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Molecular imaging is a newly emerging and rapidly devel-
oping biomedical imaging field in which the modern tools
are being married to depict noninvasive in vivo cellular and
molecular processes sensitively and specifically, such as mon-
itoring multiple molecular events, cell trafficking and target-
ing. The goals of this field are to develop technologies and
instruments for studying biological and medical processes as
well as diagnosing and managing diseases better. Although
rapid progress in the fundamentals and applications make
molecular imaging become an important tool for biomedical
research in recent years, many difficult problems and chal-
lenges remain. Discussing the problems and challenges in de-
tail and illustrating recent progress and future direction, the
special issue collects the high-quality, peer-reviewed, original
research papers in the area of molecular imaging.

Novel molecular imaging theories and algorithms, new
molecular probes, multimodality molecular imaging pro-
totype systems and experiments, and final clinical applica-
tions are introduced mainly in this special issue. In molecu-
lar imaging theories and algorithms, genetic algorithm-based
optimization tool is used to improve the accuracy of the
diffusion model in strongly absorbing media by adjusting
the optical parameters. Furthermore, a penalized linear and
nonlinear combined conjugate gradient method, a fast pre-
iteration algorithm based on the generalized inverse matrix,
and a Monte-Carlo-based network method are also proposed
for light source reconstruction in optical tomography. Con-
sidering the importance of molecular probes, synthesis and
bioconjugation of gold nanoparticles as potential molecular
probes for light-based imaging techniques are described in
this special issue, and the nitroimidazole-based thioflavin-T
derivatives as cerebral ischemia markers are evaluated in vivo.

In order to test the feasibility and effectiveness of imaging
theories, algorithms and probes, molecular imaging proto-
type systems should be designed, constructed and employed
for small animal or phantom imaging. Thus, multimodality
fusion near-infrared optical tomography Systems with highly
sensitive CCD camera and photomultiplier tube can be con-
sulted respectively in this special issue. Furthermore, a novel
confocal optical system design and a dual laser confocal scan-
ner have been developed for molecular imaging applications
of biochip. In clinical applications, the advantage of PET and
CT integration in examination of lung tumors is analyzed.
Moreover, several innovative processing methods of molecu-
lar image are also presented in this special issue. In conclu-
sion, this special issue covers recent important advances in
molecular imaging field.
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The diffusion approximation of the Boltzmann transport equation is most commonly used for describing the photon propagation
in turbid media. It produces satisfactory results in weakly absorbing and highly scattering media, but the accuracy lessens with the
decreasing albedo. In this paper, we presented a method to improve the accuracy of the diffusion model in strongly absorbing media
by adjusting the optical parameters. Genetic algorithm-based optimization tool is used to find the optimal optical parameters. The
diffusion model behaves more closely to the physical model with the actual optical parameters substituted by the optimized optical
parameters. The effectiveness of the proposed technique was demonstrated by the numerical experiments using the Monte Carlo
simulation data as measurements.

Copyright © 2007 Alexander X. Cong et al. This is an open access article distributed under the Creative Commons Attribution
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1. INTRODUCTION

The optical tomography techniques such as bioluminescence
tomography (BLT), fluorescent tomography (FMT), and dif-
fusion optical tomography (DOT) have attracted increasing
research attentions in recent years. One of the common core
issues of optical imaging modalities is how to model the light
propergation in biological tissues properly. Monte Carlo sim-
ulation, which has numerous successful applications in other
fields, was introduced to study the light interaction with tis-
sue [1, 2]. Although it is a rigorous model for forward prob-
lem of photon transport [2], due to its stochastic nature, the
excessive computational requirement makes it an improper
choice for inverse problems. On the other hand, the Boltz-
mann transport equation is able to model the photon prop-
ergation deterministicly and accurately in tissue [3], but it
too has a high computational complexity. Several methods
were proposed to solve the transport equation, such as dis-
crete ordinates [4, 5] and spherical harmonics expansion [6],
but applying transport equation in 3D remains challenging
in pratice. To reduce the complexity, diffusion approxima-
tion (DA) was introduced and widely applied as a photon
propergation model in various optical tomography modali-
ties [7–9]. DA is computationally efficient and almost as ac-
curate as the transport equation in weakly absorbing media.
Unfortunately, for albedos μ′s/μa < 10, DA is no longer able

to describe the photon propagation accurately [10, 11]. The
relatively strong photon absorptions are often resulted from
the shorter wavelength of the broad emission spectrum of
a reporter gene, such as the luciferase used in BLT, which
has emission peaks between 538 to 570 nm [12]. It was re-
ported that performing BLT at a shorter wavelength helps to
reduce the ill posedness of the reconstruction [11]. There-
fore, it is important that photon propagation in strongly ab-
sorbing media could be modeled.

In this paper, we proposed an optical parameter adjust-
ment technique to alleviate the inaccuracy of DA in highly
absorbing media. In our approach, we make the diffusion
model adjustable in the sense that the optical parameters,
which are usually considered as the known properties, are
interpreted as variables. The accuracy of the model is no
longer solely controlled by the formulation of DA, but also
by the adjustable optical parameters. The optical parameters
that minimize the error between the solution of DA and the
simulated MC data make the model more accurate than use
the intrinsic optical properties directly. This technique is dis-
cussed in Section 2.

2. SIMULATION METHODS

In this section, we give a brief overview of the two simu-
lation methods used in the numerical studies: the Monte
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Figure 1: The Monte Carlo process of photon propagation in tissue.

Carlo simulation and the finite element solution of the diffu-
sion equation, and discuss the optical parameters adjustment
technique.

2.1. Monte Carlo simulation

Monte Carlo (MC) simulation models each individual pho-
ton’s physical interactions with the medium as a stochastic
process. As a large number of such stochastic processes of
photon propagation are simulated, the signal detected is sta-
tistically meaningful and very close to the physical experi-
ment counterpart. MC result can be legitimately considered
as the low-noise version of the actual physical measurement.
Therefore, we use MC method to produce measurements in
numerical experiments. The Monte Carlo process consists
of three parts: the photon absorption, the photon scattering
and the internal reflection at the boundaries, as illustrated
in Figure 1. The absorption of photon for each step can be
expressed by [2, 3, 13]

ΔW = μa
μa + μs

W , (1)

where W is the weight of the photon packet. The scatter-
ing of the photon is governed by Henyey-Greenstein (HG)
phase function, which is considered as the most appropriate
phase function for the photon propergation in tissue. The
HG phase function is given by [2, 3]

p(cos θ) = 1− g2

2
(
1 + g2 − 2g cos θ

)3/2 , (2)

where θ is the deflection angle, and g the anisotropy. The in-
ternal reflectance rate due to the refrective index mismatch at
the tissue boundary for unpolarized incident light is given by
the Fresnel’s formulas [2, 3]:

R
(
ϑi
) = 1

2

[
sin 2(ϑi − ϑt

)

sin 2(ϑi + ϑt
) +

tan 2
(
ϑi − ϑt

)

tan 2
(
ϑi + ϑt

)
]

, (3)

where ϑi and ϑt are the incident and transmit angles, respec-
tively. The incident and transmit angles obey the Snell’s law

sin ϑi
sin ϑt

= nt
ni

, (4)

where ni and nt are the refractive indices for both sides of the
boundary, respectively.

We programmed MCsim [14], a Monte Carlo simulator,
for the photon propagation for the numerical experiment.
Our MC simulator can handle several types of 3D geometri-
cal phantoms such as cylinders and ellipsoids. By combin-
ing cylinders and ellipsoids, which can represent different
mouse organs, the heterogeneous phantom mimicking the
real mouse is created. The MC simulation based on such
heterogeneous numerical phantom is similar to the in vivo
mouse experiment. The efficiency of the MC simulation is
enhanced through the parallel computing and fast random
array generateration.

2.2. Diffusion model

The transport equation accurately characterizes the photon
propergation in biological tissue. Due to its complexity in
3D, the diffusion approximation of the transport equation is
often used instead in tissue with high albedo. The diffusion
equation in steady state is given by [3, 8]

−∇ · (D(r)∇φ(r)
)

+ μaφ(r) = S(r), r ∈ Ω (5)

and the Robin boundary condition is applied [8, 15]:

φ(r) + 2Θ(r)D(r)n · ∇φ(r) = 0, r ∈ ∂Ω, (6)

where r is the position vector, φ the photon fluence, S the
source power density, Ω the internal region, n the normal
to the boundary ∂Ω, and Θ the boundary mismatch factor,
which is given by (1 +R)/(1−R), and R can be approximated
by R ≈ − 1.4399n−2

i + 0.7099n−1
i + 0.6681 + 0.0636ni [16].

μa and D are the absorption and diffusion coefficient, respec-
tively. D can be decomposed to the expression of μa and the
reduced scattering coefficient μ′s:

D = 1
3
(
μa + μ′s

) . (7)

To solve the diffusion equation, we apply the finite ele-
ment method and transform the problem into a system of
discrete linear equations [8]

Aφ = S, (8)

where A is the weight matrix and S the source power distri-
bution vector. We take the boundary fluence φ(r), r ∈ ∂Ω as
measurement to compare with the MC simulated measure-
ment.

2.3. Optical parameters adjustment

The simulation of photon progation in tissue not only re-
quires an appropriate model, the optical parameters μa and
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μ′s also play an important role. As we mentioned before, the
diffusion model that uses the tissue’s intrinsic optical proper-
ties as optical parameters is not suitable to describe the pho-
ton propagation in strongly absorbing media. However, in
pratice we are often only interested in how the photons prop-
agate in tissue without noticing the optical parameters used.
For example, the BLT and FMT focus on the reconstruction
of the light source distribution. Thus, the optical parameters
can be taken as variables to improve the accuracy of the DA
model. In this perspective, the accuracy improvement task
becomes a typical parameter estimation problem: finding the
best parameters that minimize the error of DA at the surface.
Therefore, by optimizing the optical parameters, the solution
of DA may fit the real measurement better and consequently
improve the accuracy of the model.

Before we can find the optimal optical parameters, we
first define the error metric, which is simply the average of
the relative errors

ε
(
μa,μ′s

) =
∑

d

∣
∣(φ − φ′)/φ

∣
∣

nd
, (9)

where ε represents the error, φ the MC simulated power den-
sity (i.e., fluence) at a detector, φ′ the diffusion model finite
element solution of surface power densities at each detector,
d the detectors, and nd the number of detectors. This sim-
ple error metric evenly weights the strong and weak signals,
therefore, the optimization result does not depend on the lo-
cation of the light source.

It is clear that the error ε can be expressed as a function of
the optical parameters μa and μ′s. The optimal optical param-
eters are found by minimizing the error, as in the following
equation:

{
μadj
a ,μ′adj

s

} = arg min
μa, μ′s

∣
∣ε
(
μa,μ′s

)∣∣. (10)

To solve this parameter estimation in (10), we use a ge-
netic algorithm (GA). The major advantages of GA over the
deterministic gradient methods are the initial values have
very little impact on the optimization result, and the solu-
tion will not trapped in a local optima [17]. Although there
is no way to know if GA reaches the exact global optima,
this stochastic optimization method always produces a suf-
ficiently good solution if a large number of generations (i.e.,
iterations) and a proper population size are applied. The op-

timized optical parameters μ
adj
a and μ

′adj
s help to improve the

accuracy of the diffusion equation (5), as shown in Section 3.

3. NUMERICAL EXPERIMENTS AND RESULTS

3.1. Optical parameter optimization

We performed the optical parameter optimization on a
sphere with 7 mm radius. In Cartesian coordinate, the cen-
ter of the sphere was the origin. In order to obtain the finite
element-based solution of diffusion approximation (DA), the
sphere was discretized into 5539 nodes and 28 607 tetrahe-
dra. For the convenience of comparing MC simulation data
with the finite element solution of DA, all 1452 surface nodes

Table 1: GA configration parameters.

Population size 50

Penerations 200

Crossover rate 80%

Mutation rate 10%

Elitism best 2

Table 2: Optical parameters optimization results. The unit was in
mm−1.

μa μ′s μadj
a μ′adj

s

0.20 1.05 0.375366 0.213276

0.35 1.05 0.423532 0.453873

were used as detectors. For the Monte Carlo simulation, each
detector integrated the escaping photons within 0.7 mm ra-
dius, while the solution of DA was produced directly at each
surface node. The measurement was normalized and served
as a description of the boundary power distribution rather
than the actual power density.

We placed a single isotropic point source 1 mm away
from the origin, and set the source power to 0.313 picowatt,
which is equal to the energy of a million photons per sec-
ond under 635 nm wavelength. At this source location, we
performed the optical parameter adjustment for two me-
dia: medium one had μa = 0.2 mm−1 and medium two had
μa = 0.35 mm−1, the μ′s = 1.05 mm−1 and the tissue re-
fractive indices are 1.37 for both materials. The albedo of
these two media were 5.25 and 3, respectively. We expected
that the solutions of DA would have noticeable inaccuracy in
these media. We used the genetic algorithm toolbox (gatool)
in MATLAB to solve (10). The important parameters used in
GA are listed in Table 1.

The resultant optimal optical parameters are listed in
Table 2.

3.2. Accuracy improvement results

Using the optimized parameters in Table 2, the results of the
accuracy improvements of DA are plotted in Figures 2 and 3,
with respect to the two media.

We tested the effectiveness of the optimized optical pa-
rameters by solving the DA with different light source lo-
cations in the sphere. The accuracy enhancement results re-
garding different light source locations are listed in Table 3.
The error metric in Table 3 was according to (9). The results
show that the accuracy improvement effect was stable for dif-
ferent light source locations, and has little dependency on the
location of the light source where the optical parameter op-
timization was performed.

To further test the effectiveness of the proposed method,
we constructed a heterogeneous phantom, as in Figure 4. The
outer cylinder had a height of 20 mm and a radius of 10 mm.
The geometrical center of the cylinder was at the origin. The
inner sphere had a radius of 4 mm and its geometrical cen-
ter was 2 mm away from the origin along the x-axis. The ab-
sorption coefficient of the cylinder and the sphere were 0.2
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Figure 2: The comparison between solutions of DA using the the unadjusted and the optimal optical parameters in a medium with μa =
0.2 mm−1 and μ′s = 1.05 mm−1. The light source was 1 mm from the origin. (a) Solution of DA with unadjusted optical parameters versus
MC data. (b) Solution of DA with optimized optical parameters versus MC data. The detector positions were sorted in the increasing order
of the fluence rate of MC data.
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Figure 3: The comparison between solutions of DA using the the unadjusted and the optimal optical parameters in a medium with μa =
0.35 mm−1 and μ′s = 1.05 mm−1. The light source was 1 mm from the origin. (a) Solution of DA with unadjusted optical parameters versus
MC data. (b) Solution of DA with optimized optical parameters versus MC data. The detector positions were sorted in the increasing order
of the fluence rate of MC data.
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Table 3: Accuracy improvements of DA regarding to different light
source locations. d is the distance from the origin, ε the error with-
out optical parameter optimization, and εadj the improved error.

d (mm)
μa = 0.2 mm−1 μa = 0.35 mm−1

ε εadj ε εadj

1 0.09 0.0406 0.2361 0.0766

2 0.1665 0.1008 0.3801 0.1393

3 0.3151 0.1066 0.5784 0.14

4 0.3944 0.1074 0.6558 0.1183

5 0.373 0.0947 0.6567 0.1608

Z

X Y

Figure 4: The finite element model of the heterogeneous phantom.

and 0.35 mm−1, respectively. The reduced scattering coeffi-
cients were 1.05 mm−1 and the refractive indices were 1.37
for both media. The light source was placed at the center of
the sphere. Using the optimized optical parameter in Table 2,
the error was reduced from 0.3951 to 0.2201.

4. DISCUSSION AND CONCLUSIONS

We have present a technique for improving the accuracy of
the diffusion model by adjusting optical parameters. Instead
of using the accurate tissue optical parameters to produce
inaccurate result in highly absorbing media, the optimized
optical parameters give better accuracy in such media. GA
is used for parameter optimization, which effectively avoid
the solution to be trapped in a local optima. Our simula-
tion results show significant error reduction for media with
different photon absorptions, and the results have little de-
pendency on the light source location. If the actual optical
parameters of the medium are known, the Monte Carlo sim-
ulation could generate the measurement data as if obtained
from the physical phantom or real mouse experiment, so
that the optical parameters optimization technique can be
performed purely numerically. In the case that the optical
properities are unknown, the proposed technique still applies
by replacing the Monte Carlo simulation by the actual physi-
cal experiment. However, we emphasize that even though the

accuracy of the normalized power distribution is improved
with this technique, the solution of DA using the optimized
optical parameters does not reflect the actual power. Thus,
the calibration process is required to convert the normalized
power distribution to the actual power. The optical parame-
ter optimization technique permits diffusion model to work
under highly absorption media, so that DA works well over
a wider range of applications. For the the in vivo optical to-
mography such as BLT and FMT, the DA photon propagation
model for each mouse organ or tissue is improved numer-
ically prior to the reconstruction, the reconstruction algo-
rithm based on the improved DA model is expected to have
improved source localization and intensity accuracy.
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Fluorescence optical diffusion tomography in the near-infrared (NIR) bandwidth is considered to be one of the most promising
ways for noninvasive molecular-based imaging. Many reconstructive approaches to it utilize iterative methods for data inversion.
However, they are time-consuming and they are far from meeting the real-time imaging demands. In this work, a fast preiteration
algorithm based on the generalized inverse matrix is proposed. This method needs only one step of matrix-vector multiplication
online, by pushing the iteration process to be executed offline. In the preiteration process, the second-order iterative format is em-
ployed to exponentially accelerate the convergence. Simulations based on an analytical diffusion model show that the distribution
of fluorescent yield can be well estimated by this algorithm and the reconstructed speed is remarkably increased.

Copyright © 2007 Xiaolei Song et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

With the discovery of biocompatible, specific fluorescent
probes and the development of imaging technologies, the po-
tential of fluorescence tomography as a means for molecu-
larly based noninvasive imaging of biological tissues has re-
ceived in recent years increased attention [1–3]. Fluorescent
beacons emitting in the near-infrared (NIR) bandwidth are
always preferred, since hemoglobin and water absorb mini-
mally in this spectral window so as to allow photons to pen-
etrate for several centimeters in tissues [4].

Using preferentially accumulated fluorescent probes as
indicators or contrast agents, fluorescence optical diffusion
tomography (FODT) is performed by launching light at the
probes’ excitation wavelength into the tissue. The fluores-
cent beacon absorbs the incident light, and emits light at a
longer wavelength when it drops to the ground state. Then
the emission is measured by an array of detection devices
at the surface of the body. However, as the strong diffusion
of NIR in biological tissues, reconstruction of very large un-
known inside characteristics from the limited detected data
at the boundary is one of the main difficulties in FODT.
Many reconstructive approaches utilize iterative methods for
data inversion, such as the algebraic reconstruction tech-
nique (ART) [5], Newton’s or Newton-type optimization

methods [6, 7], and Bayesian nonlinear least-square method
[8, 9]. They are always time-consuming and far from meeting
the real-time imaging demands.

In this study, a fast algorithm based on the preiteration is
applied to the inversion process of fluorescence tomography.
For simulating the photon’s propagation in tissues with fluo-
rescent beacons inside, a previously reported DPDW model
based on Born approximation is simply introduced at the be-
ginning. Then, the preiteration fast algorithms are presented
in detail, emphasizing the second-order method. After that,
the simulation using the second-order form is investigated
and the results are shown. Finally, we analyze the computa-
tion burden and convergence property of the second-order
iteration form and give the conclusion.

2. DPDW MODEL

Often a couple of diffusion equations in frequency-domain
is employed to describe the propagation of both excited light
and fluorescent light in diffusive medium, that is [6, 7, 10]

∇[Dx(r)∇Φx(r,ω)
]−

[
μax (r) +

jω

c

]
Φx(r,w)

= −δ(r− rsk
)
,
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∇[Dm(r)∇Φm(r,ω)
]−

[
μam(r) +

jω

c

]
Φm(r,w)

= −Φx(r,ω)η(r)
1− jωτ(r)

1 +
[
ωτ(r)

]2 ,

(1)

where Φx,m is the photon density for excitation (subscript
x) or fluorescent light (subscript m), Dx,m(r) is the diffusion
coefficient, and μax,m(r) is the absorption coefficient. Based
on this model, the fluorescence lifetime τ(r) and the yield
η(r) can be estimated through the boundary measurements.
Equation (1) can be solved by analytical or numerical meth-
ods. In this paper, we use an analytical model of Born ap-
proximation for specific medium geometry to demonstrate
the inversion algorithm. In fact, the fast algorithm could also
be applied to arbitrary geometries, where the model is dis-
cretized by numerical methods [7, 10] or the Kirchhoff ap-
proximation [5].

In the frequency-domain model, an amplitude-modu-
lated incident point source of photons into a diffusive
medium produces a diffuse photon density wave (DPDW)
[11–13]. Let an intensity-modulated point source of ampli-
tude Θ0 be located at rs in a homogeneous infinite medium.
Then the spatial part of the originating DPDW at position r

is [11] U0(rs− r, k) = Θ0 exp[ik(rs−⇀r )]/[4πD(rs− r)], with
the wave number k = [(−νμa + iω)/D]1/2, and D = ν/3μ′s
is the diffusion coefficient with the reduced scattering coeffi-
cient μ′s and the speed of light in the medium ν. Here, ω is the
angular modulation frequency of the source. Treating fluo-
rescent beacons as two-level quantum systems and assuming
that there are no saturation or photon quenching effects, the
fluorescent photon density δu f l, measured at a detector posi-
tion rdi due to a localized probe with volume d3rk embedded
within the medium, is [11]

δu f l
(

rk, rs j , rdi
)

= U0
(

rs j − rk, kλ1
) η

(
rk
)

1− iωτ
(

rk
)

ν

Dλ2
G
(

rdi − rk, kλ2
)
d

3
rk,

(2)

with the excited source at rs j . Here, λ1 and λ2 represent
the excited light wavelength and the fluorescent wavelength
in the near-infrared section, respectively. G(rd − r, kλ2 ) =
exp(ikλ2|rd − r|)/4π|rd − r| is Green’s function solution to
the diffusion equation and represents the variance of fluo-
rescent DPDW from fluorescent probe to the detector.

For a weakly absorbing spatial distribution of fluores-
cent probes, the detected fluorescent DPDW at rdi can be
found by integrating overall fluorescent sources [11, 12].
In the reconstruction, for the measurement at positions rdi
(i = 1, 2, . . . ,Mi), the integral can be digitized as

Uf l
(

rs j , rdi
) =

N∑

l=1

δu f l
(

rl, rs j , rdi
)
d3rl (3)

due to the sources rs j ( j = 1, 2, . . . ,Mj). As only one of
the sources is working at a time, the total number of mea-
surements is M = Mi × Mj . In fluorescence tomography,

continuous-wave (CW) mode is always chosen, that is, ω =
0, and only η is reconstructed. Then substituting (2) in (3)
will lead to the following matrix equation:

U = AX , (4)

where U represents an M × 1 column vector of the detected
data, X is a column vector of unknown values of fluorescent
yield η at N reconstructed points, and matrix A indicates the
obtained M ×N weighted coefficients.

3. PREITERATION INVERSE ALGORITHM

As in FODT, the inside reconstructed points number N is al-
ways much bigger than M, the measurement number at the
boundary, the equation series (4) is always ill-posed and in-
definite. In this case, the direct inverse matrix of A does not
exist. However, its generalized inverse can be employed to
solve (4).

3.1. Preiteration algorithm based on
generalized inverse

If the Moore-Penrose inverse of A exists and is known as A+,
the unique solution of (4) which has the minimum norm
and the least square can be obtained simply by [14]

X = A+U. (5)

There are several direct methods to calculate the generalized
inverse A+, for example, regularized SVD method. However,
the iterative method is always preferred in computerized cal-
culation, especially for large datasets, as it is easy to be pro-
gramed and occupies much less ram than direct methods.

Supposing the residual error series R̂k = I − AŜk (I is the
unit matrix of M ×M), series

Ŝk+1 = Ŝk + S0
(
I − AŜk

)
(6)

will be convergent to A+ when k → ∞ [14]. Here S0 can be
chosen as αAT [15], with α = 1/λmax. And λmax is the maxi-
mum eigenvalue of A·AT , where AT is the transposed matrix
of A.

From the analysis above, a two-step reconstructed algo-
rithm can be formed.

(1) Offline preiterative step: the approximation of gener-
alized inverse A+ is calculated by several iterative steps
of (6).

(2) Online reconstruction: when the weighted matrix A
keeps unchanged or the variation can be ignored, for
updated detection U the unknown character X can be
reconstructed simply through (5).

This preiteration method has already been applied to the
image reconstruction in electrical impedance tomography
(EIT) [15] which also belongs to the so-called “soft field”
imaging as FODT, and it is proved that Landweber iteration
method, which can produce higher quality reconstructed im-
age than other direct regularized methods, is in fact a mod-
ification of the above preiteration algorithm [16]. However,
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compared with Landweber method, the preiteration method
remarkably improves the reconstructing speed by perform-
ing the time-consuming iterative process offline.

3.2. Second-order iteration form

However, the first-order preiteration algorithm with form
equation (6) needs the same iteration steps as the Landweber
method to produce the same quality images [15]. So just like
the slow convergence of Landweber, for larger-sized dataset
in FODT, iteration form of (6) is also very time-consuming
even in the preiteration process. In order to speed up the it-
eration process, the second-order iterative format

Sk+1 = Sk
(
2I − ASk

)
(7)

is used in our work.
To prove the convergence of the second-order form equa-

tion (7), we examined the convergence of Sk and the residual
error Rk as follows.

First, by including (7), the iterative formula of Rk can be
obtained as

Rk+1 = I − ASk+1 = I − ASk
(
2I − ASk

)

= (I − ASk
)2 = R2

k.
(8)

Then it can be inferred that

Rk = R2
k−1 = R4

k−2 = · · · = R2k
0 . (9)

According to (7) and (9), Sk+1 can be written as a function
of R0 and S0 in the formula

Sk+1 = Sk
(
I + Rk

) = Sk−1
(
I + Rk−1

)(
I + R2k

0

)

= S0
(
I + R0

)(
I + R2

0

) · · · (I + R2k−1

0

)(
I + R2k

0

)

= S0
(
I − R0

)−1(
I − R2k+1

0

)
,

(10)

if ρ(R0) < 1, let k →∞, it yields

S∞ = lim
k→∞

Sk = S0
(
I − R0

)−1
, (11)

where S∞ can be proved as the generalized inverse matrix of
A [14].

However, with the first-order iteration form equation
(6), residual error R̂k = I − AŜk for k times iteration can
be expressed as

R̂k = I − A
(
Ŝk−1 + S0R̂k−1

) = R̂0 R̂k−1. (12)

Then it can be inferred that

R̂k = R̂2
0 R̂k−2 = · · · = R̂k+1

0 . (13)

By comparing (9) and (13), the difference between the
convergence speed of the two iteration forms can be found. If
the same value of S0 is selected, Sk can be directly obtained in
the kth step via the second-order form as (7) while it requires
(2k − 1)-step first-order iteration of (6).

Reconstructed
area

Source
Detector

Figure 1: An illustration of system geometry. The excited sources
and detectors are posed alternately around the circle of 50 mm di-
ameter with equal intervals between each other. The power of the
incident sources is 3 mw each.The reconstructed area is the central
square slab of 0.1 cm thickness with each side of 32 mm. The solid
lines represent the positions of the excited sources and the dotted
lines represent the detectors.

4. SIMULATION AND RESULTS

The simulation in this paper is performed in CW mode (i.e.,
ω = 0) and under the assumption of homogenous and ap-
proximately infinite medium. The algorithm can also be ap-
plied to arbitrary geometries linearized by analytical approx-
imation or finite element method.

The measurement geometry for simulations is illustrated
in Figure 1. The optical properties of the media are μ′s =
10 cm−1 and μa = 0.03 cm−1 everywhere for both the ex-
citation and emission wavelengths. The original fluorescent
yield η is 0.05 cm−1 in the presence of the fluorescent probes.
All the simulations were done in Matlab environment (ver-
sion 7.0.1) on a 2.79 GHz Intel Pentium IV personal com-
puter. The simulated measurement vector U is computer-
generalized by the product of coefficient matrix A and the
original distribution of X .

