝑓
2

(𝑠, 𝑥) 𝑑𝑥 𝑑𝑠)

𝑛/2

,

(37)

for any 𝑓(𝑠, 𝑥) ∈ 𝐿
2

([0, 𝑇] × [0, 1]).

Proposition 5. The family of processes {𝑋
𝑛
, 𝑛 ∈ N} is tight in

C([0, 𝑇] × [0, 1]).

Proof. We first estimate the moment of order 𝑚 of the
quantity

𝑋
𝑛
(𝑡
󸀠

, 𝑥
󸀠

) − 𝑋
𝑛
(𝑡, 𝑥)

= ∫

𝑡
󸀠

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦) 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠

− ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,

(38)

which is equal to

∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
(𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦)

−𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦)) 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
(𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) ) 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡
󸀠

𝑡

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦) 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠.

(39)
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By Lemma 4, one can get

sup
𝑛≥1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑛
(𝑡
󸀠

, 𝑥
󸀠

) − 𝑋
𝑛
(𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑚

≤ 𝐶
𝑚
[∫

𝑡

0

∫

1

0

[𝐾
∗

𝐻
(𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦)

−𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦))]
2

𝑑𝑦𝑑𝑠]

𝑚/2

+ 𝐶
𝑚
[∫

𝑡

0

∫

1

0

[𝐾
∗

𝐻
(𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦))]
2

𝑑𝑦𝑑𝑠]

𝑚/2

+ 𝐶
𝑚
[∫

𝑡
󸀠

𝑡

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦))
2

𝑑𝑦𝑑𝑠]

𝑚/2

= 𝐶
𝑚
(𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼) .

(40)

Using the continuous embedding established in [27]

𝐿
1/𝐻

([0, 𝑇] × [0, 1]) ⊂ H, (41)

we obtain

𝐼 = [∫

𝑡

0

∫

1

0

[𝐾
∗

𝐻
(𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦)

−𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦))]
2

𝑑𝑦𝑑𝑠]

𝑚/2

≤ 𝐶
𝐻
[∫

𝑡

0

∫

1

0

(𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦)

−𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦))
1/𝐻

𝑑𝑦𝑑𝑠]

𝑚𝐻

= 𝐶
𝐻

󵄩󵄩󵄩󵄩󵄩
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥
󸀠

− ∗)

−𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)
󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

= 𝐶
𝐻

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥
󸀠

− ∗) − 𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

𝜃

⋅
󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥
󸀠

− ∗)

−𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

1−𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

≤ 𝐶
𝐻
[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥
󸀠

− ∗) − 𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

𝜃

⋅
󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥
󸀠

− ∗)
󵄨󵄨󵄨󵄨󵄨

1−𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥
󸀠

− ∗) − 𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

𝜃

⋅
󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

1−𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

]

= 𝐶
𝐻
(𝐼
1
+ 𝐼
2
) .

(42)

Let 𝜃 ∈ (0,min{1, (𝛼 + 1)𝐻 − 1}). Thanks to the mean-
value theorem, one can get

𝐼
1
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

− 𝑥
󵄨󵄨󵄨󵄨󵄨

𝜃
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝜉 − ∗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜃

× |𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥
󸀠

− ∗)|
1−𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

= (
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

− 𝑥
󵄨󵄨󵄨󵄨󵄨

𝜃/𝐻

∫

𝑇

0

∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝜉 − 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜃/𝐻

×
󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦)
󵄨󵄨󵄨󵄨󵄨

(1−𝜃)/𝐻

𝑑𝑦𝑑𝑠)

𝑚𝐻

,

∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝜉 − 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜃/𝐻

×
󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦)
󵄨󵄨󵄨󵄨󵄨

(1−𝜃)/𝐻

𝑑𝑦

≤ ∫

R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝜉 − 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜃/𝐻

×
󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦)
󵄨󵄨󵄨󵄨󵄨

(1−𝜃)/𝐻

𝑑𝑦

= (𝑡
󸀠

− 𝑠)
1/𝛼−(1+𝜃)/𝛼𝐻

∫

R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝐺
𝛼,𝛿

(1, 𝜉 − 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜃/𝐻

×
󵄨󵄨󵄨󵄨𝐺𝛼,𝛿 (1, 𝑦)

󵄨󵄨󵄨󵄨

(1−𝜃)/𝐻

𝑑𝑦

≤ 𝐶
𝐻,𝜃

(𝑡
󸀠

− 𝑠)
1/𝛼−(1+𝜃)/𝛼𝐻

.

(43)

Therefore, if 1/𝛼−(1+𝜃)/𝛼𝐻+1 > 0, that is, 𝜃 < (𝛼+1)𝐻−1,
then

𝐼
1
≤ 𝐶
𝑇,𝐻,𝜃

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

− 𝑥
󵄨󵄨󵄨󵄨󵄨

𝑚𝜃

. (44)

Similarly, one can get

𝐼
2
≤ 𝐶
𝑇,𝐻,𝜃

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

− 𝑥
󵄨󵄨󵄨󵄨󵄨

𝑚𝜃

. (45)

Hence

𝐼 ≤ 𝐶
𝑇,𝐻,𝜃

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

− 𝑥
󵄨󵄨󵄨󵄨󵄨

𝑚𝜃

. (46)
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Now we are in the position to deal with 𝐼𝐼. Consider

𝐼𝐼 = [∫

𝑡

0

∫

1

0

[𝐾
∗

𝐻
(𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) )]
2

𝑑𝑦𝑑𝑠]

𝑚/2

≤ 𝐶
𝐻
[∫

𝑡

0

∫

1

0

(𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦)

−𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦))
1/𝐻

𝑑𝑦𝑑𝑠]

𝑚𝐻

= 𝐶
𝐻

󵄩󵄩󵄩󵄩󵄩
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)

−𝐺
𝛼,𝛿

(𝑡 − ⋅, 𝑥 − ∗)
󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

= 𝐶
𝐻

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗) − 𝐺
𝛼,𝛿

(𝑡 − ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

𝜇

⋅
󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)

−𝐺
𝛼,𝛿

(𝑡 − ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨

1−𝜇
󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

≤ 𝐶
𝐻
[
󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗) − 𝐺
𝛼,𝛿

(𝑡 − ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

𝜇

⋅
󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

1−𝜇󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

+
󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗) − 𝐺
𝛼,𝛿

(𝑡 − ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

𝜇

⋅
󵄨󵄨󵄨󵄨𝐺𝛼,𝛿 (𝑡 − ⋅, 𝑥 − ∗)

󵄨󵄨󵄨󵄨

1−𝜇󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

]

= 𝐶
𝐻
(𝐼𝐼
1
+ 𝐼𝐼
2
) .

(47)

By mean-value theorem, it holds that

𝐼𝐼
1
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠

− 𝑡
󵄨󵄨󵄨󵄨󵄨

𝜇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
𝐺
𝛼,𝛿

(𝜂 − ⋅, 𝑥 − ∗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇

⋅
󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− ⋅, 𝑥 − ∗)
󵄨󵄨󵄨󵄨󵄨

1−𝜇
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

𝐿
1/𝐻
([0,𝑇]×[0,1])

= (∫

𝑇

0

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠

− 𝑡
󵄨󵄨󵄨󵄨󵄨

𝜇/𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
𝐺
𝛼,𝛿

(𝜂 − 𝑠, 𝑥 − 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇/𝐻

⋅|𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦) |
(1−𝜇)/𝐻

𝑑𝑦𝑑𝑠)

𝑚𝐻

.

(48)

Noting that

𝐺
𝛼,𝛿

(𝑡, 𝑥) = 𝑡
−1/𝛼

𝐺
𝛼,𝛿

(1, 𝑡
−1/𝛼

𝑥) , (49)
one can get

𝜕

𝜕𝑡
𝐺
𝛼,𝛿

(𝑡, 𝑥)

= (−
1

𝛼
) 𝑡
−1−1/𝛼

𝐺
𝛼,𝛿

(1, 𝑡
−1/𝛼

𝑥)

+ (−
1

𝛼
) 𝑡
−1−2/𝛼

[𝑥
𝜕

𝜕𝑧
𝐺
𝛼,𝛿

(1, 𝑧) |
𝑧=𝑡
−1/𝛼
𝑥
] .

(50)

Then

∫

1

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
G
𝛼,𝛿

(𝜂 − 𝑠, 𝑥 − 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇/𝐻

⋅
󵄨󵄨󵄨󵄨󵄨
G
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦)
󵄨󵄨󵄨󵄨󵄨

(1−𝜇)/𝐻

𝑑𝑦

≤ ∫

𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
G
𝛼,𝛿

(𝜂 − 𝑠, 𝑥 − 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇/𝐻

⋅
󵄨󵄨󵄨󵄨󵄨
G
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦)
󵄨󵄨󵄨󵄨󵄨

(1−𝜇)/𝐻

𝑑𝑦

≤ ∫

𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(−

1

𝛼
) (𝜂 − 𝑠)

−1−1/𝛼

𝐺
𝛼,𝛿

(1, (𝜂 − 𝑠)
−1/𝛼

(𝑥 − 𝑦))

+ (
1

𝛼
) (𝜂 − 2)

−1−2/𝛼

×[(𝑥 − 𝑦)
𝜕

𝜕𝑧
𝐺
𝛼,𝛿

(1, 𝑧) |
𝑧=(𝜂−𝑠)

−1/𝛼
(𝑥−𝑦)

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇/𝐻

⋅
󵄨󵄨󵄨󵄨󵄨
G
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥 − 𝑦)
󵄨󵄨󵄨󵄨󵄨

(1−𝜇)/𝐻

𝑑𝑦

≤ 𝐶
𝛼,𝛿,𝐻

[(𝑡 − 𝑠)
−(𝛼𝜇+1)/𝐻𝛼+1/𝛼

+(𝑡 − 𝑠)
−(𝛼𝜇+𝜇+1)/𝐻𝛼+1/𝛼

] .

(51)

Therefore, if 𝜇 ∈ (0, ((𝛼 + 1)𝐻 − 1)/𝛼), we have

𝐼𝐼
1
≤ 𝐶
𝛼,𝛿,𝐻,𝑇,𝜇

󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠

− 𝑡
󵄨󵄨󵄨󵄨󵄨

𝑚𝜇

. (52)

Similarly,

𝐼𝐼
2
≤ 𝐶
𝛼,𝛿,𝐻,𝑇,𝜇

󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠

− 𝑡
󵄨󵄨󵄨󵄨󵄨

𝑚𝜇

. (53)

Thus, we have

𝐼𝐼 ≤ 𝐶
𝑇,𝐻,𝜃

󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠

− 𝑡
󵄨󵄨󵄨󵄨󵄨

𝑚𝜇

. (54)

Now we deal with 𝐼𝐼𝐼; similar to the proof of 𝐼, we get

𝐼𝐼𝐼 = [∫

𝑡
󸀠

𝑡

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦))
2

𝑑𝑦𝑑𝑠]

𝑚/2

≤ 𝐶
𝛼,𝛿,𝐻

[∫

𝑡
󸀠

𝑡

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼,𝛿

(𝑡
󸀠

− 𝑠, 𝑥
󸀠

− 𝑦)
󵄨󵄨󵄨󵄨󵄨

1/𝐻

𝑑𝑦𝑑𝑠]

𝑚𝐻

≤ 𝐶
𝛼,𝛿,𝐻

[∫

𝑡
󸀠

𝑡

(𝑡
󸀠

− 𝑡)
−1/𝐻𝛼+1/𝛼

× (∫

1

0

󵄨󵄨󵄨󵄨𝐺𝛼,𝛿 (1, 𝑧)
󵄨󵄨󵄨󵄨

1/𝐻

𝑑𝑧)𝑑𝑠]

𝑚𝐻

≤ 𝐶
𝛼,𝛿,𝐻

󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠

− 𝑡
󵄨󵄨󵄨󵄨󵄨

𝑚(((𝛼+1)𝐻−1)/𝛼)

.

(55)

Together with (40)–(55), one can get

sup
𝑛≥1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑛
(𝑡
󸀠

, 𝑥
󸀠

) − 𝑋
𝑛
(𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑚

≤ 𝐶[
󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠

− 𝑡
󵄨󵄨󵄨󵄨󵄨

𝑚𝜇

+
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

− 𝑥
󵄨󵄨󵄨󵄨󵄨

𝑚𝜃

] .

(56)

By Lemma 3, the proof can be completed.
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Proposition 6. The family of processes {𝑋
𝑛
, 𝑛 ∈ N} defined

by (33) converges to the process 𝑋 given by (34), in the sense
of finite-dimensional distributions, as 𝑛 tends to infinity, in the
spaceC([0, 𝑇] × [0, 1]).

Proof. We claim that, for any 𝑎
1
, . . . , 𝑎

𝑚
∈ R and

(𝑡
1
, 𝑥
1
), . . . , (𝑡

𝑚
, 𝑥
𝑚
) ∈ [0, 𝑇] × [0, 1], the law of linear

combination
𝑚

∑

𝑗=1

𝑎
𝑗
𝑋
𝑛
(𝑡
𝑗
, 𝑥
𝑗
) (57)

converges weakly to the law of a random variable defined by

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋(𝑡
𝑗
, 𝑥
𝑗
) . (58)

This will be done by proving the convergence of the corre-
sponding characteristic functions; that is,

𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋
𝑛
(𝑡
𝑗
, 𝑥
𝑗
)

}

}

}

]

]

󳨀→ 𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋(𝑡
𝑗
, 𝑥
𝑗
)

}

}

}

]

]

.

(59)

Since for any fixed (𝑡, 𝑥) ∈ [0, 𝑇]×[0, 1],𝐾∗
𝐻
𝐺
𝛼,𝛿

(𝑡−𝑠, 𝑥−𝑦) ∈

𝐿
2

([0, 𝑇] × [0, 1]), then for any (𝑡
𝑗
, 𝑥
𝑗
) ∈ [0, 𝑇] × [0, 1], 𝑗 ∈

{1, 2, . . . , 𝑚}, there exists a sequence (𝐾∗
𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
−𝑠, 𝑥
𝑗
−𝑦))
𝑘
of

simple functions such that (𝐾∗
𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
−𝑠, 𝑥
𝑗
−𝑦))
𝑘
converges

to 𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦) in 𝐿

2

([0, 𝑇] × [0, 1]) as 𝑘 → ∞.
To simplify notation, we define

𝑋
𝑗,𝑘

𝑛
= ∫

𝑡

0

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,

𝑋
𝑗,𝑘

= ∫

𝑡

0

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

𝑊(𝑑𝑠, 𝑑𝑦) .

(60)

Then
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋
𝑛
(𝑡
𝑗
, 𝑥
𝑗
)

}

}

}

]

]

−𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋(𝑡
𝑗
, 𝑥
𝑗
)

}

}

}

]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑉 + 𝑉𝐼 + 𝑉𝐼𝐼,

(61)

where

𝑉 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋
𝑛
(𝑡
𝑗
, 𝑥
𝑗
)

}

}

}

]

]

−𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋
𝑗,𝑘

𝑛

}

}

}

]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑉𝐼 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋
𝑗,𝑘

𝑛

}

}

}

]

]

−𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋
𝑗,𝑘
}

}

}

]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑉𝐼𝐼 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋
𝑗,𝑘
}

}

}

]

]

−𝐸[

[

exp
{

{

{

𝑖𝜉

𝑚

∑

𝑗=1

𝑎
𝑗
𝑋(𝑡
𝑗
, 𝑥
𝑗
)

}

}

}

]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(62)

We will proceed to prove (59) in three steps.
Step 1.By themean-value theorem, there exists a constant𝐶 >

0 such that

𝑉 ≤ 𝐶max
1≤𝑗≤𝑚

{𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑛
(𝑡
𝑗
, 𝑥
𝑗
) − 𝑋

𝑗,𝑘

𝑛

󵄨󵄨󵄨󵄨󵄨
}

= 𝐶max
1≤𝑗≤𝑚

{𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0

∫

1

0

[𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦)

−(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

]

× 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} .

(63)

Using the same method as the proof of Lemma 4, by Hölder
inequality we can get

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0

∫

1

0

[𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦)

−(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

] 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶(∫

𝑇

0

∫

1

0

[𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦)

−(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

]
2

𝑑𝑦𝑑𝑠)

1/2

.

(64)

So 𝑉 uniformly converges to 0 with respect to 𝑛.
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Step 2. We proceed to deal with 𝑉𝐼. Using the mean-value
theorem again,

𝑉𝐼 ≤ 𝐶max
1≤𝑗≤𝑚

{𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗,𝑘

𝑛
− 𝑋
𝑗,𝑘
󵄨󵄨󵄨󵄨󵄨
}

= 𝐶max
1≤𝑗≤𝑚

{𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

× 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠

− ∫

𝑇

0

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

× 𝑊(𝑑𝑠, 𝑑𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} .

(65)

Thanks to Donsker’s theorem, as 𝑛 → ∞, the laws of
processes

∫

𝑇

0

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠 (66)

converge weakly to the law of

∫

𝑇

0

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

𝑊(𝑑𝑠, 𝑑𝑦) , (67)

since (𝐾∗
𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
−𝑦))
𝑘
is a simple function. So we can

get 𝑉𝐼 → 0, as 𝑛 → ∞.

Step 3. Finally we deal with 𝑉𝐼𝐼. Using the mean-value
theorem again, one can get

𝑉𝐼𝐼 ≤ 𝐶max
1≤𝑗≤𝑚

{𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗,𝑘

− 𝑋(𝑡
𝑗
, 𝑥
𝑗
)
󵄨󵄨󵄨󵄨󵄨
}

= 𝐶max
1≤𝑗≤𝑚

{𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

×𝑊(𝑑𝑠, 𝑑𝑦)

− ∫

𝑇

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦)

×𝑊(𝑑𝑠, 𝑑𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} .

(68)

Then by the Hölder inequality and the variance for a stochas-
tic integral, we get

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0

∫

1

0

(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

𝑊(𝑑𝑠, 𝑑𝑦)

−∫

𝑇

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦)𝑊(𝑑𝑠, 𝑑𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (∫

𝑇

0

∫

1

0

[(𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦))

𝑘

−𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡
𝑗
− 𝑠, 𝑥
𝑗
− 𝑦) ]

2

𝑑𝑦𝑑𝑠)

1/2

.

(69)

So, 𝑉𝐼𝐼 → 0, for all 1 ≤ 𝑗 ≤ 𝑚, as 𝑛 → ∞. Our proof is
completed.

As a consequence of the last two properties, we can state
the following.

Theorem 7. The family of processes {𝑋
𝑛
, 𝑛 ∈ N} defined

by (33) converges in law, as 𝑛 tends to infinity, in the space
C([0, 𝑇] × [0, 1]), to the process𝑋 defined by (34).

Now, we can give the proof of Theorem 2.

Proof of Theorem 2. Let us recall first the mild solution of (5),
which is given by

𝑢 (𝑡, 𝑥) = ∫

1

0

𝐺
𝛼,𝛿

(𝑡, 𝑥 − 𝑦) 𝑢
0
(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫

1

0

𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑓 (𝑠, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦)𝑊 (𝑑𝑠, 𝑑𝑦) ,

(70)

and the approximation sequence toward the mild solution of
(5), which fulfils

𝑢
𝑛
(𝑡, 𝑥) = ∫

1

0

𝐺
𝛼,𝛿

(𝑡, 𝑥 − 𝑦) 𝑢
0
(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫

1

0

𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑓 (𝑠, 𝑦, 𝑢
𝑛
(𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,

(71)

where {𝜃
𝑛
(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1]}, 𝑛 ∈ N, stand for the

Kac-Stroock process which is square integrable a.s.
Moreover, the approximating sequence 𝑢

𝑛
has continuous

paths a.s., for all 𝑛 ∈ N which can be obtained by using the
properties of the Green function, the fact that 𝜃

𝑛
∈ 𝐿
2

([0, 𝑇]×

[0, 1]) a.s., together with a Gronwall-type argument.
On the other hand, consider the following function:

𝜓 : C ([0, 𝑇] × [0, 1]) 󳨀→ C ([0, 𝑇] × [0, 1]) ,

𝜂 󳨀→ 𝑧
𝜂
,

(72)

where 𝜂 : [0, 𝑇] × [0, 1] → R is a continuous function, and

𝑧
𝜂
(𝑡, 𝑥) = ∫

1

0

𝐺
𝛼,𝛿

(𝑡, 𝑥 − 𝑦) 𝑢
0
(𝑦) 𝑑𝑦

+ ∫

𝑡

0

∫

1

0

𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝑓 (𝑠, 𝑦, 𝑢
𝑛
(𝑠, 𝑦)) 𝑑𝑦 𝑑𝑠

+ 𝜂 (𝑡, 𝑥) .

(73)
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Then it can be proved that this last function admits a unique
continuous solution. Now, according to Theorem 3.5 in
Bardina et al. [21], the function 𝜓 is continuous. Considering

𝑋
𝑛
(𝑡, 𝑥) = ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦) 𝜃
𝑛
(𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,

𝑋 (𝑡, 𝑥) = ∫

𝑡

0

∫

1

0

𝐾
∗

𝐻
𝐺
𝛼,𝛿

(𝑡 − 𝑠, 𝑥 − 𝑦)𝑊 (𝑑𝑠, 𝑑𝑦) ,

(74)

one can get that 𝑋
𝑛
converges in law in C([0, 𝑇] × [0, 1]) to

𝑋, as 𝑛 goes to infinity. On the other hand, we have that 𝑢
𝑛
=

𝜓(𝑋
𝑛
) and 𝑢 = 𝜓(𝑋), and hence the continuity of 𝜓 implies

the convergence in law of 𝑢
𝑛
to 𝑢 inC([0, 𝑇] × [0, 1]).
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We present a fractional order PI controller (FOPI) with SLAM method, and the proposed method is used in the simulation of
navigation of NAO humanoid robot from Aldebaran. We can discretize the transfer function by the Al-Alaoui generating function
and then get the FOPI controller by Power Series Expansion (PSE). FOPI can be used as a correction part to reduce the accumulated
error of SLAM. In the FOPI controller, the parameters (𝐾

𝑝
, 𝐾
𝑖
, and 𝛼) need to be tuned to obtain the best performance. Finally,

we compare the results of position without controller and with PI controller, FOPI controller. The simulations show that the FOPI
controller can reduce the error between the real position and estimated position. The proposed method is efficient and reliable for
NAO navigation.

1. Introduction

More than 95% of the control loops are of PI/PID type in
process control, but only a few of control loops work well [1].
There are some problems in PI/PID control, such as bad tun-
ing, incorrect implementation techniques, some restrictions
and limitations, and actuator and sensor problems.

Using the notion of fractional order, itmay be a step closer
to the real world life, because many real physical systems are
well characterized by fractional order differential equations
[2]. So a considerable amount of research in fractional order
dynamic systems and controllers was published in scientific
and engineering literature in the last few years. Modern
examples of applications are bioengineering [3], physics
[4], chaos theory [5], viscoelasticity [6], and many others
(see, e.g., [7]). Fractional order controllers can be expressed
by fractional order differential equations. Fractional order
controllers have been used in industrial applications [8]
and various fields such as power electronics [9], system

identification [10], robotic manipulators, irrigation canal
control [11], mechatronics systems [12], and heat diffusion
systems [13]. In addition, the stability is an essential property
of systems, for example, for the stability of conventional sys-
tems of integer order and for fractional systems. So the sta-
bility issues for fractional order have been solved [2, 14–19].

In this paper, we will study fractional order PI (FOPI)
controller combined with SLAM in the navigation of
humanoid robot because of the limitation of PI controller.
In the FOPI controller, the parameters (𝐾

𝑝
, 𝐾
𝑖
, and 𝛼) need

to be tuned based on some design specifications. The results
will be compared without controller and with PI controller,
fractional order PI controller.

The rest of this paper is organized as follows: the FOPI
controller used in the NAO robot navigation control is
presented in Section 2, the background knowledge of SLAM
and the NAO robot are described in Section 3, and the
simulation results and conclusion are given in Sections 4 and
5, respectively.
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2. Fractional Order PI Controller

2.1. Fractional Calculus. The fractional order 𝑃𝐼𝜆𝐷𝑢 was
proposed as a generalization of the PID controller [20]. A
general fundamental operator is denoted as follows:

𝑎
𝐷
𝛼

𝑡
=

{{{{{

{{{{{

{

𝑑
𝛼

𝑑𝑡𝛼
Re (𝛼) > 0

1 Re (𝛼) = 0

∫

𝑡

𝑎

(𝑑𝜏)
−𝛼

, Re (𝛼) < 0,

(1)

where 𝑎 and 𝑡 are the limit of the operation, 𝛼 is the fractional
order, which can be any complex number, and 𝜏 is the variable
of integration.

Commonly, there are three methods to define the frac-
tional calculus [21].

2.1.1. Grünwald-Letnikov Definition. Consider

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) = lim

ℎ→0

1

ℎ𝛼

[(𝑡−𝑎)/ℎ]

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)𝑓 (𝑡 − 𝑗ℎ) , (2)

where ( 𝛼𝑗 ) = Γ(𝛼+1)/Γ(𝑗+1)Γ(𝛼−𝑗+1) = 𝛼!/𝑗!(𝛼−𝑗)! is the
binomial coefficient, [⋅] is the integer part, ℎ is the calculation
of step length, and Γ(∙) is gamma function.

2.1.2. Riemann-Liouville Definition. Consider

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

𝑎

𝑓 (𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏,

(𝑛 − 1 < 𝛼 < 𝑛) .

(3)

2.1.3. Caputo Definition. Consider

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

𝑓
(𝑛)

(𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏, (𝑛 − 1 < 𝛼 < 𝑛) .

(4)

For zero initial conditions and lower limit 𝑎 = 0, the
Laplace transform of fractional derivatives is

𝐿 {
0
𝐷
𝛼

𝑡
𝑓 (𝑡)} = 𝑠

𝛼

𝐹 (𝑠) . (5)

2.2. Fractional Order Controller. From the definition, it is
shown that the fractional order differential is different from
the integer order differential. It is not to obtain the limit values
at the point, but it is related to the function values from the
initial time to this point time. So the fractional order PI has
memory.

The typical 𝑛-term linear fractional order differential
equation as is follows:

𝑎
𝑛
𝐷
𝛽
𝑛𝑦 (𝑡) + 𝑎

𝑛−1
𝐷
𝛽
𝑛−1𝑦 (𝑡) + ⋅ ⋅ ⋅ 𝑎

1
𝐷
𝛽
1𝑦 (𝑡) + 𝑎

0
𝐷
𝛽
0𝑦 (𝑡)

= 𝑏
𝑛
𝐷
𝛼
𝑛𝑢 (𝑡) + 𝑏

𝑛−1
𝐷
𝛼
𝑛−1𝑢 (𝑡) + ⋅ ⋅ ⋅ 𝑏

1
𝐷
𝛼
1𝑢 (𝑡)

+ 𝑏
0
𝐷
𝛼
0𝑢 (𝑡) ,

(6)

where 𝛼
𝑘
and 𝛽

𝑘
are arbitrary real numbers. Assuming 𝛼

𝑘
>

𝛼
𝑘−1

> ⋅ ⋅ ⋅ 𝛼
0
> 0, 𝛽

𝑘
> 𝛽
𝑘−1

> ⋅ ⋅ ⋅ 𝛽
0
> 0 because of no loss of

generality.
Assume (6) meets the zero initial condition; we can get

the continuous fractional order transfer function by using
Laplace transform technique:

𝐺 (𝑠) =
𝑌 (𝑠)

𝑈 (𝑠)
=
𝑏
𝑚
𝑠
𝛽
𝑚 + 𝑏
𝑚−1

𝑠
𝛽
𝑚−1 + ⋅ ⋅ ⋅ + 𝑏

0
𝑠
𝛽
0

𝑎
𝑛
𝑠𝛼𝑛 + 𝑎

𝑛−1
𝑠𝛼𝑛−1 + ⋅ ⋅ ⋅ + 𝑎

0
𝑠𝛼0

. (7)

For the discrete fractional order control system, the equation
𝑧 transform is available:

𝐺 (𝑧) =
𝑌 (𝑧)

𝑈 (𝑧)

= (𝑏
𝑚
(𝑤 (𝑧

−1

))
𝛽
𝑚

+ 𝑏
𝑚−1

(𝑤 (𝑧
−1

))
𝛽
𝑚−1

+ ⋅ ⋅ ⋅

+𝑏
0
(𝑤 (𝑧

−1

))
𝛽
0

)

× (𝑎
𝑛
(𝑤 (𝑧

−1

))
𝛼
𝑛

+ 𝑎
𝑛−1
(𝑤 (𝑧

−1

))
𝛼
𝑛−1

+ ⋅ ⋅ ⋅

+ 𝑎
0
(𝑤 (𝑧

−1

))
𝛼
0

)
−1

,

(8)

where 𝑤(𝑧−1) is the transform function from 𝑠 domain to 𝑧
domain.

In general, the discretization of continuous fractional
order differentiator/integrator 𝑠±𝛾 (𝛾 ∈ 𝑅) can be expressed as
𝑠
±𝛾

≈ (𝑤(𝑧
−1

))
±𝛾. So the generating function and its expan-

sion determine both the form of the approximation and the
coefficients [22]. We can get different generating function
because of different calculation method. As a generating
function, 𝑤(𝑧−1), the following formula can be used in gen-
eral:

𝑤(𝑧
−1

) = (
1

𝜇𝑇

1 − 𝑧
−1

𝛾 + (1 − 𝛾) 𝑧−1
) , (9)

where 𝜇 and 𝛾 denote the gain and phase tuning parameters,
respectively, and𝑇 is the sampling period. For example, when
𝜇 = 1 and 𝛾 = {0, 1/2, 7/8, 1, 3/2}, the generating function
(9) becomes the forward Euler, the Tustin, the Al-Alaoui, the
backward Euler, and the implicit Adams rules, respectively
[23]. We will consider the Al-Alaoui generating function of
the form

(𝑤 (𝑧
−1

))
±𝛾

= (
8

7𝑇

1 − 𝑧
−1

1 + (𝑧−1/7)
)

±𝛾

. (10)

The discretization formal for GL formula (2) is given
after performing the PSE (Power Series Expansion) of (1 −
𝑧
−1

)
±𝛾. By using the shortmemory principle [24], the discrete

equivalent of the fractional order integrodifferential operator
(𝑤(𝑧
−1

))
±𝛾 is given by

(𝑤 (𝑧
−1

))
±𝛾

= 𝑇
∓𝛾

𝑧
−[𝐿/𝑇]

[𝐿/𝑇]

∑

𝑗=0

(−1)
𝑗

(
±𝛾

𝑗
) 𝑧
[𝐿/𝑇]−𝑗

, (11)
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where 𝑇 is the sampling period, 𝐿 is the memory length, and
(−1)
𝑗

(
±𝛾

𝑗
) are binomial coefficients 𝑐(𝑟)

𝑗
(𝑗 = 0, 1, . . .), 𝑐(𝑟)

0
= 1,

and 𝑐(𝑟)
𝑗
= (1 − (1 + (±𝛾))/𝑗)𝑐

(𝛾)

𝑗−1
.

We use the FOPI controller, and its transfer function can
be expressed as

𝐺 (𝑠) =
𝑈 (𝑠)

𝐸 (𝑠)
= 𝐾
𝑝
+
𝐾
𝑖

𝑠𝛼
=

𝐾
𝑝
𝑠
𝛼

+ 𝐾
𝑖

𝑠𝛼
. (12)

With the Al-Alaoui operation, we can obtain

𝐺 (𝑠) =
𝑈 (𝑠)

𝐸 (𝑠)
=

𝐾
𝑝
(8/7𝑇)

𝛼

(𝑃
𝑝
/𝑄
𝑞
) + 𝐾
𝑖

(8/7𝑇)
𝛼

(𝑃
𝑝
/𝑄
𝑞
)

=

𝐾
𝑝
(8/7𝑇)

𝛼

𝑃
𝑝
+ 𝐾
𝑖
𝑄
𝑞

(8/7𝑇)
𝛼

𝑃
𝑝

.

(13)

The third order expansion by using PSE method is

𝐺 (𝑠) =
𝑈 (𝑠)

𝐸 (𝑠)

= (𝐾
𝑝
𝐾
𝛼

(𝑝
3
𝑧
−3

+ 𝑝
2
𝑧
−2

+ 𝑝
1
𝑧
−1

+ 1)

+𝐾
𝑖
(𝑞
3
𝑧
−3

+ 𝑞
2
𝑧
−2

+ 𝑞
1
𝑧
−1

+ 1))

× (𝐾
𝛼

(𝑝
3
𝑧
−3

+ 𝑝
2
𝑧
−2

+ 𝑝
1
𝑧
−1

+ 1))
−1

,

(14)

where

𝑝
1
= −𝛼, 𝑝

2
=
𝛼
2

− 𝛼

2
, 𝑝

3
=
−𝛼
3

+ 3𝛼
2

− 2𝛼

6
,

𝑞
1
=
𝛼

7
, 𝑞

2
=
𝛼
2

− 𝛼

98
, 𝑞

3
=
𝛼
3

− 3𝛼
2

+ 2𝛼

2058
,

𝐾
𝛼

= (
8

7𝑇
)

𝛼

.

(15)

Equation (14) can be given by

𝐺 (𝑠) = ((𝐾
𝑝
𝐾
𝛼

𝑝
3
+ 𝐾
𝑖
𝑞
3
) 𝑧
−3

+ (𝐾
𝑝
𝐾
𝛼

𝑝
2
+ 𝐾
𝑖
𝑞
2
) 𝑧
−2

+ (𝐾
𝑝
𝐾
𝛼

𝑝
1
+ 𝐾
𝑖
𝑞
1
) 𝑧
−1

+ (𝐾
𝑖
+ 𝐾
𝑝
𝐾
𝛼

))

× (𝐾
𝛼

(𝑝
3
𝑧
−3

+ 𝑝
2
𝑧
−2

+ 𝑝
1
𝑧
−1

+ 1))
−1

.

(16)

And it can be expressed as

𝑈 (𝑧)𝐾
𝛼

(𝑝
3
𝑧
−3

+ 𝑝
2
𝑧
−2

+ 𝑝
1
𝑧
−1

+ 1)

= 𝐸 (𝑧) [(𝐾
𝑝
𝐾
𝛼

𝑝
3
+ 𝐾
𝑖
𝑞
3
) 𝑧
−3

+ (𝐾
𝑝
𝐾
𝛼

𝑝
2
+ 𝐾
𝑖
𝑞
2
) 𝑧
−2

+ (𝐾
𝑝
𝐾
𝛼

𝑝
1
+ 𝐾
𝑖
𝑞
1
) 𝑧
−1

+ (𝐾
𝑖
+ 𝐾
𝑝
𝐾
𝛼

)] .

(17)

So we can get

𝑢 (𝑡) = (𝐾
𝑝
𝑝
3
+ 𝐾
𝑖
𝑞
3
𝐾
𝛼

) 𝑒 (𝑡 − 3)

+ (𝐾
𝑝
𝑝
2
+ 𝐾
𝑖
𝑞
2
𝐾
𝛼

) 𝑒 (𝑡 − 2)

+ (𝐾
𝑝
𝑝
1
+ 𝐾
𝑖
𝑞
1
𝐾
𝛼

) 𝑒 (𝑡 − 1)

+ (𝐾
𝑝
+ 𝐾
𝑖
𝐾
𝛼

) 𝑒 (𝑡)

− 𝑝
1
𝑢 (𝑡 − 1) − 𝑝

2
𝑢 (𝑡 − 2) − 𝑝

3
𝑢 (𝑡 − 3) .

(18)

3. Background of SLAM and
NAO Humanoid Robot

The simultaneous localization and mapping (SLAM) is a
process by which a robot can build a map of an environment
and at the same time use this map to deduce its location. In
SLAM, both the trajectory of the platform and the location
of all landmarks are estimated online without the need for
any a priori knowledge of location [25, 26]. EKF-SLAM is
very well known to navigation problems. The main steps
of SLAM include robot motion prediction, new landmarks
initialization, and known landmarks correction.

The observation model is

𝑦 = ℎ (𝑥) + V, (19)

where 𝑥 is robot state vector and landmark states, ℎ(𝑥) is the
observation function, and V is the measurement noise.

The covariance matrix is

𝑃 = 𝐹𝑃𝐹
󸀠

+ 𝑄, (20)

where 𝐹 is Jacobian matrix and 𝑄 is the Gaussian noise.
The EKF correction step is written as

𝑧 = 𝑦 − ℎ (𝑥
󸀠

) ,

𝑍 = 𝐻𝑃𝑥
𝑇

+ 𝑅,

(21)

where 𝑧 is the innovation’s mean, 𝑥󸀠 is the observation
position of the robot, 𝐻 is Jacobian matrix, and 𝑅 is the
covariance matrix of the measurement noise.

Kalman gain𝐾 is𝐾 = 𝑃𝐻
𝑇

𝑍.
The update position of the robot is

𝑥
󸀠

= 𝑥
󸀠

+ 𝐾𝑧. (22)

The correction covariance matrix is

𝑃 = 𝑃 − 𝐾𝑍𝐾
𝑇

. (23)

NAO is a new biped robot recently developed by French
company Aldebaran-Robotics. This humanoid robot had
been designed purposely to look approachable. With a height
of 0.57 meters and weight of about 4.5 kilogram, NAO has
the appealing appearance of a human toddler [27]. Based on
NAO robot, the FOPI controller as the correction part is used
in the SLAM simulation of NAO navigation in this paper.
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Figure 1: The correction part, where 𝑥
𝑅
is the real position and 𝑥

𝑒𝑠

is the EKF-estimated position.

4. Simulation Result

4.1. Control System Model. When NAO robot moves in 2D
space, the motion is mainly influenced by three variables,
namely, the robot current position, the control variable,
and the disturbance variable. Therefore, it is very important
to reduce the accumulated error for robot and effectively
overcome the negative influence of disturbance variable.

NAO will deviate from a set target because there is no
correction part to compensate noise of the sensors. When
the control U is a fixed value, the real position and estimated
position of the NAO will be largely different. So we use
controller as the correction part to reduce the error. The
correction part is based on the return error of the real position
and estimated position of NAO.The outline of this correction
part is presented in Figure 1.

4.2. Algorithm Performance Index. Because the NAO in
SLAM mainly produces two kinds of errors, so the average
error index of robot position, the average error index of
landmarks, and the average variance index of robot position
are proposed to test the performance of the controller. The
average error index of robot position is the average different
value between the real position and the estimated position.
When NAOmoves in 𝑠 steps, the definition 𝑒 is expressed by

𝑒 =
∑
𝑠

𝑖=1
𝑒

𝑠
, (24)

where 𝑒 is the error of 𝑥
𝑅
and 𝑥

𝑒𝑠
and 𝑠 is the number of steps.

If the number of landmarks is 𝑛 and 𝑙𝑒 is the error of the
real landmarks and estimated landmarks, the average error
index of landmarks 𝑙𝑒 is defined as follows:

𝑙𝑒 =
∑
𝑛

𝑖=1
𝑙𝑒

𝑛
. (25)

According to (24) and (25), we can see that the smaller
the average error, the better the control effect. But it could
not judge the stability of the control system from the single
average error index. So we define the average variance that
shows the distribution degree of error. The average variance
𝜎 is defined as follows:

𝜎 =
∑
𝑠

𝑖=1
(𝑒 − 𝑒)

2

𝑠
. (26)

The smaller the average variance, that is, every step error of
NAO is close to the average error, the better the stability of
the control.
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Figure 2: The simulation motion result of NAO in SLAM with the
fixed U.
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Figure 3: The simulation motion result of NAO in SLAM with PI
controller.

4.3. Control Algorithm Comparison. Figures 2 and 3 show the
simulation result of SLAMwith the fixed U and PI controller,
respectively.The three stars are the landmarks.The red points
and green points are the real position and the estimated
position, respectively. The circles on the green points are the
covariance of the robot.The circles become smaller when the
robot is near the landmark.The green circles are the estimated
landmarks.

In this paper, if not specified, abscissa represents steps,
and ordinate represents the error. Figure 4 shows the error of
the different𝐾

𝑝
with PI controller in EKF-SLAM.When𝐾

𝑝
<

0.7, the PI controller cannot effectively adjust the control
variable according to the error. And when 0.7 < 𝐾

𝑝
< 1,
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the control variable generated fromPI controller can basically
make the estimated position trace to the real position. But
when 𝐾

𝑝
is too large, the PI control variable cannot keep

stable, so we cannot follow the estimated position of robot.
Figure 5 shows the comparison of the errors with fixed

U and PI controller. It can be seen that the error with PI
controller is far less than the one with the fixed U. However,
when the steps of the robot motion increase, the error
generated from PI controller also gradually increases. So PI
controller cannot efficiently reduce the accumulated error of
the robot with the increasing steps. Therefore, we use FOPI
controller to decrease the error in the motion process. There
are three parameters (𝐾

𝑝
, 𝐾
𝑖
, and 𝛼) to be tuned.

Table 1: The average error index and variance index of robot
position with PI/FOPI controller.

Controller PI FOPI
𝑒 0.074 0.015
𝜎 0.014 0.00005

Table 2: The average error of the real landmarks and estimated
landmarks with PI/FOPI controller.

Controller PI FOPI
𝑙𝑒 0.167 0.083

From Figure 6, we can know that the scope of 𝐾
𝑝
is

0.7–0.9, 𝐾
𝑖
is about 0.2, and 𝛼 is the value of about 0.1. In

Figure 6(c), if the parameter 𝛼 increases, the result of con-
troller will become bad. But when 𝛼 is too small, the effect of
integral is not obvious, so the value of 𝛼 is about 0.1. In the
permitted range of proportional coefficient 𝐾

𝑝
and integral

coefficient 𝐾
𝑖
, the FOPI error influenced by the changing of

𝐾
𝑝
or 𝐾
𝑖
will not be a linear increasing trend, and its curve

will move up or down with the increasing 𝐾
𝑝
or 𝐾
𝑖
. There

is a fundamental difference between FOPI controller and PI
controller. The error in FOPI controller has oscillation trend,
which reflects that FOPI has a better control performance.

Based on the analysis of the parameters, this paper selects
the optimal parameters (𝐾

𝑝
= 0.7, 𝐾

𝑖
= 0.2, and 𝛼 = 0.1)

of FOPI controller. The simulation of motion result of EKF-
SLAM with FOPI controller is given in Figure 7. We can
conclude that FOPI control can keep stable and get a better
dynamics performance. The NAO robot’s estimated position
has almost completely been close to the real position.

Figure 8 is the comparison between the optimal param-
eters of FOPI controller (𝐾

𝑝
= 0.7, 𝐾

𝑖
= 0.2, and 𝛼 = 0.1)

and PI controller (𝐾
𝑝

= 0.9, 𝐾
𝑖
= 0.02). We compare

them with the fixed U. The results verify the validity of FOPI
controller. The average error and average variance are listed
in Table 1. When NAO moves 0.5 each step, we can get that
the error rate has got to 14% with PI controller and the error
rate to approximately 3% with FOPI controller from Table 1.
According to the index, it is shown that FOPI controller has
better stability and higher accuracy. In addition, the average
errors of the real landmarks and estimated landmarks with
PI and FOPI controller are given in Table 2. We get the errors
between the real landmarks and estimated landmarks based
on the coordinates [1, 2, 5, 8, 11, 14]. In order to ensure
the accuracy of simulation, we do the simulation 30 times,
respectively, and get the 𝑙𝑒 in Table 2. We can see that the
errors between the real landmarks and estimated landmarks
based on FOPI controller with EKF-SLAM are much smaller
than PI controller.

From the above figures and tables we can see that the
pros and cons of three control methods are very obvious.
FOPI controller is superior to PI controller, and PI controller
is better than the fixed U control. The error of the robot
movement with FOPI controller gradually tends to zero with
the increasing steps. Moreover, the error of FOPI controller
will not gradually increase and remain oscillation trend
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, and 𝛼) of FOPI controller.

within a certain number of steps. It is shown that FOPI has
a better performance than PI.

5. Conclusion

In this paper, FOPI controller with EKF-SLAM is proposed.
FOPI can be applied as a correction part. FOPI controllerwith
EKF-SLAM can effectively reduce the accumulated error.The
simulation shows that the FOPI controller is better than PI
controller in NAO robot. The feasibility of FOPI is valid
for the error of robot position and the error of landmarks.
The feasibility of the proposed algorithm is validated by

simulation results. In the future work, we can apply FOPI
controller with SLAM to NAO platform and do the experi-
ment in order to finish the navigation indoors environment.
In addition, it is worth studying how to generalize the two-
dimensional EKF-SLAM problem to the multidimensional
EKF-SLAM problem.
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[5] I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analy-
sis and Simulation, Springer, New York, NY, USA, 2011.

[6] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelas-
ticity: An Introduction toMathematicalModels, Imperial College
Press, London, UK, 2010.

[7] J. Sabatier, O. P. Agrawal, and J. A. TenreiroMachado, Eds.,
Advances in Fractional Calculus: Theoretical Developments and
Applications in Physics and Engineering, Springer, 2007.

[8] B. M. Vinagre, C. A. Monje, A. J. Caldern, and J. I. Surez,
“Fractional PID controllers for industry application: a brief
introduction,” Journal of Vibration and Control, vol. 13, no. 9-
10, pp. 1419–1429, 2007.

[9] A. J. Calderón, B. M. Vinagre, and V. Feliu, “Fractional order
control strategies for power electronic buck converters,” Signal
Processing, vol. 86, no. 10, pp. 2803–2819, 2006.

[10] M. Schlegel and M. Cech, “Fractal system identification for
robust control-the moment approach,” in Proceedings of the 5th
International Carpathian Control Conference, pp. 1–6, AGH-
UST, Krak𝑎w, Poland, May 2004.
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This paper presents the dynamic response of Bernoulli-Euler homogeneous isotropic fractionally-damped simply-supported beam.
The beam is attached to multi single-degree-of-freedom (SDOF) fractionally-damped systems, and it is subjected to a vehicle
moving with a constant velocity. The damping characteristics of the beam and SDOF systems are described in terms of fractional
derivatives. Three coupled second-order fractional differential equations are produced and then they are solved by combining the
Laplace transformwith the decompositionmethod.The obtained numerical results show that the dynamic response decreases as (a)
the number of absorbers attached to the beam increases and (b) the damping-ratios of used absorbers and beam increase. However,
there are some critical values of fractional derivatives which are different from unity at which the beam has less dynamic response
than that obtained for the full-order derivatives model. Furthermore, the obtained results show very good agreements with special
case studies that were published in the literature.

1. Introduction

Many physical problems were adequately described by differ-
ential equations of fractional order.The list of these problems
is long and the areas of applications are broad. Polymeric
damping, fluid mechanics, and the theory of viscoelasticity
[1–8] are some of these applications. The solution in the
closed form to a class of SDOF fractional oscillators subjected
to an impulse response is investigated [9]. Relationship
between fractional oscillator processes and the correspond-
ing fractional Brownian motion processes is well established
in research. However, the increment process of fractional
Brownian motion can be described by a random function
with long-range dependence fractional Gaussian noisemodel
[10]. A fractal time series is taken as the solution of differential
equation of a fractional order, or a response of a fractional
system, or a fractional filter driven with a white noise in the
domain of stochastic processes [11, 12]. A general approach
for approximating ideal filters that are based on fractional

calculus from the point of view of systems of fractional order
was introduced [13, 14]. A new direct operational inversion
method is introduced for solving coupled linear systems of
ordinary fractional differential equations, where the obtained
solutions are expressed explicitly in terms of multivariate
Mittag-Leffler functions [9, 15, 16].The solutions of fractional
Langevin equation of two different orderswhich are known as
the fractional Ornstein-Uhlenbeck processes, based on Weyl
and Riemann-Liouville fractional derivatives were obtained
[9, 17]. Power-laws-type data may further, in earthquake and
wind engineering applications, be governed by stochastically
differential equations of fractional order [18, 19]. Analysis
of signals generated by fractional-order process and applica-
tions of such model in a wide range of physical, mechanical,
and biological systems are discussed in [20]. However, as
noted from the literature, a clear physical interpretation of the
fractional derivative has been elusive. Good examples are (1)
transverse vibration of homogeneous beams whose damping
behavior is described by a fractional derivative of predefined
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constant orders was an important subject of matter [11, 21–
24]; (2) diffusion process where fractional differential equa-
tions have been employed to describe an anomalous diffusion
regime including both subdiffusion and superdiffusion [25];
and (3) many linear viscoelastic damping materials exhibit
a macroscopic constitutive behavior which has been the
subject of many investigations involving fractional order
derivative [26]. However, in the fractional-derivative model
of viscoelastic materials over extended ranges of time and
frequency, the deformation work corresponding to springs
and losses corresponding to dashpots (described by fractional
derivatives) have both energy types (stored and dissipated) at
any point of the utilized materials [27, 28].

The dynamic response characteristics of beams resulting
from the passage of different moving load systems, and with
the existence of dampers and oscillators, have been studied
within many applications. Some of the applications consist
of the vibrations existing in bridges, aircraft carriers, and
railroad tracks due tomoving vehicles, and vibrations existing
in pipeline systems due to fluid flows [29–31]. One of the
main objectives of studying such problems is to minimize or
to suppress the dynamic response characteristics or vibration
levels of beams when subjected to different load systems.The
simplest and most economical way to achieve this objective
is by having different lumped appendages attached to the
beam at different locations. In investigating the dynamic
response of beams, if the travelling force is constant, then
the time-dependent coefficients can be obtained in analytical
forms [32] which make it easy to find a solution to any
particular problem. However, in many cases, it is not just
the response of the beam (which is a function of the spatial
variable and time and depends on several parameters such as
beam characteristics, the magnitude of the force, its velocity,
number of appendages attached to the beam, and their
locations) that the designer is interested in. However, it has
long been observed that, as a structure is subjected tomoving
loads, the induced dynamic deflection and stress can be
significantly higher than those observed in the static case [33].
In this regard, the majority of the literature has been devoted
to the study of the so-called moving force [34], moving mass
[35–38], moving oscillator problems [39–41], and multiple
moving oscillators [42].

The vibration of a beam excited by a moving unmain-
tained oscillator is discussed in [43]. In this study, for certain
values of system parameters and travelling speeds of themov-
ing oscillator, separation of the oscillator from the beam can
occur frequently and even more than once during the travel
of the load [43]. The problem of an oscillator traversing on
an elastically-supported continuum is studied, whereas the
flexibility in the boundaries of the continuum is modeled by
linear-transverse springs [33]. Green functions formulation
to analyze the free vibration of a linear undamped beam sub-
jected to grounded SDOF oscillators appendages at different
discrete points is used [44], where researchers compared their
results with the approximate solution obtained by Galarkin’s
method.

Searching the relevant literature shows only few papers
dealing with the vibration of beams with constant values
for the fractional damping behavior [23, 24, 45]. However,

in this study, the fractional damping behaviors of the beam
and absorbers are taken with arbitrary orders. Therefore,
this study is important for the following key reasons: the
damping behavior of the dynamic response of the beam
can be analyzed over a continuous wide range by means
of fractional-derivative parameters. Moreover, the fractional
derivative damping behavior may better converge to real-
istic experimental models than the well-known first order
damping model. Hence, the fractional derivative model may
precisely prescribe a nonlinear damping behavior than other
existing damping models.

In this paper, a homogeneous isotropic Euler beam
with different appendages attached at different locations
subjected to a uniformly moving vehicle is investigated. The
solution to the handled problem is based on decomposing the
generalized transverse displacements of the beam, attached
oscillators, and the moving vehicle into infinite series com-
ponents. Then, the generalized displacements are recursively
solved by in the Laplace transform domain. The solutions in
this work mainly focus on the following characteristics: the
maximum response of the beam for a given velocity of the
vehicle, the maximum response over all possible velocities
and the velocity at which it occurs, the optimal beam and
absorbers fractional-damping characteristics, and the effect
of the number of attached absorbers.

2. Formulation of the Problem

Transverse vibration of Bernoulli-Euler homogeneous iso-
tropic fractionally-damped simply-supported beam is inves-
tigated. The beam is assumed to be subjected to a vehicle
moving from left-to-right with a constant velocity (V). The
governing equation of the beam under investigation, whose
damping characteristics are described by a fractional deriva-
tive of order 𝛽, can be written as
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𝐿

V
− 𝑡)

−

𝑁

∑

𝑖=1

𝑀̂
𝑖

̂̈𝑧
𝑖
(𝑡) 𝛿 (𝑥 − 𝑑

𝑖
) , 𝑥 ∈ (0, 𝐿) , 𝑡 > 0,

(1a)

BC’s: 𝑤 (0, 𝑡) = 0, 𝑤 (𝐿, 𝑡) = 0, 𝑤
𝑥𝑥
(0, 𝑡) = 0,

𝑤
𝑥𝑥
(𝐿, 𝑡) = 0,

(1b)

IC’s: 𝑤 (𝑥, 0) = 0, 𝑑𝑤 (𝑥, 0)

𝑑𝑡
= 0, (1c)

where 𝐻(⋅) refers to the unit step Heaviside function and
𝛿(⋅) refers to the Kronecker delta function. The equations
corresponding to the𝑁-SDOFabsorbers that are appendaged
to the beam are given as

𝑀̂
𝑖

̂̈𝑧
𝑖
(𝑡) = 𝐾̂

𝑖
[𝑤 (𝑑
𝑖
, 𝑡) − 𝑧̂

𝑖
(𝑡)]

+ 𝐶
𝑖

𝑑
𝛾

[𝑤 (𝑑
𝑖
, 𝑡) − 𝑧̂

𝑖
(𝑡)]

𝑑𝑡𝛾
, 𝑡 > 0,

(2a)
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Figure 1: A Simply-supported beam attached to𝑁-absorbers and subjected to a moving vehicle with a constant speed.

IC’s: 𝑧̂
𝑖
(0) = 0,

𝑑𝑧̂
𝑖
(0)

𝑑𝑡
= 0. (2b)

The equations corresponding to the moving vehicle can be
expressed as
𝑚V ( ̈𝑞 (𝑡) − 𝑔) = 𝑘V [𝑤 (V𝑡, 𝑡) − 𝑞 (𝑡)]

+ 𝑐V
𝑑 [𝑤 (V𝑡, 𝑡) − 𝑞 (𝑡)]

𝑑𝑡
, 0 < 𝑡 <

V
𝐿
,

(3a)

IC’s: 𝑞 (0) = 0,
𝑑𝑞 (0)

𝑑𝑡
= 0, (3b)

where the beam is assumed to be initially at rest and
{𝐿, 𝐸, 𝐼, 𝜇, 𝐶} are the length, modulus of elasticity, moment of
inertia of cross-sectional area (𝐴), mass per unit length, and
the coefficient of external damping of the beam, respectively.
Furthermore, these values are assumed to be constants.
The 𝑁-rigid-body SDOF fractionally-damped absorbers of
order 𝛾, masses 𝑀̂

𝑖
, stiffnesses 𝐾̂

𝑖
, and damping constants

𝐶
𝑖
are attached to the beam, as shown in Figure 1 (for

𝑖 = 1, 2, . . . , 𝑁). These elements are located at distances
𝑑
𝑖
measured from the left-end of the beam. However, the

parameters {𝑚V, 𝑘V, 𝑐V} refer to mass, stiffness, and damping
constants of the vehicle, respectively. Furthermore, the set
{𝑤(𝑥, 𝑡), 𝑧̂

𝑖
(𝑡), 𝑞(𝑡)} represents the beam transverse deflec-

tion at location (𝑥) and time (𝑡), the transverse dynamic
displacements of the masses 𝑀̂

𝑖
, and vehicle’s transverse

displacement, respectively.
Equations that are similar to (1a), (1b), (1c), (2a), (2b),

(3a), and (3b) are presented in [42], but with the conventional
first order derivative damping behaviors. The fractional
derivatives of order 𝛽 or 𝛾, presented in (1a) and (2a), may
be defined in many ways [47]. Among these are the two most
frequently encountered, the Riemann-Liouville and Caputo
fractional derivatives of order 𝛽 which are defined by the
following convolution integrals, respectively:

𝜕
𝛽

𝑤 (𝑥, 𝑡)

𝜕𝑡𝛽
=

1

Γ (𝑘 − 𝛽)

𝜕
𝑘

𝜕𝑡𝑘
∫

𝑡

0

𝑤 (𝑥, 𝑢)

(𝑡 − 𝑢)
𝛽+1−𝑘

𝑑𝑢, (4a)

𝜕
𝛽

𝑤 (𝑥, 𝑡)

𝜕𝑡𝛽
=

1

Γ (𝑘 − 𝛽)
∫

𝑡

0

1

(𝑡 − 𝑢)
𝛽+1−𝑘

𝜕
𝑘

𝑤 (𝑥, 𝑢)

𝜕𝑢𝑘
𝑑𝑢, (4b)

where 𝑘 is a positive integer such that (𝑘 − 1 ≤ 𝛽 < 𝑘).
In modal form, the transverse deflection of the simply-

supported beam can be written as [31, 32]:

𝑤 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝑌
𝑛
(𝑡) 𝑋
𝑛
(𝑥) , (5)

where 𝑌
𝑛
(𝑡) is the generalized displacement or the modal

response of the beam and 𝑋
𝑛
(𝑥) are the normal modes of

the undamped free vibration of the simply-supported beam
written as [46]

𝑋
𝑛
(𝑥) = sin (𝜅

𝑛
𝑥) , (6)

where (𝜅
𝑛
= 𝑛𝜋/𝐿) is the frequency parameter associated

with the simply-supported beam. Equation (6) should satisfy
the following fourth-order partial differential equation:

𝐸𝐼
𝜕
4

𝑋
𝑛
(𝑥)

𝜕𝑥4
𝑌
𝑛
(𝑡) + 𝜇

𝜕
2

𝑌
𝑛
(𝑡)

𝜕𝑡2
𝑋
𝑛
(𝑥) = 0. (7)

Substituting (5) into (1a), (2a), and (3a) leads to the following
coupled-system of fractional differential equations:

𝐸𝐼

∞

∑

𝑛=1

𝑌
𝑛
(𝑡)
𝑑
4

𝑋
𝑛
(𝑥)

𝑑𝑥4
+ 𝐶

∞

∑

𝑛=1

𝑑
𝛽

𝑌
𝑛
(𝑡)

𝑑𝑡𝛽
𝑋
𝑛
(𝑥)

+ 𝜇

∞

∑

𝑛=1

𝑑
2

𝑌
𝑛
(𝑡)

𝑑𝑡2
𝑋
𝑛
(𝑥)

= −𝑚V ( ̈𝑞 − 𝑔) 𝛿 (𝑥 − V𝑡)𝐻(
𝐿

V
− 𝑡)

−

𝑁

∑

𝑖=1

𝑀̂
𝑖

̂̈𝑧
𝑖
(𝑡) 𝛿 (𝑥 − 𝑑

𝑖
) ,

(8a)
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𝑀̂
𝑖

̂̈𝑧
𝑖
(𝑡) = −(𝐾̂

𝑖
𝑧̂
𝑖
(𝑡) + 𝐶

𝑖

𝑑
𝛾

𝑧̂
𝑖
(𝑡)

𝑑𝑡𝛾
)

+

∞

∑

𝑟=1

(𝐾̂
𝑖
𝑌
𝑟
(𝑡) 𝑋
𝑟
(𝑑
𝑖
) + 𝐶
𝑖

𝑑
𝛾

𝑌
𝑟
(𝑡)

𝑑𝑡𝛾
𝑋
𝑟
(𝑑
𝑖
)) ,

(8b)

𝑚V ̈𝑞 (𝑡) = 𝑚V𝑔 − (𝑘V𝑞 (𝑡) + 𝑐V
𝑑𝑞 (𝑡)

𝑑𝑡
)

+

∞

∑

𝑝=1

(𝑘V𝑌𝑝 (𝑡) 𝑋𝑝 (V𝑡) + 𝑐V
𝑑𝑌
𝑝
(𝑡)

𝑑𝑡
𝑋
𝑝
(V𝑡)) .

(8c)

Multiplying (8a) by 𝑋
𝑚
(𝑥) and integrating over the domain

(0 ≤ 𝑥 ≤ 𝐿) yields
∞

∑

𝑛=1

∫

𝐿

0

𝐸𝐼𝑌
𝑛
(𝑡)
𝑑
4

𝑋
𝑛
(𝑥)

𝑑𝑥4
𝑋
𝑚
(𝑥) 𝑑𝑥

+

∞

∑

𝑛=1

∫

𝐿

0

𝑑
𝛽

𝑌
𝑛
(𝑡)

𝑑𝑡𝛽
𝐶𝑋
𝑛
(𝑥)𝑋
𝑚
(𝑥) 𝑑𝑥

+

∞

∑

𝑛=1

∫

𝐿

0

𝑑
2

𝑌
𝑛
(𝑡)

𝑑𝑡2
𝜇𝑋
𝑛
(𝑥)𝑋
𝑚
(𝑥) 𝑑𝑥

= −∫

𝐿

0

𝑚V ( ̈𝑞 − 𝑔)𝑋𝑚 (𝑥) 𝛿 (𝑥 − V𝑡)𝐻(
𝐿

V
− 𝑡) 𝑑𝑥

−

𝑁

∑

𝑖=1

∫

𝐿

0

𝑀̂
𝑖

̂̈𝑧
𝑖
(𝑡) 𝑋
𝑚
(𝑥) 𝛿 (𝑥 − 𝑑

𝑖
) 𝑑𝑥.

(9)

The dynamic response of the beam represented by (1a)
is analyzed after projecting the 4th order partial derivative
into a complete orthogonal basis. For the present problem,
the eigenfunctions of the linear operator representing the
simply-supported beam without appendages given in (6) can
be used. These eigenfunctions should satisfy the following
orthogonality conditions [32, 42]:

∫

𝐿

0

𝜇𝑋
𝑛
(𝑥)𝑋
𝑚
(𝑥) 𝑑𝑥 =

𝜇𝐿

2
𝛿
𝑛𝑚
, (10a)

∫

𝐿

0

(𝐸𝐼𝑋
󸀠󸀠

𝑛
(𝑥))

󸀠󸀠

𝑋
𝑚
(𝑥) 𝑑𝑥 =

𝐸𝐼𝑛
4

𝜋
4

2𝐿3
𝛿
𝑛𝑚
,

for 𝑛,𝑚 = 1, 2, 3, . . . .
(10b)

By considering these orthogonality conditions, the differ-
ential equation of the 𝑛th mode of the generalized beam-
displacement, (9), can be rewritten as
∞

∑

𝑛=1

𝑌
𝑛
(𝑡)
𝐸𝐼𝑛
4

𝜋
4

2𝐿3
𝛿
𝑛𝑚
+

∞

∑

𝑛=1

𝑑
𝛽

𝑌
𝑛
(𝑡)

𝑑𝑡𝛽

𝐶𝐿

2
𝛿
𝑛𝑚

+

∞

∑

𝑛=1

𝑑
2

𝑌
𝑛
(𝑡)

𝑑𝑡2

𝜇𝐿

2
𝛿
𝑛𝑚

= −𝑚V ( ̈𝑞 − 𝑔)𝑋𝑚 (V𝑡)𝐻(
𝐿

V
− 𝑡) −

𝑁

∑

𝑖=1

𝑀̂
𝑖

̂̈𝑧
𝑖
(𝑡) 𝑋
𝑚
(𝑑
𝑖
) .

(11)

Substituting (6) into (8a), (8b), (8c), and (11) and noting that
(𝑚 = 𝑛) lead to the following coupled system of fractional
differential equations:

𝑑
2

𝑌
𝑛
(𝑡)

𝑑𝑡2
+ 2𝜔
𝑛
𝜁
𝑛

𝑑
𝛽

𝑌
𝑛
(𝑡)

𝑑𝑡𝛽
+ 𝜔
2

𝑛
𝑌
𝑛
(𝑡)

= −𝜂
1
(𝑚V ( ̈𝑞 − 𝑔) sin (Ω𝑛𝑡)𝐻(

𝐿

V
− 𝑡)

+

𝑁

∑

𝑖=1

𝑀̂
𝑖

̂̈𝑧
𝑖
(𝑡) sin(

Ω
𝑛
𝑑
𝑖

V
)) ,

(12a)

̂̈𝑧
𝑖
(𝑡) = −(𝜔̂

2

𝑖
𝑧̂
𝑖
(𝑡) + 2𝜔̂

𝑖
𝜁
𝑖

𝑑
𝛾

𝑧̂
𝑖
(𝑡)

𝑑𝑡𝛾
)

+

∞

∑

𝑟=1

[𝜔̂
2

𝑖
𝑌
𝑟
(𝑡) sin(

Ω
𝑟
𝑑
𝑖

V
)

+
𝑑
𝛾

𝑌
𝑟
(𝑡)

𝑑𝑡𝛾
2𝜔̂
𝑖
𝜁
𝑖
sin(

Ω
𝑟
𝑑
𝑖

V
)] ,

(12b)

̈𝑞 (𝑡) = 𝑔 − (𝜔
2

V𝑞 (𝑡) + 2𝜔V𝜁V
𝑑𝑞 (𝑡)

𝑑𝑡
)

+

∞

∑

𝑝=1

(𝜔
2

V𝑌𝑝 (𝑡) sin (Ω𝑝𝑡)

+2𝜔V𝜁V

𝑑𝑌
𝑝
(𝑡)

𝑑𝑡
sin (Ω

𝑝
𝑡)) ,

(12c)

where

𝜔
𝑛
= 𝜅
2

𝑛
√
𝐸𝐼

𝜇
,

𝜁
𝑛
=

𝐶

2𝜇𝜔
𝑛

,

𝜁
𝑖
=

𝐶
𝑖

2𝑀̂
𝑖
𝜔
𝑖

,

𝜁V =
𝑐V

2𝑚V𝜔V
,

𝜔V = √
𝑘V

𝑚V
,

𝜔̂
𝑖
= √

𝐾̂
𝑖

𝑀̂
𝑖

,

Ω
𝑛
=
𝑛𝜋V
𝐿

(13)

are the undamped natural circular frequency (𝜔
𝑛
), beam

damping ratio (𝜁
𝑛
), 𝑖th oscillator damping ratio (𝜁

𝑖
), vehicle

damping ratio (𝜁V), the natural frequency of the vehicle (𝜔V),
the natural frequency of the 𝑖th oscillator (𝜔̂

𝑖
), and the load

frequency (Ω
𝑛
), respectively, where (𝜂

1
= 2/𝜇𝐿).
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To find the solution of the system in (12a), (12b), and (12c),
associated with the boundary and initial conditions given in
(1b), (1c), (2b), and (3b), the dependent variables 𝑌

𝑛
(𝑡), 𝑧̂
𝑖
(𝑡),

and 𝑞(𝑡) can be decomposed into the following infinite series:

𝑌
𝑛
(𝑡) =

∞

∑

𝑘=0

𝑌
𝑘

𝑛
(𝑡) = 𝑌

0

𝑛
(𝑡) + 𝑌

1

𝑛
(𝑡) + 𝑌

2

𝑛
(𝑡) + ⋅ ⋅ ⋅ , (14a)

𝑧̂
𝑖
(𝑡) =

∞

∑

𝑘=0

𝑧̂
𝑘

𝑖
(𝑡) = 𝑧̂

0

𝑖
(𝑡) + 𝑧̂

1

𝑖
(𝑡) + 𝑧̂

2

𝑖
(𝑡) + ⋅ ⋅ ⋅ , (14b)

𝑞 (𝑡) =

∞

∑

𝑘=0

𝑞
𝑘

(𝑡) = 𝑞
0

(𝑡) + 𝑞
1

(𝑡) + 𝑞
2

(𝑡) + ⋅ ⋅ ⋅ , (14c)

where 𝑌𝑘
𝑛
(𝑡), 𝑧̂𝑘

𝑖
(𝑡), and 𝑞𝑘(𝑡) for (𝑘 = 0, 1, 2, . . .) are

the components of 𝑌
𝑛
(𝑡), 𝑧̂
𝑖
(𝑡), and 𝑞(𝑡), respectively. The

components of 𝑌
𝑛
(𝑡), 𝑧̂

𝑖
(𝑡), and 𝑞(𝑡) can be determined

recursively, by substituting (14a), (14b), and (14c) into (12a),
(12b), and (12c), from the following equations:

𝑑
2

𝑌
0

𝑛
(𝑡)

𝑑𝑡2
+ 𝜔
2

𝑛
𝑌
0

𝑛
(𝑡) = 𝜂

1
𝑚V𝑔 sin (Ω𝑛𝑡)𝐻(

𝐿

V
− 𝑡) , (15a)

𝑑
2

𝑧
0

𝑖
(𝑡)

𝑑𝑡2
=

∞

∑

𝑟=1

sin(
Ω
𝑟
𝑑
𝑖

V
)[𝜔̂
2

𝑖
𝑌
0

𝑟
(𝑡) +

𝑑
𝛾

𝑌
0

𝑟
(𝑡)

𝑑𝑡𝛾
2𝜔̂
𝑖
𝜁
𝑖
] ,

(15b)

𝑑
2

𝑞
0

(𝑡)

𝑑𝑡2
= 𝑔 +

∞

∑

𝑝=1

sin (Ω
𝑝
𝑡)(𝜔

2

V𝑌
0

𝑝
(𝑡) + 2𝜔V𝜁V

𝑑𝑌
0

𝑝
(𝑡)

𝑑𝑡
) ,

(15c)

𝑑
2

𝑌
𝑘+1

𝑛
(𝑡)

𝑑𝑡2
+ 𝜔
2

𝑛
𝑌
𝑘+1

𝑛
(𝑡)

= −2𝜔
𝑛
𝜁
𝑛

𝑑
𝛽

𝑌
𝑘

𝑛
(𝑡)

𝑑𝑡𝛽

− 𝜂
1
(𝑚V

𝑑
2

𝑞
𝑘

(𝑡)

𝑑𝑡2
sin (Ω

𝑛
𝑡)𝐻(

𝐿

V
− 𝑡)

+

𝑁

∑

𝑖=1

𝑀̂
𝑖

𝑑
2

𝑧
𝑘

𝑖
(𝑡)

𝑑𝑡2
sin(

Ω
𝑛
𝑑
𝑖

V
)) ,

(15d)

𝑑
2

𝑧
𝑘+1

𝑖
(𝑡)

𝑑𝑡2

= −(𝜔̂
2

𝑖
𝑧
𝑘

𝑛
(𝑡) + 2𝜔̂

𝑖
𝜁
𝑖

𝑑
𝛾

𝑧
𝑘

𝑛
(𝑡)

𝑑𝑡𝛾
)

+

∞

∑

𝑟=1

sin(
Ω
𝑟
𝑑
𝑖

V
)[𝜔̂
2

𝑖
𝑌
𝑘+1

𝑟
(𝑡) +

𝑑
𝛾

𝑌
𝑘+1

𝑟
(𝑡)

𝑑𝑡𝛾
2𝜔̂
𝑖
𝜁
𝑖
] ,

(15e)

𝑑
2

𝑞
𝑘+1

(𝑡)

𝑑𝑡2

= −(𝜔
2

V𝑞
𝑘

(𝑡) + 2𝜔V𝜁V
𝑑𝑞
𝑘

(𝑡)

𝑑𝑡
)

+

∞

∑

𝑝=1

sin (Ω
𝑝
𝑡)(𝜔

2

V𝑌
𝑘+1

𝑝
(𝑡) + 2𝜔V𝜁V

𝑑𝑌
𝑘+1

𝑝
(𝑡)

𝑑𝑡
) ,

(15f)

for 𝑘 ≥ 0. Now, using the Laplace transform for the Caputo
fractional derivative which is defined in (4b) as [47]

ℓ(
𝑑
𝛽

𝑌
𝑘

𝑛
(𝑡)

𝑑𝑡𝛽
) = 𝑠
𝛽

𝑦
𝑘

𝑛
(𝑠) −

𝑚−1

∑

𝑗=0

𝑠
𝛽−𝑗−1

(𝑦
𝑘

𝑛
)
𝑗

(0) ,

for 𝑚 − 1 < 𝛽 ≤ 𝑚,

(16)

the Laplace transforms of (14a), (14b), (14c), (15a), (15b), (15c),
(15d), (15e), and (15f), with the related homogeneous initial
conditions, can be rewritten as

𝑦
𝑛
(𝑠) =

∞

∑

𝑘=0

𝑦
𝑘

𝑛
(𝑠) , (17a)

𝑍
𝑖
(𝑠) =

∞

∑

𝑘=0

𝑍
𝑘

𝑖
(𝑠) , (17b)

𝑄 (𝑠) =

∞

∑

𝑘=0

𝑄
𝑘

(𝑠) , (17c)

where

𝑦
0

𝑛
(𝑠) =

𝜂
1
𝑚V𝑔

(𝑠2 + 𝜔2
𝑛
)
ℓ (sin (Ω

𝑛
𝑡)𝐻(

𝐿

V
− 𝑡)) , (18a)

𝑍
0

𝑖
(𝑠) =

∞

∑

𝑟=1

sin(
Ω
𝑟
𝑑
𝑖

V
)(

𝜔̂
2

𝑖
+ 2𝜔̂
𝑖
𝜁
𝑖
𝑠
𝛾

𝑠2
)𝑦
0

𝑟
(𝑠) , (18b)

𝑄
0

(𝑠) =
𝑔

𝑠3
+

∞

∑

𝑝=1

(

𝜔
2

Vℓ (sin (Ω𝑝𝑡) 𝑌
0

𝑝
(𝑡))

𝑠2

+

2𝜔V𝜁Vℓ (sin (Ω𝑝𝑡) (𝑑𝑌
0

𝑝
(𝑡) /𝑑𝑡))

𝑠2
) ,

(18c)

𝑦
𝑘+1

𝑛
(𝑠)

= −
2𝜔
𝑛
𝜁
𝑛
𝑠
𝛽

(𝑠2 + 𝜔2
𝑛
)

− 𝜂
1
(

𝑚Vℓ (𝑑
2

𝑞
𝑘

(𝑡) /𝑑𝑡
2 sin (Ω

𝑛
𝑡)𝐻 (𝐿/V − 𝑡))

(𝑠2 + 𝜔2
𝑛
)

+

𝑁

∑

𝑖=1

𝑀̂
𝑖
𝑠
2

𝑍
𝑘

𝑖
(𝑠) sin (Ω

𝑛
𝑑
𝑖
/V)

(𝑠2 + 𝜔2
𝑛
)

) ,

(18d)
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𝑍
𝑘+1

𝑖
(𝑠) = −(𝜔̂

2

𝑖

𝑍
𝑘

𝑖
(𝑠)

𝑠2
+ 2𝜔̂
𝑖
𝜁
𝑖

𝑠
𝛾

𝑍
𝑘

𝑖
(𝑠)

𝑠2
)

+

∞

∑

𝑟=1

sin(
Ω
𝑟
𝑑
𝑖

V
)[𝜔̂
2

𝑖

𝑦
𝑘+1

𝑟
(𝑠)

𝑠2

+2𝜔̂
𝑖
𝜁
𝑖

𝑠
𝛾

𝑦
𝑘+1

𝑟
(𝑠)

𝑠2
] ,

(18e)

𝑄
𝑘+1

(𝑠) = −(
𝜔
2

V𝑄
𝑘

(𝑠)

𝑠2
+
2𝑠𝑄
𝑘

(𝑠) 𝜔V𝜁V

𝑠2
)

+

∞

∑

𝑝=1

(

𝜔
2

Vℓ (sin (Ω𝑝𝑡) 𝑌
𝑘+1

𝑝
(𝑡))

𝑠2

+

2𝜔V𝜁Vℓ (sin (Ω𝑝𝑡) (𝑑𝑌
𝑘+1

𝑝
(𝑡) /𝑑𝑡))

𝑠2
) ,

(18f)

for 𝑘 ≥ 0 and (𝑖 = 1, 2, . . . , 𝑁), where𝑁 is the number of the
SDOF fractionally-damped absorbers attached to the beam.
In the above equations ℓ(⋅)designates the Laplace transform
of (⋅) where (ℓ(𝑧̂

𝑖
(𝑡)) = 𝑍

𝑖
(𝑠), ℓ(𝑌

𝑛
(𝑡)) = 𝑦

𝑛
(𝑠) and (ℓ(𝑞(𝑡)) =

𝑄(𝑠). Nevertheless, the explicit forms of (18a), (18b), (18c),
(18d), and (18e) for 𝑘 ≥ 0 are rather long and complex. How-
ever, when the damping effect is fractional, these equations
contain the well-known hepergeometric function defined as
[48]

hypergeom ([𝑛
1
] , [𝑑
1
, 𝑑
2
] , 𝑧)

=

∞

∑

𝑘=0

𝑧
𝑘

(Γ (𝑛
1
+ 𝑘) /Γ (𝑛

1
))

𝑘! (∏
2

𝑗=1
(Γ (𝑑
𝑗
+ 𝑘) /Γ (𝑑

𝑗
)))

.

