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New developments and applications of science and industry
demand no conventional modeling approaches where the
increase of complexity is a common denominator. Due to
nonlinear dynamics, many of the resulting mathematical
models are complex systems. For example, the inherent
nonlinear dynamics of physical systems make it difficult to
analyze a large majority of these complex systems, giving
them a wide variety of dynamic behavior. Another well-
known example is the delay phenomena where the infor-
mation on the state of the system in past events can be
very valuable for prediction and control. In recent years, the
study to determine stability and stabilization of nonlinear
phenomena has had a great research interest, developing
novel methods. Thus, some of these methods have been
implemented to study controls for systems with delay. In this
special issue new insights into the stabilization of particular
nonlinear systems and systems with delay are introduced. We
are sure that the selected manuscripts will be useful for the
reader, providing valuable contributions, novel methods, and
overall good proposals.

In the paper “Implementation of aController to Eliminate
the Limit Cycle in the Inverted Pendulum on a Cart”,
M. Antonio-Cruz et al. discuss a frequency response-based
linear controller. The main aim of this paper is to study
a control strategy to eliminate limit cycle in the inverted
pendulum on a cart generated by the dead-zone, induced by
static friction.

The paper “Dynamics induced by delay in a nutrient-
phytoplankton model with multiple delays” by C. Dai
et al. studies a nitrogen-phosphorus-phytoplankton model
described by a couple of delay differential equations to study
the effect of delay on the nutrient-phytoplankton dynamics.
The authors prove that the positive equilibrium is always
globally asymptotically stable when there are no delays and
the model may undergo a Hopf bifurcation as the delays are
varied.

The paper “Simulation and Analysis of the Complex
Behavior of Supply Chain Inventory System Based onThird-
Party Logistics Management Inventory Model with NoAccu-
mulating of Unsatisfied Demand” by Z. Zhang et al. is a
study based on third-party logistics management inventory
models. The authors construct a dynamic model and they
give conditions on the parameters for obtaining stability and
getting useful conclusions; for example, a reasonable decision
can make the inventory of the warehouse distribution system
stable to a small interval.

Thepaper “Stability of the EvolutionaryGame Systemand
Control Strategies of Behavior Instability in Coal Mine Safety
Management” by X. Wang et al. analyzes the stability of a
dynamical game system with flexible and inflexible costs and
penalties. The analysis carried out provides a theoretical basis
for amore reasonable and effective safetymanagement policy,
in coal mine safety system. From such analysis, the authors
conclude that combined mechanisms of incentive rewards
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and flexible penalties can optimize and control the instability
of the behavior strategy selection in the safety supervision
model.

The paper “Synchronization Control in Reaction-Dif-
fusion Systems: Application to Lengyel-Epstein System” by
A. Ouannas et al. considers the complete synchronization
of a large class of reaction-diffusion coupled systems. The
class of systems considered is very general: the nonlinear
term only requires continuity in order to attain complete
synchronization with nonlinear controllers, and the continu-
ity plus a boundedness condition in order to attain it with
linear controllers. The authors study a model derived from
a chemical-physics system, i.e., the Lengyel-Epstein system.
The complete synchronization is in both cases (linear and
nonlinear) verified via Lyapunov stability theory.

The paper “Hybrid Functions Direct Approach and
State Feedback Optimal Solutions for a Class of Nonlinear
Polynomial Time-Delay Systems”, by M. K. Bouafoura and
N. B. Braiek, presents an approximate method to deter-
mine the optimal open loop solution and nonlinear delay-
dependent state feedback suboptimal control for a class of
nonlinear polynomial time-delay systems by transforming
the dynamical optimal control problem into a static optimiza-
tion problem. In the proposed numerical method, Legendre
polynomials are used.

In the paper “Consensus ofMultiagent SystemsDescribed
by Various Noninteger Derivatives”, G. Nava-Antonio et al.
analyze recent developments in Lyapunov stability theory to
determine the asymptotic stability of particular fractional
dynamical systems. The results are applied to study the
consensus of a fractional multiagent system with linear and
nonlinear dynamics.

In the paper “New Results on the Control for a Kind of
Uncertain Chaotic Systems Based on Fuzzy Logic”, B. Wang
and L. L. Chen analyze a single-dimensional controller, based
on fuzzy logic and Lyapunov theory, to control uncertain
nonlinear chaotic systems. The effectiveness of the designer
controller is discussed trough typical numerical simula-
tions.

A systematic study of the local and the global stability of
traveling wave solutions to the Lotka-Volterra diffusive model
is investigated in “Stability of Traveling Waves to the Lotka-
Volterra Competition Model” by A. Alhasanat and C. Ou.The
local stability is given using the method of spectrum analysis.
However, for global stability, the authors construct an upper
and a lower solution to the Lotka-Volterra system and prove
their convergence to the traveling wave.

The paper “New Results on Stability Analysis of Uncer-
tain Neutral-Type Lur’e Systems Derived from a Modified
Lyapunov-Krasovskii Functional” by W. Duan et al. is con-
cerned with the problem of the absolute and robustly absolute
stability for the uncertain neutral-type Lur’e system with
time-varying delays. Here, the quadratic generalized free-
weighting matrix inequality technique is used to reduce the
conservatism of the stability conditions. Unlike previous
results, the matrix inequalities of the stability criteria pro-
posed in this paper are converted to LMIs via the properties
of quadratic functions application, which can be solved easily
by Matlab LMI-toolbox.

The paper “Parameter Identification and Adaptive Con-
trol of Uncertain Goodwin Oscillator Networks with Distur-
bances” by J. Zhang et al. studies a drive-response system
based on a differential equationmodel ofmammals’ circadian
rhythms, where the suprachiasmatic nucleus (SCN) of the
hypothalamus was modeled by a Goodwin oscillator and the
vasoactive intestinal polypeptides (VIP) were modeled by
a Van der Pol oscillator. Outer synchronization in a drive-
response system has been achieved by considering effective
parameter updating laws to identify the unknown parameters
and designing adaptive control strategies. This paper has
designed a targeted adaptive controllers to synchronize a
drive-response system based on Goodwin oscillator network.
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This paper is concerned with the problem of the absolute and robustly absolute stability for the uncertain neutral-type Lur’e
systemwith time-varying delays. By introducing amodified Lyapunov-Krasovskii functional (LKF) related to a delay-product-type
function and two delay-dependent matrices, some new delay-dependent robustly absolute stability criteria are proposed, which can
be expressed as convex linear matrix inequality (LMI) framework. The criteria proposed in this paper are less conservative than
some recent previous ones. Finally, some numerical examples are presented to show the effectiveness of the proposed approach.

1. Introduction

In many real systems, time delay is often considered as
the main cause of poor performance and even instability.
The stability of time-delay systems is always a hot topic for
researchers. As a result, to obtain stability criteria of time-
delayed systems by using the Lyapunov theorem, the main
efforts are concentrated on the following several directions;
one is finding an appropriate positive definite functional with
a negative definite time derivative along the trajectory of
system, for example, LKF with delay partitioning approach
[1, 2], LKF with augmented terms [3], LKF with triple-
integral and quadruple-integral terms [4, 5], and so on. The
other is reducing the upper bounds of the time derivative of
LKF as much as possible by developing various inequality
techniques, such as Jensen inequality [6], Wirtinger-based
inequality [7], auxiliary function based inequality [8], and
Bessel-Legendre inequality [9]. Besides, further to increase
the freedom of solving LMIs, there are some other methods,
for instance, the generalized zero equality [10, 11], the one- or
second-order reciprocally convex combinations [12–15], the
free-weighting-matrix approach [16], and so on.

In practical engineering applications, most systems are
nonlinear. As is known to all, Lur’e system,which is composed
of the feedback connection of the linear dynamical system
and the nonlinearity satisfying the sector-bounded condi-
tion, can represent many deterministic nonlinear systems,
for example, Chua’s Circuit and the Lorenz system [17].
Therefore, the study on the stability of Lur ’e systems becomes
more and more popular [18–21]. Moreover, the paper [22]
pointed out that many practical systems can be modeled as
neutral time-delayed systems, in which not only the system
states or outputs contain time delays, but also the derivative of
the system states. Due to the theoretical and practical signif-
icance, the analysis of the robust stability of the time-delayed
neutral-type Lur’e systems has attached great importance
by many scholars [23–29], where many important robust
stability criteria were given. However, the main improvement
of stability criteria depends on the development of LKF
and the update of inequality techniques based on linear
systems. For example, recently, [29] improved the stability
results of some previous ones by combining the extended
double integral with Wirtinger-based inequalities technique;
however, the range of delay with nonzero lower bound and
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the lower bound of the delay derivative are not involved; in
[30], some less conservative stability criteria than some recent
previous ones were derived for time-delayed Lur’e system
via the second-order Bessel-Legendre inequality approach, a
novel inequality technique; in [21], some improved stability
criteria for time-delayed neutral-type Lur’e systemwere given
by constructing a novel LKF consisting of a quadratic term
and integral terms for the time-varying delays and the
nonlinearities, and so on. Recently, C. Zhang [31] considered
the effect of the LKFs while discussing the relationship
between the tightness of inequalities and the conservatism of
criteria for linear systems. The results illustrate the integral
inequality thatmakes the upper bound closer to the true value
does not always deduce a less conservative stability condition
if the LKF is not properly constructed. Particularly, another
novel LKF was proposed by C. Zhang et al. [31, 32] with
delay-product-type terms ℎ(𝑡)𝑃1 and (ℎ − ℎ(𝑡))𝑃2. Compared
with the general LKF, 𝑃1 and 𝑃2 were just symmetrical, not
always positive definite, which can lead to a less conservative
stability condition by extending the freedom for checking
the feasibility of stable conditions based on LMI. Recently,
to fully utilize the information of delay derivative, a new
LKF was constructed by W. Kwon et al. [33] with delay-
dependent Lyapunov matrices 𝑄1(𝑡) and 𝑄2(𝑡). W. Kwon et
al. point that the stability conditions based on an LKF with
delay-dependent matrices are less conservative than those
based on the LKF without delay-dependent matrices. As
mentioned above, the two types of LKFs only improve one
class of Lyapunov matrices, respectively, that is, only for the
Lyapunov matrix 𝑃 or the Lyapunov matrix𝑄. It is natural to
wonder about whether can both classes of Lyapunovmatrices
be improved, simultaneously.

Inspired by the above analysis, the following ideas of
reducing the conservation of the previous proposed stability
criteria should be addressed:

(i) A modified LKF with the above both classes of
Lyapunov matrices, that is delay-product-type and
delay-dependent matrices, is constructed. Compared
with the general LKFs in some previous published
papers, such as [21, 28, 30], the Lyapunov matrices of
the nonintegral item are just symmetrical, not always
positive definite, which can extend the freedom for
checking the feasibility of stable conditions based on
LMI. And the delay-dependentmatrices of the single-
integral items are utilized, which can also further
improve the utilization of time delay and its derivative
information. In addition, the results proposed by [31–
33] can be improved via the LKF modified in this
paper due to the combination of the two types of
LKFs.

(ii) The double integral items of the modified LKF in
this paper are decomposed into two subintervals, that
is [0, ℎ(𝑡)] and [ℎ(𝑡), ℎ], instead of being considered
directly in [33], which further make full use of the
information of time-varying delays ℎ(𝑡), ℎ − ℎ(𝑡) and
their derivative ℎ̇(𝑡). And the quadratic generalized
free-weightingmatrix inequality (QGFMI) technique
can be used fully in each subinterval, which can

further reduce the conservatism of the stability con-
ditions.

(iii) To deal with the delay-derivative-dependent single-
integral items feasibly, another double integral items
of𝑉4(𝑡) are also added to the LKFunder the above two
subintervals, instead of introducing a positive integral
item, which is actually difficult to estimate, to the
derivative of the LKF like [33].

(iv) Indeed, themain result of [33] was not LMI due to the
terms with ℎ2(𝑡) even ℎ3(𝑡). The matrix inequalities
of the stability criteria proposed in this paper are
converted to LMIs via the properties of quadratic
functions application, which can be solved easily by
Matlab LMI-toolbox. In conclusion, it is interesting
and still challenging problem to address the above
issues, which offers motivation to derive less conser-
vative stability criteria for the time-delayed neutral-
type Lur’e systems.

This paper mainly analyzes and studies the stability
of uncertain neutral-type Lur’e systems with mixed time-
varying delays. Some less conservative delay-dependent
absolute stability criteria and robust absolute stability criteria
than some previous ones are derived via a modified LKF
application. In the end, four popular numerical examples are
given to illustrate that this method improves some existing
methods and achieves good results in stability. The structure
of this paper is as follows: Section 1 describes the research
background and research topic status and defines the scope
of the study of this article; Section 2 describes the main
research questions, including some necessary definitions,
assumptions, and lemmas; Section 3 presents themain results,
including theorems and corollaries; in Section 4 the discus-
sions and simulations based onnumerical examples are given;
Section 5 summarizes the whole thesis.

Notation. 𝑃 > 0 (< 0) represents a positive (negative) definite
matrix. 𝐼 and 0 represent an identity matrix and a zeromatrix
with the corresponding dimensions, respectively. ∗ denotes
the symmetric terms in a block matrix and diag{⋅ ⋅ ⋅ } denotes
a block-diagonal matrix. 𝑒𝑖 (𝑖 = 1, . . . , 𝑚) are block entry
matrices with 𝑒𝑇2 = [0 𝐼 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−2

], where 𝑚 is the dimension

of the vector 𝜉. 𝐹[𝛼(𝑡),𝛽(𝑡)] denotes 𝐹 is the function of 𝛼(𝑡) and𝛽(𝑡). sym{𝐵} = 𝐵 + 𝐵𝑇.
2. Problem Formulation

Consider the following neutral-type Lur’e system with mixed
time-varying delays:�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏 (𝑡)) = [𝐴 + Δ𝐴 (𝑡)] 𝑥 (𝑡)+ [𝐴1 + Δ𝐴1 (𝑡)] 𝑥 (𝑡 − ℎ (𝑡))+ [𝐵 + Δ𝐵 (𝑡)] 𝑓 (𝜎 (𝑡)) ,



Complexity 3𝜎 (𝑡) = 𝐻𝑇𝑥 (𝑡) , ∀𝑡 ≥ 0,𝑥 (𝑠) = 𝜑 (𝑠) ,�̇� (𝑠) = �̇� (𝑠) ,𝑠 ∈ [−max (ℎ2, 𝜏) , 0] , ℎ (𝑡) ∈ C.1𝑠 ∈ [−max (ℎ, 𝜏) , 0] , ℎ (𝑡) ∈ C.2,
(1)

where 𝑥(𝑡) ∈ R𝑛 and 𝜎(𝑡) ∈ R𝑚 are the state and
output vectors of the system, respectively. 𝐴, 𝐴1, 𝐵, 𝐶, and𝐻 are real constant matrices with appropriate dimensions;𝜑(𝑠) is an R𝑛-valued continuous initial functional specified
on [−max(ℎ, 𝜏), 0] or [−max(ℎ2, 𝜏), 0] with known positive
scalars ℎ, ℎ2, and 𝜏. 𝑓(𝜎(𝑡)) ∈ R𝑚 is the nonlinear functional
in the feedback path. The time-varying delays ℎ(𝑡) and 𝜏(𝑡)
are continuous-time functional and satisfy the following two
types of conditions:

C. 1. 0 ≤ 𝜏 (𝑡) ≤ 𝜏,̇𝜏 (𝑡) ≤ 𝜏𝑑 < 1,ℎ1 ≤ ℎ (𝑡) ≤ ℎ2,𝜇1 ≤ ℎ̇ (𝑡) ≤ 𝜇2 ∀𝑡 ≥ 0,
(2)

C. 2. 0 ≤ 𝜏 (𝑡) ≤ 𝜏,̇𝜏 (𝑡) ≤ 𝜏𝑑 < 1,0 ≤ ℎ (𝑡) ≤ ℎ,𝜇1 ≤ ℎ̇ (𝑡) ≤ 𝜇2,∀𝑡 ≥ 0,
(3)

where 𝜏 ≥ 0, 𝜏𝑑 < 1, ℎ1 ≥ 0, ℎ2 ≥ 0, ℎ ≥ 0, 𝜇1 and 𝜇2 < 1 are
constants.

The nonlinear functional 𝑓(𝜎(𝑡)) in the feedback path is
given by𝑓 (𝜎 (𝑡)) = [𝑓1 (𝜎1 (𝑡)) 𝑓2 (𝜎2 (𝑡)) ⋅ ⋅ ⋅ 𝑓𝑚 (𝜎𝑚 (𝑡))]𝑇 (4)

satisfying the finite sector condition:𝑓𝑖 (𝜎𝑖 (𝑡)) ∈ 𝐾[0,𝑘𝑖] = {𝑓𝑖 (𝜎𝑖 (𝑡)) | 𝑓𝑖 (0) = 0, 0< 𝜎𝑖 (𝑡) 𝑓𝑖 (𝜎𝑖 (𝑡)) ≤ 𝑘𝑖𝜎𝑖 (𝑡)2 , 𝜎𝑖 (𝑡) ̸= 0} (5)

or the infinite sector condition:𝑓𝑖 (𝜎𝑖 (𝑡)) ∈ 𝐾[0,∞) = {𝑓𝑖 (𝜎𝑖 (𝑡)) | 𝑓𝑖 (0)= 0, 𝜎𝑖 (𝑡) 𝑓𝑖 (𝜎𝑖 (𝑡)) > 0 , 𝜎𝑖 (𝑡) ̸= 0} , (6)

where𝐾 = diag{𝑘1, 𝑘2, . . . , 𝑘𝑚}.

Δ𝐴(𝑡), Δ𝐴1(𝑡), and Δ𝐵(𝑡) denote real-valued matrix
functions representing parameter uncertainties, which are
assumed to satisfy[Δ𝐴 (𝑡) Δ𝐵 (𝑡) Δ𝐴1 (𝑡)] = 𝐷𝐹 (𝑡) [𝐸𝑎 𝐸𝑏 𝐸𝑎1] , (7)

where 𝐷, 𝐸𝑎, 𝐸𝑏, and 𝐸𝑎1 are known constant matrices with
appropriate dimensions, and 𝐹(𝑡) is an unknownmatrix with
Lebesgue-measurable elements and satisfies𝐹𝑇 (𝑡) 𝐹 (𝑡) ≤ 𝐼, ∀𝑡 ≥ 0. (8)

This paper mainly analyzes and studies the stability of
uncertain neutral-type Lur’e system (1) under conditions (2),
(3), (5), (6), (7), and (8) based on Lyapunov stability theory.
For neutral-type systems, the assumption that 𝜌(𝐶) < 1 [41]
is required, where 𝜌(⋅) denotes the spectral radius of 𝐶. To
obtain the main results of this paper, the following definition
and lemmas are important.

Definition 1 (robustly absolute stability). The uncertain
neutral-type Lur’e system described by (1) is said to be
robustly absolutely stable in the sector [0, 𝐾] (or [0,∞)), if
the system is asymptotically stable for any nonlinear function𝑓(𝜎(𝑡)) satisfying (5) (or (6)) and all admissible uncertainties.

Lemma 2 (see [15]). For given vectors 𝛼1, 𝛼2 and positive real
scalars 𝜆 satisfying 0 < 𝜆 < 1, symmetric positive definite
matrix 𝑅1, 𝑅2 ∈ R𝑛×𝑛, and any matrix 𝑈01, 𝑈02 ∈ R𝑛×𝑛, the
following inequality holds𝛼𝑇1𝑅1𝛼1𝜆 + 𝛼𝑇2𝑅2𝛼21 − 𝜆 ≥ [𝛼1𝛼2]𝑇⋅ [𝑅1 + (1 − 𝜆) 𝑇1 (1 − 𝜆)𝑈01 + 𝜆𝑈02∗ 𝑅2 + 𝜆𝑇2 ][𝛼1𝛼2] , (9)

where 𝑇1 = 𝑅1 − 𝑈02𝑅−12 𝑈𝑇02, 𝑇2 = 𝑅2 − 𝑈𝑇01𝑅−11 𝑈01.
Lemma 3 (QGFMI [33]). For any given matrices 𝑋, 𝑌, a
positive definite matrix 𝑅 and a continuous differentiable
function {𝜔(𝑠) | 𝑠 ∈ [𝑎, 𝑏]}, the following inequality holds− ∫𝑏
𝑎
𝜔𝑇 (𝑠) 𝑅𝜔 (𝑠) 𝑑𝑠 ≤ [𝜂0𝜂1]𝑇

⋅ [[[(𝑏 − 𝑎)𝑋𝑅
−1𝑋𝑇 𝑋[𝐼 0]∗ 𝑏 − 𝑎3 𝑌𝑅−1𝑌𝑇 + sym {𝑌 [−𝐼 2𝐼]}]]][𝜂0𝜂1] ,

(10)

where 𝜂0 is an any vector, and 𝜂𝑇1 =[∫𝑏
𝑎
𝜔𝑇(𝑠)𝑑𝑠 (1/(𝑏 − 𝑎)) ∫𝑏

𝑎
∫𝑏
𝜃
𝜔𝑇(𝑠)𝑑𝑠 𝑑𝜃].

Lemma 4 (see [42]). For a given quadratic function 𝑙(𝑠) =𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0, where 𝑎𝑖 ∈ 𝑅 (𝑖 = 0, 1, 2), ℎ12 = ℎ2 − ℎ1, if
the following inequalities hold(𝑖) 𝑙 (ℎ1) < 0;(𝑖𝑖) 𝑙 (ℎ2) < 0;(𝑖𝑖𝑖) − ℎ212𝑎2 + 𝑙 (ℎ1) < 0, (11)

one has 𝑙(𝑠) < 0, for all 𝑠 ∈ [ℎ1, ℎ2].



4 Complexity

ℎ1𝑡 = ℎ(𝑡) − ℎ1, ℎ2𝑡 = ℎ2 − ℎ(𝑡), ℎ12 = ℎ2 − ℎ1,ℎ𝑑 = 1 − ℎ̇(𝑡), 𝜇1 = 𝜇1 + ℎ̇(𝑡), 𝛾𝑇(𝑠) = [𝑥𝑇(𝑠) �̇�𝑇(𝑠)],
V1(𝑡) = ∫𝑡

𝑡−ℎ1

𝑥𝑇(𝑠)ℎ1 𝑑𝑠, V2(𝑡) = ∫𝑡−ℎ1𝑡−ℎ(𝑡) 𝑥𝑇(𝑠)ℎ1𝑡 𝑑𝑠, V3(𝑡) = ∫𝑡−ℎ(𝑡)𝑡−ℎ2

𝑥𝑇(𝑠)ℎ2𝑡 𝑑𝑠,𝜔1(𝑡) = ℎ1V1(𝑡), 𝜔2(𝑡) = ℎ1𝑡V2(𝑡), 𝜔3(𝑡) = ℎ2𝑡V3(𝑡),𝜁𝑇 (𝑡) = [𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇(𝑡 − ℎ2) 𝜔1(𝑡) 𝜔2(𝑡) 𝜔3(𝑡)],𝜁𝑇1 (𝑡) = [𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇(𝑡 − ℎ2) V2(𝑡)],𝜁𝑇2 (𝑡) = [𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇(𝑡 − ℎ2) V3(𝑡)],Δ𝑇(𝑡) = [𝜔𝑇2 (𝑡) 𝑥𝑇(𝑡 − ℎ1) − 𝑥𝑇(𝑡 − ℎ(𝑡)) 𝜔𝑇3 (𝑡) 𝑥𝑇(𝑡 − ℎ(𝑡)) − 𝑥𝑇(𝑡 − ℎ2)],𝜉𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ2) �̇�𝑇 (𝑡) �̇�𝑇 (𝑡 − ℎ1) �̇�𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑡 − ℎ2) V1 (𝑡) V2 (𝑡) V3 (𝑡)∫𝑡
𝑡−ℎ1
∫𝑡
𝑢
(𝑥𝑇 (𝑠) /ℎ1) 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ1𝑡−ℎ(𝑡) ∫𝑡−ℎ1𝑢 (𝑥𝑇 (𝑠) /ℎ1𝑡) 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ(𝑡)𝑡−ℎ2

∫𝑡−ℎ(𝑡)
𝑢

(𝑥𝑇 (𝑠) /ℎ2𝑡) 𝑑𝑢 𝑑𝑠 �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑓𝑇 (𝜎 (𝑡))],𝜂1 (𝑡) = [ 𝜔2(𝑡)𝑥(𝑡 − ℎ1) − 𝑥(𝑡 − ℎ(𝑡))] , 𝜂2 (𝑡) = [ 𝜔3(𝑡)𝑥(𝑡 − ℎ(𝑡)) − 𝑥(𝑡 − ℎ2)] .
Box 1: Notations of several symbols and matrices in Theorems 8 and 14.

Proof. The proof is similar to lemma 2 of [42]. First, in the
case of 𝑎2 ≥ 0, 𝑙 is a convex function. So, (i) and (ii) guarantee𝑙(𝑠) < 0, ∀𝑠 ∈ [ℎ1, ℎ2]. Next, for 𝑎2 < 0, 𝑙 is a concave function.
So, 𝑙(𝑠) ≤ ̇𝑙(ℎ2)(𝑠−ℎ2)+𝑙(ℎ2) = (2𝑎2ℎ2+𝑎1)𝑠−𝑎2ℎ22+𝑎0 fl 𝑔(𝑠).
Then 𝑔(ℎ1) = −𝑎2ℎ212 + 𝑎2ℎ21 + 𝑎1ℎ1 + 𝑎0 = −𝑎2ℎ212 + 𝑙(ℎ1) < 0
from (iii) and 𝑔(ℎ2) = 𝑙(ℎ2) < 0 from (ii) guarantee that 𝑙(𝑠) <0, for all 𝑙 ∈ [ℎ1, ℎ2]. This completes the proof.

Remark 5. It is interesting to note that, in Lemma 4, whenℎ1 = 0, inequalities (11) can be rewritten in those of lemma 2
in [42]. Hence the established Lemma 4 covers the lemma in
[42].

Lemma 6 (see [43]). Given matrices Γ, Ξ, and Ω = Ω𝑇, the
following inequalityΩ + Γ𝐹 (𝜎) Ξ + Ξ𝑇𝐹𝑇 (𝜎) Γ𝑇 < 0 (12)

holds for any𝐹(𝜎) satisfying𝐹𝑇(𝜎)𝐹(𝜎) ≤ 𝐼, if and only if there
exists a scalar 𝜀 > 0 such thatΩ + 𝜀−1ΓΓ𝑇 + 𝜀Ξ𝑇Ξ < 0. (13)

Remark 7. Recently, [29] improved the stability results of the
uncertain neutral-type Lur’e system (1) by combining the
extended double integral with Wirtinger-based inequalities
technique. In practice, it is known that the range of delay with
nonzero lower bound is often encountered, and such systems
are referred to as interval time-delay systems. So, both the
range of delay with zero lower bound and that with nonzero
lower bound are considered in this paper. In addition, the
lower bound of the delay derivative is also involved in this
paper, which is not mentioned in [29].

3. Main Results

3.1. Absolute Stability Criteria for Nominal Form. In this
section, we will investigate the robustly absolute stability
problem of the system (1). First, we give an absolute stability
criterion for nominal formof system (1)without uncertainties
described as�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏 (𝑡)) = 𝐴𝑥 (𝑡) + 𝐴1𝑥 (𝑡 − ℎ (𝑡))+ 𝐵𝑓 (𝜎 (𝑡)) ,𝜎 (𝑡) = 𝐻𝑇𝑥 (𝑡) , ∀𝑡 ≥ 0,𝑥 (𝑠) = 𝜑 (𝑠) ,�̇� (𝑠) = �̇� (𝑠) ,𝑠 ∈ [−max (ℎ2, 𝜏) , 0] , ℎ (𝑡) ∈ C.1𝑠 ∈ [−max (ℎ, 𝜏) , 0] , ℎ (𝑡) ∈ C.2.

(14)

For the sake of simplicity on matrix representation, the
notations of several symbols and matrices are defined as
Box 1 of Appendix A. The following theorem will give an
absolute stability criterion for Lur’e system (14) satisfying the
conditions C. 1 and (5).

Theorem 8. e system (14) satisfying the conditions (2) and
(5) is absolutely stable for given values of ℎ2 ≥ ℎ1 ≥ 0,𝜇1, 𝜇2 < 1, 𝜏𝑑 < 1 and 𝑘𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑚),
if there exist symmetric matrices 𝑃 ∈ R7𝑛×7𝑛, (𝑃𝑎, 𝑃𝑏 ∈
R5𝑛×5𝑛), (𝑄𝑎, 𝑄𝑏, 𝑅0𝑎, 𝑅𝑎, 𝑅𝑏 ∈ R𝑛×𝑛), positive definite matri-
ces (𝑄2 ∈ R𝑛×𝑛), (𝑄1, 𝑅0, 𝑅1, 𝑅2, 𝑄1(𝑡), 𝑄2(𝑡) ∈ R2𝑛×2𝑛),𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚}, Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝑚} and any
matrices (𝑈01, 𝑈02 ∈ R2𝑛×2𝑛, 𝑈 ∈ R(3𝑛+𝑚)×𝑛), 𝑋0 ∈ R3𝑛×2𝑛,𝑋𝑖 ∈ R5𝑛×2𝑛, 𝑌𝜆 ∈ R4𝑛×2𝑛 (𝑖 = 1, . . . , 4; 𝜆 = 0, . . . , 4) such that
the following LMIs hold for [ℎ(𝑡), ℎ̇(𝑡)] ∈ {[ℎ1, ℎ2] × [𝜇1, 𝜇2]}:𝑄𝑎 > 0,𝑄𝑏 > 0,𝑅0𝑎 > 0,



Complexity 5𝑅𝑎 > 0,𝑅𝑏 > 0,Ω1[ℎ(𝑡)] > 0,Ω2[ℎ(𝑡)] > 0,
(15)[[Ω4[ℎ1] + 1ℎ12 𝐽𝑇Ω3[ℎ1]𝐽 𝐸1𝑈02∗ ℎ12Ω2[ℎ1]]] > 0,[[Ω4[ℎ2] + 1ℎ12 𝐽𝑇Ω3[ℎ2]𝐽 𝐸2𝑈𝑇01∗ ℎ12Ω1[ℎ2]]] > 0,
(16)

𝑙 (ℎ1, ℎ̇ (𝑡) , 𝛼) =
[[[[[[[[[[[[[[[[

Π[ℎ1 ,ℎ̇(𝑡)] Ω01 Ω02 Ω𝑎[1,4] 𝜇1Ω𝑎[1,2] ℎ𝑑Ω[ℎ1]𝑏[2,1,3] Ω[ℎ1]𝑏[2,1,1]∗ −ℎ1𝑅0𝑎 0 0 0 0 0∗ ∗ −3ℎ1𝑅0𝑎 0 0 0 0∗ ∗ ∗ −ℎ12𝑅𝑏 0 0 0∗ ∗ ∗ ∗ −𝜇1ℎ12𝑄𝑏 0 0∗ ∗ ∗ ∗ ∗ −3ℎ𝑑ℎ12𝑅𝑎 0∗ ∗ ∗ ∗ ∗ ∗ −3ℎ12𝑄𝑎

]]]]]]]]]]]]]]]]
< 0, (17)

𝑙 (ℎ1, ℎ̇ (𝑡) , 1 − 𝛼) =
[[[[[[[[[[[[[[[[

Π[ℎ1 ,ℎ̇(𝑡)] Ω01 Ω02 Ω𝑎[1,4] 𝜇1Ω𝑎[1,2] Ω[ℎ1]𝑏[3,2,4] 𝜇1Ω[ℎ1]𝑏[3,2,2]∗ −ℎ1𝑅0𝑎 0 0 0 0 0∗ ∗ −3ℎ1𝑅0𝑎 0 0 0 0∗ ∗ ∗ −ℎ12𝑅𝑏 0 0 0∗ ∗ ∗ ∗ −𝜇1ℎ12𝑄𝑏 0 0∗ ∗ ∗ ∗ ∗ −3ℎ12𝑅𝑏 0∗ ∗ ∗ ∗ ∗ ∗ −3𝜇1ℎ12𝑄𝑏

]]]]]]]]]]]]]]]]
< 0, (18)

𝑙 (ℎ2, ℎ̇ (𝑡) , 𝛼) =
[[[[[[[[[[[[[[[[

Π[ℎ2 ,ℎ̇(𝑡)] Ω01 Ω02 ℎ𝑑Ω𝑎[1,3] Ω𝑎[1,1] ℎ𝑑Ω[ℎ2]𝑏[2,1,3] Ω[ℎ2]𝑏[2,1,1]∗ −ℎ1𝑅0𝑎 0 0 0 0 0∗ ∗ −3ℎ1𝑅0𝑎 0 0 0 0∗ ∗ ∗ −ℎ𝑑ℎ12𝑅𝑎 0 0 0∗ ∗ ∗ ∗ −ℎ12𝑄𝑎 0 0∗ ∗ ∗ ∗ ∗ −3ℎ𝑑ℎ12𝑅𝑎 0∗ ∗ ∗ ∗ ∗ ∗ −3ℎ12𝑄𝑎

]]]]]]]]]]]]]]]]
< 0, (19)

𝑙 (ℎ2, ℎ̇ (𝑡) , 1 − 𝛼) =
[[[[[[[[[[[[[[[[

Π[ℎ2 ,ℎ̇(𝑡)] Ω01 Ω02 ℎ𝑑Ω𝑎[1,3] Ω𝑎[1,1] Ω[ℎ2]𝑏[3,2,4] 𝜇1Ω[ℎ2]𝑏[3,2,2]∗ −ℎ1𝑅0𝑎 0 0 0 0 0∗ ∗ −3ℎ1𝑅0𝑎 0 0 0 0∗ ∗ ∗ −ℎ𝑑ℎ12𝑅𝑎 0 0 0∗ ∗ ∗ ∗ −ℎ12𝑄𝑎 0 0∗ ∗ ∗ ∗ ∗ −3ℎ12𝑅𝑏 0∗ ∗ ∗ ∗ ∗ ∗ −3𝜇1ℎ12𝑄𝑏

]]]]]]]]]]]]]]]]
< 0, (20)



6 Complexity−𝑎2ℎ212 + 𝑙 (ℎ1, ℎ̇ (𝑡) , 𝛼) < 0,−𝑎2ℎ212 + 𝑙 (ℎ1, ℎ̇ (𝑡) , 1 − 𝛼) < 0, (21)

where the related notations are defined in Box 3 of Appendix B.

Proof. Construct an LKF candidate as

𝑉 (𝑡) = 5∑
𝑖=1

𝑉𝑖 (𝑡) (22)

with

𝑉1 (𝑡) = 𝜁𝑇 (𝑡) 𝑃𝜁 (𝑡) + ℎ1𝑡𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡)+ ℎ2𝑡𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡) ,𝑉2 (𝑡) = ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄1 (𝑡) 𝛾 (𝑠) 𝑑𝑠
+ ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄2 (𝑡) 𝛾 (𝑠) 𝑑𝑠,
𝑉3 (𝑡) = ∫𝑡

𝑡−ℎ1

𝛾𝑇 (𝑠) 𝑄1𝛾 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡−𝜏(𝑡)

�̇�𝑇 (𝑠) 𝑄2�̇� (𝑠) 𝑑𝑠
+ 2 𝑚∑
𝑖=1

𝜆𝑖 ∫𝜎𝑖
0
𝑓𝑖 (𝜎𝑖) 𝑑𝜎𝑖,

𝑉4 (𝑡) = ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

∫𝑡−ℎ1
𝜃

𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠 𝑑𝜃
+ 𝜇1 ∫𝑡−ℎ(𝑡)

𝑡−ℎ2

∫𝑡−ℎ(𝑡)
𝜃

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠 𝑑𝜃
𝑉5 (𝑡) = ∫𝑡

𝑡−ℎ1

∫𝑡
𝜃
𝛾𝑇 (𝑠) 𝑅0𝛾 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

∫𝑡−ℎ1
𝜃

𝛾𝑇 (𝑠) 𝑅1𝛾 (𝑠) 𝑑𝑠 𝑑𝜃
+ ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

∫𝑡−ℎ(𝑡)
𝜃

𝛾𝑇 (𝑠) 𝑅2𝛾 (𝑠) 𝑑𝑠 𝑑𝜃,

(23)

where notations of several symbols andmatrices can be found
in Boxes 1 and 3 of Appendixes A and B.

First step, because the positive definiteness of the Lya-
punov matrices 𝑃, 𝑃𝑎, and 𝑃𝑏 is not required, the positive

definiteness of the LKF (22) should be proved. The 𝑃𝑎− and𝑃𝑏− dependent terms can be rewritten as

ℎ1𝑡𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡) + ℎ2𝑡𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡)
= [[[[[[[[[

𝑥 (𝑡)𝑥 (𝑡 − ℎ1)𝑥 (𝑡 − ℎ (𝑡))𝑥 (𝑡 − ℎ2)0
]]]]]]]]]
𝑇

[ℎ1𝑡𝑃𝑎 + ℎ2𝑡𝑃𝑏] [[[[[[[[[
𝑥 (𝑡)𝑥 (𝑡 − ℎ1)𝑥 (𝑡 − ℎ (𝑡))𝑥 (𝑡 − ℎ2)0

]]]]]]]]]
+ 2[[[[[[[[[

𝑥 (𝑡)𝑥 (𝑡 − ℎ1)𝑥 (𝑡 − ℎ (𝑡))𝑥 (𝑡 − ℎ2)0
]]]]]]]]]
𝑇

⋅ {{{{{{{{{{{{{{{{{
𝑃𝑎 [[[[[[[[[

0000𝜔2 (𝑡)
]]]]]]]]]
+ 𝑃𝑏 [[[[[[[[[

0000𝜔3 (𝑡)
]]]]]]]]]
}}}}}}}}}}}}}}}}}+ 𝜔𝑇2 (𝑡) 𝐸𝑃𝑎𝐸𝑇𝜔2 (𝑡)ℎ1𝑡 + 𝜔𝑇3 (𝑡) 𝐸𝑃𝑏𝐸𝑇𝜔3 (𝑡)ℎ2𝑡 ,

(24)

where 𝐸 = [0 0 0 0 𝐼].
Based on𝑄1(𝑡) > 0,𝑄2(𝑡) > 0 and Jensen’s inequality, the𝑉2(𝑡) term can be estimated as

𝑉2 (𝑡) ≥ 𝜂𝑇1 (𝑡) 𝑄1 (𝑡) 𝜂1 (𝑡)ℎ1𝑡 + 𝜂𝑇2 (𝑡) 𝑄2 (𝑡) 𝜂2 (𝑡)ℎ2𝑡 . (25)

According to Ω𝑖[ℎ(𝑡)] > 0 (𝑖 = 1, 2) and Lemma 2, we can
obtain the following inequality from (24) and (25)

𝑉2 (𝑡) + 𝜔𝑇2 (𝑡) 𝐸𝑃𝑎𝐸𝑇𝜔2 (𝑡)ℎ1𝑡 + 𝜔𝑇3 (𝑡) 𝐸𝑃𝑏𝐸𝑇𝜔3 (𝑡)ℎ2𝑡≥ 𝜂𝑇1 (𝑡) ([ 𝐸𝑃𝑎𝐸𝑇 00 0 ] + 𝑄1 (𝑡)) 𝜂1 (𝑡)ℎ1𝑡+ 𝜂𝑇2 (𝑡) ([ 𝐸𝑃𝑏𝐸𝑇 00 0 ] + 𝑄2 (𝑡)) 𝜂2 (𝑡)ℎ2𝑡
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≥ Δ𝑇 (𝑡) Ω3[ℎ(𝑡)]ℎ12 Δ (𝑡)− (1 − 𝛼)ℎ12 𝜂𝑇1 (𝑡) 𝑈02Ω−12[ℎ(𝑡)]𝑈𝑇02𝜂1 (𝑡)− 𝛼ℎ12 𝜂𝑇2 (𝑡) 𝑈𝑇01Ω−11[ℎ(𝑡)]𝑈01𝜂2 (𝑡) .
(26)

It follows from (15)-(16), (22), (24), (25), and (26) and𝑄1 > 0,𝑄2 > 0, 𝑅𝑖 > 0 (𝑖 = 0, 1, 2) that
𝑉 (𝑡) > 0. (27)

Thus, the LKF (22) is positive definite.
Second step, the time derivative of 𝑉(𝑡) with respect to

time along the trajectory of the system (14) is as follows:

�̇�1 (𝑡) = ℎ̇ (𝑡) 𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡) − ℎ̇ (𝑡) 𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡)+ 2𝜁𝑇 (𝑡) 𝑃 ̇𝜁 (𝑡) + 2ℎ1𝑡𝜁𝑇1 (𝑡) 𝑃𝑎 ̇𝜁1 (𝑡) + 2ℎ2𝑡𝜁𝑇2 (𝑡)⋅ 𝑃𝑏 ̇𝜁2 (𝑡) = ℎ̇ (𝑡) 𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡) − ℎ̇ (𝑡) 𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡)
+ 2𝜁𝑇 (𝑡) 𝑃

[[[[[[[[[[[[[[[

�̇� (𝑡)�̇� (𝑡 − ℎ1)ℎ𝑑�̇� (𝑡 − ℎ (𝑡))�̇� (𝑡 − ℎ2)𝑥 (𝑡) − 𝑥 (𝑡 − ℎ1)𝑥 (𝑡 − ℎ1) − ℎ𝑑𝑥 (𝑡 − ℎ (𝑡))ℎ𝑑𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ2)

]]]]]]]]]]]]]]]+ 2ℎ1𝑡𝜁𝑇1 (𝑡)
⋅ 𝑃𝑎
[[[[[[[[[[[[

�̇� (𝑡)�̇� (𝑡 − ℎ1)ℎ𝑑�̇� (𝑡 − ℎ (𝑡))�̇� (𝑡 − ℎ2)𝑥 (𝑡 − ℎ1) − ℎ𝑑𝑥 (𝑡 − ℎ (𝑡)) − ℎ̇ (𝑡) V2 (𝑡)ℎ1𝑡
]]]]]]]]]]]]+ 2ℎ2𝑡𝜁𝑇2 (𝑡)

⋅ 𝑃𝑏
[[[[[[[[[[[[

�̇� (𝑡)�̇� (𝑡 − ℎ1)ℎ𝑑�̇� (𝑡 − ℎ (𝑡))�̇� (𝑡 − ℎ2)ℎ𝑑𝑥 (𝑡 − ℎ (𝑡)) − 𝑥 (𝑡 − ℎ2) + ℎ̇ (𝑡) V3 (𝑡)ℎ2𝑡
]]]]]]]]]]]]
,

(28)

�̇�2 (𝑡) = 𝛾𝑇 (𝑡 − ℎ1) 𝑄1 (𝑡) 𝛾 (𝑡 − ℎ1) + ℎ𝑑𝛾𝑇 (𝑡 − ℎ (𝑡))⋅ [𝑄2 (𝑡) − 𝑄1 (𝑡)] 𝛾 (𝑡 − ℎ (𝑡)) − 𝛾𝑇 (𝑡 − ℎ2) 𝑄2 (𝑡)⋅ 𝛾 (𝑡 − ℎ2) − ℎ̇ (𝑡) ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄11𝛾 (𝑠) 𝑑𝑠 − ℎ̇ (𝑡)
⋅ ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄21𝛾 (𝑠) 𝑑𝑠,
(29)

�̇�3 (𝑡) ≤ 𝛾𝑇 (𝑡) 𝑄1𝛾 (𝑡) − 𝛾𝑇 (𝑡 − ℎ1) 𝑄1𝛾 (𝑡 − ℎ1)+ �̇�𝑇 (𝑡) 𝑄2�̇� (𝑡) − (1 − 𝜏𝑑) �̇�𝑇 (𝑡 − 𝜏 (𝑡))⋅ 𝑄2�̇� (𝑡 − 𝜏 (𝑡)) + 2𝑓𝑇 (𝜎 (𝑡)) Λ𝐻𝑇�̇� (𝑡) , (30)

�̇�4 (𝑡) = ℎ1𝑡𝛾𝑇 (𝑡 − ℎ1) 𝑄𝑎𝛾 (𝑡 − ℎ1) + 𝜇1⋅ ℎ𝑑ℎ2𝑡𝛾𝑇 (𝑡 − ℎ (𝑡)) 𝑄𝑏𝛾 (𝑡 − ℎ (𝑡))− ℎ𝑑 ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠 − 𝜇1
⋅ ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠,
(31)

�̇�5 (𝑡) = ℎ1𝛾𝑇 (𝑡) 𝑅0𝛾 (𝑡) + ℎ1𝑡𝛾𝑇 (𝑡 − ℎ1) 𝑅1𝛾 (𝑡 − ℎ1)+ ℎ𝑑ℎ2𝑡𝛾𝑇 (𝑡 − ℎ (𝑡)) 𝑅2𝛾 (𝑡 − ℎ (𝑡))− ∫𝑡
𝑡−ℎ1

𝛾𝑇 (𝑠) 𝑅0𝛾 (𝑠) 𝑑𝑠
− ℎ𝑑 ∫𝑡−ℎ1

𝑡−ℎ(𝑡)
𝛾𝑇 (𝑠) 𝑅1𝛾 (𝑠) 𝑑𝑠

− ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑅2𝛾 (𝑠) 𝑑𝑠.
(32)

For additional symmetricmatrices𝑄𝑎,𝑄𝑏,𝑅0𝑎,𝑅𝑎, and𝑅𝑏 the
following zero equations are satisfied0 = ℎ̇ (𝑡) [𝑥𝑇 (𝑡 − ℎ1) 𝑄𝑎𝑥 (𝑡 − ℎ1)− 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑄𝑎𝑥 (𝑡 − ℎ (𝑡))− 2∫𝑡−ℎ1

𝑡−ℎ(𝑡)
𝑥𝑇 (𝑠) 𝑄𝑎�̇� (𝑠) 𝑑𝑠+ 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑄𝑏𝑥 (𝑡 − ℎ (𝑡))− 𝑥𝑇 (𝑡 − ℎ2) 𝑄𝑏𝑥 (𝑡 − ℎ2)− 2∫𝑡−ℎ(𝑡)

𝑡−ℎ2

𝑥𝑇 (𝑠) 𝑄𝑏�̇� (𝑠) 𝑑𝑠] ,
(33)



8 Complexity0 = 𝑥𝑇 (𝑡) 𝑅0𝑎𝑥 (𝑡) − 𝑥𝑇 (𝑡 − ℎ1) 𝑅0𝑎𝑥 (𝑡 − ℎ1)− 2∫𝑡
𝑡−ℎ1

𝑥𝑇 (𝑠) 𝑅0𝑎�̇� (𝑠) 𝑑𝑠, (34)

0 = ℎ𝑑 [𝑥𝑇 (𝑡 − ℎ1) 𝑅𝑎𝑥 (𝑡 − ℎ1)− 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑅𝑎𝑥 (𝑡 − ℎ (𝑡))− 2∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝑥𝑇 (𝑠) 𝑅𝑎�̇� (𝑠) 𝑑𝑠] + 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑅𝑏𝑥 (𝑡− ℎ (𝑡)) − 𝑥𝑇 (𝑡 − ℎ2) 𝑅𝑏𝑥 (𝑡 − ℎ2)− 2∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝑥𝑇 (𝑠) 𝑅𝑏�̇� (𝑠) 𝑑𝑠.
(35)

Taking the zero inequalities in �̇�2 and �̇�4, we have the
following integral terms.𝜑 = −∫𝑡−ℎ1

𝑡−ℎ(t)
𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠

− (𝜇1 + ℎ̇ (𝑡)) ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠
− ∫𝑡
𝑡−ℎ1

𝛾𝑇 (𝑠) 𝑅0𝑎𝛾 (𝑠) 𝑑𝑠
− ℎ𝑑 ∫𝑡−ℎ1

𝑡−ℎ(𝑡)
𝛾𝑇 (𝑠) 𝑅𝑎𝛾 (𝑠) 𝑑𝑠

− ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑅𝑏𝛾 (𝑠) 𝑑𝑠.
(36)

It follows from Lemma 3 with an augmented vector 𝛾(𝑠) that
−∫𝑡
𝑡−ℎ1

𝛾𝑇 (𝑠) 𝑅0𝑎𝛾 (𝑠) 𝑑𝑠 ≤ [𝑊𝑇01𝑊𝑇02]𝑇[[[ℎ1𝑋0𝑅
−1

0𝑎𝑋𝑇0 𝑋0𝐻01∗ ℎ13 𝐺0𝑌0𝑅−10𝑎𝑌𝑇0 𝐺0 + sym {𝐺0𝑌0𝐻02}]]][𝑊
𝑇
01𝑊𝑇02] , (37)

−∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠 ≤ [𝑊𝑇1𝑊𝑇2 ]𝑇[[[ℎ1𝑡𝑋1𝑄
−1

𝑎 𝑋𝑇1 𝑋1𝐻1∗ ℎ1𝑡3 𝐺1𝑌1𝑄−1𝑎 𝑌𝑇1 𝐺1 + sym {𝐺1𝑌1𝐻3}]]][𝑊
𝑇
1𝑊𝑇2 ] , (38)

−𝜇1 ∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠 ≤ 𝜇1 [𝑊𝑇1𝑊𝑇3 ]𝑇[[[ℎ2𝑡𝑋2𝑄
−1

𝑏 𝑋𝑇2 𝑋2𝐻2∗ ℎ2𝑡3 𝐺2𝑌2𝑄−1𝑏 𝑌𝑇2 𝐺2 + sym {𝐺2𝑌2𝐻4}]]][𝑊
𝑇
1𝑊𝑇3 ] , (39)

−ℎ𝑑 ∫𝑡−ℎ1
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑅𝑎𝛾 (𝑠) 𝑑𝑠 ≤ ℎ𝑑 [𝑊𝑇1𝑊𝑇2 ]𝑇[[[ℎ1𝑡𝑋3𝑅
−1

𝑎 𝑋𝑇3 𝑋3𝐻1∗ ℎ1𝑡3 𝐺1𝑌3𝑅−1𝑎 𝑌𝑇3 𝐺1 + sym {𝐺1𝑌3𝐻3}]]][𝑊
𝑇
1𝑊𝑇2 ] , (40)

−∫𝑡−ℎ(𝑡)
𝑡−ℎ2

𝛾𝑇 (𝑠) 𝑅𝑏𝛾 (𝑠) 𝑑𝑠 [𝑊𝑇1𝑊𝑇3 ]𝑇[[[ℎ2𝑡𝑋4𝑅
−1

𝑏 𝑋𝑇4 𝑋4𝐻2∗ ℎ2𝑡3 𝐺2𝑌4𝑅−1𝑏 𝑌𝑇4 𝐺2 + sym {𝐺2𝑌4𝐻4}]]][𝑊
𝑇
1𝑊𝑇3 ] . (41)

For any appropriately dimensioned matrices 𝑈 =[𝑈𝑇1 𝑈𝑇2 𝑈𝑇3 𝑈𝑇4 ]𝑇, it is true that
0 = 2 [𝑥𝑇 (𝑡) �̇�𝑇 (𝑡) �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑓𝑇 (𝜎 (𝑡))]⋅ 𝑈 [𝐴𝑥 (𝑡) + 𝐴1𝑥 (𝑡 − ℎ (𝑡)) + 𝐵𝑓 (𝜎 (𝑡))+ 𝐶�̇� (𝑡 − 𝜏 (𝑡)) − �̇� (𝑡)] . (42)

Letting 𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚} > 0, it follows from (5) that

2𝑓𝑇 (𝜎 (𝑡)) 𝑆 [𝐾𝐻𝑇𝑥 (𝑡) − 𝑓𝑇 (𝜎 (𝑡))] ≥ 0. (43)

Finally, from the above derivation, we have�̇� (𝑡) ≤ 𝜉𝑇 (𝑡) {Π[ℎ(𝑡),ℎ̇(𝑡)] + ℎ1 [𝑊01𝑋0𝑅−10𝑎𝑋𝑇0𝑊𝑇01
+ 13𝑊02𝐺0𝑌0𝑅−10𝑎𝑌𝑇0 𝐺0𝑊𝑇02]+ ℎ1𝑡 [ℎ𝑑𝑊1𝑋3𝑅−1𝑎 𝑋𝑇3𝑊𝑇1 +𝑊1𝑋1𝑄−1𝑎 𝑋𝑇1𝑊𝑇1 ]+ ℎ2𝑡 [𝑊1𝑋4𝑅−1𝑏 𝑋𝑇4𝑊𝑇1 + 𝜇1𝑊1𝑋2𝑄−1𝑏 𝑋𝑇2𝑊𝑇1 ]+ ℎ1𝑡 [ℎ𝑑3 𝑊2𝐺1𝑌3𝑅−1𝑎 𝑌𝑇3 𝐺1𝑊𝑇2
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+ 13𝑊2𝐺1𝑌1𝑄−1𝑎 𝑌𝑇1 𝐺1𝑊𝑇2 ]+ ℎ2𝑡 [13𝑊3𝐺2𝑌4𝑅−1𝑏 𝑌𝑇4 𝐺2𝑊𝑇3+ 𝜇13 𝑊3𝐺2𝑌2𝑄−1𝑏 𝑌𝑇2 𝐺2𝑊𝑇3 ]} 𝜉 (𝑡)= 𝜉𝑇 (𝑡) {Π[ℎ(𝑡),ℎ̇(𝑡)] + ℎ1 [𝑊01𝑋0𝑅−10𝑎𝑋𝑇0𝑊𝑇01
+ 13𝑊02𝐺0𝑌0𝑅−10𝑎𝑌𝑇0 𝐺0𝑊𝑇02]+ ℎ1𝑡 [ℎ𝑑𝑊1𝑋3𝑅−1𝑎 𝑋𝑇3𝑊𝑇1 +𝑊1𝑋1𝑄−1𝑎 𝑋𝑇1𝑊𝑇1 ]+ ℎ2𝑡 [𝑊1𝑋4𝑅−1𝑏 𝑋𝑇4𝑊𝑇1 + 𝜇1𝑊1𝑋2𝑄−1𝑏 𝑋𝑇2𝑊𝑇1 ]+ 𝛼ℎ12 [ℎ𝑑3 𝑊2𝐺1𝑌3𝑅−1𝑎 𝑌𝑇3 𝐺1𝑊𝑇2+ 13𝑊2𝐺1𝑌1𝑄−1𝑎 𝑌𝑇1 𝐺1𝑊𝑇2 ] + (1 − 𝛼)⋅ ℎ12 [13𝑊3𝐺2𝑌4𝑅−1𝑏 𝑌𝑇4 𝐺2𝑊𝑇3+ 𝜇13 𝑊3𝐺2𝑌2𝑄−1𝑏 𝑌𝑇2 𝐺2𝑊𝑇3 ]} 𝜉 (𝑡)

(44)

with 𝛼 = (ℎ(𝑡) − ℎ1)/ℎ12 ≥ 0, 1 − 𝛼 = (ℎ2 − ℎ(𝑡))/ℎ12 ≥ 0.
Therefore, LMIs (17)–(21) hold, which togetherwith Schur

complement equivalence, Lemma 4 and the convex function
theory imply that �̇�(𝑡) < 0. Hence, it follows from the
Lyapunov stability theory that the nominal system (14) is
absolutely stable for any nonlinear function𝑓(𝜎(𝑡)) satisfying
(5). From Definition 1, this completes the proof.

The following theorem will give an absolute stability
criterion for the Lur’e system (14) satisfying the conditionsC.
2 and (5).

Corollary 9. e system (14) satisfying the conditions (3)
and (5) is absolutely stable for given values of ℎ ≥ 0,𝜇1, 𝜇2 < 1, 𝜏𝑑 < 1, and 𝑘𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑚), if there
exist symmetric matrices 𝑃 ∈ R5𝑛×5𝑛, (𝑃𝑎, 𝑃𝑏 ∈ R4𝑛×4𝑛),(𝑄𝑎, 𝑄𝑏, 𝑅𝑎, 𝑅𝑏 ∈ R𝑛×𝑛), positive definite matrices (𝑄2 ∈
R𝑛×𝑛), (𝑅1, 𝑅2, 𝑄1(𝑡), 𝑄2(𝑡) ∈ R2𝑛×2𝑛), 𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚},Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝑚} and any matrices (𝑈01, 𝑈02 ∈
R2𝑛×2𝑛, 𝑈 ∈ R(3𝑛+𝑚)×𝑛), 𝑋𝑖 ∈ R5𝑛×2𝑛, 𝑌𝑖 ∈ R4𝑛×2𝑛 (𝑖 =1, . . . , 4) such that LMIs (15) and (16) and the following LMIs
hold for [ℎ(𝑡), ℎ̇(𝑡)] ∈ {[0, ℎ] × [𝜇1, 𝜇2]}:𝑙 (0, ℎ̇ (𝑡) , 𝛼)

= [[[[[[[[[[
Π[0,ℎ̇(𝑡)] Ω𝑎[1,4] 𝜇1Ω𝑎[1,2] ℎ𝑑Ω[0]𝑏[2,1,3] Ω[0]𝑏[2,1,1]∗ −ℎ𝑅𝑏 0 0 0∗ ∗ −𝜇1ℎ𝑄𝑏 0 0∗ ∗ ∗ −3ℎ𝑑ℎ𝑅𝑎 0∗ ∗ ∗ ∗ −3ℎ𝑄𝑎

]]]]]]]]]]< 0,
(45)𝑙 (0, ℎ̇ (𝑡) , 1 − 𝛼)

= [[[[[[[[[[
Π[0,ℎ̇(𝑡)] Ω𝑎[1,4] 𝜇1Ω𝑎[1,2] Ω[0]𝑏[3,2,4] 𝜇1Ω[0]𝑏[3,2,2]∗ −ℎ𝑅𝑏 0 0 0∗ ∗ −𝜇1ℎ𝑄𝑏 0 0∗ ∗ ∗ −3ℎ𝑅𝑏 0∗ ∗ ∗ ∗ −3𝜇1ℎ𝑄𝑏

]]]]]]]]]]< 0,
(46)

𝑙 (ℎ, ℎ̇ (𝑡) , 𝛼)
= [[[[[[[[[[
Π[ℎ,ℎ̇(𝑡)] ℎ𝑑Ω𝑎[1,3] Ω𝑎[1,1] ℎ𝑑Ω[ℎ]𝑏[2,1,3] Ω[ℎ]𝑏[2,1,1]∗ −ℎ𝑑ℎ𝑅𝑎 0 0 0∗ ∗ −ℎ𝑄𝑎 0 0∗ ∗ ∗ −3ℎ𝑑ℎ𝑅𝑎 0∗ ∗ ∗ ∗ −3ℎ𝑄𝑎

]]]]]]]]]]< 0,
(47)

𝑙 (ℎ, ℎ̇ (𝑡) , 1 − 𝛼)
= [[[[[[[[[[
Π[ℎ,ℎ̇(𝑡)] ℎ𝑑Ω𝑎[1,3] Ω𝑎[1,1] Ω[ℎ]𝑏[3,2,4] 𝜇1Ω[ℎ]𝑏[3,2,2]∗ −ℎ𝑑ℎ𝑅𝑎 0 0 0∗ ∗ −ℎ𝑄𝑎 0 0∗ ∗ ∗ −3ℎ𝑅𝑏 0∗ ∗ ∗ ∗ −3𝜇1ℎ𝑄𝑏

]]]]]]]]]]< 0,
(48)

− 𝑎2ℎ2 + 𝑙 (0, ℎ̇ (𝑡) , 𝛼) < 0,− 𝑎2ℎ2 + 𝑙 (0, ℎ̇ (𝑡) , 1 − 𝛼) < 0, (49)

where the related notations are defined in Box 4 of Appendix C.

Proof. The LKF (22) can be reduced to the following one by
taking ℎ1 = 0, ℎ2 = ℎ, 𝑄1 = 0, and 𝑅0 = 0:

�̃� (𝑡) = 4∑
𝑖=1

�̃�𝑖 (𝑡) (50)
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with�̃�1 (𝑡) = 𝜁𝑇 (𝑡) 𝑃𝜁 (𝑡) + ℎ (𝑡) 𝜁𝑇1 (𝑡) 𝑃𝑎𝜁1 (𝑡)+ (ℎ − ℎ (𝑡)) 𝜁𝑇2 (𝑡) 𝑃𝑏𝜁2 (𝑡) ,�̃�2 (𝑡) = ∫𝑡
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄1 (𝑡) 𝛾 (𝑠) 𝑑𝑠
+ ∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇 (𝑠) 𝑄2 (𝑡) 𝛾 (𝑠) 𝑑𝑠,�̃�3 (𝑡) = ∫𝑡
𝑡−𝜏(𝑡)

�̇�𝑇 (𝑠) 𝑄2�̇� (𝑠) 𝑑𝑠
+ 2 𝑚∑
𝑖=1

𝜆𝑖 ∫𝜎𝑖
0
𝑓𝑖 (𝜎𝑖) 𝑑𝜎𝑖,

�̃�4 (𝑡) = ∫𝑡
𝑡−ℎ(𝑡)

∫𝑡
𝜃
𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝜇1 ∫𝑡−ℎ(𝑡)
𝑡−ℎ

∫𝑡−ℎ(𝑡)
𝜃

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠 𝑑𝜃�̃�5 (𝑡) = ∫𝑡
𝑡−ℎ(𝑡)

∫𝑡
𝜃
𝛾𝑇 (𝑠) 𝑅1𝛾 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫𝑡−ℎ(𝑡)
𝑡−ℎ

∫𝑡−ℎ(𝑡)
𝜃

𝛾𝑇 (𝑠) 𝑅2𝛾 (𝑠) 𝑑𝑠 𝑑𝜃,

(51)

where notations of several symbols and matrices can be
found in Boxes 2 and 4 of Appendixes A and C. The
proof of Corollary 9 is omitted because of the similarity to
Theorem 8.

Remark 10. Theorem 8 and Corollary 9 can reduce the
conservatism of stability conditions based LMI via the LKFs
(22) and (50) application. For nonintegral item 𝑉1(𝑡), the
matrices 𝑃, 𝑃𝑎, and 𝑃𝑏 are just symmetrical, not always
positive definite, and 𝑄1(𝑡) and 𝑄2(𝑡) of the single-integral
item 𝑉2(𝑡) are delay-dependent matrices which can also
further improve the utilization of time delay and its derivative
information. When proving 𝑉(𝑡) > 0, we calculate 𝑉1(𝑡)
and 𝑉2(𝑡) as a whole applying Lemma 2, which may expand
the feasible regions of LMIs (15) and (16). When bounded
the derivative of the LKFs, three additional zero equations
(33)–(35) and Lemma 3 have been used to narrow the gap
between the upper bound and the true value, which may be
another contribution of reducing the conservatismof stability
conditions.

Remark 11. It is worth noting that the delay-product-type
itemwas introduced firstly by C. Zhang et al. [31, 44]; another
novel LKF with delay-dependent matrix was constructed
by W. Kwon et al. [33], where some improved stability
conditions for linear systems with time-varying delay were
given. C. Zhang and W. Kwon et al. pointed that the LKFs
with delay-product-type itemor delay-dependentmatrixmay
reduce the conservatism of stability conditions based on the
same inequality scaling technique. The LKFs (22) and (50)
constructed in this paper, which combine the advantage of

the delay-product-type item and delay-dependentmatrix, are
more general than those given in [31, 33]. In fact, letting𝑄11 =𝑄21 = 0, 𝑄20 = diag{𝑄2, 0}, 𝑄𝑎 = 𝑄𝑏 = 0, and 𝑅1 = 𝑅2, the
LKF (50) can be reduced to the LKF (18) of [31]. And taking𝑃𝑎 = 𝑃𝑏 = 0, 𝑄𝑎 = 𝑄𝑏 = 0, and 𝑅1 = 𝑅2 the LKF (50) can
be reduced to the LKF (16) of [33]. However, the derivation
method of [31, 33] cannot be applied directly. The positive
definiteness of the LKF and negative definiteness of the LKF’s
derivative are proved inTheorem 8.

Remark 12. It is worth noting that in [33], to bound the
integral item for −𝜇 ≤ ℎ̇(𝑡) ≤ 𝜇, (𝜇 > 0)−ℎ̇ (𝑡) ∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇𝑄𝑎𝛾 𝑑𝑠 − ℎ̇ (𝑡) ∫𝑡−ℎ(𝑡)

𝑡−ℎ
𝛾𝑇𝑄𝑏𝛾 𝑑𝑠 (52)

via the QGFMI technique, the following addition zero equa-
tion was introduced0 = 𝜇∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠

− 𝜇∫𝑡
𝑡−ℎ(𝑡)

𝛾𝑇 (𝑠) 𝑄𝑎𝛾 (𝑠) 𝑑𝑠
+ 𝜇∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠− 𝜇∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇 (𝑠) 𝑄𝑏𝛾 (𝑠) 𝑑𝑠.
(53)

Then, the above integral item can be rewritten as the
following form:𝜑 = − (𝜇 + ℎ̇ (𝑡)) ∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇𝑄𝑎𝛾 𝑑𝑠

− (𝜇 + ℎ̇ (𝑡)) ∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇𝑄𝑏𝛾 𝑑𝑠+ 𝜇∫𝑡
𝑡−ℎ(𝑡)

𝛾𝑇𝑄𝑎𝛾 𝑑𝑠 + 𝜇∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇𝑄𝑏𝛾 𝑑𝑠.
(54)

The first two items on the right can be bounded via
the QGFMI technique like (39) of this paper; however,
there are fewer proper techniques for obtaining a tight
upper bound of the integral terms 𝜇∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇(𝑠)𝑄𝑎𝛾(𝑠)𝑑𝑠

and 𝜇∫𝑡−ℎ(𝑡)
𝑡−ℎ

𝛾𝑇(s)𝑄𝑏𝛾(𝑠)𝑑𝑠 due to their positive definiteness.
Thus, to avoid introducing the two positive define integral
terms, we give the modified LKF (22) with a double integral
item 𝑉4(𝑡).
Remark 13. In addition, the main result of [33] was not
LMI due to the terms ℎ2(𝑡) even ℎ3(𝑡). In this paper, all
matrices inequations of Theorem 8 and Corollary 9 are LMI
via Lemma 4 application, which can be solved easily by using
Matlab LMI-toolbox. Moreover, the double integral items𝑉4(𝑡) and𝑉5(𝑡) of the LKF (22) divide the time-delay interval[ℎ1, ℎ2] into two subintervals, that is, [ℎ1, ℎ(𝑡)] and [ℎ(𝑡), ℎ2],



Complexity 11

ℎ𝑑 = 1 − ℎ̇ (𝑡) , 𝛾𝑇 (𝑠) = [𝑥𝑇 (𝑠) �̇�𝑇 (𝑠)] , 𝜇1 = 𝜇1 + ℎ̇(𝑡),
V1(𝑡) = ∫𝑡

𝑡−ℎ(𝑡)

𝑥𝑇(𝑠)ℎ(𝑡) 𝑑𝑠, V2(𝑡) = ∫𝑡−ℎ(𝑡)𝑡−ℎ

𝑥𝑇(𝑠)ℎ − ℎ(𝑡)𝑑𝑠,𝜔1 (𝑡) = ℎ (𝑡) V1 (𝑡) , 𝜔2 (𝑡) = (ℎ − ℎ (𝑡)) V2 (𝑡) , 𝜁𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ) 𝜔1 (𝑡) 𝜔2 (𝑡)],𝜁𝑇1 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ) V1 (𝑡)] , 𝜁𝑇2 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ) V2 (𝑡)],Δ𝑇(𝑡) = [𝜔𝑇1 (𝑡) 𝑥𝑇(𝑡) − 𝑥𝑇(𝑡 − ℎ(𝑡)) 𝜔𝑇2 (𝑡) 𝑥𝑇(𝑡 − ℎ(𝑡)) − 𝑥𝑇(𝑡 − ℎ)],𝜉𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ) �̇�𝑇 (𝑡) �̇�𝑇 (𝑡 − ℎ (𝑡)) �̇�𝑇 (𝑡 − ℎ) V1 (𝑡) V2 (𝑡),∫𝑡
𝑡−ℎ(𝑡)

∫𝑡
𝑢
(𝑥𝑇 (𝑠) /ℎ (𝑡)) 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ(𝑡)

𝑡−ℎ
∫𝑡−ℎ(𝑡)
𝑢

(𝑥𝑇 (𝑠) / (ℎ − ℎ (𝑡))) 𝑑𝑢 𝑑𝑠 �̇�𝑇 (𝑡 − 𝜏 (𝑡)) 𝑓𝑇 (𝜎 (𝑡))],𝜂1 (𝑡) = [ 𝜔1(𝑡)𝑥(𝑡) − 𝑥(𝑡 − ℎ(𝑡))] , 𝜂2 (𝑡) = [ 𝜔2(𝑡)𝑥(𝑡 − ℎ(𝑡)) − 𝑥(𝑡 − ℎ)] .
Box 2: Notations of several symbols and matrices in Corollaries 9 and 15.

instead of using the item ∫𝑡
𝑡−ℎ
𝛾𝑇(𝑠)𝑅𝛾(𝑠)𝑑𝑠 directly, which

further make full use of the information of time-varying
delays ℎ(𝑡) − ℎ1, ℎ2 − ℎ(𝑡) and their derivative ℎ̇(𝑡). Thus,
the QGFMI technique can be used fully in each subinterval,
which can further reduce the conservatism of the stability
conditions.

3.2. Robustly Absolute Stability Criteria for Uncertain Form.
Next, we extend the obtained absolute stability conditions
to robustly absolute stability problem for the uncertain
neutral-type Lur’e system (1) with time-varying parameter
uncertainties satisfying (7) and (8).

