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Delay differential equations have attracted a rapidly grow-
ing attention in the field of nonlinear dynamics and have
become a powerful tool for investigating the complexities of
the real-world problems such as infectious diseases, biotic
population, neuronal networks, and even economics and
finance.When employing delay differential equations to solve
practical problems, it is very crucial to be able to completely
characterize the dynamical properties of the delay differential
equations. In spite of the amount of published results recently
focused on such systems, there remain many challenging
open questions.

The aim of this special issue is to gather recent research
efforts on the development and applications of delay differen-
tial equations and to see the latest developments. This special
issue contains twenty-five research articles. The original
papers explored in this special issue include a wide variety
of topics such as the following.

Asymptotic Analysis and Synchronization. Y. Yuan and Z.
Guo proposed a fluctuation method to investigate the global
asymptotic stability of a very general class of delayed reaction-
diffusion equations. L. Zuo and M. Liu investigated the
asymptotical stability for an epidemic model with time delay.
Z. Zhang et al. investigated a nonlinear viscoelastic equation
with interior time-varying delay and nonlinear dissipative
boundary feedback and proved the global existence of weak
solutions and asymptotic behavior of the energy by using the

Faedo-Galerkin method and the perturbed energy method.
J. Zhang et al. used the Lyapunov function method and
Lur’e system approach to study the quasisynchronization in
a communication system.

Invariant Sets and Attractor. W. Wu used the theory of
exponential dichotomy on time scales and fixed point theory
based on monotone operator to the global attractivity of
the almost periodic solution for a predator-prey system with
Beddington-DeAngelis functional response on time scales.

Stability Analysis. P. Wang et al. established a criterion on
integral 𝜑

0
-stability in terms of two measures for impulsive

differential equations with “supremum” by using the cone-
valued piecewise continuous Lyapunov functions, Razu-
mikhin method, and comparative method. C. Liu and Y. Li
investigated the global stability of a nonautonomous two-
species competitive system with stage structure and double
time delays. L. He and X. Wang proposed a novel method
for studying the stability of a macroeconomic system with
fractional derivative. H. Peng and Z. Guo proposed a viral
infection model with delay and obtained some necessary
and sufficient conditions to ensure the global stability of the
model.

Bifurcation Analysis. Y. Zhai et al. investigated an avian
influenza virus propagation model with nonlinear incidence
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rate and delay based on SIR epidemic model and established
the global existence of periodic solutions by using a global
Hopf bifurcation theory. Y. Dai et al. investigated the local
stability of the equilibria and the existence ofHopf bifurcation
for a predator-prey system with Michaelis-Menten type
functional response and two delays.

Oscillation and Boundary Value Analysis. S. Guo et al. were
concerned with oscillation of the first order neutral delay
differential equation with constant coefficients and obtained
some necessary and sufficient conditions of oscillation for all
the solutions in respective cases. Z. Ouyang andH. Liu inves-
tigated a class of fractional order three-point boundary value
system with resonance. J. Liu and L. Yan used the variational
method to investigate the solutions of damped impulsive
differential equations with mixed boundary conditions.

Periodic Solutions Analysis. R. Hu used the Lyapunov-
Schmidt reduction method and computations of critical
groups to study a higher order difference equation and proved
that the equation has four 𝑀-periodic solutions. G. Lin
and Z. Zhou used the critical point theory to obtain a new
sufficient condition on the existence of homoclinic solutions
of a class of nonperiodic discrete nonlinear systems in infinite
lattices. T. Zhang et al. investigated the existence and global
attractivity of the “infection-free” periodic solution for a new
epidemic disease model governed by system of impulsive
delay differential equations.

Numerical Computation Analysis. D. Olvera et al. expanded
the application of the enhanced multistage homotopy per-
turbationmethod (EMHPM) to solve delay differential equa-
tions (DDEs) with constant and variable coefficients.

The response to this special issue was beyond our expec-
tation.We received 46 papers in the interdisciplinary research
fields. This special issue includes twenty-five high-quality
peer-reviewed papers. These papers contain several new,
novel, and innovative techniques and ideas thatmay stimulate
further research in every branch of pure and applied sciences.
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We expand the application of the enhanced multistage homotopy perturbation method (EMHPM) to solve delay differential
equations (DDEs) with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide
approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm
solutions. To address the accuracy of our proposed approach,we examine the solutions of severalDDEs having constant and variable
coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.

1. Introduction

Delayed differential equations (DDEs) are used to describe
many physical phenomena of interest in biology, medicine,
chemistry, physics, engineering, and economics, among oth-
ers. Since the introduction of the first delayed models, many
publications have appeared as summarizing theorems and
homotopy methods of solution that deal with the stability
properties of delayed systems (see [1–3] and references cited
there in).

For instance, Shakeri andDehghan introduced an approach
to find the solution of delay differential equations by means
of the homotopy perturbation technique (HPM) with results
that agree well with exact solutions [1]. Wu in [2] used
the homotopy analysis method to obtain the approximate
solution of a strong nonlinear ENSOdelayed oscillatormodel
that provides good agreement when compared to its exact
solution under the condition of 𝐵 = 0. Alomari and
coworkers in [3] developed an algorithm to obtain approx-
imate analytical solutions for DDEs by using the homotopy
analysismethod (HAM) and themodified homotopy analysis
method (MHAM).They used their derived method to obtain

the approximate solution of various linear and nonlinear
DDEs with numerical predictions that agree well with the
numerical integration solutions, and they also proved that
their derived solutions converge to the exact ones. By apply-
ing the homotopy perturbation method (HPM), Biazar and
Behzad found approximate solutions of neutral differential
equations with proportional delays which describe well their
corresponding numerical integration solutions [4]. Recently,
Anakira and co-workers in [5] extended the applicability of
the so called optimal homotopy asymptoticmethod (OHAM)
that does not depend on small or large parameters, to find
the approximate analytic solution of DDEs. They used their
proposed approach to compare the derived approximate
solutions of several DDEswith their exact analytical solutions
with predictions that compare well with the exact ones.

On the other hand, Insperger and Stépán in [6] used the
semidiscretization method to determine the stability lobes of
DDEs that model the dynamics of cutting machine opera-
tions. Based on the properties of the Chebyshev polynomials,
Butcher and coworkers in [7] developed a methodology to
obtain the stability lobes of milling machine operations and
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they proved that this technique is faster than that of the
full and the semidiscretization methods since these solution
techniques approximate the original DDEs by a series of
ODEs [8].

Here in this paper, we develop a generalized procedure to
solve linear and nonlinear DDEs by introducing some mod-
ifications to the multistage homotopy perturbation method
(MHPM) derived by Hashim and Chowdhury to obtain
approximate solutions of ordinary differential equations [9].
The proposed enhanced multistage homotopy perturbation
method (EMHPM) is based on a sequence of subintervals
that allow us to find more accurate approximated solutions
under a numerical-analytical procedure that requires less
CPU time when compared to the numerical integration
solutions provided by the MATLAB dde23 algorithm written
by Shampine and Thompson in [10]. The EMHPM is based
on a homotopy function that could be divided into a linear
operator and a nonlinear operator to satisfy its assumed initial
solution. This split of the homotopy function allows us to
modify the nonlinear operator to guarantee, by using the
enhanced homotopy perturbation method, the stability of
the proposed approximate solutions of nonlinear differential
equations [11].

To clarify our proposed method, we briefly review in
Section 2 some basic concepts of the homotopy perturbation
method, and, then in Section 3, we introduce the EMHPM
to solve DDEs. The difference between the HPM and the
EMHPM is discussed in Section 4 by addressing the approx-
imate solutions of a nonlinear delayed differential equation
with variable coefficients. Finally, the general solution of
two DDEs that describe the dynamics of two engineering
problems, by using the EMHPM, is discussed in Section 5.

2. Homotopy Perturbation Method

The homotopy perturbation method (HPM) is a coupling
of the traditional perturbation method and homotopy in
topology which eliminates the limitation of the small param-
eter assumed in the perturbation methods [12]. Under this
approach, a nonlinear problem can be transformed into an
infinite number of simple problems without the restriction
of having small nonlinear parameter values. This homotopy
perturbationmethod takes themain advantages of traditional
perturbation methods together with homotopy analysis [13–
15].

To illustrate the basic ideas of the HPM, let us consider
the following nonlinear differential equation:

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω (1)

with boundary conditions

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ Γ, (2)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytic function, and Γ is the
boundary of the domainΩ.

The operator 𝐴 can generally be divided into two parts: 𝐿
and𝑁, where 𝐿 involves the linear terms and𝑁 the nonlinear
ones. Equation (1) therefore can be rewritten as follows:

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (3)

By the homotopy perturbation technique, we construct a homo-
topy V(𝑟, 𝑝) : Ω × [0, 1] → R that satisfies

𝐻(V, 𝑝) = 𝐿 (V) − 𝐿 (𝑢0) + 𝑝𝐿 (𝑢0) + 𝑝 [𝑁 (V) − 𝑓 (𝑟)] = 0,
(4)

where 𝑝 ∈ [0, 1] is an embedding parameter and 𝑢
0
is

an initial approximation of (1) which satisfies the boundary
conditions (2). Thus, from (4), we have

𝐻(V, 0) = 𝐿 (V) − 𝐿 (𝑢
0
) = 0,

𝐻 (V, 1) = 𝐴 (V) − 𝑓 (𝑟) = 0.
(5)

The changing process of 𝑝 from zero to unity is just that
of V(𝑟, 𝑝) from 𝑢

0
(𝑟) to 𝑢(𝑟). In topology, this is called

deformation, and 𝐿(V) − 𝐿(𝑢
0
) and 𝐴(V) − 𝑓(𝑟) are called

homotopic.
He in [12] uses the embedding parameter 𝑝 as the small

parameter and assumed that the solution of (4) can be written
as a power series of 𝑝 in the form

V = V
0
+ 𝑝V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅ . (6)

By setting 𝑝 = 1, He obtained the approximate solution of (1)
as

𝑢 = lim
𝑝→1

= V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ . (7)

Then, this method was applied to obtain the approximate
solution of some nonlinear ordinary differential equations
valid not only for small, but also for large nonlinear parameter
values.

We next will introduce an approach based on homotopy
methods, to obtain the solution of DDEs with constant and
variable coefficients.

3. The EMHPM Methodology to Solve DDEs

TheHPM is an asymptotic method that depends on the aux-
iliary linear operator form and the initial guess of the initial
conditions. Therefore, the convergence of the approximate
solution cannot be guaranteed in some cases [16]. Hashim
and Chowdhury showed in [9] that the solutions obtained by
the standard HPM were not valid for large time span unless
more terms are calculated. Thus, they proposed a multistage
homotopy perturbation method (MHPM) which treated the
HPMalgorithm in a sequence of subintervals in an attempt to
improve the accuracy of the approximate solutions of linear
and nonlinear ordinary differential equations (ODEs).

However, when the MHPM is applied to obtain the
approximate solutions of ODEs which contain coefficients
as a function of time, this method cannot provide accurate
solutions when Δ𝑡 → 0. In this work, we introduce some
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modifications to the MHPM and focus on the derivation of
approximate solutions of DDEs equations with variable coef-
ficient terms. This new approach is based on the enhanced
multistage homotopy perturbationmethod (EMHPM) intro-
duced in [17] to obtain the solution of nonlinear ordinary
differential equations.

The EMHPM is an algorithm which approximates the
HPM solution by subintervals, utilizing the following trans-
formation rule: 𝑢(𝑡) → 𝑢

𝑖
(𝑇), where 𝑢

𝑖
satisfies the initial

condition 𝑢
𝑖
(0) = 𝑢

𝑖−1
(𝑡
𝑖−1
), 𝑇 is a shifted time scale used

to determine the approximate solution in each subinterval,
and 𝑢

𝑖
(𝑇) represents the approximate solution in the 𝑖th

subinterval. In this case, the initial suggested solution in the
𝑖th subinterval is given by 𝑢

𝑖0
(𝑇) = 𝑢

𝑖−1
(𝑡
𝑖−1
), where 𝑡

𝑖−1

represents the time at the end of the previous subinterval
(i.e., the value of the approximate solution at the end of the
previous subinterval represents the initial conditions of the
next subinterval under consideration).

To apply the homotopy technique to solve delay differen-
tial equations, we also assume the following.

(1) The linear operator𝐿(𝑢
𝑖
) represents𝐿(𝑢

𝑖
) = (𝑑/𝑑𝑇)𝑢

𝑖
,

where the assumed approximate solution 𝑢
𝑖0
(𝑇) is

set equal to the initial condition 𝑢
𝑖−1
(𝑡
𝑖−1
); that is,

𝑢
𝑖0
= 𝑢
𝑖−1
(𝑡
𝑖−1
). To simplify the notation, we let 𝑢

𝑖−1
≡

𝑢
𝑖−1
(𝑡
𝑖−1
).

(2) The transformation 𝑇 = 𝑡 − 𝑡
𝑖−1

on 0 < 𝑇 ≤ 𝑡
𝑖
− 𝑡
𝑖−1

holds in the homotopy 𝑖-subinterval. Thus, higher
order equations are integratedwith respect to𝑇, while
the terms related to the independent variable 𝑡 are
assumed to remain constant.

Therefore, we may conclude that the 𝑚 order approximate
solution, by applying the EMHPM, can be written as

𝑢
𝑖
(𝑇, 𝑢
𝑖−1
) =

𝑚

∑

𝑘=0

𝑈
𝑖𝑘
(𝑇, 𝑢
𝑖−1
) , (8)

where the solution 𝑢
𝑖
(𝑇, 𝑢
𝑖−1
) is valid only in the 𝑖th subin-

terval [𝑡
𝑖−1
, 𝑡
𝑖
]. Hence, the solution 𝑢(𝑡) on the 𝑖th subinterval

(𝑡
𝑖−1
, 𝑡
𝑖
] can be written as

𝑢 (𝑡) ≈ 𝑢
𝑖
(𝑡 − 𝑡
𝑖−1
) (9)

with initial condition 𝑢
𝑖−1
(𝑡
𝑖−1
), and 𝑖 = 1, 2, . . . , 𝑗. Thus, the

approximate solution of 𝑢 at the time 𝑡
𝑖
is given by

𝑢
𝑖
(𝑡 − 𝑡
𝑖−1
)
󵄨󵄨󵄨󵄨𝑡=𝑡𝑖
= 𝑢
𝑖+1
(𝑡 − 𝑡
𝑖
)
󵄨󵄨󵄨󵄨𝑡=𝑡𝑖
= 𝑢
𝑖+1
(0) = 𝑢

𝑖
. (10)

In summary, the solution 𝑢(𝑡) for an open-closed interval
(𝑡
0
, 𝑡
1
] is divided into 𝑗 subintervals that, in general, are

not equally spaced: [𝑡
0
, 𝑡
1
], [𝑡
1
, 𝑡
2
], . . . , [𝑡

𝑗−1
, 𝑡
𝑗
]. Thus, the

approximated solution of 𝑢(𝑡) for the span time interval is
obtained by coupling the 𝑢

𝑖
(𝑡) solutions.

4. Approximate Solutions of Some DDEs by
Applying the EMHPM

In this sectionwe focus on the solution ofDDEswith constant
and variable coefficients and examine the applicability of the
EMHPM to find the corresponding approximate solutions.

4.1. Delay Differential Equations with Constant Coefficients.
First, let us consider the simplest DDE of the form

̇𝑥 (𝑡) + 𝑥 (𝑡 − 𝜏) = 0 (11)

with initial condition 𝑥(0) = 𝑐. Here, the independent vari-
able 𝑥 is a scalar 𝑥(𝑡) ∈ R, the dot stands for differentiation
with respect to time 𝑡, and 𝜏 is the time delay. To evaluate
(11) on 𝑎 ≤ 𝑡 ≤ 𝑏, the term 𝑥(𝑡 − 𝜏) must represent a known
function 𝑥(𝑡) on [𝑎 − 𝜏 ≤ 𝑡 ≤ 𝑎]. For instance, if 𝑎 = 0,
the solution of (11) can be obtained in the interval (0, 𝜏] by
assuming an initial function that satisfies the initial condition.
By using this solution, it becomes possible to obtain the
solution of (11) in the next 𝑖th interval [(𝑖 − 1)𝜏, 𝑖𝜏], 𝑖 =
2, 3, . . . , 𝑗, where 𝑗 is an integer number that can be chosen
as 2 ≤ 𝑗 ≤ ∞. With this approach, we can apply the HPM to
find the solution of (11) by assuming that the previous delayed
function is 𝑥𝜏0(𝑇) = 𝑐; thus the solution for the first interval
is given by 𝑥𝜏1(𝑇), valid on [0, 𝜏]. In terms of (4), we now
construct the homotopy of (11):

𝐻(𝑋
𝜏1 , 𝑝) =

𝑑

𝑑𝑇
𝑋
𝜏1 + 𝑝𝑥

𝜏0 = 0. (12)

We next substitute the first order expansion𝑋𝜏1 = 𝑋𝜏1
0
+𝑝𝑋
𝜏1

1

in (12) and balance the terms with identical power of 𝑝 to
obtain the following set of linear differential equations:

𝑝
0: 𝑑
𝑑𝑇
𝑋
𝜏1

0
= 0 𝑋

𝜏1

0
(0) = 𝑐 = 𝑋

𝜏0 (𝜏) ,

𝑝
1: 𝑑
𝑑𝑇
𝑋
𝜏1

1
= −𝑋
𝜏0 𝑋

𝜏1

1
(0) = 0.

(13)

Integration of (13) yields

𝑋
𝜏1

0
= 𝑐,

𝑋
𝜏1

1
= − 𝑐𝑇.

(14)

Hence, the first order solution of (12) is given by

𝑥
𝜏1 (𝑇) = 𝑐 − 𝑐𝑇. (15)

Notice that (15) represents the exact solution of (11) on the
first interval. By following the same procedure, it is easy to
show that the exact solution of (11), for the second and third
intervals, is given, respectively, as

𝑥
𝜏2 (𝑇) = 𝑐 − 𝑐𝜏 − 𝑐𝑇 +

1

2
𝑐𝑇
2
,

𝑥
𝜏3 (𝑇) = 𝑐 − 2𝑐𝜏 +

1

2
𝑐𝜏
2
− (𝑐 − 𝑐𝜏) 𝑇 +

1

2
𝑐𝑇
2
−
1

6
𝑐𝑇
3
.

(16)

Figure 1 shows the exact solution of (11) obtained by coupling
at each interval the solution obtained by following HPM
procedure for 𝑡 = 10𝜏.

It is easy to show that the solution of (11) by the EMHPM
coincides with the solution obtained by using the HPM since
(11) is a delay differential equation with constant coefficients.
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Figure 1: Exact solution of (11) obtained by using theHPMand 𝜏 = 1.

4.2. Delay Differential Equations with Variable Coefficients.
We next show how the EMHPM approach can be applied to
obtain the approximate solution of nonlinear delay differen-
tial equation with variable coefficients. In this case, we obtain
the approximate solutions of a DDE of the form

̇𝑥 + 𝑥 (𝑡 − 𝜏) − cos (𝜋𝑡) 𝑥2 = 0, 𝜏 = 1, 𝑥 (0) = 𝑐 = 𝑥𝜏0 (𝜏)
(17)

in which the solution 𝑥𝜏0(𝑇) = 𝑐
1
holds on (−𝜏, 0]. In order to

find the solution 𝑥𝜏1 in the interval [0, 𝜏], we assume that the
homotopy representation of (17) can be given as

𝐻(𝑋
𝜏1 , 𝑝) =

𝑑

𝑑𝑇
𝑋
𝜏1 + 𝑝 [𝑥

𝜏0 − cos (𝜋𝑡) (𝑋𝜏1)2] = 0.
(18)

Notice that the variable 𝑋 depends on the time 𝑇 for which
0 ≤ 𝑇 ≤ 𝜏. If we now substitute the second order expansion
𝑋
𝜏1 = 𝑋

𝜏1

0
+ 𝑝𝑋
𝜏1

1
+ 𝑝
2
𝑋
𝜏1

2
in (18), and, after balancing the 𝑝

terms, we get that

𝑝
0: 𝑑
𝑑𝑇
𝑋
𝜏1

0
= 0, 𝑋

0 (𝑇 = 0) = 𝑐1 = 𝑋
𝜏0 (𝑇 = 𝜏) ,

𝑝
1: 𝑑
𝑑𝑇
𝑋
𝜏1

1
= −𝑥
𝜏0 + cos (𝜋𝑡) (𝑋𝜏1

0
)
2

= 0, 𝑋
1
(0) = 0,

𝑝
2: 𝑑
𝑑𝑇
𝑋
𝜏1

2
= 2 cos (𝜋𝑡)𝑋𝜏1

0
𝑋
𝜏1

1
, 𝑋
2
(0) = 0,

𝑝
3: 𝑑
𝑑𝑇
𝑋
𝜏1

3
= cos (𝜋𝑡) (2𝑋𝜏1

0
𝑋
𝜏1

2
+ (𝑋
𝜏1

1
)
2

) = 0, 𝑋
3 (0) = 0.

(19)

Equations (19) have the following solutions:

𝑋
𝜏1

0
= 𝑐
1
,

𝑋
𝜏1

1
= −𝑇 (𝑥

𝜏0 − 𝑐
2

1
cos𝜋𝑡) ,

𝑋
𝜏1

2
= −𝑐
1
𝑇
2
(cos𝜋𝑡) (𝑥𝜏0 − 𝑐2

1
cos𝜋𝑡) ,

𝑋
𝜏1

3
=
1

3
𝑇
3
(cos𝜋𝑡) [3𝑐4

1
cos2𝜋𝑡 − 4𝑐2

1
𝑥
𝜏0 + (𝑥

𝜏0)
2
] .

(20)

Thus, the approximate solution of (17) by using the EMHPM
is given by

𝑥
𝜏1 (𝑇) ≈ 𝑋

𝜏1

0
+ 𝑋
𝜏1

1
+ 𝑋
𝜏1

2
+ 𝑋
𝜏1

3
. (21)

In this case, the exact solution of 𝑥𝜏1(𝑇) is unknown. To
obtain 𝑥𝜏2 , we compute again the approximate solution of
𝑥
𝜏1(𝑇) by applying our EMHPM and the value of the delayed

time is assumed to remain constant in each subinterval. To
determine 𝑥𝜏2 , we next use the homotopy representation of
(17) for the interval (𝜏, 2𝜏]:

𝐻(𝑋
𝜏2 , 𝑝) =

𝑑

𝑑𝑇
𝑋
𝜏2 + 𝑝 [𝑥

𝜏1 − cos (𝜋𝑡) (𝑋𝜏2)2] = 0.
(22)

Substituting the second order expansion in (22), we get

𝑋
𝜏2

0
= 𝑐
2

𝑋
𝜏2

1
= −𝑇 (𝑥

𝜏1 − 𝑐
2

2
cos𝜋𝑡)

𝑋
𝜏2

2
= −𝑐
2
𝑇
2
(cos𝜋𝑡) (𝑥𝜏1 − 𝑐2

2
cos𝜋𝑡)

𝑋
𝜏2

3
=
1

3
𝑇
3
(cos𝜋𝑡) (3𝑐4

2
cos2𝜋𝑡 − 4𝑐2

2
𝑥
𝜏1 + (𝑥

𝜏1)
2
) .

(23)

Note that (20) and (23) provide approximate solutions to
(17) but evaluated at different interval time delays. To find
the third order approximate solution of (17), we can use a
homotopy of the form:

𝐻(𝑋
𝜏𝑖 , 𝑝) =

𝑑

𝑑𝑇
𝑋
𝜏𝑖 + 𝑝 [𝑋

𝜏𝑖−1 − cos (𝜋𝑡) (𝑋𝜏𝑖)2] = 0.
(24)

Then, by using our EMPHM approach, we have that

𝑋
𝜏𝑖

0
= 𝑐

𝑋
𝜏𝑖

1
= −𝑇 (𝑥

𝜏𝑖−1 − 𝑐
2 cos𝜋𝑡)

𝑋
𝜏𝑖

2
= −𝑐𝑇

2
(cos𝜋𝑡) (𝑥𝜏𝑖−1 − 𝑐2 cos𝜋𝑡)

𝑋
𝜏𝑖

3
=
1

3
𝑇
3
(cos𝜋𝑡) (3𝑐4cos2𝜋𝑡 − 4𝑐2𝑥𝜏𝑖−1 + (𝑥𝜏𝑖−1)2) .

(25)

Notice from (25) that the 𝑘th order approximate solution of
(17) can be written as

𝑋
𝜏𝑖

0
= 𝑐

𝑋
𝜏𝑖

𝑘
=
𝑇

𝑘
(−𝑥
𝜏𝑖−1𝑔 (𝑘) + cos𝜋𝑡

𝑘−1

∑

𝑛1=0

𝑋
𝜏𝑖

𝑛1
𝑋
𝜏𝑖

𝑘−1−𝑛1
) ,

(26)

where 𝑘 > 0, 𝑔(𝑘) = 1 when 𝑘 = 1 and zero otherwise.
Figure 2 shows the approximate solution of (17) obtained

by using the EMHPM approach compared to its numerical
integration solution by using the dde23MATLAB subroutine
program. This case assumes two different initial solutions of
the form 𝑥𝜏0(𝑇) = cos(𝜋(𝑇 + 1)), 𝑥𝜏0(𝑇) = 𝑒𝑇+1, and a time
subintervals Δ𝑡 = 0.01. We can see from Figure 2 that both
simulations agree well for the time span showed.

To further assess the applicability of our proposed
EMHPM approach to high order delay differential equations,
we will next describe a methodology to obtain the approx-
imate solutions of well-known high order delay differential
equations by generalizing our EMHPM approach.
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Figure 2: EMHPM and dde23 solution of (17).
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Figure 3: Schematic of the zeroth order polynomial used to fit the
approximate EMHPM solution.

5. Generalized Solution of Linear DDEs
by the EMHPM Approach

Let us consider an 𝑛-dimensional delay differential equation
of the form

̇x (𝑡) = A (𝑡) x + B (𝑡) x (𝑡 − 𝜏) , (27)

whereA(𝑡 + 𝜏) = A(𝑡), B(𝑡 + 𝜏) = B(𝑡), x(𝑡) is the state vector,
and 𝜏 is the time delay. By following our EMHPM procedure,
we can write (27) in equivalent form as

̇x
𝑖 (𝑇) − A𝑡x𝑖 (𝑇) ≈ B𝑡x

𝜏

𝑖
(𝑇) , (28)

where x
𝑖
(𝑇) denotes the 𝑚 order solution of (27) in the 𝑖th

subinterval that satisfies the initial conditions x
𝑖
(0) = x

𝑖−1
and

A
𝑡
and B

𝑡
represent the values of the periodic coefficients at

the time 𝑡. In order to approximate the delayed term x𝜏
𝑖
(𝑇)

in (28), the period [𝑡
0
− 𝜏, 𝑡
0
] is discretized in 𝑁 points

equally spaced as shown in Figure 3. Here, we assume that
the function x𝜏

𝑖
(𝑇) in the delay subinterval [𝑡

𝑖−𝑁
, 𝑡
𝑖−𝑁+1

] is
approximated by a constant value

x𝜏
𝑖
(𝑇) = 𝑥

𝑖−𝑁+1
(𝑇) ≈ x

𝑖−𝑁 (29)

as shown in Figure 3. By following the homotopy perturba-
tion technique, we can write the homotopy representation of
(28) as

𝐻(X
𝑖
, 𝑝) = 𝐿 (X

𝑖
) − 𝐿 (x

𝑖0
) + 𝑝𝐿 (x

𝑖0
) = 𝑝 (A

𝑡
X
𝑖
+ B
𝑡
x
𝑖−𝑁
) .

(30)

Substituting the 𝑚 order expansion X
𝑖
= X
𝑖0
+ 𝑝X
𝑖1
+ ⋅ ⋅ ⋅ +

𝑝
𝑚X
𝑖𝑚

in (30) and by assuming an initial approximation of
the form x

𝑖0
= x
𝑖−1

, we get, after applying the proposed

EMHPMapproach, the following set of first order linear delay
differential equations:

𝑝
0: 𝑑
𝑑𝑇

X
𝑖0
+
𝑑

𝑑𝑇
x
𝑖−1
= 0, X

𝑖
(0) = x

𝑖−1
,

𝑝
1: 𝑑
𝑑𝑇

X
𝑖1
= A
𝑡
X
𝑖0
+ B
𝑡
x
𝑖−𝑁
, X
𝑖1
(0) = 0,

𝑝
2: 𝑑
𝑑𝑇

X
𝑖2
= A
𝑡
X
𝑖1
, X
𝑖2
(0) = 0,

.

.

.

𝑝
𝑚: 𝑑
𝑑𝑇

X
𝑖𝑚
= A
𝑡
X
𝑖(𝑚−1)

, X
𝑖𝑚
(0) = 0.

(31)

By solving (31), we get

X
𝑖0
= x
𝑖−1
,

X
𝑖1
= A
𝑡
x
𝑖−1
𝑇 + B

𝑡
x
𝑖−𝑁
𝑇,

X
𝑖2
=
1

2
A2
𝑡
x
𝑖−1
𝑇
2
+
1

2
A
𝑡
B
𝑡
x
𝑖−𝑁
𝑇
2
,

.

.

.

X
𝑖𝑚
=
1

𝑚!
A𝑚
𝑡
x
𝑖−1
𝑇
𝑚
+
1

𝑚!
A𝑚−1
𝑡

B
𝑡
x
𝑖−𝑁
𝑇
𝑚
.

(32)

Equations (32) can be written as

X
𝑖𝑘
=
𝑇

𝑘
(A
𝑡
X
𝑖(𝑘−1)

+ 𝑔 (𝑘)B𝑡x𝑖−𝑁) , 𝑘 = 1, 2, 3, . . . ,
(33)

where X
𝑖0
= x
𝑖−1

and 𝑔(𝑘) = 1 for 𝑘 = 1 and 𝑔(𝑘) = 0,
otherwise. Thus, the solution of (27) is obtained by adding
the X
𝑖𝑘
approximate solutions:

x
𝑖 (𝑇) ≈

𝑚

∑

𝑘=0

X
𝑖𝑘 (𝑇) . (34)

Notice, however, that solution (34) may be further improved
by using a first order polynomial representation of x𝜏

𝑖
(𝑇) as

shown in Figure 4. Then, the function x𝜏
𝑖
(𝑇) in the delay

subinterval [𝑡
𝑖−𝑁
, 𝑡
𝑖−𝑁+1

] takes the form

x𝜏
𝑖
(𝑇) = x𝑖−𝑁+1 (𝑇) ≈ x𝑖−𝑁 +

(𝑁 − 1)

𝜏
(x
𝑖−𝑁+1

− x
𝑖−𝑁
) 𝑇.

(35)

Substituting (35) into (28) gives

̇x
𝑖
(𝑇) − A

𝑡
x
𝑖
(𝑇)

≈ B
𝑡
x
𝑖−𝑁
−
(𝑁 − 1)

𝜏
B
𝑡
x
𝑖−𝑁
𝑇 +
(𝑁 − 1)

𝜏
B
𝑡
x
𝑖−𝑁+1

𝑇.

(36)
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We next assume that the homotopy representation of (36) is
given as

𝐻(X
𝑖
, 𝑝) = 𝐿 (X

𝑖
) − 𝐿 (x

𝑖0
) + 𝑝𝐿 (x

𝑖0
)

− 𝑝 (AX
𝑖
+ Bx
𝑖−𝑁
−
(𝑁 − 1)

𝜏
Bx
𝑖−𝑁
𝑇

+
(𝑁 − 1)

𝜏
Bx
𝑖−𝑁+1

𝑇) = 0.

(37)

Substituting the 𝑚 order expansion X
𝑖
(𝑇) = X

𝑖0
(𝑇) +

𝑝X
𝑖1
(𝑇) + ⋅ ⋅ ⋅ 𝑝

𝑚X
𝑖𝑚
(𝑇) in (37) and assuming that the initial

approximation is given by x
𝑖0
= x
𝑖−1

, we get

𝑝
0: 𝑑
𝑑𝑇

X
𝑖0
+
𝑑

𝑑𝑇
x
𝑖−1
= 0, X

𝑖 (0) = x𝑖−1,

𝑝
1: 𝑑
𝑑𝑇

X
𝑖1
= A
𝑡
X
𝑖0
+ B
𝑡
x
𝑖−𝑁
−
𝑁 − 1

𝜏
B
𝑡
x
𝑖−𝑁
𝑇

+
𝑁 − 1

𝜏
B
𝑡
x
𝑖−𝑁+1

𝑇, X
𝑖1
(0) = 0,

𝑝
2: 𝑑
𝑑𝑇

X
𝑖2
= AX

𝑖1
, X
𝑖2
(0) = 0,

.

.

.

𝑝
𝑚: 𝑑
𝑑𝑇

X
𝑖𝑚
= AX

𝑖(𝑚−1)
, X
𝑖𝑚
(0) = 0.

(38)

By solving (38) and by following the EMHPM procedure, we
get

X
𝑖0
= x
𝑖−1
,

X
𝑖1
= A
𝑡
x
𝑖−1
𝑇 + B

𝑡
x
𝑖−𝑁
𝑇 −
1

2

𝑁 − 1

𝜏
B
𝑡
x
𝑖−𝑁
𝑇
2

+
1

2

𝑁 − 1

𝜏
B
𝑡
x
𝑖−𝑁+1

𝑇
2
,

X
𝑖2
=
1

2
A2
𝑡
x
𝑖−1
𝑇
2
+
1

2
A
𝑡
B
𝑡
x
𝑖−𝑁
𝑇
2

−
1

6

𝑁 − 1

𝜏
A
𝑡
B
𝑡
x
𝑖−𝑁
𝑇
3
+
1

6

𝑁 − 1

𝜏
A
𝑡
B
𝑡
x
𝑖−𝑁+1

𝑇
3
,

.

.

.

X
𝑖𝑚
=
1

𝑚!
A𝑚
𝑡
x
𝑖−1
𝑇
𝑚
+
1

𝑚!
A𝑚−1
𝑡

B
𝑡
x
𝑖−𝑁
𝑇
𝑚

−
1

(𝑚 + 1)!

𝑁 − 1

𝜏
A𝑚−1
𝑡

B
𝑡
x
𝑖−𝑁
𝑇
𝑚+1

+
1

(𝑚 + 1)!

𝑁 − 1

𝜏
A𝑚−1
𝑡

B
𝑡
x
𝑖−𝑁+1

𝑇
𝑚+1
.

(39)

Here, the recursive form of X
𝑖𝑘
(𝑇) is written as

X
𝑖𝑘
= Xa
𝑖𝑘
+ Xb
𝑖𝑘
𝑘 = 1, 2, 3, . . . , (40)

ti−N+1 tti
ti−1ti−N

Δt

x i(t)
x i+1(t)

x x i−N
x i−N+1

𝜏 = (N − 1)Δt

Figure 4: Schematic EMHPM solution using first polynomial to
approximate delay subinterval.

where Xa
𝑖0
= x
𝑖−1
,Xb
𝑖0
= 0 and

Xa
𝑖𝑘
=
𝑇

𝑘
(A
𝑡
Xa
𝑖(𝑘−1)

+ 𝑔 (𝑘)B
𝑡
x
𝑖−𝑁
) ,

Xb
𝑖𝑘
=
𝑇

𝑘 + 1
(A
𝑡
Xb
𝑖(𝑘−1)

+𝑔 (𝑘) [
𝑁 − 1

𝜏
𝑇 (−B

𝑡
x
𝑖−𝑁
+ B
𝑡
x
𝑖−𝑁+1

)]) .

(41)

Thus, the approximate solution of (27) by the EMHPM can
be obtained by substituting (40) into (34).

In the next section, we will apply our EMHPM procedure
to obtain the solution of two second order delay differential
equations: (a) the dampedMathieu equation with time delay,
and (b) the well-known delay differential equation that
describes the dynamics in one degree-of-freedom milling
machine operations.

5.1. Solution of theDampedMathieu EquationwithTimeDelay.
In order to assess the accuracy of our EMHPM approach, we
first obtain the solution of the damped Mathieu differential
equation with time delay that combines the effect of paramet-
ric excitation and damping.This equation is described by the
following equation:

̈𝑥 + 𝜅 ̇𝑥 + (𝛿 + 𝜀 cos(2𝜋𝑡
𝑇
))𝑥 = 𝑏𝑥 (𝑡 − 𝜏) , (42)

where 𝜅, 𝛿, 𝜀, 𝜏, and 𝑇 are system parameters whose value
depends on the physics of the system. The approximate
solution of (42) obtained by using the semidiscretization
method is widely discussed in [18, 19]. Here, we focus our
attention on applying the EMHPM to find the approximate
solution of (42) and we also assess the accuracy of the derived
solution by comparing it with the corresponding numerical
integration solution of (42).

By following the EMHPM procedure, we first write (42)
in the following equivalent form:

̈𝑥
𝑖
(𝑇) + 𝜅 ̇𝑥

𝑖
(𝑇) + 𝛼

𝑡
𝑥
𝑖
(𝑇) ≈ 𝑏𝑥

𝑖−𝑁+1
(𝑇) , (43)

where 𝑥
𝑖
(𝑡) denotes the 𝑚 order solution of (43) in the

𝑖th subinterval that satisfies the following initial conditions:
𝑥
𝑖
(0) = 𝑥

𝑖−1
and ̇𝑥

𝑖
(0) = ̇𝑥

𝑖−1
. The space state form

representation of (43) is given by

̇x
𝑖
(𝑇) = A

𝑡
x
𝑖
(𝑇) + B

𝑡
x
𝑖−𝑁+1

(𝑇) , (44)
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Figure 5: Numerical solutions of the damped Mathieu equation
with time delay by dde23, the zeroth EMHPM, and the first EMHPM
with𝑁 = 50 and𝑚 = 4.

Table 1: Computer time needed to solve the damped Mathieu
equation with time delay. The 𝑚 order solution of the EMPHM
approach is chosen to guarantee the convergence of its approximate
solution.

dde23 [ms] EMHPM
𝑁 𝑚 Zeroth [ms] First [ms]

19

15 5 4 5
20 4 6 6
40 3 12 12
60 2 17 18
60 5 18 19
60 10 20 21

where

A
𝑡
= [
0 1

−𝛼
𝑡
−𝜅
] , B

𝑡
= [
0 0

𝑏
𝑡
0
] (45)

and 𝛼
𝑡
= (𝛿 + 𝜀 cos(𝑡)) is a time periodic term. The EMHPM

approximate solution of (44) is illustrated in Figure 5 where
we have assumed an unstable system behavior for which 𝜅 =
0.2, 𝛿 = 3.0, 𝜀 = 1, 𝑏 = −1, and 𝑇 = 𝜏 = 2𝜋. See
[20]. As we can see from Figure 5, our approximate EMHPM
solution to (42) is compared with its numerical integration
solution obtained from dde23 MATLAB algorithm for the
time interval of 2𝑇, by assuming that 𝑁 = 50 with the
following initial values: 𝑥

−50
(𝑇) = 𝑥

−49
(𝑇) = ⋅ ⋅ ⋅ 𝑥

0
(𝑇) =

0.001 and ̇𝑥
−50
(𝑇) = ̇𝑥

−49
(𝑇) = ⋅ ⋅ ⋅ ̇𝑥

0
(𝑇) = 0.

It can be seen fromFigure 5 that in the interval [0,𝑇] both
the zeroth and the first order solutions are the same since the
delay subintervals are constant. See Figure 3. However, in the
next interval [𝑇, 2𝑇] it is clear that the first order EMPHM
solution provides a better approximation on the delay subin-
terval. The computation total time to calculate the solutions
in the MATLAB code is listed in Table 1. The order 𝑚 and
the discretized time intervals 𝑁 in the EMPHM approach
are chosen to guarantee the convergence of our approximate
solution to the exact one. To provide a full understanding of
how the solution is computed by the EMHPM approach, we
attached in Algorithm 1 the corresponding MATLAB code.

10 20 30 40 50 60 70 80 90 100

Ab
so

lu
te

 er
ro

r

10
−4

10
−3

10
−2

Zeroth order m = 2

First order m = 2

Zeroth order m = 5

First order m = 5

Zeroth order m = 10

First order m = 10

Discretizations, N

Figure 6: Estimated relative error values between the numerical
solution dde23 and the EMHPMapproximate solutions.Herewe use
for the EMHPM the values of𝑚 = 2, 5, and 10.

Figure 6 shows the relative error between our approxi-
mate EMPHM and the dde23 solution and its relationship
with the order𝑚 and the discretized time intervals𝑁. Notice
that the relative error values coincide at values of 𝑁 ≥ 45.
Also, we can see from Figure 6 that the computed relative
error values for approximate solutions of order𝑚 ≥ 5 remain
unchanged.

5.2. A Practical Application: Cutting Operation on Milling
Machine. We next use our EMHPM procedure to obtain
the solution of the single degree-of-freedom milling opera-
tion. We use the simplified form based on [20–22]:

̈𝑥 (𝑡) + 2𝜁𝜔𝑛 ̇𝑥 (𝑡) + 𝜔
2

𝑛
𝑥 (𝑡) = −

𝑎
𝑝
𝐾
𝑠 (𝑡)

𝑚
𝑚

(𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏)) ,

(46)

where 𝜔
𝑛
is the angular natural frequency of the system, 𝜁 is

the damping ratio, 𝑎
𝑝
is the depth of cut, 𝑚

𝑚
is the modal

mass of the tool, 𝜏 represents the time delay which is equal
to the tooth passing period, and 𝐾

𝑠
(𝑡) is the specific cutting

force coefficient which can be determined from
𝐾
𝑠 (𝑡)

=

𝑧𝑛

∑

𝑗=1

𝑔 (𝜙
𝑗
(𝑡)) sin (𝜙

𝑗
(𝑡)) (𝐾

𝑡
cos𝜙
𝑗
(𝑡) + 𝐾

𝑛
sin𝜙
𝑗
(𝑡)) ,

(47)

where 𝑧
𝑛
is the tool number of teeth, 𝐾

𝑡
and 𝐾

𝑛
are the

tangential and the normal linear cutting force coefficients,
respectively, 𝜙

𝑗
(𝑡) is the angular position of the 𝑗-tooth

defined as

𝜙
𝑗
(𝑡) = (

2𝜋𝑛

60
) 𝑡 +

2𝜋𝑗

𝑧
𝑛

, (48)

and 𝑛 is the spindle speed in rpm [20]. The function 𝑔(𝜑
𝑗
(𝑡))

is a switching function, which has a unity value when the 𝑗-
tooth is cutting and zero otherwise:

𝑔 (𝜙
𝑗 (𝑡)) = {

1 𝜙st < 𝜙𝑗 (𝑡) < 𝜙ex
0 otherwise.

(49)
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function dde23 ddeEM mathieu paper

disp(‘Mathieu equation solution’)
% Solution by EMHPM with zeroth and first order solution

eps=1; kappa=0.2; T=2∗pi; tau=T; b=−1; delta=3; % Mathieu Parameters

pntDelay=1; N=50; m ord=5; dt=tau/(N−1); ktau=2; tspan=[0,ktau∗T]; % EMHPM Parameters

%% Solution

% Solution by dde23

tdde=linspace(0,ktau∗tau,ktau∗(N−1)+1);

dde=@(t,y,z) mathieu dde(t,y,z,kappa,delta,eps,b,tau);

te dde=tic;sol = dde23(dde,tau,@history,tspan); toc(te dde); xdde=deval(sol,tdde);

% Solution by zeroth EMHPM

dde emhpm fun=@(t,c0,tt,zm,zn,tau,N) mathieu zeroth(t,c0,tt,zm,zn,tau,N,m ord,

kappa,delta,eps,b,T);

tic;[t0,z0]=ddeEMHPM(dde emhpm fun,tspan,@history,tau,dt,pntDelay); toc

% Solution by First EMHPM

dde emhpm fun=@(t,c0,tt,zm,zn,tau,N) mathieu first(t,c0,tt,zm,zn,tau,N,m ord,kappa,delta,eps,b,T);

tic;[t1,z1]=ddeEMHPM(dde emhpm fun,tspan,@history,tau,dt,pntDelay); toc

% Plot results

ind0=1:2:ktau∗(N−1); ind1=2:2:ktau∗(N−1);

Parent1=figure (1);

axes1 = axes(‘Parent’,Parent1,‘FontSize’,12,‘FontName’,‘Times New Roman’);
box(axes1,‘on’); hold(axes1,‘all’);
plot(tdde,xdde(1,:),‘Parent’,axes1,‘LineWidth’,2,‘Color’,[0.502 0.502 0.502],‘DisplayName’,‘Numerical
dd23’);
plot(t0(ind0),z0(ind0,1),‘MarkerSize’,5,‘Marker’,‘o’,‘LineStyle’, ‘none’,‘DisplayName’,‘Zeroth
EMHPM’,‘Color’,[0 0 0]);

plot(t1(ind1),z1(ind1,1),‘MarkerSize’,7,‘Marker’,‘x’,‘LineStyle’,‘none’,‘DisplayName’,‘First
EMHPM’,‘Color’,[0 0 0]);

xlabel(‘\itt’,‘FontSize’,12,‘FontName’,‘Times New Roman’);
ylabel(‘\itx’,‘FontSize’,12,‘FontName’,‘Times New Roman’);
end

%% Mathieu definitions

function dydt = mathieu dde(t,y,z,kapa,dlt,eps,b,T)

dydt = [y(2)
-kapa∗y(2)−(dlt+eps∗cos(2∗pi∗t/T))∗y(1)+b∗z(1)];

end

function Z = mathieu zeroth(t,c0,tt,zm,zn,tau,N,m,kpa,dlt,eps,b,T)

Z=[c0(1),c0(2)]; alf=dlt+eps∗cos(2∗pi/T∗tt);

for ik=1:m

Z(ik+1,1)=Z(ik,2)∗t/ik;

Z(ik+1,2)=−kpa∗Z(ik,2)−alf∗Z(ik,1);

if ik==1, Z(ik+1,2)=Z(ik+1,2)+b∗zm(1); end

Z(ik+1,2)=Z(ik+1,2)∗t/ik;

end

Z=sum(Z);

end

function Z = mathieu first(t,c0,tt,zm,zn,tau,N,m,kpa,dlt,eps,b,T)

alf=dlt+eps∗cos(2∗pi/T∗tt); Z=[c0(1),c0(2)]; Z =[0,0];

for ik=1:m

Z(ik+1,:)=[Z(ik,2)∗t/ik, −kpa∗Z(ik,2)−alf∗Z(ik,1)];

Z (ik+1,:)=[Z (ik,2)∗t/ik, −kpa∗Z (ik,2)−alf∗Z (ik,1)];

if ik==1,

Z(ik+1,2)=Z(ik+1,2)+b∗zm(1);
Z (ik+1,2)=Z (ik+1,2)+b∗(N−1)/tau∗(zn(1)−zm(1))∗t;

end

Z(ik+1,2)=Z(ik+1,2)∗t/ik;

Z (ik+1,2)=Z (ik+1,2)∗t/(ik+1);

Algorithm 1: Continued.
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end

Z=sum(Z)+sum(Z );

end

function out=history(t)

out=[1E−3+0∗t 0+0∗t];

end

%% EMHPM algorithm for ODE solutions

function [t,z]= odeEMHPM(nde,tspan,z0,Deltat,pnts)

% ode solver by Enhanced Multistage Homotopy Perturbation Method

tini=tspan(1); tfin=tspan(end); tstart=tini;

tini=tini−tstart; tfin=tfin−tstart; % shifted time set to zero

% Handle errors

if tini == tfin

error(‘The ending and starting time values must be different.’);
elseif abs(tini)> abs(tfin)

tspan=flipud(fliplr(tspan)); tini=tspan(1); tfin=tspan(end);

end

tdir=sign(tfin−tini);

if any(tdir∗diff(tspan) <= 0)

error(‘tspan entries must be strictly sorted.’);
end

incT=Deltat/pnts;

if incT<=0

error (‘Increasing must be greater than zero.’)
end

z(1,:)=z0󸀠 ; t(1)=tini; iteT=2; % set initial values

t(iteT)=tini+incT∗tdir;

while tdir∗t(iteT)<tdir∗(tfin+tdir∗incT)

P act=ceil(.99999∗(t(iteT)−tini)∗tdir/Deltat); % count sub-intervals

c=z((Deltat/incT)∗(P act−1)+1,:); % set the corresponding initial condition

tsub(iteT−1)=t(iteT)-(P act−1)∗Deltat∗tdir; % evaluate the solution at the shifted time

temp=tsub(iteT−1);

z(iteT,:)=nde(temp,c,tstart+t(iteT));

if tdir∗t(iteT)>=tdir∗tfin∗0.99999 % repeat for the next sub-interval

break

else

iteT=iteT+1; t(iteT)=tini+(iteT−1)∗incT∗tdir;

end

end

t=t 󸀠 +tstart;

end

%% EMHPM algorithm for DDE solutions

function [t z]=ddeEMHPM(dde,tspan,history,tau,Deltat,pntDelta)

% dde solver by Enhanced Multistage Homotopy Perturbation Method

tini=tspan(1); tfin=tspan(end); % span where the solution is founded

if tau<Deltat

error(‘Subtinterval must not be greater than tau’);
end

if mod(tau,Deltat)∼=0

pastDlt=Deltat;

Deltat=tau/round(tau/Deltat);

warning(‘Subtinterval was modified from %0.5g to %0.5g.’,pastDlt,Deltat);
end

pnt=round(tau/Deltat); % samples−1 [−tau 0]

incT=Deltat/pntDelta; % step for set resolution

t=−tau+tini+(0:pnt∗pntDelta)’∗incT; % evaluation of the initial solution [−tau 0]

z=history(t); % initial behavior in the inverval [−tau 0]

c=z(end,:); % initial condition

Algorithm 1: Continued.



10 Abstract and Applied Analysis

m=pnt∗pntDelta; % samples between tau

itDlt=0;

while (t(end)+eps)<tfin;

tspan=[tini+itDlt∗Deltat;tini+(itDlt+1)∗Deltat]; % preparing the span for next Deltat

zm=z(length(z)−m,:)’; zn=z(1+length(z)−m,:)’; % previous tau solution

emhpm fun=@(time,c,T) dde(time,c,T,zm,zn,tau,m); % application of the odeEMHPM

[t aux z aux]=odeEMHPM(emhpm fun,tspan,z(end,:),Deltat,pntDelta);

z=[z(1:end−1,:);z aux]; t=[t(1:end−1,:);t aux]; % joining the solutions

itDlt=itDlt+1;

end

z=z(pnt∗pntDelta+1:end,:);t=t(pnt∗pntDelta+1:end,:);

end

Algorithm 1: MATLAB algorithm.

Here, 𝜙st and 𝜙ex are the angles where the teeth enter and exit
the workpiece. For upmilling, 𝜙st = 0 and 𝜙ex = arccos(1 −
2𝑎
𝑑
), for downmilling, 𝜙st = arccos(2𝑎

𝑑
− 1) and 𝜙ex = 𝜋,

where 𝑎
𝑑
is the radial depth of cut ratio.

By following the EMHPM procedure, we can write (46)
in equivalent form as

̈𝑥
𝑖
(𝑇) + 2𝜁𝜔

𝑛
̇𝑥
𝑖
(𝑇) + 𝜔

2

𝑛
𝑥
𝑖
(𝑇)

≈ −
𝑎
𝑝
𝐾st

𝑚
𝑚

(𝑥
𝑖 (𝑇) − 𝑥𝑖−𝑁+1 (𝑇)) ,

(50)

where 𝑥
𝑖
(𝑇) denotes the 𝑚 order solution of (46) on the 𝑖th

subinterval that satisfies the initial conditions 𝑥
𝑖
(0) = 𝑥

𝑖−1
,

̇𝑥
𝑖
(0) = ̇𝑥

𝑖−1
, and ℎ

𝑡
= ℎ(𝑡) and 𝑥

−𝜏
is given by (35).

Introducing the transformation x
𝑖
= [𝑥
𝑖
, ̇𝑥
𝑖
]
𝑇, (50) can be

written as a system of first order linear delay differential
equations of the form

̇x
𝑖
(𝑇) = A

𝑡
x
𝑖
(𝑇) + B

𝑡
x
𝑖−𝑁+1

(𝑇) , (51)

where

A
𝑡
= [

[

0 1

−𝜔
2

𝑛
−
𝑤

𝑚
𝑚

𝐾st −2𝜁𝜔𝑛
]

]

; B
𝑡
= [

[

0 0
𝑤

𝑚
𝑚

𝐾st 0
]

]

.

(52)

We next apply the EMHPM procedure to solve (46) by
considering a downmilling operation with the following
parameter values: 𝑧

𝑛
= 2, 𝑎

𝑑
= 0.1, 𝜔

𝑛
= 5793 rad/s,

𝜁 = 0.011, 𝑚
𝑚
= 0.03993 kg, 𝐾

𝑡
= 6 × 10

8N/m2, and
𝐾
𝑛
= 2 × 10

8N/m2. As we can see from Figures 7 and 8 and
for the depth of cut values of 𝑎

𝑝
= 2mm (stable) and 𝑎

𝑝
=

3mm (unstable), our EMHPM approximate solutions follow
closely the numerical integration solutions of (46) obtained
by using the dde23 algorithm.

Figure 9 shows the relative error between the EMPHM
and the dde23 numerical solution, while Table 2 shows the
CPU time needed for each solution. Here we use 𝑁 = 75
since the average step size of the dde23 algorithm is around
Δ𝑡 ≈ 𝜏/𝑁. Note that, for 𝑚 = 7, the zeroth order EMHPM
approximate solution has the fastest CPU time. We can see
from Figure 9 that the value of the relative error becomes
basically the same for𝑚 = 2, 7, and 10 and𝑁 ≥ 20.
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Figure 7: EMHPM approximate solutions of (46) with parameter
values of 𝑎
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= 2mm, 𝑛 = 10000 rpm. Stable machine operation.
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6. Conclusions

We have developed a new algorithm based on the homotopy
perturbation method to solve delay differential equations.
The proposed EMHPM approach is based on a sequence of
subintervals that approximate the solution of delayed differ-
ential equations by using the transformation rule 𝑢(𝑡) →
𝑢
𝑖
(𝑇), where 𝑢

𝑖
satisfies the initial conditions. We have
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Figure 9: Estimated relative error values between dde23 and the
EMHPM approximate solutions. Here we have used the system
parameter values of 𝑎

𝑝
= 2mm and 𝑛 = 1000 rpm and values of

𝑚 = 2, 7, and 10.

Table 2: CPU time comparison among the approximate solutions of
(46) by using dde23, the zeroth order, and the first order EMHPM
solutions.

Solution method Time [ms]
dde23 139
Zeroth order EMHPM (𝑚 = 7) 77
First order EMHPM (𝑚 = 7) 87

shown that our proposed EMHPM approach can be applied
to obtain the approximate solution of a delay differential
equation not only with constant, but also with variable
coefficients with theoretical predictions that follow well the
numerical integration solutions. To further assess the validity
of this new approach, we have compared the approximate
solutions of two delayed differential equations with respect to
their corresponding numerical integration solutions obtained
from the MATLAB dde23 algorithm. The test cases were (a)
the damped Mathieu differential equation with time delay
and (b) the governing equation of motion of downmilling
operations. We have found that the EMHPM closely follows
the numerical integration solutions of the corresponding
equations and that these require less CPU time and have
smaller relative errors.
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We investigate a nonautonomous two-species competitive systemwith stage structure and double time delays due tomaturation for
two species, where toxic effect of toxin liberating species on nontoxic species is considered and the inhibiting effect is zero in absence
of either species. Positivity and boundedness of solutions are analytically studied. By utilizing some comparison arguments, an
iterative technique is proposed to discuss permanence of the species within competitive system. Furthermore, existence of positive
periodic solutions is investigated based on continuation theorem of coincidence degree theory. By constructing an appropriate
Lyapunov functional, sufficient conditions for global stability of the unique positive periodic solution are analyzed. Numerical
simulations are carried out to show consistency with theoretical analysis.

1. Introduction

In recent years, many research efforts have been made on
competitive Lotka-Volterra system with stage structure and
time delay. By incorporating a constant time delay into single
species model, a stage-structured model is proposed in the
pioneering work [1], where time delay reflects a delayed birth
of immature population and a reduced survival of immature
population to their maturity. The model system takes the
following form:

̇𝑥
𝑖
(𝑡) = 𝛼𝑥

𝑚
(𝑡) − 𝛾𝑥

𝑖
(𝑡) − 𝛼𝑒

−𝛾𝜏
𝑥
𝑚
(𝑡 − 𝜏) ,

̇𝑥
𝑚 (𝑡) = 𝛼𝑒

−𝛾𝜏
𝑥
𝑚 (𝑡 − 𝜏) − 𝛽𝑥

2

𝑚
(𝑡) ,

(1)

where 𝑥
𝑖
(𝑡) and 𝑥

𝑚
(𝑡) represent the immature population

and mature population density at time 𝑡, respectively. 𝛼 >

0 denotes the birth rate of immature population; 𝛾 > 0

stands for the death rate of immature population. 𝛽 > 0

is the death and overcrowding rate of mature population. 𝜏

denotes time of immature population to maturity. The term
𝛼𝑒
−𝛾𝜏

𝑥
𝑚
(𝑡 − 𝜏) represents the immature species which are

born at time 𝑡 − 𝜏 and survive at time 𝑡 with immature death
rate 𝛾 and therefore represents transformation of immature
species to mature species. It is found that all ecologically
relevant solutions tend to the positive equilibrium solution
as time 𝑡 → ∞, and various aspects of the above proposed
system including positivity and boundedness of solutions are
discussed in [1].

Zeng et al. propose a nonautonomous competitive two-
species model with stage structure in one species in [2],
where conditions of permanence are obtained. Furthermore,
existence and asymptotic stability of periodic solution are
proved under some assumptions if the proposed model turns
out to be a periodic system.A two-species Lotka-Volterra type
competition model with stage structure for both species is
proposed and investigated in [3], where the individuals of
each species are classified as immature and mature. By con-
structing a suitable Lyapunov function, sufficient conditions
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are derived for the global stability of nonnegative equilibria
of the proposed model in the case of constant coefficients.
Furthermore, a set of easily verifiable sufficient conditions are
obtained for the existence of positive periodic solution when
coefficients are assumed to be positively continuous periodic
functions. In [4], there is a time delayed periodic system
which describes the competition among mature populations.
The evolutionary behavior of model system is analyzed and
some sufficient conditions for competitive coexistence and
exclusion are obtained.

A nonautonomous competitive Lotka-Volterra system is
studied in [5]; it reveals a computable necessary and sufficient
condition for the system to be totally permanent when the
growth rates have averages and the interaction coefficients
are nonnegative constants. Along with this research, perma-
nence for a class of competitive Lotka-Volterra systems is
discussed in [6] which extends the work done in [5], and
a computable necessary and sufficient condition is found
for the permanence of all subsystems of the system and its
small perturbation on the interaction matrix. In [7], a two-
species competitive model with stage structure is discussed,
and the dynamics of coupled system of semilinear parabolic
equations with time delays are investigated, which show that
the introduction of diffusion does not affect the permanence
and extinction of the species, though the introduction of
stage structure brings negative effect on it. In [8], sufficient
conditions are obtained for the existence of a unique, globally
attractive, strictly positive (componentwise), almost periodic
solution of a nonautonomous, almost periodic competitive
two-species model with a stage structure in one species. An
example together with its numeric simulations shows the
feasibility of our main results, which generalize the main
results of Zeng et al. [2]. According to two types of well-
known periodic single species population growth models
with time delay, two corresponding periodic competitive sys-
tems with multiple delays are proposed in [9], and the same
criteria for the existence and globally asymptotic stability
of positive periodic solutions of the above two competitive
systems are derived. In [10], a discrete periodic competitive
model with stage structure is established, and some sufficient
and realistic conditions are obtained for existence of a positive
periodic solution of the proposed system. In [11], a periodic
nonautonomous competitive stage-structured system with
infinite delay is considered, where the adult members of
𝑛-species are in competition. For each of the 𝑛-species
the model incorporates a time delay which represents the
time from birth to maturity of that species. Infinite delay
is introduced which denotes the influential effect of the
entire past history of the system on the current competition
interactions. By using the comparison principle, if the growth
rates are sufficiently large, then the solutions are uniformly
permanent. Then, by using Horn’s fixed point theorem, the
existence of positive periodic solution of the system with
finite delay is discussed. Finally, it is proved that even the
systemwith infinite delay admits a positive periodic solution.

In [12], a nonautonomous predator-prey system with
discrete time delay is studied, where there is epidemic
disease in the predator. By using some techniques of the
differential inequalities and delay differential inequalities,

the permanence of system is discussed under some appro-
priate conditions. When all the coefficients of the system
are periodic, the existence and global attractivity of the
positive periodic solution are studied by Mawhin’s con-
tinuation theorem and constructing a suitable Lyapunov
functional. Furthermore, when the coefficients of the system
are not absolutely periodic but almost periodic, sufficient
conditions are also derived for the existence and asymptotic
stability of the almost periodic solution. In [13], general 𝑛-
species nonautonomous Lotka-Volterra competitive systems
with pure-delays and feedback controls are discussed. New
sufficient conditions, for which a part of the 𝑛-species
remains permanent, are established by applying the method
of multiple Lyapunov functionals and introducing a new
analysis technique.

By utilizing Brouwer fixed point theorem and construct-
ing a suitable Lyapunov function, the periodic solution and
global stability for a nonautonomous competitive Lotka-
Volterra diffusion system are investigated in [14]; it can be
found that the system has a unique periodic solution which
is globally stable under some appropriate conditions. In
[15], a delay differential equation model for the interaction
between two species is investigated.Thematuration delay for
each species is modelled as a distribution, to allow for the
possibility that individuals may take different amount of time
to maturity. Positivity and boundedness of the solutions are
studied, and global stability is analyzed for each equilibrium.
A Lotka-Volterra competitive system with infinite delay and
feedback controls is proposed in [16]. By usingMawhin’s con-
tinuation theorem of coincidence degree theory, an impulsive
nonautonomous Lotka-Volterra predator-prey system with
harvesting terms is investigated in [17]. Some sufficient con-
ditions for the existence of multiple positive almost periodic
solutions for the system under consideration are discussed.
Furthermore, existence of multiple positive almost periodic
solutions to other types of population systems can be studied
by using the samemethod obtained in this paper. By using the
method of multiple Lyapunov functionals and by developing
a new analysis technique, some sufficient conditions are
obtained that guarantee that some of the 𝑛 species are
driven to extinction. A three-dimensional nonautonomous
competitive Lotka-Volterra system is considered in [18]; it is
shown that if the growth rates are positive, bounded, and
continuous functions, and the averages of the growth rates
satisfy certain inequalities, then any positive solution has
the property that one of its components vanishes. In [19],
an almost periodic multispecies Lotka-Volterra mutualism
system with time delays and impulsive effects is investigated.
By using the theory of comparison theorem and constructing
a suitable Lyapunov functional, sufficient conditions which
guarantee the existence and uniqueness and global asymp-
totical stability of almost periodic solution of this system are
obtained.

It is well known that the effect of toxins on ecologi-
cal systems is an important issue from mathematical and
experimental points of view [20, 21]. The first mathematical
model to represent the toxic liberating interaction between
two competing species is introduced by Maynard Smith
[22]. The model is based upon a two-species Lotka-Volterra



Abstract and Applied Analysis 3

competition model with an additional term to take into
account the effect of toxic substances released by one species
to another, which takes the following form:

𝑁
1 (𝑡) = 𝑁

1 (𝑡) [𝛼1 − 𝛽
1
𝑁
1 (𝑡) − 𝑐

1
𝑁
2 (𝑡) − 𝜌

1
𝑁
1 (𝑡)𝑁2 (𝑡)] ,

𝑁
2
(𝑡) = 𝑁

2
(𝑡) [𝛼
2
− 𝛽
2
𝑁
2
(𝑡) − 𝑐

2
𝑁
1
(𝑡) − 𝜌

2
𝑁
1
(𝑡)𝑁
2
(𝑡)] ,

(2)

where 𝑁
1
(𝑡) and 𝑁

2
(𝑡) represent the density of two compet-

ing species at time 𝑡, respectively. 𝛼
1
and 𝛼

2
denote the birth

rate of 𝑁
1
(𝑡) species and 𝑁

2
(𝑡) species, respectively. 𝛽

1
and

𝛽
2
are the rate of intraspecific competition term for the first

and second species, respectively. 𝑐
1
and 𝑐
2
stand for the rate of

interspecific competition, respectively.𝜌
1
and𝜌
2
represent the

toxic inhibition rate for the first species by the second species
and vice versa. By considering that 𝜌 denotes the rate of toxic
inhibition for the nontoxic species𝑁

1
(𝑡) released by the toxin

liberating species 𝑁
2
(𝑡) and all other parameters share the

same biological interpretations mentioned in model system
(2), work done in [22] is extended in [23] and the generalized
model system is as follows:

𝑁
1
(𝑡) = 𝑁

1
(𝑡) [𝛼
1
− 𝛽
1
𝑁
1
(𝑡) − 𝑐

1
𝑁
2
(𝑡) − 𝜌𝑁

1
(𝑡)𝑁
2

2
(𝑡)] ,

𝑁
2
(𝑡) = 𝑁

2
(𝑡) [𝛼
2
− 𝛽
2
𝑁
2
(𝑡) − 𝑐

2
𝑁
1
(𝑡)] ,

(3)

where the toxic substance producing action follows the
mathematical term 𝜌𝑁

2

1
(𝑡)𝑁
2

2
(𝑡) [23].

It should be noted that models of the persistence and
extinction of a population or community in a polluted
environment have been investigated in [23]. But all of those
papers have a basic assumption that the capacity of the
environment is so large that the change of toxicant in the
environment that comes from uptake and egestation by the
organisms can be neglected. This assumption is not made
in [24, 25], some sufficient conditions on persistence or
extinction of a population have been obtained, and the
threshold between the two has also been obtained for most
situations. In [26, 27], there are modified delay differential
equation models of the growth of two species of plankton
having competitive and allelopathic effects on each other. By
using the continuation theoremof coincidence degree theory,
a set of easily verifiable sufficient conditions are obtained for
the existence of positive periodic solutions for this model.
Recently, some discussions and investigations of the nonau-
tonomous competitive model with toxic effects are made. A
periodic competitive stage-structured Lotka-Volterra model
with the effects of toxic substances is investigated in [28].
It is shown that toxic substances play an important role
in the extinction of species. A set of sufficient conditions
guarantee that one of the components is driven to extinction
while the other is globally attractive.The dynamical behavior
of a two-species competitive system affected by toxic sub-
stances is investigated in [21], where each species produces
a substance toxic to the other species. Boundedness and
local and global stabilities are also addressed. It should be
noted that toxic interaction follows the mathematical term

suggested in model system (2) and each mature individual
produces a substance toxic to the other mature individuals
only when the other mature individual is present, and the
immature individual is not affected by the toxicant [21].
However, to the author’s best knowledge, dynamical behavior
and stability analysis of nonautonomous stage-structured
competitive systemwith toxin liberating species and nontoxic
species have not been investigated. Generally speaking, it
takes some time for a species to reachmaturity to produce the
toxicant; then toxin liberating mature individual produces a
substance toxic to the nontoxic mature individuals only. The
inhibiting effect is zero in absence of either species, and the
immature individual of each species is not affected by the
toxicant. Furthermore, the species compete each other for
the limited life resource within closed environment, but this
competition only happens among the mature individuals and
does not involve the immature individuals. Consequently, it is
necessary to investigate the dynamic effect of stage structure
and toxic effect on the population dynamics of two-species
competitive systemwith toxin liberating species and nontoxic
species.

The rest section of this paper is organized as follows:
a nonautonomous two-species competitive model is estab-
lished in the second section. Stage structure and maturation
delay for each species are introduced, and toxic effect of
toxin liberating species on nontoxic species is considered.
In the third section, qualitative analyses are performed to
investigate the effect of stage structure and toxic substances
on the dynamical behavior of two-species competitive model
system.The positivity and boundedness of solutions are ana-
lytically studied. By utilizing some comparison arguments, an
iterative technique is proposed to discuss permanence of the
species within competitive system. Furthermore, existence of
positive periodic solutions is considered based on continua-
tion theorem of coincidence degree theory. By constructing
an appropriate Lyapunov functional, sufficient conditions for
global stability of the unique positive periodic solution are
analyzed. Numerical simulations are provided to support the
theoretical findings obtained in this paper. Finally, this paper
ends with a conclusion.

2. Model Formulation

In this paper, the effect of stage structure and toxic substances
on the dynamical behavior of two-species competitive model
system is investigated under the following five hypotheses,
which are given as follows.

(H1) Two competing species, that is, nontoxic species and
toxin liberating species, are considered in this paper. It
is assumed that each species is divided into two-stage
groups, and the immature and mature individuals are
divided by a fixed period. 𝑥

1
(𝑡) and 𝑦

1
(𝑡) represent

immature population density of nontoxic species
and toxin liberating species at time 𝑡, respectively;
𝑥
2
(𝑡) and 𝑦

2
(𝑡) denote mature population density of

nontoxic species and toxin liberating species at time
𝑡, respectively.
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(H2) 𝜔-periodic continuous functions 𝛼
1
(𝑡) > 0 and

𝛼
2
(𝑡) > 0 denote the birth rate of immature popula-

tion of nontoxic species and toxin liberating species at
time 𝑡, respectively. 𝜔-periodic continuous functions
𝛾
1
(𝑡) > 0 and 𝛾

2
(𝑡) > 0 stand for the death rate of

immature population of nontoxic species and toxin
liberating species at time 𝑡, respectively. 𝜔-periodic
continuous functions 𝛽

1
(𝑡) > 0 and 𝛽

2
(𝑡) > 0 are the

death and overcrowding rate of mature population of
nontoxic species and toxin liberating species at time
𝑡, respectively.

(H3) 𝜏
1
denotes time of immature nontoxic species to

maturity. The term 𝛼
1
(𝑡 − 𝜏

1
)𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑥
2
(𝑡 − 𝜏

1
)

represents the immature nontoxic species which are
born at time 𝑡 − 𝜏

1
and survive at time 𝑡 with

immature death rate. 𝜏
2
denotes time of immature

toxin liberating species to maturity. The term 𝛼
2
(𝑡 −

𝜏
2
)𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠
𝑦
2
(𝑡−𝜏
2
) represents the immature toxin

liberating species which are born at time 𝑡 − 𝜏
2
and

survive at time 𝑡 with immature death rate.

(H4) For toxin liberating species, it takes some time to
attain its level of maturity to produce the toxic
substances, and toxin liberating mature individual
produces a substance toxic to the nontoxic mature
individuals only. The inhibiting effect is zero in
absence of either species, and the immature individ-
ual of each species is not affected by the toxicant.
Based on model system (3), the toxic effect released
by toxin liberating species on nontoxic species is
described by the mathematical term 𝜌(𝑡)𝑥

2

2
(𝑡)𝑦
2

2
(𝑡),

where toxic inhibition rate is represented by an 𝜔-
periodic continuous function 𝜌(𝑡) > 0.

(H5) Nontoxic species and toxin liberating species com-
pete each other for the common resource within
closed environment, but this competition only hap-
pens among the mature individuals and does not
involve the immature individuals. 𝜔-periodic con-
tinuous function 𝑐

1
(𝑡) > 0 represents interspecific

competition rate for the mature nontoxic species by
the mature toxin liberating species, and 𝜔-periodic
continuous function 𝑐

2
(𝑡) > 0 represents interspe-

cific competition rate for the mature toxin liberating
species by the mature nontoxic species.

Based onhypotheses (H1)–(H5), a nonautonomous stage-
structured competitive model with toxic effect and double
maturation delays is established as follows:

̇𝑥
1
(𝑡) = 𝛼

1
(𝑡) 𝑥
2
(𝑡) − 𝛾

1
(𝑡) 𝑥
1
(𝑡)

− 𝛼
1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑥
2
(𝑡 − 𝜏
1
) ,

̇𝑥
2
(𝑡) = 𝛼

1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑥
2
(𝑡 − 𝜏
1
) − 𝛽
1
(𝑡) 𝑥
2

2
(𝑡)

− 𝑐
1
(𝑡) 𝑥
2
(𝑡) 𝑦
2
(𝑡) − 𝜌 (𝑡) 𝑥

2

2
(𝑡) 𝑦
2

2
(𝑡) ,

̇𝑦
1
(𝑡) = 𝛼

2
(𝑡) 𝑦
2
(𝑡) − 𝛾

2
(𝑡) 𝑦
1
(𝑡)

− 𝛼
2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠
𝑦
2
(𝑡 − 𝜏
2
) ,

̇𝑦
2
(𝑡) = 𝛼

2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠
𝑦
2
(𝑡 − 𝜏
2
) − 𝛽
2
(𝑡) 𝑦
2

2
(𝑡)

− 𝑐
2
(𝑡) 𝑥
2
(𝑡) 𝑦
2
(𝑡) .

(4)

In this paper, model system (4) is investigated with the
following initial conditions:

𝑥
𝑖 (𝜃) = 𝜙

𝑖 (𝜃) > 0, −𝜏
1
≤ 𝜃 ≤ 0, 𝑖 = 1, 2,

𝑦
𝑖
(𝜃) = 𝜓

𝑖
(𝜃) > 0, −𝜏

2
≤ 𝜃 ≤ 0, 𝑖 = 1, 2.

(5)

For the continuity of the initial conditions, it is required
that

𝑥
1 (0) = ∫

0

−𝜏1

𝛼
1 (𝜃) 𝜙2 (𝜃) 𝑒

∫
𝜃

0
𝛾1(𝑠)d𝑠d𝜃,

𝑦
1 (0) = ∫

0

−𝜏2

𝛼
2 (𝜃) 𝜓2 (𝜃) 𝑒

∫
𝜃

0
𝛾2(𝑠)d𝑠d𝜃.

(6)

3. Qualitative Analysis of Model System

In this section, qualitative analysis of the nonautonomous
model system (4) is performed, which is utilized to discuss
dynamic effect of toxic effect and maturation delay on popu-
lation dynamics.The positivity and boundedness of solutions
are analytically studied. By utilizing some comparison argu-
ments, an iterative technique is proposed to discuss perma-
nence of the species within competitive system. Furthermore,
existence of positive periodic solutions is investigated based
on continuation theorem of coincidence degree theory. By
constructing an appropriate Lyapunov functional, sufficient
conditions for global stability of the unique positive periodic
solution are analyzed.

Some mathematical notations are adopted for conve-
nience of the following statement:

𝑓
𝐿
= min
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 , 𝑓

𝑀
= max
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 , (7)

where 𝑓(𝑡) is a 𝜔-periodic continuous function.

3.1. Permanence of Solutions

Theorem 1. Solutions of model system (4) with initial condi-
tions (5) and (6) are positive for all 𝑡 > 0.

Proof. Firstly, we show that 𝑥
2
(𝑡) > 0 for all 𝑡 > 0. Otherwise,

if it is false, since 𝑥
2
(𝑡) > 0 for all 𝑡 ∈ [−𝜏

1
, 0], then it can be

derived that there exists a 𝑡
1
> 0 such that 𝑥

2
(𝑡
1
) = 0.

Define 𝑡
0
= inf{𝑡 > 0 | 𝑥

2
(𝑡) = 0}. According to the

definition of 𝑡
0
, it can be obtained that

̇𝑥
2
(𝑡
0
) ≤ 0. (8)
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It follows from the second equation of model system (4)
that

̇𝑥
2
(𝑡
0
)

=
{

{

{

𝛼
1
(𝑡
0
− 𝜏
1
) 𝑒
−∫
𝑡0

𝑡0−𝜏1

𝛾1(𝑠)d𝑠
𝜙
2
(𝑡
0
− 𝜏
1
) > 0, 0 ≤ 𝑡

0
≤ 𝜏
1
,

𝛼
1
(𝑡
0
− 𝜏
1
) 𝑒
−∫
𝑡0

𝑡0−𝜏1

𝛾1(𝑠)d𝑠
𝑥
2
(𝑡
0
− 𝜏
1
) > 0, 𝑡 > 𝜏

1
,

(9)

and it is easy to show that ̇𝑥
2
(𝑡
0
) > 0, which is a contradiction

to (8). Hence, 𝑥
2
(𝑡) > 0 for all 𝑡 > 0.

By a direct computation, it follows from the first equation
of model system (4) that

𝑥
1 (𝑡) = ∫

𝑡

𝑡−𝜏1

𝛼
1 (𝑠) 𝑒
∫
𝑠

𝑡
𝛾1(𝑚)d𝑠𝑥

2 (𝑠) d𝑠, (10)

since 𝑥
2
(𝑡) > 0 for all 𝑡 > 0; it is easy to show that 𝑥

1
(𝑡) > 0

for all 𝑡 > 0 based on (10).
By utilizing the similar proof, it can be obtained that

𝑦
1
(𝑡) > 0 and 𝑦

2
(𝑡) > 0 for all 𝑡 > 0. Consequently, solutions

of model system (4) with initial conditions (5) and (6) are
positive for all 𝑡 > 0.

Theorem 2. Solutions of model system (4) with initial condi-
tions (5) and (6) are ultimately bounded.

Proof. Let 𝑤(𝑡) = 𝑥
1
(𝑡) + 𝑥

2
(𝑡) + 𝑦

1
(𝑡) + 𝑦

2
(𝑡), where

(𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦
1
(𝑡), 𝑦
2
(𝑡)) is an arbitrary positive solution of

model system (4) with the initial conditions (5) and (6).
Calculating the derivative of 𝑤(𝑡) along the solution of

model system (4) gives that

̇𝑤 (𝑡) ≤ (𝛼
1
(𝑡) + 𝛾

1
(𝑡)) 𝑥
2
(𝑡) − 𝛾

1
(𝑡) (𝑥
1
(𝑡) + 𝑥

2
(𝑡))

− 𝛽
1
(𝑡) 𝑥
2

2
(𝑡)

+ (𝛼
2 (𝑡) + 𝛾

2 (𝑡)) 𝑦2 (𝑡) − 𝛾
2 (𝑡) (𝑦1 (𝑡) + 𝑦

2 (𝑡))

− 𝛽
2
(𝑡) 𝑦
2

2
(𝑡)

≤ (𝛼
𝑀

1
+ 𝛾
𝑀

1
) 𝑥
2
(𝑡) − 𝛽

𝐿

1
𝑥
2

2
(𝑡) − 𝑟

𝐿

1
(𝑥
1
(𝑡) + 𝑥

2
(𝑡))

+ (𝛼
𝑀

2
+ 𝛾
𝑀

2
) 𝑦
2 (𝑡) − 𝛽

𝐿

2
𝑦
2

2
(𝑡) − 𝑟

𝐿

2
(𝑦
1 (𝑡) + 𝑦

2 (𝑡))

≤ − 𝛾
𝐿
𝑤 (𝑡) + (𝛼

𝑀

1
+ 𝛾
𝑀

1
) 𝑥
2
(𝑡) − 𝛽

𝐿

1
𝑥
2

2
(𝑡)

+ (𝛼
𝑀

2
+ 𝛾
𝑀

2
) 𝑦
2
(𝑡) − 𝛽

𝐿

2
𝑦
2

2
(𝑡)

≤ − 𝛾
𝐿
𝑤 (𝑡) +

(𝛼
𝑀

1
+ 𝛾
𝑀

1
)
2

4𝛽𝐿
1

+
(𝛼
𝑀

2
+ 𝛾
𝑀

2
)
2

4𝛽𝐿
2

,

(11)

where 𝛾𝐿 = min{𝛾𝐿
1
, 𝛾
𝐿

2
}.

By using the standard comparison principle [20], it
follows from (11) that

𝑤 (𝑡) ≤
𝛽
𝐿

2
(𝛼
𝑀

1
+ 𝛾
𝑀

1
)
2

+ 𝛽
𝐿

1
(𝛼
𝑀

2
+ 𝛾
𝑀

2
)
2

4𝛾𝐿𝛽𝐿
1
𝛽𝐿
2

, (12)

which implies that any solution of model system (4) with
initial conditions (5) and (6) is ultimately bounded.

Lemma 3 (see [29]). Consider the following differential equa-
tion:

̇𝑥 (𝑡) = 𝑎𝑥 (𝑡 − 𝜏) − 𝑏𝑥 (𝑡) − 𝑐𝑥
2
(𝑡) , (13)

where 𝑎, 𝑏, 𝑐, 𝜏 > 0 and 𝑥(𝑡) > 0 for −𝜏 ≤ 𝑡 ≤ 0; we have that

(i) if 𝑎 > 𝑏, then lim
𝑡→+∞

𝑥(𝑡) = (𝑎 − 𝑏)/𝑐;
(ii) if 𝑎 < 𝑏, then lim

𝑡→+∞
𝑥(𝑡) = 0.

Lemma 4 (see [29]). Consider the following differential equa-
tion:

̇𝑥 (𝑡) = 𝑑𝑥 (𝑡 − 𝜎) − 𝑒𝑥
2
(𝑡) , (14)

where 𝑑, 𝑒, 𝜎 > 0 and 𝑥(𝑡) > 0 for −𝜎 ≤ 𝑡 ≤ 0; we have

lim
𝑡→+∞

𝑥 (𝑡) =
𝑑

𝑒
. (15)

Definition 5 (see [30]). Model system

𝑋 (𝑡) = 𝑓 (𝑡, 𝑋
𝑡 (𝜃)) , (16)

where 𝑡 ≥ 0, 𝜃 ∈ [−𝜏, 0], 𝑋 ∈ R𝑛. Model system (16) is
said to be permanent if, for any solution 𝑋(𝑡, 𝜙), there exists
a constant 𝑚 > 0 and 𝑇 = 𝑇(𝜙) such that 𝑋(𝑡) > 𝑚 for all
𝑡 > 𝑇.

Definition 6 (see [30]). The domain 𝐷 ∈ C𝑛 is said to be an
ultimately bounded domain, if𝐷 is a closed, bounded subset
of C𝑛, and there exists a constant 𝑇 = 𝑇(𝜙) such that𝑋

𝑡
(𝜃) ∈

𝐷 for all 𝑡 > 𝑇.

Theorem 7. If 𝛼𝐿
1
𝛽
𝐿

2
> 𝑐
𝑀

1
𝛼
𝑀

2
and 𝛼𝐿

2
𝛽
𝐿

1
> 𝑐
𝑀

2
𝛼
𝑀

1
, then model

system (4) is permanent with initial conditions (5) and (6).

Proof. According to the second equation of model system (4)
andTheorem 1, we get that

̇𝑥
2
(𝑡) ≤ 𝛼

𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1𝑥
2
(𝑡 − 𝜏
1
) − 𝛽
𝐿

1
𝑥
2

2
(𝑡) . (17)

By virtue of Lemma 4 and (17), there exists a positive time
𝑇
1
such that, for sufficiently small 𝜖 > 0 and 𝑡 ≥ 𝑇

1
, it yields

𝑥
2
(𝑡) ≤

𝛼
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1

+ 𝜖 := 𝑀
(1)

2
. (18)

By rearranging (10), it can be obtained that

𝑥
1 (𝑡) = 𝑒

−∫
𝑡

0
𝛾1(𝑠)d𝑠 ∫

𝑡

𝑡−𝜏1

𝛼
1 (𝑠) 𝑒
∫
𝑠

0
𝛾1(𝑚)d𝑚𝑥

2 (𝑠) d𝑠. (19)

For any 𝑡 ≥ 𝑇
1
, it follows from (18) and (19) that

𝑥
1 (𝑡) ≤

𝑎
𝑀

1
𝑀
(1)

2
(1 − 𝑒

−𝛾
𝑀

1
𝜏1)

𝛾𝐿
1

:= 𝑀
(1)

1
. (20)
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Based on the fourth equation of model system (4) and
Theorem 1, it can be obtained that

̇𝑦
2
(𝑡) ≤ 𝛼

𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2𝑦
2
(𝑡 − 𝜏
2
) − 𝛽
𝐿

2
𝑦
2

2
(𝑡) (21)

holds for 𝑡 ≥ 𝑇
1
.

By virtue of Lemma 4 and (21), there exists 𝑇
2
> 𝑇
1
such

that, for sufficiently small 𝜖 > 0 and 𝑡 ≥ 𝑇
2
, it yields

𝑦
2 (𝑡) ≤

𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

+ 𝜖 := 𝑀
(1)

4
. (22)

By direct computing, it follows from the third equation of
model system (4) that

𝑦
1
(𝑡) = 𝑒

−∫
𝑡

0
𝛾2(𝑠)d𝑠 ∫

𝑡

𝑡−𝜏2

𝛼
2
(𝑠) 𝑒
∫
𝑠

0
𝛾2(𝑚)d𝑚𝑦

2
(𝑠) d𝑠. (23)

For any 𝑡 ≥ 𝑇
2
, it follows from (22) and (23) that

𝑦
1
(𝑡) ≤

𝛼
𝑀

2
𝑀
(1)

4
(1 − 𝑒

−𝛾
𝑀

2
𝜏2)

𝛾𝐿
2

:= 𝑀
(1)

3
. (24)

Furthermore, it follows from the second equation of
model system (4) that

̇𝑥
2
(𝑡) ≥ 𝛼

𝐿

1
𝑒
−𝛾
𝑀

1
𝜏1𝑥
2
(𝑡 − 𝜏
1
)

− (𝛽
𝑀

1
+ 𝜌
𝑀

1
(𝑀
(1)

4
)
2

) 𝑥
2

2
(𝑡) − 𝑐

𝑀

1
𝑀
(1)

4
𝑥
2
(𝑡) .

(25)

Based on Lemma 3 and (25), there exists 𝑇
3
> 𝑇
2
and for

any 𝑡 ≥ 𝑇
3
and sufficiently small 𝜖 > 0,

𝑥
2
(𝑡) ≥

𝛼
𝐿

1
𝑒
−𝛾
𝑀

1
𝜏1 − 𝑐
𝑀

1
𝑀
(1)

4

𝛽𝑀
1
+ 𝜌𝑀
1
(𝑀
(1)

4
)
2

− 𝜖 := 𝑚
(1)

2 (26)

holds provided that

𝛼
𝐿

1
𝑒
−𝛾
𝑀

1
𝜏1 > 𝑐
𝑀

1
𝑀
(1)

4
. (27)

According to (19), for any 𝑡 ≥ 𝑇
3
, we get that

𝑥
1
(𝑡) ≥

𝛼
𝐿

1
(1 − 𝑒

−𝛾
𝐿

1
𝜏1)𝑚
(1)

2

𝛾𝑀
1

:= 𝑚
(1)

1
. (28)

For any 𝑡 ≥ 𝑇
3
, it follows from the fourth equation of

model system (4) that

̇𝑦
2 (𝑡) ≥ 𝛼

𝐿

2
𝑒
−𝛾
𝑀

2
𝜏2𝑦
2
(𝑡 − 𝜏
2
) − 𝛽
𝑀

2
𝑦
2

2
(𝑡) − 𝑐

𝑀

2
𝑀
(1)

2
𝑦
2 (𝑡) .

(29)

Based on Lemma 3 and (29), there exists 𝑇
4
> 𝑇
3
and for

any 𝑡 ≥ 𝑇
4
and sufficiently small 𝜖 > 0,

𝑦
2 (𝑡) ≥

𝛼
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏2 − 𝑐
𝑀

2
𝑀
(1)

2

𝛽𝑀
2

− 𝜖 := 𝑚
(1)

4
(30)

holds provided that

𝛼
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏2 > 𝑐
𝑀

2
𝑀
(1)

2
. (31)

According to (23) and (30), it can be obtained that

𝑦
1 (𝑡) ≥

𝛼
𝐿

2
𝑚
(1)

4
(1 − 𝑒

−𝛾
𝐿

2
𝜏2)

𝛾𝑀
2

:= 𝑚
(1)

3
. (32)

According to the second equation of model system (4),
we get that

̇𝑥
2
(𝑡) ≤ 𝛼

𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1𝑥
2
(𝑡 − 𝜏
1
)

− (𝛽
𝐿

1
+ 𝜌
𝐿
(𝑚
(1)

4
)
2

) 𝑥
2

2
(𝑡) − 𝑐

𝐿

1
𝑚
(1)

4
𝑥
2
(𝑡) .

(33)

By virtue of Lemma 3 and (33), there exists 𝑇
5
> 𝑇
4
such

that, for sufficiently small 𝜖 > 0 and 𝑡 ≥ 𝑇
5
, it yields

𝑥
2 (𝑡) ≤

𝛼
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1 − 𝑐
𝐿

1
𝑚
(1)

4

𝛽𝐿
1
+ 𝜌𝐿(𝑚

(1)

4
)
2

+ 𝜖 := 𝑀
(2)

2
, (34)

which holds provided that

𝛼
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1 > 𝑐
𝐿

1
𝑚
(1)

4
. (35)

For any 𝑡 ≥ 𝑇
5
, it follows from (19) and (34) that

𝑥
1 (𝑡) ≤

𝛼
𝑀

1
𝑀
(2)

2
(1 − 𝑒

−𝛾
𝑀

1
𝜏1)

𝛾𝐿
1

:= 𝑀
(2)

1
. (36)

Based on the fourth equation of model system (4), it can
be obtained that

̇𝑦
2
(𝑡) ≤ 𝛼

𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2𝑦
2
(𝑡 − 𝜏
2
) − 𝛽
𝐿

2
𝑦
2

2
(𝑡) − 𝑐

𝐿

2
𝑚
(1)

2
𝑦
2
(𝑡) (37)

holds for 𝑡 ≥ 𝑇
5
.

By virtue of Lemma 3 and (37), there exists 𝑇
6
> 𝑇
5
such

that, for sufficiently small 𝜖 > 0 and 𝑡 ≥ 𝑇
6
, it yields

𝑦
2
(𝑡) ≤

𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2 − 𝑐
𝐿

2
𝑚
(1)

2

𝛽𝐿
2

+ 𝜖 := 𝑀
(2)

4
, (38)

which holds provided that

𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2 > 𝑐
𝐿

2
𝑚
(1)

2
. (39)

For any 𝑡 ≥ 𝑇
6
, it follows from (23) and (38) that

𝑦
1 (𝑡) ≤

𝛼
𝑀

2
𝑀
(2)

4
(1 − 𝑒

−𝛾
𝑀

2
𝜏2)

𝛾𝐿
2

:= 𝑀
(2)

3
. (40)

Furthermore, it follows from the second equation of
model system (4) that

̇𝑥
2
(𝑡) ≥ 𝛼

𝐿

1
𝑒
−𝛾
𝑀

1
𝜏2𝑥
2
(𝑡 − 𝜏
1
)

− (𝛽
𝑀

1
+ 𝜌
𝑀
(𝑀
(2)

4
)
2

) 𝑥
2

2
(𝑡) − 𝑐

𝑀

1
𝑀
(2)

4
𝑥
2
(𝑡) .

(41)
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Based on Lemma 3 and (41), there exists 𝑇
7
> 𝑇
6
and, for

any 𝑡 ≥ 𝑇
7
and sufficiently small 𝜖 > 0,

𝑥
2
(𝑡) ≥

𝛼
𝐿

1
𝑒
−𝛾
𝑀

1
𝜏1 − 𝑐
𝑀

1
𝑀
(2)

4

𝛽𝑀
1
+ 𝜌𝑀(𝑀

(2)

4
)
2

− 𝜖 := 𝑚
(2)

2 (42)

holds provided that

𝛼
𝐿

1
𝑒
−𝛾
𝑀

1
𝜏1 > 𝑐
𝑀

1
𝑀
(2)

4
. (43)

According to (19) and (42), for any 𝑡 ≥ 𝑇
7
, we get that

𝑥
1
(𝑡) ≥

𝛼
𝐿

1
(1 − 𝑒

−𝛾
𝐿

1
𝜏1)𝑚
(2)

2

𝛾𝑀
1

:= 𝑚
(2)

1
. (44)

For any 𝑡 ≥ 𝑇
7
, it follows from the fourth equation of

model system (4) that

̇𝑦
2 (𝑡) ≥ 𝛼

𝐿

2
𝑒
−𝛾
𝑀

2
𝜏2𝑦
2
(𝑡 − 𝜏
2
) − 𝛽
𝑀

2
𝑦
2

2
(𝑡) − 𝑐

𝑀

2
𝑀
(2)

2
𝑦
2 (𝑡) .

(45)

Based on Lemma 3 and (45), there exists 𝑇
8
> 𝑇
7
and, for

any 𝑡 ≥ 𝑇
8
and sufficiently small 𝜖 > 0,

𝑦
2
(𝑡) ≥

𝛼
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏2 − 𝑐
𝑀

2
𝑀
(2)

2

𝛽𝑀
2

− 𝜖 := 𝑚
(2)

4
(46)

holds provided that

𝛼
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏2 > 𝑐
𝑀

2
𝑀
(2)

2
. (47)

According to (23) and (46), it can be obtained that

𝑦
1 (𝑡) ≥

𝛼
𝐿

2
𝑚
(2)

4
(1 − 𝑒

−𝛾
𝐿

2
𝜏2)

𝛾𝑀
2

:= 𝑚
(2)

3
. (48)

By using simple computation, it is easy to show that six
inequalities (27), (31), (35), (39), (43), and (47) hold if the
following two inequalities 𝛼𝐿

1
𝛽
𝐿

2
> 𝑐
𝑀

1
𝛼
𝑀

2
and 𝛼𝐿

2
𝛽
𝐿

1
> 𝑐
𝑀

2
𝛼
𝑀

1

hold.
Furthermore, eight sequences will be obtained by repeat-

ing the discussion in this manner, which are given as follows:

𝑀
(𝑛+1)

1
=

𝛼
𝑀

1
𝑀
(𝑛+1)

2
(1 − 𝑒

−𝛾
𝑀

1
𝜏1)

𝛾𝐿
1

,

𝑀
(𝑛+1)

2
=
𝛼
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1 − 𝑐
𝐿

1
𝑚
(𝑛)

4

𝛽𝐿
1
+ 𝜌𝐿(𝑚

(𝑛)

4
)
2

+ 𝜖,

𝑀
(𝑛+1)

3
=

𝛼
𝑀

2
𝑀
(𝑛+1)

4
(1 − 𝑒

−𝛾
𝑀

2
𝜏2)

𝛾𝐿
2

,

𝑀
(𝑛+1)

4
=
𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2 − 𝑐
𝐿

2
𝑚
(𝑛)

2

𝛽𝐿
2

+ 𝜖,

𝑚
(𝑛+1)

1
=

𝛼
𝐿

1
(1 − 𝑒

−𝛾
𝐿

1
𝜏1)𝑚
(𝑛+1)

2

𝛾𝑀
1

,

𝑚
(𝑛+1)

2
=
𝛼
𝐿

1
𝑒
−𝛾
𝑀

1
𝜏1 − 𝑐
𝑀

1
𝑀
(𝑛+1)

4

𝛽𝑀
1
+ 𝜌𝑀(𝑀

(𝑛+1)

4
)
2

− 𝜖,

𝑚
(𝑛+1)

3
=

𝛼
𝐿

2
𝑚
(𝑛+1)

4
(1 − 𝑒

−𝛾
𝐿

2
𝜏2)

𝛾𝑀
2

,

𝑚
(𝑛+1)

4
=
𝛼
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏2 − 𝑐
𝑀

2
𝑀
(𝑛+1)

2

𝛽𝑀
2

− 𝜖.

(49)

It is easy to show that𝑀(𝑛)
𝑖

> 0 and the sequences {𝑀(𝑛)
𝑖
}

(𝑖 = 1, 2, 3, 4) are decreasing as 𝑛 increases, which implies that
lim
𝑛→∞

𝑀
(𝑛)

𝑖
= 𝑀
∗

𝑖
exists; furthermore, it is easy to show

that 𝑚(𝑛)
𝑖

< 𝑀
(𝑛)

𝑖
and the sequences {𝑚(𝑛)

𝑖
} (𝑖 = 1, 2, 3, 4) are

increasing as 𝑛 increases, which implies that lim
𝑛→∞

𝑚
(𝑛)

𝑖
=

𝑚
∗

𝑖
exists. Consequently, it follows from (49) that

𝑀
∗

1
=

𝛼
𝑀

1
𝑀
∗

2
(1 − 𝑒

−𝛾
𝑀

1
𝜏1)

𝛾𝐿
1

, 𝑀
∗

2
=
𝛼
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1 − 𝑐
𝐿

1
𝑚
∗

4

𝛽𝐿
1
+ 𝜌𝐿𝑚∗2

4

,

𝑀
∗

3
=

𝛼
𝑀

2
𝑀
∗

4
(1 − 𝑒

−𝛾
𝑀

2
𝜏2)

𝛾𝐿
2

, 𝑀
∗

4
=
𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2 − 𝑐
𝐿

2
𝑚
∗

2

𝛽𝐿
2

,

𝑚
∗

1
=

𝛼
𝐿

1
(1 − 𝑒

−𝛾
𝐿

1
𝜏1)𝑚
∗

2

𝛾𝑀
1

, 𝑚
∗

2
=
𝛼
𝐿

1
𝑒
−𝛾
𝑀

1
𝜏1 − 𝑐
𝑀

1
𝑀
∗

4

𝛽𝑀
1
+ 𝜌𝑀𝑀∗2

4

,

𝑚
∗

3
=

𝛼
𝐿

2
𝑚
∗

4
(1 − 𝑒

−𝛾
𝐿

2
𝜏2)

𝛾𝑀
2

, 𝑚
∗

4
=
𝛼
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏2 − 𝑐
𝑀

2
𝑀
∗

2

𝛽𝑀
2

.

(50)

Based on Definition 5 and (50), it can be concluded that
model system (4) is persistent if 𝛼𝐿

1
𝛽
𝐿

2
> 𝑐
𝑀

1
𝛼
𝑀

2
and 𝛼

𝐿

2
𝛽
𝐿

1
>

𝑐
𝑀

2
𝛼
𝑀

1
hold.

3.2. Existence of Positive Periodic Solutions

Definition 8 (see [31]). Let 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑌 be a linear
mapping and let 𝑁 : 𝑋 → 𝑌 be a continuous mapping,
where 𝑋 and 𝑌 are real Banach spaces. If dimKer 𝐿 =

codimIm 𝐿 < +∞ and Im 𝐿 is closed in 𝑌, then 𝐿 is called
a Fredholm mapping of index zero.

If 𝐿 is Fredholm mapping of index zero and there exist
continuous projectors 𝑃 : 𝑋 → 𝑋 and𝑄 : 𝑌 → 𝑌 such that

Im𝑃 = Ker 𝐿, Im 𝐿 = Ker𝑄 = Im (𝐼 − 𝑄) , (51)

then restriction 𝐿
𝑝
of 𝐿 to Dom𝐿∩Ker𝑃 : (𝐼−𝑃)𝑋 → Im 𝐿

is invertible.

Definition 9 (see [31]). Denote the inverse of 𝐿
𝑝
by 𝐾
𝑝
.

Supposing that Ω is an open bounded subset of 𝑋, if 𝑄𝑁(Ω)

is bounded and 𝐾
𝑝
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is compact, then

the mapping 𝑁 is called 𝐿-compact on Ω. Since Im𝑄 is
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isomorphic toKer𝐿, there exists an isomorphism 𝐽 : Im𝑄 →

Ker 𝐿.

Lemma 10 (see [31]). LetΩ ⊂ 𝑋 be an open bounded set, let 𝐿
be a Fredholm mapping of index zero, and let𝑁 be 𝐿-compact
on Ω. If the following three conditions hold:

(i) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for any 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝜕Ω ∩ Dom𝐿,

(ii) 𝑄𝑁𝑥 ̸= 0 for any 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿,

(iii) deg{𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0,

then 𝐿𝑥 = 𝑁𝑥 has at least one solution inΩ ∩ Dom𝐿.

Theorem 11. If 𝛼𝐿
1
𝛽
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏1 > 𝛼

𝑀

2
𝑐
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2 , 𝛼𝐿
2
𝛽
𝐿

1
𝑒
−𝛾
𝑀

2
𝜏2 >

𝛼
𝑀

1
𝑐
𝑀

2
𝑒
−𝛾
𝐿

1
𝜏2 , then model system (4) with initial conditions (5)

and (6) has at least one positive 𝜔-periodic solution.

Proof. Consider the subsystem of model system (4):

̇𝑥
2
(𝑡) = 𝛼

1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑥
2
(𝑡 − 𝜏
1
) − 𝛽
1
(𝑡) 𝑥
2

2
(𝑡)

− 𝑐
1 (𝑡) 𝑥2 (𝑡) 𝑦2 (𝑡) − 𝜌 (𝑡) 𝑥

2

2
(𝑡) 𝑦
2

2
(𝑡) ,

̇𝑦
2 (𝑡) = 𝛼

2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠
𝑦
2
(𝑡 − 𝜏
2
)

− 𝛽
2
(𝑡) 𝑦
2

2
(𝑡) − 𝑐

2
(𝑡) 𝑥
2
(𝑡) 𝑦
2
(𝑡) .

(52)

Let 𝑢
1
(𝑡) = ln[𝑥

2
(𝑡)], 𝑢

2
(𝑡) = ln[𝑦

2
(𝑡)].

By substituting𝑢
1
(𝑡) and𝑢

2
(𝑡) into (52), it can be obtained

that

̇𝑢
1 (𝑡) = 𝛼

1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑒
𝑢1(𝑡−𝜏1)−𝑢1(𝑡)

− 𝛽
1
(𝑡) 𝑒
𝑢1(𝑡) − 𝑐

1
(𝑡) 𝑒
𝑢2(𝑡) − 𝜌 (𝑡) 𝑒

𝑢1(𝑡)+2𝑢2(𝑡),

̇𝑢
2
(𝑡) = 𝛼

2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠
𝑒
𝑢2(𝑡−𝜏2)−𝑢2(𝑡)

− 𝛽
2
(𝑡) 𝑒
𝑢2(𝑡) − 𝑐

2
(𝑡) 𝑒
𝑢1(𝑡).

(53)

It should be noted that if model system (53) has one
𝜔-periodic solution (𝑢

∗

1
(𝑡), 𝑢
∗

2
(𝑡))
𝑇, then (𝑥

∗

2
(𝑡), 𝑦
∗

2
(𝑡))
𝑇

=

(𝑒
𝑢
∗

1
(𝑡)
, 𝑒
𝑢
∗

2
(𝑡)
)
𝑇 is a positive 𝜔-periodic solution of model

system (52).
In order to utilize Lemma 10 in a straightforwardmanner,

we define

𝑋 = 𝑌 = {(𝑢
1
(𝑡) , 𝑢
2
(𝑡))
𝑇

∈ 𝐶 (R,R
2
) : 𝑢
𝑖
(𝑡 + 𝜔) = 𝑢

𝑖
(𝑡) , 𝑖 = 1, 2} ,

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢
1
(𝑡) , 𝑢
2
(𝑡))
𝑇
󵄩󵄩󵄩󵄩󵄩󵄩
= max
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨𝑢1 (𝑡)
󵄨󵄨󵄨󵄨 + max
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨𝑢2 (𝑡)
󵄨󵄨󵄨󵄨 ,

(54)

where | ⋅ | denotes the Euclidean norm; it is easy to show that
both 𝑋 and 𝑌 are Banach spaces with the norm ‖ ⋅ ‖; then
define

Dom𝐿 ∩ 𝑋 󳨀→ 𝑋,

𝐿(𝑢
1
(𝑡) , 𝑢
2
(𝑡))
𝑇
= (

d𝑢
1
(𝑡)

d𝑡
,
d𝑢
2
(𝑡)

d𝑡
)

𝑇

,

(55)

where Dom𝐿 = {(𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇

∈ 𝐶(R,R2)}, 𝑁[
𝑢1
𝑢2
] =

[
𝑓1(𝑡)

𝑓2(𝑡)
], and

𝑓
1
(𝑡) = 𝛼

1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑒
𝑢1(𝑡−𝜏1)−𝑢1(𝑡)

− 𝛽
1
(𝑡) 𝑒
𝑢1(𝑡) − 𝑐

1
(𝑡) 𝑒
𝑢2(𝑡) − 𝜌 (𝑡) 𝑒

𝑢1(𝑡)+2𝑢2(𝑡),

𝑓
2
(𝑡) = 𝛼

2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠
𝑒
𝑢2(𝑡−𝜏2)−𝑢2(𝑡)

− 𝛽
2 (𝑡) 𝑒
𝑢2(𝑡) − 𝑐

2 (𝑡) 𝑒
𝑢1(𝑡).

(56)

Furthermore, we define

𝑃[
𝑢
1

𝑢
2

] = 𝑄[
𝑢
1

𝑢
2

] =
[
[
[

[

1

𝜔
∫

𝜔

0

𝑢
1 (𝑡) d𝑡

1

𝜔
∫

𝜔

0

𝑢
2
(𝑡) d𝑡

]
]
]

]

, [
𝑢
1

𝑢
2

] ∈ 𝑋 = 𝑌.

(57)

According to the above definitions, it is not difficult to
verify that Ker 𝐿 = {𝑥 | 𝑥 ∈ 𝑋, 𝑥 = ℎ, ℎ ∈ R2},
Im 𝐿 = {𝑦 ∈ 𝑌 | ∫

𝜔

0
𝑦(𝑡)d𝑡 = 0} are closed in 𝑌, dimKer𝐿 =

codimIm𝐿 = 2, and both 𝑃 and 𝑄 are continuous projectors
such that Im𝑃 = Ker 𝐿 and Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄).

Based on the above analysis, it can be obtained that 𝐿 is a
Fredholm mapping of index zero.

Furthermore, the inverse𝐾
𝑝
: Im 𝐿 → Dom𝐿∩Ker𝑃 of

𝐿
𝑝
exists and takes the following form:

𝐾
𝑝
(𝑦) = ∫

𝑡

0

𝑦 (𝑠) d𝑠 − 1

𝜔
∫

𝜔

0

∫

𝑡

0

𝑦 (𝑠) d𝑠 d𝑡. (58)

Hence, 𝑄𝑁 : 𝑋 → 𝑌 and 𝐾
𝑝
(𝐼 − 𝑄)𝑁 : 𝑋 → 𝑋 can be

defined as follows, respectively,

𝑄𝑁𝑥 =
[
[
[

[

1

𝜔
∫

𝜔

0

𝑓
1 (𝑡) d𝑡

1

𝜔
∫

𝜔

0

𝑓
2
(𝑡) d𝑡

]
]
]

]

,

𝐾
𝑝
(𝐼 − 𝑄)𝑁𝑥 = ∫

𝑡

0

𝑁𝑥 (𝑠) d𝑠 − 1

𝜔
∫

𝜔

0

∫

𝑡

0

𝑁𝑥 (𝑠) d𝑠 d𝑡

− (
𝑡

𝜔
−
1

2
)∫

𝜔

0

𝑁𝑥 (𝑠) d𝑠.

(59)

It is easy to show that𝑄𝑁 and𝐾
𝑝
(𝐼−𝑄)𝑁 are continuous.

In order to facilitate the proof based on Lemma 10, we also
need to find an appropriate open and bounded subset Ω,
which can be found by the following two steps.
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Step 1. According to the operator equation 𝐿𝑥 = 𝜆𝑁𝑥 for 𝜆 ∈

(0, 1), the upper and lower bound of 𝑢
1
(𝑡) and 𝑢

2
(𝑡) will be

estimated as follows:
d𝑢
1
(𝑡)

d𝑡
= 𝜆𝑓
1 (𝑡) ,

d𝑢
2
(𝑡)

d𝑡
= 𝜆𝑓
2
(𝑡) ,

(60)

where 𝑓
1
(𝑡) and 𝑓

2
(𝑡) have been defined in (56).

Suppose that (𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇
∈ 𝑋 is a solution of model

system (60) for some 𝜆 ∈ (0, 1). By integrating (60) over the
interval [0, 𝜔], it can be obtained that

∫

𝜔

0

𝛼
1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑒
𝑢1(𝑡−𝜏1)−𝑢1(𝑡)d𝑡

= ∫

𝜔

0

𝛽
1
(𝑡) 𝑒
𝑢1(𝑡) + 𝑐

1
(𝑡) 𝑒
𝑢2(𝑡) + 𝜌 (𝑡) 𝑒

𝑢1(𝑡)+2𝑢2(𝑡)d𝑡,

(61)

∫

𝜔

0

𝛼
2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠
𝑒
𝑢2(𝑡−𝜏2)−𝑢2(𝑡)d𝑡

= ∫

𝜔

0

𝛽
2
(𝑡) 𝑒
𝑢2(𝑡) + 𝑐

2
(𝑡) 𝑒
𝑢1(𝑡)d𝑡.

(62)

Based on definition (𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇
∈ 𝑋, there exist 𝜉

𝑖
, 𝜂
𝑖
∈

[0, 𝜔] such that

𝑢
𝑖
(𝜉
𝑖
) = min
𝑡∈[0,𝜔]

𝑢
𝑖
(𝑡) , 𝑢

𝑖
(𝜂
𝑖
) = max
𝑡∈[0,𝜔]

𝑢
𝑖
(𝑡) , 𝑖 = 1, 2.

(63)

Multiplying the first equation of (60) by 𝑒𝑢1(𝑡) and inte-
grating it over [0, 𝜔] give that

∫

𝜔

0

𝛼
1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑒
𝑢1(𝑡−𝜏1)d𝑡

= ∫

𝜔

0

𝛽
1 (𝑡) 𝑒
2𝑢1(𝑡) + 𝑐

1 (𝑡) 𝑒
𝑢1(𝑡)+𝑢2(𝑡)

+ 𝜌 (𝑡) 𝑒
2(𝑢1(𝑡)+𝑢2(𝑡))d𝑡.

(64)

It follows from (64) that

𝛽
𝐿

1
∫

𝜔

0

𝑒
2𝑢1(𝑡)d𝑡 + 𝑐

𝐿

1
∫

𝜔

0

𝑒
𝑢1(𝑡)+𝑢2(𝑡)d𝑡

+ 𝜌
𝐿
∫

𝜔

0

𝑒
2(𝑢1(𝑡)+𝑢2(𝑡))d𝑡 ≤ 𝛼

𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1 ∫

𝜔

0

𝑒
𝑢1(𝑡)d𝑡.

(65)

On the other hand, by using the inequality,

(∫

𝜔

0

𝑒
𝑢1(𝑡)d𝑡)

2

≤ 𝜔∫

𝜔

0

𝑒
2𝑢1(𝑡)d𝑡. (66)

Based on (65) and (66), it can be obtained that

𝛽
𝐿

1
(∫

𝜔

0

𝑒
𝑢1(𝑡)d𝑡)

2

≤ 𝜔𝛽
𝐿

1
∫

𝜔

0

𝑒
2𝑢1(𝑡)d𝑡

≤ 𝜔𝛼
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1 ∫

𝜔

0

𝑒
𝑢1(𝑡)d𝑡,

(67)

which derives that

𝛽
𝐿

1
∫

𝜔

0

𝑒
𝑢1(𝑡)d𝑡 ≤ 𝜔𝛼

𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1 , 𝑢

1
(𝜉
1
) ≤ ln

𝛼
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1

.

(68)

It follows from (60) and (68) that

∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
d𝑡 < 2∫

𝜔

0

𝛽
1 (𝑡) 𝑒
𝑢1(𝑡) ≤

2𝜔𝛼
𝑀

1
𝛽
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1

. (69)

According to (68) and (69), it can be obtained that

𝑢
1 (𝑡) ≤ 𝑢

1
(𝜉
1
) + ∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
d𝑡

≤ ln
𝛼
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1

+
2𝜔𝛼
𝑀

1
𝛽
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1

.

(70)

Multiplying the second equation of (60) by 𝑒
𝑢2(𝑡) and

integrating it over [0, 𝜔] give that

∫

𝜔

0

𝛼
2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠
𝑒
𝑢2(𝑡−𝜏2)d𝑡

= ∫

𝜔

0

𝛽
2 (𝑡) 𝑒
2𝑢2(𝑡) + 𝑐

2 (𝑡) 𝑒
𝑢1(𝑡)+𝑢2(𝑡)d𝑡.

(71)

It follows from (71) that

𝛽
𝐿

2
∫

𝜔

0

𝑒
2𝑢2(𝑡)d𝑡 + 𝑐

𝐿

2
∫

𝜔

0

𝑒
𝑢1(𝑡)+𝑢2(𝑡)d𝑡

≤ 𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2 ∫

𝜔

0

𝑒
𝑢2(𝑡)d𝑡.

(72)

Based on (66) and (72), it can be obtained that

𝛽
𝐿

2
(∫

𝜔

0

𝑒
𝑢1(𝑡)d𝑡)

2

≤ 𝜔𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2 ∫

𝜔

0

𝑒
𝑢2(𝑡)d𝑡, (73)

which derives that

∫

𝜔

0

𝑒
𝑢2(𝑡)d𝑡 ≤

𝜔𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

, 𝑢
2
(𝜉
2
) ≤ ln

𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

. (74)

It follows from (60) and (74) that

∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
d𝑡 < 2∫

𝜔

0

𝛽
2
(𝑡) 𝑒
𝑢2(𝑡)d𝑡 ≤

2𝜔𝛼
𝑀

2
𝛽
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

. (75)

According to (74) and (75), it can be obtained that

𝑢
2
(𝑡) ≤ 𝑢

2
(𝜉
2
) + ∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
d𝑡

≤ ln
𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

+
2𝜔𝛼
𝑀

2
𝛽
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

.

(76)
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It should be noted that

∫

𝜔

0

𝛼
1
(𝑡) 𝑒
−∫
𝑡+𝜏1

𝑡
𝛾1(𝑠)d𝑠𝑒

𝑢1(𝑡)d𝑡

= ∫

𝜔

0

𝛼
1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑒
𝑢1(𝑡−𝜏1)d𝑡.

(77)

Based on (64), it can be obtained that

(𝛼
𝐿

1
𝑒
−𝛾
𝑀

2
𝜏1 −

𝑐
𝑀

1
𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

)∫

𝜔

0

𝑒
𝑢1(𝑡)d𝑡

≤ (𝛽
𝑀

1
+
2𝜌
𝑀
𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

)∫

𝜔

0

𝑒
2𝑢1(𝑡)d𝑡,

(78)

which derives that

∫

𝜔

0

𝑒
𝑢1(𝑡)d𝑡 ≥

𝜔 (𝛼
𝐿

1
𝛽
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏1 − 𝛼

𝑀

2
𝑐
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2)

𝛽𝑀
1
𝛽𝐿
2
+ 2𝛼𝑀
2
𝜌𝑀𝑒−𝛾

𝐿

2
𝜏2

,

𝑢
1
(𝜂
1
) ≥ ln

𝛼
𝐿

1
𝛽
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏1 − 𝛼

𝑀

2
𝑐
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝑀
1
𝛽𝐿
2
+ 2𝛼𝑀
2
𝜌𝑀𝑒−𝛾

𝐿

2
𝜏2

(79)

hold provided that 𝛼𝐿
1
𝛽
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏1 > 𝛼

𝑀

2
𝑐
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2 .

According to (69) and (79), it can be obtained that

𝑢
1
(𝑡) ≥ 𝑢

1
(𝜂
1
) − ∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
d𝑡

≥ ln
𝛼
𝐿

1
𝛽
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏1 − 𝛼

𝑀

2
𝑐
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝑀
1
𝛽𝐿
2
+ 2𝛼𝑀
2
𝜌𝑀𝑒−𝛾

𝐿

2
𝜏2

−
2𝜔𝛼
𝑀

1
𝛽
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
1

.

(80)

By virtue of (70) and (80), if 𝛼𝐿
1
𝛽
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏1 > 𝛼

𝑀

2
𝑐
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2 ,

then
max
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨𝑢1 (𝑡)
󵄨󵄨󵄨󵄨

< max

{{{{{

{{{{{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln
𝛼
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
2𝜔𝛼
𝑀

1
𝛽
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln
𝛼
𝐿

1
𝛽
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏1 − 𝛼

𝑀

2
𝑐
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝑀
1
𝛽𝐿
2
+ 2𝛼𝑀
2
𝜌𝑀𝑒−𝛾

𝐿

2
𝜏2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
2𝜔𝛼
𝑀

1
𝛽
𝑀

1
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1

}}}}}

}}}}}

}

:= 𝐻
1
.

(81)

Similarly, it is easy to show that

∫

𝜔

0

𝛼
2 (𝑡) 𝑒
−∫
𝑡+𝜏2

𝑡
𝛾2(𝑠)d𝑠𝑒

𝑢2(𝑡)d𝑡

= ∫

𝜔

0

𝛼
2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠
𝑒
𝑢2(𝑡−𝜏2)d𝑡,

(82)

which derives that

𝑢
2
(𝜂
2
) ≥ ln

𝛼
𝐿

2
𝛽
𝐿

1
𝑒
−𝛾
𝑀

2
𝜏2 − 𝛼

𝑀

1
𝑐
𝑀

2
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1
𝛽𝑀
2

(83)

holds provided that 𝛼𝐿
2
𝛽
𝐿

1
𝑒
−𝛾
𝑀

2
𝜏2 > 𝛼

𝑀

1
𝑐
𝑀

2
𝑒
−𝛾
𝐿

1
𝜏1 .

According to (75) and (83), it is derived that

𝑢
2 (𝑡) ≥ 𝑢

2
(𝜂
2
) − ∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
d𝑡

≥ ln
𝛼
𝐿

2
𝛽
𝐿

1
𝑒
−𝛾
𝑀

2
𝜏2 − 𝛼

𝑀

1
𝑐
𝑀

2
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1
𝛽𝑀
2

−
2𝜔𝛼
𝑀

2
𝛽
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

.

(84)

By virtue of (76) and (84), if 𝛼𝐿
2
𝛽
𝐿

1
𝑒
−𝛾
𝑀

2
𝜏2 > 𝛼

𝑀

1
𝑐
𝑀

2
𝑒
−𝛾
𝐿

1
𝜏2 ,

then

max
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨𝑢2 (𝑡)
󵄨󵄨󵄨󵄨

< max

{{{{{{

{{{{{{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln
𝛼
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
2𝜔𝛼
𝑀

2
𝛽
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln
𝛼
𝐿

2
𝛽
𝐿

1
𝑒
−𝛾
𝑀

2
𝜏2 − 𝛼

𝑀

1
𝑐
𝑀

2
𝑒
−𝛾
𝐿

1
𝜏1

𝛽𝐿
1
𝛽𝑀
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
2𝜔𝛼
𝑀

2
𝛽
𝑀

2
𝑒
−𝛾
𝐿

2
𝜏2

𝛽𝐿
2

}}}}}}

}}}}}}

}

:= 𝐻
2
.

(85)

It is obvious that 𝐻
1
and 𝐻

2
in (81) and (85) are

independent of 𝜆.

Step 2. In order to construct an appropriate open and
bounded subset Ω, denote 𝐻 = 𝐻

1
+ 𝐻
2
+ 𝐻
0
, where 𝐻

0

is sufficiently large such that the unique solution (𝑢∗, V∗)𝑇 of
the following algebraic equations:

1

𝜔
∫

𝜔

0

𝑓
1
(𝑡) d𝑡 = 0,

1

𝜔
∫

𝜔

0

𝑓
2
(𝑡) d𝑡 = 0, (86)

satisfies ‖(𝑢∗, V∗)𝑇‖ = |𝑢
∗
| + |V∗| < 𝐻.

Select Ω = {(𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇
∈ 𝑋 : ‖(𝑢

1
, 𝑢
2
)
𝑇
‖ < 𝐻}, which

implies that condition (i) of Lemma 10 holds.
When (𝑢

1
(𝑡), 𝑢
2
(𝑡))
𝑇
∈ 𝜕Ω ∩ Ker 𝐿 = 𝜕Ω ∩ R2, (𝑢

1
, 𝑢
2
)
𝑇

is a constant vector inR2 with |𝑢
1
| + |𝑢
2
| = 𝐻. Consequently,

it can be concluded that

𝑄𝑁[
𝑢
1

𝑢
2

] =
[
[
[

[

1

𝜔
∫

𝜔

0

𝑓
1
(𝑡) d𝑡

1

𝜔
∫

𝜔

0

𝑓
2
(𝑡) d𝑡

]
]
]

]

̸= [
0

0
] , (87)

which implies that condition (ii) of Lemma 10 is satisfied.
Take 𝐽 = 𝐼 : Im𝑄 → Ker 𝐿, (𝑢

1
, 𝑢
2
)
𝑇

→ (𝑢
1
, 𝑢
2
)
𝑇. It

follows from straightforward computation that

deg (𝐽𝑄𝑁(𝑢
1
, 𝑢
2
)
𝑇
, Ω ∩ Ker 𝐿, (0, 0)𝑇) = 1, (88)

where (𝑢
∗

1
, 𝑢
∗

2
) is the unique solution of (86). Hence, the

condition (iii) of Lemma 10 holds.
Furthermore, it is easy to see that the set {𝐾

𝑝
(𝐼 − 𝑄)𝑁𝑥 |

𝑥 ∈ Ω} is equicontinuous and uniformly bounded. By using
the Arzela-Ascoli theorem [31], it can be shown that 𝐾

𝑝
(𝐼 −

𝑄)𝑁 : Ω → 𝑋 is compact and𝑁 is 𝐿-compact.
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Consequently, all conditions (i)–(iii) of Lemma 10 hold
forΩ. It follows fromLemma 10 thatmodel system (53) has at
least one 𝜔-periodic solution (𝑢

∗

1
(𝑡), 𝑢
∗

2
(𝑡))
𝑇, and model sys-

tem (52) has at least one𝜔-periodic solution (𝑥∗
2
(𝑡), 𝑦
∗

2
(𝑡))
𝑇
=

(𝑒
𝑢
∗

1
(𝑡)
, 𝑒
𝑢
∗

2
(𝑡)
)
𝑇.

Let (𝑥∗
2
(𝑡), 𝑦
∗

2
(𝑡))
𝑇 be a positive 𝜔-periodic solution of

model system (52); it follows from (19) and (23) that

𝑥
∗

1
(𝑡) = 𝑒

−∫
𝑡

0
𝛾1(𝑠)d𝑠 ∫

𝑡

𝑡−𝜏1

𝛼
1
(𝑠) 𝑒
∫
𝑠

0
𝛾1(𝑚)d𝑚𝑥

∗

2
(𝑠) d𝑠,

𝑦
∗

1
(𝑡) = 𝑒

−∫
𝑡

0
𝛾2(𝑠)d𝑠 ∫

𝑡

𝑡−𝜏2

𝛼
2
(𝑠) 𝑒
∫
𝑠

0
𝛾2(𝑚)d𝑚𝑦

∗

2
(𝑠) d𝑠

(89)

are 𝜔-periodic continuous function.
Based on the above analysis, if the following two inequal-

ities hold:

𝛼
𝐿

1
𝛽
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏1 > 𝛼

𝑀

2
𝑐
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2 , 𝛼

𝐿

2
𝛽
𝐿

1
𝑒
−𝛾
𝑀

2
𝜏2 > 𝛼

𝑀

1
𝑐
𝑀

2
𝑒
−𝛾
𝐿

1
𝜏2 ,

(90)

then model system (4) with initial conditions (5) and
(6) has at least one positive 𝜔-periodic solution (𝑥

∗

1
(𝑡),

𝑥
∗

2
(𝑡), 𝑦
∗

1
(𝑡), 𝑦
∗

2
(𝑡))
𝑇.

3.3. Global Stability Analysis

Theorem 12. If lim inf
𝑡→+∞

𝐺
𝑘
(𝑡) > 0, 𝑘 = 1, 2, then

model system (4) with initial conditions (5) and (6) has
a unique positive 𝜔-periodic globally stable solution (𝑥

∗

1
(𝑡),

𝑥
∗

2
(𝑡), 𝑦
∗

1
(𝑡), 𝑦
∗

2
(𝑡))
𝑇, where

𝐺
1
= −𝛼
1
(𝑡) 𝑒
−∫
𝑡+𝜏1

𝑡
𝛾1(𝑚)d𝑚 − 2𝑐

1
(𝑡)𝑀
∗

4

+ 2𝛽
1
(𝑡)𝑚
∗

2
− 8𝑀

∗

2
𝑀
∗2

4
𝜌 (𝑡) ,

𝐺
2
(𝑡) = −𝑞𝛼

2
(𝑡) 𝑒
−∫
𝑡+𝜏2

𝑡
𝛾2(𝑚)d𝑚 + 2𝑞𝛽

2
(𝑡)𝑚
∗

4
+ 2𝑞𝑐
1
(𝑡)𝑚
∗

2
,

(91)

and 𝑞 is a positive constant and𝑚
𝑖
,𝑀
𝑖
, 𝑖 = 1, 2, 3, 4, have been

defined in (50).

Proof. Suppose that (𝑥∗
1
(𝑡), 𝑥
∗

2
(𝑡), 𝑦
∗

1
(𝑡), 𝑦
∗

2
(𝑡))
𝑇 is a positive

𝜔-periodic solution of model system (4) with initial condi-
tions (5) and (6).

Construct a Lyapunov functional as follows:

𝑉
1
(𝑡) =

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 + ∫

𝑡

𝑡−𝜏1

𝛼
1
(𝑠) 𝑒
−∫
𝑠+𝜏1

𝑠
𝛾1(𝑠)d𝑚

×
󵄨󵄨󵄨󵄨𝑥2 (𝑠) − 𝑥

∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠.
(92)

By calculating the upper right derivative of𝑉
1
(𝑡) along the

positive 𝜔-periodic solution of model system (4), it can be
obtained that

𝐷
+
𝑉
1
(𝑡) = sgn [𝑥

2
(𝑡) − 𝑥

∗

2
(𝑡)]

× {𝛼
1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑥
2
(𝑡 − 𝜏
1
)

− 𝛼
1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑠)d𝑠
𝑥
∗

2
(𝑡 − 𝜏
1
)

− 𝛽
1
(𝑡) 𝑥
2

2
(𝑡) + 𝛽

1
(𝑡) 𝑥
∗2

2
(𝑡)

− 𝑐
1 (𝑡) 𝑥2 (𝑡) 𝑦2 (𝑡) + 𝑐

1 (𝑡) 𝑥
∗

2
(𝑡) 𝑦
∗

2
(𝑡)

−𝜌 (𝑡) 𝑥
2

2
(𝑡) 𝑦
2

2
(𝑡) + 𝜌 (𝑡) 𝑥

∗2

2
(𝑡) 𝑦
∗2

2
(𝑡) }

+ 𝛼
1
(𝑡) 𝑒
−∫
𝑡+𝜏1

𝑡
𝛾1(𝑚)d𝑚 󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨

− 𝛼
1
(𝑡 − 𝜏
1
) 𝑒
−∫
𝑡

𝑡−𝜏1

𝛾1(𝑚)d𝑚

×
󵄨󵄨󵄨󵄨𝑥2 (𝑡 − 𝜏

1
) − 𝑥
∗

2
(𝑡 − 𝜏
1
)
󵄨󵄨󵄨󵄨

≤ −𝛽
1
(𝑡) [𝑥
2
(𝑡) + 𝑥

∗

2
(𝑡)]

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨

+ 𝛼
1
(𝑡) 𝑒
−∫
𝑡+𝜏1

𝑡
𝛾1(𝑚)d𝑚 󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨

− 𝑐
1 (𝑡) sgn [𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)]

× [𝑥
2
(𝑡) 𝑦
2
(𝑡) − 𝑥

∗

2
(𝑡) 𝑦
∗

2
(𝑡)]

− 𝜌 (𝑡) sgn [𝑥
2
(𝑡) − 𝑥

∗

2
(𝑡)]

× [𝑥
2
(𝑡) 𝑦
2
(𝑡) + 𝑥

∗

2
(𝑡) 𝑦
∗

2
(𝑡)]

× [𝑥
2 (𝑡) 𝑦2 (𝑡) − 𝑥

∗

2
(𝑡) 𝑦
∗

2
(𝑡)]

≤ − {𝛽
1 (𝑡) [(𝑥2 (𝑡) + 𝑥

∗

2
(𝑡))]

+ 𝑐
1
(𝑡) [𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)]

+ 𝜌 (𝑡) (𝑦2 (𝑡) − 𝑦
∗

2
(𝑡))

× [(𝑥
2
(𝑡) − 𝑥

∗

2
(𝑡)) 𝑦
2
(𝑡)

+ (𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)) 𝑥
∗

2
(𝑡)]

−𝛼
1
(𝑡) 𝑒
−∫
𝑡+𝜏1

𝑡
𝛾1(𝑚)d𝑚}

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 .

(93)

Similarly, construct another Lyapunov functional as fol-
lows:
𝑉
2
(𝑡) =

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
∗

2
(𝑡)
󵄨󵄨󵄨󵄨

+ ∫

𝑡

𝑡−𝜏2

𝛼
2
(𝑠) 𝑒
−∫
𝑠+𝜏2

𝑠
𝛾2(𝑠)d𝑚 󵄨󵄨󵄨󵄨𝑦2 (𝑠) − 𝑦

∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠.
(94)

By calculating the upper right derivative of𝑉
2
(𝑡) along the

positive 𝜔-periodic solution of model system (4), it can be
obtained that

𝐷
+
𝑉
2
(𝑡) = sgn [𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡)]

× {𝛼
2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑠)d𝑠

× [𝑦
2
(𝑡 − 𝜏
2
) − 𝑦
∗

2
(𝑡 − 𝜏
2
)]

− 𝛽
2
(𝑡) [𝑦
2
(𝑡) + 𝑦

∗

2
(𝑡)] [𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡)]

− 𝑐
2
(𝑡) [𝑥
2
(𝑡) 𝑦
2
(𝑡) − 𝑥

∗

2
(𝑡) 𝑦
∗

2
(𝑡)] }
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+ 𝛼
2
(𝑡) 𝑒
−∫
𝑡+𝜏2

𝑡
𝛾2(𝑚)d𝑚 󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦

∗

2
(𝑡)
󵄨󵄨󵄨󵄨

− 𝛼
2
(𝑡 − 𝜏
2
) 𝑒
−∫
𝑡

𝑡−𝜏2

𝛾2(𝑚)d𝑚

×
󵄨󵄨󵄨󵄨𝑦2 (𝑡 − 𝜏

2
) − 𝑦
∗

2
(𝑡 − 𝜏
2
)
󵄨󵄨󵄨󵄨

≤ − {𝛽
2
(𝑡) [𝑦
2
(𝑡) + 𝑦

∗

2
(𝑡)] + 𝑐

1
(𝑡) [𝑥
2
(𝑡) − 𝑥

∗

2
(𝑡)]}

×
󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦

∗

2
(𝑡)
󵄨󵄨󵄨󵄨

+ 𝛼
2 (𝑡) 𝑒
−∫
𝑡+𝜏2

𝑡
𝛾2(𝑚)d𝑚 󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦

∗

2
(𝑡)
󵄨󵄨󵄨󵄨 .

(95)

Let

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑞𝑉

2
(𝑡) , (96)

where 𝑞 is a positive constant.
By calculating the upper right derivative of𝑉(𝑡) along the

positive 𝜔-periodic solution of model system (4) based on
(93) and (95), it can be obtained as follows:

𝐷
+
𝑉 (𝑡) ≤

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨

× {𝛼
1 (𝑡) 𝑒
−∫
𝑡+𝜏1

𝑡
𝛾1(𝑚)d𝑚 − 𝛽

1 (𝑡) [𝑥2 (𝑡) + 𝑥
∗

2
(𝑡)]

+ [𝑦
2 (𝑡) − 𝑦

∗

2
(𝑡)] [𝑐1 (𝑡) + 𝜌 (𝑡)

× ((𝑥
2 (𝑡) − 𝑥

∗

2
(𝑡)) 𝑦2 (𝑡)

+ (𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡))

× 𝑥
∗

2
(𝑡))] }

+
󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦

∗

2
(𝑡)
󵄨󵄨󵄨󵄨 {𝑞𝛼2 (𝑡) 𝑒

−∫
𝑡+𝜏2

𝑡
𝛾2(𝑚)d𝑚 − 𝑞𝛽

2 (𝑡)

× [𝑦
2 (𝑡) + 𝑦

∗

2
(𝑡)]

−𝑞𝑐
1 (𝑡) [𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)] } .

(97)

According toTheorem 7, there exists a positive value 𝑇 >

0, when 𝑡 ≥ 𝑇; we get that

𝑚
∗

2
− 𝜖 < 𝑥

2
(𝑡) < 𝑀

∗

2
+ 𝜖, 𝑚

∗

2
− 𝜖 < 𝑥

∗

2
(𝑡) < 𝑀

∗

2
+ 𝜖,

𝑚
∗

4
− 𝜖 < 𝑦

2
(𝑡) < 𝑀

∗

4
+ 𝜖, 𝑚

∗

4
− 𝜖 < 𝑦

∗

2
(𝑡) < 𝑀

∗

4
+ 𝜖

(98)

hold for sufficiently small 𝜖 > 0.
Based on (98), when 𝑡 > 𝑇+max{𝜏

1
, 𝜏
2
}, it is derived that

𝐷
+
𝑉 (𝑡) ≤ − (𝐺

1 (𝑡) − 𝜖)
󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨

− (𝐺
2
(𝑡) − 𝜖)

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 ,

(99)

where 𝐺
1
(𝑡) and 𝐺

2
(𝑡) have been defined inTheorem 12.

If lim inf
𝑡→+∞

𝐺
𝑘
(𝑡) > 0 for 𝑘 = 1, 2, then there exist

two constants 𝛿
1
> 0 and 𝛿

2
> 0 such that for 𝑡 ≥ 𝑇

∗
:=

𝑇 + 2max{𝜏
1
, 𝜏
2
}

𝐺
1
(𝑡) ≥ 𝛿

1
> 0, 𝐺

2
(𝑡) ≥ 𝛿

2
> 0. (100)

Consequently, for 𝑡 ≥ 𝑇
∗, we have

𝐷
+
𝑉 (𝑡) ≤ −

𝛿
1

2

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 −

𝛿
2

2

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 .

(101)

By integrating both sides of (101) on the interval [𝑇∗, 𝑡],
it can be obtained that, for 𝑡 ≥ 𝑇

∗,

𝑉 (𝑡) +
𝛿
1

2
∫

𝑡

𝑇
∗

󵄨󵄨󵄨󵄨𝑥2 (𝑠) − 𝑥
∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠

+
𝛿
2

2
∫

𝑡

𝑇
∗

󵄨󵄨󵄨󵄨𝑦2 (𝑠) − 𝑦
∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠 ≤ 𝑉 (𝑇
∗
) .

(102)

Hence, 𝑉(𝑡) is bounded on the interval [𝑇∗, +∞) and

∫

𝑡

𝑇
∗

󵄨󵄨󵄨󵄨𝑥2 (𝑠) − 𝑥
∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠 < +∞,

∫

𝑡

𝑇
∗

󵄨󵄨󵄨󵄨𝑦2 (𝑠) − 𝑦
∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠 < +∞.

(103)

According to Barbalat’s Lemma [31], it can be concluded
that

lim
𝑡→∞

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 = 0, lim

𝑡→∞

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 = 0.

(104)

It follows from (19) and (23) that

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

𝑡

𝑡−𝜏1

𝛼
1
(𝑠) 𝑒
∫
𝑠

𝑡
𝛾1(𝑚)d𝑚 󵄨󵄨󵄨󵄨𝑥2 (𝑠) − 𝑥

∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠

≤ ∫

𝑡

𝑡−𝜏1

𝛼
𝑀

1

󵄨󵄨󵄨󵄨𝑥2 (𝑠) − 𝑥
∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠,

󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

𝑡

𝑡−𝜏2

𝛼
2 (𝑠) 𝑒
∫
𝑠

𝑡
𝛾2(𝑚)d𝑚 󵄨󵄨󵄨󵄨𝑦2 (𝑠) − 𝑦

∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠

≤ ∫

𝑡

𝑡−𝜏2

𝛼
𝑀

2

󵄨󵄨󵄨󵄨𝑦2 (𝑠) − 𝑦
∗

2
(𝑠)

󵄨󵄨󵄨󵄨 d𝑠.

(105)

Based on (104) and (105), it can be concluded that

lim
𝑡→∞

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 = 0, lim

𝑡→∞

󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 = 0.

(106)

Therefore, it follows from (104) and (106) that model
system (4) with initial conditions (5) and (6) has a
unique positive 𝜔-periodic globally stable solution (𝑥

∗

1
(𝑡),

𝑥
∗

2
(𝑡), 𝑦
∗

1
(𝑡), 𝑦
∗

2
(𝑡))
𝑇.

3.4. Numerical Simulation. In this subsection, numerical
simulations are carried out to substantiate the analytical find-
ings obtained this paper. In order to facilitate the numerical
simulations, 𝜔-periodic continuous functions introduced in
model system (4) are selected as follows: 𝛼

1
(𝑡) = 2.1 +

sin(𝑡)/10, 𝛾
1
(𝑡) = 0.2 + sin(𝑡)/200, 𝛽

1
(𝑡) = 1 + sin(𝑡)/300,

𝑐
1
(𝑡) = 0.2+ sin(𝑡)/300, 𝜌(𝑡) = 0.05+ sin(𝑡)/400, 𝛼

2
(𝑡) = 4.1+

sin(𝑡)/18, 𝛾
2
(𝑡) = 0.1+sin(𝑡)/580, 𝛽

2
(𝑡) = 0.3+sin(𝑡)/30, and
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Figure 1: Dynamical responses of the unique positive 2𝜋-periodic
globally stable solution of model system (4).

𝑐
2
(𝑡) = 0.15 + sin(𝑡)/270. The maturation delay for nontoxic

species and toxin liberating species is given as follows: 𝜏
1
=

0.1 and 𝜏
2

= 0.2, respectively. By using straightforward
computation, it can be found that 𝛼𝐿

1
𝛽
𝐿

2
𝑒
−𝛾
𝑀

2
𝜏1 > 𝛼

𝑀

2
𝑐
𝑀

1
𝑒
−𝛾
𝐿

2
𝜏2 ,

𝛼
𝐿

2
𝛽
𝐿

1
𝑒
−𝛾
𝑀

2
𝜏2 > 𝛼

𝑀

1
𝑐
𝑀

2
𝑒
−𝛾
𝐿

1
𝜏1 ; then model system (4) has at

least one positive 𝜔-periodic solution based on Theorem 11.
Further computations show that 𝐺

1
(𝑡) ≥ 0.4281 and

𝐺
2
(𝑡) ≥ 1.4006. Consequently, it follows from Theorem 12

that model system (4) has a unique positive 2𝜋-periodic
globally stable solution (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡), 𝑦
∗

1
(𝑡), 𝑦
∗

2
(𝑡))
𝑇, whose

dynamical responses are plotted in Figure 1. Furthermore,
the unique positive 2𝜋-periodic globally stable solution
(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), 𝑦
∗

1
(𝑡), 𝑦
∗

2
(𝑡))
𝑇 is plotted in the 𝑥

1
-𝑥
2
plane and

𝑦
1
-𝑦
2
plane, which can be found in Figures 2 and 3, respec-

tively. It should be noted that two different initial solutions
are included to show the attractivity of different solutions.

4. Conclusion

In this paper, a nonautonomous dynamicalmodel is proposed
to investigate population dynamics of competitive system
with toxin liberating species and nontoxic species, where
stage structure and maturation delay for two species are
considered. It is well known that the effect of toxin ecolog-
ical systems is an important issue from mathematical and
experimental points of view. Generally speaking, it takes
some time for a species to reach maturity to produce the
toxicant, the toxin liberating mature individual produces a
substance toxic to the nontoxic mature individuals only, and
the inhibiting effect is zero in absence of either species.
Furthermore, the species compete each other for the limited
life resource within closed environment, but this competition
only happens among the mature individuals and does not
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Figure 2: The unique positive 2𝜋-periodic globally stable solution,
which is plotted in the 𝑥

1
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plane. Two different initial solutions

are included to show the attractivity of different solutions, which are
plotted in red and blue color, respectively.
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Figure 3: The unique positive 2𝜋-periodic globally stable solution,
which is plotted in the 𝑦

1
-𝑦
2
plane. Two different initial solutions

are included to show the attractivity of different solutions, which are
plotted in red and blue color, respectively.

involve the immature individuals. Consequently, it is nec-
essary to investigate the dynamic effect of stage structure
and toxic substances on population dynamics of two-species
competitive system.

Qualitative analysis of the proposed model system is
discussed in the third section of this paper. It follows from
Theorems 1 and 2 that solutions of model system (4) with
initial conditions are positive and ultimately bounded. By
utilizing some comparison arguments, an iterative technique
is proposed to discuss permanence of the species; model
system (4) is persistent, which can be found in Theorem 7.
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Furthermore, existence of positive periodic solutions is con-
sidered in Theorem 11 based on continuation theorem of
coincidence degree theory, which shows that model system
(4) has at least one positive 𝜔-solution. By constructing
an appropriate Lyapunov functional, sufficient conditions
for global stability of the unique positive periodic solution
are analyzed; that is, lim inf

𝑡→+∞
𝐺
𝑘
(𝑡) > 0, 𝑘 = 1, 2,

which can be found in Theorem 12. Finally, numerical sim-
ulations are provided to show dynamical responses of the
unique positive 2𝜋-periodic globally stable solution, which
are plotted in Figure 1. Furthermore, the unique positive
2𝜋-periodic globally stable solution is plotted in the 𝑥

1
-𝑥
2

plane and 𝑦
1
-𝑦
2
plane, which can be found in Figures 2

and 3, respectively. Since biological phenomenon associated
with stage structure and toxin substances extensively exists
within competitive system, theoretical results obtained in this
paper are theoretically beneficial to discuss dynamic effect of
maturation delay and toxic effect on population dynamics; it
makes this work done in this paper has some positive and new
features.
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This paper establishes a criterion on integral 𝜑
0
-stability in terms of two measures for impulsive differential equations with

“supremum” by using the cone-valued piecewise continuous Lyapunov functions, Razumikhin method, and comparative method.
Meantime, an example is given to illustrate our result.

1. Introduction

In this paper, we discuss the integral 𝜑
0
-stability in terms

of two measures for impulsive differential equations with
“supremum”:

𝑥
󸀠
= 𝐹(𝑡, 𝑥 (𝑡) , sup

𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠)) for 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑘
,

𝑥 (𝜏
𝑘
+ 0) = 𝐼

𝑘
(𝑥 (𝜏
𝑘
− 0)) for 𝑘 = 1, 2, . . . ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝑟, 𝑡
0
] ,

(1)

and its perturbed impulsive differential equations with
“supremum”

𝑥
󸀠
= 𝐹(𝑡, 𝑥 (𝑡) , sup

𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠)) + 𝐺(𝑡, 𝑥 (𝑡) , sup
𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠))

for 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑘
,

𝑥 (𝜏
𝑘
+ 0) = 𝐼

𝑘
(𝑥 (𝜏
𝑘
− 0)) + 𝐽

𝑘
(𝑥 (𝜏
𝑘
− 0))

for 𝑘 = 1, 2, . . . ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝑟, 𝑡
0
] ,

(2)

where 𝑥 ∈ 𝑅
𝑛, 𝐹, 𝐺 : 𝑅

+
× 𝑅
𝑛
× 𝑅
𝑛
→ 𝑅

𝑛, 𝐹(𝑡, 0, 0) =
𝐺(𝑡, 0, 0) ≡ 0, 𝐼

𝑘
, 𝐽
𝑘
: 𝑅
𝑛
→ 𝑅

𝑛, 𝐼
𝑘
(0) = 𝐽

𝑘
(0) ≡ 0, 𝑘 =

1, 2, . . ., 𝑟 > 0, 𝑡
0
∈ 𝑅
+, and 𝜙 ∈ (𝑃𝐶[𝑡

0
− 𝑟, 𝑡
0
], 𝑅
𝑛
). Let 𝑅𝑛 be

𝑛-dimensional Euclidean space with norm ‖𝑥‖, 𝑅+ = [0,∞),
and {𝜏

𝑘
}
∞

1
a sequence of fixed points in 𝑅+ such that 𝜏

𝑘+1
> 𝜏
𝑘

and lim
𝑘→∞

𝜏
𝑘
= ∞. We denote by 𝑥(𝑡; 𝑡

0
, 𝜙) the solution of

(1). In our further investigation we will assume that solution
𝑥(𝑡; 𝑡
0
, 𝜙) is defined on [𝑡

0
− 𝑟,∞) for any initial function

𝜙 ∈ 𝑃𝐶([𝑡
0
− 𝑟, 𝑡
0
], 𝑅
𝑛
).

The research on impulsive differential equations with
“supremum” problem, Bainov et al. [1] justified the partial
averaging for impulsive differential equations, He et al. [2]
discussed the periodic boundary value problem for first order
impulsive differential equations, Agarwal and Hristova [3]
studied the strict stability in terms of two measures for
impulsive differential equations, Stamova and Stamov [4]
investigated the global stability of models based on impulsive
differential equations and variable impulsive perturbations,
and Hristova [5, 6] obtained the 𝜑

0
-stability in terms of two

measures for impulsive differential equations.
In recent years, the integral stability theory has been rapid

development (see [7–12]). For example, Soliman and Abdalla
[10] introduced integral 𝜑

0
-stability of perturbed system of

ordinary differential equations. Hristova [12] studied the
integral stability in terms of two measures for impulsive
differential equations with “supremum.” However, the cor-
responding theory of impulsive differential equations with
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“supremum” is still at an initial stage of its development,
especially for integral 𝜑

0
-stability in terms of two measures.

Motivated by the idea of [5, 6, 10, 12], in this work, by
employing the cone-valued piecewise continuous Lyapunov
functions, Razumikhin method, and comparative method,
we extend the notions of𝜑

0
-stability in terms of twomeasures

to integral 𝜑
0
-stability in terms of twomeasures for impulsive

differential equations with “supremum.”

2. Preliminaries

Denote by 𝑃𝐶(𝑋, 𝑌) (𝑋 ⊂ 𝑅, 𝑌 ⊂ 𝑅
𝑛
) the set of all functions

𝑢 : 𝑋 → 𝑌 which are piecewise continuous in 𝑋 with
points of discontinuity of the first kind at the points 𝜏

𝑘
∈ 𝑋

and which are continuous from the left at the points 𝜏
𝑘
∈

𝑋, 𝑢(𝜏
𝑘
) = 𝑢(𝜏

𝑘
− 0).

We denote by 𝑃𝐶1(𝑋, 𝑌) the set of all function 𝑢 ∈

𝑃𝐶(𝑋, 𝑌)which are continuously differentiable for 𝑡 ∈ 𝑋, 𝑡 ̸=

𝜏
𝑘
.
Let 𝑥, 𝑦 ∈ 𝑅𝑛. Denote by (𝑥 ⋅ 𝑦) the dot product of both

vectors 𝑥 and 𝑦.
Let K ⊂ 𝑅

𝑛 be a cone, and K∗ = {𝜑 ∈ 𝑅
𝑛
: (𝜑 ⋅ 𝑥) ≥

0 for any 𝑥 ∈K} is adjoint cone.
We give the following notations for convenience:

𝐾 = {𝑎 ∈ 𝐶 (𝑅
+
, 𝑅
+
) :

𝑎 (𝑠) is strictly increasing, 𝑎 (0) = 0} ;

𝐶𝐾 = {𝑏 ∈ 𝐶 [𝑅
+
× 𝑅
+
, 𝑅
+
] :

𝑏 (𝑡, ⋅) ∈ 𝐾 for any fixed 𝑡 ∈ [0,∞)} ;

Γ = {ℎ ∈ 𝐶 [[−𝑟,∞) × 𝑅
𝑛
,K] :

inf
𝑥∈𝑅
𝑛
ℎ (𝑡, 𝑥) = 0 for each 𝑡 ∈ [−𝑟,∞)} .

(3)

Let ℎ
0
, ℎ ∈ Γ, 𝜑

0
∈ K∗, 𝑡 ∈ 𝑅

+, and 𝜙 ∈ 𝑃𝐶([𝑡
0
−

𝑟, 𝑡
0
], 𝑅
𝑛
). Define

𝐻
0
(𝑡, 𝜙, 𝜑

0
) = sup {(𝜑

0
⋅ ℎ
0
(𝑡 + 𝑠, 𝜙 (𝑡 + 𝑠))) : 𝑠 ∈ [−𝑟, 0]} ,

(4)

𝐻(𝑡, 𝜙, 𝜑
0
) = sup {(𝜑

0
⋅ ℎ
0
(𝑡 + 𝑠, 𝜙 (𝑡 + 𝑠))) : 𝑠 ∈ [−𝑟, 0]} .

(5)

Let 𝜌, 𝑡 and 𝑇 > 0 be constants, 𝜑
0
∈ K∗, ℎ ∈ Γ. Define

sets:

𝑆 (ℎ, 𝜌, 𝜑
0
) = {(𝑡, 𝑥) ∈ 𝑅

+
× 𝑅
𝑛
: (𝜑
0
⋅ ℎ (𝑡, 𝑥)) < 𝜌} ;

𝑆
𝑐
(ℎ, 𝜌, 𝜑

0
) = {(𝑡, 𝑥) ∈ 𝑅

+
× 𝑅
𝑛
: (𝜑
0
⋅ ℎ (𝑡, 𝑥)) ≥ 𝜌} ;

Ω (𝑡, 𝑇, 𝜌) = { (𝑥, 𝑦) ∈ 𝑅
𝑛
× 𝑅
𝑛
:

(𝜑
0
⋅ ℎ (𝑡, 𝑥)) < 𝜌 for 𝑠 ∈ [𝑡, 𝑡 + 𝑇] ,

(𝜑
0
⋅ ℎ (𝑡, 𝑦)) < 𝜌 for 𝑠 ∈ [𝑡 − 𝑟, 𝑡 + 𝑇]} .

(6)

In our further investigations we use the following com-
parison scalar impulsive ordinary differential equation:

𝑢
󸀠
= 𝑔
1
(𝑡, 𝑢) , 𝑡 ̸= 𝜏

𝑘
,

𝑢 (𝜏
𝑘
+ 0) = 𝜉

𝑘
(𝑢 (𝜏
𝑘
)) ,

𝑢 (𝑡
0
) = 𝑢
0
,

𝑘 = 1, 2, . . . ,

(7)

the scalar impulsive ordinary differential equation:

𝑤
󸀠
= 𝑔
2 (𝑡, 𝑤) , 𝑡 ̸= 𝜏

𝑘
,

𝑤 (𝜏
𝑘
+ 0) = 𝜂

𝑘
(𝑤 (𝜏
𝑘
)) ,

𝑤 (𝑡
0
) = 𝑤
0
,

𝑘 = 1, 2, . . . ,

(8)

and its perturbed scalar impulsive ordinary differential equa-
tion:

𝑤
󸀠
= 𝑔
2 (𝑡, 𝑤) + 𝑞 (𝑡) , 𝑡 ̸= 𝜏

𝑘
,

𝑤 (𝜏
𝑘
+ 0) = 𝜂

𝑘
(𝑤 (𝜏
𝑘
)) + 𝛾
𝑘
(𝑤 (𝜏
𝑘
)) ,

𝑤 (𝑡
0
) = 𝑤
0
,

𝑘 = 1, 2, . . . ,

(9)

where 𝑢, 𝑤 ∈ 𝑅, 𝑔
1
(𝑡, 0) = 𝑔

2
(𝑡, 0) ≡ 0, 𝜉

𝑘
(0) = 0, 𝜂

𝑘
(0) =

0, 𝑘 = 1, 2, . . ..
Assume that solutions of the scalar impulsive equations

(7), (8), and (9) exist on [𝑡
0
,∞) for any initial values.

Meanwhile, we give some definitions and lemmas.The details
can be found in [5].

Definition 1 (see [5]). We say that function𝑉(𝑡, 𝑥) : [−𝑟,∞)×

𝑅
𝑛
→ K, 𝑉 = (𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑛
), belongs to the class Λ if

(𝐴1) 𝑉(𝑡, 𝑥) ∈ 𝑃𝐶
1
([−𝑟,∞) × 𝑅

𝑛
,K);

(𝐴2) for each 𝑘 = 1, 2, . . . and 𝑥 ∈ 𝑅𝑛 there exist the finite
limits

𝑉 (𝜏
𝑘
− 0, 𝑥) = lim

𝑡↑𝜏𝑘

𝑉 (𝑡, 𝑥) , 𝑉 (𝜏
𝑘
+ 0, 𝑥) = lim

𝑡↓𝜏𝑘

𝑉 (𝑡, 𝑥) ;

(10)

(𝐴3) there exist constants𝑀
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, such that

|𝑉
𝑖
(𝑡, 𝑥) − 𝑉

𝑖
(𝑡, 𝑦)| ≤ 𝑀

𝑖
‖𝑥 − 𝑦‖ for any 𝑡 ∈ 𝑅+, 𝑥, 𝑦 ∈

𝑅
𝑛.

