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This special issue of the International Journal of Navigation
and Observation deals with future global navigation satellite
system (GNSS) signals. It is a timely issue in view of the
current US GPS modernization efforts, the deployment of
the EU’s Galileo, the replenishment of Russia’s GLONASS,
and China’s plan to launch COMPASS. These systems,
either individually or as a group, will provide tremendous
availability, accuracy, and reliability enhancements to a
consumer’s market that is growing at an annual double-
digit rate. Research is taking place not only to enhance the
methods and algorithms to process the signals already in
place but also to propose and optimize future signals and
combinations thereof.

The seven papers presented in this issue cover a variety of
topics, ranging from Galileo signal testing to signal multipath
reduction, and represent a good cross-section of current
activities in this area. A study of multipath performance
of the initial Galileo signals transmitted by the GIOVE-
A satellite using actual data is described by Simsky et al.,
and a new generic approach called multiple gate delay
tracking structures to reduce GNSS signal multipath is
proposed and evaluated with different software approaches
by Heikki Hurskainen et al. Also, Borio et al. discuss two
strategies for the joint acquisition of data and pilot channels
that are available on emerging signals. Shanmugam et al.
present a short synchronization code design for future GNSS
based on the optimization of specific performance criteria.
Joint L/C-band code and carrier phase linear combination
methods for Galileo are discussed by Henkel et al. More-
over, Lentmaier et al. discuss Bayesian time delay estimation
based on particle filters for use in dynamic multipath

environments. Finally, a comparison between Galileo CBOC
candidates and BOC(1,1) signals in terms of detection
performance is presented by Dovis et al.

Olivier Julien
Gérard Lachapelle

Letizia Lo Presti



Hindawi Publishing Corporation
International Journal of Navigation and Observation
Volume 2008, Article ID 416380, 13 pages
doi:10.1155/2008/416380

Research Article
Experimental Results for the Multipath Performance of
Galileo Signals Transmitted by GIOVE-A Satellite

Andrew Simsky,1 David Mertens,1 Jean-Marie Sleewaegen,1 Martin Hollreiser,2 and Massimo Crisci2

1 Septentrio, Ubicenter, Philipssite 5, Leuven 3001, Belgium
2 The European Space Research and Technology Centre, The European Space Agency, Keplerlaan 1, Postbus 299,
2200 AG Noordwijk, The Netherlands

Correspondence should be addressed to Andrew Simsky, a.simsky@septentrio.com

Received 6 July 2007; Accepted 17 March 2008

Recommended by Olivier Julien

Analysis of GIOVE-A signals is an important part of the in-orbit validation phase of the Galileo program. GIOVE-A transmits
the ranging signals using all the code modulations currently foreseen for the future Galileo and provides a foretaste of their
performance in real-life applications. Due to the use of advanced code modulations, the ranging signals of Galileo provide
significant improvement of the multipath performance as compared to current GPS. In this paper, we summarize the results
of about 1.5 years of observations using the data from four antenna sites. The analysis of the elevation dependence of averaged
multipath errors and the multipath time series for static data indicate significant suppression of long-range multipath by the best
Galileo codes. The E5AltBOC signal is confirmed to be a multipath suppression champion for all the data sets. According to the
results of the observations, the Galileo signals can be classified into 3 groups: high-performance (E5AltBOC, L1A, E6A), medium-
performance (E6BC, E5a, E5b) and an L1BC signal, which has the lowest performance among Galileo signals, but is still better
than GPS-CA. The car tests have demonstrated that for kinematic multipath the intersignal differences are a lot less pronounced.
The phase multipath performance is also discussed.

Copyright © 2008 Andrew Simsky et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The first Galileo signals were transmitted on January 12,
2006, by the GIOVE-A satellite. The first results for the track-
ing noise, signal power, and code multipath performance of
the live GIOVE-A signal obtained with the use of Septentrio’s
GETR receiver have been presented in October 2006 [1]. The
overview of the on-going GIOVE-A signal experimentation
activity including results obtained at ESA, Septentrio NV,
and Alcatel Alenia Space can be found in [2]. Results of
GIOVE-A signal testing have also been reported in [3, 4].

The purpose of the current paper is to summarize the
analysis of the multipath performance of the GIOVE-A signal
performed at Septentrio since the beginning of the GIOVE-A
mission up to the time of this publication that is during the
first one and half years of the satellite operation. Estimations
of code multipath errors specific to ranging signals are
of particular interest to the user community because they
make significant contribution to the error budget of user
applications. Unlike many other error sources, multipath

errors are essentially modulation-dependent, hence there is
a significant interest to improving multipath performance by
optimizing the signal definition.

The ranging signals of Galileo are based on advanced
code modulation schemes, which are expected to provide
significant improvement of the tracking and multipath
performance as compared to the current GPS. With the
advent of GIOVE-A these expectations have been verified.
The first analysis [1] has clearly shown the advantages of the
Galileo signals in comparison to current civilian signals of
GPS (C/A and L2C). Further experience based on a wider
array of data has confirmed these results. In this paper, we
summarize the results from a number of data sets obtained
at few antenna sites at different geographic locations as well
as the results of kinematic tests in different environments.

The GIOVE-A transmits ranging signals using all the cur-
rently foreseen Galileo modulations: L1BC, L1A, E5a, E5b,
E5 (or E5AltBOC), E6BC, and E6A [1, 5]. The GETR receiver
has been custom-built by Septentrio for the reception of
GIOVE signals. The GETR is capable of tracking all the
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Figure 1: Multipath error envelopes of GNSS code modulation at
signal/multipath ratio of 6 dB: GPS-C/A (magenta), Galileo L1BC
(red), E6BC (green), E5a (blue), E5AltBOC (black).

transmitted modulations. The output of GETR includes raw
measurements, navigation bits and, optionally, correlation
function, and the samples of the RF signal at the intermediate
frequency. The signal acquisition in GETR is implemented
with the use of a custom-tailored fast acquisition unit [6].

This paper is based on the analysis of GETR measure-
ments (pseudoranges, phases, Dopplers, C/N0). The empha-
sis is on the evaluation of the code multipath performance,
which is statistically characterized by the dependence of the
averaged multipath noise upon elevation. Our approach is
to compare empirical data for different sites and different
signals and to classify the signals in accordance with their
average multipath performance.

2. MULTIPATH ERROR ENVELOPES OF GALILEO
CODE MODULATIONS

Multipath error envelopes for GPS-CA and Galileo code
modulations are presented in Figure 1. The error envelopes
were computed using the standard simulation of the tracking
process of a straight code modulation superimposed with a
single reflected signal at a signal/multipath ratio of 6 dB. The
simulation of the tracking process involves the computation
of the correlation peaks of the original code and the code
superimposed with multipath. The bandwidth of RF filtering
simulated by the algorithm was 40 MHz for all the codes
(55 MHz for E5AltBOC).

The results shown in Figure 1 prove that the error
envelopes for all the Galileo modulations are well within the
error envelope of the GPS-CA code. From the shape of the
error envelopes it is evident that the biggest advantage of
Galileo modulations is in the suppression of long-delay mul-
tipath. E5AltBOC is the only modulation, which is expected

to provide a high degree of suppression of a short-range
multipath as well. Exceptional multipath performance of
E5AltBOC has been confirmed in all the hitherto processed
data.

As for the other Galileo codes, their performance sig-
nificantly depends upon the typical spectra of multipath
delays on a particular site. For example, with a multipath
delays of about 200 m, the L1BC multipath is expected to
be much lower than with GPS-CA, while with multipath
delays of about 100 m, the advantage of L1BC would be
less pronounced. More precisely, the improvement of Galileo
BOC (1,1) with respect to BPSK(1) in the first 150 m is due
to the wider transmit bandwidth of Galileo than GPS, and
not really due to the signal structure. Indeed, if both Galileo
and GPS had the same transmit BW, the multipath envelopes
would be similar for the first 150 m. The improvement due to
signal structure only comes between 150 and 300 m. All the
Galileo codes presented in the plot (except for E5AltBOC) are
expected to have the same multipath errors for delays shorter
than 10 m, while for the delays between 50 and 100 m, E5a
and E6BC modulations will have lower multipath errors than
L1BC.

In practice, this means that relative performance of
different code modulations will be site-dependent. Of course,
a modulation with a smaller theoretical multipath error
envelope is never expected to be worse (on average) than
the modulation with a bigger error envelope. However, the
advantages of more advanced code modulations will be more
evident for the sites where long-delay multipath is dominant
but may disappear for the sites with significant short-range
mulitpath.

All the above considerations directly apply only to
static multipath. Code multipath errors visible by the
GNSS receiver in the movement, such as in car tests, are
subject to averaging at the level of tracking. Although these
modulations, which look better in Figure 1 are still expected
to show lower multipath errors in the car test, it is hard
to predict theoretically the measure of their advantage.
Our experimental results presented later in the paper show
relatively small differences between all the codes except for
E5AltBOC which still is a definite champion. The exceptional
qualities of E5AltBOC are due to its exceptionally high
bandwidth. The tracking of E5AltBOC signal is implemented
in the GETR in accordance with the algorithm outlined in
[7].

3. CALCULATION OF CODE MULTIPATH ERROR
BASED ON EXPERIMENTAL DATA

In our data analysis we computed code multipath using a
well-known formula:

Mi = Pi −Φi + 2λ2
i

Φ j −Φi

λ2
j − λ2

i

, (1)

where Mi is the estimate of the code multipath error on
a pseudorange Pi, while Φi and Φ j are the carrier phase
observables (in units of length) for wavelengths λi and λj for
the same satellite. j represents any band which is different
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Figure 2: Space Engineering antenna mounted on the rooftop of
the Septentrio office.

than i. With multifrequency Galileo signals, several values
of j are possible, but the particular selection of j does
not significantly affect the results. Formula (1) estimates
a combination of multipath and tracking noise, but the
contribution of the tracking noise can be neglected in most
practical cases. For those signals which have pilot and data
components, we used the pilot component; the multipath
is exactly the same for both components but the tracking
noise is independent. In (1), all the effects of the movement
are canceled out, hence it is applicable to both static and
kinematic data.

4. STATIC DATA COLLECTED IN LEUVEN AT
SEPTENTRIO TEST SITE

Most of the data presented in this paper have been collected
at the rooftop of the Septentrio office building. The wide-
band GPS/Galileo antenna provided by Space Engineering is
shown in Figure 2. The antenna was mounted on the support
structure and was located higher than the other objects
on the rooftop. However, the adjacent building, which is
seen at the photo, was still higher than the antenna and
acted as a source of reflected signals. Therefore, the short-
range multipath at our site is relatively low, but long-range
multipath systematically affects our data especially at low
elevations when a satellite is rising or setting in the direction
opposite to the adjacent building, which was in fact quite
typical for GIOVE. The reflector building stretches in the
North/South direction while GIOVE-A would often (but
not always) rise directly in the East. In fact, day-dependent
variations of multipath on our site were to a great extent due
to the variations of the direction of rising/setting of GIOVE-
A with respect to this reflecting wall.

Table 1 shows the availability of the data for individual
Galileo signals in the Leuven data sets processed for this
report. Although GIOVE-A is able of transmitting all the
experimental Galileo signals, it can transmit only in two fre-
quency bands at a time. In reality, the satellite is transmitting
either a combination of L1+E5a+E5b or a combination of
L1+E6.

In our analysis, we have joined all the processed data for
averaged signal power and code multipath errors as functions
of elevation into one global array. This data is presented in
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Figure 3: Averaged signal power for all the tests in Leuven.

Figures 3 and 4 for signal power and multipath, respectively.
The signal power matches the specifications of GSTB-V2, but
it is not representative of the final Galileo satellites, which will
use different transmitters. The drop of C/N0 at zenith for L1
signals is peculiar to the Space Engineering antenna (see [1]
for more details).

Figure 4 contains standard deviations of code multipath
for 10-degree bins of the elevation angle. Because the
distance to the adjacent building is about 100 m, typical
delays of generated multipath are about 200 m (for satellites
rising or setting in the direction opposite to the building),
hence at low elevations L1BC and all the other Galileo
codes perform significantly better than GPS-C/A, where this
component of multipath is dominant. On the contrary, at
high elevations where short-range multipath is dominating,
GPS-CA and 4 Galileo codes (L1-BC, E5a, E5b, E6BC) have
similar values of multipath errors.

It is also clear that at low elevations L1BC has the
highest multipath compared to other Galileo modulations.
For the best modulations, such as E5AltBOC and L1A the
long-range multipath is almost completely suppressed, hence
corresponding curves in Figure 4 are almost flat and show
little increase at low elevations. The Leuven site is well-
suited to compare the suppression of long-range multipath
by different code modulations.

Figure 4 contains also the comparison of the multipath
performance of GPS-CA for 2 GPS receivers: GETR and
PolaRx2. The difference between the two (black curves) can
be seen as a measure of difference between the magnitude of
multipath errors in two different receivers even if both do not
use multipath mitigation (PolaRx2 uses multipath mitigation
by default but it was turned off for this test). The difference
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Table 1: GIOVE-A signal components recorded during static tests in Leuven.

Data set Max elevation (deg) L1A L1BC E5A E5B E5AltBoc E6A E6BC

15 January 2006 44.8 X x x x

16 January 2006 60.0 X x x x x

08 March 2006 83.8 X x x x

19 May 2006 65.3 X x x x x

28 May 2006 84.4 x x x x

13 October 2006 75.6 X x x x
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Figure 4: STD of code multipath for Galileo signals in comparison
to GPS-CA for the tests in Leuven.

is due to a combination of receiver parameters such as front-
end bandwidth and the type of a discriminator.

Comparison of low-elevation and high-elevation mul-
tipaths is also presented in Table 2. In this table, the
Galileo modulations are grouped into 3 groups: (i) high-
performance group, which included E5AltBOC and the two
PRS modulations (L1A and E6A), (ii) medium-performance
group, which includes E5a, E5b, and E6BC, and (iii) low-
performance group, which includes only L1BC and has still
better performance as compared to CPS-CA. The values
of multipath typical for the high-performance group are
comparable to the values of tracking noise for GPS-CA code
and are for most of the tests nearly equal at low and high
elevations. This ranking of Galileo modulations in terms of
multipath performance is practically identical to the ranking
obtained by computer simulations in [8].

Successful suppression of long-range multipath can also
be directly observed in the time series of multipath which we
present here for some of the tests.
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Figure 5: Time series of code multipath for the test of May 19.

In Figure 5, the long-range multipath manifests itself
in high-frequency variations of multipath error near the
right edge of the graph. The same ranking of the Galileo
modulations as in Table 2 can be observed; the multipath
errors of L1BC are the highest, while the multipath of
E5AltBOC is the lowest and the others fall in-between.

The high-amplitude high-frequency variations of L1BC
multipath shown in Figure 5 and other similar plots cor-
respond in fact to a quasiperiod about 20 seconds. The
zoomed plot of these variations is shown in Figure 6. This
plot clearly demonstrates how complete the suppression of
long-range multipath by the best Galileo modulations is. A
similar example, which includes E6A, is shown in Figure 7.
In Figure 5 and other plots with time series, the part of the
plot with higher-amplitude and higher-frequency multipath
always corresponds to lower elevations, when the satellite is
rising and setting. The variation of multipath with elevation
is illustrated by the multipath versus elevation plots (Figure 4
and similar plots).
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Table 2: Multipath STD error (m) of Galileo signals as compared to GPS C/A code.

Signal
Chip rate, Jan. 15 Jan. 16 Mar. 08 May. 19 May. 28 Oct. 13

MHz >10◦ <10◦ >10◦ <10◦ >10◦ <10◦ >10◦ <10◦ >10◦ <10◦ >10◦ <10◦

GPS-C/A 1.023 0.60 1.19 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
L1BC 1.023 0.36 0.93 0.40 0.55 0.39 0.41 0.38 0.86 0.38 0.93 0.34 0.79

E5a 10.23 — — 0.55 0.62 — — 0.33 0.51 0.25 0.51 — —

E5b 10.23 — — 0.33 0.44 — — 0.35 0.47 0.27 0.55 — —

E6BC 5.115 0.28 0.28 — — 0.27 0.42 — — — — 0.30 0.67

L1A 2.5575 0.24 0.37 0.21 0.20 0.24 0.20 0.23 0.22 — — 0.18 0.37

E6A 5.115 0.24 0.22 — — 0.23 0.17 — — — — 0.23 0.58

E5AltBOC 10.23 — — 0.25 0.23 — — 0.20 0.30 0.14 0.23 — —

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

M
u

lt
ip

at
h

(m
)

10.1 10.12 10.14 10.16 10.18 10.2 10.22 10.24 10.26 10.28 10.3

Time (h)

Leuven, May 19, 2006

L1BC
E5a
E5b

L1A
E5

Figure 6: Zoomed view of the high-elevation part of the previous
plot.

Although most of the Leuven data demonstrate similar
behavior for all the 3 modulations of the best group (E5,
L1A, E6A), a more careful analysis gives the impression that
on average the magnitude of multipath errors increases in
the sequence E5AltBOC→L1A→E6A (which is quite in line
with theoretical expectations), and that the performance of
E6A in some cases comes close to the values typical for
the “medium-performance” group. An example is presented
in Figure 8. In fact, even in a summary plot (Figure 4),
the E6A modulation shows visibly higher multipath errors
at low elevations than E5AltBOC+L1A. Some other tests
presented later in this paper also suggest that the best-
performance group in fact includes only E5AltBOC and L1A,
while E6A gravitates to the medium-performance group. The
E5AltBOC, on the other hand, always shows an exceptionally
stable performance; its values of multipath errors are always
the lowest as compared to other modulations (see Figures 9,
10, and 11)
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E6A.

5. ANTENNA SITE IN LEUVEN WITH MORE INTENSIVE
SHORT-RANGE MULTIPATH

In order to investigate the effect of short-range multipath
on Galileo signals, we placed the Galileo antenna at another
more multipath-rich position on the same rooftop. This
antenna position was located on the roof floor between
the two metal ventilation outlets (identical to these in the
right bottom corner of Figure 2). The antenna was located
lower than many other reflective objects on the rooftop, so
it was expected to get more short-range and middle-range
multipath compared to the main site. The comparison of the
two sites is presented in Figure 12.

Figure 12 shows that the multipath at the “multipath-
rich” location is indeed higher, the difference being par-
ticularly great for E5a. At higher elevations the difference
between the two sites is statistically insignificant, which indi-
cates that the local objects generate multipath predominantly
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for low-elevation satellites. The multipath statistics for the
two tests at the “multipath-rich” site is presented in Table 3.

The time series of code multipath is presented in Figures
13 and 14. It is evident that in both plots the multipath of
E5a is unusually high in comparison to all the other tests.
The reason for this strange behavior, different from all the
other tests, is not clear.

6. STATIC DATA COLLECTED AT LA PLATA
AND WUHAN GESS SITES

On top of processing the data collected by ourselves, we also
processed the GIOVE-A data collected at 2 other geographic
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Figure 11: Multipath time series for January 16, 2006.

locations and available via GESS network: La Plata in Latin
America and Wuhan in China.

The analysis of multipath data from these two sites
confirms in broad terms the tendencies reported in the first
section. In particular, the superior performance of L1A and
E5AltBOC has been confirmed. However, some important
differences must be mentioned. First of all, the E6BC signal
has high multipath comparable to L1BC (even higher than
L1BC at low elevations). Secondly, at the Wuhan site the
elevation dependence is much less pronounced than for the
rest of the tests, probably due to the peculiarities of local
reflectors. Thirdly, the E6A signal shows worse performance
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−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

M
u

lt
ip

at
h

(m
)

9 10 11 12 13 14 15 16

Time (h)

Leuven, December 12, 2006

L1BC
E5a
E5b

L1A
E5

Figure 13: Time series for code multipath for December 12, 2006.

than L1A and E5AltBOC. At low elevations it still gravitates
to the “high-performance group,” while at higher elevations
it shows about the same average multipath errors than other
signals.

It is also quite clear that performance of GPS-CA on both
sites is about the same as the performance of L1BC. This can
probably be attributed to the prevalence of the multipath
delays shorter than 150 m, in which case both modulations
are supposed to be about equivalent. The strange behavior of
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Table 3: Multipath STD error (m) of Galileo signals for a more
“multipath-rich” antenna site.

Signal
Chip rate Dec. 12 Dec. 13

(MHz) >10◦ <10◦ >10◦ <10◦

L1BC 1.023 0.33 0.48 0.48 0.96

E5a 10.23 0.35 0.82 0.45 0.89

E5b 10.23 0.31 0.32 0.39 0.60

L1A 2.5575 0.23 0.20 0.28 0.36

AltBOC 10.23 0.16 0.30 0.21 0.22

GPS multipath at elevations less than 10 degrees for the La
Plata site can at least partly be explained by high masking
angles from a wide range of directions which leads to the
lower than normal availability of GNSS signals (see photo of
the La Plata site, Figure 25).

Peculiarities of these sites can also be illustrated by the
time series of multipath errors (Figure 17–20). Figure 17
illustrates relatively high multipath errors for E6BC. Figures
19 and 20 show that the multipath for the Wuhan stations has
indeed atypical elevation dependence; at lower elevations the
frequency of the variations of multipath are increasing, while
their amplitude remains the same. The multipath results for
different stations depend of course upon the peculiarities of
the multipath environment, in particular upon the presence
of reflectors oriented in a certain way relative to the GIOVE-
A lines of sight at its rising and setting.

Figure 21 demonstrates how different the multipath
environments at different stations indeed are. At La Plata
station, the multipath is generally the highest (almost a
double at high elevations compared to Leuven), while at
Wuhan the multipath is not only higher in general, but
also its elevation dependence is flatter. Logically enough, the
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Table 4: Availability of GIOVE-A signals for the data sets from La Plata and Wuhan.

Stations Date
Max.
elevation
(deg)

L1A L1BC E5A E5B E5AltBoC E6A E6BC

La Plata
10 & 11 Sep 2006 88.9 x x x x

5, 6 & 7 Apr 2007 87.7 x x x x x

Wuhan
18 & 19 Oct 2006 88.5 x x x x

20 & 21 Mar 2007 88.8 x x x x
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Figure 15: Multipath performance at the La Plata GESS site.

biggest differences can be seen for L1BC, where multipath
errors are the highest, while for E5AltBOC, where multipath
errors are significantly suppressed, the differences are almost
undetectable (Figure 22).

Investigation of the reasons for site-dependent differ-
ences is beyond the scope of this paper. The photos of La
Plata and Wuhan antenna sites from public IGS sources
show significant amount of local reflectors. The La Plata site
(Figure 25) resembles a park and is surrounded with high
trees which are apparently responsible for high multipath
and masking of the signal at low elelvations. The Wuhan site
(Figure 26) is on the rooftop of a two-storeyed building and
is surrounded by remote trees which are likely to serve as a
source of scattered signals. The multipath caused by scattered
signals is expected to be present at all the elevations and
may be responsible for the flatter elevation dependence of
multipath at Wuhan (Figure 21). It should also be mentioned
that at the La Plata site the signal power is systematically
lower than in Leuven and Wuhan (cf. Figures 3, 23, and 24).

The total statistics of multipath for all the processed
data for La Plata and Wuhan is presented in Table 5. The

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
u

lt
ip

at
h

(m
et

er
s)

0 10 20 30 40 50 60 70 80 90

Elevation (deg)

GETR, L1-CA
L1BC-P
E5a-P
E5b-P

E6BC-P
L1A-D
E6A-D
E5AltBOC-P

Wuhan-averaged multipath errors for Galileo signals

Figure 16: Multipath performance at the Wuhan GESS site.

averages presented in this table illustrate the same tendencies
already visible from the plots, in particular the low elevation
dependence of multipath at the Wuhan site.

7. KINEMATIC TESTS

The code multipath errors for kinematic tests with GIOVE-A
signals where first presented in [1]. The kinematic multipath
is very different from a static one in that its variations
are dominated by fast changes of the reflectors due to
movement, and that a high degree of multipath suppression
is achieved at the tracking level due to averaging of the
rapid oscillations of in-phase/out-of-phase multipath. The
time series of kinematic multipath consists of random
structure-less variations, where the differences between the
modulations are much less pronounced that in the static case.

In this paper, we present the results of two car tests
performed in different environments: rural and urban.
Separate statistics was computed for the periods when the
car was static and the periods when the car was moving.
As shown in Table 6, the signal availability during the tests
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Table 5: Multipath 1-sigma error (m) for the data sets of La Plata/Wuhan.

Signal
Chip La Plata Wuhan

rate Sep. 10 Apr. 05 Oct. 18 Mar. 20

(MHz) >10◦ <10◦ >10◦ <10◦ >10◦ <10◦ >10◦ <10◦

L1BC 1.023 0.56 — 0.62 1.06 0.53 0.66 0.54 0.66

E5a 10.23 — — 0.46 0.94 — — 0.42 0.52

E5b 10.23 — — 0.46 0.86 — — 0.46 0.48

E6BC 5.115 0.59 — — — 0.50 0.49 — —

L1A 2.5575 0.28 — 0.28 0.47 0.29 0.16 — —

E6A 5.115 0.38 — — — 0.39 0.28 — —

AltBOC 10.23 — — 0.21 0.22 — — 0.21 0.19
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Figure 17: Time series of code multipath for La Plata, September
10, 2006.

was different; during the urban test, L1 and E6 were being
transmitted, while during the rural test L1 and E5 signals
were available.

Although the static portions of the car tests still show
the same tendencies as the data collected on the rooftop,
the data collected during the movement demonstrates much
smaller values of multipath errors, much smaller advantage
of Galileo modulations as compared to GPS-C/A, and much
smaller differences between Galileo modulations. The differ-
ences between static and kinematic multipath can be clearly
seen in Figures 27 and 28. Figure 29 illustrates that code
multipath during the urban test was generally somewhat
higher due to obviously greater amount of reflectors in the
urban environment.

In particular, the results of the car tests suggest that
the replacement of L1 BOC(1,1) with MBOC will not have
any significant impact on the multipath performance in
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Figure 18: Time series of code multipath for La Plata, April 05,
2007.

the automotive environment. Indeed, MBOC is expected
to show the performance intermediate between L1BC and
E6BC, while both modulations have about the same intensity
of kinematic multipath according to Table 6.

According to theory, MBOC is expected to outperform
BOC(1,1) for static scenarios, possibly bringing greater
improvement relative to BOC(1,1) than the improvement of
the BOC(1,1) relative to BPSK(1). This is to be verified after
actual implementation of MBOC.

8. PHASE MULTIPATH

Simultaneous availability of 3 frequencies allows direct
evaluation of phase multipath from triple-frequency iono-
free geometry-free combinations of phase measurements
[1, 9]:

MΦ123 = λ2
3

(
Φ1 −Φ2

)
+ λ2

2

(
Φ3 −Φ1

)
+ λ2

1

(
Φ2 −Φ3

)
. (2)
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Table 6: Multipath statistic for car tests (m).

Rural static Rural movement Urban static Urban movement

GPS-CA 1.19 0.23

L1BC 0.27 0.15 0.40 0.18

E6BC 0.50 0.22

E5a 0.20 0.16

E5b 0.26 0.15

E5AltBOC 0.10 0.11
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Figure 19: Time series of code multipath for Wuhan, October 18,
2006.
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Figure 20: Time series of code multipath for Wuhan, March 20,
2007.
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Figure 21: Code multipath on L1BC at 4 locations. Here “Leuven-
1” is our main open-sky antenna site (Figure 2). “Leuven-2” is
more multipath-rich site located between the ventilation outlets
(see Section 5).

This formula is a linear combination of three geometry-free
observables(Φi−Φ j), which all contain ionosphere delays. As
it has been shown in [9], in (2) ionosphere delays cancel out.
M123 contains a mix of phase multipath and tracking errors
for the same satellite on 3 different frequencies and can be
used as a global indicator of phase multipath severity. It can
be used in particular to study elevation dependence and site
dependence of phase multipath.

In this paper, we used one particular combination (E5a
− 1.128∗E5b + 0.128∗L1BC) as an indicator of phase multi-
path. Figure 30 contains elevation dependence of this phase
multipath indicator for all the static sites covered in this
paper. The elevation dependence shows significant variability
and does not indicate with certainty any differences between
the sites.

The nature of phase multipath is in general quite
different from code multipath. In particular, phase multipath
for different signals is not expected to show significant
differences. It has already been demonstrated in [1] that the
phase tracking noise is identical for all the GIOVE-A signals.
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Phase multipath is generally much less studied than code
multipath, so it is difficult to predict what the behavior of
phase multipath should be. The time series of our phase
multipath indicator is presented in Figure 31.

The elevation dependence of phase multipath is generally
flatter and more variable that with the code multipath. There
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Figure 24: Signal power at Wuhan station.

Figure 25: Environment at the La Plata antenna site.

Figure 26: Environment at the Wuhan antenna site.

exist significant long-term variations which have impact on
the statistics in a way of making it less stable. The pattern
of phase multipath is quite different between the sites (cf.
Figures 31 and 32).

9. CONCLUSIONS

Field experience with GIOVE-A signals has demonstrated
stable reception in a variety of external conditions and
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confirmed the theoretical expectations as to superior multi-
path rejection of wide-band Galileo modulations. Multipath
performance results for static and kinematic tests have been
reported.

Comparison of the static data from different sites shows
significant variability of the multipath performance for most
of the Galileo signals. It seems that only the behavior of
E5AltBOC is truly stable and repeatable for all the tests;
in all the tests, the E5AltBOC demonstrates the highest
multipath suppression as compared to other signals and very
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Figure 29: Code multipath during the urban test.
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Figure 30: Phase multipath at 4 locations. Here “Leuven-1” is
our main open-sky antenna site (Figure 2). “Leuven-2” is a more
multipath-rich site located between the ventilation outlets (see
Section 7).

low magnitude of average multipath errors, down to the
values about 0.2 m.

For all the other signals, we can talk about the tendencies
which manifest themselves on average, but with significant
site-dependent variations. The most important of these
tendencies is the classification of all the modulations in
groups shown in Table 2. According to this classification,
E6A+L1A+E5AltBOC form the group of high-performance
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signals, while the E5a, E5b, and E6BC signals belong to the
medium group, the performance of L1BC is the lowest.

This classification, which agrees with theoretical predic-
tions and computer simulations, can be accepted as a general
rule, although in some tests E6BC and E5a,b show practically
the same performance as L1BC, and E6A in the others shows
performance more typical to the medium group.

The relationship between the signals for individual sites
depends upon the spectra of multipath delays. For the
Leuven site where the long-range multipath with a delay of
about 200 m is clearly dominant, the wide-band signals with
essential suppression of long-range multipath component

show clearly superior performance. In other cases, when
short-range multipath is dominant, the advantage of more
advanced codes will be less pronounced.

The future research may take an approach of looking in
more detail into specific multipath conditions and types of
reflectors at different sites. Accumulation of much greater
statistic may help to formulate the trends in a more reliable
and detailed manner and make a classification of sites in
accordance with the multipath behavior.

The kinematic tests have demonstrated a lot of smaller
values of multipath errors and a much less significant depen-
dence of multipath upon code modulations. This means in
particular that any further changes in the signal definition of
Galileo signals are not likely to bring any significant improve-
ment to dynamic applications, such as automotive, although
modulation changes may have impact on static applications.

In this paper, the phase multipath statistics for GIOVE-A
signals is presented for the first time.