Theorem 14. e system (1) satisfying the conditions (2), (5),
(7), and (8) is robustly absolutely stable for given values ofℎ2 ≥ ℎ1 ≥ 0, 𝜇1, 𝜇2 < 1, 𝜏𝑑 < 1, and 𝑘𝑗 > 0 (𝑗 =1, 2, . . . , 𝑚), if there exist symmetric matrices 𝑃 ∈ R7𝑛×7𝑛,(𝑃𝑎, 𝑃𝑏 ∈ R5𝑛×5𝑛), (𝑄𝑎, 𝑄𝑏, 𝑅0𝑎, 𝑅𝑎, 𝑅𝑏 ∈ R𝑛×𝑛), positive
definite matrices (𝑄2 ∈ R𝑛×𝑛), (𝑄1, 𝑅0, 𝑅1, 𝑅2, 𝑄1(𝑡), 𝑄2(𝑡) ∈
R2𝑛×2𝑛), 𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚}, Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝑚},
anymatrices (𝑈01, 𝑈02 ∈ R2𝑛×2𝑛, 𝑈 ∈ R(3𝑛+𝑚)×𝑛),𝑋0 ∈ R3𝑛×2𝑛,𝑋𝑖 ∈ R5𝑛×2𝑛, 𝑌𝜆 ∈ R4𝑛×2𝑛 (𝑖 = 1, . . . , 4; 𝜆 = 0, . . . , 4) and𝜀 > 0 such that LMIs (15)-(16) and the following LMIs hold for[ℎ(𝑡), ℎ̇(𝑡)] ∈ {[ℎ1, ℎ2] × [𝜇1, 𝜇2]}:𝐽1𝑙 (ℎ1, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2 + sym {𝐽2Φ𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (55)

𝐽1𝑙 (ℎ1, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2+ sym {𝐽2Φ𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (56)

𝐽1𝑙 (ℎ2, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2 + sym {𝐽2Φ𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (57)

𝐽1𝑙 (ℎ2, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2+ sym {𝐽2Φ𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (58)

− 𝑎2ℎ212 + 𝐽1𝑙 (ℎ1, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2+ sym {𝐽2Φ𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (59)

− 𝑎2ℎ212 + 𝐽1𝑙 (ℎ1, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ𝑇1Φ1𝐽𝑇2+ sym {𝐽2Φ𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (60)

whereΦ1 = [𝑒1𝐸𝑇𝑎 + 𝑒2𝐸𝑇𝑎1 + 𝑒16𝐸𝑇𝑏 ]𝑇 ,Φ2 = [𝑒1𝑈1𝐷 + 𝑒5𝑈2𝐷 + 𝑒15𝑈3𝐷 + 𝑒16𝑈4𝐷]𝑇 ,𝐽𝑇1 = [𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 0] ,𝐽𝑇2 = [𝐼 0 0 0 0 0 0 0] ,𝐽𝑇3 = [0 0 0 0 0 0 0 𝐼] .
(61)

Proof. If we replace 𝐴, 𝐴1, and 𝐵 in LMIs (17)–(21) with𝐴 + 𝐷𝐹(𝑡)𝐸𝑎, 𝐴1 + 𝐷𝐹(𝑡)𝐸𝑎1, 𝐵 + 𝐷𝐹(𝑡)𝐸𝑏, respectively,
Theorem 14 can be proved based on Lemma 6 easily.

The following corollary will give the robustly absolute
stability criterion for the Lur’e system (1) satisfying the
condition C. 2.

Corollary 15. System (1) satisfying the conditions (3) and
(5), (7), and (8) is robustly absolutely stable for given values
of ℎ ≥ 0, 𝜇1, 𝜇2 < 1, 𝜏𝑑 < 1, and 𝑘𝑗 > 0 (𝑗 =1, 2, . . . , 𝑚), if there exist symmetric matrices 𝑃 ∈ R5𝑛×5𝑛,(𝑃𝑎, 𝑃𝑏 ∈ R4𝑛×4𝑛), (𝑄𝑎, 𝑄𝑏, 𝑅𝑎, 𝑅𝑏 ∈ R𝑛×𝑛), positive definite
matrices (𝑄2 ∈ R𝑛×𝑛), (𝑅1, 𝑅2, 𝑄1(𝑡), 𝑄2(𝑡) ∈ R2𝑛×2𝑛), 𝑆 =
diag{𝑠1, 𝑠2, . . . , 𝑠𝑚}, Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝑚}, any matrices(𝑈01, 𝑈02 ∈ R2𝑛×2𝑛, 𝑈 ∈ R(3𝑛+𝑚)×𝑛), 𝑋𝑖 ∈ R5𝑛×2𝑛, 𝑌𝑖 ∈
R4𝑛×2𝑛 (𝑖 = 1, . . . , 4) and 𝜀 > 0 such that LMIs (15)-(16) and
the following LMIs hold for [ℎ(𝑡), ℎ̇(𝑡)] ∈ {[ℎ1, ℎ2] × [𝜇1, 𝜇2]}:𝐽1𝑙 (0, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2 + sym {𝐽2Φ̃𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (62)



12 Complexity𝐽1𝑙 (0, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2 + sym {𝐽2Φ̃𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (63)

𝐽1𝑙 (ℎ, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2 + sym {𝐽2Φ̃𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (64)

𝐽1𝑙 (ℎ, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2 + sym {𝐽2Φ̃𝑇2 𝐽𝑇3 }− 𝜀𝐽3𝐽𝑇3 < 0, (65)

− 𝑎2ℎ2 + 𝐽1𝑙 (0, ℎ̇ (𝑡) , 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2+ sym {𝐽2Φ̃𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (66)

− 𝑎2ℎ2 + 𝐽1𝑙 (0, ℎ̇ (𝑡) , 1 − 𝛼) 𝐽𝑇1 + 𝜀𝐽2Φ̃𝑇1 Φ̃1𝐽𝑇2+ sym {𝐽2Φ̃𝑇2 𝐽𝑇3 } − 𝜀𝐽3𝐽𝑇3 < 0, (67)

whereΦ̃1 = [𝑒1𝐸𝑇𝑎 + 𝑒2𝐸𝑇𝑎1 + 𝑒12𝐸𝑇𝑏 ]𝑇 ,Φ̃2 = [𝑒1𝑈1𝐷 + 𝑒4𝑈2𝐷 + 𝑒11𝑈3𝐷 + 𝑒12𝑈4𝐷]𝑇 ,𝐽𝑇1 = [𝐼 𝐼 𝐼 𝐼 𝐼 0] ,𝐽𝑇2 = [𝐼 0 0 0 0 0] ,𝐽𝑇3 = [0 0 0 0 0 𝐼] .
(68)

Remark 16. If the nonlinear function 𝑓(𝜎) in the feedback
path satisfies the infinite sector conditions (6), for any 𝑠𝑖 ≥0, 𝑖 = 1, 2, . . . , 𝑚, it follows from (6) that𝑠𝑖𝑓𝑖 (𝜎𝑖) ℎ𝑇𝑖 𝑥 (𝑡) ≥ 0, (69)

which is equivalent to2𝑥𝑇 (𝑡)𝐻𝑆𝑓 (𝜎) ≥ 0, (70)

where 𝑆 = diag{𝑠1, 𝑠2, . . . , 𝑠𝑚}.
Therefore, the corresponding absolute and robustly abso-

lute stability criteria can be obtained by replacing the matrixΘ1 of Theorems 8 and 14 and Corollaries 9 and 15 with Θ2 =𝑒1𝐻𝑆𝑒𝑇16 and Θ̃2 = 𝑒1𝐻𝑆𝑒𝑇12, respectively.

Remark 17. For one special case, in the absence of the
nonlinear function, that is, in case of 𝐵 = 0, the system (1)
is simply written as the following linear neutral system�̇� (𝑡) − 𝐶�̇� (𝑡 − 𝜏 (𝑡)) = (𝐴 + Δ𝐴) 𝑥 (𝑡)+ (𝐴1 + Δ𝐴1) 𝑥 (𝑡 − ℎ (𝑡)) ,𝑥 (𝑠) = 𝜑 (𝑠) ,�̇� (𝑠) = �̇� (𝑠) , 𝑠 ∈ [−max (ℎ2, 𝜏) , 0] , ℎ (𝑡) ∈ 𝐶.1

(71)

𝑠 ∈ [−max (ℎ, 𝜏) , 0] , ℎ (𝑡) ∈ 𝐶.2, (72)
and for another special case, in the absence of the nonlinear
function and neutral-type item, that is, in case of 𝐵 = 0 and𝐶 = 0, the system (1) is simply written as the following linear
time-delayed system:�̇� (𝑡) = (𝐴 + Δ𝐴) 𝑥 (𝑡) + (𝐴1 + Δ𝐴1) 𝑥 (𝑡 − ℎ (𝑡)) ,𝑥 (s) = 𝜑 (𝑠) , 𝑠 ∈ [−max (ℎ2, 𝜏) , 0] , ℎ (𝑡) ∈ 𝐶.1𝑠 ∈ [−max (ℎ, 𝜏) , 0] , ℎ (𝑡) ∈ 𝐶.2. (73)

Obviously, take Theorem 8 as an example. Only letting Θ1 =0,Π4 = [𝑒1𝑈1+𝑒5𝑈2+𝑒15𝑈3] andΠ5 = [𝐴𝑒𝑇1+𝐴1𝑒𝑇2+𝐶𝑒𝑇15−𝑒𝑇5 ],
the stability criteria proposed in this paper are also applied
to this linear neutral system (71) with time-varying delays;
taking Θ1 = 0, 𝑄2 = 0, Π4 = [𝑒1𝑈1 + 𝑒5𝑈2] and Π5 =[𝐴𝑒𝑇1 + 𝐴1𝑒𝑇2 ], the stability criteria proposed in this paper
are also applied to this linear system (73) with time-varying
delays. We will not elaborate here due to the limited space
available. However, some results of detailed comparisons will
be given in the next section directly.

Remark 18. It is worth pointing out that in this paper,
the upper and lower bounds constraints of the time-delay
derivative are 𝜇1 ≤ ℎ̇(𝑡) ≤ 𝜇2, where 𝜏𝑑 < 1, 𝜇2 < 1
due to the diagonal entry −(1 − ̇𝜏(𝑡))𝑄2, −(1 − ℎ̇(𝑡))�̇�𝑇(𝑡 −ℎ(𝑡))(𝑄1(𝑡) − 𝑄2(𝑡))�̇�(𝑡 − ℎ(𝑡)) in Π[ℎ(𝑡),ℎ̇(𝑡)], and −(1 −ℎ̇(𝑡)) ∫𝑡

𝑡−ℎ(𝑡)
𝛾𝑇(𝑠)𝑅1𝛾(𝑠)𝑑𝑠 in �̇�5(𝑡). Similar to Remark 5 of

[45], one can establish a stability criterion for system (1) in
the case 𝜏𝑑 ≥ 1 and 𝜇2 ≥ 1 if 𝜉(𝑡), 𝜁(𝑡), 𝜁1(𝑡), 𝜁2(𝑡), 𝛾(𝑠) and𝑉5(𝑡) are replaced with

𝜉𝑇 (𝑡)= [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ (𝑡)) 𝑥𝑇 (𝑡 − ℎ2) �̇�𝑇 (𝑡) �̇�𝑇 (𝑡 − ℎ1) �̇�𝑇 (𝑡 − ℎ2) V1 (𝑡) V2 (𝑡) V3 (𝑡) ∫𝑡
𝑡−ℎ1

∫𝑡
𝑢

𝑥𝑇 (𝑠)ℎ1 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ1𝑡−ℎ(𝑡) ∫𝑡−ℎ1𝑢 𝑥𝑇 (𝑠)ℎ1𝑡 𝑑𝑢 𝑑𝑠 ∫𝑡−ℎ(𝑡)𝑡−ℎ2

∫𝑡−ℎ(𝑡)
𝑢

𝑥𝑇 (𝑠)ℎ2𝑡 𝑑𝑢 𝑑𝑠 𝑓𝑇 (𝜎 (𝑡))] ,𝜁𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ2) 𝜔1 (𝑡) 𝜔2 (𝑡) 𝜔3 (𝑡)] ,𝜁𝑇1 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ2) V2 (𝑡)] ,𝜁𝑇2 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − ℎ1) 𝑥𝑇 (𝑡 − ℎ2) V3 (𝑡)] ,𝛾𝑇 (𝑠) = 𝑥𝑇 (𝑠) ,𝑄2 = 0,𝑉5 (𝑡) = ∫𝑡
𝑡−ℎ1

∫𝑡−ℎ1
𝜃

𝑥𝑇 (𝑠) 𝑅0𝑥 (𝑠) 𝑑𝑠 𝑑𝜃 + ∫𝑡−ℎ1
𝑡−ℎ2

∫𝑡−ℎ1
𝜃

𝑥𝑇 (𝑠) 𝑅1𝑥 (𝑠) 𝑑𝑠 𝑑𝜃.
(74)

Due to page limitation, this result is omitted.



Complexity 13

4. Numerical Examples

In this section, we give three types of examples, including
the Lur’e system, the linear neutral system, and two linear
systems, to show the effectiveness of the criteria proposed
in this paper. Moreover, the conservatism of the criteria is
checked based on the calculated maximal admissible delay
upper bounds (MADUBs). And the index of the number of
decision variables (NoVs) is applied to show the complexity
of criteria.The stability criteria proposed in this paper are just
dependent on 𝜏𝑑, ℎ, 𝜇1, and 𝜇2, however, independent on 𝜏
and 𝜏(𝑡). So, only 𝜏𝑑 of the information of the neutral-type
time delay 𝜏(𝑡) is given for Examples 1 and 3. For the sake of
simplicity, let −𝜇1 = 𝜇2 = 𝜇.
Example 1. Consider the nominal neutral-type Lur’e system
(14) with the time-varying delays satisfying 𝐶.2 and the
nonlinearity satisfying (6), and the system parameters are
described as 𝐴 = [−2 0.50 −1] ,𝐴1 = ( 1 0.40.4 −1) ,𝐵 = ( −0.5−0.75) ,𝐶 = (0.2 0.10.1 0.2) ,𝐻 = (0.20.6) .

(75)

Let the nonlinearity 𝑓(𝜎(𝑡)) = 𝜎3(𝑡), where 𝜎(𝑡) =𝐻𝑇𝑥(𝑡) = 0.2𝑥1(𝑡)+0.6𝑥2(𝑡).Then, it follows from the infinite
sector condition (6) and 𝑓𝑖(𝜎𝑖(𝑡))/𝜎𝑖(𝑡) = 𝑓(𝜎𝑖(𝑡))/𝜎(𝑡) =𝜎2(𝑡) > 0, that is 𝑓𝑖(𝜎𝑖(𝑡)) ∈ 𝐾[0,∞). Under the condition
C. 2, in Table 1, the MADUBs ℎ of the Lur’e system (14)
for 𝜏𝑑 = 0.1 and different 𝜇 by using Remark 16 and
recent methods in [26, 27, 29, 34] are compared. From the
table, notwithstanding the NoVs of our criteria are bigger
than those of the criteria [26, 27, 29, 34], only [29] is less
conservative than Remark 16 under 𝜇 = 0.2. However our
results become better and better with the increasing of 𝜇.
Figure 1 displays the responses of system states 𝑥(𝑡) for ℎ(𝑡) =2.8490/2+(2.8490/2) sin(0.8𝑡/2.8490), 𝜏(𝑡) = 0.5+|sin(0.1𝑡)|
and initial condition 𝑥(0) = [0.2 − 0.2]𝑇. It is possible to see
that, for this realization, the trajectory converges to the origin,
as expected.

Remark 2. The MADUBs ℎ of the Lur’e system (14) for 𝜏𝑑 =0.1 and different 𝜇 by using our results are less than those of
[21] because the slope restrictions for nonlinearity and the
lower bound of the derivative of the neutral-type delay ̇𝜏(𝑡)
were considered in [21], where these restrictions are more
strict than those of this paper. Thus, the related results of [21]
were not compared with the ones of this paper.
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Figure 1: The state responses for Example 1.

In addition, the construction of the LKF with delay-
dependent matrices is the main reason to reduce the conser-
vatism of the stability criterion in [29], and another one is that
the lower bound of the delay derivative is also involved in this
paper, which is not mentioned in [29].

Example 2. Consider the following Chua’s circuit

�̇� = 𝛼 (𝑦 − 𝑔 (𝑥))̇𝑦 = 𝑥 − 𝑦 + 𝑧�̇� = −𝛽𝑦, (76)

where𝑚0 = −1/7,𝑚1 = 2/7, 𝛼 = 9, 𝛽 = 14.28, and 𝑐 = 1, and
the nonlinear function𝑔(𝑥) is given by𝑔(𝑥) = 𝑚1𝜃1+0.5(𝑚0−𝑚1)(|𝑥 + 𝑐| − |𝑥 − 𝑐|). This Chua’s circuit can be expressed as
a Lur’e-type system.

In [19], a master-slave synchronization scheme through
a time-delayed state error feedback control is devised for the
Chua’s circuit (76), which is given as

𝑀𝑎𝑠𝑡𝑒𝑟 : {{{�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑓 (𝐶𝑥 (𝑡))𝑝 (𝑡) = 𝑊𝑥 (𝑡) ,
𝑆𝑙𝑎V𝑒 : {{{ ̇𝑦 (𝑡) = 𝐴𝑦 (𝑡) + 𝐵𝑓 (𝐶𝑦 (𝑡)) + 𝑢 (𝑡)𝑞 (𝑡) = 𝑊𝑦 (𝑡) ,𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 : 𝑢 (𝑡) = −𝐾𝑎 (𝑥 (𝑡) − 𝑦 (𝑡))+ 𝐾𝑏 (𝑝 (𝑡 − ℎ (𝑡)) − 𝑞 (𝑡 − ℎ (𝑡))) ,

(77)

where 𝑓(𝜃) = 0.5(|𝜃 + 1| − |𝜃 − 1|) ∈ [0, 1], 𝐶 = 𝑊 = [1 0 0]
and
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Table 1: MADUBs ℎ for different 𝜇 (Example 1).𝜏𝑑 Methods\𝜇 0.2 0.4 0.6 0.8 NoVs

0.1

[26] 2.9962 2.1316 1.7138 1.3204 75
[27] 3.1743 2.1789 1.7467 1.7153 96
[34] 3.4880 2.3787 1.8062 1.4625 93
[29] 3.8557 2.8490 2.4014 2.2130 117

Remark 16 3.6076 2.8490 2.5501 2.4526 705

Table 2: MADUBs ℎ for different 𝜇 (Example 2).

Methods\𝜇 0 0.3 0.6 0.9 NoVs
[19] 0.1622 0.1591 0.1566 0.1527 10
[23] 0.1745 0.1698 0.1698 0.1698 160
[24] 0.1747 0.1710 0.1703 0.1703 140
[27] 0.1771 0.1721 0.1715 0.1715 194
[21] 0.1894 0.1894 0.1894 0.1893 627
[30] 0.2638 0.2578 0.2540 0.2510 809
Corollary 9 0.2707 0.2700 0.2545 0.2544 1548

𝐴 = [[[
−𝛼𝑚1 𝛼 01 −1 10 −𝛽 0]]] ,

𝐵 = [[[
−𝛼 (𝑚0 − 𝑚1)00 ]]] .

(78)

Letting 𝑒 = 𝑥 − 𝑦, then the resultant error system is given bẏ𝑒 (𝑡) = (𝐴 + 𝐾𝑎) 𝑒 (𝑡) − 𝐾𝑏𝑊𝑒 (𝑡 − ℎ (𝑡))+ 𝐵𝜑 (𝐶𝑒 (𝑡)) . (79)

Suppose the synchronization controller gains are designed by
[18]

𝐾𝑎 = [[[
−1 0 00 −1 00 0 −1]]] ,

𝐾𝑏 = [[[
6.00291.3367−2.1264]]] .

(80)

InTable 2, we calculate theMADUBs ℎ of the error system
(79) for different 𝜇 and the condition C. 2 by using our
results and methods in [18, 19, 21, 23, 27, 30] are compared.
From the table, it is found that notwithstanding the NoVs
of Corollary 9 are bigger than those of the criteria [19, 23,
24, 27], the MADUBs computed by Corollary 9 are larger.
Compared with the criteria in [21, 30], Corollary 9 obtains
less conservative MADUBs but requires less computation
complexity. Moreover, for ℎ(𝑡) = 0.2707 and initial condition𝑒(0) = [−0.1 0.4 − 0.3]𝑇, Figure 2 depicts the error state
responses for the error system (79) under control of the
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Figure 2: The error state responses for Example 2.

synchronization controller. Thus, one can see that the error
system is asymptotically stable for the time-varying delay ℎ(𝑡)
less than 0.2707.

Remark 3. In Example 2, the purpose of this paper is to
enlarge the MADUBs under the same controller to [19]. At
this point, the error system (79) can be seen as a new Lure
system within the given gain matrices 𝐴 + 𝐾𝑎, −𝐾𝑏𝑊 and 𝐵
proposed by [19]. The MADUBs of are calculated by solving
the LMIs in Theorem 8. For an example, an MADUB ℎ =0.2700 is obtained for 𝜇 = 0.3 byTheorem 8, then the stability
of the error system (79) must be guaranteed by Theorem 8
under the same controller to [19] for 0 ≤ ℎ(𝑡) ≤ ℎ and |𝜇| ≤0.3. In otherwords, this paper does not design any controllers,
but analyzes the stability. The same controller gains of [19]
are seen as the known system matrices of the error system
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Table 3: MADUBs ℎ for 𝜏𝑑 = 0.6 and different 𝜇1 and 𝜇2 (Example 3).𝜇1 Methods\𝜇2 0.5 0.9 NoVs

Ignore 𝜇1 [25] 1.5572 1.5572 10
[27] 1.6635 1.5742 160
[35] 1.5812 1.5745 140

-0.5 [28] 1.8763 1.7352 120
Remark 17 2.0555 1.9357 518

-0.2 [28] 1.8780 1.7453 120
Remark 17 2.0671 1.9558 518

Table 4: MADUBs ℎ for different 𝜇 (Example 4).

Methods\𝜇 0.1 0.2 0.5 0.8 NoVs
[36] 6.6103 4.0034 1.6875 1.0287 23𝑛2 + 4𝑛
[37] 7.1672 4.5179 2.4158 1.8384 142𝑛2 + 18𝑛
[38] 7.1765 4.5438 2.4963 1.9225 114𝑛2 + 18𝑛
[39] 7.2030 4.5126 2.3860 1.8476 203𝑛2 + 9𝑛
[40] 7.1905 4.5275 2.4473 1.8562 70𝑛2 + 12𝑛
[30] 7.2734 4.6213 2.6505 2.0612 185.5𝑛2 + 21.5𝑛
[3] 7.4001 4.7954 2.7175 2.0894 108𝑛2 + 12𝑛
[33] 8.6565 5.8907 3.1754 2.3953 91.5𝑛2 + 4.5𝑛
Remark 17 8.9647 7.1866 4.9390 3.8477 165.5𝑛2 + 19.5𝑛
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Figure 3: The state responses for Example 3.

(79). Therefore, the controller gains obtained in [19] will also
stabilize the system considered in Example 2 under a bounds
of ℎ(𝑡) obtained byTheorem 8.

Example 3. Consider the linear neutral-type system (71)
with the time-varying delays satisfying 𝐶.2, and the system
parameters are described as

𝐴 = (−1 10 −1) ,

𝐴1 = (0.5 00.5 −0.5) ,𝐶 = (0.4 00 0.4) ,𝐷 = diag {1, 1} ,𝐸𝑎 = diag {0.05, 0.05} ,𝐸𝑎1 = diag {0.1, 0.1} .
(81)

Under the condition C. 2, in Table 3, we calculate the
MADUBs ℎ of the linear neutral-type system (71) for 𝜏𝑑 =0.6 and different 𝜇1, 𝜇2 by using Remark 16 and methods
in [25, 27, 28, 35] are compared. From the table, it is found
that notwithstanding the NoVs of our criteria are bigger
than those of the criteria [25, 27, 28, 35], the MADUBs
computed by our criteria are larger. Figure 3 displays the
responses of system states 𝑥(𝑡) for ℎ(𝑡) = 2.0555/2 +(2.0555/2) sin(𝑡/2.0555), 𝜏(𝑡) = 1.2| sin(0.5𝑡)| and initial
condition𝑥(0) = [−0.2 0.2]𝑇. It is possible to see that, for this
realization, the trajectory converges to the origin, as expected.

Example 4. Consider the linear systems (73) with time-
varying delays, where the system parameters are described as𝐴 = [ 0 1−1 −2] ,𝐴1 = [ 0 0−1 1] . (82)



16 Complexity

As a special case pointed out by Remark 16, Corollary 9
removed some redundant terms which can be used to check
the stability of the linear systems with time-varying delays.
In order to make a comparison with some existing stability
criteria, the MADUBs under the condition C. 2 are listed
in Table 4, which shows that notwithstanding the NoVs of
Corollary 9 are bigger than those of the criteria [3, 33, 36,
38, 40], the MADUBs computed by Corollary 9 are larger.
Comparedwith the criteria in [30, 37, 39], Corollary 9 obtains
less conservative MADUBs but requires less computation
complexity.

5. Conclusion

In this paper, some improved absolute and robustly absolute
stability criteria are proposed for the uncertain neutral-
type Lur’e systems with mixed time-varying delays and
sector-bounded nonlinearities via a novel LKF combining
the delay-product-type function and the delay-dependent
matrix. An effective technique, QGFMI, is applied to fur-
ther reduce the conservatism of the proposed criteria from
some existing results. Finally, some numerical examples
are used to illustrate the effectiveness of the proposed
approaches.

Appendix

A. Boxes 1 and 2

See Boxes 1 and 2.

B. Box 3

Ω1[ℎ(𝑡)] = [𝐸𝑃𝑎𝐸𝑇 00 0] + 𝑄1 (𝑡) ,
Ω2[ℎ(𝑡)] = [𝐸𝑃𝑏𝐸𝑇 00 0] + 𝑄2 (𝑡) ,
Ω3[ℎ(𝑡)] = [(2 − 𝛼)Ω1[ℎ(𝑡)] (1 − 𝛼)𝑈01 + 𝛼𝑈02∗ (1 + 𝛼)Ω2[ℎ(𝑡)] ] ,
Ω4[ℎ(𝑡)] = 𝑃 + [[[[[[[[[[

𝑒𝑇1𝑒𝑇2𝑒𝑇3𝑒𝑇40
]]]]]]]]]]

𝑇

[ℎ1𝑡𝑃𝑎 + ℎ2𝑡𝑃𝑏] [[[[[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇3𝑒𝑇40
]]]]]]]]]]

+ sym
{{{{{{{{{{{{{{{{{{{{{
[[[[[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇3𝑒𝑇40
]]]]]]]]]]

𝑇

⋅((
(
𝑃𝑎 [[[[[[[[[

0000̃𝑒𝑇6
]]]]]]]]]
+ 𝑃𝑏 [[[[[[[[[

0000̃𝑒𝑇7
]]]]]]]]]
))
)
}}}}}}}}}}}}}}}}}}}}}
,

𝛼 = ℎ (𝑡) − ℎ1ℎ12 ,𝐽𝑇 = [𝐸1 𝐸2] ,𝐸1 = [𝑒6 𝑒2 − 𝑒3]𝐸2 = [𝑒7 𝑒3 − 𝑒4] ,Π[ℎ(𝑡),ℎ̇(𝑡)] = sym {Π1[ℎ(𝑡),ℎ̇(𝑡)] + Π3[ℎ(𝑡),ℎ̇(𝑡)]}+ Π2[ℎ(𝑡),ℎ̇(𝑡)],Π1[ℎ(𝑡),ℎ̇(𝑡)] = Γ[ℎ(𝑡)]𝑃Ψ𝑇[ℎ̇(𝑡)]
+ [𝑒1 𝑒2 𝑒3 𝑒4 𝑒10] 𝑃𝑎 [ℎ1𝑡𝑒5 ℎ1𝑡𝑒6 ℎ1𝑡ℎ𝑑𝑒7 ℎ1𝑡𝑒8 𝑒2− ℎ𝑑𝑒3 − ℎ̇ (𝑡) 𝑒10]𝑇
+ [𝑒1 𝑒2 𝑒3 𝑒4 𝑒11] 𝑃𝑏 [ℎ2𝑡𝑒5 ℎ2𝑡𝑒6 ℎ2𝑡ℎ𝑑𝑒7 ℎ2𝑡𝑒8 ℎ𝑑𝑒3− 𝑒4 + ℎ̇ (𝑡) 𝑒11]𝑇 + Θ1 + Θ̃1 + Π4Π5,Π2[ℎ(𝑡),ℎ̇(𝑡)] = [𝑒1 𝑒5] [𝑄1 + ℎ1𝑅0] [𝑒1 𝑒5]𝑇
+ [𝑒2 𝑒6] [𝑄1 (𝑡) − 𝑄1] [𝑒2 𝑒6]𝑇
+ ℎ𝑑 [𝑒3 𝑒7] [𝑄2 (𝑡) − 𝑄1 (𝑡)] [𝑒3 𝑒7]𝑇 − [𝑒4 𝑒8] 𝑄2 (𝑡) [𝑒4 𝑒8]𝑇+ 𝑒1𝑅0𝑎𝑒𝑇1 + 𝑒2 [ℎ𝑑𝑅𝑎 − 𝑅0𝑎 + ℎ̇ (𝑡) 𝑄𝑎] 𝑒𝑇2+ 𝑒3 [𝑅𝑏 − ℎ𝑑𝑅𝑎 + ℎ̇ (𝑡)⋅ (𝑄𝑏 − 𝑄𝑎)] 𝑒𝑇3 − 𝑒4 [𝑅𝑏 + ℎ̇ (𝑡) 𝑄𝑏] 𝑒𝑇4 + 𝑒5𝑄2𝑒𝑇5− (1 − 𝜏𝑑) 𝑒15𝑄2𝑒𝑇15
+ ℎ1t [𝑒2 𝑒6] (𝑄𝑎 + 𝑅1) [𝑒2 𝑒6]𝑇+ 𝜇1⋅ ℎ𝑑ℎ2𝑡 [𝑒3 𝑒7] 𝑄𝑏 [𝑒3 𝑒7]𝑇
+ ℎ𝑑ℎ2𝑡 [𝑒3 𝑒7] 𝑅2 [𝑒3 𝑒7]𝑇 + ℎ̇ (𝑡) Π6𝑃𝑎Π𝑇6− ℎ̇ (𝑡) Π7𝑃𝑏Π𝑇7 ,Π3[ℎ(𝑡),ℎ̇(𝑡)] = 𝑊01𝑋0𝐻01𝑊𝑇02 +𝑊02𝐺0𝑌0𝐻02𝑊𝑇02+ ℎ𝑑𝑊1𝑋3𝐻1𝑊𝑇2 + ℎ𝑑𝑊2𝐺1𝑌3𝐻3𝑊𝑇2+𝑊1𝑋4𝐻2𝑊𝑇3 +𝑊3𝐺2𝑌4𝐻4𝑊𝑇3 +𝑊1𝑋1𝐻1𝑊𝑇2+𝑊2𝐺1𝑌1𝐻3𝑊𝑇2 + 𝜇1𝑊1𝑋2𝐻2𝑊𝑇3
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+ 𝜇1𝑊3𝐺2𝑌2𝐻4𝑊𝑇3 ,Ω01 = ℎ1𝑊01𝑋0,Ω02 = ℎ1𝑊02𝐺0𝑌0,Ω𝑎[𝑘,𝑗] = ℎ12𝑊𝑘𝑋𝑗,Ω[ℎ(𝑡)]𝑏[𝑘,𝑟,𝑗] = ℎ12𝑊𝑘𝐺𝑟𝑌𝑗,𝑘 ∈ [1, 2, 3] , 𝑗 ∈ [1, 2, 3, 4] , 𝑟 ∈ [1, 2] ,Γ[ℎ(𝑡)] = [𝑒1 𝑒2 𝑒3 𝑒4 ℎ1𝑒9 ℎ1𝑡𝑒10 ℎ2𝑡𝑒11] ,Ψ[ℎ̇(𝑡)] = [𝑒5 𝑒6 ℎ𝑑𝑒7 𝑒8 𝑒1 − 𝑒2 𝑒2 − ℎ𝑑𝑒3 ℎ𝑑𝑒3 − 𝑒4] ,𝑊01 = [𝑒1 𝑒2 𝑒9] ,𝑊02 = [ℎ1𝑒9 𝑒1 − 𝑒2 𝑒12 𝑒1 − 𝑒9] ,𝑊1 = [𝑒2 𝑒3 𝑒4 𝑒10 𝑒11] ,𝐺0 = diag {ℎ1, 0, 0, 0} ,𝐺1 = diag {ℎ (𝑡) − ℎ1, 0, 0, 0} ,𝐺2 = diag {ℎ2 − ℎ (𝑡) , 0, 0, 0} ,𝑊2 = [𝑒10 𝑒2 − 𝑒3 𝑒13 𝑒2 − 𝑒10] ,𝑊3 = [𝑒11 𝑒3 − 𝑒4 𝑒14 𝑒3 − 𝑒11] ,𝑎2 = sym {𝑒10𝐸𝑇 (𝑌1+ ℎ𝑑𝑌3) 𝐹𝑒𝑇10 + 𝑒11𝐸𝑇 (𝜇1𝑌2 + 𝑌4) 𝐹𝑒𝑇11} ,𝐸𝑇 = [𝐼 0 0 0] ,𝐹𝑇 = [𝐼 0] ,𝑄1 (𝑡) = 𝑄10 − ℎ (𝑡) 𝑄11,𝑄2 (𝑡) = 𝑄20 + (ℎ − ℎ (𝑡)) 𝑄21,𝑄𝑎 = 𝑄11 + [ 0 𝑄𝑎𝑄𝑎 0 ] ,𝑄𝑏 = 𝑄21 + [ 0 𝑄𝑏𝑄𝑏 0 ] ,𝑅0𝑎 = 𝑅0 + [ 0 𝑅0𝑎𝑅0𝑎 0 ] ,𝑅𝑎 = 𝑅1 + [ 0 𝑅𝑎𝑅𝑎 0 ] ,
𝑅𝑏 = 𝑅2 + [ 0 𝑅𝑏𝑅𝑏 0 ] ,
𝐻01 = [𝐼 0 0 00 𝐼 0 0] ,
𝐻02 = [−𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,
𝐻1 = [ℎ1𝑡𝐼 0 0 00 𝐼 0 0] ,
𝐻2 = [ℎ2𝑡𝐼 0 0 00 𝐼 0 0] ,

𝐻3 = [−ℎ1𝑡𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,𝐻4 = [−ℎ2𝑡𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,Θ1 = 𝑒1𝐻𝐾𝑆𝑒𝑇16 − 𝑒16𝑆𝑒𝑇16,Θ̃1 = 2𝑒5𝐻Λ𝑒𝑇16,Π4 = [𝑒1𝑈1 + 𝑒5𝑈2 + 𝑒15𝑈3 + 𝑒16𝑈4] ,Π5 = [𝐴𝑒𝑇1 + 𝐴1𝑒𝑇3 + 𝐶𝑒𝑇15 + 𝐵𝑒𝑇16 − 𝑒𝑇5 ] ,Π6 = [𝑒1 𝑒2 𝑒3 𝑒4 𝑒10] ,Π7 = [𝑒1 𝑒2 𝑒3 𝑒4 𝑒11] .
(B.1)

C. Box 4

Ω4[ℎ(𝑡)] = 𝑃 + [[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇30
]]]]]]]
𝑇

[ℎ (𝑡) 𝑃𝑎 + (ℎ − ℎ (𝑡)) 𝑃𝑏] [[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇30
]]]]]]]

+ sym{{{{{{{{{{{{{{{
[[[[[[[
𝑒𝑇1𝑒𝑇2𝑒𝑇30
]]]]]]]
𝑇

(𝑃𝑎 [[[[[[
000̃𝑒𝑇4
]]]]]] + 𝑃𝑏

[[[[[[
000̃𝑒𝑇5
]]]]]])

}}}}}}}}}}}}}}}
,

𝛼 = ℎ (𝑡)ℎ ,𝐽𝑇 = [𝐸1 𝐸2] ,𝐸1 = [𝑒4 𝑒1 − 𝑒2]𝐸2 = [𝑒5 𝑒2 − 𝑒3] ,Π[ℎ(𝑡),ℎ̇(𝑡)] = sym {Π1[ℎ(𝑡),ℎ̇(𝑡)] + Π3[ℎ(𝑡),ℎ̇(𝑡)]}+ Π2[ℎ(𝑡),ℎ̇(𝑡)],Π1[ℎ(𝑡),ℎ̇(𝑡)] = Γ[ℎ(𝑡)]𝑃Ψ𝑇[ℎ̇(𝑡)] + [𝑒1 𝑒2 𝑒3 𝑒7] 𝑃𝑎 [ℎ (𝑡)⋅ 𝑒4 ℎ (𝑡) ℎ𝑑𝑒5 ℎ (𝑡) 𝑒6 𝑒1 − ℎ𝑑𝑒2 − ℎ̇ (𝑡) 𝑒7]𝑇+ [𝑒1 𝑒2 𝑒3 𝑒8] 𝑃𝑏 [(ℎ − ℎ (𝑡)) 𝑒4 (ℎ − ℎ (𝑡))⋅ ℎ𝑑𝑒5 (ℎ − ℎ (𝑡)) 𝑒6 ℎ𝑑𝑒2 − 𝑒3 + ℎ̇ (𝑡) 𝑒8]𝑇 + Θ2+ Θ̃2 + Π4Π5,Π2[ℎ(𝑡),ℎ̇(𝑡)] = [𝑒1 𝑒4] 𝑄1 (𝑡) [𝑒1 𝑒4]𝑇+ ℎ𝑑 [𝑒2 𝑒5] [𝑄2 (𝑡) − 𝑄1 (𝑡)] [𝑒2 𝑒5]𝑇



18 Complexity− [𝑒3 𝑒6] 𝑄2 (𝑡) [𝑒3 𝑒6]𝑇 + 𝑒1 [ℎ𝑑𝑅𝑎 + ℎ̇ (𝑡) 𝑄𝑎] 𝑒𝑇1+ 𝑒2 [𝑅𝑏 − ℎ𝑑𝑅𝑎 + ℎ̇ (𝑡) (𝑄𝑏 − 𝑄𝑎)] 𝑒𝑇2 − 𝑒3 [𝑅𝑏+ ℎ̇ (𝑡) 𝑄𝑏] 𝑒𝑇3 + 𝑒4𝑄2𝑒𝑇4 − (1 − 𝜏𝑑) 𝑒11𝑄2𝑒𝑇11+ ℎ (𝑡) [𝑒1 𝑒4] (𝑄𝑎 + 𝑅1) [𝑒1 𝑒4]𝑇 + 𝜇1⋅ ℎ𝑑ℎ [𝑒2 𝑒5] 𝑄𝑏 [𝑒2 𝑒5]𝑇+ ℎ𝑑ℎ [𝑒2 𝑒5] 𝑅2 [𝑒2 𝑒5]𝑇 + ℎ̇ (𝑡) Π6𝑃𝑎Π𝑇6− ℎ̇ (𝑡) Π7𝑃𝑏Π𝑇7 ,Π3[ℎ(𝑡),ℎ̇(𝑡)] = ℎ𝑑𝑊1𝑋3𝐻1𝑊𝑇2 + ℎ𝑑𝑊2𝐺1𝑌3𝐻3𝑊𝑇2+𝑊1𝑋4𝐻2𝑊𝑇3 +𝑊3𝐺2𝑌4𝐻4𝑊𝑇3 +𝑊1𝑋1𝐻1𝑊𝑇2+𝑊2𝐺1𝑌1𝐻3𝑊𝑇2 + 𝜇1𝑊1𝑋2𝐻2𝑊𝑇3+ 𝜇1𝑊3𝐺2𝑌2𝐻4𝑊𝑇3 ,Ω𝑎[𝑘,𝑗] = ℎ𝑊𝑘𝑋𝑗,Ω[ℎ(𝑡)]𝑏[𝑘,𝑟,𝑗] = ℎ𝑊𝑘𝐺𝑟𝑌𝑗,𝑘 ∈ [1, 2, 3] , 𝑗 ∈ [1, 2, 3, 4] , 𝑟 ∈ [1, 2] ,Γ[ℎ(𝑡)] = [𝑒1 𝑒2 𝑒3 ℎ (𝑡) 𝑒7 (ℎ − ℎ (𝑡)) 𝑒8] ,Ψ[ℎ̇(𝑡)] = [𝑒4 ℎ𝑑𝑒5 𝑒6 𝑒1 − ℎ𝑑𝑒2 ℎ𝑑𝑒2 − 𝑒3] ,𝑊1 = [𝑒1 𝑒2 𝑒3 𝑒7 𝑒8] ,𝑊2 = [𝑒7 𝑒1 − 𝑒2 𝑒9 𝑒1 − 𝑒7] ,𝑊3 = [𝑒8 𝑒2 − 𝑒3 𝑒10 𝑒2 − 𝑒8] ,𝐺1 = diag {ℎ (𝑡) , 0, 0, 0} ,𝐺2 = diag {ℎ − ℎ (𝑡) , 0, 0, 0} ,𝐻1 = [ℎ (𝑡) 𝐼 0 0 00 𝐼 0 0] ,𝐻2 = [(ℎ − ℎ (𝑡)) 𝐼 0 0 00 𝐼 0 0] ,𝐻3 = [−ℎ (𝑡) 𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,𝐻4 = [− (ℎ − ℎ (𝑡)) 𝐼 0 2𝐼 00 −𝐼 0 2𝐼] ,Θ2 = 𝑒1𝐻𝐾𝑆𝑒𝑇12 − 𝑒12𝑆𝑒𝑇12,Θ̃2 = 2𝑒4𝐻Λ𝑒𝑇12Π4 = [𝑒1𝑈1 + 𝑒4𝑈2 + 𝑒11𝑈3 + 𝑒12𝑈4] ,Π5 = [𝐴𝑒𝑇1 + 𝐴1𝑒𝑇2 + 𝐶𝑒𝑇11 + 𝐵𝑒𝑇12 − 𝑒𝑇4 ] ,

Π6 = [𝑒1 𝑒2 𝑒3 𝑒7] ,Π7 = [𝑒1 𝑒2 𝑒3 𝑒8] .𝑎2 = sym {𝑒7𝐸𝑇 (𝑌1 + ℎ𝑑𝑌3) 𝐹𝑒𝑇7 + 𝑒8𝐸𝑇 (𝜇1𝑌2 + 𝑌4)⋅ 𝐹𝑒𝑇8 }
(C.1)
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The aim of this paper is to determine the optimal open loop solution and a nonlinear delay-dependent state feedback suboptimal
control for a class of nonlinear polynomial time delay systems. The proposed method uses a hybrid of block pulse functions and
Legendre polynomials as an orthogonal base for system’s states and input expansion. Hence, the complex dynamic optimization
problem is then reduced, with the help of operational properties of the hybrid basis and Kronecker tensor product lemmas, to a
nonlinear programming problem that could be solved with available NLP solvers. A practical nonlinear feedback controller gains
are deduced with respect to a least square formalism based on the optimal open loop control results. Simulation results show
efficiency of the proposed numerical optimal approach.

1. Introduction

Time delays affect systems dynamics in many engineering
applications like chemical control systems, biology, and
medicine [1, 2]. Delays are also encountered in communica-
tion and information technologies like high-speed commu-
nication networks [3]. It should be noted that time delay may
be, in some applications like communication lines, a source
of instability and performance degradation [4]. Time delay
system is therefore a very important class of processes whose
stabilization [5] and optimization [6, 7] have been of interest
to many researchers.

Particularly, many attempts have been made in literature
to solve optimal control problems for many classes of linear
[8–11] and nonlinear [6, 12, 13] time delay systems. Among
them, we recall the application of Pontryagins maximum
principle to the optimization of control systems with time
delays which was firstly proposed by [14]. It had been shown
that it results in a system of coupled two-point boundary-
value (TPBV) problem involving both delay and advance
terms whose exact solution, except in very special cases, is

very difficult to determine (see [15]). Perhaps one of the most
effective techniques is dynamic programming approaches
(see [2]) for overcoming the complexity of the nonlinear
time delay systems in optimal control problems. Of course,
application of dynamic programming methods has some
difficulties due to the need to provide an appropriate level
model and also to define recursive relationships for each
case problem. Also a computational algorithm considering a
linear approximation of the original system which is defined
about a nominal trajectory is offered by [16]. Clearly, using
the linear approximation is not reliable and may lead to
large errors. Reference [7] proposed an approach based on
discretization techniques and necessary conditions to obtain
approximate optimal control and the state for optimal control
problemswith nonlinear delay systems. Despite the good per-
formance of this method, achieving the necessary conditions
in some problems and the implementation of approach may
be faced with difficulties. So different numerical methods
have been proposed to avoid the problems arising from the
applications of analytical methods. It is then straightforward
that many of the numerical methods dedicated to solving
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classical optimal control problems have been extended to
handle optimal control problems governed by time delay
systems.

Typically, direct methods are based on converting the
dynamical optimal control problem into static optimization
problem. Among direct methods, parametrization technique
[17–19] is known to minimize decision variables compared
to the discretization of the problem [7]. It is worth noting
that parametrization relies basically on orthogonal functions
or wavelets [20–22]; however that tool have been used
to solve various other problems of dynamic systems like
identification (see [8]), tracking control (see [23]), observer
based control (see [24]), or minimum time control (see [25]).
The main characteristic of this pseudo-spectral technique is
that it allows transforming complex dynamic optimization
problems to solving a set of algebraic equations in the least
square sense in the linear systems case [26, 27] or permits
formulating an equivalent nonlinear static programming
problem for problems related to nonlinear systems [13, 28,
29].

In recent years, a growing interest has been appeared
toward the application of hybrid functions, which is a com-
bination of block pulse and an orthogonal polynomials basis
[26]. In the nonlinear time delay optimal control problems
context, an approach using hybrid functions which consist
of block pulse functions and orthonormal Taylor series
(see [15, 29]) had been proposed, where authors propose
to solve the necessary and sufficient condition equations
for stationary emanating from the Hamiltonian based on
state and control coefficients over the basis. Similarly, [28]
propose a direct approach based on a hybrid of block pulse
functions and Lagrange interpolating polynomials in order
to convert the original optimal problem containing multiple
delay into a mathematical programming one, where the
resulting optimization problem is solved numerically by
the Lagrange multipliers method. Reference [27] proposed
similar approach based on hybrid functions of block pulse
and Bernouilli polynomials, while [30] uses biorthogonal
cubic Hermite spline multiwavelets in addition to block pulse
functions to constitute the hybrid basis. Although above
contributions treat some nonlinear delayed optimal control
problem, they do not propose any general nonlinear pro-
gramming problem that could handle all examples depicted
in their works. In fact, for each considered nonlinear system,
a nonlinear optimization problem is formulated and then
solved with an NLP solver. Furthermore, only open loop
control solutions are investigated therein, which is not of
great interest in practice.

In the present paper, we introduce a direct method to
solve forwardly the finite time quadratic optimal control
problem of polynomial systems with delayed state, by the use
of hybrid functions of block pulse and Legendre polynomials.
The operational matrices of delay and Kronecker product
specific to that basis are recalled. At first, the open loop
solution of the nonlinear time delay optimal control prob-
lem is investigated. Secondly, a suboptimal nonlinear state
feedback is determined based on the first part results. Hence,
the main contributions in this work could be summarized as
follows:

(a) expressing the constraint of the formulated NLP
problemproperly for the class of polynomial systems; thus the
proposed formulation could handle a wide range of nonlinear
analytic nonlinear systems. Then, a unified development is
carried for that class of systems,

(b) deriving a nonlinear polynomial delay-dependent
nonlinear suboptimal state feedback that reproduce the
optimal state trajectories determined in the open loop frame-
work,

(c) using an hybrid basis with reduced number of ele-
mentary functions, which makes open loop synthesis faster,
with a good enough accuracy compared to other approaches,
and closed loop solution within a simpler formulation and
resolution.

The remainder of the paper is organised as follows. In
the second section, hybrid functions and their properties are
introduced. In the third section, the open loop numerical
solution of the nonlinear time delay optimal control problem
is detailed. The suboptimal closed loop framework is pre-
sented in the fourth section. In the fifth section, computa-
tional results are depicted. Finally, concluding remarks and
future works are presented.

2. Hybrid Functions

Hybrid functions ℎ𝑖𝑗(𝑡), 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑁, 𝑗 = 0, 1 ⋅ ⋅ ⋅𝑀 − 1,
have three arguments; 𝑖 and 𝑗 are the order of block pulse
functions and Legendre polynomials, respectively, and 𝑡 is the
normalized time. They are defined on the interval 𝑡 = [0, 𝑡𝑓]
as [26]

ℎ𝑖𝑗 (𝑡)
= {{{{{

𝐿𝑗 (2𝑁𝑡𝑓 𝑡 − 2𝑖 + 1) , 𝑡 ∈ [( 𝑖 − 1𝑁 ) 𝑡𝑓, 𝑖𝑁𝑡𝑓) ,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1)

Here, 𝐿𝑗(𝑡) are the well-known Legendre polynomials
of order 𝑀 which constitute the base L(𝑡) and satisfy the
following recursive formula:

𝐿0 (𝑡) = 1,
𝐿1 (𝑡) = 𝑡,

𝐿𝑗+1 (𝑡) = (2𝑗 + 1𝑗 + 1 ) 𝑡𝐿𝑗 (𝑡) − ( 𝑗𝑗 + 1)𝐿𝑗−1 (𝑡) ,
𝑗 = 1, 2, 3, ⋅ ⋅ ⋅

(2)

WedefineΦ(𝑡) the vector of𝑁block pulse functions𝜙𝑖(𝑡),𝑖 = 0, 1, ⋅ ⋅ ⋅ 𝑁 − 1, as follows:
𝜙𝑖 (𝑡) = {{{

1, ∀𝑡 ∈ [ 𝑖 − 1𝑁 𝑡𝑓, 𝑖𝑁𝑡𝑓) ,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (3)

Since ℎ𝑖𝑗(𝑡) is the combination of Legendre polynomials
and block pulse functions which are both complete and
orthogonal, then the set of hybrid functions is a complete
orthogonal system.
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In the rest of the paper we notate 𝑤 = 𝑁𝑀 the dimension
of the hybrid basis.

2.1. Operational Matrix of Integration. The integration of h(𝑡)
can be approximated by [26]

∫𝑡
0
h (]) 𝑑] ≅ 𝑃h (𝑡) (4)

where𝑃 is the integration operational matrix of order𝑤×𝑤

𝑃(𝑤×𝑤) =
[[[[[[[[[
[

𝑇 𝐻 𝐻 ⋅ ⋅ ⋅ 𝐻
0 𝑇 𝐻 ⋅ ⋅ ⋅ 𝐻
0 0 𝑇 ⋅ ⋅ ⋅ 𝐻
... ... ... d

...
0 0 0 ⋅ ⋅ ⋅ 𝑇

]]]]]]]]]
]

(5)

where

𝐻(𝑀×𝑀) = 𝑡𝑓𝑁
[[[[[[[[[
[

1 0 0 ⋅ ⋅ ⋅ 0
0 0 0 ⋅ ⋅ ⋅ 0
0 0 0 ⋅ ⋅ ⋅ 0... ... ... ... ...
0 0 0 ⋅ ⋅ ⋅ 0

]]]]]]]]]
]

(6)

and

𝑇(𝑀×𝑀) = 𝑡𝑓2𝑁.
[[[[[[[[[[[[[[[[
[

1 1 0 0 ⋅ ⋅ ⋅ 0 0 0−13 0 13 0 ⋅ ⋅ ⋅ 0 0 0
0 −15 0 15 ⋅ ⋅ ⋅ 0 0 0... ... ... ... ... ... ... ...
0 0 0 0 ⋅ ⋅ ⋅ −12𝑁 − 3 0 12𝑁 − 30 0 0 0 ⋅ ⋅ ⋅ 0 −12𝑁 − 1 0

]]]]]]]]]]]]]]]]
]

(7)

2.2. DelayModelingwithHybrid Functions. Avector function𝑔(𝑡) of r dimensional components which are square inte-
grable in [0, 𝑡𝑓] can be approximated by a block pulse series
as

𝑔 (𝑡) ≅ 𝑁∑
𝑖=1

𝑔𝑖𝜙𝑖 (𝑡) = 𝐺𝑇Φ (𝑡) (8)

where 𝐺 = [𝑔1, 𝑔2, . . . , 𝑔𝑁]𝑇.
For an 𝑟 component delay vector variable 𝑔(𝑡 − 𝜏) with

𝑔 (𝑡) = 𝜁 (𝑡) ∀𝑡 ∈ [−𝜏, 0] (9)

the block pulse series approximation of 𝑔(𝑡 − 𝜏) may be
defined as [31]

𝑔 (𝑡 − 𝜏) ≅ 𝑁∑
𝑖=1

𝑔∗ (𝜏) 𝜙𝑖 (𝑡) = 𝐺∗ (𝜏)Φ (𝑡) (10)

where

𝑔∗𝑖 (𝜏) = 𝑁𝑇 ∫(𝑖+1)𝑡𝑓/𝑁
𝑖𝑡𝑓/𝑁

𝑔 (𝑡 − 𝜏) 𝑑𝑡

= {{{
𝜁𝑖 (𝜏) 𝑓𝑜𝑟 𝑖 < 𝜇
𝑔𝑖−𝜇 𝑓𝑜𝑟 𝑖 ≥ 𝜇

(11)

with

𝜁𝑖 (𝜏) = 𝑁𝑇 ∫(𝑖+1)𝑡𝑓/𝑁
𝑖𝑡𝑓/𝑁

𝜁 (𝑡 − 𝜏) 𝑑𝑡 𝑓𝑜𝑟 𝑖 < 𝜇 (12)

and 𝜇 is the number of block pulse functions considered
over 0 ≤ 𝑡 ≤ 𝜏, and 𝐺∗(𝜏) = [𝑔∗1 (𝜏), 𝑔∗2 (𝜏), . . . , 𝑔∗𝑁(𝜏)]𝑇.

Let

𝜁𝜇 (𝜏) = [𝜁∗1 (𝜏) , 𝜁∗2 (𝜏) , . . . , 𝜁∗𝜇−1 (𝜏)]𝑇 (13)

Then, it comes [31]

V𝑒𝑐 (𝐺∗ (𝜏)) = 𝐸 (𝑟, 𝜇) V𝑒𝑐 (𝜁𝜇 (𝜏)) + 𝐷 (𝑟, 𝜇) V𝑒𝑐 (𝐺) (14)

𝐸(𝑟, 𝜇) and 𝐷(𝑟, 𝜇) are called the shift operational matri-
ces, given by

𝐸 (𝑟, 𝜇) = [[[
[

𝐼𝑟𝜇×𝑟𝜇⋅ ⋅ ⋅
0𝑟(𝑁−𝜇)×𝑟𝜇

]]]
]

(15)

and

𝐷 (𝑟, 𝜇) =
[[[[[[
[

0𝑟𝜇×𝑟(𝑁−𝜇) ... 0𝑟𝜇×𝑟𝜇
⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅

𝐼𝑟(𝑁−𝜇)×𝑟(𝑁−𝜇) ... 0𝑟(𝑁−𝜇)×𝑟𝜇

]]]]]]
]

(16)

It is worth noticing that the Shift operational matrices of
hybrid functions could be derived forwardly from those of
block pulse functions by

𝐸ℎ = 𝐼𝑀 ⊗ 𝐸 (𝑟, 𝜇)
𝐷ℎ = 𝐼𝑀 ⊗ 𝐷 (𝑟, 𝜇) (17)

where ⊗ stands for the Kronecker product.
However, it should be noticed that block pulse functions

are fundamental for delaymodeling.The choice of𝑁 depends
on 𝜏 and 𝑡𝑓, which issue had been addressed in [26]. In this
framework, we propose to choose N as follows:

𝑁 = 𝑎.𝑛𝑖𝑛𝑡( 𝑡𝑓𝜏 ) , 𝑎 ∈ N
∗ (18)

where 𝑎 is a nonnegative integer, to be chosen bigger than
one if possible in order to improve approximation and 𝑛𝑖𝑛𝑡(.)
denotes the nearest integer function [22] (implemented by𝑟𝑜𝑢𝑛𝑑 routine in MATLAB).
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2.3. The Integration of the Cross Product. The integration of
the cross product of two hybrid functions vectors h(𝑡) can be
obtained as [26]

𝐶 = ∫𝑡𝑓
0

h (𝑡) h𝑇 (𝑡) 𝑑𝑡 =
[[[[[[
[

𝐿 0𝑀 ⋅ ⋅ ⋅ 0𝑀0𝑀 𝐿 ⋅ ⋅ ⋅ 0𝑀... ... d
...

0𝑀 0𝑀 ⋅ ⋅ ⋅ 𝐿

]]]]]]
]

(19)

where𝐶 is an𝑤×𝑤matrix. 0𝑀 stands for the zero𝑀×𝑀
matrix and 𝐿 is an𝑀×𝑀 diagonal matrix that is given by

𝐿 = 𝑡𝑓𝑁
[[[[[[[[[
[

1 0 ⋅ ⋅ ⋅ 0
0 13 ⋅ ⋅ ⋅ 0
... ... d

...
0 0 ⋅ ⋅ ⋅ 12𝑀 − 1

]]]]]]]]]
]

(20)

2.4. Kronecker Product Operational Matrix. It would be
interesting, for bilinear systems, as it will be proven later,
to investigate the Kronecker product operational matrix for
hybrid functions. This particular matrix operator derivation,
as it is the case for the integration, cross product, and delay
operators, is highly inspired of the Kronecker operational
matrix of both Legendre polynomials and block pulse func-
tions.

For the block pulse functions, we can state

Φ (𝑡) ⊗Φ (𝑡) =
[[[[[[
[

𝜙1 (𝑡)Φ (𝑡)𝜙2 (𝑡)Φ (𝑡)...
𝜙𝑁 (𝑡)Φ (𝑡)

]]]]]]
]
= 𝐾ΦΦ (𝑡) (21)

with

𝐾Φ =
[[[[[[[
[

𝐸𝑁×𝑁1,1𝐸𝑁×𝑁2,2...
𝐸𝑁×𝑁𝑁,𝑁

]]]]]]]
]

(22)

where𝐾Φ ∈ R𝑁
2×𝑁 is the Kronecker product operational

matrix of block pulse functions and the matrix 𝐸𝑁×𝑁𝑖,𝑗 is
defined in Appendix.

On the other hand, the product of two Shifted Legendre
Polynomials 𝐿 𝑖(𝑡) and 𝐿𝑗(𝑡) can be expressed by

𝐿 𝑖 (𝑡) 𝐿𝑗 (𝑡) ≅ 𝑀−1∑
𝑘=0

𝜓𝑖𝑗𝑘𝐿𝑘 (𝑡) (23)

with

𝜓𝑖𝑗𝑘 = 2𝑘 + 1𝑡𝑓 ∫𝑡𝑓
0
𝐿 𝑖 (𝑡) 𝐿𝑗 (𝑡) 𝐿𝑘 (𝑡) 𝑑𝑡 (24)

A practical implementation of the latter scalar products is
given in [19].

Then, we may write

𝐿𝑗 (𝑡) L (𝑡) =
[[[[[[
[

𝜓𝑖00𝜓𝑖11...
𝜓𝑖(𝑀−1)(𝑀−1)

]]]]]]
]
= 𝐾𝑖𝐿L (𝑡) (25)

where𝐾𝑖𝐿 is a𝑀×𝑀 square matrix.
Then it comes

L (𝑡) ⊗ L (𝑡) =
[[[[[[[
[

𝐾0𝐿𝐾1𝐿...
𝐾𝑀−1𝐿

]]]]]]]
]
= 𝐾LL (𝑡) (26)

where𝐾L ∈ R𝑀
2×𝑀 is the Kronecker product operational

matrix of Legendre polynomials.
Based on relations (26) and (23), we define

h (𝑡) ⊗ h (𝑡) =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

𝐾0𝐿 ⊗ 𝐸𝑁×𝑁1,1𝐾1𝐿 ⊗ 𝐸𝑁×𝑁1,1...
𝐾𝑀−1𝐿 ⊗ 𝐸𝑁×𝑁1,1⋅ ⋅ ⋅
𝐾0𝐿 ⊗ 𝐸𝑁×𝑁2,2𝐾1𝐿 ⊗ 𝐸𝑁×𝑁2,2...
𝐾𝑀−1𝐿 ⊗ 𝐸𝑁×𝑁2,2⋅ ⋅ ⋅

...
⋅ ⋅ ⋅

𝐾0𝐿 ⊗ 𝐸𝑁×𝑁𝑁,𝑁𝐾1𝐿 ⊗ 𝐸𝑁×𝑁𝑁,𝑁...
𝐾𝑀−1𝐿 ⊗ 𝐸𝑁×𝑁𝑁,𝑁

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

= 𝐾hh (𝑡) (27)

where 𝐾h ∈ R𝑤
2×𝑤 is the Kronecker product operational

matrix of hybrid functions.
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3. Numerical Solution of the Nonlinear Time
Delay Optimal Control Problem

3.1. Description of the Studied System. We consider the non-
linear continuous system which can be represented by the
following state space representation:

�̇� (𝑡) = 𝑓 (𝑥 (𝑡, 𝜏)) + 𝑔 (𝑥 (𝑡, 𝜏)) 𝑢 (𝑡)
𝑥 (𝑡 − 𝜏) = 𝑥0, ∀𝑡 ∈ [0, 𝜏] (28)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑥(𝑡 − 𝜏) ∈ R𝑛 is the
delayed state where 𝜏 denotes the time delay, 𝑢(𝑡) ∈ R𝑚 is the
control vector, and 𝑓(𝑥(𝑡, 𝜏)) from R𝑛 into R𝑛 and 𝑔(𝑥(𝑡, 𝜏))
from R𝑛 into R𝑛×𝑚 are nonlinear analytic functions of 𝑥(𝑡)
and 𝑥(𝑡 − 𝜏).

Note that, any functions 𝑓(𝑥(𝑡, 𝜏)) and 𝑔(𝑥(𝑡, 𝜏)) could be
approached using truncated series of the Kronecker power of𝑥(𝑡) and 𝑥(𝑡 − 𝜏) as follows:

𝑓 (𝑥 (𝑡, 𝜏)) ≈ 𝑝∑
𝑖=1

𝐹𝑖𝑥[𝑖] (𝑡) + 𝑞∑
𝑗=1

𝐹𝑗𝑥[𝑗] (𝑡 − 𝜏)

+ 𝑝∑
𝑖=1

𝑞∑
𝑗=1

Γ𝑖𝑗 (𝑥[𝑖] (𝑡) ⊗ 𝑥[𝑗] (𝑡 − 𝜏))
(29)

where 𝐹𝑖 ∈ R𝑛×𝑛
𝑗

, 𝐹𝑗 ∈ R𝑛×𝑛
𝑗

and Γ𝑖𝑗 ∈ R𝑛×𝑛
𝑖+𝑗

are
constant matrices. 𝑥[𝑖](𝑡) denotes the 𝑖𝑡ℎ Kronecker power of
the state vector (see Appendix).

And

𝑔 (𝑥 (𝑡, 𝜏))
= [𝑔1 (𝑥 (𝑡, 𝜏)) ... 𝑔2 (𝑥 (𝑡, 𝜏)) ... ⋅ ⋅ ⋅ ... 𝑔𝑚 (𝑥 (𝑡, 𝜏))] (30)

where 𝑔𝑘(𝑥(𝑡, 𝜏)) ∈ R𝑛, for 𝑘 = 1, . . . , 𝑚, are defined by

𝑔𝑘 (𝑥 (𝑡, 𝜏)) ≈ 𝑟∑
𝑖=0

𝐺𝑘𝑖𝑥[𝑖] (𝑡) + 𝑠∑
𝑗=1

𝐺𝑘𝑗𝑥[𝑗] (𝑡 − 𝜏)
+ 𝑟∑
𝑖=1

𝑠∑
𝑗=1

Υ𝑘𝑖𝑗 (𝑥[𝑖] (𝑡) ⊗ 𝑥[𝑗] (𝑡 − 𝜏))
(31)

where 𝐺𝑘𝑖 ∈ R𝑛×𝑛
𝑗

, 𝐺𝑘𝑗 ∈ R𝑛×𝑛
𝑗

, and Υ𝑘𝑖𝑗 ∈ R𝑛×𝑛
𝑖+𝑗

are
constant matrices.

Notice that 𝑔(𝑥(𝑡, 𝜏)) is composed of three terms, the first
is a function of 𝑥[𝑖](𝑡), the second depends on 𝑥[𝑗](𝑡 − 𝜏), and
the third is a function of 𝑥[𝑖](𝑡) ⊗𝑥[𝑗](𝑡 − 𝜏). Consider the first

term of 𝑔(𝑥(𝑡, 𝜏)); we note it 𝑔(𝑥(𝑡)). It could be written as
follows:

𝑔 (𝑥 (𝑡)) = 𝑟∑
𝑖=0

[𝐺1𝑖𝑥[𝑖] (𝑡) ... 𝐺2𝑖𝑥[𝑖] (𝑡) ... ⋅ ⋅ ⋅ ... 𝐺𝑚𝑖𝑥[𝑖] (𝑡)]
= 𝑟∑
𝑖=0

[𝐺1𝑖 ... 𝐺2𝑖 ... ⋅ ⋅ ⋅ ... 𝐺𝑚𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐺𝑖

⋅
[[[[[[
[

𝑥[𝑖] (𝑡) 0
𝑥[𝑖] (𝑡)

d

0 𝑥[𝑖] (𝑡)

]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼𝑚⊗𝑥
[𝑖](𝑡)

(32)

Then 𝑔(𝑥(𝑡, 𝜏)) could be generalized to the following
expression:

𝑔 (𝑥 (𝑡, 𝜏)) = 𝑟∑
𝑖=0

𝐺𝑖 (𝐼𝑚 ⊗ 𝑥[𝑖] (𝑡))
+ 𝑠∑
𝑗=1

𝐺𝑗 (𝐼𝑚 ⊗ 𝑥[𝑗] (𝑡 − 𝜏))
+ 𝑟∑
𝑖=1

𝑠∑
𝑗=1

Υ𝑖𝑗 (𝐼𝑚 ⊗ 𝑥[𝑖] (𝑡) ⊗ 𝑥[𝑗] (𝑡 − 𝜏))
(33)

3.2. Statement of the Problem. Consider the system defined
by (28), (29), and (33) with an initial condition 𝑥(0) = 𝑥0.
Our objective is firstly to find the optimal open loop control𝑢∗(𝑡), which minimizes the performance index:

𝐽 = 12𝑥𝑇 (𝑡𝑓) 𝑆𝑥 (𝑡𝑓) + 12 ∫
𝑡𝑓

0
(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (34)

where𝑄 and 𝑆 are positive semidefinite matrices and R is
symmetric positive definite with appropriate dimensions.

The direct approach presented in this paper is based
on expanding system equations (28), (29), and (33) as well
as objective function (34) to be minimized over an hybrid
functions basis. Hence, the main purpose is to transform
the optimal control problem under dynamic constraints to
a nonlinear programming problem. To this end, each of the
state and control variables is approximated by a finite length
of unknown parameters as follows:

𝑥 (𝑡) ≈ 𝑋𝑇h (𝑡)
𝑢 (𝑡) ≈ 𝑈𝑇h (𝑡) (35)

where 𝑋 and 𝑈 are unknown state and control parame-
ters, respectively. Applying the V𝑒𝑐 operator (see Appendix)
and related Kronecker product property [32] yields

V𝑒𝑐 (𝑥 (𝑡)) ≈ (h𝑇 (𝑡) ⊗ 𝐼𝑛) V𝑒𝑐 (𝑋𝑇)
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V𝑒𝑐 (𝑢 (𝑡)) ≈ (h𝑇 (𝑡) ⊗ 𝐼𝑚) V𝑒𝑐 (𝑈𝑇)
(36)

where 𝐼𝑛 and 𝐼𝑚 are 𝑛 × 𝑛 and 𝑚 ×𝑚 identity matrices.
Moreover, at the initial time, 𝑡0 = 0, the initial state could

be written

𝑥 (0) ≅ 𝑋𝑇0ℎ (𝑡) (37)

where

𝑋𝑇0
= [[ 𝑥0 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

𝑥0 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑀

⋅ ⋅ ⋅ 𝑥0 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑀

]
]

(38)

is an 𝑤 constant vector.
For clarity purpose, let us denote 𝑧 as the whole unknown

parameters vector. 𝑧𝑥 = V𝑒𝑐(𝑋𝑇) and 𝑧𝑢 = V𝑒𝑐(𝑈𝑇) are,
respectively, the state parameters and the control ones, such
that

𝑧 = [𝑧𝑥𝑧𝑢] (39)

and 𝑧𝑥0 = V𝑒𝑐(𝑋𝑇0 ).
According to (14) and (17), the delayed state coefficients

are given by

V𝑒𝑐 (𝑋∗𝑇 (𝜏)) = 𝐸ℎ𝑧𝑥0 + 𝐷ℎ𝑧𝑥 (40)

3.3. Optimal Control Problem Reformulation Using Hybrid
Functions. The cost function (33) is composed of two parts.
The first is the terminal penalty of the state, while the second
is known to be the running cost.