In the offline preiteration step, the approximation of A+

is obtained by the iteration of (7) with proper iterative num-
ber K . However, in the simulation the iterative method is
found to have the semiconvergence property. This is prob-
ably due to the accumulated round-off error in the computa-
tion. So the optimal iteration number should be determined
according to experience or prior information about the sys-
tem. In our simulation, a pretest with a known distribution
of fluorescence yield X is performed to choose K for the par-
ticular imaging system. And the mean squared error (MSE)
between the original X and the reconstructed X̂ is used as a
criterion of the reconstructed quality. We investigated how
the MSE changed against iteration times for several imaging
systems with different sizes (M measurements and N vox-
els). Figure 2 shows that there is a relative flat segment where
MSE changes very slowly before the iterative number begins
to rise significantly. So the proper iteration number can be
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Figure 2: Number of iterations versus MSE (mean squared error) between the original and the reconstructed. (a) shows the MSE for datasets
of 256∗ 1024 and 1024∗ 4096. Although the size is different, the iterative number where the MSE increases is the same, since they have the
same value of n/m. Two datasets in (b) have the same number of measurements 1024, however, the MSE with 10000 voxels increases much
later than the one with 1024 measurements.

chosen in this iteration number range. Figure 2 is obtained
in a noise-free environment. However, it is also found that
when noise exists, the MSE rises earlier than in a noise-free
system. For different levers of noise, the iteration numbers
where MSE rises are different.

With the iterative result Sk and the simulated detection
U , the distribution of fluorescent yield can be well recon-
structed simply by Xk = SkU . In our simulation, Xk is then
modified by including a nonlinear function f to constrain
the reconstructed values to [0, 0.05], that is

f
(
Xk
) =

⎧
⎪⎪⎨

⎪⎪⎩

0, Xk ≤ 0,

Xk, otherwise,

0.05, Xk > 0.05.

(14)

In the simulation, occasions of single-probe as well as multi-
probe are reconstructed for several different dataset sizes. It
is proved that the distribution of the fluorescent yield η can
be well estimated by the fast algorithm (Figure 3). It can be
seen that the algorithm works well when the measurement
number is much less then the reconstructed number.

For different imaging subjects, the weighted matrix A
may need to be updated, so it would be desirable to know
how the inversion time of the preiteration changes with
different-sized datasets. According to the results of conver-
gence of the iteration in Figure 2, 60-time iterations are cho-
sen for all of the following datasets in order to compare the
reconstructed timescales. The results are shown in Table 1. It
can be inferred that for the same number of measurements
M, the computing time is approximately proportional to the

number of reconstructed voxels N . However, if N remains
constant, when M rises to l ·M, the computing time will in-
crease to nearly l2 times of the original.

5. DISCUSSION AND CONCLUSIONS

With the preiteration method, we have demonstrated recon-
struction of fluorescence concentration by using simulation
data based on the analytical model with first-order Born ap-
proximation. Although in this paper, the fast algorithm is
simply demonstrated with the analytical solution for specific
medium geometry, it could also be applied to arbitrary ge-
ometries, where the model in (1) is discretized by numerical
methods [7, 10] or the Kirchhoff approximation [5].

In the simulation, a pretest should be done to deter-
mine the proper iteration number. A relationship between
the convergence property and the dataset size is also ob-
tained through the investigations and it can be found from
Figure 2 that in noise-free environment, the number of itera-
tions when the MSE begins to rise mainly depends on the ra-
tio of the voxels number N and the number of measurements
M, but not on the absolute value of them. This result will be
helpful for the determination of the proper iteration num-
ber. For example, the convergence property of large dataset
can be predicted from a smaller one with the same N/M. For
a system with fixed measurement size, the larger the recon-
structed mesh number is, the later will the MSE curve begin
to rise.

The computation burden of the second-order iteration
is further investigated in our work. It can be inferred from
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Figure 3: The original images and the reconstructions for single and multiprobe configurations with different datasets. (a) is the original
distribution of the fluorescent yield η with 32∗ 32 voxels. (b) and (c) separately show the reconstruction of (a) with 256 measurements and
1024 measurements. (d) is the original η with image size of 100∗ 100 voxels. (e) and (f) show the reconstructions with 1024 measurements
and 2048 measurements, respectively. For all of (b), (c), (e), (f), the iteration time in the preiteration step is 60.

Table 1: Computation time for 60 iterations.

m
n

1024 4096 10000

256 4.2321 s 16.4102 s 39.2953 s

512 16.0307 s 61.5063 s 147.5493 s

1024 61.6572 s 238.5744 s 565.6728 s

(7) that one iteration needs 2M2 · N times multiplication.
So the computation burden is proportional to the number of
reconstructed points N when measurement number M stays
unchanged and to M2 when N is constant. This result is well
proved in the simulation by the listed computing time for dif-
ferent numbers of measurements and voxels in Table 1.This
feature should be very suitable for imaging systems where
the number of voxels is always much larger than measure-
ment number such as FODT. The results of both conver-
gence property and computation burden indicate that the
algorithm is very suitable for imaging systems in which the
boundary measurement number is much less than the inside
reconstructed voxels. In addition, the reconstructed images
in Figure 3 showed that the algorithm works well for these
kinds of system.

The most promising feature of the algorithm is the rapid
reconstruction speed. It significantly accelerates the recon-
struction process in the following two aspects. First, when

the weighted matrix stays constant or the variance can be
ignored, by allowing the time-consuming iteration to be
performed offline, it provides great computational facility,
which is just a unique matrix vector multiplication. Second,
in the preiteration step, it is the second-order iteration form
of (7) that exponentially improves the speed of the iterative
process, which makes the algorithm feasible in practice and
can be finally applied to FODT with datasets of large size. For
example, to reconstruct the same quality images with 60 iter-
ations of (7) (the reconstructed images are shown in Figure 3
and the computing time is shown in Table 1), it will cost
about 260 iterative steps using Landweber method or the first-
order iterative form, requiring days for the reconstruction. So
the first-order form is not practical for FODT of large-sized
datasets even in the preiteration step. Therefore, the results
demonstrate that the time efficiency of both the preiteration
process and the online reconstruction is the most important
advantage of the algorithm. It will be helpful to promote the
development of real-time image reconstruction systems and
dynamic monitoring of molecular activity.
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Segmentation of molecular images is a difficult task due to the low signal-to-noise ratio of images. A novel two-dimensional fuzzy
C-means (2DFCM) algorithm is proposed for the molecular image segmentation. The 2DFCM algorithm is composed of three
stages. The first stage is the noise suppression by utilizing a method combining a Gaussian noise filter and anisotropic diffusion
techniques. The second stage is the texture energy characterization using a Gabor wavelet method. The third stage is introducing
spatial constraints provided by the denoising data and the textural information into the two-dimensional fuzzy clustering. The
incorporation of intensity and textural information allows the 2DFCM algorithm to produce satisfactory segmentation results
for images corrupted by noise (outliers) and intensity variations. The 2DFCM can achieve 0.96± 0.03 segmentation accuracy for
synthetic images under different imaging conditions. Experimental results on a real molecular image also show the effectiveness of
the proposed algorithm.
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1. INTRODUCTION

Molecular imaging techniques such as positron emission
imaging, fluorescent imaging, and isotope radiation imaging
have undergone explosive growth over the past few decades.
It will allow clinicians not only to measure concentrations
of interesting molecules quantitatively, but also to visualize
the interactions of molecular markers in vivo, thus extending
the emphasis of radiological imaging beyond the anatomi-
cal and functional levels [1]. Integrations of molecular infor-
mation specific to each patient with anatomical information
obtained by conventional imaging methods such as the mag-
netic resonance imaging (MRI), X-ray computed tomogra-
phy (CT), and ultrasound (US) will undoubtedly enhance
the ability to fight disease. Image segmentation is a prelimi-
nary and crucial step for subsequent image applications such
as quantification of molecular concentration, image registra-
tion, and integration. However, molecular images often suf-
fer from a low signal-to-noise ratio (SNR); this will lead to
difficulties with its segmentation.

The fuzzy clustering algorithm, more widely used as
fuzzy C-means algorithm (FCM) [2], has been successfully
utilized in medical image segmentation [3–6]. The most im-
portant feature of the FCM is that it allows each pixel to be-
long to multiple clusters according to its degree of member-

ship in each cluster, which makes the clustering methods able
to retain more information from the original image as com-
pared to the case of hard segmentation. FCM works well on
images with low levels of noise, but there are two disadvan-
tages of the FCM used in segmentation of noise-corrupted
images. One is that the FCM does not incorporate the infor-
mation about the spatial context, which makes it sensitive to
the noise and other imaging artifacts. The other is that the
cluster assignment is based solely on the distribution of the
pixel intensity, which makes it sensitive to intensity variations
due to the illumination or the object geometry [7]. In order
to improve the robustness of conventional FCM, many algo-
rithms have been presented in the literatures. These meth-
ods can be divided into two main groups: imposing spatial
constraints to clustering algorithms [3, 5–7] and introduc-
ing other features or dissimilarity index that is insensitive to
intensity variations in the objective function of FCM [5, 7].

This paper presents a novel algorithm based on fuzzy
logic for molecular image segmentation. In this algorithm,
two factors to improve the robustness of conventional FCM
are considered. Due to the low SNR of molecular images,
image denoising is taken for a prelude to the segmentation.
A denoising method which combines a Gaussian noise filter
with an anisotropic diffusion (AD) technique is presented to
alleviate noise in molecular images. Since the Gabor wavelet
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representation of molecular images is relatively robust to in-
tensity variations, a texture characterization method derived
from Gabor filters bank is presented to extract texture infor-
mation from images. Spatial constraints provided by the de-
noising data and texture information provided by the Gabor
wavelet are embedded in the objective function of a novel
two-dimensional fuzzy clustering (2DFCM) algorithm.

The remainder of this paper is organized as follows.
Section 2 proposes the denoising method. Section 3 intro-
duces the multichannel Gabor filters and the texture feature
characterization. In Section 4, we present in detail the new
two-dimensional FCM algorithm (2DFCM) which integrates
both intensity information and texture information. The ex-
perimental comparisons are presented in Section 5. Section 6
concludes the paper.

2. MOLECULAR IMAGE DENOISING

Gaussian noise is the most common noise broadly existed
in signal processing sciences. Ling and Bovik [8] proposed a
method to smooth molecular images by assuming that the
noise follows an additive Gaussian model. Following Ling
and Bovik’s notion, we also assume that molecular images
are corrupted by a zero-mean Gaussian white noise.

The FIR filter is well known for its ability to remove
Gaussian noise from signals but it does not work very well
in the image processing since it blurs edges within the image.
The Gaussian noise filter (GNF) [9], combining a nonlinear
algorithm and a technique for automatic parameter tuning,
is a valid method for estimation and filtering of Gaussian
noise. The GNF used in this paper can be summarized as fol-
lows. Let X = {x1, x2, . . . , xn} be a set of n data points in the
noisy image. The output Y = {y1, y2, . . . , yn} is defined as

yi = xi +
1
NR

∑

xr∈Ni

σ
(
xr , xi

)
, i = 1, . . . ,n, (1)

ζ
(
xi, xj

)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi − xj ,
∣∣xi − xj

∣∣ ≤ p,
(3p−∣∣xi−xj

∣∣

2

)
sgn

(
xi−xj

)
, p<

∣∣xi−xj
∣∣≤3p

0,
∣∣xi − xj

∣∣ > 3p,

,

(2)

where Ni stands for the neighborhood configuration with re-
spect to a center pixel xi, and NR is the cardinality of Ni. The
automatic tuning of the parameter p is a key step in GNF.
Let MSE(k) denote the mean square error between the noisy
image filtered with p = k and the same image filtered with
p = k − 1. A heuristic estimate of the optimal parameter
value is

p̂ = 2
(
km − 2

)
, (3)

where

MSE
(
km

) = MAX
{

MSE(k)
}
. (4)

The GNF can remove intensity spikes due to the Gaussian
noise. However, it has limited effect on suppressing little
intensity variations caused by the neighboring smoothing.

Since the conventional FCM is a method based on the sta-
tistical feature of the image intensity, a piecewise-smooth in-
tensity distribution will be greatly beneficial to it. We pur-
sue a more desirable denoising result by following the GNF
with an anisotropic diffusion filter. Yu and Acton [10] pro-
vided an improved anisotropic diffusion filter called speckle
reducing anisotropic diffusion (SRAD) which outperforms
the traditional Perona-Malik nonlinear diffusion [11]. Al-
though SRAD is proposed for the speckle reduction in syn-
thetic aperture radar (SAR) or ultrasound images, its ad-
vantages in mean preservation, variance reduction, and edge
localization are also preferable for molecular images. The
SRAD used in this paper can be formulated as a diffusive pro-
cess:

c(q) = 1
1 +

[
q2(x, y; t)− q2

0(t)
]/[

q2
0(t)

(
1 + q2

0(t)
)] , (5)

where c(q) represents the diffusion coefficient, q(x, y; t) is
the instantaneous coefficient of variation served as the edge
detector in the noise image. q(x, y; t) combines a normal-
ized gradient magnitude operator and a normalized Lapla-
cian operator:

q(x, y; t) =

√√√√√ (1/2)
(|∇Y |/Y)2 − (

1/42
)(∇2Y/Y

)2

[
1 + (1/4)

(∇2Y/Y
)]2 , (6)

where ∇ is the gradient operator and Y is the image filtered
by GNF. q0(t) is the scale function serving as the diffusion
threshold which can be approximated by using a heuristic
constant q0 with the exponential decay function

q0(t) ≈ q0 exp [−ρt]. (7)

Here ρ is a constant typically set to 1/6. Suppose that the out-
put of the SARD with Y = {y1, y2, . . . , yn} as the input can
be represented by X∗ = {x1

∗ , x2
∗ , . . . , xn∗}.

To clearly illustrate the denoising effect of GNF plus
SRAD, Figure 1 shows a group of filtering results of GNF
alone, SRAD alone, GNF plus SRAD, and the anisotropic
median-diffusion (AMD) [8] on a synthetic molecular im-
age. From the filtering results comparison, it is seen that the
denoising method of integrating GNF with SRAD can over-
come the intensity fluctuation effect of GNF and the “blocky”
effect of SRAD and MAD.

3. TEXTURE CHARACTERIZATION

A molecular image illustrates the distribution of a certain
molecule [8]. Since the photon has different transportation
characteristics in different turbid tissues, a molecular image
can be divided into several separate regions with each re-
gion showing similar intensity (implying similar molecular
concentration) and certain kind of textural pattern. Because
the photon distribution in a turbid tissue is not usually uni-
form, the intensity within a region usually changes gradually.
This intensity variation can cause errors when attempting to
segment images using intensity-based classification methods.
Intuitively, if a feature insensitive to the slowly varying in-
tensity can be introduced into the classification, the perfor-
mance of the image segmentation could be improved. Here,



J. Yu and Y. Wang 3

(a) (b) (c) (d) (e)

Figure 1: Denoising effect comparison among GNF, SRAD, and GNF plus SRAD: (a) original image; (b) filtering result of GNF; (c) filtering
result of SRAD; (d) filtering result of GNF plus SRAD; (e) filtering result of anisotropic median-diffusion (MAD) [8].

a texture characterization method based on the Gabor
wavelet is utilized to obtain this desirable feature.

A large number of texture classification techniques have
been proposed in the past two decades [12]. Gabor wavelet
has been a popular method because it can capture the local
structure corresponding to spatial frequency, spatial localiza-
tion, and orientation selectivity. As a result, Gabor wavelet
representation of an image should be robust to intensity vari-
ations [13, 14]. A Gabor function in the spatial domain is a
sinusoidal modulated Gaussian. The real impulse response of
Gabor filter is given by

h(x, y;μ, θ) = exp
{
− 1

2

[
x2

σ2
x

+
x2

σ2
y

]}
· cos(2πμx), (8)

where x = x′cosθ+ y′sinθ, y = −x′sinθ+ y′cosθ, (x, y)
represent rotated spatial-domain rectilinear coordinates, u is
the frequency of the sinusoidal wave along the direction θ
from the x-axis, σx and σ y define the size of the Gaussian
envelope along x- and y-axes, respectively, which determine
the bandwidth of the Gabor filter. The frequency response of
the filter is given by

H(U ,V) = 2πσxσ y

(
exp

{
− 1

2

[
(U − u)2

σ2
u

+
V 2

σ2
v

]}

+ exp
{
− 1

2

[
(U + u)2

σ2
u

+
V 2

σ2
v

]})
,

(9)

where σu = 1/2πσx, σv = 1/2πσ y . By tuning u and θ, mul-
tiple filters that cover the spatial frequency domain can be
obtained. In our study, Gabor wavelets with four different
scales, μ ∈ {π/4√2,π/4,π/2

√
2,π/2}, and eight orientations,

θ ∈ {0π/8, 1π/8, . . . , 7π/8}, are used. Let X(x, y) be the in-
tensity level of an image. The Gabor wavelet representation
is the convolution of X(x, y) with a family of Gabor kernels:

Gμ,θ(x, y) = X(x, y)∗h(x, y;μ, θ), (10)

where ∗ denotes the convolution operator, and Gu,θ is the
convolution result corresponding to the Gabor kernel at the
scale μ and the orientation θ. The next step is to compute
the textural energy in Gu,θ . The textural energy is a mea-
sure widely used to characterize the image texture. The en-

ergy that corresponds to a square window of the image Gu,θ

centered at x and y is defined as

Eμ,θ(x, y) = 1
M2

∑

(i, j)∈Wxy

∣∣F
(
Gμ,θ(i, j)

)∣∣, (11)

where M2 is the total number of pixels in the window, and
F(.) is a nonlinear, sigmoid function of the form

F(t) = tanh(αt) = 1− e−2αt

1 + e−2αt
, (12)

where α equals 0.25. The texture feature image is finally given
by

T(x, y) = 1
32

∑

μ,θ

Eμ,θ(x, y). (13)

As an example, Figure 2(a) shows a synthetic image with the
intensity inhomogeneity. Figure 2(b) gives the texture energy
bank (Eμ,θ) illustration. Figure 2(c) shows the texture feature
image. From this example, it is seen that the texture feature
characterization using Gabor wavelet is insensitive to the in-
tensity inhomogeneity.

4. 2DFCM

4.1. FCM

Let X = {x1, x2, . . . , xn} be a set of n data points, and let c
be the total number of clusters. The objective function of the
FCM [2] for partitioning X into c clusters is given by

JFCM =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2
, (14)

where m j , j = 1, 2, . . . , c, represent the cluster prototypes and
μi j gives the membership of pixel xi in the jth cluster m j . The
parameter b is the fuzzy index that satisfies b ∈ (1,∞) and
controls the degree of “fuzziness” in the resulting classifica-
tion. The fuzzy partition matrix satisfies

U=
{
μi j∈[0,1]

∣∣∣∣∣

c∑

j=1

μi j=1∀i, 0<
N∑

i=1

μi j <N ∀ j

}
. (15)
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(a)

(c)
(b)

Figure 2: Illustration of the texture feature characterization: (a) original image with the intensity inhomogeneity; (b) texture energy bank
illustration; (c) texture feature image.

Under the constraints condition of (15), taking the first
derivations of (14) with respect to μi j and m j and setting
those equations to zero yield necessary conditions for (14) to
be minimized. Performing iteration through these two nec-
essary conditions leads to an iterative scheme for minimizing
the objective function. The objective function (14) is min-
imized when high membership values are assigned to pix-
els whose intensities are close to the centroid of its particu-
lar class, and low membership values are assigned when the
pixel data is far from the centroid [2]. After FCM clustering, a
segmentation of the image can be obtained by assigning each
pixel solely to the class that has the highest membership value
for that pixel.

Although the membership allows a pixel to deviate from
multiple cluster prototypes, the spatial correlation between
adjacent pixels is not considered.

4.2. FCM with spatial constraints

A popular method to introduce the local spatial context into
the pixel classification is the spatial constraint. The spatial
constraint is to let the spatial information influence the clas-
sification of the pixel of interest [5, 6]. Let Ni denote the con-
figuration of neighbors that exists in a window around xi.
According to the assumption that real-world images usually
have strong correlation among neighboring pixels, if the pixel
xi belongs to the cluster with the prototype m j , then pixels in
Ni and the center pixel xi should have similar and high mem-
bership values in m j . This original idea of incorporating local
spatial constraints in the FCM is formulized as [15]

JFCM S =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2

+
α

NR

c∑

j=1

n∑

i=1

μbi j

(
∑

xr∈Ni

∥∥xr −mj

∥∥2
)

,

(16)

where Ni stands for the neighborhood configuration with
respect to a center pixel xi, NR is the cardinality of Ni, α

controls the effect of the neighboring penalty. The second
term on the right side of (16) allows the labeling of a pixel
to be influenced by the labels in its immediate eight neigh-
borhoods and aims at keeping continuity in the neighboring
window. The problem with (16) is that computing the neigh-
borhood terms will cost much more time than clustering.
In order to reduce the complexity of computing the neigh-
borhood terms, the dissimilarity measurements between the
whole neighborhood configuration and the prototype m j can
be replaced by a distance from a feature data of Ni to m j . The
feature data of the neighborhood configuration can be ob-
tained by several kinds of neighboring window filters, such
as the linear filter or the median filter. This approach is ex-
pressed in the following objective function [5]:

JFCM S′ =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2
+ α

c∑

j=1

n∑

i=1

μbi j
∥∥x∧i −mj

∥∥2
,

(17)

where x∧i is a mean or median of neighboring pixels lying
within a window around xi. Here, we modify (17) by substi-
tuting x∧i with denoising molecular image data x∗i . The ob-
jective function for the FCM with spatial constraints (called
FCM S later) is given by

JFCM S =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2
+ α

c∑

j=1

n∑

i=1

μbi j
∥∥x∗i −mj

∥∥2
.

(18)

4.3. 2DFCM

Equation (18) introduces spatial constraints into the clus-
tering procedure. However, the classification result of (18)
still solely depends on the intensity distribution of the im-
age, which makes it sensitive to intensity variations within
a turbid tissue. With the texture information obtained by
the Gabor wavelet bank, the two-dimensional fuzzy C-Means
(2DFCM) algorithm is constructed by integrating both the
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intensity and the texture information. Suppose that the tex-
ture feature image is T = {t1, t2, . . . , tn}, the objective func-
tion of 2DFCM can be expressed as

J2DFCM =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2
+ α

c∑

j=1

n∑

i=1

μbi j
∥∥x∗i −mj

∥∥2

+ βi

c∑

j=1

n∑

i=1

μbi j
∥∥ti − vj

∥∥2
.

(19)

The influence of the texture characterization imposed on the
clustering procedure can be controlled by a constant vector
βi(i = 1, . . . ,n); the prototype of texture image data is rep-
resented by v j( j = 1, . . . , c). The choice of βi is based on the
following principle. If ti is large, implying the texture energy
is dominant, and βi should be large; if ti is small, implying
the texture energy is weak, and βi should be also small. The
βi is determined by βi = (Bti)/max(T), where B is a constant
and its optimized value is determined by “trial-and-error”
technique (see Section 5 for details).

The optimization problem under the constraint of U as
stated in (15) can be solved using one Lagrange multiplier:

F =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2
+ α

c∑

j=1

n∑

i=1

μbi j
∥∥x∗i −mj

∥∥2

+ βi

c∑

j=1

n∑

i=1

μbi j
∥∥ti − vj

∥∥2
+ λ

(
1−

c∑

j=1

μi j

)
.

(20)

Taking the derivative of F with respect to μi j and setting the
result to zero, we can obtain an equation for μi j with un-
known

μi j=
{

λ

b
[(
xi −mj

)2
+α

(
x∗i −mj

)2
+βi

(
ti−vj

)2]

}1/(b−1)

.

(21)

Utilizing the constraint of U can be solved as

λ =
{ c∑

k=1

{
b
[(
xi −mj

)2
+ α

(
x∗i −mj

)2

+ βi
(
ti − vj

)2
]}1/(b−1)

}b−1

.

(22)

Substituting (22) into (21), a necessary condition for (19) to
be at a local minimum will be obtained:

μi j=
[(
xi−mj

)2
+α

(
x∗i −mj

)2
+βi

(
ti−vj

)2
]−1/(b−1)

c∑

k=1

[(
xi−mk

)2
+α

(
x∗i −mk

)2
+βi

(
ti − vk

)2
]−1/(b−1) .

(23)

Similarly, zeroing the derivative of F with respect to m j and
v j , we have

mj =

n∑

i=1
μbi j

(
xi + αx∗i

)

(1 + α)
n∑

i=1
μbi j

, vj =

n∑

i=1
μbi j ti

n∑

i=1
μbi j

. (24)

4.4. Implementation of 2DFCM

For the 2DFCM, the number of prototypes (c) and the ini-
tial centroids (M = {(mj , vj) | j = 1, . . . , c}) ought to be
known at the beginning of iterative procedures. A maximum
likelihood approach by processing and analyzing the two-
dimensional (2D) histogram of X and T is used to estimate c
and M. The number of prototypes (c) and initial prototypes
(M ) is estimated by following steps.

(1) Count the number of peaks in the 2D histogram and
record it as PeakNumprev.

(2) Filter the histogram using a five-by-five Gaussian filter
with zero mean and a standard deviation of 0.6.

(3) Pick peak points in the 2D histogram and record
the number of peaks using PeakNumnext. Then
calculate PeakSub=PeakNumnext−PeakNumprev, and
PeakNumprev=PeakNumnext.

(4) If PeakSub < 1, then go to step (5); if PeakSub≥ 1, then
go to step (2);

(5) The c is estimated as the number of peaks existing in
the filtered 2D histogram and the locations of c peaks
found are used as the initial centroids M.

The procedure of 2DFCM can be summarized in the fol-
lowing steps.

(1) Filter the image using GNF followed by SRAD to gen-
erate the denoising data X∗.

(2) Filter the image using Gabor wavelet band and com-
pute the texture feature image T.

(3) Formulate the 2D histogram using the denoising data
X∗ and the texture feature image T. Estimate the num-
ber of clusters (c) and initial prototypes (M).

(4) Repeat the following steps until the centroids variation
is less than 0.001.

(a) Update the membership function matrix using
(23).

(b) Update the centroids using (24).
(c) Calculate the centroids variation between before

updating and after updating.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

We perform experiments on a PC with 2.0 GHz Pentium pro-
cessor using Visual C++ 6.0. To illustrate the performance of
the 2DFCM, we first test it using simulated molecular im-
ages from which the ground truth data is available. Simu-
lated molecular images are obtained by using MOSE (Monte
Carlo optical simulation environment) [16–18] developed
by Bioluminescence Tomography Lab, Department of Radi-
ology and Department of Biomedical Engineering, Univer-
sity of Iowa (http://radiology.uiowa.edu/). MOSE is based on
Monte Carlo method to simulate bioluminescent phenom-
ena in the mouse imaging and to predict bioluminescent sig-
nals around the mouse.

The optimized α and B in the 2DFCM should be ob-
tained by “trial-and-error” technique. We first choose an ap-
propriate value for α based on the segmentation performance
of the FCM with spatial constraints (FCM S) (the objective
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function is formularized as (18). We take a group of values
for α ranging from 0.25 to 6 to test the misclassification rate.
With the increasing of α, the number of misclassified pixels
reduces. However, after α exceeds 3, the segmentation per-
formance of the FCM S has no apparent changes. Therefore,
we set α = 3.5 in our study, which is a value that can pro-
duce steady and good results. Then, we choose an appropri-
ate value for B based on the segmentation performance of the
2DFCM. We also take a group of values for B ranging from 5
to 80 to test the misclassification rate. After B exceeds 36, the
segmentation performance of the 2DFCM has no apparent
changes. Therefore, we set B = 36 in our work, which gives
steady and satisfactory results. The computation time of the
proposed algorithm on an image of 128 × 128 is approxi-
mately 12 seconds. About two thirds of total time are con-
sumed in texture characterization based on Gabor wavelet.