ACKNOWLEDGMENT

The authors would like to thank M. Falcone for his support
of GIOVE signal experimentation activity.

REFERENCES

[1] A. Simsky, J.-M. Sleewaegen, M. Hollreiser, and M. Crisci,
“Performance assessment of Galileo ranging signals transmitted
by GSTB-V2 satellites,” in Proceedings of the 19th International
Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS ’06), vol. 3, pp. 1547–1559, Fort Worth,
Tex, USA, September 2006.

[2] M. Hollreiser, M. Crisci, J.-M. Sleewaegen, et al., “Galileo signal
experimentation,” GPS World, vol. 18, no. 5, pp. 44–50, 2007.

[3] M. Spelat, M. Crisci, M. Falcone, and M. Hollreiser, “GIOVE-
A signal in space test activity at ESTEC,” in Proceedings of the
19th International Technical Meeting of the Satellite Division of
the Institute of Navigation (ION GNSS ’06), vol. 2, pp. 981–983,
Fort Worth, Tex, USA, September 2006.

[4] M. Falcone, M. Lugert, M. Malik, et al., “GIOVE-A in orbit
testing results,” in Proceedings of the 19th International Technical
Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS ’06), vol. 3, pp. 1535–1546, Fort Worth, Tex, USA,
September 2006.

[5] M. Hollreiser, J.-M. Sleewaegen, W. de Wilde, M. Falcone, and
F. Wilms, “Galileo test user segment,” GPS World, vol. 16, no. 7,
pp. 23–29, 2005.

[6] W. de Wilde, J.-M. Sleewaegen, A. Simsky, et al., “New fast
signal acquisition unit for GPS/Galileo receivers,” in Proceedings
of the European Navigation Conference (ENC GNSS ’06),
Manchester, UK, May 2006.

[7] J.-M. Sleewaegen, W. de Wilde, and M. Hollreiser, “Galileo
Alt-BOC receiver,” in Proceedings of the European Navigation
Conference (GNSS ’04), Rotterdam, The Netherlands, May
2004.

[8] A. Fernandez, J. Diez, C. Griffin, et al., “UERE budget results
for the Galileo test user receiver,” in Proceedings of the 19th
International Technical Meeting of the Satellite Division of the
Institute of Navigation (ION GNSS ’06), vol. 2, pp. 1048–1059,
Fort Worth, Tex, USA, September 2006.

[9] A. Simsky, “Three’s the charm: triple-frequency combinations
in future GNSS,” Inside GNSS, vol. 1, no. 5, pp. 38–41, 2006.



Hindawi Publishing Corporation
International Journal of Navigation and Observation
Volume 2008, Article ID 785695, 17 pages
doi:10.1155/2008/785695

Research Article
Multiple Gate Delay Tracking Structures for GNSS Signals and
Their Evaluation with Simulink, SystemC, and VHDL

Heikki Hurskainen,1 Elena Simona Lohan,2 Xuan Hu,2 Jussi Raasakka,1 and Jari Nurmi1

1 Department of Computer Systems, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
2 Department of Communications Engineering, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland

Correspondence should be addressed to Heikki Hurskainen, heikki.hurskainen@tut.fi

Received 13 July 2007; Revised 11 December 2007; Accepted 29 February 2008

Recommended by Letizia Presti

Accurate delay tracking in multipath environments is one of the prerequisites of modern GNSS receivers. Several solutions have
been proposed in the literature, both feedback and feedforward. However, this topic is still under active research focus, especially
for mass-market receivers, where selection of lowcomplexity, nonpatented methods is preferred. Among the most encountered
delay tracking structures implemented in today’s receivers, we have the narrow correlator and the double-delta correlators. Both
are heavily covered by various patents. The purpose of this paper is to introduce a new, generic structure, called multiple gate delay
(MGD) structure, which covers also the patented correlators but offers much more flexibility in the design process. We show how
the design parameters of such a structure can be optimized, we argue the performance of this structure via detailed simulation
results based on various simulators, such as Matlab/Simulink-based tool, GRANADA, and we test the implementation feasibility
of MGD structures on actual devices, via SystemC and FPGA prototyping. One of the main advantages of the proposed structure
is its high degree of flexibility, which allows the designer to choose among, to the authors’ knowledge, nonpatented solutions with
delay tracking accuracy comparable with that of the current state-of-art trackers.

Copyright © 2008 Heikki Hurskainen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. BACKGROUND AND MOTIVATION

The main algorithms used nowadays for GPS and Galileo
code tracking are based on what is typically called a feedback
delay estimator, and they are implemented based on a feed-
back loop. The most known feedback delay estimators are the
delay locked loops (DLLs) and the today’s GNSS receiver that
typically use a particular DLL structure, called the narrow
correlator or narrow early-minus-late (NEML) delay tracker,
which proved to give good results in multipath environments
[1–3]. Another class of enhanced DLL structures is the so-
called double-delta correlator class [4], which started to gain
more and more attention during last years. Examples belong-
ing to this class are: the high resolution correlator (HRC)
[3, 5], the strobe correlator [2, 4, 6], the pulse aperture
correlator (PAC) [7], the multipath mitigation correlator
[8], and the modified correlator reference waveform [2, 9].
Most of the double-delta correlators as well as the narrow
correlator are patented or under patent applications [4, 5, 7,
10, 11].

An alternative to the above-mentioned feedback loop
solutions is based on the open-loop (or feedforward)
solutions, which refer to the solutions which make the delay
estimation in a single step, without requiring a feedback loop.
A general classification of open-loop solutions for CDMA
communication applications can be found in [12, 13] and for
GNSS applications in [14]. However, for the purpose of low-
cost mass-market receiver implementation, feedback delay
tracking structures are still the preferred ones, and they will
be the focus of our paper.

We introduce here the flexible multiple gate delay (MGD)
structure with adjustable parameters, and we present a
method to optimize these parameters. We show the per-
formance of MGD structures in multipath channels, with
a particular attention to the situations with more than 2
paths (which are typically neglected in the literature, when
analyzing the multipath error envelopes of delay tracking
units). We also present, for the first time to the authors’
knowledge, a comparison between using squared-envelopes
versus envelopes before noncoherent integration stage as well
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as a comparison between using uniform versus nonuniform
gate spacings in delay tracking units.

We then validate the MGD structures via implementation
in a Simulink-based navigation tool, GRANADA. Based on
the presented MGD structures, we also develop a flexible
delay tracking prototype receiver (in SystemC and VHDL)
for Galileo and GPS signals. The main focus is on sine-BOC
and BPSK-modulated signals, but the design steps shown
here can be extended in a straightforward manner to other
BOC modulations (cosine BOC, multiplexed BOC, alternate
BOC, etc.).

In the delay tracking receiver prototyping, we focus
on the implementability, complexity, and flexibility of the
proposed MGD structures. First, we present the implemen-
tations and discuss about the flexibility and the restrictions
caused mostly by the digital hardware characteristics. Then,
we verify the implementability of the chosen algorithms
with a SystemC model. After that, the complexity of the
implemented prototype hardware is evaluated as VHDL
synthesis results.

2. COMMON DELAY TRACKING STRUCTURES FOR
GNSS SIGNALS

The most common delay tracking loops for GNSS signals are
based on feedback delay locked loop (DLL)-like structures.
The state-of-art delay trackers, which are widely used in
GNSS industry nowadays, include: the narrow early-minus-
late (NEML) correlator [1–3, 10, 11] and the double-delta
correlators [2, 15–17], also known under the names of pulse
aperture correlator (PAC) [7], strobe correlator [2, 6, 18], or
high resolution correlator (HRC) [3, 5, 19].

All the above-mentioned methods have a common
underlying structure, in the sense that they are based on
different weighted combinations of early and late samples
of the correlation function with different chip-spacings
between these samples. In what follows, we will first intro-
duce the signal model for Galileo and GPS signals, then, we
present the above-mentioned methods in more detail. We
will then show that most of the currently used delay tracking
structures (i.e., those mentioned above) can be unified under
a generic structure, namely the multiple gate delay (MGD)
structure, whose parameters are to be optimized in Section 3.

Typical satellite positioning signals, such as those used
for GPS and Galileo, employ the direct-sequence code
division multiple access (DS-CDMA) technique, where a
PRN code is spreading the navigation data over SF chips
(or over a code epoch length) [20, 21]. In what follows, we
adopt, for clarity reasons, a baseband model. Also, the delay
tracking estimation in nowadays receivers is typically done
in digital domain (using the baseband correlation samples).
The time notation t stands for discrete time. The transmitted
signal x(t) can be written as the convolution between the
modulating waveform smod(t), the PRN code, including data
modulation, and the pulse shaping filter pTB (t) [22]:

x(t) =
√
Ebsmod(t)

�
+∞∑

n=−∞

SF∑

k=1

bnck,nδ
(
t − nTsym − kTc

)
� pTB (t),

(1)

where Eb is the data bit energy, � is the convolution operator,
bn is the nth complex data symbol, Tc = 1/ fc is the chip
period, SF is the spreading factor, Tsym is the symbol period
(Tsym = SFTc), ck,n is the kth chip corresponding to the
nth symbol, δ(t) is the Dirac pulse, and pTB (t) is the pulse
shaping filter applied to pulses of durationTB = Tc/NB . Here,
NB is a modulation-related parameter that is detailed in what
follows. For example, if infinite bandwidth is assumed, pTB (t)
is a rectangular pulse of unit amplitude if 0 ≤ t ≤ TB and 0
otherwise.

The signal x(t) is typically transmitted over a multipath
static or fading channel, where all interference sources
(except the multipaths) are lumped into a single additive
Gaussian noise term η(t):

r(t) =
L∑

l=1

αle
− jθl x

(
t − τl

)
e− j2π fDt + η(t), (2)

where r(t) is the received signal, L is the number of channel
paths, αl is the amplitude coefficient of the lth path, θl is the
phase of the lth path, τl is the channel delay introduced by the
lth path, fD is the Doppler shift introduced by the channel,
and η(t) is the complex additive Gaussian noise of zero mean
and double-sided power spectral density N0.

Typically, the signal-to-noise ratios for GNSS signals
are expressed with respect to the code epoch bandwidth
Bw, under the name of carrier-to-noise ratio (CNR). The
relationship between CNR and bit-energy-to-noise ratio is
[23]

CNR[dB-Hz] = Eb
N0

+ 10log10

(
Bw
)
. (3)

The delay tracking is typically based on the code epoch-
by-code epoch correlation R(·) between the incoming signal
and the reference xref(·) modulated PRN code, with a certain
candidate Doppler frequency f̂D and delay τ̂:

R
(
τ̂, f̂D,m

) = E
(

1
Tsym

∫ mTsym

(m−1)Tsym

r(t)xref
(
τ̂, f̂D

)
dt
)

, (4)

where m is the code epoch index, and E(·) is the expectation
operation, with respect to the PRN code, and

xref
(
τ̂, f̂D

)

=
(
smod(t) �

+∞∑
n=−∞

SF∑

k=1

b̂nck,nδ
(
t− nTsym− kTc

)
�pTB (t)

)

× e+ j2π f̂Dt,
(5)

where b̂n are the estimated data bits. For Galileo signals, a
separate pilot channel is transmitted, thus the data bits are
known at the receiver [21]. In order to reduce the noise
level, we can use coherent and/or noncoherent integration.

The averaged coherent correlation function Rc(τ̂, f̂D) can be
written as

Rc
(
τ̂, f̂D

) = 1
Nc

Nc∑

m=1

R
(
τ̂, f̂D,m

)
, (6)
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where Nc is the coherent integration time (expressed in code
epochs or milliseconds for GPS/Galileo signals), and the

averaged noncoherent correlation function Rnc(τ̂, f̂D) can be
written as

Rnc
(
τ̂, f̂D

) = 1
Nnc

∑

Nnc

∣∣∣∣∣
1
Nc

Nc∑

m=1

R
(
τ̂, f̂D,m

)
∣∣∣∣∣

pownc

, (7)

where Nnc is the noncoherent integration time, expressed in
blocks of length Nc milliseconds (for clarity of presentation,
we dropped the block indexes used in the noncoherent sum-
mation), and pownc is a power index used for noncoherent
summation. The most encountered variants are: pownc = 1
(i.e., sum of absolute values) and pownc = 2 (i.e., sum of
squared-absolute values).

The DLL-like structures form a discriminator function
D(τ̂) based on the early and late correlations, and they
estimate the channel first path delay from the zero crossings
of this discriminator function. The discriminator functions
for NEML [1–3, 10, 11] and HRC [3, 5, 19] are well defined in
literature and their expressions as equations are, for NEML:

D(τ̂) =Rc/nc

(
τ̂ +

Δ1

2
, f̂D

)
−Rc/nc

(
τ̂ − Δ1

2
, f̂D

)
, (8)

and for HRC:

D(τ̂) = a1

(
Rc/nc

(
τ̂ +

Δ1

2
, f̂D

)
−Rc/nc

(
τ̂ − Δ1

2
, f̂D

))

+ a2

(
Rc/nc

(
τ̂ +

Δ2

2
, f̂D

)
−Rc/nc

(
τ̂ − Δ2

2
, f̂D

))
.

(9)

In single-path channels (L = 1), the mentioned dis-
criminator functions cross the zero level when τ̂ = τ1.
That is, the zero-crossings show the presence of a channel
path. However, due to BOC modulation, we might have
more zero-crossings present, and the search range should be
restricted to the linear range of the discriminator function
(for SinBOC(1,1)), this linear range goes from about −0.05
till about 0.05 chip error. In multipath channels, we also want
to haveD(τ1) = 0, τ1 being the true line-of-sight (LOS) delay,
in order to estimate correctly the first path delay. However,
this is not always possible, and an estimation error might
happen due to multipath presence, that is, D(τ1 + eme) = 0.
The term eme is the multipath error. An example is shown in
Figure 1 for two in-phase paths of amplitudes 0 and −1 dB
and path spacing of 0.2 chips. In this example, eme = 0.01
chips for HRC, and eme = 0.04 chips for NEML (in single-
path channel, we had eme = 0 chips for both structures).
The maximum and minimum multipath errors define the
multipath error envelopes (MEEs), as it will be discussed in
more detail in Section 3.

While it is generally known that the performance of
coherent correlators outperforms that of the noncoherent
correlators in ideal conditions (e.g., absence of fading or
clock synchronization errors, perfect data bit estimation,
etc.), the nonidealities of practical channels make that the
structures of choice in most nowadays receivers are the
noncoherent ones. This motivates our choice of noncoherent
correlator gates in what follows.
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Figure 1: Examples of noncoherent discriminator outputs
(pownc = 2) for two-path channels, for NEML and HRC correlators.
SinBOC(1,1) signal, early-late spacing Δ1 = 0.1 chips.

3. MULTIPLE GATE DELAY (MGD) STRUCTURES

3.1. Proposed architecture

The proposed generalization of the NEML and double-
delta structures (which cover most of the state-of-art delay
tracking techniques used nowadays in industrial implemen-
tations) follows in a straightforward manner:

D(τ̂) =
Ng∑

i=1

ai

(
Rc/nc

(
τ̂ +

Δi
2

, f̂D

)
−Rc/nc

(
τ̂ − Δi

2
, f̂D

))
.

(10)

Above, we have a weighted sum of Ng correlation pairs
(or gates), with weighting factors ai, i = 1, . . . ,Ng , and
spacings between the ith early and the ith late gate equal to
Δi. Uniform spacing between the gates (as that one used in
NEML and double-delta correlators) means that Δi = iΔ1,
i = 2, . . . ,Ng . However, we need not to restrict our structure
to uniform spacing alone. The above discriminator function
characterizes the proposed multiple gate delays (MGDs). The
first coefficient a1 is normalized, in what follows, to 1 without
loss of generality. An example of the discriminator function
for MGD with uniform and nonuniform spacings is shown
in Figure 2. For 2-path channel, the same channel profile as
in Figure 1 was used. The multipath errors in these cases are:
eme = −0.0025 chips for MGD with uniform spacing and
eme = 0.0150 chips for MGD with nonuniform spacing.

The block diagram of the generic MGD structures is
shown in Figure 3. The incoming signal is correlated with
the reference, BOC or BPSK-modulated PRN code, via Ng

gates or correlator pairs, and, then, it is coherently and
noncoherently integrated. The coherent and noncoherent
integration blocks are optional, but they usually should be
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Figure 2: Examples of noncoherent discriminator outputs (pownc = 2) for single-path and two-path channels, for 2 types of MGD
correlators, each with Ng = 2 gate pairs: uniform spacing (Δ2 = 2Δ1) versus decreasing spacing (Δ2 = 1.5Δ1). SinBOC(1,1) signal, early-late
spacing Δ1 = 0.1 chips. a1 = 1 for both structures.

employed for a better robustness against noise. The type
of nonlinearity that can be used in the implementation
is determined by the factor pownc, with typical values:
pownc = 1 (envelope) or pownc = 2 (squared envelope).
The choice of nonlinearity type is usually motivated by the
design constraints (e.g., complexity of squaring versus taking
absolute value, possible need for analytical models, which
are easier to derive in the case of squared envelopes, via chi-
squared statistics, etc.), therefore we will analyze both cases
(pownc = 1, 2) in what follows. To the authors’ knowledge, a
comparison between squared envelopes and envelopes used
in noncoherent integration is not yet available in the GNSS
literature.

We remark that the structure shown in Figure 3 is not the
only one possible; we might, in fact, combine the early-late
gates after the discriminator function. Such structures have
been analyzed in [24] and were shown to give worse results
than the MGD structure selected here.

We also notice that the term of MGD has been used
before in [15, 16]. We kept the same MGD nomination,
since it is quite a generic one, but, by difference with our
proposed MGDs, the discriminator formed in [15, 16] is a
normalized discriminator, and the choice of the weighting
parameters is not optimized. It is not surprising then, that,
while getting rid of the false lock point problem, the MGD
structures proposed in [15, 16] have even poorer code
tracking performance than the narrow correlator [16].

We also remark that the linear combination of weighted
correlation in order to shape the discriminator function
has been also considered in [25]. There, the coefficients are
optimized reducing the value of the correlation function
outside the region ± 1 chip therefore consequently reducing

the multipath error envelope area. However, the approach
presented in [25] has been tested only for 2-path channels,
with second path weaker than LOS path, and the optimiza-
tion steps for other multipath scenarios seem to depend
on previous knowledge about multipath profiles, which is
not usually available. Our approach is different in the sense
that we do not try to reach an optimal discriminator shape,
but the optimization is done according to the estimated
multipath errors, in such a way to minimize them, on average
(i.e., under the assumption of various statistical distributions
of channel paths, this optimization is performed, and the
MGD parameters are found).

The next step is to choose the MGD parameters, namely
the number of gating pairs Ng , the weighting coefficients ai,
and the gate spacings Δi. This choice is done according to an
optimization criterion defined in the presence of multipath
channels, as given in Section 3.2.

3.2. Optimization criterion

The typical criterion to evaluate the performance of a delay
tracking unit in the presence of multipaths is the multipath
error envelope (MEE) [1]. Typically, two paths, either in-
phase or out-of-phase, are assumed to be present, and the
multipath error is computed versus the path spacing. The
upper error envelope is obtained when the paths are in-
phase and the lower error envelope when the paths have
180◦ phase difference. The MEEs depend on the type and
length of the PRN codes, on the additive white Gaussian
noise (AWGN) level, and on the residual Doppler shift errors
coming from the acquisition stage. However, in order to
distinguish the performance deterioration due to multipath
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Figure 3: Block diagram of MGD delay tracking structures.

errors only, several simplifying assumptions can be made,
such as: zero AWGN, ideal infinite-length PRN codes, and

zero residual Doppler ( fD = f̂D). Under these assumptions,
after straightforward manipulations of (1), (2), (4), (5), (6),
and (7), for noncoherent integration we obtain the following:

Rnc
(
τ̂, f̂D

) =
∣∣∣∣∣
√
Eb

L∑

l=1

αle
− jθlRmod

(
τ̂ − τl

)
∣∣∣∣∣

pownc

, (11)

where Rmod(τ) is the autocorrelation function of the modu-
lated PRN code, given by [22]

Rmod(τ) = ΛTB (t) �
NB2−1∑

k=0

NB2−1∑

k1=0

NB1−1∑

i=0

NB1−1∑

i1=0

(−1)k+k1+i+i1

× δ(t − iTB1 + i1TB1 − kTB + k1TB
)
,

(12)

where ΛTB (t) = pTB � pTB is the triangular pulse of support
2TB, shown in Figure 4.

The MEEs can be then computed straightforwardly,
under these ideal conditions, from (10), (11), and (12)
(noncoherent structures), by considering two-paths in-phase
and out-of-phase channels. However, since the multipath
profiles cannot be known in advance, we can compute some
averaged MEEs, when the second-path amplitude varies. The
approach selected by us was to consider that the first channel

t

−TB TB

1

ΛTB (t)

Figure 4: Illustration of a triangular pulse ΛTB (t) of support 2TB .

path has a unit amplitude, and the second-path amplitude
varies uniformly between 0.3 and 1.0. The final MEEs will be
obtained as an average of all MEEs for each channel profile.

A good delay tracking structure should furnish small
average errors, small worst errors, and small maximum mul-
tipath spacing after which MEE becomes 0. The proposed
optimization criterion, derived by intuitive reasoning is the
area enclosed by the absolute value of the upper MEE and
the absolute value with minus sign of the lower MEE. The
illustration of this “enclosed area” principle is shown in
Figure 5 for a MGD structure with 3 gate pairs, squared
absolute value (pownc = 2), and delta spacings and weighting
coefficients shown in the figure’s caption. The “enclosed
area” is shown in dashed lines. We remark that the units
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Figure 5: Illustration of the “enclosed area” principle for 2 path
channel. Noncoherent MGD structure with pownc = 2, Ng = 3,
a1 = 1, a2 = −0.7, a3 = 0.1, and Δ1 = 0.1 chips, Δ2 = 0.2 chips,
Δ3 = 0.3 chips.

to measure this area are the units of MEEs (e.g., chips or
meters); here the errors are shown in meters, knowing that
one chip error corresponds to 293.25 m (if the chip rate is
1.023 MHz).

3.3. Tables with optimized parameters and
interpretation of results

As mentioned before, the parameters to be optimized are: the
number of gate pairs Ng , the delta (or early-late) spacings Δi,
the weighting coefficients a = {ai}i=1,...,Ng

, and the type of
nonlinearity pownc. Three types of delta spacings have been
studied here.

(1) Uniform spacing: Δi = iΔ1, i = 2, . . . ,Ng.

(2) Decreasing spacing: Δi = ((2i − 1)/2i−1)Δ1, i =
2, . . . ,Ng.

(3) Increasing spacing: Δi = ((2i+1)/2)Δ1, i = 2, . . . ,Ng.

The target was to minimize the area enclosed by the
averaged MEEs, when the amplitude of the second channel
path varied between 0.3 and 1.0 (linear scale), and the
multipath spacing varied between 0 and 1.5 chips (with a step
of 0.01). For convenience and without loss of generality, we
normalized the weighting coefficients with respect to the first
one. Thus, a1 = 1, and the search ranges for ai were between
−1 and +1, with a step of 0.1.

First, we had a look at the minimum enclosed areas
for Ng = 2 and Ng = 3 (in order to see the effect of
increasing the number of gating pairs), and for the two
types of nonlinearities pownc = 1 and pownc = 2. For
SinBOC(1,1) modulation, the minimum enclosed areas are

shown in Tables 1 and 2, and they correspond to the
optimum coefficients given (partly) in Table 3 (only the most
illustrative cases, i.e., uniform and decreasing spacings, are
shown in this last referenced table).

Two well-known reference structures are also shown here
for comparison purposes: the narrow correlator NEML and
the high resolution correlator (HRC), both with pownc = 1
(which proved better than pownc = 2). In fact, both these
structures are particular cases of the proposed MGDs: NEML
has a = [1, 0, 0], as shown in (8), HRC has a = [1,−0.5, 0],
and Δ2 = 2Δ1 (uniform spacing), according to (9).

If we compare Table 1 (Ng = 2) with Table 2 (Ng = 3), we
remark that, by increasing the number of gate pairs, we may
decrease the enclosed MEE area, and, thus, we may increase
the multipath robustness. In the worst case, the areas remain
the same when going from Ng = 2 to Ng = 3 gate pairs,
which means that the optimum is already achieved with a
double-delta correlator-like structure. In this situation, the
optimum is typically given by HRC (see the last column
of Tables 1 and 2). We also remark that the reduction of
the enclosed area is not very large when we increase the
number of gate pairs, which might justify the fact that we
limit our structures to a maximum of Ng = 3 gate pairs
(further increase in the number of gate pairs will boost the
complexity, while providing only marginal benefit in terms
of robustness against multipaths).

It is also seen from Tables 1 and 2 that using envelopes
(pownc = 1) instead of squaring envelopes (pownc = 2) gives
better results. Also, using a decreasing delta spacing instead
of uniform delta spacing is generally better. Similar con-
clusions have been achieved also for GPS BPSK-modulated
signals.

The optimum pairs of coefficients for the two nonlinear-
ity types are shown in Table 3, for SinBOC(1,1) modulation,
and in Table 4 for BPSK modulation. Only uniform and
decreasing delta spacings are considered here, since the
increasing delta spacing was clearly much worse than the
other two types of spacing (as seen in Tables 1 and 2).

An illustration of the averaged MEEs for the narrow
correlator, high resolution correlator, MGD with uniform
spacing (a1 = 1, a2 = −0.7, a3 = −0.2), and MGD with
decreasing spacing (a1 = 1, a2 = −0.9, a3 = 0.2) is
shown in Figure 6, for SinBOC(1,1) signal, envelope-based
nonlinearity (pownc = 1), and 0.25 chips minimum early-
late spacing. The average is done with respect to the second
channel path amplitude, which varies uniformly between 0.3
and 1.0 (when first channel path has unit amplitude). As
discussed before, the best results among these 4 algorithms
are obtained with the decreasing spacing, but the differences
between the 4 considered tracking structures are not very
large.

The values shown in Tables 3 and 4 give the designer the
possibility of a wide choice of MGD parameters, according
to the desired nonlinearity type (imposed, for example, by
hardware restrictions) and to the desired minimum early-
late spacing Δ1. As seen in Tables 1 and 2, the smaller
the minimum early-late spacing, the better the multipath
performance. However, as mentioned in [23], the delay
tracking error decreases with the early-late spacing only if we
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Table 1: Minimum enclosed areas [chips] (i.e., for optimum coefficient pairs), Ng = 2, SinBOC(1,1) signal. Minimum early-late spacing Δ1

is given in chips.

pownc = 1 pownc = 2 Reference NEML Reference HRC
pownc = 1 pownc = 1

unif. spacing decr. spacing incr. spacing unif. spacing decr. spacing incr. spacing

Δ1 = 0.1 0.36 0.45 0.46 0.45 0.41 0.59 1.72 0.36
Δ1 = 0.2 1.49 1.24 1.79 1.61 1.27 1.94 3.15 1.49
Δ1 = 0.3 3.14 2.37 4.14 3.51 2.36 4.14 4.31 3.57

Table 2: Minimum enclosed areas [chips] (i.e., for optimum coefficient pairs), Ng = 3, SinBOC(1,1) signal. Minimum early-late spacing Δ1

is given in chips.

pownc = 1 pownc = 2 Reference NEML Reference HRC

pownc = 1 pownc = 1

unif. spacing decr. spacing incr. spacing unif. spacing decr. spacing incr. spacing

Δ1 = 0.05 0.08 0.06 0.11 0.11 0.07 0.11 0.88 0.08

Δ1 = 0.1 0.36 0.24 0.46 0.43 0.34 0.55 1.72 0.36

Δ1 = 0.15 0.82 0.57 1.04 0.94 0.70 1.18 2.46 0.82

Δ1 = 0.2 1.49 1.02 1.58 1.59 1.24 1.92 3.15 1.49

Δ1 = 0.25 2.04 1.68 2.95 2.33 1.77 3.07 3.77 2.46

Δ1 = 0.3 2.72 2.30 3.91 3.51 2.36 4.10 4.31 3.57

Δ1 = 0.35 3.57 3.19 4.63 3.95 3.31 4.59 4.64 4.48

Table 3: Optimum coefficient pairs ai. Ng = 3. SinBOC(1,1) signal
(Galileo). Minimum early-late spacing Δ1 is given in chips.

pownc = 1

unif. spacing decr. spacing

a1 a2 a3 a1 a2 a3

Δ1 = 0.05 1 −0.5 0.0 1 −0.9 0.2

Δ1 = 0.1 1 −0.5 0.0 1 −0.9 0.2

Δ1 = 0.15 1 −0.5 0.0 1 −0.9 0.2

Δ1 = 0.2 1 −0.5 0.0 1 −0.9 0.2

Δ1 = 0.25 1 −0.7 −0.2 1 −0.9 0.2

Δ1 = 0.3 1 −1.0 −0.4 1 −0.8 0.1

Δ1 = 0.35 1 −1.0 0.5 1 −0.7 −0.1

pownc = 2

unif. spacing decr. spacing

a1 a2 a3 a1 a2 a3

Δ1 = 0.05 1 −0.8 0.2 1 −0.8 0.1

Δ1 = 0.1 1 −0.7 0.1 1 −0.5 −0.2

Δ1 = 0.15 1 −0.8 0.1 1 −1.0 0.2

Δ1 = 0.2 1 −0.9 0.1 1 −1.0 0.2

Δ1 = 0.25 1 −1.0 0.0 1 −1.0 0.1

Δ1 = 0.3 1 −1.0 0.0 1 −1.0 0.0

Δ1 = 0.35 1 −1.0 0.5 1 −1.0 −0.1

assume infinite bandwidth. If the bandwidth is limited, there
is a lower bound limit on the minimum early-late spacing.
Although closed form expressions for this limit do not exist, a
coarse limitation of the order of Δ1 = 1/Brx has been derived
in [26], where Brx is the receiver front-end bandwidth. For
example, if the receiver bandwidth is limited to 20 MHz, the

Table 4: Optimum coefficient pairs ai. Ng = 3. BPSK signal (GPS).
Minimum early-late spacing Δ1 is given in chips.

pownc = 1

unif. spacing decr. spacing

a1 a2 a3 a1 a2 a3

Δ1 = 0.05 1 −0.5 0.0 1 −0.4 −0.2

Δ1 = 0.1 1 −0.5 0.0 1 −0.9 0.2

Δ1 = 0.15 1 −0.5 0.0 1 −0.2 −0.4

Δ1 = 0.2 1 −0.5 0.0 1 −0.9 0.2

Δ1 = 0.25 1 −0.5 0.0 1 −1.0 0.3

Δ1 = 0.3 1 −0.5 0.0 1 −0.9 0.2

Δ1 = 0.35 1 −0.5 0.0 1 −1.0 0.3

pownc = 2

unif. spacing decr. spacing

a1 a2 a3 a1 a2 a3

Δ1 = 0.05 1 −0.5 0.0 1 −0.2 −0.4

Δ1 = 0.1 1 −0.8 0.2 1 −0.8 0.1

Δ1 = 0.15 1 −0.4 −0.1 1 −0.9 0.2

Δ1 = 0.2 1 −0.8 0.2 1 −0.7 0.0

Δ1 = 0.25 1 −0.7 0.1 1 −0.7 0.0

Δ1 = 0.3 1 −0.7 0.1 1 −0.6 −0.1

Δ1 = 0.35 1 −0.7 0.1 1 −0.5 −0.2

minimum early-late spacing that we can use will be around
Δ1 = 0.05 chips. Decreasing the early-late spacing below
this limit will not provide any additional benefit in terms of
code tracking error, it will only decrease the linear range of
the discriminator. A large linear range of the discriminator
curve is also important, since it is directly related to the



8 International Journal of Navigation and Observation

ability of the loop to keep the lock. The linear range is
directly proportional with half of the early-late spacing Δ1/2,
as illustrated in Figure 7 (there, the linear range for Δ1 = 0.1
chips goes from −0.05 till 0.05 chips, and the linear range
for Δ1 = 0.3 chips goes from −0.1 till 0.1 chips, with high
likelihood that the loop will not lose lock as long as the
error is below 0.15 chips in absolute value, due to the piece-
wise linear and monotonic shape of the discriminator in the
region −0.15 to 0.15 chips). An approximation of the linear
range of the discriminator is therefore given by Δ1/2. Thus,
when choosing Δ1, the designer should take into account the
multipath performance, on one hand, and the bandwidth
limitations and linear range constraints, on the other hand.