Definition 2 (see [5]). Let 𝜑
0
∈ K∗, ℎ ∈ Γ be given. The

function 𝑉(𝑡, 𝑥) ∈ Λ is said to be 𝜑
0
-strongly ℎ-decrescent

if there exist a constant 𝛿 > 0 and a function 𝑎 ∈ 𝐾 such
that (𝑡, 𝑥) ∈ [−𝑟,∞) × 𝑅

𝑛
: (𝜑
0
⋅ ℎ(𝑡, 𝑥)) < 𝛿 implies that

(𝜑
0
⋅ 𝑉(𝑡, 𝑥)) ≤ 𝑎(𝜑

0
⋅ ℎ(𝑡, 𝑥)).
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Let 𝑉(𝑡, 𝑥) ∈ Λ, 𝑡 ∈ Ω, 𝑡 ̸= 𝜏
𝑘
, 𝑥 ∈ 𝑅

𝑛, and 𝜙 ∈ 𝑃𝐶([𝑡 −
𝑟, 𝑡], 𝑅

𝑛
). We define a derivative of the function 𝑉(𝑡, 𝑥) along

the trajectory of solution of (1) as follows:

𝐷
(1)
𝑉 (𝑡, 𝜙 (𝑡))

= lim
𝜖→0

sup 1
𝜖
{𝑉(𝑡 + 𝜖, 𝜙 (𝑡)

+ 𝜖𝐹 (𝑡, 𝜙 (𝑡) , sup
𝑠∈[−𝑟,0]

𝜙 (𝑡 + 𝑠)))

−𝑉 (𝑡, 𝜙 (𝑡)) } .

(11)

Similarly we define a derivative of the function 𝑉(𝑡, 𝑥) ∈
Λ along the trajectory of solution of the perturbed system (2)
for 𝑡 ∈ Ω, 𝑡 ̸= 𝜏

𝑘
, 𝑥 ∈ 𝑅

𝑛, and 𝜙 ∈ 𝑃𝐶([𝑡−𝑟, 𝑡], 𝑅𝑛) as follows:

𝐷
(2)
𝑉 (𝑡, 𝜙 (𝑡))

= lim
𝜖→0

sup 1
𝜖
{𝑉(𝑡 + 𝜖, 𝜙 (𝑡)

+ 𝜖(𝐹(𝑡, 𝜙 (𝑡) , sup
𝑠∈[−𝑟,0]

𝜙 (𝑡 + 𝑠))

+𝐺(𝑡, 𝜙 (𝑡) , sup
𝑠∈[−𝑟,0]

𝜙 (𝑡 + 𝑠))))

− 𝑉 (𝑡, 𝜙 (𝑡)) } .

(12)

Definition 3 (see [5]). Let 𝜑
0
∈ K∗, ℎ, ℎ

0
∈ Γ be given.

The function ℎ
0
is 𝜑
0
-uniformly finer than ℎ if there exist

a constant 𝛿 > 0 and a function 𝑎 ∈ 𝐾, such that for any
point (𝑡, 𝑥) ∈ [0,∞) × 𝑅

𝑛
: (𝜑
0
⋅ ℎ
0
(𝑡, 𝑥)) < 𝛿 the inequality

(𝜑
0
⋅ ℎ(𝑡, 𝑥)) ≤ 𝑎(𝜑

0
⋅ ℎ
0
(𝑡, 𝑥)) holds.

Lemma 4 (see [5]). Let ℎ, ℎ
0
∈ Γ, 𝜑

0
∈ K∗ be given, and

ℎ
0
(𝑡, 𝑥) is 𝜑

0
-uniformly finer than ℎ(𝑡, 𝑥)with a constant 𝛿 and

a function 𝑎 ∈ 𝐾. Then for any 𝑡 ∈ 𝑅
+ and 𝜙 ∈ 𝑃𝐶([𝑡 −

𝑟, 𝑡], 𝑅
𝑛
) inequality 𝐻

0
(𝑡, 𝜙, 𝜑

0
) < 𝛿 implies 𝐻(𝑡, 𝜙, 𝜑

0
) ≤

𝑎(𝐻
0
(𝑡, 𝜙, 𝜑

0
)), where functions 𝐻 and 𝐻

0
are defined by (4),

(5).

In our further investigations we use the following com-
parison result.

Lemma 5 (see [5]). Let the following conditions be fulfilled.

(𝐵1) The vector 𝜑
0
∈K∗ and function 𝑉 ∈ Λ are such that

(i) for any number 𝑡 ≥ 0 : 𝑡 ̸= 𝜏
𝑘
and any function

𝜓 ∈ 𝑃𝐶([𝑡−𝑟, 𝑡], 𝑅
𝑛
) such that (𝜑

0
⋅𝑉(𝑡, 𝜓(𝑡))) ≥

(𝜑
0
⋅𝑉(𝑡+𝑠, 𝜓(𝑡+𝑠))) for 𝑠 ∈ [−𝑟, 0) the inequality

(𝜑
0
⋅ 𝐷
(1)
𝑉 (𝑡, 𝜓 (𝑡))) ≤ 𝑔

1
(𝑡, (𝜑
0
⋅ 𝑉 (𝑡, 𝜓 (𝑡)))) (13)

holds, where 𝑔
1
∈ 𝑃𝐶(𝑅

+
× 𝑅
+
, 𝑅
+
).

(ii) (𝜑
0
⋅ 𝑉(𝜏
𝑘
+ 0, 𝐼
𝑘
(𝑥))) ≤ 𝜉

𝑘
(𝜑
0
⋅ 𝑉(𝜏
𝑘
, 𝑥)), 𝑘 =

1, 2, . . ., 𝑥 ∈ 𝑅𝑛, and 𝜏
𝑘
∈ [𝑡
0
, 𝑇], where functions

𝜉
𝑘
∈ 𝐾.

(𝐵2) Function 𝑥(𝑡; 𝑡
0
, 𝜙) is a solution of (1) that is defined

for 𝑡 ∈ [𝑡
0
− 𝑟, 𝑇], where 𝜙 ∈ 𝑃𝐶([𝑡

0
− 𝑟, 𝑡
0
], 𝑅
𝑛
).

(𝐵3) Function 𝑢∗(𝑡) = 𝑢∗(𝑡; 𝑡
0
, 𝑢
0
) is the maximal solution

of (7) with initial condition 𝑢∗(𝑡
0
) = 𝑢
0
that is defined

for 𝑡 ∈ [𝑡
0
, 𝑇].

Then the inequality sup
𝑠∈[−𝑟,0]

(𝜑
0
⋅ 𝑉(𝑡
0
+ 𝑠, 𝜙(𝑡

0
+ 𝑠))) ≤ 𝑢

0

implies the validity of the inequality (𝜑
0
⋅ 𝑉(𝑡, 𝑥(𝑡))) ≤ 𝑢

∗
(𝑡)

for 𝑡 ∈ [𝑡
0
, 𝑇].

Definition 6. Let ℎ
0
, ℎ ∈ Γ. System of impulsive differential

equations with “supremum” (1) is said to be

(𝑆1) (𝐻
0
, ℎ)-equi-integral 𝜑

0
-stable if for every 𝛼 ≥ 0 and

for any 𝑡
0
≥ 0 there exists a positive function 𝛽 =

𝛽(𝑡
0
, 𝛼) ∈ 𝐶𝐾 which is continuous in 𝑡

0
for each 𝛼

and such that for maximal solution 𝑦∗(𝑡; 𝑡
0
, 𝜙) of the

perturbed system of impulsive differential equations
with “supremum” (2) the inequality

(𝜑
0
⋅ ℎ (𝑡, 𝑦

∗
(𝑡; 𝑡
0
, 𝜙))) < 𝛽, 𝑡 ≥ 𝑡

0 (14)

holds, provided that

𝐻
0
(𝑡
0
, 𝜙, 𝜑
0
) ≤ 𝛼, (15)

and for every 𝑇 > 0,

∫

𝑡0+𝑇

𝑡0

sup
(𝑥,𝑦)∈Ω(𝑡0,𝑇,𝛽)

󵄩󵄩󵄩󵄩𝐺 (𝑠, 𝑥, 𝑦
∗
)
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∑

𝑡0≤𝜏𝑘≤𝑡0+𝑇

sup
𝑥:ℎ(𝜏𝑘,𝑥)<𝛽

󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛼,

(16)

where𝐻
0
(𝑡
0
, 𝜙, 𝜑
0
) is defined by (4) and 𝜙 ∈ 𝑃𝐶([𝑡

0
−

𝑟, 𝑡
0
], 𝑅
𝑛
);

(𝑆2) (𝐻
0
, ℎ)-uniform-integrally 𝜑

0
-stable if (𝑆1) is satis-

fied, where 𝛿 is independent on 𝑡
0
.

Remark 7. We note that in the case when ℎ
0
(𝑡, 𝑥) ≡ ‖𝑥‖ and

ℎ(𝑡, 𝑥) ≡ ‖𝑥‖ the (𝐻
0
, ℎ)-equi-integral (uniform-integral) 𝜑

0
-

stability reduces to equi-integral (uniform-integral) 𝜑
0
-

stability.

3. Main Result

Theorem 8. Let the following conditions be fulfilled.

(𝐻1) Functions ℎ
0
, ℎ ∈ Γ; ℎ

0
is 𝜑
0
-uniformly finer than ℎ.

(𝐻2) There exists a function 𝑉
1
∈ Λ that is 𝜑

0
-strongly ℎ

0
-

decrescent and

(i) for any number 𝑡 ≥ 0, 𝑡 ̸= 𝜏
𝑘
, and any function

𝜓 ∈ 𝑃𝐶([𝑡−𝑟, 𝑡], 𝑅
𝑛
), such that (𝜑

0
⋅𝑉
1
(𝑡, 𝜓(𝑡))) >

(𝜑
0
⋅ 𝑉
1
(𝑡 + 𝑠, 𝜓(𝑡 + 𝑠))) for 𝑠 ∈ [−𝑟, 0) and

(𝑡, 𝜓(𝑡)) ∈ 𝑆(ℎ, 𝜌, 𝜑
0
) the inequality
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(𝜑
0
⋅ 𝐷
(1)
𝑉
1
(𝑡, 𝜓 (𝑡))) ≤ 𝑔1 (𝑡, (𝜑0 ⋅ 𝑉1 (𝑡, 𝜓 (𝑡)))) (17)

holds, where 𝜌 > 0 is a constant.
(ii) (𝜑

0
⋅ 𝑉
1
(𝜏
𝑘
+ 0, 𝐼
𝑘
(𝑥))) ≤ 𝜉

𝑘
(𝜑
0
⋅ 𝑉
1
(𝜏
𝑘
, 𝑥)), for

(𝜏
𝑘
, 𝑥) ∈ 𝑆(ℎ, 𝜌, 𝜑

0
), 𝑘 = 1, 2, . . ..

(𝐻3) For any number 𝜇 > 0 there exists a function 𝑉(𝜇)
2

∈ Λ

such that

(iii) 𝑏(𝜑
0
⋅ ℎ(𝑡, 𝑥)) ≤ (𝜑

0
⋅ 𝑉
(𝜇)

2
(𝑡, 𝑥)) ≤ 𝑎(𝜑

0
⋅ ℎ
0
(𝑡, 𝑥))

for (𝑡, 𝑥) ∈ [−𝑟,∞) × 𝑅
𝑛, where 𝑎, 𝑏 ∈ 𝐾 and

lim
𝑢→∞

𝑏(𝑢) = ∞.
(iv) For any number 𝑡 ≥ 0, 𝑡 ̸= 𝜏

𝑘
, and any function

𝜓 ∈ 𝑃𝐶([𝑡 − 𝑟, 𝑡], 𝑅
𝑛
), such that (𝑡, 𝜓(𝑡)) ∈

𝑆(ℎ, 𝜌, 𝜑
0
) ∩ 𝑆
𝑐
(ℎ
0
, 𝜇, 𝜑
0
) and (𝜑

0
⋅ (𝑉
1
(𝑡, 𝜓(𝑡)) +

𝑉
(𝜇)

2
(𝑡, 𝜓(𝑡)))) > (𝜑

0
⋅ (𝑉
1
(𝑡+𝑠, 𝜓(𝑡+𝑠))+𝑉

(𝜇)

2
(𝑡+

𝑠, 𝜓(𝑡 + 𝑠)))) for 𝑠 ∈ [−𝑟, 0) the inequality

(𝜑
0
⋅ (𝐷
(1)
𝑉
1
(𝑡, 𝜓 (𝑡)) + 𝐷

(2)
𝑉
(𝜇)

2
(𝑡, 𝜓 (𝑡))))

≤ 𝑔
2
(𝑡, 𝜑
0
⋅ (𝑉
1
(𝑡, 𝜓 (𝑡)) + 𝑉

(𝜇)

2
(𝑡, 𝜓 (𝑡))))

(18)

holds.
(v) (𝜑

0
⋅ (𝑉
1
(𝜏
𝑘
+ 0, 𝐼
𝑘
(𝑥)) + 𝑉

(𝜇)

2
(𝜏
𝑘
+ 0, 𝐼
𝑘
(𝑥)))) ≤

𝜂
𝑘
(𝜑
0
⋅ (𝑉
1
(𝜏
𝑘
, 𝑥) + 𝑉

(𝜇)

2
(𝜏
𝑘
, 𝑥))) for (𝜏

𝑘
, 𝑥) ∈

𝑆(ℎ, 𝜌, 𝜑
0
) ∩ 𝑆
𝑐
(ℎ
0
, 𝜇, 𝜑
0
), 𝑘 = 1, 2, . . ..

(𝐻4) Zero solution of the scalar impulsive differential equa-
tion (7) is equi-stable.

(𝐻5) Zero solution of the scalar impulsive differential equa-
tion (8) is uniform-integrally stable.

Then system of impulsive differential equations with
“supremum” (1) is (𝐻

0
, ℎ)-uniform-integrally 𝜑

0
-stable.

Proof. Since function 𝑉
1
(𝑡, 𝑥) is 𝜑

0
-strongly ℎ

0
-decrescent,

there exist a constant 𝜌
1
∈ (0, 𝜌) and a function 𝜓

1
∈ 𝐾 such

that (𝜑
0
⋅ ℎ
0
(𝑡, 𝑥)) < 𝜌

1
implies that

(𝜑
0
⋅ 𝑉
1
(𝑡, 𝑥)) ≤ 𝜓

1
((𝜑
0
⋅ ℎ
0
(𝑡, 𝑥))) . (19)

Since ℎ
0
(𝑡, 𝑥) is 𝜑

0
-uniformly finer than ℎ(𝑡, 𝑥), there exist a

constant 𝜌
0
∈ (0, 𝜌

1
) and a function 𝜓

2
∈ 𝐾 such that (𝜑

0
⋅

ℎ
0
(𝑡, 𝑥)) < 𝜌

0
implies that

(𝜑
0
⋅ ℎ (𝑡, 𝑥)) ≤ 𝜓

2
(𝜑
0
⋅ ℎ
0
(𝑡, 𝑥)) , (20)

where 𝜓
2
(𝜌
0
) < 𝜌
1
.

According to Lemma 4, the inequality 𝐻
0
(𝑡, 𝜙, 𝜑

0
) < 𝜌

0

implies

𝐻(𝑡, 𝜙, 𝜑
0
) ≤ 𝜓
2
(𝐻
0
(𝑡, 𝜙, 𝜑

0
)) , 𝜙 ∈ 𝑃𝐶 ([𝑡 − 𝑟, 𝑡] , 𝑅

𝑛
) .

(21)

Let 𝑡
0
≥ 0 be a fixed point. Choose a number 𝛼 > 0 such

that 𝛼 < 𝜌
0
.

According to condition (𝐻3) ofTheorem 8, there exists a
function𝑉(𝛼)

2
(𝑡, 𝑥) that is Lipshitz with a constant𝑀

2
. Let𝑀

1

be the Lipshitz constant of function 𝑉(𝑡, 𝑥).

Denote (𝑀
1
+ 𝑀
2
)𝛼 = 𝛼

1
. Without loss of generality we

assume 𝛼
1
< 𝑏(𝜌).

Since the zero solution of the scalar impulsive differential
equation (7) is equi-stable, there exists a function 𝛿

1
=

𝛿
1
(𝑡
0
, 𝛼
1
) > 0 such that the inequality |𝑢

0
| < 𝛿
1
implies

󵄨󵄨󵄨󵄨𝑢 (𝑡; 𝑡0, 𝑢0)
󵄨󵄨󵄨󵄨 <

𝛼
1

2
, 𝑡 ≥ 𝑡

0
, (22)

where 𝑢(𝑡; 𝑡
0
, 𝑢
0
) is a solution of (7).

Since the function 𝜓
1
∈ 𝐾 there exists a 𝛿

2
= 𝛿
2
(𝛿
1
) >

0, 𝛿
2
< 𝜌
1
, such that for |𝑢| < 𝛿

2
the inequality

𝜓
1
(𝑢) < 𝛿

1 (23)

holds.
Since the zero solution of the scalar impulsive differen-

tial equation (8) is uniform-integrally stable, there exists a
function 𝛽

1
= 𝛽
1
(𝛼
1
) ∈ 𝐶𝐾, 𝑏(𝜌) > 𝛽

1
≥ 𝛼
1
, such that for

every solution of the perturbed impulsive equation (9) the
inequality

󵄨󵄨󵄨󵄨𝑤 (𝑡; 𝑡0, 𝑤0)
󵄨󵄨󵄨󵄨 < 𝛽1, 𝑡 ≥ 𝑡

0
, (24)

holds, provided that

󵄨󵄨󵄨󵄨𝑤0
󵄨󵄨󵄨󵄨 < 𝛼1 (25)

and for every 𝑇 > 0,

∫

𝑡0+𝑇

𝑡0

󵄨󵄨󵄨󵄨𝑞 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠 + ∑

𝑡0≤𝜏𝑘≤𝑡0+𝑇

󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨 ≤ 𝛼1. (26)

Since the function 𝑏 ∈ 𝐾, lim
𝑠→∞

𝑏(𝑠) = ∞, and 𝜓
2
(𝛼) <

𝜓
2
(𝜌
0
) < 𝜌

1
< 𝜌, we could choose a constant 𝛽 = 𝛽(𝛽

1
) >

0, 𝜌 > 𝛽 > 𝛼, 𝛽 > 𝜓
2
(𝛼), such that

𝑏 (𝛽) ≥ 𝛽
1
. (27)

Since the function 𝑎, 𝜓
2
∈ 𝐾, and 𝛽 > 𝜓

2
(𝛼), we can find

a 𝛿
3
= 𝛿
3
(𝛼
1
, 𝛽) > 0, 𝛼 < 𝛿

3
< min(𝛿

2
, 𝜌
0
), such that the

inequalities

𝑎 (𝛿
3
) <

𝛼
1

2
, 𝜓

2
(𝛿
3
) < 𝛽 (28)

hold.
From (21) and (28) it follows that𝐻

0
(𝑡
0
, 𝜙, 𝜑
0
) < 𝛼 implies

𝐻(𝑡
0
, 𝜙, 𝜑
0
) ≤ 𝜓
2
(𝐻
0
(𝑡
0
, 𝜙, 𝜑
0
)) < 𝜓

2
(𝛼) < 𝜓

2
(𝛿
3
) < 𝛽;

(29)

that is, ℎ(𝑡, 𝜙, 𝜑
0
) < 𝛽 for 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡
0
].

Now let the initial functions 𝜙 ∈ 𝑃𝐶([𝑡
0
− 𝑟, 𝑡
0
], 𝑅
𝑛
) be

such that

𝐻
0
(𝑡
0
, 𝜙, 𝜑
0
) < 𝛼 (30)

and let the perturbed functions in impulsive equation with
“supremum” (2) be such that
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∫

𝑡0+𝑇

𝑡0

sup
𝑥,𝑦∈Ω(𝑡0 ,𝑇,𝛽)

󵄩󵄩󵄩󵄩𝐺 (𝑠, 𝑥, 𝑦
∗
)
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∑

𝑡0≤𝜏𝑘≤𝑡0+𝑇

󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛼

(31)

for every 𝑇 > 0.
Let 𝑦∗(𝑡) = 𝑦

∗
(𝑡; 𝑡
0
, 𝜙) be a solution of (2), where the

initial function and the perturbed functions satisfy (30) and
(31); then

(𝜑
0
⋅ ℎ (𝑡, 𝑦

∗
(𝑡; 𝑡
0
, 𝜙))) < 𝛽, 𝑡 ≥ 𝑡

0
. (32)

Suppose it is not true. There exists a point 𝑡∗ > 𝑡
0
such

that

(𝜑
0
⋅ ℎ (𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))) = 𝛽,

(𝜑
0
⋅ ℎ (𝑡, 𝑦

∗
(𝑡; 𝑡
0
, 𝜙))) < 𝛽,

𝑡 ∈ [𝑡
0
, 𝑡
∗
) .

(33)

Case 1. Let 𝑡∗ ̸= 𝜏
𝑘
, 𝑘 = 1, 2, . . .. Then from the continuity

of the maximal solution 𝑦∗(𝑡; 𝑡
0
, 𝜙) at point 𝑡∗ follows that

(𝜑
0
⋅ ℎ(𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))) = 𝛽.

If we assume that (𝜑
0
⋅ ℎ
0
(𝑡
∗
, 𝑦
∗
(𝑡
∗
))) ≤ 𝛿

3
then

from the choice of 𝛿
3
and inequality (28) it follows (𝜑

0
⋅

ℎ(𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))) ≤ (𝜑

0
⋅ ℎ
0
(𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))) ≤ 𝜓

2
(𝛿
3
) < 𝛽

that contradicts (33).
Therefore

(𝜑
0
⋅ ℎ
0
(𝑡
∗
, 𝑦
∗
(𝑡
∗
))) ≤ 𝛿

3
, 𝐻

0
(𝑡
0
, 𝜙, 𝜑
0
) < 𝛼 < 𝛿

1
.

(34)

Case 1.1. Let there exist a point 𝑡∗
0
∈ (𝑡
0
, 𝑡
∗
), 𝑡∗
0

̸= 𝜏
𝑘
, 𝑘 =

1, 2, . . ., such that 𝛿
3
= (𝜑
0
⋅ ℎ
0
(𝑡
∗
, 𝑦
∗
(𝑡
∗
))) and (𝑡, 𝑦∗(𝑡)) ∈

𝑆(ℎ, 𝛽, 𝜑
0
) ∩ 𝑆
𝑐
(ℎ
0
, 𝛿
3
, 𝜑
0
). Since 𝛽 < 𝜌 and 𝛿

3
> 𝛼 it follows

that

(𝑡, 𝑦
∗
(𝑡)) ∈ 𝑆 (ℎ, 𝜌, 𝜑0) ∩ 𝑆

𝑐
(ℎ
0
, 𝛼, 𝜑
0
) , 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
) .

(35)

Define a function 𝜙
∗
(𝑡) = 𝑦

∗
(𝑡) for 𝑡 ∈ [𝑡

∗

0
− 𝑟, 𝑡
∗

0
]

and let 𝑟
1
(𝑡; 𝑡
∗

0
, 𝑢
0
) be the maximal solution of impulsive

scalar differential equation (7) where 𝑢
0
= sup

𝑠∈[−𝑟,0]
(𝜑
0
⋅

𝑉
1
(𝑡
∗

0
, 𝜙
∗
(𝑡
∗

0
))). Let 𝑥∗(𝑡) ≡ 𝑥∗(𝑡; 𝑡∗

0
, 𝜙
∗
) be the solution of the

impulsive equations (1), 𝑡 ∈ [𝑡∗
0
− 𝑟, 𝑡
∗

0
]. From conditions (i),

(ii) of Theorem 8, according to Lemma 5, it follows that

(𝜑
0
⋅ 𝑉
1
(𝑡, 𝑥
∗
(𝑡))) ≤ 𝑟

1
(𝑡; 𝑡
∗

0
, 𝑢
0
) , 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
] . (36)

From the choice of the point 𝑡∗
0
it follows that (𝜑

0
⋅

ℎ
0
(𝑡
∗

0
, 𝜙
∗
(𝑡
∗

0
))) = (𝜑

0
⋅ ℎ
0
(𝑡
∗

0
, 𝑦
∗
(𝑡
∗

0
))) = 𝛿

3
< 𝛿
2
.

According to inequalities (19) and (23) we obtain

𝑢
0
= (𝜑
0
⋅ 𝑉
1
(𝑡
∗

0
, 𝜙
∗
(𝑡
∗

0
)))

≤ 𝜓
1
(𝜑
0
⋅ ℎ
0
(𝑡
∗

0
, 𝜙
∗
(𝑡
∗

0
))) < 𝛿

1
.

(37)

From inequalities (22) and (36) it follows that (𝜑
0
⋅

𝑉
1
(𝑡, 𝑥
∗
(𝑡))) ≤ 𝑟

1
(𝑡; 𝑡
∗

0
, 𝑢
0
) < 𝛼
1
/2 for 𝑡 ∈ [𝑡∗

0
, 𝑡
∗
], or

(𝜑
0
⋅ 𝑉
1
(𝑡
∗

0
, 𝑦
∗
(𝑡
∗

0
))) < (𝜑

0
⋅ 𝑉
1
(𝑡
∗

0
, 𝑥 (𝑡
∗

0
))) <

𝛼
1

2
. (38)

From inequality (28) and condition (iii) of Theorem 8, it
follows that

(𝜑
0
⋅ 𝑉
(𝛼)

2
(𝑡
∗

0
, 𝑦
∗
(𝑡
∗

0
))) < 𝑎 (𝜑

0
⋅ ℎ
0
(𝑡
∗

0
+ 𝑠, 𝑦
∗
(𝑡
∗

0
+ 𝑠)))

= 𝑎 (𝛿
3
) <

𝛼
1

2
.

(39)

Consider function 𝑉(𝛼)
2
(𝑡, 𝑥) that is defined in condition

(𝐻7) of Theorem 8, and define the function

𝑉 (𝑡, 𝑥) = 𝑉1 (𝑡, 𝑥) + 𝑉
(𝛼)

2
(𝑡, 𝑥) , (40)

the function 𝑉(𝑡, 𝑥) satisfies the conditions of Lemma 5. Let
point 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
], 𝑡 ̸= 𝑡

𝑘
, and function 𝜓 ∈ 𝑃𝐶([𝑡 −

𝑟, 𝑡], 𝑅
𝑛
) be such that (𝑡, 𝜓(𝑡)) ∈ 𝑆(ℎ, 𝛽, 𝜑

0
) ∩ 𝑆
𝑐
(ℎ
0
, 𝛼, 𝜑
0
),

(𝜓(𝑡), sup
𝑠∈[−𝑟,0]

𝜓(𝑡 + 𝑠)) ∈ Ω(𝑡
∗

0
, 𝑇
∗
, 𝛽), and 𝑉(𝑡, 𝜓(𝑡)) >

𝑉(𝑡 + 𝑠, 𝜓(𝑡 + 𝑠)) for 𝑠 ∈ [−𝑟, 0). Then using the Lipshitz
conditions for functions𝑉

1
(𝑡, 𝑥) and𝑉(𝛼)

2
(𝑡, 𝑥), and condition

(iv) of Theorem 8, we obtain

(𝜑
0
⋅ 𝐷
(2)
𝑉 (𝑡, 𝜓 (𝑡)))

= (𝜑
0
⋅ (𝐷
(2)
𝑉
1
(𝑡, 𝜓 (𝑡)) + 𝐷

(2)
𝑉
(𝛼)

2
(𝑡, 𝜓 (𝑡))))

≤ (𝜑
0
⋅ 𝐷
(1)
𝑉
1
(𝑡, 𝜓 (𝑡)) + 𝐷

(1)
𝑉
(𝛼)

2
(𝑡, 𝜓 (𝑡)))

+ (𝑀
1
+𝑀
2
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐺(𝑡, 𝜓 (𝑡) , sup
𝑠∈[−𝑟,0]

𝜓 (𝑡 + 𝑠))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑔
2
(𝑡, (𝜑
0
⋅ 𝑉 (𝑡, 𝜓 (𝑡)))) + (𝑀

1
+𝑀
2
)

× sup
(𝑥,𝑦)∈Ω(𝑡

∗

0
,𝑇
∗
,𝛽)

󵄩󵄩󵄩󵄩𝐺 (𝑡, 𝑥, 𝑦
∗
)
󵄩󵄩󵄩󵄩 ,

(41)

where 𝑇∗ = 𝑡∗ − 𝑡∗
0
.

Let 𝜏
𝑘
∈ (𝑡
∗

0
, 𝑡
∗
), 𝑥 ∈ 𝑅

𝑛 be such that (𝜏
𝑘
, 𝑥) ∈ 𝑆(ℎ, 𝛽, 𝜑

0
)∩

𝑆
𝑐
(ℎ
0
, 𝛼, 𝜑
0
). According to condition (v) of Theorem 8, we

have

(𝜑
0
⋅ 𝑉 (𝑡
𝑘
+ 0, 𝐼
𝑘 (𝑥) + 𝐽𝑘 (𝑥)))

= (𝜑
0
⋅ 𝑉 (𝑡
𝑘
+ 0, 𝐼
𝑘
(𝑥)))

+ (𝜑
0
⋅ (𝑉 (𝑡

𝑘
+ 0, 𝐼
𝑘
(𝑥) + 𝐽

𝑘
(𝑥)) − 𝑉 (𝑡

𝑘
+ 0, 𝐼
𝑘
(𝑥))))

≤ 𝜂
𝑘
(𝜑
0
⋅ 𝑉 (𝑡
𝑘
, 𝑥)) + (𝑀

1
+𝑀
2
)
󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)

󵄩󵄩󵄩󵄩

≤ 𝜂
𝑘
(𝜑
0
⋅ 𝑉 (𝑡
𝑘
, 𝑥)) + (𝑀

1
+𝑀
2
)

× sup
𝑥:ℎ(𝜏𝑘,𝑥)<𝛽

󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)
󵄩󵄩󵄩󵄩 .

(42)

According to inequalities (41), (42) and Lemma 5, the
inequality

(𝜑
0
⋅ 𝑉 (𝑡, 𝑦

∗
(𝑡))) ≤ 𝑟

∗
(𝑡; 𝑡
∗

0
, 𝑤
∗

0
) , 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
] (43)

holds.
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Consider the scalar impulsive differential equation (9),
where

𝑞 (𝑡) = (𝑀
1
+𝑀
2
) sup
(𝑥,𝑦)∈Ω(𝑡

∗

0
,𝑇
∗
,𝛽)

󵄩󵄩󵄩󵄩𝐺 (𝑡, 𝑥, 𝑦
∗
)
󵄩󵄩󵄩󵄩 ,

𝛾
𝑘
= (𝑀
1
+𝑀
2
) sup
𝑥:ℎ(𝜏𝑘,𝑥)<𝛽

󵄩󵄩󵄩󵄩𝐽𝑘 (𝑥)
󵄩󵄩󵄩󵄩 .

(44)

According to above notations and inequality (31) for𝑇∗ =
𝑡
∗
− 𝑡
∗

0
, we obtain

∫

𝑡
∗

𝑡
∗

0

𝑞 (𝑠) 𝑑𝑠 + ∑

𝑡
∗

0
≤𝜏𝑘≤𝑡

∗

𝛾
𝑘
≤ (𝑀
1
+𝑀
2
) 𝛼 = 𝛼

1
. (45)

Let 𝑟∗(𝑡; 𝑡∗
0
, 𝑤
∗

0
) be the maximal solution of (9) through

the point (𝑡∗
0
, 𝑤
∗

0
), where 𝑤∗

0
= 𝑉(𝑡

∗

0
+ 𝑠, 𝑦

∗
(𝑡
∗

0
+ 𝑠)),

and perturbations 𝑞(𝑡) and 𝛾
𝑘
are defined above and satisfy

inequality (45).
Choose a point 𝑇∗ > 𝑡∗ such that

∫

𝑡
∗

𝑡
∗

0

𝑞 (𝑠) 𝑑𝑠 +
1

2
(𝑇
∗
− 𝑡
∗
) 𝑞 (𝑡
∗
) < 𝛼
1
. (46)

Now define the continuous function 𝑞∗(𝑡) : [𝑡∗
0
,∞) →

𝑅:

𝑞
∗
(𝑡) =

{{{

{{{

{

𝑞 (𝑡) for 𝑡 ∈ [𝑡∗
0
, 𝑡
∗
]

𝑞 (𝑡
∗
)

𝑡∗ − 𝑇∗
(𝑡 − 𝑇

∗
) for 𝑡 ∈ [𝑡∗, 𝑇∗]

0 for 𝑡 ≥ 𝑇∗,

(47)

and the sequence of numbers {𝛾∗
𝑘
}
∞

1
:

𝛾
∗

𝑘
= {

𝛾
𝑘

for 𝑘 :𝜏
𝑘
∈ (𝑡
∗

0
, 𝑡
∗
]

0 for 𝑘 :𝜏
𝑘
> 𝑡
∗
.

(48)

From (45), it follows that for every 𝑇 > 0

∫

𝑡
∗

0
+𝑇

𝑡
∗

0

𝑞
∗
(𝑠) 𝑑𝑠 + ∑

𝑡
∗

0
≤𝜏𝑘≤𝑡

∗

0
+𝑇

𝛾
∗

𝑘

≤ ∫

𝑡
∗

0
+𝑇

𝑡
∗

0

𝑞 (𝑠) 𝑑𝑠 + ∑

𝑡
∗

0
≤𝜏𝑘≤𝑡

∗

0
+𝑇

𝛾
𝑘
≤ 𝛼
1
.

(49)

Let 𝑅(𝑡; 𝑡∗
0
, 𝑤
∗

0
) be the maximal solution of the scalar

impulsive differential equation (9) through the point (𝑡∗
0
, 𝑤
∗

0
),

where perturbations of the right parts are defined above
function 𝑞∗(𝑡) and numbers 𝛾∗

𝑘
. We note that

𝑅 (𝑡; 𝑡
∗

0
, 𝑤
∗

0
) = 𝑟
∗
(𝑡; 𝑡
∗

0
, 𝑤
∗

0
) , 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
) . (50)

From inequalities (38) and (39), the definition of point
𝑤
∗

0
, and inequality (49) follows the validity of (24) for the

solution 𝑅(𝑡; 𝑡∗
0
, 𝑤
∗

0
); that is,

𝑅 (𝑡; 𝑡
∗

0
, 𝑤
∗

0
) < 𝛽
1
, 𝑡 ≥ 𝑡

∗

0
. (51)

From inequalities (43) and (51), equality (50), the choice
of point 𝑡∗, and condition (iii) of Theorem 8, we obtain

𝑏 (𝛽) ≥ 𝛽
1
> 𝑅 (𝑡

∗
; 𝑡
∗

0
, 𝑤
∗

0
)

≥ (𝜑
0
⋅ 𝑉 (𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙)))

≥ (𝜑
0
⋅ 𝑉
(𝛼)

2
(𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙)))

≥ 𝑏 ((𝜑
0
⋅ ℎ (𝑡
∗
, 𝑦
∗
(𝑡
∗
; 𝑡
0
, 𝜙))))

= 𝑏 (𝛽) .

(52)

The obtained contradiction proves the validity of the
inequality (32) for 𝑡 ≥ 𝑡

0
.

Case 1.2. Let there exist a point 𝜏
𝑘
∈ (𝑡
0
, 𝑡
∗
) such that 𝛿

3
< (𝜑
0
⋅

ℎ
0
(𝜏
𝑘
+ 0, 𝑦

∗
(𝜏
𝑘
+ 0; 𝑡
0
, 𝑥
0
))), 𝛿
3
> (𝜑
0
⋅ ℎ
0
(𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
; 𝑡
0
, 𝑥
0
))),

and (35) is true.
We choose a number 𝛿

3
: 𝛿
3
< 𝛿
3
< 𝛽 such that 𝛿

3
= (𝜑
0
⋅

ℎ
0
(𝑡
∗

0
, 𝑦
∗
(𝑡
∗

0
; 𝑡
0
, 𝑥
0
))) and 𝑡∗

0
∈ (𝑡
0
, 𝑡
∗
), 𝑡
∗

0
̸= 𝜏
𝑘
, 𝑘 = 1, 2, . . ..

We repeat the proof of Case 1.1, where instead of 𝛿
3
we use 𝛿

3

and obtain a contradiction.

Case 2. Let there exist a natural number 𝑘 such that (𝜑
0
⋅

ℎ(𝑡, 𝑦
∗
(𝑡))) < 𝛽 for 𝑡 ∈ [𝑡

0
, 𝜏
𝑘
] and (𝜑

0
⋅ ℎ(𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
+ 0))) =

(𝜑
0
⋅ ℎ(𝜏
𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
)))) > 𝛽.

We repeat the proof of Case 1 as in this case we choose the
constant 𝛽 = 𝛽(𝛽

1
) > 0, such that 𝑏(𝛽) ≥ sup

𝑘
{𝜂
𝑘
(𝛽
1
)}.

As in the proof of Case 1.1, we obtain the validity of
inequalities (51) and (43). We apply conditions (iii) and (v)
of Theorem 8 and obtain

𝑏 (𝛽) ≥ 𝜂
𝑘
(𝑟
∗
(𝜏
𝑘
; 𝑡
∗

0
, 𝑤
∗

0
))

≥ 𝜂
𝑘
(𝜑
0
⋅ 𝑉 (𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
)))

= 𝜂
𝑘
((𝜑
0
⋅ (𝑉
1
(𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
)) + 𝑉

(𝛼)

2
(𝜏
𝑘
, 𝑦
∗
(𝜏
𝑘
)))))

≥ (𝜑
0
⋅ 𝑉
1
(𝜏
𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
)))

+𝑉
(𝛼)

2
(𝜏
𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
))))

≥ (𝜑
0
⋅ 𝑉
(𝛼)

2
(𝜏
𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
))))

≥ 𝑏 (𝜑
0
⋅ ℎ ((𝜏

𝑘
, 𝐼
𝑘
(𝑦
∗
(𝜏
𝑘
)) + 𝐽
𝑘
(𝑦
∗
(𝜏
𝑘
)))))

> 𝑏 (𝛽) ,

(53)

and the obtained contradiction proves the validity of inequal-
ity (32) in this case. Inequality (32) proves (𝐻

0
, ℎ)-uniform-

integral 𝜑
0
-stabilities of the considered system of the impul-

sive differential equations with “supremum.”

Next, we will provide an example which satisfies all the
hypotheses of Theorem 8.
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Example 9. Consider the system of impulsive differential
equations with “supremum”

𝑥
󸀠
= −𝑒
−𝑡
𝑥 (𝑡) + 2𝑦 (𝑡) + 𝑒

−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠) , 𝑡 ̸= 𝑘,

𝑦
󸀠
= −𝑥 (𝑡) − 𝑒

−𝑡
𝑦 (𝑡) +

1

2
𝑒
−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠) , 𝑡 ̸= 𝑘,

𝑥 (𝑘 + 0) =
1

2𝑘/2
𝑥 (𝑘) ,

𝑦 (𝑘 + 0) =
1

2𝑘/2
𝑦 (𝑘) ,

𝑘 = 1, 2, . . . ,

𝑥 (𝑡) = 𝜙
1
(𝑡 − 𝑡
0
) ,

𝑦 (𝑡) = 𝜙
2
(𝑡 − 𝑡
0
)

𝑡 ∈ [𝑡
0
− 𝑟, 𝑡
0
] ,

(54)

and its perturbed impulsive differential equations with
“supremum”

𝑥
󸀠
= −𝑒
−𝑡
𝑥 (𝑡) + 2𝑦 (𝑡) + 𝑒

−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠) + 𝑒
−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑥
2
(𝑠) ,

𝑡 ̸= 𝑘,

𝑦
󸀠
= −𝑥 (𝑡) − 𝑒

−𝑡
𝑦 (𝑡) +

1

2
𝑒
−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠) + 𝑒
−𝑡 max
𝑠∈[𝑡−𝑟,𝑡]

𝑦
2
(𝑠) ,

𝑡 ̸= 𝑘,

𝑥 (𝑘 + 0) =
1

2𝑘/2
𝑥 (𝑘) ,

𝑦 (𝑘 + 0) =
1

2𝑘/2
𝑦 (𝑘) ,

𝑘 = 1, 2, . . . ,

𝑥 (𝑡) = 𝜙
1
(𝑡 − 𝑡
0
) , 𝑦 (𝑡) = 𝜙

2
(𝑡 − 𝑡
0
) 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡
0
] ,

(55)

where 𝑥, 𝑦 ∈ 𝑅, 𝑟 > 0 is enough small constant, 𝑡 ≥ 𝑡
0
≥ 0.

Without loss of generality we will assume further that 1 ≥

𝑡
0
≥ 0.
Let ℎ
0
(𝑡, 𝑥, 𝑦) = (‖𝑥‖, ‖𝑦‖), ℎ(𝑡, 𝑥, 𝑦) = (𝑥

2
, 𝑦
2
).

Consider function 𝑉 : 𝑅
2

→ K, 𝑉 =

(𝑉
1
, 𝑉
2
), 𝑉
1
(𝑥, 𝑦) = (1/2)𝑥

2
, 𝑉
2
(𝑥, 𝑦) = (1/2)𝑦

2, where
K = {(𝑥, 𝑦) : 𝑥 ≥ 0, 𝑦 ≥ 0} ⊂ 𝑅

2 is a cone.
Now, let us consider the vector 𝜑

0
= (1, 2). It is easy to

check that the function 𝑉
1
(𝑡, 𝑥, 𝑦) = 𝑉(𝑥, 𝑦) is 𝜑

0
-strongly

ℎ
0
-decrescent with a function 𝜓

2
= 𝑥 ∈ 𝐾 and the condition

(iii) is satisfied for the function 𝑉(𝜇)
2

= 𝑉(𝑥, 𝑦), where 𝑏(𝑢) =
(1/2)𝑢 and 𝑎(𝑢) = 𝑢2.

Let 𝑡 ≥ 0, 𝑡 ̸= 𝑘, 𝑘 = 1, 2 . . . 𝜓 ∈ 𝑃𝐶([𝑡 − 𝑟, 𝑡], 𝑅
2
), 𝜓 =

(𝜓
1
, 𝜓
2
) be such that the inequality

(𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡)))

≥ (𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡 + 𝑠) , 𝜓

2
(𝑡 + 𝑠))) , 𝑠 ∈ [−𝑟, 0]

(56)

or

1

2
𝜓
2

1
(𝑡) + 𝜓

2

2
(𝑡) ≥

1

2
𝜓
2

1
(𝑡 + 𝑠) + 𝜓

2

2
(𝑡 + 𝑠) , 𝑠 ∈ [−𝑟, 0] ;

(57)

then

𝜓
1
(𝑡) max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
1
(𝑠) ≤ 2 (𝜑

0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡))) ,

𝜓
2
(𝑡) max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
2
(𝑠) ≤ (𝜑

0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡))) .

(58)

Therefore if inequality (57) is satisfied then

(𝜑
0
⋅ 𝐷
(54)
𝑉 (𝜓
1 (𝑡) , 𝜓2 (𝑡)))

= 𝑒
−𝑡
(− (𝜓

1
(𝑡))
2
− 2(𝜓

2
(𝑡))
2

+𝜓
1 (𝑡) max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
1 (𝑠) + 𝜓2 (𝑡) max

𝑠∈[𝑡−𝑟,𝑡]

𝜓
2 (𝑠))

≤ 𝑒
−𝑡
(−(𝜓
1
(𝑡))
2
− 2(𝜓

2
(𝑡))
2
+ 2 (𝜑

0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡)))

+ (𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡))) )

= 𝑒
−𝑡
(𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡)))

(59)

or

(𝜑
0
⋅ 𝐷
(54)
𝑉 (𝜓
1
(𝑡) , 𝜓
2
(𝑡)))

≤ 𝑒
−𝑡
(𝜑
0
⋅ 𝑉 (𝜓

1
(𝑡) , 𝜓
2
(𝑡))) .

(60)

Inequality (60) proves the validity of condition (i) of
Theorem 8 for the function 𝑉

1
(𝑡, 𝑥, 𝑦) = 𝑉(𝑥, 𝑦), where

𝑔
1
(𝑡, 𝑢) = 𝑢𝑒

−𝑡.Meanwhile, inequality (60) proves the validity
of condition (iv) of Theorem 8 for the function 𝑉𝜇

2
(𝑡, 𝑥, 𝑦) =

𝑉(𝑥, 𝑦), where 𝑔
2
(𝑡, 𝑢) = 2𝑢𝑒

−𝑡.
From jump conditions (54) and the choice of vector 𝜑

0

and function 𝑉 we obtain the validity of conditions (ii) and
(v) of Theorem 8 for the functions 𝑉

1
(𝑡, 𝑥, 𝑦) = 𝑉(𝑥, 𝑦) and

𝑉
𝜇

2
(𝑡, 𝑥, 𝑦) = 𝑉(𝑥, 𝑦), where 𝜉

𝑘
(𝑢) = (1/2

𝑘
)𝑢 and 𝜂

𝑘
(𝑢) =

(1/2
𝑘
)𝑢.

Consider following comparison scalar impulsive differen-
tial equation:

𝑢
󸀠
= 𝑢𝑒
−𝑡
, 𝑡 ̸= 𝑘, 𝑢 (𝑘 + 0) =

1

2𝑘
𝑢 (𝑘) , (61)

𝑤
󸀠
= 2𝑤𝑒

−𝑡
, 𝑡 ̸= 𝑘, 𝑤 (𝑘 + 0) =

1

2𝑘
𝑤 (𝑘) . (62)

The solutions of the impulsive differential equation (61)
and (62), correspondingly, are equi-stable and uniform-
integrally stable. Thus, according to Theorem 8 the system
of impulsive differential equations with “supremum” (54) is
(𝐻
0
, ℎ)-uniform-integrally 𝜑

0
-stable.
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4. Conclusion

This paper extends the notions of 𝜑
0
-stability in terms of two

measures to integral 𝜑
0
-stability in terms of two measures

for impulsive differential equations with “supremum” and
establishes a criterion on integral 𝜑

0
-stability in terms of two

measures for such system by using the cone-valued piecewise
continuous Lyapunov functions, Razumikhin method, and
comparative method. Finally, an example is given to illustrate
our result.
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This paper is concerned with a predator-prey system with Beddington-DeAngelis functional response on time scales. By using the
theory of exponential dichotomy on time scales and fixed point theory based on monotone operator, some simple conditions are
obtained for the existence of at least one positive (almost) periodic solution of the above system. Further, by means of Lyapunov
functional, the global attractivity of the almost periodic solution for the above continuous system is also investigated. The main
results in this paper extend, complement, and improve the previously known result. And some examples are given to illustrate the
feasibility and effectiveness of the main results.

1. Introduction

Let

𝑓
−
= inf

𝑠∈T
𝑓 (𝑠) , 𝑓

+
= sup

𝑠∈T

𝑓 (𝑠) ,

𝑚 (𝑓) = lim
𝑙→∞

1

𝑙
∫

𝑙

0

𝑓 (𝑠) d𝑠,
(1)

where 𝑓 is a continuous bounded function defined on T and
T is a time scale.

The dynamic relationship between predators and their
prey has long been and will continue to be one of the
dominant themes in both ecology and mathematical ecology
due to its universal existence and importance. One significant
component of the predator-prey relationship is the functional
responses. In general, the functional responses can be either
prey dependent or predator dependent. However, the prey-
dependent ones fail to model the interference among preda-
tors and have been facing challenges from the biology and
physiology communities.The predator-dependent functional
responses can provide better descriptions of predator feeding

over a range of predator-prey abundances as is supported
by much significant laboratory and field evidence. The
Beddington-DeAngelis functional response, first proposed
by Beddington [1] and DeAngelis et al. [2], performed even
better. So, the dynamics of predator-prey systems with the
Beddington-DeAngelis response have been studied exten-
sively in the literature [3–10].

In [8], Cui and Takeuchi considered the following
predator-prey systemwith Beddington-DeAngelis functional
response:

𝑥
󸀠
(𝑡) = 𝑥 (𝑡) [𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)

−
𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)
] ,

𝑦
󸀠
(𝑡) = 𝑦 (𝑡) [−𝑑 (𝑡) +

𝑓 (𝑡) 𝑥 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)
] ,

(2)

where all the coefficients of system (2) are positive𝜔-periodic
functions. Cui and Takeuchi obtained the following.
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Theorem 1 (see [8]). System (2) has at least one positive 𝜔-
periodic solution provided

(𝐶) ∫

𝜔

0

[−𝑑 (𝑡) +
𝑓𝑥

0
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥0 (𝑡)
] d𝑡 > 0, 𝑤ℎ𝑒𝑟𝑒

𝑥
0
(𝑡) =

1 − 𝑒
−∫
𝜔

0
𝑎(𝑠)d𝑠

∫
𝜔

0
𝑏 (𝑡 − 𝑠) 𝑒

−∫
𝑠

0
𝑎(𝑡−𝑢) d𝑢d𝑠

.

(3)

In real world phenomenon, the environment varies due to
the factors such as seasonal effects of weather, food supplies,
mating habits, and harvesting. So it is usual to assume the
periodicity of parameters in system (2). However, if the var-
ious constituent components of the temporally nonuniform
environment are with incommensurable (nonintegral multi-
ples) periods, then one has to consider the environment to be
almost periodic since the assumption of almost periodicity is
more realistic, more important, and more general when we
consider the effects of the environmental factors. However,
to the best of the author’s knowledge, up to date, there
are few works on the existence of positive almost periodic
solution of system (2). Therefore, the aim of this paper is
to use the fixed point theory based on monotone operator
and Lyapunov functional to investigate the positive (almost)
periodic solutions of system (2).

In fact, continuous and discrete systems are very impor-
tant in implementing and applications. It is well known that
the theory of time scales has received a lot of attention which
was introduced by Hilger [11] in order to unify continuous
and discrete analyses. Therefore, it is meaningful to study
dynamic systems on time scales which can unify differential
and difference systems. Recently, the topic on the dynamics of
predator-prey systemwith Beddington-DeAngelis functional
response on time scales has been investigated in some papers
(see [9, 10]). Stimulated by the previous reasons, in this
paper we will study the following predator-prey system with
Beddington-DeAngelis functional response on time scales:

𝑥
Δ
(𝑡) = 𝑥 (𝑡) [𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)

−
𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)
] ,

𝑦
Δ
(𝑡) = 𝑦 (𝑡) [−𝑑 (𝑡) +

𝑓 (𝑡) 𝑥 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)
] ,

(4)

where 𝑡 ∈ T is a periodic time scale; all the coefficients of
system (4) are nonnegative almost periodic functions. From
the point of view of biology, we focus our discussion on the
existence of positive almost periodic solution of system (4)
by using the theory of exponential dichotomy on time scales
and fixed point theory based on monotone operator. Further,
with the help of Lyapunov functional, the global attractivity
of a unique positive almost periodic solution of system (2) is
considered.

The remainder of this paper is organized in the following
ways. In Section 2, we will introduce some necessary nota-
tions, definitions, and lemmaswhichwill be used in the paper.

In Section 3, some easy conditions are derived ensuring the
existence of at least one positive (almost) periodic solution of
system (4) by using the theory of exponential dichotomy on
time scales and fixed point theorem of monotone operator.
In Section 4, we establish sufficient conditions for the global
attractivity of a unique positive (almost) periodic solution
of the corresponding continuous system (4) (i.e., system
(2)) by means of Lyapunov functional. The main results are
illustrated by giving some examples in Section 5.

2. Preliminaries

Now, let us state the following definitions and lemmas, which
will be useful in proving our main result.

Definition 2 (see [12]). A time scale T is an arbitrary
nonempty closed subset of the real set R with the topology
and ordering inherited from R. The forward and backward
jump operators 𝜎, 𝜌 : T → T and the graininess 𝜇, ] : T →

R+ are defined, respectively, by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} , 𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

𝜇 (𝑡) := 𝜎 (𝑡) − 𝑡, ] (𝑡) := 𝑡 − 𝜌 (𝑡) .

(5)

Thepoint 𝑡 ∈ T is called left-dense, left-scattered, right-dense,
or right-scattered if 𝜌(𝑡) = 𝑡, 𝜌(𝑡) < 𝑡, 𝜎(𝑡) = 𝑡, or 𝜎(𝑡) > 𝑡,
respectively. Points that are right-dense and left-dense at the
same time are called dense. If T has a left-scatteredmaximum
𝑚
1
, define T𝜅

= T − {𝑚
1
}; otherwise, set T𝜅

= T . If T has a
right-scatteredminimum𝑚

2
, defineT

𝜅
= T−{𝑚

2
}; otherwise,

set T
𝜅
= T .

Definition 3 (see [12]). A function 𝑝: T → R is said to be re-
gressive provided 1 + 𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T𝑘, where 𝜇(𝑡) =
𝜎(𝑡) − 𝑡 is the graininess function.The set of all regressive rd-
continuous functions 𝑓 : T → R is denoted byR while the
set R+ is given by {𝑓 ∈ R : 1 + 𝜇(𝑡)𝑓(𝑡) > 0} for all 𝑡 ∈ T .
Let 𝑝 ∈ R. The exponential function is defined by

𝑒
𝑝
(𝑡, 𝑠) = exp(∫

𝑡

𝑠

𝜉
𝜇(𝜏)

(𝑝 (𝜏)) Δ𝜏) , (6)

where 𝜉
ℎ(𝑧)

is the so-called cylinder transformation.

Lemma 4 (see [12]). Let 𝑝, 𝑞 ∈ R. Then

(i) 𝑒
0
(𝑡, 𝑠) ≡ 1 and 𝑒

𝑝
(𝑡, 𝑡) ≡ 1;

(ii) 1/𝑒
𝑝
(𝑡, 𝑠) = 𝑒

⊖𝑝
(𝑡, 𝑠), where ⊖𝑝(𝑡) = −𝑝(𝑡)/(1 +

𝜇(𝑡)𝑝(𝑡));

(iii) 𝑒
𝑝
(𝑡, 𝑠)𝑒

𝑝
(𝑠, 𝑟) = 𝑒

𝑝
(𝑡, 𝑟);

(iv) 𝑒Δ
𝑝
(⋅, 𝑠) = 𝑝𝑒

𝑝
(⋅, 𝑠).

Definition 5 (see [12]). For 𝑓 : T → R and 𝑡 ∈ T𝑘, the delta
derivative of𝑓 at 𝑡, denoted by𝑓Δ

(𝑡), is the number (provided
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it exists) with the property that, given any 𝜖 > 0, there is a
neighborhood 𝑈 ⊂ T of 𝑡 such that

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓

Δ
(𝑡) [𝜎 (𝑡) − 𝑡]

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖 |𝜎 (𝑡) − 𝑠| ,

∀𝑠 ∈ 𝑈.

(7)

Lemma 6 (see [12]). Assume that 𝑝(𝑡) ≥ 0 for 𝑡 ≥ 0. Then
𝑒
𝑝
(𝑡, 𝑠) ≥ 1.

Lemma 7 (see [12]). Suppose that 𝑝 ∈ R+. Then

(i) 𝑒
𝑝
(𝑡, 𝑠) > 0 for all 𝑡, 𝑠 ∈ T ;

(ii) if 𝑝(𝑡) ≤ 𝑞(𝑡) for all 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ T , then 𝑒
𝑝
(𝑡, 𝑠) ≤

𝑒
𝑞
(𝑡, 𝑠) for all 𝑡 ≥ 𝑠.

Lemma 8 (see [12]). Suppose that 𝑝 ∈ R and 𝑎, 𝑏, 𝑐 ∈ T ; then

[𝑒
𝑝
(𝑐, ⋅)]

Δ

= −𝑝[𝑒
𝑝
(𝑐, ⋅)]

𝜎

,

∫

𝑏

𝑎

𝑝 (𝑡) 𝑒𝑝 (𝑐, 𝜎 (𝑡)) Δ𝑡 = 𝑒
𝑝 (𝑐, 𝑎) − 𝑒𝑝 (𝑐, 𝑏) .

(8)

Definition 9 (see [13]). A time scale T is called a periodic time
scale if

Π := {𝜏 ∈ R : 𝑡 + 𝜏 ∈ T , ∀𝑡 ∈ T} ̸= {0} . (9)

Definition 10 (see [14]). Let T be a periodic time scale. A
function 𝑥 : T → R𝑛 is called almost periodic on T , if, for
any 𝜖 > 0, the set

𝐸 (𝜖, 𝑥) = {𝜏 ∈ Π: |𝑥 (𝑡 + 𝜏) − 𝑥 (𝑡)| < 𝜖, ∀𝑡 ∈ T} (10)

is relatively dense inT ; that is, there exists a constant 𝑙 = 𝑙(𝜖) >

0, for any interval with length 𝑙(𝜖); there exists a number 𝜏 =
𝜏(𝜖) in this interval such that

‖𝑥 (𝑡 + 𝜏) − 𝑥 (𝑡)‖ < 𝜖, ∀𝑡 ∈ T . (11)

The set 𝐸(𝜖, 𝑥) is called the 𝜖-translation set of 𝑥; 𝜏 is called
the 𝜖-translation number of 𝑥, and 𝑙(𝜖) is called the inclusion
of 𝐸(𝜖, 𝑥).

Definition 11 (see [15]). Let 𝑦 ∈ 𝐶(T ,R𝑛
) and let 𝑃(𝑡) be 𝑛 × 𝑛

continuous matrix defined on T . The linear system

𝑦
Δ
(𝑡) = 𝑃 (𝑡) 𝑦 (𝑡) , 𝑡 ∈ T , (12)

is said to be an exponential dichotomy on T if there exist
constants 𝑘, 𝜆 > 0, projection 𝑆, and the fundamental matrix
𝑌(𝑡) satisfying

󵄩󵄩󵄩󵄩󵄩
𝑌 (𝑡) 𝑆𝑌

−1
(𝑠)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑘𝑒

⊖𝜆 (𝑡, 𝑠) , ∀𝑡 ≥ 𝑠,

󵄩󵄩󵄩󵄩󵄩
𝑌 (𝑡) (𝐼 − 𝑆) 𝑌

−1
(𝑠)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑘𝑒

⊖𝜆 (𝑠, 𝑡) , ∀𝑡 ≤ 𝑠, 𝑡, 𝑠 ∈ T .

(13)

Lemma 12 (see [16]). If the linear system 𝑦
Δ
(𝑡) = 𝑃(𝑡)𝑦(𝑡) has

an exponential dichotomy, then almost periodic system

𝑦
Δ
(𝑡) = 𝑃 (𝑡) 𝑦 (𝑡) + 𝑔 (𝑡) , 𝑡 ∈ T , (14)

has a unique almost periodic solution 𝑦(𝑡) which can be
expressed as follows:

𝑦 (𝑡) = ∫

𝑡

−∞

𝑌 (𝑡) 𝑆𝑌
−1
(𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠

− ∫

∞

𝑡

𝑌 (𝑡) (𝐼 − 𝑆) 𝑌
−1
(𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠.

(15)

Lemma 13 (see [15]). If 𝑃(𝑡) = (𝑎
𝑖𝑗
(𝑡))

𝑛×𝑛
is a uniformly

bounded rd-continuous matrix-valued function on T and there
is a 𝛿 > 0 such that

󵄨󵄨󵄨󵄨𝑎𝑖𝑖 (𝑡)
󵄨󵄨󵄨󵄨 − ∑

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
−
1

2
𝜇 (𝑡) [

[

∑

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
]

]

2

− 𝛿
2
𝜇 (𝑡) ≥ 2𝛿,

𝑡 ∈ T , 𝑖 = 1, 2, . . . , 𝑛,

(16)

then 𝑦Δ(𝑡) = 𝑃(𝑡)𝑦(𝑡) admits an exponential dichotomy on T .

Lemma 14 (see [12]). Suppose that 𝑟 : T → R is regressive.
Let 𝑡

0
∈ T and 𝑦

0
∈ R. The unique solution of the initial value

problem

𝑦
Δ
(𝑡) = 𝑟 (𝑡) 𝑦 (𝑡) + 𝑔 (𝑡) , 𝑦 (𝑡

0
) = 𝑦

0
(17)

is given by

𝑦 (𝑡) = 𝑒
𝑟
(𝑡, 𝑡

0
) 𝑦

0
+ ∫

𝑡

𝑡0

𝑒
𝑟
(𝑡, 𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠. (18)

Similar to the proof as that in [14, 16], we can easily obtain
from Lemmas 12–14 the following.

Lemma 15. Assume that (𝐻
1
)-(𝐻

2
) hold; then system (4) has

a unique almost periodic solution 𝑧 = (𝑥, 𝑦)
𝑇 which can be

expressed as follows:

𝑥 (𝑡) = ∫

+∞

𝑡

𝑒
𝑎
(𝑡, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠,

𝑦 (𝑡) = ∫

𝑡

−∞

𝑒
−𝑑
(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑥 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
Δ𝑠.

(19)

In order to obtain the existence of positive almost
periodic solution of system (4), we first make the following
preparations.

Let 𝐸 be a Banach space and let 𝐾 be a cone in 𝐸. The
semiorder induced by the cone 𝐾 is denoted by “≤”. That is,
𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝐾. 𝑥 < 𝑦 if 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦.
𝑥 ≫ 𝑦 if 𝑥 − 𝑦 ∈ 𝐾̂, where 𝐾̂ is the interior of the cone 𝐾.
A cone 𝐾 is called minihedral if, for any pair {𝑥, 𝑦}, 𝑥, 𝑦 ∈

𝐸, bounded above in order that there exists the least upper
bound sup{𝑥, 𝑦}. A cone 𝐾 is called normal if there exists a
constant 𝑁 > 0 such that 𝑥 ≤ 𝑦, 𝑥, 𝑦 ∈ 𝐾 implies ‖𝑥‖

𝐸
≤

𝑁‖𝑦‖
𝐸
.
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Definition 16 (see [17]). Φ : 𝐾 → 𝐾 is said to be monotone
increasing, if, for ∀𝑥

1
, 𝑥

2
∈ 𝐾, 𝑥

1
≤ 𝑥

2
, one has Φ𝑥

1
≤ Φ𝑥

2
.

The following two lemmas cited from [18] are useful for
the proof of our main results in this section.

Lemma 17 (see [18]). Let 𝐸 be a real Banach space with an
order cone 𝐾 satisfying the following:

(a) 𝐾 has a nonempty interior,
(b) 𝐾 is normal and minihedral.

Assume that there are two points in 𝐸, 𝑥
∗
≪ 𝑥

∗, and a mon-
otone increasing complete continuous operatorΦ: [𝑥

∗
, 𝑥

∗
] →

𝐸. If

Φ𝑥
∗
≪ 𝑥

∗
, 𝑥

∗
≪ Φ𝑥

∗
, (20)

then Φ has a fixed point 𝑥 ∈ [𝑥
∗
, 𝑥

∗
]. Here [𝑥

∗
, 𝑥

∗
] denotes

the order interval {𝑥 ∈ 𝐾: 𝑥
∗
≤ 𝑥 ≤ 𝑥

∗
}.

Consider the Banach space 𝐸 = AP(T ,R𝑛
)with the norm

‖𝑥‖ = max {𝑥+, 𝑦+} , ∀𝑧 = (𝑥, 𝑦)
𝑇
∈ 𝐸. (21)

Define the cone 𝐾 in 𝐸 by

𝐾 = {𝑧 = (𝑥, 𝑦)
𝑇
∈ 𝐸: 𝑥 ≥ 0, 𝑦 ≥ 0} . (22)

It is not difficult to verify that 𝐾 is normal and minihedral
and has a nonempty interior.

Let the map 𝐿 be defined by

(𝐿𝑧) (𝑡) = ((Φ𝑧) (𝑡) , (Ψ𝑧) (𝑡))
𝑇
, (23)

where
(Φ𝑧) (𝑡)

= ∫

+∞

𝑡

𝑒
𝑎
(𝑡, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠,

(Ψ𝑧) (𝑡) = ∫

𝑡

−∞

𝑒
−𝑑
(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑥 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
Δ𝑠,

(24)

where 𝑧 ∈ 𝐾, 𝑡 ∈ T .
By (𝐻

1
)-(𝐻

2
), one could choose some positive constants

𝑥
∗
< 𝑥

∗ and 𝑦
∗
< 𝑦

∗ satisfying

[𝑏
+
𝑥
∗
+

𝑐
+
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

] < 𝑎
−
,

𝑓
+
𝑥
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

< 𝑑
−
,

[𝑏
−
𝑥
∗
+

𝑐
−
𝑦
∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
] > 𝑎

+
,

𝑓
−
𝑥
∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
> 𝑑

+
.

(25)

Lemma 18. 𝐿 : 𝐷 → 𝐸 is monotone increasing, where 𝐷 =

[𝑧
∗
, 𝑧

∗
], 𝑧

∗
= (𝑥

∗
, 𝑦

∗
)
𝑇, and 𝑧∗ = (𝑥

∗
, 𝑦

∗
)
𝑇.

Proof. Let𝐹
1
(𝑡, 𝑥, 𝑦) = 𝑥[𝑏(𝑡)𝑥+(𝑐(𝑡)𝑦/(𝛼(𝑡)+𝛽(𝑡)𝑥+𝛾(𝑡)𝑦))]

and 𝐹
2
(𝑡, 𝑥, 𝑦) = (𝑓(𝑡)𝑥𝑦/(𝛼(𝑡)+𝛽(𝑡)𝑥+𝛾(𝑡)𝑦)), ∀𝑡 ∈ T .Then

(Φ𝑧) (𝑡) = ∫

+∞

𝑡

𝑒
𝑎
(𝑡, 𝜎 (𝑠)) 𝐹

1
(𝑠, 𝑥, 𝑦) Δ𝑠,

(Ψ𝑧) (𝑡) = ∫

𝑡

−∞

𝑒
−𝑑 (𝑡, 𝜎 (𝑠)) 𝐹2 (𝑠, 𝑥, 𝑦) Δ𝑠.

(26)

Notice that

𝜕𝐹
1

𝜕𝑥
= 2𝑏 (𝑡) 𝑥 +

𝑐 (𝑡) 𝑦 [𝛼 (𝑡) + 𝛾 (𝑡) 𝑦]

[𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 + 𝛾 (𝑡) 𝑦]
2
≥ 0,

𝜕𝐹
1

𝜕𝑦
=

𝑐 (𝑡) 𝑥 [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥]

[𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 + 𝛾 (𝑡) 𝑦]
2
≥ 0,

𝜕𝐹
2

𝜕𝑥
=

𝑓 (𝑡) 𝑦 [𝛼 (𝑡) + 𝛾 (𝑡) 𝑦]

[𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 + 𝛾 (𝑡) 𝑦]
2
≥ 0,

𝜕𝐹
2

𝜕𝑦
=

𝑓 (𝑡) 𝑥 [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥]

[𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 + 𝛾 (𝑡) 𝑦]
2
≥ 0,

(27)

which implies that (𝐿𝑧)(𝑡) = ((Φ𝑧)(𝑡), (Ψ𝑧)(𝑡))
𝑇 is monotone

increasing. This completes the proof.

Lemma 19. Φ: 𝐷 → 𝐸 is complete continuous.

Proof. First, we show that 𝐿maps bounded set into bounded
sets. For ∀𝑧 ∈ 𝐷, we have

sup
𝑡∈T

(Φ𝑧) (𝑡) ≤ 𝑥
∗
[𝑏

+
𝑥
∗
+

𝑐
+
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

]

× sup
𝑡∈T

∫

+∞

𝑡

𝑒
𝑎
− (𝑡, 𝜎 (𝑠)) Δ𝑠

≤
1

𝑎−
𝑥
∗
[𝑏

+
𝑥
∗
+

𝑐
+
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

] ,

sup
𝑡∈T

(Ψ𝑧) (𝑡) ≤
𝑓
+
𝑥
∗
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

sup
𝑡∈T

∫

𝑡

−∞

𝑒
−𝑑
− (𝑡, 𝜎 (𝑠)) Δ𝑠

≤
1

𝑑−

𝑓
+
𝑥
∗
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

.

(28)
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That is, 𝐿𝐷 is uniformly bounded. In addition, for ∀𝑡
1
, 𝑡
2
∈ T

and 𝑡
1
≤ 𝑡

2
, notice that

󵄨󵄨󵄨󵄨(Φ𝑧) (𝑡1) − (Φ𝑧) (𝑡2)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

+∞

𝑡1

𝑒
𝑎
(𝑡
1
, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

− ∫

+∞

𝑡2

𝑒
𝑎
(𝑡
1
, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

+ ∫

+∞

𝑡2

𝑒
𝑎
(𝑡
1
, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

− ∫

+∞

𝑡2

𝑒
𝑎
(𝑡
2
, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡2

𝑡1

𝑒
𝑎
(𝑡
1
, 𝜎 (𝑠)) 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

+∞

𝑡2

[𝑒
𝑎
(𝑡
2
, 𝜎 (𝑠)) − 𝑒

𝑎
(𝑡
1
, 𝜎 (𝑠))] 𝑥 (𝑠)

× [𝑏 (𝑠) 𝑥 (𝑠) +
𝑐 (𝑠) 𝑦 (𝑠)

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠) + 𝛾 (𝑠) 𝑦 (𝑠)
] Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑥
∗
[𝑏

+
𝑥
∗
+

𝑐
+
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

]
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨

+
𝑥
∗

𝑎−
[𝑏

+
𝑥
∗
+

𝑐
+
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

]

×
󵄨󵄨󵄨󵄨1 − 𝑒𝑎+ (𝑡1, 𝑡2)

󵄨󵄨󵄨󵄨 󳨀→ 0, as 𝑡
1
󳨀→ 𝑡

2
.

(29)

Similarly, one could easily obtain that

󵄨󵄨󵄨󵄨(Ψ𝑧) (𝑡1) − (Ψ𝑧) (𝑡2)
󵄨󵄨󵄨󵄨 󳨀→ 0, as 𝑡

1
󳨀→ 𝑡

2
. (30)

So 𝐿𝑧 is equicontinuous for any 𝑧 ∈ 𝐷. Using Arzela-Ascoli
theorem on time scales [19], we obtain that 𝐿𝐷 is relatively
compact. In view of Lebesgue’s dominated convergence theo-
remon time scales [20], it is easy to prove that𝐿 is continuous.
Hence, 𝐿 is complete continuous. The proof of this lemma is
complete.

3. Almost Periodic Solution

In this section, we will utilize Lemma 17 which is given in the
previous section to establish some sufficient criteria for the
existence of positive (almost) periodic solutions of system (4).

Theorem 20. Assume that the following conditions hold:

(𝐻
1
) 𝑓

−
> 𝛽

+
𝑑
+,

(𝐻
2
) 𝑎

−
> 0, 𝑑− > 0, and 𝛼− > 0.

Then system (4) has at least one positive almost periodic
solution.

Proof. Now, we should use Lemma 17 to prove the existence
of positive almost periodic solutions of system (4). By
Lemmas 18 and 19, we know that 𝐿 is a monotone increasing
complete continuous operator on𝐷. It remains to prove that

𝐿𝑧
∗
≪ 𝑧

∗
, 𝑧

∗
≪ 𝐿𝑧

∗
. (31)

On the one hand, by the definition of 𝑧
∗
= (𝑥

∗
, 𝑦

∗
)
𝑇, it

follows that

Φ𝑧
∗
= Φ(𝑥

∗
, 𝑦

∗
)
𝑇

= ∫

∞

𝑡

𝑒
𝑎 (𝑡, 𝜎 (𝑠)) 𝑥∗

× [𝑏 (𝑠) 𝑥∗ +
𝑐 (𝑠) 𝑦

∗

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥
∗
+ 𝛾 (𝑠) 𝑦

∗

]Δ𝑠

≤
1

𝑎−
𝑥
∗
[𝑏

+
𝑥
∗
+

𝑐
+
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

]

< 𝑥
∗
,

Ψ𝑧
∗
= Ψ(𝑥

∗
, 𝑦

∗
)
𝑇

= ∫

𝑡

−∞

𝑒
−𝑑
(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑥

∗
𝑦
∗

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥∗ + 𝛾 (𝑠) 𝑦∗

Δ𝑠

≤
1

𝑑−

𝑓
+
𝑥
∗
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

< 𝑦
∗
,

(32)

which implies that

𝐿𝑧
∗
= (Φ𝑧

∗
, Ψ𝑧

∗
)
𝑇
< (𝑥

∗
, 𝑦

∗
)
𝑇
= 𝑧

∗
󳨐⇒ 𝐿𝑧

∗
≪ 𝑧

∗
. (33)

On the other hand, one has from the definition of 𝑧∗ =

(𝑥
∗
, 𝑦

∗
)
𝑇 that

Φ𝑧
∗
= Φ(𝑥

∗
, 𝑦

∗
)
𝑇

= ∫

∞

𝑡

𝑒
𝑎
(𝑡, 𝜎 (𝑠)) 𝑥

∗
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× [𝑏 (𝑠) 𝑥
∗
+

𝑐 (𝑠) 𝑦
∗

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥∗ + 𝛾 (𝑠) 𝑦∗
]Δ𝑠

≥
1

𝑎+
𝑥
∗
[𝑏

−
𝑥
∗
+

𝑐
−
𝑦
∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
]

> 𝑥
∗
,

Ψ𝑧
∗
= Ψ(𝑥

∗
, 𝑦

∗
)
𝑇

= ∫

𝑡

−∞

𝑒
−𝑑 (𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑥

∗
𝑦
∗

𝛼 (𝑠) + 𝛽 (𝑠) 𝑥∗ + 𝛾 (𝑠) 𝑦∗
Δ𝑠

≥
1

𝑑+

𝑓
−
𝑥
∗
𝑦
∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗

> 𝑦
∗
,

(34)

which implies that

𝐿𝑧
∗
= (Φ𝑧

∗
, Ψ𝑧

∗
)
𝑇
> (𝑥

∗
, 𝑦

∗
)
𝑇
= 𝑧

∗
󳨐⇒ 𝐿𝑧

∗
≫ 𝑧

∗
. (35)

Applying Lemma 17, we see that 𝐿 has at least one positive
fixed point in [𝑧

∗
, 𝑧

∗
]. Therefore, system (4) has at least one

positive almost periodic solution. This completes the proof.

FromTheorem 20, we can easily obtain the following.

Theorem 21. Assume that (𝐻
1
)-(𝐻

2
) hold. Suppose further

that all the coefficients of system (4) are nonnegative𝜔-periodic
functions; then system (4) has at least one positive 𝜔-periodic
solution.

If T = R in system (4), thenTheorem 21 is changed to the
following theorem.

Theorem 22. Assume that (𝐻
1
)-(𝐻

2
) hold. Suppose further

that all the coefficients of system (2) are nonnegative𝜔-periodic
functions; then system (2) has at least one positive 𝜔-periodic
solution.

Remark 23. Clearly, the validity of condition (𝐶) in
Theorem 1 depends on coefficients 𝑎, 𝑏, 𝑑, 𝑓, 𝛼, and 𝛽 of
system (2). But condition (𝐻

1
) in Theorem 22 only depends

on coefficients 𝑑, 𝑓, and 𝛽. Therefore, compared with
Theorem 1, Theorem 22 is easy to verify and then has an
extensive application. Sometimes one cannot judge the
existence of the periodic solution for some system in the
form of (2) by Theorem 1. However, it can be done by the
result in the present theorem.The following example is given
to illustrate this point in detail.

Example 24. Let 𝑎(𝑡) = 0.1, 𝑏(𝑡) = 2, 𝑐(𝑡) = 2, 𝑑(𝑡) = (1 +

1/2 sin 𝑡)/10, 𝑓(𝑡) = 2, 𝛼(𝑡) = 3 + sin 𝑡, 𝛽(𝑡) = 8 + sin 𝑡, and
𝛾(𝑡) = 2 + cos 𝑡; then system (2) becomes

𝑥
󸀠
(𝑡)

= 𝑥 (𝑡) [0.1 − 2𝑥 (𝑡)

−
2𝑦 (𝑡)

3 + sin 𝑡 + (8 + sin 𝑡) 𝑥 (𝑡) + (2 + cos 𝑡) 𝑦 (𝑡)
] ,

𝑦
󸀠
(𝑡)

= 𝑦 (𝑡) [−
1 + 1/2 sin 𝑡

10

+
2𝑥 (𝑡)

3 + sin 𝑡 + (8 + sin 𝑡) 𝑥 (𝑡) + (2 + cos 𝑡) 𝑦 (𝑡)
] .

(36)

We have 𝑓−
= 2 > 9 × 0.15 = 𝛽

+
𝑑
+, which implies from

Theorem 22 that system (36) has at least one positive 2𝜋-
periodic solution.

However, the assumption of Theorem 1 does not hold for
system (36) because 𝑥

0
≡ 0.05 and

−𝑑 (𝑡) +
𝑓𝑥

0
(𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
0
(𝑡)

≤ − 0.05 +
2 × 0.05

2 + 7 × 0.05

≈ − 0.0074 < 0.

(37)

Therefore one cannot judge the existence of positive periodic
solution of system (36) byTheorem 1.

4. Global Attractivity

In this section, we will construct a suitable Lyapunov func-
tional to establish some sufficient criteria for the global
attractivity of a unique positive (almost) periodic solution of
system (2).

Theorem 25. Assume that (𝐻
1
)-(𝐻

2
) hold; suppose further

that there exists a constant 𝜌 > 0 such that

inf
𝑡∈R

[𝑏 (𝑡) −
𝛼 (𝑡) 𝑓 (𝑡) + 𝑓 (𝑡) 𝛾 (𝑡) 𝑦

∗
+ 𝑐 (𝑡) 𝛽 (𝑡) 𝑦

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗
+ 𝛾 (𝑡) 𝑦

∗
]

] > 𝜌,

inf
𝑡∈R

[
𝛾 (𝑡) 𝑓 (𝑡) 𝑥

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗
+ 𝛾 (𝑡) 𝑦∗]

−
𝛼 (𝑡) 𝑐 (𝑡) + 𝑐 (𝑡) 𝛽 (𝑡) 𝑥

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗
+ 𝛾 (𝑡) 𝑦

∗
]
] > 𝜌,

(38)

where 𝑥
∗
, 𝑥∗, 𝑦

∗
, and 𝑦∗ are defined as those in Theorem 20.

Then system (2) has a unique positive almost periodic solution,
which is globally attractive.

Proof. By Theorem 20, system (2) has a unique positive
almost periodic solution (𝑥, 𝑦)𝑇 satisfying

𝑥
∗
≤ 𝑥 (𝑡) ≤ 𝑥

∗
, 𝑦

∗
≤ 𝑦 (𝑡) ≤ 𝑦

∗
, ∀𝑡 ∈ R. (39)

Suppose that (𝑢, V)𝑇 is another positive solution of system (2).
Define

𝑉 (𝑡) = |ln𝑥 (𝑡) − ln 𝑢 (𝑡)| + 󵄨󵄨󵄨󵄨ln𝑦 (𝑡) − ln V (𝑡)󵄨󵄨󵄨󵄨 , ∀𝑡 ∈ R.

(40)
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Calculating the upper right derivatives of 𝑉 along the
solution of system (2), it follows that

𝐷
+
𝑉 (𝑡)

= sgn [𝑥 (𝑡) − 𝑢 (𝑡)] [𝑥
󸀠
(𝑡)

𝑥 (𝑡)
−
𝑢
󸀠
(𝑡)

𝑢 (𝑡)
]

+ sgn [𝑦 (𝑡) − V (𝑡)] [
𝑦
󸀠
(𝑡)

𝑦 (𝑡)
−
V󸀠 (𝑡)
V (𝑡)

]

= sgn [𝑥 (𝑡) − 𝑢 (𝑡)]

× (−𝑏 (𝑡) [𝑥 (𝑡) − 𝑢 (𝑡)] −
𝑐 (𝑡) 𝑦 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)

+
𝑐 (𝑡) V (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑢 (𝑡) + 𝛾 (𝑡) V (𝑡)
)

+ sgn [𝑦 (𝑡) − V (𝑡)]

× [
𝑓 (𝑡) 𝑥 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) + 𝛾 (𝑡) 𝑦 (𝑡)

−
𝑓 (𝑡) 𝑢 (𝑡)

𝛼 (𝑡) + 𝛽 (𝑡) 𝑢 (𝑡) + 𝛾 (𝑡) V (𝑡)
]

≤ −(𝑏 (𝑡) −
𝛼 (𝑡) 𝑓 (𝑡) + 𝑓 (𝑡) 𝛾 (𝑡) 𝑦

∗
+ 𝑐 (𝑡) 𝛽 (𝑡) 𝑦

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗
+ 𝛾 (𝑡) 𝑦

∗
]

)

× |𝑥 (𝑡) − 𝑢 (𝑡)|

− (
𝛾 (𝑡) 𝑓 (𝑡) 𝑥∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗
+ 𝛾 (𝑡) 𝑦∗]

−
𝛼 (𝑡) 𝑐 (𝑡) + 𝑐 (𝑡) 𝛽 (𝑡) 𝑥

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗
+ 𝛾 (𝑡) 𝑦

∗
]
)
󵄨󵄨󵄨󵄨𝑦 (𝑡) − V (𝑡)󵄨󵄨󵄨󵄨

≤ −𝜌 [|𝑥 (𝑡) − 𝑢 (𝑡)| +
󵄨󵄨󵄨󵄨𝑦 (𝑡) − V (𝑡)󵄨󵄨󵄨󵄨] .

(41)

Therefore, 𝑉 is nonincreasing. Integrating (41) from 0 to 𝑡

leads to

𝑉 (𝑡) + 𝜌∫

𝑡

0

[|𝑥 (𝑠) − 𝑢 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠) − V (𝑠)󵄨󵄨󵄨󵄨] d𝑠 ≤ 𝑉 (0) < +∞,

𝑡 ∈ [0,∞] .

(42)

So

∫

∞

0

[|𝑥 (𝑠) − 𝑢 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠) − V (𝑠)󵄨󵄨󵄨󵄨] d𝑠 < +∞, (43)

which implies that

lim
𝑠→+∞

|𝑥 (𝑠) − 𝑢 (𝑠)| = lim
𝑠→+∞

󵄨󵄨󵄨󵄨𝑦 (𝑠) − V (𝑠)󵄨󵄨󵄨󵄨 = 0. (44)

Thus, the almost periodic solution of system (2) is globally
attractive. The global attractivity implies that the almost
periodic solution is unique. This completes the proof.

FromTheorem 25, we can easily obtain the following.

Theorem 26. Assume that all the conditions of Theorem 25
hold. Suppose further that all the coefficients of system (2) are
nonnegative𝜔-periodic functions; then system (2) has a unique
positive 𝜔-periodic solution, which is globally attractive.

5. Two Examples

Example 27. Consider the following almost periodic
predator-prey systemwith Beddington-DeAngelis functional
response on time scales:

𝑥
Δ
(𝑡)

= 𝑥 (𝑡)

× [0.1 − 2𝑥 (𝑡)

−
2𝑦 (𝑡)

3 + sin 𝑡 + (8 + sin (√2𝑡)) 𝑥 (𝑡) + (2 + cos 𝑡) 𝑦 (𝑡)
] ,

𝑦
Δ
(𝑡)

= 𝑦 (𝑡)

× [−
1 + 1/2 sin (√3𝑡)

10

+
2𝑥 (𝑡)

3 + sin 𝑡 + (8 + sin (√2𝑡)) 𝑥 (𝑡) + (2 + cos 𝑡) 𝑦 (𝑡)
] .

(45)

Similar to the argument as that in Example 24, system
(45) has at least one positive almost periodic solution by
Theorem 20.

Example 28. Consider the following almost periodic
predator-prey systemwith Beddington-DeAngelis functional
response:

𝑥
󸀠
(𝑡)

= 𝑥 (𝑡)

× [1 − 5𝑥 (𝑡)

−
10

−3
𝑦 (𝑡)

3 + sin (√3𝑡) + 0.1𝑥 (𝑡) + (2 + cos (√2𝑡)) 𝑦 (𝑡)
] ,
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𝑦
󸀠
(𝑡)

= 𝑦 (𝑡)

× [−5 +
2𝑥 (𝑡)

3 + sin (√3𝑡) + 0.1𝑥 (𝑡) + (2 + cos (√2𝑡)) 𝑦 (𝑡)
].

(46)

Then system (46) has a unique positive almost periodic
solution, which is globally attractive.

Proof. Corresponding to system (2), we have 𝑎− = 𝑎
+
= 1,

𝑏
−
= 𝑏

+
= 5, 𝑑− = 𝑑

+
= 5, 𝑐− = 𝑐

+
= 10

−3, 𝑓−
= 𝑓

+
=

2, 𝛽− = 𝛽
+
= 0.1, 𝛼− = 2, 𝛼+ = 4, 𝛾− = 1, and 𝛾

+
= 3.

Obviously, 𝑓−
> 𝛽

+
𝑑
+. By Theorem 20, system (46) has

at least one positive almost periodic solution. Further, we
choose 𝑥

∗
= 𝑦

∗
= 0.1, 𝑥∗ = 20, and 𝑦∗ = 0.3; then

[𝑏
+
𝑥
∗
+

𝑐
+
𝑦
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

] < 0.8 < 1 = 𝑎
−
,

𝑓
+
𝑥
∗

𝛼− + 𝛽−𝑥
∗
+ 𝛾−𝑦

∗

< 0.1 < 5 = 𝑑
−
,

[𝑏
−
𝑥
∗
+

𝑐
−
𝑦
∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
] > 5 > 1 = 𝑎

+
,

𝑓
−
𝑥
∗

𝛼+ + 𝛽+𝑥∗ + 𝛾+𝑦∗
>
40

7
> 5 = 𝑑

+
,

(47)

which implies that (25) hold. And

inf
𝑡∈R

[𝑏 (𝑡) −
𝛼 (𝑡) 𝑓 (𝑡) + 𝑓 (𝑡) 𝛾 (𝑡) 𝑦

∗
+ 𝑐 (𝑡) 𝛽 (𝑡) 𝑦

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗
+ 𝛾 (𝑡) 𝑦

∗
]

]

> 5 − 2.5 = 2.5,

inf
𝑡∈R

[
𝛾 (𝑡) 𝑓 (𝑡) 𝑥∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗
+ 𝛾 (𝑡) 𝑦∗]

−
𝛼 (𝑡) 𝑐 (𝑡) + 𝑐 (𝑡) 𝛽 (𝑡) 𝑥

∗

𝛼 (𝑡) [𝛼 (𝑡) + 𝛽 (𝑡) 𝑥
∗
+ 𝛾 (𝑡) 𝑦

∗
]
]

> 0.0117 − 0.001 = 0.0107.

(48)

Then all conditions of Theorem 25 are satisfied. By
Theorem 25, system (46) has a unique positive almost
periodic solution, which is globally attractive.This completes
the proof.

6. Conclusion

In this paper, some sufficient conditions are established
for the existence of positive almost periodic solution for a
predator-prey systemwith Beddington-DeAngelis functional
response on time scales by using the theory of exponential
dichotomy on time scales and fixed point theory based on
monotone operator. Further, the global attractivity of the
almost periodic solution for the above continuous system is
also investigated. The main results obtained in this paper are

completely new even in case of the time scale T = R or Z.
Besides, the method used in this paper may be used to study
the positive almost periodic solution ofmany other biological
models.
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This paper discusses the stochastic Lotka-Volterra system with time-varying delay. The nonexplosion, the boundedness, and the
polynomial pathwise growth of the solution are determined once and for all by the same criterion. Moreover, this criterion is
constructed by the parameters of the system itself, without any uncertain one. A two-dimensional stochastic delay Lotka-Volterra
model is taken as an example to illustrate the effectiveness of our result.

1. Introduction

Population systems are often subject to environment noise.
In our previous papers [1, 2], we considered the following
stochastic Lotka-Volterra system:

𝑑𝑥 (𝑡) = diag (𝑥 (𝑡)) {[𝑎 + 𝐴𝑥 (𝑡) + 𝐵𝑦 (𝑡)] 𝑑𝑡

+ [𝑏 + 𝐷𝑥 (𝑡) + 𝐸𝑦 (𝑡)] 𝑑𝑤 (𝑡)}

(1)

and its functional form, where 𝑦(𝑡) = 𝑥(𝑡 − 𝛿(𝑡)) with 𝛿(𝑡)

representing variable delay and diag(𝑥) = diag(𝑥
1
, . . . , 𝑥

𝑛
)

represents the 𝑛×𝑛matrix with all elements zero except those
on the diagonal which are 𝑥

1
, . . . , 𝑥

𝑛
. 𝑎, 𝑏 ∈ R𝑛 and matrices

𝐴, 𝐵, 𝐷, and 𝐸 ∈ R𝑛×𝑛.
Equation (1) may describe dynamics of 𝑛 species interac-

tion, in which 𝑥
𝑖
(𝑡) (1 ≤ 𝑖 ≤ 𝑛) represents the population

size of 𝑖th species depending both on the current states 𝑥(𝑡)

and on the past state 𝑥(𝑡 − 𝛿(𝑡)) of all population. From the
point of biological view, the following three properties are
very important.

(A) The solution of system (1) is positive and nonexplo-
sive; namely, for any positive initial data 𝜉, (1) has a
unique positive global solution 𝑥(𝑡, 𝜉).

(B) The solution of system (1) is ultimately moment
bounded and time average moment bounded; that is,
this global solution 𝑥(𝑡, 𝜉) of (1) satisfies

lim sup
𝑡→∞

E
󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜉)

󵄨󵄨󵄨󵄨 ≤ 𝐾; (2)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

E
󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜉)

󵄨󵄨󵄨󵄨
2
𝑑𝑠 ≤ 𝐿, (3)

where 𝐾 and 𝐿 are positive constants independent
of 𝜉. These two properties show that, in the sense of
average, population size is bounded.

(C) The solution of the system (2) grows at most polyno-
mially; namely, this solution 𝑥(𝑡, 𝜉) of (1) satisfies

lim sup
𝑡→∞

log 󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜉)
󵄨󵄨󵄨󵄨

log 𝑡
≤ 1, 𝑎.𝑠. (4)

There is an extensive literature concerned with these prop-
erties of stochastic Lotka-Volterra models. For example,
Mao and his coauthors [3–5] discussed the existence and
uniqueness of the global positive solution, stochastically
ultimate boundedness, and some other asymptotic properties
for the stochastic Lotka-Volterra system. References [6, 7]
discovered that the presence of the environmental noise may
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suppress the potential explosion of the solution in finite time.
In our previous work [2], we showed that the environmental
noise structure determined whether properties (A)–(C) were
affected by the stochastic perturbation parameters or not.
In our previous work [1], these three properties were also
examined. In this paper, our conclusions will be improved in
the following aspects.

(i) In these published works, properties (A)–(C) were
given under different conditions, respectively. In this
paper, we will give these three properties under
the same group of conditions. This is an important
improvement since properties (B) and (C) do not
imply each other in general.

(ii) In this paper, we will present the conditions, which
are easier to be verified, to guarantee properties (A)–
(C). In these conditions, all parameters are from the
models and do not include any uncertain parameters
to be determined.

The rest of the paper is arranged as follows. In the next
section, we provide some necessary notations and lemmas.
Section 3 gives several lemmas to support the main results
of this paper. By using Lemmas established in Section 3,
Section 4 presents the conditions under which the all desired
properties (A)–(C) hold. In Section 5, some simplified cases
of model (1) are investigated. Although these models are
less general than (1), they have wide applications and satisfy
properties (A)–(C) under more simple conditions, which
are provided as corollaries of the main theorems. A two-
dimensional stochastic Lotka-Volterra population model will
be examined as an example in Section 6.

2. Preliminaries

Throughout this paper, unless otherwise specified, we use the
following notations. Let (Ω,F,P) be a complete probability
space with a filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions;
that is, it is right continuous and increasingwhileF

0
contains

all P-null sets. 𝑤(𝑡) (𝑡 ≥ 0) is a one-dimensional Brownian
motion defined on (Ω,F,F

𝑡
,P).

For any given 𝑥 ∈ R𝑛 and R𝑛-valued function 𝑓, we
always assume that

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
T
, 𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
)
T
;

diag (𝑥) = diag (𝑥
𝑖
) = diag (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) .

(5)

For matrices𝐴, 𝐵,𝐷, and 𝐸 in model (1), we assume that𝐴 =

[𝑎
𝑖𝑗
], 𝐵 = [𝑏

𝑖𝑗
], 𝐷 = [𝑑

𝑖𝑗
], and 𝐸 = [𝑒

𝑖𝑗
] (𝑖, 𝑗 = 1, 2, . . . , 𝑛).

Assume that 𝐴 ≥ 𝐵 ⇔ 𝑎
𝑖𝑗

≥ 𝑏
𝑖𝑗
for 𝑖, 𝑗 = 1, 2, . . . , 𝑛; 𝑥 ≫ 0 ⇔

𝑥
𝑖
> 0 for 𝑖 = 1, 2, . . . , 𝑛. Let R

+
= [0,∞), R𝑛

+
= (R
+
)
𝑛, and

R𝑛
++

= {𝑥 ∈ R𝑛 : 𝑥 ≫ 0}. Denote by |𝑥| the Euclidean norm
with 𝑥 ∈ R𝑛 and |𝐴| is the trace norm of matrix 𝐴.

Definition 1. Let 𝐴 = [𝑎
𝑖𝑗
] ∈ R𝑛×𝑛 satisfy condition

𝑎
𝑖𝑖
> 0 ≥ 𝑎

𝑖𝑗
for 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗. (6)

If all eigenvalues of 𝐴 have positive real parts, 𝐴 is called an
𝑀-matrix.

Lemma 2. Suppose that the matrix 𝐴 ∈ R𝑛×𝑛 satisfies
condition (6). Then the following conditions are equivalent (see
[8]):

(i) 𝐴 is an 𝑀-matrix;
(ii) there exists 𝑐 ∈ R𝑛

++
such that 𝐴𝑐 ≫ 0;

(iii) all of the leading principal minors of 𝐴 are positive.

For any given symmetric matrix 𝑄 ∈ R𝑛×𝑛, define

𝜆
+

𝑀
(𝑄) = sup

𝑥∈R𝑛
+
,|𝑥|=1

𝑥
T
𝑄𝑥, (7)

which deduces directly that

𝜆
+

𝑀
(𝑄) ≤ 0 ⇐⇒ 𝑥

T
𝑄𝑥 ≤ 0 for any 𝑥 ∈ R

𝑛

+
. (8)

Let 𝛿(𝑡) be the variable delay of system (1). Write Δ(𝑡) = 𝑡 −

𝛿(𝑡) with 𝛿(𝑡) ∈ 𝐶
1
(R
+
,R
+
) and 𝛿(𝑡) ≤ 𝛿

0
< ∞. Then

𝜂 =: inf
𝑡≥0

Δ
󸀠
(𝑡) > 0 (9)

implies that 𝜂 ≤ 1 andΔ(𝑡) is strictly monotone increasing on
[0,∞). Its inverse function Δ

−1
(𝑠) is defined on [−𝛿(0),∞),

which satisfies

(Δ
−1

(𝑠))
󸀠

=
1

Δ󸀠 (𝑡)
≤ 𝜂
−1

, (𝑠 = Δ (𝑡) , 𝑡 ≥ 0) . (10)

Assume that 𝜏 = 𝛿(0), 𝐶 = 𝐶([−𝜏, 0],R𝑛), and 𝐶
++

=

𝐶([−𝜏, 0],R𝑛
++

). 𝐶 is a Banach space with the supremum
norm. For any given initial data 𝜉 ∈ 𝐶

++
, 𝑥(𝑡, 𝜉) always

represents the solution of (2). When 𝑥(𝑡, 𝜉) ∈ R𝑛
++

for all 𝑡
in the domain, we call it a positive solution; when 𝑥(𝑡, 𝜉) is
defined on −𝜏 ≤ 𝑡 < ∞, it is called a global solution.

Denote that

𝑓 = 𝑎 + 𝐴𝑥 + 𝐵𝑦, 𝑔 = 𝑏 + 𝐷𝑥 + 𝐸𝑦,

𝑓 = diag (𝑥) 𝑓, 𝑔 = diag (𝑥) 𝑔.

(11)

Unless otherwise stated, we assume that 𝑥, 𝑦 ∈ R𝑛
++
. For any

given 𝑉 ∈ 𝐶
2
(R𝑛
++

), define

L𝑉 (𝑥, 𝑦) = 𝑉
𝑥
(𝑥) 𝑓 (𝑥, 𝑦) +

1

2
[𝑔

T
(𝑥, 𝑦)𝑉

𝑥𝑥
(𝑥) 𝑔 (𝑥, 𝑦)] .

(12)

If 𝑥(𝑡) is a positive solution of (1), by the Itô formula and (12),
we have that

𝑉 (𝑥 (𝑡)) = 𝑉 (𝑥 (0)) + ∫

𝑡

0

𝐿𝑉 (𝑥 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑉
𝑥
(𝑥 (𝑠)) 𝑔 (𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑤 (𝑠) ,

(13)

where 𝐿𝑉(𝑥(𝑡)) = L𝑉(𝑥(𝑡), 𝑦(𝑡)) with 𝑦(𝑡) = 𝑥(𝑡 − 𝛿(𝑡)).
Let 𝑝 and 𝑐

𝑖
(1 ≤ 𝑖 ≤ 𝑛) be positive constants. Define

𝑉 (𝑥) =

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
, 𝑈 (𝑥) =

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑥
𝑝

𝑖
− 𝑝 log𝑥

𝑖
) . (14)
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Substituting (14) into (12), together with notations in (11),
yields that

L𝑉 (𝑥, 𝑦) = 𝑝

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑓
𝑖
+

𝑝 − 1

2

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2
) ;

L𝑈 (𝑥, 𝑦) = L𝑉 (𝑥, 𝑦) + 𝐼,

𝐼 = 𝑝

𝑛

∑

𝑖=1

𝑐
𝑖
(−𝑓
𝑖
+

1

2

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2
) .

(15)

Particularly, when 𝑉 = ∑
𝑛

𝑖=1
𝑥
𝑖
and 𝑈 = ∑

𝑛

𝑖=1
(𝑥
𝑖
− log𝑥

𝑖
), we

have

L𝑉 (𝑥, 𝑦) = 𝑥
T
𝑓 = 𝑥

T
(𝑎 + 𝐴𝑥 + 𝐵𝑦) ; (16)

L𝑈(𝑥, 𝑦) = L𝑉 (𝑥, 𝑦) −

𝑛

∑

𝑖=1

𝑓
𝑖
+

1

2

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨
2
. (17)

For the sake of simplicity, let Φ
𝜀
represent the following

function defined on R𝑛
++

× R𝑛
++
:

Φ
𝜀
= Φ
𝜀
(𝑥, 𝑦) =

𝐿

∑

𝑙=1

𝑎
𝑙
[𝑉
𝑙
(𝑦) − 𝜂

−1
𝑒
𝛿0𝜀𝑉
𝑙 (𝑥)] , (18)

where 𝑉
𝑙
∈ 𝐶(R𝑛

+
,R
+
), 𝜀 and 𝑎

𝑙
(1 ≤ 𝑙 ≤ 𝐿) are nonnegative

constants, and 𝜂 is defined in (9). The following lemma plays
a key role in this paper (also see [1, 9, 10]).

Lemma 3. Let Φ
𝜀
be given by (18). Suppose that 𝑥(𝑡) =

𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶
++

, −𝜏 ≤ 𝑡 < 𝜎) is a positive solution of (1) with
𝑞 ≤ 𝜀; then

∫

𝑡

0

𝑒
𝑞𝑠
Φ
𝜀
(𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 ≤ const, (0 ≤ 𝑡 < 𝜎) . (19)

In this paper, const always denotes a positive constant
with different values at different places and exact values of
these constants are insignificant.

In this paper, we often use the following inequalities:

𝑎
𝛼
𝑏
𝛽
≤

𝛼𝑎
𝛼+𝛽

+ 𝛽𝑏
𝛼+𝛽

𝛼 + 𝛽
; (𝑎, 𝑏, 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 > 0) ,

(20)

(𝑎 + 𝑏)
2
≥

𝑎
2

𝜌
−

𝑏
2

𝜌 − 1
; (𝑎, 𝑏 ∈ R, 𝜌 > 1) , (21)

(

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑖
)

2

≤

𝑛

∑

𝑖=1

𝑐
𝑖

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
2

𝑖
(𝑐
𝑖
≥ 0, 𝑥

𝑖
∈ R) . (22)

3. Main Lemmas

In order to get the desired properties (A)–(C), we need the
following three lemmas. Let us first explain that the notation
𝑜(|𝑥|
𝛼
): ℎ(𝑥) = 𝑜(|𝑥|

𝛼
) means that ℎ(𝑥) ∈ 𝐶(R𝑛

+
) with

lim
|𝑥|→∞

|𝑥|
−𝛼

ℎ (𝑥) = 0 (23)

for 𝑥 ∈ R𝑛
++
.

Lemma 4. Suppose that there exist positive constants 𝑝, 𝜎, 𝜀,
𝑏
𝑖
, and 𝑐

𝑖
(1 ≤ 𝑖 ≤ 𝑛), such that 𝑈 = ∑

𝑛

𝑖=1
𝑐
𝑖
(𝑥
𝑝

𝑖
− 𝑝 log𝑥

𝑖
)

satisfies condition

L𝑈(𝑥, 𝑦) ≤ Φ
𝜀
−

𝑛

∑

𝑖=1

𝑏
𝑖
𝑥
𝜎

𝑖
+ 𝑜 (|𝑥|

𝜎
) , (𝑥, 𝑦 ∈ R

𝑛

++
) ,

(24)

where Φ
𝜀
is defined by (18). Then (1) is positive and nonexplo-

sive; namely, for any given 𝜉 ∈ R𝑛
++
, (1) has a unique positive

solution 𝑥(𝑡, 𝜉).

Lemma 5. Suppose that there exist positive constants 𝜀, 𝑏
𝑖
, and

𝑐
𝑖
(1 ≤ 𝑖 ≤ 𝑛), such that 𝑉 = ∑

𝑛

𝑖=1
𝑐
𝑖
𝑥
𝑖
satisfies condition

L𝑉 (𝑥, 𝑦) ≤ Φ
𝜀
−

𝑛

∑

𝑖=1

𝑏
𝑖
𝑥
2

𝑖
+ 𝑜 (|𝑥|

2
) , (𝑥, 𝑦 ∈ R

𝑛
) , (25)

where Φ
𝜀
is given by (18). Then any positive global solution

𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶
++

) of (1) satisfies (2)-(3).

Theproofs of the above two lemmas are omitted since two
similar approaches can be found in [1].

Lemma 6. Suppose that there exist positive constants 𝑝, 𝜎, 𝜀,
and 𝑏
𝑖
(1 ≤ 𝑖 ≤ 𝑛), such that the following condition is satisfied:

𝐽 =:
𝑥
T
𝑓

𝑒T𝑥
+

𝑝 − 1

2
(

𝑥
T
𝑔

𝑒T𝑥
)

2

≤ Φ
𝜀
−

𝑛

∑

𝑖=1

𝑏
𝑖
𝑥
𝜎

𝑖
+ 𝑜 (|𝑥|

𝜎
) , (𝑥, 𝑦 ∈ R

𝑛

++
) ,

(26)

where 𝑒 = (1, 1, . . . , 1)
T, 𝑓 and 𝑔 are defined by (11), and Φ

𝜀

is defined by (18). Then any positive global solution 𝑥(𝑡, 𝜉) (𝜉 ∈

𝐶
++

) of (1) satisfies

lim sup
𝑡→∞

log 󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜉)
󵄨󵄨󵄨󵄨

log 𝑡
≤

1

𝑝
, 𝑎.𝑠. (27)

Proof. Let 𝑉 = log(𝑒T𝑥) (𝑥 ∈ R𝑛
++

). Then,

𝑉
𝑥
=

𝑒
T

𝑒T𝑥
, 𝑉

𝑥𝑥
= −

𝑒𝑒
T

(𝑒T𝑥)
2
. (28)

By (12) and (26), we have

L𝑉 (𝑥, 𝑦) = 𝐽 −
𝑝

2
|𝑍|
2
, 𝑍 = 𝑉

𝑥
𝑔 =

𝑥
T
𝑔

𝑒T𝑥
. (29)

Let ℎ(𝑡) = 𝑒
𝜀𝑡
𝑉(𝑥(𝑡)); then ℎ(𝑡) = ℎ(0) + 𝐼 + 𝑀(𝑡), where

𝑀(𝑡) = ∫

𝑡

0

𝑒
𝜀𝑠
𝑉
𝑥
(𝑥 (𝑠)) 𝑔 (𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑤 (𝑠)

= ∫

𝑡

0

𝑒
𝜀𝑠
𝑍 (𝑠) 𝑑𝑤 (𝑠) ,

(30)

𝐼 = ∫

𝑡

0

𝑒
𝜀𝑠

[𝐿𝑉 (𝑥 (𝑠)) + 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠

= ∫

𝑡

0

𝑒
𝜀𝑠

[𝐽 −
𝑝

2
|𝑍 (𝑠)|

2
+ 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠.

(31)
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For any given 𝜃 > 1 and 𝑘 ∈ N, by the exponential martingale
inequality, we have that

P{ sup
0≤𝑡≤𝑘+1

[𝑀 (𝑡) −
𝑝

2𝑒𝜀(𝑘+1)
∫

𝑡

0

𝑒
2𝜀𝑠

|𝑍 (𝑠)|
2
𝑑𝑠]

≥
𝑒
𝜀(𝑘+1) log 𝑘

𝜃

𝑝
} ≤

1

𝑘𝜃
.

(32)

Since ∑
∞

𝑘=1
𝑘
−𝜃

< ∞, we can employ the Borel-Cantelli
lemma to derive that, almost surely, when 𝑘 is sufficiently
large and 𝑘 ≤ 𝑡 ≤ 𝑘 + 1, one can get that

𝑀(𝑡) ≤
𝑒
𝜀(𝑘+1) log 𝑘

𝜃

𝑝
+

𝑝

2𝑒𝜀(𝑘+1)
∫

𝑡

0

𝑒
2𝜀𝑠

|𝑍 (𝑠)|
2
𝑑𝑠

≤
𝜃𝑒
𝜀

𝑝
𝑒
𝜀𝑡 log 𝑡 +

𝑝

2
∫

𝑡

0

𝑒
𝜀𝑠
|𝑍 (𝑠)|

2
𝑑𝑠.

(33)

Note that −∑
𝑛

𝑖=1
𝑏
𝑖
𝑥
𝜎

𝑖
+𝑜(|𝑥|

𝜎
)+𝜀𝑉(𝑥) ≤ const.This, together

with (31), (33), and (26), gives that in the sense of almost sure,
when 𝑡 is sufficiently large,

ℎ (𝑡) − 𝑝
−1

𝜃𝑒
𝜀
𝑒
𝜀𝑡 log 𝑡

≤ const + ∫

𝑡

0

𝑒
𝜀𝑠

[𝐽 + 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠

≤ const

+ ∫

𝑡

0

𝑒
𝜀𝑠

[Φ
𝜀
−

𝑛

∑

𝑖=1

𝑏
𝑖
𝑥
𝜎

𝑖
(𝑠) + 𝑜 (|𝑥 (𝑠)|

𝜎
) + 𝜀𝑉 (𝑥 (𝑠))] 𝑑𝑠

≤ const + const∫
𝑡

0

𝑒
𝜀𝑠
𝑑𝑠

≤ const (1 + 𝑒
𝜀𝑡
) ,

(34)

where we have used Lemma 3. This implies that in the sense
of almost sure

𝑉 (𝑥 (𝑡)) ≤ 𝑝
−1

𝜃𝑒
𝜀 log 𝑡 + const (1 + 𝑒

−𝜀𝑡
) (35)

when 𝑡 is sufficiently large. Therefore,

lim sup
𝑡→∞

𝑉 (𝑥 (𝑡))

log 𝑡
≤

𝜃𝑒
𝜀

𝑝
, 𝑎.𝑠. (36)

Obviously, Φ
𝜀
is a monotony decrease function of 𝜀, so 𝜀 can

be replaced by any 𝜀
󸀠
∈ (0, 𝜀) in condition (26). Hence wemay

assume that 𝜀 is sufficiently small. Letting 𝜃 → 1 and 𝜀 → 0,
we get that

lim sup
𝑡→∞

𝑉 (𝑥 (𝑡))

log 𝑡
≤

1

𝑝
, 𝑎.𝑠. (37)

Note that 𝑉(𝑥) ≤ log |𝑥| for 𝑥 ∈ R𝑛
++
. Then (27) follows from

(37).

4. The Main Results

In this section, let us apply Lemmas 4–6 to establish the main
results of this paper. We use the denotations 𝑒 = (1, 1, . . . , 1)

T

and 𝑄 = 𝑒𝑒
T.

Theorem 7. Suppose that there exist nonnegative constants 𝑞,
𝑟, 𝛼, and 𝛽, such that the following conditions are satisfied:

𝜆
+

𝑀
(𝐻) ≤ 0, 𝐻 = [

𝐴 + 𝐴
T
+ 2𝑞𝑄 𝐵 − 𝑟𝑄

𝐵
T
− 𝑟𝑄 0

] ; (38)

𝜆
+

𝑀
(𝐹) ≤ 0, 𝐹 = [

𝐷
T
𝐷 − 𝛼𝑄 𝐷

T
𝐸

𝐸
T
𝐷 𝐸

T
𝐸 − 𝛽𝑄

] ; (39)

𝑞 > 𝑟𝜂
−1

⋁
𝑟(1 + 𝜂

−1
) + 𝛼 + 𝛽𝜂

−1

2
. (40)

Then for any given 𝜉 ∈ 𝐶
++
, (1) has a unique positive solution

𝑥(𝑡, 𝜉) and this solution satisfies (2)–(4).

Proof. Let us divide this proof into the following three steps.

Step 1. Let 𝑉 = ∑
𝑛

𝑖=1
𝑥
𝑖
(𝑥 ∈ R𝑛

++
). Let us test condition (25).

By (8) and condition (38), for any given 𝑥, 𝑦 ∈ R𝑛
++

we have
that

0 ≥ (𝑥
T

𝑦
T
)𝐻(

𝑥

𝑦
)

= 𝑥
T
(𝐴 + 𝐴

T
+ 2𝑞𝑄) + 2𝑥

T
(𝐵 − 𝑟𝑄) 𝑦

= 2𝑥
T
(𝐴𝑥 + 𝐵𝑦) + 2𝑞(𝑒

T
𝑥)
2

− 2𝑟 (𝑒
T
𝑥) (𝑒

T
𝑦) ,

(41)

so

𝑥
T
(𝐴𝑥 + 𝐵𝑦) ≤ −𝑞(𝑒

T
𝑥)
2

+ 𝑟 (𝑒
T
𝑥) (𝑒

T
𝑦) . (42)

By (16) and (42), we get

L𝑉 (𝑥, 𝑦) = 𝑥
T
(𝑎 + 𝐴𝑥 + 𝐵𝑦)

≤ −𝑞(𝑒
T
𝑥)
2

+ 𝑟 (𝑒
T
𝑥) (𝑒

T
𝑦) + 𝑜 (|𝑥|

2
)

(43)

≤ −(𝑞 −
𝑟

2
) (𝑒

T
𝑥)
2

+
𝑟

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

(44)

= Φ
𝜀
− 𝑘
1
(𝑒

T
𝑥)
2

+ 𝑜 (|𝑥|
2
) , (45)

where

Φ
𝜀
=

𝑟

2
[(𝑒

T
𝑦)
2

− 𝜂
−1

𝑒
𝛿0𝜀(𝑒

T
𝑥)
2

] (46)

is a function in the form of (18) with 𝜀 > 0 sufficiently small
and

𝑘
1
= 𝑞 −

𝑟

2
−

𝑟

2
𝜂
−1

𝑒
𝛿0𝜀. (47)

By condition (40),

𝑘
1

󵄨󵄨󵄨󵄨𝜀=0 = 𝑞 −
𝑟

2
(1 + 𝜂

−1
) > 0. (48)
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Since 𝜀 is sufficiently small, we may assume that 𝑘
1

> 0.
Obviously, (𝑒T𝑥)2 ≥ ∑

𝑛

𝑖=1
𝑥
2

𝑖
(𝑥 ∈ R𝑛

++
), so (45) implies (25).

Now, we can apply Lemma 5 to obtain that any global
positive solution 𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶

++
) of (1) satisfies (2)-(3).

Step 2.Let𝑈 = ∑
𝑛

𝑖=1
(𝑥
𝑖
−log𝑥

𝑖
) (𝑥 ∈ R𝑛

++
). In this step, wewill

test condition (24). For any given 𝑥, 𝑦 ∈ R𝑛
++
, using condition

(39) yields

0 ≥ (𝑥
T

𝑦
T
) 𝐹(

𝑥

𝑦
)

= 𝑥
T
(𝐷

T
𝐷 − 𝛼𝑄)𝑥 + 2𝑥

T
𝐷

T
𝐸𝑦 + 𝑦

T
(𝐸

T
𝐸 − 𝛽𝑄)𝑦

= |𝐷𝑥|
2
+ 2(𝐷𝑥)

T
𝐸𝑦 +

󵄨󵄨󵄨󵄨𝐸𝑦
󵄨󵄨󵄨󵄨
2
− 𝛼𝑥

T
𝑄𝑥 − 𝛽𝑦

T
𝑄𝑦

=
󵄨󵄨󵄨󵄨𝐷𝑥 + 𝐸𝑦

󵄨󵄨󵄨󵄨
2
− 𝛼(𝑒

T
𝑥)
2

− 𝛽(𝑒
T
𝑦)
2

,

(49)

which implies
󵄨󵄨󵄨󵄨𝐷𝑥 + 𝐸𝑦

󵄨󵄨󵄨󵄨
2
≤ 𝛼(𝑒

T
𝑥)
2

+ 𝛽(𝑒
T
𝑦)
2

. (50)

By (17), (44), and (50),

L𝑈(𝑥, 𝑦)

≤ − (𝑞 −
𝑟

2
) (𝑒

T
𝑥)
2

+
𝑟

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

−

𝑛

∑

𝑖=1

𝑓
𝑖
+

1

2

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨
2

≤ −(𝑞 −
𝑟

2
) (𝑒

T
𝑥)
2

+
𝑟

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

+ const 󵄨󵄨󵄨󵄨𝑎 + 𝐴𝑥 + 𝐵𝑦
󵄨󵄨󵄨󵄨 +

1

2

󵄨󵄨󵄨󵄨𝑏 + 𝐷𝑥 + 𝐸𝑦
󵄨󵄨󵄨󵄨
2

≤ −(𝑞 −
𝑟

2
) (𝑒

T
𝑥)
2

+
𝑟

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

+ const 󵄨󵄨󵄨󵄨𝑎 + 𝐴𝑥 + 𝐵𝑦
󵄨󵄨󵄨󵄨 +

1

2
|𝑏|
2
+ 𝑏

T
(𝐷𝑥 + 𝐸𝑦)

+
1

2

󵄨󵄨󵄨󵄨𝐷𝑥 + 𝐸𝑦
󵄨󵄨󵄨󵄨
2

≤ −(𝑞 −
𝑟 + 𝛼

2
) (𝑒

T
𝑥)
2

+
𝑟 + 𝛽

2
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

+ const (1 + |𝑥| +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)

= Φ
󸀠

𝜀
− 𝑘
2
(𝑒

T
𝑥)
2

+ 𝑜 (|𝑥|
2
) ,

(51)

where

Φ
󸀠

𝜀
=

𝑟 + 𝛽

2
[(𝑒

T
𝑦)
2

− 𝜂
−1

𝑒
𝛿0𝜀(𝑒

T
𝑥)
2

]

+ const (󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 − 𝜂
−1

𝑒
𝛿0𝜀 |𝑥|)

(52)

is a function in the form of (18):

𝑘
2
= 𝑞 −

𝑟 + 2

2
−

𝑟 + 𝛽

2
𝜂
−1

𝑒
𝛿0𝜀. (53)

Condition (40) implies that 𝑘
2
|
𝜀=0

> 0. Since 𝜀 > 0 can
be sufficiently small, we can get 𝑘

2
> 0. So (51) can imply

condition (24) (choose 𝜎 = 2). Now we can employ Lemma 4
to obtain that, for any given 𝜉 ∈ 𝐶

++
, (1) has a unique positive

global solution 𝑥(𝑡, 𝜉).

Step 3. Choose 𝑝 = 1. By (26) we have 𝐽 = 𝑥
T
𝑓/𝑒

T
𝑥. Now we

test condition (26). Note that 𝑥T
𝑓 = L𝑉(𝑥, 𝑦), so by (43) we

have

𝐽 ≤ −𝑞𝑒
T
𝑥 + 𝑟𝑒

T
𝑦 + 𝑜 (|𝑥|)

= Φ
󸀠󸀠

𝜀
− 𝑘
3
𝑒
T
𝑥 + 𝑜 (|𝑥|) ,

(54)

where

Φ
󸀠󸀠

𝜀
= 𝑟 (𝑒

T
𝑦 − 𝜂
−1

𝑒
𝛿0𝜀𝑒

T
𝑥) . (55)

is a function in the form of (18),

𝑘
3
= 𝑞 − 𝑟𝜂

−1
𝑒
𝛿0𝜀. (56)

By condition (40) we have 𝑘
3
|
𝜀=0

= 𝑞 − 𝑟𝜂
−1

> 0, so we may
assume that 𝑘

3
> 0. Then (54) shows that condition (26) is

satisfied (choose 𝜎 = 1).
Applying Lemma 6 yields that any positive solution

𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶
++

) of (1) satisfies (4). This completes the
proof.

Theorem 8. Suppose that there exist nonnegative constants 𝑞

and 𝑟, such that condition (38) and the following condition are
satisfied:

𝑟𝑄 ≥ ±𝐸; (57)

𝜆
+

𝑀
(𝑅) ≤ 0, 𝑅 = 2𝑞𝑄 − 𝐷 − 𝐷

T
; (58)

2𝑞 > 𝑟 (1 + 𝜂
−1

) . (59)

Assume that 𝐷 ≥ 0,

𝐺 =: diag (𝜂𝑑
2

𝑖𝑖
) − 𝑆 is an 𝑀-matrix, (60)

where 𝑆 = [𝑠
𝑖𝑗
], 𝑠
𝑖𝑗

= 𝑒
𝑖∙
𝑒
𝑖𝑗
, 𝑒
𝑖𝑗

= |𝑒
𝑖𝑗
|, and 𝑒

𝑖∙
= ∑
𝑛

𝑗=1
𝑒
𝑖𝑗
. Then

the conclusion of Theorem 7 holds.

Proof.

Step 1. By Lemma 2, condition (60) can imply that 𝐺T is an
𝑀-matrix. Thus, there exists 𝑐 ∈ R𝑛

++
such that 𝐺T

𝑐 ≫ 0. Let
𝑈 = ∑

𝑛

𝑖=1
𝑐
𝑖
(𝑥
𝑝

𝑖
− 𝑝 log𝑥

𝑖
) (𝑥 ∈ R𝑛

++
), 𝜎 = 2 + 𝑝, where 𝑝 > 0

is sufficiently small. Now we test condition (24). By (15) we
have that

L𝑈 (𝑥, 𝑦)

= 𝑝

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑓
𝑖
+

𝑝 − 1

2

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2
)

+ 𝑝

𝑛

∑

𝑖=1

𝑐
𝑖
(−𝑓
𝑖
+

1

2

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2
)
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≤ const|𝑥|𝑝 󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 −

𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2
+ const (󵄨󵄨󵄨󵄨𝑓

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔

󵄨󵄨󵄨󵄨
2
)

≤ −
𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2
+ const (|𝑥|𝑝 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
2
)

+ 𝑜 (|𝑥|
𝜎
)

≤ −
𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2
+ const (󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
𝑝+1

+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
2
)

+ 𝑜 (|𝑥|
𝜎
)

= Φ
𝜀
−

𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2
+ 𝑜 (|𝑥|

𝜎
) ,

(61)

where

Φ
𝜀
= const [󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
𝑝+1

+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
2
− 𝜂
−1

𝑒
𝛿0𝜀 (|𝑥|

𝑝+1
+ |𝑥| + |𝑥|

2
)]

(62)

is a function in the form of (18). Choose 𝜌 sufficiently large;
then

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨
2

=

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑏
𝑖
+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝑥
𝑗
+

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑦
𝑗
)

2

≥
1

𝜌

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝑥
𝑗
)

2

−
1

𝜌 − 1

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑏
𝑖
+

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑦
𝑗
)

2

≥
1

𝜌

𝑛

∑

𝑖=1

c
𝑖
𝑑
2

𝑖𝑖
𝑥
𝜎

𝑖
−

1

𝜌 − 1

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑦
𝑗
)

2

−
1

𝜌 − 1

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑝

𝑖
(𝑏
2

𝑖
+ 2𝑏
𝑖

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑦
𝑗
)

≥
1

𝜌

𝑛

∑

𝑖=1

𝑐
𝑖
𝑑
2

𝑖𝑖
𝑥
𝜎

𝑖
−

1

𝜌 − 1

𝑛

∑

𝑖,𝑗=1

𝑐
𝑖
𝑠
𝑖𝑗
𝑥
𝑝

𝑖
𝑦
2

𝑗

− const
𝑛

∑

𝑖,𝑗=1

𝑥
𝑝

𝑖
𝑦
𝑗
− 𝑜 (|𝑥|

𝜎
)

≥
1

𝜌

𝑛

∑

𝑖=1

𝑐
𝑖
𝑑
2

𝑖𝑖
𝑥
𝜎

𝑖
−

1

𝜌 − 1

𝑛

∑

𝑖,𝑗=1

𝑐
𝑖
𝑠
𝑖𝑗

2𝑦
𝜎

𝑗
+ 𝑝𝑥
𝜎

𝑖

2 + 𝑝

− const
𝑛

∑

𝑖,𝑗=1

𝑝𝑥
𝑝+1

𝑖
+ 𝑦
𝑝+1

𝑗

𝑝 + 1
− 𝑜 (|𝑥|

𝜎
)

=

𝑛

∑

𝑖=1

𝑐
𝑖
[
𝑑
2

𝑖𝑖

𝜌
−

𝑝𝑠
𝑖∙

(𝜌 − 1) (2 + 𝑝)
] 𝑥
𝜎

𝑖

−
2

(𝜌 − 1) (2 + 𝑝)

𝑛

∑

𝑖,𝑗=1

𝑐
𝑗
𝑠
𝑗𝑖
𝑦
𝜎

𝑖
− const

𝑛

∑

𝑖=1

𝑦
𝑝+1

𝑖
− 𝑜 (|𝑥|

𝜎
)

= −Φ
󸀠

𝜀
+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑥
𝜎

𝑖
+ 𝑜 (|𝑥|

𝜎
) ,

(63)

where we have used inequalities (20)–(22), 𝑠
𝑖𝑗

= 𝑒
𝑖∙
𝑒
𝑖𝑗
, 𝑠
𝑖∙

=

∑
𝑛

𝑗=1
𝑠
𝑖𝑗
; consider

Φ
󸀠

𝜀
=

2

(𝜌 − 1) (2 + 𝑝)

𝑛

∑

𝑖,𝑗=1

𝑐
𝑗
𝑠
𝑗𝑖
(𝑦
𝜎

𝑖
− 𝜂
−1

𝑒
𝛿0𝜀𝑥
𝜎

𝑖
)

+ const
𝑛

∑

𝑖=1

(𝑦
𝑝+1

𝑖
− 𝜂
−1

𝑒
𝛿0𝜀𝑥
𝑝+1

𝑖
)

(64)

is a function in the form of (18):

𝑘
𝑖
= 𝑐
𝑖
(

𝑑
2

𝑖𝑖

𝜌
−

𝑝𝑠
𝑖∙

(𝜌 − 1) (2 + 𝑝)
) −

2𝜂
−1

𝑒
𝛿0𝜀

(𝜌 − 1) (2 + 𝑝)

𝑛

∑

𝑗=1

𝑐
𝑗
𝑠
𝑗𝑖

(65)

when 𝜀 → 0, 𝑝 → 0, and 𝜌 → ∞,

𝜌𝑘
𝑖
󳨀→ 𝑐
𝑖
𝑑
2

𝑖𝑖
− 𝜂
−1

𝑛

∑

𝑗=1

𝑐
𝑗
𝑠
𝑗𝑖

> 0. (66)

The last inequality is based on the condition 𝐺
T
𝑐 ≫ 0. Thus

we may assume that 𝜀 and 𝑝 are sufficiently small, while 𝜌 is
sufficiently large; then 𝑘

𝑖
> 0 (1 ≤ 𝑖 ≤ 𝑛). Substituting (63)

into (61) yields that

L𝑈 (𝑥, 𝑦) ≤ Φ
󸀠󸀠

𝜀
−

𝑝 (1 − 𝑝)

2

𝑛

∑

𝑖=1

𝑘
𝑖
𝑥
𝜎

𝑖
+ 𝑜 (|𝑥|

𝜎
) , (67)

where

Φ
󸀠󸀠

𝜀
= Φ
𝜀
+

𝑝 (1 − 𝑝)

2
Φ
󸀠

𝜀
(68)

is a function in the form of (18). Clearly, (67) shows that
condition (24) is satisfied.

Now, we can use Lemma 4 to obtain that, for any given
𝜉 ∈ 𝐶
++
, (1) has a unique global positive solution 𝑥(𝑡, 𝜉).
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Step 2. Let𝑉 = ∑
𝑛

𝑖=1
𝑥
𝑖
. In this step we test condition (25); for

that, we only need to show that conditions (38) and (59) hold.
The method is similar to the proof of Theorem 7, Step 1.

Step 3. Taking any 𝑝 ∈ (0, 1), now we test condition (26). We
can replace 𝐽 by (2/(1 − 𝑝))𝐽:

2

1 − 𝑝
𝐽 =

2

1 − 𝑝

𝑥
T
𝑓

𝑒T𝑥
− (

𝑥
T
𝑔

𝑒T𝑥
)

2

=: 𝐽
1
+ 𝐽
2
,

𝐽
1
=

2

1 − 𝑝

𝑥
T
(𝑎 + 𝐴𝑥 + 𝐵𝑦)

𝑒T𝑥

≤ const (1 + |𝑥| +
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)

= const 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 + 𝑜 (|𝑥|

2
) ,

𝐽
2
= −[

𝑥
T
𝑏 + 𝑥

T
(𝐷𝑥 + 𝐸𝑦)

𝑒T𝑥
]

2

= −
(𝑥

T
𝑏)
2

+ 2 (𝑥
T
𝑏) 𝑥

T
(𝐷𝑥 + 𝐸𝑦)

(𝑒T𝑥)
2

− (
𝑥
T
𝐷𝑥 + 𝑥

T
𝐸𝑦

𝑒T𝑥
)

2

≤ const 󵄨󵄨󵄨󵄨𝐷𝑥 + 𝐸𝑦
󵄨󵄨󵄨󵄨 − (

𝑥
T
𝐷𝑥 + 𝑥

T
𝐸𝑦

𝑒T𝑥
)

2

=: 𝐽
3
+ 𝐽
4
.

(69)

Obviously,

𝐽
3
≤ const 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 + 𝑜 (|𝑥|
2
) . (70)

Letting 𝜌 be sufficiently large, then inequality (21) gives that

𝐽
4
≤ −

1

𝜌
(

𝑥
T
𝐷𝑥

𝑒T𝑥
)

2

+
1

𝜌 − 1
(

𝑥
T
𝐸𝑦

𝑒T𝑥
)

2

. (71)

By condition (58) we have

𝑥
T
𝑅𝑥 = 2𝑞(𝑒

T
𝑥)
2

− 2𝑥
T
𝐷𝑥 ≤ 0; (72)

thus 𝑥T
𝐷𝑥 ≥ 𝑞(𝑒

T
𝑥)
2, which implies

(
𝑥
T
𝐷𝑥

𝑒T𝑥
)

2

≥ 𝑞
2
(𝑒

T
𝑥)
2

, (𝑥 ∈ R
𝑛

++
) . (73)

Condition (57) derives that

𝑟 (𝑒
T
𝑥) (𝑒

T
𝑦) = 𝑟𝑥

T
𝑄𝑦 ≥

󵄨󵄨󵄨󵄨󵄨
𝑥
T
𝐸y󵄨󵄨󵄨󵄨󵄨 , (𝑥, 𝑦 ∈ R

𝑛

++
) ; (74)

hence,

(
𝑥
T
𝐸𝑦

𝑒T𝑥
)

2

≤ 𝑟
2
(𝑒

T
𝑦)
2

. (75)

So

𝐽
4
≤ −

𝑞
2

𝜌
(𝑒

T
𝑥)
2

−
𝑟
2

𝜌 − 1
(𝑒

T
𝑦)
2

. (76)

Combining (69)–(76) yields

2

1 − 𝑝
𝐽 ≤ const 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 −
𝑞
2

𝜌
(𝑒

T
𝑥)
2

+
𝑟
2

𝜌 − 1
(𝑒

T
𝑦)
2

+ 𝑜 (|𝑥|
2
)

= Φ
󸀠󸀠󸀠

𝜀
− 𝑘(𝑒

T
𝑥)
2

+ 𝑜 (|𝑥|
2
) ,

(77)

where

Φ
󸀠󸀠󸀠

𝜀
= const (󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 − 𝜂
−1

𝑒
𝛿0𝜀 |𝑥|)

+
𝑟
2

𝜌 − 1
[(𝑒

T
𝑦)
2

− 𝜂
−1

𝑒
−𝛿0𝜀(𝑒

T
𝑥)
2

]

(78)

is a function in the form of (18),

𝑘 =
𝑞
2

𝜌
−

𝑟
2

𝜌 − 1
𝜂
−1

𝑒
𝛿0𝜀. (79)

When 𝜀 → 0 and 𝜌 → ∞,

𝜌𝑘 󳨀→ 𝑞
2
− 𝑟
2
𝜂
−1

. (80)

By condition (59), we have 𝑞 > 𝑟(1 + 𝜂
−1

)/(2) ≥ 𝑟/√𝜂;
therefore, 𝑞

2
> 𝑟
2
𝜂
−1. Since we may assume that 𝜀 is

sufficiently small and 𝜌 is sufficiently large, there must be
𝑘 > 0. Thus, condition (77) deduces that condition (26) is
satisfied.

Now, we can apply Lemma 6 to obtain that any positive
solution𝑥(𝑡, 𝜉) (𝜉 ∈ 𝐶

++
)of (1) satisfies (27). And thenwe can

get that 𝑥(𝑡, 𝜉) satisfies (4) by letting 𝑝 → 1. This completes
the proof.

Remark 9. Observing and comparing the conditions of The-
orems 7 and 8, the condition they have in common is (38),
which only involves parameters from the drift coefficient
𝑓. Condition (39) in Theorem 7 corresponds to conditions
(57), (58), and (60) inTheorem 8 which depend on stochastic
disturbances of system (1). Both of them can guarantee the
existence and uniqueness of the solution. But it seems that
the three conditions of Theorem 8 are more precise than
condition (39). Hence, we may expect that Theorem 8 can
give more accurate results. However, it needs condition 𝐷 ≥

0, which is not requested in Theorem 7. So Theorems 7 and
4.2 have their own strengths and weaknesses.

Remark 10. Theorems 7 and 8 give two classes of conditions
under which the desired properties (A)–(C) hold. This is
an improvement for our previous results ([1, 2]), since we
only established these three results in different conditions,
respectively. Moreover, conditions of the two theorems are
directly dependent on the parameters of system, except 𝑞 and
𝑟. This implies that these conditions are easier to be verified.
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5. Some Corollaries

In (1), letting 𝐸 = 0, 𝐷 = 𝐸 = 0, and 𝐵 = 𝐸 = 0, one can get
the following “defective” LV systems:

𝑑𝑥 (𝑡) = diag (𝑥 (𝑡)) {[𝑎 + 𝐴𝑥 (𝑡) + 𝐵𝑦 (𝑡)] 𝑑𝑡

+ [𝑏 + 𝐷𝑥 (𝑡)] 𝑑𝑤 (𝑡)} ;

(81)

𝑑𝑥 (𝑡) = diag (𝑥 (𝑡)) {[𝑎 + 𝐴𝑥 (𝑡) + 𝐵𝑦 (𝑡)] 𝑑𝑡 + 𝑏𝑑𝑤 (𝑡)} ;

(82)

𝑑𝑥 (𝑡) = diag (𝑥 (𝑡)) {[𝑎 + 𝐴𝑥 (𝑡)] 𝑑𝑡 + [𝑏 + 𝐷𝑥 (𝑡)] 𝑑𝑤 (𝑡)} ,

(83)

where (83) is equivalent to taking 𝛿(𝑡) ≡ 0 in (1). For (81)–
(83), we can simplify the conditions ofTheorems 7-8 and then
obtain corollaries as follows.

Corollary 11. Suppose that there exist nonnegative constants 𝑞,
𝑟, and 𝛼, such that condition (38) and the following conditions
are satisfied:

𝜆
+

𝑀
(𝐷

T
𝐷 − 𝛼𝑄) ≤ 0;

𝑞 > 𝑟𝜂
−1

⋁
𝑟(1 + 𝜂

−1
) + 𝛼

2
.

(84)

Then for any given 𝜉 ∈ 𝐶
++
, (81) has a unique global positive

solution 𝑥(𝑡, 𝜉), which satisfies (2)–(4).

Taking 𝛽 = 0 in Theorem 7, (84) deduces (39)-(40)
directly. The following corollary can be found in [3, 4].

Corollary 12. Let 𝐷 ≥ 0, 𝑑
𝑖𝑖

> 0 (1 ≤ 𝑖 ≤ 𝑛). Then for (81),
the conclusion of Corollary 11 holds.

This corollary can be deduced from Theorem 8. First, let
𝑟 = 0 such that condition (57) is satisfied. Second, when 𝑞 > 0

is sufficiently small, conditions (58)-(59) are satisfied.
Clearly, Theorem 8 cannot be applied on system (82), but

employingTheorem 7 we have the following.

Corollary 13. Suppose that there exist nonnegative constants
𝑞 and 𝑟, such that (38) and the following condition are satisfied:

𝑞 > (𝑟𝜂
−1

)⋁
𝑟 (1 + 𝜂

−1
)

2
. (85)

Then for any given 𝜉 ∈ 𝐶
++
, (82) has a unique global positive

solution 𝑥(𝑡, 𝜉), which satisfies (2)–(4).

Note that when 𝐷 = 𝐸 = 0, we should take 𝛼 = 𝛽 = 0

such that condition (39) is satisfied.
ApplyingTheorem 7 on (83) yields the following.

Corollary 14. Suppose that there exist nonnegative constants
𝑞, 𝑟, and𝛼 such that conditions (84) and the following condition
are satisfied:

𝜆
+

𝑀
(𝐴 + 𝐴

T
+ 2𝑞𝑄) ≤ 0. (86)

Then for any given 𝜉 ∈ 𝐶
++
, (83) has a unique global positive

solution 𝑥(𝑡, 𝜉), which satisfies (2)–(4).

6. Examples

Consider the following 2-dimensional LV system:

𝑑𝑥
1
(𝑡)

𝑥
1 (𝑡)

= [−8𝑥
1
(𝑡) + 𝑥

2
(𝑡) − 𝑦

1
(𝑡) + 𝑦

2
(𝑡)] 𝑑𝑡

+ [𝜆𝑥
1
(𝑡) + 𝜆𝑥

2
(𝑡) + 𝜇𝑦

1
(𝑡) − 𝜇𝑦

2
(𝑡)] 𝑑𝑤 (𝑡) ,

𝑑𝑥
2
(𝑡)

𝑥
2
(𝑡)

= [𝑥
1 (𝑡) − 7𝑥

2 (𝑡) + 𝑦
1 (𝑡) − 𝑦

2 (𝑡)] 𝑑𝑡

+ [𝜆𝑥
2 (𝑡) − 𝜇𝑦

2 (𝑡)] 𝑑𝑤 (𝑡) ,

(87)

where 𝜆 and 𝜇 are nonnegative constants,𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡−𝜏) (𝑖 =

1, 2), and 𝜏 > 0. Let

𝐴 = (
−8 1

1 −7
) , 𝐵 = (

−1 1

1 −1
) ,

𝐶 = 𝜆(
1 1

0 1
) , 𝐸 = 𝜇(

1 −1

0 −1
) .

(88)

By (88), we can compute

𝐴 + 𝐴
T
= (

−16 2

2 −14
) , 𝐷

T
𝐷 = 𝜆

2
(
1 1

1 2
) ,

𝐷
T
𝐸 = 𝜆𝜇(

1 −1

1 −2
) , 𝐸

T
𝐸 = 𝜇

2
(

1 −1

−1 2
) ,

𝐷 + 𝐷
T
= 𝜆(

2 1

1 2
) , 𝑆 = 𝜇

2
(
2 2

0 1
) .

(89)

Then, by (38) and (39) we have

𝐻 = (

2𝑞 − 16 2𝑞 + 2 −1 − 𝑟 1 − 𝑟

2𝑞 + 2 2𝑞 − 14 1 − 𝑟 −1 − 𝑟

−1 − 𝑟 1 − 𝑟 0 0

1 − 𝑟 −1 − 𝑟 0 0

) ;

𝐹 = (

𝜆
2
− 𝛼 𝜆

2
− 𝛼 𝜆𝜇 −𝜆𝜇

𝜆
2
− 𝛼 2𝜆

2
− 𝛼 𝜆𝜇 −2𝜆𝜇

𝜆𝜇 𝜆𝜇 𝜇
2
− 𝛽 −𝜇

2
− 𝛽

−𝜆𝜇 −2𝜆𝜇 −𝜇
2
− 𝛽 2𝜇

2
− 𝛽

) ;

𝐺 = (
𝜆
2
− 2𝜇
2

−2𝜇
2

0 𝜆
2
− 𝜇
2) ,

𝑅 = (
2𝑞 − 2𝜆 2𝑞 − 𝜆

2𝑞 − 𝜆 2𝑞 − 2𝜆
) .

(90)
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(1
∘
) Apply Theorem 7. For any given 𝑥 ∈ R4

+
, we have

𝑥
T
𝐻𝑥 = (2𝑞 − 16) 𝑥

2

1
+ 2 (2𝑞 + 2) 𝑥

1
𝑥
2
− 2 (1 + 𝑟) 𝑥1𝑥3

+ 2 (1 − 𝑟) 𝑥
2
𝑥
4
+ (2𝑞 − 14) 𝑥

2

2
+ 2 (1 − 𝑟) 𝑥

2
𝑥
3

− 2 (1 + 𝑟) 𝑥2𝑥4

≤ (2𝑞 − 16) 𝑥
2

1
+ (2𝑞 + 2) (𝑥

2

1
+ 𝑥
2

2
)

+ (1 − 𝑟)
+
(𝑥
2

1
+ 𝑥
2

4
)

+ (2𝑞 − 14) 𝑥
2

2
+ (1 − 𝑟)

+
(𝑥
2

2
+ 𝑥
2

3
)

= 𝑥
2

1
[4𝑞 − 14 + (1 − 𝑟)

+
] + 𝑥
2

2
[4𝑞 − 12 + (1 − 𝑟)

+
]

+ (1 − 𝑟)
+
(𝑥
2

3
+ 𝑥
2

4
) .

(91)

It can be seen that, taking 𝑟 ≥ 1 and 𝑞 ≤ 3, we have 𝑥T
𝐻𝑥 ≤ 0,

and then 𝜆
+

𝑀
(𝐻) ≤ 0. Next,

𝑥
T
𝐹𝑥 = (𝜆

2
− 𝛼) 𝑥

2

1
+ 2 (𝜆

2
− 𝛼) 𝑥

1
𝑥
2
+ 2𝜆𝜇𝑥

1
𝑥
3
− 2𝜆𝜇𝑥

1
𝑥
4

+ (2𝜆
2
− 𝛼) 𝑥

2

2
+ 2𝜆𝜇𝑥

2
𝑥
3
− 4𝜆𝜇𝑥

2
𝑥
4

+ (𝜇
2
− 𝛽) 𝑥

2

3
− 2 (𝜇

2
+ 𝛽) 𝑥

3
𝑥
4
+ (2𝜇

2
− 𝛽) 𝑥

2

4

≤ (𝜆
2
− 𝛼) 𝑥

2

1
+ (𝜆
2
− 𝛼)
+

(𝑥
2

1
+ 𝑥
2

2
) + 𝜆𝜇 (𝑥

2

1
+ 𝑥
2

3
)

+ (2𝜆
2
− 𝛼) 𝑥

2

2
+ 𝜆𝜇 (𝑥

2

2
+ 𝑥
2

3
) + (𝜇

2
− 𝛽) 𝑥

2

3

+ (2𝜇
2
− 𝛽) 𝑥

2

4

= 𝑥
2

1
[𝜆
2
− 𝛼 + (𝜆

2
− 𝛼)
+

+ 𝜆𝜇]

+ 𝑥
2

2
[(𝜆
2
− 𝛼)
+

+ 2𝜆
2
− 𝛼 + 𝜆𝜇]

+ 𝑥
2

3
(2𝜆𝜇 + 𝜇

2
− 𝛽) + (2𝜇

2
− 𝛽) 𝑥

2

4
.

(92)

Clearly, when 𝛼 ≥ 2𝜆
2
+ 𝜆𝜇 and 𝛽 ≥ (2𝜇

2
) ∨ (𝜇

2
+ 2𝜆𝜇),

𝜆
+

𝑀
(𝐹) ≤ 0. Condition (40) is equivalent to 2𝑞 > 2𝑟 + 𝛼 + 𝛽.

Combining the above equalities yields

6 ≥ 2𝑞 > 2𝑟 + 𝛼 + 𝛽

≥ 2 + 2𝜆
2
+ 𝜆𝜇 + (2𝜇

2
) ∨ (𝜇

2
+ 2𝜆𝜇) ;

(93)

namely, 𝜆 ≥ 0 and 𝜇 ≥ 0 satisfy

2𝜆
2
+ 𝜆𝜇 + (2𝜇

2
) ∨ (𝜇

2
+ 2𝜆𝜇) < 4. (94)

Thenwe can choose nonnegative constants 𝑞, 𝑟,𝛼, and𝛽, such
that conditions (38)–(40) are satisfied; therefore, Theorem 7

D1

D2

0 √2

√2

1

√3

2

√3

𝜆 = √2𝜇

4𝜆 = √32 + 𝜇2 − 3𝜇

4𝜆 = √32 − 15𝜇2 − 𝜇

Figure 1: Regions 𝐷
1
and 𝐷

2
.

can apply to (87). Through elementary calculation, condition
(94) can be expressed as

𝜆 <

{{{{{{

{{{{{{

{

√32 + 𝜇2 − 3𝜇

4
, 0 ≤ 𝜇 ≤

2

√3

√32 − 15𝜇2 − 𝜇

4
,

2

√3
< 𝜇 < √2.

(95)

(2
∘
) Apply Theorem 8. Obviously 𝐷 ≥ 0. By Lemma 2, 𝐺

is an 𝑀-matrix if and only if 𝜆2 > 2𝜇
2; that is,

𝜆 > √2𝜇. (96)

Condition (57) holds ⇔ 𝜇 ≤ 𝑟, so we may assume 𝑟 = 𝜇. For
any given 𝑥 ∈ R2

+
,

𝑥
T
𝑅𝑥 = (2𝑞 − 2𝜆) 𝑥

2

1
+ 2 (2𝑞 − 𝜆) 𝑥

1
𝑥
2
+ (2𝑞 − 2𝜆) 𝑥

2

2

≤ [2𝑞 − 2𝜆 + (2𝑞 − 𝜆)
+
] (𝑥
2

1
+ 𝑥
2

2
) .

(97)

Obviously, when 𝑞 ≤ (3/4)𝜆, 𝜆+
𝑀
(𝑅) ≤ 0. Let 𝑞 = (3/4)𝜆. By

condition (96) we have

𝑞 =
3

4
𝜆 >

3√2

4
𝜇 ≥ 𝜇 = 𝑟, (98)

which shows that condition (40) is satisfied. Thus, when
condition (96) holds,Theorem 8 can apply to (87). In Figure 1,
regions 𝐷

1
and 𝐷

2
are, respectively, decided by conditions

(94) and (96) on the 𝜆𝜇 plane. It is easy to see that 𝐷
1

and 𝐷
2
are partially overlapping. Roughly speaking, 𝐷

2
is

much larger than𝐷
1
.This means that applyingTheorem 8 on

model (87) can get more precise results in some sense. This
conclusion is consistent with our expectation in Remark 9.
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Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including
the circulant and left circulant and 𝑔-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly,
the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the
transformationmatrices are presented. Furthermore, the invertibility of the left circulant and𝑔-circulantmatrices is also studied.We
obtain the explicit determinants and the inverse matrices of the left circulant and 𝑔-circulant matrices by utilizing the relationship
between left circulant, 𝑔-circulant matrices and circulant matrix, respectively.

1. Introduction

Circulant matrices have important applications in solving
various differential equations [1–3]. The use of circulant pre-
conditioners for solving structured linear systems has been
studied extensively since 1986; see [4, 5]. Circulant matrices
also play an important role in solving delay differential
equations. In [6], Chan et al. proposed a preconditioner called
the Strang-type block-circulant preconditioner for solving
linear systems from IVPs. The Strang-type preconditioner
was also used to solve linear systems from differential-
algebraic equations and delay differential equations; see [7–
14]. In [15], Jin et al. proposed the GMRES method with
the Strang-type block-circulant preconditioner for solving
singular perturbation delay differential equations.

The𝑔-circulantmatrices play an important role in various
applications as well; please refer to [16, 17] for details. There
are discussions about the convergence in probability and in
distribution of the spectral norm of 𝑔-circulant matrices in
[18, 19]. Ngondiep et al. showed the singular values of 𝑔-
circulants in [20].

Recently, some scholars have given various algorithms
for the determinants and inverses of nonsingular circulant
matrices [21, 22]. Unfortunately, the computational complex-
ity of these algorithms is increasing dramatically with the
increasing order of matrices. However, some authors gave
the explicit determinants and inverse of circulant involving
Fibonacci and Lucas numbers. For example, Jaiswal evaluated
some determinants of circulant whose elements are the
generalized Fibonacci numbers [23]. Lind presented the
determinants of circulant involving Fibonacci numbers [24].
Lin gave the determinant of the Fibonacci-Lucas quasicyclic
matrices in [25]. Shen et al. considered circulant matrices
with Fibonacci and Lucas numbers and presented their
explicit determinants and inverses [26]. Bozkurt and Tam
gave determinants and inverses of circulant matrices with
Jacobsthal and Jacobsthal-Lucas numbers in [27].

The purpose of this paper is to obtain the explicit
determinants, explicit inverses of circulant, left circulant,
and 𝑔-circulant matrices involving any continuous Fibonacci
numbers and Lucas numbers. And we generalize the result in
[26].
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In the following, let 𝑟 be a nonnegative integer. We adopt
the following two conventions 00 = 1, and for any sequence
{𝑎
𝑛
}, ∑
𝑛

𝑘=𝑖
𝑎
𝑘
= 0 in the case 𝑖 > 𝑛.

The Fibonacci and Lucas sequences are defined by the
following recurrence relations [23–26], respectively:

𝐹
𝑛+1

= 𝐹
𝑛
+ 𝐹
𝑛−1

where 𝐹
0
= 0, 𝐹

1
= 1,

𝐿
𝑛+1

= 𝐿
𝑛
+ 𝐿
𝑛−1

where 𝐿
0
= 2, 𝐿

1
= 1,

(1)

for 𝑛 ≥ 0. The first few values of the sequences are given by
the following table:

𝑛 0 1 2 3 4 5 6 7 8 ⋅ ⋅ ⋅

𝐹
𝑛

0 1 1 2 3 5 8 13 21 ⋅ ⋅ ⋅

𝐿
𝑛

2 1 3 4 7 11 18 29 47 ⋅ ⋅ ⋅

. (2)

Let 𝛼 and 𝛽 be the roots of the characteristic equation 𝑥
2
−

𝑥−1 = 0; then the Binet formulas of the sequences {𝐹
𝑟+𝑛

} and
{𝐿
𝑟+𝑛

} have the form

𝐹
𝑟+𝑛

=
𝛼
𝑟+𝑛

− 𝛽
𝑟+𝑛

𝛼 − 𝛽
, 𝐿

𝑟+𝑛
= 𝛼
𝑟+𝑛

+ 𝛽
𝑟+𝑛

. (3)

Definition 1 (see [21, 22]). In a right circulant matrix (or
simply, circulant matrix)

Circ (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

[
[
[
[
[
[

[

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛

𝑎
𝑛

𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑛−1

...
...

...
𝑎
2
𝑎
3
⋅ ⋅ ⋅ 𝑎

1

]
]
]
]
]
]

]

, (4)

each row is a cyclic shift of the row above to the right. Right
circulant matrix is a special case of a Toeplitz matrix. It is
evidently determined by its first row (or column).

Definition 2 (see [22, 28]). In a left circulant matrix (or
reverse circulant matrix )

LCirc (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

[
[
[
[
[
[

[

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛

𝑎
2
𝑎
3
⋅ ⋅ ⋅ 𝑎

1

...
...

...
𝑎
𝑛

𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑛−1

]
]
]
]
]
]

]

, (5)

each row is a cyclic shift of the row above to the left. Left
circulant matrix is a special Hankel matrix.

Definition 3 (see [19, 29]). A 𝑔-circulant matrix is an 𝑛 × 𝑛

complex matrix with the following form:

𝐴
𝑔,𝑛

= (

𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
𝑛

𝑎
𝑛−𝑔+1

𝑎
𝑛−𝑔+2

⋅ ⋅ ⋅ 𝑎
𝑛−𝑔

𝑎
𝑛−2𝑔+1

𝑎
𝑛−2𝑔+2

⋅ ⋅ ⋅ 𝑎
𝑛−2𝑔

...
... d

...
𝑎
𝑔+1

𝑎
𝑔+2

⋅ ⋅ ⋅ 𝑎
𝑔

), (6)

where 𝑔 is a nonnegative integer and each of the subscripts is
understood to be reduced modulo 𝑛.

The first row of 𝐴
𝑔,𝑛

is (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
); its (𝑗 + 1)th row

is obtained by giving its 𝑗th row a right circular shift by 𝑔

positions (equivalently, 𝑔 mod 𝑛 positions). Note that 𝑔 = 1

or 𝑔 = 𝑛+ 1 yields the standard circulant matrix. If 𝑔 = 𝑛− 1,
then we obtain the so called left circulant matrix.

Lemma4 (see [26]). Let𝐴 = Circ (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) be circulant

matrix; then one has
(i) 𝐴 is invertible if and only if the eigenvalues of 𝐴

𝜆
𝑘
= 𝑓 (𝜔

𝑘
) ̸= 0, (𝑘 = 0, 1, . . . , 𝑛 − 1) , (7)

where 𝑓(𝑥) = ∑
𝑛

𝑗=1
𝑎
𝑗
𝑥
𝑗−1 and 𝜔 = exp(2𝜋𝑖/𝑛);

(ii) if𝐴 is invertible, then the inverse𝐴−1 of𝐴 is a circulant
matrix.

Lemma 5. Define

Δ :=
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ 0 1

0 0 0 ⋅ ⋅ ⋅ 1 0

...
... d

...
0 0 1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)

)

; (8)

the matrix Δ is an orthogonal cyclic shift matrix (and a
left circulant matrix). It holds that LCirc (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

Δ Circ (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
).

Lemma 6 (see [29]). The 𝑛 × 𝑛 matrix Q
𝑔
is unitary if and

only if (𝑛, 𝑔) = 1, where Q
𝑔
is a 𝑔-circulant matrix with first

row 𝑒
∗
= [1, 0, . . . , 0].

Lemma 7 (see [29]). 𝐴
𝑔,𝑛

is a 𝑔-circulant matrix with first
row [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
] if and only if 𝐴

𝑔,𝑛
= Q
𝑔
𝐶, where 𝐶 =

Circ (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
).

2. Determinant, Invertibility, and Inverse
of Circulant Matrix with Any Continuous
Fibonacci Numbers

In this section, let 𝐴
𝑟,𝑛

= Circ (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) be a
circulant matrix. Firstly, we give the determinant equation of
thematrix𝐴

𝑟,𝑛
. Afterwards, we prove that𝐴

𝑟,𝑛
is an invertible

matrix for 𝑛 > 2, and then we find the inverse of the matrix
𝐴
𝑟,𝑛
. Obviously, when 𝑛 = 2, 𝑟 ̸= 0, or 𝑛 = 1, 𝐴

𝑟,𝑛
is also an

invertible matrix.

Theorem 8. Let 𝐴
𝑟,𝑛

= Circ (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) be a circu-
lant matrix. Then one has

det𝐴
𝑟,𝑛

= 𝐹
𝑟+1

⋅ {(𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

[(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)

× (
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]}

× (𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑛−2

.

(9)
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where 𝐹
𝑟+𝑛

is the (𝑟 + 𝑛)th Fibonacci number. Specially, when
𝑟 = 0, this result is the same as Theorem 2.1 in [26].

Proof. Obviously, det𝐴
1
= (1 − 𝐹

𝑛+1
)
𝑛−1

+ 𝐹
𝑛−2

𝑛
∑
𝑛−1

𝑘=1
𝐹
𝑘
((1 −

𝐹
𝑛+1

)/𝐹
𝑛
)
𝑘−1 satisfies the formula. In the case 𝑛 > 1, let

Γ =

(
(
(
(
(
(
(
(
(
(

(

1

−
𝐹
𝑟+2

𝐹
𝑟+1

1

−1 1 −1

0 0 1 −1 −1

... c c c
0 1 c c
0 1 −1 c 0

0 1 −1 −1

)
)
)
)
)
)
)
)
)
)

)

,

Π
1
=

(
(
(
(
(
(
(
(
(
(
(
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 (
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 (
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−3

0 ⋅ ⋅ ⋅ 1 0

...
...