The first example is applying algorithms to a synthetic
cellular image and comparing the 2DFCM with other three
algorithms, including the FCM on the original image, the
FCM with spatial constraints, and the FCM on the texture
feature image. The model to generate synthetic molecular
images is illustrated in Figure 3(a). The simulated molecu-
lar image (128× 128) corresponding to Figure 3(a) is shown
in Figure 3(b). Then Figure 3(b) is corrupted by the intensity
inhomogeneity (as shown in Figure 3(c)) to generate the final
synthetic image (as shown in Figure 3(d)). Figure 3(e) shows
the image filtered by the GNF plus SRAD. Figure 3(f) shows
the texture feature image obtained by the Gabor wavelet
bank. Figures 3(g)–3(j) give the segmentation results of the
FCM on the original image (Figure 3(d)), the FCM with
spatial constraints, the FCM on the texture feature image
(Figure 3(f)), and the 2DFCM, respectively. We quantify the
algorithm performance in terms of three parameters defined
as follows:

SA = NCORRECT

NTOTAL
,

US = Nf p

Nn
,

OS = Nf n

Np
.

(25)

SA represents the total segmentation accuracy; US is the un-
der segmentation rate; OS denotes the over segmentation
rate. NCORRECT is the number of correctly classified pixels;
NTOTAL is the total number of pixels; N f p is the number of
pixels that do not belong to the class and are segmented into
this class; N f n is the number of pixels that belong to the class
and are not segmented into the class; Np is the number of all
pixels that belong to the class; Nn is the number of all pixels
that do not belong to the class. There are totally four algo-
rithms that are compared in our experiments. Table 1 gives
the SA, US, and OS comparisons among the four algorithms,
correspondingly.

To further test the segmentation performance of the pro-
posed method, a group of synthetic images under different
imaging conditions are utilized. Nine synthetic images are
shown in Figure 4. These images are organized into the form
with different photons density along the vertical direction

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3: Segmentation results on the first synthetic image: (a) the
ground truth image; (b) the synthetic image generated by MOSE;
(c) the intensity inhomogeneity model; (d) the synthetic image cor-
rupted by the intensity inhomogenetiy; (e) the denoising result with
the GNF plus SRAD; (f) the texture feature image; (g) the FCM re-
sult on (d); (h) the FCM S result on (d); (i) the FCM result on tex-
ture feature image; (j) the 2DFCM result.

and different types of intensity inhomogeneity along the hor-
izontal direction. Table 2 summarizes the segmentation ac-
curacy of the FCM on the original image, the FCM with
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Table 1: SA, US, and OS of the three-conventional FCM and 2DFCM on Figure 3.

Parameter The FCM on original image The FCM with spatial constraints The FCM on texture image The 2DFCM

SA 0.72 0.71 0.91 0.97

US 1.12 1.16 0.35 0.13

OS 0.01 0.01 0 0

SA: segmentation accuracy.
US: undersegmentation rate.
OS: oversegmentation rate.

Table 2: SA of the three-conventional FCM and 2DFCM on images with different imaging conditions.

Parameter The FCM on original image The FCM with spatial constraints The FCM on texture image The 2DFCM

SA 0.87± 0.15 0.86± 0.14 0.93± 0.03 0.96± 0.03

Figure 4: Synthetic images under different imaging conditions.
First row: the ground truth image. From the second row to bottom:
synthetic images with different photons density along the vertical
direction and different types of intensity inhomogeneity along the
horizontal direction.

spatial constraints, the FCM on the texture feature image,
and the 2DFCM, respectively.

The second example is applying the algorithms to a real-
molecular image (256× 256) (as shown in Figure 5(a)). Fig-
ures 5(b) and 5(c) show the denoising result of the GNF plus
SRAD, and the texture feature image obtained by the Gabor
wavelet bank, respectively. Figures 5(d)–5(g) illustrate the
segmentation results of the FCM on the original image, the
FCM with spatial constraints, the FCM on the texture feature

image, and the 2DFCM, respectively. In order to illustrate the
segmentation results clearly, the contours of the interest of
region in the classification image are extracted and superim-
posed on the original image. Figures 5(h)–5(k) give the con-
tour comparisons. It can be seen from Figure 5(a) that the
middle of the tissue appears homogeneously bright. How-
ever, the molecular concentration decreases in the boundary
area, which leads to the intensity variation near the bound-
ary. The conventional FCM on the original image and the
FCM with spatial constraints produce undersegmentation
results and the FCM on the texture feature image shows over-
segmentation.

From the experimental results, we can see that the de-
noising effects of the GNF plus SRAD are satisfactory. The
Gabor wavelet bank can represent the texture information in
the molecular image without being disturbed by the intensity
variation. The FCM produces the worst result due to the fact
that no spatial constraints are used in it. The FCM with spa-
tial constraints produces more smoothed segmentation re-
sults than the FCM. However the intensity inhomogeneity
makes the segmentation result degenerate. Since the 2DFCM
utilizes both the intensity and texture information simul-
taneously, it produces more satisfactory results than other
methods.

6. CONCLUSIONS

In this paper, we have developed a novel algorithm based
on the fuzzy clustering for the molecular image segmenta-
tion. Considering that there are two disadvantages for the
conventional FCM in the image segmentation, its success-
ful employment in the molecular image segmentation re-
quires overcoming nonrobust factors by introducing spatial
constraints and the texture feature of images into the clus-
tering. To alleviate noises in molecular images, a denoising
method combining GNF plus SRAD is proposed. We use the
denoising data obtained by GNF plus SRAD to compose spa-
tial constraints for the new 2DFCM. By utilizing the Gabor
wavelet representation and the texture energy characteriza-
tion, the texture feature that is insensitive to intensity varia-
tions is introduced into the 2DFCM. Quantitative evaluation
demonstrates the superiority of the 2DFCM over the conven-
tional FCM in the molecular image segmentation.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 5: Segmentation results on a real molecular image: (a) the original image; (b) the denoising result with the GNF plus SRAD; (c)
the texture feature image; (d) the FCM result on (a); (e) the FCM S result on (a); (f) the FCM result on the texture feature image; (g) the
2DFCM results; (h)–(k) the contours obtained from (d) to (g) superimposed on the original image, respectively.
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We present an approach based on the improved Levenberg Marquardt (LM) algorithm of backpropagation (BP) neural network
to estimate the light source position in bioluminescent imaging. For solving the forward problem, the table-based random sam-
pling algorithm (TBRS), a fast Monte Carlo simulation method we developed before, is employed here. Result shows that BP is an
effective method to position the light source.
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1. INTRODUCTION

Recently developed bioluminescence tomography (BLT),
with its noninvasive nature, has become a hotspot in invivo
optical imaging which can reveal the molecular and cellular
activity through determining the distribution of biolumines-
cent sources [1, 2]. Therefore, it can be applied to the study
of much physiological and pathological processes through
small animal imaging, such as monitoring tumor growing
and drug delivery, evaluating new therapies, and examining
protein and gene functions.

There are two basic points in the reconstruction of BLT,
one is the accurate modeling and solving of photon propa-
gation through biologic tissues, and the other is the proper
inversion strategy. Most existing reconstruction methods in
BLT were based on diffusion approximation of radiative
transfer equation. And the diffusion approximation, con-
sidered as a linear problem, can be solved by using clas-
sical inversion methods such as some regularization skills
[2, 3], Newton and modified Newton method [3–5], and
other strategies like adaptive finite element [5]. However, us-
ing diffusion equation to describe the photon transportation
has its limitations in some special cases and solving it accu-
rately is also very difficult [6]. Monte Carlo (MC) approach is
always employed to simulate the photon propagation for its
accuracy and flexibility [7]. But the time-consuming nature
made it seldom used in reconstruction field.

Based on traditional MC method, a table-based random
sampling (TBRS) method [8] was developed by Xiaomeng
Zhang in our lab, which could remarkably accelerate the

computation while keeping the accuracy of MC. In this paper
with the TBRS algorithm, the method that simulates the pho-
ton transportation, an improved LM algorithm of BP neural
network, is used to calculate the position of bioluminescent
source approximately, since BP neural network is effective in
finding the nonlinearity between the inputs and the outputs,
and LM algorithm will speed up the process of training.

2. METHODOLOGY

2.1. Scheme of the TBRS algorithm

The TBRS algorithm is based on a table to find a process in
obtaining the positions and directions of scattering photons
[8]. This table records a photon’s successive N steps of trans-
portation by including the position and direction of the pho-
ton during each scattering. For any consecutive n (n � N)
steps in the N steps of photon movement, the TBRS algo-
rithm suggests a possible state of continuous n-step trans-
portation. Thus, TBRS simulation can be started based on
the table we have built. With the help of the table, we can
randomly take out the continuous n steps from the table and
obtain the change of position and direction from one posi-
tion to the other one within these n steps. Then, it is added to
the position and direction of the photon in site 1, the initial
position of the photon, through the mapping principal illus-
trated in Figure 1(a) . Hence, the new position and direction
of the photon in site 2 can be obtained.

With the method as mentioned above, the n steps of
a photon’s transportation are simplified to one step in the
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Figure 1: The mapping principle of TBRS is shown in (a). The process of obtaining new sites through n-calculation is described in (b).

simulation. Such approach can be performed again and again
to obtain site 3, site 4, and so forth. (refer to Figure 1(b)).
Once the photon reaches the inside or outside boundary of
the media, it may either be reflected or transmitted, which is
determined by Snell’s law.

The comparison between TBRS algorithm and conven-
tional Monte Carlo algorithm shows that, with the exact
same conditions (size, geometric parameters, and optical
parameters of simulation media, computer configuration),
the computing time of TBRS is about 40% of conventional
Monte Carlo method [8].

2.2. The application of backpropagation neural
network to the reconstruction

To estimate the bioluminescent source position, we propose
an approach based on artificial neural network. It is one of
the most active methods in the realm of intelligence control,
especially in finding the nonlinearity between the inputs and
the outputs even in the absence of enough information about
the relationship between them [9].

The first step of the method is to generate proper num-
ber of training data, in which the source position is randomly
selected and varies in each simulation. TBRS method is em-
ployed here to simulate the measurements as it has the ac-
curacy similar to that of Monte Carlo while more timesaving
than it. The results obtained from the TBRS are used as the
actual measurement data to train the network in the process
of reconstruction.

Here we use a single hidden layer of back propagation
neural network method where the input layer comprises the
actual measurement data, and the output layer is the position
of the source, which is in the term of 3 coordinate values.

We consider the training error to be the sum over output
units of the squared difference between the desired output tk
and the actual output zk. So, we can define a criterion func-
tion as

J(w) = 1
2

3∑

k=1

(
tk − zk

)2
, (1)

where (t1, t2, t3) is the actual coordinate of the source po-
sition, the desired output in the process of training, while

(z1, z2, z3) is the network’s output, which can be adjusted
each time until J(ω) approaches the given limit.

Once J(ω) drops to a value lower than the error limit
through the adjustment of ω, the training ceases and the net-
work is determined. When the actual measurement data is
inserted to the input layer, the source position can be ob-
tained.

2.3. Improved Levenberg Marquardt algorithm of
back propagation neural network

In order to speed up the learning process and reduce the
training time, we should improve the traditional BP al-
gorithm. Here, we use Levenberg Marquardt (LM) algo-
rithm, a fast optimization algorithm that combines gradi-
ent descent method with Gauss-Newton method. It has not
only the character of local convergence in Gauss-Newton
method, but also the character of global convergence in gra-
dient descent method [10]. As a result, it can be used to
solve our reconstruction problem as an improvement of BP
method.

Let x(k) be the weight vector of the kth iteration. The new
vector x(k+1) can be written as

x(k+1) = x(k) + Δx. (2)

According to Newton method, we get

Δx = −[∇2E(x)
]−1∇E(x), (3)

where ∇2E(x) is called the Hessian matrix of the error crite-
rion function E(x) and,∇E(x) is called the gradient of E(x).

The error criterion function is E(x) = (1/2)
∑ N

i=1e
2
i (x),

where ei(x) is the error between the ith output and the ith
target value

∇E(x) = JT(x)e(x),

∇2E(x) = JT(x)e(x) + J(x),
(4)
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Figure 2: Cylinder phantom: platform and overall appearance.

where J(x) is called Jacobian matrix, as

J(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂e1(x)
∂x1

∂e1(x)
∂x2

· · · ∂e1(x)
∂xn

∂e2(x)
∂x1

∂e2(x)
∂x2

· · · ∂e2(x)
∂xn

· · ·
· · ·

∂eN (x)
∂x1

∂eN (x)
∂x2

· · · ∂eN (x)
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5)

For the Gauss-Newton method, we get

Δx = −[JT(x)J(x)
]−1

J(x)e(x) (6)

while LM is an improved Gauss-Newton method, the forma-
tion of which is

Δx = −[JT(x)J(x) + μI]
−1
J(x)e(x), (7)

where μ is the learning factor and I is the unit matrix. The
basic steps of this method are as follows.

(i) Set the initial x(k) = x0, and take a large setting value
of μ.

(2) Calculate error criterion function E(x(k)).
(3) If the function E is less than target or the number of

training epochs reaches the fixed number, stop the training,
else go on.

(4) Update x(k) to x(k+1) according to Equations (2) and
(7).

(5) If |E(x(k+1))| ≤ |E(x(k))|, then make μ(k+1) = αμ(k),
where 0 < α < 1 else make μ(k+1) = βμ(k) where β > 1. Go
back to �2 .

3. SIMULATION

Simulations were conducted in a homogeneous media as
shown in Figure 2, in which the platform is shown on the
left-hand side, and on the right-hand side is its overall ap-
pearance.

The cylinder, which the center is set at coordinate (0, 0,
0), has a height of 30 mm and 12 mm as the base radius. Each
detector has a radius of 1 mm and the centers of the detectors
are on the z-plane of z = 6, and z = −6, respectively. The
detectors in the two layers are numbered anticlockwisely (1–
8, 17–24). Inside the cylinder, there is an absorptive sphere
that has different absorption coefficient from the reference
medium. To simplify the problem, the fluorescent source is
assumed as a point source.

3.1. Simulation in 2D

In the first part of our simulation, we consider the estimation
of source on the z-plane (z = 6) and use the eight detectors
in this plane to reconstruct the source position. We gener-
ate 10 groups of source positions randomly on the z-plane of
z = 6. For every source position, we get other 3 positions of
its symmetrical position of x-axis, y-axis, and the center of
the circle. For example, we randomly generate one coordina-
tion of (a, b, 6) and also get (a, -b, 6), (-a, b, 6), and (-a, -b,
6). Totally we get 40 data, each of which will be used later as
the output of neural network during the process of training.
Each time we use one of these 40 data to generate the in-
formation of eight detectors’ (1–8) photon numbers through
TBRS. Each of the 40 data we get by means of TBRS is used
as the input of neural network that corresponds to the out-
put. We generate other 30 coordinates on the same plane, as
well as the information got by means of TBRS, as the test-
ing samples. The 30 source positions for the test are selected
every 36◦ on the circle of radius = 3, 6, and 9. When train-
ing is completed, we can use the testing samples to check out
whether the network built by training works well in estimat-
ing the source position.

When testing the new data, we define the term of “correct
testing samples within the range of maximal allowable er-
ror.” When the distance between point coordinate calculated
through the trained network and the actual one is smaller
than 2.4 mm, we say the testing sample is correct. We also
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Table 1: Estimation of source position on the z-plane of z = 6.

Photon numbers
Number of training
samples

Number of testing
samples

Number of correct testing
samples (maximal allow-
able error = 10%)

Maximal dis-
tance (mm)

10 000 000 40 30 30 2.18
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Figure 3: The comparison results between the estimated points and the actual ones.

define the maximal allowable error as the ratio of the distance
mentioned above to the diameter of the cylinder, 24 mm.
Therefore, when the distance mentioned above is 2.4 mm,
the maximal allowable error is 10%. Table 1 shows the result
of improved LM algorithm of BP neural network simulation
within the range of 10% allowable error. Figure 3 shows the
distribution of the 30 samples.

3.2. Simulation in 3D

In the second part of our simulation, the coordinate (x, y, z)
of source position is set randomly in a particular range. And
we use all 16 detectors’ photon numbers, since only 8 of them
in z = 6 or z = −6 may not determine the unique source
position in 3D. In order to get higher accuracy of source
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Table 2: Estimation of source position in the particular region.

Source point
region (cm)

Number
of training
samples

Number
of testing
samples

Number of
correct testing
samples (max-
imal allowable
error = 10%)

Maximal
distance
(mm)

Simulation1
in 3D

−5 < x < 5, −5 <
y < 5,−5 < z < 5
randomly selected

20 40 31 7.7

Simulation2
in 3D

0 < x < 10, −5 <
y < 5,−5 < z < 5
randomly selected

20 40 35 5.9
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Figure 4: Two estimations of source position in the second simula-
tion we select.

position in the finite times of training, we should only select
part of the cylinder instead of the whole region. When test-
ing the new data that is also selected randomly in the same
region as the training one, the maximal allowable error is
defined the same as the first part of simulation. The result
is shown in Table 2. We just select two results of estimation
of source position to express our expected estimation more
clearly (see Figure 4). It has proved to be a good result since
it is hard to discriminate between the actual source position
and the estimated one in 3-dimension.

4. DISCUSSION

The results have shown that backpropagation neural network
can be implemented to position the source, though only in a
particular region of the whole cylinder. The estimated source
position can mostly be located in an acceptable range of er-
ror.

The first part of our reconstruction shows an especially
good result due to our tactical selection of training samples.
Not only does the result prove that backpropagation neural
network can be implemented in the estimation of source po-

sition in 2-dimension, but it also presents a reliable selection
of training samples, that is, to train one point as well as its
other three symmetric points in the 2-dimension plane.

The result of our second part of simulation also shows
a high accuracy of estimation, represented by its approxi-
mately 80% accuracy of the testing sample. The difference
between the two correct rates of testing sample shows us that
the nearer the region is to the detectors, the higher accuracy
we get when testing, since the source point in Simulation 2 is
closer to the detectors than it is in Simulation 1. From the re-
sult, we could see that it is possible that such region is appar-
ently closer to some of the detectors that may make it easier
for the neural network to learn in the process of training.

Actually, the shapes of training and testing region in the
three simulations above are not as important as the dimen-
sion of it. In the second part of our simulation, we choose a
cube region for training and testing just for the purpose that
we can generate random numbers in our programing code
more conveniently. We can also choose other shapes such as
the cylinder, the sphere, and so forth. The dimension of the
region is more pivotal, for a broad range of region would in-
crease the difficulty in training. The 10× 10× 10 dimension
in our simulation goes through many attempts in trying to
make a balance between the low-convergence speed of train-
ing and the high accuracy of testing. On the other hand, we
choose the whole circle plane as the region for training in our
first part of simulation since it is much easier for network to
learn in a lower dimension.

From the testing results, we can see that a high rate of ac-
curacy was obtained after only forty training samples in the
first part and twenty ones in the second part of our simu-
lations. This demonstrates that the implementation of LM
algorithm in BP neural network could make the convergence
speed of training faster and the result of test more accurate.
This method can be extended to solve the problem in which
the source’s shape is more complex and indefinite.
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Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a
penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography
(FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method
together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate
for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of
the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than
the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome
information for FMT.
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1. INTRODUCTION

Light with wavelength in the near-infrared range can prop-
agate a few centimeters through the tissue because of low
tissue absorption in the spectral of “near-infrared window.”
This finding has encouraged the development of fluorescence
techniques to visualize specific biochemical events inside liv-
ing subjects [1, 2]. In recent years, a great development has
happened to the fluorescence molecular tomography (FMT),
a technique that resolves molecular signatures in deep tis-
sue using fluorescent probes or markers [1, 3–6]. Tissue is
illuminated by a series of excitation light in FMT; multiple
measurements for the fluorescent emission light are collected
from the tissue surface to resolve and quantify fluorochromes
deep inside the tissue. With great potential, FMT has become
a promising imaging modality for in vivo small animal imag-
ing [1, 2].

Several reconstruction approaches for FMT have been
proposed. Most of them are based on the diffusion model [6–
10]. The model can be solved by methods such as finite differ-
ence method [8], finite element method [6], adaptive finite
element method [11], and statistical method [12]. A weight-
ing matrix can be obtained from the forward model, which

describes the influence of each volume element on the detec-
tor readings. Generally, the inverse reconstruction problem
of FMT is to find the fluorescent source distribution in the
target tissue based on the precalculated weighting matrix and
the measured data. Since the data measured from the tissue
surface is far less than the number of unknown points in-
side the tissue, the reconstruction problem is illposed, and
the solution is sensitive to noise as well as measurement er-
ror. Several algorithms have been reported, such as the mod-
ified Newton method-based optimization scheme [13] and
the Born-type approximation techniques [14]. The conjugate
gradient (CG) methods, which need less storage and compu-
tation, are favorable for the problems with large-dimension
data. They have been reported to be adopted successfully in
the reconstruction algorithms for imaging modalities such as
the positron emission tomography (PET) [15–17] and dif-
fusion optical tomography (DOT) [18]. Normally, two dif-
ferent kinds of CG with different properties are being used
under different conditions. They are the linear CG method
(L-CG) and the nonlinear CG method (N-CG) [19]. There
is a remarkable point that L-CG and N-CG have reciprocal
properties. Combining them together may generate an im-
proved algorithm, which has the advantages of both of them.
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In this paper, a penalized linear and nonlinear combined
conjugate gradient method (PLN-CG) for the reconstruc-
tion of FMT is presented. The L-CG method and the N-CG
method are employed separately at different period based on
a restart strategy, in order to exert their advantages while
compensating for their disadvantages. Besides, a quadratic
penalty method is adopted to give the result a nonnegative
constraint, as well as reduce the uncertainty and illposedness
of the problem. Simulation studies show that the PLN-CG
algorithm can give a more accurate and more stable result
for the reconstruction in FMT with less computation. De-
tailed description of the PLN-CG algorithm can be found in
Section 3. Section 2 gives a general review of the forward and
inverse problems in FMT, including the conventional CG-
based reconstruction method. Simulation experiments are
presented in Section 4 to demonstrate the validity and effi-
ciency of the proposed algorithm. Section 5 summarizes the
main results and gives a general discussion.

2. THEORY AND BACKGROUND

2.1. Forward model in FMT

When an external excitation light source works at continuous
wave mode (CW mode), the following diffusion equation can
be employed to model the propagation of the excitation light
and the fluorescent emission light [6–10]:

∇·[Dx(r)∇Φx(r)
]−[μax(r)+μa f (r)

]
Φx(r)=−Θsδ

(
r−rsk

)
,

∇·[Dm(r)∇Φm(r)
]− μam(r)Φm(r)=−Φx(r)ημa f (r),

(1)

where r is the position vector belonging to the image region
Ω. Φx,m(r) represents the photon density at r for the excita-
tion light (subscript x) or the fluorescent emission light (sub-
script m). Dx,m(r) is defined as the diffusion coefficient

Dx,m(r) = (3(μax,m(r) + (1− g)μsx,m(r)
))−1

, (2)

where μax,m(r) and μsx,m(r) are the absorption and scattering
coefficients, respectively. g is the anisotropy parameter. The
absorption of the excitation light due to fluorophores is de-
scribed as μa f (r) and the fluorescent yield ημa f (r) is required
for fluorescence parameter.

2.2. The inverse reconstruction problem in FMT

In this work, the finite element method is used to solve
the forward model. Detailed description of the finite ele-
ment method for the FMT forward problem can be found in
[6, 11]. Based on the finite element solution of the forward
problem, (1) is transformed into a linear matrix equation as
follows:

Wx = I, (3)

where x, an N × 1 vector, denotes the real fluorescent source
distribution to be reconstructed. I, aM×1 vector, is the emis-
sion data computed from the measurement at the surface of

the tissue. And W, a M × N matrix, is the weighting ma-
trix generated from the forward model. Generally, the inverse
problem for FMT is to find the fluorescent source distribu-
tion x in the target tissue from the measured data I and the
precalculated matrix W. As mentioned before, the problem
in (3) is quite illposed and undetermined.

2.3. The L-CG and N-CG method

The implementation of CG in image reconstruction field is
generally in two ways. CG is one of the most useful methods
for solving large linear systems of equations with symmetric
and positive definite parameters, as it is called L-CG [19]. L-
CG can be employed in FMT reconstruction by transforming
equation (1) into a standard linear system. Since all parame-
ters of each step in L-CG can be obtained from the value of
the last step by iterative functions, the computation and stor-
age of the algorithm are reduced. Besides, with pertinence,
L-CG converges fast and has a good orientating ability. How-
ever, it is brittle and sensitive to noise. The requirement of the
standard form of the problem in L-CG limits the implemen-
tation of the regularization and penalty methods, which are
quite important for the illposed problem in FMT reconstruc-
tion. Thus, the CG method for nonlinear optimization prob-
lems, namely N-CG, which is more flexible to work along
with the regularization and penalty methods and has a bet-
ter capability to work under noise, is used widely for image
reconstruction [15, 17]. According to the least-squares (LS)
rule, problem (3) can be changed into a nonlinear optimiza-
tion problem as follows:

minφ(x) = 1
2
‖I−Wx‖2 + η(x), (4)

where η(x) is the regularization or penalty term chosen on
various purposes. Then the N-CG method can be adopted
to find the optimal solution of (4). However, defects exist in
N-CG. This method is more computationally expensive than
L-CG, resulting in more time consuming for each iteration.
Besides, it converges slowly [20]. Nevertheless, it is noticed
that the properties of N-CG and L-CG are reciprocal. Thus,
combining N-CG and L-CG together may generate an im-
proved algorithm, which can get a higher speed and accu-
racy from L-CG as well as a good antinoise capability and the
flexibility from N-CG. Therefore, an improved CG-based al-
gorithm for FMT reconstruction, penalized linear and non-
linear combined conjugate gradient method (PLN-CG), was
developed according to this consideration. The main scheme
of the algorithm is presented in the following section.

3. A PENALIZED LINEAR AND NONLINEAR COMBINED
CG METHOD

3.1. Searching the rough region using L-CG

The searching process for the optimal solution x∗ in PLN-
CG begins with an initial guess x0, and takes a steepest de-
scent first step. The sketch of the scheme is shown in Figure 1.

At first, the search is general and the effect of noise is
low, so L-CG is employed to find the rough region of the
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Ω1 Ω2

→
x
∗

→
x0

e2

e1

Figure 1: The sketch of the combined L-CG and N-CG schemes.

optimal solution x∗, that is, Ω2. Because L-CG has a better
orientating ability, and needs less computation, it can find
Ω2 faster and more accurately, while it does not have to ex-
pose its fragility under noise.

Transformation has to be made to (3) to make it a stan-
dard linear system with symmetric positive definite coeffi-
cient matrix. The optimal solution of the LS problem de-
scribed in (4) satisfies the normal equation as follows:

WTWx = WTI, (5)

where WT is the transpose of W. Thus

W∗x = I∗, (6)

where W∗ = WTW, is an N × N symmetric matrix. The
reconstruction problem has become a standard linear one, as
is required by L-CG.

Starting from an initial guess x0, the solution can be up-
dated iteratively by

xk+1 = xk + αkpk, (7)

where αk is the step size

αk =
rTk rk

pTk W∗pk
, (8)

and rk is the gradient of each step. It is defined in L-CG as the
residue of the linear system, which is obtained iteratively by

rk+1 = rk + αkW∗pk, (9)

where pk is the searching direction and

pk+1 = −rk+1 + βk+1pk,

βk+1 =
rTk+1rk+1

rTk rk
.

(10)

The L-CG searching iteration process will cease when xk
enters the region Ω2. The definition of the region Ω2 is de-
termined by a restarting parameter, which is described in the
following section.

3.2. The restart strategy

The restart strategy is a modification that is often used in
nonlinear conjugate gradient procedures [19, 21]. The gen-
eral scheme is to restart the iteration and take a steepest

descent step according to some predetermined conditions.
Restarting serves to periodically refresh the algorithm, erase
old information that may not be beneficial or even harmful,
and renew the initial guess x0 at every restarting time for the
new iteration process.