3.4. MEEs for more than 2 paths

When we want to analyze the MEEs in channels with more
than 2 paths, there are no analytical expressions to compute
them, due to the complexity of channel interactions. Thus,
we cannot know if the “worst” case errors happen when all
the paths are in phase or when they have alternate phases,
and so forth. The solution we propose here in order to
compute MEEs for multiple-paths channels is based on
Monte-Carlo simulations: we generate a sufficient number
of random channel realizations Nrandom, and we look at
the highest positive and negative multipath errors over the
Nrandom points. The goal is to study the MGD performance in
multipath channels with more than 2 channel paths (which
may occur especially in and urban indoor scenarios). For this
purpose, we consider that the channel impulse response h(t)
is given by (same notations from (2) are used here)

h(t) =
L∑

l=1

αle
− jθl δ

(
t − τl

)
. (13)

We made the following assumptions during the following
simulations: that the channel has a decaying power delay
profile (PDP), meaning that αl = α1e−μ(τl−τ1), where μ
is the PDP coefficient (assumed in the simulations to be
uniformly distributed in the interval [0.5; 1] when the path
delays are expressed in samples), that the channel path phases
θl are uniformly distributed in the interval [0; 2π], that
the number of channel paths L is uniformly distributed
between 2 and Lmax (with Lmax = 3, 4, . . . ,n), and that the
successive path spacing τl − τl−1 is uniformly distributed in
the interval [1/NsNB; xmax], where Ns is the oversampling
factor or number of samples per BOC interval (a parameter
which defines the resolution of the delay estimates), and
xmax is the maximum value of the successive path spacing
(which will define the multipath delay axis in the MEE
curves). It follows that, for each channel realization (meaning
a combination of amplitudes α = α1, . . . ,αL, phases θ =
θ1, . . . , θL, path spacings, and number of channel paths L),
a certain LOS delay is estimated τ̂1(α, θ,L) from the zero
crossing of the discriminator function (D(τ)|τ̂1(α,θ,L) = 0),
searched in the linear region of D(·). The LOS estimation
error is thus τ̂1(α, θ,L) − τ1, where τ1 is the true LOS path
delay. The multipath error envelopes (upper and lower) for a
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Figure 6: Illustration of the averaged MEEs for NEML, HRC,
and two MGDs with optimal parameters as given in Table 3 (for
uniform and decreasing spacings). pownc = 1, Δ1 = 0.25 chips, and
SinBOC(1,1) signals.
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Table 3.

particular path spacing xmax can be therefore computed as

MEEupper
(
xmax

) = max
α,θ,L

(
τ̂1(α, θ,L)− τ1

)
,

MEElower
(
xmax

) = min
α,θ,L

(
τ̂1(α, θ,L)− τ1

)
.

(14)
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Figure 8: Multipath error envelopes for channels with more than
2 paths (Lmax = 6 paths), minimum early-late spacing Δ1 = 0.25
chips, SinBOC(1,1) signal.

The results based on the above rule are shown in Figure 8
for Lmax = 6 maximum channel paths. Similar results have
been achieved also for Lmax between 3 and 5 paths, with
the only difference that the MEE levels are increasing when
the number of path increases (this can be noticed also
if we compare Figure 8 with Figure 6). Several structures
with optimized parameters as given in Table 3 and different
nonlinearity types were used here. The surprising result is
that the higher the number of channel paths is, the more
the performance of various MGD structures becomes similar
for all the considered algorithms (and they all reach the
performance of the narrow correlator). It follows that the
main advantage of the proposed MGD structures comes
from the fact that they offer patent-free alternatives to the
current narrow and double-delta correlators, by preserving
the same performance in realistic multipath channels.

4. SIMULINK/GRANADA-BASED IMPLEMENTATION

4.1. Model description

The Galileo receiver analysis and design application
(GRANADA), developed by Deimos Space within GARDA
project, is one of the popular GNSS simulation tools
nowadays. It consists of two parts: Bit-true GNSS SW receiver
simulator and GNSS Environment and Navigation simulator.
Since the Bit-true GNSS SW receiver simulator is created
based on the Simulink/Matlab, it is easy to be modified for

new receiver technologies. This simulator is currently used
by several universities and researchers [16, 27–29].

The GRANADA Bit-true GNSS SW receiver simulator
is made up by three parts: the transmitter block, the
propagation channel block, and receiver block, as shown
in Figure 9. The transmitter block includes the code gen-
eration, BOC modulation, and channel multiplexing. The
propagation channel model takes into consideration the
multipaths, the AWGN noise, and a few other possible
sources of interference, such as the wideband interference
from other satellites. The receiver block contains basically
receiver front end, acquisition, and code tracking blocks.
The general architecture of receiver is shown in Figure 10.
After some modification in GRANADA version 2.02, which
is distributed under Galileo supervisory authority (GSA)
licenses, it can be used for testing the performance of MGD
structure. The modifications made to GRANADA tool are
explained with details in [29, 30].

4.2. Results in AWGN and multipath static and
fading channels

In order to evaluate the performance of the new structures,
root mean square error (RMSE) between the estimated delay
and the true LOS delay is calculated. In order to test the DLL
performance in the noise presence, we chose three kinds of
channel profiles: single-path static channel, two-path static
channel, and four-path fading channel, as shown in Table 5.

Figures 11, 12, and 13 show the RMSE values of
different algorithms in the different channel settings. Since
the received signal cannot get synchronized in the acquisition
stage of GRANADA when CNR is below 35 dB-Hz, we
calculate the RMSE values from 35 dB-Hz to 50 dB-Hz.
Structures with early-late spacing Δ1 = 0.1 chips have been
selected for comparison purpose, but similar results (which
are in accordance with the models given in Section 3) were
obtained for other early-late spacings as well.

Besides the MGD structures described in Section 3, we
also considered here a normalized MGD structure, where the
discriminator function is normalized by the weighted sum of
early and late correlations, similar with [15, 16]:

Dnorm(τ̂)

= D(τ̂)
∑Ng

i=1ai
(
Rc/nc

(
τ̂ + Δi/2, f̂D

)
+ Rc/nc

(
τ̂ − Δi/2, f̂D

)) .

(15)

The purpose of including the normalized MGD in the com-
parison was to show that the normalized MGD structures
of [15, 16] have worse performance than the un-normalized
structures proposed by us.

The delay error between the initial code replica in the
receiver and the received signal has not been taken into
account. The estimated delay values used for calculating
RMSE are taken after the transient stage in the beginning of
the tracking stage. From Figures 11 and 12, the simulation
results in the static channel show that as CNR increases, the
estimation delay errors converge to the corresponding value
in the MEEs.
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Figure 9: The basic diagram of GRANADA Bit-true software receiver simulator.
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Figure 10: The simplified baseband receiver diagram in GRANADA (NEML).

For scenario 1, the estimated delay errors are caused
by the noise only, since there is only LOS signal in the
propagation channel. As the CNR increases, the RMSE value
of each algorithm gets close to 0. When CNR is equal to
50 dB-Hz, the RMSE values are below 0.5 meters. From
the single path simulation results, we notice that all these
algorithms have similar performance in the AWGN channel,
as desired.

For scenario 2, as the CNR increases, the RMSE value of
each algorithm converge to different values. This is because
the RMSE value takes both bias and variance into account.
The variance is caused by the noise and decreases when CNR
increases. However, the bias is caused by the multipath in
the channel and is equal to the corresponding point in the
MEEs. For instance, as the CNR increases, the RMSE values
of NEML algorithm converge to 11 meters, which is the
same value in the MEEs according to the channel profile of
scenario 2. The normalized MGD has worse behavior than
an un-normalized MGD with the same parameters.

From Figure 12, it is clear that the HRC algorithm and
MGD algorithm with weighting factors a = (1,−0.6, 0)
show better performance than NEML algorithm, and MGD
algorithm with a = (1,−0.7, 0.1) (i.e., optimum parameters)
shows the best performance among all considered algorithms
(which is in accordance with the theoretical derivations in
Section 3.2).

In the multipath fading channel, the LOS signal follows
Rician distribution, and the NLOS signals follow Rayleigh
distribution. The mean power and delay of each ray are
described in Table 5. Figure 13 shows that the RMSE value
of NEML is much higher than other algorithms, especially
when CNR is 35 dB-Hz, it gets till 172 meters (not shown in
the figure in order to get a better scale). An MGD structure
with weighting factor a = (1,−0.7, 0.1) shows again the best
performance among the algorithms, as expected, according
to the optimization results given in Section 3. The RMSE
performance of normalized MGD algorithm is quite poor in
fading channels.
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Table 5: Simulation scenarios for Simulink/GRANADA-based simulations.

Scenario Multipath model Path delay (chip) Relative path gain (dB)

Scenario 1 single-path static channel 0 0

Scenario 2 two-path static channel [0 0.2] [0 −3]

Scenario 3 four-path fading channel [0 0.2 0.4 0.6] [0 −1 −2 −3]
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Figure 11: The RMSE simulation results in single-path static
channel, Δ1 = 0.1 chips, pownc = 2.

35 40 45 50

CNR (dBHz)

0

2

4

6

8

10

12

R
M

SE
(m

)

RMSE in 2-path static channel, uniform spacing,
Δ1 = 0.1 chips

NEML, a = [1, 0, 0]
HRC, a = [1,−0.5, 0]
MGD, a = [1,−0.6, 0]

MGD, a = [1,−0.7, 0.1]
Normalized MGD, a = [1,−0.7, 0.1]

Figure 12: The RMSE simulation results in two-path static channel,
Δ1 = 0.1 chips, pownc = 2.
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Figure 13: RMSE simulation results in 4-path fading channel, Δ1 =
0.1 chips, pownc = 2.

5. ALGORITHM TESTING/PROTOTYPING

From the MGD structure optimization results (Tables 2
and 3), we chose the MGD algorithm with Ng = 3 to be
investigated further in prototype stage. Both uniform and
decreasing spacings with the Δ1 = 0.1 and Δ1 = 0.25 chips
were chosen to be studied.

The purpose here is to show that the chosen tracking
algorithms are feasible to be implemented on actual devices.
One of the targets of this study was to see if the behavior of
the proposed algorithms does change due to the restrictions
given by the hardware implementation. These restrictions
include finite computation accuracy, and the effect of quan-
tization due to the bit-width of the signals and the limitation
caused by the operation frequency of the synchronous digital
system.

We also focus on the design complexity issue, which
characterizes the algorithm development especially in the
low cost receivers. Since the trend in price of the satellite
navigation receivers is currently descending [31], the man-
ufacturers of these low cost, mass market, receivers will
most likely reject the algorithms with high implementation
complexity and cost.
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Figure 14: Implemented hardware tracking architecture with seven correlators.

In the satellite navigation receiver, the signal tracking
is performed by hardware and software signal processing
[23]. On the evolving field of satellite navigation sys-
tems, the issue of flexility has become more and more
important. Flexible designs allow algorithm updates if the
specifications of upcoming systems (like Galileo) change
suddenly. Flexible designs are usually relying on software-
based implementation [32]. For receivers, the software-based
implementation is declared to be minimizing the area and
cost. On the other hand, the computation burden of the real-
time tracking algorithms is too high for most of the handheld
device processors, and thus hardware-based computation
acceleration is also required. The division between hardware
and software implementation may vary in different cases and
from the cost perspective it has quite an important role.
For this software versus hardware division, one approach
in the literature has been the division where the correlation
of incoming signal and the reference code are implemented
as a specific hardware accelerator, and the computation of
discriminators for the feedback loop is done by software
running on a digital signal processor (DSP) or some specific
processor [20, 33]. In the commercial receiver chip sets,
this division is usually implemented as a specific hardware
GPS accelerator, engine or core, which is connected to an
embedded processor [34, 35].

We chose this approach with the focus on the hardware
complexity for our algorithm prototyping implementation.
We used the hardware synthesis results (i.e., resource

consumption on target FPGA) to estimate the relative
complexity of the implemented algorithms.

5.1. Implemented architecture

We implemented the chosen MGD algorithm in both Sys-
temC and VHDL hardware description languages. The hard-
ware was implemented as a Galileo/GPS tracking structure
with processes of carrier wipe-off, code tracking correlation,
and result integration. The architecture of the implemented
hardware delay tracking channel is illustrated in Figure 14.
The number of correlators is related to the algorithm used.
For the chosen MGD structure withNg = 3, seven correlators
are needed to form three correlator pairs and the prompt
correlator.

The implemented tracking architecture contains the
following functional units: numerically controlled oscillators
(NCOs) are used to create the desired frequencies inside the
system for the replica code and carrier generation. The code
generator is used to generate the replica PRN code for track-
ing. The carrier NCO outputs sine and cosine waves, which
are used to strip the intermediate frequency (IF) carrier from
the incoming signal. The sine and cosine multiplications
make also the division between in-phase and quadrature
phase channels. Seven correlators in both channels are used
to correlate the incoming signal with the delayed versions
of locally generated code. The amount of delay between the
code generation outputs defines the spacings (Δ1,Δ2, andΔ3)
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Figure 15: Implemented delay registers: (a) uniform delay spacing, (b) decreasing delay spacing. Ref code is reference code chip value
from code generator, VVE, VE, E are early, P is prompt, and L, VL, VVL late outputs of the delay register. The relative correlator spacings
(Δ1, Δ2, Δ3) are illustrated on top. Z−1 is the smallest uniform delay.

between the correlators. Discriminator function is computed
from the accumulated (integrated) correlator outputs.

Since we decided to implement both uniform and
decreasing spacing algorithms, two versions of the delay line
in the code generator output was constructed. The main
difference between these delay lines is illustrated in Figure 15.
The uniform delay spacing is created simply by feeding the
reference code chip value from the code generator through a
delay shift register, where all delays are equal (e.g., for Δ1 =
0.25 chips, we have: Z−1 = 0.125 chips). The decreasing delay
spacing implementation needs additional registers between
the very-very-early (VVE) and very-very-late (VVL) outputs
to align the delays correctly (e.g., for Δ1 = 0.25 chips, we
have: Z−1 = 0.03125 chips, Z−2 = 2Z−1 = 0.0625 chips,
and Z−4 = 4Z−1 = 0.125 chips). One may notice that the
decreasing delay spaced register implementation needs much
smaller uniform delay Z−1. The relationship of smallest
uniform delay Z−1 in cases of uniform and decreasing delay
spacings is

Z−1
uniform= 2Ng−1Z−1

decreasing. (16)

5.2. SystemC verification of the architecture

We started the prototyping task by creating a high-level
SystemC model of the hardware tracking channel. SystemC
is a C++ library extension which can be used, for example,
to cycle accurate hardware architecture modeling [36]. The
similarity of the syntax of the hardware description lan-
guage with C++ allowed fast prototype generation. Another
benefit of using SystemC is that it contains the simulator
itself, thus a stand-alone executable can be created for the
simulations. The developed model was based on the one
published previously in [37]. In [37], the SystemC hardware
description language was used to model an inter-operative
GPS/Galileo code correlator channel. For the MGD tracking
algorithm testing, a carrier wipe-off process was included
to this newer version of model. We developed a Matlab
code to represent the software part of the proposed MGD

tracking algorithms. Matlab was also used for generation
of the input signals for the test simulations. The division
of resources between SystemC model and Matlab software
environment is illustrated in Figure 16. The implemented
SystemC model contains the same functional blocks as are
illustrated in Figure 14 and, together with the surrounding
Matlab environment, principally the same functionality as in
Figure 3.

We used this SystemC model to see how the MEE
curves of the proposed MGD algorithms behave when
the hardware model is used. HRC and NEML algorithms
were implemented for reference purposes. At first stage of
MEE testing, we noticed that the envelopes (pownc = 1)
generated with the SystemC model did have a constant
negative offset. This can be seen clearly in Figure 17, where
the blue-squared curve illustrating the SystemC hardware-
based MEE of NEML (Δ1 = 0.1 chips) has a negative offset
when comparing to the black-star, plain Matlab based, and
reference curve. On the other hand, the hardware model’s
MEE shares the same shape with the ideal reference one.

The reason for this behavior was found to be the
imperfect frequency generation inside the hardware tracking
channel. When both code generating and sampling fre-
quency are generated with the NCO, there is a possibility to
a sample slip if the NCO’s frequency resolution is too low.
With no noise condition (as MEEs are generated), this has
an effect on the shape of ideal autocorrelation function curve,
making it not to have identical sides. We improved the output
accuracy of NCOs by increasing the accumulation register
size from 24 to 32 bits. This removed the offset from the
discriminator output as can be seen from Figure 18, where
red-diamond curve presents the MEE result with the new
NCO size of 32 bits and blue-squared with NCO size of 24
bits.

After the issue of the NCO size was dealt with, we
made a conclusion that the proposed MGD algorithms are
implementable, and the implemented hardware architecture
is solid for this purpose. An example curve for the uniformly
spaced (Δ1 = 0.1, Δ2 = 0.2, Δ3 = 0.3 chips) MGD
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Figure 16: Block diagram of the implemented high-level SystemC hardware model inside the Matlab software.
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Figure 17: Difference between the hardware model and Matlab-
based MEE curves of NEML discriminator (Δ1 = 0.1). The black
line presents the behavior of reference Matlab simulation, and the
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structure (Ng = 3, pownc = 1) is illustrated in Figure 19. This
figure shows how the shape of the hardware-based multipath
envelope is similar to the one generated purely in Matlab
in Figure 5. Figures 19 and 5 also show the difference in
envelope area when alternating between pownc = 1 and
pownc = 2.
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Figure 18: Effect of the NCO register length to the MEE curves
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5.3. VHDL implementation and synthesis

After the architecture of the hardware tracking channel and
its functionality with the proposed MGD structure were
verified with the SystemC hardware model, we build a VHDL
model of the tracking channel. VHSIC hardware description
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language (VHDL) is a language designed and optimized for
describing the behavior of the digital systems, and it is one
of the standard languages among the electronic engineers
[16]. Since the VHDL needs a simulator software for
simulation, we used ModelSim software and tool command
language (TCL) scripts to run the simulations for MEE
generation. The VHDL hardware-based MEE curve of the
proposed MGD with both uniform (a = [1,−0.7,−0.2])
and decreasing (a = [1,−0.9, 0.2]) spacing implementations
are illustrated in Figure 20. The blue-squared curve presents
the uniform spaced MGD and the red-circled the decreasing
spaced MGD, for both curves the common parameters were
Ng = 3, pownc = 1, and Δ1 = 0.25 chips. From the figure, we
can see that the MEE curves of the hardware implemented
MGDs are active in the limits set by the theoretical ones,
illustrated in Figure 6.

We used the synthesis results of the VHDL model to
evaluate the implementation complexity of the proposed
algorithms. The synthesis was done by using the Xilinx ISE
software. We varied the number of correlators, since it is the
characterizing quantity when choosing the MGD algorithm
to be implemented (Ng). Our target device was the Xilinx
Virtex II PRO field programmable gate array (FPGA). FPGAs
are reprogrammable digital devices which can be used in
tasks requiring a high processing speed, like tracking process
[32].

The synthesis results are subjected to the target platform
and, therefore, they can not be generalized. Because of this,
we focused on the comparison between the complexity of
uniform and decreasing delay spaced implementations, with
a varying number of correlators. We synthesized only the
delay register part of the hardware architecture since it is the
only part that differs. The results are illustrated in Figure 21
and in Table 6. These results indicate that the hardware
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Figure 20: Example of VHDL hardware-based MEEs. MGD with
uniform spacing (a = [1,−0.7,−0.2]) is illustrated in blue-
squared curve and MGD with decreasing spacing is illustrated (a =
[1,−0.9, 0.2]) in red-circled. (Ng = 3, pownc = 1, Δ1 = 0.25).

2 3 4 5

Ng

100

200

300

400

500

600

700

E
qu

iv
al

en
t

lo
gi

c
ga

te
co

u
n

t

Implementation complexity trends

Uniform spacing
Decreasing spacing

Figure 21: Synthesis of the architecture to the target device: effect
of the number of correlators.

complexity, measured as usage of target FPGA resources
(equivalent logic gate count, logic slices, flip flops, and
lookup tables), increases linearly with respect to amount of
correlators (Ng) in uniform delay spaced implementations.
In cases of decreasing delay spaced implementations,. the
complexity increase is much faster. One must note that the
left out part of the system adds a constant positive offset to
the synthesis results.

Another difference between the implementations of uni-
form and decreasing delay spacings is in the increase of the
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Table 6: Xilinx resource usage.

Resource usage in target device

unif. spacing decr. spacing

Slices FF LUT Slices FF LUT

Ng = 2 5 4 5 5 6 4

Ng = 3 7 6 7 11 14 7

Ng = 4 9 8 9 20 30 9

Ng = 5 11 10 11 37 62 11

generated frequencies when using the decreasing one. The
proposed decreasing spacing structure with Ng = 3 requires
approximately four times higher frequency to be generated
than uniformly spaced MGD structure with equivalent Ng .
This is because the smallest common uniform delay factor
with the uniform spacing of Δ1 = 0.25 chips is Δ1/2 = 0.125,
but for the proposed decreasing spacing structure of Δ1 =
0.25 chips it is Δ1/8 = 0.03125. This equals to the reference
code delay register frequency increase from 8.184 MHz up to
32.736 MHz with Galileo E1 and GPS C/A signals, when their
fundamental frequency is 1.023 MHz. Also the limitation
caused by the RF front-end bandwidth is met much faster
when using the decreasing spacing, compared with uniform
spacing.

6. CONCLUSIONS

In this paper, a comprehensive description of Multiple Gate
Delay tracking structures for GNSS signals in multipath
environments has been introduced, covering all the steps
from theoretical derivation and choice of design parameters
till the final stage of prototyping. We showed that the
proposed structures are implementable and that they have
a high flexibility. We also explained in detail the design
steps that should be taken in order to derive easily new
MGD structures according to the target constraints (e.g.,
desired number of gate pairs, sampling frequencies, available
bandwidths, etc.). We have discussed as well some aspects not
taken into account in previous research papers, such as the
effect of the nonlinearity type on the system performance,
the design of gate spacings in multiple gate structures, and
the effect of realistic PRN code lengths on the multipath error
envelope analysis. We compared the MGD structures with
uniform and decreasing spacings in terms of complexity,
and we showed that the slightly better performance of
MGDs with decreasing spacings is counter-balanced by a
higher complexity, especially when the number of gate pairs
increases. We showed that the state-of-art delay trackers,
such as narrow correlator and double-delta correlators, can
be seen as particular cases of MGD structures.

We saw that the best choices in terms of two-path
error envelopes are the MGDs with decreasing gate spac-
ings and envelope nonlinearity. However, we also showed
that, when the number of channel path increases, various
MGD structures start to have equal performance, and the
performance gap between narrow correlator and MGD
structures disappears. Nevertheless, the main advantage of

the proposed MGD structures is that they offer a large set
of unpatented choices (at least according to the very best
of authors’ knowledge) that can be used for the design of
multipath delay trackers for mass-market GPS and Galileo
receivers.
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1. INTRODUCTION

With the advent of the new global navigation satellite
system (GNSS), such as the European Galileo and the
Chinese Compass, new signals and new modulations have
been introduced in order to guarantee the coexistence and
interoperability with existent systems, like the American
GPS, and to fully exploit the technologies currently available.

An example of those new signals is the coherent adaptive
subcarrier modulation (CASM) that will be used for the
transmission of the Galileo signal on the E1 frequency.
CASM combines three different signals in a constant ampli-
tude modulation that allows the use of efficient class C
amplifiers [1, 2].

The three signals combined in the CASM are denoted as
the A, B, and C channels. The first one is used for public-
regulated service (PRS), whereas the latter two will provide
the open service (OS). The B and C channels have two
different roles: the first one, denoted data channel, will carry
the navigation message whereas the second one, denoted
pilot channel, will be used for determining the pseudoranges
between the satellites and the receiver. The B and C signals
will be transmitted at the same time, at the same frequency,
and they will be separated only by different codes [3]. The
A signal is not completely defined by the galileo interface

control document [1] but will probably be separated in
frequency as for the A signal emitted by Giove-A [4], the first
experimental satellite of the Galileo constellation.

The presence of new modulations allows one to adopt
special techniques specifically tailored to acquire and track
new signals.

One solution, when acquiring composite GNSS signals
such as the Galileo E1 OS modulation, consists in ignoring
the data channel and processing only the pilot signal. In this
way only half of the useful power is employed and the GNSS
receiver could not be able to acquire and track signals that
would be easily processed if all the useful power were used.
Pilot and data channel combining allows recovering all the
available power improving the acquisition performance and
providing more reliable signal detection. For these reasons
the design of signal combing techniques is critical for the
efficient acquisition of the new GNSS signals.

In this paper, Galileo E1 OS signals are considered
and in particular two acquisition strategies for the efficient
combining of data and pilot channels are analyzed. In the
first strategy, called noncoherent combining, the received
signal is correlated separately with the pilot and data local
replicas. The correlation outputs are then squared and
summed. This strategy essentially exploits the principle
of noncoherent integration [5–7] employed to extend the
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integration period over the bit duration. Its use for data and
pilot combining is reported by [8], however its performance
in terms of false alarm and detection probabilities has been
only marginally investigated.

The second strategy consists in multiplying the received
signal by two new signals, obtained by summing and
subtracting the data and pilot local replicas, respectively.
Then, the maximum of the two correlations is adopted as
decision variable. This strategy can be seen as an extension
of the (b–c) technique proposed by [9, 10] in which only
the correlation with the difference between data and pilot
codes was considered. This second strategy implements the
Maximum Likelihood estimator for the code delay, the
Doppler frequency, and the relative phase between data and
pilot channels, and, to the best of our knowledge, has never
been applied to the E1 OS signals. This strategy allows
the coherent combining of data and pilot channels and it
will be denoted as coherent channel combining with sign
recovery. The proposed method is the adaptation of the
acquisition strategy proposed in [11] to the Galileo E1 OS
signal. In particular [11] considered the case of data and pilot
components transmitted with a±90 degree phase difference.
Moreover, [11] only proposed the method without providing
any analytical characterization of its performance.

Both strategies have been analyzed in terms of false alarm
and detection probabilities and closed-form expressions for
the probabilities of coherent channel combining with sign
recovery have been derived. To the best of our knowledge
these expressions have never been derived before and repre-
sent one of the innovative contributions of this paper. More-
over, these formulas are general and can be easily adapted to
the case of other modulations, for example, for the GPS L5
case that has been analyzed only by simulations [11].

In the analysis the coherent integration time is limited
to a single code period. In this way the acquisition block
has not to deal with the problem of bit transitions that
can occur every 4 milliseconds. Moreover, an integration
time of 4 milliseconds should be sufficient to acquire GNSS
signals in high to moderate C/N0 conditions. The problem
of bit transitions can be overcome by using noncoherent
integrations. The integration time can be also increased
by considering the pilot channel alone and exploiting the
structure imposed by its secondary code [11]. These issues
are however out of the scope of this paper.

Monte Carlo techniques have been used for supporting
the theoretical analysis: simulations and analytical expres-
sions agree well proving the effectiveness of the developed
theory.

From the analysis it emerges that the coherent combining
always outperforms noncoherent combining and thus it
should be adopted for the joint acquisition of data and pilot
channels.

This work is organized as follows: Section 2 introduces
the CASM and provides a model for Galileo E1 OS signals.
In Section 3 the noncoherent and coherent combining
algorithms are described and the expressions for false alarm
and detection probabilities are derived. In Section 4 the
derived formulas are validated by Monte Carlo simulations.
Finally, the conclusions are presented in Section 5.

2. SIGNAL AND SYSTEM MODEL

The signal at the input of a Galileo receiver, in one-path
additive Gaussian noise environment, can be written as

rRF(t) =
L∑

i=1

√
2PR,i yi(t) + ηRF(t) (1)

that is the sum of L useful signals, emitted by L different
satellites and with power PR,i, and of a noise term ηRF(t). Each
signal yi(t), in the Galileo E1 band, is given by [1, 2]:

yi(t)

=
√

2
3

[
eB,i
(
t − τ0,i
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(
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)]
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)
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)
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3
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(
t−τ0,i

)
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(
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)
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(
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)
]

× sin
(
2π
(
fRF + fd,i

)
t + θi

)
,

(2)

where

(i) eA,i(t), eB,i(t) and eC,i(t) are the three useful signals
emitted on the E1 frequencies and corresponding to
the A, B, and C channels, respectively, and eA,i(t) is
a restricted access signal for PRS whereas eB,i(t) and
eC,i(t) are the data and pilot signals for OS;

(ii) τ0,i, fd,i, and θi are the delay, the Doppler frequency,
and the phase introduced by the transmission chan-
nel;

(iii) fRF = 1575.42 MHz is the E1 central frequency.

eA,i(t), eB,i(t), and eC,i(t) are real binary sequences that
assume value in the set {−1, 1}. These three signals are
combined according to the CASM in order to obtain a
constant envelope signal yi(t). This result is achieved by
introducing the term proportional to the three useful signals
in (2).

The input signal (1) is recovered by the receiver antenna,
downconverted, and filtered by the receiver front end. A
low-IF receiver is assumed. In mass-market receivers the
bandwidth of the front-end filter is generally limited to a few
MHz and thus the components depending on the PRS signal
in (2) can be considered eliminated by the filtering process.
This is due to the fact that a BOC(15,2.5) modulation [2, 4]
is employed for the PRS signal. This modulation splits the
PRS signal power far from the E1 central frequency where
the power spectral densities (PSD) of the OS signals are
concentrated. In this way, the received signal, before the
analog-to-digital (AD) conversion, is given by

rIF(t) =
L∑

i=1

√
2PR,i yi(t) + ηIF(t)

=
L∑

i=1

√
2PR,i

√
2

3

[
eB,i
(
t − τ0,i

)− eC,i
(
t − τ0,i

)]

× cos(2π
(
fIF + fd,i

)
t + θi

)
+ ηIF(t),

(3)



D. Borio and L. Lo Presti 3

where fIF is the receiver intermediate frequency and ηIF(t)
is the downconverted and filtered noise component. In (3)
the effect of the front-end filtering on the OS components is
considered negligible.