3.3.1. Cost of the Final State Approximation. At the final time,𝑡𝑓, the state approximation could be written

𝑥 (𝑡𝑓) ≈ 𝑋𝑇ℎ (𝑡𝑓) (41)

It is important to mention here that hybrid
functions inherit an important property from Legendre
polynomials(𝐿 𝑖(𝑡𝑓) = 1, ∀𝑖 = 0, . . . ,𝑀 − 1). In fact, the
subset ℎ𝑁𝑗(𝑡) verifies

ℎ𝑁𝑗 (𝑡𝑓) = 1, ∀𝑗 = 0, 1, ⋅ ⋅ ⋅𝑀 − 1 (42)

The rest of hybrid functions are null at 𝑡 = 𝑡𝑓.
The cross product of twohybrid functions at the final time

is given by

h (𝑡𝑓) h𝑇 (𝑡𝑓) = 𝑄𝑓 =
[[[[[[[[
[

0𝑀 0𝑀 ⋅ ⋅ ⋅ 0𝑀
0𝑀 d d

...... d 0𝑀 0𝑀0𝑀 ⋅ ⋅ ⋅ 0𝑀 1𝑀

]]]]]]]]
]

(43)

where𝑄𝑓 is𝑁𝑀×𝑁𝑀matrix. 1𝑀 stands for the all-ones𝑀×𝑀matrix.
Hence, the terminal penalty of the state could be approx-

imated as follows:

𝑥𝑇 (𝑡𝑓) 𝑆𝑥 (𝑡𝑓)
≈ 𝑧𝑇𝑥 (h (𝑡𝑓) ⊗ 𝐼𝑛) 𝑆 (h𝑇 (𝑡𝑓) ⊗ 𝐼𝑛) 𝑧𝑥
≈ 𝑧𝑇𝑥 (𝑄𝑓 ⊗ 𝑆) 𝑧𝑥

(44)

3.3.2. Cost of the State Trajectory Approximation. The inte-
gral term ∫𝑡𝑓

0
𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)𝑑𝑡 in the criterion is

approached now as

∫𝑡𝑓
0
[𝑧𝑇𝑥 (h (𝑡) ⊗ 𝐼𝑛) 𝑄 (h𝑇 (𝑡) ⊗ 𝐼𝑛) 𝑧𝑥
+ 𝑧𝑇𝑢 (h (𝑡) ⊗ 𝐼𝑚) 𝑅 (ℎ𝑇 (𝑡) ⊗ 𝐼𝑚) 𝑧𝑢] 𝑑𝑡

(45)

which is equivalent to

∫𝑡𝑓
0
[𝑧𝑇𝑥 (h (𝑡) h𝑇 (𝑡) ⊗ 𝑄) 𝑧𝑥
+ 𝑧𝑇𝑢 (h (𝑡) h𝑇 (𝑡) ⊗ 𝑅) 𝑧𝑢] 𝑑𝑡

(46)

Using the integral of the cross operational matrix 𝐶, it
reduces to

𝑧𝑇𝑥 (𝐶 ⊗ 𝑄) 𝑧𝑥 + 𝑧𝑇𝑢 (𝐶 ⊗ 𝑅) 𝑧𝑢 (47)

3.3.3. System Path Approximation. The expansion of the
system state over a hybrid basis requires the development of
functions 𝑓(𝑥(𝑡, 𝜏)) and 𝑔(𝑥(𝑡, 𝜏)) over that basis. To this end,
several preliminary lemmas need to be introduced.

Lemma 1. The development of the 𝑖𝑡ℎ Kronecker power of the
state vector over a hybrid basis h(𝑡) gives

𝑥[𝑖] (𝑡) = 𝑋𝑇[𝑖].h (𝑡) (48)

where

𝑋𝑇[𝑖] = 𝑋𝑇[𝑖].𝜅[𝑖] (49)

with

𝜅[𝑖] = (𝜅[𝑖−1] ⊗ 𝐼𝑤) .Kℎ, 𝑓𝑜𝑟 𝑖 = 3, 4, . . . (50)

and

𝜅[2] = Kℎ,
𝜅[1] = 𝜅[0] = 1 (51)

We recall that 𝑋𝑇[𝑖] denotes the 𝑖𝑡ℎ Kronecker power of the
state coefficients 𝑋𝑇, with Kℎ being the operational matrix of
the Kronecker product.
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Proof. The proof of this lemma needs only a few manipula-
tions.

Notice that results of Lemma 1 could be applied to the 𝑗𝑡ℎ
Kronecker power of the delayed state coefficients (i.e., 𝑥[𝑗](𝑡−𝜏) = 𝑋∗T[𝑗] .h(𝑡)) and express it in terms of decision variable 𝑧𝑥
by the mean of relation (32):

𝑋∗𝑇[𝑗] = 𝑋∗𝑇[𝑗].𝜅[𝑗] (52)

Expansion of 𝑓(𝑥(𝑡, 𝜏)) over the Hybrid Basis. The third term
of (29) could be developed over the hybrid basis as follows:

𝑥[𝑖] (𝑡) ⊗ 𝑥[𝑗] (𝑡 − 𝜏) ≃ (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗]) 𝜅[𝑖,𝑗]𝐾ℎ.h (𝑡) ,
∀𝑖 = 1, 2, . . . (53)

where we notate 𝜅[𝑖,𝑗] = 𝜅[𝑖] ⊗ 𝜅[𝑗].
Now, 𝑓(𝑥(𝑡, 𝜏)) could be approached as follows:

𝑓 (𝑥 (𝑡, 𝜏)) ≃ 𝐹𝑇.ℎ (𝑡) (54)

where

𝐹𝑇 = 𝑝∑
𝑖=1

𝐹𝑖𝑋𝑇[𝑖]𝜅[𝑖] + 𝑞∑
𝑗=1

𝐹𝑗𝑋∗𝑇[𝑗]𝜅[𝑗]
+ 𝑝∑
𝑖=1

𝑞∑
𝑗=1

Γ𝑖𝑗 (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗]) 𝜅[𝑖,𝑗]𝐾ℎ
(55)

Expansion of 𝑔(𝑥(𝑡, 𝜏))𝑢(𝑡) over the Hybrid Basis. Notice
that the first term of 𝑔(𝑥(𝑡, 𝜏))𝑢(𝑡) under the sum could be
expanded over the hybrid basis as follows:

(𝐼𝑚 ⊗ 𝑥[𝑖] (𝑡)) 𝑢 (𝑡) ≃ (𝑈𝑇 ⊗ 𝑋𝑇[𝑖]𝜅[𝑖])𝐾ℎℎ (𝑡)
≃ (𝑈𝑇 ⊗ 𝑋𝑇[𝑖]) (𝐼𝑤 ⊗ 𝜅[𝑖])𝐾ℎℎ (𝑡) , ∀𝑖 = 1, 2, . . . (56)

while the second one could be derived similarly.
The third term could be approached as

(𝐼𝑚 ⊗ 𝑥[𝑖] (𝑡) ⊗ 𝑥[𝑗] (𝑡 − 𝜏)) 𝑢 (𝑡)
≃ (𝑈𝑇 ⊗ [(𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗]) 𝜅[𝑖,𝑗]𝐾ℎ]) .𝐾ℎℎ (𝑡)
≃ (𝑈𝑇 ⊗ (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗])) (𝐼𝑤 ⊗ 𝜅[𝑖,𝑗]𝐾ℎ)𝐾ℎℎ (𝑡)

(57)

where 𝑖 and 𝑗 belong to N∗. Then it comes

𝑔 (𝑥 (𝑡, 𝜏)) 𝑢 (𝑡) ≃ 𝐺𝑇.ℎ (𝑡) (58)

with

𝐺𝑇 = 𝐺0𝑈𝑇 + 𝑟∑
𝑖=1

𝐺𝑖 (𝑈𝑇 ⊗ 𝑋𝑇[𝑖]) (𝐼𝑤 ⊗ 𝜅[𝑖])𝐾ℎ
+ 𝑠∑
𝑗=1

𝐺𝑗 (𝑈𝑇 ⊗ 𝑋∗𝑇[𝑗]) (𝐼𝑤 ⊗ 𝜅[𝑗])𝐾ℎ
+ 𝑟∑
𝑖=1

𝑠∑
𝑗=1

Υ𝑖𝑗 (𝑈𝑇 ⊗ (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗])) (𝐼𝑤 ⊗ 𝜅[𝑖,𝑗]𝐾ℎ)
⋅ 𝐾ℎ

(59)

Expansion of System Equation over the Hybrid Basis.The inte-
gration of the system equation by introducing the operational
matrix of integration𝑃 with respect to notations (58) and (54)
gives

𝑋𝑇 − 𝑋𝑇0 = 𝐹𝑇𝑃 + 𝐺𝑇𝑃 (60)
Our objective is to express the constraint (60) in terms

of decision variables 𝑧𝑥 and 𝑧𝑢; to this end we apply the V𝑒𝑐
operator to (60). That allows us to state

𝑧𝑥 − 𝑧𝑥0 = V𝑒𝑐( 𝑝∑
𝑖=1

𝐹𝑖𝑋𝑇[𝑖]𝜅[𝑖]𝑃 + 𝑞∑
𝑗=1

𝐹𝑗𝑋∗𝑇[𝑗]𝜅[𝑗]𝑃

+ 𝑝∑
𝑖=1

𝑞∑
𝑗=1

Γ𝑖𝑗 (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗]) 𝜅[𝑖,𝑗]𝐾ℎ𝑃 + 𝐺0𝑈𝑇𝑃
+ 𝑟∑
𝑖=1

𝐺𝑖 (𝑈𝑇 ⊗ 𝑋𝑇[𝑖]𝜅[𝑖]) .𝐾ℎ𝑃 + 𝑠∑
𝑗=1

𝐺𝑗 (𝑈𝑇
⊗ 𝑋∗𝑇[𝑗]) (𝐼𝑤 ⊗ 𝜅[𝑗])𝐾ℎ𝑃
+ 𝑟∑
𝑖=1

𝑠∑
𝑗=1

Υ𝑖𝑗 (𝑈𝑇 ⊗ (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗])) (𝐼𝑤 ⊗ 𝜅[𝑖,𝑗]𝐾ℎ)

⋅ 𝐾ℎ𝑃)

(61)

Using the linearity property of the V𝑒𝑐 operator it comes

𝑧𝑥 − 𝑧𝑥0 = 𝑝∑
𝑖=1

V𝑒𝑐 (𝐹𝑖𝑋𝑇[𝑖]𝜅[𝑖]𝑃)
+ 𝑞∑
𝑗=1

V𝑒𝑐 (𝐹𝑗𝑋∗𝑇[𝑗]𝜅[𝑗]𝑃)

+ 𝑝∑
𝑖=1

𝑞∑
𝑗=1

V𝑒𝑐 (Γ𝑖𝑗 (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗]) 𝜅[𝑖,𝑗]𝐾ℎ𝑃)
+ 𝐺0𝑈𝑇𝑃 + 𝑟∑

𝑖=1

V𝑒𝑐 (𝐺𝑖 (𝑈𝑇 ⊗ 𝑋𝑇[𝑖]) (𝐼𝑤 ⊗ 𝜅[𝑖])
⋅ 𝐾ℎ𝑃) + 𝑠∑

𝑗=1

V𝑒𝑐 (𝐺𝑗 (𝑈𝑇 ⊗ 𝑋∗𝑇[𝑗] (𝐼𝑤 ⊗ 𝜅[𝑗])
⋅ 𝐾ℎ𝑃) + 𝑟∑

𝑖=1

𝑠∑
𝑗=1

V𝑒𝑐 (Υ𝑖𝑗 (𝑈𝑇 ⊗ (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗]))
⋅ (𝐼𝑤 ⊗ 𝜅[𝑖,𝑗]𝐾ℎ)𝐾ℎ𝑃)

(62)

which is equivalent to

𝑧𝑥 − 𝑧𝑥0 = 𝑝∑
𝑖=1

(𝑃𝑇𝜅𝑇[𝑖] ⊗ 𝐹𝑖) V𝑒𝑐 (𝑋𝑇[𝑖]) + 𝑞∑
𝑗=1

(𝑃𝑇𝜅𝑇[𝑗]
⊗ 𝐹𝑗) V𝑒𝑐 (𝑋∗𝑇[𝑗]) + 𝑝∑

𝑖=1

𝑞∑
𝑗=1

(𝑃𝑇𝐾𝑇ℎ 𝜅𝑇[𝑖,𝑗] ⊗ Γ𝑖𝑗)
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⋅ V𝑒𝑐 (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗]) + 𝐺0𝑈𝑇𝑃
+ 𝑟∑
𝑖=1

(𝑃𝑇𝐾𝑇ℎ (𝐼𝑤 ⊗ 𝜅𝑇[𝑖]) ⊗ 𝐺𝑖) V𝑒𝑐 (𝑈𝑇 ⊗ 𝑋𝑇[𝑖])
+ 𝑠∑
𝑗=1

(𝑃𝑇𝐾𝑇ℎ (𝐼𝑤 ⊗ 𝜅𝑇[𝑖]) ⊗ 𝐺𝑗) V𝑒𝑐 (𝑈𝑇 ⊗ 𝑋∗𝑇[𝑗])
+ 𝑟∑
𝑖=1

𝑠∑
𝑗=1

(𝑃𝑇𝐾𝑇ℎ (𝐼𝑤 ⊗ 𝐾𝑇ℎ 𝜅𝑇[𝑖,𝑗]) ⊗ Υ𝑖𝑗)
⋅ V𝑒𝑐 (𝑈𝑇 ⊗ (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗]))

(63)

Lemma 2.

V𝑒𝑐 (𝑋𝑇[𝑖]) = Π(𝑛𝑖−1 ,𝑤𝑖−1) (𝑚𝑎𝑡 (𝑧𝑥)) .
Π(𝑛𝑖−2 ,𝑤𝑖−2) (𝑚𝑎𝑡 (𝑧𝑥)) . . . Π(𝑛,𝑤) (𝑚𝑎𝑡 (𝑧𝑥)) .𝑧𝑥
= Δ 𝑖 (𝑧𝑥) , 𝑓𝑜𝑟 𝑖 = 2, 3, . . .

(64)

where the matrix Π(.,.) is defined in Appendix.
Proof. The proof of this lemma needs only a few manipula-
tions.

Notice that results of Lemma 2 could be applied to the 𝑗𝑡ℎ
Kronecker power of the delayed state coefficients (i.e.,𝑋∗𝑇[𝑗])
and express it in terms of decision variable 𝑧𝑥 by the mean of
relation (42). We note

V𝑒𝑐 (𝑋∗𝑇[𝑖]) = Δ∗𝑖 (𝑧𝑥) (65)

Applying the V𝑒𝑐 operator to (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗]) yields
V𝑒𝑐 (𝑋𝑇[𝑖] ⊗ 𝑋∗𝑇[𝑗])

= Π(𝑛𝑗,𝑤𝑗) (𝑚𝑎𝑡 (V𝑒𝑐 (𝑋𝑇[𝑖]))) .V𝑒𝑐 (𝑋∗𝑇[𝑗])
= Π(𝑛𝑗,𝑤𝑗) (𝑚𝑎𝑡 (Δ 𝑖 (𝑧𝑥)) Δ∗𝑗 (𝑧𝑥)

(66)

Similarly

V𝑒𝑐 (𝑈𝑇 ⊗ 𝑋𝑇[𝑖]) = Π(𝑛𝑖,𝑤𝑖) (𝑚𝑎𝑡 (𝑧𝑢)) .V𝑒𝑐 (𝑋𝑇[𝑖])
= Π(𝑛𝑖,𝑤𝑖) (𝑚𝑎𝑡 (𝑧𝑢)) Δ 𝑖 (𝑧𝑥) (67)

Finally, the system path constraint could be implemented
using the following equation:

𝑧𝑥 − 𝑧𝑥0 = 𝑝∑
𝑖=1

(𝑃𝑇𝜅𝑇[𝑖] ⊗ 𝐹𝑖)Δ 𝑖 (𝑧𝑥) + 𝑞∑
𝑗=1

(𝑃𝑇𝜅𝑇[𝑗]
⊗ 𝐹𝑗) Δ∗𝑖 (𝑧𝑥) + 𝑝∑

𝑖=1

𝑞∑
𝑗=1

(𝑃𝑇𝐾𝑇ℎ 𝜅𝑇[𝑖,𝑗] ⊗ Γ𝑖𝑗)
⋅ Π(𝑛𝑖,𝑤𝑗) (𝑚𝑎𝑡 (Δ 𝑖 (𝑧𝑥)) Δ∗𝑗 (𝑧𝑥)) + (𝑃𝑇 ⊗ 𝐺0) 𝑧𝑢

+ 𝑟∑
𝑖=1

(𝑃𝑇𝐾𝑇ℎ (𝐼𝑤 ⊗ 𝜅𝑇[𝑖]) ⊗ 𝐺𝑖)Π(𝑛𝑖,𝑤𝑖) (𝑚𝑎𝑡 (𝑧𝑢))
⋅ Δ 𝑖 (𝑧𝑥) + 𝑠∑

𝑗=1

(𝑃𝑇𝐾𝑇ℎ (𝐼𝑤 ⊗ 𝜅𝑇[𝑖]) ⊗ 𝐺𝑗)
⋅ Π(𝑛𝑗,𝑤𝑗) (𝑚𝑎t (𝑧𝑢)) Δ∗𝑗 (𝑧𝑥)
+ 𝑟∑
𝑖=1

𝑠∑
𝑗=1

(𝑃𝑇𝐾𝑇ℎ (𝐼𝑤 ⊗ 𝐾𝑇ℎ 𝜅𝑇[𝑖,𝑗]) ⊗ Υ𝑖𝑗)
⋅ Π(𝑛𝑖+𝑗,𝑤𝑖+𝑗) (𝑚𝑎𝑡 (𝑧𝑢))
⋅ Π(𝑛𝑖,𝑤𝑗) (𝑚𝑎𝑡 (Δ 𝑖 (𝑧𝑥)) Δ∗𝑗 (𝑧𝑥))

(68)

Now, it could be noticed that the system path constraint is
expressed properly in terms of unknown parameters 𝑧𝑥 and𝑧𝑢.
3.4. The Nonlinear Programming Problem. The optimal con-
trol problemhas been approximated by a nonlinear program-
ming problem and is given by the following: find the optimal
vector 𝑧 of the unknownparameters 𝑧𝑥 and 𝑧𝑢 thatminimizes

12𝑧𝑇Ω𝑧 (69)

subject to (68).
One has

Ω = [ 𝑄𝑓 + 𝑄 0𝑛𝑁𝑀×𝑚𝑁𝑀0𝑚𝑁𝑀×𝑛𝑁𝑀 𝑅 ] (70)

The mathematical programming problem can be solved
by using available nonlinear programming solvers like IPOPT
or the routine 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 of the MATLAB Toolbox.

After solving the latter nonlinear programming problem
and determining the optimal value of the unknown parame-
ters vector 𝑧, these parameters are substituted back into (28)
to determine the optimal state vector and the optimal control.

4. Suboptimal Feedback Control

Once the optimal open loop results are obtained by solving
the nonlinear programming problem given by (69)-(68), let
us note

𝑧∗ = [𝑧∗𝑥𝑧∗𝑢] , (71)

the optimal state and control coefficients.
We are interested now, based on previous results, to

synthesize the following nonlinear state feedback control law:

𝑢 (𝑡) = − 𝑙∑
𝑖=1

𝐾𝑖𝑥[𝑖] (𝑡) − V∑
𝑗=1

𝐾𝑗𝑥[𝑗] (𝑡 − 𝜏) (72)
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The idea is to find control matrices 𝐾𝑖 and 𝐾𝑗 such that
the optimal vector (71) verifies the control equation (72).

Expanding (72) over the hybrid basis yields

𝑈𝑇 = − 𝑙∑
𝑖=1

𝐾𝑖𝑋𝑇[𝑖]𝜅[𝑖] − V∑
𝑗=1

𝐾𝑗𝑋∗𝑇[𝑗]𝜅[𝑗] (73)

Substituting the control and state coefficients with their
optimal values and applying the V𝑒𝑐 operator give

𝑧∗𝑢 = − 𝑙∑
𝑖=1

𝛼𝑖V𝑒𝑐 (𝐾𝑖) − V∑
𝑗=1

𝛽𝑗V𝑒𝑐 (𝐾𝑗) (74)

with 𝛼𝑖 = (𝜅𝑇[𝑖](𝑚𝑎𝑡(𝑧∗𝑥 ))[𝑖]𝑇 ⊗ 𝐼𝑚) and 𝛽𝑗 =(𝜅𝑇[𝑗](𝑚𝑎𝑡(𝐸ℎ𝑧𝑥0 + 𝐷ℎ𝑧∗𝑥 ))[𝑗]𝑇 ⊗ 𝐼𝑚).
Finding control parameters could be then reduced to

solving, in the least square sense, the following problem:

A.𝜃 = B (75)

where

A = [𝛼1 ... 𝛼2 ... ⋅ ⋅ ⋅ ... 𝛼𝑙 ... 𝛽1 ... 𝛽2 ... ⋅ ⋅ ⋅ ... 𝛽V] ,
B = −𝑧∗𝑢 ,

𝜃 =

[[[[[[[[[[[[[[[[[[[[
[

V𝑒𝑐 (𝐾1)
V𝑒𝑐 (𝐾2)...
V𝑒𝑐 (𝐾𝑙)
V𝑒𝑐 (𝐾1)
V𝑒𝑐 (𝐾2)...
V𝑒𝑐 (𝐾V)

]]]]]]]]]]]]]]]]]]]]
]

(76)

5. Computational Results

5.1. Example 1. Consider the system [33]

�̇�1 (𝑡) = 𝑥1 (𝑡) 𝑥2 (𝑡) + 2𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡) − 𝑥1 (𝑡 − 𝜏)
+ 𝑢 (𝑡)

�̇�2 (𝑡) = −𝑥1 (𝑡) + 𝑥2 (𝑡 − 𝜏)
(77)

When 𝑢 = 0, the above system has two equilibria, one
which is at the origin and the other one at (1/3, 1/3).

In this example, we aim to minimize the following crite-
rion ∫10

0
(𝑥21(𝑡)+𝑥22(𝑡)+𝑢2(𝑡))𝑑𝑡 in order to find optimal states

and open loop control, 𝑥∗(𝑡) and 𝑢∗(𝑡), then a suboptimal
control 𝑢(𝑡) = −𝐾𝑥(𝑡) − 𝐾𝑥(𝑡 − 𝜏) is characterized.

Table 1:Hybrid functions and block pulse functions direct approach
performance analysis for Example 1.

Method Parameters J
Hybrid Functions N=5, M=5 1.9955
Block Pulse Functions N=25 2.1679

time

−0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

x(
t)

X1 HFs
X2 HFs

X1 BPFs
X2 BPFs

0 1 2 3 4 5 6 7 8 9 10

Figure 1: Optimal states trajectories with hybrid functions (HFs)
and block pulse functions (BPFs).

Nonlinear system (77) could be written under a polyno-
mial form (28), (29), and (32) with

𝐹1 = [ 0 0
−1 0] ,

𝐹1 = [−1 0
0 −1] ,

𝐺0 = [10] ,
𝐹2 = [0 1 0 0

0 0 0 0] ,
Γ11 = [0 0 2 0

0 0 0 0]

(78)

The time delay is considered as 𝜏 = 2.
5.1.1. Open Loop Study. The development presented above
is implemented in this subsection by using both hybrid
functions (HFs) and block pulse functions (BPFs).

Table 1 summarizes considered parameters for simula-
tions below and obtained performances indexes with the
different bases. It is then clear that hybrid basis is superior
over the piecewise constant one, both with the same number
of elementary functions.

Simulation results for the above open loop controlled
system initialized with (0.5, 0, 5) are given in Figures 1 and
2 based on hybrid and block pulse functions.
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time

−0.4

−0.2

0

0.2

0.4

0.6

0.8

u(
t)

u(t) HFs
u(t) BPFs

0 1 2 3 4 5 6 7 8 9 10

Figure 2: Optimal control signals with hybrid functions (HFs) and
block pulse functions (BPFs).

time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

x(
t)

controlled x1 HFs
controlled x2 HFs

controlled x1 BPFs
controlled x2 BPFs

0 1 2 3 4 5 6 7 8 9 10

Figure 3: Closed loop states trajectories with hybrid functions
(HFs) and block pulse functions (BPFs).

5.1.2. Closed Loop Framework. The state feedback control
gains designed based on hybrid and block pulse open loop
frameworks are as follows:

𝐾𝐻𝐹𝑠 = [3.0813 −1.3873] ,
𝐾𝐻𝐹𝑠 = [−1.1017 −1.7575]
𝐾𝐵𝑃𝐹𝑠 = [2.9425 −0.6949]
𝐾𝐵𝑃𝐹𝑠 = [−0.9131 −2.1364]

(79)

Controlled state trajectories, obtained with determined
gains, are depicted in Figure 3. It is shown that the hybrid
functions technique is also better in closed loop.

Figure 4 shows the optimal states trajectories obtained by
minimizing the formulatedNLPproblem, by using the hybrid
of block pulse and Legendre polynomials basis, over a finite
horizon 𝑡𝑓 = 10. Controlled states with obtained suboptimal
feedback are drawn on the same figure over a simulation time20𝑠. It could be seen that system states converge to the origin
equilibrium with respect to imposed criterion.

time

−0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

x(
t)

x1
∗ (t)

x2
∗(t)

(t)Controlled x1
(t)Controlled x2

0 2 4 6 8 10 12 14 16 18 20

Figure 4: Optimal and suboptimal states trajectories.

time

−0.4

−0.2

0

0.2

0.4

0.6

0.8

u(
t)

state feedback control
u (t)∗

0 1 2 3 4 5 6 7 8 9 10

Figure 5: Optimal and suboptimal control signals.

Figure 5 exposes optimal control and suboptimal state
feedback control signals using HFs.

5.2. Example 2: A Two-Stage Chemical Reactor. In this sec-
tion, we consider a cascade chemical systemwith two reactors
[34]

̇𝑥1 (𝑡) = −𝑘1𝑥1 (𝑡) − 1𝜃1𝑥1 (𝑡) −
1𝜃1 𝑥1 (𝑡 − 𝑑)

+ 1 − 𝑅2𝑉1 𝑥2 (𝑡) + 𝛿1 (𝑥1 (𝑡 − 𝑑))
̇𝑥2 (𝑡) = −𝑘2𝑥2 (𝑡) − 1𝜃2𝑥22 (𝑡) +

𝑅1𝑉2 𝑥1 (𝑡 − 𝑑)
− 1𝜃2 𝑥2 (𝑡) +

𝑅2𝑉2 𝑥2 (𝑡 − 𝑑) +
𝐹𝑉2 𝑢 (𝑡)

+ 𝛿2 (𝑥2 (𝑡 − 𝑑))

(80)

where 𝑥𝑖, 𝑖 = 1, 2, are the compositions, 𝑑 is a known time
delay, 𝑅𝑖 are the recycle flow rates, 𝜃𝑖 are the reactor residence
times, 𝑘𝑖 are the reaction constants, 𝐹 is the feed rate, 𝑉𝑖 are
reactor volumes, and 𝛿𝑖 are nonlinear functions for describing
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Table 2: Hybrid functions and block pulse functions open loop and closed loop results for Example 2.

Method Parameters J State feedback gains
Hybrid Functions N=6, M=5 57.9349 𝐾1 = [47.8366 10.7607],𝐾2 = [−65.4651 − 26.375 0 − 6.0281],𝐾1 = −17.7816 0.5511],𝐾2 = [9.6281 0 − 2.1138 − 0.7305]
Block Pulse Functions N=30 69.2999 𝐾1 = [90.9235 − 1.9396],𝐾2 = [−131.5504 0 − 30.3858 − 8.1110],𝐾1 = −36.3910 − 9.3258],𝐾2 = [22.8197 14.7181 0 2.3220]
the system uncertainties and external disturbances. Note that
(80) is the transformed reactor model given by [34]. The
original one may have a nonzero equilibrium point and
the compositions 𝑥𝑖 actually denote the deviations from the
equilibrium point.

Let 𝑅𝑖 = 0.5, 𝑉𝑖 = 0.5, 𝑑 = 0.5, 𝑘𝑖 = 0.5, and 𝐹 = 0.5. The
uncertainties 𝛿𝑖 are the functions 𝛿1(𝑥1(𝑡 − 𝑑)) = 𝜃3𝑥1(𝑡 − 𝑑)
and 𝛿2(𝑥2(𝑡 − 𝑑)) = 0.5𝜃4𝑥22(𝑡 − 𝑑), respectively, with 𝜃𝑖 = 1.

The simulation is done by taking (𝑥1(𝑡0), 𝑥2(𝑡0)) = (1, −2)
for 𝑡0 ∈ [−0.5, 0] and results are given in Figures 3 and 4.

We consider in this example the criterion ∫3
0
(100𝑥21(𝑡) +100𝑥22(𝑡) + 𝑢2(𝑡))𝑑𝑡 in order to find optimal states and open

loop control, 𝑥∗(𝑡) and 𝑢∗(𝑡), then suboptimal control gains
such that 𝑢(𝑡) = −𝐾1𝑥(𝑡)−𝐾2𝑥[2](𝑡)−𝐾1𝑥(𝑡−𝜏)−𝐾2𝑥[2](𝑡−𝜏)
are investigated.

Nonlinear system (80) could be written under a polyno-
mial form (28), (29), and (32) with

𝐹1 = [[[
[
−𝑘1 − 1𝜃1

1 − 𝑅2𝑉10 −𝑘2 − 1𝜃2
]]]
]
,

𝐹1 = [[[
[
− 1𝜃1 + 𝜃3 0

𝑅1𝑉2
𝑅2𝑉2
]]]
]
,

𝐺0 = [[[
0𝐹𝑉2
]]
]
,

𝐹2 = [[[
0 0 0 0
0 0 0 − 1𝜃2

]]
]
,

𝐹2 = [[[
0 0 2 0
0 0 0 0.5 1𝜃2

]]
]

(81)

Table 2 gives simulations parameters and obtained Per-
formances indexes with the two bases utilized in Example 1.
Also, state feedback gains are included.

It is worth noting that for this particular system, control
gains determined by themeanof block pulse functions are not

time

−2

−1.5

−1

−0.5

0

0.5

1

x(
t)

x1
∗ (t)

x2
∗(t)

Controlled x1
Controlled x2

3210.5 1.5 2.5 4 53.5 4.50

Figure 6:Optimal and suboptimal states trajectories of the chemical
reactor.

3210.5 1.5 2.50
time

−5

0

5

10

15

20

u(
t)

Suboptimal state feedback
u (t)∗

Figure 7: Optimal and suboptimal control signals for the chemical
reactor.

stabilizing. While hybrid functions results are illustrated on
Figures 6 and 7, controlled states with obtained suboptimal
feedback designed over a finite horizon 𝑡𝑓 = 3𝑠 are drawn
on the same figure over a simulation time 5𝑠. It could be seen
that suboptimal system states coincide perfectly with optimal
solution.

Figure 7 exposes optimal control and suggested subop-
timal nonlinear state feedback control signals. The proposed
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nonlinear feedback reproduces sharply the optimal open loop
control.

6. Conclusion

In this paper a practical approach is developed to solve
the problem of finite time quadratic optimal control for
polynomial time delay systems. The proposed method is
based on the expansion of the system model on a com-
plete set of orthogonal hybrid of block pulse and Legendre
polynomials. Two types of optimal control laws have been
investigated. In the first step, the method focuses on the
determination of the open loop optimal control law.Thus, by
defining a general NLP problem for the considered system
class, in the second step, a nonlinear delay-depending state
feedback control law has been derived in order to meet
the optimal states trajectories. The developed results have
been illustrated on different examples of nonlinear time
delay systems; namely, a two-stage chemical reactor and
the obtained results are significant. Note that the proposed
method may be enhanced, by decreasing the polynomial
system matrices order when introducing the nonredundant
form. In addition, if the state information is not completely
available, the output feedback is a good choice. The method
is feasible for the output feedback control and could be even
extended to handle dynamic nonlinear state/output feedback
synthesis. Moreover, the presented development is limited to
some class of analytical nonlinear systems. In future work,
we intend to apply the presented method to the class of
switched systems, where the used hybrid functions seems to
be convenient to treat that models which are a mixture of
smooth functions and piecewise constant signals.

Appendix

A.

A.1. Kronecker Product and 𝑣𝑒𝑐(.) Function Properties. The
Kronecker power of order 𝑖, 𝑋[𝑖] ∈ R𝑛

𝑖

of the vector 𝑋 ∈ R𝑛

is defined by

𝑋[0] = 1
𝑋[𝑖] = 𝑋[𝑖−1] ⊗ 𝑋 = 𝑋 ⊗ 𝑋[𝑖−1], 𝑓𝑜𝑟 𝑖 = 1, 2, . . . (A.1)

For any matrices X, Y, and Z having appropriate dimen-
sions, the following property of the Kronecker product is
given [32]:

V𝑒𝑐 (𝑋𝑌𝑍) = (𝑍𝑇 ⊗ 𝑋) V𝑒𝑐 (𝑌) (A.2)

where V𝑒𝑐 denotes the vectorization operator of a matrix
[32].

Letting 𝐴,𝐵,𝐶, and 𝐷 matrices with appropriate dimen-
sions, we recall the following properties [32]:

(𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷 (A.3)

(𝐴 ⊗ 𝐵)𝑇 = 𝐴𝑇 ⊗ 𝐵𝑇 (A.4)

A.2. 𝑚𝑎𝑡(.) Function. An important matrix-valued linear
function of a vector, denoted as 𝑚𝑎𝑡(𝑛,𝑚), is defined as
follows.

If 𝑉 is a vector of dimension 𝑝 = 𝑛𝑚, then 𝑀 =𝑚𝑎𝑡(𝑛,𝑚)(𝑉) is the (𝑛 × 𝑚)matrix verifying

𝑉 = V𝑒𝑐 (𝑀) (A.5)

A.3. Π(.,.)(.) Definition. We note 𝑒𝑝𝑖 , the 𝑝 dimensional unit
vector which has 1 in the 𝑖 − 𝑡ℎ element and zeros elsewhere.
The elementary matrix of dimension (𝑝×𝑞) could be defined
by [32]

𝐸𝑝×𝑞𝑖,𝑗 = 𝑒𝑝𝑖 (𝑒𝑞𝑗)𝑇 (A.6)

It has 1 on the element of coordinates (𝑖, 𝑗) and zeros
elsewhere.

Let 𝐴 = [𝑎𝑖𝑗] ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑝×𝑞; we have

V𝑒𝑐 (𝐴 ⊗ 𝐵) = V𝑒𝑐 (( 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑗𝐸𝑚×𝑛𝑖,𝑗 ) ⊗ 𝐵)
= Π(𝑚,𝑛) (𝐵) V𝑒𝑐 (𝐴)

(A.7)

where

Π(𝑚,𝑛) (𝐵) = [V𝑒𝑐 (𝐸𝑚×𝑛1,1 ⊗ 𝐵) ⋅ ⋅ ⋅ V𝑒𝑐 (𝐸𝑚×𝑛𝑚,1 ⊗ 𝐵)
... V𝑒𝑐 (𝐸𝑚×𝑛1,2 ⊗ 𝐵) ⋅ ⋅ ⋅ V𝑒𝑐 (𝐸𝑚×𝑛𝑚,2 ⊗ 𝐵)
... ⋅ ⋅ ⋅ ... V𝑒𝑐 (𝐸𝑚×𝑛1,𝑛 ⊗ 𝐵) ⋅ ⋅ ⋅ V𝑒𝑐 (𝐸𝑚×𝑛𝑚,𝑛 ⊗ 𝐵)]

(A.8)

ThematrixΠ(.,), with respect to dimensions, could be also
used as follows:

V𝑒𝑐 (𝐴 ⊗ 𝐵) = V𝑒𝑐(( 𝑝∑
𝑖=1

𝑞∑
𝑗=1

𝑏𝑖𝑗𝐸𝑝×𝑞𝑖,𝑗 ) ⊗ 𝐵)
= Π(𝑝,𝑞) (𝐴) V𝑒𝑐 (𝐵)

(A.9)

where

Π(𝑝,𝑞) (𝐴) = [V𝑒𝑐 (𝐴 ⊗ 𝐸𝑝×𝑞1,1 ) ⋅ ⋅ ⋅ V𝑒𝑐 (𝐴 ⊗ 𝐸𝑝×𝑞𝑚,1 )
... V𝑒𝑐 (𝐴 ⊗ 𝐸𝑝×𝑞1,2 ) ⋅ ⋅ ⋅ V𝑒𝑐 (𝐴 ⊗ 𝐸𝑝×𝑞𝑚,2 )
... ⋅ ⋅ ⋅ ... V𝑒𝑐 (𝐴 ⊗ 𝐸𝑝×𝑞1,𝑛 ) ⋅ ⋅ ⋅ V𝑒𝑐 (𝐴 ⊗ 𝐸𝑝×𝑞𝑚,𝑛 )]

(A.10)
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[7] L. Göllmann, D. Kern, and H. Maurer, “Optimal control
problems with delays in state and control variables subject to
mixed control-state constraints,” Optimal Control Applications
& Methods, vol. 30, no. 4, pp. 341–365, 2008.

[8] F. Khellat, “Optimal control of linear time-delayed systems by
linear Legendre multiwavelets,” Journal of Optimization Theory
and Applications, vol. 143, no. 1, pp. 107–121, 2009.

[9] H. R. Marzban, “Optimal control of linear multi-delay systems
based on a multi-interval decomposition scheme,” Optimal
Control Applications and Methods, vol. 37, no. 1, pp. 190–211,
2016.

[10] H. R. Marzban and S. M. Hoseini, “Solution of linear optimal
control problems with time delay using a composite Chebyshev
finite difference method,” Optimal Control Applications and
Methods, vol. 34, no. 3, pp. 253–274, 2013.

[11] H. R. Sharif,M.A.Vali,M. Samavat, andA.A.Gharavisi, “Anew
algorithm for optimal control of time-delay systems,” Applied
Mathematical Sciences, vol. 5, no. 9-12, pp. 595–606, 2011.

[12] C. Yu, Q. Lin, R. Loxton, K. L. Teo, and G. Wang, “A hybrid
time-scaling transformation for time-delay optimal control
problems,” Journal of OptimizationTheory andApplications, vol.
169, no. 3, pp. 876–901, 2016.

[13] H. R. Marzban and S. M. Hoseini, “An efficient discretization
scheme for solving nonlinear optimal control problems with
multiple time delays,” Optimal Control Applications and Meth-
ods, vol. 37, no. 4, pp. 682–707, 2016.

[14] G. L. Kharatishvili, “The maximum principle in the theory of
optimal process with time-lags,”Doklady Akademii Nauk SSSR,
vol. 136, pp. 39–42, 1961.

[15] M. Dadkhah and M. H. Farahi, “Optimal control of time delay
systems via hybrid of block-pulse functions and orthonormal
Taylor series,” International Journal of Applied and Computa-
tional Mathematics, vol. 2, no. 1, pp. 137–152, 2016.

[16] M. Jamshidi and C. M. Wang, “A computational algorithm for
large-scale nonlinear time-delay systems,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 14, no. 1, pp. 2–9, 1984.

[17] C. J. Goh and K. L. Teo, “Control parametrization: a unified
approach to optimal control problemswith general constraints,”
Automatica, vol. 24, no. 1, pp. 3–18, 1988.

[18] H. Jaddu and E. Shimemura, “Computation of optimal control
trajectories using Chebyshev polynomials: parameterization,
and quadratic programming,”Optimal Control Applications and
Methods, vol. 20, no. 1, pp. 21–42, 1999.

[19] Z. Rafiei, B. Kafash, and S. M. Karbassi, “State-control param-
eterization method based on using hybrid functions of block-
pulse and Legendre polynomials for optimal control of linear
time delay systems,” Applied Mathematical Modelling: Simu-
lation and Computation for Engineering and Environmental
Systems, vol. 45, pp. 1008–1019, 2017.

[20] M.Mortezaee and A. Nazemi, “Solving infinite horizon optimal
control problems of nonlinear interconnected large scale dync-
maic systems via a Haar wavelet collocation scheme,” Iranian J
Operations Research, vol. 6, no. 2, pp. 19–35, 2015.

[21] A.Nazemi andM.Mansoori, “Solving optimal control problems
of the time-delayed systems by Haar wavelet,” Journal of
Vibration and Control, vol. 21, no. 11, pp. 2657–2670, 2016.

[22] I. Malmir, “Optimal control of linear time-varying systems
with state and input delays by Chebyshev wavelets,” Statistics,
Optimization & Information Computing, vol. 5, no. 4, pp. 302–
324, 2017.

[23] B. Iben Warrad, M. K. Bouafoura, and N. Benhadj Braiek,
“Static output tracking control for non-linear polynomial time-
delay systems via block-pulse functions,” Journal of the Chinese
Institute of Engineers, vol. 41, no. 3, pp. 194–205, 2018.

[24] B. I. Warrad, M. K. Bouafoura, and N. Benhadj Braiek,
“Observer based output tracking control for bounded linear
time variant systems,” Nonlinear Dynamics and Systems Theory.
An International Journal of Research and Surveys, vol. 15, no. 4,
pp. 428–440, 2015.

[25] S. Bichiou, M. K. Bouafoura, and N. Benhadj Braiek, “Time
optimal control laws for bilinear systems,” Mathematical Prob-
lems in Engineering, vol. 2018, Article ID 5217427, 10 pages, 2018.

[26] H. R. Marzban and M. Razzaghi, “Optimal control of linear
delay systems via hybrid of block-pulse and Legendre polyno-
mials,” Journal of The Franklin Institute, vol. 341, no. 3, pp. 279–
293, 2004.

[27] N. Haddadi, Y. Ordokhani, and M. Razzaghi, “Optimal control
of delay systems by using a hybrid functions approximation,”
Journal of Optimization Theory and Applications, vol. 153, no. 2,
pp. 338–356, 2012.

[28] H. R. Marzban and H. Pirmoradian, “A novel approach for the
numerical investigation of optimal control problems containing
multiple delays,”Optimal Control Applications andMethods, vol.
39, no. 1, pp. 302–325, 2018.

[29] M.Dadkhah,M.H. Farahi, andA.Heydari, “Optimal control of
a class of non-linear time-delay systems via hybrid functions,”
IMA Journal of Mathematical Control and Information, vol. 34,
no. 1, pp. 255–270, 2017.

[30] R. Mohammadzadeh and M. Lakestani, “Optimal control of
linear time-delay systems by a hybrid of block-pulse functions



14 Complexity

and biorthogonal cubic Hermite spline multiwavelets,”Optimal
Control Applications and Methods, vol. 39, no. 1, pp. 357–376,
2018.

[31] B. M. Mohan and S. Kumar Kar, “Orthogonal functions ap-
proach to optimal control of delay systems with reverse time
terms,” Journal ofThe Franklin Institute, vol. 347, no. 9, pp. 1723–
1739, 2010.

[32] J.W.Brewer, “Kronecker products andmatrix calculus in system
theory,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 25, no. 9, pp. 772–781, 1978.

[33] A. Papachristodoulou, “Robust stabilization of nonlinear time
delay systems using convex optimization,” in Proceedings of
the 44th IEEE Conference on Decision and Control, and the
European Control Conference, CDC-ECC ’05, pp. 5788–5793,
Sevilla, Spain, December 2005.

[34] C. Hua, P. X. Liu, and X. Guan, “Backstepping control for
nonlinear systemswith time delays and applications to chemical
reactor systems,” IEEE Transactions on Industrial Electronics,
vol. 56, no. 9, pp. 3723–3732, 2009.



Research Article
New Results on the Control for a Kind of Uncertain Chaotic
Systems Based on Fuzzy Logic

BoWang 1,2 and L. L. Chen1

1School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
2School of Applied Mathematics, University Electronic Science and Technology of China, Chengdu 610054, China

Correspondence should be addressed to Bo Wang; coolbie@163.com

Received 3 October 2018; Revised 7 January 2019; Accepted 26 February 2019; Published 27 March 2019

Guest Editor: Carlos-Arturo Loredo-Villalobos

Copyright © 2019 Bo Wang and L. L. Chen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper, the problem of the control for an uncertain nonlinear chaotic system has been studied; based on fuzzy logic, a
kind of single-dimensional controller is constructed for the control of the chaotic systems in the situation that uncertainties and
unknowns exist; at last some typical numerical simulations are carried out, and corresponding results illuminate the effectiveness
of the controller.

1. Introduction

Nonlinear systems exist in real engineering widely. Since
the pioneering work from Lurie in 1944, the research on
nonlinear system control has become the challenging issue,
andmany techniques, such as differential geometry technique
[1, 2], sliding mode technique [3–6] and so on, have been
proposed to deal with this problem. It can be noted that
these approaches are based on multidimensional control.
However, in some cases, the single-dimensional controller is
more cherished for its simpler structure andmore convenient
application in practice.

As an important branch of nonlinear systems, chaotic
system and its control received many attentions, and a lot
of related results have been reported so far [7–14]. For
instance, in [7], based on output feedback control strategy,
a method was presented to realize the control for unified
chaotic systems; in [8], the synchronization control for Lü
systems with unknown parameters was investigated; in [9],
the adaptive control for the synchronization of hyperchaotic
systems was studied; in [10], the fuzzy control for Arneodo
chaotic system is discussed.Howevermost of these researches
focused on just one typical chaotic system. In addition, it is
well known that there exist many kinds of uncertainties in

practical control system, and the following chaotic system
model is studied.

�̇�𝑖 = (𝑏𝑖 + Δ𝑏𝑖) 𝑥𝑖+1 + 𝑓𝑖 (𝑥𝑖) , 1 ≤ 𝑖 ≤ 𝑛 − 1
̇𝑥𝑛 = ℎ𝑛 (𝑥) + Δℎ𝑛 (𝑥) + 𝑓𝑛 (𝑥) + 𝑏𝑛𝑢
𝑦 = 𝑥1

(1)

where 𝑥 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅, 𝑥𝑛]T ∈ R𝑛, 𝑥𝑖 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅, 𝑥𝑖]T ∈ R𝑖, 𝑏𝑖
are the known system parameters and satisfy 0 < 𝑏𝑖𝑚 ≤ |𝑏𝑖| ≤𝑏𝑖𝑀, where 𝑏𝑖𝑚 and 𝑏𝑖𝑀 are the positive scalars,𝑓𝑛 (𝑥) and𝑓𝑖(𝑥𝑖)
are the unknown terms, Δ𝑏𝑖 and Δℎ𝑛 are the uncertainties, ℎ𝑛
is the known term, 𝑏𝑛 is the control parameter, 𝑦 is the system
output, and 𝑢 is the single-dimensional control input. A lot of
chaotic systems can be transformed into the system with the
form (1) through topological mapping.

As an important technique, fuzzy techniques are very
suitable for the research of nonlinear and complex sys-
tems (see [15–23] and references therein), and they will be
introduced to design the single-dimensional controller for
system (1) in this paper. Some simulations will be included
to illuminate the effectiveness of the constructed controller.
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2. Model Description and Preliminaries

It is well known that fuzzy logic system can approximate the
nonlinear function. Let𝑓(𝑥) denote the smooth function and𝜑(𝑥) denote the fuzzy logic system. There exists the optimal
parameter 𝜃∗ = argmin𝜃∈Ω0[sup𝑥∈Ω|𝑓(𝑥)−𝜑(𝑥)|] for the least
approximation error, where Ω0 and Ω are bounded sets of 𝜃
and x.

Define fuzzy rules as

IF 𝑥1 is F𝑗1 and . . . and 𝑥𝑛 is F𝑗𝑛,
then 𝜑 (𝑥) is B𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑁) (2)

Define the following fuzzy logic system [16]

𝜑 (𝑥) = ∑𝑁𝑗=1 𝜃𝑗∏𝑛𝑖=1𝜇𝐹𝑗
𝑖
(𝑥𝑖)

∑𝑁𝑗=1 ∏𝑛𝑖=1𝜇𝐹𝑗
𝑖

(𝑥𝑖) (3)

where 𝑥 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛]T ∈ R𝑛, 𝜇
𝐹
𝑗

𝑖

(𝑥𝑖) is the fuzzy
membership function, 𝜃𝑗 = max𝜑(𝑥)∈R𝐵𝑗(𝜑(𝑥)).

Let 𝜉(𝑥) = [𝜉1(𝑥), 𝜉2(𝑥), ⋅ ⋅ ⋅ , 𝜉𝑁(𝑥)]T and 𝜃 =[𝜃1, 𝜃2, ⋅ ⋅ ⋅ , 𝜃𝑁]T; one can get 𝜑(𝑥) = 𝜉T(𝑥)𝜃.
Hence, if 𝑓𝑘 is the continuous function from a compact

set, 𝜑𝑘(𝑥𝑘) can approximate 𝑓𝑘, which means that there exist𝜃𝑘 = [𝜃1𝑘, 𝜃2𝑘, ⋅ ⋅ ⋅, 𝜃𝑁𝑘]T and 𝜀𝑘 > 0, such that

𝑓𝑘 (𝑥𝑘) − 𝜉𝑘T (𝑥𝑘) 𝜃𝑘 ≤ 𝜀𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. (4)

where 𝑥𝑘 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑘]T, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑛.
In the paper, the following lemmas are concerned.

Lemma 1 (see [24]). If 𝑓(𝑡) ∈ 𝐿∞ ∩ 𝐿2 and ̇𝑓(𝑡) ∈ 𝐿∞, one
has

lim
𝑡→+∞

𝑓 (𝑡) = 0 (5)

3. Main Results

For convenience, let Δ𝑔𝑖(𝑥𝑖+1) = Δ𝑏𝑖𝑥𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1, andΔ𝑔𝑛 = Δℎ𝑛(𝑥).
Step 1. Define the tracking error 𝑒1 = 𝑦−𝑦d; 𝑦d is the desired
trajectory.

For the first subsystem of system (1), the virtual variable𝛼1 is introduced, such that

̇𝑒1 = �̇�1 − ̇𝑦d
= 𝑏1𝑥2 − 𝑏1𝛼1 + 𝑏1𝛼1 + 𝑓1 (𝑥1) + Δ𝑔1 (𝑥2) − �̇�d
= 𝑏1𝑒2 + 𝑏1𝛼1 + 𝑓1 (𝑥1) + Δ𝑔1 (𝑥2) − ̇𝑦d

(6)

where 𝑒2 = 𝑥2 − 𝛼1.

Step 2. For the second subsystem of system (1), the virtual
variable 𝛼2 is introduced, such that

̇𝑒2 = �̇�2 − �̇�1
= 𝑏2𝑥3 − 𝑏2𝛼2 + 𝑏2𝛼2 − �̇�1 + 𝑓2 (𝑥2) + Δ𝑔2 (𝑥3)
= 𝑏2𝑒3 + 𝑏2𝛼2 − �̇�1 + 𝑓2 (𝑥2) + Δ𝑔2 (𝑥3)

(7)

where 𝑒3 = 𝑥3 − 𝛼2.
Step k (𝑘 < 𝑛). For k-th subsystem of system (1), the virtual
variable 𝛼𝑘 is introduced, such that

̇𝑒𝑘 = �̇�𝑘 − �̇�𝑘−1
= 𝑏𝑘𝑥𝑘+1 − 𝑏𝑘𝛼𝑘 + 𝑏𝑘𝛼𝑘 − �̇�𝑘−1 + 𝑓𝑘 (𝑥𝑘)
+ Δ𝑔𝑘 (𝑥𝑘+1)

= 𝑏𝑘𝑒𝑘+1 + 𝑏𝑘𝛼𝑘 − �̇�𝑘−1 + 𝑓𝑘 (𝑥𝑘) + Δ𝑔𝑘 (𝑥𝑘+1)
(8)

where 𝑒𝑘+1 = 𝑥𝑘+1 − 𝛼𝑘
Step n. For the n-th subsystem of system (1), one can get

̇𝑒𝑛 = �̇�𝑛 − �̇�𝑛−1
= 𝑏𝑛𝑢 + ℎ𝑛 (𝑥) + 𝑓𝑛 (𝑥) + Δ𝑔𝑛 (𝑥) − �̇�𝑛−1 (9)

where 𝑒𝑛 = 𝑥𝑛 − 𝛼𝑛−1
Then, the following tracking error dynamic system can be

derived
̇𝑒𝑖 = 𝑏𝑖𝑒𝑖+1 + 𝑏𝑖𝛼𝑖 − �̇�𝑖−1 + 𝑓𝑖 (𝑥𝑖) + Δ𝑔𝑖 (𝑥𝑖+1 (𝑡)) ,

1 ≤ 𝑖 ≤ 𝑛 − 1
̇𝑒𝑛 = −�̇�𝑛−1 + ℎ𝑛 (𝑥) + 𝑓𝑛 (𝑥) + Δ𝑔𝑛 (𝑥) + 𝑏𝑛𝑢

(10)

where 𝛼0 = 𝑦d
The object of this paper is to design a controller, such that

lim
𝑡→+∞

𝑒 (𝑡) = 0 (11)

Choose the first Lyapunov function as

𝑉1 = 12𝑏1 𝑒
2
1 (12)

then

�̇�1 = 1𝑏1 𝑒1 ̇𝑒1 =
1𝑏1 𝑒1 (𝑏1𝑒2 + 𝑏1𝛼1 + 𝑓1 + Δ𝑔1 − ̇𝑦d)

= 𝑒1 (𝑒2 + 𝛼1) + 1𝑏1 𝑒1 (𝑓1 + Δ𝑔1 − �̇�d)
= 𝑒1 (𝑒2 + 𝛼1 + 𝑓1)

(13)

where

𝑓1 = 𝑓1 + Δ𝑔1 − ̇𝑦d𝑏1 . (14)

Let 𝛼1 = −𝜆1𝑒1 −𝜑1, 𝜆1 > 0, where 𝜑1 = 𝜉1T(𝑥2)𝜃1 is used
to approximate the nonlinear function 𝑓1, then
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�̇�1 = −𝜆1𝑒21 + 𝑒1𝑒2 + 𝑒1 (𝑓1 − 𝜑1) (15)

Choose the second Lyapunov function as

𝑉2 = 𝑉1 + 12𝑏2 𝑒
2
2 (16)

Let 𝛼2 = −𝜆2𝑒2 − 𝑒1 − 𝜑2, 𝜆2 > 0, where 𝜑2 = 𝜉2T(𝑥3)𝜃2 is
used to approximate the nonlinear function 𝑓2, then

�̇�2 = �̇�1 + 1𝑏2 𝑒2 ̇𝑒2
= �̇�1 + 𝑒2 (𝑒3 + 𝛼2 + 𝑓2 + Δ𝑔2 − �̇�1𝑏2 )
= −𝜆1𝑒21 + 𝑒2 (𝑒1 + 𝑒3 + 𝛼2 + 𝑓2) + 𝑒1 (𝑓1 − 𝜑1)
= −𝜆1𝑒21 + 𝑒2𝑒3 − 𝜆2𝑒22 + 𝑒1 (𝑓1 − 𝜑1)
+ 𝑒2 (𝑓2 − 𝜑2)

= − 2∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
2∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒2𝑒3

(17)

where

𝑓2 = 𝑓2 + Δ𝑔2 − �̇�1𝑏2 . (18)

Let 𝛼𝑘−1 = −𝜆𝑘−1𝑒𝑘−1−𝑒𝑘−2−𝜑𝑘−1, 𝜆𝑘−1 > 0, where 𝜑𝑘−1 =𝜉𝑘−1T(𝑥𝑘)𝜃𝑘−1 is used to approximate the nonlinear function𝑓𝑘−1, then
�̇�𝑘−1 = −𝑘−1∑

𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑘−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒𝑘−1𝑒𝑘 (19)

Choose the k-th Lyapunov function (𝑘 < 𝑛) as
𝑉𝑘 = 𝑉𝑘−1 + 12𝑏𝑘 𝑒

2
𝑘 (20)

Hence

�̇�𝑘 = �̇�𝑘−1 + 1𝑏𝑘 𝑒𝑘 ̇𝑒𝑘
= �̇�𝑘−1 + 𝑒𝑘 (𝑒𝑘+1 + 𝛼𝑘 + 1𝑏𝑘 (𝑓𝑘 + Δ𝑔𝑘 − �̇�𝑘−1))

= −𝑘−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑘−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖)
+ 𝑒𝑘 (𝑒𝑘+1 + 𝛼𝑘 + 𝑒𝑘−1 + 1𝑏𝑘 (𝑓𝑘 + Δ𝑔𝑘 − �̇�𝑘−1))

= −𝑘−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑘−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖)
+ 𝑒𝑘 (𝑒𝑘+1 + 𝛼𝑘 + 𝑒𝑘−1 + 𝑓𝑘)

(21)

where

𝑓𝑘 = 1𝑏𝑘 (𝑓𝑘 + Δ𝑔𝑘 − �̇�𝑘−1) . (22)

Let𝛼𝑘 = −𝜆𝑘𝑒𝑘−𝑒𝑘−1−𝜑𝑘, 𝜆𝑘 > 0, where𝜑𝑘 = 𝜉𝑘T(𝑥𝑘+1)𝜃𝑘
is used to approximate the nonlinear function 𝑓𝑘, then

�̇�𝑘 = − 𝑘∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑘∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒𝑘𝑒𝑘+1 (23)

It is consistent with our notation that 𝛼𝑛−1 = −𝜆𝑛−1𝑒𝑛−1 −𝑒𝑛−2 − 𝜑𝑛−1, 𝜆𝑛−1 > 0, where 𝜑𝑛−1 = 𝜉𝑛−1T(𝑥𝑛)𝜃𝑛−1 is used to
approximate the nonlinear function 𝑓𝑛−1, then

�̇�𝑛−1 = −𝑛−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒𝑛−1𝑒𝑛 (24)

Choose the n-th Lyapunov function as

𝑉𝑛 = 𝑉𝑛−1 + 12𝑏𝑛 𝑒
2
𝑛 (25)

Hence

�̇�𝑛 = �̇�𝑛−1 + 𝑒𝑛 (𝑢 + 1𝑏𝑛 (𝑓𝑛 − �̇�𝑛−1))

= −𝑛−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒𝑛−1𝑒𝑛
+ 𝑒𝑛 (𝑢 + 1𝑏𝑛 (𝑓𝑛 + Δ𝑔𝑛 − �̇�𝑛−1))

= −𝑛−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖)
+ 𝑒𝑛 (𝑢 + 𝑒𝑛−1 + 1𝑏𝑛 (𝑓𝑛 + Δ𝑔𝑛 − �̇�𝑛−1))

(26)

where

𝑓𝑛 = 1𝑏𝑛 (𝑓𝑛 + Δ𝑔𝑛 − �̇�𝑛−1) (27)

Suppose that 𝜑𝑛 = 𝜉𝑛T(𝑥)𝜃𝑛 approximate the nonlinear
function 𝑓𝑛 and that is based on Lyapunov theory, then the
following theoretical result can be obtained.

Theorem 2. For 𝜆𝑛 > 0, 𝑟𝑖 > 0 and 𝑘𝑖 > 0, based on the
controller

𝑢 = −𝜆𝑛𝑒𝑛 − 𝑒𝑛−1 − ℎ𝑛 (𝑥)𝑏𝑛 − 𝜉𝑛T (𝑥) 𝜃𝑛 (28)

and the adaptive law

̇𝜃𝑖 = 𝑟𝑖𝑒𝑖𝜉𝑖 − 2𝑘𝑖𝜃𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 (29)

then the output of chaotic system (10) can track the desired
trajectory.
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Proof. Based on (25), construct Lyapunov function as

𝑉 = 𝑉𝑛 + 𝑛∑
𝑖=1

12𝑟𝑖 𝜃
T
𝑖 𝜃𝑖 (30)

where 𝜃𝑖 = 𝜃∗𝑖 − 𝜃𝑖.
Combined with (28), it can be concluded that

�̇� = − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) −
𝑛∑
𝑖=1

1𝑟𝑖 𝜃
T
𝑖
̇𝜃𝑖

= − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜃∗𝑖 T𝜉𝑖)

+ 𝑛∑
𝑖=1

𝑒𝑖 (𝜃∗𝑖 T𝜉𝑖 − 𝜃T𝑖 𝜉𝑖) −
𝑛∑
𝑖=1

1𝑟𝑖 𝜃
T
𝑖
̇𝜃𝑖

= − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜃∗𝑖 T𝜉𝑖) +
𝑛∑
𝑖=1

𝑒𝑖𝜃T𝑖 𝜉𝑖
− 𝑛∑
𝑖=1

1𝑟𝑖 𝜃
T
𝑖
̇𝜃𝑖

≤ − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝜃T𝑖 (𝑒𝑖𝜉𝑖 − 1𝑟𝑖 ̇𝜃𝑖) +
𝑛∑
𝑖=1

𝑒𝑖𝜀𝑖

(31)

Define

𝑆 = − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝜃T𝑖 (𝑒𝑖𝜉𝑖 − 1𝑟𝑖 ̇𝜃𝑖) +
𝑛∑
𝑖=1

𝑒𝑖𝜀𝑖 (32)

Supposing that 𝑎𝑖 = 𝜆𝑖 − 1/2, it can be derived

𝜆𝑖 = 𝑎𝑖 + 12 (33)

Hence

𝑆 = − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 − 12
𝑛∑
𝑖=1

𝑒2𝑖 +
𝑛∑
𝑖=1

𝜃T𝑖 (𝑒𝑖𝜉𝑖 − 1𝑟𝑖 ̇𝜃𝑖) +
𝑛∑
𝑖=1

𝑒𝑖𝜀𝑖 (34)

Consider

−12
𝑛∑
𝑖=1

𝑒2𝑖 +
𝑛∑
𝑖=1

𝑒𝑖𝜀𝑖 ≤ −12
𝑛∑
𝑖=1

𝜀2𝑖 (35)

and with adaptive law (29), one can get

𝑆 ≤ − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝜃T𝑖 (𝑒𝑖𝜉𝑖 − 1𝑟𝑖 (𝑟𝑖𝑒𝑖𝜉𝑖 − 2𝑘𝑖𝜃𝑖))

+ 12
𝑛∑
𝑖=1

𝜀2𝑖
= − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 (𝜃
∗
𝑖 − 𝜃𝑖)T 𝜃𝑖 + 12

𝑛∑
𝑖=1

𝜀2𝑖
= − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑘𝑖𝑟𝑖 (2𝜃
∗
𝑖

T𝜃𝑖 − 2𝜃T𝑖 𝜃𝑖) + 12
𝑛∑
𝑖=1

𝜀2𝑖

(36)

Consider

𝜃∗𝑖 T𝜃∗𝑖 + 𝜃T𝑖 𝜃𝑖 ≥ 2𝜃∗𝑖 T𝜃𝑖 (37)

Then

2𝜃∗𝑖 T𝜃𝑖 − 2𝜃T𝑖 𝜃𝑖 ≤ 𝜃∗𝑖 T𝜃∗𝑖 − 𝜃T𝑖 𝜃𝑖 (38)

One can derive

�̇� ≤ − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑘𝑖𝑟𝑖 (−𝜃
T
𝑖 𝜃𝑖 + 𝜃∗𝑖 T𝜃∗𝑖 ) + 12

𝑛∑
𝑖=1

𝜀2𝑖
= − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑘𝑖𝑟𝑖 (−𝜃
T
𝑖 𝜃𝑖 − 𝜃∗𝑖 T𝜃∗𝑖 ) +

𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖
+ 12
𝑛∑
𝑖=1

𝜀2𝑖

(39)

Consider

𝜃T𝑖 𝜃𝑖 = (𝜃∗𝑖 − 𝜃𝑖)T (𝜃∗𝑖 − 𝜃𝑖) = 𝜃∗𝑖 T𝜃∗𝑖 − 2𝜃∗𝑖 T𝜃𝑖 + 𝜃T𝑖 𝜃𝑖
≤ 2𝜃∗𝑖 T𝜃∗𝑖 + 2𝜃T𝑖 𝜃𝑖

(40)

Then

−12𝜃
T
𝑖 𝜃𝑖 ≥ −𝜃T𝑖 𝜃𝑖 − 𝜃∗𝑖 T𝜃∗𝑖 (41)

One can derive

�̇� ≤ − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 −
𝑛∑
𝑖=1

𝑘𝑖2𝑟𝑖 𝜃
T
𝑖 𝜃𝑖 +

𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖 + 12
𝑛∑
𝑖=1

𝜀2𝑖
≤ − 𝑛∑
𝑖=1

𝑎𝑖 2𝑏𝑖𝑚2𝑏𝑖 𝑒
2
𝑖 −
𝑛∑
𝑖=1

𝑘𝑖2𝑟𝑖 𝜃
T
𝑖 𝜃𝑖 +

𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖
+ 12
𝑛∑
𝑖=1

𝜀2𝑖

(42)

Choosing 𝜆𝑖 > 1/2, one can obtain 𝑎𝑖 > 0.
Let

𝑎0 = min {2𝑏𝑖𝑚𝑎𝑖, 𝑘𝑖 : 𝑖 = 1, 2, ⋅ ⋅ ⋅, 𝑛}
𝑏0 = 𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖
T𝜃∗𝑖 + 12

𝑛∑
𝑖=1

𝜀2𝑖 (43)

Then

�̇� ≤ −𝑎0( 𝑛∑
𝑖=1

12𝑏𝑖 𝑒
2
𝑖 +
𝑛∑
𝑖=1

12𝑟𝑖 𝜃
T
𝑖 𝜃𝑖) + 𝑏0 = −𝑎0𝑉 + 𝑏0 (44)

The solution of differential equation �̇� = −𝑎0𝑉 + 𝑏0 is
𝑉(𝑡) = 𝑉 (0) exp (−𝑎0𝑡)

+ 𝑏0 exp (−𝑎0𝑡) exp (𝑎0𝑡) − 1𝑎0
(45)
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Considering (44), it can be derived that

𝑉(𝑡) ≤ (𝑉 (0) − 𝑏0𝑎0) exp (−𝑎0𝑡) + 𝑏0𝑎0
≤ 𝑉 (0) exp (−𝑎0𝑡) + 𝑏0𝑎0 ≤ 𝑉 (0) +

𝑏0𝑎0
(46)

Define

𝑑0 = min {𝑎𝑖 : 𝑖 = 1, 2, ⋅ ⋅ ⋅, 𝑛} . (47)

From (42), one can obtain

�̇� ≤ − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 −
𝑛∑
𝑖=1

𝑘𝑖2𝑟𝑖 𝜃
T
𝑖 𝜃𝑖 +

𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖 + 12
𝑛∑
𝑖=1

𝜀2𝑖
≤ −min {𝑎𝑖} 𝑛∑

𝑖=1

𝑒2𝑖 +
𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖 + 12
𝑛∑
𝑖=1

𝜀2𝑖
= −𝑑0 𝑛∑

𝑖=1

𝑒2𝑖 + 𝑏0

(48)

Hence, when ‖𝑒‖ > (𝑏0/𝑑0)1/2, one can get �̇� < 0, which
means 𝑒(𝑡) ∈ 𝐿∞.

Integrating both sides of inequality (48) from 0 to T, one
can get

∫𝑇
0
�̇� (𝑡) 𝑑𝑡 ≤ −∫𝑇

0
𝑑0 𝑛∑
𝑖=1

𝑒2𝑖 (𝑠) 𝑑𝑠 + 𝑇𝑏0 (49)

Consider

∫𝑇
0
�̇� (𝑡) 𝑑𝑡 = 𝑉 (𝑇) − 𝑉 (0) (50)

One can get

𝑉 (𝑇) − 𝑉 (0) ≤ −𝑑0 𝑛∑
𝑖=1

∫𝑇
0
𝑒2𝑖 (𝑠) 𝑑𝑠 + 𝑇𝑏0 (51)

Hence
𝑛∑
𝑖=1

∫𝑇
0
𝑒2𝑖 (𝑠) 𝑑𝑠 ≤ 1𝑑0 (𝑉 (0) − 𝑉 (𝑇) + 𝑇𝑏0) (52)

which means 𝑒(𝑡) ∈ 𝐿2. From error dynamic system (10),
it can be concluded that ̇𝑒(𝑡) ∈ 𝐿∞. Accordingly based on
Lemma 1, one can get lim𝑡→+∞𝑒(𝑡) = 0, which means the
achievement of the track control. The proof of Theorem 2 is
thus completed.

4. Numerical Simulation

First the following uncertain Arneodo system is considered.

