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*e need for assessing and retrofitting structures increased with time as terrorism-induced explosion trends rose with time. *is
paper presents a numerical investigation on performance assessment of a two-story, one-bay seismic resistant reinforced concrete
framed building under close-in blast loading. ANSYS AUTODYN, an explicit nonlinear finite element software program, was
used for 3Dmodel development and analysis.*e experimental results reported in the literature were used to validate proposed FE
models. Furthermore, parametric studies on close-in explosive story-to-story locations and charge masses were performed on
both conventional and seismically detailed RC framed structures. FEA results showed that a decrease in scaled distance raised
effective plastic strain and damage index values. Furthermore, simultaneous use of close-spaced transverse steel reinforcement
spacing in mid-height and ends of reinforced concrete columns is found to be effective in reducing both effective plastic strains
and damage index values.

1. Introduction

Field blast explosion tests have been performed in a very
controlled manner with the help of military supervision. In
part, this testing arrangement high cost and associated risk
of conducting field tests limited access for blast-related
extreme loading studies. However, terrorism-related or
accidental explosions have increased with time. Recently, the
Beirut port explosion alone resulted in 15 billion USD in
civil engineering infrastructure and property damages, with
reported 7000 injuries and at least 220 deaths, according to
Balsamos et al. [1].

Structures designed for conventional gravity and seismic
loading are vulnerable to extensive damage when subjected to
extreme blast loading. *is is partly because conventional
structures are designed and detailed for reduced seismic
demands and have limited capacity to resist abnormally high
impulsive extreme loads such as impact and blast loading
[2, 3]. Previous studies focused on the investigation of in-
dividual reinforced structural members such as beams [4–6],
columns [3, 7–9], and slabs [10–12] subjected to blast loading.

A few studies investigated the overall global response of
reinforced concrete frames consisting of all slab, beam, and
column structural members. Jayasooriya [2] performed
vulnerability assessment and damage analysis of reinforced
concrete-framed buildings subjected to near-field blast
loading. *e author implied the use of multisteel rein-
forcement cages and composite columns to resist blast
loading. With the help of a commercially available software
SAP2000, the authors in [13–15] conducted a numerical
study on the behavior and response of multistory reinforced
concrete buildings. Tewari and Sharma [16] studied the
effect of blast load on the dynamic response of a high-story
3D RC frame by using STAAD Pro.

On the other hand, the authors in [17, 18] deployed
ANSYS AUTODYN FE packaged software to evaluate the
behavior and response of a plane frame structure under blast
load. Williams et al. [17] determined the numerical response
of a one-story, one-bay steel frame.*e researchers modeled
the steel plane frame by using a single degree of freedom,
design to resist a given seismic load, and different blast load
scenarios were deployed on the frame system by using a TNT
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explosive. From the study results, the authors insisted that,
during the blast loading event, the seismically designed plane
frame was robust enough to enter plastic zones.

Moreover, Murali and Sujisha [18] studied the response
of three-story, three-bay reinforced concrete bare frames,
frames with and without brick infill walls, and brick infill
walled frames with and without openings prone to blast
loading. *e frames were designed and detailed as ordinary
moment-resisting frames, and then the 3D FEA modelling
was employed by using the nonlinear computational pro-
gram ANSYS AUTODYN. *e authors generated the TNT
explosive simulations from the AUTODYN module, and
two blast-induced shock waves, namely, blast load with and
without negative phase profiles, were considered. From the
numerical study results, frames subjected to both positive
and negative phases revealed maximum displacement
values. In addition to this, infill walled frames with openings
were found to be susceptible to large displacements.

On the other hand, Toy and Sevim [19] numerically
investigated the structural response of a two-story, two-bay
reinforced concrete building prone to blast load.*e authors
designed and detailed only one building model, especially an
existing real building that bombed in August 2015 in
Istanbul, and only one analysis was performed. Explicit
analysis was employed by using the nonlinear FEA com-
putational software ANSYS AUTODYN. Based on the FEA
postprocessed results, the authors insisted on the complete
collapse of nonstructural components. However, the
structural elements of the frame suffered enormous damage
including crushing of concrete and yielding of reinforce-
ment bars.

Despite the efforts made by other researchers, it is ob-
vious that the use of commercially available general FE
software such as SAP2000 and STAAD Pro may not ade-
quately represent different material models specifically
generated for abnormal loads, such as blast load, and those
software also hinder researchers and engineers to use and
provide explicitly different reinforcement detailing schemes,
which are in contrary easy on other research FEA software
such as ANSYS AUTODYN. Consequently, some re-
searchers have also made efforts by only considering the
dynamic response of a plane frame system under blast loads.
But this type of analysis method mismatches and does not
capture the real dynamic behavior of spatial 3D models.

*us, there is a void in the literature to study the global
overall response of a reinforced concrete frame consisting of
various interconnected structural members under extreme
blast loading. Moreover, due to the complicated nature of
explosions and the propagation of blast-induced shock
waves, it is worthy to capture load transfer mechanisms
among structural members and the global response of an RC
frame under blast loading by 3D modelling and analyzing of
the RC frame. Also, the boundary conditions deployed for
individual RC slabs, beams, and columns are all simplified
and prescribed support conditions. However, 3D modelling
of frames consisting of individual structural members as an
interconnected framework offers options to evaluate
structural joint performance in FE analysis. Currently, ad-
vances in finite element analysis and the availability of high-

speed computing have enabled spatial 3D model develop-
ment of reinforced concrete frames subjected to blast
loading simulation analysis.

*erefore, this study fills a perceived void in the liter-
ature by studying the structural response of two-story, one-
bay, reinforced concrete frames with and without seismic
detail provisions, under extreme close-in blast loading.
Variable axial loads induced by dynamic reactions of beams
and slabs caused by the effects of indoor explosions on
supported masses are all captured. Field test data reported in
literature [20] were used for validation finite element
analysis, and further parametric studies on story-to-story
close-in explosive locations, charge masses, and various
reinforcement detailing schemes were performed on both
conventional and seismically detailed RC framed structures.

2. Description of Numerical Model

ANSYS AUTODYN [21] software program was used for 3D
model development, blast loading, and finite element sim-
ulation analysis. Next, details of employed material models,
boundary conditions, blast loading application, and FE
procedures are presented.

2.1. Material Models. *e RHT material model which was
originally developed by Riedel–Heirmaier–*oma was
implemented in the nonlinear computational program
ANSYS AUTODYN [21] and is extensively used in finite
element analysis of reinforced concrete structures under
blast loading. Experimental and field blast tests were used by
various authors to verify and validate their accuracy [22–25].
*e authors insisted that the RHT material model united
strain rate effect, equation of state (EOS), plasticity, and
three failure surface caps, namely, inelastic yield, postfailure,
and residual surface features to simulate concrete dynamic
strength behavior for extreme loading, such as impact and
blast loads. *e model uses about 30 input parameters in-
cluding hydrostatic compression, uniaxial tension, and
uniaxial and triaxial compression parameters.

EOS describes the hydrodynamic response of a concrete
material when subjected to accidental loads such as blast
loading, which is assumed as hydrodynamic, with pressure
varying as a function of density and internal energy [25].

In the present study, the RHT concrete material model
was used to characterize concrete. Input parameters for the
RHTconcrete material model are presented in Tables 1–4 in
terms of P-alpha, polynomial equation of states, concrete
strength, and damage (failure) values.

According to [22–25], material damage is initiated, if
further plastic damage occurs after the initial failure surface
is reached. *e model evaluates damage parameter D using
equation (1). *e logic behind the damage formulae is the
accumulation of increments of effective plastic strain.

0≤D � 
Δεpl

εf(p)
≤ 1, (1)

where εf(p) is the failure strain and can be calculated as
listed in
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εf(p) � D1 p
f

− p
∗
t 

D2 ≥ εmin, (2)

where D1, D2, p∗t , and εfmin are input parameters [22–25] and
also seeTable 4 for RHTmaterialmodel failure input parameters.

Activating the EROSION option enables the computa-
tional engine of AUTODYN to cross check strain limits of
elements and eliminate an element in a finite element model
if predefined strain limits were exceeded.

Ekstrom [26] investigated concrete structure dynamic
response damage and fracture energy characteristics due to
blast-induced shock waves. *e author showed tensile
fracture energy influenced the accuracy of FEA results than
strain rate material properties. Table 5 presents input pa-
rameters for the Johnson–Cook strength model, which was
used for steel rebar material characterization. Similarly,
Table 6 exhibits the JWL input parameters for equivalent

Table 1: P-alpha EOS input parameters for C-35 concrete.

Variable Meaning Value/remark
ρsolid,o Reference density (kg/m3) 2750
ρporous Porous density (kg/m3) 2314
ce Porous sound-speed (m/s) 2.92E+ 3
pel Initial compaction pressure (kPa) 2.33E+ 4
pS Solid compaction pressure (kPa) 6.00E+ 6
n Compaction exponent 3.0
Tref Reference temperature (°C) 26.85

Table 2: Polynomial EOS input parameters for C-35 concrete.

Variable Meaning Value/remark
A1 Bulk modulus matrix (kPa) 3.53E+ 7
A2 Parameter A2 (kPa) 3.96E+ 7
A3 Parameter A3 (kPa) 9.04E+ 6
B0 Parameter B0 1.22
B1 Parameter B1 1.22
T1 Parameter T1 (kPa) 3.53E+ 7
T2 Parameter T2 (kPa) 0.00

Table 3: RHT concrete strength model parameters for C-35 concrete.

Variable Meaning Value/remark
G Shear modulus (GPa) 16.7
fc Compressive strength (MPa) 35.0
CAP Use CAP on elastic surface? Yes
ft/fc Tensile strength 0.10
fs/fc Shear strength 0.18
Afail Intact failure surface constant 1.60
nfail Intact failure surface constant 0.60
Q2.0 Tension/compression meridian ratio 0.6805
BQ Brittle to ductile transition 0.0105
S Hardening slope 2.00
Tensrat Elastic strength/ft 0.7
Comprat Elastic strength/fc 0.53
Bfrac Fracture strength constant 1.6
nfrac Fracture strength exponent 0.61
α Compressive strain rate exponent 0.032
δ Tensile strain rate exponent 0.036

Table 4: RHT failure model input parameters for C-35 concrete.

Variable Meaning Value/remark
SFMAX Maximum fracture strength ratio 1E+ 20
D1 Damage constant 0.04
D2 Damage constant 1.00
εf,min Minimum strain failure 0.01
Gres Residual shear modulus fraction 0.13
EROSION Use EROSION Yes

Advances in Civil Engineering 3



TNT explosives. *e JWL EOS input parameters were val-
idated using different field test cases, computational pro-
grams, and explosion field events using entropy-based
thermodynamic equations [27–30].

Blast-induced shock waves cannot propagate through
vacuum. Atmospheric air was modeled to characterize blast-
induced shock wave propagation through the air medium.
Table 7 presents the required parameter inputs for modelling
atmospheric air parameters in current numerical models.

Tables 1–7 detail input parameters listing and also
provide an illustrative example for fellow researchers using
RHT, Johnson–Cook, and JWL material models to char-
acterize concrete, steel rebar, ANFO, and TNT explosive
materials, and air for atmospheric pressure, respectively.

2.2. Element Types. A Lagrangian solid element was used to
model the concrete column and substructure. Substructure
or base material was modeled for purpose of reflecting blast-
induced shock waves. *e strength along the compressive
meridian is expressed as a triaxial compression normalized
to the unconfined compression strength fc in the AUTO-
DYN solver in the following equation by Brannon and
Leelavanichkul [22]:

Υ∗TXC �
ΥTXC

fc

� a1
p

fc

−
pspall

fc

rf 

a2

, (3)

where rf �
(ε′/εo
′)α: p>fc with εo

′ � 30x10− 6
s−

1

(ε′/εo
′)β: p<fc with εo

′ � 3x10− 6
s−

1 .

a1 � initial slope of failure surface, a2 � pressure dependency
of failure surface, pspall � spall strength, and α and
β�material constants.

*e solid element supports material and geometric
nonlinearity and has 8 nodes with three displacement, ve-
locity, and acceleration DOFs per node in X, Y, and Z di-
rections. Steel reinforcements are modeled using a
two—node element resisting only tensile and compressive
forces. *e element is compatible with concrete solid ele-
ment and has three displacement, velocity, and acceleration
DOFs per node in X, Y, and Z directions.

2.3. Modelling of TNT Explosive. Pressure-volume-energy
behavior of TNT explosion with different charge masses in
ANSYS AUTODYN input parameters can be determined
using equation (4) of Jones–Wilkins–Lee (JWL) EOS [27, 30].

P � A 1 −
ω

R1V
 e

− R1V
+ B 1 −

ω
R1V

 e
− R2V

+
ωE

V
, (4)

where P is pressure and v is volume relative to undetonated
state (v/vo). *e parameters A, B, R1, and R2 are constants,
and parameter ω is an assumed-constant material property.

While having 1m height and different a diameter of a
cylindrical TNT explosive container, the volume of the
container is mapped after specifying the diameter of the
cylindrical container. In other words, different charge
masses of TNTare deployed by fixing the height and varying
the diameter values. After establishing the required volume

of TNT explosive, the locations for detonation points are
defined by specifying X, Y, and Z coordinates.

2.4. Boundary and Loading Conditions. Column bottom
translation and rotational degrees of freedom are con-
strained. Similarly, a concrete-based substructure is also
restrained from translation and rotation on each side and
bottom faces. *e gravitational acceleration of 9.81m/s2 is
applied to account for self-weight of the frame elements.

2.5. Nonlinear Finite Element Analysis Computation.
ANSYS AUTODYN [21] nonlinear finite element software
program is used to analyze and simulate reinforced concrete
frames subjected to blast loading. Automatic explicit time
steps and damping controls of 0.2 and 1 value are used for
linear and quadratic artificial viscosity. An AUTODYN
standard is also employed to control the hourglass damping.

3. Numerical Model Validation

3.1. Description of Validated Field Test (Specimen CONV_20).
*e field test results reported by Siba [20] are used for
validation finite element analysis. *e specimen designated
as CONV_20 has 300mm× 300mm cross-sectional di-
mensions, 3200mm height, and 41MPa concrete com-
pressive strength.*e column is reinforced with 4–25M and
has 300mm tie spacing (Figures 1 and 2).

Siba [20] performed the blast test at 2.6m standoff
distance with 150 kg ANFO explosive material yielding a
052m/kg1/3 scaled distance. *e experimental test column
displacement values were traced by deploying displacement
gauge control points. Figure 3(a) shows the field test set up of
the CONV_20 RC column, whereas Figure 3(b) exhibits its
corresponding FE developed model using the ANSYS
AUTODYN [21] software program.

3.2. Mesh Technique and Convergence. *e mesh techniques
were used for the simulation of solid materials, and a well-
known so-called Lagrangian mesh technique with less
computational cost was used. *e mesh in the Lagrange
tracks the material as it deforms, and the material stays
inside the original element grid. In order to control the
solution accuracy, especially in case of highly distorted
meshes, controlling mechanisms including hourglass con-
trol, rezoning, and remapping options were activated in the
ANSYS AUTODYN computational program.