Finally, (3) is sampled and AD is converted, obtaining,
by neglecting the quantization impact, the following signal
model:

rIF(nTs) =
L∑

i=1

√
2PR,i yi

(
nTs

)
+ ηIF

(
nTs

)

=
L∑

i=1
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2PR,i

√
2

3

[
eB,i
(
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(
nTs − τ0,i

)]

× cos
(
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(
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)
+ ηIF

(
nTs

)
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(4)

In the following, the notation x[n] = x(nTs) will indicate
a discrete-time sequence x[n], obtained by sampling a
continuous-time signal x(t) with a sampling frequency fs =
1/Ts. For this reason (4) can be rewritten as

rIF[n] =
L∑

i=1

√
Ci

(
eB,i

[
n− τ0,i

Ts

]
− eC,i

[
n− τ0,i

Ts

])

× cos
(
2πFiD,0n + θi

)
+ ηIF[n],

(5)

where Ci = (4/9)PR,i and FiD,0 = ( fIF + fd,i)Ts. Ci represents
the total power of the i th received signal since the term

(
eB,i

[
n− τ0,i

Ts

]
− eC,i

[
n− τ0,i

Ts

])
cos

(
2πFiD,0n + θi

)
(6)

has unitary power. The spectral characteristics of ηIF[n]
depend on the type of filtering along with the sampling and
decimation strategy adopted in the front end. A convenient
choice is to sample the IF signal with a sampling frequency
fs = 2BIF, where BIF is the one-sided front-end bandwidth.
In this case, it is easily shown that the noise variance becomes

σ2
IF = E

{
η2

IF(t)
} = E

{
η2

IF

(
nTs

)} = N0 fs
2

= N0BIF, (7)

whereN0/2 is the Power Spectral Density of the IF noise. The
autocorrelation function

RIF[m] = E
{
ηIF[n]ηIF[n +m]

} = σ2
IFδ[m] (8)

implies that the discrete-time random process ηIF[n] is a
classical independent and identically distributed (iid) wide-
sense stationary (WSS) random process, or a white sequence.
δ[m] is the Kronecker delta. From now on, this signal model
is adopted and the system performance is expressed in terms
of Carrier-to-Noise Ratio Ci/N0.

Both data and pilot signals in (5) can be represented as
the product of three terms

eB/C,i[n] = cB/C,i[n]sB[n]dB/C,i[n], (9)

where cB/C,i[n] is a spreading code of length Nc = 4092, sB[n]
is the subcarrier signal that in the Galileo OS signal is the
BOC(1,1), and dB/C,i[n] is the navigation message for the
data signal and the secondary code in the pilot case. dB/C,i[n]
is constant over one code period. Hereinafter the product
between the code and the subcarrier will be denoted as

eB/C,i[n] = cB/C,i[n]sB[n]. (10)

As a result of code orthogonality, the different Galileo codes
are analyzed separately by the receiver, and thus hereinafter
the case of a single satellite is considered and the index i is
dropped. Thus the resulting signal is

rIF[n]

=
√
C
(
eB

[
n− τ0

Ts

]
−eC

[
n− τ0

Ts

])
cos

(
2πFD,0n+θ

)
+ηIF[n].

(11)

3. OS SIGNALS ACQUISITION

In traditional GPS receivers the delay and the Doppler
frequencies of received signals are estimated by using the
correlation with local signal replicas opportunely delayed
and modulated. In the acquisition stage, the code delay and
Doppler frequency are estimated as the ones that make the
correlation with the local replica pass a fixed threshold. In
the Galileo E1 case however this strategy cannot be directly
employed since two different signals are present. Moreover,
due to the navigation message on the data channel and to the
secondary code on the pilot channel, these two components
can be either summed or subtracted.

In this Section, we analyze two possible strategies for
signal acquisition for Galileo OS signals. The performance
of the two algorithms is evaluated in terms of false alarm
and detection probabilities that are the probabilities that the
decision variable passes a fixed threshold under two different
hypotheses:

(H0) the signal is present and correctly aligned with the
local replica;

(H1) the signal is absent or not correctly aligned with local
replica.

The plot of the detection probability versus the false alarm
probability is called receiver operating characteristic (ROC)
and it completely defines the system performance [12]. The
ROCs are usually employed for comparative analysis, as
effective metric for characterizing an acquisition system [5,
6]. For these reasons they are adopted in this work and used
as basis for the analysis of the two acquisition algorithms
considered in the paper.

3.1. Pilot and data noncoherent combining

The conceptual scheme for the acquisition of Galileo E1
signals, with the noncoherent combination of data and pilot
channels, is depicted in Figure 1. The received signal is
multiplied by two orthogonal sinusoids at the frequency FD,
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Figure 1: Conceptual scheme of the Galileo OS signals acquisition with noncoherent combining.

leading to the in-phase (I) and quadrature (Q) components.
These signals are then split in two different branches
where the correlations with the data and pilot codes are
evaluated. The cross-correlations from the two branches are
noncoherently combined leading to the decision variable

Snc(FD, τ) = ∣∣RB
(
FD, τ

)∣∣2
+
∣∣RC

(
FD, τ

)∣∣2
, (12)

where

RB
(
FD, τ

) = 1
N

N−1∑

n=0

rIF[n]eB

[
n− τ

Ts

]
exp

{
j2πFDn

}
,

RC
(
FD, τ

) = 1
N

N−1∑

n=0

rIF[n]eC

[
n− τ

Ts

]
exp

{
j2πFDn

}

(13)

are the cross-correlations of the received signal with the data
and pilot replicas delayed by τ and modulated by FD. In
(13) N denotes the number of samples used to integrate the
received signal over one-code period. More specifically, N is
given by �Tc· fs�, where Tc = 4 milliseconds is the duration
of one code period, fs is the sampling frequency, and
�·� denotes the floor operator. Since the cross-correlations
RB(FD, τ) and RC(FD, τ) have been obtained from the input
signal rIF[n], they also depends on τ0, FD,0, and θ, the
parameters that characterize rIF[n]. The dependence on these
parameters has not been explicitly reported in (13) for the
ease of notation.

The multiplication by the complex exponential in (13) is
implemented in Figure (1) by the multiplication with the two
orthogonal sinusoids.

In Appendix A it is shown that RB(FD, τ) and RC(FD, τ)
are two complex Gaussian random variables that, due to the
orthogonality properties of Galileo codes [3], are approx-
imatively independent. Thus |RB(FD, τ)|2 and |RC(FD, τ)|2

are two χ2 random variables with 2 degrees of freedom.
From this consideration and (12), Snc(FD, τ) is a χ2 random
variable with 4 degrees of freedom.

In order the determine the ROC, the two following
probabilities have to be evaluated:

Pnc
fa (β) = P

(
Snc
(
FD, τ

)
> β|H1

)
,

Pnc
d (β) = P

(
Snc
(
FD, τ

)
> β|H0

)
.

(14)

When the signal is not present or not correctly aligned it is
possible to assume [5, 6] that both RB(FD, τ) and RC(FD, τ)
are zero mean. Thus Snc(FD, τ) is a central χ2 random vari-
able, whose distribution is completely characterized by the
variance of RB(FD, τ) and of RC(FD, τ). From (13) we have

Var
{
RB
(
FD, τ

)}

= Var
{
RC
(
FD, τ

)}

= Var

{
1
N

N−1∑

i=0

rIF[n]eB

[
n− τ

Ts

]
exp

{
j2πFDn

}
}

= 1
N2

N−1∑

i=0

Var
{
rIF[n]

} = 1
N2

N−1∑

i=0

Var
{
ηIF[n]

}= N0 fs
2N

= N0BIF

N
.

(15)

Equation (15) directly derives from the noise model reported
in Section 2. In this case it is assumed that the input noise
is a white sequence. In a real GNSS receivers the front end
can introduce some correlation among the different noise
samples. This correlation causes a correlation loss [13] that
would affect both noise and signal components. This effect
could be included in the analysis but it would introduce
no further insight and thus, for the sake of clarity, it is not
considered in this context.
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Since both RB(FD, τ) and RC(FD, τ) are complex random
variables with iid real and imaginary parts, the variance (15)
is equally divided between the two components and thus we
can define

σ2
n =

N0 fs
4N

= N0BIF

2N
, (16)

σ2
n is the variance of the real and of the imaginary parts of
RB(FD, τ) and RC(FD, τ). Given these premises and exploiting
the fact that Snc(FD, τ) is a central χ2 random variable it is
possible to derive the false alarm probability [14]

Pnc
fa (β) = exp

{
− β

2σ2
n

}(
1 +

β

2σ2
n

)
. (17)

When the signal is present and correctly aligned Snc(FD, τ)
is a noncentral χ2 random variable with noncentrality
parameter

λ=∣∣E{RB
(
FD, τ

)}∣∣2
+
∣∣E
{
RC
(
FD, τ

)}∣∣2=2
∣∣E
{
RB
(
FD, τ

)}∣∣2

(18)

that assumes the following expression [13, 15]:

λ = C

2
sin2(πNΔF)

(πNΔF)2 K2(Δτ) ≈ C

2
, (19)

where

(i) ΔF = FD,0−FD is the difference between the Doppler
frequencies of the received signal and of the local
replica;

(ii) Δτ = (τ0 − τ)/Ts is the difference between the
delays of the received signal and of the local replica,
normalized with respect to the sampling interval;

(iii) K(·) is the correlation between the incoming code,
filtered by the frontend, and the code generated at the
receiver.

When the Doppler frequency and the delay of the local
replica match the ones of the received signal, the loss
(sin2(πNΔF)/(πNΔF)2)K2(Δτ) can be assumed negligible
and λ ≈ C/2.

From these considerations it is possible to evaluate the
detection probability [14, 16]

Pnc
d (β) = Q2

(√
λ

σ2
n

,

√
β

σ2
n

)
≈ Q2

(√
2CN
N0 fs

,

√√√
4
βN

N0 fs

)
,

(20)

where Q2(·, ·) is the Generalized Marcum Q function of
order 2 [16, 17], defined as

QK (a, b) = 1
aK−1

∫ +∞

b
xK exp

{
− x2 + a2

2

}
IK−1(ax)dx

(21)

where IK−1(·) is the modified Bessel function of first kind
and order K − 1 [18].

3.2. Pilot and data coherent combining with
sign recovery

By considering (11) and by collecting the navigation message
of the data channel, it is possible to rewrite the received signal
rIF[n] as

rIF[n]

=
√
CdB

[
n− τ0

Ts

]

×
(
eB

[
τ0

Ts

]
− dC

[
n−(τ0/Ts)

]

dB
[
n−(τ0/Ts)

]eC
[
n− τ0

Ts

])
cos

(
2πFD,0n+θ

)

+ ηIF[n].
(22)

Expressed in this form, (22) indicates that the navigation
message dB[n] is spread by the equivalent pseudorandom
sequence

eeq[n] = eB[n]− dC[n]
dB[n]

eC[n]. (23)

Since the navigation message dB[n] and the secondary code
dC[n] are constant over one code period and since they
can assume only two values, −1 and 1, only two equivalent
spreading sequences are possible

eeq[n] =
{
eB[n]− eC[n],

eB[n] + eC[n].
(24)

In the coherent combining scheme, the received signal is
correlated with both equivalent codes: the equivalent code
that maximizes the cross-correlation is likely the correct one.
Based on this principle the decision variable is given by

Sml(FD, τ) = max
{∣∣R+(FD, τ

)∣∣2
,
∣∣R−

(
FD, τ

)∣∣2}
, (25)

where

R+(FD, τ)

= 1
N

N−1∑

n=0

rIF[n]
{
eB

[
n− τ

Ts

]
+ eC

[
n− τ

Ts

]}
exp

(
j2πFDn

)
,

R−(FD, τ)

= 1
N

N−1∑

n=0

rIF[n]
{
eB

[
n− τ

Ts

]
− eC

[
n− τ

Ts

]}
exp

(
j2πFDn

)
.

(26)

This kind of algorithm is based on the Maximum Likelihood
estimator for the code delay, Doppler frequency, and relative
sign between data and pilot channels, since, as shown in
Appendix B, the maximization of the correlation function,
with respect to the delay τ, the frequency FD, and the
ratio dC[n]/dB[n], corresponds to the maximization of the
likelihood function evaluated for the received signal rIF[n].
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Figure 2: Conceptual scheme of the Galileo OS signals acquisition with coherent combining.

The acquisition scheme with coherent combining is
reported in Figure 2: the received signal is correlated with the
two equivalent codes and the decision variable is obtained by
choosing the maximum of the two cross-correlations. It has
to be noted that the variables R+(FD, τ) and R−(FD, τ) can be
obtained by opportunely combining the cross-correlations
with the data and the pilot codes

R+(FD, τ) = 1
N

N−1∑

n=0

rIF[n]eB

[
n− τ

Ts

]
exp

(
j2πFDn

)

+
1
N

N−1∑

n=0

rIF[n]eC

[
n− τ

Ts

]
exp

(
j2πFDn

)

= RB
(
FD, τ

)
+ RC

(
FD, τ

)
,

(27)

R−(FD, τ) = 1
N

N−1∑

n=0

rIF[n]eB

[
n− τ

Ts

]
exp

(
j2πFDn

)

− 1
N

N−1∑

n=0

rIF[n]eC

[
n− τ

Ts

]
exp

(
j2πFDn

)

= RB
(
FD, τ

)− RC
(
FD, τ

)
.

(28)

In this way the coherent combining algorithm can be
implemented with a computational load similar to the one
required by the noncoherent combining strategy.

From (28) and (27) it clearly emerges that R+(FD, τ)
and R−(FD, τ) are linear combinations of RB(FD, τ) and
RC(FD, τ). Thus, since RB(FD, τ) and RC(FD, τ) are complex
Gaussian random variables, R+(FD, τ) and R−(FD, τ) are also
complex and Gaussian.

The ROC for the coherent combining strategy can be
easily obtained by determining the false alarm and detection
probability of the variables |R+(FD, τ)|2 and |R−(FD, τ)|2.
In fact it can be easily shown that the false alarm and the
detection probabilities of the decision variable Sml(FD, τ) are
given by

P
(
Sml(FD, τ) > β

)

= P
(

max
{∣∣R+(FD, τ)

∣∣2
,
∣∣R−(FD, τ)

∣∣2}
> β

)

= 1− P(max
{∣∣R+(FD, τ)

∣∣2
,
∣∣R−(FD, τ)

∣∣2}
< β

)

= 1− P(∣∣R+(FD, τ)
∣∣2
< β,

∣∣R−(FD, τ)
∣∣2
< β

)

= 1− P(∣∣R+(FD, τ)
∣∣2
< β

)
P
(∣∣R−(FD, τ)

∣∣2
< β

)
.

(29)

The last line in (29) has been obtained by exploiting the
independence between |R+(FD, τ)|2 and |R−(FD, τ)|2 that
derives from the independence of R+(FD, τ) and R−(FD, τ).
In fact we have

E
{
R+(FD, τ

)[
R−
(
FD, τ

)]∗}

= E
{[
RB
(
FD, τ

)
+ RC

(
FD, τ

)][
RB
(
FD, τ

)− RC
(
FD, τ

)]∗}

= E
[∣∣RB

(
FD, τ

)∣∣2 − ∣∣RC
(
FD, τ

)∣∣2]

= 0.
(30)

Equation (30) is zero since |RB(FD, τ)|2 and |RC(FD, τ)|2 are
equally distributed and the difference of their mean cancels
out. From (30) R+(FD, τ) and R−(FD, τ) are uncorrelated
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and, since they are both Gaussian random variables, inde-
pendent. For these reasons |R+(FD, τ)|2 and |R−(FD, τ)|2 are
also independent.

Since R+(FD, τ) and R−(FD, τ) are Gaussian random
variables, |R+(FD, τ)|2 and |R−(FD, τ)|2 are χ2 distributed
with two degrees of freedom. When the signal is absent, or
the local replicas are not aligned with the received signal, then
|R+(FD, τ)|2 and |R−(FD, τ)|2 are both central χ2 random
variables [14] and the false alarm probability of Sml(FD, τ)
is

Pml
fa (β) = 1−

[
1− exp

{
− β

4σ2
n

}]2

. (31)

Equation (31) has been obtained by substituting the cumu-
lative density function (cdf) of central χ2 random variables
[14] into (29). It can be noted that the exponential in (31)
depends on 4σ2

n instead of 2σ2
n as for (17). This is due to the

fact that the equivalent code (24) has twice the power of the
single pilot and data codes.

When the Galileo signal is present and correctly aligned
with the local replica, |R+(FD, τ)|2 and |R−(FD, τ)|2 are no
more central χ2 random variables, and the noncentrality
parameters λ+ and λ− have to be determined. λ+ and λ−
can be obtained by determining the mean of R+(FD, τ) and
R−(FD, τ) under the hypothesis that the local equivalent
code matches or not the navigation bit. In particular we
have

E
[
R+(FD, τ

)]

=E{RB
(
FD, τ

)
+ RC

(
FD, τ

)}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2E
{
RB
(
FD, τ

)}=√C sin(πNΔF)
(πNΔF)

K(Δτ)

≈√C if
dC[n]
dB[n]

=1,

0 if
dC[n]
dB[n]

=−1

(32)

and similarly

E
[
R−
(
FD, τ

)]

= E
{
RB
(
FD, τ

)− RC
(
FD, τ

)}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2E
{
RB
(
FD, τ

)}=√C sin(πNΔF)
(πNΔF)

K(Δτ)

≈√C if
dC[n]
dB[n]

=−1,

0 if
dC[n]
dB[n]

=1.

(33)

From these considerations it emerges that the decision
variable Sml(FD, τ), under the hypothesis of presence of signal

Table 1: Simulation parameters.

Parameter Value

Sampling frequency fs = 4.092 MHz

Intermediate frequency fIF =
fs
4
= 1.023 MHz

Receiver bandwidth BIF =
fs
2
= 2.046 MHz

Code rate 1.023·106 chip/s

Code length 4092 chip

Integration time NTs = 4 ms

and correct alignment, is given by the maximum between
a central χ2 and a noncentral χ2 random variables with
two degrees of freedom. The noncentrality parameter of the
noncentral χ2 random variable is given by

λ = C
sin2(πNΔF)

(πNΔF)2 K2(Δτ) ≈ C. (34)

Given these premises it is finally possible to express the
detection probability

Pml
d (β) = 1−

[
1−exp

{
− β

4σ2
n

}][
1−Q1

(√
λ

2σ2
n

,

√
β

2σ2
n

)]

≈ 1−
[

1−exp
{
− β

4σ2
n

}][
1−Q1

(√
2CN
N0 fs

,

√√√2βN
N0 fs

)]
,

(35)

where Q1(·, ·) is the Marcum Q function of order 1.

4. SIMULATION ANALYSIS

In order to validate the theoretical analysis developed in
the previous sections, the Galileo E1 OS has been simulated
according to the parameters reported in [1] and acquired
according to the two methods considered in this work. The
simulation parameters are reported in Table 1. More in detail
a GNSS signal has been simulated according to model (11).
The spreading codes from [1] has been used to generate the
Galileo E1 OS signals, and the acquisition systems depicted
in Figures 1 and 2 have been implemented in order to
evaluate the decision statistics (12) and (25). The false
alarm and detection probabilities have been estimated by
verifying if the decision variables, under both (H1) and (H0)
hypotheses, passed or not the decision threshold obtained by
inverting (20) and (31). 2·105 trials have been used for the
estimation process. Frequency and delay errors have not been
simulated and, for the evaluation of the detection probability,
the incoming signal has been considered perfectly aligned
with local replica. These errors were not considered in the
theoretical model and thus they have not been considered in
the simulation scheme as well. The impact of frequency and
delay residual errors has been extensively studied in [15] and
can be easily included in the models developed in previous
sections. This topic is however out of the scope of this paper.
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Figure 3: Simulated and theoretical ROCs for noncoherent and
coherent acquisition systems. C/N0 = 25 dB-Hz.
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Figure 4: Simulated and theoretical ROCs for noncoherent and
coherent acquisition systems. C/N0 = 30 dB-Hz.

The simulations results are reported in Figures 3, 4, and
5, where the cases of C/N0 = 25, 30, and 35 dB-Hz have
been considered. These C/N0 values have been chosen since
they represent marginally strong and weak signal conditions.
The probabilities evaluated by Monte Carlo simulations
match the theoretical models developed in previous sections
and the theoretical and simulated ROCs overlap in all
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Figure 5: Simulated and theoretical ROCs for noncoherent and
coherent acquisition systems. C/N0 = 35 dB-Hz.

the considered cases. Simulations effectively support the
theoretical models proving the effectiveness of the analysis
developed in Section 3.

It can be noted, from Figures 3, 4, and 5, that the coherent
acquisition algorithm always outperforms the noncoherent
combining strategy. Moreover, it can be observed that the
two methods tend to have similar performance for low C/N0.
This performance degradation of coherent combing with
sign recovery is probably due to the fact that, for low C/N0,
the estimation of the relative phase between data and pilot
becomes unreliable preventing an effective combination of
the two channels transmitted for the Galileo E1 OS.

5. CONCLUSIONS

In this paper, two different acquisition strategies for the
acquisition of the Galileo E1 OS signals have been considered
and deeply analyzed. The first strategy, the noncoherent
combining, is from the literature whereas the analysis of the
second one, coherent combining with sign recovery, is new
and represents the innovative contribution of this paper. An
analytical model for the false alarm and detection probabil-
ities of both algorithms has been derived and Monte Carlo
simulations have been used for supporting the theoretical
analysis. From the theoretical model and simulations it is
shown that the coherent combining algorithm outperforms
the noncoherent combing proving the effectiveness of the
proposed method. Thus, provided that both algorithms
require similar computational loads, the coherent combining
acquisition algorithm results in preferable to noncoherent
combining and should be adopted for the joint acquisition
of the E1 OS data and pilot channels.
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APPENDICES

A. INDEPENDENCE OF THE RANDOM
VARIABLES AT THE OUTPUT OF THE DATA AND
PILOT CORRELATORS

In this appendix we show that the random variables,
obtained by correlating the input Galileo signal with the local
replicas of the data and pilot channels, are approximatively
independent. The proof is based on the correlation proper-
ties of Galileo memory codes [3].

From (11) the signal at the input of the Galileo receiver
is the sum of a useful term and of white Gaussian noise.
This input sequence is correlated with local replicas of the
data and pilot primary codes, opportunely delayed and
modulated, and for each satellite, a pair of random variables
is obtained:

RB
(
τ,FD

) = 1
N

N−1∑

n=0

rIF[n]eB

[
n− τ

Ts

]
exp

{
j2πFDn

}
,

RC
(
τ,FD

) = 1
N

N−1∑

n=0

rIF[n]eC

[
n− τ

Ts

]
exp

{
j2πFDn

}
.

(A.1)

Since rIF[n] is the sum of a deterministic component and
white Gaussian noise and since both RB(τ,FD) and RC(τ,FD)
are linear transformations of rIF[n], then their independence
can be proven by considering

XB
(
τ,FD

) = 1
N

N−1∑

n=0

ηIF[n]eB

[
n− τ

Ts

]
exp

{
j2πFDn

}
,

XC
(
τ,FD

) = 1
N

N−1∑

n=0

ηIF[n]eC

[
n− τ

Ts

]
exp

{
j2πFDn

}

(A.2)

that are obtained from the noise component of rIF. Since the
input noise is assumed to be zero mean and since the useful
signal component determines the mean of the correlation
function, it is possible to write XB(τ,FD) = RB(τ,FD) −
E{RB(τ,FD)} and XC(τ,FD) = RC(τ,FD) − E{RC(τ,FD)}.
Thus the independence of XB(τ,FD) and XC(τ,FD) implies
the independence of RB(τ,FD) and RC(τ,FD). By defining

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

ηIF[0]

ηIF[1]

. . .

ηIF[N − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦

;

Ex =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 exp
{
j2πFD

}
. . . 0

. . . . . . . . . . . .

0 0 . . . exp
{
j2πFD(N − 1)

}

⎤
⎥⎥⎥⎥⎥⎥⎦

;

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eB

[
− τ

Ts

]

eB

[
1− τ

Ts

]

. . .

eB

[
N − 1− τ

Ts

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eC

[
− τ

Ts

]

eC

[
1− τ

Ts

]

. . .

eC

[
N − 1− τ

Ts

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

(A.3)

it is then possible to rewrite (A.2) as

XB
(
τ,FD

) = 1
N
MTExB,

XC
(
τ,FD

) = 1
N
MTExC,

(A.4)

and the covariance between XB and XC becomes

E
[
XB
(
τ,FD

)
X∗C

(
τ,FD

)] = E
[
XH
C

(
τ,FD

)
XB
(
τ,FD

)]

= E
[ 1
N2

CHEHx M
∗MTExB

]

= 1
N2

CHEHx E
[
M∗MT

]
ExB

= σ2
IF

N2
CHEHx ExB =

σ2
IF

N2
CHB

≈ 0.
(A.5)

The covariance (A.5) is almost zero for the quasi-
orthogonality of the Galileo memory codes. In (A.5) the fact
that EHx Ex = IN and E{M∗MT} = σIFIN has been used. IN is
the N ×N identity matrix.

From (A.5) XB(τ,FD) and XC(τ,FD) can be considered
uncorrelated and thus, since they are Gaussian random
variables, independent.

B. MAXIMUM LIKELIHOOD ESTIMATOR

In this appendix, the Maximum Likelihood estimator for the
delay τ0, the Doppler frequency FD,0, and the relative phase
between the Galileo E1 OS data and pilot channel is derived.
Its connection with the coherent acquisition block with sign
recovery is also shown.

In this context the signal presence is assumed and the
signal parameters are treated as unknown constants. By
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considering (22) and by assuming ηIF[n] a white Gaussian
sequence, it is possible to derive the joint probability density
function of the set {rIF[n]}N−1

n=0 :

f (�r ) = 1
(
2πσ2

IF

)N/2 exp

{
−∑N−1

i=0

[
ri − μi

(
τ,FD, S

)]2

2σ2
IF

}
,

(B.1)

where

(i)

μi
(
τ,FD, S

)

=
√
CdB

[
i− τ

Ts

](
eB

[
i− τ

Ts

]
−S eC

[
i− τ

Ts

])
cos

(
2πFDi+θ

)
,

(B.2)

(ii) S = dC[i − τ/Ts]/dB[i − τ/Ts] is the relative phase
between the data and the pilot channels and can
assume two values: −1 and 1,

(iii) ri is the i th component of the vector �r.

The Likelihood function for the set (τ,FD, S) is given by

L
(
τ,FD, S

)

= 1
(
2πσ2

IF

)N/2 exp

{
−∑N−1

i=0

[
rIF[i]− μi

(
τ,FD, S

)]2

2σ2
IF

}

(B.3)

and its maximization is obtained by maximizing the argu-
ment of the exponential in (B.3). Thus the Maximum
Likelihood estimator for (τ,FD, S) is given by

(
τ̂, F̂D, Ŝ

)

=arg min
τ,FD ,S

N−1∑

i=0

[
rIF[i]− μi

(
τ,FD, S

)]2

=arg min
τ,FD ,S

[N−1∑

i=0

r2
IF[i]−2

N−1∑

i=0

μi
(
τ,FD, S

)
rIF[i]+

N−1∑

i=0

μi
(
τ,FD, S

)2
]
.

(B.4)

The term
∑N−1

i=0 r
2
IF[i] does not depend on (τ̂, F̂D, Ŝ ) and thus

can be dropped. Moreover,

N−1∑

i=0

μi
(
τ,FD, S

)2

=
N−1∑

i=0

C
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])2

cos2(2πFDi + θ
)

=C
N−1∑

i=0

(
2−2S eB

[
i− τ

Ts

]
eC

[
i− τ

Ts

])[
1
2

+
1
2

cos
(
4πFDi+2θ

)]

= 2C
N−1∑

i=0

[
1
2

+
1
2

cos
(
4πFDi + 2θ

)]

− 2SC
N−1∑

i=0

eB

[
i− τ

Ts

]
eC

[
i− τ

Ts

][
1
2

+
1
2

cos
(
4πFDi+θ

)]

≈ CN ,
(B.5)

where the orthogonality between eB[i−τ/Ts] and eC[i−τ/Ts]
and the fact that the summation in (B.5) acts as a lowpass
filter have been exploited. Equation (B.5) shows that also the
term

∑N−1
i=0 μi(τ,FD, S)2 is approximatively independent from

the parameters (τ,FD, S) and thus (B.4) becomes

(
τ̂, F̂D, Ŝ

) = arg max
τ,FD ,S

N−1∑

i=0

μi
(
τ,FD, S

)
rIF[i]

= arg max
τ,FD ,S

N−1∑

i=0

rIF[i]dB

[
i− τ

Ts

]

×
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])
cos

(
2πFDi + θ

)

= arg max
τ,FD ,S

dB

N−1∑

i=0

rIF[i]

×
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])
cos

(
2πFDi + θ

)
.

(B.6)

Since the navigation bit dB is supposed constant over one-
code period it can be moved out the summation in (B.6).
Equation (B.6) represents the expression for the maximum
likelihood estimator for (τ,FD, S), however it can be applied
only under the hypothesis of knowing the bit dB and the
phase θ. In order to remove the dependence from those two
parameters the cost function considered in (B.6) is usually
modified according to the following methodology. Since all
the terms in the last summation of (B.6) are real signals, it is
possible to rewrite (B.6) as follows:
(
τ̂, F̂D, Ŝ

)

= arg max
τ,FD ,S

Re

{
dB

N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])

× exp
(
j2πFDi + jθ

)
}

,

(B.7)
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that is, the real part of a complex scalar product. Equation
(B.7) can be further expanded as

(τ̂, F̂D, Ŝ )

= arg max
τ,FD ,S

Re

{[N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])

× exp
{
j2πFDi

}
]
·exp

{
jθ+ j

(
1−dB

)π
2

}}
,

(B.8)

where the terms in square brackets do not depend on the
phase θ and on the sign dB. Since dB takes values in {−1, 1}
it has been expressed as

dB = exp
{
j(1− dB)

π

2

}
. (B.9)

The summation in (B.8) is a complex number that can be
expressed in terms of phase and amplitude as

[N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
− S eC

[
i− τ

Ts

])
exp

{
j2πFDi

}
]

= AS
(
τ,FD, S

)
exp

{
jϕS

(
τ,FD, S

)}
.

(B.10)

In this way (B.8) can be rewritten as

(
τ̂, F̂D, Ŝ

)

= arg max
τ,FD ,S

AS
(
τ,FD, S

)

×Re
{

exp
{
jϕS

(
τ,FD, S

)}
exp

{
jθ + j(1− dB)

π

2

}}
.

(B.11)

If the phase θ and the sign dB are unknown, they can be
estimated by maximizing (B.11) also with respect to these
two parameters. Equation (B.11) is maximized with respect
to θ and dB when the condition

exp
{
jϕS(τ,FD, S)

}
exp

{
jθ + j(1− dB)

π

2

}
= 1 (B.12)

is verified. By substituting (B.12) into (B.11), the joint
estimator for the delay τ0, the Doppler frequency FD,0, and
the relative phase S becomes

(
τ̂, F̂D, Ŝ

)

=arg max
τ,FD ,S

AS
(
τ,FD, S

)

=
∣∣∣∣∣

N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
−S eC

[
i− τ

Ts

])
exp

(
j2πFDi

)
∣∣∣∣∣

(B.13)

that is a form of quadrature or incoherent matched filter
[19]. The estimator (B.13) is equivalent to the coherent
acquisition block with sign recovery
(
τ̂, F̂D, Ŝ

)

=arg max
τ,FD ,S

∣∣∣∣∣

N−1∑

i=0

rIF[i]
(
eB

[
i− τ

Ts

]
−S eC

[
i− τ

Ts

])
exp

(
j2πFDi

)
∣∣∣∣∣

2

.