�̇�1 = 𝑏1𝑥2 + 𝑓1
�̇�2 = (𝑏2 + Δ𝑏2) 𝑥3 + 𝑓2
�̇�3 = ℎ3 + Δℎ3 + 𝑓3 + 𝑏3𝑢

(53)

where
𝑏1 = 1,
𝑓1 = 0.3 sin 𝑥1,𝑏2 = 1,Δ𝑏2 = 0.02,
𝑓2 = 0.1 cos (𝑥1𝑥2) ,
ℎ3 = 𝑐3𝑥13 − 𝑐0𝑥1 − 𝑐1𝑥2 − 𝑐2𝑥3,

Δℎ3 = 0.1𝑥1,
𝑓3 = 0.2 cos (𝑥1) sin (𝑥3) ,𝑏3 = 5,𝑐0 = −5.4,
𝑐1 = 3.5,𝑐2 = 1,𝑐3 = −1,𝑘1 = 1,𝑘2 = 1.5,𝑘3 = 1.5,𝑟1 = 1.5,𝑟2 = 2,𝑟3 = 2,𝜆1 = 2.5,𝜆2 = 5,𝜆3 = 5,𝛼1 = −𝜆1 (𝑥1 − 𝑦𝑑) + ̇𝑦𝑑,
𝛼2 = −𝜆2 (𝑥2 − 𝛼1) − (𝑥1 − 𝑦𝑑) − 𝜉T2 (𝑥2) 𝜃,𝑢 = −𝜆3 (𝑥3 − 𝛼2) − (𝑥2 − 𝛼1) − 𝜉T3 (𝑥3) 𝜃,

𝜉1𝑗 (𝑥1) = 𝜇F𝑗1 (𝑥1)∑9𝑗=1 𝜇F𝑗1 (𝑥1) ,
𝜉2𝑗 (𝑥2) = 𝜇F𝑗1 (𝑥1) 𝜇F𝑗2 (𝑥2)∑9𝑗=1 𝜇F𝑗1 (𝑥1) 𝜇F𝑗2 (𝑥2) ,
𝜉3𝑗 (𝑥) = 𝜇F𝑗1 (𝑥1) 𝜇F𝑗2 (𝑥2) 𝜇F𝑗3 (𝑥3)∑9𝑗=1 𝜇F𝑗1 (𝑥1) 𝜇F𝑗2 (𝑥2) 𝜇F𝑗3 (𝑥3) ,

𝜇F1𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 + 2)2] ,
𝜇F2𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 + 1.5)2] ,
𝜇F3𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 + 1)2] ,
𝜇F4𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 + 0.5)2] ,
𝜇F5𝑖 (𝑥𝑖) = exp (−0.5𝑥2𝑖 )] ,
𝜇F6𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 − 0.5)2] ,
𝜇F7𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 − 1)2] ,
𝜇F8𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 − 1.5)2] ,
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Figure 1: Chaotic attractor of Arneodo system.

𝜇F9𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 − 2)2] ,
𝜉1 (𝑥1) = [𝜉11 (𝑥1) , 𝜉12 (𝑥1) , ⋅ ⋅ ⋅, 𝜉19 (𝑥1)]T ,
𝜉2 (𝑥2) = [𝜉21 (𝑥2) , 𝜉22 (𝑥2) , ⋅ ⋅ ⋅, 𝜉29 (𝑥2)]T ,
𝜉3 (𝑥3) = [𝜉31 (𝑥3) , 𝜉32 (𝑥3) , ⋅ ⋅ ⋅, 𝜉39 (𝑥3)]T .

(54)

Let desired trajectory 𝑦𝑑 = sin 2𝜋𝑡, initial value 𝑥(0) =[2, 0, 0]T, and the simulation results are displayed in Figures
1–7.

Remark 3. Figure 1 displays the chaotic attractor of Arneodo
system. Figure 2 displays the state response of x1 of Arneodo
system. From Figures 1 and 2, it can be seen that Arneodo
system has the complicated dynamical behavior. Figure 3 dis-
plays the state response of variable x1 of uncertain Arneodo
system. It can be seen that the existence of unknowns and
uncertainties makes Arneodo system unstable.

Remark 4. Figure 4 displays the fuzzy membership function.
Figure 5 displays the state response of control input. Figure 6
displays the state response of yd and y. Figure 7 displays the
state response of position tracking error. From Figures 4–7, it
can be seen that for uncertain Arneodo system, the position
tracking can be achieved during 0.5 second based on the
designed controller.

5. Conclusion

In this paper, based on fuzzy logic, a single-dimensional
controller has been constructed for the control of a kind
of uncertain chaotic systems. Some typical examples have
been employed and corresponding simulation results have
illuminated the effectiveness of proposed controller.
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Figure 2: State response of x1 of Arneodo system.
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Figure 3: State response of x1 of uncertain Arneodo system.
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Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The work is supported by National Natural Science Foun-
dation of China (11472297, 51475453) and Key Laboratory of
Fluid and Power Machinery of the Ministry of Education.

References

[1] T.-L. Chien, C.-C. Chen, and C.-Y. Hsu, “Tracking control of
nonlinear automobile idle-speed time-delay system via differ-
ential geometry approach,” Journal of
e Franklin Institute, vol.
342, no. 7, pp. 760–775, 2005.

[2] R. Yu and Y. Xie, “Investigation on cubic chua’s circuit via
differential geometry,” Physics Procedia, vol. 24, pp. 412–417,
2012.

[3] A. Levant and M. Livne, “Weighted homogeneity and robust-
ness of sliding mode control,” Automatica, vol. 72, pp. 186–193,
2016.

[4] Z. Liu, C. Gao, and Y. Kao, “Robust H-infinity control for a
kind of neutral-type systems via slidingmode observer,”Applied
Mathematics and Computation, vol. 271, pp. 669–681, 2015.

[5] J. Hua, L.-X. An, and Y.-M. Li, “Bionic fuzzy sliding mode con-
trol and robustness analysis,” Applied Mathematical Modelling:
Simulation andComputation for Engineering and Environmental
Systems, vol. 39, no. 15, pp. 4482–4493, 2015.

[6] J. Xu, M. Wang, and L. Qiao, “Dynamical sliding mode control
for the trajectory tracking of underactuated unmanned under-
water vehicles,”Ocean Engineering, vol. 105, pp. 54–63, 2015.

[7] Z. Shen and J. Li, “Chaos control for a unified chaotic system
using output feedback controllers,”Mathematics andComputers
in Simulation, vol. 132, pp. 208–219, 2017.

[8] H. Tirandaz and A. Hajipour, “Adaptive synchronization and
anti-synchronization of TSUCS and Lü unified chaotic systems
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In this paper, we unify and extend recent developments in Lyapunov stability theory to present techniques to determine the
asymptotic stability of six types of fractional dynamical systems.These differ by being modeled with one of the following fractional
derivatives: the Caputoderivative, the Caputodistributed order derivative, the variable order derivative, the conformable derivative,
the local fractional derivative, or the distributed order conformable derivative (the latter defined in this work). Additionally, we
apply these results to study the consensus of a fractional multiagent system, considering all of the aforementioned fractional
operators. Our analysis covers multiagent systems with linear and nonlinear dynamics, affected by bounded external disturbances
and described by fixed directed graphs. Lastly, examples, which are solved analytically and numerically, are presented to validate
our contributions.

1. Introduction

The concept of fractional calculus arose more than three
centuries ago, thanks to a question posed by L’Hôpital to
Leibniz where the meaning of derivatives of order 1/2 was
asked [1]. However, this discipline has gained popularity only
in the last decades, in which new methods to solve and
analyze fractional differential equations have appeared and
researchers have made great efforts to study real phenomena
using these tools. This modern boom has occurred mainly
because of the capability of fractional order calculus to
model certain systems more accurately in comparison with
traditional integer order calculus. This greater precision is
due to the liberty that fractional calculus gives us to consider
noninteger orders for the differential and integral operators.

Throughout the life of this branch of mathematics,
various definitions for the fractional derivative have been

proposed. A survey of the most common of these can be
found in Kilbas, Srivastava, and Trujillo [2]; Petráš [3];
Podlubny [4], along with a rich overview of interesting
applications and simulation techniques. In this paper, we
will focus on six different fractional derivatives. The first
of them is the Caputo fractional derivative which is widely
studied in the already-mentioned references and is preferred
by many because the Caputo derivative of a constant is zero
(which is not true for all fractional derivatives) and the
initial conditions of a Caputo fractional system have the same
physical interpretation as the integer order case.

The rest of the fractional derivatives addressed in this
work are of more recent origin. In the fractional variable-
order (also known as time-varying order) derivative, intro-
duced in Samko and Ross [5], the orders of differentiation
can be functions of the independent variable or even of other
parameters. In Sun, Chen, Wei, and Chen [6] it is argued
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that variable-order calculus allows to better describe certain
systems with memory properties that change, for example,
with time or position.

The Caputo distributed order derivative, originally pre-
sented in Caputo [7], acquired relevance in problems with
ultra-slow diffusion, where it has been applied with physical
justification, for instance, in Chechkin, Klafter, and Sokolov
[8]; Naber [9]. Regarding its meaning, a possible conceptual
interpretation for this fractional derivative is suggested in
Lorenzo and Hartley [10]: in systems where nonhomogenous
or anisotropic properties are involved, itmight be appropriate
to consider that each differential element of the system should
have its own differentiation order.

The fractional derivatives discussed in the above lines
do not satisfy the product or the chain rules. Furthermore,
the monotonicity of a function is not specified by the sign
of those derivatives. The conformable derivative emerged
in response to these inconveniences, as explained in Khalil,
Al Horani, Yousef, and Sababheh [11]; nevertheless, this
fractional operator, which is defined as a limit, loses the
memory properties and global character of the others, which
are built with integrals. A very similar but more general
fractional derivative was proposed in Almeida, Guzowska,
and Odzijewicz [12]. That operator is characterized by a
kernel function that can be tuned to better represent a
given physical system. In the same spirit of the Caputo
distributed derivative, in this article we introduce the dis-
tributed conformable derivative, a further generalization of
the fractional differential operator defined in Khalil et al.
[11].

The broad variety of applications that the aforementioned
fractional derivatives have had is remarkable: from quantum
mechanics, Laskin [13], to control theory, Baleanu, Machado,
and Luo [14], and study of human memory and emotions,
Tabatabaei, Yazdanpanah, Jafari, and Sprott [15]. In general,
these and other problems involving differential equations
of fractional order are complicated to approach and in
many cases there are no analytical or numerical schemes to
solve them. Consequently, the qualitative theory of fractional
dynamical systems has become an important line of research.
Within this field, the Lyapunov direct method is a tool that
allows us to determine the stability and long-term behavior
of a certain system, without the need of solving it.

In recent years, Lyapunov stability theory has integrated
to fractional calculus; see Li, Chen, and Podlubny [16];
Souahi, Makhlouf, and Hammami [17]; Tabatabaei, Talebi,
and Tavakoli [18]; Taghavian and Tavazoei [19]; Wang and
Li [20]. One of the objectives of the present article is to
take advantage of the similarities between those papers
and unify them into a generalized fractional Lyapunov
method, useful for systems of differential equations with the
fractional derivatives mentioned in the above paragraphs.
As an application of this— and with the purpose of com-
paring the performance of different fractional derivatives
in the same problem— we also study in this article the
consensus problem of a generalized fractional multiagent
system.

A multiagent system is an arrangement of various agents
that are organized to accomplish group objectives by means

of their local interactions. A multiagent system is said to
achieve consensus when the dynamics of the agents converge
to a certain desired value. We can appreciate the relevance of
this concept by noticing its multiple applications, including:
the study of the formation of multivehicle systems [21], the
synchronization of coupled oscillators [22], or the distributed
sensor fusion in sensor networks [23].

The consensus of multiagent systems has been mostly
investigated under the framework of integer order calcu-
lus. Extensive introductory reviews of this topic can be
found in W. Ren and Beard [21]; W. Ren and Cao [24].
Some of the ideas presented in those references have been
generalized for fractional order systems, solely using the
Caputo fractional derivative, for example: in Yu, Jiang, Hu,
and Yu [25], an adaptive pinning control is used to realize
leader-following consensus in a fractional multiagent system;
Yin, Yue, and Hu [26] studied the consensus problem for
fractional heterogeneous systems, made up of agents with
different dynamics; Song, Cao, and Liu [27] proposed a
distributed protocol to accomplish robust consensus, based
on the information of second-order neighbors;Nava-Antonio
et al. [28] present sufficient conditions for consensus of
multiagent systems with distributed fractional order; and
G. Ren and Yu [29] gave conditions for fractional multia-
gent systems to achieve robust consensus, via Mittag-Leffler
stability methods. That last article is the main inspiration
of the second half of this paper, where we will extend the
results of G. Ren and Yu [29] to be used in multiagent
systems with five other fractional differentiation orders, with
linear or nonlinear dynamics, and in the presence of external
perturbations.

The order of this text is described next. In Section 2,
fundamental preliminary concepts are introduced. Section 3
contains, in two parts, our main results: firstly, we present
the generalized fractional Lyapunov direct method and, then,
we apply it to study the consensus of multiagent systems
modeled with different fractional derivatives. Afterwards,
Section 4 gives examples where we verify the validity of the
developed theory. Lastly, Section 5 contains the conclusions
of the present work.

2. Preliminary Concepts

In the following section, we present the definitions of var-
ious fractional derivatives and discuss certain properties of
systems of equations with these operators. All the definitions
below are given considering orders of differentiation 𝛼 ∈(0, 1).
Definition 1 (Aguila-Camacho, Duarte-Mermoud, and Gal-
legos [30]). The Caputo fractional derivative of order 𝛼 is
defined as

𝑇𝛼1 𝑥 (𝑡) = 1Γ (1 − 𝛼) ∫
𝑡

𝑡0

𝑥 (𝜏)(𝑡 − 𝜏)𝛼 𝑑𝜏, 𝑡 > 𝑡0, (1)

where 𝑥(𝑡) is the integer derivative of 𝑥(𝑡). We suppose that𝑥(𝑡) is a differentiable function for all 𝑡 ≥ 𝑡0 and for all
operators in this work.
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Definition 2 (Tabatabaei et al. [18]). The modified initialized
Caputo fractional derivative of time-varying order 𝛼(𝑡) is
defined as follows:

𝑇𝛼2 𝑥 (𝑡) = 1Γ (1 − 𝛼 (𝑡)) ∫
𝑡

0

𝑥 (𝜁)(𝑡 − 𝜁)𝛼(𝑡) 𝑑𝜁 + Ψ𝑥𝑐 (𝑡) ,
∀𝑡 ≥ 0,

(2)

where Ψ𝑥𝑐 (𝑡) = (1/Γ(1 − 𝛼(𝑡))) ∫0
−𝑐
(𝑡 − 𝜁)−𝛼(𝑡)𝑥(𝜁)𝑑𝜁 captures

the behavior of 𝑥 before 𝑡 = 0, assuming that 𝑥 begins from−𝑐 < 0. Since we will focus in this paper on systems which are
at rest at 𝑡 < 0, Ψ𝑥𝑐 (𝑡) = 0.
Definition 3 (Jiao, Chen, and Podlubny [31]). The distributed
order fractional derivative in the Caputo sense with respect
to the density function 𝑐 : [𝜇, 1] → [0, +∞) for some 1 >𝜇 > 0, such that ∫1

𝜇
𝑐(𝛼)𝑑𝛼 ̸= 0, is defined as follows:

𝑇𝛼3 𝑥 (𝑡) = ∫1
𝜇
𝑐 (𝛼) 𝑇𝛼1 𝑥 (𝑡) 𝑑𝛼. (3)

The Laplace transform of a distributed order derivative,
which will appear in the derivation of our main results, is

L {𝑇𝛼3 𝑥 (𝑡)} = 𝐶 (𝑠)𝑋 (𝑠) − 1𝑠 𝐶 (𝑠) 𝑥 (0+) , (4)

where 𝐶(𝑠) = ∫𝑚
𝑚−1

𝑐(𝛼)𝑠𝛼𝑑𝛼.
Definition 4 (Souahi et al. [17]). The conformable fractional
derivative starting from 𝑎 of a function 𝑥 defined on [𝑎,∞) is

𝑇𝛼4 𝑥 (𝑡) = lim
𝜖→0

𝑥 (𝑡 + 𝜖 (𝑡 − 𝑎)1−𝛼) − 𝑥 (𝑡)𝜖 , (5)

for all 𝑡 > 𝑎. If lim𝑡→𝑎+𝑇𝛼4 𝑥(𝑡) exists, then
𝑇𝛼4 𝑥 (𝑎) = lim

𝑡→𝑎+
𝑇𝛼4 𝑥 (𝑡) . (6)

Definition 5 (Almeida et al. [12]). Let 𝑘 : [𝑎, 𝑏] → R be a
continuous nonnegative map such that 𝑘(𝑡) ̸= 0, whenever𝑡 > 𝑎 and 𝑥 : [𝑎, 𝑏] → R. By definition, 𝑥 is 𝛼-differentiable
at 𝑡 > 𝑎, with respect to kernel 𝑘, if the limit

𝑇𝛼5 𝑥 (𝑡) = lim
𝜖→0

𝑥 (𝑡 + 𝜖𝑘 (𝑡)1−𝛼) − 𝑥 (𝑡)𝜖 (7)

exists. The local fractional derivative at 𝑡 = 𝑎 is defined by

𝑇𝛼5 𝑥 (𝑎) = lim
𝑡→𝑎+

𝑇𝛼5 𝑥 (𝑡) , (8)

if the limit exists.

Definition 6. Let 𝑘 and 𝑥 be functions as in Definition 5
and 𝑐 a density function as in Definition 3. The distributed
conformable fractional derivative is defined as

𝑇𝛼6 𝑥 (𝑡) = ∫1
0
𝑐 (𝛼) 𝑇𝛼5 𝑥 (𝑡) 𝑑𝛼. (9)

Theorem 7 (Almeida et al. [12]). A function 𝑥 : [𝑎, 𝑏] → R
is 𝛼-differentiable at 𝑡 > 𝑎 if and only if it is differentiable at 𝑡.
In that case, we have the relation

𝑇𝛼5 𝑥 (𝑡) = 𝑘 (𝑡)1−𝛼 𝑥 (𝑡) , 𝑡 > 𝑎. (10)

Notice that Definition 5 is a particular case of Defini-
tion 6. Then byTheorem 7 if we take 𝑘(𝑡) = 𝑡 − 𝑎 we obtain

𝑇𝛼4 𝑥 (𝑡) = (𝑡 − 𝑎)1−𝛼 𝑥 (𝑡) , 𝑡 > 𝑎. (11)

In a similar form by substituting (10) in (9) we have

𝑇𝛼6 𝑥 (𝑡) = 𝑥 (𝑡) ∫1
0
𝑐 (𝛼) 𝑘 (𝑡)1−𝛼 𝑑𝛼. (12)

Consider the generalized system of fractional differential
equations of order 𝛼 ∈ (0, 1):

𝑇𝛼𝑗 𝑥 = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑗 = 1, 2, 3, 4, 5, or 6, (13)

where 𝑥 ∈ R𝑛, 𝑥(𝑡0) = 𝑥0, and 𝑓 : R+ × R𝑛 →
R𝑛 is a given nonlinear function is Lipzchitz with respect
to the second argument. For simplicity and without loss of
generality, we will consider that the equilibrium points of the
systems analyzed hereafter are at the origin, i.e., 𝑓(𝑡, 0) = 0,∀𝑡 ≥ 0.

Throughout this paper, we will assume that the studied
systems have unique solutions. The existence and uniqueness
of the solution of system (13) is discussed in Podlubny [4], Xu
and He [32], Ford and Morgado [33], and Bayour and Torres
[34], for the cases 𝑗 = 1, 2, 3, and 4, respectively. The theory
of existence and uniqueness of solutions when 𝑗 = 5 or 6 can
be easily generalized from Bayour and Torres [34], by taking
into account (11) and (12).

The Final Value Theorem and an important Laplace
transform associated with fractional calculus, both used in
the following sections of this article, are presented next.

Theorem 8 (Duffy [35]). Let 𝐹(𝑠) = L{𝑓(𝑡)}. If all poles of𝑠𝐹(𝑠) are in the open left-half complex plane, then

lim
𝑡→∞

𝑓 (𝑡) = lim
𝑠→0

𝑠𝐹 (𝑠) . (14)

Definition 9 (Podlubny [4]). A two-parameter function of the
Mittag-Leffler type is defined by

𝐸𝛼,𝛽 (𝑧) = ∞∑
𝑘=0

𝑧𝑘Γ (𝛼𝑘 + 𝛽) , 𝛼 > 0, 𝛽 > 0 (15)

Lemma 10 (Podlubny [4]). TheMittag-Leffler function of two
parameters satisfies the following relationship:

L
−1 [𝑠−(𝛼−𝛽)𝑠𝛽 − 𝑎 ] = 𝑡𝛼−1𝐸𝛽,𝛼 (𝑎𝑡𝛽) , 𝑠𝛽 − 𝑎 < 1. (16)

3. Lyapunov Stability for Generalized
Fractional Systems

The two Theorems in this section summarize the known
results for Lyapunov stability theory for nonlinear systems



4 Complexity

of (A) Li et al. [16] and Wang and Li [20] (Definition 1);
(B) Souahi et al. [17] (Definition 2); (C) Tabatabaei et al.
[18] (Definition 3); (D) Taghavian and Tavazoei [19] (Defini-
tion 4); (E) Almeida et al. [12] (Definition 5) and also extends
the Lyapunov stability theory for nonlinear systems defined
by operators introduced in Definitions 5 and 6. Specifically,
in (A) the Lyapunov direct method for standard Caputo
fractional system (13) with 𝑗 = 1 is proved and the definition
ofMittag-Leffler stability is introduced. In (B) the same result
for the case of the modified initialized Caputo fractional
derivative of time-varying order 𝛼(𝑡)with 𝑗 = 2 is proved. For
the case of distributed fractional systems (13) the mentioned
result in (C) for 𝑗 = 3 is proved. In the case of conformal
fractional systems in (D), it is shown that (13) is fractional
exponentially stable which implies asymptotic stability for𝑗 = 4. For the case of Definitions 5 and 6 we show that the
proofs are very similar to the one for the case 𝑗 = 4. In
consequence, Theorems 12 and 16 extend the Lyapunov direct
method for generalized fractional systems defined in (13).

Assumption 11. For 𝑗 = 2, system (13) is autonomous, i.e.,𝑓(𝑡, 𝑥(𝑡)) = 𝑓(𝑥(𝑡)).
Theorem 12. Consider system (13) with 𝑗 = 1, 2, 3, 4, 5 or 6.
Let 𝑉(𝑡, 𝑥(𝑡)) be a continuously differentiable function such
that

𝛾1 ‖𝑥 (𝑡)‖𝑙 ≤ 𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝛾2 ‖𝑥 (𝑡)‖𝑙𝑚 , (17)

𝑇𝛼𝑗 𝑉 (𝑡, 𝑥 (𝑡)) ≤ −𝛾3 ‖𝑥 (𝑡)‖𝑙𝑚 , (18)

where 𝑡 ≥ 0, 𝛾𝑖 (𝑖 = 1, 2, 3), and 𝑙 and 𝑚 are arbitrary positive
constants. If Assumption 11 is fulfilled, then the origin of system
(13) is asymptotically stable.

Proof.

(i) For 𝑗 = 1, (13) is a standard Caputo fractional system.
For this system, the proof is the same as the one of
Theorem 5.1 of Li et al. [16]. There, it is shown that
(13) is Mittag-Leffler stable, which implies asymptotic
stability.

(ii) For 𝑗 = 2, (13) is a fractional system of time-
varying order. This proof follows from Theorem 1 of
Tabatabaei et al. [18]. That result requires the weaker
hypotheses 𝑉(𝑡, 𝑥(𝑡)) ≥ 0, 𝑉(𝑡, 𝑥(𝑡)) = 0 ⇐⇒ 𝑥 = 0
(which are implied by (17)) and 𝑇𝛼2𝑉(𝑡, 𝑥(𝑡)) < 0 in𝐷 − {0} (which is implied by (18)).

(iii) For 𝑗 = 3, (13) is a distributed fractional system. In
this case, the proof can be found in Theorem 4.1 of
Taghavian and Tavazoei [19].

(iv) For 𝑗 = 4, (13) is a conformable fractional system.This
proof is the same as the one of Theorem 1 of Souahi
et al. [17], where it is shown that (13) is fractional
exponentially stable.That kind of stability also implies
asymptotic stability.

(v) For 𝑗 = 5 or 6, (13) is a system with local fractional
derivatives or a distributed conformable fractional

system, respectively. In these instances, the proofs
are very similar to the one of the previous case
(𝑗 = 4). That proof depends on two facts about the
conformable derivative: that it satisfies the product
rule in the traditional sense and that the sign of𝑇𝛼4 𝑥(𝑡)
determines the monotonicity of 𝑥(𝑡). Note, from (8)
and (12), that these features are also true for the
operators 𝑇𝛼5 and 𝑇𝛼6 .

The next result is a partial generalization of Theorem 12,
being more permissive with the Lyapunov function and its
fractional derivative, but requiring a couple of additional
hypotheses.

Assumption 13. For 𝑗 = 3 in (13), the Lyapunov function of
Theorem 16 has a nonzero initial value, i.e., 𝑉(0, 𝑥(0)) ̸= 0.
Definition 14 (Teel and Praly [36]). A function ℎ : [0,∞) →[0,∞) is said to belong to classK if it is continuous, zero at
zero, and strictly increasing.

Assumption 15. For 𝑗 = 4, 5, and 6 in (13), the class K
functions ℎ𝑖 (𝑖 = 1, 2, 3) satisfy lim𝑡→∞ℎ𝑖(𝑡) = ∞.

Theorem 16. Consider system (13) with 𝑗 = 1, 2, 3, 4, 5 or 6.
Suppose that there exist classK functions ℎ𝑖 (𝑖 = 1, 2, 3) and a
continuously differentiable function 𝑉(𝑡, 𝑥(𝑡)) such that

ℎ1 (‖𝑥 (𝑡)‖) ≤ 𝑉 (𝑡, 𝑥 (𝑡)) ≤ ℎ2 (‖𝑥 (𝑡)‖) , (19)

𝑇𝛼𝑗 𝑉(𝑡, 𝑥 (𝑡)) ≤ −ℎ3 (‖𝑥 (𝑡)‖) . (20)

If Assumptions 11, 13, and 15 are fulfilled, then the origin of
system (13) is asymptotically stable.

Proof.
(i) For 𝑗 = 1, the proof can be found on Theorem 6.2 of

Li et al. [16].
(ii) For 𝑗 = 2, the proof is presented in Tabatabaei et al.

[18], as explained in item (ii) of Theorem 12 proof.
(iii) For 𝑗 = 3, the proof is the same as the one ofTheorem

4.2 of Taghavian and Tavazoei [19].
(iv) For 𝑗 = 4, proof can be found inTheorem 3 of Souahi

et al. [17].
(v) For 𝑗 = 5 or 6, considering the argument stated in

(v) ofTheorem 12 proof, we can readily generalize the
result of 𝑗 = 4 to cases of the distributed conformable
and local fractional derivatives.

We now know that Theorem 16 is valid also for Riemann-
Liouville-like fractional difference equations (see Theorem
3.6 in Wu, Baleanu, and Luo [37]). So we conjecture that
Theorem 16 can be valid for a larger family of operators.

The following lemma contains a property of the gener-
alized fractional differential operator which is useful when
putting into practice the previous Lyapunov Stability Theo-
rems.
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Lemma 17. Let 𝑥 : R → R be a continuous differentiable
function. Then, for 𝑗 = 1, 2, 3, 4, 5 or 6, the following
relationship holds:

12𝑇𝛼𝑗 [𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)] ≤ 𝑥𝑇 (𝑡) 𝑃𝑇𝛼𝑗 [𝑥 (𝑡)] , (21)

where 𝑃 is a Hermitian positive definite matrix.

Proof. The proof for the cases 𝑗 = 1, 2, 4 can be found in
Aguila-Camacho et al. [30]; Souahi et al. [17]; Tabatabaei
et al. [18], respectively. If 𝑗 = 3, a proof for when 𝑃 =𝐼 is presented in Fernández-Anaya, Nava-Antonio, Jamous-
Galante, Muñoz-Vega, and Hernández-Mart́ınez [38]. To
obtain the more general version, consider inequality (21) with𝑗 = 1, multiply it by the distribution function 𝑐(𝛼) ≥ 0, and
integrate

∫1
0

12𝑐 (𝛼) 𝑇𝛼1 [𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)] 𝑑𝛼 = 12𝑇𝛼3 [𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)]
≤ . . .

. . . ≤ ∫1
0
𝑥𝑇 (𝑡) 𝑃𝑐 (𝛼) 𝑇𝛼1 [𝑥 (𝑡)] 𝑑𝛼

= 𝑥𝑇 (𝑡) 𝑃𝑇𝛼3 [𝑥 (𝑡)] .
(22)

We can follow a similar reasoning to prove this lemma for𝑗 = 5 or 6, by multiplying (21) with 𝑗 = 4 and 𝛼 =1 (that is, the traditional integer order derivative) by 𝑘(𝑡)1−𝛼
or ∫1
0
𝑐(𝛼)𝑘(𝑡)1−𝛼𝑑𝛼 and using properties (8) or (12), respec-

tively.

4. Application to the Consensus of Multiagent
Systems of Generalized Fractional Order

In this section, we will investigate the problem of consensus
for generalized multiagent systems. First, we will consider
systems with nonlinear dynamics and then we will present
the linear simplification of that analysis.

4.1. Graph Theory Fundamentals. We can describe the inter-
action topology of a multagent system with the help of graph
theory. A graph G is characterized by its vertices V ={V1, V2, . . . , V𝑛} (which represent the agents of the system)
and its edges W ⊆ V2 (which correspond to the agents’
relationships). In this paper, we will focus on directed graphs,
where each edge is an ordered pair (V𝑖, V𝑗); this means that
agent 𝑗 receives information from agent 𝑖. A graph can be
represented by its adjacency matrix 𝐴 = [𝑎𝑖𝑗] ∈ R𝑛×𝑛, where𝑎𝑖𝑗 = 1 if (V𝑖, V𝑗) ∈ W and 𝑎𝑖𝑗 = 0 if (V𝑖, V𝑗) ∉ W, or by its
Laplacian matrix 𝐿 = [𝑙𝑖𝑗] ∈ R𝑛×𝑛, where 𝑙𝑖𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗 and𝑙𝑖𝑗 = −𝑎𝑖𝑗 for 𝑖 ̸= 𝑗 with 𝑁𝑖 the number of connected nodes to
node 𝑖.

The following lemmas will be used in the proofs of our
main results to gain insight into the graphs associated with
the multiagent systems of our interest.

Lemma 18 (W. Ren and Cao [24]). If a graph has a directed
spanning tree, then the Laplacian matrix 𝐿 has a simple zero
eigenvalue and all its other eigenvalues have positive real parts.
Moreover, all eigenvalues of 𝐻 = 𝐿 + 𝐵 will have positive real
parts, where 𝐵 = diag{𝑏1, 𝑏2, . . . , 𝑏𝑛} and 𝑏𝑖 ≥ 0 is not all 0.
Lemma 19 (Zhang and Tian [39]). Let 𝐸 = [1𝑛−1, −𝐼𝑛−1] ∈
R(𝑛−1)×𝑛 and 𝐹 = ( 0𝑇𝑛−1

−𝐼𝑛−1
) ∈ R𝑛×(𝑛−1), where 1𝑛−1 is the column

vector of ones, 𝐼𝑛−1 is the identity matrix, and 0𝑛−1 is the zero
column vector, and each of them is of size 𝑛−1.Then,𝐶 = −𝐸𝐿𝐹
is Hurwitz, where 𝐿 is the Laplacian matrix, if and only if the
associated interaction graph has a directed spanning tree.

The notion of consensus that will be considered through-
out this paper is presented next.

Definition 20. A multiagent system accomplishes consensus
if it fulfills the following condition:

lim
𝑡→∞

𝑥𝑖 (𝑡) − 𝑥𝑘 (𝑡) ≤ 0,
∀𝑖, 𝑘 ∈ {1, 2, . . . , 𝑛} , 𝑖 ̸= 𝑘, (23)

where 𝑥𝑘(𝑡) is the state of the 𝑘-th agent.

Hereinafter, we will suppose, for simplicity, that all agents
are in a one-dimensional space. All our results can be easily
generalized for 𝑚 dimensions by means of the Kronecker
product. Moreover, in this work we will consider the matrix
norm:

‖𝐴‖ = √ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑎2𝑖𝑗, (24)

with 𝐴 = (𝑎𝑖𝑗) ∈ R𝑛×𝑚. And for any matrix 𝑄 ∈ R𝑛×𝑛,𝜆max(𝑄), and 𝜆min(𝑄) denote the largest and smallest eigen-
values, respectively.

4.2. Robust Consensus of Nonlinear Generalized Fractional
Multiagent Systems. A generalized nonlinear fractional
multi-agent system can be represented by

𝑇𝛼𝑗 𝑥𝑖 (𝑡) = 𝑓 (𝑡, 𝑥𝑖 (𝑡)) + 𝑢𝑖 (𝑡) + 𝑤𝑖 (𝑡) ,
𝑖 ∈ {1, 2, . . . , 𝑛} , (25)

where 𝑗 = 1, 2, 3, 4, 5 or 6 and 𝑥𝑖(𝑡),𝑓(𝑡, 𝑥𝑖(𝑡)), 𝑢𝑖(𝑡), and𝑤𝑖(𝑡)
are the state, nonlinear dynamics, control input, and external
disturbances of the 𝑖-th agent, respectively.

As an auxiliary element, we will consider a virtual leader,
which is an isolated agent that designates objectives for the
states of all other agents. The behavior of the virtual leader is
characterized by

𝑇𝛼𝑗 𝑥𝑟 (𝑡) = 𝑓 (𝑡, 𝑥𝑟 (𝑡)) , (26)
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where 𝑥𝑟(𝑡) is the state of the virtual leader. To accomplish
consensus in system (25), we will use the following control
input:

𝑢𝑖 (𝑡)
= −𝛽[ 𝑛∑

𝑘=1

𝑎𝑖𝑘 (𝑥𝑖 (𝑡) − 𝑥𝑘 (𝑡)) + 𝑏𝑖 (𝑥𝑖 (𝑡) − 𝑥𝑟 (𝑡))] , (27)

where 𝑎𝑖𝑘, for 𝑖, 𝑘 ∈ {1, 2, . . . , 𝑛} with 𝑖 ̸= 𝑘, is the (𝑖, 𝑘)-th
entry of the adjacency matrix 𝐴 ∈ R𝑛×𝑛 associated with the
undirected graph describing the interaction of the agents, and𝛽 ≥ 0 and 𝑏𝑖, for (𝑖 = 1, 2, . . . , 𝑛), are positive constants to be
chosen as mentioned in Theorem 23.

We will require that the following assumptions hold.

Assumption 21. The disturbance signal 𝑤𝑖(𝑡) satisfies‖𝑤𝑖(𝑡)‖ ≤ 𝑙 < ∞ ∀𝑖 ∈ {1, 2, . . . , 𝑛}.
Assumption 22. For the multiagent system (25) with 𝑗 = 3,
the distribution function 𝑐(𝛼) is such that

L
−1 { 1𝐶 (𝑠) + 𝜇/𝜆max (𝑄)} ≥ 0, (28)

where 𝐶(𝑠) is defined in terms of 𝑐(𝛼) as in (4).

Theorem 23. Consider the generalized fractional nonlinear
multiagent system (25) with the virtual leader (26) and the
controller (27). Assume that the nonlinear function𝑓(𝑡, 𝑥(𝑡)) is
Lipschitz (with respect to 𝑥 and with Lipschitz constant 𝜃) and
that the associated fixed directed graph has a directed spanning
tree.

(1) For 𝑗 = 1, 2, 3, 4, 5 or 6: if 𝑤𝑖(𝑡) = 0, ∀𝑖, Assumption 11
is satisfied and

√2𝛽𝜃 ≥ ‖𝑄‖ , (29)

where 𝑄 > 0 is the solution of the Lyapunov equation𝐻𝑇𝑄 + 𝑄𝐻 = 3𝐼𝑛, and then robust consensus is
achieved.

(2) For 𝑗 = 1 or 3 if ∃ 𝑤𝑖(𝑡) ̸= 0, Assumptions 21 and 22
are satisfied, and

𝛽𝜃 ≥ ‖𝑄‖ , (30)

where 𝑄 > 0 is the solution of the Lyapunov equation𝐻𝑇𝑄 + 𝑄𝐻 = 3𝐼𝑛, and then the steady-state errors of
any two agent will converge as 𝑡 → ∞ to the region𝑀1, where

𝑀1 = {𝑥𝑖 (𝑡) − 𝑥𝑦 (𝑡) ≤ √ 2𝑛𝜆max (𝑄)𝛽𝜇𝜆min (𝑄) ‖𝑄‖ 𝑙} , (31)

and 𝜇 = 𝛽 − ‖𝑄‖2𝜃2/𝛽.

Proof. By substituting (27) in system (25), we can write

𝑇𝛼𝑗 𝑋 (𝑡) = 𝐹 (𝑋 (𝑡)) − 𝛽 [𝐿𝑋 (𝑡) + 𝐵 (𝑋 (𝑡) − 𝑥𝑟1𝑛)]
+ 𝑊 (𝑡) , (32)

where 𝐹(𝑋(𝑡)) = [𝑓(𝑥1(𝑡)), . . . , 𝑓(𝑥𝑛(𝑡))]𝑇. Subtracting𝑇𝛼𝑗 [1𝑛𝑥𝑟(𝑡)] from both sides of (32) and using the change of
variables 𝑧𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑥𝑟(𝑡), 𝑖 ∈ {1, 2, . . . , 𝑛} yields

𝑇𝛼𝑗 𝑍 (𝑡) = −𝛽𝐻𝑍 (𝑡) + Δ𝐹 (𝑍 (𝑡)) + 𝑊 (𝑡) , (33)

where𝐻 is defined as in Lemma 18,𝑍(𝑡) = [𝑧1(𝑡), . . . , 𝑧𝑛(𝑡)]𝑇
and Δ𝐹(𝑍(𝑡)) = [𝑓(𝑧1(𝑡) + 𝑥𝑟(𝑡)) − 𝑓(𝑥𝑟(𝑡)), . . . , 𝑓(𝑧𝑛(𝑡) +𝑥𝑟(𝑡)) − 𝑓(𝑥𝑟(𝑡))]𝑇. Consider the following Lyapunov candi-
date function for system (33):

𝑉 (𝑡) = 𝑍𝑇𝑄𝑍 (𝑡) . (34)

Applying Lemma 17 and substituting (33), we can analyze𝑇𝛼𝑗 𝑉(𝑡):
𝑇𝛼𝑗 𝑉 (𝑡) ≤ 𝛽𝑍𝑇 (𝑡) [−𝑄𝐻 −𝐻𝑇𝑄]𝑍 (𝑡)

+ 2𝑍𝑇 (𝑡) [𝑄Δ𝐹 (𝑍 (𝑡)) + 𝑄𝑊(𝑡)] . (35)

Using Lemma 18 we can conclude that all the eigenvalues of𝐻 have positive real parts, so that −𝐻 is Hurwitz. Thus, there
exists a matrix 𝑄 = 𝑄𝑇 > 0 that satisfies −𝐻𝑇𝑄 − 𝑄𝐻 =−3𝐼𝑛. Applying in (35) this identity along with the property𝜉𝑇𝜁+𝜁𝑇𝜉 ≤ 𝜅 𝜉𝑇𝜉+(1/𝜅)𝜁𝑇𝜁, which is valid for any 𝜉, 𝜁 ∈ R𝑚,
we obtain

𝑇𝛼𝑗 𝑉 (𝑡) ≤ −3𝛽 ‖𝑍 (𝑡)‖2 + 𝛽 ‖𝑍 (𝑡)‖2 + 1𝛽 ‖𝑄𝑊(𝑡)‖2
+ 𝛽 ‖𝑍 (𝑡)‖2 + 1𝛽 ‖𝑄‖2 ‖Δ𝐹 (𝑡, 𝑍 (𝑡))‖2 . (36)

Since 𝑓(𝑡, 𝑥(𝑡)) is Lipschitz with respect to 𝑥(𝑡), we can
simplify (36) as follows:

𝑇𝛼𝑗 𝑉 (𝑡)
≤ −𝛽 ‖𝑍 (𝑡)‖2 + 𝑛𝑙2 ‖𝑄‖2𝛽

+ ‖𝑄‖2𝛽
𝑛∑
𝑖=1

(𝑓 (𝑡, 𝑧𝑖 (𝑡) + 𝑥𝑟 (𝑡)) − 𝑓 (𝑡, 𝑥𝑟 (𝑡)))2
≤ −𝛽 ‖𝑍 (𝑡)‖2 + 𝑛𝑙2 ‖𝑄‖2𝛽 + ‖𝑄‖2 𝜃2𝛽 ‖𝑍 (𝑡)‖2
≤ −𝜇 ‖𝑍 (𝑡)‖2 + 𝑛𝑙2 ‖𝑄‖2𝛽

(37)

where 𝜇 = 2𝛽 − ‖𝑄‖2𝜃2/𝛽 > 0 by (29).
(1) In the following, we will use Theorem 12 to prove

that system (33) is asymptotically stable at its origin.
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If 𝑤𝑖(𝑡) = 0, ∀𝑖, then 𝑙 = 0. As consequence,
(37) turns into 𝑇𝛼𝑗 𝑉(𝑡) ≤ −𝜇‖𝑍(𝑡)‖2, so that (18)
is satisfied for 𝛼3 = 𝜇. Additionally, noting that𝜆min(𝑄)𝑍𝑇(𝑡)𝑍(𝑡) ≤ 𝑉(𝑡) ≤ 𝜆max(𝑄)𝑍𝑇(𝑡)𝑍(𝑡), it
is clear that 𝑉(𝑡) satisfies (17) for 𝛼1 = 𝜆min(𝑄)
and 𝛼2 = 𝜆max(𝑄). By Theorem 12 we can conclude
that system (33) is asymptotically stable at 𝑌(𝑡) =0𝑛−1. This means, according to the definition of 𝑍(𝑡),
that lim𝑡→∞‖𝑥1(𝑡) − 𝑥𝑖(𝑡)‖ = 0, ∀𝑖 ∈ {1, 2, . . . , 𝑛},
and hence the multiagent system (25) achieves robust
consensus.

(2) Using the inequality 𝑍𝑇(𝑡)𝑃𝑍(𝑡) ≤ 𝜆max(𝑄)‖𝑍(𝑡)‖2 in
(34) yields 𝑉(𝑡)/𝜆max(𝑄) ≤ ‖𝑍(𝑡)‖2. Hence

𝑇𝛼𝑗 𝑉(𝑡) ≤ − 𝜇𝜆max (𝑄)𝑉 (𝑡) + 𝑛𝑙2 ‖𝑄‖2𝛽 . (38)

Let 𝑢(𝑡) = 𝑉(𝑡) − 𝑛𝑙2‖𝑄‖2𝜆max(𝑄)/𝜇𝛽. The generalized
fractional derivative of 𝑢(𝑡) can be analyzed as follows:

𝑇𝛼𝑗 𝑢 (𝑡) ≤ − 𝜇𝜆max (𝑄)𝑉 (𝑡) + 𝑛𝑙2 ‖𝑄‖2𝛽
≤ − 𝜇𝜆max (𝑄)𝑢 (𝑡) . (39)

There exists a nonnegative function 𝑚(𝑡) satisfying
𝑇𝛼𝑗 𝑢 (𝑡) + 𝑚 (𝑡) = − 𝜇𝜆max (𝑄)𝑢 (𝑡) . (40)

From this point, we will only consider 𝑗 = 3 and then we will
obtain the same result for 𝑗 = 1 as a particular case. Taking
the Laplace transform of (40) produces

𝐵 (𝑠) [𝑈 (𝑠) − 𝑢 (0)𝑠 ] +𝑀(𝑠) = − 𝜇𝜆max (𝑄)𝑈 (𝑠) , (41)

where 𝐵(𝑠) is defined as in (4), and 𝑈(𝑠) and 𝑀(𝑠) are the
Laplace transforms of 𝑢(𝑡) and𝑚(𝑡), respectively. Solving for𝑈(𝑠) we obtain

𝑈 (𝑠) = (𝐵 (𝑠) /𝑠) 𝑢 (0)𝐵 (𝑠) + 𝜇/𝜆max (𝑄) − 𝑀 (𝑠)𝐵 (𝑠) + 𝜇/𝜆max (𝑄) . (42)

Note that the inverse Laplace Transform of the second term
of the right-hand side of (42) is nonnegative, since 𝑚(𝑡),
L−1{1/(𝐵(𝑠) + 𝜇/𝜆max(𝑄))} ≥ 0. Considering this, we can
turn (42) into

𝑢 (𝑡) ≤ L
−1 { (𝐵 (𝑠) /𝑠) 𝑢 (0)𝐵 (𝑠) + 𝜇/𝜆max (𝑄)} . (43)

Substituting the definition of 𝑢(𝑡) into (43) yields

𝑉 (𝑡) − 𝑛𝑙2𝜆max (𝑄) ‖𝑄‖2𝛽𝜇
≤ L
−1 { 𝐵 (𝑠) 𝑢 (0)𝑠 (𝐵 (𝑠) + 𝜇/𝜆max (𝑄))} .

(44)

By usingTheorem 8 we can calculate the limit of (44) as 𝑡 →∞. Note that lim𝑠→0𝐵(𝑠) = 0. Then

lim
𝑡→∞

{𝑉 (𝑡) − 𝑛𝑙2𝜆max (𝑄) ‖𝑄‖2𝛽𝜇 }
≤ lim
𝑠→0

𝐵 (𝑠) 𝑢 (0)𝐵 (𝑠) + 𝛽/𝜆max (𝑄) = 0. (45)

Considering that 𝜆min(𝑄)‖𝑍(𝑡)‖2 ≤ 𝑉(𝑡), it follows from (45)
that

lim
𝑡→∞

‖𝑍 (𝑡)‖ ≤ √𝑛𝜆max (𝑄) /𝜆min (𝑄) ‖𝑄‖ 𝑙√𝛽𝜇 . (46)

According to the definition of 𝑍(𝑡) and using inequality
properties, we obtain𝑥𝑖 (𝑡) − 𝑥𝑦 (𝑡) ≤ 𝑥𝑟 (𝑡) − 𝑥𝑖 (𝑡) + 𝑥𝑟 (𝑡) − 𝑥𝑦 (𝑡)

≤ 𝑧𝑖 (𝑡) + 𝑧𝑦 (𝑡)
≤ √2 (𝑧𝑖 (𝑡)2 + 𝑧𝑦 (𝑡)2)
≤ √2 ‖𝑍 (𝑡)‖ ,

(47)

∀𝑖, 𝑦 ∈ {1, 2, . . . , 𝑛}. Combining (46) and (47), we can analyze
the limit as 𝑡 → ∞ of the difference between any pair of
agents:

lim
𝑡→∞

𝑥𝑖 (𝑡) − 𝑥𝑦 (𝑡) ≤ √2𝑛𝜆max (𝑄) /𝜆min (𝑄) ‖𝑄‖ 𝑙√𝛽𝜇 (48)

∀𝑖, 𝑦 ∈ {1, 2, . . . , 𝑛}, which proves that the steady-state errors
between the agents converge to𝑀1.

We can prove this theorem with 𝑗 = 1 by considering the
case 𝑗 = 3 and setting the distribution function of𝑇𝛼3 as 𝑐(𝛼) =𝛿(𝛼 − 𝑎), which turns this operator into the standard Caputo
fractional derivative of order 𝑎. Furthermore, notice that

L
−1 { 1𝐶 (𝑠) + 𝜇/𝜆max (𝑄)}
= L
−1 { 1𝑠𝛽 + 𝜇/𝜆max (𝑄)}

= 𝑡𝛽−1𝐸𝛽,𝛽 (− 𝜇𝜆max (𝑄) 𝑡𝛽) ≥ 0,
(49)

where we have used Lemma 10. This means that Assump-
tion 22 is satisfied. Alternatively, the case 𝑗 = 1 is derived
inTheorem 2 of G. Ren and Yu [29].

4.3. Robust Consensus of Linear of Generalized Fractional
Multiagent Systems. A linear generalized fractional multia-
gent system with external disturbances can be described as a
particular case of (25), with 𝑓(𝑡, 𝑥𝑖) = 0:

𝑇𝛼𝑖 𝑥𝑖 (𝑡) = 𝑢𝑖 (𝑡) + 𝑤𝑖 (𝑡) , 𝑖 ∈ {1, 2, . . . , 𝑛} , (50)
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where 𝑥𝑖(𝑡), 𝑢𝑖(𝑡), and 𝑤𝑖(𝑡) are the state, control input, and
external disturbances of the 𝑖th agent, respectively.

In order to accomplish robust consensus we can use as
simpler controller than (27)

𝑢𝑖 (𝑡) = −𝛽 𝑛∑
𝑘=1

𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑘 (𝑡)) , (51)

where 𝛽 ≥ 0 and 𝑎𝑖𝑘 (𝑖, 𝑘 = 1, 2, . . . , 𝑛; 𝑖 ̸= 𝑘) is the (𝑖, 𝑘)-
th element of the adjacency matrix 𝐴 ∈ R𝑛×𝑛 associated with
the directed graph describing the interaction of the agents. By
following a procedure completely analogous to the one done
in the previous section, the following theorem can be readily
proved.

Theorem 24. Consider the generalized fractional nonlinear
multiagent system (50) with the control input (51). Suppose
that the associated fixed directed graph has a directed spanning
tree.

(1) For 𝑗 = 1, 2, 3, 4, 5 or 6: if 𝑤𝑖(𝑡) = 0, ∀𝑖, then system
(50) achieves robust consensus.

(2) For 𝑗 = 1 or 3: if ∃ 𝑤𝑖(𝑡) ̸= 0 and Assumptions 11, 21,
and 22 are satisfied, then the steady-state errors of any
two agents will converge to the region 𝑀2, defined as

𝑀2 = {𝑥𝑖 (𝑡) − 𝑥𝑦 (𝑡) ≤ √2𝑛𝜆max (𝑃) ‖𝑃𝐸‖ 𝑙𝛽√𝜆min (𝑃) } , (52)

where 𝜆max(𝑃) and 𝜆min(𝑃) are the maximum and
minimum eigenvalues of the matrix 𝑃 > 0, which is the
solution of the Lyapunov equation𝐶𝑇𝑃+𝑃𝐶 = −2𝐼𝑛−1,
and 𝐸, 𝐶 are defined as in Lemma 19.

5. Examples

Example 1. Consider a group of 3 undisturbed agents
described by (50) with 𝑤𝑖(𝑡) = 0, ∀𝑖, under the influence of

controller (51), with the interaction graph shown in Figure 1.
The Laplacian matrix associated with this system is

𝐿 = [[[
2 −1 −1−1 2 −1−1 −1 2

]]]
. (53)

From Figure 1, it is clear that this graph has a directed span-
ning tree.Therefore, byTheorem24, this system accomplishes
consensus. In order to verify our prediction, we solved this
problem for the six types of fractional derivatives addressed
in this text. To this end, we considered the initial conditions𝑥1(0) = 0.7996, 𝑥2(0) = 3.9978, 𝑥3(0) = −4.7974 and the
parameter 𝛽 = 1. Additionally, we used the differentiation
orders given in Table 1.

The cases 𝑗 = 1 and 𝑗 = 2were analyzed numerically with
the aid of the MATLAB functions developed in Petráš [40]
and Valério [41]; Valério, Vinagre, Domingues, and Da Costa
[42]. Taking advantage of (10) and (12), the cases 𝑗 = 4, 𝑗 = 5,
and 𝑗 = 6 were worked out with MATLAB’s standard ODE
Solver. Given the limitations of the existing computational
methods to study fractional distributed order equations, we
solved the case 𝑗 = 3 analytically, as it is shown next.

We can rewrite the system in vector and obtain

𝑇𝛼3𝑋(𝑡) = −𝛽𝐿𝑋 (𝑡) . (54)

By taking the Laplace transform of (54) and solving forX(𝑠),
we get

X (𝑠) = [𝐶 (𝑠) 𝐼 + 𝐿]−1 [𝐶 (𝑠)𝑠 𝑋 (0)]

= 1𝑠 (𝐵 (𝑠) + 3) [[[
𝐵 (𝑠) 𝑥1 (0) + 𝑞𝐵 (𝑠) 𝑥2 (0) + 𝑞𝐵 (𝑠) 𝑥3 (0) + 𝑞

]]]
, (55)

where 𝑞 = ∑3𝑖=1 𝑥𝑖(0). Substituting 𝐵(𝑠) = 𝑠𝛽 + 4𝑠𝛽/2,
decomposing the right hand side of (55) into partial fractions,
and taking their inverse Laplace transforms yields

𝑋(𝑡) =
[[[[[[[[

𝑥1 (0) + 𝑞 − 3𝑥1 (0)2 𝑡1/2𝐸1/2,3/2 (−𝑡1/2) + 3𝑥1 (0) − 𝑞2 𝑡1/2𝐸1/2,3/2 (−3𝑡1/2)
𝑥2 (0) + 𝑞 − 3𝑥2 (0)2 𝑡1/2𝐸1/2,3/2 (−𝑡1/2) + 3𝑥2 (0) − 𝑞2 𝑡1/2𝐸1/2,3/2 (−3𝑡1/2)
𝑥3 (0) + 𝑞 − 3𝑥3 (0)2 𝑡1/2𝐸1/2,3/2 (−𝑡1/2) + 3𝑥3 (0) − 𝑞2 𝑡1/2𝐸1/2,3/2 (−3𝑡1/2)

]]]]]]]]
. (56)

which are the expressions shown in Figure 4.
In Figures 2–7 we can see the behavior of the error

between the states of the multiagents. In all the cases these
errors converge to zero as expected and depending on the
characteristics of the operator 𝑇𝛼𝑗 this rate of convergence
varies.

Example 2. Consider again system (54), with the same
interaction topology as in Example 1, 𝛽 = 1, but this time
with the disturbances 𝑤𝑖(𝑡) = 𝛾𝑖 + 𝑎𝑖𝑒−𝑐𝑖𝑡, where 𝛾𝑖, 𝑎𝑖, 𝑐𝑖 ∈ R,∀𝑖 ∈ {1, 2, 3}. Let the differentiation orders be 𝛼 = 0.5 and𝑐(𝛼) = 𝛿(𝛼−2/3)+4𝛿(𝛼−1/3) for 𝑗 = 1 and 𝑗 = 3, respectively.
Assumption 21 is fulfilled, since the external disturbances are
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Figure 1: Interaction graph for the 3 agents of Examples 1, 2, and 3.
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Figure 2: Linear case, 𝑗 = 1.
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Figure 3: Linear case, 𝑗 = 2.

Table 1: Differential orders for simulations.

𝑗 Parameters
1 𝛼 = 0.5
2 𝛼(𝑡) = 1 − exp (−𝑡/50)2
3 𝑐 (𝛼) = 𝛿 (𝛼 − ]) + 4𝛿 (𝛼 − ]2), ] = 23
4 𝑎 = 0, 𝛼 = 0.5
5 𝑘 (𝑡) = 1 + 0.4 log (𝑡 + 1)
6 𝑐(𝛼) = 𝛿 (𝛼 − ]) + 4𝛿 (𝛼 − ]2), ] = 23 , 𝑘(𝑡) = 1 + 0.4 log(𝑡 + 1)
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Figure 4: Linear case, 𝑗 = 3.
bounded by max𝑖∈{1,2,3}{‖𝛾𝑖 + 𝑎𝑖‖}. Hence, we only need to
show that Assumption 22 is also satisfied in order to apply
Theorem 24. In this specific problem, the left-hand side of
(28) is

L
−1 { 1𝐶 (𝑠) + 𝛽/𝜆max (𝑃)} = L

−1 { 1𝑠2/3 + 4𝑠1/3 + 3}
= L
−1 { 1𝑠1/3 + 3} ∗L

−1 { 1𝑠1/3 + 1}
= [𝑡−2/3𝐸1/3,1/3 (−3𝑡1/3)] ∗ [𝑡−2/3𝐸1/3,1/3 (−3𝑡1/3)]
= ∫+∞
−∞

(𝑡 − 𝜏)−2/3 𝐸1/3,1/3 (−3 (𝑡 − 𝜏)1/3)
⋅ 𝑡−2/3𝐸1/3,1/3 (−3𝑡1/3) 𝑑𝜏,

(57)

where we have used Theorems 8 and 16. Considering that
all the factors inside the integral in (57) are nonnegative, we
can conclude that Assumption 22 is fulfilled and, therefore,
the steady-state errors between the agents will converge
asymptotically to 𝑀1. Solving the equation 𝐶𝑇𝑃 + 𝑃𝐶 =
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Figure 5: Linear case, 𝑗 = 4.
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Figure 6: Linear case, 𝑗 = 5.

−2𝐼𝑛−1 yields 𝑃 = (1/3)𝐼, so that 𝜆max(𝑃) = 𝜆min(𝑃) = 1/3.
Moreover, ‖𝑃𝐸‖ = max1≤𝑗≤3{∑2𝑖=1 |(𝑃𝐸)𝑖𝑗|} = 2/3. By setting
the parameters 𝛾1 = −2, 𝛾2 = 1, 𝛾3 = 2, 𝑎1 = 1, 𝑎2 = 2,𝑎3 = −1, 𝑐1 = 2, 𝑐2 = 1.5, and 𝑐3 = 1.7, one can calculate
that the disturbances are bounded by 𝑙 = 3. Substituting these
values in the definition of𝑀1 produces

𝑀1 = {𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡) ≤ 2√6 ≈ 4.8989} . (58)
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Figure 7: Linear case, 𝑗 = 6.

To verify this analysis, we solved this system numerically,
for 𝑗 = 1 (using the MATLAB functions of Petráš [40]), and
analytically, for 𝑗 = 3 (since there are no suitable numerical
methods). For the case 𝑗 = 3, we can take the Laplace
transform of (54) and solve forX(𝑠):

X (𝑠) = [𝐶 (𝑠) 𝐼 + 𝐿]−1 [W (𝑠) + 𝐶 (𝑠)𝑠 𝑋 (0)]
= 1𝑠𝐶 (𝑠) (𝐶 (𝑠) + 3)

×
[[[[[[[[[[

𝐶 (𝑠) 𝑠𝑤1 (𝑠) + 𝐶2 (𝑠) 𝑥1 (0) + 𝑠 3∑
𝑖=1

𝑤𝑖 (𝑠)
𝐶 (𝑠) 𝑠𝑤2 (𝑠) + 𝐶2 (𝑠) 𝑥2 (0) + 𝑠 3∑

𝑖=1

𝑤𝑖 (𝑠)
𝐶 (𝑠) 𝑠𝑤3 (𝑠) + 𝐶2 (𝑠) 𝑥3 (0) + 𝑠 3∑

𝑖=1

𝑤𝑖 (𝑠)

]]]]]]]]]]
,

(59)

where L−1{𝑊(𝑡)} = W(𝑠), and, for simplicity, we have
considered 𝑥1(0) + 𝑥2(0) + 𝑥3(0) = 0. Substituting 𝐶(𝑠) =𝑠2/3 + 4𝑠1/3 and 𝑤𝑖(𝑠) = 𝛾𝑖/𝑠 + 𝑎𝑖/(𝑠 + 𝑐𝑖), one can decompose
the right hand side of (59) into partial fractions and take their
inverse Laplace transforms. After extensive calculations, we
obtain

𝑋 (𝑡) = 𝐺 (𝑡) + 𝐻 (𝑡) + 𝑓 (𝑡)𝑋 (0) , (60)
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where 𝑓(𝑡), 𝐺 = [𝑔1(𝑡), 𝑔2(𝑡), 𝑔3(𝑡)]𝑇, 𝐻 = ℎ(𝑡)[1, 1, 1]𝑇 are
defined as follows:

𝑓 (𝑡) = 12𝑡−1/39Γ (2/3) − 39𝑡−2/327Γ (1/3) + 3𝑡−2/3𝐸1/3,1/3 (−𝑡1/3)2
− 3𝑡−2/3𝐸1/3,1/3 (−3𝑡1/3)54 ,

(61)

𝑔𝑖 (𝑡) = 𝛾𝑖 {13 − 4𝑡−1/39Γ (2/3) + 13𝑡−2/327Γ (1/3)}
+ 𝑎𝑖𝑐2𝑖 − 28𝑐𝑖 + 27 {(9 + 4𝑐𝑖) 𝑒−𝑐𝑖𝑡
+ 13𝑡−2/3𝐸1,1/3 (−𝑐𝑖𝑡) − (12 + 𝑐𝑖) 𝑡−1/3𝐸1,2/3 (−𝑐𝑖𝑡)}
+ 𝑡−2/3 [( 𝑎𝑖2 (𝑐𝑖 − 1) − 𝛾𝑖2 )𝐸1/3,1/3 (−𝑡1/3)
+ ( 𝛾𝑖54 − 𝑎𝑖2 (𝑐𝑖 − 27))𝐸1/3,1/3 (−3𝑡1/3)] ,

(62)

∀𝑖 ∈ {1, 2, 3} and
ℎ (𝑡) = 3∑

𝑖=1

{𝛾𝑖 [ 𝑡1/312Γ (4/3) − 19144 + 265𝑡−1/31728Γ (2/3)]
+ 𝑡−2/3Γ (1/3) ( 𝑎𝑖12𝑐𝑖 − 3355𝛾𝑖20736 )
+ 𝑡−2/3 [𝐸1/3,1/3 (−𝑡1/3) (𝛾𝑖6 − 𝑎𝑖6 (𝑐𝑖 − 1))
+ 𝐸1/3,1/3 (−3𝑡1/3) ( 𝑎𝑖6 (𝑐𝑖 − 27) − 𝛾𝑖162)
+ 𝐸1/3,1/3 (−4𝑡1/3) ( 𝛾𝑖768 − 𝑎𝑖12 (𝑐𝑖 − 64))]
+ 𝑎𝑖𝑐𝑖 (𝑐3𝑖 − 92𝑐2𝑖 + 1819𝑐𝑖 − 1728) × [228𝑐𝑖
+ 45𝑐2𝑖 𝑒−𝑐𝑖𝑡 − (8𝑐2𝑖 + 265𝑐𝑖) 𝑡−1/3𝐸1,2/3 (−𝑐𝑖𝑡)
+ (𝑐2𝑖 + 128𝑐𝑖 + 144) 𝑡−2/3𝐸1,1/3 (−𝑐𝑖𝑡)]} .

(63)

For both cases 𝑗 = 1 and 𝑗 = 3, Figure 8 depicts the
states of the agents and Figure 9 the errors between them.
To plot our results, we used the initial conditions 𝑥1(0) =−30, 𝑥2(0) = 10, 𝑥3(0) = 20. From these figures, we can
confirm that the steady-state errors of the agents converge to
the calculated region.

Example 3. Consider the nonlinear system described by the
interaction graph shown in Figure 1 and (25) and (26), where𝑓(𝑡, 𝑥(𝑡)) = arctan(𝑥(𝑡)), for which we can take its Lipschitz
constant as 𝜃 = 1. For this system, one can calculate ‖𝑄‖ =

x1 − x2
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Figure 8: Linear case with perturbation, 𝑗 = 1.
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Figure 9: Linear case with perturbation, 𝑗 = 3.

3√26/23. Setting the parameters of the controller as 𝛽 = 1,𝑏1 = 1, 𝑏2 = 2, and 𝑏3 = 3 allows us to fulfill inequality
(29) and, thus, according toTheorem 23, this system achieves
consensus.

All the simulations start with zero initial conditions and
constant input such that the agents evolve with different
trajectories; at time 𝑡 = 3 the agents start using the control law
given by (27). The simulation for the different operators are
shown in Figures 10–14 where we plotted the errors between
states of the different agents for 𝑗 = 1, 2, 4, 5, and 6 (see
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Figure 10: No-linear case, 𝑗 = 1.
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Figure 11: No-linear case, 𝑗 = 2.

Table 1), with the computational tools already mentioned.
We do not present the solution of this system for 𝑗 = 3
since neither the available numerical methods for distributed
order systems nor the Laplace transform technique used in
the previous examples are applicable for the nonlinear case.

In all the simulation we can see that while 𝑡 < 3 the
error between the agents increases and once the controller is
engaged after 𝑡 ≥ 3 the errors converge to zero; the rate of
convergence depend on the nature of the operators.
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Figure 12: No-linear case, 𝑗 = 4.
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Figure 13: No-linear case, 𝑗 = 5.

6. Conclusions

We introduced the distributed conformable derivative, which
preserves the product and chain rules. For this and five
other fractional derivatives, we unified the Lyapunov direct
method. That result was presented in two theorems; the first
bounds the Lyapunov function and its fractional derivative by
powers of the norm of the states and the second by class K
functions. Moreover, we employed this generalized fractional
Lyapunov method to prove whether linear and nonlinear
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Figure 14: No-linear case, 𝑗 = 6.

multiagent systems, modeled with different fractional deriva-
tives, accomplish consensus. We found that if the system
is undisturbed, the agents converge asymptotically and if
there are external disturbances, the steady-state errors evolve
towards a region which diminishes linearly in size as the gain
of the controller is increased. It is worth noticing that same
control inputs are effective for all the differentiation orders
considered in this paper.

In the light of these results, potential future objectives
would be to carry out a similar analysis in the presence of
time delays or to study the finite-time consensus problem for
fractional multiagent systems, possibly employing different
controllers.
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Synchronization and control in high dimensional spatial-temporal systems have received increasing interest in recent years.
In this paper, the problem of complete synchronization for reaction-diffusion systems is investigated. Linear and nonlinear
synchronization control schemes have been proposed to exhibit synchronization between coupled reaction-diffusion systems.
Synchronization behaviors of coupled Lengyel-Epstein systems are obtained to demonstrate the effectiveness and feasibility of the
proposed control techniques.

1. Introduction

Synchronization of chaos is a phenomenon that may occur
when two, or more, chaotic systems adjust a given property
of their motion to a common behavior due to a coupling
or to a forcing. This phenomenon has attracted the interest
of many researchers from various fields due to its potential
applications in physics, biology, chemistry, and engineering
sciences since the pioneering work by Pecora and Carroll
[1]. Various synchronization types have been presented,
such as complete synchronization, phase synchronization,
lag synchronization, anticipated synchronization, function
projective synchronization, generalized synchronization, and
Q-S synchronization.

Most of the research efforts have been devoted to the
study of chaos control and chaos synchronization problems in
low-dimensional nonlinear dynamical systems [2–10]. Syn-
chronizing high dimensional systems in which state variables

depend not only on time but also on the spatial position
remains a challenge. These high dimensional systems are
generally modelled in spatial-temporal domain by partial
differential systems. Recently, the search for synchroniza-
tion has moved to high dimensional nonlinear dynamical
systems. Over the last years, some studies have investigated
synchronization of spatially extended systems demonstrating
spatiotemporal chaos such as the work presented in [11–32].
Synchronization dynamics of reaction-diffusion systems has
been studied in [11, 12] using phase reduction theory. It has
been shown that reaction-diffusion systems can exhibit syn-
chronization in a similar way to low-dimensional oscillators.
A general approach for synchronizing coupled partial differ-
ential equations with spatiotemporally chaotic dynamics by
driving the response system only at a finite number of space
points has been introduced in [13, 14]. Synchronization and
control for spatially extended systems based on local spatially
averaged coupling signals have been presented in [17]. The
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effect of asymmetric couplings in the synchronization of
spatially extended chaotic systems has been investigated in
[19].The effect of time-delay autosynchronization onuniform
oscillations in a general model described by the complex
Ginzburg-Landau equation has been presented in [20].
Furthermore, generalized synchronization [21], complete-
like synchronization [22], the backstepping synchronization
approach [26], the graph-theoretic synchronization approach
[27], pinning impulsive synchronization [30], and impulsive
type synchronization strategy [31] for coupled reaction-
diffusion systems have been introduced.

The main aim of the present paper is to study the
problem of complete synchronization in coupled reaction-
diffusion systems. Linear and nonlinear control schemes
have been proposed to realize complete synchronization for
partial differential systems. As a special case, we investigate
complete synchronization behaviors of coupled Lengyel-
Epstein systems.

2. Systems Description
and Problem Formulation

Reaction-diffusion systems have shown important roles in
modelling various spatiotemporal patterns that arise in
chemical and biological systems [33, 34]. Reaction-diffusion
systems can describe a wide class of rhythmic spatiotemporal
patterns observed in chemical and biological systems, such
as circulating pulses on a ring, oscillating spots, target waves,
and rotating spirals. Themost familiar way to study synchro-
nization is to use a controller to make the output of the slave
(response) system copy in some manner the master (drive)
system one. In this case, we design the controller in which
the difference of states of synchronized systems converges to
zero. This phenomenon is called complete synchronization.
Consider the master and the slave reaction-diffusion systems
as

𝑀𝑎𝑠𝑡𝑒𝑟
{{{{{{{{{{{

𝜕𝑢1 (𝑥, 𝑡)𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑢𝑗 + 2∑
𝑗=1

𝑎1𝑗𝑢𝑗 + 𝑓1 (𝑢1, 𝑢2) ,
𝜕𝑢2 (𝑥, 𝑡)𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗Δ𝑢𝑗 + 2∑
𝑗=1

𝑎2𝑗𝑢𝑗 + 𝑓2 (𝑢1, 𝑢2) ,
(1)

and

𝑆𝑙𝑎V𝑒
{{{{{{{{{{{

𝜕V1 (𝑥, 𝑡)𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗ΔV𝑗 + 2∑
𝑗=1

𝑎1𝑗V𝑗 + 𝑓1 (V1, V2) + U1,
𝜕V2 (𝑥, 𝑡)𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗ΔV𝑗 + 2∑
𝑗=1

𝑎2𝑗V𝑗 + 𝑓2 (V1, V2) + U2,
(2)

where (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡))𝑇 and (V1(𝑥, 𝑡), V2(𝑥, 𝑡))𝑇 are the cor-
responding states, 𝑥 ∈ Ω is a bounded domain in R𝑛 with
smooth boundary 𝜕Ω, Δ is the Laplacian operator on Ω,(𝑑𝑖𝑗) ∈ R2 are the diffusivity constants, 𝐴 = (𝑎𝑖𝑗) ∈ R2, 𝑓1
and 𝑓2 are nonlinear continuous functions, and U1 and U2
are controllers to be designed. We impose the homogeneous
Neumann boundary conditions

𝜕𝑢𝑖𝜕𝜂 = 𝜕V𝑖𝜕𝜂 = 0, 𝑖 = 1, 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝜕Ω. (3)

where 𝜂 is the unit outer normal to 𝜕Ω. The aim of the
synchronization process is to force the error between the
master and slave systems, defined as

𝑒𝑖 = V𝑖 − 𝑢𝑖, 𝑖 = 1, 2, (4)

to zero. We assume that the diffusivity constants (𝑑𝑖𝑗) satisfy
𝑑11, 𝑑22 ≥ 0,

𝑑12 = −𝑑21, (5)

and the error system satisfies the homogeneous Neumann
boundary condition

𝜕𝑒1𝜕𝜂 = 𝜕𝑒2𝜕𝜂 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝜕Ω. (6)

To realize complete synchronization between the master sys-
tem given in (1) and the slave system given in (2), we discuss
the asymptotical stable of zero solution of synchronization
error system given in (4). That is, in the following sections,
we find the controllers U1 and U2, in linear and nonlinear
forms, such that the solution of the error system 𝑒𝑖 = V𝑖 − 𝑢𝑖
go to 0, 𝑖 = 1, 2, as 𝑡 goes to +∞.