Consequently, the mesh sensitivity study is a critical step
to optimize computational demands and the accuracy of
finite element results. In this research, preliminary analyses
were performed using different mesh sizes of 20mm, 25mm,
30mm, and 40mm (see also Figure 4) and for final analysis,
a fine mesh of 20mmwith same aspect ratio is selected for all
subsequent FEA.

Nodal displacement values are traced by employing a
displacement control point (gauge) located at lower one-
third of the column (1m). Figure 5 exhibits the nodal dis-
placement values for different mesh sizes (see also Table 8).
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3.3. Field Test and Numerical Model Comparison.
Figures 6(a) and 6(b) present the blast wave propagation of
field tests and FEA simulations during the blasting event.
After the detonation of the ANFO explosive, which was
contained in a cylindrical shape, the fireball engulfed the
reinforced concrete column. *e video recording during the
experimental test carried out by Siba [20] did not show the
response of the column; however, the evolution of the blast
pressure and fireball was captured and a similar blast wave
simulation was made by AUTODYN.

During the experimental test, Siba [20] embedded a
string potentiometer at the front face of a column, and a
displacement value of 11.2mmwasmeasured from the lower
one-third region of the study column. Figure 7 elucidates a
comparison of displacement-time history plots for experi-
mentally reported data (CONV_20 RC column) and an FEA
model with different mesh sizes extracted from a 1m dis-
placement control (gauge) point.

Moreover, posttest results for CONV_20 revealed that an
extensive cracking and spalling of concrete in the lower one-

third region of the column was obtained. After activating
concrete EROSION option for the damage simulation, from
the postprocessed results of damage scalar values, FEAmodel
experienced the same extent of concrete crushing at the same
location, i.e. the lower part of the column (see Figure 8).

*us, FE validation analysis results including displace-
ment threshold values and postblast damages from ANSYS
AUTODYN are in good agreement with field test data re-
ported by Siba [20]. *is affirms use of the RHT concrete
constitutive model, Johnson–Cook material model for re-
inforcement bars, and the JWL model for simulating ex-
plosions yields acceptable values for simulation of RC
structural members under blast loading. Next, a detailed
finite element simulation of a full-scale two-story one-bay
reinforced concrete framed structure is presented.

4. Finite Element Simulation

4.1. RC Frame Models Reinforcement Detailing. In this sec-
tion, responses of two-story, one-bay reinforced concrete

Table 5: Johnson–Cook strength model input parameters for S400 rebar.

Variable Meaning Value/remark
ρref Reference density (kg/m3) 7850
E Young’s modulus (GPa) 200
v Poisson’s ratio 0.3
K Bulk modulus (GPa) 166
Cv Specific heat (J/kgC) 434
SRCR Strain rate correction 1st order
fy Initial yield stress (MPa) 400
HC Hardening constant 510
fy Principal tensile failure stress (MPa) 600
STCN Strain rate constant (MPa) 0.01
TSE *ermal softening exponent (MPa) 1.03
MT Melting temperature (°C) 1793
RSTR Reference strain rate (sec−1) 1.00
Erosion Erosion strain (%) None
EOS Equation of state Linear

Table 6: JWL model input parameters for TNT explosive.

Variable Meaning Value/remark
ρ Density (kg/m3) 1630
A Parameter A (GPa) 374
B Parameter B (MPa) 375
R1 Parameter R1 4.15
R2 Parameter R2 0.90
W Parameter W 0.35
C–J DV C–J detonation velocity (m/s) 6930
C–J E C–J energy/unit mass (J/kg) 3.68E+ 6
C–J P C–J pressure (GPa) 0.2

Table 7: Atmosphere air input parameters for air medium.

Variable Meaning Value/remark
ρ Density (kg/m3) 1.225
Cv Specific heat (J/kgC) 717.6
Υ Adiabatic exponent 1.40
Tref Reference temperature (°C) 26.85
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frames, conventional (seismic deficient), and seismically
detailed schemes subjected to various close-in blast loading
are presented. Figures 9–15 present reinforcement details of
conventional seismic deficient and seismically detailed RC
columns. Conventional and seismic resistant RC columns
are detailed as per EN 1992-1 EuroCode2 [31] and EN 1998-
1:2003 EuroCode8 [32], respectively. All columns and beams
had 300mm× 300mm cross-sections reinforced with
8ϕ12mm and 6ϕ12mm longitudinal bars, respectively. *e
spacing of transverse bars with ϕ8mm ties is detailed to have
different spacing along with the height of beam and column.

FRM_REI_DET_#1 represents conventional frame for only
gravity loading only, whereas FRM_REI_DET_#2 and
FRM_REI_DET_#3 are seismic resistant frames.

5. Parametric Study Results and Discussions

In this section, a numerical study using the nonlinear
computational FEA program, ANSYS AUTODYN, on effect
of different reinforcement detailing provisions on a two-
story one-bay RC framed structure under a blast-induced
shock wave is presented. Figure 16 elucidates the indoor

3000 mm

32000 mm11×10 M

300 mm

CONV_20

Section ×–×
N.B all dimensions are in

mm until specified

+ +

+ +

220

2204×25 m 300

300
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Figure 1: Sketch for CONV_20 RC column.

(a) (b)

Figure 2: Reinforcement bar arrangement for CONV_20 RC column: (a) experiment carried out by Siba [20]; (b) AUTODYNFEA simulation.
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location of equivalent TNT explosives, simulating various
blast loading scenarios used in the present parametric study.

*e parametric study consisted of three blast scenarios
with reference to two blast points specifically located at the
middle of the 1st and 2nd story levels. *e first blast scenario
had 46 kg TNT explosive charge mass and a 0.50m/kg1/3
scaled distance, whereas in the second blast load case, a 91 kg
TNTexplosive chargemass was applied yielding a 0.40m/kg1/3
scaled distance. *e third blast scenario had a 215 kg TNT
explosive charge mass with 0.30m/kg1/3 scaled distance.

*e 3D frame had a 5m× 5m planar area and a 3m floor
height. In addition to the self-weight of each structural
member (column, beam, and slab), 10 kN/m2 live load
characterized by the functional use of the floor system is
imposed on 1st and 2nd story floor slabs.

Among the structural elements of a building, the column
is a critical structural element subjected mainly to

compression with/without bending, and is highly susceptible
to early failure due to blast loading. Consequently, damage on
columns trigger a whole frame system into progressive col-
lapse. *us, average damage index and effective plastic strain
values were extracted from AUTODYN’s postprocessed data
files for the first and second story columns. Figure 17 elu-
cidates ANUTODYN FEA models with indoor locations of
TNT explosive, 3D model with and without meshes.

Sample detonation phases of TNT explosive on the 1st
and 2nd floors with respective pressure values on the 3D
FEA model are presented in Figure 18. Blast modelling is
made by using ANSYS AUTODYN software and explicit
analysis of those frames with and without seismic
detailing provisions is performed for close-in extreme
blast load cases. For a TNT explosive charge mass located
on the first floor, ground floor columns suffered greater
pressure than 2nd floor columns and on the contrary,

(a) (b)

Figure 3: CONV_20 test column and location of 150kgANFO explosive: (a) experiment carried out by Siba [20]; (b) AUTODYNFEA simulation.

(a) (b) (c) (d)

Figure 4: AUTODYN FEA model for CONV_20 RC column with different mesh sizes: (a) 20mm; (b) 25mm; (c) 30mm; (d) 40mm.

Advances in Civil Engineering 7



(a) (b) (c) (d)

Figure 5: Nodal displacement value for CONV_20 RC column located at 1m control point: (a) 20mm; (b) 25mm; (c) 30mm; (d) 40mm.

Table 8: Mesh sensitivity analysis.

Mesh size (mm) No. of nodes No. of elements Time elapsed (s) Maximum displacement at lower one-third (mm)
20 43779 38250 1500 12.35
25 23153 19584 1080 8.63
30 13915 11400 960 6.14
40 6966 5440 900 4.12

(a) (b)

Figure 6: Blast wave propagation: (a) field test carried out by Siba [20]; (b) FEA simulation.
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when the TNT explosive is allowed to detonate in the 2nd

floor, columns located on the respective floor are exposed
to maximum blast-induced shock waves (Figure 18).

5.1. Blast Loading Response of Seismically Detailed Two-Story
One-Bay RC Building Frame. *is section presents a per-
formance assessment of the seismically detailed RC frame
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Figure 7: Displacement-time history curves for CONV_20 RC column with different mesh sizes.
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Figure 8: Posttest photograph of column: (a) field test carried out by Siba [20] and (b) FE validation result.
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under blast loading. One conventional RC frame,
FRM_REI_DET_#1, and two seismically detailed RC frames,
FRM_REI_DET_#2 and FRM_REI_DET_#3, are studied
with two probable indoor explosion locations (1st and 2nd

story floor levels) and three different equivalent TNT ex-
plosive material charge masses (46 kg, 91 kg, and 215 kg).

FE numerical analysis results showed as charge mass
increases, damage and effective plastic strain values also
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Figure 9: Reinforcement detailing for FRM_REI_DET_#1.
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peaked.Moreover, as compared to conventionally detailed RC
frames (FRM_REI_DET_#1), seismically detailed RC frames
(FRM_REI_DET_#2 and FRM_REI_DET_#3) performed
well under blast loading. For 0.50m/kg1/3 scaled distance,
where TNT explosive is kept at 1st floor, and damages are
reduced by 14.3% and 62% for RC frames FRM_REI_DET_#2

and FRM_REI_DET_#3, respectively (Figure 19). On the
other hand, when TNT explosive is placed at 2nd story, the
values are 16.7% and 62.5% (see Figure 20).

Similarly, for a 0.40m/kg1/3 scaled distance where TNT
explosive is located at the 1st story floor level, 11.8% and 47.1%
drop in damage values are observed (Figure 21). On the other
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Figure 10: Reinforcement detailing for FRM_REI_DET_#2.
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hand, for TNT explosive with the same 0.40m/kg1/3 scaled
distance kept at 2nd story, decrease in damage value up to 10%
and 47.5%, respectively, was observed (see Figure 22).

Figures 23 and 24 show performance gain of applying
explosives with 0.30m/kg1/3 scaled distance at 1st and 2nd

story floor levels, and damages lessened by 10%, 56.4% and
9.5%, 56.4%, respectively were recorded for FRM_REI_-
DET_#2 and FRM_REI_DET_#3 RC frames, respectively.

Figures 25 and 26 present a summary of the performance of
seismic deficient and seismically detailed columns. From the
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Figure 11: Reinforcement detailing for FRM_REI_DET_#3.
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plot, it is evident that a decrease in scaled distances from
0.50m/kg1/3 to 0.30m/kg1/3 induced severe damages to the
columns especially FRM_REI_DET_#1 and FRM_REI_DET_

#2. On the contrary, FRM_REI_DET_#3 showed an incredible
performance and robust resistance against close-in explosion
scenarios.
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Figure 12: Solid slab reinforcement detailing for FRM_REI_DET_#1, FRM_REI_DET_#2, and FRM_REI_DET_#3 models: (a) sketch; (b)
FEA model.
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Figure 13: Reinforcement detailing for FRM_REI_DET_#1 on AUTODYN.
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Figure 14: Reinforcement detailing for FRM_REI_DET_#2 on AUTODYN.
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Figure 15: Reinforcement detailing for FRM_REI_DET_#3 on AUTODYN.
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Figure 16: Locations of TNT explosives.
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(a)

(b)

(c)

Figure 17: ANUTODYN FEA model with (a) location of TNT explosive, (b) 3D plot, and (c) meshes.
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(a)

(b)

Figure 18: Blast pressure wave propagation time for two blast scenarios.
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Figure 19: Column damage index vs. effective plastic strain plot for 46 kg TNT explosive located at 1st story ground floor slab.
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Figure 20: Column damage index vs. effective plastic strain plot for 46 kg TNT explosive located at 2nd story floor slab.
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Figure 21: Column damage index vs. effective plastic strain plot for 91 kg TNT explosive located at 1st story ground floor slab.
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Figure 22: Column damage index vs. effective plastic strain plot 91 kg TNT explosive located at the 2nd story floor slab.
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Figure 23: Column damage index vs. effective plastic strain plot for 215 kg TNT explosive located at 1st story ground floor slab.
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Figure 24: Column damage index vs. effective plastic strain plot for 215 kg TNT explosive located at 2nd story floor slab.
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Figure 25: 1st story column damage index values for different reinforcement detailing provisions under various scaled distances.
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Figure 26: 2nd story column damage index values for different reinforcement detailing provisions under various scaled distances.
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6. Conclusion

*e present research investigated the structural performance
assessment of two-story, one-bay conventional, and seismic
resistant reinforced concrete framed buildings under close-
in blast loading. Influential variables such as charge mass,
explosive scaled distances, and various reinforcement detail
provisions are studied to get insight into the blast load
resistance of a reinforced concrete frame structure. Next, the
major findings of the study are summarized.

(i) For a given close-in blast event, the decrease in
scaled distance parameter increased, which results
in effective plastic strain and damage indices

(ii) Minimizing transverse steel reinforcement spacing
in a column significantly caused a drop in damage
indices

(iii) Comparing seismic deficient columns with seis-
mically detailed RC columns and having various
blast scenarios with different scaled distances, the
simultaneous use of closed spaced transverse steel
reinforcement spacings in ends and midheight of
reinforced concrete columns is found to be highly
effective in reducing both effective plastic strains
and damage index values
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A new type of precast lightweight aggregate concrete exterior wallboard is proposed in this study. It is composed of inner and
outer panels, an insulation layer, and concealed ribs. After adjusting the mixing ratio of lightweight aggregate concrete, light
weight, bearing capacity, and good workability were guaranteed. (e flexural performance of the composite exterior wallboard
was studied by testing and numerical modeling of four wallboards, and the results of deflection, crack morphology, failure mode,
and ultimate flexural capacity were then obtained. Additionally, the cracking and bending properties of the composite exterior
wallboard were observed, and the calculation method of bending capacity and the cracking moment was studied. (e calculated
results coincided with the experimental data; therefore, this study provides a reference to the design and application of pre-
fabricated exterior wallboards.

1. Introduction

Compared to traditional wallboard structures, the pre-
fabricated exterior wallboard is characterized by excellent
component quality, high construction efficiency, and green
environmental protection [1], which is one of the important
ways to change the wall and improve the level of building
industrialization. As the building’s peripheral protective
components, the exterior wallboards should not only meet
the mechanical properties but also the requirements of heat
insulation, sound insulation, and waterproof of the pro-
tective structure.

Conventional types of exterior wallboards can be cate-
gorized as single material exterior wallboards, internal
thermal insulation composite wallboards, exterior thermal
insulation composite wallboards, and Sandwich thermal
insulation composite wallboards. Among these, the Sand-
wich thermal insulation composite wallboard is composed of
a concrete inner panel, insulation layer, and a concrete outer
panel, where the inner and outer panels are often connected
by rigid connectors. Compared with other forms of outer
wallboard, the Sandwich thermal insulation composite

wallboard has the advantages of thermal insulation and
durability [2]. During transportation, storage, and service,
precast wallboards are normally affected by the piled weight
and out-of-plane loads of wind. Since the insulation layer of
the Sandwich panels has low strength and large deformation
[3], the out-of-plane load of the wallboard is mainly sus-
tained by the inner and outer panels [4, 5]. (e wallboard is
casted layer by layer, but its cowork performance is poor,
and the overall load-carrying capacity is relatively weak.
(erefore, a concealed rib Sandwich structure is proposed in
this study.