We adopt a restart strategy in the PLN-CG scheme de-
scribed as follows:

∣
∣rk
∣
∣ = ∣∣rk−1 + αk−1W∗pk−1

∣
∣ ≤ δ, (11)

where rk represents the gradient of φ(xk). When |rk| satis-
fies (11), it means that the xk obtained at current iteration
has entered the small region Ω2 around x∗. Then, a steepest
descent step is taken, using the gradient direction at current
point as the searching direction. At the same time, a new it-
eration process with the N-CG method begins, using xk as
the initial guess x0. The experiential typical value for δ is be-
tween 10−3 and 10−5. Normally, we choose 10−4 for practical
use.

3.3. Use of the N-CG method

After entering Ω2, the searching result is getting quite closer
to the optimal solution, so the effect of noise has to be taken
into consideration. Besides, the uncertainty of the searching
has increased. Thus, the method has been shifted to N-CG,
which can work better with noisy data. Besides, N-CG can in-
troduce the penalty or regularization method to gain a con-
straint as well as to reduce the illposedness.

Now, problem (3) is transformed into a nonlinear opti-
mization problem:

minφ(x) = 1
2
‖I−Wx‖2 + η(x), (12)

where η(x) is a penalty term which will be discussed in
Section 3.4.

The N-CG method differs from L-CG mainly in two
ways. Firstly, rather than using a standard iterative function
to find the step length αk, a line search method is used to
identify an approximate minimum of the nonlinear function
φ(x) along the searching direction pk [15, 17, 19]. Secondly,
the gradient of φ(x) in L-CG is simply the residue of the lin-
ear system that can be obtained iteratively. While for N-CG,
it must be replaced by the gradient of the nonlinear objective
φ(x), that is,∇φ(x).

Thus, using the xk obtained from L-CG as the initial
guess x0 for N-CG, the solution is updated iteratively:

xk+1 = xk + αkpk, (13)

where αk is the step size that is computed by a line search
method,

min f
(

xk + αpk
)

s.t. α ≥ 0, (14)

where pk is the searching direction and

pk+1 = −rk+1 + βk+1pk,

βk+1 =
rTk+1

(
rk+1 − rk

)

rTk rk
,

(15)
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(a) (b)

Figure 2: (a) Configuration of the simulation experiment using two excitation sources. The object is homogeneous, with a fluorophore
(designated with •) imbedded in it. Two excitation sources (designated with ◦) are placed around the inner surface of the object. (b) Mesh
in the forward FEM model.
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Figure 3: Images reconstructed with different methods. (a) N-CG, (b) L-CG, (c) PLN-CG. All results were obtained with a hundred iter-
ations, γ was chosen to be 50. A zero vector was used as the initial guess. The small circle in each figure shows the real distribution of the
fluorophore.

where rk is the gradient of the objective function φ(x) at cur-
rent point, that is,

rk = ∇φ
(

xk
)
. (16)

3.4. The nonnegative penalty

It is known that a major problem of the conventional
gradient-based methods is that they are mainly designed for
unconstrained problems, but the fluorescent source distribu-
tion in the biological tissue has to be constrained to a non-
negative region [16, 22]. Here, a quadratic penalty method
[15, 19] is adopted to give the problem a nonnegative con-
straint.

Consider the penalty function described below

η = γ
∑

i

x2
i u
(− xi

)
, (17)

where xi is the ith element of x, u(x) is the unit step function.
During the searching procedure, when the searched result x
at current iteration has negative values, the penalty term will
be increased. In this way, it will penalize x and force it to go
back. γ is a penalty weighting parameter, which will gradu-
ally become zero as the iteration number increases. Thus, the
solution of the new unconstrained problem in (12) with the
penalty term (17) will approach the solution of the original
problem in (3). The value of γ will be discussed experimen-
tally in Section 4.1.3.

Set an initial value x0, and the restarting parameter δ.
(1) Find xk using L-CG method,

the gradient rk = Axk − b, as in (9).
(2) If rk ≤ δ, go to (3). Else, repeat (1).
(3) Restart, set x0 = xk , β = 0.
(4) Find the optimal solution x∗ with N-CG method, use

φ(x) with penalty function η(x) as the objective function.

Algorithm 1: The PLN-CG scheme for FMT reconstruction.

Thus, a penalized linear and nonlinear combined conju-
gate gradient method is generated according to the scheme
described above. The main flow of Algorithm 1 is listed be-
low.

4. SIMULATIONS AND RESULTS

4.1. Simulations with two sources

In this experiment, a numerical model was set up to test
the validity of the PLN-CG algorithm. A circular object
was simulated with an outer diameter of 25 mm, which had
a fluorophore with a diameter of 4 mm embedded in it.
We supposed the optical property to be homogeneous, with
μa = 0.005 mm−1 and μs = 1 mm−1. In order to show the ef-



Shang Shang et al. 5

−5

0

5

10

15

×10−3

(a)

−5

0

5

10

15

20

×10−3

(b)

0

5

10

15

20

×10−3

(c)

−0.01

−0.005

0

0.005

0.01

0.015

(d)

−5

0

5

10

15

20
×10−3

(e)

0

5

10

15

×10−3

(f)

Figure 4: Images reconstructed with different initial guesses, using N-CG (Column 1), L-CG (Column 2), and PLN-CG (Column 3). Initial
guess for (a)–(c) was an all-0.005 vector, and for (d)–(f) was an all-0.01 vector. Results were all obtained with one hundred iterations. γ was
50 for the PLN-CG approach. The small circle in each figure shows the real distribution of the fluorophore.

ficiency of PLN-CG better, only two excitation sources were
used this time. They were placed around the inner surface of
the circular object (as shown in Figure 2(a)), and were turned
on in turn. For each source, 32 detector readings were avail-
able through the detector fibers, which were distributed uni-
formly on the surface of the circular object.

The forward data were simulated by finite element
method [6, 10], using a FEM light transport model in
CW mode [7]. The object was divided into 518 small tri-
angular elements and the mesh is shown in Figure 2(b).
The FEM forward engine was based on COMSOL Mul-
tiphysics (Section 3.2). The reconstruction algorithm was
programed in MATLAB 6.5. A computer with CPU AMD
Athlon×23600+ and 512M DDRII memory was used.

Images reconstructed by N-CG, L-CG, and PLN-CG are
shown in Figures 3(a), 3(b), and 3(c). All images were ob-
tained with one hundred iterations, as the objective func-
tion would descend very slowly thereafter. The nonnegative
penalty parameter γ used for PLN-CG was 50. A zero vector
was used as the initial guess for each algorithm.

It can be seen that images reconstructed by N-CG and L-
CG are noisy. Negative values exist, which affect the accuracy
of the results. While for PLN-CG, the values are all nonneg-
ative, and the image is cleaner and more accurate. The com-
puting time was about 5.02 seconds for N-CG, 0.22 second
for L-CG, and 1.45 seconds for PLN-CG. It indicates that
L-CG is much faster than N-CG. So helping N-CG with L-
CG has tremendously reduced the computing time, as in the
PLN-CG method.

4.1.1. Reconstruction using different initial guesses

Being sensitive to the initial guess is a big disadvantage for
most of the iterative approach based algorithms. It is re-
garded as a standard to test the stability of the algorithm.

Figure 4 shows the results reconstructed with different
initial values, using N-CG (Column 1), L-CG (Column 2),
and PLN-CG (Column 3), respectively. Since most elements
of the original solution are zero and the quantity of the flu-
orochrome intensity in FMT is relatively small, a zero vec-
tor is closer to the solution of the problem and is a bet-
ter choice to be the initial value (Figure 3). When the initial
value is increased to 0.005 and 0.01, the reconstructed im-
ages of N-CG (Figures 4(a) and 4(d)) and L-CG (Figures 4(b)
and 4(e)) become perturbed, with artifacts distributed in the
background. Whereas the PLN-CG (Figures 4(c) and 4(f)) is
still giving a clear result, with only a slight blur on the edge.

4.1.2. Reconstruction using noisy data

To test the stability of the algorithm, white Gaussian noise
was added to the detector readings. Figure 5 shows the im-
ages reconstructed by N-CG (Column 1), L-CG (Column
2), and PLN-CG (Column 3). The L-CG method reveals
its fragility under noise. The image is perturbed when the
noise level is 5% (Figure 5(e)). When the noise level is 10%,
the image is totally blurred, as is shown in Figure 5(h). The
N-CG method has a better performance compared with L-
CG (Figures 5(i) and 5(g)). However, many artifacts exist in
the images and affect the quantification of the fluorophore.
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Figure 5: Images reconstructed with noisy data, using N-CG (Column 1), L-CG (Column 2), and PLN-CG (Column 3). Noise level for
(a)-(c) was 1%, for (d)–(f) was 5%, and for (g)–(i) was 10%. Results reconstructed with N-CG and L-CG were obtained with one hundred
and fifty iterations. For PLN-CG, when γ was 50, the iteration number was one hundred. The small circle in each figure shows the real
distribution of the fluorophore.

Whereas, images reconstructed with PLN-CG approach are
clear when the noise levels are 1% (Figure 5(c)) and 5%
(Figure 5(f)). When the noise level is 10%, the fluorescent
source distribution is still relatively clear, with a little artifacts
appearing on the edge.

4.1.3. The value of the penalty parameter γ

When using the PLN-CG method, γ is the weighting parame-
ter that controls the effect of the penalty term. Figure 6 shows
the images reconstructed with different γ.

It can be seen that when γ is 10−3, the effect of the penalty
term is not enough. Negative values exist and the background
is not clean. Increasing γ to 1 does produce better results
(Figure 6(b)), and a further increase to 103 enhances the im-
provement (Figure 6(c)). When γ increases to 105, the qual-
ity of the image begins to get worse (Figure 6(d)). The results
show that the penalty term can work well for a large varia-

tion of γ. A typical value for γ is 10 to103. Besides, γ should
be increased when the total iteration number increases.

In addition, rather than keeping γ fixed, one can use dif-
ferent γ according to the experiential equation [18]

γ = an2, (18)

where n is the iteration number. a is a fixed weighting pa-
rameter, which can be set to a value between 10−3 and
1. Figure 6(f) shows the images reconstructed according to
(18). The iteration number was one hundred and a was cho-
sen to be 0.005.

4.2. Simulations with more sources

Simulation studies above were based on two excitation
sources, in order to demonstrate the qualities of the PLN-
CG approach better. When the number of sources is in-
creased, a larger dataset can be obtained. It will improve
the information content of the measurements and reduce
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Figure 6: Reconstructed images using different γ: (a) γ = 1e − 3; (b) γ = 1; (c) γ = 1e3; (d) γ = 1e5; (e) γ = 1e7; (f) γ = 0.005n2, where
n is the iteration number. A zero vector was used as the initial guess for each reconstruction process, and all results were obtained with a
hundred iterations. The small circle in each figure shows the real distribution of the fluorophore.

(a) 4 sources (b) 8 sources (c) 16 sources

Figure 7: Configuration of the simulation experiments using more excitation sources. (a) 4 sources. (b) 8 sources. (c) 16 sources. The
excitation sources are distributed uniformly around the inner surface of the object (designated with ◦). For each experiment, the object is
homogeneous, with a fluorophore (designated with •) embedded in it.

the illposedness of the inverse problem [5]. Thus, in prac-
tice, FMT equipments normally use more excitation sources
[3, 4]. Here, simulation experiments were designed using 4
sources (Figure 7(a)), 8 sources (Figure 7(b)), and 16 sources
(Figure 7(c)), respectively.

In each experiment, sources were turned on in turn and
32 detector readings were available for each source. Results
with clean data were obtained with a hundred iterations for
about 2.99 seconds in the 4 sources case (Figure 8(a)). While
the computing time was about 4.9220 seconds and 9.1560
seconds for 150 iterations in the 8 sources case (Figure 8(b))
and 16 sources case (Figure 8(c)), as they have a larger
dataset. γ was simply set to 50 for all cases because the dif-
ference among the iteration numbers was small. It is shown
that as the source number increases, the qualities of the re-

constructed images are in progress. The reconstructed fluo-
rochrome region marked with the small black circle is more
even and closer to the original value.

After the experiments using clean data described above,
white Gaussian noise with a constant variance was added
to the detector readings. The noise level was 10%. It is
shown that the reconstructed results become clearer and bet-
ter when the sources number increases from 2 (Figure 5(i))
to 4 (Figure 8(d)) and 8 (Figure 8(e)). However, when us-
ing 16 sources (Figure 8(f)), the image is not improved com-
pared with the 8 sources case, or even worse, which defies the
common sense. The reason may be that, when using clean
and accurate data for the reconstruction, more datasets mean
more information, whereas for the cases using noisy data,
too many data may interfere with each other and counteract
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Figure 8: Images reconstructed in the experiments which have more excitation sources. (a) 4 sources, clean data; (b) 8 sources, clean data;
(c) 16 sources, clean data; (d) 4 sources, 10% noise; (e) 8 sources, 10% noise; (f) 16 sources, 10% noise. The small circle in each figure shows
the real distribution of the fluorophore.

the effect. Nevertheless, the results of this experiment further
demonstrate the capability of the PLN-CG method to work
under noise.

5. DISCUSSION AND CONCLUSION

The goal of this work was to establish a fast and accurate al-
gorithm for FMT reconstruction, which is illposed. In order
to achieve this goal, a penalized linear and nonlinear com-
bined conjugate gradient algorithm was developed. Simula-
tion studies have indicated that this PLN-CG method can ex-
hibit very favorable performance and produce relatively sta-
ble behavior. Further studies show that, when using sixteen
sources, the reconstruction algorithm can work under 15%
noise, which is sufficient for practical use. The better perfor-
mance is partly achieved by the combination of L-CG and
N-CG. L-CG makes the algorithm faster and more accurate.
While at the same time, N-CG gives the whole algorithm a
better capacity to deal with noise. It introduces the penalty
method to get a nonnegative constraint and reduce the un-
certainty of the problem. The restart strategy also improves
the efficiency of the algorithm by refreshing the algorithm
periodically.

Further improvement can be made for the PLN-CG al-
gorithm in future. Some kind of regularization techniques
can be employed to regularize the results and smoothen the
images [6]. The prior knowledge about the intensity of the
fluorochrome can be used to utilize a general threshold of
the reconstructed fluorescent source density to decrease the
permissible region [11]. In addition, doing more restarting
procedures appropriately may also upgrade the reconstruc-
tion images. Currently, we are involved in the practical use of

the PLN-CG reconstruction algorithm for the ongoing FMT
experiment in our laboratory.
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The purpose of this study was to detect the physiological process of FDG’s filtration from blood to urine and to establish a math-
ematical model to describe the process. Dynamic positron emission tomography scan for FDG was performed on seven normal
volunteers. The filtration process in kidney can be seen in the sequential images of each study. Variational distribution of FDG in
kidney can be detected in dynamic data. According to the structure and function, kidney is divided into parenchyma and pelvis.
A unidirectional three-compartment model is proposed to describe the renal function in FDG excretion. The time-activity curves
that were picked up from the parenchyma, pelvis, and abdominal aorta were used to estimate the parameter of the model. The
output of the model has fitted well with the original curve from dynamic data.
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1. INTRODUCTION

The development of positron emission tomography (PET)
has made it possible to detect the physiological process in
a human body. [18F]fluoro-2-deoxy-D-glucose(FDG) is the
analog of glucose, which is widely used in clinical PET exper-
iment [1]. In order to understand the metabolism of glucose
and to detect diseases better, mathematical models of FDG
have been established for brain, heart, liver, and some other
organs [2–5]. Although kidney is the most important organ
in the metabolism system of a human, and large quantity of
FDG in the body is accumulated in the urine through the
kidney [6], yet little work has been done for kidney mod-
elling with FDG PET. There are two major reasons why only
a few mathematical models are established for kidney. The
first reason is because of the complicated structure and func-
tion of the kidney [7], and the second reason is due to the
high excretion of FDG through the kidney [6, 8]. FDG, unlike
glucose, cannot be reabsorbed in the proximal tubules of the
kidney, and so FDG will be accumulated in the urine.

To describe the filtration process of FDG from blood to
urine, seven normal volunteers took part in the dynamic
FDG-PET experiment. The imaging data has been used for
kinetic analysis and parameter estimation.

Compared to the high concentration of FDG in kidney
collection system, the small quantity of metabolized FDG in
kidney can be neglected. The dynamic imaging shows the fil-
tration of FDG and the process of urinary excretion. Though

three-compartment four-rate model is widely used to de-
scribe the metabolism of some of the human organs, it is
not suitable for describing kidney. A unidirectional compart-
ment model is proposed to show the transport process of
FDG from blood to urine. Due to the kidney which con-
tains great quantity of blood vessel and collection system of
urine, the effect fractions from the blood and the urine to
parenchyma will be all considered in the model.

Bouchet et al. [7] had proposed the model which divides
the kidney into five parts in order to compute the absorbed
fractions of radiopharmaceuticals. In our study of dynamic
PET imaging, the inhomogeneity of kidney can also be seen.
Here, the kidney is separated into two parts: parenchyma and
pelvis. Time-activity curves are picked up from each part and
are used to estimate the parameters. Though there are great
differences between each set of parameters, the output of the
model is basically in accord with the original curve.

2. MATERIALS AND METHOD

2.1. Subjects

Seven normal volunteers participated in the study. The age
of volunteers is between 34 to 60 years (mean ± SD, 47± 11
years), the height is from 165 to 185 cm (172 ± 7 cm), and
the weight is from 53 to 94 kg (76±12 kg). None of them has
had a prior history of any major metabolic illnesses or renal
diseases. Dynamic FDG-PET scans were performed on each
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Figure 1: Model of kidney for FDG excretion.

volunteer. They were asked to fast for at least four hours and
to empty the bladder before the scanning. During the exper-
iment, they were asked to lie down still and to keep quiet.
Each volunteer was informed fully about the purposes and
procedures of the study and was asked to give a written con-
sent.

2.2. PET scanning protocol

All the experiments were done with an ECAT EXACT HR+

PET (CTI/Siemens, Inc., TN, USA). The scanner provides 63
continuous transaxial slices with a 15.5 cm field of view. The
spatial resolution is 4.2 mm full width at half maximum in
the centre field of view. The experiments were performed in
a single bed position covering the kidneys. The tracer dose
of FDG, 4-5 mCi, was injected intravenously into the human
body, and PET scan began immediately after the injection. In
the sampling protocol, the dynamic imaging sequences con-
sisted of six 10-seconds frames; eight 20-seconds frames; six
30-seconds frames; five 60-seconds frames; four 300-seconds
frames; and three 600-seconds frames, which is in total of 32
frames for a total scan time of 61 minutes and 40 seconds.

2.3. Organ time-activity measurement

Kidney and abdominal aorta can be detected from the dy-
namic PET image. During study, the time-activity curve
was picked up from the drawn region of interest (ROI) in
each frame. The radioactivity was calculated by averaging
the whole voxel’s values within the ROI. Kidney is differ-
ent from other organs, because it is heterogeneous for the
complex physiological function. Kidney is divided into two
parts: renal parenchyma and pelvis. In this study, the ROIs of
parenchyma and pelvis were drawn for each plan from the 3D
image data in separate frames which have a best view of cer-
tain parts of the kidney. The ROI of parenchyma is drawn in
the frame for about 2 minutes after the scan, and the ROI of
pelvis is drawn in the frame for about 5 minutes. The blood
time-activity curve (BTAC) was derived from the ROI in ab-
dominal aorta [9], which is drawn in the frame for 1 minute.

2.4. Model analysis

A three-compartment model (Figure 1) with four parame-
ters is proposed to simply describe the excretion of FDG.
In this simple model, blood, renal parenchyma, and urine
compartments are assumed to be uniformly distributed with
FDG, respectively. The urine compartment includes urine in
the pelvis and urine in the bladder. For the high excretion of
FDG, the metabolism of FDG in kidney is unobvious and is

neglected in the model. k1 and k2 are the rate constants of
FDG between each compartment,

dC1

dt
= k1CB − k2C1, (1)

C1(t) = k1 · e−k2t ⊗ CB(t), (2)

CT(t) = k1e
−k2t ⊗ CB(t) + f1CB(t) + f2Cpelvis, (3)

where CB is the concentration of FDG in blood, C1 is the
concentration of FDG in parenchyma, C2 is the concentra-
tion of FDG in urine, Cpelvis is the concentration of FDG in
pelvis, and CT is the concentration of FDG detected from
PET. Equation (1) shows the kinetic description of the com-
partment model, (2) is derived from (1), and (3) shows that
the activity in kidney detected by PET is not only decided
by C1, but also affected by CB and Cpelvis. Kidney is an or-
gan which is rich in blood. So, the parameter f1 is used to
describe the effect fraction from the blood to parenchyma.
Parenchyma and pelvis are so close to each other inside the
kidney that their effect on each other cannot be neglected.
Thus, parameter f2 is introduced to calibrate the effect of the
urine from the pelvis.

3. RESULT

3.1. FDG imaging

In these seven subjects, the kidneys are clearly visualized with
very high target-to-background ratio (Figure 2). Shreve et
al. [10] had used carbon-11-acetate as the tracer to detect
kidney. In their studies, no urinary tracer activity has ap-
peared in the intrarenal collecting system. Unlike carbon-
11-acetate and glucose, FDG is a kind of tracer which can-
not be reabsorbed when the initial urine passes through the
renal tubule. Thus, FDG can be detected in renal pelvis in
some frames. The concentration distribution variation can
be seen in kidney in different frames. Figures 3(a) and 3(b)
are the same coronal sections of a dynamic PET study in one
frame (in 1 minute after injection), but the two images are
in different brightness (window center) and contrast (win-
dow wide). The part of the kidney in which activity is highly
accumulated can be found by adjusting brightness and con-
trast (Figure 3(a)). Figure 2(b) gives the outline of the whole
organ in hot color scheme, and two images, Figures 3(a)
and 3(b) were fused. It can be seen from the fused image
(Figure 3(c)) that in early time after the injection, the FDG is
mostly accumulated in the edge of the kidney, where the re-
nal cortex and some of renal medulla are located. Figure 3(d)
is another fused image in frame for over 5 minutes after in-
jection. It can be seen that the high activity concentration
appears in the renal depression, where the position of renal
pelvis is.

3.2. Kinetic parameter

Seven dynamic data sets from the seven subjects were used
for parameter estimation. The BTAC which has been picked
up from aorta and the tissue time-activity curve (TTAC) of
pelvis is the input of the model, while the detected TTAC
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Figure 2: Some of the sequential transaxial images of one study.
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Figure 3: Images of kidney: (a)-(b) is one coronal section at 40–50 seconds, (c) is the fused image of (a) and (b), and (d) is another fused
coronal section at 310–340 seconds.

Table 1: Parameters of the kidney model.

k1 (min−1) k2 (min−1) f1 f2

Subject1 3.4659 2.8042 0.15964 0.07574

Subject2 1.8423 2.3827 0.03293 0.10977

Subject3 1.3318 1.9806 0.19699 0.04073

Subject4 0.7703 0.8280 0.17543 0.03623

Subject5 1.5503 1.1120 0.10181 0.00000

Subject6 0.8981 0.9486 0.07342 0.04563

Subject7 1.2170 1.0007 0.03525 0.03525

Average 1.5822 1.5795 0.1269 0.0491

SD 0.9074 0.7981 0.0593 0.0347

of the parenchyma is the output of the model. Weighted
least squares principle [11] was used to fit the simple kidney
model. The weight is the inverses of the measurement error.
Parameters for the model are listed in Table 1.

The average and standard deviations (SD) for k1, k2, f1,
and f2 are also shown in Table 1. The average rate constant k1

is 1.5822 min−1, and k2 is 1.5795 min−1. The effect fraction
f1 is 0.1269, and f2 is 0.0491. The parameters of each subject
are compared with each other. Results show significant dif-
ferences in the parameters for the subjects. Characters such
as age, height, or weight of the individual subjects may be one
of the reasons for the differences in the parameters. The con-
firmations of ROI for each study also lead to the huge differ-
ences especially for f2, which describes the effect from urine
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Figure 4: Time-activity curve. The normal line represents the time-
activity curve of renal parenchyma, the dashed line is the time-
activity curve of renal pelvis, and the asterisks show the point we
fitted.

of pelvis to renal parenchyma. The further the ROI of the
parenchyma is from the pelvis, the smaller f2 will be. Figure 4
shows the time-activity curve of one of the experiments. The
asterisk points are the result from compartment model and
estimated parameters.
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4. DISCUSSION

The research of metabolism with FDG PET has been done
for many years, but only a little work is focused on kidney. In
some study, the function of kidney is just described by a con-
stant rate from plasma to urine [5]. For some tracer, kidney
can also be described by the classical three-compartment
model [12]. The kidney model for FDG is different, because
F-18 FDG is excreted greatly into the tubular lumen and ac-
cumulated in the renal collecting system [8], no reabsorption
appears. So we use only one-direction compartment model
to describe kidney. Seven sets of dynamic clinical data were
being used to estimate the parameters. Results have shown
great differences in each subject. However, the output of the
model fits well with the original curve from clinical data.

In order to make the model simple and workable, some
assumptions were made in this study: the blood time-activity
curve which was picked up from the aorta is used as plasma
time-activity curve in parameter estimation; no urine is ac-
cumulated in the parenchyma, and the effect from the pelvis
is assumed to be consistent.

The high excretion of FDG has made it difficult to analyze
the glucose metabolism of kidney and also to detect renal dis-
eases. However, the high excretion of FDG can still provide
other important physiological information. In the dynamic
data, Parenchyma and pelvis can be distinguished, and the
time-activity curves are shown in Figure 4. The peaks of the
two curves which show the highest concentration appear at
different time points. The peak of the pelvis appears a lit-
tle later than that of parenchyma. The result is in accord
with the renal physiology. Two peaks are shown in the time-
activity curve for pelvis. This can be explained by the phys-
iology of pelvis. Pelvis is the tissue which accumulates urine
temporarily. The urine is then transported to bladder. The
time-activity curve of the pelvis shows the process of urinary
transport to bladder. The process cannot just be described by
a rate constant. Hence, this model is just a preliminary study
of kidney, further investigation will be done.
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To verify the influence of a priori information on the nonuniqueness problem of bioluminescence tomography (BLT), the mul-
timodality imaging fusion based BLT experiment is performed by multiview noncontact detection mode, which incorporates the
anatomical information obtained by the microCT scanner and the background optical properties based on diffuse reflectance
measurements. In the reconstruction procedure, the utilization of adaptive finite element methods (FEMs) and a priori permis-
sible source region refines the reconstructed results and improves numerical robustness and efficiency. The comparison between
the absence and employment of a priori information shows that multimodality imaging fusion is essential to quantitative BLT
reconstruction.
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Bioluminescence tomography (BLT) has an increasingly sig-
nificant effect on revealing the molecular and cellular infor-
mation in vivo [1]. When the bioluminescence imaging ex-
periment is performed, luciferase can be introduced into var-
ious types of cells, organisms, and genes in a living mouse.
Then, luciferin is combined with luciferase in the presence of
oxygen and ATP to generate bioluminescent signals of about
600 nm in wavelength. The mechanism of BLT is to identify
bioluminescent source from the light flux detected on the
surface of small animal. However, three-dimensional biolu-
minescent source reconstruction is an inverse source prob-
lem in theory, which has been less researched and is differ-
ent from the inverse scattering imaging, such as diffusion
optical tomography (DOT). Then, in the highly heteroge-
neous biological tissues, the scattering and absorption of the
photons emitted by bioluminescent source further increase
the difficulty of source localization. In addition, although
the absence of external illumination sources acquires high-
sensitive signal and yields high-contrast image in biolumi-
nescence imaging, it complicates the tomographic problem.
Therefore, the unique and quantitative reconstruction of bi-
oluminescent source is a topic of further investigation [2].

Based on diffusion approximation theory, the unique-
ness theorem indicates that it is necessary to utilize a pri-

ori information to solve the nonunique problem of BLT [3].
In view of the spectral characteristics of the underlying bi-
oluminescent source, hyper- and multispectral BLT meth-
ods are proposed [4–7]. Taking into account the surface light
power distribution and the heterogeneous structure of the
phantom, a priori permissible source region based BLT re-
construction method is developed on the fixed discretized
mesh [8]. Then, the multilevel adaptive finite element based
tomographic algorithm is also developed, which further re-
duces the ill-posedness of BLT and improves the reconstruc-
tion quality [9]. In this research, a BLT experiment is per-
formed, which incorporates the anatomical and background
optical information. Using our proposed tomographic algo-
rithm [9], the reconstructed results show that multimodality
imaging fusion is indispensable to quantitative BLT recon-
struction.