... d
...

...

0
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)
)
)
)
)
)
)
)
)
)
)
)

)

(10)

be two 𝑛 × 𝑛matrices; then we have

Γ𝐴
𝑟,𝑛
Π
1

=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐹
𝑟+1

𝑓
󸀠

𝑟,𝑛
𝐹
𝑟+𝑛−1

⋅ ⋅ ⋅ 𝐹
𝑟+2

0 𝑓
𝑟,𝑛

𝜏
𝑛

⋅ ⋅ ⋅ 𝜏
3

0 0 𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

0

0 0 𝐹
𝑟
− 𝐹
𝑟+𝑛

0

...
... d

0 0 0 𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

]
]
]
]
]
]
]
]
]
]
]
]

]

,

(11)

where

𝑎
𝑟
=
𝐹
𝑟+2

𝐹
𝑟+1

, 𝑓
󸀠

𝑟,𝑛

=

𝑛−1

∑

𝑘=1

𝐹
𝑟+𝑘+1

(
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

,

𝜏
𝑘
= 𝐹
𝑟+𝑘

− 𝑎
𝑟
𝐹
𝑟+𝑘−1

, 𝑘 = 3, . . . , 𝑛,

𝑓
𝑟,𝑛

= (𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

[(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)

× (
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

] .

(12)

We obtain

det Γ det 𝐴
𝑟,𝑛

det Π
1

= 𝐹
𝑟+1

⋅ {(𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

[(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)

× (
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]}

× (𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑛−2

;

(13)

while

det Γ = (−1)
(𝑛−1)(𝑛−2)/2

, detΠ
1
= (−1)

(𝑛−1)(𝑛−2)/2
, (14)

we have

det𝐴
𝑟,𝑛

= 𝐹
𝑟+1

⋅ {(𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

[(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)

× (
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]}

× (𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑛−2

.

(15)

Theorem 9. Let 𝐴
𝑟,𝑛

= Circ (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) be a
circulant matrix; if 𝑛 > 2, then 𝐴

𝑟,𝑛
is an invertible matrix.

Specially, when 𝑟 = 0, one gets Theorem 2.2 in [26].

Proof. When 𝑛 = 3 in Theorem 8, then we have det𝐴
𝑟,𝑛

=

(𝐹
𝑟+1

+𝐹
𝑟+2

+𝐹
𝑟+3

)(𝐹
2

𝑟+1
+𝐹
𝑟
𝐹
𝑟+2

) ̸= 0; hence𝐴
𝑟,𝑛

is invertible.
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In the case 𝑛 > 3, since 𝐹
𝑟+𝑛

= (𝛼
𝑟+𝑛

− 𝛽
𝑟+𝑛

)/(𝛼 − 𝛽), where
𝛼 + 𝛽 = 1, 𝛼𝛽 = −1. We have

𝑓 (𝜔
𝑘
) =

𝑛

∑

𝑗=1

𝐹
𝑟+𝑗

(𝜔
𝑘
)
𝑗−1

=
1

𝛼 − 𝛽

𝑛

∑

𝑗=1

(𝛼
𝑟+𝑗

− 𝛽
𝑟+𝑗

) (𝜔
𝑘
)
𝑗−1

=
1

𝛼 − 𝛽
[
𝛼
𝑟+1

(1 − 𝛼
𝑛
)

1 − 𝛼𝜔𝑘
−
𝛽
𝑟+1

(1 − 𝛽
𝑛
)

1 − 𝛽𝜔𝑘
]

=
(𝛼
𝑟+1

− 𝛽
𝑟+1

) − (𝛼
𝑟+𝑛+1

− 𝛽
𝑟+𝑛+1

)

(𝛼 − 𝛽) (1 − (𝛼 + 𝛽) 𝜔𝑘 + 𝛼𝛽𝜔2𝑘)

−
𝛼𝛽 (𝛼
𝑟
− 𝛽
𝑟
− 𝛼
𝑟+𝑛

+ 𝛽
𝑟+𝑛

) 𝜔
𝑘

(𝛼 − 𝛽) (1 − (𝛼 + 𝛽) 𝜔𝑘 + 𝛼𝛽𝜔2𝑘)

=
𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

+ (𝐹
𝑟
− 𝐹
𝑟+𝑛

) 𝜔
𝑘

1 − 𝜔𝑘 − 𝜔2𝑘

(𝑘 = 1, 2, . . . , 𝑛 − 1) .

(16)

If there exists 𝜔𝑙 (𝑙 = 1, 2, . . . , 𝑛 − 1) such that 𝑓(𝜔𝑙) = 0, we
obtain 𝐹

𝑟+1
− 𝐹
𝑟+𝑛+1

+ (𝐹
𝑟
− 𝐹
𝑟+𝑛

)𝜔
𝑙
= 0 for 1 − 𝜔

𝑙
− 𝜔
2𝑙

̸= 0;
thus, 𝜔𝑙 = (𝐹

𝑟+1
− 𝐹
𝑟+𝑛+1

)/(𝐹
𝑟+𝑛

− 𝐹
𝑟
) is a real number. While

𝜔
𝑙
= exp(2𝑙𝜋𝑖

𝑛
) = cos(2𝑙𝜋

𝑛
) + 𝑖 sin(2𝑙𝜋

𝑛
) , (17)

hence, sin(2𝑙𝜋/𝑛) = 0; so we have𝜔𝑙 = −1 for 0 < 2𝑙𝜋/𝑛 < 2𝜋.
But 𝑥 = −1 is not the root of the equation 𝐹

𝑟+1
−𝐹
𝑟+𝑛+1

+(𝐹
𝑟
−

𝐹
𝑟+𝑛

)𝑥 = 0 (𝑛 > 3). We obtain 𝑓(𝜔
𝑘
) ̸= 0 for any 𝜔

𝑘
(𝑘 =

1, 2, . . . , 𝑛 − 1), while 𝑓(1) = ∑
𝑛

𝑗=1
𝐹
𝑟+𝑗

= −𝐹
𝑟+1

+ 𝐹
𝑟+𝑛+1

−

(𝐹
𝑟
− 𝐹
𝑟+𝑛

) = 𝐹
𝑟+𝑛+2

− 𝐹
𝑟+2

̸= 0. By Lemma 4, the proof is
completed.

Lemma 10. Let the entries of the matrix G = [𝑔
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1
be of

the form

𝑔
𝑖,𝑗
=
{

{

{

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

, 𝑖 = 𝑗,

𝐹
𝑟
− 𝐹
𝑟+𝑛

, 𝑖 = 𝑗 + 1,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

(18)

then the entries of the inverse G−1 = [𝑔
󸀠

𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1
of the matrix G

are equal to

𝑔
󸀠

𝑖,𝑗
=

{{

{{

{

(𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−𝑗

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖−𝑗+1

, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(19)

In particular, when 𝑟 = 0, one gets Lemma 2.1 in [26].

Proof. Let 𝑐
𝑖,𝑗

= ∑
𝑛−2

𝑘=1
𝑔
𝑖,𝑘
𝑔
󸀠

𝑘,𝑗
. Obviously, 𝑐

𝑖,𝑗
= 0 for 𝑖 < 𝑗. In

the case 𝑖 = 𝑗, we obtain

𝑐
𝑖,𝑖
= 𝑔
𝑖,𝑖
𝑔
󸀠

𝑖,𝑖
= (𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

) ⋅
1

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

= 1. (20)

For 𝑖 ≥ 𝑗 + 1, we obtain

𝑐
𝑖,𝑗
=

𝑛−2

∑

𝑘=1

𝑔
𝑖,𝑘
𝑔
󸀠

𝑘,𝑗
= 𝑔
𝑖,𝑖−1

𝑔
󸀠

𝑖−1,𝑗
+ 𝑔
𝑖,𝑖
𝑔
󸀠

𝑖,𝑗

= (𝐹
𝑟
− 𝐹
𝑟+𝑛

) ⋅
(𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−𝑗−1

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖−𝑗

+ (𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

) ⋅
(𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−𝑗

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖−𝑗+1

= 0.

(21)

Hence, we verifyGG−1 = 𝐼
𝑛−2

, where 𝐼
𝑛−2

is (𝑛 − 2) × (𝑛 − 2)

identity matrix. Similarly, we can verify G−1G = 𝐼
𝑛−2

. Thus,
the proof is completed.

Theorem 11. Let 𝐴
𝑟,𝑛

= Circ(𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) (𝑛 > 2) be
a circulant matrix.

Then one has

𝐴
−1

𝑟,𝑛

=
1

𝑓
𝑟,𝑛

× Circ (1 +

𝑛−2

∑

𝑖=1

((𝐹
𝑟+𝑛+2−𝑖

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛+1−𝑖

)

× (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−1

)

× ((𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖
)
−1

, −
𝐹
𝑟+2

𝐹
𝑟+1

+

𝑛−2

∑

𝑖=1

( (𝐹
𝑟+𝑛+1−𝑖

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+𝑛−𝑖

)

× (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−1

)

× ((𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖
) ,

−
𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
2

,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
2

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
3

, . . . ,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑛−3

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑛−2

) ,

(22)
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where

𝑓
𝑟,𝑛

= (𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)(
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(23)

Specially, when 𝑟 = 0, this result is the same as Theorem 2.3 in
[26].

Proof. Let

Π
2
=

(
(
(
(
(
(

(

1 −
𝑓
󸀠

𝑟,𝑛

𝐹
𝑟+1

𝑥
3
𝑥
4
⋅ ⋅ ⋅ 𝑥
𝑛

0 1 𝑦
3

𝑦
4

⋅ ⋅ ⋅ 𝑦
𝑛

0 0 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 0 ⋅ ⋅ ⋅ 1

)
)
)
)
)
)

)

, (24)

where 𝑎
𝑟
= 𝐹
𝑟+2

/𝐹
𝑟+1

,

𝑥
𝑖
=
𝑓
󸀠

𝑟,𝑛

𝑓
𝑟,𝑛

𝐹
𝑟+𝑛+3−𝑖

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+𝑛+2−𝑖

𝐹
𝑟+1

−
𝐹
𝑟+𝑛+2−𝑖

𝐹
𝑟+1

(𝑖 = 3, 4, . . . , 𝑛) ,

𝑦
𝑖
= −

𝐹
𝑟+𝑛+3−𝑖

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+𝑛+2−𝑖

𝑓
𝑟,𝑛

(𝑖 = 3, 4, . . . , 𝑛) ,

𝑓
󸀠

𝑟,𝑛
=

𝑛−1

∑

𝑘=1

𝐹
𝑟+𝑘+1

(
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

,

𝑓
𝑟,𝑛

= (𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)(
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(25)

We have

Γ𝐴
𝑟,𝑛
Π
1
Π
2
= D
1
⊕G, (26)

whereD
1
= diag(𝐹

𝑟+1
, 𝑓
𝑟,𝑛
) is a diagonal matrix andD

1
⊕G

is the direct sum ofD
1
and G. If we denote Π = Π

1
Π
2
, then

we obtain

𝐴
−1

𝑟,𝑛
= Π (D

−1

1
⊕G
−1
) Γ, (27)

and the last row elements of the matrix Π are 0, 1, 𝑦
3
, 𝑦
4
,

. . . , 𝑦
𝑛−1

, 𝑦
𝑛
. By Lemma 10, if let 𝐴−1

𝑟,𝑛
= Circ (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
),

then its last row elements are given by the following equa-
tions:

𝑢
2
= −

1

𝑓
𝑟,𝑛

𝐹
𝑟+2

𝐹
𝑟+1

+
1

𝑓
𝑟,𝑛

𝐶
(𝑛−2)

𝑛
,

𝑢
3
= −

1

𝑓
𝑟,𝑛

𝐶
(1)

𝑛
,

𝑢
4
= −

1

𝑓
𝑟,𝑛

𝐶
(2)

𝑛
+

1

𝑓
𝑟,𝑛

𝐶
(1)

𝑛
,

𝑢
5
= −

1

𝑓
𝑟,𝑛

𝐶
(3)

𝑛
+

1

𝑓
𝑟,𝑛

𝐶
(2)

𝑛
+

1

𝑓
𝑟,𝑛

𝐶
(1)

𝑛
,

...

𝑢
𝑛
= −

1

𝑓
𝑟,𝑛

𝐶
(𝑛−2)

𝑛
+

1

𝑓
𝑟,𝑛

𝐶
(𝑛−3)

𝑛
+

1

𝑓
𝑛

𝐶
(𝑛−4)

𝑛
,

𝑢
1
=

1

𝑓
𝑟,𝑛

+
1

𝑓
𝑟,𝑛

𝐶
(𝑛−2)

𝑛
+

1

𝑓
𝑟,𝑛

𝐶
(𝑛−3)

𝑛
.

(28)

Let

𝐶
(𝑗)

𝑛
=

𝑗

∑

𝑖=1

(𝐹
𝑟+3+𝑗−𝑖

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2+𝑗−𝑖

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−1

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖

=

𝑗

∑

𝑖=1

𝑎
󸀠

𝑗,𝑟

(𝑚
1,𝑟
)
𝑖
(𝑚
2,𝑟
)
𝑖−1

(𝑗 = 1, 2, . . . , 𝑛 − 2) ;

(29)

we have

𝐶
(2)

𝑛
− 𝐶
(1)

𝑛
=

2

∑

𝑖=1

𝑎
󸀠

2,𝑟
(𝑚
2,𝑟
)
𝑖−1

(𝑚
1,𝑟
)
𝑖

−
𝑎
󸀠

1,𝑟

𝑚
1,𝑟

=
𝑎
󸀠

1,𝑟

(𝑚
1,𝑟
)
2
𝑚
2,𝑟
,

𝐶
(𝑛−2)

𝑛
+ 𝐶
(𝑛−3)

𝑛

=

𝑛−2

∑

𝑖=1

𝑎
󸀠

𝑛−2,𝑟
(𝑚
2,𝑟
)
𝑖−1

(𝑚
1,𝑟
)
𝑖

+

𝑛−3

∑

𝑖=1

𝑎
󸀠

𝑛−3,𝑟
(𝑚
2,𝑟
)
𝑖−1

(𝑚
1,𝑟
)
𝑖

=

𝑛−3

∑

𝑖=1

(𝐹
𝑟+𝑛+2−𝑖

− 𝐴
𝑟,𝑛
𝐹
𝑟+𝑛+1−𝑖

) (𝑚
2,𝑟
)
𝑖−1

(𝑚
1,𝑟
)
𝑖

+
𝑎
󸀠

1,𝑟

(𝑚
1,𝑟
)
𝑛−2

(𝑚
2,𝑟
)
𝑛−3

=

𝑛−2

∑

𝑖=1

(𝐹
𝑟+𝑛+2−𝑖

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+𝑛+1−𝑖

) (𝑚
2,𝑟
)
𝑖−1

(𝑚
1,𝑟
)
𝑖

,
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𝐶
(𝑗+2)

𝑛
− 𝐶
(𝑗+1)

𝑛
− 𝐶
(𝑗)

𝑛

=

𝑗+2

∑

𝑖=1

𝑎
󸀠

𝑗+2,𝑟
(𝑚
2,𝑟
)
𝑖−1

(𝑚
1,𝑟
)
𝑖

−

𝑗+1

∑

𝑖=1

𝑎
󸀠

𝑗+1,𝑟
(𝑚
2,𝑟
)
𝑖−1

(𝑚
1,𝑟
)
𝑖

−

𝑗

∑

𝑖=1

𝑎
󸀠

𝑗,𝑟
(𝑚
2,𝑟
)
𝑖−1

(𝑚
1,𝑟
)
𝑖

=
(𝐹
𝑟+4

− 𝐴
𝑟,𝑛
𝐹
𝑟+3

) (𝑚
2,𝑟
)
𝑗

(𝑚
1,𝑟
)
𝑗+1

+
(𝐹
𝑟+3

− 𝐴
𝑟,𝑛
𝐹
𝑟+2

) (𝑚
2,𝑟
)
𝑗+1

(𝑚
1,𝑟
)
𝑗+2

−
(𝐹
𝑟+3

− 𝐴
𝑟,𝑛
𝐹
𝑟+2

) (𝑚
2,𝑟
)
𝑗

(𝑚
1,𝑟
)
𝑗+1

=
(𝐹
𝑟+3

− 𝐴
𝑟,𝑛
𝐹
𝑟+2

) (𝑚
2,𝑟
)
𝑗+1

(𝑚
1,𝑟
)
𝑗+2

(𝑗 = 1, 2, . . . , 𝑛 − 4) .

(30)

We obtain

𝐴
−1

𝑟,𝑛

= Circ (
1 + 𝐶
(𝑛−2)

𝑛
+ 𝐶
(𝑛−3)

𝑛

𝑓
𝑟,𝑛

,
𝐶
(𝑛−2)

𝑛
− 𝐹
𝑟+2

/𝐹
𝑟+1

𝑓
𝑟,𝑛

,

−
𝐶
(1)

𝑛

𝑓
𝑟,𝑛

, −
𝐶
(2)

𝑛
− 𝐶
(1)

𝑛

𝑓
𝑟,𝑛

,

−
𝐶
(3)

𝑛
− 𝐶
(2)

𝑛
− 𝐶
(1)

𝑛

𝑓
𝑟,𝑛

, . . . ,

−
𝐶
(𝑛−2)

𝑛
− 𝐶
(𝑛−3)

𝑛
− 𝐶
(𝑛−4)

𝑛

𝑓
𝑟,𝑛

)

=
1

𝑓
𝑟,𝑛

Circ (1 +

𝑛−2

∑

𝑖=1

((𝐹
𝑟+𝑛+2−𝑖

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛+1−𝑖

)

× (𝑚
2,𝑟
)
𝑖−1

) × ((𝑚
1,𝑟
)
𝑖
)
−1

,

−
𝐹
𝑟+2

𝐹
𝑟+1

+

𝑛−2

∑

𝑖=1

𝑎
󸀠

𝑛−2,𝑟
(𝑚
2,𝑟
)
𝑖−1

(𝑚
1,𝑟
)
𝑖

,

−
𝑎
󸀠

1,𝑟

𝑚
1,𝑟

, −
𝑎
󸀠

1,𝑟

(𝑚
1,𝑟
)
2
𝑚
2,𝑟
,

−
𝑎
󸀠

1,𝑟

(𝑚
1,𝑟
)
3
(𝑚
2,𝑟
)
2
, . . . ,

−
𝑎
󸀠

1,𝑟

(𝑚
1,𝑟
)
𝑛−2

(𝑚
2,𝑟
)
𝑛−3

)

=
1

𝑓
𝑟,𝑛

Circ (1 +

𝑛−2

∑

𝑖=1

((𝐹
𝑟+𝑛+2−𝑖

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛+1−𝑖

)

× (𝐹
𝑟+𝑛

− 𝐹
𝑟
)

𝑖−1

)

× ((𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖
)
−1

, −
𝐹
𝑟+2

𝐹
𝑟+1

+

𝑛−2

∑

𝑖=1

((𝐹
𝑟+𝑛+1−𝑖

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛−𝑖

)

× (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−1

)

× ((𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖
)
−1

−
𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
2

,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
2

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
3

, . . . ,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑛−3

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑛−2

) ,

(31)

where

𝑓
𝑟,𝑛

= (𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)(
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(32)

3. Determinant, Invertibility, and
Inverse of Circulant Matrix with Any
Continuous Lucas Numbers

In this section, let 𝐵
𝑟,𝑛

= Circ (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . .,𝐿
𝑟+𝑛

) be a
circulant matrix. Firstly, we give a determinant formula for
the matrix 𝐵

𝑟,𝑛
. Afterwards, we prove that 𝐵

𝑟,𝑛
is an invertible

matrix for any positive integer 𝑛, and then we find the inverse
of the matrix 𝐵

𝑟,𝑛
.
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Theorem 12. Let 𝐵
𝑟,𝑛

= Circ (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) be a
circulant matrix; then one has

det𝐵
𝑟,𝑛

= 𝐿
𝑟+1

⋅ {(𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

[(𝐿
𝑟+𝑘+2

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑘+1

)

× (
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]}

× (𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑛−2

,

(33)

where 𝐿
𝑟+𝑛

is the (𝑟 + 𝑛)th Lucas number. In particular, when
𝑟 = 0, one gets Theorem 3.1 in [26].

Proof. Obviously, det𝐵
1

= (1 − 𝐿
𝑛+1

)
𝑛−1

+ (𝐿
𝑛
− 2)
𝑛−2

∑
𝑛−1

𝑘=1
(𝐿
𝑘+2

− 3𝐿
𝑘+1

)((1 − 𝐿
𝑛+1

)/(𝐿
𝑛
− 2))
𝑘−1 satisfies the

formula, when 𝑛 > 1; let

Σ =

(
(
(
(
(
(
(
(

(

1

−
𝐿
𝑟+2

𝐿
𝑟+1

1

−1 1 −1

0 0 1 −1 −1

... c c c
0 1 c c
0 1 −1 c 0

0 1 −1 −1

)
)
)
)
)
)
)
)

)

,

Ω
1
=

(
(
(
(
(
(
(
(
(
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 (
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 (
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−3

0 ⋅ ⋅ ⋅ 1 0

...
...

... d
...

...

0
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)
)
)
)
)
)
)
)
)
)

)

,

(34)

be two 𝑛 × 𝑛matrices, we have

Σ𝐵
𝑟,𝑛
Ω
1

=

[
[
[
[
[
[
[
[
[
[

[

𝐿
𝑟+1

𝑙
󸀠

𝑟,𝑛
𝐿
𝑟+𝑛−1

⋅ ⋅ ⋅ 𝐿
𝑟+2

0 𝑙
𝑟,𝑛

𝐿
𝑟+𝑛

− 𝑏
𝑟
𝐿
𝑟+𝑛−1

⋅ ⋅ ⋅ 𝐿
𝑟+3

− 𝑏
𝑟
𝐿
𝑟+2

0 0 𝐿
𝑟+1

− 𝐿
𝑟+𝑛−1

0

0 0 𝐿
𝑟
− 𝐿
𝑟+𝑛

0

...
... d

0 0 0 𝐿
𝑟+1

− 𝐿
𝑟+𝑛−1

]
]
]
]
]
]
]
]
]
]

]

,

(35)

where

𝑏
𝑟
=
𝐿
𝑟+2

𝐿
𝑟+1

,

𝑙
𝑟,𝑛

= (𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐿
𝑟+𝑘+2

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑘+1

)

× (
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

,

𝑙
󸀠

𝑟,𝑛
=

𝑛−1

∑

𝑘=1

𝐿
𝑟+𝑘+1

(
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(36)

We obtain

detΣ det𝐵
𝑟,𝑛

detΩ
1

= 𝐿
𝑟+1

⋅ {(𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

[(𝐿
𝑟+𝑘+2

− 𝑏
𝑟
𝐿
𝑟+𝑘+1

)

× (
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]}

× (𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑛−2

,

(37)

while

detΣ = detΩ
1
= (−1)

(𝑛−1)(𝑛−2)/2
. (38)

We have

det𝐵
𝑟,𝑛

= 𝐿
𝑟+1

⋅ {(𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

[(𝐿
𝑟+𝑘+2

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑘+1

)

× (
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]}

× (𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑛−2

.

(39)

Theorem 13. Let 𝐵
𝑟,𝑛

= Circ (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) be a
circulant matrix; then 𝐵

𝑟,𝑛
is invertible for any positive integer

𝑛. Specially, when 𝑟 = 0, one gets Theorem 3.2 in [26].
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Proof. Since 𝐿
𝑛+𝑟

= 𝛼
𝑛+𝑟

+ 𝛽
𝑛+𝑟, where 𝛼 + 𝛽 = 1, 𝛼 ⋅ 𝛽 = −1.

Hence we have

𝑓 (𝜔
𝑘
) =

𝑛

∑

𝑗=1

𝐿
𝑛+𝑟

(𝜔
𝑘
)
𝑗−1

=

𝑛

∑

𝑗=1

(𝛼
𝑟+𝑗

+ 𝛽
𝑟+𝑗

) (𝜔
𝑘
)
𝑗−1

=
𝛼
𝑟+1

(1 − 𝛼
𝑛
)

1 − 𝛼𝜔𝑘
+
𝛽
𝑟+1

(1 − 𝛽
𝑛
)

1 − 𝛽𝜔𝑘

(because 1 − 𝛼𝜔
𝑘

̸= 0 and 1 − 𝛽𝜔
𝑘

̸= 0)

=
(𝛼
𝑟+1

+ 𝛽
𝑟+1

) − (𝛼
𝑟+𝑛+1

+ 𝛽
𝑟+𝑛+1

)

1 − (𝛼 + 𝛽) 𝜔𝑘 + 𝛼𝛽𝜔2𝑘

−
𝛼𝛽 (𝛼
𝑟
+ 𝛽
𝑟
− 𝛼
𝑟+𝑛

− 𝛽
𝑟+𝑛

) 𝜔
𝑘

1 − (𝛼 + 𝛽) 𝜔𝑘 + 𝛼𝛽𝜔2𝑘

=
𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

+ (𝐿
𝑟
− 𝐿
𝑟+𝑛

) 𝜔
𝑘

1 − 𝜔𝑘 − 𝜔2𝑘

(𝑘 = 1, 2, . . . , 𝑛 − 1) .

(40)

If there exists 𝜔𝑙 (𝑙 = 1, 2, . . . , 𝑛 − 1) such that 𝑓(𝜔𝑙) = 0, we
obtain 𝐿

𝑟+1
− 𝐿
𝑟+𝑛+1

+ (𝐿
𝑟
− 𝐿
𝑟+𝑛

)𝜔
𝑙
= 0 for 1 − 𝜔

𝑙
− 𝜔
2𝑙

̸= 0;
thus, 𝜔𝑙 = (𝐿

𝑟+1
− 𝐿
𝑟+𝑛+1

)/(𝐿
𝑟+𝑛

− 𝐿
𝑟
) is a real number, while

𝜔
𝑙
= exp(2𝑙𝜋𝑖

𝑛
) = cos 2𝑙𝜋

𝑛
+ 𝑖 sin 2𝑙𝜋

𝑛
. (41)

Hence, sin(2𝑙𝜋/𝑛) = 0; we have 𝜔𝑙 = −1 for 0 < 2𝑙𝜋/𝑛 <

2𝜋. But 𝑥 = −1 is not the root of the equation 𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

+

(𝐿
𝑟
−𝐿
𝑟+𝑛

)𝑥 = 0 for any positive integer 𝑛.We obtain𝑓(𝜔𝑘) ̸=

0 for any 𝜔𝑘 (𝑘 = 1, 2, . . . , 𝑛 − 1), while 𝑓(1) = ∑
𝑛

𝑗=1
𝐿
𝑟+𝑗

=

𝐿
𝑟+𝑛+2

− 𝐿
𝑟+2

̸= 0. By Lemma 4, the proof is completed.

Lemma 14. Let the entries of the matrix H = [ℎ
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1
be of

the form

ℎ
𝑖,𝑗
=

{{

{{

{

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

, 𝑖 = 𝑗,

𝐿
𝑟
− 𝐿
𝑟+𝑛

, 𝑖 = 𝑗 + 1,

0, otherwise;
(42)

then the entries of the inverseH−1 = [ℎ
󸀠

𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1
of the matrixH

are equal to

ℎ
󸀠

𝑖,𝑗
=

{{

{{

{

(𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−𝑗

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖−𝑗+1

, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(43)

Specially, when 𝑟 = 0, one gets Lemma 3.1 in [26].

Proof. Let 𝑟
𝑖,𝑗

= ∑
𝑛−2

𝑘=1
ℎ
𝑖,𝑘
ℎ
󸀠

𝑘,𝑗
. Obviously, 𝑟

𝑖,𝑗
= 0 for 𝑖 < 𝑗. In

the case 𝑖 = 𝑗, we obtain

𝑟
𝑖,𝑖
= ℎ
𝑖,𝑖
ℎ
󸀠

𝑖,𝑖
= (𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

) ⋅
1

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

= 1. (44)

For 𝑖 ≥ 𝑗 + 1, we obtain

𝑟
𝑖,𝑗
=

𝑛−2

∑

𝑘=1

ℎ
𝑖,𝑘
ℎ
󸀠

𝑘,𝑗
= ℎ
𝑖,𝑖−1

ℎ
󸀠

𝑖−1,𝑗
+ ℎ
𝑖,𝑖
ℎ
󸀠

𝑖,𝑗

= (𝐿
𝑟
− 𝐿
𝑟+𝑛

) ⋅
(𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−𝑗−1

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖−𝑗

+ (𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

) ⋅
(𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−𝑗

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖−𝑗+1

= 0.

(45)

Hence, we verifyHH−1 = 𝐼
𝑛−2

, where 𝐼
𝑛−2

is (𝑛 − 2) × (𝑛 − 2)

identity matrix. Similarly, we can verifyH−1H = 𝐼
𝑛−2

. Thus,
the proof is completed.

Theorem 15. Let 𝐵
𝑟,𝑛

= Circ (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) be a
circulant matrix; then we have

𝐵
−1

𝑟,𝑛

=
1

𝑙
𝑟,𝑛

Circ (1

+

𝑛−2

∑

𝑖=1

((𝐿
𝑟+𝑛+2−𝑖

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛+1−𝑖

)

× (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−1

)

× ((𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖
)
−1

, −
𝐿
𝑟+2

𝐿
𝑟+1

+

𝑛−2

∑

𝑖=1

((𝐿
𝑟+𝑛+1−𝑖

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛−𝑖

)

× (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−1

)

× ((𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖
)
−1

,

−
𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
2

,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
2

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
3

, . . . ,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑛−3

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑛−2

) ,

(46)
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where

𝑙
𝑟,𝑛

= (𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐿
𝑟+𝑘+2

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑘+1

)(
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(47)

In particular, when 𝑟 = 0, the result is the same asTheorem 3.3
in [26].

Proof. LetΩ
2
be the form of

(
(
(
(
(
(

(

1 −
𝑙
𝑛󸀠

𝐿
𝑟+1

𝑥
󸀠

3
𝑥
󸀠

4
⋅ ⋅ ⋅ 𝑥
󸀠

𝑛

0 1 𝑦
󸀠

3
𝑦
󸀠

4
⋅ ⋅ ⋅ 𝑦
󸀠

𝑛

0 0 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
0 0 0 0 ⋅ ⋅ ⋅ 1

)
)
)
)
)
)

)

, (48)

where

𝑏
𝑟
=
𝐿
𝑟+2

𝐿
𝑟+1

,

𝑥
󸀠

𝑖
=
𝑙
󸀠

𝑟,𝑛

𝑙
𝑟,𝑛

𝐿
𝑟+𝑛+3−𝑖

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+𝑛+2−𝑖

𝐿
𝑟+1

−
𝐿
𝑟+𝑛+2−𝑖

𝐿
𝑟+1

(𝑖 = 3, 4, . . . , 𝑛) ,

𝑦
󸀠

𝑖
= −

𝐿
𝑟+𝑛+3−𝑖

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+𝑛+2−𝑖

𝑙
𝑟,𝑛

(𝑖 = 3, 4, . . . , 𝑛) ,

𝑙
󸀠

𝑟,𝑛
=

𝑛−1

∑

𝑘=1

𝐿
𝑟+𝑘+1

(
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

,

𝑙
𝑟,𝑛

= (𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐿
𝑟+𝑘+2

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑘+1

)(
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(49)

We have

Σ𝐵
𝑟,𝑛
Ω
1
Ω
2
= D
2
⊕H, (50)

whereD
2
= diag(𝐿

𝑟+1
, 𝑙
𝑟,𝑛
) is a diagonal matrix andD

2
⊕H

is the direct sum of D
2
and H. If we denote Ω = Ω

1
Ω
2
, we

obtain

𝐵
−1

𝑟,𝑛
= Ω(D

−1

2
⊕H
−1
) Σ, (51)

and the last row elements of the matrixΩ are 0, 1, 𝑦󸀠
3
, 𝑦
󸀠

4
, ⋅ ⋅ ⋅ ,

𝑦
󸀠

𝑛
. By Lemma 14, if let 𝐵−1

𝑟,𝑛
= Circ (V

1
, V
2
, . . . , V

𝑛
), then its

last row elements are given by the following equations:

V
2
= −

1

𝑙
𝑟,𝑛

𝐿
𝑟+2

𝐿
𝑟+1

+
1

𝑙
𝑟,𝑛

𝐷
(𝑛−2)

𝑛
,

V
3
= −

1

𝑙
𝑟,𝑛

𝐷
(1)

𝑛
,

V
4
= −

1

𝑙
𝑟,𝑛

𝐷
(2)

𝑛
+

1

𝑙
𝑟,𝑛

𝐶
(1)

𝑛
,

V
5
= −

1

𝑙
𝑟,𝑛

𝐷
(3)

𝑛
+

1

𝑙
𝑟,𝑛

𝐷
(2)

𝑛
+

1

𝑙
𝑟,𝑛

𝐷
(1)

𝑛
,

...

V
𝑛
= −

1

𝑙
𝑟,𝑛

𝐷
(𝑛−2)

𝑛
+

1

𝑙
𝑟,𝑛

𝐷
(𝑛−3)

𝑛
+

1

𝑙
𝑛

𝐷
(𝑛−4)

𝑛
,

V
1
=

1

𝑙
𝑟,𝑛

+
1

𝑙
𝑟,𝑛

𝐷
(𝑛−2)

𝑛
+

1

𝑙
𝑟,𝑛

𝐷
(𝑛−3)

𝑛
.

(52)

Let

𝐷
(𝑗)

𝑛
=

𝑗

∑

𝑖=1

((𝐿
𝑟+3+𝑗−𝑖

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+2+𝑗−𝑖

)

× (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−1

) × ((𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖
)
−1

=

𝑗

∑

𝑖=1

𝑏
󸀠

𝑗,𝑟

(ℎ
1,𝑟
)
𝑖
(ℎ
2,𝑟
)
𝑖−1

(𝑗 = 1, 2, . . . , 𝑛 − 2) ;

(53)

we have

𝐷
(2)

𝑛
− 𝐷
(1)

𝑛

=

2

∑

𝑖=1

𝑏
󸀠

2,𝑟
(ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

−
𝑏
󸀠

1,𝑟

ℎ
1,𝑟

=
𝑏
󸀠

1,𝑟

(ℎ
1,𝑟
)
2
ℎ
2,𝑟
,

𝐷
(𝑛−2)

𝑛
+ 𝐷
(𝑛−3)

𝑛

=

𝑛−2

∑

𝑖=1

𝑏
󸀠

𝑛−2,𝑟
(ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

+

𝑛−3

∑

𝑖=1

(𝑏
󸀠

𝑛−3,𝑟
) (ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

=

𝑛−3

∑

𝑖=1

(𝐿
𝑟+𝑛+2−𝑖

− 𝐵
𝑟,𝑛
𝐿
𝑟+𝑛+1−𝑖

) (ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

+
𝑏
󸀠

1,𝑟

(ℎ
1,𝑟
)
𝑛−2

(ℎ
2,𝑟
)
𝑛−3

=

𝑛−2

∑

𝑖=1

(𝐿
𝑟+𝑛+2−𝑖

− 𝐵
𝑟,𝑛
𝐿
𝑟+𝑛+1−𝑖

) (ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

,
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𝐷
(𝑗+2)

𝑛
− 𝐷
(𝑗+1)

𝑛
− 𝐷
(𝑗)

𝑛

=

𝑗+2

∑

𝑖=1

(𝑏
󸀠

𝑗+2,𝑟
) (ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

−

𝑗+1

∑

𝑖=1

(𝑏
󸀠

𝑗+1,𝑟
) (ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

−

𝑗

∑

𝑖=1

(𝑏
󸀠

𝑗,𝑟
) (ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

=
(𝐿
𝑟+4

− 𝐵
𝑟,𝑛
𝐿
𝑟+3

) (ℎ
2,𝑟
)
𝑗

(ℎ
1,𝑟
)
𝑗+1

+
(𝐿
𝑟+3

− 𝐵
𝑟,𝑛
𝐿
𝑟+2

) (ℎ
2,𝑟
)
𝑗+1

(ℎ
1,𝑟
)
𝑗+2

−
(𝐿
𝑟+3

− 𝐵
𝑟,𝑛
𝐿
𝑟+2

) (ℎ
2,𝑟
)
𝑗

(ℎ
1,𝑟
)
𝑗+1

=
(𝐿
𝑟+3

− 𝐵
𝑟,𝑛
𝐿
𝑟+2

) (ℎ
2,𝑟
)
𝑗+1

(ℎ
1,𝑟
)
𝑗+2

=
𝑏
󸀠

1,𝑟
(ℎ
2,𝑟
)
𝑗+1

(ℎ
1,𝑟
)
𝑗+2

(𝑗 = 1, 2, . . . , 𝑛 − 4) .

(54)

We obtain

𝐵
−1

𝑟,𝑛

= Circ (
1 + 𝐷

(𝑛−3)

𝑛
+ 𝐷
(𝑛−2)

𝑛

𝑙
𝑟,𝑛

,
𝐷
(𝑛−2)

𝑛
− 𝐿
𝑟+2

/𝐿
𝑟+1

𝑙
𝑟,𝑛

,

−
𝐷
(1)

𝑛

𝑙
𝑟,𝑛

,
𝐷
(1)

𝑛
− 𝐷
(2)

𝑛

𝑙
𝑟,𝑛

,
𝐷
(1)

𝑛
+ 𝐷
(2)

𝑛
− 𝐷
(3)

𝑛

𝑙
𝑟,𝑛

, . . . ,

𝐷
(𝑛−4)

𝑛
+ 𝐷
(𝑛−3)

𝑛
− 𝐷
(𝑛−2)

𝑛

𝑙
𝑟,𝑛

)

=
1

𝑙
𝑟,𝑛

Circ (1

+

𝑛−2

∑

𝑖=1

(𝐿
𝑟+𝑛+2−𝑖

− 𝐵
𝑟,𝑛
𝐿
𝑟+𝑛+1−𝑖

) (ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

,

−
𝐿
𝑟+2

𝐿
𝑟+1

+

𝑛−2

∑

𝑖=1

𝑏
󸀠

𝑛−2,𝑟
(ℎ
2,𝑟
)
𝑖−1

(ℎ
1,𝑟
)
𝑖

,

−
𝑏
󸀠

1,𝑟

ℎ
1,𝑟

, −
𝑏
󸀠

1,𝑟

(ℎ
1,𝑟
)
2
ℎ
2,𝑟
,

−
𝑏
󸀠

1,𝑟

(ℎ
1,𝑟
)
3
(ℎ
2,𝑟
)
2
, . . . , −

𝑏
󸀠

1,𝑟

(ℎ
1,𝑟
)
𝑛−2

(ℎ
2,𝑟
)
𝑛−3

)

=
1

𝑙
𝑟,𝑛

Circ (1

+

𝑛−2

∑

𝑖=1

((𝐿
𝑟+𝑛+2−𝑖

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛+1−𝑖

)

× (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−1

)

× ((𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖
)
−1

,

−
𝐿
𝑟+2

𝐿
𝑟+1

+

𝑛−2

∑

𝑖=1

((𝐿
𝑟+𝑛+1−𝑖

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛−𝑖

)

× (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−1

)

× ((𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖
)
−1

,

−
𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
2

,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
2

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
3

, . . . ,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑛−3

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑛−2

) .

(55)

4. Determinant, Invertibility, and Inverse
of Left Circulant Matrix with Any
Continuous Fibonacci and Lucas Numbers

In this section, let 𝐴󸀠
𝑟,𝑛

= LCirc (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) and
𝐵
󸀠

𝑟,𝑛
= LCirc (𝐿

𝑟+1
,𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) be left circulant matrices.
By using the obtained conclusions, we give a determinant
formula for the matrices 𝐴󸀠

𝑟,𝑛
and 𝐵

󸀠

𝑟,𝑛
. Afterwards, we prove

that 𝐴󸀠
𝑟,𝑛

is an invertible matrix for 𝑛 > 2 and 𝐵
󸀠

𝑟,𝑛
is an

invertible matrix for any positive integer 𝑛. The inverse of the
matrices 𝐴󸀠

𝑟,𝑛
and 𝐵

󸀠

𝑟,𝑛
is also presented.

According to Lemma 5, Theorem 8, Theorem 9, and
Theorem 11, we can obtain the following theorems.

Theorem 16. Let 𝐴󸀠
𝑟,𝑛

= LCirc (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) be a left
circulant matrix; then one has

det𝐴󸀠
𝑟,𝑛

= (−1)
(𝑛−1)(𝑛−2)/2

⋅ 𝐹
𝑟+1

⋅ [(𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)
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× (
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑛−2

,

(56)

where 𝐹
𝑟+𝑛

is the (𝑟 + 𝑛)th Fibonacci number.

Theorem 17. Let 𝐴󸀠
𝑟,𝑛

= LCirc (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) be a left
circulant matrix; if 𝑛 > 2, thenA󸀠

𝑟,𝑛
is an invertible matrix.

Theorem 18. Let 𝐴󸀠
𝑟,𝑛

= LCirc (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) (𝑛 > 2)

be a left circulant matrix; then one has

𝐴
󸀠

𝑟,𝑛

−1

=
1

𝑓
𝑟,𝑛

× LCirc (1 +

𝑛−2

∑

𝑖=1

((𝐹
𝑟+𝑛+2−𝑖

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛+1−𝑖

)

× (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−1

)

× ((𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖
)
−1

,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑛−3

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑛−2

, . . . ,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
2

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
3

,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
2

,

−
𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

,

−
𝐹
𝑟+2

𝐹
𝑟+1

+

𝑛−2

∑

𝑖=1

((𝐹
𝑟+𝑛+1−𝑖

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛−𝑖

)

× (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−1

)

× ((𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖
)
−1

) ,

(57)

where

𝑓
𝑟,𝑛

= (𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)(
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(58)

By Lemma 5, Theorem 12, Theorem 13, and Theorem 15,
the following conclusions can be attained.

Theorem 19. Let 𝐵󸀠
𝑟,𝑛

= LCirc (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) be a left
circulant matrix; then one has

det𝐵󸀠
𝑟,𝑛

= (−1)
(𝑛−1)(𝑛−2)/2

⋅ 𝐿
𝑟+1

⋅ [(𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐿
𝑟+𝑘+2

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑘+1

)

× (
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑛−2

,

(59)

where 𝐿
𝑟+𝑛

is the (𝑟 + 𝑛)th Lucas number.

Theorem 20. Let 𝐵󸀠
𝑟,𝑛

= LCirc (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) be a left
circulant matrix; then 𝐵

󸀠

𝑟,𝑛
is invertible for any positive integer

𝑛.

Theorem 21. Let 𝐵󸀠
𝑟,𝑛

= LCirc (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) be a left
circulant matrix; then one can obtain

𝐵
󸀠

𝑟,𝑛

−1

=
1

𝑙
𝑟,𝑛

× LCirc (1 +

𝑛−2

∑

𝑖=1

((𝐿
𝑟+𝑛+2−𝑖

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛+1−𝑖

)

× (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−1

)

× ((𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖
)
−1

,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑛−3

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑛−2

, . . . ,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
2

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
3

,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
2

,

−
𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

,
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−
𝐿
𝑟+2

𝐿
𝑟+1

+

𝑛−2

∑

𝑖=1

((𝐿
𝑟+𝑛+1−𝑖

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛−𝑖

)

× (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−1

)

× ((𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖
)
−1

) ,

(60)

where

𝑙
𝑟,𝑛

= (𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐿
𝑟+𝑘+2

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑘+1

)(
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(61)

5. Determinant, Invertibility, and Inverse of
𝑔-Circulant Matrix with Any Continuous
Fibonacci and Lucas Numbers

In this section, let 𝐴
𝑔,𝑟,𝑛

= 𝑔-Circ (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) and
𝐵
𝑔,𝑟,𝑛

= 𝑔-Circ (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . .,𝐿
𝑟+𝑛

) be 𝑔-circulant matrices.
By using the obtained conclusions, we give a determinant
formula for the matrices 𝐴

𝑔,𝑟,𝑛
and 𝐵

𝑔,𝑟,𝑛
. Afterwards, we

prove that 𝐴
𝑔,𝑟,𝑛

is an invertible matrix for 𝑛 > 2 and 𝐵
𝑔,𝑟,𝑛

is
an invertible matrix if (𝑛, 𝑔) = 1. The inverse of the matrices
𝐴
𝑔,𝑟,𝑛

and 𝐵
𝑔,𝑟,𝑛

is also presented.
From Lemma 6, Lemma 7, Theorem 8, Theorem 9, and

Theorem 11, we deduce the following results.

Theorem 22. Let 𝐴
𝑔,𝑟,𝑛

= 𝑔-Circ (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) be a
𝑔-circulant matrix; then one has

det𝐴
𝑔,𝑟,𝑛

= detQ
𝑔
⋅ 𝐹
𝑟+1

⋅ [(𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)

× (
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑛−2

,

(62)

where 𝐹
𝑟+𝑛

is the (𝑟 + 𝑛)th Fibonacci number.

Theorem 23. Let 𝐴
𝑔,𝑟,𝑛

= 𝑔-Circ (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) be a
𝑔-circulant matrix and (𝑔, 𝑛) = 1; if 𝑛 > 2, then 𝐴

𝑔,𝑟,𝑛
is an

invertible matrix.

Theorem 24. Let 𝐴
𝑔,𝑟,𝑛

= 𝑔-Circ (𝐹
𝑟+1

, 𝐹
𝑟+2

, . . . , 𝐹
𝑟+𝑛

) (𝑛 >

2) be a 𝑔-circulant matrix and (𝑔, 𝑛) = 1; then

𝐴
−1

𝑔,𝑟,𝑛

= [
1

𝑓
𝑟,𝑛

× Circ (1 +

𝑛−2

∑

𝑖=1

((𝐹
𝑟+𝑛+2−𝑖

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛+1−𝑖

)

× (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−1

)

× ((𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖
)
−1

,

−
𝐹
𝑟+2

𝐹
𝑟+1

+

𝑛−2

∑

𝑖=1

((𝐹
𝑟+𝑛+1−𝑖

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛−𝑖

)

× (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑖−1

)

× ((𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑖
)
−1

,

−
𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
2

,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
2

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
3

, . . . ,

−
(𝐹
𝑟+3

− (𝐹
𝑟+2

/𝐹
𝑟+1

) 𝐹
𝑟+2

) (𝐹
𝑟+𝑛

− 𝐹
𝑟
)
𝑛−3

(𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)
𝑛−2

)]

×Q
𝑇

𝑔
,

(63)

where

𝑓
𝑟,𝑛

= (𝐹
𝑟+1

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐹
𝑟+𝑘+2

−
𝐹
𝑟+2

𝐹
𝑟+1

𝐹
𝑟+𝑘+1

)(
𝐹
𝑟+𝑛

− 𝐹
𝑟

𝐹
𝑟+1

− 𝐹
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(64)

Taking Lemma 6, Lemma 7, Theorem 12, Theorem 13,
andTheorem 15 into account, one has the following theorems.
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Theorem 25. Let 𝐵
𝑔,𝑟,𝑛

= 𝑔-Circ (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) be a
𝑔-circulant matrix; then one has

det𝐵
𝑔,𝑟,𝑛

= detQ
𝑔
⋅ 𝐿
𝑟+1

⋅ [(𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐿
𝑟+𝑘+2

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑘+1

)

× (
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑛−2

,

(65)

where 𝐿
𝑟+𝑛

is the (𝑟 + 𝑛)th Lucas number.

Theorem 26. Let 𝐵
𝑔,𝑟,𝑛

= 𝑔-Circ (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) be a
𝑔-circulant matrix and (𝑔, 𝑛) = 1; if 𝑛 > 2, then 𝐵

𝑔,𝑟,𝑛
is an

invertible matrix.

Theorem 27. Let 𝐵
𝑔,𝑟,𝑛

= 𝑔-Circ (𝐿
𝑟+1

, 𝐿
𝑟+2

, . . . , 𝐿
𝑟+𝑛

) (𝑛 >

2) be a 𝑔-circulant matrix and (𝑔, 𝑛) = 1; then

𝐵
−1

𝑔,𝑟,𝑛

= [
1

𝑙
𝑟,𝑛

× Circ (1 +

𝑛−2

∑

𝑖=1

((𝐿
𝑟+𝑛+2−𝑖

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛+1−𝑖

)

× (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−1

)

× ((𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖
)
−1

,

−
𝐿
𝑟+2

𝐿
𝑟+1

+

𝑛−2

∑

𝑖=1

((𝐿
𝑟+𝑛+1−𝑖

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛−𝑖

)

× (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑖−1

)

× ((𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑖
)
−1

,

−
𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
2

,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
2

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
3

, . . . ,

−
(𝐿
𝑟+3

− (𝐿
𝑟+2

/𝐿
𝑟+1

) 𝐿
𝑟+2

) (𝐿
𝑟+𝑛

− 𝐿
𝑟
)
𝑛−3

(𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)
𝑛−2

)]

×Q
𝑇

𝑔
,

(66)

where

𝑙
𝑟,𝑛

= (𝐿
𝑟+1

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑛

)

+

𝑛−2

∑

𝑘=1

(𝐿
𝑟+𝑘+2

−
𝐿
𝑟+2

𝐿
𝑟+1

𝐿
𝑟+𝑘+1

)(
𝐿
𝑟+𝑛

− 𝐿
𝑟

𝐿
𝑟+1

− 𝐿
𝑟+𝑛+1

)

𝑛−(𝑘+1)

.

(67)
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The paper investigates quasisynchronization in a communication system, which consists of cells communicating through
quorum sensing. With the help of Lyapunov function method and Lur’e system approach, some sufficient conditions for
quasisynchronization are presented, and a bound on the synchronization errors is derived. The obtained theoretical results show
that the synchronization quality is influenced by two parameters detrimentally: the error bound depends almost linearly on the
mismatches between cells and depends sensitively on the diffusion rates of the signals inward the cell membrane. Numerical
experiments are carried out to verify the theoretical results.

1. Introduction

In the past decades, increasing interest has been shown to
study the dynamics of coupled oscillator networks, which
describes many complex systems in the field of nature
and science. Due to the couplings among these oscillators,
different types of synchronization can be realized in such
systems.

In particular, a coupled oscillator network is called to
be quasisynchronized, or weak synchronized, if the synchro-
nization errors will be in some neighborhood of zero but will
not tend to zero eventually. In other words, quasisynchro-
nization means that the dynamical trajectories of each cell
are similar but different from each other [1, 2]. By Lyapunov
function method and a differential inequality method, two
coupled identical oscillatorswith parametermismatcheswere
quasisynchronized via periodically intermittent control in
[3]. Similar results were also obtained in a discontinuous
master-response system with parameter mismatches [4]. It
has also been shown that two coupled delayed oscillators with
parameter mismatches can be lag quasisynchronized, and the
error level is estimated by applying a generalized Halanary
inequality and matrix measure [5].

To the best of our knowledge, most of researches on
synchronization focused on two oscillators coupled directly
[6–8]. And there are very few researches focused on the
system composed of several oscillators coupled indirectly.
However,many biological systems coupled indirectly can also
exhibit synchronization such as a global cellular response. For
an example of such mechanisms achieving synchronization,
the unicellular bacteria are highly coupled through chemical
signaling molecules. This process, termed quorum sensing
[9–11], allows bacterial populations to exchange intercel-
lular signals with their neighbor cells to coordinate gene
expression and integrates cells to realize synchronization
effectively. That is to say, each bacterium is connected with
all the other bacteria through a mean field and coordinated
precisely. As the result, all the bacteria form a “microsociety,”
behaving synchronously and exhibiting various collective
dynamics. In the past decade, synchronization induced by the
intercell signaling mechanism has been widely investigated.
For instance, synchronization induced by quorum sensing
has been studied in networks composed by genetic relaxation
oscillators [12], limit-cycle oscillators [13], and synthetic gene
oscillators [14]. Another research has shown that a noisy
community of such genetic oscillators can self-synchronize
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in a robust way and lead to a substantially global rhythmicity
[15].

Due to the biological diversity, there are usually some
parameter mismatches between the coupled oscillators in
biological systems. Therefore, complete synchronization is
hard to be achieved. Instead, quasisynchronization, which
implies a state of synchronization with an error level, is
more common in the biological systems. Motivated by the
complexity and similarity of biological organisms and the
potential applications, the paper studies quasisynchroniza-
tion in quorum sensing systems with parameter mismatches.
Through a new method different from many previous
researches [3–5], the bound on the synchronization errors is
estimatedwith help of Lur’e system, linearmatrix inequalities,
and Lyapunov function [16–19]. Both the theoretical results
and the numerical simulations indicate that the synchroniza-
tion errors stay in a neighborhood of zero, increase roughly
linearly with the mismatches between individual cells, and
depend sensitively on the diffusion rate of the signals inward
the cell membrane.

The rest of the paper is organized as follows. In Section 2,
we give some sufficient conditions for quasisynchronization
in quorum sensing systems with parameter mismatches. The
bound of the synchronization errors is also estimated. In
Section 3, numerical examples are carried out to verify the
theoretical results.

2. Main Results

2.1. Quorum Sensing Systems with Mismatches. Quorum
sensing is a cell concentration dependent phenomenon in
bacteria and fungi, which is mediated by small, diffusible
signaling molecules that accumulate in the extracellular
environment [9]. In such a multicell system, the individual
oscillator in each cell is a network with three genes, 𝑎, 𝑏,
and 𝑐, the products of which inhibit the transcription of
each other in a cyclic way. The gene 𝑐 expresses protein 𝐶,
which inhibits transcription of the gene 𝑎. The product of
𝑎 inhibits transcription of the gene 𝑏, the protein product
𝐵 of which in turn inhibits expression of 𝑐, completing
the cycle. These bacteria exhibit cell-to-cell communication
through a mechanism that makes use of two proteins, the
first one of which (LuxI) synthesizes a small molecule known
as an autoinducer (AI), which can diffuse freely through
the cell membrane. The principle of the phenomenon is
that when a single bacterium releases autoinducers (AIs)
into the environment, their concentration is too low to be
detected. However, when sufficient bacteria are present, AI
concentrations reach a threshold level that allows the bacteria
to sense a critical cell mass and to activate target genes [9].
When a second protein (LuxR) binds to this molecule, the
resulting complex activates transcription of various genes,
including some coding for light-producing enzymes. The
scheme of the network is shown in Figure 1. For further
details, one is referred to previous articles [9–11].

Before we carry out the dynamics model for the 𝑁-
cell system described by differential equations, we make the
following declaration throughout the paper. Let 𝑅𝑛 be the 𝑛-
dimensional Euclidean space, 𝑅𝑛×𝑚 the set of all 𝑛 × 𝑚 real
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Figure 1: Scheme of the repressilator network coupled through
signaling molecules, termed quorum sensing. The synchronization
scheme of quorum sensing is based on the diffusion of a small
molecule (autoinducer AI) to and from the cells.

matrices, 𝐴⊤ the transpose of a square matrix 𝐴, and ‖ ⋅ ‖

the usual 𝐿
2
norm of a vector or the usual spectral norm of

a square matrix. The notation 𝑀 > 0 (<0) is used to define
a real symmetric positive (negative) definite matrix. If not
explicitly stated, matrices are assumed to have compatible
dimensions.

Then the dynamics model for the𝑁-cell system is built as
follows:

̇𝑎
𝑖
= −𝑑
1𝑖
(𝑡) 𝑎
𝑖
+

𝛼
6𝑖
(𝑡)

𝜇
6
+ 𝐶𝑚
𝑖

, ̇𝐴
𝑖
= −𝑑
4𝑖
(𝑡) 𝐴
𝑖
+ 𝛽
1𝑖
(𝑡) 𝑎
𝑖
,

̇𝑏
𝑖
= −𝑑
2𝑖
(𝑡) 𝑏
𝑖
+

𝛼
4𝑖
(𝑡)

𝜇
4
+ 𝐴𝑚
𝑖

, ̇𝐵
𝑖
= −𝑑
5𝑖
(𝑡) 𝐵
𝑖
+ 𝛽
2𝑖
(𝑡) 𝑏
𝑖
,

̇𝑐
𝑖
= −𝑑
3𝑖
(𝑡) 𝑐
𝑖
+

𝛼
5𝑖 (𝑡)

𝜇
5
+ 𝐵𝑚
𝑖

+
𝛼
7𝑖 (𝑡) 𝑆𝑖

𝜇
7
+ 𝑆
𝑖

,

̇𝐶
𝑖
= −𝑑
6𝑖 (𝑡) 𝐶𝑖 + 𝛽

3𝑖 (𝑡) 𝑐𝑖,

̇𝑆
𝑖
= −𝑑
7𝑖
(𝑡) 𝑆
𝑖
+ 𝛽
4𝑖
(𝑡) 𝐴
𝑖
− 𝜂 (𝑆

𝑖
− 𝑆
𝑒
) ,

̇𝑆
𝑒
= −𝑑
𝑒
(𝑡) 𝑆
𝑒
+ 𝜂
𝑒
(𝑡)

𝑁

∑

𝑗=1

𝑆
𝑗
− 𝑆
𝑒

𝑁
,

(1)

where 𝑖 = 1, 2, . . . , 𝑁; 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are the concentrations

of mRNA transcribed from genes 𝑎, 𝑏, and 𝑐 in cell 𝑖,
respectively; 𝐴

𝑖
, 𝐵
𝑖
, and 𝐶

𝑖
are the concentrations of the

corresponding proteins, respectively; 𝑆
𝑖
and 𝑆

𝑒
are concen-

trations of AI inside each cell and in the environment,
respectively. The parameters 𝑑

𝑗𝑖
(𝑡) (𝑗 = 1, . . . , 7) and 𝑑

𝑒
(𝑡)

are the dimensionless degradation rates of the chemical
molecules in cell 𝑖; 𝛼

𝑗𝑖
(𝑡) (𝑗 = 4, 5, 6) are the dimensionless

transcription rates in the absence of repressor; 𝛼
7𝑖
(𝑡) is the

maximal contribution to the gene 𝑐 transcription in the
presence of saturating amounts of AI; 𝛽

𝑗𝑖
(𝑡) (𝑗 = 1, 2, 3) are

the translation rates of the proteins from themRNAs; 𝛽
4𝑖
(𝑡) is

the synthesis rate of AI;𝑚 = 4 is the Hill coefficient; 𝜂(𝑡) and
𝜂
𝑒
(𝑡)measure the diffusion rate of AI inward and outward the

cell membrane.
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We suppose that all the parameters mentioned above
are time-varying in the vicinity of certain constants, which
indicates that all the cells are similar but different from
each other. For convenience, we decompose these parameters
into two parts: a constant part that determines the values
of the parameters and a time-varying part representing
the parameter mismatches. For example, let the parameter
𝑑
𝑗𝑖
(𝑡) = 𝑑

𝑗
+ 𝛿𝑑
𝑗𝑖
(𝑡), (𝑗 = 1, . . . , 7), which implies that the

parameter 𝑑
𝑗𝑖
(𝑡) is time-varying around the constant 𝑑

𝑗
with

the parameter mismatches 𝛿𝑑
𝑗𝑖
(𝑡), (𝑗 = 1, . . . , 7).

Denoting 𝑥
𝑖
= (𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝑆
𝑖
)
⊤, 𝑖 = 1, . . . , 𝑁,

and 𝑥
𝑒
= (0, 0, 0, 0, 0, 0, 𝑆

𝑒
)
⊤ for convenience, then muiticell

system (1) can be rewritten as follows:

̇𝑥
𝑖
= − (𝑑 + 𝛿𝑑

𝑖
(𝑡)) 𝑥
𝑖
+ (𝛼 + 𝛿𝛼

𝑖
(𝑡)) 𝑓 (𝑥

𝑖
)

− (𝛾 + 𝛿𝛾
𝑖
(𝑡)) (𝑔 (𝑥

𝑖
) − 𝑒
𝑛
) + 𝜂 (𝑥

𝑒
− 𝐼
𝑛
𝑥
𝑖
) ,

̇𝑥
𝑒
= −𝑑
𝑒
(𝑡) 𝑥
𝑒
+ 𝜂
𝑒
(𝑡)

𝑁

∑

𝑗=1

(𝐼
𝑛
𝑥
𝑗
− 𝑥
𝑒
)

𝑛
,

(2)

where 𝑖 = 1, 2, . . . , 𝑁; 𝑑 = diag(𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
, 𝑑
5
, 𝑑
6
, 𝑑
7
) + 𝛽,

𝛽 ∈ 𝑅
𝑛×𝑛 with elements equal to zero except 𝛽

41
= 𝛽
1
,

𝛽
52

= 𝛽
2
, 𝛽
63

= 𝛽
3
, and 𝛽

74
= 𝛽
4
; 𝛼 ∈ 𝑅

𝑛×𝑛 with elements
equal to zero except 𝛼

16
= 𝛼
6
, 𝛼
24

= 𝛼
4
, and 𝛼

35
= 𝛼
5
;

𝛾 ∈ 𝑅
𝑛×𝑛 with elements equal to zero except 𝛾

37
= 𝛼
7
;

𝐼
𝑛
= diag(0, 0, 0, 0, 0, 0, 1); 𝑒

𝑛
= (0, 0, 0, 0, 0, 0, 1)

⊤; and

𝑔 (𝑥
𝑖
) = (0, 0, 0, 0, 0, 0,

𝜇
7

𝜇
7
+ 𝑆
𝑖

)

⊤

,

𝑓 (𝑥
𝑖
) = (0, 0, 0,

1

𝜇
4
+ 𝐴𝑚
𝑖

,
1

𝜇
5
+ 𝐵𝑚
𝑖

,
1

𝜇
6
+ 𝐶𝑚
𝑖

, 0)

⊤

.

(3)

The matrices 𝛿𝑑
𝑖
(𝑡), 𝛿𝛼

𝑖
(𝑡), and 𝛿𝛾

𝑖
(𝑡) describe the mis-

matches of the parameters 𝑑
𝑖
(𝑡), 𝛼
𝑖
(𝑡), and 𝛾

𝑖
(𝑡). Note the

dimension of individual cells 𝑛 = 7 for multicell system
(1). In fact, system (2) can describe the general model of
quorum sensing mechanism, where the vector components
of vector functions 𝑓(⋅) and 𝑔(⋅) are increasing functions
and 𝐼

𝑛
describes which components are coupled with the

environment. Thus, the results obtained in the paper are
also valid for any general multicell system based on quorum
sensing.

2.2. Sufficient Conditions for Quasisynchronization. Since the
cells in realistic organisms are similar but different from each
other, one can suppose that the mismatch matrices 𝛿𝑑

𝑖
(𝑡),

𝛿𝛼
𝑖
(𝑡), and 𝛿𝛾

𝑖
(𝑡) are bounded as follows:

󵄩󵄩󵄩󵄩𝛿𝑑𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜀
1
,

󵄩󵄩󵄩󵄩𝛿𝛼𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜀
2
,

󵄩󵄩󵄩󵄩𝛿𝛾𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜀
3
. (4)

Noticing that the concentrations of chemical molecules 𝑥
𝑖
(𝑡)

are bounded and 𝑓(⋅) and 𝑔(⋅) are monotonic functions of
𝑥
𝑖
(𝑡), we can conclude that

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝛿
1
,

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑖
(𝑡))

󵄩󵄩󵄩󵄩 ≤ 𝛿
2
,

󵄩󵄩󵄩󵄩𝑔 (𝑥𝑖 (𝑡))
󵄩󵄩󵄩󵄩 ≤ 𝛿
3
.

(5)

Since there exist parametermismatches between different
cells, multicell system (1) cannot be completely synchronized.
Instead, we present another type of synchronization, which is
defined as follows.

Definition 1. The multicell system (1) is said to reach qua-
sisynchronization or weak synchronization, if, for any initial
condition (𝑥⊤

1
(0), . . . , 𝑥

⊤

𝑚
(0))
⊤, there exists a positive constant

𝜀 such that

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗
− 𝑥
𝑖

󵄩󵄩󵄩󵄩󵄩
≤ 𝜀, 𝑖, 𝑗 = 1, 2, . . . , 𝑁. (6)

The regulatory functions 𝑓
𝑙
(⋅) and 𝑔

𝑙
(⋅) are both mono-

tonic increasing functions; there exist two diagonal matri-
ces 𝐾

1
= diag(𝑘

11
, 𝑘
12
, . . . , 𝑘

1𝑛
) ≥ 0 and 𝐾

1
=

diag(𝑘
21
, 𝑘
22
, . . . , 𝑘

2𝑛
) ≥ 0 such that the following sector

conditions are satisfied:

0 ≤
𝑓
𝑙
(𝑎) − 𝑓

𝑙
(𝑏)

𝑎 − 𝑏
≤ 𝑘
1𝑙
, 0 ≤

𝑔
𝑙
(𝑎) − 𝑔

𝑙
(𝑏)

𝑎 − 𝑏
≤ 𝑘
2𝑙
, (7)

where 𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 𝑏, and 𝑙 = 1, . . . , 𝑛. Notice that the Lur’e
system consists of a linear system feedback interconnected
with a static nonlinearity 𝑓(⋅) that satisfies a sector condition
[20]; multicell system (2) can be regarded as a Lur’e system.
Consequently, with help of Lur’e system method in control
theory and Lyapunov direct method, we obtain the following
sufficient conditions for quasisynchronization of system (2).

Theorem 2. If there exist symmetric matrices 𝑃 > 0 and Λ
𝑖
=

diag(𝜆
𝑖1
, . . . , 𝜆

𝑖𝑛
) ≥ 0, 𝑖 = 1, 2, and a constant 𝜌 > 0 such that

the symmetric matrix

𝑀 = [

[

𝑃𝑑 + 𝑑
⊤
𝑃 − 2𝜂𝐼

𝑛
+ 𝜌𝐸 𝑃𝛼 + 𝐾

1
Λ
1

−𝑃𝛾 + 𝐾
2
Λ
2

𝛼
⊤
𝑃 + 𝐾

1
Λ
1

−2Λ
1

0

−𝛾
⊤
𝑃 + 𝐾

2
Λ
2

0 −2Λ
2

]

]

≤ 0,

(8)

where 𝐸 ∈ 𝑅
𝑛×𝑛 is the unit matrix, multicell system (1) is

quasisynchronized. The bound on the synchronization errors
can be estimated by 𝛿/𝜌, where

𝛿 =
2𝜆max (𝑃)

𝜆min (𝑃)
(𝜀
1
𝛿
1
+ 𝜀
2
𝛿
2
+ 𝜀
3
𝛿
3
+ 𝜀
3
) . (9)

Proof. Define a Lyapunov function with respect to multicell
system (2) of the following form:

𝑉 (𝑥 (𝑡)) = 𝑥
⊤
(𝑡) 𝑃𝑥 (𝑡) , (10)

where 𝑃 is a positive definite matrix. According to [21], the
Lyapunov function is equivalent to the following form:

𝑉 (𝑥 (𝑡)) =

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑋
⊤

𝑖𝑗
𝑃𝑋
𝑖𝑗
, (11)

where𝑋
𝑖𝑗
= 𝑥
𝑗
− 𝑥
𝑖
denotes the synchronization errors.
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Based on Lyapunov direct method, if the time derivative
of 𝑉(𝑥(𝑡)) along the trajectories of (2) is negative outside
of a neighborhood of the origin 𝑂, multicell system (2) will
achieve quasisynchronization with the errors 𝑋

𝑖𝑗
staying in

the neighborhood. Calculating the time derivative of 𝑉(𝑥(𝑡))
along (2),

𝑋
𝑖𝑗
= ̇𝑥
𝑗
− ̇𝑥
𝑖

= (𝑑 + 𝛿𝑑
𝑗
(𝑡)) 𝑥
𝑗
+ (𝛼 + 𝛿𝛼

𝑗
(𝑡)) 𝑓 (𝑥

𝑗
)

− (𝛾 + 𝛿𝛾
𝑗
(𝑡)) (𝑔 (𝑥

𝑗
) − 𝑒
𝑛
) − 𝜂𝐼

𝑛
𝑥
𝑖

− [(𝑑 + 𝛿𝑑
𝑖 (𝑡)) 𝑥𝑖 + (𝛼 + 𝛿𝛼

𝑖 (𝑡)) 𝑓 (𝑥
𝑖
)

− (𝛾 + 𝛿𝛾
𝑖
(𝑡)) (𝑔 (𝑥

𝑖
) − 𝑒
𝑛
)] − 𝜂𝐼

𝑛
𝑥
𝑗

= (𝑑𝐸 − 𝜂𝐼
𝑛
)𝑋
𝑖𝑗
+ 𝛼 (𝑓 (𝑥

𝑗
) − 𝑓 (𝑥

𝑖
))

− 𝛾 (𝑔 (𝑥
𝑗
) − 𝑔 (𝑥

𝑖
)) + (𝛿𝛾

𝑗
(𝑡) − 𝛿𝛾

𝑖
(𝑡)) 𝐼
𝑛

+ 𝛿𝑑
𝑗
(𝑡) 𝑥
𝑗
− 𝛿𝑑
𝑖
(𝑡) 𝑥
𝑖
+ 𝛿𝛼
𝑗
(𝑡) 𝑓 (𝑥

𝑗
)

− 𝛿𝛼
𝑖 (𝑡) 𝑓 (𝑥

𝑖
) − 𝛿𝛾

𝑗 (𝑡) 𝑔 (𝑥𝑗) + 𝛿𝛾
𝑖 (𝑡) 𝑔 (𝑥𝑖) .

(12)

We have

𝑉 =

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑋
⊤

𝑖𝑗
𝑃

× [(𝑑𝐸 − 𝜂𝐼
𝑛
)𝑋
𝑖𝑗
+ 𝛼 (𝑓 (𝑥

𝑗
) − 𝑓 (𝑥

𝑖
))

− 𝛾 (𝑔 (𝑥
𝑗
) − 𝑔 (𝑥

𝑖
))

+ 𝐼
𝑛
(𝛿𝛾
𝑗 (𝑡) − 𝛿𝛾

𝑖 (𝑡)) + 𝛿𝑑
𝑗 (𝑡) 𝑥𝑗

− 𝛿𝑑
𝑖 (𝑡) 𝑥𝑖 + 𝛿𝛼

𝑗 (𝑡) 𝑓 (𝑥
𝑗
) − 𝛿𝛼

𝑖 (𝑡) 𝑓 (𝑥
𝑖
)

− 𝛿𝛾
𝑗 (𝑡) 𝑔 (𝑥𝑗) + 𝛿𝛾

𝑖 (𝑡) 𝑔 (𝑥𝑖)] .

(13)

Noticing the sector conditions (7) of 𝑓(⋅) and 𝑔(⋅), we have

(𝑓
𝑙
(𝑥
(𝑙)

𝑗
) − 𝑓
𝑙
(𝑥
(𝑙)

𝑖
)) (𝑓
𝑙
(𝑥
(𝑙)

𝑗
) − 𝑓
𝑙
(𝑥
(𝑙)

𝑖
) − 𝑘
1𝑙
𝑋
(𝑙)

𝑖𝑗
) ≥ 0,

(𝑔
𝑙
(𝑥
(𝑙)

𝑗
) − 𝑔
𝑙
(𝑥
(𝑙)

𝑖
)) (𝑔
𝑙
(𝑥
(𝑙)

𝑗
) − 𝑔
𝑙
(𝑥
(𝑙)

𝑖
) − 𝑘
2𝑙
𝑋
(𝑙)

𝑖𝑗
) ≥ 0,

(14)

where 𝑙 = 1, 2, . . . , 𝑛. Then, for any Λ
1
= diag(𝜆

11
, . . . , 𝜆

1𝑛
) ≥

0 and Λ
2
= diag(𝜆

21
, . . . , 𝜆

2𝑛
) ≥ 0 and any constant 𝜌 > 0,

there holds

𝑉 ≤

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑋
⊤

𝑖𝑗
𝑃 [(𝑑𝐸 − 𝜂𝐼

𝑛
+ 𝜌𝐸)𝑋

𝑖𝑗

+ 𝛼 (𝑓 (𝑥
𝑗
) − 𝑓 (𝑥

𝑖
))]

− 𝛾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑋
⊤

𝑖𝑗
𝑃 (𝑔 (𝑥

𝑗
) − 𝑔 (𝑥

𝑖
))

− 2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

Λ
1
(𝑓 (𝑥

𝑗
) − 𝑓 (𝑥

𝑖
))

× (𝑓 (𝑥
𝑗
) − 𝑓 (𝑥

𝑖
) − 𝐾
1
𝑋
𝑖𝑗
)

− 2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

Λ
2
(𝑔 (𝑥
𝑗
) − 𝑔 (𝑥

𝑖
))

× (𝑔 (𝑥
𝑗
) − 𝑔 (𝑥

𝑖
) − 𝐾
2
𝑋
𝑖𝑗
)

+ 𝜆min (𝑃) (𝛿
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
− 𝜌

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩

2

)

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝜉
⊤

𝑖𝑗
𝑀𝜉
𝑖𝑗
+ 𝜆min (𝑃) (𝛿

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
− 𝜌

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩

2

)) ,

(15)

where𝑀 is defined in (8),

𝜉
𝑖𝑗
= [(𝑥

𝑗
− 𝑥
𝑖
)
⊤

, (𝑓 (𝑥
𝑗
) − 𝑓 (𝑥

𝑖
))
⊤

, (𝑔 (𝑥
𝑗
) − 𝑔 (𝑥

𝑖
))
⊤

]
⊤

,

𝛿 =
2𝜆max (𝑃)

𝜆min (𝑃)
(𝜀
1
𝛿
1
+ 𝜀
2
𝛿
2
+ 𝜀
3
𝛿
3
+ 𝜀
3
) .

(16)

If matrix inequalities (8) and ‖𝑥
𝑗
− 𝑥
𝑖
‖ ≥ 𝛿/𝜌 hold, one

obtains that

𝑉 ≤ 𝜆min (𝑃)
𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝛿
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
− 𝜌

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩

2

) < 0. (17)

According to Lyapunov direct method, all the trajectories
of cells in system (2) will go closer to each other when 𝑋

𝑖𝑗

stay outside of the neighborhood of the origin 𝑂(0, 𝛿/𝜌).
Therefore, multicell system (2) realizes quasisynchronization
with synchronization errors𝑋

𝑖𝑗
staying in the neighborhood

of the origin 𝑂(0, 𝛿/𝜌).

Theorem 2 implies that the estimation of the bound
on synchronization error is influenced by two factors, the
mismatches between cells 𝜀

𝑖
and the parameter 𝜌. On one

hand, quasisynchronization can be realized if themismatches
are small and the synchronization errors oscillate in a
certain neighborhood of the origin. On the other hand, the
parameter 𝜌 is determined by the dynamics of the individual
cells and reflects the ability of synchronization of the inherent
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dynamics. Furthermore, the larger the parameter 𝜌 is, the
smaller the bound on the synchronization errors is.

In fact, the proof of the theorem shows that the mis-
matches that go against synchronization could be compen-
sated by the linear function −𝜌𝑋

𝑖𝑗
. Both the error dynamics

caused by the mismatches and 𝜌𝑋
𝑖𝑗
could be compensated by

the linear functionΛ𝑋
𝑖𝑗
, which is determined by the diffusion

rate of the signals inward the cell membrane 𝜂. Consequently,
the parameter 𝜂measures the quasisynchronization ability of
the inherent dynamics of the cells.Therefore, if the two factors
mentioned above can be controlled, the synchronization
errors can be controlled.

As a special case, if there are no parameter mismatches
between different cells, which implies that all the cells are
identical, then it is easy to conclude that multicell system (2)
realizes complete synchronization. In such a case, multicell
systems (1) and (2) could be rewritten as

̇𝑎
𝑖
= −𝑑
1𝑖
𝑎
𝑖
+

𝛼
6𝑖

𝜇
6
+ 𝐶𝑚
𝑖

, ̇𝐴
𝑖
= −𝑑
4𝑖
𝐴
𝑖
+ 𝛽
1𝑖
𝑎
𝑖
,

̇𝑏
𝑖
= −𝑑
2𝑖
𝑏
𝑖
+

𝛼
4𝑖

𝜇
4
+ 𝐴𝑚
𝑖

, ̇𝐵
𝑖
= −𝑑
5𝑖
𝐵
𝑖
+ 𝛽
2𝑖
𝑏
𝑖
,

̇𝑐
𝑖
= −𝑑
3𝑖
𝑐
𝑖
+

𝛼
5𝑖

𝜇
5
+ 𝐵𝑚
𝑖

+
𝛼
7𝑖
𝑆
𝑖

𝜇
7
+ 𝑆
𝑖

,

̇𝐶
𝑖
= −𝑑
6𝑖
𝐶
𝑖
+ 𝛽
3𝑖
𝑐
𝑖
,

̇𝑆
𝑖
= −𝑑
7𝑖
𝑆
𝑖
+ 𝛽
4𝑖
𝐴
𝑖
− 𝜂 (𝑆

𝑖
− 𝑆
𝑒
) ,

̇𝑆
𝑒
= −𝑑
𝑒
𝑆
𝑒
+ 𝜂
𝑒

𝑁

∑

𝑗=1

𝑆
𝑗
− 𝑆
𝑒

𝑁
,

(18)

̇𝑥
𝑖
= −𝑑𝑥

𝑖
+ 𝛼𝑓 (𝑥

𝑖
) − 𝛾 (𝑔 (𝑥

𝑖
) − 𝑒
𝑛
) + 𝜂 (𝑥

𝑒
− 𝐼
𝑛
𝑥
𝑖
) ,

̇𝑥
𝑒
= −𝑑
𝑒
𝑥
𝑒
+ 𝜂
𝑒

𝑁

∑

𝑗=1

(𝐼
𝑛
𝑥
𝑗
− 𝑥
𝑒
)

𝑛
,

(19)

where the parameters 𝑑, 𝛾, 𝜂, 𝑑
𝑒
, and 𝜂

𝑒
are defined in

multicell system (2). Then we obtain the following corollary.

Corollary 3. If there exist symmetric matrices 𝑃 > 0 andΛ
𝑖
=

diag(𝜆
𝑖1
, . . . , 𝜆

𝑖𝑛
) ≥ 0, 𝑖 = 1, 2, and a constant 𝜌 > 0 such that

the symmetric matrix

𝑀 = [

[

𝑃𝑑 + 𝑑
⊤
𝑃 − 2𝜂𝐼

𝑛
+ 𝜌𝐸 𝑃𝛼 + 𝐾

1
Λ
1

−𝑃𝛾 + 𝐾
2
Λ
2

𝛼
⊤
𝑃 + 𝐾

1
Λ
1

−2Λ
1

0

−𝛾
⊤
𝑃 + 𝐾

2
Λ
2

0 −2Λ
2

]

]

≤ 0,

(20)

where𝐸 ∈ 𝑅
𝑛×𝑛 is the unit matrix, multicell system (18) realizes

complete synchronization.

3. Numerical Simulations

In order to demonstrate the effectiveness of our theoretical
analysis, we give numerical examples based on multicell
system (1) consisting of 6 cells. Set the parameters as follows:

𝑑
1
= 𝑑
2
= 𝑑
3
= 0.4, 𝑑

4
= 𝑑
5
= 𝑑
6
= 0.5,

𝑑
7
= 0.016, 𝑑

𝑒
= 0.2, 𝛼

4
= 𝛼
5
= 𝛼
6
= 1.96,

𝛼
7
= 1, 𝛽

1
= 𝛽
2
= 𝛽
3
= 0.13, 𝛽

4
= 0.018,

𝜂 = 0.4, 𝜂
𝑒
= 0.8, 𝜇

4
= 𝜇
5
= 𝜇
6
= 𝜇
7
= 0.2.

(21)

Suppose that the initialmismatches 𝛿𝑑
𝑖
, 𝛿𝛼
𝑖
, and 𝛿𝛽

𝑖
are taken

randomly in the open intervals (−𝜀𝑑
𝑖
, 𝜀𝑑
𝑖
), (−𝜀𝛼

𝑖
, 𝜀𝛼
𝑖
), and

(−𝜀𝛽
𝑖
, 𝜀𝛽
𝑖
), respectively. The evolutions of the synchroniza-

tion errors 𝑋
𝑖𝑗
are shown to converge to a neighborhood

of the origin in Figure 2. As can be seen, the smaller
the bound on mismatches between the oscillators is, the
smaller the synchronization errors 𝑋

𝑖𝑗
are. And complete

synchronization can be realized if 𝜀 = 0.
In order to verify the relationship between the syn-

chronization errors and the mismatches between cells, the
figure of the synchronization errors transition for increasing
the mismatches 𝜀 is plotted in Figure 3. It is obvious that
quasisynchronization is realized and the synchronization
errors increase with the mismatches roughly linearly.

Numerical simulations are also carried out to verify the
relationship between the synchronization errors and the
diffusion rate of the signals inward the cell membrane in
the region 𝜂 ∈ [0, 2]. Figure 4 shows that the error bounds
depend sensitively on the diffusion rates 𝜂, which play the
role of the coupling strength. The increase of the coupling
strengthmakes for the decrease of the synchronization errors,
but if the parameter 𝜂 is too large, the dynamics of oscillation
of multicell systems (1) breaks. Therefore, all the parameters
should be taken appropriately to ensure the dynamics of
oscillation.

From Figures 3 and 4, one can see that the error con-
centrations of gene products are much smaller than those
of genes; specifically, the concentrations of biosignals AI
remain quasisynchronized evenwhen themismatches are big.
During the time course of achieving synchronization, the
synchronous states of AI decrease the mismatches between
cells through quorum sensing. And the strong synchroniz-
ability of AI makes it act as biosignals to synchronize other
chemicalmolecules. On the other hand, the figures also imply
that the error concentrations of genes decrease greatly when
the mismatches are decreased. The genes’ strong sensitivity
to regulations (the synchronous states of the concentrations
of gene products, especially AI) is the reason why it can be
led to synchronization by AI.The two aspects make up of the
mechanisms of collective behavior caused by quorum sensing
during transcription, translation, translocation, and signal-
transduction.

4. Conclusions

Many previous researches studied the collective behavior
of biological systems by using complete synchronization.
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Figure 2: Time evolutions of the synchronization errors 𝑒 = ∑
6

𝑖=2
(𝑎
𝑖
− 𝑎
1
)/5 in multicell system (1), where the parameter 𝜀 is taken as 10−4

and 10
−5, respectively.
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Figure 3: Synchronization errors transition for increasing the
mismatch bound 𝜀 ∈ [0, 0.002].

However, in many real biological systems, individual organ-
isms are similar but different from each other, and their
behaviors are not completely identical either. Therefore, it
is meaningful to carry out researches on quasisynchro-
nization instead of complete synchronization. Our results
on quasisynchronization in multicell systems coupled by
quorum sensing indicate that mismatches between cells can
lead to quasisynchronization, and the synchronization errors
depend heavily on the parameter mismatches. Theoretical
analysis shows that the synchronization errors will decrease if
the coupling strength increases. All the results agree well with
numerical simulations and biological phenomena in practice.
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Figure 4: Synchronization errors transition for increasing the
parameter 𝜂 ∈ [0, 2].
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The paper investigated an avian influenza virus propagation model with nonlinear incidence rate and delay based on SIR epidemic
model.We regard delay as bifurcating parameter to study the dynamical behaviors. At first, local asymptotical stability and existence
of Hopf bifurcation are studied; Hopf bifurcation occurs when time delay passes through a sequence of critical values. An explicit
algorithm for determining the direction of the Hopf bifurcations and stability of the bifurcation periodic solutions is derived
by applying the normal form theory and center manifold theorem. What is more, the global existence of periodic solutions is
established by using a global Hopf bifurcation result.

1. Introduction

In March 2013, new avian-origin influenza 𝐴(𝐻7𝑁9) virus
(𝐴 − 𝑂𝐼𝑉) broke out in Shanghai and the surrounding
provinces of China [1]. During the first week of April, this
virus had been detected in six provinces andmunicipal cities;
this virus has caused global concern as a potential pandemic
threat [2]. The virus fast took people’s life without timely
treatment. Therefore, strong measures should be taken to
control the spread of H7N9 viruses.

𝐻7𝑁9 is an infectious disease caused by influenza A
virus. Moreover, it is essential to study and to dominate the
spread of 𝐻7𝑁9. Mathematical models become important
instruments in the analysis and control of infectious diseases.
The present study evaluates the possible application of SIR
model for𝐻7𝑁9 spreading.

Let 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) be the population densities of sus-
ceptible, infective, and recovered, respectively. Recruitment
of new individuals is into the susceptible class at a constant
rate 𝐵 [3]. Parameters 𝜇

1
, 𝜇
2
, and 𝜇

3
are positive constants

which represent the death rate of the classes, respectively. 𝜏
is the length of the infectious period; 1/𝛾 is the average time
spent in class 𝐼 before recovery [3].

In 1979, Cooke [4] used mass action incidence 𝛽𝑆(𝑡)𝐼(𝑡 −
𝜏). In 2009, Xu andMa [5] developed themodel with the force

of infection given by 𝛽𝑆(𝑡)(𝐼(𝑡 − 𝜏)/(1 + 𝛼𝐼(𝑡 − 𝜏))), where 𝛼
determines the level at which the force of infection saturates
and 𝛽 is a contract [5]. Then, the avian influenza virus
propagation model based on SIR model has the following
form:

̇𝑆 (𝑡) = 𝐵 − 𝜇
1
𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
,

̇𝐼 (𝑡) =
𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
− (𝜇
2
+ 𝛾) 𝐼 (𝑡) ,

̇𝑅 (𝑡) = 𝛾𝐼 (𝑡) − 𝜇
3
𝑅 (𝑡) .

(1)

Since 𝑅 does not appear in the first two equations, and
avoid excessive use of parentheses in some of the latter
calculations, the avian influenza virus propagation model is
transformed into the following form

̇𝑆 (𝑡) = 𝐵 − 𝜇
1
𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
,

̇𝐼 (𝑡) =
𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏)

1 + 𝛼𝐼 (𝑡 − 𝜏)
− (𝜇
2
+ 𝛾) 𝐼 (𝑡) ,

(2)

̇𝑅 (𝑡) = 𝛾𝐼 (𝑡) − 𝜇
3
𝑅 (𝑡) , (3)
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with the following initial condition:

𝑆 (0) ∈ 𝑅
+
, 𝐼 (𝜃) = 𝜙 (𝜃) for 𝜃 ∈ [−𝜏, 0] ,

where 𝜙 ∈ 𝐶 ([−𝜏, 0] , 𝑅
+
) ,

(4)

which was presented and studied in [3].
The steady state of themodel and the stability of epidemic

models have been studied in many papers. Zhang and Li
[6] studied the global stability of an SIR epidemic model
with constant infectious periods. Xu and Ma [5] showed the
global stability of the endemic equilibrium for the case of
the reproduction number 𝑅

0
> 1. McCluskey [3] shown

that the endemic equilibrium is globally asymptotically stable
whenever it exists. In this paper, we investigated the Hopf
bifurcation and the global existence of periodic solutions of
model (2), which have not been reported yet.

The organization of this paper is as follows. In Section 2,
we will investigate the local asymptotical stability and
existence of Hopf bifurcation by analyzing the associated
characteristic equation. In Section 3, an explicit algorithm
for determining the direction of the Hopf bifurcations and
stability of the bifurcation periodic solutions will be derived
by applying the normal form theory and center manifold
theorem. In Section 4, existence of global periodic solutions
will be established by using a global Hopf bifurcation result.
In Section 5, a brief discussion is offered to conclude this
work.

2. Local Stability and Hopf Bifurcation

Some results can be directly obtained from [3, 5]. The basic
reproduction number for the model is 𝑅

0
= 𝐵𝛽/𝜇

1
(𝜇
2
+

𝛾). System (2) always has a disease-free equilibrium 𝐸
1

=

(𝐵/𝜇
1
, 0). If 𝐵𝛽 > 𝜇

1
(𝜇
2
+𝛾), system (2) has a unique endemic

equilibrium 𝐸
∗
= (𝑆
∗
, 𝐼
∗
) = ((𝐵𝛼 + 𝜇

2
+ 𝛾)/(𝛽 + 𝛼𝜇

1
), (𝐵𝛽 −

𝜇
1
(𝜇
2
+𝛾))/(𝜇

2
+𝛾)(𝛽+𝛼𝜇

1
)) [3].The characteristic equation

of system (2) at the endemic equilibrium 𝐸
∗ is

𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
+ (𝑞
1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏

= 0, (5)

where 𝑝
0

= (𝜇
2
+ 𝛾)(𝜇

1
+ 𝛽𝐼
∗
/(1 + 𝛼𝐼

∗
)), 𝑝
1

= 𝜇
1
+ 𝜇
2
+

𝛾 + 𝛽𝐼
∗
/(1 + 𝛼𝐼

∗
), 𝑞
0
= −𝛽𝜇

1
𝑆
∗
/(1 + 𝛼𝐼

∗
)
2, and 𝑞

1
= −𝛽𝑆

∗
/

(1 + 𝛼𝐼
∗
)
2. If

𝑅
0
> 1 (𝑃

1
)

hold, when 𝜏 = 0, the endemic equilibrium 𝐸
∗ of system (2)

is locally stable [5].
If 𝑖𝜔 (𝜔 > 0) is a solution of system (2), separating real

and imaginary parts, we obtain the following:

𝑝
1
𝜔 = 𝑞

0
sin𝜔𝜏 − 𝑞

1
𝜔 cos𝜔𝜏,

𝜔
2
− 𝑝
0
= 𝑞
0
cos𝜔𝜏 + 𝑞

1
𝜔 sin𝜔𝜏.

(6)

Then, we get

cos𝜔𝜏 =
(𝑞
0
− 𝑝
1
𝑞
1
) 𝜔
2
− 𝑝
0
𝑞
0

𝑞2
0
+ 𝑞2
1
𝜔2

,

sin𝜔𝜏 =
𝑝
1
𝑞
0
𝜔 + (𝜔

2
− 𝑝
0
) 𝑞
1
𝜔

𝑞2
0
+ 𝑞2
1
𝜔2

.

(7)

It follows that

𝜔
4
+ (𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
) 𝜔
2
+ 𝑝
2

0
− 𝑞
2

0
= 0. (8)

Letting 𝑧 = 𝜔
2, we get

𝑧
2
+ (𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
) 𝑧 + 𝑝

2

0
− 𝑞
2

0
= 0. (9)

It is easy to show that

𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
= (𝜇
1
+

𝛽𝐼
∗

1 + 𝛼𝐼∗
)

2

+ (𝜇
2
+ 𝛾)
2
−

(𝜇
2
+ 𝛾)
2

(1 + 𝛼𝐼∗)
2
> 0,

𝑝
2

0
− 𝑞
2

0

= (𝜇
2
+ 𝛾) [(𝜇

2
+ 𝛾) (𝜇

1
+

𝛽𝐼
∗

1 + 𝛼𝐼∗
) +

𝛽𝜇
1
𝑆
∗

(1 + 𝛼𝐼∗)
2
]

× (𝜇
1
−

𝜇
1

1 + 𝛼𝐼∗
+

𝛽𝐼
∗

1 + 𝛼𝐼∗
) .

(10)

The case of

𝛽 ≥ 𝜇
1
𝛼 (𝐻

1
)

has been discussed in [5]. We obtain global asymptotic
stability of the endemic equilibrium when 𝑅

0
> 1. If

𝛽 < 𝜇
1
𝛼 (𝐻

2
)

hold, that is, (𝛽 − 𝜇
1
𝛼)𝐼
∗
/(1 + 𝛼𝐼

∗
) < 0, we have 𝑝2

0
− 𝑞
2

0
< 0.

Following the theorem given by Ruan [7], there exists critical
value

𝜏
(𝑗)

𝑘
=

1

𝜔
𝑘

arccos
(𝜔
2

𝑘
− 𝑝
0
) 𝑞
0
− 𝑝
1
𝑞
1
𝜔
2

𝑘

𝑞2
0
+ 𝑞2
1
𝜔2
𝑘

+
2𝑗𝜋

𝜔
𝑘

, (11)

with

𝜔
𝑗

=
[
[

[

2𝑝
0
+ 𝑝
2

1
− 𝑞
2

1
+ √(2𝑝

0
+ 𝑝2
1
− 𝑞2
1
)
2
− 4 (𝑝2

0
− 𝑞2
0
)

2

]
]

]

1/2

,

(12)

where 𝑘 = 1, 2, . . ., 𝑗 = 0, 1, 2, . . .. If (𝑃
1
) and (𝐻

2
) are

satisfied, (6) has a pair of purely imaginary roots ±𝜔
0
𝑖 when
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𝜏 = 𝜏
0
. Additionally, all roots of (6) have negative real parts

when 𝜏 ∈ [0, 𝜏
0
] and when 𝜏 > 𝜏

0
(5) has at least a pair

of roots with positive real part. In order to give the main
results, it is necessary to prove the transversality condition
Re(𝑑𝜆/𝑑𝜏)−1 > 0 holds. Denote 𝜆 = 𝛼(𝜏)+𝑖𝜔(𝜏) as the root of
(5) with 𝛼(𝜏) = 0, 𝜔(𝜏) = 𝜔

0
. Differentiating (5) with respect

to 𝜏 yields

[2𝜆 + 𝑝
1
+ (𝑞
1
− 𝜏 (𝑞

1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏

)]
𝑑𝜆

𝑑𝜏
= 𝜆 (𝑞

1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏

.

(13)

For the sake of simplicity denoting 𝜔
0
and 𝜏

0
by 𝜔, 𝜏,

respectively,

𝑑𝜆

𝑑𝜏
=

(𝑞
1
𝜆 + 𝑞
0
) 𝜆𝑒
−𝜆𝜏

2𝜆 + 𝑝
1
+ 𝑞
1
𝑒−𝜆𝜏 − ((𝑞

1
𝜆 + 𝑞
0
) 𝜏𝑒−𝜆𝜏)

(14)

in the following:

Re(𝑑𝜆

𝑑𝜏
)

−1

=
2𝜆 + 𝑝

1
+ 𝑞
1
𝑒
−𝜆𝜏

(𝑞
1
𝜆 + 𝑞
0
) 𝜆𝑒−𝜆𝜏

= ((𝑝
1
cos𝜔𝜏 − 2𝜔 sin𝜔𝜏 + 𝑞

1
)

+𝑖 (2𝜔 cos𝜔𝜏 + 𝑝
1
sin𝜔𝜏))

× (−𝑞
1
𝜔
2
+ 𝑖𝑞
0
𝜔)
−1

= (−𝑝
1
𝑞
1
𝜔
2 cos𝜔𝜏 + 2𝑞

1
𝜔
3 sin𝜔𝜏

−𝑞
2

1
𝜔
2
+ 2𝑞
0
𝜔
2 cos𝜔𝜏 + 𝑝

1
𝑞
0
𝜔 sin𝜔𝜏)

× (𝑞
0
𝜔
2
+ 𝜔
4
)
−1

= ((−𝑝
1
𝑞
1
𝜔
2
+ 2𝑞
0
𝜔
2
) (𝑞
0
− 𝑝
1
𝑞
1
) 𝜔
2
− 𝑝
0
𝑞
0

+ (2𝑞
1
𝜔
3
+ 𝑝
1
𝑞
0
𝜔)

× [𝑝
1
𝑞
0
𝜔 + (𝜔

2
− 𝑝
0
) 𝑞
1
𝜔] − 𝑞

2

0
𝑞
2

1
𝜔
2
− 𝑞
4

1
𝜔
2
)

× ((𝑞
2

0
+ 𝑞
2

1
𝜔
2
) (𝑞
0
𝜔
2
+ 𝜔
4
))
−1

= (2𝑞
2

1
𝜔
6
+ [2𝑞
2

0
+ (𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
) 𝑞
2

1
] 𝜔
4

+ (𝑝
2

1
+ 2𝑝
0
− 𝑞
2

1
) 𝑞
2

0
𝜔
2
)

× ((𝑞
2

0
+ 𝑞
2

1
𝜔
2
) (𝑞
0
𝜔
2
+ 𝜔
4
))
−1

.

(15)

From (10), we know 𝑝
2

1
−2𝑝
0
−𝑞
2

1
> 0; then, Re (𝑑𝜆/𝑑𝜏)−1 > 0

hold. Under this condition, we have the following theorem.

Theorem 1. (i) If (𝑃
1
) and (𝐻

1
) holds, the equilibrium

(𝑆
∗
, 𝐼
∗
) of system (2) is asymptotically stable for any 𝜏 > 0.

(ii) If (𝑃
1
) and (𝐻

2
) holds, (𝑆∗, 𝐼∗) is asymptotically stable

for 𝜏 ∈ [0, 𝜏
0
) and unstable for 𝜏 ∈ (𝜏

0
, +∞). System (2)

exhibits the Hopf bifurcation at the equilibrium (𝑆
∗
, 𝐼
∗
) for

𝜏 = 𝜏
𝑗
, 𝑗 = 0, 1, 2, . . ..

3. Direction and Stability of
the Bifurcating Periodic Solutions

In Section 2, we obtain the conditions under which a family
of periodic solutions bifurcate from the steady state at the
critical value of 𝜏. In this section, we investigate the direction
of the Hopf bifurcation and the stability of the bifurcating
periodic solution at critical values 𝜏

0
, using techniques of the

normal form theory and center manifold theorem.
Let 𝑢
1

= 𝑆(𝑡) − 𝑆
∗ and let 𝑢

2
= 𝐼(𝑡) − 𝐼

∗. The Taylor
expansion of system (2) at 𝐸∗ is

̇𝑢
1
(𝑡) = 𝑎

1
𝑢
1
(𝑡) − 𝑎

2
𝑢
2
(𝑡 − 𝜏)

+ 𝑎
6
𝑢
2
(𝑡)
2
(𝑡 − 𝜏) + 𝑎

7
𝑢
1
(𝑡) 𝑢
2
(𝑡 − 𝜏) ,

̇𝑢
2 (𝑡) = 𝑎

3
𝑢
1 (𝑡) + 𝑎

4
𝑢
2 (𝑡) + 𝑎

5
𝑢
2 (𝑡 − 𝜏)

− 𝑎
7
𝑢
1
(𝑡) 𝑢
2
(𝑡 − 𝜏) − 𝑎

6
𝑢
2

2
(𝑡 − 𝜏) ,

(16)

where 𝑎
1

= −𝜇
1
+ 𝛽𝐼
∗
/(1 + 𝛼𝐼

∗
), 𝑎
2

= −𝛽𝑆
2
/(1 + 𝛼𝐼

∗
),

𝑎
3

= 𝛽𝐼
∗
/(1 + 𝛼𝐼

∗
), 𝑎
4

= −𝜇
2
− 𝛾, 𝑎

5
− 𝛽𝑆
2
/(1 + 𝛼𝐼

∗
),

𝑎
6
= −𝛼𝛽𝑆

∗
/(1 + 𝛼𝐼

∗
)
3, 𝑎
7
= 𝛽/(1 + 𝛼𝐼

∗
)
2, 𝜏 = 𝜏

0
+ 𝜇, and

𝑢
𝑡
= 𝑢(𝑡 + 𝜃) ∈ 𝐶

1
for 𝜃 ∈ [−1, 0]. System (2) is transformed

into FDE as
̇𝑢 (𝑡) = 𝐿

𝜇
+ 𝐹 (𝑢

𝑡
, 𝜇) , (17)

with
𝐿
𝜇
(𝜙) = (𝜏

0
+ 𝜇) [𝐵

1
𝜙 (0) + 𝐵

2
𝜙 (−1)] ,

𝐹 (𝜙, 𝜇) = (𝜏
0
+ 𝜇) (

𝑎
6
𝜙
2

2
(−1) + 𝑎

7
𝜙
1 (0) 𝜙2 (−1)

−𝑎
6
𝜙
1 (0) 𝜙2 (−1) − 𝑎

7
𝜙
2

2
(−1)

) ,

(18)

where

𝐵
1
= (

𝑎
1

0

𝑎
3

𝑎
4

) , 𝐵
2
= (

0 𝑎
2

0 𝑎
5

) . (19)

By Riesz representation theorem, there exists a function
𝜂(𝜃, 𝜇) of bounded variation, for 𝜃 ∈ [−1, 0], such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) for 𝜙 ∈ 𝐶. (20)

In fact, we can choose
𝜂 (𝜃, 𝜇) = (𝜏

0
+ 𝜇) [𝐵

1
𝛿 (𝜃) + 𝐵

2
𝛿 (𝜃 + 1)] , (21)

where 𝛿(𝜃) is a delta function.
For 𝜙 ∈ 𝐶

󸀠
[−1, 0], the operators 𝐴 and 𝑅 are defined as

follows:

𝐴 (𝜇) 𝜙 (𝜃) =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑 (𝜂 (𝑡, 𝜇) 𝜙 (𝑡)) , 𝜃 = 0,

(22)

𝑅 (𝜇) 𝜙 (𝜃) =
{

{

{

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜃) , 𝜃 = 0.

(23)
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The adjoint operator 𝐴∗(0) corresponding to 𝐴(0) is defined
as follows:

𝐴
∗
𝜓 (𝑠) =

{{{{

{{{{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝑑 (𝜂
𝑇
(𝑡, 0) 𝜓 (−𝑡)) , 𝑠 = 0

(24)

and an adjoint bilinear is as follows:

⟨𝜓, 𝜙⟩ = 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (25)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
From the preceding discussion, we know that 𝑞(𝜃) and

𝑞
∗
(𝜃) be the eigenvectors of𝐴 and𝐴

∗ corresponding to 𝑖𝜏
0
𝜔
0

and −𝑖𝜏
0
𝜔
0
, respectively. Next, we calculate 𝑞(𝜃) and 𝑞

∗
(𝑠) to

determine the normal form of operator 𝐴.

Proposition 2. Let 𝑞(𝜃) and 𝑞
∗
(𝑠) be eigenvectors of 𝐴 and

𝐴
∗ corresponding to 𝑖𝜏

0
𝜔
0
and −𝑖𝜏

0
𝜔
0
, respectively, satisfying

⟨𝑞
∗
, 𝑞⟩ = 1 and ⟨𝑞

∗
, 𝑞⟩ = 0.

Then,

𝑞 (𝜃) = (1, 𝛼)
𝑇
𝑒
𝑖𝜔0𝜏0𝜃 = (1,

𝜔
0
𝑖 − 𝑎
1

𝑎
2
𝑒−𝑖𝜔0𝜏0

)

𝑇

𝑒
𝑖𝜔0𝜏0𝜃,

𝑞
∗
(𝑠) = 𝐷 (1, 𝛽

∗
) 𝑒
−𝑖𝜔0𝜏0𝑠 = (1,

−𝜔
0
𝑖 − 𝑎
1

𝑎
3

)

𝑇

𝑒
−𝑖𝜔0𝜏0𝑠,

(26)

where

𝐷 =
1

1 + 𝛼𝛽
∗

− 𝜏
0
𝛼 (𝑎
2
+ 𝛽
∗

𝑎
5
) 𝑒−𝑖𝜔0𝜏0

. (27)

Proof. Without loss of generality, we just consider the eigen-
vector 𝑞(𝜃). By the definition of 𝐴 and 𝑞(𝜃) with 𝜃 ∈ [−1, 0),
we get 𝑞(𝜃) = (1, 𝛼)

𝑇
𝑒
𝑖𝜔0𝜏0 (here, 𝛼 is a parameter). In

what follows, notice that 𝑞(0) = (1, 𝛼)
𝑇 and 𝐴𝑞(0) =

∫
0

−1
𝑑(𝜂(𝑡, 𝜇)𝜙(𝑡)) = 𝑖𝜔

0
𝜏
0
𝑞(0); we have 𝛼 = (𝜔

0
𝑖 −

𝑎
1
)/𝑎
2
𝑒
−𝑖𝜔0𝜏0 . Using a proof procedure similar to that in [8],

by direct computation, we get 𝑞(𝜃) and 𝑞
∗
(𝑠). Bring 𝑞(𝜃) and

𝑞
∗
(𝑠) into ⟨𝑞

∗
, 𝑞⟩ = 1; it is not hard to obtain the parameter

𝐷. The detailed procedure of proof refers to [9]. The proof is
completed.

Then, we construct the coordinates of the centermanifold
𝐶
0
at 𝜇 = 0. Let

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑢

𝑡 (𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(28)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊(𝑧 (𝑡) , 𝑧 (𝑡), 𝜃) , (29)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊
20

(𝜃)
𝑧
2

2
+ 𝑊
11

(𝜃) 𝑧𝑧 + 𝑊
02

𝑧
2

2
+ 𝑊
30

𝑧
3

6
, . . . ;

(30)

and 𝑧 and 𝑧 are local coordinates for the center manifold 𝐶
0

in the direction of 𝑞 and 𝑞
∗, respectively. Since 𝜇 = 0, we have

𝑧
󸀠
(𝑡) = 𝑖𝜏

0
𝜔
0
𝑧 (𝑡) + ⟨𝑞

∗
(𝜃) , 𝑓 (𝑊 + 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜏
0
𝜔
0
𝑧 (𝑡) + 𝑞∗ (0)𝑓 (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

≜ 𝑖𝜏
0
𝜔
0
𝑧 (𝑡) + 𝑞∗ (0)𝑓0 (𝑧, 𝑧) ,

(31)

where

𝑓
0
(𝑧, 𝑧) = 𝑓

𝑧
2

𝑧
2

2
+ 𝑓
𝑧
2

𝑧
2

2
+ 𝑓
𝑧𝑧
𝑧𝑧 + ⋅ ⋅ ⋅ . (32)

We rewrite this as

𝑧
󸀠
(𝑡) = 𝑖𝜏

0
𝜔
0
𝑧 + 𝑔 (𝑧, 𝑧) , (33)

with

𝑔 (𝑧, 𝑧) = 𝑞∗ (0) 𝑓0 (𝑧, 𝑧)

= 𝑔
20

𝑧
2

2
+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔
21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ ,

𝑔 (𝑧, 𝑧) = 𝐷𝜏
0
(1, 𝛽∗) (

𝑎
6
𝜙
2

2
(−1) + 𝑎

7
𝜙
1
(0) 𝜙
2
(−1)

−𝑎
6
𝜙
1
(0) 𝜙
2
(−1) − 𝑎

7
𝜙
2

2
(−1)

) ,

(34)

where

𝜙
1 (0) = 𝑧 + 𝑧 + 𝑊

(1)

20
(0)

𝑧
2

2
+ 𝑊
(1)

11
(0) 𝑧𝑧

+ 𝑊
(1)

02
(0)

𝑧

2
,

𝜙
2
(−1) = 𝑧𝛼𝑒

−𝑖𝜔0𝜏0 + 𝑧 𝛼𝑒
𝑖𝜔0𝜏0 + 𝑊

(2)

20
(−1)

𝑧
2

2

+ 𝑊
(2)

11
(−1) 𝑧𝑧 + 𝑊

(2)

02
(−1)

𝑧

2
.

(35)

Comparing the coefficients of the above equation with
(22), we obtain

𝑔
20

= 2𝐷𝜏
0
[(𝑎
6
− 𝛽∗𝑎

7
) 𝛼
2
𝑒
−2𝑖𝜔0𝜏0 + (𝑎

7
− 𝛽∗𝑎

6
) 𝛼𝑒
−𝑖𝜔0𝜏0] ,

𝑔
11

= 𝐷𝜏
0
[2 (𝑎
6
− 𝛽∗𝑎

7
) 𝛼𝛼 + (𝑎

7
− 𝛽∗𝑎

6
)

× (𝛼𝑒
𝑖𝜔0𝜏0 + 𝛼𝑒

−𝑖𝜔0𝜏0) ] ,

𝑔
02

= 2𝐷𝜏
0
[(𝑎
6
− 𝛽∗𝑎

7
) 𝛼2𝑒
2𝑖𝜔0𝜏0

+ (𝑎
7
− 𝛽∗𝑎

6
) 𝛼𝑒
−𝑖𝜔0𝜏0] ,
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𝑔
21

= 2𝐷𝜏
0
[(𝑎
6
− 𝛽∗𝑎

7
)

× [𝛼𝑒
𝑖𝜔0𝜏0𝑊

(2)

20
(−1) + 2𝛼𝑒

−𝑖𝜔0𝜏0𝑊
(2)

11
(−1)]

+ (𝑎
7
− 𝛽∗𝑎

6
)

× [
1

2
𝛼𝑒
𝑖𝜔0𝜏0𝑊

(1)

20
(0) + 𝛼𝑒

−𝑖𝜔0𝜏0𝑊
(1)

11
(0)

+
1

2
𝑊
(2)

20
(−1) + 𝑊

(2)

11
(−1) ] ,

(36)

𝑊 = ̇𝑢
𝑡
− ̇𝑧𝑞 − ̇𝑧 𝑞

= {
𝐴𝑊 − 2Re 𝑞∗ (0) 𝑓0𝑞 (𝜃) , 𝜃 ∈ [−1, 0] ,

𝐴𝑊 − 2Re 𝑞∗ (0) 𝑓
0
𝑞 (𝜃) + 𝑓

0
, 𝜃 = 0.

≜ 𝐴𝑊 + 𝐻 (𝑧, 𝑧, 𝜃) ,

(37)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20 (𝜃)

𝑧
2

2
+ 𝐻
11 (𝜃) 𝑧𝑧 + 𝐻

02 (𝜃)
𝑧
2

2
+ ⋅ ⋅ ⋅ .

(38)

Expanding the above series and comparing the coefficients,
we get

(𝐴 − 2𝑖𝜔
0
𝜏
0
𝐼)𝑊
20 (𝜃) = −𝐻

20 (𝜃) ,

𝐴𝑊
11

(𝜃) = −𝐻
11

(𝜃) ,

(𝐴 + 2𝑖𝜔
0
𝜏
0
𝐼)𝑊
02

(𝜃) = −𝐻
02

(𝜃) .

(39)

Comparing the coefficients with (38), we obtain

𝐻
20

(𝜃) = −𝑔
20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11

(𝜃) = −𝑔
11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(40)

It follows from (39), (40), and the definition of 𝐴 that we
have

𝑊
20

(𝜃) = 2𝑖𝜏
0
𝜔
0
𝑊
20

(𝜃) + 𝑔
20
𝑞 (𝜃) + 𝑔

20
𝑞 (𝜃) ,

𝑊
11 (𝜃) = 𝑔

11
𝑞 (𝜃) + 𝑔

11
𝑞 (𝜃) .

(41)

So,

𝑊
20 (𝜃) =

𝑖𝑔
20

𝜏
0
𝜔
0

𝑞 (0) 𝑒
𝑖𝜏0𝜔0𝜃

−
𝑔
02

3𝑖𝜏
0
𝜔
0

𝑞 (0) 𝑒
−𝑖𝜏0𝜔0𝜃 + 𝐸

1
𝑒
2𝑖𝜏0𝜔0𝜃,

𝑊
11

(𝜃) = −
𝑖𝑔
11

𝜏
0
𝜔
0

𝑞 (0) 𝑒
𝑖𝜏0𝜔0𝜃 +

𝑖𝑔
11

𝜏
0
𝜔
0

𝑞 (0) 𝑒
−𝑖𝜏0𝜔0𝜃 + 𝐸

2
,

(42)

where

𝐸
1
= 2(

2𝑖𝜔
0
− 𝑎
1

−𝑎
2
𝑒
−2𝑖𝜔0𝜏0

−𝑎
3

2𝑖𝜔
0
− 𝑎
4
− 𝑎
5
𝑒
−2𝑖𝜔0𝜏0

)

−1

× (
𝑎
6
𝛼
2
𝑒
−2𝑖𝜔0𝜏0 + 𝑎

7
𝛼𝑒
−𝑖𝜔0𝜏0

−𝑎
7
𝛼
2
𝑒
−2𝑖𝜔0𝜏0 − 𝑎

6
𝛼𝑒
−𝑖𝜔0𝜏0

) ,

𝐸
2
= (

−𝑎
1

−𝑎
2

−𝑎
3

−𝑎
4
− 𝑎
5

)

−1

× (
2𝑎
6
𝛼𝛼 + 𝑎

7
(𝛼𝑒
𝑖𝜔0𝜏0 + 𝛼𝑒

−𝑖𝜔0𝜏0)

−2𝑎
7
𝛼𝛼 − 𝑎

6
(𝛼𝑒
𝑖𝜔0𝜏0 + 𝛼𝑒

−𝑖𝜔0𝜏0)
) .

(43)

According to the discussion above, we can compute the
following parameters:

𝐶
1
(0) =

𝑖

2𝜏
0
𝜔
0

(𝑔
20
𝑔
11

− 2
󵄨󵄨󵄨󵄨𝑔11

󵄨󵄨󵄨󵄨 −
1

3

󵄨󵄨󵄨󵄨𝑔02
󵄨󵄨󵄨󵄨
2
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝐶
1 (0)}

Re {𝜆󸀠 (𝜏
0
)}

,

𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
(Im {𝜆

󸀠
(𝜏
0
)})

𝜔
0

,

(44)

where 𝜇
2
determines the directions of the Hopf bifurcations,

𝛽
2
determines the stability of the bifurcation periodic solu-

tions, and 𝑇
2
determines the period of the bifurcating peri-

odic solutions [9]. By lemma (5), we know that Re{𝜆󸀠(𝜏
0
)} >

0; we have the following theorem.

Theorem 3. If Re{𝐶
1
(0)} < 0(> 0), the direction of the Hopf

bifurcation of the system (1) at the equilibrium (0, 0) when
𝜏 = 𝜏
0
is supercritical (subcritical) and the bifurcating periodic

solutions are orbitally asymptotically stable (unstable).

4. Global Existence of Periodic Solution

From the above discussion, we know that system (2) under-
goes a local Hopf bifurcation at 𝐸

∗
= (𝑆

∗
, 𝐼
∗
) when

𝜏 = 𝜏
𝑗
(𝑗 = 0, 1, 2, . . .). A natural question is that if the bifur-

cating periodic solutions of system (2) exist when is 𝜏 far away
from critical values? In this section, we will study the global
existence of periodic solutions of system (2).Through use of a
global Hopf bifurcation theorem given byWu [10], we obtain
the global continuation of periodic solutions bifurcating from
the points (𝐸∗, 𝜏

𝑗
) (𝑗 = 0, 1, 2, . . .). First of all, we define

𝑋 = 𝐶 ([−𝜏, 0] , 𝑅) ,

Σ = 𝐶𝑙 (𝑥, 𝜏, 𝑙) : (𝑥, 𝜏, 𝑙) ∈ 𝑋 × 𝑅
+
× 𝑅
+
,

𝑥 is a 𝑙-periodic solution of system,

𝑁 = (𝑥, 𝜏, 𝑙) : 𝑥 = 0 or V.

(45)

Let 𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) denote the connected component of

𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) in Σ and Proj

𝜏
(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) its projec-

tion on 𝜏 component. From theorem (5), we know that
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𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) is nonempty. 𝜔

0
and 𝜏

𝑗
are defined in (10)

and (11).

Lemma 4. All periodic solutions of system (2) are uniformly
bounded.

Proof. Let (𝑆(𝑡), 𝐼(𝑡)) be a nonconstant periodic solution of
system (2), and let 𝑆(𝑡

1
), 𝑆(𝑡
2
) and 𝐼(𝑡

3
), 𝐼(𝑡
4
) be themaximum

and minimum of 𝑆(𝑡) and 𝐼(𝑡), respectively. Using a proof
procedure similar to that in [8], we can obtain

0 < 𝑆 (𝑡) <
𝐵

𝜇
1

, 0 < 𝐼 (𝑡) <
𝐵

𝜇
2
+ 𝛾

. (46)

It is shown that all periodic solutions of system (2) are
uniformly bounded. This completes the proof.

Lemma 5. System (2) has no nonconstant periodic solution of
period 𝜏.

Proof. For a contradiction, if system (5) has a 𝜏-periodic
solution, say (𝑆(𝑡), 𝐼(𝑡)), then it satisfies the ODES as follows:

̇𝑆 (𝑡) = 𝐵 − 𝜇
1
𝑆 (𝑡) −

𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼𝐼 (𝑡)
= 𝑃 (𝑆, 𝐼) ,

̇𝐼 (𝑡) =
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼𝐼 (𝑡)
− (𝜇
2
+ 𝛾) 𝐼 (𝑡) = 𝑄 (𝑆, 𝐼) .

(47)

We can get

𝜕𝑃

𝜕𝑆
+

𝜕𝑄

𝜕𝐼
= −𝜇
1
−

𝛽𝐼 (𝑡)

1 + 𝛼𝐼 (𝑡)
−

1

(1 + 𝛼𝐼 (𝑡))
2
− (𝜇
2
+ 𝛾) < 0.

(48)

By Bendixson’s criterion, we know that system (2) has no
nonconstant periodic solutions, which prove the lemma.

Theorem 6. Suppose that the condition (𝐻
1
) and (𝑃

1
) is

satisfied. Then, for each 𝜏 > 𝜏
𝑗
, 𝑗 = 0, 1, 2, . . ., system (2) has

at least 𝑗 − 1 periodic solutions.

Proof. The characteristic matrix of system (2) at the equilib-
rium 𝑧 = [𝑧

(1)
, 𝑧
(2)

] ∈ 𝑅
2 is in the following form:

Δ (𝑧, 𝜏, 𝑙) (𝜆) = 𝜆𝐼 − 𝐷
𝜙
𝐹 (𝑧, 𝜏, 𝑙) (𝑒

𝜆
𝐼𝑑) ; (49)

that is,

Δ (𝑧, 𝜏, 𝑙)

= (

𝜆 + 𝜇
1
+

𝛽𝑧
(2)

𝑒
−𝜆𝜏

1 + 𝛼𝑧
(2)

𝑒−𝜆𝜏

𝛽𝑧
(1)

(1 + 𝛼𝑧
(2)

𝑒−𝜆𝜏)
2

−
𝛽𝑧
(2)

𝑒
−𝜆𝜏

1 + 𝛼𝑧
(2)

𝑒−𝜆𝜏
𝜆 +

𝛽𝑧
(1)

(1 + 𝛼𝑧
(2)

𝑒−𝜆𝜏)
2

).

(50)

Using a proof procedure similar to that in [9], it is easy to
obtain that (𝐸∗, 𝜏

𝑗
, 2𝜋/𝜔

0
), 𝑗 = 0, 1, 2, . . ., is an isolated center.

From the proof procedure of Lemmas 4 and 5, it is easy
to know that there exist 𝜀 > 0, 𝛿 > 0, smooth curve 𝜆 : (𝜏

𝑗
−

𝛿, 𝜏
𝑗
+ 𝛿) → 𝐶 such that

Δ (𝜆 (𝜏)) = Δ
(V,𝜏,𝑇) (𝜆 (𝜏)) = 0,

󵄨󵄨󵄨󵄨𝜆 (𝜏) − 𝑖𝜔
0

󵄨󵄨󵄨󵄨 < 𝜀, (51)

for all 𝜏 ∈ [𝜏
𝑗
− 𝛿, 𝜏
𝑗
+ 𝛿], and

𝜆 (𝜏
𝑗
) = 𝑖𝜔

0
,

𝑑Re (𝜆 (𝜏))

𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏𝑗

> 0. (52)

Define 𝑙
𝑗
= 2𝜋/𝜔

0
, and let Ω

𝜀
= {(0, 𝑙) : 0 < 𝑢 < 𝜀, |𝑙 −

𝑙
𝑗
| < 𝜀}. Obviously, if |𝜏 − 𝜏

𝑗
| ≤ 𝛿 and (𝑢, 𝑙) ∈ 𝜕Ω

𝜀
such that

Δ
(𝐸
∗
,𝜏,𝑙)

(𝑢 + 2𝜋𝑖/𝑙) = 0, if and only if 𝜏 = 𝜏
𝑗
, 𝑢 = 0, 𝑙 = 𝑙

𝑗
, set

𝐻
±
(𝐸
∗
, 𝜏
𝑗
,
2𝜋

𝜔
0

) (𝑢, 𝑙) = Δ
(𝐸
∗
,𝜏𝑗±𝛿,𝑙)

(𝑢 +
2𝜋𝑖

𝑙
) . (53)

We obtain the crossing number as follows:

𝛾
1
(𝐸
∗
, 𝜏
𝑗
,
2𝜋

𝜔
0

) = deg
𝐵
(𝐻
−
(𝐸
∗
, 𝜏
𝑗
,
2𝜋

𝜔
0

) ,Ω
𝜀
)

− deg
𝐵
(𝐻
+
(𝐸
∗
, 𝜏
𝑗
,
2𝜋

𝜔
0

) ,Ω
𝜀
) = −1.

(54)

We conclude that

∑

(𝐸
∗
,𝜏,𝑙)∈𝐶(𝐸∗ ,𝜏𝑗,2𝜋/𝜔0)

𝛾
1
(𝐸
∗
, 𝜏, 𝑙) < 0. (55)

Since the first crossing number of each center is always −1,
by [10, Theorem 3.3], we conclude that 𝐶(𝐸

∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) is

unbounded. By the definition of 𝜏
𝑗
given in (10), we know

that, for 𝑗 ≥ 1, (𝜏
𝑗
/(𝑗 + 1)) < 2𝜋/𝜔

0
< 𝜏
𝑗
automatically hold.

Again, the population densities of susceptible and infec-
tive are ultimately uniformly bounded, implying that the
projection of 𝐶(𝐸

∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) onto the 𝜏-space is bounded.

Meanwhile, system (2) with 𝜏 = 0 has no nonconstant
periodic solutions; if there exits 𝜏

∗
> 0 such that the

projection of 𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) onto the 𝜏-space ins (0, 𝜏

0
)

with 𝜏
∗

> 𝜏
𝑗
, then, the projection of 𝐶(𝐸

∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) onto

the 𝜏-space is bounded. Since (2𝜋/𝜔
0
) < 𝜏

𝑗
and from

Lemma 5, we can obtain 0 < 𝑙 < 𝜏
∗ for (𝐸, 𝜏, 𝑇) ∈

𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) with 𝑙 < 𝜏

∗; that is to say, 𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
)

onto 𝑙-space is also bounded. Because 𝐶(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
) is

unbounded, Proj
𝜏
(𝐸, 𝜏
𝑗
, 2𝜋/𝜔

0
)must be unbounded. Conse-

quently, Proj
𝜏
(𝐸, 𝜏
𝑗
, 2𝜋/𝜔

0
) include [𝜏

𝑗
,∞) for 𝑗 ≥ 1. That is

to say, for each 𝜏 > 𝜏
𝑗
(𝑗 ≥ 1), system (2) at least has 𝑗 − 1

nonconstant period solutions. The proof is complete.

5. Conclusion

In this paper we have analytically studied an avian influenza
virus propagation model with nonlinear incidence rate and
time delay depending on SIR epidemicmodel. Some previous
efforts in epidemic models have been mainly concerned with
the global stability and asymptotical stability. However, it



Abstract and Applied Analysis 7

is a new idea to study the bifurcation periodic solutions
and global existence of periodic solutions. The theoretical
analysis for the avian influenza virus propagation models
is given. Then, Hopf bifurcation occurs when time delay
passes through a sequence of critical values. Furthermore,
bifurcations and stability of the bifurcation periodic solutions
are derived. Finally, global existence of periodic solutions is
established.
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An epidemic model with time delay has been proposed and analyzed. In this model the effect of awareness programs driven by
media on the prevalence of an infectious disease is studied. It is assumed that pathogens are transmitted via direct contact between
the susceptible and the infective populations and further assumed that the growth rate of cumulative density of awareness programs
increases at a rate proportional to the infective population.The model is analyzed by using stability theory of differential equations
and numerical simulations. Both equilibria have been proved to be globally asymptotically stable. The results we obtained and
numerical simulations suggest the increasing of the dissemination rate and implementation rate can reduce the proportion of the
infective population.

1. Introduction

Infectious diseases that cause mortality, disability, and social
and economic disruption are a major threat to mankind,
which are responsible for a quarter of all deaths annually
in the world [1–3]. Once an infectious disease appears
and spreads in a region, the Center of Disease Control
and Prevention will do its best to stop the propagation of
the disease [4]. One of the measures is to tell people the
appropriate preventive knowledge of diseases as soon as
possible through media and education which make people
take precautions to reduce their chances of being infected
[5]. As the awareness disseminates, people will change their
behaviors to alter their susceptibility.There is much evidence
that media coverage can play an important role in the spread
and control of infectious diseases [6–11]. In [8] Cui and
others established a framework of transmission coefficient
with media coverage which is a decreasing function of the
number of the infective individuals and they observed a
classic threshold-type behavior, with the disease becoming
extinct when 𝑅

0
< 1 and going to a globally asymptotically

stable equilibrium when 𝑅
0
> 1, and they concluded that

media coverage is critical in disease eradication.
The models studying the spread of infectious diseases are

very useful in evaluating strategies to control the diseases

in populations. Recently some authors studied the impacts
of media coverage and education on the spread of infectious
diseases in a given region [12–14]. In [12]Misra et al. proposed
a nonlinear mathematical model for the effects of awareness
programs on the spread of infectious diseases and assumed
the growth rate of awareness programs impacting the popu-
lation is proportional to the number of infective individuals.
The model analysis showed that the spread of an infectious
disease can be controlled by using awareness programs but
the disease remains endemic due to immigration. Yorke and
London [15] proposed an SIS type compartmental model
for sexually transmitted infections with the assumption that
the whole population is aware of risk but only a certain
proportion choose to respond by limiting their contacts with
the infective population. As a result the spread of infection is
controlled, leading to a reduction of the number of individu-
als becoming infected. A nonlinearmathematical model with
delay to capture the dynamics of effect of awareness programs
on the prevalence of any epidemic is proposed and analyzed
[16], which assumed it increases at a rate proportional to the
number of the deaths of infective individuals.

Some scholars focus on the contact rate andmost of them
assume that media campaigning will aid in modifying the
contact rate between susceptible and infective individuals
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[17–27]. To prevent the unboundedness of the contact rate,
Capasso [17] used a saturated incidence rate of the form
𝛽𝑆𝐼/(1 + 𝛽𝛿𝐼); Liu and coworkers [23, 24] used a nonlinear
incidence rate given by 𝑘𝐼𝑙𝑆/(1 + 𝛼𝐼ℎ) to incorporate the
effect of behavioral changes. In [25], the authors study how
media coverage influences the dynamics of infectious disease
by using SIRS model with the contact rate (𝛽

1
− 𝛽
2
𝐼/(𝑚 +

𝐼)), where 𝛽
1
, 𝛽
2
, and 𝑚 are positive constants. Tchuenche

and Bauch used an exponentially decreasing function 𝑒−𝑀(𝑡)
to reveal the force of media [27]. Cui et al. used a similar
function as [13] and developed an 𝑆𝐼𝑅model using incidence
rate 𝜇𝑒(−𝑚𝐼)𝑆𝐼 to investigate the impact of media coverage
on the transmission [28]. Stability analysis of the model
has shown that Hopf bifurcation can occur which causes
oscillatory phenomena when𝑚 is sufficiently small. Numeri-
cal simulations suggested that the media impact was stronger
when the basic reproduction number 𝑅

0
> 1. Liu et al. [29]

described the impact of media coverage using the transmis-
sion coefficient 𝛽𝑒(−𝛼1𝐸−𝛼2𝐼−𝛼3𝐻), where 𝐻 is the number of
hospitalized individuals. And this impact leads to the change
of avoidance and contact patterns at both individual and
community levels. Liu and Xiao [30] introduce a segmented
function to describe the saturated media impact 𝑒−𝑚𝐼𝑐 when
formulating an epidemic model. A Filippov epidemic model
with media coverage is proposed to describe the real charac-
teristics of media impact in the spread of infectious diseases
by incorporating a piecewise continuous transmission rate
𝛽𝑒
(−𝛼𝜖𝐼)

𝑆𝐼 in [31]. Mathematical and bifurcation analysis with
regard to the local, global stability of equilibria and local
sliding bifurcations are performed. Bhunu et al. [32] and
Tchuenche and Bauch[27] focused on the different types of
population in their work.

In order to better describe population mixed condi-
tions, some authors study infectious diseases models on the
different networks [33, 34]. Funk et al. have overlaid the
model of information spread of a contagious disease on
two, not necessarily identical networks, with more informed
individuals acting to reduce their susceptibility [35]. Liu et
al. took into the random perturbation [36]. In [37], the
authors extended the classical SIRS epidemic model from a
deterministic framework to a stochastic differential equation,
and then they gave the conditions of existence of unique
positive solution and the stochastic extinction and discussed
the exponential p-stability and global stability.

Most of the articles, such as [12], assume that, due
to awareness programs, driven by media, some susceptible
individuals will avoid their contacts with the infectious
individuals resulting in formation of a new class in the
population and this newly formed aware class may contract
infection only if they lose awareness. But we regard it is
unreasonable. In fact sometimes even if persons are conscious
of diseases, they will also be infected. Therefore we propose
a mathematical model for predicting the future course of any
epidemic by considering this newly formed aware class into
the model.

The rest of this paper is organized as follows. In the next
section, to capture the dynamics of effect of cumulative den-
sity of awareness programs on the prevalence of any epidemic

a mathematical model is proposed and analyzed. Then we
analyze the local and global stability of the disease-free and
the unique endemic equilibrium in Section 3. Furthermore,
in Section 4 we perform some numerical examples to validate
the analytical findings in Section 3 and introduce the impor-
tance of the dissemination rate and implementation rate
in disease control. In Section 5 we discuss the above content.

2. Mathematical Model and
Equilibrium Analysis

In this paper due to the awareness programs about the
disease, susceptible individuals are rarely in contact with the
infective ones and form a different class, namely, aware sus-
ceptible class; thus the total population is divided into three
classes, the susceptible population, the aware population, and
the infective population, and the proportions of them in the
total population are 𝑋(𝑡), 𝑌(𝑡), and 𝑋

𝑚
(𝑡). Assuming that at

time 𝑡 the cumulative density of awareness programs driven
by media in that region is𝑀(𝑡), which increases at a rate pro-
portional 𝜇 to the infective population and consumes due to
causes like inefficiency and psychological barriers at 𝜇

0
, thus

𝑀
󸀠
(𝑡) = 𝜇𝑌 (𝑡) − 𝜇

0
𝑀(𝑡) . (1)

In fact people cannot takemeasures to protect themselves
in time after the media reports the disease, so we introduce a
time delay 𝜏 that represents the interval between the report
time and the time of taking measures. We assume that a
proportion of infected individuals recover through treatment
and, after recovery, a fraction 𝑞 of recovered people will
become aware and join the aware susceptible class whereas
the remaining fraction 𝑝 (𝑝 + 𝑞 = 1) will become unaware
susceptible. Keeping the above facts inmind, the dynamics of
a model are governed by the following systems of nonlinear
ordinary differential equations:

𝑋
󸀠
(𝑡) = 𝑏 − 𝛽𝑋 (𝑡) 𝑌 (𝑡) + 𝜆0𝑋𝑚 (𝑡)

− 𝜆𝑋 (𝑡)𝑀 (𝑡 − 𝜏) − 𝑑𝑋 (𝑡) + 𝑝]𝑌 (𝑡) ,

𝑋
󸀠

𝑚
(𝑡) = 𝜆𝑋 (𝑡)𝑀 (𝑡 − 𝜏) − (𝜆0 + 𝑑)𝑋𝑚 (𝑡)

− 𝛼𝑋
𝑚
(𝑡) 𝑌 (𝑡) + 𝑞]𝑌 (𝑡) ,

𝑌
󸀠
(𝑡) = 𝛽𝑋 (𝑡) 𝑌 (𝑡) − (] + 𝑑) 𝑌 (𝑡)

+ 𝛼𝑋
𝑚
(𝑡) 𝑌 (𝑡) ,

𝑀
󸀠
(𝑡) = 𝜇𝑌 (𝑡) − 𝜇0𝑀(𝑡) .

(2)

Here𝑋(0) > 0, 𝑌(0) ≥ 0, and 𝑋
𝑚
(0) ≥ 0.

Assume diseases spread due to the direct contact between
susceptible and infective individuals only. In the abovemodel,
the rate of immigration of susceptible population is 𝑏. 𝛼 is
the contact rate of aware susceptible with infective population
and 𝛽 (𝛼 < 𝛽) is the contact rate of unaware ones. The con-
stant 𝜆 represents the dissemination rate of awareness among
unaware susceptible due to which they form a different
class; then 𝜆

0
denotes the rate of transfer of aware susceptible
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to unaware class. The constants ], 𝑑 represent the recovery
rate and the natural death rate, respectively. All the above con-
stants are assumed to be positive. Using the fact that 𝑋(𝑡) +
𝑋
𝑚
(𝑡) + 𝑌(𝑡) = 1, the system (2) becomes as follows:

𝑋
󸀠

𝑚
(𝑡) = 𝜆 (1 − 𝑋

𝑚
(𝑡) − 𝑌 (𝑡))𝑀 (𝑡 − 𝜏)

− (𝜆
0
+ 𝑑)𝑋

𝑚 (𝑡) − 𝛼𝑋𝑚 (𝑡) 𝑌 (𝑡) + 𝑞]𝑌 (𝑡) ,

𝑌
󸀠
(𝑡) = 𝛽 (1 − 𝑋

𝑚
(𝑡) − 𝑌 (𝑡)) 𝑌 (𝑡)

− (] + 𝑑) 𝑌 (𝑡) + 𝛼𝑋𝑚 (𝑡) 𝑌 (𝑡) ,

𝑀
󸀠
(𝑡) = 𝜇𝑌 (𝑡) − 𝜇

0
𝑀(𝑡) .

(3)

Now it is sufficient to study system (3) in detail rather than
system (2).

For the analysis of system (3), we need the region of
attraction which is given by the set: Ω = {(𝑋

𝑚
, 𝑌,𝑀) ∈ R3

+
:

0 ≤ 𝑋
𝑚
, 𝑌 ≤ 1, 0 ≤ 𝑀 < 𝜇/𝜇

0
}, which attracts all solutions

initiating in the interior of the positive orthant.
Define the basic reproduction number 𝑅

0
= 𝛽/(] +

𝑑). There are two equilibria, the disease-free equilibrium
𝐸
0
(0, 0, 0) and the endemic equilibrium 𝐸

∗
(𝑋
∗

𝑚
, 𝑌
∗
,𝑀
∗
); the

existence of 𝐸
0
is trivial; then we prove the existence of 𝐸

∗
in

detail. In 𝐸
∗
(𝑋
∗

𝑚
, 𝑌
∗
,𝑀
∗
) the values of𝑋∗

𝑚
,𝑀∗ are obtained

by solving the following algebraic equations (for 𝑌 ̸= 0):

𝜆 (1 − 𝑋
𝑚
− 𝑌)𝑀 − (𝜆

0
+ 𝑑)𝑋

𝑚
− 𝛼𝑋
𝑚
𝑌 + 𝑞]𝑌 = 0, (4)

𝛽 (1 − 𝑋
𝑚
− 𝑌)𝑌 − (] + 𝑑) 𝑌 + 𝛼𝑋

𝑚
𝑌 = 0, (5)

𝜇𝑌 − 𝜇
0
𝑀 = 0. (6)

Using (5) and (6), we get

𝑋
∗

𝑚
=
𝛽 (1 − 𝑌

∗
) − (] + 𝑑)

𝛽 − 𝛼
, (7)

𝑀
∗
=
𝜇

𝜇
0

𝑌
∗
. (8)

Further, using (7) and (8) in (4), we obtain a quadratic
equation in 𝑌∗ as

𝑃
1
𝑌
∗2
+ 𝑃
2
𝑌
∗
+ 𝑃
3
= 0, (9)

where

𝑃
1
= 𝛼 (𝜆𝜇 + 𝜇

0
𝛽) ,

𝑃
2
= (] + 𝑑 − 𝛽) (𝜆𝜇 + 𝛼𝜇

0
)

+ 𝑞]𝜇
0
(𝛽 − 𝛼) + 𝜇

0
𝛽 (𝛽 + 𝑑) ,

𝑃
3
= 𝜇
0
(𝜆
0
+ 𝑑) (] + 𝑑 − 𝛽) .

(10)

Solving (9) we get

𝑌
∗
=

−𝑃
2
± √𝑃2
2
− 4𝑃
1
𝑃
3

2𝑃
1

. (11)

We obtain 𝑃
1
> 0 and 𝑃

3
< 0 when 𝑅

0
> 1 and get 𝑌∗ =

(−𝑃
2
+ √𝑃2
2
− 4𝑃
1
𝑃
3
)/2𝑃
1
for 𝑌∗ > 0.

Remark. From the expression of 𝑌∗, it is easy to note that
(𝑑𝑌
∗
/𝑑𝜆) < 0 and (𝑑𝑌∗/𝑑𝜇) < 0, which shows that

the equilibrium number of infective individuals decreases
as the rate of dissemination and the implementation rate of
awareness programs increase.

3. Stability Analysis

In this section we present the local and global stability of 𝐸
0

and 𝐸
∗
.

3.1. The Stability of the Disease-Free Equilibrium

Theorem 1. When 𝜏 ≥ 0, the disease-free equilibrium
𝐸
0
(0, 0, 0) is locally asymptotically stable if𝑅

0
< 1 and becomes

unstable if 𝑅
0
> 1.

Proof. The Jacobian matrix corresponding to system (4) is
given as follows:

𝐽 =

[
[
[
[

[

−𝜆𝑀 − 𝛼𝑌 − 𝜆
0
− 𝑑 −𝜆𝑀 − 𝛼𝑋

𝑚
+ 𝑞] 𝜆 (1 − 𝑌 − 𝑋

𝑚
) 𝑒
−𝜂𝜏

(𝛼 − 𝛽)𝑌 (𝛼 − 𝛽)𝑋
𝑚
− 2𝛽𝑌 + (𝛽 − ] − 𝑑) 0

0 𝜇 −𝜇
0

]
]
]
]

]

, (12)

where 𝜂 is the eigenvalue. Then the characteristic equation is

[𝜂 + (𝜆
0
+ 𝑑)] [𝜂 + (] + 𝑑 − 𝛽)] (𝜂 + 𝜇

0
) = 0. (13)

We get 𝜂
1
= −(𝜆

0
+𝑑) < 0, 𝜂

2
= 𝛽−(]+𝑑), and 𝜂

3
= −𝜇
0
< 0.

So 𝜂
2
< 0 when 𝑅

0
< 1; 𝜂

2
> 0 when 𝑅

0
> 1.

Theorem 2. When 𝜏 ≥ 0, the disease-free equilibrium 𝐸
0
is

globally asymptotically stable in Ω if 𝑅
0
< 1.

Proof. To establish the global stability of the disease-free
equilibrium 𝐸

0
, we use Lyapunov’s method and consider the

following positive definite function without 𝜏:

𝑉 =
1

2
𝑌
2
. (14)

Now differentiating 𝑉 with respect to 𝑡, we get
𝑑𝑉

𝑑𝑡
= [𝛽 − (] + 𝑑)] 𝑌2 − 𝛽𝑌3 − (𝛽 − 𝛼)𝑋𝑚𝑌

2
. (15)
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When𝑅
0
< 1,𝑑𝑉/𝑑𝑡 ≤ 0.The largest compact invariant set in

{(𝑋
𝑚
, 𝑌,𝑀) ∈ Ω : 𝑉

󸀠
= 0} when 𝑅

0
< 1 is the singleton {𝐸

0
}.

Then LaSalle’s invariance principle implies that 𝐸
0
is globally

asymptotically stable inΩ.

3.2. The Stability of the Endemic Equilibrium. Linearizing
system (4) about 𝐸

∗
, let 𝑥 = 𝑋

𝑚
− 𝑋
∗

𝑚
,𝑦 = 𝑌 − 𝑌∗, and

𝑚 = 𝑀 −𝑀
∗ and get

𝑑𝑢

𝑑𝑡
= 𝑀
1
𝑢 (𝑡) + 𝑀2𝑢 (𝑡 − 𝜏) , (16)

where

𝑢 (𝑡) = [𝑥 (𝑡) , 𝑦 (𝑡) , 𝑚 (𝑡)]
𝑇
,

𝑀
1
= [

[

− (𝜆𝑀
∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑑) 𝑞] − 𝜆𝑀∗ − 𝛼𝑋∗

𝑚
0

(𝛼 − 𝛽)𝑌
∗

−𝛽𝑌
∗

0

0 𝜇 −𝜇
0

]

]

,

𝑀
2
= [

[

0 0 𝜆 (1 − 𝑌
∗
− 𝑋
∗

𝑚
)

0 0 0

0 0 0

]

]

.

(17)

We have the disease-free equilibrium 𝐸
󸀠

0
(0, 0, 0) and the

endemic equilibrium 𝐸
󸀠

∗
(𝑥
∗
, 𝑦
∗
, 𝑚
∗
), where the stability of

𝐸
∗
about system (3) is corresponding with 𝐸󸀠

0
. The charac-

teristic equation of the above system at 𝐸󸀠
0
is

𝜂
3
+ 𝑄
1
𝜂
2
+ 𝑄
2
𝜂 + 𝑄

3
= 𝑄
4
𝑒
−𝜂𝜏
, (18)

where 𝜂 is the eigenvalue and

𝑄
1
= 𝐴 + 𝛽𝑌

∗
+ 𝜇
0
,

𝑄
2
= 𝛽𝑌
∗
𝐴 + (𝐴 + 𝛽𝑌

∗
) 𝜇
0
+ (𝛼 − 𝛽)𝑌

∗
𝐵,

𝑄
3
= 𝛽𝑌
∗
𝜇
0
𝐴 + (𝛼 − 𝛽) 𝜇

0
𝑌
∗
𝐵,

𝑄
4
= (𝛽 − 𝛼) 𝜇𝑌

∗
𝐶,

𝐴 = 𝜆𝑀
∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑑,

𝐵 = 𝜆𝑀
∗
+ 𝛼𝑋
∗

𝑚
− 𝑞],

𝐶 = 𝜆 (𝑌
∗
+ 𝑋
∗

𝑚
− 1) .

(19)

The stability of the endemic equilibrium 𝐸
∗
of system (3) is

stated in the following theorems.

Theorem3. When 𝜏 ≥ 0, the endemic equilibrium𝐸
∗
is locally

asymptotically stable if 𝑅
0
> 1.

Proof. When 𝜏 = 0, the characteristic equation is of the form

𝜂
3
+ 𝑄
1
𝜂
2
+ 𝑄
2
𝜂 + (𝑄

3
− 𝑄
4
) = 0. (20)

It is easy to see that

𝑄
1
= 𝐴 + 𝛽𝑌

∗
+ 𝜇
0

= 𝜆𝑀
∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑑 + 𝛽𝑌

∗
+ 𝜇
0
> 0,

𝑄
2
= 𝛽𝑌
∗
𝐴 + (𝐴 + 𝛽𝑌

∗
) 𝜇
0
+ (𝛼 − 𝛽)𝑌

∗
𝐵

= 𝛽𝑌
∗
𝜆𝑀
∗
+ 𝛽𝑌
∗
𝛼𝑌
∗
+ 𝛽𝑌
∗
(𝜆
0
+ 𝑑)

+ 𝛽𝑌
∗
𝜇
0
+ 𝜆𝑀

∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑑

+ (𝛼 − 𝛽)𝑌
∗
𝜆𝑀
∗
+ (𝛼 − 𝛽)𝑌

∗
𝛼𝑋
∗

𝑚

+ (𝛽 − 𝛼)𝑌
∗]𝑞

= 𝛼𝜆𝑌
∗
𝑀
∗
+ 𝛼
2
𝑌
∗
𝑋
∗

𝑚
+ 𝛼𝑌
∗
(1 − 𝑋

∗

𝑚
)

+ (𝛽 − 𝛼) ]𝑞𝑌∗ + 𝛼𝛽𝑌∗2 + 𝛽𝑌∗ (𝜆
0
+ 𝑑)

+ 𝛽𝜇
0
𝑌
∗
+ 𝜆𝑀

∗
+ 𝜆
0
+ 𝑑 > 0.

𝑄
3
− 𝑄
4

= 𝛽𝑌
∗
𝜇
0
𝐴 + (𝛼 − 𝛽) 𝜇

0
𝑌
∗
𝐵

+ (𝛼 − 𝛽) 𝜇𝑌
∗
𝐶

= 𝛽𝑌
∗
𝜇
0
𝜆𝑀
∗
+ 𝛽𝑌
∗
𝜇
0
𝛼𝑌
∗

+ 𝛽𝑌
∗
𝜇
0
(𝜆
0
+ 𝑑) + 𝛼𝜇

0
𝑌
∗
𝜆𝑀
∗

+ 𝛼𝜇
0
𝑌
∗
𝛼𝑋
∗

𝑚
− 𝛼𝜇
0
𝑌
∗]𝑞 − 𝛽𝜇

0
𝑌
∗
𝜆𝑀
∗

− 𝛽𝜇
0
𝑌
∗
𝛼𝑋
∗

𝑚
+ 𝛽𝜇
0
𝑌
∗]𝑞 − (𝛽 − 𝛼) 𝜇𝑌∗𝐶

= (𝛽 − 𝛼) 𝜇
0
]𝑞𝑌∗2 + 𝜇

0
𝛼𝛽𝑋
∗

𝑚
𝑌
∗
𝑥
∗
(𝑦
∗
)
−1

+ 𝛽𝜇
0
𝛼𝑌
∗2
+ 𝛽𝜇
0
(𝜆
0
+ 𝑑)𝑌

∗

+ 𝛼𝜆𝜇
0
𝑌
∗
𝑀
∗
+ (𝛽 − 𝛼) 𝜆𝜇𝑌

∗
(1 − 𝑌

∗
− 𝑋
∗

𝑚
) > 0,

𝑄
1
𝑄
2
− (𝑄
3
− 𝑄
4
)

= (𝐴 + 𝛽𝑌
∗
+ 𝜇
0
) [𝛽𝑌
∗
𝐴 + (𝐴 + 𝛽𝑌

∗
) 𝜇
0
+ (𝛼 − 𝛽)𝑌

∗
𝐵]

− [𝛽𝑌
∗
𝜇
0
𝐴 + (𝛼 − 𝛽) 𝜇

0
𝑌
∗
𝐵 − (𝛽 − 𝛼) 𝜇𝑌

∗
𝐶]

= (𝐴 + 𝛽𝑌
∗
+ 𝜇
0
) 𝛽𝑌
∗
𝐴 + 𝐴

2
𝜇
0

+ (𝛽𝑌
∗
+ 𝜇
0
) (𝐴 + 𝛽𝑌

∗
) 𝜇
0

+ (𝐴 + 𝛽𝑌
∗
) (𝛼 − 𝛽)𝑌

∗
𝐵 + (𝛼 − 𝛽)𝑌

∗
𝜇𝐶

= (𝛽 − 𝛼) 𝜇𝜆𝑌
∗
(𝑌
∗
+ 𝑋
∗

𝑚
) + 𝛼𝜆𝜇𝑌

∗

+ (𝐴 + 𝛽𝑌
∗
) [𝐴𝛽𝑌

∗
+ (𝛼 − 𝛽)𝑌

∗
𝐵]

+ (𝛽 − 𝛼) 𝜇𝜆𝑌
∗
𝑥
∗
(𝑦
∗
)
−1
+ 𝜇
0
𝛽𝑌
∗
𝐴

+ 𝐴
2
𝜇
0
+ (𝛽𝑌

∗
+ 𝜇
0
) (𝐴 + 𝛽𝑌

∗
) 𝜇
0
.

(21)
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From 𝑄
3
− 𝑄
4
> 0, we can get 𝐴𝛽𝑌∗ + (𝛼 − 𝛽)𝑌∗𝐵 > 0; thus

𝑄
1
𝑄
2
− (𝑄
3
− 𝑄
4
) > 0. According to Hurwitz criterion, we

can know all the 𝜂’s have negative real parts; then 𝐸󸀠
0
is locally

asymptotically stable.
When 𝜏 > 0, notice that (18) does not have nonnegative

real roots. If it has roots with nonnegative real parts they
must be complex and should have been obtained from a
pair of complex conjugate roots which cross the imaginary
axis. Consequently, (18) must have a pair of purely imaginary
solutions for some 𝜏 > 0. Assume that 𝜂 = 𝑖𝜔 (𝜔 > 0) is a root
of (18) without loss of generality. That is the case if and only
if 𝜔 satisfies the equation

−𝜔
3
𝑖 − 𝑄
1
𝜔
2
+ 𝑄
2
𝜔𝑖 + 𝑄

3
= 𝑄
4 (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) . (22)

Separating the real and imaginary parts, we have the follow-
ing system, satisfied by 𝜔:

𝑄
3
− 𝑄
1
𝜔
2
= 𝑄
4
cos𝜔𝜏,

𝜔
3
− 𝑄
2
𝜔 = 𝑄

4
sin𝜔𝜏.

(23)

To eliminate the trigonometric functions we square both
sides of each equation above and we add the squared above
equations to obtain the following forth order equation in 𝜔:

𝜔
6
+ (𝑄
2

1
− 2𝑄
2
) 𝜔
4
+ (𝑄
2

2
− 2𝑄
1
𝑄
3
) 𝜔
2
+ (𝑄
2

3
− 𝑄
2

4
) = 0.

(24)

To reduce this fourth order equation in 𝜔 to a quadratic
equation let 𝜑 = 𝜔2 and denote the coefficients by

𝜑
3
+ 𝑅
1
𝜑
2
+ 𝑅
2
𝜑 + 𝑅
3
= 0, (25)

where

𝑅
1
= 𝑄
2

1
− 2𝑄
2

= (𝐴 + 𝛽𝑌
∗
+ 𝜇
0
)
2

− 2 [𝛽𝑌
∗
𝐴 + (𝐴 + 𝛽𝑌

∗
) 𝜇
0
+ (𝛼 − 𝛽)𝑌

∗
𝐵]

= 𝐴
2
+ 𝛽
2
𝑌
∗2
+ 𝜇
2

0
+ 2 (𝛽 − 𝛼)𝑌

∗
𝐵

= 𝐴
2
+ 𝛽
2
𝑌
∗2
+ 𝜇
2

0
+ 2 (𝛽 − 𝛼)𝑌

∗
(𝜆𝑀
∗
+ 𝛼𝑋
∗

𝑚
)

+ 2]𝑞𝛽𝑌∗𝑦∗(𝑥∗)−1 > 0,

𝑅
2
= 𝑄
2

2
− 2𝑄
1
𝑄
3

= [𝛽𝑌
∗
𝐴 + (𝛼 − 𝛽)𝑌

∗
𝐵]
2

+ 𝜇
2

0
[𝐴
2
+ 𝛽
2
𝑌
∗2
+ (𝛽 − 𝛼)𝑌

∗
𝐵]

= [𝛽𝑌
∗
𝐴 + (𝛼 − 𝛽)𝑌

∗
𝐵]
2

+ 𝜇
2

0
[𝐴
2
+ 𝛽
2
𝑌
∗2
(𝛽 − 𝛼)𝑌

∗
(𝜆𝑀
∗
+ 𝛼𝑋
∗

𝑚
)

+2]𝑞𝛽𝑌∗𝑦∗(𝑥∗)−1] > 0.

𝑅
3
= 𝑄
2

3
− 𝑄
2

4
= (𝑄
3
+ 𝑄
4
) (𝑄
3
− 𝑄
4
) ,

𝑄
3
+ 𝑄
4

= 𝛽𝑌
∗
𝜇
0
𝐴 + (𝛼 − 𝛽) 𝜇

0
𝑌
∗
𝐵 + (𝛽 − 𝛼) 𝜇𝑌

∗
𝐶

= 𝛽𝑌
∗
𝜇
0
𝐴 + (𝛽 − 𝛼) 𝜇

0
𝑌
∗]𝑞

+ (𝛼 − 𝛽) 𝜇
0
𝑌
∗
(𝜆𝑀
∗
+ 𝛼𝑋
∗

𝑚
)

+ (𝛽 − 𝛼) 𝜇𝑌
∗
𝜆 (𝑌
∗
+ 𝑋
∗

𝑚
) + (𝛼 − 𝛽) 𝜇𝑌

∗
𝜆

= 𝛽𝑌
∗
𝜇
0
(𝜆𝑀
∗
+ 𝛼𝑌
∗
+ 𝜆
0
+ 𝑏) + (𝛽 − 𝛼) 𝜇

0
𝑌
∗]𝑞

+ (𝜇
0
𝜆𝑀
∗
+ 𝜇
0
𝛼𝑋
∗

𝑚
+ 𝜇𝜆) 𝜆𝑌

∗
𝑦
∗
(𝑥
∗
)
−1

+ (𝛽 − 𝛼) 𝜇𝑌
∗
𝜆 (𝑌
∗
+ 𝑋
∗

𝑚
) > 0.

(26)

So all the coefficients of (25) are positive numbers. Then
according to Lemma 3.3.1 in [38], (25) has no positive real
roots; that is, we may not get any positive value of 𝜔, which
satisfy the transcendental equation (18). So all the 𝜂’s have
negative real parts for all values of the delay 𝜏 ≥ 0; then 𝐸󸀠

0

is locally asymptotically stable.Thus when 𝜏 ≥ 0, 𝐸
∗
is locally

asymptotically stable if 𝑅
0
> 1.