Arubaye et al. [6] conducted double-shear tests on four
different types of fiber-reinforced polymer (FRP) connectors
and six-point bending tests on eight full-size concrete
Sandwich plates and established an elastic analysis method
for calculating the connectors, providing a method for
predicting the cracking and deformation of Sandwich plates.
Daniel Ronald Joseph et al. [7] conducted four-point
bending tests on four concrete Sandwich plates, which were
connected by steel strand mesh connectors. (e test results
showed that mesh connectors made a high contribution to
the composition of the Sandwich plate, and the flexural
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bearing capacity of the Sandwich plate was greatly related to
the thickness of the plate. (e bending capacity of the
Sandwich plate was improved. Cox et al. [8] developed a star
connector using needle glass fiber composite material
(GFRP) and carried out pull-out, double-shear, and whole-
plate bending tests on the composite plate. (e test results
indicated that the combination degree of the Sandwich plate
was less than 6.5% only when the star connector was set at
the end of the Sandwich plate, and the combination degree
was improved by setting additional connectors. Scholars
have performed a lot of research on precast concrete
Sandwich plate connectors, and most of these works focus
on rod or plate discrete connectors or continuous con-
nectors made of FRP grids. Although the purpose of im-
proving the bearing capacity has been achieved in these
works, the complex constructions of the plates are not
conducive to large-scale promotion.

For the innovative wallboard proposed in this study, the
inner and outer panels are made of fiber-reinforced light-
weight aggregate concrete, and the insulation layer is made
of polystyrene particle concrete. Using the same cementi-
tious material is convenient for the preparation of wall-
boards. At the same time, steel trusses are set up between the
inner and outer panels to form concealed ribs as shown in
Figure 1. (e rib structure is beneficial to improve both the
mechanical performance of precast composite wallboards
and the cooperative performance of inner and outer panels.

(is study is organized as follows: in section preparation
of lightweight aggregate concrete, bearing capacity and good
workability are based on the main control index of density,
compressive strength, and slump. Taking density, softening
coefficient, and strength as the main control indexes, the
polystyrene granule concrete of lightweight, waterproof,
compact, and nondeformable is prepared. Subsequently, the
out-of-plane static loading test [9] and numerical simulation
of the mechanical properties of the concealed ribbed
Sandwich outer wallboard are carried out in section es-
tablishment of the finite element model. (e cracking
condition, deformation performance, and bearing capacity
of the wallboard are studied to observe the cooperative
working condition and two-failure mode of the inner and
outer panels under the loads outside of the plane that are
included in section theoretical analysis to provide an extent
of reference for the engineering application of the concealed
ribbed Sandwich outer wallboard.

2. Materials and Methods

2.1. Mix Design. Optimum mix for lightweight aggregate
concrete, five variables, gelled material, water-binder ratio,
absolute volume sand ratio, mineral admixture content, and
fiber content were used as design parameters. (rough the
single factor analysis method, the influence of five design
parameters on compressive strength, dry density of the
lightweight aggregate concrete was studied. All design pa-
rameters affect the slump of the mixture. In this study, the
slump of the mixture was controlled in a reasonable range
(80–100mm) by adjusting the dosage of the water-reducing
agent.

According to “(e Technical Specification for Light-
weight Aggregate Concrete (JGJ51-2002)” [10], the density
grade of lightweight aggregate concrete prepared is
1,800 kg/m3, the strength grade is LC30, and the slump is
80–100mm.

Table 1 shows the optimal mixture ratio of lightweight
aggregate concrete, with total cementitious material 460 kg,
water-binder ratio 0.27, sand ratio 34%, fly ash 10%, slag
10%, and polypropylene fiber (PP fiber) content 0.05%.

Optimal mixture ratio of polystyrene granule concrete,
the three variables of dispersible latex powder, hydroxypropyl
methyl cellulose (HPMC), the gelledmaterial, and the amount
of lubricant are taken as the design parameters. (e effects of
three-design parameters on the viscosity, dry density, com-
pressive strength, and softening coefficient of polystyrene
granular concrete are studied by the single factor analysis.(e
optimal mixture ratio of polystyrene granular concrete is
shown in Table 2 with water-binder ratio 0.5, PP fiber particle
30, gelled material 5.1 kg, fly ash 20%, zinc stearate 0.051 kg,
redispersible latex powder 0.153 kg, and HPMC 3%.

2.2. Bendability Test of Precast Outer Wallboard. An out-of-
plane static load test was carried out on the concealed rib
Sandwich exterior wallboard [6] to study the influence of the
thickness of the inner and outer panels, the setting of
concealed ribs, the arrangement of concealed ribs on
cracking and crack development, deformation performance,
and bearing capacity of wallboard. (e cooperative working
condition and failure mode of the inner and outer panels
under the exterior planeload were investigated. (e results
provide a reference for the engineering application of
concealed ribbed Sandwich exterior wallboard.

2.3. Specimen Design and Manufacture. Considering the
influence factors such as the thickness of inner and outer
panels, whether the concealed rib is set or not and the way of
arrangement, four groups of specimens were designed to
carry out the static load test of the Sandwich wallboard
under out-of-plane load.

(e test simulation object is the prefabricated whole
plate, that is, the height of the board is the height of the floor
and the width of the plate is the size of the building space.
Restricted by the test loading conditions, the specimen
adopted the 1/2 scale, the size of the four test plates was
1600mm× 1400mm, and the total thickness of the wall plate
was 130mm. (e inner and outer plates had an equal

Figure 1: Schematic diagram of a concealed rib.
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thickness of 40, 50mm, and the insulation layer had a
thickness of 30, 50mm.

(e inner and outer panels of the wallboards were
made of fiber-reinforced lightweight aggregate concrete,
and the proportion is shown in Table 1. (e insulation
Sandwich layer was made of polystyrene granule con-
crete, and the mixture ratio of polystyrene granule
concrete is shown in Table 2. (e basic parameters of Slab
1∼Slab 4 are shown in Table 3. (e inner and outer panels
were reinforced with steel mesh. In Slab 3 and Slab 4, the
concealed ribs were welded with the steel mesh in the
vertical and both in vertical and horizontal directions.
(e horizontal section of the test wallboard is shown in
Figure 2.

(e wallboards were placed in layers in the order of inner
panels, insulation layers, and outer panels. (e time interval
of each layer was less than the initial setting time of concrete.
(e inner and outer panels of lightweight aggregate concrete
and polystyrene particle insulation layer were made of the
same cementitious material, and the bonding force between
each layer of wallboards was better.

2.4. Test Loading Device and Scheme. (e four sides of the
prefabricated wallboard are flexibly connected with the
frame beam and frame column. Under the load outside the
surface, the frame beam and frame column can only be
regarded as the support of the wallboard. To facilitate
loading, the test pieces were laid flat, simply supported on
four sides, and vertically loaded. Most of the outside
planeloads, such as stacking load of prefabricated parts
generated during transportation and installation and wind
load during service, are uniform loads. In the test, the
concentrated loading force was evenly distributed to the four
loading points using a two-layer distribution beam, and the
steel pads were also laid under the four loading points to
simulate the plate loading [11]. (e load testing device is
shown in Figures 3 and 4.

(e vertical displacement at the corresponding place of
the top and bottom of the wallboards, the strain of rein-
forcement and concrete, and the occurrence and develop-
ment of cracks were measured during the test. TAT3828E
(signal test and analysis system) was used to collect electrical
signals.(e layout of the displacementmeter, concrete strain

gauge, and reinforcement strain gauge are shown in
Figures 5, 6 and 7.

A load-controlled monotonic loading protocol is used
according to the “Standard for Test Methods of Concrete
Structures” [12]. (e load is loaded at 5 kN per level, and the
load lasts for 5 minutes. When the load reaches about 70% of
the ultimate load, the load level of each level is adjusted to
10 kN/level until the load reaches the ultimate bearing ca-
pacity of wall panel members. When one of the following
three conditions occur (i.e., the steel bar at the bottom of the
wallboard specimen yielding or breaking, the upper concrete
of the wallboard specimen crushing in the compression
zone, and the crack width of wallboard or deflection ex-
ceeding an allowable value), the wallboard is considered to
reach the bearing capacity limit state and the loading test
ends.

3. Results and Discussion

3.1. Experimental Phenomena and FailureModes. Under the
action of monotone loading, the stress process of the
specimen can be divided into three stages: cracking stage,
yield stage, and limit stage. Figure 8 shows the crack dis-
tribution at the bottom and top of the Slab 1-Slab 4
wallboard.

3.1.1. Cracking Stage. At the beginning of loading, the first
crack appeared in the bottom span, but the overall stiffness
was good. (e increase in inner and outer panel thickness
and the setting of concealed ribs were beneficial to increase
the cracking load of wallboards. (e deformation charac-
teristics of specimens before cracking were similar.

3.1.2. Yield Stage. With the increase in load, transverse
cracks appear along the edge of the wallboard. (e bonding
interface between the inner and outer panels and the middle
insulation layer was torn, the insulation layer began to
compress, the integrity of the test plate became poor, and the
stiffness rapidly decreased. (e top of the wallboard grad-
ually developed into annular cracks, the cracks at the bottom
of the plate began to extend, and the reinforcement under
the loading point at the bottom of the plate gradually
yielded. (ere was no significant difference in fracture

Table 1: (e optimal mixture ratio of lightweight aggregate concrete.

Cement
(kg)

Slag: fly
ash (%:%)

Slag
(kg)

Fly
ash (kg)

Sand
(kg)

Ceramsite
(kg)

Water
(kg)

PP
fiber (%)

Water
reducing
agent (%)

Sand
ratio (%)

Binder
(kg)

Water-binder
ratio (%)

Slump
(mm)

368 10 :10 46 46 640 365 124 0.05 1.60 34 460 0.27 90

Table 2: Mixture ratio of polystyrene granule concrete.

Water-
binder
ratio

PP
particle

/L

Fly ash
(kg/m3)

Water
(kg/m3)

Cement
(kg/m3)

Zinc
stearate
(kg/m3)

Redispersible
latex powder

(kg/m3)

Gelled
material
(kg/m3)

PP
fiber (%)

HPMC
(%)

Water-binder
ratio (%)

Retarder
(%)

0.5 30 1.02 2.55 4.08 0.051 0.153 5.1 0.05 3 1.5 0.05
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Table 3: Test board basic parameters.

Number (ickness of each layer of wallboard Concealed rib arrangement Reinforcement ratio of inner and outer panels
(horizontal/vertical)Outer panel: insulation layer: inner panel/mm

Slab 1 40 : 50 : 40 0 0.559%/0.534%
Slab 2 50 : 30 : 50 0 0.559%/0.534%
Slab 3 50 : 30 : 50 Vertical 0.559%/0.577%
Slab 4 50 : 30 : 50 Horizontal/vertical 0.559%/0.577%
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Figure 2: Horizontal section of wallboard: (a) Slab 1; (b) Slab 2; (c) Slab 3; (d) Slab 4.
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Figure 3: Schematic diagram of the test device: (a) the front view; (b) the side view.

Figure 4: Field diagram of test loading.
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development between Slab 1 and Slab 2. In Slab 3, cracks along
the concealed ribs appeared in the layout area of the wallboard
top. (e steel bar near the loading point at the bottom of the
Slab 4 plate yield and the cracks at the bottom extended to the
sides of the plate. (e experimental phenomenon showed that
the rib divided the wallboard into several continuous panels
and improved the overall stiffness of the wallboard.

3.1.3. Limit Stage. As the load increased, the insulation layer
was crushed, and the bottom cracks were fully developed.
(is formed radial cracks along with the four loading points,
and oval circular cracks formed at the top of the wallboard.
(e four loading points on the top of Slab 1 finally lost their
bearing capacity and cracked due to insufficient local
pressure. Cracks of Slab 2 were fully developed, and the loss
of bearing capacity was due to the yield of steel bars in the

bottom span. (e ultimate load of Slab 3 increased, the
cracks at the bottom of the wallboard fully vertically de-
veloped along with the specimen, and the cracks at the top of
the plate appeared in a circular closed direction parallel to
the concealed rib. (e concealed rib divided the specimen
into two one-way plates, but it was deformed by the vertical
load and could only be used as weak support. In Slab 4, the
vertical and horizontal concealed ribs transferred part of the
load to the edge of the test plate. Cracks at the bottom of the
plate were few, but the development form was similar to that
of other plates. (e loss of bearing capacity was due to the
yield of steel bars at the bottom of the plate.

3.2. Load-Deflection Curve. (e deflection characteristic
values of the test plate are shown in Table 4. (e mid-span
load-deflection curve of the plate bottom span is shown in

Y-9

Y-10

Y-12

Y-11

400400400400

35
0

35
0

35
0

35
0

(a)

Y-6

Y-5

Y-1

Y-2

Y-3 Y-4

400400400400

35
0

35
0

35
0

35
0

(b)

Figure 6: Layout of concrete strain gauge: (a) top of the slab; (b) bottom of the slab.
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W-1

W-2 W-3

400400400400

35
0

35
0

35
0

35
0

(a)

W-4

W-5 W-8

W-6

W-7

400400400400

35
0

35
0

35
0

35
0

(b)

Figure 5: Layout of displacement meter: (a) top of the slab; (b) bottom of the slab.
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Figure 9. Figure 10 shows the comparison of top and bottom
deflections of each wallboard at the same position.

Considering Table 4 and Figure 9, it can be seen that (1)
the load-displacement curves of Slab 1 and Slab 2 before
yield loading are similar in shape, and both show linear
changes. (e increase in the inner and outer panel thickness
improves the stiffness of wallboards. When the yield load is
reached, the wallboard’s stiffness decreases, the increased
rate of wallboard deflection exceeds that of the load, and the
load slowly increases, but the increase in the inner and outer
panel’s thickness to the wallboard stiffness still takes place.
(2) (e overall stiffness of the wallboard of Slab 2 and Slab 3
is significantly improved by setting a concealed rib. After
reaching the yield load, Slab 3 can still bear the slowly in-
creasing load, and this indicates that the setting of the
concealed rib can effectively improve the mechanical
properties of the wallboard. (3)(e load-displacement curve
trend of Slab 3 and Slab 4 is equivalent before reaching the
yield load. (e increase in concealed ribs further improves
the stiffness of wallboards, when the yield load is reached,
and the slope of the Slab 4 curve very slowly declines,
therefore indicating the addition of vertical and horizontal
concealed ribs at the same time results in better mechanical
performance of wallboards.

Figure 10 shows the load-deflection curves of the top and
bottom of the test plate at the same position. It can be seen
from the figure that when the load is small, the deflection of

the top and bottom of the plate is the same, and the inner
and outer panels are subjected to the same stress and de-
formation.With the increase in load, due to the compression
deformation of the core layer material, the deflection of the
top of the plate gradually exceeds the bottom of the plate,
and the deformation of the inner and outer panels is no
longer consistent, which is also the reason for the cracks on
the top of the plate. (e results show that increasing the
thickness of the inner and outer panels or arranging the
concealed ribs can lead to inconsistent deformation between
the top and bottom, increase the cracking load on the top of
the plate, and improve the cooperative performance of the
inner and outer panels.