(19)

The term-by-term inversion of (18a), (18b), (18c), (18d),
and (18e) with (14a), (14b), and (14c) represents the corre-
sponding solution of the handled problem. However, many
problems can be treated as special cases of (18a), (18b), (18c),
(18d), and (18e); the absorbers can be neglected by assuming
that (𝜔̂

𝑖
= 0) and the moving vehicle can be treated as a

moving load by assuming (𝜁V = 1 and 𝑘V = 1) or by replacing
the Heaviside step function by unity, where (in this case) the
gravity acceleration (𝑔) is further replaced by the intensity of
the moving load.

3. Results and Discussion

In this Section, two examples are given to verify the validity
of the formal technique used in this paper. Moreover, three
more important case studies are introduced to show the effect
of fractional-damping behaviors for both of the beam and
the SDOF absorbers and the effect of the number of SDOF
absorbers attached to the beam (𝑁). In all case studies, the
dynamic response of the beam is mainly governed by the
fundamental mode (𝑛 = 1) of the beam because this mode
has the significant effect on the beam dynamic response.
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Figure 2: The dynamic response of an elastic beam at mid-span for
many load speeds.

3.1. Verification Problem I. This example verifies the validity
of the technique used in this paper. In this example, an
undamped beamwith amoving oscillator is investigated [49].
The parameters adopted for the beam under investigation
are given in Table 1. The displacement response for the beam
versus the normalized time is shown in Figure 2; that is, when
(𝑡 = 0) the load enters the beam from left-hand side (𝑥 = 0)
and when (𝑡 = 𝐿/V) the moving load system leaves the right-
hand side of the beam (𝑥 = 𝐿). The curves of Figure 2 show
the dynamicmid-span displacement response of the beam for
the five cases of traveling velocities: V = 10m/s, V = 27.778m/s,
V = 40m/s, V = 60m/s, and V = 80m/s, respectively.

In this example, it is shown that the dynamic displace-
ment response increases as the traveling speed increase.
This follows from the fact that the energy content of the
elastic beam increases when the speed increases. Further-
more, Figure 2 shows that the amplitude of the displacement
response for the force and mass moving systems increases
as speed increases. The maximum displacement when V =
27.778m/s is (𝑤max = 2.17453m/s) which satisfies the results
obtained by Duhamel integral [32] and is almost the same as
that presented in [49].

3.2. Verification Problem II. This verification problem
presents a damped beam attached to a single absorber and
subjected to a moving load of intensity 9.81N; that is, the
moving vehicle of unit mass approaches to the moving load
(𝑘V = 0N/m, 𝜁V = 1 Ns/m, 𝑚V= 1 kg). The data presented
in [50, 51] are used for solving this problem, see Table 1.
In this problem, the response of an initially stationary
beam subjected to a moving load with a constant velocity is
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Table 1: Material and geometrical properties of beam, vehicle, and absorbers.

Problem Properties
Verification problem I in
Section 3.1

𝐿 = 25m, 𝐸 = 82.7GPa, 𝐼 = 9.2m4, 𝜇 = 2303 kg/m,𝑚V = 5750 kg, 𝑘V = 1595000N/m, 𝑐V = 0Ns/m,
𝐾̂
𝑖
= 0N/m, 𝜔̂

𝑖
= 0 rad/s.

Verification problem II in
Section 3.2

𝛽 = 1, 𝛾 = 1,𝑁 = 1: {𝑑
1
= 𝐿/2(m)}, (𝑖 = 1, 2, . . . , 𝑁)

𝑁 = 2:
{{

{{

{

𝑑
1
= (

𝐿

2
− 𝛿)m

𝑑
2
= (

𝐿

2
+ 𝛿)m

}}

}}

}

, 𝑁 = 3:

{{{{{{

{{{{{{

{

𝑑
1
= (

𝐿

2
− 𝛿)m

𝑑
2
= (

𝐿

2
)m

𝑑
3
= (

𝐿

2
+ 𝛿)m

}}}}}}

}}}}}}

}

, 𝛿 = 0.02m.

𝑘V = 0.0N/m, 𝜁V = 0.1,𝑚V = 1 kg.
Problem in Section 3.4 𝑁 = 1, 𝑑

1
= (𝐿/2)m, V = 25m/s,𝑚V = 1 kg, 𝑘V = 700N/m, 𝜁V = 0.1, 𝜁 = 0.15.

Problem in Section 3.5

𝛽 = 1.245, 𝛾 = 1.19, 𝑘V = 700.0N/m, 𝜁V = 0.1,𝑚V = 1 kg,

𝑁 = 1: {𝑑
1
=
𝐿

2
(m)}, 𝑁 = 2:

{{

{{

{

𝑑
1
= (

𝐿

2
− 𝛿)m

𝑑
2
= (

𝐿

2
+ 𝛿)m

}}

}}

}

,

𝑁 = 3:

{{{{{{

{{{{{{

{

𝑑
1
= (

𝐿

2
− 𝛿)m

𝑑
2
= (

𝐿

2
)m

𝑑
3
= (

𝐿

2
+ 𝛿)m

}}}}}}

}}}}}}

}

, 𝛿 = 0.02m.

For all problems (except
verification Problem I)

𝐿 = 4m, 𝐸 = 206.8GPa, 𝜌 = 7820 kg/m3, 𝐴 = 0.03 × 0.03m2, 𝑀̂
𝑖
= 1.4076 kg, 𝐾̂

𝑖
= 877.767N/m,

𝜁
𝑖
= 0.1846356 for 𝑖 = 1, 2, . . . , 𝑁.
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Figure 3: The maximum displacement of the beam at mid-span
versus the velocity of the moving load for 𝜁 = 0.

considered.The beam is assumed to be free or appendaged to
one, two, or three absorbers (𝑁 = 0, 1, 2, 3) and (𝑖 = 1, . . . , 𝑁)
at different locations of the beam, see Figures 3, 4, and 5.

In this problem, (𝑁 = 0) refers to a beam without any
appendages; that is, all parametric properties of the oscillators
are null. The case for (𝑁 = 1) was studied in [51] as
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Figure 4: The maximum displacement of the beam at mid-span
versus the velocity of the moving load for 𝜁 = 0.075.

a two-SDOF system, while in [50], it was analyzed using
the Euler-Bernoulli theory. In [50], the Galerkin-Bubnov
variation method is used to solve the beam problem with
only one absorber attached at the mid-span of the beam.The
order of the fractional derivative for both of the beam and
the oscillator is assumed to be unity; that is, 𝛽 = 𝛾 = 1.
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Figure 5: The maximum displacement of the beam at mid-span
versus the velocity of the moving load for 𝜁 = 0.15.

Figures 3–5 show the maximum response of the beam at
the mid-span versus the velocity of the moving load for
three different values of the beam damping ratio; that is,
𝜁 = 0, 𝜁 = 0.075, and 𝜁 = 0.15, respectively. The upper
two curves in Figure 3 fit precisely the published results in
[50, 51]. The curve for (𝑁 = 0) in Figure 3 fits exactly the
well-known exact solution which is obtained by the Duhamel
integral [32]. Furthermore, we note from Figures 3–5 that,
as both the number of absorbers which are attached to the
beam and as the damping beam-ratio increases, the dynamic
response decreases. This is clearly seen from the lowest curve
in Figure 5 where𝑁 = 3 and 𝜁 = 0.15.

3.3. Optimization of the Vehicle Dynamic Response. The
moving load problem that was solved in Section 3.2 is solved
here for the more general case of a moving vehicle (𝑘V =
700N/m, 𝜁V = 0.1, 𝑚V = 1 kg). Figures 6, 7, and 8 illustrate
the maximum response of the beam at the mid-span versus
the velocity of the moving vehicle for three different values
of the damping ratio of the beam; that is, 𝜁 = 0, 𝜁 =

0.075, and 𝜁 = 0.15, respectively. Moreover, Figure 9 shows
the maximum central beam displacement versus the velocity
of the moving vehicle for different numbers of absorbers
(𝑁 = 1, 2). The curves in these figures show that the
maximum central displacement of the beam decreases as
the number of absorbers, beam damping ratio, and vehicle
velocity increase. By comparing Figures 3–5 obtained for a
moving load with Figures 6–8 obtained for a moving vehicle,
it is clearly seen that the maximum displacement of the beam
decreases for the moving vehicle case and this is due to the
effect of the damping ratio of the vehicle. Moreover, the
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Figure 6: The maximum displacement of the beam at mid-span
versus the velocity of the moving vehicle for 𝜁 = 0.

1.6

1.2

0.8

0.4
10 20 30 40 50 60 70

M
ax

im
um

 ce
nt

ra
l b

ea
m

 d
isp

la
ce

m
en

t (
m

m
)

N = 0
N = 1

N = 2
N = 3

Moving vehicle velocity (m/s)

Figure 7: The maximum displacement of the beam at mid-span
versus the velocity of the moving vehicle for 𝜁 = 0.075.

critical mean velocity of the moving vehicle at which the
maximumdisplacement occurs is V = 25m/s, see Figures 6–8.

3.4. Optimization of the Fractional Derivatives. In this Sec-
tion, one example is analyzed to show the effect of the order
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Figure 8: The maximum displacement of the beam at mid-span
versus the velocity of the moving vehicle for 𝜁 = 0.15.

of fractional derivatives for both of the beam and absorbers
(0 < 𝛾 < 2, 0 < 𝛽 < 2). The 3D surface shown in Figure 10
(for the data given in Table 1) represents the variation of the
maximum deflection of the beam at the mid-span (where
the absorber is attached) with the beam fractional derivative
(𝛽) and the fractional derivative of the absorber (𝛾). The
obtained surface in Figure 10 leads to very interesting critical
values of 𝛽 and 𝛾. From this surface, the optimal values
obtained are 𝛽 = 1.245 and 𝛾 = 1.190, at which the
minimum beam deflection occurs. This reduction is due to
the effect of the damper added to the vehicle. The optimal
values obtained from the surface shown in Figure 10 further
show the physical meaning of fractional derivative, which is
equivalent to increasing the damping characteristics of the
beam.

3.5. Optimization of the Number of Fractionally-Damped
Oscillators. In this section, the optimal values that were
obtained in Sections 3.3 and 3.4 (𝛽 = 1.245, 𝛾 = 1.19, V =
25m/s) are used to determine the dynamic response of the
beam attached to many SDOF systems.The other parameters
considered in this example are shown in Table 1. Figures 11, 12,
13, and 14 show the dynamic response of the beam for various
values of beam damping ratio (𝜁 = 0, 𝜁 = 0.075, 𝜁 = 0.15),
respectively. The effects of the beam damping ratio and the
number of oscillators are clearly observed from the curves in
Figures 11–14.

The effect of the previously obtained optimal values is
observed clearly when both Figures 5 and 8 are compared
with Figure 13. The percent relative reduction in the max-
imum central deflection (when the beam subjected to a
moving load is compared to that subjected to a moving
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Figure 9: The maximum displacement of the beam at mid-span
versus the velocity of themoving vehicle with one and two (𝑁 = 1, 2)
absorbers attached.
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Figure 10:Themaximum central deflection of the beam against the
order of the beam’s fractional derivative and the fractional derivative
of the absorber (𝛽, 𝛾).

vehicle) is computed for (𝑁 = 0, 𝑁 = 1, 𝑁 = 2, and
𝑁 = 3) as (14.5%, 13.85%, 12.74%, and 11.63%), respectively,
see Figures 5 and 8, while the percent relative reduction in the
maximum central deflectionwhen Figure 8 (𝛽 = 1 and 𝛾 = 1)
is compared with Figure 13 (𝛽 = 1.245 and 𝛾 = 1.19) of the
beams subjected to a moving vehicle is computed for (𝑁 = 0,
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Figure 11: The dynamic response (𝑤(𝐿/2, 𝑡)) for the beam with 𝜁 =
0, subjected to a moving vehicle and attached to many absorbers.
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Figure 12: The dynamic response (𝑤(𝐿/2, 𝑡)) for the beam with 𝜁 =
0.075, subjected to amoving vehicle and attached tomany absorbers.

𝑁 = 1, 𝑁 = 2, and 𝑁 = 3) as (27.58%, 41.27%, 48.99%,
and 54.54%), respectively, see Figures 8 and 13.This reduction
in the dynamic response of the beam is due to the effect of
the damping of the beam, fractional damping, number of
absorbers, and the vehicle-damping. However, the influence
of the order of fractional derivatives, beam damping ratio,
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Figure 13: The dynamic response (𝑤(𝐿/2, 𝑡)) for the beam with 𝜁 =
0.15, subjected to a moving vehicle attached to many absorbers.

oscillators damping ratios, and the number of the attached
oscillators on the beam dynamic response is clearly observed.

Figure 14 shows the dynamic response of the beam versus
time for both of the moving load and vehicle for the beam
damping ratio (𝜁 = 0.15) for which (𝑁 = 0, 𝑁 = 1, 𝑁 = 2,
𝑁 = 3). The fractional derivatives for both the beam and
absorbers are taken as 𝛽 = 1.245 and 𝛾 = 1.19, respectively.
The effect of these optimal values on the beam response is
clearly observed. The reduction in the dynamic response of
the beam is due to the effect of the damping of the beam,
fractional damping, number of attached absorbers, and the
vehicle-damping.

4. Conclusions and Future Work

In this paper, an analytical model is introduced to solve
the transverse vibration of Bernoulli-Euler beam attached
to 𝑁-SDOF absorbers with damping characteristics that are
described in terms of fractional derivatives. The damping
characteristics of the beamand absorbers are assumed to be of
fractional-order derivatives. The method employed uses the
Laplace transform with decomposing the displacement into
infinite series to find the solution. However, the solution may
be written in a closed form for some special cases; otherwise,
it may be truncated and produced by using appropriate
mathematical software such as Maple.

The numerical results obtained in this paper, illustrate
that (1) the dynamic response decreases as the number of
absorbers attached to the beam increases, (2) as both the
damping-ratios of absorbers and beam increase, the dynamic
response decreases, (3) the type of load further affects the
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Figure 14: The dynamic response (𝑤(𝐿/2, 𝑡)) for the beam with
𝜁 = 0.15, attached to many absorbers for moving vehicle (MV) and
moving load (ML).

dynamic response of the beam; hence, a moving vehicle
reduces the response due to its damping property, and (4)
there are some critical values of 𝛽 and 𝛾 at which the beam
has less deflection than that which is obtained from the full-
order derivative models (i.e., 𝛽 = 1 and 𝛾 = 1).

Finally, even though the fractional derivative model
provides better damping models of fractionally-damped
structures and materials, a limited number of papers have
been presented in this field. This is probably due to the fact
that the underlying mathematics of the fractional derivative
models are sophisticated and not well-developed. Hence,
developments in this field will lead to the development of the
applications of fractional derivative models in several other
engineering problems.

The approach of the fractional derivative damping, used
in this paper, will allow researchers to choose suitable
mathematical models that may better converge to realistic
experimentalmodels than thewell-known conventional first-
order dampingmodels. Hence, the fractional derivativemod-
els may precisely represent a nonlinear damping behavior
better than other existing damping models.

Future work will involve the following items for the appli-
cation of the fractional calculus-based approach that is used
in this paper within: (1) quantum and nano computing sys-
tems [52], (2) nanobeams, materials andmedical applications
[52–54], (3) fractal-based formulations to the microqua-
sistatic thermoviscoelastic creep for rough surfaces in contact
[55], and (4) other beam configurations for various types of
nonlinearities, damping characteristics, andmoving vehicles.

References

[1] R. L. Bagley and P. J. Torvik, “On the appearance of the
fractional derivative in the behavior of real materials,” Journal
of Applied Mechanics, vol. 51, no. 2, pp. 294–298, 1984.

[2] R. L. Bagley and P. J. Torvik, “On the fractional calculus model
of viscoelastic behavior,” Journal of Rheology, vol. 30, no. 1, pp.
133–155, 1986.

[3] E. G. Bakhoum and C. Toma, “Transient aspects of wave
propagation connected with spatial coherence,” Mathematical
Problems in Engineering, vol. 2013, Article ID 691257, 5 pages,
2013.

[4] C. Koh and J. M. Kelly, “Application of fractional derivatives to
seismic analysis of base- isolatedmodels,” Earthquake Engineer-
ing & Structural Dynamics, vol. 19, no. 2, pp. 229–241, 1990.

[5] N. Makris and M. C. Constantinou, “Fractional-derivative
Maxwell model for viscous dampers,” Journal of Structural
Engineering, vol. 117, no. 9, pp. 2708–2724, 1991.

[6] T. Pritz, “Five-parameter fractional derivative model for poly-
meric damping materials,” Journal of Sound and Vibration, vol.
265, no. 5, pp. 935–952, 2003.

[7] H. Qi and M. Xu, “Unsteady flow of viscoelastic fluid with frac-
tional Maxwell model in a channel,” Mechanics Research Com-
munications, vol. 34, no. 2, pp. 210–212, 2007.

[8] N. Shimizu and W. Zhang, “Fractional calculus approach to
dynamic problems of viscoelasticmaterials,” JSME International
Journal C, vol. 42, no. 4, pp. 825–837, 1999.

[9] M. Li, S. C. Lim, and S. Y. Chen, “Exact solution of impulse
response to a class of fractional oscillators and its stability,”
Mathematical Problems in Engineering, vol. 2011, Article ID
657839, 9 pages, 2011.

[10] M. Li, C. Cattani, and S. Y. Chen, “Viewing sea level by a one-
dimensional random function with long memory,” Mathemat-
ical Problems in Engineering, vol. 2011, Article ID 654284, 13
pages, 2011.

[11] M. Li, “Fractal time series: a tutorial review,” Mathematical
Problems in Engineering, vol. 2010, Article ID 157264, 26 pages,
2010.

[12] M. Li and W. Zhao, “Representation of a stochastic traffic
bound,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 9, pp. 1368–1372, 2010.

[13] M. Li, “Approximating ideal filters by systems of fractional
order,” Computational and Mathematical Methods in Medicine,
vol. 2012, Article ID 365054, 6 pages, 2012.

[14] M. Li, Y. Q. Chen, J. Y. Li, and W. Zhao, “Hölder scales of sea
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An inverse source identification problem for a time fractional diffusion equation is discussed.The unknown heat source is supposed
to be space dependent only. Based on the use of Green’s function, an effective numerical algorithm is developed to recover both the
intensities and locations of unknown point sources from final measurements. Numerical results indicate that the proposed method
is efficient and accurate.

1. Introduction

LetΩ be a bounded domain inR2 and let 𝜕Ω be the boundary
of Ω. Consider the following time fractional diffusion pro-
cess:

0
𝐷
𝛾

𝑡
𝑢 (𝑥, 𝑡) −L𝑢 (𝑥, 𝑡) = 𝑓 (𝑥) , 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 0) = 0, 𝑥 ∈ Ω,

B𝑢 (𝑥, 𝑡) := 𝜇𝑢 (𝑥, 𝑡) + 𝛽
𝜕𝑢

𝜕V
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ (0, 𝑇) ,

(1)

where L is the uniformly elliptic operator, ] is the outward
normal at the boundary 𝜕Ω, and 𝜇, 𝛽 are known constants
which are not simultaneously zero. Here,

0
𝐷
𝛾

𝑡
stands for the

Caputo fractional derivative operator of order 0 < 𝛾 ≤ 1

defined by

0
𝐷
𝛾

𝑡
𝜓 (𝑡) :=

{{{

{{{

{

1

Γ (1 − 𝛾)
∫

𝑡

0

𝜓
󸀠

(𝑠)

(𝑡 − 𝑠)
𝛾
𝑑𝑠, 0 < 𝛾 < 1

𝜓
󸀠

(𝑡) , 𝛾 = 1,

(2)

where Γ(⋅) is the standard Γ-function and the prime denotes
the general derivative.

From the last few decades, fractional calculus grabbed
great attention of not only mathematicians and engineers but

also many scientists from all fields (e.g., see [1–4]). Fractional
diffusion equations describe anomalous diffusions on fractals
(physical objects of fractional dimension, like some amor-
phous semiconductors or strongly porous materials; see [5,
6] and references therein). Indeed, fractional derivatives
provide an excellent tool for the description of memory and
hereditary properties of variousmaterials and processes.This
is themain superiority of fractional derivatives in comparison
with classical integer-order models, in which such effects are
in fact neglected. For the detailed theory and application
of fractional calculus, one can refer to [1–4] and references
therein. Not only have differential equations of fractional
order attracted people’s attention, but also theories and appli-
cations related to physics and geometry of fractal dimension
have been well studied (e.g., [7–11]).

If the initial condition is nonhomogeneous, that is,
𝑢(𝑥, 0) = 𝜑(𝑥), we are always able to simplify the system
(1) into two components; that is, 𝑢 = V + 𝑤, where V solves
the homogeneous equation with nonhomogeneous initial
condition and 𝑤 satisfies the nonhomogeneous equation
with homogeneous initial condition. As we know, the initial
value/boundary value problem associated with V is well-
posed and there exist many works on such forward problem,
for example, [12, 13]. In the following, instead of nonhomo-
geneous initial condition, we only focus on the system (1)
with homogeneous initial condition. Ordinarily, when 𝑓 is

http://dx.doi.org/10.1155/2013/485273
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a known function, we are asked to determine the solution
function 𝑢(𝑥, 𝑡) so as to satisfy (1). So posed, this is a direct
problem. However, the source term 𝑓 is not always known
and has to be computed from some additional data. The
additional information is mainly the following: the inte-
rior/boundary transient measurement values and the final
measurement values. Here, we suppose that the measured
data are given in final time 𝑡 = 𝑇 as 𝑢(𝑥, 𝑇) + 𝜖 ∗ rand (𝜖
is the noise level).

For most classical partial differential equations, the iden-
tification and reconstruction of source functions from the
final data or the partial boundary data are an inverse problem
with many applications (e.g., [14]). A number of articles
address the solvability problem of source term identification.
For parabolic-type differential equation, please see [15–26].
For elliptic-type differential equation, one can refer to [27–
29], though the source identification problem has been well
discussed in the classic framework, yet, to the best of the
authors’ knowledge, there are rare researches in the aspect of
the source identification problem associated with fractional
differential equation in spite of the physical and practical
importance. As indicated in [30–33], the source identifica-
tion problem associated with the time fractional diffusion
equation is also ill-posed. That means the solution does
not depend continuously on the given data and any small
perturbation in the given data may cause large change to
the solution. In [33], when additional data is given on the
partial boundary, the uniqueness in identifying a source term
independent of time 𝑡 is established for one-dimensional time
fractional diffusion equation. In [30], if the final time tem-
perature distribution is known, the existence and uniqueness
results are proved. Murio and Mej́ıa [31] propose a mollifi-
cation regularization technique to reconstruct the unknown
forcing term 𝑓(𝑥, 𝑡). In this paper, we aim to deal with the
special case that the sources andmeasurements are both point
like. The main focus will be placed on the recovery of both
intensities and locations of the unknown point source term.
For this, we propose a method based on the use of Green’s
function to solve the inverse source identification problems.

The outline of the paper is as follows. In Section 2,
we provide a brief sketch on the considered identification
problem. The reconstruction method by Green’s function is
then given in Section 3. Numerical implementation of the
proposed method is provided in Section 4. In Section 5, we
summarize the results.

2. Statement of the Problem

In this paper, we deal with the special case that the source
function 𝑓(𝑥) is of the form

𝑓 (𝑥) =

𝑀

∑

1

𝜆
𝑗
𝛿 (𝑥 − 𝜃

𝑗
) , 𝑗 = 1, 2, . . . ,𝑀, (3)

where 𝜃
𝑗
denotes the location of the point source and 𝜆

𝑗
is

the intensity associated with each point source at 𝜃
𝑗
. Thereby,

the temperature distribution 𝑢 = 𝑢(𝑥, 𝑡) inside the domainΩ
is generated by 𝑓(𝑥) satisfying

0
𝐷
𝛾

𝑡
𝑢 (𝑥, 𝑡) −L𝑢 (𝑥, 𝑡) =

𝑀

∑

𝑗=1

𝜆
𝑗
𝛿 (𝑥 − 𝜃

𝑗
) , 𝑥 ∈ Ω,

𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 0) = 0, 𝑥 ∈ Ω,

B𝑢 (𝑥, 𝑡) := 𝜇𝑢 (𝑥, 𝑡) + 𝛽
𝜕𝑢

𝜕]
= 0, 𝑥 ∈ 𝜕Ω,

𝑡 ∈ (0, 𝑇) ,

(4)

where 𝛿(⋅) is the Dirac delta function. Meanwhile, let𝑁 be a
natural number and let {𝑥

𝑖
}
𝑁

𝑖=1
be a group of points inΩ. Here,

the points 𝑥
𝑖
, 𝑖 = 1, . . . , 𝑁, scattered in Ω are the collocation

points. Our goal is to determine the strength sources 𝜆
𝑗
and

the locations 𝜃
𝑗
from user-input estimated position and the

set of final measurement data

𝑢
𝜖

(𝑥
𝑖
, 𝑇) := 𝑢

𝑖,𝑇
+ 𝜐
𝑖
, 𝑥
𝑖
∈ Ω, 𝑖 = 1, 2, . . . , 𝑁, (5)

where (𝜐
𝑖
)
𝑁

𝑖=1
denotes the Gaussian variable with mean zero

and variance 𝜖. This magnitude 𝜖 also represents the level of
noises.

Let us first suppose that the locations of the point sources
{𝜃
𝑗
} are given. Under this assumption, we come to the

problem of the recovery of the intensity 𝜆
𝑗
associated with

the point sources 𝜃
𝑗
from the𝑁 distinct final collocation data

𝑢
𝜖

(𝑥
𝑖
, 𝑇). This recovery problem is ill-posed, which prompts

us to use some regularization methods.
Consequently, we assume that the locations of the point

sources 𝜃
𝑗
are not known but an initial guess location 𝜃

𝑗
is

given for each unknown point source.Moreover, wemake the
assumption that each point source belongs to a distinct ball
inside the domain; that is,

𝜃
𝑗
∈ 𝐵 (𝜃

𝑗
, 𝜌
𝑗
) ∩ Ω, 𝑗 = 1, 2, . . . ,𝑀,

𝐵 (𝜃
𝑗
, 𝜌
𝑗
) ∩ 𝐵 (𝜃

𝑘
, 𝜌
𝑘
) = 0, 1 ≤ 𝑗 < 𝑘 ≤ 𝑀,

(6)

where 𝐵(𝜃, 𝜌) denotes the ball centered at 𝜃 with radius
𝜌. It should be pointed that if two or more point sources
are concentrated in a sufficient small domain, the proposed
method in the following section will treat them as one point
source.

3. Methodology Based on Green’s Function

In this section, we discuss the identificationmethod based on
Green’s function. Green’s function𝐺(𝑥, 𝑡; 𝜃) can be defined as
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the solution of the following equations:

0
𝐷
𝛾

𝑡
𝐺 (𝑥, 𝑡; 𝜃) −L𝐺 (𝑥, 𝑡; 𝜃) = 𝛿 (𝑥 − 𝜃) , 𝑥, 𝜃 ∈ Ω,

𝑡 ∈ (0, 𝑇) ,

𝐺 (𝑥, 0; 𝜃) = 0, 𝑥, 𝜃 ∈ Ω,

B𝐺 (𝑥, 𝑡; 𝜃) := 𝜇𝐺 (𝑥, 𝑡; 𝜃) + 𝛽
𝜕𝐺

𝜕]
= 0, 𝑥, 𝜃 ∈ 𝜕Ω,

𝑡 ∈ (0, 𝑇) .

(7)

By applying Laplace transform technique, we have that

𝐺 (𝑥, 𝑡; 𝜃) =

∞

∑

𝑛=1

𝑡
𝛾

𝐸
𝛾,𝛾+1

(−𝜆
2

𝑛
𝑡
𝛾

) 𝜑
𝑛
(𝜃) 𝜑
𝑛
(𝑥) , (8)

where 𝜑
𝑛
is the 𝑛th orthonormal eigenfunction and 𝜆

𝑛
is the

corresponding eigenvalue to the Sturm-Liouville problem

L𝜑 + 𝜆
2

𝑛
𝜑 = 0,

𝜇𝜑 + 𝛽
𝜕𝜑

𝜕]
= 0,

(9)

and 𝐸
𝛾,𝜁
(𝑧) is the Mittag-Leffler function defined by

𝐸
𝛾,𝜁
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛾𝑘 + 𝜁)
. (10)

For the details of Mittag-Leffler function, one can refer to [2].
Utilizing Green’s function, we then can write the solution

of (4) as

𝑢 (𝑥, 𝑡) =

𝑀

∑

𝑗=1

𝜆
𝑗
𝐺(𝑥, 𝑡; 𝜃

𝑗
) . (11)

Therefore, when the locations {𝜃
𝑗
} of point sources are

known, once we obtain the final time measurement data
specified in (5), we can solve the following linear algebraic
equation:

𝑀

∑

𝑗=1

𝜆
𝑗
𝐺(𝑥
𝑖
, 𝑇; 𝜃
𝑗
) = 𝑢
𝜖

𝑖,𝑇
, 𝑖 = 1, 2, . . . , 𝑁 (12)

to get the unknown values of the intensities 𝜆
𝑗
. Moreover,

denoting 𝜆 = (𝜆
𝑗
) and 𝜛 = (𝑢

𝜀

𝑖,𝑇
), (12) can be rewritten as the

following matrix form:

𝐴𝜆 = 𝜛, (13)

where 𝐴 is an𝑁 ×𝑀matrix:

𝐴
𝑖𝑗
= 𝐺 (𝑥

𝑖
, 𝑇; 𝜃
𝑗
) . (14)

Taking 𝑁 = 𝑀, then the system of (13) contains 𝑁 linear
equations with𝑁 unknowns. Subsequently, if the matrix𝐴 is
invertible, one simply has

𝜆 = 𝐴
−1

𝜛. (15)

However, due to the ill-posedness of the source identification
problem, the system of (13) is ill-conditioned, and hence a
direct solution, as given by (15), will be either impossible
or will produce very inaccurate results. To obtain stable
solutions to these kinds of ill-conditioning systems, various
regularization techniques have been studied and applied
extensively [34]. Here, a standard Tikhonov regularization
technique is adopted to find the approximation solution of
the matrix equation (13). By 𝜆

𝛼
, we denote the Tikhonov

regularized solution defined to be theminimal element of the
following least square problem:

min
𝜆

𝐽
𝛼
(𝜆) := min

𝜆

‖𝐴𝜆 − 𝜛‖
2

+ 𝛼
2

‖𝜆‖
2

, (16)

where 𝛼 > 0 is the regularization parameter and ‖ ⋅ ‖ denotes
the usual Euclidean norm. It is well known [34] that the
minimal element of 𝐽

𝛼
can be written as

𝜆
𝛼
= (𝐴
∗

𝐴 + 𝛼
2

𝐼)
−1

𝐴
∗

𝜛, (17)

where 𝐴∗ denotes the conjugate transposed matrix of 𝐴 and
𝐼 denotes the identity matrix.

Next, assume that the locations {𝜃
𝑗
} of the point sources

are also unknown. In such case, we will get a nonlinear sys-
tem.The nonlinear system is not suitable or difficult for direct
numerical computation. In order to eliminate the difficulty
in implementing the numerical computation, we propose in
the following to linearize the nonlinear system.

For the estimate locations {𝜃
𝑗
}, we define the following

union set

Θ :=

𝑀

⋃

𝑗=1

𝐵 (𝜃
𝑗
, 𝜌
𝑗
) ∩ Ω (18)

and suppose that it contains all exact positions of the point
sources with proper radius 𝜌

𝑗
. To linearize the nonlinear sys-

tem, we take some additional collocation points {𝜉
𝑙
}
𝑛

𝑙=1
from

the set Θ. Assume that {𝜉
𝑙
}
𝑛

𝑙=1
are uniformly distributed in Θ.

On each point 𝜉
𝑙
, we put in a point source with intensity 𝜏

𝑙
.

Suppose that the temperature distribution generated by the 𝑛
point sources {𝜉

𝑙
}
𝑛

𝑙=1
is equal to that generated by the𝑀 point

sources {𝜃
𝑗
}
𝑀

𝑗=1
. Subsequently, we have

0
𝐷
𝛾

𝑡
𝑢 (𝑥, 𝑡) −L𝑢 (𝑥, 𝑡) =

𝑛

∑

𝑙=1

𝜏
𝑙
𝛿 (𝑥 − 𝜉

𝑙
) ,

𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 0) = 0, 𝑥 ∈ Ω,

𝜇𝑢 (𝑥, 𝑡) + 𝛽
𝜕𝑢

𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ (0, 𝑇) ,

(19)

with additional data (5), where 𝜏
𝑙
is the intensity at the

location 𝜉
𝑙
. By using the above proposed method to solve (19)

with (5), the intensity 𝜏
𝑙
of each point source 𝜉

𝑙
can then be

obtained approximately. Next, we transform the intensities
{𝜏
𝑙
} ⊂ 𝐵(𝜃

𝑗
, 𝜌
𝑗
) ∩ Ω back to a single source point as follows:
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the 𝑗th unknown source intensity 𝜆
𝑗
associated with each ball

𝐵(𝜃
𝑗
, 𝜌
𝑗
) ∩ Ω is approximated by 𝜆̃

𝑗
as

𝜆̃
𝑗
:= ∑

𝑙:𝜉
𝑙
∈𝐵(𝜃
𝑗
,𝜌
𝑗
)∩Ω

𝜏
𝑙
, 𝑗 = 1, 2, . . . ,𝑀. (20)

With the approximation intensity in hand, we can start to
look at how to find the locations of the point sources. For
every point source 𝜃

𝑗
, we use the weight sum of the location

coordinate 𝜉
𝑙
in the ball 𝐵(𝜃

𝑗
, 𝜌
𝑗
) to approximate the exact

location. More specifically, the approximation location 𝜃
𝑗

corresponding to the intensity 𝜆
𝑗
is defined by

𝜃
𝑗
:=

1

𝜆̃
𝑗

∑

𝑙:𝜉
𝑙
∈𝐵(𝜃
𝑗
,𝜌
𝑗
)∩Ω

𝜏
𝑙
𝜉
𝑙
, 𝑗 = 1, 2, . . . ,𝑀. (21)

4. Numerical Examples

In this section, some numerical examples are given to verify
the effectiveness of the method proposed in Section 3. In
our computation, we use the MATLAB code developed by
Hansen [35, 36] for solving the ill-conditioned system (13). To
compare the accuracy of the approximation, we use the root
mean square (RMS) which is defined as

RMS = √
1

𝑀

𝑀

∑

𝑗=1

(𝜆̃
𝛼,𝑗

− 𝜆
𝑗
)
2

. (22)

The noisy data 𝑢𝜖(𝑥
𝑖
, 𝑇) at measurement points 𝑥

𝑖
is obtained

by adding random noise to the exact data 𝑢(𝑥
𝑖
, 𝑇) by

𝑢
𝜖

(𝑥
𝑖
, 𝑇) = 𝑢 (𝑥

𝑖
, 𝑇) + 𝜖rand (𝑖) (23)

for 𝑥
𝑖
∈ Ω, where rand(𝑖) is a random number between

[−1, 1]. The measurement points {𝑥
𝑖
} are equally distributed

in Ω. In addition, as we know, for ill-posed problem, the
regularization parameter 𝛼 plays an important role and hence
has to be chosen appropriately. In theory, 𝛼 depends on some
a priori knowledge of exact solution and noise level 𝜖 [34].
However, in practice, the a priori knowledge and noise level
may not always be known. Therefore, to compensate this
lack of information for the noise level, it is necessary for us
to consider some error-free parameter choice rules. Here,
we adopt the 𝐿-curve criterion [35–37] to choose the regu-
larization parameter.

Example 1. Consider the following heat conduction problem
on a semi-infinite stripe domain Ω = {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 𝑙, 𝑦 ≥

0}:

𝑢
𝑡
(𝑥, 𝑦, 𝑡) − Δ𝑢 = 𝑓 (𝑥, 𝑦) , 0 < 𝑥 < 𝑙,

𝑦 > 0, 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 𝑦, 0) = 0, 0 ≤ 𝑥 ≤ 𝑙, 𝑦 ≥ 0,

𝑢|
𝑥=0

= 𝑢|
𝑥=𝑙

= 0, 𝑦 ≥ 0,

𝑢|
𝑦=0

= 0, 0 ≤ 𝑥 ≤ 𝑙.

(24)

Green’s function is given by

𝐺 (𝑥, 𝑦, 𝑡; 𝜉, 𝜂) =
2

𝑙√𝜋𝑡
𝑒
−(𝑦
2
+𝜂
2
)/4𝑡 sinh

𝑦𝜂

2𝑡

×

∞

∑

𝑛=1

𝑒
−𝑛
2
𝜋
2
𝑡/𝑙
2

sin 𝑛𝜋𝜉

𝑙
sin 𝑛𝜋𝑥

𝑙
𝐻 (𝑡) ,

(25)

where𝐻(⋅) is the Heaviside function. Without loss of gener-
ality, we take 𝑙 = 1.

In this test, we consider the case that the source function
(3) contains five source points {𝜃

𝑗
}
5

𝑗=1
. The input source

locations 𝜃
𝑗
are randomly chosen such that

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑗
− 𝜃
𝑗

󵄨󵄨󵄨󵄨󵄨
< 𝜌
𝑗
, for 𝑗 = 1, 2, 3, 4, 5, (26)

where 𝜌
𝑗
are sufficient small to ensure 𝜃

𝑗
∈ Ω. The value

of the parameters {𝜌
𝑗
}
5

𝑗=1
in (18) used in this computations

is 0.1. When the noisy data are given in the final time 𝑇 =

1, we demonstrate the numerical performance under two
noise levels: 𝜖 = 0.01 and 𝜖 = 0.001. The computations are
performed by using a total of 𝑄 trial centers in each ball.
We report the numerical results under different 𝑄 in Tables 1
and 2. The displayed results show that the total number 𝑄 of
trial centers plays no role in the convergence of the scheme.
Only a small number of trial centers are sufficient to approx-
imate the unknown source function. Therefore, we only
consider the case when 100 trial centers are taken in each ball
in subsequent examples.

Example 2. In this example, we consider the following inverse
identification problem on a square domainΩ = [0, 1] × [0, 1]

for 0 < 𝛾 < 1:

0
𝐷
𝛾

𝑡
𝑢 (𝑥, 𝑦, 𝑡) − Δ𝑢 = 𝑓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω, 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 𝑦, 0) = 0, (𝑥, 𝑦) ∈ Ω,

𝑢 (𝑥, 𝑦, 𝑡) = 0, (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 ∈ (0, 𝑇) .

(27)

By virtue of Laplace’s transform [2, 38], one can derive the
corresponding Green’s function

𝐺 (𝑥, 𝑦, 𝑡; 𝜉, 𝜂) = 4

∞

∑

𝑛=1

𝑡
𝛾

𝐸
𝛾,𝛾+1

(−𝑛
2

𝜋
2

𝑡
𝛾

) sin (𝑛𝜋𝑥)

× sin (𝑛𝜋𝑦) sin (𝑛𝜋𝜉) sin (𝑛𝜋𝜂) .

(28)

Firstly, we see the robustness of the proposed algorithm
about the parameter 𝛾. For 𝜖 = 0.01, 0.001, 𝜌

𝑗
= 0.1, and

𝑇 = 1, we report the RMS in Table 3 under different 𝛾 for
three point sources located at

(0.3, 0.3) , (0.5, 0.7) , (0.7, 0.3) (29)

with intensities 1, 3, and 5.The corresponding approximation
locations are given in Tables 4 and 5. The displayed results
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Table 1: Example 1: numerical comparison for 𝜖 = 0.01 and𝑀 = 5.

Exact 𝜆
𝑗

11 1 21 −5 −7
𝜃
𝑗

(0.5, 1) (0.5, 5) (0.5, 10) (0.5, 15) (0.5, 25)

𝑄 = 25
𝜆̃
𝑗

11.6978 1.0539 22.0974 −5.1806 −7.3625
𝜃
𝑗

(0.5196, 0.9876) (0.5349, 4.9513) (0.5173, 10.0002) (0.5059, 14.9989) (0.5129, 25.0005)

𝑄 = 100
𝜆̃
𝑗

11.7866 0.9881 22.1760 −5.1460 −7.3026
𝜃
𝑗

(0.5226, 0.9925) (0.5196, 4.9688) (0.5188, 10.0002) (0.5059, 15.0016) (0.5102, 25.0001)

𝑄 = 256
𝜆̃
𝑗

11.4531 1.0006 22.1702 −5.1226 −7.1781
𝜃
𝑗

(0.5136, 0.9929) (0.5219, 4.9689) (0.5190, 10.0005) (0.5027, 15.0023) (0.5046, 24.9995)

𝑄 = 400
𝜆̃
𝑗

11.6968 1.0962 22.1453 −5.0899 −7.1799
𝜃
𝑗

(0.5213, 0.9977) (0.5521, 4.9829) (0.5186, 10.0005) (0.5009, 15.0027) (0.5047, 25.0008)

𝑄 = 625
𝜆̃
𝑗

11.9726 1.0230 22.0421 −5.1289 −7.1438
𝜃
𝑗

(0.5274, 0.9951) (0.5309, 5.0000) (0.5171, 10.0004) (0.5033, 15.0033) (0.5028, 24.9993)

𝑄 = 900
𝜆̃
𝑗

11.5229 1.0794 22.3220 −4.9636 −7.1709
𝜃
𝑗

(0.5163, 0.9975) (0.5477, 4.9907) (0.5209, 10.0004) (0.4919, 15.0005) (0.5035, 25.0000)

Table 2: Example 1: numerical comparison for 𝜖 = 0.001 and𝑀 = 5.

Exact 𝜆
𝑗

5 7 2 5 7
𝜃
𝑗

(0.3, 1) (0.6, 5) (0.5, 10) (0.7, 15) (0.2, 25)

𝑄 = 25
𝜆̃
𝑗

4.9670 7.3015 1.8876 5.1820 6.9783
𝜃
𝑗

(0.3016, 1.0113) (0.6133, 5.0007) (0.4816, 10.0010) (0.7097, 14.9972) (0.1985, 24.9974)

𝑄 = 100
𝜆̃
𝑗

4.9553 7.1001 1.9929 5.0736 6.9830
𝜃
𝑗

(0.3009, 1.0117) (0.6057, 4.9999) (0.4993, 10.0079) (0.7061, 15.0017) (0.1982, 24.9966)

𝑄 = 256
𝜆̃
𝑗

4.9891 7.0950 2.0070 4.9055 6.7970
𝜃
𝑗

(0.3041, 1.0112) (0.6054, 4.9992) (0.5018, 10.0075) (0.7003, 15.0016) (0.2031, 25.0043)

𝑄 = 400
𝜆̃
𝑗

4.9690 7.0538 1.9133 4.9015 6.7483
𝜃
𝑗

(0.3020, 1.0114) (0.6041, 4.9998) (0.4859, 10.0036) (0.7002, 15.0014) (0.2032, 25.0023)

𝑄 = 625
𝜆̃
𝑗

4.9678 7.0433 1.9759 4.9636 6.6110
𝜃
𝑗

(0.3022, 1.0115) (0.6036, 5.0003) (0.4966, 10.0061) (0.7025, 15.0035) (0.2078, 25.0015)

𝑄 = 900
𝜆̃
𝑗

4.9803 7.0981 2.0104 5.0513 6.6630
𝜃
𝑗

(0.3030, 1.0103) (0.6052, 4.9991) (0.5019, 10.0072) (0.7047, 15.0059) (0.2065, 25.0024)

Table 3: Example 2: RMS under different 𝜖 and 𝛾 for𝑀 = 3.

𝜖
𝛾

0.0909 0.1818 0.2727 0.3636 0.4545 0.5455 0.6364 0.7273 0.8182 0.9091
0.01 0.0231 0.0121 0.0388 0.0266 0.0137 0.0250 0.0184 0.0233 0.0822 0.0589
0.001 0.0083 0.0045 0.0088 0.0080 0.0089 0.0114 0.0099 0.0091 0.0096 0.0070

Table 4: Example 2: the approximation locations for (0.3, 0.3), (0.5, 0.7), and (0.7, 0.3).

𝜖
𝛾

0.0909 0.1818 0.2727 0.3636 0.4545

0.01
(0.2986, 0.2844)
(0.5017, 0.7031)
(0.7023, 0.2998)

(0.2983, 0.2987)
(0.5013, 0.6993)
(0.7018, 0.3014)

(0.3053, 0.3013)
(0.5022, 0.6979)
(0.7030, 0.3061)

(0.2951, 0.2875)
(0.5005, 0.7029)
(0.7036, 0.3016)

(0.3035, 0.3049)
(0.5009, 0.6985)
(0.7022, 0.3030)

0.001
(0.3002, 0.2937)
(0.5010, 0.7010)
(0.7024, 0.3018)

(0.3031, 0.2956)
(0.5002, 0.7002)
(0.7016, 0.3016)

(0.3019, 0.2951)
(0.5006, 0.7003)
(0.7020, 0.3017)

(0.3021, 0.2950)
(0.5006, 0.7003)
(0.7021, 0.3019)

(0.2996, 0.2947)
(0.5008, 0.7008)
(0.7024, 0.3018)
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Figure 1: Approximation for 𝜖 = 0.1 with 𝑇 = 0.1 (a), 1 (b).

Table 5: Example 2: the approximation locations for (0.3, 0.3), (0.5, 0.7), and (0.7, 0.3).

𝜖
𝛾

0.5455 0.6364 0.7273 0.8182 0.9091

0.01
(0.3029, 0.2955)
(0.5021, 0.7004)
(0.7029, 0.3036)

(0.3003, 0.3007)
(0.5007, 0.6983)
(0.7010, 0.3029)

(0.3083, 0.3026)
(0.4974, 0.6976)
(0.6995, 0.3008)

(0.2957, 0.2992)
(0.5050, 0.6980)
(0.7018, 0.3088)

(0.2830, 0.2881)
(0.4980, 0.7038)
(0.7056, 0.3000)

0.001
(0.3011, 0.2940)
(0.5010, 0.7006)
(0.7025, 0.3022)

(0.3029, 0.2946)
(0.5006, 0.7002)
(0.7021, 0.3021)

(0.3017, 0.2943)
(0.5009, 0.7006)
(0.7021, 0.3017)

(0.2992, 0.2954)
(0.5004, 0.7008)
(0.7026, 0.3019)

(0.3023, 0.2972)
(0.5005, 0.6996)
(0.7021, 0.3024)

Table 6: Example 2: numerical comparison for 𝜖 = 0.01 using different 𝑇.

Exact 𝜆
𝑗

1 3 5
𝜃
𝑗

(0.3, 0.3) (0.5, 0.7) (0.7, 0.3)

𝑇 = 0.1
𝜆̃
𝑗

1.0108 3.0096 5.0584
𝜃
𝑗

(0.2886, 0.2917) (0.5007, 0.7032) (0.7043, 0.3034)

𝑇 = 1
𝜆̃
𝑗

1.0039 3.0035 4.8805
𝜃
𝑗

(0.3265, 0.3068) (0.4966, 0.6984) (0.6993, 0.3001)

𝑇 = 2
𝜆̃
𝑗

0.8916 2.9666 5.0708
𝜃
𝑗

(0.2959, 0.2993) (0.5046, 0.6980) (0.7004, 0.3093)

𝑇 = 5
𝜆̃
𝑗

0.8560 2.9201 5.1635
𝜃
𝑗

(0.2805, 0.3130) (0.5134, 0.6938) (0.7026, 0.3100)

show that the change of the parameter 𝛾 has little effect on
the numerical computations, which reflects that the proposed
method is robust about 𝛾. On the other hand, one can see that,
for smaller noise level 𝜖, we obtain better numerical effect.

Secondly, we also consider the effect of the final time 𝑇
on the numerical precision. Fixing 𝛾 = 0.5 and choosing
parameter 𝜌

𝑗
= 0.1, we report the numerical results in

Table 6, from which one can see that the accuracy of the

approximation decreases with respect to the increase of the
number of 𝑇. Such phenomenon can be explained by the
nature of ill-posed inverse source identification problem.

Finally, using the previous point source, we plot the exact
and approximation locations of source points in Figure 1 for
𝜖 = 0.1 and 𝑇 = 0.1, 1. The computational intensities are
0.9326, 2.9555, and 5.1065 for 𝑇 = 0.1 and 1.4365, 1.9797,
and 5.8621 for 𝑇 = 1, respectively. It can be seen that even for
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high noise level 𝜖 = 0.1, the proposed method produces an
acceptable numerical approximation.

5. Conclusion

Based on the use of Green’s function, we propose in this paper
an effective numerical method to recover both the intensities
and locations of point sources for a time fractional diffusion
process. Some numerical results show that the proposed
algorithm provides an accurate and reliable scheme.
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Metzler et al. introduced a fractional Fokker-Planck equation (FFPE) describing a subdiffusive behavior of a particle under the
combined influence of external nonlinear force field and a Boltzmann thermal heat bath. In this paper, we present an interval
Shannon wavelet numerical method for the FFPE. In this method, a new concept named “dynamic interval wavelet” is proposed
to solve the problem that the numerical solution of the fractional PDE is usually sensitive to boundary conditions. Comparing
with the traditional wavelet defined in the interval, the Newton interpolator is employed instead of the Lagrange interpolation
operator, so, the extrapolation points in the interval wavelet can be chosen dynamically to restrict the boundary effect without
increase of the calculation amount. In order to avoid unlimited increasing of the extrapolation points, both the error tolerance
and the condition number are taken as indicators for the dynamic choice of the extrapolation points. Then, combining with the
finite difference technology, a new numerical method for the time fractional partial differential equation is constructed. A simple
Fokker-Planck equation is taken as an example to illustrate the effectiveness by comparing with the Grunwald-Letnikov central
difference approximation (GL-CDA).

1. Introduction

Due to the fact that 1/𝑓 signal gains the increasing interests
in the field of biomedical signal processing and engineering
systems [1], the differential equations of fractional order
appear more and more frequently in various research areas
and engineering applications [2, 3]. As a matter of fact,
the applications of fractional differential equations and their
corresponding time series have been developed in various
fields of sciences and technologies [4, 5] in recent years,
ranging from computer science to physics [6, 7]. An effective
and easy-to-usemethod for solving such equations is needed.
However, knownmethods have certain disadvantages. Meth-
ods, described in detail in [3] for fractional differential
equations of rational order, do not work in the case of
arbitrary real order. On the other hand, there is an iteration
method described in [8], which allows solution of fractional
differential equations of arbitrary real order but it works
effectively only for relatively simple equations, in addition
to the series method. Up to now, most studies on the

numerical methods for the fractional PDEs concentrate on
the finite difference methods. Li [9] proposed an analytical
method taking the fractal time series as the solution to
a differential equation of fractional order or a response
of a fractional system or a fractional filter driven with
a white noise in the domain of stochastic processes and
gave the exact solution of impulse response to a class of
fractional oscillators [10]. According to this idea, Li and
his coresearchers solved many problems in science and
technology [11–14]. In addition, Wavelet numerical method
is another way to get the solution of the fractional PDEs. In
fact, the wavelet transform theory has been widely used in
numerical analysis such as PDEs-based image processing [15–
17], option pricing model [18], integrodifferential operators
[19–23], and other nonlinear PDEs [24–28]. The wavelet
functions possess many excellent numerical properties, such
as orthogonality, interpolation, smoothness, and compact
support, which are helpful in improving numerical accuracy
and efficiency. In recent decades, many wavelets which have
compact support, smoothness, and other properties have
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been constructed. Among these wavelets, Shannon wavelet
is paid little attention in applications as it does not possess
compact support property although it possesses orthogo-
nality, smooth continuity, and analytical expression. Cattani
studied the properties of the Shannon wavelet function,
which possesses many advantages such as orthogonality,
continuous and differentiable. It also has the advantage over
the Hermite DAF in that it is an interpolating function,
producing matrix equations that have the potential to be
relatively sparse. In addition, the second order approximation
of a C2-function, based on Shannon wavelet functions, is
given [29]. The approximation is compared with the wavelet
reconstruction formula and the error of approximation is
explicitly computed [30].

Aperceived disadvantage of the Shannon scaling function
is that it tends to zero quite slowly as |𝑥| → ∞. A direct
consequence of this is that when calculating the derivatives, a
large number of the nodal values will contribute significantly.
It is for this reason that Hoffman et al. [31] have suggested
using the Shannon-Gabor wavelet, which introduces the
Gaussian window function to improve the compact support
property of Shannon wavelet function in required preci-
sion range. However, the presence of the Gaussian window
destroys the orthogonal properties possessed by the Shannon
wavelet, effectively worsening the approximation to a Dirac
delta function.

Comparing with the common PDEs, the solutions of
the fractional PDEs are more sensitive to the boundary
condition. Using the wavelet transform defined in infinite
domain to solve the engineering problems in finite interval,
the wavelet transform coefficients at the boundary are usually
very large. It will bring server boundary effect which affects
the calculation accuracy and efficiency. Vasilyev and Paolucci
[32] construct an interval wavelet using external wavelets,
which can decrease the boundary effect to some extent.
Based on the same principle, a more general construction
method for the interval interpolation wavelet [33, 34] was
given in the framework of generalized variational principle
and has been widely used in many areas [35–37]. But the
choice of parameter 𝐿 (that is the amount of the external
collocation points) was not discussed in detail. It just points
out that the value of 𝐿 should be taken between 1 and 3
based on experience. In fact, the value of 𝐿 depends on the
smoothness and derivative of the approximated function at
boundary points. That is, if the approximated function is
the solution of the diffusion PDEs with respect to the time
parameter, the value of 𝐿 should be taken dynamically. In
addition, we should take into account that the impact of
the external collocation points to the condition number of
the system of the discretized algebraic equations. So, it is
necessary to construct a dynamic interval wavelet in solving
the PDEs with dynamic boundary conditions such as the
fractional PDEs.

In this paper, a dynamic interval Shannon wavelet col-
location method for the fractional FPDs is proposed. In
this method, the relation between the parameter 𝐿 and the
wavelet approximation error was discussed based on the
interpolation error theory, and an adaptive choice procedure

on 𝐿 was constructed. Therefore, the so-called dynamic
interval Shannon wavelet is constructed. Next, based on the
Grünwald-Letnikov definition of the fractional order deriva-
tive, we construct a Shannon wavelet numerical method for
the fraction Fokker-Planck equation.

2. Fractional Fokker-Planck Equation

The fractional Fokker-Planck equation has been used in
many physical transport problemswhich take place under the
influence of an external force field [2, 38].

In the presence of an external force field 𝐹(𝑥) = −]󸀠(𝑥),
the evolution of a test particle is usually described in terms of
the Fokker-Planck equation (FPE)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
=
0
𝐷
1−𝛼

𝑡
[
𝜕

𝜕𝑥

]󸀠 (𝑥)
𝑚𝜂
𝛼

+ 𝐾
𝛼

𝜕
2

𝜕𝑥2
] 𝑢 (𝑥, 𝑡) ,

𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑡 ≤ 𝑇,

(1)

which defines the probability 𝑢(𝑥, 𝑡) of finding the particle at
a certain position 𝑥 at a given time 𝑡. 𝑚 denotes the mass of
the diffusing particle, 𝐾

𝛼
> 0 denotes the generalized diffu-

sion coefficient with dimension [𝐾
𝛼
] = cm2sec−𝛼, and 𝜂

𝛼
is

the generalized friction coefficient with dimension [𝜂
𝛼
] =

sec𝛼−2. The corresponding initial condition is

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏, (2)

and the boundary conditions are

𝑢 (𝑎, 𝑡) = 𝑝
1
(𝑡) , 𝑢 (𝑏, 𝑡) = 𝑝

2
(𝑡) , 0 < 𝑡 ≤ 𝑇. (3)

Equation (1) uses the Riemann-Liouville fractional derivative
of order 1 − 𝛼, defined by

0
𝐷
1−𝛼

𝑡
𝑢 (𝑥, 𝑡) =

1

Γ (𝛼)

𝜕

𝜕𝑡
∫

1

0

𝑢 (𝑥, 𝜂)

(𝑡 − 𝜂)
1−𝛼

𝑑𝜂,

0 ≤ 𝛼 < 1,

(4)

where Γ(𝛼) is the gamma function.
According to the properties of the Riemann-Liouville

fractional derivative, it is easy to know that, if (𝑥, 𝑡) ∈

𝐶
2,1

𝑥,𝑡
([𝑎, 𝑏] × [0, 𝑇]), (1) can be rewritten as follows:

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) −

𝑢 (𝑥, 0) 𝑡
−𝛼

Γ (1 − 𝛼)
= [

𝜕

𝜕𝑥

]󸀠 (𝑥)
𝑚𝜂
𝛼

+ 𝐾
𝛼

𝜕
2

𝜕𝑥2
] 𝑢 (𝑥, 𝑡) ,

𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑡 ≤ 𝑇.

(5)

Metzler et al. [2] proposed three implicit approximations for
solving (5) as follows.
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(1)TheGrünwald-Letnikov expansion and the backward
Euler implicit approximation (GL-BDIA)

𝜏
−𝛼

[𝑢
𝑛

𝑖
+

𝑛−1

∑

𝑘=1

𝑔
𝑘
𝑢
𝑛−𝑘

𝑖
−

𝑛−1

∑

𝑘=0

𝑔
𝑘
𝑢
0

𝑖
]

=
𝑓
𝑖
𝑢
𝑛

𝑖
− 𝑓
𝑖−1
𝑢
𝑛

𝑖−1

ℎ
+ 𝐾
𝛼

𝑢
𝑛

𝑖+1
− 2𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖−1

ℎ2
,

𝑖 = 1, 2, . . . ,𝑀 − 1

𝑢
0

𝑖
= 𝜑 (𝑥

𝑖
) , 1 ≤ 𝑖 ≤ 𝑀

𝑢
𝑛

0
= 𝑝
1
(𝑡
𝑛
) , 𝑢

𝑛

𝑀
= 𝑝
2
(𝑡
𝑛
) , 𝑛 ≥ 1,

𝑔
𝑘
= (1 −

1 + 𝛼

𝑘
)𝑔
𝑘−1
, 𝑔

0
= 1,

𝑓
𝑖
= 𝑓 (𝑥

𝑖
) =

]󸀠 (𝑥
𝑖
)

𝑚𝜂
𝛼

,

(6)

where ℎ = (𝑏 − 𝑎)/𝑀, 𝜏 = 𝑇/𝑁, 𝑥
𝑖
= 𝑎 + 𝑖ℎ, and

𝑡
𝑛
= 𝑛𝜏. 𝑀 and 𝑁 are positive integers.The local truncation

error is 𝑂(𝜏 + ℎ).
(2) 𝐿
1
-approximation and the central difference implicit

approximation (𝐿
1
-CDIA)

𝜏
−𝛼

Γ (2 − 𝛼)
[𝑢
𝑛

𝑖
+

𝑛−1

∑

𝑘=1

(𝑎
𝑛−𝑘−1

− 𝑎
𝑛−𝑘
) 𝑢
𝑘

𝑖
− 𝑎
𝑛−1
𝑢
0

𝑖
]

=
𝑓
𝑖+1
𝑢
𝑛

𝑖+1
− 𝑓
𝑖−1
𝑢
𝑛

𝑖−1

2ℎ
+ 𝐾
𝛼

𝑢
𝑛

𝑖+1
− 2𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖−1

ℎ2

𝑖 = 1, 2, . . . ,𝑀 − 1

𝑢
0

𝑖
= 𝜑 (𝑥

𝑖
) , 1 ≤ 𝑖 ≤ 𝑀,

𝑢
𝑛

0
= 𝑝
1
(𝑡
𝑛
) , 𝑢

𝑛

𝑀
= 𝑝
2
(𝑡
𝑛
) , 𝑛 ≥ 1

𝑎
𝑘
= (𝑘 + 1)

1−𝛼

− 𝑘
1−𝛼

,

𝑓
𝑖
= 𝑓 (𝑥

𝑖
) =

]󸀠 (𝑥
𝑖
)

𝑚𝜂
𝛼

.

(7)

The local truncation error is 𝑂(𝜏2−𝛼 + ℎ2).
(3) 𝐿
1
-approximation and the backward difference im-

plicit approximation (𝐿
1
-BDIA)
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The local truncation error is 𝑂(𝜏2−𝛼 + ℎ).
In fact, (6)–(2) are not perfect approximation as the

boundary effect is not taken into account. So, it will introduce
boundary effect in solving the PDEs with the Nuemann
boundary conditions. It is well known that the finite dif-
ference method is equivalent to the Faber-Schauder wavelet
collocation method, so the construction method of the
dynamic interval wavelet introduced in this paper can also
be used to deal with the boundary problem in the finite
difference method.

According to the Shannon sample theory, it can improve
the calculation precision that combining the Grünwald-
Letnikov expansion or 𝐿

1
-approximation of the fractional

derivative in (5) with the Shannon scaling function as the
weight function instead of the various difference operators as
follows:
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(9)

3. Construction of the Interval
Interpolation Wavelet

3.1. Shannon Wavelet and Shannon-Gabor Wavelet. The rep-
resentation of Shannon wavelet is based upon approximating
the Dirac delta function as a band-limited function and is
given by

𝜙 (𝑥) =
sin (𝜋𝑥)
𝜋𝑥

(10)

and the Shannon-Gabor scaling function is defined as [17]

𝐺 (𝑥) =
sin (𝜋𝑥)
𝜋𝑥

exp(− 𝑥
2

2𝜎2
) , 𝜎 > 0, (11)

where 𝜎 is the window size.
Consider a one-dimensional function 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏]. A

discrete point sequence of the variable 𝑥 is defined as
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𝑥
𝑛
= 𝑎 +

𝑏 − 𝑎

2𝑗
⋅ 𝑛, 𝑗 ∈ Z, 𝑛 = 0, 1, 2, . . . , 2𝑗, (12)

and the corresponding discrete point sequence of the scaling
function 𝜙(𝑥) and 𝐺(𝑥) can be defined, respectively, as

𝜙
𝑗,𝑛
(𝑥) = 𝜙

𝑗
(𝑥 − 𝑥

𝑛
) =

sin (2𝑗𝜋/ (𝑏 − 𝑎)) (𝑥 − 𝑥
𝑛
)

(2𝑗𝜋/ (𝑏 − 𝑎)) (𝑥 − 𝑥
𝑛
)

,

𝐺
𝑗,𝑛
(𝑥) = 𝐺

𝑗
(𝑥 − 𝑥

𝑛
) =

sin (2𝑗𝜋/ (𝑏 − 𝑎)) (𝑥 − 𝑥
𝑛
)

(2𝑗𝜋/ (𝑏 − 𝑎)) (𝑥 − 𝑥
𝑛
)

× exp(−
2
2
𝑗
−1

(𝑥 − 𝑥
𝑛
)
2

𝑟2(𝑏 − 𝑎)
2

) ,

(13)

where 𝑟 = 2𝑗𝜎/(𝑏 − 𝑎).

The first and second order derivatives of 𝜙
𝑗
(𝑥−𝑥

𝑛
) at the

discrete point 𝑥
𝑘
are

𝜙
󸀠

𝑗
(𝑥
𝑘
− 𝑥
𝑛
) =

{{

{{

{

0, 𝑘 = 𝑛,

2
𝑗 cos [𝜋 (𝑘 − 𝑛)]
(𝑘 − 𝑛) (𝑏 − 𝑎)

, 𝑘 ̸=𝑛,

𝜙
󸀠󸀠

𝑗
(𝑥
𝑘
− 𝑥
𝑛
) =

{{{{

{{{{

{

−
𝜋
2

3((𝑏 − 𝑎)/2𝑗)
2
, 𝑘 = 𝑛,

−
2 cos [𝜋 (𝑘 − 𝑛)]

((𝑏 − 𝑎) /2
𝑗)
2

(𝑘 − 𝑛)
2

, 𝑘 ̸=𝑛.

(14)

And the first and second order derivatives of 𝐺
𝑗
(𝑥−𝑥
𝑛
) at

the discrete point 𝑥
𝑘
are

𝐺
󸀠

𝑗
(𝑥
𝑘
− 𝑥
𝑛
) =

{{

{{

{

0, 𝑘 = 𝑛

2
𝑗 cos [𝜋 (𝑘 − 𝑛)] exp [−(𝑘 − 𝑛)2/2𝑟2]

(𝑘 − 𝑛) (𝑏 − 𝑎)
, 𝑘 ̸=𝑛

𝐺
󸀠󸀠

𝑗
(𝑥
𝑘
− 𝑥
𝑛
) =

{{{{{

{{{{{

{

−
3 + 𝜋
2

𝑟
2

3𝑟2((𝑏 − 𝑎)/2𝑗)
2
, 𝑘 = 𝑛

−

2 cos [𝜋 (𝑘 − 𝑛)] exp [−(𝑘 − 𝑛)2/2𝑟2]

((𝑏 − 𝑎) /2
𝑗)
2

[
1

(𝑘 − 𝑛)
2
+
1

𝑟2
] , 𝑘 ̸=𝑛.

(15)

In fact, there is no difference between the construction
method of the Interval Shannon wavelet and the inter-
val Shannon-Gabor wavelet. So, we just take one uniform
symbol 𝑤(𝑥) as the representation of the Shannon wavelet
and the Shannon-Gabor wavelet in the following.

3.2. Interval Interpolation Wavelet. According to the defini-
tion of the interval wavelet, the interval interpolation basis
functions can be expressed as:

𝑤
𝑗𝑘
(𝑥) =

{{{{{{{{

{{{{{{{{

{

𝜙(2
𝑗

𝑥 − 𝑘) +

−1

∑

𝑛=−𝐿+1

𝑎
𝑛𝑘
𝜙 (2
𝑗

𝑥 − 𝑛) , 𝑘 = 0, . . . , 𝐿

𝜙 (2
𝑗

𝑥 − 𝑘) , 𝑘 = 𝐿 + 1, . . . , 2
𝑗

− 𝐿 − 1

𝜙 (2
𝑗

𝑥 − 𝑘) +

2
𝑗
+𝐿−1

∑

𝑛=2
𝑗
+1

𝑏
𝑛𝑘
𝜙 (2
𝑗

𝑥 − 𝑛) , 𝑘 = 2
𝑗

− 𝐿, . . . , 2
𝑗

,

(16)

where,

𝑎nk =
−1

∏

𝑖=𝐿−1, 𝑖 ̸= 𝑘

𝑥
𝑗,𝑛
− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

, 𝑏nk =
2
𝑗
+1+𝐿

∏

𝑖=2
𝑗
+1, 𝑖 ̸= 𝑘

𝑥
𝑗,𝑛
− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
= 𝑘

𝑥max − 𝑥min
2𝑗

, 𝑘 ∈ Z,

(17)

where 𝐿 is the amount of the external collocation points, the
amount of discrete points in the definition domain is 2𝑗 +
1 (𝑗 ∈ Z), and [𝑥min, 𝑥max] is the definition domain of the
approximated function.

Equations (16) and (17) show that the interval wavelet
is derived from the domain extension. The supplementary
discrete points in the extended domain are called external
points.The value of the approximated function at the external
points can be obtained by Lagrange extrapolation method.
Using the interval wavelet to approximate a function, the
boundary effect can be left in the supplementary domain;
that is, the boundary effect is eliminated in the definition
domain.

According to (16) and (17), the interval wavelet approxi-
mant of the function 𝑓(𝑥) 𝑥 ∈ [𝑥min, 𝑥max] can be expressed
as
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𝑓
𝑗
(𝑥) = ∑𝑓

𝑗
(𝑥
𝑛
) 𝑤
𝑗
(2
𝑗

𝑥 − 𝑛) ,

𝑥
𝑛
= 𝑥min + 𝑛

𝑥max − 𝑥min
2𝑗

.

(18)
𝑓
𝑗
(𝑥
𝑛
) is the given value at the discrete point 𝑥

𝑛
. At the

external points, 𝑓
𝑗
(𝑥
𝑛
) can be obtained by extrapolation; that

is

𝑓
𝑗
(𝑥
𝑛
) =

{{{{{{

{{{{{{

{

𝐿−1

∑

𝑘=0

(𝑓
𝑗
(𝑥
𝑘
)

𝐿−1

∏

𝑖=0,𝑖 ̸= 𝑘

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

) , 𝑛 = −1, . . . , −𝐿

2
𝑗

∑

𝑘=2
𝑗
−𝐿+1

(𝑓
𝑗
(𝑥
𝑘
)

2
𝑗

∏

𝑖=2
𝑗
−𝐿+1,𝑘 ̸= 𝑖

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

) , 𝑛 = 2
𝑗

+ 1, . . . , 2
𝑗

+ 𝐿.

(19)

So the interval wavelet approximant of 𝑓(𝑥) can be rewritten
as

𝑓
𝑗
(𝑥) =

−1

∑

𝑛=−𝐿

(

𝐿−1

∑

𝑘=0

𝑓
𝑗
(𝑥
𝑘
)

𝐿−1

∏

𝑖=0

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

)𝜔(2
𝑗

𝑥 − 𝑛)

+

2
𝑗

∑

𝑛=0

𝑓
𝑗
(𝑥
𝑘
) 𝜔 (2

𝑗

𝑥 − 𝑛)

+

2
𝑗
+𝐿

∑

𝑛=2
𝑗
+1

(

2
𝑗

∑

𝑘=2
𝑗
−𝐿

𝑓
𝑗
(𝑥
𝑘
)

2
𝑗

∏

𝑖=2
𝑗
−𝐿

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

)𝜔(2
𝑗

𝑥 − 𝑛) .