Theorem 4. When 𝜏 ≥ 0, the endemic equilibrium 𝐸
∗
is

globally asymptotically stable in Ω if 𝑅
0
> 1.

Proof. Using Lyapunov’s method, we consider the following
positive function:

𝑉 =
1

2
𝑦
2
. (27)

The derivative of 𝑉 along the system is given by

𝑑𝑉

𝑑𝑡
= (𝛼 − 𝛽)𝑌

∗
𝑥 − 𝛽𝑌

∗
𝑦 ≤ 0. (28)

The largest compact invariant set when 𝑉󸀠 = 0 is the
singleton {𝐸󸀠

0
}. Then LaSalle’s invariance principle implies

that 𝐸󸀠
0
is globally asymptotically stable; that is, 𝐸

∗
is globally

asymptotically stable inΩ.

4. Numerical Simulations and Results

To check the feasibility of our analysis of 𝜏 > 0, we present
some numerical computations in this section using Matlab
by choosing the following set of parameter values: 𝛽 = 0.35,
𝜆 = 0.08, 𝜆

0
= 0.02, 𝛼 = 0.2, 𝑑 = 0.002, ] = 0.43, 𝑝 = 0.15,

𝑞 = 0.85, 𝜇 = 0.002, 𝜇
0
= 0.02, and 𝜏 = 1 when 𝑅

0
< 1.

Let 𝛽 = 0.5; it may be checked that the condition 𝑅
0
> 1
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Figure 1: The stability of 𝐸
0
and 𝐸

∗
with different initial values.
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Figure 2: The stability of 𝑋
𝑚
, 𝑌 with variational 𝜆.

of existence of the endemic equilibrium 𝐸
∗
. The equilibrium

values for this data are obtained as

𝑋
∗

𝑚
= 0.201, 𝑌

∗
= 0.014, 𝑀

∗
= 0.001. (29)

The basic reproduction number 𝑅
0
, for the above set of

parameter values, is found to be 1.157.
For the above parameter values, we select five sets of

different initial starts; then the computer generated graphs of
aware population, infective population, and cumulative den-
sity of awareness programs, respectively, have been drawn in
Figure 1, which shows that all the trajectories initiating inside
the region of attraction approach towards 𝐸

0
and 𝐸

∗
, respec-

tively. Both of the equilibria 𝐸
0
and 𝐸

∗
are locally asymptot-

ically stable for given set of parameter values that numerical
simulations support the analysis given in Section 3. In fact,
they are globally asymptotically stable inΩ aswe have proved.

In the following, we research the relationships of𝑋∗
𝑚
, 𝑌∗

and the dissemination rate 𝜆, the implementation rate 𝜇
separately.Wemake 𝜆, 𝜇 change from 0 to 0.4 and get the per-
formances of 𝑋

𝑚
(𝑡) and 𝑌(𝑡), the trajectories of which with

respect to time 𝑡 for different 𝜆 and 𝜇 are shown in Figures
2 and 3, respectively. And there are no awareness programs
when 𝜆 and 𝜇 are equal to zero. As shown in Figures 2 and

3, 𝑋∗
𝑚
both increase and 𝑌∗ both reduce as the increase of 𝜆

and 𝜇, which proves the conclusions of the remark. And 𝜆, 𝜇
are greater influence on 𝑌∗ than 𝑋∗

𝑚
, which state awareness

programs have a positive effect on prevention of diseases. In
addition the reason why 𝑋∗

𝑚
(𝑌∗) has a similar trend as the

variations of 𝜆 and 𝜇 is that 𝜆 and 𝜇 have a similar influence
on 𝑋∗
𝑚
(𝑌∗). From the figure we obtain that 𝜇 can postpone

the time of the balance of equilibrium; thus we can have
more time to formulate measures to prevent diseases. There
really is an effort here tomake it clear that 𝜆 and 𝜇 (awareness
programs) play a key role in the prevention and control of
diseases.

5. Discussion

Themedia is widely acknowledged as a key tool for influenc-
ing people’s behaviors towards the disease to devise proper
policies for controlling the epidemic. Awareness programs
through media make people be aware about the disease
and take various precautions to reduce their chances of
being infected. In this paper, we propose and analyze a
mathematical model to study the effect of awareness pro-
grams driven by media and the delay on the prevalence
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Figure 3: The stability of 𝑋
𝑚
, 𝑌 with variational 𝜇.

of an infectious disease. It is assumed that pathogens are
transmitted via direct contact between the susceptible and
the infective populations. Assume further that cumulative
density of awareness programs increases at a rate propor-
tional to the infective population. The model exhibits two
equilibria; the disease-free equilibrium has been shown to be
stable for basic reproduction number 𝑅

0
< 1. For 𝑅

0
> 1,

it becomes unstable, which leads to the existence of an
endemic equilibrium.The endemic equilibriums are globally
asymptotically stable. The delay 𝜏 has no effect on the
stability of the system.The numerical simulations and results
that prove the stability of equilibria suggest that if we want
to reduce the proportions of the infective population and
increase the aware population,we can increase the dissemina-
tion rate 𝜆 and implementation rate 𝜇. They are conducive to
controlling the spread of diseases.
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By using critical point theory, we obtain a new sufficient condition on the existence of homoclinic solutions of a class of nonperiodic
discrete nonlinear systems in infinite lattices. The classical Ambrosetti-Rabinowitz superlinear condition is improved by a general
superlinear one. Some results in the literature are improved.

1. Introduction

Assume that 𝑚 is a positive integer. Consider the following
difference equation in infinite higher dimensional lattices:

𝐿𝑢
𝑛
− 𝜔𝑢

𝑛
= 𝜎𝛾

𝑛
𝑓
𝑛
(𝑢

𝑛
) , 𝑛 ∈ 𝑍

𝑚
, (1)

where 𝑓
𝑛
(𝑢) is continuous in 𝑢, 𝜎 = ±1, 𝑛 = (𝑛

1
, 𝑛

2
, . . . , 𝑛

𝑚
) ∈

𝑍
𝑚, 𝛾 = {𝛾

𝑛
} is a positive real valued sequence, 𝜔 ∈ 𝑅, and 𝐿

is a Jacobi operator [1] given by

𝐿𝑢
𝑛
= 𝑎

1(𝑛1 ,𝑛2,...,𝑛𝑚)
𝑢
(𝑛1+1,𝑛2 ,...,𝑛𝑚)

+ 𝑎
1(𝑛1−1,𝑛2 ,...,𝑛𝑚)

𝑢
(𝑛1−1,𝑛2 ,...,𝑛𝑚)

+ 𝑎
2(𝑛1 ,𝑛2,...,𝑛𝑚)

𝑢
(𝑛1 ,𝑛2+1,...,𝑛𝑚)

+ 𝑎
2(𝑛1 ,𝑛2−1,...,𝑛𝑚)

𝑢
(𝑛1 ,𝑛2−1,...,𝑛𝑚)

+ ⋅ ⋅ ⋅ + 𝑎
𝑚(𝑛1 ,𝑛2,...,𝑛𝑚)

𝑢
(𝑛1 ,𝑛2,...,𝑛𝑚+1)

+ 𝑎
𝑚(𝑛1 ,𝑛2,...,𝑛𝑚−1)

𝑢
(𝑛1 ,𝑛2,...,𝑛𝑚−1)

+ 𝑏
(𝑛1 ,𝑛2,...,𝑛𝑚)

𝑢
(𝑛1 ,𝑛2,...,𝑛𝑚)

;

(2)

here, {𝑎
𝑖𝑛
} (𝑖 = 1, 2, . . . , 𝑚) and {𝑏

𝑛
} are real valued bounded

sequences.

Assume that 𝑓
𝑛
(0) = 0 for 𝑛 ∈ 𝑍𝑚; then {𝑢

𝑛
} = {0} is a

solution of (1), which is called the trivial solution. As usual,
we say that 𝑢 = {𝑢

𝑛
}, a solution of (1), is homoclinic (to 0) if

lim
|𝑛|→∞

𝑢
𝑛
= 0, (3)

where |𝑛| = |𝑛
1
| + |𝑛

2
| + ⋅ ⋅ ⋅ + |𝑛

𝑚
| is the length of multi-

index 𝑛. In addition, if {𝑢
𝑛
} ̸= {0}, then 𝑢 is called a nontrivial

homoclinic solution. We are interested in the existence of the
nontrivial homoclinic solutions for (1). This problem appears
when we seek the discrete solitons of nonperiodic discrete
nonlinear Schrödinger (DNLS) equation

𝑖 ̇𝜓
𝑛
= −Δ𝜓

𝑛
− 𝜎𝛾

𝑛
𝑓
𝑛
(𝜓

𝑛
) , 𝑛 ∈ 𝑍

𝑚
, (4)

where 𝜎 = ±1 and
Δ𝜓

𝑛
= 𝜓

(𝑛1+1,𝑛2 ,...,𝑛𝑚)

+ 𝜓
(𝑛1−1,𝑛2 ,...,𝑛𝑚)

+ 𝜓
(𝑛1 ,𝑛2+1,...,𝑛𝑚)

+ 𝜓
(𝑛1 ,𝑛2−1,...,𝑛𝑚)

+ ⋅ ⋅ ⋅ + 𝜓
(𝑛1 ,𝑛2,...,𝑛𝑚+1)

+ 𝜓
(𝑛1 ,𝑛2 ,...,𝑛𝑚−1)

− 2𝑚𝜓
(𝑛1 ,𝑛2,...,𝑛𝑚)

(5)

is the discrete Laplacian in 𝑚 spatial dimension. Typical
representatives of power nonlinearities are

𝑓
𝑛
(𝑢) = 𝑙

𝑛|𝑢|
𝑝
𝑢, 𝑙

𝑛
, 𝑝 > 0. (6)
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Primarily, we are interested in spatially localized, or
solitary, standingwaves. Suchwaves are often called breathers
or gap solitons. The origin of the last name is that typically
such solutions do exist for frequencies in gaps of linear
spectrum. Considering (4), we suppose that the nonlinearity
is gauge invariant; that is,

𝑓
𝑛
(𝑒
𝑖𝜃
𝑢) = 𝑒

𝑖𝜃
𝑓
𝑛 (𝑢) , 𝜃 ∈ 𝑅, (7)

and, in addition, 𝑓
𝑛
(𝑢) ≥ 0 for 𝑢 ≥ 0 for 𝑛 ∈ 𝑍𝑚.

Making use of the standing wave ansatz,

𝜓
𝑛
= 𝑢

𝑛
𝑒
−𝑖𝜔𝑡
,

lim
|𝑛|→∞

𝜓
𝑛
= 0,

(8)

where {𝑢
𝑛
} is a real valued sequence and𝜔 ∈ 𝑅 is the temporal

frequency. Then (4) becomes

−Δ𝑢
𝑛
− 𝜔𝑢

𝑛
= 𝜎𝛾

𝑛
𝑓
𝑛
(𝑢

𝑛
) , 𝑛 ∈ 𝑍

𝑚
, (9)

and (3) holds. This is an equation of the form (1) with 𝑎
𝑖𝑛
=

−1 (𝑖 = 1, 2, . . . , 𝑚) and 𝑏
𝑛
= 2𝑚.

When𝑓
𝑛
(𝑢) has the form of (6), the homoclinic solutions

of (9) were obtained by Karachalios in [2] by assuming that
𝛾 ∈ 𝑙

𝜌, 𝜌 = (𝑞 − 1)/(𝑞 − 2), for some 𝑞 > 2. We note that
𝛾 ∈ 𝑙

𝜌 implies that lim
|𝑛|→∞

𝛾
𝑛
= 0. Moreover, (6) satisfies the

classical Ambrosetti-Rabinowitz superlinear condition [3],
and 𝑓

𝑛
(𝑢)/|𝑢| is nondecreasing with respect to |𝑢|, both of

which played important roles in the existence of homoclinic
solutions of (1.7) in [2].

The aim of this paper is to improve both the mono-
tone condition of 𝑓

𝑛
(𝑢)/|𝑢| and the classical Ambrosetti-

Rabinowitz superlinear condition by general ones; see
Remarks 8 and 9 for details. Moreover, in this paper, we only
need lim

|𝑛|→∞
𝛾
𝑛
= 0. Particularly, our results improved the

results in [2]; see Remarks 3 and 7 for details.
In the past years, there has been large growth in the

study of DNLS equation, which is a nonlinear lattice system
that appears in many areas of physics. Discrete solitons
which exist in DNLS systems, that is, solitary waves and
localized structures in spatially discrete media, are also of
particular interest in their own right. Among these, one
can mention photorefractive media [4], biomolecular chains
[5], and Bose-Einstein condensates [6]. The experimental
observations of discrete solitons in nonlinear lattice systems
have been reported [7–11]. To mention that, many authors
have studied the existence of discrete solitons of the DNLS
equations [12–17]. The fruitful methods include centre mani-
fold reduction [16], variational methods [12, 14], the principle
of anticontinuity [13, 17], and the Nehari manifold approach
[18]. However, most of the existing literature is devoted to
the DNLS equations with constant coefficients or periodic
coefficients. Results on such DNLS equations have been
summarized in [19–23]. And we also want to mention that,
in recent years, the existence of homoclinic solutions for
difference equations has been studied by many authors, and
we refer to [24–36].

Since the operator 𝐿 is bounded and self-adjoint in the
space 𝑙2 (defined in Section 2), we consider (1) as a nonlinear

equation in 𝑙2 with (3) being satisfied automatically. The
spectrum 𝜎(𝐿) of 𝐿 is closed. Thus, the complement 𝑅 \ 𝜎(𝐿)
consists of a finite number of open intervals called spectral
gaps and two of them are semi-infinite which are denoted by
(−∞, 𝛽) and (𝛼,∞), respectively. In this paper, we consider
the homoclinic solutions of (1) in 𝑙2 for the case where 𝜔 ∈
(−∞, 𝛽) and 𝜎 = 1. The case where 𝜔 ∈ (𝛼,∞) and 𝜎 = −1 is
omitted, since, in this case, we can replace 𝐿 by −𝐿.

Themain idea in this paper is as follows. First, we assume
that {𝛾

𝑛
} converges to zero at infinity; that is, lim

|𝑛|→∞
𝛾
𝑛
= 0.

After that, we prove a compact inclusion between ordinary
sequence spaces 𝑙2 and weighted sequence spaces 𝑙2

𝛾
(defined

in Section 2), in order to come over lack of compactness for
the so-called (𝐶)

𝑐
condition (defined in Section 2). Finally, by

making use of the Mountain Pass Lemma [37], we prove the
existence of homoclinic solutions of (1) in 𝑙2.

2. Preliminaries

In this section, we first establish the variational setting
associated with (1). Let

𝑙
𝑝
= 𝑙

𝑝
(𝑍

𝑚
) =
{

{

{

𝑢 = {𝑢
𝑛
}
𝑛∈𝑍
𝑚 : ∀𝑛 ∈ 𝑍

𝑚
, 𝑢

𝑛
∈ 𝑅,

‖𝑢‖𝑙𝑝 = ( ∑

𝑛∈𝑍
𝑚

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝
)

1/𝑝

< ∞
}

}

}

.

(10)

Then the following embedding between 𝑙𝑝 spaces holds:

𝑙
𝑞
⊂ 𝑙

𝑝
, ‖𝑢‖𝑙𝑝 ≤ ‖𝑢‖𝑙𝑞 , 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞. (11)

For 𝑝 = 2, we get the usual Hilbert space of square-summable
sequences, with the real scalar product

(𝑢, V)
𝑙
2 = ∑

𝑛∈𝑍
𝑚

𝑢
𝑛
V
𝑛
, 𝑢, V ∈ 𝑙2. (12)

For a positive real valued bounded sequence 𝛾 =

{𝛾
𝑛
: 0 < 𝛾

𝑛
≤ 𝛾 < ∞}

𝑛∈𝑍
𝑚 , we define the weighted sequence

spaces 𝑙2
𝛾
:

𝑙
2

𝛾
=
{

{

{

𝑢 = {𝑢
𝑛
}
𝑛∈𝑍
𝑚 : ∀𝑛 ∈ 𝑍

𝑚
, 𝑢

𝑛
∈ 𝑅,

‖𝑢‖𝑙2
𝛾

= ( ∑

𝑛∈𝑍
𝑚

𝛾
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
2
)

1/2

< ∞
}

}

}

.

(13)

It is not hard to see that 𝑙2
𝛾
is a Hilbert space, with the scalar

product

(𝑢, V)
𝑙
2

𝛾

= ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝑢
𝑛
V
𝑛
, 𝑢, V ∈ 𝑙2

𝛾
. (14)

For a certain class of weight 𝛾, we have the following
lemmas, which will play a crucial role in our analysis.
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Lemma 1. Let 𝜅 = {𝜅
𝑛
: |𝜅

𝑛
| ≤ 𝜅 < ∞}

𝑛∈𝑍
𝑚 be amultiplication

operator from 𝑙2
𝛾
to 𝑙2

𝛾
defined by 𝜅𝑢 = {𝜅

𝑛
𝑢
𝑛
}
𝑛∈𝑍
𝑚 . If

lim
|𝑛|→∞

𝜅
𝑛
= 0, then the operator 𝜅 is compact.

Proof of Lemma 1. Let

Λ = {𝜅𝑢 : ‖𝑢‖𝑙2
𝛾

≤ 1} . (15)

We only need to prove that Λ is precompact in 𝑙2
𝛾
. By

assumption, for any 𝜀 > 0, there exists 𝑁 > 0 such that
|𝜅
𝑛
| ≤ 𝜀 for any |𝑛| > 𝑁. Define a cutting sequence 𝜒 = {𝜒

𝑛
}

by

𝜒
𝑛
= {
1, |𝑛| ≤ 𝑁,

0, |𝑛| > 𝑁.
(16)

Denote by 𝜒𝑐 = 1 − 𝜒 the anticutting sequence. Then for any
𝜅𝑢 ∈ Λ

󵄩󵄩󵄩󵄩𝜒
𝑐
𝜅𝑢
󵄩󵄩󵄩󵄩
2

𝑙
2

𝛾

= ∑

|𝑛|>𝑁

𝛾
𝑛

󵄨󵄨󵄨󵄨𝜅𝑛𝑢𝑛
󵄨󵄨󵄨󵄨
2
≤ 𝜀

2
,

󵄩󵄩󵄩󵄩𝜒𝜅𝑢
󵄩󵄩󵄩󵄩
2

𝑙
2

𝛾

= ∑

|𝑛|≤𝑁

𝛾
𝑛

󵄨󵄨󵄨󵄨𝜅𝑛𝑢𝑛
󵄨󵄨󵄨󵄨
2
≤ 𝜅

2
.

(17)

For arbitrary 𝜀 > 0 and Λ
𝜀
= {𝜒𝜅𝑢 : ‖𝑢‖

𝑙
2

𝛾

≤ 1} finite-
dimensional and bounded, we know that Λ is precompact.
The proof is complete.

Lemma 2. One assumes positive sequence of real numbers 𝛾
with lim

|𝑛|→∞
𝛾
𝑛
= 0. Then 𝑙2 󳨅→ 𝑙2

𝛾
with compact inclusion.

Proof of Lemma 2. Note that ‖𝑢‖
𝑙
2

𝛾

≤ √𝛾‖𝑢‖
𝑙
2 for any 𝑢 ∈ 𝑙2

and 𝛾1/2 is compact.Thus, 𝑙2 󳨅→ 𝑙2
𝛾
with compact inclusion by

Lemma 1. The proof is complete.

Remark 3. Karachalios [2] proved 𝑙2 󳨅→ 𝑙
2

𝛾
with compact

inclusion assuming that 𝛾 ∈ 𝑙𝜌, 𝜌 = (𝑞 − 1)/(𝑞 − 2), for some
𝑞 > 2. Note that 𝛾 ∈ 𝑙𝜌 implies that lim

|𝑛|→∞
𝛾
𝑛
= 0. Thus, we

find that Lemma 2 improves Lemma 2.1 in [2].

On the Hilbert space 𝑙2, we consider the functional

𝐽 (𝑢) =
1

2
((𝐿 − 𝜔)𝑢, 𝑢)

𝑙
2 − 𝜎 ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝐹
𝑛
(𝑢

𝑛
) , (18)

where

𝐹
𝑛
(𝑢) = ∫

𝑢

0

𝑓
𝑛
(𝑠) 𝑑𝑠 (19)

is the primitive function of 𝑓
𝑛
(𝑢). Then 𝐽 ∈ 𝐶1(𝑙2, 𝑅) and

⟨𝐽
󸀠
(𝑢) , V⟩ = ((𝐿 − 𝜔)𝑢, V)𝑙2

− 𝜎 ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝑓
𝑛
(𝑢

𝑛
) V

𝑛
, 𝑢, V ∈ 𝑙2.

(20)

Equation (20) implies that (1) is the corresponding Euler-
Lagrange equation for 𝐽. Therefore, we have reduced the

problem of finding a nontrivial homoclinic solution of (1) to
that of seeking a nonzero critical point of the functional 𝐽 on
𝑙
2.

Let 𝛿 be the distance from 𝜔 to the spectrum 𝜎(𝐿); that is,

𝛿 = 𝛽 − 𝜔. (21)

Then, we have

((𝐿 − 𝜔) 𝑢, 𝑢) ≥ 𝛿‖𝑢‖
2

𝑙
2 , 𝑢 ∈ 𝑙

2
. (22)

We also consider a norm in 𝑙2 defined by

‖𝑢‖𝑙2
𝜔

= [((𝐿 − 𝜔) 𝑢, 𝑢)]
1/2
, 𝑢 ∈ 𝑙

2
. (23)

Since

𝛿‖𝑢‖
2

𝑙
2 ≤ ‖𝑢‖

2

𝑙
2

𝜔

≤ ‖𝐿 − 𝜔‖ ‖𝑢‖
2

𝑙
2 , 𝑢 ∈ 𝑙

2
, (24)

norm (23) is an equivalent norm with the usual one of 𝑙2.
In order to obtain the existence of critical points of 𝐽 on

𝑙
2, we cite some basic notations and some known results from
critical point theory.

Let 𝐻 be a Hilbert space and 𝐶1(𝐻, 𝑅) denote the set of
functionals that are Fréchet differentiable and their Fréchet
derivatives are continuous on𝐻.

Let 𝐽 ∈ 𝐶1(𝐻, 𝑅). A sequence {𝑢
𝑗
} ⊂ 𝐻 is called a

(𝐶)
𝑐
sequence for 𝐽 if 𝐽(𝑢

𝑗
) → 𝑐 for some 𝑐 ∈ 𝑅 and

(1 + ‖𝑢
𝑗
‖)‖𝐽

󸀠
(𝑢

𝑗
)‖ as 𝑗 → ∞. We say 𝐽 satisfies the (𝐶)

𝑐

condition if any (𝐶)
𝑐
sequence for 𝐽 possesses a convergent

subsequence.
Let 𝐵

𝑟
be the open ball in 𝐻 with radius 𝑟 and center 0,

and let 𝜕𝐵
𝑟
denote its boundary.The following lemma is taken

from [37].

Lemma 4 (Mountain Pass Lemma). If 𝐽 ∈ 𝐶1(𝐻, 𝑅) and
satisfies the following conditions: there exist 𝑒 ∈ 𝐻 \ {0} and
𝑟 ∈ (0, ‖𝑒‖) such thatmax{𝐽(0), 𝐽(𝑒)} < inf

‖𝑢‖=𝑟
𝐽(𝑢), then there

exists a (𝐶)
𝑐
sequence {𝑢

𝑛
} for the mountain pass level 𝑐 which

is defined by

𝑐 = inf
ℎ∈Γ

max
𝑠∈[0,1]

𝐽 (ℎ (𝑠)) , (25)

where

Γ = {ℎ ∈ 𝐶 ([0, 1] ,𝐻) : ℎ (0) = 0, ℎ (1) = 𝑒} . (26)

3. Main Results

In this section, we will establish some sufficient conditions on
the existence of nontrivial solutions of (1) in 𝑙2.

Theorem 5. Assume that 𝜎 = 1, 𝜔 ∈ (−∞, 𝛽), and the
following conditions hold.

(𝐻1) 𝑓
𝑛
(𝑢) is continuous in 𝑢, 𝑓

𝑛
(𝑢) = 𝑜(𝑢) as 𝑢 → 0

uniformly for 𝑛 ∈ 𝑍𝑚.
(𝐻2)There exist 𝑏 > 0, 𝑝 > 2 such that

󵄨󵄨󵄨󵄨𝑓𝑛 (𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝑏 (1 + |𝑢|

𝑝−1
) (27)

uniformly for 𝑛 ∈ 𝑍𝑚 and 𝑢 ∈ 𝑅.
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(𝐻3)There exists some 𝜃 ≥ 1 such that 𝜃𝐺
𝑛
(𝑢) ≥ 𝐺

𝑛
(𝑡𝑢),

for 𝑛 ∈ 𝑍𝑚, 𝑢 ∈ 𝑅, and 𝑡 ∈ [0, 1], where 𝐺
𝑛
(𝑢) =

(1/2)𝑓
𝑛
(𝑢)𝑢 − 𝐹

𝑛
(𝑢).

(𝐻4) 𝐹
𝑛
(𝑢) ≥ 0 for 𝑢 ∈ 𝑅, and lim

|𝑢|→∞
(𝐹
𝑛
(𝑢)/𝑢

2
) = ∞,

uniformly for 𝑛 ∈ 𝑍𝑚.
(𝐻5) Positive real valued sequence 𝛾 = {𝛾

𝑛
}
𝑛∈𝑍
𝑚 with

lim
|𝑛|→∞

𝛾
𝑛
= 0.

Then (1) has at least a nontrivial solution 𝑢 in 𝑙2 and the
solution decays exponentially at infinity.That is, there exist two
positive constants 𝐶 and 𝜏 such that

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨 ≤ 𝐶𝑒

−𝜏|𝑛|
, 𝑛 ∈ 𝑍

𝑚
. (28)

Theorem 5 gives some sufficient conditions on the exis-
tence of nontrivial solutions of (1) in 𝑙2. However, (1)mayhave
no nontrivial solutions in 𝑙2. In fact, we have the following
proposition.

Proposition 6. Assume that 𝜎 = −1,𝜔 ≤ 𝛽, and 𝛾
𝑛
𝑓
𝑛
(𝑢)𝑢 > 0

when 𝑢 ̸= 0 for all 𝑛 ∈ 𝑍𝑚. Then (1) has no nontrivial solutions
in 𝑙2.

Proof of Proposition 6. By way of contradiction, we assume
that (1) has a nontrivial solution 𝑢 = {𝑢

𝑛
} ∈ 𝑙

2. Then 𝑢 is a
nonzero critical point of 𝐽, and

⟨𝐽
󸀠
(𝑢) , 𝑢⟩ = ((𝐿 − 𝜔) 𝑢, 𝑢)

𝑙
2 − 𝜎 ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝑓
𝑛
(𝑢

𝑛
) 𝑢

𝑛

≥ ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝑓
𝑛
(𝑢

𝑛
) 𝑢

𝑛
> 0.

(29)

This is a contradiction as ⟨𝐽󸀠(𝑢), 𝑢⟩ = 0, so the conclusion
holds.

Remark 7. It is easy to see that the function 𝑓
𝑛
defined by

𝑓
𝑛
(𝑢) = |𝑢|

2𝜆
𝑢, (30)

where 𝜆 > 0 and 𝛾 ∈ 𝑙𝜌, 𝜌 = (𝑞 − 1)/(𝑞 − 2), for some 𝑞 > 2,
satisfies all conditions inTheorem 5.This case was studied by
[2], and we find thatTheorem 5 improvesTheorem 2.3 in [2].

Remark 8. We will introduce another condition (𝐻3):
𝑓
𝑛
(𝑢)/|𝑢| is nondecreasing with respect to |𝑢|. We want to

point out that condition (𝐻3) is equivalent to (𝐻3) when
𝜃 = 1 and (𝐻3) gives “better monotony” when 𝜃 > 1, since
(𝐻3) implies (𝐻3) (see [38]). Moreover, we can find that
𝑓
𝑛
(𝑢) = 5𝑢 ln(1 + 𝑢2) + 9 sin 𝑢 satisfies (𝐻3) but not (𝐻3)

for some 𝜃 ≥ 100.

Remark 9. As we know, the condition

(𝐻4) 𝑓(𝑢)𝑢 > 𝑞𝐹(𝑢) > 0 for some 𝑞 > 2 and 𝑢 ̸= 0

is often called Ambrosetti-Rabinowitz superlinear condition
[3]. Clearly, (𝐻4) implies (𝐻4). Actually, (𝐻4) ismore general
than (𝐻4). Let {𝑎

𝑛
} be a positive sequence, and 𝑓

𝑛
(𝑢) =

𝑎
𝑛
𝑢 ln(1 + |𝑢|). Then 𝑓

𝑛
satisfies (𝐻4). However, 𝑓

𝑛
does not

satisfy (𝐻4).

The proof ofTheorem 5 is based on a direct application of
the following lemmas. The key points read as follows.

Lemma 10. Assume that the conditions of Theorem 5 hold;
then one has the following.
(𝐽
1
)There exist two constants 𝑎 > 0 and 𝜌 > 0 such that
𝐽|
𝜕𝐵𝜌
≥ 𝑎.

(𝐽
2
)There exists an 𝑒 ∈ 𝑙2 such that 𝐽(𝑡𝑒) → −∞ as |𝑡| →
∞.

Proof of Lemma 10. Let 𝛾 = max
𝑛∈𝑍
𝑚{𝛾

𝑛
} and 𝜖 = 𝛿/2𝛾. By

(𝐻1) and (𝐻2), there exists 𝑐
1
> 0, such that

󵄨󵄨󵄨󵄨𝑓𝑛 (𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝜖 |𝑢| + 𝑐1|𝑢|

𝑝−1 (31)
for all 𝑛 ∈ 𝑍𝑚 and 𝑢 ∈ 𝑅, and (31) implies that

󵄨󵄨󵄨󵄨𝐹𝑛 (𝑢)
󵄨󵄨󵄨󵄨 ≤
𝜖

2
|𝑢|

2
+
𝑐
1

𝑝
|𝑢|

𝑝
. (32)

By (32) and the Hölder inequality, we have

𝐽 (𝑢) =
1

2
((𝐿 − 𝜔)𝑢, 𝑢)

𝑙
2 − ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝐹
𝑛
(𝑢

𝑛
)

≥
𝛿

2
‖𝑢‖

2

𝑙
2 − 𝛾 ∑

𝑛∈𝑍
𝑚

(
𝜖

2
|𝑢|

2 𝑐1

𝑝
|𝑢|

𝑝
)

≥
𝛿

4
‖𝑢‖

2

𝑙
2 −
𝑐
1
𝛾

𝑝
‖𝑢‖

𝑝

𝑙
2 .

(33)

Since 𝑝 > 2, we have

𝐽 (𝑢) ≥
𝛿𝜌

2

8
= 𝑎 > 0 for ‖𝑢‖𝑙2 = 𝜌, (34)

where 𝜌 = (𝛿𝑝/8𝑐
1
𝛾)
1/(𝑝−2).

Let 𝑒 = {𝑒
𝑛
} ∈ 𝑙

2 be the eigenvector of 𝐿 corresponding to
the eigenvalue 𝛽; that is to say, 𝐿𝑒 = 𝛽𝑒. There exists 𝑁 > 0,
such that

∑

|𝑛|≤𝑁

𝑒
2

𝑛
≥
1

2
‖𝑒‖

2

𝑙
2 . (35)

Let
𝐴
∗
= {𝑛 ∈ 𝑍

𝑚
: |𝑛| ≤ 𝑁, 𝑒𝑛 ̸= 0} . (36)

By (𝐻4), for any𝑀 > 0, there exists 𝜂 = 𝜂(𝑀) > 0 such that

𝐹
𝑛
(𝑢) ≥ 𝑀|𝑢|

2 for 𝑛 ∈ 𝑍𝑚, |𝑢| ≥ 𝜂. (37)

Taking 𝑡 large enough, such that 𝑡𝑒
𝑛
> 𝜂 for all 𝑛 ∈ 𝐴∗, then,

combining (35), (36), and (37), we have

𝐽 (𝑡𝑒) =
1

2
((𝐿 − 𝜔)𝑡𝑒, 𝑡𝑒)

𝑙
2 − ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝐹
𝑛
(𝑡𝑒

𝑛
)

≤
𝛿

2
𝑡
2
‖𝑒‖

2

𝑙
2 − ∑

𝑛∈𝐴
∗

𝛾
𝑛
𝐹
𝑛
(𝑡𝑒

𝑛
)

≤
𝛿

2
𝑡
2
‖𝑒‖

2

𝑙
2 − 𝛾𝑀𝑡

2
∑

𝑛∈𝐴
∗

𝑒
2

𝑛

≤
1

2
(𝛿 − 𝛾𝑀) 𝑡

2
‖𝑒‖

2

𝑙
2 ,

(38)
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where 𝛾 = min
𝑛∈𝐴
∗{𝛾

𝑛
} > 0. Letting𝑀 be large enough, such

that 𝛿 ≤ 𝛾𝑀, we obtain that 𝐽(𝑡𝑒) → −∞ as |𝑡| → ∞. The
proof is complete.

Lemma 11. Assume that the conditions of Theorem 5 hold;
then the functional 𝐽 satisfies the (𝐶)

𝑐
condition for any given

𝑐 ∈ 𝑅.

Proof of Lemma 11. Let {𝑢(𝑘)} ⊂ 𝑙2 be a (𝐶)
𝑐
sequence of 𝐽; that

is,

𝐽 (𝑢
(𝑘)
) 󳨀→ 𝑐,

(1 +
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)󵄩󵄩󵄩󵄩󵄩𝑙2
)
󵄩󵄩󵄩󵄩󵄩
𝐽
󸀠
(𝑢

(𝑘)
)
󵄩󵄩󵄩󵄩󵄩𝑙2
󳨀→ 0,

as 𝑘 󳨀→ ∞.

(39)

First, we prove that {𝑢(𝑘)} is bounded in 𝑙2. By way of
contradiction, assume that ‖𝑢(𝑘)‖

𝑙
2 → ∞ as 𝑘 → ∞. Set

𝜉
(𝑘)
= 𝑢

(𝑘)
/‖𝑢

(𝑘)
‖
𝑙
2 . Up to a sequence, we have

𝜉
(𝑘)
⇀ 𝜉, in 𝑙2, (40)

𝜉
(𝑘)
󳨀→ 𝜉, in 𝑙2

𝛾
. (41)

Case 1 (𝜉 ̸= 0). By 𝐽(𝑢(𝑘)) = 𝑐 + 𝑜(1), where 𝑜(1) → 0 as
𝑘 → 0, we have

∑

𝑛∈𝑍
𝑚

𝛾
𝑛

𝐹
𝑛
(𝑢

(𝑘)

𝑛
)

󵄩󵄩󵄩󵄩𝑢
(𝑘)󵄩󵄩󵄩󵄩

2

𝑙
2

=
1

2

((𝐿 − 𝜔) 𝑢
(𝑘)
, 𝑢

(𝑘)
)

󵄩󵄩󵄩󵄩𝑢
(𝑘)󵄩󵄩󵄩󵄩

2

𝑙
2

−
𝑐 + 𝑜 (1)

󵄩󵄩󵄩󵄩𝑢
(𝑘)󵄩󵄩󵄩󵄩

2

𝑙
2

≤
‖𝐿 − 𝜔‖

2
−
𝑐 + 𝑜 (1)

󵄩󵄩󵄩󵄩𝑢
(𝑘)󵄩󵄩󵄩󵄩

2

𝑙
2

< ∞.

(42)

Let 𝐵∗ = {𝑛 ∈ 𝑍𝑚 : 𝜉
𝑛
̸= 0}. Obviously, 𝐵∗ is nonempty. Then,

for some 𝑛
0
∈ 𝐵

∗, it follows from (41) that

𝑢
(𝑘)

𝑛0
= 𝜉

(𝑘)

𝑛0

󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)󵄩󵄩󵄩󵄩󵄩𝑙2

󳨀→ ∞, as 𝑘 󳨀→ ∞. (43)

Combining (𝐻4) and 𝛾
𝑛0
> 0, we have

𝛾
𝑛0

𝐹
𝑛0
(𝑢

(𝑘)

𝑛0
)

󵄩󵄩󵄩󵄩𝑢
(𝑘)󵄩󵄩󵄩󵄩

2

𝑙
2

= 𝛾
𝑛0

𝐹
𝑛0
(𝑢

(𝑘)

𝑛0
)

󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑘)

𝑛0

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨󵄨
𝜉
(𝑘)

𝑛0

󵄨󵄨󵄨󵄨󵄨

2

󳨀→ ∞, as 𝑘 󳨀→ ∞.

(44)

However,

∑

𝑛∈𝑍
𝑚

𝛾
𝑛

𝐹
𝑛
(𝑢

(𝑘)

𝑛
)

󵄩󵄩󵄩󵄩𝑢
(𝑘)󵄩󵄩󵄩󵄩

2

𝑙
2

= ∑

𝑛 ̸=𝑛0

𝛾
𝑛

𝐹
𝑛
(𝑢

(𝑘)

𝑛
)

󵄩󵄩󵄩󵄩𝑢
(𝑘)󵄩󵄩󵄩󵄩

2

𝑙
2

+ 𝛾
𝑛0

𝐹
𝑛0
(𝑢

(𝑘)

𝑛0
)

󵄩󵄩󵄩󵄩𝑢
(𝑘)󵄩󵄩󵄩󵄩

2

𝑙
2

≥ 𝛾
𝑛0

𝐹
𝑛0
(𝑢

(𝑘)

𝑛0
)

󵄩󵄩󵄩󵄩𝑢
(𝑘)󵄩󵄩󵄩󵄩

2

𝑙
2

󳨀→ ∞,

(45)

as 𝑘 → ∞. This contradicts (42).

Case 2 (𝜉 = 0). Let

𝐽 (𝑡
𝑘
𝑢
(𝑘)
) = max

𝑡∈[0,1]

𝐽 (𝑡𝑢
(𝑘)
) . (46)

For any given𝑀 > max{4, 𝜃𝑐/2𝛿}, let 𝑘 be large enough such
that ‖𝑢(𝑘)‖

𝑙
2 > 𝑀 and 𝜉

(𝑘)

= 2𝑀
1/2
𝜉
(𝑘). Combining (32), (41),

and 𝜉 = 0, it is easy to see that

∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝐹
𝑛
(𝜉

(𝑘)

𝑛
)

≤
𝜖

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜉
(𝑘)󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑙
2

𝛾

+
𝑐
1
𝛾
1/2

𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜉
(𝑘)󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝−1

𝑙
2(𝑝−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜉
(𝑘)󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑙2
𝛾

󳨀→ 0,

as 𝑘 󳨀→ ∞.

(47)

Thus, for 𝑘 large enough, we have

𝐽 (𝑡
𝑘
𝑢
(𝑘)
) ≥ 𝐽 (𝜉

(𝑘)

)

≥
𝛿

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜉
(𝑘)󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑙
2

− ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝐹
𝑛
(𝜉

(𝑘)

𝑛
)

≥ 2𝛿𝑀 − ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
𝐹
𝑛
(𝜉

(𝑘)

𝑛
) .

(48)

By (47), (48), and𝑀 > 𝑐/2𝛿, we have

lim
𝑘→∞

𝐽 (𝑡
𝑘
𝑢
(𝑘)
) ≥ 2𝛿𝑀 > 𝜃𝑐. (49)

Noting that 𝐽(0) = 0 and 𝐽(𝑢(𝑘)) → 𝑐, as 𝑘 → ∞, then
0 < 𝑡

𝑘
< 1when 𝑘 is big enough.Thus, ⟨𝐽󸀠(𝑡

𝑘
𝑢
(𝑘)
), 𝑡

𝑘
𝑢
(𝑘)
⟩ = 0.

In view of (𝐻3), it follows that

𝐽 (𝑡
𝑘
𝑢
(𝑘)
) = 𝐽 (𝑡

𝑘
𝑢
(𝑘)
) −
1

2
⟨𝐽

󸀠
(𝑡
𝑘
𝑢
(𝑘)
) , 𝑡

𝑘
𝑢
(𝑘)
⟩

= ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
(
1

2
𝑓
𝑛
(𝑡
𝑘
𝑢
(𝑘)

𝑛
) 𝑡

𝑘
𝑢
(𝑘)

𝑛
− 𝐹

𝑛
(𝑡
𝑘
𝑢
(𝑘)

𝑛
))

≤ 𝜃 ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
(
1

2
𝑓
𝑛
(𝑢

(𝑘)

𝑛
) 𝑢

(𝑘)

𝑛
− 𝐹

𝑛
(𝑢

(𝑘)

𝑛
))

= 𝜃 (𝐽 (𝑢
(𝑘)
) −
1

2
⟨𝐽

󸀠
(𝑢

(𝑘)
) , 𝑢

(𝑘)
⟩) .

(50)

By (50), we have

lim
𝑘→∞

𝐽 (𝑡
𝑘
𝑢
(𝑘)
) ≤ 𝜃𝑐. (51)

This contradicts (49), so {𝑢(𝑘)} is bounded in 𝑙2.
Second, we show that there exists a convergent subse-

quence of {𝑢(𝑘)}. In fact, there exists a subsequence, still
denoted by the same notation, such that

𝑢
(𝑘)
⇀ 𝑢, in 𝑙2. (52)

By Lemma 2, we have

𝑢
(𝑘)
󳨀→ 𝑢, in 𝑙2

𝛾
. (53)
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By direct calculation, we obtain
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)
− 𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝑙
2

𝜔

= ⟨𝐽
󸀠
(𝑢

(𝑘)
) − 𝐽

󸀠
(𝑢) , 𝑢

(𝑘)
− 𝑢⟩

+ ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
(𝑓

𝑛
(𝑢

(𝑘)

𝑛
) − 𝑓

𝑛
(𝑢

𝑛
)) (𝑢

(𝑘)

𝑛
− 𝑢

𝑛
)

≤ ⟨𝐽
󸀠
(𝑢

(𝑘)
) − 𝐽

󸀠
(𝑢) , 𝑢

(𝑘)
− 𝑢⟩

+ ∑

𝑛∈𝑍
𝑚

𝛾
𝑛
(𝜖 (
󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑘)

𝑛

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨) + 𝑐1 (

󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑘)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝−1

+
󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨
𝑝−1
))

× (𝑢
(𝑘)

𝑛
− 𝑢

𝑛
) ≤ ⟨𝐽

󸀠
(𝑢

(𝑘)
) − 𝐽

󸀠
(𝑢) , 𝑢

(𝑘)
− 𝑢⟩

+ 𝛾
1/2
(𝜖 (
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)󵄩󵄩󵄩󵄩󵄩𝑙2

+ ‖𝑢‖𝑙2)

+𝑐
1
(
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)󵄩󵄩󵄩󵄩󵄩

𝑝−1

𝑙
2(𝑝−1)
+ ‖𝑢‖

𝑝−1

𝑙
2(𝑝−1)
))

×
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)
− 𝑢
󵄩󵄩󵄩󵄩󵄩𝑙2
𝛾

.

(54)

Therefore, combining (11), (24), (52), (53), (54), and the
boundedness of {𝑢(𝑘)}, it is clear that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)
− 𝑢
󵄩󵄩󵄩󵄩󵄩𝑙2
= 0 (55)

and this means 𝐽 satisfies (𝐶)
𝑐
condition. The proof is

complete.

Now, we are ready to proveTheorem 5.

Proof of Theorem 5. Let 𝑎, 𝜌, and 𝑒 ∈ 𝑙2 be obtained in
Lemma 10.

Since 𝐽(𝑡𝑒) → −∞ as |𝑡| → ∞, there exists a real
number 𝑡

0
such that

󵄩󵄩󵄩󵄩𝑡0𝑒
󵄩󵄩󵄩󵄩𝑙2 > 𝜌, 𝐽 (𝑡

0
𝑒) < 0. (56)

Immediately, we obtain

max {𝐽 (0) , 𝐽 (𝑡
0
𝑒)} = 0 < 𝑎 ≤ inf

‖𝑢‖=𝜌

𝐽 (𝑢) . (57)

Now that we have verified all assumptions of Lemma 4, we
know 𝐽 possesses a (𝐶)

𝑐
sequence {𝑢

𝑗
} ⊂ 𝑙

2 for the mountain
pass level 𝑐 ≥ 𝑎 with

𝑐 = inf
ℎ∈Γ

max
𝑠∈[0,1]

𝐽 (ℎ (𝑠)) , (58)

where

Γ = {ℎ ∈ 𝐶 ([0, 1] , 𝑙
2
) : ℎ (0) = 0, ℎ (1) = 𝑡

0
𝑒} . (59)

By Lemma 11, {𝑢
𝑗
} has a convergent subsequence {𝑢

𝑗𝑚
}

such that 𝑢
𝑗𝑚
→ 𝑢 as 𝑗

𝑚
→ +∞ for some bounded 𝑢 ∈ 𝑙2.

Since 𝐽 ∈ 𝐶1(𝑙2, 𝑅), we have

𝐽 (𝑢
𝑗𝑚
) 󳨀→ 𝐽 (𝑢) ,

(1 +
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗𝑚

󵄩󵄩󵄩󵄩󵄩𝑙2
) 𝐽

󸀠
(𝑢

𝑗𝑚
) 󳨀→ (1 + ‖𝑢‖𝑙2) 𝐽

󸀠
(𝑢) ,

(60)

as 𝑗
𝑚
→ +∞. By the uniqueness of limit and the fact that 𝑢

is bounded, we obtain that 𝑢 is a nontrivial critical point of 𝐽
as the corresponding critical value 𝑐 ≥ 𝑎 > 0. Hence, (1) has
at least one nontrivial solution 𝑢 in 𝑙2.

Finally, we show that 𝑢 = {𝑢
𝑛
} satisfies (28). In fact,

similar to [39], for 𝑛 ∈ 𝑍, let

𝑤
𝑛
=

{{

{{

{

−
𝛾
𝑛
𝑓
𝑛
(𝑢

𝑛
)

𝑢
𝑛

, 𝑢
𝑛
̸= 0,

0, 𝑢
𝑛
= 0;

(61)

then

𝐿𝑢
𝑛
= 𝜔𝑢

𝑛
, (62)

where

𝐿𝑢
𝑛
= 𝐿𝑢

𝑛
+ 𝑤

𝑛
𝑢
𝑛
. (63)

Clearly, lim
|𝑛|→∞

𝑤
𝑛
= 0. Thus, the multiplication by 𝑤

𝑛
is a

compact operator in 𝑙2, which implies that

𝜎ess (𝐿) = 𝜎ess (𝐿) , (64)

where 𝜎ess stands for the essential spectrum. Equation (62)
means that 𝑢 = {𝑢

𝑛
} is an eigenfunction that corresponds

to the eigenvalue of finite multiplicity 𝜔 ∉ 𝜎ess(𝐿) of the
operator 𝐿. Equation (28) follows from the standard theorem
on exponential decay for such eigenfunctions [1]. Now the
proof of Theorem 5 is complete.
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This paper combines intergenerational equity equilibrium and social preferences equilibrium with Cournot equilibrium solving
the technological problem of intergenerational equity and strategic value compensation confirmation, achieving the effective
combination between sustainable development concept and value evaluation, thinking and expanding the theoretical framework
for the lack of pricing power of mineral resources.The conclusion of the theoretical model and the numerical simulation shows that
intergenerational equity equilibrium and social preferences equilibrium enhance international trademarket power of preponderant
metal mineral resources owing to the production of intergenerational equity compensation value and strategic value. However, the
impact exerted on Cournot market power by social preferences is inconsistent: that is, changes of altruistic Cournot equilibrium
and reciprocal inequity Cournot equilibrium are consistent, while inequity aversion Cournot equilibrium has the characteristic of
loss aversion, namely, under the consideration of inequity aversion Cournot competition, Counot-Nash equilibrium transforms
monotonically with sympathy and jealousy of inequity aversion.

1. Introduction

Pricing power is the ability where related market participants
manipulate market equilibrium price away from interna-
tional trade fair price in its favor by market forces. In recent
years, the sustainable growth of China’s economy is the
important engine driving the growth of the world economy
and the increasing demand of staple commodities, such as
metal mineral products. The influence exerted on global
economy by China is called “China Factor” internationally.
However the so-called “China Factor” does not bring cor-
responding pricing power to China; instead, metal mineral
resources international trade price of our country is stuck in
the dilemma.The export price of preponderantmetalmineral
resources, such as rare earth, lithium, and indium, experi-
enced a long-term slump, which not only cause economic loss

but also leave the burden of energy consumption and envi-
ronmental protection to China, so that it is equivalent to pro-
viding hidden subsidies at the cost of ecological environment
destruction andmineral resources rapid depletion.Therefore,
the reports of the seventeenth and eighteenth congress of the
CPC put forward continuously [1, 2], “deepen the resource
products price and tax reform, establish compensated use
system and eco-compensation system reflected the market
supply and demand, resource scarcity and intergenerational
compensation.” Although intergenerational compensation is
stressed in reports, externalities resulting from productive
process of metal mineral resources development and uti-
lization are not included in metal mineral resources value
system as the form of cost. The proportion of calculated
mineral resources compensation fees to sales revenue is
approximately 1.18%, far lower than the level of 2%–8% of
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foreign premium. The premium rate and compensation fees
of rare earth in China are far lower than Australia, the USA,
SouthAfrica, andVietnam.The technological problemof cost
confirmation and measurement and serious distortion of tax
policy prevent mineral resource development and utilization
from reasonable value compensations, causing unfairness
in international trade fair price, and above all that is the
important reason why China loses pricing power.

Considering that the international trade price of metal
mineral resources is also affected by factors such as supply
and demand and speculation (expectation), the complete
value compensation system including marginal cost of pro-
duction, marginal user cost, and external cost (ecological
value and intergenerational compensation value) is only the
static reason to explain pricing power deficiency. Especially
to preponderant metal mineral resources, such as rare earth,
lithium, and indium, their international trade price is mainly
dependent on mutual bargaining, which is affected by psy-
chological preferences of players and thus produce strategic
value. While ignoring objectivity of strategic value in policy
suggestion making is another reason accounted for pricing
power deficiency. Because according to social preference
equilibrium analysis, unless the international trade price is
fair and it achieves equilibrium among players, it is difficult
for metal mineral resources development and utilization to
achieve success. Using traditional game equilibrium evalu-
ation method can reflect the economic value connotation
accurately; however, a certain mineral resource development
and utilization are accepted only when players approve of
economic value and ecological value and the fairness of
metal mineral resources development compensation price
psychologically. So fairness correction on metal mineral
resources development compensation basic value is necessary
in reality.

Classical literatures discussing pricing fairness from a
perspective of mineral resources development value com-
pensation include “Hotelling Rule” [3], raised by Hotelling,
namely, mineral resources, as a kind of asset, need depreci-
ation, so the depletion of mineral resources could be com-
pensated by taxation; “Hartwick Rule” [4] raised byHartwick,
pointed out that if mining rent of nonrenewable resources
saved as productive investment, the investment across gener-
ations is equal to achieve sustainability of economic growth,
when the investment is greater than resources value extracted
by resources owners. Serafy [5] adds environmental losses
to the research work of national income accounting system
and raises user cost approach to calculate real income and
the value depletion of nonrenewable resources, which is a
new national income accounting method in nonrenewable
resources field; later, Serafy [6] makes improvement in this
method. This approach lays the foundation of depletion
cost pricing of nonrenewable mineral resource; therefore, it
is used by many scholars to measure user cost of various
mineral resources and analyze the reasonability of premium
system and resources tax and fee policy, such as Adelman
[7] calculates user cost of some large oil and gas companies
by user cost approach and compares with premium; Young
and Seroa Da Motta [8] count user cost of major minerals in
Brazil by this method; Blignaut and Hassan [9] estimate user

costs of underground mineral resources in South Africa; Lin
et al. [10] discover the inadaptability of user cost approach in
coal resources of China; thus, he uses the modified approach
to estimate real cost of coal resources and builds CGE
model to determine detailed tax rates; G. P. Li and H. W.
Li [11] correct the defects of user cost method and use it
to calculate user cost of oil and gas in the United States;
Zeng and Li [12] use fixed user cost approach to count user
cost of coal, oil, and natural gas in China during 1985–
2010, after taking depletion in resource development and the
effects of inflation into account. These researches above solve
problems of metal mineral resources compensation scarcity
value but ignore environmental costs and intergenerational
equity value and lack explanation for influences exerted on
market and international trade price by intergenerational
equity compensation value.On the other hand,many scholars
do researches on pricing power, such as Fattouh [13] who
suggests that pricing power is the ability for manufacturers
directly affecting the other market participants and market
variables, such as price and sales, so market pricing power
is a kind of price bonus ability; Kaufmann [14] argues that
pricing power is the technical strength which is associated
with market power to some extent, that is, enterprises could
obtain monopoly pricing power in the market by its unique
technology or patents, thus gaining excess profits. Rubinstein
[15] explains staple commodity pricing mechanism by using
the bargainingmodel of complete information dynamic game
and deems that pricing power advantage between buyers and
sellers mainly depends on bargaining patience of two sides
when information is complete. Wen et al. [16–19] hold that
influences onmarket structure carried by risk preference and
risk premium should be taken into account in bargaining
model, for risk preference characteristics will affect pricing
power by affecting market power. Some researches specific
to rare earth pricing power following the above trend are
carried out, such as Zhang [20] who thinks that the rare earth
market belongs to a typical oligopoly market, so oligopolistic
enterprise must fully consider impacts from competitors
before taking any action, which proves game behavior of
oligopolists on both sides existed in the pricing process
of rare earth; Wang and Zhang [21] analyze the potential
impact on China’s rare earth export pricing power by the
increase of resource tax; Wu and Jiang [22] hold that the
formation of pricing power is a result of comprehensive
shaping process involving many factors, such as, industry,
enterprise, government, and foreign aspects, which all are
passed on to the market power.

The analysis above is static interpretation of pricing
power, without considering the influence on market power
by psychological preferences. Based on remarkable discov-
ery of game experiment, behavioral economics expand and
correct the traditional economic theory through integrating
behavioral and psychological preferences into it, especially
blending social preference in game and decision-making
theories. As an effective analytical tool for economic subject
of cooperative game, it brings profound impact on the raise
of fairness preference and application in motivation theory
and industrial organizational theory, such as Rabin [23] who
starts original research toward fair game equilibrium and
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builds a reciprocal fairness equilibrium gamemodel based on
the framework of psychological game raised by Geanakoplos,
Pearce, and Stacchetti. This model depicts reciprocal fairness
motivation of players as motivation fairness utility function
and then discovers a new equilibrium, that is, fairness
equilibrium, which meets the Pareto optimality with coop-
erative equilibrium and provides a reasonable explanation
for cooperative results. However, Rabin’s model is difficult to
predict accurately because it only aimed at games with stan-
dard form, not for dynamic game with continuous strategy
structure. Dufwenberg and Kirchsteiger [24] improve Rabin’s
model through expanding it to a dynamic environment
with continuous strategy structure, thus obtaining a more
extensive application. According to fairness preference based
on distribution results revealed by game experiments, Fehr
and Schmidt [25] and Bolton and Ockenfels [26] develop
inequity aversion model based on distribution results. It
could be deduced from research achievements of recipro-
cal equity equilibrium theory that metal mineral resources
development and compensation value are dependent on not
only material benefits brought by resource development, but
also psychological effect contained by reciprocal fairness
belief, if only a reciprocal fairness belief of related subjects
is given. Therefore, a correlation consideration is established
between reciprocal equity equilibrium analysis and metal
mineral resources development and compensation evalua-
tion, consequently revealing themechanism of pricing power
affected by psychological preferences. The breakthrough of
theorymodel in psychological preferences utility assumes the
analysis of pricing power affected by market power ignoring
psychological preferences, which will affect the bargaining
strategy of players, change the market power and influence
supply and demand prices of mineral products. For instance,
Zhong et al. [27] estimate intergenerational compensation
of preponderant high-tech mental mineral resources affected
by altruism preference and reciprocal fairness equilibrium
with Stackelberg model and points out that the development
and utilization of compensation value system should include
intergenerational compensation and strategic value besides
economic value and ecological value.

Based on the researches above, this paper analyzesmarket
structure of preponderant mental mineral resources such as
tungsten, molybdenum, tin, antimony, and rare earth and
integrates social preference into Cournot production deci-
sionmodel to analyze the impact exerted onmarket structure,
production decision of developers, price, and profits by social
profits, thus discovering the existence of new equilibrium,
intergenerational compensation, and strategic value, which
clears the agreement pricingmechanism of themetal mineral
resources and reveals the pricing power routes affected by
intergenerational equity and social preferences.

2. The Function Routes of Intergenerational
Equity to Preponderant Metal Mineral
Resources Pricing Power

2.1. Cournot Market Structure Analysis of Preponderant
Metal Mineral Resources. Cournot, French mathematical

economist, first outlined his theory of duopoly market in
1838. In this situation, there exist two enterprises supply-
ing homogeneous products in the market. Each enterprise
could choose optimal production to maximize profits by
observing others production. He then discovered that a
stable equilibrium occurs where each enterprise chooses the
production as their rival expected. So the model has a series
of strict assumptions: the market is only dominated by two
rational suppliers aiming at profit maximization; Oligarch
production competition is strategic for supposing each other’s
output expectation function and price determined by market
production; Oligarch determines their own production after
prediction and assumes the output of their rival is fixed; the
cost of production of oligarchs is zero and marginal cost of
production is a certain constant; there is a linear demand
function in the market.

Inverse linear demand function in duopoly market is
assumed as follows:

𝑝 (𝑄) = 𝑎 − 𝑏𝑄, (1)

where 𝑄 is the total supply of homogeneous products in
duopoly market: 𝑄 = 𝑞

1
+ 𝑞
2
and 𝑝 is the market price. The

output of oligopolist 1 is 𝑞
1
, the output of oligopolist 2 is 𝑞

2
,

spontaneous demand is 𝑎, sensitivity coefficient to price of
demand is 𝑏. The profits of oligopolists are

𝜋
𝑖
(𝑞
𝑖
, 𝑞
𝑗
) = 𝑝 (𝑄) 𝑞
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− 𝑐
𝑖
𝑞
𝑖
, 𝑖 = 1, 2; 𝑖 ̸= 𝑗. (2)

The marginal cost of production of two oligopolists 𝑐
𝑖
> 0

meets 𝑎 > max(𝑐
1
, 𝑐
2
), 𝑏 > 0. If oligopolist has the same

marginal cost of production and chooses optimal output
independently, then the profits of each oligopolist are
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(3)

Since oligopolists are pursuing profits maximization, first
order condition is

𝜕𝜋
1

𝜕𝑞
1

= −2𝑏𝑞
1
+ (𝑎 − 𝑐) − 𝑏𝑞

2
= 0,

𝜕𝜋
1

𝜕𝑞
2

= −2𝑏𝑞
2
+ (𝑎 − 𝑐) − 𝑏𝑞

1
= 0.

(4)

Combine the above two equations, and we could obtain
equilibrium outputs and profits of oligopolists:

𝑞
1
= 𝑞
2
=
𝑎 − 𝑐

3𝑏
, 𝜋

1
= 𝜋
2
=
(𝑎 − 𝑐)

2

9𝑏
. (5)

Thus we could obtain Cournot equilibrium under the con-
dition of complete information. Equilibrium outputs of
oligopolists 𝑞

1
and 𝑞

2
are optimal output assumed fixed
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output of their rival, so Cournot equilibrium is a subset of
Nash equilibrium.

According to market concentration CR
2
and CR

4
of pre-

ponderant metal mineral resources in China, these resources
are monopolistic and each oligopolist according to its
own profit maximization makes decision simultaneously in
oligopoly market. Therefore, this paper uses Cournot game
model to analyze the influence exerted on development
compensation value and pricing mechanism by combina-
tional equilibrium evaluation factors, to analyze the function
routes of combinational equilibrium evaluation factors to
preponderant metal mineral resources pricing power and
follow the classical assumptions of Cournot equilibrium, that
is, assuming oligarchs marginal production cost 𝑐 is equal.
According to the market supply and demand situation and
national industrial policy, this paper analyzes the relationship
between demand and price of preponderant metal mineral
resources by using regression analysis, which shows the feasi-
bility to simulate product demand function by linear demand
function in oligopoly market. Therefore, it is assumed that
linear inverse demand function of metal mineral resources
products is𝑝 = 𝑎−𝑞

1
−𝑞
2
, 𝑞
1
is the output of oligopolist 1, and

𝑞
2
is the output of oligopolist 2 and satisfies the spontaneous

demand of the market 𝑎 > 𝑐, so oligarchs profits objective
functions ignoring psychological preferences of players are as
follows:

𝑓
1
(𝑞
1
, 𝑞
2
) = 𝑞
1
(𝑎 − 𝑞

1
− 𝑞
2
) − 𝑐𝑞

1
, (6)
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2
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− 𝑞
2
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2
, (7)

where 𝑎 in (6) and (7) stands for spontaneous demand of
metal minerals; function 𝑓

1
and 𝑓

2
stands for profit function

of oligopolists, respectively.
Combine (6) with (7), we could obtain Cournot game

equilibrium of each oligopolist:

(𝑞
1
, 𝑞
2
) = (

𝑎 − 𝑐

3
,
𝑎 − 𝑐

3
) . (8)

2.2. Intergenerational Compensation Modification of Prepon-
derant Metal Mineral Resources Development and Com-
pensation. The essence of the preponderant metal mineral
resources depletion compensation is value compensation to
future losses aiming at excessive mining contemporarily.
According to equity theory, externalities of different eco-
nomic subjects could be solved through negotiations in pre-
ponderant metal mineral resources development. If there is
reasonable institutional arrangements, the externalities could
be internalized to a great extent. However, the externality
in mineral resources development for the contemporary is
better than the descendant, and because the latter is absent
in game negotiation, they could not restrict behavior of the
contemporary which cause asymmetry between behaviors.
In order to solve the internalization of intergenerational
externality problem under the condition of asymmetry, we
could build the sustainable development compensation fund
in the process of mineral resources development on the basis
of the theory of Hotelling mineral resources depletion com-
pensation and Howarth intergenerational property transfer

theory. Sustainable development compensation fund is a cash
conversion mode; if discount rate is considered, it will keep
growing. If intergenerational compensation cost is 𝐹, time
horizon for compensation is𝑇, and then the intergenerational
compensation fund needed is 𝑠 = 𝐹/(1 + 𝑅)𝑇 and 𝑅 is social
discount rate.

With the development of world economy, the preponder-
ant metal mineral resources are scarcer, and many countries
are looking for a new substitute to get rid of the depen-
dence on metal mineral resources. From the perspective
of sustainable development, this research input could affect
development routes and improve efficiency of preponderant
metal mineral resources, to ensure the rights and interests
of future generations. In consequence, research input of
substitute should be regarded as part of the intergenera-
tional development compensation value. Research input of
substitute contributes to lower current consumption of metal
mineral resources from the aspect of metal mineral resources
recycling and extends the development and utilization period
to meet the needs of metal mineral resources for both
the contemporary and the descendent from the aspect of
substitute researches.

2.3. The Function Routes of Intergenerational Equity Com-
pensation to Preponderant Metal Mineral Resources Strategic
Equilibrium Price. Take intergenerational equity value, that
is, sustainable development of the compensation fund 𝑠 (𝑠 >
0) as intergenerational equity compensation. Metal mineral
resources development and utilization cost become the com-
bination of marginal production cost and marginal external
cost, namely, 𝑐 + 𝑠, and inverse demand function of mineral
resources products in international market is 𝑝 = 𝑎 − 𝑞

1
− 𝑞
2

and satisfies 𝑎 > 𝑐 + 𝑠; the objective function of each country
is

𝑓
1
(𝑞
1
, 𝑞
2
) = 𝑞
1
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠) , (9)

𝑓
2
(𝑞
1
, 𝑞
2
) = 𝑞
2
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠) . (10)

Combined (9) with (10), we could obtain Cournot equi-
librium from the intergenerational compensation perspec-
tive:

(𝑞
∗

1
, 𝑞
∗

2
) = (

𝑎 − 𝑐 − 𝑠

3
,
𝑎 − 𝑐 − 𝑠

3
) . (11)

Compare (11) to (8); it could be deduced that international
trade price of preponderant metal mineral resources should
be included into intergenerational compensation modifica-
tion so as to show its depletion cost of metal minerals. In this
way, the supply of preponderant metal mineral resources will
decrease, and international trade price will increase. Besides,
the greater the intergenerational equity compensation is, the
higher the degree of market monopoly will be, so the initial
price of metal mineral prices should be higher.

The intergenerational equity compensation of research
inputs mainly considers the effects on metal mineral
resources development and utilization by technical progress,
which would give rise to the appearance of new substitute
and affect price elasticity of demand of the replaced metal
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mineral resources products. Given impacts of substitute, the
demand equation of newmetal mineral resources products is
𝑝
𝑡
= 𝑎
󸀠
− 𝑞
1𝑡
− 𝑞
2𝑡
.

The higher the metal mineral resource price is, the more
obvious the substitution will be. Then, the trigger point will
appear at a rather low price, that is, 𝑎󸀠 < 𝑎, reaching the new
equilibrium as follows:

(𝑞
∗

1𝑡
, 𝑞
∗

2𝑡
) = (

𝑎
󸀠
− 𝑐

3
,
𝑎
󸀠
− 𝑐

3
) . (12)

Compare (12) to (8); we could deduce that total market
output of metal mineral resource products is smaller when
intergenerational compensation cost of substitutes is con-
sidered. Besides, the more the research input of substi-
tutes is, the higher the degree of market monopoly will
be, so the initial price of metal mineral prices should be
higher. There is no sustainable development compensation
fund established to consider intergenerational equity com-
pensation, and no account set up for substitutes research
input in accounting system, resulting in underestimation of
development compensation costs and deficiency in intrinsic
value compensation. In reality, the lower metal premium on
mineral resources leads to lower international trade prices.
And due to low entry barriers, the development of metal
mineral resources exists many problems, such as, small
scale, operation chaos and overexploitation, which generate
excessive competition and vicious circle to further price
reduction.

3. The Function Routes of Social
Preference to Preponderant Metal
Mineral Resources Pricing Power

3.1. The Utility Function Modification in Decision Making of
Preponderant Metal Mineral Resources Development. Under
the imperfect competitionmarket structure, fair price reflects
not only intrinsic value compensation equity, industrial orga-
nization trade forces equity, and policies trading forces equity
in oligopoly market structure of preponderant metal mineral
resources, but also supply and demand of intrinsic value
compensation equilibrium fluctuations caused by the above
equities. From the perspective of behavioral economics, the
influences exerted on shadow price and profits by fair belief
of stakeholders should be considered in the trade forces
equity. As to measurement of strategic value and equity
level, it is advisable to learn from the establishment of
social utility function. For example, in strategic production
decision, if a resource developer has reciprocal preference
hopes that the production of its competitor is more than
equity output accepted by players, the oligopolist is willing
to reduce profits of competitors by squeezing its own profits;
if a resource developer has reciprocal preference hopes that
the production of its competitor is less than equity output
accepted by players, the oligopolist is willing to increase
profits of competitors by squeezing its own profits.The profits
variation above is the producer surplus variation; hence, it is
possible tomeasure strategic value produced by psychological
preferences by the variation of preponderant metal mineral

resources developers surplus caused by price variation.Under
oligopolymarket structure, themodification of psychological
preferences to developer decision-making utility function
should be under the condition of interdependence prefer-
ences; metal mineral resources developer output decision-
making utility function included into psychological effects of
social preferences is as follows:

𝑈
𝑖
(𝑂 (𝑠
𝑖
, 𝑠
∗

𝑖
)) = 𝜋

𝑖
(𝑂 (𝑠
𝑖
, 𝑠
∗

−𝑖
))

+ ∑

𝑗 ̸= 𝑖

𝑤
𝑖𝑗
(𝑠
𝑖
, 𝑠
∗

−𝑖
) 𝜋
𝑗
(𝑂 (𝑠
𝑖
, 𝑠
∗

−𝑖
)) .

(13)

In (13), where𝑂(𝑠
𝑖
, 𝑠
∗

𝑖
) is the output decision under inter-

dependence strategy, 𝑠
𝑖
is the output strategy of oligopolist

𝑖, 𝑠∗
−𝑖

is the output strategy of remaining oligopolists, 𝜋
𝑖

is oligopolist 𝑖’s profits without considering interdependent
preferences, 𝜋

𝑗
is the profit of other oligopolists without

considering interdependence preferences, and 𝑤
𝑖𝑗

is the
coefficient of strategic interaction measuring the profit that
oligopolist 𝑖 gives to other oligopolists. Positive values of the
coefficient 𝑤

𝑖𝑗
mean that player 𝑖 is willing to sacrifice his

payoff from outcomes in order to increase the payoff of player
𝑗. Negative values mean that player 𝑖 is willing to sacrifice
his payoff from outcomes in order to lower player 𝑗’s payoff.
In addition, 𝑤

𝑖𝑗
(𝑠
𝑖
, 𝑠
∗

−𝑖
)𝜋
𝑗
(𝑂(𝑠
𝑖
, 𝑠
∗

−𝑖
)) can be decided by the

different types of social preferences as follows.

(1) If the oligopolist prefers altruism fairness, that is, the
oligopolist considers the intertemporal allocation of
preponderant mental mineral resources development
and the utilization of later generations, then the
oligopolists have slight altruistic preferences, and 𝑤

𝑖𝑗

is positive.
(2) For types of inequity averse player,
𝑤
𝑖𝑗
(𝑠
𝑖
, 𝑠
∗

−𝑖
)𝜋
𝑗
(𝑂(𝑠
𝑖
, 𝑠
∗

−𝑖
)) can be replaced by

𝑤
𝑖𝑗
(𝑞
𝑖
, 𝑄
∗

−𝑖
)(𝜋
𝑗
− 𝜋
𝑖
), 𝑤
𝑖𝑗
(𝑞
𝑖
, 𝑄
∗

−𝑖
) is used to measure

the deviation profit function of oligopolist 𝑖 puting
weights on oligopolist 𝑗, and here is

𝑤
𝑖𝑗
(𝑞
𝑖
, 𝑄
∗

−𝑖
)

{{

{{

{

> 0, 𝜋
𝑗
< 𝜋
𝑖

= 0, 𝜋
𝑗
= 𝜋
𝑖

< 0, 𝜋
𝑗
> 𝜋
𝑖
.

(14)

The first condition expresses aversion to advantageous
inequity, namely, if oligopolist 𝑖’s profits are greater than those
of oligopolist 𝑗, then oligopolist 𝑖 is willing to sacrifice its own
profits to increase 𝑗’s profits. The third condition expresses
aversion to disadvantageous inequity. If oligopolist 𝑖’s profits
are lower than those of oligopolist 𝑗, then oligopolist 𝑖 is
willing to sacrifice its own profits to reduce 𝑗’s profits.

(3) If it is the reciprocal fairness preference, the
payoff function of the oligopolist 𝑖 is 𝑈

𝑖
(𝑞
𝑖
, 𝑄
−𝑖
) =

𝜋
𝑖
(𝑞
𝑖
, 𝑄
−𝑖
) + 𝑤

𝑖
(𝑄
−𝑖
, 𝑄
𝐹

−𝑖
) ∑
𝑗 ̸= 𝑖
𝜋
𝑖
(𝑞
𝑖
, 𝑄
−𝑖
). Where

𝜋
𝑖
(𝑞
𝑖
, 𝑄
−𝑖
) is oligopolist 𝑖’s profits and is the weight

that oligopolist 𝑖 places on its rivals gross profits, that
is,∑
𝑗 ̸= 𝑖
𝜋
𝑖
(𝑞
𝑖
, 𝑄
−𝑖
), and on the gross output of its rivals

𝑄
−𝑖
, the equation is 𝜋

𝑖
(𝑞
𝑖
, 𝑄
−𝑖
) = 𝑅

𝑖
(𝑞
𝑖
, 𝑄
−𝑖
) − 𝐶
𝑖
(𝑞
𝑖
),
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where 𝑅
𝑖
(𝑞
𝑖
, 𝑄
−𝑖
) = 𝑃(𝑄)𝑞

𝑖
is revenue. Assuming that

oligopolist 𝑖 is endowed with the weight on its rivals
depending on fair gross output 𝑄𝐹

−𝑖
and output of his

rivals. Furthermore, it can be assumed that

𝑤
𝑖
(𝑄
−𝑖
, 𝑄
𝐹

−𝑖
)

{{

{{

{

> 0, 𝑄
−𝑖
< 𝑄
𝐹

−𝑖

= 0, 𝑄
−𝑖
= 𝑄
𝐹

−𝑖

< 0, 𝑄
−𝑖
> 𝑄
𝐹

−𝑖
.

(15)

That is, when 𝑄
−𝑖
< 𝑄
𝐹

−𝑖
the oligopolist 𝑖 has a positive

weight on rivals’ gross profits; when 𝑄
−𝑖
= 𝑄
𝐹

−𝑖
, the weight

is 0; and it has a negative weight on its rivals’ output when
𝑄
−𝑖

> 𝑄
𝐹

−𝑖
. These conditions reveal the real intention

of oligopolist with reciprocal fairness preference to care
rivals.The Rabin fairness equilibrium determinationmethod
used by reciprocal fairness psychological compensation value
modification is that game subjects are willing to sacrifice their
material interests to help people who treat them kindly and to
punish people who treat them badly; the smaller the sacrifice,
the greater motivation to help and punish.

3.2. The Function Routes of Social Preference to Preponderant
Metal Mineral Resources Strategic Equilibrium Price. Based
on the revised developers’ utility function, the developers will
play strategic reciprocal game on productionwhen exploiting
preponderant mental mineral resources; meanwhile they can
tell the industry is oligopoly by judging from the market con-
centration indicators of CR

2
and CR

4
of preponderant metal

mineral resources. Thus, developers will play oligopolistic
reciprocal fairness game, and each oligopolist based on profit
maximization principle to make decision simultaneously.
Therefore, the Cournot game model is fit to analyze the
function routes of social preferences to preponderant metal
mineral resources pricing power improvement.

3.2.1. The Function Routes of Altruism Preference to Prepon-
derant Metal Mineral Resources Strategic Equilibrium Price.
Preponderant metal mineral resources development requires
sustainable development, so it could be assumed that slight
altruistic preference is possessed on the consideration of
intergenerational equity. According to (13) and Cournot
hypothesis, monopoly profit functions under altruism pref-
erence of preponderantmetalmineral resources development
are

𝜋
1
(𝑞
1
, 𝑞
2
, 𝜆
1
) = 𝑞
1
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)

+ 𝜆
1
𝑞
2
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠) ,

(16)

𝜋
2
(𝑞
1
, 𝑞
2
, 𝜆
2
) = 𝑞
2
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)

+ 𝜆
2
𝑞
1
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠) ,

(17)

where 𝜆
𝑖
(𝑖 = 1, 2) is oligopolist 𝑖’s slight altruism preference

coefficient, and 𝜆
𝑖
≥ 0. Altruism preference coefficients

fall in the interval (0, 1) approximately revealed by game
experiments according behavior of experimental economics
and psychology, such as trust game, gift exchange game,
dictator game, andmarket game with punishment or without

punishment. According to the optimal Cournot equilibrium
analysis method, the optimal reaction function of each
oligopolist could be gained from (16) and (17):

𝜕𝜋
1

𝑞
1

= (𝑎 − 2𝑞
1
− 𝑞
2
− 𝑐 − 𝑠) − 𝜆

1
𝑞
2
= 0, (18)

𝜕𝜋
2

𝑞
2

= (𝑎 − 2𝑞
2
− 𝑞
1
− 𝑐 − 𝑠) − 𝜆

2
𝑞
1
= 0. (19)

Combine (18) with (19), we could obtain Cournot equilib-
rium under pure altruism preference:

(𝑞
∗∗

1
, 𝑞
∗∗

2
)

= (
(1 − 𝜆

1
) (𝑎 − 𝑐 − 𝑠)

4 − (1 − 𝜆
1
) (1 − 𝜆

2
)
,
(1 − 𝜆

2
) (𝑎 − 𝑐 − 𝑠)

4 − (1 − 𝜆
1
) (1 − 𝜆

2
)
) .

(20)

Using Cournot equilibrium output under altruism pref-
erence of oligopolist 1 minus that in (11), we could get the
equation:

(1 + 𝜆
1
) (𝑎 − 𝑐 − 𝑠)

4 − (1 − 𝜆
1
) (1 − 𝜆

2
)
−
(𝑎 − 𝑐 − 𝑠)

3

=
(𝑎 − 𝑐 − 𝑠) (−2𝜆1 − 𝜆2 + 𝜆1𝜆2)

3 [4 − (1 − 𝜆
1
) (1 − 𝜆

2
)]

.

(21)

Since (𝜆
1
, 𝜆
2
) → 0, (𝑎−𝑐−𝑠)/3[4−(1−𝜆

1
)(1−𝜆

2
)] > 0, and

(−2𝜆
1
−𝜆
2
+𝜆
1
𝜆
2
) < 0, theCournot equilibriumoutput under

pure altruism condition is lower than that under no altruism
condition. And the higher the degree of altruism preference
is, the smaller the total market output will be, so strategic
price of preponderant metal mineral resources development
and compensation should be higher.

3.2.2. The Function Routes of Inequity Aversion to Prepon-
derant Metal Mineral Resources Strategic Equilibrium Price.
In the development compensation pricing of preponderant
mental mineral resources, oligopolists show sympathy pref-
erence and jealousy preference on the players’ payoffs, say,
they will sacrifice their profits to lower those oligopolists
who obtain higher profits, but also sacrifice their profits to
upgrade those oligopolists who bear lower profits. According
to Fehr and Schmidt’s definition of inequity aversion, the
payoff functions of preponderant mental mineral resources
development and utilization are affected by oligopolists’
inequity aversion preferences, and thus their payoff functions
are

𝜋
1
(𝑞
1
, 𝑞
2
, 𝛼
1
, 𝛽
1
) = 𝑓
1
− [𝑎
1
max (𝑓

2
− 𝑓
1
, 0)

+𝛽
1
max (𝑓

1
− 𝑓
2
, 0)] ,

𝜋
2
(𝑞
1
, 𝑞
2
, 𝛼
2
, 𝛽
2
) = 𝑓
2
− [𝑎
2
max (𝑓

1
− 𝑓
2
, 0)

+𝛽
1
max (𝑓

2
− 𝑓
1
, 0)] ,

(22)

where 𝛼
𝑖
(𝑖 = 1, 2) is the jealousy preference coefficient

under inequity aversion of oligopolist 𝑖 and 𝛽
𝑖
(𝑖 = 1, 2) is

the sympathy preference coefficient under inequity aversion;
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moreover, 𝛼
𝑖
> 𝛽
𝑖
> 0. And owing to the symmetry form in

oligopoly market structure, the assumption of 𝑓
2
> 𝑓
1
will

not affect analysis conclusion; thus (22) are as follows:

𝜋
1
(𝑞
1
, 𝑞
2
, 𝛼
1
) = 𝑞
1
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)

− 𝛼
1
[𝑞
2
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)

−𝑞
1
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)]

𝜋
2
(𝑞
1
, 𝑞
2
, 𝛼
2
) = 𝑞
2
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)

− 𝛽
2
[𝑞
2
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)

− 𝑞
1
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠) ] ,

(23)

where 𝛼
𝑖
(𝑖 = 1, 2) is the jealousy preference coefficient

under inequity aversion of oligopolist 𝑖 and 𝛽
𝑖
(𝑖 = 1, 2) is

the sympathy preference coefficient under inequity aversion.
The second items on the right side in (23) are disutility
produced by oligopolist 𝑖’s jealousy preference. According
to the optimal Cournot equilibrium analysis, the optimal
response function of each oligopolist derived from revenue
functions under inequity aversion is as follows:

𝜕𝜋
1

𝑞
1

= (𝑎 − 2𝑞
1
− 𝑐 − 𝑠) (1 + 𝛼

1
) − 𝑞
2
= 0, (24)

𝜕𝜋
2

𝑞
2

= (𝑎 − 2𝑞
2
− 𝑐 − 𝑠) (1 − 𝛽

2
) − 𝑞
1
= 0. (25)

Combine (24) with (25); the optimal production of each
oligopolist preferring inequity aversion can be finally written
as

(𝑞
∗∗∗

1
, 𝑞
∗∗∗

2
) = (

(1 + 2𝛼
1
) (1 − 𝛽

2
) (𝑎 − 𝑐 − 𝑠)

4 (1 + 𝛼
1
) (1 − 𝛽

2
) − 1

,

(1 + 𝛼
1
) (1 − 2𝛽

2
) (𝑎 − 𝑐 − 𝑠)

4 (1 + 𝛼
1
) (1 − 𝛽

2
) − 1

) .

(26)

The fairness equilibrium output function exhibits that
under piecewise linear inequity aversion condition, the opti-
mal response function of oligopolist and standard Cournot
equilibrium game are both continuous, but the former is no
longer monotonous.

Using Cournot equilibrium output in (26) minus that in
(11), we could get the equation:

𝑞
∗∗∗

1
− 𝑞
∗∗

1
=

2𝑎
1
+ 𝛽
2
− 2𝑎
1
𝛽
2

12 (1 + 𝛼
1
) (1 − 𝛽

2
) − 3

(𝑎 − 𝑐 − 𝑠) , (27)

𝑞
∗∗∗

2
− 𝑞
∗∗

2
=

−𝑎
1
− 2𝛽
2
− 2𝑎
1
𝛽
2

12 (1 + 𝛼
1
) (1 − 𝛽

2
) − 3

(𝑎 − 𝑐 − 𝑠) . (28)

The result of (28) is obviously less than zero. After
thousands of game experiments, such as ultimatum game,
dictator game, and public good games in different countries,
it proves that about 85% of the people’s 𝛼

1
and 𝛽

1
fall in the

interval (0.15, 0.50), so the result of (27) is more than zero.
Equation (27) shows that Cournot equilibrium output prefer-
ring fairness is more than that when they are only concerned

about their own enterprise profits, while (28) shows that
Cournot equilibrium output preferring fairness is less than
that when they are only concerned about their own enterprise
profits. Such results indicate the effects of sympathy and
jealousy preference on the Cournot equilibrium, and weak
complementary between degree of oligopolist’s sympathy and
equilibrium output, that is, when jealousy preferences is
greater, the optimal Nash equilibrium market output under
inequity aversion in Cournot game will be larger. Under
the circumstances, the improvement of jealousy preferences
reduces the producer surplus and increases consumer sur-
plus.On the other side, theminimalNash equilibriummarket
output under piecewise linear inequity aversion in Cournot
gamewill decrease when sympathy preferences are greater. In
this case, the improvement of sympathy preferences increases
the producer surplus and reduces consumer surplus. The
variation of producer surplus is greater than that of consumer
surplus after considering fairness preference, thus producing
strategic reciprocal value for oligopolists. Therefore, it is
necessary to take compensation of strategic reciprocal value
in price system into account in the pricing process of
preponderant metal mineral resources.

3.2.3. The Function Routes of Reciprocal Equity Equilibrium to
Preponderant Metal Mineral Resources Strategic Equilibrium
Price. Under the condition of intergenerational equity equi-
librium and according to the definition of reciprocal equity
equilibrium, the players’ revenue function of preponderant
metal mineral resources development is

𝜋
1
(𝑞
1
, 𝑞
2
) = 𝑞
1
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠) ;

𝜋
2
(𝑞
1
, 𝑞
2
) = 𝑞
2
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)

(29)

𝜋
ℎ

1
(𝑞
1
) = 𝑞
1
(𝑎 − 𝑞

1
− 𝑐 − 𝑠) ;

𝜋
𝑒

1
(𝑞
1
) =

𝑞
1
(𝑎 − 𝑞

1
− 𝑐 − 𝑠)

2

(30)

𝜋
ℎ

2
(𝑞
2
) = 𝑞
2
(𝑎 − 𝑞

2
− 𝑐 − 𝑠) ;

𝜋
𝑒

1
(𝑞
2
) =

𝑞
2
(𝑎 − 𝑞

2
− 𝑐 − 𝑠)

2
,

(31)

where 𝜋𝑙
1
(𝑞
1
) = 0, 𝜋min

1
(𝑞
1
) = 0, 𝜋𝑙

2
(𝑞
2
) = 0, 𝜋min

2
(𝑞
2
) = 0.

According to the definition of reciprocal equity equilibrium,
in the transaction of preponderant metal mineral resources,
the friendliness function between oligopolist 1 and oligopolist
2 is

𝑓
1
(𝑞
1
, 𝑞
2
) =

1

2
−

𝑞
1

𝑎 − 𝑞
2
− 𝑐 − 𝑠

,

𝑓
2
(𝑞
1
, 𝑞
2
) =

1

2
−

𝑞
2

𝑎 − 𝑞
1
− 𝑐 − 𝑠

.

(32)
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Friendliness belief between oligopolist 1 and oligopolist 2
is

𝑓
2
(𝑞
1
, 𝑞
2
) =

1

2
−

𝑞
2

𝑎 − 𝑞
1
− 𝑐 − 𝑠

,

𝑓
1
(𝑞
1
, 𝑞
2
) =

1

2
−

𝑞
1

𝑎 − 𝑞
2
− 𝑐 − 𝑠

.

(33)

According to the definition of (29) and (33), the utility
functions of different players in preponderant metal mineral
resources development are

𝑈
1
(𝑞
1
, 𝑞
2
, 𝑞
1
) = 𝜋
1
(𝑞
1
, 𝑞
2
) + 𝑓
2
(𝑞
1
, 𝑞
2
) + [1 + 𝑓

1
(𝑞
1
, 𝑞
2
)]

= 𝑞
1
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)

+ [
1

2
−

𝑞
2

𝑎 − 𝑞
1
− 𝑐 − 𝑠

]

× [
3

2
−

𝑞
1

𝑎 − 𝑞
2
− 𝑐 − 𝑠

] ,

(34)

𝑈
1
(𝑞
1
, 𝑞
2
, 𝑞
1
) = 𝜋
2
(𝑞
1
, 𝑞
2
) + 𝑓
1
(𝑞
1
, 𝑞
2
) [1 + 𝑓

1
(𝑞
1
, 𝑞
2
)]

= 𝑞
2
(𝑎 − 𝑞

1
− 𝑞
2
− 𝑐 − 𝑠)

+ [
1

2
−

𝑞
1

𝑎 − 𝑞
2
− 𝑐 − 𝑠

]

× [
3

2
−

𝑞
2

𝑎 − 𝑞
1
− 𝑐 − 𝑠

] .

(35)

Combine (34) with (35) to get the first-order optimal
solution, thus obtaining Cournot equilibrium solution under
reciprocal equity equilibrium:

𝑞
∗∗∗∗

1
=
1

2
(
4𝑎 − 4𝑐 − 4𝑠

3
−

√3 + (𝑎 − 𝑐 − 𝑠)
2

3

−
2 (𝑎𝑐 + 𝑎𝑠)√3 + (𝑎 − 𝑐 − 𝑠)

2

9
)

+
1

2
(
(𝑐 + 𝑠)

2√3 + (𝑎 − 𝑐 − 𝑠)
2

9

+
𝑎
2√3 + (𝑎 − 𝑐 − 𝑠)

2

9

−
[3 + (𝑎 − 𝑐 − 𝑠)

2
]
3/2

9
) ,

𝑞
∗∗∗∗

2
=
1

3
(2𝑎 − 2𝑐 − 2𝑠 − √3 + (𝑎 − 𝑐 − 𝑠)

2
) .

(36)

It could be seen in (30) that 𝑞∗∗∗∗
2

< (1/3)(2𝑎 − 2𝑐 − 2𝑠 −

√(𝑎 − 𝑐 − 𝑠)
2
) = (𝑎 − 𝑐 − 𝑠)/3 = 𝑞

∗∗

2
; similarly, 𝑞∗∗∗∗

1
< 𝑞
∗∗

1
. It

suggests that after considering reciprocal equity preferences,
the total market output of preponderant metal mineral
resources is reduced and the degree of market monopoly is
higher. The demand price elasticity of preponderant metal
mineral resources is rather small for the reason that they are
industrial rawmaterials and hard to be replaced. Given recip-
rocal equity equilibrium, the market capacity is decreased
and then caused higher prices. The greater producer surplus
is strategic reciprocal value produced by reciprocal equity
preference, which should be included in compensation value
system. If oligopolist 1 and oligopolist 2 are present two
countries, it is observed that two countries having reciprocal
equity intention could enhance their metal mineral resources
market monopoly status, thereby obtaining pricing power for
themselves. It also explains the reasonwhyChina should obey
reciprocal equality principles in international trade.

4. Simulation Analysis

As has been observed from (20), (26), and (36), oligarchs’
social preferences in preponderant metal market, that is,
altruism preference, inequity aversion, and reciprocal fair-
ness, produce psychological effects, which raise the power
of oligarch market and change output decision (reducing
production) of each oligarch by being blend in decision
function.Therefore, market capacity is decreased and price of
supply and demand is increased. Considering the significance
of preponderant metals, their demand is rigid, so developers
has larger producer surplus, which is strategic reciprocal
value produced by reciprocal fairness. However, it can be
seen from equilibrium results of the above four equations
that forms of strategic value are various. So the method of
numerical simulation is used to verify as follows.

4.1. Original Basic Parameter Setting. According to the mar-
ket supply and demand of lithium, antimony, indium, rare
earth, and the national industrial policy as well as the
regression analysis of the Cournot linear demand function,
the spontaneous demand stabilized at around 2,000 tons, so
𝑎 in the Cournot model can take the value 2000, namely,
𝑎 = 2000, by analyzing the tax subjects of preponderant
mental mineral resources development, namely, the prop-
erty cost (mineral resources compensation, resource tax),
mining costs (outlay of exploration, outlay of mining),
investment capital (capital investment per ton of mineral
resources), production costs (raw materials, power costs,
wages and benefits, manufacturing costs, processing fees,
finance charges, and operating expenses), security costs
(safety training, disinfection equipment, risk assessment
costs, occupational funds, and pension), and part of the
measurable environmental governance operating costs (water
pollution, air pollution, waste pollution, and heavy metal
pollution), and environmental restoration costs (mine land
reclamation bond, tailings management costs, and mine
environmental geology warning inputs). Based on tax sub-
jects above and the statistical analysis of preponderant
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Figure 1: The sensitivity analysis of Cournot equilibrium output to altruism preference coefficient.

metal development compensation enterprises, the basic cost
𝑐 of preponderant mental mineral resources development
compensation enterprises is about 800 units; original basic
parameter setting in Section 4.1 is obtained by regression
estimation in last 10 years, so it conforms to the market
situation. Thus the results of numerical simulation could
support the application of practical program.The sustainable
development fund is used to measure modification of inter-
generational compensation, estimates depletion costs of rare
earth, lithium, and indium by modified user cost approach
and gains the proportion of depletion cost to total cost is
20%. The depletion cost is the reflection of intergenerational
compensation modification actually, so the value of sustain-
able development fund 𝑠 of intergeneration equity is 160
units.

4.2. Impacts Exerted on Cournot Equilibrium by Coefficients
of Altruism Preference and Inequity Aversion. Reciprocal
equity Cournot equilibrium variation under reciprocal equity
preference has the consistent results with classic Cournot
equilibrium, so numerical simulation is not needed to analyze
its character. However, Cournot equilibrium under social
preferences produces a new equilibriumbringing about a new
character, on account of the variation of altruism preferences
and the loss aversion of inequity aversion; thus, numerical
simulation is required. Altruism preference coefficients fall
in the interval (0, 1) revealed by game experiments and mod-
ified game experiments of altruism preference and inequity
aversion preference, such as, ultimatum game, dictator game,
public good games, gift exchange game, and third-party pun-
ishment game. While the distribution of inequity aversion
coefficients has the following features, as is shown in Table 1.

4.2.1. Simulation Results of Impact Exerted on Cournot Equi-
librium by Altruism Preference. Altruism preference coeffi-
cients could be obtained by game experiments and impacts
exerted onCournot equilibriumdecision-making by altruism
preference could be simulated by (20) and (21). The specific
content is shown in Figure 1.

As can be seen from Figure 1, the Cournot equilibrium
output under altruism preference modified by intergenera-
tional equity is changing as follows. In a certain condition,
the altruism degree of oligopolist 2 is in proportion to that
of oligopolist 1, namely, the bigger the altruism coefficient of
oligopolist 2 is, the smaller the Cournot equilibriumoutput of
oligopolist 1 is, and vice versa.This result is in accordancewith
the experiment result of pure altruism preference. According
to Cournot equilibrium and analysis framework of supply
and demand, the reduction of Cournot equilibrium output
will raise price in preponderant mental market, while to
those preponderant mental resources lacking price elasticity
of demand, price increase will lead to producer surplus
increase, which is the strategic value of development and
compensation of preponderant metal resources.

4.2.2. Simulation Results of Impact Exerted on Cournot Equi-
librium by Inequity Aversion. Inequity aversion coefficients
could be obtained by game experiments and impacts exerted
on Cournot equilibrium decision-making by inequity aver-
sion which could be simulated by (26) and (28). The specific
content is shown in Figure 2.

As can be seen from Figure 2, Cournot equilibrium out-
put under intergenerational equity correction when inequity
aversion is considered is smaller than that when they are
not considered. The oligopolists under inequity aversion
lift the degree of market monopoly of preponderant metal
mineral resources. Besides, the higher the degree of jealousy
preference is, the larger the Cournot equilibrium output will
be, while as to sympathy preference, the result is completely
opposite. These results are consistent with the results of the-
oretical model; namely, Cournot equilibrium under inequity
aversion has the character of loss aversion.

5. Conclusions

This paper analyzes the modification of intergenerational
equity and social preferences to fiducial value of preponder-
ant metal mineral resources and qualifies the impacts exerted
on Cournot equilibrium by interdependence preferences
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Table 1: The distribution of jealousy and sympathy preferences coefficients 𝛼 and 𝛽 under inequity aversion.

Value and proportion of 𝛼 Value and proportion of 𝛽
Value of 𝛼 Proportion (%) Value of 𝛽 Proportion (%)
𝛼 = 0 20 𝛽 = 0 30
𝛼 = 0.5 65 𝛽 = 0.25 45
𝛼 = 1 10 𝛽 = 0.6 10
𝛼 = 4 5 𝛽 = 0.6 5

(altruism preference, inequity aversion, and reciprocal equity
preference), thus drawing the following conclusions.

(1) Considering the intergenerational equity and social
preferences in preponderant metal mineral resources
development, Cournot equilibrium market capacity
becomes smaller. Because preponderant metal min-
eral resources are significant to national security
and industrial development and hard to replace, the
demand of those prices is rigid. Therefore, when
Cournot equilibrium decreases, oligopolist’s prof-
its increase; that is, oligopolist’s producer surplus
increases. The variation of producer surplus is inter-
generational equity compensation value and strategic
value when intergenerational equity and social pref-
erences blend into Cournot game.

(2) However, the impact exerted on Cournot market
power by social preferences is inconsistent. Varia-
tion of altruism Cournot equilibrium and reciprocal
equity Cournot equilibrium are consistent, while
Cournot equilibrium under inequity aversion has the
characteristic of loss aversion, namely, under the con-
sideration of inequity aversion Cournot competition,
Cournot Nash equilibrium transform monotonically
with sympathy and jealousy inequity aversion; that is,
if the jealousy degree of oligopoly increased, Cournot
Nash equilibrium is near the perfect competition out-
put equilibrium; if the sympathy degree of oligopoly
increased, Cournot Nash equilibrium is near the
optimal collusion equilibrium output.

The results indicate that the essence of price distortion
of preponderant metal mineral resources is incomplete value

realization and resource value compensation inequity, failing
to realize the goal of mineral resources price reform, namely,
two basic conditions for the reform are not satisfied. The
production value of mineral resources is achieved through
spontaneous effect of themarket for its relevance to efficiency.
However, the property value, intragenerational value, and
intergenerational value of mineral resources are difficult
to realize spontaneously on account of their public char-
acteristic under market effect. It is difficult for market-
oriented reform of mineral resources price to fully realize the
mineral resources value and provide a fundamental guarantee
for sufficient and reasonable compensation. Therefore, to
achieve the goal of mineral resources price reform, it is
necessary to reconstruct value compensation system of metal
mineral resources development. According to redefinition of
preponderant metal mineral resources development under
the principle of multiple equilibrium value evaluation, the
actual negotiated pricing mechanism is classified based on
mineral resources pricing mechanism of multiple equilib-
rium evaluation models; that is, pricing should fully reflect
the complete elements of mineral resources and coordinate
interests between players. As to practical operation scheme
of current resources tax reform, value measurement of
preponderant metal mineral resources development com-
pensation should analyze from not only development and
utilization results but also the perspective of strategic recip-
rocal psychology. Besides, the value system of preponderant
metalmineral resources development compensation contains
economic value and ecological value as well as strategic
value. Furthermore, since social preferences are added into
the value system of preponderant metal mineral resources
development compensation, the market monopoly degree
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will be strengthened and development compensation price
will be higher, which require perfect tax subjects and establish
full cost theory system, thus estimating mineral resources
value correctly and making the international trade fair prices
tend to rationalization.
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A class of fractional order three-point boundary value system with resonance is investigated in this paper. Using some techniques
of inequalities, a completely new method is incorporated. We transform the problem into an integral equation with a pair of
undetermined parameters. The topological degree theory is applied to determine the particular value of the parameters so that
the system has a solution.

1. Introduction

In this paper, we consider the following fractional differential
system:

𝐷
𝛼

0+
𝑋 (𝑡) + 𝑓 (𝑡, 𝑋 (𝑡)) = 0,

0 < 𝑡 < 1, 𝑋 = (𝑥
1

(𝑡) , 𝑥
2

(𝑡)) ,

𝑋 (0) = 𝑌 (0) = 0, 𝑋 (1) =
1

𝜂𝛼−1
𝑋 (𝜂) , 0 < 𝜂 < 1,

(1)

where 𝐷
𝛼

0+
is standard Riemann-Liouville fractional deriva-

tive of order 1 < 𝛼 ≤ 2, 0 < 𝜂 < 1 and 𝑓 = (𝑓
1
, 𝑓
2
) is a

nonlinear two-dimension continuous vector function.
In the last few decades, many authors have focused on the

dynamics of differential equations [1–7]; most of them have
investigated fractional differential equations which have been
applied in many fields such as physics, mechanics, chemistry,
and engineering; see [8–13]. In particular, the positive solu-
tions of the boundary value problem have attracted many
authors’ attention [14–25].

Recently, the existence of solutions of three-point bound-
ary value problem

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = 𝛽𝑢 (𝜂) , 0 < 𝜂 < 1,

(2)

where 𝐷
𝛼

0+
is standard Riemann-Liouville fractional deriva-

tive of order 1 < 𝛼 ≤ 2 has been studied by many authors
under the case that 𝛽𝜂 < 1. They obtained some nice results
by using some fixed point theorems; see [26–28].

In [29], Ahmad andNieto considered the existence results
for following three-point boundary value problem for a
coupled system of nonlinear fractional differential equations
given by

𝐷
𝛼

0+
𝑢 (𝑡) = 𝑓 (𝑡, V (𝑡) , 𝐷

𝑝

0+
V (𝑡)) = 0, 0 < 𝑡 < 1,

𝐷
𝛽

0+
V (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡) , 𝐷

𝑞

0+
𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = 𝛾𝑢 (𝜂) ,

V (0) = 0, V (1) = 𝛾V (𝜂) ,

(3)

where 1 < 𝛼, 𝛽 < 2, 𝑝, 𝑞, 𝛾 > 0, 0 < 𝜂 < 1, 𝛼 − 𝑞 ≥ 1, 𝛽 − 𝑝 ≥

1, 𝛾𝜂
𝛼−1

< 1, 𝛾𝜂
𝛽−1

< 1, 𝐷
𝛼

0+
is standard Riemann-Liouville

fractional derivative and 𝑓, 𝑔 : [0, 1] × 𝑅 × 𝑅 → 𝑅 are given
continuous functions. An existence result was proved in their
paper by applying the Schauder fixed point theorem.

However, few authors have investigated fractional differ-
ential boundary value problems with resonance [1, 2, 30–32].

In this paper, we establish some sufficient conditions
for the existence of the boundary value system (1) by using
intermediate value theorems. To present the main results,
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we assume that 𝑓(𝑡, 𝑋) = (𝑓
1
(𝑡, 𝑋), 𝑓

2
(𝑡, 𝑋)) satisfies the

following.
(𝐻) 𝑓(𝑡, 𝑋) ∈ 𝐶([0, 1] × 𝑅 × 𝑅, 𝑅 × 𝑅), 𝑋 = (𝑥

1
, 𝑥
2
) ∈

𝑅 × 𝑅. Suppose that there exist nonnegative functions
𝑎
𝑖
(𝑡), 𝑏
𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2), with 𝑏

11
(𝑡) > 0, 𝑏

22
(𝑡) > 0,

𝑏
𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗) ≤ 𝑏

11
(𝑡), 𝑏
22

(𝑡) for any 𝑡 ∈ [0, 1]

such that
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝑡, 𝑡
𝛼−1

𝑋)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
𝑖 (𝑡) + 𝑏

𝑖1 (𝑡)
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨
𝑝𝑖

+ 𝑏
𝑖2 (𝑡)

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨
𝑞𝑖

, 𝑖 = 1, 2,

(4)

where 0 ≤ 𝑝
𝑖
, 𝑞
𝑖

≤ 1 (𝑖 = 1, 2), 𝑞
1

< 𝑝
1
, and

𝑝
2

< 𝑞
2
. For any real numbers 𝑎 and 𝑏, the functions

𝑓
𝑖
(𝑡, 𝑡
𝛼−1

(𝑢, V)) (𝑖 = 1, 2) satisfy

lim
V→+∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑢, V)) > −∞,

lim
V→−∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑢, V)) < +∞,

for any 𝑢 ∈ 𝑅, 𝑡 ∈ (0, 1] ,

(5)

lim
V→+∞

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢, V)) > −∞,

lim
V→−∞

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢, V)) < +∞,

for any V ∈ 𝑅, 𝑡 ∈ (0, 1] .

(6)

Furthermore, assume that

lim
V→+∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(V, 𝑢 (V))) = +∞,

for any 𝑢 (V) ≥ − |V| , 𝑡 ∈ (0, 1] ,

lim
V→−∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(V, 𝑢 (V))) = −∞,

for any 𝑢 (V) ≤ |V| , 𝑡 ∈ (0, 1] ,

(7)

lim
V→+∞

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢 (V) , V)) = +∞,

for any 𝑢 (V) ≥ − |V| , 𝑡 ∈ (0, 1] ,

lim
V→−∞

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢 (V) , V)) = −∞,

for any 𝑢 (V) ≤ |V| , 𝑡 ∈ (0, 1] .

(8)

We have the following results.

Theorem 1. Assume that (𝐻) holds. If

max
1≤𝑖≤2

{∫

1

0

𝐺
∗

(𝑠, 𝑠) (𝑏
𝑖1

(𝑠) + 𝑏
𝑖2

(𝑠)) 𝑑𝑠} < 1, (9)

where

𝐺
∗

(𝑠, 𝑠) =
1

Γ (𝛼) (1 − 𝜂𝛼−1)

× {
(1 − 𝑠)

𝛼−1
− (𝜂 − 𝑠)

𝛼−1
, 0 ≤ 𝑠 ≤ 𝜂,

(1 − 𝑠)
𝛼−1

, 𝜂 ≤ 𝑠 ≤ 1,

(10)

then (1) has at least one solution in [0, 1].

Also, we consider the following special case of (𝐻) as
follows.

(𝐻̃) 𝑓(𝑡, 𝑋) ∈ 𝐶([0, 1] × 𝑅 × 𝑅, 𝑅 × 𝑅), 𝑋 = (𝑥
1
, 𝑥
2
) ∈

𝑅 × 𝑅. Suppose that there exist nonnegative functions
𝑎
𝑖
(𝑡), 𝑏
𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2), with 𝑏

11
(𝑡) > 0, 𝑏

22
(𝑡) > 0,

𝑏
𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗) ≤ 𝑏

11
(𝑡), 𝑏
22

(𝑡) for any 𝑡 ∈ [0, 1]

such that
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝑡, 𝑡
𝛼−1

𝑋)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
𝑖
(𝑡) + 𝑏

𝑖1
(𝑡)

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨
𝑝𝑖

+ 𝑏
𝑖2

(𝑡)
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨
𝑞𝑖

, 𝑖 = 1, 2,

(11)

where 0 ≤ 𝑝
𝑖
, 𝑞
𝑖

≤ 1 (𝑖 = 1, 2), 𝑞
1

< 𝑝
1
, and 𝑝

2
< 𝑞
2
.

The functions 𝑓
𝑖
(𝑡, 𝑡
𝛼−1

(𝑢, V)) (𝑖 = 1, 2) satisfy

lim
V→±∞

󵄨󵄨󵄨󵄨󵄨
𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑢, V))
󵄨󵄨󵄨󵄨󵄨

< ∞ for any 𝑢 ∈ 𝑅, 𝑡 ∈ (0, 1] ,

(12)

lim
𝑢→±∞

󵄨󵄨󵄨󵄨󵄨
𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢, V))
󵄨󵄨󵄨󵄨󵄨

< ∞ for any V ∈ 𝑅, 𝑡 ∈ (0, 1] .

(13)

Furthermore, assume that (7) and (8) hold.

FromTheorem 1, we have the following corollary.

Corollary 2. Assume that (𝐻̃) and (9) hold; then (1) has at
least one solution in [0, 1].

2. Some Lemmas

In this section, we first introduce some definitions and
preliminary facts and some lemmas which will be used in this
paper.

Definition 3 (see [21]). The fractional integral of order 𝛼 > 0

of a function 𝑦 : (0, ∞) → 𝑅 is given by

𝐼
𝛼

0+
𝑦 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑦 (𝑠) 𝑑𝑠 (14)

provided that the right integral converges.

Definition 4 (see [21]). The standard Riemann-Liouville frac-
tional derivative of order 𝛼 > 0 of a continuous function
𝑦 : (0, ∞) → 𝑅 is given by

𝐷
𝛼

0+
𝑦 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑦 (𝑠) 𝑑𝑠, (15)

where 𝑛 = [𝛼] + 1, provided that the right integral converges.

Lemma 5 (see [21]). Assume that 𝑢 ∈ 𝐶(0, 1) ∩ 𝐿(0, 1) with
a fractional derivative of order 𝛼 > 0 that belongs to 𝐶(0, 1) ∩

𝐿(0, 1).Then

𝐼
𝛼

0+
𝐷
𝛼

0+
𝑦 (𝑡) = 𝑦 (𝑡) + 𝐶

1
𝑡
𝛼−1

+ 𝐶
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝐶
𝑛
𝑡
𝛼−𝑛

, (16)

for some 𝐶
𝑖

∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the smallest integer
greater than or equal to 𝛼.
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The following lemma is a fixed point theorem in a
particular Banach space:

Ω = {(𝑥 (𝑡) , 𝑦 (𝑡)) | 𝑥 (𝑡) , 𝑦 (𝑡) ∈ 𝐶 ([0, 1] , 𝑅)} , (17)

equipped with the norm

󵄩󵄩󵄩󵄩(𝑥 (𝑡) , 𝑦 (𝑡))
󵄩󵄩󵄩󵄩 = max{max

𝑡∈[0,1]

|𝑥 (𝑡)| , max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨} .

(18)

It is easy to show that if 𝑋(𝑡) ∈ Ω, then 𝑡
𝛼−1

𝑋(𝑡) ∈ Ω.

Lemma 6 (see [33]). Let 𝑋 be a Banach space with 𝐶 ⊂ 𝑋

closed and convex. Assume that 𝑈 is a relatively open subset of
𝐶 with 0 ∈ 𝑈 and 𝑇 : 𝑈 → 𝐶 is completely continuous. Then
either

(i) 𝑇 has a fixed point in 𝑈, or
(ii) there exist an 𝑢 ∈ 𝜕𝑈 and 𝛾 ∈ (0, 1) with 𝑢 = 𝛾𝑇𝑢.

To use this lemma to prove our main result, we need
transfer (1) into an integral operator.

Lemma 7 (see [34]). Problem (1) is equivalent to the following
integral equation:

𝑋 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑋 (𝑠)) 𝑑𝑠 + 𝑋 (1) 𝑡
𝛼−1

, (19)

where

𝐺 (𝑡, 𝑠)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

− 𝑡
𝛼−1

(𝜂 − 𝑠)
𝛼−1

− (1 − 𝜂
𝛼−1

) (𝑡 − 𝑠)
𝛼−1

) × (Γ (𝛼) (1 − 𝜂
𝛼−1

))
−1

,

0 ≤ 𝑠 ≤ min {𝑡, 𝜂} ≤ 1;

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

− 𝑡
𝛼−1

(𝜂 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
,

0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 ≤ 1;

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

− (1 − 𝜂
𝛼−1

) (𝑡 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
,

0 ≤ 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1;

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
, 0 ≤ max {𝑡, 𝜂} ≤ 𝑠 ≤ 1.

(20)

Lemma 8 (see [34]). For any (𝑡, 𝑠) ∈ [0, 1] × [0, 1], 𝐺(𝑡, 𝑠) is
continuous, and 𝐺(𝑡, 𝑠) > 0 for any (𝑡, 𝑠) ∈ (0, 1) × (0, 1).

Let

𝐺 (𝑡, 𝑠) = 𝑡
𝛼−1

𝐺
∗

(𝑡, 𝑠) , (21)

where
𝐺
∗

(𝑡, 𝑠)

=

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

− (1 − 𝜂
𝛼−1

) (1 − 𝑠/𝑡)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
,

0 ≤ 𝑠 ≤ min {𝑡, 𝜂} ≤ 1;

(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 ≤ 1;

(1 − 𝑠)
𝛼−1

− (1 − 𝜂
𝛼−1

) (1 − 𝑠/𝑡)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
,

0 ≤ 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1;

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
, 0 ≤ max {𝑡, 𝜂} ≤ 𝑠 ≤ 1.

(22)

Then (1) is equivalent to the following integral equation:

𝑋 (𝑡) = ∫

1

0

𝑡
𝛼−1

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑋 (𝑠)) 𝑑𝑠 + 𝑋 (1) 𝑡
𝛼−1

. (23)

The new Green’s function 𝐺
∗
(𝑡, 𝑠) has the following proper-

ties.

Lemma 9 (see [34]). 𝐺
∗
(𝑡, 𝑠) is continuous for (𝑡, 𝑠) ∈ (0, 1) ×

(0, 1) and
lim
𝑡→0
+

𝐺
∗

(𝑡, 𝑠)

:= 𝐺
∗

(0, 𝑠)

=

{{{{{{{

{{{{{{{

{

1

Γ (𝛼) (1 − 𝜂𝛼−1)

× {(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

} , 0 ≤ 𝑠 ≤ 𝜂;

1

Γ (𝛼) (1 − 𝜂𝛼−1)
(1 − 𝑠)

𝛼−1
, 𝜂 ≤ 𝑠 ≤ 1.

(24)

Furthermore, 𝐺
∗
(𝑡, 𝑠) > 0 for (𝑡, 𝑠) ∈ (0, 1) × (0, 1).

Lemma 10 (see [34]). 𝐺
∗
(𝑡, 𝑠) is nonincreasing with respect to

𝑡 ∈ [0, 1] for any 𝑠 ∈ (0, 1). In particular, for any 𝑠 ∈ [0, 1],
𝜕𝐺
∗
(𝑡, 𝑠)/𝜕𝑡 ≤ 0, and 𝜕𝐺

∗
(𝑡, 𝑠)/𝜕𝑡 = 0 for 𝑡 ∈ [0, 𝑠]. That is,

𝐺
∗
(1, 𝑠) ≤ 𝐺

∗
(𝑡, 𝑠) ≤ 𝐺

∗
(𝑠, 𝑠), where

𝐺
∗

(1, 𝑠) =
1

Γ (𝛼) (1 − 𝜂𝛼−1)

×
{

{

{

𝜂
𝛼−1

(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝜂;

𝜂
𝛼−1

(1 − 𝑠)
𝛼−1

, 𝜂 ≤ 𝑠 ≤ 1,

𝐺
∗

(𝑠, 𝑠) =
1

Γ (𝛼) (1 − 𝜂𝛼−1)

×
{

{

{

(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝜂;

(1 − 𝑠)
𝛼−1

, 𝜂 ≤ 𝑠 ≤ 1.

(25)
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Let

𝑋 (𝑡) = 𝑡
𝛼−1

𝑌 (𝑡) . (26)

Then 𝑋(1) = 𝑌(1), and (23) gives

𝑌 (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

𝑌 (𝑠)) 𝑑𝑠 + 𝑌 (1) . (27)

Let

𝑊 (𝑡) = 𝑌 (𝑡) − 𝑌 (1) . (28)

Then 𝑌(𝑡) = 𝑊(𝑡) + 𝑌(1), and 𝑊(1) = 𝑌(1) − 𝑌(1) = 0. From
(27), (28) can be rewritten as

𝑊 (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝑌 (1))) 𝑑𝑠 (29)

with 𝑊(1) = 0. Now the integral equation (27) is equivalent to
(29). It can be seen from (29) that the solution 𝑊(𝑡) of (29) is
dependent on the value 𝑌(1). Now, instead of (29), we replace
𝑌(1) with a real vector 𝜅 = (𝜇, ]) and consider

𝑊 (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠. (30)

For any 𝜅 = (𝜇, ]), let

𝐾 = {𝑊 (𝑡) = (𝑤
1

(𝑡) , 𝑤
2

(𝑡)) ∈ Ω} , (31)

equipped with the norm ‖𝑊(𝑡)‖ = max{max
𝑡∈[0,1]

𝑤
1
(𝑡),

max
𝑡∈[0,1]

𝑤
2
(𝑡)}. Define an operator 𝑇 in 𝐾 as follows:

𝑇𝑊 (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠. (32)

Using a similar method of Lemmas 3.5 and 3.6 in [34], we
obtain that 𝑇 is completely continuous in 𝐾, and (30) has at
least a solution 𝑊(𝑡) for any given real constant vector 𝜅; the
solution 𝑊(𝑡) is dependent on the given vector 𝜅. We note the
solution 𝑊(𝑡) := 𝑊

𝜅
(𝑡).

3. The Proof of Theorem 1

From Lemma 10, for any real vector 𝜅, the integral equation
(30) has at least a solution 𝑊(𝑡). Therefore, to show that
problem (1) has a solution, it remains to show that there exists
a 𝜅 = (𝜇, ]), such that 𝑊(1) = 0, or 𝑌(1) = 𝜅 = (𝜇, ]).

In what follows, we will use the method of topological
degree to prove our main result.

Let𝐷 be an open subset of the plane𝑅
2 with the boundary

𝜕𝐷 being a simple closed curve; 𝑇̃ is a continuous mapping
from𝐷 = 𝐷∪𝜕𝐷 to𝑅

2. Let (𝑐, 𝑑) ∈ 𝑅
2. Denote by𝐴 a variable

point on the boundary 𝜕𝐷. As 𝐴 traverses the boundary,
assume that its image 𝑇̃(𝐴) traces out a closed curve that does
not pass through the point (𝑐, 𝑑). As in complex analysis, we
can define the winding number of this curve with respect
to (𝑐, 𝑑), by measuring the total change of the argument of
the vector joining (𝑐, 𝑑) and the variable point 𝑇̃(𝐴). For
two-dimensional space, this number is equivalent to the
topological degree of the mapping 𝑇̃ at (𝑐, 𝑑).

We introduce a proposition from [8] as follows.

Proposition 11. If the degree of a continuous mapping 𝑇̃ with
respect to a point (𝑐, 𝑑) is nonzero, then the equation 𝑇̃(𝜇, ]) =

(𝑐, 𝑑) has a solution (𝜇, ]) ∈ 𝐷.

From Section 2, for any parameters 𝜇, ], 𝜅 = (𝜇, ]), there
exists a solution 𝑊

𝜅
(𝑡) of (30). At the point 𝑡 = 1, we denote

𝑤
1
(1) := 𝜃, 𝑤

2
(1) := 𝜗. It is obvious that the parameters 𝜃,

𝜗 depend on the parameters 𝜇, ], so we define a map 𝑇̃ as
follows:

𝑇̃ (𝜇, ]) = (𝜃, 𝜗) . (33)

Therefore, if we can find a domain 𝐷 with its boundary
as a closed curve 𝐿, so that its image 𝑇̃(𝐿) contains the point
(0, 0) in it, then it is implied by Proposition 11 that there exists
a point 𝜅

0
= (𝜇
0
, ]
0
) in 𝐷 such that 𝑇̃(𝜇

0
, ]
0
) = (0, 0). Thus,

the function 𝑌(𝑡) = 𝑊
𝜅0

(𝑡) + 𝜅
0

= 𝑊(𝑡) + 𝑌(1) is a solution of
(29), where

𝑊
𝜅0

(𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊
𝜅0

(𝑠) + 𝜅
0
)) 𝑑𝑠. (34)

We now proceed to find such 𝐿. For convenience, we take
a curve 𝐿 = 𝑃𝑄𝑅𝑆, where 𝑃 = (−𝜇

∗
, −]∗), 𝑄 = (−𝜇

∗
, ]∗),

𝑅 = (𝜇
∗
, ]∗), 𝑆 = (𝜇

∗
, −]∗), and 𝑃𝑄, 𝑄𝑅, 𝑅𝑆, and 𝑆𝑃 are a

part of line. The image 𝑇̃(𝑃𝑄𝑅𝑆) = 𝑃
󸀠
𝑄
󸀠
𝑅
󸀠
𝑆
󸀠. We want to

show that the point (𝜃, 𝜗) = (0, 0) is inside the closed curve
𝑃
󸀠
𝑄
󸀠
𝑅
󸀠
𝑆
󸀠 as the parameters 𝜇

∗, 𝜇
∗, and ]∗ are large enough.

In fact, we will prove that the line 𝑃
󸀠
𝑄
󸀠(𝑅󸀠𝑆󸀠) lies in the left

(right) side of the 𝜗-axis, and the line 𝑄
󸀠
𝑅
󸀠(𝑆󸀠𝑃󸀠) lies above

(under) the 𝜃-axis as 𝜇
∗, 𝜇
∗, and ]∗ are large enough.

Let

𝑎
1

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠, 𝑏
11

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠,

𝑏
12

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠,

𝑎
2

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
2 (𝑠) 𝑑𝑠, 𝑏

21
= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
21 (𝑠) 𝑑𝑠,

𝑏
22

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22 (𝑠) 𝑑𝑠.

(35)

From (9) and (𝐻), 𝑎
1
, 𝑎
2

≥ 0 and 0 < 𝑏
11

, 𝑏
12

, 𝑏
21

, 𝑏
22

< 1,
and 𝑏
12

< 𝑏
11
, 𝑏
21

< 𝑏
22
, we may take 𝜇

∗, 𝜇
∗, and ]∗ large

enough satisfying

𝜇
∗

=
𝑏
12

𝑏
11

]∗, (36)

𝜇
∗

=
𝑏
22

𝑏
21

]∗. (37)
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Then, the points 𝑃, 𝑄, 𝑅, and 𝑆 can be expressed as follows:

𝑃 = (−
𝑏
12

𝑏
11

]∗, −]∗) ,

𝑄 = (−
𝑏
12

𝑏
11

]∗, ]∗) ,

𝑅 = (
𝑏
22

𝑏
21

]∗, ]∗) ,

𝑆 = (
𝑏
22

𝑏
21

]∗, −]∗) .

(38)

Now the proof of Theorem 1 is reduced as the following
lemmas.

Lemma 12. Suppose that (𝐻) and (9) hold. Then, for ]∗ large
enough, 𝑃

󸀠 lies in the third quadrant.

Proof. From (30), we have

𝑊
𝜅

(1) := 𝑊 (1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠.

(39)

By the definition of 𝜃, 𝜗 in (33), wemay rewrite (39) as follows:

𝜃
𝜅

= 𝑤
1

(1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠,

𝜗
𝜅

= 𝑤
2

(1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠.

(40)

Let 𝜅
∗

= (−𝜇
∗
, −]∗) = (−(𝑏

12
/𝑏
11

)]∗, −]∗). From (40), we
have

𝜃
𝜅
∗ = 𝑤

1 (1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅
∗
)) 𝑑𝑠,

𝜗
𝜅
∗ = 𝑤

2 (1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅
∗
)) 𝑑𝑠.

(41)

Nowwe will show that 𝜃
𝜅
∗ , 𝜗
𝜅
∗ → −∞ as ]∗ → ∞. We only

show that lim]∗→∞𝜃
𝜅
∗ = −∞ and the proof of lim]∗→∞𝜗

𝜅
∗ =

−∞ is similar. Assume on the contrary that lim]∗→∞𝜃
𝜅
∗ =

𝑙 > −∞. Thus, there exists a sequence {𝜅
𝑛
} = {(𝜇

𝑛
, ]
𝑛
)}, 𝜇
𝑛

=

(𝑏
12

/𝑏
11

)]
𝑛

< 0 such that lim]𝑛→−∞𝜃
𝑛

= 𝑙 > −∞.
Recall that

𝑤
1𝜅𝑛

(𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠,

𝑤
2𝜅𝑛

(𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠.

(42)

Now we claim that it is impossible to have

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 0, ∀𝑡 ∈ [0, 1] (43)

as −]
𝑛
is sufficiently large. Indeed, assume that (43) is true.

Then, by the first equation of (42), we have

𝑤
1𝜅𝑛

(𝑡) ≤ 0 (44)

for all 𝑡 ∈ [0, 1]. Therefore, we obtain

lim
𝜇𝑛→−∞

(𝑤
1𝜅𝑛

(𝑡) + 𝜇
𝑛
) = lim

]𝑛→−∞
(𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛
) = −∞

(45)

for 𝑡 ∈ [0, 1]. We define some sets as follows:

𝐴
𝑛

= {𝑡 ∈ [0, 1] :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥ 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛
} ,

𝐵
𝑛

= {𝑡 ∈ [0, 1] :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛
} ,

𝐶
𝑛

= {𝑡 ∈ [0, 1] : 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≥ 0} .

(46)

We have assumed in (7) that

lim
V→−∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(V, 𝑢 (V))) = −∞

for any 𝑢 (V) ≤ |V| , 𝑡 ∈ (0, 1] .

(47)

It is easy to show from (42), (𝐻), and our assumption that the
set 𝐵
𝑛
is not empty, and 𝐵

𝑛
⊂ 𝐶
𝑛
. We have the following:

lim
]𝑛→−∞

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐵𝑛

= lim
]𝑛→−∞

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐶𝑛

= lim
]𝑛→−∞

max
𝑡∈𝐵𝑛

𝑤
2𝜅𝑛

(𝑡) = +∞.

(48)

Using conditions (6) and (8), we have from (45) that there
exists a constant 𝑙 such that

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛
, 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛
)) < 𝑙 (49)
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for 𝑡 ∈ [0, 1] \ 𝐶
𝑛
and any 𝑛 large enough. From the second

formula of (42), (45)–(49), one gets

𝑤
2𝜅𝑛

(𝑡) ≤ (∫
[0,1]\𝐶𝑛

+ ∫
𝐶𝑛∩𝐴𝑛

+ ∫
𝐶𝑛∩𝐵𝑛

) 𝐺
∗

(𝑠, 𝑠)

× 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛
, 𝑤
2𝜅𝑛

(𝑠) + ]
𝑛
)) 𝑑𝑠

≤ 𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠

+ ∫
𝐶𝑛∩𝐵𝑛

𝐺
∗

(𝑠, 𝑠)

× 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛
,

𝑤
2𝜅𝑛

(𝑠) (+]
𝑛
) )) 𝑑𝑠

= 𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠

+ ∫
𝐵𝑛

𝐺
∗

(𝑠, 𝑠)

× 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛
,

𝑤
2𝜅𝑛

(𝑠) + ]
𝑛
)) 𝑑𝑠

≤ 𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡) +
𝑏
21

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝2

𝐵𝑛

∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
21 (𝑠) 𝑑𝑠

+
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑞2

𝐵𝑛

∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22 (𝑠) 𝑑𝑠

≤ 𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑎
2

+ (𝑏
21

+ 𝑏
22

)
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐶𝑛

,

𝑡 ∈ 𝐶
𝑛
,

(50)
which implies that

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐶𝑛

≤

𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑎
2

1 − 𝑏
21

− 𝑏
22

< ∞. (51)

It contradicts (48).
Thus, for any −]

𝑛
large enough, there exists some 𝑡 ∈

(0, 1], such that
𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0. (52)

Now we define
𝐼
𝑛

= {𝑡 ∈ [0, 1] : 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0} ,

𝐼
󸀠

𝑛
= {𝑡 ∈ [0, 1] : 𝑓

2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0} .

(53)

Then, 𝐼
𝑛
is not empty.

We can further divide the set 𝐼
𝑛
into two sets 𝐼

𝑛
and 𝐼
𝑛
,

and divide the set 𝐼
󸀠

𝑛
into two sets 𝐼󸀠

𝑛
and 𝐼󸀠
𝑛
as follows:

𝐼
𝑛

= {𝑡 ∈ 𝐼
𝑛

| 𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

≤ 0} ,

𝐼
𝑛

= {𝑡 ∈ 𝐼
𝑛

| 𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

> 0} ,

𝐼󸀠
𝑛

= {𝑡 ∈ 𝐼
󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≤ 0} ,

𝐼󸀠
𝑛

= {𝑡 ∈ 𝐼
󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

> 0} .

(54)

It is easy to know that 𝐼
𝑛

∩ 𝐼
𝑛

= 𝜙, 𝐼󸀠
𝑛

∩ 𝐼󸀠
𝑛

= 𝜙 and 𝐼
𝑛

= 𝐼
𝑛

∪ 𝐼
𝑛
,

𝐼
󸀠

𝑛
= 𝐼󸀠
𝑛

∪ 𝐼󸀠
𝑛
.

We claim that the set 𝐼
𝑛
is not empty for −]

𝑛
large enough.

Otherwise, the function 𝑓
1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) is bounded

from above. In fact, assume that 𝑓
1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) is

unbounded from above for −]
𝑛
large enough; then we have

from (𝐻) that there exist a sequence {𝑡
𝑖
} and a subsequence

{]
𝑛𝑖

} of {]
𝑛
} such that

lim
]𝑛𝑖 →−∞

𝑤
2𝜅𝑛𝑖

(𝑡
𝑖
) = ∞,

lim
]𝑛𝑖 →−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛𝑖

(𝑡
𝑖
) +

𝑏
12

𝑏
11

]
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ lim

]𝑛𝑖 →−∞
(𝑤
2𝜅𝑛𝑖

(𝑡
𝑖
) + ]
𝑛𝑖

)

= + ∞.

(55)

Using a similarmethod of (51), we can derive a contradiction.
Therefore, 𝑓

1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) is bounded from above.

From (42),𝑤
1𝜅𝑛

(𝑡) is bounded from above, which implies that
𝑤
1𝜅𝑛

(𝑡) + (𝑏
12

/𝑏
11

)]
𝑛

→ −∞ as ]
𝑛

→ −∞. If 𝐵
𝑛

= 𝜙

(where𝐵
𝑛
is defined in (46)), then lim]𝑛→−∞𝜃

𝑛
= −∞, which

contradicts our assumption. Thus, 𝐵
𝑛

̸= 𝜙. Using a similar
method of getting (51) also gives a contradiction. Therefore,
𝐼
𝑛
is not empty.
Similarly as getting (51) again, we conclude that the

function 𝑓
𝑖
(𝑡, 𝑡
𝛼−1

𝑋) is bounded above by a constant for 𝑡 ∈

[0, 1] and 𝑥
𝑖

∈ (−∞, 0] (𝑖 = 1, 2). From the condition (𝐻), if
𝑤
1𝜅𝑛

(𝑡) + ]
𝑛

> 0 (or 𝑤
2𝜅𝑛

(𝑡) + 𝜇
𝑛

> 0) and 𝑓
2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) +

𝜅
𝑛
)) < 0 (or 𝑓

1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0), then 𝑤

2𝜅𝑛
(𝑡) + ]

𝑛

(or 𝑤
1𝜅𝑛

(𝑡)+𝜇
𝑛
) is also bounded from above by a constant for

𝑡 ∈ [0, 1]. Therefore, from the definition of 𝐼
𝑛
, 𝐼󸀠
𝑛
, there exists

a constant 𝑀 > 1, independent of 𝑡 and ]
𝑛
such that

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 𝑀, for 𝑡 ∈ 𝐼

𝑛
,

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 𝑀, for 𝑡 ∈ 𝐼󸀠

𝑛
,

𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≤ 𝑀

for 𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0, 𝑡 ∈ 𝐼

𝑛
,
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𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

≤ 𝑀,

for 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0, 𝑡 ∈ 𝐼󸀠

𝑛
.

(56)

Let

𝑀
1

(𝜅
𝑛
) = max
𝑡∈𝐼𝑛

𝑤
1𝜅𝑛

(𝑡) . (57)

From the definitions of 𝐼
𝑛
and 𝐼
𝑛
, we have

𝑀
1

(𝜅
𝑛
) = max
𝑡∈𝐼𝑛

𝑤
1𝜅𝑛

(𝑡) =
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛

. (58)

Since 𝐼
𝑛
is not empty, it follows that 𝑀

1
(𝜅
𝑛
) → ∞ as

]
𝑛

→ −∞. Recall from (9) and (35) that 𝑏
𝑖𝑗

< 1 (𝑖, 𝑗 = 1, 2).
Therefore, we can choose ]

𝑛1
> 0 large enough so that

𝑀
1

(𝜅
𝑛
) > max {1, 𝑃

1
, 𝑃
2
} (59)

for ]
𝑛

< −]
𝑛1
, where

𝑃
1

=

𝑀 (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

, (60)

𝑃
2

= (𝑀 ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 − 𝑏
22

+ 𝑏
12

)

+ 𝑏
12

(1 − 𝑏
22

+ 𝑏
21

) + (𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

) )

× ((1 − 𝑏
11

)(1 − 𝑏
22

) − 𝑏
12

𝑏
21

)
−1

.

(61)

Now, for later use, for any integral in a domain 𝐴

∫
𝐴

𝐺
∗

(𝑠, 𝑠) 𝑏
𝑖𝑗

(𝑠) 𝑔 (𝑠) 𝑑𝑠, for 𝑔 (𝑠) > 0, 𝑖, 𝑗 = 1, 2, (62)

we define a subset (𝐴)
1
as

(𝐴)
1

= {𝑡 ∈ 𝐴 | 𝑔 (𝑡) ≥ 1} . (63)

Thus, the integral in (62) can be rewritten as

∫
𝐴

𝐺
∗

(𝑠, 𝑠) 𝑏
𝑖𝑗 (𝑠) 𝑔 (𝑠) 𝑑𝑠 = ∫

(𝐴)1

𝐺
∗

(𝑠, 𝑠) 𝑏
𝑖𝑗 (𝑠) 𝑔 (𝑠) 𝑑𝑠

+ ∫
𝐴\(𝐴)1

𝐺
∗

(𝑠, 𝑠) 𝑏
𝑖𝑗

(𝑠) 𝑔 (𝑠) 𝑑𝑠.

(64)

From (𝐻), (42), and the definitions of 𝐼
𝑛
, 𝐼
𝑛
and 𝐼󸀠
𝑛
, 𝐼󸀠
𝑛
, for

]
𝑛

< −]
𝑛1
, we have

𝑤
1𝜅𝑛

(𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

≤ ∫
𝐼𝑛

𝐺
∗

(𝑡, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

≤ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) (𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

+ 𝑏
12 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1
) 𝑑𝑠

≤ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ ∫
𝐼𝑛\(𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
(𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
(𝐼𝑛∩𝐼
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1
𝑑𝑠

+ ∫
(𝐼𝑛∩([0,1]\𝐼

󸀠

𝑛
))∪((𝐼𝑛∩𝐼

󸀠

𝑛
)\(𝐼𝑛∩𝐼

󸀠

𝑛
)
1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
12 (𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1
𝑑𝑠,

(65)

which yields from (56) and the definition in (63) that

𝑤
1𝜅𝑛

(𝑡) ≤ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1 (𝑠) 𝑑𝑠 + ∫

𝐼𝑛\(𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11 (𝑠) 𝑑𝑠

+ ∫
(𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ ∫
(𝐼𝑛∩𝐼
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ 𝑀 ∫
(𝐼𝑛∩([0,1]\𝐼

󸀠

𝑛
))∪((𝐼𝑛∩𝐼

󸀠

𝑛
)\(𝐼𝑛∩𝐼

󸀠

𝑛
)
1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
12 (𝑠) 𝑑𝑠.

(66)
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Further, one gets from (56) that

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 + 𝑀 ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 (𝑀
1

(𝜅
𝑛
) −

𝑏
12

𝑏
11

󵄩󵄩󵄩󵄩]𝑛
󵄩󵄩󵄩󵄩)

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠 (
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

+
󵄩󵄩󵄩󵄩]𝑛

󵄩󵄩󵄩󵄩)

= 𝑀 (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀
1

(𝜅
𝑛
)

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

,

(67)

which gives

𝑀
1

(𝜅
𝑛
) < 𝑀 (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀
1

(𝜅
𝑛
)

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

.

(68)

That is,

𝑀
1

(𝜅
𝑛
)

<

𝑀 (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

1 − 𝑏
11

.

(69)

If 𝐼
𝑛

∩ 𝐼
󸀠

𝑛
= 𝜙, then we have from (69) that

𝑀
1

(𝜅
𝑛
) <

𝑀 (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

, (70)

which contradicts (59).
If 𝐼
𝑛

∩ 𝐼
󸀠

𝑛
̸= 𝜙, using a similar method of (69), we can

estimate 𝑤
2𝜅𝑛

(𝑡) as

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼󸀠
𝑛

<

𝑀 (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) + 𝑎
2

+ 𝑏
22

+ 𝑏
21

𝑀 (𝜅
𝑛
)

1 − 𝑏
22

.

(71)

Substituting this into (69), we obtain

𝑀 (𝜅
𝑛
)

< (𝑀 (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 − 𝑏
22

+ 𝑏
12

) + 𝑏
12

(1 − 𝑏
22

+ 𝑏
21

))

+ (𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

))

× ((1 − 𝑏
11

)(1 − 𝑏
22

) − 𝑏
12

𝑏
21

)
−1

,

(72)

which finally contradicts (59).Therefore, our result is proved.
Similarly, we can show that lim]∗→∞𝜗

𝜅
∗ = −∞. Thus,

the point 𝑇̃(−𝜇
∗
, −]∗) lies in the third quadrant. The proof is

completed.

Lemma 13. Suppose that (𝐻) and (9) hold. Then, for ]∗ > 0

large enough, 𝑄
󸀠 lies in the second quadrant.

Proof. It suffices to show that lim]∗→∞𝜗
∗

= ∞ and
lim]∗→∞𝜃

∗
= −∞.

First, we claim that lim]∗→∞𝜗
∗

= ∞. On the contrary,
we assume that there exists a sequence {𝜅

𝑛
} = {(𝜇

𝑛
, ]
𝑛
)} =

{(−(𝑏
12

/𝑏
11

)]
𝑛
, ]
𝑛
)} such that lim]𝑛→∞𝜗

𝑛
= 𝑙 < ∞. By a

similarmethod in Lemma 12, we know it is impossible to have

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≥ 0, ∀𝑡 ∈ [0, 1] (73)

as ]
𝑛
is sufficiently large.

Now, for large ]
𝑛
, we define

𝐽
𝑛

= {𝑡 ∈ [0, 1] : 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0} ,

𝐽
󸀠

𝑛
= {𝑡 ∈ [0, 1] : 𝑓

2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0} .

(74)

Then, 𝐽󸀠
𝑛
is not empty.

As in Lemma 12, we can further divide the set 𝐽
𝑛
into two

sets 𝐽
𝑛
and 𝐽
𝑛
and divide the set 𝐽

󸀠

𝑛
into two sets 𝐽󸀠

𝑛
and 𝐽󸀠
𝑛
as

follows:

𝐽
𝑛

= {𝑡 ∈ 𝐽
𝑛

| 𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

≥ 0} ,

𝐽
𝑛

= {𝑡 ∈ 𝐽
𝑛

| 𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

< 0} ,

𝐽󸀠
𝑛

= {𝑡 ∈ 𝐽
󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≥ 0} ,

𝐽󸀠
𝑛

= {𝑡 ∈ 𝐽
󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

< 0} .

(75)

Then 𝐽
𝑛

∩ 𝐽
𝑛

= 𝜙, 𝐽󸀠
𝑛

∩ 𝐽󸀠
𝑛

= 𝜙 and 𝐽
𝑛

= 𝐽
𝑛

∪ 𝐽
𝑛
, 𝐽
󸀠

𝑛
= 𝐽󸀠
𝑛

∪ 𝐽󸀠
𝑛
.

Using a similar method as in the proof of Lemma 12,
we can show that the set 𝐽󸀠

𝑛
is not empty. Furthermore, the

function 𝑓
𝑖
(𝑡, 𝑡
𝛼−1

𝑋) is bounded below by a constant for 𝑡 ∈

[0, 1] and 𝑥
𝑖

∈ [0, ∞) (𝑖 = 1, 2). If 𝑤
2𝜅𝑛

(𝑡) + 𝜇
𝑛

< 0

(or 𝑤
1𝜅𝑛

(𝑡) + ]
𝑛

< 0) and 𝑓
1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0 (or

𝑓
2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡)+𝜅
𝑛
)) > 0), then𝑤

1𝜅𝑛
(𝑡)+]

𝑛
(or𝑤
2𝜅𝑛

(𝑡)+𝜇
𝑛
)
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is also bounded below by a constant for 𝑡 ∈ [0, 1]. From
the definition of 𝐽

𝑛
, 𝐽󸀠
𝑛
and the condition (𝐻), there exists a

constant 𝑀̃ < −1, independent of 𝑡 and ]
𝑛
such that

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≥ 𝑀̃, for 𝑡 ∈ 𝐽

𝑛
,

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≥ 𝑀̃, for 𝑡 ∈ 𝐽󸀠

𝑛
,

𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≥ 𝑀̃

for 𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0, 𝑡 ∈ 𝐽

𝑛
,

𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

≥ 𝑀̃,

for 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0, 𝑡 ∈ 𝐽󸀠

𝑛
.

(76)

Let

𝑚
2

(𝜅
𝑛
) = min
𝑡∈𝐽
󸀠

𝑛

𝑤
2𝜅𝑛

(𝑡) . (77)

From the definitions of 𝐽󸀠
𝑛
and 𝐽󸀠
𝑛
, we have

𝑚
2

(𝜅
𝑛
) = min
𝑡∈
̂
𝐽
󸀠

𝑛

𝑤
2𝜅𝑛

(𝑡) = −
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐽󸀠
𝑛

, (78)

and it follows that 𝑚
2
(𝜅
𝑛
) → −∞ as ]

𝑛
→ ∞. Therefore,

we can choose ]
𝑛1
large enough so that

𝑚
2

(𝜅
𝑛
) < min {−1, 𝑄

1
, 𝑄
2
} (79)

for ]
𝑛

> ]
𝑛1
, where

𝑄
1

=
𝑀̃ ∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 + 𝑏
21

) − 𝑎
2

− 𝑏
22

1 − 𝑏
22

,

𝑄
2

=
∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 − 𝑏
11

− 𝑏
21

) + 𝑏
21

(1 − 𝑏
11

− 𝑏
21

)

(1 − 𝑏
22

) (1 − 𝑏
11

) − 𝑏
21

𝑏
12

𝑀̃

−
(𝑎
2

+ 𝑏
22

) (1 − 𝑏
11

) + (𝑎
1

+ 𝑏
11

) 𝑏
21

(1 − 𝑏
22

) (1 − 𝑏
11

) − 𝑏
21

𝑏
12

.

(80)

Notice that 𝑏
12

< 𝑏
11
, 𝑏
21

< 𝑏
22
. From (𝐻), (42), and the

definitions of 𝐽
𝑛
, 𝐽
𝑛
and 𝐽󸀠
𝑛
, 𝐽󸀠
𝑛
, for ]

𝑛
> ]
𝑛1
, we have

𝑤
2𝜅𝑛

(𝑡) ≥ ∫
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

≥ ∫
̃
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) (𝑏
21

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

+ 𝑏
22

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞2
) 𝑑𝑠

≥ ∫
̃
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛
∩𝐽𝑛

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛
∩([0,1]\𝐽𝑛)

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞2
𝑑𝑠.

(81)

Thus,

𝑤
2𝜅𝑛

(𝑡)

≥ ∫
̃
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
2 (𝑠) 𝑑𝑠

− ∫
(
̂
𝐽
󸀠

𝑛
∩𝐽𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

𝑑𝑠

− ∫
(
̂
𝐽
󸀠

𝑛
∩([0,1]\𝐽𝑛))∪((

̂
𝐽
󸀠

𝑛
∩𝐽𝑛)\(
̂
𝐽
󸀠

𝑛
∩𝐽𝑛)1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
21 (𝑠)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

𝑑𝑠

− ∫
(
̂
𝐽
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
22 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞2
𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛
\(
̂
𝐽
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
22 (𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞2
𝑑𝑠,

(82)
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which follows from (76) and the definition of (63) that

𝑤
2𝜅𝑛

(𝑡) ≥ 𝑀̃ ∫
̃
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 − ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

+ 𝑀̃ ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑏
21 (𝑠) 𝑑𝑠

− ∫
(
̂
𝐽
󸀠

𝑛
∩𝐽𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
21 (𝑠) 𝑑𝑠

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(̂𝐽󸀠
𝑛
∩𝐽𝑛)1

− ∫
(
̂
𝐽
󸀠

𝑛
)1

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛

− ∫
̂
𝐽
󸀠

𝑛
\(
̂
𝐽
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
22 (𝑠) 𝑑𝑠

≥ 𝑀̃ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 − ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
2 (𝑠) 𝑑𝑠

+ 𝑀̃ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠) 𝑑𝑠

− ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠) 𝑑𝑠

× (
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
)

− ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22 (𝑠) 𝑑𝑠

− ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22 (𝑠) 𝑑𝑠 (−𝑚

2
(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩]𝑛
󵄩󵄩󵄩󵄩)

− ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠) 𝑑𝑠

= 𝑀̃ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) − 𝑎
2

− 𝑏
22

+

󵄩󵄩󵄩󵄩]𝑛
󵄩󵄩󵄩󵄩 (𝑏
11

𝑏
22

− 𝑏
12

𝑏
21

)

𝑏
11

− 𝑏
21

󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

+ 𝑏
22

𝑚
2

(𝜅
𝑛
) .

(83)

Thus,

𝑚
2

(𝜅
𝑛
) > 𝑀̃ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) − 𝑎
2

− 𝑏
22

− 𝑏
21

󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

+ 𝑏
22

𝑚
2

(𝜅
𝑛
) ,

(84)

which implies that

𝑚
2

(𝜅
𝑛
)

>

𝑀̃ (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) − 𝑎
2

− 𝑏
22

− 𝑏
21

󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

1 − 𝑏
22

.

(85)

If 𝐽󸀠
𝑛

∩ 𝐽
𝑛

= 𝜙, from (85), we have

𝑚
2

(𝜅
𝑛
) >

𝑀̃ (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) − 𝑎
2

− 𝑏
22

1 − 𝑏
22

, (86)

which contradicts (79).
If 𝐽󸀠
𝑛

∩ 𝐽
𝑛

̸= 𝜙. Using a similar method of (85), we have

−
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

≥ −
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐽𝑛

>

𝑀̃ (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) − 𝑎
1

− 𝑏
11

− 𝑏
12

𝑚
2

(𝜅
𝑛
)

1 − 𝑏
11

.

(87)

Substituting it into (85), we obtain

𝑚
2

(𝜅
𝑛
)

>
∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 − 𝑏
11

− 𝑏
21

) + 𝑏
21

(1 − 𝑏
11

− 𝑏
21

)

(1 − 𝑏
22

) (1 − 𝑏
11

) − 𝑏
21

𝑏
12

𝑀̃

−
(𝑎
2

+ 𝑏
22

) (1 − 𝑏
11

) + (𝑎
1

+ 𝑏
11

) 𝑏
21

(1 − 𝑏
22

) (1 − 𝑏
11

) − 𝑏
21

𝑏
12

,

(88)

which also contradicts (79). Therefore, lim]∗→∞𝜗 = ∞.
Now, we show that lim]∗→∞𝜃 = −∞.
On the contrary, assume that there exists a vector

sequence {𝜅
𝑛
} = {(𝜇

𝑛
, ]
𝑛
)} such that 𝜇

𝑛
= −(𝑏
12

/𝑏
11

)]
𝑛
and

lim
]𝑛→∞

𝜃
𝑛

= 𝑙 > −∞. (89)

Similarly as before, it is impossible to have

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 0, ∀𝑡 ∈ [0, 1] (90)

as ]
𝑛
is sufficiently large.

Now for large ]
𝑛
, we define

𝐼
𝑛

= {𝑡 ∈ [0, 1] : 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0} ,

𝐼
󸀠

𝑛
= {𝑡 ∈ [0, 1] : 𝑓

2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0} .

(91)

Then, 𝐼
𝑛
is not empty.
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We can further divide the set 𝐼
𝑛
into two sets ̃

𝐼
𝑛
and ̂

𝐼
𝑛

and divide the set 𝐼
󸀠

𝑛
into two sets ̃

𝐼

󸀠

𝑛
and ̂

𝐼

󸀠

𝑛
as follows:

̃
𝐼
𝑛

= {𝑡 ∈ 𝐼
𝑛

| 𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

≤ 0} ,

̂
𝐼
𝑛

= {𝑡 ∈ 𝐼
𝑛

| 𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

> 0} ,

̃
𝐼

󸀠

𝑛
= {𝑡 ∈ 𝐼

󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≤ 0} ,

̂
𝐼

󸀠

𝑛
= {𝑡 ∈ 𝐼

󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

> 0} .

(92)

It is easy to know that ̃
𝐼
𝑛

∩
̂
𝐼
𝑛

= 𝜙, ̃𝐼
󸀠

𝑛
∩

̂
𝐼

󸀠

𝑛
= 𝜙 and 𝐼

𝑛
=

̃
𝐼
𝑛

∪
̂
𝐼
𝑛
,

𝐼
󸀠

𝑛
=

̃
𝐼

󸀠

𝑛
∪

̂
𝐼

󸀠

𝑛
.

Using a similar method of the proof of Lemma 12, we
obtain that the set ̂

𝐼
𝑛
is not empty. Furthermore, there exists

a constant 𝑀̂ > 1, independent of 𝑡 and ]
𝑛
such that

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 𝑀̂, for 𝑡 ∈

̃
𝐼
𝑛
,

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 𝑀̂, for 𝑡 ∈

̃
𝐼

󸀠

𝑛
,

𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≤ 𝑀̂,

for 𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0, 𝑡 ∈

̂
𝐼
𝑛
,

𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

≤ 𝑀̂,

for 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0, 𝑡 ∈

̂
𝐼

󸀠

𝑛
.

(93)

Let
𝑀̂
1

(𝜅
𝑛
) = max
𝑡∈𝐼𝑛

𝑤
1𝜅𝑛

(𝑡) . (94)

From the definitions of ̃
𝐼
𝑛
and ̂

𝐼
𝑛
, we have

𝑀̂
1

(𝜅
𝑛
) = max
𝑡∈
̂
𝐼𝑛

𝑤
1𝜅𝑛

(𝑡) =
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛

. (95)

Since ̂
𝐼
𝑛
is not empty, it follows that 𝑀̂

1
(𝜅
𝑛
) → ∞ as ]

𝑛
→

∞. Therefore, we can choose ]
𝑛1
large enough so that

𝑀̂
1

(𝜅
𝑛
) > max {1, 𝑃̂

1
, 𝑃̂
2
} , (96)

for ]
𝑛

> ]
𝑛1
, where

𝑃̂
1

=

𝑀̂ (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

,

𝑃̂
2

=
∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 [(1 − 𝑏
22

) + 𝑏
12

] + 𝑏
12

(1 − 𝑏
22

+ 𝑏
21

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

𝑀̂

+
(𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

.

(97)

From (𝐻) and (42), we have

𝑤
1𝜅𝑛

(𝑡)

= ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

≤ ∫
̃
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
̂
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ ∫
(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
̂
𝐼𝑛\(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩𝐼
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1
𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩([0,1]\𝐼

󸀠

𝑛
))∪((
̂
𝐼𝑛∩𝐼
󸀠

𝑛
)\(
̂
𝐼𝑛∩𝐼
󸀠

𝑛
)
1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1
𝑑𝑠,

(98)

which follows from (93) and the definition in (63) that

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀̂ 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ 𝑀̂ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

+ ∫
̂
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 (𝑚̂
1

(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
)

+ ∫
̂
𝐼𝑛\(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩𝐼
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

× (
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩(̂𝐼𝑛∩𝐼

󸀠

𝑛
)
1

+
󵄩󵄩󵄩󵄩]𝑛

󵄩󵄩󵄩󵄩) .

(99)

Thus,

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀̂ 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ 𝑀̂ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 (𝑚̂
1

(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
)

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠
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+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12 (𝑠) 𝑑𝑠

× (
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂(𝐼𝑛∩𝐼

󸀠

𝑛
)
1

+
󵄩󵄩󵄩󵄩]𝑛

󵄩󵄩󵄩󵄩)

= 𝑀̂ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀̂
1

(𝜅
𝑛
) + 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

,

(100)

which implies that

𝑀̂
1

(𝜅
𝑛
) < 𝑀̂ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀̂
1

(𝜅
𝑛
)

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

.

(101)

Therefore, we have

𝑀̂
1

(𝜅
𝑛
)

<

𝑀̂ (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

1 − 𝑏
11

.

(102)

If ̂
𝐼
𝑛

∩ 𝐼
󸀠

𝑛
= 𝜙, then we have from (76) that

𝑀̂
1

(𝜅
𝑛
) <

𝑀̂ (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

, (103)

which contradicts (102).
If ̂

𝐼
𝑛
∩𝐼
󸀠

𝑛
̸= 𝜙. Using a similar method to that in Lemma 12,

we have

𝑀̂
1

(𝜅
𝑛
)

<
∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 [(1 − 𝑏
22

) + 𝑏
12

] + 𝑏
12

(1 − 𝑏
22

+ 𝑏
21

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

𝑀̂

+
(𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

,

(104)

which also contradicts (96). Thus, the point 𝑇̃(−𝜇
∗
, ]∗) =

(−(𝑏
12

/𝑏
11

)]∗, ]∗) lies in the second quadrant. The proof is
completed.

Lemma 14. Suppose that (𝐻) and (9) hold. Then, for ]∗ large
enough, the line 𝑃

󸀠
𝑄
󸀠 lies in the left of 𝜗-axis.

Proof. For any point 𝐴(𝜃, 𝜗) in 𝑃
󸀠
𝑄
󸀠, it suffices to show that

𝜃 → −∞ as ]∗ → ∞ for any ] ∈ [−]∗, ]∗].
On the contrary, we assume that there exists a vector

sequence {𝜅
𝑛
} = {(𝜇

𝑛
, ]
𝑛
)} satisfying 𝜇

𝑛
= −(𝑏

12
/𝑏
11

)]
𝑛
and

a point ](]
𝑛
) ∈ [−]

𝑛
, ]
𝑛
] such that 𝜃(−(𝑏

12
/𝑏
11

)]
𝑛
, ](]
𝑛
)) →

𝑙 > −∞ as ]
𝑛

→ ∞. We define some sets 𝐼
𝑛
, ̃
𝐼
𝑛
, ̂
𝐼
𝑛
and 𝐼
󸀠

𝑛
,

̃
𝐼

󸀠

𝑛
, ̂𝐼
󸀠

𝑛
, and some numbers 𝑀̂, 𝑀̂

1
(𝜅
𝑛
) as in Lemma 13. Using

a similar method of the proof of Lemma 13, we have

𝑤
1𝜅𝑛

(𝑡)

≤ ∫
̃
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
̂
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1 (𝑠) 𝑑𝑠

+ ∫
(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
̂
𝐼𝑛\(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩𝐼
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ] (]
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞1
𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩([0,1]\𝐼

󸀠

𝑛
))∪((
̂
𝐼𝑛∩𝐼
󸀠

𝑛
)\(
̂
𝐼𝑛∩𝐼
󸀠

𝑛
)
1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ] (]
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞1
𝑑𝑠.

(105)

It follows from (93)–(96) that

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀̂ 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ 𝑀̂ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 (𝑀̂
1

(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
)

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

× (
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

+
󵄩󵄩󵄩󵄩] (]
𝑛
)
󵄩󵄩󵄩󵄩) .

(106)

Notice that −]
𝑛

≤ ](]
𝑛
) ≤ ]
𝑛
; from (35), one gets

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀̂ 𝑑𝑠 + 𝑎
1

+ 𝑀̂𝑏
12

+ 𝑏
11

+ 𝑏
11

(𝑀̂
1

(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
)

+ 𝑏
12

(
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

+
󵄩󵄩󵄩󵄩]𝑛

󵄩󵄩󵄩󵄩)

= 𝑀̂ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀̂
1

(𝜅
𝑛
) + 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

,

(107)
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which implies that

𝑀̂
1

(𝜅
𝑛
)

<

𝑀̂ (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

1 − 𝑏
11

.