3.3. Characteristic Value of Bearing Capacity. (e charac-
teristic values of the bearing capacity of the test plate are
shown in Table 5.

Table 5 shows the following:

(1) Cracking load: (e increase in the inner and outer
thickness of Slab 1 and Slab 2 can increase the
cracking load by 58%, reaching 38 kN. Compared
with Slab 2 and Slab 3, the cracking load can be
increased by 39%, up to 53 kN. From Slab 3 and Slab
4, it is shown that the effect of setting the concealed
ribs horizontally and vertically at the same time is
better. If the concealed ribs are placed in one di-
rection, the cracking load can be increased by an-
other 15%, reaching 61 kN. With the increase in
inner and outer panel thickness, the 8-effect section
height of the wallboard participating in the bending
work increases. (e setting of concealed ribs is like
adding trabecula in the plate, reducing the span of
the plate and reducing the stress in the plate.

(2) Yield load: In this experiment, a strain gauge is
installed on the stress reinforcement in the plate to
monitor the stress change. (e plate load

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 8: Cracks development diagram in the top of and at bottom of Slab 1–Slab 4: (a) bottom of Slab 1; (b) top of Slab 1; (c) bottom of Slab
2; (d) top of Slab 2; (e) bottom of Slab 3; (f ) top of Slab 3; (g) bottom of Slab 4; (h) top of Slab 4.

Table 4: Eigenvalue of deflection of the specimen.

Number Δcr (mm) Δy (mm) Δu (mm)
Slab 1 0.84 3.54 13.43
Slab 2 0.89 3.56 13.45
Slab 3 0.60 2.57 10.96
Slab 4 0.49 2.53 10.75
Note. Δcr is the cracking deflection, mm; Δy is the yield deflection, mm; Δu
is the ultimate deflection, mm.
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corresponding to the stress reinforcement in the
plate in the yield state is the yield load. (e
measured results of Slab 1 and Slab 2 show that the
increase in inner and outer panels’ thickness has
little effect on yield load, only increasing by 4%,
reaching 143 kN. Compared with Slab 2 and Slab 3,
it is found that the setting of concealed rib causes
the inner and outer panels to produce tension,
restrict the mutual dislocation of the inner and
outer panels, and can increase the yield load by
27%. Compared with Slab 3 and Slab 4, the setting
concealed ribs in both vertical and horizontal
directions in the middle of the wallboard can
improve the yield load of the wallboard to a certain
extent, but the effect is not significant, because it
only increases by 10%.

(3) Ultimate load: Considering Slab 1 and Slab 2, the
increase in inner and outer panels’ thickness has little
contribution to the ultimate bearing capacity, since it
only increases by 10%. (e Slab 3 test structure
shows that the bearing capacity of the wallboard
significantly increases after a concealed rib is in-
stalled, which is because the concealed rib forms a tie
between the inner and outer panels of the wallboard,
which effectively improves the cooperative perfor-
mance of the inner and outer panels of the wallboard
and improves the overall stiffness of the wallboard.
In the loading process of Slab 1 and Slab 2 wall-
boards, when the load reaches 70% of the ultimate
bearing capacity, the thermal insulation material of
the core layer compresses and slips between the inner
and outer panels. (e interface between the inner
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Figure 9: Load-deflection curves in the top and bottom of Slab 1-Slab 4: (a) Slab 1; (b) Slab 2; (c) Slab 3; (d) Slab 4.
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and outer panels and the thermal insulation layer of
the core layer shifts, and the concealed rib can ef-
fectively contain the slip. When the load is more than
70% of the ultimate bearing capacity, this phenom-
enon was not present in Slab 3 and Slab 4 wallboards,
and the bearing capacity of Slab 3 is 28% higher than
that of Slab 2; however, a concealed rib is added and a
plate stiffness of the out plane is improved. (e
wallboard channel bearing capacity increased by 10%
when the concealed ribs are set in the vertical and
horizontal direction, which is compared with that in
one direction, and this is due to the fact that the
concealed rib is like a trabecular, reducing panel plate
across both inside and outside, makes the stress
distribution more homogeneous in the plate, and
improves the mechanical properties of plate, which
indicates that concealed ribs could effectively improve
the whole performance of the inner and outer panel
and cause the wall stress more reasonable.

4. Numerical Simulation

Due to the limited test conditions, the numerical simulation
of the flexural performance of prefabricated outer wall-
boards was carried out to provide a reliable numerical model
for the later parameter analysis and further optimization of
the plate shape.

4.1. Establishment of the Finite Element Model. ABAQUS
finite element software was used to analyze the stress dis-
tribution and deformation of the composite wallboard under
vertical load. During the modeling process, the concrete
composite plate in Figure 11(a) and the steel grid frame and
rigid gasket in Figure 11(b) were established, respectively. To
simplify the finite element analysis, the bond-slip between
the two types of concrete and reinforcement was ignored,
and the reinforcement grid was set as a “built-in area”
embedded into the whole. (e two kinds of concrete and
cushion blocks adopted the “C3D8R” type hexahedron el-
ement, and the reinforcement grid adopted the “B31” type
linear beam element. (e established finite element model is
shown in Figure 11. (e four ends of the finite element
model of the composite plate are simply supported and were
loaded on four points. To prevent stress concentration, four
rigid plates were set on the four sides and four loading points
of the composite plate, respectively, and the rigid plates were
bound with the concrete surface by using the tie technology.

4.2. Finite Element Model Validation. (e stress and de-
formation of the composite wallboard model after finite
element solution are shown in Figure 12.

(e top stress of the composite wallboard was distrib-
uted along with four loading points, the stress at the bottom
of the loading point was the largest, the stress at the bottom
of the plate was distributed along the four edges of the
bottom of the plate, and the maximum stress was applied to
the four edges of the test plate near the edge. (e strain on
the top of the plate corresponded to the stress, and the
maximum strain was located around the four loading points.
(e strain at the bottom of the plate also formed a ring along
the four edges of the plate.

It can be seen from Figure 12(a) that the strain at the
circled part was large, which is consistent with the crushing
of Slab 1 in the test. In Figure 12(c), the strain increased at
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Figure 10: Load-deflection curves at the bottom of Slab 1–Slab 4 in the plate across.

Table 5: Characteristic value of bearing capacity of the test plate.

Number Fcr (kN) Fy (kN) Fu (kN)
Slab 1 24 137 203
Slab 2 38 143 223
Slab 3 53 182 285
Slab 4 61 213 314
Note. Fcr is cracking load, kN; Fy is yield load, kN; Fu is the ultimate load,
kN.
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Figure 11: Finite element structural model: (a) concrete panel; (b) steel rack.
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Figure 12: Continued.
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the scribing part, corresponding to the annular crack at the
top of the Slab 2 in the test. According to Figures 12(e), the
line part was the layout area of the concealed rib, and the
strain sharply increased on both sides of this area, which
corresponded to the vertical crack along the concealed rib at
the top of Slab 3 plate in the test. According to Figure 12(f ),
the strain at the bottom of Slab 3 corresponded to the strain
on the top of Slab 3 and was also affected by the vertical
concealed rib. According to Figures 12(g) and 12(h), the
strain on both sides of the Slab 4 layout area with concealed
ribs sharply increased, and the strain on the top and bottom
of the plate was affected by the concealed ribs, which is
consistent with the experimental failure phenomenon.

Figure 13 shows the comparison between the load-de-
flection curves of the mid-span of the structural model and
curves of test results. (e ultimate load obtained by test and
finite element analysis is shown in Table 6.

As seen in Figure 13 and Table 6, the slope of the load
simulation value is slightly larger than the test value of the
load-displacement curve; however, the variation trend of the
two values is the same. Slab 1 has the largest load value
difference, and the test load is 88.6% of the simulated load.
Slab 2 has the smallest load difference, and the test load is
96.1% of the simulated load. (is indicates that ABAQUS
finite element model can simulate the bearing capacity and
deformation performance of the composite plate in a better
way, and has good reliability in design and application.
Other working conditions of this type of wallboard can be
simulated by using the finite element model, which provides
a basis for the shape optimization design of the composite
wallboard.

5. Theoretical Analysis

5.1.CrackingLoadof theCompositeWallboard. Concrete can
be regarded as an elastic material due to its positive ratio of
stress to strain before the composite wallboard reaches
cracking load. When calculating the cracking load of
composite wallboard with uniform material, the equivalent
section can be obtained by converting the reinforced section
to the concrete sectional area. Equivalent converted sections

of composite wallboard before cracking are shown in
Figures 14 and 15. When the cross-sectional area of bidi-
rectional reinforcement is converted into concrete, an ad-
ditional area is added at the upper and lower ends of
concrete as Asx’ and Asy’, Asx’ �Asx × n, and Asy’ �Asy × n.
Among them, Asx represents the cross-sectional area of
reinforcement in the X direction; Asy represents the cross-
sectional area of reinforcement in the y direction; n� Es/Ec
represents the ratio of elastic modulus of reinforcement and
concrete. (e stress on the converted area of the rein-
forcement is equal to the strain force (εsEs) of concrete at the
corresponding section height.

5.2. Advice on Equations. According to the literature [13],
the bending stiffness reduction coefficients in x and y di-
rections are as follows:

λx � 1 −
3
16

× 3.14 ×
(d/h)

3

1 + tw/d( 
,

λy � 1.036 − 0.784 ×
(d/h)

3

1 + 0.1333 × tw/d( 
.

(1)

Here, d is the height of the thermal insulation layer; tw is
the spacing of hollow circular tubes, because there is no
round pipe in the composite plate, and the value here is 0.

According to the Code for Design of Concrete Structures
[14], the formula for calculating cracking moment is as
follows:

Mcrx � cmλxW0f
0
t ,

Mcry � cmλyW0f
0
t .

(2)

Here, cm is the basic value of the influence coefficient of
section resistance of concrete member; W0 is the cross-
sectional resistance moment. For a bidirectional hollow
plate, the resistance moment of section in both directions is
equal to the stiffness reduction factor in that direction
multiplied by the resistance moment of section in the
corresponding solid section; f0

t is tensile strength.
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Figure 12: Deformation cloud diagram of Slab 1–Slab 4 structural model: (a) top of Slab 1; (b) bottom of Slab 1; (c) top of Slab 2; (d) bottom
of Slab 2; (e) top of Slab 3; (f ) bottom of Slab 3; (g) top of Slab 4; (h) bottom of Slab 4.
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Figure 13: Comparison between simulated and experimental values: (a) Slab 1; (b) Slab 2; (c) Slab 3; (d) Slab 4.

Table 6: Comparison between simulated and experimental values
of ultimate load.

Number Simulated values
(kN)

Experimental values
(kN)

Error
(%)

Slab 1 203 229 12.8
Slab 2 223 232 4.0
Slab 3 285 312 9.5
Slab 4 314 329 4.8
Average — — 7.8

b

h 0h

A′s

Asa s

outer blade

thermal insulation layer

inner blade

Y

Z

Figure 14: Schematic diagram of a normal section of the bidi-
rectional plate.
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(e cracking load is as follows:

Fcrx �
Mcrx

l
,

Fcry �
Mcry

l
.

(3)

(e cracking load obtained from test and theoretical
analysis is shown in Table 7.

It can be seen from Table 7 that the theoretically
calculated value of the cracking load is generally close to
the measured value of the test, with an average error of
12.8%, which can be used as the reference value in the
test.

5.3. Composite Wallboard Bearing Capacity. (e plastic
stranding method is used to calculate the bearing capacity
of four-side simply supported bidirectional dark ribbed
composite wall slabs under uniform load. (e longitu-
dinal reinforcement direction span of the composite
wallboard is lx, the vertical longitudinal reinforcement
direction span is ly, and the included angle between the
panel bottom oblique plastic hinge line and the long edge
is θ. Reinforcement of the composite wallboard is equi-
distantly arranged, along the longitudinal reinforcement
direction named x and vertical longitudinal reinforce-
ment direction named y. (e ultimate bending moment
mx and my within the width of the unit plate are as
follows:

mx � Asxfsxcsxh0x,

my � Asyfsycsyh0y.
(4)

Here, Asx, Asy, csx, h0x, and csy, h0y are the cross-sectional
areas and internal couple arm of unit plate width in lx and ly
directions, respectively. csx and csy are the coefficients of the
internal moment arm and is usually taken as csx � csy � 0.95.
fsx and fsy are the yield strength of the reinforcement in lx and
ly directions, respectively.

According to the principle of virtual work, when the
failure occurs under the action of the ultimate uniform
load q, the virtual displacement at the midpoint of
the plate is 1, and the virtual displacement at any point is
ω(x, y). (e work done by the exterior force (We) is equal
to the work done by the internal force (the ultimate
bending moment on the plastic hinge line) (Wi) [12, 15].
(en,

We � q 
n

 

An

ω(x, y)dAn,

� q 2 × 2 ×
1
3

×
lx

2
× slx +

1
2

× lx × ly − 2slx  ,

�
qlx

6
3ly − 2slx .

(5)

Here,An (n� 1, 2, 3, 4) is the area of each plate divided by
the plastic hinge line.

When calculating the internal force work, let ly � nlx and
my � αmx; therefore,

Wi � −  milici,

� − lymx ·
4
lx

+ lxmy ·
2
x

 ,

� −2mx(2n + α/s).

(6)

From We + Wi � 0, we can get the following:

q �
2n + α/s
3n − 2s

·
12mx

lxly
. (7)

According to the plasticity theory, the solution obtained
by equation (7) is the upper bound. (erefore, the bearing
capacity of the bidirectional composite slab should be all the
solutions of equation (7).

(e minimum value of the derivative of variable S can be
obtained as follows:

dq
ds

�
(3n − 2s) − α/s2 + 2(2n + a/s)

(3n − s)
2 � 0,

s �
α
2n

������

1 +
3n

2

α



− 1⎛⎝ ⎞⎠,

F � q × A − G.

(8)

Here, G is the dead weight of the board.
(e ultimate load obtained by theoretical analysis based

on test and virtual work principle is shown in Table 8.
From Table 8, it can be seen that the theoretical

calculated ultimate bearing capacity corresponds to
the measured value in the test, with an average error of
6.6%. (erefore, it can be used as a reference value in the
test.

h
h-
x 0

Asx

Asx

a s

εc

x 0

εt

εs

ε′s

Figure 15: Equivalent converted section strain diagram.

Table 7: Comparison of theoretical and experimental cracking load
values.