Figure 1(a) shows the BLT prototype for biolumines-
cence imaging. The main component of the equipment
is a cooled CCD camera (Princeton Instruments, USA),
which collects optical signals emitted from bioluminescent
source in the phantom. The combination of the vertically
rotated stage under computer control and the camera real-
izes the multiview noncontact detection. When the phantom
is placed on the stage, we may manually adjust the distance
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Figure 1: BLT system and physical phantom. (a) Multiview noncontact BLT prototype; (b) the physical heterogeneous phantom consisting
of bone (B), heart (H), lungs (L), and muscle (M); and (c) a slice scanned by microCT scanner.

between the lens and the phantom surface through the con-
trolled transport for the best signal acquisition. In addition,
the utilization of light-tight enclosure guarantees that the bi-
oluminescence imaging is performed in a totally dark envi-
ronment.

When bioluminescent photons propagate in biological
tissue, the radiative transfer equation (RTE) may precisely
describe photon transportation. Diffusion equation as an ap-
proximation has been extensively applied in terms of high
scattering characteristic of tissues [8]. In addition, Robin
boundary condition is used to deal with the refractive in-
dices mismatch between the small animal and the exter-
nal medium [8]. In the framework of adaptive finite ele-
ment analysis, a linear relationship between the measurable
boundary flux Φm

k and the unknown source density S
p
k can

be established on the kth discretized level in terms of a priori
permissible source region [9]:

AkS
p
k = Φm

k . (1)

Then, we define the following kth level minimization prob-
lem to reconstruct source distribution based on Tikhonov
regularization methods:

min
Skinf≤Spk≤Sksup

Θk
(
S
p
k

) = {∥∥AkSpk −Φm
k

∥
∥
Λ + λkηk

(
S
p
k

)}
, (2)

where Skinf and Sksup are the kth level lower and upper bounds
of source density; Λ is the weight matrix, ‖V‖Λ = VTΛV ; λk
the regularization parameter; and ηk(·) the penalty function.
Through selecting the effective optimization method, we can
obtain the preferable BLT reconstruction.

In this bioluminescence imaging experiment, a hetero-
geneous physical phantom of 30 mm height and 15 mm ra-
dius is designed and fabricated. The phantom, shown in
Figure 1(b), is made up of four different materials, that is,
high-density polyethylene (8624K16), nylon 6/6 (8538K23),
delrin (8579K21), and polypropylene (8658K11) to represent
muscle, lungs, heart, and bone, respectively. Two lumines-
cent sources of about 1.9 mm height and 0.56 mm diameter
are embedded in the left-lung region of the phantom with the
centers at (−9.0, 1.5, 0.0) and (−9.0, −1.5, 0.0). Their source

Table 1: Optical properties of the physical heterogeneous phantom.

Material Muscle Lung Heart Bone

μa[mm−1] 0.007 0.023 0.011 0.001

μ′s[mm−1] 1.031 2.000 1.096 0.060

densities are 155.53 nW/mm3 and 178.49 nW/mm3, respec-
tively. The slice of the phantom representing anatomical in-
formation is obtained by microCT scanner for generating the
volumetric finite element mesh, as shown in Figure 1(c). In
addition, the optical properties of four materials as a priori
information need to be acquired. To each material, a cylin-
drical phantom with 10 mm radius and 20 mm height was
made. The side surface of the phantom was blackened. Af-
ter the stable light was obtained by an integrating sphere, it
was guided for illumination through the optic fiber. The op-
tic fiber was inserted into a small hole of 10 mm depth at the
center of the phantom bottom surface. The CCD camera was
used to detect the output photon density on the other bottom
surface of the phantom. After the data acquisition, an opti-
cal tomography procedure was used to decide the optical pa-
rameters of each material. Specifically, the specimen was con-
sidered as a semi-infinite homogeneous medium, and diffu-
sion theory was applied with the extrapolated boundary con-
dition. The photon density on the bottom surface was pre-
dicted by an analytic formula; and then, the absorption and
reduced scattering coefficients were calculated by a nonlin-
ear least-square fitting, as shown in Table 1. The detailed in-
formation can be found in [8]. In the noncontact detection
mode, multiview detection is essential to reduce the influ-
ence of the curved surface of the phantom on the measured
value. In this experiment, four views are acquired, which are
separated by 90 degrees along radial directions. Its schematic
diagram is displayed in Figure 2. Measured data on the CCD
camera is transformed from the recorded pixel gray levels by
φ = pix× 0.377 pW/mm2 [8], where φ is the photon density
and pix denotes the pixel value.

When the BLT reconstruction is performed, the physi-
cal phantom is an anatomical and optical homogeneous ob-
ject if two types of a priori information are not considered.
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Figure 3: The detected photon energy distribution on the phantom
surface by CCD camera.

Area-weighted method is employed to approximate the ho-
mogeneous optical property. Through the difference of de-
tected surface light power distribution in four views, as
demonstrated in Figure 3 [8], we may infer the permissi-
ble source region as Ps = {(x, y, z) | x < 0, − 1.5 <
z < 1.5, (x, y, z) ∈ the phantom}, as shown in Figure 4(a).
During the reconstruction procedure, a modified Newton
method with active-set strategy is employed for the mini-
mization problem Θk(S

p
k ) at each level. Using a posteriori

error estimation techniques, the elements with higher er-
rors and reconstructed values in the forbidden and permis-
sible source regions, respectively, are selected for adaptive
mesh refinement after the reconstruction is accomplished on

(a) (b)

Figure 4: The initial homogeneous (a) and heterogeneous (b) fi-
nite element meshes used in the BLT reconstruction. The black areas
represent a priori permissible source regions.

Table 2: Quantitative comparison between the reconstructed and
actual sources with and without a priori anatomical and optical in-
formation. Density errors are calculated by |Srecons − Sreal|/Sreal.

No.
Recons. pos. Recons. dens. Pos./dens.

(mm) (nW/mm3) errors

1 (−6.39,0.39,1.31) 168.80 N.A.

2
(−5.83,2.85,−0.09) 143.69 3.45/7.61

(−6.05,-1.31,0.10) 177.26 2.96/0.69

3
(−9.40,1.31,−0.26) 167.49 0.51/7.69

(−8.11,−1.76,0.24) 175.74 0.96/1.54

the coarse mesh. Red-green refinement strategy reasonably
implements the local mesh refinement. Note that BLT with
a coarsely discretized mesh means less unknown variables,
higher computational efficiency, and better numerical sta-
bility than that with a finely discretized counterpart. Hence,
the optimization of the objective function Θk(S

p
k ) is indis-

pensable on the coarse mesh. The detailed explanation and
discussion can be found elsewhere [9]. After four mesh re-
finements, Figure 5(a) shows the final reconstructed results.
Due to the absence of anatomical and optical information,
the BLT reconstruction cannot distinguish two light sources,
and the reconstructed position is also far from the actual
one despite that the roughly inferred permissible source re-
gion is utilized. When the anatomical information is consid-
ered, the selection of permissible source region may be re-
stricted in the left lung, as illustrated in Figure 4(b). Two light
sources can be distinguished from the reconstructed results,
as shown in Figure 5(b). Although there are small relative
errors in source density between the reconstructed and ac-
tual sources, the preferable source localization cannot be ob-
tained. Finally, Figure 5(c) displays the reconstructed results
in terms of the utilization of anatomical and optical informa-
tion. The position and density of light sources are better re-
constructed. The quantitative comparison above is summa-
rized in Table 2, which further demonstrates the importance
of anatomical and optical information for BLT reconstruc-
tion.
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Figure 5: Comparison between the actual and reconstructed sources. (a) The BLT reconstruction without anatomical and optical informa-
tion; (b) the counterpart only with anatomical information; and (c) that with anatomical and optical information.

In this research, to our knowledge, we have first presented
that multimodality imaging fusion is essential for quantita-
tive BLT reconstruction through the experimental compar-
ison based on the multilevel adaptive finite element algo-
rithm. Despite that there is a linear relationship between the
boundary measured data and the unknown source variables,
inherent characteristics make BLT reconstruction more ill-
posed compared with fluorescence imaging. The more a pri-
ori knowledge we have, the better the light source is recon-
structed [3]. The utilization of anatomical and optical infor-
mation not only approaches the basal optical transportation
model better, but also helps to infer the permissible source
region. When the small animal-based BLT equipment and al-
gorithm researches are ongoing for the practical application
to biology, this research provides the basically experimental
verification for BLT reconstruction.
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1. INTRODUCTION

Optical imaging is a traditional imaging technique for medi-
cal purpose [1]. However, diffuse optical tomography (DOT)
is a relatively new discipline and drew increasing interest in
recent years [2, 3]. If the target-specific fluorescent contrast
agent is employed in DOT, it can probe molecular event in
vivo [4–6], which is very useful to detect disease in its early
stage, comprehensively understand disease mechanism, and
develop new drugs. DOT has many advantages over the con-
ventional imaging techniques. For example, it is not harm-
ful to tissue due to its noninvasive and nonionizing charac-
teristics. Thus it can be repeatedly even continuously used
on patients at the bedside. In addition, DOT instrumenta-
tion is relatively inexpensive and can be made portable. DOT
technique has shown its powerful potential in clinical appli-
cations. Currently, its two main applications are monitoring
cerebral blood volume and oxygenation and screening breast
cancer [7–12].

For neonates, the deficiencies of cerebral blood flow or
oxygen may lead to severe irreversible damages to the brain
development. The premature babies are more subject to have
the risk of cerebral hemorrhage [10]. However, the existing
conventional medical imaging modalities are not capable of
monitoring the cerebral blood volume and oxygenation con-
tinuously without invasion and damage.

Besides, currently the most commonly used conventional
means to detect breast tumor is X-ray. It is not suitable to be
used on patients continuously or even frequently due to its
radiative nature. In addition, when the tumor can be “seen”
by the X-ray instrumentation, it is generally too late to be
treated.

The optical tomography is a very powerful complemen-
tary tool to the existing conventional imaging techniques in
the above mentioned fields [13].

Many investigators have contributed considerably to
DOT technique, and many excellent DOT systems for medi-
cal purpose have been developed [1, 14, 15].

In this paper, we present a DOT imaging system that is
based on photomultiplier tube (PMT). In the entire imaging
system, only one PMT was employed as the detector and an
optical multiplexer was used to alter the detector channels,
so that the entire imaging system is relatively compact. Com-
pared to the charge-coupled-device- (CCD-) based imaging
system, it is relatively simple and considerably inexpensive.
Besides, the proposed imaging instrumentation was designed
as a highly automatically system, of which all the compo-
nents can work harmoniously. In the following discussions,
the system principle, including hardware setup and control
and data acquisition software, is depicted in detail. Some
experiments based on the proposed imaging system were
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performed to test it. The experimental results demonstrate
that the proposed imaging instrumentation is effective.

2. THEORETICAL BACKGROUND

The DOT imaging systems can be broadly divided into three
categories [2]: continue-wave (CW) system, time-domain
(TD) instrumentation, and frequency-domain (FD) modal-
ity. Each category has its advantages and disadvantages. In
this paper, a CW system is represented in detail, in which
the source light is sinusoidally modulated at the frequency of
5 kHz to facilitate the signal processing, such as elimination
of noise.

As photons propagate in tissue, they experience scatter-
ing as well as absorption. In the near-infrared (NIR) spec-
tral range, scattering is the dominant interaction. The trans-
port process of photons in tissue can be well described by the
radiation transport equation (RTE). Under certain assump-
tions, the RTE can be approximated by the diffusion equation
(DE), a partial differential equation [3, 13, 16], which is more
commonly used to model light transport in tissue. The dif-
fusion equation in time-domain and frequency-domain has
been derived in detail in earlier literature [13]. In the CW
case, the DE can be written as

−∇(D(r)∇Φ(r)
)

+ μa(r)Φ(r) = q(r), (1)

where r is the location in tissue domain Ω, Φ(r) is the pho-
ton density distribution, μa(r) is the absorption coefficient
distribution, q(r) is the source term, D is the diffusion coeffi-
cient given by D = 1/[3(μa + μ′s)], where μ′s = (1− g)μs is the
reduced scattering coefficient, μs is the scattering coefficient,
and g is the anisotropic factor. The spatially dependent diffu-
sion coefficient D(r) and absorption coefficient μa(r) are the
two main optical properties that reflect the function of the
diseased and healthy tissues, and generally are the objectives
to be reconstructed in DOT.

If the source q(r) is a collimated incident beam, it can be
treated as a “point source” under the surface ∂Ω at a depth of
one mean free length [17]. In this situation, q(r) = q0δ(r −
rs), where rs is the location of the equivalent point source and
q0 is the strength of the source term.

The Robin boundary condition in the steady-state case
is usually employed [18]. So the measured quantity on the
boundary is expressed as

Γ(ξ) = −D(ξ)
∂Φ(ξ)
∂n

, (2)

where n is the outward normal at the site ξ on the bound-
ary ∂Ω, and Γ(ξ) is the measurement photon flux. In the CW
case, along with the boundary condition (2), (1) is the most
commonly used forward model for DOT and it is also em-
ployed in this paper in succeeding discussions.

In CW case, the absorption and diffusion coefficients
cannot be recovered simultaneously [19, 20]. When scatter-
ing is the dominant interaction, it is absorption coefficient
rather than scattering coefficient that often derives the im-
portant physiological information [1]. So the spatially de-
pendent absorption coefficient distribution is the main op-
tical property of tissue to be recovered.

The light in the NIR region of 650 nm–900 nm is most
commonly used in practical applications [21]. In this spectral
range, the principal absorbers, water, lipids, and hemoglobin
have their lowest absorption coefficients, and then the pene-
tration depth of the light in tissue is highest [7].

3. MATERIALS AND METHODS

3.1. System hardware setup

The proposed imaging instrumentation is primarily con-
sisted of optical components, electrical components, control
and data acquisition routines, and image reconstruction pro-
gram. In this section, we present the scheme of the imaging
system and its hardware setup.

The scheme of the DOT system can be illuminated in
Figure 1.

The signal generator circuit (1) (homemade) generates a
sinusoidal signal at the frequency of 5 kHz, which is used to
modulate the intensity of the source light. The laser source
(2) (VA671-200, Viasho, China) produces the source light
at wavelength of 671 nm with maximum power of 200 mW.
The output power of the source light can be adjusted to the
desired level by adjusting the current of the laser generator.
The purpose to modulate the source light is to facilitate the
elimination of noise in succeeding signal processing. The si-
nusoidally intensity-modulated source light is also named as
“AC light” (similarly, the constant intensity light is named
as “DC light”), which is guided into a 1×16 fiber switch (3)
(SUN-FSW 1× 16 MM, SUN, China) through a source fiber.
The AC light is then switched into one of the 16 launch fibers
sequentially. The launch fibers are held in the imaging tube
(4) (homemade), and launch the source light onto the tis-
sue surface at different site sequentially. The imaging tube is
illustrated in detail in Figure 2.

As illustrated in Figure 2, the imaging tube has five rings
of bores. On each ring there are 32 bores, of which 16 bores
are used to hold the launch fibers and the other 16 bores are
for detector fibers bundles. They are separated uniformly.
When the launch fibers and the detector fibers bundles are
held on the same ring, they are generally used to image in
two dimensions (2D). When held in different rings, they are
used to image in three dimensions (3D).

The photons that are launched into the tissue undergo
scattering and absorption. Some will “quench” when they are
absorbed by tissue. The others will “escape” out of the tissue
surface after they experience multiplying scattering.

The light that transilluminates from tissue is collected by
the 16 detector fibers bundles, and then is guided into the
optical multiplexer (5), which switches the 16 detector fibers
bundles sequentially to the output fibers bundle. The opti-
cal multiplexer is homemade, and its principle is similar to
the fiber switch (3). The 16 detector fibers bundles have large
inner diameter of 1 mm, so that they can collect photons effi-
ciently. However, they are not suitable to be coupled into the
fiber switch, because for fiber switch the inner diameter of
the coupled fiber is generally required at the μm level, such as
62.5 μm, a very widely used standard of fiber diameter. That
is the reason why we used an optical multiplexer rather than
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a fiber switch to alter the detector channels. The principle of
the optical multiplexer is illustrated in Figure 3.

As illustrated in Figure 3, the optical multiplexer has
mainly three parts: the motor (ii), the rotation part (iii), and
the fixing part (iv). The rotation part and the fixing part are
on-axis and coupled through an axletree. The fixing part has
32 bores and in which 16 bores are used to hold the detec-
tor fibers bundles (v). The rotation part has one bore that is
used to hold the output fibers bundle (i). Driven by the mo-
tor, the rotation part can revolve around its axis while the
fixing part is fixedly mounted on the platform. When the
rotation part rotates to different location, the output fibers
bundle will aim at different detector fibers bundles, and then
the collected photons can be switched from one of the de-
tector fibers bundles to the output fibers bundle. The inner
diameter of the detector fibers bundles is 1 mm and that of
the output fibers bundle is 2 mm. So the energy of the light
can be guided efficiently into the black box (6) (homemade),
as illustrated in Figure 1. Inside the black box there is a pho-
tomultiplier tube (PMT: R928, Hamamatsu, Japan), which
translates the light to electrical signal. After being amplified
and preprocessed, the electrical signal is then sampled into
a personal computer (9) by the data acquisition circuit (8)

(NI5112, Ni America, Tex, USA) as the raw data to be used
to reconstruct the image.

The photos of the practical imaging system are shown in
Figure 4.

3.2. Instrumentation control and data
acquisition software

The primary duties of the instrumentation control and data
acquisition software are to sample the raw data, postprocess
the data, and control the hardware (fiber switch and the mo-
tor of the optical multiplexer). All these functions are inte-
grated together for highly automatical purpose.

The control software is developed by C++ computer lan-
guage and runs under Windows XP. The process of control
and data acquisition can be described as follows: the personal
computer delivers a command to the fiber switch by RS-232
serial interface to alter its channels (namely source channels)
sequentially, and then the source light is switched into dif-
ferent launch fiber to illuminate different site on the tissue
surface. Once the source channel is changed, the computer
then delivers a commands to the motor control circuit (7)
(as illustrated in Figure 1) to drive the motor, and then drive
the rotation part of the optical multiplexer revolved to alter
the detector channels. Thus the 16 detector fibers bundles are
switched sequentially into the output fibers bundle, and then
the light is guided into the black box to illuminate the PMT.
The signal translated by PMT is a modulated signal, which is
contaminated by the noise, such as the environmental light
and the dark current of the PMT. We have two methods to
improve the signal quality. One method is that the lock-in
amplifier is employed, in which the sinusoidal signal pro-
duced by the signal generator is employed as the reference
signal, and the amplified signal derived from the PMT as the
input signal. Another method is that the digital filter is em-
ployed in the signal postprocessing routine in the computer.
When the digital filter is used, as the signal is modulated at
the frequency of 5 kHz, we employ one digital band-pass fil-
ter with the central frequency of 5 kHz to eliminate the noise.
Through the digital filter, a relatively “pure” sinusoidal signal
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can be obtained, and by Hilbert transform, the amplitude,
that is, the envelope of the modulated signal, can be extracted
(the result of the Hilbert transform of the sinusoidal signal is
shown in Figure 6(a)). The arithmetical average of the ampli-
tude is evalued as the raw data to reconstruct the image. Re-
peat above processes until all source channels and all detector
channels have a turn. All the processes are implemented har-
moniously and automatically through the instrumentation
control and data acquisition software.

The flow chart of above processes and the corresponding
signal format of each stage can be illustrated in Figure 5.

The graphic user interface (GUI) of the data acquisi-
tion and signal processing software is shown in Figure 6.
The data acquisition, signal spectrum analysis, and signal
processing windows are shown in Figure 6(a), in which the
parameters of the digital band-pass filter, such as the cut-
off frequency and the order of the filter can be set manu-
ally according to the result of the signal spectrum analysis.
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The source-detector pair value display panel is shown in
Figure 6(b), in which the 16 sources and 16 detectors con-
stitute 256 source-detector pairs and they are divided into
four pages. The active channel displays the value of current
source-detector pair.

3.3. Image reconstruction algorithm

In this work, a gradient-based optimization inversion
method is used for the absorption coefficient inversion with
finite element method solving the forward model [17, 22].
Considering an experimental setting that includes S point ex-
citation light sources located at ξj ∈ ∂Ω ( j = 1, . . . , S), and
Mj measurement positions σ j,i ∈ ∂Ω (i = 1, . . . ,Mj) for each
source j, the following objective function can be defined:

E = 1
2

S∑

j=1

Mj∑

i=1

((
Γ j,i
)

mea −
(
Γ j,i
)
c

)2
, (3)

where Γ j,i represents the photon intensity measured at posi-
tion σ j,i with the incident excitation source located at ξj . The
subscript c denotes the values calculated by the forward sim-
ulation and mea represents the experimental values.

In practice, the attenuations of launch fibers are incon-
sistent. So do that of the detector fibers bundles. It means
that calibration should be performed to eliminate the effect
of the inconsistent attenuations of fibers or fibers bundles. In
order to avoid the calibration procedure, in this paper, two
sets of data are sampled for relative image reconstruction.
One is acquired before the absorber is embedded inside the
intralipid. The corresponding measurement is (Γ j,i)bef. The
other is acquired after the absorber is immersed into the in-
tralipid and the corresponding measurement is (Γ j,i)aft. The
measurements (Γ j,i)mea in (3) and following equations are
given by the formula (Γ j,i)mea = (Γ j,i)aft/(Γ j,i)bef, which are
relative quantities. So the calculated values (Γ j,i)c are also rel-
ative quantities.
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Figure 7: An experimental model.

In our work, conjugate gradient (CG) method is used to
minimize the objective function. First, the gradient of the ob-
jective function needs to be calculated as follow:

∇E =
S∑

j=1

Mj∑

i=1

((
Γ j,i
)

mea −
(
Γ j,i
)
c

) ·
(

− ∂
(
Γ j,i
)
c

∂μa

)

. (4)

Therefore, the gradient vector
⇀
z can be presented as

⇀
z= ∇E = −JTb, (5)

where J is an MTOT×NTOT Jacobian matrix, MTOT =
∑S

j=1 Mj

is the total measurement number at the boundary, and NTOT

is the number of the coefficients to be reconstructed. Here
b is the residual error between the boundary measurements
and computation values. Then J can be calculated by an ad-
joint source scheme based on the establishment of PMDF
(photon measurement density function, as defined in [23]).

With the gradient calculated, the next step is to conduct
one-dimension search in order to find the best step length on

this gradient direction. Then, we refresh the absorption co-
efficient and recalculate the gradient to form iteration com-
puting until the error reaches the supposed value.

4. RESULTS AND DISCUSSION

To test the proposed imaging system, some experiments were
performed, of which one model is illustrated in Figure 7.

In the experiment, a glass cup was filled with 1% in-
tralipid, a tissue-like medium. The cup was mounted in the
imaging tube. The intralipid is a homogeneous medium,
namely, its anisotropic factor g = 0. A glass tube of India ink
was employed as the heterogeneous object, that is, the simu-
lated absorber. The launch fibers and the detector fibers bun-
dles were held in the imaging tube on the same ring, and they
were separated uniformly. Two sets of data were acquired for
relative image reconstruction. They were sampled, respec-
tively, before and after the India ink was embedded inside
the intralipid. Their geometries and positions are illustrated
in Figure 7.
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Figure 8: Reconstruction results.

The reconstruction results are illustrated in Figure 8. In
Figure 8(a) to Figure 8(c), the circle inside the domain Ω
stands for the true size and position of the absorber. We can
see, as the iterations increase, the reconstructed result con-
verges gradually to its true solution. The curve of the objec-
tive function (3) is shown in Figure 8(d). The other models
used to test the imaging system can also derive the desired
results. These experimental results suggest that the proposed
imaging system is effective.

To solve the DOT is a typical inverse problem. Inverse
problem is intrinsically ill-posed, which means that the solu-
tion to the problem may not exist (existence) or is not unique
(uniqueness), or does not depend continuously on the data
(stability) [24, 25]. For a practical physics problem, the ex-
istence and uniqueness of the solution can be satisfied natu-
rally or be enforced by mathematical measures. So the stabil-
ity is the most important profile. If a problem lacks the prop-
erty of stability, a little of fluctuation of the measured data

may lead to the solution deviated significantly from its true
solution. To reduce the ill-posedness, regularizations strate-
gies, such as Tikhonov regularization and Landweber itera-
tion, are often employed [24]. However it is essentially ex-
pected that the noise polluted the measured data is as small
as possible, while it is unavoidable. So in the next genera-
tion of the imaging instrumentation, some measures would
be taken to eliminate to a great extent the effect of noise. For
example, cooling system is employed on the PMT to reduce
the dark current.

To understand the model of the noise is very useful to
eliminate its influence by using appropriate algorithm. In
the imaging instrumentation there are mainly three kinds of
noise: thermal noise, shot noise, and relative intensity noise
[26]. Usually the shot noise is the principal noise in the imag-
ing system, which mainly rises from the dark current of the
photodetector. The shot noise statistics has its origin in Pois-
son statistics [27]. When the current is significantly large, it is
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governed by the Gaussian distribution. In this case, the sta-
tistical method, such as Bayesian framework, is suitable for
the inverse problem [28, 29].

In addition, solving DOT is also a highly underdeter-
mined problem, since the number of the measured data is
much less than that of the pixels to be reconstructed. In above
experiment, the forward problem was solved by the finite
element method (FEM) software and the tissue domain Ω
was divided into 1644 elements. However, there are only 16
sources and 16 detectors, namely, 256 known data are avail-
able. The number of the known data is much less than that of
the elements. It means that the problem is considerably un-
derdetermined. The underdetermining nature is one of the
main factors that influences the quality of the reconstructed
image, especially the spatial resolution. As noted in the lit-
erature [30]: A lack of information cannot be remedied by
any mathematical trickery! The most important way to im-
prove the quality of the image is to obtain prior information
as more as possible, for example, acquire more data, or take
advantage of the anatomical imaging or the physiology infor-
mation in the reconstruction process.
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1. INTRODUCTION

Systems biology is a discipline that examines the organiza-
tional relationships between biological structures in an or-
ganism, and thus it covers a very broad scope of biology
from the macroscopic to the microscopic biology of organ-
isms, ranging from mankind and other animals, plants, and
microorganisms to their organs, tissues, cells, and subcellu-
lar organelles and structures through to molecular structures
and the interactions between different molecular structures
and systems. This broad scope of systems biology demands
many different types of instruments for different aspects of
imaging and signal detection. Instruments and devices such
as cameras and X-ray imaging systems are used for whole or-
ganism imaging in man and larger animals [1, 2], IVIS imag-
ing system has been developed for small animal imaging in
vivo [3], ultrasonic devices are applied for the organ and tis-
sue imaging [4], the ultraview living cell imager has been
developed for cells and subcellular imaging [5], and various
types of biochip have been designed for the analysis of the tis-
sue, cells, and molecular structures [6]. Except for ultrasonic
devices, all of the above detection-analysis systems require

excellent optical design for the best performance of their par-
ticular objectives. One important type of optical system use-
ful for the analysis of subcellular and molecular structures is
the confocal chip scanner with a low background noise.