(108)

It is easy to show that

𝑀̂
1

(𝜅
𝑛
) <

𝑀̂ (∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

(109)

for ̂
𝐼
𝑛

∩ 𝐼
󸀠

𝑛
= 𝜙, which contradicts (102), and

𝑀̂
1

(𝜅
𝑛
)

<
∫
1

0
𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 [(1 − 𝑏
22

) + 𝑏
12

] + 𝑏
12

(1 − 𝑏
22

) + 𝑏
12

𝑏
21

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

𝑀̂

+
(𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

(110)

for ̂
𝐼
𝑛
∩𝐼
󸀠

𝑛
̸= 𝜙, which contradicts (96) also.Thus, the line𝑃

󸀠
𝑄
󸀠

lies in the left of 𝜗-axis. The proof is completed.

Similar to the proof of Lemma 12, we can show that the
image point 𝑅

󸀠 of the point 𝑅 lies in the first quadrant. From
(37), we have 𝜇

∗
= (𝑏
22

/𝑏
21

)]∗. Using a similar method of
Lemma 13, we can show that the image point 𝑆

󸀠 of the point 𝑆

lies in the fourth quadrant.
Using the conditions (36) and (37), similar to Lemma 14,

we can show that the image line𝑄
󸀠
𝑅
󸀠 of the line𝑄𝑅 lies above

the 𝜃-axis, 𝑅
󸀠
𝑆
󸀠 lies in the right of the 𝜗-axis, and 𝑆

󸀠
𝑃
󸀠 lies

under the 𝜃-axis. Therefore, we have the following lemmas.

Lemma 15. Suppose that (𝐻) and (9) hold. For ]∗ large
enough, 𝑄

󸀠
𝑅
󸀠 lies above the 𝜃-axis, 𝑄

󸀠 lies in the second
quadrant, and 𝑅

󸀠 lies in the first quadrant.

Lemma 16. Suppose that (𝐻) and (9) hold. For ]∗ large
enough, 𝑅

󸀠
𝑆
󸀠 lies in the right of the 𝜗-axis and 𝑆

󸀠 lies in the
fourth quadrant.

Lemma 17. Suppose that (𝐻) and (9) hold. For ]∗ large
enough, 𝑆

󸀠
𝑃
󸀠 lies below the 𝜃-axis.

Proof of Theorem 1. From Lemmas 12–17, when 𝜇
∗, ]∗, and

𝜇
∗ are large enough and satisfy (36) and (37), then the

image 𝑃
󸀠
𝑄
󸀠
𝑅
󸀠
𝑆
󸀠 of the curve 𝑃𝑄𝑅𝑆 will contain the zero in

it. From Proposition 11, it follows that there exists a vector
𝜅
0

= (𝜇
0
, ]
0
) such that the solution 𝑊

𝜅0
(𝑡) of (30) satisfies

𝑊
𝜅0

(1) = 0, which implies that the integral equation (27) has
a solution 𝑌(𝑡). From (26), it follows that (19) has a solution.
Therefore, the problem (1) has at least one solution.The proof
is completed.

4. Examples

Example 1. Consider the following boundary value system:

𝐷
3/2

0+
𝑥 (𝑡) +

𝑡
1/3

2
𝑥
1/3

(𝑡) +
𝑡
1/3

4

𝑦
1/3

(𝑡)

1 +
󵄨󵄨󵄨󵄨𝑦
1/3 (𝑡)

󵄨󵄨󵄨󵄨

+ 𝑡 = 0,

𝑡 ∈ (0, 1) ,

𝐷
3/2

0+
𝑦 (𝑡) +

𝑡
1/3

3

𝑥
1/3

(𝑡)

1 +
󵄨󵄨󵄨󵄨𝑥
1/3 (𝑡)

󵄨󵄨󵄨󵄨

+
𝑡
1/3

2
𝑦
1/3

(𝑡) +
𝑡

4
= 0,

𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑦 (0) = 0, 𝑥 (1) = 2
1/2

𝑥 (
1

2
) ,

𝑦 (1) = 2
1/2

𝑦 (
1

2
) ,

(111)

where

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑥, 𝑦)) = 𝑓
1

(𝑡, 𝑡
1/2

(𝑥, 𝑦))

=
𝑡
1/2

2
𝑥
1/3

(𝑡) +
𝑡
1/2

4

𝑦
1/3

(𝑡)

1 + 𝑡1/6
󵄨󵄨󵄨󵄨𝑦
1/3 (𝑡)

󵄨󵄨󵄨󵄨

+ 𝑡,

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑥, 𝑦)) = 𝑓
2

(𝑡, 𝑡
1/2

(𝑥, 𝑦))

=
𝑡
1/2

3

𝑥
1/3

(𝑡)

1 + 𝑡1/6
󵄨󵄨󵄨󵄨𝑥
1/3 (𝑡)

󵄨󵄨󵄨󵄨

+
𝑡
1/2

2
𝑦
1/3

(𝑡) +
𝑡

4
.

(112)

It is obvious that

󵄨󵄨󵄨󵄨󵄨
𝑓
1

(𝑡, 𝑡
1/2

(𝑥, 𝑦))
󵄨󵄨󵄨󵄨󵄨

≤
𝑡
1/2

2
|𝑥 (𝑡)|

1/3
+

𝑡
1/2

4

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨
1/3

+ 𝑡,

󵄨󵄨󵄨󵄨󵄨
𝑓
2

(𝑡, 𝑡
1/2

(𝑥, 𝑦))
󵄨󵄨󵄨󵄨󵄨

≤
𝑡
1/2

3
|𝑥 (𝑡)|

1/3
+

𝑡
1/2

2

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨
1/3

+
𝑡

4
,

(113)

where

𝑏
11 (𝑡) =

𝑡
1/2

2
, 𝑏

12 (𝑡) =
𝑡
1/2

4
4, 𝑏

21 (𝑡) =
𝑡
1/2

3
,

𝑏
22

(𝑡) =
𝑡
1/2

2
,

𝑎
1

(𝑡) = 𝑡, 𝑎
2

(𝑡) =
𝑡

4
, 𝜂 =

1

2
,

𝑝
1

= 𝑝
2

= 𝑞
1

= 𝑞
2

=
1

3
.

(114)
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It is easy to check that the function𝑓 satisfies (8)–(12). Notice
that

𝐺
∗

(𝑠, 𝑠) =
1

Γ (1/2) (1 − (1/2)
1/2

)

×

{{

{{

{

(1 − 𝑠)
1/2

− (
1

2
− 𝑠)

1/2

, 0 ≤ 𝑠 ≤
1

2
,

(1 − 𝑠)
1/2

,
1

2
≤ 𝑠 ≤ 1,

𝑏
21

(𝑡) , 𝑏
12

(𝑡) < 𝑏
11

(𝑡) , 𝑏
22

(𝑡) = max
𝑖,𝑗=1,2

{𝑏
𝑖𝑗

(𝑡)} =
𝑡
1/2

2
.

(115)

Consider

max
1≤𝑖≤2

∫

1

0

𝐺
∗

(𝑠, 𝑠) (𝑏
𝑖1

(𝑠) + 𝑏
𝑖2

(𝑠)) 𝑑𝑠

≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) (
𝑠
1/2

2
+

𝑠
1/2

2
) 𝑑𝑠

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑠
1/2

𝑑𝑠

=
1

Γ (1/2) (1 − (1/2)
1/2

)

× (∫

1

0

[(1 − 𝑠) 𝑠]
1/2

𝑑𝑠 − ∫

1/2

0

[(
1

2
− 𝑠) 𝑠]

1/2

𝑑𝑠)

=
1

√𝜋 (1 − √2/2)
(

𝜋

8
−

𝜋

32
) ≈

0.2945

1.2533
< 1

(116)

which satisfies (9).Therefore, all conditions ofTheorem 1hold
and thus the problem (111) has at least a solution.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The work was supported by the NSF of Hunan province
(no. 13JJ3074), Major project of department of education
of Hunan province (no. 13A088), the Scientific Research
Foundation of Hengyang city (no. J1), and the Construct
Program in USC.

References

[1] Y. Chen and X. Tang, “Solvability of sequential fractional order
multi-point boundary value problems at resonance,” Applied
Mathematics and Computation, vol. 218, no. 14, pp. 7638–7648,
2012.

[2] Y. Chen and Z. Lv, “Solvability of fractional-order multi-
point boundary-value problems at resonance on the half-line,”
Electronic Journal of Differential Equations, vol. 2012, no. 230,
pp. 1–14, 2012.

[3] C. Huang, C. Peng, X. Chen, and F. Wen, “Dynamics analysis
of a class of delayed economic model,” Abstract and Applied
Analysis, vol. 2013, Article ID 962738, 12 pages, 2013.

[4] C. Huang, X. Gong, X. Chen, and F. Wen, “Measuring and
forecasting volatility in Chinese stock market using HAR-CJ-
M model,” Abstract and Applied Analysis, vol. 2013, Article ID
143194, 13 pages, 2013.

[5] C. Huang, Z. Yang, T. Yi, and X. Zou, “On the basins of
attraction for a class of delay differential equations with non-
monotone bistable nonlinearities,” Journal of Differential Equa-
tions, vol. 256, no. 7, pp. 2101–2114, 2014.

[6] F. Wen, Z. Li, C. Xie, and D. Shaw, “Study on the fractal and
chaotic features of the Shanghai composite index,” Fractals, vol.
20, no. 2, pp. 133–140, 2012.

[7] F. Wen and Z. Liu, “A copula-based correlation measure and
its application in chinese stock market,” International Journal
of Information Technology & Decision Making, vol. 8, no. 4, pp.
787–801, 2009.

[8] P. Amster, M. K. Kwong, and C. Rogers, “On a Neumann
boundary value problem for the Painlevé II equation in two-
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We investigate a nonlinear viscoelastic equation with interior time-varying delay and nonlinear dissipative boundary feedback.
Under suitable assumptions on the relaxation function and time-varying delay effect together with nonlinear dissipative boundary
feedback, we prove the global existence of weak solutions and asymptotic behavior of the energy by using the Faedo-Galerkin
method and the perturbed energy method, respectively. This result improves earlier ones in the literature, such as Kirane and Said-
Houari (2011) and Ammari et al. (2010).Moreover, we give an positive answer to the open problem given by Kirane and Said-Houari
(2011).

1. Introduction

In this paper, we consider the global existence and asymptotic
behavior of a nonlinear viscoelastic equation with interior
time-varying delay and nonlinear dissipative boundary feed-
back as follows:

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝑎𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 0,

𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 0, on Γ
0
× (0,∞) ,

𝜕𝑢

𝜕]
+ 𝑔 (𝑢

𝑡
(𝑥, 𝑡)) = 0, on Γ

1
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 𝑓

0
(𝑥, 𝑡) , 𝑥 ∈ Ω, −𝜏 (0) ≤ 𝑡 ≤ 0,

(1)

where Ω is a bounded domain of 𝑅𝑛 (𝑛 ≥ 1) with a smooth
boundary 𝜕Ω of 𝐶2, 𝑎 is a positive real constant, 𝜏(𝑡) > 0

represents the time-varying delay effect and the initial data

𝑢
0
, 𝑢
1
, 𝑓
0
are given functions belonging to suitable spaces,ℎ(𝑡)

is a positive function that represents the kernel of thememory
term, 𝑔(𝑢

𝑡
) is nonlinear dissipative boundary feedback, and

𝑓
0
, ℎ, 𝑔 satisfy suitable assumptions (see in Section 2).
This model appears in viscoelasticity (see [1, 2]). In the

case of velocity-dependent material density (i.e., 𝜌 = 0)
as well as presence of 𝜇

2
= 0 and in the absence of

the memory effect (i.e., 𝑔 = 0), (1) reduces to the wave
equation. There is large literature on the global existence and
uniform stabilization of wave equations. We refer the readers
to [3–5]. It is worth mentioning that Zhang and Miao [3]
considered the nonlinear wave equationwith dissipative term
and boundary damping

𝑢
𝑡𝑡
− Δ𝑢 + 𝑎 (𝑥) 𝑢

𝑡
+ 𝑓 (𝑢) = 0, in Ω × [0,∞) ,

𝑢 = 0, on Γ
1
× [0,∞) ,

𝜕𝑢

𝜕]
+ 𝑔 (𝑢

𝑡
) = 0, on Γ

0
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , in Ω,

(2)
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and they proved the existence and uniform decay of strong
and weak solutions by using the Glerkin method and the
multiplier technique, respectively. Later on, Zhang et al. [4]
improved earlier ones in [3].More precisely, they investigated
the global existence and uniform stabilization of generalized
dissipative Klein-Gordon equation with boundary damping

𝑢
𝑡𝑡
− Δ𝑢 + 𝑏 (𝑥) 𝑢

𝑡
+ 𝑓 (𝑢) + ℎ (∇𝑢) = 0, in Ω × [0,∞) ,

𝑢 = 0, on Γ
1
× [0,∞) ,

𝜕𝑢

𝜕]
+ 𝑔 (𝑢

𝑡
) = 0, on Γ

0
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡 (𝑥, 0) = 𝑢
1
(𝑥) , in Ω,

(3)

and they proved the existence and uniform decay of strong
and weak solutions by using the nonlinear semigroup
method, the perturbed energy method, and the multiplier
technique. Quite recently, Cavalcanti et al. [6] considered the
following model:

𝑢
𝑡𝑡
− ΔM𝑢 + 𝑎 (𝑥) 𝑔 (𝑢𝑡) = 0, on M × (0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , for 𝑥 ∈ M,

(4)

where M is a smooth oriented embedded compact surface
without boundary in 𝑅

3 and ΔM is the Laplace-Beltrami
operator onmanifoldM; furthermore, they obtained explicit
and optimal decay rates of the energy. Later on, Cavalcanti
et al. [7] extended the result for n-dimensional compact
Riemannianmanifolds (M, 𝑔)with boundary in twoways: (i)
by reducing arbitrarily the region where the dissipative effect
lies (this gives us a totally sharp result with respect to the
boundary measure and interior measure where the damping
is effective) and (ii) by controlling the existence of subsets
on the manifold that can be left without any dissipative
mechanism, namely, a precise part of radially symmetric
subsets. An analogous result holds for compact Riemannian
manifolds without boundary.

In the case 𝜌 = 0 and in the absence of delay (i.e.,
𝜇
2
= 0), there is large literature on the existence and decay

of nonlinear viscoelastic equation during the past decades. In
[8], Cavalcanti et al. considered the exponential decay for the
solution of viscoelastic wave equationwith localized damping

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝑎 (𝑥) 𝑢
𝑡
+ 𝑢|𝑢|

𝑟
= 0,

𝑥 ∈ Ω, 𝑡 > 0.

(5)

Under the condition that 𝑎(𝑥) ≥ 𝑎
0
> 0 on 𝜔 ⊂ Ω, with 𝜔

satisfying some geometry restrictions and

−𝜉
1
𝑔 (𝑡) ≤ 𝑔

󸀠
(𝑡) ≤ −𝜉

2
𝑔 (𝑡) , 𝑡 ≥ 0, (6)

they proved an exponential decay result for the energy.
Berrimi and Messaoudi [9] improved Cavalcanti’s result by
introducing a differential functional which allowed toweaken

the conditions on both 𝑎(𝑥) and 𝑔. In [10], Cavalcanti and
Oquendo studied

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− 𝑘
0
Δ𝑢 + ∫

𝑡

0

div [𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) ∇𝑢 (𝑠)] 𝑑𝑠

+ 𝑏 (𝑥) ℎ (𝑢
𝑡
) + 𝑓 (𝑢) = 0, 𝑥 ∈ Ω, 𝑡 > 0.

(7)

Under some geometric restrictions on 𝜔 and assuming that

𝑎 (𝑥) ≥ 𝑎
0
> 0, ∀𝑥 ∈ 𝜔,

−𝜉
1
𝑔 (𝑡) ≤ 𝑔

󸀠
(𝑡) ≤ −𝜉2𝑔 (𝑡) , 𝑡 ≥ 0,

𝑎 (𝑥) + 𝑏 (𝑥) ≥ 𝜌 > 0, ∀𝑥 ∈ Ω,

(8)

they established an exponential stability for the relaxation
function 𝑔 decaying exponentially and ℎ linear and polyno-
mial stability for 𝑔 decaying polynomially and ℎ nonlinear.
It is worth mentioning that Zhang et al. [11] studied the
following initial boundary value problem:

𝑢
𝑡𝑡
+ 𝐴𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝐴𝑢 𝑑𝑠 = 0 in Ω × (0,∞) ,

𝑢 = 0 on Γ × (0,∞) ,

𝑢 (0) = 𝑢
0
, 𝑢

𝑡
(0) = 𝑢

1
.

(9)

Furthermore, they showed that the solutions of (9) decay
uniformly in time, with rates depending on the rate of
decay of the kernel 𝑔. More precisely, the solution decays
exponentially to zero provided that 𝑔 decays exponentially
to zero. When 𝑔 decays polynomially, we show that the
corresponding solution also decays polynomially to zero with
the same rate of decay. For other related works, we refer the
readers to [12–21] and the references therein.

On the other hand, concerning the study of the following
nonlinear viscoelastic equation with memory, there are a
substantial number of contributions:

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑡𝑡
) = 0.

(10)

Recently, Han and Wang [22] investigated the following
problem:

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− Δ𝑢 − Δ𝑢

𝑡𝑡
+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 = 𝑏|𝑢|
𝑝−2

𝑢. (11)

By introducing a new functional and using potential well
method, the authors established the global existence and
uniform decay if the initial data are in a suitable stable set.
Cavalcanti et al. [23] studied a related problem with strong
damping as follows:

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− Δ𝑢 − Δ𝑢

𝑡𝑡
+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 − 𝛾Δ𝑢
𝑡
= 0.

(12)

By assuming 0 < 𝜌 ≤ 2/(𝑛−2), if 𝑛 ≥ 3 or 𝜌 > 0 and if 𝑛 = 1, 2
and 𝑔(𝑡) decays exponentially, they established that the global
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existence resulted for 𝛾 ≥ 0 and the exponential decay of the
energy for 𝛾 > 0. This result has been extended to a situation
𝛾 = 0 byMessaoudi and Tatar [24] and exponential decay and
polynomial decay results have been shown in the absence as
well as presence of a source term. Later on, inspired by the
ideas of [25–27], Han andWang [22] investigated the general
decay of solutions of energy for the nonlinear viscoelastic
equation

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− Δ𝑢 − Δ𝑢

𝑡𝑡
+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝑢
𝑡

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝑘
= 0.

(13)

In recent years, the control of partial differential equation
with time delay effects has become an active area of research;
see, for instance, [28, 29] and the references therein. The
presence of delay may be a source of instability. For instance,
it was proved in [30–34] that an arbitrarily small delay may
destabilize a system which is uniformly asymptotically stable
in the absence of delay unless additional conditions or control
terms have been used. In [32], Nicaise and Pignotti examined
(1) with 𝜌 = 0, 𝑔 ≡ 0, 𝜇

1
> 0, 𝜇

2
> 0, and 𝜏(𝑡) = 𝜏

being a constant delay in the case of mixed homogeneous
Dirichlet-Neumann boundary conditions, under a geometric
condition on the Neumann part of the boundary. More
precisely, they investigated the following system with linear
frictional damping term and internal constant delay:

𝑢
𝑡𝑡
(𝑥, 𝑡) − Δ𝑢 (𝑥, 𝑡) + 𝜇

1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏) = 0,

𝑥 ∈ Ω, 𝑡 > 0

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ Γ
0
, 𝑡 > 0

𝜕𝑢

𝜕]
(𝑥, 𝑡) = 0, 𝑥 ∈ Γ

1
, 𝑡 > 0

(14)

or with boundary constant delay

𝑢
𝑡𝑡
(𝑥, 𝑡) − Δ𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ Γ
0
, 𝑡 > 0,

𝜕𝑢

𝜕]
(𝑥, 𝑡) + 𝜇

1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏) = 0,

𝑥 ∈ Γ
1
, 𝑡 > 0.

(15)

In the presence of delay (𝜇
2

> 0), Nicaise and Pignotti
[32] examined systems (14) and (15) and proved under the
assumptions 𝜇

2
< 𝜇
1
that the energy is exponentially

stable. Otherwise, they constructed a sequence of delays
for which the corresponding solution is instable. The main
approach used there is an observability inequality together
with a Carleman estimate. See also [35] for treatment to
these problems in more general abstract form and [36] for
analogous results in the case of boundary time-varying delay.
We also recall the result by Nicaise et al. [36], where the
researchers proved the same result as in [32] for the one
space dimension by applying the spectral analysis approach.
Recently, Kirane and Said-Houari [37] considered (1) with
𝜌 = 0, 𝜇

1
> 0, 𝜇

2
> 0, and 𝜏(𝑡) ≡ 𝜏 being a constant delay in

the case of the initial and Dirichlet boundary wave equation
with a linear damping and a delay term as follows:

𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝜇
1
𝑢
𝑡
(𝑥, 𝑡)

+ 𝜇
2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏) = 0, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

𝑢
𝑡 (𝑥, 𝑡 − 𝜏) = 𝑓0 (𝑥, 𝑡 − 𝜏) , 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝜏) .

(16)

Under an assumption between the weight of the delay term in
the feedback and the weight of the term without delay, using
the Faedo-Galerkin method combined with some energy
estimate, they proved the global existence of (16). Also,
they proved exponential decay of (16) via suitable Lyapunov
functionals.

Recently, the stability of PDEs with time-varying delays
was studied in [38–44]. In [40], Nicaise and Pignotti inves-
tigated the stabilization problem by interior damping of the
wave equation with internal time-varying delay feedback
and established exponential stability estimates by introducing
suitable Lyapunov functionals, under the condition |𝜇

2
| <

√1 − 𝑑𝜇
1
in which the positivity of the coefficient 𝜇

1
is

not necessary. In [41], Nicaise et al. showed the exponential
stability of the heat and wave equations with time-varying
boundary delay in 1-D, under the condition 0 ≤ 𝜇

2
<

√1 − 𝑑𝜇
1
, where 𝑑 is a constant such that 𝜏󸀠(𝑡) ≤ 𝑑 < 1.

The rest of the paper is organized as follows. In Section 2,
we show some assumptions and state our main result. In
Section 3, we present the proof of our main result. That is,
we will prove the global existence by using Faedo-Galerkin
method and establish the general decay result (including
exponential decay and polynomial decay) by using the per-
turbed energy method. Finally, in Section 4, we give further
remarks on this context.

2. Some Assumptions and Main Results

In this section, before proceeding to our analysis, we present
some assumptions and state the main result. We use the
standard Hilbert space 𝐿2(Ω) and the Sobolev space 𝐻1

0
(Ω)

with their usual scalar products and norms. Throughout this
paper, 𝐶

𝑖
is used to denote a generic positive constant from

line to line.
For the relaxation function ℎ, we assume that

(G1) ℎ(𝑡) : (0,∞) → (0,∞) is a nonincreasing differen-
tiable function such that

1 − ∫

∞

0

ℎ (𝑠) 𝑑𝑠 = 𝑙 > 0; (17)

(G2) there exists a nonincreasing differentiable function
𝜁(𝑡) such that

ℎ
󸀠
(𝑡) ≤ −𝜁 (𝑡) ℎ

𝑝
(𝑡) , 1 ≤ 𝑝 <

3

2
, 𝑡 ≥ 0. (18)
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We assume that 𝜌 satisfies

0 < 𝜌 ≤
2

𝑛 − 2
, if 𝑛 ≥ 3; 𝜌 > 0, if 𝑛 = 1, 2. (19)

For the time-varying delay, we assume that there exist positive
constant 𝜏

0
, 𝜏 such that

0 < 𝜏
0
≤ 𝜏 (𝑡) ≤ 𝜏, ∀𝑡 > 0. (20)

Furthermore, we assume that the delay satisfies

𝜏
󸀠
(𝑡) ≤ 𝑑 < 1, ∀𝑡 > 0, (21)

that

𝜏 (𝑡) ∈ 𝑊
2,∞

([0, 𝑇]) , ∀𝑇 > 0, (22)

and that 𝜇
1
, 𝜇
2
satisfy

󵄨󵄨󵄨󵄨𝜇2
󵄨󵄨󵄨󵄨 <

√1 − 𝑑𝜇
1
. (23)

Remark 1. We show an example of functions satisfying (G2)
as follows:

ℎ (𝑠) = 𝑒
−𝜎𝑠
, 𝑝 = 1,

ℎ (𝑠) = 𝜗(1 + 𝑠)
−1/(𝑝−1)

, 𝑝 > 1,

(24)

for 𝜎, 𝜗 > 0 to be chosen properly; see [2].

Remark 2. Condition 𝑝 < 3/2 is imposed so that
∫
∞

0
ℎ
2−𝑝

(𝑠)𝑑𝑠 < ∞.

Now, we are in a position to state our main results.

Theorem3. Let (20)–(23) be satisfied and ℎ satisfy (G2).Then,
given (𝑢

0
, 𝑢
1
) ∈ 𝐻

1

0
(Ω)×𝐿

2
(Ω), 𝑓

0
∈ 𝐿
2
(Ω×(0, 1)), and𝑇 > 0,

there exists a unique weak solution 𝑢(𝑥, 𝑡) such that

𝑢 ∈ 𝐶 (0, 𝑇;𝐻
1

0
(Ω)) ∩ 𝐶

1
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑢
𝑡
∈ 𝐿
2
(0, 𝑇;𝐻

1

0
(Ω)) ∩ 𝐿

2
((0, 𝑇) × Ω) .

(25)

Moreover, if (20)–(23) hold and ℎ satisfies (G1) and (G2), then
there exist two positive constants𝐾, 𝑘 such that for any solution
of the problem (1) of the energy satisfies

E (𝑡) ≤ 𝐾𝑒
−𝑘𝑡
, 𝑝 = 1, 𝑡 ≥ 𝑡

0
, (26)

E (𝑡) ≤ 𝐾(1 + 𝑡)
−1/(𝑝−1)

, 𝑝 > 1, 𝑡 ≥ 𝑡
0
. (27)

3. Proof of the Main Result

In this section, we will divide our proof into two steps. In
Step 1, we prove the global existence of weak solutions by
using Faedo-Galerkin method benefited from the ideas of
[2, 3, 37]. In Step 2, we establish the general decay of energy
by introducing the new energy functional and using the
perturbed energy method inspired by the contributions; see,
for instance, [2–4, 11, 39].

Step 1 (global existence of weak solutions). Let {𝜔}∞
𝑗

be an
orthogonal basis of 𝐻1

0
(Ω) with 𝜔

𝑗
being the eigenfunction

of the following problem:

−Δ𝜔
𝑗
= 𝜆
𝑗
𝜔
𝑗
, 𝑥 ∈ Ω,

𝜔
𝑗
= 0, 𝑥 ∈ 𝜕Ω.

(28)

Denote𝑊
𝑛
= Span{𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
} for subspace generated by

the first 𝑛 vectors of the basis of {𝜔}∞
𝑗
. Then, we construct

approximation of the solution (𝑢, 𝑧) as follows:

𝑢
𝑛 (𝑥, 𝑡) =

𝑛

∑

𝑗=1

𝑔
𝑗𝑛 (𝑡) 𝜔𝑗,

𝑧
𝑛
(𝑥, 𝑡, 𝜌) =

𝑚

∑

𝑗=1

ℎ
𝑗𝑛
(𝑡) 𝜙
𝑗
(𝑥, 𝜌)

(29)

and we choose two sequences 𝑢
0𝑛

and 𝑢
1𝑛

in 𝑊
𝑛
and a

sequence 𝑧
0𝑛

in 𝑉
𝑛
such that 𝑢

0𝑛
→ 𝑢

0
strongly in

𝐻
1

0
(Ω), 𝑢

1𝑛
→ 𝑢
1
strongly in 𝐿2(Ω), and 𝑧

0𝑛
→ 𝑓
0
strongly

in 𝐿
2
(Ω × (0, 1)). Define the sequence 𝜙

𝑗
(𝑥, 𝜌) as follows:

𝜙
𝑗
(𝑥, 0) = 𝜙

𝑗
(𝑥). Then, from [37, pp 1069], we may extend

𝜙
𝑗
(𝑥, 0) by 𝜙

𝑗
(𝑥, 𝜌) over 𝐿2(Ω × (0, 1)) and denote 𝑉

𝑛
=

Span{𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑛
}.

To facilitate further our analysis, we introduce as in [32,
36, 39] the new variable

𝑧 (𝑥, 𝜃, 𝑡) = 𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡) 𝜃) , 𝑥 ∈ Ω, 𝜃 ∈ (0, 1) , 𝑡 > 0.

(30)

Then, we get

𝜏 (𝑡) 𝑧 (𝑥, 𝜃, 𝑡) + (1 − 𝜏
󸀠
(𝑡) 𝜃) 𝑧

𝜃
(𝑥, 𝜃, 𝑡) = 0,

𝑥 ∈ Ω, 𝜃 ∈ (0, 1) , 𝑡 > 0.

(31)

Therefore, the problem (1) can be rewritten as follows:

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠

+ 𝜇
1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑧 (𝑥, 1, 𝑡) = 0, 𝑥 ∈ Ω, 𝑡 > 0,

𝜏 (𝑡) 𝑧 (𝑥, 𝜃, 𝑡) + (1 − 𝜏
󸀠
(𝑡) 𝜃) 𝑧

𝜃
(𝑥, 𝜃, 𝑡) = 0,

𝑥 ∈ Ω, 𝜃 ∈ (0, 1) , 𝑡 > 0

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

𝑧 (𝑥, 𝜃, 0) = 𝑓
0
(𝑥, −𝜏 (0)) ,

𝑥 ∈ Ω, 𝜃 ∈ (0, 1) , −𝜏 (0) ≤ 𝑡 ≤ 0.

(32)
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Hence, (𝑢
𝑛
(𝑡), 𝑧
𝑛
(𝑡)) are solutions to the following Cauchy

problem as follows:

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡𝑛
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡𝑛
𝜔
𝑗
𝑑𝑥 + ∫

Ω

∇𝑢
𝑛
∇𝜔
𝑗
𝑑𝑥

− ∫

𝑡

0

ℎ (𝑡 − 𝑠) ∇𝑢 (𝑠) ∇𝜔
𝑗
𝑑𝑥 𝑑𝑠

+ ∫
Ω

[𝜇
1
𝑢
𝑡𝑛 (𝑥, 𝑡) + 𝜇2𝑧𝑛 (𝑥, 1, 𝑡)] 𝜔𝑗 𝑑𝑥 = 0,

𝑧
𝑛
(𝑥, 0, 𝑡) = 𝑢

𝑡𝑛
(𝑥, 𝑡) ,

(𝑢
𝑛 (0) , 𝑢𝑡𝑛 (0)) = (𝑢0𝑛, 𝑢1𝑛) ,

(33)

∫
Ω

[𝜏 (𝑡) 𝑧
𝑛𝑡
(𝑥, 𝜃, 𝑡) + (1 − 𝜏

󸀠
(𝑡) 𝜃) 𝑧

𝑛𝜃
(𝑥, 𝜃, 𝑡)] 𝜙

𝑗
𝑑𝑥 = 0,

𝑧
𝑛,0

= 𝑧
0𝑛
.

(34)

By standard method of ODE, we know that there exists only
one local solution of the Cauchy problem (33) and (34) on
some interval [0, 𝑡

𝑛
), 0 < 𝑡

𝑛
< 𝑇, for arbitrary 𝑇 > 0; then,

this solution can be extended to the whole interval [0, 𝑇] by a
priori estimates below.

To facilitate further our analysis, we need some notations
and technical Lemmas 4 and 6. Let us first introduce some
notations

(𝜙 ⋆ 𝜓) (𝑡) = ∫

𝑡

0

𝜙 (𝑡 − 𝑠) 𝜓 (𝑠) 𝑑𝑠;

(𝜙 ⬦ 𝜓) (𝑡) = ∫

𝑡

0

𝜙 (𝑡 − 𝑠)
󵄨󵄨󵄨󵄨𝜓 (𝑡) − 𝜓 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠,

(𝜙 ∘ 𝜓) (𝑡) = ∫

𝑡

0

𝜙 (𝑡 − 𝑠) ∫
Ω

󵄨󵄨󵄨󵄨𝜓(𝑡) − 𝜓(𝑠)
󵄨󵄨󵄨󵄨
2
𝑑𝑥 𝑑𝑠,

(35)

with these notations; we have the following lemma given in
[2, 11].

Lemma 4. For 𝜙 ∈ 𝐶1(R) and 𝜓 ∈ 𝐻
1
(0, 𝑇), one has

(𝜙 ⋆ 𝜓) (𝑡) ⋅ 𝜓 (𝑡) = −
1

2
𝜙 (𝑡)

󵄩󵄩󵄩󵄩𝜓(𝑡)
󵄩󵄩󵄩󵄩
2
+
1

2
(𝜙
󸀠
♢𝜓) (𝑡)

−
1

2

𝑑

𝑑𝑡
[ (𝜙♢𝜓) (𝑡)

− (∫

𝑡

0

𝜙 (𝑠) 𝑑𝑠)
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨
2
𝑑𝑥] .

(36)

Remark 5. In fact, the proof of this lemma follows by
differentiating the term 𝑔♢𝜙. More details are presented in
[2, 11, 37].

Lemma 6. Assuming that V ∈ 𝐿
∞
(0, 𝑇;𝐻

1
(Ω)), ℎ is a

continuous function such that

∫

∞

0

ℎ
1−𝛼

(𝑠) 𝑑𝑠 < ∞, 0 ≤ 𝛼 ≤ 1. (37)

Then, we have

(ℎ ∘ ∇V) (𝑡) ≤ 2[∫
𝑡

0

‖∇V (𝑠)‖2
2
𝑑𝑠 + 𝑡‖∇V (𝑡)‖2

2
]

(𝑝−1)/𝑝

× ((ℎ ∘ ∇V) (𝑡))1/𝑝.

(38)

Proof. It suffices to observe that, for 𝑞 > 1, 0 ≤ 𝛼 ≤ 1,

(ℎ ∘ ∇V) (𝑡) = ∫
𝑡

0

ℎ (𝑡 − 𝑠) ‖∇V(𝑡) − ∇V(𝑠)‖2
2
𝑑𝑠

= ∫

𝑡

0

ℎ
(1−𝛼)/𝑞

(𝑡 − 𝑠) ‖∇V(𝑡) − ∇V(𝑠)‖2/𝑞
2
ℎ
(𝑞−1+𝛼)/𝑞

× (𝑡 − 𝑠) ‖∇V(𝑡) − ∇V(𝑠)‖2(𝑞−1)/𝑞
2

𝑑𝑠.

(39)

By applying Hölder inequality, we obtain

(ℎ ∘ ∇V) (𝑡)

≤ (∫

𝑡

0

ℎ
(1−𝛼)/𝑞

(𝑡 − 𝑠) ‖∇V (𝑡) − ∇V (𝑠)‖2
2
𝑑𝑠)

1/𝑞

× (∫

𝑡

0

ℎ
(𝑞−1+𝛼)/(𝑞−1)

(𝑡 − 𝑠) ‖∇V (𝑡) − ∇V (𝑠)‖2
2
𝑑𝑠)

(𝑞−1)/𝑞

.

(40)

Taking 𝑞 = (𝑝 − 1 + 𝛼)/(𝑝 − 1), we get

(ℎ ∘ ∇V) (𝑡)

≤ (∫

𝑡

0

ℎ
(1−𝛼)(𝑝−1)/(𝑝−1+𝛼)

(𝑡 − 𝑠)

× ‖∇V (𝑡) − ∇V (𝑠)‖2
2
𝑑𝑠)

(𝑝−1)/(𝑝−1+𝛼)

× (∫

𝑡

0

ℎ
𝑝𝛼/(𝑝−1+𝛼)

(𝑡 − 𝑠) ‖∇V (𝑡) − ∇V (𝑠)‖2
2
𝑑𝑠)

𝛼/(𝑝−1+𝛼)

.

(41)

Finally, taking 𝛼 = 1 in the above equality, Lemma 6 is
completed.

3.1. A Priori Estimate. Taking𝜔
𝑗
= 𝑢
𝑡𝑛
in (33) and integrating

over (0, 𝑡), using integration by parts and Lemma 4, we obtain

1

2
[(1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)
󵄩󵄩󵄩󵄩∇𝑢𝑛

󵄩󵄩󵄩󵄩
2

2
+

2

𝜌 + 2

󵄩󵄩󵄩󵄩𝑢𝑡𝑛
󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2
+ (ℎ ∘ ∇𝑢

𝑛
) (𝑡)]

+ 𝜇
1
∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢𝑡𝑛
󵄩󵄩󵄩󵄩
2

2
𝑑𝑠 + 𝜇

2
∫

𝑡

0

∫
Ω

𝑧
𝑛
(𝑥, 1, 𝑠) 𝑢

𝑡𝑛
(𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

+
1

2
∫

𝑡

0

ℎ (𝑠)
󵄩󵄩󵄩󵄩∇𝑢𝑛 (𝑠)

󵄩󵄩󵄩󵄩
2

2
𝑑𝑠 −

1

2
∫

𝑡

0

(ℎ
󸀠
∘ ∇𝑢
𝑛
) (𝑠) 𝑑𝑠

=
1

2
(
󵄩󵄩󵄩󵄩∇𝑢0

󵄩󵄩󵄩󵄩
2

2
+

2

𝜌 + 2

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2
) .

(42)
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Taking 𝜙
𝑗
= 𝑧
𝑛
(𝜉/𝜏(𝑡)) in (34) and integrating over (0, 𝑡), we

get

𝜉

2
∫
Ω

∫

1

0

𝑧
2

𝑛
(𝑥, 𝜃, 𝑡) 𝑑𝜃 𝑑𝑥

+ 𝜉∫

𝑡

0

∫
Ω

∫

1

0

1 − 𝜏
󸀠
(𝑡) 𝜃

𝜏 (𝑡)
𝑧
𝑛𝜃
𝑧
𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝜃 𝑑𝑥 𝑑𝑠

=
𝜉

2

󵄩󵄩󵄩󵄩𝑧0𝑛
󵄩󵄩󵄩󵄩
2

𝐿
2
(Ω×(0,1))

.

(43)

Now, integrating by parts, we obtain

∫

𝑡

0

∫
Ω

∫

1

0

1 − 𝜏
󸀠
(𝑡) 𝜃

𝜏 (𝑡)
𝑧
𝑛𝜃
𝑧
𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝜃 𝑑𝑥 𝑑𝑠

=
1

2
∫

𝑡

0

∫
Ω

∫

1

0

(
𝜕

𝜕𝜃
𝑧
2

𝑛
(𝑥, 𝜃, 𝑠)

1 − 𝜏
󸀠
(𝑡) 𝜃

𝜏 (𝑡)
) 𝑑𝜃 𝑑𝑥 𝑑𝑠

= −
1

2
∫

𝑡

0

∫
Ω

1 − 𝜏
󸀠
(𝑡) 𝜃

𝜏 (𝑡)
𝑧
2

𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝑠 𝑑𝑥

+
1

2
∫

𝑡

0

∫
Ω

[
(1 − 𝜏

󸀠
(𝑡) 𝜃) 𝑧

2

𝑛
(𝑥, 1, 𝑠) − 𝑧

2

𝑛
(𝑥, 0, 𝑠)

𝜏 (𝑡)
] 𝑑𝑥 𝑑𝑠.

(44)

It follows from (43) and (44) that

𝜉

2
∫
Ω

∫

1

0

𝑧
2

𝑛
(𝑥, 𝜃, 𝑡) 𝑑𝜃 𝑑𝑥

+ 𝜉∫

𝑡

0

∫
Ω

∫

1

0

𝜏
󸀠
(𝑡) 𝜃 − 1

𝜏 (𝑡)
𝑧
2

𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝑥 𝑑𝑠

+
1

2
∫

𝑡

0

∫
Ω

[
(1 − 𝜏

󸀠
(𝑡) 𝜃) 𝑧

2

𝑛
(𝑥, 1, 𝑠) − 𝑧

2

𝑛
(𝑥, 0, 𝑠)

𝜏 (𝑡)
] 𝑑𝑥 𝑑𝑠

=
𝜉

2

󵄩󵄩󵄩󵄩𝑧0𝑛
󵄩󵄩󵄩󵄩
2

𝐿
2
(Ω×(0,1))

.

(45)

Summing up (42) and (45), we conclude that

E
𝑛
(𝑡) + 𝜇

1
∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢𝑡𝑛
󵄩󵄩󵄩󵄩
2

2
𝑑𝑠 + 𝜇

2
∫

𝑡

0

∫
Ω

𝑧
𝑛
(𝑥, 1, 𝑠) 𝑢

𝑡𝑛
(𝑥, 𝑠) 𝑑𝑥 𝑑𝑠

+
1

2
∫

𝑡

0

ℎ (𝑠)
󵄩󵄩󵄩󵄩∇𝑢𝑛 (𝑠)

󵄩󵄩󵄩󵄩
2

2
𝑑𝑠 −

1

2
∫

𝑡

0

(ℎ
󸀠
∘ ∇𝑢
𝑛
) (𝑠) 𝑑𝑠

+
𝜉

2
∫

𝑡

0

∫
Ω

𝜏
󸀠
(𝑡) 𝜃 − 1

𝜏 (𝑡)
𝑧
2

𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝑥 𝑑𝑠

+
1

2
∫

𝑡

0

∫
Ω

[
(1 − 𝜏

󸀠
(𝑡) 𝜃) 𝑧

2

𝑛
(𝑥, 1, 𝑠) − 𝑧

2

𝑛
(𝑥, 0, 𝑠)

𝜏 (𝑡)
] 𝑑𝑥 𝑑𝑠

=
1

2

󵄩󵄩󵄩󵄩∇𝑢0
󵄩󵄩󵄩󵄩
2

2
+

1

𝜌 + 2

󵄩󵄩󵄩󵄩𝑢𝑡𝑛
󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2
+
𝜉

2

󵄩󵄩󵄩󵄩𝑧0
󵄩󵄩󵄩󵄩
2

𝐿
2
(Ω×(0,1))

= E
𝑛 (0) ,

(46)

where

E
𝑛
(𝑡) =

1

2
[(1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)
󵄩󵄩󵄩󵄩∇𝑢𝑛

󵄩󵄩󵄩󵄩
2

2
+

2

𝜌 + 2

󵄩󵄩󵄩󵄩𝑢𝑡𝑛
󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2

+ (ℎ ∘ ∇𝑢
𝑛
) (𝑡) ] +

𝜉

2

󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩
2

𝐿
2
(Ω×(0,1))

.

(47)

Using Young’s inequality and noticing (20) and (21), we arrive
at

(𝜇
1
−
𝜇
2
𝜉

2
)∫

𝑡

0

󵄩󵄩󵄩󵄩𝑢𝑡𝑛
󵄩󵄩󵄩󵄩
2

2
𝑑𝑠

+ ∫

𝑡

0

∫
Ω

[𝜉
1 − 𝜏
󸀠
(𝑡)

2𝜏 (𝑡)
−
𝜇
2

2𝜉
] 𝑧
2

𝑛
(𝑥, 1, 𝑠)

+
1

2
∫

𝑡

0

ℎ (𝑠)
󵄩󵄩󵄩󵄩∇𝑢𝑛 (𝑠)

󵄩󵄩󵄩󵄩
2

2
𝑑𝑠 −

1

2
∫

𝑡

0

(ℎ
󸀠
∘ ∇𝑢
𝑛
) (𝑠) 𝑑𝑠

+
𝜉

2
∫

𝑡

0

∫
Ω

𝜏
󸀠
(𝑡) 𝜃 − 1

𝜏 (𝑡)
𝑧
2

𝑛
(𝑥, 𝜃, 𝑠) 𝑑𝑥 𝑑𝑠 = E

𝑛
(0) .

(48)

Choosing some value of 𝜏(𝑡) > 0 and 𝜃 and noticing (20) and
(21), we have (𝜏󸀠(𝑡)𝜃 − 1)/𝜏(𝑡) > 0. Moreover, choosing some
value of 𝜏(𝑡) > 0 and 𝜉, we obtain

𝜇
1
−
𝜇
2
𝜉

2
> 0, 𝜉

1 − 𝜏
󸀠
(𝑡)

2𝜏 (𝑡)
−
𝜇
2

2𝜉
> 0. (49)

That is,

√
𝜇
2
𝜏 (𝑡)

1 − 𝜏󸀠 (𝑡)
< 𝜉 <

2𝜇
1

𝜇
2

. (50)

In fact, by (20) and (21), we get √𝜇
2
𝜏(𝑡)
0
/(1 − 𝑑) < 𝜉 <

2𝜇
1
/𝜇
2
. From (48) and (50), (G1), and (G1) and Lemma 6, we

conclude that we can find a positive𝐶 independent of 𝑛, such
that

E
𝑛
(𝑡) ≤ 𝐶. (51)

Hence, using the fact that 1 − ∫𝑡
0
ℎ(𝑠)𝑑𝑠 ≥ 𝑙, the estimate (51),

and equality (47), we deduce

𝑢
𝑛
is uniformly bounded in 𝐿

∞
(0, 𝑇;𝐻

1

0
(Ω)) ,

𝑢
𝑡𝑛
is uniformly bounded in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑧
𝑛
is uniformly bounded in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω × (0, 1))) .

(52)

By (52), we infer that there exist two subsequences 𝑢
𝑛
, 𝑧
𝑛
(still

denoted by 𝑢
𝑛
, 𝑧
𝑛
) and two functions 𝑢 and 𝑧, such that

𝑢
𝑛
⇀ 𝑢 weakly star in 𝐿

∞
(0, 𝑇;𝐻

1

0
(Ω)) ,

𝑢
𝑡𝑛
⇀ 𝑢
𝑡
weakly star in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑧
𝑛
⇀ 𝑧 weakly star in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω × (0, 1))) .

(53)
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From (52), we have 𝑢
𝑛
is bounded in 𝐿2(0, 𝑇;𝐻1

0
(Ω)) and 𝑢

𝑡𝑛

is bounded in 𝐿2(0, 𝑇; 𝐿2(Ω)). Consequently, 𝑢
𝑛
is bounded

in 𝐿2(0, 𝑇; 𝐿2(Ω)). More details are present in [37, pp 1072].
Since the Sobolev embedding 𝐻

1
(0, 𝑇;𝐻

1
(Ω)) 󳨅→

𝐿
2
(0, 𝑇; 𝐿

2
(Ω)) is compact, using Aubin-Lions theorem (see

[45]), we can extract a subsequence of 𝑢
𝑛
(still denoted by

𝑢
𝑛
), such that

𝑢
𝑛
󳨀→ 𝑢 strongly in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)) ,

𝑢
𝑡𝑛
󳨀→ 𝑢
𝑡
strongly in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)) ,

(54)

which implies 𝑢
𝑡𝑛
→ 𝑢
𝑡
almost everywhere in Ω × (0, 𝑇).

Hence,
󵄨󵄨󵄨󵄨𝑢𝑡𝑛

󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑛
󳨀→

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡
almost everywhere in Ω × (0, 𝑇) .

(55)

On the other hand, by the Sobolev embedding theorem and
estimate (51), this yields

󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑢𝑡𝑛
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑛

󵄩󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω))
= ∫

𝑇

0

∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡𝑛
󵄨󵄨󵄨󵄨
2(𝜌+1)

𝑑𝑥 𝑑𝑡

≤ 𝐶
2(𝜌+1)

𝑆
∫

𝑇

0

󵄩󵄩󵄩󵄩∇𝑢𝑡𝑛
󵄩󵄩󵄩󵄩
2(𝜌+1)

2
𝑑𝑡

≤ 𝐶
2(𝜌+1)

𝑆
𝐶
𝜌+1

𝑇,

(56)

where 𝐶
𝑆
is the Sobolev embedding constant. Thus, using

(55), (56), and Lions Lemma [46], we get
󵄨󵄨󵄨󵄨𝑢𝑡𝑛

󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑛
⇀

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡
weakly in 𝐿

2
(0, 𝑇; 𝐿

2
(Ω)) . (57)

Let D(0, 𝑇) be the space of 𝐶∞ functions with compact
support in (0, 𝑇). Multiplying the first equation in (33) by
Θ(𝑡) ∈ D(0, 𝑇) and integrating over (0, 𝑇), we conclude that

−
1

𝜌 + 1
∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝑢𝑡𝑛

󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑛
, 𝜔
𝑗
)Θ
𝑡
(𝑡) 𝑑𝑡

+ ∫

𝑇

0

(∇𝑢
𝑡𝑛
, ∇𝜔
𝑗
)Θ (𝑡) 𝑑𝑡

− ∫

𝑇

0

∫

𝑡

0

ℎ (𝑡 − 𝑠) (∇𝑢
𝑡𝑛
, ∇𝜔
𝑗
)Θ
𝑡
(𝑡) 𝑑𝑠 𝑑𝑡

+ ∫

𝑇

0

(𝜇
1
𝑢
𝑡𝑛
+ 𝜇
2
𝑧
𝑛
, 𝜔
𝑗
)Θ (𝑡) 𝑑𝑡 = 0.

(58)

Noticing that {𝜔
𝑗
}
∞

𝑗
is a basis of𝐻1

0
(Ω), via convergence (53)

and (57), we can pass to the limit in (58) and obtain

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 + 𝜇1𝑢𝑡 (𝑥, 𝑡)

+ 𝜇
2
𝑧 (𝑥, 1, 𝑡) = 0.

(59)

Similarly, we get

𝜏 (𝑡) 𝑧𝑡 (𝑥, 𝜃, 𝑡) + (1 − 𝜏
󸀠
(𝑡) 𝜃) 𝑧𝜃 (𝑥, 𝜃, 𝑡) = 0. (60)

From (53) and given the label of lemma in [46], we obtain

𝑢
𝑛
(0) ⇀ 𝑢 (0) weakly in 𝐻

1

0
(Ω) ;

𝑢
𝑡𝑛
(0) ⇀ 𝑢

𝑡
(0) weakly in 𝐿

2
(Ω) .

(61)

Therefore, we have 𝑢(0) = 𝑢
0
, 𝑢
𝑡
(0) = 𝑢

1
. Consequently, the

global existence of weak solution is established.

Step 2 (general decay of the energy). First, we introduce the
new energy functional 𝐸(𝑡) and the perturbed energy 𝐸

𝜀
(𝑡);

then we apply the perturbed energy method to establish
general decay of the energy. More precisely, the method used
is based on the construction of suitable Lyapunov functionals
𝐸(𝑡) and 𝐸

𝜀
(𝑡) satisfying

𝑑

𝑑𝑡
𝐸
𝜀 (𝑡) ≤ −𝐶1𝐸𝜀 (𝑡) + 𝐶2𝐸(𝑡)

−𝑟𝑡 (62)

for some positive constants𝐶
1
, 𝐶
2
, 𝑅.More details are present

in [3, pp 1017] or [2, 4, 16].

Now, we introduce the new energy functional as follows:

𝐸 (𝑡)

= 𝐸 (𝑢, 𝑧, 𝑡)

=
1

2
[

2

𝜌 + 2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2
+ (1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠) ‖∇𝑢‖
2

2
+ (ℎ ∘ ∇𝑢) (𝑡)]

+
𝜉

2
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥,

(63)

where 𝜉, 𝜆 are suitable positive constants.
Next, we will fix 𝜉 such that

2𝜇
1
−

󵄨󵄨󵄨󵄨𝜇2
󵄨󵄨󵄨󵄨

√1 − 𝑑
− 𝜉 > 0, 𝜉 −

󵄨󵄨󵄨󵄨𝜇2
󵄨󵄨󵄨󵄨

√1 − 𝑑
> 0,

𝜆 <
1

𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

log−
󵄨󵄨󵄨󵄨𝜇2

󵄨󵄨󵄨󵄨

𝜉√1 − 𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(64)

Remark 7. In fact, the existence of such a constant 𝜉 is
guaranteed by the assumption (23).

Therefore, we have the following lemma.

Lemma 8. Let (20)–(23) be satisfied and ℎ satisfy (G1). Then,
for the solution of problem (1), the energy functional defined by
(63) is nonincreasing and satisfies

𝐸
󸀠
(𝑡) ≤

1

2
(ℎ ∘ ∇𝑢) (𝑡) −

1

2
ℎ (𝑡) ∫

Ω

|∇𝑢| 𝑑𝑥

− 𝐶
1
∫
Ω

[𝑢
2

𝑡
(𝑥, 𝑡) + 𝑢

2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−
𝜆𝜉

2
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥 ≤ 0,

(65)

for some positive constant 𝐶
1
.
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Proof of Lemma 8. Differentiating (63) and noticing the first
equation in (1) together with

(ℎ ∘ ∇𝑢) (𝑡) = ∫
Ω

∫

𝑡

0

ℎ (𝑡 − 𝑠) |∇𝑢(𝑡) − ∇𝑢(𝑠)|
2
𝑑𝑠 𝑑𝑥, (66)

we obtain

𝐸
󸀠
(𝑡) = ∫

Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨𝜌+1𝑢𝑡𝑡 −

1

2
ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

+ (1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫
Ω

∇𝑢 ⋅ ∇𝑢
𝑡
𝑑𝑥

+ ∫

𝑡

0

ℎ (𝑡 − 𝑠) 𝑑𝑠 ∫
Ω

[∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+
1

2
∫

𝑡

0

ℎ
󸀠
(𝑡 − 𝑠) ∫

Ω

|∇𝑢(𝑡) − ∇𝑢(𝑠)|
2
𝑑𝑠 𝑑𝑥

+
𝜉

2
∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

−
𝜉

2
∫
Ω

𝑒
−𝜆𝜏(𝑡)

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) (1 − 𝜏

󸀠
(𝑡)) 𝑑𝑥

−
𝜆𝜉

2
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥

= ∫
Ω

𝑢
𝑡
[Δ𝑢 − ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 − 𝜇
1
𝑢
𝑡
(𝑥, 𝑡)

−𝜇
2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) ] 𝑑𝑥

−
1

2
ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

+ ∫
Ω

∇𝑢 ⋅ ∇𝑢
𝑡
𝑑𝑥 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠 ∫
Ω

∇𝑢 ⋅ ∇𝑢
𝑡
𝑑𝑥

+ ∫

𝑡

0

ℎ (𝑡 − 𝑠) 𝑑𝑠 ∫
Ω

[∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+
1

2
(ℎ
󸀠
∘ ∇𝑢) (𝑡) +

𝜉

2
∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

−
𝜉

2
∫
Ω

𝑒
−𝜆𝜏(𝑡)

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) (1 − 𝜏

󸀠
(𝑡)) 𝑑𝑥

−
𝜆𝜉

2
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥

= −𝜇
1
∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 − 𝜇2 ∫

Ω

𝑢
𝑡 (𝑥, 𝑡) 𝑢𝑡 (𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

−
1

2
ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥 +

1

2
(ℎ
󸀠
∘ ∇𝑢) (𝑡)

+
𝜉

2
∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

−
𝜉

2
∫
Ω

𝑒
−𝜆𝜏(𝑡)

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) (1 − 𝜏

󸀠
(𝑡)) 𝑑𝑥

−
𝜆𝜉

2
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥.

(67)

Applying Young’s inequality, we obtain

− 𝜇
2
∫
Ω

𝑢
𝑡
(𝑥, 𝑡) 𝑢

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

≤

󵄨󵄨󵄨󵄨𝜇2
󵄨󵄨󵄨󵄨

2√1 − 𝑑
∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

+

󵄨󵄨󵄨󵄨𝜇2
󵄨󵄨󵄨󵄨
√1 − 𝑑

2
∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥.

(68)

Integrating by parts, using the assumption (20), (21) and (67),
(68), we arrive at

𝐸
󸀠
(𝑡) ≤ −𝜇1 ∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

− 𝜇
2
∫
Ω

𝑢
𝑡
(𝑥, 𝑡) 𝑢

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

−
1

2
ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥 +

1

2
(ℎ
󸀠
∘ ∇𝑢) (𝑡)

+
𝜉

2
∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 −

𝜉

2
(1 − 𝑑) 𝑒

−𝜆𝜏

× ∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

(0 < 𝜏
0
≤ 𝜏 (𝑡) ≤ 𝜏, 𝜏

󸀠
(𝑡) ≤ 𝑑 < 1)

−
𝜆𝜉

2
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥

≤
1

2
(ℎ
󸀠
∘ ∇𝑢) (𝑡) −

1

2
ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

− (𝜇
1
−

󵄨󵄨󵄨󵄨𝜇2
󵄨󵄨󵄨󵄨

2√1 − 𝑑
−
𝜉

2
)∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

− (
𝜉

2
(1 − 𝑑) 𝑒

−𝜆𝜏
−

󵄨󵄨󵄨󵄨𝜇2
󵄨󵄨󵄨󵄨
√1 − 𝑑

2
)

× ∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

−
𝜆𝜉

2
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥.

(69)

Combining (64) and (69) and the assumptions (G1) and (G2),
(65) is established.
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Next, we introduce the following functionals:

Φ (𝑡) =
1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+1

𝑢𝑑𝑥, (70)

Ψ (𝑡) = −
1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+1

∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥.

(71)

Set

𝐿 (𝑡) = 𝑁𝐸 (𝑡) + 𝜀Φ (𝑡) + Ψ (𝑡) , (72)

where 𝑁 and 𝜀 are suitable positive constants to be deter-
mined later.

Remark 9. Indeed, we easily see that, for 𝜀 small enoughwhile
𝑁 large enough, there exist two positive constants𝛼

0
, 𝛼
1
, such

that

𝛼
0
𝐸 (𝑡) ≤ 𝐿 (𝑡) ≤ 𝛼

1
𝐸 (𝑡) , ∀𝑡 ≥ 0. (73)

Concerning the estimates ofΦ(𝑡), Ψ(𝑡), we have the following
lemmas.

Lemma 10. Under the assumption (G1), the functional Φ(𝑡)
satisfies the estimate

Φ
󸀠
(𝑡)

≤ −
𝑙

2
∫
Ω

|∇𝑢|
2
𝑑𝑥

+ 𝐶
2
∫
Ω

[𝑢
2

𝑡
(𝑥, 𝑡) + 𝑢

2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥 + 𝐶

3
(ℎ ∘ ∇𝑢) .

(74)

Proof of Lemma 10. Differentiating (70) and integrating by
parts, we get

Φ
󸀠
(𝑡) = ∫

Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+1

𝑢
𝑡𝑡
𝑢𝑑𝑥 +

1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+2

𝑑𝑥

= ∫
Ω

𝑢 [Δ𝑢 − ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 − 𝜇1𝑢𝑡 (𝑥, 𝑡)

−𝜇
2
𝑢
𝑡 (𝑥, 𝑡 − 𝜏 (𝑡)) ] 𝑑𝑥

+
1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+2

𝑑𝑥

= −∫
Ω

|∇𝑢|
2
𝑑𝑥 + ∫

Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) ∇𝑢 (𝑠) 𝑑𝑠 𝑑𝑥

− 𝜇
1
∫
Ω

𝑢𝑢
𝑡
(𝑥, 𝑡) 𝑑𝑥

− 𝜇
2
∫
Ω

𝑢𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+2

𝑑𝑥

= −𝑙 ∫
Ω

|∇𝑢|
2
𝑑𝑥

+ ∫
Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠 𝑑𝑥

− 𝜇
1
∫
Ω

𝑢𝑢
𝑡
(𝑥, 𝑡) 𝑑𝑥 − 𝜇

2
∫
Ω

𝑢𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

+
1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+2

𝑑𝑥.

(75)

Using Young’s inequality and (G1), we obtain (see [2])

∫
Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠 𝑑𝑥

≤ 𝛿∫
Ω

|∇𝑢|
2
𝑑𝑥

+
1

4𝛿
∫
Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) |∇𝑢 (𝑠) − ∇𝑢 (𝑡)| 𝑑𝑠]

2

𝑑𝑥

≤ 𝛿∫
Ω

|∇𝑢|
2
𝑑𝑥 +

1 − 𝑙

4
(ℎ ∘ ∇𝑢) (𝑡) , ∀𝛿 > 0.

(76)

Also, applying Young’s and Poincaré’s inequality yields

−𝜇
1
∫
Ω

𝑢𝑢
𝑡
(𝑥, 𝑡) 𝑑𝑥 ≤ 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥 + 𝐶 (𝛿) ∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥,

− 𝜇
2
∫
Ω

𝑢𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

≤ 𝛿∫
Ω

|∇𝑢|
2
𝑑𝑥 + 𝐶 (𝛿) ∫

Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥.

(77)

Noticing (75)–(77) and choosing 𝛿 small enough, we obtain
estimate (74).

Lemma 11. Under the assumption (G1), the functional Ψ(𝑡)
satisfies the estimate

Ψ
󸀠
(𝑡) ≤ −(∫

𝑡

0

ℎ (𝑠) 𝑑𝑠 − 2𝛿)∫
Ω

𝑢
2

𝑡
𝑑𝑥 + 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥

+
𝐶
4

𝛿
(ℎ ∘ ∇𝑢) (𝑡) −

𝐶
5

𝛿
(ℎ
󸀠
∘ ∇𝑢) (𝑡)

+ 𝛿∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥.

(78)
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Proof of Lemma 11. Differentiating (71), integrating by parts,
and noticing the first equation in (1), we have

Ψ
󸀠
(𝑡) = −∫

Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

−
1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡
∫

𝑡

0

ℎ
󸀠
(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫
Ω

1

𝜌 + 1

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+2

𝑑𝑥

= ∫
Ω

[−Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠

+𝜇
1
𝑢
𝑡 (𝑥, 𝑡) + 𝜇2𝑢𝑡 (𝑥, 𝑡 − 𝜏 (𝑡)) ]

× ∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

−
1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡
∫

𝑡

0

ℎ
󸀠
(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫
Ω

1

𝜌 + 1

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+2

𝑑𝑥

= ∫
Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+ ∫
Ω

∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠

× ∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+ ∫
Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠]

× [𝜇
1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−
1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡
∫

𝑡

0

ℎ
󸀠
(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫
Ω

1

𝜌 + 1

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+2

𝑑𝑥.

(79)

Observe that

∫
Ω

∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 ∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

= −∫
Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) ∇𝑢 (𝑠) 𝑑𝑠

× ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠] 𝑑𝑥

= −∫
Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡) + ∇𝑢 (𝑠)] 𝑑𝑠

×∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠] 𝑑𝑥

= −∫
Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠]

2

𝑑𝑥

− (∫

𝑡

0

ℎ (𝑡) 𝑑𝑠)

× ∫
Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥.

(80)

It follows from (79) and (80) that

Ψ
󸀠
(𝑡) = (1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)

× ∫
Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

+ ∫
Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠]

2

𝑑𝑥

+ ∫
Ω

[∫

𝑡

0

ℎ (𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠]

× [𝜇
1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−
1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡
∫

𝑡

0

ℎ
󸀠
(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫
Ω

1

𝜌 + 1

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌+2

𝑑𝑥.

(81)

Using Young’s and Poincaré’s inequality, we get (see [2])

(1 − ∫

𝑡

0

ℎ (𝑠) 𝑑𝑠)∫
Ω

∇𝑢 ⋅ ∫

𝑡

0

ℎ (𝑡 − 𝑠) [∇𝑢 (𝑡) − ∇𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

≤ 𝛿∫
Ω

|∇𝑢|
2
𝑑𝑥 +

𝐶

𝛿
(ℎ ∘ ∇𝑢) (𝑡) ,

−
1

𝜌 + 1
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡
∫

𝑡

0

ℎ
󸀠
(𝑡 − 𝑠) [𝑢 (𝑡) − 𝑢 (𝑠)] 𝑑𝑠 𝑑𝑥

≤ 𝛿∫
Ω

𝑢
2

𝑡
𝑑𝑥 −

𝐶

𝛿
(ℎ
󸀠
∘ ∇𝑢) (𝑡) .

(82)

From (81) and (82), we derive Lemma 11.

Now, we are ready to finalize our proof of general decay
of the energy. Since ℎ is positive, we have

∫

𝑡

0

ℎ (𝑠) 𝑑𝑠 ≥ ∫

𝑡0

0

ℎ (𝑠) 𝑑𝑠 = 𝑔
0
, ∀𝑡 ≥ 𝑡

0
. (83)
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It follows from (65), (72), (74), and (78) that

𝐿
󸀠
(𝑡) = 𝑁𝐸 (𝑡) + 𝜀Φ

󸀠
(𝑡) + Ψ

󸀠
(𝑡)

≤
𝑁

2
(ℎ
󸀠
∘ ∇𝑢) (𝑡) −

𝑁

2
ℎ (𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

− 𝑁𝐶
1
∫
Ω

[𝑢
2

𝑡
(𝑥, 𝑡) + 𝑢

2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−
𝜆𝜉𝑁

2
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥

+ 𝜀𝐶
2
∫
Ω

[𝑢
2

𝑡
(𝑥, 𝑡) + 𝑢

2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))] 𝑑𝑥

−
𝜀𝑙

2
∫
Ω

|∇𝑢|
2
𝑑𝑥𝑃 + 𝜀𝐶

3 (ℎ ∘ ∇𝑢) (𝑡)

− (∫

𝑡

0

ℎ (𝑠) 𝑑𝑠 − 2𝛿)∫
Ω

𝑢
2

𝑡
𝑑𝑥 + 𝛿∫

Ω

|∇𝑢|
2
𝑑𝑥

+
𝐶
4

𝛿
(ℎ ∘ ∇𝑢) (𝑡) −

𝐶
5

𝛿
(ℎ
󸀠
∘ ∇𝑢) (𝑡)

+ 𝛿∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) 𝑑𝑥

= − [(𝑁𝐶
1
+ 𝑔
0
) − 2𝛿 − 𝜀𝐶

2
] ∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

+ (𝜀𝐶
3
+
𝐶
4

𝛿
) (ℎ ∘ ∇𝑢) (𝑡)

+ (
𝑁

2
−
𝐶
5

𝛿
) (ℎ
󸀠
∘ ∇𝑢) (𝑡)

− (
𝜀𝑙

2
− 𝛿)∫

Ω

|∇𝑢|
2
𝑑𝑥

− (𝑁𝐶
1
− 𝛿 − 𝜀𝐶

2
) ∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡 − 𝜏 (𝑡))

−
𝜆𝜉𝑁

2
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥.

(84)

If we choose some constants in the inequality (84), such that

𝑎
1
= (𝑁𝐶

1
+ 𝑔
0
) − 2𝛿 − 𝜀𝐶

2
> 0,

𝑎
3
= 𝑁𝐶

1
− 𝛿 − 𝜀𝐶

2
> 0, 𝑎

2
=
𝜀𝑙

2
− 𝛿 > 0,

𝑎
4
=
𝑁

2
−
𝐶
5

𝛿
> 0, 𝑎

5
= 𝜀𝐶
3
+
𝐶
4

𝛿
> 0,

𝑎
6
=
𝜆𝜉𝑁

2
,

(85)

then we conclude that

𝐿
󸀠
(𝑡) ≤ −𝑎

1
∫
Ω

𝑢
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 − 𝑎

2
∫
Ω

|∇𝑢|
2
𝑑𝑥

+ 𝑎
4
(ℎ
󸀠
∘ ∇𝑢) (𝑡) + 𝑎

5
(ℎ ∘ ∇𝑢) (𝑡)

− 𝑎
6
∫

𝑡

𝑡−𝜏(𝑡)

∫
Ω

𝑒
−𝜆(𝑡−𝑠)

𝑢
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥.

(86)

Hence, we have two cases to consider the general decay results
as follows.

Case 1 (𝑝 = 1). Choosing some values of 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6

and noticing the definition of𝐸(𝑡) (see (63)), we conclude that
there exists a constant 𝛽

1
> 0, such that

𝐿
󸀠
(𝑡) ≤ −𝛽

1
𝐸 (𝑡) , ∀𝑡 ≥ 0. (87)

Therefore, by Remark 9 and (87), we get

𝐿
󸀠
(𝑡) ≤ −

𝛽
1

𝛼
1

𝐸 (𝑡) , ∀𝑡 ≥ 0. (88)

Integrating (88) over (0, 𝑡), we obtain

𝐿 (𝑡) ≤ 𝐿 (0) 𝑒
−(𝛽1/𝛼1)𝑡, ∀𝑡 ≥ 0. (89)

Observing Remark 9 (i.e., 𝛼
0
𝐸(𝑡) ≤ 𝐿(𝑡) ≤ 𝛼

1
𝐸(𝑡)) and (89),

we derive

𝛼
0
𝐸 (𝑡) ≤ 𝐿 (𝑡) ≤ 𝐿 (0) 𝑒

−(𝛽1/𝛼1)𝑡, ∀𝑡 ≥ 0. (90)

That is,

𝐸 (𝑡) ≤
𝐿 (0)

𝛼
0

𝑒
−(𝛽1/𝛼1)𝑡 ̇=𝐾𝑒

𝑘𝑡
, 𝑝 = 1, ∀𝑡 ≥ 0. (91)

Assuming𝐾 = 𝐿(0)/𝛼
0
, 𝑘 = 𝛽

1
/𝛼
1
, we obtain the exponential

decay of the energy. So, (26) is established.

Case 2 (1 < 𝑝 < 3/2). Due to (G2), we easily see that

∫

∞

0

ℎ
1−𝑟

(𝑠) 𝑑𝑠 < ∞, 0 ≤ 𝑟 ≤ 2 − 𝑝. (92)

From the sketch of proof of Lemma 6, we observe that

(ℎ ∘ ∇𝑢) (𝑡) ≤ 𝐶[∫

∞

0

ℎ
1−𝛼

(𝑠) 𝑑𝑠𝐸 (0)]

(𝑝−1+𝛼)/(𝑝−1)

× [(ℎ
𝑝
∘ ∇𝑢)(𝑡)]

𝛼/(𝑝−1+𝛼)

.

(93)

Thus, for 𝜎 > 1, using (63) and (93), we get

𝐸
𝜎
(𝑡) ≤ 𝐶 [𝐸

𝜎−1
(0) (

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑡

󵄩󵄩󵄩󵄩
2

2
)

+(ℎ ∘ ∇𝑢)
𝜎
(𝑡) ]

≤ 𝐶𝐸
𝜎−1

(0) [
󵄩󵄩󵄩󵄩𝑢𝑡

󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑡

󵄩󵄩󵄩󵄩
2

2
]

+ 𝐶[(∫

∞

0

ℎ
1−𝛼

(𝑠) 𝑑𝑠)𝐸 (0)]

(𝑝−1+𝛼)/(𝑝−1)

× [(ℎ
𝑝
∘ ∇𝑢) (𝑡)]

𝜎𝛼/(𝑝−1+𝛼)

.

(94)



12 Abstract and Applied Analysis

Choosing 𝛼 = 1/2, 𝜎 = 2𝑝 − 1 (i.e., 𝜎𝛼/(𝑝 − 1 + 𝛼) = 1)
(94) reduces to

𝐸
𝜎
(𝑡) ≤ 𝐶 [

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑡

󵄩󵄩󵄩󵄩
2

2
+ (ℎ
𝑝
∘ ∇𝑢) (𝑡)] . (95)

Combining (86) and (87) with Remark 9, we obtain

𝐿
󸀠
(𝑡) ≤ −

𝛽
1

𝐶
𝛼
𝜎

1
𝐿
𝜎
(𝑡) , ∀𝑡 ≥ 0. (96)

A simple integration of (96) over (0, 𝑡) yields

𝐿
󸀠
(𝑡) ≤ 𝐶

6
(1 + 𝑡)

−1/(𝜎−1)
, ∀𝑡 ≥ 0. (97)

As a consequence of (97), we obtain

∫

∞

0

𝐿 (𝑡) 𝑑𝑡 + sup
𝑡≥0

𝑡𝐹 (𝑡) < ∞. (98)

So, by using Lemma 6, we have

(ℎ ∘ ∇𝑢) (𝑡)

≤ 𝐶[∫

𝑡

0

‖𝑢 (𝑠)‖𝐻1(𝑠)𝑑𝑠 + 𝑡‖𝑢‖𝐻1(Ω)]

(𝑝−1)/𝑝

× (ℎ
𝑝
∘ ∇𝑢)
1/𝑝

(𝑡)

≤ 𝐶[∫

𝑡

0

𝐹 (𝑠) 𝑑𝑠 + 𝑡𝐹 (𝑡)]

(𝑝−1)/𝑝

(ℎ
𝑝
∘ ∇𝑢)
1/𝑝

(𝑡)

≤ 𝐶(ℎ
𝑝
∘ ∇𝑢)
1/𝑝

(𝑡)

(99)

which implies that

(ℎ
𝑝
∘ ∇𝑢) (𝑡) ≥ 𝐶(ℎ ∘ ∇𝑢)

𝑝
(𝑡) . (100)

Consequently, from (86) and (100), we have

𝐿
󸀠
(𝑡) ≤ −𝐶7 [

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑡

󵄩󵄩󵄩󵄩
2

2
+ (ℎ ∘ ∇𝑢)

𝑝
(𝑡)] ,

∀𝑡 ≥ 0.

(101)

On the other hand, similarly to (95), we

𝐸
𝑝
(𝑡) ≤ 𝐶8 [

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩
𝜌+2

𝜌+2
+ ‖∇𝑢‖

2

2
+
󵄩󵄩󵄩󵄩𝑢𝑡

󵄩󵄩󵄩󵄩
2

2
+ (ℎ ∘ ∇𝑢)

𝑝
(𝑡)] ,

∀𝑡 ≥ 0.

(102)

Then, it follows from Remark 9, (101), and (102) that

𝐿
󸀠
(𝑡) ≤ −𝐶

9
𝐿
𝑝
(𝑡) , ∀𝑡 ≥ 0. (103)

A simple integration of (103) over (0, 𝑡) gives

𝐿
󸀠
(𝑡) ≤ 𝐾(1 + 𝑡)

−1/(𝑝−1)
, ∀𝑡 ≥ 0. (104)

By (104) and Remark 9, we obtain the polynomial decay of
the energy. That is,

𝐸 (𝑡) ≤ 𝐾(1 + 𝑡)
−1/(𝑝−1)

, ∀𝑡 ≥ 0. (105)

Thus, our main result is completed.

Remark 12. Our novel contribution is to show that our work
improves earlier result in [37] in which only the exponential
decay was investigated. More precisely, Kirane and Said-
Houari [37] considered the exponential decay of problem (1)
with a constant delay (i.e., 𝜏(𝑡) = 𝜏) and velocity-independent
material density (i.e., 𝜌 = 0).

Remark 13. By using the fact that energy 𝐸 is bounded on
[0, 𝑡
0
], we can easily show that estimates (26) and (27) hold

for 𝑡 ≥ 0. (See, for instance, [2].)

4. Further Remarks

In this section, we address some interesting problems of non-
linear viscoelastic equation with time-varying delay effects
and velocity-dependent material density. Here, we mention
some of them.

(1) An interesting problem is to show the well-posedness
and stabilization of the nonlinear viscoelastic equa-
tion with boundary feedback with respect to time-
varying delay effects. What will happen if the con-
troller with time-varying delay effects is in the equa-
tion instead of on the boundary? More precisely, in
our forthcoming work, we will investigate the well-
posedness and general decay properties of the solu-
tions for the following nonlinear viscoelastic equation
with velocity-dependent material density:

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠 = 0, in Ω × [0,∞) ,

𝑢 (𝑥, 𝑡) = 0, on Γ
0
× (0,∞) ,

𝜕𝑢

𝜕]
+ 𝜇
1
𝑢
𝑡
(𝑥, 𝑡) + 𝜇

2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 0, on Γ

1
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑢
𝑡 (𝑥, 0) = 𝑢1 (𝑥) , in Ω,

𝑢
𝑡 (𝑥, 𝑡 − 𝜏 (𝑡)) = 𝑓 (𝑥, 𝑡) , on Γ

1
× (−𝜏 (0) , 0) ,

(106)

where Ω is bounded domain of 𝑅𝑛 and 𝑛 ≥ 1 with a
smooth boundary Γ and let Γ

0
, Γ
1
be a partition of Γ

such that Γ
0
∩ Γ
1
= 0, Γ

0
̸=0, Γ
1
̸=0, ] = (]

1
, ]
2
⋅ ⋅ ⋅ ]
𝑛
)

denotes the unit outward normal to Γ.

(2) Another interesting problem is to give a positive
answer of the open problem given by Kirane and
Said-Houari [37]. That is, the linear damping term
𝜇
1
𝑢
𝑡
in the first equation of (16) plays a decisive role

in their proofs. Thus, the problem of whether the
stability properties they have proved are preserved
when 𝜇

1
= 0 is open. In order to overcome the above

difficulty, ourmain idea is to contrast the effects of the
time-varying delay by using the dissipative nonlinear
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boundary feedback. That is, in our future work, we
investigate the following problem:

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨
𝜌
𝑢
𝑡𝑡
− Δ𝑢 + ∫

𝑡

0

ℎ (𝑡 − 𝑠) Δ𝑢 (𝑠) 𝑑𝑠

+ 𝜇
2
𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 0, in Ω × [0,∞) ,

𝑢 (𝑥, 𝑡) = 0, on Γ
0
× (0,∞) ,

𝜕𝑢

𝜕]
+ 𝑔 (𝑢

𝑡
(𝑥, 𝑡)) = 0, on Γ

1
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , in Ω,

𝑢
𝑡
(𝑥, 𝑡 − 𝜏 (𝑡)) = 𝑓 (𝑥, 𝑡) , on Γ

1
× (−𝜏 (0) , 0) ,

(107)

where 𝜇
2
is constant and 𝑔(𝑢

𝑡
) is the dissipative

nonlinear boundary feedback.
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Much literature finds that the skewness in the return distribution is negatively correlated with the risk premium coefficient, and
speculation is the reason for the skewness in the return distribution. As further research, this paper, first taking up the time-varying
property of the risk premium coefficient, proposes a GARCH-Mmodel with a time-varying coefficient of the risk premium for an
empirical study of the correlation between the conditional skewness in the return distribution and the time-varying risk attitude.The
empirical study indicates that the coefficient of the risk premium varies with the time, and even in a mature market the conditional
skewness in the return distribution is negatively correlated with the time-varying coefficient of the risk premium.

1. Introduction

The study of the skewness in the return distribution has
gradually become the hot topic in Finance. Much literature
([1–3], etc.) finds that there exists more or less skewness in
the return distribution.

The negatively skewed return distribution will increase
the loss probability, while the positively skewed one will
increase the possibility of gaining. Building an optimal asset
portfolio allowing for the skewness has been one of the
most attractive topics in investment portfolio research. For
example, Samuelson [4], Lai [5], Prakash et al. [6], Canela
and Collazo [7], and Zakamouline and Koekebakker [8] are
all related to this field. Meanwhile, after recognizing the
importance of the skewness, it has been given the same
importance as the mean and the variance in researching in
the problem of security pricing (see, e.g., [9–12]).

More and more scholars have begun to study the proper-
ties of the skewness due to the fact that it plays an important
role in asset pricing. How the skewness changes with the
time under the influence of various factors is one of the most
densely studied topics. In specifying most of the models in
the past, the distribution assumption did not involve the time
variation of the skewness. For example, it was assumed, to
the effect, that the skewness does not vary with the time
in the GARCH model proposed in Bollerslev [13]. Some

scholars discussed the persistence of the skewness, but their
conclusions are not consistent. Singleton and Wingender
[14] find that the positive skew is very likely to be negative
in the next time period, while the negative skew will very
probably turn to be positive in the next period of time; Lau
and Wingender [15] believe that the skewness approaches to
nothing in the long run, and some researchers hold that there
does not exist persistence in the skewness (see, e.g., [16, 17]).

A number of studies have argued for the existence of
the time variation of the skewness from various perspectives,
among which Harvey and Siddique [18] study is a pioneering
study of great significance on the time variation of the
skewness. On the basis of a GARCH model, they studied the
time variation of the skewness and proposed an autoregres-
sive conditional skewness model with the empirical results
showing that the skewness in the return distribution varies
with the time. Following their thinking,most of later research
studied the time-variation problem in the framework of the
GARCH-type models [19]. Higher moments models have
difficulties in parameter estimation due to the number of
parameters. León et al. [20] estimated the autoregressive
conditional variance, the skewness, and the kurtosis using
the Gram-Charlier series expansion of the normal density
function, as this estimation procedure can incorporate the
skewness and the kurtosis in the model as parameters and
thus solved the problem of parameter estimation in higher
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moments models. Chan [21] modeled the time variation of
highermoments usingmaximumentropy density (MED) and
produced relatively better results.

Due to the fact that the reasons for the skewness in
the return have not been understood, consensus cannot be
achieved on the constraints for the optimization and the pric-
ing kernel process in portfolio selection, although advances
have been made in the research and the empirical studies
of skewness. Consequently, more and more researchers have
switched their research foci to the reasons for the skewness.

Bakshi et al. [22] believed that investors risk aversion
will lead to the negative skewness in the return distribution.
Ekholm and Pasternack [23] built a theoretic model on the
basis of the negative news threshold hypothesis, and with
empirical evidence they believe that the different releasing
policies for positive and negative information are responsible
for the skewness in the return distribution. Wen et al. [24]
suggested that, with investors’ overconfidence and regret
aversion, their reaction to the nonlinear arrival of informa-
tion will lead to the skewness in the return distribution,
which was supported by their simulation. Bae et al. [25] find
that the low level of corporate governance may be the cause
of the positive skewness in the return distribution. Xu [26]
finds that the skewness in the return distribution is positively
correlatedwith the return of the current period but negatively
correlated with that of the last period, which indicates that
the skewness in the return distribution may be related to
investors’ reactions to the return. Besides, many scholars
have attempted to identify the reasons for the skewness
from different perspectives, such as trading volume, and the
heterogeneity of the investors [27, 28], but an agreement has
yet to be achieved on the conclusion of the reasons.

Wen and Yang [29] suggested that skewness is related
to investors’ risk attitude in stock market and too much
speculative behavior in the market is responsible for the
positive skewness in the return distribution. They employed
a GARCH-M model to test the composite indices of 33
securities markets, and the empirical evidences showed
that the skewness in the return distribution is significantly
negatively correlated with the risk premium coefficient. This
conclusion was derived from the comparison of different
markets, but many factors, such as the differences of the cul-
tural background of market players, and the microstructure
of the markets may influence the relationship between the
speculation in the market and the skewness in the return
distribution, so it is necessary to further study the correlation
between them on the dimension of time.

Based on Wen and Yang [29], the autoregressive condi-
tional skewness model in Harvey and Siddique [18] can be
introduced to characterize the conditional skewness process
in order to further examine the correlation between the
skewness in the return distribution and the risk premium
coefficient on the dimension of time. GARCH-M can be
employed to examine the tradeoff between the risk and the
risk premium in investors’ investment decision, but in the
GARCH-M model, the risk premium coefficient is held con-
stant in a certain period of time and thus cannot generate the
time-varying risk premium series corresponding to the con-
ditional skewness process. Anderson et al. [30] proposed an

ANST-GARCH (Asymmetric Nonlinear Smooth-Transition
GARCH) model by introducing a smooth-transition speci-
fication to extend the GARCH model and studied the time
variation of the risk premium using the ANST-GARCH-M
model. In Anderson’s model, the time variation of the risk
premium is essentially related to the error of the last period
(the unexpected return), and the reason for the time variation
has not been thoroughly discussed.

This paper suggests that the time variation of the risk pre-
mium coefficient is related not only to the unexpected return
but also to the risk and the speculation of the prior periods.
Therefore, we first construct a time-varying risk premium
coefficient incorporated GARCH-Mmodel to study the time
variation of the risk premium coefficient. On the basis of
the above model, we propose a time-varying risk premium
coefficient incorporated GARCH-Mmodel with Harvey and
Siddique’s [18] autoregressive conditional skewness model to
introduce the conditional skewness process. Finally, we select
14 most representative stock composite indices as samples to
conduct an empirical investigation.

2. The Relationship between Risk
Attitude and Skewness

2.1. Measure for Risk Attitude: Risk PremiumCoefficient. Wen
and Yang [29] argued that, “the biggest difference between
investors and speculators is their attitude towards risk, most
investors are risk averse, while most speculators are risk
tolerant,” and “the more speculative a market is, the smaller
average coefficient of risk premium 𝛾 is.” Then they used the
𝛾 coefficient in the GARCH-Mmodel as the measure for risk
attitude.The 𝛾 coefficient in the GARCH-Mmodel describes
the average risk premium investors demand for a unit risk in
the market, that is, risk attitude or risk tolerance, also called
the risk premium coefficient. The expression of the GARCH-
Mmodel is

𝑟
𝑡

= 𝑐 + 𝑥
𝑡
𝛽 + 𝛾√ℎ

𝑡
+ 𝜀
𝑡
,

𝜀
𝑡

= √ℎ
𝑡
⋅ V
𝑡
,

ℎ
𝑡

= 𝛼
0

+

𝑞

∑

𝑖=1

𝛼
𝑖
𝜀
2

𝑡−𝑖
+

𝑝

∑

𝑗=1

𝜃
𝑗
ℎ
𝑡−𝑗

,

(1)

where V
𝑡
is i.i.d, 𝐸(V

𝑡
) = 0, 𝐷(V

𝑡
) = 1, and ∑

𝑞

𝑖=1
𝛼
𝑖
+ ∑
𝑝

𝑗=1
𝜃
𝑗

<

1.
In this model, the return rate is divided into three parts:

the average return rate 𝑐 + 𝑥
𝑡
𝛽 related to exogenous variables,

the risk premium 𝛾√ℎ
𝑡
, and the volatility return rate related

to exogenous shocks (it is regarded as the gain not expected
by investors, i.e., the unexpected gain). Obviously,

𝛾 =
Δ𝑟
𝑡

Δ√ℎ
𝑡

, (2)

which shows that 𝛾 is the risk premiumcoefficient for a unit of
risk. So the risk premium coefficient 𝛾 can be used tomeasure
themagnitude of the compensation for the risk investors take
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Table 1: Basic statistics of the daily return series of indices.

Mean Std. dev. Skewness Jarque-Bera ADF test ARCH-LM test
S&P 500 −0.006210 1.400254 −0.114384 6587.713 −38.3026 153.6778
Dow Jones −0.000915 1.317075 0.047682 6299.268 −37.8115 150.5500
NASDAQ −0.000440 1.747697 0.175155 2298.068 −37.5163 100.7235
NYSE 0.002528 1.397271 −0.283905 9121.484 −37.44753 190.2067
Nikkei225 −0.011831 1.660565 −0.292542 3821.667 −48.86196 325.9931
FTSE 100 −0.005793 1.357928 −0.106906 3927.123 −21.9967 153.3013
SSE 0.019730 1.714406 −0.105263 1629.944 −27.6192 5.505159
DAX −0.002373 1.692539 0.070301 1798.858 −49.73979 119.7851
CAC 40 −0.016852 1.587710 0.052661 2746.579 −23.62872 111.7417
GSPTSE 0.012879 1.250443 −0.679786 9174.220 −51.28554 161.5086
MIBTEL −0.030404 1.316993 −0.158677 4999.875 −20.68796 123.2172
IGBM 0.020879 1.364191 −0.061860 4384.783 −46.61378 123.3914
BVSP 0.067122 2.025965 −0.093354 1355.060 −46.66775 131.7443
Hangseng 0.017219 1.676433 0.037793 7002.364 −48.77268 223.4757
Note: the J-B statistic, the ADF test, and the ARCH-LM test are all at 1% significance level.

in the market. Compared to an investor, a speculator’s risk
tolerance is higher, that is to say, the risk premium coefficient
is lower 𝛾. The more speculation there is in a market, the
smaller the average risk premium coefficient 𝛾 is.

2.2. RobustMeasure for Skewness. For a return series {𝑅
𝑡
}, the

most widely used measure for the skewness is

SK
1

= 𝐸(
𝑅
𝑡
− 𝜇

𝛿
)

3

, (3)

where 𝜇 = 𝐸(𝑅
𝑡
), 𝛿
2

= 𝐸(𝑅
𝑡

− 𝜇)
2. But much literature (e.g.,

[31]) finds that SK
1
is very sensitive to outliers and thus not

a robust measure. This paper adopted the robust skewness
measure proposed by Groeneveld and Meeden [32]:

SK
2

=
∫
0.5

0
{𝐹
−1

(1 − 𝛼) + 𝐹
−1

(𝛼) − 2𝑄
2
} 𝑑𝛼

∫
0.5

0
{𝐹−1 (1 − 𝛼) − 𝐹−1 (𝛼)} 𝑑𝛼

=
𝜇 − 𝑄

2

𝐸
󵄨󵄨󵄨󵄨𝑅𝑡 − 𝑄

2

󵄨󵄨󵄨󵄨

.

(4)

2.3. Samples and Statistics. According to the World Bank
Report 2009, the GDP of the top 10 countries accounted
for 65.4% of the world GDP. The 10 countries were USA,
Japan, China, Germany, France, UK, Italy, Brazil, Russia, and
Spain. This paper would have chosen their representative
stock indices from the Yahoo finance as the samples, and the
time duration is January 1, 2001, to December 31, 2009. As
there are no stock index data of Russia in Yahoo finance, this
paper chose Canada which was the eleventh in 2008 world
GDP ranking as the substitute for data source consistence.
These representative indices are S&P500,Dow Jones,Nasdaq,
NYSE, Japan’s Nikkei 225, China’s SSE and China Hongkong’s
Hangseng, Germany’s DAX, France’s CAC40,UK’s FTSE 100,
Italy’s MIBTEL, Brazil’s BVSP, Spain’s IGBM, and Canada’s
GSPTSE, 14 indices all together, which include most of the
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Figure 1: Relationship between coefficient 𝛾 and SK
2
measurement.

representative stock markets in North America, Europe, and
Asia. The return is calculated with 𝑟

𝑡
= 100 ∗ (ln𝑃

𝑡
− ln𝑃

𝑡−1
).

The basic statistics of the daily return of the above chosen
indices are shown in Table 1.

The J-B statistics in Table 1 show that all the return series
of the above indices are not normal, but more or less right-
or left-skewed (skewness ̸= 0). The ADF test for the return
series shows that all the series are stationary.The results of the
ARCH-LM test indicate that the accompanying probabilities
are all less than those at the 1% significance level, which
implies that there exists error ARCH effect in the error series.
Therefore we employ the GARCH type model to capture the
volatilities of the indices.

2.4. Empirical Results. Following the thinking of Wen and
Yang [29], this paper first compared cross-sectionally the
correlation between the risk premium coefficient and the
skewness of the 14 stock indices. The results are tabulated in
Table 2 and Figure 1. We can see that as the usual skewness
measure is very sensitive to the outliers, the values of SK

1
for

various indices are quite different from each other, while the
values of the robust measure SK

2
are obviously rather consis-

tent with each other. Further statistical analysis found that the
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Table 2: Risk premium coefficients and skewness of indices.

SK1 SK2 𝛾 𝑃 value
S&P 500 −0.114384 −0.070551 0.059168 0.0026
Dow Jones 0.047682 −0.047682 0.055383 0.0046
NASDAQ 0.175155 −0.057890 0.050780 0.0108
NYSE −0.283905 −0.074509 0.070776 0.0004
Nikkei225 −0.292542 −0.031569 0.036404 0.0763
FTSE 100 −0.106906 −0.048346 0.052449 0.0098
SSE −0.105263 −0.040100 0.046433 0.0096
DAX 0.070301 −0.066459 0.068993 0.0005
CAC 40 0.052661 −0.032634 0.047085 0.0193
GSPTSE −0.679786 −0.045354 0.074935 0.0001
MIBTEL −0.158677 −0.065010 0.056490 0.0044
IGBM −0.061860 −0.063446 0.095071 0.0000
BVSP −0.093354 −0.048321 0.080769 0.0001
Hangseng 0.037793 −0.029994 0.048903 0.0111

correlation between the risk premium coefficient and SK
1
for

the 14 stock indices is −0.21613, while the correlation between
the robust skewness measure SK

2
and the risk premium

coefficient is −0.54081, both being significantly smaller than
zero, which shows the skewness in the return distribution
and the risk premium coefficient are significantly negatively
associated.The above empirical results are consistent with the
conclusion in Wen and Yang [29], which has further proved
that the skewness in the return distribution is closely related
to the degree of speculation in the market.

3. Time-Varying Risk Premium
Coefficient and Skewness

The above negative correlation between the skewness in the
return distribution and the risk premium coefficient was
derived from the returns of different markets at the same
time period. In the foregoing section, we have pointed out
that many factors like different cultural background and
different microstructure of different markets may influence
the relationship between the degree of speculation and the
skewness in the return distribution. If the research is confined
in the same market, these factors can be ignored. Therefore
it is necessary to further study the correlation between the
skewness in the return distribution and the risk premium
coefficient in the same market on the dimension of time.

3.1. Time Variation of Risk Premium Coefficient. In fact, the
GARCH-Mmodel has an implied assumption that the return
compensation investors demand for a unit of risk is invariant
in a certain period of time. Wen and Yang [29] conducted
a preliminary study of the relationship between the risk
premium coefficient and the skewness in the return distri-
bution on the dimension of time in the same markets. They
divided the return series of each market into 4 subsamples
of 4 different horizons and found that the risk premium
coefficients and the skewness for different time periods in

the same market were quite different but were still sig-
nificantly negatively correlated. The fact that the skewness
may vary at different time periods is consistent with many
scholars’ research conclusions, but there are few studies
on the time variation of the risk premium coefficient. The
empirical evidences provided by Wen and Yang [29] showed
that in the same market the risk premium coefficient may
change with the time; that is to say, in reality investors’ risk
attitude may be different at different time periods under the
influence of some factors.

In order to investigate the possible relationship between
the risk premium coefficient and the skewness in the return
distribution on the time dimension, this paper first studies
the time variation of the risk premium coefficient.

Previous studies found that investors’ risk aversion varies
at different time periods ([33, 34], etc.). The higher risk aver-
sion means higher return compensation investors demand
for unit risk they take, which implies that the risk pre-
mium coefficient should vary with time and other factors.
Anderson et al. [30] proposed the ANST-GARCH-Mmodel,
assuming the risk premium coefficient is related to prior
unexpected gains and characterizing the premium coefficient
as 𝛿
1

+ 𝛿
2
𝐹(𝜀
𝑡−1

), where 𝐹(𝜀
𝑡−1

) = {1 + exp[−𝛾(𝜀
𝑡−1

)]}
−1,

which essentially allows for the time variation of the risk
premium coefficient. Their empirical results also indicated
that, in reality, investors’ risk tolerance will vary with the time
under the influence of prior unexpected gains.

Thaler Richard and Johnson Eric’s [35] study gave a
tentative explanation to the problem of how prior outcomes
affect the risk-taking decision of the current period. Their
research suggested that as prior gains can cushion the possible
loss of the current period, the investor’s risk attitude will be
enhanced and thus encourage him to take more risk and
even engage in speculation. This phenomenon is called the
“house money” effect; the investor, in fact, records prior
gains in a specific mental account and thinks that is only
“house money.” On the contrary, prior losses will increase the
investor’s current risk aversion, since another loss will make
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the investor feel much more “painful” than the average loss.
Based on the above findings, Barberis et al. [36] introduced
the utility function of the prospect theory into their capital
asset pricingmodel and discussed that investors’ risk aversion
will vary due to their prior behaviors in capital asset pricing.
According to the prospect theory, the valuation of the gain
and the loss is determined according to the selection of the
reference point. This paper, based on Barberis et al. [36],
assumes that prior gains confirmed by the investor are only
the unexpected gains, that is, the unexpected return in the
model.

In addition to allowing for the influence of the last-period
unexpected return on the investor’s risk attitude, this paper
further considers the possible influence of other factors. First,
as a market participant facing various risks in the market, the
investor must have the capacity to tolerate certain degree of
risk; that is to say, every investor has the intrinsically invariant
potential to speculate; secondly, human’s behavior exhibits a
certain measure of continuity; current behavior is more or
less influenced by prior behavior, and speculative behavior
may, to some extent, find its root in prior behavior; finally,
conventional theories hold that, in making their investment
decisions, investors will unavoidably consider the gain and
the loss, and they will take into account the risk factors in
addition to the last-period unexpected return. These factors
jointly determine the investor’s risk attitude. On the basis
of the above discussion, this paper proposes the following
GARCH-M model allowing for time-varying risk coefficient
to further investigate the possible influence of these factors
on the investor’s risk attitude:

𝑟
𝑡

= 𝑐 + 𝑥
𝑡
𝛽 + 𝛾
𝑡
𝑓 (ℎ
𝑡
) + 𝜀
𝑡
,

𝛾
𝑡

= 𝜌
0

+ 𝜌
1

⋅ 𝛾
𝑡−1

+ 𝜌
2

⋅
𝜀
𝑡−1

𝑓 (ℎ
𝑡−1

)
,

𝜀
𝑡

= √ℎ
𝑡
⋅ V
𝑡
,

ℎ
𝑡

= 𝛼
0

+ 𝛼
1
𝜀
2

𝑡−1
+ 𝛼
2
ℎ
𝑡−1

.

(5)

Different from the original GARCH-M model, our model
assumes that the risk premium coefficient is time-varying. In
the model, 𝜌

0
is the basic risk premium investors demand for

a unit of risk, which can be interpreted as the invariant risk
premium investors demand for certain kinds of risk inherent
in the market for a certain period of time; 𝜀

𝑡−1
/𝑓(ℎ
𝑡−1

) is
the risk adjusted unexpected return of the last period, where
𝑓(ℎ
𝑡
) is a function of the time-varying variance ℎ

𝑡
(mostly

in the forms of ℎ
𝑡
, √ℎ
𝑡
, ln(ℎ

𝑡
)), 𝜌
1
means that the current

risk attitude can be more or less jointly influenced by the
unexpected return and the risk of the last period; 𝜌

2
expresses

that the current risk attitude can be influenced, to a certain
extent, by the last-period risk attitude, reflecting the average
level of the influence of historical behaviors on the current
behavior.

3.2. Autoregressive Conditional Skewness Model Allowing for
Time-Varying Risk Premium Coefficient. Harvey and Sid-
dique [18], based on a noncentral 𝑡 distribution, characterized

the time variation of the variance and the skewness simulta-
neously using a simple autoregressive conditional skewness
model, GARCHS(1, 1, 1) (GARCH with skewness):

𝑟
𝑡

= 𝜑
󸀠
𝑍
𝑡−1

+ 𝜀
𝑡
, 𝜀
𝑡

| Ω
𝑡−1

∼ 𝑁
𝑡
(]
𝑡
, 𝛿
𝑡
) ,

ℎ
𝑡

= 𝛼
0

+ 𝛼
1
𝜀
2

𝑡−1
+ 𝛼
2
ℎ
𝑡−1

,

𝑠
𝑡

= 𝛽
0

+ 𝛽
1
𝜀
3

𝑡−1
+ 𝛽
2
𝑠
𝑡−1

,

(6)

where 𝑟
𝑡
is a variable to be modeled, for example, the index

return in the stock market; 𝜑
󸀠
𝑍
𝑡−1

is the conditional mean,
where 𝑍

𝑡
is an instrumental variable completely based on the

information set Ω
𝑡
; the error term 𝜀

𝑡
follows the conditional

noncentral 𝑡 distribution 𝑁
𝑡
(]
𝑡
, 𝛿
𝑡
); ℎ
𝑡

= Var
𝑡−1

(𝑟
𝑡
) is the

conditional variance; 𝑠
𝑡

= Skew
𝑡−1

(𝑟
𝑡
) is the conditional

skewness; and 0 < 𝛼
1

< 1, 0 < 𝛼
2

< 1; −1 < 𝛽
1

< 1, −1 <

𝛽
2

< 1; 𝛼
1

+ 𝛼
2

< 1, −1 < 𝛽
1

+ 𝛽
2

< 1.
Estimating models (5) and (6) independently can give us

the conditional skewness and the time-varying risk premium
coefficient, respectively. Then we can investigate the correla-
tion between them on the dimension of time. But estimating
the twomodels independently is likely to separate the various
features of the return series undesirably, which are actually
embodied in the return series. It is even more likely that
the relationship between the various features of the return
series will be distorted, especially when the two models are
estimated on the basis of different distribution assumptions.
On the other hand, in accounting for the skewness, the
distribution assumption for the conventional GARCH-type
model fails to describe the time-varying process of the
skewness, but the noncentral t distribution can be employed
to characterize the time variation of the skewness. Therefore,
this paper integrated the above twomodels into the following
GARCH-M model allowing for time-varying risk premium
coefficient (for consistency, this paper uses √ℎ

𝑡
for 𝑓(ℎ

𝑡
)):

𝑟
𝑡

= 𝑐 + 𝑥
𝑡
𝛿 + 𝛾
𝑡
√ℎ
𝑡
+ 𝜀
𝑡
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𝑡
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𝑡−1

∼ 𝑁
𝑡
(]
𝑡
, 𝛿
𝑡
) ,
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𝑡

= 𝜌
0

+ 𝜌
1

⋅ 𝛾
𝑡−1

+ 𝜌
2

⋅
𝜀
𝑡−1

√ℎ
𝑡−1

,

ℎ
𝑡

= 𝛼
0

+ 𝛼
1
𝜀
2

𝑡−1
+ 𝛼
2
ℎ
𝑡−1

,

𝑠
𝑡

= 𝛽
0

+ 𝛽
1
𝜀
3

𝑡−1
+ 𝛽
2
𝑠
𝑡−1

.

(7)

This model affords a potential tool for further studying the
relationship between the risk premium coefficient and the
skewness on the dimension of time.

3.3. Model Estimation. The equation of the conditional non-
central t distribution is too complicated, which causes much
difficulty in model estimation. León et al. [20] estimated the
autoregressive conditional variance, skewness, and kurtosis
model using the Gram-Charlier series expansion of the
normal density function. Xu [26], on the basis of León et
al.’s work, proposed that the parameters of GARCHS(1, 1, 1)
can be estimated using the Gram-Charlier series expansion
of the normal density function and truncating at the third
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moment.With the available information setΩ
𝑡−1

, the approx-
imate expression of the conditional density function of the
standardized error 𝜂

𝑡
= 𝜀
𝑡
ℎ
−1/2

𝑡
of the error 𝜀

𝑡
can be obtained:

𝑔 (𝜂
𝑡

| 𝐼
𝑡−1

) =
1

√2𝜋
𝑒
−𝜂
2

𝑡
/2

(1 +
𝑠
∗

𝑡

3!
(𝜂
3

𝑡
− 3𝜂
𝑡
))

= 𝜙 (𝜂
𝑡
) 𝜓
2

(𝜂
𝑡
) ,

(8)

where 𝑠
∗

𝑡
denotes the conditional skewness of 𝜂

𝑡
; 𝜙(𝜂
𝑡
) is the

probability density function of the standard normal distri-
bution, (1/√2𝜋)𝑒

−𝜂
2

𝑡
/2

; 𝜓(𝜂
𝑡
) is the polynomial part of the

Gram-Charlier series’ third-order expansion, 1 + (𝑠
∗

𝑡
/3!)(𝜂

3

𝑡
−

3𝜂
𝑡
). Hence we get the likelihood function of the sample:

SLF = −
1

2
(𝑇 − 1) × ln (2𝜋) −

1

2

𝑇
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𝑡=2
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𝑡
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1

2

𝑇
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2

𝑡

+

𝑇

∑

𝑡=2
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3

𝑡
− 3𝜂
𝑡
)) .

(9)

However, the likelihood function determined by (8) can-
not satisfy the definition of the density function. Based
on León et al. [20], this paper modifies it and derives the
following probability density function expression:

𝑓 (𝜂
𝑡

| 𝐼
𝑡−1

) =
𝜙 (𝜂
𝑡
) 𝜓
2

(𝜂
𝑡
)
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𝑡
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3

𝑡
− 3𝜂
𝑡
))
2

Γ
𝑡

,

(10)

where Γ
𝑡

= 1 + 𝑠
∗

𝑡

2
/3! is the modified term of the Gram-

Charlier series expansion. Hence we obtain the likelihood
function for the sample:

SLF󸀠 = −
1

2
(𝑇 − 1) × ln (2𝜋) −

1
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ln (Γ
𝑡
) .

(11)

Solving for the maximum of (11) of the likelihood function
of the sample will give us the consistent estimates of the
parameters.

As the sample likelihood function is highly nonlinear, the
selection of the initial parameters is critical for obtaining the
global optimal solution. Harvey and Siddique’s [18] strategy
of going from the simple model to the complicated model in
estimating models has delivered good empirical results and
has thus been widely applied. This paper, in line with this
strategy, used the following parameter estimation steps:

(1) estimate the equation for the mean and then use the
results as the initial values to estimate the GARCH-M
model;
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Figure 2: The time-varying processes of the risk premium coeffi-
cients gamma.

(2) estimate theGARCH-Mmodel anduse the parameter
estimation results as the initial values for the esti-
mation of the GARCHS-M model and the GARCH-
M model allowing for time-varying risk premium
coefficient;

(3) use the parameter estimation results from the above
two steps as the initial values to estimate the
GARCHS-M model allowing for time-varying risk
premium coefficient.

3.4. Empirical Results. Theempirical study in this sectionwas
divided into two parts: first the estimation results for model
(7) were given and analyzed to investigate the reasonability of
the specification of the model; then the correlation between
the skewness in the return distribution and the degree of
speculation in the market on the basis of the empirical results
was further investigated.

3.4.1. Results for Model Estimation. We estimated the model
(7) using the data of the 14 samples (we run the estimation on
Eviews 5.0.) and the estimation results are shown in Table 3.

Using the estimation results, the time-varying processes
of the risk premium coefficients were plotted as shown in
Figure 2 (for space, only 2 representative indices, S&P 500
and Nikkei 225, were given here).

Figure 2 gives the time-varying processes of the risk
premium coefficients. From the figure we can see that the
risk premium coefficient for each market exhibits an obvious
time-varying feature and an average significantly greater than
zero. This shows that, in general, the more risk there is in
themarket, themore return compensation investors demand,
which is consistent with the conventional finance theory.
But under the influence of the risk attitude, the unexpected
return, and the risk of the last period, the current risk
premium coefficient may be negative in some cases, which
means that investors relax their vigilance for risk under the
influence of these factors and exhibit obvious irrationality,
which may encourage speculative behavior.

From the examination of the estimation results of the
time-varying process of the risk premium coefficients, we can
see that, apart from the constant term, most of the estimation
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Table 3: Model estimation results.

(a)

Parameter S&P 500 Dow J. Nasdaq NYSE N 225 FTSE 100 SSE

Time- varying 𝛾

𝜌
0

0.014061
(0.0668)

0.024333
(0.0960)

0.073175
(0.0220)

0.015498
(0.1171)

0.004656
(0.3741)

0.022537
(0.0356)

0.060807
(0.0767)

𝜌
1

0.671156
(0.0000)

0.548122
(0.0059)

−0.672522
(0.0011)

0.699180
(0.0000)

0.864550
(0.0000)

0.552242
(0.0000)

−0.802902
(0.0013)

𝜌
2

−0.070729
(0.0002)

−0.056227
(0.0098)

0.034182
(0.0169)

−0.045118
(0.0142)

−0.017348
(0.1723)

−0.082743
(0.0000)

0.018254
(0.2415)

Variance equation

𝛼
0

0.011472
(0.0000)

0.011674
(0.0000)

0.010696
(0.0000)

0.014906
(0.0000)

0.020784
(0.0038)

0.010016
(0.0002)

0.041504
(0.0000)

𝛼
1

0.075448
(0.0000)

0.081726
(0.0000)

0.046647
(0.0000)

0.078346
(0.0000)

0.092420
(0.0000)

0.096733
(0.0000)

0.099855
(0.0000)

𝛼
2

0.913434
(0.0000)

0.908752
(0.0000)

0.945602
(0.0000)

0.906232
(0.0000)

0.900605
(0.0000)

0.894667
(0.0000)

0.893033
(0.0000)

Skewness equation

𝛽
0

−0.000538
(0.0046)

−0.001420
(0.0311)

−0.045664
(0.0017)

−0.000449
(0.0010)

−0.046385
(0.0385)

−0.008635
(0.1683)

0.020711
(0.0143)

𝛽
1

0.001963
(0.0235)

0.004560
(0.0516)

0.032296
(0.0000)

0.003019
(0.0067)

0.028283
(0.0016)

0.011915
(0.0359)

0.006473
(0.0442)

𝛽
2

0.987139
(0.0000)

0.959255
(0.0000)

0.533682
(0.0000)

0.983791
(0.0000)

0.595621
(0.0000)

0.843206
(0.0000)

0.626719
(0.0003)

Log likelihood −1243.670 −1154.630 −1926.634 −1172.428 −1845.429 −1203.899 −2086.479

(b)

Parameter DAX CAC 40 GSPTSE MIBTEL IGBM BVSP Hangseng

Time- varying 𝛾

𝜌
0

0.013762
(0.1821)

0.012604
(0.0681)

0.012297
(0.2773)

0.035950
(0.2338)

0.021461
(0.5686)

0.014801
(0.1713)

0.007973
(0.7020)

𝜌
1

0.771009
(0.0000)

0.744133
(0.0000)

0.754400
(0.0002)

0.082012
(0.8789)

0.761071
(0.0623)

0.728769
(0.0000)

0.843089
(0.0367)

𝜌
2

−0.031714
(0.0562)

−0.053187
(0.0023)

−0.024171
(0.1279)

−0.036640
(0.0961)

−0.013422
(0.4694)

−0.032091
(0.0483)

−0.007450
(0.6257)

Variance equation

𝛼
0

0.016197
(0.0002)

0.014882
(0.0001)

0.008462
(0.0000)

0.009467
(0.0000)

0.017090
(0.0000)

0.099432
(0.0000)

0.015302
(0.0003)

𝛼
1

0.089870
(0.0000)

0.080974
(0.0000)

0.072330
(0.0000)

0.097325
(0.0000)

0.089791
(0.0000)

0.072369
(0.0000)

0.067647
(0.0000)

𝛼
2

0.902930
(0.0000)

0.909675
(0.0000)

0.918544
(0.0000)

0.895624
(0.0000)

0.897541
(0.0000)

0.894363
(0.0000)

0.925600
(0.0000)

Skewness equation

𝛽
0

−0.044249
(0.3287)

−0.012939
(0.0441)

−0.001743
(0.0042)

−0.008658
(0.1932)

−0.008764
(0.2645)

−0.080287
(0.0413)

−0.003197
(0.5593)

𝛽
1

0.013195
(0.2559)

0.018179
(0.0018)

0.006174
(0.0001)

0.007836
(0.0224)

0.010878
(0.1647)

0.008073
(0.0333)

0.001812
(0.4276)

𝛽
2

0.636849
(0.0780)

0.852436
(0.0000)

0.964743
(0.0000)

0.880261
(0.0000)

0.750425
(0.0005)

0.909746
(0.0000)

0.945101
(0.0000)

Log likelihood −1815.479 −1665.186 −1046.193 −1071.693 −1130.580 −2450.400 −1753.907

results for 𝜌
1
and 𝜌

2
are significant at 10%; although 𝜌

2
for

Nikkei 225, SSE, and GSPTSE are not significant at 10%, the
corresponding 𝑃 values are relatively small (0.1723, 0.2415,
and 0.1279, resp.). Only the 𝑃 values for 𝜌

1
for MIBTEL and

𝜌
2
for IGBM and Hangseng are relatively big (0.8789, 0.4694,

and 0.6257, resp.), and the estimation results are obviously
not significant. But for all the estimation results there are
no cases where the estimation results for the two coefficients
of 𝜌
1
and 𝜌

2
, which determine time variation of the risk

premium coefficient, are not significant at the same time.
This fact indicates that time variation does exist for the risk

premium coefficient, and it is reasonable to assume that the
risk premium coefficient for the model is time-varying.

Among the 14 estimation results for the samples, 𝜌
0
are

all positive and most of them are significant, which imply
the risk premium investors demand for unit risk is positive,
and the result is consistent with the traditional theory. This
can be regarded as the risk premium investors demand for
the risk inherent in the market for a certain period of time.
Except for the estimation results for NASDAQ and SSE, the
other results for 𝜌

1
are positive and approximate to 1 (the

result for MIBTEL is 0.082012, rather small), which means
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that the current risk attitude is influenced by the persistence
of the last-period risk attitude and diminishes a little. The
estimation results for 𝜌

2
for the samples are all smaller

than zero. This indicates that the positive unexpected return
after risk adjustment will reduce the risk premium investors
demand for unit risk. It can also be viewed as that when the
basic risk remains unchanged in the market, the higher the
unexpected return is in the last period, the smaller the risk
premium coefficient is; this indicates that investors’ current
risk tolerance is higher and the degree of speculation is also
higher; if the unexpected return in the last period is positive,
the more riskier it was in the last period, the higher the
premium coefficient is, which shows that investors’ current
risk tolerance is lower than that of the last period, and also
lower is the degree of speculation; if the unexpected return
is negative in the last period, the more riskier it was in the
last period, the smaller the risk premium coefficient is, which
shows that investors’ current risk tolerance is higher than that
of the last period, and also higher is the degree of speculation.

However, the signs of 𝜌
1
and 𝜌

2
of the estimation results

for the samples of NASDAQ and SSE are just the opposite
of those for other samples. The fact that 𝜌

1
is negative with

its absolute value less than 1 indicates that investors’ current
risk attitude will show a reversal in the nest period in the
above 2 markets; that is to say, the higher the risk tolerance
for the current period is, the higher the possibility there is
for it to become lower for the next period, and the behavior
intensity of the risk tolerance will weaken; the sign of 𝜌

2
is

negative, which implies the risk-adjusted positive unexpected
return will drive up investors’ unit risk premium. With the
risk remaining fundamentally unchanged, the influence of
the unexpected return on the degree of speculation is just
the opposite to those on other markets. The higher the
unexpected return for the last period is, the more likely the
risk tolerance is to become higher; that is to say, the degree
of speculation is more likely to decrease. This will cause
investors to become more cautious in trading, which is the
typical psychology to keep the profit.

It is well known that NASDAQ and SSE are widely
recognized as two markets with relatively high speculation;
the completely different risk tolerance behavior of the two
markets from the other markets may be possibly determined
by the degrees of speculation on the two markets. Accord-
ingly, we set to investigate the influence of the market risk
on the degrees of speculation in the two markets. When
the unexpected return is positive and remains basically
unchanged, the market is relatively bullish. The fact that
the estimation results of 𝜌

2
for the two markets are positive

indicates that the higher the risk for the last period is, the
smaller the risk premium coefficient for the current period
is; that is, the higher the risk tolerance is, the higher the
speculation degree is; when the unexpected return is negative
and remains basically unchanged, the market is relatively
bearish. In that case, the positive 𝜌

2
implies that the higher

the risk is for the last period, the smaller the risk premium
coefficient is for the current period; that is to say, the smaller
the risk tolerance is, the lower the degree of speculation is.
This implies that when it is bullish, investors, more often than
not, seek risks in NASDAQ and SSE, and the higher the risk

is, the more likely it is for investors to engage in speculation,
while investors tend to evade risk, when themarket is bearish,
and increased risk will reduce speculation in the market.
In a mature market, investors reaction to risk is completely
different from investors in the above two markets: investors
prefer relatively low risk for stable return in a bullish market,
and increased risk will lead to less speculation, while they
prefer relatively higher risk, which will prompt speculation
in the market.

The above discussion shows that there is striking differ-
ence in investors’ reaction to the return and the risk in a
speculative market and a mature market, which may serve as
an indicator for whether the market is mature or not.

Besides, it can be seen from the examination of the
estimation results of the coefficient of the skewness process
that the conditional skewness process (not including the
constant term) of most of the indices is significant at 10%
(DAX, IGBM, and Hangseng are excluded, but part of the
coefficients for DAX and IGBM and the corresponding 𝑃

value are relatively small, being 0.2559 and 0.1647, resp.).
This shows that the time variation of the skewness is well
characterized. As the conditional skewness process has been
well studied, this paper will not discuss much about the
estimation results.

3.4.2. The Relationship between the Risk Premium Coefficient
and the Skewness. From the above discussion we can see that
the GARCHS-M model with the time-varying risk premium
coefficient can well characterize the conditional skewness
process and the time variation process of the risk premium
coefficient of the 14 stock indices simultaneously. On the basis
of the estimation results, this paper will further examine the
relationship between the risk premium coefficient and the
skewness on the dimension of time.

First, we will plot the conditional skewness and the
risk premium coefficient of the 14 indices, as shown in
Figure 3 (for S&P 500 and Nikkei 225), where the line is the
regression line. The Pearson correlation can only measure
the linear correlation between the variables [37], but the
scatter plots will give us the impression that the relationship
between the risk premium coefficient and the skewness may
be complicated. Consequently, this paper will select Kendall’s
tau and Spearman’s rho to measure whether the 2 variables’
variation tendencies are in the same direction. The values for
the 2 correlations of the 2 variables are given in Table 4.

It can be seen from Tables 3 and 4, except NASDAQ
and SSE, that the conditional skewness and the risk pre-
mium coefficient are significantly negatively correlated. The
significantly negative correlation further corroborated Wen
and Yang’s [29] viewpoints: the high degree of speculation
in the market will cause the positive skew in the return
distribution. It can be shown with further investigation of
the causes for the negative correlation using models and
their estimation results: in general, the conditional skewness
is positively correlated with the cube of the unexpected
return, while the risk premium coefficient is negatively
correlatedwith the unexpected return.Thedifferent reactions
to the unexpected return are possibly the main causes for
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Figure 3: The scatter plots of the relationship between the risk premium coefficient gamma and the conditional skewness.

Table 4: The correlation between the risk premium coefficient gamma and the conditional skewness.

(a)

S&P 500 Dow J. NASDAQ NYSE N 225 FTSE 100 SSE
Pearson correlation −0.106 −0.223 0.175 −0.118 −0.308 −0.246 0.158
Kendall’s tau −0.144 −0.200 0.193 −0.175 −0.558 −0.415 0.130
Spearman’s rho −0.211 −0.295 0.272 −0.255 −0.756 −0.591 0.183

(b)

DAX CAC 40 GSPTSE MIBTEL IGBM BVSP Hangseng
Pearson correlation −0.438 −0.402 −0.156 −0.232 −0.358 −0.474 −0.371
Kendall’s tau −0.619 −0.514 −0.250 −0.218 −0.609 −0.460 −0.449
Spearman’s rho −0.818 −0.714 −0.368 −0.321 −0.808 −0.644 −0.632
Note: all the values are significantly different from zero at 1% level.

the negative correlation. Behavioral finance research findings
show that the nonnormality of the return distribution is
caused by investors’ behavioral biases, and the unexpected
return series (i.e., the error series) can be viewed as the
proxy of the information flow, so we might as well think
that the negative correlation is essentially caused by investors’
different reactions to information.

On the contrary, the conditional skewness and the risk
premium coefficient of the NASDAQ and the SSE are sig-
nificantly positively correlated, which is also consistent with
the findings of Wen and Yang [29]. It can be seen from
the scatter plots that none of the correlations between the
risk premium coefficient and the conditional skewness for
all the markets is linear. Simply judging from the degree
of consistency of the tendencies in the changes of the two
variables, even in the case of low linear correlation, the
directions in the changes are usually of high degree of
consistency. This shows that the influence of speculation on

the skewness in the return distribution is not linear and may
have a very complex mechanism. Apart from speculation
in the market, the skewness in the return distribution may
be attributed to other factors, which partly explains the
complicated relationship between the speculation and the
skewness in the return distribution.

4. Conclusions

This paper characterizes the time variation of the risk pre-
mium coefficient, that is, how investors’ risk attitude varies
with the time. By proposing a modified GARCH-M model
and using the daily return series of the representative 14 stock
indices as samples, this paper empirically investigates the
correlation of the skewness in the return distribution and the
risk premium coefficient, and the empirical results show the
following.
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Firstly, the risk premium coefficient is obviously time-
varying, and the current risk premium investors demand for
unit risk is influenced not only by the last-period unexpected
return and the risk but also by the persistence of the risk
attitude for the last period. Secondly, there is significant
difference in investors’ reactions to the return and the risk
in a speculative market and a mature market: in a mature
market investors prefer low risk for a stable return when
the market is bullish, while they seek relatively high risk
when it is bearish and may trigger more speculation in the
market. Lastly, the skewness in the return distribution and the
risk premium coefficient is significantly negatively correlated
even in amaturemarket when examined on the dimension of
time.

The above results of this paper further validate the
correlation between the skewness in the return distribution
and the degree of speculation in the market. Meanwhile, the
results also show that the influence of speculation on the
skewness in the return distribution is rather complicated.
It is necessary and meaningful to further investigate the
deep-seated relationship between the skewness in the return
distribution and speculation, and the possible influence of
other factors on the skewness in the return distribution, such
as the cultural background of themarket participants, and the
microstructure of the market.
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Wefirst propose a new epidemic diseasemodel governed by systemof impulsive delay differential equations.Then, based on theories
for impulsive delay differential equations, we skillfully solve the difficulty in analyzing the global dynamical behavior of the model
with pulse vaccination and impulsive population input effects at two different periodic moments. We prove the existence and
global attractivity of the “infection-free” periodic solution and also the permanence of the model. We then carry out numerical
simulations to illustrate our theoretical results, showing us that time delay, pulse vaccination, and pulse population input can exert
a significant influence on the dynamics of the system which confirms the availability of pulse vaccination strategy for the practical
epidemic prevention. Moreover, it is worth pointing out that we obtained an epidemic control strategy for controlling the number
of population input.

1. Introduction

In epidemic modeling, susceptible-infectious-recovered type
of models is well known [1–18] although such models very
often ignore the incubation period in the development of
mathematical models for some diseases. However, recent
research shows for certain diseases, such as smallpox, rabies,
BSE, and some skin diseases, the incubation period has
significant effect on the epidemic dynamics so that it is
nonnegligible. The incubation period varies greatly from
a couple of days (e.g., H1N1 outbreaking worldwide has
generally an incubation period of one to seven days) to
several years (e.g., AIDS virus sometimes can be several
years). When taking the incubation period into account in
the development of models, we reach SEIR model, which
is short for susceptible, exposed, infectious, and recovered
[19–30]. And some researchers used time delay to describe
the incubation period; for example, Cooke [31], Beretta and
Takeuchi [4], Takeuchi et al. [32], and Ma et al. [5] studied
a SIR model with time delay and nonlinear incidence rate
𝛽𝑆(𝑡)𝐼(𝑡 − 𝜏). Liu et al. [33, 34] used a nonlinear incidence
rate 𝛽𝑆𝑝(𝑡)𝐼𝑞(𝑡), and Meng et al. [35] and Jiang et al. [30],

respectively, studied an impulsively vaccinating SIR model
with nonlinear incidences 𝛽𝑆𝑞(𝑡)𝐼(𝑡−𝜏) and 𝛽𝑆𝑞(𝑡−𝜏)𝐼(𝑡−𝜏),
which are better to describe the spread process of diseases
than linear one.

In order to prevent infectious diseases, [36, 37] suggested
that vaccination to the susceptible population is an important
strategy. The traditional vaccinations are applied to each
individual, while impulsive ones are to periodically vaccinate
people within certain age groups [7–10, 38]. Some diseases
may have a vaccination period after being cured but may
cause losing immunity gradually. In this case, people might
be infected again. So it is of great significance to investigate
epidemic models with time delay and impulsive effects due
to the incubation period and vaccination period [26–29].
For some certain regional systems, the immigrations can be
periodic impulsive population input because the immigra-
tory population might be susceptible. Certainly two different
impulsive effects for periodic vaccination and population
input do not usually happen simultaneously.Therefore, moti-
vated by Jiang et al. [30] and Song et al. [19], we built a
new mathematical model: susceptible, vaccinated, exposed,
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infectious, recovered, and susceptible epidemic model with
two time delays and two nonlinear incidences with pulse
vaccination and a constant periodic population input at two
different moments as follows:

𝑑𝑆 (𝑡)

𝑑𝑡
= −𝑏𝑆 (𝑡) − 𝛽𝑆

𝑝
(𝑡) 𝐼 (𝑡) + 𝛾𝐼 (𝑡 − 𝜔) 𝑒

−𝑏𝜔
,

𝑑𝑉 (𝑡)

𝑑𝑡
= −𝛿𝛽𝑉

𝑞
(𝑡) 𝐼 (𝑡) − 𝛾1𝑉 (𝑡) − 𝑏𝑉 (𝑡) ,

𝑑𝐸 (𝑡)

𝑑𝑡
= − 𝑏𝐸 + 𝛽𝑆

𝑝
(𝑡) 𝐼 (𝑡) + 𝛿𝛽𝑉

𝑞
(𝑡) 𝐼 (𝑡)

− 𝛽𝑒
−𝑏𝜏
𝑆
𝑝
(𝑡) 𝐼 (𝑡 − 𝜏) − 𝛿𝛽𝑒

−𝑏𝜏
𝑉
𝑞
(𝑡) 𝐼 (𝑡 − 𝜏) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑒

−𝑏𝜏
𝑆
𝑝
(𝑡) 𝐼 (𝑡 − 𝜏) + 𝛿𝛽𝑒

−𝑏𝜏
𝑉
𝑞
(𝑡) 𝐼 (𝑡 − 𝜏)

− (𝛾 + 𝑏 + 𝛼) 𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛾

1
𝑉 (𝑡) + 𝛾𝐼 (𝑡) − 𝑏𝑅 (𝑡) − 𝛾𝐼 (𝑡 − 𝜔) 𝑒

−𝑏𝜔
,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝑆 (𝑡) = −𝜃𝑆 (𝑡) , Δ𝑉 (𝑡) = 𝜃𝑆 (𝑡) , Δ𝐸 (𝑡) = 0,

Δ𝐼 (𝑡) = 0, Δ𝑅 (𝑡) = 0,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑆 (𝑡) = 𝜇, Δ𝑉 (𝑡) = 0, Δ𝐸 (𝑡) = 0,

Δ𝐼 (𝑡) = 0, Δ𝑅 (𝑡) = 0,

𝑡 = 𝑛𝑇.

(1)

Here all parameters of system (1) are nonnegative constants.
For the significance of parameters in (1), please see literatures
Jiang et al. [30] and Song et al. [19]. Terms 𝛽𝑆𝑝𝐼 and 𝑉

𝑞
𝐼

are the nonlinear incidence rates, and in our paper we only
discuss the case

1 ≤ 𝑞 ≤ 𝑝. (2)

2. Preliminaries

Let𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), and then it is easy
to see that𝑁(𝑡) satisfies the following:

𝑁
󸀠
(𝑡) ≤ 𝑏 (1 − 𝑁 (𝑡)) , lim

𝑡→∞

sup𝑁(𝑡) ≤ 1. (3)

Hence, for time 𝑡 which is large, we obtain 0 ≤ 𝑆(𝑡) +

𝑉(𝑡) + 𝐼(𝑡) ≤ 1. Let 𝜛 = max{𝜏, 𝜔} and 𝐶
+

= {𝜑 =

(𝜑
1
(𝑠), . . . , 𝜑

5
(𝑠)) ∈ 𝐶 : 𝜑

𝑖
(0) > 0}; here 𝜑

𝑖
(𝑠) > 0 is bounded

function on interval [−𝜛, 0]. Since variable 𝑅(𝑡) only appears
in the fifth equation, system (1) can be further reduced as

𝑑𝑆 (𝑡)

𝑑𝑡
= −𝑏𝑆 (𝑡) − 𝛽𝑆

𝑝
(𝑡) 𝐼 (𝑡) + 𝛾𝐼 (𝑡 − 𝜔) 𝑒

−𝑏𝜔
,

𝑑𝑉 (𝑡)

𝑑𝑡
= −𝛿𝛽𝑉

𝑞
(𝑡) 𝐼 (𝑡) − 𝛾

1
𝑉 (𝑡) − 𝑏𝑉 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑒

−𝑏𝜏
𝑆
𝑝
(𝑡) 𝐼 (𝑡 − 𝜏) + 𝛿𝛽𝑒

−𝑏𝜏
𝑉
𝑞
(𝑡) 𝐼 (𝑡 − 𝜏)

− (𝛾 + 𝑏 + 𝛼) 𝐼 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝑆 (𝑡) = −𝜃𝑆 (𝑡) , Δ𝑉 (𝑡) = 𝜃𝑆 (𝑡) , Δ𝐼 (𝑡) = 0,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑆 (𝑡) = 𝜇, Δ𝑉 (𝑡) = 0, Δ𝐼 (𝑡) = 0,

𝑡 = 𝑛𝑇,

(4)

with the initial conditions

(𝜑
1
(𝑠) , 𝜑

2
(𝑠) , 𝜑

4
(𝑠)) ∈ 𝐶

+
, 𝜑

𝑖
(0) > 0, 𝑖 = 1, 2, 4. (5)

Lemma 1 (see [39, 40]). For the following impulse differential
inequalities

𝑠
󸀠
(𝑡) ≤ (≥) 𝑞 (𝑡) 𝑠 (𝑡) + 𝑟 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝑠 (𝑡
+

𝑘
) ≤ (≥) 𝑏

𝑘
𝑠 (𝑡

𝑘
) + 𝑝

𝑘
, 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑁,

(6)

where 𝑞(𝑡), 𝑟(𝑡) ∈ 𝐶(𝑅
+
, 𝑅), 𝑏

𝑘
≥ 0, and 𝑝

𝑘
are constants.

Assume the following:

(𝐴
0
) the sequence {𝑡

𝑘
} satisfies 0 ≤ 𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ , with

lim
𝑡→∞

𝑡
𝑘
= ∞;

(𝐴
1
) 𝑤 ∈ 𝑃𝐶

󸀠
(𝑅
+
, 𝑅) and 𝑠(𝑡) is left-continuous at 𝑡

𝑘
, 𝑘 ∈ 𝑁.

Then

𝑠 (𝑡) ≤ (≥) 𝑠 (𝑡
0
) ∏

𝑡0<𝑡𝑘<𝑡

𝑏
𝑘
exp(∫

𝑡

𝑡0

𝑞 (𝑢) 𝑑𝑢)

+ ∑

𝑡0<𝑡𝑘<𝑡

( ∏

𝑡𝑘<𝑡𝑗<𝑡

𝑏
𝑗
exp(∫

𝑡

𝑡𝑘

𝑞 (𝑢) 𝑑𝑢))𝑝
𝑘

+ ∫

𝑡

𝑡0

∏

𝑢<𝑡𝑘<𝑡

𝑏
𝑘
exp(∫

𝑡

𝑢

𝑞 (𝜃) 𝑑𝜃) 𝑟 (𝑢) 𝑑𝑢,

𝑡 ≥ 𝑡
0
.

(7)

Lemma 2 (see [41]). For the following delay differential
equation

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑎𝑧 (𝑡 − 𝜃) − 𝑏𝑧 (𝑡) , (8)
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where 𝑎, 𝑏, and 𝜃 are all positive constants and 𝑧(𝑡) > 0 for
𝑡 ∈ [−𝜃, 0], then we have

lim
𝑡→∞

𝑧 (𝑡) = {
0, 𝑖𝑓 𝑎 < 𝑏;

+∞, 𝑖𝑓 𝑎 > 𝑏.
(9)

Lemma 3 (see [42]). The following system,

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝑏𝑥 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= − (𝑎 + 𝑏) 𝑦 (𝑡) ,

𝑡 ̸= 𝑛𝑇, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑥 (𝑡) = −𝜃𝑥 (𝑡) , Δ𝑦 (𝑡) = 𝜃𝑥 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑥 (𝑡) = 𝜇, Δ𝑦 (𝑡) = 0, 𝑡 = 𝑛𝑇,

(10)

has a unique positive 𝑇-periodic solution:

𝑥
∗
(𝑡) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝜇 exp (−𝑏 (𝑡 − (𝑛 − 1) 𝑇))
1 − (1 − 𝜃) exp (−𝑏𝑇)

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝑙 − 1) 𝑇] ,

𝜇 (1 − 𝜃) exp (−𝑏 (𝑡 − (𝑛 − 1) 𝑇))
1 − (1 − 𝜃) exp (−𝑏𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, ≤ 𝑛𝑇] ,

𝑦
∗
(𝑡) =

𝜇𝜃 exp (−𝑏𝑙𝑇) exp (− (𝑎 + 𝑏) (𝑡 − (𝑛 + 𝑙 − 1) 𝑇))
(1 − exp (− (𝑎 + 𝑏) 𝑇)) (1 − (1 − 𝜃) exp (−𝑏𝑇))

,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, (𝑛 + 𝑙) 𝑇] ,

(11)

and we further have 𝑥(𝑡) → 𝑥
∗
(𝑡) and 𝑦(𝑡) → 𝑦

∗
(𝑡) as 𝑡 →

+∞.

3. The Existence and Global Attractivity of
‘‘Infection-Free’’ Periodic Solution

3.1. Existence. In this section, we are committed to investigate
the existence of “infection-free” periodic solution. In this
case, we have

𝐼 (𝑡) = 0, 𝑡 ≥ 0. (12)

From systems (4) and (12), we obtain

𝑑𝑆 (𝑡)

𝑑𝑡
= −𝑏𝑆 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= − (𝛾

1
+ 𝑏)𝑉 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = −𝜃𝑆 (𝑡) , Δ𝑉 (𝑡) = 𝜃𝑆 (𝑡) ,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = 𝜇, Δ𝑉 (𝑡) = 0, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.

(13)

By Lemma 3, system (13) has a unique positive 𝑇-periodic
solution:

𝑆
∗
(𝑡) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝜇 exp (−𝑏 (𝑡 − (𝑛 − 1) 𝑇))
1 − (1 − 𝜃) exp (−𝑏𝑇)

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝑙 − 1) 𝑇] ,

𝜇 (1 − 𝜃) exp (−𝑏 (𝑡 − (𝑛 − 1) 𝑇))
1 − (1 − 𝜃) exp (−𝑏𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, ≤ 𝑛𝑇] ,

𝑉
∗
(𝑡) =

𝜇𝜃 exp (−𝑏𝑙𝑇) exp (− (𝑎 + 𝑏) (𝑡 − (𝑛 + 𝑙 − 1) 𝑇))
(1 − exp (− (𝑎 + 𝑏) 𝑇)) (1 − (1 − 𝜃) exp (−𝑏𝑇))

,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, (𝑛 + 𝑙) 𝑇] .

(14)

Furthermore, we can prove that it is the unique globally
asymptotically stable positive periodic solution of system (4).
We summarize this conclusion in the following lemma.

Lemma 4. The system (4) has an “infection-free” periodic
solution (𝑆∗(𝑡), 𝑉∗(𝑡), 0), for 𝑡 ∈ ((𝑛 + 𝑙 − 1)𝑇, (𝑛 + 𝑙)𝑇] and
𝑛 ∈ 𝑁; for any solution (𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡)) of it, the following
holds true:

𝑆 (𝑡) 󳨀→ 𝑆
∗
(𝑡) , 𝑉 (𝑡) 󳨀→ 𝑉

∗
(𝑡) (15)

as 𝑡 → ∞.

This lemma indicates that in between the vaccination the
susceptible and vaccinated populations oscillate with period
𝑇 in synchronization with the periodic pulse vaccination.
Next we prove the global attractivity of such solution.

3.2. Global Attractivity. In this section, we will prove our
main result on the global attractivity of the infection-free
solution. It is stated in the following theorem.

Theorem 5. The system (4) has a unique infection-free peri-
odic solution (𝑆∗(𝑡), 𝑉∗(𝑡), 0), and when it exists, it is globally
attractive if

R
1
< 1, (16)

where

R
1
= 𝛽𝑒

−𝑏𝜏
(𝐴

𝑝

1
+ 𝛿𝐴

𝑞

2
)

𝛾 + 𝑏 + 𝛼
, (17)

with

𝐴
1
=
𝛾𝑒
−𝑏𝜔

𝑏
+

𝜇𝑒
𝑏𝑇

𝑒𝑏𝑇 − 1
,

𝐴
2
=

𝜃𝑒
−𝑏𝑙𝑇

(1 − 𝜃) (1 − (1 − 𝜃) 𝑒−𝑏𝑇) (1 − 𝑒−(𝛾1+𝑏)𝑇)
.

(18)
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Proof. Let (𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡)) be a solution of (4) satisfied initial
condition (5). Since R

1
< 1, one can choose an 𝜀 > 0 small

enough such that

𝛽𝑒
−𝑏𝜏

((Δ
1
)
𝑝
+ 𝛿(Δ

2
)
𝑞
) − (𝛾 + 𝑏 + 𝛼) < 0, (19)

where

Δ
1
=
𝛾𝑒
−𝑏𝜔

𝑏
+

𝜇𝑒
𝑏𝑇

𝑒𝑏𝑇 − 1
+ 𝜀,

Δ
2
=

𝜃𝑒
−𝑏𝑙𝑇

(1 − 𝜃) (1 − (1 − 𝜃) 𝑒−𝑏𝑇) (1 − 𝑒−(𝛾1+𝑏)𝑇)
+ 𝜀.

(20)

For 𝑛 > 𝑛
1
, we have

𝑑𝑆 (𝑡)

𝑑𝑡
≤ 𝑏 − 𝑏𝑆 (𝑡) + 𝛾𝑒

−𝑏𝜔
,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = −𝜃𝑆 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = 𝜇, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.

(21)

By impulsive differential inequality Lemma 1, we have

𝑆 (𝑡) ≤ 𝑆 (𝑛
1
𝑇
+
) ∏

𝑛1𝑇
+
<𝑛𝑇<𝑡

exp(∫
𝑡

𝑛1𝑇

(−𝑏) 𝑑𝑠)

+ ∑

𝑛1𝑇<𝑛𝑇<𝑡

( ∏

𝑛𝑇<𝑡𝑗<𝑡

exp(∫
𝑡

𝑛𝑇

(−𝑏) 𝑑𝑠))𝜇

+ ∫

𝑡

𝑛1𝑇

∏

𝑠<𝑛𝑇<𝑡

exp(∫
𝑡

𝑠

(−𝑏) 𝑑𝜃) 𝛾𝑒
−𝑏𝜔

𝑑𝑠

= 𝑆
1
+ 𝑆

2
+ 𝑆

3
,

(22)

where

𝑆
1
= 𝑆 (𝑛

1
𝑇
+
) ∏

𝑛1𝑇
+
<𝑛𝑇<𝑡

exp(∫
𝑡/𝑇

𝑛1

(−𝑏) 𝑑𝑇𝜉)

= 𝑆 (𝑛
1
𝑇
+
) 𝑒
−𝑏(𝑡−𝑛1𝑇),

𝑆
2
= ∑

𝑛1𝑇<𝑛𝑇<𝑡

( ∏

𝑛𝑇<𝑡𝑗<𝑡

exp(∫
𝑡

𝑛𝑇

(−𝑏) 𝑑𝑠))𝜇

= ∑

𝑛1𝑇<𝑛𝑇<𝑡

(𝜇𝑒
−𝑏(𝑡−𝑛𝑇)

)

= 𝜇
𝑒
−𝑏(𝑡−𝑛1)𝑇 − 𝑒

−𝑏(𝑡−(𝑛+𝑛1))𝑇

1 − 𝑒𝑏𝑇
,

𝑆
3
= ∫

𝑡

𝑛1𝑇

∏

𝑠<𝑛𝑇<𝑡

exp(∫
𝑡

𝑠

(−𝑏) 𝑑𝜃) 𝛾𝑒
−𝑏𝜔

𝑑𝑠

= 𝛾𝑒
−𝑏𝜔

∫

𝑡

𝑛1𝑇

∏

𝑠<𝑛𝑇<𝑡

exp(∫
𝑡

𝑠

(−𝑏) 𝑑𝜃) 𝑑𝑠

=
𝛾𝑒
−𝑏𝜔

𝑒
−𝑏𝑡

𝑏
∫

𝑡

𝑛1𝑇

∏

𝑠<𝑛𝑇<𝑡

𝑒
𝑏𝑠
𝑑 (𝑏𝑠)

=
𝛾𝑒
−𝑏𝜔

𝑒
−𝑏𝑡

𝑏
(𝑒
𝑏𝑡
− 𝑒

𝑏𝑛1𝑇) .

(23)

Thus

𝑆 (𝑡) ≤ 𝑆
1
+ 𝑆

2
+ 𝑆

3

= 𝑆 (𝑛
1
𝑇
+
) 𝑒
−𝑏(𝑡−𝑛1𝑇)

+ 𝜇
𝑒
−𝑏(𝑡−𝑛1)𝑇 − 𝑒

−𝑏(𝑡−(𝑛+𝑛1))𝑇

1 − 𝑒𝑏𝑇

+
𝛾𝑒
−𝑏𝜔

𝑒
−𝑏𝑡

𝑏
(𝑒
𝑏𝑡
− 𝑒

𝑏𝑛1𝑇)

≤ 𝑒
−𝑏𝑡
𝑆 (𝑛

1
𝑇
+
) 𝑒
𝑛1𝑏𝑇 +

𝜇𝑒
−𝑏(𝑡−𝑛1𝑇)

1 − 𝑒𝑏𝑇

+
𝛾𝑒
−𝑏𝜔

𝑏
𝑒
−𝑏(𝑡−𝑛1𝑇) +

𝛾𝑒
−𝑏𝜔

𝑏
+

𝜇𝑒
𝑏𝑇

𝑒𝑏𝑇 − 1
,

(24)

and then we have

lim
𝑡→∞

sup 𝑆 (𝑡) <
𝛾𝑒
−𝑏𝜔

𝑏
+

𝜇𝑒
𝑏𝑇

𝑒𝑏𝑇 − 1
. (25)

Thus there exists a positive integer 𝑛
2
> 𝑛

1
and constant 𝜀 > 0

small enough such that, for all 𝑡 > 𝑛
2
𝑇,

𝑆 (𝑡) ≤
𝛾𝑒
−𝑏𝜔

𝑏
+

𝜇𝑒
𝑏𝑇

𝑒𝑏𝑇 − 1
+ 𝜀 = Δ

1
. (26)

For 𝑛 > 𝑛
1
, system (4) yields

𝑑𝑉 (𝑡)

𝑑𝑡
≤ − (𝛾

1
+ 𝑏)𝑉 (𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δ𝑉 (𝑡) = 𝜃𝑆 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁.

(27)

We obtain the following comparison impulsive differential
system:

𝑑𝑥 (𝑡)

𝑑𝑡
= − (𝛾

1
+ 𝑏) 𝑥 (𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δ𝑥 (𝑡) = 𝜃𝑆 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁.

(28)
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By Lemma 3, the system has a periodic solution given by

𝑥
∗
(𝑡) =

𝜃𝑒
−𝑏𝑙𝑇

𝑒
−(𝛾1+𝑏)(𝑡−(𝑛+𝑙−1)𝑇)

(1 − 𝜃) (1 − (1 − 𝜃) 𝑒−𝑏𝑇) (1 − 𝑒−(𝛾1+𝑏)𝑇)
,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, (𝑛 + 𝑙) 𝑇] ,

𝑥 (0
+
) =

𝜃𝑒
−𝑏𝑙𝑇

(1 − 𝜃) (1 − (1 − 𝜃) 𝑒−𝑏𝑇) (1 − 𝑒−(𝛾1+𝑏)𝑇)
,

(29)

which is globally asymptotically stable.
Now, assume that 𝑥(𝑡) is the solution of system (28) with

initial value 𝑥(0+) = 𝑉
0
. Then by Lemma 1, we know there

exists a positive integer 𝑛 such that

𝑉 (𝑡) < 𝑥 (𝑡) < 𝑥
∗
(𝑡) + 𝜀, 𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇] . (30)

Hence,

𝑉 (𝑡) < 𝑥 (𝑡) < 𝑥
∗
(𝑡) + 𝜀

<
𝜃𝑒
−𝑏𝑙𝑇

(1 − 𝜃) (1 − (1 − 𝜃) 𝑒−𝑏𝑇) (1 − 𝑒−(𝛾1+𝑏)𝑇)
+ 𝜀

0

= Δ
2
.

(31)

From (27), (31), and the third equation in (4), for 𝑡 > 𝑛
2
𝑇 + 𝜏

we have

𝑑𝐼 (𝑡)

𝑑𝑡
≤ 𝛽𝑒

−𝑏𝜏
(Δ

𝑝

1
+ 𝛿Δ

𝑞

2
) 𝐼 (𝑡 − 𝜏) − (𝛾 + 𝑏 + 𝛼) 𝐼 (𝑡) .

(32)

Consider the comparison equation:

𝑑𝑦 (𝑡)

𝑑𝑡
≤ 𝛽𝑒

−𝑏𝜏
(Δ

𝑝

1
+ 𝛿Δ

𝑞

2
) 𝑦 (𝑡 − 𝜏) − (𝛾 + 𝑏 + 𝛼) 𝑦 (𝑡) .

(33)

From (19), we have

𝛽𝑒
−𝑏𝜏

(Δ
𝑝

1
+ 𝛿Δ

𝑞

2
) − (𝛾 + 𝑏 + 𝛼) < 0. (34)

According to Lemma 2, we then obtain

lim
𝑡→∞

𝑦 (𝑡) = 0. (35)

Notice the fact that 𝐼(𝑠) = 𝑦(𝑠) = 𝜙
3
(𝑠) > 0 for all 𝑠 ∈ [−𝜏, 0]

and 𝐼(𝑡) ≥ 0, and the comparison theorem implies 𝐼(𝑡) → 0

as 𝑡 → ∞. Without loss of generality, we may assume that
0 < 𝐼(𝑡) < 𝜀

1
for all 𝑡 ≥ 0. By using the first and second

equations in (4), we reach

𝑑𝑆 (𝑡)

𝑑𝑡
≥ − 𝑏𝑆 (𝑡) − 𝛽𝜀1𝑆

𝑝
(𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
≥ − 𝛿𝛽𝜀

1
𝑉
𝑞
(𝑡) − 𝛾

1
𝑉 (𝑡) − 𝑏𝑉 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = −𝜃𝑆 (𝑡) , Δ𝑉 (𝑡) = 𝜃𝑆 (𝑡) ,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = 𝜇, Δ𝑉 (𝑡) = 0, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.

(36)

For 1 < 𝑞 < 𝑝, we have

𝑑𝑆 (𝑡)

𝑑𝑡
≥ −𝑏𝑆 (𝑡) − 𝛽𝜀

1
𝑆 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
≥ −𝛿𝛽𝜀

1
𝑉 (𝑡) − 𝛾

1
𝑉 (𝑡) − 𝑏𝑉 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = −𝜃𝑆 (𝑡) , Δ𝑉 (𝑡) = 𝜃𝑆 (𝑡) ,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = 𝜇, Δ𝑉 (𝑡) = 0, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁

(37)

considering the following system:

𝑑𝑓 (𝑡) (𝑡)

𝑑𝑡
= −𝑏𝑓 (𝑡) − 𝛽𝜀

1
𝑓 (𝑡) ,

𝑑𝑔 (𝑡)

𝑑𝑡
= −𝛿𝛽𝜀

1
𝑔 (𝑡) − 𝛾1𝑔 (𝑡) − 𝑏𝑔 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

Δ𝑓 (𝑡) = −𝜃𝑓 (𝑡) , Δ𝑔 (𝑡) = 𝜃𝑓 (𝑡) ,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δ𝑓 (𝑡) = 𝜇, Δ𝑔 (𝑡) = 0, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.

(38)

We obtain

𝑓 (𝑡) =

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

(𝑏 + 𝛽𝜀
1
) 𝜇

(𝑏 + 𝛽𝜀
1
) (1 − (1 − 𝜃) 𝑒−(𝑏+𝛽𝜀1)𝑇)

× 𝑒
−(𝑏+𝛽𝜀1)(𝑡−(𝑛−1)𝑇),

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝑙 − 1) 𝑇] ,

(𝑏 + 𝛽𝜀
1
) 𝜇 (1 − 𝜃) 𝑒

−(𝑏+𝛽𝜀1)𝑙𝑇

(𝑏 + 𝛽𝜀
1
) (1 − (1 − 𝜃) 𝑒−(𝑏+𝛽𝜀1)𝑇)

× 𝑒
−(𝑏+𝛽𝜀1)(𝑡−(𝑛+𝑙−1)𝑇),

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, 𝑛𝑇] ,
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𝑔 (𝑡) = ((𝜃 (𝑏 + 𝛽𝜀
1
) 𝜇𝑒

−(𝑏+𝛽𝜀1)𝑙𝑇 − 𝛽𝜀
1
𝜃 (1 − 𝑒

−(𝑏+𝛽𝜀1)𝑇))

× 𝑒
−(𝛾1+𝑏+𝛿𝛽𝜀1)(𝑡−(𝑛+𝑙−1)𝑇))

× ((𝑏 + 𝛽𝜀
1
) (1 − (1 − 𝜃) 𝑒

−(𝑏+𝛽𝜀1)𝑇)

× (1 − 𝑒
−(𝛾1+𝑏)𝑇))

−1

,

𝑡 ∈ ((𝑛 + 𝑙 − 1) 𝑇, (𝑛 + 𝑙) 𝑇] .

(39)

Now by using comparison theorem of impulsive equa-
tions, for any 𝜀

2
> 0 there exists a 𝑇

1
> 0 such that

𝑆 (𝑡) > 𝑓 (𝑡) − 𝜀
2
,

𝑉 (𝑡) > 𝑔 (𝑡) − 𝜀2,

(40)

for 𝑡 > 𝑇
1
. On the other side, from the first and second

equations of (4), we have

𝑑𝑆 (𝑡)

𝑑𝑡
≤ −𝑏𝑆 (𝑡) + 𝛾𝜀1𝑒

−𝑏𝜔
,

𝑑𝑉 (𝑡)

𝑑𝑡
≤ −𝛾

1
𝑉 (𝑡) − 𝑏𝑉 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = −𝜃𝑆 (𝑡) , Δ𝑉 (𝑡) = 𝜃𝑆 (𝑡) ,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = 𝑏, Δ𝑉 (𝑡) = 0, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.

(41)

Then we have 𝑆(𝑡) ≤ ℎ̃(𝑡), 𝑉(𝑡) ≤ 𝑔(𝑡) and ℎ̃(𝑡) → 𝑆
∗
(𝑡),

𝑔(𝑡) → 𝑉
∗
(𝑡), as 𝜀

1
→ 0, where (ℎ̃(𝑡), 𝑔(𝑡)) is a unique

positive periodic solution of

𝑑ℎ (𝑡)

𝑑𝑡
= −𝑏ℎ (𝑡) + 𝛾𝜀1𝑒

−𝑏𝜔
,

𝑑𝑔 (𝑡)

𝑑𝑡
= −𝛾

1
𝑔 (𝑡) − 𝑏𝑔 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

Δℎ (𝑡) = −𝜃ℎ (𝑡) , Δ𝑔 (𝑡) = 𝜃ℎ (𝑡) ,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δℎ (𝑡) = 𝜇, Δ𝑔 (𝑡) = 0, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁,

(42)

from which we have that, for 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1)𝑇,

ℎ̃ (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

𝛾𝜀
1
𝑒
−𝑏𝜔

𝜃𝑒
−𝑏(1−𝑙)𝑇

+ 𝑏𝜇

𝑏 (1 − (1 − 𝜃) 𝑒−𝑏𝑇)

× 𝑒
−𝑏(𝑡−(𝑛−1)𝑇)

−
𝛾𝜀
1
𝑒
−𝑏𝜔

𝑏
,

(𝑛 − 1) 𝑇 < 𝑡 ≤ (𝑛 + 𝑙 − 1) 𝑇,

𝑏𝜇 (1 − 𝜃) 𝑒
−𝑏𝑙𝑇

+ 𝛾𝜀
1
𝑒
−𝑏𝜔

𝜃

𝑏 (1 − (1 − 𝜃) 𝑒−𝑏𝑇)

× 𝑒
−𝑏(𝑡−(𝑛+𝑙−1)𝑇)

−
𝛾𝜀
1
𝑒
−𝑏𝜔

𝑏
,

(𝑛 + 𝑙 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇,

𝑔 (𝑡) =
(𝜃𝑏𝜇𝑒

−𝑏𝑙𝑇
− 𝛾𝜀

1
𝑒
−𝑏𝜔

𝜃 (1 − 𝑒
−𝑏𝑇

)) 𝑒
−(𝛾1+𝑏)(𝑡−(𝑛+𝑙−1)𝑇)

𝑏 (1 − (1 − 𝜃) 𝑒−𝑏𝑇) (1 − 𝑒−(𝛾1+𝑏)𝑇)
,

(𝑛 + 𝑙 − 1) 𝑇 < 𝑡 ≤ (𝑛 + 𝑙) 𝑇.

(43)

Applying the comparison theorem again, for any 𝜀
2
> 0, there

exists a 𝑇
2
> 0 such that

𝑆 (𝑡) < ℎ̃ (𝑡) − 𝜀
2
,

𝑉 (𝑡) < 𝑔 (𝑡) − 𝜀
2
,

(44)

for 𝑡 > 𝑇
2
. Let 𝜀

1
→ 0, and then from (40) and (44) we have

𝑆
∗
(𝑡) − 𝜀2 < 𝑆 (𝑡) < 𝑆

∗
(𝑡) − 𝜀2,

𝑉
∗
(𝑡) − 𝜀

2
< 𝑉 (𝑡) < 𝑉

∗
(𝑡) − 𝜀

2
,

(45)

for 𝑡 large enough, which implies 𝑆(𝑡) → 𝑆
∗
(𝑡), 𝑉(𝑡) →

𝑉
∗
(𝑡) as 𝑡 → ∞. This completes the proof.