Number Calculated value (kN) Experimental value
(kN) Error (%)

Slab 1 30 24 15.4
Slab 2 34 38 19.0
Slab 3 50 53 12.3
Slab 4 61 61 4.69
Average — — 12.8
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6. Conclusions

(is study presents a type of precast concealed rib Sandwich
outer wallboard. (e wallboard is composed of lightweight
aggregate concrete inner and outer panels, thermal core
material, and concealed ribs between the inner and outer
panels. (e Sandwich structure of the wallboard allows it to
have good thermal insulation performance. Meanwhile, the
concealed ribs between the inner and outer panels effectively
improve the mechanical performance of the wallboard. To
fully optimize the Sandwich plate structure of the composite
wallboard, the static load test, the finite element simulation,
and the theoretical analysis are carried out. (is is based on
the inner and outer panel wall thickness and the arrange-
ment of the concealed ribs on the Sandwich wallboard.
Finally, the following conclusions are made:

(1) Comprehensive consideration of compressive
strength, dry density, and workability. (e optimal
mixture ratio of LC30 lightweight aggregate concrete
with excellent performance is obtained through test
verification. (e optimal mixing ratio is as follows:
total cementitious material 460 kg, water-binder
ratio 0.27, sand ratio 34%, fly ash 10%, slag 10%, and
polypropylene fiber content 0.05%.

(2) By increasing the thickness of the inner and outer
panels, the effective section of the wallboards par-
ticipating in the bending work along the thickness
direction is increased. (us, the overall stiffness of
the wallboards can be increased, which is conducive
for improving the cracking load and ultimate bearing
capacity of the wallboards, also improving the failure
state of the wallboards.

(3) By setting concealed ribs between the inner and
outer panels of the wallboard, the effective tie can be
established, the cooperative performance of the inner
and outer panels can be improved, and the overall
stiffness, cracking load, and bearing capacity of the
wallboard can be improved. At the same time, the
relative dislocation slip between the inner and outer
panels caused by the compression deformation of the
core layer insulation material can be effectively al-
leviated. It is better to arrange the concealed ribs in
both directions.

(4) (e numerical model established can simulate the
bearing capacity and deformation performance of
the composite plate in a better way. (e maximum
value of bearing capacity obtained is close to the test

value, which has good reliability and provides
technical support for further optimization of the
plate shape.

(5) (e cracking load of composite wallboard calculated
by the homogeneous elastic material method and the
ultimate bearing capacity calculated by plastic
stranding theory based on virtual work principle is
close to the experimental value, which verifies the
feasibility of this type of wallboard calculation
method.
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Deviation correction of building is a big challenge for engineers. Without powerful technique for deviation, no special guidance
can be followed to conduct the deviation rectification of buildings, which brings numerous failure cases. In this study, a case study
was performed to provide insight into the behavior of a special technique for deviation rectification of building near excavation.
)e new technique was introduced firstly, and then, the field test data, in terms of lateral displacement of wall of pit, water level
deviation, and soil deformation around pile of the building, were addressed to show the performance of the function of each
process and the mechanism of it. )e results show that this new technique for the deviation rectification of building works very
well to uplift the whole building to reach the destination position (maximum uplift� 9.71 cm) andmeets the requirement of design
demand, without negative effect on the adjacent excavation reported.

1. Introduction

Excavated foundation pits are often close to buildings in
urban areas, which make a big challenge for engineers to
make the safety of surrounding buildings. )e deformation
of support structure and surrounding ground subsidence is
directly due to dewatering of the foundation pit and then
leads to differential settlements of the surrounding build-
ings. Li et al. [1] found that the maximum settlement around
a foundation pit can be 30mm in their studies. Moreover,
the effective stress in soil increases by the lowering
groundwater level for well-point dewatering around foun-
dation pit, and the new settlement of surrounding buildings
is caused. Numerous cases of buildings on soft foundation
with large deformation of buildings were reported. )ere-
fore, the differential settlements of building needed to be
rectified. However, the rectification of buildings is a hard
task because the plastic deformation of the building foun-
dations is very difficult to recover.

At present, the study of rectifying building deviation
mainly includes field tests and numerical simulations.
Grouting technique has been widely used to uplift structures,
which include grouting fluids into organic grouting fluids
and inorganic grouting fluids (Miao et al. [2]). Some pre-
vious works have been conducted to utilize the uplift
technique through three methods, including grouting, steel
pipe pile traction, and Earth hollowing, to rectify the de-
viation of residential buildings and ancient temple (Jia et al.
[3], Zhou et al. [4], Yin et al. [5], and Yin et al. [6]), with very
effective performance obtained for these three methods.
Grouting uplift has been proven that it cannot only be used
in building deviation rectification but also can be applied in
reducing differential settlements of railway subgrades and
metro tunnel and uplifting of a subway foundation findings
(Bian et al. [7], Zheng et al. [8], and Zhou et al. [9]). Nu-
merical simulations were employed to explore the soil
movement mechanisms in the deviation correction process,
hence access the performance of the deviation technique.
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Yin et al. [10] and Wang et al. [11] used the finite element
simulation software to simulate the whole process of
building deviation rectification, and they found that the FE
method was effective, and the simulation results were rel-
atively close to the measured results.

In this study, a case study of a special building deviation
technique is conducted through field test monitoring, in-
cluding groundwater level, horizontal displacement of ad-
jacent soil and support structure, vertical soil displacement,
and building relative tilt rate, to access the performance and
mechanism of this new technique. It is found that this new
technique has a significant effect on the deviation of
buildings.

2. Site Condition

2.1. Project Profiles. )is project is located in Guangzhou,
south of China. )e photo of this project is shown in Fig-
ure 1, which shows that the building is located in the south-
east corner of the pit, at a distance of 12.9m from the edge of
the pit with a depth of 10.35m. )e foundation pit design
adopts the support system of rotary bored pile and rein-
forced concrete, with partially usage of prestressed anchor
cable. )e water proofing design of the foundation pit uses
triaxial cement mixing piles (large diameter) to form a water
stopping curtain, which need to penetrate 2∼4m below the
bottom of the pit. )e layout of the excavation and building
is shown in Figure 2. )e process of the foundation pit
construction contain five steps, including Step 1: locate the
position of the foundation pit and mark it on-site; Step 2:
construct the main structure piles, triaxial cement mixing
piles, supporting piles, columns, and rotary spray piles; Step
3: construct the top beam of the foundation pit supporting
piles and reinforced concrete internal support (partial an-
chor cable); Step 4: excavate the Earth to the bottom of the
foundation pit and hang the net between the piles spray
concrete protection; Step 5: construction of basement
structure and replacement of bracing backfill.)e building is
a five-storey frame structure residential building, and its
foundation is independent foundation, with its foundation
size being 1.5m× 2m square individual foundation. )e
design requirement of the foundation bearing capacity is
150 kPa, and the building foundation buried depth is 1.5m.

Concrete strength grade was tested by drilling cores and
four sets of samples were taken, with the axial compressive
strength of the concrete ranging from 14.5MPa to 18.6MPa.
)e axial compressive strength of the structural columns was
tested by the rebound method, with the axial compressive
strength ranging from 16.4MPa to 20.2MPa. )e aggregate
of concrete obtained from the core drilling was well dis-
tributed and densely cemented, but the steel reinforcement
was corroded by slight rusting.

During the excavation of the foundation pit, the relative
tilt rate of the building has been increased to beyond the
requirement of the design code, with the relative tilt rate
measured at the point sf4 in the northeast direction rapidly
increasing to 2.296% and the settlement ranging from 58 to
81.3mm. )ese large settlements were induced by the water
level decrease that was induced by the pumping water during

the construction. )erefore, the large differential settlement
of building makes it tilted, and deviation correction is
needed.

)e sectional drawing of the building is shown in Fig-
ure 3. )e soil parameters of the soil samples and the pa-
rameters of the pit support structure are shown in Table 1.
Soil profile around the tower base is divided into five layers
according to the drilling depth (see Figure 3). )e main
bearing layer of the building foundation is soft-plastic silty
clay and flow-plastic silt.

2.2. Instrumentation. In this project, the relative tilt rate of
the building, the settlement of four corners of the building
and the surface of adjacent soil, the deformation of the
support structure of the foundation pit, and the horizontal
displacement of adjacent soil were measured. Figure 4 shows
the planar layout of the measuring points and lists the
monitoring items and the corresponding instrumentation,
where the triangle symbol denotes placement of the prism of
total station, WT denotes the groundwater level measuring
point, and LD denotes the embedding point of the incli-
nometer tube.

2.3. Rectification Process. Rectification involves drill re-
charge wells, drill slanting steel pipe, and grout mixture of
cement slurry and water glass solution, add steel pipe piles,
add raft, and carry out the construction of vertical steel pipe
piles and grouting at the reserved orifice and the core of the
steel pipe piles. Simply following previous results measured
for this 5-storey reinforced concrete structure, such as the
concrete strength grade and the bearing capacity of the main
layer of foundation soil, the rectifying procedure should
include six phases, as shown in Figure 5.

)e first phase is to drill recharge wells on the ground
between the building and the foundation pit. )e wells
should be filled with almost 200–300 cubic meter of water a
day to allow the originally falling water table to rise back up
and reduce the settlement of the building foundations. )e
second phase is to drill slant grouting steel pipes on the
ground between the building and the foundation pit, as
shown in Figure 3. Mixture of cement slurry and water glass
solution should be grouted through the pipes into the
foundation soil from the core of the steel pipe pile. Cement
slurry water-cement ratio 0.4 to 0.5, water glass diluted at 1 :
2, grouting pressure more than 0.5 to 1.2MPa, double slurry
ratio about 1 :1 to 1 : 0.8, solidification time control not more
than 30 s, and single grouting volume (cement slurry) not
the slurry is injected at intervals of 3 to 4 hours, depending
on the deformation of the building, intermittently to rein-
force the base subsoil. At the same time, in the vicinity of the
large settlement, 4 deep grouting holes are designed in the
steel pipe piles, and the soil is lifted by grouting the pile
bottom with mixture of cement slurry and water glass so-
lution, in order to realize the zonal lifting of the foundation.
)e third phase is to add vertical steel pipe piles to the
foundation of the building to stand part of the vertical load.
Mixture of cement slurry and water glass solution should be
grouted at the bottom of the steel pipe piles to locally lift the
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soil and prevent the collapse of the house.)e fourth phase is
to strengthen the building’s foundation by using 600mm raft
slabs. In this phase, the individual foundations of the
building are connected as a whole to furtherly increase the
foundation stiffness and preventing the building from
keeping settling during the correction process. )e fifth

phase is the construction of vertical steel pipe piles with their
design capacity being 150 (200) kN and their thickness being
of 6 (8)mm. In this phase, piles are formed bymeans of static
anchor pressure. )e purpose of this step is to reduce the
load on the foundation soil to further reduce the building
settlement. )e sixth phase is to gradually lift the foundation

Building tends
to collapse

Figure 1: Project site photo.
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soil. In this phase, the mixture of cement slurry and water
glass solution should be grouted in small quantities and in
sections at the reserved grouting apertures and the base of
vertical steel pipe piles. Grouting can only be stopped when
the building relative tilt rate is less than 0.8%.

3. Results and Discussion

3.1.0eRelativeTiltRateof theBuilding. )e relative tilt rates
of the building at the north-east and north-west were

measured by total station at sf1 point and sf4 are shown in
Figure 6, from which it can be seen that the building was
leaning before the pit was constructed. According to the
statistic of two monitoring points, the relative tilt rates of the
building before the first stage of building deviation rectifi-
cation are 1.923% and 0.572%, respectively, at the point of sf4
in the northeast and northwest directions and 0.59% and
0.762%, respectively, at the point of sf4 in the northeast and
northwest directions. It also shows that the relative tilt rates
increase slowly before reaching the maximum settlement,

Table 1: Soil properties and parameters.

Name E (MPa) c (kN/m3) ] c (kPa) φ (°) ω (%) ωL(%) ωp(%) N )ickness m e a1-2
(MPa−1) Es (MPa)

Miscellaneous fill 6 19.5 0.35 8 14 31.4 37.5 26.2 4.7 1.30∼1.80 0.876 0.48 4.68
Silty clay 12 19.8 0.32 12 8 39.2 43.2 27.0 3.6 1.20∼3.40 1.088 0.49 4.57
Silt 2 19.9 0.40 8 6 58.8 56.0 37.8 1.2 0.50∼4.30 1.657 1.08 2.76
Coarse sand 25 20.1 0.28 0 30 8.1 — — 7.5 0.50∼2.40 0.867 0.12 11.42
Sandy clay① 150 20.5 0.25 40 33 29.7 37.2 25.3 16.4 1.20∼10.00 0.892 0.46 4.26
Sandy clay② 180 20.9 0.23 60 35 25.0 34.4 22.0 25.9 0.90∼7.90 0.778 0.36 5.10
Granite 300 22.5 0.22 100 38 — — — — — — — —
Grouting area 50 19.9 0.32 30 28 — — — — — — — —
Supporting pile 3.0×104 24 0.22 — — — — — — — — — —
Horizontal
support 3.0×104 24 0.22 — — — — — — — — — —
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and after reaching the maximum settlement, the relative tilt
rates decrease significantly due to the rise of the groundwater
level, the support of the steel pipe piles, and the effect of
grouting uplifts. After the building deviation rectification,
the relative tilt rates at points of sf1 and sf4 in the NE and NW
directions measured at the two points decreased to 0.27%,
0.81%, 0.53%, and 0.67%, respectively, both of which were
less than the ∼0.8% specified in the standard [12]. Zhou et al.
[4] found, for a case on the grout lifting of the leaning
pagoda of Dinglin Temple, that the leaning pagoda of
Dinglin Temple was rectified, and its tilt angle was reduced
from 7°59′ to 5°36′.

3.2. Variation of Water Level of Typical Water Level Holes.
)e groundwater level in observation well decreases during
the construction of the foundation pit. Figure 7 shows that
the settlement of the pile head induced by the water level
variation, which is decreased close to 10m. Due to the sandy
clay is under the support layer of the building, the
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permeability coefficient of the sandy clay is greater than that
of the supporting layer. Because the water stop curtain only
enters 3m below the bottom of the pit, the groundwater has
been bypassing the bottom of the water stop curtain to the
foundation pit since the excavation of the foundation pit.
Also, nearby residents have drilled and set up a water ex-
traction well of about 40m to continuously pump out
groundwater, which has aggravated the fall of the ground-
water level. Eventually, the groundwater level has fallen to a
position close to the bottom of the pit.

After the rectification of the building began, the
groundwater level began to rise gradually because
200–300m3 of water was recharged into the recharge well
daily, eventually returning to the position before the
foundation pit was excavated. Li and Zheng [13] also found
that the groundwater leakage occurred during the excava-
tion of the pit due to problems with the water stop structure,
but the water level drop was small, with only 3m in their
study of a foundation pit project.

3.3. SettlementofFourCorners of theBuilding. )e settlement
development of four corners of the building is shown in
Figure 7. Before the construction of building deviation
rectification, the monitored settlement curves can be divided
into two types:

(1) At points sf1, sf3, and sf4, the settlement occurs. When
the excavation is started, the settlement begins to
develop at the monitoring points. )e settlement
velocity at the point sf4 is rapid, and the maximum
settlement reaches 58.2mm. )e settlement velocity
at the point sf2 is relatively slow, and the total set-
tlement is only 10mm.

(2) )e uplift occurs at point sf2. When the excavation is
started, the uplift begins to develop at themonitoring
points. )e maximum uplift value at point sf2 is
14.5mm.