3. Synchronization via Nonlinear Controllers

In this section, we outline the issue of controlling the master-
slave reaction-diffusion system given in (1) and (2) via
nonlinear controllers. The time partial derivatives of the error
system given in (4) can derived as

𝜕𝑒1𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

𝑎1𝑗𝑒𝑗 + 𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)
+ U1,

𝜕𝑒2𝜕𝑡 = 2∑
𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

𝑎2𝑗𝑒𝑗 + 𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2)
+ U2.

(7)

That is,

𝜕𝑒1𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎1𝑗 − 𝑐1𝑗) 𝑒𝑗 + 𝑅1 + U1,
𝜕𝑒2𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎2𝑗 − 𝑐2𝑗) 𝑒𝑗 + 𝑅2 + U2,
(8)

where 𝐶 = (𝑐𝑖𝑗)2×2 is a control matrix to be determined later
and

𝑅1 = 2∑
𝑗=1

𝑐1𝑗 (V𝑗 − 𝑢𝑗) + 𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2) ,

𝑅2 = 2∑
𝑗=1

𝑐2𝑗 (V𝑗 − 𝑢𝑗) + 𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2) .
(9)
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Theorem 1. If the control matrix 𝐶 is chosen such that 𝐴 − 𝐶
is a negative definite matrix, then the master-slave reaction-
diffusion system given in (1) and (2) can be synchronized under
the following nonlinear control law

U𝑖 = −𝑅𝑖, 𝑖 = 1, 2. (10)

Proof. Substituting the control parameters given in (10) into
(8) yields

𝜕𝑒1𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎1𝑗 − 𝑐1𝑗) 𝑒𝑗,
𝜕𝑒2𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎2𝑗 − 𝑐2𝑗) 𝑒𝑗.
(11)

We may, now, construct our Lyapunov functional as

𝑉 = 12 ∫
Ω
𝑒𝑇𝑒, (12)

where 𝑒 = (𝑒1, 𝑒2)𝑇, then𝜕𝑉𝜕𝑡 = ∫
Ω
(𝑒1 𝜕𝑒1𝜕𝑡 + 𝑒2 𝜕𝑒2𝜕𝑡 )

= ∫
Ω

[
[𝑒1( 2∑

𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎1𝑗 − 𝑐1𝑗) 𝑒𝑗)

+ 𝑒2( 2∑
𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎2𝑗 − 𝑐2𝑗) 𝑒𝑗)]
]

= 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗𝑒𝑗 (Δ𝑒𝑗) + ∫

Ω
𝑑12𝑒1Δ𝑒2 + ∫

Ω
𝑑21𝑒2Δ𝑒1

+ ∫
Ω
𝑒𝑇 (𝐴 − 𝐶) 𝑒.

(13)

By using Green formula, we can get

𝜕𝑉𝜕𝑡 = − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2

+ ∫
𝜕Ω

(𝑑12 𝜕𝑒2𝜕𝜂 𝑒1 + 𝑑21 𝜕𝑒1𝜕𝜂 𝑒2)𝑑𝜎
− ∫
Ω
(𝑑21 + 𝑑12) ∇𝑒1∇𝑒2 + ∫

Ω
𝑒𝑇 (𝐴 − 𝐶) 𝑒,

(14)

where∇ is the gradient vector, 𝜂 is the is the unit outer normal
to 𝜕Ω, and 𝜎 is an auxiliary variable for integration. Then,
using the assumption given in (6), the condition given in (5),
and the fact that 𝐴−𝐶 is a negative definite matrix, we obtain

𝜕𝑉𝜕𝑡 = − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐶 − 𝐴) 𝑒 < 0. (15)

FromLyapunov stability theory, we can conclude that the zero
solution of the error system (11) is globally asymptotically
stable and therefore, the master system (1) and the slave
system (2) are globally synchronized.

4. Synchronization via Linear Controllers

In this section, we outline the issue of controlling the master-
slave reaction-diffusion system given in (1) and (2) via linear
controllers. In this case, we assume that𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2) ≤ 𝛼1 V1 − 𝑢1 + 𝛼2 V2 − 𝑢2 ,𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2) ≤ 𝛽1 V1 − 𝑢1 + 𝛽2 V2 − 𝑢2 , (16)

where 𝛼1, 𝛼2, 𝛽1, 𝛽2 are positive constants.
Theorem 2. If there exists a control matrix 𝐿 = (𝑙𝑖𝑗)2×2 such
that 𝐴 − 𝐿 is a definite negative matrix, then the master-
slave reaction-diffusion system given in (1) and (2) can be
synchronized under the following linear control law

U1 = − 2∑
𝑗=1

𝑙1𝑗𝑒𝑗 − (𝛼1 + (𝛽1 + 𝛼2)24 ) 𝑒1,

U2 = − 2∑
𝑗=1

𝑙2𝑗𝑒𝑗 − (𝛽2 + 1) 𝑒2.
(17)

Proof. Substituting (17) into the error system given in (7)
yields

𝜕𝑒1𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎1𝑗 − 𝑙1𝑗) 𝑒𝑗 + 𝑓1 (V1, V2)

− 𝑓1 (𝑢1, 𝑢2) − (𝛼1 + (𝛽1 + 𝛼2)24 ) 𝑒1,
𝜕𝑒2𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎2𝑗 − 𝑙2𝑗) 𝑒𝑗 + 𝑓2 (V1, V2)
− 𝑓2 (𝑢1, 𝑢2) − (𝛽2 + 1) 𝑒2.

(18)

Constructing a Lyapunov function in the form 𝑉 = (1/2) ∫
Ω
𝑒𝑇𝑒 gives

𝜕𝑉𝜕𝑡 = ∫
Ω
(𝑒1 𝜕𝑒1𝜕𝑡 + 𝑒2 𝜕𝑒2𝜕𝑡 ) = 2∑

𝑗=1

∫
Ω
𝑑1𝑗𝑒1Δ𝑒𝑗 + ∫

Ω
𝑒1

⋅ 2∑
𝑗=1

(𝑎1𝑗 − 𝑙1𝑗) 𝑒𝑗 + ∫
Ω
𝑒1 [𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)]

− ∫
Ω
(𝛼1 + (𝛽1 + 𝛼2)24 ) 𝑒21 + 2∑

𝑗=1

∫
Ω
𝑑2𝑗𝑒2Δ𝑒𝑗

+ ∫
Ω
𝑒2 2∑
𝑗=1

(𝑎2𝑗 − 𝑙2𝑗) 𝑒𝑗 + ∫
Ω
𝑒2 [𝑓2 (V1, V2)

− 𝑓2 (𝑢1, 𝑢2)] − ∫
Ω
(𝛽2 + 1) 𝑒22 = 2∑

j=1
∫
Ω
𝑑𝑗𝑗𝑒𝑗Δ𝑒𝑗

+ ∫
Ω
(𝑑12𝑒1Δ𝑒2 + 𝑑21𝑒2Δ𝑒1)
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+ ∫
Ω

[
[𝑒1 2∑
𝑗=1

(𝑎1𝑗 − 𝑙1𝑗) 𝑒𝑗 + 𝑒2 2∑
𝑗=1

(𝑎2𝑗 − 𝑙2𝑗) 𝑒𝑗]]
+ ∫
Ω
[𝑒1 (𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2))

+ 𝑒2 (𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2))] − ∫
Ω
(𝛼1

+ (𝛽1 + 𝛼2)24 ) 𝑒21 − ∫
Ω
(𝛽2 + 1) 𝑒22

≤ 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗𝑒𝑗Δ𝑒𝑗 + ∫

Ω
(𝑑12𝑒1Δ𝑒2 + 𝑑21𝑒2Δ𝑒1)

+ ∫
Ω

[
[𝑒1 2∑
𝑗=1

(𝑎1𝑗 − 𝑙1𝑗) 𝑒𝑗 + 𝑒2 2∑
𝑗=1

(𝑎2𝑗 − 𝑙2𝑗) 𝑒𝑗]]
+ ∫
Ω
[𝑒1 𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)

+ 𝑒2 𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2)] − ∫
Ω
(𝛼1

+ (𝛽1 + 𝛼2)24 ) 𝑒21 − ∫
Ω
(𝛽2 + 1) 𝑒22.

(19)

By using Green formula, we get

𝜕𝑉𝜕𝑡 ≤ − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐿 − 𝐴) 𝑒

+ ∫
Ω
[𝑒1 𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)

+ 𝑒2 𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2)] − ∫
Ω
(𝛼1

+ (𝛽1 + 𝛼2)24 ) 𝑒21 − ∫
Ω
(𝛽2 + 1) 𝑒22,

(20)

and by using the conditions given in (16), we obtain

𝜕𝑉𝜕𝑡 ≤ − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐿 − 𝐴) 𝑒

+ ∫
Ω
(𝛼1𝑒21 + (𝛼2 + 𝛽1) 𝑒1 𝑒2 + 𝛽2𝑒22)

− ∫
Ω
(𝛼1 + (𝛽1 + 𝛼2)24 ) 𝑒21 − ∫

Ω
(𝛽2 + 1) 𝑒22

= − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐿 − 𝐴) 𝑒

− ∫
Ω
[(𝛽1 + 𝛼2)24 𝑒21 − (𝛽1 + 𝛼2) 𝑒2 𝑒1 + 𝑒22]

= − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐿 − 𝐴) 𝑒

− ∫
Ω
(𝛽1 + 𝛼22 𝑒1 − 𝑒2)2 < 0.

(21)

Therefore, since 𝜕𝑉/𝜕𝑡 < 0, we can conclude that the master
system (1) and the slave system (2) are globally synchronized.

5. Application and Numerical Simulation

In this section, numerical simulations are given to illustrate
and validate the synchronization schemes derived in the
previous sections. We take the Lengyel-Epstein system [35]
as a special case of reaction-diffusion systems. Consider the
following coupled master-slave systems:

𝜕𝑢1 (𝑡, 𝑥)𝜕𝑡 = 𝜕2𝑢1𝜕𝑥2 + 5𝛾 − 𝑢1 − 4𝑢1𝑢21 + 𝑢21 ,
𝜕𝑢2 (𝑡, 𝑥)𝜕𝑡 = 𝛿(𝑑𝜕2𝑢2𝜕𝑥2 + 𝑢1 − 𝑢1𝑢21 + 𝑢21) ,

(22)

and

𝜕V1 (𝑡, 𝑥)𝜕𝑡 = 𝜕2V1𝜕𝑥2 + 5𝛾 − V1 − 4V1V21 + 𝑢21 + U1,
𝜕V2 (𝑡, 𝑥)𝜕𝑡 = 𝛿(𝑑𝜕2V2𝜕𝑥2 + V1 − V1V21 + V21

) + U2,
(23)

where > 0, 𝑥 ∈ (0, 𝜃), (𝛿, 𝛾, 𝜃, 𝑑) = (9.7607, 2.7034, 13.03,1.75), and (U1,U2)𝑇 is the control law to be determined. The
reaction-diffusion system given in (22) is called the Lengyel-
Epstein system. When the initial conditions associated with
system (22) are given by (𝑢1(0, 𝑥), 𝑢2(0, 𝑥)) = (𝜃 +0.2 cos(5𝜋𝑥), 1 + 𝜃2 + 0.6 cos(5𝜋𝑥)) then the solutions 𝑢1 and𝑢2 are shown in Figures 1 and 2. For the uncontrolled system
(23) (i.e., U1 = U2 = 0), if the initial conditions are given by(V1(0, 𝑥), V2(0, 𝑥)) = (𝜃 + 0.2 cos(4𝜋𝑥), 1 + 𝜃2 + 0.6 cos(4𝜋𝑥))
then the solutions V1 and V2 are shown in Figures 3 and 4.
The approximation and calculation of the solutions to the
Lengyel-Epstein systems given in (22) and (23) are obtained
using the Matlab function “pdepe”.

Comparing with the master-slave reaction-diffusion sys-
tems given (1) and (2), the constants (𝑑𝑖𝑗)2×2 and 𝐴 = (𝑎𝑖𝑗)2×2
can be given as

(𝑑𝑖𝑗)2×2 = (1 0
0 𝛿𝑑) , (24)

and
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Figure 1: Dynamic behavior of solution 𝑢1.
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Figure 2: Dynamic behavior of solution 𝑢2.

𝐴 = (𝑎𝑖𝑗)2×2 = (−1 0
𝛿 0) . (25)

It is clear that our assumption (5) is satisfied. Also, the
homogeneous Neumann boundary condition for systems
(22) and (23) is described as

𝜕𝑢1𝜕𝑥 = 𝜕𝑢2𝜕𝑥 = 𝜕V1𝜕𝑥 = 𝜕V2𝜕𝑥 = 0, 𝑥 = 0, 𝜃 𝑎𝑛𝑑 𝑡 > 0. (26)

5.1. Case 1: Nonlinear Control. According to the control
scheme proposed in Section 3, if we choose the controlmatrix𝐶 as

𝐶 = (0 0
𝛿 2) , (27)

then the controllers U1 and U2 can be designed as

U1 = 4V1V21 + V21
− 4𝑢1𝑢21 + 𝑢21 ,
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Figure 3: Dynamic behavior of solution V1.
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Figure 4: Dynamic behavior of solution V2.

U2 = −𝛿 (V1 − 𝑢1) − 2 (V2 − 𝑢2) + 𝛿V1V21 + V21
− 𝛿𝑢1𝑢21 + 𝑢21 ,

(28)

and so, simply, we can show that 𝐴 − 𝐶 is a negative definite
matrix. Therefore, based onTheorem 1, systems (22) and (23)
are globally synchronized. The time evolution of the error
system states 𝑒1 and 𝑒2, in this case, is shown in Figures 5 and
6.

5.2. Case 2: Linear Control. First, the assumption given in (16)
for controlling the master-slave reaction-diffusion system
given in (1) and (2) via linear controllers is satisfied. One can
easily verify that𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2) ≤ V1 − 𝑢1 + 4 V2 − 𝑢2 ,𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2) ≤ V1 − 𝑢1 + 𝛿 V2 − 𝑢2 . (29)

According to the control scheme proposed in Section 4, if we
choose the control matrix 𝐿 as

𝐿 = (0 0
𝛿 1) , (30)
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Figure 5: Time evolution of the nonlinear synchronization control
error 𝑒1.
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Figure 6: Time evolution of the nonlinear synchronization control
error 𝑒2.

then the controllers U1 and U2 can be designed as

U1 = −294 (V1 − 𝑢1) ,
U2 = −𝛿 (V1 − 𝑢1) − (𝛿 + 2) (V2 − 𝑢2) ,

(31)

and so, simply, we can show that 𝐴 − 𝐿 is a negative definite
matrix.Therefore, based onTheorem 2, systems (22) and (23)
are globally synchronized. The time evolution of the error
system states 𝑒1 and 𝑒2, in this case, is shown in Figures 7 and
8.

As a result form the performed numerical simulations,
we can observe that the addition of the designed linear
and nonlinear controllers to the controlled Lengyel-Epstein
system, given in (23), updates the coupled systems, given in
(22) and (23), dynamics such that the systems states become
synchronized. In both cases, the proposed control schemes
stabilize the synchronization error states where the zero
solution of the error system becomes globally asymptotically
stable.
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Figure 7: Time evolution of the linear synchronization control error𝑒1.
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Figure 8: Time evolution of the linear synchronization control error𝑒2.

6. Conclusion

The study investigates the synchronization control for a class
of reaction-diffusion systems. First, a spatial-time coupling
protocol for the synchronization is suggested, then novel
control methods, that include linear and nonlinear con-
trollers, are proposed to realize complete synchronization
between coupled reaction-diffusion systems. The synchro-
nization results are derived based on Lyapunov stability
theory and using the drive-response concept.

Suitable sufficient conditions for achieving synchroniza-
tion of coupled Lengyel-Epstein systems via suitable linear
and nonlinear controllers applied to the response system
are derived. For this purpose, we design the controllers so
that the zero solution of the error system becomes globally
asymptotically stable. Numerical simulations consisting of
displaying synchronization behaviors of coupled Lengyel-
Epstein systems are given, using Matlab function “pdepe”,
to verify the effectiveness of the proposed synchronization
schemes. Comparing the numerical simulations shown in
Figures 5, 6, 7, and 8, we can easily observe that the
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linear control scheme realizes synchronization faster than the
nonlinear case. Also, the nonlinear control scheme requires
the removal of nonlinear terms from the response system,
which may increase the cost of the controllers. So, the cost
of the controllers in the nonlinear case is more than the cost
in the linear case.

The study confirms that the problem of complete syn-
chronization in coupled high dimensional spatial-temporal
systems can be realized using linear and nonlinear con-
trollers. Also, we can easily see that the research results
obtained in this paper can be extended to many other types
of spatial-temporal systems with reaction-diffusion terms.
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Under the third-party logistics management inventory model, the system dynamics method is used to establish a nonlinear
supply chain system model with supply capacity limitation and nonpermissible return, which is based on unsatisfied
demand nonaccumulation. The theory of singular value and the Jury Test are used to derive the stable interval of the
model which is simplified. The Largest Lyapunov Exponent (LLE) of the system is calculated by the Wolf reconstruction
method and used to analyze the influence of different parameters of system’s stability. Then, the most reasonable and
unreasonable combination of decision parameters under different demand environment is found out. Next, this paper
compared and analyzed the change of inventory or transportation volume of system members under the combination of
rational and irrational decision parameters. All of these provided guidance for decision making, which shows an important
practical significance.

1. Introduction

As market competition continues to intensify, competition
among enterprises is gradually transformed into competition
for interests among supply chains. The competition between
supply chains requires that all member companies in the sup-
ply chain work together to maximize the overall benefits of
the supply chain, thereby increasing the competitiveness of
the supply chain. The supply chain is highly competitive,
and member companies are highly resistant to risks in the
supply chain.

At the same time, maximizing the overall benefits of the
supply chain can enable companies to continue to receive sig-
nificant benefits for longer periods of time. Member compa-
nies obtain more benefits, and the company has more funds
to carry out research and development innovation and
improvement of its own technologies. This, in turn, enhances

the competitiveness of the supply chain and enables the sup-
ply chain to gain more benefits.

A supply chain network (SCN) is a complex nonlinear
system involving multiple entities. The policy of each entity
in decision making and the uncertainties of demand and sup-
ply (or production) significantly affect the complexity of its
behavior [1]. In the traditional SC model, each player is
responsible for its inventory control, production, or distribu-
tion ordering activities, and each echelon only has their
immediate customer information [2]. The lack of visibility
of real demand causes a number of problems in traditional
SC; many industries were required to improve their SC oper-
ations by sharing inventory or demand information for sup-
plier and customer [3]. With the continuous development of
information technology, some new supply chain models have
gradually emerged. Among them, the application more com-
mon is the Vendor-Managed Inventory (VMI) model and
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the Third-party Logistics Management Inventory (TMI)
model. The traditional individualized inventory management
model is prone to the phenomenon that the demand follows
the supply chain to scale up from the downstream to the
upstream, that is, the bullwhip effect [4]. In the new supply
chain model, demand information, inventory information,
and production information are fully shared. The problem
of gradually increasing demand has been well controlled.
Whether it is from the traditional supply chain model to
the supplier management inventory model or the supplier
management inventory model, they all evolve to the third-
party logistics management inventory model; these are in line
with the concept of supply chain management specialization,
refinement, and information.

2. Literature Review

As for the behavior of supply chain system, many scholars
have studied it and obtained rich research results [5, 6].
Mosekilde and Larsen [7] and Thomsen et al. [8] adopted a
deterministic supply chain and showed the existence of cha-
otic behavior in it. For linear systems, García et al. [9] consid-
ered one-dimensional time-invariant sampled-data linear
systems with constant feedback gain, an arbitrary fixed time
delay. The following will be divided into two parts to summa-
rize them.

For the traditional supply chain model, the results are
rich. Towill [10] proposed an inventory and order-based
production control system (IOBPCS) to study the system’s
ability to calm down shocks and protect the manufacturing
process from random changes in consumption. Lee et al.
[11] analyzed four causes of the bullwhip effect and dis-
cussed possible actions to mitigate the adverse effects of this
distortion. Disney and Towill [12] proposed a discrete con-
trol theory model for a general model of replenishment
rules and analyzed that extending the validity period of his-
torical data and shortening the production lead time can
reduce the bullwhip effect. Nagatani and Helbing [13] stud-
ied a variety of production strategies to stabilize the supply
chain, analyzed whether the response to the inventory level
of other members of the supply chain has a stabilizing
effect, proved that the prediction of the future inventory
level can stabilize the supply chain, and gave the linear sys-
tem stable conditions and simulations of different control
strategies. Wang et al. [14] studied the stability of a con-
strained production and inventory system with a Forbidden
Returns constraint (that is, a nonnegative order rate) via a
piecewise linear model, an eigenvalue analysis, and a simu-
lation investigation. Hwarng and Yuan [15] studied the
influence of stochastic demand on the complex dynamic
behavior of the supply chain. The research results show
the complexity of the interaction between the stochastic
demand process and the nonlinear dynamics, and the study
considers that there are essential differences between the
determination of demand and the impact of stochastic
demand on the dynamics of the supply chain. Spiegler
et al. [16] use a highly referenced Forrester production
distribution model as a reference supply chain system to
study nonlinear control structures and apply appropriate

analytical control theory methods. Then, the performance
of the linearized model is compared with the numerical
solution of the original nonlinear model and other previous
studies in the same model. Considering the nonnegative
constraints of order quantities, Li et al. [17] studied the
performance of inventory systems, including the effects of
system stability, service levels, inventory costs, and trans-
portation delay times, to systematically reflect the impact
of order policies on inventory system performance. Under
the intervention of the government, Dai et al. [18] con-
structed a continuous two-channel closed-loop supply chain
model with time-delay decision and discussed the existence
conditions of the local stability of the equilibrium. In addi-
tion, the time-delay feedback control method is used to
effectively control unstable or chaotic systems.

For the new supply chain models, Disney and Towill [19]
used the APIOBPCS ordering strategy to use mathematical
models to study the stability of VMI systems, confirmed the
instability caused by poor system design through dynamic
simulation analysis, and proved that specific production
delay can be avoided by setting reasonable parameters. Sup-
ply chain instability occurs. Disney and Towill [20] com-
pared the expected performance of the supplier-managed
inventory (VMI) supply chain with the traditional “series”
supply chain. The analysis found that VMI performed better
in response to changes in volatility demand and through sim-
ulated VMI and traditional supply. The chain validates the
response to a typical retail sales model. Nachiappan and
Jawahar [21] discussed the operation of a two-echelon single
vendor–multiple buyers supply chain (TSVMBSC) model
under the supplier management inventory (VMI) model
and presented a mathematical formulation of an integrated
inventory model of a two-echelon single vendor–multiple
buyers VMI system. Han et al. [22] discussed a decentralized
VMI problem in a three-echelon supply chain network in
which multiple distributors (third-party logistics companies)
are selected to balance the inventory between a vendor (man-
ufacturer) and multiple buyers (manufacturers), and a tri-
level decision model to describe the decentralized VMI prob-
lem is first proposed.

Most of the existing literature-based models are tradi-
tional supply chain models and supplier management inven-
tory models. Few studies are based on third-party logistics
management inventory models. Even the model is still in a
stage of gradual improvement, and there are few documents
which study the situation that the unmet need does not
accumulate to the next cycle. At the same time, there are
few relevant studies that have considered the fluctuations
of the third-party logistics service providers’ transportation
workload. This paper analyzes the impact of different
demand scenarios and the status of stable and unstable
third-party logistics service providers on the number of
transportation tasks.

Based on the premise of unsatisfied demand no accu-
mulation, this paper constructs a dynamic model of third-
party logistics inventory management supply chain system,
simplifies the model and uses the Wolf reconstruction
method and singular value theory to determine the condi-
tions for simplifying the system stability, and finally uses

2 Complexity



Simulink. The system simulation and data analysis verify
the correctness and applicability of the model. At the same
time, it gives a reasonable decision area for making the sup-
ply chain system in a stable state, which provides a refer-
ence for practical decision making and has important
practical significance.

3. TMI Supply Chain System Dynamic Model

3.1. System Description. The TMI supply chain consists of one
supplier, one retailer, and one third-party logistics enterprise.
Both suppliers and retailers entrust the third-party logistics
with the right of the inventory operation and decisionmaking
through the agreement. The third-party logistics enterprise is
responsible for inventory management and logistics trans-
portation tasks of the entire supply chain. In order to ensure
timely replenishment of retailers, distribution centers are
located near retailers. The work of supply chain members is
carried out on a periodic basis. The event flow of each supply
chain member is as follows: for retailers, at the beginning of
the period, they receive replenishment from distribution cen-
ters, shipment according to customer demand, inventory,
third-party logistics combined with retailer safety stock, sug-
gest that retailers replenish, and retailers issue replenishment
notifications to distribution centers; for the distribution cen-
ter, at the beginning of the period, the distribution center
received replenishment from the warehouse, replenished the
goods from the retailer, inventoried the inventory, and issued
a replenishment notice to the warehouse; for warehouses, at
the beginning of the period, they received replenishment
from suppliers, replenished them at the distribution center,
counted inventory, and sent replenishment notifications to
suppliers; For suppliers, production will be carried out at
the beginning of the period t, according to the replenishment
notice received at end of period t − 1.

3.2. Systematic Difference Equations

3.2.1. Demand Forecasting Method. Assume that supply
chain members use simple exponential smoothing methods
to forecast demand. When suppliers conduct demand fore-
casting, they do demand forecasting based on the needs of
the supply chain’s end customer rather than retailer’s order.
From the perspective of demand forecasting, demand fore-
casts are more reasonable for the entire supply chain.

F t = θF t − 1 + 1 − θ D t 1

3.2.2. Order Policy. This article adopts APVIOBPCS ordering
strategy. The basic idea is that ordering has a fixed ordering
period, and the order quantity of each period consists of
demand forecasting, inventory adjustment, and transit
adjustment. The ordering strategy is considered from the
perspective of the Warehouse-Distribution Center System.
Suppliers, warehouses, and distribution centers are seen as
a system when considering warehouse ordering. The system
is called the Warehouse-Distribution Center System. The
ordering expression of the system is

O t =max 0, F t + αS I0 t − I t + αSL Y0 t − Y t

2

The supplier’s work-in-process inventory at time t is
given by

Y t = Y t − 1 +O t − 1 − Rw t 3

The supplier’s expected WIP inventory is given by

Y0 t = GwF t 4

Using the discrete system Z transform theory, we have
drawn the block diagram of the inventory system of ware-
house as shown in Figure 1.

3.2.3. For Retailers. The retailer’s replenishment point is
given by

I0r t =GrF t 5

The retailer’s inventory level at time is given by

Ir t = Ir t − 1 + Rr t − Sr t 6

And the retailer replenishment is given by

Or t =max 0, I0r t − Ir t 7

The replenishment of the retailer can be quickly obtained,
that is, the replenishment notification is issued at the end of
the period, and the replenishment can be received at the
beginning of the next period:

Rr t =Or t − 1 8

The retailer’s shipments for this period’s customer
demand is given by

Sr t =D t 9

Using the discrete system Z transform theory, we have
drawn the block diagram of the inventory system of the
retailer as shown in Figure 2.

3.2.4. For Warehouse-Distribution Center System. The distri-
bution center replenishment point is given by

I0d t = F t Gd 10

The distribution center inventory is given by

Id t = Id t − 1 + Rd t − Sd t 11

The distribution center replenishment is given by

Od t =max 0, I0d t − Id t 12
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The distribution center receiving volume is given by

Rd t =Od t − TP − 1 13

The distribution center shipments are given by

Sd t =
Id t − 1 + Rd t Id t − 1 + Rd t ≤Or t − 1 ,
Or t − 1 Id t − 1 + Rd t >Or t − 1

14

And the distribution center inventory in transit is
given by

Wd t =Wd t − 1 +Od t − 1 − Rd t 15

The block diagram of the inventory system of distribu-
tion center is drawn using the Z transform theory of the
discrete system as shown in Figure 3.

The warehouse inventory is given by

Iw t = Iw t − 1 + Rw t − Sw t 16

The warehouse receipt is given by

Rw t =O t − TC − 1 17

The warehouse shipments are given by

Sw t =
Iw t − 1 + Rw t Iw t − 1 + Rw t ≤Od t − 1 ,
Od t − 1 Iw t − 1 + Rw t >Od t − 1

18

The expected inventory of the system is given by

I0 t = F t TC + TP 19

And the actual inventory of the system is given by

I t = I t − 1 + Rw t − Sd t 20
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4. System Dynamic Behavior Analysis

The model constructed in this paper has nonnegative con-
straints and piecewise decision conditions, making the
system a nonlinear system with switching. It has complex
system dynamic behavior. For complex systems, theoretical
derivation has some difficulties. Therefore, this paper uses
the Wolf reconstruction method to calculate the Largest Lya-
punov Exponent (LLE) value and uses LLE index as a quan-
titative index of the characteristics to analyze the dynamic
behavior of complex supply chain systems.

The Lyapunov exponent quantitatively describes the
exponential divergence of adjacent orbits in phase space.
An orbit near an attractor of a one-dimensional discrete
dynamic system can be expressed as

dk = d0e
λ 21

Here, d0 is the initial separation distance of the two
orbits, which is the orbital distance after k iterations, and λ
is the Lyapunov exponent.

It can be seen that if the Lyapunov exponent is less than
zero, the distance between the orbits is gradually reduced,
the motion is stable, and the initial value is not felt; if the Lya-
punov exponent is equal to zero, it is a critical state, that is, a
stable boundary. If the Lyapunov exponent is greater than
zero, it means that the adjacent orbits are scattered, and the
long-term behavior is very sensitive to the initial value, and
the motion is chaotic.

So it can be seen that if the LLE exponent of the
system calculated is greater than 0, the system is in a
chaotic state.

The model is simplified. It is assumed that there is
only a nonnegative constraint on the order quantity of the
system in the model. And S1 = X ∣O ≥ 0 and S2 = X ∣
O < 0 . If TC = 1, TP = 2, Gr = 2, and Gw = 1, then the supply
chain model in the previous section can be expressed as

O t =max 0, F t + αS I0 t − I t + αSL Y0 t − Y t ,
I t = Ir t − 1 + I t − 1 − 2F t − 1 +O t − 2 ,
Ir t = 2F t − 1 −D t ,
Y t = Y t − 1 +O t − 1 −O t − 2 ,
F t = θF t − 1 + 1 − θ D t

22

Equation (22) is expressed in the form of a vector equa-
tion, which gives the state space description of the system.
The following shows

X t = A1f X t − 1 + A2f X t − 2 + Bf r t ,
X t − 1 ∈ Sf
X t − 2 ∈ Sf

 f = 1, 2,

X t = O t I t Ir t Y t F t T , r t =D t

23

4.1. Subsystem Stability Analysis. Subsystem 1: requirement
for replenishment of the warehousing system.

O t = −αSLO t − 1 − αSI t − 1 − αSIr t − 1 − αSLY t − 1 + θ 3αS + αSL + 1 + 2αS F t − 1 + 1 − θ 3αS + αSL + 1 D t + αSL − αS O t − 2 ,
I t = Ir t − 1 + I t − 1 − 2F t − 1 +O t − 2 ,
Ir t = 2F t − 1 −D t ,
Y t = Y t − 1 +O t − 1 −O t − 2 ,
F t = θF t − 1 + 1 − θ D t

24
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Equation (24) is expressed in the form of a vector equa-
tion, which gives the state space description of the system.
The following shows

X t = A11X t − 1 + A21X t − 2 + B1r t , 25

where

A11 =

−αSL −αS −αS −αSL θ 3αS + 1 + αSL + 2αS
0 1 1 0 −2
0 0 0 0 2
1 0 0 1 0
0 0 0 0 θ

,

A21 =

αSL − αS 0 0 0 0
1 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0

,

26

B1 =

1 − θ 3αS + 1 + αSL

0
−1
0

1 − θ

27

Subsystem 2: the warehousing system does not need
replenishment.

O t = 0,
I t = Ir t − 1 + I t − 1 − 2F t − 1 +O t − 2 ,
Ir t = 2F t − 1 −D t ,
Y t = Y t − 1 +O t − 1 −O t − 2 ,
F t = θF t − 1 + 1 − θ D t

28

Equation (28) is expressed as the form of a vector equa-
tion, which gives the state space description of the system.

The following shows

X t = A12X t − 1 + A22X t − 2 + B2r t , 29

where

A12 =

0 0 0 0 0
0 1 1 0 −2
0 0 0 0 2
1 0 0 1 0
0 0 0 0 θ

,

A22 =

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0

,

30

B2 =

0
0
−1
0

1 − θ

31

According to the singular value theory, let X∗ = O∗ I∗

Ir
∗ Y∗ F∗ T to represent an equilibrium point of (23), then

here, the system trajectory near the point can be expressed as

X t = X∗ +

C1

C2

C3

C4

C5

λt , 32

where λ is a complex number, C1, C2, C3, C4, and C5 are
five constants. Substituting (32) into (23), for subsystem 1,
we can obtain the nontrivial solution of system 1 with respect
to parameters (C1, C2, C3, C4, and C5) if and only if (33) is
satisfied [23].

I − A11λ
−1 − A21λ

−2 =

1 + αSLλ
−1 − αSL − αS λ−2 αSλ

−1 αSλ
−1 αSLλ

−1 − θ 3αS + 1 + αSL + 2αS λ−1

−λ−2 1 − λ−1 −λ−1 0 2λ−1

0 0 1 0 −2λ−1

−λ−1 + λ−2 0 0 1 − λ−1 0
0 0 0 0 1 − θλ−1

= 0 33
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The characteristic equation of (25) determines the sta-
bility of the equilibrium solution by (33).

1 − λ−1 1 + αSL − 1 λ−1 + αS − αSL λ−2 1 − θλ−1 = 0
34

That is,

λ − 1 λ − θ λ2 + αSL − 1 λ + αS − αSL = 0, 35

where λ ≠ 0. If the root of (35) is within the unit circle, sys-
tem 1 is stable. From (35), the solution of the equation
λ1 = 1 and λ2 = θ. According to [24], if the characteristic
root of a linear discrete system on the unit circle is the sin-
gle root of the smallest polynomial of the characteristic
polynomial, the system is stable. Because 0 < θ < 1, λ1 and
λ2 are stable. Then, the stability of system 1 is determined
by the root of (36).

λ2 − 1 − αSL λ + αS − αSL = 0, 36

when αS = αSL.
The roots of (36) are λ3 = 1 − αSL and λ4 = 0. According

to the judging criterion Jury Test [25], 0 < αSL < 2 can guar-
antee the stability of the system.

Note that αS represents the magnitude of the deviation of
the actual inventory from the expected stock, and αSL repre-
sents the magnitude of the deviation of the in-stock inventory
from the expected in-process inventory. Then, αS = αSL
means that the same adjustment range is maintained for
inventory deviation and work-in-process inventory devia-
tion. Therefore, when αS = αSL and 0 < αSL < 2 are set, the sys-
tem is stable.

When αS ≠ αSL,

(1) Δ = 1 − αSL
2 − 4 αS − αSL < 0, that is, αS > 1 +

αSL
2/4

The root of (36) is λ3 = 1 − αSL + i −Δ /2 and
λ4 = 1 − αSL − i −Δ /2. According to the law of
stability λ < 1, (37) can be obtained.

1 − αSL
2

2
+ −Δ

2

2

< 1 37

The solution

αS − 1 < αSL < αS,

αS >
1 + αSL

2

4 ,
38

that is,

αS − 1 < αSL < 2 αS − 1,
0 < αS < 4

39

(2) Δ = 1 − αSL
2 − 4 αS − αSL = 0, that is, αS =

1 + αSL
2/4

The root of (36) is λ3 = λ4 = 1 − αSL /2, according to
the law of stability λ < 1. λ3 and λ4 should satisfy the
following conditions.

−1 < λ3 < 1,
−1 < λ4 < 1

40

That is,

αSL = 2 αS − 1,
0 < αS < 4

41

(3) Δ = 1 − αSL
2 − 4 αS − αSL > 0, that is, αS <

1 + αSL
2/4

The root of (36) is λ3 = 1 − αSL + Δ /2 and
λ4 = 1 − αSL − Δ /2. According to the law of
stability λ < 1, λ3 and λ4 should satisfy the fol-
lowing conditions.

−1 < λ3 < 1,
−1 < λ4 < 1

42

That is,

−1 <
1 − αSL + 1 − αSL

2 − 4 αS − αSL

2 < 1,

−1 <
1 − αSL − 1 − αSL

2 − 4 αS − αSL

2 < 1

43

Combined with (41), the solution is

2 αS − 1 < αSL <
1
2 αS + 1,

0 < αS < 4
44

To sum up, the parameter range for making subsys-
tem 1 stable is [23]
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αS − 1 < αSL <
1
2 αS + 1,

0 < αS < 4
45

For subsystem 2, we can obtain the nontrivial solution of
system 2 with respect to parameters (C1, C2, C3, C4, and C5)
if and only if (46) is satisfied [23].

I − A12λ
−1 − A22λ

−2

=

1 0 0 0 0

−λ−2 1 − λ−1 −λ−1 0 2λ−1

0 0 1 0 −2λ−1

−λ−1 + λ−2 0 0 1 − λ−1 0

0 0 0 0 1 − θλ−1

= 0

46

The characteristic equation of (25) determines the stabil-
ity of the equilibrium solution by (46). And (47) can be
obtained by (46).

1 − λ−1
2 1 − θλ−1 = 0 47

That is,

λ − 1 2 λ − θ = 0, 48

where λ≠ 0. If the root of (48) is within the unit circle, system
2 is stable. From (48), the solution of the equation is λ1 = 1,
λ2 = 1, and λ3 = θ. Since the system has 2 characteristic roots
on the unit circle, the system is Schur unstable. However, this
instability refers to a critical stability. Since the system has no
feedback control on the input, its input response is a kind of
ramp function, which plays a role in maintaining the initial
value. That is, when the inventory system is in this state,
inventory keeps declining as demand continues to arrive
without replenishment.

4.2. System Switching Model.According to the above analysis,
due to the uncertainty of the replenishment volume of the
warehouse allocation system, the supply chain system stud-
ied in this chapter is not a linear system. It can be regarded
as the order control by the warehouse allocation system and
the switching between the two subsystems. To switch the
system, the two subsystems are determined by (25) and
(29), respectively. Since all subsystems are linear systems,
the system can be represented as a linear switching system
as shown in

X t = A1σ t X t − 1 + A2σ t X t − 2 + Bσ t r t 49

The system is an autonomous switching system. The
switching rule is a function of the system state. It is

the judgment of the O t symbol of the order quantity
per cycle:

σ t =min 2, −sign F t + αS I0 t − I t + αSL Y0 t

− Y t + 2 =min 2, −sign F t + αS F t TC

+ TP − I t + αSL GwF t − Y t + 2
50

The switching function σ t is the evaluation of the order
quantity of the warehouse allocation system. If σ t = 1, it
means that the warehouse allocation system needs replenish-
ment. If σ t = 2, it means that the warehouse allocation sys-
tem does not need to be in replenishment. The actual stock in
the warehouse and the WIP inventories can meet expecta-
tions of inventory in the warehouse, expectedWIP inventory,
and demand forecast.

4.3. Analysis of System Dynamic Characteristics. In the sub-
system, the subsystem 1 is stable within a certain parameter
range; and the subsystem 2 is not stable due to the existence
of a characteristic root located on the unit circle. According
to the gist of the average dwell time method, the switching
system is stable when the activation time of the stable system
is large enough and the ratio of the dwell time of the unstable
system to the dwell time of the stable system satisfies a certain
condition. From the results of the switching rules (50) and
the rules, we can see that when the warehouse allocation sys-
tem sets a higher expected inventory level I0 t , that is, when
the higher parameters TC , TP, and Gw are set, system switch-
ing can be avoided to unstable subsystem 2. When αS and
αSL are fixed, setting smaller I0 t and Y0 t will result in
larger −sign F t + αS I0 t − I t + αSL Y0 t − Y t + 2
values, so the unstable subsystem 2 has a long activation
time and the system tends to be unstable.

5. System Simulation and Data Analysis

5.1. Order Decision Adjustment Parameters. In order to fur-
ther study the influence of different ordering strategies and
inventory management strategies on the nonlinear supply
chain system with constraints, this paper designs the simula-
tion experiment to calculate the Largest Lyapunov Exponent
of the system and analyzes the effects of the relevant param-
eters on the stability of the system under different demand
types. When LLE is less than or equal to 0, it indicates that
the system is in a stable, periodic, or quasiperiodic state. It
is an ideal state for ordering decisions. When LLE is greater
than 0, the system is in a chaotic or quasi-chaotic state.

From the analysis in the previous section, it can be seen
that the inventory adjustment parameter αS and the adjust-
ment coefficient of work-in-process inventory αSL have
important influence on the dynamic characteristics of the
system. This paper designs a simulation experiment and cal-
culates LLE values under various order parameter combina-
tions in the decision space [αS, αSL] under the condition of
certain other factors and uses the size of the LLE to examine
the dynamic characteristics of the supply chain system.
Considering that in the management practice the decision-
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makers pay more attention to the inventory adjustment and
the adjustment parameters are all less than 1, this paper
assumes that the two parameters range from 0 ≤ αSL ≤ αS to
0 02 ≤ αS ≤ 1. Both αS and αSL are changed by 0.02 steps.
The simulation experiment needs to calculate the LLE value
under various parameter combinations.

5.2. Simulation Analysis. Using Matlab to realize simulation
experiments, LLE values for different combinations of param-
eters are calculated and expressed in the form of a contour
graph.The simulation runs1000 times. If thecycle is calculated
indays, itwill be thedatavolume innearly 3years.Considering
that the actual inventory turnover cycle of the company is
short, the data volume in 3 years should be sufficient.

In order to take any situation into account in practice,
this paper analyzes three kinds of demand scenarios: random
demand obeying normal distribution, random demand obey-
ing uniform distribution, and fixed demand. Simulation and
mapping LLE diagram of the retailer and warehouse match-
ing system under different demand scenarios are shown.

First, the LLE value under the fixed constant demand
scenario is calculated to obtain the LLE contour graph of
the retailer and warehouse matching system, as shown in
Figure 4.

As can be seen from Figure 4, under the fixed constant
requirement, the inventory system is basically in a stable state
in the entire decision area. The fixed constant requirement is
an ideal scenario, and there are few in practice. Based on the
calculation of the LLE for the entire decision area, this paper
finds the value of the decision parameter that makes the
inventory system in this scenario unstable. When αS = 0 92,
αSL = 0 04 and αS = 0 98, αSL = 0 1, the retailer’s LLE is
greater than zero. When αS = 0 98 and αSL = 0 06, the LLE
value of the warehouse allocation system is greater than zero.
There is no decision to make when both are more than zero
at the same time. Explain that in an ideal demand scenario,
unreasonable parameter settings may also lead to system
instability. When αS = 0 94 and αSL = 0 12, the average LLE
values of the retailer and the warehouse match system are
the smallest. Few parameters cause the system to be unsta-
ble, which also explains the practicability and effectiveness
of the system.

Second, we calculate the LLE value under the random
demand with normal distribution and obtain the LLE con-
tour graph of the retailer and warehouse allocation system
as shown in Figure 5.

Under the random demand subject to normal distribu-
tion, in the entire decision area, the average LLE value of
the retailer and the warehouse matching system is the smal-
lest when αS = 0 1 and αSL = 0 1. The average value of the
LLE value is the largest when αSL = 1 and αS = 0 16. From
Figure 5(a), we can see that for the retailer, although the
LLE value in most regions is greater than zero, there are still
some regions whose values are less than zero under random
demand. It indicates that there are some decision parameters
that can make the inventory of the retailer stable under ran-
dom demand. The periodic or quasiperiodic state provides a
more valuable reference for real-world decision making.
From Figure 5(b), we can see that under the stochastic

demand, the decision zone with LLE value less than zero in
the warehouse allocation system is banded and located above
the entire decision zone. As the adjustment coefficient of
stock inventory increases, the inventory adjustment coeffi-
cient increases. There are some decision-making areas that
do not meet this trend and should avoid this part of the deci-
sion to prevent the system from entering a chaotic state. That
is, when the inventory adjustment coefficient is higher than a
certain level, the inventory adjustment coefficient is too high,
which maymake the system in a chaotic state. Combining the
analysis of Figures 5(a) and 5(b), there is a common decision
area in which both the retailer’s LLE value and the warehouse
allocation system’s LLE value are less than zero. That is,
under random demand, there is a reasonable decision to
make each of the TMI supply chain. Member inventory is
in a stable, cyclical, or quasiperiodic state, which has impor-
tant practical significance.

Finally, we calculate the LLE value under the uniform dis-
tribution of random demand and obtain the LLE contour
graph of the retailer and warehouse allocation system, as
shown in Figure 6.

Under the random demand with uniform distribution, in
the entire decision region, the average LLE value of the
retailer and the warehouse matching system is the smallest
when αS = 0 08, αSL = 0 08. When αS = 0 9, αSL = 0 22, the
average LLE value of the retailer and the warehouse matching
system is the largest. Figure 6 shows that under the uniform
distribution random demand the decision-making area
where the inventory of the retailer and the warehouse alloca-
tion system is stable is very small because the uniform distri-
bution of demand obeying the 60–100 interval is a very harsh
condition for the inventory system. Under actual circum-
stances, the demand will be subject to periodical laws in a rel-
atively long period of time, and the demand forecast can be
more accurate. So it is more likely that the inventory system
will be in a stable state. This article draws on existing research
and sets safety stock as a multiple of forecasted demand.
Safety stocks are inherently more volatile. In order to reduce
the volatility of safety stocks, the forecasted demand can be
smoothed or smoothed several times, and the volatility of
safety stocks can be reduced by reducing the forecasting
demand and volatility. In addition, setting the safety stock
to a fixed value may also improve the stability of the
inventory system. In the existing studies, relevant scholars
set the safety stock as a constant and achieved relatively good
results. In this regard, this paper does not conduct simulation
analysis, leaving it for follow-up studies.

In order to analyze the changes in inventory under differ-
ent demand scenarios more intuitively, we draw the figure of
inventory changes under different demand scenarios. When
analyzing the change of inventory in steady state, we select
the decision corresponding to the minimum average and
the maximum average number of LLEs of retailers and ware-
house matching centers under different demand scenarios to
simulate them and then map them to steady state and unsta-
ble state, respectively. The inventory change chart in steady
state and unstable state is shown in Figures 7–12.

In Figures 7 and 8, the retailer can increase the volatil-
ity of inventory changes in a steady state or an unstable
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state under a fixed constant demand, a random demand
subject to normal distribution, and a random demand sub-
ject to uniform distribution. It shows that the demand sce-
nario has a great influence on the stability of the supply

chain inventory. The greater the randomness of the
demand, the more serious the supply chain instability
may be. When the demand is a fixed constant demand,
whether the supply chain system is in a stable or unstable
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Figure 6: LLE diagram of members under the scenario of random demand obeying uniform distribution.
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state, the retailer’s inventory will stabilize to a value after a
period of time, but the former will use less time than the
latter. When the demand is subject to a uniform distribu-
tion of random demand, even if the supply chain is in the

most stable state, the volatility of retailer inventory
changes is also very large.

From Figure 9, we can see that in the steady state, the ini-
tial inventory of the warehouse allocation system under the
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Figure 7: Retailers’ initial inventory changes in a stable state under three demand scenarios.
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Figure 8: Retailers’ initial inventory changes in an unstable state under three demand scenarios.
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Figure 9: Change of initial inventory of warehouse allocation system in a stable state under three demand scenarios.
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fixed constant demand shows greater volatility in the initial
stage of the three demand scenarios, which the manager
should pay attention to. Under the stochastic demand sce-
nario subject to normal distribution, the inventory of the

warehouse allocation system fluctuates in a very small
range, which is ideal and expected. For the strict random
demand scenario with uniform distribution, the supply
chain inventory shows satisfactory fluctuations under
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Figure 10: Change of initial inventory of warehouse allocation system in an unstable state under three demand scenarios.
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Figure 11: Change in traffic volume of third-party logistics service providers in a stable state under three demand scenarios.
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Figure 12: Change in traffic volume of third-party logistics service providers in an unstable state under the three demand scenarios.
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reasonable decision parameters. In the unstable state, from
Figure 10, we can see that in addition to the fixed constant
demand scenario, the inventory change of the warehouse
allocation system shows a state of chaos that should be
avoided under the three demand scenarios. Under the
fixed constant demand scenario, the warehouse inventory
system also shows great volatility at the initial stage and
then stabilizes.

In the steady state, from Figure 11, we can see that the
third-party logistics service provider’s traffic under the fixed
constant demand scenario has great volatility in the initial
stage. For this, logistics service providers are required to
make phased planning. Observing that in the steady state,
the three-logistics service provider’s traffic volume change
graph is approximately an axisymmetric pattern under the
three demand scenarios. The volatility increases from the
fixed constant demand, the stochastic demand with normal
distribution to the stochastic demand with uniform distribu-
tion. In the unstable state, from Figure 12, we can see that the
changes in the traffic volume of the third-party logistics ser-
vice providers under the three demand scenarios appear cha-
otic state, and the three curves almost cover the coordinate
axis area. However, in the case of fixed constant demand con-
ditions, it eventually stabilized to a certain value after a long
period of fluctuation.

In order to analyze the changes of member stocks in sta-
ble and unstable conditions under different demand scenar-
ios more clearly, this paper plots the changes in inventory
when retailers and warehouse allocation systems are in stable
and unstable conditions under different demand scenarios. A
comparison chart of changes in traffic volume of third-party
logistics service providers in the comparison chart and in dif-
ferent states is shown. Figures 13–15 show the fixed constant
demand scenario.

Under the fixed constant demand scenario, it can be
seen from Figure 13 that the retailer inventory shows a sta-
ble trend after the first fluctuation and a stable state, and the
time for the former to reach stability is less than the latter. In
Figures 14 and 15, it can be seen that the inventory fluctua-
tions of the warehouse allocation system and the third-party
logistics service providers have the same rules as the retailer
inventory. In the unstable state, during the simulation
period of 0–200 hours, the inventory or transport volume
of the three members of the supply chain presented great
volatility, which increased the inventory management costs
and logistics transportation costs of the entire chain. This
is not conducive to the evolution and development of the
supply chain.

Under the scenario of evenly distributed stochastic
demand, we simulate and draw a comparison chart of
changes in inventory when the retailer and warehouse alloca-
tion system is in a stable and unstable state. And a compari-
son chart of changes in the traffic volume of third-party
logistics service providers in different states is drawn as
shown in Figures 16–18.

Obeying the uniform distribution of stochastic demand is
a great challenge for the stability of the supply chain inven-
tory system. In Figures 16 and 17, we can see that the initial
inventory of the retailer has a great fluctuation when it is in

the stable state and the unstable state under the condition
of the stochastic demand that obeys the uniform distribution.
However, the inventory at the beginning of the warehousing
system can be stable to a very small interval in the steady
state, which verifies the advanced nature and practicality of
the supply chain model. As shown in Figure 18, the volatility
of the transport volume of the third-party logistics service
providers in the unstable state and the stable state is very
large, and the volatility is relatively small in the stable state
of the two states. Under this demand scenario, the third-
party logistics will face arduous transportation tasks and face
enormous challenges in the rational allocation of resources.
On the other hand, the professionalism of third-party logis-
tics service providers can be reflected to reduce inventory
management and logistics transportation costs.

Under the normal distribution stochastic demand sce-
nario, a comparison chart of the changes in inventory when
the retailer and the warehouse allocation system is in a sta-
ble state and an unstable state and a comparison chart of
the changes in the third-party logistics service providers’
transportation volumes in different states are shown in
Figures 19–21.

From Figure 19, we can see that under the scenario of
normal distribution random demand, there is a clear differ-
ence between the stable state and the unstable state of the
retailer inventory, and the inventory fluctuation in the steady
state is much smaller than that in the unstable state. The
peaks of retailer inventory fluctuations under both condi-
tions have little difference between the two states, but the
trough values in the unstable state are smaller than those in
the stable state. So in the unstable state, the utilization rate
of the retailer stocks will decrease. From Figure 20, it can be
seen that, in the steady state, the inventory matching system
can reach a stable interval within a short time and then stay
in this interval. In an unstable state, the inventory of the
warehouse system fluctuates up and down, showing a non-
periodical change. Inventory fluctuations have an impact
on management and costs. Maintaining a stable inventory
is desirable; it is easy to manage and can reduce costs. Com-
paring Figure 19 with Figure 20, it can be seen that in the
steady state, inventory fluctuations of the stock allocation
system do not amplify retailer inventory fluctuations, which
verifies the feasibility of the supply chain inventory system
model. In Figure 21, it can be clearly seen that the volatility
of the third-party logistics service providers’ traffic in the
steady state is far greater than the volatility in the unstable
state. At the same time, the total transportation volume of
the two is equal, and the cost of smooth transportation tasks
may be lower. In the unstable state, the third-party logistics
may generate higher service costs. Therefore, higher service
prices are not conducive to long-term cooperation among
the members of the TMI supply chain.

6. Conclusion

Although there are few existing researches on the new supply
chain model, it can be found from the study of this paper that
the complex behaviors of both the new supply chain and the
traditional supply chain have a common part, which is a
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reasonable decision parameter that can make the system
maintain a stable, periodic, or quasiperiodic state under ran-
dom demand.

This article supplements and develops existing researches
that is based on the premise that the unmet demand does not

accumulate to the next cycle. This paper constructs a three-
echelon supply chain inventory system model by using the
method of system dynamics. The LLE value of the retailer
and the warehouse distribution system of 1275 decision
parameters under three different demand scenarios is
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Figure 15: Comparison of traffic volume changes by third-party logistics service providers in a stable state and unstable state under fixed
constant demand.
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Figure 14: Comparison of initial inventory changes of the warehousing system in a stable state and unstable state under fixed constant
demand.

200

150

100I r

50

0 100 200 300 400 500
Time

In a stable state
In an unstable state

600 700 800 900 1000
0

Figure 13: Comparison of retailers’ opening stock changes in a stable state and unstable state under fixed constant demand.
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calculated. The whole decision area is covered. Therefore, the
reasonable parameters for the stability of the whole supply
chain system can be found, which provide a reference for
practical decision making and have important practical sig-
nificance, and the LLE contour diagram of the retailer and

the warehouse distribution system under different demand
scenarios is drawn, respectively. At the same time, the paper
simulated and plotted the inventory changes of the retailer,
the warehouse distribution system, and the transport volume
change of the third-party logistics service providers in a
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Figure 18: Comparison of traffic volume changes of third-party logistics service providers in a stable state and unstable state under the
scenario of random demand obeying uniform distribution.
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Figure 17: Comparison of initial inventory changes of the warehousing system in a stable state and unstable state under the scenario of
random demand obeying uniform distribution.
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Figure 16: Comparison of retailers’ initial stock changes in a stable state and unstable state under the scenario of random demand obeying
uniform distribution.
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stable and unstable state under different demand scenarios.
In the steady state, the analysis finds that the initial inventory
of the warehouse distribution system and the transport vol-
ume of the third-party logistics service providers have more

volatility in the initial stage under the scenario of fixed con-
stant demand. However, the volatility of the retailer inven-
tory under the scenario of fixed constant demand is lower
than those under the other two scenarios.
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Figure 19: Comparison of retailers’ initial stock changes in a stable state and unstable state under the scenario of random demand obeying
normal distribution.
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Figure 20: Comparison of initial inventory changes of the warehousing system in a stable state and unstable state under the scenario of
random demand obeying normal distribution.
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Figure 21: Comparison of traffic volume changes of third-party logistics service providers in a stable state and unstable state under the
scenario of random demand obeying normal distribution.

16 Complexity



Under different demand scenarios, the paper analyzes
and compares the changes of the inventory or traffic volume
of the members in different states of supply chain, respec-
tively, and concludes the following findings. Under the sce-
nario of fixed constant demand, the inventory or transport
volume of the three members of the supply chain has shown
great volatility in the steady state during the 0–200 period of
simulation, which increases the inventory cost of manage-
ment and the logistics transportation of the whole chain.
It is not conducive to the evolution and development of
the supply chain. Under the scenario of random demand,
the retailer’s initial inventory has a great volatility. But a
reasonable decision can make the inventory of the ware-
house distribution system stable to a small interval. Under
the scenario of random demand obeying normal distribu-
tion, there is a distinct difference of the inventory or the
transportation task of the members between the stable state
and the unstable one. Reasonable decision making can
reduce the fluctuation of the stock and transportation vol-
ume of the members significantly, thus making the system
in a stable state.

Model Parameters and Variables

D t : The actual demand at time t
Fr t : The expected demand at time t
Ir t : Retailer’s inventory level at time t
Rr t : Retailer’s receipt amount at time t
Sr t : Retailer’s delivery amount at time t
Or t : Retailer’s order amount at time t
Sd t : Distribution center’s delivery amount to retailers at

time t
Id t : Distribution center’s inventory level at time t
Rd t : Distribution center’s receipt amount at time t
Wd t : Distribution center’s in-transit inventory at time t
Od t : Distribution center’s order amount at time t
I0r t : Retailer’s expected inventory levels at time t
I0d t : Distribution center’s expected inventory levels at

time t
I0 t : Warehouse-distribution center system’s expected

inventory levels at time t
Sw t : Warehouse’s delivery amount to distribution center

at time t
Iw t : Warehouse’s inventory level at time t
Rw t : Warehouse’s receipt amount at time t
I t : Warehouse-distribution center system’s inventory

level at time t
O t : Warehouse-distribution center system’s order

amount at time t
Y t : Supplier’s work-in-process inventory at time t
Y0 t : Supplier’s expected in-process inventory at time t
αS: The adjustment coefficient of inventory
αSL: The adjustment coefficient of work-in-process

inventory or stock on the way
TP : Transport lead time
TC : Production lead time
Gr : Safety inventory coefficient of retailer
Gd : Safety inventory coefficient of distribution center
Gw: Safety inventory coefficient of warehouse.
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A frequency response-based linear controller is implemented to regulate the inverted pendulum on a cart at the inverted position.
The objective is to improve the performance of the control systemby eliminating the limit cycle generated by the dead-zone, induced
by static friction, at the actuator of the mechanism. This control strategy has been recently introduced and applied by the authors
to eliminate the limit cycle in the Furuta pendulum and the pendubot systems. Hence, the main aim of the present paper is to
study the applicability of the control strategy to eliminate the limit cycle in the inverted pendulum on a cart. The successful results
that are obtained in experiments corroborate that the approach introduced by the authors to eliminate the limit cycle in the Furuta
pendulum and pendubot is also valid for the inverted pendulum on a cart.

1. Introduction

Friction is a phenomenon that can cause nonlinear behav-
ior in mechanical systems involving motion [1]. Such a
nonlinear behavior refers, in particular, to a dead-zone
[2] which degrades performance of the overall system by
generating position error, limit cycle, and even instability
[3].These problems, separately, have been important subjects
of study. As a matter of fact, compensation of friction in
mechanical systems has been carried out to achieve a better
control of position [4–8]. Limit cycles generated by the
static and Coulomb friction have been treated in [1, 9–14]
and the stability analysis of systems with friction has been
introduced in [15–17]. On the other hand, underactuated
mechanical systems, and in particular inverted pendulums,
have attracted the attention of several researchers because
they are an excellent benchmark to study position control,
limit cycles, and system stability [18]. Motivated by this
scenario and by [19, 20], this paper deals with the elimination

of limit cycles generated by a friction-induced dead-zone
nonlinearity when regulating the inverted pendulum on
a cart.

Different authors have reported important results on limit
cycles in the regulation of inverted pendulums which, in
general, can be divided into three categories: (a) generation
of stable limit cycles, (b) reduction of limit cycles, and (c)
elimination of limit cycles.

Regarding (a), Verduzco [21] presented a method for
nonlinear systems that have 𝑘 zero eigenvalues when they
are linearized. Such a method contemplates the existence of
a curve of Hopf bifurcation points and a change of both
coordinates and input control. The pendubot was used to
illustrate the method. Also, for the pendubot, Freidovich et
al. [22] proposed a feedback control strategy based onmotion
planning via virtual holonomic constraints. Furthermore,
Freidovich et al. [23] developed a control for the Furuta
pendulum, which was integrated by a shaping energy control,
a passivity-based control, and an auxiliary feedback action.
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Andary et al. [24] introduced a control based on partial non-
linear feedback linearization and dynamic control. Aguilar et
al. [25] used partial feedback linearization with a two-relay
controller, which was tuned with the classic tool root locus.
The two latter works are for the inertia wheel pendulum.

For (b), Medrano-Cerda [26] considered a scheme based
on velocity-sign compensation in the inverted pendulum on
a cart. Also, Vasudevan et al. [27] compensated friction via a
passivity-based observer for the wheeled inverted pendulum.
Eom and Chwa [28] compensated friction, system uncer-
tainties, and an external disturbance through a nonlinear
observer for the pendubot.

With regard to (c), Hernández-Guzmán et al. [19]
exploited the differential flatness property of the Furuta
pendulum to propose a linear state feedback controller which
can be designed to regulate the system and to eliminate limit
cycles. To achieve this, an educational, experimental, and
intuitive procedure based on the time response approach, i.e.,
root locus, was introduced. As an improvement, Antonio-
Cruz et al. [20] presented a modified version of the control
in [19]. The design of such a modified control was based on
frequency response, instead of time response as in [19], which
entailed the obtention of precise formulas that facilitates the
limit cycle elimination. A comparison of [19, 20] showed
that [20] has better performance when dealing with the limit
cycle elimination. On the other hand, some studies that
consider the backlash nonlinearity in the Furuta pendulum
and cart-pendulum system [29, 30] have been reported.
Other papers dealing with performance improvement of
inverted pendulums have been reported [31–34]. Finally,
papers related to dead-zone compensation for nonlinear
systems and suppression of limit cycles in servomechanism
are [35–39].

Having undertaken the literature review, it was found that
the papers dealing with reduction of friction-induced limit
cycles use compensation techniques that have the following
disadvantages: (i) most compensation terms are complex and
require the numerical values of the frictional parameters [27]
and (ii) undercompensation leads to steady-state error and
overcompensation may induce limit cycles [9, 40]. Although
an important effort has been done in [26] to reduce the limit
cycle in the inverted pendulum on a cart, to the authors’
knowledge, the elimination of the limit cycle in the inverted
pendulum on a cart has not been achieved until now. On
the other hand, only two previous papers [19, 20] have
achieved limit cycle elimination without using compensation
techniques but just by employing a simple linear controller. In
both papers the controller was proposed by using a differen-
tial flatness representation of the system and the describing
function method was employed to study the existence of
limit cycles. In [19] the controller was designed via the time
response approach (root locus) and in [20] via the frequency
response approach (Bode diagrams). Since the root locus is
not intrinsically related to the describing function method,
the corresponding design procedure presented in [19] is based
on intuitive ideas because precise formulas were not obtained.
According to [20], this renders the repetition of the result
when using a different Furuta pendulumdifficult. Hence, [20]
presented a simple and precise procedure to eliminate limit
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Figure 1: Inverted pendulum on a cart.

cycles caused by the friction-induced dead-zone nonlinearity.
In that direction, the controller and the design procedure
for limit cycle elimination introduced in [20], for the Furuta
pendulum and pendubot systems, are applied to the inverted
pendulum on a cart in the present paper with the aim of
investigating the possibility to eliminate the limit cycle in this
underactuated mechanism.

It is recalled that the advantage of the controller proposed
in [20] with regard to compensation techniques is that
the model or the characterization of the dead-zone is not
required, whereas the advantage with regard to [19] is that
the combination of the describing function method and
frequency response allows providing precise formulas that
render the design of the linear controller and, in consequence,
the experimental elimination of limit cycles easier.

The rest of the paper is organized as follows. Section 2
presents the differential flatness model of the linear approx-
imation of the inverted pendulum on a cart, as well as a
description of the real prototype used in experiments. Sec-
tion 3 presents the linear controller to regulate the inverted
pendulum on a cart and the procedure to design it. The
procedure to eliminate the dead-zone nonlinearity-induced
limit cycles in the system is briefly described in Section 4.
Lastly, Section 5 gives the conclusions.

2. Inverted Pendulum on a Cart

This section presents the differential flatness model of the
inverted pendulum on a cart, as well as the description of the
prototype used in the experimental procedure to eliminate
limit cycle.

2.1. Flatness Model. The inverted pendulum on a cart shown
in Figure 1 consists of a cart that has linear motion on a
limited rail, in the horizontal plane, and in one dimension.
Thismotion is due to a force applied by a transmission system
actuated by a motor. On the cart, a pendulum is attached
which can move angularly in the vertical plane which is
parallel to the cart movement. The parameters and variables
of this system appear in Figure 1 and are denoted as follows.𝑀 and 𝜉 are the mass and the translational position of the
cart, respectively, whereas 𝑚, 2𝑙, and 𝜙 are the mass, length,
and angular position of the pendulum, respectively. Lastly, 𝑓
is the force applied to the cart and 𝑔 is acceleration of gravity.
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The approximate linear model of the inverted pendulum
on a cart,

̇𝑥𝛿 = A𝑥𝛿 +B𝑢𝛿 (1)

with

𝑥𝛿 =
[[[[[
[

𝑥𝛿1𝑥𝛿2𝑥𝛿3𝑥𝛿4

]]]]]
]

=
[[[[[[[
[

𝜉 − 𝜉
̇𝜉 − ̇𝜉

𝜙 − 𝜙
̇𝜙 − ̇𝜙

]]]]]]]
]

, 𝑢𝛿 = 𝑓 − 𝑓, (2)

A =
[[[[[[[
[

0 1 0 0
0 0 −𝑚𝑔𝑀 0
0 0 0 1
0 0 (𝑀 + 𝑚)𝑔𝑙𝑀 0

]]]]]]]
]

, B =
[[[[[[[[
[

0
1𝑀0

− 1𝑙𝑀

]]]]]]]]
]

, (3)

around the operation point

[𝜉 ̇𝜉 𝜙 ̇𝜙]𝑇 = [0 0 0 0]𝑇 ,
𝑓 = 0, (4)

is controllable [41] and, in consequence, is differentially flat
[42], Ch. 2.Therefore, the flat output 𝐹, associated with (1), is
defined by [42], Ch. 2:

𝐹 = 𝜆 [0 0 0 1] 𝐶−10 𝑥𝛿, (5)

where 𝜆 is an arbitrary nonzero constant, conveniently
chosen as 𝜆 = −𝑔/(𝑙𝑀), and 𝐶0 = [B AB A2B A3B]
is the controllability matrix of system (1). After calculations 𝐹
and its first four time derivatives are obtained:

𝐹 = 𝑥𝛿1 + 𝑙𝑥𝛿3, (6)

�̇� = 𝑥𝛿2 + 𝑙𝑥𝛿4, (7)

�̈� = 𝑔𝑥𝛿3, (8)

𝐹(3) = 𝑔𝑥𝛿4, (9)

𝐹(4) = (𝑀 + 𝑚)𝑔𝑙𝑀 �̈� − 𝑔𝑙𝑀𝑢𝛿. (10)

This last expression represents the differential flat model that
describes the dynamics (1) and since 𝑓 = 0, it can be written
as

𝑓 = (𝑀 + 𝑚) �̈� − 𝑙𝑀𝑔 𝐹(4). (11)

2.2. Description of the Prototype. The prototype of the
inverted pendulum on a cart used in the experimental
procedure to eliminate limit cycle is shown in Figure 2. In
general, this prototype has four subsystems: (i) Mechanical
structure, (ii) actuator and sensors, (iii) power stage, and (iv)
data acquisition and processing, which are described below.

Cart

Pendulum

Belt Pulley

DC motor

Encoder

Servo-drive
Power supply

DS1104 board

Figure 2: Prototype of the inverted pendulum on a cart.

(i) Mechanical structure refers to the mechanical ele-
ments that compose the mechanism, that is, a cart
mounted on a limited rail, the transmission system
(toothed belt and two pulleys), and the pendulum.