(20)

Let

𝐿𝑆
𝐿
(𝑥
𝑛
) =

𝐿−1

∑

𝑘=0

𝑓
𝑗
(𝑥
𝑘
)

𝐿−1

∏

𝑖=0

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

,

𝐿𝐸
𝐿
(𝑥
𝑛
) =

2
𝑗

∑

𝑘=2
𝑗
−𝐿

𝑓
𝑗
(𝑥
𝑘
)

2
𝑗

∏

𝑖=2
𝑗
−𝐿

𝑥
𝑛
− 𝑥
𝑖

𝑥
𝑘
− 𝑥
𝑖

,

(21)

then

𝑓
𝑗
(𝑥) =

−1

∑

𝑛=−𝐿

𝐿𝑆
𝐿
(𝑥
𝑛
) 𝜔 (2

𝑗

𝑥 − 𝑛)

+

2
𝑗

∑

𝑛=0

𝑓
𝑗
(𝑥
𝑘
) 𝜔 (2

𝑗

𝑥 − 𝑛)

+

2
𝑗
+𝐿

∑

𝑛=2
𝑗
+1

𝐿𝐸
𝐿
(𝑥
𝑛
) 𝜔 (2

𝑗

𝑥 − 𝑛) .

(22)

𝐿𝑆
𝐿
(𝑥
𝑛
) and 𝐿𝐸

𝐿
(𝑥
𝑛
) correspond to the left and the right

external points, respectively. They are obtained by Lagrange
extrapolation using the internal collocation points near
the boundary. So, the interval wavelet’s influence on the
boundary effect can be attributed to Lagrange extrapolation.
It should be pointed out that we did not care about the
reliability of the extrapolation. The only function of the
extrapolation is enlarging the definition domain of the given
function which can avoid the boundary effect occurred in
the domain. Therefore, we can discuss the choice of 𝐿 by

means of Lagrange inner-and extrapolation error polynomial
as follows:

𝑅
𝐿
(𝑥) =

𝑓
(𝐿+1)

(𝜉)

(𝐿 + 1)!

𝐿

∏

𝑖=0

(𝑥 − 𝑥
𝑖
) , for some 𝜉 between

𝑥, 𝑥
0
, . . . , 𝑥

𝐿
.

(23)

Equation (23) indicates that the approximation error is both
related to the smoothness and the gradient of the original
function near the boundary. Setting different 𝐿 can satisfy
the error tolerance.

3.3. Adaptive Interval Interpolation Wavelet. The interval
interpolation wavelet is often used to solve the diffusion
PDEs with Neumann boundary conditions. The smoothness
and gradient of the PDE’s solution usually vary with the
time parameter. If the parameter 𝐿 is a constant, we have
to take a bigger value in order to obtain results with higher
calculation precision. But the bigger 𝐿 usually introduces
the famous Gibbs phenomena into the numerical solution,
which usually results in the algorithm becoming invalid. In
addition, the bigger 𝐿 will bring much more calculation. To
keep higher numerical precision and save calculation, the best
way is to design a procedure that 𝐿 can vary with the curve’s
smoothness and gradient dynamically.

In this dynamic procedure, the error estimation equation
(23) can be taken as the criterion about 𝐿. But in most cases,
we cannot know the smoothness and the derivative’s order
of the original function. This can be solved by substituting
the difference coefficient for the derivative.This is coincident
with the Newton interpolation equation which is equiva-
lent with Lagrange interpolation equation. In addition, the
Lagrange interpolation algorithm has no inheritance which
is the key feature of Newton interpolation. So, the basis
function has to be calculated repeatedly as interpolation
points are added into the calculation, which increases the
computation complexity greatly. In contracst to the Lagrange
method, the advantage of Newton interpolation method is
that the Newton divided difference form is employed, which
can produce a mathematically equivalent result by using
recurrence relations, which reduces the number of compute
operation, especially the multiplication. So it is convenient
using the Newton interpolation method to construct the
dynamic procedure.
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3.3.1. Newton Interpolation. The expression of Newton inter-
polation can be written as

𝑁
𝑛
(𝑥) = 𝑓 (𝑥

0
) + (𝑥 − 𝑥

0
) 𝑓 (𝑥

0
, 𝑥
1
)

+ (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) 𝑓 (𝑥

0
, 𝑥
1
, 𝑥
2
) + ⋅ ⋅ ⋅

+ (𝑥 − 𝑥
0
) (𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛−1
)

× 𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
) .

(24)

Substituting the Newton interpolation instead of the La-
grange interpolation into (22) can be rewritten as

𝑓
𝑗
(𝑥) =

−1

∑

𝑛=−𝐿

(𝑁𝑆
𝐿
(𝑥
𝑛
)) 𝜔 (2

𝑗

𝑥 − 𝑛)

+

2
𝑗

∑

𝑛=0

𝑓
𝑗
(𝑥
𝑛
) 𝜔 (2

𝑗

𝑥 − 𝑛)

+

2
𝑗
+𝐿

∑

𝑛=2
𝑗
+1

(𝑁𝐸
𝐿
(𝑥
𝑛
)) 𝜔 (2

𝑗

𝑥 − 𝑛) ,

(25)

where

𝑁𝑆
𝐿
(𝑥
𝑛
) = 𝑓 (𝑥

0
) + (𝑥

𝑛
− 𝑥
0
) 𝑓 (𝑥

0
, 𝑥
1
)

+ (𝑥
𝑛
− 𝑥
0
) (𝑥
𝑛
− 𝑥
1
) 𝑓 (𝑥

0
, 𝑥
1
, 𝑥
2
) + ⋅ ⋅ ⋅

+ (𝑥
𝑛
− 𝑥
0
) (𝑥
𝑛
− 𝑥
1
) ⋅ ⋅ ⋅ (𝑥

𝑛
− 𝑥
𝐿−1
)

× 𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝐿
) ,

𝑁𝑆
𝑅
(𝑥
𝑛
) = 𝑓 (𝑥

2
𝑗) + (𝑥

𝑛
− 𝑥
2
𝑗) 𝑓 (𝑥

2
𝑗 , 𝑥
2
𝑗
−1
)

+ (𝑥
𝑛
− 𝑥
2
𝑗) (𝑥
𝑛
− 𝑥
2
𝑗
−1
)

× 𝑓 (𝑥
2
𝑗 , 𝑥
2
𝑗
−1
, 𝑥
2
𝑗
−2
) + ⋅ ⋅ ⋅

+ (𝑥
𝑛
− 𝑥
2
𝑗) (𝑥
𝑛
− 𝑥
2
𝑗
−1
) ⋅ ⋅ ⋅ (𝑥

𝑛
− 𝑥
2
𝑗
−𝐿
)

× 𝑓 (𝑥
2
𝑗 , 𝑥
2
𝑗
−1
, . . . , 𝑥

2
𝑗
−𝐿
) .

(26)

3.3.2. Relation between the Newton Interpolation Error and the
Choice of 𝐿. It is well known that the Newton interpolation is
equivalent to the Lagrange interpolation. The corresponding
error estimation can be expressed as

𝑅
𝑛
(𝑥) = (𝑥 − 𝑥

0
) (𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛
) 𝑓 (𝑥, 𝑥

0
, . . . , 𝑥

𝑛
) .

(27)

And the simplest criterion to terminate the dynamic choice
on 𝐿 is |𝑅

𝑛
(𝑥)| ≤ 𝑇

𝑎
(𝑇
𝑎
is the absolute error tolerance).

Obviously, it is difficult to define 𝑇
𝑎
which should meet with

the precision requirement of all approximated curves. In fact,
the difference coefficient 𝑓(𝑥, 𝑥

0
,. . . , 𝑥

𝑛
) can be used directly

as the criterion; that is
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑥0, . . . , 𝑥𝑛)

󵄨󵄨󵄨󵄨 < 𝜀. (28)

As mentioned above, once the curves with lower order
smoothness are approximated by higher order polynomial

expression, the errors will become bigger on the contrary.
In fact, even if the 𝐿 is infinite, the computational precision
cannot be satisfied except by increasing computational com-
plexity. To avoid this, we design the termination procedure of
dynamic choice about 𝐿 as follows:

If 𝑓(𝑥
0
, 𝑥
1
)< 𝑇
𝑎
, then 𝐿 = 1

else if 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
) < 𝑇

𝑎
or 𝑓(𝑥

0
, 𝑥
1
, 𝑥
2
) <

𝑓(𝑥
0
, 𝑥
1
), then 𝐿 = 2

else if 𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) < 𝑇

𝑎
or 𝑓(𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) <

𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
), then 𝐿 = 3

. . .

3.3.3. 𝐿 and the Condition Number of the System of Algebraic
Equations. In the field of numerical analysis, the condition
number of a function with respect to an argument measures
how much the output value of the function can change for a
small change in the input argument. This is used to measure
how sensitive a function is to changes or errors in the input
and how much error in the output results from an error in
the input. It is no doubt that the choice of 𝐿 can change
the condition number of the system of algebraic equations
discretized by the wavelet interpolation operator or the finite
difference method. Therefore, the choice of 𝐿 should take
the condition number into account. In fact, if the condition
number cond(𝐴) = 10

𝑘, then you may lose up to 𝑘 digits
of accuracy on top of what would be lost to the numerical
method due to loss of precision from arithmetic methods
[24]. According to the general rule of thumb, the choice
should follow the rule as follows:

Cond (𝐴
𝐿+1
)

Cond (𝐴
𝐿
)
< 10. (29)

3.3.4. Relation between 𝐿 and Computation Complexity. The
computational complexity of interpolation calculation is not
proportional to the increasing points. The former is mainly
up to the computation amount of (𝑥 − 𝑥

0
)(𝑥 − 𝑥

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛
)

and the derivative operations. Obviously, according to (5),
the increase in computational complexity is 𝑂(𝐿3) when the
number of extension points 𝐿 increases by 1. But the com-
putational complexity of adaptively increasing collocation
points is related to the different wavelet functions. For the
wavelet with compact support property such as Daubechies
wavelet and Shannon wavelet, the value of 𝐿 is impossible
to be infinite. For Haar wavelet which has no smoothness
property, 𝐿 can be taken as 0 at most since it need not to
be extended. For Faber-Schauder wavelet, 𝐿 can be taken as 1
at most. For Daubechies wavelet, 𝐿 can be taken as different
values according to the order of vanishing moments, but it
must be finite. For the wavelets without compact support
property, 𝐿 can take value dynamically, such as Shannon
wavelet. The computational complexity of increasing points
is mainly up to the wavelet function of itself.
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4. Numerical Results and Discussion

Fractional Fokker-Planck equation is a typical fractional
PDE, which is often used to describe a subdiffusive behavior
of a particle under the combined influence of external
nonlinear force field, and a Boltzmann thermal heat bath.
This section considers the accuracy and efficiency of the
proposed method for a fractional Fokker-Planck equation.
Comparisons are made with results obtained with Chen’s
finite difference approximations and the exact analytic solu-
tion.

It has been pointed out that the finite difference approx-
imation formats proposed in [2] are not perfect as they do
not take the boundary problems into account. In this section,
we take the Grünwald-Letnikov expansion and the central
difference implicit approximation (GL-CDIA) to solve the
example. That is,

𝜏
−𝛼

[𝑢
𝑛

𝑖
+

𝑛−1

∑

𝑘=1

𝑔
𝑘
𝑢
𝑛−𝑘

𝑖
−

𝑛−1

∑

𝑘=0

𝑔
𝑘
𝑢
0

𝑖
]

=
𝑓
𝑖+1
𝑢
𝑛

𝑖+1
− 𝑓
𝑖−1
𝑢
𝑛

𝑖−1

2ℎ
+ 𝐾
𝛼

𝑢
𝑛

𝑖+1
− 2𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖−1

ℎ2
,

𝑖 = 1, 2, . . . ,𝑀 − 1,

𝜏
−𝛼

[𝑢
𝑛

0
+

𝑛−1

∑

𝑘=1

𝑔
𝑘
𝑢
𝑛−𝑘

0
−

𝑛−1

∑

𝑘=0

𝑔
𝑘
𝑢
0

0
]

=
4𝑓
1
𝑢
𝑛

1
− 3𝑓
0
𝑢
𝑛

0
− 𝑓
2
𝑢
𝑛

2

2ℎ
+ 𝐾
𝛼

𝑢
𝑛

0
− 2𝑢
𝑛

1
+ 𝑢
𝑛

2

ℎ2
,

𝜏
−𝛼

[𝑢
𝑛

𝑀
+

𝑛−1

∑

𝑘=1

𝑔
𝑘
𝑢
𝑛−𝑘

𝑀
−

𝑛−1

∑

𝑘=0

𝑔
𝑘
𝑢
0

𝑀
]

=
𝑓
𝑀−2

𝑢
𝑛

𝑀−2
− 4𝑓
𝑀−1

𝑢
𝑛

𝑀−1
+ 3𝑓
𝑀
𝑢
𝑛

𝑀

2ℎ

+ 𝐾
𝛼

𝑢
𝑛

𝑀−2
− 2𝑢
𝑛

𝑀−1
+ 𝑢
𝑛

𝑀

ℎ2
,

𝑢
0

𝑖
= 𝜑 (𝑥

𝑖
) , 1 ≤ 𝑖 ≤ 𝑀,

𝑢
𝑛

0
= 𝑝
1
(𝑡
𝑛
) , 𝑢

𝑛

𝑀
= 𝑝
2
(𝑡
𝑛
) , 𝑛 ≥ 1,

𝑔
𝑘
= (1 −

1 + 𝛼

𝑘
)𝑔
𝑘−1
, 𝑔
0
= 1

𝑓
𝑖
= 𝑓 (𝑥

𝑖
) =

]󸀠 (𝑥
𝑖
)

𝑚𝜂
𝛼

.

(30)

According to the wavelet collocation method, the fractional
Fokker-Planck equation can be approximately represented as

𝜏
−𝛼

[𝑢
𝑗
(𝑥
𝑖
, 𝑡
𝑛
) +

𝑛−1

∑

𝑘=1

𝑔
𝑘
𝑢
𝑗
(𝑥
𝑖
, 𝑡
𝑛−𝑘
)

−

𝑛−1

∑

𝑘=0

𝑔
𝑘
𝑢
𝑗
(𝑥
𝑖
, 𝑡
0
)]

= 𝑓
󸀠

(𝑥
𝑖
) 𝑢
𝑗
(𝑥
𝑖
, 𝑡
𝑛
)

+

2
𝑗

∑

𝑚=0

𝑢
𝑗
(𝑥
𝑚
, 𝑡
𝑛
)

× [𝑤
󸀠

(𝑥
𝑖
− 𝑥
𝑚
) + 𝐾
𝛼
𝑤
󸀠󸀠

(𝑥
𝑖
− 𝑥
𝑚
)] ,

(31)

where 𝑖 = 0, 1, 2, . . . 2𝑗. Let

𝑉
𝑛

𝑗
= (𝑢
𝑗
(𝑥
0
, 𝑡
𝑛
) , 𝑢
𝑗
(𝑥
1
, 𝑡
𝑛
) , . . . , 𝑢

𝑗
(𝑥
2
𝑗 , 𝑡
𝑛
))
𝑇

,

𝐹 = diag (𝑓󸀠 (𝑥
0
) , 𝑓
󸀠

(𝑥
1
) , . . . , 𝑓

󸀠

(𝑥
2
𝑗)) ,

𝑊
1

=

[
[
[
[

[

𝑤
󸀠

(𝑥
0
− 𝑥
0
) 𝑤
󸀠

(𝑥
0
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤

󸀠

(𝑥
0
− 𝑥
2
𝑗)

𝑤
󸀠

(𝑥
1
− 𝑥
0
) 𝑤
󸀠

(𝑥
1
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤

󸀠

(𝑥
1
− 𝑥
2
𝑗)

...
... d

...
𝑤
󸀠

(𝑥
2
𝑗 − 𝑥
0
) 𝑤
󸀠

(𝑥
2
𝑗 − 𝑥
1
) ⋅ ⋅ ⋅ 𝑤

󸀠

(𝑥
2
𝑗 − 𝑥
2
𝑗)

]
]
]
]

]

,

𝑊
2

=

[
[
[
[

[

𝑤
󸀠󸀠

(𝑥
0
− 𝑥
0
) 𝑤
󸀠󸀠

(𝑥
0
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤

󸀠󸀠

(𝑥
0
− 𝑥
2
𝑗)

𝑤
󸀠󸀠

(𝑥
1
− 𝑥
0
) 𝑤
󸀠󸀠

(𝑥
1
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤

󸀠󸀠

(𝑥
1
− 𝑥
2
𝑗)

...
... d

...
𝑤
󸀠󸀠

(𝑥
2
𝑗 − 𝑥
0
) 𝑤
󸀠󸀠

(𝑥
2
𝑗 − 𝑥
1
) ⋅ ⋅ ⋅ 𝑤

󸀠󸀠

(𝑥
2
𝑗 − 𝑥
2
𝑗)

]
]
]
]

]

.

(32)

Then the systemof (31) can be expressed as thematrix format:

(𝑊
1
+ 𝐾
𝛼
𝑊
2
+ 𝐹 − 𝜏

−𝛼

𝐼)𝑉
𝑛

𝑗

=

𝑛−1

∑

𝑘=1

𝑔
𝑘
𝑉
𝑛−𝑘

𝑗
−

𝑛−1

∑

𝑘=0

𝑔
𝑘
𝑉
0

𝑗
.

(33)

Next, we will discuss the precision of themethod proposed in
this paper with numerical experience. Consider the Fokker-
Planck equation as follows:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
=
0
D1−𝛼
𝑡

[
𝜕

𝜕𝑥
(−1) +

𝜕
2

𝜕𝑥2
] 𝑢 (𝑥, 𝑡) ,

0 ≤ 𝑥 ≤ 1, 𝑡 > 0,

(34)

with the initial condition

𝑢 (𝑥, 0) = 𝑥 (1 − 𝑥) , 0 ≤ 𝑥 ≤ 1 (35)

and the boundary conditions

𝑢 (0, 𝑡) = −
3𝑡
𝛼

Γ (1 + 𝛼)
−

2𝑡
2𝛼

Γ (1 + 2𝛼)
, 𝑡 > 0,

𝑢 (1, 𝑡) = −
𝑡
𝛼

Γ (1 + 𝛼)
−

2𝑡
2𝛼

Γ (1 + 2𝛼)
, 𝑡 > 0.

(36)
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Figure 1: Wavelet collocation method with constant 𝐿 (𝛼 = 0.8).
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Figure 2: Wavelet collocation method with constant 𝐿 (𝛼 = 0.6).

The exact analytic solution is

𝑢 (𝑥, 𝑡) = 𝑥 (1 − 𝑥) + (2𝑥 − 3)
𝑡
𝛼

Γ (1 + 𝛼)
−

2𝑡
2𝛼

Γ (1 + 2𝛼)
. (37)

All the comparisons in this section are made qualitatively
by comparing the calculation precision in the same time step
and spacemesh grid size.The firstmeasure of error 𝑒

1
is given

by

𝑒
1
=
󵄩󵄩󵄩󵄩󵄩
𝑉
𝑛

𝑗
− 𝑉
𝑛

exact
󵄩󵄩󵄩󵄩󵄩∞
, (38)

which provides ameasure of the accuracy of the solution near
the boundary. The second measure of error 𝑒

2
is given by

𝑒
2
= √

1

2𝑗 + 1

2
𝑗

∑

𝑖=0

(𝑢 (𝑥
𝑖
) − 𝑢exact (𝑥𝑖))

2

, (39)

which provides a general measure of the accuracy of the
solution over the main body of the distribution and was often
used to investigate the accuracy of the FEM.

The comparisons between the static interval Shannon-
Gabor wavelets with 𝐿 = 1 and 𝐿 = 2 are showen
in Figure 1. The boundary effect of the interval wavelet
with 𝐿 = 2 (Figure 1(a)) is almost eliminated compared
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Figure 3: Numerical errors comparison among the dynamic, static interval wavelet method and the finite difference method (𝑗 = 6, 𝛼 = 0.6).

Table 1: Condition number of the Fokker-Planck equation.

𝑗 𝛼

𝜏 = 0.0001 𝜏 = 0.00001

Interval FDM Interval wavelet Interval FDM Interval wavelet
𝐿 = 1 𝐿 = 2 𝐿 = 1 𝐿 = 2

4
0.8 1.9730 2.5810 2.9399 1.1364 1.2461 1.2738
0.6 11.3319 11.8703 20.8760 2.6645 3.5347 4.3019
0.4 198.8737 91.0582 365.5470 43.4632 31.2993 80.5876

5
0.8 6.2479 7.8009 11.6382 1.5798 2.0236 2.2010
0.6 83.0421 52.1757 160.0987 10.9216 12.0887 20.8948
0.4 1912.4 476.7221 3632.5 380.6050 152.3718 727.8708

6
0.8 39.1651 31.2950 76.7074 39.1651 5.2458 6.9255
0.6 764.3693 255.2801 1476.4 79.4793 51.7012 155.2663
0.4 19847.0000 2574.7 37997 3769.1 790.3041 7238.0

7
0.8 340.7877 145.7761 663.4654 19.8525 19.3224 38.9722
0.6 7757.6000 1333.9 14931 730.3466 249.7668 1416.8
0.4 214660.0000 14202 415100 39724 4266.4 76386

to 𝐿 = 1 (Figure 1(b)). FFPE is a 2-order PDEs with respect
to 𝑥, so 𝐿 ≥ 2 is the necessary condition for the interval
wavelet satisfying the requirement of FFPE. We also noticed
that the condition number of FFPE from the Table 1 that
the condition number of 𝐿 = 2 increases more rapid

than 𝐿 = 1 with the increase of 𝑗 and the decrease of 𝛼. It
has been mentioned in Section 2 that the larger condition
number can decrease the calculation precision greatly. This
also can be illustrated in Figure 2. The condition number in
Figure 2(a) is greatly larger than in Figure 2(b), although the
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Table 2: Influence of 𝛼 on the numerical precision (𝑡 = 0.0001, 𝑇 = 0.1).

𝑗 𝛼
𝑒
1

𝑒
2

Interval FDM Interval WCM
(𝐿 = 2)

Dynamic
interval WCM Interval FDM Interval WCM

(𝐿 = 2)
Dynamic

interval WCM

4
0.8 5.5367 × 10−6 8.1588 × 10−5 5.5920 × 10−6 4.1037 × 10−6 5.8298 × 10−5 4.1514 × 10−6

0.6 5.7907 × 10−6 4.1158 × 10−4 7.1813 × 10−6 4.2424 × 10−6 2.9468 × 10−4 5.5971 × 10−6

0.4 3.5309 × 10−6 9.1673 × 10−4 3.7967 × 10−5 2.6232 × 10−6 6.3692 × 10−4 2.1348 × 10−5

5
0.8 5.5551 × 10−6 8.2118 × 10−5 5.8424 × 10−6 4.1718 × 10−6 5.9148 × 10−5 4.4649 × 10−6

0.6 5.7760 × 10−6 4.0932 × 10−4 8.9707 × 10−6 4.2907 × 10−6 2.9753 × 10−4 7.5330 × 10−6

0.4 6.5910 × 10264 0.3971 0.0585 inf 0.1195 0.0491

6
0.8 5.5563 × 10−6 8.1965 × 10−5 1.3154 × 10−5 4.2041 × 10−6 5.9517 × 10−5 8.6913 × 10−6

0.6 3.7124 × 10265 0.0554 0.0096 inf 0.0105 0.0076
0.4 inf 1.2637 × 103 0.0588 inf 375.3305 0.0499

7
0.8 3.4932 × 10243 0.0031 0.0019 inf 3.8313 × 10−4 1.2937 × 10−4

0.6 inf 216.5596 23.7361 inf 40.0263 9.3964
0.4 inf 1.4462 × 106 327.6987 inf 4.2662 × 105 21.7694

Table 3: Dynamic 𝐿 and the iteration times at the same 𝐿 value (𝑗 =
6, 𝑇 = 0.1, and 𝜏 = 0.0001).

𝐿 3 1 2 3 2
Iteration times 11 14 4 3 968

approximation of 𝐿 = 2 is better than 𝐿 = 1. The former
has failed to solve FFPE obviously. In fact, this explained the
reason why we construct the dynamic interval wavelet.

The numerical errors comparisons among the dynamic,
static interval wavelet method and the interval finite differ-
ence method are showen in Figure 3. The result also can be
illustrated in Table 2.

The robustness of the dynamic interval wavelet colloca-
tion method (DIWCM) is the best compared to the interval
FDM and the static interval WCM, as it avoids both of the
larger condition number and the error of the approximation
simultaneity. The varied process of 𝐿 is showen in Table 3. It
shows that the value of 𝐿 is fixed at 𝐿 = 2 after a short time
of vibration. This reflects the properties of the FFPE to some
extent.

In addition, it also has to be noticed that we can get the
higher precision solution with the interval finite difference
method (FDM) as the amount of the collocation points
decreases (Figure 4). It is well known that increasing the
collocation points can impove the approximation although it
can increase the condition number in FFPE. In fact, it profits
from the smoothness of the solution, which would not work
in solving the nonlinear problems.

All above numerical experiments are done with the
Shannon-Gabor wavelet. It is well known that the presence

of the Gaussian window destroys the orthogonal properties
possessed by the Shannon wavelet, effectively worsening the
approximation efficiency to a Dirac delta function. Compar-
ing with the Shannon wavelet collocation method (Figure 5),
the Shannon-Gabor wavelet numerical method has higher
precision and more complicated calculation amount. But it
is showen in Figure 5 that dynamic interpolation wavelet
construction scheme can be applied to both of the Shannon-
Gabor wavelet and the Shannon wavelet. As a matter of
fact, the dynamic scheme is designed for the interpolation
wavelet, which has no connection with certain concrete
wavelet function.

5. Conclusions

In solving the fractional Fokker-Planck equations, there
are two factors related to the choice of 𝐿. The first factor
is the condition number, which relates to the parameters
𝛼, 𝑗 and the time step 𝜏. The larger 𝐿 can decrease the
calculation precision greatly. Another factor is the approx-
imation of the function and its derivatives, especially near
the boundary. Using the interval wavelet with constant 𝐿 to
solve the fraction Fokker-Planck equations cannot eliminate
the boundary effect completely as the condition number is
sensitive to the parameter 𝛼. With regard to the accuracy
and time complexity of the solution in comparison with
those obtained with other algorithms, the dynamic interval
wavelet on 𝐿 constructed in this paper is more reasonable.
The numerical experiments illustrate that it is necessary to
construct the dynamic interval wavelet collocation method
for the fractional PDEs.
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Figure 4: Finite-difference method (𝛼 = 0.8).
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Existing fractional-order Perona-Malik Diffusion (FOPMD) algorithms used in noise suppressing suffer from undesired artifacts
and speckle effect, which hamper FOPMD used in low-dosed X-ray computed tomography (LDCT) imaging. In this paper, we
propose a new FOPMD method for low-dose computed tomography (LDCT) imaging, which is called regularized fully spatial
FOPMD (RFS-FOPMD), whose numerical scheme is also given based on Grünwald-Letnikov derivative (G-L derivative). Here,
fully spatial FOPMD represents all the integer-order derivatives (IODs) in the right hand of Perona-Malik Diffusion (PMD) which
are replaced by fractional-order derivatives (FODs). Since the new scheme has advantages of both regularization and FOPMD, it has
good abilities in singularities preserving while suppressing noise. Some real sinogram of LDCT are used to compare the different
performances not only for some classical but also for some state-of-art diffusion schemes.These schemes include PMD, regularized
PMD (RPMD), and FOPMD in (Hu et al. 2012). Experimental results show that besides good ability in edge preserving, the new
scheme also has good stability for iteration number and can avoid artifacts and speckle effect with suitable parameters.

1. Introduction

Perona-Malik diffusion (PMD) proposed in 1990 is a popular
technique in image denoising and it is defined as [1]

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div [𝑐 (󵄩󵄩󵄩󵄩∇𝑢 (𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩) ∇𝑢 (𝑥, 𝑦, 𝑡)] ,
(1)

where 𝑢(𝑥, 𝑦, 0) is the initial gray scale image, 𝑢(𝑥, 𝑦, 𝑡) is the
smoothed gray scale image at time 𝑡, ∇ denotes the gradient,
div(⋅) is the divergence operator, and 𝑐(⋅) is the diffusion
coefficient.

In 1992, Catté et al. indicated that PMD is ill-posed and
they propose a new well-posed method named regularized
Perona-Malik diffusion (RPMD), by replacing the gradient
∇𝑢 in diffusion coefficients by the smoothed version 𝐺

𝜎
⋅ ∇𝑢

[2]. Thus, the RPMD can be represented as

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div [𝑐 (󵄩󵄩󵄩󵄩󵄩𝐺𝜎1 ⋅ ∇𝑢 (𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩󵄩
) ∇𝑢 (𝑥, 𝑦, 𝑡)] .

(2)

Here 𝐺
𝜎
1

is defined as:

𝐺
𝜎
1

=
1

𝐶
𝑒
−((𝑥
2
+𝑦
2
)/𝜎
2

1
) (3)

which is a Gaussian function and 𝐶 is a constant.
In order to eliminate undesired “staircase” of PMD and

RPMD, high-order PDEs (typically fourth-order PDEs) for
image restoration have been introduced in [3, 4]. Though
these methods can eliminate the staircase effect efficiently,
they often leave the image with isolated black and white
speckles (so-called speckle effect) [5].

Recently, fractional-order PMD(FOPMD)has been stud-
ied in image denoising [5–14], whose fractional order is 𝛼,
0 ≤ 𝛼 ≤ 2, which is a “natural interpolation” between PMD
and fourth-order PDEs. Therefore, it has the benefits of both
of PMD and high order PDEs.

Bai and Feng proposed a FSFOD method for image
denoising with Euler-Lagrange equations of a cost func-
tional and using Fourier-domain to compute the fractional
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derivative [5]. Jun and Zhihui develop a class of fractional-
order multiscale variational model using G-L definition of
fractional-order derivative and propose an efficient condition
of the convergence of the model [6].

We also reported an experimental study that used
FOPMD for sinogram restoration of low-dosed computed
tomography (LDCT) based on fully spatial FOPMD using G-
L definition [8]. In [8], we observe that FOPMD experiments
with different fractional orders show different diffusion
behaviors, which leads us to study FOPMD further.

In a most recent study, Hu proposed a new FOPMD by
diffusing only on external gradient vector and reported good
performance in LDCT imaging [9].

Although above FOPMD have reported on good perfor-
mance of preserving edges, suppressing staircase and speckle
effects, the resulting images of these FOPMD methods still
have some artifacts and speckle effect which hamper them to
be used in LDCT imaging.

Minimizing the radiation exposure to patients has been
one of the major efforts in modern clinical X-ray CT
radiology [15–17]. However, the presentation of strong noise
degrades the quality of LDCT images dramatically and
decreases the accuracy of diagnosis.

Filtering noise from clinical scans is a challenging task,
since these scans contain many structures with different
shapes, sizes, and contrasts, which should be preserved for
making correct diagnosis. In addition, LDCT imaging also
requires no artifacts and speckle effect to emerge while
denoising because artifacts also increase chances of misdiag-
nosis. Many strategies have been proposed to reduce noises,
but few of them discuss how to avoid artifacts and speckle
effect [8, 18–28].

The artifacts of existing FOPMDmethods used for LDCT
imaging are generated by strong noises of LDCT sinogram,
which leads to falsely located positions of edges. Thus, the
resulting images produce some undesired weak edges, which
form the artifacts.

Therefore, one valid method to suppress artifacts and
speckle effect of existing FOPMD methods is by smoothing
the fractional-order gradient (FOG) in the diffusion coeffi-
cients to avoid error-detected edges of the noisy LDCT.

Following the above discussion, we propose a regularized
FOPMD, named regularized fully spatial FOPMD (RFS-
FOPMD), by replacing FOG of diffusion coefficients with
its smoothing counterparts while keeping “external” FOD
unchanged. Here “fully spatial” represents all the derivatives
of right-hand side of PMD equation and “external” indicates
the spatial derivatives except for the derivatives used in
diffusion coefficients. Since locations of edges can be detected
correctly by our new scheme, FOPMD can preserve edges
well and avoid artifacts.

The arrangement of this paper is as follows: in Section 2,
the EFOGV-PMD is introduced, and then the the numerical
scheme is given in Section 3, the experiment results are
shown and discussed in Section 4, the final part is the
conclusions and acknowledgments.

2. Regularized Fully Spatial Fractional-Order
Perona-Malik Diffusion

In this paper, we use G-L definition defined as follows [29,
30]:

𝐷
𝛼

𝑔 (𝑥) = lim
ℎ→0

+

∑
𝑘≥0
(−1)
𝑘

𝐶
𝛼

𝑘
𝑔 (𝑥 − 𝑘ℎ)

ℎ𝛼
, 𝛼 > 0, (4)

where 𝑔(𝑥) is a real function, 𝛼 > 0 is a real number, 𝐶𝛼
𝑘
=

Γ(𝛼 + 1)/[Γ(𝑘 + 1)Γ(𝛼 − 𝑘 + 1)] is the generalized binomial
coefficient, and Γ(⋅) denotes the gamma function.

Isotropic diffusion will damage the image features such
as edges, lines, and textures. To avoid the damage, the
smoothing has to be adaptively controlled by the amount of
smoothing or the direction of smoothing. A classic example
of adaptive smoothing is the anisotropic diffusion scheme
proposed by Perona and Malik [1], in which the smoothing
process is formulated by a partial differential equation (PDE).
PMD is formulated in (1).

However, PMD methods suffer from their “staircase”
effects. Therefore, FOPMD is proposed to suppress the
staircase of PMD.

The fractional-order gradient vector with 𝛼 order is
defined as

∇
𝛼

𝑢 (𝑥, 𝑦, 𝑡) = [∇
𝛼

𝑥
𝑢 (𝑥, 𝑦, 𝑡) , ∇

𝛼

𝑦
𝑢 (𝑥, 𝑦, 𝑡)] , (5)

where 𝛼 is a positive real, ∇𝛼
𝑥
𝑢(𝑥, 𝑦, 𝑡) represents the partial

fractional-order derivative of 𝑢(𝑥, 𝑦, 𝑡) with respect to the
variable 𝑥 whose order is 𝛼, and ∇𝛼

𝑦
𝑢(𝑥, 𝑦, 𝑡) represents the

partial fractional-order derivative of 𝑢(𝑥, 𝑦, 𝑡)with respect to
the variable 𝑦 whose order is 𝛼.

According to [8], FOPMD is defined as

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div𝛼 [𝑐 (󵄩󵄩󵄩󵄩∇

𝛼

𝑢 (𝑥, 𝑦, 𝑡)
󵄩󵄩󵄩󵄩) ∇
𝛼

𝑢 (𝑥, 𝑦, 𝑡)] , (6)

where div𝛼 denotes the 𝛼-order divergence. For the vector
∇
𝛽V = [V𝛽

𝑥
, V𝛽
𝑦
] where V𝛽

𝑥
, V𝛽
𝑦
represent the partial fractional-

order derivative of 𝑢(𝑥, 𝑦, 𝑡) with whose order is 𝛽 respect
to the variable 𝑥 and 𝑦 respectively, its 𝛼-order divergence is
defined as:

div𝛼∇𝛽V = V𝛽+𝛼
𝑥
+ V𝛽+𝛼
𝑦
. (7)

However, FOPMD defined by (3) will produce some
artifacts for sinogram restoration of LDCT, which increases
the probability of error diagnosis. In order to avoid artifacts
produced in sinogram restoration of LDCT using FOPMD,
we propose a new diffusion model, named regularized fully
spatial fractional-order PMD (RFS-FOPMD), where “fully
spatial” indicates all derivatives of the right-hand side of (6).
That is, the FOD in diffusion coefficient is replaced by its
smoothed version.

Therefore, the RFS-FOPMD is given by

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div𝛼 [𝑐 (󵄩󵄩󵄩󵄩󵄩𝐺𝜎1 ⋅ ∇

𝛼

𝑢 (𝑥, 𝑦, 𝑡)
󵄩󵄩󵄩󵄩󵄩
) ∇
𝛼

𝑢 (𝑥, 𝑦, 𝑡)]

(8)
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with the observed image as the initial condition and 𝐺
𝜎
1

is
defined in (3).

When 𝛼 = 1, (6) is precisely the PMD and (8) is precisely
the RPMD; when 𝛼 = 2, (6) is precisely the fourth-order
anisotropic diffusion equation. In this paper, we are interested
in 0.5 ≤ 𝛼 ≤ 1.5 since Bai and Feng in [5] suggest that 𝛼 = 1.5
in their model has the best performance.

3. The Numerical Scheme

An image 𝑈 will be a 2-dimensional matrix of size𝑁×𝑁. In
order to get the aim of anisotropic diffusion along different
directions and because the discrete 𝛼-order gradient ∇𝛼𝑢 is
an 8-dimensional vector

∇
𝛼u (i,j)

= (∇
𝛼

0
𝑢 (𝑖, 𝑗) , ∇

𝛼

1
𝑢 (𝑖, 𝑗) , ∇

𝛼

2
𝑢 (𝑖, 𝑗) , ∇

𝛼

3
𝑢 (𝑖, 𝑗) ,

∇
𝛼

4
𝑢 (𝑖, 𝑗) , ∇

𝛼

5
𝑢 (𝑖, 𝑗) , ∇

𝛼

6
𝑢 (𝑖, 𝑗) , ∇

𝛼

7
𝑢 (𝑖, 𝑗))

𝑇

,

(9)

where 𝑇 represents the transpose of the vector and ∇𝛼𝑢
𝑘
(𝑖, 𝑗),

𝑘 = 0, . . . , 7 are defined as

∇
𝛼

0
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
𝛼

𝑘
𝑢 (𝑖, 𝑗 + 𝑘 − (𝐾 − 1)) ,

∇
𝛼

1
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
𝛼

𝑘
𝑢 (𝑖 − 𝑘 + (𝐾 − 1) , 𝑗 + 𝑘 − (𝐾 − 1)) ,

∇
𝛼

2
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
𝛼

𝑘
𝑢 (𝑖 − 𝑘 + (𝐾 − 1) , 𝑗) ,

∇
𝛼

3
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
𝛼

𝑘
𝑢 (𝑖 − 𝑘 + (𝐾 − 1) , 𝑗 − 𝑘 + (𝐾 − 1)) ,

∇
𝛼

4
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
𝛼

𝑘
𝑢 (𝑖, 𝑗 − 𝑘 + (𝐾 − 1)) ,

∇
𝛼

5
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
𝛼

𝑘
𝑢 (𝑖 + 𝑘 − (𝐾 − 1) , 𝑗 − 𝑘 + (𝐾 − 1)) ,

∇
𝛼

6
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
𝛼

𝑘
𝑢 (𝑖 + 𝑘 − (𝐾 − 1) , 𝑗) ,

∇
𝛼

7
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
𝛼

𝑘
𝑢 (𝑖 + 𝑘 − (𝐾 − 1) , 𝑗 + 𝑘 − (𝐾 − 1)) .

(10)

Thus,

∇
2𝛼u (i,j)

= (∇
2𝛼

0
𝑢 (𝑖, 𝑗) , ∇

2𝛼

1
𝑢 (𝑖, 𝑗) , ∇

2𝛼

2
𝑢 (𝑖, 𝑗) , ∇

2𝛼

3
𝑢 (𝑖, 𝑗) ,

∇
2𝛼

4
𝑢 (𝑖, 𝑗) , ∇

2𝛼

5
𝑢 (𝑖, 𝑗) , ∇

2𝛼

6
𝑢 (𝑖, 𝑗) , ∇

2𝛼

7
𝑢 (𝑖, 𝑗))

𝑇

,

(11)

where 𝑇 represents the transpose of the vector. From (4), we
have

∇
2𝛼

0
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0
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𝑘

𝐶
2𝛼

𝑘
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2𝛼
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𝑘
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5
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢 (𝑖 + 𝑘 − (𝐾 − 1) , 𝑗 − 𝑘 + (𝐾 − 1)) ,

∇
2𝛼

6
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢 (𝑖 + 𝑘 − (𝐾 − 1) , 𝑗) ,

∇
2𝛼

7
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢 (𝑖 + 𝑘 − (𝐾 − 1) , 𝑗 + 𝑘 − (𝐾 − 1)) .

(12)

Let

g = (𝑔
0
, 𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑔
4
, 𝑔
5
, 𝑔
6
, 𝑔
7
)
𝑇

, (13)

where 𝑇 represents the transpose of the vector and 𝑔
𝑘
, 𝑘 =

0, . . . , 7 are defined as

𝑔
𝑘
=

𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝜎
1

⋅ ∇
𝛼

𝑘
𝑢 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩󵄩
)

∑
7

𝑛=0
𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝜎
1

⋅ ∇𝛼
𝑛
𝑢 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩󵄩
)

, 𝑘 = 0, 1, . . . , 7, (14)

where∇𝛼
𝑘
𝑢(𝑖, 𝑗), 𝑘 = 0, . . . 7 defined in (9) are the components

of vector ∇𝛼u(i,j) and∑7
𝑛=0
𝑔(‖𝐺
𝜎
1

⋅ ∇
𝛼

𝑛
𝑢(𝑖, 𝑗)‖) is the normal-

ized constant, 𝑔 is the decreasing function of absolute value
of ∇𝛼
𝑘
𝑢(𝑖, 𝑗), 𝑘 = 0, . . . 7, and 𝑔(‖∇𝛼

𝑘
𝑢(𝑥, 𝑦, 𝑡)‖) is defined as

𝑔 (
󵄩󵄩󵄩󵄩∇
𝛼

𝑘
𝑢 (𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩) = 𝑒
−(‖∇
𝛼

𝑘
𝑢(𝑥,𝑦,𝑡)‖/𝜎)

2

, 𝑘 = 0, . . . , 7 (15)

or

𝑔 (
󵄩󵄩󵄩󵄩∇
𝛼

𝑘
𝑢 (𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩) =
1

1 + (
󵄩󵄩󵄩󵄩∇
𝛼

𝑘
𝑢(𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩 /𝜎)
2
,

𝑘 = 0, . . . , 7,

(16)

where ‖ ⋅ ‖ is the module of the fractional-order vector and
the constant 𝜎 controls the sensitivity to edges.
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The new FOPMD based on G-L fractional-order deriva-
tive is defined as

𝜕𝑢 (𝑖, 𝑗, 𝑡)

𝜕𝑡
= div𝛼
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(
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)
)
)
)
)
)
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)
)
)
)
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, (17)

where 𝑔
𝑘
, 𝑘 = 0, . . . , 7 defined in (14) are the components of

g in (13).
The above equation can be represented as

𝜕𝑢 (𝑖, 𝑗, 𝑡)

𝜕𝑡
=

7

∑

𝑘=0

𝑔
𝑘
∇
2𝛼

𝑘
𝑢 (𝑖, 𝑗, 𝑡) , (18)

where ∑7
𝑘=0
𝑔
𝑘
= 1 and ∇2𝛼

𝑘
𝑢(𝑖, 𝑗, 𝑡) can be computed

according to (8).
Thus, the explicit form for solving (18) is

𝑢 (𝑖, 𝑗, 𝑡 + 1) = 𝑢 (𝑖, 𝑗, 𝑡) + 𝜆

7

∑

𝑘=0

𝑔
𝑘
∇
2𝛼

𝑘
𝑢 (𝑖, 𝑗, 𝑡) , (19)

where 𝑢(𝑖, 𝑗, 𝑡 + 1) is the gray level of (𝑖, 𝑗) at time 𝑡 + 1 and 𝜆
is the integration constant (0 ≤ 𝜆 ≤ 1/7).

To summarize, our sinogram restoration approach is
done in the following steps:

(1) let the input sinogram be 𝑈 and set 𝑡 = 1, 𝑈
𝑡
= 𝑈,

input iterative numbers 𝑛, Gaussian deviations 𝜎
1
of

regularized Gaussian kernel in (3), fractional order
𝛼, integration constant 𝜆 in (19), gradient modulus
threshold 𝜎 that controls the conduction used in
(15) or (16), and choose (15) or (16) as diffusion
coefficients;

(2) compute 𝛼-order gradient vector ∇𝛼u using (9);
(3) compute diffusion coefficients vector g using (13)–

(16);
(4) compute 2𝛼-order gradient vector ∇2𝛼u using (11);
(5) compute 𝑈

𝑡+1
using (19), and set 𝑡 = 𝑡 + 1, if 𝑡 = 𝑛,

output sinogram 𝑈
𝑡
; else goto step 2;

(6) return back-project sinogram 𝑈
𝑡
into the image 𝐼.

4. Experiments and Discussion

The main objective for LDCT imaging is to delete the noise
and avoid artifacts while preserving anatomy details for the
back-projection images.

Two abdominal CT images of a 58-year-old man and two
abdominal CT images of a 62-year-old woman with different
doses were scanned from a 16-multi detector-row CT unit
(Somatom Sensation 16; Siemens Medical Solutions) using
120 kVp and 5mm slice thickness. Other remaining scanning
parameters are gantry rotation time, 0.5 second; detector
configuration (number of detector rows section thickness),
16×1.5mm; table feed per gantry rotation, 24mm; pitch, 1 : 1,
and reconstructionmethod, back projection (FBP) algorithm
with the soft-tissue convolution kernel “B30f.” Different CT
doses were controlled by using two different fixed tube
currents 60mAs and 150mAs (60mA or 150mAs) for LDCT
and standard-dose CT (SDCT) protocols, resp.).TheCT dose
index volume (CTDIvol) for LDCT images and SDCT images
is in positive linear correlation to the tube current and is
calculated to be approximately ranging between 15.32mGy
and 3.16mGy [28] (see Figures 1(a)–1(d)).

In order to compare our method with classical PM and
other state-of-art FOPMD methods, three compared meth-
ods: PMD [1], regularized PMD (RPM) [2], and FOPMD
are proposed in [8]. According to the numerical scheme of
PMD and RPMD, they used half-point central difference dis-
cretization scheme, while FOPMD in [8] and RFS-FOPMD
use integer-point unilateral difference discretization scheme.

In order to ensure that the comparison is put on a fair
level, the common used parameters are set to the same value.
The common used parameters for four methods include
gradient modulus threshold 𝜎 that controls the conduction,
integration constant 𝜆, and iteration number 𝑡. Due to
numerical stability, 𝜆 is set to its maximum value 1/100 and
𝜎 is set to 30 to reduce iteration number.

The iteration number 𝑡 is very important in all com-
parison methods. That is, big 𝑡 will make smooth image
while small 𝑡 will still leave a lot of noise. In order to study
the performance of four compared methods with different
iteration numbers 𝑡 and other fixed parameters, 𝑡 is set to 20,
50, and 100, respectively.

The standard deviation of smoothed Gaussian kernel for
the image 𝜎

1
used for RPMD is set to 1 since, in [2], the

authors suggest that 𝜎
1
should be a small number.

On sinogram space, FOPMD with 𝛼 = 0.5, 𝛼 = 0.8 and
𝛼 = 1.2 is carried on two image collections.

Since bigger iteration number leads to smoother denoised
results sometimes, it also leads to dark processed images by
posing too big integration constant 𝜆. In order to observe
the behaviors of big iteration number clearly, Figure 1 sets
iteration number 𝑡 = 100. Comparing all the original SDCT
images in Figures 1(a) and 1(c), LDCT images Figures 1(b)
and 1(d) were severely degraded by nonstationary noise. All
denoised images in Figure 1 can suppress most of noises.
Particular, FOPMD and RFS-FOPMD can provide very
satisfied images with little noise and preserving all useful
anatomy structures. However, denoised images of PMD and
RPMD are oversmooth, which lost a lot of details.

In order to test the consistency of the definitions of
different integer order or fractional order, we set fractional-
order 𝛼 = 1, in which a two fractional-order PMD should
have same forms and they also correspond to the order of
PMD and RPMD (see Figures 1(e)–1(l)). Observing Figures
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SDCT image

(a) Original SDCT image with tube
current time product 150mAs

Original LDCT image

(b) Original LDCT image with tube
current time product 30mAs

SDCT image

(c) Original SDCT image with tube
current time product 150mAs

Original LDCT image

(d) Original LDCT image with tube
current time product 60mAs

PMD

(e) LDCT image (b) processed by
PMD with 𝜎 = 30, 𝜆 = 1/100 and
iteration number is 100

PMD

(f) LDCT image (d) processed by
PMD with 𝜎 = 30, 𝜆 = 1/100 and
iteration number is 100

RPMD

(g) LDCT image (b) processed by
RPMD with 𝜎 = 30, 𝜎

1
= 1, 𝜆 =

1/100 and iteration number is 100

FOPMD

(h) LDCT image (b) processed by
FOPMD in [8] with 𝜎 = 30, 𝛼 =
1, and 𝜆 = 1/100 and iteration
number is 100

RFS-FOPMD

(i) LDCT image (b) processed by
RFS-FOPMD with 𝜎 = 30, 𝛼 = 1,
𝜎
1
= 1, and 𝜆 = 1/100 and iteration

number is 100

RPMD

(j) LDCT image (d) processed by
RPMD with 𝜎 = 30, 𝜎

1
= 1, and

𝜆 = 1/100 and iteration number is
100

FOPMD

(k) LDCT image (d) processed by
FOPMD in [8] with 𝜎 = 30, 𝛼 =
1, and 𝜆 = 1/100 and iteration
number is 100

RFS-FOPMD

(l) LDCT image (d) processed by
RFS-FOPMD with 𝜎 = 30, 𝜎

1
= 1,

𝛼 = 1, and 𝜆 = 1/100 and iteration
number is 100

Figure 1: Original SDCT and LDCT images ((a)–(d)), LDCT images processed by PMD, RPMD, FOPMD, and RFS-FOPMDwith fractional
order 𝛼 = 1 and iteration number is set to 100.

1(h) and 1(i), 1(k) and 1(l), we can find that the denoised
images are identical, which demonstrate that the fractional-
order definitions between [8] and RFS-FOPMD are identical
when 𝛼 = 1.

However, the resulting images of PMD and RPMD are
quite different to the images denoised by FOPMD and RFS-
FOPMD. That is, the images processed by PMD and RPMD
are smoother than the images processed by FOPMD and
RFS-FOPMD. Just as introduced in the previous paragraph,
different discretization schemes lead to this interesting result.

Since two FOMD schemes provide more satisfied results,
we only compare two FOPMD methods with different frac-
tional orders (see Figure 2) and different iteration numbers
(see Figure 3).

In order to compare denoised results of two FOPMD
schemes with different fractional orders, two original LDCT
images in Figures 1(b) and 1(d) are usedwith iteration number
𝑡 = 100 and fractional-order 𝛼 = 0.5, 𝛼 = 0.8, and 𝛼 = 1.2.
From the second and the fourth rows of Figure 2, we can
conclude that the resulting images of RFS-FOPMD are very
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FOPMD

(a) LDCT image Figure 1(b) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 0.5, and 𝜆 = 1/100 and
iteration number is 100

FOPMD

(b) LDCT image Figure 1(b) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 0.8, and 𝜆 = 1/100 and
iteration number is 100

FOPMD

(c) LDCT image Figure 1(b) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 1.2, and 𝜆 = 1/100 and
iteration number is 100

RFS-FOPMD

(d) LDCT image Figure 1(b) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝜎
1
= 1, 𝛼 = 0.5, and 𝜆 = 1/100 and

iteration number is 100

RFS-FOPMD

(e) LDCT image Figure 1(b) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝜎
1
= 1, 𝛼 = 0.8, and 𝜆 = 1/100 and

iteration number is 100

RFS-FOPMD

(f) LDCT image Figure 1(b) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝜎
1
= 1, 𝛼 = 1.2, and 𝜆 = 1/100 and

iteration number is 100

FOPMD

(g) LDCT image Figure 1(d) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 0.5, and 𝜆 = 1/100 and
iteration number is 100

FOPMD

(h) LDCT image Figure 1(d) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 0.8, and 𝜆 = 1/100 and
iteration number is 100

FOPMD

(i) LDCT image Figure 1(d) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 1.2, and 𝜆 = 1/100 and
iteration number is 100

RFS-FOPMD

(j) LDCT image Figure 1(d) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝜎
1
= 1, 𝛼 = 0.5, and 𝜆 = 1/100 and

iteration number is 100

RFS-FOPMD

(k) LDCT image Figure 1(d) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝜎
1
= 1, 𝛼 = 0.8, and 𝜆 = 1/7 and

iteration number is 15

RFS-FOPMD

(l) LDCT image Figure 1(d) pro-
cessed by RFS-FOPMD with 𝜎 =
30, 𝜎
1
= 1, 𝛼 = 1.2, and 𝜆 = 1/100

and iteration number is 100

Figure 2: LDCT images (Figures 1(b) and 1(d)) processed by FOPMD and RFS-FOPMDwith different fractional orders and iteration number
is set to 100. The first column: 𝛼 = 0.5; the second column: 𝛼 = 0.8, and the third column: 𝛼 = 1.2. The first row: Figure 1(b) processed by
FOPMD; the second row: Figure 1(b) processed by RFS-FOPMD; the third row: Figure 1(d) processed by FOPMD, and the fourth row:
Figure 1(d) processed by RFS-FOPMD.

satisfied and they become smoother when 𝛼 becomes bigger,
which is coherent with our intuition, for example, bigger
fractional-order smoother resulting images.

However, denoised images in Figures 2(a) and 2(g) with
𝛼 = 0.5 using FOPMD in [8] have many artifacts, which are
small black circles in two images. Although big fractional-
order FOPMD proposed in [8] will decrease the artifacts,

its denoised images in Figures 2(c) and 2(i) are very dark
comparing with the original LDCT images in Figures 1(b)
and 1(d). Images in Figures 2(c) and 2(i) also have some
isolated artificial white points, which are called speckle effect.
It is obvious that resulting images in Figures 2(b) and 2(h)
with 𝛼 = 0.8 processed by FOPMD in [8] have the best
performance in three image series with different 𝛼.
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FOPMD

(a) LDCT image (Figure 1(b)) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 1.2, and 𝜆 = 1/100 and
iteration number is 20

FOPMD

(b) LDCT image (Figure 1(b)) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 1.2, and 𝜆 = 1/100 and
iteration number is 50

FOPMD

(c) LDCT image (Figure 1(b)) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 1.2, and 𝜆 = 1/100 and
iteration number is 100

RFS-FOPMD

(d) LDCT image (Figure 1(b)) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝜎
1
= 1, 𝛼 = 1.2, and 𝜆 = 1/100 and

iteration number is 20

RFS-FOPMD

(e) LDCT image (Figure 1(b)) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝜎
1
= 1, 𝛼 = 1.2, and 𝜆 = 1/100 and

iteration number is 50

RFS-FOPMD

(f) LDCT image (Figure 1(b)) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝜎
1
= 1, 𝛼 = 1.2, and 𝜆 = 1/100 and

iteration number is 100

FOPMD

(g) LDCT image (Figure 1(d)) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 1.2, and 𝜆 = 1/100 and
iteration number is 20

FOPMD

(h) LDCT image (Figure 1(d)) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 1.2, and 𝜆 = 1/100 and
iteration number is 50

FOPMD

(i) LDCT image (Figure 1(d)) pro-
cessed by FOPMD in [8] with 𝜎 =
30, 𝛼 = 1.2, and 𝜆 = 1/100 and
iteration number is 100

RFS-FOPMD

(j) LDCT image (Figure 1(d)) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝛼 = 1.2, 𝜎

1
= 1, and 𝜆 = 1/100 and

iteration number is 20

RFS-FOPMD

(k) LDCT image (Figure 1(d)) pro-
cessed byRFS-FOPMDwith𝜎 = 30,
𝛼 = 1.2, 𝜎

1
= 1, and 𝜆 = 1/100 and

iteration number is 50

RFS-FOPMD

(l) LDCT image (Figure 1(d)) pro-
cessed by RFS-FOPMD with 𝜎 =
30, 𝛼 = 1.2, 𝜎

1
= 1, and 𝜆 = 1/100

and iteration number is 100

Figure 3: LDCT images (Figures 1(b) and 1(d)) processed by FOPMD and RFS-FOPMDwith different iteration numbers and the fractional-
order 𝛼 = 1.2. The first column: iteration number is 20; the second column: iteration number is 50 and the third column: iteration number
is 100. The first row: Figure 1(b) processed by FOPMD; the second row: Figure 1(b) processed by RFS-FOPMD; the third row: Figure 1(d)
processed by FOPMD and the fourth row: Figure 1(d) processed by RFS-FOPMD.

Generally, artifacts in denoised images are oscillations
near edges, caused by that the low-passed filtering is not
processed correctly near the real edges. That is, some smooth
regions near edges are regarded falsely as edges, which
makes these error edges preserved. Therefore, improving
accuracy of edge detection is a good choice for improving
the performance of FOPMD in [8]. In this paper, we use
regularization for FOPMD in [8] to locate edges correctly.

Intuitively, processed images with bigger iteration num-
ber correspond to smoother images. In order to check
the influence of iteration numbers for FOPMD in [8] and
RFS-FOPMD, processed image series of two original LDCT
images, Figures 1(b) and 1(d) with different iteration numbers
20, 50, and 100 are shown in Figure 3.

The resulting images in the first and the third rows of
Figure 3 are the processed images using FOPMD in [8].
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Comparing with original LDCT images in Figures 1(b) and
1(d), all resulting images with different iteration numbers
have less noise. In addition, the smoother images can be
obtained as the iteration number becomes bigger. However,
themost undesired default for FOPMD in [8] is that resulting
images become dark as the iteration number becomes big.
Moreover, except for Figure 3(g), the resulting images in the
third row have some isolated white points, which are the
speckle effect.

The resulting images in the second and the fourth rows
of Figure 3 show that RFS-FOPMD with different iteration
numbers is very satisfied and it becomes smoother when the
iteration number becomes bigger, which is coherent with our
intuition. Another attractive nature for RFS-FOPMD about
iteration is that the smoothing shown in these images is
very slow. That is, the resulting images Figures 3(d) and 3(j)
with iteration number 20 are slightly different to the images
Figures 3(f) and 3(l) with iteration number 100. This nature
shows that RFS-FOPMDhas good stability.Therefore, it is not
sensitive to iteration number.

All existing FOPMDmethods at least suffer from speckle
effect from the resulting images of these images. Fortunately,
RFS-FOPMD can avoid artifacts, dark images, and speckle
effect partly, which ensure its applications in sinogram
restoration.More important for the new scheme is its stability,
which makes it not sensitive to the iteration number.

5. Conclusions

In this paper, we propose a new FOPMD, RFS-FOPMD,
for LDCT sinogram imaging based on G-L fractional-order
derivative definition. RFS-FOPMD not only has good ability
in preserving edges while denoising, but it also can avoid
artifacts, dark images, and speckle effects of FOPMD in [8]
and other existing FOPMD schemes partly by improving
the performance of edges locating by regularization, which
ensures that RFS-FOPMD can be used for sinogram restora-
tion of LDCT. Of more importance, RFS-FOPMD has good
stability for iteration numbers, which makes it not sensitive
to the iteration number choice.
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Existing fractional-order Perona-Malik Diffusion (FOPMD) algorithms are defined as fully spatial fractional-order derivatives
(FSFODs). However, we argue that FSFOD is not the best way for diffusion since different parts of spatial derivative play different
roles in Perona-Malik diffusion (PMD) and derivative orders should be decided according to their roles. Therefore, we adopt a
novel fractional-order diffusion scheme, named external fractional-order gradient vector Perona-Malik diffusion (EFOGV-PMD),
by only replacing integer-order derivatives of “external” gradient vector to their fractional-order counterparts while keeping integer-
order derivatives of gradient vector for diffusion coefficients since the ability of edge indicator for 1-order derivative is demonstrated
both in theory and applications. Here “external” indicates the spatial derivatives except for the derivatives used in diffusion
coefficients. In order to demonstrate the power of the proposed scheme, some real sinograms of low-dosed computed tomography
(LDCT) are used to compare the different performances. These schemes include PMD, regularized PMD (RPMD), and FOPMD.
Experimental results show that the new scheme has good ability in edge preserving, is convergent quickly, has good stability for
iteration number, and can avoid artifacts, dark resulting images, and speckle effect.

1. Introduction

Since the work of Perona-Malik in 1990, Perona-Malik diffu-
sion (PMD) becomes a popular technique in image denoising
and it is defined as [1]

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div [𝑐 (󵄩󵄩󵄩󵄩∇𝑢 (𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩) ∇𝑢 (𝑥, 𝑦, 𝑡)] ,
(1)

where 𝑢(𝑥, 𝑦, 0) is the initial gray scale image, 𝑢(𝑥, 𝑦, 𝑡) is the
smoothed gray scale image at time 𝑡, ∇ denotes the gradient,
div(⋅) is the divergence operator and 𝑐(⋅) is the diffusion
coefficient. 𝑐(⋅) controls the rate of diffusion and it is usually
chosen as amonotonically decreasing function of themodule
of the image gradient.

The key idea of PMD is to smooth the homogenous
regions with small ‖∇𝑢(𝑥, 𝑦, 𝑡)‖ while near singularities with
big ‖∇𝑢(𝑥, 𝑦, 𝑡)‖, PMD only smoothes along the perpendic-
sular direction of the gradient. This idea is based on that the
1-order gradient module can be used as singularities locator.

Thus the order of gradient vector in diffusion coefficients
should be kept as 1. It is the start point of EFOGV-PMD
proposed in this paper.

In 1992, Catté et al. indicate that PMD is ill posed and
they propose a new well-posed method named regularized
Perona-Malik Diffusion (RPMD) by modifying the module
of the image gradient in diffusion coefficients to the module
of the gradient convoluted with a Gaussian kernel [2].

Although PMD methods have been demonstrated to be
able to achieve a good trade-off between noise removal and
edge preservation, the resulting image in the presence of
the noise often suffers from its “staircase” look. In order
to eliminate undesired “staircase” effect, high-order PDEs
(typically fourth-order PDEs) for image restoration have been
introduced in [3–5]. Though these methods can eliminate
the staircase effect efficiently, they often leave the image with
isolated black and white speckles (so-called “speckle effect”)
[6].
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Recently, fractional-order PMD(FOPMD)has been stud-
ied in image denoising [6–9]. The fractional derivative can
be seen as the generalization of the integer-order derivative
[10–13]. FOPMD whose fractional-order is 𝛼, 0 ≤ 𝛼 ≤ 2

is a “natural interpolation” between PMD and fourth-order
PDEs.Therefore, it has the benefits of both of PMD and high-
order PDEs.

Bai and Feng proposed a FSFOD method for image
denoising with Euler-Lagrange equations of a cost func-
tional and using Fourier domain to compute the fractional
derivative [6]. The numerical results showed that both of
the staircase effect and the speckle effect can be eliminated
effectively.

Zhang and Wei develop a class of fractional-order multi-
scale variational model using G-L definition of fractional-
order derivative and propose an efficient condition of the
convergence for the model [7].

Janev et al. propose a new FOPMD scheme by extending
classical spatial derivatives to spatial as well as time fractional
derivatives based on R-L derivative [8].

We also reported an experimental study used FOPMD
for sinogram restoration of low-dosed computed tomography
(LDCT) based on fully spatial FOPMD using G-L definition
[9]. In [9], we observe that FOPMD experiments with
different fractional-orders show different diffusion behaviors,
which lead us to study FOPMD further.

All above new schemes adopt ESFOD schmes. Although
they have reported on good performance in preserving edges,
suppressing staircase, and speckle effects, the resulting images
of these FOPMD methods still have some artifacts and
speckle effect which hamper them to be used in LDCT
imaging.

Minimizing the radiation exposure to patients has been
one of the major efforts in modern clinical X-ray CT
radiology [14–16]. However, the presentation of strong noise
degrades the quality of LDCT images dramatically and
decreases the accuracy of diagnosis.

Filtering noise from clinical scans is a challenging task,
since these scans contain artifacts and consist of many struc-
tures with different shape, size, and contrast, which should be
preserved for making correct diagnosis. In addition, LDCT
imaging also requires there are not artifacts to arise while
denoising because artifacts also increase chances of mistakes
and misdiagnosis. Many strategies have been proposed to
reduce noises, but less of them discuss how to avoid artifacts
[9, 17–27].

The artifacts of existing FOPMD methods for resulting
images are generated by locating error positions of edges.
Thus the resulting images produce some undesired weak
edges, which form the artifacts.

The basic reason for locating edge positions falsely is that
fractional-order gradient module cannot be used for edge
indicator.That is, edge locations can be located as big leaps of
1-order derivatives while fractional-order derivatives do not
have this nature. Thus keeping 1-order derivative to be edge
indicator of diffusion coefficients is a better choice compared
to existing fully spatial FOPMD.

Following above discussion, we adopt a novel fractional-
order diffusion scheme, named external fractional-order

gradient vector Perona-Malik Diffusion PMD (EFOGV-
PMD), by only replacing integer-order derivatives of external
gradient vector to their fractional-order counterparts while
keeping 1-order derivatives for diffusion coefficients. Here
“external” indicates the spatial derivatives except for the
derivatives used in diffusion coefficients. Since locations of
edges can be detected correctly by our new scheme, FOPMD
can preserve edges well and avoid artifacts.

The arrangement of this paper is as follows: In Section 2,
the EFOGV-PMD is introduced, and then the the numerical
scheme is given in Section 3, the experiment results are
shown and discussed in Section 4, and the final part is the
conclusions and acknowledgements.

2. External Fractional-Order Gradient Vector
Perona-Malik Diffusion

The fractional-order derivative can be computed in a number
of ways. The most famous of these definitions are the R-L
andGrunwald-Letnikov definitions. In this paper, we useG-L
definition defined as follows:

𝐷
𝛼

𝑔 (𝑥) = lim
ℎ→0

+

∑
𝑘≥0

(−1)
𝑘

𝐶
𝛼

𝑘
𝑔 (𝑥 − 𝑘ℎ)

ℎ𝛼
, 𝛼 > 0, (2)

where 𝑔(𝑥) is a real function, 𝛼 > 0 is a real number, 𝐶𝛼
𝑘
=

Γ(𝛼 + 1)/[Γ(𝑘 + 1)Γ(𝛼 − 𝑘 + 1)] is the generalized binomial
coefficient and Γ(⋅) denotes the Gamma function.

Isotropic diffusion will damage image features such as
edges, lines, and textures. To avoid the damage, smoothing
has to be adaptively controlled by the amount of smoothing
or the direction of smoothing. A classic example of adaptive
smoothing is the anisotropic diffusion scheme proposed by
Perona and Malik [1], in which the smoothing process is
formulated by a partial differential equation (PDE). PMD is
formulated on (1).

However, PMD methods suffer from their “staircase”
effects. Therefore, FOPMD is proposed to suppress the
staircase of PMD.

The fractional-order gradient vector with 𝛼 order is
defined as

∇
𝛼

𝑢 (𝑥, 𝑦, 𝑡) = [∇
𝛼

𝑥
𝑢 (𝑥, 𝑦, 𝑡) , ∇

𝛼

𝑦
𝑢 (𝑥, 𝑦, 𝑡)] , (3)

where 𝛼 is a positive real, ∇𝛼
𝑥
𝑢(𝑥, 𝑦, 𝑡) represents the partial

fractional-order derivative of 𝑢(𝑥, 𝑦, 𝑡) with respect to the
variable 𝑥 whose order is 𝛼, and ∇𝛼

𝑦
𝑢(𝑥, 𝑦, 𝑡) represents the

partial fractional-order derivative of 𝑢(𝑥, 𝑦, 𝑡)with respect to
the variable 𝑦 whose order is 𝛼.

According to [9], FOPMD is defined as

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div𝛼 [𝑐 (󵄩󵄩󵄩󵄩∇

𝛼

𝑢 (𝑥, 𝑦, 𝑡)
󵄩󵄩󵄩󵄩) ∇
𝛼

𝑢 (𝑥, 𝑦, 𝑡)] , (4)

where div𝛼 denotes the 𝛼-order divergence. For the vector
∇
𝛽V = [V𝛽

𝑥
, V𝛽
𝑦
] where V𝛽

𝑥
, V𝛽
𝑦
represent the partial fractional-

order derivative of 𝑢(𝑥, 𝑦, 𝑡) with whose order is 𝛽 respect
to the variable 𝑥 and 𝑦 respectively, its 𝛼-order divergence is
defined as

div𝛼∇𝛽V = V𝛽+𝛼
𝑥

+ V𝛽+𝛼
𝑦

. (5)
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However, FOPMD defined on (4) will produce some
artifacts for sinogram restoration of LDCT, which increases
the probability of error diagnosis. In order to avoid arti-
facts produced in sinogram restoration of LDCT using
FOPMD, we propose a new diffusion model, named external
fractional-order gradient vector of PMD (EFOGV-PMD)
where “external” indicates the gradient vector of PMD except
for the gradient vector of diffusion coefficients. That is, the
orders of derivatives for spatial gradient vectors on different
positions are different, the order of gradient vector used in
diffusion coefficients is 1 while order of external gradient
vector is a positive real 𝛼.

Therefore, the EFOGV-PMD is given by

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div𝛼 [𝑐 (󵄩󵄩󵄩󵄩∇𝑢 (𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩) ∇
𝛼

𝑢 (𝑥, 𝑦, 𝑡)] (6)

with the observed image as the initial condition.
When 𝛼 = 1, (6) is precisely the PMD; when 𝛼 = 2, (13) is

precisely the fourth-order anisotropic diffusion equation. In
this paper, we are interested in 0.5 ≤ 𝛼 ≤ 1.5 since Bai and
Feng in [6] suggest that 𝛼 = 1.5 in their model has the best
performance.

3. The Numerical Scheme

An image 𝑈 will be a 2-dimensional matrix of size 𝑁 ×

𝑁. In order to get the aim of anisotropic diffusion along
different directions and the discrete 1-order gradient ∇u is an
8-dimensional vector:

∇u (i,j) = (∇
0
𝑢 (𝑖, 𝑗) , ∇

1
𝑢 (𝑖, 𝑗) , ∇

2
𝑢 (𝑖, 𝑗) , ∇

3
𝑢 (𝑖, 𝑗) ,

∇
4
𝑢 (𝑖, 𝑗) , ∇

5
𝑢 (𝑖, 𝑗) , ∇

6
𝑢 (𝑖, 𝑗) , ∇

7
𝑢 (𝑖, 𝑗))

𝑇

,

(7)

where 𝑇 represents the transpose of the vector and ∇𝑢
𝑘
(𝑖, 𝑗),

𝑘 = 0, . . . , 7 are defined as

∇
0
𝑢 (𝑖, 𝑗) = 𝑢 (𝑖, 𝑗 + 1) − 𝑢 (𝑖, 𝑗) ,

∇
1
𝑢 (𝑖, 𝑗) = 𝑢 (𝑖 − 1, 𝑗 + 1) − 𝑢 (𝑖, 𝑗) ,

∇
2
𝑢 (𝑖, 𝑗) = 𝑢 (𝑖 − 1, 𝑗) − 𝑢 (𝑖, 𝑗) ,

∇
3
𝑢 (𝑖, 𝑗) = 𝑢 (𝑖 − 1, 𝑗 − 1) − 𝑢 (𝑖, 𝑗) ,

∇
4
𝑢 (𝑖, 𝑗) = 𝑢 (𝑖, 𝑗 − 1) − 𝑢 (𝑖, 𝑗) ,

∇
5
𝑢 (𝑖, 𝑗) = 𝑢 (𝑖 + 1, 𝑗 − 1) − 𝑢 (𝑖, 𝑗) ,

∇
6
𝑢 (𝑖, 𝑗) = 𝑢 (𝑖 + 1, 𝑗) − 𝑢 (𝑖, 𝑗) ,

∇
7
𝑢 (𝑖, 𝑗) = 𝑢 (𝑖 + 1, 𝑗 + 1) − 𝑢 (𝑖, 𝑗) .

(8)

Thus

∇
2𝛼u (i,j)

= (∇
2𝛼

0
𝑢 (𝑖, 𝑗) , ∇

2𝛼

1
𝑢 (𝑖, 𝑗) , ∇

2𝛼

2
𝑢 (𝑖, 𝑗) , ∇

2𝛼

3
𝑢 (𝑖, 𝑗) ,

∇
2𝛼

4
𝑢 (𝑖, 𝑗) , ∇

2𝛼

5
𝑢 (𝑖, 𝑗) , ∇

2𝛼

6
𝑢 (𝑖, 𝑗) , ∇

2𝛼

7
𝑢 (𝑖, 𝑗))

𝑇

,

(9)

where 𝑇 represents the transpose of the vector. From (14) we
have

∇
2𝛼

0
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢 (𝑖, 𝑗 + 𝑘 − (𝐾 − 1))

∇
2𝛼

1
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢

× (𝑖 − 𝑘 + (𝐾 − 1) , 𝑗 + 𝑘 − (𝐾 − 1))

∇
2𝛼

2
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢 (𝑖 − 𝑘 + (𝐾 − 1) , 𝑗)

∇
2𝛼

3
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢

× (𝑖 − 𝑘 + (𝐾 − 1) , 𝑗 − 𝑘 + (𝐾 − 1))

∇
2𝛼

4
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢 (𝑖, 𝑗 − 𝑘 + (𝐾 − 1))

∇
2𝛼

5
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢

× (𝑖 + 𝑘 − (𝐾 − 1) , 𝑗 − 𝑘 + (𝐾 − 1))

∇
2𝛼

6
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢 (𝑖 + 𝑘 − (𝐾 − 1) , 𝑗)

∇
2𝛼

7
𝑢 (𝑖, 𝑗) =

𝐾−1

∑

𝑘=0

(−1)
𝑘

𝐶
2𝛼

𝑘
𝑢

× (𝑖 + 𝑘 − (𝐾 − 1) , 𝑗 + 𝑘 − (𝐾 − 1)) .