After the building deviation rectification was carried out,
the curves at points sf1, sf3, and sf4 indicate that the uplift
value of each monitoring point is proportional to time with
the progress of the grouting process. )e maximum uplift
value at points sf1, sf3, and sf4 are 56.4mm, 43.2mm, and
97.1mm, respectively. However, settlement still occurs at the
point of sf2 in order to maintain the level of the whole
building floor after the correction. Schweiger et al. [14] also
used the grout lifting method when studying the correction
of a steel oil tank that had undergone differential settlement,
and the grouting points were arranged symmetrically with
the center of the steel tank as the axis of symmetry. )e
measurement results of the field tests showed that the
maximum lifting volume was nearly 170mm (the total
grouting volume was about 10,200m3), so there is a clear
difference in the grouting volume between this. )erefore,
the maximum lifting volume of the two cases is different.

3.4. Settlement of Surrounding Soil. )e settlement of the soil
around foundation is shown in Figure 8. Before the con-
struction of building deviation rectification, the monitored
settlement curves are founded that the settlement occurs, and
the settlements depend on the distance the points to the
foundation pit. However, the reason of subsidence of these four
points is different. )e settlement of the top of the foundation
support pile (ss1) increased slowly because the Earth pressure
acting on the support pile is increasing slowly as the excavation
becomes deeper and deeper. )e settlement at ss2 point kept
increasing after the excavation of the pit because this point was
for vehicles passing by and stacking next to the foundation pit.
As for the points ss3 and ss4, the settlement at ss3 and ss4 kept
increasing because of the influence of the building subsidence.

After building deviation rectification was carried out, the
curves at ss3 and ss4 indicate that the uplift value of each
monitoring point is proportional to the time with the progress
of the grouting process. However, the curves at ss1 and ss2 only
stay stable because the distance between two points and
grouting points is larger than 9m. When the grouting is
stopped, the surface uplift value will stabilize. )e point ss3 was
lifted by 75.3mm, and the point ss4 was lifted by 14.6mm. Ong
et al. [15] found a similar phenomenon when observing soil
movement induced by excavation in clay by the centrifuge
model test.)ey found that, after completion of excavation, the
soil continues to settle with time while the rate of increase in
settlement decreases with time. Yang et al. [16] found that the
settlement of the top of the supporting pile could reach a
maximum of 6mm when they studied the displacement of the
supporting structure of a deep foundation pit using a pile
anchor support structure. Guo et al. [17] summarized a formula
for predicting the lift of the soil surface during slurry injection
based on previous research and did field tests to compare the
predicted and measured values. )ey found that the surface
uplift at a location around 3m from the grout center point was
around 4mm when the grouting depth was 8m.

3.5.HorizontalDisplacement of Surrounding Foundation Soil.
)e horizontal displacements of the soil around foundation
are shown in Figure 9. It can be seen from Figure 9 that
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horizontal displacements with construction are presented as
a step-by-step process which are increased at first and then
tended to stable. Horizontal displacements tend to increase
with excavation, and the growth became slow after building
deviation rectification was carried out and then finally
tended to stable. )e reasons for this phenomenon can be
attributed to the increase in Earth pressure acting on the
supporting pile and the pressure of trucks and stacks. )e
maximum horizontal displacement at the top of the sup-
porting pile is 9.5mm. )e maximum horizontal displace-
ments in the two points of xs2 and xs3 were 6.5mm and

3mm, respectively. Yang et al. [16] conducted tests to
monitor the data of a foundation pit supported by a pile-
anchor structure and excavated to a depth of 8–13m in their
study. It was found that the maximum horizontal dis-
placement of the top of the supporting pile reached 16mm.
Zheng et al. [18] found that the radial stress decreases to
0mm at distances greater than 1m from the grouting point
in their study on numerical modeling and verification of
grouting with mold bag treatment on seepage failure in
foundation excavation. From this finding, it can be con-
cluded that the horizontal displacements at the two points
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3m and 6m from the edge of the foundation excavation are
not caused by grouting because their distance to the grouting
point is much greater than 1m.

3.6. Lateral Slope of Supporting Pile. )e measured value of
lateral slope of supporting pile at points LD1-4 is shown in
Figure 10. )e horizontal displacement of the supporting
pile body has remained unchanged after the excavation of
the foundation pit was completed because the Earth pressure
acting on the supporting pile body has remained unchanged
after the excavation of the foundation pit is completed. Also,
the maximum deflection of the supporting pile was 12mm,
which was less than design requirement of 30mm [19]. Tang
et al. [20], Wang et al. [21], and Zhang [22] all measured the
variation of the horizontal displacement of the supporting
structure of foundation pit with depth due to the effect of
Earth pressure in their own field tests or numerical simu-
lations. )e horizontal displacement at the midpoint of the

long side of the support structure from the excavation
completion of the first layer to the completion of major
structure has been increasing, but the curves of the hori-
zontal displacement at the midpoint of the long side of the
support structure were measured at each time point. Chong
and Ong [23] also studied the deflection of contiguous bored
pile wall affected by accidental groundwater drawdown. )e
largest horizontal wall deflection was 14.3mm in the final
stage of construction, which was similar to the data in this
project.

4. Conclusions

Field tests were conducted to study the behavior of a special
technique of deviation correction of building. Based on the
tests data, some findings can be drawn as follows:

(1) A new technique for the deviation rectification of
building has been described in detail, and it works
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very well to uplift the whole building to reach the
destination position, which can meet the require-
ment of design demand.

(2) )e new technique can provide uplift step by step
with the reinforcement of ground and can reach
9.71 cm displacement.

(3) )e new technique does not exaggerate deflection of
the retaining structure of adjacent excavation, and
the deflection of the retaining structure of adjacent
excavation can meet the design requirement (max-
imum deflection� 14.3mm< 30mm).

Notations

E: Elastic modulus
c: Weight density
]: Poisson ratio
c: Cohesion force
φ: Internal friction angle
ω: Water content
ωL: Liquid limit
ωp: Plastic limit
N: Standard penetration number
e: Void ratio
a1-2: Compression coefficient
Es: Compressive modulus.
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Significant difference between predicted andmeasured installation resistance of stiffened suction caissons was identified due to the
existing uncertainty regarding the mobilized soil flow mechanisms. )is paper describes an extensive investigation of square
stiffened caisson penetration in nonhomogeneous clays undertaken through large deformation FE (LDFE) analysis to identify the
soil flow mechanisms around and between lateral ring stiffeners. A detailed parametric study has been carried out, exploring a
range of nondimensional parameters related to stiffened caisson geometry, caisson roughness, and soil strength.)e LDFE results
were compared with centrifuge test data in terms of soil flowmechanisms, with good agreement obtained. Two interesting features
of soil flow inside the caisson were observed including soil backflow into the gaps between the embedded stiffeners and soil
heaving at the surface. It shows that the cavity depth can reach ∼5m. Finally, simple expressions were proposed for estimating the
critical depths of soil backflow and cavity formation.

1. Introduction

To avoid the buckling failure of the thin wall of a long caisson
during installation, the skirt is strengthened with internal
stiffeners, horizontal rings, and/or vertical flanges (see
Figure 1), together with local thickening of the wall in the
vicinity of the loading point. )e addition of these stiffeners
has created significant uncertainties regarding the soil flow
mechanisms, side friction, and end bearing and conse-
quently in the prediction of underpressure required for
installation [1].

)e uncertainties have been shown by the significant
differences observed between the predicted caisson resis-
tance, based on the presumed soil flow mechanisms (see
Figure 2), and the measured resistance in the field. )e field
measurements include the stiffened caisson installation at
the Laminaria field in the Timor Sea and at the Girassol field,

offshore West Africa [2–4], with a detailed discussion re-
ported by Hossain et al. [5]. Andersen et al. [1] discussed the
predictions for two different hypothetical installation cases
and six case histories of caissons with stiffeners carried out
by four predictors using their normal design method. )e
predictors produced significantly different results largely
due to the assumption of different soil flow mechanisms
around and between the stiffeners [1].

Large deformation FE analyses and centrifuge model
tests on unstiffened caisson installation were carried out by
Andersen et al. [6], Zhou and Randolph [7], Chen and
Randolph [8], and Westgate et al. [9], among others. )ey
noticed no discernible difference in the axial capacity be-
tween jacked and suction-installed caisson, except Zhou and
Randolph [7]. Significant proportion of soil flow was re-
ported to occur inward into the caisson, with little outward
flow.
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)is paper reports the results from an extensive inves-
tigation carried out through large deformation FE (LDFE)
analysis in an attempt to provide insight into the failure
mechanism of square stiffened caisson penetration in
nonhomogeneous clays. Expressions are developed to esti-
mate the critical depths of soil backflow into the gaps be-
tween the embedded stiffeners.

2. Large Deformation Finite Element Analysis

2.1. /e RITSS Method. Randolph and Hu proposed a finite
element method with small strain calculation based on the
remeshing technique for large deformation of solid in 1998.
)is large deformation finite element method belongs to the
arbitrary Lagrangian-Eulerian (ALE) finite element methods
can be employed coupling with ABAQUS and AFNEA. )is
method includes the following main steps: (i) generate an
initial mesh consisting of six-node triangular elements with
three internal Gauss points; (ii) use the program to perform
an specified increment of small strain analysis; (iii) regen-
erate and optimize the mesh to generate new units and
nodes; (iv) interpolate the material stress and properties; and
(v) check whether the displacement meets the requirements;

if not, open a new finite element small deformation project
and repeat the above steps until it can meet the require-
ments; then, close the project. )e RITSS method has the
significant advantage that the mesh will be constantly
updated to ensure accuracy and quality, making the cal-
culation process smooth when the project is running.

2.2. Numerical Model and Parameter Setup. A square stiff-
ened caisson penetrating into normally consolidated clay
with shear strength of Su � Sum + kz was analyzed in this
study, with geometry of square stiffened caisson shown in
Figure 2.)e friction coefficient of structure-soil interfaces is
α; therefore, the limiting shear force along the interface of
structure and soil is αSu. All the floating bulk densities of the
clay are set as c′ � 6 kN/m3.

Because the width of squared caisson is significantly
larger than the sum of the width of stiffener and thickness of
skirt, the plane strain model was used to simulate the failure
mechanism behavior of the squared caisson piling process.
In order to prevent the boundary effects, the model was
arranged in the middle of the computational mesh, and the
length and width of the plane strain model were set to be 5 L.
Hinge constraints were applied along the base, while roller
constraints were set at the vertical sides of the soil model.
)e six-node triangular mesh with three internal Gauss
points was employed in this study, and nodal joint elements
were used to simulate the interaction of structure and soil,
where the limiting shear force is αSu.A. )e initial finite
element mesh of the numerical model is shown in
Figure 3(a). )e initial penetration depth is 0.02m. )e
calculation parameters selected are shown in Table 1.

In this study, the Mohr–Coulomb constitutive model is
used to simulate the clay with very low permeability, and the
Tresca yield criterion is also used. Poisson’s ratio v � 0.49,
friction and dilation angles ϕ�ψ � 0, and a uniform stiffness
ratio E/su � 500 which is a common value for clay, where E is
Young’s modulus. )e normally consolidated clay with
undrained shear strength of Su � Sum + kz (Sum is the shear

Figure 1: Photo of square stiffened caisson.
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Figure 2: Geometry of square stiffened caisson.
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Figure 3: Mesh of RITSS code. (a) )e initial mesh of LDFE/RITSS. (b) Dynamic mesh demonstration. (c) Established contact mesh.

Table 1: Summary of LDFE analyses.

Analysis s/h b/t w/b α Sum/(c′(b+ t)) (k (b+ t))/Sum Notes
Group 1-
A 11.0 4.0 8.33 0.2 ∗0.48 #0.45 Numerical model validation

model
Group 1-
B 2.0 2.0, 4.0 5.3, 2.7 0.03 — — Numerical model validation

model
Group 2 10.0 3.0 6.7 0.2 4.2 0.04 Typical failure mechanism

Group 3 10.0 2.0,
3.0, 5.0

4.0, 6.7,
10.0 0.2 5.6, 4.2, 2.8 0.03, 0.04, 0.06 Effect of b

Group 4 10.0 3.0 6.7 0.1,
0.2, 0.4 4.2 0.04 Effect of α

Group 5 6.0, 10.0,
15.0 3.0 6.7 0.2 4.2 0.04 Effect of h

Group 6 6.7, 10.0,
13.3 3.0 6.7 0.2 4.2 0.04 Effect of s

Group 7 10.0 3.0 6.7 0.2 0.42, 4.2, 8.3 0.24, 0.4, 0.8 Effect of Su
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strength at mudline ranging from 0.5 to 10 kPa, k is the
gradient of shear strength ranging from 0.6 to 2 kPa/m, and z
is the depth below mudline) is considered in this study. )e
lateral stress coefficient K0 �1− sin(ϕ)� 1.

2.3. Validation of FE Model. Bucket foundation with hori-
zontal stiffeners was studied through centrifuge test with
120 g, reported by Randolph et al. [10]. )e soil profile is
Su � 15 + 1.25z kPa, and the dimensional parameters of the
structure are b/t� 4, s/h� 11, and w/b � 8.33. )e project of
Group 1-A in Table 1 was executed. )e friction coefficient
α� 0.2 was used in the numerical model, and the normalized
penetration resistance P/Abase is shown in Figure 4. It can be
seen that both the trends and value of the resistance profile
show a good agreement with those of the centrifuge test data.

A squared caisson penetrating in the homogeneous clay
with aims of exploring the soil flow mechanism was con-
ducted by a centrifuge model test (25 g), reported by Hossain
et al. [5]. )e test data of the centrifuge are shown in the left
part of Figure 5. Group 1-B project in Table 1 was executed
for the comparison, in which the related parameters of the
homogeneous clay were Su � 12 kPa and c′ � 7.25 KN/m3

and the geometric parameters were s/h� 2.0, b/t� 2.0 and
4.0, w/b� 5.3 and 2.7, and α� 0.3, respectively; the results
from numerical simulation are shown in the right part of
Figure 5. )e results from numerical simulation and cen-
trifuge tests were in good agreement in terms of failure
mechanism, soil heave, and cavities’ locations and shapes. It
can be found that gaps exist between stiffeners.

3. Results and Discussion

3.1. Effect of Geometric Dimensions. To identify the soil
failure mechanisms of square stiffened caisson installation, a
typical case was executed (Group 2 in Table 1) for the case
with Su � 5 + 1z kPa. As shown in Figure 6, the inside and
outside soils move upward in the initial penetration.
However, with deeper penetration depth, the inside soil
starts to flow rotationally and gradually fill the gap between
1st and 2nd row stiffeners. Hr is defined as critical rotational
depth, above which soil cannot stand and can rotationally
flow into the gaps between stiffeners, andHc is defined as the
limiting cavity depth.

3.2. Effect of StiffenerWidth and Interface Friction Coefficient.
To identify the influence of the stiffener width on the be-
havior of squared caisson penetration, cases (Group 3 in
Table 1) with various stiffener widths are carried out.
Figures 7(a)–7(c) show the failure mechanism of the cases
with b/t� 2.0, 3.0, and 5.0. It can be found that the inside soil

heave height increases with stiffener width increasing. It
indicate that, through analysis the data shown in those
figures, the inside soil heave height increase the velocity of
the soil move to the gap between the stiffeners.