(ii) Actuator and sensors consist in a Pittman 14204S006
DC motor and two incremental encoders used to
measure the angular positions of the pulleys and
pendulum. Since the DC motor is connected to one
pulley, the angular position of this pulley is used to
compute the linear position of the cart. The encoder
used tomeasure the angular position of the pulley has
500 PPR and is included in the chassis of the motor.
The encoder used to measure the angular position
of the pendulum has 1024 PPR and is fabricated by
Baumer in the model ITD01B14.

(iii) Power stage is integrated by an HF100W-SF-24
switched power supply and an AZ12A8DDC servo-
drive manufactured by Advanced Motion Controls.
This latter possesses an inner current-loop driven by
a PI controller, which ensures that the current of the
DC motor, 𝑖𝑚, reaches the current imposed by the
control signal, 𝑖, that is, 𝑖𝑚 → 𝑖. This means that a
desired torque signal can be implemented through the
dynamic relation of torque-current: 𝜏 = 𝑘𝑚𝑖 ≈ 𝑘𝑚𝑖𝑚,
where 𝜏 and 𝑘𝑚 are the torque and torque constant
of the DC motor, respectively. Since the input of the
inverted pendulumon a cart is the force𝑓, the desired
torque is converted to the desired force by using 𝜏 =𝑓𝑟, with 𝑟 being the radius of the pulley connected to
the DC motor.

(iv) Data acquisition and processing corresponds to a
DS1104 board from dSPACE, Matlab-Simulink, and
ControlDesk. Through this hardware and software
the variables of the system are read, which allows
implementation of the controller. It is important to
say that, in all experiments, the velocities ̇𝜉 and ̇𝜙were
estimated via a derivative block of Simulink and the
sampling period was set to 1 ms.

The mechanical parameters of the inverted pendulum on a
cart are presented below, which were found bymeasuring the
length of the pendulum andweighing the cart and pendulum.
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2𝑙 = 0.200 × 10−3m,

𝑚 = 0.034 kg,
𝑀 = 0.385 kg.

3. Linear Controller

This section presents a linear state feedback controller for
position regulation in the inverted pendulumon a cart, which
is derived by considering flat model (11). Also, the analysis
of the existence of limit cycles is given and the procedure to
design the controller is described.

3.1. Controller Proposal. On the one hand, after applying the
Laplace transform to (11), the following transfer function is
obtained:

𝐹 (𝑠)𝑓 (𝑠) = −𝑔/ (𝑙𝑀)𝑠2 [𝑠2 − 𝑔 (𝑀 + 𝑚) / (𝑙𝑀)] , (12)

where 𝐹(𝑠) and 𝑓(𝑠) stand for Laplace transforms of the flat
output and the applied force, respectively.

On the other hand, the dead-zone nonlinearity has the
characteristic function shown in Figure 3, whose parameters
are described in [19]. An approximate frequency response
description of a dead-zone nonlinearity is the following
describing function [43], Ch. 5, where it is assumed that the
nonlinearity input 𝑒 is a sinusoidal function of time with
amplitude 𝐴 and frequency 𝜔:

𝑁(𝐴) = 2𝑘𝜋 [
[
𝜋2 − arcsin ( 𝛿𝐴) − 𝛿𝐴√1 − ( 𝛿𝐴)2]

]
. (13)

This “transfer function,”𝑁(𝐴), is real, positive, and frequency
independent but dependent on the input amplitude 𝐴. Its
maximal value is 𝑁(𝐴) = 𝑘 > 0, which is reached as 𝐴 →∞, and its minimal value tends to zero if 𝐴 → 𝛿.

Since transfer function (12) has similar characteristics to
that of the Furuta pendulum obtained in [19, 20], hence,
the control scheme proposed in [20] to control the Furuta
pendulum and the pendubot, that is,

𝑓 (𝑠) = 𝑘V𝐹 (𝑠) 𝑠3 + 𝛽𝐹 (𝑠) 𝑠2 + 𝑘𝑑𝐹 (𝑠) 𝑠 + 𝑘𝑝𝐹 (𝑠) , (14)

where 𝑘V, 𝛽, 𝑘𝑑, and 𝑘𝑝 are the control gains, is also used to
control (12). The block diagram of the plant (12) in closed
loop with controller (14) and considering the dead-zone
nonlinearity is shown in Figure 4. There, positive feedback
is used due to −𝑔/(𝑙𝑀) < 0.

Lastly, when considering the linear state feedback con-
troller

𝑢𝛿 = 𝑓 = −𝑘1𝑥𝛿1 − 𝑘2𝑥𝛿2 − 𝑘3𝑥𝛿3 − 𝑘4𝑥𝛿4, (15)

k
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Figure 3: Representation of a dead-zone nonlinearity.
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Figure 4: Closed-loop system considering a dead-zone nonlinear-
ity.
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Figure 5: Equivalent representation of block diagram in Figure 4.

where 𝑘1, 𝑘2, 𝑘3, and 𝑘4 are the gains of the controller, 𝑢𝛿 and𝑥𝛿 stand as defined previously in (2), and using (6)-(10), the
following equivalence between (14) and (15) is found:

𝑘1 = −𝑘𝑝,
𝑘2 = −𝑘𝑑,
𝑘3 = − (𝛽𝑔 + 𝑙𝑘𝑝) ,
𝑘4 = − (𝑘V𝑔 + 𝑙𝑘𝑑) .

(16)

3.2. Analysis of Limit Cycle Existence. The analysis of limit
cycle existence in the inverted pendulum on a cart is carried
out as in [19, 20] for the Furuta pendulum and pendubot, that
is, by using the describing function method. This is because the
approximation of the dead-zone nonlinearity is based on the
describing function.

The describing function method [43], Ch. 5, suggests
representing the system in the standard form shown in
Figure 5. Also, such a method requires that the linear time
invariant system 𝐺(𝑠) behaves as a low-pass filter. Thus, the
standard form is obtained applying block algebra on Figure 4.
In this case, the nonlinearity input is 𝑒 = 𝑓(𝑠)while the linear
time invariant system 𝐺(𝑠) is

𝐺 (𝑠) = 𝐺1 (𝑠) 𝐺2 (𝑠) , (17)

where

𝐺1 (𝑠) = 𝑔/ (𝑙𝑀)𝑠2 [𝑠2 − 𝑔 (𝑀 + 𝑚) / (𝑙𝑀)] , (18)

𝐺2 (𝑠) = 𝑘V𝑠3 + 𝛽𝑠2 + 𝑘𝑑𝑠 + 𝑘𝑝 (19)
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Figure 6: Polar plot of 𝐺(𝑗𝜔) and −1/𝑁(𝐴).

are the plant and controller, respectively, and 𝑔/(𝑙𝑀) > 0.
Furthermore, the magnitude of (17) behaves as a low-pass
filter, since 𝐺(𝑠) has four poles and only three zeros. Then,
a limit cycle may exist if [43], Ch. 5,

𝐺(𝑗𝜔) = − 1𝑁 (𝐴) , (20)

which implies that the polar plot of 𝐺(𝑗𝜔) intersects the
negative real axis in the open interval (−∞,−1/𝑘). This is
because −1/𝑁(𝐴) is real and negative. Hence, the oscillation
frequency, 𝜔𝜎, and the amplitude of the oscillation, 𝐴, are
found as the values of 𝜔, in 𝐺(𝑗𝜔), and 𝐴, in −1/𝑁(𝐴), at the
point 𝜎 where their plots intersect [43], Ch. 5. The graphic
representation of this is shown in Figure 6.

3.3. Controller Design. The design of the controller gains𝑘V, 𝛽, 𝑘𝑑, and 𝑘𝑝 is achieved as described in [20] for the
Furuta pendulum case. In this section, particularities of the
controller design for the inverted pendulum on a cart case
are introduced. Since the following transfer function of the
two internal loops is obtained:

−𝑔/ (𝑙𝑀)𝑠2 + 𝑔/ (𝑙𝑀) 𝑘V𝑠 + [𝑔/ (𝑙𝑀)𝛽 − 𝑔 (𝑀 + 𝑚) / (𝑙𝑀)] , (21)

when the dead-zone is omitted from Figure 4, then 𝑘V and 𝛽
must satisfy the following conditions:

𝑘V > 0 ∧ 𝑔𝑙𝑀𝛽 > (𝑀 + 𝑚)𝑔𝑙𝑀 (22)

to ensure that all coefficients of the characteristic polynomial
of the transfer function in (21) are positive.

Now, note that when replacing 𝑠 by 𝑗𝜔 in (18), the phase
of 𝐺1(𝑗𝜔) is −360∘ for all 𝜔 ≥ 0 because 𝑔/(𝑙𝑀) > 0 and each
one of the factors 1/−𝜔2 < 0 and 1/(−𝜔2−𝑔(𝑀+𝑚)/(𝑙𝑀)) <0 introduces a phase of −180∘. Hence, with the intention of
forcing the polar plot of 𝐺(𝑗𝜔) to intersect the negative real
axis, i.e., to render phase of 𝐺(𝑗𝜔) equal to −180∘ at some𝜔 > 0, the frequency analysis performed for the controller𝐺2(𝑗𝜔) in [20] is applied. Such an analysis is described below
to facilitate the reference.

The phase of 𝐺2(𝑗𝜔)must be as follows:

∠𝐺2 (𝑗𝜔) = arctan(𝑘𝑑𝜔 − 𝑘V𝜔3𝑘𝑝 − 𝛽𝜔2 ) = +180∘. (23)

This implies that the following conditions have to be satisfied:

𝑘𝑑𝜔 − 𝑘V𝜔3 = 0. (24)

𝑘𝑝 − 𝛽𝜔2 < 0. (25)

From (24) the following relation to find 𝑘𝑑 is obtained:
𝑘𝑑 = 𝑘V𝜔2. (26)

Lastly, in order to compute 𝑘𝑝, 𝑠 is replaced by 𝑗𝜔 in controller
(19) to obtain the following:

𝐺2 (𝑗𝜔) = 𝑘V (𝑗𝜔)3 + 𝛽 (𝑗𝜔)2 + 𝑘𝑑 (𝑗𝜔) + 𝑘𝑝,
= 𝑗 (𝑘𝑑𝜔 − 𝑘V𝜔3) + (𝑘𝑝 − 𝛽𝜔2) , (27)

whose magnitude is determined by

𝐺2 (𝑗𝜔) = √(𝑘𝑑𝜔 − 𝑘V𝜔3)2 + (𝑘𝑝 − 𝛽𝜔2)2. (28)

Hence, when solving (28) for 𝑘𝑝, the formula below is
obtained:

𝑘𝑝 = ±√𝐺2 (𝑗𝜔)2 − (𝑘𝑑𝜔 − 𝑘V𝜔3)2 + 𝛽𝜔2. (29)

Therefore, the sign in this latter expression has to be chosen
so that (25) is accomplished.

Finally, to propose the frequency 𝜔 = 𝜔𝜎 at which it is
desired that the polar plot of 𝐺(𝑗𝜔) intersects the negative
real axis it is necessary to compute 𝑘𝑝 and 𝑘𝑑. Likewise,
the magnitude |𝐺2(𝑗𝜔𝜎)| that must be introduced by the
controller has to be known, for which a desired magnitude
of 𝐺(𝑗𝜔) when 𝜔 = 𝜔𝜎 has to be proposed. Then, from

𝐺 (𝑗𝜔𝜎) = 𝐺1 (𝑗𝜔𝜎) ⋅ 𝐺2 (𝑗𝜔𝜎) , (30)

the magnitude |𝐺2(𝑗𝜔𝜎)| can be computed by

𝐺2 (𝑗𝜔𝜎) =
𝐺 (𝑗𝜔𝜎)𝐺1 (𝑗𝜔𝜎) . (31)

Since |𝐺1(𝑗𝜔𝜎)| can be obtained from the Bode diagrams of𝐺1(𝑗𝜔), then Bode diagrams are a suitable tool to design the
controller gains 𝑘V, 𝛽, 𝑘𝑑, and 𝑘𝑝.

Until here, the procedure and formulas to compute the
controller gains have been described. The procedure to
choose such gains in order to eliminate limit cycle due to
dead-zone nonlinearity is presented in the next section.

4. Experimental Procedure for Limit
Cycle Elimination

In this section, the experimental procedure introduced in
[20] is applied to eliminate limit cycles in the inverted
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pendulum on a cart. In [20], the procedure to eliminate limit
cycle was executed departing from knowing the numerical
value𝛿 of the dead-zone nonlinearity of the Furuta pendulum
and pendubot. Also, in that paper, it was mentioned that the
procedure can be applied without requiring the knowledge
of such a parameter. Thus, the procedure in [20] is applied
here for the inverted pendulum on a cart without requiring
the knowledge of 𝛿. Additional steps that help to better
address the procedure, which do not modify the generality
of the procedure introduced in [20], are indicated. Also,
particularities of the application of the procedure in the
inverted pendulum on a cart are indicated in each step.

Before starting the application of the procedure for limit
cycle elimination in the inverted pendulum on a cart, the
conjecture established in [20] is recalled below.

Conjecture. According to the dead-zone nonlinearity charac-
teristic function depicted in Figure 3, if |𝑒| ≤ 𝛿 then a zero
value appears at the plant input 𝑐 = 0; i.e., the force applied
by the motor to the inverted pendulum on a cart is zero
and the mechanism might rest at the operation point defined
in (4). Since the threshold 𝛿 is uncertain because friction is
uncertain, it is natural to wonder whether it is possible to
render 𝐴 < 𝛿 in experiments, despite (13) being only valid
for𝐴 ≥ 𝛿. Recall that 𝐴 ≥ |𝑒| because 𝐴 is the amplitude of 𝑒.
Then, the mechanism might rest at the operation point if 𝐴 is
chosen to be small enough; i.e., the limit cycle might vanish
under these conditions.

It is also recalled that, according to Figure 6, with the
purpose of reducing the amplitude of the limit cycle, the polar
plot of𝐺(𝑗𝜔)must intersect the negative real axis at a point 𝜎
located farther to the left of the point −1/𝑘 = −1.This latter is
computed by considering 𝑘 = 1, which is a value usually set
for a conventional DCmotor.This suggests that |𝐺(𝑗𝜔𝜎)| ≫ 1
and this must occur at an oscillation frequency 𝜔 = 𝜔𝜎.

The procedure to eliminate the limit cycle induced by
the dead-zone nonlinearity, when regulating position in the
inverted pendulum on a cart, was experimentally applied as
follows:

(1) Bode diagrams of the plant 𝐺1(𝑗𝜔) were plotted as
shown in Figure 7. For this, (18) was used.

(2) The frequency 𝜔𝜎 = 6 rad/s and the magnitude|𝐺(𝑗𝜔𝜎)| = 22 were initially proposed. The value of𝜔𝜎 was proposed since this renders 𝑓𝜎 = 𝜔𝜎/(2𝜋) ≈0.9549 Hz, which is a reasonable frequency in Hertz
for the experimental prototype that was built. Using
the value of𝜔𝜎 and Bode diagrams plotted in Figure 7,
the following magnitude in dB was measured:𝐺1 (𝑗𝜔𝜎)dB = −26.1dB, (32)

which was converted into𝐺1 (𝑗𝜔𝜎) = 10|𝐺1(𝑗𝜔𝜎)|dB/20 = 0.0495. (33)

The latter numerical valuewas used in (31) to compute|𝐺2(𝑗𝜔𝜎)|, finding the following:
𝐺2 (𝑗𝜔𝜎) = 444.1570 = 444.0406. (34)
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Figure 7: Bode diagrams of 𝐺1(𝑠).

The numerical values of 𝜔𝜎 and |𝐺2(𝑗𝜔𝜎)| shall be
used to compute 𝑘𝑝.

(3) 𝑘V = 0.94 and 𝛽 = 12.5 were selected satisfying (22),
that is, rendering all coefficients of the characteristic
polynomial of (21) positive. Also, the proposed 𝑘V and𝛽 achieve that the sign of the square root in (29) is
negative, which is implied from (25), and that 𝑘𝑝 >0. According to Figure 4, this latter is necessary to
ensure closed-loop stability. Note that, in order to
avoid negative values for 𝑘𝑝, it is clear from (29) and
(25) that larger values of either 𝛽 or 𝜔𝜎 are required.
From the second degree characteristic polynomial in
(21), it is concluded that a larger 𝛽 is possible if roots
of this characteristic polynomial are farther from the
origin. This is accomplished since 𝑘V = 0.94 and𝛽 = 12.5 assign real poles of (21) at −225.8894 and−13.6275. In the case that the selection of 𝛽 does not
achieve 𝑘𝑝 > 0 and the designer prefers to increase𝜔𝜎, instead of increasing 𝛽, the designer must go back
to step (2).

(4) With the numerical values in steps (2) and (3), (29),
and (26), 𝑘𝑑 and 𝑘𝑝 were computed as follows:

𝑘𝑑 = 33.84,
𝑘𝑝 = 5.9594. (35)

For (29), a “−” sign was chosen because this renders𝑘𝑝 − 𝛽𝜔2𝜎 = −444.0406 < 0. Notice that this ensures
that 𝑘𝑝 is real and positive, and hence closed-loop
stability is ensured. If this were not the case, the
designer would have to go back to step (3).

(5) Through the Bode diagrams of the compensated
system 𝐺(𝑠) shown in Figure 8, it was corroborated
that the open-loop system had the desired phase,−180∘, at the desired frequency and magnitude, 𝜔𝜎 =6 rad/s and |𝐺(𝑗𝜔𝜎)| = 22 ≈ 26.9 dB, respectively.
The corresponding polar plot of 𝐺(𝑗𝜔) is depicted in
Figure 9.
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(6) Once 𝑘V, 𝛽, 𝑘𝑑, and 𝑘𝑝 were known, the relations in
(16) were used to find the following numerical values
for the gains of linear state feedback controller (15):

𝑘1 = −5.9594,
𝑘2 = −33.84,
𝑘3 = −123.2209,
𝑘4 = −12.6054.

(36)

Using these gains 𝑘1, 𝑘2, 𝑘3, and 𝑘4, linear state feed-
back controller (15) was experimentally implemented
to regulate the prototype of the inverted pendulum on
a cart depicted in Figure 2. Since (15) only stabilizes
the prototype at 𝑥𝛿 = 0 when operating close to
(4), the pendulum was manually taken to near such

an operation point. Hence, the following switching
condition was used:

𝑓 = {{{{{{{
(15) for √(𝜙 − 𝜙)2 + ̇𝜙2 ≤ 0.3
0 for √(𝜙 − 𝜙)2 + ̇𝜙2 > 0.3. (37)

The experimental results obtained when using (37)
with (36) are shown in Figure 10, where a limit cycle
is observed. Since there is noise in the control signal𝑓, the amplitude and frequency of the limit cycle are
difficult to measure there. But as 𝑒 = 𝑓(𝑠) is linearly
related to 𝐹(𝑠) through (14), the analysis in Section
III about limit cycle is also valid for 𝐹. Hence, the
amplitude and the frequency of 𝐹 were measured to
observe the behavior of the limit cycle. The measured
amplitude of the limit cycle is denoted as 𝐴𝐹 and
was computed by summing the maximal and the
minimum absolute values of 𝐹, whereas the measured
frequency of the limit cycle is denoted as 𝜔𝜎𝐹 and was
computed using the following:

𝜔𝜎𝐹 = 2𝜋𝑛𝑡𝑓 − 𝑡𝑖 , (38)

where 𝑛 is the number of oscillations that occurred
in the time interval between 𝑡𝑖 and 𝑡𝑓. Thus, 𝐴𝐹 =0.4323 m and 𝜔𝜎𝐹 = 0.2922 rad/s were obtained.

(7) As a limit cycle appeared in the previous step, |𝐺(𝑗𝜔𝜎)|
was increased and we went back to step (3). When|𝐺(𝑗𝜔𝜎)| = 38 was reached, 𝑘V = 1.66 and 𝛽 =21.5 were selected. Then, 𝑘𝑑 = 59.7600 and 𝑘𝑝 =7.0208 were computed. Thus, the following gains for
controller (15) were computed:

𝑘1 = −7.0208,
𝑘2 = −59.7600,
𝑘3 = −211.6171,
𝑘4 = −22.2606.

(39)

When implementing (37) with (39), the results
depicted in Figure 11 were obtained. There, it can be
observed that the limit cycle was partially eliminated
and that 𝐴𝐹 = 0.1371 m when it appears.
Since in the previous experiment the limit cycle was
partially eliminated, |𝐺(𝑗𝜔𝜎)|was incremented so that|𝐺(𝑗𝜔𝜎)| = 40. In this case, 𝑘V = 1.75 and 𝛽 =22.5 were chosen, 𝑘𝑑 = 63 and 𝑘𝑝 = 2.6535 were
computed, and the following gains of (15) were found:

𝑘1 = −2.6535,
𝑘2 = −63,
𝑘3 = −220.9903,
𝑘4 = −23.4675.

(40)
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Figure 10: Experimental results when using (36).
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Figure 11: Experimental results when |𝐺(𝑗𝜔𝜎)| = 38 and 𝜔𝜎 = 6 rad/s.
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Although it may be thought that this time the limit
cycle would disappear, after executing the experiment
of controller (37) with (40), considerable vibration
in the prototype was observed and limit cycle reap-
peared instead of being eliminated. See experimental
results in Figure 12, where 𝐴𝐹 = 0.2901 m and𝜔𝜎𝐹 = 0.2365 rad/s were measured. It is important to
highlight that although limit cycle was not eliminated
so far, it was actually reduced since 𝐴𝐹 = 0.2901 m <𝐴𝐹 = 0.4323 m. This is in accordance with the
conjecture. Also, note that noise in the control signal𝑓 is more noticeable because |𝐺(𝑗𝜔𝜎)| was increased
(see Figures 10(d), 11(d), and 12(d)).

(8) Since in the previous step limit cycle was not elim-
inated and considerable vibration was observed in
the prototype (see noise in Figure 12(d)), 𝜔𝜎 was
increased to 8 rad/s, |𝐺(𝑗𝜔𝜎)| = 22was set again, and
we went back to step (3). As limit cycle still remains,
but with a reduced amplitude of oscillation, |𝐺(𝑗𝜔𝜎)|
was increased again. As an example of reduction of
limit cycle, with regard to the experimental results in
Figure 12, the experimental results when |𝐺(𝑗𝜔𝜎)| =34 are depicted in Figure 13. There, it is remarkable
that limit cycle was partially eliminated and little
oscillations appeared with 𝐴𝐹 = 0.0786 m, which is
less than the amplitude of limit cycle associated with
Figures 11 and 12.
To obtain the results in Figure 13, the following gains
of controller (15) were used:

𝑘1 = −4.8351,
𝑘2 = −97.28,
𝑘3 = −226.1135,
𝑘4 = −24.6392.

(41)

Such gains were found departing from selecting 𝑘V =1.52 and 𝛽 = 23 and computing 𝑘𝑑 = 97.28 and 𝑘𝑝 =4.8351.
(9) Finally, limit cycle disappeared when |𝐺(𝑗𝜔𝜎)| = 36

and 𝜔𝜎 = 8 rad/s. For that, 𝑘V = 1.61 and 𝛽 = 24.5
were chosen, 𝑘𝑑 = 103.04 and 𝑘𝑝 = 14.5313 were
computed, and the following gains of controller (15)
were found:

𝑘1 = −14.5313,
𝑘2 = −103.04,
𝑘3 = −241.7981,
𝑘4 = −26.0981.

(42)

The obtained experimental results are shown in Fig-
ure 14.

From the experimental results, it was observed that for
each 𝜔𝜎 there is a maximum value of |𝐺(𝑗𝜔𝜎)| allowed

by the prototype of the inverted pendulum on a cart to
perform experiments. This is because noise in the control
signal was increased as |𝐺(𝑗𝜔𝜎)| was increased. The effect
of this noise was reflected in the prototype as noticeable
vibration when |𝐺(𝑗𝜔𝜎)| reached some high value. Thus,
lower frequencies allow larger magnitudes of 𝐺(𝑗𝜔) and at
larger frequencies the magnitude of𝐺(𝑗𝜔)must be decreased
to avoid noticeable vibration in the closed-loop system and to
approach to the limit cycle elimination. Another observation
is that the experimental results corroborate the conjecture,
i.e., that limit cycle is eliminated as selecting controller gains
such that the polar plot of 𝐺(𝑗𝜔) crosses the negative real
axis at a point located farther to the left. Furthermore, an
additional observation from the experiments is that limit
cycle elimination is accomplished as frequency 𝜔𝜎, where the
polar plot of 𝐺(𝑗𝜔) crosses the negative real axis, is chosen
larger. Note that these same observations were made for the
Furuta pendulum in [20].

On the other hand, some differences were found when
comparing frequency𝜔𝜎𝐹 of the experiments with the desired
one. These differences are mainly due to the following:

(i) According to [43], Ch. 5, since the describing function
method has an approximate nature, some inaccura-
cies are found in results: (a) the predicted amplitude
and frequency might not be accurate, (b) a predicted
limit cycle might actually not exist, or (c) an existing
limit cycle is not predicted, the first kind of inaccu-
racy, i.e., (a), being quite common.

(ii) Dead-zone “transfer function” (13) is an idealiza-
tion of the nonlinear phenomenon that is actually
presented in the practical plant. Hence, not all the
dynamics of the dead-zone nonlinearity is concen-
trated in (13).

Until here it has been shown that the controller and
the applied procedure allow elimination of the limit cycle
in the inverted pendulum on a cart, but it was previously
commented that 𝛿 is uncertain because friction is uncertain.
This latter implies that knowing the exact value of 𝛿 is
difficult, which acts as a disturbance. For this reason com-
pensation techniques had to be used to face limit cycle issue
online. Thus, it becomes interesting to know the behavior
of the linear controller, here implemented for the inverted
pendulum on a cart, when the limit cycle in the system
changes due to the conditions of operation. Figure 15 presents
the results when gains (42) are implemented for the system
under study without previously performing an experiment,
that is, without “warming up” the actuator. Note that these
conditions of operation are different from those when the
results of Figure 14 were obtained because then several exper-
iments were consecutively performed before eliminating the
limit cycle; that is, the actuator of the system was “warmed
up.” In Figure 15 it can be observed that in different occasions
a limit cycle reappears, which is natural since static friction is
greater when there is no previous movement (𝛿 is different).
But it is important to remark from Figure 15 is that limit cycle
is eliminated after reappearing. Thus, it can be concluded that
the simple linear controller here implemented is feasible and
robust enough to eliminate limit cycle.
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Figure 12: Experimental results when |𝐺(𝑗𝜔𝜎)| = 40 and 𝜔𝜎 = 6 rad/s.
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Figure 13: Experimental results when |𝐺(𝑗𝜔𝜎)| = 34 and 𝜔𝜎 = 8 rad/s.
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Figure 14: Experimental results when |𝐺(𝑗𝜔𝜎)| = 36 and 𝜔𝜎 = 8 rad/s.
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Figure 15: Experimental results when gains (42) are implemented without previously performing an experiment in the prototype.
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5. Conclusion

A linear controller based on the frequency response approach
and an experimental procedure, introduced recently by the
authors for the Furuta pendulum and the pendubot, has been
successfully applied to eliminate the limit cycle in the inverted
pendulumon a cart.Therefore, from the experimental results,
the following can be concluded. (i) The inverted pendulum
on a cart has similar behavior to that of the Furuta pendulum
under the effect of linear state feedback controller (15), when
it is designed through frequency response-based controller
(14). (ii)The applicability of the approach introduced in [20]
to eliminate limit cycle is confirmed for another inverted
pendulum, corroborating that the approach can eliminate
limit cycles in different inverted pendulums. (iii) Robustness
of the controller is verified when conditions of operation
change.
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In this paper, we try to find the right controlmethod for the game behavior instability in coalmine safety management.Through the
analysis and comparison of the system stabilitywith inflexible andflexible costs and penalties, it can be concluded that the dynamical
game systemwith flexible costs (incentive rewards) and flexible penalty mechanism can significantly reduce the dynamics of unsafe
behaviors in coal mine safety supervision. A combined mechanism of incentive rewards and flexible penalty is put forward to
improve the stability of the dynamical system and control the instability of behaviors effectively. The results of model simulation
show that the combinedmechanism has very good property and can optimize and control the instability of behaviors and strategies
of the interested parties. Based on the theoretical conclusions, some control strategies and policy advice are proposed for the
improvement of the system and measures of safety management for government departments.

1. Introduction

The frequent occurrence of coal mine safety accidents always
makes the safety production situation in China become the
focus of attention at home and abroad. Management chaos,
illegal operations, poor policy implementation, and regu-
latory dislocation have long become the prominent factors
affecting the safety of coal mine production. The traditional
safety management is mainly based on experience-oriented
administrative regulations and legislations. However, due to
the differences of region, staff and technical level, and so
on, coal mine safety management has great complexity. The
effectiveness of some rules and regulations is temporary and
limited in the implementation process.

In order to ensure that the safety legislation is closely
integrated with management practice, many scholars have
deeply analyzed the influence factors of coal mine safety
supervision and studied the relationship between the occur-
rences of unsafe behaviors and the interest distribution of coal
mine safety [1–6].

Through the previous studies on the game of safety
supervision, it is found that the dynamical system of safety
management game model hardly has the stability and self-
control generally, and the game behaviors of the players
always have repeated volatility [7, 8]. The volatility of the
behaviors may sometimes provide wrong information and
cause unrealistic or even error related decisions andmeasures
of coal mine safety management, which will seriously affect
the efficiency of safety management.

In the previous studies of evolutionary game model in
coalmine safetymanagement, we have obtained the following
replicator dynamics [9, 10]:̇𝑥1 = 𝑥1 (1 − 𝑥1) [(𝑥2 + (1 − 𝑥2) 𝑥3) 𝑓1 − 𝑐1] ;̇𝑥2 = 𝑥2 (1 − 𝑥2) [(1 − 𝑥1) (𝑓1 + 𝑥3𝑓2) − 𝑐2] ;̇𝑥3 = 𝑥3 (1 − 𝑥3) [(1 − 𝑥1) (1 − 𝑥2) (𝑓1 + 𝑓2) − 𝑐3] (1)

where 𝑐𝑖(𝑖 = 1, 2, 3) is the safety cost (input) of coal miners
(denoted as player I), safety inspection groups inside the coal
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Figure 1: Phase graph of dynamical system (1) and time series diagram of players’ strategy selection probabilities. Values ofmodel parameters:(𝑐1, 𝑐2, 𝑐3, 𝑓1, 𝑓2) = (0.5, 0.2, 0.3, 1, 1.2).
mine (player II), and safety regulatory departments of local
government (player III). 𝑓𝑖(𝑖 = 1, 2) is the penalty index
(fine) when player I or player II has made mistakes (unsafe
behaviors) and is checked out, respectively.

According to the actual situation of China’s coal mine
production and coal mine safety regulation, we assume
that the parameters described above satisfy the following
conditions:

(i) 𝑐2 ≤ 𝑐3 ≤ 𝑐1 ≤ 1;
(ii) 𝑓𝑖 ≥ 1, 𝑖 = 1, 2.
Phase diagram analysis and time series diagram are

commonly used methods to study the stability of nonlinear
dynamical systems. Phase diagram analysis method has the
characteristic of vivid intuition, which represents all possible
states of the dynamic system. Phase diagram analysis greatly
promotes the wide application of differential dynamical
system in many disciplines [11–15]. Time series graph depicts
the process of function changing with time variable 𝑡, which
can simply and clearly describe the evolution process, chaos,
and synchronization of differential dynamical systems [16–
19]. In addition to the eigenvalue method, a large part of
model analysis in this study uses these two methods.

The gamemodel contains toomany variables and param-
eters, it is difficult to obtain the model’s analytical solution
[10]. In this paper, we mainly use numerical simulation
method to analyze the evolutionary process. So, it is very
important to properly set the initial values of parameters
and variables. Coal mine safety management involves var-
ious types of coal production enterprises with different
technological development levels in different regions, and
the coal production process and safety management status
of these enterprises themselves have great differences. The
corresponding parameters and initial values of variables will

not be the same and changeless. Supposing that the relevant
method is applied in a specific coal production enterprise or a
specific mining area, the model parameters and initial values
of variables should be deduced and estimated according
to the actual situation of coal production. In this way, the
model analysis will be more pertinent and the corresponding
conclusions will be more accurate. In this paper, we merely
set the values of model parameters and the initial value of the
variables theoretically reasonably but do not make detailed
and specific statistical reasoning.

In order to reflect the dependence of the stability of
dynamic system on the initial value, we choose several
different initial values of variables (each player’s strategy
selection probabilities of 𝑥1, 𝑥2, and 𝑥3) in the system.
For example, we set the value of (𝑥1(0), 𝑥2(0), 𝑥3(0)) to𝑃0(0.5, 0.3, 0.2), 𝑃1(0.7, 0.5, 0.3), 𝑃2(0.3, 0.5, 0.7), 𝑃3(0.5, 0.7),
and 𝑃3(0.5, 0.7, 0.9), respectively, in Figure 1(a).

Through the stability analysis of the dynamical system (1)
(see Figure 1, where Figure 1(a) is phase graph of dynamical
system and Figure 1(b) demonstrates the time series of play-
ers’ strategy selection probabilities), we can find that there
are repeated fluctuations in the game process of multiparty
safety management. It agrees with the actual situation of
safety management to a certain extent. If the coal miners do
not adopt a safety production strategy (or the proportion of
unsafe strategies in the production worker group is larger)
at the beginning, the regulators will increase the level of
safety supervision. With the increase of supervision intensity,
coal miners will take safe production behaviors (or increase
the proportion of safety behavior choice) or even completely
do not choose unsafe behavior. Then coal production safety
conditions will improve, and then regulators will reduce
supervision, and then the unsafe behaviors will bemore likely
to happen. Over time, coal mine safety will always be in the
process of cyclical fluctuations. This phenomenon appears
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not only in coal mine safety management but also in other
processes of production safety management [20–23].

The game model of safety regulation does not have
global stability under general conditions [10]. Most of the
existing studies proposed the system and measures for safety
management from the points of view of the policy makers,
according to the specific situation (such as types of accidents
or illegal behaviors) [24–28]. In this way, even if the relevant
policies and measures have played a certain role in a short
period, in a short period, the long-term effectiveness can not
be guaranteed because of the lack of control (inhibition or
avoidance) of behavior volatility of the interested groups.The
repeated fluctuations and volatility (instability) often provide
the decision-makers with wrong information, which will lead
to unrealistic or even error decisions and measures of coal
mine safety management, and seriously affect the efficiency
of coal mine safety management.

In order to definitely improve the efficiency of safetyman-
agement, some control methods are needed for restraining
the instability of players’s dynamical behavior and strate-
gies in the process of coal mine safety supervision. So, in
this paper, we proceed from the relationship between the
model parameters (or variables) and explore the functionary
mechanism of those model parameters (or variables) on
the stability of game behaviors. As the design mechanism
of model parameters and variables (i.e., the formulation
of incentive and penalty measures in the process of safety
supervision) is found out, then we could put forward the
control methods and control strategies for the behavior
instability. First, the stability of the dynamical system of the
game model is studied in the cases of the generally inflexible
cost subsidies and penalties index. Second, the stability of
the dynamical system is considered under the flexible cost
functions and flexible penalty functions. We believe that the
relevant dynamic control methods and strategies will provide
a theoretical basis for the regulation and control of coal mine
safety management system and measures.

The rest of this paper is organized as follows. In Section 2,
we analyze and compare the system stability of evolutionary
game models in four cases: inflexible cost subsidies, flexible
costs (incentive rewards), inflexible penalties, and flexible
penalties. In Section 3, we carry out further theoretical
analysis under the combinedmechanismof incentive rewards
and flexible penalties. Then, in Section 4, we put forward
some control strategies to suppress the behavior instability in
safety management system. Our paper is finally concluded in
Section 5.

2. Analysis on Stability of the Dynamical
Game System

2.1. Stability of the Dynamical Game System with Inflexible
Cost Subsidies. The inflexible cost subsidy mentioned in this
article refers to those policy oriented fixed subsidies for the
workers which are undifferentiated and averagely shared,
such as the underground allowances and the post allowances,
etc. The increase of inflexible subsidies is equivalent to when
the reduction of the safety production costs of coal miners,

or the safety inspection cost of safety inspection team, or the
safety supervision cost of the government department (𝑐𝑖, 𝑖 =1, 2, 3) becomes smaller. Therefore, based on the general
situation as shown in Figure 1, we decrease the values of𝑐1, 𝑐2, and 𝑐3, respectively, or synchronously to comparatively
analyze the stability of dynamical system of the game model.

Here, Figures 2(a), 2(b), and 2(c) are time series graphs of
strategy selection probabilities (𝑥1, 𝑥2, 𝑥3) when 𝑐1 decreases
gradually. Similarly, we get Figures 2(d), 2(e), and 2(f) when𝑐2 decreases gradually and Figures 2(g), 2(g), and 2(i) when𝑐3 decreases gradually. Figures 3(a), 3(b), and 3(c) show the
time series of strategy selection probabilities when 𝑐1, 𝑐2, and𝑐3 decreases synchronously.

As can be seen from Figures 2 and 3, the volatility
of the game system has been reduced when the value of𝑐1, 𝑐2, or 𝑐3 becomes smaller. However, the stability of the
game system has not changed substantially. Under normal
circumstances (see Figures 2(a), 2(d), and 2(g)), 𝑥1 still has
no asymptotic stability (controllability). Only under some
extreme conditions such as 𝑐1 = 0, 𝑐2 < 0, or 𝑐3 < 0
which are difficult to reach in practice, will 𝑥1 (probability of
coal miners selecting safe production behaviors) quickly and
steadily approach 1 (see Figures 2(c), 2(f), 2(i), and 3(c)).

So, on the premise of guaranteeing the economic benefits
of coal enterprises, it is necessary to suitably raise the policy
subsidies and the welfare level of the employees, which will
relevantly reduce the safety input cost of the interested groups
and promote them to increase investment in production.
Then the production safety of coal enterprises and safety
management work can be run at a higher level.

2.2. Stability of the Dynamical Game System with Flexible Cost
(Incentive Rewards). In Section 2.1, we found that general
cost reductions do not completely bring down the volatility
of the dynamical system of game models. Salary is the sum
of various forms of remuneration or return obtained by the
employees of the enterprise for providing labor or labor to
their work units, including job salary, performance salary,
bonus (month award, quarterly award, annual award, etc.),
allowance, labor bonus, welfare, and so on. Salary manage-
ment is the key to reflect the vital interests and social values
of employees, and also it is the internal power of enterprise
operation [29, 30], so that the incentive salary system must
adhere to the principle of pay according to performance.
The implementation of performance compensation should be
based on a scientific performance evaluation system. Oth-
erwise, the fairness of performance compensation will not
reach the purpose of motivating employees. In recent years,
various enterprises (including various types of enterprises in
the coal industry) paymore andmore thewages of employees,
quarterly awards, year-end awards, and other variable income
to the total income of workers.The discretionary variable part
(performance salary, bonus, etc.) plays a very important role
in stimulating theworking enthusiasm in coal enterprises and
improving safety efficiency.

Therefore, performance salary and bonus and some other
incentive rewards should be taken into account of the players’
costs of safety production. Those who perform better will get
more rewards, and their safety cost inputs will be reduced
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Figure 2: Time series graph of players’ strategy selection probabilities when 𝑐1, 𝑐2, 𝑐3 have smaller values separately. Initial values of variables:(𝑥1, 𝑥2, 𝑥3)|𝑡=0 = 𝑃1(0.7, 0.5, 0.3).
accordingly. So we construct some flexible cost functions,
such as 𝑐𝑖(𝑥𝑖) = 𝑐𝑖(1−𝑥𝑖), 𝑐𝑖(𝑥𝑖) = 𝑐𝑖(1−𝑥2𝑖 ), 𝑐𝑖(𝑥𝑖) = 𝑐𝑖(1−√𝑥𝑖),
to analyze the stability of dynamical system with incentive
rewards.

If 𝑐𝑖(𝑥𝑖) = 𝑐𝑖(1−𝑥𝑖), 𝑖 = 1, 2, 3, are taken, income functions
of the three players in the game model are

𝜋1 = −𝑥1 (1 − 𝑥1) 𝑐1 − (1 − 𝑥1) (𝑥2 + 𝑥3 − 𝑥2𝑥3) 𝑓1;𝜋2 = −𝑥2 (1 − 𝑥2) 𝑐2+ (1 − 𝑥1) [𝑥2𝑓1 − (1 − 𝑥2) 𝑥3𝑓2] ;

𝜋3 = −𝑥3 (1 − 𝑥3) 𝑐3 + (1 − 𝑥1) (1 − 𝑥2) 𝑥3 (𝑓1 + 𝑓2) .
(2)

The replicator dynamics corresponding to the game
model are as follows:

̇𝑥1 = 𝑥1 (1 − 𝑥1) [𝑥1𝑐1 + (𝑥2 + (1 − 𝑥2) 𝑥3) 𝑓1] ;̇𝑥2 = 𝑥2 (1 − 𝑥2) [𝑥2𝑐2 + (1 − 𝑥1) (𝑓1 + 𝑥3𝑓2)] ;̇𝑥3 = 𝑥3 (1 − 𝑥3) [𝑥3𝑐3 + (1 − 𝑥1) (1 − 𝑥2) (𝑓1 + 𝑓2)] .
(3)
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Figure 3: Time series graph of players’ strategy selection probability when 𝑐1, 𝑐2, 𝑐3 become smaller simultaneously. (𝑥1, 𝑥2, 𝑥3)|𝑡=0 =𝑃1(0.7, 0.5, 0.3).
The Jacobian matrix of the dynamical system (3) is

𝐽 = 𝜕 ( ̇𝑥1, ̇𝑥2, ̇𝑥3)𝜕 (𝑥1, 𝑥2, 𝑥3) = ( 𝑙1 𝑥1 (1 − 𝑥1) (1 − 𝑥3) 𝑓1 𝑥1 (1 − 𝑥1) (1 − 𝑥2) 𝑓1𝑥2 (1 − 𝑥2) (𝑓1 + 𝑓2𝑥3) 𝑙2 𝑥2 (1 − 𝑥1) (1 − 𝑥2) 𝑓2−𝑥3 (1 − 𝑥3) (1 − 𝑥2) (𝑓1 + 𝑓2) −𝑥3 (1 − 𝑥3) (1 − 𝑥1) (𝑓1 + 𝑓2) 𝑙3 ) (4)

where𝑙1 = (1 − 2𝑥1) (𝑥2 + 𝑥3 − 𝑥2𝑥3) 𝑓1 + (2𝑥1 − 3𝑥21) 𝑐1;𝑙2 = (1 − 2𝑥2) (1 − 𝑥1) (𝑓1 + 𝑥3𝑓2) + (2𝑥2 − 3𝑥22) 𝑐2;𝑙3 = (1 − 2𝑥3) (1 − 𝑥1) (1 − 𝑥2) (𝑓1 + 𝑓2)+ (2𝑥3 − 3𝑥23) 𝑐3.
(5)

Let ̇𝑥1 = ̇𝑥2 = ̇𝑥3 = 0, and we get eight pure strategy
equilibrium points of system (3), 𝑋𝑖(𝑖 = 0, 1, . . . , 8):(0, 0, 0) , (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 1, 0) , (1, 0, 1) ,(0, 1, 1) , (1, 1, 1) . (6)

According to Formula (4), all of the Jacobian matrices at the
equilibriumpoints are diagonalmatrices (see Table 1). And all
of the eigenvalues are not larger than zero at the four points
with 𝑥1 = 1 (i.e., coal miners will choose safety production
behaviors), and the first eigenvalues of them are negative.

According to the eigenvalue judgment method of evolu-
tionary game strategy (ESS) [31, 32], the ESS of coal miners
is 𝑥1 = 1, which means they will surely choose the safety
production strategy in the case of this function form of
flexible costs.

As can be shown in Figures 4 and 5, dynamical system
(3) goes into evolutionary stable state despite different initial
values. Especially for some reasonable initial state values, the
evolutionary process of the game system is very anticipated
and preferable (see Figures 4(a) and 4(b)).

Therefore, if the incentive salary system is established
in coal enterprise, the proportion of unsafe behaviors will
greatly be reduced and coal mine safety will be maintained
in a stable and controllable state. An incentive salary system
means that the salary should be linked to the performance
of coal workers with the efficiency of safety production and
the frequency of unsafe behavior, and the variable part of coal
enterpriseworkers’ performancewages, bonuses, welfare, and
so on should be increased in their personal incomes.

2.3. Stability of the Dynamical Game System with Inflexible
Penalties. As can be seen in Figure 6, the volatility of the
dynamical system would be reduced when value of 𝑓1 or 𝑓2
increases. In contrast to Figures 6(a), 6(b), and 6(c), we find
that 𝑥1 approaches 1 and 𝑥2 increases with smaller amplitudes
when 𝑓1 becomes larger. That is, the increase in the intensity
of player I’s penalty can make coal workers increase the
willingness to choose the behaviors of safe production, and
the enterprise safety inspection department is also willing to
increase the intensity of safety inspection.

By contrasting Figure 6(d) with Figure 6(e), we also
find that 𝑥1 approaches 1 with smaller amplitudes when 𝑓2
becomes larger. However, the volatilities of 𝑥2 and 𝑥3 have
no significant reduction when 𝑓1 or 𝑓2 becomes larger (even
when𝑓1 and𝑓2 become large synchronously; see Figure 6(f)),
while the values of 𝑥2 and 𝑥3 have the trends of increasing.
In addition, the increase in the intensity of player II’s penalty
may increase the workload and tension in safety regulation.

So the conclusion is that although the behavior instability
will decrease with the increase of the values of 𝑓1 and
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Figure 4: Time series graph of players’ strategy selection probability when costs become flexible. 𝑐𝑖(𝑥𝑖) = 𝑐𝑖(1 − 𝑥𝑖), 𝑖 = 1, 2, 3.
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Figure 5: Phase diagram of the tripartite game system with incentive rewards.
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Table 1: Jacobian Matrix of Equilibrium Points with Dynamical costs.

Equilibrium points (0,0,0) (0,1,0) (0,0,1) (0,1,1)
J diag(0, 𝑓1, 𝑓1 + 𝑓2) diag(𝑓1, −𝑐2 − 𝑓1, 0) diag(𝑓1, 𝑓1 + 𝑓2, −𝑐3 − 𝑓1 − 𝑓2) diag(𝑓1, −𝑐2 − 𝑓1 − 𝑓2, −𝑐3)
Equilibrium points (1,0,0) (1,1,0) (1,0,1) (1,1,1)
J diag(−𝑐1, 0, 0) diag(−𝑐1, −𝑐2, 0) diag(−𝑐1, 0, −𝑐3) diag(−𝑐1 − 𝑓1, −𝑐2, −𝑐3)
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Figure 6: Time series graph of players’ strategy selection probability when𝑓1 or𝑓2 has larger values. Initial value of variables (𝑥1, 𝑥2, 𝑥3)|𝑡=0 =𝑃1(0.7, 0.5, 0.3).
𝑓2, there is no essential change of the volatility of the
dynamical system. That is, the ordinary increase of penalty
index can not completely eliminate the behavior instability
of game models. So, on the one hand, it is necessary to
make proper punishment for unsafe behaviors strictly in
the coal mine safety management. On the other hand, too,
excessively severe penaltymeasuresmay lead to the instability
of the working state of the supervised objects, which may
bring negative effects on the efficiency of coal mine safety
supervision.

2.4. Stability of the Dynamical Game System with Flexible
Penalties. According to the conclusion of Section 2.3, the sta-
bility of players’ selections has not been completely controlled
as the values of 𝑓1, 𝑓2 become larger simply. Therefore, we
consider some flexible penalty functions 𝑓𝑖(𝑥𝑖) to substitute

for general penalty index 𝑓𝑖 and analyze the influence of
flexible penalty mechanism on system stability.

The design of the flexible penalty function in this part is
based on the following considerations: for the players who do
not often make mistakes, the penalty for accidental mistakes
is relatively light; for the players who often make mistakes
(repeatedly taught not to change), the more frequent the
mistakes are, the larger the corresponding penalty will be.
Therefore, the flexible penalty functions 𝑓𝑖(𝑥𝑖)mainly discuss
three functional forms to analyze and be compared with each
other: 𝑀𝑖(1 − 𝑥𝑖),𝑀𝑖(𝑥−1𝑖 − 1),𝑀𝑖(𝑥−2𝑖 − 1), 𝑖 = 1, 2. Set
the values of function parameters 𝑀1 = 1 and 𝑀2 = 1.2
(separately equivalent to the preceding parameter values of𝑓1 and 𝑓2), and numerical simulation results indicate that
flexible penalty mechanism can significantly improve the
stability of dynamical systems of evolutionary game models
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Figure 7: Phase diagram of dynamical system of tripartite game with flexible penalty strategy.

(see Figures 7, 8, and 9). In particular the latter two types of
flexible penalty function can effectively control the evolution-
ary stability of game model, which can make the probability
of players’ strategy selection 𝑥1, 𝑥2, and 𝑥3 stabilize quickly.
In addition, the latter two types can theoretically avoid the
unwanted situations like any equilibrium point 𝑥𝑖 equals zero
(where 𝑥𝑖 appears on the denominator).

The comparison between Figures 7(a) and 7(b) demon-
strates that the last function form 𝑀𝑖(𝑥−2𝑖 − 1) is even better
one because 𝑥1 can quickly and steadily tends to 1. Suppose
that 𝑓𝑖(𝑥𝑖) = 𝑓𝑖(𝑥−2𝑖 − 1), 𝑖 = 1, 2, and then we get the income
function of the three players in the game model as follows:𝜋1 = −𝑥1𝑐1 − (1 − 𝑥1) (𝑥2 + 𝑥3 − 𝑥2𝑥3) 𝑓1 (𝑥−21 − 1) ;𝜋2 = −𝑥2𝑐2 + (1 − 𝑥1)⋅ [𝑥2𝑓1 (𝑥−21 − 1) − (1 − 𝑥2) 𝑥3𝑓2 (𝑥−22 − 1)] ;𝜋3 = −𝑥3𝑐3 + (1 − 𝑥1) (1 − 𝑥2)⋅ 𝑥3 (𝑓1 (𝑥−21 − 1) + 𝑓2 (𝑥−22 − 1)) .

(7)

Replicator dynamic equations corresponding to gamemodels
are ̇𝑥1 = 𝑥1 (1 − 𝑥1) [−𝑐1 + (𝑥2 + 𝑥3 − 𝑥2𝑥3) 𝑓1 (𝑥−21 − 1)] ;

̇𝑥2 = 𝑥2 (1 − 𝑥2) [−𝑐2+ (1 − 𝑥1) (𝑓1 (𝑥−21 − 1) + 𝑥3𝑓2 (𝑥−22 − 1))] ;
̇𝑥3 = 𝑥3 (1 − 𝑥3) [−𝑐3+ (1 − 𝑥1) (1 − 𝑥2) (𝑓1 (𝑥−21 − 1) + 𝑓2 (𝑥−22 − 1))] .

(8)

The Jacobian matrix of the dynamical system of the game
model is 𝐽 = 𝜕 ( ̇𝑥1, ̇𝑥2, ̇𝑥3)𝜕 (𝑥1, 𝑥2, 𝑥3) = (𝑗𝑖𝑗)3×3 (9)

where𝑗11 = (1 − 2𝑥1) [(𝑥2 + 𝑥3 − 𝑥2𝑥3) 𝑓1 (𝑥−21 − 1) − 𝑐1]− 2 (1 − 𝑥1) (𝑥2 + 𝑥3 − 𝑥2𝑥3) 𝑓1𝑥21 ;
𝑗12 = 𝑥1 (1 − 𝑥1) (1 − 𝑥3) 𝑓1 (𝑥−21 − 1) ;𝑗13 = 𝑥1 (1 − 𝑥1) (1 − 𝑥2) 𝑓1 (𝑥−21 − 1) ;
𝑗21 = 𝑥2 (1 − 𝑥2)(−𝑓1 (𝑥−21 − 1) − 2 (1 − 𝑥1) 𝑓1𝑥31+ 𝑓2 (𝑥−22 − 1) 𝑥3) ;𝑗22 = (1 − 2𝑥2)⋅ [(1 − 𝑥1) (𝑓1 (𝑥−21 − 1) + 𝑥3𝑓2 (𝑥−22 − 1)) − 𝑐2]− 2 (1 − 𝑥1) (1 − 𝑥2) 𝑥2𝑥3𝑓2𝑥32 ;
𝑗23 = 𝑥2 (1 − 𝑥1) (1 − 𝑥2) 𝑓2 (𝑥−22 − 1) ;
𝑗31 = −𝑥3 (1 − 𝑥3) (1 − 𝑥2) [−𝑓1 (𝑥−21 − 1)

− 2 (1 − 𝑥1) 𝑓1𝑥31 + 𝑓2 (𝑥−22 − 1)] ;
𝑗32 = −𝑥3 (1 − 𝑥3) (1 − 𝑥1) [−𝑓2 (𝑥−22 − 1)

− 2 (1 − 𝑥2) 𝑓2𝑥32 + 𝑓1 (𝑥−21 − 1)] ;
𝑗33 = (1 − 2𝑥3)⋅ [(1 − 𝑥1) (1 − 𝑥2) (𝑓1 (𝑥−21 − 1) + 𝑓2 (𝑥−22 − 1))

− 𝑐3] .

(10)
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Figure 8: Time series graph of dynamical system under flexible penalty mechanism. Initial value is 𝑃0(0.5, 0.3, 0.2).
Let ̇𝑥1 = ̇𝑥2 = ̇𝑥3 = 0, it is found that there are

only two pure policy equilibrium points in the system, 𝑋0 =(1, 1, 0);𝑋1 = (1, 1, 1), and there may be a mixed policy
equilibrium point 𝑋2 satisfying the following conditions:

(𝑥2 + 𝑥3 − 𝑥2𝑥3) 𝑓1 (𝑥−21 − 1) = 𝑐1;(1 − 𝑥1) [𝑓1 (𝑥−21 − 1) + 𝑥3𝑓2 (𝑥−22 − 1)] = 𝑐2;(1 − 𝑥1) (1 − 𝑥2) [𝑓1 (𝑥−21 − 1) + 𝑓2 (𝑥−22 − 1)] = 𝑐3.
(11)

Through calculating, we get 𝐽(𝑋0) = diag(𝑐1, 𝑐2, −𝑐3); 𝐽(𝑋1) =
diag(𝑐1, 𝑐2, 𝑐3). The dynamical systems do not have evolu-
tionary stability in the two equilibrium fields because both
Jacobian matrices at the two pure strategy equilibrium points
have positive eigenvalues. In addition, Formula (11) shows
that the solution of 𝑥1 must be less than 1 even if the
equilibrium point of mixed strategy 𝑋2 exists.

So it can be concluded from the numerical simulations
that flexible penalty mechanism can significantly reduce the
dynamics of unsafe behaviors in coal mine safety super-
vision. Once the penalties can be closely correlated with

the frequency of their mistakes, the players would like
to consistently choose the safe behaviors (or improve the
efficiency of safety supervision) with great probability. Then
the controllability of safety supervision system and the
performance efficiency of safety management measures can
be guaranteed. However, a shortcoming of flexible penalties
is that although 𝑥1 is an ESS, it does not regularly converge to
1 (see Figure 9(c)).

3. Stability of the Dynamical Game System
under Combined Mechanism of Incentive
Rewards and Flexible Penalties

Through the previous analysis in Sections 2.2 and 2.4, we
find that incentive rewards (flexible costs) can raise players’
selection probabilities of safe behaviors and flexible penalties
can bring system stability. Considering the actual situation of
coal production, we certainly prefer to have an ESS of 𝑥1 = 1
in the dynamical safety management system. So we propose
a combined mechanism of incentive rewards and flexible
penalties and then analyze the stability of the evolutionary
dynamical system on this basis.
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Figure 9: Time series graph of dynamical system under flexible penalty mechanism. Initial value is 𝑃1(0.7, 0.5, 0.3).
Two cases are chosen as an example to be analyzed and

compared in this part. One case is all players unified incentive
rewards and flexible penalties; i.e., 𝑐𝑖(𝑥𝑖) = 𝑐𝑖(1 − 𝑥𝑖), 𝑖 = 1, 2,
and𝑓𝑖(𝑥𝑖) = 𝑓𝑖(𝑥−2𝑖 −1), 𝑖 = 1, 2, 3.Theother case is that player
I (coal miners) is subjected to incentive reward mechanism,
and player II is subjected to flexible penalty mechanism,
and player III is not given any incentive reward and flexible
penalty (i.e., 𝑐1(𝑥1) = 𝑐1(1−𝑥1), 𝑓2(𝑥2) = 𝑓2(𝑥−22 −1), and the
rest of the parameters remain unchanged). As shown in the
phase diagrams (see Figure 10), both results of the two cases
of combined mechanisms are very satisfying (𝑥1 = 1 is ESS).

The evolutionary processes of more cases of combined
mechanisms are demonstrated by the time series graphs (see
Figure 11). Through mutual comparison among them, we
can find that some of them bring more satisfying results
(see Figures 11(a) and 11(b)). Although starting from different
initial values, the dynamical system always tends to be ideally
stable in very short time (player I chooses safe production
strategy with 𝑥1 = 1 and the values of 𝑥2 and 𝑥3 are
also stable in some reasonable values). Therefore, we can
conclude that this combined mechanism of incentive reward
and flexible penalties can optimize and control the instability
of the behavior strategy selection in the safety supervision

model. This conclusion is undoubtedly a highlight of this
study. These combined mechanisms may be the key measure
to solve the behavior fluctuations in the safety management
system.

4. Control Strategies for the
Improvement of the System and
Measures of Safety Management

At present, the formulation of safety management policies
and measures is mostly based on the temporary measures
taken according to the occurrence of accidents [1, 33]. The
policies are adjusted with the occurrence of accidents. The
relevant supervision measures are often characterized by
accident types and lack of comprehensive analysis of safety
system, which is one of the important reasons for frequent
accidents. There are many factors that affect the game
behavior and game strategy of each interested group. The
study of the regulatory mechanism of influencing factors is
an important guarantee for the rationality of the formulation
of management rules. Only when the management rules can
regulate the bad game behavior of the players and the game
rules can the management rules be effective.
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Figure 10: Phase diagrams of dynamical system of tripartite game under combined mechanisms of incentive reward and flexible penalty.

According to the researches of the coal mine safety
supervision model in Sections 2 and 3, we finally put forward
the following regulation and control strategies of coal mine
safety management system and supervision measures.

(1) Restraint Measures in Safety Supervision System of Coal
Mine Safety Management. In Section 2.1, it is concluded that
raising policy subsidies and the welfare level of the employees
would relevantly reduce the safety input cost and make the
production safety of coal enterprises and safety management
work run at a higher level. So the governmental super-
vision department should formulate some policy-based or
industry-specific constraints for safety supervision behaviors,
includingmandatory provisions on the supervision strategies
of internal and external safety supervision and inspection
departments. In order to better improve the overall produc-
tion safety level and safety management level, the majority
of front-line production workers in coal enterprises can be
called upon to exercise self-restraint on their own safety
production activities spontaneously (strictly disciplined and
supervised by each other). It is more important especially
in large and medium-sized state-owned coal enterprises,
where the quality of coal mine workers is very good and the
technology of safety production is more advanced.

It should be noted that the so-called subsidies and
employee benefits are not necessarily limited to the economic
level. For ordinary employees, especially the coal miners
working in the production line, enterprises should increase
investment in regular safety knowledge training and safety
skills drills to improve the safety quality and safety awareness
of employees and inhibit the occurrence of unsafe behavior.
For enterprise safety managers and government personnel in
charge of safety supervision departments, it is necessary to
carry out regular or irregular study of safety skills and safety
management knowledge in coal mine safety, so as to improve
the safety knowledge and safety management level of safety
management personnel and ensure the implementation of
safety supervision policies and measures.

(2) Energetically Promoting the Incentive Salary System in
the Coal Industry. In Section 2.2, we found that incentive
salary system can greatly reduce the proportion of unsafe
behaviors and impels coal mine safety to be stable and con-
trollable. Incentive reward system will reform the traditional
unreasonable wage and salary distribution in coal enterprises
and significantly increase wage distribution ratio of safety-
related posts and production links, such as high technical
requirements, high production safety intensity, and heavy
management responsibility. Then the staff and workers of
coal enterprises can be guided to spontaneously strengthen
the improvement of safety production technology and the
exertion of safety production capacity.

There are still some backward phenomena in the salary
distribution system of nowadays’ coal enterprises in China,
such as the serious tendency of internal income distribution
equalitarianism and unreasonable internal income distri-
bution relationship, which seriously affect the efficiency of
safety supervision in coal enterprises and the level of safety
management [34]. Safety production is the most important
task in the coal enterprises. So we should vigorously promote
the incentive salary system in the coal industry, especially in
large and medium-sized state-owned coal enterprises. Post-
performance pay system, year-end accident-free incentives,
and other ways should be adopted properly to improve the
correlation between the income of workers and their safety
production efficiency and safety behavior.

(3) Establishing the Flexible Penalty Mechanism of Unsafe
Behavior in Coal Mine Safety System. It can be seen from the
research results in Sections 2.4 and 3 that the flexible penalty
mechanism based on the frequency of unsafe behavior can
better reflect the management mode of tight integration in
safety management. More closely related to the occurrence
of coal mine safety behaviors, the flexible penalty mecha-
nism can better guarantee the stability of coal mine safety
management.
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Figure 11: Time series graphs of dynamical system under combined mechanisms of incentive reward and flexible penalty. Initial value is𝑃1(0.7, 0.5, 0.3).
In coal mine safety management, the penalty measures

against unsafe behaviors of coal miners are very important.
The difficulty and inadequacy of flexible cost mechanism are
to have certain requirements for the operation profitability of
coal mine enterprises. Actually, for many slow-growing small
and medium-sized coal mine enterprises, they may prefer to
motivate employees through punitive measures.

5. Conclusions

To control players’ behavior instability in coal mine safety
management, this study starts from the stability analysis
of the dynamical game system under the four cases of
inflexible costs (static subsidies), flexible costs (incentive
rewards), inflexible penalties, and flexible penalties. Then, we
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discuss the stability of the dynamical system under combined
mechanism of cost and penalty and find out which method
is more effective to control the instability of dynamical
system. Through the comparative analysis of inflexible and
flexible rewards and penalties mechanism, it can be found
that if the salary and penalty mechanism of coal enterprises
can be closely related to their safety production behaviors
(or safety supervision behaviors), the stability of the game
dynamical system of coal enterprises’ safety supervision
can be enhanced. We propose a combined mechanism of
incentive reward and flexible penalties for the improvement
of the safety management system to restrain the emergence
and spread of unsafe behaviors in the coal mine safety system.
Some results of this research provide a theoretical basis for
more reasonable and more effective policies of coal mine
safety management.

It is worth noting that it is necessary to carry out
the modern financial management of coal enterprises. The
coal industry should vigorously improve the performance
wages, quarterly awards, year-end bonuses, welfare, and other
variable income in the proportion of employees’salaries and
strive to build and improve the incentive salary system for
coal enterprise employees. And, more importantly, more
close connection should be established between the system of
staff safety performance evaluation and the system of rewards
and punishment.

In the future, the corresponding tuning mechanism
for the parameters will be investigated in different safety
management systems. In order to improve the accuracy of
model parameters, we should investigate and analyze the
actual situation of coal mine safety management by means
of questionnaire survey and field visit, so as to improve the
practicability of the model method in this paper. Besides,
some optimal techniques should also be considered for
improving control performance of the dynamical system,
such as extremum seeking control (ESC) method [35, 36].
We will continue our efforts to study the optimization of the
dynamical system stability.
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A nutrient-phytoplankton model with multiple delays is studied analytically and numerically.The aim of this paper is to study how
the delay factors influence dynamics of interaction between nutrient and phytoplankton. The analytical analysis indicates that the
positive equilibrium is always globally asymptotically stable when the delay does not exist. On the contrary, the positive equilibrium
loses its stability viaHopf instability induced by delay and then the corresponding periodic solutions emerge. Especially, the stability
switches for positive equilibrium occur as the delay is increased. Furthermore, the numerical simulations show that periodic-2 and
periodic-3 solutions can appear due to the existence of delays. Numerical results are consistent with the analytical results. Our
results demonstrate that the delay has a great impact on the nutrient-phytoplankton dynamics.

1. Introduction

Some phytoplankton, for example, Cyanobacteria, can form
dense and sometimes toxic blooms in freshwater and marine
environments, which threaten ecological balance, drinking
water, fisheries, and even human health [1]. However, the
mechanism, by which phytoplankton blooms occur, is cur-
rently not very clear, which contribute to the difficulty
to prevent or mitigate the proliferation of phytoplankton
blooms. These have stimulated lots of researches aiming to
understand the growth mechanisms of phytoplankton.

In recent years, dynamics in phytoplankton growth have
drawn increasing attention from experimental ecologists, as
well as mathematical ecologists. Some results from experi-
ments and field observations imply that many factors affect-
ing the dynamics of phytoplankton growth are bound to
exist, such as nutrient [2], light [3], temperature [4], iron
supply [5], zooplankton [6]. Especially, due to the effects
of limiting factors including temperature, light, and day

length, it has been indicated by Rhee and Gotham [7]
that the population dynamics of phytoplankton in aquatic
environments can change with season, latitude, and depth.
Among factors affecting phytoplankton growth, nutrient has
been an essential element [8–10], mainly including nitrogen
and phosphate. Results reported by Ryther [11] indicated
that phytoplankton indeed consumes lots of nitrogen and
phosphate in their growth process, but reducing the nitrogen
content in aquatic cannot slow the eutrophication. Using data
from 17 lakes, Smith [8] analysed the influence of ratio of
total nitrogen to phosphorus on the growth of blue-green
algae (Cyanophya) and showed that controlling the ratio can
help us improve the quality of aquatic environment very well.
Obviously, the production process of phytoplankton is more
complex.

However, due to the complexity and nonlinearity of
aquatic ecosystem, there are some difficulties in understand-
ing nutrient-phytoplankton dynamics only depending on
experiment or field observation, which makes it necessary
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to use models to provide quantitative insights into dynamic
mechanism of phytoplankton growth. For different aquatic
environments, we can use various modifications of the
classical prey-predator models by introducing functional
responses to model nutrient-phytoplankton dynamics [12–
14]. For example, Huppert et al. [15] describe the dynamics
of nutrient-driven phytoplankton blooms by a simple model
and identify, using the model analysis, an important thresh-
old effect that a bloom will only be triggered when nutrients
exceed a certain defined level. Additionally, most nutrient-
phytoplankton models reveal that phytoplankton population
and nutrient population can coexist at equilibrium globally
under some conditions [16, 17]. However, Sherratt and Smith
[18] have reported that a constant population density may
not exist in reality because of the existence of some factors,
such as noise and physical factors. Actually, experiments and
field observations show that the changes of phytoplankton
population density usually possess oscillatory behaviour [19,
20].

For the single cell phytoplankton species, in most studies
of nutrient-phytoplankton models, it is usually assumed that
the processes, such as conversion process of nutrient, in the
dynamics of phytoplankton growth are instantaneous [14–
17, 19–23]. It may be doubtful whether there exists the delay
in the growth of phytoplankton over the large area or not.
Yet, J. Caperon [24] studied time lag in population growth
response of Isochrysis galbana, a phytoplankton species, to a
variable nitrate environment by both experiments andmodel,
and demonstrated the existence of delay in the growth of
Isochrysis galbana. Hence, the delay may indeed exist in
the phytoplankton growth, which means that it is necessary
to consider delay in nutrient-phytoplankton models. An
approach that has been attempted by researchers to model
the dynamics of phytoplankton is the role of delay since
delay appears as an important component in biosystems and
ecosystems [25–30].

Actually, growing evidence shows that there exists time
lag in some conversion processes from one state to another
in some systems, and delay is an important factor because
it can affect the dynamics of these systems. Volterra [31]
considered time delay in a prey-predator model first and
found oscillatory behaviour for the spatial distribution. For
a long time, it has been recognized that delays can give rise
to destabilizing effect of the dynamics of systems, where
periodic solutions, as well as chaos, may emerge [32–35].
Models incorporating delays in diverse biological and eco-
logical models are extensively studied [36–42]. Especially, the
characteristic equation with respect to the linearized system
of delay differential equations plays a key role in dynamic
analysis, by which we can obtain some information on the
stability of equilibrium. In addition, using the normal form
theory, one can carry out the bifurcation analysis, such as the
direction and stability of periodic solutions arising through
Hopf bifurcation [43, 44].