(10)

Let

g = (𝑔
0
, 𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑔
4
, 𝑔
5
, 𝑔
6
, 𝑔
7
)
𝑇

, (11)

where 𝑇 represents the transpose of the vector and 𝑔
𝑘
, 𝑘 =

0, . . . , 7 is defined as

𝑔
𝑘
=

𝑔 (
󵄩󵄩󵄩󵄩∇𝑘𝑢 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩)

∑
7

𝑛=0
𝑔 (
󵄩󵄩󵄩󵄩∇𝑛𝑢 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩)

, 𝑘 = 0, 1, . . . , 7, (12)

where ∇
𝑘
𝑢(𝑖, 𝑗), 𝑘 = 0, . . . 7 defined in (7) are the components

of vector ∇u(i,j), ∑7
𝑛=0

𝑔(‖∇
𝑛
𝑢(𝑖, 𝑗)‖) is the normalized con-

stant, and 𝑔 is the decreasing function of absolute value of
∇
𝑘
𝑢(𝑖, 𝑗), 𝑘 = 0, . . . 7. In [1], 𝑔(‖∇𝑢

𝑘
(𝑥, 𝑦, 𝑡)‖) is defined as

𝑔 (
󵄩󵄩󵄩󵄩∇𝑢𝑘 (𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩) = 𝑒
−(‖∇𝑢

𝑘
(𝑥,𝑦,𝑡)‖/𝜎)

2

, 𝑘 = 0, . . . , 7 (13)

or

𝑔 (
󵄩󵄩󵄩󵄩∇𝑢𝑘 (𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩) =
1

1 + (‖∇𝑢
𝑘
(𝑥, 𝑦, 𝑡) ‖/𝜎)

2
,

𝑘 = 0, . . . , 7,

(14)
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where ‖ ⋅ ‖ is the module of the vector, and the constant 𝜎
controls the sensitivity to edges.

The new FOPMD based on G-L fractional-order deriva-
tive is defined as

𝜕𝑢 (𝑖, 𝑗, 𝑡)

𝜕𝑡
= div𝛼

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑔
0
∇
𝛼

0
𝑢 (𝑖, 𝑗, 𝑡)

𝑔
1
∇
𝛼

1
𝑢 (𝑖, 𝑗, 𝑡)

𝑔
2
∇
𝛼

2
𝑢 (𝑖, 𝑗, 𝑡)

𝑔
3
∇
𝛼

3
𝑢 (𝑖, 𝑗, 𝑡)

𝑔
4
∇
𝛼

4
𝑢 (𝑖, 𝑗, 𝑡)

𝑔
5
∇
𝛼

5
𝑢 (𝑖, 𝑗, 𝑡)

𝑔
6
∇
𝛼

6
𝑢 (𝑖, 𝑗, 𝑡)

𝑔
7
∇
𝛼

7
𝑢 (𝑖, 𝑗, 𝑡)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (15)

where 𝑔
𝑘
, 𝑘 = 0, . . . , 7 defined in (11) are the components of g

in (11).
The above equation can be represented as

𝜕𝑢 (𝑖, 𝑗, 𝑡)

𝜕𝑡
=

7

∑

𝑘=0

𝑔
𝑘
∇
2𝛼

𝑘
𝑢 (𝑖, 𝑗, 𝑡) , (16)

where ∑
7

𝑘=0
𝑔
𝑘

= 1 and ∇
2𝛼

𝑘
𝑢(𝑖, 𝑗, 𝑡) can be computed

according to (9).
Thus the explicit form for solving (16) is

𝑢 (𝑖, 𝑗, 𝑡 + 1) = 𝑢 (𝑖, 𝑗, 𝑡) + 𝜆

7

∑

𝑘=0

𝑔
𝑘
∇
2𝛼

𝑘
𝑢 (𝑖, 𝑗, 𝑡) , (17)

where 𝑢(𝑖, 𝑗, 𝑡 + 1) is the gray level of (𝑖, 𝑗) at time 𝑡 + 1 and
𝜆 is the integration constant (0 ≤ 𝜆 ≤ 1/7). Usually, due to
numerical stability, 𝜆 is set to its maximum value.

To summarize, our sinogram restoration approach is
done in the following steps.

(1) Let the input sinogram be 𝑈 and set 𝑡 = 1,
𝑈
𝑡
= 𝑈, input iterative number 𝑛, fractional-order 𝛼,

integration constant 𝜆 in (17), and gradient modulus
threshold 𝜎 that controls the conduction used in (13)
or (14) and choose (13) or (14) as diffusion coefficients.

(2) Compute 1-order gradient vector ∇u using (7).
(3) Compute diffusion coefficients vector g using (11)–

(14).
(4) Compute 2𝛼-order gradient vector ∇2𝛼u using (9).
(5) Compute 𝑈

𝑡+1
using (17), and set 𝑡 = 𝑡 + 1, if 𝑡 = 𝑛,

output sinogram 𝑈
𝑡
; else goto step 2.

(6) Back-project sinogram 𝑈
𝑡
into the image 𝐼.

4. Experiments and Discussion

The main objective for sinogram restoration of LDCT is to
delete the noise and avoid artifacts while preserving anatomy
details for the back-projection images.

Two abdominal CT images of a 58-year-old man and two
abdominal CT images of a 62-year-old woman with different
doses were scanned from a 16 multidetector row CT unit
(Somatom sensation 16; Siemens Medical Solutions) using
120 kVp and 5mm slice thickness. Other remaining scanning
parameters are gantry rotation time, 0.5 second; detector
configuration (number of detector rows section thickness),
16 × 1.5mm; table feed per gantry rotation, 24mm; and
pitch, 1 : 1 and reconstruction method, back projection (FBP)
algorithmwith the soft-tissue convolution kernel “B30f ”. Dif-
ferent CT doses were controlled by using two different fixed
tube currents 60mAs and 150mAs (60mA or 150mAs) for
LDCT and standard-dose CT (SDCT) protocols, respectively.
The CT dose index volume (CTDIvol) for LDCT images and
SDCT images is in positive linear correlation with the tube
current and is calculated to be approximately ranged between
15.32mGy to 3.16mGy [27] (see Figures 1(a)–1(d)).

In order to compare our method with classical PM and
other state-of-the art FOPMD methods, three compared
methods are PMD [1], regularized PMD (RPM) [2], and
FOPMD proposed in [9]. Since PMD has been discussed
in detail in Section 1. We will briefly introduce other two
methods.

It is well known that PMD is an ill-posed equation but
RPMD [2] is a well-posed equation, which is defined as

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= div (𝑔 (󵄩󵄩󵄩󵄩󵄩𝐺𝜎1 ⋅ ∇𝑢 (𝑥, 𝑦, 𝑡)

󵄩󵄩󵄩󵄩󵄩
) ∇𝑢 (𝑥, 𝑦, 𝑡)) (18)

Here 𝐺
𝜎
1

is defined as

𝐺
𝜎
1

=
1

𝐶
𝑒
−(𝑥
2
+𝑦
2
)/𝜎
2

1 (19)

is a Gaussian function and 𝐶 is a constant. The diffusion
coefficients𝑔(⋅) are defined in (13) or (14).That is, the gradient
vector in diffusion coefficients is convoluted by a Gaussian
kernel to suppressing unsteadiness in image. Both PMD
and RPMD use half-point central difference discretization
scheme.

The FOPMD proposed in [9] is defined in (4), which
is a FSFOD using G-L definition. Both FOPMD in [9]
and EFOGV-PMD use integer-point unilateral difference
discretization scheme.

In order to ensure that comparison is put on a fair level,
the common used parameters are set to the same value.
The commonly used parameters for four methods include
gradient modulus threshold 𝜎 that controls the conduction,
integration constant 𝜆 (0 ≤ 𝜆 ≤ 1/7), and iteration number 𝑡.
Due to numerical stability, 𝜆 is set to its maximum value 1/7
and 𝜎 is set to 30 to reduce iteration number.

The iteration number 𝑡 is very important in PMD. That
is, big 𝑡 will make smooth image while small 𝑡 will still
leave much noise. In order to study the performance of four
compared methods with different iteration number 𝑡 and
fixed other parameters, 𝑡 is set to 3, 8, and 15, respectively.

The standard deviation of smoothed Gaussian kernel for
the image𝜎

1
used forRPMD is set to 1 since in [2], the authors

suggest that 𝜎
1
should be a small number.

On sinogram space, FOPMD with 𝛼 = 0.5, 𝛼 = 0.8, and
𝛼 = 1.2 is carried on two image collections.
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SDCT image

(a) Original SDCT image
with tube current time pro-
duct 150 mAs

Original LDCT image

(b) Original LDCT image
with tube current time pro-
duct 30 mAs

SDCT image

(c) Original SDCT image
with tube current time pro-
duct 150 mAs

Original LDCT image

(d) Original LDCT image
with tube current time pro-
duct 60 mAs

PMD

(e) LDCT image (b) proc-
essed by PMDwith 𝜎 = 30,
and 𝜆 = 1/7 and iteration
number is 15

PMD

(f) LDCT image (d) proc-
essed by PMDwith 𝜎 = 30,
and 𝜆 = 1/7 and iteration
number is 15

RPMD

(g) LDCT image (b) proc-
essed by RPMD with 𝜎 =
30, 𝜎
1
= 1, and 𝜆 = 1/7

and iteration number is 15

FOPMD

(h) LDCT image (b) proc-
essed by FOPMD in [9]
with𝜎 = 30,𝛼 = 1, and𝜆 =
1/7 and iteration number is
15

EFOGV-PMD

(i) LDCT image (b)
processed by EFOGV-
PMD with 𝜎 = 30, 𝛼 = 1
and 𝜆 = 1/7 and iteration
number is 15

RPMD

(j) LDCT image (d) proc-
essed by RPMD with 𝜎 =
30, 𝜎
1
= 1, and 𝜆 = 1/7

and iteration number is 15

FOPMD

(k) LDCT image (d) proc-
essed by FOPMD in [9]
with𝜎 = 30,𝛼 = 1, and𝜆 =
1/7 and iteration number is
15

EFOGV-PMD

(l) LDCT image (d)
processed by EFOGV-
PMD with 𝜎 = 30, 𝛼 = 1,
𝜆 = 1/7 and iteration
number is 15

Figure 1: Original SDCT and LDCT images ((a)–(d)), LDCT images processed by PMD, RPMD, FOPMDand EFOGV-PMDwith fractional-
order 𝛼 = 1 and iteration number is 15.
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Since bigger iteration number leads to smoother denoised
results, in order to observe the behaviors of big iteration
number clearly, Figure 1 sets iteration number 𝑡 = 15. Com-
paring all the original SDCT images in Figures 1(a) and 1(c),
LDCT images in Figures 1(b) and 1(d) were severely degraded
by nonstationary noise. All denoised images in Figure 1 can
suppress most of noises. In particular, FOPMD and EFOGV-
PMD can provide very satisfied images with having little
noise and preserving all useful anatomy structures. However,
denoised images of PMD and RPMD are oversmooth, which
lost a lot of details.

In order to test the consistency of the definitions of
different integer order or fractional order, we set fractional-
order 𝛼 = 1, in which two fractional-order PMD should
have same forms and they also correspond to the order of
PMD and RPMD (see Figures 1(e)–1(l)). Observing Figures
1(h), 1(i), 1(k), and 1(l), we can find that the denoised images
are identical, which demonstrate that the fractional-order
definitions between [9] and EFOGV-PMDare identical when
𝛼 = 1.

However, the resulting images of PMD and RPMD are
quite different to the images denoised by FOPMD and
EFOGV-PMD. That is, the images processed by PMD and
RPMD are smoother than the images processed by FOPMD
and EFOGV-PMD. Different discretization schemes, PMD
andRPMDadopt half-point central differencewhile FOPMD
and EFOGV-PMD adopt integer-point unilateral difference,
leading to this interesting result.

Since two FOMD schemes provide more satisfying
results, we only compare two FOPMDmethodswith different
fractional orders (see Figure 2) and different iteration num-
bers (see Figure 3).

In order to compare denoised results of two FOPMD
schemes with different fractional orders, two original LDCT
images in Figures 1(b) and 1(d) are usedwith iteration number
𝑡 = 15 and fractional order𝛼 = 0.5,𝛼 = 0.8 and𝛼 = 1.2. From
the second and the forth rows of Figure 2, we can conclude
that the resulting images of EFOGV-PMD are very satisfied
and they become smoother when 𝛼 becomes bigger, which is
coherence with our intuition.

However, denoised images Figures 2(a) and 2(g) with 𝛼 =
0.5 using FOPMD in [9] have many artifacts, which are small
black circles in two images. In addition, denoised images
Figures 2(c) and 2(i) are very dark comparedwith the original
LDCT images in Figures 1(b) and 1(d). Images in Figures 2(c)
and 2(i) also have some isolated artificial white points, which
are called speckle effect. It is obvious that resulting images
in Figures 2(b) and 2(h) with 𝛼 = 0.8 processed by FOPMD
in [9] have the best performance in three image series with
different 𝛼.

Generally, artifacts in denoised images are oscillations
near edges, caused by that the low-passed filtering is not
processed correctly near the real edges. That is, some smooth
regions near edges are regarded false as edges, which make
these error edges preserved. Therefore, improving accuracy
of edge detection is a good choice for improving the perfor-
mance of FOPMD in [9]. This is the start point of our new
method proposed in this paper.

From Figure 1, we can see the processed images using
FOPMD in [9] with 𝛼 = 1 are very satisfied, which implies
that when 𝛼 = 1, FOPMD in [9] can locate edges correctly. In
addition, processed images with 𝛼 = 0.8, whose fractional
orders are closest to 𝛼 = 1 in three image series, also
are best in the three image series. In another words, the
processed images with nearer fractional order to 1 have better
performance. Therefore, 𝛼 = 1 is the best choice for edge
locator.

Although when 𝛼 = 1, the FOPMD in [9] has the
best performance for edge detection, impressive characters
for fractional-order PMD with well preserved edges and
power of suppressing noises are also promising in sinogram
restoration of LDCT.Thus we adopt a new scheme to get both
advantages of integer-order and fraction-order PMD.That is,
the gradient vector in diffusion coefficients is integer-order
to ensure correct edge detection while the “external” gradient
vector is fractional order to suppressing noise and preserving
edges.

Intuitively, processed images with bigger iteration num-
ber correspond to smoother images. In order to check
the influence of iteration numbers for FOPMD in [9] and
EFOGV-PMD, processed image series of two original LDCT
images in Figures 1(b) and 1(d) with different iteration
numbers 3, 8 and 15 are shown in Figure 3.

The resulting images in the first and the third rows of
Figure 3 are the processed images using FOPMD in [9].
Compared with original LDCT images in Figures 1(b) and
1(d), all resulting images with different iteration numbers
have less noise. In addition, the smoother images can be
obtained as the iteration number becomes bigger. However,
themost undesired default for FOPMD in [9] is that resulting
images become dark as the iteration number becomes big.
Moreover, except for Figure 3(g), the resulting images in the
first and the third rows have some isolated white points,
which are the speckle effect.

The resulting images in the second and the forth rows
of Figure 3 show that EFOGV-PMD with different iteration
numbers are very satisfied and they become smoother when
the iteration number becomes bigger, which is in coherence
with our intuition. Another attractive nature for EFOGV-
PMD about iteration is that the smoothing shown in these
images is very slow. That is, the resulting images in Figures
3(d) and 3(j) with iteration number 3 are slightly different
to the images in Figures 3(f) and 3(l) with iteration number
15. This nature shows that EFOGV-PMD has good stability.
Therefore, it is not sensitive to iteration number.

Recall that FOPMD in [9] makes artifacts, dark resulting
images, and speckle effects. It should be indicated that
although FOPMD in [9] suffers from above disadvantages,
it can obtain satisfied resulting images by choosing suitable
parameters. In addition, all exiting FOPMD methods at
least suffer from speckle effect from the resulting images of
these images. Fortunately, EFOGV-PMD can avoid artifacts,
dark images, and speckle effect completely, which ensure its
applications in sinogram restoration. More important for the
new scheme is its stability, which makes it not sensitive to the
iteration number.
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FOPMD

(a) LDCT image in
Figure 1(b) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 0.5, and
𝜆 = 1/7 and iteration
number is 15

FOPMD

(b) LDCT image in
Figure 1(b) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 0.8, and
𝜆 = 1/7 and iteration
number is 15

FOPMD

(c) LDCT image in
Figure 1(b) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 15

EFOGV-PMD

(d) LDCT image in
Figure 1(b) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 0.5, and
𝜆 = 1/7 and iteration
number is 15

EFOGV-PMD

(e) LDCT image in
Figure 1(b) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼=0.8, and
𝜆 = 1/7 and iteration
number is 15

EFOGV-PMD

(f) LDCT image in
Figure 1(b) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 15

FOPMD

(g) LDCT image in
Figure 1(d) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 0.5, and
𝜆 = 1/7 and iteration
number is 15

FOPMD

(h) LDCT image in
Figure 1(d) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 0.8, and
𝜆 = 1/7 and iteration
number is 15

FOPMD

(i) LDCT image in
Figure 1(d) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 15

EFOGV-PMD

(j) LDCT image in
Figure 1(d) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 0.5, and
𝜆 = 1/7 and iteration
number is 15

EFOGV-PMD

(k) LDCT image in
Figure 1(d) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 0.8, and
𝜆 = 1/7 and iteration
number is 15

EFOGV-PMD

(l) LDCT image in
Figure 1(d) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 15

Figure 2: LDCT images in Figures 1(b) and 1(d) processed by FOPMD and EFOGV-PMD with different fractional-orders and iteration
number is set to 15. The first column: 𝛼 = 0.5; the second column: 𝛼 = 0.8, the third column: 𝛼 = 1.2. The first row: Figure 1(b) processed by
FOPMD; the second row: Figure 1(b) processed by EFOGV-PMD; the third row: Figure 1(d) processed by FOPMD; the fourth row: Figure 1(d)
processed by EFOGV-PMD.
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FOPMD

(a) LDCT image in
Figure 1(b) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 3

FOPMD

(b) LDCT image in
Figure 1(b) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 8

FOPMD

(c) LDCT image in
Figure 1(b) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 15

EFOGV-PMD

(d) LDCT image in
Figure 1(b) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 3

EFOGV-PMD

(e) LDCT image in
Figure 1(b) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 8

EFOGV-PMD

(f) LDCT image in
Figure 1(b) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 15

FOPMD

(g) LDCT image in
Figure 1(d) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 3

FOPMD

(h) LDCT image in
Figure 1(d) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 8

FOPMD

(i) LDCT image in
Figure 1(d) processed
by FOPMD in [9] with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 15

EFOGV-PMD

(j) LDCT image in
Figure 1(d) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 3

EFOGV-PMD

(k) LDCT image in
Figure 1(d) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 8

EFOGV-PMD

(l) LDCT image in
Figure 1(d) processed
by EFOGV-PMD with
𝜎 = 30, 𝛼 = 1.2, and
𝜆 = 1/7 and iteration
number is 15

Figure 3: LDCT images in Figures 1(b) and 1(d) processed by FOPMDand EFOGV-PMDwith different iteration numbers and the fractional-
order 𝛼 = 1.2. The first column: iteration number is 3; the second column: iteration number is 8 and the third column: iteration number is 15.
The first row: Figure 1(b) processed by FOPMD; the second row: Figure 1(b) processed by EFOGV-PMD; the third row: Figure 1(d) processed
by FOPMD and the fourth row: Figure 1(d) processed by EFOGV-PMD.
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5. Conclusions

In this paper, we propose a new FOPMD, EFOGV-PMD
for LDCT sinogram imaging based on G-L fractional-order
derivative definition. EFOGV-PMD not only has good
ability to preserving edges while denoising, it also can avoid
artifacts, dark images and speckle effects of FOPMD in [9]
and other existing FOPMD schemes completely by correctly
located edges, which ensures that EFOGV-PMD can be
used for sinogram restoration of LDCT. More importantly,
EFOGV-PMD has good stability for iteration numbers,
which leads to it is not sensitive to the iteration number
choice. Having so many advantages for EFOGV-PMD, it
should become an promising candidate method for sinogram
restoration of LDCT.
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Fisher linear discriminant analysis (FLDA) is a classic linear feature extraction and dimensionality reduction approach for face
recognition. It is known that geometric distribution weight information of image data plays an important role in machine learning
approaches. However, FLDA does not employ the geometric distribution weight information of facial images in the training stage.
Hence, its recognition accuracy will be affected. In order to enhance the classification power of FLDA method, this paper utilizes
radial basis function (RBF) with fractional order to model the geometric distribution weight information of the training samples
and proposes a novel geometric distribution weight information based Fisher discriminant criterion. Subsequently, a geometric
distribution weight information based LDA (GLDA) algorithm is developed and successfully applied to face recognition. Two
publicly available face databases, namely, ORL and FERET databases, are selected for evaluation. Compared with some LDA-based
algorithms, experimental results exhibit that our GLDA approach gives superior performance.

1. Introduction

Over the past two decades, face recognition (FR) has made
great progress with the increasing computational power of
computers and has become one of the most important
biometric-based authentication technologies. The key issue
of FR algorithm is dimensionality reduction for facial feature
extraction. According to different processes of facial feature
extraction, face recognition algorithms can be generally
divided into two classes, namely, (local) geometric feature
based and (holistic) appearance based [1]. The geometric
feature-based approach is based on the shape and the location
of facial components (such as eyes, eyebrows, nose, and
mouth), which are extracted to represent a face geometric
feature vector. However, for the appearance-based approach,
it depends on the global facial pixel features, which are
exploited to form a whole facial feature vector for face clas-
sification. Principle component analysis (PCA) [2] and linear

discriminant analysis (LDA) [3] are two famous appearance-
based approaches for linear feature extraction and dimen-
sionality reduction. They are also called Eigenface method
and Fisherface method in face recognition, respectively. The
objective of PCA is to find the orthogonal principle com-
ponent (PC) directions and preserve the maximum variance
information of the training data along PC directions. PCA
can reconstruct each facial image using all Eigenfaces. Since
PCA takes no account of the discriminant information, it
is unsuitable for classification tasks. LDA is a supervised
learning method and seeks the optimal projection mapping
under Fisher criterion such that the ratio of interdistance
to intradistance attains the maximum. Therefore, from the
classification point of view, LDA should give better perfor-
mance than PCA. LDA is theoretically sound. However, it
still has two issues. For one thing, LDA often encounters a
small sample size (3S) problem, which always occurs when
the dimension of the input sample space is greater than the
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number of training facial images. Under this situation, LDA
cannot be performed directly. To solve the 3S problem, a large
number of LDA-based approaches have been proposed [4–
16]. Among them, Fisher linear discriminant analysis (FLDA)
method, also called Fisherface method in FR, is a two-stage
algorithm. It first employs PCA for dimensionality reduction
to guarantee that the between-class scatter matrix is full rank,
and then LDA can be implemented in the PCA-mapped low
dimensional feature space.Direct LDA [6] (DLDA) is another
LDA-based approach which uses simultaneous diagonaliza-
tion technique [17] to solve 3S problem. The basic idea of
DLDA is to previously discard the null space of between-
class scatter matrix 𝑆

𝑏
and then keep the null space of within-

class scatter matrix 𝑆
𝑤
. Although DLDA is computationally

efficient, it suffers from the performance limitation especially
when the number of training images increases.This is because
discarding the null space of 𝑆

𝑏
would also discard the null

space of 𝑆
𝑤

indirectly. Literature [5] shows that the null
space of 𝑆

𝑤
contains the most discriminant information.

For another thing, these LDA-based methods are based on
the classic Fisher criterion, which does not consider the
geometric distribution weight information of the training
data. So, their recognition performances will be degraded.

To enhance the discriminant power of LDA-based
approach, this paper presents a novel Fisher criterion by
taking into account the geometric distribution weight infor-
mation of the training facial data. It is natural to think that
the intradata nearby its class center is more important to
represent the feature of the class. So, the proposed method
attempts to impose a penalty weight (small weight) on the
intradata if the intradata is far from its own class center. In
the meanwhile, if two different class centers are close to each
other, they will be given a small weight as well. To this end, we
should extract the geometric distribution weight information
of the training data. In recent years, lots of fractional order
based methods [18–25] have been proposed in the area of
dynamic systems, image processing, face recognition, and so
on. This paper will adopt radial basis function (RBF) with
fractional order [21–23] to model the geometric distribution
weight information of the training samples, and thus we
are able to establish a new Fisher criterion incorporated
with data geometric distribution weight information. Based
on the modified Fisher discriminant criterion, a geometric
distribution weight information based linear discriminant
analysis (GLDA) method is proposed for face recognition.
Our GLDA approach is tested on two face databases, namely,
ORL database and FERET database. Compared with FLDA
method and DLDA method, experimental results show that
the proposed GLDA method outperforms FLDA and DLDA
methods.

The rest of this paper is organized as follows. Section 2
briefly introduces the related works. In Section 3, RBF with
fractional order is exploited to model the data geometric
distribution weight information. The new Fisher criterion is
then established using geometric distribution weight infor-
mation of the training data, andGLDA algorithm is designed.
Experimental results on two face databases are reported in
Section 4. Finally, Section 5 draws the conclusions.

Figure 1: Images of one person from ORL database.

Figure 2: Images of two persons from FERET database.

2. Related Works

In this section, we will introduce some related linear feature
extraction and dimensionality reduction algorithms for face
recognition.

2.1. Some Notations. Let 𝑑 be the dimension of the original
sample space and let 𝐶 be the number of the sample classes.
The 𝑖th class 𝐶

𝑖
= {𝑥
(𝑖)

1
, 𝑥
(𝑖)

2
, . . . , 𝑥

(𝑖)

𝑁𝑖
} contains 𝑁

𝑖
(1 ≤ 𝑖 ≤ 𝐶)

training samples, and the total number of all training data
is 𝑁 = ∑

𝐶

𝑖=1
𝑁
𝑖
, where 𝑥

(𝑖)

𝑗
∈ 𝑅
𝑑 denotes the 𝑗th samples

in class 𝐶
𝑖
. Assume 𝜇

𝑖
is the center of class 𝑖; that is, 𝜇

𝑖
=

(1/𝑁
𝑖
) ∑
𝑁
𝑖

𝑗=1
𝑥
(𝑖)

𝑗
, and the entire mean 𝜇 = (1/𝐶)∑

𝐶

𝑖=1
𝜇
𝑖
. In

PCA algorithm, total scatter matrix 𝑆
𝑡
, also called covariance

matrix, is defined by

𝑆
𝑡
=

1

𝑁

𝐶

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

(𝑥
(𝑖)

𝑗
− 𝜇) (𝑥

(𝑖)

𝑗
− 𝜇)
𝑇

. (1)

In LDA algorithm, within-class scatter matrix 𝑆
𝑤

and
between-class scatter matrix 𝑆

𝑏
are defined, respectively, as

follows:

𝑆
𝑤
=

1

𝑁

𝐶

∑

𝑖=1

𝑁
𝑖

∑

𝑗=1

(𝑥
(𝑖)

𝑗
− 𝜇
𝑖
) (𝑥
(𝑖)

𝑗
− 𝜇
𝑖
)
𝑇

,

𝑆
𝑏
=

1

𝑁

𝐶

∑

𝑖=1

𝑁
𝑖
(𝜇
𝑖
− 𝜇) (𝜇

𝑖
− 𝜇)
𝑇

.

(2)

The radial basis function 𝐾
𝛼
(𝑥) with fractional order 𝛼 is

given as follows

𝐾
𝛼
(𝑥) = exp (−‖𝑥‖

𝛼

) . (3)

The previous RBF can be viewed as the normalized radial
kernel of fractional order 𝛼.
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Figure 3: Rank 1 accuracy versus training number on the ORL face database (b) and FERET face database (a).

Table 1: Recognition rates on ORL database.

TN 2 3 4 5 6 7 8 9
FLDA 66.13% 74.54% 84.54% 89.35% 92.63% 94.92% 95.25% 97.75%
DLDA 78.69% 85.07% 89.33% 91.50% 93.25% 94.67% 94.38% 96.25%
GLDA 79.98% 87.14% 93.75% 96.05% 97.63% 97.92% 98.50% 99.00%

Table 2: Recognition rates on FERET database.

TN 2 3 4 5
FLDA 62.85% 77.42% 85.54% 89.42%
DLDA 70.25% 77.58% 83.54% 85.58%
GLDA 72.94% 82.36% 87.33% 89.83%

2.2. PCA. Principal component analysis algorithm is also
known as Karhunen-Loeve transformation. It aims to find
orthogonal principal component directions such that the
scatter of all projected samples on large principal component
direction is maximal. PCA is theoretically based on total
scatter matrix 𝑆

𝑡
which can be calculated via formula (1). The

PCA projection matrix𝑊PCA is determined by the following
criterion:

𝑊PCA = argmax
𝑊

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑇

𝑆
𝑡
𝑊

󵄨󵄨󵄨󵄨󵄨
, (4)

where𝑊 ∈ 𝑅
𝑑×𝑚 and𝑚 ≪ 𝑑.

Problem (4) is equivalent to solving the eigen-system:
𝑆
𝑡
𝑊 = 𝑊Λ, where Λ = diag{𝜆

1
, 𝜆
2
, . . . , 𝜆

𝜏
, 0, . . . , 0} with

𝜆
1

≥ 𝜆
2

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝜏

> 0 and 𝑊 = [𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑑
].

The PCA projection matrix 𝑊PCA can be chosen as 𝑊PCA =

[𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
] (𝑚 ≪ 𝑑). The column vectors 𝑤

𝑖
(𝑖 =

1, 2, . . . , 𝑚) are called the eigenfaces in face recognition. It can
be seen that PCA does not use the class label information.

So, PCA is an unsupervised learning method, and its perfor-
mance is not good in classification tasks.

2.3. Fisher LDA. The goal of linear discriminant analysis is to
find a low dimensional feature space in which the intradata
are tightly clustered and the interdata are far from each other.
Therefore, LDA should acquire an optimal projection matrix
𝑊LDA to maximize the ratio of between-class scatter and the
within-class scatter; namely,

𝑊LDA = argmax
𝑊

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑇

𝑆
𝑏
𝑊

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑊
𝑇𝑆
𝑤
𝑊

󵄨󵄨󵄨󵄨

. (5)

The previous problem is equivalent to solving the following
eigen-system:

𝑆
−1

𝑤
𝑆
𝑏
𝑊 = 𝑊Λ, (6)

where Λ is a 𝑑 × 𝑑 diagonal eigenvalue matrix with its
eigenvalues sorted in decreasing order.The projectionmatrix
𝑊LDA is formed with the eigenvectors corresponding to the
largest 𝐶 − 1 eigenvalues. In face recognition, the column
vectors of 𝑊LDA are called Fisherfaces as well. However,
LDA often suffers from small sample size problem when the
number of training samples is smaller than the dimension
of the sample vector. Under this situation, the within-
class scatter matrix is invertible, and the eigensystem (6)
cannot be solved.This means that LDA cannot be performed
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Figure 4: CMC curve comparisons on the ORL database.

directly. So, Fisher LDA (FLDA) uses PCA for dimensionality
reduction in advance.

2.4. Direct LDA. Yu and Yang [6] proposed a direct LDA
(DLDA) approach using simultaneous diagonalization tech-
nique [17]. Direct LDA is actually a subspace approach to
overcome 3S problem of LDA. It attempts to obtain the
optimal projection matrix𝑊 in the subspace𝑁(𝑆

𝑤
) ∩ 𝑁(𝑆

𝑏
)

and satisfies the following equations:

𝑊𝑆
𝑏
𝑊
𝑇

= 𝐼, 𝑊𝑆
𝑤
𝑊
𝑇

= Λ, (7)

where 𝑁(𝑆
𝑤
) means the null space of 𝑆

𝑤
, 𝑁(𝑆

𝑏
) denotes

the complement subspace of 𝑁(𝑆
𝑏
), and 𝐼 is an identity

matrix. Diagonal matrix Λ may contain 0s and some small
eigenvalues in its diagonal. Details can be found in [6].

We can see that some useful discriminant information
will be discarded in the intermediate PCA stage of FLDA or
simultaneous diagonalization stage of DLDA.Moreover, both
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Figure 5: ROC curve comparisons on the ORL database.

FLDAmethod andDLDAmethod do not exploit the geomet-
ric distribution weight information of the training samples.
These factors will affect their recognition performance.

3. Proposed GLDA Method

This section will propose a novel discriminant criterion,
which will use the geometric distribution weight information
of the training samples. Based on the new discriminant crite-
rion, our GLDAmethod is proposed. Details are discussed as
follows.

3.1. Proposed Discriminant Criterion. To take advantage of
geometric distribution weight information of face pattern
space, we redefine the within-class scatter matrix 𝑆

𝑤
and

between-class scatter matrix 𝑆
𝑏
, respectively, as follows:

𝑆
𝑤
=
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𝑇
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− 𝜇
𝑖
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𝑆
𝑏
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𝑁

𝐶
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𝑁
𝑖
(𝜇
𝑖
− 𝜇) (𝜇

𝑖
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𝑇

⋅ [1 − 𝐾
𝛼
𝑏

(𝜇
𝑖
− 𝜇)] ,

(8)
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Figure 6: CMC curve comparisons on the FERET database.

where𝐾
𝛼
𝑤

(𝑥
(𝑖)

𝑗
−𝜇
𝑖
) and𝐾

𝛼
𝑏

(𝜇
𝑖
−𝜇) are radial basis functions

defined by (3). 𝛼
𝑤
and 𝛼

𝑏
are fractional order parameters,

which can be more flexibly adjusted to obtain the optimal
parameters. It can be seen from (8) that if the distance
between the samples 𝑥𝑗

𝑖
and 𝜇
𝑖
is large, it will impose a penalty

weight. Similarly, if the class center 𝜇
𝑖
is nearby the center 𝜇,

then we also give it a small weight. Otherwise, it will have a
large weight.

Based on the previous analysis, our geometric distribu-
tionweight information based Fisher criterion function 𝐽(𝑊)

is defined by

𝐽 (𝑊) =

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑇

𝑆
𝑏
𝑊

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑊𝑇𝑆
𝑤
𝑊

󵄨󵄨󵄨󵄨󵄨

. (9)

To obtain the following optimal projection matrix:

𝑊GLDA = argmax
𝑤

𝐽 (𝑊) , (10)

we can equivalently solve the following eigensystem:

𝑆
−1

𝑤
𝑆
𝑏
𝑊 = 𝑊Λ, (11)

where Λ is a diagonal eigenvalue matrix with its eigenvalues
sorted in decreasing order. The projection matrix 𝑊GLDA is
formed with eigenvectors corresponding to the largest 𝐶 − 1

eigenvalues.

3.2. Algorithm Design. This subsection will develop our
GLDA algorithm based on geometric distribution weight
information Fisher discriminant criterion (9). Details are as
follows.

It is easily seen that two scatter matrices 𝑆
𝑤
and 𝑆
𝑏
can be

rewritten in the following forms, respectively:

𝑆
𝑤
= Φ̃
𝑤
Φ̃
𝑇

𝑤
∈ 𝑅
𝑑×𝑑

, (12)
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Figure 7: ROC curve comparisons on the FERET database.

where
Φ̃
𝑤
= [(𝑥

(1)

1
− 𝜇
1
) ⋅ 𝑤
(1)

1
|⋅ ⋅ ⋅ | (𝑥

(𝐶)

𝑁
𝐶

− 𝜇
𝐶
) ⋅ 𝑤
(𝐶)

𝑁
𝐶

] ∈ 𝑅
𝑑×𝑁

,

𝑤
(𝑖)

𝑗
=

1

√𝑁

⋅ 𝐾
𝛼
𝑤
/2

(𝑥
(𝑖)

𝑗
− 𝜇
𝑖
) ,

𝑆
𝑏
= Φ̃
𝑏
Φ̃
𝑇

𝑏
∈ 𝑅
𝑑×𝑑

,

(13)

where
Φ̃
𝑏
= [(𝜇
1
− 𝜇) ⋅ 𝜏

1
| (𝜇
2
− 𝜇) ⋅ 𝜏

2
|⋅ ⋅ ⋅ | (𝜇

𝐶
− 𝜇) ⋅ 𝜏

𝐶
] ∈ 𝑅
𝑑×𝐶

,

𝜏
𝑖
= √

𝑁
𝑖

𝑁
⋅ [1 − 𝐾

𝛼
𝑏

(𝜇
𝑖
− 𝜇)].

(14)
Since the total scatter matrix 𝑆

𝑡
= 𝑆
𝑤
+ 𝑆
𝑏
, if we define

Φ̃
𝑡
= [Φ̃
𝑤
, Φ̃
𝑏
] ∈ 𝑅
𝑑×(𝑁+𝐶), then 𝑆

𝑡
can be written as

𝑆
𝑡
= Φ̃
𝑡
Φ̃
𝑇

𝑡
∈ 𝑅
𝑑×𝑑

. (15)

To solve the problem of eigensystem (11) and compare the
proposed GLDA with FLDA algorithm under the same

conditions, this paper will also use PCA for dimensionality
reduction and guarantee that the geometric information
based within scatter matrix 𝑆

𝑤
is nonsingular. This means

that GLDA can be carried out in the PCA-transformed low
dimensional feature space. Thereby, our GLDA algorithm is
designed as follows.

Step 1. Performing singular value decomposition on Φ̃
𝑇

𝑡
Φ̃
𝑡
∈

𝑅
(𝑁+𝐶)×(𝑁+𝐶), we have Φ̃

𝑇

𝑡
Φ̃
𝑡

svd
= 𝑈Λ𝑈

𝑇, where 𝑈 is an
orthonormal matrix, Λ = diag{𝜆

1
, 𝜆
2
, . . . , 𝜆

𝜏
, 0, . . . , 0} with

𝜆
1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝜏
> 0. Denote Λ

𝑡
= diag{𝜆

1
, 𝜆
2
, . . . , 𝜆

𝜏
},

𝑈
𝑡
= 𝑈(:, 1 : 𝜏) ∈ 𝑅

(𝑁+𝐶)×𝜏, and then let 𝑊
𝑡
= Φ̃
𝑡
𝑈
𝑡
Λ
−1/2

𝑡
∈

𝑅
𝑑×𝜏.

Step 2. Perform singular value decomposition

𝑊
𝑇

𝑡
Φ̃
𝑤

svd
= 𝑈
𝑤
(
Σ
𝑤

0

0 0
)𝑉
𝑇

𝑤
∈ 𝑅
𝜏×𝑁

, (16)

where 𝑈
𝑤

∈ 𝑅
𝜏×𝜏 and 𝑉

𝑤
∈ 𝑅
𝑁×𝑁 are orthonormal matrices,

Σ
𝑤
= diag{𝜎

1
, . . . , 𝜎

𝑟
} with 𝜎

1
≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑟
> 0 and 𝑟 ≤ 𝜏.
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Step 3. If 𝑟 = 𝜏, then let 𝑌 = Σ
−1

𝑤
𝑈
𝑇

𝑤
𝑊
𝑇

𝑡
∈ 𝑅
𝜏×𝑑, and

𝑆
𝑏
= 𝑌𝑆
𝑏
𝑌
𝑇

∈ 𝑅
𝜏×𝜏, and go to Step 4. Otherwise, update 𝑊

𝑡

according to the rule 𝑊
𝑡
= 𝑊
𝑡
(:, 1 : 𝜏 − 1), let 𝜏 = 𝜏 − 1, and

go to Step 2.

Step 4. Perform an eigenvalue decomposition 𝑆
𝑏
= 𝑈
𝑏
Λ
𝑏
𝑈
𝑇

𝑏
,

whereΛ
𝑏
is a diagonal eigenvalue matrix of 𝑆

𝑏
with its diago-

nal elements in a decreasing order and 𝑈
𝑏
is an orthonormal

eigenvector matrix. Let𝑊
𝑏
= 𝑈
𝑤
Λ
−1

𝑤
𝑈
𝑏
.

Step 5. The final GLDA optimal projection matrix is

𝑊GLDA = 𝑊
𝑡
𝑊
𝑏
. (17)

4. Experimental Results

This section will evaluate the performance of the proposed
GLDA method for face recognition. Two LDA-based algo-
rithms, namely FLDA [3] and DLDA [6] algorithms, are
chosen for comparisons under the same experimental con-
ditions. In the following experiments, the values of fractional
order parameters are given as 𝛼

𝑤
= 0.25 and 𝛼

𝑏
= 0.0125.

They are manually determined using full search method.

4.1. Human Face Image Databases. Two popular and pub-
licly available databases, namely, ORL database and FERET
database, are selected for the evaluation. In ORL database,
there are 40 persons and each person consists of 10 images
with different facial expressions, small variations in scales,
and orientations.The resolution of each image is 112×92 and
with 256 gray levels per pixel. Image variations of one person
in the database are shown in Figure 1. For FERET database,
we select 120 people, 6 images for each individual. The six
images are extracted from 4 different sets, namely, Fa, Fb,
Fc, and duplicate. Fa and Fb are sets of images taken with
the same camera at the same day but with different facial
expressions. Fc is a set of images taken with different cameras
at the same day. Duplicate is a set of images taken around 6–12
months after the day the Fa and Fb photos were taken. Details
of the characteristics of each set can be found in [26]. All
images are aligned by the centers of eyes andmouth and then
normalized with resolution 112 × 92. This resolution is the
same as that in ORL database. Images from two individuals
are shown in Figure 2. For all facial images, the following
preprocessing steps are preformed.

(i) All images are aligned with the centers of eyes and
mouth. The orientation of face is adjusted (on-the-
plane rotation) such that the line joining the centers
of eyes is parallel with 𝑥-axis.

(ii) The dimension of the images is reduced by one-fourth
usingDaubechies’ D4wavelet filter.The resolution for
all images in the following experiments is 30 × 25.

(iii) For each facial image sample 𝑥 ∈ 𝑅
𝑑, it is normalized

using the following formula:

𝑥
∗

= (𝑥 −mean (𝑥)) /std (𝑥) . (18)

In the recognition stage, the nearest neighbor approach is
employed for face classification, which is base on Euclidian
distance measurement between the testing image and the
class center.

4.2. Comparisons on ORL Database. The experimental set-
ting on ORL database is as follows. We randomly selected
𝑛 (𝑛 = 2, 3, . . . , 9) images from each individual for training
and the rest (10 − 𝑛) of the images are for testing. In order to
have a fair comparison, all methods use the same training and
testing facial images. Moreover, the experiments are repeated
10 times, and the average accuracies are then calculated to
avoid the statistical variations. The average accuracies are
recorded and tabulated in Table 1 and plotted in Figure 3. TN
in Table 1 means the numbers of training samples. It can be
seen that the recognition accuracy of each approach ascends
when the number of training images increases. The recog-
nition accuracy of GLDA method increases from 79.98%
with 2 training images to 99.00% with 9 training images.
However, for FLDA and DLDA methods, their accuracies
increase from 66.13% and 78.69% with 2 training images
to 97.75% and 96.25% with 9 training images, respectively.
Experimental results show that our GLDA method gives the
best performance on ORL database.

We would also like to see the detailed performance
of every method, which is graphically illustrated using
the cumulative match characteristic (CMC) curve and the
receiver operating characteristic (ROC) curve. The CMC
curve shows the recognition accuracy against the rank, and
the ROC curve displays the false acceptance rate (FAR) versus
the genuine acceptance rate (GAR). High accuracy or high
GAR with low FAR means good performance.

For each number of training images, the CMC curves and
the ROC curves are plotted in Figure 4 ((TN = 2)–(TN = 9))
and Figure 5 ((TN = 2)–(TN = 9)), respectively. It can be seen
that our method gives the best performance for all cases.

4.3. Comparisons on FERET Database. The experimental
setting for the FERET database is similar with that of ORL
database. As the number of images for each person is 6,
the number of training images ranges from 2 to 5. The
experiments are repeated 10 times and the average accuracy
is then calculated. The average accuracy is recorded and
tabulated in Table 2 and plotted in Figure 3, respectively.
When 2 training images is used for testing, the recognition
rate of our method is 72.94%, while those of FLDA and
DLDA methods are 62.85% and 70.25%, respectively. The
performance for each method is also improved when the
number of training images increases. When the number of
training images is equal to 5, the accuracy for GLDAmethod
is increased to 89.83% while those for FLDA method and
DLDAmethod are 89.42% and 85.58%, respectively. It can be
seen that the proposed method outperforms FLDA method
and DLDA method on FERET database as well.

Like the ORL database, the detailed performance of
each approach is shown using CMC and ROC curves. They
are plotted in Figure 6 and Figure 7, respectively, with the
number of training images ranging from 2 to 5.
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Figures 6 and 7 demonstrate that our GLDA method has
superior performance on the FERET database.

5. Conclusions

In order to enhance the discriminant power of the tradi-
tional LDA-based FR algorithms, this paper proposed to
integrate the geometric distribution weight information of
the training samples into Fisher criterion and developed
a novel geometric distribution weight information based
LDA (GLDA) face recognition approach. The geometric
distribution weight information is learnt using radial basis
function with fractional order. The proposed GLDA method
is tested using two face databases, namely, ORL and FERET
face databases. Compared with FLDA method, experimental
results demonstrate that our GLDA method has the best
performance.
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An efficient Chebyshev wavelets method for solving a class of nonlinear fractional integrodifferential equations in a large interval
is developed, and a new technique for computing nonlinear terms in such equations is proposed. Existence of a unique solution
for such equations is proved. Convergence and error analysis of the proposed method are investigated. Moreover in order to show
efficiency of the proposed method, the new approach is compared with some numerical methods.

1. Introduction

Fractional integrodifferential equations (FIDEs) arise in
modelling processes in applied sciences such as physics,
engineering, and biology. The nonlinear fractional integro-
differential equation (NFIDE) of the type

𝐷
𝛼

∗
𝑦 (𝑥) = 𝑔 (𝑥, 𝑦 (𝑥)) + 𝜆∫

𝑥

0

𝐾(𝑥, 𝑡, 𝑦 (𝑡)) 𝑑𝑡,

0 < 𝛼 ≤ 1, 𝑥 ∈ [0, 𝑏] , 𝑦 (0) = 𝑐,

(1)

where 𝐷𝛼
∗
is Caputo fractional derivative, 𝛼 is a parameter

describing the order of the fractional derivative, 𝜆, 𝑐, and
𝑏 are fixed constants, and 𝑔 is a nonlinear continuous
function, arise in the mathematical modelling of various
physical phenomena, such as heat conduction in materials
with memory. Moreover, these equations are encountered in
combined conduction, convection, and radiation problems
[1–3]. Therefore in recent years, numerous works have been
focusing on the solution of these problems. Some of these
methods are Adomian decomposition method (ADM) [4],
fractional differential transformmethod (FDTM) [5], and the
collocation method [6]. Most of these methods have been
utilized in linear problems, and a few number of works have
considered nonlinear problems. In [7] Rawashdeh applied

Legendre wavelet method for solving fractional Voltera
integro-differential equations in the form

𝐷
𝛼

∗
𝑦 (𝑥) = 𝑓 (𝑥) + 𝑝 (𝑥) 𝑦 (𝑥) + 𝜆∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡,

0 < 𝛼 ≤ 1, 𝑥 ∈ [0, 1] .

(2)

Also in [8] Awawdeh et al. applied homotopy analysismethod
(HAM) for solution of (2). Mittal and Nigam [9] applied the
ADM for (1) in the form

𝐷
𝛼

∗
𝑦 (𝑥) = 𝑓 (𝑥) + 𝑝 (𝑥) 𝑦 (𝑥) + 𝜆∫

𝑥

0

𝐾 (𝑥, 𝑡) [𝑦 (𝑡)]
𝑛

𝑑𝑡,

0 < 𝛼 ≤ 1, 𝑥 ∈ [0, 1] , 𝑛 ≥ 1.

(3)

In view of successful application of wavelets in approximation
theory [10–17], wewill use the Chebyshevwavelets for solving
a generalized form of the previous described equations of the
form

𝐷
𝛼

∗
𝑦 (𝑥)=𝑓 (𝑥)+𝑝 (𝑥) 𝐹 (𝑦 (𝑥))+𝜆∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝐺 (𝑦 (𝑡)) 𝑑𝑡,

0 < 𝛼 ≤ 1, 𝑥 ∈ [0, 𝑏] , 𝑏 > 1,

(4)
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with high nonlinearity in a large interval under the initial
condition 𝑦(0) = 𝑐.

Here, for simplicity, we assume that 𝑓 and 𝑝 are continu-
ous functions on [0, 𝑏], 𝐾(𝑥, 𝑡) is continuous on 0 ≤ 𝑡 ≤ 𝑥 ≤
𝑏, and also 𝐹 and 𝐺 are analytic functions.

Themethod is based on reducing the equation to a system
of nonlinear algebraic equations by expanding the solution as
Chebyshev wavelet bases with unknown coefficients.We note
that, for𝛼 = 1, (4) is an ordinary integro-differential equation
and themethod can be easily applied to it. Also themethod is
fast and mathematically simple and guarantees the necessary
accuracy for a small number of basic functions. Moreover
in order to show the efficiency of the proposed method the
new approach is compared with the ADM, VIM [18–21] and
ITM which has been proposed by Daftardar-Gejji and Jafari
in 2006 [22, 23].

The outline of this paper is as follows: in Section 2,
some basic definitions of the fractional calculus, Chebyshev
wavelets, functional approximation, and operational matrix
of fractional integration are described. In Section 3 the
existence of a unique solution for the problem is established.
In Section 4, Chebyshev wavelets method and error investi-
gation are described. In Section 5, some numerical examples
are solved by applying the methods of this article. Finally a
conclusion is drawn in Section 6.

2. Basic Definitions

2.1. Fractional Calculus. Here, we give some basic definitions
and properties of the fractional calculus theory which will be
used further in this paper.

Definition 1. A real function 𝑓(𝑡), 𝑡 > 0, is said to be in the
space 𝐶

𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝 (> 𝜇) such

that 𝑓(𝑡) = 𝑡𝑝𝑓
1
(𝑡), where 𝑓

1
(𝑡) ∈ 𝐶[0,∞] and it is said to be

in the space 𝐶𝑛
𝜇
if 𝑓(𝑛) ∈ 𝐶

𝜇
, 𝑛 ∈ N.

Definition 2. The Riemann-Liouville fractional integration
operator of order 𝛼 ≥ 0 of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is

defined as

(𝐼
𝛼

𝑓) (𝑡) =

{

{

{

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 𝛼 > 0,

𝑓 (𝑡) , 𝛼 = 0.

(5)

It has the following properties:

(i) 𝐼𝛼𝐼𝛽 = 𝐼𝛼+𝛽,

(ii) 𝐼𝛼𝐼𝛽 = 𝐼𝛽𝐼𝛼,

(iii) (𝐼𝛼𝐼𝛽𝑓) (𝑡) = (𝐼𝛽𝐼𝛼𝑓) (𝑡) ,

(iv) 𝐼𝛼𝑡𝜗 = Γ (𝜗 + 1)

Γ (𝛼 + 𝜗 + 1)
𝑡
𝛼+𝜗

,

(6)

where 𝛼, 𝛽 ≥ 0, 𝑡 > 0, and 𝜗 > −1.

Riemann-Liouville fractional derivative operator of order
𝛼 > 0 is defined as

𝐷
𝛼

𝑓 (𝑡) = (
𝑑

𝑑𝑡
)

𝑛

𝐼
𝑛−𝛼

𝑓 (𝑡) , (𝑛 − 1 < 𝛼 ≤ 𝑛) , (7)

where 𝑛 is an integer and 𝑓 ∈ 𝐶𝑛
1
.

The Riemann-Liouville derivatives have certain disad-
vantages when trying to model real-world phenomena with
fractional differential equations.Therefore, wewill now intro-
duce a modified fractional differential operator𝐷𝛼

∗
proposed

by Caputo [24].

Definition 3. The fractional derivative operator of order𝛼 > 0
in the Caputo sense is defined as

𝐷
𝛼

∗
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝑛−𝛼−1

𝑓
(𝑛)

(𝜏) 𝑑𝜏,

(𝑛 − 1 < 𝛼 ≤ 𝑛) ,

(8)

where 𝑛 is an integer, 𝑡 > 0, and 𝑓 ∈ 𝐶𝑛
1
.

The Riemann-Liouville and Caputo operators have a
useful property as

𝐼
𝛼

𝐷
𝛼

∗
𝑓 (𝑡) = 𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

𝑓
(𝑘)

(0
+

)
𝑡
𝑘

𝑘!
,

(𝑛 − 1 < 𝛼 ≤ 𝑛) ,

(9)

where 𝑛 is an integer, 𝑡 > 0, and 𝑓 ∈ 𝐶𝑛
1
.

For more details on the mathematical properties of
fractional derivatives and integrals see [24].

2.2. Chebyshev Wavelets. Chebyshev wavelets 𝜓
𝑝𝑞
(𝑡) =

𝜓(𝑘, 𝑝, 𝑞, 𝑡) have four arguments; 𝑘 ∈ N, 𝑝 = 1, 2, . . . , 2𝑘−1,
and 𝑝 = 2𝑝 − 1; moreover 𝑞 is the degree of the Chebyshev
polynomial of the first kind and 𝑡 is the normalized time, that
is, 𝑡 ∈ [0, 1]. They are defined on the interval [0, 1] as [25]

𝜓
𝑝𝑞
(𝑡) =

{

{

{

2
𝑘/2

𝑇̃
𝑞
(2
𝑘

𝑡 − 𝑝) ,
𝑝 − 1

2𝑘
≤ 𝑡 ≤

𝑝 + 1

2𝑘
,

0, otherwise,
(10)

where

𝑇̃
𝑞
(𝑡) =

{{{

{{{

{

1

√𝜋
, 𝑞 = 0

√
2

𝜋
𝑇
𝑞
(𝑡) , 𝑞 > 0

, (11)

𝑞 = 0, 1, . . . ,𝑀 − 1, and 𝑀 is a fixed positive integer. The
coefficients in (11) are used for orthonormality of the system.
Here, {𝑇

𝑞
(𝑡), 𝑞 ∈ N∪{0}} is the set of well-known Chebyshev

polynomials of degree𝑚which are orthogonalwith respect to
the weight function 𝑤(𝑡) = 1/√1 − 𝑡2 on the interval [−1, 1]
and satisfy the following recursive formula:

𝑇
0
(𝑡) = 1, 𝑇

1
(𝑡) = 𝑡,

𝑇
𝑞+1
(𝑡) = 2𝑡𝑇

𝑞
(𝑡) − 𝑇

𝑞−1
(𝑡) , 𝑞 = 1, 2, 3 . . . .

(12)

We should note that in dealing with Chebyshev polynomials
the weight function 𝑤(𝑡) = 𝑤(2𝑡 − 1) has to be dilated and
translated as 𝑤

𝑝
(𝑡) = 𝑤(2

𝑘

𝑡 − 𝑝), to get orthogonal wavelets.
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2.3. Function Approximation. An arbitrary function 𝑓(𝑡) ∈
𝐿
2

(𝑅) defined over [0, 1] may be expanded into Chebyshev
wavelet basis as

𝑓 (𝑡) =

∞

∑

𝑝=1

∞

∑

𝑞=0

𝑐
𝑝𝑞
𝜓
𝑝𝑞
(𝑡) , (13)

where 𝑐
𝑝𝑞
= (𝑓(𝑡), 𝜓

𝑝𝑞
(𝑡)) in which (,) denotes the inner

product.
If the infinite series in (13) is truncated, then (13) can be

written as

𝑓 (𝑡) ≃

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

𝑐
𝑝𝑞
𝜓
𝑝𝑞
(𝑡) = 𝐶

𝑇

Ψ (𝑡) , (14)

where 𝐶 and Ψ(𝑡) are 2𝑘−1𝑀× 1matrices given by

𝐶 = [𝑐
10
, 𝑐
11
, . . . , 𝑐

1𝑀−1
, 𝑐
20
, . . . ,

𝑐
2𝑀−1

, . . . , 𝑐
2
𝑘−1
0
, . . . , 𝑐

2
𝑘−1
𝑀−1
]
𝑇

,

Ψ (𝑡) = [𝜓
10
(𝑡) , 𝜓
11
(𝑡) , . . . , 𝜓

1𝑀−1
(𝑡) , 𝜓
20
(𝑡) , . . . ,

𝜓
2𝑀−1

(𝑡) , . . . , 𝜓
2
𝑘−1
0
(𝑡) , . . . , 𝜓

2
𝑘−1
𝑀−1

(𝑡)]
𝑇

.

(15)

Taking the collocation points

𝑡
𝑖
=
(2𝑖 − 1)

2𝑘𝑀
, 𝑖 = 1, 2, . . . , 𝑚, (16)

where𝑚 = 2𝑘−1𝑀, we define the wavelet matrixΦ
𝑚×𝑚

as:

Φ
𝑚×𝑚

= [Ψ(
1

2𝑚
) ,Ψ(

3

2𝑚
) , . . . , Ψ (

2𝑚 − 1

2𝑚
)] . (17)

Indeed Φ
𝑚×𝑚

has a diagonal form (see [15]).

2.4. The Operational Matrix of Fractional Integration. The
fractional integration of order 𝛼 of the vector function Ψ(𝑡)
defined in (15) can be expressed as

(𝐼
𝛼

Ψ) (𝑡) = 𝑃
𝛼

Ψ (𝑡) , (18)

where 𝑃𝛼 is the 𝑚 × 𝑚 operational matrix of fractional
integration of order 𝛼. In [25] it is shown that the matrix 𝑃𝛼
can be approximated as

𝑃
𝛼

≃ 𝑃
𝛼

𝑚×𝑚
= Φ
𝑚×𝑚
𝑃
𝛼

𝐵
Φ
−1

𝑚×𝑚
, (19)

where 𝑃𝛼
𝐵
is the operational matrix of fractional integration

of order 𝛼 of the Block Pulse functions (BPFs) that has the
following form [26]:

𝑃
𝛼

𝐵
=
1

𝑚𝛼

1

Γ (𝛼 + 2)

(
(

(

1 𝜉
1
𝜉
2
. . . 𝜉
𝑚−1

0 1 𝜉
1
. . . 𝜉
𝑚−2

0 0 1 . . . 𝜉
𝑚−3

0 0 0 d
...

0 0 0 0 1

)
)

)

, (20)

where 𝜉
𝑖
= (𝑖 + 1)

𝛼+1

− 2𝑖
𝛼+1

+ (𝑖 − 1)
𝛼+1.

In Appendix A, some important properties of BPFs are
listed. In [15], it is shown that 𝑃𝛼

𝑚×𝑚
is an upper trigonometric

matrix. Also, from (14) and (19) it is concluded that for a
function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, we have

(𝐼
𝛼

𝑓) (𝑡) ≃ 𝐶
𝑇

Φ
𝑚×𝑚
𝑃
𝛼

𝐵
𝐵
𝑚
(𝑡) . (21)

3. Existence and Uniqueness

For investigating existence of a unique solution for initial
value problem (4), we reconsider this equation in the follow-
ing operator form:

D
𝛼

∗
𝑦 (𝑥) = 𝑓 (𝑥) + 𝑝 (𝑥)F𝑦 (𝑥) +KG𝑦 (𝑥) , (22)

where we define

K𝑦 (𝑥) = 𝜆∫
𝑥

0

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡. (23)

Applying operator I𝛼, the inverse of D𝛼
∗
, on both sides of

(22), and considering initial condition yield

𝑦 (𝑥) = 𝑐 +I
𝛼

(𝑓 (𝑥) + 𝑝 (𝑥)F𝑦 (𝑥) +KG𝑦 (𝑥)) .

(24)

Equation (24), can be written as a fixed point equationA𝑦 =
𝑦, where the mapA is defined as

A𝑦 (𝑥) = 𝑐 +I
𝛼

(𝑓 (𝑥) + 𝑝 (𝑥)F𝑦 (𝑥) +KG𝑦 (𝑥)) ,

(25)

Now let (𝐶[𝐽], ‖ ⋅ ‖
∞
) be the Banach space of all continues

functions on 𝐽 = [0, 𝑏], 𝑏 > 1, with the norm ‖𝑓‖
∞
=

max
𝑡∈𝐽
|𝑓(𝑡)|. Moreover, suppose that the nonlinear termsF

andG satisfy Lipschitz conditions on [0, 𝑏] as
󵄨󵄨󵄨󵄨F𝑦𝑚 (𝑥) −F𝑦 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝐿1
󵄨󵄨󵄨󵄨𝑦𝑚 (𝑥) − 𝑦 (𝑥)

󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨G𝑦𝑚 (𝑥) −G𝑦 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐿2

󵄨󵄨󵄨󵄨𝑦𝑚 (𝑥) − 𝑦 (𝑥)
󵄨󵄨󵄨󵄨 ,

(26)

where 𝐿
1
and 𝐿

2
are fixed positive constants. Then we have

the following.

Theorem 4. If 𝐿
1
‖𝑝‖
∞
+ 𝐿
2
‖K‖
∞
< Γ(𝛼 + 1)/𝑏

𝛼, then the
initial value problem (4) has a unique solution 𝑦 ∈ 𝐶[𝐽].

Proof. There are different approaches in applying the Banach
fixed point theorem to prove the existence of a unique
solution for (4). We give a sketch of two approaches below.
For this purpose we define the nonlinear integral operator

A : 𝐶 [𝐽] 󳨀→ 𝐶 [𝐽] ,

A𝑦 (𝑥) ≡ 𝑐 +
1

Γ (𝛼)

×∫

𝑥

0

(𝑥−𝑡)
𝛼−1

(𝑓 (𝑡)+𝑝 (𝑡)F𝑦 (𝑡)+KG𝑦 (𝑡)) 𝑑𝑡.

(27)
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Approach 1. Let 𝑦, 𝑦 ∈ 𝐶[𝐽], then we have

A𝑦 (𝑥) −A𝑦 (𝑥) =
1

Γ (𝛼)

× ∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

× (𝑝 (𝑡) [F𝑦 (𝑡) −F𝑦 (𝑡)]

+K [G𝑦 (𝑡) −G𝑦 (𝑡)]) 𝑑𝑡.

(28)

Then for 𝑥 > 0 we have

󵄨󵄨󵄨󵄨A𝑦 (𝑥) −A𝑦 (𝑥)
󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)

× ∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

(𝐿
1

󵄨󵄨󵄨󵄨𝑝 (𝑡)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

+𝐿
2
|K|

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨) 𝑑𝑡,

󵄨󵄨󵄨󵄨A𝑦 (𝑥) −A𝑦 (𝑥)
󵄨󵄨󵄨󵄨

≤ (𝐿
1

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩∞
+ 𝐿
2
‖K‖
∞
)

×
󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩∞

1

Γ (𝛼)

× ∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑑𝑡

≤ (𝐿
1

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩∞
+ 𝐿
2
‖K‖
∞
)

×
󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩∞

𝑏
𝛼

Γ (𝛼 + 1)
.

(29)

Therefore,

󵄩󵄩󵄩󵄩A𝑦 −A𝑦
󵄩󵄩󵄩󵄩∞
≤ Ω
𝐿
1
,𝐿
2
,𝑝,K,𝛼

󵄩󵄩󵄩󵄩𝑦 − 𝑦
󵄩󵄩󵄩󵄩∞
, (30)

whereΩ
𝐿
1
,𝐿
2
,𝑝,K,𝛼 = (𝐿1‖𝑝‖∞ + 𝐿2‖K‖∞) (𝑏

𝛼

/Γ(𝛼 + 1)).
Since Ω

𝐿
1
,𝐿
2
,𝑝,K,𝛼 < 1, by contraction mapping theorem,

the initial value problem (4) has a unique solution in 𝐶[𝐽].

Approach 2. Let us introduce the norm

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 = max
𝑡∈𝐽

𝑒
−𝛽𝑡 󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 , (31)

on the space 𝐶[𝐽], which is equivalent to the standard norm
‖𝑓‖
∞
on𝐶[𝐽].The parameter𝛽 is chosen to satisfy𝛽𝛼 > Γ(𝛼+

1)/𝑏
𝛼. Then for 𝑥 > 0 we have

𝑒
−𝛽𝑥 󵄨󵄨󵄨󵄨A𝑦 (𝑥) −A𝑦 (𝑥)

󵄨󵄨󵄨󵄨

≤
𝑒
−𝛽𝑥

𝛾 (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑒
𝛽𝑡

𝑒
−𝛽𝑡

× (
󵄨󵄨󵄨󵄨𝑝 (𝑡)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨F𝑦 −F𝑦
󵄨󵄨󵄨󵄨 + |K|

󵄨󵄨󵄨󵄨G𝑦 −G𝑦
󵄨󵄨󵄨󵄨) 𝑑𝑡

≤ (𝐿
1

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 + 𝐿2 ‖|K|‖)
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑦 − 𝑦
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

×
𝑒
−𝛽𝑥

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑒
𝛽𝑡

𝑑𝑡

= (𝐿
1

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 + 𝐿2 ‖|K|‖)
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑦 − 𝑦
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

×
𝑒
−𝛽𝑥

𝑒
𝛽𝑥

Γ (𝛼)
∫

𝑥

0

𝑡
𝛼−1

𝑒
−𝛽𝑡

𝑑𝑡

= (𝐿
1

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 + 𝐿2 ‖|K|‖)
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑦 − 𝑦
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

×
1

Γ (𝛼)

1

𝛽𝛼
∫

𝛽𝑥

0

𝑡
𝛼−1

𝑒
−𝑡

𝑑𝑡

≤ (𝐿
1

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 + 𝐿2 ‖|K|‖)
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑦 − 𝑦
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

×
1

Γ (𝛼)

1

𝛽𝛼
∫

∞

0

𝑡
𝛼−1

𝑒
−𝑡

𝑑𝑡

= (𝐿
1

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 + 𝐿2 ‖|K|‖)
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑦 − 𝑦
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩

1

𝛽𝛼
.

(32)

Then,
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨A𝑦 −A𝑦
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 ≤ Ω𝐿1 ,𝐿2,𝑝,K,𝛼
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑦 − 𝑦
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 , (33)

whereΩ
𝐿
1
,𝐿
2
,𝑝,K,𝛼 = (𝐿1‖|𝑝|‖ + 𝐿2‖|K|‖)(𝑏

𝛼

/Γ(𝛼 + 1)).
Therefore, the operatorA is a contraction on the Banach

space (𝐶[𝐽], ‖ | ⋅ | ‖), and so the initial value problem (4) has
a unique solution in 𝐶[𝐽].

4. Chebyshev Wavelets Method

Here, the Chebyshev wavelets expansion together with their
operational matrices of fractional order integration are used
for numerical solution of nonlinear NFIDE (4). For solving
this problem we assume that

𝐷
𝛼

∗
𝑦 (𝑥) = 𝐾

𝑇

𝑚
Ψ
𝑚
(𝑥) , (34)

where 𝐾𝑇
𝑚
is an unknown vector and Ψ

𝑚
(𝑥) is the expansion

of (15) by BPFs, that is, Ψ
𝑚
= Φ
𝑚×𝑚
𝐵
𝑚
(𝑥), and 𝐵

𝑚
(𝑥) is

defined in Appendix A. By using initial conditions and (9),
we have

𝑦 (𝑥) = 𝐾
𝑇

𝑚
𝑃
𝛼

𝑚×𝑚
Ψ
𝑚
(𝑥) + 𝑐. (35)

From (35) we have

𝑦 (𝑥) = [𝐾
𝑇

𝑚
𝑃
𝛼

𝑚×𝑚
Φ
𝑚×𝑚

+ [𝑐, 𝑐, . . . , 𝑐]] 𝐵
𝑚
(𝑥) . (36)
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This equation can also be written as

𝑦 (𝑥) = [𝐾
𝑇

𝑚
𝑃
𝛼

𝑚×𝑚
Φ
𝑚×𝑚

+ [𝑐, 𝑐, . . . , 𝑐]]

× 𝐵
𝑚
(𝑥) = [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑚
] 𝐵
𝑚
(𝑥) ,

(37)

and from Appendix B, we have

𝐹 (𝑦 (𝑥)) = [𝐹 (𝑎
1
) , 𝐹 (𝑎

2
) , . . . , 𝐹 (𝑎

𝑚
)] 𝐵
𝑚
(𝑥) ,

∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝐺 (𝑦 (𝑡)) 𝑑𝑡 = [𝐺 (𝑎
1
) , 𝐺 (𝑎

2
) , . . . , 𝐺 (𝑎

𝑚
)]

× ∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝐵
𝑚
(𝑡) 𝑑𝑡,

(38)

where

∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝐵
𝑚
(𝑡) 𝑑𝑡

= [∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝑏
0
(𝑡) 𝑑𝑡,

∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝑏
1
(𝑡) 𝑑𝑡, . . . , ∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝑏
𝑚−1
(𝑡) 𝑑𝑡]

𝑇

.

(39)

By substituting (34) and (38) into (4), we obtain

𝐾
𝑇

𝑚
Φ
𝑚×𝑚
𝐵
𝑚
(𝑥)

= 𝑓 (𝑥) + 𝑝 (𝑥) [𝐹 (𝑎
1
) , 𝐹 (𝑎

2
) , . . . , 𝐹 (𝑎

𝑚
)] 𝐵
𝑚
(𝑥)

+ [𝐺 (𝑎
1
) , . . . , 𝐺 (𝑎

𝑚
)] ∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝐵
𝑚
(𝑡) 𝑑𝑡.

(40)

Now, from (37) and (40) we have

[𝑎
1
− 𝑐, 𝑎
2
− 𝑐, . . . , 𝑎

𝑚
− 𝑐] (𝑃

𝛼

𝐵
)
−1

𝐵
𝑚
(𝑥)

= 𝑓 (𝑥) + 𝑝 (𝑥) [𝐹 (𝑎
1
) , 𝐹 (𝑎

2
) , . . . , 𝐹 (𝑎

𝑚
)] 𝐵
𝑚
(𝑥)

+ [𝐺 (𝑎
1
) , . . . , 𝐺 (𝑎

𝑚
)] ∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝐵
𝑚
(𝑡) 𝑑𝑡.

(41)

This is a nonlinear algebraic equation. Now, by taking
collocation points, expressed in (16), this equation is trans-
formed into a nonlinear system of algebraic equations with
𝑚 unknowns 𝑎

𝑖
(𝑖 = 1, 2, . . . , 𝑚). By solving this system and

determining 𝑎
𝑖
, we get the numerical solution of problem (4).

4.1. Error Investigation of the Chebyshev Wavelets Method. In
this section we investigate error of the Chebyshev wavelets
method. The representation error can be obtained when a
function 𝑓(𝑡) is presented on interval [0, 1].

Theorem 5 (see [27]). A function 𝑓(𝑡) defined on [0, 1) with
bounded second derivative, say |𝑓󸀠󸀠(𝑡)| ≤ 𝑀̂, can be expanded
as an infinite sum of Chebyshev wavelets, and the series
converges uniformly to 𝑓(𝑡), that is

𝑓 (𝑡) =

∞

∑

𝑝=1

∞

∑

𝑞=0

𝑐
𝑝𝑞
𝜓
𝑝𝑞
(𝑡) , (42)

where 𝑐
𝑝𝑞
’s are defined in (13).

Theorem 6 (see [27]). Let 𝑓(𝑡) be a continuous function
defined on [0, 1), with bounded second derivative |𝑓󸀠󸀠(𝑡)| ≤ 𝑀̂,
and let∑2

𝑘−1

𝑝=1
∑
𝑀−1

𝑞=0
𝑐
𝑝𝑞
𝜓
𝑝𝑞
(𝑡) be the approximate solution using

Chebyshev wavelets method, respectively. Then for the error
bound one has:

𝜎
𝑘,𝑀
<
√𝜋𝑀̂

8
(

∞

∑

𝑝=2
𝑘−1
+1

1

𝑝5

∞

∑

𝑞=𝑀

1

(𝑞 − 1)
4
)

1/2

, (43)

where

𝜎
𝑘,𝑀
= (∫

1

0

(𝑓 (𝑡) −

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

𝑐
𝑝𝑞
𝜓
𝑝𝑞
(𝑡))

2

𝑤
𝑝
(𝑡) 𝑑𝑡)

1/2

.