Advanced biochip analysis platforms [7, 8] analyze the
content of a particular microarray slide chip, including gene
chips, protein chips, cell chips, tissue chips, and others. Many
researchers work with small molecule biochips, used for the
detection of DNA variations by DNA hybridization, of pro-
teins by the immunoreaction of proteins, and other more
specialist analyses such as for DNA sequencing, ligase chain
reaction (LCR), and others. Some important biochip detec-
tion systems [9, 10] have been developed, such as the flu-
orescence microscope imaging system and the laser confo-
cal scanner. In all these detection systems, optical design has
played a keyrole in obtaining high-clarity images of micro-
scopic objects, and the optical objective is crucial to the de-
tection sensitivity, the resolving power, and the working dis-
tance of the detection system. Usually, the bigger the numer-
ical aperture of the objective, the higher its resolving power,
and the higher the power of collecting the fluorescence sig-
nals bound on the tested object, however to achieve this
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structure, the working distance of the objective must also be
shorter. For example, when the conventional microscope ob-
jective has an NA> 0.6, then its working distance wd is usu-
ally smaller than 1 mm. For example, the Zeiss plan objec-
tive 440050, magnification 40×, NA = 0.65, wd = 0.6 mm,
and the Nikon plan objective model 40×, NA = 0.65, and
wd = 0.57 mm.

In this paper, a novel confocal optical system design and a
dual laser confocal scanner are described in which the mate-
rials and lenses employed are as small as practicable; the opti-
cal design and the potential pitfalls of an objective with a long
working distance and a high numerical aperture have been
considered and resolved for application to biochips. The col-
lecting fluorescence has very high efficiency, and generally
the instrument has excellent resolving power and an excel-
lent signal-to-noise ratio.

2. CONFOCAL OPTICAL SYSTEM DESIGN
AND ANALYSIS

2.1. A newly developed confocal optical system design

The design of a confocal optical system with high-
performance detection of biological sample slides and
biochips centers around the image quality, including the con-
sideration of the resolution, zoom, aberration, and optical
transfer functions, each of which can be optimized by using
rays tracing calculations. In the process of optical design, all
parameters of the optical system structure, including the sur-
face curvature radius of each lens, the thickness of the lenses,
the transmitted materials used, the separation distances, and
the surface apertures can be varied to obtain an excellent op-
tical specificity and image quality. The functional relation-
ships between the specificity, image quality, and structural
parameters of the system can be described as follows:

ξ1

(
η1, . . . ,ηi

) = ψ1
...

ξk
(
η1, . . . ,ηi

) = ψk,

(1)

where i and k are two natural numbers, ψ1 · · ·ψk are vari-
ous aberrations of the optical specificity and the image qual-
ity, ξ1 · · · ξk are functions of the specificity, the image qual-
ity, and the structural parameters of system, η1 · · ·ηi corre-
spond to all the structural parameters of system. Based on
the polynomial expansion and the minimum binary iterative
method, when all structural parameters η1 · · ·ηi are modi-
fied repeatedly, an approximate minimum aberration will be
obtained in (1).

Applying the above optical design method, an opti-
mum confocal optical system structure for the detection of
biochips could be defined, as shown in Figure 1. Here, the
optical imaging system is composed of sets of objective and
magnifying lenses. The objective system is a combination of
seven lenses including two doublets and uses only three glass
materials, ZK7, ZK11, and ZF2. The objective system has
a high numerical aperture of 0.72 for collecting the signal
from the object, a focal length of 13.06 mm, and a front focal
length of 3.22 mm to provide a working distance of approx-

Object

Parallel beam

Image

Objective Magnifying lenses

Figure 1: The main optical structure design of the confocal system.

Biochip

Z

θ r

Em-fluor

Objective

Figure 2: The configuration of the objective collecting fluorescence.

imately 3.0 mm. There is a parallel ray path between the ob-
jective and the magnifying lenses, to which it is convenient
to also add the filters and the dichroic mirror for the inci-
dent laser when building the confocal scanning system. The
magnifying lenses system consists of five lenses. This optical
system has a zoom of 3.

The optical structure parameters of confocal scanning
system were optimized in Figure 1, where there are an objec-
tive and a magnifying lenses, the objective consists of seven
lenses, the magnifying lenses consists of five lenses, there is a
parallel beam between the objective and magnifying lenses.
The optical structure parameters of confocal scanning sys-
tem are listed in Table 1. A configuration of the objective col-
lecting fluorescence is shown in Figure 2, where the distance
from the focal plane to the front surface of first lens of objec-
tive is Z, r is the radius of effective aperture of the objective, θ
is the half of aperture angle. The emission fluorescence (Em-
fluor) of molecule bound on biochips is ideally a spherical
wave, and the fluorescence bound on the biochip collected
by the objective as shown in Figure 2 is described approxi-
mately by the formula

I(Z) ≈ K2
0

Z2
× π × r2, (2)

where K0 is a constant, Z is the distance from the center of
source in the focal plane to the first surface of objective, r is
the radius of effective aperture of the objective.

When biochips are placed at the focal plane of the objec-
tive, and the objective has a numerical apture NA = n×Sinθ,
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Figure 3: The spot diagram of the scanning probe.

where n is the refractive index, then the formula (2) can be
simplified to formula

I(Z) ≈ 1
n2
× K2

0 × π ×NA2 × (1 + NA2 + NA4 + · · · ).
(3)

Formula (3) indicates that the intensity of the collecting flu-
orescence of molecules on biochips has a direct ratio to the
square of the higher power of the NA.

By developing a structure form using formula (3), we
created a confocal optical system with a numerical aperture
of 0.72, and an efficiency of collected fluorescence of more
than 2-fold better than that of other commercial confocal
biochip scanners [9, 10] whose objective has a smaller nu-
merical aperture than 0.5.

2.2. Analysis of the new optical system design

In a confocal scanning system, the laser scanning spot probe
determines the scanning resolution power. The smaller the
laser scanning spot of optical system, the higher the scan-
ning resolution power of the confocal system. The scanning
spot diagrams are referenced to the real chief ray as shown
in Figure 3. This option allows selection of two other refer-
ence points, the centroid and the middle. The centroid is de-
fined by the distribution of the traced rays. The middle is
defined so that the maximum ray errors are equal in both the
x- and the y-directions. When a laser with a real beam diam-
eter of about 1 mm is imaged by the objective shown above
in Figure 1, then the spot diagram on the focal plane is as
shown in Figure 3, where the scale is 0.4 μm, the spot diam-
eter on the focal plane is smaller than 0.4 μm, which is an
ideal scanning probe beam with a more high resolving power
of <0.5 μm.

The optical speciality and the aberration of the imaging
system of our novel optical structure can be analyzed using
the optical design software ZEMAX-EE. For the spot diagram
shown in Figure 3, the root mean square (RMS) radius on
the focal plane is 0.105 μm, and the geometric radius on the

focal plane is 0.183 μm, which corresponds to a confocal op-
tical system with a scanning resolution power smaller than
0.4 μm.

The optical path difference (OPD) is a scalar quantity
and it is identical to those for ray aberration fans at the tan-
gential and sagittal directions PX and PY, respectively. The
data plotted in Figure 4(a) is the optical path difference of
the system in Figure 1, which is the difference between the
optical path length of the ray and the optical path length of
the chief ray. The horizontal scale of graph is the normalized
entrance pupil coordinate. The vertical axis scale of graph is
one wave, while the OPD maximum of system in Figure 1 is
smaller than 5 waves. In Figure 4(a), there is a small optical
path difference among 3 wavelengths 570 nm, 620 nm, and
670 nm, but the maximum optical path difference is smaller
than 3 waves, which is lower than a normal visible light imag-
ing system of 5 waves and can be used for confocal scanning
system very well.

The encircled energy diagram is the percentage of total
energy enclosed as a function of distance from either the chief
ray or the centroid at the image of a point object, while the
diffraction limit curve is for the aberration-free encircled en-
ergy computed on-axis. The encircled energy diagram of the
system is shown in Figure 4(b), where the horizontal coor-
dinate is the radius, and the vertical coordinate is the nor-
malized fraction of the enclosed energy. The encircled energy
diagram shows a diffused intensity spot in focal plane of sys-
tem, the smaller the radius of encircled energy diagram is,
the more the fluorescence energy is collected by the pinhole
in the focal plane. In Figure 4(b), the radius of encircled en-
ergy diagram is smaller than 10 μm, where the efficiency of
fluorescence collected is near to 100%, when a pinhole with
a radius of 10 μm is set at the focal plane of the magnifying
lenses, then the efficiency of collection of the fluorescence of
an object is near to the diffraction limit.

Geometric image analysis is used to model extended
sources, to analyze useful resolution, to represent the ap-
pearance of imaged objects, and to provide intuition as to
image rotation. The diffraction image analysis accounts for
the finite pass band and other diffraction-related effects of
real optical systems based upon Fourier Optics. The diffrac-
tion image analysis of the system is shown in Figure 5. The
geometric image analysis of the optical system is shown in
Figure 5(a), while the diffraction image analysis of the op-
tical system in the object area illuminated by the scanning
spot is shown in Figure 5(b), both of which have a high effi-
ciency of 100%. In Figure 5(a), the geometric image analysis
shows a nice roundness of model extended sources, there is
good image rotation invariability of system. In Figure 5(b),
the diffraction image analysis shows a nice uniformity and
clear outline of the letter F as an object, there is good image
quality of system to the object area illuminated.

2.3. The constitution of the confocal optical system

Applying the above optical design parameters, we con-
structed a new confocal optical scanning system which has
been further developed into the advanced confocal scanner
specially for biochip application, as illustrated in Figure 6,
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Table 1: The optimization data of confocal scanning system. Units are measured in mm.

Surface Radius Thickness Glass Semidiameter

1 −5.900 5.10 ZK11 2.80

2 −5.608 0.20 — 5.30

3 −23.000 1.20 ZF2 6.00

4 46.000 0.42 — 7.00

5 54.200 5.40 ZK7 8.50

6 −14.521 0.20 — 8.50

7 −106.500 2.00 ZF2 9.00

8 31.840 5.40 ZK7 10.75

9 −30.760 0.20 — 10.75

10 156.680 2.00 ZF2 10.75

11 24.720 4.90 ZK7 10.75

12 −79.250 100.00 — 10.75

13 25.650 5.51 ZK7 12.00

14 354.330 4.32 — 12.00

15 −73.450 3.15 ZF2 10.75

16 −183.900 2.00 — 10.75

17 −32.560 2.81 ZF2 10.75

18 −79.250 0.21 — 10.75

19 12.878 6.00 ZK11 8.50

20 −20.230 2.25 ZF2 8.50

21 26.300 — — —
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Figure 4: The optical path difference and the encircled energy diagram of the system.

where the objective and magnifying lenses are designed in
Figure 1, two filters for the dye Cy3 and the dye Cy5 are
bought from Chroma Corporation, PMT (photomultiplier
tube) is bought from Hamamatsu Corporation, laser 1 is a
solid laser with wavelength 532 nm and power 25 mW, laser 2
is a semiconductor laser with wavelength 635 nm and power
25 mW, splitter is a dichroic mirror from Chroma Corpora-
tion, the mirror is machined into an elliptical mirror with a
small hole 1mm in center, XY scanning platform is designed
with 2 μm moving control precision. Pinhole is a small hole

with diameter 20 μm, A/D electronic card is designed with
precision 16 bit and frequency 1 MHz. Computer is chosen
with PIII CPU or higher CPU speed, biochip is developed by
CapitalBio Corporation. It is characterized by an objective
with a large numeral aperture of NA = 0.72, a long work-
ing distance of 3.0 mm, and a sensitivity of fluorescence de-
tection of about 0.1 fluors/μm2. Compared to other similar
commercial scanners, it has a higher-resolution power and
an excellent signal-to-noise ratio. In Figure 6, when the laser
beam irradiates the biochip on the XY scanning platform
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Figure 5: The geometric and diffraction image analyses of the system illustrated in Figure 1.

from the laser 1 with wavelength 532 nm, or from the laser 2
with wavelength 635 nm, the fluorescence of biological sam-
ple on the biochip is induced and collected by PMT. After
A/D (analogue/digital) transfer is complete, the fluorescence
signal from the biochip is loaded into the computer for digi-
tal image processing.

When pairs of identical gradient signal biochips from
Full Moon ( Full Moon BioSystems, Sunnyvale, Calif, USA)
were labeled with either Cy3-tagged or Cy5-tagged probes,
and dual color fluorescence was detected by using our newly
developed confocal scanner and by another commercial con-
focal scanner (US popular brand S), the features of the scan-
ning image analyses are shown in Figures 7(a)–7(d), where
the right small spot array image is a local area magnifying
view for left scanning images. Our newly developed con-
focal scanner shows a high scanning resolution, an excel-
lent contrast, and a signal-to-noise ratio seen in Figures
7(a) and 7(c). The detection sensitivity of the new confocal
scanner was further illustrated in Figure 7(e), where a Full
Moon (Full Moon BioSystems, Sunnyvale, Calif, USA) nor-
mal molecular density biochip was used and the unit of den-
sity is the molecule number per the square micron, and the
signal is the relative intensity in the range of 0 to 65 535. In
Figure 7(e), a molecule with a density of 0.071 fluors/μm2

was detected with a signal of 547, where SNR (signal-to-noise
ratio) is greater than 2, which indicates that the new con-
focal scanner is with a sensitivity of fluorescence about 0.1
fluors/μm2.

3. THE APPLICATION TO BIOCHIPS

3.1. The gene expression analysis

The gene expression analysis is an important method to
study the different gene functions of organisms, which is usu-
ally performed on high-density biochips with several tens of
thousands of probes in a small 20 mm× 60 mm area, where

dual fluorescent color labels with the dyes Cy3 and Cy5 can
be used to produce a gene expression spectrum. In order
to analyze the gene expression of biochips, it is important
for the scanning system to possess high scanning resolution,
an excellent contrast, and signal-to-noise ratio, over a wide
range of signal intensities. The newly developed confocal op-
tical scanning system can be readily used for the gene expres-
sion analysis of biochips. The gene expression spectrum for
a high-yield variety of cotton as shown in Figure 8 was ob-
tained by using the developed confocal scanner.

In Figure 8, the dual fluorescent color-labeled biochips
were hybridized with 15 reference probes at the beginning
of first row and with 687 gene reporter probes represent-
ing expressed genes from the two cottons. Messanger RNA
from common cotton was labeled with Cy3, and mRNA from
a high-yield cotton was labeled with Cy5. The dual fluo-
rescent color-labeled biochips were scanned twice using the
new confocal scanner, where one scan was illuminated by the
green laser with a wavelength 532 nm to induce fluorescence
of Cy3, and the second scan was illuminated by the red laser
with a wavelength 635 nm to induce the fluorescence of Cy5.
Figure 8(a) is the image of the gene expression spectrum of
the common cotton labeled with Cy3, and Figure 8(b) is the
image of the gene expression spectrum of the high-yield cot-
ton labeled with Cy5. Figure 8(c) is the combined images of
the gene expression spectrums from both the high-yield cot-
ton and the common cotton, where there is an obvious color
change if there is a difference between the level of gene ex-
pression of mRNAs labeled by Cy3 and by Cy5. Figure 8(d)
is the scatter plot of gene expression to analyze the differ-
ences between the gene message labeled with Cy3 to mes-
sage labeled with Cy5, where the identical level of expres-
sion of the same genes in the two plant varieties distributes
along the line direction of 45 degrees with increasing rela-
tive intensity of signals. The larger the difference of gene ex-
pression between the two varieties, the farther the position
of gene in the scatter plot is away from the 45-degree line.



6 International Journal of Biomedical Imaging

XY scanning platform

XY

Biochip

Z

Mirror

Laser2

R

Splitter G

Laser1

Filter

Objective

Magnifying lenses

Computer

A/D

PMT

Pinhole

Figure 6: The newly developed confocal optical scanning system.
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Figure 7: The analysis features of the newly developed confocal scanner.

In Figure 8(d), except for 15-reference probes at row 1, there
are 36 genes with a 2-fold signal difference between the com-
mon cotton and the high-yield cotton, distributed over a
broad range of relative signal intensities, which shows that
there are 36 important genes to improve the yield of cotton.

3.2. The detection of immunoreaction of proteins

The new confocal scanner is also useful for fluorescence de-
tection of the immunoreactions of proteins on chips. We

describe here a protein microarray chip for the parallel de-
tection of autoantibodies in the serum of patients with au-
toimmune diseases, including systemic lupus erythmatosus
(SLE), mixed connective tissue disease (MCTD), Sjögren’s
syndrome (SS), Sjögren’s syndrome A (SSA), Sjögren’s syn-
drome B(SSB), Smith (Sm), Ribonucleoprotein (RNP), Scle-
roderma (Scl), systemic sclerosis (SSc), dermotomyositis
(DM), double-stranded DNA(dsDNA), Phosphate-Buffered
Saline Tween-20(PBST), and polymyositis (PM). Purified
autoantigens (SSA-52, SSA-60, SSB, Sm, RNP-68, Scl-70,
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Figure 8: The gene expression spectra of a high-yield cotton compared to a common cotton variety.

Jo-1, dsDNA, centromere B, Ribosomal P0, and extracts of
Hep-2 cells) are immobilized on the gel chip as shown in
Figure 9(a), where QC—quality control, BC—blank control,
RC—reaction control, NC—negative control, 1-Jo-1, 2-Sm,
3-Scl-70, 4-CENP-B, 5-dsDNA, 6-SSB, 7-SSA-52, 8-Extracts
of Hep-2 cells, 9-SSA-60, 10-Ribosomal P0, 11-RNP-68. The
protein microarray chip was incubated with 30 μL of a five
diseases-mixed serum (diluted 1 : 100 with PBST) for 30
minutes at room temperature. After being rinsed and washed
one time for 5 minutes with PBST, the chip was incubated
with 30 μL of Cy3-labeled goat antihuman IgG antibody for
30 minutes at room temperature. After another rinse and 5-
minutes PBST wash, the chip was briefly centrifuged to dry it.
The mixed serum of SLE, SS, SSc, MCTD, DM, and PM pos-
itive sera patient was tested on the protein microarray chip,
which was then scanned using our confocal scanner. The re-
sult of scanning image in Figure 9(b) clearly showed that this

mixed sera contained anti-Jo-1 at row 2 from column 1 to
column 3, anti-Sm at row 2 from column 4 to column 6, anti-
Scl-70 at row 2 from column 7 to column 9, anticentromere
B at row 3 from column 1 to column 3, anti-dsDNA at row
3 from column 4 to column 6, anti-SSB at row 3 from col-
umn 7 to column 9, anti-SSA-52 at row 4 from column 1 to
column 3, antinuclear antibodies at row 4 from column 7 to
column 9, anti-SSA-60 at row 5 from column 1 to column 3,
anti-Ribosomal P0 at row 5 from column 4 to column 6, and
anti-RNP-68 at row 5 from column 7 to column 9.

4. DISCUSSION AND CONCLUSION

This developed confocal scanner is good for some applica-
tions of biochips, such as DNA hybridization and immuno-
reaction of proteins. The long workingdistance of the newly
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Figure 9: The application of protein chip for autoantibodies in patients serum.

developed confocal scanner has a particular advantage for
work with biochips enclosed with a hybridization gasket, or
conventional microscope slides with thick covers, or even
with an uncovered liquid surface. This feature is necessary
for observation of real-time (RT) events on the chip sur-
faces, such as monitoring RT-fluorescence PCR. The high
scanning resolution power available with a scanning beam
of 0.4 μm and with a sensitivity of detected fluorescence of
0.1 fluors/μm2 are both important for obtaining an excellent
images of small objects with quite clear definition, high con-
trast, and with a high signal-to-noise ratio. This improved
clarity of the images could be seen when comparing scans of
a Full Moon normal molecular density biochip by using our
developed confocal scanner with that of using another com-
mercial confocal scanner (see Figure 7).

When compared to other common microscope objective
designs where the objective of a typical microscope has a
numerical aperture of NA = 0.65 and a working distance
smaller than 1 mm (such as the Zeiss plan objective 440050,
magnification 40×, NA = 0.65, wd = 0.6, wd = 0.6 mm,
and the Nikon plan objective model 40×, NA = 0.65, wd =
0.6, wd = 0.57 mm), it is obvious that the optical design
of the newly developed confocal scanning system is highly
advanced, with an optimum combination of lenses, includ-
ing a high numerical aperture of 0.72, a long working dis-
tance of 3.0 mm. The use of only 7 lenses and only 3 differ-
ent kinds of optical glasses of ZK7, ZK11, and ZF2 is also
beneficial. The limited number of glasses and lenses reduces
the compound aberration in the use of large numbers of
lenses and multiple glasses. In addition, these glass materi-
als favor manufacture with small material error and small
machining error.

Furthermore, the developed confocal scanner can be
used for scanning cells and tissues slide, and because the
high numerical aperture optical design has a very short fo-
cal depth 0.7 μm, it is also good for the tomography imaging
of a cubic object.
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1. INTRODUCTION

Optical imaging encompasses a multitude of techniques for
the elucidation of morphology, molecular function, and
metabolism of tissue with the general objective of detecting,
diagnosing, staging, and treatment monitoring of disease.
Progression of disease is usually accompanied by changes in
physiology and pathology that are manifested as location-
specific changes in optical properties thereby providing con-
trast for optical imaging to study disease.

Optical imaging techniques span the range from surface
to bulk imaging systems with applications ranging from “op-
tical biopsies” to full human breast imaging with resolutions
that cover the microscopic to macroscopic. Some important
imaging techniques for superficial tissue imaging are confo-
cal microscopy [1], two-photon microscopy [2], and opti-
cal coherence tomography (OCT) [3]. Techniques that per-
mit subsurface to deep imaging are diffuse optical imaging
(DOT) [4] and photoacoustic imaging [5].

The interaction of visible and near-infrared (NIR) light
with tissue is dominated by

(a) absorption processes which are due to the presence
of various chromophores such as hemoglobin, oxy-
hemoglobin, melanin, water, and lipids [6];

(b) scattering processes due to the cell membrane and cell
structures such as the nucleus, mitochondria, lyso-
somes [6].

Penetration of light in tissue is dependent on the extent
of the two processes above and is low in the high-energy vis-
ible region of the spectrum. This is due to high absorption
by hemoglobin and severe light scattering. In the wavelength
regime between 600 nm and 1100 nm, absorption and scat-
tering losses are minimal permitting high-light penetration.
This is the so-called “optical imaging window” which is ex-
ploited for deep imaging in tissue [7].

The sensitivity and specificity of optical imaging tech-
niques to visualize a pathological disorder are governed by
contrast: the ability of the disease to differentially scatter or
absorb light compared with nonpathological tissue and back-
ground noise. This native or endogenous contrast may not be
sufficient and in any case, the interactions of light with tissue
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are not disease-specific. Therefore, there is a role for exoge-
nously administered contrast enhancing agents which have
affinity for the disease site through biochemical interactions,
providing not only sensitive but also disease-specific signals.

Contrast agents for optical imaging thus far have near-
infrared dyes based on cyanine dyes [8] such as Indocyanine
Green [9], but in the last few years, gold nanoparticles [10–
12] have emerged as prime candidates due to their unusual
optical properties and inherent biocompatibility.

Gold metal nanoparticles (NPs) exhibit narrow and in-
tense absorption and scattering bands due to the phe-
nomenon of plasmon resonance. This occurs at the reso-
nance condition of the collective oscillation that the conduc-
tion electrons experience in an electromagnetic field of the
appropriate wavelength [13]. The plasmon resonant condi-
tion of gold NPs depends upon their size, shape, structure
(solid or hollow), and upon the refractive index of the em-
bedding medium. Spherical gold nanoparticles have a single
plasmon resonant extinction peak at around 520 nm, which
does not shift extensively with changes in size and refractive-
index of the surrounding medium. This is a wavelength at
which light penetration in tissue is poor due to strong scatter-
ing and absorption by hemoglobin, and gold nanospheres are
not useful in contrast enhancement for deep tissue imaging.

Rod-shaped NPs exhibit two plasmon resonances due to
oscillation of the conduction electrons along the short axis as
well as along the long axis of the particles. The former plas-
mon band is called the transverse resonance and the latter the
longitudinal resonance. While the transverse plasmon band
occurs in the neighborhood of 520 nm, the longitudinal band
is red-shifted. The extent of the red-shift depends on the as-
pect ratio of the nanorod; the higher the aspect ratio, the fur-
ther the shift. Thus by tailoring the length and/or width of
these particles, their extinction peaks may be made to cover
the low-energy visible to infrared wavelength regions.

The intense scattering and absorption of light, that oc-
curs under the plasmon resonant condition coupled with the
ability to tune the resonance into the near-infrared (NIR)
by manipulating the aspect ratio, make gold nanorods ex-
tremely attractive as contrast agents for optical imaging tech-
niques. Further, gold-protein chemistry is well developed
and several bioconjugation protocols are available in the lit-
erature, which allows the combination of the targeting func-
tionality of antibodies with such gold NPs. The inertness and
biocompatibility of gold in general hold promise the use of
gold NPs for in vivo imaging applications.

Gold NPs can be synthesized using wet chemical meth-
ods which are based on the reduction of gold salts by
reagents such as sodium borohydride and ascorbic acid.
Seed-mediated methods dominate wet chemical synthesis
routes. These involve the reduction of gold using weak
reducing agents onto small nanospheres of gold as seed,
in the presence of shape-directing surfactants usually cetyl
trimethylammonium bromide (CTAB). These methods may
be distinguished into those that use silver ion assistance in
growth solutions and those that do not.

Murphy and coworkers described the three-step growth
protocol [14, 15], where medium to high aspect ratio

nanorods could be synthesized, without the use of silver ni-
trate. Seed particles are generated by reducing gold salt us-
ing sodium borohydride in the presence of sodium citrate.
The spheres are coated with a layer of negatively charged
citrate ions that maintain colloid stability against aggrega-
tion by electrostatic repulsion. These spheres seed a growth
solution comprising gold salt, CTAB, and ascorbic acid in
three steps thereby slowing down reduction. The mechanism
of nanorod formation by this method is not yet fully un-
derstood. Murphy et al. [15] proposed that the polar CTA+

head group of the surfactant binds with greater preference
to certain crystallographic faces thereby passivating them to
the deposition of gold. The other faces, on the other hand,
would be exposed for gold to be reduced on, thereby pro-
ducing anisotropic growth into rods.

The methods using silver nitrate in the growth solu-
tions were proposed by Jana et al. [16], but modified by
Nikoobakht and El-Sayed [17] to achieve spectacular yields
of nanorods with excellent monodispersity. Importantly,
they also showed that changing the quantity of Ag+ ions in
the growth solution allows for fine-tuning of the aspect ratios
of the nanorods. The mechanism at work in this protocol has
been debated in the recent past. One mechanism postulates
CTAB as a soft template which elongates on addition of Ag+

ions which occupy regions between the CTA+ head groups to
reduce the repulsion between the head groups [17]. A second
mechanism invokes the CTAB passivation concept with ad-
ditional adsorption of silver bromide on facets slowing down
reduction and producing rods shorter than those made with-
out using Ag+ [18]. A third mechanism which has appeared
recently [19] proposes the underpotential deposition of Ag0

on certain faces, followed by CTAB binding, which serves to
stabilize the faces, and allows gold reduction on other faces
resulting in rod formation.

In this article, we present our experiences in synthesiz-
ing gold nanospheres and nanorods using slight modifica-
tions of the protocols discussed above. Our goal is to obtain
nanorods whose aspect ratios can be tuned to obtain plas-
mon peaks between 650 nm–850 nm. Next, we conjugate the
gold nanospheres and gold nanorods to the HER81 mono-
clonal antibody using electrostatic and hydrophobic interac-
tions. The conjugation does not use modifications of the bi-
layer charge of nanorods nor does it use any linkers. We dis-
cuss various aspects of these protocols and postulate a possi-
ble mechanism for the bioconjugation of the antibody with
the gold nanorods. We also discuss the feasibility of using
these molecular probes for contrast enhancement of photoa-
coustic cancer imaging using simulations.

2. EXPERIMENTAL SECTION:
MATERIALS AND METHODS

2.1. Gold nanorods using the silver-assisted single
surfactant growth method

As mentioned earlier, the seed-mediated protocol requires
the use of small gold nanospheres to seed growth solutions
with silver nitrate as per the protocol of Nikoobakht and El-
Sayed [17].
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Table 1: Mean aspect ratios, lengths, widths, and longitudinal plasmon peaks for nanorods synthesized using the silver-assisted growth
method.