The main purpose of this paper is to consider the effects
of multiple delays on the nutrient-phytoplankton dynamics.
In [15], Huppert et al. presented a simple model to investigate
effect of nutrient on phytoplankton blooms, and much better
results are obtained. Here, this model is extended into a “two

preys-one predator” type to describe nitrogen- phosphorus-
phytoplankton dynamics, as follows:𝑑𝑁𝑑𝑡 = 𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴𝑑𝑃𝑑𝑡 = 𝐼2 − 𝑞2𝑃 − 𝛼2𝑃𝐴𝑑𝐴𝑑𝑡 = 𝛽1𝛼1𝑁(𝑡 − 𝜏1) 𝐴 + 𝛽2𝛼2𝑃 (𝑡 − 𝜏2) 𝐴 − 𝑚𝐴

(1)

where 𝑁, 𝑃, and 𝐴 represent nitrogen, phosphorus, and
phytoplankton population density at time 𝑡, respectively; 𝐼1
is the nitrogen nutrients input flowing into the system and𝐼2 is the phosphorus nutrients input flowing into the system;𝑞1 is the loss rate of the nitrogen nutrients, and 𝑞2 is the
loss rate of the phosphorus nutrients; 𝛼1 is nitrogen nutrient
uptake rate of phytoplankton, and 𝛼2 is phosphorus nutrient
uptake rate of phytoplankton; 𝛽1 and 𝛽2 denote the efficiency
of nutrient utilization; 𝜏1 and 𝜏2 are time delay parameters;𝑚
is themortality rate of phytoplankton. Although the function,
which describes nutrient uptake dynamics, is not aMichaelis-
Menten function, but Lotka-Volterra type, Huppert et al.
[15] have indicated that the Lotka-Volterra term is a good
first approximation to the Michaelis-Menten type. From
biological viewpoint, all parameters are nonnegative. 𝑁(𝑡),𝑃(𝑡), and 𝐴(𝑡) ≥ 0 are continuous on −𝜏 ≤ 𝑡 < 0, where𝜏 = max(𝜏1, 𝜏2) and𝑁(0), 𝑃(0), and 𝐴(0) > 0.

The paper is organized as follows. In Section 2, we analyze
the existence and stability of positive equilibrium inmodel (1)
without delays. In Section 3, we discuss stability of positive
equilibrium and Hopf bifurcation under five different cases
for delay effect. Subsequently, the direction of bifurcation and
the stability of periodic solutions arising through Hopf bifur-
cation are given in Section 4. In order to analyze further how
delay effects influence nutrient-phytoplankton dynamics, a
series of numerical simulations are carried out in Section 5.
Finally, the paper ends with conclusion in Section 6.

2. Existence and Stability of Positive
Equilibrium in Model (1) without Delays

In this section, it is presented first that the first octant
is positive invariant in model (1) without delays and the
following lemma holds.

Lemma 1. All the solutions of model (1) with initial conditions
that initiate in {𝑅3+} are positive invariant in the absence of
delays.

Proof. From the first equation of model (1), we have𝑑𝑁𝑑𝑡 = 𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴 ≥ − (𝑞1 + 𝛼1𝐴)𝑁. (2)

Hence,𝑁(𝑡) ≥ 𝑁(0) exp[− ∫𝑡
0
(𝑞1+𝛼1𝐴)𝑑𝑠] > 0 under𝑁(0) >0.

Likewise, from the second equation of model (1), we have𝑃(𝑡) ≥ 𝑃(0) exp[− ∫𝑡
0
(𝑞2 + 𝛼2𝐴)𝑑𝑠] > 0 under 𝑃(0) > 0.
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In the absence of delays in model (1), from the third
equation of model (1), if 𝐴(0) > 0, it can be obtained that𝐴 (𝑡) = 𝐴 (0) exp [∫𝑡

0
(𝛽1𝛼1𝑁 + 𝛽2𝛼2𝑃 − 𝑚)𝑑𝑠] > 0 (3)

Obviously, all the solutions of model (1) without delays
are positive invariant if the initial conditions initiate in {𝑅3+}.

Then, we complete the proof.

For model (1), it is obvious that the extinction equilib-
rium, (𝐼1/𝑞1, 𝐼2/𝑞2, 0), exists. Moreover, in order to discuss
the existence of positive equilibrium, the following function
is defined:𝑓 (𝑥) = 𝛼1𝛼2𝑚𝑥2+ [(𝑚𝑞1 − 𝛼1𝛽1𝐼1) 𝛼2 + (𝑚𝑞2 − 𝛼2𝛽2𝐼2) 𝛼1] 𝑥+ (𝑚𝑞1𝑞2 − 𝛽1𝛼1𝐼1𝑞2 − 𝛽2𝛼2𝐼2𝑞1) , (4)

and then we can obtain𝑁∗ = 𝐼1𝑞1 + 𝛼1𝐴∗ ,𝑃∗ = 𝐼2𝑞2 + 𝛼2𝐴∗ , (5)

where 𝐴∗ is the positive root of (4).
For the function 𝑓(𝑥), we have 𝑓(0) = 0 when the

condition, 𝑚 = (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2), holds, and then
there is no positive equilibrium in model (1). Obviously,𝑓(0) < 0 holds if 𝑚 < (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2), and then
there exists a unique positive root with respect to 𝑓(𝑥) = 0,
which means that there exists a unique positive equilibrium
in model (1) under this condition. However, when 𝑚 >(𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2), it can be verified directly that𝑓(0) > 0 and (𝑚𝑞1 − 𝛼1𝛽1𝐼1)𝛼2 + (𝑚𝑞2 − 𝛼2𝛽2𝐼2)𝛼1 > 0,
which implies that there is no positive equilibrium in model
(1). Thus, summarizing these results, the following theorem
can be obtained.

�eorem 2. If 0 < 𝑚 < (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2) holds,
then there exists a unique positive equilibrium in model (1);
otherwise, there is no positive equilibrium in model (1) if 𝑚 ≥(𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2) holds.

Letting the unique positive equilibrium be 𝐸∗ =(𝑁∗, 𝑃∗, 𝐴∗), then the following theorem holds for model (1)
without delays.

�eorem 3. If the unique positive equilibrium exists in model
(1) without delays, then it is globally asymptotically stable.

Proof. We construct a Lyapunov function, as follows:

𝑉 = 𝛽1 ∫𝑁
𝑁∗

𝑠 − 𝑁∗𝑠 𝑑𝑠 + 𝛽2 ∫𝑃
𝑃∗

𝑠 − 𝑃∗𝑠 𝑑𝑠
+ ∫𝐴
𝐴∗

𝑠 − 𝐴∗𝑠 𝑑𝑠 (6)

In the model (1) without delays,𝑑𝑉𝑑𝑡 = 𝛽1𝑁 −𝑁∗𝑁 𝑑𝑁𝑑𝑡 + 𝛽2𝑃 − 𝑃∗𝑃 𝑑𝑃𝑑𝑡 + 𝐴 − 𝐴∗𝐴 𝑑𝐴𝑑𝑡= 𝛽1𝑁 −𝑁∗𝑁 (𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴) + 𝛽2𝑃 − 𝑃∗𝑃 (𝐼2− 𝑞2𝑃 − 𝛼2𝑃𝐴) + 𝐴 − 𝐴∗𝐴 (𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴− 𝑚𝐴) = 𝛽1𝑁 −𝑁∗𝑁 ((𝑞1𝑁∗ + 𝛼1𝑁∗𝐴∗)− (𝑞1𝑁 + 𝛼1𝑁𝐴)) + 𝛽2𝑃 − 𝑃∗𝑃 ((𝑞2𝑃∗ + 𝛼2𝑃∗𝐴∗)− (𝑞2𝑃 + 𝛼2𝑃𝐴)) + 𝐴 − 𝐴∗𝐴 (𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴− (𝛽1𝛼1𝑁∗ + 𝛽2𝛼2𝑃∗) 𝐴) = −𝛽1 (𝑞1 + 𝛼1𝐴∗)⋅ (𝑁 − 𝑁∗)2𝑁 − 𝛽2 (𝑞2 + 𝛼2𝐴∗) (𝑃 − 𝑃∗)2𝑃

(7)

Obviously, 𝑑𝑉/𝑑𝑡 ≤ 0 holds under existence of positive
equilibrium and 𝑑𝑉/𝑑𝑡 = 0 holds if and only if 𝑁 = 𝑁∗
and 𝑃 = 𝑃∗. The largest invariant subset of the set of the
point where 𝑑𝑉/𝑑𝑡 = 0 is 𝐸∗ = (𝑁∗, 𝑃∗, 𝐴∗). Therefore,
according to LaSalle’s theorem, 𝐸∗ = (𝑁∗, 𝑃∗, 𝐴∗) is globally
asymptotically stable.

Then, we complete the proof.

Letting the extinction equilibrium be 𝐸0 = (𝑁0, 𝑃0,0) =(𝐼1/𝑞1, 𝐼2/𝑞2, 0), then we can obtain the following theorem in
model (1) in the absence of delay.

�eorem 4. In the absence of delays, let 𝑚∗ = (𝛽1𝛼1𝐼1/𝑞1) +(𝛽2𝛼2𝐼2/𝑞2), so that
(i) if𝑚 > 𝑚∗, then the extinction equilibrium 𝐸0 is locally

asymptotically stable;
(ii) if 𝑚 < 𝑚∗, then the extinction equilibrium 𝐸0 is

unstable;
(iii) if 𝑚 = 𝑚∗, then the model (1) undergoes transcritical

bifurcation at the extinction equilibrium 𝐸0.
Proof. For simplicity, let

𝑓𝑤 (𝑋,𝑚) = ( 𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴𝐼2 − 𝑞2𝑃 − 𝛼2𝑃𝐴𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴 − 𝑚𝐴)
and 𝑋 = [𝑁, 𝑃,𝐴]𝑇 . (8)

The Jacobian matrix at 𝐸0 is
𝐽 (𝐸0) =(

(
−𝑞1 0 −𝛼1𝐼1𝑞10 −𝑞2 −𝛼2𝐼2𝑞20 0 − (𝑚 − 𝑚∗)

)
)
. (9)

The eigenvalues are −𝑞1, −𝑞2, −(m − 𝑚∗).
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Obviously, if𝑚 > 𝑚∗, then the extinction equilibrium 𝐸0
is locally asymptotically stable.

If𝑚 < 𝑚∗, then the extinction equilibrium 𝐸0 is unstable.
When𝑚 = 𝑚∗, the Jacobian matrix at 𝐸0 is

𝐽 (𝐸0) =(
(
−𝑞1 0 −𝛼1𝐼1𝑞10 −𝑞2 −𝛼2𝐼2𝑞20 0 0

)
)
. (10)

Then 𝐽(𝐸0) has a geometrically simple zero eigenvalue with
right eigenvector Φ = (𝛼1𝐼1𝑞22, 𝛼2𝐼2𝑞21, −𝑞21𝑞22)𝑇 and left
eigenvector Ψ = (0, 0, 1).

Now

𝐷𝑚𝑓𝑤 = ( 00−𝐴) (11)

and (Ψ (𝐷𝑋𝐷𝑚𝑓𝑤)Φ)𝐸0 = 𝑞21𝑞22 ̸= 0,Ψ ((𝐷𝑋𝑋𝑓𝑤) (Φ,Φ))= (Ψ 3∑
𝑖=1

(𝑒𝑖Φ𝑇𝐷𝑋 (𝐷𝑋𝑓𝑖)𝑇Φ))
𝐸0= −2𝑞21𝑞22 (𝛽1𝐼1𝛼21𝑞22 + 𝛽2𝐼2𝛼22𝑞21) ̸= 0

(12)

According to [45], the model (1) undergoes transcritical
bifurcation at the extinction equilibrium 𝐸0 in the absence of
delays.

Then, we complete the proof.

Actually, when 𝑚 > 𝑚∗ holds, the positive equilibrium
does not exist, and the extinction equilibrium 𝐸0 is globally
asymptotically stable. Then, the following theorem holds.

�eorem 5. If𝑚 > (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2) holds, then the
extinction equilibrium 𝐸0 = (𝑁0, 𝑃0,0) = (𝐼1/𝑞1, 𝐼2/𝑞2, 0) is
globally asymptotically stable.

Proof. We construct a Lyapunov function, as follows:

𝑉 = 𝛽1 ∫𝑁
𝑁0

𝑠 − 𝑁0𝑠 𝑑𝑠 + 𝛽2 ∫𝑃
𝑃0

𝑠 − 𝑃0𝑠 𝑑𝑠 + 𝐴 (13)

In the model (1) without delays,𝑑𝑉𝑑𝑡 = 𝛽1𝑁 −𝑁0𝑁 𝑑𝑁𝑑𝑡 + 𝛽2𝑃 − 𝑃0𝑃 𝑑𝑃𝑑𝑡 + 𝑑𝐴𝑑𝑡= 𝛽1𝑁 −𝑁0𝑁 (𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴)

+ 𝛽2𝑃 − 𝑃0𝑃 (𝐼2 − 𝑞2𝑃 − 𝛼2𝑃𝐴)+ (𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴 − 𝑚𝐴)= 𝛽1𝑁 −𝑁0𝑁 (𝑞1𝑁0 − 𝑞1𝑁 − 𝛼1𝑁𝐴)+ 𝛽2𝑃 − 𝑃0𝑃 (𝑞2𝑃0 − 𝑞2𝑃 − 𝛼2𝑃𝐴)+ (𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴 − 𝑚𝐴)= −𝛽1𝑞1 (𝑁 − 𝑁0)2𝑁 − 𝛽2𝑞2 (𝑃 − 𝑃0)2𝑃+ (𝛽1𝛼1𝑁0 + 𝛽2𝛼2𝑃0 − 𝑚)𝐴= −𝛽1𝑞1 (𝑁 − 𝑁0)2𝑁 − 𝛽2𝑞2 (𝑃 − 𝑃0)2𝑃+ (𝛽1𝛼1𝐼1𝑞1 + 𝛽2𝛼2𝐼2𝑞2 − 𝑚)𝐴
(14)

Obviously, 𝑑𝑉/𝑑𝑡 < 0 holds if 𝑚 > (𝛽1𝛼1𝐼1/𝑞1) +(𝛽2𝛼2𝐼2/𝑞2). Therefore, the extinction equilibrium 𝐸0 =(𝑁0, 𝑃0,0) = (𝐼1/𝑞1, 𝐼2/𝑞2, 0) is globally asymptotically stable
when𝑚 > (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2).

Then, we complete the proof.

3. Local Stability Analysis and
the Hopf Bifurcation

In this section, we first state the following positive invariant
theorem.

Lemma 6. All the solutions of model (1) with initial conditions
that initiate in {𝑅3+} are positive invariant.
Proof. We consider (𝑁, 𝑃, 𝐴) a noncontinuable solution of
model (1); see [46], defined on [−𝜏,B), where 𝐵 ∈ (0, +∞].
Then we can use the method from [47] to prove that, for all𝑡 ∈ [0, 𝐵), 𝑁(𝑡) > 0, 𝑃(𝑡) > 0, and 𝐴(𝑡) > 0. Suppose that
is not true. Then, there exists 0 < T < B such that, for all𝑡 ∈ [0, 𝑇), 𝑁(𝑡) > 0, 𝑃(𝑡) > 0, and 𝐴(𝑡) > 0 and either𝑁(𝑇) = 0, 𝑃(𝑇) = 0, or 𝐴(𝑇) = 0. According to Lemma 1,
for all 𝑡 ∈ [0, 𝑇), we have

𝑁(𝑡) > 𝑁 (0) exp [−∫𝑡
0
(𝑞1 + 𝛼1𝐴) 𝑑𝑠] ,

𝑃 (𝑡) > 𝑃 (0) exp [−∫𝑡
0
(𝑞2 + 𝛼2𝐴) 𝑑𝑠] , (15)

and𝐴 (𝑡) = 𝐴 (0)⋅ exp [∫𝑡
0
(𝛽1𝛼1𝑁(𝑠 − 𝜏1) + 𝛽2𝛼2𝑃 (𝑠 − 𝜏2) − 𝑚)𝑑𝑠] . (16)
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As (𝑁, 𝑃, 𝐴) is defined and continuous on [−𝜏, 𝑇], there
is a𝑀 ≥ 0 such that, for all 𝑡 ∈ [−𝜏, 𝑇),𝑁(𝑡) > 𝑁 (0) exp [−∫𝑡

0
(𝑞1 + 𝛼1𝐴) 𝑑𝑠]≥ 𝑁 (0) exp (−𝑇𝑀) ,𝑃 (𝑡) > 𝑃 (0) exp [−∫𝑡
0
(𝑞2 + 𝛼2𝐴) 𝑑𝑠]≥ 𝑃 (0) exp (−𝑇𝑀)

(17)

and𝐴 (𝑡) = 𝐴 (0)⋅ exp [∫𝑡
0
(𝛽1𝛼1𝑁(𝑠 − 𝜏1) + 𝛽2𝛼2𝑃 (𝑠 − 𝜏2) − 𝑚)𝑑𝑠]≥ 𝐴 (0) exp (−𝑇𝑀) . (18)

Taking the limit, as 𝑡 → 𝑇, we can get𝑁(𝑇) ≥ 𝑁 (0) exp (−𝑇𝑀) > 0,𝑃 (𝑇) ≥ 𝑃 (0) exp (−𝑇𝑀) > 0 (19)

and 𝐴 (𝑇) ≥ 𝐴 (0) exp (−𝑇𝑀) > 0, (20)

which contradicts the fact that either 𝑁(𝑇) = 0, 𝑃(𝑇) = 0, or𝐴(𝑇) = 0. Thus, for all 𝑡 ∈ [0, 𝐵), 𝑁(𝑡) > 0, 𝑃(𝑡) > 0, and𝐴(𝑡) > 0.
Therefore, all the solutions of model (1) are positive

invariant if the initial conditions initiate in {𝑅3+}.
Then, we complete the proof.

Next, we will discuss the stability of the unique positive
equilibriumand existence ofHopf bifurcation inmodel (1) for
five different cases: 𝜏1 > 0, 𝜏2 = 0; 𝜏1 = 0, 𝜏2 > 0; 𝜏1 = 𝜏2 = 𝜏;𝜏1 ∈ (0, 𝜏10), 𝜏2 > 0; 𝜏1 > 0, 𝜏2 ∈ (0, 𝜏20).

According toTheorem 2, let 𝑢1 = 𝑁(𝑡) − 𝑁∗, 𝑢2 = 𝑃(𝑡) −𝑃∗, 𝑢3 = 𝐴(𝑡) − 𝐴∗; the linearized form of model (1) can be
obtained as follows:�̇�1 = 𝑎11𝑢1 (𝑡) + 𝑎13𝑢3 (𝑡)�̇�2 = 𝑎22𝑢2 (𝑡) + 𝑎23𝑢3 (𝑡)�̇�3 = 𝑎31𝑢1 (𝑡 − 𝜏1) + 𝑎32𝑢2 (𝑡 − 𝜏2) (21)

where 𝑎11 = −𝑞1 − 𝛼1𝐴∗;𝑎13 = −𝛼1𝑁∗;𝑎22 = −𝑞2 − 𝛼2𝐴∗;𝑎23 = −𝛼2𝑃∗;𝑎31 = 𝛽1𝛼1𝐴∗;𝑎32 = 𝛽2𝛼2𝐴∗.
(22)

Then, we obtain the associated characteristic equation of
model (21) as follows:𝜆3 + 𝐵𝜆2 + 𝐶𝜆 + 𝐷𝜆𝑒−𝜆𝜏1 + 𝐸𝑒−𝜆𝜏1 + 𝐹𝜆𝑒−𝜆𝜏2+ 𝐺𝑒−𝜆𝜏2 = 0, (23)

where 𝐵 = − (𝑎11 + 𝑎22) ;𝐶 = 𝑎11𝑎22;𝐷 = −𝑎13𝑎31;𝐸 = 𝑎13𝑎31𝑎22;𝐹 = −𝑎23𝑎32;𝐺 = 𝑎11𝑎23𝑎32.
(24)

Case 1. 𝜏1 > 0, 𝜏2 = 0.
Due to 𝜏1 > 0, 𝜏2 = 0, (23) becomes𝜆3 + 𝐵𝜆2 + (𝐶 + 𝐹) 𝜆 + (𝐷𝜆 + 𝐸) 𝑒−𝜆𝜏1 + 𝐺 = 0. (25)

Assuming 𝜆 = 𝑖𝜔1(𝜔1 > 0) is the pure imaginary root of
(25), then the following can be obtained:−𝜔31 + (𝐶 + 𝐹) 𝜔1 = 𝐸 sin (𝜔1𝜏1) − 𝐷𝜔1 cos (𝜔1𝜏1) ,−𝐵𝜔21 + 𝐺 = −𝐸 cos (𝜔1𝜏1) − 𝐷𝜔1 sin (𝜔1𝜏1) , (26)

Then𝜔61 + (𝐵2 − 2 (𝐶 + 𝐹)) 𝜔41+ ((𝐶 + 𝐹)2 − 2𝐵𝐺 − 𝐷2) 𝜔21 + 𝐺2 − 𝐸2 = 0. (27)

Now, we define a function as follows:𝑓1 (V1) = V31 + (𝐵2 − 2 (𝐶 + 𝐹)) V21+ ((𝐶 + 𝐹)2 − 2𝐵𝐺 − 𝐷2) V1 + 𝐺2 − 𝐸2. (28)

(i) If (𝐻21):𝐺2 − 𝐸2 < 0 holds, then, (28) has at least one
positive root. Without loss of generality, we denote
V11, V12, and V13 as the roots of (28); hence𝜔1𝑘 = √V1𝑘,𝑘 = 1, 2, 3, if V1𝑘 > 0.

(ii) If (𝐻22):𝐺2−𝐸2 > 0 holds, let𝑀1 = 𝐵2 −2(𝐶+𝐹) and𝑀2 = (𝐶+𝐹)2−2𝐵𝐺−𝐷2. WhenΔ = 𝑀12−3𝑀2 ≤ 0,
then (28) has no positive roots. However, whenΔ > 0,𝑓1(V1) = 0 has two real roots, denoted as

𝑥∗1 = −𝑀1 + √Δ3 ,
𝑥∗2 = −𝑀1 − √Δ3 . (29)
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Obviously, lim𝑥→+∞𝑓1(𝑥) = +∞. If (𝐻22) and Δ = 𝑀12 −3𝑀2 > 0 holds, then (28) has two positive real roots if and
only if 𝑥∗1 > 0 and 𝑓1(𝑥∗1 ) < 0. In addition, we denote two
positive roots of (28) as 𝜒1 and 𝜒2; then, (27) has two positive
roots, namely, 𝜔1𝑎 = √𝜒1 and 𝜔1𝑏 = √𝜒2. Furthermore, we
can have the following results.

Proposition 7.

(i) If (𝐻21) holds, then (28) has at least one positive root.

(ii) If (𝐻22) and Δ = 𝑀12 − 3𝑀2 ≤ 0 holds, then, (28) has
no positive root.

(iii) If (𝐻22) and Δ = 𝑀12 − 3𝑀2 > 0 holds, then, (28) has
two positive roots if and only if 𝑥∗1 > 0, and𝑓1(𝑥∗1 ) < 0.

Then, according to (26), the critical delay can be obtained as
follows:

𝜏𝑗1𝑝 = 1𝜔1𝑝 (arccos 𝐷𝜔41𝑝 + (𝐵𝐸 − (𝐶𝐷 + 𝐷𝐹)) 𝜔21𝑝 − 𝐸𝐺𝐷2𝜔21𝑝 + 𝐸2
+ 2𝑗𝜋) , 𝑗 = 0, 1, 2, . . . , 𝑝 = 1, 2, 3, 𝑎, 𝑏 (30)

Letting 𝜏10 = min𝑝=1,2,3,𝑎,𝑏𝜏01𝑝, from [37] we know that
Re(𝑑𝜆/𝑑𝜏1) ̸= 0 also needs to be proved. Differentiating left
side of (26) with respect to 𝜏1, we have
( 𝑑𝜆𝑑𝜏1)−1 = 3𝜆2 + 2𝐵𝜆 + (𝐶 + 𝐹) + 𝐷𝑒−𝜆𝜏1𝜆 (𝐷𝜆 + 𝐸) 𝑒−𝜆𝜏1 − 𝜏1𝜆 , (31)

so that the following can be obtained:

Re( 𝑑𝜆𝑑𝜏1)−1𝜆=𝑖𝜔10 = 𝜔210Δ 𝑓1 (𝜔210) , (32)

whereΔ = (−𝐷𝜔210 cos (𝜔10𝜏1) + 𝐸𝜔10 sin (𝜔10𝜏1))2+ (𝐸𝜔10cos (𝜔10𝜏1) + 𝐷𝜔210sin (𝜔10𝜏1))2 . (33)

If (i) in Proposition 7 and (𝐻23): 𝑓1(𝜔210) ̸= 0 hold,
then we have Re(𝑑𝜆/𝑑𝜏1)−1𝜆=𝑖𝜔10 ̸= 0. However, if (iii) in
Proposition 7 holds, assuming 𝜏𝑗1𝑎 < 𝜏𝑗1𝑏, then we obtain𝑓1(𝜒1) > 0 and 𝑓1(𝜒2) < 0. Hence, we have (𝑑Re𝜆(𝜏)/𝑑𝜏)|
𝜏=𝜏
𝑗
1𝑎
> 0, (𝑑Re 𝜆(𝜏)/𝑑𝜏)|

𝜏=𝜏
𝑗

1𝑏

< 0, and 𝑗 = 0, 1, 2, . . ..
Therefore, we have the following results.

�eorem 8. For model (1) with 𝜏1 > 0, 𝜏2 = 0,
(i) If (𝐻21) and (𝐻23) both hold, then the positive equilib-

rium 𝐸∗ is locally asymptotically stable for 𝜏1 ∈ (0, 𝜏10)
and Hopf bifurcation occurs at 𝜏1 = 𝜏10.

(ii) If (ii) in Proposition 7 holds, then the positive equilib-
rium 𝐸∗ is locally asymptotically stable for all 𝜏1 ≥ 0.

(iii) If (iii) in Proposition 7 holds, there exists a nonnegative
integer 𝑛, such that the positive equilibrium 𝐸∗ is
locally asymptotically stable whenever 𝜏1 ∈ [0, 𝜏01𝑎) ∪(𝜏01𝑏, 𝜏11𝑎) ∪ ⋅ ⋅ ⋅ ∪ (𝜏𝑛−11𝑏 , 𝜏𝑛1𝑎) and is unstable whenever𝜏1 ∈ [𝜏01𝑎, 𝜏01𝑏)∪(𝜏11𝑎, 𝜏11𝑏)∪⋅ ⋅ ⋅∪(𝜏𝑛−11𝑎 , 𝜏𝑛−11𝑏 )∪(𝜏𝑛1𝑎, +∞).
Then, model (1) undergoes Hopf bifurcation around 𝐸∗
at every 𝜏1 = 𝜏𝑗1𝑎 𝑎𝑛𝑑 𝜏𝑗1𝑏, 𝑗 = 0, 1, 2, . . ..

Case 2. 𝜏1 = 0, 𝜏2 > 0.
Since 𝜏1 = 0, 𝜏2 > 0, (23) becomes𝜆3 + 𝐵𝜆2 + (𝐶 + 𝐷) 𝜆 + (𝐹𝜆 + 𝐺) 𝑒−𝜆𝜏2 + 𝐸 = 0. (34)

Similar to Case 1, let 𝜆 = 𝑖𝜔2(𝜔2 > 0) be the pure
imaginary root of (34); then we obtain−𝜔32 + (𝐶 + 𝐷)𝜔2 = 𝐺 sin (𝜔2𝜏2) − 𝐹𝜔2 cos (𝜔2𝜏2) ,−𝐵𝜔22 + 𝐸 = 𝐺 cos (𝜔2𝜏2) − 𝐹𝜔2 sin (𝜔2𝜏2) . (35)

That is,𝜔62 + (𝐵2 − 2 (𝐶 + 𝐷))𝜔42+ ((𝐶 + 𝐷)2 − 2𝐵𝐸 − 𝐹2)𝜔22 + 𝐸2 − 𝐺2 = 0. (36)

Letting V2 = 𝜔22 , we define the following function:𝑓2 (V2) = V32 + (𝐵2 − 2 (𝐶 + 𝐷)) V22+ ((𝐶 + 𝐷)2 − 2𝐵𝐸 − 𝐹2) V2 + 𝐸2 − 𝐺2. (37)

(i) If (𝐻31):𝐸2 − 𝐺2 < 0 holds, then (37) has at least one
positive root. Without loss of generality, we denote
V21, V22, V23 as the roots of (37); then 𝜔2𝑘 = √V2𝑘,𝑘 = 1, 2, 3, if V2𝑘 > 0.

(ii) If (𝐻32):𝐸2−𝐺2 > 0 holds, let𝑀1 = 𝐵2−2(𝐶+𝐷) and𝑀2 = (𝐶+𝐷)2−2𝐵𝐸−𝐹2. WhenΔ = 𝑀12−3𝑀2 ≤ 0,
then (37) has no positive roots. However, whenΔ > 0,𝑓2(V2) = 0 has two real roots, denoted as

𝑥∗∗1 = −𝑀1 + √Δ3 ,
𝑥∗∗2 = −𝑀1 − √Δ3 . (38)

Obviously, lim𝑥→+∞𝑓2(𝑥) = +∞. If (𝐻32) and Δ = 𝑀12 −3𝑀2 > 0 holds, then (37) has two positive real roots if and
only if 𝑥∗∗1 > 0 and 𝑓2(𝑥∗∗1 ) < 0. In addition, we denote two
positive roots of (37) as 𝜒∗1 and 𝜒∗2 ; then (36) has two positive
roots, namely, 𝜔2𝑎 = √𝜒∗1 and 𝜔2𝑏 = √𝜒∗2 . Furthermore, we
can obtain the following results.

Proposition 9.

(i) If (𝐻31) holds, then (36) has at least one positive root.
(ii) If (𝐻32) and Δ = 𝑀12 − 3𝑀2 ≤ 0 holds, then, (36) has

no positive root.
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(iii) If (𝐻32) and Δ = 𝑀12 − 3𝑀2 > 0 holds, then, (36) has
two positive roots if and only if 𝑥∗∗1 > 0 and 𝑓2(𝑥∗∗1 ) <0.

Then the critical delay can be derived by (35):

𝜏𝑗2𝑝 = 1𝜔2𝑝 (arccos 𝐷𝜔42𝑝 + (𝐵𝐸 − (𝐶𝐷 + 𝐷𝐹)) 𝜔22𝑝 − 𝐸𝐺𝐷2𝜔22𝑝 + 𝐸2
+ 2𝑗𝜋) , 𝑗 = 0, 1, 2, . . . , 𝑝 = 1, 2, 3, 𝑎, 𝑏 (39)

Let 𝜏20 = min𝑝=1,2,3,𝑎,𝑏𝜏02𝑝. Differentiating left side of (34)
with respect to 𝜏2, we obtain( 𝑑𝜆𝑑𝜏2)−1 = 3𝜆2 + 2𝐵𝜆 + (𝐶 + 𝐷) + 𝐹𝑒−𝜆𝜏2𝜆 (𝐹𝜆 + 𝐺) 𝑒−𝜆𝜏2 − 𝜏2𝜆 , (40)

Hence, we obtain the following:

Re( 𝑑𝜆𝑑𝜏2)−1𝜆=𝑖𝜔20 = 𝜔220Δ 𝑓2 (𝜔220) , (41)

whereΔ = (−𝐹𝜔220 cos (𝜔20𝜏2) + 𝐺𝜔20 sin (𝜔20𝜏2))2+ (𝐺𝜔20 cos (𝜔20𝜏2) + 𝐹𝜔220 sin (𝜔20𝜏2))2 . (42)

If (i) in Proposition 9 and (𝐻33):𝑓2(𝜔220) ̸= 0 both hold,
then Re(𝑑𝜆/𝑑𝜏2)−1𝜆=𝑖𝜔20 ̸= 0 is obtained. However, if (iii) in
Proposition 9 holds, assuming 𝜏𝑗2𝑎 < 𝜏𝑗2𝑏, we obtain 𝑓2(𝜒∗1 ) >0 and 𝑓2(𝜒∗2 ) < 0. Then, we have (𝑑Re𝜆(𝜏)/𝑑𝜏)|

𝜏=𝜏
𝑗
2𝑎
> 0,(𝑑Re𝜆(𝜏)/𝑑𝜏)|

𝜏=𝜏
𝑗

2𝑏

< 0, and 𝑗 = 0, 1, 2, . . .. Therefore, we
have the following theorem.

�eorem 10. For model (1) with 𝜏1 = 0, 𝜏2 > 0,
(i) If𝐻31 and𝐻33 hold, then, the positive equilibrium𝐸∗ is

locally asymptotically stable for 𝜏2 ∈ (0, 𝜏20) and Hopf
bifurcation occur at 𝜏2 = 𝜏20.

(ii) If (ii) in Proposition 9 holds, then the positive equilib-
rium 𝐸∗ is locally asymptotically stable for all 𝜏2 ≥ 0.

(iii) If (iii) in Proposition 9 holds, then there exists a non-
negative integer 𝑛, such that the positive equilibrium𝐸∗
is locally asymptotically stable whenever 𝜏2 ∈ [0, 𝜏02𝑎) ∪(𝜏02𝑏, 𝜏12𝑎) ∪ ⋅ ⋅ ⋅ ∪ (𝜏𝑛−12𝑏 , 𝜏𝑛2𝑎) and is unstable whenever𝜏2 ∈ [𝜏02𝑎, 𝜏02𝑏)∪(𝜏12𝑎, 𝜏12𝑏)∪⋅ ⋅ ⋅∪(𝜏𝑛−12𝑎 , 𝜏𝑛−12𝑏 )∪(𝜏𝑛2𝑎, +∞).
Then, model (1) undergoes Hopf bifurcation around 𝐸∗
for every 𝜏2 = 𝜏𝑗2𝑎 𝑎𝑛𝑑 𝜏𝑗2𝑏, 𝑗 = 0, 1, 2, . . ..

Case 3. 𝜏1 = 𝜏2 = 𝜏.
When 𝜏1 = 𝜏2 = 𝜏, (23) becomes𝜆3 + 𝐵𝜆2 + 𝐶𝜆 + (𝐷 + 𝐹) 𝜆𝑒−𝜆𝜏 + (𝐸 + 𝐺) 𝑒−𝜆𝜏 = 0. (43)
Leting 𝜆 = 𝑖𝜔3(𝜔3 > 0) be the pure imaginary root of

(43), then −𝜔33 + 𝐶𝜔3 = (𝐸 + 𝐺) sin (𝜔3𝜏)− (𝐷 + 𝐹) 𝜔3 cos (𝜔3𝜏) ,−𝐵𝜔23 = − (𝐸 + 𝐺) cos (𝜔3𝜏)− (𝐷 + 𝐹) 𝜔3 sin (𝜔3𝜏) ,
(44)

that is,𝜔63 + (𝐵2 − 2𝐶)𝜔43 + [𝐶2 − (𝐷 + 𝐹)2] 𝜔23 − (𝐸 + 𝐺)2= 0. (45)

Let V3 = 𝜔23 and define the following function:𝑓3 (V3) = V33 + (𝐵2 − 2𝐶) V23 + [𝐶2 − (𝐷 + 𝐹)2] V3− (𝐸 + 𝐺)2 , (46)

From (46), we can clearly see that 𝑓3(0) = −(𝐸 + 𝐺)2 < 0;
hence (46) has at least one positive root. Without loss of
generality, we denote V31, V32, and V33 as the roots of (46); then
we have 𝜔3𝑘 = √V3𝑘, 𝑘 = 1, 2, 3, if V3𝑘 > 0 holds. Hence, the
critical delay can be derived by (44):

𝜏𝑗
3𝑘
= 1𝜔3𝑘 (arccos (𝐷 + 𝐹) 𝜔43𝑘 + 𝐵 (𝐸 + 𝐺) 𝜔23𝑘 − 𝐶 (𝐷 + 𝐹) 𝜔23𝑘(𝐷 + 𝐹)2 𝜔23𝑘 + (𝐸 + 𝐺)2 + 2𝜋𝑗) , (𝑗 = 0, 1, 2 . . . , 𝑘 = 1, 2, 3) . (47)

Let 𝜏30 = min𝑘=1,2,3𝜏03𝑘. Differentiating left side of (43)
with respect to 𝜏, we obtain(𝑑𝜆𝑑𝜏)−1 = 3𝜆2 + 2𝐵𝜆 + 𝐶 + (𝐷 + 𝐹) 𝑒−𝜆𝜏𝜆 [(𝐷 + 𝐹) 𝜆 + (𝐸 + 𝐺)] 𝑒−𝜆𝜏 − 𝜏𝜆 . (48)

Hence, we obtain the following:

Re(𝑑𝜆𝑑𝜏)−1𝜆=𝑖𝜔30 = 𝜔230Δ 𝑓3 (𝜔230) , (49)

where Δ = (− (𝐷 + 𝐹) 𝜔230 cos (𝜔30𝜏)+ (𝐸 + 𝐺) 𝜔30 sin (𝜔30𝜏))2+ ((𝐸 + 𝐺) 𝜔30 cos (𝜔30𝜏) + (𝐷 + 𝐹)⋅ 𝜔230 sin (𝜔30𝜏))2 .
(50)
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If (𝐻41): 𝑓3(𝜔230) ̸= 0 holds, then Re(𝑑𝜆/𝑑𝜏)−1𝜆=𝑖𝜔30 ̸= 0 is
obtained; hence, we have the following result.

�eorem 11. For model (1), when 𝜏1 = 𝜏2 = 𝜏, if (𝐻41) holds,
then the positive equilibrium 𝐸∗ is locally asymptotically stable
for 𝜏 ∈ (0, 𝜏30) and Hopf bifurcation occurs at 𝜏 = 𝜏30.
Case 4. 𝜏1 ∈ (0, 𝜏10), 𝜏2 > 0.

Under this case, 𝜏2 is considered as a parameter.The same
as Case 1, let 𝜆 = 𝑖𝜔∗2 be the root of (23); then we have the
following: 𝑅51 cos (𝜔∗2 𝜏2) − 𝑅52 sin (𝜔∗2 𝜏2) = 𝑅53,𝑅51 sin (𝜔∗2 𝜏2) + 𝑅52 cos (𝜔∗2 𝜏2) = 𝑅54, (51)

where𝑅51 = 𝐹𝜔∗2 ;𝑅53 = 𝜔∗2 3 − 𝐶𝜔∗2 − 𝐷𝜔∗2 cos (𝜔∗2 𝜏1) + 𝐸 sin (𝜔∗2 𝜏1) ;𝑅52 = 𝐺;𝑅54 = 𝐵𝜔∗2 2 − 𝐷𝜔∗2 sin (𝜔∗2 𝜏1) − 𝐸 cos (𝜔∗2 𝜏1) .
(52)

According to (51), the following holds:𝐹1 (𝜔∗2 ) + 𝐹2 (𝜔∗2 ) sin (𝜔∗2 𝜏1) + 𝐹3 (𝜔∗2 ) cos (𝜔∗2 𝜏1)= 0, (53)

where𝐹1 (𝜔∗2 ) = 𝜔∗2 6 + (𝐵2 − 2𝐶)𝜔∗2 4+ (𝐶2 + 𝐷2 − 𝐹2) 𝜔∗2 2 + (𝐸2 − 𝐺2) ,𝐹2 (𝜔∗2 ) = 2 (𝐸 − 𝐵𝐷)𝜔∗2 3 − 2𝐶𝐸𝜔∗2 ,𝐹3 (𝜔∗2 ) = −2𝐷𝜔∗2 4 + 2 (𝐶𝐷 − 𝐵𝐸)𝜔∗2 2.
(54)

Assuming (𝐻51): (53) has finite positive root and denoting
as 𝜔∗2𝑘, (𝑘 = 1, 2, . . . , 𝑙1), then the critical value can be
represented as follows:𝜏∗2𝑘(𝑗)= 1𝜔∗

2𝑘

(arccos(𝑅51 ⋅ 𝑅53 + 𝑅52 ⋅ 𝑅54𝑅251 + 𝑅252 ) + 2𝜋𝑗) ,
(𝑗 = 0, 1, 2 . . . ; 𝑘 = 1, 2, . . . 𝑙1) .

(55)

Let 𝜏∗20 = min 𝜏∗2𝑘(0), (𝑘 = 1, 2, . . . 𝑙1). Differentiating left
side of (23) with respect to 𝜏2, the following is obtained:( 𝑑𝜆𝑑𝜏2)−1= 3𝜆2 + 2𝐵𝜆 + 𝐶 + (𝐷 − 𝐷𝜆𝜏1 − 𝜏1𝐸) 𝑒−𝜆𝜏1 + 𝐹𝑒−𝜆𝜏2𝜆 (𝐹𝜆 + 𝐺) 𝑒−𝜆𝜏2− 𝜏2𝜆 ,

(56)

and then, we have

Re( 𝑑𝜆𝑑𝜏2)−1𝜆=𝑖𝜔∗20 = 𝐹51𝐹53 + 𝐹54𝐹52𝐹251 + 𝐹252 , (57)

where𝐹51 = −𝐹𝜔∗202 cos (𝜔∗20𝜏∗20) + 𝐺𝜔∗20 sin (𝜔∗20𝜏∗20) ,𝐹52 = 𝐺𝜔∗20 cos (𝜔∗20𝜏∗20) + 𝐹𝜔∗202 sin (𝜔∗20𝜏∗20) ,𝐹53 = −3𝜔∗202 + 𝐶 + 𝐷 cos (𝜔∗20𝜏1) − 𝜏1𝐸 cos (𝜔∗20𝜏1)− 𝜏1𝐷𝜔∗20 sin (𝜔∗20𝜏1) + 𝐹 cos (𝜔∗20𝜏∗20) ,𝐹54 = 2𝐵𝜔∗20 − 𝐷 sin (𝜔∗20𝜏1) + 𝜏1𝐸 sin (𝜔∗20𝜏1)− 𝜏1𝐷𝜔∗20 cos (𝜔∗20𝜏1) − 𝐹 sin (𝜔∗20𝜏∗20) .
(58)

Supposing (𝐻52): 𝐹51𝐹53 + 𝐹54𝐹52 ̸= 0, then we have the
following.

�eorem 12. For model (1), when 𝜏1 ∈ (0, 𝜏10) and 𝜏2 > 0,
if both 𝐻51 and 𝐻52 hold, then the positive equilibrium 𝐸∗
is locally asymptotically stable for 𝜏2 ∈ (0, 𝜏∗20) and Hopf
bifurcation occurs at 𝜏2 = 𝜏∗20.
Case 5. 𝜏1 > 0, 𝜏2 ∈ (0, 𝜏20).

Since 𝜏1 > 0, 𝜏2 ∈ (0, 𝜏20), we consider 𝜏1 as a parameter.
The same as Case 4, letting 𝜆 = 𝑖𝜔∗1 be the root of (23), we
obtain: 𝑅61 cos (𝜔∗1 𝜏1) − 𝑅62 sin (𝜔∗1 𝜏1) = 𝑅63,𝑅61 sin (𝜔∗1 𝜏1) + 𝑅62 cos (𝜔∗1 𝜏1) = 𝑅64, (59)

where𝑅61 = 𝐷𝜔∗1 ;𝑅63 = 𝜔∗1 3 − 𝐶𝜔∗1 − 𝐹𝜔∗1 cos (𝜔∗1 𝜏2) + 𝐺 sin (𝜔∗1 𝜏2) ;𝑅62 = 𝐸;𝑅64 = 𝐵𝜔∗1 2 − 𝐹𝜔∗1 sin (𝜔∗1 𝜏2) − 𝐺 cos (𝜔∗1 𝜏2) .
(60)

According to (59), the following holds:𝐺1 (𝜔∗1 ) + 𝐺2 (𝜔∗1 ) sin (𝜔∗1 𝜏2) + 𝐺3 (𝜔∗1 ) cos (𝜔∗1 𝜏2)= 0, (61)

where𝐺1 (𝜔∗1 ) = 𝜔∗1 6 + (𝐵2 − 2𝐶)𝜔∗1 4+ (𝐶2 + 𝐹2 − 𝐷2) 𝜔∗1 2 + (𝐺2 − 𝐸2) ,𝐺2 (𝜔∗1 ) = 2 (𝐺 − 𝐵𝐹)𝜔∗1 3 − 2𝐶𝐺𝜔∗1 ,𝐺3 (𝜔∗1 ) = −2𝐹𝜔∗1 4 + 2 (𝐶𝐹 − 𝐵𝐺)𝜔∗2 2.
(62)
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Supposing (𝐻61): (61) has finite positive root 𝜔∗2𝑘, (𝑘 =1, 2, . . . , 𝑙2), then we obtain𝜏∗1𝑘(𝑗)= 1𝜔∗
1𝑘

(arccos(𝑅61 ⋅ 𝑅63 + 𝑅62 ⋅ 𝑅64𝑅261 + 𝑅262 ) + 2𝜋𝑗) ,
(𝑗 = 0, 1, 2 . . . ; 𝑘 = 1, 2, . . . 𝑙2) .

(63)

Assuming 𝜏∗10 = min 𝜏∗1𝑘(0), (𝑘 = 1, 2, . . . 𝑙2) and differ-
entiating left side of (23) with respect to 𝜏1, therefore, the
following is obtained:

( 𝑑𝜆𝑑𝜏1)−1= 3𝜆2 + 2𝐵𝜆 + 𝐶 + (𝐹 − 𝐹𝜆𝜏2 − 𝜏2𝐺) 𝑒−𝜆𝜏2 + 𝐷𝑒−𝜆𝜏1𝜆 (𝐹𝜆 + 𝐺) 𝑒−𝜆𝜏2− 𝜏1𝜆 ,
(64)

Hence, we have

Re( 𝑑𝜆𝑑𝜏1)−1𝜆=𝑖𝜔∗10 = 𝐹61𝐹63 + 𝐹64𝐹62𝐹261 + 𝐹262 , (65)

where𝐹61 = −𝐷𝜔∗102 cos (𝜔∗10𝜏∗10) + 𝐸𝜔∗10 sin (𝜔∗10𝜏∗10) ,𝐹62 = 𝐸𝜔∗10 cos (𝜔∗10𝜏∗10) + 𝐷𝜔∗102 sin (𝜔∗10𝜏∗10) ,𝐹63 = −3𝜔∗102 + 𝐶 + 𝐷 cos (𝜔∗10𝜏∗10) − 𝜏2𝐺 cos (𝜔∗10𝜏2)− 𝜏2𝐹𝜔∗10 sin (𝜔∗10𝜏2) + 𝐹 cos (𝜔∗10𝜏2) ,𝐹64 = 2𝐵𝜔∗10 − 𝐷 sin (𝜔∗10𝜏∗10) + 𝜏2𝐺 sin (𝜔∗10𝜏2)− 𝜏2𝐹𝜔∗10 cos (𝜔∗10𝜏2) − 𝐹 sin (𝜔∗10𝜏2) ,
(66)

Supposing (𝐻62): 𝐹61𝐹63 + 𝐹64𝐹62 ̸= 0 holds, then we obtain
the following theorem.

�eorem 13. For model (1), when 𝜏1 > 0 and 𝜏2 ∈ (0, 𝜏20),
if both 𝐻61 and 𝐻62 hold, then the positive equilibrium 𝐸∗
is locally asymptotically stable for 𝜏1 ∈ (0, 𝜏∗10) and Hopf
bifurcation occurs at 𝜏1 = 𝜏∗10.
4. Properties of Periodic Solution

In this section, we will discuss the direction of Hopf bifur-
cation and the stability of the bifurcating periodic solutions
under Case 4 by using normal form method and center
manifold theorem [43], and methods of other four cases are
similar to Case 4. Assuming 𝜏1 ∈ (0, 𝜏10), 𝜏∗20 > 𝜏1, and Hopf
bifurcation occurs at (𝑁∗, 𝑃∗, 𝐴∗) in model (1) when 𝜏 = 𝜏∗20.

Let 𝜏2 = 𝜏∗20 + 𝜇, 𝑡 = 𝑠𝜏2, 𝑥(𝑠𝜏2) = 𝑥(𝑠), 𝑦(𝑠𝜏2) = 𝑦(𝑠),
and 𝑧 = (𝑠𝜏2) = �̂�(𝑠), and we also denote 𝑥(𝑠), 𝑦(𝑠), and �̂�(𝑠)

as 𝑥(𝑠), 𝑦(𝑠), and 𝑧(𝑠). Then, model (1) could be rewritten as
follows in 𝐶 = 𝐶([−1, 0], 𝑅3):

�̇� (𝑡) = 𝐿𝜇 (𝑢𝑡) + 𝑓 (𝜇, 𝑢𝑡) , (67)

where 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))𝑇 ∈ 𝑅3. 𝐿𝜇(𝜙) : 𝐶 → 𝑅3 and𝑓(𝜇, 𝑢(𝑡)) are given as follows:

𝐿𝜇 (𝜙)= (𝜏∗20 + 𝜇)(𝐴𝜙 (0) + 𝐵𝜙(− 𝜏1𝜏∗20) + 𝐶𝜙 (−1)) ,𝑓 (𝜇, 𝜙) = (𝜏∗20 + 𝜇) (𝑓1 𝑓2 𝑓3)𝑇 ,
(68)

where

𝐴 = (𝑎11 0 𝑎130 𝑎22 𝑎230 0 0 ) ,
𝐵 = ( 0 0 00 0 0𝑎31 0 0) ,
𝐶 = (0 0 00 0 00 𝑎32 0) ,𝑓1 = −𝛼1𝜙1 (0) 𝜙3 (0) ,𝑓2 = −𝛼2𝜙2 (0) 𝜙3 (0) ,𝑓3 = 𝛽1𝛼1𝜙1 (− 𝜏1𝜏∗20)𝜙3 (0) + 𝛽2𝛼2𝜙2 (−1) 𝜙3 (0) .

(69)

According to the Riesz representation theorem, we know
that there exists a function 𝜂(𝜃, 𝜇) of bounded variation for𝜃 ∈ [−1, 0] such that 𝐿𝜇𝜙 = ∫0−1 𝑑𝜂(𝜃, 𝜇)𝜙(𝜃), for all 𝜙 ∈𝐶([−1, 0], 𝑅3). Choosing
𝜂 (𝜃, 𝜇)
=
{{{{{{{{{{{{{{{{{{{{{

(𝜏∗20 + 𝜇) (𝐴 + 𝐵 + 𝐶) , 𝜃 = 0(𝜏∗20 + 𝜇) (𝐵 + 𝐶) , 𝜃 ∈ [− 𝜏1𝜏∗20 , 0)(𝜏∗20 + 𝜇)𝐶, 𝜃 ∈ (−1, − 𝜏1𝜏∗20)0, 𝜃 = −1
(70)
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For 𝜙 ∈ 𝐶1([−1, 0], 𝑅3), we define
𝐴 (𝜇) 𝜙 = {{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , 𝜃 ∈ [−1, 0)∫0
−1
𝑑𝜂 (𝜇, 𝑠) ⋅ 𝜙 (𝑠) , 𝜃 = 0

𝑅 (𝜇) 𝜙 = {{{0, 𝜃 ∈ [−1, 0)𝑓 (𝜇, 𝜙) , 𝜃 = 0
(71)

Then, model (1) can be rewritten as�̇� (𝑡) = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡. (72)

For 𝜓 ∈ 𝐶1([0, 1], (𝑅3)∗), the adjoint operator 𝐴∗ of 𝐴 is
defined as follows:

𝐴∗𝜓 (𝑠) = {{{{{{{
−𝑑𝜓 (𝑠)𝑑𝑠 , 𝑠 ∈ (0, 1] ,∫0
−1
𝑑𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0. (73)

Associated with a bilinear inner product⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)
− ∫0
−1
∫𝜃
𝜉=0
𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (74)

where 𝜂(𝜃) = 𝜂(𝜃, 0) and we know that ±𝑖𝜔∗20𝜏∗20 are the
eigenvalues of 𝐴(0) and 𝐴∗(0).

Choose 𝑞(𝜃) = (1, 𝑞2, 𝑞3)𝑇𝑒𝑖𝜔∗20𝜏∗20𝜃 to be the eigenvec-
tor of 𝐴(0) corresponding to the eigenvalue 𝑖𝜔∗20𝜏∗20 and𝑞∗(𝑠) = 𝐷(1, 𝑞∗2 , 𝑞∗3 )𝑒𝑖𝜔∗20𝜏∗20𝑠 to be the eigenvector of 𝐴∗(0)
corresponding to the eigenvalue −𝑖𝜔∗20𝜏∗20. By computation,
we obtain

𝑞2 = 𝑎23 (𝑖𝜔∗20 − 𝑎11)𝑎13 (𝑖𝜔∗20 − 𝑎22) ;𝑞3 = 𝑖𝜔∗20 − 𝑎11𝑎13 ;
𝑞∗2 = 𝑎32𝑒𝑖𝜔∗20𝜏1 (𝑎11 + 𝑖𝜔∗2 )𝑎31𝑒𝑖𝜔∗20𝜏1 (𝑎22 + 𝑖𝜔∗2 ) ;𝑞∗3 = − (𝑎11 + 𝑖𝜔∗2 )𝑎31𝑒𝑖𝜔∗20𝜏1 .

(75)

Besides, from (74) we have𝐷= 11 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝑞∗3𝑎31𝜏1𝑒−𝑖𝜔∗20𝜏1 + 𝑞2𝑞∗3𝑎32𝜏∗20𝑒−𝑖𝜔∗20𝜏∗20 , (76)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1 and ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.

Then, according to [44], we obtain the following relevant
parameter, which helps to determine the direction and
stability of Hopf bifurcation:𝑔20 = 2𝐷𝜏∗20 (−𝛼1𝑞3 − 𝛼2𝑞∗2𝑞2𝑞3 + 𝛽1𝛼1𝑞3𝑞∗3 𝑒−𝑖𝜔∗20𝜏1+ 𝛽2𝛼2𝑞2𝑞3𝑞∗3 𝑒−𝑖𝜔∗20𝜏∗20) ,𝑔11 = 𝐷𝜏∗20 [−𝛼1 (𝑞3 + 𝑞3) − 𝛼2𝑞∗2 (𝑞2𝑞3 + 𝑞2𝑞3)+ 𝛽1𝛼1𝑞∗3 (𝑞3𝑒−𝑖𝜔∗20𝜏1 + 𝑞3𝑒𝑖𝜔∗20𝜏1)+ 𝛽2𝛼2𝑞∗3 (𝑞2𝑞3𝑒−𝑖𝜔∗20𝜏∗20 + 𝑞3𝑞2𝑒𝑖𝜔∗20𝜏∗20)] ,𝑔02 = 2𝐷𝜏∗20 (−𝛼1𝑞3 − 𝛼2𝑞∗2𝑞2𝑞3 + 𝛽1𝛼1𝑞3𝑞∗3 𝑒𝑖𝜔∗20𝜏1+ 𝛽2𝛼2𝑞2𝑞3𝑞∗3 𝑒𝑖𝜔∗20𝜏∗20) ,𝑔21 = 2𝐷𝜏∗20 {−𝛼1 [𝑊(3)11 (0) + 12𝑊(3)20 (0)+ 12𝑞3𝑊(1)20 (0) + 𝑞3𝑊(1)11 (0)] − 𝛼2𝑞∗2 [𝑞2𝑊(3)11 (0)+ 𝑞2 12𝑊(3)20 (0) + 12𝑞3𝑊(2)20 (0) + 𝑞3𝑊(2)11 (0)]+ 𝑞∗3𝛽1𝛼1 [𝑞3𝑊(1)11 (− 𝜏1𝜏∗20) + 𝑞3 12𝑊(1)20 (− 𝜏1𝜏∗20)+ 12𝑊(3)20 (0) 𝑒𝑖𝜔∗20𝜏1 +𝑊(3)11 (0) 𝑒−𝑖𝜔∗20𝜏1]+ 𝑞∗3𝛽2𝛼2 [𝑞3𝑊(2)11 (−1) + 𝑞3 12𝑊(2)20 (−1)+ 𝑞2 12𝑊(3)20 (0) 𝑒𝑖𝜔∗20𝜏∗20 + 𝑞2𝑊(3)11 (0) 𝑒−𝑖𝜔∗20𝜏∗20]} ,

(77)

and

𝑊20 (𝜃) = 𝑖𝑔20𝑞 (0)𝜔∗20𝜏∗20 𝑒𝑖𝜃𝜔∗20𝜏∗20 + 𝑔02𝑖3𝜔∗20𝜏∗20 𝑞 (0) 𝑒−𝑖𝜃𝜔∗20𝜏∗20+ 𝐸1𝑒2𝑖𝜃𝜔∗20𝜏∗20 ,𝑊11 (𝜃) = −𝑖𝑔11𝑞 (0)𝜔∗20𝜏∗20 𝑒𝑖𝜃𝜔∗20𝜏∗20 + 𝑔11𝑖𝜔∗20𝜏∗20 𝑞 (0) 𝑒−𝑖𝜃𝜔∗20𝜏∗20+ 𝐸2,
(78)

where 𝐸1and 𝐸2 can be determined by the following, respec-
tively:

(2𝑖𝜔∗20 − 𝑎11 0 −𝑎130 2𝑖𝜔∗20 − 𝑎22 −𝑎23−𝑎31𝑒−2𝑖𝜔∗20𝜏1 −𝑎32𝑒−2𝑖𝜔∗20𝜏∗20 2𝑖𝜔∗20) ⋅ 𝐸1



Complexity 11

= 2(𝐾11𝐾21𝐾31),
(𝑎11 0 𝑎130 𝑎22 𝑎23𝑎31 𝑎32 0 ) ⋅ 𝐸2 = −(

𝐾12𝐾22𝐾32),
(79)

where 𝐾11 = −𝛼1𝑞3;𝐾21 = −𝛼2𝑞2𝑞3;𝐾31 = 𝛽1𝛼1𝑞3𝑒−𝑖𝜔∗20𝜏1 + 𝛽2𝛼2𝑞2𝑞3𝑒−𝑖𝜔∗20𝜏∗20 ;𝐾12 = −𝛼1 (𝑞3 + 𝑞3) ;𝐾22 = −𝛼2 (𝑞2𝑞3 + 𝑞2𝑞3) ;𝐾32 = 𝛽1𝛼1 (𝑞3𝑒𝑖𝜔∗20𝜏1 + 𝑞3𝑒−𝑖𝜔∗20𝜏1)+ 𝛽2𝛼2 (𝑞2𝑞3𝑒𝑖𝜔∗20𝜏∗20 + 𝑞2𝑞3𝑒−𝑖𝜔∗20𝜏∗20) .
(80)

Then, we can compute the following values:

𝑐1 (0) = 𝑖2𝜔∗20𝜏∗20 (𝑔20𝑔11 − 2 𝑔112 − 𝑔0223 ) + 𝑔212 ,
𝜇 = −Re (𝑐1 (0))

Re𝜆 (𝜏∗20) ,𝛽 = 2Re (𝑐1 (0)) ,
𝑇 = − Im {𝑐1 (0)} + 𝜇2Im {𝜆 (𝜏∗20)}𝜔∗20𝜏∗20 .

(81)

This determine the properties of bifurcating periodic solu-
tions and the Hopf bifurcation at 𝜏 = 𝜏∗20. That is,

(i) 𝜇 determines the direction of the Hopf bifurcation.
Specifically, when 𝜇 > 0(< 0), the Hopf bifurcation
is supercritical (subcritical).

(ii) 𝛽 determines the stability of the bifurcating periodic
solutions; when 𝛽 < 0(> 0), the bifurcating periodic
solution is stable (unstable).

(iii) 𝑇 determines the period of the bifurcating periodic
solutions; when 𝑇 > 0(< 0), the period of bifurcating
periodic solution increases (decrease).

5. Numerical Simulations

Due to the complexity of model (1), we perform some numer-
ical simulations in this section to investigate further how
the delay influences dynamics in model (1). The following
parameter values are used 𝐼1 = 𝐼2 = 0.5, 𝑞1 = 𝑞2 = 0.001,

𝛼1 = 𝛼2 = 0.08, 𝛽1 = 0.3, and 𝑚 = 0.8. Other parameters are
chosen as control parameters.

According to the standard linear analysis, when 𝜏2 is equal
to zero, the analysis reveals that the 𝛽2 − 𝜏1 parameter plane
is divided into four parts (see Figure 1(a)). In Figure 1(a),
before 𝛽2 reaching black dashed line, there exists 𝜏10 in
model (1) such that the unique positive equilibrium loses
its stability when the condition, 𝜏1 > 𝜏10, holds. When
the locus of 𝛽2 is between black dashed line and green
dashed line, the stability switches for positive equilibrium
do not exist although (28) has two positive roots, which
means that there exists 𝜏10 in model (1) such that the
unique positive equilibrium loses its stability when the
condition, 𝜏1 > 𝜏10, holds. However, the stability switches
for positive equilibrium emerge when 𝛽2 is beyond green
dashed line but it does not reach blue zone. When the locus
of 𝛽2 is in blue zone, the unique positive equilibrium is
always stable, which suggests that 𝜏1 cannot influence the
stability of the positive equilibrium. When 𝜏1 equals zero,
the similar results for 𝛽2 − 𝜏2 parameter plane are shown
in Figure 1(b), but the sequence is reversed. Additionally,
according to results in Section 4, we calculate the values
of 𝜇, 𝛽, and 𝑇 at 𝜏1 = 𝜏10 with 𝛽2 ∈ (0, 0.3), and the
corresponding results are shown in Figure 1(c), where we
can find that the Hopf bifurcation is supercritical and the
bifurcating periodic solutions are stable; especially, the period
of the bifurcating periodic solutions increases as 𝛽2 increases.
For other cases of 𝜏1 and 𝜏2, the same procedures with
respect to calculations of 𝜇, 𝛽, and 𝑇 can be performed like
Figure 1(c).

As examples corresponding to stability of the positive
equilibrium with 𝛽2 = 0.2, taken 𝜏1 = 1 and 𝜏1 =3 in Figure 1(a), respectively, the corresponding numerical
solutions are shown in Figure 2. Obviously, the positive
equilibrium is stable because 𝜏1 = 1 is below 𝜏10 (see
Figure 2(a)). In contrast, due to 3 = 𝜏1 beyond 𝜏10, a periodic
solution exists (see Figure 2(b)). Furthermore, set 𝛽2 = 0.7,
then we have 𝜏01𝑎 ≈ 4.9050 < 𝜏01𝑏 ≈ 19.0615 < 𝜏11𝑎 ≈ 38.6683.
Taken 𝜏1 = 4, 𝜏1 = 18 and 𝜏1 = 21 in Figure 1(a), respectively,
the corresponding numerical solutions are shown in Figure 3.
Obviously, the positive equilibrium is stable when 𝜏1 = 4
and 𝜏1 = 21 (see Figures 3(a) and 3(c)), but the positive
equilibrium is unstable when 𝜏1 = 18 (see Figure 3(b)), which
means that the positive equilibrium can gain its stability again
for 𝜏1 > 𝜏10. In Figure 3, the same initial values are applied,
and other parameter values except for 𝜏1 are also identical.
Clearly, the delay is the principal factor giving rise to the
difference among (a), (b), and (c).

Numerical solutions in Figure 3 suggest that the stability
switches induced by delay may exist. Hence, the bifurcation
diagram in 𝜏1 − 𝜏2 parameter plane is given (see Figure 4(a)).
For case 𝜏2 = 0, there exists a 𝜏∗1 such that the positive
equilibrium with respect to 𝜏1 ∈ (0, 𝜏∗1 ) is stable. For case𝜏1 = 0, there exists a 𝜏∗2 such that the positive equilibrium
with respect to 𝜏2 ∈ (0, 𝜏∗2 ) is stable. Additionally, when𝜏2 ∈ (0, 𝜏∗2 ), Figure 4(a) shows that 𝜏10 exists such that the
positive equilibrium with respect to 𝜏1 ∈ (0, 𝜏10) is stable.
Likewise, when 𝜏1 ∈ (0, 𝜏∗1 ), Figure 4(a) also display that 𝜏20
exists such that the positive equilibrium with respect to 𝜏2 ∈
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Figure 1: (a) Bifurcation diagram with 𝜏2 = 0 corresponding to 𝜏1 V.S. 𝛽2, where solid, dashed, dash-dot, and dotted curves represent the
critical values of 𝜏1 in (30) for j = 0, 1, 2, 3, respectively, and the green dashed line denotes 𝛽2 = 0.417238. (b) Bifurcation diagram with𝜏1 = 0 corresponding to 𝜏2 V.S. 𝛽2, where solid, dashed, dash-dot, and dotted curves represent the critical values of 𝜏2 in (39) for j = 0, 1, 2, 3,
respectively, and the green dashed line denotes 𝛽2 = 0.21. (c) Examples for 𝜇, 𝛽, and T at 𝜏1 = 𝜏10 with respect to 𝛽2, where 𝜏2 = 0.
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Figure 2: Numerical solutions of model (1) with 𝜏2 = 0 and 𝛽2 = 0.2, (a) 𝜏1 = 1; (b) 𝜏1 = 3.
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Figure 3: Numerical solutions of model (1) with 𝜏2 = 0 and 𝛽2 = 0.7, (a) 𝜏1 = 4; (b) 𝜏1 = 18 (c) 𝜏1 = 21.
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Figure 4: (a) Bifurcation diagram with 𝛽2 = 0.7 for 𝜏1 V.S. 𝜏2, where the symbol “S” denotes stable and the symbol “US” denotes unstable;
(b) bifurcation diagram with 𝛽2 = 0.7 for the effect of 𝜏2 on nutrient-phytoplankton dynamics, where dashed line denotes unstable; solid line
denotes stable; the green solid square is Hopf bifurcation point, dot-dashed line corresponding to 𝜏∗2 in (a), blue line represents equilibrium,
and red line represents amplitude of periodic solutions. (c) Bifurcation diagram with 𝛽2 = 0.7 and 𝜏2 = 1, where the yellow solid square is
Hopf bifurcation point, the blue solid circle is bifurcation point for periodic-2 solution, the magenta zone indicates the existence of periodic-2
solutions, and the cyan solid diamond denotes the value of 𝜏1 for a phase and a time-series in the inner of (c). (d) A periodic-3 solution for
phytoplankton population, where 𝛽2 = 0.7, 𝜏1 = 100, and 𝜏2 = 2.
(0, 𝜏20) is stable. Significantly, Figure 4(a) demonstrates that
the stability switches for positive equilibrium with respect to𝜏1 emerge when 𝜏2 below 𝜏∗2 is fixed.

Figure 4(b) depicts the dependence of stability of positive
equilibrium on delay 𝜏2 in the fully nonlinear regime for 𝜏1 in
sequence [0, 2, 10, 30] and 𝜏1 = 𝜏2, which is consistent with
results in Figure 4(a). However, when 𝜏2 is fixed, Figure 4(c)
shows that the stability switches emerge with 𝜏1 increases.
Especially, periodic-2 solutions exist for some values of 𝜏2 (see
magenta zone in Figure 4(c)). As an example of periodic-2
solution existence, taking 𝜏1 = 41, a phase and a time-series
are given in the inner of Figure 4(c). Moreover, Figure 4(d)
shows that there exist periodic-3 solutions in model (1).
According to results in Section 2, the positive equilibrium is

globally asymptotically stable in themodel (1) without delay if
it exists. Obviously, the results shown in Figure 4 are induced
by delay.

In Figure 4(a), we can find that the number of intervals
corresponding to stability of positive equilibrium for small
values of 𝜏2 equals 3. However, when 𝜏2 is beyond dashed line
(𝜏∗∗2 ), the number of intervals is 2. So the number of intervals
for stability switches may be different for diverse 𝜏2. Accord-
ingly, we calculate the number of intervals with respect to
parameter 𝛽2, as shown in Figure 5(a). Figure 5(b) shows that
there exist 3 stable intervals when 𝛽2 = 0.7 and 𝜏2 = 0,
which is an example of Figure 5(a). Evidently, parameter 𝛽2
can remarkably influence the number of intervals for stability
of positive equilibrium.
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Figure 5: (a) The number of intervals for stability switches of positive equilibrium with respect to 𝛽2, where 𝜏2 = 0; (b) based on (a), an
example for comparison between results predicted by linear analysis and numerical results in the fully nonlinear regime with (𝛽2, 𝜏2) at(0, 0.7), where top panel represents numerical results for model (1) in the fully nonlinear regime; bottom panel depicts the results predicted
by linear analysis, and blue and red area denote stable and unstable, respectively.

6. Conclusions

In this paper we proposed a nitrogen-phosphorus-
phytoplankton model with multiple delays. The analysis
focused on the effect of delay on nutrient-phytoplankton
dynamics. In the absence of delay, theoretical analysis
indicated that the unique positive equilibrium is globally
asymptotically stable in model (1) if it exists. Deng et al. [48]
also studied a nitrogen-phosphorus-phytoplankton model
without delay, where Holling II function was employed to
describe the nutrient uptake dynamics of phytoplankton.
Although the function modelling the nutrient uptake
dynamics of phytoplankton is different, they get the same
results. These results mean that the nutrient-phytoplankton
ecosystem will approach the stable equilibrium. However, it
has been reported [18] that a constant population density may
not exist because of the existence of some factors including
noise, interval factors, and physical factors. And ecological
studies [49, 50] also criticized this idea of “the balance
of nature.” Actually, the existence of nutrient-plankton
oscillations has been detected by laboratory experiments and
field observation [19, 20]. Additionally, Benincà et al. [49]
present the first experimental demonstration of chaos in a
long-term experiment with a complex food web, where the
food web was consisted of bacteria, several phytoplankton
species, herbivorous and predatory zooplankton species, and
detritivores. And they also find that the community moved
back and forth between stabilizing and chaotic dynamics
during the cyclic succession, and their findings provide
a field demonstration of nonequilibrium coexistence of
competing species through a cyclic succession at the edge of
chaos [50]. These reports support that the nonequilibrium
dynamics, such as oscillations and chaos, can exist in reality.