(44)

Lemma 7. Suppose that 𝑓(𝑡) is approximated on [0, 1) by

𝑓
𝑚
(𝑡) =

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

𝑐
𝑝𝑞
𝜓
𝑝𝑞
(𝑡) , (45)

and moreover suppose that by solving some problems one has
found 𝑐

𝑝𝑞
as an approximation of 𝑐

𝑝𝑞
and put:

𝑓
𝑚
(𝑡) =

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

𝑐
𝑝𝑞
𝜓
𝑝𝑞
(𝑡) . (46)

Then for each 𝑡 ∈ [0, 1) one has
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓

𝑚
(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑚

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞
. (47)

Proof . We have
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓

𝑚
(𝑡)
󵄩󵄩󵄩󵄩󵄩

= (∫

1

0

[

[

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

𝑐
𝑝𝑞
𝜓
𝑝𝑞
(𝑡) −

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

𝑐
𝑝𝑞
𝜓
𝑝𝑞
(𝑡)]

]

2

× 𝑤
𝑞
(𝑡) 𝑑𝑡)

1/2

= (∫

1

0

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

[𝑐
𝑝𝑞
− 𝑐
𝑝𝑞
]
2

[𝜓
𝑝𝑞
(𝑡)]
2

𝑤
𝑞
(𝑡) 𝑑𝑡)

1/2

=

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑝𝑞
− 𝑐
𝑝𝑞

󵄨󵄨󵄨󵄨󵄨
(∫

1

0

[𝜓
𝑝𝑞
(𝑡)]
2

𝑤
𝑞
(𝑡) 𝑑𝑡)

1/2

=

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑝𝑞
− 𝑐
𝑝𝑞

󵄨󵄨󵄨󵄨󵄨
≤

2
𝑘−1

∑

𝑝=1

𝑀−1

∑

𝑞=0

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞

= 𝑚
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞
.

(48)

This completes the proof.
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Corollary 8. Suppose that by solving some problems one
obtains 𝑓

𝑚
(𝑡) as the approximation of 𝑓(𝑡). Then one has:

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓 (𝑡)

󵄩󵄩󵄩󵄩󵄩
≤ 𝜎
𝑘,𝑀
+ 𝑚
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞
. (49)

Proof . For every 𝑡 ∈ [0, 1) we have

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓 (𝑡)

󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓 (𝑡) − 𝑓

𝑚
(𝑡) + 𝑓

𝑚
(𝑡)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑓𝑚 (𝑡) − 𝑓 (𝑡)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓

𝑚
(𝑡)
󵄩󵄩󵄩󵄩󵄩
.

(50)

Now fromTheorem 6 and Lemma 7 we have

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓 (𝑡)

󵄩󵄩󵄩󵄩󵄩
≤ 𝜎
𝑘,𝑀
+ 𝑚
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑚
(𝑡) − 𝑓 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞
. (51)

This completes the proof.

In real problems, we often tend to solve equations with
unknown exact solutions. Hence, when we apply our method
to these problems, we cannot say that this approximate
solution is good or bad unless we are able to calculate the
error function 𝑒

𝑚
(𝑥) = 𝑓

𝑚
(𝑥) − 𝑓(𝑥). Then it is necessary to

introduce a process for estimating the error function when
the exact solution is unknown [28]. Here, we introduce a
method to estimate the error function. Let 𝑦

𝑚
(𝑥) be an

approximate solution of (4). Then from (24), it is concluded
that 𝑦

𝑚
(𝑥) satisfies the following equation:

𝑦
𝑚
(𝑥)

= 𝑐 +
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡

+
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑝 (𝑡) 𝐹 (𝑦
𝑚
(𝑡)) 𝑑𝑡

+
𝜆

Γ (𝛼 + 1)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼

𝐾 (𝑥, 𝑡) 𝐺 (𝑦
𝑚
(𝑡)) 𝑑𝑡 + 𝑟

𝑚
(𝑥) ,

(52)

where 𝑟
𝑚
(𝑥) is the perturbation function that depends only

on 𝑦
𝑚
(𝑥) and can be obtained by substituting the computed

solution 𝑦
𝑚
(𝑥) into the equation

𝑟
𝑚
(𝑥) = 𝑦

𝑚
(𝑥) − 𝑐 −

1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡

−
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑝 (𝑡) 𝐹 (𝑦
𝑚
(𝑡)) 𝑑𝑡

−
𝜆

Γ (𝛼 + 1)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝐾 (𝑥, 𝑡) 𝐺 (𝑦
𝑚
(𝑡)) 𝑑𝑡.

(53)

Subtracting (53) from (24), we obtain

𝑒
𝑚
(𝑥) =

1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑝 (𝑡) [𝐹 (𝑦
𝑚
(𝑡)) − 𝐹 (𝑦 (𝑡))]

+
𝜆

Γ (𝛼 + 1)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼

𝐾 (𝑥, 𝑡)

× [𝐺 (𝑦
𝑚
(𝑡)) − 𝐺 (𝑦 (𝑡))] 𝑑𝑡

+ 𝑟
𝑚
(𝑥) ,

(54)

inwhichwe define 𝑒
𝑚
(𝑥) = 𝑦

𝑚
(𝑥)−𝑦(𝑥) as the error function.

Since 𝐹 and 𝐺 are analytic functions, then we can write

𝐹 (𝑦
𝑚
(𝑥)) − 𝐹 (𝑦 (𝑥))

= 𝐹 (𝑦
𝑚
(𝑥)) − 𝐹 (𝑦

𝑚
(𝑥) − 𝑒

𝑚
(𝑥))

= 𝐹
󸀠

(𝑦
𝑚
(𝑥)) 𝑒
𝑚
(𝑥) −

1

2
𝐹
󸀠󸀠

(𝑤
𝑚
(𝑥)) [𝑒

𝑚
(𝑥)]
2

,

(55)

and similarly

𝐺 (𝑦
𝑚
(𝑡)) − 𝐺 (𝑦 (𝑡)) = 𝐺

󸀠

(𝑦
𝑚
(𝑡)) 𝑒
𝑚
(𝑡)

−
1

2
𝐺
󸀠󸀠V
𝑚
(𝑡) [𝑒
𝑚
(𝑡)]
2

,

(56)

where, by Taylor’s Theorem, 𝑤
𝑚
(𝑡) = 𝑦

𝑚
(𝑡) − 𝜃𝑒

𝑚
(𝑡), 𝜃 ∈

(0, 1), and V
𝑚
(𝑡) = 𝑦

𝑚
(𝑡) − 𝛿𝑒

𝑚
(𝑡), 𝛿 ∈ (0, 1). Thus, by

substituting (55), and (56) in the error equation (54), we
get a nonlinear fractional integral equation in which the
error function 𝑒

𝑚
(𝑡) is unknown. Obviously, we can apply the

proposed method for this equation to find an approximation
of the error function 𝑒

𝑚
(𝑥).

5. Numerical Examples

In this section, for the sake of comparison, we have selected
some examples that their exact solutions exist, which will
ultimately show the simplicity, effectiveness, and exactness of
the proposed method. All programs are performed by Maple
15 and digits 20. We consider the following test problems.

Example 1. Let us first consider the following NFIDE:

𝐷
𝛼

∗
𝑦 (𝑥) = 𝑓 (𝑥) + 𝑦 (𝑥) + ∫

𝑥

0

𝑥𝑡 arcsin (𝑦 (𝑡)) 𝑑𝑡,

𝑦 (0) = 0 𝑥 ∈ [0, 2] ,

(57)

where

𝑓 (𝑥) = cos (𝑥) − sin (𝑥) − 1
3
𝑥
4

. (58)

The exact solution of this problem for 𝛼 = 1 is 𝑦(𝑥) = sin(𝑥).
Figure 1 shows the behavior of the numerical solution for
𝑚 = 128 (𝑀 = 4, 𝑘 = 6). From Figure 1, it is seen that
the numerical solution is in a very good agreement with the
exact solution for 𝛼 = 1. Therefore, we hold that the solutions
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Figure 1: Numerical solution (N.S.) and exact solution (Ex.S).

for 𝛼 = 0.90 and 𝛼 = 0.95 are also credible. Figure 1 also
shows that as 𝛼 → 1, the approximate solution tends to
𝑦(𝑥) = sin(𝑥), which is the exact solution of this equation
in the case 𝛼 = 1.

Example 2. Consider the following NFIDE:

𝐷
𝛼

∗
𝑦 (𝑥) = 𝑓 (𝑥) + 𝑒

𝑦(𝑥)

+ ∫

𝑥

0

𝑡[𝑦 (𝑡)]
2

𝑑𝑡,

𝑦 (0) = 0, 𝑥 ∈ [0, 5] ,

(59)

where

𝑓 (𝑥) =
6𝑥
3−𝛼

Γ (4 − 𝛼)
−
15√𝜋𝑥

3/2−𝛼

2Γ (5/2 − 𝛼)
− 20𝑥

5

+
40

13
𝑥
13/2

−
1

8
𝑥
8

+ 𝑒
𝑥
3
−10𝑥
3/2

.

(60)

The exact solution of this problem is 𝑦(𝑥) = 𝑥3 − 10𝑥3/2.

This NFIDE is now solved by the Chebyshev wavelet
method for 𝛼 = 0.75. Numerical solutions of this problem
for some values of 𝑚 are shown in Figure 2. It is obviously
seen that computing 𝑦

0
(𝑥) via the standard ADM and ITM is

very difficult because analytic computation of ∫𝑥
0

𝑒
𝑡
3
−10𝑡
3/2

𝑑𝑡 is
impossible. Also computing other components 𝑦

𝑖
(𝑥) (𝑖 ≥ 1),

via the standardADM,VIM, and ITM, is very difficult in each
iteration and also requires a large amount of computational
work.We can avoid such integrations by taking the truncated
Maclaurin expansion for the exponential term in (59), that
is, 𝑒𝑥 = 1 + 𝑥 + (1/2!)𝑥2 + ⋅ ⋅ ⋅ + (1/5!)𝑥5. In order to show
efficiency of the proposed method, a comparison between
the numerical solution given by the proposed method for
𝑚 = 128, 𝑦

4
(𝑥) of the ADM, ITM, and VIM, and the

exact solution is performed in Figure 3. From Figure 3, it
can be concluded that the Chebyshev wavelet method for

the numerical solution of this problem is very efficient
and accurate in comparison with other presented numerical
methods.

Example 3. Consider the following NFIDE:

𝐷
𝛼

∗
𝑦 (𝑥) = 𝑓 (𝑥) − [𝑦 (𝑥)]

2

+ 𝑥∫

𝑥

0

[𝑦 (𝑡)]
3

𝑑𝑡,

𝑦 (0) = 1, 𝑥 ∈ [0, 4.5] ,

(61)

where

𝑓 (𝑥) = −
2𝑥
2−𝛼

Γ (3 − 𝛼)
+
3𝑥
1−𝛼

Γ (2 − 𝛼)
−
1

7
𝑥
8

+
3

2
𝑥
7

−
24

5
𝑥
6

+
9

4
𝑥
5

+ 9𝑥
4

+ 8𝑥
2

+ 6𝑥 + 1.

(62)

The exact solution of this problem is 𝑦(𝑥) = 1 + 3𝑥 − 𝑥2.

This problem is now solved by the Chebyshev wavelet
method for 𝛼 = 0.85. Numerical solutions of this problem
for some values of 𝑚 are shown in Figure 4. A comparison
between the numerical solution given by the proposed
method for 𝑚 = 128, 𝑦

4
(𝑥) of the ADM and ITM and

𝑦
3
(𝑥) of the VIM and the exact solution is performed

in Figure 5. From Figure 5, it can be concluded that the
Chebyshev wavelet method for the numerical solution of this
problem is very efficient and accurate in comparison with
other presented numerical methods. Moreover, the solution
has been derived in a large domain. It can be mentioned
that computing the components 𝑦

𝑖
(𝑥) via the ADM, VIM

and ITM require a large amount of computational work and
memory, such that computing other components for 𝑖 > 4 is
very difficult.

Example 4. Finally, consider the following NFIDE:

𝐷
𝛼

∗
𝑦 (𝑥) = 𝑓 (𝑥) + ∫

𝑥

0

𝑒
−𝑡

[𝑦 (𝑡)]
2

𝑑𝑡,

𝑦 (0) = 0, 𝑥 ∈ [0, 5] ,

(63)

where

𝑓 (𝑥) =
6𝑥
3−𝛼

Γ (4 − 𝛼)
−
12𝑥
2−𝛼

Γ (3 − 𝛼)
+
8𝑥
1−𝛼

Γ (2 − 𝛼)
+ 𝑒
−𝑥

× (80 + 80𝑥 + 40𝑥
2

− 8𝑥
3

+ 22𝑥
4

− 6𝑥
5

+ 𝑥
6

) .

(64)

The exact solution of this problem is 𝑦(𝑥) = 𝑥3 − 6𝑥2 + 8𝑥.

This NFIDE is now solved by the proposed method for
𝛼 = 0.80. Numerical solutiones of this problem for some
selected values of 𝑚 are shown in Figure 6. It is clearly seen
that computing the components 𝑦

𝑖
(𝑥) via the standard ADM,

VIM, and ITM is very difficult and also requires a large
amount of computational work.We can avoid such fractional
integrations by taking the truncated Maclaurin expansion
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Figure 2: Numerical solutions of Example 1, for some values of𝑚.
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Figure 3: Numerical solutions of Example 1 for 𝛼 = 0.75.

for the exponential term in (63). A comparison between the
numerical solution given by the proposed method for 𝑚 =

128, 𝑦
4
(𝑥) of the ADM, ITM, and VIM for 𝛼 = 0.80 and 𝛼 =

0.90 and the exact solution is performed in Figure 7. From
Figure 7, it can be concluded that the Chebyshev wavelet
method for the numerical solution of this problem is very
efficient and accurate in comparison with the ADM, VIM,
and ITM.

6. Discussion and Conclusions

In this paper, we proposed the Chebyshev wavelets method
for the numerical solution of nonlinear fractional integro-
differential equations in a large interval. Existence of a unique

solution for such equations is proved. Convergence and error
analysis of the Chebyshev wavelets expansion is discussed.
Efficient approximate solutions have derived for NFIDEs,
and the results have been shown remarkable performance.
Moreover the new approach has been compared with the
ADM, VIM, and ITM in solving various nonlinear fractional
integro-differential equations.There are five important points
to be noted here.

(1) The proposed method uses a new technique for
computation of nonlinear terms in such equations.

(2) The proposed approach can provide the suitable
approximate solution in a large interval by using only
a few number of collocation points, as shown in the
solved examples.

(3) The proposed method is very simple and requires less
computational work in comparison with ADM, VIM,
and ITM.

(4) The proposed method overcomes the probable diffi-
culties arising in calculating integrals.

(5) The proposed method does not need to use Adomian
polynomials and also has no need for the Lagrange
multiplier, correction functional, stationary condi-
tions, the variational theory, and so forth, which
eliminates the complications that exist in VIM.

So in comparison with the ADM, VIM, and ITM, the
proposed method is proved to be simpler in principle and
more convenient for computer algorithms.
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Figure 4: Numerical solutions of Example 2, for some values of𝑚.
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Appendix

A. Some Properties of BPFs

An𝑚-set of BPFs is defined as

𝑏
𝑖
(𝑡) =

{

{

{

1,
𝑖

𝑚
≤ 𝑡 <

(𝑖 + 1)

𝑚
,

0, otherwise,
(A.1)

where 𝑖 = 0, 1, 2, . . . , (𝑚 − 1).
The most important properties of BPFs are disjointness,

orthogonality, and completeness.

Disjointness. This property can be clearly obtained from the
definition of BPFs as follows:

𝑏
𝑖
(𝑡) 𝑏
𝑗
(𝑡) = {

𝑏
𝑖
(𝑡) , 𝑖 = 𝑗,

0, 𝑖 ̸=𝑗.
(A.2)

Orthogonality. It is clear that

∫

1

0

𝑏
𝑖
(𝜏) 𝑏
𝑗
(𝜏) 𝑑𝜏 =

1

𝑚
𝛿
𝑖𝑗
, (A.3)

where 𝛿
𝑖𝑗
is the Kroneker delta.

Completeness. The sequence {𝑏
𝑖
(𝑡)}
𝑖∈𝐼

is complete in 𝐿2[0, 1),
namely, 𝑓 ∈ 𝐿

2

[0, 1), and ∫1
0

𝑏
𝑖
(𝑡)𝑓(𝑡)𝑑𝑡 = 0, 𝑖 ∈ 𝐼,

results in 𝑓(𝑡) = 0 almost everywhere. Because of com-
pleteness of {𝑏

𝑖
(𝑡)}
𝑖∈𝐼
, Parseval’s identity holds; that is, we

have ∫1
0

[𝑓(𝑡)]
2

𝑑𝑡 = ∑
𝑖𝜖𝐼
𝑓
2

𝑖
‖𝑏
𝑖
(𝑡)‖
2

, for every real bounded
function 𝑓 ∈ 𝐿2[0, 1), and

𝑓
𝑖
= 𝑚∫

1

0

𝑏
𝑖
(𝑡) 𝑓 (𝑡) 𝑑𝑡 = 𝑚∫

(𝑖+1)/𝑚

𝑖/𝑚

𝑏
𝑖
(𝑡) 𝑓 (𝑡) 𝑑𝑡. (A.4)

Consider the first𝑚-terms of BPFs and write them concisely
as the𝑚-vector as follows:

𝐵
𝑚
(𝑡) = [𝑏

0
(𝑡) , 𝑏
1
(𝑡) , . . . , 𝑏

𝑖
(𝑡) , . . . , 𝑏

𝑚−1
(𝑡)]
𝑇

,

𝑡 ∈ [0, 𝑇) .

(A.5)
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Figure 6: Numerical solutions of Example 3, for some values of𝑚.
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Figure 7: Numerical solutions of Example 3, for 𝛼 = 0.80 (a) and 𝛼 = 0.90 (b).

Then from the above representation and the disjointness
property, it follows that

𝐵
𝑚
(𝑡) 𝐵
𝑇

𝑚
(𝑡) =(

𝑏
0
(𝑡) 0 . . . 0

0 𝑏
1
(𝑡) . . . 0

...
... d

...
0 0 . . . 𝑏

𝑚−1
(𝑡)

) . (A.6)

B. Expanding the Nonlinear Terms via
Chebyshev Wavelet Bases

From (37) and (A.6), we have

[𝑦 (𝑥)]
2

= 𝑦 (𝑥) 𝑦(𝑥)
𝑇

= [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
] 𝐵
𝑚
(𝑥) 𝐵
𝑚
(𝑥)
𝑇

[𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
]
𝑇
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= [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
]

×(

𝑏
0
(𝑥) 0 . . . 0

0 𝑏
1
(𝑥) . . . 0

...
... d

...
0 0 . . . 𝑏

𝑚−1
(𝑥)

)

× [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
]
𝑇

= 𝑎
2

1
𝑏
0
(𝑥) + 𝑎

2

2
𝑏
1
(𝑥) + ⋅ ⋅ ⋅ + 𝑎

2

𝑚
𝑏
𝑚−1
(𝑥)

= [𝑎
2

1
, 𝑎
2

2
, . . . , 𝑎

2

𝑚
] 𝐵
𝑚
(𝑥) ,

(B.1)

and in general by induction we have

[𝑦 (𝑥)]
𝑞

= [𝑎
𝑞

1
, 𝑎
𝑞

2
, . . . , 𝑎

𝑞

𝑚
] 𝐵
𝑚
(𝑥) , 𝑞 ≥ 2. (B.2)

For an analytic function 𝑔, by Maclaurin’s expansion, 𝑔(𝑥) =
∑
∞

𝑛=0
(𝑔
(𝑛)

(0)/𝑛!)𝑥
𝑛, we have

𝑔 (𝑦) =

∞

∑

𝑛=0

𝑔
(𝑛)

(0)

𝑛!
𝑦
𝑛

, (B.3)

and from (B.2) and (B.3) we have

𝑔 (𝑦) =

∞

∑

𝑛=0

𝑔
(𝑛)

(0)

𝑛!
[𝑎
𝑛

1
, . . . , 𝑎

𝑛

𝑚
] 𝐵
𝑚
(𝑥)

= [

∞

∑

𝑛=0

𝑔
(𝑛)

(0)

𝑛!
𝑎
𝑛

1
, . . . ,

∞

∑

𝑛=0

𝑔
(𝑛)

(0)

𝑛!
𝑎
𝑛

𝑚
]𝐵
𝑚
(𝑥) .

(B.4)

Since the series in the left hand side is absolutely and
uniformly convergent to 𝑔(𝑦), each series in the right hand
side is also absolutely convergent to the corresponding 𝑔(𝑎

𝑖
);

that is,

[

∞

∑

𝑛=0

𝑔
(𝑛)

(0)

𝑛!
𝑎
𝑛

1
, . . . ,

∞

∑

𝑛=0

𝑔
(𝑛)

(0)

𝑛!
𝑎
𝑛

𝑚
] = [𝑔 (𝑎

1
) , . . . , 𝑔 (𝑎

𝑚
)] .

(B.5)

Now, from (B.4) and (B.5), we have

𝑔 (𝑦) = [𝑔 (𝑎
1
) , 𝑔 (𝑎

2
) , . . . , 𝑔 (𝑎

𝑚
)] 𝐵
𝑚
(𝑥) . (B.6)
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It is well known that routing strategies based on global topological information is not a good choice for the enhancement of traffic
throughput in large-scale networks due to the heavy communication cost. On the contrary, acquiring spatial information, such
as spatial distances among nodes, is more feasible. In this paper, we propose a novel distance-based routing strategy in spatial
scale-free networks, called LDistance strategy.The probability of establishing links among nodes obeys the power-law in the spatial
network under study. Compared with the LDegree strategy (Wang et al., 2006) and the mixed strategy (a strategy combining both
greedy routing strategy and random routing strategy), results show that our proposed LDistance strategy can further enhance traffic
capacity. Besides, the LDistance strategy can also achieve a much shorter delivering time than the LDegree strategy. Analyses reveal
that the superiority of our strategy is mainly due to the interdependent relationship between topological and spatial characteristics
in spatial scale-free networks. Furthermore, along transporting path in the LDistance strategy, the spatial distance to destination
decays more rapidly, and the degrees of routers are higher than those in the LDegree strategy.

1. Introduction

In the last few years, the analysis and modelling of dynamics
in networked systems have attracted much attention in the
field of theoretic physics [1–3]. Such networked systems
include the Internet, high-way networks, airline networks,
and social, biology, and some other infrastructure networks.
In some real networks such as the Internet [4], electric-power
grid [5], and airline networks [6], each node has its individual
precise position in the space and the spatial distances among
nodes cannot be arbitrarily neglected. Moreover, the spatial
distances among nodes are not identical. In such networks,
the network is embedded into a space with some (e.g.,
Euclidean) metric. This is why people usually call these
networks spatial networks [7].

Until now, most previous work only focused on the
effects of topological characteristics on dynamical occurring
in networks, while the effects of spatial characteristics begin
to attract much attention only in recent years. It has been
reported that in real networks, the topological and spatial
characteristics are closely related [8]. Two nodes close to
each other are likely to be connected even though both

nodes have low degrees, whereas there may not exist any link
between two high-degree nodes far away from each other. For
example, in an airline network, nodes represent cities, and
two nodes are connected by a link if there is at least one airline
between cities corresponding to the two nodes. Two big cities,
such as Beijing and New York, even though they are far away
from each other, they are still connected with each other.
However, it is unlikely that two small cities are connected,
unless they are close enough. Empirical studies [8] revealed
that the effects of spatial characteristics can play an important
role in affecting dynamics on networks [9]. Exploring the
effect of spatial characteristics on dynamics may reveal some
new and interesting features which cannot be observed when
only studying the effect of topological characteristics.

Among different kinds of dynamics on networked sys-
tems, transport is a typical kind of dynamics that can
be universally observed in real systems. Typical examples
include the delivery of information packets in the Internet
and airplane flights in airline networks. Much effort has
been dedicated to designing efficient routing strategies. Effi-
cient routing strategy can alleviate traffic congestion and
enhance transport efficiency [10, 11]. By now, most studies
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for designing efficient routing strategy are mainly based on
topological information or dynamical information in the
network (e.g., the number of packets on nodes). Such typical
routing strategies include the shortest path routing strategy
[12], the local routing strategy based on nodes’ degrees
[13], the routing strategy integrating both static topological
information and dynamical traffic information [14–17], the
routing strategy integrating both local and global topological
information [18, 19], the routing strategy aiming to minimize
the maximal node betweenness [20, 21], and the routing
strategy aiming to find the so-called efficient path [22].

Although routing strategies based on topological infor-
mation have been extensively studied, routing strategies
based on spatial information have so far rarely been con-
sidered. Actually, in real communication networks, utilizing
global topological information, for example, the shortest
path between two nodes, needs to consume much commu-
nication cost or even cannot be accessed. For example, in
the Internet at autonomous system (AS) level, the shortest
path between two nodes may be illegal due to complicated
relationship of commercial benefit among internet service
providers (ISP). On the contrary, spatial distances among
nodes are comparably convenient to obtain. The position of
each packet’s destination node can be affiliated on the packet
itself. Since inquiring neighbors’ position in the geographical
space does not consume much communication cost for
each node, when a packet arrives at a node, the spatial
distance between each neighbor and the packet can be easily
calculated without consuming much communication cost. It
is worth noting that the spatial information can be used for
searching a destination node from a source node without
global topological information in large-size networks [23].
In [23], the authors performed the greedy searching strategy
in scale-free networks. In the greedy searching strategy, each
node uses the information of spatial distance to select, as
the next hop, closest to the destination in the network. The
authors claimed that the most navigable topologies are with
small degree exponent of the degree distribution and with
strong clustering. Moreover in [24], the authors pointed
out that the greedy searching in scale-free networks with
strong clustering and power-law node degree distribution
𝛾 < 3 find its path with the average scaling as ln ln𝑁,
which is the same as the shortest path length. These reports
validate that the information of spatial distance can effectively
improve searching efficiency in spatial scale-free networks.
In addition, there have also been some reports on the study
of spatial ingredients in the fields of communication and
computer networks [25–27].

Therefore, in this paper, we propose a novel routing
strategy based on the information of spatial distance, to
enhance transport efficiency in spatial scale-free networks.
Global topological information is not required, and only
the local topological information is utilized in our strategy.
Therefore, we call our strategy the LDistance (local and based
on the information of spatial distance) strategy. To highlight
the advantage of spatial information in enhancing transport
efficiency, we compare our proposed routing strategy with
the local routing strategy based on nodes’ degrees [13]
(we call it the LDegree strategy in our paper) and the

mixed strategy, which is a combination of greedy routing
strategy and random routing strategy. Extensive simulations
are performed in spatial networks with scale-free structure.
Results show that the proposed LDistance routing strategy
shows strong superiority over the LDegree strategy and the
mixed strategy. Besides, results also show that our proposed
LDistance strategy can also achieve a shorter delivering time
than the LDegree strategy.

This paper is organized as follows. In Section 2,we present
some preliminary work, including the model of spatial net-
works with scale-free network structure, some backgrounds
of our study on traffic problems, and the LDegree strategy
proposed in [13]. Then, we present our proposed LDistance
routing strategy in spatial networks with scale-free structure.
In Section 3, simulation results are presented, followed by
detailed analyses and discussions. Finally, conclusions are
drawn in Section 4.

2. Model Description

In our study, the modelling of traffic transport is based
on the spatial network model proposed in [8]. This model
reproduces several important features that can be observed
in real communication networks, such as the Internet at the
autonomous system level and the USA airline network [23].
These features include small-world, scale-free, and strong
clustering. It should be mentioned that strong clustering
means that spatial information is highly related to the
underlying topological information. In this model, the nodes
are placed on a circle. Each node is assigned with a random
variable representing the node’s polar angle, which is evenly
distributed in [0, 2𝜋). To keep the density of nodes on the
circle fixed to 1, the total number of nodes is proportional
to the circle radius 𝑅. Each node is then assigned with an
expected degree 𝑘, which is drawn from a power-law degree
distribution 𝑃(𝑘) ∼ 𝑘−𝛾. Then we connect each of the two
nodes with the probability 𝑟(𝑑; 𝑘, 𝑘󸀠) that depends on the
geodesic distance 𝑑 between the two nodes and the nodes’
assigned degrees 𝑘 and 𝑘󸀠.The probability 𝑟(𝑑; 𝑘, 𝑘󸀠) takes the
form:

𝑟 (𝑑; 𝑘, 𝑘
󸀠

) = (1 +
𝑑

𝑑
𝑐

)

−𝜆

= (1 +
𝑑

𝜇𝑘𝑘󸀠
)

−𝜆

,

𝜇 =
(𝜆 − 1)

2 ⟨𝑘⟩
,

(1)

where ⟨𝑘⟩ denotes the average expected degree. Note that
the probability follows the power-law and is heavy-tailed
[28, 29], which is rather critical in computer networks [30].
With this form of connection probability, long-range links
are discouraged and short-range links are favored, as we have
mentioned in Section 1. Moreover, the parameter 𝜆, called
clustering strength, controls the significance of spatial dis-
tance for establishing new links among nodes.The increasing
of 𝜆 can strengthen the tendency of establishing a new link
between two nodes that are close to each other. Therefore, in
a network with large 𝜆, connections appear more frequently
among the nodes that are close to each other in the spatial
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space. It can be inferred consequently that strong clustering
can easily form in the network with large 𝜆. The stronger
the influence of spatial information on underlying network
topology, the more strongly nodes are clustered.

Next, we will describe the model of traffic transport on
spatial networks. For simplicity, we treat all nodes in the
network as both hosts and routers for generating and deliv-
ering packets. At each time step, M packets are generated in
the network with randomly chosen sources and destinations
(we denote 𝑀 as the packet generation rate). Note that for
each packet, the source node and the destination node must
be different. A packet, if its destination is rightly one of the
neighbors of the current node where the packet is located,
the packet will be directly forwarded to the destination node.
Otherwise, the packet is forwarded from one node to another
following a given routing strategy. Each node 𝑖 is assigned
with a given delivering capacity 𝐶

𝑖
, that is, the maximal

number of packets each node can deliver at one time step.
Without loss of generosity, we set the delivering capacity for
each node equal to 5 in our study. An arrived packet will
be placed at the end of the queue if this node already has
some packets to be delivered to their respective destinations.
Packets in queue work on a FIFO (first in first out) basis.
Finally, a packet will be removed from the network once it
reaches its destination.

In this study, we focus on the traffic capacity [31] and the
average delivering time, to evaluate the efficiency of traffic
transport in spatial networks with scale-free structure. The
traffic capacity can be defined as the critical value𝑀

𝑐
of the

packet generation rate𝑀 and is usually described by an order
parameter [31]:

𝜂 (𝑀) = lim
𝑡→+∞

⟨Δ𝑊⟩

𝑀Δ𝑡
, (2)

where ⟨Δ𝑊⟩ = 𝑊(𝑡+Δ𝑡)−𝑊(𝑡), and ⟨⋅ ⋅ ⋅ ⟩ is the average over
time windows of width Δ𝑡.𝑊(𝑡) denotes the total number of
packets in the network at time step 𝑡. The network undergoes
a phase transition from a free-flow state to congested state
at 𝑀 = 𝑀

𝑐
. Under the condition 𝑀 < 𝑀

𝑐
, 𝑊(𝑡) = 0

and 𝜂 = 0, this indicates that the number of generated
and removed packets is kept balanced and the network
is under free-flow state. On the other hand, when 𝑀 >

𝑀
𝑐
, for packets, the generation rate exceeds the removing

rate statistically. Therefore, packets are becoming congested
with the elapsing of time steps. Under this condition, 𝜂 is
above zero. The designed routing strategy in communication
networks should try to maximize the traffic capacity and
minimize the average delivering time of packets.

In the LDegree strategy, each node performs a local search
among all its direct neighbors. If the packet’s destination is
found to be not among the neighbors of current node, the
packet is delivered to node i, one of the neighbors of current
node, with probability:

∏

𝑖

=
𝑘
𝛼

𝑖

∑
𝑗
𝑘
𝛼

𝑗

, (3)

where the sum runs over all neighbors of the current node,
𝑘
𝑖
is the degree of node 𝑖, and 𝛼 is a tunable parameter. The

authors of [13] found that the optimal parameter 𝛼 = −1
can achieve the maximal traffic capacity when the delivering
capacity is identical for each node.

In this paper, we shall first compare our proposed LDis-
tance strategy with the LDegree strategy. Based on the spatial
network model in [8], when any node receives a packet,
the node should easily know the distance between any of
its neighbors and the packet’s destination node, as we have
stated in Section 1. Any global topological information is not
needed in our strategy. Let us assume a packet’s destination
is node 𝑡. If the packet’s destination 𝑡 is found to be not
among the neighbors of current node, the packet is forwarded
to the nodes i, one of the neighbors of current node, with
probability:

∏

𝑖

=

𝑑
𝛽

𝑖,𝑡

∑
𝑗
𝑑
𝛽

𝑗,𝑡

, (4)

where the sum runs over all neighbors of the current node,
and 𝑑

𝑖,𝑡
denotes the geodesic distance between node 𝑖 and 𝑡,

and 𝛽 is a tunable parameter. If 𝛽 < 0, it means that packets
are inclined to be forwarded to the neighbor with relatively
short distance to destination. If 𝛽 > 0, packets are more likely
to be forwarded to the neighbor with relatively long distance
to destination. Obviously when 𝛽 → −∞, the proposed
routing strategy is recovered to the greedy routing strategy;
that is, each packet is always forwarded to the neighbor with
the smallest geodesic distance to destination.

To further validate the high efficiency of the LDistance
strategy, we will also compare the proposed LDistance strat-
egy with another kind of distance-based routing strategy,
called the mixed strategy in this paper. The mixed strategy
is a mixture of the greedy routing strategy and the random
routing strategy. In this mixed strategy, at each time step,
we choose the neighbor closest to destination as the next
hop with probability 1 − 𝜎 and randomly choose a neighbor
with probability 𝜎. It is obvious that when 𝜎 = 0, the mixed
strategy is recovered to the LDistance strategy with 𝛽 = −∞,
that is, the greedy routing strategy. When 𝜎 = 1, the mixed
strategy becomes a purely random routing strategy.

3. Result, Analysis, and Relevant Discussions

In our study, all experiments were performed in the spatial
scale-free network model introduced in Section 2 with the
average degree ⟨𝑘⟩ = 13 and the network size 𝑁 =

500. Different values of clustering exponent 𝜆 and degree
exponent 𝛾 are assigned for the network model under study.
We mainly focus on the traffic capacity 𝑀

𝑐
and the average

delivering time 𝑇ave. High traffic capacity and low delivering
time are favored. Note that the delivering time mainly
consists of two parts: the first part is the time consumed on
transporting path and the second part is the waiting time
on routers. Extensive numerical simulations are performed.
Each realization of numerical simulations is terminatedwhen
transporting dynamics goes into the steady state; that is, the
number of total packets becomes constant or only slightly
fluctuate with the elapsing of time steps. According to the



4 Advances in Mathematical Physics

model and relevant parameter settings in our study, the time
step 𝑡elapse = 5000 is enough to ensure that transporting
dynamics have been under the steady state for considerable
time steps. Each result is the average over 50 different network
configurations and 20 different realizations of transporting
dynamics for each network configuration.

Figure 1 demonstrates the traffic capacity 𝑀
𝑐
for both

LDegree strategy and LDistance strategy under different
parameter settings. As we have stated in Section 2, when
𝛽 < 0, packets are inclined to be forwarded to the neighbor
with short distance to destination, which is usually favored
in real networks. However, if the value of 𝛽 is set to be too
small, for example, when 𝛽 → −∞, the LDistance strategy is
recovered to the greedy routing strategy. As [24] pointed out,
the average length of greedy routing path scales as ln ln𝑁,
which indicates that the greedy routing path does not deviate
much from the shortest path. On other hand, it is well known
the shortest path routing strategy can supply even lower
transport efficiency than the LDegree strategy. Moreover, in
the greedy routing strategy, the packet can easily get stuck
at nodes without neighbors closer to the destination than
themselves, which finally causes an unsuccessful transport,
and transport efficiency is heavily affected. Therefore, the
value of 𝛽 should be set to be a proper value in the range
𝛽 < 0 so that transport efficiency has chances to be enhanced
maximally.

For each given clustering exponent and degree exponent,
the traffic capacity of the LDistance strategy is higher than
that of the LDegree strategy, which indicates that utilizing the
information of geodesic distance is beneficial for enhancing
traffic capacity in spatial scale-free networks. It is well
known that the LDegree strategy has proved to show strong
superiority over the shortest path routing strategy [13] in
enhancing traffic capacity. The LDistance strategy, on the
other hand, provides a novelway of enhancing traffic capacity.
The superiority of LDistance strategy over LDegree strategy
in enhancing traffic capacity can be explained by virtue
of two auxiliary figures, that is, Figures 2 and 3. Figure 2
illustrates the relationship between the topological shortest
path length ℎ and the resized distance 𝑑

𝑛
between any two

distinct nodes for both the spatial network model proposed
in [8] and its null model.The null model, which has the same
degree distribution as the spatial network model in [8], is
generated following the switching algorithm in [32]. In this
switching algorithm, starting from the network model in [8],
we carry a series of Monte Carlo switching steps whereby
a pair of links (A-B and C-D) are chosen randomly, and
then the ends are exchange to give (A-D and B-C). Note
that the exchanged is performed only when no multilinks
or self-links are generated. For the spatial network model
in [8], as shown in Figure 2(a), the topological shortest path
length monotonously increases with the spatial distance. In
the LDistance strategy, choosing the neighbor with shorter
distance to the destination means that the chosen neighbor
also has a smaller topological shortest path length from the
destination. Vice versa, if the neighbor with relatively long
distance to the destination is favored to be chosen, then
the packets would have to travel over more routers to find
their destinations. However, for the null model, as shown

in Figure 2(b), we cannot observe any explicit relationship
between the topological shortest path length ℎ and the resized
distance 𝑑

𝑛
between any two distinct nodes. Forwarding

packets to the neighbor with relatively short distance to
destination cannot essentially reduce the topological shortest
path length to destination in the null model.

Figure 3 illustrates the relationship between the traffic
capacity 𝑀

𝑐
and the parameter 𝜎 under the mixed routing

strategy. We only demonstrate the case of 𝛾 = 3, but cases
with other degree exponents can still lead to much of the
same result as Figure 3. Given the fixed 𝛾 and 𝜆, the maximal
traffic capacity among different values of tunable parameter
(𝛼 for the LDegree strategy, 𝛽 for the LDistance strategy, and
𝜎 for the mixed strategy) is denoted as 𝑀

𝑐max. To compare
the LDegree strategy, the LDistance strategy, and the mixed
strategy, we label𝑀

𝑐max of LDistance strategy and LDegree
strategy on the 𝑀

𝑐
-axis in each panel of Figure 3. Results

show explicitly that in the mixed strategy, 𝑀
𝑐max can be

achieved at some proper point of 𝜎. More importantly, it can
be observed that for any clustering strength 𝜆, the mixed
strategy cannot supply a higher 𝑀

𝑐max than our proposed
LDistance strategy.

Nowwe can give a justification that our proposed strategy
has its unique advantage in achieving a higher traffic capacity
according to both Figures 2 and 3. Firstly, we have mentioned
that in the greedy routing strategy, that is, 𝛽 → −∞

in the LDistance strategy, packets can easily get stuck on
low-degree nodes. To avoid packets getting stuck on low-
degree nodes, packets cannot always choose routers clos-
est to destination in the geographical space. Therefore, by
appropriately increasing 𝛽, we can choose the router with
the distance to destination a little longer than the minimal
distance to destination to escape from getting stuck on low-
degree nodes. From the relationship between the topological
shortest path length ℎ and the resized distance 𝑑

𝑛
illustrated

in Figure 2, we can further conjecture that the topological
shortest path length from the chosen router to destination
also becomesmore accordingly. Although the little increment
of distance to destination increases some more hops on
transporting path, the chance of getting stuck on low-degree
nodes can be reduced, and therefore, traffic capacity can be
enhanced. However, if the value of 𝛽 is increased excessively,
the router with the distance to destination much longer
than the minimal distance to destination is likely to be
chosen. Consequently, the topological shortest path length
from the chosen router to destination can hardly decay along
transporting path and therefore traffic capacity can hardly
be enhanced. Secondly, the LDegree strategy is distance-
agnostic. Along transporting path of LDegree strategy, the
distance to destination can hardly decay as fast as that of
LDistance strategy, which will be validated in the following
part of this paper. Thirdly, in the mixed strategy, to reduce
the chance of getting stuck on low-degree nodes, random
strategy is involved in the mixed strategy. However, although
the incorporating of random strategy can somewhat reduce
the chance of getting stuck, the random strategy evidently has
more chances to forward packets to the neighbor with rather
long distance to destination than our proposed LDistance
strategy with optimal 𝛽. We will verify it in the following
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Figure 1: (Color online) The relationship between traffic capacity𝑀
𝑐
and tunable parameters (𝛼 for LDegree strategy and 𝛽 for LDistance

strategy) under networks with different degree exponent 𝛾 and clustering strength 𝜆.
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Figure 2: (Color online) The relationship between the topological shortest path length ℎ versus the resized distance 𝑑
𝑛
between any two

nodes for both the spatial network model in [8] and its null model. Here, in the resized distance 𝑑
𝑛
= 𝑑/𝑑nei, 𝑑 denotes the actual geodesic

distance and 𝑑nes denotes the geodesic distance between two neighboring nodes in the geographical space. The degree exponent is set to 3
and the clustering strength in the spatial network model in [8] is set to 1.1.

part of this paper. Therefore, in the mixed strategy, it is
still likely that packets have to travel over more routers to
arrive at destinations, which is of course not beneficial for the
enhancement of traffic capacity.

By now, we can conjecture that, due to the interdepen-
dent relationship between network topology and underlying
geographical space, we can only utilize spatial information
to achieve high traffic capacities. Note that the acquisition of
spatial information is comparably easier andmore convenient
than that of global topological information, especially in
large-size networks. Therefore, our strategy is practically
useful in real large-size networks because strategies based
on global topological information are inconvenient, or even
impossible, to be put into use in real large-size networks.

We have also studied the effect of clustering strength 𝜆 on
traffic capacity for the LDistance strategy. From Figure 1, we
can observe that the value of 𝛽 at which 𝑀

𝑐max is achieved
is decreased with the enhancement of 𝜆. For example, when
𝛾 = 3, the value of 𝛽 at which 𝑀

𝑐max is achieved is
decreased from −1.1 to around −3 when 𝜆 rises up to 8
from 1.1. This observed result can be explained as follows.
In [23], the authors studied the navigability problem in the
spatial scale-free network model proposed in [8]. In their
study, they introduced an important navigability parameter,
the success ratio 𝑝

𝑠
, defined as the percentage of successful

paths. Here, unsuccessful paths are those that get stuck
on nodes without neighbors closer to destination in the
space than themselves, which indicates that packets can
hardly arrive at their destinations. The authors pointed out
in [23] that, give the fixed degree exponent 𝛾, 𝑝

𝑠
increases

with networks’ clustering strength 𝜆, which indicates that
packets are more likely to get stuck on low-degree nodes in
networks with weaker clustering.Therefore, in networks with
weaker clustering, to reduce the chance of getting stuck along
transporting path, the stringency of packets being forwarded
to nodes closest to destinations in the geographical space
should be loosened; that is, 𝛽 should be increased. As a result,
the success ratio 𝑝

𝑠
can be increased, and therefore, 𝑀

𝑐max
can be enhanced.

Next, we will concerned with the average delivering time
of packets for all strategies under study. Figure 4 illustrates
the average delivering time 𝑇ave with the packet generation

rate equal to traffic capacity. We only present the case with
the degree exponent 𝛾 = 3, but the results from cases with
other values of 𝛾 do not deviate too much from the case of
𝛾 = 3. Figure 4(a) illustrates the delivering time for both
LDistance and LDegree strategies, and the case of LDistance
strategy is zoomed in in Figure 4(b). Moreover, the result
of the mixture strategy is also shown in the subgraph of
Figure 4(b). It can be observed that the minimal 𝑇ave (for
a fixed clustering strength 𝜆) achieved from the LDistance
strategy does not deviate too much from the mixed strategy
under each given clustering strength. However, as Figure 4
shows, both of the two distance-based strategies deliver a
much shorter delivering time than the LDegree strategy,
which provides another evidence that the performance of
our proposed strategy is superior the the LDegree strategy.
Moreover, for both the LDistance and the mixed strategies,
we find that the impact of clustering strength 𝜆 on the
average delivering time𝑇ave is not so obvious. However, in the
LDegree strategy, 𝑇ave shows strong dependence on 𝜆. From
Figure 4, we have observed that weak clustering induces
shorter delivering time. Recalling that the traffic capacities
of networks with weak clustering are generally large in the
LDegree strategy, we can thus conclude that in the LDegree
strategy, transport of packets is more efficient in networks
with weak clustering.

From the above analysis, we have found that, as compared
to the LDegree strategy, our proposed LDistance strategy
can further enhance traffic capacity and shorten average
delivering time. To further explore the differences of LDegree
and LDistance strategies, we will next compare the structural
and spatial characteristics of routers along transporting path
for both routing strategies. Figure 5 shows the average resized
distance 𝑑

𝑛
to destination and the average degree 𝑘 of routers

along transporting path under the optimal condition; that
is, the traffic capacity achieves its maximal value given the
predefined 𝛾 and 𝜆 for the LDegree strategy, the LDistance
strategy, and the mixed strategy. We only demonstrate the
case of networkswith (𝛾 = 3,𝜆 = 1.1), but similar conclusions
can also be drawn from other cases with different 𝛾 and 𝜆.
Figures 5(a) and 5(b) clearly illustrate that, under the optimal
condition with the traffic capacity maximized, the length of
transporting path in the LDistance strategy is far less than
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Figure 3: The relationship between traffic capacity𝑀
𝑐
and tunable parameters 𝜎 for the mixed strategy under networks with fixed degree

exponent 𝛾 = 3 and different clustering strength 𝜆.

that in the LDegree strategy and is slightly less than that in
the mixed strategy. We can see under the network with 𝛾 = 3
and 𝜆 = 1.1 that the average length of transporting path is
around 9 under the optimal𝛽

𝑐
= −1.2with the traffic capacity

maximized in the LDistance strategy. The average length of
transporting path increases to 10 under the optimal condition
𝜎 = 0.45 in the mixed strategy. However, in the LDegree
strategy, the average length of transporting path rises up to
60 under the optimal condition 𝛼

𝑐
= −0.9 with the traffic

capacity maximized. We have pointed out that compared to
our proposed strategy, the mixed strategy has more chance
to forward packets to the neighbor with very long distance to

destination.Therefore, in themixed strategy, the transporting
path is longer than that in the LDistance strategy, which is
clearly illustrated in Figure 5(a).

Moreover, from Figure 5(a), we can observe that in the
LDegree strategy, along transporting path towards destina-
tion, the distances of most routers to destination are long
and keep almost unchanged. Only at the end of transporting
path, the distance to destination decays rapidly until packets
finally find their destinations. This result reveals that in the
LDegree strategy, except those at the end of transporting path,
most deliveries seem not to be as effective as we regarded
previously. On the contrary, in the LDistance strategy, the
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Figure 4: (Color online) (a) The relationship between average delivering time 𝑇ave and tunable parameters (𝛼 for LDegree strategy and 𝛽
for LDistance strategy) under different clustering strengths on networks with degree exponent 𝛾 = 3. For each fixed network, the packet
generation rate is set to the same value as the traffic capacity. (b) The case of LDistance strategy is zoomed in. The subgraph of (b) illustrates
the average delivering time for the mixed strategy.

distance of routers to destination keeps on decreasing from
the beginning of transporting path, which indicates that in
the LDistance strategy, each delivery can be considered to be
“valuable” for packets being forwarded towards destinations.
On the other hand, as can be observed from Figure 5(b),
the routers along transporting path in the LDistance strategy
evidently have larger degrees than those in the LDegree strat-
egy. In the LDegree strategy, most routers on transporting
path have relatively low degrees, except that when the packet
arrives at one neighbor of destination. Figure 5(b) reveals
that this neighbor usually has very high degrees. In the
LDistance strategy, along transporting path, the degrees of
routers firstly rise up to rather high values.These high-degree
nodes encountered on the transporting path are due to the
relationship between a node’s characteristics distance scale
and the nodes’ spatial distance to destination [24]. The closer
the chosen nodes’ spatial distance to destination, the higher
the nodes’ degree is. After travelling over these high-degree
nodes, the degrees of routers along the following transporting
path decrease. At last, the packet arrives at one neighbor
(with large degree) of destination once again. The existing
LDegree strategy aims to reduce packets’ accumulation on
high-degree node by dispersing more packets on low-degree
nodes. However, our proposed LDistance strategy indicates
that the way of dispersing packets on low-degree nodes in the
LDegree strategy is far from optimal. The degrees of routers
on transporting path need not be so mall as in the LDegree

strategy. Increasing the degree of routers on transporting
path, as in our proposed LDistance strategy, can help packets
find their destinations more quickly.

To further reveal the topological and spatial charac-
teristics of routers on transporting path in the LDistance
strategy, we have performed the same simulations as Figure 5,
but with different settings of 𝛽. First, Figure 6(a) illustrates
the relationship between the average number of hops of
transporting path and𝛽. It shows clearly that the transporting
path with the least number of hops is achieved around 𝛽 ≈
−0.9. Above 𝛽 ≈ −0.9, transporting paths are potentially
analogous to those of random search, and therefore, the
lengths of transporting paths are lengthened. Figures 6(b)
and 6(c) repeat the simulations of Figure 5 for the LDistance
strategy, but with different values of 𝛽 above 𝛽 ≈ −0.9. It
can be observed that when 𝛽 gets close to 𝛽 ≈ −0.9, the
distance to destination decays more sharply, but the degrees
of routers along transporting path do not deviate from each
other for different 𝛽. Once again, in Figures 6(d) and 6(e),
the simulations of Figure 5 for the LDistance strategy are
repeated again with the 𝛽 below −0.9. When 𝛽 moves away
from −0.9 towards −∞, the LDistance strategy is more
like the greedy routing strategy, and the interdependence
between a nodes’ degree and the characteristics scale of
spatial distances that the node covers by its connections
also becomes stronger. In Figure 6(e), we find that as 𝛽
decreases towards −∞ from 𝛽 ≈ −0.9, the degree of the
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Figure 5: (Color online) Resized distance𝑑
𝑛
to destination (a) anddegree 𝑘 (b) along transporting path for the LDegree strategy, the LDistance

strategy and the mixed strategy. The horizontal axis labels the index ℎ
𝑖
of routers along transporting path. The tunable parameters are set to

𝛼
𝑐
= −0.9 in the LDegree strategy, 𝛽

𝑐
= −1.2 in the LDistance strategy, and 𝜎 = 0.45 because traffic capacities are maximized at these values

under the given values of degree exponent 𝛾 = 3 and clustering strength 𝜆 = 1.1.

first encountered node from the source node becomes higher.
Consequently, more packets can accumulate on high-degree
nodes and block free flowing of traffic transport. This might
be another reason why the traffic capacity becomes decreased
as 𝛽 decreases towards minus infinity from 𝛽 ≈ −0.9, as
illustrated in Figure 1(a). Besides, Figure 6(d) also reveals
an interesting observation. As 𝛽 decreases towards minus
infinity, spatial distance to destination along transporting
path decays more sharply. However, under the network with
very low𝛽, for example,𝛽 = −2, when packets are delivered to
nodes close to destinations in the geographical space, packets
can easily get stuck on low-degree nodes. As a result, packets
keep onwandering around low-degree nodes for a rather long
time, and the total delivering time is heavily lengthened.

4. Discussion

The main motivation of this work stems from the scalabil-
ity difficulty encountered in real large-size communication
networks such as the Internet and the high-way network.
Accessing global topological information (e.g., the shortest
path between any two nodes) is not an easy task in large-
size network due to the rapid growing communication and
information processing overhead. Therefore, in current days,
it is usually not convenient, or even unfeasible, to design
routing strategies based on global topological information.
Comparatively, spatial distances among nodes in real net-
works are relatively easier to be accessed. Then it is feasible

and practical to utilize spatial information to design efficient
strategies in real large-size communication networks.

In this paper, we propose a novel routing strategy, called
the LDistance strategy, which is based on the information
of spatial distances among nodes. To evaluate the perfor-
mances of our proposed LDistance strategy, we compare
our proposed LDistance strategy with the local routing
strategy based on nodes’ degrees proposed in [13] (called
the LDegree strategy in this paper) and the mixed strategy,
which combines the idea of both greedy routing strategy and
random routing strategy.Numerical simulations demonstrate
that our proposed LDistance strategy can supply a higher
traffic capacity and a shorter delivering time. A reasonable
explanation for the superiority of the LDistance strategy
over the LDegree strategy is the interdependent relationship
between topological and spatial characteristics; that is, the
average topological shortest path length between any two
nodes increases with the average spatial distance between the
two nodes. When a packet is delivered to the neighbor closer
to destination in the geographical space, the average shortest
path length between the chosen neighbor and destination
is also lower. On the other hand, the inclination of packets
being forwarded to nodes closest to destination should also
not be too strong; otherwise, packets can easily get stuck
on low-degree nodes and transport efficiency can be heavily
degraded. Due to the incorporating of random strategy in the
mixed strategy, packets have more chance to be delivered to
the neighbor with longer spatial distance to destination as
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Figure 6: (Color online) (a) Number of hops of transporting path versus 𝛽 in the LDistance strategy. (b) and (c) The changing of 𝑑
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compared to the LDistance strategy, which is not beneficial
for the enhancement of traffic capacity. Regarding the easy
accessing of spatial information in large-size networks, we
can conclude that our proposed LDistance strategy can be put
into use in real large-size networks to achieve high transport
efficiency.

We have also observed that along transporting path in
the LDegree strategy, the spatial distance 𝑑 to destination
and the degree 𝑘 keep almost did not change on most
routers before packets arrive at the node very close to their
destinations.Therefore,most deliveries are not so valuable for
successful transport of packets to destination because spatial
distance to destination does not show evident decrease on
most routers along transporting path. On the contrary, in the
LDistance strategy, along transporting path, the spatial dis-
tance to destination monotonously decreases, which means
that each time of delivery is valuable for packets approaching
destination. Furthermore, we have also noticed that, given the
fixed network structure, when the maximal traffic capacities
are achieved for both LDegree and LDistance strategies, the
degrees of routers along transporting path in the LDistance
strategy are higher than those in the LDegree strategy. This
result indicates that, to enhance traffic capacity, the way of
disseminating packets on low-degree nodes cannot deliver
so nice performances as was evaluated previously in the
LDegree strategy. Choosing routers with degrees higher than
the degrees of chosen routers in the LDegree strategy can
actually further improve transport efficiency.

There still remainsmuch room for further studying traffic
problems in spatial networks. For example, considering that
the theory of network calculus and the technology of leaky
bucket have similar goal as our study, we are about to take into
account the traffic bound [33] and the bound of packet delay
[34] in our further work. We believe that this study is of great
importance in real large-size networks, especially in current
society with system size increasing explosively. Furthermore,
the utilizing of spatial information for designing routing
strategies in transport systems can provide more hints for
other applications such as information navigation and virus
spreading in spatial networks.
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The Fokker-Planck-Kolmogorov (FPK) equation governs the probability density function (p.d.f.) of the dynamic response of a
particular class of linear or nonlinear system to random excitation. An interval wavelet numerical method (IWNM) for nonlinear
random systems is proposed using interval Shannon-Gabor wavelet interpolation operator. An FPK equation for nonlinear
oscillators and a time fractional Fokker-Planck equation are taken as examples to illustrate its effectiveness and efficiency. Compared
with the common wavelet collocation methods, IWNM can decrease the boundary effect greatly. Compared with the finite
difference method for the time fractional Fokker-Planck equation, IWNM can improve the calculation precision evidently.

1. Introduction

The Fokker-Planck equation describes the time evolution of
the probability density function of the velocity of a particle,
and can be generalized to other observables as well. It is
named after Adriaan Fokker and Max Planck and is also
known as the Kolmogorov forward equation (diffusion),
named after Andrey Kolmogorov, who first introduced it in a
1931 paper. When applied to particle position distributions, it
is better known as the Smoluchowski equation.The case with
zero diffusion is known in statistical mechanics as Liouville
equation. In order to describe subdiffusive behavior of a
particle under the combined influence of external nonlinear
force field and a Boltzmann thermal heat bath, Metzler et
al. introduced a fractional Fokker-Planck equation (FFPE)
which was shown to obey generalized Einstein relations, and
its stationary solution is the Boltzmann distribution [1].

Many methods for calculating nonlinear random
response have been developed by numerous scholars over
a long period of time. One type of these methods is the
diffuseness process theory method, and the primarily one
is Fokker-Planck equation method. In practice, the most
difficult problem of using Fokker-Planck equation method is
how to solve the equation. For general nonlinear system, it is
very difficult to obtain the exact solution. Various numerical
methods have been used to solve the Fokker-Planck equation,

such as the weighted residual method [2], the finite element
method [3], and the path integral method [4] and so on.
The Galerkin method for the numerical solution of the
stationary Fokker-Planck equation developed by Bhandari
and Sherrer is based on taking multiple Hermite polynomial
as joint probability density, but the rate of convergence
of this method is slow for strong nonlinear system. Based
on Galerkin method, a finite element method for Fokker-
Planck equation was developed by Langley; this method is
more efficient than Galerkin method in computation. The
common problem of these three methods is that the error at
the tails and peak of the response distribution is larger. As a
numerical approach method, the moment equation method,
including the non-Gaussian moment-cutting method for
nonlinear random vibration, was developed [5].

Recently the wavelet analysis is getting high attention to
many authors for the nonlinear dynamic system, not only
for the signal analysis but also for developing new numerical
methods for calculating the partial difference equations.
Bertoluzza andNaldi presented a wavelet collocationmethod
for solving the partial differential equations [6] in 1996. In
this method, the autocorrelation function of the Daubechies
scaling functions was used as the weight function. The
autocorrelation function of the Daubechies wavelet functions
possesses interpolation properties due to the orthogonality
properties of Daubechies wavelets. Therefore, the numerical
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solution of the discrete format of the partial differential
equation, which was obtained by wavelet collocationmethod,
is an approximation solution of the partial differential equa-
tion. This method is not similar to the wavelet Galerkin
method, which needs going back and forth between the
space of wavelet coefficients and physical space. On the other
hand, the Daubechies scaling functions and the correspond-
ing wavelet function have no explicit expressions, which
limit its applications to some extents. Cattani studied the
properties of the Shannon wavelet function, which possesses
many advantages such as orthogonality, being continuous,
and being differentiable. It also has the advantage over
the Hermite DAF in that it is an interpolating function,
producing matrix equations that have the potential to be
relatively sparse. In addition, the second order approximation
of a C2-function, based on Shannon wavelet functions, is
given [7]. The approximation is compared with the wavelet
reconstruction formula and the error of approximation is
explicitly computed [8]. The advantages of the Shannon
wavelet have been illustrated in solving PDEs in engineering
[9–11]. McWilliam et al. [12] presented a Shannon wavelet
collocation method for stationary Fokker-Planck equation.
The Shannon scaling function was taken as the weight
function in this method, which can avoid the shortcomings
of Daubechies wavelet such as the interpolation property.
Based on the theory of this method, the specific procedure
for solving stationary Fokker-Planck equation, the analysis
of the problems existed in this method, and the remedies of
the problems were presented in this paper. But the Shannon
wavelet has no compact support property which can decrease
the efficiency and computational accuracy. Compared with
Shannon wavelet function, Shannon-Gabor wavelet [13, 14]
possesses better compact support property, which has been
widely employed in various mechanical analysis fields [15]
including solving the FPK equation [16]. Furthermore, Shi
et al. [17] constructed the Shannon-Gabor wavelet defined
in the interval based on the Lagrange interpolation theory,
which can decrease the boundary effect effectively.

Mei proposed a general construction method of the
interval wavelet based on the general variational principle
[18] and took the Shannon-Gabor wavelet as example to
illustrate its correctness, which has been employed to elimi-
nate the boundary effect in solving PDEs such as the image
processing [19], stochastic analysis [20, 21], option pricing
[22], hydrodynamics [23–26], and image segmentation [27].
Thepurpose of this paper is to construct an interval Shannon-
Gabor wavelet collocation method on solving Fokker-Planck
equation for nonlinear oscillators and a time fractional
Fokker-Planck equation describing a subdiffusive behavior of
a particle under the combined influence of external nonlinear
force field and a Boltzmann thermal heat bath [28].

2. Shannon-Gabor Wavelet
Collocation Method

2.1. Construction of the Basis Function. Consider a one
dimension function 𝑓(𝑥). In order to take Shannon scaling
function as basic function, in term of the multiresolution

analysis theory, the function 𝑓(𝑥) needs to be discretized
uniformly in range of [a, b], which is the domain of definition
of it. Let the number of the discrete points is 2𝑗 + 1, (𝑗 ∈ 𝑍),
and the definition of the discrete point of variable 𝑥 is

𝑥
𝑖
= 𝑎 +

𝑏 − 𝑎

2𝑗
⋅ 𝑖. (1)

Then we can obtain the basic function as follows:
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𝑏 − 𝑎

2𝑗
𝛿
𝑖𝑘
,

∫

∞

−∞

𝑤
𝑗
(𝑥 − 𝑥

𝑖
)

𝑑
𝑛

𝑤
𝑗
(𝑥 − 𝑥

𝑘
)

𝑑𝑥𝑛
=
𝑏 − 𝑎

2𝑗

𝑑
𝑛

𝑤
𝑗
(𝑥 − 𝑥

𝑘
)

𝑑𝑥𝑛
.

(3)

The two dimension basic function can be expressed by
tensor product of the one dimension basic function. In two
dimension scaling function space, to each 𝑗 ∈ 𝑍, 𝑉

𝑗
can be

expressed as 𝑉
𝑗
= V
𝑗
⊗ V
𝑗
, and so the corresponding basic

function is

𝑊
𝑗,𝑛
1
,𝑛
2

(𝑥, 𝑦) = 𝑤
𝑗
(𝑥 − 𝑥

𝑛
1

)𝑤
𝑗
(𝑥 − 𝑥

𝑛
2

) . (4)

In a similar way, the basic function of n dimension space can
be expressed as

𝑊
𝑗,𝑛
1
,𝑛
2
,...𝑛
𝑛

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑛

∏

𝑚=1

𝑤
𝑗
(𝑥
𝑚
− 𝑥
𝑚𝑛
𝑚

) . (5)

According to the interval interpolation basic functions, the
Shannon-Gabor interval wavelet can be obtained as follows:

𝑤
𝑗𝑘
= 𝑤 (2

𝑗

𝑥 − 𝑘) +

−1

∑

𝑛=−𝑁+1

𝑎
𝑛𝑘
𝑤(2
𝑗

𝑥 − 𝑛) ,

𝑘 = 0, . . . , 𝐿,

𝑤
𝑗𝑘
= 𝑤 (2

𝑗

𝑥 − 𝑘) , 𝑘 = 𝐿 + 1, . . . , 2
𝑗

− 𝐿 − 1,

𝑤
𝑗𝑘
= 𝑤 (2

𝑗

𝑥 − 𝑘) +

2
𝑗
+𝑁−1

∑

𝑛=2
𝑗
+1

𝑏
𝑛𝑘
𝑤(2
𝑗

𝑥 − 𝑛) ,

𝑘 = 2
𝑗

− 𝐿, . . . , 2
𝑗

.

(6)



Advances in Mathematical Physics 3

𝑎
𝑛𝑘
and 𝑏
𝑛𝑘
could be calculated, respectively, as

𝑎
𝑛𝑘
= 𝑙
1

𝑗𝑘
(𝑥
𝑗𝑛
) , 𝑏

𝑛𝑘
= 𝑙
2

𝑗𝑘
(𝑥
𝑗𝑛
) ,

𝑙
1

𝑗,𝑘
=

−1

∏

𝑖=−𝐿−1

𝑖 ̸= 𝑘

𝑥 − 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

, 𝑙
2

𝑗,𝑘
=

2
𝑗
+1+𝐿

∏

𝑖=2
𝑗
+1

𝑖 ̸= 𝑘

𝑥 − 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

,

(7)

where 𝐿 is the number of the external points, and 𝑁 is the
support domain of the wavelet function, that is, sup𝜙 =
[−𝑁,𝑁].

It is easy to know that the Shannon-Gabor interval
wavelet is a linear combination of the Shannon-Gabor scaling
function 𝑤

𝑗,𝑘
(𝑥). Therefore, the Shannon-Gabor interval

wavelet function possesses all the properties of the Shannon-
Gabor scaling function.

It should be noted that the construction method of
the interval wavelet function reveals the close relationship
between the restricted variational principle and the interval
interpolation wavelet.

2.2. Discrete Format of the Fokker-Planck Equation. Consider
the following two-dimension stationary Fokker-Planck equa-
tion:

𝜕 (𝑎
1
𝑝)

𝜕𝑥
+
𝜕 (𝑎
2
𝑝)

𝜕𝑦
−
1

2

𝜕
2

(𝑏
11
𝑝)

𝜕𝑥2
−
1

2

𝜕
2

(𝑏
22
𝑝)

𝜕𝑦2

−
1

2

𝜕
2

(𝑏
12
𝑝)

𝜕𝑥𝜕𝑦
−
1

2

𝜕
2

(𝑏
21
𝑝)

𝜕𝑥𝜕𝑦
= 0,

(8)

where

𝑎
1
= lim
Δ𝑡→0

1

Δ𝑡
𝐸 [𝑧
1
− 𝑥] ,

𝑎
2
= lim
Δ𝑡→0

1

Δ𝑡
𝐸 [𝑧
2
− 𝑦] ,

𝑏
12
= 𝑏
21
= lim
Δ𝑡→0

1

Δ𝑡
𝐸 [(𝑧
1
− 𝑥) (𝑧

2
− 𝑦)] ,

𝑏
11
= lim
Δ𝑡→0

1

Δ𝑡
𝐸 [(𝑧
1
− 𝑥)
2

] ,

𝑏
22
= lim
Δ𝑡→0

1

Δ𝑡
𝐸 [(𝑧
2
− 𝑦)
2

] .

(9)

The unknown quantity 𝑝 denotes transitional probability
density function 𝑝(𝑥, 𝑦), which can be expressed as

𝑝 (𝑥, 𝑦) ≈ 𝑝
𝑗
(𝑥, 𝑦)

=

2
𝑗

∑

𝑛
1
=0

2
𝑗

∑

𝑛
2
=0

𝑝
𝑗
(𝑥
𝑛
1

, 𝑦
𝑛
2

)𝑤
𝑗
(𝑥 − 𝑥

𝑛
1

)𝑤
𝑗
(𝑦 − 𝑦

𝑛
2

) .

(10)

In general, 𝑎
1
, 𝑎
2
, 𝑏
11
, 𝑏
12
, 𝑏
21
, 𝑏
22
are the known function

on the variables 𝑥 and 𝑦. To avoid having to perform the

complicated integration presented in the collocationmethod,
those aforementioned known functions can be expressed as a
sum of shape functions, such that

𝑎
𝑚
(𝑥, 𝑦) ⋅ 𝑝 (𝑥, 𝑦)

≈ 𝑎
𝑗𝑚
(𝑥, 𝑦) 𝑝

𝑗
(𝑥, 𝑦)

=

2
𝑗

∑

𝑛
1
=0

2
𝑗

∑

𝑛
2
=0

𝑎
𝑗𝑚
(𝑥
𝑛
1

, 𝑦
𝑛
2

) 𝑝
𝑗
(𝑥
𝑛
1

, 𝑦
𝑛
2

)

× 𝑤
𝑗
(𝑥 − 𝑥

𝑛
1

)𝑤
𝑗
(𝑦 − 𝑦

𝑛
2

)

𝑏
𝑚𝑛
(𝑥, 𝑦) ⋅ 𝑝 (𝑥, 𝑦)

≈ 𝑏
𝑗𝑚𝑛
(𝑥, 𝑦) 𝑝

𝑗
(𝑥, 𝑦)

=

2
𝑗

∑

𝑛
1
=0

2
𝑗

∑

𝑛
2
=0

𝑏
𝑗𝑚𝑛
(𝑥
𝑛
1

, 𝑦
𝑛
2

) 𝑝
𝑗
(𝑥
𝑛
1

, 𝑦
𝑛
2

)

× 𝑤
𝑗
(𝑥 − 𝑥

𝑛
1

)𝑤
𝑗
(𝑦 − 𝑦

𝑛
2

) ,

(11)

where𝑚 = 1, 𝑛 = 2.
In terms of the theory of collocationmethod, substituting

(11) into (8), we can obtain the system of equations as follows:

∫𝑊
𝑗,𝑘
1
,𝑘
2

[

𝜕 (𝑎
𝑗1
𝑝
𝑗
)

𝜕𝑥
+

𝜕 (𝑎
𝑗2
𝑝
𝑗
)

𝜕𝑦
−
1

2

𝜕
2

(𝑏
𝑗11
𝑝
𝑗
)

𝜕𝑥2

−
1

2

𝜕
2

(𝑏
𝑗22
𝑝
𝑗
)

𝜕𝑦2
−
1

2

𝜕
2

(𝑏
𝑗12
𝑝
𝑗
)

𝜕𝑥 𝜕𝑦

−
1

2

𝜕
2

(𝑏
𝑗21
𝑝
𝑗
)

𝜕𝑥𝜕𝑦
]𝑑𝑥𝑑𝑦 = 0,

(12)

where 𝑘
1
, 𝑘
2
= 0, 1, 2, . . . , 2

𝑗.
Using (3) and integrating with respect to (12), the system

of equations can be obtained as follows:

2
𝑗

∑

𝑛
1
=0

2
𝑗

∑

𝑛
2
=0

𝑝
𝑗
(𝑥
𝑛
1

, 𝑦
𝑛
2

)

× [𝑎
𝑗1
(𝑥
𝑛1
, 𝑦
𝑛2
) 𝛿
𝑘
2
𝑛
2

𝜕𝑤 (𝑥
𝑘
1

− 𝑥
𝑛
1

)

𝜕𝑥

+ 𝑎
𝑗2
(𝑥
𝑛1
, 𝑦
𝑛2
) 𝛿
𝑘
1
𝑛
1

𝜕𝑤 (𝑦
𝑘
2

− 𝑦
𝑛
2

)

𝜕𝑦

−
1

2
𝑏
𝑗11
(𝑥
𝑛1
, 𝑦
𝑛2
) 𝛿
𝑘
2
𝑛
2

𝜕𝑤
2

(𝑥
𝑘
1

− 𝑥
𝑛
1

)

𝜕𝑥2

−
1

2
𝑏
𝑗22
(𝑥
𝑛1
, 𝑦
𝑛2
) 𝛿
𝑘
1
𝑛
1

𝜕𝑤
2

(𝑦
𝑘
2

− 𝑦
𝑛
2

)

𝜕𝑦2
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−𝑏
𝑗12
(𝑥
𝑛1
, 𝑦
𝑛2
)

𝜕𝑤 (𝑥
𝑘
1

− 𝑥
𝑛
1

)

𝜕𝑥

𝜕𝑤 (𝑦
𝑘
2

− 𝑦
𝑛
2

)

𝜕𝑦
]

= 0,

(13)

where, 𝑘
1
, 𝑘
2
= 0, 1, 2, . . . , 2

𝑗.
As the basic function is the Shannon scaling function

which possess explicit expression, so it is easy to deduce the
first and second derivative of the basic function 𝑤 as follows:

𝜕 (𝑥
𝑘
− 𝑥
𝑛
)

𝜕𝑥
=

{{

{{

{

0, 𝑘 = 𝑛,

2
𝑗 cos [𝜋 (𝑘 − 𝑛)]
(𝑏 − 𝑎)

, 𝑘 ̸= 𝑛,
(14)

𝜕
2

(𝑥
𝑘
− 𝑥
𝑛
)

𝜕𝑥2
=

{{{{

{{{{

{

−
2
2𝑗+1

𝜋
2

6(𝑏 − 𝑎)
2
, 𝑘 = 𝑛,

−
2
2𝑗+1 cos [𝜋 (𝑘 − 𝑛)]
(𝑏 − 𝑎)

2

(𝑘 − 𝑛)
2
, 𝑘 ̸= 𝑛.

(15)

Instituting (14) and (15) into (13), a systemof homogenous
algebraic equations can be deduced, such that

AP = 0. (16)

This is the discrete format of stationary Fokker-Planck equa-
tion in equinoctial points of the domain of definition.

2.3. Solution of the Discrete Format of Fokker-Planck Equation.
In the system of (16), A is a square matrix; vector P contains
the values of the j.p.d.f. on the mesh of equinoctial points.
Equation (16) can be solved by prescribing the value of𝑝(𝑥, 𝑦)
at node 1 to be some constant C, whichs lead to

A
1
P
1
= CV, (17)

where A
1
is the matrix A without the first row or column, P

1

is the vector of nodal values from node 2 onwards, and V is
the first column of A with the first entry omitted. This then
yields the value of 𝑝(𝑥, 𝑦) at each node in terms of C. Finally,
C can be evaluated by imposing the normalization property

∫

𝑏
1

𝑎
1

∫

𝑏
2

𝑎
2

𝑝 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 1, (18)

where 𝑎
1
, 𝑏
1
and 𝑎

2
, 𝑏
2
are numeric area of the variables

𝑥 and 𝑦. So we should firstly evaluate the value of 𝑎
1
, 𝑏
1

and 𝑎
2
, 𝑏
2
. They can be obtained approximately from the

solution of the random vibration differential equation by
using the equivalent linear linearization method. Based on
the equivalent linearization results, the numeric area of the
variables 𝑥 and 𝑦 can be evaluated.