Sample Volume of AgNO3 ( μL) Aspect ratio (R) Length (nm) Width (nm) LP band (nm)

1 50 2.3± 0.3 44.8± 4.1 19.8± 2.9 675

2 100 2.85± 0.6 45.1± 5.5 15.8± 3.1 764

3 150 3.0± 0.6 41.7± 3.9 13.9± 2.3 788

4 200 3.1± 0.5 52.0± 4.6 16.8± 2.8 831

5 250 3.6± 0.6 51.0± 4.4 14.1± 2.1 850

The following are the reagents used for the synthesis of
the gold seed and gold nanorods.

Tetrachloroauric acid (HAuCl4 · 3H2O) was purchased
from Acros Organics (Belgium), hexadecyltrimethylam-
monium bromide (CTAB > 99%), sodium borohydride
(NaBH4, 99%), and ascorbic acid (99%) from Aldrich (The
Netherlands) and silver nitrate (AgNO3, 99.8%) from Merck
(Germany). Prior to use, all glassware was cleaned with hy-
drofluoric acid (HF), further with aqua regia (HCl/HNO3)
and rinsed twice with deionized water.

Gold seed of 3.5 nm diameter

The synthesis was done using protocols of Nikoobakht and
El-Sayed [17] with slight modifications. A solution of CTAB
(5 mL; 0.2 M) was sonicated for 20 minutes at 40◦C in a wa-
ter bath. A solution of HAuCl4 · 3H2O (5 mL; 0.0005 M) was
added with continuous stirring under inert conditions (ni-
trogen environment). Then, an ice-cold aqueous solution of
NaBH4 (0.6 mL; 0.01 M) was added at once with vigorous
stirring for 1 minute. This seed solution (CTAB-capped) is
further used during growth stage of nanorods.

Gold nanorods of varying aspect ratios

Five identical conical flasks containing 10 mL of a growth so-
lution that consists of CTAB (5 mL; 0.2 M) and HAuCl4·
3H2O (5 mL; 0.001 M) were prepared. The color of the
growth solution is dark-yellow. AgNO3 (50, 100, 150, 200,
and 250 μL of 0.006 M) was added to the five identical growth
solution flasks in an amount that was chosen so as to yield
desired aspect ratios for the resulting nanorods. Following
this, the mild reducing agent ascorbic acid (70 μL; 0.1 M)
was added to each growth solution conical flask to give col-
orless solutions. Finally, 14 μL of preformed CTAB-capped
seed solution was added to each conical flask, and mixtures
were gently mixed. After 3 hours at 24◦C, the nanorod sus-
pension turned into a dark-blue solution with a brownish
opalescence. These solutions were concentrated by centrifug-
ing twice at 12000 g for 20 minutes which also enabled re-
moval of the excess unbound CTAB. The centrifuged gold
nanorods which are dispersed in water were stored at 4◦C.

2.2. Characterization of gold nanoparticles

Electron microscopy of the NPs was performed using a
CM 30 Philips transmission electron microscope (TEM) or
a Zeiss-1550 high-resolution scanning electron microscope

(HRSEM). Particle sizes were estimated using NI Vision
module (Labview, National Instruments) on the digital SEM
images with at least 250 particles considered in each case. Ex-
tinction spectra of NPs (and bioconjugated NPs) were mea-
sured using the Shimadzu PC3101 UV-Vis-NIR spectropho-
tometer.

The concentration of nanorods synthesized was esti-
mated using the relation A = cdε, where A is the measured
absorbance, c the concentration in moles (M), ε the molar
extinction coefficient ( M−1cm−1), and d the path length of
the cuvette used to record the spectra. The derived molar ex-
tinction coefficients can be compared with ε values from a re-
cent report, estimated for a range of aspect ratios of nanorods
by measuring the gold content in sols using inductively cou-
pled plasma (ICP) atomic emission spectroscopy [19].

2.3. Bioconjugation of HER81 mAb to
gold nanoparticles

Conjugation was achieved using combination of electrostatic
and hydrophobic binding interactions. The particles chosen
for bioconjugation were 25 nm citrate-capped gold spheres
(Aurion, Wageningen, The Netherlands), and silver-assisted
surfactant mediated gold nanorods with aspect ratios of ap-
proximately 2.85 (see Table 1) with the longitudinal plasmon
peak at 764 nm. The anti-HER2 mouse monoclonal antibody
(mAb) (Immunicon, USA) was chosen as the targeting moi-
ety. The antibody designated as HER81 recognizes Human
EGF receptor 2, HER2. HER2, also called erbB2, is a member
of the epidermal growth factor receptor (EGFR) family and
is overexpressed in 20–40% of human breast cancers [20].

In general, for optimum conjugation, it is recommended
that the pH of the antibody and gold sol be maintained at or
slightly higher than the isoelectric point (pI) of the antibody
[21]. The isoelectric (pI) point of HER81 mAb was deter-
mined using the Pharmacia PhastSystem isoelectric focusing
(IEF). The pH of the antibody was adjusted with dialysis in
5mM sodium acetate buffer and the pH of the colloidal gold
was adjusted with 0.1 M KOH, to approximately 0.5 pH units
above this value.

Next, the minimum protecting amount of antibody to be
used for the conjugation is determined. This is the amount of
protein that is required to maintain colloidal stability of the
conjugated NPs upon addition of NaCl [21] as judged by col-
orimetric analysis; as long as the conjugated NPs turns blue,
particle aggregation takes place implying that the amount of
protein is not sufficient to stabilize the suspension. By trial,
different amounts of antibody are added to samples of the
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Figure 1: Optical extinction spectrum of preformed 8-minute-aged
CTAB-capped gold nanospheres as seed for nanorod synthesis.

gold sol, gently mixed, and allowed to stand at room tem-
perature for 2 minutes. Spectroscopic analysis reveals which
sample remains stable; the minimum amount of protein
added is then ascertained and is used for subsequent con-
jugation of the gold sol.

To block the free surfaces on the gold, 10% bovine serum
albumin (BSA) in dialyzed buffer (sodium acetate), main-
tained at the same pH as the antibody solution, is used. The
BSA was added to the conjugate to a final concentration of
1% and was allowed to incubate for 5 minutes. The resultant
was then centrifuged for 30 minutes at 12000 g to remove
excess protein and incompletely stabilized particles. The re-
sulting pellet is dispersed in phosphate buffered saline (PBS)
containing 1% BSA and stored at 4◦C.

2.4. Cell culture and cell-bioconjugate incubation

The HER2 positive mammary adenocarcinoma (SKBR3) cell
line was used as a positive cell line; Chinese hamster ovary
(CHO) cells were used as an HER2 negative cell line. The cells
were cultured in RPMI 1640 medium (Invitrogen) supple-
mented with glutamine, 10% FBS (Fetal Bovine Serum) with
antibiotics. Cells were maintained in an incubator at 37◦C
and 5% CO2.

The cells were detached from the tissue culture plate us-
ing trypsin. The cells were replated onto 12 mm glass cover
slips in a 6-well tissue culture plate, and allowed to grow for
2 days at 37◦C, 5% CO2. When the cells grew to 80% con-
fluence on the cover slips, the cells were rinsed with phos-
phate buffered saline (PBS) and fixed in 4% paraformalde-
hyde (PFA) for 15 minutes at room temperature.

2.5. Immunostaining and confocal microscopy

After fixation, immunostaining was performed on the cells.
The cells were incubated with 100 μL of conjugated gold

nanoparticles at a concentration of 9.7 × 1010 particles per
mL for 2 hours followed by silver enhancement performed
using a silver-staining kit (Aurion, Wageningen, The Nether-
lands).

Confocal microscopy reflection images of the cells on
cover slips were recorded on a Zeiss LSM 510 confocal laser
scanning microscope using a C-Apochromat 63 X/1.4 nu-
merical aperture (NA) water-immersion objective. An exci-
tation wavelength of 543 nm was chosen and reflection im-
ages recorded using a 500–550 nm bandpass filter. All images
were acquired with pinhole diameters of 178 μm. Care was
taken to ensure that the excitation intensity as well as detec-
tor and amplifier gains were maintained at the same values
for all images to facilitate comparison.

3. RESULTS

3.1. Synthesis of gold nanorods

We used seed particles within about 8 minutes of formation
in the subsequent growth phase. The optical extinction spec-
trum of 8-minute-aged seed is shown in Figure 1.

Figure 2 shows the extinction spectrum and HR-SEM
image of the nanorods synthesized using 50 μL AgNO3 in
the growth solution. The peak at 675 nm can be attributed
to longitudinal plasmon resonance and the peak in the vicin-
ity of 516.5 nm to transverse plasmon resonance.

Examination of the SEM image and determination of
the mean sizes confirm that the NPs produced consist of
monodisperse nanorods of aspect ratio of 2.3 ± 0.3, with a
small number of large spheres; the latter’s extinction peak co-
inciding with the transverse plasmon band of the nanorods.
Figure 3 shows the extinction spectrum and the SEM image
for the sample produced using 250 μL of silver nitrate. It is
seen that the longitudinal plasmon band is shifted to 850 nm.
Sizing from the SEM image yields an average aspect ratio of
3.6± 0.6. Figure 4 shows the size distribution of the 2 speci-
mens.

The values of the molar extinction coefficient for the 2
cases above are 3.3±0.3×109 and 5.5±0.3×109 M−1cm−1 ob-
tained by extrapolation of the data as reported in [19]. With
this, we arrive at the concentration of the nanorods with peak
at 675 nm as 4.3± 0.3 × 1011 NR/mL; for nanorods with the
peak at 850 nm as 1.3± 0.7× 1011 NR/mL.

Figure 5 shows the consolidated normalized extinction
spectra of 5 nanorod solutions, having identical growth so-
lutions with varying silver nitrate volumes. The spectra were
normalized to the peak at 516 nm, which is due to a combi-
nation of the transverse plasmon resonance of the nanorods
and the signature peak of gold nanospheres. It is seen that
with higher silver nitrate volumes the extent of red-shifting
increases [22]. The details of the observed changes in aspect
ratios and plasmon bands are presented in Table 1.

3.2. Bioconjugation of gold nanospheres
and gold nanorods

A signature for successful binding of protein to gold NPs is
a red-shifted and amplitude reduced plasmon band. Both
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Figure 2: Gold nanorods synthesized using 50 μL of silver nitrate in growth solution. (a) Optical extinction spectrum showing the transverse
plasmon peak at 516.5 nm and the longitudinal plasmon peak at 675 nm. The amplitude of the longitudinal plasmon peak is higher than
transverse plasmon peak which indicates the formation of high yield of nanorods compared to spheres. (b) High-resolution scanning electron
microscope (SEM) image of gold nanorods showing high monodispersity. Few nanospheres are observed.
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Figure 3: Gold nanorods synthesized using 250 μL of silver nitrate in growth solution. (a) Optical extinction spectrum showing the transverse
plasmon peak at 516 nm and the longitudinal plasmon peak at 850 nm. (b) High-resolution scanning electron microscope (SEM) image.

these effects are due to the formation of the inhomogeneous
layer of protein on the gold particle surface that leads to the
modification of refractive index of the embedding medium.

Figure 6(a) shows the extinction spectrum of gold
nanospheres before and after incubation with HER81.
Figure 6(b) is the corresponding situation with gold
nanorods before and after incubation with the HER81 mAb.
In both cases, the characteristic red-shift in the extinction
peak of the plasmon bands is seen.

Not too much should be read into the amplitude changes
of the extinction spectra since centrifugation of the bioconju-
gate to remove unbound protein, redispersion in water, and
other procedures results in a change in the concentration of
the NPs used for spectroscopy.

Figure 7(a) show confocal reflectance image (on left) and
bright field image (on right) of the HER81 mAb/gold sphere
conjugates incubated with SKBR3 cells. As discussed in the
experimental section, silver enhancement was used by which
silver is reduced onto the gold particles forming large clus-
ters around 500 nm in size. This then enables visualization
under the microscope. The HER2 receptors are localized to
the cell membranes of SKBR3 cells. The high intensities in
both images at the cell membrane are then evidence of the
preservation of the functionality of the antibody and also il-
lustrate successful conjugation. The images in Figure 7(b),
which show the situation with the negative control using the
CHO cells, display no such accumulation of gold particles.
Also, adding nonantibody conjugated gold NPs to the SKBR3
cells did not result in accumulation of the nanorods, indicat-
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Figure 4: Histograms of gold nanorod aspect ratios synthesized with (a) 50 μL silver nitrate, mean aspect ratio of 2.3 ± 0.3 (mean length
44.8 ± 4.1 nm, mean width 19.8 ± 2.9 nm); and with (b) 250 μL silver nitrate, mean aspect ratio of 3.6 ± 0.6 (mean length 51.0 ± 4.4 nm,
mean width 14.1± 2.1).

ing the specificity of the HER81 antibody-nanorod conjugate
(data not shown).

Figures 8(a) and 8(b) are the results of the corresponding
controls using the HER81 mAb/gold nanorods.

4. DISCUSSION

4.1. Gold nanorod synthesis

The end products of the seed-mediated growth protocols are
crucially dependent on the nature of the seed, upon their
size and upon the capping agents used. Additionally, the con-
stituents and their concentrations in the growth solution in-
fluence the outcome of the synthesis products. The addition
of silver ions in the growth solution and the use of preformed
CTAB stabilized seed in the protocol of Nikoobakht and
El-Sayed [17] produced not only a high yield of monodis-
perse nanorods but fine tunability of aspect ratios.

There are many unanswered questions regarding the
mechanism of formation of gold nanorods using the silver-
assisted protocol and this has been the topic of several studies
[15, 17–19]. Recent reports of Orendorff and Murphy [19],
and Liu and Guyot-Sionnest [23] provide some insights into
the mechanisms that could be involved in the synthesis. It is
postulated that silver ions are reduced by ascorbic acid even
though it is a weak reducing agent, by the phenomenon of
underpotential deposition (UPD). This is reduction of sil-
ver in monolayers on the growing gold nanorod surface at
a potential less than the standard reduction potential [19].
The deposition is not uniform on the gold surface but occurs
faster on the sidewalls compared with the end faces. Remark-
ably, the sidewalls in the case of nanorods produced with sil-
ver assistance using CTAB protected seed bear Au{110} faces,
while the end faces have Au{100} faces. This is in contrast to
the rods prepared by using citrate-capped seed without Ag+.
This faster passivation of the sidewalls is followed by CTAB
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Figure 5: Normalized extinction spectra of gold nanorods with in-
creasingly red-shifted longitudinal plasmon bands, synthesized us-
ing 50, 100, 150, 200, and 250 μL of silver nitrate in the growth so-
lution for curves 1–5, respectively. Normalization of the spectra is
done with respect to the transverse plasmon peak amplitudes.

binding possibly via bromide ions. This inhibits the reduc-
tion of gold, which deposits on the end faces. Ultimately,
the end faces are also stabilized preventing the formation of
very long nanorods. The model claims also to explain the in-
crease in aspect ratio of the nanorods produced with higher
concentration of silver ions used, by proposing that higher
UPD of silver monolayers occur on the sidewalls which one
assumes reducing the width of the nanorods thus increasing
the aspect ratios [19].

Indeed, we observe some phenomena that are consis-
tent with the above model. We are able to synthesize gold
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Figure 6: Extinction spectra before and after incubation of HER81 with (a) gold nanospheres, (b) gold nanorods. In both cases, a red shift
in plasmon band(s) occurs after incubation with the antibody signifying successful bioconjugation.

(a) (b)

Figure 7: Confocal reflectance images (left) and bright field images (right) of (a) SKBR3 cells incubated with silver-stained HER81/gold
sphere conjugates, (b) CHO cells under the same conditions. Care was taken to maintain the same acquisition parameters in both cases. The
silver-stained bioconjugates are detected at the cell membranes of SKBR3 cells where HER2 is localized. This indicates successful conjugation
and retention of functionality of the antibody after conjugation. No such accumulation of HER81/gold sphere conjugates is demonstrated
in HER2 negative CHO cells.

nanorods only up to an aspect ratio of 3.6, as shown in
Figure 3. Addition of higher volumes of silver nitrate pro-
duces no further increase in the aspect ratios of the particles.
These particles have an average length of 51 nm. This sup-
ports the idea that ultimately complete passivation of the en-
tire nanorod surface occurs preventing further gold deposi-
tion even though the reagents have not been exhausted. Fur-
ther, we observe that nanorods that are made with increasing
Ag+ volumes have smaller diameters with the lengths practi-
cally unchanged or only slightly increasing (see Table 1). The
above model can also explain this. It must be mentioned that
the model does not have an appealing explanation regarding
the ability to tune the aspect ratios so precisely by Ag+ vari-

ation. It is very likely that the model will have to undergo
refinements or even major changes before it is universally ac-
cepted.

4.2. Gold nanoparticle—antibody conjugation

The noncovalent conjugation of proteins to colloidal gold
is usually due to a combination of electrostatic and hy-
drophobic interactions. Citrate-capped gold NPs are nega-
tively charged due to a layer of negative citrate ions. Positively
charged amino groups of the antibody will be attracted to the
gold surface, and when the protein comes close enough for
binding, the hydrophobic pockets of the protein will make
contact and bind with the gold [24]. A general guideline to
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(a) (b)

Figure 8: Corresponding images as in Figure 7 for bioconjugates consisting of silver-stained HER81/gold nanorod conjugates incubated
with (a) SKBR3 cells and (b) CHO cells. Care was taken to maintain the same acquisition parameters in both cases. The bioconjugates are
accumulated at the cell membranes of SKBR3 cells where HER2 is localized. As expected, no such accumulation takes place in the case of
HER2 negative CHO cells.

Table 2: Important optical imaging techniques that utilize absorption and scattering contrasts in biology and medicine.

Technique Imaging depth Imaging resolution Mechanism Typical imaging applications

Confocal microscopy [1] 500 μm > 250 nm Scattering /absorption Tissue surfaces

Two-photon microscopy [2] 800 μm > 250 nm Absorption Tissue surfaces

Optical coherence
tomography [3]

2 mm 1 μm Scattering
Surfaces/subsurfaces
of tissue

Diffuse optical tomography [4] > 20 mm ≈ 10 % depth Scattering/absorption
Small animal;
human breast and brain

Photoacoustic imaging [5] > 20 mm
<1 mm

(detector bandwidth limited)
Absorption

Subsurface to deep imaging;
small animal; human breast

optimize the bioconjugation is that the pH of the antibody
and the gold sol must be maintained at or slightly above the
isoelectric point of the antibody [24]. Following this, pro-
cedure for citrate-capped gold nanospheres with the HER81
antibody resulted in good bioconjugation as shown by the
spectroscopy and bioactivity studies (Figure 7).

With nanorods, the situation is more complex as com-
pared with nanospheres. The sidewalls of the nanorods
are expected to be stabilized with a bilayer of CTAB,
which imparts a positive charge to the gold. Huang
et al. [25] first changed the positively charged surface
to a negatively charged one by exposing the nanorods
to poly(styrenesulfonate) PSS polyelectrolyte solution. The
PSS-capped nanorods were then treated in the same way as in
Section 2.3 with the conjugation being done with anti-EGFR
monoclonal antibodies.

Zeta potentials of the gold nanorod solution as origi-
nally prepared were determined to be +55 mV. Centrifuga-
tion to remove the excess unbound CTAB and redispersion
of the rods in water saw a reduction in the zeta potential to
+7.5 mV, which also points to a low stability. We surmise that
inspite of the net positive charge, the unpassivated end faces
would be negatively charged due to the presence of AuCl−2

ions [21]. We therefore performed the same protocol (as in
Section 2.3) and found that the bioconjugation indeed was
achieved as demonstrated by the red-shifted extinction spec-

tra as seen in Figure 6. Further, confocal microscopy success-
fully detected the bioconjugates on the HER2 positive cell
line (Figure 8), indicating the success of the conjugation.

We believe that the mechanism of conjugation is the same
as that in the case of gold nanospheres that is electrostatic
and hydrophobic physisorption. It is also likely that at the
pH at which the antibody is maintained, the Fc fragment of
the antibody that is rich in positively charged amino acids
such as lysine will bind to the negatively charged chloride ion
layer on the exposed end faces of the rods. We intend to per-
form studies that will elucidate this aspect. Further, we will
perform the protocol of first capping the nanorods with PSS
for example, and then comparing the antigen binding affinity
constants of the bioconjugates from the two methods.

4.3. Potential contrast enhancing applications

The scattering and absorption bands of the synthesized
nanorods span the wavelength regime between 675–850 nm
that is of interest to optical imaging. This occupies the most
important part of the “optical imaging window” where light
penetration in tissue is high due to reduced scattering and
absorption coefficients. Optical imaging techniques (Table 2)
that rely on scattering and/or absorption contrast to de-
tect pathological tissue could benefit from the use of such
nanoparticles with or without targeting capability.
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Our goal is to employ these particles as contrast agents
for photoacoustic cancer imaging, which has been proposed
earlier by Oraevsky and coworkers [26, 27]. Photoacoustic
imaging relies on optical absorption for its signals. When
photons are absorbed, nonradiative de-excitation of the ab-
sorbed optical energy takes place with the release of local-
ized heat. The local thermal expansion that results produces
pressure transients [5]. When illuminated with pulsed laser
light, a tumor site by virtue of its higher absorption with
respect to the healthy background tissue, due to angiogen-
esis [28], will act as a source of bipolar photoacoustic pulses.
This ultrasound propagates with minimal distortion to the
surface where it is detected using appropriate wideband de-
tectors. The time-of-flight, amplitude, and peak-peak time of
the bipolar PA pulse possess information regarding the loca-
tion, absorption, and dimensions of the source, thereby per-
mitting a reconstruction of the tumor site [29, 30].

It is known that the NIR optical absorption contrast of
tumors versus healthy tissue, measured using optical mam-
mographic methods, is between 1.5 and 3. Clinical trials of
optical mammography are being conducted worldwide but
at present, it seems implausible that intrinsic contrast alone
will provide sufficient sensitivity and specificity, and targeted
contrast enhancement is likely to be required [31]. Since the
same contrast mechanism of optical absorption is operative
in photoacoustic imaging as well, a similar conclusion may
be anticipated.

An impression of the feasibility of using the nanorods
synthesized for contrast enhancement is now discussed. The
absorption cross-section of a nanorod at a wavelength, say
800 nm, is estimated using discrete dipole approximation
(DDSCAT) simulations [32, 33] as Cabs = 2.8 × 10−14 m2. A
typical average optical absorption coefficient for an invasive
ductal carcinoma is μa = 0.008 mm−1 at 800 nm. In order to
achieve contrast enhancement, a certain number density of
gold nanorods is required to exhibit higher absorption than
the intrinsic value and may be calculated as

ρNR ≥
μa
Cabs

. (1)

This gives ρNR = 2.8 × 108 NR/cm3. Further photoacoustic
signals can be enhanced by a thermal nonlinearity mecha-
nism to 3 orders of magnitude higher [34], then the mod-
ified number density of nanorods required is only ρNR =
2.8× 105 NR/cm3.

Published studies report that most tumour cell types ex-
press from 2×104 to 20×104 ErbB2 receptors/cell [12]. Let us
assume arbitrarily that 2×103 of these sites per cell are occu-
pied by conjugated nanorods. Further, if we assume that 1%
of cells at a tumor site overexpress HER2 results in a figure of
2× 106 cancer cells/cm3. This will then lead to an estimation
of the density of binding sites of the order of 109 cm−3. Com-
parison of ρNR and the estimated figure of density of binding
sites leads us to believe that contrast enhancement will be
possible.

We intend to test these molecular probes in small animal
photoacoustic imaging. Contrast enhancement with untar-
geted PEG-coated nanoparticles will be studied. Accumula-
tion of the contrast agent at the tumor site will depend on

enhanced permeation and retention (EPR). Active targeted
studies will follow, with conjugated nanoparticles adminis-
tered to the animal via the tail vein. In all studies, empha-
sis will be on ascertaining the sensitivity/efficacy of the tech-
nique with and without contrast agent.

5. CONCLUSIONS

We have synthesized gold nanorods with optical extinction
peaks in the region from 675–850 nm making these emi-
nently suited for scattering and absorption contrast enhance-
ments in optical imaging. We have performed bioconjuga-
tion of these nanorods with HER81 antibodies, which bind
with high efficiency to HER2 receptors expressed by SKBR3
breast carcinoma cells. We demonstrated in fixed cell stud-
ies that the targeting functionality of the antibody moiety re-
mains viable. However, it must be mentioned that the situa-
tion in vivo will be complex compared to the simplified situa-
tion in vitro. Other unresolved issues remain at present. One
of these is regarding toxicity and cellular uptake of these par-
ticles in vivo. Further, whether these molecular probes will be
able to extravasate into the tumor tissue through leaks in the
vasculature has not yet been studied. These are some lines of
research that we intend to follow in the near future.
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Timely imaging and accurate interpretation of cerebral ischemia are required to identify patients who might ben-
efit from more aggressive therapy, and nuclear medicine offers a noninvasive method for demonstrating cerebral
ischemia. Three nitroimidazole-based thioflavin-T derivatives, N-[4-(benzothiazol-2-yl)phenyl]-3-(4-nitroimidazole-1-yl)
propanamide (4NPBTA), N-[4-(benzothiazol-2-yl)phenyl]-3-(4-nitroimidazole-1-yl)-N-methylpropanamide (4NPBTA-1), and
N-[4-(benzothiazol-2-yl)phenyl]-3-(2-nitroimidazole-1-yl) propanamide (2NPBTA), were radioiodinated and evaluated as pos-
sible cerebral ischemia markers. In normal mice, these compounds showed good permeation of the intact blood-brain barrier
(BBB), high initial brain uptake, and rapid washout. In gerbil stroke models that had been subjected to right common carotid
artery ligation to produce cerebral ischemia, [131I]2NPBTA, uptake in the right cerebral hemisphere decreased more slowly than
that of the left, and the right/left hemisphere uptake ratios increased with time. Also, the right/left hemisphere uptake ratios cor-
related positively with the severity of the stroke. The results showed that [131I]2NPBTA had a specific location in the cerebral
ischemic tissue. This represented a first step in finding new drugs and might provide a possible cerebral ischemic marker.

Copyright © 2007 Taiwei Chu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Stroke is the third cause of mortality and the first cause of
disability in adults [1, 2]. As cerebral ischemia cannot be
predicted, timely imaging and accurate interpretation are re-
quired to identify patients who might benefit from more
aggressive therapy. Although computed tomography (CT)
and magnetic resonance imaging (MRI) have been impor-
tant and widely used clinical imaging techniques, there are
some shortcomings in the imaging of acute stroke, such as
the limited brain coverage. Nuclear medicine offers a non-
invasive method for demonstrating cerebral ischemia. How-
ever, up to now, the markers of cerebral ischemia were scarce
[2, 3].

The ideal cerebral ischemia markers should not only per-
meate across the BBB but also accumulate in the brain
ischemia. Recently, Mathis et al. synthesized a series of thio-
flavin-T derivatives, which had the “benzothiazole-aniline”
backbone and showed good permeation across the BBB
[4–6]. Also it is well known that the nitroimidazole deriva-
tives can selectively accumulate in hypoxic tissue and be
used to image tumor hypoxia [7–9] and cerebral ischemia

[10, 11]. In our previous study, three nitroimidazole-based
thioflavin-T derivatives were synthesized and radiolabeled
with iodine-131 (see Figure 1): N-[4-(benzothiazol-2-yl)-
phenyl]-3-(2-nitroimidazole-1-yl) propanamide (2NPBTA),
N-[4-(benzothiazol-2-yl)phenyl]-3-(4-nitroimidazole-1-yl)-
propanamide (4NPBTA), and N-[4-(benzothiazol-2-yl) phe-
nyl]-3-(4-nitroimidazole-1-yl)-N-methylpropanamide (4N-
PBTA-1). In vitro and in vivo results showed that they could
bind to viable hypoxic tumor cells [12]. In this paper, their
permeability across the BBB into the normal brain and in
vivo evaluation in the gerbil cerebral ischemia models were
investigated.

2. MATERIALS AND METHODS

No-carrier-added Na[131I] (aqueous solution) was obtained
from China Institute of Atomic Energy. 2NPBTA, 4NPBTA,
and 4NPBTA-1 were synthesized and radiolabeled with
iodine-131 in our laboratory [12].