(B.14)
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1. INTRODUCTION

The legacy global positioning system (GPS) has performed
well beyond initial expectations in the past but faces
stern impediments in the view point of new civilian GPS
applications. Several initiatives were launched during the
last decade to satisfy the demands of these new civilian
applications. Consequently, these efforts led to the birth
of second-generation global navigation satellite systems
(GNSSs). These efforts include the modernization of legacy
GPS and the restoration of Russian global navigation satellite
system (GLONASS). The Galileo system, a major European
initiative, is well positioned to benefit from the three decades
of GPS and GLONASS experience [1]. More recently, the
GNSS community has witnessed yet another highpoint with
the launch of first medium earth orbit (MEO) satellite of
Chinese Compass GNSS system [2].

A major milestone in the modernization initiative is
the inclusion of new civilian signals that will provide
the benefits of frequency diversity besides accuracy and
availability improvements [3–5]. These new civilian signals
include numerous structural innovations that will provide
the foremost benefit to the civilian GNSS community. The

modernized signals encompass key innovations such as data-
less channel, improved navigation data message format,
secondary spreading code structure, and new modulations
schemes [6]. More specifically, both GPS and Galileo systems
utilize secondary short synchronization codes to accomplish

(i) data symbol synchronization,

(ii) spectral separation,

(iii) narrowband interference protection.

For instance, the use of short 10-bit and 20-bit Neuman-
Hofman (NH) codes, in GPS L5 signals, readily alleviates the
issue of data symbol synchronization. Besides, the different
code period of NH10 and NH20 codes in the data and pilot
channels readily provides the necessary spectral separation.
The secondary synchronization code further enhances the
correlation suppression performance of the primary pseu-
dorandom noise (PRN) code. Finally, it spreads the spectral
lines of primary PRN I5/Q5 codes thereby reducing the effect
of narrowband interference by another 13 dB [4]. The Galileo
system also utilizes short secondary synchronization codes
of various lengths to facilitate the aforementioned tasks [7].
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Table 1: Secondary code assignment in GPS and Galileo systems.

GPS Galileo

Signal type Code name Code length Signal type code name Code length

L5-Data NH10 10 E5a-Data CS20 20

L5-Pilot NH20 20 E5a-Pilot CS1001−50 100

L1C-Pilot OC18001−210 1800 E1c CS25 25

E5b-Data CS4 4

E5b-Pilot CS10051−1001 100

E6c CS1001−50 100
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Figure 1: Superposition of secondary code correlation outputs for various Doppler offsets. (LHS) GPS L5 NH20 code (RHS) Galileo E1c
CS25 code.

Table 1 lists the secondary code assignments and their lengths
in GPS and Galileo systems.

The secondary synchronization codes are predominantly
memory codes except for the L1C, wherein the overlay
codes were obtained through truncated m-sequences (1–
63) and gold sequences (64–210) [8]. There exists a trade-
off between memory codes and codes that are obtained
from linear feedback shift register (LFSR) implementation.
While the LFSR-based codes are appealing in the view point
of hardware implementation, they only exist for specific
lengths. The use of truncation technique can alleviate this
issue at the expense of inferior correlation properties. On the
other hand, memory codes can be obtained for any specific
lengths with optimal correlation characteristics. However,
exhaustive search of optimal synchronization code becomes
more difficult with increasing code lengths.

A limitation arising due to the usage of short synchro-
nization codes is the degradation in correlation suppression
especially in the presence of frequency errors. For instance,
the vulnerability of NH20 code acquisition in the presence

of Doppler uncertainties is discussed in [9]. The isolation
of the main correlation peak to that of secondary peaks
can degrade from the nominal 14 dB to 4.8 dB level under
worst case Doppler scenarios [10]. Under these conditions,
the NH code acquisition of weak GPS L5 signals becomes
more difficult in the presence of other strong GPS L5
signals. The existence of better synchronization codes over
standardized NH20 code was later reported in [10], which
is based on the 20-bit synchronization code originally
proposed in [11]. Under specific Doppler conditions, the
new 20-bit code (known as the Merten’s code) showed an
improvement of around 2 dB over the standardized NH20
code in terms of correlation suppression [10]. However, the
performance improvement achieved by the Merten’s code
corresponds to a specific Doppler scenario and thus does not
reflect the actual performance improvement under Doppler
uncertainty. Interestingly, the importance of spreading code
selection for the Galileo GNSS system and the corresponding
measures was identified in [12]. Besides, it is also desirable
to develop optimal synchronization codes that offer better
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resistance to residual Doppler errors. In this paper, we
introduce relative performance measures such as peak-to-
side lobe ratio (PSLR) and integrated side lobe ratio (ISLR)
related to the design of periodic binary codes that are
utilized in GNSS system. More importantly, new optimal
secondary synchronization codes were obtained using these
performance measures through exhaustive search for lengths
up to 30 bits. The merits of the proposed synchronization
codes are also compared with standardized codes using
the same performance measures. Besides, the association
of the optimal synchronization codes with the systematic
codes such as Golay complementary codes is also estab-
lished. Numerical simulations were used to demonstrate the
superior acquisition performance of the proposed short syn-
chronization codes over standardized codes under Doppler
uncertainties in terms of PSLR measure.

The remainder of this paper is organized as follows. In
Section 2, the advantage of optimal synchronization codes is
further established in the view point of GPS L5 NH code
acquisition. More specifically, we show the inadequacy of
NH20 code in comparison to Merten’s 20-bit code under
different Doppler conditions. The relevant performance
measures pertaining to optimal binary periodic synchro-
nization code are introduced in Section 3. The binary-
code search strategy and the various code construction
methods are detailed in Section 4. Besides, the merits of new
synchronization codes are compared with the standardized
codes. Acquisition performance analysis is then carried out
in Section 5. The final concluding remarks are made in
Section 6.

2. NEED FOR IMPROVED SYNCHRONIZATION CODES

An issue with short synchronization codes is limited correla-
tion suppression performance due to their short code length.
For instance, the correlation suppression performance of
NH20 code can be degraded by as much as 8 dB from the
nominal 14 dB in the presence of Doppler uncertainty [9]. In
[10], the authors reported a degradation of 9.2 dB for NH20
code under specific Doppler scenarios. To further illustrate
this, the GPS L5 NH20 code and Galileo E1c CS25 code
correlation outputs for different Doppler bins are plotted in
Figure 1. The acquisition criterion in Figure 1 was obtained
following the analysis reported in [10]. For instance, the
residual Doppler during the acquisition of NH20 and CS25
code was set to 12 Hz; and this residual Doppler was searched
between 0 and 250 Hz in steps of 25 Hz.

In Figure 1, we can readily observe the degradation in
correlation main peak isolation for NH20 from the nominal
14 dB to 4.8 dB as reported earlier in [10]. On the other
hand, the Galileo E1c CS25 code degraded from the nominal
18.4 dB down to 5.5 dB. The additional 3 dB degradation
in CS25 code acquisition can be attributed to the longer
coherent integration time (i.e., 25 millie seconds rather than
20 millie seconds) and nonzero out-of-phase correlation in
the original CS25 code. Accordingly, the acquisition of weak
GPS L5 signals or Galileo E1c signals can be hindered in the
presence of strong GPS L5 and Galileo E1c signals from other
satellites. While the correlation suppression performance can

be improved with longer length codes, judicial selection of
synchronization codes can offer better correlation suppres-
sion for the same code length. For example, in [10], the
authors reported a correlation suppression gain of around
2 dB for Merten’s code over standard NH20 code under
specific Doppler scenario. The LHS plot in Figure 2 shows
the superposition of the Merten’s 20-bit synchronization
code (M20) correlation outputs for the same Doppler
setting as in Figure 1. The RHS plot shows the correlation
suppression performance for the standardized NH20 and the
M20 code for various residual Doppler’s. The Doppler was
searched between 0 to 250 Hz in steps of 25 Hz.

The RHS plot in Figure 2 readily shows the 2 dB improve-
ment accomplished by the M20 code over the standardized
NH20 code for the residual Doppler of 12 Hz. In other
words, the M20 code can tolerate another 10 Hz of residual
Doppler for the same PSLR of 4.8 dB achieved by the NH20
code. The M20 code resulted in an average performance
improvement of around 1.7 dB over the NH20 code for the
range of residual Doppler’s. The performance improvement
in M20 code can readily be accredited to its better correlation
characteristic. For instance, the periodic correlation of the
different synchronization codes of length 20 (see Table 2) is
summarized below

RNH10 = {10,−2, 2,−2,−2, 2,−2,−2, 2,−2},
RNH20={20, 0, 0, 0, 0, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0, 0, 0, 0, 0},
RCS20={20, 0, 0, 0, 0, 0, 4, 0,−4, 0,−4, 0,−4, 0, 4, 0, 0, 0, 0, 0},
RM20={20, 0, 0, 0, 0,−4, 0,−4, 0, 0, 0, 0, 0,−4, 0,−4, 0, 0, 0, 0}.

(1)

The periodic correlation output of the M20 code, RM20, has
lesser number of out-of-phase correlation when compared
to both NH20 and CS20 codes. Accordingly, one can expect
its code acquisition performance to be superior even in
the presence of residual Doppler. It is worth emphasizing
here that the NH10 and NH20 codes were not obtained
from exhaustive search, whereas the M20 code was obtained
through exhaustive search [11]. The very existence of the
NH20, M20, and CS20 corroborates the presence of multiple
solutions for the code design problem. Besides, the search
for periodic code is expected to yield multiple solutions
due to the existence of equivalence classes [13]. Hence, it is
necessary to obtain the binary codes that satisfy the optimal
correlation characteristics and select the best possible code
judiciously using relevant performance measures.

3. OPTIMAL SYNCHRONIZATION
CODE—FIGURE OF MERITS

Better synchronization code can be obtained by optimizing
the corresponding correlation characteristics of the individ-
ual codes. As we are dealing with binary codes of short
period, the optimization of correlation characteristics can be
achieved in an exhaustive fashion. It is however, necessary
to derive performance measure or measures that readily
embody the correlation characteristics of a binary code
[12]. The two important performance measures pertaining
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Table 2: Optimal binary synchronization code search result.

Code length Number of codes PSLR (dB) ISLR (dB) Code length Number of codes PSLR (dB) ISLR (dB)

4 8 (1) ∞ ∞ 18 6,047 (168) 19.1 2.4

5 10 (1) 14 3.2 19 75 (2) 22.6 10

6 47 (8) 9.5 0.9 20 5,079 (45) 14 3.1

7 28 (2) 16.9 4.1 21 1,259 (30) 16.9 4.2

8 32 (2) 6 2 22 15,839 (360) 20.8 2.9

9 108 (8) 9.5 1.7 23 91 (2) 27.3 12

10 360 (16) 14 1.4 24 1,535 (32) 15.6 9

11 44 (4) 20.8 6.1 25 7,000 (260) 18.4 4.3

12 96 (4) 9.5 4.5 26 31,615 (608) 22.3 3.4

13 104 (4) 22.3 7.1 27 775 (144) 19.1 4.9

14 1,791 (128) 16.9 1.9 28 23,743 (424) 16.9 4.1

15 59 (4) 23.5 8 29 3,247 (56) 19.7 4.6

16 255 (16) 12 2.7 30 35,039 (584) 23.5 3.9

17 2,175 (64) 15.1 2.3

to optimal synchronization codes are the peak-to-side lobe
ratio (PSLR) [14] and the integrated side lobe ratio (ISLR)
[15]. Besides, the synchronization codes are also expected to
be balanced for desirable spectral characteristics. To define
PSLR and ISLR, we first express the periodic auto-correlation
of the binary code of length N (i.e., x = [x0, x1, . . . , xN−1]), at
shift i, as

R(i) =
N−1∑

k=0

x(k)x(k − i mod N), i = 0, 1, 2, . . . ,N − 1,

(2)

where x(k) ∈ {+1,−1} and mod is the modulo operation.
The PSLR for the binary code x(k) with the periodic auto-
correlation, R(i), is given by

PSLR(x) = R(i = 0)2

max
∣∣R(i /= 0)

∣∣2 , i = 0, 1, 2, . . . ,N − 1. (3)

Maximizing the PSLR measure minimizes the out-of-phase
correlation that eventually aids in reducing false acquisition.
On the other side, ISLR measures the ratio of auto-
correlation main lobe (or peak) energy to its side lobe energy
[15]. The ISLR of a binary code is defined as

ISLR(x) = N2

2
∑N−1

i=1

∣∣R(i)
∣∣2 , i = 0, 1, 2, . . . ,N − 1. (4)

Maximizing the ISLR measure readily limits the effect of out-
of-phase correlation from all shifts. It will be emphasized
here that the maximization of ISLR often maximizes the
PSLR measure. Finally, the balanced property of a binary
code is related to the mean value of the code and is given
by

μ(x) = 1
N

N−1∑

k=0

x(k). (5)

For binary code sets design, as in the case of OC1800 in
GPS and CS100 in Galileo, it is also desirable to minimize

the mutual interference experienced by the individual codes
from other codes. Minimizing the magnitude of cross-
correlation readily limits the effect of mutual interference
between any two codes. The mean square correlation (MSC)
measure embodies this mutual correlation and can be
utilized during multiobjective synchronization code opti-
mization. For any two codes xp(k) and xq(k) of length N
pertaining to the code set comprising of M unique codes, the
mutual correlation or the MSC is given by

MSC(p, q) = 2
N−1∑

i=0

∣∣Rp,q(i)
∣∣2

, p /= q, (6)

where Rp,q(i) is the periodic cross-correlation between the
codes xp(k) and xq(k), and is given by

Rp,q(i) =
N−1∑

k=0

xp(k)xq(k − i mod N), i = 0, 1, 2, . . . ,N − 1.

(7)

The aforementioned mean square correlation is closely
related to the well-known total squared correlation measure
utilized in CDMA spread code optimization [16].

4. OPTIMUM CODE SEARCH RESULTS

For short code length, the synchronization code optimiza-
tion can be accomplished through exhaustive search of
binary codes with optimal correlation characteristics. The
developed exhaustive search technique utilized fast Fourier
transform (FFT)-based block processing and matrix manip-
ulations to speed up the search process. Both PSLR and
ISLR were utilized for the objective maximization. Optimal
synchronization codes for lengths up to 30 were obtained
through exhaustive search. Interestingly, the search process
yielded large number of codes that were optimal based
on the aforementioned performance measures. Table 2 lists
the number of codes alongside the unique solutions within
braces, the PSLR and ISLR values, respectively.
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Figure 2: (LHS) superposition of secondary code correlation outputs for various Doppler offsets for M20 code (RHS) PSLR performance
as a function of residual Doppler.

The large number of codes arise from existence of the
equivalence classes due to the shift invariance property of
the periodic codes [13]. For example, the code x(k), its
negated version, its time reversed, or its shifted version
will be characterized by similar PSLR and ISLR measures.
To obtain unique solutions, the search technique discarded
codes if their maximum cross-correlation is equal to the code
length. Accordingly, any two codes xp(k) and xq(k) satisfy the
following cross-correlation constraint are considered unique:

max
∣∣Rp,q(i)

∣∣ < N , i = 0, 1, 2, . . . ,N − 1. (8)

Besides, the codes are time-reversed and hence were tested
for (8). While the balance property (i.e., μ(x)) was not
included during the code selection, its significance will be
emphasized during the acquisition performance analysis.
In Table 2, the binary codes whose lengths are similar to
the standardized codes are highlighted in bold. In [17],
the authors theoretically established the optimal periodic
correlation of a balanced binary code as

R(i) =
{

0 or − 4 N mod 4 = 0,

2 or − 2 N mod 4 = 2,
i /= 0. (9)

The periodic correlation of optimal binary code for both
odd and even lengths was further established in [18], and is

expressed below

R(i) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 or 4 or − 4 N mod 4 = 0,

1 or − 3 N mod 4 = 1,

2 or − 2 N mod 4 = 2,

−1 or 3 N mod 4 = 3,

i /= 0. (10)

From (1) and (9), we see that both NH10 and M20 possess
optimal periodic correlation. Besides, the Galileo CS25 code
was also optimal as it satisfied the periodic correlation
expressed in (10). On the other hand, both NH20 and
CS20 are not optimal in the view point of (9), but can be
considered optimal in terms of PSLR measure. The inferior
periodic correlation of NH20 does not come as a surprise
as the original NH codes were not obtained by exhaustive
search [19]. It should be noted here that all the secondary
codes utilized in GPS and Galileo system are not balanced
(i.e., sum of individual code phases is not equal to zero) and
thus (9) cannot be applied in a strict sense, but indicates the
conditions for optimality. Numerical analysis later confirmed
the fact that even unbalanced binary code is characterized by
periodic correlation as predicted in (9).

All the binary codes obtained through exhaustive search
indeed satisfied the periodic correlation as expressed in
(10) and thereby asserting the optimality of the developed
binary codes. The optimal 10-bit and 25-bit code obtained
through exhaustive search resulted in similar PSLR and
ISLR performance measures to that of NH10 and CS25
codes in accordance to (10). On the other hand, the 20-
bit code obtained via exhaustive search resulted in better
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ISLR performance even as the PSLR performance was the
same. Moreover, the new 20-bit code had similar correlation
characteristics as that of M20 code introduced earlier.
In Table 2, we can also observe that odd-length codes
generally yielded better PSLR and ISLR performance. More
specifically, the binary codes for lengths N = 5, 7, 11, 13, 15
showed similar PSLR and better ISLR, even when compared
to twice their code lengths (i.e., N = 10, 14, 22, 26, 30).
The high PSLR and ISLR values observed for code lengths
N = 5, 7, 11, 13, 15, 23 can readily be attributed to their ideal
correlation characteristics as expressed in (10). However, it
is recognized that the choice of secondary code length in
GNSS system can be influenced by other parameters besides
correlation characteristics alone.

Further analysis of the optimal binary code of length 20
revealed the existence of close association of optimal binary
codes to that of the well-known Golay complementary pairs
[20]. The Golay complementary pairs have been extensively
utilized in a number of applications ranging from radar
signal processing [21] and communication [22] to multislit
spectrometry [20]. Two binary codes xa(k) and xb(k) are said
to be Golay complementary pair, if they satisfy the following
constraint:

RG(i) = Ra(i) + Rb(i) =
{

2N , i = 0,

0, i /= 0,
(11)

where Ra(i) and Rb(i) are the periodic correlation of xa(k)
and xb(k), respectively. RG(i) is the periodic correlation
function of the Golay complementary pair. Besides, the
individual codes in a Golay complementary pair are referred
as Golay codes. The periodic correlation in (11) immediately
asserts the advantage of Golay complementary codes in the
view point of code design. For example, the NH10 code and
the first-half of the NH20 code are Golay complementary
pair as shown in Figure 3. Hence, there exists a possibility
of utilizing this underlying structure to accomplish better
acquisition abilities. Unfortunately, the NH10 code and
second half of NH20 code are not Golay complementary
pairs.

Motivated by this observation, the optimal binary codes
of length 20 obtained via exhaustive search were tested for
Golay complementary pair. Interestingly, many binary codes
of length 20 obtained through exhaustive search (i.e., S202

in Table 3) satisfied the Golay complementary condition. For
example, the Golay complementary pairs G10a and G10b
can be constructed from the even and odd samples of S202

(hex value “05D39” and “FA2C6” also give rise to Golay
pairs) listed in Table 3, and the corresponding Golay codes
are given by

G10a = [−1, 1,−1, 1,−1,−1,−1,−1, 1, 1],

G10b = [1,−1,−1, 1, 1,−1, 1, 1, 1, 1].
(12)

More importantly, the individual Golay codes G10a and
G10b were also optimal having periodic correlation in

accordance to (9). Moreover, the Golay codes of length
N/2 obtained from an optimal code of length N were

also optimal. Consequently, the 45 optimal binary codes of
length 20 (see Table 2) were tested for Golay complementary
condition. Surprisingly, 75% (32 out of 45 codes) of the 20-
bit optimal binary codes satisfied the Golay complementary
condition. A corollary of this conjecture indicates the
possibility of constructing optimal codes of length N from
Golay complementary pairs of length N/2. The construction
of binary codes by multiplexing Golay complementary pairs
readily guarantees that every alternate shift will result in zero
correlation due to the complementary correlation output
of individual Golay codes. Interestingly, the aforementioned
property of the Golay codes was utilized for signal acquisition
in ultrasonic operations [23]. To further verify this corollary,
we constructed a binary code from Golay complementary
pairs of length 20 (hex values “CD87F” and “CE5AA”). The
resulting binary code of length 40 (hex value “F0F6916EEE”)
demonstrated optimal periodic correlation as predicted by
(9). Thus, it is possible to construct optimal binary codes
of larger lengths by utilizing the aforementioned association
between optimal codes and the Golay complementary codes.
Besides, the highly regular structure of binary Golay com-
plementary codes readily allows for an efficient construction
[24].

Motivated by the aforementioned observation, we con-
structed synchronization codes of length N = 100 from
optimal codes of lengths 10, 20, and 25. The specific choice
of code length was dictated by the fact that the desired code
length 100 was divisible by 10, 20, and 25. The final code
length of 100 was obtained by manipulating the individual
codes of length 10, 20, and 25 with the augmentation codes
of length 10, 5 and 4. Let xp(k) and xs(k) be the primary
and the augmentation code of length Np and Ns. Thus, we
have N = NsNp, where N = 100, Ns = {10, 5, 4}, and
Np = {10, 20, 25} in our case. The final binary code, x(k),
of length N can be obtained as follows:

x(k) =
Ns−1∑

m=0

Np−1∑

n=0

xs(m)xp(n)g

(
k −m

N

Ns
− n

N

Np

)
,

k = 0, 1, 2, . . . ,N − 1,

(13)

where g(k) is the rectangular pulse function and is given by

g(k + ΔT) =
{

1 0 ≤ ΔT < Tb,

0 elsewhere,
(14)

where Tb is the basic bit duration over which the xk is
constant. For example, the 100-bit code, x(k) (hex value
“C7F526E3FA9371FD49A7015B2”), was obtained from the
primary code, xp(k) (hex value “380AD90”), and the aug-
mentation code, xs(k) (hex value “1”). In Table 2, we saw
that there exists 7,000 codes of length 25 with 260 unique
solutions but we only need 100 unique codes. Thus, we
utilized the following constraints on the PSLR and ISLR
measures to limit the number of codes:

PSLR ≥ 21.9 dB,

ISLR ≥ 3 dB.
(15)

The PSLR and ISLR thresholds in (15) were duly obtained
from the average PSLR and ISLR measures of the Galileo



Surendran K. Shanmugam et al. 7

Table 3: Secondary synchronization code—performance measures (μ(x), PSLR, and ISLR are defined in (5), (3), and (4), resp.).

Secondary code performance

Standard codes Proposed codes

Code identifier Code length |μ(x)| PSLR (dB) ISLR (dB) Code identifier Code length |μ(x)| PSLR (dB) ISLR (dB)

CS4 4 0.5 ∞ ∞ S4 4 0.5 ∞ ∞
NH10 10 0.2 14 1.5 S10 10 0 14 1.5

NH20 20 0.2 14 4 S201 20 0 14 4

CS20 20 0.2 14 4 S202 20 0.1 14 4.9

CS25 25 0.2 18.4 6.3 S203 20 0.2 14 4

M4 4 0.5 ∞ ∞ S251 25 0.2 18.4 6.3

M10 10 0.4 14 1.5 S252 25 0.2 18.4 6.3

M20 20 0.1 14 4.9

M25 25 0.2 18.4 6.3
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Figure 3: Correlation output of Golay complementary codes
(NH10 and first half of NH20).

G100 code set [25]. Finally, the cross-correlation constraint
expressed in (8) was also utilized to obtain unique solutions.
Consequently, a total number of 105 unique codes were
obtained in this fashion which satisfied the aforementioned
conditions. The hexadecimal representations of the individ-
ual codes are listed in Table 6. It is worth noting here that not
a single Galileo G100 code as well as the proposed 100-bit
codes satisfied the optimal periodic correlation based on (9).
The following section establishes the merits and limitations
of the proposed binary synchronization codes in comparison
to the standardized secondary synchronization codes.

5. ACQUISITION PERFORMANCE ANALYSIS

Having obtained the optimal binary codes of various lengths,
we now turn our focus on the evaluation of the proposed
codes in comparison to the standardized codes utilized in
GPS and Galileo system. In this paper, the structure proposed
in Tran and Hegarty [26] was adopted for the secondary

code acquisition, wherein the primary code is assumed to
be acquired within half chip duration alongside residual
Doppler. The secondary code is acquired by correlating the
primary code correlation outputs with the locally generated
secondary code samples. The residual Doppler was assumed
to be within ±250 Hz. During the secondary code acquisi-
tion, the residual Doppler was also searched within ±250 Hz
in steps of 25 Hz.

The Galileo CS4 code is already established as the optimal
code and will not be dealt during the acquisition perfor-
mance analysis. Table 3 lists the μ(x), the PLSR, and the ISLR
measures of the standardized Merten’s and the proposed
codes of various lengths. While the 20-bit synchronization
codes achieved similar PSLR measure as that of 10-bit codes,
their ISLR performances were much better than that of 10-
bit codes. In Table 3, it can be noticed that there are 3
different sets of S20 code (S201, S202, and S203) and two
sets of S25 code (S251 and S252). While these different
codes are optimal in terms of correlation characteristics,
their correlation characteristics differed in the presence of
the residual Doppler with some outperforming the other
codes. In Table 3, we see that the designed codes were not
only optimal in terms of PSLR and ISLR measures, they
were also more balanced. The advantage of the M20 and
S202 over the NH20 and CS20 codes is readily asserted by
the higher ISLR values. Interestingly, the other 20-bit codes
S201 and S203 demonstrated better acquisition performance
in comparison to M20 and S202 codes despite being inferior
in ISLR measure. In the case of CS100 and S100 codes,
the autocorrelation and cross-correlation protection were
evaluated using a number of measures. The PSLR measure
based on the auto-correlation was same for both CS100 and
S100 codes despite being suboptimal in the view point of
(9). The cross-correlation PSLR (CPSLR) measure was also
obtained for CS100 and S100 codes. The CPSLR measures
the ratio between the auto-correlation main peak of code
(R(i)) to the maximum of the cross-correlation peak (Rp,q(i))
and it is given by

CPSLR = R(i = 0)2

max
∣∣Rp,q(i /= 0)

∣∣2 . (16)
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Table 4: Galileo CS100 and proposed S100 codes performance.

Secondary code performance

CPSLR (dB) ISLR (dB) MSC (dB)

CS100 S100 CS100 S100 CS100 S100

Max 14.9 14 6.6 5.9 43.5 43.6

Min 6 2.9 3.7 5.1 42.6 42.8

Mean 11.2 9.1 4.9 5.6 43 43.1

Std. Dev 1.2 2.4 0.6 0.3 0.1 0.2
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Figure 4: PSLR and ISLR performance of Galileo CS100 and the proposed S100 codes.

Table 5: Hexadecimal representation GPS/Galileo and proposed secondary codes (highlighted colour in bold represents equivalence).

Code identifier Code length Number of hex symbols Number of zero padding Hex value

CS4 4 1 0 E

NH10 10 3 2 F28

NH20 20 5 0 FB2B1

CS20 20 5 0 842E9

CS25 25 7 3 380AD90

M4 4 1 0 D

M10 10 3 2 CBC

M20 20 5 0 FA2C6

M25 25 7 3 E3FA930

S4 4 1 0 B

S10 10 3 2 3B0, 3C8

S201 20 5 0 14B37, 14B37

S202 20 5 0 05D39, 6345F

S203 20 5 0 315B0, 640E5

S251 25 7 3 21228F8, DFB45C0

S252 25 7 3 AD04C18
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Figure 5: PSLR performance in the presence of residual Doppler (LHS) 10-bit code (RHS) 20-bit code.
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Figure 6: Effect of residual Doppler on secondary code acquisition (LHS) 10-bit code (RHS) 20-bit code.

Table 4 lists the maximum, minimum, mean, and the
standard deviation of CPSLR, ISLR, and MSC measures for
the Galileo CS100 and the proposed S100 codes. While the
standardized CS100 code is attractive in terms of CPSLR,

the proposed S100 codes were appealing in the view point
of ISLR. The MSC performance of both the codes was
similar. The distribution of the CPSLR and ISLR measures
of the CS100 and S100 codes is plotted in Figure 4 for better
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Table 6: Hexadecimal representation of proposed S100 codes.

Hexadecimal values of S100 codes

Code length = 100, no. of hex. symbols = 25, no. of zero padding = 0

C7F526E3FA9371FD49A7015B2 CE054963FA9373815247015B2 CE05497E8B4E738152405D2C6

CE05494E5A2FF381524C69740 CE05497E39537381524071AB2 CE05496180DAB38152479FC95

CE0549549FCF3381524AD80C3 CE05497DD1CA738152408B8D6 9B501C63FA9366D40707015B2

9B501C7E8B4E66D407005D2C6 9B501C4E5A2FE6D4070C69740 9B501C7E395366D4070071AB2

9B501C6180DAA6D407079FC95 9B501C549FCF26D4070AD80C3 9B501C7DD1CA66D407008B8D6

C7F526E702A4B1FD49A63F56D C7F526CDA80E31FD49AC95FC7 C7F526FE8B4E71FD49A05D2C6

C7F526CE5A2FF1FD49AC69740 C7F526FDD1CA71FD49A08B8D6 FD169CE702A4BF45A7263F56D

FD169CCDA80E3F45A72C95FC7 FD169CE3FA937F45A727015B2 FD169CFDD1CA7F45A7208B8D6

9CB45FE702A4A72D17E63F56D 9CB45FCDA80E272D17EC95FC7 9CB45FE3FA93672D17E7015B2

9CB45FFDD1CA672D17E08B8D6 FC72A6E702A4BF1CA9A63F56D FC72A6CDA80E3F1CA9AC95FC7

C301B56702A4B0C06D463F56D C301B54DA80E30C06D4C95FC7 A93F9E6702A4AA4FE7863F56D

A93F9E4DA80E2A4FE78C95FC7 FBA394E702A4BEE8E5263F56D FBA394CDA80E3EE8E52C95FC7

FBA394E3FA937EE8E527015B2 FBA394FE8B4E7EE8E5205D2C6 FBA394CE5A2FFEE8E52C69740

CE0549592BF8F3815249B501C CE054959538FF3815249AB1C0 CE05494A7177F381524D63A20

9B501C592BF8E6D40709B501C 9B501C59538FE6D40709AB1C0 9B501C4A7177E6D4070D63A20

9CB45F8E02B6672D17FC7F526 9CB45FD92BF8E72D17E9B501C 9CB45FCA7177E72D17ED63A20

FC72A6A4A81CFF1CA9B6D5F8C FC72A68E02B67F1CA9BC7F526 C301B524A81CF0C06D56D5F8C

C301B50E02B670C06D5C7F526 A93F9E24A81CEA4FE796D5F8C A93F9E0E02B66A4FE79C7F526

495039CA7177D2540E6D63A20 1C056CCE5A2FC7015B2C69740 1C056CFE8B4E47015B205D2C6

1C056CD9538FC7015B29AB1C0 1C056CAB6030C7015B3527F3C 1C056C9E7F2547015B386036A

1C056CCA7177C7015B2D63A20 B257F1A4A81CEC95FC76D5F8C B257F1CE5A2FEC95FC6C69740

4DA80E1C056C936A0398FEA4D B257F198FD5B6C95FC79C0A92 B2A71F98FD5B6CA9C7F9C0A92

94E2EF98FD5B6538BBF9C0A92 B257F1B257F1EC95FC736A038 B2A71FB257F1ECA9C7F36A038

94E2EFB257F1E538BBF36A038 4950399C056C92540E78FEA4D 1C056C9C056C87015B38FEA4D

94E2EF9C056CA538BBF8FEA4D 49503981C6AC92540E7F8E54D 1C056C81C6AC87015B3F8E54D

495039822E3592540E7F74729 1C056C822E3587015B3F74729 B257F1822E35AC95FC7F74729

comparison. In Figure 4, we see that the standard CS100
codes achieved 1 dB improvement over proposed S100 codes
for 50% of the times in terms of CPSLR. On the other
hand, the proposed codes showed an 0.9 dB improvement
over standard CS100 codes for 50% of the times in terms
of ISLR. The CPSLR degradation observed in proposed S100
codes is inherent to its construction. Alternatively, one can
utilize evolutionary techniques for the multiple-objective
code optimization encountered in CS100 code design [27].