3. Numerical Experiments

Example 1. In this section the method was applied to the
random vibration of a Duffing oscillator, the equation of
motion for which is [2]

̈𝑥+ 2𝛽𝜔
𝑛
̇𝑥+ 𝜔
𝑛

2

(1 + 𝛾𝑥
2

) 𝑥 = 𝐹 (𝑡) , (19)

where 𝐹(𝑡) is Gaussian white noise, taken here to have a
spectral density of (1/𝜋). Putting 𝑧

1
= 𝑥, 𝑧

2
= ̇𝑥, (19) is

deduced to

(
̇𝑧
1

̇𝑧
2

) = (
𝑧
2

−2𝛽𝜔
𝑛
𝑧
2
− 𝜔
𝑛

2

(𝑧
1
+ 𝛾𝑧
1

3

)
)

+ (
0 0

0 𝜋
1/2
)(

0

𝑊 (𝑡)
) ,

(20)

and so we obtain the Fokker-Planck equation as follows:

𝜕

𝜕𝑧
1

(𝑧
2
𝑝) −

𝜕

𝜕𝑧
2

{[2𝛽𝜔
𝑛
𝑧
2
+ 𝜔
𝑛

2

(𝑧
1
+ 𝛾𝑧
1

3

)] 𝑝}

−
𝜕
2

𝑝

𝜕𝑧
2

2
= 0.

(21)

The exact analytical solution of (21) is

𝑝 (𝑧
1
, 𝑧
2
) = 𝐶 exp [−2𝛽𝜔

𝑛
(
1

2
𝑧
2

2

+
1

2
𝜔
𝑛

2

𝑧
1

2

+
1

4
𝜔
𝑛

2

𝛾𝑧
1

4

)] ,

(22)

where𝐶 is chosen to satisfy the normalization condition, (14).

For the case 𝜔
𝑛
= 1, 𝛽 = 0.5, 𝛾 = 0.1, the r.m.s. values

of the response of displacement and velocity are 𝜎
𝑥
= 0.7407

and 𝜎
̇𝑥
= 1.0, which were obtained from the equivalent linear

linearization method. Based on this result, a finite region of
−3 ≤ 𝑥 ≤ 3, −6 ≤ 𝑦 ≤ 6 was chosen for the wavelet
collocation method.

The numerical results 𝑝
𝑗
(𝑥, 0), 𝑝

𝑗
(0, 𝑦) and exact result

𝑝
𝑗𝑒
(𝑥, 0), 𝑝

𝑗𝑒
(0, 𝑦) are plotting in Figure 1. It can be seen

that the proposed method gives excellent agreement with the
exact result, both over the main body of the curve and up to
the tails.

The comparison between the wavelet and interval wavelet
collocation method for FPK equation is shown in Figure 2.
It is easy to see that the error of the interval wavelet
collocation method is smaller evidently than the common
wavelet method in solving the FPK equation. It is not difficult
to understand that the boundary effect of the common
wavelet numerical method enlarges the error in the whole
definition domain. This illustrates the effect of the interval
wavelet numerical method to some extent.

Example 2. Time fractional Fokker-Planck equations have
been recently treated by a number of authors and are found to
be a useful approach for the description of transport dynam-
ics in complex systems that are governed by anomalous
diffusion and nonexponential relaxation patterns. Fractional
derivatives play a key role in modeling particle transport in
anomalous diffusion. Wei [14] introduced a time fractional
extension of the FPK equation, namely, the time-fractional
Fokker-Planck equations as follows:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
=
0
𝐷
1−𝛼

𝑡
[
𝜕

𝜕𝑥
(−1) +

𝜕
2

𝜕𝑥2
] 𝑢 (𝑥, 𝑡) ,

0 ≤ 𝑥 ≤ 1, 𝑡 > 0

(23)
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−5 0 5
0

0.1

0.2

Numerical solution
Exact solution

(a) 𝑝
𝑗
(𝑥, 0)

−5 0 5
0

0.1

0.2

Numerical solution
Exact solution

(b) 𝑝
𝑗
(0, 𝑦)

−5 0 5
−4

−2

0

2
×10−5

(c) 𝑝
𝑗𝑒
(𝑥, 0) − 𝑝

𝑗
(𝑥, 0)

−5 0 5
−5

0

5
×10

−5

(d) 𝑝
𝑗𝑒
(0, 𝑦) − 𝑝

𝑗
(0, 𝑦)

Figure 1: The comparison between numerical solution and exact solution.

with initial condition

𝑢 (𝑥, 0) = 𝑥 (1 − 𝑥) , 0 ≤ 𝑥 ≤ 1, (24)

and boundary conditions

𝑢 (0, 𝑡) = −
3𝑡
𝛼

Γ (1 + 𝛼)
−

2𝑡
2𝛼

Γ (1 + 2𝛼)
, 𝑡 > 0,

𝑢 (1, 𝑡) = −
𝑡
𝛼

Γ (1 + 𝛼)
−

2𝑡
2𝛼

Γ (1 + 2𝛼)
, 𝑡 > 0.

(25)

The exact analytical solution of the time-fractional Fokker-
Planck equation can be expressed as

𝑢 (𝑥, 𝑡) = 𝑥 (1 − 𝑥) + (2𝑥 − 3)
𝑡
𝛼

Γ (1 + 𝛼)
−

2𝑡
2𝛼

Γ (1 + 2𝛼)
.

(26)

As mentioned above, the solution of (23) can be expressed
approximately as

𝑢 (𝑥) ≈ 𝑢
𝑗
(𝑥) =

2
𝑗

∑

𝑛=0

𝑢
𝑗
(𝑥
𝑛
) 𝑤
𝑗
(𝑥 − 𝑥

𝑛
) . (27)

Substituting (27) into (23), we can obtain

0
𝐷
1−𝛼

𝑡
(

2
𝑗

∑

𝑛=0

𝑢
𝑗
(𝑥
𝑛
, 𝑡) [𝜔

󸀠󸀠

(𝑥
𝑘
− 𝑥
𝑛
) − 𝜔
󸀠

(𝑥
𝑘
− 𝑥
𝑛
)])

=

𝑑𝑢
𝑗
(𝑥
𝑘
, 𝑡)

𝑑𝑡
,

(28)

where 𝑘 = 0, 1, 2, . . . , 2𝑗. Let

U (𝑡) = (𝑢
𝑗
(𝑥
0
, 𝑡) , 𝑢
𝑗
(𝑥
1
, 𝑡) , . . . , 𝑢

𝑗
(𝑥
2
𝑗 , 𝑡))
𝑇

,

W
1
=

[
[
[
[

[

𝜔
󸀠

(𝑥
0
− 𝑥
0
) 𝜔
󸀠

(𝑥
0
− 𝑥
1
) ⋅ ⋅ ⋅ 𝜔

󸀠

(𝑥
0
− 𝑥
2
𝑗)

𝜔
󸀠

(𝑥
1
− 𝑥
0
) 𝜔
󸀠

(𝑥
1
− 𝑥
1
) ⋅ ⋅ ⋅ 𝜔

󸀠

(𝑥
1
− 𝑥
2
𝑗)

...
... d

...
𝜔
󸀠

(𝑥
2
𝑗 − 𝑥
0
) 𝜔
󸀠

(𝑥
2
𝑗 − 𝑥
1
) ⋅ ⋅ ⋅ 𝜔

󸀠

(𝑥
2
𝑗 − 𝑥
2
𝑗)

]
]
]
]

]

,

W
2
=

[
[
[
[

[

𝜔
󸀠󸀠

(𝑥
0
− 𝑥
0
) 𝜔
󸀠󸀠

(𝑥
0
− 𝑥
1
) ⋅ ⋅ ⋅ 𝜔

󸀠󸀠

(𝑥
0
− 𝑥
2
𝑗)

𝜔
󸀠󸀠

(𝑥
1
− 𝑥
0
) 𝜔
󸀠󸀠

(𝑥
1
− 𝑥
1
) ⋅ ⋅ ⋅ 𝜔

󸀠󸀠

(𝑥
1
− 𝑥
2
𝑗)

...
... d

...
𝜔
󸀠󸀠

(𝑥
2
𝑗 − 𝑥
0
) 𝜔
󸀠󸀠

(𝑥
2
𝑗 − 𝑥
1
) ⋅ ⋅ ⋅ 𝜔

󸀠󸀠

(𝑥
2
𝑗 − 𝑥
2
𝑗)

]
]
]
]

]

,

M = W
2
−W
1
.

(29)
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(a) Shannon-Gabor wavelet numerical method (the maximum of the
absolute error is 2.2470 × 10−3)
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(b) Interval Shannon-Gabor wavelet numerical method (the maxi-
mum of the absolute error is 4.1769 × 10−6)

Figure 2: Error comparison between the wavelet and the interval wavelet numerical methods for FPK equation.
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Figure 3: Comparison between the finite difference method and the wavelet numerical method in solving the time fractional FPK equation
(𝛼 = 0.6, 𝑡 = 0.1, 𝜏 = 0.0001, 𝑗 = 4).

We can obtain the discretized format to solve the time-
fractional FPK equations as follows:

MU (𝑡
𝑛+1
) = −

𝑛

∑

𝑘=1

𝑔
𝑘
U (𝑡
𝑛−𝑘+1
) +

𝑛

∑

𝑘=0

𝑔
𝑘
U (𝑡
0
) ,

MU (𝑡
1
) = U (𝑡

0
) .

(30)

The comparison between the finite differencemethod and the
wavelet numerical method in solving the time fractional FPK
equation is shown in Figure 3. Although the iteration times
are only 1000, the error of the numerical solution obtained
by the finite differencemethod becomes larger evidently than
one obtained by the wavelet numerical method. It should be
noticed that the effect of the interval wavelet is limited as the
explicit boundary condition in this example.

4. Conclusions

Compared with the finite difference method, the Shannon-
Gabor wavelet numerical method possesses more excellent
numerical properties in solving the FPK equations, which
has been illustrated in solving the time-fractional FPK equa-
tions. Based on the interpolation properties of the Shannon-
Gabor wavelet, the interval interpolation wavelet collocation
method based on the wavelet interpolation technique has
been developed to solve the two dimension Fokker-Planck
equation in a finite domain in this paper. This new method
can decrease the boundary effect evidently and then decrease
the numerical error in the whole in the definition domain
greatly. We believe that the method can be easily generalized
to rectangular higher dimension case. The comparisons
with other numerical algorithms show that the method is
competitive and efficient. Furthermore, it should be noted
that the method can also be used to solve general partial
differential equation.
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By summarizing some classical active contourmodels from the view of level set representation, a simple energy function expression
with the Gaussian kernel of fractional order is proposed, and then a novel region-based geometric active contour model is
established. In this proposed model, the energy function with value of [−1, 1] is built, the local mean and global mean of the
inside and outside of the evolution curve are employed, and the segmentation results are obtained by controlling the expansion
and contraction of the evolution curve. The model is simple and easy to implement; it can also protect weak edges because of
considering more statistical information. Experimental results on synthetic and natural images show that the proposed model is
much more effective in dealing with the images with weak or blurred edges, and it takes less time.

1. Introduction

Image segmentation is a basic and important topic in the
fields of image processing. Accurate image segmentation can
provide more important information for the follow-up appli-
cation, such as machine vision and motion tracking. How-
ever, segmental results are always affected by low contrast and
the problems of intensity inhomogeneity. The main idea of
image segmentation is to extract the concerned regions and
their contours from the whole image. There have been thou-
sands of image segmentation algorithms proposed in recent
decades. Some researchers put forward the edge detection
based on the gradient, derivatives, or Canny edge detection,
and so on. Edge detection is good for simple image but not
suitable for the clutter target boundary extraction. The main
reasons are as follows. Firstly, edge extracted for complex
image is often not corresponding to the target boundary. Sec-
ondly, the extracted edge is discontinuous, but the goal often
needs closed boundary to separate the object from the whole
image. In addition, edge detection is dependent on the local
information near pixel; it has advantages sometimes, but in
many cases overall appearance of the target is the key, so the
concepts of the image segmentation and edge detection are
not one and the same.

Regional growth is a simple technique to provide seg-
mental region; the algorithm begins with some seed points
and found pixels near the seed which has similar image char-
acteristics, such as gray scale and color characteristics. This
algorithm has been applied to Mumford-Shah function [1].
Another region-based method is active contour (AC) model
[2]. Active contour model is 2D or 3D surface contour
description, which involves the contour evolution under an
appropriate energy in order to get a satisfactory segmentation
result, such as the target boundary with the closed contour.
Over the past decade, researchers have proposedmany differ-
ent active contour models, which are mainly divided into two
categories, namely, parametric active contour models and
geometric active contour models. In parametric active con-
tour models, the parameter equation of the curve is 𝐶(𝑝) =

[𝑥(𝑝), 𝑦(𝑝)], in which 0 ≤ 𝑝 ≤ 1. The parametric active con-
tour model essentially depends on the energy function rather
than the geometric figures of the contour. Therefore, this
model cannot handle topology changes when it detectsmulti-
ple targets, but geometric active contour model can deal with
topological changes, because it uses the structure of level
set, in which the curve 𝐶 is zero level set function 𝜙(𝑥, 𝑡) :

𝑅
𝑛

× [0,∞) → 𝑅, 𝑛 = {2, 3}; for example, 𝐶 = {𝑥 ∈ 𝑅
𝑛

:

𝜙(𝑥, 𝑡) = 0}. The first type of geometric active contour model
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is introduced by Caselles et al. [3]; its main idea is to use cur-
vature and normal direction forcing curve movement, so that
it stops on the edge with the edge function 𝑔(𝑥) = 𝑔(|∇𝐼|

2

),
where ∇𝐼 means the gradient of the given image 𝐼, which
has a property; that, it equals zero on the border, and others
equal one. For example, 𝑔(𝑥) = 𝑒

−(1/𝜎
2

𝑒
)

|∇𝐺
𝜎
∗ 𝐼(𝑥)|

2, where
𝜎
𝑒
is a scale factor, 𝐺

𝜎
= (1/√2𝜋𝜎)𝑒

−((𝑥−𝜇)
2
/𝜎
2
) is a Gaussian

kernel, in which 𝜎 denotes the standard deviation of the
given image, and 𝜇 denotes the expectation of the given
image. Another type of geometric active contourmodel is the
Geodesic active contour model [4], which can search for the
minimum length of the edge weights under the energy func-
tion.Thismodel is similar to the former geometricmodel, but
there is a big difference, a vector filed term is employed in
Geodesic active contour model to stop the motion curve
on the weak edges. Paragios et al. put forward the famous
gradient vector flow (GVF) instead of ∇𝑔 to increase the
range of results, called GVF geometric AC [5]. Chan andVese
[6] proposed a new model CV AC, and Li et al. [7] proposed
a new model (LBF) which uses energy function to overcome
the problemof nonhomogeneity. LBFmodel can dealwith the
image of different gray levels by adding the kernel function,
and it can employ local gray level information effectively.

Many structures of different level set evolution models
have been summarized before. The level set evolution of the
above energy functions [8] can be represented as

𝜕𝜙

𝜕𝑡
= 𝛼
𝑘
𝐾
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨 + 𝑉
𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨 + 𝑁 ⋅ ∇𝜙, (1)

where 𝐾 is the Euclidean curvature and 𝛼
𝑘
, 𝑉
𝑁
, and 𝑁 are

three parameters, which decide the speed and direction of
the evolution. The term based on curvature vector is used
to smooth the curve. The normal direction is used to control
shrinkage and expansion of the curve and force the curve to
move along the direction vector. Details are shown in Table 1,
where 𝜂, 𝜇, 𝜆

1
, and 𝜆

2
are constant, [𝑢̂, V̂] is the GVF, and 𝑘(𝑥)

is a function based on the normal curvature and GVF [9]. At
the same time, 𝐼(𝑥) in Table 1 is original gray level image, 𝐶in
and 𝐶out are average gray values of 𝐼(𝑥) inside and outside of
curve, and 𝑒

1
and 𝑒
2
are the weighted average gray values of

𝐼(𝑥) inside and outside of curve in the Gaussian window.
The rest of the paper is organized as follows: in the

next two sections, we will review classical existing geometric
models, Chan-Vese model and LBF model. The new model
is introduced in Section 4. Some experimental results are
shown in Section 5. We conclude the paper in Section 6.

2. Chan-Vese Model

In Chan-Vese (CV) model, we considered the simplest type
of segmentation, which divided the image into the target and
the background, and the distributions of the gray values of
target and background are approximately constant values. CV
model is based on the evolution of the level set and can deal
with curve topology changes better for the curve which is

Table 1: The analysis table of energy function model.

Model 𝛼
𝑘 𝑉

𝑁
𝑁

Geometric AC [3] 𝑔(𝑥) 𝑟𝑔(𝑥) ⃗0

Geodesic AC [4] 𝑔(𝑥) 𝑟𝑔(𝑥) ∇𝑔(𝑥)

GVF Geo. AC [5] 𝑔(𝑥) 𝑟𝑘(𝑥)𝑔(𝑥) 𝑔(𝑥) (1 − |𝑘 (𝑥)| [𝑢̂, ]̂])

CV AC [6] 𝜂
𝜇 + (𝐼 − 𝑐in)

2

−(𝐼 − 𝑐out)
2

⃗0

LBF AC [7] 𝜂 𝜆
1
𝑒
1
− 𝜆
2
𝑒
2

⃗0

expressed by the level set function. The energy function of
CV model is

𝐸 (𝐶, 𝑐
1
, 𝑐
2
) = 𝜇
0
Length (𝐶)

+ 𝜆
1
∫

inside(𝐶)

󵄨󵄨󵄨󵄨𝑢0 (𝑥, 𝑦) − 𝑐
1

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦

+ 𝜆
2
∫

outside(𝐶)

󵄨󵄨󵄨󵄨𝑢0 (𝑥, 𝑦) − 𝑐
2

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦,

(2)

where 𝑢
0
is the given image, 𝐶 is the evolution curve, 𝐶(𝑠) :

[0, 1] → 𝑅 is a parameter evolution curve, and 𝜇
0
is the

weight coefficient. In the energy function, the first item is the
length of the curve evolution and it can regularize the curve.
The last two items are global binary fitting items. The basic
idea of themodel is tominimize the fitting item𝐹

1
+𝐹
2
, where

𝐹
1
= ∫

inside(𝐶)

󵄨󵄨󵄨󵄨𝑢0 − 𝑐
1

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦,

𝐹
2
= ∫

outside(𝐶)

󵄨󵄨󵄨󵄨𝑢0 − 𝑐
2

󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑦.

(3)

The level set function 𝜙 is defined as

𝜙 (𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ in (𝐶) ,

𝜙 (𝑥, 𝑦) < 0, (𝑥, 𝑦) ∈ out (𝐶) ,

𝜙 (𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ (𝐶) .

(4)

The following are Dirac function and Heaviside function,
respectively:

𝛿 (𝜙) =
𝑑𝐻 (𝜙)

𝑑𝜙
,

𝐻 (𝜙) = {
1, 𝜙 ≥ 0,

0, 𝜙 < 0.

(5)

Because function𝐻(𝜙) cannot directly take the derivative
of 𝜙, we can replace𝐻 with𝐻

𝜀
(𝜙) in the CV model, where

𝐻
𝜀
(𝜙) =

1

2
(1 +

2

𝜋
arctan(

𝜙

𝜀
)) . (6)
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The level set function of the CV model is:

𝐸 (𝜙, 𝑐
1
, 𝑐
2
) = 𝜇∫

Ω

𝛿
𝜀
(𝜙)

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦

+ 𝜆
1
∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥, 𝑦) − 𝑐
1

󵄨󵄨󵄨󵄨

2

𝐻
𝜀
(𝜙) 𝑑𝑥 𝑑𝑦

+ 𝜆
2
∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥, 𝑦) − 𝑐
2

󵄨󵄨󵄨󵄨

2

(1 − 𝐻
𝜀
(𝜙)) 𝑑𝑥 𝑑𝑦,

(7)

where

𝛿
𝜀
(𝜙) = 𝐻

󸀠

𝜀
(𝜙) =

1

𝜋

𝜀

𝜀2 + 𝜋2
. (8)

From the definition of the level set function 𝜙, expressions of
𝑐
1
, 𝑐
2
are, respectively, as follows:

𝑐
1
=

∫
Ω

𝑢
0
(𝑥, 𝑦)𝐻 (𝜙 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

∫
Ω

𝐻(𝜙 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

,

𝑐
2
=

∫
Ω

𝑢
0
(𝑥, 𝑦) (1 − 𝐻 (𝜙 (𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦

∫
Ω

(1 − 𝐻 (𝜙 (𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦

.

(9)

According to Euler-Lagrange equation, the level set expres-
sion of CV model is obtained as
𝜕𝜙

𝜕𝑡
= 𝛿 (𝜙) [𝜇 div(

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) − 𝜆
1
(𝑢
0
− 𝑐
1
)
2

+ 𝜆
2
(𝑢
0
− 𝑐
2
)
2

] .

(10)

3. LBF Model

LBFmodel defines a local binary fitting energy item, which is
actually a kernel function; the model is as follows:

𝐸 (𝐶, 𝑓
1
, 𝑓
2
)

= 𝜆
1
∫

Ω

∫

inside(𝐶)
𝐾
𝜎
(𝑥 − 𝑦)

󵄨󵄨󵄨󵄨𝐼 (𝑦) − 𝑓
1
(𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑦𝑑𝑥

+ 𝜆
2
∫

Ω

∫

outside(𝐶)
𝐾
𝜎
(𝑥 − 𝑦)

󵄨󵄨󵄨󵄨𝐼 (𝑦) − 𝑓
2
(𝑥)

󵄨󵄨󵄨󵄨

2

𝑑𝑦𝑑𝑥,

(11)

where 𝐼 : Ω → 𝑅 is the original image, (𝑥, 𝑦) ∈ Ω, 𝐾
𝜎
=

(1/2𝜋𝜎
2

)𝑒
−((𝑥−𝜇

𝑥
)
2
+(𝑦−𝜇

𝑦
)
2
/𝜎
2
) and is a Gaussian kernel func-

tion, 𝜇
𝑥
and 𝜇
𝑦
are its expectancies, and 𝜎 is its standard devi-

ation.𝑓
1
and𝑓
2
are the image fitting function of the local gray

level inside and outside of the contour.
The variational level set function of (11) which is got by

Euler-Lagrange equation is as follows:
𝜕𝜙

𝜕𝑡
= −𝛿 (𝜙) (𝜆

1
𝑒
1
− 𝜆
2
𝑒
2
) . (12)

By introducing a sign distance constraint and length
constraint item, the level set evolution equation is

𝜕𝜙

𝜕𝑡
= 𝜇(Δ𝜙 − div(

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

)) + V𝛿 (𝜙) div(
∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

)

− 𝛿 (𝜙) (𝜆
1
𝑒
1
− 𝜆
2
𝑒
2
) ,

(13)

where functions 𝑒
1
, 𝑒
2
and 𝑓

1
, 𝑓
2
are as follows, respectively:

𝑒
1
(𝑥) = ∫

Ω

𝐾
𝜎
(𝑦 − 𝑥)

󵄨󵄨󵄨󵄨𝐼 (𝑥) − 𝑓
1
(𝑦)

󵄨󵄨󵄨󵄨

2

𝑑𝑦,

𝑒
2
(𝑥) = ∫

Ω

𝐾
𝜎
(𝑦 − 𝑥)

󵄨󵄨󵄨󵄨𝐼 (𝑥) − 𝑓
2
(𝑦)

󵄨󵄨󵄨󵄨

2

𝑑𝑦,

(14)

𝑓
1
=
𝐾
𝜎
∗ [𝐻 (𝜙) 𝐼 (𝑥)]

𝐾
𝜎
∗ 𝐻 (𝜙)

,

𝑓
2
=
𝐾
𝜎
∗ [(1 − 𝐻 (𝜙)) 𝐼 (𝑥)]

𝐾
𝜎
∗ ((1 − 𝐻 (𝜙)))

.

(15)

Equation (15) shows that 𝑓
1
and 𝑓
2
are the weighted aver-

age gray values with the Gaussian window inside and outside
of contour. Obviously, they share the local characteristics, so
that the segmentation of original image by LBFmodel ismore
accurate.

4. Proposed Region-Based Model with
Gaussian Kernel of Fractional Order

In order to get better image segmentation results effectively
and construct a fast region-based segmentation model, we
should keep the energy functional as simple as possible, and
energy informationmust be used effectively. Based on the law
of some classical energy function expressions of active con-
tour models summarized in Table 1, we know that the term
𝑉
𝑁
in energy function is very important, and many models

made a breakthrough on it. At the same time, the item 𝑁 of
the models is often set as ⃗0, and item 𝛼

𝑘
is only ordinary

parameters. Therefore, only keeping item 𝑉
𝑁

in the new
model will simplify the expression of energy function.

In order to avoid jumping internally, level set function
initialized by symbolic distance function (SDF) in the tradi-
tional level set method, but it usually needs to be reinitialized.
This will lead to the fact that it is hard to decide when to
reinitialize and how to reinitialize, as it is hard to find bound-
ary when the zero level set is away from the inner region.
So reinitialization is a very complex operation problem. To
solve this problem, we propose a new level set method. At the
same time, fractional systems [10, 11] gain increasing attention
in applied sciences, and functions of fractional order are
more flexible, so the new method uses a Gaussian filter with
fractional order to regularize binary level set function.
The traditional level set method uses curvature item
div(∇𝜙/|∇𝜙|)|∇𝜙| to regularize the level set function, and let-
ting |∇𝜙| = 1 [12], it can replace the regular items with Lapla-
cian. Based on scale space theory in [13], a function with the
Laplacian evolution is equivalent to using a Gaussian filter.
Then, we filter the initial conditions of the level set function
with Gaussian kernel filters of the level set function, and 𝜎

controls the regular strength, similar to the item 𝜂 in Table 1.
With Gaussian kernel function, the item div(∇𝜙/|∇𝜙|)|∇𝜙|
(similar to the item 𝛼

𝑘
in Table 1) can be removed, so the key

of whole model is the choice of item 𝑉
𝑁
.

From the view of level set function, we need to find a
function that can adjust the pressure inside and outside of the
interest areas. It drives the curve to contract when the curve
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(a) (b) (c)

(d) (e) (f)

Figure 1: The segmentation results of the aircraft composite image: (a) and (d) results using CV model, (b) and (e) results using LBF model,
and (c) and (f) results using the new model.

is outside the target and expands when the curve is within the
target. Based on SPF function with value of [−1, 1] defined in
[14], we can construct a function as follow:

𝑓 (𝐼 (𝑥)) =
(𝑐
1
+ 𝑐
2
+ 𝑓
1
+ 𝑓
2
) /4 − 𝐼 (𝑥)

max (󵄨󵄨󵄨󵄨(𝑐1 + 𝑐
2
+ 𝑓
1
+ 𝑓
2
) /4 − 𝐼 (𝑥)

󵄨󵄨󵄨󵄨)
, 𝑥 ∈ Ω,

(16)

where

Min (𝐼 (𝑥)) ≤ 𝑐
1
, 𝑐
2
, 𝑓
1
, 𝑓
2
≤ Max (𝐼 (𝑥)) ,

Min (𝐼 (𝑥)) ≤
(𝑐
1
+ 𝑐
2
+ 𝑓
1
+ 𝑓
2
)

4
≤ Max (𝐼 (𝑥)) ,

(17)

𝑓
1
=
𝐾
𝜎
∗ [𝐻 (𝜙) 𝐼 (𝑥)]

𝐾
𝜎
∗ 𝐻 (𝜙)

,

𝑓
2
=
𝐾
𝜎
∗ [(1 − 𝐻 (𝜙)) 𝐼 (𝑥)]

𝐾
𝜎
∗ (1 − 𝐻 (𝜙))

,

(18)

𝐾
𝜎
(𝛼) =

1

2𝜋𝜎2
𝑒
−(‖𝑥−𝜇‖

𝛼
/𝜎
2
)

, (19)

where 𝐾
𝜎
(𝛼) is the Gaussian kernel of fractional order 𝛼. It

takes the ordinary Gaussian kernel as its special case when
𝛼 = 2.Thus, it ismore flexible than the ordinary one.Wemust
emphasize that the parameter 𝛼may be different from fractal
parameters [15, 16]. In this paper, we call𝛼, likely informal, the
fractional order of the Gaussian kernel expressed by (19). In
the following experiments, we try different values of the frac-
tal order 𝛼 in the evolution level set function.The value of the
function is between −1 and 1. It drives curve to contract exter-
nally the target and expands when the curve is within the tar-
get. According to the summary of the classic model of general

expression (1), we only keep item 𝑉
𝑁
, so we obtain the corre-

sponding variational level set formulation as follows:

𝜕𝜙

𝜕𝑡
= 𝑓 (𝐼 (𝑥))

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨 , 𝑥 ∈ Ω. (20)

By adding a parameter, the final level set equation of the new
model is

𝜕𝜙

𝜕𝑡
= 𝜂𝑓 (𝐼 (𝑥))

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨 , 𝑥 ∈ Ω. (21)

The main algorithm of the new model is as follows.
Step 1: initialize the level set function 𝜙.
Step 2: compute themean and the weighted average values of

inside and outside of the curve 𝑐
1
, 𝑐
2
, 𝑓
1
, and 𝑓

2
.

Step 3: compute the evolution of level set function by (21).
Step 4: use Gaussian filter to regularize level set function, 𝜙 =

𝜙 ∗ 𝐺
𝜎
.

Step 5: repeat Steps 2 to 4 until convergence.

5. Experimental Results

In this section, we will show some experimental results of the
proposed model on synthetic image and nature image; the
results also will be compared with those got by the conven-
tional CV model and LBF model. Our algorithm is imple-
mented in Windows 7 Operating System, i3 Dual Core CPU
2.13GHz and 2GB RAM. The initial value and parameters
such as time step take different values in the specific exper-
iments in this paper.

Figures 1(d)–1(f) got with 2000, 1500, 40 iterations sepa-
rately and consume time 𝑡 = 217.6 s, 232.6 s, 13.8 s in turn.We
can see that Chan-Vese model and LBF model cannot get
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(a) (b) (c)

(d) (e) (f)

Figure 2:The segmentation results of the natural image: (a) and (d) results using CVmodel, (b) and (e) results using LBFmodel, and (c) and
(f) results using the new model.

(a) (b) (c)

(d) (e) (f)

Figure 3:The segmentation results of the natural image: (a) and (d) results using CVmodel, (b) and (e) results using LBFmodel, and (c) and
(f) results using the new model.

satisfactory result. While here the proposed model gets satis-
factory result, meanwhile the proposedmodel costs less time.

Figure 2 shows the experimental results of natural figure
with objects having inhomogeneous background. CVmodel,
LBF model, and the proposed model share the same envi-
ronment of the initial value. We can find that the gray level
of the natural star figure is extremely inhomogeneous easily.

The first line shows the segmentation result of CVmodel.The
second line shows the segmentation result of LBFmodel.The
third line shows the segmentation result of new model. The
segmentation images reveal that the proposed model gets the
most ideal segmentation result.

Figure 3 shows the experimental results of natural figure
with CV model, LBF model, and the proposed model; gray
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(a) (b) (c)

(d) (e) (f)

Figure 4: The segmentation results of the blood vessels image: (a) and (d) results using CV model, (b) and (e) results using LBF model, and
(c) and (f) results using the new model.

(a) (b) (c)

(d) (e) (f)

Figure 5:The segmentation results of the CT image: (a) and (d) results using CVmodel, (b) and (e) results using LBF model, and (c) and (f)
results using the new model.

level of the image is extremely inhomogeneous. The three
models share the same initial value. Figures 3(a) and 3(d)
show the segmentation result of CV model; Figures 3(b) and
3(e) show the segmentation result of LBF model; Figures 3(c)
and 3(f) show the segmentation result of the new model. The
segmentation results show that the proposed model gets the
satisfactory complete result, while the CV model and LBF
model have some redundant and inaccurate segmentation.

In Figure 4, the experiment shows the segmentation
results of a gray matter blood vessels image. The first column
shows the segmentation results of Chan-Vese model. The
second column shows the results of LBFmodel.The third col-
umn shows the result of proposed model. Figures 4(d)–4(f)
got with 1000, 5000, 40 iterations separately and consume
time 𝑡 = 79.2 s, 174.2 s,6.1 s in turn.Because themean informa-
tion of Chan-Vese model is very sensitive to inhomogeneity
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image, it fails to extract the accurate contour. The LBF model
is better than Chan-Vese model, but it gets many itera-
tions and it is very sensitive to initial value. As shown in the
low left of the segmental contour, the proposed model got a
better segmentation result.

In Figure 5, experimental results show the segmentation
results of CT bone images. The initialization is a single circle.
The first column shows the segmentation result of Chan-
Vese model. The second column shows the result of the LBF
model. The third row shows the result of proposed model.
Figures 5(d)–5(f) are the corresponding contours to Fig-
ures 5(a)–5(c). Figures 5(d)–5(f) got with 50, 1000, 80
iterations separately and consume time 𝑡 = 4.0 s, 34.6 s, 12.5 s
in turn. As seen from Figure 5, the newmethod can get more
complete contour than Chan-Vese model and the LBF model
and take less time.

6. Conclusion

Inspired by the idea of some classical energy function expres-
sions of active contourmodel, from the view of level set repre-
sentation, a novel fast region-based segmentationmodel with
Gaussian kernel of fractional order is proposed.Themodel is
simple and easy to be implementated, and it can protect weak
edges because of considering more statistical information.
The experimental results on synthetic images and natural
images show that the proposed model is superior to the
traditional methods. The new model is much more effective
in dealing with the images with weak or blurred edges, and it
takes less time.
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Recently, we introduced a type of autocorrelation function (ACF) to describe a long-range dependent (LRD) process indexed with
two parameters, which takes standard fractional Gaussian noise (fGn for short) as a special case. For simplicity, we call it the
generalized fGn (GfGn). This short paper gives the power spectrum density function (PSD) of GfGn.

1. Introduction

LRD time series increasingly gains applications tomany fields
of science and technologies; see, for example, Mandelbrot
[1] and references therein. In this regard, standard fGn
introduced by Mandelbrot and van Ness is a widely used tool
for modeling LRD time series; see, for example, Beran [2],
Abuzeid et al. [3, 4], and Liao et al. [5]. Following [1, H11],
[2], its ACF is given by

𝜌 (𝜏) = 𝑟 (𝜏;𝐻)

=
𝜎
2

2
[(|𝜏| + 1)

2𝐻

− 2|𝜏|
2𝐻

+ ||𝜏| − 1|
2𝐻

] ,

(1)

where𝐻 is the Hurst parameter and 𝜎2 = Γ(1−2𝐻) cos(𝐻𝜋)/
𝐻𝜋. It implies three families of time series. In the case of
𝐻 ∈ (0.5, 1), 𝜌 is nonintegrable, and a corresponding series
is LRD. For𝐻 ∈ (0, 0.5), 𝑟 is integrable, and a corresponding
series is short-range dependent (SRD). The case of 𝐻 = 0.5

corresponds to white noise. Note that statistics of LRD series
substantially differ fromSRDones. Froma practice view, SRD
fGnmay be less interesting in applications as can be seen from
[1, 2]. This paper only considers LRD series unless otherwise
stated.

Li [6] recently introduced an ACF form that is a gener-
alization of ACF of fGn. Since ACF is an even function, we
write ACF of GfGn by

𝐶 (𝜏) = 𝐶 (𝜏;𝐻, 𝛼)

= 0.5𝜎
2

((|𝜏|
𝛼

+ 1)
2𝐻

− 2(|𝜏|
𝛼

)
2𝐻

+
󵄨󵄨󵄨󵄨|𝜏|
𝛼

− 1
󵄨󵄨󵄨󵄨

2𝐻

) ,

(2)

where 𝐻 ∈ (0.5, 1) and 𝛼 ∈ (0, 1]. We call a process whose
ACF follows (2) GfGn for simplicity because it takes fGn
as a special case of 𝐶(𝜏;𝐻, 1) = 𝜌(𝜏;𝐻). Without loss of
generality, the following considers the normalized ACF by
letting 𝑟(𝜏) = 𝐶(𝜏)/𝜎

2. This paper aims at giving PSD of
GfGn. The Fourier transform (FT) of 𝑟(𝜏) is treated as a
generalized function over Schwartz space of test functions
since 𝑟(𝜏) is nonintegrable.

2. PSD of GfGn

Denote

𝑟 (𝜏) = 0.5 [𝑟
1
(𝜏) − 2𝑟

2
(𝜏) + 𝑟

3
(𝜏)] , (3)

where 𝑟
1
= (|𝜏|

𝑎

+ 1)
2𝐻, and 𝑟

2
= (|𝜏|

𝛼

)
2𝐻, 𝑟
3
= ||𝜏|
𝑎

− 1|
2𝐻.

Denote 𝑆
𝑚
(𝜔) = 𝐹(𝑟

𝑚
), where 𝐹 means FT and 𝑚 = 1, 2, 3.

Then, FT of 𝑟(𝜏) is given by

𝑆 (𝜔) = 0.5 [𝑆
1
(𝜔) − 2𝑆

2
(𝜔) + 𝑆

3
(𝜔)] . (4)

Lemma 1 (see [7] or Gelfand and Vilenkin [8, Chapter 2]).
FT of |𝑡|𝜆 is expressed by

𝐹 [|t|𝜆] = − sin(𝜆𝜋
2
) Γ (𝜆 + 1) |𝜔|

−𝜆−1

, (5)

where 𝜆 ̸= − 1, −3, . . ..



2 Advances in Mathematical Physics

Corollary 2. 𝑆
2
(𝜔) equals − sin(𝐻𝛼𝜋)Γ(2𝐻𝛼 + 1)|𝜔|

−2𝐻𝛼−1.

Proof. Note 2𝐻𝛼 ̸= −1, −3, . . ..Thus, doing 𝐹(|𝜏|2𝐻𝛼)with (5)
yields Corollary 2.

Lemma 3 (binomial series). (1 + 𝑥)
] and (1 − 𝑥)

] can be
expanded as

(1 + 𝑥)
]
=

∞

∑

𝑘=0

(
]
𝑘
)𝑥
𝑘

=

∞

∑

𝑘=0

Γ (] + 𝑘)

Γ (]) Γ (1 + 𝑘)
𝑥
𝑘

𝑓𝑜𝑟 |𝑥| < 1,

(6a)

(1 − 𝑥)
]
=

∞

∑

𝑘=0

(
]
𝑘
) (−𝑥)

𝑘

=

∞

∑

𝑘=0

(−1)
𝑘

Γ (] + 𝑘)

Γ (]) Γ (1 + 𝑘)
𝑥
𝑘

𝑓𝑜𝑟 |𝑥| < 1,

(6b)

where 𝑥 and ] are real number, and ( ]
𝑘
) is binomial coefficient

[9].

Corollary 4. 𝑟
1
(𝜏) and 𝑟

3
(𝜏) for |𝜏| < 1 can be expanded as

(1 + |𝜏|
𝛼

)
2𝐻

=

∞

∑

𝑘=0

(
2𝐻

𝑘
) |𝜏|
𝛼𝑘

=

∞

∑

𝑘=0

Γ (2𝐻 + 𝑘)

Γ (2𝐻) Γ (1 + 𝑘)
|𝜏|
𝛼𝑘

,

(7a)

(1 − |𝜏|
𝛼

)
2𝐻

=

∞

∑

𝑘=0

(−1)
𝑘

(
2𝐻

𝑘
) |𝜏|
𝛼𝑘

=

∞

∑

𝑘=0

(−1)
𝑘

Γ (2𝐻 + 𝑘)

Γ (2𝐻) Γ (1 + 𝑘)
|𝜏|
𝛼𝑘

.

(7b)

Proof. This corollary is straightforward from Lemma 3.

Corollary 5. For |𝜏|𝛼 > 1, 𝑟
1
(𝜏) and 𝑟

3
(𝜏) can be expanded as

(1 + |𝜏|
𝛼

)
2𝐻

= |𝜏|
2𝐻𝛼

∞

∑

𝑘=0

(
2𝐻

𝑘
) |𝜏|
−𝛼𝑘

=

∞

∑

𝑘=0

Γ (2𝐻 + 𝑘)

Γ (2𝐻) Γ (1 + 𝑘)
|𝜏|
𝛼(2𝐻−𝑘)

,

(8a)

󵄨󵄨󵄨󵄨|𝜏|
𝑎

− 1
󵄨󵄨󵄨󵄨

2𝐻

= |𝜏|
2𝐻𝛼

∞

∑

𝑘=0

(−1)
𝑘

(
2𝐻

𝑘
) |𝜏|
−𝛼𝑘

=

∞

∑

𝑘=0

(−1)
𝑘

Γ (2𝐻 + 𝑘)

Γ (2𝐻) Γ (1 + 𝑘)
|𝜏|
𝛼(2𝐻−𝑘)

.

(8b)

Proof. Since (1 + |𝜏|
𝛼

)
2𝐻

= |𝜏|
2𝐻𝛼

(1 + |𝜏|
−𝛼

)
2𝐻, according to

(7a), (8a) results. Similarly, (8b) follows due to ||𝜏|𝑎 − 1|
2𝐻

=

|𝜏|
2𝐻𝛼

|1 − |𝜏|
−𝛼

|
2𝐻 and (7b).

Corollary 6. For |𝜏| < 1, 𝑆
1
and 𝑆

3
are given by (6), respec-

tively,

𝑆
1
(𝜔) =

∞

∑

𝑘=0

−Γ (2𝐻 + 𝑘) Γ (𝛼𝑘 + 1)

Γ (2𝐻) Γ (1 + 𝑘)

× sin(𝛼𝑘𝜋
2

) |𝜔|
−𝛼𝑘−1

,

𝑆
3
(𝜔) =

∞

∑

𝑘=0

(−1)
𝑘+1

Γ (2𝐻 + 𝑘) Γ (𝛼𝑘 + 1)

Γ (2𝐻) Γ (1 + 𝑘)

× sin(𝛼𝑘𝜋
2

) |𝜔|
−𝛼𝑘−1

.

(6)

Proof. Doing 𝐹[|𝜏|
𝛼𝑘

] term by term for (7a) and (7b) with
Lemma 1 yields (6), respectively.

Corollary 7. For |𝜏|𝛼 > 1, 𝑆
1
and 𝑆
3
are given by (7), respec-

tively,

𝑆
1
(𝜔) =

∞

∑

𝑘=0

−Γ (2𝐻 + 𝑘) Γ [(𝛼 (2𝐻 − 𝑘) + 1]

Γ (2𝐻) Γ (1 + 𝑘)

× sin [𝛼 (2𝐻 − 𝑘) 𝜋

2
] |𝜔|
−𝛼(2𝐻−𝑘)−1

,

𝑆
3
(𝜔) =

∞

∑

𝑘=0

(−1)
𝑘+1

Γ (2𝐻 + 𝑘) Γ [𝛼 (2𝐻 − 𝑘) + 1]

Γ (2𝐻) Γ (1 + 𝑘)

× sin [𝛼 (2𝐻 − 𝑘) 𝜋

2
] |𝜔|
−𝛼(2𝐻−𝑘)−1

.

(7)

Proof. Doing FTs for (8a) and (8b) based on Lemma 1 results
in (7).

The following proposition is a consequence of Corollaries
2, 6, and 7.

Proposition 8. PSD of GfGn is given by

𝑆 (𝜔)

=

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

sin (𝐻𝛼𝜋) Γ (2𝐻𝛼 + 1) |𝜔|
−2𝐻𝛼−1

+0.5

∞

∑

𝑘=0

[(−1)
𝑘+1

− 1] Γ (2𝐻 + 𝑘) Γ (𝛼𝑘 + 1)

Γ (2𝐻) Γ (1 + 𝑘)

× sin(𝛼𝑘𝜋
2

) |𝜔|
−𝛼𝑘−1

, |𝜏| < 1,

sin (𝐻𝛼𝜋) Γ (2𝐻𝛼 + 1) |𝜔|
−2𝐻𝛼−1

+0.5

∞

∑

𝑘=0

[(−1)
𝑘

− 1] Γ (2𝐻 + 𝑘) Γ [𝛼 (2𝐻 − 𝑘) + 1]

Γ (2𝐻) Γ (1 + 𝑘)

× sin [𝛼 (2𝐻 − 𝑘) 𝜋

2
] |𝜔|
−𝛼(2𝐻−𝑘)−1

,

|𝜏|
𝛼

> 1.

(8)

Considering the leading term of (8) results in the follow-
ing proposition.
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Proposition 9. PSD of GfGn has the following approximate
value:

𝑆 (𝜔) ≈ sin (𝐻𝛼𝜋) Γ (2𝐻𝛼 + 1) |𝜔|
−2𝐻𝛼−1

. (9)

From (9), we can easily get the two notes below.

Note 1. 𝑆(𝜔) is divergent at the origin for 0 < 2𝐻𝛼 + 1 < 1,
which is the LRD condition. This is the basic feature of LRD
process.

Note 2. Recall 2𝐻𝛼 + 1 > 0. Then, the cases of 2𝐻𝛼 + 1 < 1

and𝐻 ∈ (0.5, 1) imply 𝛼 ∈ (0, 1]. This explains the range of 𝛼
for GfGn from a view in the frequency domain.

3. Conclusions

Wehave derivedPSDofGfGn. Its approximate expression has
been given.The range of 𝛼 has been explained from a spectral
view.
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The periodic solution of fractional oscillation equation with periodic input is considered in this work. The fractional derivative
operator is taken as

−∞
𝐷
𝛼

𝑡
, where the initial time is −∞; hence, initial conditions are not needed in the model of the present

fractional oscillation equation.With the input of the harmonic oscillation, the solution is derived to be a periodic function of time t
with the same circular frequency as the input, and the frequency of the solution is not affected by the system frequency c as is affected
in the integer-order case.These results are similar to the case of a damped oscillation with a periodic input in the integer-order case.
Properties of the periodic solution are discussed, and the fractional resonance frequency is introduced.

1. Introduction

Fractional calculus has been used in the mathematical de-
scription of real problems arising in different fields of science.
It covers the fields of viscoelasticity, anomalous diffusion,
analysis of feedback amplifiers, capacitor theory, fractances,
generalized voltage dividers, electrode-electrolyte interface
models, fractional multipoles, fitting of experimental data,
and so on [1–5]. Scientists and engineers became aware of
the fact that the description of some phenomena is more
accurate when the fractional derivative is used. In recent
years, even fractional-order models of happiness [6] and
love [7] have been developed, and they are claimed to give
a better representation than the integer-order dynamical
systems approach.

The fractional differential and integral operators have
been extensively applied to the field of viscoelasticity [8].The
use of fractional calculus for the mathematical modelling of
viscoelastic materials is quite natural. The main reasons for
the theoretical development are the wide use of polymers in
various fields of engineering.

The theorem of existence and uniqueness of solutions for
fractional differential equations has been presented in [1, 2,
9, 10]. The theory and applications of fractional differential

equations are much involved [1–5, 11–17]. Fractional oscilla-
tion equations were introduced and discussed by Caputo [18],
Bagley and Torvik [19], Beyer and Kempfle [20], Mainardi
[21], Gorenflo and Mainardi [22], and others.

Fractional oscillators and fractional dynamical systems
were investigated in [23–28]. Achar et al. [23] and Al-rabtah
et al. [24] studied the response characteristics of the fractional
oscillator. Li et al. [25] considered the impulse response and
the stability behavior of a class of fractional oscillators. Lim et
al. [26] established the relationship between fractional oscil-
lator processes and the corresponding fractional Brownian
motion processes. Lim and Teo [27] introduced a fractional
oscillator process as a solution of a stochastic differential
equation with two fractional orders. Li [28] proposed an
approach to approximate ideal filters by using frequency
responses of fractional order.

Let 𝑓(𝑡) be piecewise continuous on (𝑎, +∞) and inte-
grable on any subinterval (𝑎, 𝑡). Then, the Riemann-Liouville
fractional integral of 𝑓(𝑡) is defined as [1–4]

𝑎
𝐽
𝛼

𝑡
𝑓 (𝑡) := ∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑓 (𝑠) 𝑑𝑠, 𝛼 > 0, (1)

where Γ(⋅) is Euler’s gamma function.
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Let 𝑓(𝑛)(𝑡) be piecewise continuous on (𝑎, +∞) and inte-
grable on any subinterval (𝑎, 𝑡). Then, the Caputo fractional
derivative of 𝑓(𝑡) of order 𝛼, 𝑛−1 < 𝛼 < 𝑛, is defined as [1–4]

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) : =

𝑎
𝐽
𝑛−𝛼

𝑡
𝑓
(𝑛)

(𝑡) , 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N
+

. (2)

It is well-known that the fractional oscillation equation

0
𝐷
𝛼

𝑡
𝑥 (𝑡) + 𝑐

𝛼

𝑥 (𝑡) = 0, 1 < 𝛼 < 2,

𝑥 (0) = 𝑐
0
, 𝑥

󸀠

(0) = 𝑐
1

(3)

does not have a periodic solution [21, 22, 29, 30]. The
existence of periodic solutions is often a desired property in
dynamical systems, constituting one of the most important
research directions in the theory of dynamical systems. The
existence of weighted pseudo-almost periodic solutions of
fractional-order differential equations has been investigated
in [31].

In this work, we consider the fractional oscillation equa-
tion with periodic input using the fractional derivative
operator

−∞
𝐷
𝛼

𝑡
. We will derive a periodic solution for this

equation and discuss its properties. Since we do not consider
the effect of initial values, so the periodic solution can
be regarded as an asymptotic steady-state solution for a
fractional oscillation with initial conditions.

For a classic undamped oscillationwith the periodic input

𝑥
󸀠󸀠

(𝑡) + 𝑐
2

𝑥 (𝑡) = 𝑏 cos (𝜆𝑡) , 𝑐 > 0, 𝑏 > 0, 𝜆 > 0,

𝑥 (0) = 𝑐
0
, 𝑥

󸀠

(0) = 𝑐
1
,

(4)

we list their solutions as follows.

(i) If 𝜆 ̸= 𝑐,

𝑥 (𝑡) = 𝑐
0
cos (𝑐𝑡) + 𝑐

1

sin (𝑐𝑡)
𝑐

+
𝑏 (cos (𝜆𝑡) − cos (𝑐𝑡))

𝑐2 − 𝜆2
. (5)

(ii) If 𝜆 = 𝑐,

𝑥 (𝑡) = 𝑐
0
cos (𝑐𝑡) + 𝑐

1

sin (𝑐𝑡)
𝑐

+
𝑏𝑡 sin (𝑐𝑡)

2𝑐
. (6)

In the next section, as a comparison we solve the frac-
tional oscillation equation using the fractional derivative
operator

0
𝐷
𝛼

𝑡
with the periodic input and initial conditions.

In Section 3, we consider the fractional oscillation equation
using the fractional derivative operator

−∞
𝐷
𝛼

𝑡
with the peri-

odic input.
We consider the periodic problem of linear fractional dif-

ferential system. For nonlinear fractional differential system,
the problem ismore challenging and some contributions have
beenmade. For example, Li andMa [32] gave the linearization
and stability theorems of the nonlinear fractional system.

2. Fractional Oscillation Equation with
Periodic Input and Initial Conditions

In this section, we solve the fractional oscillation equation
with the periodic input and initial conditions

0
𝐷
𝛼

𝑡
𝑥 (𝑡) + 𝑐

𝛼

𝑥 (𝑡) = 𝑏 cos (𝜆𝑡) ,

𝑐 > 0, 𝑏 > 0, 𝜆 > 0, 1 < 𝛼 < 2,

(7)

𝑥 (0) = 𝑐
0
, 𝑥

󸀠

(0) = 𝑐
1
. (8)

The Laplace transform of (7) gives

𝑠
𝛼

𝑥 (𝑠) + 𝑐
𝛼

𝑥 (𝑠) = 𝑐
0
𝑠
𝛼−1

+ 𝑐
1
𝑠
𝛼−2

+ 𝑏L [cos (𝜆𝑡)] , (9)

whereL denotes the Laplace transform

L [𝑥 (𝑡)] = 𝑥 (𝑠) := ∫

∞

0

𝑒
−𝑠𝑡

𝑥 (𝑡) 𝑑𝑡. (10)

Solving for 𝑥(𝑠) yields

𝑥 (𝑠) = 𝑐
0

𝑠
𝛼−1

𝑐𝛼 + 𝑠𝛼
+ 𝑐
1

𝑠
𝛼−2

𝑐𝛼 + 𝑠𝛼
+ 𝑏

1

𝑐𝛼 + 𝑠𝛼
L [cos (𝜆𝑡)] . (11)

Upon applying the inverse Laplace transform, we obtain

𝑥 (𝑡) = 𝑐
0
𝐸
𝛼,1
(−(𝑐𝑡)

𝛼

) + 𝑐
1
𝑡𝐸
𝛼,2
(−(𝑐𝑡)

𝛼

)

+ 𝑏 (𝑡
𝛼−1

𝐸
𝛼,𝛼

(−(𝑐𝑡)
𝛼

)) ∗ cos (𝜆𝑡) ,
(12)

where 𝐸
𝛼,𝛽
(⋅) denotes the Mittag-Leffler function [1, 21, 22]

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
(13)

and ∗ denotes the Laplace convolution

(𝑡
𝛼−1

𝐸
𝛼,𝛼

(−(𝑐𝑡)
𝛼

)) ∗ cos (𝜆𝑡)

= ∫

𝑡

0

𝜏
𝛼−1

𝐸
𝛼,𝛼

(−(𝑐𝜏)
𝛼

) cos (𝜆 (𝑡 − 𝜏)) 𝑑𝜏,
(14)

and where the Laplace transform formula [1]

L [𝑡
𝛼−𝛽−1

𝐸
𝛼,𝛼−𝛽

(−𝑐𝑡
𝛼

)] =
𝑠
𝛽

𝑐 + 𝑠𝛼
(15)

is used. Since

L [cos (𝜆𝑡)] = 𝑠

𝜆2 + 𝑠2
, (16)

the convolution in (14) can also be expressed as the following
inverse Laplace transform:

𝑌 (𝑡) := (𝑡
𝛼−1

𝐸
𝛼,𝛼

(−(𝑐𝑡)
𝛼

)) ∗ cos (𝜆𝑡)

= L
−1

[
𝑠

(𝑐
𝛼 + 𝑠𝛼) (𝜆

2 + 𝑠2)
] .

(17)
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Figure 1: Solid line: 𝑌(𝑡) versus 𝑡 on interval 0 ≤ 𝑡 ≤ 15 for 𝑐 =

1, 𝜆 = 2, and 𝛼 = 1.5; dashed line: (cos(2𝑡) − cos(𝑡))/−3 versus 𝑡;
doted line: cos(2𝑡)/−3 versus 𝑡.
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Figure 2: Solid line: 𝑌(𝑡) versus 𝑡 on interval 0 ≤ 𝑡 ≤ 15 for 𝑐 =
1, 𝜆 = 1, and 𝛼 = 1.5; dashed line: 𝑡 sin(𝑡)/2 versus 𝑡.

In Figure 1, the curve of 𝑌(𝑡) versus 𝑡 on interval 0 ≤ 𝑡 ≤

15 for 𝑐 = 1, 𝜆 = 2, and 𝛼 = 1.5 is plotted. In order to
compare with the case of 𝛼 = 2 in (5), we also plot the curves
of (cos(𝜆𝑡) − cos(𝑐𝑡))/(𝑐2 − 𝜆2) versus 𝑡 and cos(𝜆𝑡)/(𝑐2 − 𝜆2)
versus 𝑡 for 𝑐 = 1 and 𝜆 = 2 in Figure 1. We observe that
with the increasing of 𝑡, the fractional oscillation𝑌(𝑡) is more
relative to the function cos(𝜆𝑡)/(𝑐2 − 𝜆2) than to the function
(cos(𝜆𝑡)− cos(𝑐𝑡))/(𝑐2 −𝜆2). This means that in the fractional
case, the effect of the natural frequency 𝑐 of the system dies
outwith the passage of time,which displays a damping feature
and is different from the integer-order case in (5).

In Figure 2, the curve of 𝑌(𝑡) versus 𝑡 on interval 0 ≤

𝑡 ≤ 15 for 𝑐 = 1, 𝜆 = 1 and 𝛼 = 1.5 is plotted. In order
to compare with the case of 𝛼 = 2 in (6), we also plot the
curve of 𝑡 sin(𝑐𝑡)/2𝑐 versus 𝑡 for 𝑐 = 1 in Figure 2.

The Mittag-Leffler functions in (12) have the following
asymptotic behaviour [1]:

𝐸
𝛼,1
(−(𝑐𝑡)

𝛼

) ∼
(1 − 𝛼) 𝑐

−𝛼

Γ (2 − 𝛼)
𝑡
−𝛼

, 𝑡 󳨀→ +∞,

𝑡𝐸
𝛼,2
(−(𝑐𝑡)

𝛼

) ∼
𝑐
−𝛼

Γ (2 − 𝛼)
𝑡
−(𝛼−1)

, 𝑡 󳨀→ +∞,

𝑡
𝛼−1

𝐸
𝛼,𝛼

(−(𝑐𝑡)
𝛼

) ∼
𝛼 (1 − 𝛼) 𝑐

−2𝛼

Γ (2 − 𝛼)
𝑡
−(𝛼+1)

, 𝑡 󳨀→ +∞.

(18)

None of the three Mittag-Leffler functions in (12) are
periodic. Numerical simulation displays that the convolution
𝑌(𝑡) in (17) is not periodic, either.

If 𝛼 = 2, the Mittag-Leffler functions in (12) become

𝐸
2,1
(−(𝑐𝑡)

2

) = cos (𝑐𝑡) , 𝑡𝐸
2,2
(−(𝑐𝑡)

2

) =
sin (𝑐𝑡)

𝑐
. (19)

In this case, calculating the convolution sin(𝑐𝑡) ∗ cos(𝜆𝑡)
for the two cases𝜆 ̸= 𝑐 and𝜆 = 𝑐, we obtain the classical results
(5) and (6) from (12).

But for the fractional case, 1 < 𝛼 < 2, the Mittag-Leffler
function 𝑡

𝛼−1

𝐸
𝛼,𝛼
(−(𝑐𝑡)

𝛼

) in (17) approaches asymptotically
𝑡
−𝛼−1 as 𝑡 → +∞, so 𝑌(𝑡) is dominated by cos(𝜆𝑡) as 𝑡 →

+∞.
We note that it is possible to obtain exact periodic so-

lutions in impulsive fractional-order dynamical systems by
choosing the correct impulses at the right moments of time
[29].

3. Derivation of the Periodic Solutions for
Fractional Oscillation Equation

We consider the fractional oscillation equation using the
fractional derivative operator

−∞
𝐷
𝛼

𝑡
:

−∞
𝐷
𝛼

𝑡
𝑥 (𝑡) + 𝑐

𝛼

𝑥 (𝑡) = 𝑏 cos (𝜆𝑡) ,

𝑐 > 0, 𝑏 > 0, 𝜆 > 0, 1 < 𝛼 < 2.

(20)

Equation (20) does not need to subject to initial conditions,
and its solution is steady-state.

We use the following Fourier transform and its inverse:

F [𝑔 (𝑡) ; 𝜔] = 𝐺 (𝜔) := ∫

∞

−∞

𝑔 (𝑡) 𝑒
𝑖𝜔𝑡

𝑑𝑡,

F
−1

[𝐺 (𝜔) ; 𝑡] = 𝑔 (𝑡) :=
1

2𝜋
∫

∞

−∞

𝐺 (𝜔) 𝑒
−𝑖𝜔𝑡

𝑑𝜔,

(21)

and the Fourier transform formulas [1, 33]

F [
−∞

𝐷
𝛼

𝑡
𝑥 (𝑡) ; 𝜔] = (−𝑖𝜔)

𝛼

𝑋(𝜔) ,

F [𝑒
𝑖𝜆𝑡

; 𝜔] = 2𝜋𝛿 (𝜔 + 𝜆) ,

(22)

where 𝛿(⋅) is the Dirac’s delta function.
We rewrite the right hand side of (20) as a complex expo-

nential function and first solve the equation

−∞
𝐷
𝛼

𝑡
𝑥 (𝑡) + 𝑐

𝛼

𝑥 (𝑡) = 𝑏𝑒
𝑖𝜆𝑡

. (23)
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The real part of the solution of (23) is the solution of (20).
Applying the Fourier transform to (23) we obtain

(−𝑖𝜔)
𝛼

𝑋 (𝜔) + 𝑐
𝛼

𝑋 (𝜔) = 2𝜋𝑏𝛿 (𝜔 + 𝜆) , (24)

from which we solve, for 𝑋(𝜔),

𝑋 (𝜔) =
2𝜋𝑏𝛿 (𝜔 + 𝜆)

𝑐𝛼 + (−𝑖𝜔)
𝛼
. (25)

Calculating the inverse Fourier transform leads to

𝑥 (𝑡) = F
−1

[
2𝜋𝑏𝛿 (𝜔 + 𝜆)

𝑐𝛼 + (−𝑖𝜔)
𝛼
; 𝑡] =

𝑏𝑒
𝑖𝜆𝑡

𝑐𝛼 + (𝑖𝜆)
𝛼
. (26)

Then, we take the real part of (26) and obtain the solution of
(20):

𝑥 (𝑡)

= 𝑏
(𝑐
𝛼

+ 𝜆
𝛼 cos (𝛼𝜋/2)) cos (𝜆𝑡) + 𝜆𝛼 sin (𝛼𝜋/2) sin (𝜆𝑡)
(𝑐
𝛼 + 𝜆𝛼 cos (𝛼𝜋/2))2 + 𝜆2𝛼sin2 (𝛼𝜋/2)

.

(27)

Obviously, (27) represents a periodic solution with the
same circular frequency as the input 𝑏cos(𝜆𝑡). Furthermore,
(27) can be rewritten as the form

𝑥 (𝑡) =
𝑏 cos (𝜆𝑡 − 𝐶)

√(𝑐
𝛼 + 𝜆𝛼 cos (𝛼𝜋/2))2 + 𝜆2𝛼sin2 (𝛼𝜋/2)

, (28)

where the phase angle is

𝐶 = tan−1 𝜆
𝛼 sin (𝛼𝜋/2)

𝑐𝛼 + 𝜆𝛼 cos (𝛼𝜋/2)
, (29)

and the amplitude is

𝐴 = 𝐴 (𝛼, 𝜆) =
𝑏

√(𝑐
𝛼 + 𝜆𝛼 cos (𝛼𝜋/2))2 + 𝜆2𝛼sin2 (𝛼𝜋/2)

.

(30)

The curves of 𝑥(𝑡) versus 𝑡 for 𝑏 = 1, 𝑐 = 1, 𝜆 = 1.5, and
different𝛼 and the curves of 𝑥(𝑡) versus 𝑡 for 𝑏 = 1, 𝑐 = 1, 𝛼 =
1.5 and different 𝜆 are plotted in Figures 3 and 4, respectively.

The effects of the order 𝛼 and the input circular frequency
𝜆 on the amplitude 𝐴 are interesting. The curves of 𝐴 versus
𝛼 for 𝑏 = 1, 𝑐 = 1 and, different 𝜆 and the curves of 𝐴 versus
𝜆 for 𝑏 = 1, 𝑐 = 1, and different 𝛼 are plotted in Figures 5 and
6, respectively.

Similar to a damped oscillation with a periodic input
in an integer-ordered case, we observe that the curves of 𝐴
versus 𝜆 have a peak value. Furthermore, the derivative of the
amplitude with respective to the frequency 𝜆 is calculated to
be

𝑑𝐴

𝑑𝜆
= −

𝛼𝑏𝜆
𝛼−1

(𝜆
𝛼

+ 𝑐
𝛼 cos (𝜋𝛼/2))

(𝜆2𝛼 + 𝑐2𝛼 + 2𝑐𝛼𝜆𝛼 cos (𝜋𝛼/2))3/2
. (31)
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Figure 3: Curves of 𝑥(𝑡) versus 𝑡 for 𝑏 = 1, 𝑐 = 1, and 𝜆 = 1.5 and
for 𝛼 = 1.2 (solid line), 𝛼 = 1.5 (dashed line), and 𝛼 = 1.8 (doted
line).
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Figure 4: Curves of 𝑥(𝑡) versus 𝑡 for 𝑏 = 1, 𝑐 = 1, and 𝛼 = 1.5 and
for 𝜆 = 0.4 (solid line), 𝜆 = 0.8 (dashed line), 𝜆 = 1.2 (doted line),
and 𝜆 = 1.6 (doted-dashed line).

Letting 𝑑𝐴/𝑑𝜆 = 0, we obtain

𝜆
∗

= 𝑐(− cos(𝜋𝛼
2
))

1/𝛼

. (32)

For each specified 𝛼, 1 < 𝛼 < 2, the amplitude 𝐴 =

𝐴(𝛼, 𝜆) takes the maximum 𝐴max(𝛼), when 𝜆 = 𝜆
∗. We

call 𝜆∗ the fractional resonance frequency. From (32) the
resonance frequency 𝜆∗ increases monotonically from 0 to
𝑐with increasing of 𝛼 from 1 to 2.The curve of 𝜆∗ versus 𝛼 for
𝑐 = 1 is plotted in Figure 7.

The maximum amplitude is calculated to be

𝐴max (𝛼) = 𝐴 (𝛼, 𝜆
∗

) =
𝑏

𝑐𝛼 sin (𝜋𝛼/2)
. (33)
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Figure 5: Curves of 𝐴 versus 𝛼 for 𝑏 = 1 and 𝑐 = 1 and for 𝜆 = 0.5

(solid line), 𝜆 = 1 (dashed line), 𝜆 = 1.5 (doted line), and 𝜆 = 2

(doted-dashed line).
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Figure 6: Curves of 𝐴 versus 𝜆 for 𝑏 = 1 and 𝑐 = 1 and for 𝛼 = 1.2

(solid line), 𝛼 = 1.5 (dashed line), and 𝛼 = 1.8 (doted line).
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Figure 7: Curve of 𝜆∗ versus 𝛼 for 𝑐 = 1.
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Figure 8: Surface of amplitude 𝐴(𝛼, 𝜆) for 𝑏 = 𝑐 = 1.

It follows from (33) that

𝐴max (𝛼) 󳨀→
𝑏

𝑐𝛼
, 𝛼 󳨀→ 1

+

,

𝐴max (𝛼) 󳨀→ +∞, 𝛼 󳨀→ 2
−

.

(34)

The surface of the amplitude 𝐴(𝛼, 𝜆) for 𝑏 = 𝑐 = 1 is shown
in Figure 8.

4. Conclusions

The fractional oscillation equations with a harmonic periodic
input are considered for the fractional derivative opera-
tors
0
𝐷
𝛼

𝑡
and
−∞

𝐷
𝛼

𝑡
, respectively. For the latter fractional

oscillation equation, the periodic solution with the same
circular frequency as the input function is derived. The
solution is similar to the case of a damped oscillation with
a periodic input in the integer-order case, and a fractional
resonance frequency occurs. The frequency of the solution
of the fractional oscillation equation is not affected by the
system frequency 𝑐. The results show that the fractional
oscillation equations represent the damping feature. We give
a detailed analysis for the effects of the order 𝛼 and the
input circular frequency 𝜆 on the oscillation amplitude 𝐴.
The periodic solution can be regarded as an asymptotic
steady-state solution for a fractional oscillation with initial
conditions.
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This paper is concerned with two alternating direction implicit (ADI) finite difference methods for solving a two-dimensional
fractional subdiffusion equation. An explicit error estimate for each of the two methods is provided in the discrete maximum
norm. It is shown that the methods have the same order as their truncation errors with respect to the discrete maximum norm.
Numerical results are given to confirm the theoretical analysis results.

1. Introduction

Fractional differential equations and fractional calculus arise
in various application problems in science and engineering
[1–16]. Various numerical methods have been developed for
the computation of fractional differential equations [17–34].
Fractional subdiffusion equations describe a special type of
anomalous diffusion [35], and it is a more difficult task to
solve this kind of equation numerically.

Numerical works for fractional subdiffusion equations
are mostly focused on one-dimensional problems due to the
memory effect in fractional derivatives; see, for example,
[19, 20, 20–26, 31–33, 36–42]. A two-dimensional anomalous
subdiffusion equation was numerically treated in [43, 44],
where explicit and implicit finite difference schemes were
proposed. Chen et al. [28] extended their work in [43] to a
variable-order subdiffusion equation. Liu et al. [45] devel-
oped an implicit meshless approach based on the radial basis
function for the numerical simulation of a two-dimensional
subdiffusion problem. Chen and Liu [18] considered an
implicit difference scheme for a three-dimensional fractional
advection-diffusion equation, and a Richardson extrapola-
tion was applied to improve the accuracy.

The complexity of the fractional differential equations
comes from the involving fractional derivatives that are

nonlocal and have the character of history dependence
and universal mutuality. This means that the computations
would be costly if the implicit schemes were applied, espe-
cially for solving multidimensional problems [43, 44]. Some
researchers have explored some techniques for reducing
this cost. These techniques include the adaptive technique
[46] and the matrix transfer technique [47, 48]. It is well
known that alternating direction implicit (ADI) methods are
unconditionally stable as the traditional implicit methods.
On the other hand, they reduce a multidimensional problem
to a series of independent one-dimensional problems, and
thus the computational complexities and the computational
cost can be greatly reduced. Therefore, ADI methods for
fractional differential equations have the potential to signifi-
cantly reduce the computational cost, while maintaining the
stability of the numerical methods. The works in [29, 49–
53] treated ADI finite difference methods for space fractional
diffusion equations, and thework in [54] discussedADI finite
difference methods for fractional diffusion wave equations.
Recently, Cui [55] derived an ADI compact finite difference
scheme for a two-dimensional fractional subdiffusion equa-
tion, where the Grünwald formula is used to approximate
the temporal Riemann-Liouville fractional derivative, and the
spatial derivatives are approximated by a compact finite dif-
ference scheme. Another way to treat fractional subdiffusion
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problem is to transform the original subdiffusion equa-
tion into an equivalent equation by replacing the tempo-
ral Riemann-Liouville fractional derivative by the temporal
Caputo fractional derivative; see, for example, [40, 42, 56]. An
advantage of this approach is that the 𝐿

1
approximation (see

[1, 24, 25, 40, 57, 58]) can be used to deal with the temporal
fractional derivative, and so the resulting scheme has the bet-
ter temporal accuracy than the first order without the Crank-
Nicolson technique (see [25, 40–42]). Based on the previous
approach, Zhang and Sun [59] constructed two ADI finite
difference schemes, called 𝐿

1
-ADI and BD-ADI schemes,

for the following two-dimensional problem of subdiffusion
equation with the temporal Caputo fractional derivative:

𝐶

0
D
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑡) = Δ𝑢 (𝑥, 𝑦, 𝑡) + 𝑓 (𝑥, 𝑦, 𝑡) ,

(𝑥, 𝑦) ∈ Ω, 𝑡 ∈ (0, 𝑇] ,

𝑢 (𝑥, 𝑦, 𝑡) = 𝜑 (𝑥, 𝑦, 𝑡) , (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 ∈ (0, 𝑇] ,

𝑢 (𝑥, 𝑦, 0) = 𝜓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,

(1)

where Ω = (0, 𝑙
1
) × (0, 𝑙

2
), Ω = Ω ∪ 𝜕Ω, 𝜕Ω is the boundary

of Ω, 𝑇 is a positive constant, Δ is the two-dimensional
Laplacian, and 𝐶

0
D𝛼
𝑡
denotes the temporal Caputo fractional

derivative operator defined as

𝐶

0
D
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑡)

=
1

Γ (1 − 𝛼)
∫

𝑡

0

𝜕𝑢 (𝑥, 𝑦, 𝑠)

𝜕𝑠
(𝑡 − 𝑠)

−𝛼d𝑠, 0 < 𝛼 < 1.

(2)

The main concern in that paper is the construction of the
schemes and error estimates in the discrete 𝐻1-norm. Since
𝐻
1-norm error estimates do not provide immediate insight

on the phase error occurring during the time evolution, it
is more preferable to give error estimates in the discrete
maximum norm when we measure computation errors in
practice. In this paper, we continue the investigation of the
paper [59], by establishing a maximum norm error estimate
for the ADI discretizations. It is known that an 𝐻1-norm
error estimate does not imply a maximum norm error
estimate for two-dimensional problems. We here present a
technique of 𝐻2 discrete energy analysis in order to obtain
an explicit maximum norm error estimate.

The outline of the paper is as follows. In Section 2, we
derive ADI finite difference schemes for (1) and present our
main results of themaximumnormerror estimates.Theproof
of the main error results is given in Section 3. In Section 4,
we give some numerical results demonstrating the accuracy
of the schemes in the discrete maximum norm. Section 5
contains some concluding remarks.