Kunming mice were obtained from Breeding Center of
the Institute of Zoology and adult Mongolian gerbils from
Breeding Center of Capital University of Medical Sciences.
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Figure 1: Structures of [131I]2NPBTA, [131I]4NPBTA, and [131I]4NPBTA-1.

All experiments were carried out following the principles of
laboratory animal care and the China law on the protection
of animals. Radioactivity in the brain of the animals was as-
sayed using a Cobra II series auto-gamma counting system
(Packard).

2.1. Brain uptake and clearance in normal mice

Brain uptake and clearance were performed using nor-
mal Kunming mice (males, ∼20 g). Each mouse received a
0.1 mL (2 µCi, MBq) dose of [131I]2NPBTA, [131I]4NPBTA,
or [131I]4NPBTA-1 by tail vein injection. Such injection so-
lution (0.1 mL) was taken as standard for calculating the per-
cent injected dose per gram of tissue, that is, %ID/g. At 2 and
30 minutes postinjection, mice were killed without anesthe-
sia by cervical dislocation in groups of five. The brain was
removed, weighed, and counted. The brain uptake (the per-
cent injected dose per gram of tissue, %ID/g) was calculated.
The 2-to-30 minutes ratios of %ID/g of the brain were cal-
culated. The final results were expressed as mean ± standard
deviation (SD).

2.2. Evaluation in gerbil cerebral ischemia models

Adult Mongolian gerbils (males, ∼100 g) were used for cere-
bral ischemia models. A right common carotid artery lig-
ation was performed to produce cerebral hypoxia-ischemia
(HI) as initially described by Levine and Payan [13]. Ger-
bils were anesthetized intraperitoneally (i.p.) with 3.5% chlo-
ral hydrate (1 mL), and the four limbs were fixed. A mid-
line anterior incision was made, the right common carotid
artery was isolated and ligated with 6–0 surgical sutures dis-
tally and proximally. Then the vessel was transected to as-
sure no flow. Thereafter, the incision was closed, and the ger-
bils were allowed to awake. Gerbils were ranked by the mod-
ified stroke index (SI) described by Ohno et al. [14]. Ger-

bils with total stroke indices of >10 were used for injection.
[131I]2NPBTA, [131I]4NPBTA, or [131I]4NPBTA-1 (0.5 mL,
10 µCi, MBq) was injected i.p. into the gerbils. Such injec-
tion solution (0.5 mL) was taken as standard for calculat-
ing the percent injected dose per gram of tissue, that is,
%ID/g. Then, animals were housed in controled animal fa-
cilities. They were given food and water ad libitum. The ger-
bils were sacrificed without anesthesia by cervical disloca-
tion in groups of three at 4, 8, and 12 houers after injection.
The whole brain was removed, placed on dry ice for about
2 minutes, and then cut in half along the cerebral longitudi-
nal fissure. The right and left halves were weighed and ra-
dioactivity counted. The %ID/g was determined for the right
and left hemispheres. The right/left hemispheral uptake ra-
tios, that is, the ratios of ischemic brain to normal brain, were
also calculated. The final results were expressed as mean ±
standard deviation (SD). The observed significance level (P
value) was determined using Student’s t-test.

2.3. Evaluation of 2NPBTA following repetitive
administration

[131I]2NPBTA (0.1 mL, 2 µCi) was injected intraperitoneally
(i.p.) into the gerbils subjected to right common carotid
artery ligation at 0, 60, 120, 180, and 240 minutes. Such in-
jection solution (0.1 mL) was taken as standard for calcu-
lating the percent injected dose per gram of tissue, that is,
%ID/g. Before sacrifice, the stroke index was determined.
Gerbils were sacrificed (no anesthesia) by cervical dislocation
120 minutes after the final injection. The whole brain was
removed, blotted free of excess blood, placed on dry ice for
about 2 minutes, and then sliced coronally at approximately
3-mm intervals, yielding a total of five coronal slices, desig-
nated A–E, from rostral to caudal ends. Each slice was then
cut in half at the midsagittal plane, and the right and left
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Table 1: Brain uptake and clearance.

Compound 2 min (ID%/g) 30 min (ID%/g) Ratio of 2-to-30 min

[131I]2NPBTA 2.93±0.39 0.47±0.11 6.2

[131I]4NPBTA 2.90±0.31 0.30±0.10 9.7

[131I]4NPBTA-1 3.31±0.50 0.61±0.16 5.4

Table 2: Uptake in the gerbil ischemic and normal brain hemisphere (%ID/g).

Brain
[131I]2NPBTA [131I]4NPBTA [131I]4NPBTA-1

4 h 8 h 12 h 4 h 8 h 12 h 4 h 8 h 12 h

Right 0.042±0.005 0.034±0.006 0.025±0.004∗ 0.046±0.006 0.022±0.001 0.020±0.004 0.040±0.008 0.017±0.001 0.015±0.002

Left 0.036±0.004 0.025±0.003 0.014±0.002 0.038±0.001 0.018±0.005 0.016±0.003 0.034±0.010 0.013±0.002 0.012±0.002

Right/
1.18±0.13 1.39±0.10(∗∗) 1.76±0.10(∗∗∗) 1.22±0.16 1.28±0.28(∗∗) 1.24±0.03(∗∗) 1.18±0.02 1.26±0.28(∗∗) 1.27±0.13(∗∗)

Left

Each value is mean ± SD
(∗) .05 > P value > .01 as compared with left brain.
(∗∗) P value > .05 as compared with 4 hours.
(∗∗∗) P value < .01 as compared with 4 hours.

halves were weighed and radioactivity counted. The %ID/g
of all brain slices was determined.

3. RESULTS

3.1. Normal brain uptake and clearance

High brain uptake and low nonspecific binding, as mea-
sured by the ratio of brain uptake at 2 and 30 minutes, will
generally improve the quality of brain tomographic stud-
ies [5]. It can be seen from Table 1 that the brain uptake
of the three compounds was high at 2 minutes, and low
binding at 30 minutes. As a result, the ratio of brain up-
take at 2 and 30 minutes for [131I]2NPBTA, [131I]4NPBTA,
and [131I]4NPBTA-1 reached 6.2, 9.7, and 5.4, correspond-
ingly. Thus, these compounds showed not only good perme-
ation across the BBB into the brain at the early stage postin-
jection but also fast clearance from the normal brain tissue
soon, making them worthy of further study as brain ischemia
markers.

3.2. Uptake in ischemic and normal brain
hemisphere of gerbil

The uptake of [131I]2NPBTA, [131I]4NPBTA, and [131I]4N-
PBTA-1 in the ischemic brain hemisphere (right) and normal
brain hemisphere (left) at 4, 8, and 12 hours after administra-
tion is presented in Table 2. The right/left (ischemic/normal)
hemispheral uptake ratios were also calculated. The uptake in
the right hemisphere was higher than that in the left at 4, 8,
and 12 hours postinjection for [131I]2NPBTA. This indicated
that the clearance from ischemic brain tissue was slower
than that from normal brain tissue. This was attributed to
the selective accumulation of 2-nitroimidazole in hypoxic or
ischemic conditions [15, 16]. The right/left uptake ratios,
that is, the uptake ratios of ischemic to normal brain tis-

sues were gradually increasing for [131I]2NPBTA, from 1.18
at 4 hours to 1.76 at 12 hours. Similar to the finding of Read
et al. that 30% of penumbral tissue of ischemic stroke was
present at an average of approximately 20 hours using the hy-
poxia marker 18F-labeled fluoromisonidazole [17], the time
for [131I]2NPBTA was over 12 hours or even longer. As for
[131I]2NPBTA, the difference between the uptake of the right
hemisphere and the left hemisphere was significant (.05 >
P > .01) at 12 hours, and the difference of the right/left up-
take ratios between 12 hours and 4 hours was very significant
(P < .01).

Unfortunately, as for [131I]4NPBTA and [131I]4NPBTA-
1, the differences between ischemic and normal brain tissues
were not significant among all groups (P > .05).

3.3. Uptake of [131I]2NPBTA following
repetitive administration

Figure 2 shows the uptake of [131I]2NPBTA in coronal brain
slices from 4 gerbils subjected to right common carotid liga-
tion after multiple injections. Uptake was measured 2 hours
after the last injection. The brain of each gerbil was divided
into five 3-mm coronal sections, designated A–E, from ros-
tral to caudal ends. The stroke indices ranging from 0 to
13 were indicated above the histograms for each animal.
Increased uptake of [131I]2NPBTA in ischemic hemispheres
was found. The right/left hemisphere uptake ratios were 1.1,
0.9, 0.9, 1.1, and 0.9 from A to E for stroke index = 0 and
1.2, 1.2, 1.1, 1.3, 1.1 for stroke index = 4. For stroke indices
= 11 and 13, they were 1.5, 2.0, 1.8, 1.7, 1.5 and 1.3, 2.4, 2.2,
2.0, 1.4. In the gerbil with no evidence of ischemia (stroke in-
dex 0), there was no evident right/left difference in any coro-
nal sections. In the gerbil with a stroke index of 4, there was
slight right/left difference. The gerbils with markedly symp-
tomatic ischemia (stroke indices 11 or 13) showed a 2-fold
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Figure 2: The uptake of [131I]2NPBTA in coronal brain slices (des-
ignated A, B, C, D, E from rostral to caudal ends) from 4 gerbils
subjected to right common carotid ligation after repetitive admin-
istration. The coronal slices stroke index (SI) was indicated above
the histograms.

or 2.4-fold higher uptake in the midparietal region of the
right hemisphere compared with the left. This confirmed that
there was greater uptake of [131I]2NPBTA in the right hemi-
sphere compared with the left and verified that there was a
trend for increased uptake with increasing stroke index. Our
data supported the result reported by Hoffman et al. through
the study of [3H]misonidazole [10] that the right/left hemi-
sphere uptake ratios correlated positively with the severity of
the stroke.

For the gerbils with stroke index 11 or 13, the right/left
hemisphere uptake ratios were modest at the most ante-
rior coronal sections, that is, section A, the rostral end. The
unique anterior circulation of gerbil cerebral vessels may ex-
plain this. The two anterior cerebral arteries of the gerbils
fuse in the interhemispheric fissure to form a single perical-
losal artery [18–20]. Ischemia may be developed in the an-
terior brain regions on the nonligated side following the loss
of the contributing anterior cerebral flow from the opposite
internal carotid circulation [10]. Thus, the rostral end of the
left brain of the most symptomatic gerbil also showed an in-
crease in uptake, compared with the corresponding coronal
section in gerbil with very low stroke index. The gerbil has
an incomplete circle of Willis and, after carotid ligation, may
develop severe ischemia in the forebrain. The cerebellum and
brain stem, which are supplied by the vertebral arteries, are
included in the posterior sections of the brain. They are not
ischemic after carotid ligation. Thus, the right/left difference
was also modest at the caudal end, that is, the section E, and
the coronal brain sections consistently showed a decreasing
rostal-to-caudal binding of [131I]2NPBTA, from B to E. Dif-
ferent from the result of Hoffman et al. [10] that there was
no difference between right and left at the caudal ends, ours
also showed difference at slice E, they were 1.5 fold and 1.4
fold for stroke indices = 11 and 13.

4. DISCUSSION

The unique anatomical feature of the gerbil made them
widely used as a model in global ischemia [18, 19, 21]. Unlike
rats, gerbils do not have a posterior communicating artery,

that is, the circle of Willis is incomplete and there is incom-
plete anastomosis of the anterior cerebral arteries. Therefore,
the blood supply of each hemisphere is isolated from the
contralateral carotid and basilar arteries. Thus, global cere-
bral ischemia in gerbils can be induced by bilateral com-
mon carotid artery occlusion or unilateral common carotid
occlusion. Ligation of one carotid artery causes ischemia in
the ipsilateral hemisphere, while the other side is unaffected,
providing neighboring normal tissue as an internal control.
Many investigators have demonstrated that unilateral carotid
occulation produces homolateral ischemia and/or infarction
in approximately 30–50% of adult male gerbils [18–20].

This study indicated that [131I]2NPBTA, [131I]4NPBTA,
and [131I]4NPBTA-1 showed good permeation across the
BBB into the brain and fast washout from the normal brain
tissue. This study also demonstrated a specific location of
[131I]2NPBTA in the cerebral ischemic tissue. These results
represented a first step toward cerebral ischemia markers of
2NPBTA and made it worthy of further investigation.
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Purpose. To evaluate the diagnosis value of integrated positron emission tomography and computed tomography (PET/CT) with
lung masses, this study emphasized the correlation between tumor size and maximum standardized uptake value (SUVmax) in
selected regions of interest (ROI) of lung masses. Material and Methods. A retrospective analysis was performed on 85 patients
with solid pulmonary lesions, all verified by pathology. The morphology, edge (speculated margins and lobule), size, density of
pulmonary masses, and on-chest CT images were reviewed. The SUVmax in ROI of pulmonary masses was calculated. Results.
Among the 85 patients with lung masses, 59 patients presented with pulmonary malignant neoplasm and 26 patients with benign
lesions. The sensitivity, specificity, and accuracy were 89.8%, 61.5%, 81.2%, respectively, for PET measurement only, 88.1%, 65.4%,
81.2% for CT only, and 96.6%, 80.8%, 91.8% for PET/CT. The size of pulmonary malignant neoplasm in the 59 patients was
apparently correlated with the ROI’s SUVmax (r = 0.617, P < .001). However, the size of pulmonary benign mass in the 26
patients was not correlated with the SUVmax. Conclusion. PET/CT is of greater value in characterization of lung masses than
PET and CT performed separately. The examination of lung tumor can be further specified by the correlation between the size of
pulmonary malignant neoplasm and the ROI’s SUVmax.
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1. THE ADVANTAGE OF PET AND CT INTEGRATION IN
EXAMINATION OF LUNG TUMORS

In recent years, the incidence and mortality of lung cancer
are always ranked as the highest among all neoplasms. Mass
is the principal manifestation of lung cancer, whose diagnosis
is of vital clinical significance [1–5]. Early and accurate diag-
nosis of lung cancer is critical to its therapy. PET/CT com-
bines the merits of both functional and anatomical imaging
techniques and has been widely used in clinical examination,
with a hope to make the diagnosis of neoplasm as early as
possible. The current study evaluated the diagnosis value of
PET/CT.

2. MATERIAL AND METHODS

2.1. Imaging acquisition

Fluorine-18-labeled fluorodeoxyglucose (18F-FDG) was
produced by EBCO cyclotron facility. Radiochemical purity
(>95%) of 18F-FDG was verified by analytical HPLC. All pa-
tients fasted for at least 6 hours before PET/CT examination.
After ensuring a normal peripheral blood glucose level, pa-
tients received an intravenous injection of 0.2 mCi/kg of 18F-

FDG, and then rested for approximately 50–60 minutes be-
fore undergoing a PET/CT scan. Image acquisition was per-
formed using an integrated PET/CT device (Siemens Bio-
graph Sensation 16). CT was performed from the head to
the pelvic floor using a standardized protocol (120 KV, 80 mA
with a slice thickness of 5 mm). PET images in early display
were acquired using 3D mode for the same scanning range
as CT. The acquisition time for PET was 3 minutes per bed
position and 5-6 continuous positions were scanned. De-
layed images of chest were acquired at 3 hours after injec-
tion of 18F-FDG. The acquisition parameters of the two PET
scans are the same. PET images datasets were reconstructed
iteratively using an ordered subset expectation maximization
algorithm and corrected with measured attenuation correc-
tion. The SUVmax of the selected ROI in lesions was calcu-
lated. CT, PET, and PET/CT infusion images of axial, sagittal,
and coronal images were obtained through a postprocessing
procedure.

2.2. Patient data

85 patients (54 males, 31 females; age range: 36–87 years;
mean age: 58 years) with lung masses were enrolled in this
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Table 1: The diagnostic value of PET only, CT only, and integrated PET/CT on 85 patients with lung masses.

Methods Sensitivity (%) Specificity (%) Positive predictive value (%) Negative predictive value (%) Accuracy (%)

PET only 89.8 (53/59) 61.5 (16/26) 84.1 (53/63) 72.7 (16/22) 81.2 (69/85)

CT only 88.1 (52/59) 65.4 (17/26) 85.2 (52/61) 70.8 (17/24) 81.2 (69/85)

Integrated PET/CT 96.6 (57/59) 80.8 (21/26) 91.9 (57/62) 91.3 (21/23) 91.8 (78/85)

See Figures 3(a)–5(c) for further demonstration of our cases.

study. Each patient received the early 18-FDG scan described
above. 70 patients underwent a second delayed scan because
either their pulmonary masses could not be determined or
they had suspected pulmonary malignancies. Other 15 pa-
tients did not undergo delayed 18F-FDG scan because they
already had a definite diagnosis based on CT and/or early
PET scan.

2.3. Data analysis and processing

2.3.1. Semiautomatic quantification of ROI

ROI was drawn on the slice that showed clearly radioactivity
aggregation. For an early scan, the SUVmax over 2.5 was re-
garded as positive; and for a delayed scan, the SUVmax over
2.5 or with10% increase compared to the early scan, was rec-
ognized as positive. CT images were mainly employed to ex-
amine the morphology, edge (i.e., speculated margins and
lobulation), size, and density of pulmonary lesions. Metas-
tasis derived from PET or CT was comprehensively analyzed
with other clinical profiles. If a lung mass was irregular in its
shape and/or its edge was poorly defined such as being spic-
ulated, having radiating corona, umbilicated, or lobulated
without benign signs of lung masses (e.g., having character-
istic calcification or fat), it was regarded as malignant neo-
plasm. The images were interpreted by two experienced radi-
ologists who had obtained a position higher than the rank of
attending physicians. Diagnosis was determined only when
a consensus was achieved. If no consensus was achieved, it
would be subject to further review by the whole department.
The diagnostic sensitivity, specificity, and accuracy of PET
only, CT only, and PET/CT were analyzed. The correlations
between tumor sizes and ROI’s SUVmax were quantitatively
compared.

2.4. Statistics

The correlations between tumor sizes and metabolism of
the lesions were performed using an SPSS software (version
11.5). Pearson correlation was calculated with P < .05 or
P < .001, considered as a standard of significance level or
a very significant difference, respectively.

3. RESULTS

There were 85 patients with solid pulmonary lesions: 59 cases
of malignant neoplasms, 26 cases of benign masses. Among
the malignant neoplasm cases, there were 19 squamocellu-
lar carcinomas, 25 adenocarcinomas, 3 alveolar cell carci-
nomas, 4 small-cell nondifferentiated adenocarcinomas, 1

eosinophilic cell carcinoid, 1 adenospuamous carcinoma, 2
dual-origin carcinomas (one right and left upper lung cav-
ernous squamocellular carcinoma and one left upper lung
adenocarcinoma with right lower lung mixed carcinoma),
and 4 metastases. Among the benign mass cases, there were 9
lung tuberculoses, 7 inflammatory granulomatosis, 3 chronic
inflammations, 2 acute inflammations, 1 round ateletasia, 1
fungus, and 3 other benign tumors. The diagnostic values of
PET only, CT only, and PET/CT for these lung masses were
shown in Table 1 and Figures 3(a)–5(a). There were 10 false
positive cases and 6 false negative cases (5 neoplasms with a
diameter lower than 1 cm and one highly differentiated carci-
noid) for PET-only imaging. 9 false positive cases and 7 false
negative cases would have been found if CT-only scan was
employed. The numbers of both false positive cases (5 cases)
and false negative cases (2 cases) for integrated PET/CT were
smaller than those for PET alone or CT alone (see Table 1
and Figures 3–5).

Figures 1 and 2 illustrate the correlations between 18F-
FDG uptake and the tumor sizes. The results from a statistical
analysis showed that while the sizes of pulmonary malignant
tumors were significantly correlated with the ROI’s SUVmax
(r = 0.617, P < .001), there was no significant correlation
between the ROI’s SUVmax and the sizes of masses in benign
lesions measured on PET/CT.

4. DISCUSSION

Lung masses might be classified when they are larger than
3 cm and less than 3 cm in diameter. Among the solitary pul-
monary nodules with a diameter less than 3 cm, there were
33% malignant nodules, 54% inflammatory granulomatoses,
6% hamartomas, 5% isolated metastases, and 2% bronchial
adenomas [3–7]. Most lung masses with a diameter larger
than 3 cm were malignant [4]. To resolve differential diag-
noses of lung masses based on the different types of scans
still remains a challenge to radiologists.

4.1. The diagnostic value of PET alone for lung mass

The extent of 18F-FDG uptake can be a good reference to
the property of a certain mass. The absorbances of FDG in
malignant neoplasms were significantly higher than those
of benign tumors. Most radiologists employed the semiau-
tomatic quantification of SUVmax, with 2.5 as a thresh-
old value [1, 2, 8, 9]. Tumors with SUVmax >2.5 were
classified as malignant lesions. End-stage pulmonary carci-
noma can be accompanied with high metabolism metas-
tasis to pulmonary hilar lymph nodes, mediastinal lymph
nodes, and other organs [9, 10]. By applying this standard,
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Figure 1: The correlation between FDG uptake and the sizes of 59
malignant tumors.

the diagnostic sensitivity, specificity, and accuracy are about
89.8%, 61.5%, and 81.2%, respectively. Dewan et al. [11] re-
ported that the diagnostic sensitivity, specificity, and accu-
racy of PET for lung nodules were 95%, 87%, and 92%, re-
spectively. In 1474 cases with solitary pulmonary nodules,
the 18F-FDG PET had a diagnostic sensitivity of 96.8% and
a specificity of 77.8% [12]. While discrepancy exists between
our work and other reports, false positivity and false nega-
tivity exist in all groups. Tuberculosis, inflammatory pseu-
dotumor, aspergillosis, and granulomatosis can also have an
uptake of FDG and lead to false positivity. In our cases, there
were 10 false positive cases, which had a lower positive pre-
dictive value of 85.2% for PET. Among the 6 false negativi-
ties, 5 were small lung cancer (diameter <10 mm), which im-
plies that the threshold of SUVmax 2.5 needs to be modified
for the diagnosis of small lung cancer with PET. In addition,
dual-time-point 18F-FDG PET is necessary in order to im-
prove the accuracy of diagnosis.

4.2. Diagnosis of lung mass with CT

CT scan was used to analyze the characteristics of lesions in-
volving the location, morphology, edge (i.e., speculated mar-
gins and lobule), size, density, and enhancement manifesta-
tions after injecting contrast agent. Small lung nodules re-
quire a thin-slice CT scan protocol and/or dynamic enhance-
ment. Although spiral CT could afford more detailed infor-
mation such as intranodular calcification and blood supply
of the mass, it still lacks specificity for certain lung nodules.
Our results showed that the sensitivity, specificity, and accu-
racy of CT in the diagnosis are 88.1%, 65.4%, and 81.2%,
respectively. Yi et al. [13] reported that the diagnostic sensi-
tivity, specificity, and accuracy of lung malignant neoplasm
with dynamic enhanced spiral CT are 81%, 93%, and 85%,
respectively. Though its diagnostic value improved some-
what, there is still some difficulty in evaluating their cases.
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Figure 2: The correlation between FDG uptake and the sizes of 26
benign masses.

There were 9 false positive cases and 7 false negative cases in
our CT series. The reason for this difference might be that
the findings based on pathologies could have a similar CT
manifestation while the same pathology might have different
images. Therefore, to improve the diagnostic accuracy, other
diagnostic procedures need to be integrated with CT mea-
surements.

4.3. The correlation of lung mass size and
its metabolism

This research showed that there was a positive correlation
between the size of malignant tumor and PET/CT SUVmax
(r = 0.617, P < .001). In Figure 1, there is a linear correlation
between the malignant tumor size and SUVmax. Not only tu-
mor size but also the focal metabolism should be taken into
account in the diagnosis of malignant tumors with PET/CT.
Especially for those with an SUVmax <2.5, lung carcinoma
could not be excluded. False negativity might arise from the
following reasons [6, 7, 9, 14–17].

(1) Some types of tumors, for example, bronchial alve-
olar cell carcinoma, carcinoid, and well-differentiated ade-
nocarcinoma, might have a reduced metabolism, and a false
negativity.

(2) Tumors smaller in diameter (<10 mm) have a low SU-
Vmax, and they might produce partial volume effect.

(3) There are a large number of fibers inside the tumors
and a low quantity of tumor cells.

(4) The patients had high blood glucose level.
Most false negativities in our series were at small foci.

Great caution should be taken for the diagnostic small nod-
ules with a diameter <10 mm since such small malignancies
might have an SUVmax <2.5. Different criteria are needed to
determine malignancy in nodules less than 10 mm in diam-
eter. As shown in Figure 2, there is no correlation between
the size of benign lesions and SUVmax of PET/CT. This may
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(a) (b) (c)

Figure 3: (a), (b), and (c) were from the same patient. The pathological diagnosis is right upper pulmonary squamous carcinoma. There
were typical manifestations on CT, PET, and integrated PET/CT. The mass on CT is 2.4 cm× 2.5 cm. The SUVmax of early PET imaging is
7.8.

(a) (b) (c)

Figure 4: (a), (b), and (c) were from the same patient. The pathological diagnosis is left upper lung adenocarcinoma. On CT, a small module
(0.9 cm× 1.0 cm) with lobulation and speculated margin was seen in the left upper lung (a). No typical manifestation was seen on PET. The
SUVmax of early PET imaging was 1.9 (b). Integrated PET/CT suggested suspected lung carcinoma (c).

reflect the complexity of tumor metabolism, suggesting that
the masses are not proportional to SUVmax of PET/CT. If a
focus has an SUVmax >2.5, but the size of the mass is not
in accordance with the SUVmax, caution should be taken to
avoid false positivity. Bunyaviroch et al. [6, 7, 9, 10, 17] re-
ported that false positivity in imaging might arise in tuber-
culosis, sarcoidosis, histoplasmosis, aspergillosis, and pleural
mesothelioma.

4.4. Diagnostic value of integrated PET/CT
for lung tumor

The diagnostic procedure of integrated PET/CT for lung
masses was as follows.

(1) The metabolism of FDG should follow the standard
for malignant tumors from the view of PET.

(2) Lung tumors should follow the standard of CT con-
cerning the density, morphology, edge, and enhancement.

When either of the standards was met, lung tumor
could be diagnosed. When only one of the requirements
was achieved, caution should be taken. Further, inspec-
tion should pursue. When neither of the requirements was
reached, lung tumor could be excluded. Yi et al. [13, 16] re-

ported that the diagnostic sensitivity, specificity, and accu-
racy of integrated PET/CT for lung malignancy were 96%,
88%, and 93%, respectively, but 96.6%, 80.8%, and 91.8%
in our series. Winer-Muram et al. [16, 18] reported that
as compared with CT, PET/CT provided additional infor-
mation, including more accurate location, differentiation
of pathological and physiological uptakes, pickup of foci
omitted by CT. The results from the current study showed
that integrated PET/CT had higher sensitivity and specificity
than CT or PET when performed separately, indicating that
PET/CT may play a more important role in lung tumor di-
agnosis. Given the false positivity and false negativity de-
tected, PET/CT may not be ideally specific for lung tumor
[13, 15, 16, 18]. We ought to combine the information of
focal metabolism, morphology, volume, and density in or-
der to avoid false positivity and false negativity. To meet such
need, the usage of different tracers, needle biopsy, or follow-
up should be pursued to ensure accurate diagnosis.

5. CONCLUSION

The integration of PET and CT is of greater value for the
diagnosis of lung masses than other methods using PET or
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(a) (b) (c)

Figure 5: (a), (b), and (c) were from the same patient. The pathology is left lung inflammation. A big mass (5.3 cm×5.7 cm) with lobulation
and spurring was seen on CT (a). Malignant tumor was suspected on CT. False positivity was seen on PET; its early imaging SUVmax is 6.6
(b). The integrated PET/CT also suggested possible lung carcinoma (c).

CT alone. Our results showed that the size of pulmonary
malignant neoplasms was correlated with ROI’s SUVmax of
PET/CT positively, but the size of pulmonary benign lesion
was not correlated with the SUVmax. These findings indicate
that PET/CT may enhance the sensitivity, specificity, and ac-
curacy of diagnosis on lung tumors.
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