For the cases with various roughness between structure
and soil, similar findings are plotted in Figure 6(b), that
proves that insignificant effect is induced by the interface
friction coefficient has for the soil flow characteristic.

3.3. Effect of Stiffener Height and Stiffener Spacing. To check
the influence of stiffener geometry, including spacing and
stiffener height, on the soil failure mechanism, cases with
various stiffener height and spacing are conducted (two groups
(5 and 6) in Table 1). It can be seen that the inside soil stands
vertically with piling depth d/t� 72 (see Figure 8(a)), and large
gaps formed between soil wall sand skirt. However, with deeper
penetration (d/t� 102, as shown in Figure 8(b)), inside soil
starts to move to fill the gaps gradually. Compared with those
cases with different stiffener heights and spacings, it is found
that the height and spacing of stiffener have insignificant in-
fluence on the soil movement. Hence, both stiffener height and
stiffener spacing have minimal effect on Hr.

3.4. Effect of Soil Strength. Figure 9 shows the soil flow
patterns for the cases with various soil strengths (Group 7 in
Table 1). It can be drawn that a cavity was found between 2nd
and 3rd row stiffeners, which is because the soil has enough
strength to prevent the soil collapsing. Hence, a cavity can
exist through the installation process. It is also found that the
case with stiff soil is more easy for soil to stand. A similar
finding for T-bar penetrometer was reported that earlier soil
backflow is induced for the case of soft soil; and on the
contrary, the soil harder to flow back for the case of stiff clay
[11]. )erefore, it can confirm that the soil strength has
significant effect on the behavior of soil flow inside the
square stiffened caisson. Compared with the results with
different k, it can also be proven that soil strength gradient k
has minimal influence on the behavior of soil movement.

)e soil strength will affect the soil flow mechanisms;
similarly, the soil disturbance will also affect soil strength
around driving pile. In this paper, it is found that there existed a
large soil disturbance around the caisson in the process of
square stiffened caisson penetrating into normally consolidated
clay (see Figure 10). )e soil disturbance outside the caisson is
relatively small, while the stiffeners inside the caisson cause
greater disturbance to the inner soil. )e disturbance will not
only affect the caissonworking performance but also reduce the
foundation bearing capacity. Figure 9 shows a typical square
stiffened caisson penetrating into the normally consolidated
clay with undrained shear strength Su� 0.5+1z (kPa); in the

Table 1: Continued.

Analysis s/h b/t w/b α Sum/(c′(b+ t)) (k (b+ t))/Sum Notes

Group 8 2.0,
3.0, 5.0

4.0, 6.7,
10.0 0.2

0.28, 0.42, 0.56, 1.4, 1.42, 1.76, 2.48, 2.7,
2.93, 3.53, 3.6, 4.2, 4.68, 6.25, 6.67, 7.56,

8.3, 8.61
— Cases for preparing formula

(3× 3×14�126 cases)

∗Sum/c′D� 0.48; #kD/Sum � 0.45 (D is the caisson diameter).
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process of caisson penetration, the stiffener causes soil dis-
turbance inside caisson, and the soft soil is trapped between the
stiffeners and enters into the deeper soil layer along with the
stiffeners, resulting in the lower soil strength around the caisson
inner wall compared with the undisturbed soil at the same
depth, which makes the internal and external friction calcu-
lations adapting the equivalent strength after the disturbance
instead of the undisturbed soil strength when designing
the caisson penetration resistance and subsequent bearing
capacity.

4. The Critical Depth Calculation

)rough the analysis of the effect of different normalized
parameters on the soil flowmechanisms, the factors affecting
the critical rotational flow depth Hr and the limiting cavity
depthHc include the stiffener width b and the soil undrained

shear strength (the soil surface undrained shear strength
plays a main role).

To calculate and analyze a series of parameters in Group
8 in Table 1, fix w � 1m, s� 1.5m, α� 0.2, t� 0.05m, and
c′ � 6.0 kN/m3, change Su and b, the quantification system of
the critical rotational flow depth Hr and the limiting cavity
depth Hc when the stiffened caisson penetrates in the
normally consolidated clay were obtained by a large number
of parameter analysis, as shown in Figures 10 and 11.
Hossain et al. also put forward the quantitative relationship
diagram of the critical depth of spindle foundation for the
investigation of spindle foundation penetrating into ho-
mogeneous clay. )ese studies show that the normalized
critical depth increases with the increase of Su, which is
consistent with the law obtained in this paper.

According to the above calculation of different param-
eters, the data relevant to the critical rotational flow depth

b/(b+t)=0.75
b/(b+t)=0.83
b/(b+t)=0.67

Eq. 1

0 2 4
Sum/(γʹ(b+t))

H
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+t
)
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7
6
5
4
3
2
1
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Figure 10: Design chart of the critical depth of rotational soil flow.
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and the limiting cavity depth are obtained; from that, the
following formula can be fitted (R2 ≈ 0.98):

Hr

(b + t)
� 0.68 + 2.80

b

(b + t)
 

Sum

c′(b + t)( 
 

0.54

,

Hc

(b + t)
� 7.24 + 2.83

b

(b + t)
 

Sum

c′(b + t)( 
 

0.56

,

(1)

where b+ t usually ranges from 0.10m to 0.35m.

5. Concluding Remarks

Soil failure mechanisms of the squared caisson penetrating
in the normally consolidated clay has been studied under-
taken throught the large deformation finite element analysis
by using RITSS code in this study. with the aims of ex-
amining the effect of stiffeners on the behavior of failure
mechanism os square stiffened caisson, and the findings can
provide guidance for the design of square stiffened caisson.
)e following detailed conclusions were drawn:

(1) )e critical depths of rotational flow (Hr) and the
limiting cavity depth (Hc) were defined. When the
penetration depth of bottom stiffener reachesHr, the
soil starts to flow back into the bottom cavity, and
when the soil heave height inside the caisson is
higher than Hc, there exist gaps between soil and
structure, and soil does not flow back, that is, when
the inner soil heave height is less than Hc, the soil
flows into the cavity between the stiffeners with
rotational soil failure mechanisms and is trapped,
moving downwards together with the stiffeners and
the skirt at the same velocity, and there is no relative
slide between the pile and the soil and no friction.
)e internal and external friction calculations need
to adapt the equivalent strength after the disturbance
instead of the undisturbed soil strength.

(2) )e factors affectingHr andHc obtained by the study
and analysis of different parameters include the
stiffener width b and the soil surface undrained shear
strength Sum; the corresponding design chart and
equation of the critical depth of rotational soil flow
and the limiting cavity depth were proposed; at the
same time, the equation of predicting the maximum
inner soil heave height was obtained. It shows that
the cavity depth can be reached to ∼5m for the case
of stiff clay, which cannot be ignored for design.

(3) )e interface coefficient α, the stiffener width h, the
stiffener spacing s, and the soil undrained shear
strength gradient k have minimal effect on Hr and
Hc, while the soil surface strength Sum has the largest
effect, followed by the stiffener width.

(4) )e softening and strain rate effects are not con-
sidering in this study, and it may conduct further
study on it.
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In this paper, the failure mechanisms of large geotextile mats over soft soil are carried out through finite element analyses. A finite
element model is generated and validated against centrifuge testing data and previously published data of numerical simulation.
Parametric study is then carried out to investigate the geotextile tension distribution and the arrangement of crashed stone. Based
on the parametric study, an optimized design considering the arrangement of rock berm and a special arrangement of large
geotextiles was proposed to enhance the performance of the geotextile mats.(e findings of this study can provide an engineering
guidance for this new technique.

1. Introduction

In the wake of increasing incidents of structure failures at
rivers and coastlines, construction of cofferdams has become
an important disaster mitigation strategy (see Figures 1(a)
and 1(b)) [1]. With the advantages of fast construction, high
global stability, and strong adaptability to the environment,
geotextile structures have been applied in the construction of
dikes, coastal protection, flood control, and land reclamation
projects [2].

Failure mechanisms of geotextile tubes or mats over soft
clay have been investigated by analytical solution, numerical
modeling, and field tests. A few analytical solutions have
been derived to investigate the configurations and tensile
forces of the geosynthetic containers (Cantré et al. [3], Plaut
[4], and Ghavanloo et al. [5]).Yan and Chu [6] carried out a
preliminary design method for the geotextile mat cofferdam
and assessed the stability of the dike before construction
using both numerical simulation and centrifuge test. Guo
et al. [7–10] proposed analytical methods to analyze the

behavior of geosynthetic mattresses resting on rigid or
deformable foundation. (ese studies primarily focused on
materials and deformations of geosynthetic tubes and mats
but ignored the settlement of underlying soils. Zhu et al. [11]
carried out the parametric study to evaluate the slope sta-
bility of stacked geotextiles. A series of slope stability charts
were derived for rapid evaluation of the feasibility of stacked
geotextiles (Figure 1(c)).

Numerical analysis was also widely employed to in-
vestigate the properties of the geotextile container. Kim
et al. [12, 13] investigated the stability of geotextile tube-
reinforced reclamation embankments subjected to
scouring with and without additional applied ground base
modifications by the finite element method (FEM). It was
found that riprap protection offered the maximum im-
provement to the overall performance of the stability of
the geotextile tube embankment system. Sun et al. [14]
investigated the impact of two types of wedges on the
lateral stability of geomembrane tubes with PFC 2d and
provided the optimize shape and size of the wedge.
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Pavanello et al. [15] studied the tensile stress of stacked
geological tubes under immersion conditions by the FE
method and analyzed the influence of different factors on
the shape and tensile stress of geotextiles. Górniak[16]
utilized the FEM-DEM method to analyze the behavior of
geosynthetics when the geotextile tube in the local sinking
environment was subjected to applied load and dis-
placement. (e loading capacity and the apparent stiffness
of the tube were found to increase with the filling rate.

Field tests and model tests have also been carried out. To
study the characteristics of failure zones of the underlying
soil for flexible foundation, Zhou et al. [17] revealed the
deformation form of soft soil foundation during and after
the construction of cofferdam. A new failure zone was
proposed by Zhou et al. Stability analysis was carried out by
Peng et al. [18] on two engineering cases. It was reported that
the failure of one project was the sandbags were stacked too
fast leaving the soft soil underneath not able to carry out the
necessary reinforcement within the timeframe. Vahedifard
et al. [19] reported a research on the utilization of geo-tubes
filled with stabilized dredged sediments, in which a rock
revetment was placed on top of the slope to prevent future
damage.

In current engineering practice, almost all geotextile
cofferdams are designed with the same thickness [10].
However, due to the large upper load, the tensile stress of the
bottom geotextile mat is significantly larger than that of the
upper mat which is apparently over designed. It is found that
the reinforcement effect of geotextiles depends not only on
the performance of geotextiles but also on the number and

spacing of geotextiles [20]. A new optimized design method
is proposed in this study. FE analysis is employed to in-
vestigate the geotechnical behavior of the geotextile mat
cofferdams, where the effect of the crushed stone is rigor-
ously explored. (e failure mode of the cofferdam using the
existing design method is analyzed, and the failure mech-
anism is studied.

2. Methodology

2.1.ModelingDetails. In this study, the commercial software
PLAXIS 2D is employed. A geotextile mat cofferdam with
two berms on both sides is considered. (e cofferdam and
the berms sit on homogeneous soft clay. (e dimension is
600m in the horizonal direction and 150m in the vertical
direction, which eliminates the influence of boundary
conditions (see Figure 2). Both the cofferdam and berms
have a slope ratio of 1 : 2, and the widths of the cofferdam
and berms are listed in Table 1. Figure 3 presents the FEM
meshes used in this study, in which the underlying soil and
fill material are modeled using 15-node triangular elements.
In the previous studies by Kim et al. [12, 13], it is found that
considering the thickness of each geo-mat and step loading
of constructionmesh size does not significantly influence the
behavior of the dam. In this study, the mesh was generated
using a fine global coarseness and locally encrypted at the
cofferdam and the rockfill toes. Both the vertical and hor-
izontal displacements are restrained at the bottom, and the
horizontal displacement from the left to the right boundaries
is also fixed.

(a) (b)

(c)

Figure 1: Geotextile mat dike: case of practice. (a) Geotextile mat construction. (b) Dike with rockfill berm. (c) Large geotextile mats.
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2.2. Constitutive Model. (e linear-elastic-perfect-plastic
Mohr–Coulomb model available in PLAXIS 2D is adopted
with continuum elements for soil and interface elements. (is
model follows Hook’s law for the linear-elastic part, and the
Mohr–Coulomb failure criterion is considered for the perfectly
plastic region [21]. A uniform stiffness ratio of E/Su� 500 is
used for the clay. (e stiffness ratio is within the range
commonly adopted for soft clays, but the precise value has a
negligible effect on the results presented. All the analyses
simulated the undrained conditions. A Poisson’s ratio v � 0.49
is used, and the frіstіpn and dіlatіpn anglfѕ are ϕ � ψ � 0.

(e geotextile material is modeled using the geogrid ele-
ment, which only requires elastic axial stiffness (EA) as the
material property.(e interaction between soil and geotextile is
modeled using the interface element with an interface re-
duction factor (Rint) of 0.6 to simulate the interaction between
soil and geotextile [21]. It means that the limiting shear force
along the interface equals su ∗ Rint.. Table 1 summarizes the
parameters of the numerical model. All crashed stones and soil
properties are based on results from experimental tests.

2.3. Model Validation. (e FE model of this study is vali-
dated against Yan and Chu (2010)’s study [6]. (e thickness
of the three layers of clay from top to bottom is 5m, 10m,
and 5m in prototype size, respectively, with corresponding
undrain shear strengths are 16 kPa, 16 kPa, and 55 kPa for
each layer. (e modules of the filled sand are Es � 20MPa,
and the frictional angle of sand is φ� 30o (W� 18m;
J� 140 kN/m). Other details can be found in reference [1].
Figure 4(a) compares Yan and Chu’s results and the pre-
dicted results using the numerical modeling method of this
study, fromwhich good agreements can be found in terms of
the maximum displacements of locations.

(e current FE model is further validated with Yan
and Chu’s centrifuge testing data. A model box of
685mm × 400mm × 200mm was constructed to study the
failure mechanism of dike on soft soils [1]. Figure 4(b)
compares the displacements between the numerical
prediction using the current modeling method and the
centrifuge testing results, where good agreement can be
found.

So� clay

CofferdamGeotextiles

Crashed stone

Wcs Wcd

H
cs

H
cd

Wcs

Figure 2: Typical embankment section.

Table 1: Material properties of the foundation soils, crashed stones, cofferdam fill, and geotextile.

Material E (MPa) v cu (kPa) φ (°) c (kN/m3) k (m/day)
Soft clay 3 0.33 6 2 16.1 3×10−4

Cofferdam fill 18 0.30 5 30 17.5 0.25
Crashed stone 350 0.3 0.5 38 21 9.9×10–10
Geotextile Tensile strength EA� 140 kN/m

15
0 

m

600 m

Figure 3: Finite element mesh in the analysis.
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(e above comparisons demonstrate that the FE model
of this study can capture the flow mechanisms and the
potential sliding failure surface of the geotextile mat dikes
over layered soils.