2. ADI Schemes and Maximum
Norm Error Estimates

We partition Ω with nonisotropic uniform mesh sizes ℎ
1

and ℎ
2
in the 𝑥 and 𝑦 directions, respectively. The integers

𝑀
1
= 𝑙
1
/ℎ
1
and 𝑀

2
= 𝑙
2
/ℎ
2
. The mesh points (𝑥

𝑖
, 𝑦
𝑗
) =

(𝑖ℎ
1
, 𝑗ℎ
2
) (0 ≤ 𝑖 ≤ 𝑀

1
, 0 ≤ 𝑗 ≤ 𝑀

2
). Let Ω

ℎ
and 𝜕Ω

ℎ
be

the sets of mesh points lying in Ω and on 𝜕Ω, respectively,
and let Ω

ℎ
= Ω
ℎ
∪ 𝜕Ω
ℎ
. For any grid function V = {V

𝑖,𝑗
| 0 ≤

𝑖 ≤ 𝑀
1
, 0 ≤ 𝑗 ≤ 𝑀

2
}, we denote

𝛿
𝑥
V
𝑖,𝑗
=

(V
𝑖+1,𝑗

− V
𝑖,𝑗
)

ℎ
1

, 𝛿
𝑦
V
𝑖,𝑗
=

(V
𝑖,𝑗+1

− V
𝑖,𝑗
)

ℎ
2

,

𝛿
2

𝑥
V
𝑖,𝑗
=

(𝛿
𝑥
V
𝑖,𝑗
− 𝛿
𝑥
V
𝑖−1,𝑗
)

ℎ
1

, 𝛿
2

𝑦
V
𝑖,𝑗
=

(𝛿
𝑦
V
𝑖,𝑗
− 𝛿
𝑦
V
𝑖,𝑗−1
)

ℎ
2

,

Δ
ℎ
V
𝑖,𝑗
= 𝛿
2

𝑥
V
𝑖,𝑗
+ 𝛿
2

𝑦
V
𝑖,𝑗
.

(3)

For a positive integer 𝑁, we let 𝜏 = 𝑇/𝑁 be the time step.
Define 𝑡

𝑛
= 𝑛𝜏 and

𝑈
𝑛

𝑖,𝑗
= 𝑢 (𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑛
) , 𝑓

𝑛

𝑖,𝑗
= 𝑓 (𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑛
) ,

𝜑
𝑛

𝑖,𝑗
= 𝜑 (𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑛
) , 𝜓

𝑖,𝑗
= 𝜓 (𝑥

𝑖
, 𝑦
𝑗
) .

(4)

For the temporal approximation, we introduce the operators

𝛿
𝑡
𝑈
𝑛

𝑖,𝑗
=
1

𝜏
(𝑈
𝑛+1

𝑖,𝑗
− 𝑈
𝑛

𝑖,𝑗
) ,

𝐷
𝛼

𝑡
𝑈
𝑛

𝑖,𝑗
=
1

𝜇
(𝑈
𝑛

𝑖,𝑗
−

𝑛−1

∑

𝑘=1

(𝑎
𝑛−𝑘−1

− 𝑎
𝑛−𝑘
) 𝑈
𝑘

𝑖,𝑗
− 𝑎
𝑛−1
𝑈
0

𝑖,𝑗
) ,

(5)

where 𝜇 = 𝜏𝛼Γ(2 − 𝛼) and 𝑎
𝑘
= (𝑘 + 1)

1−𝛼

− 𝑘
1−𝛼.

Using the Taylor expansion and the 𝐿
1
approximation of

𝐶

0
D𝛼
𝑡
𝑢(𝑥, 𝑦, 𝑡) (see [25, 58, 59]), we have

𝐶

0
D
𝛼

𝑡
𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑛
) = 𝐷

𝛼

𝑡
𝑈
𝑛

𝑖,𝑗
+ (𝑅
𝑡
)
𝑛

𝑖,𝑗
,

Δ𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑛
) = Δ

ℎ
𝑈
𝑛

𝑖,𝑗
− (𝑅
𝑥
)
𝑛

𝑖,𝑗
− (𝑅
𝑦
)
𝑛

𝑖,𝑗

,

(𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

(6)

where

(𝑅
𝑥
)
𝑛

𝑖,𝑗
=
ℎ
2

1

6
∫

1

0

(
𝜕
4

𝑢

𝜕𝑥4
(𝑥
𝑖
+ 𝑠ℎ
1
, 𝑦
𝑗
, 𝑡
𝑛
)

+
𝜕
4

𝑢

𝜕𝑥4
(𝑥
𝑖
− 𝑠ℎ
1
, 𝑦
𝑗
, 𝑡
𝑛
)) (1 − 𝑠)

3d𝑠,

(𝑅
𝑦
)
𝑛

𝑖,𝑗

=
ℎ
2

2

6
∫

1

0

(
𝜕
4

𝑢

𝜕𝑦4
(𝑥
𝑖
, 𝑦
𝑗
+ 𝑠ℎ
2
, 𝑡
𝑛
)

+
𝜕
4

𝑢

𝜕𝑦4
(𝑥
𝑖
, 𝑦
𝑗
− 𝑠ℎ
2
, 𝑡
𝑛
)) (1 − 𝑠)

3d𝑠.

(7)
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There exists a positive constant 𝐶(𝛼) independent of 𝜏, ℎ
1
, ℎ
2

and the time level 𝑛 such that

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑅
𝑡
)
𝑛

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 (𝛼) max

0≤𝑡≤𝑡
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2

𝑢

𝜕𝑡2
(𝑥
𝑖
, 𝑦
𝑗
, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏
2−𝛼

. (8)

Substituting (6) into (1), we obtain

𝐷
𝛼

𝑡
𝑈
𝑛

𝑖,𝑗
= Δ
ℎ
𝑈
𝑛

𝑖,𝑗
+ 𝑓
𝑛

𝑖,𝑗
− (𝑅
𝑡
)
𝑛

𝑖,𝑗
− (𝑅
𝑥
)
𝑛

𝑖,𝑗
− (𝑅
𝑦
)
𝑛

𝑖,𝑗

,

(𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁.

(9)

2.1. Construction of 𝐿
1
-ADI and BD-ADI Schemes. In order

to construct an ADI scheme, we add the term 𝜇2𝐷𝛼
𝑡
𝛿
2

𝑥
𝛿
2

𝑦
𝑈
𝑛

𝑖,𝑗

to (9). This yields

𝐷
𝛼

𝑡
(𝑈
𝑛

𝑖,𝑗
+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑈
𝑛

𝑖,𝑗
) = Δ

ℎ
𝑈
𝑛

𝑖,𝑗
+ 𝑓
𝑛

𝑖,𝑗
+ (𝑅
1
)
𝑛

𝑖,𝑗
,

(𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

(10)

where

(𝑅
1
)
𝑛

𝑖,𝑗
= 𝜇
2

𝐷
𝛼

𝑡
𝛿
2

𝑥
𝛿
2

𝑦
𝑈
𝑛

𝑖,𝑗
− (𝑅
𝑡
)
𝑛

𝑖,𝑗
− (𝑅
𝑥
)
𝑛

𝑖,𝑗
− (𝑅
𝑦
)
𝑛

𝑖,𝑗

. (11)

It was shown in [59] that |𝜇2𝐷𝛼
𝑡
𝛿
2

𝑥
𝛿
2

𝑦
𝑈
𝑛

𝑖,𝑗
| ≤ 𝐶

𝐿
(𝛼)𝜏
2𝛼 for a

positive constant 𝐶
𝐿
(𝛼) independent of 𝜏, ℎ

1
, ℎ
2
and the time

level 𝑛. Thus, there exists a positive constant 𝐶
1
independent

of 𝜏, ℎ
1
, ℎ
2
and the time level 𝑛 such that

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑅
1
)
𝑛

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
1
(𝜏

min{2𝛼,2−𝛼}
+ ℎ
2

1
+ ℎ
2

2
) . (12)

Denote by 𝑢𝑛
𝑖,𝑗
the finite difference approximation to𝑈𝑛

𝑖,𝑗
, and

let 𝑏
𝑛,𝑘
= 𝑎
𝑛−𝑘−1

− 𝑎
𝑛−𝑘

. After multiplying (10) by 𝜇 and
then dropping the term 𝜇(𝑅

1
)
𝑛

𝑖,𝑗
, we derive a finite difference

scheme as follows:

(𝐼 − 𝜇𝛿
2

𝑥
) (𝐼 − 𝜇𝛿

2

𝑦
) 𝑢
𝑛

𝑖,𝑗
=

𝑛−1

∑

𝑘=1

𝑏
𝑛,𝑘
(𝑢
𝑘

𝑖,𝑗
+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑢
𝑘

𝑖,𝑗
)

+ 𝑎
𝑛−1
(𝑢
0

𝑖,𝑗
+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑢
0

𝑖,𝑗
) + 𝜇𝑓

𝑛

𝑖,𝑗
,

(𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑢
𝑛

𝑖,𝑗
= 𝜑
𝑛

𝑖,𝑗
, (𝑥

𝑖
, 𝑦
𝑗
) ∈ 𝜕Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑢
0

𝑖,𝑗
= 𝜓
𝑖,𝑗
, (𝑥

𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
.

(13)

By introducing the intermediate variable V𝑛
𝑖,𝑗
, we obtain the

following 𝐿
1
-ADI scheme (see [59]):

(𝐼 − 𝜇𝛿
2

𝑥
) V𝑛
𝑖,𝑗
=

𝑛−1

∑

𝑘=1

𝑏
𝑛,𝑘
(𝑢
𝑘

𝑖,𝑗
+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑢
𝑘

𝑖,𝑗
)

+ 𝑎
𝑛−1
(𝑢
0

𝑖,𝑗
+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑢
0

𝑖,𝑗
) + 𝜇𝑓

𝑛

𝑖,𝑗
,

(𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

V𝑛
0,𝑗
= (𝐼 − 𝜇𝛿

2

𝑦
) 𝜑
𝑛

0,𝑗
, V𝑛

𝑀
1
,𝑗
= (𝐼 − 𝜇𝛿

2

𝑦
) 𝜑
𝑛

𝑀
1
,𝑗
,

0 ≤ 𝑗 ≤ 𝑀
2
, 1 ≤ 𝑛 ≤ 𝑁,

𝑢
0

𝑖,𝑗
= 𝜓
𝑖,𝑗
, (𝑥

𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
,

(𝐼 − 𝜇𝛿
2

𝑦
) 𝑢
𝑛

𝑖,𝑗
= V𝑛
𝑖,𝑗
, (𝑥

𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑢
𝑛

𝑖,0
= 𝜑
𝑛

𝑖,0
, 𝑢

𝑛

𝑖,𝑀
2

= 𝜑
𝑛

𝑖,𝑀
2

,

0 ≤ 𝑖 ≤ 𝑀
1
, 1 ≤ 𝑛 ≤ 𝑁.

(14)

Adding the term 𝜏𝜇𝛿2
𝑥
𝛿
2

𝑦
𝛿
𝑡
𝑈
𝑛

𝑖,𝑗
to (9), we have

𝐷
𝛼

𝑡
𝑈
𝑛

𝑖,𝑗
+ 𝜏𝜇𝛿

2

𝑥
𝛿
2

𝑦
𝛿
𝑡
𝑈
𝑛

𝑖,𝑗
= Δ
ℎ
𝑈
𝑛

𝑖,𝑗
+ 𝑓
𝑛

𝑖,𝑗
+ (𝑅
2
)
𝑛

𝑖,𝑗
, (15)

where

(𝑅
2
)
𝑛

𝑖,𝑗
= 𝜏𝜇𝛿

2

𝑥
𝛿
2

𝑦
𝛿
𝑡
𝑈
𝑛

𝑖,𝑗
− (𝑅
𝑡
)
𝑛

𝑖,𝑗
− (𝑅
𝑥
)
𝑛

𝑖,𝑗
− (𝑅
𝑦
)
𝑛

𝑖,𝑗

. (16)

Since |𝜏𝜇𝛿2
𝑥
𝛿
2

𝑦
𝛿
𝑡
𝑈
𝑛

𝑖,𝑗
| ≤ 𝐶

𝐵𝐷
(𝛼)𝜏
1+𝛼 for a positive constant

𝐶
𝐵𝐷
(𝛼) independent of 𝜏, ℎ

1
, ℎ
2
and the time level 𝑛 (see [59]),

there exists a positive constant𝐶
2
independent of 𝜏, ℎ

1
, ℎ
2
and

the time level 𝑛 such that

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑅
2
)
𝑛

𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
2
(𝜏

min{1+𝛼,2−𝛼}
+ ℎ
2

1
+ ℎ
2

2
) . (17)

By (15), we obtain the following finite difference scheme:

(𝐼 − 𝜇𝛿
2

𝑥
) (𝐼 − 𝜇𝛿

2

𝑦
) 𝑢
𝑛

𝑖,𝑗
= 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑢
𝑛−1

𝑖,𝑗
+

𝑛−1

∑

𝑘=1

𝑏
𝑛,𝑘
𝑢
𝑘

𝑖,𝑗

+ 𝑎
𝑛−1
𝑢
0

𝑖,𝑗
+ 𝜇𝑓
𝑛

𝑖,𝑗
,

(𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑢
𝑛

𝑖,𝑗
= 𝜑
𝑛

𝑖,𝑗
, (𝑥

𝑖
, 𝑦
𝑗
) ∈ 𝜕Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑢
0

𝑖,𝑗
= 𝜓
𝑖,𝑗
, (𝑥

𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
.

(18)
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It is equivalent to the following BD-ADI scheme (see [59]):

(𝐼 − 𝜇𝛿
2

𝑥
) V𝑛
𝑖,𝑗
= 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑢
𝑛−1

𝑖,𝑗
+

𝑛−1

∑

𝑘=1

𝑏
𝑛,𝑘
𝑢
𝑘

𝑖,𝑗

+ 𝑎
𝑛−1
𝑢
0

𝑖,𝑗
+ 𝜇𝑓
𝑛

𝑖,𝑗
,

(𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

V𝑛
0,𝑗
= (𝐼 − 𝜇𝛿

2

𝑦
) 𝜑
𝑛

0,𝑗
, V𝑛

𝑀
1
,𝑗
= (𝐼 − 𝜇𝛿

2

𝑦
) 𝜑
𝑛

𝑀
1
,𝑗
,

0 ≤ 𝑗 ≤ 𝑀
2
, 1 ≤ 𝑛 ≤ 𝑁,

𝑢
0

𝑖,𝑗
= 𝜓
𝑖,𝑗
, (𝑥

𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
,

(𝐼 − 𝜇𝛿
2

𝑦
) 𝑢
𝑛

𝑖,𝑗
= V𝑛
𝑖,𝑗
, (𝑥

𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑢
𝑛

𝑖,0
= 𝜑
𝑛

𝑖,0
, 𝑢

𝑛

𝑖,𝑀
2

= 𝜑
𝑛

𝑖,𝑀
2

,

0 ≤ 𝑖 ≤ 𝑀
1
, 1 ≤ 𝑛 ≤ 𝑁.

(19)

2.2. Maximum Norm Error Estimates. For any grid function
V = {V

𝑖,𝑗
| 0 ≤ 𝑖 ≤ 𝑀

1
, 0 ≤ 𝑗 ≤ 𝑀

2
}, we define its maximum

norm ‖V‖
∞

by

‖V‖
∞
= max
0≤𝑖≤𝑀

1
,0≤𝑗≤𝑀

2

󵄨󵄨󵄨󵄨󵄨
V
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
. (20)

Let𝑈𝑛
𝑖,𝑗
be the value of the solution of (1) at themesh point

(𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑛
), and let 𝑢𝑛

𝑖,𝑗
be the solution of the 𝐿

1
-ADI scheme

(14) or the BD-ADI scheme (19). We now present our main
results of the maximum norm estimate for the error 𝑒𝑛

𝑖,𝑗
=

𝑈
𝑛

𝑖,𝑗
− 𝑢
𝑛

𝑖,𝑗
in the following two theorems. Their proofs will be

given in the next section.

Theorem 1. Assume that the solution 𝑢(𝑥, 𝑦, 𝑡) of (1) is
sufficiently smooth, and let 𝑢𝑛

𝑖,𝑗
be the solution of the 𝐿

1
-ADI

scheme (14). Then

(𝜏

𝑛

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑙

− 𝑢
𝑙
󵄩󵄩󵄩󵄩󵄩∞
)

1/2

≤ 𝐶
∗

1
(𝜏

min{2𝛼,2−𝛼}
+ ℎ
2

1
+ ℎ
2

2
) ,

1 ≤ 𝑛 ≤ 𝑁,

(21)

where 𝐶∗
1
= (𝑙
2

0
/2)√𝑇𝐶

1
and 𝑙
0
= max{𝑙

1
, 𝑙
2
}.

Theorem 2. Assume that the solution 𝑢(𝑥, 𝑦, 𝑡) of (1) is
sufficiently smooth, and let 𝑢𝑛

𝑖,𝑗
be the solution of the BD-ADI

scheme (19). Then

(𝜏

𝑛

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑙

− 𝑢
𝑙
󵄩󵄩󵄩󵄩󵄩∞
)

1/2

≤ 𝐶
∗

2
(𝜏

min{1+𝛼,2−𝛼}
+ ℎ
2

1
+ ℎ
2

2
) ,

1 ≤ 𝑛 ≤ 𝑁,

(22)

where 𝐶∗
2
= (𝑙
2

0
/2)√𝑇𝐶

2
and 𝑙
0
= max{𝑙

1
, 𝑙
2
}.

Theorems 1 and 2 show that the ADI difference solution
𝑢
𝑛

𝑖,𝑗
from (14) or (19) converges to the analytical solution 𝑈𝑛

𝑖,𝑗

of (1) in the discrete maximum norm. We also see from the
estimates (12), (17), (21), and (22) that the 𝐿

1
-ADI scheme (14)

and the BD-ADI scheme (19) have the same order as their
truncation error with respect to the discretemaximumnorm.

3. Proof of the Main Results

Let V
ℎ
be the set of all grid functions V = {V

𝑖,𝑗
| 0 ≤ 𝑖 ≤

𝑀
1
, 0 ≤ 𝑗 ≤ 𝑀

2
} defined in Ω

ℎ
and vanishing on 𝜕Ω

ℎ
. For

arbitrary V, 𝑤 ∈V
ℎ
, we define the following inner products:

(V, 𝑤) = ℎ
1
ℎ
2

𝑀
1
−1

∑

𝑖=1

𝑀
2
−1

∑

𝑗=1

V
𝑖,𝑗
𝑤
𝑖,𝑗
,

(𝛿
𝑥
V, 𝛿
𝑥
𝑤)
𝑥
= ℎ
1
ℎ
2

𝑀
1
−1

∑

𝑖=0

𝑀
2
−1

∑

𝑗=1

(𝛿
𝑥
V
𝑖,𝑗
) (𝛿
𝑥
𝑤
𝑖,𝑗
) ,

(𝛿
𝑦
V, 𝛿
𝑦
𝑤)
𝑦

= ℎ
1
ℎ
2

𝑀
1
−1

∑

𝑖=1

𝑀
2
−1

∑

𝑗=0

(𝛿
𝑦
V
𝑖,𝑗
) (𝛿
𝑦
𝑤
𝑖,𝑗
) .

(23)

For any V ∈V
ℎ
, we introduce the following norms:

‖V‖ = (V, V)1/2, 󵄩󵄩󵄩󵄩𝛿]V
󵄩󵄩󵄩󵄩] = (𝛿]V, 𝛿]V)

1/2

] (] = 𝑥, 𝑦) ,

|V|
1
= (
󵄩󵄩󵄩󵄩𝛿𝑥V

󵄩󵄩󵄩󵄩

2

𝑥
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑦
V
󵄩󵄩󵄩󵄩󵄩

2

𝑦

)

1/2

,

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑥
𝛿
2

𝑦
V
󵄩󵄩󵄩󵄩󵄩𝑥
= (𝛿
𝑥
𝛿
2

𝑦
V, 𝛿
𝑥
𝛿
2

𝑦
V)
1/2

𝑥

,

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑦
𝛿
2

𝑥
V
󵄩󵄩󵄩󵄩󵄩𝑦
= (𝛿
𝑦
𝛿
2

𝑥
V, 𝛿
𝑦
𝛿
2

𝑥
V)
1/2

𝑦

.

(24)

Using a simple calculation, we have that for arbitrary V, 𝑤 ∈
V
ℎ
,

(𝛿
2

]V, 𝑤) = −(𝛿]V, 𝛿]𝑤)], ] = 𝑥, 𝑦. (25)

Before proving Theorems 1 and 2, we first introduce the
following embedding theorem from [60, page 281].

Lemma 3. For any V ∈V
ℎ
, one has

‖V‖
∞
≤ 𝑙
2

0
(2√𝑙
1
𝑙
2
)

−1

󵄩󵄩󵄩󵄩Δ ℎV
󵄩󵄩󵄩󵄩∞
, 𝑙
0
= max {𝑙

1
, 𝑙
2
} . (26)

Proof of Theorem 1. Let 𝑒𝑛
𝑖,𝑗
= 𝑈
𝑛

𝑖,𝑗
−𝑢
𝑛

𝑖,𝑗
. Then by (10) and (13),

𝑒
𝑛

𝑖,𝑗
− 𝜇Δ
ℎ
𝑒
𝑛

𝑖,𝑗
+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑒
𝑛

𝑖,𝑗
= 𝑤
𝑛−1

𝑖,𝑗
+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑤
𝑛−1

𝑖,𝑗
+ 𝜇(𝑅

1
)
𝑛

𝑖,𝑗
,

(𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑒
𝑛

𝑖,𝑗
= 0, (𝑥

𝑖
, 𝑦
𝑗
) ∈ 𝜕Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑒
0

𝑖,𝑗
= 0, (𝑥

𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
,

(27)

where

𝑤
𝑛−1

𝑖,𝑗
=

𝑛−1

∑

𝑘=1

𝑏
𝑛,𝑘
𝑒
𝑘

𝑖,𝑗
+ 𝑎
𝑛−1
𝑒
0

𝑖,𝑗
. (28)
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This implies that 𝑒𝑛 = {𝑒𝑛
𝑖,𝑗
| 0 ≤ 𝑖 ≤ 𝑀

1
, 0 ≤ 𝑗 ≤ 𝑀

2
} ∈ V

ℎ

for each 𝑛. Taking the inner product of the first equation in
(27) and −Δ

ℎ
𝑒
𝑛, we get

(𝑒
𝑛

+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑒
𝑛

, −Δ
ℎ
𝑒
𝑛

) + (−𝜇Δ
ℎ
𝑒
𝑛

, −Δ
ℎ
𝑒
𝑛

)

= (𝑤
𝑛−1

+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑤
𝑛−1

, −Δ
ℎ
𝑒
𝑛

) + (𝜇(𝑅
1
)
𝑛

, −Δ
ℎ
𝑒
𝑛

) ,

1 ≤ 𝑛 ≤ 𝑁.

(29)

It follows from (25) that

(𝑒
𝑛

+𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑒
𝑛

, −Δ
ℎ
𝑒
𝑛

)=
󵄨󵄨󵄨󵄨𝑒
𝑛󵄨󵄨󵄨󵄨

2

1
+𝜇
2

(
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑦
𝛿
2

𝑥
𝑒
𝑛
󵄩󵄩󵄩󵄩󵄩

2

𝑦

+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑥
𝛿
2

𝑦
𝑒
𝑛
󵄩󵄩󵄩󵄩󵄩

2

𝑥

).

(30)

Similarly,

(𝑤
𝑛−1

+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑤
𝑛−1

, −Δ
ℎ
𝑒
𝑛

)

=

𝑛−1

∑

𝑘=1

𝑏
𝑛,𝑘
((𝛿
𝑥
𝑒
𝑘

, 𝛿
𝑥
𝑒
𝑛

)
𝑥

+ (𝛿
𝑦
𝑒
𝑘

, 𝛿
𝑦
𝑒
𝑛

)
𝑦

+𝜇
2

(𝛿
𝑦
𝛿
2

𝑥
𝑒
𝑘

, 𝛿
𝑦
𝛿
2

𝑥
𝑒
𝑛

)
𝑦

+ 𝜇
2

(𝛿
𝑥
𝛿
2

𝑦
𝑒
𝑘

, 𝛿
𝑥
𝛿
2

𝑦
𝑒
𝑛

)
𝑥

) .

(31)

Since

𝑏
𝑛,𝑘
= 𝑎
𝑛−𝑘−1

− 𝑎
𝑛−𝑘
> 0,

𝑛−1

∑

𝑘=1

𝑏
𝑛,𝑘
≤ 1, (32)

we have from Cauchy-Schwarz inequality that

(𝑤
𝑛−1

+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑤
𝑛−1

, −Δ
ℎ
𝑒
𝑛

)

≤
1

2

𝑛−1

∑

𝑘=1

𝑏
𝑛,𝑘
(
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑘
󵄨󵄨󵄨󵄨󵄨

2

1

+ 𝜇
2

(
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑦
𝛿
2

𝑥
𝑒
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝑦

+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑥
𝛿
2

𝑦
𝑒
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝑥

))

+
1

2
(
󵄨󵄨󵄨󵄨𝑒
𝑛󵄨󵄨󵄨󵄨

2

1
+ 𝜇
2

(
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑦
𝛿
2

𝑥
𝑒
𝑛
󵄩󵄩󵄩󵄩󵄩

2

𝑦

+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑥
𝛿
2

𝑦
𝑒
𝑛
󵄩󵄩󵄩󵄩󵄩

2

𝑥

)) ,

(𝜇(𝑅
1
)
𝑛

, −Δ
ℎ
𝑒
𝑛

) ≤
𝜇

2
(
󵄩󵄩󵄩󵄩󵄩
(𝑅
1
)
𝑛󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩Δ ℎ𝑒
𝑛󵄩󵄩󵄩󵄩

2

) .

(33)

Substituting (30) and (33) into (29) gives the following:

𝜇
󵄩󵄩󵄩󵄩Δ ℎ𝑒
𝑛󵄩󵄩󵄩󵄩

2

+ 𝐸
𝑛

≤ 𝐸
𝑛−1

+ 𝜇
󵄩󵄩󵄩󵄩󵄩
(𝑅
1
)
𝑛󵄩󵄩󵄩󵄩󵄩

2

, 1 ≤ 𝑛 ≤ 𝑁, (34)

where

𝐸
𝑛

=

𝑛

∑

𝑘=1

𝑎
𝑛−𝑘
(
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑘
󵄨󵄨󵄨󵄨󵄨

2

1

+ 𝜇
2

(
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑦
𝛿
2

𝑥
𝑒
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝑦

+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑥
𝛿
2

𝑦
𝑒
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝑥

)) ,

𝐸
0

= 0.

(35)

This implies that

𝜇

𝑛

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩
Δ
ℎ
𝑒
𝑙
󵄩󵄩󵄩󵄩󵄩

2

+ 𝐸
𝑛

≤ 𝜇

𝑛

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑅
1
)
𝑙
󵄩󵄩󵄩󵄩󵄩󵄩

2

, 1 ≤ 𝑛 ≤ 𝑁. (36)

Since 𝐸𝑛 ≥ 0 and by (12), ‖(𝑅
1
)
𝑙

‖
2

≤ 𝑙
1
𝑙
2
𝐶
2

1
(𝜏

min{2𝛼,2−𝛼}
+

ℎ
2

1
+ ℎ
2

2
)
2, the estimate (21) follows from (36) and (26)

immediately.

Proof of Theorem 2. The proof follows from the similar argu-
ment as that in the proof of Theorem 1 and we give a sketch.
Let 𝑒𝑛
𝑖,𝑗
= 𝑈
𝑛

𝑖,𝑗
− 𝑢
𝑛

𝑖,𝑗
. By (15) and (18),

𝑒
𝑛

𝑖,𝑗
− 𝜇Δ
ℎ
𝑒
𝑛

𝑖,𝑗
+ 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑒
𝑛

𝑖,𝑗
= 𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
𝑒
𝑛−1

𝑖,𝑗
+ 𝑤
𝑛−1

𝑖,𝑗
+ 𝜇(𝑅

2
)
𝑛

𝑖,𝑗
,

(𝑥
𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑒
𝑛

𝑖,𝑗
= 0, (𝑥

𝑖
, 𝑦
𝑗
) ∈ 𝜕Ω

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑒
0

𝑖,𝑗
= 0, (𝑥

𝑖
, 𝑦
𝑗
) ∈ Ω

ℎ
,

(37)

where𝑤𝑛−1
𝑖,𝑗

is defined by (28). Taking the inner product of the
first equation in (37) and −Δ

ℎ
𝑒
𝑛, we get

(𝑒
𝑛

, −Δ
ℎ
𝑒
𝑛

) + (−𝜇Δ
ℎ
𝑒
𝑛

, −Δ
ℎ
𝑒
𝑛

)

+ (𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
(𝑒
𝑛

− 𝑒
𝑛−1

) , −Δ
ℎ
𝑒
𝑛

)

= (𝑤
𝑛−1

, −Δ
ℎ
𝑒
𝑛

) + (𝜇(𝑅
2
)
𝑛

, −Δ
ℎ
𝑒
𝑛

) , 1 ≤ 𝑛 ≤ 𝑁.

(38)

Since

(𝑒
𝑛

, −Δ
ℎ
𝑒
𝑛

) =
󵄨󵄨󵄨󵄨𝑒
𝑛󵄨󵄨󵄨󵄨

2

1
, (−𝜇Δ

ℎ
𝑒
𝑛

, −Δ
ℎ
𝑒
𝑛

) = 𝜇
󵄩󵄩󵄩󵄩Δ ℎ𝑒
𝑛󵄩󵄩󵄩󵄩

2

,

(𝜇
2

𝛿
2

𝑥
𝛿
2

𝑦
(𝑒
𝑛

− 𝑒
𝑛−1

) , −Δ
ℎ
𝑒
𝑛

)

≥
𝜇
2

2
(
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑦
𝛿
2

𝑥
𝑒
𝑛
󵄩󵄩󵄩󵄩󵄩

2

𝑦

+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑥
𝛿
2

𝑦
𝑒
𝑛
󵄩󵄩󵄩󵄩󵄩

2

𝑥

−
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑦
𝛿
2

𝑥
𝑒
𝑛−1
󵄩󵄩󵄩󵄩󵄩

2

𝑦

−
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑥
𝛿
2

𝑦
𝑒
𝑛−1
󵄩󵄩󵄩󵄩󵄩

2

𝑥

) ,

(𝑤
𝑛−1

, −Δ
ℎ
𝑒
𝑛

) ≤
1

2
(

𝑛−1

∑

𝑘=1

𝑏
𝑛,𝑘

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑘
󵄨󵄨󵄨󵄨󵄨

2

1

+
󵄨󵄨󵄨󵄨𝑒
𝑛󵄨󵄨󵄨󵄨

2

1
) ,

(𝜇(𝑅
2
)
𝑛

, −Δ
ℎ
𝑒
𝑛

) ≤
𝜇

2
(
󵄩󵄩󵄩󵄩󵄩
(𝑅
2
)
𝑛󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩Δ ℎ𝑒
𝑛󵄩󵄩󵄩󵄩

2

) ,

(39)

we obtain that

𝜇
󵄩󵄩󵄩󵄩Δ ℎ𝑒
𝑛󵄩󵄩󵄩󵄩

2

+ 𝐹
𝑛

≤ 𝐹
𝑛−1

+ 𝜇
󵄩󵄩󵄩󵄩󵄩
(𝑅
2
)
𝑛󵄩󵄩󵄩󵄩󵄩

2

, 1 ≤ 𝑛 ≤ 𝑁, (40)

where

𝐹
𝑛

=

𝑛

∑

𝑘=1

𝑎
𝑛−𝑘

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑘
󵄨󵄨󵄨󵄨󵄨

2

1

+ 𝜇
2

(
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑦
𝛿
2

𝑥
𝑒
𝑛
󵄩󵄩󵄩󵄩󵄩

2

𝑦

+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑥
𝛿
2

𝑦
𝑒
𝑛
󵄩󵄩󵄩󵄩󵄩

2

𝑥

) ,

𝐹
0

= 0.

(41)
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Table 1: The maximum norm error and the temporal accuracy of 𝑢𝑛
𝑖,𝑗
for Example 4.

𝜏
𝐿
1
-ADI scheme (ℎ = 𝜋/200) BD-ADI scheme (ℎ = 𝜋/200)

𝛼 error(𝜏, ℎ) order(𝜏) 𝛼 error(𝜏, ℎ) order(𝜏)

1/20

1/2

1.1393833280𝑒 − 03 0.860979

1/3

1.5093973350𝑒 − 03 1.266265
1/40 6.2732035469𝑒 − 04 0.882911 6.2750871863𝑒 − 04 1.285881
1/80 3.4017847773𝑒 − 04 0.910189 2.5735409495𝑒 − 04 1.301046
1/160 1.8101416127𝑒 − 04 0.936057 1.0444249965𝑒 − 04 1.319085
1/320 9.4608749632𝑒 − 05 0.959731 4.1859417673𝑒 − 05 1.351071
1/640 4.8643355059𝑒 − 05 1.6408936533𝑒 − 05

1/20

2/3

1.2585768427𝑒 − 03 1.260363

1/2

3.6622305737𝑒 − 04 1.463622
1/40 5.2537885652𝑒 − 04 1.288661 1.3278581143𝑒 − 04 1.474131
1/80 2.1505367805𝑒 − 04 1.303399 4.7796268443𝑒 − 05 1.488745
1/160 8.7133397922𝑒 − 05 1.307319 1.7030874694𝑒 − 05 1.514438
1/320 3.5208078966𝑒 − 05 1.297645 5.9613630191𝑒 − 06 1.535827
1/640 1.4322284746𝑒 − 05 2.0559641134𝑒 − 06

1/20

3/4

2.3004703569𝑒 − 03 1.174836

2/3

1.4653603051𝑒 − 03 1.207510
1/40 1.0189566568𝑒 − 03 1.197125 6.3452327488𝑒 − 04 1.242740
1/80 4.4441136189𝑒 − 04 1.210140 2.6813016026𝑒 − 04 1.264770
1/160 1.9208646006𝑒 − 04 1.216775 1.1158658090𝑒 − 04 1.276115
1/320 8.2643912130𝑒 − 05 1.217031 4.6074754492𝑒 − 05 1.274583
1/640 3.5550691871𝑒 − 05 1.9044750580𝑒 − 05

Therefore

𝜇

𝑛

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩
Δ
ℎ
𝑒
𝑙
󵄩󵄩󵄩󵄩󵄩

2

+ 𝐹
𝑛

≤ 𝜇

𝑛

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑅
2
)
𝑙
󵄩󵄩󵄩󵄩󵄩󵄩

2

, 1 ≤ 𝑛 ≤ 𝑁. (42)

The estimate (22) follows from the previous inequality, (17),
and (26) immediately.

4. Numerical Results

In this section,we give somenumerical results to demonstrate
the accuracy of the 𝐿

1
-ADI scheme (14) and the BD-ADI

scheme (19) with respect to the discrete maximum norm.
Some detailed numerical comparisons of these two ADI
schemes with the implicit scheme proposed in [43] can be
found in [59]. The dependence of the solution of (1) on the
anomalous diffusion exponent 𝛼 was also exhibited in [59]
through some numerical results.

In our numerical computations, we take an equal mesh
size in each of the space directions; that is, ℎ

1
= ℎ
2
= ℎ. We

compute the discrete maximum norm error of the numerical
solution 𝑢𝑛

𝑖,𝑗
by

error (𝜏, ℎ) = (𝜏

𝑁

∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑙

− 𝑢
𝑙
󵄩󵄩󵄩󵄩󵄩∞
)

1/2

, (43)

and its convergence orders by

order (𝜏) = log
2
(
error (2𝜏, ℎ)

error (𝜏, ℎ)
) ,

order (ℎ) = log
2
(
error (𝜏, 2ℎ)

error (𝜏, ℎ)
) ,

(44)

where 𝑈𝑛
𝑖,𝑗
represents the value of the exact analytic solution

of (1) at (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑛
).

Example 4. We consider the problem (1) in the domain Ω =
(0, 𝜋) × (0, 𝜋), and let 𝑇 = 1/2. Assume that the solution
𝑢(𝑥, 𝑦, 𝑡) of this problem is 𝑢(𝑥, 𝑦, 𝑡) = 𝑡2 sin(𝑥) sin(𝑦). It can
be checked that the corresponding known functions are given
by

𝑓 (𝑥, 𝑦, 𝑡) = 2 sin (𝑥) sin (𝑦) ( 𝑡
2−𝛼

Γ (3 − 𝛼)
+ 𝑡
2

) ,

𝜑 (𝑥, 𝑦, 𝑡) = 𝑡
2 sin (𝑥) sin (𝑦) , 𝜓 (𝑥, 𝑦) = 0.

(45)

In Table 1, we present the maximum norm error
error(𝜏, ℎ) and the temporal convergence order order(𝜏) of
the numerical solution 𝑢𝑛

𝑖,𝑗
by the 𝐿

1
-ADI scheme (14) and

the BD-ADI scheme (19). We see that the 𝐿
1
-ADI scheme

has the temporal accuracy of min{2𝛼, 2 − 𝛼} in the discrete
maximum norm, and the best temporal accuracy is attained
at 𝛼 = 2/3. It is also seen that the BD-ADI scheme generates
the temporal accuracy of min{1 + 𝛼, 2 − 𝛼} in the discrete
maximum norm, and it gets the best temporal accuracy
when 𝛼 = 1/2. These observations coincide well with the
theoretical analysis.

Table 2 gives themaximumnorm error error(𝜏, ℎ) and the
spatial convergence order order(ℎ) of the numerical solution
𝑢
𝑛

𝑖,𝑗
by the 𝐿

1
-ADI scheme (14) and the BD-ADI scheme (19).

As expected from the theoretical analysis, these two schemes
have the second-order spatial accuracy.
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Table 2: The maximum norm error and the spatial accuracy of 𝑢𝑛
𝑖,𝑗
for Example 4.

ℎ
𝐿
1
-ADI scheme (𝛼 = 2/3, 𝜏 = 1/4000) BD-ADI scheme (𝛼 = 1/2, 𝜏 = 1/4000)

error(𝜏, ℎ) order(ℎ) error(𝜏, ℎ) order(ℎ)

𝜋/4 1.4977394377𝑒 − 03 1.994343 1.8149573747𝑒 − 03 2.001730
𝜋/8 3.7590600110𝑒 − 04 1.989441 4.5319556650𝑒 − 04 2.000950
𝜋/16 9.4666844874𝑒 − 05 1.960585 1.1322433260𝑒 − 04 2.002088
𝜋/32 2.4322216030𝑒 − 05 1.844870 2.8265146732𝑒 − 05 2.007753
𝜋/64 6.7708311670𝑒 − 06 7.0284169450𝑒 − 06

Table 3: The maximum norm error and the temporal accuracy of 𝑢𝑛
𝑖,𝑗
for Example 5.

𝜏
𝐿
1
-ADI scheme (ℎ = 1/200) BD-ADI scheme (ℎ = 1/200)

𝛼 error(𝜏, ℎ) order(𝜏) 𝛼 error(𝜏, ℎ) order(𝜏)

1/20

1/2

4.6386801902𝑒 − 03 0.835782

1/3

3.0682418814𝑒 − 03 1.247710
1/40 2.5989567998𝑒 − 03 0.906370 1.2920863692𝑒 − 03 1.295329
1/80 1.3866102907𝑒 − 03 0.947443 5.2645185538𝑒 − 04 1.315075
1/160 7.1902789341𝑒 − 04 0.970534 2.1158337290𝑒 − 04 1.325682
1/320 3.6693233527𝑒 − 04 0.983962 8.4413446753𝑒 − 05 1.335982
1/640 1.8551714096𝑒 − 04 3.3438043901𝑒 − 05

1/20

2/3

1.5621553331𝑒 − 03 1.192172

1/2

1.5491678500𝑒 − 03 1.423830
1/40 6.8366714097𝑒 − 04 1.262779 5.7740819917𝑒 − 04 1.463914
1/80 2.8491177407𝑒 − 04 1.297640 2.0931522211𝑒 − 04 1.481554
1/160 1.1589959988𝑒 − 04 1.317329 7.4956359178𝑒 − 05 1.496663
1/320 4.6507867889𝑒 − 05 1.333601 2.6562452368𝑒 − 05 1.524750
1/640 1.8453234155𝑒 − 05 9.2315064167𝑒 − 06

1/20

3/4

1.7962917770𝑒 − 03 1.063599

2/3

1.1129679333𝑒 − 03 1.112230
1/40 8.5941268352𝑒 − 04 1.128142 5.1483494465𝑒 − 04 1.171085
1/80 3.9318529135𝑒 − 04 1.161548 2.2863166690𝑒 − 04 1.211600
1/160 1.7576660520𝑒 − 04 1.180856 9.8720772742𝑒 − 05 1.239224
1/320 7.7528818903𝑒 − 05 1.191836 4.1818156321𝑒 − 05 1.255314
1/640 3.3937881480𝑒 − 05 1.7517727276𝑒 − 05

Example 5. We consider the subdiffusion equation

𝑢
𝑡
(𝑥, 𝑦, 𝑡)

=
0
D
1−𝛼

𝑡
(Δ𝑢 (𝑥, 𝑦, 𝑡)) + 𝑒

𝑥+𝑦

((1 + 𝛼) 𝑡
𝛼

−
2Γ (2 + 𝛼)

Γ (1 + 2𝛼)
𝑡
2𝛼

) ,

(𝑥, 𝑦) ∈ Ω, 𝑡 ∈ [0, 1] ,

(46)

with boundary and initial conditions

𝑢 (𝑥, 𝑦, 𝑡) = 𝑒
𝑥+𝑦

𝑡
1+𝛼

, (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 ∈ (0, 1] ,

𝑢 (𝑥, 𝑦, 0) = 0, (𝑥, 𝑦) ∈ Ω,

(47)

where Ω = (0, 1) × (0, 1) and
0
D1−𝛼
𝑡

denotes the Riemann-
Liouville fractional derivative operator defined as

0
D
1−𝛼

𝑡
𝑦 (𝑡) =

1

Γ (𝛼)

d
d𝑡
∫

𝑡

0

𝑦 (𝑠)

(𝑡 − 𝑠)
1−𝛼

d𝑠, 0 < 𝛼 < 1.

(48)

Operating Riemann-Liouville fractional derivative oper-
ator
0
D𝛼−1
𝑡

on both sides of (46), we obtain the equivalent
problem of the subdiffusion equation with the temporal
Caputo fractional derivative [40, 42, 59] as follows:

𝐶

0
D
𝛼

𝑡
𝑢 (𝑥, 𝑦, 𝑡) = Δ𝑢 (𝑥, 𝑦, 𝑡) + 𝑒

𝑥+𝑦

(Γ (2 + 𝛼) 𝑡 − 2𝑡
1+𝛼

) ,

(𝑥, 𝑦) ∈ Ω, 𝑡 ∈ [0, 1] ,

𝑢 (𝑥, 𝑦, 𝑡) = 𝑒
𝑥+𝑦

𝑡
1+𝛼

, (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 ∈ (0, 1] ,

𝑢 (𝑥, 𝑦, 0) = 0, (𝑥, 𝑦) ∈ Ω.

(49)

We now solve the aforementioned problem by the 𝐿
1
-

ADI scheme (14) and the BD-ADI scheme (19). Tables 3
and 4 give the maximum norm error error(𝜏, ℎ) and the
convergence orders order(𝜏) and order(ℎ) of the numerical
solution 𝑢𝑛

𝑖,𝑗
. It is easily seen that the numerical results

confirm the theoretical analysis results.



8 Advances in Mathematical Physics

Table 4: The maximum norm error and the spatial accuracy of 𝑢𝑛
𝑖,𝑗
for Example 5.

ℎ
𝐿
1
-ADI scheme (𝛼 = 2/3, 𝜏 = 1/4000) BD-ADI scheme (𝛼 = 1/2, 𝜏 = 1/4000)

error(𝜏, ℎ) order(ℎ) error(𝜏, ℎ) order(ℎ)

1/4 8.9083790169𝑒 − 04 1.901804 9.4164046481𝑒 − 04 1.901896
1/8 2.3839587645𝑒 − 04 1.985610 2.5197489313𝑒 − 04 1.974325
1/16 6.0196414976𝑒 − 05 2.072000 6.4124816806𝑒 − 05 2.032967
1/32 1.4316490746𝑒 − 05 2.263270 1.5669032476𝑒 − 05 2.158045
1/64 2.9821150680𝑒 − 06 3.5107982244𝑒 − 06

5. Conclusions

Wehave studied two ADI finite differencemethods for a two-
dimensional fractional subdiffusion equation. An explicit
error estimate for each of the twomethods has been provided
in the discrete maximum norm. It has been shown that
the methods have the same order as their truncation errors
with respect to the discrete maximum norm. The maximum
norm error estimates presented here are more preferable for
measuring computation errors in practice, compared to the
𝐻
1-norm error estimates in [59]. Numerical results have

confirmed the theoretical analysis results.
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Let 𝑆𝐻 be a subfractional Brownian motion with index 0 < 𝐻 < 1. Based on the S-transform in white noise analysis we study the
stochastic integral with respect to 𝑆𝐻, and we also prove a Girsanov theorem and derive an Itô formula. As an application we study
the solutions of backward stochastic differential equations driven by 𝑆𝐻 of the form−𝑑𝑌

𝑡
= 𝑓(𝑡, 𝑌

𝑡
, 𝑍

𝑡
)𝑑𝑡−𝑍

𝑡
𝑑𝑆
𝐻

𝑡
, 𝑡 ∈ [0, 𝑇], 𝑌

𝑇
= 𝜉,

where the stochastic integral used in the above equation is Pettis integral. We obtain the explicit solutions of this class of equations
under suitable assumptions.

1. Introduction

As an extension of Brownian motion, Bojdecki et al. [1, 2]
introduced and studied a rather special class of self-similar
Gaussian processes which preserves many properties of the
fractional Brownian motion of theWeyl type here and below.
This process arises from occupation time fluctuations of
branching particle systems with Poisson initial condition.
This process is called the subfractional Brownianmotion (sub-
fBm). The so-called sub-fBm with index𝐻 ∈ (0, 1) is a mean
zero Gaussian process 𝑆𝐻 = {𝑆𝐻

𝑡
, 𝑡 ≥ 0} with 𝑆𝐻

0
= 0 and the

covariance

𝐸 [𝑆
𝐻

𝑡
𝑆
𝐻

𝑠
] = 𝑠

2𝐻

+ 𝑡
2𝐻

−
1

2
[(𝑠 + 𝑡)

2𝐻

+ |𝑡 − 𝑠|
2𝐻

] (1)

for all 𝑠, 𝑡 ≥ 0. For 𝐻 = 1/2, 𝑆𝐻 coincides with the standard
Brownian motion 𝐵. 𝑆𝐻 is neither a semimartingale nor a
Markov process unless 𝐻 = 1/2. So many of the powerful
techniques from stochastic analysis are not available when
dealing with 𝑆𝐻. As a Gaussian process, it is possible to
construct a stochastic calculus of variations with respect to
𝑆
𝐻 (see, e.g., Alòs et al. [3] and Nualart [4]).The sub-fBm has

properties analogous to those of fractional Brownian motion
and satisfies the following estimates:

[(2 − 2
2𝐻−1

) ∧ 1] (𝑡 − 𝑠)
2𝐻

≤ 𝐸 [(𝑆
𝐻

𝑡
− 𝑆

𝐻

𝑠
)
2

]

≤ [(2 − 2
2𝐻−1

) ∨ 1] (𝑡 − 𝑠)
2𝐻

.

(2)

Thus, Kolmogorov’s continuity criterion implies that subfrac-
tional Brownian motion is Hölder continuous of order 𝛾 for
any 𝛾 < 𝐻. But its increments are not stationary. More works
for sub-fBm can be found in Bojdecki et al. [5], Liu and Yan
[6], Shen and Chen [7], Tudor [8–11], Yan et al. [12–14], and
the references therein.

On the other hand, it is well known that general backward
stochastic differential equations (BSDEs) driven by a Brown-
ianmotionwere first studied by Pardoux andPeng [15], where
they also gave a probabilistic interpretation for the viscosity
solution of semilinear partial differential equations. Because
of their important value in various areas including probability
theory, finance, and control, BSDEs have been subject to the
attention and interest of researchers. A survey and complete
literature for BSDEs could be found in Peng [16]. Recently,
motivated by stochastic control problems, Biagini et al. [17]
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first studied linear BSDEs driven by a fractional Brownian
motion, where existence and uniqueness were discussed in
order to study a maximum principle. Bender [18] gave
explicit solutions for a linear BSDEs driven by a fractional
Brownian motion, and Hu and Peng [19] studied the linear
and nonlinear BSDEs driven by a fractional Brownianmotion
using the quasi-conditional expectation. More works for the
BSDEs driven by Brownian motion and fractional Brownian
motion can be found in Bisumt [20], Geiss et al. [21], Karoui
et al. [22], Ma et al. [23], Maticiuc and Nie [24], Peng [25],
and the references therein. In this paper, we study the BSDEs
driven by a sub-fBm 𝑆𝐻 of the form

−𝑑𝑌
𝑡
= 𝑓 (𝑡, 𝑌

𝑡
, 𝑍
𝑡
) 𝑑𝑡 − 𝑍

𝑡
𝑑𝑆
𝐻

𝑡
, 𝑡 ∈ [0, 𝑇] ,

𝑌
𝑇
= 𝜉,

(3)

where the stochastic integral used in above equation is Pettis
integral.

In recent years, there has been considerable interest in
studying fractional Brownian motion due to its applications
in various scientific areas including telecommunications,
turbulence, image processing, and finance and also due to
some of its compact properties such as long-range depen-
dence, self-similarity, stationary increments, and Hölder’s
continuity (see, e.g., Mandelbrot and van Ness [26], Biagini
et al. [27], Hu [28], Mishura [29], Li [30], Li and Zhao
[31, 32], and Lim and Muniandy [33]). Moreover, many
authors have proposed to use more general self-similar
Gaussian processes and random fields as stochastic models.
Such applications have raised many interesting theoretical
questions about self-similar Gaussian processes and fields in
general.Therefore, other generalizations of Brownianmotion
have been introduced such as sub-fBm, bifractional Brownian
motion, andweighted-fractional Brownianmotion.However,
in contrast to the extensive studies on fractional Brownian
motion, there has been little systematic investigation on other
self-similar Gaussian processes. The main reason for this
is the complexity of dependence structures for self-similar
Gaussian processes which do not have stationary increments.
The sub-fBm has properties analogous to those of fractional
Brownian motion (self-similarity, long-range dependence,
Hölder paths, the variation, and the renormalized varia-
tion). However, in comparison with fractional Brownian
motion, the sub-fBm has nonstationary increments and the
increments over nonoverlapping intervals are more either
weakly or strongly correlated and their covariance decays
polynomially as a higher rate in comparison with fractional
Brownian motion (for this reason in Bojdecki et al. [1] is
called subfractional Brownianmotion).The abovementioned
properties make sub-fBm a possible candidate for models
which involve long-range dependence, self-similarity, and
nonstationary. Thus, it seems interesting to study the BSDEs
driven by a sub-fBm.

This paper is organized as follows. Section 2 contains
some basic results. In Section 3, we give a definition of
subfractional Itô integral based on an S-transform in white
noise analysis. As an application we establish a Girsanov
theorem for this integral. In Section 4, we give an Itô formula
for functionals of a Wiener integral for a sub-fBm. We also

discuss the geometric sub-fBm in this section. Section 5
considers the BSDEs (3). Finally, we will conclude the paper
in Section 6.

2. Preliminaries

In this section, we briefly recall some basic definitions and
results of sub-fBm.Throughout this paper we assume that 0 <
𝐻 < 1 is arbitrary but fixed and let 𝑆𝐻 = {𝑆𝐻

𝑡
, 0 ≤ 𝑡 ≤ 𝑇}

be a one-dimensional sub-fBm with Hurst index 𝐻 defined
on (Ω,F𝐻

, 𝑃). To simplify, we denote 𝛼 = 𝐻 − 1/2, and let
𝐵 = {𝐵

𝑡
}
𝑡∈R be a two-sides Brownian motion and

1
(𝑎,𝑏)
(𝑡) =

{{

{{

{

1, if 𝑎 ≤ 𝑡 < 𝑏,
−1, if 𝑏 ≤ 𝑡 < 𝑎,
0, others.

(4)

We also denote

(i) |𝑓|
2
: the usual 𝐿2(R)-norm, and the corresponding

inner product is denoted by (𝑓, 𝑔)
2
;

(ii) 𝑆(R): the Schwartz space of rapidly decreasing
smooth functions of real valued;

(iii) 𝐼(𝑓): the Wiener integral ∫
R
𝑓(𝑠)𝑑𝐵

𝑠
of the function

𝑓 ∈ 𝐿
2

(R);

(iv) G: the 𝜎-field generated by {𝐼(𝑓), 𝑓 ∈ 𝐿2(R)};

(v) ‖Φ‖
2
: the 𝐿2(Ω,G, 𝑃)-norm.

𝑆
𝐻 can be written as a Volterra process with the following

moving average representation:

𝑆
𝐻

𝑡
= 𝐶

𝛼

𝐻
∫

R

[(𝑡 − 𝑠)
𝛼

+
+ (𝑡 + 𝑠)

𝛼

−
− 2(−𝑠)

𝛼

+
] 𝑑𝐵

𝑠
, (5)

where 𝐶𝛼
𝐻
= Γ(𝐻 + 1/2)/√𝐻 sin𝜋𝐻Γ(2𝐻), 𝑥

+
= max(𝑥, 0),

𝑥
−
= max(−𝑥, 0). The sub-fBm 𝑆

𝐻 is also possible to
construct a stochastic calculus of variations with respect
to the Gaussian process 𝑆𝐻, which will be related to the
Malliavin calculus. Some surveys and complete literatures for
Malliavin calculus ofGaussian process could be found inAlòs
et al. [3], Nualart [4] and Tudor [9, 10], Zähle [34], and the
references therein.

Let 0 < 𝛽 < 1. Consider Weyl’s type fractional integrals
𝐼
𝛽

±
of order 𝛽

(𝐼
𝛽

−
𝑓) (𝑥) :=

1

Γ (𝛽)
∫

∞

𝑥

𝑓 (𝑡) (𝑡 − 𝑥)
𝛽−1

𝑑𝑡,

(𝐼
𝛽

+
𝑓) (𝑥) :=

1

Γ (𝛽)
∫

𝑥

−∞

𝑓 (𝑡) (𝑥 − 𝑡)
𝛽−1

𝑑𝑡,

(6)

if the integrals exist for almost all 𝑥 ∈ R, andMarchand’s type
fractional derivatives𝐷𝛽

±
of order 𝛽

(𝐷
𝛽

±
𝑓) := lim

𝜀↓0
+

(𝐷
𝛽

±,𝜀
𝑓) (7)
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if the limit exists in 𝐿𝑝(R) for some 𝑝 > 1, where

(𝐷
𝛽

±,𝜀
𝑓) (𝑥) :=

𝛽

Γ (1 − 𝛽)
∫

∞

𝜀

𝑓 (𝑥) − (𝑥 ∓ 𝑡)

𝑡1+𝛽
𝑑𝑡 (8)

for 𝜀 > 0. Define the operator

𝑀
𝐻

±
𝑓 :=

{{{{{

{{{{{

{

𝐶
𝐻
𝐷
−𝛼

±
𝑓, if 0 < 𝐻 < 1

2
,

𝑓, if 𝐻 = 1
2
,

𝐶
𝐻
𝐼
𝛼

±
𝑓, if 1

2
< 𝐻 < 1,

(9)

where 𝐶
𝐻
= √2𝐻 sin𝜋𝐻Γ(2𝐻) and Γ(⋅) denotes the gamma

function defined by

Γ (𝑧) = ∫

∞

0

𝑡
𝑧−1

𝑒
−𝑡

𝑑𝑡, 𝑧 > 0. (10)

Recall that we now give a stochastic version of the Hardy-
Littlewood theorem as follows.

Theorem 1 (Theorem 2.10 in [35]). Let 1/2 < 𝐻 < 1 and
let the operators 𝑀𝐻

±
be defined as above. Then 𝑀𝐻

±
is a

continuous operator from 𝐿𝑝(R; Ω) into 𝐿𝑞(R; Ω) if 1 < 𝑝 <
2/(2𝐻 − 1) and 𝑞 = 2𝑝/(2 − 𝑝(2𝐻 − 1)).

Define the function

𝑓
0

(𝑥) := {
𝑓 (𝑥) , 𝑥 ≥ 0,

−𝑓 (−𝑥) , 𝑥 < 0
(11)

for any Borel function 𝑓 on R
+
. Then the function 𝑓0 is

odd, which is called the odd extension of 𝑓. Based on the
moving average representation (5), we can show the following
proposition.

Proposition 2. Let the operators 𝑀𝐻

±
be defined as above.

Then𝑀𝐻

−
(1
0

[0,𝑡)
) ∈ 𝐿

2

(R) and 𝑆𝐻 admits the following integral
representation:

𝑆
𝐻

𝑡
=
1

√2

∫

R

𝑀
𝐻

−
(1
0

[0,𝑡)
) (𝑠) 𝑑𝐵

𝑠
(12)

for all 𝑡 ≥ 0.

We finally recall the S-transform. The S-transform is
an important tool in white noise analysis. Here we give a
definition and state some results that do not depend on
properties of the white noise space. Denote the S-transform
ofΦ ∈ 𝐿2(Ω,G, 𝑃) (see, e.g., [35, 36] for more details) by

SΦ(𝜂) := 𝐸 [Φ⋅ : 𝑒
𝐼(𝜂)

:] , 𝜂 ∈ S (R) , (13)

where the Wick exponential : 𝑒𝐼(𝜂): of 𝐼(𝜂) is given by

: 𝑒
𝐼(𝜂)

:= 𝑒
𝐼(𝜂)−(1/2)|𝜂|

2

2 . (14)

The S-transform has the following important properties.

(𝐴
1
)The S-transform is injective; that is, SΦ(𝜂) = SΨ(𝜂)
for all 𝜂 ∈ S(R), implies thatΦ = Ψ.

(𝐴
2
) Let𝑓

𝑛
be a sequence that converges to𝑓 in𝐿2(R); then

: 𝑒𝐼(𝑓𝑛): converges to : 𝑒𝐼(𝑓): in 𝐿2(R).

(𝐴
3
) 𝐸[: 𝑒

𝐼(𝑓)

:] = 1 for 𝑓 ∈ 𝐿2(R). Hence it can deduce a
probability measure onF by

𝑑𝑄
𝑓
=: 𝑒

𝐼(𝑓)

: 𝑑𝑃, (15)

especially, for 𝜂 ∈ S(R), we can rewrite the S-tran-
sform as

SΦ(𝜂) = 𝐸
𝑄
𝜂
[Φ] . (16)

(𝐴
4
) Let 𝑋 : R × Ω → R be a progressively measurable
process such that

𝐸∫

R

󵄨󵄨󵄨󵄨𝑋𝑡
󵄨󵄨󵄨󵄨

2

𝑑𝑡 < ∞. (17)

Then ∫
R
𝑋
𝑡
𝑑𝐵

𝑡
is the unique element in 𝐿2(Ω,G, 𝑃) with

S-transform given by

∫

R

(S𝑋
𝑡
) (𝜂) 𝜂 (𝑡) 𝑑𝑡. (18)

(𝐴
5
)The Wiener integral 𝐼(𝑓), 𝑓 ∈ 𝐿2(R) is the unique
element in 𝐿2(Ω,G, 𝑃) with S-transform given by

∫

R

𝑓 (𝑡) 𝜂 (𝑡) 𝑑𝑡. (19)

The following result points out that the operators 𝑀𝐻

±

interchanges with the S-transform.

Lemma 3 (Lemma 2.9 in [35]). Let𝑀𝐻

±
𝑋 exist for some 𝑋 :

R → 𝐿
2

(Ω,G, 𝑃). Then one has

𝐸 [(𝑀
𝐻

±
𝑋)

𝑡

Ψ] = 𝑀
𝐻

±
(𝐸 [𝑋

𝑡
Ψ]) (20)

for allΨ ∈ 𝐿2(Ω,G, 𝑃). In the case𝐻 < 1/2 the convergence of
the fractional derivative on the right-hand side is in the 𝐿𝑝(R)
sense, if𝑀−(𝐻−1/2)

±
𝑋 ∈ 𝐿

𝑝

(R; 𝐿2(Ω,G, 𝑃)). In particular, the
operators𝑀𝐻

±
interchange with the S-transform.

3. A Subfractional Itô Integral

In this section, based on the S-transform we aim to define
the subfractional Itô integral, denoted byΦ = ∫𝑏

𝑎

𝑋
𝑡
𝑑𝑆
𝐻

𝑡
with

0 ≤ 𝑎 < 𝑏, and introduce the Girsanov theorem. To this
end, inspired by theHitsuda-Skorohod integral, we define the
subfractional Itô integral as the unique random variable Φ
such that

SΦ(𝜂) = ∫
𝑏

𝑎

S (𝑋
𝑡
) (𝜂)

𝑑

𝑑𝑡
S (𝑆

𝐻

𝑡
) (𝜂) 𝑑𝑡 (21)
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for all 𝜂 ∈ S(R), provided the integral exists under suitable
conditions. According to (12) and Property (𝐴

5
), we have

𝑑

𝑑𝑡
S (𝑆

𝐻

𝑡
) (𝜂)

=
1

√2

𝑑

𝑑𝑡
∫

R

𝑀
𝐻

−
(1
0

[0,𝑡)
) 𝜂 (𝑠) 𝑑𝑠

=
1

√2

𝑑

𝑑𝑡
∫

R

(1
0

[0,𝑡)
)𝑀

𝐻

+
𝜂 (𝑠) 𝑑𝑠

=
1

√2

𝑑

𝑑𝑡
∫

𝑡

0

𝑀
𝐻

+
𝜂 (𝑠) 𝑑𝑠 −

1

√2

𝑑

𝑑𝑡
∫

0

−𝑡

𝑀
𝐻

+
𝜂 (𝑠) 𝑑𝑠

=
1

√2

[𝑀
𝐻

+
𝜂 (𝑡) − 𝑀

𝐻

+
𝜂 (−𝑡)] .

(22)

Combining this with the fact (𝐴
1
) in Section 2, we give the

following definition.

Definition 4. Let 𝑀 ⊂ R+ be a Borel set. A mapping 𝑋 :

𝑀 → 𝐿
2

(Ω,G, 𝑃) is said to be subfractional Itô integrable
on𝑀 if

(S𝑋.) (𝜂) [(𝑀
𝐻

+
𝜂) (⋅) − (𝑀

𝐻

+
𝜂) (−⋅)] ∈ 𝐿

1

(𝑀) (23)

for any 𝜂 ∈ S(R), and there is a Φ ∈ 𝐿2(Ω,G, 𝑃) such that

SΦ(𝜂) =
1

√2

∫

𝑀

S (𝑋
𝑡
) (𝜂) [(𝑀

𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)] 𝑑𝑡

(24)

for all 𝜂 ∈ 𝑆(R).

It is important to note that Φ in the above definition is
unique because the S-transform is injective, which is called
the subfractional Itô integral of 𝑋 on𝑀 and we denote it by

Φ = ∫

𝑀

𝑋
𝑡
𝑑𝑆
𝐻

𝑡
. (25)

In this paper, sub-fractional Itô integralalways refers to
the S-transform approach proposed in Definition 4.

Proposition 5. The following statements hold.

(1) For any 𝑎 < 𝑏 one has

𝑆
𝐻

𝑏
− 𝑆

𝐻

𝑎
= ∫

𝑏

𝑎

𝑑𝑆
𝐻

𝑡
. (26)

(2) Let𝑋 : [𝑎, 𝑏] → 𝐿
2

(Ω,G, 𝑃) be subfractional Itô inte-
grable for 0 ≤ 𝑎 < 𝑏. Then

∫

𝑏

𝑎

𝑋
𝑡
𝑑𝑆
𝐻

𝑡
= ∫

R

1
[𝑎,𝑏]
(𝑡) 𝑋

𝑡
𝑑𝑆
𝐻

𝑡
,

𝐸 [∫

𝑏

𝑎

𝑋
𝑡
𝑑𝑆
𝐻

𝑡
] = 0.

(27)

Proof. These results are some simple examples.

Recall that the Wick product 𝐹 ⬦ 𝐺 of 𝐹, 𝐺 ∈ 𝐿2(Ω,G, 𝑃)
is an element 𝐹 ⬦ 𝐺 ∈ 𝐿2(Ω,G, 𝑃) such that

S (𝐹 ⬦ 𝐺) (𝜂) = S (𝐹) (𝜂)S (𝐺) (𝜂) (28)

for all 𝜂 ∈ S(R). The following theorem expresses the
relationship between the subfractional Itô integral defined as
above and the integral based on Wick product ⬦.

Theorem6. Let𝑋 : R+ → 𝐿
2

(Ω,G, 𝑃) and𝑌 ∈ 𝐿2(Ω,G, 𝑃);
then

𝑌 ⬦ ∫

R+
𝑋
𝑠
𝑑𝑆
𝐻

𝑠
= ∫

R+
𝑌 ⬦ 𝑋

𝑠
𝑑𝑆
𝐻

𝑠
(29)

in the sense that if one side is well defined then so is the other,
and both coincide.

We can obtain it by calculating the S-transform of both
sides. In particular, for 𝑌 ∈ 𝐿2(Ω,G, 𝑃), this theorem implies
that

𝑌 ⬦ (𝑆
𝐻

𝑏
− 𝑆

𝐻

𝑎
) = ∫

R+
1
(𝑎,𝑏)
(𝑠) 𝑌𝑑𝑆

𝐻

𝑠
. (30)

It means that the subfractional Itô integral is the 𝐿2(Ω,G, 𝑃)-
limit of Wick-Riemann sums for some suitable processes.
That is,

∫

𝑇

0

𝑋
𝑠
𝑑𝑆
𝐻

𝑠
= lim
|𝜋𝑛|→0

𝑛

∑

𝑖=0

𝑋
𝑠
𝑖

⬦ (𝑆
𝐻

𝑠
𝑖+1

− 𝑆
𝐻

𝑠
𝑖

) (31)

for some suitable processes 𝑋, where 𝜋
𝑛
= {0 = 𝑠

0
< 𝑠

1
<

⋅ ⋅ ⋅ < 𝑠
𝑛+1
= 𝑇} is a partition of [0, 𝑇] with |𝜋

𝑛
| := max{𝑠

𝑖+1
−

𝑠
𝑖
} and the convergence is in 𝐿2(Ω,G, 𝑃).
Now we calculate the expectation of a subfractional Itô

integral under a measure 𝑄
𝑓
, 𝑓 ∈ 𝐿

2

(R).

Theorem 7. Let 0 < 𝐻 < 1 and 𝑄
𝑓
, 𝑓 ∈ 𝐿

2

(R) be given by
(15). If the following assumptions hold:

(1) 𝑋 : R+ → 𝐿
2

(Ω,G, 𝑃) is subfractional Itô integrable,
and 𝑋 ∈ 𝐿1/𝐻(R+, 𝐿2(Ω,G, 𝑃));

(2) 𝑀𝐻

+
𝑓 ∈ 𝐿

1/(1−𝐻) and𝑀𝐻

−
𝑋 ∈ 𝐿

2

(R+) for𝐻 < 1/2,

One then has

𝐸
𝑄
𝑓 [∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
]

=
1

√2

∫

R+
𝐸
𝑄
𝑓 [𝑋

𝑡
] [(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡.

(32)

Proof. Let (𝜂
𝑛
)
𝑛∈N ⊂ S(R) be given such that 𝜂

𝑛
converges to

𝑓 in 𝐿2(R), we have the identity

𝐸
𝑄
𝜂𝑛 [∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
]

=
1

√2

∫

R+
𝐸
𝑄
𝜂𝑛 [𝑋

𝑡
] [(𝑀

𝐻

+
𝜂
𝑛
) (𝑡) − (𝑀

𝐻

+
𝜂
𝑛
) (−𝑡)] 𝑑𝑡.

(33)
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It can be easily obtained that the left-hand side of (33) con-
verges to the same side of (32) by Theorem 1 and (𝐴

2
) in

Section 2.
Then we just need to prove the right-hand side of (33)

converges to (32) correspondingly. By Lemma 3, applying the
fractional integration by parts rule, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

R+
𝐸
𝑄
(𝜂𝑛) [𝑋

𝑡
] [(𝑀

𝐻

+
𝜂
𝑛
) (𝑡) − (𝑀

𝐻

+
𝜂
𝑛
) (−𝑡)]

−𝐸
𝑄
𝑓 [𝑋

𝑡
] [(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

R+
𝐸 [𝑋

𝑡
: 𝑒
𝐼(𝜂
𝑛
)

:] [(𝑀
𝐻

+
𝜂
𝑛
) (𝑡) − (𝑀

𝐻

+
𝜂
𝑛
) (−𝑡)]

−𝐸 [𝑋
𝑡
: 𝑒
𝐼(𝑓)

:] [(𝑀
𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(34)

which is bounded by

󵄨
󵄨
󵄨
󵄨
󵄨
∫
R+
𝐸[(𝑀

𝐻

−
𝑋)
𝑡
: 𝑒
𝐼(𝜂𝑛)

:] 𝜂
𝑛 (𝑡) − 𝐸 [(𝑀

𝐻

−
𝑋)
𝑡
: 𝑒
𝐼(𝑓)

:] 𝑓 (𝑡) 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
∫
R+
𝐸[(𝑀

𝐻

−
𝑋)
𝑡
: 𝑒
𝐼(𝑓)

:] 𝑓 (−𝑡) − 𝐸 [(𝑀
𝐻

−
𝑋)
𝑡
: 𝑒
𝐼(𝜂𝑛)

:] 𝜂
𝑛 (−𝑡) 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
∫
R+
𝐸[

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑀
𝐻

−
𝑋)
𝑡
(: 𝑒
𝐼(𝜂𝑛)

: − : 𝑒
𝐼(𝑓)

:)

󵄨
󵄨
󵄨
󵄨
󵄨
]
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
∫
R+
𝐸[

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑀
𝐻

−
𝑋)
𝑡
: 𝑒
𝐼(𝑓)

:

󵄨
󵄨
󵄨
󵄨
󵄨
]
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛 (𝑡) − 𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
∫
R+
𝐸[

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑀
𝐻

−
𝑋)
𝑡
(: 𝑒
𝐼(𝜂𝑛)

: − : 𝑒
𝐼(𝑓)

:)

󵄨
󵄨
󵄨
󵄨
󵄨
]
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛 (−𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
∫
R+
𝐸[

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑀
𝐻

−
𝑋)
𝑡
: 𝑒
𝐼(𝑓)

:

󵄨
󵄨
󵄨
󵄨
󵄨
]
󵄨
󵄨
󵄨
󵄨
𝜂
𝑛 (−𝑡) − 𝑓 (−𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

≡ 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
.

(35)

We can easily show that 𝐼
1
, 𝐼
2
, 𝐼
3
, 𝐼
4
converge to zero, as 𝑛 →

∞, respectively, by Hölder’s inequality. This completes the
proof.

Remark 8. Under the assumptions of Theorem 7, ∫
R+
𝑋
𝑡

[(𝑀
𝐻

+
𝑓)(𝑡) − (𝑀

𝐻

+
𝑓)(−𝑡)]𝑑𝑡 exists as a Pettis integral (see

Definition 2.3 in [35]). In fact, for all Φ ∈ 𝐿2(Ω,G, 𝑃),

∫

R+

󵄨󵄨󵄨󵄨󵄨
𝐸 [𝑋

𝑡
[(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)]Φ]

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤ (∫

R+

󵄨󵄨󵄨󵄨󵄨
(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)

󵄨󵄨󵄨󵄨󵄨

1/(1−𝐻)

𝑑𝑡)

1−𝐻

× (∫

R+
𝐸[
󵄨󵄨󵄨󵄨𝑋𝑡
󵄨󵄨󵄨󵄨

2

]
1/2𝐻

𝑑𝑡)

𝐻

𝐸[|Φ|
2

]
1/2

≤ [(∫

R+

󵄨󵄨󵄨󵄨󵄨
(𝑀

𝐻

+
𝑓) (𝑡)

󵄨󵄨󵄨󵄨󵄨

1/(1−𝐻)

𝑑𝑡)

1−𝐻

+(∫

R+

󵄨󵄨󵄨󵄨󵄨
(𝑀

𝐻

+
𝑓) (−𝑡)

󵄨󵄨󵄨󵄨󵄨

1/(1−𝐻)

𝑑𝑡)

1−𝐻

]

× (∫

R+
𝐸[
󵄨󵄨󵄨󵄨𝑋𝑡
󵄨󵄨󵄨󵄨

2

]
1/2𝐻

𝑑𝑡)

𝐻

𝐸[|Φ|
2

]
1/2

< ∞.