Corollary 6. If 𝜏 > 𝜏
∗ or 𝜇 < 𝜇

∗, then the infection-free
periodic solution (𝑆∗(𝑡), 𝑉∗(𝑡), 0) is globally attractive, where
the critical values are given below:

𝜏
∗
=
1

𝑏
ln
𝛽 (𝐴

𝑝

1
+ 𝛿𝐴

𝑞

2
)

𝛾 + 𝑏 + 𝛼
,

𝜇
∗
= (1 − 𝑒

−𝑏𝑇
)

× (
𝑝√
𝛾 + 𝑏 + 𝛼

𝛽
𝑒𝑏𝜏 − 𝛿𝐴

𝑞

2
−
𝛾𝑒
−𝑏𝜔

𝑏
−

𝜇𝑒
𝑏𝑇

𝑒𝑏𝑇 − 1
) .

(46)

4. Permanence

In this section, we discuss the permanence of the infectious
population. First, we introduce the following definition.
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Definition 7. System (4) is said to be permanent if there exist
positive constants 𝑚

𝑖
, 𝑀

𝑖
, 𝑖 = 1, 2, 3 (independent of initial

value), and a finite time 𝑇
0
, which may depend on the initial

condition, such that every positive solution (𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡))

with initial condition (5) satisfies 𝑚
1
≤ 𝑆(𝑡) ≤ 𝑀

1
, 𝑚

2
≤

𝐼(𝑡) ≤ 𝑀
2
,𝑚

3
≤ 𝑉(𝑡) ≤ 𝑀

3
for all 𝑡 > 𝑇

0
.

Let

𝑆
∗
=
𝑝√
𝛾 + 𝑏 + 𝛼

𝛽𝑒−𝑏𝜏
,

𝑉
∗
=
𝑞√
𝛾
1
+ 𝑏

𝛿𝛽𝑒−𝑏𝜏
,

𝑚
∗
=
(1/𝑇) ln ((R

1
(𝑒
𝑏𝑇
− 1 + 𝜃) + 1 − 𝜃 + 𝑒

𝑏𝑇
) /2) − 𝑏

𝛽
,

R
1
=
𝑝
√

𝛽𝑒
−𝑏𝜏

𝛾 + 𝑏 + 𝛼
(

𝜇 (1 − 𝜃) 𝑒
−𝑏𝑇

1 − (1 − 𝜃) 𝑒−𝑏𝑇
) ,

R
2
=
𝑞
√
𝛽𝑒
−𝑏𝜏

𝛾
1
+ 𝑏

𝜇𝜃𝑒
−(𝛾1+𝑏+𝑏𝑙)𝑇

(1 − 𝑒−(𝛾1+𝑏)𝑇) (1 − (1 − 𝜃) 𝑒−𝑏𝑇)
,

R
2
= min {R

1
,R

2
} .

(47)

Then we have our main result of this section.

Theorem 8. Let 1 ≤ 𝑞 ≤ 𝑝, ifR
2
> 1, and then there exists a

positive constant 𝜂 small enough such that

𝐼 (𝑡) ≥ min{
𝜂𝑚

∗

2
, 𝜂𝑚

∗
𝑒
−(𝛾+𝑏+𝛼)𝜛

} = 𝑚
1

(48)

with 𝑡 large enough.

Proof. As before, we suppose that𝑋(𝑡) = (𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡)) is a
positive solution of system (4) with initial condition (5).Then
for 𝑡 ≥ 0, we construct a function as follows:

𝑈 (𝑡) = 𝐼 (𝑡) + 𝑉 (𝑡) + 𝛽𝑒
−𝑏𝜏
(𝑆
∗
)
𝑝

× ∫

𝑡

𝑡−𝜏

𝐼 (󰜚) 𝑑󰜚 + 𝛿𝛽𝑒
−𝑏𝜏
(𝑉

∗
)
𝑞
∫

𝑡

𝑡−𝜏

𝑉 (󰜚) 𝑑󰜚.

(49)

And thendifferentiating𝑈(𝑡) along the trajectory of (4) yields

𝑈 (𝑡) = ̇𝐼 (𝑡) + 𝑉 (𝑡) + 𝛽𝑒
−𝑏𝜏
(𝑆
∗
)
𝑝
𝐼 (𝑡)

− 𝛽𝑒
−𝑏𝜏
(𝑆
∗
)
𝑝
𝐼 (𝑡 − 𝜏) + 𝛿𝛽𝑒

−𝑏𝜏
(𝑉

∗
)
𝑞
𝐼 (𝑡)

− 𝛿𝛽𝑒
−𝑏𝜏
(𝑉

∗
)
𝑞
𝐼 (𝑡 − 𝜏)

= 𝛽𝑒
−𝑏𝜏

(𝑆
𝑝
(𝑡) − (𝑆

∗
)
𝑝
) 𝐼 (𝑡 − 𝜏)

+ 𝛽𝑒
−𝑏𝜏

(𝑉
𝑞
(𝑡) − (𝑉

∗
)
𝑞
) 𝐼 (𝑡 − 𝜏)

+ (𝛽𝑒
−𝑏𝜏
(𝑆
∗
)
𝑝
− (𝛾 + 𝑏 + 𝛼)) 𝐼 (𝑡)

+ (𝛿𝛽𝑒
−𝑏𝜏
(𝑉

∗
)
𝑞
− (𝛾

1
+ 𝑏)) 𝐼 (𝑡)

= 𝛽𝑒
−𝑏𝜏

(𝑆
𝑝
(𝑡) − (𝑆

∗
)
𝑝
) 𝐼 (𝑡 − 𝜏)

+ 𝛽𝑒
−𝑏𝜏

(𝑉
𝑞
(𝑡) − (𝑉

∗
)
𝑞
) 𝐼 (𝑡 − 𝜏)

= 𝛽𝑒
−𝑏𝜏

(𝑆
𝑝−1

(𝑡) + 𝑆
𝑝−2

(𝑡) 𝑆
∗
+ ⋅ ⋅ ⋅

+ 𝑆 (𝑡) (𝑆
∗
)
𝑝−2

+ (𝑆
∗
)
𝑝−1

)

× (𝑆 (𝑡) − 𝑆
∗
) 𝐼 (𝑡 − 𝜏)

+ 𝛿𝛽𝑒
−𝑏𝜏

(𝑉
𝑞−1

(𝑡) + 𝑉
𝑞−2

(𝑡) 𝑉
∗
+ ⋅ ⋅ ⋅

+ 𝑉 (𝑡) (𝑉
∗
)
𝑞−2

+ (𝑉
∗
)
𝑞−1

)

× (𝑉 (𝑡) − 𝑉
∗
) 𝐼 (𝑡 − 𝜏)

(50)

for 𝑡 ≥ 0. Let

𝑚
∗
=
(1/𝑇) ln ((R1

(𝑒
𝑏𝑇
− 1 + 𝜃) + 1 − 𝜃 + 𝑒

𝑏𝑇
) /2) − 𝑏

𝛽
,

𝑆
∗
=
𝑝√
𝛾 + 𝑏 + 𝛼

𝛽𝑒−𝑏𝜏
.

(51)

SinceR
2
> 1, we getR

1
> 1,R

2
> 1. Then we have𝑚∗ > 0.

And fromR
1
> 1, we can get

𝑝
√

𝛽𝑒
−𝑏𝜏

𝛾 + 𝑏 + 𝛼
(

𝜇 (1 − 𝜃) 𝑒
−𝑏𝑇

1 − (1 − 𝜃) 𝑒−𝑏𝑇
) > 1. (52)

Thus, we have

𝜇 (1 − 𝜃) 𝑒
−𝑏𝑇

1 − (1 − 𝜃) 𝑒−𝑏𝑇
>
𝑝√
𝛾 + 𝑏 + 𝛼

𝛽𝑒−𝑏𝜏
= 𝑆

∗
. (53)
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FormR
2
> 1, we have

𝑞
√
𝛽𝑒
−𝑏𝜏

𝛾
1
+ 𝑏

𝜇𝜃𝑒
−(𝛾1+𝑏+𝑏𝑙)𝑇

(1 − 𝑒−(𝛾1+𝑏)𝑇) (1 − (1 − 𝜃) 𝑒−𝑏𝑇)
> 1; (54)

that is,

𝜇𝜃𝑒
−(𝛾1+𝑏+𝑏𝑙)𝑇

(1 − 𝑒−(𝛾1+𝑏)𝑇) (1 − (1 − 𝜃) 𝑒−𝑏𝑇)
>
𝑞√
𝛾
1
+ 𝑏

𝛽𝑒−𝑏𝜏
= 𝑉

∗
. (55)

We can take 𝜂 small enough such that

𝜇 (1 − 𝜃) 𝑒
−(𝛽𝜂𝑚

∗
+𝑏)𝑇

1 − (1 − 𝜃) 𝑒−(𝛽𝜂𝑚
∗
+𝑏)𝑇

> 𝑆
∗
,

𝜇𝜃𝑒
−(𝛽(𝛿+𝑙)𝜂𝑚

∗
+𝛾1+𝑏+𝑏𝑙)𝑇

(1 − 𝑒−(𝛿𝛽𝜂𝑚
∗
+𝛾1+𝑏)𝑇) (1 − (1 − 𝜃) 𝑒−(𝛽𝜂𝑚

∗
+𝑏)𝑇)

> 𝑉
∗
.

(56)

Thus we can choose 𝜀
1
, 𝜀
2
> 0 to be small enough such that

𝑆
∗
<

𝜇 (1 − 𝜃) 𝑒
−(𝛽𝜂𝑚

∗
+𝑏)𝑇

1 − (1 − 𝜃) 𝑒−(𝛽𝜂𝑚
∗
+𝑏)𝑇

− 𝜀
1
≡ 𝑆

Δ
,

𝑉
∗
<

𝜇𝜃𝑒
−(𝛽(𝛿+𝑙)𝜂𝑚

∗
+𝛾1+𝑏+𝑏𝑙)𝑇

(1 − 𝑒−(𝛿𝛽𝜂𝑚
∗
+𝛾1+𝑏)𝑇) (1 − (1 − 𝜃) 𝑒−(𝛽𝜂𝑚

∗
+𝑏)𝑇)

− 𝜀
2
≡ 𝑉

Δ
.

(57)

Then we claim that there exists an𝑚
2
> 0 such that 𝐼(𝑡) >

𝑚
2
for 𝑡 is large enough.We next prove this claim in two steps.

Step I. For any positive constant 𝑡
0
, that 𝐼(𝑡) ≤ 𝜂𝑚

∗ for all
𝑡 ≥ 𝑡

0
is not true.

Otherwise, there is a positive constant 𝑡
0
, such that 𝐼(𝑡) ≤

𝜂𝑚
∗ for all 𝑡 ≥ 𝑡

0
. First, if 𝐼(𝑡) < 𝜂𝑚

∗ for all 𝑡 ≥ 𝑡
0
, it follows

from the first, fourth, and fifth equations of (4) that, for 𝑡 ≥ 𝑡
0
,

𝑑𝑆 (𝑡)

𝑑𝑡
≥ − (𝛽𝜂𝑚

∗
+ 𝑏) 𝑆 (𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝑆 (𝑡) = − 𝜃𝑆 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑆 (𝑡) = 𝜇, 𝑡 = 𝑛𝑇.

(58)

By Lemma 1, there exists 𝑇
1
> 𝑡

0
+ 𝜏 so that for 𝑡 > 𝑇

1

𝑆 (𝑡) >
𝜇 (1 − 𝜃) 𝑒

−(𝛽𝜂𝑚
∗
+𝑏)𝑇

1 − (1 − 𝜃) 𝑒−(𝛽𝜂𝑚
∗
+𝑏)𝑇

− 𝜀 ≡ 𝑆
Δ
. (59)

Similarly, from the second and the fourth equations of (4), we
have

𝑑𝑉 (𝑡)

𝑑𝑡
≥ − (𝛿𝛽𝜂𝑚

∗
+ 𝛾

1
+ 𝑏)𝑉 (𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

Δ𝑉 (𝑡) = 𝜃𝑆 (𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

(60)

and for 𝑡 > 𝑇
1
,

𝑉 (𝑡) ≥
𝜇𝜃𝑒

−(𝛽(𝛿+𝑙)𝜂𝑚
∗
+𝛾1+𝑏+𝑏𝑙)𝑇

(1 − 𝑒−(𝛿𝛽𝜂𝑚
∗
+𝛾1+𝑏)𝑇) (1 − (1 − 𝜃) 𝑒−(𝛽𝜂𝑚

∗
+𝑏)𝑇)

− 𝜀 ≡ 𝑉
Δ
.

(61)

Then, by (50), for 𝑡 ≥ 𝑇
1
,

𝑈 (𝑡) = 𝛽𝑒
−𝑏𝜏

(𝑆
𝑝−1

(𝑡) + 𝑆
𝑝−2

(𝑡) 𝑆
∗
+ ⋅ ⋅ ⋅

+ 𝑆 (𝑡) (𝑆
∗
)
𝑝−2

+ (𝑆
∗
)
𝑝−1

)

× (𝑆 (𝑡) − 𝑆
∗
) 𝐼 (𝑡 − 𝜏)

+ 𝛿𝛽𝑒
−𝑏𝜏

(𝑉
𝑞−1

(𝑡) + 𝑉
𝑞−2

(𝑡) 𝑉
∗
+ ⋅ ⋅ ⋅

+ 𝑉 (𝑡) (𝑉
∗
)
𝑞−2

+ (𝑉
∗
)
𝑞−1

)

× (𝑉 (𝑡) − 𝑉
∗
) 𝐼 (𝑡 − 𝜏)

> 𝑝𝛽𝑒
−𝑏𝜏
(𝑆
∗
)
𝑝−1

(𝑆
Δ
− 𝑆

∗
) 𝐼 (𝑡 − 𝜏)

+ 𝑞𝛿𝛽𝑒
−𝑏𝜏
(𝑉

∗
)
𝑞−1

(𝑉
Δ
− 𝑉

∗
) 𝐼 (𝑡 − 𝜏) .

(62)

Let

𝐼
𝐿
= min
𝑡∈[𝑇1 ,𝑇1+𝜏]

𝐼 (𝑡) . (63)

We can prove that 𝐼(𝑡) ≥ 𝐼
𝐿
for all 𝑡 ≥ 𝑇

1
. Otherwise, there

exists a nonnegative constant 𝑇
2
such that 𝐼(𝑡) ≥ 𝐼

𝐿
for 𝑡 ∈

[𝑇
1
, 𝑇
1
+ 𝜏 + 𝑇

2
], 𝐼(𝑇

1
+ 𝜏 + 𝑇

2
) = 𝐼

𝐿
, and ̇𝐼(𝑇

1
+ 𝜏 + 𝑇

2
) ≤ 0.
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Figure 1: The results of numerical simulation on the threshold valuesR
2
= 2.6155 > 1, where 𝑝 = 1.5, 𝑞 = 1.25.

Then from the second equation of (4) and (37), we easily see
that

̇𝐼(𝑇
1
+ 𝜏 + 𝑇

2
)

≥ (𝛽𝑒
−𝑏𝜏
𝑆
𝑝
(𝑡) + 𝛿𝛽𝑒

−𝑏𝜏
𝑉
𝑞
(𝑡) − (𝛾 + 𝑏 + 𝛼)) 𝐼

𝐿

= (𝛾 + 𝑏 + 𝛼)(
𝛽𝑒
−𝑏𝜏
𝑆
𝑝
(𝑡)

𝛾 + 𝑏 + 𝛼
+
𝛿𝛽𝑒

−𝑏𝜏
𝑉
𝑞
(𝑡)

𝛾 + 𝑏 + 𝛼
− 1) 𝐼

𝐿

> (𝛾 + 𝑏 + 𝛼) ((
𝑆
Δ

𝑆∗
)

𝑝

+
𝛾
1
+ 𝑏

𝛾 + 𝑏 + 𝛼
(
𝑉
Δ

𝑉∗
)

𝑞

− 1) 𝐼
𝐿

> 0,

(64)

which is a contradiction. Hence 𝐼(𝑡) ≥ 𝐼
𝐿
> 0 for all 𝑡 ≥ 𝑇

1
.

Equation (62) implies

𝑑𝑈 (𝑡)

𝑑𝑡
> 𝑝𝛽𝑒

−𝑏𝜏
(𝑆
∗
)
𝑝−1

(𝑆
Δ
− 𝑆

∗
) 𝐼 (𝑡 − 𝜏)

+ 𝑞𝛿𝛽𝑒
−𝑏𝜏
(𝑉

∗
)
𝑞−1

(𝑉
Δ
− 𝑉

∗
) 𝐼 (𝑡 − 𝜏)

> 0.

(65)

It then follows that 𝑈(𝑡) → +∞ as 𝑡 → +∞. This is a
contradiction to 𝑈(𝑡) ≤ (𝛼 + 𝛾 + 𝛾

1
+ 2𝑏)𝜏 + 2. Therefore,

for any positive constant 𝑡
0
, the inequality 𝐼(𝑡) < 𝜂𝑚∗ cannot

hold for all 𝑡 ≥ 𝑡
0
.

Step II. From Step I, we only need to consider the followng:
(i) 𝐼(𝑡) > 𝜂𝑚

∗ for all 𝑡 large enough and (ii) 𝐼(𝑡) oscillates
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Figure 2: The results of numerical simulation on the threshold valuesR
1
= 0.0339 < 1, where 𝑝 = 1.5, 𝑞 = 1.25.

about 𝜂𝑚∗ for all large 𝑡. However, Case (i) is obvious in the
result of this theorem, so we only need to consider Case (ii),
in which we will show that 𝐼(𝑡) ≥ 𝑚

1
for all large 𝑡 where

𝑚
1
= min{

𝜂𝑚
∗

2
, 𝜂𝑚

∗
𝑒
−(𝛾+𝑏+𝛼)𝜛

} . (66)

First, we notice there exist two positive constants 𝑡, 𝜑 such
that

𝐼 (𝑡) = 𝐼 (𝑡 + 𝜑) = 𝐼
∗
,

𝐼 (𝑡) < 𝜂𝑚
∗
, for 𝑡 < 𝑡 < 𝑡 + 𝜑.

(67)

Second, because 𝐼(𝑡) is bounded continuous function and 𝐼(𝑡)
has no pulse, we can get that 𝐼(𝑡) is uniformly continuous.
Therefore there exists a constant 𝑇

3
(with 0 < 𝑇

3
< 𝜛 and 𝑇

3

is independent of the choice of 𝑡) such that 𝐼(𝑡) > 𝜂𝑚
∗
/2 for

all 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝑇
3
.

If 𝜑 ≤ 𝑇
3
, our aim is obtained.

If 𝑇
3
< 𝜑 ≤ 𝜛, from the second equation of (4) we have

that ̇𝐼(𝑡) ≥ −(𝛾 + 𝑏 + 𝛼)𝐼(𝑡) for 𝑡 < 𝑡 ≤ 𝑡 + 𝜑. Then we have
𝐼(𝑡) ≥ 𝜂𝑚

∗
𝑒
−(𝛾+𝑏+𝛼)𝜛 for 𝑡 < 𝑡 ≤ 𝑡+𝜑 ≤ 𝑡+𝜛 since 𝐼(𝑡) = 𝜂𝑚∗.

It is clear that 𝐼(𝑡) ≥ 𝑚
1
for 𝑡 < 𝑡 ≤ 𝑡 + 𝜑.

If 𝜑 ≥ 𝜛, then we have 𝐼(𝑡) ≥ 𝑚
2
for 𝑡 < 𝑡 ≤ 𝑡 + 𝜛. We

then can easily prove 𝐼(𝑡) ≥ 𝑚
1
for 𝑡+𝜛 ≤ 𝑡 ≤ 𝑡+𝜑. Since the

interval [𝑡, 𝑡+𝜑] is arbitrarily chosen, we know that 𝐼(𝑡) ≥ 𝑚
1

holds for 𝑡 large enough. Finally, noticing the choice of 𝑚
1
is

independent of the positive solution of (4), we completed our
proof.
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Figure 3: The results of numerical simulation on the threshold valuesR
1
= 0.0449 < 1, where 𝑝 = 1.5, 𝑞 = 1.25.

Theorem 9. Let 1 ≤ 𝑞 ≤ 𝑝, ifR
2
> 1, and then system (4) is

permanent.

Proof. Suppose that 𝑋(𝑡) = (𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡)) is a positive
solution of system (4) with initial conditions (5). Then from
system (4), we have

𝑑𝑆 (𝑡)

𝑑𝑡
≥ − (𝑏 + 𝛽) 𝑆 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
≥ − (𝛿𝛽 + 𝛾

1
+ 𝑏)𝑉 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = −𝜃𝑆 (𝑡) , Δ𝑉 (𝑡) = 𝜃𝑆 (𝑡) ,

𝑡 = (𝑛 + 𝑙 − 1) 𝑇, 𝑛 ∈ 𝑁,

Δ𝑆 (𝑡) = 𝜇, Δ𝑉 (𝑡) = 0, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.

(68)

As what we did in the proof of Theorem 5, we can prove that
there exist 𝑡 large enough and 𝜀 > 0 small enough such that

𝑆 (𝑡) ≥
𝜇 (1 − 𝜃) 𝑒

−(𝑏+𝛽)𝑇

1 − (1 − 𝜃) 𝑒−(𝑏+𝛽)𝑇
− 𝜀 = 𝑚

3
,

𝑉 (𝑡) ≥
𝜇𝜃𝑒

−(𝑏+𝛾1+𝛿𝛽+(𝑏+𝛽)𝑙)𝑇

(1 − (1 − 𝜃) 𝑒−(𝑏+𝛽)𝑇) (1 − 𝑒−(𝑏+𝛾1+𝛿𝛽)𝑇)

− 𝜀
2
= 𝑚

4
.

(69)
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Figure 4: The results of numerical simulation on the threshold valuesR
1
= 0.0352 < 1, where 𝑝 = 1.5, 𝑞 = 1.25.

Then for D = {(𝑆, 𝑉, 𝐼) ∈ 𝑅
3

+
| 𝑆(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) ≤ 1}, by

Theorem 8, we have

𝑚
3
≤ 𝑆 (𝑡) ≤ 1, 𝑚

1
≤ 𝐼 (𝑡) ≤ 1, 𝑚

4
≤ 𝑉 (𝑡) ≤ 1

(70)

for 𝑡 large enough. Thus the system (4) is uniformly perma-
nent.

5. Numerical Simulations and Discussions

Next, we carry out numerical simulations to illustrate the
theoretical results obtained in the previous sections. We first
set the parameters as follows: 𝑏 = 0.2, 𝛽 = 0.5, 𝛼 = 0.05,
𝛾 = 0.04, 𝛿 = 0.02, 𝛾

1
= 0.06, 𝑝 = 1.5, 𝑞 = 1.25, 𝑇 = 1.5,

𝜔 = 1, 𝜏 = 1, 𝜃 = 0.4, and 𝜇 = 1.4. Straightforward

calculation shows R
2
= 2.6155 > 1. Then by Theorem 8,

the disease will be permanent (please see Figures 1(a), 1(b),
1(c), and 1(d)). In order to show the effect of 𝜏, we decrease
𝜏 to 4, and other parameters are the same with those in
Figure 1, and the infection-free periodic solution of system
(4) is globally attractive. This phenomenon is also seen from
our theoretical analysis as in this case R

1
= 0.0339 < 1 and

then according to Theorem 5, the disease will be eradicated;
please see Figure 2(a).

If we keep 𝜏 = 𝜔 = 1 and 𝜇 = 1, as the same with those in
Figure 1, but increase vaccination proportion of susceptible
persons 𝜃 to 0.9, then the disease will be eradicated; see
Figure 3(a). If we keep 𝜏 = 𝜔 = 1 and 𝜃 = 0.4 and decrease 𝜇
to 0.2, then the disease also will be eradicated; see Figure 4(a).

And if we keep 𝜏 = 𝜔 = 4,𝜇 = 1 but decrease 𝜃 to 0.1, then
the diseasewill be permanent; see Figure 5. If we keep 𝜏 = 𝜔 =
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Figure 5: The results of numerical simulation on the threshold valuesR
2
= 1.1036 > 1, where 𝑝 = 1.5, 𝑞 = 1.25.

Table 1

𝜔 𝜏 𝜃 𝜇 R
𝑖

Status of the disease
1 1 0.4 1.4 R

2
= 2.6155 > 1 Permanence

4 4 0.4 1.4 R
1
= 0.0339 < 1 Eradication

1 1 0.9 1.4 R
1
= 0.0449 < 1 Eradication

1 1 0.4 0.2 R
1
= 0.0352 < 1 Eradication

4 4 0.1 1.4 R
2
= 1.1036 > 1 Permanence

4 4 0.4 2 R
2
= 2.3121 > 1 Permanence

4 and 𝜃 = 0.4 and increase 𝜇 to 2, then the disease also will
be permanent; see Figure 6. For details please see Table 1.

Lastly, we conclude our paper as follows. In this paper,
we proposed an SVEIRS model, which is a new epidemic
model with periodic pulse vaccination and pulse population
input at two different fixed moments. Our primary result
is to investigate the effect of impulsive vaccination, pulse
population input, and time delays to the dynamics of pop-
ulation model. With the help of comparison theorems, we
proved the existence of the “infection-free” periodic solution
and obtained the conditions for global attractivity of the
“infection-free” periodic solution and the conditions for
the permanence of the system. All the theoretical results
show that we believe it might be helpful in disease control:
people can select appropriate vaccination rate and population
input rate according to our theoretical results to control
diseases.
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With the development of the Chinese interest rate market, SHIBOR is playing an increasingly important role. Based on principal
component analysing SHIBOR, a two-factor Vasicek model is established to portray the change in SHIBOR with different terms.
And parameters are estimated by using the Kalman filter. The model is also used to fit and forecast SHIBOR with different terms.
The results show that two-factor Vasicek model fits SHIBOR well, especially for SHIBOR in terms of three months or more.

1. Introduction

The benchmark interest rate is the core of the formation
of market-oriented interest rate system. Without benchmark
interest rate, it is difficult to determine the direction of
financial derivatives is reasonable. Since Shanghai Interbank
Offered Rate (SHIBOR) was launched in 2007, the currency
market benchmark interest rates were gradually established,
which has the guidance for pricing of stocks, bonds, and
financial derivatives. With the improvement of quotation
quality and the expanding of application scope of SHIBOR,
the system of benchmark interest rate is developing in
Chinese financial market. In 2007, based on SHIBOR interest
rate swap accounts for about 13% of the total swaps. In 2008,
swaps with SHIBOR as the benchmark interest rate rose
by 215% over the previous year, accounting for 22% of the
change of trading volume. And since 2009, all forward rate
agreement was based on SHIBOR. By 2010, swap transactions
in the name of the principal proportion linked to SHIBOR
of RMB interest rate reached 40.3%. After 2010, the role of
SHIBOR in transmission mechanism of monetary policy is
more important and the circulation of SHIBOR products
is gradually expanding. The reference value to price other
financial products of SHIBOR has been increasing [1]. As
China’s “LIBOR,” SHIBOR plays a more and more important
role for interest rate marketization in China.

Some researchers studied the term structure of inter-
est rates. Cajueiro and Tabak have studied the long-range

dependence in LIBOR interest rates. Their empirical results
show that the degree of long-range dependence of interest
rates on most countries decreases with maturity. They also
have found interest rates have a multifractal nature [2].
Egorov et al. havemodeled the joint term structure of interest
rates in the United States and the European Union and have
found that a new four-factor model with two common and
two local factors captures the joint term structure dynamics
in the US and the EU reasonably well [3]. Jagannathan et
al. have evaluated the classical CIR model using data on
LIBOR, swap rates and caps, and swaptions. And they have
found three-factor CIR model is able to fit the term structure
of LIBOR and swap rates rather well [4]. Griffiths et al.
have examined the robustness of results of Griffiths and
Winters [5, 6] and Kotomin et al. [7] using pound sterling
and Euro repo rates and have found a year-end preferred
habitat for liquidity in the Euro repo rates [8]. Kotomin has
studied incorporating year-end and quarter-end preferences
for liquidity and other calendar-time effects into the test of
the expectations hypothesis in the very short-term LIBOR in
seven major world currencies and has found the calendar-
time effects altering long-term relations between very short-
term rates in these currencies [9]. Wen et al. have proposed a
copula-based correlationmeasure to test the interdependence
among stochastic variables in terms of copula function [10,
11]. Because of short SHIBOR launch time, few early launch
SHIBOR product category, and small circulation, the study of
SHIBOR has few results. Most of the research achievements
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are about its term structure, Wang has found that pure
expectation hypothesis is rejected by empirical research of
Shibor, and term premiums always exist. He also has found
that single-factor interest rate models are appropriate in
describing overnight and 1WSHIBOR. But if addingGARCH
into the diffusion part, the result will be better [12]. X. N.
Wang and H. T. Wang have studied the term structure of
Shibor and the conclusions show that the expectation theory
is valid on the short-term, medium-term, and long-term
SHIBOR [13]. Zhang et al. have made an empirical analysis
on the term structure of SHBOR under Vasicek and CIR
models, respectively, describing the dynamics of SHIBOR.
The research presents that Vasicek model does even better in
capturing the dynamics of the interest rates [14]. Zhou et al.
have taken Vasicek model with jumps or exponential Vasicek
model with jumps as the alternativemodels to describe return
series of SHIBOR. And parameters of two models have been
estimated by particle filter approach. Comparing goodness-
of-fit and forecast effect between the two models, the result
shows that Vasicek model with jumps does better [15]. Su
has adopted the CIR model, RSCIR model, and no-arbitrage
HJM model to study the term structure of SHBOR and
the dynamics of its risk premium. The result shows that
three-factor HJM model does best to discribe the dynamics
characteristic of term structure and volatility structure of
SHBOR [16]. Through analyzing the operational mechanism
of SHIBOR, Yu and Liu have proposed a practicable pricing
model of SHIBOR and tested the model by empirical data
[17].Wen et al. have used the principal component analysis to
find the existence of chaotic features of the Chinese finacial
market [18]. Wen and Yang have studied the relationship
between the skewness and the coefficient of risk premium in
financial makets [19]. Huang et al. consider the dynamics of
switched cellular neural networks (CNNs) with mixed delays
[20]. Liu et al. introduce and investigate some new subclasses
of multivalent analytic functions involving the generalized
Srivastava-Attiya operator [21]. Based on the modified secant
equation, Dai and Wen propose a modified Hestenes-Stiefel
(HS) conjugate gradient method which has similar form
as the CG-DESCENT method [22]. Under a genal affine
data perturbation uncertainty set, Dai and Wen propose a
computationally tractable robust optimization method for
minimizing the CVaR of a portfolio [23]. Using theories
and methods of behavioral finance, Wen et al. take a new
look at the characteristics of investors’ risk preference, build-
ing the D-GARCH-M model, DR-GARCH-M model, and
GARCHC-Mmodel to investigate their changes with states of
gain and loss and values of return together with other time-
varying characteristics of investors’ risk preference [24]. The
researchers mainly used single factormodel to study the term
structure of SHIBOR. Among many dynamic equilibrium
models describing short-term stochastic interest rates, the
most widely used is the Vasicek model [25]. Vasicek model
is an equilibrium pricing model about term structure of
interest rates, which reflects the risk of debt and investors’
expectations of future interest rate changes. The prices of the
bonds and interest rate derivatives have a simple analytical
expression in Vasicek model. Interest rate derivatives market
is a complicated system in real world, so it is difficult to

Table 1: Principal component analysis results.

Principal
component Eigenvalue The proportion

of explanation

The accumulative
proportion of
explanation

1 6.7432 0.8429 0.8429
2 0.9823 0.1228 0.9657
3 0.1395 0.0174 0.9831
4 0.0736 0.0092 0.9924
5 0.0362 0.0045 0.9969
6 0.0221 0.0028 0.9997
7 0.0027 0.0003 1.0000
8 0.0003 0.0000 1

describe the term structure of interest rates with single factor.
Therefore, the single factor Vasicek model is extended to
multiple-factor Vasicek model, and multiple-factor Vasicek
model can also be very easy to evaluate the price of bonds
and risk. Although there are many more complicated interest
rate models later such as Affine model [26], the Libor model
[27], and so forth, the Vasicek model is still a very important
interest rate model due to the ease in pricing bond prices and
the risk. This paper will describe the dynamic characteristic
of SHIBOR and study its term structure by two-factorVasicek
model. In the second part, principal component analysis
(PCA) will be taken to select two most important factors of
SHIBOR for modeling. In the thirtd part, two-factor Vasicek
model of SHIBOR will be present and parameters will be
estimated by Kalman filtermethod. In the forth part, the two-
factor Vasicek model of SHIBOR will be tested by empirical
research. Finally, conclusion will be present.

2. Principal Component Analysis of SHIBOR

Different terms of SHIBOR volatility would be influenced by
economic cycle, macroeconomic policies, monetary supply,
demand, and so on. And there is some correlation between
these factors. It is important for modeling dynamically of
SHIBOR that irrelated influence factors or components are
found in the different term of SHIBOR and less new irrelated
compound variables are used to replace the more interde-
pendent variables to build the dynamic model of SHIBOR.
This paper uses principal component analysis method to
get the principal components affecting the SHIBOR. Then
SHIBOR short-termdynamicmodel is set upwith thesemain
components. Although SHIBOR began trial operation from
October 2006, its quoted price was a bit chaotic and trading
volumes were less in that time. When Launched on January
1, 2007, SHIBOR quoted price was improved and trading
volumes were also increased. This paper selects O/N, 1 week,
2 weeks, 1 month, 3 months, 6 months, 9 months, and 1 year
of SHIBOR daily data to make principal component analysis
from January 4, 2007, to August 21, 2013. Analysis results
are shown in Table 1.

In Table 1, the first principal component interpretation
for the proportion of SHIBOR volatility reaches 84.29%. The
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Table 2: The coefficient of the first two principal components of
different terms of SHIBOR.

Term The first principal
component

The second principal
component

O/N 0.3294 −0.4278
1 week 0.3459 −0.3992
2 weeks 0.3506 −0.3514
1 month 0.3634 −0.2319
3 months 0.3702 0.2209
6 months 0.3573 0.3730
9 months 0.3553 0.3831
1 year 0.3548 0.3816

cumulative interpretation proportion of the first two prin-
cipal components reaches 96.57%. The cumulative explain
proportion of the first three principal components is above
98%. The interpretation abilities of principal components
behind third principal components are weakened observably.
Then two irrelated variables can be used to depict the volatil-
ity of SHIBOR. By calculating the SHIBOR eigenvectors of
covariance matrix, the coefficients of the first two principal
components can be gotten.

We get models of the two principal components from the
eigenvector as below:

𝐹
1
= 0.3294shibor O/N + 0.3459shibor 1W

+ 0.3506shibor 2W + 0.3634shibor 1M

+ 0.3702shibor 3M + 0.3573shibor 6M

+ 0.3553shibor 9M + 0.3548shibor 1Y,

𝐹
2
= −0.4278shibor O/N − 0.3992shibor 1W

− 0.3514shibor 2W − 0.2319shibor 1M

+ 0.2209shibor 3M + 0.3730shibor 6M

+ 0.3831shibor 9M + 0.3816shibor 1Y,

(1)

where 𝐹
1
, 𝐹
2
denote the first principal component and

the second principal component, respectively. shibor O/N,
shibor 1W, shibor 2W, shibor 1M, shibor 3M, shibor 6M,
shibor 9M, and shibor 1Y denote overnight, 1-week, 2-week,
1-month, 3-month, 6-month, 9-month, and 1-year SHIBOR.

3. Two-Factor Vasicek Model of SHIBOR

3.1. Two-Factor VasicekModel. Based on the results of princi-
pal component analysis, the term structure of SHIBOR can be
described by two-factor model. In this paper, the two-factor
Vasicek model is as follows [25]:

𝑅
𝑡
= 𝛿
0
+ 𝛿
1
𝐹
1𝑡
+ 𝛿
2
𝐹
2𝑡
, (2)

where 𝑅
𝑡
is short-term interest rate, 𝛿

0
, 𝛿
1
, and 𝛿

2
are

constants, and 𝐹
1𝑡

and 𝐹
2𝑡

are state variables deciding the

value of SHIBOR.Under the risk neutral probabilitymeasure,
the state variables are subject to the following process:

𝑑𝐹
1𝑡
= −𝛼
1
𝐹
1𝑡
𝑑𝑡 + 𝜎

1
𝑑𝑊
1𝑡
,

𝑑𝐹
2𝑡
= −𝛼
2
𝐹
2𝑡
𝑑𝑡 + 𝜎

2
𝑑𝑊
2𝑡
,

(3)

where 𝛼
1
and 𝛼
2
are constants denoting the speed of themean

reversion of state variables, 𝜎
1
and 𝜎
2
are the annual volatility

of two state variables, and 𝑊
1𝑡
and 𝑊

2𝑡
denote independent

standard Brownian motion. Under real probability measure,
the state variables are subject to the following process:

𝑑𝐹
1𝑡
= 𝑘
1
[𝜃
1
− 𝐹
1𝑡
] 𝑑𝑡 + 𝜎

1
𝑑𝜔
1𝑡
,

𝑑𝐹
2𝑡
= 𝑘
2
[𝜃
2
− 𝐹
2𝑡
] 𝑑𝑡 + 𝜎

2
𝑑𝜔
2𝑡
,

(4)

where 𝑘
1
, 𝑘
2
, 𝜃
1
, 𝜃
2
, 𝜎
1
, and 𝜎

2
are constants and 𝜔

1𝑡
and

𝜔
2𝑡
denote independent standard Brownian motion. Under

real probability measure, the condition expectation and the
condition variance of state variables are as follows:

𝐸 {𝐹
𝑖𝑡
| 𝐹
𝑠
} = 𝑒
−𝑘(𝑡−𝑠)

𝐹
𝑖𝑠
+ 𝜃 (1 − 𝑒

−𝑘(𝑡−𝑠)
) , 𝑖 = 1, 2,

Var {𝐹
𝑖𝑡
| 𝐹
𝑠
} =

𝜎
2

𝑖

2𝑘
[1 − 𝑒

−2𝑘(𝑡−𝑠)
] , 𝑖 = 1, 2,

(5)

where 0 ≤ 𝑠 < 𝑡. 𝐹
𝑠
is an information set at 𝑠 time.

3.2. Kalman Filter to Estimate Parameters of Two-Factor
Vasicek Model. Many scholars use the generalized moment
estimate method (GMM) and maximun likelihood estimate
(MLE) to estimate the parameters of Vasicek. However, the
parameter estimation of the GMM is not stable. Selecting
different moment condition estimates will lead to different
parameters. While the parameter estimation of MLE is stable
and the effectiveness is better than that of GMM [28].
The Kalman filter estimation methods can build maximum
likelihood estimation function of model parameters, and
then through maximizing the function to obtain the estimate
values of the model parameters. This method is to use state
equation and recursive method to estimate, and the obtained
solution is given in the form of estimate value (Table 2).
Therefore, Kalman filter theory cannot only overcome the
disadvantages and limitations of the classical Wiener filter
theory but also implement optimal recursive filtering algo-
rithm easily on the computer. These make the Kalman filter
theory obtain a wide range of practical applications [29].

In this paper, the kalman filter will be used to esti-
mate parameters of SHIBOR two-factor Vasicek model [30].
Firstly, the two-factor Vasicek model is written in state space
system. The observation equation is as follows:

𝑅
𝑡
= 𝐴
󸀠
+ 𝛿
󸀠
⋅ 𝐹
𝑡
+ 𝜀
𝑡
, (6)

where the observation vector 𝑅
𝑡
is a 𝑛×1 order matrix,𝐴 and

𝛿 are a 1×𝑛 ordermatrix and a 𝑛×2 ordermatrix, respectively.
The disturbing part 𝜀

𝑡
is a 𝑛 × 1 order matrix. And

𝐸 (𝜀
𝑡
𝜀
󸀠

𝜏
) = {

Ω, 𝑡 = 𝜏

0, 𝑡 ̸= 𝜏,
(7)
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Table 3: The parameter estimation results of the SHIBOR two-factor Vasicek model.

Parameter 𝛿
0

𝛿
1

𝛿
2

𝑘
1

𝑘
2

𝜃
1

𝜃
2

𝜎
1

𝜎
2

O/N 0.0318 0.5431 −0.1387 1.1691 50.5979 0.0226 0.3002 −0.0129 0.3209
1 week 0.0247 0.4755 −0.5196 0.6111 7.3607 0.0126 0.044 −0.0252 0.0439
2 weeks 0.03136 0.4755 −0.5231 0.059 3.0249 0.014 0.0455 −0.0004 0.0017
1 month 0.05 0.6283 −0.0164 0.1789 0.846 0.0077 0.0292 −0.0079 0.0034
3 months 0.0428 0.3579 0.0002 0.0174 −0.0174 0.0016 0.0034 0.0271 0.0239
6 months 0.0429 0.3282 −0.0003 0.0172 0.2084 0.0022 0.002 −0.0087 0.0069
9 months 0.0544 0.3034 −0.0001 0.0204 0.1201 0.001 0.001 −0.0086 0.0051
1 year 0.0444 0.3666 −0.0002 0.0098 0.1129 0.0015 0.0012 −0.0063 0.0033

Table 4: The fitting errors of the SHIBOR two-factor Vasicek model.

Error analysis Variance Mean square error Average relative error Maximum absolute value error
O/N 0.004204 0.012904 0.06176 1.700516
1 week 0.004475 0.015309 0.068809 2.191315
2 weeks 0.0047 0.015163 0.060387 3.148987
1 month 0.0026 0.003363 0.028864 1.182393
3 months 4.94𝐸 − 04 0.000162 0.003235 0.220396
6 months 9.36𝐸 − 04 0.000883 0.016326 0.967795
9 months 5.89𝐸 − 04 0.00054 0.014141 0.348812
1 year 0.0012 0.00023 0.013917 0.215112

where Ω is a 𝑛 × 𝑛 order matrix. The state vector 𝐹
𝑡
is a 2 × 1

order matrix and submits to the state equation:

𝐹
𝑡+1

= 𝐻 ⋅ 𝐹
𝑡
+ 𝜇
𝑡+1

, (8)

where𝐻 is a 2 × 2 order matrix and 𝜇
𝑡
is a 2 × 1 order matrix.

And

𝐸 (𝜇
𝑡
𝜇
󸀠

𝜏
) = {

𝑄, 𝑡 = 𝜏

0, 𝑡 ̸= 𝜏,
(9)

where 𝑄 is a 2 × 2 order matrix. The parameter estimation
steps of kalman filtering are as follows.

(1) Setting the initial value, 𝐹
1|0

= 𝐸 [
𝐹11

𝐹21
], vec(𝑃

0|1
) =

[𝐼
𝛾2

− (𝐻 ⊗ 𝐻)]
−1

⋅ vec(𝑄), where 𝑃
𝑡+1|𝑡

≡ 𝐸[(𝐹
𝑡+1

−

𝐹
𝑡+1|𝑡

)(𝐹
𝑡+1

− 𝐹
𝑡+1|𝑡

)
󸀠

].
(2) Calculating 𝐹

𝑡+1|𝑡
:

𝐹
𝑡+1|𝑡

= 𝐻𝐹
𝑡|𝑡−1

+ 𝐸
𝑡
(𝑅
𝑡
− 𝐴
󸀠
− 𝛿
󸀠
𝐹
𝑡|𝑡−1

) , (10)

where 𝐸
𝑡
= 𝐻𝑃
𝑡|𝑡−1

𝛿(𝛿
󸀠
𝑃
𝑡|𝑡−1

𝛿 + Ω)
−1 is a gain matrix.

(3) Calculating 𝑃
𝑡+1|𝑡

:

𝑃
𝑡+1|𝑡

= 𝐻[𝑃
𝑡|𝑡−1

− 𝑃
𝑡|𝑡−1

𝛿(𝛿
󸀠
𝑃
𝑡|𝑡−1

𝛿 + Ω)
−1

𝛿
󸀠
𝑃
𝑡|𝑡−1

]𝐻
󸀠
+ 𝑄.

(11)

(4) We can get series of values of {𝐹
𝑡|𝑡−1

}
𝑇

𝑡−1
and {𝑃

𝑡|𝑡−1
}
𝑇

𝑡−1

by calculating steps (2) and (3). Based on these values,
the best estimates of parameter matrices 𝐴, 𝛿, 𝐻, Ω,

and 𝑄 can be gotten by maximizing the following
maximum likelihood function:

LnL = −
1

2
ln 2𝜋 −

1

2
ln 𝛿󸀠 󵄨󵄨󵄨󵄨󵄨𝛿

󸀠
𝑃
𝑡|𝑡−1

𝛿 + Ω
󵄨󵄨󵄨󵄨󵄨

−
1

2

𝑇

∑

𝑡=1

[(𝑅
𝑡
− 𝐴
󸀠
− 𝛿
󸀠
𝐹
𝑡|𝑡−1

)
󸀠

(𝛿
󸀠
𝑃
𝑡|𝑡−1

𝛿 + Ω)
−1

× (𝑅
𝑡
− 𝐴
󸀠
− 𝛿
󸀠
𝐹
𝑡|𝑡−1

) ] .

(12)

4. Results and Analysis of
the Parameter Estimation

In this paper, overnight, SHIBOR of 1 week, 2 weeks, 1 month,
3 months, 9 months, and 1 year from January 4, 2007, to
August 21, 2013 will be adopted as the observed data. The
initial values of parameters 𝐴, 𝛿, 𝐻, Ω, and 𝑄 will be gotten
by regression.Then the best values for parameters of SHIBOR
two-factor Vasicek model of various terms estimated by
Kalman filter are as shown in Table 3.

Accoding to the parameter estimation results in Table 3,
we get eight SHIBOR two-factor Vasicek models to fit
overnight SHIBOR, 1-week SHIBOR, 2-week SHIBOR, 1-
month SHIBOR, 3-month SHIBOR, 9-month SHIBOR, and
1-year SHIBOR from January 4, 2007, to August 21, 2013.
The goodness of fit of these models is analyzed accoding to
the fitting error. We adopt variance, mean square error, the
average relative error, and maximum absolute value error to
measure the goodness of fit. Their computation formulas are
as follows.
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Table 5: Analysis results of prediction errors of SHIBOR two-factor Vasicek model.

Error analysis Variance Mean square error Average relative error Maximum absolute value error
O/N 0.004308 0.019736 0.127703 0.232284
1-week 0.003746 0.008812 0.080438 0.118666
2-week 0.009814 0.036827 0.14746 0.080697
1-month 0.008153 0.028611 0.13772 0.301889
3-month 0.001746 0.001335 0.032295 0.043602
6-month 0.004104 0.008984 0.088007 0.054531
9-month 0.004801 0.01201 0.104805 0.074383
1-year 0.004243 0.008834 0.086004 0.049985
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Figure 1: Overnight SHIBOR forecast figure.

Variance:

MSE =
∑
𝑛

𝑡=1
(𝑦
󸀠

𝑡
− 𝑦
𝑡
)
2

𝑛
.

(13)

Mean square error:

RMSE =
1

𝑛

𝑛

∑

𝑡=1

(
𝑦 − 𝑦
󸀠

𝑦
)

2

. (14)

Average relative error:

AVGE =
1

𝑛

𝑛

∑

𝑡=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦 − 𝑦
󸀠

𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (15)

Maximum absolute value error:

MAXE = max
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦 − 𝑦
󸀠

𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (16)

Results of fitting error analysis of SHIBOR two-factor
Vasicek model are shown in Table 4.

Accoding to results of Table 4, the two-factor Vasicek
model fitting error is small for SHIBOR of 8 different terms,
especially for SHIBOR of more than 3 months. The fitting
variance and mean square error of 3-month SHIBOR, 6-
month SHIBOR, and 9-month SHIBOR are less than 0.001.
And their average relative error andmaximum absolute error
are much lower than those of overnight SHIBOR, 1-week
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Figure 2: One-week SHIBOR forecast figure.
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Figure 3: Two-week SHIBOR forecast figure.

SHIBOR, and 2-week SHIBOR.Thefitting variance, themean
square error, and the average relative error of 1-year SHIBOR
are less than these of SHIBOR of the former four varieties.
Particularly its maximum absolute value error is the smallest.
It means that the result of fitting the one-year SHIBOR by
using two-factor Vasicek model is robust. Next, in this paper,
these SHIBOR two-factor Vasicek models will be used to
forecast 8 varieties of SHIBOR from August 22, 2013, to
September 18, 2013. The results are shown in Figures 1, 2, 3,
4, 5, 6, 7, and 8.

The forecasting precision of SHIBOR two-factor Vasicek
model is analyzed. We calculate the variance, difference
quotient, the average relative error, and maximum absolute
error to compare predicted SHIBOR and real SHIBOR from
August 22, 2013, to September 18, 2013. The results are shown
in Table 5.
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Figure 4: One-month SHIBOR forecast figure.
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Figure 5: Three-month SHIBOR forecast figure.
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Figure 6: Six-month SHIBOR forecast figure.
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Figure 7: Nine-month SHIBOR forecast figure.
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Figure 8: One-year SHIBOR forecast figure.

The results in Table 5 show that the prediction accuracy
of our SHIBOR two-factor Vasicek model is quite high.
Accoding to both variance, mean square error, mean relative
error, and the maximum absolute error of prediction, pre-
diction accuracy of the 3-month SHIBOR two-factor Vasicek
model is superior to other two-factor Vasicek models. The
prediction accuracy of SHIBOR two-factor Vasicek model
of 1 week, 6 months, and 1 year is slightly higher than it of
overnight, 2 weeks, 1 month, and 9 months.

5. Conclusion

Through principal component analysis to 8 varieties of
SHIBOR, this paper found that two principal components
can explain more than 96% volatility of SHIBOR. Therefore
the two-factor Vasicek model can be established to describe
the term structure of SHIBOR. Then we use kalman filter to
estimate parameters of various terms of SHIBOR, the two-
factor Vasicek model, and fit various terms of SHIBOR with
this model. The results show that goodness of fit of the two-
factor Vasicek model is high, especially for more than 3-
month SHIBOR. Finally, we test the prediction ability of this
model and find that prediction accuracy of 3-month SHIBOR
is higher than it of SHIBOR with other terms.
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We build a multiassets heterogeneous agents model with fundamentalists and chartists, who make investment decisions by max-
imizing the constant relative risk aversion utility function. We verify that the model can reproduce the main stylized facts in real
markets, such as fat-tailed return distribution and long-term memory in volatility. Based on the calibrated model, we study the
impacts of the key strategies’ parameters on investors’ wealth shares. We find that, as chartists’ exponential moving average periods
increase, their wealth shares also show an increasing trend. This means that higher memory length can help to improve their
wealth shares. This effect saturates when the exponential moving average periods are sufficiently long. On the other hand, the
mean reversion parameter has no obvious impacts on wealth shares of either type of traders. It suggests that no matter whether
fundamentalists take moderate strategy or aggressive strategy on the mistake of stock prices, it will have no different impact on
their wealth shares in the long run.

1. Introduction

Compared with traditional economic modeling, agent-based
modeling is more flexible in terms of characterizing the
individual heterogeneity and population dynamics. This
advantage is beneficial in researching on the survivability of
different types of investors, namely, market selection.

Previously, the related studies on market selection and
wealth share distribution concentrated mainly on the impact
of prediction accuracy, risk-aversion level, learning process,
and noise trading. Blume and Easley [1] associated market
selection with the first-principle of welfare economics and
discovered that, in complete market under Pareto opti-
mum allocation, the survival and disappearance of investors
depend on the accuracy of their forecasts. Similarly, Fedyk
et al. [2] studied the multiasset economy situation and
found that, comparedwith rational investors, unsophisticated
investors could suffer severe loss in the long run, and even
their predication deviations seem a priori small. Barucci

and Casna [3] also found that, under the mean reverting
environment, investors who have inaccuracy predictions
cannot survive.

Conversely, Chen and Huang [4, 5] compared the influ-
ence of forecasting accuracy and risk preference for investors’
long-term survival, based on a multiassets agent-based artifi-
cial stock market. They put forward that the risk preference
was the determinant and showed that the wealth of the
investors who adopted logarithmic utility function could be
dominated in the long run. In respect of learning evolution,
LeBaron [6] focused on investors’ learning on the gain level,
which is the weight level for the last step’s forecast error
in their price forecast rules. This study showed the stylized
facts of the market, analyzed the wealth evolution between
different strategic investors, and demonstrated their influence
on the market instability. Amir et al. [7] identified the
adaptive portfolio strategies which could allow investors to
survive under the frame of game theory. From the perspective
of noise trading, several researchers used the agent-based
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modeling method to analyze the survival problem in the long
run by comparing the specialists and the noise traders and
the noise traders and BSV investors, respectively [8–10]. Zhao
[11] studied the survival boundary conditions of different irra-
tional investors by utilizing the market utility maximization
rather than the individual utility maximization.

In the field of heterogeneous agents, fundamentalist/
chartist modeling is a very important frame. For instance,
Chiarella and He [12], Chiarella et al. [13], Anufriev and
Dindo [14], Yuan and Fu [15], and Zou et al. [16] have mainly
focused on the price equilibrium and system stability. This
paper, however, focuses on the strategies parameters’ impacts
on investors’ long-term wealth share, including fundamen-
talists’ mean reversion parameters and chartists’ exponential
moving average periods under the fundamentalist/chartist
modeling frame.

2. Heterogeneous Agent Model

For generality, this paper extends tomultiassets case based on
the Constant Relative Risk Aversion (CRRA) heterogeneous
agent model which was proposed by Chiarella et al. [13]. The
setting of the model is as follows.

2.1. The Market. This paper proposes a discrete-time model
with 𝑛 risky assets and one risk-free asset in the financial
market.The risk-free interest rate 𝑟 is constant.There are two
types of strategic agents, fundamentalists and chartists, and a
Walrasian auctioneer.

Consider risky asset 𝑖. Under the assumption of tradition-
al financial economics, investors have homogeneous rational
expectations to the return of asset 𝑖, and the fundamental
price of asset 𝑖 can be derived from the “no-arbitrage”
equation

𝐸
𝑡
[𝑃
𝑖,𝑡+1

+ 𝐷
𝑖,𝑡+1

] = (1 + 𝑟) 𝑃
𝑖,𝑡
. (1)

The fundamental long-run solution is given by

𝑃
𝑖,𝑡

= 𝑃
∗

𝑖,𝑡
≡

∞

∑

𝑘=1

𝐸
𝑡
[𝐷
𝑖,𝑡+𝑘

]

(1 + 𝑟)
𝑘

, (2)

where 𝑃, 𝑃∗, and 𝐷 denote the price, the fundamental value,
and the dividend yield, respectively. In particular, if the
dividend process is described by

𝐸
𝑡
[𝐷
𝑖,𝑡+𝑘

] = (1 + 𝜙
𝑖
)
𝑘
𝐷
𝑖,𝑡
, 𝑘 = 1, 2, . . . , 0 ≤ 𝜙

𝑖
≤ 𝑟, (3)

one can obtain

𝑃
∗

𝑖,𝑡
=

(1 + 𝜙
𝑖
)𝐷
𝑖,𝑡

𝑟 − 𝜙
𝑖

, (4)

where 𝜙
𝑖
denotes the dividend growth rate of asset 𝑖.Then one

can easily obtain that the fundamental values evolve over time
according to

𝐸
𝑡
[𝑃
∗

𝑖,𝑡+1
] = (1 + 𝜙

𝑖
) 𝑃
∗

𝑖,𝑡
(5)

and that the capital return is given by

𝐸
𝑡
[𝜂
𝑖,𝑡+1

] ≡ 𝐸
𝑡
[
𝑃
∗

𝑖,𝑡+1
− 𝑃
∗

𝑖,𝑡

𝑃∗
𝑖,𝑡

] = 𝜙
𝑖
, (6)

where 𝜂
𝑖
denotes the dividend growth rate of asset 𝑖. In the

following section we will introduce heterogeneity into the
model. We assume agents have heterogeneous, time-varying
beliefs about the first and second moment of capital returns,
but for simplicity, they are assumed to share the same beliefs
about dividend returns.

2.2. The Demand Function. Each agent is assumed to max-
imize the CRRA (power) utility function to allocate their
wealth as follows:

𝑈
𝑗
(𝑊) =

{

{

{

1

1 − 𝜆𝑗
(𝑊
1−𝜆
𝑗

− 1) (𝜆
𝑗

̸= 1) ,

ln (𝑊) (𝜆
𝑗
= 1) ,

(7)

where 𝑊 > 0 represents the wealth and the parameter
𝜆
𝑗

> 0 represents the relative risk aversion coefficient. We
choose the CRRA utility function because this assumption
is quite realistic. The experiment results of Levy et al. [17]
support the decreasing absolute risk aversion (DARA). In
otherwords, investor’s risk aversion declineswith the increase
of wealth, which is consistent with the CRRA (power) utility
function. In addition, Campbell and Viceira [18] pointed out
that relative risk aversion cannot depend strongly on wealth
in the long-run behavior of the economy.

This paper extends the solution proposed by Chiarella
and He [12] to the multiassets case and derives investors’
demand function. At time 𝑡, the optimal wealth proportion𝜋t
to be invested in the risky asset is determined by maximizing
the expected utility of wealth at 𝑡 + 1, as given by

max
𝜋t

𝐸
𝑡
[𝑈 (𝑊

𝑡+1
)] . (8)

To solve this, one needs to work out the evolution of𝑈(𝑊(𝑡)).
Assume that the wealth 𝑊(𝑡) follows a continuous time

stochastic differential equation

𝑑𝑊 = 𝜇 (𝑊) 𝑑𝑡 + 𝜎 (𝑊) 𝑑𝑧 (𝑡) , (9)

where 𝑧(𝑡) is aWiener process. Let𝑋 = 𝑈(𝑊) be an invertible
differentiable function with the inverse function 𝑊 = 𝐺(𝑋).
Following Ito’s lemma,

𝑑𝑋 = [𝑈
󸀠
(𝑊) 𝜇 (𝑊) +

1

2
𝜎
2
(𝑊)𝑈

󸀠󸀠
(𝑊)] 𝑑𝑡

+ 𝜎 (𝑊)𝑈
󸀠
(𝑊) 𝑑𝑧

(10)

which can be written as

𝑑𝑋 = 𝜇 (𝑋) 𝑑𝑡 + 𝜎 (𝑋) 𝑑𝑧, (11)

where

𝜇 (𝑋) = 𝑈
󸀠
(𝐺 (𝑋)) 𝜇 (𝐺 (𝑋)) +

1

2
𝜎
2
(𝐺 (𝑋))𝑈

󸀠󸀠
(𝐺 (𝑋)) ,

(12)

𝜎 (𝑋) = 𝜎 (𝐺 (𝑋))𝑈
󸀠
(𝐺 (𝑋)) . (13)

Discretizing (11) using the Euler formula, one obtains the fol-
lowing approximation:

𝑋 (𝑡 + Δ𝑡) = 𝑋 (𝑡) + 𝜇 (𝑋 (𝑡)) Δ𝑡 + 𝜎 (𝑋 (𝑡)) Δ𝑧 (𝑡) . (14)
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It follows that

𝐸
𝑡 [𝑋 (𝑡 + Δ𝑡)] = 𝑋 (𝑡) + 𝜇 (𝑋 (𝑡)) Δ𝑡, (15)

𝑉
𝑡 [𝑋 (𝑡 + Δ𝑡)] = 𝜎

2
(𝑋 (𝑡)) . (16)

Unitizing the time Δ𝑡 in (15), we have

𝐸
𝑡
[𝑋
𝑡+1

] = 𝑋
𝑡
+ 𝜇 (𝑋

𝑡
) . (17)

Substituting (12) into (17), one gets

𝐸
𝑡
[𝑈 (𝑊

𝑡+1
)] ≈ 𝑈 (𝑊

𝑡
) + 𝜇
𝑡
(𝑊
𝑡
) 𝑈
󸀠
(𝑊
𝑡
)

+
1

2
𝜎
2

𝑡
(𝑊
𝑡
) 𝑈
󸀠󸀠
(𝑊
𝑡
) .

(18)

This is the evolution of 𝑈(𝑊(𝑡)).
Let

𝜑
𝑖,𝑡+1

= 𝐸
𝑡
(𝜑
𝑖,𝑡+1

) + 𝜎
𝑖,𝑡+1

𝜉
𝑖,𝑡
, (19)

where 𝜑
𝑖,𝑡+1

is the return of asset 𝑖, 𝜎
𝑖,𝑡+1

is the standard
deviation of the return of asset 𝑖, and 𝜉

𝑖,𝑡
is an𝑁(0, 1) process.

Meanwhile, we assume that a trader’s wealth change
equals to the sum of the return of the risk-free asset and the
returns of risky assets; that is,

𝑊
𝑡+1

− 𝑊
𝑡
= 𝑟(1 −

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
)𝑊
𝑡
+ 𝑊
𝑡

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
𝜑
𝑖,𝑡+1

, (20)

where 𝜋
𝑖,𝑡
is the wealth proportion invested in asset 𝑖 at time

𝑡.
Substituting (19) into (20), we have

𝑊
𝑡+1

− 𝑊
𝑡

= 𝑟(1 −

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
)𝑊
𝑡

+ 𝑊
𝑡
(

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
𝐸
𝑡
(𝜑
𝑖,𝑡+1

) +

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
𝜎
𝑖,𝑡+1

𝜉
𝑖,𝑡
)

= [𝑟(1 −

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
) +

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
𝐸
𝑡
(𝜑
𝑖,𝑡+1

)]𝑊
𝑡

+ 𝑊
𝑡

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
𝜎
𝑖,𝑡+1

𝜉
𝑖,𝑡

(21)

which can be written as

𝑊
𝑡+1

− 𝑊
𝑡
= 𝜇
𝑡
(𝑊) + 𝜎

𝑡
(𝑊) 𝜉

𝑡
, (22)

where

𝜇
𝑡
(𝑊) = [𝑟(1 −

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
) +

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
𝐸
𝑡
(𝜑
𝑖,𝑡+1

)]𝑊
𝑡

= [𝑟 (1 − 𝜋
󸀠

te) + 𝜋
󸀠

t𝐸𝑡 (𝜑t+1)]𝑊𝑡,

𝜎
2

𝑡
(𝑊) = 𝐷(𝑊

𝑡

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
𝜎
𝑖,𝑡+1

𝜉
𝑖,𝑡
)

= 𝑊
2

𝑡
[

[

𝑛

∑

𝑖=1

𝜋
2

𝑖,𝑡
𝜎
2

𝑖,𝑡+1
𝐷(𝜉
𝑖,𝑡
)

+

𝑛

∑
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𝑛

∑
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𝜌
𝑖𝑗
𝜋
𝑖,𝑡
𝜋
𝑗,𝑡
𝜎
𝑖,𝑡+1

𝜎
𝑗,𝑡+1

√𝐷(𝜉
𝑖,𝑡
)

×√𝐷(𝜉
𝑗,𝑡
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]

= 𝑊
2

𝑡
[

[

𝑛

∑

𝑖=1

𝜋
2

𝑖,𝑡
𝜎
2

𝑖,𝑡+1
+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜌
𝑖𝑗
𝜋
𝑖,𝑡
𝜋
𝑗,𝑡
𝜎
𝑖,𝑡+1

𝜎
𝑗,𝑡+1

]

]

= 𝑊
2

𝑡
[

[

𝑛

∑

𝑖=1

𝜋
2

𝑖,𝑡
𝜎
2

𝑖,𝑡+1
+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜋
𝑖,𝑡
𝜋
𝑗,𝑡
𝜎
𝑖𝑗,𝑡+1

]

]

= 𝑊
2

𝑡
𝜋
󸀠

t∑
𝑡

𝜋t

(23)

with

𝜋t = [𝜋
1,𝑡
, 𝜋
2,𝑡
, . . . , 𝜋

𝑛,𝑡
]
󸀠
,

∑

𝑡

= (

𝜎
2

1,𝑡+1
. . . 𝜎
1𝑛,𝑡+1

... d
...

𝜎
𝑛1,𝑡+1

⋅ ⋅ ⋅ 𝜎
2

𝑛,𝑡+1

).

(24)

Substituting (23) into (18), we have

𝐸
𝑡
[𝑈 (𝑊

𝑡+1
)]

≈ 𝑈 (𝑊
𝑡
) + [𝑟 (1 − 𝜋

󸀠

te) + 𝜋
󸀠

t𝐸𝑡 (𝜑t+1)]𝑊𝑡𝑈
󸀠
(𝑊
𝑡
)

+
1

2
𝑊
2

𝑡
𝜋
󸀠

t ∑
𝑡

𝜋t𝑈
󸀠󸀠
(𝑊
𝑡
) .

(25)

Thus the first order condition of the problem (8) leads to the
following optimal solution:

𝜋t = −
𝑈
󸀠
(𝑊
𝑡
)

𝑊
𝑡
𝑈󸀠󸀠 (𝑊

𝑡
)

−1

∑

𝑡

[𝐸
𝑡
(𝜑t+1) − 𝑟e]

=
1

𝜆

−1

∑

𝑡

[𝐸
𝑡
(𝜑t+1) − 𝑟e] ,

(26)

where 𝐸
𝑡
(𝜑t+1) − 𝑟e represents the vector of the expected

excess return on risky assets and∑
𝑡
represents the covariance

matrix of the expected return on risky assets.Then we can get
the investor’s position demand for all assets as follows:

zt = 𝑊
𝑡−1
𝜋t./Pt, (27)

where Pt, zt, and ./ denote the price vector, the vector of the
demand for asset position, and the division of the element
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as opposed to the vector, respectively. It can be seen that
although the optimal investment proportion of an investor’s
wealth to be invested in the risky asset is independent of
wealth, its optimal position demand is proportional towealth.

2.3. Heterogeneous Expectations. The heterogeneous beliefs
of fundamentalists and chartists are reflected in the expected
return as well as the expected variance. We assume that the
same type of investors predicts all risky assets in the sameway.

2.3.1. Fundamentalists. Assume that fundamentalists (denot-
ed by 𝑓) know the fundamental value of assets. These invest-
ors believe that the price will move back to the fundamental
value when the market price deviates from fundamental
value. Therefore their expected price change is

𝐸
(𝑓)

𝑡
[𝑃
𝑖,𝑡+1

− 𝑃
𝑖,𝑡
] = 𝐸
(𝑓)

𝑡
[𝑃
∗

𝑖,𝑡+1
− 𝑃
∗

𝑖,𝑡
] + 𝑑
𝑓
(𝑃
∗

𝑖,𝑡
− 𝑃
𝑖,𝑡
)

= 𝜙𝑃
∗

𝑖,𝑡
+ 𝑑
𝑓
(𝑃
∗

𝑖,𝑡
− 𝑃
𝑖,𝑡
) .

(28)

Fundamentalists’ expected price is the sum of the change
of the fundamental value and an adjustment item. The
adjustment item is proportional to the deviation between
current asset price and the fundamental value.The coefficient
𝑑
𝑓
(𝑑
𝑓
> 0) indicates the speed returning to the fundamental

value, and we call it mean reversion coefficient. In addition,
to simplify, we assume that the two types of investors have the
same expectation to dividend return; that is,

𝐸
𝑡
(𝐷
𝑖,𝑡+1

) = 𝐸
(𝑓)

𝑡
(𝐷
𝑖,𝑡+1

) = 𝐸
(𝑐)

𝑡
(𝐷
𝑖,𝑡+1

) = (1 + 𝜙)𝐷
𝑖,𝑡
.

(29)

Thus, fundamentalist’s expected return for asset 𝑖 is

𝐸
(𝑓)

𝑡
(𝜑
𝑖,𝑡+1

) =
𝐸
(𝑓)

𝑡
[𝑃
𝑖,𝑡+1

] + 𝐸
(𝑓)

𝑡
(𝐷
𝑖,𝑡+1

) − 𝑃
𝑖,𝑡

𝑃
𝑖,𝑡

=
𝜙𝑃
∗

𝑖,𝑡
+ 𝑑
𝑓
(𝑃
∗

𝑖,𝑡
− 𝑃
𝑖,𝑡
) + (1 + 𝜙)𝐷

𝑖,𝑡
− 𝑃
𝑖,𝑡

𝑃
𝑖,𝑡

.

(30)

We further assume that fundamentalists use the exponen-
tialmoving average of expected return deviation to determine
the expected return variance. To certain extent, it reflects the
adaptability; that is,

𝑡
𝜎
2

𝑖,𝑡+1
= 𝑒
−1/𝜏
(𝑓)

𝑡−1
𝜎
2

𝑖,𝑡
+ (1 − 𝑒

−1/𝜏
(𝑓)

) (𝐸
(𝑓)

𝑡−1
[𝜑
𝑖,𝑡
] − 𝜑
𝑖,𝑡
)
2

,

(31)

where 𝜏
(𝑓) stands for the period length of the exponential

moving average. The larger is 𝜏(𝑓), the smaller is (1 − 𝑒
−1/𝜏
(𝑓)

).
It shows that the longer is the moving average period, the
smaller is the weight of the latest deviation. Thus the latest
expected deviation has the smaller influence on the expected
variance. Furthermore, this paper assumes that investors’
expected correlations between assets are 𝜌(𝑓)

𝑖𝑗
(𝑖, 𝑗 denotes the

assets), which vary with different investors, but do not change

with time. Hence, the covariance matrix of the expected
return is

(𝑓)

∑

𝑡

= (

𝑡
𝜎
2

1,𝑡+1
. . . 𝜌
(𝑓)

1𝑛 𝑡
𝜎
1,𝑡+1 𝑡

𝜎
𝑛,𝑡+1

... d
...

𝜌
(𝑓)

𝑛1 𝑡
𝜎
𝑛,𝑡+1 𝑡

𝜎
1,𝑡+1

⋅ ⋅ ⋅
𝑡
𝜎
2

𝑛,𝑡+1

). (32)

2.3.2. Chartists. Chartists do not know the fundamental
value of the assets. They use the past price series to infer
the movement of future prices. Therefore, chartists can be
regarded as a kind of adaptive investors. This paper assumes
that the first moment and the secondmoment of the expected
return are adaptable for chartists; that is, both the expected
return and its variance are obtained by using the exponential
moving average. The expected price change of chartists is

𝑚
(𝑐)

𝑡
≡ 𝐸
(𝑐)

𝑡
[𝜂
𝑡+1

] = 𝐸
(𝑐)

𝑡
[
𝑃
𝑡+1

− 𝑃
𝑡

𝑃
𝑡

]

= 𝑒
−1/𝜏
(𝑐)

𝑚
(𝑐)

𝑡−1
+ (1 − 𝑒

−1/𝜏
(𝑐)

)(
𝑃
𝑡
− 𝑃
𝑡−1

𝑃
𝑡−1

) ,

(33)

where 𝜏
(𝑐) presents the period length of the exponential

moving average. Chartists have the same expected dividend
yield as fundamentalists, whose expected return for asset 𝑖 is

𝐸
(𝑐)

𝑡
(𝜑
𝑖,𝑡+1

) =
𝐸
(𝑐)

𝑡
[𝑃
𝑖,𝑡+1

] + 𝐸
(𝑐)

𝑡
(𝐷
𝑖,𝑡+1

) − 𝑃
𝑖,𝑡

𝑃
𝑖,𝑡

= 𝑒
−1/𝜏
(𝑐)

𝑚
(𝑐)

𝑡−1
+ (1 − 𝑒

−1/𝜏
(𝑐)

)(
𝑃
𝑡
− 𝑃
𝑡−1

𝑃
𝑡−1

)

+
(1 + 𝜙)𝐷

𝑖,𝑡

𝑃
𝑖,𝑡

.

(34)

For chartists, the covariance matrix of the expected return is
similar to that of fundamentalists.

2.4. Market Clearing. This model achieves market clearing
through the equilibrium between supply and demand as

𝑁
(𝑓)

∑

𝑗=1

Z𝑗 +
𝑁

∑

𝑗=𝑁
(𝑓)
+1

Z𝑗 = M, (35)

where 𝑗 represents the investors,𝑁(𝑓) represents the number
of fundamentalists, 𝑁 is the total number of investors, 𝑁 −

𝑁
(𝑓)

= 𝑁
(𝑐) is the number of chartists, andM is the number

of outstanding stocks in the market. The equation indicates
that the sum of risky asset holdings by all traders is equal toM
at any time 𝑡, which is achieved by adjusting the equilibrium
price repeatedly.

2.5. Wealth Shares. After the market price is determined
through the clearing mechanism, the wealth of investor 𝑗 is
also determined as follows:

𝑊
𝑗

𝑡
= (1 −

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡
)𝑊
𝑡−1

(1 + 𝑟) + 𝑊
𝑡−1

𝑛

∑

𝑖=1

𝜋
𝑖,𝑡

𝑃
𝑖,𝑡
+ 𝐷
𝑖,𝑡

𝑃
𝑖,𝑡−1

.

(36)
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At this moment, the total wealth of all investors, the funda-
mentalists, and the chartists in the market is

𝑊
𝑡
=

𝑁

∑

𝑗=1

𝑊
𝑗

𝑡
,

𝑊
(𝑓)

𝑡
=

𝑁
(𝑓)

∑

𝑗=1

𝑊
𝑗

𝑡
,

𝑊
(𝑐)

𝑡
=

𝑁
(𝑐)

∑

𝑗=1

𝑊
𝑗

𝑡
,

(37)

where 𝑁 is the number of investors, 𝑁(𝑓) is the number
of fundamentalists, 𝑁(𝑐) is the number of chartists, 𝑊(𝑓)

𝑡
is

the total wealth of fundamentalists, and 𝑊
(𝑐)

𝑡
is the total

wealth of chartists. Accordingly, investor 𝑗’s wealth share, all
fundamentalists’ wealth share, and chartists’ wealth share in
the market are defined as follows:

𝑤
𝑗

𝑡
=

𝑊
𝑗

𝑡

𝑊
𝑡

,

𝑤
(𝑓)

𝑡
=

𝑊
(𝑓)

𝑡

𝑊
𝑡

,

𝑤
(𝑐)

𝑡
=

𝑊
(𝑐)

𝑡

𝑊
𝑡

.

(38)

By studying the relative wealth share rather than the absolute
wealth amount, we can get to the wealth evolution of different
types of investors more intuitively.

3. Simulation Results

To reflect the randomness of the dividend process, we
revised the dividend process in the following agent-based
experiments:

𝐷
𝑖,𝑡+1

= (1 + 𝜙
𝑖
+ 𝜎
𝑖,𝜀
𝜀
𝑡+1

)𝐷
𝑖,𝑡
. (39)

Then we can obtain the fundamental value of the asset as
follows:

𝑃
∗

𝑖,𝑡+1
= (1 + 𝜙

𝑖
+ 𝜎
𝑖,𝜀
𝜀
𝑡+1

) 𝑃
∗

𝑖,𝑡
, (40)

where 𝜀
𝑡
∼ 𝑁(0, 1) and 𝜎

𝑖,𝜀
> 0 represents standard deviation

dividend growth rates.

3.1. Reproducing Stylized Facts. Table 1 lists the parameters
for the benchmark model. In this paper, we use three risky
stocks as examples to calibrate this model and the parameters
of all stocks are setting consistently.The fundamental value of
each stock is setting to 10, each investor’s initial wealth is 10,
so that his total initial wealth is 40. In addition, short selling
is permitted in the model. The total number of investors is
40, including 20 fundamentalists and 20 chartists. One step
in this model can be seen as one week in reality. Every exper-
iment runs 1000 periods, corresponding to 20 years in reality.

Table 1: The parameters of basic model.

Parameter Value
Number of risky assets 3
Number of agents 40
Number of fundamentalists 20
Number of chartists 20
Initial cash 10
Initial stock positions 1
The minimum stock positions −5
The maximum stock positions 10
The initial dividend 0.002
Dividend growth rate 0.001
The standard deviation of dividend growth rate 0.01
Random seeds 0
The risk-free interest rate 0.0012
The relative risk aversion 3
The max exponential moving average periods 80
The min exponential moving average periods 20
The min mean reversion parameter 0.5
The max mean reversion parameter 1
The min expected correlation coefficient −0.2
The max expected correlation coefficient 0.8
The max wealth investment proportion 0.95
The min wealth investment proportion −0.95

The risk-free interest rate is 0.0012, corresponding to the
annual interest rate which is about 6%. The dividend growth
rate is 0.001, corresponding to the annual growth ratewhich is
about 5%.The initial dividend is 0.002. Many studies suggest
that the relative risk aversion is in the range from 2 to 4.
In this paper, we set it to 3. To reflect the heterogeneity
of the investors, the exponential moving average periods,
fundamentalists’ mean reversion parameter, and the expected
correlation coefficients between assets are randomly selected
in a certain range by every trader at the beginning of the
experiment, which are kept unchanged during the remaining
experiment time. For example, the correlation coefficients
between stocks are selected randomly in the range [−0.2, 0.8],
which is consistentwith real stockmarket (Ochiai andNacher
[19] show that the correlations between DJIA and Nikkei 225
roughly fluctuate within [−0.2, 0.8]).

It is easily understood that although stocks have the same
parameters, due to the randomness of the dividend process
and the different imbalances of supply and demand, the price
evolutions of different stocks are not the same, and they can
even be opposite.

Considering that our model is a growth model, in which
the dividend growth rate is positive, if we compare one day
to one time step, then the dividend growth rate will be so
small that the model accuracy could be lost. Thus, in this
paper, we useweekly closing prices of the S&P 500 index from
December 30, 1991, to March 7, 2011, as the calibration series
and compare it with the simulated price series in both the
descriptive statistics and the stylized facts.
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Table 2: The descriptive statistics.

Statistic Asset 1 Asset 2 Asset 3 S&P 500
Mean 0.00090 0.0011 0.00072 0.0014
Median 0.0016 0.00048 0.0011 0.0024
S. D. 0.0196 0.0235 0.0157 0.0238
Kurtosis 7.0397 7.9133 6.2793 8.9414
Skewness 0.0496 0.1523 0.1301 −0.5191
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Figure 1: Evolution of prices of the three simulated stocks and the S&P 500 index.

Figure 1 shows the evolution of stock prices. The bottom
right plot is for the S&P 500 index. Table 2 shows the
descriptive statistics of the three simulated stock prices and
the S&P 500 prices. We can find that these properties of
simulated prices are very similar with those of S&P 500 index.

Here we test the stylized facts of our model. Figures 2,
3, 4, 5, and 6 display the stylized facts of S&P 500, stock 1,
stock 2, and stock 3. Figure 2 shows the probability density
in the semilogarithmic axis, where the red line is normal
fitted curve. We can find that both S&P 500 returns and
the simulated stocks returns show the fat-tailed distribution.
Figures 3–6 compare the autocorrelation functions of the
return rate. In each plot, the black line shows the autocor-
relation function of the original returns, and the red line
is the autocorrelation of the absolute returns. From these
autocorrelation plots, we can find that the original returns
have no autocorrelations, whereas the absolute returns show
significant long-term autocorrelations. In addition, the Hurst
indexes for the absolute returns of three simulated stocks are
0.6993, 0.7585, and 0.6817, respectively, which confirm the

property of long-term autocorrelation as in real markets [20].
We find that all three stocks show similar characteristics as
S&P 500.

We conclude that ourmodel is able to reproduce themain
stylized facts of real stocks and stock indexes, including the
fat-tailed distribution of returns, the absence of long-memory
in the returns, and the strong long-term correlations in the
absolute returns. It indicates that our model has captured
some key ingredients of the microstructure of real financial
markets.

3.2. Wealth Share Analysis. Investors’ beliefs play an impor-
tant role in making investment decisions. Therefore, it is
essential to analyze the key parameters that determine
investor’s beliefs and focus on these parameters’ impacts
on investors’ wealth accumulation. The model has two
key parameters, including fundamentalists’ mean reversion
parameters 𝑑

𝑓
and chartists’ exponential moving average

periods 𝜏(𝑐).
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Figure 2: The probability density of S&P 500 returns and the
simulated stocks returns.The red line is the normal fitted curve. Both
S&P 500 returns and the simulated stocks returns show the fat-tailed
distribution.
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Figure 3: Autocorrelation function of the S&P 500 index.The black
line shows the autocorrelation function of the returns. The red line
is the autocorrelation of the absolute returns.

In order to analyze the two parameters’ impacts on two
types of investors’ wealth shares, this paper divides the mean
reversion parameter values into four intervals: (0.5, 0.6),
(0.6, 0.7), (0.7, 0.8), and (0.8, 0.9). Fundamentalists’ mean
reversion parameters value is randomly selected in the spe-
cific interval. We also take 9 different values for the chartists,
that is, 1, 2, 3, 4, 5, 10, 20, 50, and 80, which correspond to 9
differentweights of the latest price information, that is, 0.6321,
0.3935, 0.2835, 0.2212, 0.1813, 0.0952, 0.0488, 0.0198, and
0.0124. This results in 36 different parameters combinations.
In order to keep the conclusion robust, this paper selects
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Figure 4: Autocorrelation function of the simulated stock 1. The
black line shows the autocorrelation function of the returns.The red
line is the autocorrelation of the absolute returns.
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Figure 5: Autocorrelation function of the simulated stock 2. The
black line shows the autocorrelation function of the returns.The red
line is the autocorrelation of the absolute returns.

five different random seeds for each combination to conduct
five experiments, and then average investors’ wealth shares
of these five experiments. Thus, we run a total of 180
experiments. We focus on the aggregate wealth of the same
type of traders. Figures 7, 8, 9, and 10 show investors’ wealth
share for 4 different intervals of 𝑑

𝑓
. In every figure, each

bar corresponds to the average wealth share at the end of
experiments when exponential moving average period 𝜏

(𝑐) is
given a specific value.

We can see that nomatter what kinds of parameters’ port-
folios are chosen, the two types of investors coexist in the long
term. Chartists’ wealth shares fall into the range of 0.3–0.5,
and the corresponding fundamentalists’ wealth shares locate
between 0.7 and 0.5. Meanwhile, different portfolios (𝑑

𝑓
, 𝜏
(𝑐)
)

do have different distributions of wealth. Obviously, no
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Figure 6: Autocorrelation function of the simulated stock 3. The black line shows the autocorrelation function of the returns. The red line is
the autocorrelation of the absolute returns.

0

0.1

0.2

0.3

0.4

0.5

W
ea

lth
 (%

)

1 2 3 4 5 6 7 8 9

Chartist

𝜏 min max

W
ea

lth
 (%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Fundamentalist

1 2 3 4 5 6 7 8 9
𝜏 min max

Figure 7: Wealth shares (𝑑
𝑓
∈ (0.5, 0.6)).

matter 𝑑
𝑓
is at which intervals, with the exponential moving

average periods increasing, chartists’ wealth shares also show
an increasing trend, indicating that a higher memory length
will help chartists form more accurate expectations, thus
increasing their wealth shares. However, this trend becomes
less obvious when exponential moving average periods are
high enough, such as 𝜏(𝑐) is 20, 50, 80.This is because chartists’
return expectations only have very small weight on the latest
price information (namely, 0.0488, 0.0198, and 0.0124), and
more than 95% of the weights are given to the past pricing
information. Hence, the growth trend of wealth share is no
longer obvious when the exponential moving average period
is sufficiently long.

In addition, the value of mean reversion coefficient 𝑑
𝑓

has no significant impacts on the wealth share of the two
types of investors. It suggests that the aggressiveness of
fundamentalists’ strategies on the mistake of stock prices, be
they moderate (when 𝑑

𝑓
is small) or aggressive (when 𝑑

𝑓
is

large), has no impact on their wealth shares in the long run.

4. Conclusions

We have built a multiassets heterogeneous-agents model
with fundamentalists and chartists. We verified that the
model can reproduce the main stylized facts in real mar-
kets such as fat tails in the return distribution, absence of
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Figure 8: Wealth Shares (𝑑
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∈ (0.6, 0.7)).
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Figure 9: Wealth Shares (𝑑
𝑓
∈ (0.7, 0.8)).

long-memory in returns, and long-termmemory in the abso-
lute returns. Based on the calibrated model, we studied the
key strategies parameters’ impacts on investors’ wealth shares.
We found that as chartists’ exponential moving average
periods increase, their wealth shares also show an increasing
trend. This means that higher memory length can help to
improve their wealth shares. However when the exponential
moving average periods are long enough, this trend is no
longer obvious and nomatter how long thememory is, wealth
share of chartists will not be higher than fundamentalists’.

That is, chartists’ wealth share will not be more than 0.5.
This reflects that chartists can coexist with fundamentalists
in stock markets, that is, at least accounting for about 30% of
market wealth, although they cannot equally share themarket
wealth. On the other hand, themean reversing parameter has
no significant impacts on the wealth share of either type of
traders. Therefore, no matter whether fundamentalists take
moderate strategy or aggressive strategy on the mistake of
stock prices, it has no different impacts on their wealth shares
in the long run.
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We consider a predator-prey systemwithMichaelis-Menten type functional response and two delays.We focus on the case with two
unequal and non-zero delays present in the model, study the local stability of the equilibria and the existence of Hopf bifurcation,
and then obtain explicit formulas to determine the properties of Hopf bifurcation by using the normal form method and center
manifold theorem. Special attention is paid to the global continuation of local Hopf bifurcation when the delays 𝜏

1
̸= 𝜏
2
.

1. Introduction

In [1], Xu and Chaplain studied the following delayed
predator-prey model with Michaelis-Menten type functional
response:

𝑑𝑥
1

𝑑𝑡
= 𝑥
1 (𝑡) [𝑎1 − 𝑎

11
𝑥
1
(𝑡 − 𝜏
11
) −

𝑎
12
𝑥
2
(𝑡)

𝑚
1
+ 𝑥
1
(𝑡)

] ,

𝑑𝑥
2

𝑑𝑡
= 𝑥
2 (𝑡) [−𝑎2 +

𝑎
21
𝑥
1
(𝑡 − 𝜏
21
)

𝑚
1
+ 𝑥
1
(𝑡 − 𝜏
21
)

−𝑎
22
𝑥
2
(𝑡 − 𝜏
22
) −

𝑎
23
𝑥
3
(𝑡)

𝑚
2
+ 𝑥
2
(𝑡)

] ,

𝑑𝑥
3

𝑑𝑡
= 𝑥
3
(𝑡) [−𝑎

3
+

𝑎
32
𝑥
2
(𝑡 − 𝜏
32
)

𝑚
2
+ 𝑥
2
(𝑡 − 𝜏
32
)
− 𝑎
33
𝑥
3
(𝑡 − 𝜏
33
)] ,

(1)

with initial conditions

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] , 𝜙

𝑖
(0) > 0, 𝑖 = 1, 2, 3, (2)

where 𝑥
1
(𝑡), 𝑥

2
(𝑡), and 𝑥

3
(𝑡) denote the densities of the

prey, predator, and top predator population, respectively.

𝑎
𝑖
, 𝑎
𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3) are positive constants. 𝜏

11
, 𝜏
21
, 𝜏
22
, 𝜏
32
,

and 𝜏
33

are nonnegative constants. 𝜏
11
, 𝜏
22
, 𝜏
33

denote the
delay in the negative feedback of the prey, predator, and
top predator crowding, respectively. 𝜏

21
, 𝜏
32
, are constant

delays due to gestation; that is, mature adult predators can
only contribute to the production of predator biomass. 𝜏 =

max{𝜏
11
, 𝜏
21
, 𝜏
22
, 𝜏
32
, 𝜏
33
}. 𝜙
𝑖
(𝑡) (𝑖 = 1, 2, 3) are continuous

bounded functions in the interval [−𝜏, 0]. The authors
proved that the system is uniformly persistent under some
appropriate conditions. By means of constructing suitable
Lyapunov functional, sufficient conditions are derived for the
global asymptotic stability of the positive equilibrium of the
system.

Time delays of one type or another have been incorpo-
rated into systems by many researchers since a time delay
could cause a stable equilibrium to become unstable and
fluctuation. In [2–12], authors showed effects of two delays
on dynamical behaviors of system.

It is well known that periodic solutions can arise through
theHopf bifurcation in delay differential equations. However,
these periodic solutions bifurcating from Hopf bifurcations
are generally local. Under some circumstances, periodic
solutions exist when the parameter is far away from the
critical value. Therefore, global existence of Hopf bifurcation
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is a more interesting and difficult topic. A great deal of
research has been devoted to the topics [13–21]. In this paper,
let 𝜏
11

= 𝜏
22

= 𝜏
33

= 0, 𝜏
21

= 𝜏
1
, 𝜏
32

= 𝜏
2
in (1); we

considerHopf bifurcation and global periodic solutions of the
following system with two unequal and nonzero delays:

𝑑𝑥
1

𝑑𝑡
= 𝑥
1
(𝑡) [𝑎
1
− 𝑎
11
𝑥
1
(𝑡) −

𝑎
12
𝑥
2
(𝑡)

𝑚
1
+ 𝑥
1 (𝑡)

] ,

𝑑𝑥
2

𝑑𝑡
= 𝑥
2
(𝑡) [−𝑎

2
+

𝑎
21
𝑥
1
(𝑡 − 𝜏
1
)

𝑚
1
+ 𝑥
1
(𝑡 − 𝜏
1
)

− 𝑎
22
𝑥
2
(𝑡) −

𝑎
23
𝑥
3
(𝑡)

𝑚
2
+ 𝑥
2
(𝑡)

] ,

𝑑𝑥
3

𝑑𝑡
= 𝑥
3 (𝑡) [−𝑎3 +

𝑎
32
𝑥
2
(𝑡 − 𝜏
2
)

𝑚
2
+ 𝑥
2
(𝑡 − 𝜏
2
)
− 𝑎
33
𝑥
3 (𝑡)] ,

(3)

with initial conditions

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] , 𝜙

𝑖
(0) > 0,

𝑖 = 1, 2, 3; 𝜏 = max {𝜏
1
, 𝜏
2
} .

(4)

Our goal is to investigate the possible stability switches of the
positive equilibrium and stability of periodic orbits arising
due to a Hopf bifurcation when one of the delays is treated
as a bifurcation parameter. Special attention is paid to the
global continuation of local Hopf bifurcation when the delays
𝜏
1

̸= 𝜏
2
.

This paper is organized as follows. In Section 2, by
analyzing the characteristic equation of the linearized system
of system (3) at positive equilibrium, the sufficient conditions
ensuring the local stability of the positive equilibrium and
the existence of Hopf bifurcation are obtained [22]. Some
explicit formulas determining the direction and stability
of periodic solutions bifurcating from Hopf bifurcations
are demonstrated by applying the normal form method
and center manifold theory due to Hassard et al. [23] in
Section 3. In Section 4, we consider the global existence of
these bifurcating periodic solutions [24] with two different
delays. Some numerical simulation results are included in
Section 5.

2. Stability of the Positive Equilibrium and
Local Hopf Bifurcations

In this section, we first study the existence and local stability
of the positive equilibrium and then investigate the effect of
delay and the conditions for existence of Hopf bifurcations.

There are at most four nonnegative equilibria for system
(3):

𝐸
1
= (0, 0, 0) , 𝐸

2
= (

𝑎
1

𝑎
11

, 0, 0) ,

𝐸
3
= (𝑥
1
, 𝑥
2
, 0) , 𝐸

∗
= (𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) ,

(5)

where (𝑥
1
, 𝑥
2
, 0) and (𝑥

∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) satisfy

𝑎
1
− 𝑎
11
𝑥
1
−

𝑎
12
𝑥
2

𝑚
1
+ 𝑥
1

= 0,

−𝑎
2
+

𝑎
21
𝑥
1

𝑚
1
+ 𝑥
1

− 𝑎
22
𝑥
2
= 0;

(6)

𝑎
1
− 𝑎
11
𝑥
∗

1
(𝑡) −

𝑎
12
𝑥
∗

2
(𝑡)

𝑚
1
+ 𝑥∗
1
(𝑡)

= 0,

−𝑎
2
+

𝑎
21
𝑥
∗

1
(𝑡)

𝑚
1
+ 𝑥∗
1
(𝑡)

− 𝑎
22
𝑥
∗

2
(𝑡) −

𝑎
23
𝑥
∗

3
(𝑡)

𝑚
2
+ 𝑥∗
2
(𝑡)

= 0,

−𝑎
3
+

𝑎
32
𝑥
∗

2
(𝑡)

𝑚
2
+ 𝑥∗
2
(𝑡)

− 𝑎
33
𝑥
∗

3
(𝑡) = 0,

(7)

where 𝐸
3
is a nonnegative equilibrium point if there is a

positive solution of (6), and 𝐸
∗
is a nonnegative equilibrium

point if there is a positive solution of (7).
Let

(H
1
) 𝑎
1
(𝑎
21

− 𝑎
2
) > 𝑚

1
𝑎
2
𝑎
11
;

(H
2
) (𝑎
32
−𝑎
3
)[𝑎
1
(𝑎
21
−𝑎
2
)−𝑚
1
𝑎
2
]−𝑚
2
𝑎
3
𝑎
22
(𝑎
1
+𝑚
1
𝑎
11
) > 0;

(H
3
) 𝑥
2
(𝑎
32

− 𝑎
3
) − 𝑚
2
𝑎
3
> 0;

(H
4
) 𝑎
22
(𝑎
11

− (𝑎
1
/𝑚
1
)) − (𝑎

12
𝑎
21
/𝑚
2

1
) > 0.

From [1, 25], we know that if (𝐻
1
), (𝐻
2
), (𝐻
3
), and (𝐻

4
)

hold, 𝐸
3
and 𝐸

∗
always exist as nonnegative equilibria.

Let𝐸 = (𝑥
10
, 𝑥
20
, 𝑥
30
) be the arbitrary equilibrium point,

and let 𝑥
1
(𝑡) = 𝑥

1
(𝑡) − 𝑥

10
, 𝑥
2
(𝑡) = 𝑥

2
(𝑡) − 𝑥

20
, 𝑥
3
(𝑡) =

𝑥
3
(𝑡)−𝑥

30
; still denote 𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡) by 𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡),

respectively; then the linearized system of the corresponding
equations at 𝐸 is as follows:

̇𝑢 (𝑡) = 𝐵𝑢 (𝑡) + 𝐶𝑢 (𝑡 − 𝜏
1
) + 𝐷𝑢 (𝑡 − 𝜏

2
) , (8)

where

𝑢 (𝑡) = (𝑥
1
(𝑡) , 𝑥
2
(𝑡) , 𝑥
3
(𝑡))
𝑇
,

𝐵 = (𝑏
𝑖𝑗
)
3×3

, 𝐶 = (𝑐
𝑖𝑗
)
3×3

, 𝐷 = (𝑑
𝑖𝑗
)
3×3

;

𝑏
11

= 𝑎
1
− 2𝑎
11
𝑥
10

−
𝑎
12
𝑚
1
𝑥
20

(𝑚
1
+ 𝑥
10
)
2
, 𝑏

12
= −

𝑎
12
𝑥
10

𝑚
1
+ 𝑥
10

,

𝑏
22

= −𝑎
2
+

𝑎
21
𝑥
10

𝑚
1
+ 𝑥
10

− 2𝑎
22
𝑥
20

−
𝑎
23
𝑚
2
𝑥
30

(𝑚
2
+ 𝑥
20
)
2
,

𝑏
23

= −
𝑎
23
𝑥
20

𝑚
2
+ 𝑥
20

, 𝑏
33

= −𝑎
3
+

𝑎
32
𝑥
20

𝑚
2
+ 𝑥
20

− 2𝑎
33
𝑥
30
;

𝑐
21

=
𝑎
21
𝑚
1
𝑥
20

(𝑚
1
+ 𝑥
10
)
2
, 𝑑

32
=

𝑎
32
𝑚
2
𝑥
30

(𝑚
2
+ 𝑥
20
)
2
;

(9)

all the others of 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, and 𝑑

𝑖𝑗
are 0.

The characteristic equation for system (8) is

𝜆
3
+𝑝
2
𝜆
2
+𝑝
1
𝜆 + 𝑝
0
+ (𝑞
1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏1+ (𝑟

1
𝜆 + 𝑟
0
) 𝑒
−𝜆𝜏2 = 0,

(10)
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where

𝑝
2
= − (𝑏

11
+ 𝑏
22

+ 𝑏
33
) ,

𝑝
1
= 𝑏
11
𝑏
22

+ 𝑏
22
𝑏
33

+ 𝑏
11
𝑏
33
,

𝑝
0
= −𝑏
11
𝑏
22
𝑏
33
;

𝑞
1
= −𝑏
12
𝑐
21
, 𝑞
0
= 𝑏
12
𝑐
21
𝑏
33
;

𝑟
1
= −𝑏
23
𝑑
32
, 𝑟
0
= 𝑏
11
𝑏
23
𝑑
32
.

(11)

We consider the following cases.

(1) 𝐸 = 𝐸
1
. The characteristic equation reduces to

(𝜆 − 𝑎
1
) (𝜆 + 𝑎

2
) (𝜆 + 𝑎

3
) = 0. (12)

There are always a positive root 𝑎
1
and two negative roots

𝑎
2
, 𝑎
3
of (12); hence 𝐸

1
is a saddle point.

(2) 𝐸 = 𝐸
2
. Equation (10) takes the form

(𝜆 + 𝑎
1
) (𝜆 + 𝑎

2
−

𝑎
1
𝑎
12

𝑚
1
𝑎
11

+ 𝑎
1

) (𝜆 + 𝑎
3
) = 0. (13)

There is a positive root 𝜆 = (𝑎
1
𝑎
12
/(𝑚
1
𝑎
11

+ 𝑎
1
)) − 𝑎

2
if

𝑎
1
𝑎
12
/(𝑚
1
𝑎
11

+ 𝑎
1
) > 𝑎

2
; hence, 𝐸

2
is a saddle point. If

𝑎
1
𝑎
12
/(𝑚
1
𝑎
11

+ 𝑎
1
) < 𝑎

2
, 𝐸
2
is locally asymptotically stable.

(3) 𝐸 = 𝐸
3
. The characteristic equation is

(𝜆 − 𝑏
33
) [𝜆
2
− (𝑏
11

+ 𝑏
22
) 𝜆 + 𝑏

11
𝑏
22

− 𝑏
12
𝑐
21
𝑒
−𝜆𝜏1] = 0. (14)

We will analyse the distribution of the characteristic root of
(14) from Ruan and Wei [26], which is stated as follows.

Lemma 1. Consider the exponential polynomial

𝑃 (𝜆, 𝑒
−𝜆𝜏1 , . . . , 𝑒

−𝜆𝜏𝑚)

= 𝜆
𝑛
+ 𝑝
(0)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(0)

𝑛−1
𝜆 + 𝑝
(0)

𝑛

+ [𝑝
(1)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(1)

𝑛−1
𝜆 + 𝑝
(1)

𝑛
] 𝑒
−𝜆𝜏1

+ ⋅ ⋅ ⋅ + [𝑝
(𝑚)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(𝑚)

𝑛−1
𝜆 + 𝑝
(𝑚)

𝑛
] 𝑒
−𝜆𝜏𝑚 ,

(15)

where 𝜏
𝑖
⩾ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝

(𝑖)

𝑗
(𝑖 = 0, 1, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) are constants. As (𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
) vary, the sum of

the order of the zeros of 𝑃(𝜆, 𝑒−𝜆𝜏1 , . . . , 𝑒−𝜆𝜏𝑚) on the open right
half plane can change only if a zero appears on or crosses the
imaginary axis.

By using Lemma 1, we can easily obtain the following
results.

Lemma 2. If 𝐸
3
is a nonnegative equilibrium point, then

(1) 𝐸
3
is unstable if 𝑏

33
> 0;

(2) 𝐸
3
is locally asymptotically stable if 𝑏

33
< 0, 𝑏
11

+ 𝑏
22

<

0, 𝑏
11
𝑏
22

− 𝑏
12
𝑐
21

> 0 and 𝑏
11
𝑏
22

+ 𝑏
12
𝑐
21

> 0.

Proof. (1) 𝜆 = 𝑏
33

is a root of (14); if 𝑏
33

> 0, then 𝐸
3
is

unstable.
(2) Clearly, 𝜆 = 0 is not a root of (14); we should discuss

the following equation instead of (14):

𝜆
2
− (𝑏
11

+ 𝑏
22
) 𝜆 + 𝑏

11
𝑏
22

− 𝑏
12
𝑐
21
𝑒
−𝜆𝜏1 = 0. (16)

Assume that 𝑖𝜔 with 𝜔 > 0 is a solution of (16). Substituting
𝜆 = 𝑖𝜔 into (16) and separating the real and imaginary parts
yield

−𝜔
2
+ 𝑏
11
𝑏
22

= 𝑏
12
𝑐
21
cos𝜔𝜏

1
,

𝜔 (𝑏
11

+ 𝑏
22
) = 𝑏
12
𝑐
21
sin𝜔𝜏

1

(17)

which implies

𝜔
4
+ (𝑏
2

11
+ 𝑏
2

22
) 𝜔
2
+ 𝑏
2

11
𝑏
2

22
− 𝑏
2

12
𝑐
2

21
= 0. (18)

If 𝑏2
11
𝑏
2

22
− 𝑏
2

12
𝑐
2

21
> 0, that is (𝑏

11
𝑏
22

+ 𝑏
12
𝑐
21
)(𝑏
11
𝑏
22

− 𝑏
12
𝑐
21
) >

0, there is no real root of (16). Hence there is no purely
imaginary root of (18). When 𝜏

1
= 0, (16) reduces to

𝜆
2
− (𝑏
11

+ 𝑏
22
) 𝜆 + 𝑏

11
𝑏
22

− 𝑏
12
𝑐
21

= 0. (19)

If 𝑏
11
+ 𝑏
22

< 0 and 𝑏
11
𝑏
22
− 𝑏
12
𝑐
21

> 0, both roots of (19) have
negative real parts. Thus, by using Lemma 1, when 𝑏

33
< 0,

𝑏
11

+ 𝑏
22

< 0, 𝑏
11
𝑏
22

− 𝑏
12
𝑐
21

> 0 and 𝑏
11
𝑏
22

+ 𝑏
12
𝑐
21

> 0, 𝐸
3
is

locally asymptotically stable.

(4)𝐸 = 𝐸
∗
.The characteristic equation about𝐸

∗
is (10). In the

following, we will analyse the distribution of roots of (10).We
consider four cases.

Case a. Consider
𝜏
1
= 𝜏
2
= 0.

The associated characteristic equation of system (3) is

𝜆
3
+ 𝑝
2
𝜆
2
+ (𝑝
1
+ 𝑞
1
+ 𝑟
1
) 𝜆 + (𝑝

0
+ 𝑞
0
+ 𝑟
0
) = 0. (20)

Let

(H
5
) 𝑝
2
> 0, 𝑝

2
(𝑝
1
+𝑞
1
+𝑟
1
)−(𝑝
0
+𝑞
0
+𝑟
0
) > 0, 𝑝

0
+𝑞
0
+𝑟
0
>

0.

By Routh-Hurwitz criterion, we have the following.

Theorem 3. For 𝜏
1
= 𝜏
2
= 0, assume that (𝐻

1
)–(𝐻
5
) hold.

Thenwhen 𝜏
1
= 𝜏
2
= 0, the positive equilibrium𝐸

∗
(𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
)

of system (3) is locally asymptotically stable.

Case b. Consider
𝜏
1
= 0, 𝜏
2
> 0.

The associated characteristic equation of system (3) is

𝜆
3
+ 𝑝
2
𝜆
2
+ (𝑝
1
+ 𝑞
1
) 𝜆 + (𝑝

0
+ 𝑞
0
) + (𝑟
1
𝜆 + 𝑟
0
) 𝑒
−𝜆𝜏2 = 0.

(21)
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We want to determine if the real part of some root
increases to reach zero and eventually becomes positive as 𝜏
varies. Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (21); then we have

− 𝑖𝜔
3
− 𝑝
2
𝜔
2
+ 𝑖 (𝑝
1
+ 𝑞
1
) 𝜔 + (𝑝

0
+ 𝑞
0
)

+ (𝑟
1
𝜔𝑖 + 𝑟

0
) (cos𝜔𝜏

2
− 𝑖 sin𝜔𝜏

2
) = 0.

(22)

Separating the real and imaginary parts, we have

−𝜔
3
+ (𝑝
1
+ 𝑞
1
) 𝜔 = 𝑟

0
sin𝜔𝜏

2
− 𝑟
1
𝜔 cos𝜔𝜏

2
,

−𝑝
2
𝜔
2
+ (𝑝
0
+ 𝑞
0
) = −𝑟

1
𝜔 sin𝜔𝜏

2
− 𝑟
0
cos𝜔𝜏

2
.

(23)

It follows that

𝜔
6
+ 𝑚
12
𝜔
4
+ 𝑚
11
𝜔
2
+ 𝑚
10

= 0, (24)

where 𝑚
12

= 𝑝
2

2
− 2(𝑝

1
+ 𝑞
1
), 𝑚
11

= (𝑝
1
+ 𝑞
1
)
2
− 2𝑝
2
(𝑝
0
+

𝑞
0
) − 𝑟
2

1
, 𝑚
10

= (𝑝
0
+ 𝑞
0
)
2
− 𝑟
2

0
.

Denoting 𝑧 = 𝜔
2, (24) becomes

𝑧
3
+ 𝑚
12
𝑧
2
+ 𝑚
11
𝑧 + 𝑚

10
= 0. (25)

Let

ℎ
1
(𝑧) = 𝑧

3
+ 𝑚
12
𝑧
2
+ 𝑚
11
𝑧 + 𝑚

10
; (26)

we have

𝑑ℎ
1 (𝑧)

𝑑𝑧
= 3𝑧
2
+ 2𝑚
12
𝑧 + 𝑚

11
. (27)

If 𝑚
10

= (𝑝
0
+ 𝑞
0
)
2
− 𝑟
2

0
< 0, then ℎ

1
(0) <

0, lim
𝑧→+∞

ℎ
1
(𝑧) = +∞. We can know that (25) has at least

one positive root.
If 𝑚
10

= (𝑝
0
+ 𝑞
0
)
2
− 𝑟
2

0
≥ 0, we obtain that when Δ =

𝑚
2

12
− 3𝑚
11

≤ 0, (25) has no positive roots for 𝑧 ∈ [0, +∞).
On the other hand, when Δ = 𝑚

2

12
− 3𝑚
11

> 0, the following
equation

3𝑧
2
+ 2𝑚
12
𝑧 + 𝑚

11
= 0 (28)

has two real roots: 𝑧∗
11

= (−𝑚
12

+ √Δ)/3, 𝑧
∗

12
= (−𝑚

12
−

√Δ)/3. Because of ℎ󸀠󸀠
1
(𝑧
∗

11
) = 2√Δ > 0, ℎ

󸀠󸀠

1
(𝑧
∗

12
) = −2√Δ <

0, 𝑧
∗

11
and 𝑧∗
12
are the local minimum and the localmaximum

of ℎ
1
(𝑧), respectively. By the above analysis, we immediately

obtain the following.

Lemma 4. (1) If 𝑚
10

≥ 0 and Δ = 𝑚
2

12
− 3𝑚
11

≤ 0, (25) has
no positive root for 𝑧 ∈ [0, +∞).

(2) If 𝑚
10

≥ 0 and Δ = 𝑚
2

12
− 3𝑚
11

> 0, (25) has at least
one positive root if and only if 𝑧∗

11
= (−𝑚

12
+ √Δ)/3 > 0 and

ℎ
1
(𝑧
∗

11
) ≤ 0.

(3) If 𝑚
10

< 0, (25) has at least one positive root.

Without loss of generality, we assume that (25) has three
positive roots, defined by 𝑧

11
, 𝑧
12
, 𝑧
13
, respectively. Then

(24) has three positive roots:

𝜔
11

= √𝑧
11
, 𝜔

12
= √𝑧
12
, 𝜔

13
= √𝑧
13
. (29)

From (23) we have

cos𝜔
1𝑘
𝜏
21𝑘

=
𝑟
1
𝜔
4

1𝑘
+ [𝑝
2
𝑟
0
− (𝑞
1
+ 𝑝
1
) 𝑟
1
] 𝜔
2

1𝑘
− 𝑟
0
(𝑞
0
+ 𝑝
0
)

𝑟2
0
+ 𝑟2
1
𝜔2
1𝑘

.

(30)

Thus, if we denote

𝜏
(𝑗)

21𝑘
=

1

𝜔
1𝑘

× {arccos ((𝑟
1
𝜔
4

1𝑘
+ [𝑝
2
𝑟
0
− (𝑞
1
+ 𝑝
1
) 𝑟
1
] 𝜔
2

1𝑘

− 𝑟
0
(𝑞
0
+ 𝑝
0
))

× (𝑟
2

0
+ 𝑟
2

1
𝜔
2

1𝑘
)
−1

) + 2𝑗𝜋} ,

(31)

where 𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . . then ±𝑖𝜔
1𝑘
is a pair of purely

imaginary roots of (21) corresponding to 𝜏
(𝑗)

21𝑘
. Define

𝜏
210

= 𝜏
(0)

21𝑘0

= min
𝑘=1,2,3

{𝜏
(0)

21𝑘
} , 𝜔

10
= 𝜔
1𝑘0

. (32)

Let 𝜆(𝜏
2
) = 𝛼(𝜏

2
)+𝑖𝜔(𝜏

2
) be the root of (21) near 𝜏

2
= 𝜏
(𝑗)

21𝑘

satisfying

𝛼 (𝜏
(𝑗)

21𝑘
) = 0, 𝜔 (𝜏

(𝑗)

21𝑘
) = 𝜔
1𝑘
. (33)

Substituting 𝜆(𝜏
2
) into (21) and taking the derivative with

respect to 𝜏
2
, we have

{3𝜆
2
+ 2𝑝
2
𝜆 + (𝑝

1
+ 𝑞
1
) + 𝑟
1
𝑒
−𝜆𝜏2 − 𝜏

2
(𝑟
1
𝜆 + 𝑟
0
) 𝑒
−𝜆𝜏2}

𝑑𝜆

𝑑𝜏
2

= 𝜆 (𝑟
1
𝜆 + 𝑟
0
) 𝑒
−𝜆𝜏2 .

(34)

Therefore,

[
𝑑𝜆

𝑑𝜏
2

]

−1

=
[3𝜆
2
+ 2𝑝
2
𝜆 + (𝑝

1
+ 𝑞
1
)] 𝑒
𝜆𝜏2

𝜆 (𝑟
1
𝜆 + 𝑟
0
)

+
𝑟
1

𝜆 (𝑟
1
𝜆 + 𝑟
0
)
−
𝜏
2

𝜆
.

(35)

When 𝜏
2

= 𝜏
(𝑗)

21𝑘
, 𝜆(𝜏
(𝑗)

21𝑘
) = 𝑖𝜔

1𝑘
(𝑘 = 1, 2, 3), {𝜆(𝑟

1
𝜆 +

𝑟
0
)}|
𝜏2=𝜏
(𝑗)

2
1𝑘

= −𝑟
1
𝜔
2

1𝑘
+ 𝑖𝑟
0
𝜔
1𝑘
, {[3𝜆
2

+ 2𝑝
2
𝜆 + (𝑝

1
+

𝑞
1
)]𝑒
𝜆𝜏2}|
𝜏2=𝜏
(𝑗)

2
1𝑘

= {[−3𝜔
2

1𝑘
+ (𝑝
1
+ 𝑞
1
)] cos(𝜔

1𝑘
𝜏
(𝑗)

21𝑘
) −

2𝑝
2
𝜔
1𝑘
sin(𝜔
1𝑘
𝜏
(𝑗)

21𝑘
)} + 𝑖{2𝑝

2
𝜔
1𝑘
cos(𝜔

1𝑘
𝜏
(𝑗)

21𝑘
) + [−3𝜔

2

1𝑘
+ (𝑝
1
+

𝑞
1
)] sin(𝜔

1𝑘
𝜏
(𝑗)

21𝑘
)}.
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According to (35), we have

[
Re 𝑑 (𝜆 (𝜏

2
))

𝑑𝜏
2

]

−1

𝜏2=𝜏
(𝑗)

2
1𝑘

= Re[
[3𝜆
2
+ 2𝑝
2
𝜆 + (𝑝

1
+ 𝑞
1
)] 𝑒
𝜆𝜏2

𝜆 (𝑟
1
𝜆 + 𝑟
0
)

]

𝜏2=𝜏
(𝑗)

2
1𝑘

+ Re[ 𝑟
1

𝜆 (𝑟
1
𝜆 + 𝑟
0
)
]

𝜏2=𝜏
(𝑗)

2
1𝑘

=
1

Λ
1

{ − 𝑟
1
𝜔
2

1𝑘
[−3𝜔
2

1𝑘
+ (𝑝
1
+ 𝑞
1
)] cos (𝜔

1𝑘
𝜏
(𝑗)

21𝑘
)

+ 2𝑟
1
𝑝
2
𝜔
3

1𝑘
sin (𝜔

1𝑘
𝜏
(𝑗)

21𝑘
) − 𝑟
2

1
𝜔
2

1𝑘

+ 2𝑟
0
𝑝
2
𝜔
2

1𝑘
cos (𝜔

1𝑘
𝜏
(𝑗)

21𝑘
)

+ 𝑟
0
[−3𝜔
2

1𝑘
+ (𝑝
1
+ 𝑞
1
)] 𝜔
1𝑘
sin (𝜔

1𝑘
𝜏
(𝑗)

21𝑘
)}

=
1

Λ
1

{3𝜔
6

1𝑘
+ 2 [𝑝

2

2
− 2 (𝑝

1
+ 𝑞
1
)] 𝜔
4

1𝑘

+ [(𝑝
1
+ 𝑞
1
)
2
− 2𝑝
2
(𝑝
0
+ 𝑞
0
) − 𝑟
2

1
] 𝜔
2

1𝑘
}

=
1

Λ
1

{𝑧
1𝑘
(3𝑧
2

1𝑘
+ 2𝑚
12
𝑧
1𝑘

+ 𝑚
11
)}

=
1

Λ
1

𝑧
1𝑘
ℎ
󸀠

1
(𝑧
1𝑘
) ,

(36)

where Λ
1
= 𝑟
2

1
𝜔
4

1𝑘
+ 𝑟
2

0
𝜔
2

1𝑘
> 0. Notice that Λ

1
> 0, 𝑧
1𝑘

> 0,

sign
{

{

{

[
Re 𝑑 (𝜆 (𝜏

2
))

𝑑𝜏
2

]

𝜏2=𝜏
(𝑗)

2
1𝑘

}

}

}

= sign
{

{

{

[
Re 𝑑 (𝜆 (𝜏

2
))

𝑑𝜏
2

]

−1

𝜏2=𝜏
(𝑗)

2
1𝑘

}

}

}

;

(37)

then we have the following lemma.

Lemma 5. Suppose that 𝑧
1𝑘

= 𝜔
2

1𝑘
and ℎ

󸀠

1
(𝑧
1𝑘
) ̸= 0, where

ℎ
1
(𝑧) is defined by (26); then 𝑑(Re 𝜆(𝜏(𝑗)

21𝑘
))/𝑑𝜏
2
has the same

sign with ℎ
󸀠

1
(𝑧
1𝑘
).

From Lemmas 1, 4, and 5 and Theorem 3, we can easily
obtain the following theorem.

Theorem6. For 𝜏
1
= 0, 𝜏

2
> 0, suppose that (𝐻

1
)–(𝐻
5
) hold.

(i) If 𝑚
10

≥ 0 and Δ = 𝑚
2

12
− 3𝑚
11

≤ 0, then all roots
of (10) have negative real parts for all 𝜏

2
≥ 0, and the

positive equilibrium 𝐸
∗
is locally asymptotically stable

for all 𝜏
2
≥ 0.

(ii) If either 𝑚
10

< 0 or 𝑚
10

≥ 0, Δ = 𝑚
2

12
− 3𝑚
11

>

0, 𝑧
∗

11
> 0, and ℎ

1
(𝑧
∗

11
) ≤ 0, then ℎ

1
(𝑧) has at least one

positive roots, and all roots of (23) have negative real
parts for 𝜏

2
∈ [0, 𝜏

210
), and the positive equilibrium 𝐸

∗

is locally asymptotically stable for 𝜏
2
∈ [0, 𝜏

210
).

(iii) If (ii) holds and ℎ
󸀠

1
(𝑧
1𝑘
) ̸= 0, then system (3)undergoes

Hopf bifurcations at the positive equilibrium𝐸
∗
for 𝜏
2
=

𝜏
(𝑗)

21𝑘
, (𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . .).

Case c. Consider
𝜏
1
> 0, 𝜏
2
= 0.

The associated characteristic equation of system (3) is

𝜆
3
+ 𝑝
2
𝜆
2
+ (𝑝
1
+ 𝑟
1
) 𝜆 + (𝑝

0
+ 𝑟
0
) + (𝑞

1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏1 = 0.

(38)

Similar to the analysis of Case 𝑏, we get the following
theorem.

Theorem7. For 𝜏
1
> 0, 𝜏

2
= 0, suppose that (𝐻

1
)–(𝐻
5
) hold.

(i) If 𝑚
20

≥ 0 and Δ = 𝑚
2

22
− 3𝑚
21

≤ 0, then all roots
of (38) have negative real parts for all 𝜏

1
≥ 0, and the

positive equilibrium 𝐸
∗
is locally asymptotically stable

for all 𝜏
1
≥ 0.

(ii) If either 𝑚
20

< 0 or 𝑚
20

≥ 0, Δ = 𝑚
2

22
− 3𝑚
21

> 0,
𝑧
∗

21
> 0 and ℎ

2
(𝑧
∗

21
) ≤ 0, then ℎ

2
(𝑧) has at least one

positive root 𝑧
2𝑘
, and all roots of (38) have negative real

parts for 𝜏
1
∈ [0, 𝜏

120
), and the positive equilibrium 𝐸

∗

is locally asymptotically stable for 𝜏
1
∈ [0, 𝜏

120
).

(iii) If (ii) holds and ℎ
󸀠

2
(𝑧
2𝑘
) ̸= 0, then system (3) undergoes

Hopf bifurcations at the positive equilibrium𝐸
∗
for 𝜏
1
=

𝜏
(𝑗)

12𝑘
, (𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . .),

where

𝑚
22

= 𝑝
2

2
− 2 (𝑝

1
+ 𝑟
1
) ,

𝑚
21

= (𝑝
1
+ 𝑟
1
)
2
− 2𝑝
2
(𝑝
0
+ 𝑟
0
) − 𝑞
2

1
,

𝑚
20

= (𝑝
0
+ 𝑟
0
)
2
− 𝑞
2

0
;

ℎ
2
(𝑧) = 𝑧

3
+ 𝑚
22
𝑧
2
+ 𝑚
21
𝑧 + 𝑚

20
, 𝑧
∗

21
=

−𝑚
22

+ √Δ

3
;

𝜏
(𝑗)

12𝑘
=

1

𝜔
2𝑘

× {arccos ((𝑞
1
𝜔
4

2𝑘
+ [𝑝
2
𝑞
0
− (𝑟
1
+ 𝑝
1
) 𝑞
1
] 𝜔
2

2𝑘

− 𝑞
0
(𝑟
0
+ 𝑝
0
) )

× (𝑞
2

0
+ 𝑞
2

1
𝜔
2

2𝑘
)
−1

) + 2𝑗𝜋} ,

(39)

where 𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . .; then ±𝑖𝜔
2𝑘
is a pair of purely

imaginary roots of (38) corresponding to 𝜏
(𝑗)

12𝑘
. Define

𝜏
120

= 𝜏
(0)

12𝑘0

= min
𝑘=1,2,3

{𝜏
(0)

12𝑘
} , 𝜔

10
= 𝜔
1𝑘0

. (40)
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Case d. Consider
𝜏
1
> 0, 𝜏
2
> 0, 𝜏
1

̸= 𝜏
2
.

The associated characteristic equation of system (3) is

𝜆
3
+𝑝
2
𝜆
2
+𝑝
1
𝜆+𝑝
0
+ (𝑞
1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏1+ (𝑟

1
𝜆+𝑟
0
) 𝑒
−𝜆𝜏2 =0.

(41)

We consider (41) with 𝜏
2
= 𝜏
∗

2
in its stable interval [0, 𝜏

210
).

Regard 𝜏
1
as a parameter.

Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (41); then we have

− 𝑖𝜔
3
− 𝑝
2
𝜔
2
+ 𝑖𝑝
1
𝜔 + 𝑝
0
+ (𝑖𝑞
1
𝜔 + 𝑞
0
) (cos𝜔𝜏

1
− 𝑖 sin𝜔𝜏

1
)

+ (𝑟
0
+ 𝑖𝑟
1
𝜔) (cos𝜔𝜏∗

2
− 𝑖 sin𝜔𝜏

∗

2
) = 0.

(42)

Separating the real and imaginary parts, we have

𝜔
3
− 𝑝
1
𝜔 − 𝑟
1
𝜔 cos𝜔𝜏∗

2
+ 𝑟
0
sin𝜔𝜏

∗

2

= 𝑞
1
𝜔 cos𝜔𝜏

1
− 𝑞
0
sin𝜔𝜏

1
,

𝑝
2
𝜔
2
− 𝑝
0
− 𝑟
0
cos𝜔𝜏∗

2
− 𝑟
1
𝜔 sin𝜔𝜏

∗

2

= 𝑞
0
cos𝜔𝜏

1
+ 𝑞
1
𝜔 sin𝜔𝜏

1
.

(43)

It follows that

𝜔
6
+ 𝑚
33
𝜔
4
+ 𝑚
32
𝜔
3
+ 𝑚
31
𝜔
2
+ 𝑚
30

= 0, (44)

where

𝑚
33

= 𝑝
2

2
− 2𝑝
1
− 2𝑟
1
cos𝜔𝜏∗

2
,

𝑚
32

= 2 (𝑟
0
− 𝑝
2
𝑟
1
) sin𝜔𝜏

∗

2
,

𝑚
31

= 𝑝
2

1
− 2𝑝
0
𝑝
2
− 2 (𝑝

2
𝑟
0
− 𝑝
1
𝑟
1
) cos𝜔𝜏∗

2
+ 𝑟
2

1
− 𝑞
2

1
,

𝑚
30

= 𝑝
2

0
+ 2𝑝
0
𝑟
0
cos𝜔𝜏∗

2
+ 𝑟
2

0
− 𝑞
2

0
.

(45)

Denote 𝐹(𝜔) = 𝜔
6
+ 𝑚
33
𝜔
4
+ 𝑚
32
𝜔
3
+ 𝑚
31
𝜔
2
+ 𝑚
30
. If

𝑚
30

< 0, then

𝐹 (0) < 0, lim
𝜔→+∞

𝐹 (𝜔) = +∞. (46)

We can obtain that (44) has at most six positive roots
𝜔
1
, 𝜔
2
, . . . , 𝜔

6
. For every fixed 𝜔

𝑘
, 𝑘 = 1, 2, . . . , 6, there exists

a sequence {𝜏(𝑗)
1𝑘

| 𝑗 = 0, 1, 2, 3, . . .}, such that (43) holds.
Let

𝜏
10

= min {𝜏
(𝑗)

1𝑘
| 𝑘 = 1, 2, . . . , 6; 𝑗 = 0, 1, 2, 3, . . .} . (47)

When 𝜏
1

= 𝜏
(𝑗)

1𝑘
, (41) has a pair of purely imaginary roots

±𝑖𝜔
(𝑗)

1𝑘
for 𝜏∗
2
∈ [0, 𝜏

210
).

In the following, we assume that

(H
6
) ((𝑑Re(𝜆))/𝑑𝜏

1
)|
𝜆=±𝑖𝜔

(𝑗)

1𝑘

̸= 0.

Thus, by the general Hopf bifurcation theorem for FDEs
in Hale [22], we have the following result on the stability and
Hopf bifurcation in system (3).

Theorem 8. For 𝜏
1

> 0, 𝜏
2

> 0, 𝜏
1

̸= 𝜏
2
, suppose that

(𝐻
1
)–(𝐻
6
) is satisfied. If 𝑚

30
< 0 and 𝜏

∗

2
∈ [0, 𝜏

210
], then

the positive equilibrium 𝐸
∗
is locally asymptotically stable for

𝜏
1

∈ [0, 𝜏
10
). System (3) undergoes Hopf bifurcations at the

positive equilibrium 𝐸
∗
for 𝜏
1
= 𝜏
(𝑗)

1𝑘
.

3. Direction and Stability of
the Hopf Bifurcation

In Section 2, we obtain the conditions underwhich system (3)
undergoes the Hopf bifurcation at the positive equilibrium
𝐸
∗
. In this section, we consider with 𝜏

2
= 𝜏
∗

2
∈ [0, 𝜏

210
)

and regard 𝜏
1
as a parameter. We will derive the explicit

formulas determining the direction, stability, and period of
these periodic solutions bifurcating from equilibrium 𝐸

∗
at

the critical values 𝜏
1
by using the normal form and the center

manifold theory developed by Hassard et al. [23]. Without
loss of generality, denote any one of these critical values 𝜏

1
=

𝜏
(𝑗)

1𝑘
(𝑘 = 1, 2, . . . , 6; 𝑗 = 0, 1, 2, . . .) by 𝜏

1
, at which (43) has a

pair of purely imaginary roots ±𝑖𝜔 and system (3) undergoes
Hopf bifurcation from 𝐸

∗
.

Throughout this section, we always assume that 𝜏∗
2
< 𝜏
10
.

Let 𝑢
1
= 𝑥
1
− 𝑥
∗

1
, 𝑢
2
= 𝑥
1
− 𝑥
∗

2
, 𝑢
3
= 𝑥
2
− 𝑥
∗

3
, 𝑡 = 𝜏

1
𝑡

and 𝜇 = 𝜏
1
− 𝜏
1
, 𝜇 ∈ R. Then 𝜇 = 0 is the Hopf bifurcation

value of system (3). System (3) may be written as a functional
differential equation inC([−1, 0],R3)

̇𝑢 (𝑡) = 𝐿
𝜇
(𝑢
𝑡
) + 𝑓 (𝜇, 𝑢

𝑡
) , (48)

where 𝑢 = (𝑢
1
, 𝑢
2
, 𝑢
3
)
𝑇
∈ R3, and

𝐿
𝜇
(𝜙) = (𝜏

1
+ 𝜇) 𝐵[

[

𝜙
1
(0)

𝜙
2
(0)

𝜙
3
(0)

]

]

+ (𝜏
1
+ 𝜇)𝐶[

[

𝜙
1
(−1)

𝜙
2
(−1)

𝜙
3
(−1)

]

]

+ (𝜏
1
+ 𝜇)𝐷

[
[
[
[
[
[
[
[
[
[

[

𝜙
1
(−

𝜏
∗

2

𝜏
1

)

𝜙
2
(−

𝜏
∗

2

𝜏
1

)

𝜙
3
(−

𝜏
∗

2

𝜏
1

)

]
]
]
]
]
]
]
]
]
]

]

,

(49)

𝑓 (𝜇, 𝜙) = (𝜏
1
+ 𝜇)[

[

𝑓
1

𝑓
2

𝑓
3

]

]

, (50)
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where 𝜙 = (𝜙
1
, 𝜙
2
, 𝜙
3
)
𝑇
∈ C([−1, 0],R3), and

𝐵 = [

[

𝑏
11

𝑏
12

0

0 𝑏
22

𝑏
23

0 0 𝑏
33

]

]

, 𝐶 = [

[

0 0 0

𝑐
21

0 0

0 0 0

]

]

,

𝐷 = [

[

0 0 0

0 0 0

0 𝑑
32

0

]

]

,

𝑓
1
= − (𝑎

11
+ 𝑙
3
) 𝜙
2

1
(0) − 𝑙

1
𝜙
1 (0) 𝜙2 (0) − 𝑙

2
𝜙
2

1
(0) 𝜙2 (0)

− 𝑙
5
𝜙
3

1
(0) − 𝑙

4
𝜙
3

1
(0) 𝜙
2
(0) + ⋅ ⋅ ⋅ ,

𝑓
2
= −𝑙
6
𝜙
2 (0) 𝜙3 (0) − (𝑙

7
+ 𝑎
22
) 𝜙
2

2
(0) + 𝑙

1
𝜙
1 (−1) 𝜙2 (0)

+ 𝑙
3
𝜙
2

1
(−1) − 𝑙

8
𝜙
3

2
(0) − 𝑙

9
𝜙
2

2
(0) 𝜙
3
(0)

+ 𝑙
2
𝜙
2

1
(−1) 𝜙2 (0) + 𝑙

3
𝜙
3

1
(−1) + 𝑙

4
𝜙
3

1
(−1) 𝜙2 (0)

− 𝑙
10
𝜙
3

2
(0) 𝜙
3
(0) + ⋅ ⋅ ⋅ ,

𝑓
3
= 𝑙
6
𝜙
2
(−

𝜏
∗

2

𝜏
1

)𝜙
3
(0) + 𝑙

7
𝜙
2

2
(−

𝜏
∗

2

𝜏
1

) − 𝑎
33
𝜙
2

3
(0)

+ 𝑙
9
𝜙
2

2
(−

𝜏
∗

2

𝜏
1

)𝜙
3 (0) + 𝑙

8
𝜙
3

2
(−

𝜏
∗

2

𝜏
1

)

+ 𝑙
10
𝜙
3

2
(−

𝜏
∗

2

𝜏
1

)𝜙
3
(0) + ⋅ ⋅ ⋅ ,

𝑝
1 (𝑥) =

𝑎
1
𝑥

1 + 𝑏
1
𝑥
, 𝑝
2 (𝑥) =

𝑎
2
𝑥

1 + 𝑏
2
𝑥
, 𝑙
1
= 𝑝
󸀠

1
(𝑥
∗
) ,

𝑙
2
=

1

2!
𝑝
󸀠󸀠

1
(𝑥
∗
) , 𝑙
3
=

1

2!
𝑝
󸀠󸀠

1
(𝑥
∗
) 𝑦
1∗
,

𝑙
4
=

1

3!
𝑝
󸀠󸀠󸀠

1
(𝑥
∗
) , 𝑙
5
=

1

3!
𝑝
󸀠󸀠󸀠

1
(𝑥
∗
) 𝑦
1∗
,

𝑙
6
= 𝑝
󸀠

2
(𝑦
1∗
) , 𝑙
7
=

1

2!
𝑝
󸀠󸀠

2
(𝑦
1∗
) 𝑦
2∗
,

𝑙
8
=

1

3!
𝑝
󸀠󸀠󸀠

2
(𝑦
1∗
) 𝑦
2∗
, 𝑙
9
=

1

2!
𝑝
󸀠󸀠

2
(𝑦
1∗
) ,

𝑙
10

=
1

3!
𝑝
󸀠󸀠󸀠

2
(𝑦
1∗
) .

(51)

Obviously, 𝐿
𝜇
(𝜙) is a continuous linear function mapping

C([−1, 0],R3) intoR3. By the Riesz representation theorem,
there exists a 3 × 3 matrix function 𝜂(𝜃, 𝜇) (−1 ⩽ 𝜃 ⩽ 0),
whose elements are of bounded variation such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , for 𝜙 ∈ C ([−1, 0] ,R
3
) . (52)

In fact, we can choose

𝑑𝜂 (𝜃, 𝜇) = (𝜏
1
+ 𝜇) [𝐵𝛿 (𝜃) + 𝐶𝛿 (𝜃 + 1) + 𝐷𝛿(𝜃 +

𝜏
∗

2

𝜏
1

)] ,

(53)

where 𝛿 is Dirac-delta function. For 𝜙 ∈ C([−1, 0],R3),
define

𝐴 (𝜇) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {
0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0.

(54)

Then when 𝜃 = 0, the system is equivalent to

̇𝑥
𝑡
= 𝐴 (𝜇) 𝑥

𝑡
+ 𝑅 (𝜇) 𝑥

𝑡
, (55)

where 𝑥
𝑡
(𝜃) = 𝑥(𝑡+𝜃), 𝜃 ∈ [−1, 0]. For𝜓 ∈ C1([0, 1], (R3)

∗
),

define

𝐴
∗
𝜓 (𝑠) =

{{{{

{{{{

{

−
𝑑𝜓 (𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝑑𝜂
𝑇
(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(56)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩=𝜓 (0) 𝜙 (0)−∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉−𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(57)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Let 𝐴 = 𝐴(0); then 𝐴 and 𝐴
∗

are adjoint operators. By the discussion in Section 2, we
know that ±𝑖𝜔𝜏

1
are eigenvalues of 𝐴. Thus, they are also

eigenvalues of 𝐴∗. We first need to compute the eigenvector
of 𝐴 and 𝐴

∗ corresponding to 𝑖𝜔𝜏
1
and −𝑖𝜔𝜏

1
, respectively.

Suppose that 𝑞(𝜃) = (1, 𝛼, 𝛽)
𝑇
𝑒
𝑖𝜃𝜔𝜏1 is the eigenvector of 𝐴

corresponding to 𝑖𝜔𝜏
1
. Then 𝐴𝑞(𝜃) = 𝑖𝜔𝜏

1
𝑞(𝜃). From the

definition of 𝐴,𝐿
𝜇
(𝜙) and 𝜂(𝜃, 𝜇), we can easily obtain 𝑞(𝜃) =

(1, 𝛼, 𝛽)
𝑇
𝑒
𝑖𝜃𝜔𝜏1 , where

𝛼 =
𝑖𝜔 − 𝑏

11

𝑏
12

, 𝛽 =
𝑑
32
(𝑖𝜔 − 𝑏

11
)

𝑏
12
(𝑖𝜔 − 𝑏

33
) 𝑒𝑖𝜔𝜏

∗

2

(58)

and 𝑞(0) = (1, 𝛼, 𝛽)
𝑇. Similarly, let 𝑞∗(𝑠) = 𝐷(1, 𝛼

∗
, 𝛽
∗
)𝑒
𝑖𝑠𝜔𝜏1

be the eigenvector of 𝐴
∗ corresponding to −𝑖𝜔𝜏

1
. By the

definition of 𝐴∗, we can compute

𝛼
∗
=

−𝑖𝜔 − 𝑏
11

𝑐
21
𝑒𝑖𝜔𝜏1

, 𝛽
∗
=

𝑏
23
(−𝑖𝜔 − 𝑏

11
)

𝑐
21
(𝑖𝜔 − 𝑏

33
) 𝑒𝑖𝜔𝜏1

. (59)

From (57), we have
⟨𝑞
∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐷(1, 𝛼
∗
, 𝛽
∗

) (1, 𝛼, 𝛽)
𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐷(1, 𝛼
∗
, 𝛽
∗

) 𝑒
−𝑖𝜔𝜏1(𝜉−𝜃)𝑑𝜂 (𝜃)

× (1, 𝛼, 𝛽)
𝑇
𝑒
𝑖𝜔𝜏1𝜉𝑑𝜉

= 𝐷{1 + 𝛼𝛼
∗
+ 𝛽𝛽
∗

+ 𝑐
21
𝛼
∗
𝜏
1
𝑒
−𝑖𝜔𝜏1 + 𝑑

32
𝛼𝛽
∗

𝜏
∗

2
𝑒
−𝑖𝜔𝜏
∗

2 } .

(60)
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Thus, we can choose

𝐷 = {1 + 𝛼𝛼
∗
+ 𝛽𝛽
∗

+ 𝑐
21
𝛼
∗
𝜏
1
𝑒
−𝑖𝜔𝜏1 + 𝑑

32
𝛼𝛽
∗

𝜏
∗

2
𝑒
−𝑖𝜔𝜏
∗

2 }
−1

,

(61)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞
∗
(𝑠), 𝑞(𝜃)⟩ = 0.

In the remainder of this section, we follow the ideas in
Hassard et al. [23] and use the same notations as there to
compute the coordinates describing the center manifold 𝐶

0

at 𝜇 = 0. Let 𝑥
𝑡
be the solution of (48) when 𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑥
𝑡
⟩, 𝑊 (𝑡, 𝜃) = 𝑥

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(62)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊
20 (𝜃)

𝑧
2

2
+𝑊
11 (𝜃) 𝑧𝑧 +𝑊

02 (𝜃)
𝑧
2

2

+𝑊
30
(𝜃)

𝑧
3

6
+ ⋅ ⋅ ⋅ ,

(63)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in

the direction of 𝑞 and 𝑞. Note that 𝑊 is real if 𝑥
𝑡
is real. We

consider only real solutions. For the solution 𝑥
𝑡
∈ 𝐶
0
of (48),

since 𝜇 = 0, we have

̇𝑧 = 𝑖𝜔𝜏
1
𝑧 + ⟨𝑞

∗
(𝜃) , 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

+ 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜔𝜏
1
𝑧+𝑞
∗
(0) 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 0) +2Re {𝑧 (𝑡) 𝑞 (0)})

= 𝑖𝜔𝜏
1
𝑧 + 𝑞
∗
(0) 𝑓
0
(𝑧, 𝑧) ≜ 𝑖𝜔𝜏

1
𝑧 + 𝑔 (𝑧, 𝑧) ,

(64)

where

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓
0
(𝑧, 𝑧) = 𝑔

20

𝑧
2

2
+ 𝑔
11
𝑧𝑧

+ 𝑔
02

𝑧
2

2
+ 𝑔
21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ .

(65)

By (62), we have 𝑥
𝑡
(𝜃) = (𝑥

1𝑡
(𝜃), 𝑥
2𝑡
(𝜃), 𝑥
3𝑡
(𝜃))
𝑇
= 𝑊(𝑡, 𝜃) +

𝑧𝑞(𝜃) + 𝑧 𝑞(𝜃), and then

𝑥
1𝑡 (0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧
2

2
+𝑊
(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ,

𝑥
2𝑡 (0) = 𝑧𝛼 + 𝑧 𝛼 +𝑊

(2)

20
(0)

𝑧
2

2

+𝑊
(2)

11
(0) 𝑧𝑧 +𝑊

(2)

02
(0)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ,

𝑥
3𝑡 (0) = 𝑧𝛽 + 𝑧𝛽 +𝑊

(3)

20
(0)

𝑧
2

2
+𝑊
(3)

11
(0) 𝑧𝑧

+𝑊
(3)

02
(0)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ;

𝑥
1𝑡 (−1) = 𝑧𝑒

−𝑖𝜔𝜏1 + 𝑧𝑒
𝑖𝜔𝜏1 +𝑊

(1)

20
(−1)

𝑧
2

2

+𝑊
(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ,

𝑥
2𝑡 (−1) = 𝑧𝛼𝑒

−𝑖𝜔𝜏1 + 𝑧 𝛼𝑒
𝑖𝜔𝜏1 +𝑊

(2)

20
(−1)

𝑧
2

2

+𝑊
(2)

11
(−1) 𝑧𝑧 +𝑊

(2)

02
(−1)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ,

𝑥
3𝑡 (−1) = 𝑧𝛽𝑒

−𝑖𝜔𝜏1 + 𝑧𝛽𝑒
𝜔𝜏1 +𝑊

(3)

20
(−1)

𝑧
2

2

+𝑊
(3)

11
(−1) 𝑧𝑧 +𝑊

(3)

02
(−1)

𝑧
2

2
+ 𝑜 (|(𝑧, 𝑧)|

3
) ;

𝑥
1𝑡
(−

𝜏
∗

2

𝜏
10

) = 𝑧𝑒
−𝑖𝜔𝜏
∗

2 + 𝑧𝑒
𝑖𝜔𝜏
∗

2 +𝑊
(1)

20
(−

𝜏
∗

2

𝜏
1

)
𝑧
2

2

+𝑊
(1)

11
(−

𝜏
∗

2

𝜏
1

)𝑧𝑧 +𝑊
(1)

02
(−

𝜏
∗

2

𝜏
1

)
𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ,

𝑥
2𝑡
(−

𝜏
∗

2

𝜏
1

) = 𝑧𝛼𝑒
−𝑖𝜔𝜏
∗

2 + 𝑧 𝛼𝑒
𝑖𝜔𝜏
∗

2 +𝑊
(2)

20
(−

𝜏
∗

2

𝜏
1

)
𝑧
2

2

+𝑊
(2)

11
(−

𝜏
∗

2

𝜏
1

)𝑧𝑧 +𝑊
(2)

02
(−

𝜏
∗

2

𝜏
1

)
𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ,

𝑥
3𝑡
(−

𝜏
∗

2

𝜏
1

) = 𝑧𝛽𝑒
−𝑖𝜔𝜏
∗

2 + 𝑧𝛽𝑒
𝜔𝜏
∗

2 +𝑊
(3)

20
(−

𝜏
∗

2

𝜏
1

)
𝑧
2

2

+𝑊
(3)

11
(−

𝜏
∗

2

𝜏
1

)𝑧𝑧 +𝑊
(3)

02
(−

𝜏
∗

2

𝜏
1

)
𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) .

(66)
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It follows together with (50) that

𝑔 (𝑧, 𝑧)=𝑞∗ (0) 𝑓
0
(𝑧, 𝑧) =𝐷𝜏

1
(1, 𝛼
∗
, 𝛽
∗

) (𝑓
(0)

1
𝑓
(0)

2
𝑓
(0)

3
)
𝑇

= 𝐷𝜏
1
{[− (𝑎

11
+ 𝑙
3
) 𝜙
2

1
(0) − 𝑙

1
𝜙
1
(0) 𝜙
2
(0)

− 𝑙
2
𝜙
2

1
(0) 𝜙
2
(0) − 𝑙

5
𝜙
3

1
(0) − 𝑙

4
𝜙
3

1
(0) 𝜙
2
(0)

+ ⋅ ⋅ ⋅ ]

+ 𝛼
∗
[𝑙
6
𝜙
2
(0) 𝜙
3
(0) (𝑙
7
+ 𝑎
22
) 𝜙
2

2
(0)

+ 𝑙
1
𝜙
1 (−1) 𝜙2 (0)

+ 𝑙
3
𝜙
2

1
(−1) − 𝑙

8
𝜙
3

2
(0) − 𝑙

9
𝜙
2

2
(0) 𝜙
3
(0)

+ 𝑙
2
𝜙
2

1
(−1) 𝜙

2
(0) + 𝑙

3
𝜙
3

1
(−1) + ⋅ ⋅ ⋅ ]

+ 𝛽
∗

[𝑙
6
𝜙
2
(−

𝜏
∗

2

𝜏
1

)𝜙
3 (0) + 𝑙

7
𝜙
2

2
(−

𝜏
∗

2

𝜏
1

)

− 𝑎
33
𝜙
2

3
(0) + 𝑙

8
𝜙
3

2
(−

𝜏
∗

2

𝜏
1

) + ⋅ ⋅ ⋅ ]} .

(67)

Comparing the coefficients with (65), we have

𝑔
20

= 𝐷𝜏
1
{[−2 (𝑎

11
+ 𝑙
3
) − 2𝛼𝑙

1
]

+ 𝛼
∗
[2𝑙
1
𝛼𝑒
−𝑖𝜔𝜏1 + 2𝑙

3
𝑒
−2𝑖𝜔𝜏1

−2𝑙
6
𝛼𝛽 − 2 (𝑙

7
+ 𝑎
22
) 𝛼
2
]

+ 𝛽
∗

[2𝑙
6
𝛼𝛽𝑒
−𝑖𝜔𝜏
∗

2 + 2 (𝑙
7
+ 𝑎
22
) 𝛼
2
𝑒
−2𝑖𝜔𝜏

∗

2

−2𝑎
33
𝛽
2
]} ,

𝑔
11

= 𝐷𝜏
1
{[−2 (𝑎

11
+ 𝑙
3
) − 𝑙
1
(𝛼 + 𝛼)]

+ 𝛼
∗
[𝑙
1
(𝛼𝑒
𝑖𝜔𝜏1 + 𝛼𝑒

−𝑖𝜔𝜏1) − 𝑙
6
(𝛼𝛽 + 𝛼𝛽)

−2 (𝑙
7
+ 𝑎
22
) 𝛼𝛼 + 2𝑙

3
]

+ 𝛽
∗

[𝑙
6
(𝛽𝛼𝑒
𝑖𝜔𝜏
∗

2 + 𝛼𝛽𝑒
−𝑖𝜔𝜏
∗

2 )

+ 2𝑙
7
𝛼𝛼 − 𝑎

33
𝛽𝛽]} ,

𝑔
02

= 2𝐷𝜏
1
{[−2 (𝑎

11
+ 𝑙
3
) − 2𝑙
1
𝛼]

+ 𝛼
∗
[−2𝑙
6
𝛼𝛽 − 2 (𝑙

7
+ 𝑎
22
) 𝛼
2
+ 2𝑙
1
𝛼𝑒
𝑖𝜔𝜏1

+2𝑙
3
𝑒
2𝑖𝜔𝜏1]

+ 𝛽
∗

[2𝑙
6
𝛼𝛽𝑒
𝑖𝜔𝜏
∗

2 + 2𝑙
7
𝛼
2
𝑒
2𝑖𝜔𝜏
∗

2 − 𝑎
33
𝛽
2

]} ,

𝑔
21

= 𝐷𝜏
1
{[− (𝑎

11
+ 𝑙
3
) (2𝑊

(1)

20
(0) + 4𝑊

(1)

11
(0))

− 𝑙
1
(2𝛼𝑊

(1)

11
(0) + 𝛼𝑊

(1)

20
(0) + 𝑊

(2)

20
(0)

+ 2𝑊
(2)

11
(0))]

+ 𝛼
∗
[−𝑙
6
(2𝛽𝑊

(2)

11
(0) + 𝛼𝑊

(3)

20
(0) + 𝛽𝑊

(2)

20
(0)

+ 2𝛼𝑊
(3)

11
(0)) − (𝑙

7
+ 𝑎
22
)

× (4𝛼𝑊
(2)

11
(0) + 2𝛼𝑊

(2)

20
(0))

+ 𝑙
1
(2𝛼𝑊

(1)

11
(−1) + 𝛼𝑊

(1)

20
(−1)

+ 𝑊
(2)

20
(0) 𝑒
𝑖𝜔𝜏1 + 2𝑊

(2)

11
(0) 𝑒
−𝑖𝜔𝜏1)

+ 𝑙
3
(4𝑊
(1)

11
(−1) 𝑒

−𝑖𝜔𝜏1+2𝑊
(1)

20
(−1) 𝑒

𝑖𝜔𝜏1)]

+ 𝛽
∗

[𝑙
6
(2𝛽𝑊

(2)

11
(−

𝜏
∗

2

𝜏
1

) + 𝛽𝑊
(2)

20
(−

𝜏
∗

2

𝜏
1

)

+ 𝛼𝑊
(3)

20
(0) 𝑒
𝑖𝜔𝜏
∗

2 + 2𝛼𝑊
(3)

11
(0) 𝑒
−𝑖𝜔𝜏
∗

2 )

+ 𝑙
7
(4𝛼𝑊

(2)

11
(−

𝜏
∗

2

𝜏
1

) 𝑒
−𝑖𝜔𝜏
∗

2

+2𝛼𝑊
(2)

20
(−

𝜏
∗

2

𝜏
1

) 𝑒
𝑖𝜔𝜏
∗

2 )

− 𝑎
33
(4𝛽𝑊

(3)

11
(0) + 2𝛽𝑊

(3)

20
(0))]} ,

(68)

where

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔𝜏
1

𝑞 (0) 𝑒
𝑖𝜔𝜏1𝜃 +

𝑖𝑔
02

3𝜔𝜏
1

𝑞 (0) 𝑒
−𝑖𝜔𝜏1𝜃 + 𝐸

1
𝑒
2𝑖𝜔𝜏1𝜃,

𝑊
11 (𝜃) = −

𝑖𝑔
11

𝜔𝜏
1

𝑞 (0) 𝑒
𝑖𝜔𝜏1𝜃 +

𝑖𝑔
11

𝜔𝜏
1

𝑞 (0) 𝑒
−𝑖𝜔𝜏1𝜃 + 𝐸

2
,

𝐸
1
= 2

[
[
[
[
[

[

2𝑖𝜔 − 𝑏
11

−𝑏
12

0

−𝑐
21
𝑒
−2𝑖𝜔𝜏1 2𝑖𝜔 − 𝑏

22
−𝑏
23

0 −𝑑
32
𝑒
−2𝑖𝜔𝜏

∗

2 2𝑖𝜔 − 𝑏
33

]
]
]
]
]

]

−1

×

[
[
[
[
[

[

−2 (𝑎
11

+ 𝑙
3
) − 2𝛼𝑙

1

2𝑙
1
𝛼𝑒
−𝑖𝜔𝜏1 + 2𝑙

3
𝑒
−2𝑖𝜔𝜏1 − 2𝑙

6
𝛼𝛽 − 2 (𝑙

7
+ 𝑎
22
) 𝛼
2

2𝑙
6
𝛼𝛽𝑒
−𝑖𝜔𝜏
∗

2 + 2 (𝑙
7
+ 𝑎
22
) 𝛼
2
𝑒
−2𝑖𝜔𝜏

∗

2 − 2𝑎
33
𝛽
2

]
]
]
]
]

]

,
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𝐸
2
= 2

[
[
[
[

[

−𝑏
11

−𝑏
12

0

−𝑐
21

−𝑏
22

−𝑏
23

0 −𝑑
32

−𝑏
33

]
]
]
]

]

−1

×

[
[
[
[

[

−2 (𝑎
11

+ 𝑙
3
) − 𝑙
1 (𝛼 + 𝛼)

𝑙
1
(𝛼𝑒
𝑖𝜔𝜏1 + 𝛼𝑒

−𝑖𝜔𝜏1) − 𝑙
6
(𝛼𝛽 + 𝛼𝛽) − 2 (𝑙

7
+ 𝑎
22
) 𝛼𝛼 + 2𝑙

3

𝑙
6
(𝛽𝛼𝑒
𝑖𝜔𝜏
∗

2 + 𝛼𝛽𝑒
−𝑖𝜔𝜏
∗

2 ) + 2𝑙
7
𝛼𝛼 − 𝑎

33
𝛽𝛽

]
]
]
]

]

.

(69)

Thus, we can determine𝑊
20
(𝜃) and𝑊

11
(𝜃). Furthermore,

we can determine each 𝑔
𝑖𝑗
by the parameters and delay in (3).

Thus, we can compute the following values:

𝑐
1 (0) =

𝑖

2𝜔𝜏
1

(𝑔
20
𝑔
11

− 2
󵄨󵄨󵄨󵄨𝑔11

󵄨󵄨󵄨󵄨
2
−
1

3

󵄨󵄨󵄨󵄨𝑔02
󵄨󵄨󵄨󵄨
2
) +

1

2
𝑔
21
,

𝜇
2
= −

Re {𝑐
1 (0)}

Re {𝜆󸀠 (𝜏
1
)}
,

𝑇
2
= −

Im {𝑐
1 (0)} + 𝜇

2
Im {𝜆

󸀠
(𝜏
1
)}

𝜔𝜏
1

, 𝛽
2
= 2Re {𝑐

1
(0)} ,

(70)

which determine the quantities of bifurcating periodic solu-
tions in the center manifold at the critical value 𝜏

1
. Suppose

Re{𝜆󸀠(𝜏
1
)} > 0. 𝜇

2
determines the directions of the Hopf

bifurcation: if 𝜇
2

> 0(< 0), then the Hopf bifurcation
is supercritical (subcritical) and the bifurcation exists for
𝜏 > 𝜏

1
(< 𝜏
1
); 𝛽
2
determines the stability of the bifurcation

periodic solutions: the bifurcating periodic solutions are
stable (unstable) if 𝛽

2
< 0(> 0); and𝑇

2
determines the period

of the bifurcating periodic solutions: the period increases
(decreases) if 𝑇

2
> 0(< 0).

4. Numerical Simulation

We consider system (3) by taking the following coefficients:
𝑎
1

= 0.3, 𝑎
11

= 5.8889, 𝑎
12

= 1, 𝑚
1

= 1, 𝑎
2

=

0.1, 𝑎
21

= 27, 𝑎
22

= 12, 𝑎
23

= 12, 𝑚
2

= 1, 𝑎
3

=

0.2, 𝑎
32

= 25, 𝑎
33

= 12. We have the unique positive
equilibrium 𝐸

∗
= (0.0451, 0.0357, 0.0551).

By computation, we get 𝑚
10

= −0.0104, 𝜔
11

= 0.5164,
𝑧
11

= 0.2666, ℎ󸀠
1
(𝑧
11
) = 0.3402, 𝜏

20
= 3.2348. From

Theorem 6, we know that when 𝜏
1

= 0, the positive
equilibrium 𝐸

∗
is locally asymptotically stable for 𝜏

2
∈

[0, 3.2348). When 𝜏
2
crosses 𝜏

20
, the equilibrium 𝐸

∗
loses its

stability and Hopf bifurcation occurs. From the algorithm in
Section 3, we have 𝜇

2
= 566.46, 𝛽

2
= −315.83, 𝑇

2
= 54.45,

whichmeans that the bifurcation is supercritical and periodic
solution is stable. The trajectories and the phase graphs are
shown in Figures 1 and 2.

Regarding 𝜏
1
as a parameter and let 𝜏

2
= 2.9 ∈

[0, 3.2348), we can observe that with 𝜏
1
increasing, the pos-

itive equilibrium 𝐸
∗
loses its stability and Hopf bifurcation

occurs (see Figures 3 and 4).