3. Results and Analysis

3.1. Uneven-8icknesses Reinforcement of Cofferdams.
Uneven-thicknesses reinforcement is proposed which uses
an interval thickness due to continuous thickening of each
layer.(e first three layers of geotextile mats have a thickness
of 0.2m. (e thickness then gradually increases until 1m.

To explore the differences between uniform reinforce-
ment and uneven-thicknesses reinforcement, a group of
numerical modeling cases are simulated with cofferdam base
width varying asWcd � 30, 50, 60, 80, and 100m and with the
homogeneous soil strength su � 6 kN·m. In these cases, the
cofferdam slope is kept constant as k� 1/2, and the soil
strength of foundation is su � 6 kPa.

(e soil flow patterns are shown in Figures 5(a) and 5(b),
where two different failure mechanisms can be observed. It is
apparent that with the increase in the width of cofferdam, the
soil failure mechanism transits from local failure to global
failure, while the local failure mechanism shows up in a
larger width of cofferdams with uneven-thicknesses
reinforcement.

For flexible foundations, the greater the rigidity of the
foundation, the greater the deformation range of the un-
derlying soil caused by the foundation can be found. Due to

the differences in interfacial contact stresses, the settlement
of the cofferdam experiences an apparent increase, which
leads to the failure of the cofferdam [22]. Compared with the
uniform-reinforced cofferdams, the stiffness of bottom
layers of the uneven-thicknesses reinforced cofferdam in-
creases owing to the intensive reinforcement. (en, a large
plastic zone is developed [23]. (is helps to explain the
formation of local failure modes with a narrower width of
cofferdam.

3.2. Effect of Stiffness of Geotextiles. To further explore the
effect of uneven-thicknesses reinforcement on the rigidity of
the cofferdam, two groups of cases are modeled by varying
the geotextile tensile stiffness of the cofferdams with uneven-
thicknesses reinforcement with J� 140, 500, 1000, 2000,
4000, and 8000 kN/m. In these cases, the cofferdam slope is
kept constant as k� 1/2, the soil strength of the foundation is
su � 6 kPa, the cofferdam base width is W� 80m, and the
internal friction angle of the sand fill φ� 30°.

Figure 6 depicts the variation of the limiting stack height
and safety factor with the tensile strength of the geotextiles.
(e limiting stacked height could be effectively improved
when the tensile strength of the geotextile increases. For
example, the limiting stacked height of an 80m wide cof-
ferdam increases from 3.24m to 3.55m with the tensile
strength of the geotextiles rising from 140 kN/m to 1000 kN/
m.When the tensile strength of the geotechnical bag exceeds
1000 kN·m, the limiting stack height of the cofferdams does

Yan and Chu (2009)�is study

(a)

Yan and Chu (2010)�is study

685 mm

68
 m

m
28

7 
m

m

Hydraulic Fill

Geotextile bag
Crashed

(b)

Figure 4: Validation of the numerical study against Yan and Chu (2009): (a) validation of settlement for numerical simulation: C∼T,
Disp� 0.025m∼0.450m; (b) validation of soil flow mechanism against the centrifuge test.
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not increase significantly. Similar phenomenon can be seen
from the results of effects on the safety factor, and the only
difference is that the inflection point position is different.

As the stiffness of the geotextile increases, the restraining
effect on the filler is also enhanced.(e increase in the tensile
strength of the geotextile is beneficial to resist the vertical
deformation of the cofferdam. When the load exceeds the
maximum threshold of the contact surface, the shear ca-
pability of the contact surface is invalid resulting in the
slippage of the fill along the surface of the geotextile. When

the load exceeds the threshold of the contact surface, the
shear capacity of the contact surface will be invalid, resulting
in the slippage of the fill along the surface of the geotextile.
(e effect of the geotextile generating the tensile force
against deformation is no longer improved. Even if the
tensile strength of the geotextile continues to increase, the
limit of the cofferdam is not improved. (erefore, there is a
threshold for the selection of the tensile strength of large
sandbags rather than indefinite increase. Similar results were
reported by Noorzad et al. [24].
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Figure 5: Soil heaving mechanism of different widths of large-scale sandbag cofferdams.
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Figure 6: Effect of stiffness of geotextiles on limiting stack height of cofferdams.
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3.3. Effect of Stabilizing Berms. As mentioned in the intro-
duction, riprap berms are often used in the construction of
large sandbag cofferdams to improve the stability of the large
sandbag cofferdam and to reduce the risk of instability of the
large sandbag slope [12, 19]. In order to analyze the influence
of back pressure on the limit height and safety factor of
cofferdams with different failure modes, a group of nu-
merical modeling cases with varying cofferdam width
Wcd � 30, 50, 60, 80, and 100m with and without rockfill
berms are simulated. Figure 7 shows the soil failure
mechanism of these two situations. From the numerical
simulation, it can be found that for the cofferdams with
different foundation failure modes, the limiting stack height
and safety factors of the cofferdams with crashed stone are
significantly improved. It is proved that the back pressure
has obvious effect on the height limit and safety factor of the
cofferdam.

3.4. Influence ofBermSize andForm. As can be seen from the
above, the stable berm plays a significant role in balancing
the cofferdam load and increasing the limiting stack height
and safety factor of the cofferdam. However, the influences
of berm size and form to the behavior of the cofferdam are
not known, which are investigated herein.

3.5. Effect of Width of Crashed Stone. To study the influence
of the berm width on the limiting stack height of the cof-
ferdam, five cofferdam widths from 30m to 100m with
different berm widths (0m, 1m, 2.5m, 5m, and 10m) are
modeled to analyze its influence to the limiting stack height
of the cofferdam. Figures 8(a) and 8(b) illustrate the results
of numerical modeling. Within a certain range, as the berm
width increases, the limiting stack height and safety factor of
the cofferdam increase linearly.

As shown in Figures 8(c) and 8(d), when the berm is
constructed at the toe of the cofferdam, the averaged ef-
fective force under the toe of the cofferdam increases due to
the downward gravity of the berm, which leads to a higher
shear strain required for the foundation to yield. Under the
same load, the plastic shear strain of foundation decreases,
and the range of the plastic zone increases when the critical
failure occurs, which makes the cofferdam more stable.
Meanwhile, the wider the height of the berm, the lower the
plastic shear zone under the toe is developed. (is is because
the mean effective stress is larger at the toe as well as the
shear strain levels at which soil becomes plastic [25].

3.6. Effect of Crashed Stone Height. To illustrate the different
failure modes of the soft clay with different heights of
crashed stone, a group of numerical modeling cases are
performed with the width of crashed stone as a constant of
10m. (e height of the berm is varied at 0.6m, 0.8m, 1.0m,
1.5m, 2m, and 2.5m. (e safety factor of the cofferdam, the
variation of the ultimate fill height, and the vector diagram of
the soil displacement in typical failure modes under different
width berms are shown in Figure 9.

With the increase in crashed stone height, the effect of
restraining heave and preventing slip becomes more obvious
until the effect reaches the optimal value. When the
thickness of the berm increases further, the berm will also
cause damage to the foundation soil since the berm is also a
loose accumulation body built on soft soil. (e final safety
factor of the cofferdam is reduced. Considering the trends of
the maximum height and safety factor of the cofferdam, the
optimum thickness of the berm is 1m within the scope of
this study.

3.7. Distance between Cofferdam and Berms. By increasing
the area of the plastic zone and limiting the movement of the
soil by gravity, the berm increases the limiting stack height
and safety factors of the large-scale sandbag cofferdams.
Numerical simulation is performed to study the influence of
the position of berm on the stability and safety of the
cofferdam. Without losing genericity, a berm with a
thickness of 1m and a width of 10m is modeled. (e dis-
tance between the cofferdam and the berm is gradually
increasing to study the effect of the back pressure position on
the performance of the cofferdam.

Figure 10 shows the effect of the distance between the
cofferdam and the back pressure on the limit height and
safety factor of the cofferdam; it can be seen that there is an
optimal spacing (around 4m) resulting in the maximum
height and safety factor of the cofferdam. And the failure
mechanisms of these cases are shown in Figure 11. It is
needed to pointed that the normal method is that the case
with one berm.

3.8. Combination of Rockfill Berms. As it is found above, the
limiting stack height and safety factor of cofferdam are
increased by the effect from the rockfill berms that can
prevent the flow of soil and expand the range of plastic zone.
It indicates that when the same volume of crashed stones is
used to set the berms, it is more helpful to increase the
stability of the cofferdam by adopting berm combinations
which has a small volume and a large amount rather than
only berm.

To investigate the effect of multiberms combination on
the stability and safety of cofferdam, numerical analysis is
carried out with varying volume ratio (inside: outside) to 4 :
6, 5 : 5, 6 : 4, and 7 : 3. Figure 12 compares the limiting stack
height and the safety factor with different volume ratios. (e
following observations can be made: (1) as a result of pre-
venting effect from rockfill berms, there is a threshold for the
spacing of the two sections of the cofferdam; (2) the larger
volume ratio (inside/outside), the stronger the preventing
effect from rockfill berms between the cofferdam and the
berms exists and the greater the spacing of the limiting stack
height and safety factor for the cofferdam.

As illustrated in Figure 12(c) through plotting the in-
stantaneous (resultant) velocity vectors, due to the segmen-
tation and the interval of berms, the soil flow mechanisms are
limited by the berms. If the berms closed to the cofferdam are
narrower, it is apparent that the movement of the foundation
soil presents two different states.(e soil movement in the area
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(a) (b)

Figure 7: Soil heaving mechanism of large-scale sandbag cofferdams (a) without rockfill berms or (b) with rockfill berms.
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Figure 8: Effect of width of berms: (a) effect on limiting stack height; (b) effect on safety factor; (c) soil heaving mechanism with global
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Figure 9: Effect of height of berms: (a) effect on limiting stack height; (b) effect on safety factor; (c) soil heaving mechanism with global
failure mechanism; (d) soil heaving mechanism with local failure mechanism.
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affected by the ground and the inner back pressure is obviously
larger than that affected by the lateral back pressure. When the
total gravel volume is constant and the inner back pressure

width is increased, the occurrence is obvious. (e range of the
moving soil expands and the foundation exhibits a single slip
surface in the critical failure state.
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Figure 11: Soil heaving mechanism of large-scale soil bag cofferdams with different distances between berm and cofferdam: (a) with normal
crashed stone; (b–h) with different gap; (i) with no crashed stone.
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Figure 12: Effect of height of berms: (a) effect on limiting stack height; (b) effect on safety factor; (c) soil heaving mechanism of large-scale
sandbag cofferdams with different berm combinations.
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Numerical simulations are performed to compare the
improvement effects of cofferdam performance parameters
under different berms modes. It is apparent that the limiting
stack height of the cofferdam is only 0.14m lower than that
of the nonsegmented cofferdam of the same influence width,
and the safety factor of the same height (2.4m) is only 0.061
lower.(is means the material cost in berms can be saved by
1/3 with the help of the berm-combination method. (e
same phenomenon happens in cofferdams with local failure
mode.

4. Conclusion

Numerical modeling is performed in this study to investigate
the effects of geotextile mats and rockfill berm on the be-
havior of underlying soil and the stability of cofferdams. (e
following conclusions could be drawn:

(1) (e limiting stack height and safety factor of the
large sandbag cofferdam are affected by the width of
the cofferdam, the shear strength of the foundation,
the tensile strength of geotextile, the arrangement of
berms, and the additional counter pressure platform.

(2) For large-scale geotextile cofferdams with global
failure mode and local failure mode, the rockfill
berms affect the limit height and safety factor of
cofferdams by influencing the stress distribution in
the underlying soil and limiting the uplift of
foundation.

(3) An optimized design method for large geotextile
mats over soft soil is proposed to enhance the sta-
bility with the same volume of berm.
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[3] S. Cantré and F. Saathoff, “Design method for geotextile tubes
considering strain-f,” Geotextiles and Geomembranes, vol. 29,
no. 3, pp. 201–210, 2011.

[4] R. H. Plaut and T. C. Stephens, “Analysis of geotextile tubes
containing slurry and consolidated material with frictional
interface,” Geotextiles and Geomembranes, vol. 32, pp. 38–43,
2012.

[5] E. Ghavanloo and M. A. Maneshi, “Analysis of air-and liquid-
filled heavy geomembrane tubes with internal restraint baf-
fles,” Journal of Engineering Mechanics, vol. 144, no. 5, Article
ID 04018019, 2018.

[6] S. W. Yan and J. Chu, “Construction of an offshore dike using
slurry filled geotextile mats,” Geotextiles and Geomembranes,
vol. 28, no. 5, pp. 422–433, 2010.

[7] W. Guo, H. Kou, B. Zhou, W. Nie, and J. Chu, “Simplified
methods to analyze geosynthetic mattress resting on de-
formable foundation soil,” Marine Georesources & Geo-
technology, vol. 35, no. 3, pp. 339–345, 2017.

[8] W. Guo, J. Chu, and S. Yan, “Simplified analytical solution for
geosynthetic tube resting on deformable foundation soil,”
Geotextiles and Geomembranes, vol. 43, no. 5, pp. 432–439,
2015.

[9] W. Guo and J. Chu, “Model tests and parametric studies of
two-layer geomembrane tubes,” Geosynthetics International,
vol. 23, no. 4, pp. 233–246, 2015.

[10] W. Guo, J. Chu, S. Yan, and W. Nie, “Geosynthetic mattress:
analytical solution and verification,” Geotextiles and Geo-
membranes, vol. 37, pp. 74–80, 2013.

[11] M. Zhu, M. Viswanath, A. Ebrahimi, and J. F. Beech, “Slope-
stability charts for stacked geotextile tubes,” in Proceedings of
the Geo-Congress 2014: Geo-Characterization and Modeling
for Sustainability, pp. 3082–3091, Atlanta, Georgia, February
2014.

[12] H.-J. Kim, M.-S. Won, and J. C. Jamin, “Finite-element
analysis on the stability of geotextile tube–reinforced em-
bankments under scouring,” International Journal of Geo-
mechanics, vol. 15, no. 2, Article ID 06014019, 2014.

[13] H.-J. Kim, J. Jamin, and J. L. Mission, “Finite element analysis
of ground modification techniques for improved stability of
geotubes reinforced reclamation embankments subjected to
scouring,” in Proceedings of the 2013 World Congress in
Structural Engineering and Mechanics, pp. 2970–2979, Korea
Advanced Institute of Science and Technology Daejeon, Jeju,
Republic of Korea, November 2015.

[14] L. Sun, C. Yue, W. Guo, and Y. Ren, “Lateral stability analysis
of wedged geomembrane tubes using PFC2D,” Marine
Georesources & Geotechnology, vol. 35, no. 5, pp. 730–737,
2017.

[15] P. Pavanello, D. Tognolo, P. Carrubba, and L. Frigo, “Nu-
merical analysis of stacked geo-tubes,” in Proceedings of the
National Conference of the Researchers of Geotechnical En-
gineering, pp. 225–234, Springer, Lecco, Italy, July 2019.
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