(36)

Thus, the property of the Pettis integral deduces

𝐸
𝑄
𝑓 [∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
]

=
1

√2

𝐸
𝑄
𝑓 ∫

R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡.

(37)

Now, we establish a Girsanov theorem for subfractional
Itô integral. Consider the measure 𝑄

𝑓
, 𝑓 ∈ 𝐿

2

(R), the
probability space (Ω,F, 𝑄

𝑓
) carries a two-side Brownian

motion given by

𝐵
𝑡
= 𝐵

𝑡
− ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 (38)

according to the classical Girsanov theorem. On this proba-
bility space, we denote S

𝑄
𝑓

the S-transform with respect to
the measure 𝑄

𝑓
, 𝑓 ∈ 𝐿

2

(R); that is,

(S
𝑄
𝑓

𝑋) (𝜂) := 𝐸
𝑄
𝑓 [: 𝑒

𝐼
𝐵
(𝜂)

: 𝑋] , (39)

and the following identity holds:

: 𝑒
𝐼
𝐵
(𝑔)

: ⋅ : 𝑒
𝐼(𝑓)

:=: 𝑒
𝐼(𝑓+𝑔)

: (40)

for all 𝑔 ∈ 𝐿2(R).

Theorem9. Let the assumptions ofTheorem 7 be satisfied, and

𝐸
𝑄
𝑓 [

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
−
1

√2

∫

R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓)(𝑡)−(𝑀

𝐻

+
𝑓)(−𝑡)]𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

< ∞.

(41)

Then, the identity

∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡

= ∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
−
1

√2

∫

R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡

(42)

holds in 𝐿2(Ω,F, 𝑄
𝑓
)-almost surely.



6 Advances in Mathematical Physics

Proof. We apply Theorem 7 to 𝑓 + 𝜂, 𝜂 ∈ S(R). It is easy to
check that𝑀𝐻

+
(𝑓 + 𝜂) ∈ 𝐿

1/(1−𝐻)

(R) according to Lemma 2.5
in [36]. ByTheorem 7 and (40), it follows

S
𝑄
𝑓

(∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
−∫

R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓) (𝑡)−(𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡) (𝜂)

= 𝐸
𝑄
𝑓+𝜂 [∫

R+
𝑋
𝑡
𝑑𝑆
𝐻

𝑡
−∫

R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓) (𝑡)−(𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡]

=
1

√2

∫

R+
𝐸
𝑄
𝑓+𝜂 [𝑋

𝑡
] [𝑀

𝐻

+
(𝑓 + 𝜂) (𝑡) − 𝑀

𝐻

+
(𝑓 + 𝜂) (−𝑡)] 𝑑𝑡

−
1

√2

∫

R+
𝐸
𝑄
𝑓+𝜂 [𝑋

𝑡
] [(𝑀

𝐻

+
𝑓) (𝑡) − (𝑀

𝐻

+
𝑓) (−𝑡)] 𝑑𝑡

=
1

√2

∫

R+
𝐸
𝑄
𝑓+𝜂 [𝑋

𝑡
] [(𝑀

𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)] 𝑑𝑡

=
1

√2

∫

R+
S
𝑄
𝑓

𝑋
𝑡
(𝜂) [(𝑀

𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)] 𝑑𝑡.

(43)

The second identity based on the fact that ∫
R+
𝑋
𝑡
[(𝑀

𝐻

+
𝑓)(𝑡)−

(𝑀
𝐻

+
𝑓)(−𝑡)]𝑑𝑡 exists as a Pettis integral which is proved in

Remark 8. The proof is complete.

4. An Itô Formula

In this section, we prove an Itô formula for a subfractional
Wiener integral using the S-transform approach. An indefi-
nite subfractional Wiener integral is understood as a process

𝑋
𝑡
= ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑆
𝐻

𝑠
≡ ∫

R

1
[0,𝑡]
(𝑠) 𝜑 (𝑠) 𝑑𝑆

𝐻

𝑠
(44)

for all 0 ≤ 𝑡 ≤ 𝑇 provided 𝜑 is a deterministic function such
that the above integral exists as a subfractional Itô integral for
all 0 ≤ 𝑡 ≤ 𝑇.

Proposition 10. Assume that 𝜑 : [0, 𝑇] → R is continuous
for 1/2 ≤ 𝐻 < 1, and 𝜆-Hölder continuous with 𝜆 > 1/2 − 𝐻
for 0 < 𝐻 < 1/2. Then the indefinite subfractional Wiener
integral ∫𝑡

0

𝜑(𝑠)𝑑𝑆
𝐻

𝑠
exists, and

∫

𝑡

0

𝜑 (𝑠) 𝑑𝑆
𝐻

𝑠
=
1

√2

𝐼 (𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0

) . (45)

Proof. We should prove that 𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0

∈ 𝐿
2

(R) and
S(∫

𝑡

0

𝜑(𝑠)𝑑𝑆
𝐻

𝑠
)(𝜂) exists.

For 1/2 ≤ 𝐻 < 1, since 𝜑 is continuous on [0, 𝑇], by
Hardy-Littlwood theorem, it is obvious that 𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0

∈

𝐿
2

(R).
For 0 < 𝐻 < 1/2, similar to the argument in Proposition

5.1 in [35], there exists a function 𝑔 ∈ 𝐿2(R), such that

1
(0,𝑡)
𝜑 = 𝐼

1/2−𝐻

−
𝑔. (46)

Hence,𝑀𝐻

−
(1
(0,𝑡)
𝜑) ∈ 𝐿

2

(R), and so is𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0

∈ 𝐿
2

(R).
𝜑 is a deterministic function implies that S(∫𝑡

0

𝜑(𝑠)𝑑𝑆
𝐻

𝑠
)(𝜂)

exists.

Next, consider the S-transform of the right-hand side in
(45), then by (19), we obtain that

S(
1

√2

𝐼 (𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0

)) (𝜂)

=
1

√2

∫

R

𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0

𝜂𝑑𝑠

=
1

√2

∫

R

(1
(0,𝑡)
𝜑)
0

𝑀
𝐻

+
(𝜂) 𝑑𝑠

=
1

√2

∫

𝑡

0

𝜑 (𝑠) (𝑀
𝐻

+
𝜂) (𝑠) 𝑑𝑠 +

1

√2

∫

−𝑡

0

𝜑 (−𝑠) (𝑀
𝐻

+
𝜂) (𝑠) 𝑑𝑠

=
1

√2

∫

𝑡

0

𝜑 (𝑠) (𝑀
𝐻

+
𝜂) (𝑠) 𝑑𝑠 −

1

√2

∫

𝑡

0

𝜑 (𝑠) (𝑀
𝐻

+
𝜂) (−𝑠) 𝑑𝑠

= S(∫
𝑡

0

𝜑 (𝑠) 𝑑𝑆
𝐻

𝑠
) (𝜂) .

(47)

This completes the proof.

The following lemma is essential to the proof of our Itô’s
formula.

Lemma 11. Let 𝜑 : R → R be continuous and𝐻 > 1/2. Then
one has

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

= 8𝛼𝐻∫

𝑡

0

∫

𝜏

0

𝜑 (𝑠) 𝜑 (𝜏) [(𝜏 − 𝑠)
2𝛼−1

+ (𝑠 + 𝜏)
2𝛼−1

] 𝑑𝑠 𝑑𝜏.

(48)

In particular,

(1) for all 𝑡 > 0, |𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0

|
2

2
≤ 3max

𝑠∈[0,𝑡]
|𝜑(𝑠)|

2

𝑡
2𝐻;

(2) |𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0

|
2

2
is differentiable in 𝑡, and for all 𝑡 ≥ 0,

one has

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

= 8𝛼𝐻𝜑 (𝑡) ∫

𝑡

0

𝜑 (𝑠) [(𝑡 − 𝑠)
2𝛼−1

+ (𝑠 + 𝑡)
2𝛼−1

] 𝑑𝑠

≤ 4𝐻max
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝜑 (𝑠)
󵄨󵄨󵄨󵄨

2

𝑡
2𝛼

.

(49)

Proof. For𝐻 > 1/2, the following identity holds:

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
𝜑
󵄨󵄨󵄨󵄨󵄨

2

2

= 2𝛼𝐻∬

R

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 − 𝜏|
2𝛼−1

𝑑𝑠 𝑑𝜏. (50)
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Then,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨󵄨

2

2

= 2𝛼𝐻∬

R

(1
(0,𝑡)
𝜑)
0

(𝑠) (1
(0,𝑡)
𝜑)
0

(𝜏) |𝑠 − 𝜏|
2𝛼−1

𝑑𝑠 𝑑𝜏

= 4𝛼𝐻∬

𝑡

0

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 − 𝜏|
2𝛼−1

𝑑𝑠 𝑑𝜏

+ 4𝛼𝐻∬

𝑡

0

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 + 𝜏|
2𝛼−1

𝑑𝑠 𝑑𝜏

= 8𝛼𝐻∫

𝑡

0

∫

𝜏

0

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 − 𝜏|
2𝛼−1

𝑑𝑠 𝑑𝜏

+ 8𝛼𝐻∫

𝑡

0

∫

𝜏

0

𝜑 (𝑠) 𝜑 (𝜏) |𝑠 + 𝜏|
2𝛼−1

𝑑𝑠 𝑑𝜏.

(51)

Equation (48) easily follows and the other assertions are
trivial.

Remark 12. Since the right of (48) is not hold when 𝐻 <

1/2, there is a lack of a result similar to the above Lemma.
Hence, we only consider the case of constant 𝜑, and we have
|𝑀

𝐻

−
(1
(0,𝑡)
𝜑)
0

|
2

2
= (2 − 2

2𝐻−1

)𝜑
2

𝑡
2𝐻.

Now we give the following Itô formula.

Theorem 13. Let 𝑇 > 0, such that

(𝐵
1
) 𝑋 be an indefinite subfractional Wiener integral; that
is, for all 0 ≤ 𝑡 ≤ 𝑇, 𝑋

𝑡
= ∫

𝑡

0

𝜑(𝑠)𝑑𝑆
𝐻

𝑠
, where 𝜑 is cont-

inuous when𝐻 ≥ 1/2, constant when𝐻 < 1/2;

(𝐵
2
) 𝐹 ∈ C1,2([0, 𝑇] ×R);

(𝐵
3
) there exists constants 𝐶 ≥ 0 and 𝜆 ≤ [2√3𝑇

𝐻

⋅

max
𝑠∈[0,𝑇]

|𝜑(𝑠)|]
−2 such that

max{|𝐹 (𝑡, 𝑥)| ,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
𝐹 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥
𝐹 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

≤ 𝐶𝑒
𝜆𝑥
2

.

(52)

Then the following equality holds in (𝐿2):

∫

𝑇

0

𝜑 (𝑡)
𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
) 𝑑𝑆

𝐻

𝑡

= 𝐹 (𝑇,𝑋
𝑇
) − 𝐹 (0, 0) − ∫

𝑇

0

𝜕

𝜕𝑡
𝐹 (𝑡, 𝑋

𝑡
) 𝑑𝑡

−
1

2
∫

𝑇

0

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
𝑜󵄨󵄨󵄨󵄨󵄨

2

2

𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑋

𝑡
) 𝑑𝑡.

(53)

Proof. It suffices to show that both sides have the same S-
transform. Indeed, by Definition 4, the integral of the left-
hand side has the S-transform given by

S(∫
𝑇

0

𝜑 (𝑡)
𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
) 𝑑𝑆

𝐻

𝑡
) (𝜂)

=
1

√2

∫

𝑇

0

𝜑 (𝑡) [(𝑀
𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)]S

× (
𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) 𝑑𝑡.

(54)

Henceforth, we just need to show the right-hand side has the
same result. Firstly, we show the integrals of the right-hand
side exist in (𝐿2). Without loss of generality, denote 𝐺 = 𝐹,
(𝜕/𝜕𝑡)𝐹(𝑡, 𝑥), (𝜕/𝜕𝑥)𝐹(𝑡, 𝑥), (𝜕2/𝜕𝑥2)𝐹(𝑡, 𝑥), and 0 ≤ 𝑡 ≤ 𝑇.
By the growth condition (52), we obtain

󵄩󵄩󵄩󵄩𝐺(𝑡, 𝑋𝑡)
󵄩󵄩󵄩󵄩

2

2
≤ 𝐶

2

(1 − 4𝜆
󵄨󵄨󵄨󵄨󵄨
(𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

)

(−1/2)

≤ const.
(55)

Consequently, ∫𝑇
0

(𝜕/𝜕𝑡)𝐹(𝑡, 𝑋
𝑡
)𝑑𝑡 exists. For the last one, by

Lemma 11 and Remark 12, we have

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

𝜕

𝜕𝑥2
𝐹(𝑡, 𝑋

𝑡
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

𝑑𝑡

≤ ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑥2
𝐹(𝑡, 𝑋

𝑡
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2

𝑑𝑡

≤ const. ∫
𝑇

0

𝑡
2𝐻

𝑑𝑡 < ∞.

(56)

Hence, the last integral exists as a Pettis integral in the (𝐿2)-
sense.

On the other hand, denote the heat kernel as follows:

𝑔 (𝑡, 𝑥) :=
1

√2𝜋𝑡

exp{−𝑥
2

2𝑡
} . (57)

Thanks to the classical Girsanov theorem, for arbitrary 𝜂 ∈
S(R), under the measure 𝑄

𝜂
, we can easily calculate that

𝑋
𝑡
is a Gaussian random variable with mean (1/√2) ∫𝑡

0

𝜑(𝑠)

[(𝑀
𝐻

+
𝜂)(𝑠) − (𝑀

𝐻

+
)𝜂(−𝑠)]𝑑𝑠 and variance |𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0

|
2

2
.

Thus, we obtain

S (𝐹 (𝑡, 𝑋
𝑡
)) (𝜂)

= 𝐸
𝑄
𝜂 [𝐹 (𝑡, 𝑋

𝑡
)]

= ∫

R

𝐹(𝑡, 𝑢 +
1

√2

∫

𝑡

0

𝜑 (𝑠) [(𝑀
𝐻

+
𝜂) (𝑠) − (𝑀

𝐻

+
𝜂) (−𝑠)] 𝑑𝑠)

× 𝑔(
󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

, 𝑢) 𝑑𝑢.

(58)
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Moreover, by (𝐵
3
), integration and differentiation can be

interchanged. Since the heat kernel fulfills (𝜕/𝜕𝑡)𝑔 =

(1/2)(𝜕
2

/𝜕𝑥
2

)𝑔, we have

𝑑

𝑑𝑡
S (𝐹 (𝑡, 𝑋

𝑡
)) (𝜂)

= S(
𝜕

𝜕𝑡
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂)

+
1

√2

[(𝑀
𝐻

+
𝜂) (𝑡)−(𝑀

𝐻

+
𝜂) (−𝑡)] 𝜑 (𝑡)S(

𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂)

+
1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

⋅S(
𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) .

(59)

Consequently,

S (𝐹 (𝑇,𝑋
𝑇
) − 𝐹 (0, 0)) (𝜂)

= lim
𝜀→0

S (𝐹 (𝑇,𝑋
𝑇
) − 𝐹 (𝜀, 𝑋

𝜀
)) (𝜂)

= ∫

𝑇

0

S(
𝜕

𝜕𝑡
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) 𝑑𝑡

+
1

√2

∫

𝑇

0

[(𝑀
𝐻

+
𝜂) (𝑡) − (𝑀

𝐻

+
𝜂) (−𝑡)] 𝜑 (𝑡)

× S(
𝜕

𝜕𝑥
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) 𝑑𝑡

+
1

2
∫

𝑇

0

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

⋅S(
𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑋

𝑡
)) (𝜂) 𝑑𝑡.

(60)

Compared with (54), the proof can be completed.

The objective of this part is to define the geometric sub-
fBm and establish an Itô formula with respect to it.

Definition 14. Let𝐻 ∈ (0, 1), 𝑥
0
> 0, and 𝜑, 𝑟 : [0,∞) → R,

Then one calls

𝑃
𝑡
:= 𝑥

0
exp{∫

𝑡

0

𝑟 (𝑠) 𝑑𝑠 −
1

2

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

+ ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑆
𝐻

𝑠
}

(61)

a geometric sub-fBm with coefficients 𝐻, 𝑥
0
, 𝜑, 𝑟, provided

the right-hand side exists as an element of (𝐿2) for all 0 ≤ 𝑡 <
∞.

Theorem 15. Let 𝑇 > 0, such that

(i) 𝑃 be a geometric sub-fBm with continuous coefficients
𝜑, 𝑟, and let 𝜑 be a constant when𝐻 < 1/2;

(ii) (𝐵
2
), (𝐵

3
) hold.

Then the following equality holds in (𝐿2):

∫

𝑇

0

𝜑 (𝑡) 𝑃
𝑡

𝜕

𝜕𝑥
𝐹 (𝑡, 𝑃

𝑡
) 𝑑𝑆

𝐻

𝑡

= 𝐹 (𝑇, 𝑃
𝑇
) − 𝐹 (0, 𝑥

0
) − ∫

𝑇

0

𝜕

𝜕𝑡
𝐹 (𝑡, 𝑃

𝑡
) 𝑑𝑡

− ∫

𝑇

0

𝑟 (𝑡) 𝑃
𝑡

𝜕

𝜕𝑥
𝐹 (𝑡, 𝑃

𝑡
) 𝑑𝑡

−
1

2
∫

𝑇

0

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

𝑃
2

𝑡

𝜕
2

𝜕𝑥2
𝐹 (𝑡, 𝑃

𝑡
) 𝑑𝑡.

(62)

Proof. Let

𝑔 (𝑡, 𝑥) := 𝑥
0
exp{∫

𝑡

0

𝑟 (𝑠) 𝑑𝑠 −
1

2

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

+ 𝑥} .

(63)

Then, apply Theorem 13 to 𝐹(𝑡, 𝑔(𝑡, 𝑥)), and the result is
obvious.

The special case 𝐹(𝑡, 𝑥) = 𝑥 yields the following.

Corollary 16. Let 𝑃 be a geometric sub-fBm as inTheorem 15;
then for all 𝑡 ≥ 0,

𝑃
𝑡
= 𝑥

0
+ ∫

𝑡

0

𝑟 (𝑠) 𝑃
𝑠
𝑑𝑠 + ∫

𝑡

0

𝜑 (𝑠) 𝑃
𝑠
𝑑𝑆
𝐻

𝑠
. (64)

For this reason, one calls it “geometric sub-fBm”.

5. Explicit Solution of a Class of Linear
Subfractional BSDEs

General BSDEs driven by a Brownian motion are usually of
the form

−𝑑𝑌
𝑡
= 𝑓 (𝑡, 𝑌

𝑡
, 𝑍
𝑡
) 𝑑𝑡 − 𝑍

𝑡
𝑑𝐵

𝑡
, 𝑡 ∈ [0, 𝑇] ,

𝑌
𝑇
= 𝜉,

(65)

where 𝑓, 𝜉 are given. The generator 𝑓(𝑡, 𝑦, 𝑧) is a G
𝑡
-adapted

process for every pair (𝑦, 𝑧) ∈ R2, the terminal value 𝜉
is a G

𝑇
-measureable random variable, and G

𝑡
denotes the

filtration generated by 𝐵
𝑡
. We say a pair (𝑌, 𝑍) is a solution of

this equation, if the processes 𝑌,𝑍 which areG
𝑡
-adapted and

satisfy a suitable integrability condition solve the equation 𝑃-
almost surely.

After these preparations, we now turn to the problems to
solve the BSDEs driven by a sub-fBm of the form

𝑌
𝑡
= 𝜉 − ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑡
, 𝑍
𝑡
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑍
𝑡
𝑑𝑆
𝐻

𝑠
, (66)

where 𝑓, 𝜉 = 𝑌
𝑇
are given. The generator 𝑓(𝑡, 𝑦, 𝑧) is a G

𝑡
-

adapted process for every pair (𝑦, 𝑧) ∈ R2, the terminal value
𝜉 is a G

𝑇
-measureable random variable, and G

𝑡
denotes the

filtration generated by 𝑆𝐻
𝑡
. We say a pair (𝑌, 𝑍) is a solution of

this equation, if the processes 𝑌,𝑍 which areG
𝑡
-adapted and
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satisfy a suitable integrability condition solve the equation 𝑃-
almost surely.

Let us recall a result about the following PDE, which is
a parabolic partial differential equation solved by the heat
equation (seeTheorem9 in [18]). Let the following conditions
be satisfied:

(𝐶
1
) 𝑆 ∈ C1((0, 𝑇),R) ∩ C([0, 𝑇],R) and 𝑆 is strictly inc-
reasing with 𝑆(0) = 0 and 𝑆󸀠 ∈ 𝐿1([0, 𝑇],R);

(𝐶
1
) 𝑟, 𝐴, 𝑓 ∈ C((0, 𝑇],R) ∩ 𝐿1([0, 𝑇],R);

(𝐶
1
) 𝜙 ∈ C(R,R) and there exists constant 𝐶 ≥ 0 and
𝜆 < (8𝑆(𝑇))

−1 such that for all (𝑡, 𝑥) ∈ [0, 𝑇] × R,
|𝜙(𝑡, 𝑥)| ≤ 𝐶𝑒

𝜆𝑥
2

.

Then the PDE

𝜕
𝑡
𝑢 (𝑡, 𝑥) = −

1

2
𝑆
󸀠

(𝑡) 𝜕
𝑥𝑥
𝑢 (𝑡, 𝑥) + 𝑟 (𝑡) 𝜕

𝑥
𝑢 (𝑡, 𝑥)

+ 𝐴 (𝑡) 𝑢 (𝑡, 𝑥) + 𝑓 (𝑡) ,

𝑢 (𝑇, 𝑥) = 𝜙 (𝑥) ,

(67)

has a classical solution given by

𝑢 (𝑡, 𝑥) := − ∫

𝑇

𝑡

𝑓 (𝑠) 𝑒
∫

𝑡

𝑠
𝐴(𝑢)𝑑𝑢

𝑑𝑠

+
𝑒
−∫

𝑇

𝑡
𝐴(𝑠)𝑑𝑠

√2𝜋 (𝑆 (𝑇) − 𝑆 (𝑡))

× ∫

R

𝜙 (𝑦) exp
{{

{{

{

−(𝑥 − 𝑦 − ∫
𝑇

𝑡

𝑟 (𝑠) 𝑑𝑠)

2

2 (𝑆 (𝑇) − 𝑆 (𝑡))

}}

}}

}

𝑑𝑦.

(68)

Next we give the main result of this paper.

Theorem 17. Let Φ
𝑡
= 𝑥

0
+ 𝑏(𝑡) + ∫

𝑡

0

𝜑(𝑠)𝑑𝑆
𝐻

𝑠
and 𝑇 > 0.

Suppose the following conditions are satisfied:

(𝐷
1
) 𝜑 : [0, 𝑇] → R+ is continuous when 𝐻 ≥ 1/2, cons-
tant when𝐻 < 1/2, and there exist constants 0 < 𝐾

1
≤

𝐾
2
, such that 𝐾

1
≤ 𝜑(𝑡) ≤ 𝐾

2
, 𝑡 ∈ [0, 𝑇];

(𝐷
2
) 𝑥

0
∈ R, 𝑏 ∈ C1((0, 𝑇),R) ∩C([0, 𝑇],R);

(𝐷
3
) (𝐶

2
) holds with 𝑟(𝑡) = 𝜑(𝑡)ℎ(𝑡)−𝑏󸀠(𝑡) and ℎ : [0, 𝑇] →

R with 𝜑ℎ bounded on [0, 𝑇];

(𝐷
4
) 𝜙 ∈ C(R,R) and there exist constants 𝐶 ≥ 0, and 𝜆 ≤
1/(12𝑇

2𝐻max
𝑠∈[0,𝑇]

|𝑓(𝑠)|
2

) such that for all (𝑡, 𝑥) ∈
[0, 𝑇] ×R, |𝜙(𝑡, 𝑥)| ≤ 𝐶𝑒𝜆𝑥

2

.

Then the BSDEs,

𝑌
𝑡
= 𝜙 (Φ

𝑇
) − ∫

𝑇

𝑡

[𝑓 (𝑠) + 𝐴 (𝑠) 𝑌
𝑠
+ ℎ (𝑠) 𝑍

𝑠
] 𝑑𝑠

− ∫

𝑇

𝑡

𝑍
𝑠
𝑑𝑆
𝐻

𝑠
,

(69)

have a solution (𝑌, 𝑍) of the form

𝑌 (𝑡) := V (𝑡, Φ
𝑡
) , 𝑍

𝑡
:= 𝜑 (𝑡) 𝜕

𝑥
V (𝑡, Φ

𝑡
) ,

V (𝑡, 𝑥)

:= −∫

𝑇

𝑡

𝑓 (𝑠) 𝑒
∫

𝑡

𝑠
𝐴(𝑢)𝑑𝑢

𝑑𝑠

+
𝑒
−∫

𝑇

𝑡
𝐴(𝑠)𝑑𝑠

√2𝜋 (
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑇)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

−
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

)

× ∫

R

𝜙 (𝑦) exp
{{

{{

{

−(𝑥 − 𝑦 − ∫
𝑇

𝑡

(𝜑 (𝑠) ℎ (𝑠) − 𝑏
󸀠

(𝑠)) 𝑑𝑠)

2

2
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑇)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

− 2
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

}}

}}

}

𝑑𝑦.

(70)

Proof. Let 𝑆(𝑡) := |𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0

|
2

2
; from Lemma 11 and

Remark 12, we have 𝑆(𝑡) satisfies (𝐶
1
). By the growth con-

dition (𝐷
4
), (𝐶

3
) is yielded, and (𝐶

2
) follows from (𝐷

3
).

Henceforth, V(𝑡, 𝑥) is a classical solution of the PDE

𝜕
𝑡
V (𝑡, 𝑥) = −

1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

𝜕
𝑥𝑥
V (𝑡, 𝑥)

+ [𝜑 (𝑡) ℎ (𝑡) − 𝑏
󸀠

(𝑡)] 𝜕
𝑥
V (𝑡, 𝑥) + 𝐴 (𝑡) V (𝑡, 𝑥)

+ 𝑓 (𝑡) ; (𝑡, 𝑥) ∈ ((0, 𝑇) ,R) ,

V (𝑇, 𝑥) = 𝜙 (𝑥) , 𝑥 ∈ R.

(71)

Moreover, by Lemma 10 and Corollary 11 in [18], suppose that
𝐹(𝑡, 𝑥) := V(𝑡, 𝑥

0
+ 𝑏(𝑡) + 𝑥), which fulfills the conditions of

Theorem 13 for all 0 ≤ 𝑡 ≤ 𝑇 − 𝜀 and 𝜀 > 0. Consequently,

V (𝑡, Φ
𝑡
)

= V (𝑇 − 𝜀, Φ
𝑇−𝜀
) − ∫

𝑇−𝜀

𝑡

𝜑 (𝑠) 𝜕
𝑥
V (𝑠, Φ

𝑠
) 𝑑𝑆

𝐻

𝑠

− ∫

𝑇−𝜀

𝑡

𝑓 (𝑠) + 𝐴 (𝑠) V (𝑠, Φ
𝑠
) + ℎ (𝑠) 𝜑 (𝑠) 𝜕

𝑥
V (𝑠, Φ

𝑠
) 𝑑𝑠.

(72)

Next, according to Definition 4 and the growth condition,
∫
𝑇−𝜀

𝑡

𝜑(𝑠)𝜕
𝑥
V(𝑠, Φ

𝑠
)𝑑𝑆

𝐻

𝑠
exists when 𝜀 tends to zero.

On the other hand, similar to (58), we obtain

S (V (𝑇 − 𝜀, Φ
𝑇−𝜀
)) (𝜂)

= ∫

R

𝐹(𝑇 − 𝜀, 𝑥

+
1

√2

∫

𝑇−𝜀

0

𝜑 (𝑠) [(𝑀
𝐻

+
𝜂) (𝑠) − (𝑀

𝐻

+
𝜂) (−𝑠)] 𝑑𝑠)

× 𝑔(
󵄨󵄨󵄨󵄨󵄨
𝑀
𝐻

−
(1
(0,𝑇−𝜀)

𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

, 𝑥) 𝑑𝑥.

(73)
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By the growth and the continuity conditions of V, we have
S(V(𝑇 − 𝜀, Φ

𝑇−𝜀
))(𝜂) converges to S(V(𝑇, Φ

𝑇
))(𝜂) as 𝜀 tends

to zero.
Now it remains to show the existence of the last integral

of (72). In fact, there exists a constant𝐾, such that

∫

𝑇

0

󵄩󵄩󵄩󵄩𝑓(𝑠) + 𝐴(𝑠)V(𝑠, Φ𝑠) + ℎ(𝑠)𝜑(𝑠)𝜕𝑥V(𝑠, Φ𝑠)
󵄩󵄩󵄩󵄩2
𝑑𝑠

≤
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨𝐿1([0,𝑇])

+ 𝐾|𝐴|
𝐿
1
([0,𝑇])

+ 𝐾∫

𝑇

0

1

√
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑇)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

−
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

𝑑𝑡.

(74)

For𝐻 > 1/2, (48) and (𝐷
1
) yield

∫

𝑇

0

1

√

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝐻

−
(1
(0,𝑇)

𝜑)

0󵄨󵄨
󵄨
󵄨
󵄨
󵄨

2

2

−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
𝐻

−
(1
(0,𝑡)
𝜑)

0󵄨󵄨
󵄨
󵄨
󵄨
󵄨

2

2

𝑑𝑡

= ∫

𝑇

0
[8𝛼𝐻∫

𝑇

𝑡
∫

𝜏

0
𝜑 (𝑠) 𝜑 (𝜏) [(𝜏 − 𝑠)

2𝛼−1

+ (𝑠 + 𝜏)
2𝛼−1

] 𝑑𝑠 𝑑𝜏]

−1/2

𝑑𝑡

≤

1

𝐾
1

∫

𝑇

0
[8𝛼𝐻∫

𝑇

𝑡
∫

𝜏

0
[(𝜏 − 𝑠)

2𝛼−1

+ (𝑠 + 𝜏)
2𝛼−1

] 𝑑𝑠 𝑑𝜏]

−1/2

𝑑𝑡

=

1

𝐾
1

∫

𝑇

0

1

√𝑇
2𝐻
− 𝑡
2𝐻

𝑑𝑡 =

𝑇
1−𝐻

𝐻𝐾
1
2
𝐻+1

Γ (1/2) Γ (1/2𝐻)

Γ (1/2𝐻+ 1/2)

.

(75)

For𝐻 < 1/2, |𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0

|
2

2
= (2 − 2

2𝐻−1

)𝜑
2

𝑡
2𝐻, we obtain

∫

𝑇

0

1

√
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑇)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

−
󵄨󵄨󵄨󵄨󵄨
𝑀𝐻

−
(1
(0,𝑡)
𝜑)
0󵄨󵄨󵄨󵄨󵄨

2

2

𝑑𝑡

=
1

√2 − 22𝐻−1𝜑

∫

𝑇

0

1

√𝑇2𝐻 − 𝑡2𝐻
𝑑𝑡

=
1

√2 − 22𝐻−1𝑓

𝑇
1−𝐻

Γ (1/2) Γ (1/2𝐻)

2𝐻Γ (1/2𝐻 + 1/2)
.

(76)

This means that ∫𝑇
0

𝑓(𝑠) +𝐴(𝑠)V(𝑠, Φ
𝑠
) + ℎ(𝑠)𝜑(𝑠)𝜕

𝑥
V(𝑠, Φ

𝑠
)𝑑𝑠

is well defined, which completes the proof.

The above theorem also holds for geometric sub-fBm as
described in the following proposition.

Proposition 18. Let a geometric sub-fBm 𝑃
𝑡
= 𝑥

0
exp{𝑘𝑆𝐻

𝑡
+

𝜇𝑡 − (1/2)(2 − 2
2𝐻−1

)𝑘
2

𝑡
2𝐻

}, and 𝐺 is continuous and of
polynomial growth. Then Theorem 17 holds with the terminal
value of the form 𝐺(𝑃

𝑇
).

Proof. We just need to apply Theorem 17 with Φ(𝑡) = ln𝑥
0
+

𝑘𝑆
𝐻

𝑡
+ 𝜇𝑡 − (1/2)(2 − 2

2𝐻−1

)𝑘
2

𝑡
2𝐻 and 𝜙(𝑥) = 𝐺(𝑒𝑥).

The regularity of the obtained solutions is described as
follows.

Proposition 19. Let 𝑌, 𝑍 as defined in Theorem 17. Then 𝑌 ∈
𝐿
2

([0, 𝑇], (𝐿
2

)). Moreover, 𝑍 ∈ 𝐿1/𝐻([0, 𝑇], (𝐿2)) when 𝐻 >

1/4.

It is a straightforward result in view of the growth condi-
tion of V.

6. Conclusion

We have presented the subfractional Itô integral using the
method of theS-transform.AGirsanov theoremwith respect
to the subfractional Itô integral and an Itô formula for
functionals of a subfractionalWiener integral has been estab-
lished. As an application, we obtain explicit solutions for a
class of linear BSDEs driven by a sub-fBm with arbitrary
Hurst parameter under suitable assumptions.
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This paper gives a novel explanation of the integral equation of Abel’s type from the point of view of Mikusinski’s operational
calculus. The concept of the inverse of Mikusinski’s operator of fractional order is introduced for constructing a representation of
the solution to the integral equation of Abel’s type.The proof of the existence of the inverse of the fractional Mikusinski operator is
presented, providing an alternative method of treating the integral equation of Abel’s type.

1. Introduction

Abel studied a physical problem regarding the relationship
between kinetic and potential energies for falling bodies [1].
One of his integrals stated in [1] is expressed in the form

𝑓 (𝑡) = ∫

𝑡

𝑎

𝑔 (𝑢)

√𝑡 − 𝑢
𝑑𝑢, 𝑎 > 0, (1)

where 𝑓(𝑡) is known, but 𝑔(𝑡) is unknown. The previous
expression is in the literature nowadays called Abel’s integral
equation [2]. In addition to (1), Abel also worked on the
integral equation in [1] in the following form:

𝑓 (𝑡) = ∫

𝑡

𝑎

𝑔 (𝑢)

(𝑡 − 𝑢)
𝜆

𝑑𝑢, 𝑎 > 0, 0 < 𝜆 < 1, 𝑎 ≤ 𝑡 ≤ 𝑏,

(2)
which is usually termed the integral equation of Abel’s type
[3] or the generalizedAbel integral equation [4].The function
(𝑡 − 𝑢)

−𝜆 may be called Abel’s kernel. It is seen that (1) is a
special case of (2) for 𝜆 = 1/2. This paper is in the aspect of
(2). Without generality losing, for the purpose of facilitating
the discussions, we multiply the left side of (1) with the
constant 1/Γ(𝜆), and let 𝑎 = 0. That is, we rewrite (2) by

𝑓 (𝑡) =
1

Γ (𝜆)
∫

𝑡

0

𝑔 (𝑢)

(𝑡 − 𝑢)
𝜆

𝑑𝑢, 0 < 𝜆 < 1, 0 ≤ 𝑡 ≤ 𝑏. (3)

The integral equation ofAbel’s type attracts the interests of
mathematicians and physicists. In mathematics, for example,
for solving the integral equation of Abel’s type, [5] discusses a
transformation technique, [6] gives a method of orthogonal
polynomials, [7] adopts the method of integral operators,
[8, 9] utilize the fractional calculus, [10] is with the Bessel
functions, [11, 12] study the wavelet methods, [13, 14] describe
the methods based on semigroups, [15] uses the almost
Bernstein operational matrix, and so forth [16, 17], just to
mention a few. Reference [18] represents a nice description of
the importance of Abel’s integral equations inmathematics as
well as engineering, citing [19–23] for the various applications
of Abel’s integral equations.

The above stands for a sign that the theory of Abel’s
integral equations is developing. New methods for solving
such a type of equations are demanded in this field.This paper
presents a new method to describe the integral equation of
Abel’s type from the point of view of the Mikusinski operator
of fractional order. In addition, we will give a solution to the
integral equation of Abel’s type by using the inverse of the
Mikusinski operator of fractional order.

The remainder of this article is organized as follows. In
Section 2, we shall express the integral equation of the Abel’s
type using the Mikusinski operator of fractional order and
give the solution to that type of equation in the constructive
way based on the inverse of the fractional-order Mikusinski
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operator. Section 3 consists of two parts. One is the proof of
the existence of the inverse of the fractional-orderMikusinski
operator. The other is the computation of the solution to
Abel’s type integral equation. Finally, Section 4 concludes the
paper.

2. Constructive Solution Based on
Fractional-Order Mikusinski Operator

Denote the operation of Mikusinski’s convolution by ⊗. Let ⊕
be the operation of its inverse. Then, for 𝑎(𝑡), 𝑏(𝑡) ∈ 𝐶(0,∞),
one has

𝑎 (𝑡) ⊗ 𝑏 (𝑡) = ∫

𝑡

0

𝑎 (𝑡 − 𝜏) 𝑏 (𝜏) 𝑑𝜏 = 𝑐 (𝑡) . (4)

The inverse of the previous expression is the deconvolution,
which is denoted by (see [24–26])

𝑐 (𝑡) ⊕ 𝑎 (𝑡) = 𝑏 (𝑡) , 𝑐 (𝑡) ⊕ 𝑏 (𝑡) = 𝑎 (𝑡) . (5)

In (4) and (5), the constraint 𝑎(𝑡), 𝑏(𝑡) ∈ 𝐶(0,∞) may be
released. More precisely, we assume that 𝑎(𝑡) and 𝑏(𝑡)may be
generalized functions.Therefore, the Diract-𝛿 function in the
following is the identity in this convolution system. That is,

𝑎 (𝑡) ⊗ 𝛿 (𝑡) = 𝛿 (𝑡) ⊗ 𝑎 (𝑡) = 𝑎 (𝑡) . (6)

Consequently,

𝑎 (𝑡) ⊕ 𝑎 (𝑡) = 𝛿 (𝑡) . (7)

Let 𝑙 be an operator that corresponds to the function 1(𝑡)

such that

𝑙𝑎 (𝑡) = 1 (𝑡) ⊗ 𝑎 (𝑡) = ∫

𝑡

0

𝑎 (𝜏) 𝑑𝜏. (8)

Therefore, the operator 𝑙2 implies

𝑙
2

⇐⇒ 1 (𝑡) ⊗ 1 (𝑡) = ∫

𝑡

0

𝑑𝜏 =
𝑡

1
. (9)

For 𝑛 = 1, . . ., consequently, we have

𝑙
𝑛

⇐⇒
𝑡
𝑛−1

(𝑛 − 1)!
, (10)

where 0! = 1.
The Cauchy integral formula may be expressed by using

𝑙
𝑛, so that

𝑙
𝑛

𝑔 (𝑡) =
𝑡
𝑛−1

(𝑛 − 1)!
⊗ 𝑔 (𝑡) = ∫

𝑡

0

(𝑡 − 𝜏)
𝑛−1

(𝑛 − 1)!
𝑔 (𝜏) 𝑑𝜏. (11)

Generalizing 𝑙
𝑛 to 𝑙
𝜆 in (12) for 𝜆 > 0 yields the Mikusinski

operator of fractional order given by

𝑙
𝜏

⇐⇒
𝑡
𝜆−1

(𝜆 − 1)!
=

𝑡
𝜆−1

Γ (𝜆)
. (12)

Thus, taking into account (12), we may represent the integral
equation of Abel’s type by

𝑙
𝜆

𝑔 (𝑡) =
𝑡
𝜆−1

Γ (𝜆)
⊗ 𝑔 (𝑡) = ∫

𝑡

0

(𝑡 − 𝜏)
𝜆−1

Γ (𝜆)
𝑔 (𝜏) 𝑑𝜏 = 𝑓 (𝑡) .

(13)

Rewrite the above by

𝑙
𝜆

𝑔 (𝑡) = 𝑓 (𝑡) . (14)

Then, the solution to Able’s type integral equation (3) may be
represented by

𝑔 (𝑡) = 𝑙
−𝜆

𝑓 (𝑡) , (15)

where 𝑙
−𝜆 is the inverse of 𝑙𝜆.

There are two questions in the constructive solution
expressed by (15). One is whether 𝑙−𝜆 exists. The other is how
to represent its computation. We shall discuss the answers
next section.

3. Results

3.1. Existence of the Inverse of Mikusinski’s Operator of Order
𝜆. Let G and F be two normed spaces for 𝑔(𝑡) ∈ G and
𝑓(𝑡) ∈ F, respectively. Then, the operator 𝑙𝜆 regarding Able’s
type integral equation (13) may be expressed by

𝑙
𝜆

: G 󳨀→ F. (16)

The operator 𝑙
𝜆 is obviously linear. Note that (3) is

convergent [1]. Thus, one may assume that

𝑚 ≤ ∫

𝑏

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑡 − 𝜏)
𝜆−1

Γ (𝜆)
𝑔 (𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝜏 ≤ 𝑀, (17)

where

𝑚 ≥ 0, 𝑀 ≥ 0. (18)

Define the norm of 𝑓(𝑡) by
󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩 = max
0<𝑡<𝑏

𝑓 (𝑡) . (19)

Then, we have
󵄩󵄩󵄩󵄩󵄩
𝑙
𝜆

𝑔 (𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑀

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 .

(20)

The above implies that 𝑙
𝜆 is bounded. Accordingly, it is

continuous [27, 28].
Since

󵄩󵄩󵄩󵄩󵄩
𝑙
𝜆

𝑔 (𝑡)
󵄩󵄩󵄩󵄩󵄩
≥ 𝑚

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 ,

(21)

𝑙
−𝜆 exists. Moreover, the inverse of 𝑙

𝜆 is continuous and
bounded according to the inverse operator theorem of
Banach [27, 28]. This completes the proof of (15).
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3.2. Computation Formula. According to the previous anal-
ysis, 𝑙−𝜆 exists. It actually corresponds to the differential of
order 𝜆. Thus,

𝑔 (𝑡) = 𝑙
−𝜆

𝑓 (𝑡) =
𝑑
𝜆

𝑓 (𝑡)

𝑑𝑡𝜆
. (22)

In (13), we write ∫
𝑡

0

(((𝑡 − 𝜏)
𝜆−1

/Γ(𝜆))𝑔(𝜏))𝑑𝜏 = 𝑓(𝑡) by

∫

𝑡

0

(𝑡 − 𝜏)
𝜆−1

𝑔 (𝜏) 𝑑𝜏 = Γ (𝜆) 𝑓 (𝑡) . (23)

Following [29, p. 13, p. 527], [30], therefore,

𝑔 (𝑡) = 𝑙
−𝜆

𝑓 (𝑡) =
sin (𝜋𝜆)

𝜋

𝑑

𝑑𝑡
∫

𝑡

0

Γ (𝜆) 𝑓 (𝑢)

(𝑡 − 𝑢)
1−𝜆

𝑑𝑢

=
Γ (𝜆) sin (𝜋𝜆)

𝜋
[
𝑓 (0)

𝑡1−𝜆
+ ∫

𝑡

0

𝑓
󸀠

(𝑡) 𝑑𝑡

(𝑡 − 𝑢)
1−𝜆

] .

(24)

Since
sin (𝜋𝜆)

𝜋
=

1

Γ (𝜆) Γ (1 − 𝜆)
, (25)

we write (24) by

𝑔 (𝑡) =
1

Γ (1 − 𝜆)
[
𝑓 (0)

𝑡1−𝜆
+ ∫

𝑡

0

𝑓
󸀠

(𝑡) 𝑑𝑡

(𝑡 − 𝑢)
1−𝜆

] . (26)

In the solution (26), if 𝑓(0) = 0, one has

𝑔 (𝑡) =
1

Γ (1 − 𝜆)
∫

𝑡

0

𝑓
󸀠

(𝑡) 𝑑𝑡

(𝑡 − 𝑢)
1−𝜆

, (27)

which is a result described by Gelfand and Vilenkin in [9,
Section 5.5].

Note that Mikusinski’s operational calculus is a tool
usually used for solving linear differential equations [24–26],
but we use it in this research for the integral equation of the
Abel’s type from a view of fractional calculus. In addition, we
suggest that the idea in this paper may be applied to studying
other types of equations, for instance, those in [31–50], to
make the possible applications of Mikusinski’s operational
calculus a step further.

4. Conclusions

We have presented the integral equation of Abel’s type using
the method of the Mikusinski operational calculus. The con-
structive representation of the solution to Abel’s type integral
equation has been given with the Mikusinski operator of
fractionally negative order, giving a novel interpretation of
the solution to Abel’s type integral equation.
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[27] V. I. Istrăţescu, Introduction to Linear Operator Theory, vol. 65,
Marcel Dekker, New York, NY, USA, 1981.

[28] M. Li and W. Zhao, Analysis of Min-Plus Algebra, Nova Science
Publishers, 2011.

[29] A. D. Polyanin and A. V. Manzhirov, Handbook of Integral
Equations, CRC Press, Boca Raton, Fla, USA, 1998.

[30] http://eqworld.ipmnet.ru/.
[31] C. Cattani and A. Kudreyko, “Harmonic wavelet method

towards solution of the Fredholm type integral equations of the
second kind,” Applied Mathematics and Computation, vol. 215,
no. 12, pp. 4164–4171, 2010.

[32] C. Cattani, M. Scalia, E. Laserra, I. Bochicchio, and K. K. Nandi,
“Correct light deflection in Weyl conformal gravity,” Physical
Review D, vol. 87, no. 4, Article ID 47503, 4 pages, 2013.

[33] C. Cattani, “Fractional calculus and Shannon wavelet,” Mathe-
matical Problems in Engineering, vol. 2012, Article ID 502812, 26
pages, 2012.

[34] M. Carlini, T. Honorati, and S. Castellucci, “Photovoltaic
greenhouses: comparison of optical and thermal behaviour for
energy savings,” Mathematical Problems in Engineering, vol.
2012, Article ID 743764, 10 pages, 2012.

[35] M. Carlini and S. Castellucci, “Modelling the vertical heat
exchanger in thermal basin,” in Computational Science and Its
Applications, vol. 6785 of Lecture Notes in Computer Science, pp.
277–286, Springer, 2011.

[36] M. Carlini, C. Cattani, and A. Tucci, “Optical modelling of
square solar concentrator,” in Computational Science and Its
Applications, vol. 6785 of Lecture Notes in Computer Science, pp.
287–295, Springer, 2011.

[37] E. G. Bakhoum and C. Toma, “Mathematical transform of
traveling-wave equations and phase aspects of Quantum inter-
action,”Mathematical Problems in Engineering, vol. 2010, Article
ID 695208, 15 pages, 2010.

[38] E. G. Bakhoum and C. Toma, “Specific mathematical aspects
of dynamics generated by coherence functions,” Mathematical
Problems in Engineering, vol. 2011, Article ID 436198, 10 pages,
2011.

[39] C. Toma, “Advanced signal processing and command synthesis
for memory-limited complex systems,”Mathematical Problems
in Engineering, vol. 2012, Article ID 927821, 13 pages, 2012.

[40] G. Toma, “Specific differential equations for generating pulse
sequences,” Mathematical Problems in Engineering, vol. 2010,
Article ID 324818, 11 pages, 2010.

[41] J. Yang, Y. Chen, andM. Scalia, “Construction of affine invariant
functions in spatial domain,” Mathematical Problems in Engi-
neering, vol. 2012, Article ID 690262, 11 pages, 2012.

[42] J.W.Yang, Z. R. Chen,W.-S. Chen, andY. J. Chen, “Robust affine
invariant descriptors,” Mathematical Problems in Engineering,
vol. 2011, Article ID 185303, 15 pages, 2011.

[43] Z. Jiao, Y.-Q. Chen, and I. Podlubny, “Distributed-Order
Dynamic Systems,” Springer, 2011.

[44] H. Sheng, Y.-Q. Chen, and T.-S. Qiu, Fractional Processes and
Fractional Order Signal Processing, Springer, 2012.

[45] H. G. Sun, Y.-Q. Chen, andW. Chen, “Random-order fractional
differential equationmodels,” Signal Processing, vol. 91, no. 3, pp.
525–530, 2011.

[46] S. V. Muniandy, W. X. Chew, and C. S. Wong, “Fractional
dynamics in the light scattering intensity fluctuation in dusty
plasma,” Physics of Plasmas, vol. 18, no. 1, Article ID 013701, 8
pages, 2011.

[47] H. Asgari, S. V. Muniandy, and C. S. Wong, “Stochastic dynam-
ics of charge fluctuations in dusty plasma: a non-Markovian
approach,” Physics of Plasmas, vol. 18, no. 8, Article ID 083709,
4 pages, 2011.

[48] C. H. Eab and S. C. Lim, “Accelerating and retarding anomalous
diffusion,” Journal of Physics A, vol. 45, no. 14, Article ID 145001,
17 pages, 2012.

[49] C. H. Eab and S. C. Lim, “Fractional Langevin equations of
distributed order,” Physical Review E, vol. 83, no. 3, Article ID
031136, 10 pages, 2011.

[50] L.-T. Ko, J.-E. Chen, Y.-S. Shieh, H.-C. Hsin, and T.-Y.
Sung, “Difference-equation-based digital frequency synthe-
sizer,” Mathematical Problems in Engineering, vol. 2012, Article
ID 784270, 12 pages, 2012.



Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2013, Article ID 950289, 8 pages
http://dx.doi.org/10.1155/2013/950289

Research Article
Extraction of Affine Invariant Features Using Fractal

Jianwei Yang,1 Guosheng Cheng,1 and Ming Li2

1 School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
2 School of Information Science and Technology, East China Normal University, No. 500, Dong-Chuan Road, Shanghai 200241, China

Correspondence should be addressed to Jianwei Yang; yjianw@hotmail.com

Received 19 March 2013; Accepted 29 April 2013

Academic Editor: Chen Wensheng

Copyright © 2013 Jianwei Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An approach based on fractal is presented for extracting affine invariant features. Central projection transformation is employed to
reduce the dimensionality of the original input pattern, and general contour (GC) of the pattern is derived. Affine invariant features
cannot be extracted from GC directly due to shearing. To address this problem, a group of curves (which are called shift curves)
are constructed from the obtained GC. Fractal dimensions of these curves can readily be computed and constitute a new feature
vector for the original pattern.The derived feature vector is used in question for pattern recognition. Several experiments have been
conducted to evaluate the performance of the proposed method. Experimental results show that the proposed method can be used
for object classification.

1. Introduction

The images of an object taken from different viewpoints often
suffer from perspective distortions. For this reason, features
extracted from the image of an object should be tolerant to
an appropriate class of geometric transformation (such as
translation, rotation, scaling, and shearing). A perspective
transformation between two views can be approximated
with an affine transformation if the object is planar and far
away from the image plane [1]. Therefore, the extraction of
affine invariant features plays a very important role in object
recognition and has been found application in many fields
such as shape recognition and retrieval [2, 3], watermarking
[4], identification of aircrafts [5, 6], texture classification [7],
image registration [8], and contour matching [9].

Many algorithms have been developed for affine invariant
features extraction [10–12]. Based on whether the features are
extracted from the contour only or from the whole shape
region, the approaches can be classified into two main cat-
egories: region-based methods and contour-based methods.
Contour-based methods provide better data reduction [13],
but they are inapplicable to objects with several separa-
ble components. Region-based methods can achieve high
accuracy but usually at the expense of high computational
demands, for good overviews of the various techniques refer

to [13–16]. Central projection transformation (CPT) [17] can
be used to combine contour-basedmethods and region-based
methods together. However, CPT cannot be used to extract
affine invariant features directly. In this paper, we extract
affine invariant features by integrating CPT and fractal.

The essential advantage of fractal technique descriptor
is that it can greatly speed up computation [17]. Fractal,
which is introduced by Mandelbrot [18], has been shown to
be one of the most important scientific discoveries in the
last century. It proposes a powerful tool for human being
to explore the complexity. It can be used to model many
classes of time-series data as well as images. The fractal
dimension (FD) is an important characteristic of fractals;
it contains information about their geometrical structure.
Many applications of fractal concepts rely on the ability to
estimate the FD of objects. In the area of pattern recognition
and image processing, the FD has been used for image
compression, texture segmentation, feature extraction [19,
20], and so forth. The utility of fractal to extract rotation
invariant features has been invested in [17]. CPT is employed
to reduce the dimensionality of the original pattern. A
discrete wavelet transformation technique transforms the
derived pattern into a set of subpatterns. Consequently, its
FD is computed and has been used as the feature vectors.
A satisfying classification rate has been achieved in the
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(a) (b) (c)

Figure 1: (a) An image of a circle. (b) A scaled version of circle in Figure 1(a). (c) An affine transformation version of circle in Figure 1(a).

recognition of rotated English letters, Chinese characters, and
handwritten signatures. Formore details, please refer to those
papers.

However, the approach presented in [17] is hard to be used
to extract invariant features for general affine transformation.
A general affine transformation not only includes rotation,
scaling, and translation but also includes shearing. That is to
say, a circle may be transformed into an eclipse. Figure 1(a) is
an image of a circle. Figure 1(b) is a scale and rotation version
of circle in Figure 1(a). Figure 1(c) is an affine transformation
version of circle in Figure 1(a). It can be calculated that FD
of curve derived from the circle in Figure 1(a) by CPT is
𝑓
1
= 1.4007, FDof curve derived from the circle in Figure 1(b)

by CPT is 𝑓
2
= 1.4012, while FD of curve derived from the

eclipse in Figure 1(c) is 𝑓
3
= 1.4244. That is to say, FD can

not be used to extract affine invariant features directly. To
address this problem, a group of curves (which are called shift
curves) are constructed from the closed curve derived byCPT
in this paper. FDs of these curves can readily be computed
and constitute a new feature vector for the original pattern.
Several experiments have been conducted to evaluate the
performance of the proposed method. Experimental results
show that the constructed affine invariant feature vector can
be used for object classification.

The rest of the paper is organized as follows. In Section 2,
some basic concepts about CPT are introduced. The method
for the extraction of affine invariant features is provided in
Section 3. The performance of the proposed method is eval-
uated experimentally in Section 4. Finally, some conclusion
remarks are provided in Section 5.

2. CPT and Its Properties

This section is devoted to providing some characteristics
of CPT. In CPT, any object can be converted to a closed
curve of the object by taking projection along lines from the
centroid with different angles. Consequently, any object can
be transformed into a single contour. In addition, the derived
single contour also has affine property.

2.1. The CPT Method. Firstly, we translate the origin of the
reference system to the centroid of the image. To perform
CPT, the Cartesian coordinate system should be transformed
to polar coordinate system. Hence, the shape 𝐼(𝑥, 𝑦) can be
represented by a function 𝑓 of 𝑟 and 𝜃, namely, 𝐼(𝑥, 𝑦) =
𝑓(𝑟, 𝜃), where 𝑟 ∈ [0,∞) and 𝜃 ∈ [0, 2𝜋). After the
transformation of the system, the CPT is performed by
computing the following integral:

𝑔 (𝜃) = ∫

∞

0

𝑓 (𝑟, 𝜃) 𝑑𝑟, (1)

where 𝜃 ∈ [0, 2𝜋).

Definition 1. For an angle 𝜃 ∈ R, 𝑔(𝜃) is given in (1) and
(𝜃, 𝑔(𝜃)) denotes a point in the plane ofR2. Letting 𝜃 go from
0 to 2𝜋, then {(𝜃, 𝑔(𝜃)) | 𝜃 ∈ [0, 2𝜋)} forms a closed curve.We
call this closed curve the general contour (GC) of the object.

For an object ϝ, we denote the GC extracted from it by
CPT as 𝜕ϝ. The GC of an object has the following properties:
single contour, affine invariant.

By (1), an angle 𝜃 ∈ [0, 2𝜋) corresponds to a single
value 𝑔(𝜃). Consequently, GC can be derived from any object
by employing CPT. For instance, Figure 2(a) shows the
image of Chinese character “Yang”, which consists of several
components. Figure 2(b) shows the GC of Figure 2(a). The
object has been concentrated into an integral pattern, and a
single contour has been extracted.

In real life, many objects consist of several separable com-
ponents (such as Chinese character “Yang” in Figure 2(a)).
Contour-basedmethods are unapplicable to these objects. By
CPT, a single closed curve can be derived, and contour-based
methods can be applied. Consequently, shape representation
based on GC of the object may provide better data reduction
than some region-based methods.

2.2. Affine Invariant of GC. An affine transformation A of
coordinates x ∈ R2 is defined as

x󸀠 = Ax + b, (2)
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Figure 2: (a) The Chinese character “Hai”. (b) GC derived from (a).
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Figure 3: (a) An affine transformation version of Figure 2(a). (b) GC derived from (a).

where b = (
𝑏
1

𝑏
2

) ∈ R2 and A = (
𝑎
11
𝑎
12

𝑎
21
𝑎
22
) is a two-by-two

nonsingular matrix with real entries.
Affine transformation maps parallel lines onto parallel

lines and intersecting lines into intersecting lines. Based
on this fact, it can be shown that the GC extracted from
the affine-transformed object by CPT is also an affine-
transformed version ofGC extracted from the original object.

Consider two objects ϝ and ϝ󸀠 are related by an affine
transformation A:

ϝ
󸀠

= {x󸀠 | x󸀠 = Ax + b, x ∈ ϝ} . (3)

Then 𝜕ϝ and 𝜕ϝ󸀠, GCs of ϝ and ϝ󸀠, are related by the same
affine-transformation A:

𝜕ϝ
󸀠

= {x󸀠 | x󸀠 = Ax + b, x ∈ 𝜕ϝ} . (4)

For example, Figure 3(a) shows an affine transformed
version of Figures 2(a) and 3(b) shows the GC derived

from Figure 3(a). Observing the two GCs in Figures 2(b)
and 3(b), we can see that CPT not only represents the
distribution information of the object but also preserves the
affine transformation signature.

Therefore, to see whether an object Θ is the affine
transform version of ϝ, we just need to check if 𝜕Θ, the GC
ofΘ, is the same affine-transformed version of 𝜕ϝ. We extract
affine invariant features using fractal from GC of the object.

3. Extraction of Affine Invariant Features
Using Fractal

By CPT, a closed curve can be derived from any object. In
order to extract affine invariant features from the derived
GC, the GC should firstly be parameterized. Thereafter, shift
curves are constructed from the parameterized GC. Conse-
quently, divider dimensions of these curves are computed to
form feature vectors.
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Figure 4: (a) 10-shift curve of the Chinese character given in Figure 2(a). (b) 10-shift curve of the Chinese character given in Figure 3(a).

3.1. Affine Invariant Parameterization. GC should be param-
eterized to establish one-to-one relation between points on
GC of the original object and those on GC of its affine
transformed version.

There are two parameters which are linear under an affine
transformation: the affine arc length [21], and the enclosed
area [22]. These two parameters can be made completely
invariant by simply normalizing them with respect to either
the total affine arc length or the enclosed area of the
contour. In the discrete case, the derivatives can be calculated
using finite difference equations. The curve normalization
approach used in this paper is the same as the method given
in [23]. In the experiments of this paper, GC is normalized
and resampled such that𝑁 = 256.

Suppose that GC of the object has been normalized and
resampled. Furthermore, we suppose that the starting point
on GC of the original object and that on GC of the affine-
transformed version of the original object are identical.Then,
a parametric point x(𝜎) = [𝑥(𝜎), 𝑦(𝜎)]𝑇 onGC of the original
object and a parametric point x̃(𝜎̃) = [𝑥(𝜎), 𝑦(𝜎)]𝑇 on GC of
its affine transformed version satisfy the following equation:

𝑥 (𝜎̃) = 𝑎
11
𝑥 (𝜎) + 𝑎

12
𝑦 (𝜎) + 𝑏

1
,

𝑦 (𝜎̃) = 𝑎
21
𝑥 (𝜎) + 𝑎

22
𝑦 (𝜎) + 𝑏

2
.

(5)

3.2. Shift Curves. In this part, we will derive invariant
features from the normalized GC. Let [𝑥(𝜎), 𝑦(𝜎)] and [𝑥(𝜎̃),
𝑦(𝜎̃)] be the parametric equations of two GCs derived from
objects that differ only by an affine transformation. For
simplicity, in this subsection, we assume that the starting
points on both GCs are identical. After normalizing and
resampling, there is a one-to-one relation between 𝜎 and 𝜎̃.
We use the object centroid as the origin, then translation
factor b is elimated. Equation (2) can be written in matrix
form as x̃(𝜎̃) = Ax(𝜎).

Letting 𝛾 be an arbitrary positive constant, then [𝑥(𝜎 +
𝛾), 𝑦(𝜎 + 𝛾)] is a shift version of [𝑥(𝜎), 𝑦(𝜎)]. We denote𝑀

0

as the zero moment of the object:

𝑀
0
= ∫∫ 𝐼 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦. (6)

We define the following function:

𝐶
𝛾
(𝜎) =

1

𝑀
0

󵄨󵄨󵄨󵄨𝑥 (𝜎) 𝑦 (𝜎 + 𝛾) − 𝑦 (𝜎) 𝑥 (𝜎 + 𝛾)
󵄨󵄨󵄨󵄨 . (7)

We call 𝐶
𝛾
(𝜎) as 𝛾 shift curve of the object. Figure 4(a) shows

a 10-shift curve of the Chinese character given in Figure 2(a).
As a result of normalizing and resampling, [𝑥(𝜎), 𝑦(𝜎)],
[𝑥(𝜎̃), 𝑦(𝜎̃)] and [𝑥(𝜎 + 𝛾), 𝑦(𝜎 + 𝛾)], [𝑥(𝜎̃ + 𝛾), 𝑦(𝜎̃ + 𝛾)]
satisfy the following equation:

𝑥 (𝜎̃) = 𝑎
11
𝑥 (𝜎) + 𝑎

12
𝑦 (𝜎) ,

𝑦 (𝜎̃) = 𝑎
21
𝑥 (𝜎) + 𝑎

22
𝑦 (𝜎) ,

𝑥 (𝜎̃ + 𝛾) = 𝑎
11
𝑥 (𝜎 + 𝛾) + 𝑎

12
𝑦 (𝜎 + 𝛾) ,

𝑦 (𝜎̃ + 𝛾) = 𝑎
21
𝑥 (𝜎 + 𝛾) + 𝑎

22
𝑦 (𝜎 + 𝛾) .

(8)

It follows that

𝐶
𝛾
(𝜎̃) =

󵄨󵄨󵄨󵄨𝑥 (𝜎̃) 𝑦 (𝜎̃ + 𝛾) − 𝑦 (𝜎̃) 𝑥 (𝜎̃ + 𝛾)
󵄨󵄨󵄨󵄨

𝑀̃
0

=
det (A) 󵄨󵄨󵄨󵄨𝑥 (𝜎) 𝑦 (𝜎 + 𝛾) − 𝑦 (𝜎) 𝑥 (𝜎 + 𝛾)

󵄨󵄨󵄨󵄨

det (A)𝑀
0

= 𝐶
𝛾
(𝜎) .

(9)

In other words, 𝐶
𝛾
given in (7) is affine invariant.

Note that, after affine transformation, the starting point
of GC is different. Figure 4(b) shows the 10-shift curve of
the affine transformed version Chinese character given in
Figure 3(a). We observe that the shift curve of an affine
transformation version of the object (see Figure 4(b)) is a
translated version of the shift curve of the original object (see
Figure 4(a)).



Advances in Mathematical Physics 5

3.3. Computing Divider Dimension of Shift Curves. The FD is
a useful method to quantify the complexity of feature details
present in an image. In this subsection, we shall discuss
the problem of computing the divider dimension of shift
curves and, thereafter, use the computed divider dimension
to construct a feature vector for the original two-dimensional
pattern in question for pattern recognition.

Fractals are mathematical sets with a high degree of
geometrical complexity, which can model many classes of
time series data as well as images. The FD is an important
characteristic of the fractals because it contains information
about its geometric structures. When employing fractal
analysis researchers typically estimate the dimension from
an image. Of the wide variety of FDs in use, the definition
of Hausdorff is the oldest and probably the most important.
Hausdorff dimension has the advantage of being defined for
any set and is mathematically convenient, as it is based on
measures, which are relatively easy to manipulate. A major
disadvantage is that in many cases it is hard to calculate or
estimate by computation methods.

In general, the dimension of a set can be found by the
equation

𝐷 =
log (𝑁)
log (1/𝑟)

, (10)

where 𝐷 is the dimension and 𝑁 is the number of parts
comprising the set, each scaled down by a ratio 𝑟 from the
whole [18].

In what follows, we use the notion of divider dimension
of a nonself-intersecting curve (see [24, 25] etc.). Suppose
that 𝐶 is a nonself-intersecting curve and 𝛿 > 0. Let𝑀

𝛿
(𝐶)

be the maximum number of ordered sequence of points
𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑀
on curve 𝐶, such that |𝑥

𝑘
− 𝑥
𝑘−1
| = 𝛿 for

𝑘 = 1, 2, . . . ,𝑀. The divider dimension dim
𝐷
𝐶 of curve 𝐶

is defined as follows:

dim
𝐷
𝐶 = lim
𝛿→0

log𝑀
𝛿
(𝐶)

− log 𝛿
, (11)

where |𝑥
𝑘
− 𝑥
𝑘−1
| represents the magnitude of the difference

between two vectors 𝑥
𝑘
and 𝑥

𝑘−1
.

It should also be mentioned that 𝑥
𝑀
is not necessarily the

end point of curve 𝐶, 𝑥
𝑇
, but |𝑥

𝑇
− 𝑥
𝑀
| < 𝛿. Furthermore,

(𝑀
𝛿
(𝐶) − 1)𝛿 may be viewed as the length of curve 𝐶 as

measured using a pair of dividers that are set 𝛿 distance apart.
Since the divider dimension of nonself-intersecting

curves is asymptotic values, we derive their approximations
based on the following expression in our experiments:

log𝑀
𝛿
(𝐶)

− log 𝛿
, (12)

where 𝛿 is set small enough.
The divider dimension of shift curve in Figure 4(a) is

1.6168 and that of shift curve in Figure 4(b) is 1.6195. In
the experiments of this paper, divider dimensions of shift
curves 𝛾 = 1, 2, . . . , 256 are computed. The feature vector is
constituted

𝑉fea = (FD1, FD2, . . . , FD255)
𝑇

. (13)

4. Experiment

In this section, we evaluate the discriminate ability of the
proposed method. In the first experiment, we examine the
proposed method by using some airplane images. Object
contours can be derived from these images. In the second
experiment, we evaluate the discriminate ability of the
proposed method by using some Chinese characters. These
characters have several separable components, and contours
are not available for these objects.

In the following experiments, the classification accuracy
is defined as

𝜂 =
𝛿

𝜆
× 100%, (14)

where 𝛿 denotes the number of correctly classified images
and 𝜆 denotes the total number of images applied in the test.
Affine transformations are generated by the following matrix
[5]:

𝐴 = 𝑘(
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )(

𝑎 𝑏

0
1

𝑎

) , (15)

where 𝑘, 𝜃 denote the scaling and rotation transforma-
tion, respectively, and 𝑎, 𝑏 denote the skewing transfor-
mation. To each object, the affine transformations are
generated by setting the parameters in (15) as follows:
𝑘 ∈ {0.8, 1.2}, 𝜃 ∈ {30

∘

, 90
∘

, 150
∘

, 210
∘

, 270
∘

, 330
∘

}, 𝑏 ∈

{−3/2, −1, −1/2, 0, 1/2, 1, 3/2}, and 𝑎 ∈ {1, 2}. Therefore, each
image is transformed 168 times.

4.1. Binary Image Classification. In these experiments, we
examine the discrimination power of the proposed method
using 40Chinese characters shown in Figure 5.TheseChinese
characters are with regular script font, and the images have
size 128 × 128 in the experiments. We observe that some
characters in this database have the same structures, but the
number of strokes or the shape of specific stokes may be a
little different. Some characters consist of several separable
components. As aforementioned, each character image is
transformed 140 times.That is to say, the test is repeated 5600
times. Experiments on these Chinese characters in Figure 5
and their affine transformations show that 98.14% accurate
classification can be achieved by the proposed method.

The images are sometimes noised for reasons in many
real-life recognition situations. The robustness of the pro-
posed method is tested using binary image in this part.
We add salt and pepper noise to the transformed binary
images. We compare the proposed method with two region-
basedmethods, namely, theAMIs andMSA.The comparative
methods are described in [26, 27], and these methods are
implemented as discussed in those articles. 3 AMIs and 29
MSA invariants are selected for recognition. The nearest
neighbor classifier is applied for AMIs andMSAmethods.We
firstly add the salt and pepper noise with intensities varying
from 0.005 to 0.03 to the transformed images.

Table 1 shows the classification accuracies of all methods
in the corresponding noise degree. We can observe that



6 Advances in Mathematical Physics

Figure 5: Test characters used in the second experiments.

Table 1: Classification accuracies of AMIs, MSA, and the proposed method for Chinese characters in case of affine transformation and
different intensities of salt and pepper noise.

Noise degree 0 0.005 0.010 0.015 0.020 0.025 0.030
AMIs 91.70% 45.50% 34.82% 28.54% 23.82% 19.89% 17.77%
MSA 94.48% 90.63% 73.57% 53.80% 38.16% 26.86% 19.88%
Our method 98.14% 96.21% 93.48% 89.46% 86.25% 82.07% 77.59%

the classification accuracy of AMIs decreases rapidly from
noise-free condition to small noise degree. The classification
accuracy decreases from 91.70% to less than 50% when the
noise intensity is 0.010. MSA performs much better than
AMIs, but the results are not satisfying. To large noise degrees,
the proposed method keeps high accuracies all the time.

4.2. Gray Image Classification. In this part, the well-known
Columbia Coil-20 database [28], which contains 20 different
objects shown in Figure 6, is applied in this experiment.
To each object, the affine transformations are generated by
setting the parameters in (15) as aforementioned. Therefore,
each image is transformed 140 times. That is to say, the test
is repeated 2800 times using every method.The classification
accuracies of the proposed method, AMIs, and MSA in this
situation are 96.00%, 100%, and 95.31%, respectively. The
results indicate that AMIs perform best in this test, and the
proposed method is similar with MSA.

The effect of adding different kinds of noises is also
studied. The noise is added to the affine-transformed images
before recognition.

We firstly add the salt and pepper noise with intensities
varying from 0.005 to 0.03 to the transformed images.

Table 2 shows the classification accuracies of all methods
in the corresponding noise degree. We can observe that
the classification accuracy of AMIs decreases rapidly from
noise-free condition to small noise degree. The classification
accuracy decreases from 100% to less than 50% when the
noise intensity is 0.010. MSA performs much better than
AMIs, but the results are not satisfying. To large noise
degrees, the proposed method keeps high accuracies all the
time.

In addition, we add the Gaussian noise with zero mean
and different variance varying from 0.005 to 0.03 to the trans-
formed images. Table 3 shows the classification accuracies of
all methods in the corresponding noise degree. The results
indicate that AMIs and MSA are much more sensitive to
Gaussian noise than salt and pepper noise. However, the
classification accuracies of the proposed method outperform
AMIs and MSA in every noise degree.

The experimental results tell us that the proposedmethod
presents better performances in noise situations. The reason
may lie in thatCPT is robust to noise. It was shown in [29] that
Radon transform is quite robust to noise. We can similarly
show that GC derived by CPT from the object is robust to
additive noise as a result of summing pixel values to generate
GC.



Advances in Mathematical Physics 7

Figure 6: Columbia Coil-20 image database.

Table 2: Classification accuracies of AMIs, MSA, and the proposed method for images in Figure 6 in case of affine transformation and
different intensities of salt and pepper noise.

Noise degree 0 0.005 0.010 0.015 0.020 0.025 0.030
AMIs 100% 55.04% 43.29% 35.93% 31.96% 26.75% 23.04%
MSA 95.31% 88.10% 74.18% 62.14% 53.74% 47.02% 42.08%
Our method 96.00% 95.07% 93.18% 89.25% 83.32% 77.61% 72.54%

Table 3: Classification accuracies of AMIs, MSA, and the proposed method for images in Figure 6 in case of affine transformation and
different intensities of Gaussian noise.

Noise degree 0 0.005 0.010 0.015 0.020 0.025 0.030
AMIs 100% 32.50% 26.04% 21.82% 19.54% 17.64% 16.05%
MSA 95.31% 57.04% 45.82% 40.79% 37.39% 34.78% 32.79%
Our method 96.00% 85.57% 74.89% 63.07% 51.71% 42.89% 34.93%

5. Conclusions

In this paper, affine invariant features are extracted by using
fractal. A closed curve, which is called GC, is derived
from the original input pattern by employing CPT. Due
to shearing, affine invariant features cannot be extracted
from GC directly. To address this problem, a group of
curves (which are called shift curves) are constructed from
the obtained GC. Fractal dimensions of these curves can

readily be computed and constitute a new feature vector
for the original pattern. The derived feature vector is used
for object classification tasks. Several experiments have been
conducted to evaluate the performance of the proposed
method.

Although satisfying results have been achieved in object
classification tasks, some remarks should be made. The
performance of CPT depends strongly on the accuracy cal-
culation of the centroid. We are working towards developing



8 Advances in Mathematical Physics

method without the centroid. Furthermore, some character-
istics of CPT should be further studied.
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