In the preceding section, we inferred the existence of
multiple solutions due to the code periodicity and Table 2
listed the number of codes that accomplished the optimal
correlation characteristics as predicted by (10). To further
arrange them, the individual codes were utilized for code
acquisition and their corresponding PSLR measure was
obtained in the presence of residual frequency error. For
example, the PSLR of the 10-bit and the 20-bit codes in
the presence of 12 Hz residual error is plotted in Figure 5.
In the case of 20-bit synchronization code, the ISLR mea-
sure was relaxed to 4 dB so as to include the remaining
synchronization codes. Accordingly, we evaluated the PSLR
performance of all the 20-bit codes (5079 codes as listed
in Table 2) obtained via exhaustive search. Figure 5 readily
confirms the existence of optimal synchronization codes that

are better then the standardized codes in terms of PSLR
measure. However, a question may arise on the specific
Doppler setting and whether that could influence the PSLR
performance. Further analysis did confirm this conjecture
due to the existence of codes that were superior for certain
Doppler scenarios.

Thus, the average of the PSLR over a range of Doppler
(namely from 0 Hz to 25 Hz) was utilized as the selection
criterion for code selection. Under the new average PSLR
measure, the codes that accomplished superior correlation
suppression are listed in Table 5. The S10 and S201 codes
achieved the overall best performance in terms of aver-
age PSLR taken over a range of Doppler’s. It should be
emphasized here that both these codes were balanced and
thus asserting the significance of the balanced property
introduced earlier. Figure 6 shows the PSLR performance of
the standard, Merten’s and the proposed 10-bit and 20-bit
synchronization codes during two-dimensional acquisition
in the absence of background noise. The residual Doppler
was searched between 0 Hz and 250 Hz in steps of 25 Hz as
reported in [10].

The LHS plot in Figure 6 readily affirms the limitation of
standard NH10 code and the advantage of utilizing the M10
and the proposed S10 code. Later it will be shown that the
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Figure 7: PSLR performance in the presence of frequency offset (LHS) 10-bit code (RHS) 20-bit code.
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Figure 8: 25-bit code performance. (LHS) effect of residual Doppler on secondary code acquisition (RHS) PSLR performance as a function
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proposed S10 code correlation can be better than that of M10
code in the presence of frequency offset. Amongst the 20-bit
codes, the Galileo CS20 code had the worst performance in
accordance to result shown in Figure 5. Both the M20 code

and the proposed S202 code resulted in same performance
as they belong to the same equivalence class. The S203 code
demonstrated similar performance as that of the NH20 code.
Finally, the proposed S201 code showed the best performance
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Figure 9: 100-bit code performance. (LHS) effect of residual Doppler on secondary code acquisition (RHS) PSLR performance as a function
of frequency offset.

in terms of PSLR under Doppler conditions. The S201 code
although suboptimal in terms of ISLR still performed better
owing to its balanced property.

The correlation performance degradation in NH20 code
as a function of frequency offset was analyzed in [10]. To
further validate this initial observation and also to compare
the correlation suppression performance of the proposed
codes, numerical simulations were carried out. Figure 7
shows the PSLR performance for both 10-bit and 20-bit
synchronization codes as a function of frequency offset. For
the 10-bit code, one can readily notice the advantage of the
proposed S10 code over the M10 and NH10 codes. In the
case of 20-bit code, the standard NH20 and the CS20 codes
performed better in comparison to the M20, S201, and S202

codes. On the other hand, the S203 resulted in the overall
best performance and readily showed a PSLR gain of around
2.5 dB over standard NH20 and CS20 codes. However, the
S201 is still attractive as it yielded the best PSLR performance
as shown in Figures 6 and 7. The aforementioned analysis for
a similar setting was carried out for the 25-bit code, which
included the CS25, M25, and the proposed S251 and S252

codes. Note that the M25 and CS25 codes are essentially
similar and are expected to perform similar. Figure 8 shows
the effect of residual Doppler on secondary code acquisition
and the PSLR performance as a function of frequency offset.

The standard CS25 code and that of M25 code were
exactly same as far as frequency offset is concerned. However,
the standard CS25 resulted in better PSLR performance as
shown in LHS plot of Figure 8. On the other hand, both the
proposed codes demonstrated superior PSLR performance.

Interestingly, the codes S251 and S252 were complementary
in their PSLR performance as shown in Figure 8. However,
the code S252 can be considered optimal for not only
achieving better PSLR performance (around 2 dB) in the
presence of residual Doppler, it also retained similar PSLR
performance to that of standard CS25 code for a wide range
of frequency offsets.

Finally, the code acquisition performance of the standard
CS100 and the proposed S100 codes was also evaluated in a
similar manner. The residual Doppler range was reduced to
7.5 Hz so as to reflect the longer coherent integration utilized
in acquiring these codes. Figure 9 shows the average PSLR
performance of the standard and the proposed codes. The
standard CS100 code demonstrated better performance in
regards to the proposed S100 codes under both settings. The
proposed code despite being characterized by better ISLR
measure was still limited by its construction method from
code of short length. Nevertheless, it readily corroborates
the use of alternative solutions for the multiple code design
problem.

6. CONCLUSIONS

The design of secondary synchronization code for GNSS
system is important due to its role in acquisition and
tracking. A limitation arising due to the usage of short
secondary code is the apparent degradation in correlation
isolation especially in the presence of residual frequency
errors. This paper introduced the various performance mea-
sures that can be utilized for secondary synchronization code
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optimization. Consequently, these performance measures
were utilized to obtain optimal codes of various lengths via
exhaustive search. This paper also established the association
between the optimal codes and the systematic codes such
as Golay complementary codes. The proposed secondary
synchronization codes of lengths 10, 20, and 25 obtained
in this fashion readily demonstrated superior correlation
isolation performance in the presence of residual frequency
errors. The developed S100 codes although appealing in
terms of ISLR measure demonstrated inferior acquisition
performance over standardized CS100 codes. Truncation of
LFSR codes or code design using genetic algorithms can
produce code sets with better correlation characteristics.
The significance of the correlation isolation improvement
demonstrated by the new synchronization codes in terms of
probability of false alarm and detection is currently being
investigated. Finally, judicious design of short synchroniza-
tion codes can offer optimal correlation suppression and
efficient signal generation.

Example 1. The NH10 Code represented by the hexadecimal
value “F28” is obtained as follows:

F −→ 1 1 1 1,

2 −→ 0 0 1 0,

8 −→ 1 0 0 0.

(17)

Hence, “F28”−→ 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0. The last two
digits highlighted in bold are discarded, and the zero symbols
are mapped in to −1. (i.e., 0 → −1).
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1. INTRODUCTION

The integer ambiguity resolution of carrier-phase measure-
ments has been simplified by the consideration of lin-
ear combinations of measurements at multiple frequencies.
Early methods were the three-carrier ambiguity resolution
(TCAR) method introduced by Forssell et al. [1], as well as
the cascade integer resolution (CIR) developed by Jung et al.
[2].The weighting coefficients of three-frequency phase com-
binations are designed either to eliminate the ionosphere at
the price of a rather small wavelength or to reduce the iono-
sphere only by a certain amount with the advantage of a
larger wavelength.

The systematic search of all possible GPS L1-L2 widelane
combinations has been performed by Cocard and Geiger
[3]. The L1-L2 linear combination of maximum wavelength
(14.65 m) amplifies the ionospheric error by a factor 350.
Collins gives an overview of reduced ionosphere L1-L2
combinations with wavelengths up to 86.2 cm (+1,−1
widelane) in [4].

The authors have extended this work to three-frequency
(3F) Galileo combinations (E1-E5a-E5b) in [5]. A 3F wide-
lane combination with a wavelength of 3.256 m and an iono-
spheric suppression of 16.4 dB was found. Furthermore, a 3F
narrowlane combination with a wavelength of 5.43 cm could
reduce the ionospheric error by as much as 36.7 dB. Sets
of linear carrier-phase combinations that are robust against
residual biases were studied in [6]. The integer ambiguities of
the linear combinations can be estimated by the least-squares
ambiguity decorrelation adjustment (LAMBDA) algorithm
developed by Teunissen [7]. The method includes an inte-
ger transformation which can also be used to determine op-
timum sets of linear combinations [8].

In this paper, the authors used code- and carrier-phase
measurements in the linear combinations for obtaining
ionospheric elimination, large wavelengths, and a low noise
level at the same time. The E5a and E5b code measurements
are of special interest due to their large bandwidth (20 MHz)
and their low associated Cramer-Rao bound of 5 cm [9]. The
C-band phase measurements are particularly interesting due
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to their small wavelength and their thus reduced phase noise.
The properties of code-carrier linear combinations are opti-
mized by including both L- and C-band measurements. The
cost function is defined as the ratio of half the wavelength and
the noise level of the ionosphere-free code-carrier combina-
tion. It is called combination discrimination and it is a mea-
sure of the radius of the decision regions expressed in units
given by the standard deviation of the noise. The L-Band sig-
nals of Galileo are defined in the Galileo-ICD [10]. The C-
band signals are foreseen in a band between 5010 MHz to
5030 MHz [11]. The signal propagation and tracking char-
acteristics in the C-band have been analyzed by Irsigler et al.
[12]. The larger frequencies result in an additional free space
loss of 10 dB that has to be compensated by a larger transmit
power.

The paper is organized as follows: the next section in-
troduces the design of code-carrier linear combinations. The
underlying trade-off between a low noise level and strong
ionospheric reduction turns out to be controlled by the
weighting coefficients of E5a/E5b code measurements.

In Section 3, code-carrier linear combinations are com-
puted in a way that include both L- and C-band measure-
ments. An ionosphere-free code-only combination is deter-
mined that benefits from a 4.5 times lower noise level than
a pure L-band combination. Furthermore, a pure L-band
ionosphere-free code-carrier combination with a wavelength
of 3.215 m and a noise standard deviation of 3.9 cm is found.
The combined use of the two reduces the probability of
wrong fixing of the latter solution by 9 orders of magnitude
with respect to a pure L-band solution.

The use of C-band measurements for ionosphere-free
carrier smoothing is discussed in Section 4: an ionosphere-
free code-carrier combination of arbitrary wavelength is
smoothed by a pure phase combination. The low noise level
of C-band measurements provides a linear combination that
benefits from an 8.9 dB lower noise level as compared to the
equivalent L-band combination.

2. CODE-CARRIER LINEAR COMBINATIONS

Linear combinations of carrier-phase measurements are con-
structed to increase the wavelength (widelane), suppress the
ionospheric error, and to simplify the integer ambiguity reso-
lution. The properties of the linear combinations can be im-
proved by including weighted code measurements into the
pure phase combinations. Figure 1 shows a three frequency
(3F) linear combination where the phase measurements are
weighted by α, β, γ, and the code measurements are scaled by
a, b, c. The weighting coefficients are generally restricted by a
few conditions: first, the geometry should be preserved, that
is

α + β + γ + a + b + c
!= 1. (1)

Moreover, the superposition of ambiguities should be an in-
teger multiple of a common wavelength λ, that is

αλ1N1 + βλ2N2 + γλ3N3
!= λN , (2)

λ1φ1 λ2φ2 λ3φ3 ρ1 ρ2 ρ3

α β γ a b c

λφ

Figure 1: Linear combination of carrier-phase and code measure-
ments.

which can be split into three sufficient conditions

i = αλ1

λ
∈ Z, j = βλ2

λ
∈ Z, k = γλ3

λ
∈ Z, (3)

with Z denoting the space of integers. These integer con-
straints are rewritten to obtain the weighting coefficients

α = iλ

λ1
, β = jλ

λ2
, γ = kλ

λ3
. (4)

Mixed code-carrier combinations weight the phase part
by τ and the code part by 1 − τ. The border cases are pure
phase (τ = 1) and pure code (τ = 0) combinations. The
parameter τ has a significant impact on the properties of the
linear combination, and it is optimized later in this section.
Replacing the weighting coefficients in τ = α + β + γ by (4)
yields the wavelength of the code-carrier combination

λ = τ

i/λ1 + j/λ2 + k/λ3
. (5)

The generalized widelane criterion is given for λ1 < λ2 < λ3

by λ > λ3. Equivalently, it can be expressed as a function of i,
j, and k as

τ > iq13 + jq23 + k > 0 with qmn = λn
λm

. (6)

The linear combination scales the ionospheric error by

AI = α + βq2
12 + γq2

13 − a− bq2
12 − cq2

13. (7)

The thermal noise of the elementary carrier phase measure-
ments is assumed Gaussian with the standard deviation given
by Kaplan and Hegarty [13]

σφi =
λi
2π

√
BL
C/N0

[
1 +

1
2T · C/N0

]
, (8)

where BL denotes the loop bandwidth, C/N0 the carrier-
to-noise ratio, and T the predetection integration time.
The overall noise contribution of the linear combination is
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Table 1: Cramer-Rao bound for Galileo signals.

Modulation Bandwidth (MHz) CRB (cm)

E1 BOC(1,1) 4 20

E5a BPSK(10) 24 5

E5b BPSK(10) 24 5

E5 BOC(15,10) 51 1

written as

Nm =
√

(α2 + β2q2
12 + γ2q2

13) · σ2
φ0

+ a2σ2
ρ1

+ b2σ2
ρ2

+ c2σ2
ρ3

(9)

with σ2
ρ1

, . . . , σ2
ρ3

being the noise variance of the code mea-
surements. Table 1 shows the Cramer-Rao bound (CRB) for
some Galileo signals as derived by Hein et al. [9]. A DLL
bandwidth of 1 Hz has been assumed. The 4 MHz receiver
bandwidth for E1 has been chosen to avoid sidelobe tracking.

For E1, E5a, E5b, E6 phase measurements, the wave-
length scaling of σφi can be neglected due to the close vicinity
of the frequency bands. However, it plays a major role when
C-Band measurements are included.

Figure 2 shows the benefit of the code contribution to the
i = 1 (E1), j = −10 (E5b), k = 9 (E5a) linear combination: a
slight increase in noise level results in a considerable reduc-
tion of the ionospheric error. The phase weighting has been
fixed to τ = 1 so that α, β, γ, and λ are uniquely determined.
The E5b and E5a code weights are adapted continuously and
the ionosphere is eliminated in the border case

b = −c = α + βq2
12 + γq2

13

q2
12 − q2

13
. (10)

E1 code measurements have not been taken into account due
to the increased noise level but might be included with a low
weight.

The combination discrimination—measured by the ratio
of half the wavelength and the noise level λ/(2Nm)—is pro-
posed as a cost function to select linear combinations due to
its independence of the geometry. It is shown for multiple
ionosphere-free code-carrier combinations in Figure 3. The
strong dependency on the phase weighting τ suggests an op-
timization with respect to this parameter. Note that the leg-
end refers to the elementary wavelengths which have to be
scaled by τ.

The computation of the optimum τ takes again only E5a/
E5b code measurements into account as the benefit of the
E1 code measurement is negligible (a = 0). The notation is
simplified by

λ = λ̃ · τ,

AI = κ̃ · τ − bq2
12 − cq2

13,

Nm =
√
σ2
φ · (α2 + β2q2

12 + γ2q2
13) + σ2

ρ · (b2 + c2)

=
√
σ2
φ · η̃2τ2 + σ2

ρ · (b2 + c2),

(11)

with λ̃, κ̃, and η̃ implicitly given by (5), (7), and (9). The
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E5a/E5b code weights are determined from the ionosphere-
free and geometry-preserving conditions as

b = 1− c − τ,

c = κ̃ + q2
12

q2
13 − q2

12︸ ︷︷ ︸
w1

· τ +
−q2

12

q2
13 − q2

12︸ ︷︷ ︸
w2

= w1 · τ +w2. (12)



4 International Journal of Navigation and Observation

Table 2: Properties and weighting coefficients of ionosphere-free
E1-E5b-E5a code-carrier combinations.

i j k b c λ̃ (m) λ (m) Nm (m) R

1 −12 11 0.327 0.344 9.768 3.217 0.28 5.81

1 −11 10 0.166 0.175 4.884 3.216 0.25 6.38

1 −10 9 0.006 0.007 3.256 3.214 0.23 7.05

1 −9 8 −0.154 −0.162 2.442 3.213 0.20 7.86

1 −8 7 −0.314 −0.330 1.954 3.212 0.18 8.84

1 −7 6 −0.474 −0.499 1.628 3.211 0.16 10.02

1 −6 5 −0.634 −0.667 1.396 3.210 0.14 11.42

1 −5 4 −0.793 −0.835 1.221 3.209 0.12 12.99

1 −4 3 −0.953 −1.003 1.085 3.208 0.11 14.54

1 −3 2 −1.112 −1.171 0.977 3.207 0.10 15.65

1 −2 1 −1.272 −1.339 0.888 3.206 0.10 15.85

1 −1 0 −1.431 −1.506 0.814 3.205 0.11 15.04

1 0 −1 −1.590 −1.674 0.751 3.204 0.12 13.59

The combination discrimination becomes from (5), (11),
and (12):

R(τ)

= λ(τ)/2
Nm(τ)

= λ̃ · τ
2
√
σ2
φ · η̃2τ2 + σ2

ρ ·
((
w1τ+w2

)2
+
(
1− τ −w1τ −w2

)2) .
(13)

Setting the derivative to zero yields the optimum weighting

τopt = 1− 2w2 + 2w2
2

1 +w1 −w2 − 2w1w2
, (14)

which is independent of both σρ and σφ. Table 2 contains the
weighting coefficients and characteristics of the code-carrier
combinations shown in Figure 3.

Figure 4 shows the benefit of adaptive code and phase
weighting for the code-carrier linear combination with i = 0
(E1), j = 1 (E5b), and k = −1 (E5a). Obviously, the
wavelength increases linearly with τ and the ionosphere
can be eliminated with any τ. The noise amplification de-
pends on the level of ionospheric reduction: a linear in-
crease can be observed near the pure phase combination,
while the increase becomes negligible for the ionosphere-free
combination. Thus, the combination discrimination of the
ionosphere-free code-carrier combination is increased by al-
most the same factor as τ is risen.

3. C-BAND AIDED CODE-CARRIER
LINEAR COMBINATIONS

The 20 MHz wide C-Band (5010 · · · 5030 MHz = {489.736
· · · 491.691} · 10.23 MHz) has been reserved for Galileo.
The higher frequency range has a multitude of advantages
and drawbacks: an additional free space loss of 10 dB occurs
which has to be compensated by a larger transmit power. The
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Figure 4: Benefit of adaptive code and phase weighting for linear
combinations with λ = τ 9.768 m.

ionospheric delay is approximately 10 times lower than in the
E1 band. The small wavelength of 5.9691 cm · · · 5.9839 cm
complicates direct ambiguity resolution but results in an
approximately 3.2 times lower standard deviation of phase
noise. Moreover, the C-Band offers additional degrees of
freedom for the design of linear combinations.

3.1. Reduced noise ionosphere-free
code-only combinations

The design of three frequency code-only combinations that
preserve geometry and eliminate ionospheric errors is char-
acterized by one degree of freedom used for noise minimiza-
tion. The weighting coefficients are derived from the geome-
try preserving and ionosphere-free constraints in (1), (7) as

a = 1− b− c,

b = − 1
q2

12 − 1︸ ︷︷ ︸
v1

+
(
− q2

13 − 1
q2

12 − 1

)
︸ ︷︷ ︸

v2

· c = v1 + v2 · c. (15)

Minimization of N2
m = a2σ2

ρ1
+ b2σ2

ρ2
+ c2σ2

ρ3
yields

c =
(1− v1 + v2 − v1v2) · σ2

ρ1
− v1v2 · σ2

ρ2

(1 + 2v2 + v2
2) · σ2

ρ1
+ v2

2 · σ2
ρ2

+ σ2
ρ3

. (16)

Ionosphere-free code-only combinations with more than
three frequencies are obtained by a multidimensional deriva-
tive. Table 3 shows that the pure L-band E1-E5b-E5a combi-
nation is characterized by a noise level of 44.41 cm. If the E5
signal is received with full bandwidth, the CRB is reduced to
1 cm but the number of degrees of freedom is reduced by one
so that the noise level of the E1-E5 combinations are lightly
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Table 3: Ionosphere-free code-only combinations with minimum
noise σρ(E1) =σρ(C1) = · · · = σρ(C4) =20 cm and σρ(E5a, E5b) =
5 cm.

E1 E5b E5a C1 C2 C3 C4
Nm

(cm)

2.090 1.500 −2.590 0 0 0 0 44.41

0.387 0.255 −0.506 0.863 0 0 0 19.14

0.213 0.128 −0.292 0.476 0.476 0 0 14.21

0.147 0.079 −0.211 0.328 0.328 0.329 0 11.80

0.112 0.054 −0.168 0.251 0.251 0.251 0.251 10.31

Table 4: Ionosphere-free code-only combinations with minimum
noise σρ(E1) = σρ(C1) = · · · = σρ(C4) = 20 cm and σρ(E5) =
1 cm.

E1 E5 C1 C2 C3 C4
Nm

(cm)

2.338 −1.338 0 0 0 0 46.78

0.398 −0.278 0.879 0 0 0 19.31

0.217 −0.179 0.481 0.481 0 0 14.27

0.150 −0.142 0.331 0.331 0.331 0 11.84

0.114 −0.122 0.252 0.252 0.252 0.252 10.34

Table 5: Ionosphere-free code-carrier widelane combinations with
σρ(E1) = σρ(C1) = · · · = σρ(C4) = 20 cm and σρ(E5) = 1 cm.

i j k l m n a b λ Nm

E1 E5 C1 C2 C3 C4 E1 E5 (m) (cm)

1 − 1 0 0 0 0 −4.4e−3 − 3.11 3.21 3.92

1 − 1 0 0 1 − 1 − 4.7e−3 − 3.28 3.39 4.84

1 − 1 0 1 − 1 0 − 4.7e−3 − 3.28 3.39 4.84

1 − 1 0 1 0 − 1 − 5.0e−3 − 3.46 3.59 5.12

1 − 1 1 − 1 0 0 − 4.7e−3 − 3.28 3.39 4.84

1 − 1 1 0 − 1 0 −5.0e−3 − 3.46 3.59 5.12

1 − 1 1 0 0 − 1 −5.3e−3 − 3.67 3.81 5.43

0 0 − 1 0 0 1 −8.5e−5 − 6.0e−2 20.70 15.39

increased (Table 4). These combinations will play a role in
conjunction with code-carrier combinations.

The C-band is split into 4 bands of 5 MHz bandwidth
centered at {490, 490.5, 491, 491.5} · 10.23 MHz and allows a
significant reduction of the noise level. Note that the noise
of any contributing elementary combination is reduced by a
weighting coefficient smaller than one.

3.2. Joint L-/C-band widelane combinations

Code-carrier linear combinations can also include both L-
band and C-band measurements. Therefore, (1)–(7) are ex-
tended to include the additional measurements. The weight-
ing coefficients {α,β, γ, . . .} and {a, b} are computed such
that the discriminator output of (13) is maximized for a
given set of integer coefficients {i, j, k, . . .}.

Table 5 contains ionosphere-free joint L-/C-band code-
carrier widelane combinations (λ > maxiλi). The E1-E5

10−1

100

101

102

W
av

el
en

gt
h

of
lin

ea
r

co
m

bi
n

at
io

n
(m

)

10−2 10−1 100

Noise level of linear combination (m)

Joint L-/C-band combination
Pure L-band combination
Combination of L-band code and C-band phase measurements

Figure 5: Comparison of joint L-/C-Band linear combinations for
σρ(E1) = 20 cm, σρ(E5) = 1 cm and σφ,i = λi/λ1 · σφ0 with σφ0 =
1 mm.

pure L-band combination benefits from a noise level of only
3.92 cm which simplifies the resolution of the 3.215 m inte-
ger ambiguities. In contrast to the code-only combinations,
the use of the full-bandwidth E5 signal is advantageous com-
pared to separate E5a and E5b measurements. The C-band
offers no benefit for these wavelengths. In the last row of
Table 5, a linear combination with a pure L-band code and
pure C-band phase part is described. The combination dis-
crimination equals 67.25 but the noise level is also increased
to 15.39 cm.

Figure 5 shows the tradeoff between wavelength and
noise level for joint L-/C-band ionosphere-free linear code-
carrier combinations with {i, j} ∈ [−5, +5] and {k, l,m,
n} ∈ [−2, +2]. The E1-E5 combination is of special interest
but the maximum combination discrimination is obtained
for a joint L-/C-band combination.

3.3. Joint L-/C-band narrowlane combinations

There exists a large variety of joint code-carrier narrowlane
combinations where C-band measurements help to reduce
the noise substantially. Figure 6 shows the tradeoff be-
tween wavelength and noise level for {i, j} ∈ [−5, +5] and
{k, l,m,n} ∈ [−2, +2]. For λ = 5.7 cm, the consideration of
C-band measurements reduces the noise level by a factor of
5 compared to a pure L-band combination (Table 6).

3.4. Reliability of ambiguity resolution

The integer ambiguity resolution is based on the linear com-
bination of four different variable types: double-difference
measurements for eliminating clock errors and satellite/re-
ceiver biases; multifrequency combinations for suppressing
the ionosphere; code and carrier phase measurements for
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Table 6: Ionosphere-free code-carrier narrowlane combinations
with σρ(E1) = σρ(C1) = · · · = σρ(C4) = 20 cm and σρ(E5) = 1 cm.

i E1 1 0 − 1 5

j E5 − 1 0 1 − 3

k C1 0 0 1 0

l C2 0 0 0 0

m C3 0 0 0 0

n C4 1 1 0 0

a E1 − 2.04e−6 7.60e−5 1.58e−4 2.55e−4

b E5 − 1.43e−3 5.31e−2 0.110 0.178

λ (cm) 5.55 5.65 5.76 5.73

Nm (mm) 0.51 0.61 1.22 2.50

R 54.4 46.3 23.6 11.46

reducing the noise level; and finally, L-/C-band combinations
for noise and discrimination characteristics.

Two joint L-/C-band code-carrier ionosphere-free com-
binations are chosen for real-time (single epoch) ambiguity
resolution. The λ = 3.215 m, Nm = 3.92 cm combination of
Table 5 and one further combination of Table 4. The double
difference (DD) ionosphere-free combinations are modeled
as

⎡
⎣yρφ
yρ

⎤
⎦ =

⎡
⎣G
G

⎤
⎦ δx +

⎡
⎣λ · 1

0

⎤
⎦N + ε = Xβ + ε, (17)

with

X =
⎡
⎣λ · 1 G

0 G

⎤
⎦ , β =

⎡
⎣N
δx

⎤
⎦ (18)
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Figure 7: Reliability of λ = 3.215 m integer ambiguity resolution:
impact of C-band measurements on the probability of wrong fixing
of the most critical ambiguity.

and the DD geometry matrix G, the baseline δx and the in-
teger ambiguities N . The double-differenced troposphere is
assumed to be negligible or known a priori (e.g., from an ac-
curate continued fraction model).

Note that the troposphere has the same impact on all
geometry-preserving combinations and does not affect the
optimization of the mixed code-carrier combinations. The
noise vector is Gaussian distributed, that is,

ε∼N (0,Σ) with Σ = ΣLC ⊗ ΣDD, (19)

where ⊗ denotes the Kronecker product. ΣLC models the lin-
ear combination induced correlation and ΣDD includes the
correlation due to double difference measurements from Ns

visible satellites. The standard deviation of the most critical
ambiguity estimate can be written as

σmax = max
i={1···Ns−1}

√
Σβ̂(i, i), Σβ̂ =

(
XTΣ−1X

)−1
, (20)

and the probability of wrong fixing follows as

Pcw = 1−
∫ +0.5

−0.5

1√
2πσ2

max

e−x
2/2σ2

maxdx. (21)

In the following analysis, the location of the reference station
is at 48.1507◦ N, 11.5690◦ E with a baseline length of 10 km.

Figure 7 shows the benefit of C-band measurements for
integer ambiguity fixing. If the E1-E5 pure L-band combina-
tion is used as second combination in (17), the failure rate
varies between 0.01 and 0.07 due to its poor noise charac-
teristics. The use of two additional C-band measurements
reduces the maximum probability of wrong fixing to 10−5.
For three C-band frequencies, the failure rate is at most 10−11
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which corresponds to a gain of 9 to 17 orders of magnitude
compared to the pure L-band combination.

The reliability of ambiguity resolution can be further
improved by using the LAMBDA method of Teunissen [7].
The float ambiguity estimates are decorrelated by an integer
transformation ZT and the ambiguity covariance matrix is
written as

ΣN̂ ′ = ZTΣN̂Z = LDLT , (22)

with the decomposition into a lower triangular matrix L and
a diagonal matrix D. The probability of wrong fixing of the
sequential bootstrapping estimator is given by Teunissen [14]
as

Pw = 1−
Ns−1∏
i=1

∫ +0.5

−0.5

1√
2πσ2

c (i)
e−x

2/2σ2
c (i)dx, (23)

with σc(i) =
√
D(i, i). It represents a lower bound for the

success rate of the integer least-square estimator and is de-
picted in Figure 8. Obviously, the use of joint L-/C-band lin-
ear combinations reduces the probability of wrong fixing by
several orders of magnitude compared to pure L-band com-
binations.

3.5. Accuracy of baseline estimation

After integer ambiguity fixing, the baseline is re-estimated
from (17). The covariance matrix of the baseline estimate in
local coordinates is given by

Σδx̂ = RL
(
GTΣ−1G

)−1
RTL (24)

with the rotation matrix RL. Figure 9 shows the achievable
horizontal and vertical accuracies for the two optimized joint
L-/C-band combinations.

The pure L-band combinations in the first row of Tables
4 and 5 have been again selected as reference scenario. It can
be observed that the use of joint L-/C-band linear combi-
nations enables a slight improvement in position estimates
compared to the significant benefit for ambiguity resolution.