5. Global Continuation
of Local Hopf Bifurcations

In this section, we study the global continuation of peri-
odic solutions bifurcating from the positive equilibrium
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
), (𝑘 = 1, 2, . . . , 6; 𝑗 = 0, 1, . . .). Throughout this

section, we follow closely the notations in [24] and assume
that 𝜏

2
= 𝜏
∗

2
∈ [0, 𝜏

210
) regarding 𝜏

1
as a parameter. For

simplification of notations, setting 𝑧
𝑡
(𝑡) = (𝑥

1𝑡
, 𝑥
2𝑡
, 𝑥
3𝑡
)
𝑇, we

may rewrite system (3) as the following functional differential
equation:

̇𝑧 (𝑡) = 𝐹 (𝑧
𝑡
, 𝜏
1
, 𝑝) , (71)

where 𝑧
𝑡
(𝜃) = (𝑥

1𝑡
(𝜃), 𝑥
2𝑡
(𝜃), 𝑥
3𝑡
(𝜃))
𝑇

= (𝑥
1
(𝑡 + 𝜃), 𝑥

2
(𝑡 +

𝜃), 𝑥
3
(𝑡 + 𝜃))

𝑇 for 𝑡 ≥ 0 and 𝜃 ∈ [−𝜏
1
, 0]. Since 𝑥

1
(𝑡), 𝑥
2
(𝑡),

and 𝑥
3
(𝑡) denote the densities of the prey, the predator, and

the top predator, respectively; the positive solution of system
(3) is of interest and its periodic solutions only arise in the first
quadrant. Thus, we consider system (3) only in the domain
𝑅
3

+
= {(𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝑅
3
, 𝑥
1
> 0, 𝑥

2
> 0, 𝑥

3
> 0}. It is obvious

that (71) has a unique positive equilibrium 𝐸
∗
(𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) in

𝑅
3

+
under the assumption (𝐻

1
)–(𝐻
4
). Following the work of

[24], we need to define

𝑋 = 𝐶([−𝜏
1
, 0] , 𝑅

3

+
) ,

Γ = 𝐶𝑙 {(𝑧, 𝜏
1
, 𝑝) ∈ X × R × R+;

𝑧 is a 𝑝-periodic solution of system (71)} ,

N = {(𝑧, 𝜏
1
, 𝑝) ; 𝐹 (𝑧, 𝜏

1
, 𝑝) = 0} .

(72)

Let ℓ
(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

(𝑗)

1𝑘
)
denote the connected component pass-

ing through (𝐸
∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

(𝑗)

1𝑘
) in Γ, where 𝜏

(𝑗)

1𝑘
is defined by

(43). We know that ℓ
(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

(𝑗)

1𝑘
)
through (𝐸

∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

(𝑗)

1𝑘
)

is nonempty.
For the benefit of readers, we first state the global Hopf

bifurcation theory due to Wu [24] for functional differential
equations.

Lemma 9. Assume that (𝑧
∗
, 𝜏, 𝑝) is an isolated center satis-

fying the hypotheses (A1)–(A4) in [24]. Denote by ℓ
(𝑧∗ ,𝜏,𝑝)

the
connected component of (𝑧

∗
, 𝜏, 𝑝) in Γ. Then either

(i) ℓ
(𝑧∗ ,𝜏,𝑝)

is unbounded, or
(ii) ℓ
(𝑧∗ ,𝜏,𝑝)

is bounded, ℓ
(𝑧∗ ,𝜏,𝑝)

∩ Γ is finite and

∑

(𝑧,𝜏,𝑝)∈ℓ(𝑧∗,𝜏,𝑝)
∩N

𝛾
𝑚
(𝑧
∗
, 𝜏, 𝑝) = 0, (73)

for all 𝑚 = 1, 2, . . ., where 𝛾
𝑚
(𝑧
∗
, 𝜏, 𝑝) is the 𝑚𝑡ℎ crossing

number of (𝑧
∗
, 𝜏, 𝑝) if𝑚 ∈ 𝐽(𝑧

∗
, 𝜏, 𝑝), or it is zero if otherwise.

Clearly, if (ii) in Lemma 9 is not true, then ℓ
(𝑧∗ ,𝜏,𝑝)

is
unbounded. Thus, if the projections of ℓ

(𝑧∗ ,𝜏,𝑝)
onto 𝑧-space

and onto 𝑝-space are bounded, then the projection of ℓ
(𝑧∗ ,𝜏,𝑝)

onto 𝜏-space is unbounded. Further, if we can show that the
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Figure 1: The trajectories and the phase graph with 𝜏
1
= 0, 𝜏

2
= 2.9 < 𝜏

20
= 3.2348; 𝐸

∗
is locally asymptotically stable.
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Figure 2: The trajectories and the phase graph with 𝜏
1
= 0, 𝜏

2
= 3.3 > 𝜏

20
= 3.2348; a periodic orbit bifurcate from 𝐸

∗
.
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Figure 3: The trajectories and the phase graph with 𝜏
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is locally asymptotically stable.
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Figure 4: The trajectories and the phase graph with 𝜏
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= 2.9; a periodic orbit bifurcate from 𝐸

∗
.
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projection of ℓ
(𝑧∗ ,𝜏,𝑝)

onto 𝜏-space is away from zero, then
the projection of ℓ

(𝑧∗ ,𝜏,𝑝)
onto 𝜏-space must include interval

[𝜏, ∞). Following this ideal, we can prove our results on the
global continuation of local Hopf bifurcation.

Lemma 10. If the conditions (𝐻
1
)–(𝐻
4
) hold, then all nontriv-

ial periodic solutions of system (71) with initial conditions

𝑥
1
(𝜃) = 𝜑 (𝜃) ≥ 0, 𝑥

2
(𝜃) = 𝜓 (𝜃) ≥ 0,

𝑥
3
(𝜃) = 𝜙 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏

1
, 0) ;

𝜑 (0) > 0, 𝜓 (0) > 0, 𝜙 (0) > 0

(74)

are uniformly bounded.

Proof. Suppose that (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) are nonconstant peri-

odic solutions of system (3) and define

𝑥
1
(𝜉
1
) = min {𝑥

1
(𝑡)} , 𝑥

1
(𝜂
1
) = max {𝑥

1
(𝑡)} ,

𝑥
2
(𝜉
2
) = min {𝑥

2 (𝑡)} , 𝑥
2
(𝜂
2
) = max {𝑥

2 (𝑡)} ,

𝑥
3
(𝜉
3
) = min {𝑥

3
(𝑡)} , 𝑥

3
(𝜂
3
) = max {𝑥

3
(𝑡)} .

(75)

It follows from system (3) that

𝑥
1 (𝑡) = 𝑥

1 (0) exp{∫
𝑡

0

[𝑎
1
− 𝑎
11
𝑥
1 (𝑠) −

𝑎
12
𝑥
2
(𝑠)

𝑚
1
+ 𝑥
1
(𝑠)

] 𝑑𝑠} ,

𝑥
2
(𝑡) = 𝑥

2
(0) exp{∫

𝑡

0

[−𝑎
2
+

𝑎
21
𝑥
1
(𝑠 − 𝜏
1
)

𝑚
1
+ 𝑥
1
(𝑠 − 𝜏
1
)

− 𝑎
22
𝑥
2 (𝑠) −

𝑎
23
𝑥
3 (𝑠)

𝑚
2
+ 𝑥
2
(𝑠)

] 𝑑𝑠} ,

𝑥
3
(𝑡) = 𝑥

3
(0) exp{∫

𝑡

0

[−𝑎
3
+

𝑎
32
𝑥
2
(𝑠 − 𝜏

∗

2
)

𝑚
2
+ 𝑥
2
(𝑠 − 𝜏∗
2
)

− 𝑎
33
𝑥
3
(𝑠)] 𝑑𝑠}

(76)

which implies that the solutions of system (3) cannot cross
the 𝑥
𝑖
-axis (𝑖 = 1, 2, 3). Thus, the nonconstant periodic orbits

must be located in the interior of first quadrant. It follows
from initial data of system (3) that 𝑥

1
(𝑡) > 0, 𝑥

2
(𝑡) >

0, 𝑥
3
(𝑡) > 0 for 𝑡 ≥ 0.

From the first equation of system (3), we can get

0 = 𝑎
1
− 𝑎
11
𝑥
1
(𝜂
1
) −

𝑎
12
𝑥
2
(𝜂
1
)

𝑚
1
+ 𝑥
1
(𝜂
1
)
≤ 𝑎
1
− 𝑎
11
𝑥
1
(𝜂
1
) ; (77)

thus, we have

𝑥
1
(𝜂
1
) ≤

𝑎
1

𝑎
11

. (78)

From the second equation of (3), we obtain

0 = − 𝑎
2
+

𝑎
21
𝑥
1
(𝜂
2
− 𝜏
1
)

𝑚
1
+ 𝑥
1
(𝜂
2
− 𝜏
1
)
− 𝑎
22
𝑥
2
(𝜂
2
)

−
𝑎
23
𝑥
3
(𝜂
2
)

𝑚
2
+ 𝑥
2
(𝜂
2
)
≤ −𝑎
2
+

𝑎
21
(𝑎
1
/𝑎
11
)

𝑚
1
+ (𝑎
1
/𝑎
11
)
− 𝑎
22
𝑥
2
(𝜂
2
) ;

(79)

therefore, one can get

𝑥
2
(𝜂
2
) ≤

−𝑎
2
(𝑎
11
𝑚
1
+ 𝑎
1
) + 𝑎
1
𝑎
21

𝑎
22
(𝑎
11
𝑚
1
+ 𝑎
1
)

≜ 𝑀
1
. (80)

Applying the third equation of system (3), we know

0 = −𝑎
3
+

𝑎
32
𝑥
2
(𝜂
3
− 𝜏
∗

2
)

𝑚
2
+ 𝑥
2
(𝜂
3
− 𝜏∗
2
)
− 𝑎
33
𝑥
3
(𝜂
3
)

≤ −𝑎
3
+

𝑎
32
𝑀
1

𝑚
2
+𝑀
1

− 𝑎
33
𝑥
3
(𝜂
3
) .

(81)

It follows that

𝑥
3
(𝜂
3
) ≤

−𝑎
3
(𝑚
2
+𝑀
1
) + 𝑎
32
𝑀
1

𝑎
33
(𝑚
2
+𝑀
1
)

≜ 𝑀
2
. (82)

This shows that the nontrivial periodic solution of system (3)
is uniformly bounded and the proof is complete.

Lemma 11. If the conditions (𝐻
1
)–(𝐻
4
) and

(H
7
) 𝑎
22

− (𝑎
21
/𝑚
2
) > 0, [(𝑎

11
− 𝑎
1
/𝑚
1
)𝑎
22

−

(𝑎
12
𝑎
21
/𝑚
2

1
)]𝑎
33

− (𝑎
11

− (𝑎
1
/𝑚
1
))[(𝑎
21
/𝑚
2
)𝑎
33

+

(𝑎
23
𝑎
32
/𝑚
2

2
)] > 0

hold, then system (3) has no nontrivial 𝜏
1
-periodic solution.

Proof. Suppose for a contradiction that system (3) has non-
trivial periodic solution with period 𝜏

1
. Then the following

system (83) of ordinary differential equations has nontrivial
periodic solution:

𝑑𝑥
1

𝑑𝑡
= 𝑥
1
(𝑡) [𝑎
1
− 𝑎
11
𝑥
1
(𝑡) −

𝑎
12
𝑥
2
(𝑡)

𝑚
1
+ 𝑥
1 (𝑡)

] ,

𝑑𝑥
2

𝑑𝑡
= 𝑥
2
(𝑡) [−𝑎

2
+

𝑎
21
𝑥
1
(𝑡)

𝑚
1
+ 𝑥
1 (𝑡)

− 𝑎
22
𝑥
2
(𝑡) −

𝑎
23
𝑥
3
(𝑡)

𝑚
2
+ 𝑥
2 (𝑡)

] ,

𝑑𝑥
3

𝑑𝑡
= 𝑥
3
(𝑡) [−𝑎

3
+

𝑎
32
𝑥
2
(𝑡 − 𝜏

∗

2
)

𝑚
2
+ 𝑥
2
(𝑡 − 𝜏∗
2
)
− 𝑎
33
𝑥
3
(𝑡)] ,

(83)

which has the same equilibria to system (3); that is,

𝐸
1
= (0, 0, 0) , 𝐸

2
= (

𝑎
1

𝑎
11

, 0, 0) ,

𝐸
3
= (𝑥
1
, 𝑥
2
, 0) , 𝐸

∗
= (𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) .

(84)

Note that 𝑥
𝑖
-axis (𝑖 = 1, 2, 3) are the invariable manifold of

system (83) and the orbits of system (83) do not intersect each
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other. Thus, there are no solutions crossing the coordinate
axes. On the other hand, note the fact that if system (83) has
a periodic solution, then there must be the equilibrium in its
interior, and that 𝐸

1
, 𝐸
2
, 𝐸
3
are located on the coordinate

axis. Thus, we conclude that the periodic orbit of system (83)
must lie in the first quadrant. If (𝐻

7
) holds, it is well known

that the positive equilibrium 𝐸
∗
is globally asymptotically

stable in the first quadrant (see [1]).Thus, there is no periodic
orbit in the first quadrant too. The above discussion means
that (83) does not have any nontrivial periodic solution. It is
a contradiction. Therefore, the lemma is confirmed.

Theorem 12. Suppose the conditions of Theorem 8 and (𝐻
7
)

hold; let𝜔
𝑘
and 𝜏(𝑗)
1𝑘

be defined in Section 2; then when 𝜏
1
> 𝜏
(𝑗)

1𝑘

system (3) has at least 𝑗 − 1 periodic solutions.

Proof. It is sufficient to prove that the projection of
ℓ
(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔𝑘)

onto 𝜏
1
-space is [𝜏

1
, +∞) for each 𝑗 ≥ 1, where

𝜏
1
≤ 𝜏
(𝑗)

1𝑘
.

In following we prove that the hypotheses (A1)–(A4) in
[24] hold.

(1) From system (3) we know easily that the following
conditions hold:

(A1) 𝐹 ∈ 𝐶
2
(𝑅
3

+
×𝑅
+
×𝑅
+
), where 𝐹 = 𝐹|

𝑅
3

+
×𝑅+×𝑅+

→

𝑅
3

+
.

(A3) 𝐹(𝜙, 𝜏
1
, 𝑝) is differential with respect to 𝜙.

(2) It follows from system (3) that

𝐷
𝑧
𝐹 (𝑧, 𝜏

1
, 𝑝) =

[
[
[
[
[
[
[
[
[
[
[

[

𝑎
1
− 2𝑎
11
𝑥
1
−

𝑎
12
𝑚
1
𝑥
2

(𝑚
1
+ 𝑥
1
)
2

−
𝑎
12
𝑥
1

𝑚
1
+ 𝑥
1

0

𝑎
21
𝑚
1
𝑥
2

(𝑚
1
+ 𝑥
1
)
2

−𝑎
2
+

𝑎
21
𝑥
1

𝑚
1
+ 𝑥
1

− 2𝑎
22
𝑥
2
−

𝑎
23
𝑚
2
𝑥
3

(𝑚
2
+ 𝑥
2
)
2

−
𝑎
23
𝑥
2

𝑚
2
+ 𝑥
2

0
𝑎
32
𝑚
2
𝑥
3

(𝑚
2
+ 𝑥
2
)
2

−𝑎
3
+

𝑎
32
𝑥
2

𝑚
2
+ 𝑥
2

− 2𝑎
33
𝑥
3

]
]
]
]
]
]
]
]
]
]
]

]

. (85)

Then under the assumption (𝐻
1
)–(𝐻
4
), we have

det𝐷
𝑧
𝐹 (𝑧
∗
, 𝜏
1
, 𝑝)

= det

[
[
[
[
[
[
[
[

[

−𝑎
11
𝑥
∗

1
+

𝑎
12
𝑥
∗

1
𝑥
∗

2

(𝑚
1
+ 𝑥∗
1
)
2

𝑎
12
𝑥
∗

1

𝑚
1
+ 𝑥∗
1

0

𝑎
21
𝑚
1
𝑥
∗

2

(𝑚
1
+ 𝑥∗
1
)
2

−𝑎
22
𝑥
∗

2
+

𝑎
23
𝑥
∗

2
𝑥
∗

3

(𝑚
2
+ 𝑥∗
2
)
2

−
𝑎
23
𝑥
∗

2

𝑚
2
+ 𝑥∗
2

0
𝑎
32
𝑚
2
𝑥
∗

3

(𝑚
2
+ 𝑥∗
2
)
2

−𝑎
33
𝑥
∗

3

]
]
]
]
]
]
]
]

]

= −
𝑎
2

2
𝑦
1∗
𝑦
2∗

(1 + 𝑏
2
𝑦
1∗
)
3
[−𝑥
∗
+

𝑎
1
𝑏
1
𝑥
∗
𝑦
1∗

(1 + 𝑏
1
𝑥
∗
)
2
] ̸= 0.

(86)

From (86), we know that the hypothesis (A2) in [24]
is satisfied.

(3) The characteristic matrix of (71) at a stationary
solution (𝑧, 𝜏

0
, 𝑝
0
) where 𝑧 = (𝑧

(1)
, 𝑧
(2)
, 𝑧
(3)
) ∈ 𝑅

3

takes the following form:

Δ (𝑧, 𝜏
1
, 𝑝) (𝜆) = 𝜆𝐼𝑑 − 𝐷

𝜙
𝐹 (𝑧, 𝜏

1
, 𝑝) (𝑒

𝜆
𝐼) ; (87)

that is,

Δ (𝑧, 𝜏
1
, 𝑝) (𝜆)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜆 − 𝑎
1
+ 2𝑎
11
𝑧
(1)

+
𝑎
12
𝑚
1
𝑧
(2)

(𝑚
1
+ 𝑧
(1)
)
2

𝑎
12
𝑧
(1)

𝑚
1
+ 𝑧
(1)

0

−
𝑎
21
𝑚
1
𝑧
(2)

(𝑚
1
+ 𝑧
(1)
)
2
𝑒
−𝜆𝜏1 𝜆 + 𝑎

2
−

𝑎
21
𝑧
(1)

𝑚
1
+ 𝑧
(1)

+ 2𝑎
22
𝑧
(2)

+
𝑎
23
𝑚
2
𝑧
(3)

(𝑚
2
+ 𝑧
(2)
)
2

𝑎
23
𝑧
(2)

𝑚
2
+ 𝑧
(2)

0 −
𝑎
32
𝑚
2
𝑧
(3)

(𝑚
2
+ 𝑧
(2)
)
2
𝑒
−𝜆𝜏
∗

2 𝜆 + 𝑎
3
−

𝑎
32
𝑧
(2)

𝑚
2
+ 𝑧
(2)

+ 2𝑎
33
𝑧
(3)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(88)
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From (88), we have

det (Δ (𝐸
∗
, 𝜏
1
, 𝑝) (𝜆))

= 𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
+ [(𝑟
1
+ 𝑞
1
) 𝜆 + (𝑞

0
+ 𝑟
0
)] 𝑒
−𝜆𝜏1 .

(89)

Note that (89) is the same as (20); from the discussion in
Section 2 about the local Hopf bifurcation, it is easy to verify
that (𝐸

∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

𝑘
) is an isolated center, and there exist 𝜖 >

0, 𝛿 > 0 and a smooth curve 𝜆 : (𝜏
(𝑗)

1𝑘
− 𝛿, 𝜏

(𝑗)

1𝑘
+ 𝛿) → C

such that det(Δ(𝜆(𝜏
1
))) = 0, |𝜆(𝜏

1
) − 𝜔
𝑘
| < 𝜖 for all 𝜏

1
∈

[𝜏
(𝑗)

1𝑘
− 𝛿, 𝜏
(𝑗)

1𝑘
+ 𝛿] and

𝜆 (𝜏
(𝑗)

1𝑘
) = 𝜔
𝑘
𝑖,

𝑑Re 𝜆 (𝜏
1
)

𝑑𝜏
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏1=𝜏
(𝑗)

1𝑘

> 0. (90)

Let

Ω
𝜖,2𝜋/𝜔𝑘

= {(𝜂, 𝑝) ; 0 < 𝜂 < 𝜖,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 −

2𝜋

𝜔
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝜖} . (91)

It is easy to see that on [𝜏
(𝑗)

1𝑘
− 𝛿, 𝜏

(𝑗)

1𝑘
+ 𝛿] × 𝜕Ω

𝜖,2𝜋/𝜔𝑘
,

det(Δ(𝐸
∗
, 𝜏
1
, 𝑝)(𝜂 + (2𝜋/𝑝)𝑖)) = 0 if and only if, 𝜂 = 0,

𝜏
1
= 𝜏
(𝑗)

1𝑘
, 𝑝 = 2𝜋/𝜔

𝑘
, 𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . ..

Therefore, the hypothesis (A4) in [24] is satisfied.
If we define

𝐻
±
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
,
2𝜋

𝜔
𝑘

) (𝜂, 𝑝)

= det(Δ (𝐸
∗
, 𝜏
(𝑗)

1𝑘
± 𝛿, 𝑝) (𝜂 +

2𝜋

𝑝
𝑖)) ,

(92)

then we have the crossing number of isolated center
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

𝑘
) as follows:

𝛾(𝐸
∗
, 𝜏
(𝑗)

1𝑘
,
2𝜋

𝜔
𝑘

) = deg
𝐵
(𝐻
−
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
,
2𝜋

𝜔
𝑘

) ,Ω
𝜖,2𝜋/𝜔𝑘

)

− deg
𝐵
(𝐻
+
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
,
2𝜋

𝜔
𝑘

) ,Ω
𝜖,2𝜋/𝜔𝑘

)

= −1.

(93)

Thus, we have

∑

(𝑧,𝜏1 ,𝑝)∈C
(𝐸∗,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔
𝑘
)

𝛾 (𝑧, 𝜏
1
, 𝑝) < 0,

(94)

where (𝑧, 𝜏
1
, 𝑝) has all or parts of the form

(𝐸
∗
, 𝜏
(𝑘)

1𝑗
, 2𝜋/𝜔

𝑘
) (𝑗 = 0, 1, . . .). It follows from

Lemma 9 that the connected component ℓ
(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔𝑘)

through (𝐸
∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

𝑘
) is unbounded for each center

(𝑧
∗
, 𝜏
1
, 𝑝), (𝑗 = 0, 1, . . .). From the discussion in Section 2,

we have

𝜏
(𝑗)

1𝑘
=

1

𝜔
𝑘

× {arccos(((𝑝
2
𝜔
2

𝑘
−𝑝
0
) (𝑟
0
+𝑞
0
)

+ 𝜔
2
(𝜔
2
−𝑝
1
) (𝑟
1
+𝑞
1
))

× ((𝑟
0
+𝑞
0
)
2
+ (𝑟
1
+𝑞
1
)
2
𝜔
2

𝑘
)
−1

) +2𝑗𝜋},

(95)

where 𝑘 = 1, 2, 3; 𝑗 = 0, 1, . . ..Thus, one can get 2𝜋/𝜔
𝑘
≤ 𝜏
(𝑗)

1𝑘

for 𝑗 ≥ 1.
Now we prove that the projection of ℓ

(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔𝑘)

onto

𝜏
1
-space is [𝜏

1
, +∞), where 𝜏

1
≤ 𝜏
(𝑗)

1𝑘
. Clearly, it follows

from the proof of Lemma 11 that system (3) with 𝜏
1

= 0

has no nontrivial periodic solution. Hence, the projection of
ℓ
(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔𝑘)

onto 𝜏
1
-space is away from zero.

For a contradiction, we suppose that the projection of
ℓ
(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔𝑘)

onto 𝜏
1
-space is bounded; this means that the

projection of ℓ
(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔𝑘)

onto 𝜏
1
-space is included in a

interval (0, 𝜏∗). Noticing 2𝜋/𝜔
𝑘
< 𝜏
𝑗

1𝑘
and applying Lemma 11

we have 𝑝 < 𝜏
∗ for (𝑧(𝑡), 𝜏

1
, 𝑝) belonging to ℓ

(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔𝑘)

.
This implies that the projection of ℓ

(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔𝑘)

onto 𝑝-
space is bounded. Then, applying Lemma 10 we get that
the connected component ℓ

(𝐸∗ ,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔𝑘)

is bounded. This
contradiction completes the proof.

6. Conclusion

In this paper, we take our attention to the stability and Hopf
bifurcation analysis of a predator-prey systemwithMichaelis-
Menten type functional response and two unequal delays.
We obtained some conditions for local stability and Hopf
bifurcation occurring. When 𝜏

1
̸= 𝜏
2
, we derived the explicit

formulas to determine the properties of periodic solutions
by the normal form method and center manifold theorem.
Specially, the global existence results of periodic solutions
bifurcating from Hopf bifurcations are also established by
using a global Hopf bifurcation result due to Wu [24].
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This paper is devoted to propose a novel method for studying the macroeconomic system with fractional derivative, which can
depict thememory property of actual data of economic variables. First of all, we construct a constrained optimal problem to evaluate
the coefficients of nonlinear fractional financial system based on empirical data and design the corresponding genetic algorithm.
Then, based on the stability criteria of fractional dynamical systems, the methodology of stability analysis is proposed to investigate
the stability of the estimated nonlinear fractional dynamic system. Finally, our method is applied to discuss the macroeconomic
system of the US, Australia, and UK to demonstrate its effectiveness and applicability.

1. Introduction

In a market economy, the macroeconomic stability is an
important economic problem which is concerned by all
of governments. Macroeconomic instability can take the
form of volatility of key macroeconomic variables or of
unsustainability in their behavior.Macroeconomic instability
refers to phenomena that decrease the predictability of the
domestic macroeconomic environment and it is of concern
because unpredictability hampers resource-allocation deci-
sions, investment, and growth. Therefore, the analysis of
the macroeconomic stability contributes to the making of
economic policy decision for governments and controls the
macroeconomic instability to improve the predictability.

According to macroeconomic theory, the stability of
macroeconomy is measured by the volatility of some key
indicators such as consumer price inflation, real GDP growth
over business cycles, changes in unemployment, fluctuations
in the current of the balance of payments, and volatility of
short term policy interest rates and long term interest rates.
The existing researches about the stability of macroeconomy
concentrate mainly on two directions.

On the one hand, some studies examine the macroeco-
nomic stability by empirical analysis based on the actual data

and econometric models and usually include a few macroe-
conomic indicators, for example, [1–3]. More precisely, the
macroeconomic stability and the properties of the interna-
tional transmission of business cycles under three exchange
rate systems are examined by [1]. In [2], whether monetary
policy may have been a source of macroeconomic instability
in the 1970s by inducing unstable learning dynamics is
investigated. In [3], a conventional New Keynesian model
for four countries is used to analyze relationship between
monetary policy and macroeconomic stability. Empirical
analysis of economic stability obtains scientific conclusion
based on actual economic data but pays more attention on
the factors which affect the volatility of some key indicators
and neglects the stability characteristic which implicit in
economic dynamic behavior economic system.

On the other hand, some researches build the simpli-
fied economic system model according to economic theory
and analyze the stability of economic system based on
dynamic economics, for example, [4–6]. What is more, Hopf
bifurcation theorem is used to predict the occurrence of
a limit cycle bifurcation for the time delay parameter of
a new IS-LM business cycle model in [7]. Reference [8]
studies the implication of imperfect financial contracting
for macroeconomic stability in the context of a stochastic
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dynamic general equilibrium model. Reference [9] examines
the two most attractive characteristics, memory, and chaos
in simulations of fractional financial model. Reference [10]
investigates the stability criteria of the bifurcation periodic
solutions and then the stability of a business cycle model
with discrete delay. Reference [11] analyzes the relationship
between interest-rate feedback rules andmacroeconomic sta-
bility in presence of transaction cost.This method of stability
analysis for economic system focuses on dynamic behavior
of system evolution, and theory about system stability from
dynamic economics is applied extensively in it. However, the
considered economic systems are simplifiedmodel according
to economic theory and neglect the rule of different real
economic operation. Thus, there may be some bias between
conclusion from it and actual economic situation.

It is well known that the prerequisite for stability analysis
of economic system is to construct the reasonable economic
model. As an excellent methodology of modeling, fractional
calculus is verified to be a powerful tool in modeling most
physical processes with memory effect, which cannot be
describedwell by integer-order integral and differential equa-
tions (see [12]). With the fractional derivative being applied
in economic or financial system, fractional economic models
spring up in recent years. For instance, reference [9] proposes
the fractional financial system which involves the macroe-
conomic variables such as investment, interest, and price
index. In [13], a delayed fractional-order financial system is
proposed.Thesemodels are simplified fromeconomic theory.
Reference [14] presents macroeconomic modeling based on
fractional calculus, but nonlinear structures have not been
considered.

The motivation of this paper is to present a new method
to model and analyze macroeconomic system based on
theory about nonlinear fractional-order system, and this
method possesses the merits of the empirical analysis and
dynamics economics mentioned above. More precisely, the
aim of this paper is to achieve the following: on the one
hand, it proposes the method to construct the fractional-
order nonlinear dynamic system which can describe the
actual economic data accurately and reveal the rule of
operation about real economic system; on the other hand,
it introduces stability analysis of fractional-order economic
system to investigate the stability of real economic system and
proposes a novel method of stability analysis for economic
system. In the paper, we will try to design an approach to
estimate fractional-order nonlinear economic system based
on empirical data and then analyze the stability of estimated
system using the stability criteria of fractional-order system.

The remainder of this paper is organized as follows. In
Section 2, we review the mathematical preliminaries about
fractional calculus and stability of system. In Section 3,
we propose a novel methodology to model a nonlinear
fractional-order economic system based on nonlinear equa-
tion. In Section 4, GAhave been used to estimate themacroe-
conomic system by US, Australia, and UK macroeconomic
data. In Section 5, the analysis of dynamic behavior and
stability about the macroeconomic system is performed. The
conclusions will be shown in Section 6.

2. Mathematical Preliminaries

2.1. Definition of Fractional Calculus. In this section, we
introduce some preliminaries of fractional calculus. More
properties of fractional derivatives could be found in many
books and recent papers; for example, see [15, 16].

There exist three most frequently used definitions for
the general fractional differintegral which are Grünwald-
Letnikov (GL) definition, the Riemann-Liouville (RL), and
Caputo definitions. For theGL definition of fractional deriva-
tive being convenient to compute numerically, it is applied to
solve the fractional-order system in this paper.

Definition 1 (see [17]). The GL definition can be written as

GL
𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) ≈ ℎ

−𝛼

[(𝑡−𝑎)/ℎ]

∑

𝑖=0

(−1)
𝑘
(
𝛼

𝑘
)𝑓 (𝑡

𝑘
− 𝑖ℎ) , (1)

where [𝑥]means the integer part of 𝑥.

2.2. Fractional-Order System. In [18], the general form of 𝑛-
dimensional fractional-order system can be expressed as

0
𝐷
𝛼𝑖

𝑡
𝑥
𝑖 (𝑡) = 𝑓

𝑖
(𝑥
1 (𝑡) , 𝑥2 (𝑡) , . . . , 𝑥𝑛 (𝑡) , 𝑡)

𝑥
𝑖
(0) = 𝑐

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(2)

where 𝑐
𝑖
are initial conditions. If 𝛼

1
= 𝛼
2
= ⋅ ⋅ ⋅ = 𝛼

𝑛
, then the

system is a commensurate fractional-order system otherwise
is called as an incommensurate system. If 𝑓

𝑖
is nonlinear

function, the system is a nonlinear system.

2.3. Stability of Fractional-Order System. Theexponential sta-
bility cannot be used to characterize the asymptotic stability
of fractional-order system. A new definition was introduced
in [18].

Definition 2 (see [18]). The trajectory 𝑥(𝑡) = 0 of the system
(2) is 𝑡−𝑞 asymptotically stable if there is a positive real 𝑞 such
that for all ‖𝑥(𝑡)‖ with 𝑡 ≤ 𝑡

0
, ∃𝑁(𝑥(𝑡)), such that for all 𝑡 ≥

𝑡
0
, ‖𝑥(𝑡)‖ ≤ 𝑁𝑡

−𝑞.
The fact that the components of 𝑥(𝑡) slowly decay towards

0 following 𝑡−𝑞 leads to fractional systems being called long
memory systems. The stability theorem in [19] presents that
equilibrium points are asymptotically stable for 𝛼

1
= 𝛼
2
=

⋅ ⋅ ⋅ = 𝛼
𝑛
= 𝛼 if all the eigenvalues 𝜆

𝑖
(𝑖 = 1, 2, . . . , 𝑛) of

the Jacobian matrix J = 𝜕f/𝜕x, where f = [𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
]
𝑇,

evaluated at the equilibrium point, satisfy the condition
([18]):

󵄨󵄨󵄨󵄨arg (eig (J))
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨arg (𝜆𝑖)
󵄨󵄨󵄨󵄨 > 𝛼

𝜋

2
, 𝑖 = 1, 2, . . . , 𝑛. (3)

For the incommensurate fractional-order system
𝛼
1

̸=𝛼
2

̸= ⋅ ⋅ ⋅ ̸= 𝛼
𝑛
, suppose the 𝛼

𝑖
is the rational number,

which 𝑚 is the LCM (least common multiple) of the
denominators 𝑢

𝑖
of 𝛼
𝑖
’s, where 𝛼

𝑖
= V
𝑖
/𝑢
𝑖
, V
𝑖
⋅ 𝑢
𝑖
∈ 𝑍
+ for

𝑖 = 1, 2, . . . , 𝑛, and set 𝛾 = 1/𝑚. According to [18], the
incommensurate fractional-order system is asymptotically
stable if

󵄨󵄨󵄨󵄨arg (𝜆)
󵄨󵄨󵄨󵄨 > 𝛾

𝜋

2
, (4)
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for all roots 𝜆 of the following equation ([18]):

det (diag ([𝜆𝑚𝑞1𝜆𝑚𝑞2 . . . 𝜆𝑚𝑞1]) − J) = 0. (5)

For fractional-order system (2), the necessary stability
condition for it to remain chaotic is keeping at least one
eigenvalue 𝜆 in the unstable region (see [19]). Suppose that
the unstable eigenvalues of scroll saddle points are 𝜆

1,2
=

𝑎
1,2

± 𝑖𝑏
1,2
. The necessary condition to exhibit double-scroll

attractor of the system remaining in the unstable region is
exhibited in [19].The condition for commensurate derivatives
order is

𝛼 >
2

𝜋
arctan(

𝑏
𝑖

𝑎
𝑖

) , 𝑖 = 1, 2. (6)

Thus, the instability measure 𝜋/2𝑚 − min(| arg(𝜆)|) is nega-
tive, and the system cannot be chaotic [19].

3. Modelling Economic System with
Fractional-Order Derivatives

3.1. Nonlinear Fractional-Order System. There exist several
financial models reported in recent years. For instance, the
study of investment, interest rate, and price index by using a
chaotic fractional Chen system is discussed in [9] as

𝐷
𝛼1

𝑡
𝑥
𝑡
= 𝑧
𝑡
+ (𝑦
𝑡
− 𝑎) 𝑥

𝑡
,

𝐷
𝛼2

𝑡
𝑦
𝑡
= 1 − 𝑏𝑦

𝑡
− 𝑥
2

𝑡
,

𝐷
𝛼3

𝑡
𝑧
𝑡
= −𝑥
𝑡
− 𝑐𝑧
𝑡
,

(7)

where 𝑥, 𝑦, 𝑧 represent the interest rate, investment, and
inflation, respectively. The subscript 𝑡 indicates that the
variable depends on 𝑡. Parameters 𝑎, 𝑏, and 𝑐 are nonnegative
coefficients with economic interpretation. 𝛼

𝑖
∈ (0, 1], 𝑖 =

1, 2, 3, represents the fractional order of the derivatives. If
𝛼
1
= 𝛼
2
= 𝛼
3
= 1, (7) reduces to the integer-order Chen

system.
Instead of considering the same expressions in fractional

chaotic Chen system, we assume a more general form of
nonlinear fractional system as

𝐷
𝛼1

𝑡
𝑥 (𝑡) = 𝑐

1
+ 𝑎
11
𝑥 (𝑡) + 𝑎

12
𝑦 (𝑡) + 𝑎

13
𝑧 (𝑡)

+ 𝑎
14
𝑥 (𝑡) 𝑦 (𝑡) + 𝑎

15
𝑦 (𝑡) 𝑧 (𝑡) + 𝑎

16
𝑧 (𝑡) 𝑥 (𝑡)

+ 𝑎
17
𝑥
2
(𝑡) + 𝑎

18
𝑦
2
(𝑡) + 𝑎

19
𝑧
2
(𝑡) ,

𝐷
𝛼2

𝑡
𝑦 (𝑡) = 𝑐

2
+ 𝑎
21
𝑥 (𝑡) + 𝑎

22
𝑦 (𝑡) + 𝑎

23
𝑧 (𝑡)

+ 𝑎
24
𝑥 (𝑡) 𝑦 (𝑡) + 𝑎

25
𝑦 (𝑡) 𝑧 (𝑡) + 𝑎

26
𝑧 (𝑡) 𝑥 (𝑡)

+ 𝑎
27
𝑥
2
(𝑡) + 𝑎

28
𝑦
2
(𝑡) + 𝑎

29
𝑧
2
(𝑡) ,

𝐷
𝛼3

𝑡
𝑧 (𝑡) = 𝑐

3
+ 𝑎
31
𝑥 (𝑡) + 𝑎

32
𝑦 (𝑡) + 𝑎

33
𝑧 (𝑡)

+ 𝑎
34
𝑥 (𝑡) 𝑦 (𝑡) + 𝑎

35
𝑦 (𝑡) 𝑧 (𝑡) 𝑎36𝑧 (𝑡) 𝑥 (𝑡)

+ 𝑎
37
𝑥
2
(𝑡) + 𝑎

38
𝑦
2
(𝑡) + 𝑎

39
𝑧
2
(𝑡) ,

(8)

where 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) are the economic variables.

Let

𝑓
1
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝐴1)

= 𝑐
1
+ 𝑎
11
𝑥 (𝑡) + 𝑎

12
𝑦 (𝑡) + 𝑎

13
𝑧 (𝑡)

+ 𝑎
14
𝑥 (𝑡) 𝑦 (𝑡) + 𝑎

15
𝑦 (𝑡) 𝑧 (𝑡) + 𝑎

16
𝑧 (𝑡) 𝑥 (𝑡)

+ 𝑎
17
𝑥
2
(𝑡) + 𝑎

18
𝑦
2
(𝑡) + 𝑎

19
𝑧
2
(𝑡) ,

𝑓
2
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝐴2)

= 𝑐
2
+ 𝑎
21
𝑥 (𝑡) + 𝑎

22
𝑦 (𝑡) + 𝑎

23
𝑧 (𝑡)

+ 𝑎
24
𝑥 (𝑡) 𝑦 (𝑡) + 𝑎

25
𝑦 (𝑡) 𝑧 (𝑡) + 𝑎

26
𝑧 (𝑡) 𝑥 (𝑡)

+ 𝑎
27
𝑥
2
(𝑡) + 𝑎

28
𝑦
2
(𝑡) + 𝑎

29
𝑧
2
(𝑡) ,

𝑓
3
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝐴

3
)

= 𝑐
3
+ 𝑎
31
𝑥 (𝑡) + 𝑎

32
𝑦 (𝑡) + 𝑎

33
𝑧 (𝑡)

+ 𝑎
34
𝑥 (𝑡) 𝑦 (𝑡) + 𝑎

35
𝑦 (𝑡) 𝑧 (𝑡) + 𝑎

36
𝑧 (𝑡) 𝑥 (𝑡)

+ 𝑎
37
𝑥
2
(𝑡) + 𝑎

38
𝑦
2
(𝑡) + 𝑎

39
𝑧
2
(𝑡) ,

𝐴
𝑖
= (𝑐
𝑖
, 𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖9
) , 𝑖 = 1, 2, 3.

(9)

Then the model can be rewritten as

𝐷
𝛼1

𝑡
𝑥 (𝑡) = 𝑓

1
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝐴

1
) ,

𝐷
𝛼2

𝑡
𝑦 (𝑡) = 𝑓

2
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝐴

2
) ,

𝐷
𝛼3

𝑡
𝑧 (𝑡) = 𝑓

3
(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝐴

3
) .

(10)

3.2. Fitting of Fractional-Order Nonlinear System. In order
to estimate the parameters of the system, the numerical
calculation of the fractional-order derivative will be used.
According to the GL definition of fractional-order derivative
(1), the explicit numerical approximation has the following
form ([17]):

(𝑘−𝐿𝑚/ℎ)
𝐷
𝛼

𝑡𝑘
𝑓 (𝑡) ≈ ℎ

−𝛼

𝑘

∑

𝑖=0

𝑐
(𝛼)

𝑖
𝑓 (𝑡
𝑘−𝑖
) , (11)

where 𝑡
𝑘
= 𝑘ℎ, ℎ is the time step of discretization, 𝐿

𝑚
is

called as “memory length,” and 𝑐(𝛼)
𝑖

(𝑖 = 0, 1, . . .) are binomial
coefficients, which can be calculated as

𝑐
(𝛼)

0
= 1, 𝑐

(𝛼)

𝑖
= (1 −

1 + 𝛼

𝑖
) 𝑐
(𝛼)

𝑖−1
. (12)
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Then, the general numerical solution of the fractional-order
system (11) can be expressed as

𝑥 (𝑡
𝑘
) = 𝑓
1
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑧 (𝑡

𝑘
) , 𝐴
1
) −

𝑘

∑

𝑗=V1

𝑐
𝛼1

𝑗
𝑥 (𝑡
𝑘−𝑗

) ,

𝑦 (𝑡
𝑘
) = 𝑓
2
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑧 (𝑡

𝑘
) , 𝐴
2
) −

𝑘

∑

𝑗=V2

𝑐
𝛼2

𝑗
𝑦 (𝑡
𝑘−𝑗

) ,

𝑧 (𝑡
𝑘
) = 𝑓
3
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑧 (𝑡

𝑘
) , 𝐴
3
) −

𝑘

∑

𝑗=V3

𝑐
𝛼3

𝑗
𝑧 (𝑡
𝑘−𝑗

) .

(13)

The “short memory” principles have been considered in this
expression. The lower index of the sums in it will be V

𝑖
= 1

for 𝑘 < (𝐿
𝑖
/ℎ) and V

𝑖
= 𝑘 − (𝐿

𝑖
/ℎ) for 𝑘 > (𝐿

𝑖
/ℎ), or

when “short memory” principle is not being considered, we
put V
𝑖
= 1 for all 𝑘. Assume that the actual economic data

are (𝑋(𝑖), 𝑌(𝑖), 𝑍(𝑖)) (𝑖 = 1, 2, . . . , 𝑛). Let 𝛼 = (𝛼
1
, 𝛼
2
, 𝛼
3
),

A = (𝐴
1
, 𝐴
2
, 𝐴
3
). In order to ensure that trajectory of the

system describes the empirical economic data, we construct
constrained optimal problem as follows:

min𝐻(𝛼,A) =
𝑛−1

∑

𝑖=1

(𝑥(𝑖) − 𝑋(𝑖 + 1))
2

+

𝑛−1

∑

𝑖=1

(𝑦 (𝑖) − 𝑌 (𝑖 + 1))
2

+

𝑛−1

∑

𝑖=1

(𝑧(𝑖) − 𝑍(𝑖 + 1))
2
,

(14)

subject to

𝑥 (𝑡
𝑘
) = 𝑓
1
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑧 (𝑡

𝑘
) , 𝐴
1
)

−

𝑘

∑

𝑗=1

𝑐
𝛼1

𝑗
𝑥 (𝑡
𝑘−𝑗

) ,

𝑦 (𝑡
𝑘
) = 𝑓
2
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑧 (𝑡

𝑘
) , 𝐴
2
)

−

𝑘

∑

𝑗=1

𝑐
𝛼2

𝑗
𝑦 (𝑡
𝑘−𝑗

) ,

𝑧 (𝑡
𝑘
) = 𝑓
3
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑧 (𝑡

𝑘
) , 𝐴
3
)

−

𝑘

∑

𝑗=1

𝑐
𝛼3

𝑗
𝑧 (𝑡
𝑘−𝑗

) , 0 < 𝛼
𝑖
< 2, 𝑖 = 1, 2, 3,

(15)

where

𝑥 (𝑡
0
) = 𝑋 (1) , 𝑦 (𝑡

0
) = 𝑌 (1) , 𝑧 (𝑡

0
) = 𝑍 (1) . (16)

Then, we can estimate the coefficients of fractional-order
system (10) by solving the optimal problem (14) when then
actual data is known.

Remark 3. About constraints in the optimal problem, 𝑥, 𝑦, 𝑧
are obtained by implicit dynamic equations. In the process
of solving it, we can calculate it by transferring it to explicit
dynamic equations.

3.3. Optimal Parameters Estimations of Fractional-Order Non-
linear System by GA. In this paper, the optimal problem (14)
will be solved by genetic algorithms (GA). The solutions of
the optimal problem are optimal parameters of fractional-
order nonlinear system which describe accurately empirical
economic data. The genetic algorithm is an example of a
search procedure that uses random selection for optimization
of a function by means of the parameters space coding. It
was developed by [20] and the most popular references are
[21, 22]. The GA have been proven successful for robust
searches in complex spaces. [23] states the validity of the
technique in applications of optimization and robust search.
The GA have been credited as efficient and effective in the
approach for the search.

Comparing with usual constrained optimal problem, the
difference of constrained optimal problem (14) includes a
process of solving fractional-order system in calculating
the fitness of each chromosome in population. The genetic
algorithms of solving constrained optimal problem (14) can
be designed as the following steps.

Step 1. Generate random population of chromosomes 𝑃(0)
with population size 𝑁 in feasible region of problem (14)
{(𝛼,A) | A ∈ 𝑅

30
, 0 < 𝛼

𝑖
< 2, 𝑖 = 1, 2, 3}. Set 𝑘 = 0.

Step 2. Evaluate the fitness of each chromosomes in the
population 𝑃(𝑘). Set 𝑥(𝑡

0
) = 𝑋(1), 𝑦(𝑡

0
) = 𝑌(1), 𝑧(𝑡

0
) =

𝑍(1), 𝑚 = 𝑛 − 1. Given time step ℎ, calculate the
(𝑥(𝑡
𝑖
), 𝑦(𝑡
𝑖
), 𝑧(𝑡
𝑖
)) (𝑖 = 1, 2, . . . , 𝑚) by recursive formula

(13) based on parameters (𝛼
𝑗
,A
𝑗
) (𝑗 = 1, 2, . . . , 𝑁) which

are decoded from chromosomes in 𝑃(𝑘). Then, compute
the finesses of the chromosomes 𝑓

𝑗
by 𝐻(𝛼

𝑗
,A
𝑗
) (𝑗 =

1, 2, . . . , 𝑁).

Step 3. Create a new population 𝑃(𝑘 + 1) by repeating the
following steps until the new population is complete.

(a) Select twoparent chromosomes frompopulation𝑃(𝑘)
according to their fitness. Calculate selected proba-
bility of chromosomes in 𝑃(𝑘) by 𝑝

𝑖
= 𝑓
𝑖
/∑
𝑖
𝑓
𝑖
(𝑖 =

1, 2, . . . , 𝑁). The parent chromosomes are selected to
be the parent by roulette selection operator.

(b) Cross over the parents to form new offspring with
crossover probability 𝑝

𝑐
.

(c) Mutate new offspring at each locus with a mutation
probability 𝑝

𝑚
. Place new offspring in the new popu-

lation.
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Step 4. If stop criterion is satisfied, then stop. Otherwise,
replace 𝑃(𝑘) by 𝑃(𝑘 + 1), and go to Step 2.

3.4. Stability Analysis for Nonlinear Fractional-Order Sys-
tem. The stability as an extremely important property of
the dynamical systems is investigated in various domains.
According to stability criteria in [18], the stability of fractional
nonlinear system is investigated by analyzing the character-
istic of equilibrium points in system. (𝑥∗, 𝑦∗, 𝑧∗) represents
an arbitrary equilibrium points of system (10), which is
calculated by solving the equations 𝑓

𝑖
(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) =

0 (𝑖 = 1, 2, 3). The Jacobian matrix is

𝐽 = (

𝑗
11

𝑗
12

𝑗
13

𝑗
21

𝑗
22

𝑗
23

𝑗
31

𝑗
32

𝑗
33

) , (17)

where

𝑗
11
= 𝑎
11
+ 𝑎
14
𝑥
∗

2
+ 𝑎
16
𝑥
∗

3
+ 2𝑎
17
𝑥
∗

1
,

𝑗
12
= 𝑎
12
+ 𝑎
14
𝑥
∗

1
+ 𝑎
15
𝑥
∗

1
+ 2𝑎
18
𝑥
∗

2
,

𝑗
13
= 𝑎
13
+ 𝑎
15
𝑥
∗

1
+ 𝑎
16
𝑥
∗

2
+ 2𝑎
19
𝑥
∗

3
,

𝑗
21
= 𝑎
21
+ 𝑎
24
𝑥
∗

2
+ 𝑎
26
𝑥
∗

3
+ 2𝑎
27
𝑥
∗

1
,

𝑗
22
= 𝑎
22
+ 𝑎
24
𝑥
∗

1
+ 𝑎
25
𝑥
∗

1
+ 2𝑎
28
𝑥
∗

2
,

𝑗
23
= 𝑎
23
+ 𝑎
25
𝑥
∗

1
+ 𝑎
26
𝑥
∗

2
+ 2𝑎
29
𝑥
∗

3
,

𝑗
31
= 𝑎
31
+ 𝑎
34
𝑥
∗

2
+ 𝑎
36
𝑥
∗

3
+ 2𝑎
37
𝑥
∗

1
,

𝑗
32
= 𝑎
32
+ 𝑎
34
𝑥
∗

1
+ 𝑎
35
𝑥
∗

1
+ 2𝑎
38
𝑥
∗

2
,

𝑗
33
= 𝑎
33
+ 𝑎
35
𝑥
∗

1
+ 𝑎
36
𝑥
∗

2
+ 2𝑎
39
𝑥
∗

3
.

(18)

Let optimal order in fractional nonlinear system (10)
be (𝛼̂
1
, 𝛼̂
2
, 𝛼̂
3
). 𝛼̂
𝑖
(𝑖 = 1, 2, 3) can be expressed V

𝑖
/𝑢
𝑖
(𝑖 =

1, 2, 3), and 𝑚 is the LCM (least common multiple) of the
denominators 𝑢

𝑖
(𝑖 = 1, 2, 3). Let 𝑚

𝑖
= 𝑚𝛼̂

𝑖
. According to

(6), the characteristic equation is as follows:

𝜆
𝑚1+𝑚2+𝑚3 − 𝑗

22
𝜆
𝑚3+𝑚1 − 𝑗

33
𝜆
𝑚2+𝑚1 − 𝑗

11
𝜆
𝑚3+𝑚2

+ 𝑏
1
𝜆
𝑚1 + 𝑏

2
𝜆
𝑚2 + 𝑏

3
𝜆
𝑚3 + 𝑏

4
= 0,

(19)

where

𝑏
1
= 𝑗
22
𝑗
33
− 𝑗
23
𝑗
32
,

𝑏
2
= 𝑗
11
𝑗
33
− 𝑗
13
𝑗
31
,

𝑏
3
= 𝑗
11
𝑗
22
− 𝑗
12
𝑗
21
,

𝑏
4
= − (𝑗

22
𝑗
33
− 𝑗
23
𝑗
32
) 𝑗
11

+ 𝑗
12
(𝑗
33
𝑗
21
− 𝑗
23
𝑗
31
) − 𝑗
13
(𝑗
21
𝑗
32
− 𝑗
31
𝑗
22
) .

(20)
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Figure 1: The actual data versus trajectories of fractional-order
system in each dimension about US.

The roots of (19) are 𝜔
𝑖
(𝑖 = 1, 2, . . . , 𝑚

1
+ 𝑚
2
+

𝑚
3
), and the instability measure of equilibrium point is

𝜋/2𝑚 − min(| arg(𝜔)|). If instability measure is negative, the
equilibrium point is stable.

4. Application to Economic System of
US, Australia, and UK

In this section, we will show how to analyze the stability
of macroeconomic system based on the actual data by
fractional-order system. Firstly, the optimal fractional-order
system needs to be estimated based on actual data.This study
will take the three nations (i.e., USA, Australia, and UK)
for example to show the feasibility and effectiveness of our
method.

4.1. Selection of Economic Variables and Data Resource. The
GDP, inflation, and unemployment are the key macroeco-
nomic indexes which governments concern. In this paper,
the percent change of GDP, average consumer prices percent
change rate, and change of unemployment rate percent
of total labor force are used to reflect the variables GDP,
inflation, and unemployment, respectively. The annual data
starts from year 1980 to 2011. The resource of data about
percent change of GDP, average consumer prices percent
change rate, and unemployment rate percent of total labor
force is EconStats which is organized by IMF. Let economic
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Table 1: Optimal parameters of fractional order economic system for US, Australia, UK.

US Australia UK
𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

𝑞 0.298 0.518 1.521 0.459 0.127 1.992 0.503 0.521 0.611
𝑐 0.141 0.845 −42.503 0.936 0.128 0.957 1.271 1.618 0.959
𝑎
.1

−7.360 −26.756 19.654 9.923 −2.817 3.007 −10.655 −70.531 −13.637
𝑎
.2

10.596 42.678 −45.415 2.352 2.855 2.661 −85.040 54.652 19.055
𝑎
.3

−208.649 −82.896 −3.255 1.696 −4.907 −1.889 −91.272 −73.995 100.756
𝑎
.4

106.886 134.066 7.465 1.011 2.837 −1.094 37.836 98.484 −31.076
𝑎
.5

−92.283 −29.489 −9.162 6.746 −13.460 −0.854 −28.490 −60.796 17.146
𝑎
.6

−46.156 0.388 −9.954 −10.966 −8.466 −6.662 0.939 37.492 2.462
𝑎
.7

−40.568 24.615 33.139 1.639 −9.793 −1.183 −31.064 −46.859 2.666
𝑎
.8

−28.753 98.083 −19.133 0.152 14.682 2.982 65.905 28.800 32.485
𝑎
.9

−17.425 −18.006 −19.731 −4.210 0.094 −1.558 −18.148 −34.796 3.771
MSE 4.8𝑒 − 4 6.6𝑒 − 4 5.5𝑒 − 4

Notes: 𝑐 denote the (𝑐1, 𝑐2, 𝑐3). 𝑎.𝑖 denote (𝑎1𝑖, 𝑎2𝑖, 𝑎3𝑖) (𝑖 = 1, 2, . . . , 9). MSE is mean of squared error.

Table 2: Results about stability analysis of economic system about US.

Point Jacob Matrix Unstable measure Stability

[
[

[

−5.110

−1.548

7.852

]
]

]

[
[

[

70.2 2023.7 −844.3

−106.3 1373.3 943.5

7.1 40.9 −369.8

]
]

]

−0.0099 stable

[
[

[

0.573

−0.664

−0.450

]
]

]

[
[

[

127.316 −121.140 158.997

69.603 −167.274 50.804

−41.309 −35.030 −17.834

]
]

]

0.0314 unstable

[
[

[

0.726

−0.976

−1.046

]
]

]

[
[

[

233.291 −191.453 238.417

113.160 −275.220 −36.399

−34.911 −62.111 8.973

]
]

]

0.0314 unstable

[
[

[

0.756

−0.157

−0.194

]
]

]

[
[

[

−18.986 −173.095 117.048

20.167 −123.163 110.606

−53.771 −1.853 −30.909

]
]

]

−0.0128 stable

Table 3: Results about stability analysis of economic system about Australia.

Point Jacob Matrix Unstable measure Stability

[
[

[

−0.246

0.499

0.523

]
]

]

[
[

[

8.235 12.888 5.630

−5.195 −9.900 10.798

−3.710 4.080 5.623

]
]

]

0.0069 unstable

[
[

[

1.125

0.964

0.509

]
]

]

[
[

[

−23.442 9.936 10.148

−30.502 −25.774 8.018

13.691 2.606 3.643

]
]

]

0.0314 unstable

[
[

[

−0.053

−0.470

−1.272

]
]

]

[
[

[

−4.953 7.269 −1.261

20.453 3.040 −28.320

2.225 3.387 −4.466

]
]

]

0.0314 unstable

[
[

[

−3.948

−2.578

0.352

]
]

]

[
[

[

98.290 14.679 −18.923

74.888 68.047 36.691

−47.077 3.980 11.281

]
]

]

0.0314 unstable
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Table 4: Results about stability analysis of economic system about UK.

Point Jacob matrix Unstable measure Stability

[
[

[

−7.396

−3.483

2.776

]
]

]

[
[

[

226.2 985.8 190.3

−464 1076.5 −302.1

−338.8 −863.7 331.4

]
]

]

0.0157 Unstable

[
[

[

2.214

1.402

0.570

]
]

]

[
[

[

−138.774 −278.268 123.998

29.238 −309.613 220.292

162.894 199.199 −26.786

]
]

]

0.0157 Unstable

[
[

[

−2.511

1.331

−1.694

]
]

]

[
[

[

−76.666 71.742 −351.173

−182.166 −176.300 −371.135

93.656 −206.896 −28.261

]
]

]

−0.0120 Stable

[
[

[

0.072

0.074

0.014

]
]

]

[
[

[

−5.747 −21.294 7.501

0.690 −81.415 58.050

9.010 −6.423 −19.114

]
]

]

−0.0293 Stable

[
[

[

0.364

0.381

0.097

]
]

]

[
[

[

−35.584 −63.879 20.743

−5.177 −123.619 72.924

42.803 22.055 −17.532

]
]

]

−0.0249 Stable

[
[

[

−4.748

−3.316

−6.044

]
]

]

[
[

[

467.206 400.040 −876.792

258.412 −3.671 −559.485

−460.158 −321.884 −321.041

]
]

]

0.0157 Unstable
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Figure 2: The actual data versus trajectories of fractional-order
system in each dimension about Australia.
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Figure 3: The actual data versus trajectories of fractional-order
system in each dimension about UK.
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(d) 𝑧(𝑡) versus time

Figure 4: Space trajectory and the time responses of the estimated system about US.

variables 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) in (13) be the percent change of GDP,
average consumer prices percent change rate, and change of
unemployment rate, respectively.

Remark 4. The difference of series may alter the some
characteristic of 12 it (such as stationary of series). In order
to be consistent with the percent change of GDP, average
consumer prices percent change rate, this paper will select
change of unemployment rate to be variable which reflects
the unemployment of a nation.

4.2. Estimation of Fractional-OrderNonlinear SystemBased on
Genetic Algorithms. This paper adopts the GA to search the
optimal parameters of fractional-order system by using the
actual data from US, Australia, and UK. Under the time step
ℎ = 0.0005, (13) have been fit by GA, and optimal parameters
are shown in Table 1.

In order to show intuitively the accuracy of the optimal
system estimated, the comparison of actual data and tra-
jectories of system in each dimension have been shown in

Figures 1–3. From Figure 1, we can find that the accuracy
of fit about US economic data is satisfying in economic
variables GDP and inflation, and the goodness of fit about
unemployment is worse than other variables for which the
bias of the last points is obvious. Figure 2 shows the accuracy
of fit about Australian economic data in three dimensions. It
suggests that the estimated fractional economic system can
describe actual data of Australia accurately. Figure 3 shows
the goodness of fit about UK data and suggests that trajectory
of GDP and inflation are more close to actual data than
unemployment.

5. Stability Analysis of Nonlinear
Fractional-Order Macroeconomic System

In this section, we will analyze the dynamic behavior of
the macroeconomic systems with optimal parameters by the
simulation technique. The fractional-order economic system
estimated by actual economic data from US, Australia, and
UK will be analyzed, respectively, as follows.
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Figure 5: Space trajectory and the time responses of the estimated system about Australia.

5.1. Fractional-Order Economic System about US. We will
analyze the stability of the fractional macroeconomic sys-
tem for US estimated in Table 1 using the stability cri-
teria in [19]. For number of characteristic root equation
(5) depending on the 𝑚 (LCM of denominates of the
fractional order), the optimal order (0.298, 0.518, 1.522)

round to decile (0.30, 0.52, 1.52) in stability of analysis.
Thus, 𝑚 = 50 and 𝛾(𝜋/2𝑚) = 0.0314. The esti-
mated fractional macroeconomic system has four equi-
libriums at (−5.110, −1.548, 7.852), (0.573, −0.664, −0.450),
(0.726, −0.976, −1.046), and (0.756, −0.157, −0.194). We will
analyze the stability of each equilibrium point.

In Table 2, the results show that there are two unstable
equilibrium points and two stable equilibrium points in the
fractional-order macroeconomic system about US. These
mean that macroeconomic dynamic systems of US have two
saddle points and two stable points.Thenumerical simulation
about fractional economic system is shown in Figure 4. From
simulation results about trajectory and time responses of
each variable in Figure 4, the variables GDP and inflation

fluctuate periodically and change of unemployment becomes
a constant after a given time. This suggests that economic
system of US tends to be stable with time changing, and there
is nonchaotic behavior in fractional system about US.

5.2. Fractional-Order Economic System about Australia.
In Table 1, the optimal order of fractional-order eco-
nomic system about Australia is (0.459, 0.127, 1.991) and
round to decile (0.46, 0.13, 1.99) to control the num-
ber of characteristic root. Obviously, 𝑚 = 100; then
𝛾(𝜋/2𝑚) = 0.0157. The estimated fractional-order eco-
nomic system about Australia has four equilibrium points
(−0.246, 0.499, 0.523), (1.125, 0.964, 0.509), (−0.053, −0.470,
−1.272) and (−3.948, −2.578, 0.352). The stability of the fixed
points is analyzed in Table 3. In Table 3, the unstable mea-
sures of each equilibrium points show that all of them are
unstable and are saddle points. It suggests that the fractional
economic system of US is unstable system. From simulation
results about trajectory and time responses of each variable
in Figure 5, the variables GDP, inflation, and unemployment
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Figure 6: Space trajectory and the time responses of the estimated system about UK.

fluctuate irregularly. The simulation of fractional economic
system also shows instability of system.

5.3. Fractional-Order Economic System about UK. The
optimal order of fractional-order economic system about
Australia is (0.503, 0.521, 0.611) in Table 1 and analogously
round to decile (0.50, 0.52, 0.61). Obviously, 𝑚 = 100;
then 𝛾(𝜋/2𝑚) = 0.0157. The estimated fractional-order
economic system about Australia has six equilibrium points
(−7.396, −3.483, 2.776), (2.214, 1.402, 0.570), (−2.511, 1.331,
−1.694), (0.072, 0.074, 0.014), (0.364, 0.381, 0.097), and
(−4.748, −3.316, −6.044). The stability of the fixed points is
analyzed in Table 4. Table 4 shows the results about stability
analysis of fractional economic at six fixed points. It suggests
that there are three stable points and unstable points in
fractional economic system about UK. Simulation results
for estimated economic system are shown in Figure 6 and
show that dynamic behaviors of three variables are unstable
and fluctuate with width decreasing and centre on some
value. Combining the results about analysis of equilibrium
points and simulation for system, the fractional economic

system for UN is unstable for the initial period and tends to
periodical fluctuations.

6. Conclusions

In this paper, we propose a novel methodology to construct
and analyze macroeconomic system based on fractional-
order derivative that can depict the characteristic of memory
in actual data. The methodology to analyze the economic
system combine the merit of empirical methods and numer-
ical analysis methods and offset the disadvantage of a sin-
gle method (empirical analysis or numerical analysis). The
application of the methodology is shown by using the US,
Australia, and UK macroeconomic data to demonstrate its
effectiveness and applicability.
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We study a very general class of delayed reaction-diffusion equations in which the reaction term can be nonmonotone and spatially
nonlocal. By using a fluctuationmethod, combinedwith the careful analysis of the corresponding characteristic equations, we obtain
some sufficient conditions for the global asymptotic stability of the trivial solution and the positive steady state to the equations
subject to the Neumann boundary condition.

1. Introduction

There has been a growing interest in the dynamic behavior of
spatial nonlocal and time-delayed population systems since
the 1970s [1]. When the death function of such a system is
linear many researchers used the theory of monotone semi-
flows, the comparison arguments, and the fluctuationmethod
to study spreading speeds, traveling waves, and the global
stability (see, e.g., [2–10]). However, researches on these
problems become relatively rare for nonmonotone delayed
reaction-diffusion systems in which the death function is
nonlinear (see [11, 12]). The reason lies in the fact that it is
difficult to establish an appropriate expression for solutions
to study the solution semiflow under this case.

In this paper, we will investigate the global asymptotic
stability of the positive steady state for the following time-
delayed reaction-diffusion equation:

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡
= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝑓 (𝑤 (𝑡, 𝑥))

+ ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑏 (𝑤 (𝑡 − 𝜏, 𝑦)) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(1)

where 𝑑 > 0, 𝛼 ≥ 0, 𝜏 ≥ 0, Δ denotes the Laplacian
operator on R𝑚, Ω is a bounded and open domain of R𝑚
with a smooth boundary 𝜕Ω, 𝜕/𝜕n is the differentiation in
the direction of the outward normal n to 𝜕Ω, and the kernel
function 𝑘(𝛼, 𝑥, 𝑦) is given by

𝑘 (𝛼, 𝑥, 𝑦) =

{{

{{

{

+∞

∑

𝑛=1

𝑒
−𝜆𝑛𝛼𝜑
𝑛
(𝑥) 𝜑
𝑛
(𝑦) , if 𝛼 > 0,

𝛿 (𝑥 − 𝑦) , if 𝛼 = 0.
(2)

Here, 0 = 𝜆
1
< 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
≤ ⋅ ⋅ ⋅ with lim

𝑛→∞
𝜆
𝑛
= +∞

is the eigenvalue of the linear operator −Δ subject to the
homogeneous Neumann boundary condition on 𝜕Ω, 𝜑

𝑛
is

the eigenvector corresponding to 𝜆
𝑛
, {𝜑
𝑛
}
+∞

𝑛=1
is a complete

orthonormal system in the space 𝐿2(Ω), 𝜑
1
(𝑥) > 0 for all 𝑥 ∈

Ω, and 𝛿(𝑥) is the Dirac function onR𝑚 [10, 13]. Throughout
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this paper, we assume that the functions 𝑓 and 𝑏 satisfy the
following.

(A1) 𝑏 : R+ → R+ is Lipschitz continuous with 𝑏(0) = 0
and 𝑏󸀠(0) > 0, and 𝑏(𝑤) ≤ 𝑏󸀠(0)𝑤 for all 𝑤 ≥ 0.

(A2) 𝑓(𝑤) = 𝑤𝑔(𝑤) for all 𝑤 ≥ 0, where 𝑔 : R+ → R+

is Lipschitz continuous with 𝑔󸀠(0) ≥ 0, 𝑔(𝑤) > 0, and
𝑔
󸀠
(𝑤) ≥ 0 for all 𝑤 > 0.

(A3) There exists a positive number𝑀 such that, for all𝑤 >
𝑀, 𝑏(𝑤) < 𝑓(𝑤), where 𝑏(𝑤) = max

𝑢∈[0,𝑤]
𝑏(𝑢).

In the monotone case, where the function 𝑏(𝑤) increases
with 𝑤 > 0, Xu and Zhao [12] studied the global dynamics of
(1) and obtained some results on the uniqueness and global
attractivity of a positive steady state by using the theory
of monotone dynamical systems. In the case of 𝑓(𝑤) =
𝜇𝑤, Zhao [10] proved the global attractivity of the positive
constant equilibrium for (1) by using a fluctuation method of
Thieme and Zhao [14], where 𝜇 is a positive constant. In the
case where 𝑓(𝑤) = 𝜇𝑤 and 𝛼 = 0, Yi and Zou [7] proved the
global attractivity of the unique positive constant equilibrium
for (1) by combining a dynamical systems argument and
some subtle inequalities. In the case where Ω = [0, 𝐿] and
𝑓(𝑤) = 𝜇𝑤, (1) reduces to the equation derived in [3], where
the numerical solutions are considered. A global convergence
theorem was obtained in [11] for a special case of (1).

The aim of this paper is to establish some criteria to
guarantee the global asymptotic stability of the trivial solution
and the positive steady state for (1) by using a fluctuation
method, combined with the careful analysis of the corre-
sponding characteristic equations. The interesting thing is
that main results obtained in this paper extend the related
existing results.

The rest of this paper is organized as follows. We will
present some preliminary results in Section 2. Our main
results are presented and proved in Sections 3 and 4, wherewe
obtain sufficient conditions to ensure the global asymptotic
stability of the trivial solution and the positive steady state
for (1) in a nonmonotone case. In Section 5, we provide four
examples to illustrate the applicability of the main results.

2. Preliminaries

Firstly, we show that the kernel 𝑘(𝛼, 𝑥, 𝑦) in (2) enjoys the
following properties.

Lemma 1. For 𝛼 > 0, one has

(i) (𝜕/𝜕n)𝑘(𝛼, 𝑥, 𝑦)|
𝑥∈𝜕Ω
= (𝜕/𝜕n)𝑘(𝛼, 𝑥, 𝑦)|

𝑦∈𝜕Ω
= 0,

(ii) 0 < 𝑘(𝛼, 𝑥, 𝑦) ≤ 𝐶∗, for all 𝑥, 𝑦 ∈ Ω, where 𝐶∗ is a
positive constant depending only on𝑚 and Ω,

(iii) |𝜑
𝑛
(𝑥)| ≤ √𝐶∗ exp[(1/2)𝜆

𝑛
𝛼], for all 𝑥 ∈ Ω, 𝑛 =

1, 2, . . .,
(iv) ∫
Ω
𝑘(𝛼, 𝑥, 𝑦)𝑑𝑦 = 1, for all 𝑥 ∈ Ω.

Proof. The verification of (i) is straightforward and is thus
omitted. Part (ii) follows from [15, Lemma 3.2.1 andTheorem
4.4.6] since 𝑘(𝛼, 𝑥, 𝑦) is a heat kernel of the heat equation

(Δ − (𝜕/𝜕𝛼))𝑢(𝑥, 𝛼) = 0. Part (iii) follows from
𝑒
−𝜆𝑛𝛼(𝜑

𝑛
(𝑥))
2
≤ 𝑘(𝛼, 𝑥, 𝑥) ≤ 𝐶

∗, for all 𝑥 ∈ Ω, 𝑛 = 1, 2, . . ..
And part (iv) follows from 𝜆

1
= 0, 𝜑

1
(𝑥) ≡ √1/mes(Ω),

and ∫
Ω
𝜑
𝑛
(𝑦)𝑑𝑦 = 0 for all 𝑛 = 2, 3, . . ., where mes(Ω) is the

measure ofΩ. The proof is completed.

Let X = 𝐶(Ω,R) and X+ = {𝜙 ∈ X | 𝜙(𝑥) ≥ 0, ∀𝑥 ∈ Ω}.
Then (X,X+) is a strongly ordered Banach space. It is well
known that the differential operator 𝐴 = 𝑑Δ generates a
𝐶
0-semigroup 𝑇(𝑡) on X. Moreover, the standard parabolic

maximum principle (see, e.g., [16, Corollary 7.2.3]) implies
that the semigroup 𝑇(𝑡) : X → X is strongly positive in
the sense that 𝑇(𝑡)(X+ \ {0}) ⊂ Int(X+), ∀𝑡 > 0.

Let Y = 𝐶([−𝜏, 0],X) and Y+ = 𝐶([−𝜏, 0],X+). For the
sake of convenience, we will identify an element 𝜙 ∈ Y as a
function from [−𝜏, 0] × Ω to R defined by 𝜙(𝑠, 𝑥) = 𝜙(𝑠)(𝑥),
and for each 𝑠 ∈ [−𝜏, 0], we regard 𝑓(𝜙(𝑠)) as a function on
Ω defined by 𝑓(𝜙(𝑠)) = 𝑓(𝜙(𝑠, ⋅)). For any function 𝑤(⋅) :
[−𝜏, 𝜎) → X, where 𝜎 > 0, we define 𝑤

𝑡
∈ Y , 𝑡 ∈ [0, 𝜎) by

𝑤
𝑡
(𝑠) = 𝑤(𝑡 + 𝑠), ∀𝑠 ∈ [−𝜏, 0]. Define 𝐹 : Y+ → X by

𝐹 (𝜙) (𝑥) = −𝑓 (𝜙 (0, 𝑥)) + ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑏 (𝜙 (−𝜏, 𝑦)) 𝑑𝑦,

∀𝑥 ∈ Ω, 𝜙 ∈ Y
+
.

(3)

Then we can rewrite (1) as an abstract functional equation:

𝑑𝑤 (𝑡)

𝑑𝑡
= 𝐴𝑤 (𝑡) + 𝐹 (𝑤

𝑡
) , 𝑡 ≥ 0,

𝑤
0
= 𝜙 ∈ Y

+
.

(4)

Therefore, we can write (4) as an integral equation:

𝑤 (𝑡) = 𝑇 (𝑡) 𝜙 (0) + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐹 (𝑤
𝑠
) 𝑑𝑠, 𝑡 ≥ 0,

𝑤
0
= 𝜙 ∈ Y

+
,

(5)

whose solutions are called mild solutions for (1).
Since 𝑇(𝑡) : X → X is strongly positive, we have

lim
ℎ→0

+

dist (𝜙 (0) + ℎ𝐹 (𝜙) ,X+) = 0, ∀𝜙 ∈ Y+. (6)

By [17, Proposition 3 and Remark 2.4] (or [18, Corollary
8.1.3]), for each 𝜙 ∈ Y+, (1) has a unique noncontinuable
mild solution 𝑤(𝑡, 𝜙) with 𝑤

0
= 𝜙, and 𝑤(𝑡, 𝜙) ∈ X+ for all

𝑡 ∈ (0, 𝜎
𝜙
). Moreover, 𝑤(𝑡, 𝜙) is a classical solution of (1) for

𝑡 > 𝜏 (see [18, Corollary 2.2.5]).
By the same arguments as in the proof of [12, Theorems

2.1 and 3.1], we have the following two lemmas.

Lemma 2. Let (A1)–(A3) hold. Then, for each 𝜙 ∈ Y+,
a unique solution 𝑤(𝑡, 𝜙) of (1) globally exists on [−𝜏,∞),
lim sup

𝑡→∞
𝑤(𝑡, 𝑥, 𝜙) ≤ 𝑀 uniformly for 𝑥 ∈ Ω, and the

solution semiflow Φ(𝑡) = 𝑤
𝑡
(⋅) : Y+ → Y+, 𝑡 ≥ 0, admits

a connected global attractor.
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Lemma 3. Let (A1)–(A3) hold, and let 𝑤(𝑡, 𝑥, 𝜙) be the
solution of (1) with 𝜙 ∈ Y+. Then the following two statements
are valid.

(i) If 𝑏󸀠(0) < 𝑔(0), then for any 𝜙 ∈ Y+, we have
lim sup

𝑡→∞
𝑤(𝑡, 𝑥, 𝜙) = 0 uniformly for 𝑥 ∈ Ω.

(ii) If 𝑏󸀠(0) > 𝑔(0), then (1) admits at least one spatially
homogeneous steady state𝑤∗ ∈ (0,𝑀], and there exists
𝜂 > 0 such that for any𝜙 ∈ Y+ with𝜙(0, ⋅) ̸≡ 0wehave
lim inf

𝑡→∞
𝑤(𝑡, 𝑥, 𝜙) ≥ 𝜂 uniformly for 𝑥 ∈ Ω.

Note that in case (ii) above, the function 𝑆(𝑤) = 𝑏(𝑤) −
𝑓(𝑤) satisfies 𝑆(0) = 0, 𝑆󸀠(0) > 0, and 𝑆(𝑀) ≤ 0. Therefore,
there exists at least one positive number 𝑤∗ ∈ (0,𝑀] such
that 𝑆(𝑤∗) = 0, and hence, 𝑤∗ is a spatially homogeneous
steady state of (1).

3. Global Attractivity

In this section, we establish the global attractivity of the
positive and spatially homogeneous steady state𝑤∗ for (1) by
the fluctuation method used in [10, Theorem 3.1].

Motivated by [10, Section 3], we assume further that the
functions 𝑓(𝑤) and 𝑏(𝑤) satisfy the following.

(A4) 𝑏󸀠(0) > 𝑔(0), (𝑏(𝑤)/𝑓(𝑤)) is strictly decreasing for
𝑤 ∈ (0,𝑀], and 𝑓(𝑤) and 𝑏(𝑤) have the property (P)
that, for any 𝑢, V ∈ (0,𝑀] satisfying 𝑢 ≤ 𝑤∗ ≤ V,
𝑓(𝑢) ≥ 𝑏(V), and 𝑓(V) ≤ 𝑏(𝑢), we have 𝑢 = V.

Note that if 𝑏(𝑤) is nondecreasing for 𝑤 ∈ [0,𝑀], then
𝑓(𝑤) and 𝑏(𝑤) have the property (𝑃). Indeed, for any 0 < 𝑢 ≤
𝑤
∗
≤ V ≤ 𝑀 with 𝑓(𝑢) ≥ 𝑏(V) and 𝑓(V) ≤ 𝑏(𝑢), we have

𝑓 (𝑤
∗
) ≤ 𝑓 (V) ≤ 𝑏 (𝑢) ≤ 𝑏 (𝑤∗) ≤ 𝑏 (V) ≤ 𝑓 (𝑢) ≤ 𝑓 (𝑤∗) ,

(7)

which implies that 𝑢 = V = 𝑤∗. Combining this observation
and [10, Lemma 3.1] with 𝜇𝑤 replaced by 𝑓(𝑤), where 𝜇 > 0,
we then have the following result.

Lemma 4. Either of the following two conditions is sufficient
for the property (P) in condition (A4) to hold.

(P1) 𝑏(𝑤) is nondecreasing for 𝑤 ∈ [0,𝑀].

(P2) 𝑓(𝑤)𝑏(𝑤) is strictly increasing for 𝑤 ∈ (0,𝑀].

Now we are in a position to prove our main result in this
section.

Theorem 5. Assume that (A1)–(A4) hold, and let𝑤(𝑡, 𝑥, 𝜙) be
the solution of (1) with 𝜙 ∈ Y+. Then for any 𝜙 ∈ Y+ with
𝜙(0, ⋅) ̸≡ 0, we have lim

𝑡→∞
𝑤(𝑡, 𝑥, 𝜙) = 𝑤

∗ uniformly for
𝑥 ∈ Ω.

In order to prove Theorem 5, we will need the following
lemma.

Lemma 6. Assume that (A1)–(A3) hold, and let 𝑤(𝑡, 𝑥) ≡
𝑤(𝑡, 𝑥, 𝜙) be the solution of (1) with 𝜙 ∈ Y+. Then 𝑤(𝑡, 𝑥)
satisfies

𝑤 (𝑡, 𝑥)

= 𝑒
−𝛾𝑡
∫
Ω

𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝜙 (0, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾𝑠
∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦)

× [𝛾𝑤 (𝑡 − 𝑠, 𝑦) − 𝑓 (𝑤 (𝑡 − 𝑠, 𝑦))

+∫
Ω

𝑘 (𝛼, 𝑦, 𝑧) 𝑏 (𝑤 (𝑡−𝑠−𝜏, 𝑧)) 𝑑𝑧] 𝑑𝑦 𝑑𝑠,

(8)

where 𝛾 = max
𝑤∈[0,𝑀]

𝑓
󸀠
(𝑤) and the kernel function 𝑘 is given

in (2).

Proof. Let

𝐻(𝑡, 𝑥) ≡ 𝛾𝑤 (𝑡, 𝑥) − 𝑓 (𝑤 (𝑡, 𝑥))

+ ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑏 (𝑤 (𝑡 − 𝜏, 𝑦)) 𝑑𝑦.

(9)

Since X ⊂ 𝐿2(Ω), for each 𝑡 ≥ 0, there exist real numbers
𝑎
𝑛
(𝑡) and 𝑏

𝑛
(𝑡), 𝑛 = 1, 2, . . ., such that

𝑤 (𝑡, 𝑥) =

+∞

∑

𝑛=1

𝑎
𝑛
(𝑡) 𝜑
𝑛
(𝑥) , (10)

𝐻(𝑡, 𝑥) =

+∞

∑

𝑛=1

𝑏
𝑛
(𝑡) 𝜑
𝑛
(𝑥) . (11)

Therefore, by (10), (11), and (1), we have

𝑎
𝑛
(0) = ∫

Ω

𝜙 (0, 𝑦) 𝜑
𝑛
(𝑦) 𝑑𝑦,

𝑏
𝑛
(𝑠) = ∫

Ω

𝐻(𝑠, 𝑦) 𝜑
𝑛
(𝑦) 𝑑𝑦,

(12)

𝑑𝑎
𝑛
(𝑡)

𝑑𝑡
= − (𝑑𝜆

𝑛
+ 𝛾) 𝑎

𝑛
(𝑡) + 𝑏

𝑛
(𝑡) , 𝑛 = 1, 2, . . . . (13)

By using the variation of constants method, we obtain

𝑎
𝑛 (𝑡) = [𝑎𝑛 (0) + ∫

𝑡

0

𝑒
(𝑑𝜆𝑛+𝛾)𝑠𝑏

𝑛 (𝑠) 𝑑𝑠] 𝑒
−(𝑑𝜆𝑛+𝛾)𝑡,

𝑛 = 1, 2, . . . .

(14)
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Thus, by (10), (12), and (14), we further get

𝑤 (𝑡, 𝑥)

=

+∞

∑

𝑛=1

[𝑎
𝑛 (0) + ∫

𝑡

0

𝑒
(𝑑𝜆𝑛+𝛾)𝑠𝑏

𝑛 (𝑠) 𝑑𝑠] 𝑒
−(𝑑𝜆𝑛+𝛾)𝑡𝜑

𝑛 (𝑥)

= 𝑒
−𝛾𝑡

+∞

∑

𝑛=1

∫
Ω

𝜙 (0, 𝑦) 𝑒
−𝑑𝜆𝑛𝑡𝜑

𝑛
(𝑥) 𝜑
𝑛
(𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

+∞

∑

𝑛=1

∫
Ω

𝑒
−𝑑𝜆𝑛(𝑡−𝑠)𝐻(𝑠, 𝑦) 𝜑

𝑛
(𝑥) 𝜑
𝑛
(𝑦) 𝑑𝑦 𝑑𝑠

= 𝑒
−𝛾𝑡
∫
Ω

𝜙 (0, 𝑦) 𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

∫
Ω

𝐻(𝑠, 𝑦) 𝑘 (𝑑 (𝑡 − 𝑠) , 𝑥, 𝑦) 𝑑𝑦 𝑑𝑠

= 𝑒
−𝛾𝑡
∫
Ω

𝜙 (0, 𝑦) 𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾𝑠
∫
Ω

𝐻(𝑡 − 𝑠, 𝑦) 𝑘 (𝑑𝑠, 𝑥, 𝑦) 𝑑𝑦 𝑑𝑠.

(15)

Therefore, (8) follows immediately from (9) and (15). The
proof is completed.

Proof of Theorem 5. For any given 𝜙 ∈ Y+ with 𝜙(0, ⋅) ̸≡ 0,
let 𝜔(𝜙) be the omega limit set of the positive orbit through
𝜙 for the solution semiflow Φ(𝑡). By Lemma 1, we get 𝜔(𝜙) ⊂
A ⊆ Y

[0,𝑀]
, where A is the global attractor of the solution

semiflow Φ(𝑡) and

Y
[0,𝑀]
≡ {𝜙 ∈ Y | 0 ≤ 𝜙 (𝜃, 𝑥) ≤ 𝑀, ∀ (𝜃, 𝑥) ∈ [−𝜏, 0] × Ω} .

(16)

Note that A is a maximal compact invariant set of the
solution semiflow Φ(𝑡). Thus, it is sufficient to prove the
global attractivity of 𝑤∗ for all 𝜙 ∈ Y

[0,𝑀]
with 𝜙(0, ⋅) ̸≡ 0.

Let 𝜙 ∈ Y
[0,𝑀]

be given such that 𝜙(0, ⋅) ̸≡ 0. Then it
follows from Lemma 6 that

𝑤 (𝑡, 𝑥)

= 𝑒
−𝛾𝑡
∫
Ω

𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝜙 (0, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾𝑠
∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦)

× [𝛾𝑤 (𝑡 − 𝑠, 𝑦) − 𝑓 (𝑤 (𝑡 − 𝑠, 𝑦))

+∫
Ω

𝑘 (𝛼, 𝑦, 𝑧) 𝑏 (𝑤 (𝑡 − 𝑠 − 𝜏, 𝑧)) 𝑑𝑧] 𝑑𝑦 𝑑𝑠,

(17)

where 𝑤(𝑡, 𝑥) ≡ 𝑤(𝑡, 𝑥, 𝜙) is the solution of (1) starting from
the initial function 𝜙. Following [19], we define a function ℎ :
[0,𝑀] × [0,𝑀] → R by

ℎ (𝑢, V) = {
min {𝑏 (𝑤) | 𝑢 ≤ 𝑤 ≤ V} , if 𝑢 ≤ V,
max {𝑏 (𝑤) | V ≤ 𝑤 ≤ 𝑢} , if V ≤ 𝑢.

(18)

Then ℎ(𝑢, V) is nondecreasing in 𝑢 ∈ [0,𝑀] and nonincreas-
ing in V ∈ [0,𝑀]. Moreover, 𝑏(𝑤) = ℎ(𝑤, 𝑤), ∀𝑤 ∈ [0,𝑀],
and ℎ(𝑢, V) is continuous in (𝑢, V) ∈ [0,𝑀] × [0,𝑀] (see [20,
Section 2]). Therefore, by (17), we have

𝑤 (𝑡, 𝑥)

= 𝑒
−𝛾𝑡
∫
Ω

𝑘 (𝑑𝑡, 𝑥, 𝑦) 𝜙 (0, 𝑦) 𝑑𝑦

+ ∫

𝑡

0

𝑒
−𝛾𝑠
∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦)

× [𝛾𝑤 (𝑡 − 𝑠, 𝑦) − 𝑓 (𝑤 (𝑡 − 𝑠, 𝑦))

+ ∫
Ω

𝑘 (𝛼, 𝑦, 𝑧)

× ℎ (𝑤 (𝑡 − 𝑠 − 𝜏, 𝑧) , 𝑤 (𝑡 − 𝑠 − 𝜏, 𝑧)) 𝑑𝑧] 𝑑𝑦 𝑑𝑠.

(19)

Let

𝑤
∞
(𝑥) ≡ lim sup

𝑡→∞

𝑤 (𝑡, 𝑥) , 𝑤
∞
(𝑥) ≡ lim inf

𝑡→∞

𝑤 (𝑡, 𝑥) ,

∀𝑥 ∈ Ω.

(20)

Then Lemmas 2 and 3 imply that

𝑀 ≥ 𝑤
∞
(𝑥) ≥ 𝑤

∞
(𝑥) ≥ 𝜂 > 0, ∀𝑥 ∈ Ω. (21)

On the other hand, note that 𝛾 = max
𝑤∈[0,𝑀]

𝑓
󸀠
(𝑤).Therefore,

the function 𝛾𝑤−𝑓(𝑤) is nondecreasing in𝑤 ∈ [0,𝑀].Thus,
by Fatou’s lemma and (19), we further get

𝑤
∞
(𝑥)

≤ ∫

∞

0

𝑒
−𝛾𝑠
∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦)

× [𝛾𝑤
∞
(𝑦) − 𝑓 (𝑤

∞
(𝑦))

+∫
Ω

𝑘 (𝛼, 𝑦, 𝑧)ℎ (𝑤
∞
(𝑧) , 𝑤

∞
(𝑧))𝑑𝑧]𝑑𝑦 𝑑𝑠.

(22)

Let

𝑤
∞
≡ sup
𝑥∈Ω

𝑤
∞
(𝑥) , 𝑤

∞
≡ inf
𝑥∈Ω

𝑤
∞ (𝑥) . (23)

Then

𝑀 ≥ 𝑤
∞
≥ 𝑤
∞
≥ 𝜂 > 0. (24)
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Moreover, it follows from Lemma 1 that

∫
Ω

𝑘 (𝑑𝑠, 𝑥, 𝑦) 𝑑𝑦 = 1, ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦 = 1,

∀𝑠 ≥ 0, 𝑥 ∈ Ω.

(25)

Therefore, by (22), we have

𝑤
∞
≤ [𝛾𝑤

∞
− 𝑓 (𝑤

∞
) + ℎ (𝑤

∞
, 𝑤
∞
)] ∫

∞

0

𝑒
−𝛾𝑠
𝑑𝑠

=
1

𝛾
[𝛾𝑤
∞
− 𝑓 (𝑤

∞
) + ℎ (𝑤

∞
, 𝑤
∞
)] .

(26)

Thus,
𝑓 (𝑤
∞
) ≤ ℎ (𝑤

∞
, 𝑤
∞
) . (27)

Similarly, we have
𝑓 (𝑤
∞
) ≥ ℎ (𝑤

∞
, 𝑤
∞
) . (28)

By (18), we may find 𝑢, V ∈ [𝑤
∞
, 𝑤
∞
] ⊂ (0,𝑀] such that

ℎ (𝑤
∞
, 𝑤
∞
) = 𝑏 (𝑢) , ℎ (𝑤

∞
, 𝑤
∞
) = 𝑏 (V) . (29)

It then follows from (27) and (28) that
𝑏 (𝑢) ≥ 𝑓 (𝑤

∞
) ≥ 𝑓 (𝑢) , 𝑏 (V) ≤ 𝑓 (𝑤

∞
) ≤ 𝑓 (V) , (30)

and hence,
𝑏 (V)
𝑓 (V)

≤ 1 =
𝑏 (𝑤
∗
)

𝑓 (𝑤∗)
≤
𝑏 (𝑢)

𝑓 (𝑢)
. (31)

This, together with the strict monotonicity of 𝑏(𝑤)/𝑓(𝑤) for
𝑤 ∈ (0,𝑀], implies that 𝑢 ≤ 𝑤∗ ≤ V. Moreover, by (27) and
(28), we also have
𝑏 (𝑢) ≥ 𝑓 (𝑤

∞
) ≥ 𝑓 (V) , 𝑏 (V) ≤ 𝑓 (𝑤

∞
) ≤ 𝑓 (𝑢) . (32)

Therefore, the property (P) implies that
𝑢 = V = 𝑤∗. (33)

Thus, by (30), we obtain
𝑤
∞
= 𝑤
∞
= 𝑤
∗
. (34)

Since

𝑤
∞
≥ 𝑤
∞
(𝑥) ≥ 𝑤

∞
(𝑥) ≥ 𝑤

∞
, 𝑥 ∈ Ω, (35)

we further get

𝑤
∞
(𝑥) = 𝑤

∞
(𝑥) = 𝑤

∗
, 𝑥 ∈ Ω. (36)

This implies that

lim
𝑡→∞

𝑤 (𝑡, 𝑥) = 𝑤
∗
, 𝑥 ∈ Ω. (37)

It remains to prove that lim
𝑡→∞
𝑤(𝑡, 𝑥) = 𝑤

∗ uniformly
for 𝑥 ∈ Ω. For any𝜓 ∈ 𝜔(𝜙), there exists a sequence 𝑡

𝑛
→ ∞

such thatΦ(𝑡
𝑛
)𝜙 → 𝜓 in Y as 𝑛 → ∞. Therefore, we have

lim
𝑛→∞
𝑤 (𝑡
𝑛
+ 𝜃, 𝑥, 𝜙) = 𝜓 (𝜃, 𝑥) (38)

uniformly for (𝜃, 𝑥) ∈ [−𝜏, 0] × Ω. By (37), we further get

𝜓 (𝜃, 𝑥) = 𝑤
∗
, ∀ (𝜃, 𝑥) ∈ [−𝜏, 0] × Ω. (39)

Thus, we obtain 𝜔(𝜙) = {𝑤∗}, which implies that 𝑤(𝑡, ⋅, 𝜙)
converges to𝑤∗ inX as 𝑡 → ∞.The proof is completed.

4. Global Asymptotic Stability

In this section, we establish the global asymptotic stability
of the trivial solution and the positive and spatially homo-
geneous steady state 𝑤∗ for (1) by the careful analysis of the
corresponding characteristic equations. To this end, we first
give the following formal definitions of stability (see, e.g., [18,
Remark 2.1.3]).

Definition 7. Let 𝑤 = 𝑤 be a steady state of the abstract
equation (4). It is called stable if for any 𝜀 > 0 there exists
𝛿 > 0 such that the solution 𝑤(𝑡, 𝜙) of (4) with ‖𝜙 − 𝑤‖Y <
𝛿 satisfies ‖𝑤(𝑡, 𝜙) − 𝑤‖X < 𝜀, for all 𝑡 ≥ 0. It is called
unstable if it is not stable. It is asymptotically stable if it is
stable and there exists 𝛿

0
> 0 such that the solution𝑤(𝑡, 𝜙) of

(4) with ‖𝜙 − 𝑤‖Y < 𝛿0 satisfies lim𝑡→+∞‖𝑤(𝑡, 𝜙) − 𝑤‖X =
0. It is globally asymptotically stable if it is stable and
any solution 𝑤(𝑡, 𝜙) of (4) with arbitrary 𝜙 ∈ Y satisfies
lim
𝑡→+∞

‖𝑤(𝑡, 𝜙) − 𝑤‖X = 0.

Let𝑤 be a spatially homogeneous steady state for (1) (e.g.,
the trivial solution and 𝑤∗). Define 𝐺 : Y+ → X by

𝐺 (𝜙) (𝑥) = − 𝑓
󸀠
(𝑤) 𝜙 (0, 𝑥)

+ 𝑏
󸀠
(𝑤) ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝜙 (−𝜏, 𝑦) 𝑑𝑦,

∀𝑥 ∈ Ω, 𝜙 ∈ Y
+
,

(40)

where 𝑓󸀠(𝑤) = (𝑑𝑓(𝑤)/𝑑𝑤)|
𝑤=𝑤

and 𝑏󸀠(𝑤) = (𝑑𝑏(𝑤)/
𝑑𝑤)|
𝑤=𝑤

. Note that 𝑘(𝛼, 𝑥, 𝑦) is given in (2). Then we can
write the linearized equation of (1) at 𝑤 = 𝑤 as the following
abstract functional equation

𝑑𝑤 (𝑡)

𝑑𝑡
= 𝐴𝑤 (𝑡) + 𝐺 (𝑤

𝑡
) , 𝑡 ≥ 0,

𝑤
0
= 𝜙 ∈ Y

+
,

(41)

where 𝐴 can be referred to Section 2.
For each complex number𝜆wedefine theX-valued linear

operator Θ(𝜆) by

Θ (𝜆) 𝑢 = 𝐴𝑢 − 𝜆𝑢 + 𝐺 (𝑒
𝜆⋅
𝑢) , 𝑢 ∈ Dom (𝐴) , (42)

where 𝑒𝜆⋅𝑢 ∈ Y is defined by (note that we use Y to denote its
complexification here)

(𝑒
𝜆⋅
𝑢) (𝜃) = 𝑒

𝜆𝜃
𝑢, 𝜃 ∈ [−𝜏, 0] . (43)

We will call 𝜆 a characteristic value of (41) if there exists 𝑢 ∈
Dom(𝐴) \ {0} solving the characteristic equation Θ(𝜆)𝑢 = 0
(see, e.g., [18]). Since Dom(𝐴) ⊂ X ⊂ 𝐿2(Ω), for any 𝑢 ∈
Dom(𝐴) \ {0}, there exist complex numbers 𝑎

𝑛
, 𝑛 = 1, 2, . . .,

such that

𝑢 (𝑥) =

+∞

∑

𝑛=1

𝑎
𝑛
𝜑
𝑛
(𝑥) . (44)
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Therefore, by (2), (42), and (44), we have

Θ (𝜆) 𝑢 (𝑥)

= 𝑑Δ𝑢 (𝑥) − 𝜆𝑢 (𝑥) − 𝑓
󸀠
(𝑤) 𝑢 (𝑥)

+ 𝑏
󸀠
(𝑤) ∫
Ω

𝑒
−𝜏𝜆
𝑢 (𝑦) 𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦

=

+∞

∑

𝑛=1

𝑎
𝑛
[−𝑑𝜆
𝑛
− 𝜆 − 𝑓

󸀠
(𝑤) + 𝑏

󸀠
(𝑤) 𝑒
−𝜏𝜆
𝑒
−𝜆𝑛𝛼] 𝜑

𝑛
(𝑥) .

(45)

Thus, the characteristic value 𝜆 of (41) satisfies at least one of
the following equations:

𝜆 = −𝑑𝜆
𝑛
− 𝑓
󸀠
(𝑤) + 𝑏

󸀠
(𝑤) 𝑒
−𝜆𝑛𝛼𝑒
−𝜏𝜆
, 𝑛 = 1, 2, . . . . (46)

Lemma 8. Assume that (A1)–(A3) hold, and let 𝛽 be the
smallest real number such that if 𝜆 is a characteristic value of
(41), then Re 𝜆 ≤ 𝛽. One has the following:

(i) if 𝑏󸀠(𝑤) > 𝑓󸀠(𝑤), then 𝛽 > 0,
(ii) if −𝑓󸀠(𝑤) ≤ 𝑏󸀠(𝑤) < 𝑓󸀠(𝑤), then 𝛽 < 0,
(iii) if 𝑏󸀠(𝑤) = 𝑓󸀠(𝑤), then 𝛽 = 0.

Proof. (i) If 𝑏󸀠(𝑤) > 𝑓󸀠(𝑤), then, by (46) and [21, Proposition
4.6], there exists at least one characteristic value 𝜆 of (41) such
that Re 𝜆 > 0. Therefore, 𝛽 > 0.

(ii) If −𝑓󸀠(𝑤) ≤ 𝑏󸀠(𝑤) < 𝑓󸀠(𝑤), then since 0 = 𝜆
1
< 𝜆
2
≤

⋅ ⋅ ⋅ ≤ 𝜆
𝑛
≤ ⋅ ⋅ ⋅ , we have

− [𝑑𝜆
𝑛
+ 𝑓
󸀠
(𝑤)] 𝑒

𝜆𝑛𝛼 ≤ 𝑏
󸀠
(𝑤)

< [𝑑𝜆
𝑛
+ 𝑓
󸀠
(𝑤)] 𝑒

𝜆𝑛𝛼, 𝑛 = 1, 2, . . . .

(47)

Therefore, by (46) and [21, Proposition 4.6], all the charac-
teristic values of (41) have negative real parts.Thus, it follows
from [18, Theorem 3.1.10] that 𝛽 < 0.

(iii) If 𝑏󸀠(𝑤) = 𝑓󸀠(𝑤), then 𝜆 = 0 is a characteristic value
of (41). Therefore, 𝛽 ≥ 0. If 𝛽 > 0, then there exists at least
one characteristic value of (41) 𝜆(0) and a positive number 𝑛
such that Re 𝜆(0) > 0 and

𝜆
(0)
= −𝑑𝜆

𝑛
− 𝑓
󸀠
(𝑤) + 𝑏

󸀠
(𝑤) 𝑒
−𝜆𝑛𝛼𝑒
−𝜏𝜆
(0)

. (48)

Let 𝜆(0) = 𝑥(0) + 𝑖𝑦(0), where 𝑥(0) and 𝑦(0) both are real
numbers. Then 𝑥(0) > 0. By (48), we have

𝑥
(0)
= −𝑑𝜆

𝑛
− 𝑓
󸀠
(𝑤) + 𝑓

󸀠
(𝑤) 𝑒
−𝜆𝑛𝛼𝑒
−𝜏𝑥
(0)

cos (𝜏𝑦(0)) , (49)

and hence, cos(𝜏𝑦(0)) > 0. This implies that

𝑥
(0)
≤ −𝑓
󸀠
(𝑤) + 𝑓

󸀠
(𝑤) 𝑒
−𝜏𝑥
(0)

cos (𝜏𝑦(0))

= 𝑓
󸀠
(𝑤) [𝑒

−𝜏𝑥
(0)

cos (𝜏𝑦(0)) − 1] .
(50)

But, since 𝑥(0) > 0, we have 𝑒−𝜏𝑥
(0)

cos(𝜏𝑦(0)) < 1. Therefore,

𝑥
(0)
≤ 𝑓
󸀠
(𝑤) [𝑒

−𝜏𝑥
(0)

cos (𝜏𝑦(0)) − 1] < 0, (51)

contradicting 𝑥(0) > 0. This contradiction proves 𝛽 = 0. The
proof is completed.

Now we are ready to summarize our main results on the
global stability. By Definition 7, Lemmas 3 and 8,Theorem 5,
[18, Corollary 3.1.11], and the principle of linearized stability
(see, e.g., [21]), we obtain the following.

Theorem 9. Assume that (A1)–(A3) hold. Then the following
two statements are valid.

(i) If 𝑏󸀠(0) < 𝑔(0), then the zero solution of (1) is globally
asymptotically stable in Y+.

(ii) If 𝑏󸀠(0) > 𝑔(0), then the zero solution of (1) is unstable,
and (1) admits at least one spatially homogeneous
steady state 𝑤∗ ∈ (0,𝑀].

Theorem 10. Assume that (A1)–(A3) hold, and 𝑏󸀠(0) > 𝑔(0).
Then the following two statements for the positive and spatially
homogeneous steady state 𝑤∗ of (1) are valid.

(i) If 𝑏󸀠(𝑤∗) > 𝑓󸀠(𝑤∗), then 𝑤∗ is unstable.
(ii) If −𝑓󸀠(𝑤∗) ≤ 𝑏󸀠(𝑤∗) < 𝑓󸀠(𝑤∗) and (A4) hold, then𝑤∗

is globally asymptotically stable in Y+ \ {0}.

5. Examples

In this section, we present four examples to illustrate the
feasibility of our main results.

Example 1. Consider the equation resulting from letting
𝑓(𝑤) = 𝜇𝑤 in (1); that is,

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡
= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝜇𝑤 (𝑡, 𝑥)

+ ∫
Ω

𝑘 (𝛼, 𝑥, 𝑦) 𝑏 (𝑤 (𝑡 − 𝜏, 𝑦)) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(52)

where 𝜇 is a positive constant.

In this case, we now formulate the following assumptions
to replace (A2)–(A4):

(A2󸀠)There exists a positive number𝑀 such that, for all𝑤 >
𝑀, 𝑏(𝑤) < 𝜇𝑤, where 𝑏(𝑤) = max

𝑢∈[0,𝑤]
𝑏(𝑢).

(A3󸀠) 𝑏󸀠(0) > 𝜇, (𝑏(𝑤)/𝑤) is strictly decreasing for 𝑤 ∈
(0,𝑀], and 𝑏(𝑤) has the property (𝑃󸀠) that, for any
𝑢, V ∈ (0,𝑀] satisfying 𝑢 ≤ 𝑤∗ ≤ V, 𝜇𝑢 ≥ 𝑏(V), and
𝜇V ≤ 𝑏(𝑢), we have 𝑢 = V.
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By applying Theorems 9 and 10, we then obtain the
following results for (52).

Theorem 11. Assume that (A1) and (A2󸀠) hold. Then the
following two statements are valid.

(i) If 𝑏󸀠(0) < 𝜇, then the zero solution of (52) is globally
asymptotically stable in Y+.

(ii) If 𝑏󸀠(0) > 𝜇, then the zero solution of (52) is unstable,
and (52) admits at least one spatially homogeneous
steady state 𝑤∗ ∈ (0,𝑀].

Theorem 12. Assume that (A1) and (A2󸀠) hold, and 𝑏󸀠(0) > 𝜇.
Then the following two statements for the positive and spatially
homogeneous steady state 𝑤∗ of (52) are valid.

(i) If 𝑏󸀠(𝑤∗) > 𝜇, then 𝑤∗ is unstable.

(ii) If −𝜇 ≤ 𝑏󸀠(𝑤∗) < 𝜇 and (A3󸀠) hold, then 𝑤∗ is globally
asymptotically stable in Y+ \ {0}.

Remark 13. It is easy to see that (52) is discussed in [10] and
some partial results ofTheorems 11 and 12 have been obtained
[10].

Example 2. Consider the following Nicholson’s blowfly equa-
tion resulting from letting 𝑓(𝑤) = 𝜇𝑤 and 𝑏(𝑤) = 𝑝𝑤𝑒−𝑞𝑤 in
(1):

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡
= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝜇𝑤 (𝑡, 𝑥)

+ ∫
Ω

𝑝𝑤 (𝑡 − 𝜏, 𝑦) 𝑒
−𝑞𝑤(𝑡−𝜏,𝑦)

𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(53)

where 𝑝 and 𝑞 are two positive constants.

By the same arguments as in [10, Section 4], together with
Theorems 11 and 12, we have the following results for (53).

Theorem 14. (𝑖) If 𝑝 < 𝜇, then the zero solution of (53) is
globally asymptotically stable in Y+.
(𝑖𝑖) If 𝑝 > 𝜇, then the zero solution of (53) is unstable,

and (53) admits the unique positive constant equilibrium𝑤∗ =
(ln(𝑝/𝜇))/𝑞.

Theorem 15. If 𝜇 < 𝑝 ≤ 𝑒2𝜇, the unique positive constant
equilibrium 𝑤∗ = (ln(𝑝/𝜇))/𝑞 of (53) is globally asymptoti-
cally stable in Y+ \ {0}.

Remark 16. It is easy to see that the equation in [7] is a special
case of 𝛼 = 0 of (53). Hence all main results of [7] are special
cases of our Theorems 14 and 15.

Example 3. Consider the following Mackey-Glass equation
resulting from letting 𝑓(𝑤) = 𝜇𝑤𝑙+1 and 𝑏(𝑤) = 𝑝𝑤/(𝑞 + 𝑤𝑙)
in (1):

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡
= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝜇𝑤

𝑙+1
(𝑡, 𝑥)

+ ∫
Ω

𝑝𝑤 (𝑡 − 𝜏, 𝑦)

𝑞 + 𝑤𝑙 (𝑡 − 𝜏, 𝑦)
𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(54)

where 𝑙 is a positive constant.

By the same arguments as in [10, Section 4], together with
Theorems 9 and 10, we have the following results for (54).

Theorem 17. The zero solution of (54) is always unstable, and
(54)must admit the unique positive constant equilibrium𝑤∗ =
(𝑍
0
)
1/𝑙, where

𝑍
0
=
1

2
(−𝑞 + √𝑞2 +

4𝑝

𝜇
) . (55)

Theorem 18. If ((𝑝𝑞+𝑝(1− 𝑙)𝑍
0
)/(𝑞+𝑍

0
)
2
) > 𝜇(1+ 𝑙)𝑍

0
, the

unique positive constant equilibrium 𝑤∗ = (𝑍
0
)
1/𝑙 is unstable,

and if −𝜇(1+𝑙)𝑍
0
≤ ((𝑝𝑞+𝑝(1−𝑙)𝑍

0
)/(𝑞+𝑍

0
)
2
) < 𝜇(1+𝑙)𝑍

0

it is globally asymptotically stable in Y+ \ {0}.

Example 4. Consider the equation resulting from letting
𝑓(𝑤) = 𝜇𝑤

2 and 𝑏(𝑤) = 𝑝𝑤(1 − (𝑤/𝑟)) in (1); that is,

𝜕𝑤 (𝑡, 𝑥)

𝜕𝑡

= 𝑑Δ𝑤 (𝑡, 𝑥) − 𝜇𝑤
2
(𝑡, 𝑥)

+ ∫
Ω

𝑝𝑤 (𝑡 − 𝜏, 𝑦) (1 −
𝑤 (𝑡 − 𝜏, 𝑦)

𝑟
) 𝑘 (𝛼, 𝑥, 𝑦) 𝑑𝑦,

𝜕𝑤 (𝑡, 𝑥)

𝜕n
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) ≥ 0, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(56)

where 0 < 𝑟 ≤ +∞.

Clearly, 𝑤∗ = (𝑝/(𝜇 + 𝑝𝑟−1)), max
𝑤≥0
𝑏(𝑤) = 𝑏(𝑟/2), and

(A1)–(A3) hold, where 𝑟−1 = 0 if 𝑟 = +∞. Moreover, 0 <
𝑤
∗
≤ 𝑟/2 if 𝜇 ≥ 𝑝𝑟−1. Therefore, (A4) is satisfied if 𝜇 ≥ 𝑝𝑟−1.

Thus, Theorems 9 and 10 imply the following results.

Theorem 19. The zero solution of (56) is always unstable, and
(56)must admit the unique positive constant equilibrium𝑤∗ =
(𝑝/(𝜇 + 𝑝𝑟

−1
)).
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Theorem 20. If 𝜇 ≥ 𝑝𝑟−1, then the unique positive constant
equilibrium 𝑤∗ = (𝑝/(𝜇 + 𝑝𝑟−1)) is globally asymptotically
stable in Y+ \ {0}.

Remark 21. It is easy to see that the equation in [11] is a special
case of 𝑟 = +∞ of (56) and hence some partial results of
Theorems 19 and 20 have been obtained [11].
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We are concerned with oscillation of the first order neutral delay differential equation [𝑥(𝑡) − 𝑝𝑥(𝑡 − 𝜏)]
󸀠
+ 𝑞𝑥(𝑡 − 𝜎) = 0 with

constant coefficients, and we obtain some necessary and sufficient conditions of oscillation for all the solutions in respective cases
0 < 𝑝 < 1 and 𝑝 > 1.

1. Introduction

Delay differential equations (DDEs) arose widely in many
fields, like oscillation theory [1–9], stability theory [10–12],
dynamical behavior of delayed network systems [13–15], and
so on. Theoretical studies on oscillation of solutions for
DDEs have fundamental significance (see [16, 17]). For this
reason, DDEs have been attracting great interest of many
mathematicians during the last few decades.

In this paper, we consider a class of neutral DDEs

[𝑥 (𝑡) − 𝑝𝑥 (𝑡 − 𝜏)]
󸀠
+ 𝑞𝑥 (𝑡 − 𝜎) = 0, 𝑡 ⩾ 𝑡

0
, (1)

where 𝑡
0
is a positive number and 𝑝, 𝑞, 𝜏, and 𝜎 are positive

constants. Generally, a solution of (1) is called oscillatory
if it is neither eventually positive nor eventually negative.
Otherwise, it is nonoscillatory. It can be seen in the literature
that the oscillation theory regarding solutions of (1) has been
extensively developed in the recent years.

In [18], Zhang came to the following conclusion.

Theorem I. Assume that 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 − 𝑝; then all
solutions of (1) are oscillatory.

This result in Theorem I improves the corresponding
result in [19]. Afterward, many authors have been devoted
to studying this problem and have obtained many better

results. For details, Gopalsamy and Zhang [20] obtained the
improved result shown inTheorem II.

Theorem II. If 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 − 𝑝[1 + 𝑞𝜏/(1 − 𝑝)],
then all solutions of (1) are oscillatory.

Further, Zhou and Yu [21] proved the following theorem.

Theorem III. Suppose that 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 − 𝑝[1 +

𝑞𝜏/(1 − 𝑝) + (𝑞𝜏)
2
/2(1 − 𝑝)

2
]; then all solutions of (1) are

oscillatory.
Continuing to improve the research work, Xiao and Li [22]

obtained the following.

Theorem IV. Let 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 − 𝑝𝑒
𝑞𝜏/(1−𝑝); then all

solutions of (1) are oscillatory.
Finally, Lin [23] obtained the result shown in Theorem V.

Theorem V. Assume that 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 −

𝑝𝑒
𝑞𝜏/(1−𝑝−𝑞𝜎); then all solutions of (1) are oscillatory.
However, all the conclusions mentioned above are limited

to sufficient conditions in the case 0 < 𝑝 < 1. The aim of this
paper is to establish systematically the necessary and sufficient
conditions of oscillation for all solutions of (1) for the cases 0 <

𝑝 < 1 and 𝑝 > 1.
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2. Main Results

It is well known [24] that all solutions of (1) are oscillatory if
and only if the characteristic equation of (1)

𝑓 (𝜆) ≡ 𝜆 − 𝑝𝜆𝑒
−𝜆𝜏

+ 𝑞𝑒
−𝜆𝜎

= 0 (2)

has no real roots.

Theorem 1. Assume that 𝑝 ∈ (0, 1) and let

𝜑 (𝜇) := 𝑞 (𝜎𝜇 − 1) + 𝑝𝜏𝜇
2
𝑒
(𝜏−𝜎)𝜇

, (3)

ℎ (𝜇) := 𝑞𝑒
𝜇𝜎

[(𝜏 − 𝜎) 𝜇 + 1] − 𝜏𝜇
2
. (4)

Then all solutions of (1) are oscillatory if and only if

ℎ (𝜃) = 𝑞𝑒
𝜃𝜎
[(𝜏 − 𝜎) 𝜃 + 1] − 𝜏𝜃

2
> 0, (5)

where 𝜃 is a unique zero of 𝜑(𝜇) in (0, 1/𝜎).

Proof. It is easy to see that, for 𝜆 ⩾ 0, we have

𝑓 (𝜆) = 𝜆 (1 − 𝑝𝑒
−𝜆𝜏

) + 𝑞𝑒
−𝜆𝜎

≥ 𝑞𝑒
−𝜆𝜎

> 0. (6)

Thus any real root of (2) must be negative.
Next, let

𝑔 (𝜇) =
𝑞

𝜇
𝑒
𝜇𝜎

+ 𝑝𝑒
𝜇𝜏

− 1 = 0. (7)

We consider the monotonicity of the function 𝑔(𝜇) :=

𝑓(−𝜇)/𝜇. Differentiation yields

𝑔
󸀠
(𝜇) =

𝑒
𝜇𝜎
𝜑 (𝜇)

𝜇2
, (8)

where 𝜑(𝜇) satisfies the following properties:

(1) 𝜑(𝜇) > 0 for 𝜇 ∈ (1/𝜎, +∞);
(2) 𝜑(𝜇) is strictly increasing on (0, 1/𝜎) since the func-

tion 𝜇
2
𝑒
(𝜏−𝜎)𝜇 is strictly increasing on (0, 1/𝜎).

In addition,

𝜑 (0) = −𝑞 < 0, 𝜑 (
1

𝜎
) = 𝑝𝜏

1

𝜎2
𝑒
(𝜏−𝜎)/𝜎

> 0. (9)

Thus, we get that function𝜑(𝜇) has a unique zero 𝜃 in (0, 1/𝜎).
Hence 𝑔󸀠(𝜇) < 0 for 𝜇 ∈ (0, 𝜃) and 𝑔󸀠(𝜇) > 0 for 𝜇 ∈ (𝜃, +∞),
which imply that 𝑔(𝜇) is decreasing on (0, 𝜃) and increasing
on (𝜃, +∞). Therefore, 𝑔(𝜇) > 0 for 𝜇 ∈ (0, +∞) if and only
if (7) has no real roots in 𝜇 ∈ (0, 1/𝜎). It is easy to see that
𝑔(𝜃) is the minimum value of 𝑔(𝜇) in (0, 1/𝜎). Consequently,
𝑔(𝜇) = 0 has no real roots in (0, 1/𝜎) if and only if 𝑔(𝜃) > 0.
Since

𝑔 (𝜃) =
𝑞

𝜃
𝑒
𝜃𝜎

+ 𝑝𝑒
𝜃𝜏
− 1 =

ℎ (𝜃)

𝜏𝜃2
, (10)

we obtain the result immediately.

FromTheorem 1, we obtain immediately the following.

Corollary 2. If 𝑝 ∈ (0, 1) and 𝜏 = 𝜎, then all solutions of
(1) are oscillatory if and only if 𝑞𝑒𝜃𝜎 > 𝜎𝜃

2 holds, where 𝜃 =

(√𝑞𝜎(𝑞𝜎 + 4𝑝) − 𝑞𝜎)/2𝑝𝜎.

Theorem 3. Suppose that 𝑝 ∈ (0, 1); then all solutions of (1)
are oscillatory if and only if one of the following conditions
holds:

(𝐻
1
) 𝑞𝜎𝑒 ⩾ 1;

(𝐻
2
) 𝜃 > 𝜃,

where 𝜃 and 𝜃 are the unique zeros of 𝜑(𝜇) and ℎ(𝜇) (see (3)
and (4)) in (0, 1/𝜎), respectively.

Proof. Let 𝑦(𝜇) = ℎ(𝜇)/𝜇
2
= 𝑞𝑒
𝜇𝜎
((𝜏 − 𝜎)/𝜇 + 1/𝜇

2
) − 𝜏; then

𝑦
󸀠
(𝜇) =

𝑞𝑒
𝜇𝜎
𝑧 (𝜇)

𝜇3
, (11)

where 𝑧(𝜇) = (𝜏 − 𝜎)𝜎𝜇
2
+ (2𝜎 − 𝜏)𝜇 − 2, which satisfies

𝑧 (0) = −2 < 0, 𝑧 (
1

𝜎
) = −1 < 0. (12)

If 𝜏 ⩾ 𝜎, we get obviously that 𝑧(𝜇) < 0 for all 𝜇 ∈ (0, 1/𝜎]. If
𝜏 < 𝜎, we also get 𝑧(𝜇) < 0 for all 𝜇 ∈ (0, 1/𝜎] since 𝑧󸀠(1/𝜎) =
𝜏 > 0. Thus, 𝑧(𝜇) < 0 for all 𝜇 ∈ (0, 1/𝜎]. From this and (11)
we get that 𝑦󸀠(𝜇) < 0 for all 𝜇 ∈ (0, 1/𝜎]. Consequently, 𝑦(𝜇)
is strictly decreasing on (0, 1/𝜎]. Further,

lim
𝜇→0

+

𝑦 (𝜇) = +∞, 𝑦 (
1

𝜎
) = (𝑞𝑒𝜎 − 1) 𝜏. (13)

Therefore, if 𝑞𝜎𝑒 ⩾ 1, we have 𝑦(𝜃) > 0. Hence ℎ(𝜃) > 0. If
𝑞𝜎𝑒 < 1, we have𝑦(1/𝜎) < 0. Hence, it is easy to find that both
functions 𝑦(𝜇) and ℎ(𝜇) have an equal and unique zero 𝜃 ∈

(0, 1/𝜎). Consequently, ℎ(𝜃) > 0 is equivalent to 𝜃 > 𝜃.

FromTheorem 1, all solutions of (1) are oscillatory if and
only if one of (H

1
) or (H

2
) holds.

Theorem 4. Assume that 𝑝 ∈ (0, 1); then all solutions of (1)
are oscillatory if one of the following conditions holds:

(𝐻
1
) 𝑞/𝜃 + 𝑞𝜎 ⩾ 1 − 𝑝;

(𝐻
2
) 𝑞𝜎𝑒 ⩾ 1 − 𝑝𝑒

𝑞𝜏/(1−𝑝−𝑞𝜎),

where 𝜃 is a unique zero of 𝜑(𝜇) in (0, 1/𝜎).

Proof. If 𝑞/𝜃 + 𝑞𝜎 ⩾ 1 − 𝑝, we have that

𝑔 (𝜇) =
𝑞

𝜇
𝑒
𝜇𝜎

+ 𝑝𝑒
𝜇𝜏

− 1 >
𝑞

𝜇
(1 + 𝜇𝜎) + 𝑝 − 1

=
𝑞

𝜇
+ 𝑞𝜎 + 𝑝 − 1.

(14)

From the proof of Theorem 1, all solutions of (1) are oscilla-
tory.
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If 𝑞𝜎𝑒 ⩾ 1 − 𝑝𝑒
𝑞𝜏/(1−𝑝−𝑞𝜎), we suppose furthermore that

𝑞/𝜃+𝑞𝜎 < 1−𝑝 (otherwise, all solutions of (1) are oscillatory
by the above conclusion); that is, 𝜃 > 𝑞/(1 − 𝑝 − 𝑞𝜎). Since
𝑞𝜎𝑒 is a minimum value of the function (𝑞/𝜇)𝑒

𝜇𝜎 at 𝜇 = 1/𝜎,
we have that

𝑔 (𝜃) =
𝑞

𝜃
𝑒
𝜃𝜎

+ 𝑝𝑒
𝜃𝜏
− 1 > 𝑞𝜎𝑒 + 𝑝𝑒

𝑞𝜏/(1−𝑝−𝑞𝜎)
− 1 ⩾ 0,

(15)

and the result follows.
So far, for 𝑝 ∈ (0, 1) we have discussed the necessary

and sufficient conditions of oscillation for all solutions of (1).
Our results have perfected the results in [23] (seeTheorem 4).
Next, we will discuss the behavior of oscillation of solutions
of (1) in the case 𝑝 > 1.

Lemma 5. Let 𝑝 > 1; then all solutions of (1) are oscillatory if
and only if the equation

𝑔 (𝜇) =
𝑞

𝜇
𝑒
𝜇𝜎

+ 𝑝𝑒
𝜇𝜏

− 1 = 0 (16)

has no real roots in (− ln𝑝/𝜏, 0).

Proof. By (14), we know that 𝑔(𝜇) > 0 for 𝜇 ∈ (0,∞). It is
not difficult to see that 𝑒𝜇𝜎/𝜇 is strictly decreasing on (−∞, 0)

while 𝑒𝜇𝜏 is strictly increasing on (−∞, 0). Notice that 𝑝𝑒𝜇𝜏 −
1 = 0 at 𝜇 = − ln𝑝/𝜏; we find that

𝑔 (𝜇) < 0 for 𝑢 ∈ (−∞,
− ln𝑝
𝜏

] . (17)

Hence,𝑓(𝜆) has no real roots which is equivalent to 𝑔(𝜇) that
has no real roots in (− ln𝑝/𝜏, 0).

Theorem 6. Suppose that 𝑝 > 1 and 𝜏 = 𝜎; then all solutions
of (1) are oscillatory if and only if

𝑞𝑒
𝜃𝜎

< 𝜎𝜃
2
, (18)

where 𝜃 = (−√𝑞𝜎(𝑞𝜎 + 4𝑝) − 𝑞𝜎)/2𝑝𝜎.

Proof. It is similar to the proof of Theorem 1; 𝑔(𝜃) is the
maximum value of 𝑔(𝜇) for 𝜇 ∈ (−∞, 0). This and Lemma 5
imply the result.

Theorem 7. Assume that 𝑝 > 1 and 𝜏 < 𝜎; then all solutions
of (1) are oscillatory if and only if

ℎ (𝜃) = 𝑞𝑒
𝜃𝜎
[(𝜏 − 𝜎) 𝜃 + 1] − 𝜏𝜃

2
< 0, (19)

where 𝜃 is a unique zero of (3) in (−∞, 0).

Proof. Firstly, we prove that 𝜑(𝜇) has a unique zero 𝜃 in
(−∞, 0). In fact,

𝜑
󸀠
(𝜇) = 𝑝𝜏𝑒

(𝜏−𝜎)𝜇
[(𝜏 − 𝜎) 𝜇

2
+ 2𝜇] + 𝑞𝜎. (20)

It is easy to verify that 𝜑󸀠(𝜇) is strictly increasing on (−∞, 0).
In addition,

𝜑
󸀠
(0) = 𝑞𝜎 > 0, 𝜑

󸀠
(𝜇) → −∞(𝜇 → −∞) . (21)

Therefore, 𝜑󸀠(𝜇) has a unique zero𝜔
0
in (−∞, 0). Hence, 𝜑(𝜇)

is strictly decreasing on (−∞,𝜔
0
) and strictly increasing on

(𝜔
0
, 0), so that 𝜑(𝜇) has a unique zero 𝜃 in (−∞, 0) as 𝜑(0) =

−𝑞 < 0 and 𝜑(𝜇) → +∞(𝜇 → −∞).

Now, from (8), it follows that 𝑔(𝜃) is the maximum value
of 𝑔(𝜇) in (−∞, 0). By (10), we know that (19) is equivalent to
𝑔(𝜇) < 0 for 𝜇 ∈ (−∞, 0).

From Theorem 7, we obtain the following corollary that
extends Theorem 1 in [25] for 𝜏 < 𝜎.

Corollary 8. If 𝑝 > 1, 𝜏 < 𝜎, and 𝜏𝑞𝑒
−(𝜎/𝜏) ln𝑝

⩾

𝜏ln2𝑝/(𝜎 ln𝑝 + 𝜏), then all solutions of (1) are oscillatory.

Proof. The inequality 𝜏𝑞𝑒
−(𝜎/𝜏) ln𝑝

⩾ 𝜏ln2𝑝/(𝜎 ln𝑝 + 𝜏) is
equivalent to 𝜑(− ln𝑝/𝜏) ⩽ 0. From the proof of Theorem 7,
we get that 𝜃 ⩽ − ln𝑝/𝜏. This and (17) imply 𝑔(𝜃) < 0;
therefore, ℎ(𝜃) < 0.

Theorem 9. Suppose that 𝑝 > 1 and 𝜏 > 𝜎; then all solutions
of (1) are oscillatory if and only if one of the following conditions
holds:

(𝐻
1
) 𝑞𝜎𝑒2−√2 ⩾ (2√2 − 2)𝑝𝜏/(𝜏 − 𝜎);

(𝐻
2
) 𝜎(𝜏 − 𝜎)𝜔

2

1
+ (2𝜎 − 𝜏)𝜔

1
⩽ 2;

(𝐻
3
) ℎ(𝜃
2
) = 𝑞𝑒

𝜃2𝜎[(𝜏 − 𝜎)𝜃
2
+ 1] − 𝜏𝜃

2

2
< 0,

where𝜔
1
is a unique zero of 𝜑󸀠(𝜇) in (−2/(𝜏−𝜎), (√2−2)/(𝜏−

𝜎)) and 𝜃
2
is the maximum negative zero of 𝜑(𝜇).

Proof. By Lemma 5, all solutions of (1) are oscillatory if and
only if

𝑔 (𝜇) < 0, for 𝜇 ∈ (−∞, 0) . (22)

From (20), we have that

𝜑
󸀠
(𝜇) > 0 for 𝜇 ∈ (−∞,

−2

𝜏 − 𝜎
] , (23)

and𝜑󸀠(𝜇) is strictly decreasing on (−2/(𝜏−𝜎), (√2−2)/(𝜏−𝜎))

and strictly increasing on ((√2−2)/(𝜏−𝜎), 0).Thus, 𝜑󸀠((√2−

2)/(𝜏 − 𝜎)) is the minimum value of 𝜑󸀠(𝜇) in (−2/(𝜏 − 𝜎), 0).

(1) If 𝜑󸀠((√2 − 2)/(𝜏 − 𝜎)) ⩾ 0, which is the case of (H
1
),

we have that

𝜑
󸀠
(𝜇) ⩾ 0, 𝜇 ∈ (

−2

𝜏 − 𝜎
, 0) . (24)

Combining (23) and (24), we obtain that

𝜑 (𝜇) ⩽ 𝜑 (0) = −𝑞 < 0, 𝜇 ∈ (−∞, 0) . (25)

This means that 𝑔(𝜇) is strictly decreasing on (−∞, 0) and,
consequently,

𝑔 (𝜇) < lim
𝜇→−∞

𝑔 (𝜇) = −1. (26)

(2) If 𝜑󸀠((√2 − 2)/(𝜏 − 𝜎)) < 0, 𝜑󸀠(𝜇) has a unique zero
𝜔
1
in (−2/(𝜏 − 𝜎), (√2 − 2)/(𝜏 − 𝜎)) and a unique zero 𝜔

2
in
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((√2 − 2)/(𝜏 − 𝜎), 0) since 𝜑󸀠(−2/(𝜏 − 𝜎)) = 𝑞𝜎 > 0. Hence
𝜑(𝜇) is strictly increasing on (−∞,𝜔

1
), strictly decreasing

on (𝜔
1
, 𝜔
2
), and strictly increasing on (𝜔

2
, 0). Consequently,

𝜑(𝜔
1
) is the maximum value of 𝜑(𝜇) in (−∞,𝜔

2
). Now, it is

easy to find that (22) holds if 𝜑(𝜔
1
) ⩽ 0.

On the other hand, applying 𝜑󸀠(𝜔
1
) = 0, we can get

𝜑 (𝜔
1
) =

𝑞 [𝜎 (𝜏 − 𝜎) 𝜔
2

1
+ (2𝜎 − 𝜏) 𝜔

1
− 2]

(𝜏 − 𝜎) 𝜔
1
+ 2

. (27)

So 𝜑(𝜔
1
) ⩽ 0 is equivalent to 𝜎(𝜏 − 𝜎)𝜔

2

1
+ (2𝜎 − 𝜏)𝜔

1
⩽ 2.

This is the case of (H
2
).

If 𝜑(𝜔
1
) > 0, we obtain that 𝜑(𝜇) has a unique zero 𝜃

1
in

(−∞,𝜔
1
) and a unique zero 𝜃

2
in (𝜔
1
, 𝜔
2
). Therefore, 𝑔(𝜇) is

strictly decreasing on (−∞, 𝜃
1
), strictly increasing on (𝜃

1
, 𝜃
2
),

and strictly decreasing on (𝜃
2
, 0). Therefore, it is not difficult

to find that (22) holds if and only if 𝑔(𝜃
2
) < 0 and it is the case

of (H
3
).

From Theorem 9, we obtain the following corollary
immediately.

Corollary 10. If 𝑝 > 1, 𝜏 > 𝜎, and 𝑞𝜎 ⩾ 𝑝𝜏/(𝜏 − 𝜎), then all
solutions of (1) are oscillatory.

Example 11. Consider the following neutral delay differential
equation:

[𝑥 (𝑡) − 20𝑥 (𝑡 − 12)]
󸀠
+ 10.5𝑥 (𝑡 − 2) = 0. (28)

It is not difficult to see that 𝑝 = 20, 𝑞 = 10.5, 𝜏 = 12, and
𝜎 = 2. Consequently, 𝜏 > 𝜎, and

𝑞𝜎𝑒
2−√2

−
(2√2 − 2) 𝑝𝜏

𝜏 − 𝜎
> 21 (3 − √2) − 24 (2√2 − 2)

= 3 (37 − 23√2) > 0,

(29)

so that all the solutions of (28) are oscillatory from
Theorem 9.
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We study a higher order difference equation. By Lyapunov-Schmidt reduction methods and computations of critical groups, we
prove that the equation has four𝑀-periodic solutions.

1. Introduction

Considering the following higher order difference equation

𝑘

∑

𝑖=0

𝑎
𝑖
(𝑥

𝑛−𝑖
+ 𝑥

𝑛+𝑖
) + 𝑓 (𝑛, 𝑥

𝑛
) = 0, 𝑛 ∈ Z, (1)

where 𝑘 ∈ N, N and Z are the sets of all positive integers and
integers, respectively, 𝑓 ∈ 𝐶

1
(R × R,R), R is the set of all

real numbers, and there exists a positive integer𝑀 such that,
for any (𝑡, 𝑧) ∈ (R × R), 𝑓(𝑡 + 𝑀,𝑍) = 𝑓(𝑡, 𝑍), 𝐹(𝑡, 𝑧) =
∫
𝑧

0
𝑓(𝑡, 𝑠)d𝑠.
Throughout this paper, for 𝑎, 𝑏 ∈ Z, we define Z(𝑎) :=

{𝑎, 𝑎 + 1, . . .}, Z(𝑎, 𝑏) := {𝑎, 𝑎 + 1, . . . , 𝑏} when 𝑎 ≤ 𝑏.
When 𝑘 = 1, 𝑎

0
= −1, 𝑎

1
= 1, (1) can be reduced to the

following second order difference equation:

Δ
2
𝑥
𝑛−1

+ 𝑓 (𝑛, 𝑥
𝑛
) = 0, 𝑛 ∈ Z. (2)

Equation (2) can be seen as an analogue discrete form of the
following second order differential equation:

d2𝑥
d𝑡2

+ 𝑓 (𝑡, 𝑥) = 0. (3)

In recent years, much attention has been given to sec-
ond order Hamiltonian systems and elliptic boundary value
problems by a number of authors; see [1–3] and references
therein. On one hand, there have been many approaches to
study periodic solutions of differential equations or difference

equations, such as critical point theory (which includes
the minimax theory, the Kaplan-Yorke method, and Morse
theory), fixed point theory, and coincidence theory; see, for
example, [4–20].

Among these approaches, Morse theory is an important
tool to deal with such problems. However, there are, at
present, only a few papers dealing with higher order differ-
ence equation except [21–23]. On the other hand, under some
assumptions, the functional 𝑓 may not satisfy the Palasis-
Smale condition. Thus, we cannot apply the Morse theory to
𝑓 directly. To go around this difficulty, Tang andWu [24] and
Liu [25] obtain many interesting results of elliptic boundary
value problems by combining Morse theory with Lyapunov-
Schmidt reductionmethod orminimax principle. Inspired by
this, we study the existence of periodic solutions of a higher
order difference equation (1) by combining computations of
critical groups with Lyapunov-Schmidt reduction method,
and an existence theorem on multiple periodic solutions for
such an equation is obtained.

For a given integer𝑀 > 0, let

𝜆
𝑗
= −2

𝑘

∑

𝑠=0

𝑎
𝑠
cos 2𝑠𝜋

𝑀
𝑗, 𝑗 = 1, . . . ,𝑀. (4)

We denote 𝑝
1
= 𝑀/2 when 𝑀 is even, or 𝑝

1
= (𝑀 +

1)/2 when 𝑀 is odd. Because of 𝜆
𝑀−𝑗

= 𝜆
𝑗
, 𝑗 ∈ Z(1,M),

then, 𝜆
𝑗
, 𝑗 ∈ Z(1,M) has 𝑝

1
different values. Therefore, we

can write these numbers in such a way:
𝜆
1
< 𝜆

2
< ⋅ ⋅ ⋅ < 𝜆

𝑝1
. (5)
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Assume 𝜆min = min{𝜆
𝑗
, 𝜆

𝑗
̸= 0, 𝑗 = 1, . . . , 𝑝

1
}, 𝜆max = max

{𝜆
𝑗
, 𝜆

𝑗
̸= 0, 𝑗 = 1, . . . , 𝑝

1
}.

Combing Morse theory with Lyapunov-Schmidt reduc-
tion method, we have the following results.

Theorem 1. Suppose that𝑀 ≥ 2𝑘 + 1, 𝑎
0
+ ∑

𝑘

𝑠=1
|𝑎

𝑠
| < 0, and

𝑓(𝑡, 𝑧) = 𝑓(𝑧); we assume that

(𝑓
1
) 𝑓(𝑧) ∈ 𝐶

1
(R,R), 𝑓(0) = 0, 𝑓󸀠

(0) < 𝜆min <

𝑓
∞

= 𝜆
𝑚

≤ 𝜆max, 𝑚 ∈ N(1, 𝑝
1
), where 𝑓

∞
=

lim
|𝑧|→∞

𝑓(𝑧)/𝑧;

(𝑓
2
) there exists a constant 𝛾 ≥ 𝜆

1
such that 𝑓󸀠

(𝑧) ≤ 𝛾 <

𝜆
𝑚+1

;
(𝑓

3
) for any 𝑡 ∈ Z,

𝐹 (𝑧) −
1

2
𝜆
𝑚|𝑧|

2
󳨀→ +∞, 𝑎𝑠 |𝑧| 󳨀→ ∞. (6)

Then (1) possesses at least four nontrivial𝑀-periodic solutions.

This paper is divided into four parts. Section 2 presents
variational structure. In Section 3, we present some proposi-
tions. The proof of Theorem 1 is given in Section 4.

2. Preliminaries

To applyMorse theory to study the existence of periodic solu-
tions of (1), we will construct suitable variational structure.

Let S be the set of sequences 𝑥 = {𝑥
𝑛
}
+∞

𝑛=−∞
, where 𝑥

𝑛
∈ R.

For any 𝑥, 𝑦 ∈ S and 𝑎, 𝑏 ∈ R, 𝑎𝑥 + 𝑏𝑦 is defined by

𝑎𝑥 + 𝑏𝑥 := {𝑎𝑥
𝑛
+ 𝑏𝑥

𝑛
} . (7)

Then S is a vector space.
For any given positive integer 𝑀, 𝐸

𝑀
is defined as a

subspace of S by

𝐸
𝑀
= {𝑥 = {𝑥

𝑛
} ∈ S | 𝑥

𝑛+𝑀
= 𝑥

𝑛
, 𝑛 ∈ Z} . (8)

𝐸
𝑀
can be equipped with inner product ⟨⋅, ⋅⟩

𝐸𝑀
and norm

‖ ⋅ ‖
𝐸𝑀

as follows:

⟨𝑥, 𝑦⟩
𝑀
=

𝑀

∑

𝑗=1

𝑥
𝑗
⋅ 𝑦

𝑗
, ∀𝑥, 𝑦 ∈ 𝐸

𝑀
,

‖𝑥‖𝐸𝑀
= (

𝑀

∑

𝑗=1

𝑥
2

𝑗
)

1/2

, ∀𝑥 ∈ 𝐸
𝑀
,

(9)

where | ⋅ | denotes the Euclidean Norm in R𝑀, and 𝑥
𝑛
⋅ 𝑦

𝑛

denotes the usual scalar product in R.
Define a linear map 𝐿 : 𝐸

𝑀
→ R𝑀 by

𝐿𝑥 = (𝑥
1
, . . . , 𝑥

𝑀
)
𝑇
. (10)

It is easy to see that the map 𝐿 defined in (10) is a linear
homeomorphism with ‖𝑥‖

𝐸𝑀
= |𝐿𝑥| and (𝐸

𝑀
, ⟨. . . , . . .⟩)

𝐸𝑀

is a finite dimensional Hilbert space, which can be identified
with R𝑀.

For (1), we consider the functional 𝐼 defined on 𝐸
𝑀
by

𝐼 (𝑥) = −
1

2

𝑀

∑

𝑛=1

𝑘

∑

𝑖=0

𝑎
𝑖
(𝑥

𝑛−𝑖
+ 𝑥

𝑛+𝑖
) 𝑥

𝑛

−

𝑀

∑

𝑛=1

𝐹 (𝑛, 𝑥
𝑛
) , ∀𝑥 ∈ 𝐸

𝑀
,

(11)

where 𝑥
𝑛+𝑀

= 𝑥
𝑛
, ∀𝑥 ∈ 𝐸

𝑀
, 𝐹(𝑡, 𝑧) = ∫𝑧

0
𝑓(𝑡, 𝑠)d𝑠.

Since 𝐸
𝑀
is linearly homeomorphic to R𝑀, by the conti-

nuity of𝑓(𝑡, 𝑧), 𝐼 can be viewed as continuously differentiable
functional defined on a finite dimensional Hilbert space.That
is, 𝐼 ∈ 𝐶1

(𝐸
𝑀
,R). If we define 𝑥

0
:= 𝑥

𝑀
, then

𝜕𝐼 (𝑥)

𝜕𝑥
𝑛

= −[

𝑘

∑

𝑖=0

𝑎
𝑖
(𝑥

𝑛−𝑖
+ 𝑥

𝑛+𝑖
) + 𝑓 (𝑛, 𝑥

𝑛
)] , (12)

where 𝑛 ∈ Z(1,𝑀). Therefore, 𝑥 ∈ 𝐸
𝑀
is a critical point of 𝐼;

that is, 𝐼󸀠(𝑥) = 0 if and only if

𝑘

∑

𝑖=0

𝑎
𝑖
(𝑥

𝑛−𝑖
+ 𝑥

𝑛+𝑖
) + 𝑓 (𝑛, 𝑥

𝑛
) = 0, 𝑛 ∈ Z (1,𝑀) . (13)

On the other hand, {𝑥
𝑛
} ∈ 𝐸

𝑀
is 𝑀-periodic in 𝑛, and

𝑓(𝑡, 𝑧) is𝑀-periodic in 𝑡; hence, 𝑥 ∈ 𝐸
𝑀
is a critical point of

𝐼 if and only if∑𝑘

𝑖=0
𝑎
𝑖
(𝑥

𝑛−𝑖
+𝑥

𝑛+𝑖
)+𝑓(𝑛, 𝑥

𝑛
) = 0 for any 𝑛 ∈ Z,

and 𝑥 = {𝑥
𝑛
} is a𝑀-periodic solution of (1). Thus, we reduce

the problem of finding𝑀-periodic solutions of (1) to that of
seeking critical points of the functional 𝐼 in 𝐸

𝑀
.

Apparently, 𝐼(𝑥) ∈ 𝐶2
(𝐸

𝑀
,R). Consider

(𝐼
󸀠
(𝑥) , V)

= −
1

2

𝑀

∑

𝑛=1

𝑘

∑

𝑖=1

𝑎
𝑖
[(𝑥

𝑛−𝑖
+ 𝑥

𝑛+𝑖
) V

𝑛
+ (V

𝑛−𝑖
+ V

𝑛+𝑖
) 𝑥

𝑛
]

−

𝑀

∑

𝑛=1

𝑓 (𝑛, 𝑥
𝑛
) V

𝑛
,

(𝐼
󸀠󸀠
(𝑥) V, 𝑤)

= −
1

2

𝑀

∑

𝑛=1

𝑘

∑

𝑖=1

𝑎
𝑖
[(𝑤

𝑛−𝑖
+ 𝑤

𝑛+𝑖
) V

𝑛
+ (V

𝑛−𝑖
+ V

𝑛+𝑖
) 𝑤

𝑛
]

−

𝑀

∑

𝑛=1

𝑓
󸀠
(𝑛, 𝑥

𝑛
) V

𝑛
𝑤

𝑛
,

(14)

for all 𝑥, V, 𝑤 ∈ 𝐸
𝑀
. For convenience, we write 𝑥 ∈ 𝐸

𝑀
as

𝑥 = (𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑀
)
𝑇.

In view of 𝑥
𝑛+𝑀

= 𝑥
𝑛
, ∀𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑀
)
𝑇
∈ 𝐸

𝑀
,

𝑛 ∈ Z, when𝑀 ≥ 2𝑘 + 1, 𝐼 can be rewritten as

𝐼 (𝑥) =
1

2
𝑥
𝑇
𝐴𝑥 −

𝑀

∑

𝑛=1

𝐹 (𝑛, 𝑥
𝑛
) , (15)

where
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−𝐴 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

2𝑎
0
𝑎
1

𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑘−1
𝑎
𝑘

0 0 ⋅ ⋅ ⋅ 0 𝑎
𝑘

𝑎
𝑘−1

⋅ ⋅ ⋅ 𝑎
2

𝑎
1

𝑎
1
2𝑎

0
𝑎
1
⋅ ⋅ ⋅ 𝑎

𝑘−2
𝑎
𝑘−1

𝑎
𝑘

0 ⋅ ⋅ ⋅ 0 0 𝑎
𝑘

⋅ ⋅ ⋅ 𝑎
3

𝑎
2

𝑎
2

𝑎
1
2𝑎

0
⋅ ⋅ ⋅ 𝑎

𝑘−3
𝑎
𝑘−2

𝑎
𝑘−1

𝑎
𝑘
⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 𝑎

4
𝑎
3

...
...

... d
...

...
...

... ⋅ ⋅ ⋅
...

...
... ⋅ ⋅ ⋅

...
...

...
...

... ⋅ ⋅ ⋅ d
...

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅
...

...
...

...
... ⋅ ⋅ ⋅

... d
...

... ⋅ ⋅ ⋅
...

...
... ⋅ ⋅ ⋅

...
...

...
...

... ⋅ ⋅ ⋅
...

... d
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅
...

...
...

...
... ⋅ ⋅ ⋅

...
...

... d ⋅ ⋅ ⋅
...

...
... ⋅ ⋅ ⋅

...
...

...
...

... ⋅ ⋅ ⋅
...

...
...

... ⋅ ⋅ ⋅
...

...
... ⋅ ⋅ ⋅

...
...

...
...

... ⋅ ⋅ ⋅
...

...
...

... ⋅ ⋅ ⋅ d
...

... ⋅ ⋅ ⋅
...

...
...

...
... ⋅ ⋅ ⋅

...
...

...
... ⋅ ⋅ ⋅

... d
... ⋅ ⋅ ⋅

...
...

...
...

... ⋅ ⋅ ⋅
...

...
...

... ⋅ ⋅ ⋅
...

... d ⋅ ⋅ ⋅
...

...
...

...
... ⋅ ⋅ ⋅

...
...

...
... ⋅ ⋅ ⋅

...
...

... d
...

...
𝑎
2

𝑎
3

𝑎
4
⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 𝑎

𝑘
𝑎
𝑘−1

𝑎
𝑘−2

⋅ ⋅ ⋅ 2𝑎
0
𝑎
1

𝑎
1

𝑎
2

𝑎
3
⋅ ⋅ ⋅ 𝑎

𝑘
0 0 0 ⋅ ⋅ ⋅ 𝑎

𝑘−1
𝑎
𝑘−2

𝑎
𝑘−3

⋅ ⋅ ⋅ 𝑎
1
2𝑎

0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
𝑀×𝑀

. (16)

Let the eigenvalues of 𝐴 be 𝜆󸀠
1
, 𝜆

󸀠

1
, . . . , 𝜆

󸀠

𝑀
, and let 𝐴 be a

circulant matrix [18] denoted by

𝐴
def
= Circ {−2𝑎

0
, −𝑎

1
, −𝑎

2
, . . . , −𝑎

𝑘
, 0, . . . ,

0, −𝑎
𝑘
, −𝑎

𝑘−1
, . . . , −𝑎

2
, −𝑎

1
} .

(17)

By [18], the eigenvalues of 𝐴 are

𝜆
󸀠

𝑗
= −2𝑎

0
−

𝑘

∑

𝑠=1

𝑎
𝑠
{exp 𝑖

2𝑗𝜋

𝑀
}

𝑠

−

𝑘

∑

𝑠=1

𝑎
𝑠
{exp 𝑖

2𝑗𝜋

𝑀
}

𝑀−𝑠

= −2

𝑘

∑

𝑠=0

𝑎
𝑠
cos(

2𝑗𝑠𝜋

𝑀
) ,

(18)

where 𝑗 = 1, . . . ,𝑀.
According to (18), for any positive integer 𝑀 with 𝑀 ≥

2𝑘 + 1, we know that.
If 𝑎

0
+ ∑

𝑘

𝑠=1
|𝑎

𝑠
| < 0, then 𝜆󸀠

𝑗
> 0 (𝑗 = 1, 2, . . . ,𝑀). That

is, the matrix 𝐴 is positive definite.
Comparing (18) with (4), we know that 𝜆󸀠

𝑗
= 𝜆

𝑗
(𝑗 =

1, . . . ,𝑀), then, the matrix 𝐴 has 𝑝
1
different eigenvalues

denoted in such a way:

𝜆
1
< 𝜆

2
< ⋅ ⋅ ⋅ < 𝜆

𝑝1
. (19)

3. Main Propositions

In order to prove our main results, we will give several
propositions and notations as follows.

Definition 2 (see [4]). Let 𝑋 be a Banach space, let 𝐽 ∈

𝐶
1
(𝑋,R), and let𝐻

𝑞
(𝐴, 𝐵) be the 𝑞th singular relative homol-

ogy group of the topological pair (𝐴, 𝐵) with coefficients in

an Abelian group G. 𝛽
𝑞
= rank𝐻

𝑞
(𝐴, 𝐵) is called the 𝑞-

dimension Betti number. Let 𝑢 be an isolated critical point
of 𝐽 with 𝐽(𝑢) = 𝑐, 𝑐 ∈ R, and let 𝑈 be a neighborhood of 𝑢

0

in which 𝐽 has no critical points except 𝑢
0
. Then the group

𝐶
𝑞
(𝐽, 𝑢

0
) := 𝐻

𝑞
(𝐽

𝑐
⋂𝑈, 𝐽

𝑐
⋂𝑈 \ {𝑢

0
}) , 𝑞 = 0, 1, 2, . . .

(20)

is called the 𝑞th critical group of 𝐽 at 𝑢, here 𝐽
𝑐
= 𝐽

−1
(−∞, 𝑐].

Assume that 𝐽 satisfies PS condition; 𝐽 has no critical value
less than 𝛼 ∈ R; then the 𝑞th critical group at infinity of 𝐽 is
defined as

𝐶
𝑞
(𝐽,∞) := 𝐻

𝑞
(𝑋, 𝐽

𝑎
) , 𝑞 = 0, 1, 2, . . . . (21)

If 𝐽󸀠󸀠(𝑢
0
) = 0, then the Morse index of 𝐽 at 𝑢

0
is defined

as the dimension of the maximal subspace of 𝑋 on which
the quadratic form (𝐽

󸀠󸀠
(𝑢

0
)V, V) is negative definite. Define

𝐾
𝑐
= {𝑢 ∈ 𝑋 : 𝐽

󸀠
(𝑢) = 0, 𝐽(𝑢) = 𝑐}. We need the following

condition.
(𝐴) Suppose that 𝑎 < 𝑏 are two regular values of 𝐽; 𝐽 has

at most finitely many critical points on 𝐽−1[𝑎, 𝑏] and the rank
of the critical group for every critical point is finite.

Definition 3 (see [4]). Assume that 𝐽 satisfies condition (𝐴);
𝑐
1
< 𝑐

2
< ⋅ ⋅ ⋅ < 𝑐

𝑚
are all critical values of 𝐽 in [𝑎, 𝑏] and
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𝐾
𝑐𝑖
= {𝑧

𝑖

1
, 𝑧

𝑖

2
, . . . , 𝑧

𝑖

𝑛𝑖
}, 𝑖 = 1, 2, . . . , 𝑚. Choose 0 < 𝜖 <

min{𝑐
1
− 𝑎, 𝑐

2
− 𝑐

1
, . . . , 𝑐

𝑚
− 𝑐

𝑚−1
, 𝑏 − 𝑐

𝑚
}. Define

𝑀
𝑞
= 𝑀

𝑞
(𝑎, 𝑏)

=

𝑚

∑

𝑖=1

rank𝐻
𝑞
(𝐽

𝑐𝑖+𝜖
, 𝐽

𝑐𝑖−𝜖
)

=

𝑚

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

rank𝐶
𝑞
(𝐽, 𝑧

𝑖

𝑗
) , 𝑞 = 0, 1, . . .

(22)

Then𝑀
𝑞
is called the 𝑞th Morse-type number of 𝐽 about

the interval [𝑎, 𝑏].
Here the critical groups of 𝐽 at an isolated critical point

𝑢 describe the local behavior of 𝐽 near 𝑢, while the critical
groups of 𝐽 at infinity describe the global property of 𝐽. The
Morse inequality gives the relation between them.

Proposition 4 (see [4]). Suppose that 𝐽 ∈ 𝐶
1
(𝑋,R) satisfies

the PS condition and has only isolated critical points, and the
critical values of 𝑓 are bounded below. Then we have

∞

∑

𝑞=0

𝑀
𝑞
𝑡
𝑞
=

∞

∑

𝑞=0

𝛽
𝑞
𝑡
𝑞
+ (1 + 𝑡) 𝑄 (𝑡) , (23)

where𝑀
𝑞
= ∑

𝐽
󸀠
(𝑢)=0

rank𝐶
𝑞
(𝐽, 𝑢), 𝛽

𝑞
= rank𝐶

𝑞
(𝐽,∞); 𝑄 is

a formal series with nonnegative integer coefficients.

Now we recall the Lyapunov-Schmidt reduction method.

Proposition 5 (see [5]). Let 𝑋 be a separable Hilbert space
with inner product ⟨𝑢, V⟩ and norm ‖𝑢‖ and let 𝑋−and 𝑋+ be
closed subspaces of𝑋 such that𝑋 = 𝑋

−
⊕𝑋

+. Let 𝐽 ∈ 𝐶1
(𝑋,R).

If there is a real number 𝛽 > 0 such that, for all V ∈ 𝑋
−,

𝑤
1
, 𝑤

2
∈ 𝑋

+, there holds

⟨∇𝑓 (V + 𝑤
1
) − ∇𝐽 (V + 𝑤

2
) , 𝑤

1
− 𝑤

2
⟩ ≥ 𝛽

󵄩󵄩󵄩󵄩𝑤1
− 𝑤

2

󵄩󵄩󵄩󵄩
2
, (24)

then we have the following:

(i) there exists a continuous function 𝜓 : 𝑋
−
→ 𝑋

+

such that

𝐽 (V + 𝜓 (V)) = min
𝑤∈𝑋
+

𝐽 (V + 𝑤) , (25)

and 𝜓(V) is the unique member of𝑋+ such that

⟨∇𝐽 (V + 𝜓 (V)) , 𝑤⟩ = 0, ∀𝑤 ∈ 𝑋
+
; (26)

(ii) the functional 𝜑 ∈ 𝐶1
(𝑋

−
,R) defined by 𝜑(V) = 𝐽(V +

𝜓(V)) and

⟨∇𝜑 (V) , V
1
⟩ = ⟨∇𝐽 (V + 𝜓 (V)) , V⟩ , ∀V, V

1
∈ 𝑋

−
; (27)

(iii) an element V ∈ 𝑋− is a critical point of 𝜑 if and only if
V + 𝜓(V) is a critical point of 𝐽.

Proposition 6 (see [25]). Assume that the assumptions of
Proposition 5 hold, then at any isolated critical point V of 𝜑 we
have

𝐶
𝑞
(𝜑, V) ≅ 𝐶

𝑞
(𝑓, 𝜓 (V)) , 𝑞 = 0, 1, 2, . . . . (28)

Proposition 7 (see [25]). Assume that the assumptions of
Proposition 5 hold, if there exists a compact mapping 𝑇 : 𝑋 →

𝑋 such that, for any 𝑢 ∈ 𝑋, we have ∇𝐽(𝑢) = 𝑢 − 𝑇(𝑢), then
we have 𝜑:

𝑖𝑛𝑑 (∇𝜑, V) = 𝑖𝑛𝑑 (∇𝐽, V + 𝜓 (V)) (29)

at any isolated critical point V of 𝜑.

4. Proof of Theorem

Consider the following 𝐶1 functional:

𝐼 (𝑥) =
1

2
𝑥
𝑇
𝐴𝑥 −

𝑀

∑

𝑛=1

𝐹 (𝑛, 𝑥
𝑛
) . (30)

As we know, the PS condition is an important part
of critical point theory. However, under our assumptions
(𝑓

1
)–(𝑓

3
), the functional 𝐼may not satisfy PS condition.Thus,

we cannot apply the Morse theory directly. But the truncated
functional 𝐼

±
does satisfy the PS condition. So we can obtain

two critical points of 𝐼 via mountain pass lemma; then we can
obtain other critical points by combing Morse theory with
Lyapunov-Schmidt reduction method.

At first, we consider the truncated problem
𝑘

∑

𝑖=1

𝑎
𝑖
(𝑥

𝑛−𝑖
+ 𝑥

𝑛+𝑖
) + 𝑓

+
(𝑥

𝑛
) = 0, 𝑛 ∈ Z, k ∈ N, (31)

where

𝑓
+
(𝑧) = {

𝑓 (𝑛, 𝑧) , 𝑧 ≥ 0,

0, 𝑧 < 0,
(32)

𝑘

∑

𝑖=1

𝑎
𝑖
(𝑥

𝑛−𝑖
+ 𝑥

𝑛+𝑖
) + 𝑓

−
(𝑥

𝑛
) = 0, 𝑛 ∈ Z, k ∈ N, (31)

󸀠

where

𝑓
− (𝑧) = {

𝑓 (𝑛, 𝑧) , 𝑧 ≤ 0,

0, 𝑧 > 0.
(33)

Then the functional 𝐼
+
: Z × R → R corresponding to

(31) can be written as

𝐼
+
(𝑥) =

1

2
𝑥
𝑇
𝐴𝑥 −

𝑀

∑

𝑛=1

𝐹
+
(𝑥

𝑛
) , (34)

where 𝐹
+
(𝑛, 𝑧) = ∫

𝑧

0
𝑓
+
(𝑛, 𝑠)d𝑠. Apparently, 𝐼

+
∈ 𝐶

1.
The functional 𝐼

−
: Z × R → R corresponding to (31)󸀠

can be written as

𝐼
−
(𝑥) =

1

2
𝑥
𝑇
𝐴𝑥 −

𝑀

∑

𝑛=1

𝐹
−
(𝑥

𝑛
) , (35)

where 𝐹
−
(𝑛, 𝑧) = ∫

𝑧

0
𝑓
−
(𝑛, 𝑠)d𝑠. Apparently, 𝐼

−
∈ 𝐶

1.
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We only consider the case of 𝐼
+
; the case of 𝐼

−
is similar

and omitted.
By (𝑓

1
), we know that

lim
𝑧→−∞

𝑓
+
(𝑧)

𝑧
= 0, lim

𝑧→+∞

𝑓
+
(𝑧)

𝑧
= 𝑓

∞
. (36)

Then there exist real number 𝜖 > 0 (small enough) and
𝐶
𝜖
> 0 such that

𝑓
+
(𝑧) = 𝑓

∞
𝑧 + 𝐶

𝜖
, if 𝑧 󳨀→ +∞. (37)

Lemma 8. Under the conditions of Theorem 1, the functional
𝐼
+
(𝑥) satisfies the 𝑃𝑆 condition.

Proof. Let {𝑥𝑞} ∈ 𝐸
𝑀
be such a sequence; that is, there exists

a positive constant𝑀
1
such that |𝐼

+
(𝑥

𝑞
)| ≤ 𝑀

1
, ∀𝑞 ∈ N, and

that |(𝐼󸀠
+
(𝑥

𝑞
), V)| → 0 as 𝑞 → +∞, ∀V ∈ 𝐸

𝑀
.

Therefore,

2𝑀
1
≥ 2𝐼

+
(𝑥

𝑞
) − (𝐼

󸀠

+
(𝑥

𝑞
) , 𝑥

𝑞
)

=

𝑀

∑

𝑛=1

[𝑓
+
(𝑥

𝑞

𝑛
) 𝑥

𝑞

𝑛
− 𝐹

+
(𝑥

𝑞

𝑛
)]

=

𝑀

∑

𝑛=1

[(𝑓
∞
(𝑥

𝑞

𝑛
)
2
+ 𝐶

𝜖
𝑥
𝑞

𝑛
) − (

1

2
𝑓
∞
(𝑥

𝑞

𝑛
)
2
+ 𝐶

𝜖
𝑥
𝑞

𝑛
+ 𝐶

𝜖
)]

=
1

2
𝑓
∞

󵄩󵄩󵄩󵄩𝑥
𝑞󵄩󵄩󵄩󵄩

2
− 𝐶

𝜖
𝑀.

(38)

That is, {𝑥𝑞} ∈ 𝐸
𝑀

is a bounded sequence in the finite
dimensional space 𝐸

𝑀
. Consequently, it has a convergent

subsequence. Thus, we obtain Lemma 8.
Let 𝑧+ = max(𝑧, 0), 𝑧− = max(−𝑧, 0), and 𝑧 = 𝑧+−𝑧−.

Lemma 9. If 𝑥 ∈ 𝐸
𝑀

is a local minimizer of 𝐼
+
, then 𝑥 must

be a local minimizer of 𝐼.

Proof. Let 𝑥 > 0 be a local minimizer of 𝐼
+
; then for any

sequence {𝑥𝑞} ⊂ 𝐸
𝑀
, 𝑥𝑞 → 𝑥 (𝑞 → ∞), for big enough

𝑞, we have 𝐼(𝑥𝑞) ≥ 𝐼(𝑥).
In fact,

𝐼 (𝑥
𝑞
) − 𝐼 (𝑥) = 𝐼 (𝑥

𝑞
) − 𝐼

+
(𝑥)

≥ 𝐼 (𝑥
𝑞
) − 𝐼

+
(𝑥

𝑞
)

=

𝑀

∑

𝑛=1

[𝐹
+
(𝑥

𝑞

𝑛
) − 𝐹 (𝑥

𝑞

𝑛
)]

= − ∑

𝑛∈Z(1,𝑀),𝑥
𝑞

𝑛<0

𝐹 (𝑥
𝑞

𝑛
) .

(39)

Because 𝑥𝑞 → 𝑥, 𝑥𝑞
𝑛
= (𝑥

𝑞

𝑛
)
+
− (𝑥

𝑞

𝑛
)
−, and 𝑥

𝑛
= (𝑥

𝑛
)
+
−

(𝑥
𝑛
)
−, so (𝑥𝑞

𝑛
)
+
→ (𝑥

𝑛
)
+
= 𝑥

𝑛
, −(𝑥𝑞

𝑛
)
−
→ 0

−.
For any 𝑛 ∈ Z(1,𝑀), if (𝑥𝑞

𝑛
)
−
= 0, then 𝐼(𝑥𝑞) = 𝐼(𝑥).

If −(𝑥𝑞
𝑛
)
−

→ 0
−, by (𝑓

1
), 𝑓(0) = 0, and 0 <

𝑓
󸀠
(𝑧) < 𝛾, then 𝑓(𝑧) < 0 for 𝑧 → 0

−. Therefore,
−∑

𝑛∈Z(1,𝑀),𝑥
𝑞

𝑛<0
𝐹(𝑥

𝑞

𝑛
) > 0; that is, 𝐼(𝑥𝑞) > 𝐼(𝑥).

The proof of Lemma 9 is complete.

It is easy to see that the zero function 0 is a localminimizer
of 𝐼

+
, and 𝐼

+
(𝑠𝜙

1
) → −∞ as 𝑠 → +∞, where 𝜙

1
is a first

eigenfunction corresponding to the first nonzero eigenvalue
of 𝐴. Thus, by the mountain pass lemma we obtain a critical
point 𝑥

+
of 𝐼

+
. However, it is true that 𝑥

+
is a critical point

of 𝐼 if 𝑥
+
is a critical point of 𝐼

+
; then we deduce that 𝑥

+
is a

critical point of 𝐼 with

𝐶
𝑞
(𝐼, 𝑥

+
) ≅ 𝛿

𝑞,1
𝐺, 𝑥

+
> 0 in 𝐸

𝑀
. (40)

Similarly, we obtain another critical point 𝑥
−
of 𝐼 and

𝐶
𝑞
(𝐼, 𝑥

−
) ≅ 𝛿

𝑞,1
𝐺, 𝑥

−
< 0 in 𝐸

𝑀
. (41)

Next we will prove that 𝐼 has two more nonzero critical
points.We decompose 𝐸

𝑀
= 𝑋

−
⊕𝑋

+ according to𝑓
∞
= 𝜆

𝑚
.

We set

𝑋
−
=

𝑚

⨁

𝑖=1

Ker (𝐴 − 𝜆
𝑖
𝐼) ,

𝑋
+
=

𝑀

⨁

𝑖=𝑚+1

Ker (𝐴 − 𝜆
𝑖
𝐼) ,

𝐸
𝑀
= 𝑋

−
⨁𝑋

+
.

(42)

Since 𝑓󸀠
(𝑧) ≤ 𝛾 < 𝜆

𝑚+1
, for any V ∈ 𝑋− and 𝑤

1
, 𝑤

2
∈ 𝑋

+,
we have

⟨∇𝐼 (𝑛, V + 𝑤
1
) − ∇𝐼 (𝑛, V + 𝑤

2
) , 𝑤

1
− 𝑤

2
⟩

≥ 𝛽
󵄩󵄩󵄩󵄩𝑤1

− 𝑤
2

󵄩󵄩󵄩󵄩
2
,

(43)

where 𝛽 = 1 − 𝛾𝜆
−1

𝑚+1
. Then, by Proposition 5, there exist a

continuous map 𝜓 : 𝑋
−
→ 𝑋

+ and a 𝐶1-functional 𝜑 :

𝑋
−
→ R such that

𝜑 (V) = 𝐼 (V + 𝜓 (V)) = min
𝑤∈𝑋
+

. (44)

We need to show that 𝜑 has at least five critical points.
Hence, we assume that 𝜑 has no critical value less than some
𝛼 ∈ R.

Lemma 10. Suppose that 𝑓 ∈ 𝐶
1
(R,R) satisfies (𝑓

1
)–(𝑓

3
),

then the functional 𝜑 is anticoercive.

Proof. According to (𝑓
3
), there exists 𝑅 > 0 such that

1

2
𝜆
𝑚
𝑧
2
− 𝐹 (𝑧) ≤ 0, |𝑧| ≥ 𝑅. (45)

Then, for any 𝑧 ∈ R, we have

1

2
𝜆
𝑚
𝑧
2
− 𝐹 (𝑧) ≤ 𝑇 = max

|𝑧|≤𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
𝜆
𝑚
𝑧
2
− 𝐹 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (46)

Assume that {V𝑡}∞
𝑡=1

is a sequence in𝑋− such that ‖V𝑡‖ → ∞.
Let 𝜉𝑡 = V𝑡/‖V𝑡‖, then ‖𝜉𝑡‖ = 1. Because of dim𝑋

−
< ∞, there

exist some 𝜉 ∈ 𝑋− such that, up to subsequence ‖𝜉𝑡−𝜉‖ → 0,
‖𝜉‖ = 1.
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In particular, 𝜉 ̸= 0, meas Θ = meas{𝑛 ∈ Z[1,𝑀] :

𝜉
𝑛
̸= 0} > 0. For 𝑛 ∈ Θ, |V𝑡

𝑛
| → ∞. Hence, by (𝑓

3
),

∑

𝑛∈Θ

(
1

2
𝜆
𝑚

󵄩󵄩󵄩󵄩󵄩
V𝑡
󵄩󵄩󵄩󵄩󵄩

2

− 𝐹 (V𝑡
𝑛
)) 󳨀→ −∞, as 𝑡 󳨀→ ∞. (47)

By the above discussion, we have

𝜑 (V𝑡) ≤ 𝐼 (V𝑡)

= −
1

2

𝑀

∑

𝑛=1

𝑘

∑

𝑖=1

𝑎
𝑖
(V𝑡

𝑛−𝑖
+ V𝑡

𝑛+𝑖
) V𝑡

𝑛
−

𝑀

∑

𝑛=1

𝐹 (V𝑡
𝑛
)

≤
1

2
𝜆
𝑚

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩
2
−

𝑀

∑

𝑛=1

𝐹 (V𝑡
𝑛
)

= ∑

𝑛∈Θ

[
1

2
𝜆
𝑚

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩
2
− 𝐹 (V𝑡

𝑛
)]

+ ∑

𝑛∈[1,𝑀]\Θ

[
1

2
𝜆
𝑚

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩
2
− 𝐹 (V𝑡

𝑛
)]

≤ ∑

𝑛∈Θ

[
1

2
𝜆
𝑚

󵄩󵄩󵄩󵄩󵄩
V𝑡
󵄩󵄩󵄩󵄩󵄩

2

− 𝐹 (V𝑡
𝑛
)] +𝑀𝑇

󳨀→ −∞.

(48)

This concludes the proof.

Because 𝜑 is anticoercive, we choose 𝑎 < 𝑏 < 𝛼 and 𝜌 >
𝑟 > 0 such that

𝐴
𝜌
⊂ 𝜑

𝑎
⊂ 𝐴

𝑟
⊂ 𝜑

𝑏
, (49)

where 𝐴
𝜌
= {V ∈ 𝑋−

: ‖V‖ ≥ 𝜌}. Since 𝜑 has no critical value
in [𝑎, 𝑏],𝐻

∗
(𝜑

𝑏
, 𝜑

𝑎
) = 0.

Thus, we have the following commutative diagram with
exact rows:

0 = Hq(𝜑b, 𝜑a)
Hq(X

−

(X
−

, 𝜑a)
i∗

Hq(X
−
, 𝜑b)

𝜕∗ Hq−1(𝜑b, 𝜑a) = 0

l∗

0 = Hq(Ar, A𝜌) Hq , A𝜌) Hq(X
−
, A )

k∗ 𝜕∗
Hq−1(Ar, A𝜌) = 0r

(50)

where all the homomorphisms except 𝜕
∗
are induced by

inclusions. The exactness of rows implies that 𝑖
∗
, 𝑘

∗
are

isomorphisms. Hence 𝑙
∗
: 𝐻

𝑞
(𝑋

−
, 𝜑

𝑎
) → 𝐻

𝑞
(𝑋

−
, 𝐴

𝑟
) is also

an isomorphism, and we get

𝐶
𝑞
(𝜑,∞) = 𝐻

𝑞
(𝑋

−
, 𝜑

𝑎
) ≅ 𝐻

𝑞
(𝑋

−
, 𝐴

𝑟
) = 𝛿

𝑞,𝑚
𝐺. (51)

Because the anticoercive functional 𝜑 is defined on the
𝑚-dimensional𝑋−, it has a critical point V, with

𝐶
𝑞
(𝜑, V) ≅ 𝛿

𝑞,𝑚
𝐺. (52)

Let 0, V
+
, V

−
be the projection of 0, 𝑥

+
, 𝑥

−
in 𝑋

−,
respectively.Then they are all critical points of 𝜑. By (11), (14),
and Proposition 6, and 0 is a local minimizer of 𝐼, we have

𝐶
𝑞
(𝜑, V

±
) ≅ 𝐶

𝑞
(𝐼, 𝑥

±
) ≅ 𝛿

𝑞,1
𝑄,

𝐶
𝑞
(𝜑, 0) ≅ 𝐶

𝑞 (𝐼, 0) ≅ 𝛿𝑞,0𝑄.

(53)

If 0, V
+
, V

−
, V are the only critical points of 𝜑, then by

Proposition 4 with 𝑡 = −1,

(−1)
0
+ 2 × (−1)

1
+ (−1)

𝑚
= (−1)

𝑚
. (54)

This is impossible. Thus 𝜑 has at least five critical points.
So 𝐼 also has five critical points, four of which are nonzero.
Therefore, (1) has at least four nontrivial solutions. This
completes the proof of Theorem 1.
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Weuse variationalmethods to investigate the solutions of damped impulsive differential equationswithmixed boundary conditions.
The conditions for the multiplicity of solutions are established. The main results are also demonstrated with examples.

1. Introduction

Impulsive effect exists widely in many evolution processes in
which their states are changed abruptly at certain moments
of time.The theory of impulsive differential systems has been
developed by numerous mathematicians [1–6]. Applications
of impulsive differential equations with or without delays
occur in biology, medicine, mechanics, engineering, chaos
theory, and so on [7–11].

In this paper, we consider the following second-order
damped impulsive differential equations with mixed bound-
ary conditions:

− 𝑢
󸀠󸀠
(𝑡) + 𝑔 (𝑡) 𝑢

󸀠
(𝑡) − 𝜆𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ̸= 𝑡
𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,

−Δ𝑢
󸀠
(𝑡
𝑗
) = 𝐼
𝑗
(𝑢 (𝑡
𝑗
)) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢
󸀠
(0) = 0, 𝑢 (𝑇) = 0,

(1)

where 0 = 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑛
< 𝑡
𝑛+1

= 𝑇, 𝑔 ∈ 𝐶[0, 𝑇],
𝑓 : [0, 𝑇] × 𝑅 → 𝑅 is continuous, 𝐼

𝑗
: 𝑅 → 𝑅, 𝑗 = 1, 2, . . . , 𝑛

are continuous, and Δ𝑢
󸀠
(𝑡
𝑗
) = 𝑢

󸀠
(𝑡
+

𝑗
) − 𝑢
󸀠
(𝑡
−

𝑗
) for 𝑢

󸀠
(𝑡
±

𝑗
) =

lim
𝑡→ 𝑡
±

𝑗

𝑢
󸀠
(𝑡), 𝑗 = 1, 2, . . . , 𝑛.

The characteristic of (1) is the presence of the damped
term 𝑔(𝑡)𝑢

󸀠. Most of the results concerning the existence
of solutions of these equations are obtained using upper
and lower solutions methods, coincidence degree theory,

and fixed point theorems [12–15]. On the other hand, when
there is no presence of the damped term, some researchers
have used variational methods to study the existence of
solutions for these problems [16–21]. However, to the best
of our knowledge, there are few papers concerned with the
existence of solutions for impulsive boundary value problems
like problem (1) by using variational methods.

For this nonlinear damped mixed boundary problem (1),
the variational structure due to the presence of the damped
term 𝑔(𝑡)𝑢

󸀠 is not apparent. However, inspired by the work
[22, 23], we will be able to transform it into a variational
formulation. In this paper, our aim is to study the existence
of 𝑛 distinct pairs of nontrivial solutions of problem (1). Our
main results extend the study made in [22, 23], in the sense
that we deal with a class of problems that is not considered in
those papers.

2. Preliminaries and Statements

Let 𝑚 = min
𝑡∈[0,𝑇]

𝑒
𝐺(𝑡), 𝑀 = max

𝑡∈[0,𝑇]
𝑒
𝐺(𝑡), 𝐺(𝑡) =

− ∫
𝑡

0
𝑔(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇]. We transform (1) into the following

equivalent form:

− (𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡))
󸀠

− 𝜆𝑒
𝐺(𝑡)

𝑢 (𝑡) = 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ̸= 𝑡
𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,
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−Δ𝑢
󸀠
(𝑡
𝑗
) = 𝐼
𝑗
(𝑢 (𝑡
𝑗
)) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢
󸀠
(0) = 0, 𝑢 (𝑇) = 0.

(2)

Obviously, the solutions of (2) are solutions of (1).
Define the space 𝑋 = {𝑢(𝑡) | 𝑢(𝑡) is absolutely

continuous on [0, 𝑇], 𝑢
󸀠
(⋅) ∈ 𝐿

2
[0, 𝑇], 𝑢(𝑇) = 0}. It is easy to

see that 𝐻1
0
(0, 𝑇) ⊂ 𝑋 ⊂ 𝐻

1
(0, 𝑇) and 𝑋 is a closed subset of

𝐻
1
(0, 𝑇). So𝑋 is a Hilbert space with the usual inner product

in𝐻
1
(0, 𝑇).

Consider the Hilbert spaces 𝑋 with the inner product

(𝑢, V) = ∫

𝑇

0

𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡) V󸀠 (𝑡) 𝑑𝑡, (3)

inducing the norm

‖𝑢‖ = (∫

𝑇

0

𝑒
𝐺(𝑡)󵄨󵄨󵄨󵄨󵄨

𝑢
󸀠
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡)

1/2

. (4)

We also consider the inner product

(𝑢, V) = ∫

𝑇

0

𝑢
󸀠
(𝑡) V󸀠 (𝑡) 𝑑𝑡, (5)

inducing the norm

‖𝑢‖𝑋 = (∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡)

1/2

. (6)

Consider the problem

−𝑢
󸀠󸀠
(𝑡) = 𝜆𝑢 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑢
󸀠
(0) = 0, 𝑢 (𝑇) = 0.

(7)

As is well known, (7) possesses a sequence of eigenvalues
(𝜆
𝑖
)(𝜆
𝑖
= [(2𝑖 − 1)𝜋/2𝑇]

2
) with

0 < 𝜆
1
< 𝜆
2
< ⋅ ⋅ ⋅ < 𝜆

𝑗
< ⋅ ⋅ ⋅ . (8)

The corresponding eigenfunctions are normalized so that
‖𝜑
𝑗
‖
𝑋

= 1 = 𝜆
𝑗
∫
𝑇

0
|𝜑
𝑗
(𝑡)|
2
𝑑𝑡; here

𝜑
𝑗
(𝑡) = √

2

𝑇𝜆
𝑗

cos (√𝜆
𝑗
𝑡) , 𝑗 = 1, 2, . . . . (9)

Now multiply (2) by V ∈ 𝑋 and integrate on the interval
[0, 𝑇]:

∫

𝑇

0

𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡) V󸀠 (𝑡) 𝑑𝑡 − 𝜆∫

𝑇

0

𝑒
𝐺(𝑡)

𝑢 (𝑡) V (𝑡) 𝑑𝑡

=

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗)𝐼
𝑗
(𝑢 (𝑡
𝑗
)) V (𝑡

𝑗
) + ∫

𝑇

0

𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢 (𝑡)) V (𝑡) 𝑑𝑡.

(10)

Then, a weak solution of (2) is a critical point of the following
functional:

𝐸 (𝑢) =
1

2
∫

𝑇

0

𝑒
𝐺(𝑡)󵄨󵄨󵄨󵄨󵄨

𝑢
󸀠
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 −
𝜆

2
∫

𝑇

0

𝑒
𝐺(𝑡)

|𝑢 (𝑡)|
2
𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝐼
𝑗 (𝑡) 𝑑𝑡 − ∫

𝑇

0

𝑒
𝐺(𝑡)

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡,

(11)

where 𝐹(𝑡, 𝑢) = ∫
𝑢

0
𝑓(𝑡, 𝜉)𝑑𝜉.

We say that 𝑢 ∈ 𝐶[0, 𝑇] is a classical solution of IBVP
(1) if it satisfies the following conditions: 𝑢 satisfies the
first equation of (1) a.e. on [0, 𝑇]; the limits 𝑢

󸀠
(𝑡
+

𝑗
), 𝑢
󸀠
(𝑡
−

𝑗
),

𝑗 = 1, 2, . . . , 𝑛, exist and impulsive condition of (1) holds; 𝑢
satisfies the boundary condition of (1).

Lemma1. If𝑢 ∈ 𝑋 is aweak solution of (1), then𝑢 is a classical
solution of (1).

Proof. If 𝑢 ∈ 𝑋 is a weak solution of (1), then 𝑢 is a weak
solution of (2), so (𝐸

󸀠
(𝑢), V) = 0 holds for all V ∈ 𝑋; that is,

∫

𝑇

0

[𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡) V󸀠 (𝑡) + 𝜆𝑒

𝐺(𝑡)
𝑢 (𝑡) V (𝑡)] 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗)𝐼
𝑗
(𝑢 (𝑡
𝑗
)) V (𝑡

𝑗
)

− ∫

𝑇

0

𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢 (𝑡)) V (𝑡) 𝑑𝑡 = 0.

(12)

By integrating by part, we have

∫

𝑇

0

[𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡) V󸀠 (𝑡) + 𝜆𝑒

𝐺(𝑡)
𝑢 (𝑡) V (𝑡)] 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗)𝐼
𝑗
(𝑢 (𝑡
𝑗
)) V (𝑡

𝑗
)

− ∫

𝑇

0

𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢 (𝑡)) V (𝑡) 𝑑𝑡

= ∫

𝑇

0

[−(𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡))
󸀠

+ 𝜆𝑒
𝐺(𝑡)

𝑢 (𝑡) − 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢 (𝑡))] V (𝑡) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) [Δ𝑢

󸀠
(𝑡
𝑗
) + 𝐼
𝑗
(𝑢 (𝑡
𝑗
))] V (𝑡

𝑗
)

− 𝑒
𝐺(0)

𝑢
󸀠
(0) V (0) + 𝑒

𝐺(𝑇)
𝑢
󸀠
(𝑇) V (𝑇)

= ∫

𝑇

0

[−(𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡))
󸀠

+ 𝜆𝑒
𝐺(𝑡)

𝑢 (𝑡) − 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢 (𝑡))] V (𝑡) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) [Δ𝑢

󸀠
(𝑡
𝑗
) + 𝐼
𝑗
(𝑢 (𝑡
𝑗
))] V (𝑡

𝑗
) − 𝑢
󸀠
(0) V (0) .

(13)
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Thus

∫

𝑇

0

[−(𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡))
󸀠

+ 𝜆𝑒
𝐺(𝑡)

𝑢 (𝑡) − 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢 (𝑡))] V (𝑡) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) [Δ𝑢

󸀠
(𝑡
𝑗
) + 𝐼
𝑗
(𝑢 (𝑡
𝑗
))] V (𝑡

𝑗
)

− 𝑢
󸀠
(0) V (0) = 0

(14)

holds for all V ∈ 𝑋. Without loss of generality, for any 𝑗 =

{1, 2, . . . , 𝑛} and V ∈ 𝑋 with V(𝑡) ≡ 0, for every 𝑡 ∈ [0, 𝑡
𝑗
] ∪

[𝑡
𝑗+1

, 𝑇], then substituting V into (14), we get

− (𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡))
󸀠

+ 𝜆𝑒
𝐺(𝑡)

𝑢 (𝑡) − 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢 (𝑡)) = 0,

𝑡 ∈ (𝑡
𝑗
, 𝑡
𝑗+1

) .

(15)

Hence 𝑢 satisfies the first equation of (2). Therefore, by (14)
we have

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) [Δ𝑢

󸀠
(𝑡
𝑗
) + 𝐼
𝑗
(𝑢 (𝑡
𝑗
))] V (𝑡

𝑗
) − 𝑢
󸀠
(0) V (0) = 0.

(16)

Next we will show that 𝑢 satisfies the impulsive and the
boundary condition in (2). If the impulsive condition in (2)
does not hold, without loss of generality, we assume that there
exists 𝑗 ∈ {1, 2, . . . , 𝑛} such that

Δ𝑢
󸀠
(𝑡
𝑗
) + 𝐼
𝑗
(𝑢 (𝑡
𝑗
)) ̸= 0. (17)

Let V(𝑡) = ∏
𝑛+1

𝑖=0,𝑖 ̸= 𝑗
(𝑡 − 𝑡
𝑖
); then

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) [Δ𝑢

󸀠
(𝑡
𝑗
) + 𝐼
𝑗
(𝑢 (𝑡
𝑗
))] V (𝑡

𝑗
) − 𝑢
󸀠
(0) V (0)

= −𝑒
𝐺(𝑡𝑗) [Δ𝑢

󸀠
(𝑡
𝑗
) + 𝐼
𝑗
(𝑢 (𝑡
𝑗
))] V (𝑡

𝑗
) ̸= 0,

(18)

which contradicts (16). So 𝑢 satisfies the impulsive condition
in (2) and (16) implies

𝑢
󸀠
(0) V (0) = 0. (19)

If 𝑢󸀠(0) ̸= 0, pick V(𝑡) = ∏
𝑛+1

𝑖=1
(𝑡 − 𝑡
𝑖
); one has

𝑢
󸀠
(0)

𝑛+1

∏

𝑖=1

(𝑡
0
− 𝑡
𝑖
) ̸= 0, (20)

which contradicts (19), so 𝑢 satisfies the boundary condition.
Therefore, 𝑢 is a solution of (1).

Lemma 2. Let 𝑢 ∈ 𝑋. Then there exists a constant 𝜎 > 0, such
that

‖𝑢‖∞ ≤ 𝜎 ‖𝑢‖ , (21)

where ‖𝑢‖
∞

= max
𝑡∈[0,𝑇]

|𝑢(𝑡)|.

Proof. By Hölder inequality, for 𝑢 ∈ 𝑋,

|𝑢 (𝑡)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑇) − ∫

𝑇

𝑡

𝑢
󸀠
(𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (∫

𝑇

0

1

𝑒𝐺(𝑠)
𝑑𝑠)

1/2

(∫

𝑇

0

𝑒
𝐺(𝑠)󵄨󵄨󵄨󵄨󵄨

𝑢
󸀠
(𝑠)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠)

1/2

≤ √
𝑇

𝑚
‖𝑢‖ = 𝜎 ‖𝑢‖ .

(22)

Lemma 3 (see [24, Theorem 9.1]). Let 𝐸 be a real Banach
space, 𝐼 ∈ 𝐶

1
(𝐸, 𝑅) with 𝐼 even, bounded from below, and

satisfying P.S. condition. Suppose 𝐼(0) = 0; there is a set𝐾 ⊂ 𝐸

such that 𝐾 is homeomorphic to 𝑆
𝑗−1 by an odd map and

sup
𝐾
𝐼 < 0. Then 𝐼 possesses at least 𝑗 distinct pairs of critical

points.

3. Main Results

Theorem 4. Suppose that the following conditions hold.

(H1) There exist 𝑢
1

> 0, 𝑟 > 𝑀𝜆
𝑘
/𝑚, 𝜆
𝑘
which is the kth

eigenvalue of (7) such that

𝑟𝑀𝑢
1
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
1
) = 0, 𝑟𝑀𝑢

1
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢) > 0

𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑢 ∈ (0, 𝑢
1
) .

(23)

(H2) There exist 𝑎
𝑗
, 𝑏
𝑗
> 0 and 𝑟

𝑗
∈ [0, 1) (𝑗 = 1, 2, . . . , 𝑛)

such that
󵄨󵄨󵄨󵄨󵄨
𝐼
𝑗
(𝑢)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑎
𝑗
+ 𝑏
𝑗|𝑢|
𝑟𝑗 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑢 ∈ 𝑅. (24)

(H3) 𝑓(𝑡, 𝑢) and 𝐼
𝑗
(𝑢) (𝑗 = 1, 2, . . . , 𝑛) are odd about 𝑢.

(H4) 𝑓(𝑡, 𝑢) = 𝑜(|𝑢|), 𝐼
𝑗
(𝑢) = 𝑜(|𝑢|), as |𝑢| → 0, 𝑗 =

1, 2, . . . , 𝑛.

Then, for 𝜆 ∈ (𝑀𝜆
𝑘
/𝑚, 𝑟], problem (1) has at least 𝑘 distinct

pairs of solutions.

Proof. Set

ℎ
1
(𝜆, 𝑡, 𝑢)=

{{{

{{{

{

𝜆𝑒
𝐺(𝑡)

𝑢 + 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢) 𝑢 ∈ [−𝑢
1
, 𝑢
1
] ,

𝜆𝑒
𝐺(𝑡)

𝑢
1
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
1
) , 𝑢 ∈ [𝑢

1
, +∞) ,

−𝜆𝑒
𝐺(𝑡)

𝑢
1
− 𝑒
𝐺(𝑡)

𝑓 (𝑡, −𝑢
1
) , 𝑢 ∈ (−∞, −𝑢

1
] .

(25)

Consider

− (𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡))
󸀠

= ℎ
1
(𝜆, 𝑡, 𝑢 (𝑡)) ,

𝑡 ̸= 𝑡
𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,

−Δ𝑢
󸀠
(𝑡
𝑗
) = 𝐼
𝑗
(𝑢 (𝑡
𝑗
)) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢
󸀠
(0) = 0, 𝑢 (𝑇) = 0.

(26)
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Next, we will verify that the solutions of problem (26) are
solutions of problem (1).

In fact, let 𝑢
0
(𝑡) be the solution of problem (26). If

max
0≤𝑡≤𝑇

𝑢
0
(𝑡) > 𝑢

1
, then there exists an interval [𝑎, 𝑏] ⊂

[0, 𝑇] such that

𝑢
0
(𝑎) = 𝑢

0
(𝑏) = 𝑢

1
, 𝑢
0
(𝑡) > 𝑢

1
for any 𝑡 ∈ (𝑎, 𝑏) .

(27)

When 𝑡 ∈ [𝑎, 𝑏], by (H1), we have

−(𝑒
𝐺(𝑡)

𝑢
󸀠

0
(𝑡))
󸀠

= ℎ
1
(𝜆, 𝑡, 𝑢)

= 𝜆𝑒
𝐺(𝑡)

𝑢
1
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
1
) ≤ 𝑟𝑀𝑢

1

+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
1
) = 0.

(28)

That is, 𝑒𝐺(𝑡)𝑢󸀠
0
(𝑡) is nondecreasing in [𝑎, 𝑏]. By 𝑢

󸀠

0
(𝑎) ≥ 0 and

𝑢
󸀠

0
(𝑏) ≤ 0, we have

0 ≤ 𝑒
𝐺(𝑡)

𝑢
󸀠

0
(𝑎) ≤ 𝑒

𝐺(𝑡)
𝑢
󸀠

0
(𝑡) ≤ 𝑒

𝐺(𝑡)
𝑢
󸀠

0
(𝑏) ≤ 0

for every 𝑡 ∈ [𝑎, 𝑏] .

(29)

That is, 𝑒𝐺(𝑡)𝑢󸀠
0
(𝑡) ≡ 0 for any 𝑡 ∈ [𝑎, 𝑏]. Since 𝑒

𝐺(𝑡)
̸= 0, then

𝑢
󸀠

0
(𝑡) ≡ 0. So, there exists a constant 𝜖 such that 𝑢

0
(𝑡) ≡ 𝜖,

which contradicts (27). Then max
0≤𝑡≤𝑇

𝑢
0
(𝑡) ≤ 𝑢

1
. Similarly,

we can prove that min
0≤𝑡≤𝑇

𝑢
0
(𝑡) > −𝑢

1
.

Therefore, any solution of (26) is a solution of (1). Hence
to prove Theorem 4, it suffices to produce at least 𝑘 distinct
pairs of critical points of

𝐸
1
(𝑢) =

1

2
∫

𝑇

0

𝑒
𝐺(𝑡)󵄨󵄨󵄨󵄨󵄨

𝑢
󸀠
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 − ∫

𝑇

0

𝐻
1
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝐼
𝑗
(𝑡) 𝑑𝑡,

(30)

where𝐻
1
(𝜆, 𝑡, 𝑢(𝑡)) = ∫

𝑢

0
ℎ
1
(𝜆, 𝑡, 𝑠)𝑑𝑠.

We will apply Lemma 3 to finish the proof.
By (30) and (H3), 𝐸

1
∈ 𝐶
󸀠
(𝑋, 𝑅) is even and 𝐸

1
(0) = 0.

Next, we will show that 𝐸
1
is bounded from below.

Let 𝐶
1
= max{𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
}, 𝐶
2
= max{𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
}. By

(H1) and (H3), we have 𝑢ℎ
1
(𝜆, 𝑡, 𝑢(𝑡)) ≤ 0 for |𝑢| ≥ 𝑢

1
; thus

∫

𝑇

0

𝐻
1 (𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡 = ∫

𝑇

0

∫

𝑢(𝑡)

0

ℎ
1 (𝜆, 𝑡, 𝑠) 𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

0

∫

𝑢1

0

ℎ
1 (𝜆, 𝑡, 𝑠) 𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

0

∫

𝑢1

0

[𝑟𝑀𝑠 + 𝑓 (𝑡, 𝑠)] 𝑑𝑠 𝑑𝑡 = 𝜌 > 0.

(31)

So, we have

𝐸
1
(𝑢) =

1

2
‖𝑢‖
2
− ∫

𝑇

0

𝐻
1
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝐼
𝑗
(𝑡) 𝑑𝑡

≥
1

2
‖𝑢‖
2
− 𝜌 − 𝑛𝜎𝐶

1
𝑀‖𝑢‖ − 𝐶

2
𝑀

𝑛

∑

𝑗=1

𝜎
𝑟𝑗+1‖𝑢‖

𝑟𝑗+1

> −∞,

(32)

for any 𝑢 ∈ 𝑋. Therefore, 𝐸
1
is bounded from below.

In the following we will show that 𝐸
1
satisfies the P.S.

condition. Let {𝑢
𝑘
} ⊂ 𝑋 such that {𝐸

1
(𝑢
𝑘
)} is a bounded

sequence and lim
𝑘→∞

𝐸
󸀠

1
(𝑢
𝑘
) = 0; then there exists 𝐶

3
> 0

such that
󵄨󵄨󵄨󵄨𝐸1 (𝑢𝑘)

󵄨󵄨󵄨󵄨 ≤ 𝐶
3
. (33)

By (32), we have

1

2

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩
2
≤ 𝐶
3
+ 𝜌 + 𝑛𝜎𝐶

1
𝑀

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

+ 𝐶
2
𝑀

𝑛

∑

𝑗=1

𝜎
𝑟𝑗+1‖𝑢‖

𝑟𝑗+1.

(34)

So {𝑢
𝑘
} is bounded in 𝑋. From the reflexivity of 𝑋, we may

extract a weakly convergent subsequence that, for simplicity,
we call {𝑢

𝑘
}, 𝑢
𝑘
⇀ 𝑢 in𝑋. In the following we will verify that

{𝑢
𝑘
} strongly converges to 𝑢:

(𝐸
󸀠

1
(𝑢
𝑘
) − 𝐸
󸀠

1
(𝑢)) (𝑢

𝑘
− 𝑢)

=
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢

󵄩󵄩󵄩󵄩
2
− ∫

𝑇

0

[ℎ
1
(𝜆, 𝑡, 𝑢

𝑘
(𝑡)) − ℎ

1
(𝜆, 𝑡, 𝑢 (𝑡))]

× (𝑢
𝑘
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡

+

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) [𝐼

𝑗
(𝑢
𝑘
(𝑡
𝑗
)) − 𝐼

𝑗
(𝑢 (𝑡
𝑗
))]

× (𝑢
𝑘
(𝑡
𝑗
) − 𝑢 (𝑡

𝑗
)) .

(35)

By 𝑢
𝑘
⇀ 𝑢 in𝑋, we see that {𝑢

𝑘
} uniformly converges to 𝑢 in

𝐶[0, 𝑇]. So

∫

𝑇

0

[ℎ
1
(𝜆, 𝑡, 𝑢

𝑘
(𝑡)) − ℎ

1
(𝜆, 𝑡, 𝑢 (𝑡))]

× (𝑢
𝑘
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡 󳨀→ 0,

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) [𝐼

𝑗
(𝑢
𝑘
(𝑡
𝑗
)) − 𝐼

𝑗
(𝑢 (𝑡
𝑗
))]

× (𝑢
𝑘
(𝑡
𝑗
) − 𝑢 (𝑡

𝑗
)) 󳨀→ 0,

(𝐸
󸀠

1
(𝑢
𝑘
) − 𝐸
󸀠

1
(𝑢)) (𝑢

𝑘
− 𝑢) 󳨀→ 0, as 𝑘 󳨀→ +∞.

(36)
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Sowe obtain ‖𝑢
𝑘
−𝑢‖ → 0, as 𝑘 → +∞.That is, {𝑢

𝑘
} strongly

converges to 𝑢 in 𝑋, which means that 𝐸
1
satisfies the P.S.

condition.
Now set𝐾 = {∑

𝑘

𝑖=1
𝑐
𝑖
𝜑
𝑖
: ∑
𝑘

𝑖=1
𝑐
2

𝑖
= 𝑐
2
}, where 𝜑

𝑖
is defined

in (9). It is clear that 𝐾 is homeomorphic to 𝑆
𝑘−1 by an odd

map for any 𝑐 > 0. In the following we verify that 𝐸
1
|
𝐾

< 0 if
𝑐 is sufficiently small.

For any 𝑢 ∈ 𝐾, 𝑢 = ∑
𝑘

𝑖=1
𝑐
𝑖
𝜑
𝑖
. By (H4) and (30), we have

𝐸
1
(𝑢) =

1

2
∫

𝑇

0

𝑒
𝐺(𝑡)[

[

(

𝑘

∑

𝑖=1

𝑐
𝑖
𝜑
𝑖
(𝑡))

󸀠

]

]

2

𝑑𝑡

− ∫

𝑇

0

𝐻
1 (𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝐼
𝑗
(𝑡) 𝑑𝑡

=
1

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
∫

𝑇

0

𝑒
𝐺(𝑡)

[𝜑
󸀠

𝑖
(𝑡)]
2

𝑑𝑡

−
𝜆

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
∫

𝑇

0

𝑒
𝐺(𝑡)

[𝜑
𝑖
(𝑡)]
2
𝑑𝑡

− ∫

𝑇

0

𝑒
𝐺(𝑡)

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝐼
𝑗
(𝑡) 𝑑𝑡

≤
𝑀

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
∫

𝑇

0

[𝜑
󸀠

𝑖
(𝑡)]
2

𝑑𝑡

−
𝑚𝜆

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
∫

𝑇

0

[𝜑
𝑖 (𝑡)]
2
𝑑𝑡

− ∫

𝑇

0

𝑒
𝐺(𝑡)

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡 −

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝐼
𝑗 (𝑡) 𝑑𝑡

=
1

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
(𝑀 −

𝑚𝜆

𝜆
𝑖

) − ∫

𝑇

0

𝑒
𝐺(𝑡)

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝐼
𝑗 (𝑡) 𝑑𝑡

≤
1

2
(𝑀 −

𝑚𝜆

𝜆
𝑘

) 𝑐
2
+ 𝑜 (𝑐

2
) + 𝑜 (𝑐

2
) ,

(37)

for small 𝑐 > 0. Since 𝜆 ∈ (𝑀𝜆
𝑘
/𝑚, 𝑟], 𝐸

1
(𝑢) < 0 and the

proof is complete.

Theorem 5. Suppose that the following conditions hold.

(H1) There exist 𝑢
1

> 0, 𝑟 > 𝑀𝜆
𝑘
/𝑚, 𝜆
𝑘
which is the kth

eigenvalue of (7) such that

𝑟𝑀𝑢
1
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
1
) = 0, 𝑟𝑀𝑢

1
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢) > 0

𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑢 ∈ (0, 𝑢
1
) .

(38)

(H2) ∫
𝑢

0
𝐼
𝑗
(𝑠)𝑑𝑠 ≤ 0 for any 𝑢 ∈ 𝑅 (𝑗 = 1, 2, . . . , 𝑛).

(H3) 𝑓(𝑡, 𝑢) and 𝐼
𝑗
(𝑢) (𝑗 = 1, 2, . . . , 𝑛) are odd about 𝑢.

(H4) 𝑓(𝑡, 𝑢) = 𝑜(|𝑢|), 𝐼
𝑗
(𝑢) = 𝑜(|𝑢|), as |𝑢| → 0, 𝑗 =

1, 2, . . . , 𝑛.

Then, for 𝜆 ∈ (𝑀𝜆
𝑘
/𝑚, 𝑟], problem (1) has at least 𝑘 distinct

pairs of solutions.

Proof. The proof is similar to the proof of Theorem 4, and
therefore we omit it.

Theorem 6. Suppose that the following conditions hold.

(H1) There exist 𝑢
2

> 0, 𝑟 > 𝑀𝜆
𝑘
/𝑚, 𝜆
𝑘
which is the kth

eigenvalue of (7) such that

𝑟𝑀𝑢
2
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
2
) ≤ 0, 𝐼

𝑗
(𝑢
2
) ≤ 0,

𝑗 = 1, 2, . . . , 𝑛.

(39)

(H2) 𝑓(𝑡, 𝑢) and 𝐼
𝑗
(𝑢) (𝑗 = 1, 2, . . . , 𝑛) are odd about 𝑢.

(H3) 𝑓(𝑡, 𝑢) = 𝑜(|𝑢|), 𝐼
𝑗
(𝑢) = 𝑜(|𝑢|), as |𝑢| → 0, 𝑗 =

1, 2, . . . , 𝑛.

Then, for 𝜆 ∈ (𝑀𝜆
𝑘
/𝑚, 𝑟], problem (1) has at least 𝑘 distinct

pairs of solutions.

Proof. Set

ℎ
2 (𝜆, 𝑡, 𝑢)=

{{{

{{{

{

𝜆𝑒
𝐺(𝑡)

𝑢 + 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢) , 𝑢 ∈ [−𝑢
2
, 𝑢
2
] ,

𝜆𝑒
𝐺(𝑡)

𝑢
2
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
2
) , 𝑢 ∈ [𝑢

2
, +∞) ,

−𝜆𝑒
𝐺(𝑡)

𝑢
2
− 𝑒
𝐺(𝑡)

𝑓 (𝑡, −𝑢
2
) , 𝑢 ∈ (−∞, −𝑢

2
] ,

𝑇
𝑗
(𝑢) =

{{{

{{{

{

𝐼
𝑗 (𝑢) , 𝑢 ∈ [−𝑢

2
, 𝑢
2
] ,

𝐼
𝑗
(𝑢
2
) , 𝑢 ∈ [𝑢

2
, +∞) ,

𝐼
𝑗
(−𝑢
2
) , 𝑢 ∈ (−∞, −𝑢

2
] .

(40)

Consider

− (𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡))
󸀠

= ℎ
2
(𝜆, 𝑡, 𝑢 (𝑡)) ,

𝑡 ̸= 𝑡
𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,

−Δ𝑢
󸀠
(𝑡
𝑗
) = 𝑇
𝑗
(𝑢 (𝑡
𝑗
)) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢
󸀠
(0) = 0, 𝑢 (𝑇) = 0.

(41)

Next, we will verify that the solutions of problem (41) are
solutions of problem (1).
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In fact, let 𝜔
1
= {𝑡 ∈ (𝑎

1
, 𝑏
1
) ⊆ [0, 𝑇] : 𝑢(𝑡) > 𝑢

2
}. By the

definitions of ℎ
2
(𝜆, 𝑡, 𝑢) and 𝑇

𝑗
(𝑢), (41) is reduced to

− (𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡))
󸀠

= ℎ
2
(𝜆, 𝑡, 𝑢

2
) = 𝜆𝑒

𝐺(𝑡)
𝑢
2
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
2
)

≤ 𝑟𝑀𝑢
2
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
2
) ≤ 0, 𝑡 ̸= 𝑡

𝑗
, a.e. 𝑡 ∈ (𝑎

1
, 𝑏
1
) ,

−Δ𝑢
󸀠
(𝑡
𝑗
) = 𝑇
𝑗
(𝑢 (𝑡
𝑗
)) = 𝐼

𝑗
(𝑢
2
) ≤ 0, 𝑗 = 1, 2, . . . , 𝑛,

𝑢 (𝑎
1
) = 𝑢 (𝑏

1
) = 𝑢
2
.

(42)

The solution 𝑢(𝑡) of (42) satisfies 𝑢(𝑡) ≤ 𝑢
2
, 𝑡 ∈ (𝑎

1
, 𝑏
1
). So

𝜔
1
= 0 and 𝑢(𝑡) ≤ 𝑢

2
.

Let 𝜔
2

= {𝑡 ∈ (𝑎
2
, 𝑏
2
) ⊆ [0, 𝑇] : 𝑢(𝑡) < −𝑢

2
}. By the

definitions of ℎ
2
(𝜆, 𝑡, 𝑢) and 𝑇

𝑗
(𝑢), (41) is reduced to

−(𝑒
𝐺(𝑡)

𝑢
󸀠
(𝑡))
󸀠

= ℎ
2
(𝜆, 𝑡, −𝑢

2
) = −𝜆𝑒

𝐺(𝑡)
𝑢
2
+ 𝑒
𝐺(𝑡)

𝑓 (𝑡, −𝑢
2
)

≥ −𝑟𝑀𝑢
2
− 𝑒
𝐺(𝑡)

𝑓 (𝑡, 𝑢
2
) ≥ 0,

𝑡 ̸= 𝑡
𝑗
, a.e. 𝑡 ∈ (𝑎

2
, 𝑏
2
) ,

−Δ𝑢
󸀠
(𝑡
𝑗
) = 𝑇
𝑗
(𝑢 (𝑡
𝑗
)) = −𝐼

𝑗
(𝑢
2
) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

𝑢 (𝑎
2
) = 𝑢 (𝑏

2
) = −𝑢

2
.

(43)

The solution 𝑢(𝑡) of (43) satisfies 𝑢(𝑡) ≥ −𝑢
2
, 𝑡 ∈ (𝑎

2
, 𝑏
2
). So

𝜔
2
= 0 and 𝑢(𝑡) ≥ −𝑢

2
.

Therefore, the solutions of (41) are solutions of (1). Hence
to prove Theorem 6, it suffices to produce at least 𝑘 distinct
pairs of critical points of

𝐸
2
(𝑢) =

1

2
∫

𝑇

0

𝑒
𝐺(𝑡)󵄨󵄨󵄨󵄨󵄨

𝑢
󸀠
(𝑡)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡 − ∫

𝑇

0

𝐻
2
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝑇
𝑗 (𝑡) 𝑑𝑡,

(44)

where𝐻
2
(𝜆, 𝑡, 𝑢(𝑡)) = ∫

𝑢

0
ℎ
2
(𝜆, 𝑡, 𝑠)𝑑𝑠.

We will apply Lemma 3 to finish the proof.
By (44) and (H2), 𝐸

2
∈ 𝐶
󸀠
(𝑋, 𝑅) is even and 𝐸

2
(0) = 0.

Next, we will show that 𝐸
2
is bounded from below.

By (H1) and (H2), we have 𝑢ℎ
2
(𝜆, 𝑡, 𝑢(𝑡)) ≤ 0 and

𝑢𝑇
𝑗
(𝑢) ≤ 0 for |𝑢| ≥ 𝑢

2
; thus

∫

𝑇

0

𝐻
2
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡 = ∫

𝑇

0

∫

𝑢(𝑡)

0

ℎ
2
(𝜆, 𝑡, 𝑠) 𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

0

∫

𝑢2

0

ℎ
2
(𝜆, 𝑡, 𝑠) 𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

0

∫

𝑢2

0

[𝑟𝑀𝑠 + 𝑓 (𝑡, 𝑠)] 𝑑𝑠 𝑑𝑡 = 𝜌 > 0,

∫

𝑢(𝑡𝑗)

0

𝑇
𝑗
(𝑡) 𝑑𝑡 ≤ ∫

𝑢2

0

𝑇
𝑗
(𝑡) 𝑑𝑡 = 𝛿 > 0.

(45)

So, we have

𝐸
2
(𝑢) =

1

2
‖𝑢‖
2
− ∫

𝑇

0

𝐻
2
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝑇
𝑗 (𝑡) 𝑑𝑡

≥
1

2
‖𝑢‖
2
− 𝜌 − 𝑛𝑀𝛿

> −∞,

(46)

for any 𝑢 ∈ 𝑋. Therefore, 𝐸
2
is bounded from below.

In the following we will show that 𝐸
2
satisfies the P.S.

condition. Let {𝑢
𝑘
} ⊂ 𝑋 such that {𝐸

2
(𝑢
𝑘
)} is a bounded

sequence and lim
𝑘→∞

𝐸
󸀠

2
(𝑢
𝑘
) = 0; then there exists 𝐶

4
> 0

such that
󵄨󵄨󵄨󵄨𝐸2 (𝑢𝑘)

󵄨󵄨󵄨󵄨 ≤ 𝐶
4
. (47)

By (46), we have

1

2

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩
2
≤ 𝐶
4
+ 𝜌 + 𝑛𝑀𝛿. (48)

So {𝑢
𝑘
} is bounded in 𝑋. From the reflexivity of 𝑋, we may

extract a weakly convergent subsequence that, for simplicity,
we call {𝑢

𝑘
}, 𝑢
𝑘
⇀ 𝑢 in𝑋. In the following we will verify that

{𝑢
𝑘
} strongly converges to 𝑢:

(𝐸
󸀠

2
(𝑢
𝑘
) − 𝐸
󸀠

2
(𝑢)) (𝑢𝑘 − 𝑢)

=
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢

󵄩󵄩󵄩󵄩
2
− ∫

𝑇

0

[ℎ
2
(𝜆, 𝑡, 𝑢

𝑘 (𝑡)) − ℎ
2 (𝜆, 𝑡, 𝑢 (𝑡))]

× (𝑢
𝑘 (𝑡) − 𝑢 (𝑡)) 𝑑𝑡

+

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) [𝑇

𝑗
(𝑢
𝑘
(𝑡
𝑗
)) − 𝑇

𝑗
(𝑢 (𝑡
𝑗
))]

× (𝑢
𝑘
(𝑡
𝑗
) − 𝑢 (𝑡

𝑗
)) .

(49)

By 𝑢
𝑘
⇀ 𝑢 in𝑋, we see that {𝑢

𝑘
} uniformly converges to 𝑢 in

𝐶[0, 𝑇]. So

∫

𝑇

0

[ℎ
2
(𝜆, 𝑡, 𝑢

𝑘
(𝑡)) − ℎ

2
(𝜆, 𝑡, 𝑢 (𝑡))] (𝑢

𝑘
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡 󳨀→ 0,

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) [𝑇

𝑗
(𝑢
𝑘
(𝑡
𝑗
)) − 𝑇

𝑗
(𝑢 (𝑡
𝑗
))] (𝑢

𝑘
(𝑡
𝑗
) − 𝑢 (𝑡

𝑗
)) 󳨀→ 0,

(𝐸
󸀠

2
(𝑢
𝑘
) − 𝐸
󸀠

2
(𝑢)) (𝑢

𝑘
− 𝑢) → 0, as 𝑘 󳨀→ +∞.

(50)

So we obtain ‖𝑢
𝑘
− 𝑢‖ → 0, as 𝑘 → +∞. That is, {𝑢

𝑘
}

strongly converges to 𝑢 in𝑋, whichmeans 𝐸
2
satisfies the P.S.

condition.
Now set𝐾 = {∑

𝑘

𝑖=1
𝑐
𝑖
𝜑
𝑖
: ∑
𝑘

𝑖=1
𝑐
2

𝑖
= 𝑐
2
}, where 𝜑

𝑖
is defined

in (9). It is clear that 𝐾 is homeomorphic to 𝑆
𝑘−1 by an odd
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map for any 𝑐 > 0. In the following we verify that 𝐸
2
|
𝐾

< 0 if
𝑐 is sufficiently small.

For any 𝑢 ∈ 𝐾, 𝑢 = ∑
𝑘

𝑖=1
𝑐
𝑖
𝜑
𝑖
. By (H3) and (44), we have

𝐸
2
(𝑢) =

1

2
∫

𝑇

0

𝑒
𝐺(𝑡)[

[

(

𝑘

∑

𝑖=1

𝑐
𝑖
𝜑
𝑖
(𝑡))

󸀠

]

]

2

𝑑𝑡

− ∫

𝑇

0

𝐻
2
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝑇
𝑗
(𝑡) 𝑑𝑡

=
1

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
∫

𝑇

0

𝑒
𝐺(𝑡)

[𝜑
󸀠

𝑖
(𝑡)]
2

𝑑𝑡

−
𝜆

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
∫

𝑇

0

𝑒
𝐺(𝑡)

[𝜑
𝑖
(𝑡)]
2
𝑑𝑡

− ∫

𝑇

0

𝑒
𝐺(𝑡)

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝑇
𝑗
(𝑡) 𝑑𝑡

≤
𝑀

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
∫

𝑇

0

[𝜑
󸀠

𝑖
(𝑡)]
2

𝑑𝑡−
𝑚𝜆

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
∫

𝑇

0

[𝜑
𝑖
(𝑡)]
2
𝑑𝑡

−∫

𝑇

0

𝑒
𝐺(𝑡)

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡 −

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝑇
𝑗
(𝑡) 𝑑𝑡

=
1

2

𝑘

∑

𝑖=1

𝑐
2

𝑖
(𝑀 −

𝑚𝜆

𝜆
𝑖

)− ∫

𝑇

0

𝑒
𝐺(𝑡)

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒
𝐺(𝑡𝑗) ∫

𝑢(𝑡𝑗)

0

𝑇
𝑗 (𝑡) 𝑑𝑡

≤
1

2
(𝑀 −

𝑚𝜆

𝜆
𝑘

) 𝑐
2
+ 𝑜 (𝑐

2
) + 𝑜 (𝑐

2
) ,

(51)

for small 𝑐 > 0. Since 𝜆 ∈ (𝑀𝜆
𝑘
/𝑚, 𝑟], 𝐸

2
(𝑢) < 0 and the

proof is complete.

4. Example

To illustrate how our main results can be used in practice we
present the following example.

Example 1. Let 𝑇 = 𝜋/4, 𝑔(𝑡) = −2𝑡, and consider the
following problem:

− 𝑢
󸀠󸀠
(𝑡) − 2𝑡𝑢

󸀠
(𝑡) − 𝜆𝑢 (𝑡)

= (1 + 𝑡) (𝑢 − 𝑢
2
) − 1000𝑒

(𝜋
2
/16)−𝑡

2

, 𝑡 ∈ [0,
𝜋

4
] , 𝑡 ̸= 𝑡

𝑗
,

−Δ𝑢
󸀠
(𝑡
𝑗
) = 2 −

3√𝑢 (𝑡
𝑗
), 𝑗 = 1, 2, . . . , 𝑛,

𝑢
󸀠
(0) = 0, 𝑢 (

𝜋

4
) = 0.

(52)

Compared with (1), 𝑓(𝑡, 𝑢) = (1 + 𝑡)(𝑢 − 𝑢
2
) −

1000𝑒
(𝜋
2
/16)−𝑡

2

, 𝐼
𝑗
(𝑢) = 2 −

3√𝑢(𝑡). Obviously (H2), (H3),
and (H4) are satisfied. Let 𝑢

1
= 1, 𝑟 = 1000; then (H1) is

satisfied. By Theorem 4, for (𝑀𝜆
𝑘
/𝑚, 1000] = (4𝑒

𝜋
2
/16

(2𝑘 −

1)
2
𝜋
2
, 1000], 𝑘 = 1, 2, problem (1) has at least 𝑘 distinct pairs

of solutions.

Example 2. Let 𝑇 = 𝜋/2, 𝑔(𝑡) = −𝑡/4, and consider the
following problem:

− 𝑢
󸀠󸀠
(𝑡) −

𝑡

4
𝑢
󸀠
(𝑡) − 𝜆𝑢 (𝑡)

= (1 + 𝑡
2
) (2𝑢 − 𝑢

2
) − 1000𝑒

(𝜋
2
/32)−𝑡

2

,

𝑡 ∈ [0,
𝜋

2
] , 𝑡 ̸= 𝑡

𝑗
,

−Δ𝑢
󸀠
(𝑡
𝑗
) = −𝑢 (𝑡

𝑗
) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢
󸀠
(0) = 0, 𝑢 (

𝜋

2
) = 0.

(53)

Compared with (1), 𝑓(𝑡, 𝑢) = (1 + 𝑡
2
)(2𝑢 − 𝑢

2
) −

1000𝑒
(𝜋
2
/32)−𝑡

2

, 𝐼
𝑗
(𝑢) = −𝑢(𝑡

𝑗
). Obviously (H2), (H3), and

(H4) are satisfied. Let 𝑢
1
= 2, 𝑟 = 500; then (H1) is satisfied.

By Theorem 5, for (𝑀𝜆
𝑘
/𝑚, 500] = (𝑒

𝜋
2
/32

(2𝑘 − 1)
2
𝜋
2
, 500],

𝑘 = 1, 2, 3, 4, problem (53) has at least 𝑘 distinct pairs of
solutions.

Example 3. Let 𝑇 = 𝜋/2, 𝑔(𝑡) = −𝑡/2, and consider the
following problem:

− 𝑢
󸀠󸀠
(𝑡) −

𝑡

2
𝑢
󸀠
(𝑡) − 𝜆𝑢 (𝑡)

= −𝑒
𝜋
2
/16

(1 + 𝑡
2
) 𝑢
3
(𝑡) , 𝑡 ∈ [0,

𝜋

2
] , 𝑡 ̸= 𝑡

𝑗
,

−Δ𝑢
󸀠
(𝑡
𝑗
) = −3𝑢

3
(𝑡
𝑗
) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢
󸀠
(0) = 0, 𝑢 (

𝜋

2
) = 0.

(54)

Compared with (1), 𝑓(𝑡, 𝑢) = −𝑒
𝜋
2
/16

(1 + 𝑡
2
)𝑢
3
(𝑡), 𝐼
𝑗
(𝑢) =

−3𝑢
3
(𝑡
𝑗
). Obviously (H2) and (H3) are satisfied. Let 𝑢

2
=

25, 𝑟 = 625; then (H1) is satisfied. By Theorem 6, for
(𝑀𝜆
𝑘
/𝑚, 625] = (𝑒

𝜋
2
/16

(2𝑘 − 1)
2
𝜋
2
, 625], 𝑘 = 1, 2, 3, problem

(54) has at least 𝑘 distinct pairs of solutions.
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Using the critical point theory, we establish sufficient conditions on the existence of ground states for discrete 𝑝(𝑘)-Laplacian
systems. Our results considerably generalize some existing ones.

1. Introduction and Main Results

The aim of this paper is to study the existence of ground state
for discrete 𝑝(𝑘)-Laplacian system

Δ [𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|
𝑝(𝑘)−2

Δ𝑢 (𝑘 − 1)]

−𝑞 (𝑘) |𝑢 (𝑘)|
𝑝(𝑘)−2

𝑢 (𝑘) + 𝑓 (𝑘, 𝑢 (𝑘)) = 0,

(1)

where 𝑝(𝑘) > 1, for all 𝑘 ∈ 𝑍, 𝑎(𝑘) and 𝑞(𝑘) are real valued
on 𝑍. 𝑓 : 𝑍 × 𝑅 → 𝑅 is continuous in the second variable.
Moreover, Δ is the forward difference operator defined by
Δ𝑢(𝑘) = 𝑢(𝑘 + 1) − 𝑢(𝑘).

We may think of (1) as being a discrete analogue of the
following differential system:

𝑑

𝑑𝑡
(𝑎 (𝑡) | ̇𝑢 (𝑡)|

𝑝(𝑡)−2
̇𝑢 (𝑡))

− 𝑞 (𝑡) |𝑢 (𝑡)|
𝑝(𝑡)−2

𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0.

(2)

For the case 𝑝(𝑡) ≡ 𝑝, system (2) is a 𝑝-Laplacian
system, which has been widely studied; to mention a few, see
[1, 2]. Even for the special case 𝑝 = 2, system (2) can be
regarded as themore general formof Emden-Fowler equation
appearing in the study of astrophysics, fluid mechanics,
gas dynamics, nuclear physics, relativistic mechanics, and
chemically reacting system in terms of various special forms

of 𝑓(𝑡, 𝑢(𝑡)) (see, e.g., [3]). The more general differential
operator (2), namely, the so-called 𝑝(𝑡)-Laplacian, has been
studied by Fan et al. [4–7]. The 𝑝(𝑡)-Laplacian operator can
be used to describe the physical phenomena with “pointwise
different properties.” The 𝑝(𝑡)-Laplacian operator has more
complicated properties than that of the 𝑝-Laplacian; for
example, it is not homogeneous, and this makes some classic
theories and methods, such as the theory of Sobolev spaces,
not applicable.

With the theory of nonlinear discrete dynamical systems
beingwidely used to study discretemodels appearing inmany
fields such as economics, ecology, computer science, neural
networks, and cybernetics [8], the existence of solutions
of discrete dynamical systems has become a hot topic; to
mention a few, see [9–15]. For the case 𝑝(𝑘) ≡ 𝑝, Iannizzotto
and Tersian [16] obtained multiple homoclinic solutions
for system (1) by using the critical point theorem, and for
the special case 𝑝 = 2, Ma and Guo [13, 14] provided
some sufficient conditions on the existence of homoclinic
solutions for system (1). For the more general case—𝑝(𝑘)-
Laplacian system (1)—Chen et al. [17] established some
existence criteria to guarantee that the system has at least one
or infinitely many homoclinic orbits. Motivated by Liu [2],
which discussed the existence of ground state for𝑝-Laplacian
system, in this paper, we will consider the existence of ground
state for the 𝑝(𝑘)-Laplacian system (1).

Now we are in a position to state our main results.

Hindawi Publishing Corporation
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Theorem 1. Assume the following conditions hold:

(a) 𝑎(𝑘) > 0 for all 𝑘 ∈ 𝑍,
(q) 𝑞(𝑘) > 0 for all 𝑘 ∈ 𝑍 and 𝑞(𝑘) → +∞ as |𝑘| → +∞,
(p) 1 < 𝑝− = inf

𝑘∈𝑍
𝑝(𝑘) ≤ sup

𝑘∈𝑍
𝑝(𝑘) = 𝑝

+
< +∞ for

all 𝑘 ∈ 𝑍,
(f) 𝑓(𝑘, 𝑢) = 𝑓

1
(𝑘, 𝑢) − 𝑓

2
(𝑘, 𝑢) is continuous in 𝑢 for all

𝑘 ∈ 𝑍, and 𝐹(𝑘, 𝑢) = ∫𝑢
0
𝑓(𝑘, 𝑠)𝑑𝑠 for 𝑢 ∈ 𝑅. Moreover,

󵄨󵄨󵄨󵄨𝑓 (𝑘, 𝑢)
󵄨󵄨󵄨󵄨

𝑞 (𝑘) |𝑢|
𝑝(𝑘)−1

󳨀→ 0 as 𝑢 󳨀→ 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑘 ∈ 𝑍;

(3)

(f
1
) there exists a constant 𝛽 > 𝑝+ such that

𝑢𝑓
1
(𝑘, 𝑢) ≥ 𝛽𝐹

1
(𝑘, 𝑢) > 0 ∀𝑘 ∈ 𝑍, 𝑢 ∈ 𝑅 \ {0} , (4)

where 𝐹
1
(𝑘, 𝑢) = ∫

𝑢

0
𝑓
1
(𝑘, 𝑠)𝑑𝑠 for 𝑢 ∈ 𝑅;

(f
2
) there exists a constant 𝜏 ∈ (0, 𝛽) such that

𝐹
2
(𝑘, 𝑢) ≥ 0, 𝑢𝑓

2
(𝑘, 𝑢) ≤ 𝜏𝐹

2
(𝑘, 𝑢)

∀𝑘 ∈ 𝑍, 𝑢 ∈ 𝑅,

(5)

where 𝐹
2
(𝑘, 𝑢) = ∫

𝑢

0
𝑓
2
(𝑘, 𝑠)𝑑𝑠 for 𝑢 ∈ 𝑅.

Then (1) has a ground state solution.

Remark 2. (q) implies that there exists 𝑞
∗
> 0 such that 𝑞(𝑘) ≥

𝑞
∗
for all 𝑘 ∈ 𝑍.

Remark 3. We extendTheorem 3.1 in [14] to themore general
case—𝑝(𝑘)-Laplacian system. Furthermore, we obtain the
existence of the ground state.

The rest of this paper is organized as follows. In Section 2,
we establish the variational structure associated with (1).
Some preliminary results are also provided in this section. In
Section 3, we give the proof of the main result.

2. Variational Structure and
Some Preliminary Results

In this section, we establish a variational structure which
enables us to reduce the existence of solutions for (1) to the
existence of critical points of the corresponding functional.

Let 𝑆 be the set of all two-sided sequences; that is,

𝑆 = {𝑢 = {𝑢 (𝑘)} : 𝑢 (𝑘) ∈ 𝑅, 𝑘 ∈ 𝑍} . (6)

Then 𝑆 is a vector space with 𝑎𝑢 + 𝑏V = {𝑎𝑢(𝑘) + 𝑏V(𝑘)} for
𝑢, V ∈ 𝑆, 𝑎, 𝑏 ∈ 𝑅.

We define 𝑙𝑝(𝑘) as the set of all functions 𝑢 ∈ 𝑆 such that

𝑙
𝑝(𝑘)

= {𝑢 ∈ 𝑆 : ∑

𝑘∈𝑍

|𝑢 (𝑘)|
𝑝(𝑘)

< +∞} (7)

with the norm

‖𝑢‖𝑝(𝑘) = inf {𝑟 > 0 : ∑
𝑘∈𝑍

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑘)

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤ 1} . (8)

We also define

𝐸 = {𝑢 ∈ 𝑆 : ∑

𝑘∈𝑍

[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|
𝑝(𝑘)

+𝑞 (𝑘) |𝑢 (𝑘)|
𝑝(𝑘)
] < +∞}

(9)

with the norm

‖𝑢‖ = inf {𝑟 > 0 : ∑
𝑘∈𝑍

[𝑎 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δ𝑢 (𝑘 − 1)

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+𝑞 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑘)

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

] ≤ 1} .

(10)

We call the space 𝐸 a sequence space; it is a special kind of
generalized Orlicz sequence space. For the general theory of
generalized Orlicz spaces, see [18, 19].

Consider the functional 𝐼 on 𝐸 defined by

𝐼 (𝑢) = ∑

𝑘∈𝑍

[
𝑎 (𝑘)

𝑝 (𝑘)
|Δ𝑢 (𝑘 − 1)|

𝑝(𝑘)
+
𝑞 (𝑘)

𝑝 (𝑘)
|𝑢(𝑘)|

𝑝(𝑘)

−𝐹 (𝑘, 𝑢 (𝑘)) ] .

(11)

Using the similar arguments as [17], we have the following
lemmas.

Lemma 4. (𝑙𝑝(𝑘), ‖ ⋅ ‖
𝑝(𝑘)
) is a reflexive Banach space. Let 𝑢 ∈

𝑙
𝑝(𝑘) and

𝜙 (𝑢) = ∑

𝑘∈𝑍

|𝑢(𝑘)|
𝑝(𝑘)
; (12)

one has

(1) if ‖𝑢‖
𝑝(𝑘)

> 1, then ‖𝑢‖𝑝
−

𝑝(𝑘)
≤ 𝜙(𝑢) ≤ ‖𝑢‖

𝑝
+

𝑝(𝑘)
;

(2) if ‖𝑢‖
𝑝(𝑘)

< 1, then ‖𝑢‖𝑝
+

𝑝(𝑘)
≤ 𝜙(𝑢) ≤ ‖𝑢‖

𝑝
−

𝑝(𝑘)
.

Lemma 5. (𝐸, ‖ ⋅ ‖) is a reflexive Banach space. Let 𝑢 ∈ 𝐸 and

𝜑 (𝑢) = ∑

𝑘∈𝑍

[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|
𝑝(𝑘)
+ 𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)
] ;

(13)

one has

(1) if ‖𝑢‖ > 1, then ‖𝑢‖𝑝
−

≤ 𝜑(𝑢) ≤ ‖𝑢‖
𝑝
+

;

(2) if ‖𝑢‖ < 1, then ‖𝑢‖𝑝
+

≤ 𝜑(𝑢) ≤ ‖𝑢‖
𝑝
−

.
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Lemma 6. 𝐼 ∈ 𝐶1(𝐸, 𝑅) and the Fréchet derivative is given by

⟨𝐼
󸀠
(𝑢) , V⟩ = ∑

𝑘∈𝑍

[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|
𝑝(𝑘)−2

× Δ𝑢 (𝑘 − 1) ΔV (𝑘 − 1)

+𝑞 (𝑘) |𝑢 (𝑘)|
𝑝(𝑘)−2

𝑢 (𝑘) V (𝑘)]

− ∑

𝑘∈𝑍

𝑓 (𝑘, 𝑢 (𝑘)) V (𝑘) ,

(14)

for all 𝑢, V ∈ 𝐸. Moreover, the nonzero critical points of the
functional 𝐼 on 𝐸 are the nontrivial solutions of (1).

Lemma 7. (f
1
) and (f

2
) imply that

𝑢𝑓 (𝑘, 𝑢) ≥ 𝛽𝐹 (𝑘, 𝑢) ∀𝑘 ∈ 𝑍, 𝑢 ∈ 𝑅. (15)

Moreover, for every 𝑘 ∈ 𝑍 and 𝑢 ∈ 𝑅, 𝑠−𝛽𝐹
1
(𝑘, 𝑠𝑢) is

nondecreasing on (0, +∞) and 𝑠−𝜏𝐹
2
(𝑘, 𝑠𝑢) is nonincreasing on

(0, +∞).

Let

𝑐min = inf {𝐼 (𝑢) : 𝐼󸀠 (𝑢) = 0, 𝑢 ∈ 𝐸 \ {0}} . (16)

Then 𝑢
0
̸=0 with 𝐼(𝑢

0
) = 𝑐min is said to be a ground state

solution of (1).
As usual, we make use of the following basic notations.

Let 𝐻 be a Hilbert space and 𝐶1(𝐻, 𝑅) denote the set of
functionals that are Fréchet differentiable and their Fréchet
derivatives are continuous on𝐻.

Definition 8. Let 𝐼 ∈ 𝐶1(𝐻, 𝑅). A sequence {𝑥
𝑗
} ⊂ 𝐻 is

called a Palais-Smale sequence (P.S. sequence) for 𝐼 if {𝐼(𝑥
𝑗
)}

is bounded and 𝐼󸀠(𝑥
𝑗
) → 0 as 𝑗 → +∞. We say that 𝐼

satisfies the Palais-Smale condition (P.S. condition) if any P.S.
sequence for 𝐼 possesses a convergent subsequence.

Let 𝐵
𝑟
be the open ball in 𝐻 with radius 𝑟 and center 0,

and let 𝜕𝐵
𝑟
denote its boundary.

Lemma 9 (mountain pass lemma). Let 𝐻 be a real Hilbert
space and 𝐼 ∈ 𝐶1(𝐻, 𝑅) satisfies the P.S. condition. Assume
that 𝐼(0) ≤ 0 and the following two conditions hold.

(J
1
) There exist constants 𝑎 > 0 and 𝜌 > 0 such that 𝐼

𝜕𝐵𝜌
≥

𝑎.
(J
2
) There exists an 𝑒 ∈ 𝐻 \ 𝐵

𝜌
such that 𝐼(𝑒) ≤ 0.

Then 𝐼 possesses a critical value 𝑐 ≥ 𝑎. Moreover, 𝑐 can be
characterized as

𝑐 = inf
ℎ∈Γ

max
𝑠∈[0,1]

𝐼 (ℎ (𝑠)) , (17)

where

Γ = {ℎ ∈ 𝐶 ([0, 1] ,𝐻) : ℎ (0) = 0, ℎ (1) = 𝑒} . (18)

3. Proof of Main Result

In order to prove Theorem 1, we first prove the following
lemmas.

Lemma 10. The embedding 𝐸 󳨅→ 𝑙
𝑝(𝑘) is compact.

Proof. Let {𝑢
𝑗
} be a bounded sequence in 𝐸; that is, there

exists𝑀 > 0 such that ‖𝑢
𝑗
‖ < 𝑀 for all 𝑗 ∈ 𝑍+. By reflexivity,

passing to a subsequencewe have 𝑢
𝑗
⇀ 𝑢 in𝐸 for some 𝑢 ∈ 𝐸.

We may assume 𝑢 = 0, in particular 𝑢
𝑗
(𝑘) → 0 as 𝑗 → +∞

for all 𝑘 ∈ 𝑍. For all 𝜖 > 0, we can find ℎ ∈ 𝑍+ such that

𝑞 (𝑘) >
1 +𝑀

𝜖
∀ |𝑘| > ℎ. (19)

By continuity of the finite sum, there exists ]
0
∈ 𝑍
+ such that

∑

|𝑘|≤ℎ

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤
𝜖

1 +𝑀
∀𝑗 > ]

0
. (20)

So for all 𝑗 ≥ ]
0
we have

∑

𝑘∈𝑍

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤
𝜖

1 +𝑀
+

𝜖

1 +𝑀
∑

|𝑘|>ℎ

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤
𝜖

1 +𝑀
+

𝜖

1 +𝑀
∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

.

(21)

Since

∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤ 𝜑 (𝑢
𝑗
) ≤

{{{{

{{{{

{

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩

𝑝−

, if 󵄩󵄩󵄩󵄩󵄩𝑢𝑗
󵄩󵄩󵄩󵄩󵄩
< 1,

1, if 󵄩󵄩󵄩󵄩󵄩𝑢𝑗
󵄩󵄩󵄩󵄩󵄩
= 1,

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩

𝑝+

, if 󵄩󵄩󵄩󵄩󵄩𝑢𝑗
󵄩󵄩󵄩󵄩󵄩
> 1,

(22)

letting𝑀
0
= max{𝑀𝑝−, 1,𝑀𝑝+}, we have

∑

𝑘∈𝑍

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤
1 +𝑀

0

1 +𝑀
𝜖 ∀𝑗 ≥ ]

0
. (23)

Thus, 𝑢
𝑗
(𝑘) → 0 in 𝑙𝑝(𝑘), and the proof is completed.

Lemma 11. Assume that 𝑢 ∈ 𝑙𝑝(𝑘) and V ∈ 𝑙𝑟(𝑘). Moreover, 𝑝(𝑘)
satisfies condition (𝑝) and 1/𝑟(𝑘) + 1/𝑝(𝑘) = 1 for all 𝑘 ∈ 𝑍.
Then

∑

𝑘∈𝑍

𝑢 (𝑘) V (𝑘) ≤ (
1

𝑝−
+
1

𝑟−
) ‖𝑢‖𝑝(𝑘)‖V‖𝑟(𝑘), (24)

where 𝑟− = inf{𝑟(𝑘) : 𝑘 ∈ 𝑍} and 𝑟− = 𝑝+/(𝑝+ − 1).

Proof. Let

𝑟
1
= ‖𝑢‖𝑝(𝑘), 𝑟

2
= ‖V‖𝑟(𝑘); (25)
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then

∑

𝑘∈𝑍

𝑢 (𝑘) V (𝑘)
𝑟
1
𝑟
2

≤ ∑

𝑘∈𝑍

[
1

𝑝 (𝑘)
(
𝑢 (𝑘)

𝑟
1

)

𝑝(𝑘)

+
1

𝑟 (𝑘)
(
V (𝑘)
𝑟
2

)

𝑟(𝑘)

]

≤
1

𝑝−
+
1

𝑟−
.

(26)

The proof is completed.

Lemma 12. Assume that all the conditions of Theorem 1 hold.
Then the functional 𝐼 satisfies the P.S. condition.

Proof. Assume that {𝑢
𝑗
}
𝑗∈𝑁

⊂ 𝐸 is a sequence such that
{𝐼(𝑢
𝑗
)} is a bounded and 𝐼󸀠(𝑢

𝑗
) → 0 as 𝑗 → +∞. Then

there exists a positive constant𝑀󸀠 such that |𝐼(𝑢
𝑗
)| ≤ 𝑀

󸀠 for
all 𝑗 ∈ 𝑍+.

First, we show that ‖𝑢
𝑗
‖ is bounded. Now we may assume

that ‖𝑢
𝑗
‖ > 1; otherwise, ‖𝑢

𝑗
‖ is bounded obviously. When 𝑗

is large enough, we have

𝑀
󸀠
+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩
≥ 𝐼 (𝑢

𝑗
) −

1

𝛽
⟨𝐼
󸀠
(𝑢
𝑗
) , 𝑢
𝑗
⟩

= ∑

𝑘∈𝑍

(
1

𝑝 (𝑘)
−
1

𝛽
) [𝑎 (𝑘)

󵄨󵄨󵄨󵄨󵄨
Δ𝑢
𝑗
(𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

]

+ ∑

𝑘∈𝑍

[
1

𝛽
𝑓 (𝑘, 𝑢

𝑗
) 𝑢
𝑗
(𝑘) − 𝐹 (𝑘, 𝑢

𝑗
(𝑘))]

≥ (
1

𝑝+
−
1

𝛽
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩

𝑝
−

.

(27)

It follows from 𝛽 > 𝑝+ and 𝑝− > 1 that there exists a constant
𝑀
∗
> 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀
∗
, ∀𝑗 ∈ 𝑍

+
. (28)

By Lemma 10, we can choose a subsequence, still denoted by
{𝑢
𝑗
}, such that

𝑢
𝑗
⇀ 𝑢
∗

in 𝐸, (29)

𝑢
𝑗
󳨀→ 𝑢
∗

in 𝑙𝑝(𝑘), (30)

for some 𝑢
∗
∈ 𝐸.

Next, we prove that

lim
𝑗→+∞

∑

𝑘∈𝑍

(𝑓 (𝑘, 𝑢
𝑗
(𝑘)) − 𝑓 (𝑘, 𝑢

∗
(𝑘)))

× (𝑢
𝑗 (𝑘) − 𝑢∗ (𝑘)) = 0.

(31)

By (f), for any 0 < 𝜖 < min{1/2, 1/2𝑝+}, there exists a
positive constant 𝜌 < 1 with 𝑞(1/𝑝

−
)

∗
𝜌
(𝑝
+
/𝑝
−
)
< 1 such that

𝑓 (𝑘, 𝑢) ≤ 𝜖𝑞 (𝑘) |𝑢|
𝑝(𝑘)−1

∀𝑘 ∈ 𝑍, |𝑢| ≤ 𝜌, (32)

Since 𝑢
∗
∈ 𝐸, there exists a positive integer 𝑇 such that

󵄨󵄨󵄨󵄨𝑢∗ (𝑘)
󵄨󵄨󵄨󵄨 ≤
𝜌

2
∀𝑘 > 𝑇; (33)

we have

󵄨󵄨󵄨󵄨𝑓 (𝑘, 𝑢∗ (𝑘))
󵄨󵄨󵄨󵄨 ≤ 𝜖𝑞 (𝑘)

󵄨󵄨󵄨󵄨𝑢∗ (𝑘)
󵄨󵄨󵄨󵄨
𝑝(𝑥)−1

∀𝑘 > 𝑇. (34)

By (30), there exists ]
1
∈ 𝑍
+ such that

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
≤
𝜌

2
∀𝑗 > ]

1
, 𝑘 ∈ 𝑍. (35)

This, combined with (33) and (32), gives us
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨 ≤ 𝜌 ∀𝑗 > ]
1
, 𝑘 > 𝑇,

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢

𝑗 (𝑘))
󵄨󵄨󵄨󵄨󵄨
≤ 𝜖𝑞 (𝑘)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−1

∀𝑗 > ]
1
, 𝑘 > 𝑇.

(36)

Then for 𝑗 > ]
1
,

∑

|𝑘|>𝑇

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢

𝑗
(𝑘)) − 𝑓 (𝑘, 𝑢

∗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

≤ 𝜖 ∑

|𝑘|>𝑇

(𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−1

+ 𝑞 (𝑘)
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−1

)

× (
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨)

≤ 𝜖∑

𝑘∈𝑍

𝑞(𝑘)
1/𝑟(𝑘)󵄨󵄨󵄨󵄨󵄨

𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−1

𝑞(𝑘)
1/𝑝(𝑘) 󵄨󵄨󵄨󵄨󵄨

𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

+ 𝜖∑

𝑘∈𝑍

𝑞(𝑘)
1/𝑟(𝑘)󵄨󵄨󵄨󵄨󵄨

𝑢
𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−1

𝑞 (𝑘)
1/𝑝(𝑘) 󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨

+ 𝜖∑

𝑘∈𝑍

𝑞(𝑘)
1/𝑟(𝑘)󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−1

𝑞(𝑘)
1/𝑝(𝑘) 󵄨󵄨󵄨󵄨󵄨

𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

+ 𝜖∑

𝑘∈𝑍

𝑞(𝑘)
1/𝑟(𝑘)󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−1

𝑞(𝑘)
1/𝑝(𝑘) 󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨 ,

(37)

where 1/𝑟(𝑘) + 1/𝑝(𝑘) = 1 for all 𝑘 ∈ 𝑍.
Let V
1
= {V
1
(𝑘)} and V

1
(𝑘) = 𝑞(𝑘)

1/𝑟(𝑘)
|𝑢
𝑗
(𝑘)|
𝑝(𝑘)−1,

V
2
= {V
2
(𝑘)} and V

2
(𝑘) = 𝑞(𝑘)

1/𝑝(𝑘)
|𝑢
𝑗
(𝑘)|, ℎ

1
= {ℎ
1
(𝑘)}

and ℎ
1
(𝑘) = 𝑞(𝑘)

1/𝑟(𝑘)
|𝑢
∗
(𝑘)|
𝑝(𝑘)−1, and ℎ

2
= {ℎ
2
(𝑘)} and

ℎ
2
(𝑘) = 𝑞(𝑘)

1/𝑝(𝑘)
|𝑢
∗
(𝑘)|.

It is easy to check that V
1
, ℎ
1
∈ 𝑙
𝑟(𝑘) and V

2
, ℎ
2
∈ 𝑙
𝑝(𝑘).Then

using Lemma 11, for 𝑗 > ]
1
, we have

∑

|𝑘|>𝑇

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢

𝑗
(𝑘)) − 𝑓 (𝑘, 𝑢

∗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

≤ (
𝜖

𝑝−
+
𝜖

𝑟−
)

× (
󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩𝑟(𝑘)

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩𝑝(𝑘) +

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩𝑟(𝑘)

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝑝(𝑘)

+
󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝑟(𝑘)

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩𝑝(𝑘) +

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝑟(𝑘)

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝑝(𝑘)) .

(38)
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Now we show that ‖V
1
‖
𝑟(𝑘)

is bounded. We may assume that
‖V
1
‖
𝑟(𝑘)

> 1; otherwise, ‖V
1
‖
𝑟(𝑘)

is bounded obviously. By
Lemmas 4 and 5, we have

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩𝑟(𝑘) ≤ [∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

]

1/𝑟
−

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩

𝑝
+
/𝑟
−

≤ 𝑀
𝑝
+
/𝑟
−

∗
.

(39)

Let 𝑀
1
= {1,𝑀

𝑝
+
/𝑟
−

∗
}; then ‖V

1
‖
𝑟(𝑘)

≤ 𝑀
1
; that is, ‖V

1
‖
𝑟(𝑘)

is bounded. Using the similar arguments as above, we obtain
that ‖V

2
‖
𝑝(𝑘)

, ‖ℎ
1
‖
𝑟(𝑘)

, and ‖ℎ
2
‖
𝑝(𝑘)

are bounded; that is, there
exist three positive constants𝑀

2
,𝑀
3
, and𝑀

4
such that

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩𝑝(𝑘) ≤ 𝑀2,

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝑟(𝑘) ≤ 𝑀3,

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝑝(𝑘) ≤ 𝑀4. (40)

This, combined with (38), gives us

∑

|𝑘|>𝑇

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢

𝑗
(𝑘)) − 𝑓 (𝑘, 𝑢

∗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

≤ 𝜖 (
1

𝑝−
+
1

𝑟−
)

× (𝑀
1
𝑀
2
+𝑀
1
𝑀
4
+𝑀
3
𝑀
2
+𝑀
3
𝑀
4
) ∀𝑗 > ]

1
.

(41)

By continuity of the finite sum and (30), there exists ]
2
∈ 𝑍
+

such that

∑

|𝑘|≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢

𝑗
(𝑘)) − 𝑓 (𝑘, 𝑢

∗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜖 ∀𝑗 ≥ ]

2
.

(42)

Let ] = max{]
1
, ]
2
}. Combining (41) and (42) together, we

have

∑

𝑘∈𝑍

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑘, 𝑢

𝑗
(𝑘)) − 𝑓 (𝑘, 𝑢

∗
(𝑘))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

≤ 𝜖 (
1

𝑝−
+
1

𝑟−
)

× (𝑀
1
𝑀
2
+𝑀
1
𝑀
4
+𝑀
3
𝑀
2
+𝑀
3
𝑀
4
) + 𝜖 ∀𝑗 > ].

(43)

Thus, (31) holds.
Finally, we show that {𝑢

𝑗
} possesses a convergent subse-

quence. Since 𝐼󸀠(𝑢
𝑗
) → 0 and 𝑢

𝑗
⇀ 𝑢
∗
, it follows at once

that

lim
𝑗→+∞

⟨𝐼
󸀠
(𝑢
𝑗
) − 𝐼
󸀠
(𝑢
∗
) , 𝑢
𝑗
− 𝑢
∗
⟩ = 0. (44)

This, combined with (31), gives us

lim
𝑗→+∞

{∑

𝑘∈𝑍

𝑎 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
Δ𝑢
𝑗
(𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

Δ𝑢
𝑗
(𝑘 − 1)

−
󵄨󵄨󵄨󵄨Δ𝑢∗ (𝑘 − 1)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

Δ𝑢
∗
(𝑘 − 1) ]

× (Δ𝑢
𝑗 (𝑘 − 1) − Δ𝑢∗ (𝑘 − 1))

+ ∑

𝑘∈𝑍

𝑞 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

𝑢
𝑗
(𝑘)

−
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

𝑢
∗ (𝑘) ]

× (𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘))} = 0.

(45)

The following two inequalities are taken from [20] and
will play an important role in the proof of our main result:

[(
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝑝−2
𝜉 −
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝−2
𝜂) (𝜉 − 𝜂)]

× (
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨)
2−𝑝
≥
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨
2
, 1 < 𝑝 < 2,

2
𝑝
[(
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝑝−2
𝜉 −
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝−2
𝜂) (𝜉 − 𝜂)] ≥

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨
𝑝
, 𝑝 ≥ 2,

(46)

for every 𝜉 and 𝜂 in 𝑅. We define

𝑅
𝑗
(𝑘) = 𝑎 (𝑘) [

󵄨󵄨󵄨󵄨󵄨
Δ𝑢
𝑗
(𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

Δ𝑢
𝑗
(𝑘 − 1)

−
󵄨󵄨󵄨󵄨Δ𝑢∗ (𝑘 − 1)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

Δ𝑢
∗
(𝑘 − 1) ]

× (Δ𝑢
𝑗 (𝑘 − 1) − Δ𝑢∗ (𝑘 − 1)) ∀𝑘 ∈ 𝑍.

𝑄
𝑗
(𝑘) = 𝑞 (𝑘) [

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

𝑢
𝑗
(𝑘) −

󵄨󵄨󵄨󵄨𝑢∗ (𝑘)
󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

𝑢
∗
(𝑘)]

× (𝑢
𝑗 (𝑘) − 𝑢∗ (𝑘)) ∀𝑘 ∈ 𝑍.

(47)

This, combined with (45), produces at once

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑅
𝑗
(𝑘) = 0, lim

𝑗→+∞

∑

𝑘∈𝑍

𝑄
𝑗
(𝑘) = 0. (48)

Now we show that 𝜑(𝑢
𝑗
− 𝑢
∗
) → 0 as 𝑗 → +∞. That is,

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑎 (𝑘)
󵄨󵄨󵄨󵄨󵄨
Δ𝑢
𝑗
(𝑘 − 1) − Δ𝑢

∗
(𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= 0, (49)

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= 0. (50)

Let us first prove (50). Since {𝑢
𝑗
} and 𝑢

∗
are bounded in 𝐸,

there exists a constant 𝑀∗ > 1 such that 𝜑(𝑢
𝑗
) ≤ 𝑀

∗ and
𝜑(𝑢
∗
) ≤ 𝑀

∗ for all 𝑗 ∈ 𝑍+. We denote

𝑊
1
= {𝑘 ∈ 𝑍 : 1 < 𝑝 (𝑘) < 2} ,

𝑊
2
= {𝑘 ∈ 𝑍 : 𝑝 (𝑘) ≥ 2} .

(51)
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By (46), we have

∑

𝑘∈𝑊2

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤ ∑

𝑘∈𝑊2

2
𝑝
+

𝑞 (𝑘) (
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)−2

𝑢
𝑗
(𝑘)

−
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)−2

𝑢
∗
(𝑘) )

× (𝑢
𝑗 (𝑘) − 𝑢∗ (𝑘)) ≤ 2

𝑝
+

∑

𝑘∈𝑍

𝑄
𝑗 (𝑘) ,

(52)

∑

𝑘∈𝑊1

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= ∑

𝑘∈𝑊1

𝑞 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

]
𝑝(𝑘)/2

≤ ∑

𝑘∈𝑊1

(𝑄
𝑗
(𝑘))
𝑝(𝑘)/2

× {𝑞 (𝑘) [
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨]
𝑝(𝑘)

}

(2−𝑝(𝑘))/2

≤ ∑

𝑘∈𝑊1

(𝑄
𝑗
(𝑘))
𝑝(𝑘)/2

× [2
𝑝
+

𝑞 (𝑘) (
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)
)]

(2−𝑝(𝑘))/2

≤ 2
𝑝
+
(2−𝑝
−
)/2

× ∑

𝑘∈𝑍

(𝑄
𝑗
(𝑘))
𝑝(𝑘)/2

× [𝑞 (𝑘) |𝑢𝑗 (𝑘) |
𝑝(𝑘)
+ 𝑞 (𝑘)

󵄨󵄨󵄨󵄨𝑢∗ (𝑘)
󵄨󵄨󵄨󵄨
𝑝(𝑘)
]
(2−𝑝(𝑘))/2

.

(53)

Let

𝑝
1 (𝑘) =

2

𝑝 (𝑘)
, 𝑟

1 (𝑘) =
2

2 − 𝑝 (𝑘)
,

V
𝑗∗ (𝑘) = (𝑄𝑗 (𝑘))

𝑝(𝑘)/2

,

𝑤
𝑗∗ (𝑘) = [𝑞 (𝑘)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+ 𝑞 (𝑘)
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)
]

(2−𝑝(𝑘))/2

.

(54)

Then it is easy to check that V
𝑗∗
= {V
𝑗∗
(𝑘)} ∈ 𝑙

𝑝1(𝑘)
and 𝑤

𝑗∗
=

{𝑤
𝑗∗
(𝑘)} ∈ 𝑙

𝑟1(𝑘)
. By Lemma 11 and (53), we have

∑

𝑘∈𝑊1

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≤ 2
𝑝
+
(2−𝑝
−
)/2
(1 +

𝑝
+

2
−
𝑝
−

2
)
󵄩󵄩󵄩󵄩󵄩
V
𝑗∗

󵄩󵄩󵄩󵄩󵄩𝑝1(𝑘)

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑗∗

󵄩󵄩󵄩󵄩󵄩𝑟1(𝑘)
.

(55)

Since

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑄
𝑗
(𝑘) = 0,

∑

𝑘∈𝑍

[𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+ 𝑞 (𝑘)
󵄨󵄨󵄨󵄨𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨
𝑝(𝑘)
]

≤ 𝜑 (𝑢
𝑗
) + 𝜑 (𝑢

∗
) ≤ 2𝑀

∗
.

(56)

It is easy to see that ‖V
𝑗∗
‖
𝑝1(𝑘)

→ 0 as 𝑗 → +∞ and ‖𝑤
𝑗∗
‖
𝑟1(𝑘)

is bounded for all 𝑗 ∈ 𝑍+. This, combined with (52) and (55),
gives us

lim
𝑗→+∞

∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑘) − 𝑢∗ (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= lim
𝑗→+∞

∑

𝑘∈𝑊1

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+ lim
𝑗→+∞

∑

𝑘∈𝑊2

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘) − 𝑢

∗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

= 0.

(57)

Using the similar arguments, we have (49). So𝜑(𝑢
𝑗
−𝑢
∗
) → 0

as 𝑗 → +∞. By Lemma 5, it follows that ‖𝑢
𝑗
− 𝑢
∗
‖ → 0 as

𝑗 → +∞, and the proof is completed.

Proof of Theorem 1. The proof consists of two steps.

Step 1. We use Lemma 9 to show that (1) has a nontrivial
solution in 𝐸.

First we prove that 𝐼 satisfies (J
1
) of Lemma 9. It follows

from (32) that

|𝐹 (𝑘, 𝑢 (𝑘))| ≤
1

2𝑝+
𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)
, (58)

for |𝑢(𝑘)| ≤ 𝜌 and 𝑘 ∈ 𝑍. Then, let 𝛿 = 𝑞(1/𝑝
−
)

∗
𝜌
(𝑝
+
/𝑝
−
)
< 1, for

all 𝑢 ∈ 𝜕𝐵
𝛿
∩ 𝐸, we have |𝑢(𝑘)| ≤ 𝜌 and

𝐼 (𝑢) = ∑

k∈𝑍
[
𝑎 (𝑘)

𝑝 (𝑘)
|Δ𝑢 (𝑘 − 1)|

𝑝(𝑘)
+
𝑞 (𝑘)

𝑝 (𝑘)
|𝑢 (𝑘)|

𝑝(𝑘)
]

− ∑

𝑘∈𝑍

𝐹 (𝑘, 𝑢 (𝑘))

≥ ∑

𝑘∈𝑍

1

𝑝+
[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|

𝑝(𝑘)
+ 𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)
]

− ∑

𝑘∈𝑍

1

2𝑝+
𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)

≥ ∑

𝑘∈𝑍

1

2𝑝+
[𝑎 (𝑘) |Δ𝑢 (𝑘 − 1)|

𝑝(𝑘)
+ 𝑞 (𝑘) |𝑢 (𝑘)|

𝑝(𝑘)
]

≥
1

2𝑝+
‖𝑢‖
𝑝
+

=
1

2𝑝+
𝛿
𝑝
+

> 0,

(59)

and hence 𝐼 satisfies (J
1
) of Lemma 9.
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Next, we prove that 𝐼 satisfies (J
2
) of Lemma 9. Let 𝑒 =

{𝑒(𝑘)} ∈ 𝐸 and

𝑒 (𝑘) = {
0, if 𝑘 ̸= 0,

1, if 𝑘 = 0.
(60)

Then

𝐹 (𝑘, 𝑒 (𝑘)) = {
0, if 𝑘 ̸= 0,

𝐹 (0, 1) , if 𝑘 = 0.
(61)

By Lemma 7, for 𝑠 > 1, we have

∑

𝑘∈𝑍

𝐹
1
(𝑘, 𝑠𝑒 (𝑘)) = 𝐹

1
(0, 𝑠) ≥ 𝑠

𝛽
𝐹
1
(0, 1) , 𝐹

1
(0, 1) > 0,

∑

𝑘∈𝑍

𝐹
2 (𝑘, 𝑠𝑒 (𝑘)) = 𝐹2 (0, 𝑠) ≤ 𝑠

𝜏
𝐹
2 (0, 1) , 𝐹

2 (0, 1) ≥ 0.

(62)

Then

𝐼 (𝑠𝑒) = ∑

𝑘∈𝑍

[
𝑎 (𝑘)

𝑝 (𝑘)
|𝑠Δ𝑒 (𝑘 − 1)|

𝑝(𝑘)
+
𝑞 (𝑘)

𝑝 (𝑘)
|𝑠𝑒 (𝑘)|

𝑝(𝑘)
]

− ∑

𝑘∈𝑍

[𝐹
1
(𝑘, 𝑠𝑒 (𝑘)) − 𝐹

2
(𝑘, 𝑠𝑒 (𝑘))]

≤
𝑎 (0)

𝑝 (0)
𝑠
𝑝(0)
+
𝑎 (1)

𝑝 (1)
𝑠
𝑝(1)
+
𝑞 (0)

𝑝 (0)
𝑠
𝑝(0)

− 𝑠
𝛽
𝐹
1
(0, 1) + 𝑠

𝜏
𝐹
2
(0, 1) .

(63)

Since 𝐹
1
(0, 1) > 0 and 𝑝(0), 𝑝(1), 𝜏 are smaller than 𝛽, we

can choose 𝑠∗ large enough such that 𝐼(𝑠∗𝑒) < 0. So we
have verified all assumptions of Lemma 9; we know that 𝐼
possesses a critical value 𝛼 ≥ (1/2𝑝+)𝛿𝑝

+

> 0, where

𝛼 = inf
ℎ∈Γ

max
𝑠∈[0,1]

𝐼 (ℎ (𝑠)) ,

Γ = {ℎ ∈ 𝐶 ([0, 1] , 𝐸) : ℎ (0) = 0, ℎ (1) = 𝑠
∗
𝑒} .

(64)

A critical point𝑢∗ of 𝐼 corresponding to𝛼 is nonzero as𝛼 > 0.

Step 2.We prove that (1) has a ground state in 𝐸.
Let

𝐾 = {𝑢 ∈ 𝐸 : 𝐼
󸀠
(𝑢) = 0, 𝑢 ̸= 0} (65)

be the critical set of 𝐼. Obviously,𝐾 is a nonempty set. Denote

𝑐 = inf {𝐼 (𝑢) : 𝑢 ∈ 𝐾} . (66)

Since 𝑢 ∈ 𝐾, we have

𝐼 (𝑢) = 𝐼 (𝑢) −
1

𝛽
⟨𝐼
󸀠
(𝑢) , 𝑢⟩ ≥ (

1

𝑝+
−
1

𝛽
)𝜑 (𝑢) ≥ 0.

(67)

Then 0 ≤ 𝑐 ≤ 𝐼(𝑢).

Suppose that {𝑢
𝑗
} ⊂ 𝐾 such that 𝐼(𝑢

𝑗
) → 𝑐. Obviously,

{𝑢
𝑗
} is a P.S. sequence. By Lemma 12, we can choose a

subsequence, still denoted by {𝑢
𝑗
}, such that

lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
− 𝑢
0

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑢

0
∈ 𝐸. (68)

Then 𝐼(𝑢
𝑗
) → 𝐼(𝑢

0
) and 𝐼(𝑢

0
) = 𝑐. Now we prove that 𝑢

0
is

nonzero. If 𝑢
0
= 0, then there exists a positive integer𝑊 such

that for all 𝑗 > 𝑊, we have

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩
≤ 𝑞
(1/𝑝
−
)

∗
𝜌
(𝑝
+
/𝑝
−
)
< 1. (69)

By (32), it follows that

⟨𝐼
󸀠
(𝑢
𝑗
) , 𝑢
𝑗
⟩ = ∑

𝑘∈𝑍

[𝑎 (𝑘)
󵄨󵄨󵄨󵄨󵄨
Δ𝑢
𝑗
(𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+ 𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

−𝑓 (𝑘, 𝑢
𝑗
(𝑘)) 𝑢

𝑗
(𝑘) ]

≥ ∑

𝑘∈𝑍

[𝑎 (𝑘)
󵄨󵄨󵄨󵄨󵄨
Δ𝑢
𝑗 (𝑘 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

+𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)
󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

]

−
1

2
∑

𝑘∈𝑍

𝑞 (𝑘)
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨

𝑝(𝑘)

≥
1

2
𝜑 (𝑢
𝑗
) ≥

1

2

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩

𝑝
+

> 0,

(70)

which is in contradiction to 𝐼󸀠(𝑢
𝑗
) = 0.Thus, 𝑢

0
is the ground

state solution of (1). The proof is completed.
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A viral infection model with saturated incidence rate and viral infection with delay is derived and analyzed; the incidence rate
is assumed to be a specific nonlinear form 𝛽𝑥V/(1 + 𝛼V). The existence and uniqueness of equilibrium are proved. The basic
reproductive number𝑅

0
is given.Themodel is divided into two cases: with or without delay. In each case, by constructing Lyapunov

functionals, necessary and sufficient conditions are given to ensure the global stability of the models.

1. Introduction

In recent years, study of infectious disease model has been
a hot issue; the main cause of infectious disease is the virus
invasion. As we know, viral cytopathicity within target cells
is very common. A number of mathematical models have
been used to study virus dynamics. In 1996, Nowak et al. [1]
designed a simple but natural mathematical model based on
ordinary differential equation. The model is as follows:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝛽𝑥 (𝑡) V (𝑡) − 𝑎𝑦 (𝑡) ,

𝑑V (𝑡)
𝑑𝑡

= 𝜅𝑦 (𝑡) − 𝛾V (𝑡) ,

(1)

where 𝑥(𝑡) denotes the number of uninfected cells, 𝑦(𝑡) the
numbers of infected cells, and V(𝑡) the numbers of free viral
particles at time 𝑡, respectively. Inmodel (1), uninfected target
cells are assumed to be produced at a constant rate 𝜆 and died
at rate 𝑑𝑥. Infection of target cells by in-host free viruses is
assumed to occur at a bilinear rate 𝛽𝑥V; infected cells are lost
at a rate 𝑎𝑦. Free viruses are produced by infected cells at a
rate 𝜅𝑦, in which 𝜅 is the average number of viral particles

produced over the lifetime of a single infected cell. Free
viral particles die at a rate 𝛾V. For model (1), Korobeinikov
[2] established the condition of global stability in 2004.
Some other viral dynamical models were proposed by later
researchers; see for example [3–8].

In [7], Wodarz and Levy pointed out that the term 𝑎𝑦(𝑡)

in model (1) should consist of two parts: one is the natural
death of infected cells, the other is viral cytopathicity. In 2012,
Li et al. [4] assumed that infected cells burst and then release
viral particles (i.e., viral cytopathicity occurs) after uninfected
cells were infected by a constant period of time 𝜏; that is,
the time period of viral cytopathicity within target cells is
𝜏. They incorporated the delay of viral cytopathicity within
target cells and built a new model:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝛽𝑥 (𝑡) V (𝑡) − 𝛽𝑒

−𝑑𝜏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝑑𝑦 (𝑡) ,

𝑑V (𝑡)
𝑑𝑡

= 𝜅𝛽𝑒
−𝑑𝜏

𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏) − 𝛾V (𝑡) .

(2)

By constructing Lyapunov functionals, necessary and suffi-
cient conditions were obtained ensuring the global stability
of the model.
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2 Abstract and Applied Analysis

In models (1) and (2), the researcher studied the viral
dynamics with bilinear incidence rate𝛽𝑥V. As we know, as the
viral particles diffuse in the body, the person often takes some
actions when V gets large. In order to describe the inhibitory
effect from the uninfected cells when the number of viral
cytopathicity is large enough, following the idea of [9], we
propose an incidence rate 𝛽𝑥V/(1 + 𝛼V), where 𝛽V measures
the infection force of the viral, and 𝛼 reflects the level of
inhibitory action.

Similar to the discussions in [4], we assume that the
viral cytopathicity has time delay. When the delay of viral
cytopathicity within target cells is 𝜏 and the natural death rate
of per target cell is 𝑑, the number of infected cells at time
𝑡 (𝑡 > 𝜏) can be represented by

𝑦 (𝑡) = ∫

𝑡

𝑡−𝜏

𝛽𝑥 (𝜃) V (𝜃)
1 + 𝛼V (𝜃)

𝑒
−𝑑(𝑡−𝜃)

𝑑𝜃, for 𝑡 > 𝜏, (3)

where 𝑒−𝑑(𝑡−𝜃) is the probability that target cells survive from
time 𝜃 to time 𝑡, and (𝛽𝑥(𝜃)V(𝜃)/(1 + 𝛼V(𝜃)))𝑒−𝑑(𝑡−𝜃) is the
number of target cells being infected at time 𝜃 and still
surviving at time 𝑡.

Differentiating 𝑦(𝑡) of (3), we get
𝑑𝑦 (𝑡)

𝑑𝑡
= −𝑑∫

𝑡

𝑡−𝜏

𝛽𝑥 (𝜃) V (𝜃)
1 + 𝛼V (𝜃)

𝑒
−𝑑(𝑡−𝜃)

𝑑𝜃 +
𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝑒
−𝑑𝜏𝛽𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)

=
𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛽𝑒
−𝑑𝜏 𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝑑𝑦 (𝑡) ,

(4)

where 𝛽𝑒−𝑑𝜏(𝑥(𝑡−𝜏)V(𝑡−𝜏)/(1+𝛼V(𝑡−𝜏))) is the transfer rate
of the infected cells being used to produce free viruses at time
𝑡; the recruitment rate of free virus at time 𝑡 is 𝜅𝛽𝑒−𝑑𝜏(𝑥(𝑡 −
𝜏)V(𝑡−𝜏)/(1+𝛼V(𝑡−𝜏))), in which 𝜅 is the average number of
viral particles produced by an infected target cell when viral
cytopathicity occurs, which implies that the recruitment of
virus at time 𝑡 depends on the number of target cells that were
newly infected at time 𝑡 − 𝜏 and still alive at time 𝑡. Therefore
following the model (2), we obtain a basic viral dynamical
model of delay differential equations:
𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

,

𝑑𝑦 (𝑡)

𝑑𝑡
=

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛽𝑒
−𝑑𝜏 𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝑑𝑦 (𝑡) ,

𝑑V (𝑡)
𝑑𝑡

= 𝜅𝛽𝑒
−𝑑𝜏 𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) .

(5)

Since the variable 𝑦 does not appear in the first and
the third equations of (5), we only focus on the following
equations:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

,

𝑑V (𝑡)
𝑑𝑡

= 𝜅𝛽𝑒
−𝑑𝜏 𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) ,

(6)

which has the same dynamics with system (5).

Let 𝑏 = 𝜅𝑒
−𝑑𝜏, by (6), we have

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

,

𝑑V (𝑡)
𝑑𝑡

= 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) ,

(7)

where all the parameters are assumed to be positive.
The rest of this paper is organized as follows. In the

next section we will derive the infection-free equilibrium
and the infection equilibrium. In Section 3, we carry out a
qualitative analysis of the model, and stability conditions for
the infection-free equilibrium and the infection equilibrium
are derived, respectively. A brief conclusion will be given in
Section 4.

2. Positive Solutions and Equilibria

Due to the biological meaning of the components (𝑥(𝑡), V(𝑡)),
we consider system (7) with the following initial conditions:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

,

𝑑V (𝑡)
𝑑𝑡

= 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) ,

𝑥 (𝜃) = 𝜑
1 (𝜃) ≥ 0, 𝜑

1 (0) > 0, 𝜃 ∈ [−𝜏, 0] ,

V (𝜃) = 𝜑
2
(𝜃) ≥ 0, 𝜑

2
(0) > 0, 𝜃 ∈ [−𝜏, 0] .

(8)

Equation (8) is a system of retarded differential equations in
𝐶 = 𝐶([−𝜏, 0],R2). 𝐶 is a Banach space of continuous map-
pings from [−𝜏, 0] intoR2 with norm ‖ 𝜓 ‖= sup

−𝜏≤𝜃≤0
|𝜓(𝜃)|

for 𝜓 ∈ 𝐶. We denote

𝐶
+
= {(𝜑
1
, 𝜑
2
) ∈ 𝐶 | 𝜑

1 (0) > 0, 𝜑
2 (0) > 0,

𝜑
1
(𝜃) ≥ 0, 𝜑

2
(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0]} .

(9)

As usual, for any continuous function 𝑥 ∈ 𝐶([−𝜏, +∞),R)

and any given 𝑡 ≥ 0, 𝑥
𝑡
is defined as 𝑥

𝑡
∈ 𝐶([−𝜏, 0]R), 𝑥

𝑡
(𝜃) =

𝑥(𝑡 + 𝜃), for any 𝜃 ∈ [−𝜏, 0].

Theorem 1. All the solutions (𝑥(𝑡), V(𝑡))𝑇 of (8) under the
initial conditions are positive on [0,∞).

Proof. Assume that there is a 𝑡
1
(𝑡
1
> 0) such that 𝑥(𝑡

1
) = 0;

then by 𝑥(0) > 0 and the continuity of 𝑥, there is 𝑡∗ = inf{𝑡 >
0, 𝑥(𝑡) = 0} > 0 such that 𝑥(𝑡) > 0 for 𝑡 ∈ [0, 𝑡

∗
). Then we

have 𝑥󸀠(𝑡∗) ≤ 0. However, 𝑥󸀠(𝑡∗) = 𝜆 > 0 by the first equation
of (8); this is a contradiction. Therefore 𝑥(𝑡) > 0 for all 𝑡 > 0.

From the second equation of (8)

𝑑V (𝑡)
𝑑𝑡

= 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡) . (10)
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Multiplying 𝑒
𝛾𝑡 in both sides of the above equation and

integrating it from 0 to 𝑡, we have

∫

𝑡

0

𝑒
𝛾𝜃
𝑑V (𝜃) + ∫

𝑡

0

𝑒
𝛾𝜃
𝛾V (𝜃) 𝑑𝜃

= ∫

𝑡

0

𝑒
𝛾𝜃
𝛽𝑏

𝑥 (𝜃 − 𝜏) V (𝜃 − 𝜏)

1 + 𝛼V (𝜃 − 𝜏)
𝑑𝜃,

𝑒
𝛾𝑡V (𝑡) − V (0) = ∫

𝑡

0

𝑒
𝛾𝜃
𝛽𝑏

𝑥 (𝜃 − 𝜏) V (𝜃 − 𝜏)

1 + 𝛼V (𝜃 − 𝜏)
𝑑𝜃,

V (𝑡) = [V (0) + ∫

𝑡

0

𝑒
𝛾𝜃
𝛽𝑏

𝑥 (𝜃 − 𝜏) V (𝜃 − 𝜏)

1 + 𝛼V (𝜃 − 𝜏)
𝑑𝜃] 𝑒
−𝛾𝑡

.

(11)

Let 𝜂 = 𝜃 − 𝜏

V (𝑡) = [V (0) + ∫

𝑡−𝜏

−𝜏

𝑒
𝛾(𝜂+𝜏)

𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂] 𝑒
−𝛾𝑡

. (12)

Since 𝑥(𝑡) ≥ 0, V(𝑡) ≥ 0, and V(0) > 0 for −𝜏 ≤ 𝑡 ≤ 0, then
V(𝑡) > 0 for 0 ≤ 𝑡 < 𝜏.

Further, when 𝜏 ≤ 𝑡 < 2𝜏, we have

V (𝑡) = {V (0) + ∫

0

−𝜏

𝑒
𝛾(𝜂+𝜏)

𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂

+∫

𝑡−𝜏

0

𝑒
𝛾(𝜂+𝜏)

𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂} 𝑒
−𝛾𝑡

.

(13)

By the fact that 𝑥(𝜂) ≥ 0 and V(𝜂) ≥ 0 for −𝜏 ≤ 𝜂 < 0, then

∫

0

−𝜏

𝑒
𝛾(𝜂+𝜏)

𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂 ≥ 0. (14)

Also 𝑥(𝜂) > 0 and V(𝜂) > 0 for 0 ≤ 𝜂 < 𝜏; then

∫

𝑡−𝜏

0

𝑒
𝛾(𝜂+𝜏)

𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂 > 0. (15)

Consequently, V(𝑡) > 0 for 𝜏 ≤ 𝑡 < 2𝜏, which implies that
V(𝑡) > 0 holds true for 0 ≤ 𝑡 < 2𝜏.

We assume that for a positive integer 𝑘, V(𝑡) > 0 for 0 ≤

𝑡 < 𝑘𝜏. When 𝑘𝜏 ≤ 𝑡 < (𝑘 + 1)𝜏, we have

V (𝑡) = {V (0) + ∫

(𝑘−1)𝜏

−𝜏

𝑒
𝛾(𝜂+𝜏)

𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂

+∫

𝑡−𝜏

(𝑘−1)𝜏

𝑒
𝛾(𝜂+𝜏)

𝛽𝑏
𝑥 (𝜂) V (𝜂)
1 + 𝛼V (𝜂)

𝑑𝜂} 𝑒
−𝛾𝑡

.

(16)

Then similar discussions show that V(𝑡) > 0 for 𝑘𝜏 ≤ 𝑡 <

(𝑘 + 1)𝜏. Hence, V(𝑡) > 0 for all 𝑡 > 0.

Theorem 2. All the solutions (𝑥(𝑡), V(𝑡))𝑇 of (8) under the
initial conditions are ultimately bounded.

Proof. For any solution (𝑥(𝑡), V(𝑡))𝑇 of (8), define a function
𝑓(𝑡) = 𝑏𝑥(𝑡 − 𝜏) + V(𝑡). Then the derivative of 𝑓(𝑡) is

𝑑𝑓 (𝑡)

𝑑𝑡
= 𝑏

𝑑𝑥 (𝑡 − 𝜏)

𝑑𝑡
+
𝑑V (𝑡)
𝑑𝑡

= 𝑏𝜆 − 𝑏𝑑𝑥 (𝑡 − 𝜏) − 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)

+ 𝛽𝑏
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
− 𝛾V (𝑡)

= 𝑏𝜆 − 𝑏𝑑𝑥 (𝑡 − 𝜏) − 𝛾V (𝑡)

≤ 𝑏𝜆 − 𝜌𝑓 (𝑡) ,

(17)

where 𝜌 = min{𝑑, 𝛾}.
Integrating both sides of inequality above from 0 to 𝑡, we

have

𝑓 (𝑡) ≤
𝑏𝜆

𝜌
+ (𝑓 (0) −

𝑏𝜆

𝜌
) 𝑒
−𝜌𝑡

. (18)

It means that 𝑏𝑥
𝑡
(−𝜏) + V

𝑡
(0) ≤ 𝑏𝜆/𝜌 for any 𝑡 ≥ 0 as long as

𝑏𝜑
1
(−𝜏) + 𝜑

2
(0) ≤ 𝑏𝜆/𝜌. Also,

lim sup
𝑡→∞

𝑓 (𝑡) ≤
𝑏𝜆

𝜌
. (19)

From the first equation of (8), we have

𝑑𝑥 (𝑡)

𝑑𝑡
≤ 𝜆 − 𝑑𝑥 (𝑡) . (20)

Similar discussion shows that

𝑥 (𝑡) ≤
𝜆

𝑑
+ (𝑥 (0) −

𝜆

𝑑
) 𝑒
−𝑑𝑡

. (21)

Then 𝑥
𝑡
(0) ≤ 𝜆/𝑑 for any 𝑡 ≥ 0 as long as 𝜑

1
(0) ≤ 𝜆/𝑑.

Moreover,

lim sup
𝑡→∞

𝑥 (𝑡) ≤
𝜆

𝑑
. (22)

Thus, the region

Ω = {(𝜑
1
, 𝜑
2
) ∈ 𝐶
+
: 𝜑
1
(0) ≤

𝜆

𝑑
, 𝑏𝜑
1
(−𝜏) + 𝜑

2
(0) ≤

𝑏𝜆

𝜌
}

(23)

is an invariant set and an attractor of system (8) with initial
condition (𝜑

1
, 𝜑
2
) ∈ 𝐶
+.

In what follows, we study the existence of equilibria.
We consider algebraic equations

𝜆 − 𝑑𝑥 −
𝛽𝑥V
1 + 𝛼V

= 0,

𝛽𝑏
𝑥V

1 + 𝛼V
− 𝛾V = 0.

(24)



4 Abstract and Applied Analysis

It is easy to see that system (24) always has an infection-
free equilibrium𝐸

1
(𝜆/𝑑, 0). To find the other equilibrium, we

assume V ̸= 0. By the second equation of (24), we have

𝛽𝑏𝑥

1 + 𝛼V
= 𝛾. (25)

Then

𝑥 =
𝛾 (1 + 𝛼V)

𝛽𝑏
. (26)

We put 𝑥 into the first equation of (24); then

𝜆 −
𝑑𝛾 (1 + 𝛼V)

𝛽𝑏
−
𝛽𝛾 (1 + 𝛼V) V
𝛽𝑏 (1 + 𝛼V)

= 0,

𝛽𝑏𝜆 − 𝑑𝛾 = (𝑑𝛾𝛼 + 𝛽𝛾) V.
(27)

Thus the positive root 𝐸
2
exists if and only if 𝛽𝑏𝜆 − 𝑑𝛾 > 0.

For system (8), define the basic reproduction number [10] as
follows

𝑅
0
=
𝛽𝑏𝜆

𝑑𝛾
. (28)

It is easy to see that

(i) If 𝑅
0
≤ 1, then system (8) has a unique equilibrium

𝐸
1
(𝜆/𝑑, 0), which corresponds to the case that viruses

die out, and it is called infection-free equilibrium.
(ii) If𝑅

0
> 1, then system (8) has two equilibria, one is the

infection-free equilibrium 𝐸
1
(𝜆/𝑑, 0) and the other is

a positive equilibrium 𝐸
2
((𝛾+𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅

0
−

1)/(𝑑𝛼 + 𝛽)).

3. Stability of the Equilibrium

In this section, we consider the stability of the equilibrium.
There are two cases, 𝜏 = 0 and 𝜏 > 0.

3.1. Local Stability of Equilibria. First we consider the case of
𝜏 = 0. In this case system (8) is reduced to a system of ordi-
nary differential equations. In order to examine local stability
of an equilibrium, we should compute the eigenvalues of the
linearized operator for system (8) at the equilibrium.

By a direct computation, the Jacobianmatrix is as follows:

(

−𝑑 −
𝛽V

1 + 𝛼V
, −

𝛽𝑥

(1 + 𝛼V)2

𝛽𝑏
V

1 + 𝛼V
, 𝛽𝑏

𝑥

(1 + 𝛼V)2
− 𝛾

) . (29)

Consider infection-free equilibrium 𝐸
1
(𝜆/𝑑, 0). The char-

acteristic equation is obtained by the standard method as
follows.

It is obvious that 𝜇
1
= −𝑑 < 0, and 𝜇

2
= 𝛽𝑏𝜆/𝑑 − 𝛾 =

𝛾(𝑅
0
− 1) are the characteristic roots of the characteristic

equation. Therefore, we have the following theorem.

Theorem 3. (i) If 𝑅
0

< 1, then infection-free equilibrium
𝐸
1
(𝜆/𝑑, 0) is locally asymptotically stable.
(ii) If 𝑅

0
> 1, then infection-free equilibrium 𝐸

1
(𝜆/𝑑, 0) is

unstable.
(iii) If 𝑅

0
= 1, then infection-free equilibrium 𝐸

1
(𝜆/𝑑, 0) is

degenerated.

Now, local stability of the infection equilibrium 𝐸
2
((𝛾 +

𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅
0
−1)/(𝑑𝛼+𝛽)) is considered. Aswe know,

infection equilibrium𝐸
2
((𝛾+𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅

0
−1)/(𝑑𝛼+

𝛽)) exists if and only if 𝑅
0
> 1.

Theorem 4. If 𝑅
0
> 1, then the infection equilibrium 𝐸

2
is

locally asymptotically stable.

Proof. Set 𝑓(𝑥, V) = 𝛽𝑥V/(1 + 𝛼V). Then system (8) at the
equilibrium 𝐸

2
(𝑥
∗
, V∗) has Jacobian matrix

𝐴 = (

−𝑑 −
𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) , −

𝜕𝑓

𝜕V
(𝑥
∗
, V∗)

𝑏
𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) , 𝑏

𝜕𝑓

𝜕V
(𝑥
∗
, V∗) − 𝛾

) . (30)

A direct computation shows that the characteristic equation
is

ℎ (𝜇) = 𝜇
2
+ [𝑑 + 𝛾 +

𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) − 𝑏

𝜕𝑓

𝜕V
(𝑥
∗
, V∗)] 𝜇

+ 𝑑𝛾 − 𝑏𝑑
𝜕𝑓

𝜕V
(𝑥
∗
, V∗) + 𝛾

𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) = 0.

(31)

By Hurwitz criterion, all of the eigenvalues of characteristic
equation have negative real parts if and only if

𝑑 + 𝛾 +
𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) − 𝑏

𝜕𝑓

𝜕V
(𝑥
∗
, V∗) > 0,

𝑑𝛾 − 𝑏𝑑
𝜕𝑓

𝜕V
(𝑥
∗
, V∗) + 𝛾

𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) > 0.

(32)

Indeed,

𝑑 + 𝛾 +
𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) − 𝑏

𝜕𝑓

𝜕V
(𝑥
∗
, V∗)

=
(𝑑 + 𝛾) (1 + 𝛼V∗)2 + 𝛽V∗ (1 + 𝛼V∗) − 𝑏𝛽𝑥

∗

(1 + 𝛼V∗)2

=
(𝛼
2
𝑑 + 𝛼
2
𝛾 + 𝛼𝛽) V∗2 + (2𝛼𝑑 + 2𝛾𝛼 + 𝛽) V∗ − 𝑏𝛽𝑥

∗
+ 𝑑 + 𝛾

(1 + 𝛼V∗)2

=
(𝛼
2
𝑑 + 𝛼
2
𝛾 + 𝛼𝛽) V∗2 + (2𝛼𝑑 + 𝛾𝛼 + 𝛽) V∗ + 𝑑

(1 + 𝛼V∗)2
> 0,

𝑑𝛾 − 𝑏𝑑
𝜕𝑓

𝜕V
(𝑥
∗
, V∗) + 𝛾

𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗)

=
𝑑𝛾(1 + 𝛼V∗)2 − 𝑏𝑑𝛽𝑥

∗
+ 𝛾𝛽V∗ + 𝛾𝛽𝛼V∗2

(1 + 𝛼V∗)2

=
(𝛼
2
𝑑𝛾 + 𝛼𝛾𝛽) V∗2 + (𝑑𝛼𝛾 + 𝛾𝛽) V∗

(1 + 𝛼V∗)2
> 0.

(33)

This implies that all the eigenvalues of characteristic equation
have negative real parts. Then the infection equilibrium 𝐸

2
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is locally asymptotically stable. This completes the proof of
theorem.

Now we consider the case 𝜏 > 0. By linearizing system
(8) at the infection-free equilibrium𝐸

1
(𝜆/𝑑, 0), we obtain the

characteristic equation as follows:

(𝜇 + 𝑑) (𝜇 + 𝛾 − 𝑒
−𝜇𝜏

𝛽𝑏
𝜆

𝑑
) = 0. (34)

It is easy to see that 𝜇
1
= −𝑑 < 0; hence we only need to

discuss the roots of the following equation:

ℎ (𝜇, 𝜏) = 𝜇 + 𝛾 − 𝑒
−𝜇𝜏

𝛽𝑏
𝜆

𝑑
= 0. (35)

Theorem 5. When 𝜏 > 0, then
(i) If 𝑅

0
< 1, then the infection-free equilibrium

𝐸
1
(𝜆/𝑑, 0) is locally asymptotically stable.

(ii) If 𝑅
0

> 1, then the infection-free equilibrium
𝐸
1
(𝜆/𝑑, 0) is unstable.

(iii) If 𝑅
0

= 1, then the infection-free equilibrium
𝐸
1
(𝜆/𝑑, 0) is degenerated.

Proof. (i) By implicit function theorem for complex variables,
we know that the roots of (35) are continuous on the
parameter 𝜏.

If 𝑅
0
< 1, then 0 is not a root of (35) for all 𝜏 > 0. Note

that all complex roots of (35) must come in conjugate pairs
and the root of (35) is negative for 𝜏 = 0. Thus, all roots of
(35) have negative real parts for small 𝜏; that is, 0 < 𝜏 = 1.
Suppose that there exists a positive number 𝜏 = 𝜏

0
such that

(35) has a pair of purely imaginary roots 𝜆 = ±𝜔𝑖; here 𝜔 is a
positive number. We have

𝜔𝑖 + 𝛾 − 𝑒
−𝜔𝑖𝜏0𝛽𝑏

𝜆

𝑑
= 0. (36)

Then

𝛽𝑏
𝜆

𝑑
cos𝜔𝜏

0
= 𝛾,

𝛽𝑏
𝜆

𝑑
sin𝜔𝜏

0
= −𝜔.

(37)

Summing up the square of both equations in (37) we obtain

𝜔
2
= 𝛽
2
𝑏
2 𝜆
2

𝑑2
− 𝛾
2
=
𝛽
2
𝑏
2
𝜆
2
− 𝛾
2
𝑑
2

𝑑2
=
𝑅
2

0
𝑑
2
𝛾
2
− 𝛾
2
𝑑
2

𝑑2

= 𝛾
2
(𝑅
2

0
− 1) .

(38)

When 𝑅
0
< 1, then 𝜔

2
< 0. It is a contradiction with 𝜔

2
>

0 which leads to the nonexistence of 𝜏
0
. This contradiction

proves the result.
(ii) When 𝜇 = 0, and 𝑅

0
> 1, then

ℎ (0, 𝜏) = 𝛾 − 𝛽𝑏
𝜆

𝑑
= 𝛾 (1 − 𝑅

0
) < 0,

lim
𝜇→∞

ℎ (𝜇, 𝜏) = +∞.

(39)

Therefore equationmust have a positive real root for all 𝜏 > 0.

(iii) If 𝑅
0
= 1, it is easy to know that 𝜇 = 0 is a root of (35)

for all 𝜏 > 0, which leads to conclusion. (iii) This completes
the proof of theorem.

Now we consider the local stability of the infection
equilibrium𝐸

2
((𝛾+𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅

0
−1)/(𝑑𝛼+𝛽)). As we

know, the infection equilibrium𝐸
2
((𝛾+𝛼𝑏𝜆)/𝑏(𝑑𝛼+𝛽), 𝑑(𝑅

0
−

1)/(𝑑𝛼 + 𝛽)) exists if and only if 𝑅
0
> 1. By computation, the

associated transcendental characteristic equation of (8) at 𝐸
2

becomes

𝜇
2
+ 𝐴𝜇 + 𝐵 − (𝐶𝜇 + 𝐷) 𝑒

−𝜇𝜏
= 0, (40)

where

𝐴 = 𝑑 + 𝛾 +
𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) , 𝐵 = (𝑑 +

𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗)) 𝛾,

𝐶 = 𝑏
𝜕𝑓

𝜕V
(𝑥
∗
, V∗) , 𝐷 = 𝑑𝑏

𝜕𝑓

𝜕V
(𝑥
∗
, V∗) .

(41)

Theorem 6. When 𝜏 > 0, if 𝑅
0

> 1, then the infection
equilibrium 𝐸

2
is locally asymptotically stable.

Proof. By implicit function theorem for complex variables,
we know that the root of (40) is continuous on the parameter
𝜏. If 𝑅

0
> 1, then all roots of (40) have negative real parts

as 𝜏 = 0 and (40) has no zero root for all 𝜏 > 0. Thus, all
roots of (40) have negative real parts for very small 𝜏; that is,
0 < 𝜏 ≪ 1. Assume that there exists a positive 𝜏

0
such that

(40) has a pair of purely imaginary roots ±𝜔𝑖, 𝜔 > 0. Then
𝜔 > 0must satisfy

−𝜔
2
+ 𝐴𝜔𝑖 + 𝐵 − (𝐶𝜔𝑖 + 𝐷) (cos𝜔𝜏

0
− 𝑖 sin𝜔𝜏

0
) = 0. (42)

Separating the real and imaginary parts, we have

𝐶𝜔 sin𝜔𝜏
0
+ 𝐷 cos𝜔𝜏

0
= 𝐵 − 𝜔

2
,

𝐷 sin𝜔𝜏
0
− 𝐶𝜔 cos𝜔𝜏

0
= −𝐴𝜔

(43)

which implies that

𝜔
4
+ (𝐴
2
− 2𝐵 − 𝐶

2
) 𝜔
2
+ 𝐵
2
− 𝐷
2
= 0. (44)

Direct computation shows that

𝐵
2
− 𝐷
2
= [𝛾(𝑑 +

𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗))]

2

− [𝑑𝑏
𝜕𝑓

𝜕V
(𝑥
∗
, V∗)]
2

= [𝛾
𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) + 𝛾𝑑 − 𝑑𝑏

𝜕𝑓

𝜕V
(𝑥
∗
, V∗)]

× [𝛾
𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗) + 𝛾𝑑 + 𝑑𝑏

𝜕𝑓

𝜕V
(𝑥
∗
, V∗)] > 0,
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𝐴
2
− 2𝐵 − 𝐶

2
= 𝑑
2
+ 𝛾
2
+ (

𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗))

2

+ 2𝑑
𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗)

− 𝑏
2
(
𝜕𝑓

𝜕V
(𝑥
∗
, V∗))

2

= (𝑑 +
𝜕𝑓

𝜕𝑥
(𝑥
∗
, V∗))

2

− 𝑏
2
(
𝜕𝑓

𝜕V
(𝑥
∗
, V∗))

2

+ 𝛾
2

= ((𝑑
2
+ 𝛾
2
) (1 + 𝛼V∗)4 + 𝛽

2
(V∗)2(1 + 𝛼V∗)2

+ 2𝑑𝛽V∗(1 + 𝛼V∗)3 − 𝑏
2
𝛽
2
(𝑥
∗
)
2
)

× ((1 + 𝛼V∗)4)
−1

.

(45)

Let

𝐻(𝑥
∗
, V∗) = (𝑑

2
+ 𝛾
2
) (1 + 𝛼V∗)4 + 𝛽

2
(V∗)2(1 + 𝛼V∗)2

+2 𝑑𝛽V∗(1 + 𝛼V∗)3 − 𝑏
2
𝛽
2
(𝑥
∗
)
2
.

(46)

Note that 1 + 𝛼V∗ = (𝛽𝑏/𝛾)𝑥
∗,

𝐻(𝑥
∗
, V∗)

= (𝑑
2
+ 𝛾
2
)
𝛽
4
𝑏
4

𝛾4
(𝑥
∗
)
4
+ 𝛽
2
(V∗)2

𝛽
2
𝑏
2

𝛾2
(𝑥
∗
)
2

+ 2𝑑𝛽V∗
𝛽
3
𝑏
3

𝛾3
(𝑥
∗
)
3
− 𝛽
2
𝑏
2
(𝑥
∗
)
2

= (𝑥
∗
)
2
[
𝛽
4
𝑏
2

𝛾4
(𝑏
2
𝑑
2
(𝑥
∗
)
2
+ 𝛾
2
(V∗)2 + 2𝛾𝑑𝑏V∗𝑥∗)

+
𝛽
4
𝑏
4

𝛾2
(𝑥
∗
)
2
− 𝑏
2
𝛽
2
]

= (𝑥
∗
)
2
[
𝛽
4
𝑏
2

𝛾4
(𝑏𝑑𝑥
∗
+ 𝛾V∗)2 +

𝛽
2
𝑏
2

𝛾2
(𝛽
2
𝑏
2
(𝑥
∗
)
2
− 𝛾
2
)]

= (𝑥
∗
)
2
[
𝛽
4
𝑏
2

𝛾4
(𝑏𝑑𝑥
∗
+ 𝛾V∗)2 + 𝛽

2
𝑏
2
(𝛼
2
(V∗)2 + 2𝛼V∗)]

> 0.

(47)

By Hurwitz criterion, (44) has no positive roots, which
implies the nonexistence of 𝜏

0
. Thus all roots of (40) have

negative real parts for 𝜏 > 0.

3.2. Global Stability of Equilibria. In the section, we study the
global stability of equilibria; we first consider the infection-
free equilibrium 𝐸

1
.

Theorem 7. When 𝜏 = 0,
(i) If 𝑅

0
≤ 1, then infection-free equilibrium 𝐸

1
(𝜆/𝑑, 0) is

globally asymptotically stable.

(ii) If 𝑅
0

> 1, then infection equilibrium 𝐸
2
(𝑥
∗
, V∗) is

globally asymptotically stable.

Proof. (i) Define a Lyapunov function as what follows

𝑉 (𝑥, V) = 𝑥 −
𝜆

𝑑
ln𝑥 +

V
𝑏
+
𝜆

𝑑
ln 𝜆

𝑑
−
𝜆

𝑑
,

𝑑𝑉(𝑥, V)
𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(8)

=
𝑥 − 𝜆/𝑑

𝑥
(𝜆 − 𝑑𝑥 −

𝛽𝑥V
1 + 𝛼V

) +
1

𝑏
(
𝛽𝑏𝑥V
1 + 𝛼V

− 𝛾V)

= −
(𝑑𝑥 − 𝜆)

2

𝑑𝑥
+

𝛽𝑥V
1 + 𝛼V

(1 −
𝑑𝑥 − 𝜆

𝑑𝑥
) −

𝛾

𝑏
V

= −
(𝑑𝑥 − 𝜆)

2

𝑑𝑥
+ (

𝛽𝜆

𝑑 (1 + 𝛼V)
−
𝛾

𝑏
) V

= −
(𝑑𝑥 − 𝜆)

2

𝑑𝑥
+
𝛾

𝑏
(𝑅
0
− 1) V −

𝛽𝛾

𝑑

𝛼V2

1 + 𝛼V
.

(48)

It means that 𝑑𝑉(𝑥, V)/𝑑𝑡|
(8)

is negative semidefinite as 𝑅
0
≤

1. Moreover, the last equality of the above equation shows
that the largest invariant set of system (8) on the region
{(𝑥, V)𝑇 ∈ R2

+
: 𝑑𝑉/𝑑𝑡 = 0} is the singleton {𝐸

1
}. Therefore,

the infection-free equilibrium 𝐸
1
is global asymptotically

stability.
(ii) We rewrite the system (8)

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

= 𝑄 (𝑥, V) ,

𝑑V (𝑡)
𝑑𝑡

= 𝛽𝑏
𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛾V (𝑡) = 𝑃 (𝑥, V) .
(49)

Choose a Dulac function

𝐷(𝑥, V) =
1 + 𝛼V
𝛽V

. (50)

We have

𝜕 (𝐷𝑃)

𝜕V
+
𝜕 (𝐷𝑄)

𝜕𝑥
= −

𝛾𝛼

𝛽
− 𝑑

1 + 𝛼V
𝛽V

− 1 < 0. (51)

Thus system (49) does not have nontrivial periodic orbits in
Ω. The conclusion follows.

Theorem 8. When 𝜏 > 0, if 𝑅
0

≤ 1, then infection-free
equilibrium 𝐸

1
(𝜆/𝑑, 0) is globally asymptotically stable.
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Proof. Define a functional 𝑔 : 𝐶
+
→ R as follows:

𝑔 (𝜑
1
, 𝜑
2
) =

1

2
[𝜑
1
(0) −

𝜆

𝑑
]

2

+
𝜆

𝑑
[𝜑
2
(0) + 𝛽𝑏∫

0

−𝜏

𝜑
1 (𝜃) 𝜑2 (𝜃)

1 + 𝛼𝜑
2
(𝜃)

𝑑𝜃] .

(52)

For any 𝑡 ≥ 0, 𝑥
𝑡
, V
𝑡
∈ 𝐶, then

𝑔 (𝑥
𝑡
, V
𝑡
) =

𝑏

2
[𝑥 (𝑡) −

𝜆

𝑑
]

2

+
𝜆

𝑑
[V (𝑡) + 𝛽𝑏∫

𝑡

𝑡−𝜏

𝑥 (𝜃) V (𝜃)
1 + 𝛼V (𝜃)

𝑑𝜃] ,

𝑑𝑔 (𝑥
𝑡
, V
𝑡
)

𝑑𝑡
= 𝑏 (𝑥 (𝑡) −

𝜆

𝑑
)
𝑑𝑥 (𝑡)

𝑑𝑡
+
𝜆

𝑑

𝑑V (𝑡)
𝑑𝑡

+
𝛽𝑏𝜆

𝑑
[
𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

−
𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)

1 + 𝛼V (𝑡 − 𝜏)
]

= 𝑏 [𝑥 (𝑡) −
𝜆

𝑑
] [𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

]

+
𝜆

𝑑
[𝛽𝑏

𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛾V (𝑡)]

= − 𝑏𝑑[𝑥 (𝑡) −
𝜆

𝑑
]

2

− 𝛽𝑏
𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

[𝑥 (𝑡) −
𝜆

𝑑
]

+
𝜆

𝑑
[𝛽𝑏

𝑥 (𝑡) V (𝑡)
1 + 𝛼V (𝑡)

− 𝛾V (𝑡)]

= − 𝑏(𝑑 +
𝛽V (𝑡)

1 + 𝛼V (𝑡)
) [𝑥 (𝑡) −

𝜆

𝑑
]

2

+
𝜆V (𝑡)
𝑑

(
𝛽𝑏𝜆

𝑑 (1 + 𝛼V (𝑡))
− 𝛾)

= − 𝑏(𝑑 +
𝛽V (𝑡)

1 + 𝛼V (𝑡)
) [𝑥 (𝑡) −

𝜆

𝑑
]

2

+
𝜆V (𝑡) 𝛾

𝑑
(

𝑅
0

1 + 𝛼V (𝑡)
− 1)

= − 𝑏(𝑑 +
𝛽V (𝑡)

1 + 𝛼V (𝑡)
) [𝑥 (𝑡) −

𝜆

𝑑
]

2

+
𝜆V (𝑡) 𝛾

𝑑
(𝑅
0
− 1) −

𝛼V (𝑡) 𝑅
0

1 + 𝛼V (𝑡)

≤ − 𝑏(𝑑 +
𝛽V (𝑡)

1 + 𝛼V (𝑡)
) [𝑥 (𝑡) −

𝜆

𝑑
]

2

+
𝜆V (𝑡) 𝛾

𝑑
(𝑅
0
− 1) .

(53)

Then,

𝑑𝑔 (𝜑
1
, 𝜑
2
)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(8)

= −𝑏(𝑑 +
𝛽𝜑
2
(0)

1 + 𝛼𝜑
2 (0)

) [𝜑
1
(0) −

𝜆

𝑑
]

2

+
𝜆𝜑
2
(0) 𝛾

𝑑
(𝑅
0
− 1) −

𝛼𝜑
2
(0) 𝑅
0

1 + 𝛼𝜑
2
(0)

.

(54)

When 𝑅
0
≤ 1, we have 𝑑𝑔(𝑥

𝑡
, V
𝑡
)/𝑑𝑡 ≤ 0. It is easy to know,

when 𝑅
0
≤ 1 the largest invariant set of system (8) on the

region {(𝜑
1
, 𝜑
2
) ∈ 𝐶

+
: 𝑑𝑔(𝜑

1
, 𝜑
2
)/𝑑𝑡 = 0} is the singleton

{𝐸
1
}. By Lassalle invariant principle for autonomous retarded

differential equations [11], infection-free equilibrium 𝐸
1
is

globally asymptotically stable. This completes the proof.

Theorem 9. When 𝜏 > 0, if 𝑅
0

> 1, then the infection
equilibrium 𝐸

2
(𝑥
∗
, V∗) is globally asymptotically stable.

Proof. Let𝑉(𝑡) = V(𝑡+𝜏) and𝑋(𝑡) = 𝑥(𝑡); system (8) becomes

𝑑𝑋 (𝑡)

𝑑𝑡
= 𝜆 − 𝑑𝑋 (𝑡) −

𝛽𝑋 (𝑡) 𝑉 (𝑡 − 𝜏)

1 + 𝛼𝑉 (𝑡 − 𝜏)
,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝛽𝑏

𝑋 (𝑡) 𝑉 (𝑡 − 𝜏)

1 + 𝛼𝑉 (𝑡 − 𝜏)
− 𝛾𝑉 (𝑡) .

(55)

Denote 𝑢(𝑥) = 𝑥/(1 + 𝛼𝑥). Evaluating both sides of (55)
at 𝐸
2
, we obtain

𝜆 = 𝑑𝑥
∗
+ 𝛽𝑥
∗
𝑢 (V∗) , 𝛾V∗ = 𝛽𝑏𝑥

∗
𝑢 (V∗) . (56)

Define a Lyapunov functional 𝐿 : 𝐶
+
→ R as follows:

𝐿 (𝜑
1
, 𝜑
2
) =

1

𝛽𝑢 (V∗)
𝐿
1
(𝜑
1
, 𝜑
2
) +

V∗

𝛽𝑏𝑥∗𝑢 (V∗)
𝐿
2
(𝜑
1
, 𝜑
2
)

+ 𝐿
3
(𝜑
1
, 𝜑
2
) ,

(57)

where

𝐿
1
(𝜑
1
, 𝜑
2
) =

𝜑
1
(0)

𝑥∗
− 1 − ln

𝜑
1
(0)

𝑥∗
,

𝐿
2
(𝜑
1
, 𝜑
2
) =

𝜑
2
(0)

V∗
− 1 − ln

𝜑
2
(0)

V∗
,

𝐿
3
(𝜑
1
, 𝜑
2
) = ∫

0

−𝜏

(
𝜑
2 (𝜃)

V∗
− 1 − ln

𝜑
2 (𝜃)

V∗
)𝑑𝜃.

(58)

Thus, 𝐿(𝜑
1
, 𝜑
2
) ≥ 0 with equality if and only if 𝜑

1
(0)/𝑥
∗
=

𝜑
2
(0)/V∗ = 1.
For any 𝑡 ≥ 0,𝑋

𝑡
, 𝑉
𝑡
∈ 𝐶, then

𝐿
1
(𝑋
𝑡
, 𝑉
𝑡
) =

𝑋 (𝑡)

𝑥∗
− 1 − ln 𝑋 (𝑡)

𝑥∗
,

𝐿
2
(𝑋
𝑡
, 𝑉
𝑡
) =

𝑉 (𝑡)

V∗
− 1 − ln 𝑉 (𝑡)

V∗
,

𝐿
3
(𝑋
𝑡
, 𝑉
𝑡
) = ∫

0

−𝜏

(
𝑉 (𝑡 + 𝜃)

V∗
− 1 − ln 𝑉 (𝑡 + 𝜃)

V∗
)𝑑𝜃.

(59)
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We calculate derivatives of 𝐿
1
(𝑋
𝑡
, 𝑉
𝑡
), 𝐿
2
(𝑋
𝑡
, 𝑉
𝑡
), and

𝐿
3
(𝑋
𝑡
, 𝑉
𝑡
) with respect to the system (55):

𝑑𝐿
1
(𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

=
1

𝑥∗
(1 −

𝑥
∗

𝑋
) (𝜆 − 𝑑𝑋 − 𝛽𝑋𝑢 (𝑉 (𝑡 − 𝜏)))

=
1

𝑥∗
(1 −

𝑥
∗

𝑋
) (𝑑𝑥

∗
+ 𝛽𝑥
∗
𝑢 (V∗) − 𝑑𝑋 − 𝛽𝑋𝑢 (𝑉 (𝑡 − 𝜏)))

= −𝑑
(𝑋 − 𝑥

∗
)
2

𝑋𝑥∗
+ 𝛽𝑢 (V∗) (1 −

𝑥
∗

𝑋
)(1 −

𝑋𝑢 (𝑉 (𝑡 − 𝜏))

𝑥∗𝑢 (V∗)
)

= −𝑑
(𝑋 − 𝑥

∗
)
2

𝑋𝑥∗

+ 𝛽𝑢 (V∗) (1 −
𝑥
∗

𝑋
+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−
𝑋𝑢 (𝑉 (𝑡 − 𝜏))

𝑥∗𝑢 (V∗)
) ,

𝑑𝐿
2
(𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

=
1

V∗
(1 −

V∗

𝑉
) (𝛽𝑏𝑋𝑢 (𝑉 (𝑡 − 𝜏)) − 𝛾𝑉)

=
1

V∗
(1 −

V∗

𝑉
)(𝛽𝑏𝑥

∗
𝑢 (V∗)

𝑋𝑢 (𝑉 (𝑡 − 𝜏))

𝑥∗𝑢 (V∗)
− 𝛾

𝑉V∗

V∗
)

= 𝛽𝑏
𝑥
∗

V∗
𝑢 (V∗) (1 −

V∗

𝑉
)(

𝑋

𝑥∗

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−

𝑉

V∗
)

= 𝛽𝑏
𝑥
∗

V∗
𝑢 (V∗)

× (1 −
V∗

𝑉

𝑋

𝑥∗

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
+

𝑋

𝑥∗

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−

𝑉

V∗
) ,

𝑑𝐿
3
(𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

= ∫

0

−𝜏

𝑑

𝑑𝑡
(
𝑉 (𝑡 + 𝜃)

V∗
− 1 − ln 𝑉 (𝑡 + 𝜃)

V∗
)𝑑𝜃

=
𝑉 (𝑡)

V∗
− ln 𝑉 (𝑡)

V∗
−
𝑉 (𝑡 − 𝜏)

V∗
+ ln 𝑉 (𝑡 − 𝜏)

V∗
.

(60)

We obtain

𝑑𝐿 (𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

= −
𝑑

𝛽𝑢 (V∗)
(𝑋 − 𝑥

∗
)
2

𝑋𝑥∗
+ 1 −

𝑥
∗

𝑋

+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−
𝑋𝑢 (𝑉 (𝑡 − 𝜏))

𝑥∗𝑢 (V∗)
+ 1 −

V∗

𝑉

𝑋

𝑥∗

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)

+
𝑋

𝑥∗

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−

𝑉

V∗
+

𝑉

V∗
− ln 𝑉

V∗
−
𝑉 (𝑡 − 𝜏)

V∗

+ ln 𝑉 (𝑡 − 𝜏)

V∗

= −
𝑑

𝛽𝑢 (V∗)
(𝑋 − 𝑥

∗
)
2

𝑋𝑥∗
+ 2 −

𝑥
∗

𝑋
+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)

−
V∗

𝑉

𝑋

𝑥∗

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)

− ln 𝑉

V∗
−
𝑉 (𝑡 − 𝜏)

V∗
+ ln 𝑉 (𝑡 − 𝜏)

V∗
.

(61)

By adding and subtracting the quantity ln((𝑋/𝑥
∗
)(𝑢(𝑉(𝑡 −

𝜏))/𝑢(V∗))), we have

𝑑𝐿 (𝑋
𝑡
, 𝑉
𝑡
)

𝑑𝑡

= −
𝑑

𝛽𝑢 (V∗)
(𝑋 − 𝑥

∗
)
2

𝑋𝑥∗
+ 2 −

𝑥
∗

𝑋

+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−
V∗

𝑉

𝑋

𝑥∗

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)

−
𝑉 (𝑡 − 𝜏)

V∗
+ ln 𝑉 (𝑡 − 𝜏)

V∗
+ ln( 𝑋

𝑥∗

V∗

𝑉

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
)

− ln( 𝑋

𝑥∗
) − ln(𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
)

= −
𝑑

𝛽𝑢 (V∗)
(𝑋 − 𝑥

∗
)
2

𝑋𝑥∗
− (

𝑥
∗

𝑋
− 1 + ln 𝑋

𝑥∗
)

− (
𝑋

𝑥∗

V∗

𝑉

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
− 1

− ln( 𝑋

𝑥∗

V∗

𝑉

𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
))

+
𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
−
𝑉 (𝑡 − 𝜏)

V∗

+ ln 𝑉 (𝑡 − 𝜏)

V∗
− ln(𝑢 (𝑉 (𝑡 − 𝜏))

𝑢 (V∗)
) .

(62)

Then,

𝑑𝐿 (𝜑
1
, 𝜑
2
)

𝑑𝑡
= −

𝑑

𝛽𝑢 (V∗)
(𝜑
1 (0) − 𝑥

∗
)
2

𝜑
1
(0) 𝑥∗

− (
𝑥
∗

𝜑
1
(0)

− 1 + ln
𝜑
1
(0)

𝑥∗
)

− (
𝜑
1 (0)

𝑥∗

V∗

𝜑
2
(0)

𝑢 (𝜑
2 (−𝜏))

𝑢 (V∗)
− 1

− ln(
𝜑
1 (0)

𝑥∗

V∗

𝜑
2
(0)

𝑢 (𝜑
2 (−𝜏))

𝑢 (V∗)
))
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+
𝑢 (𝜑
2 (−𝜏))

𝑢 (V∗)
−
𝜑
2
(−𝜏)

V∗

+ ln
𝜑
2 (−𝜏)

V∗
− ln(

𝑢 (𝜑
2 (−𝜏))

𝑢 (V∗)
) .

(63)

It is easy to know that 𝑢(𝜑
2
(−𝜏))/𝑢(V∗) − 𝜑

2
(−𝜏)/V∗ +

ln(𝜑
2
(−𝜏)/V∗) − ln(𝑢(𝜑

2
(−𝜏))/𝑢(V∗)) ≤ 0, and 𝑢(𝜑

2
(−𝜏))/

𝑢(V∗) − 𝜑
2
(−𝜏)/V∗ + ln(𝜑

2
(−𝜏)/V∗) − ln(𝑢(𝜑

2
(−𝜏))/𝑢(V∗)) = 0

if and only if 𝜑
2
(−𝜏)/V∗ = 1. It follows that 𝑑𝐿(𝜑

1
, 𝜑
2
)/𝑑𝑡 ≤ 0,

and 𝑑𝐿(𝜑
1
, 𝜑
2
)/𝑑𝑡 = 0 if and only if 𝜑

1
(0)/𝑥
∗
= 𝜑
2
(0)/V∗ =

𝜑
2
(−𝜏)/V∗ = 1. By classical stability theory for functional

differential equations, 𝐸
2
is globally asymptotically stable.

This completes the proof.

4. Conclusion

The viral infection model addressed in this paper has satu-
rated incidence rate and viral infection with delay. The basic
reproductive number𝑅

0
is given.When𝑅

0
< 1, for themodel

with or without delay time, the infection-free equilibrium is
globally asymptotically stable, which implies that the viral
infection goes extinct eventually; when 𝑅

0
> 1, the infection

equilibrium is globally asymptotically stable, which implies
that the viral infection persists in the body of the host.
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