4. JOINT L-/C-BAND CARRIER SMOOTHED CARRIER

Ionosphere-free code-carrier linear combinations are charac-
terized by a noise level that is one to two orders of magnitude
larger than of the underlying carrier-phase measurements
(Table 5). Both noise and multipath of the code-carrier com-
binations can be reduced by the smoothing filter of Hatch
[15] which is shown in Figure 10. The upper input can be an
ionosphere-free code-carrier combination of arbitrary wave-
length. The lower input is a pure ionosphere-free phase com-
bination that is determined by three conditions: the first en-
sures that the geometry is preserved, the second eliminates
the ionosphere, and the third minimizes the noise, that is,

α + β + γ
!= 1,

α + βq2
12 + γq2

13
!= 0,

min
α,β,γ

N2
m = min

α,β,γ

(
σ2
φ,0 ·

(
α2 + β2q2

12 + γ2q2
13

))
.

(25)

10−20

10−15

10−10

10−5

100

P
ro

ba
bi

lit
y

of
w

ro
n

g
fi

xi
n

g
of

al
la

m
bi

gu
it

ie
s

u
si

n
g

in
te

ge
r

de
co

rr
el

at
io

n
tr

an
sf

or
m

at
io

n
s

0 5 10 15 20

Time (h)

E1/E5 λ = 3.215 m + E1/E5 code-only combination
E1/E5 λ = 3.215 m + E1/E5/C1 code-only combination
E1/E5 λ = 3.215 m + E1/E5/C1/C2 code-only combination

Figure 8: Reliability of λ = 3.215 m integer ambiguity resolution:
impact of C-band measurements on the probability of wrong fixing
based on sequential fixing with the integer decorrelation transfor-
mation.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
St

an
da

rd
de

vi
at

io
n

of
ba

se
lin

e
es

ti
m

at
e

(m
)

0 5 10 15 20

Time (h)

Horizontal comp. (joint L/C)
Vertical comp. (joint L/C)
Horizontal comp. (pure L)
Vertical comp. (pure L)

Figure 9: Standard deviation of baseline estimation using the λ =
3.215 m E1-E5 ionosphere-free code-carrier combination and the
E1-E5-C1 · · ·C4 ionosphere-free code-only combination.

Note that the superposition of ambiguities of the pure
phase combination is not necessarily an integer number of a
common wavelength. The respective ambiguities are not af-
fected by the low pass filter and do not occur in the smoothed
output λAφA due to different signs in the addition to λAφA
(Figure 10).

Table 7 shows an ionosphere-free E1-E5a-E5b phase
combination that increases the noise level by a factor 2.64.
However, the low noise level of C-band measurements sug-
gests the use of the second combination with f3 = 491 ·
10.23 MHz. In this case, the noise level is not only reduced
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Figure 10: Ionosphere-free carrier smoothed code-carrier combi-
nations.

Table 7: Weighting coefficients and properties of ionosphere-free
carrier smoothed carrier phase combinations.

f1 f2 f3 α β γ Nm

E1 E5b E5a 2.324 − 0.559 − 0.764 2.64 · σφ0

E1 E5b C − 0.008 − 0.056 1.064 0.34 · σφ0

by smoothing but also by the coefficients of the pure phase
combination.

The variance of the smoothed combination is given by

σ2
A = E

{(
εA(t)− εB(t) + εB(t)

)2}
, (26)

with the low-pass filtered noise (e.g., Konno et al. [16])

εA(t) = 1
τs
·
∞∑
n=0

(
1− 1

τs

)n
εA(t − n), (27)

and the smoothing time τs. Setting (27) into (26), and using
the definition of a geometric series yields

σ2
A = σ2

B +
1

2τs − 1
· (σ2

A + σ2
B − 2σ2

AB

)
+

2
τs
· (σ2

AB − σ2
B

)
.

(28)

For long smoothing times, only the low noise of the joint L/C
pure carrier-phase combination λBφB remains (Table 7).

5. CONCLUSIONS

In this paper, new joint L-/C-band linear combinations that
include both code- and carrier-phase measurements have
been determined. The weighting coefficients are selected
such that the ratio between wavelength and noise level is
maximized. An ionosphere-free L-band combination (IFL)
could be found at a wavelength of 3.215 m with a noise level
of 3.92 cm.

The combination of L- and C-band measurements re-
duces the noise level of ionosphere-free code-only combina-
tions by a factor 4.5 compared to pure L-band combinations.
This increases the reliability of an ambiguity resolution op-
tion for the IFL combination by 9 orders of magnitude.

The residual variance of the noise can be further re-
duced by smoothing. An L-/C-band carrier combination can
smooth the noise with a residual variance below the L-band
phase noise variance. The smoothed solution can either be
used directly or can be used to resolve the narrowlane ambi-
guities. The variance is basically the same in both cases. The
resolved ambiguities, however, provide instantaneous inde-
pendent solutions.
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1. INTRODUCTION

A major error source within global navigation satellite
systems (GNSSs) comes from multipath, the reception of
additional signal replica due to reflections, which introduce
a bias into the estimate of the delay lock loop (DLL) of
a conventional navigation receiver. For efficient removal of
this bias, it is possible to formulate advanced maximum
likelihood (ML) estimators that incorporate the echoes into
the signal model and are capable of achieving the theoretical
limits given by the Cramér Rao bound. The drawback of
ML estimator techniques is that the parameters are assumed
to be constant during the time of observation. Independent
estimates are obtained for successive observation intervals,
whose length has to be adapted to the dynamics of the
channel.

In this paper, we consider the important practical case
of dynamic channel scenarios and assess how the time-
delay estimation can be improved if information is available
about the temporal evolution of the channel parameters. Our
approach is based on Bayesian filtering, the optimal and well-
known framework to address such dynamic state estimation
problems [1]. Sequential Monte Carlo (SMC) methods [2, 3]
are used for computing the posterior probability density
functions (PDFs) of the signal parameters.

2. A COMPARISON OF VARIOUS MULTIPATH
MITIGATION APPROACHES

Figure 1 gives an overview of the relationships between
different multipath mitigation and estimation approaches. In
fact, we have chosen to discriminate approaches according
to their primary objective. The left column represents the
class of techniques that attempt to mitigate the effect of
multipath in different ways. This can for example be achieved
by modifications of the antenna response, either by means of
hardware design or with signal processing techniques (e.g.,
beamforming). The majority of the remaining mitigation
techniques are in some way aligning the more or less
traditional receiver components (e.g., the early/late corre-
lator) to the signal received in the multipath environment.
The probably most simple technique is the adjustment of
the correlator spacing applied in the Narrow Correlator
[4]. Other well-known examples of this category are the
Strobe Correlator [5], the Gated Correlator [6], or the Pulse
Aperture Correlator [7]. To incorporate new signal forms
(such as BOC), these methods need “tuning” in order to
suffer as little as possible from multipath. On the other
hand, multipath estimation techniques (right column) treat
multipath (in particular the delay of the paths) as something
to be estimated from the channel observations, so that its
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Figure 1: Classification of multipath mitigation approaches.

effects can be trivially removed at a later processing stage. For
the estimation techniques, we have differentiated between
static and dynamic approaches, according to the underlying
assumption of the channel dynamics. Examples for static
multipath estimation are those belonging to the family of
ML estimators, often using different efficient maximization
strategies over the likelihood function [8–13]. For static
channels without availability of prior information, the ML
approach is optimal and performs significantly better than
other techniques, especially if the echoes have short delay.
An estimator based on sequential importance sampling (SIS)
methods (particle filtering) for static multipath scenarios has
been considered in [14], which has the advantage that prior
channel knowledge can be incorporated.

As a first step towards addressing dynamic channels, one
can incorporate ML estimators in receiver loops or formulate
quasisequential estimators [15, 16]. Finally, dynamic esti-
mators that target the computation of the posterior PDF
conditioned on the received channel output sequence at the
receiver can be applied on a per single range basis or operate
in the position domain. In this paper, we concentrate on
dynamic estimators applied per each range. The sequential
Monte Carlo approach has also been suggested in the com-
munications field for estimation of time-varying channel
responses in spread spectrum systems [17, 18].

3. SIGNAL MODEL

Assume that the complex valued baseband-equivalent
received signal is equal to

z(t) =
Nm∑

i=1

ei(t)·ai(t)·
[
c(t)∗g(t − τi(t)

)]
+ n(t), (1)

where c(t) is a delta-train code sequence that is modulated on
a pulse g(t), Nm is the maximum number of allowed paths
reaching the receiver (to restrict the modeling complexity),

ei(t) is a binary function that controls the activity of the
i′th path, and ai(t) and τi(t) are their individual complex
amplitudes and time delays, respectively. The signal is
disturbed by additive white Gaussian noise n(t). Grouping
blocks of L samples at times (m + kL)Ts, m = 0, . . . ,L − 1,
together into vectors zk, k = 0, 1, . . . ,n whilst assuming
the parameter functions ei(t), ai(t), and τi(t) being constant
within the corresponding time interval and equal to ei,k, ai,k,
and τi,k, this can be rewritten as

zk = CG
(
τk
)

Ekak + nk =̂ sk + nk. (2)

In the compact form on the right hand side, the samples of
the delayed pulses g(τi,k) are stacked together as columns
of the matrix G(τk) = [g(τ1,k), . . . , g(τNm,k)], C is a
matrix representing the convolution with the code, and the
delays and amplitudes are collected in the vectors τk =
[τ1,k, . . . , τNm,k]T and ak = [a1,k, . . . , aNm,k]T , respectively.
Furthermore, for concise notation we use Ek = diag [ek]
whilst the elements of the vector ek = [e1,k, . . . , eNm,k]T ,
ei,k ∈ [0, 1], determine whether the i′th path is active or not
by being either ei,k = 1 corresponding to an active path or
ei,k = 0 for a path that is currently not active. The term sk
denotes the signal hypothesis and is completely determined
by the channel parameters τk, ak, and ek. Using (2), we can
write the associated likelihood function as

p
(

zk | sk
) = 1

(2π)Lσ2L
· exp

[
− 1

2σ2

(
zk − sk

)H(
zk − sk

)]
.

(3)

The likelihood function will play a central role in the
algorithms discussed in this paper; its purpose is to quantify
the conditional probability of the received signal conditioned
on the unknown signal (specifically the channel parameters).
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3.1. Efficient likelihood computation

In [11], a general concept for the efficient representation
of the likelihood (3) was presented, which is applicable to
many of the existing ML multipath mitigation methods.
The key idea of this concept is to formulate (3) through
a vector zc,k resulting from an orthonormal projection of
the observed signal zk onto a smaller vector space, so that
zc,k is a sufficient statistic according to the Neyman-Fisher
factorization [19] and hence suitable for estimating sk. In
other words, the reduced signal comprises the same infor-
mation as the original signal itself. In practice, this concept
becomes relevant as the projection can be achieved by
processing the received signal (2) with a bank of correlators
and a subsequent decorrelation of the correlator outputs.
A variant of this very general concept, applied in [13], has
also been referred to as the Signal Compression Theorem
in [20] for a set of special projections that do not require
the step of decorrelation due to the structure of the used
correlators. For instance, unlike the correlation technique
used in [8], the one suggested in [13] already projects onto
an orthogonal and thus uncorrelated subspace, similar to the
code matched correlator technique proposed in [11]. Due to
complexity reasons, all practically relevant realizations of ML
estimators [8, 13] operate in a projected space, namely after
correlation. The corresponding mathematical background
will be discussed below, including also interpolation of the
likelihood and elimination of complex amplitudes as further
methods for complexity reduction.

3.1.1. Data compression

As explained above, the large vector containing the received
signal samples zk is linearly transformed into a vector zc,k of
much smaller size. Following this approach, the likelihood
according to (2) can be rewritten as

p
(

zk | sk
) = 1

(2π)Lσ2L
exp

[
− zHk zk

2σ2

]

· exp
[

R
{

zHk QcQH
c sk
}

σ2
− sHk QcQH

c sk
2σ2

]

= 1

(2π)Lσ2L
exp

[
− zHk zk

2σ2

]

· exp
[R

{
zHc,ksc,k

}

σ2
− sHc,ksc,k

2σ2

]
,

(4)

with the compressed received vector zc,k and the compressed
signal hypothesis sc,k:

zc,k = QH
c zk, sc,k = QH

c sk, (5)

and the orthonormal compression matrix Qc, which needs to
fulfill

QcQH
c ≈ I, QH

c Qc ≈ I, (6)

to minimize the compression loss. According to [11], the
compression can be two-fold so that we can factorize

Qc = QccQpc (7)

into a canonical component decomposition, given by an L×Ncc

matrix Qcc, and a principal component decomposition, given
by an Ncc × Npc matrix Qpc. In [11], two choices for Qcc are
proposed

Qcc =
⎧
⎨
⎩

CG(τb)R−1
cc Signal matched,

C(τb)R−1
cc Code matched,

(8)

where the elements of the vector τb define the positions
of the individual correlators. The noise-free outputs of the
corresponding correlator banks are illustrated in Figure 2. To

decorrelate the bank outputs (CG(τb))
H

y and C(τb)
H

y, as
mentioned above, the whitening matrix Rcc can be obtained
from a QR decomposition of CG(τb) and C(τb), respectively.
Apart from practical implementation issues, both correlation
methods given by (8) are equivalent from a conceptual point
of view. For details on the compression through Qpc, the
reader is referred to [11].

3.1.2. Interpolation

In order to compute (4) independently of the sampling grid,
advantage can be made of interpolation techniques. Using
the discrete Fourier transformation (DFT), with Ψ being the
DFT matrix and Ψ−1 being its inverse counterpart (IDFT),
we get

sc,k = QH
c CΨ−1diag

[
Ψg(0)

]
Ω
(
τk
)

Ekak

=̂MscΩ
(
τk
)

Ekak,
(9)

with Ω(τk) being a matrix of column-wise stacked vectors
with Vandermonde structure [10, 11], such that the element
at row p and column q computes with

R
{[
Ω
(
τk
)]

p,q

} = cos
(2π(p − 1)τq,k

NgTs

)
,

I
{[
Ω
(
τk
)]

p,q

} = − sin
(2π(p − 1)τq,k

NgTs

)
.

(10)

Ng is the length of the pulse g in samples. The advantage
of the interpolation is that it can take place in the reduced
space. The most costly computations in (9) can be carried out
in precalculations as the matrix Msc , whose row dimension
corresponds to the dimension of the reduced space and
whose column dimension is Ng , is constant.

3.1.3. Amplitude elimination

In a further step, we reduce the number of parameters by
optimizing (4) for a given set of τk and ek with respect to
the complex amplitudes ak, which can be achieved through a
closed-form solution. Using

Sc,k = MscΩ(τk)Ek (11)

and obtaining S+
c,k by removing zero columns from Sc,k, one

yields the corresponding amplitude values of the active paths:

â+
k = (S+H

c,k S+
c,k)

−1
S+H
c,k zc,k. (12)
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Figure 2: Output of the canonical component type correlator banks CG(τb) and C(τb) for BPSK and BOC(1,1).

As we have introduced a potential source of performance
loss by eliminating the amplitudes and thus practically
are disregarding their temporal correlation, we propose to
optimize (4) using

zc,k = 1
Q
·
Q−1∑

l=0

zc,k−l, (13)

with the adjustable averaging coefficient Q. When evaluating
(4), we substitute sc,k by

s̃c,k = Sc,k âk, (14)

where the elements of the vector âk that are indicated to
have an active path (ak,i : i→ek,i = 1) are set equal to
the corresponding elements of â+

k . All other elements (ak,i :
i→ek,i = 0) can be set arbitrarily as their influence is masked
by the zero elements of ek.

3.2. Review of the ML Concept

The concept of ML multipath estimation has drawn substan-
tial research interest since the first approach was proposed in
[8]. Despite being treated differently in various publications,
the objective is the same for all ML approaches, namely to
find the signal parameters that maximize (3) for a given
observation zk:

ŝk = arg max
sk

{
p
(

zk | sk
)}
. (15)

The signal parameters are thereby assumed as being constant
throughout the observation period k. Different maximiza-
tion strategies exist, which basically characterize the different
approaches. Despite offering great advantages for theoretical
analysis, the practical advantage of the generic ML concept is
questionable due to a number of serious drawbacks.

(i) The ML estimator assumes that the channel is static
for the observation period and is not able to exploit
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its temporal correlation throughout the sequence
k = 1, . . . ,n. Measured channel scenarios have shown
significant temporal correlation [21].

(ii) Despite being of great interest in practice, the esti-
mation of the number of received paths is often not
addressed. The crucial problem here is to correctly
estimate the current number of paths to avoid over
determination, since an overdetermined estimator
will tend to use the additional degrees of freedom
to match the noise by introducing erroneous paths.
There exist various techniques based on model selec-
tion that can be employed to estimate the number
of paths [22] but they suffer from the problem of
having to dynamically adjust the decision thresholds.
Typically, only a single hypothesis is tracked, which
in practice causes error event propagation.

(iii) The ML estimator does only provide the most likely
parameter set for the given observation. No relia-
bility information about the estimates is provided.
Consequently, ambiguities and multiple modes of the
likelihood are not preserved by the estimator.

ML estimators require that the estimated parameters
remain constant during the observation period. Due to data
modulation and phase variations in practice, this period,
which is often referred to as the coherent integration time,
is limited to a range of 1 millisecond–20 milliseconds. To
reach a sufficient noise performance with a ML estimator
in practice, it is required to extend its observation interval
approximately to the equivalent averaging time of a con-
ventional tracking loop, which is commonly in the order of
several hundred coherent integration periods. To overcome
this problem, the observations are forced to be quasicoherent
by aiding the ML estimator with a phase locked loop (PLL)
and a data removal mechanism [8].

4. SEQUENTIAL ESTIMATION

4.1. Optimal solution

In Section 3, we have established the models of the under-
lying time-variant processes. The problem of multipath
mitigation now becomes one of sequential estimation of a
hidden Markov process. We want to estimate the unknown
channel parameters based on an evolving sequence of
received noisy channel outputs zk. The channel process for
each range of a satellite navigation system can be modeled
as a first-order Markov process if future channel parameters
given the present state of the channel and all its past states
depend only on the present channel state (and not on any
past states). We also assume that the noise affecting successive
channel outputs is independent of the past noise values; so
each channel observation depends only on the present channel
state.

Intuitively, we are exploiting not only the channel
observations to estimate the hidden channel parameters (via
the likelihood function), but we are also exploiting our
prior knowledge about the statistical dependencies between
successive sets of channel parameters. We know from channel

Measurements (observed)

zk−2 zk−1 zk

Time
k − 2

Time
k − 1

Time
k

Likelihood

p(zk|xk)

xk−2 xk−1 xk
p(xk|xk−1)

State transition PDF
Hidden states

Figure 3: Illustration of the hidden Markov estimation process for
three time instances. Our channel measurements are the sequence
{zi, i = 1, . . . , k}, and the channel parameters to be estimated are
{xi, i = 1, . . . , k}.

measurements that channel parameters are time varying but
not independent from one time instance to the next; for
example, an echo usually experiences a “life-cycle” from its
first occurrence, then a more or less gradual change in its
delay and phase over time, until it disappears [21]. These
measurements also show that the common channel models
considered in communication systems [17, 18] are not
adequately reflecting the properties that are crucial for high-
resolution signal delay estimation as required in navigation
systems.

Now that our major assumptions have been established,
we may apply the concept of sequential Bayesian estimation.
The reader is referred to [23] which gives a derivation of
the general framework for optimal estimation of temporally
evolving (Markovian) parameters by means of inference,
and we have chosen similar notation. The entire history of
observations (over the temporal index k) can be written as

Zk=̂ {zk′ , k′ = 1, . . . , k}. (16)

Similarly, we denote the sequence of parameters of our
hidden Markovian process by

Xk=̂ {xk′ , k′ = 1, . . . , k}. (17)

Here, xk′ represents the characterization of the hidden
channel state, including the parameters that specify the signal
hypothesis sk′ given in (2). Our goal is to determine the
posterior PDF of every possible channel characterization
given all channel observations: p(xk | Zk) (see Figure 3).
Once we have evaluated this posterior PDF, we can either
determine that channel configuration that maximizes it—the
so-called maximum a posteriori (MAP) estimate; or we can
choose the expectation—equivalent to the minimum mean
square error (MMSE) estimate. In addition, the posterior
distribution itself contains all uncertainty about the current
range and is thus the optimal measure to perform sensor data
fusion in an overall positioning system.
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It can be shown that the sequential estimation algorithm
is recursive, as it uses the posterior PDF computed for time
instance k − 1 to compute the posterior PDF for instance
k (see Figure 4). For a given posterior PDF at time instance
k−1, p(xk−1 | Zk−1), the prior PDF p(xk | Zk−1) is calculated
in the so-called prediction step by applying the Chapman-
Kolmogorov equation:

p
(

xk | Zk−1
) =

∫
p
(

xk | xk−1
)
p
(

xk−1 | Zk−1
)

dxk−1, (18)

with p(xk | xk−1) being the state transition PDF of the
Markov process. In the update step, the new posterior PDF for
step k is obtained by applying Bayes’ rule to p(xk | zk, Zk−1)
yielding the normalized product of the likelihood p(zk | xk)
and the prior PDF:

p
(

xk | Zk
) = p

(
xk | zk, Zk−1

)

= p
(

zk | xk, Zk−1
)
p
(

xk | Zk−1
)

p
(

zk | Zk−1
)

= p
(

zk | xk
)
p
(

xk | Zk−1
)

p
(

zk | Zk−1
) .

(19)

The term p(zk | xk) = p(zk | sc,k = s̃c,k) follows from (4) and
represents the probability of the measured channel output
(often referred to as the likelihood value), conditioned on a
certain configuration of channel parameters at the same time
step k. The denominator of (19) does not depend on xk, and
so it can be computed by integrating the numerator of (19)
over the entire range of xk (normalization).

To summarize so far, the entire process of prediction
and update can be carried out recursively to calculate the
posterior PDF (19) sequentially, based on an initial value of
p(x0 | z0) = p(x0). The evaluation of the likelihood function
p(zk | xk) is the essence of the update step. Similarly,
maximizing this likelihood function (i.e., ML estimation)
would be equivalent to maximizing p(xk | Zk) only in the
case that the prior PDF p(xk | Zk−1) does not depend on
Zk−1, and when all values of xk are a priori equally likely.
Since these conditions are not met, evaluation of p(xk | Zk)
entails all the above steps.

4.2. Sequential estimation using particle filters

The optimal estimation algorithm relies on evaluating the
integral (18), which is usually a very difficult task, except for
certain additional restrictions imposed on the model and the
noise process. So, very often a suboptimal realization of a
Bayesian estimator has to be chosen for implementation. In
this paper, we use a sequential Monte Carlo (SMC) filter, in
particular a sampling importance resampling particle filter
(SIR-PF) according to [23]. In this algorithm, the posterior
density at step k is represented as a sum and is specified by a
set of Np particles:

p
(

xk | Zk
) ≈

Np∑

j=1

w
j
k·δ
(

xk − x
j
k

)
, (20)

Movement model
p(xk|xk−1)

Prediction
stage

Prior
p(xk|Zk−1)

Measurements
zk Likelihood

p(zk|xk)
Update

stage

k = k + 1

Posterior
p(xk|Zk)

Figure 4: Illustration of the recursive Bayesian estimator.

where each particle with index j has a state x
j
k and has a

weight w
j
k. The sum over all particles’ weights is one. In SIR-

PF, the weights are computed according to the principle of
importance sampling where the so-called proposal density

is chosen to be p(xk | xk−1 = x
j
k−1), and with resampling

at every time step. For Np→∞, the approximate posterior
approaches the true PDF.

The key step, in which the measurement for instance k

is incorporated, is in the calculation of the weight w
j
k which

for the SIR-PF can be shown to be the likelihood function:
p(zk | x

j
k). The characterization of the channel process enters

in the algorithm, when at each time instance k, the state
of each particle xik is drawn randomly from the proposal

distribution, that is, from p(xk | x
j
k−1).

4.3. Exploiting linear substructures

If there exist linear substructures in the model, it is possible
to reduce the computational complexity of the filter by
means of marginalization over the linear state variables [24],
also known as Rao-Blackwellization [25]. In a marginalized
filter, particles are still used to estimate the nonlinear states,
while for each of the particles the linear states can be
estimated analytically. In our case, since the measurement
zk is a linear function of the complex amplitudes ak, the
likelihood function can be factorized as

p
(

zk |sc,k
) = p

(
zk |τk, ek, ak

)= f
(

zk, τk, ek
)·g(zk, τk, ek, ak

)
,

(21)

where the function g(zk, τk, ek, ak) is Gaussian with respect
to ak, and f (zk, τk, ek) is proportional to p(zk | s̃c,k).
Marginalization of (21) over the linear state variables gives
∫

ak
p
(

zk | τk, ek, ak
)
dak = f

(
zk, τk, ek

)∝ p
(

zk | s̃c,k
)
.

(22)

Assuming that the amplitudes are block-wise independent
(Q = 1), it follows that the weights of the SIR particle filter

are equal to p(zk | x
j
k) = p(zk | sc,k = s̃

j
c,k), which is given by

(4).
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If there exists a temporal correlation of the amplitudes,
an optimal marginalized filter requires the implementation
of a separate Kalman filter for each of the particles. As we do
not want to increase the complexity per particle, we take the
correlation into account by adjustment of Q in (13).

4.4. Choice of appropriate channel process

To exploit the advantages of sequential estimation for
our task of multipath mitigation/estimation, we must be
able to describe the actual channel characteristics (channel
parameters) so that these are captured by p(xk | xk−1).
In other words, the model must be a first-order Markov
model, and all transition probabilities must be known. In our
approach, we approximate the channel as follows.

(i) The channel is totally characterized by a direct path
(index i = 1) and at most Nm − 1 echoes,

(ii) each path has complex amplitude ai,k and relative
delay and Δτi,k = τi,k − τ1,k; where echoes are
constrained to have delay τi,k ≥ τ1,k, that is, Δτi,k ≥ 0,

(iii) the different path delays follow the process:

τ1,k = τ1,k−1 + α1,k−1·Δt + nτ ,

Δτi,k = Δτi,k−1 + αi,k−1·Δt + nτ ,
(23)

(iv) each parameter αi,k that specifies the speed of the
change of the path delay follows its own process:

αi,k =
(

1− 1
K

)
·αi,k−1 + nα, (24)

(v) the magnitudes and phases of the individual paths,
represented by the complex amplitudes ai,k, are elimi-
nated according to (12) and (14) for the computation
of the likelihood (4),

(vi) each path is either “on” or “off,” as defined by channel
parameter ei,k ∈ {1 ≡ “on,′′0 ≡ “off′′},

(vii) where ei,k follows a simple two-state Markov process
with a-symmetric crossover and same-state probabil-
ities:

p
(
ei,k = 0 | ei,k−1 = 1

) = ponoff, (25)

p
(
ei,k = 1 | ei,k−1 = 0

) = poffon. (26)

The model implicitly incorporates three i.i.d noise sources:
Gaussian nτ and nα as well as the noise process driving the
state changes for ei,k. These sources provide the randomness
of the model. The parameter K defines how quickly the
speed of path delays can change (for a given variance of nα).
Finally, Δt is the time between instances k − 1 and k. We
assume all model parameters (i.e., K , Δt, noise variances, and
the “on”/“off” Markov model) to be independent of k (see
Figure 5). The hidden channel state vector xk can therefore
be represented as

[
τ1,k,Δτ2,k, . . . ,ΔτNm,k,α1,k, . . . ,αNm,k, ei,k, . . . , eNm,k

]T
.

(27)

Note that the model implicitly represents the number of
paths

Nm,k=̂
Nm∑

i=1

ei,k (28)

as a time-variant parameter.
When applied to our particle filtering algorithm, drawing

from the proposal density is simple. Each particle stores
the above-channel parameters of the model, and then the
new state of each particle is drawn randomly from p(xk |
x
j
k−1) which corresponds to drawing values for nα and nτ as

well as propagating the “on”/“off” Markov model, and then
updating the channel parameters for k according to (23)–
(26).

4.5. Practical issues

4.5.1. Model matching

It is important to point out that a sequential estimator is
only as good as its state transition model matches the real
world situation. The state model needs to capture all relevant
hidden states with memory and needs to correctly model
their dependencies, while adhering to the first order Markov
condition. Furthermore, any memory of the measurement
noise affecting the likelihood function p(zk | xk) must be
explicitly contained as additional states of the model x, so
that the measurement noise is i.i.d.

The channel state model is motivated by channel
modeling work for multipath prone environments such as
the urban satellite navigation channel [21, 26]. In fact,
the process of constructing a channel model in order to
characterize the channel for signal level simulations and
receiver evaluation comes close to our task of building a
first-order Markov process for sequential estimation. For
particle filtering, the model needs to satisfy the condition
that one can draw states with relatively low computational
complexity. Adapting the model structure and the model
parameters to the real channel environment is a task for
current and future work. It may even be possible to envisage
hierarchical models in which the selection of the current
model itself follows a process. In this case, a sequential
estimator will automatically choose the correct weighting of
these models according to their ability to fit the received
signal.

4.5.2. Integration into a receiver

For receiver integration, the computational complexity of
the filtering algorithm is crucial. From a theoretical point
of view, it is desirable to run the sequential filter clocked
corresponding to the coherent integration period of the
receiver and with a very large number of particles. From the
practical point of view, however, it is desirable to reduce the
sequential filter rate to the navigation rate and to minimize
the number of particles. Existing ML approaches can help
here to achieve a flexible complexity/performance tradeoff,
as strategies already developed to extend the observation
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Figure 5: The Markov process chosen in this paper to model the channel with Nm paths. Dotted arrows—shown only for a small subset of
the transitions—indicate the constraint that Δτi,k ≥ 0. For an explanation of the terms, see the text leading up to (27).

periods of ML estimators can be used directly to reduce the
rate of the sequential filtering algorithm.

5. PERFORMANCE EVALUATION

To demonstrate the capabilities of the SMC-based Bayesian
time delay estimator proposed in Section 4, we have carried
out computer simulations for both static and dynamic
channel environments. The signal-to-multipath ratio (SMR)
was chosen constant and equal to 6 dB, while the relative
phases are changing according to Δϕi,k = 2πΔτi,k fc with
fc = 1575.42 MHz being the frequency of the L1 carrier. The
Bayesian estimator uses a time interval of Δt = 1 millisecond
corresponding to the duration of a codeword. The amplitude
averaging coefficient is set toQ = 10, and signal compression
is applied with Ncc = 41 (code-matched correlators) Npc =
25. The channel parameters σ2

i,τ , σ2
i,α,K , and p(ei,k | ei,k−1) are

selected to fit the statistics of a real channel according to [21].
The SIR-PF uses the minimum mean square error (MMSE)
criterion to estimate the parameters xk from the posterior.

5.1. Static multipath scenario

The capability of multipath mitigation techniques is com-
monly assessed by showing the systematic error due to
a single multipath replica plotted as a function of the
relative multipath delay in a static channel scenario. In
Figure 6, the root mean square error (RMSE) is shown
for the proposed sequential estimator, implemented as a
SIR-PF with Ns = 2000 particles. For comparison, the
performance of conventional DLLs with Narrow Correlator
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Figure 6: Static scenario: performance of SIR-PF for BPSK
modulation as function of relative multipath delay for different path
models.

and with Strobe Correlator is also shown. The simulated
signal corresponds to a GPS L1 signal with c(t) being a Gold
code of length 1023 that is modulated on a bandlimited
rectangular pulse. The chip rate is 1.023 Mchips/s so that
the duration of the codeword is 1millisecond. The one-
sided bandwidth of the resulting navigation signal is 5 MHz.
Estimators with fixed two-path model or fixed single path
model are also shown for comparison with the implicit path
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Figure 8: Static scenario: RMSE performance as function of
number of particles Ns for BPSK modulation.

activity tracking. The performance of a single path estimator
is comparable to that of a DLL with infinitesimal correlator
spacing and shows a considerable bias over a large delay
range. The estimator with fixed two-path model successfully
mitigates the multipath bias for delays greater than 30 m.
However, for smaller delays it shows an increasing variance
and is outperformed by the single path estimator. The
estimator with path activity tracking is capable of combining
the advantages of both models. From the posterior, it
is possible to calculate the estimated average probability
P(Nm,k = 2 | Zk) of a two-path model, which is shown in
Figure 7, and indicates the transition between the models:
for small delays the two paths essentially merge to a single
one. Note that in these simulations, the model parameters
of the sequential estimator are still the ones designed for the
dynamic channel and not optimal for this static scenario. The
RMSE as function of the number of particles Ns is shown
in Figure 8 for a relative multipath delay of 14 m, which
corresponds to the worst case in Figure 6.

5.2. Dynamic scenario

The dynamic multipath channel scenario with up to Nm = 3
paths, used in the following simulations and depicted in
Figure 9, has been generated according to the movement
model, whereby the parameters K = 25000, σnα= 10−10,
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Figure 9: Considered dynamic multipath scenario: pseudoranges
over time of the direct path (continuous line) and the temporarily
present echoes.
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Figure 10: Dynamic scenario: performance of the DLL with narrow
correlator for BPSK modulation (upper/grey) and BOC(1,1) modu-
lation (lower/black). The segment marked with a dashed box shows
a situation where BOC(1,1) is clearly superior to BPSK.

σnτ= 10−8, and ponoff = poffon = 0.0001 were chosen
to resemble a typical urban satellite navigation channel
environment [26].

Figure 10 shows for this multipath scenario at a carrier-
to-noise ratio of C/N0 = 45 dB-Hz the BPSK and the
BOC(1,1) performance of a DLL with a narrow correlator
spacing of 10−7 seconds, corresponding to a tenth of a
code chip. A DLL loop bandwidth of 1 Hz was selected,
which appeared to deliver the best DLL performance for this
channel. For a fair comparison of the different modulation
techniques, both signals were generated with the same C/A
code sequence of length 1023, the same receiver bandwidth
of 5 MHz (one-sided), a sampling rate of 1/Ts = 10.23 MHz,
and a coherent integration time of LTs = 1 millisecond.
Although the results show an improvement for the BOC(1,1)
modulation, there still remains a considerable error due to
the multipath. This behavior is confirmed by a comparison
with the multipath error envelope, depicted in Figure 11.
While in some multipath delay regions, the error is reduced
by the BOC(1,1) modulation (see, e.g, the segment marked
by the dashed box in Figure 10), more sophisticated multi-
path mitigating techniques are required to reduce the errors
due to short range multipath.

The simulation results for the particle filter-based estima-
tor with Ns = 20000 particles are given in Figures 12(a) and
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Figure 11: Multipath error envelope of the DLL with narrow cor-
relator for BPSK modulation (dashed) and BOC(1,1) modulation
(inner/solid).
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Figure 12: Dynamic scenario: Performance of the sequential
estimator with particle filtering (black) compared to the DLL
(grey). The sequential estimator is clearly superior for multipath
mitigation.

12(b) for the same channel as in Figure 10. They show that
the performance could be improved substantially, resulting
in a reduction of the root mean square (RMS) error from
3.77 m to 0.769 m for BPSK modulation and from 2.61 m to
0.694 m for BOC(1,1) modulation, respectively.

The RMSE as function of the number of particles Ns is
shown in Figure 13.
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Figure 13: Dynamic scenario: RMSE performance as function of
number of particles Ns for BPSK modulation.

6. CONCLUSIONS

We have demonstrated how sequential Bayesian estimation
techniques can be applied to the multipath mitigation
problem in a navigation receiver. The proposed approach
is characterized by code-matched, correlator-based signal
compression together with interpolation techniques for effi-
cient likelihood computation in combination with a particle
filter realization of the prediction and update recursion. The
considered movement model has been adapted to dynamic
multipath scenarios and incorporates the number of echoes
as a time-variant hidden channel state variable that is tracked
together with the other parameters in a probabilistic fashion.
A further advantage compared to ML estimation is that
the posterior PDF at the output of the estimator represents
reliability information about the desired parameters and
preserves the ambiguities and multiple modes that may occur
within the likelihood function. Simulation results for BPSK-
and BOC-(1,1) modulated signals show that in both cases
significant improvements can be achieved compared to a
DLL with narrow correlator. In this work, we have employed
two methods to reduce complexity: the signal compression to
facilitate the computation of the likelihood function as well
as a simple form of Rao-Blackwellization to eliminate the
complex amplitudes from the state space. Further work will
concentrate on additional complexity reduction techniques
such as more suitable proposal functions or particle filtering
algorithms such as the auxiliary particle filter that are
possibly more efficient with respect to the number of
particles when applied to our problem domain.
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1. INTRODUCTION

The agreement reached in 2004 by United States (US) and
European Commission (EC) [1] focused on the Galileo and
GPS coexistence clearly stated as central point to the selection
of a common signal in space (SIS) baseline structure that is
the BOC(1,1). In addition, the same agreement paved the
way for common signal optimization with the goal to provide
increased performance as well as considerable flexibility to
receiver manufacturers.

Therefore, EC and US started to analyze possible inno-
vative modulation strategies [2] in the view of Galileo E1
OS optimization and for the future L1C signals of the new
generation GPS satellites.

Considering the recent activities carried out by the
Galileo signal task force (STF) jointly to US experts in the
Working Group A, it came out that the multiplexed binary
offset carrier (MBOC) could be a good candidate for both
GPS and Galileo satellites. In fact, on the 26th of July 2007
US and EC announced their decision to jointly implement
the MBOC on the Galileo open service (OS) and the GPS
IIIA civil signal as reported in [3].

The MBOC power spectral density (PSD) is a mixture of
BOC(1,1) spectrum and BOC(6,1) spectrum; then different
time waveforms can be combined to produce the MBOC-
like spectral density. The contribution of the BOC(6,1)
subcarrier brings in an increased amount of power on
higher frequencies, which leads to signals with narrower
correlation functions and then yielding better performance
at the receiver level.

The European approach to the MBOC implementation
consists in adding in time a BOC(1,1) and a BOC(6,1),
defined as composite BOC (CBOC) modulation. At the time
of writing, the US is likely to choose a time-multiplexed
implementation, named TMBOC. Throughout the paper,
the CBOC features will be described and clarified taking
also into account different implementation options like, for
example, the allocation of the power among the data and
pilot channels of the E1 signal.

Regardless the kind of CBOC, such a signal structure
allows the receivers to obtain high performance in terms
of multipath rejection and tracking [4, 5]. This is mainly
due to a higher transition rate brought by the BOC(6,1)
on top of the BOC(1,1). However, the optimization process
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must also consider the signal candidates in terms of their
acquisition performance. It is known that CBOC signals
have sharper correlation functions [4, 5] than the BOC(1,1)
solution and this characteristic, as described in [6, 7],
makes the acquisition process more challenging. In this
paper, the acquisition of a CBOC signal in terms of its
detection and false alarm probabilities (more related to
the modulation characteristics and less connected to the
acquisition implementation) is investigated and compared
to the performance of the pure BOC(1,1) modulation as
well as the detection performance of a BOC(1,1) legacy
receiver acquiring a CBOC signal. In this paper, the mean
acquisition time is not investigated, since it is connected to
the detection rate performance as well as the acquisition
solution being implemented, so not only dependent on the
signal modulation itself.

The results show that from the acquisition standpoint,
thanks to the 10/11th of power located to a BOC(1,1) in the
MBOC spectrum, the compatibility with the state-of-the-art
BOC(1,1) receiver baseline is assured.

Moreover, it is assumed to use the Galileo acquisition
engines presented in [8] which work on a pilot channel
with a secondary code, that further modulates the primary
pseudorandom sequences (any kind of BOC or MBOC).

The paper is organized as follows: Section 2 reports
the main features of the MBOC approach while Section 3
presents the correlations properties as well as the possible
CBOC candidates in terms of power allocation. Then,
Section 4 is devoted to the description of the acquisition
problem from a theoretical aspect, and Section 5 presents
the related simulation results for the CBOCs and BOC(1,1)
modulated signals. Finally, Section 6 draws some conclu-
sions.

2. MBOC DEFINITION AND SPECTRUM
CHARACTERISTICS

As reported in [9], the MBOC signal is obtained defining
its power spectral density as a combination of the BOC(1,1)
and BOC(6,1) power spectra (i.e., including both pilot
and data channel components). The notation introduced
in [9] is MBOC(6,1,1/11), where the term (6,1) refers to
the BOC(6,1), and the ratio 1/11 represents the power split
between the BOC(1,1) and BOC(6,1) spectrum components
as given by

GMBOC( f ) = 10
11
GBOC(1,1)( f ) +

1
11
GBOC(6,1)( f ), (1)

where GBOC(m,n)( f ) is the unit-power spectrum density of a
sine-phased BOC modulation as defined in [10].

Figure 1 shows the comparison among the PSDs of the
BOC(1,1) and the MBOC(6,1,1/11) foreseen for the Galileo
E1 signal as well as for the future GPS L1C. In the picture,
it is evident that the increased power at a frequency shifted
about 6 MHz from the central frequency E1, deriving by the
presence of the BOC(6,1) component.

It is important to remark that MBOC is defined starting
from the power spectrum. In this sense, many possible
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Figure 1: Unit power spectral densities comparison of BOC(1,1)
and MBOC(6,1,1/11). (Equivalent baseband representation of the
E1 carrier signals.)

time-domain implementations can result with the same
approximation of the defined spectrum.

3. CBOC FEATURES

In CBOC implementations, each ranging code is modulated
by a weighted combination of a BOC(1,1) and a BOC(6,1)
subcarriers:

sBOC(1,1)(t) =

⎧
⎪⎨

⎪⎩

sign
[

sin
(

2πt
TC

)]

, 0 ≤ t ≤ TC ,

0, elsewhere,

sBOC(6,1)(t) =

⎧
⎪⎨

⎪⎩

sign
[

sin
(

12πt
TC

)]

, 0 ≤ t ≤ TC ,

0, elsewhere,

(2)

where TC = 1/(1.023·106) [second] is the chip duration.
The notation usually reported for the composite BOC

signal is CBOC(6,1,γ/ρ), where the parameters γ and ρ are
related to the power splitting between the BOC(1,1) modu-
lated signal and the BOC(6,1) contribution. However, such
a notation does not take into account that the actual overall
signal is obtained by combining data and pilot channels, then
introducing a further degree of freedom. Furthermore, it is
not mandatory that the BOC(6,1) contribution has to be
present on both data and pilot channels, opening additional
options to the implementation.

Therefore, the time-domain signal on the E1 data cha-
nnel can be expressed as

stxE1(t)=xE1,d(t)·α
[√

ρ− γ
ρ

sBOC(1,1)(t)+kd

√
γ

ρ
sBOC(6,1)(t)

]

,

(3)

where xE1,d(t) is the product of the navigation message and
the spreading code, and α is the fraction of power allocated
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Table 1: Possible options for the MBOC signal implementation by
means of CBOC modulations.

Data channel
modulation

Data channel
power

Pilot channel
modulation

Pilot channel
power

CBOC(6,1,1/11) 25% CBOC(6,1,1/11) 75%

CBOC(6,1,1/11) 50% CBOC(6,1,1/11) 50%

BOC(1,1) 25% CBOC(6,1,4/33) 75%

to the data channel. In the same way, the E1 pilot channel can
be expressed as

stxE1(t)=xE1,p(t)·β
[√

ρ− γ
ρ

sBOC(1,1)(t)+kp

√
γ

ρ
sBOC(6,1)(t)

]

,

(4)

where xE1,p(t) is the spreading code sequence, and β is the
fraction of power allocated to the pilot channel.

The parameters kd and kp can assume the values (0,±1),
and they are used to model the presence or not of the
BOC(6,1) subcarrier and its sign in the channels.

It is important to remark that, under the assumption
that data and pilot channels use orthogonal spreading
codes, the residual cross-correlation between the spreading
sequences chosen for Galileo can be considered negligible,
the overall spectrum on the E1 band is the summation of
the power spectra of the pilot and data channels. Different
combinations of the parameters α, β, kd, kp, γ, and ρ can
be chosen in order to obtain signals, whose power spectral
density resembles the spectral mask defined for the MBOC
signal.

Table 1 shows some possible selection of the parameters
associated to the power split between data and pilot channels.

As already remarked, it is not always the case that the
CBOC is selected for both data and pilot channels (see third
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row of Table 1). Anyway, the most probable implementation
selected by EC will fall on the CBOC(6,1,1/11) option (and
both kd and kp positive) with 50% of power on both
channels. This decision is due to the relatively high data rate
on the E1 data channel, which is known also to carry integrity
messages.

Regardless the power splitting, the CBOC in time-
domain shows a four-level spreading sequence as depicted in
Figure 2, where a CBOC(6,1,1/11) realization with positive
contribution coming from the BOC(6,1) subcarrier has been
reported.

The presence of higher transition rate (due to BOC(6,1)
component) creates a sharper correlation function than
the BOC(1,1) baseline. The normalized autocorrelation
functions of the CBOC(6,1,1/11) and CBOC(6,1,4/33) are
compared to the BOC(1,1) correlation in Figure 3.

The larger is the contribution of the BOC(6,1) subcarrier
(as so the γ over ρ ratio) in the CBOC implementation, the
sharper is the correlation function.

This characteristic will be deeply highlighted in the
following sections considering its impact on the detection
performance of the acquisition stage of the receiver.

To better highlight the sharper CBOC correlation func-
tions, a zoom of Figure 3 around the main peak is reported
in Figure 4.

The CBOC autocorrelation function can be written by
means of the BOC(1,1) and BOC(6,1) autocorrelations and
cross-correlations as

RCBOC(6,1,γ/ρ)(τ) = ρ − γ
ρ

RBOC(1,1)(τ)

+
γ

ρ
RBOC(6,1)(τ)

+ 2
γ

ρ

√
ρ

γ
− 1RBOC(1,1)BOC(6,1)(τ),

(5)
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Figure 4: Zoom of the normalized autocorrelation functions com-
parison among BOC(1,1), CBOC(6,1,1/11), and CBOC(6,1,4/33)
computed over an infinite bandwidth.

where the term RBOC(1,1)BOC(6,1)(τ) is the cross-correlation
term between the BOC(1,1) and BOC(6,1).

The presence of a cross-correlation factor in (5) results in
creating little differences with respect to the MBOC spectrum
as defined in (1). Therefore, on-going studies are in place
with the goal to define implementation strategies to remove
such cross factor. Among the others, the most promising is to
alternate BOC(6,1) and BOC(1,1) phases on adjacent code
chips (see as an example [11]).

4. ACQUISITION OF THE OPTIMIZED CBOC SIGNAL

The first operation performed by any GNSS receiver is the
signal acquisition, in charge to understand which satellites
are in the line of sight and to provide the tracking stages with
a coarse estimation of the received code delay and a rough
estimation of the Doppler frequency shift.

The declaration of the presence or absence of a satellite
(determination of both code delay and Doppler shift) is
obtained by evaluating a two-dimensional matrix called
search space. Each item of such a matrix, that is, cell,
corresponds to the value assumed by the bi-dimensional
correlation for a specific couple code delay τ̂ and Doppler

shift f̂d. This bi-dimensional correlation is also known as
cross-ambiguity function.

As shown in [8], several are the solutions that can
be found in literature for the signal acquisition: serial
search, fast acquisition, and parallel acquisition in frequency
domain, but they just differ in the way the search space is
obtained and equivalent in terms of detection performance.
Other acquisition techniques known with the name of
differential acquisition strategies are nowadays used in GNSS
fields [12], but since the mathematical details are different

from the previous mentioned methodologies, they will not
be considered in this paper.

Any acquisition technique can be characterized for a
given C/N0 by the false alarm and detection probabilities.
Here, just the false alarm and detection cell probabilities will
be considered, since as discussed in [13] the characteristics
of the acquisition engine can always be related to these
fundamental values.

Such probability functions are usually evaluated consid-
ering only the peak amplitude of the correlation function
and the presence of noise. Such characterization does not
take into account the fact that, for a given Doppler shift and
code phase error, the correlation generally does not achieve
the maximum possible value. This effect can be modeled as
a correlation loss which depends on the shape of the cross
ambiguity function and on its representation in terms of
resolution (i.e., Doppler shift and code delay steps) in the
search space [8].

In order to take into account also this effect in the
comparison of BOC(1,1) and CBOC(6,1,γ/ρ) functions, the
behavior around the peak in the search space has to be
studied.

Once decided the acquisition threshold Vt , the cell false
alarm probability can be easily evaluated as the integral of the
tail of the distribution of the search matrix in a misalignment
condition (or equivalently when the signal is absent). In
formula is (see [14])

Pf a(Vt) =
∫ +∞

Vt
f Kna(x)dx. (6)

The distribution of f Kna(r) can be shown to assume the
expression [8]:

f Kna(r) = 1
2K (K − 1)!σ2K

rK−1e−r/2σ
2
u(r), (7)

where, when the local code spreading sequence has unitary
power, and the signal is digitized respecting the Nyquist
criterion, σ2 is equal to (N/2)σ2

n . N is the number of samples
coherently integrated, and σ2

n is the variance of the Gaussian
noise affecting the received signal.

Equation (7) holds for the case of noncoherent inte-
gration process applied to a serial or parallel acquisition
technique. With this technique, the detection and decision
can be taken over the summation of K correlation outputs
before the envelope operation so to reduce the noise impact
and to increase the acquisition detection rate [8].

The probability density function of the correlator output
depends on two variables: the code displacement error

Δτ = τ − τ̂ and the Doppler shift error Δ fd = fd − f̂d,
respectively. The conditional probability density function to
the hypothesis of a perfect code and Doppler alignment
(Δτ = 0,Δτ = 0) is demonstrated in [8] to assume the
expression:

f Ka
(
r | Δτ,Δ fd = 0

)

=
√
Kα

σ2

(
r√
Kα

)K

e−(1/2)((r2+Kα2)/σ2)IK−1

(

r

√
Kα

σ2

)

,

(8)
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where α = √
CN/2 is a term proportional to the received

signal power C. The corresponding conditional detection
probability is then the integral over the tail of f Ka (r |
Δτ,Δ fd = 0) (see [8, 15]), which leads to the expression:

Pd|Δτ,Δ fd=0
(
Vt
) =

∫ +∞
√
Vt/σ

f Ka (x)dx = QK

(
α

σ
,

√
Vt

σ

)

. (9)

Equation (9) involves the kth-order Marcum Q function, QK

discussed and defined in [15]. It is remarked how (9) does
not still consider the shape of the correlation function of the
signal being acquired.

This correlation function can be locally approximated
around the peak as the product of the mono-dimensional
correlations along the code delay and Doppler axes [7, 8],
that is

R
(
τ, τ̂, fd, f̂d

) ≈ RDoppler
(
fd − f̂d

)
RCode(τ − τ̂). (10)

It is evident that in real applications, where a residual error
remains in the estimation of the code phase and Doppler
shift, the acquisition does not work using the maximum
possible correlation value. This situation can be modeled as
additional losses or as an impairment, which depends both
on the shape of RCode(Δτ) and RDoppler(Δ f ).

The approximation reported in (10) is extremely impor-
tant because it makes possible to separate the effects of the
code errors to the one coming from Doppler shift, so to
consider the total loss simply as the product of two single
impairments.

As far as the code error loss is concerned, the reduction
of the correlation output can be accounted in a dB amplitude
scale as [8]

αloss
∣
∣

dB = 20 log
∣
∣RCode(Δτ)

∣
∣. (11)

A plot of the code correlation losses for the CBOC(6,1,1/11),
CBOC(6,1,4/33), and the BOC(1,1) is depicted in Figure 5.

Similarly to the code correlation loss, the residual
Doppler phase error in the acquisition process produces a
reduction of the correlation peak that is demonstrated, again
in [8], to be equal to

βloss
∣
∣

dB = 20 log10

∣
∣RDoppler(Δ f )

∣
∣

∼= 20 log10

∣
∣DN

[
π
(
fd − f̂d

)]∣
∣.

(12)

Being DN (x/2) = sin(xN/2)/N sin(x/2), the Dirichlet kernel
function. Remembering that the term N is the number of
samples coherently integrated, it is clear how the correlation
loss βloss depends on the integration time. Figure 6 reports
the trend of the Doppler loss when the integration time goes
from T = 4 milliseconds up to T = 12 millisecondss with 4
milliseconds of step.

It is necessary to model the probability distribution of the
code phase offset and Doppler shift in order to add up the
different losses inside the conditional detection probability
reported in (9). These two realistic hypotheses can be made
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on the basis of the functioning of the acquisition engine:

(i) the resolution used in the acquisition phase is usually
of some integer fraction ±1/L of chip, then the
maximum absolute phase offset Δτ = τ − τ̂ can
be assumed uniformly distributed between ±1/(2L)
chip;

(ii) similarly, the Doppler frequency Δ fd = fd − f̂d can
be assumed to be uniformly distributed between zero
and half the maximum absolute digital frequency,
obtained by normalizing a natural frequency
expressed in Hz with respect to the numerical
frequency used to express a sequence of sample of
a digital signal, bin width ±1/(2M), where M is
typically less or equal to N .
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Furthermore, the Doppler frequency and code phase errors
can be considered independent and uncorrelated. With all
these assumptions, the combined loss simply becomes the
sum (because expressed in dB) of the contributions αloss

and βloss. Thus, according to the definition of [6, 8], an
expected value of the detection probability, which also
accounts for the particular shape of the cross ambiguity
function and the impairments due to the residual code phase
and Doppler errors, can be derived from the conditional
detection probability defined in (9) integrating over the two
assumed distribution for Δτ and Δ fd:

Pd = 2N
∫ 1/2L

−1/2L

∫ 1/2M

−1/2M
Qk

(√
kα

σ
R( f , θ),

√
Vt

σ

)

df dθ, (13)

with R( f , θ) = DN (π f )RCode(θ).
Therefore, since different modulations have different

RCode(θ), clearly different detection rate must be expected
considering what derived in (13).

The expected value of the detection rate Pd averages
among all the possible code phase and Doppler offset; the
acquisition can deal with, and it can be seen as an averaged
probability even though in the following it will be referred to
this quantity as a normal probability.

5. DETECTION PERFORMANCE OF THE CBOC
MODULATION CANDIDATES

The CBOC candidates and BOC(1,1) modulations have
been compared considering the impairments addressed in
Section 4. Both false alarm and detection probabilities have
been obtained by means of Monte Carlo simulations.

A classical acquisition technique not tailored for the
new modulation has been considered, and the false alarm
probability as well as the detection rate has been deter-
mined considering an integration period of 4 milliseconds
(one Galileo primary code duration). All the simulated
signals (BOC(1,1) and CBOCs) have been sampled at
12 MSamples/s considering the front end operating under
the Nyquist criterion (i.e., 12 MHz two- sided bandwidth).

A common way to express the detection performance of
an acquisition engine is by means of the so-called receiver
operative characteristics (ROC) curves, where the detection
probability is reported versus the false alarm probability at
a specific signal to noise ratio. During this performance
analysis, aC/N0 of 40 dB·Hz has been considered to obtain all
the ROC curves, where C/N0 here refers to the single channel
(pilot or data component) carrier to noise ratio.

In Figure 7, a comparison among the BOC(1,1) modula-
tion and two different CBOC implementations is depicted.
The ROC curves for the three modulations are reported
changing by simulation to simulation and by the code search
resolution starting from a value of half a chip down to an
eighth of chip.

It is evident from this comparison that when the
code search step is reduced, higher detection rates can be
achieved for the same false alarm probabilities with all the
modulations. These trends can be explained remembering
that the larger is the code phase error Δτ, the larger is the
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Figure 7: Receiver operative characteristic comparison among
different CBOC implementations and BOC(1,1) for different search
space spacing at C/N0 of 40 dB·Hz.

correlation loss averaged in (13), and then the lower is the
detection rate.

The sharper correlation functions of the CBOC imple-
mentations lead to a more relevant code loss contribution
with respect to the BOC(1,1). However, as demonstrated
in Figure 7, the degradation which stems from the different
code loss among BOC(1,1) and CBOCs can be reduced
decreasing the code phase step, anyway often necessary to
guarantee the pull-in phase of the tracking stages.

Another possibility to address the detection acquisition
performance is given by graphs which depict the detection
probability for a given false alarm probability versus the
C/N0, as done in the comparison of Figure 8.

Here, the BOC(1,1) and CBOCs modulations are com-
pared considering a fixed false alarm probability of 10−4

varying the C/N0 from a minimum of 30 up to 55 dB·Hz.
In this operative scenario, the C/N0 necessary to acquire

the CBOCs with a detection probability of 0.9 is reported in
Table 2 as well as the degradation with respect to the case of
using a BOC(1,1) modulation.

Considering that since MBOC has better self spectral sep-
aration coefficients (SSCs) than BOC(1,1), the intrasystem
interference coming from satellites transmitting MBOC with
a different PRN will be reduced.

In addition, the SSC between the MBOC and the C/A
code is also lower and thus in summary the intersystem
and intrasystem interference is also reduced [16]. Then, the
equivalent noise due to interference from other satellites is
around 0.1–0.2 dB lower for MBOC than for BOC(1,1), and
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Figure 8: Detection probability versus the C/N0 at a false alarm
probability of 10−4. Comparison among different CBOC imple-
mentation for different search space resolution.

Table 2: Carrier to noise ratio degradation. Comparison for
CBOCs and BOC(1,1) modulations.

Modulation
Resolution

[chip]
C/No @ Pd =
0.9 [dB-Hz]

Degradation
w.r.t BOC(1,1)

[dB-Hz]

BOC(1,1) 0.125 41.25 —

CBOC(6,1,1/11) 0.125 41.50 0.25

CBOC(6,1,4/33) 0.125 41.69 0.44

BOC(1,1) 0.25 42.95 —

CBOC(6,1,1/11) 0.25 43.78 0.83

CBOC(6,1,4/33) 0.25 44.21 1.26

BOC(1,1) 0.5 48.10 —

CBOC(6,1,1/11) 0.5 48.55 0.45

CBOC(6,1,4/33) 0.5 48.80 0.7

the equivalent C/N0 is expected to be 0.1–0.2 dB-Hz better
[16].

In addition, the interplex modulation product with
MBOC is around 4 dB lower with CBOC than with BOC(1,1)
and thus the net effect is that at the end, for the same
transmitted power from the satellite, at the ground there is
an increase of the received power of approximately another
half a dB.

Therefore, the degradation of the sharper correlation
function is mostly compensated in all the cases by the
increased power at the ground and by better SSC, and in
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Figure 9: BOC(1,1) and CBOC cross-correlation functions com-
parison computed over an infinite bandwidth and zoom of
correlation peaks.

some cases it should actually outperform the BOC(1,1) at
least when code search step is reduced to less or equal to one
quarter of chip.

It has not to be forgotten that one of the aim of
the CBOC modulations is to maintain the interoperability
and the compatibility with the existing systems. In fact,
the contribution of the BOC(1,1) in the CBOC definition,
(cfr. (3) and (4)), still assures a nonzero cross-correlation
function among CBOCs and BOC(1,1).

Figure 9 reports the correlation functions obtained
demodulating a CBOC signal with a local BOC(1,1) code.

This might be the working scenario of a BOC(1,1) legacy
receiver processing the new optimized MBOC signal.

The cross-correlation functions RCBOC(6,1,1/11)BOC(1,1) and
RCBOC(6,1,4/33)BOC(1,1) depicted in Figure 9 are practically
identical.

They are mainly characterized by a reduction of the peak
maximum due to the cross loss given by the BOC(6,1) term,
but the correlation slope and widths are comparable one to
the other.

This is the case of the ROC curves reported in Figure 10
where the detection performance of the CBOC(6,1,1/11)
demodulated by a BOC(1,1) replica is reported together
with the performance of the standalone BOC(1,1) and
CBOC(6,1,1/11).

The comparison is made considering only a code delay
step of 0.25 and 0.125 chip. The detection probability versus
the C/N0 for a false alarm probability of 10−4 is reported in
Figure 11.

It is interesting to notice how, when the search space
has a resolution of 0.25 chip for the code phase, higher
detection probabilities can be obtained by demodulating
the CBOC(6,1,1/11) with a local BOC(1,1) implementa-
tion. When the code step used in the search space is
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Figure 10: Receiver operative characteristic comparison, at C/N0 of
40 dB·Hz and different spacing, among the standalone BOC(1,1),
CBOC(6,1,1/11), and the CBOC(6,1,1/11) demodulated with a
BOC(1,1) replica.
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Figure 11: Detection probability versus the C/N0 at a false alarm
probability of 10−4 comparison among standalone BOC(1,1),
CBOC(6,1,1/11), and the CBOC(6,1,1/11) demodulated with a
BOC(1,1) replica.

reduced to 0.125 chip, then the solution to demodulate the
CBOC(6,1,1/11) with a local BOC(1,1) does not outperform
the pure CBOC(6,1,1/11) solution.
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Figure 12: Receiver operative characteristic comparison, at C/N0 of
40 dB·Hz and different spacing, among the standalone BOC(1,1),
CBOC(6,1,4/33), and the CBOC(6,1,4/33) demodulated with a
BOC(1,1) replica.
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Figure 13: Detection probability versus the C/N0 at a false alarm
probability of 10−4 comparison among standalone BOC(1,1),
CBOC(6,1,4/33), and the CBOC(6,1,4/33) demodulated with a
BOC(1,1) replica.

Similar considerations can be made for the comparison
of the CBOC(6,1,4/33) detection performance which have
been reported in Figures 12 and 13.
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When Δτ is reduced, then the maximum peak reduction
of RCBOC(6,1,1/11)BOC(1,1) and RCBOC(6,1,4/33)BOC(1,1) plays a more
significant role in the total averaged loss explaining the
change of performance outlined in the previous comments.

6. CONCLUSIONS

On the basis of the modernization activities around the
future Galileo E1 signals, this paper focuses on the analysis
of the acquisition detection performance of two CBOC solu-
tions, which are the CBOC(6,1,1/11) and CBOC(6,1,4/33).

Such activity, done with an acquisition engine imple-
mented via software, is a key step for signals comparison
considering that the CBOC modulation due to its sharper
correlation function might present some acquisition losses
with respect to the BOC(1,1). Through simulations, it has
been proved that, in practical operative conditions and
thanks to the better SSC derived by using an MBOC
spectrum and thanks to the increased power level of the
signal at the ground (which results in about 0.7 dB·Hz of
improvement in the equivalent C/N0 seen by the receivers
antennas), those losses can be neglected.

Moreover, this work also shows how the CBOC candidate
modulations still assure the compatibility and interoperabil-
ity with BOC(1,1) legacy receivers in terms of acquisition.

All these considerations together with the major advan-
tages in terms of better tracking performance and multipath
rejections capabilities clearly justify the selections of the
CBOC as implementation of the agreed MBOC.
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