In the present paper, we find that the unique positive equi-
libriummay lose its stability via Hopf bifurcation when delay

appears, and then a periodic solution emerges, which means
that nutrient-phytoplankton oscillation occurs. Obviously,
the factor giving rise to nutrient- phytoplankton oscillation
is delay in our studies. And the period and the stability of
the bifurcating periodic solutions with respect to delay are
discussed by using center manifold argument and normal
form theory. In fact, instability induced by delay in nutrient-
plankton model has been studied widely, and many studies
indicate that the equilibrium is always unstable when delay
is beyond a critical value [25, 29, 51, 52]. Yet, it should be
emphasized in the present paper that the stability switches
induced by delay can occur under some conditions.

Moreover, numerical simulations showed how the delay
influences nutrient-phytoplankton dynamics. Numerical
results for model (1) in the fully nonlinear regime are
consistent with the linear analysis. In numerical simulations,
we found that delay indeed gives rise to the emergence
of stability switches for the positive equilibrium. Yet, the
numerical results show that the parameter intervals for
stability switches may depend on other parameters as
well, e.g., 𝛽2. Additionally, numerical results also indicated
that periodic-2 solutions and periodic-3 solutions can
emerge under some conditions for delay, which means
that complex dynamics induced by delay exist in model
(1). From biological viewpoint, the existence of periodic
solutions implies that the fluctuations exist in density of
phytoplankton population; that is, nutrient-phytoplankton
oscillation emerges. Especially, by Li and York’s theory,
periodic-3 solution implies chaos, which means that chaotic
density fluctuations can display a variety of different
periodicities and the long-term prediction of phytoplankton
density can be fundamentally impossible.The chaotic density
fluctuations donot contribute to the control of phytoplankton
bloom. Consequently, the importance of the present paper
is not the precision with which it predicts specific events for
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phytoplankton blooms but its contribution to the studies on
how the delay influences nutrient-phytoplankton dynamics.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

This work was supported by the Zhejiang Provincial Natural
Science Foundation of China under Grant no. LQ18C030002,
the National Natural Science Foundation of China (Grant
nos. 61871293, 31570364, and 41876124), and the Zhejiang
Provincial Natural Science Foundation of China under Grant
no. LY16B070008.

References

[1] J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M.
Verspagen, and P. M. Visser, “Cyanobacterial blooms,” Nature
Reviews Microbiology, vol. 16, no. 8, pp. 471–483, 2018.

[2] A. Burson, M. Stomp, E. Greenwell, J. Grosse, and J. Huisman,
“Competition for nutrients and light: Testing advances in
resource competition with a natural phytoplankton commu-
nity,” Ecology, vol. 99, no. 5, pp. 1108–1118, 2018.

[3] M. Stomp, J. Huisman, F. De Jongh, A. J. Veraart, D. Gerla, M.
Rijkeboer et al., “Adaptive divergence in pigment composition
promotes phytoplankton biodiversity,” Nature, vol. 432, no.
7013, pp. 104–107, 2004.

[4] Z. Ma, T. Fang, R. W. Thring et al., “Toxic and non-toxic
strains of Microcystis aeruginosa induce temperature depen-
dent allelopathy toward growth and photosynthesis of Chlorella
vulgaris,” Harmful Algae, vol. 48, pp. 21–29, 2015.

[5] P. W. Boyd, A. J. Watson, C. S. Law et al., “A mesoscale
phytoplankton bloom in the polar Southern Ocean stimulated
by iron fertilization,” Nature, vol. 407, no. 6805, pp. 695–702,
2000.

[6] Z. Ma, H. Yu, R. Thring, C. Dai, A. Shen, and M. Zhao,
“Interaction between simulated dense Scenedesmus dimorphus
(Chlorophyta) bloom and freshwater meta-zooplankton com-
munity,” Journal of Limnology, vol. 77, no. 2, pp. 255–263, 2018.

[7] G. Rhee and I. J. Gotham, “The effect of environmental factors
on phytoplankton growth: Temperature and the interactions of
temperature with nutrient limitation,” Limnology and Oceanog-
raphy, vol. 26, no. 4, pp. 635–648, 1981.

[8] V. H. Smith, “Low nitrogen to phosphorus ratios favor domi-
nance by blue-green algae in lake phytoplankton,” Science, vol.
221, no. 4611, pp. 669–671, 1983.

[9] J. A. Downing and E. McCauley, “The nitrogen: Phosphorus
relationship in lakes,” Limnology and Oceanography, vol. 37, no.
5, pp. 936–945, 1992.

[10] H. Xu, H. W. Paerl, B. Qin, G. Zhu, and G. Gao, “Nitrogen and
phosphorus inputs control phytoplankton growth in eutrophic
Lake Taihu, China,” Limnology and Oceanography, vol. 55, no. 1,
pp. 420–432, 2010.

[11] J. H. Ryther and W. M. Dunstan, “Nitrogen, phosphorus, and
eutrophication in the coastal marine environment,” Science, vol.
171, no. 3975, pp. 1008–1013, 1971.

[12] J. E. Truscott and J. Brindley, “Ocean plankton populations as
excitable media,” Bulletin of Mathematical Biology, vol. 56, no.
5, pp. 981–998, 1994.

[13] J. A. Freund, S. Mieruch, B. Scholze, K. Wiltshire, and U.
Feudel, “Bloomdynamics in a seasonally forced phytoplankton-
zooplankton model: Trigger mechanisms and timing effects,”
Ecological Complexity, vol. 3, no. 2, pp. 129–139, 2006.

[14] T. Zhang and W. Wang, “Hopf bifurcation and bistability of
a nutrient-phytoplankton-zooplankton model,” Applied Math-
ematical Modelling, vol. 36, no. 12, pp. 6225–6235, 2012.

[15] A. Huppert, B. Blasius, and L. Stone, “Amodel of phytoplankton
blooms,” The American Naturalist, vol. 159, no. 2, pp. 156–171,
2002.

[16] H. Ishii and I. Takagi, “Global stability of stationary solutions
to a nonlinear diffusion equation in phytoplankton dynamics,”
Journal of Mathematical Biology, vol. 16, no. 1, pp. 1–24, 1982.

[17] A. Fan, P. Han, and K. Wang, “Global dynamics of a nutrient-
plankton system in the water ecosystem,” Applied Mathematics
and Computation, vol. 219, no. 15, pp. 8269–8276, 2013.

[18] J. A. Sherratt andM. J. Smith, “Periodic travellingwaves in cyclic
populations: Field studies and reaction-diffusionmodels,” Jour-
nal of the Royal Society Interface, vol. 5, no. 22, pp. 483–505,
2008.

[19] G. F. Fussmann, S. P. Ellner, K. W. Shertzer, and N. G. Hairston
Jr., “Crossing the hopf bifurcation in a live predator-prey
system,” Science, vol. 290, no. 5495, pp. 1358–1360, 2000.

[20] J. Huisman, N. N. Pham Thi, D. M. Karl, and B. Sommei-
jer, “Reduced mixing generates oscillations and chaos in the
oceanic deep chlorophyll maximum,”Nature, vol. 439, no. 7074,
pp. 322–325, 2006.

[21] Y. Li, Y. Liu, L. Zhao, A. Hastings, and H. Guo, “Exploring
change of internal nutrients cycling in a shallow lake:Adynamic
nutrient driven phytoplankton model,” Ecological Modelling,
vol. 313, pp. 137–148, 2015.

[22] B. Liu,H. E. de Swart, andV.N. de Jonge, “Phytoplankton bloom
dynamics in turbid, well-mixed estuaries: A model study,”
Estuarine, Coastal and Shelf Science, vol. 211, pp. 137–151, 2018.

[23] S. G. Ruan, “Persistence and coexistence in zooplankton-
phytoplankton-nutrient models with instantaneous nutrient
recycling,” Journal of Mathematical Biology, vol. 31, no. 6, pp.
633–654, 1993.

[24] J. Caperon, “Time lag in population growth response of isochry-
sis galbana to a variable nitrate environment,” Ecology, vol. 50,
no. 2, pp. 188–192, 1969.

[25] J. Zhao and J. Wei, “Dynamics in a diffusive plankton system
with delay and toxic substances effect,”Nonlinear Analysis: Real
World Applications, vol. 22, pp. 66–83, 2015.

[26] S. Ruan and X.-Q. Zhao, “Persistence and extinction in two
species reaction-diffusion systems with delays,” Journal of Dif-
ferential Equations, vol. 156, no. 1, pp. 71–92, 1999.

[27] Y. Wang, W. Jiang, and H. Wang, “Stability and global Hopf
bifurcation in toxic phytoplankton-zooplankton model with
delay and selective harvesting,”Nonlinear Dynamics, vol. 73, no.
1-2, pp. 881–896, 2013.

[28] C.Dai,M. Zhao, H. Yu, andY.Wang, “Delay-induced instability
in a nutrient-phytoplankton system with flow,” Physical Review
E: Statistical, Nonlinear, and SoftMatter Physics, vol. 91, no. 3, p.
032929, 2015.



16 Complexity

[29] C. Dai, M. Zhao, and H. Yu, “Dynamics induced by delay
in a nutrient-phytoplankton model with diffusion,” Ecological
Complexity, vol. 26, pp. 29–36, 2016.

[30] K. Chakraborty, K. Das, and T. K. Kar, “Modeling and analysis
of a marine plankton system with nutrient recycling and
diffusion,” Complexity, vol. 21, no. 1, pp. 229–241, 2015.

[31] V. Volterra, Lecons Sur La Théorie Mathématique De La Lutte
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In this paper, the stability of travelingwave solutions to the Lotka-Volterra diffusivemodel is investigated. First, we convert themodel
into a cooperative system by a special transformation. The local and the global stability of the traveling wavefronts are studied in a
weighted functional space. For the global stability, comparison principle together with the squeezing technique is applied to derive
the main results.

1. Introduction

We are concerned here with the diffusive Lotka-Volterra
competition model𝜙𝑡 = 𝑑1𝜙𝑥𝑥 + 𝑟1𝜙 (1 − 𝑏1𝜙 − 𝑎1𝜓) ,𝜓𝑡 = 𝑑2𝜓𝑥𝑥 + 𝑟2𝜓 (1 − 𝑎2𝜙 − 𝑏2𝜓) , (1)

with the initial data𝜙 (𝑥, 0) = 𝜙0 (𝑥) ≥ 0,𝜓 (𝑥, 0) = 𝜓0 (𝑥) ≥ 0,∀𝑥 ∈ R. (2)

Here 𝜙(𝑥, 𝑡) and 𝜓(𝑥, 𝑡) are the population densities at time𝑡 and location 𝑥; 𝑑1 and 𝑑2 are the diffusive coefficients; 𝑟1
and 𝑟2 are the net birth rates; 𝑎1 and 𝑎2 are the competition
coefficients; 1/𝑏1 and 1/𝑏2 are the carrying capacities for each
species. For derivation and biological interpretation of this
model, we refer readers to [1, 2].

Using the transformations

√ 𝑟1𝑑1𝑥 → 𝑥,
𝑟1𝑡 → 𝑡,

𝑏1𝜙 (𝑥, 𝑡) = 𝜙 (𝑥, 𝑡) ,𝑏2𝜓 (𝑥, 𝑡) = �̃� (𝑥, 𝑡) ,
𝑑 = 𝑑2𝑑1 ,𝑟 = 𝑟2𝑟1 ,𝑎1𝑏2 → 𝑎1,𝑎2𝑏1 → 𝑎2,

(3)
the nondimensional form of the system becomes𝜙𝑡 = 𝜙𝑥𝑥 + 𝜙 (1 − 𝜙 − 𝑎1�̃�) ,�̃�𝑡 = 𝑑�̃�𝑥𝑥 + 𝑟�̃� (1 − 𝑎2𝜙 − �̃�) . (4)

By letting 𝑢 = 𝜙, V = 1 − �̃�, this model can be further written
as a cooperative system𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢 (1 − 𝑎1 − 𝑢 + 𝑎1V) ,

V𝑡 = 𝑑V𝑥𝑥 + 𝑟 (1 − V) (𝑎2𝑢 − V) , (5)
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with 𝑢 (𝑥, 0) = 𝑢0 (𝑥) = 𝜙 (𝑥, 0) ,
V (𝑥, 0) = V0 (𝑥) = 1 − �̃� (𝑥, 0) ,∀𝑥 ∈ R. (6)

For our study, we will assume that 𝑢0(𝑥) and V0(𝑥) are
nonnegative. The existence and uniqueness of the solution
of the above problem can be easily verified by a classical
argument of Picard’s iteration. Throughout this paper, we
assume that the condition0 < 𝑎1 < 1 < 𝑎2 (C1)
is satisfied. Under this condition, equilibria to system (5) in
the region {(𝑢, V) | 0 ≤ 𝑢 ≤ 1, 0 ≤ V ≤ 1} are only (0, 0), (0, 1),
and (1, 1). In the absence of diffusion in the system (5), it can
be shown that (0, 0) is unstable and (1, 1) is stable. For the
system, we are particularly interested in the traveling wave
solution, connecting (1, 1) and (0, 0), in the form(𝑢, V) (𝑥, 𝑡) = (𝑈,𝑉) (𝑧) , (7)

where 𝑧 = 𝑥 − 𝑐𝑡 is the wave variable, 𝑐 ≥ 0 is the wave speed,
and (𝑈, 𝑉) is called the wavefront and satisfies0 = 𝑈𝑧𝑧 + 𝑐𝑈𝑧 + 𝑈 (1 − 𝑎1 − 𝑈 + 𝑎1𝑉) ,0 = 𝑑𝑉𝑧𝑧 + 𝑐𝑉𝑧 + 𝑟 (1 − 𝑉) (𝑎2𝑈 − 𝑉) , (8)

subject to (𝑈, 𝑉) (−∞) = (1, 1) ,(𝑈, 𝑉) (∞) = (0, 0) . (9)

This is equivalent to studying traveling waves for the original
competition system (4) that connect the boundary equilibria(0, 1) and (1, 0).

The existence of traveling waves to the above problem is
well-studied in literature. It is known that there exists 𝑐∗ ≥ 0
so that problem (8)-(9) has a monotone solution (𝑈, 𝑉)(𝑧)
for 𝑐 ≥ 𝑐∗ and no wavefront exists for 𝑐 < 𝑐∗; see [3–6]. 𝑐∗
is called the minimal wave speed for this system and satisfies𝑐∗ ≥ 2√1 − 𝑎1. When 𝑐∗ = 2√1 − 𝑎1, we say that the minimal
wave speed is linearly determined; see the details in [4].

We know that (𝑈,𝑉)(𝑥 − 𝑐𝑡) is a special pattern that only
satisfies the first two equations in (5). For the stability of
this pattern, we want to know if the solution of (5) tends to(𝑈,𝑉)(𝑥 − 𝑐𝑡) for given initial data 𝑢0(𝑥) and V0(𝑥). To this
end, we use the (𝑧, 𝑡)-coordinate and(𝑢, V) (𝑥, 𝑡) = (𝑈,𝑉) (𝑧, 𝑡) , (10)

to transform the 𝑢V-model (5) into the partial differential
model 𝑈𝑡 = 𝑈𝑧𝑧 + 𝑐𝑈𝑧 + 𝑈 (1 − 𝑎1 − 𝑈 + 𝑎1𝑉) ,𝑉𝑡 = 𝑑𝑉𝑧𝑧 + 𝑐𝑉𝑧 + 𝑟 (1 − 𝑉) (𝑎2𝑈 − 𝑉) , (11)

subject to 𝑈 (𝑧, 0) = 𝑢0 (𝑧) ,𝑉 (𝑧, 0) = V0 (𝑧) ,∀𝑧 ∈ R. (12)

It is easy to see that (𝑈, 𝑉)(𝑧) is the steady-state to the above
new system.

We should mention that dynamics for (4) is very rich.
There are always three nonnegative equilibria (0, 0), (1, 0),
and (0, 1). In the case when 𝑎1 < 1, 𝑎2 < 1, or the case when𝑎1 > 1, 𝑎2 > 1, there exists a unique positive coexistence
equilibrium

(𝜙∗, �̃�∗) = ( 1 − 𝑎11 − 𝑎1𝑎2 , 1 − 𝑎21 − 𝑎1𝑎2) . (13)

Based on the phase plane analysis to the ordinary differential
system of (4) without diffusion terms, the nonlinearity of the
model (4) when 𝑎1 < 1 and 𝑎2 < 1 is called the persistence
case (or coexistence). Likewise, the nonlinearity is called the
monostable case when 𝑎1 < 1 and 𝑎2 > 1 are satisfied, or
the bistable case when 𝑎1 > 1 and 𝑎2 > 1. Traveling waves
to (4) have been investigated considerably. For the bistable
case, please see [7, 8] for the existence of traveling waves
connecting (1, 0) and (0, 1), and [9] for the uniqueness and
parameter dependence of wave speeds. For the monostable
case, we refer to [3, 10] for the existence of traveling waves,
and [11, 12] for the selection of the minimal speed. For
the persistence (coexistence), the existence of traveling wave
connecting (0, 0) and (𝜙∗, �̃�∗) has been studied in [13, 14].
When time delays are incorporated into (4) in the persistence
case, Li et al. [15] and Gourley and Ruan [16] have proved the
existence of traveling waves.

The stability of traveling waves to a scalar partial dif-
ferential equation has been well-studied, e.g., [17–27], the
monograph [6, 28] and the survey paper [29]. Indeed, the
extension of this study to a general system is not trivial. As
we know, when time delays are directly incorporated in the
competition terms in (4), the system becomes nonmonotone
and the comparison principle cannot work. Alternatively, in
[30, 31], the authors studied the stability of traveling waves for
the so-called cooperative delayed reaction diffusion system
by changing the signs of 𝑎1 and 𝑎2. To be exact, with putting
delay = 0, they studied the cooperative system𝜙𝑡 = 𝑑1𝜙𝑥𝑥 + 𝑟1𝜙 (1 − �̂�1𝜙 + 𝑎1𝜓) ,𝜓𝑡 = 𝑑2𝜓𝑥𝑥 + 𝑟2𝜓 (1 + 𝑎2𝜙 − �̂�2𝜓) , (14)

where 𝑑𝑖, 𝑟𝑖, 𝑎𝑖, and �̂�𝑖 are all positive. This corresponds to the
persistence case in our model (4). Under the condition �̂�1�̂�2 −𝑎1𝑎2 > 0, a positive equilibrium

(𝜙+, 𝜓+) = ( 𝑎1 + �̂�2�̂�1�̂�2 − 𝑎1𝑎2 , �̂�1 + 𝑎2�̂�1�̂�2 − 𝑎1𝑎2) (15)

exists. They proved that the traveling wave fronts, connecting(0, 0) and (𝜙+, 𝜓+), are exponentially stable in some weighted
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𝐿∞ spaces, and obtained the decay rates by the weighted
energy estimate.

Despite the success in the study of the stability of
traveling waves to the classical model (4) in the bistable
and persistence cases, the stability of traveling wave in the
monostable remains still unsolved. The purpose of this paper
is to systematically study the local and the global stability
of the steady-state (𝑈, 𝑉)(𝑧). Using the method of spectrum
analysis in [32], we give the local stability. For the global
stability, we construct an upper and a lower solutions to the
system (11), and prove their convergence to the traveling wave(𝑈,𝑉)(𝑧). In view of comparison together with the squeezing
technique, we arrive at new results on the global stability of
the traveling waves. We remark that our method is different
from that in [30, 31] where weighted energy method was
applied.

The rest of the paper is organized as follows. Local
analysis of the wave profile near the unstable point is studied
in Section 2. In Section 3, we study the local stability of
the steady-state by applying the standard linearization. The
resulting spectrum problem is studied by the method in [32].
A suitable weighted functional space is chosen to proceed
the analysis. In Section 4, besides the weighted functional
space, the upper-lower solution method together with the
squeezing technique is applied to derive the global stability
results. Conclusions are presented in Section 5.

2. The Local Analysis of the Wave Profile Near
the Equilibrium (0, 0)

In this section, we study the behavior of the traveling wave(𝑈,𝑉)(𝑧) locally near the equilibrium (0, 0). Assume that the
solution has exponential decay as 𝑧 → ∞. Indeed this claim
can be easily verified by themaximum principal coupled with
a comparison near the neighborhood of infinity. Therefore,
we set (𝑈, 𝑉) (𝑧) ∼ (𝜁1𝑒−𝜇𝑧, 𝜁2𝑒−𝜇𝑧) as 𝑧 → ∞, (16)

for positive constants 𝜁1, 𝜁2, and 𝜇. By substituting this into
(8) and linearizing the equations we have

𝐴 (𝜇)(𝜁1𝜁2) = (00) , (17)

where 𝐴(𝜇) is given by

𝐴 (𝜇) = (𝜇2 − 𝑐𝜇 + 1 − 𝑎1 0𝑟𝑎2 𝑑𝜇2 − 𝑐𝜇 − 𝑟) . (18)

The system of algebraic equations (17) has a nontrivial
solution if and only if det(𝐴) = 0. This implies 𝜇 = 𝜇1,2,3 > 0,
where

𝜇1 (𝑐) = 𝑐 − √𝑐2 − 4 (1 − 𝑎1)2 ,
𝜇2 (𝑐) = 𝑐 + √𝑐2 − 4 (1 − 𝑎1)2 ,

(19)

and

𝜇3 (𝑐) = 𝑐 + √𝑐2 + 4𝑑𝑟2𝑑 . (20)

Indeed, a condition so that 𝜇1 and 𝜇2 are reals is𝑐 ≥ 2√1 − 𝑎1 fl 𝑐0. (21)

For 𝑐 > 𝑐0, obviously 𝜇1 < 𝜇2. When 0 ≤ 𝑑 < 1,
we have also 𝜇2 < 𝜇3 for all 𝑐 > 𝑐0, i.e., 𝑒−𝜇1𝑧 dominates
both of 𝑒−𝜇2𝑧 and 𝑒−𝜇3𝑧. In this case, the eigenvector of 𝐴(𝜇)
corresponding to 𝜇𝑖, for 𝑖 = 1, 2, is the strongly positive vector(𝜁1(𝜇𝑖) 𝜁2(𝜇𝑖))𝑇, where𝜁1 (𝜇𝑖) = − (𝑑𝜇2𝑖 − 𝑐𝜇𝑖 − 𝑟)

and 𝜁2 (𝜇𝑖) = 𝑟𝑎2. (22)

It follows that

(𝑈 (𝑧)𝑉 (𝑧)) = 𝐶1 (𝜁1 (𝜇1)𝜁2 (𝜇1)) 𝑒−𝜇1𝑧 + 𝐶2 (𝜁1 (𝜇2)𝜁2 (𝜇2)) 𝑒−𝜇2𝑧,
as 𝑧 → ∞, (23)

for 𝐶1 > 0 or 𝐶1 = 0, 𝐶2 > 0. For the case when1 < 𝑑 < 2 + 𝑟1 − 𝑎1 fl 𝑑, (24)

the same behavior in (23) is still true if 𝑐∗ < 𝑐 ≤ 𝑐, where
𝑐 = √ 𝑟 + 1 − 𝑎1𝑑 − 1 + (1 − 𝑎1)√ 𝑑 − 1𝑟 + 1 − 𝑎1 . (25)

If 𝑐 > 𝑐, then 𝜇1 < 𝜇3 < 𝜇2 and we have

(𝑈 (𝑧)𝑉 (𝑧)) = 𝐶1 (𝜁1 (𝜇1)𝜁2 (𝜇1)) 𝑒−𝜇1𝑧
+ 𝐶2 (−𝜁1 (𝜇2)−𝜁2 (𝜇2)) 𝑒−𝜇2𝑧 + 𝐶3 (01) 𝑒−𝜇3𝑧,

as 𝑧 → ∞,
(26)

for𝐶1 > 0 or𝐶1 = 0,𝐶2,3 > 0. Here, (0 1)𝑇 is the eigenvector
of 𝐴(𝜇) corresponding to 𝜇3, and note that 𝜁1(𝜇2) < 0 in this
case. On the other hand, when𝑑 > 𝑑, (27)(𝑈, 𝑉)(𝑧) behaves like (26) if 𝑐 > 𝑐. For the case when 𝑐∗ <𝑐 < 𝑐, we have 𝜇3 < 𝜇1 < 𝜇2. Hence,
(𝑈 (𝑧)𝑉 (𝑧)) = 𝐶1 (−𝜁1 (𝜇1)−𝜁2 (𝜇1)) 𝑒−𝜇1𝑧

+ 𝐶2 (−𝜁1 (𝜇2)−𝜁2 (𝜇2)) 𝑒−𝜇2𝑧 + 𝐶3 (01) 𝑒−𝜇3𝑧,
as 𝑧 → ∞,

(28)

for 𝐶1,3 > 0, or 𝐶1 = 0, 𝐶2,3 > 0. We summarize the above
behaviors in Table 1.
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Table 1: The asymptotic behavior of the wave profile (𝑈, 𝑉) near
infinity.

Condition on 𝑑 Condition on 𝑐 The asymptotic behavior0 ≤ 𝑑 < 1 𝑐 > 𝑐∗ (23)1 < 𝑑 < 𝑑 𝑐∗ < 𝑐 < 𝑐 (23)1 < 𝑑 𝑐 > 𝑐 (26)𝑑 > 𝑑 𝑐∗ < 𝑐 < 𝑐 (28)

Kan-on in [3] derived the asymptotic behaviors of(𝑈,𝑉)(𝑧) near infinity when 𝑐 ≥ 𝑐∗. After deriving the
behavior of 𝑈(𝑧), he used it into the 𝑉-equation to find the
behavior of 𝑉(𝑧) when 𝜇1 ≤ 𝜇2 ≤ 𝜇3 and when 𝜇3 ≤ 𝜇1 ≤ 𝜇2.
Our result here agreeswith that in [3] when 𝑐 > 𝑐∗.We further
study the case when 𝜇1 < 𝜇3 < 𝜇2.

Finally, we have the asymptotic behavior for the solution𝑈(𝑧) when the wave speed is greater than the minimal speed𝑐∗.
Theorem 1. For 𝑐 > 𝑐∗, the wavefront 𝑈 has the following
behavior: 𝑈 (𝑧) ∼ 𝐶1𝑒−𝜇1𝑧, as 𝑧 → ∞ (29)

for some 𝐶1 > 0.
Proof. On the contrary, assume that for some 𝑐1 > 𝑐∗, the
wavefront 𝑈 has the following behavior:𝑈 (𝑧) ∼ 𝐶2𝑒−𝜇2𝑧, as 𝑧 → ∞ (30)

for some𝐶2 > 0. By this assumption, it follows that (𝑈, 𝑉)(𝑥−𝑐1𝑡) is a solution to the following partial differential equation:𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢 (1 − 𝑎1 − 𝑢 + 𝑎1V) ,
V𝑡 = 𝑑V𝑥𝑥 + 𝑟 (1 − V) (𝑎2𝑢 − V) , (31)

with the initial conditions𝑢 (𝑥, 0) = 𝑈 (𝑥)
and V (𝑥, 0) = 𝑉 (𝑥) . (32)

We know that there exists a monotonic traveling wavefront to
the system (31) for any 𝑐 ≥ 𝑐∗. In particular, assume (𝑈,𝑉)(𝑥−𝑐𝑡) is a solution for some 𝑐 ∈ (𝑐∗, 𝑐1)with the initial condition𝑢 (𝑥, 0) = 𝑈 (𝑥)

and V (𝑥, 0) = 𝑉 (𝑥) . (33)

By a simple computation of the asymptotic behavior of this
solution to (8)-(9) near ±∞, we can always obtain (by shifting
if necessary) 𝑈(𝑥) ≤ 𝑈(𝑥) for all 𝑥 ∈ (−∞,∞). From the
second equation of (8), we have 𝑉(𝑥) ≤ 𝑉(𝑥) for all 𝑥 ∈(−∞,∞). From (31), by comparison, we get𝑈 (𝑥 − 𝑐1𝑡) ≤ 𝑈 (𝑥 − 𝑐𝑡) ,𝑉 (𝑥 − 𝑐1𝑡) ≤ 𝑉 (𝑥 − 𝑐𝑡) , (34)

for all (𝑥, 𝑡) ∈ (R,R+). On the other hand, fix 𝜉 = 𝑥 − 𝑐1𝑡.
Then 𝑈(𝜉) > 0 is fixed, and we have𝑈 (𝑥 − 𝑐𝑡) = 𝑈 (𝜉 + (𝑐1 − 𝑐) 𝑡) ∼ 𝑈 (+∞) = 0

as 𝑡 → ∞. (35)

By (34), this implies that 𝑈(𝜉) ≤ 0, which is a contradiction.
The proof is complete.

3. The Local Stability

To study the local stability, as usual, we add a small per-
turbation to the traveling wave and study the behavior of
this perturbation for large time period. If this perturbation
decays, then we say that the traveling wave is locally stable.
For 𝛿 ≪ 1 and a parameter 𝜆, let𝑈 (𝑧, 𝑡) = 𝑈 (𝑧) + 𝛿𝜙1 (𝑧) 𝑒𝜆𝑡,𝑉 (𝑧, 𝑡) = 𝑉 (𝑧) + 𝛿𝜙2 (𝑧) 𝑒𝜆𝑡, (36)

where 𝜙1 and 𝜙2 are two real functions. Substitute these
formulas into (11) and linearize the system about (𝑈, 𝑉) to get
the following spectrum problem:𝜆Φ =LΦ fl 𝐷Φ + 𝑐Φ + 𝐽 (𝑧)Φ, (37)

whereΦ = (𝜙1 𝜙2)𝑇, 𝐷 and 𝐽(𝑧) are 2 × 2matrices given by

𝐷 = (1 00 𝑑)
and 𝐽 (𝑧)
= (1 − 𝑎1 − 2𝑈 + 𝑎1𝑉 𝑎1𝑈𝑟𝑎2 (1 − 𝑉) 𝑟 (−1 − 𝑎2𝑈 + 2𝑉)) .

(38)

ForΦ in a suitable space, we shall find sign of themaximal
real part to the spectrum (𝜆) of the operatorL to determine
the local stability of the traveling wave solution. To proceed,
we introduce a weighted functional space 𝐿𝑝𝑤,𝐿𝑝𝑤 = {𝑓 (𝑧) : 𝑤 (𝑧) 𝑓 (𝑧) ∈ 𝐿𝑝 (R) , 𝑝 ≥ 1} (39)

with the norm𝑓 (𝑧)𝐿𝑝𝑤 = (∫∞−∞𝑤 (𝑧) 𝑓 (𝑧)𝑝 𝑑𝑧)1/𝑝 , (40)

where 𝑤 (𝑧) = ( 1𝑤1 (𝑧) , 1𝑤2 (𝑧)) (41)

is the weight function with

𝑤1 (𝑧) = {{{
𝑒−𝛼(𝑧−𝑧0), 𝑧 > 𝑧01, 𝑧 ≤ 𝑧0,

𝑤2 (𝑧) = {{{
𝑒−𝛽(𝑧−𝑧0), 𝑧 > 𝑧01, 𝑧 ≤ 𝑧0,

(42)
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for some positive constants 𝛼, 𝛽, and 𝑧0 to be chosen. Here,𝐿𝑝(R), for 𝑝 ≥ 1, is the well-known Lebesgue space of
integrable functions defined on R. Then we consider the
operator L on this new space and find its spectrum. To do
this, we write Φ(𝑧) in the form

Φ = (𝜙1𝜙2) = (𝑤1𝜓1𝑤2𝜓2) , (43)

for 𝐿𝑝-functions 𝜓1 and 𝜓2. Substituting (43) into (37)
gives a new spectrum problem in the weighted space𝐿𝑝𝑤, 𝜆Ψ =L𝑤Ψ fl 𝐷Ψ +𝑀 (𝑧)Ψ + 𝑁 (𝑧)Ψ, (44)

where Ψ = (𝜓1 𝜓2)𝑇, 𝑀(𝑧) and 𝑁(𝑧) are 2 × 2 matrices
defined by

𝑀(𝑧) = (𝑐 + 2𝑤1𝑤1 0
0 𝑐 + 2𝑑𝑤2𝑤2) (45)

and

𝑁(𝑧) = (𝑤1𝑤1 + 𝑐𝑤1𝑤1 0
0 𝑑𝑤2𝑤2 + 𝑐𝑤2𝑤2)+𝑌 (𝑧) , (46)

with the 𝑖𝑘-element of the matrix 𝑌(𝑧), 𝑦𝑖𝑘, being given in
terms of the 𝑖𝑘-element of the matrix 𝐽(𝑧) as 𝑦𝑖𝑘 = (𝑤𝑘/𝑤𝑖)𝑗𝑖𝑘;
that is,

𝑁(𝑧) = (𝑤1𝑤1 + 𝑐𝑤1𝑤1 + 1 − 𝑎1 − 2𝑈 + 𝑎1𝑉 𝑎1𝑈𝑤2𝑤1𝑟𝑎2 (1 − 𝑉) 𝑤1𝑤2 𝑑𝑤2𝑤2 + 𝑐𝑤2𝑤2 + 𝑟 (−1 − 𝑎2𝑈 + 2𝑉)) . (47)

The details to find the essential spectrum of the operator
L𝑤 can be finalized by using Theorem A.2 in [32] and are
given below. After we choose the weight function so that
the essential spectrum is on the left-half complex plane, we
can determine the sign of the maximal real part of the point
spectrum in the weighted space as well.

First of all, to apply the method in [32], we need to choose𝛼 and 𝛽 so that the matrix functions 𝑀(𝑧) and 𝑁(𝑧) are
bounded; i.e., the limits

lim
𝑧→∞

𝑈 (𝑧) 𝑤2 (𝑧)𝑤1 (𝑧) = 𝐴1
and lim
𝑧→∞

(1 − 𝑉 (𝑧)) 𝑤1 (𝑧)𝑤2 (𝑧) = 𝐴2,
(48)

for some constants 𝐴1 and 𝐴2, are satisfied. We choose𝛼 − 𝜇1 < 𝛽 ≤ 𝛼, (49)

where 𝜇1 is defined in (19). This makes, by using Theorem 1,𝐴1 = 0 and
𝐴2 = {{{

0 when 𝛽 < 𝛼,1 when 𝛽 = 𝛼. (50)

Now, we define𝑆± fl {𝜆 | det (−𝜏2𝐷 + 𝑖𝜏𝑀± + 𝑁± − 𝜆𝐼) = 0, −∞< 𝜏 < ∞} , (51)

where𝑀± and 𝑁± are the limits of𝑀(𝑧) and 𝑁(𝑧) as 𝑧 →±∞, respectively.Then the essential spectrum of the operator

L𝑤 is contained in the union of regions inside or on the
curves 𝑆+ and 𝑆−; see [32, pp. 140]. By letting 𝑧 → +∞,𝑀+,
and𝑁+ are given as (taking condition (49) into account)

𝑀+ = (𝑐 − 2𝛼 00 𝑐 − 2𝑑𝛽)
and 𝑁+ = (𝛼2 − 𝑐𝛼 + 1 − 𝑎1 0𝐴2 𝑑𝛽2 − 𝑐𝛽 − 𝑟) .

(52)

The equation det(−𝜏2𝐷 + 𝑖𝜏𝑀+ + 𝑁+ − 𝜆𝐼) = 0 has two
solutions 𝜆 = 𝜆1,2, where𝜆1 = −𝜏2 + 𝑖𝜏 (𝑐 − 2𝛼) + 𝛼2 − 𝑐𝛼 + 1 − 𝑎1,𝜆2 = −𝜏2𝑑 + 𝑖𝜏 (𝑐 − 2𝑑𝛽) + 𝑑𝛽2 − 𝑐𝛽 − 𝑟. (53)

This means that 𝑆+ is the union of two parabolas in the
complex plane which are symmetric about the real axis;
namely, 𝑆+,1 = {𝜆1 | −∞ < 𝜏 < ∞} and𝑆+,2 = {𝜆2 | −∞ < 𝜏 < ∞} . (54)

Themost right points of these curves are 𝛼2 − 𝑐𝛼+ 1 − 𝑎1 and𝑑𝛽2 − 𝑐𝛽 − 𝑟, respectively, which are negative if𝛼 ∈ (𝜇1, 𝜇2) and𝛽 ∈ (0, 𝜇3) , (55)

where𝜇1, 𝜇2, and 𝜇3 are defined in (19)-(20). Hence, when the
above condition satisfies, 𝑆+ = 𝑆+,1 ∪ 𝑆+,2 is on the left-half
complex plane.
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Similarly, we find 𝑆− by solving the equation det(−𝜏2𝐷 +𝑖𝜏𝑀− + 𝑁− − 𝜆𝐼) = 0, with
𝑀− = (𝑐 00 𝑐) and

𝑁− = (−1 𝑎10 𝑟 (1 − 𝑎2)) .
(56)

This gives two solutions 𝜆 = 𝜆3,4, where𝜆3 = −𝜏2 + 𝑖𝜏𝑐 − 1,𝜆4 = −𝜏2𝑑 + 𝑖𝜏𝑐 + 𝑟 (1 − 𝑎2) . (57)

From (C1), 𝑆− = {𝜆3 | −∞ < 𝜏 < ∞} ∪ {𝜆4 | −∞ < 𝜏 < ∞}
is on the left-half complex plane.

The above analysis shows that the essential spectrum of
L𝑤 is on the left-half complex plane as long as conditions
(49) and (55) are satisfied. In fact, there are many choices of𝛼 and 𝛽 satisfying these conditions depending on 𝜇1, 𝜇2, and𝜇3. We choose them by the following algorithm.

Algorithm 2. Twomechanisms are valid to choose 𝛼 and 𝛽 so
that all conditions in (49) and (55) hold:

(1) If 𝜇1 < 𝜇3, then we choose 𝛽 = 𝛼 for any 𝛼 ∈(𝜇1,min{𝜇2, 𝜇3}).
(2) If 𝜇1 ≥ 𝜇3, then we choose 𝜖 < 𝛽 < 𝜇3 and 𝛼 = 𝜇1 + 𝜖

for small 𝜖 > 0. In particular, we can choose 𝛽 = 2𝜖
and 𝛼 = 𝜇1 + 𝜖, for 𝜖 < min{𝜇2 − 𝜇1, 𝜇3/2}.

Finally, in order to get a local stability result, we need
to check the sign of the principal eigenvalue in the point
spectrum for (37)-(38). Consider the associated linear partial
differential system𝑢𝑡 = 𝐷𝑢𝑧𝑧 + 𝑐𝑢𝑧 + 𝐽 (𝑧) 𝑢, (58)

where 𝑢(𝑧, 𝑡) = (𝑢1(𝑧, 𝑡), 𝑢2(𝑧, 𝑡)).The eigenpair (𝜆,Φ) of (37)
implies a solution 𝑒𝜆𝑡Φ to the above system. Let𝑄𝑡 = 𝑢(𝑡, 𝑧, 𝜙)
denote the solution semiflow of (58) for any given initial data𝜙 in 𝐿𝑝. It is easy to see 𝑄𝑡 is compact and strongly positive.
By thewell-knownKrein-Rutman theorem (see, e.g., [33]),𝑄𝑡
has a simple principal eigenvalue𝜆max with a strongly positive
eigenvector, and all other eigenvalues 𝑒𝜆𝑡 must satisfy𝑒𝜆𝑡 < 𝑒𝜆max𝑡. (59)

For any 𝑐 > 𝑐∗, we have fromTheorem 1 that 𝑈(𝑧) ∼ 𝐶1𝑒−𝜇1𝑧,𝐶1 > 0, as 𝑧 → ∞. 𝜆 = 0 is an eigenvalue to the operator
L defined in (37) with the one-sign (strongly positive)
eigenvector (−𝑈, −𝑉)(𝑧). By the choice of the weighted
functional space 𝐿𝑝𝑤, the one-sign eigenvector (𝑈, 𝑉)(𝑧) is
not inside. Hence, the real parts of point spectrum of the
operator L𝑤 in 𝐿𝑝𝑤 are all negative. We can also explain this
in a simple analysis. Assume to the contrary that (𝜆, Φ) is an
eigenpair of the eigenvalue problem (37)-(38) with 𝜆 > 0 andΦ ∈ 𝐿𝑝𝑤. Obviously, the one-sign functionΦ = (−𝑈, −𝑉)(𝑧)

satisfies (58). For Φ in the 𝐿𝑝𝑤-space, we have essentially (or
except for a set of zeromeasure)Φ(𝑧) > Φ(𝑧) as 𝑧 → ∞. On
the other hand, when 𝑧 → −∞, we can apply the method
of asymptotic analysis and assume that the eigenfunction
of (37) behaves like 𝑘𝑒𝜇𝑧 for some positive values 𝑘 and 𝜇.
By substituting it into the eigenvalue problem and using the
behavior of 𝐽(𝑧), we obtain that 𝜇 is increasing with respect
to 𝜆. This implies that Φ(𝑧) > Φ(𝑧) as 𝑧 → −∞. Hence,
by choosing 𝑘 sufficient large, we can have 𝑘Φ ≥ |Φ|.
By comparison, from the partial differential system (58), we
obtain 𝑘Φ(𝑧) ≥ |Φ|𝑒𝜆𝑡, which contradicts 𝜆 > 0. This implies
that for Φ ∈ 𝐿𝑝𝑤, the real parts of all eigenvalues 𝜆 of (37)
should be nonpositive.

Now we are in a position to state the local stability result.

Theorem 3. For any 𝑐 > 𝑐∗, the wavefront (𝑈,𝑉)(𝑧) is locally
stable in the weighted functional space 𝐿𝑝𝑤 with the weight
function 𝑤(𝑧) defined in (41)-(42), where 𝛼 and 𝛽 in the
formula of 𝑤(𝑧) are chosen by Algorithm 2.

4. The Global Stability

We study here the global stability of the steady-state(𝑈, 𝑉)(𝑧) in a special choice of the weighted functional
space 𝐿𝑝𝑤(R). Let 𝑝 = ∞ and define the norm ‖𝑓‖𝐿∞𝑤 =
ess sup𝑧∈R|𝑤(𝑧)𝑓(𝑧)|, for some weight function 𝑤(𝑧).
Assume 𝜇1 < 𝜇3. By Algorithm 2, we choose 𝛼 = 𝛽 ∈(𝜇1,min{𝜇2, 𝜇3}). Specifically, let 𝛼 = 𝛽 = 𝜇1 + 𝜖, for small
positive number 𝜖. Also, we assume that the functions 𝑈(𝑧)
and 𝑉(𝑧) satisfy the condition𝑉 (𝑧)𝑈 (𝑧) ≤ min{𝑎2, 1𝑎1} , ∀𝑧 ∈ (−∞,+∞) . (C2)
Theorem 4. Suppose 𝑐 > 𝑐∗, 𝜇1 < 𝜇3, and conditions (C1) -(C2) hold true. Assume that the initial data 𝑈(𝑧, 0) = 𝑈0(𝑧)
and 𝑉(𝑧, 0) = 𝑉0(𝑧) satisfy(0, 0) ≤ (𝑈0, 𝑉0) (𝑧) ≤ (1, 1) ,∀𝑧 ∈ R,

lim
𝑧→−∞

inf (𝑈0, 𝑉0) (𝑧) > (0, 0) , (60)

and 𝑈0 (𝑧) − 𝑈 (𝑧) ∈ 𝐿∞𝑤 (R) ,𝑉0 (𝑧) − 𝑉 (𝑧) ∈ 𝐿∞𝑤 (R) . (61)

Then the solution (𝑈,𝑉)(𝑧, 𝑡) to (11) exists globally with(0, 0) ≤ (𝑈, 𝑉) (𝑧, 𝑡) ≤ (1, 1) , ∀ (𝑧, 𝑡) ∈ R ×R
+, (62)

and converges to the steady-state (𝑈, 𝑉)(𝑧) exponentially in the
sense of

sup
𝑧∈R

𝑈 (𝑧, 𝑡) − 𝑈 (𝑧) ≤ 𝑘𝑒−𝜂𝑡, 𝑡 > 0,
sup
𝑧∈R

𝑉 (𝑧, 𝑡) − 𝑉 (𝑧) ≤ 𝑘𝑒−𝜂𝑡, 𝑡 > 0, (63)

for positive constants 𝑘 and 𝜂.
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To prove Theorem 4, we will find an upper and a lower
solution to the partial differential equations system (11). For𝑧 ∈ R, define 𝑈+0 (𝑧) = max {𝑈0 (𝑧) , 𝑈 (𝑧)} ,𝑉+0 (𝑧) = max {𝑉0 (𝑧) , 𝑉 (𝑧)} ,𝑈−0 (𝑧) = min {𝑈0 (𝑧) , 𝑈 (𝑧)} ,𝑉−0 (𝑧) = min {𝑉0 (𝑧) , 𝑉 (𝑧)} .

(64)

It is easy to see that the following inequalities are true:(0, 0) ≤ (𝑈−0 , 𝑉−0 ) (𝑧) ≤ (𝑈0, 𝑉0) (𝑧) ≤ (𝑈+0 , 𝑉+0 ) (𝑧)≤ (1, 1) ,(0, 0) ≤ (𝑈−0 , 𝑉−0 ) (𝑧) ≤ (𝑈,𝑉) (𝑧) ≤ (𝑈+0 , 𝑉+0 ) (𝑧)≤ (1, 1) .
(65)

Denote (𝑈+, 𝑉+)(𝑧, 𝑡) and (𝑈−, 𝑉−)(𝑧, 𝑡) as the solutions
to the system (11) with the initial data (𝑈+0 , 𝑉+0 )(𝑧) and(𝑈−0 , 𝑉−0 )(𝑧), respectively; that is,𝑈±𝑡 = 𝑈±𝑧𝑧 + 𝑐𝑈±𝑧+ 𝑈± (1 − 𝑎1 − 𝑈± + 𝑎1𝑉±) ,𝑉±𝑡 = 𝑑𝑉±𝑧𝑧 + 𝑐𝑉±𝑧+ 𝑟 (1 − 𝑉±) (𝑎2𝑈± − 𝑉±) ,(𝑈±, 𝑉±) (𝑧, 0) = (𝑈±0 , 𝑉±0 ) (𝑧) .

(66)

By the comparison principle, one gets(0, 0) ≤ (𝑈−, 𝑉−) (𝑧, 𝑡) ≤ (𝑈, 𝑉) (𝑧, 𝑡)≤ (𝑈+, 𝑉+) (𝑧, 𝑡) ≤ (1, 1) , ∀ (𝑧, 𝑡) ∈ R × R
+,(0, 0) ≤ (𝑈−, 𝑉−) (𝑧, 𝑡) ≤ (𝑈, 𝑉) (𝑧) ≤ (𝑈+, 𝑉+) (𝑧, 𝑡)≤ (1, 1) , ∀ (𝑧, 𝑡) ∈ R × R

+.
(67)

In the following lemmaswe shall prove the convergence of(𝑈+, 𝑉+)(𝑧, 𝑡) and (𝑈−, 𝑉−)(𝑧, 𝑡) to the wavefront (𝑈, 𝑉)(𝑧).
Then we apply the squeezing theorem to obtain the result in
Theorem 4.

Lemma 5. Under the conditions in Theorem 4, (𝑈+, 𝑉+)(𝑧, 𝑡)
converges to (𝑈, 𝑉)(𝑧).
Proof. For (𝑧, 𝑡) ∈ R ×R+, define𝑃 (𝑧, 𝑡) = 𝑈+ (𝑧, 𝑡) − 𝑈 (𝑧)

and 𝑄(𝑧, 𝑡) = 𝑉+ (𝑧, 𝑡) − 𝑉 (𝑧) . (68)

These functions, 𝑃 and 𝑄, satisfy the initial value conditions𝑃 (𝑧, 0) = 𝑈+0 (𝑧) − 𝑈 (𝑧)
and 𝑄 (𝑧, 0) = 𝑉+0 (𝑧) − 𝑉 (𝑧) . (69)

By (65) and (67), for all 𝑧 ∈ R and 𝑡 ≥ 0, we have(0, 0) ≤ (𝑃, 𝑄) (𝑧, 𝑡) ≤ (1, 1) . (70)

By (8) and (66) and using condition (C2), we can verify that𝑃 and 𝑄 satisfy

𝑃𝑡 ≤ 𝑃𝑧𝑧 + 𝑐𝑃𝑧 + (1 − 𝑎1) 𝑃 + (𝑃 + 𝑈) (−𝑃 + 𝑎1𝑄) ,𝑄𝑡 ≤ 𝑄𝑧𝑧 + 𝑐𝑄𝑧 + 𝑟 (𝑎2𝑃 − 𝑄)+ 𝑟 (𝑄 + 𝑉) (−𝑎2𝑃 + 𝑄) .
(71)

To study the stability in the weighted functional space 𝐿∞𝑤 ,
with 𝑤(𝑧) defined in (41), we first let

(𝑃𝑄) (𝑧, 𝑡) = 𝑒−𝛼(𝑧−𝑧0)( 𝑃𝑄 ) (𝑧, 𝑡) ,
for all (𝑧, 𝑡) ∈ R ×R

+, (72)

where 𝑃 and 𝑄 are functions in 𝐿∞(R) and 𝑧0 is the same
number used in the weight function 𝑤(𝑧). This gives

( 𝑃𝑄 )
𝑡

≤ 𝐷( 𝑃𝑄 )
𝑧𝑧

+𝑀( 𝑃𝑄 )
𝑧

+ 𝐴 (𝛼)( 𝑃𝑄 )
+ ( (𝑈 + 𝑒−𝛼(𝑧−𝑧0)𝑃) (−𝑃 + 𝑎1𝑄)𝑟 (𝑉 + 𝑒−𝛼(𝑧−𝑧0)𝑄) (−𝑎2𝑃 + 𝑄) )

fl ( L1 (𝑃, 𝑄)
L2 (𝑃, 𝑄) ) ,

(73)

where 𝐴(𝛼) is the same matrix defined in (18) and 𝑀 =
diag(𝑐 − 2𝛼, 𝑐 − 2𝑑𝛼).

Define 𝑃1(𝑧, 𝑡) and 𝑄1(𝑧, 𝑡) as𝑃1 (𝑧, 𝑡) = 𝑘1𝜁1𝑒−𝜂1𝑡
and 𝑄1 (𝑧, 𝑡) = 𝑘1𝜁2𝑒−𝜂1𝑡,∀ (𝑧, 𝑡) ∈ R ×R

+, (74)

for some constants 𝑘1, 𝜂1 > 0 to be chosen and (𝜁1, 𝜁2) =(𝜁1(𝛼), 𝜁2(𝛼)) is the eigenvector of the matrix 𝐴(𝛼) associated
with the eigenvalue 𝛼2−𝑐𝛼+1−𝑎1. Simple computations give

𝜁1 (𝛼) = (𝛼2 − 𝑐𝛼 + 1 − 𝑎1) − (𝑑𝛼2 − 𝑐𝛼 − 𝑟)= (𝜇21 + 𝜖) (1 − 𝑑) + 1 − 𝑎1 + 𝑟,𝜁2 (𝛼) = 𝑟𝑎2,
(75)

which are positive for small 𝜖 and 𝜇1 < 𝜇3. Since the initial
values 𝑃(𝑧, 0) and 𝑄(𝑧, 0) are in the space 𝐿∞𝑤 , we can choose𝑘1 ≥ max𝑧∈R{𝑃(𝑧, 0)/𝜁1, 𝑄(𝑧, 0)/𝜁2}. Direct computations
and using condition (C2) show that both of L1(𝑃1, 𝑄1) and
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(a) 𝑎1 = 0.5 and 𝑎2 = 2.4.We choose 𝛿 = 1
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(b) 𝑎1 = 0.5 and 𝑎2 = 1.4.The maximal possible
value of 𝛿 is in (0.3984, 1)
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(c) 𝑎1 = 0.3 and 𝑎2 = 1.4.The maximal possible
value of 𝛿 becomes close to 0.3984

Figure 1: The phase portrait of system (80) when 𝜖1 = 0.003 and 𝑟 = 1.875.
L2(𝑃1, 𝑄1) are negative.This allows choosing a positive value
to 𝜂1 so that the inequality

(𝑃1𝑄1)𝑡 = −𝜂1𝑘1 (𝜁1𝜁2) 𝑒−𝜂1𝑡 ≥ (L1 (𝑃1, 𝑄1)L2 (𝑃1, 𝑄1)) (76)

holds. Hence, since (𝑃1, 𝑄1)(0, 𝑧) ≥ (𝑃, 𝑄)(0, 𝑧) and by
comparison onunbounded domain, see, e.g., [34, Proposition
2.1],(𝑃, 𝑄) (𝑧, 𝑡) = (𝑃, 𝑄) 𝑒−𝛼(𝑧−𝑧0)

≤ 𝑘1 (𝜁1, 𝜁2) 𝑒−𝛼(𝑧−𝑧0)−𝜂1𝑡,∀ (𝑧, 𝑡) ∈ R ×R
+. (77)

In particular, this is true when 𝑧 ∈ [𝑧0,∞), for any fixed 𝑧0.
Now, we introduce the weight function 𝑤(𝑧) defined in

(41)-(42) with 𝛼 = 𝛽 = 𝜇1 + 𝜖. By the above analysis,
we need to prove the convergence of (𝑃, 𝑄)(𝑧, 𝑡) to (0, 0) for𝑧 ∈ (−∞, 𝑧0]. Note that the full system of (𝑃, 𝑄)(𝑧, 𝑡) can be
expressed as

(𝑃𝑄)
𝑡

= 𝐷(𝑃𝑄)
𝑧𝑧

+ 𝑐(𝑃𝑄)
𝑧

+ 𝐽 (𝑧) (𝑃𝑄)
+ ( (−𝑃 + 𝑎1𝑄)𝑃𝑟 (−𝑎2𝑃 + 𝑄)𝑄) .

(78)

Here, 𝐽(𝑧) is the same 2 × 2matrix defined in (38). Let 𝑧0 be
chosen so that

𝐽 (𝑧) ≤ (−1 + 𝜖1 𝑎1 + 𝜖1𝜖1 𝑟 (1 − 𝑎2) + 𝜖1) fl 𝐽𝜖1 , (79)

for some given small 𝜖1 > 0, when 𝑧 ≤ 𝑧0. This is equivalent
to require that (𝑈, 𝑉)(𝑧) is close to (1, 1) for all 𝑧 ≤ 𝑧0. Define(�̂�, 𝑄)(𝑡) as the solution of the autonomous system

(�̂̂�𝑄)
𝑡

= 𝐽𝜖1 (�̂̂�𝑄) + ( (−�̂� + 𝑎1𝑄) �̂�𝑟 (−𝑎2�̂� + 𝑄)𝑄) , (80)

with the initial data�̂� (0) ≥ 𝑃 (𝑧, 0) ,𝑄 (0) ≥ 𝑄 (𝑧, 𝑡) ,∀𝑧 ∈ R. (81)

Then (�̂�, 𝑄) is an upper solution to system (78).
Now we need to prove the convergence of (�̂�, 𝑄)(𝑡) to(0, 0) as 𝑡 → ∞. The Jacobian matrix 𝐽(0, 0) = 𝐽𝜖1 of system

(80) at the fixed point (0, 0) has two eigenvalues, �̂�2 < �̂�1 < 0.
By the phase plane analysis, there exists 0 < 𝛿 ≤ 1 so that the
flow in the �̂�𝑄−space converges to origin for any initial data(�̂�, 𝑄)(0) in the box [0, 1] × [0, 𝛿]. Hence, we conclude that(�̂�, 𝑄) = �̂�1 (𝐶1, 𝐶2) 𝑒�̂�1𝑡 as 𝑡 → ∞, (82)

for positive constant �̂�1 and (𝐶1 𝐶2)𝑇 is the eigenvector of 𝐽𝜖1
corresponding to �̂�1. For the maximal possible choice of the
constant 𝛿 so that we have the convergence result inside the
box [0, 1] × [0, 𝛿]; see Remark 6.

We can choose �̂�1 large and 𝜆1 = min{𝜂1, −�̂�1} so that, at
the boundary 𝑧 = 𝑧0, we have(𝑃, 𝑄) (𝑧0, 𝑡) ≤ 𝑘1 (𝜁1, 𝜁2) 𝑒−𝜂1𝑡 ≤ �̂�1 (𝜁1, 𝜁2) 𝑒−𝜆1𝑡. (83)

Hence, by comparison on the domain (−∞, 𝑧0] × [0,∞), see,
e.g., [35, Lemma 3.2],

(𝑃,𝑄) (𝑧, 𝑡) ≤ �̂�1 (𝜁1, 𝜁2) 𝑒−𝜆1𝑡,∀ (𝑧, 𝑡) ∈ (−∞, 𝑧0] ×R
+. (84)

This completes the proof.

Remark 6. The maximal possible value of the constant 𝛿,
which could be 1, depends on the location of the fourth fixed
point to the system (80) near or inside the box [0, 1] × [0, 1].
See Figure 1 for all possible different cases. In Figure 1(a), the
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positive fixed point is far away from the box [0, 1] × [0, 1]
and does not affect the flow. This happens when 𝑎2 > 2.
Hence we set 𝛿 = 1. Figure 1(b) shows the effect of the
positive fixed point on the flow, which still outside the box.
The maximal choice of 𝛿 for this case exists in the interval(𝑎2 − 1 − 𝜖1/𝑟, 1). The number 𝑎2 − 1 − 𝜖1/𝑟 is the positive 𝑄-
intercept of the nullcline 𝑄𝑡 = 0. A fixed point exists inside
the box [0, 1] × [0, 1] in Figure 1(c), where 𝛿 becomes close
to the value 𝑎2 − 1 − 𝜖1/𝑟.
Lemma 7. Under the conditions in Theorem 4, (𝑈−, 𝑉−)(𝑧, 𝑡)
converges to (𝑈, 𝑉)(𝑧).
Proof. For (𝑧, 𝑡) ∈ R ×R+, define𝑅 (𝑧, 𝑡) = 𝑈 (𝑧) − 𝑈− (𝑧, 𝑡)

and 𝑆 (𝑧, 𝑡) = 𝑉 (𝑧) − 𝑉− (𝑧, 𝑡) . (85)

These functions, 𝑅 and 𝑆, satisfy the initial value conditions𝑅 (𝑧, 0) = 𝑈 (𝑧) − 𝑈−0 (𝑧)
and 𝑆 (𝑧, 0) = 𝑉 (𝑧) − 𝑉−0 (𝑧) . (86)

From (65) and (67), for all 𝑧 ∈ R and 𝑡 ≥ 0, we have(0, 0) ≤ (𝑅, 𝑆) (𝑧, 𝑡) ≤ (1, 1) . (87)

From (8) and (66), 𝑅 and 𝑆 satisfy the system
(𝑅𝑆)
𝑡

= 𝐷(𝑅𝑆)
𝑧𝑧

+ 𝑐(𝑅𝑆)
𝑧

+ 𝐽 (𝑧)(𝑅𝑆)
− ( (−𝑅 + 𝑎1𝑆) 𝑅𝑟 (−𝑎2𝑅 + 𝑆) 𝑆) ,

(88)

with 𝐽(𝑧) defined in (38). By condition (C2), we have𝑅𝑡 ≤ 𝑅𝑧𝑧 + 𝑐𝑅𝑧 + (1 − 𝑎1) 𝑅 + (𝑅 − 𝑈) (𝑅 − 𝑎1𝑆) ,𝑆𝑡 ≤ 𝑑𝑆𝑧𝑧 + 𝑐𝑆𝑧 + 𝑟 (𝑎2𝑅 − 𝑆) + 𝑟 (𝑆 − 𝑉) (𝑎2𝑅 − 𝑆) . (89)

Similar to the previous analysis in the proof of Lemma 5, and
making a use of the facts 𝑅 < 𝑈 and 𝑆 < 𝑉, we can prove that
there exist 𝜂2 > 0 and

𝑘2 ≥ 𝑒𝛼(𝑧−𝑧0)max
𝑧∈R

{𝑅 (𝑧, 0)𝜁1 , 𝑆 (𝑧, 0)𝜁2 } (90)

so that(𝑅, 𝑆) (𝑧, 𝑡) ≤ 𝑘2 (𝜁1, 𝜁2) 𝑒−𝜂2𝑡, ∀ (𝑧, 𝑡) ∈ R ×R
+. (91)

For the choice of 𝑧0 in proof of Lemma 5, we study the
stability in theweighted space𝐿∞𝑤 . To this end, define (�̂�, 𝑆)(𝑡)
as the solution of the system

(�̂̂�𝑆)
𝑡

= 𝐽𝜖1 (�̂̂�𝑆) − 𝑤1( (−�̂� + 𝑎1𝑆) �̂�𝑟 (−𝑎2�̂� + 𝑆) 𝑆) , (92)

with the initial data�̂� (0) ≥ 𝑅 (𝑧, 0) ,𝑆 (0) ≥ 𝑆 (𝑧, 0) , ∀𝑧 ∈ R. (93)

It is easy to see that (�̂�, 𝑆) is an upper solution to the system
(88). The phase plane analysis shows that (�̂�, 𝑆)(𝑡) converges
to origin for any initial data in the region [0, 1] × [0, 1] except
the point (1, 1). Similar to the previous lemma,(𝑅, 𝑆) (𝑧, 𝑡) ≤ �̂�2 (𝜁1, 𝜁2) 𝑒−𝜆2𝑡,∀ (𝑧, 𝑡) ∈ (−∞, 𝑧0] ×R

+. (94)

for some positive constants �̂�2 and 𝜆2. This completes the
proof.

Now, we are ready to give the proof of Theorem 4.

Proof ofTheorem 4. From (67), for all (𝑧, 𝑡) ∈ R×R+, we have|𝑅 (𝑧, 𝑡)| ≤ 𝑈 (𝑧, 𝑡) − 𝑈 (𝑧) ≤ |𝑃 (𝑧, 𝑡)| ,|𝑆 (𝑧, 𝑡)| ≤ 𝑉 (𝑧, 𝑡) − 𝑉 (𝑧) ≤ |𝑄 (𝑧, 𝑡)| . (95)

By Lemmas 5 and 7 and the squeezing theorem, it follows that
there exist 𝑘 > 0 and 𝜂 > 0 so that𝑈 (𝑧, 𝑡) − 𝑈 (𝑧) ≤ 𝑘𝑒−𝜂𝑡,𝑉 (𝑧, 𝑡) − 𝑉 (𝑧) ≤ 𝑘𝑒−𝜂𝑡, (96)

for all (𝑧, 𝑡) ∈ R ×R+. This proves the desired result.

Condition (C2) is used in the previous analysis to con-
struct the upper solutions in the proof of Lemmas 5 and 7. It
implies that, at 𝑐 = 𝑐0 and 𝑧 → +∞,𝜁2 (𝜇1)𝜁1 (𝜇1) ≤ min{𝑎2, 1𝑎1} , (97)

and it can be guaranteed by𝑑 ≤ 2,(𝑎1𝑎2 − 1) 𝑟 ≤ (2 − 𝑑) (1 − 𝑎1) . (98)

This condition arose in the linear speed selection studies; see
[36]. To see that the condition (C2) can be realized for all 𝑧 ∈
R, we prove the following claim.

Claim 8. 𝑑 = 0 and 𝑎1𝑎2 ≤ 1 imply (C2).
Proof. In the case when 𝑑 = 0, the𝑉−equation can be written
in the form 𝑉 = 𝑟𝑐 (1 − 𝑉) (𝑉 − 𝑎2𝑈) ,𝑉 (−∞) = 1,𝑉 (+∞) = 0.

(99)
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Since 𝑎1𝑎2 ≤ 1, we need to prove 𝑉(𝑧) ≤ 𝑎2𝑈(𝑧) for all 𝑧 ∈
R. Assume, for contrary, this is not true for some 𝑧 ∈ R. By
(99), 𝑉 is increasing at the neighborhood of 𝑧. Since 𝑈(𝑧) is
a decreasing function, we have 𝑉(𝑧 + 𝛿) > 𝑉(𝑧) > 𝑎2𝑈(𝑧) >𝑎2𝑈(𝑧+𝛿), for some 𝛿 > 0. Similarly, we can show that𝑉(𝑧) is
increasing for all 𝑧 ≥ 𝑧, which contradicts the fact 𝑉(+∞) =0. This implies that condition (C2) holds true.
5. Conclusions

The local and the global stability of traveling waves to the
two-species Lotka-Volterra competition model (5) under the
condition (C1) are investigated. Using the linearization and
the essential spectrum analysis in [32], we find that the
traveling wavefront is stable in some weighted functional
space; seeTheorem 3.Many choices of the exponential weight
functions are valid; see Algorithm 2.

Under some further condition (C2), we apply the upper-
lower solution method to obtain a global stability result.
Indeed, we prove that both the upper and the lower solutions
tend to the wavefront. Our main results are presented in
Theorem 4.
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[20] K. Kirchgässner, “On the nonlinear dynamics of travelling
fronts,” Journal of Differential Equations, vol. 96, no. 2, pp. 256–
278, 1992.

[21] S. Ma and X.-Q. Zhao, “Global asymptotic stability of minimal
fronts inmonostable lattice equations,”Discrete and Continuous
Dynamical Systems - Series A, vol. 21, no. 1, pp. 259–275, 2008.

[22] H. J. K. Moet, “A note on the asymptotic behavior of solutions
of the KPP equation,” SIAM Journal on Mathematical Analysis,
vol. 10, no. 4, pp. 728–732, 1979.

[23] D.H. Sattinger, “On the stability of waves of nonlinear parabolic
systems,” Advances in Mathematics, vol. 22, no. 3, pp. 312–355,
1976.

[24] W. Shen, “Travelling waves in time almost periodic structures
governed by bistable nonlinearities. I. Stability and uniqueness,”
Journal of Differential Equations, vol. 159, no. 1, pp. 1–54, 1999.



Complexity 11

[25] J.-C. Tsai and J. Sneyd, “Existence and stability of traveling
waves in buffered systems,” SIAM Journal on AppliedMathemat-
ics, vol. 66, no. 1, pp. 237–265, 2005.

[26] Y. Wu and X. Xing, “Stability of traveling waves with critical
speeds for p-degree Fisher-type equations,”Discrete andContin-
uous Dynamical Systems - Series A, vol. 20, no. 4, pp. 1123–1139,
2008.

[27] G. Lv and M. Wang, “Nonlinear stability of travelling wave
fronts for delayed reaction diffusion equations,” Nonlinearity,
vol. 23, no. 4, pp. 845–873, 2010.

[28] M. Bramson, “Convergence of solutions of the Kolmogorov
equation to travelling waves,” Memoirs of the American Math-
ematical Society, vol. 44, no. 285, iv+190 pages, 1983.

[29] J. Xin, “Front propagation in heterogeneous media,” SIAM
Review, vol. 42, no. 2, pp. 161–230, 2000.

[30] G. Lv andM.Wang, “Nonlinear stability of travelingwave fronts
for delayed reaction diffusion systems,”Nonlinear Analysis: Real
World Applications, vol. 13, no. 4, pp. 1854–1865, 2012.

[31] Y. Meng, W. Zhang, and Z. Yu, “Existence and asymptotic of
traveling wave fronts for the delayed Volterra-type cooperative
systemwith spatial diffusion,”Advances in Difference Equations,
Paper No. 203, 19 pages, 2018.

[32] D. Henry, Geometric Theory of Semilinear Parabolic Equations,
vol. 840 of Lecture Notes in Mathematics, Springer, New York,
NY, USA, 1993.

[33] P. Hess, Periodic-Parabolic Boundary Value Problems and Posi-
tivity, vol. 247 of Pitman Research Notes in Mathematics Series,
Longman Scientific & Technical, Harlow, UK, 1991.

[34] D. G. Aronson and H. F. Weinberger, “Multidimensional non-
linear diffusion arising in population genetics,” Advances in
Mathematics, vol. 30, no. 1, pp. 33–76, 1978.

[35] H. R.Thieme, “Asymptotic estimates of the solutions of nonlin-
ear integral equations and asymptotic speeds for the spread of
populations,” Journal für die reine und angewandteMathematik,
vol. 306, pp. 94–121, 1979.

[36] M. A. Lewis, B. Li, and H. F. Weinberger, “Spreading speed
and linear determinacy for two-species competition models,”
Journal of Mathematical Biology, vol. 45, no. 3, pp. 219–233,
2002.



Research Article
Parameter Identification and Adaptive Control of Uncertain
Goodwin Oscillator Networks with Disturbances

Jianbao Zhang ,1,2,3 Wenyin Zhang,1,2 Chengdong Yang ,1,2,3 Haifeng Wang,1,2

Jianlong Qiu,2,4,5 and Fawaz Alsaadi5

1School of Information Science and Engineering, Linyi University, Linyi 276005, China
2Key Laboratory of Complex Systems and Intelligent Computing in Universities of Shandong (Linyi University), Linyi 276005, China
3Department of Mathematics, Southeast University, Nanjing 210096, China
4School of Automation and Electrical Engineering, Linyi University, Linyi 276005, China
5Department of Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Jianbao Zhang; jianbaozhang@163.com

Received 20 May 2018; Revised 21 August 2018; Accepted 2 September 2018; Published 21 October 2018

Academic Editor: Eric Campos-Canton

Copyright © 2018 Jianbao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates the dynamic properties of a differential equation model of mammals’ circadian rhythms, including
parameter identification, adaptive control, and outer synchronization. The circadian oscillator network is described by a
Goodwin oscillator network, the couplings of which are from vasoactive intestinal polypeptides described by modified Van der
Pol oscillators. We build up a drive-response system consisting of two networks with unknown parameters and disturbances.
Then, we propose effective parameter updating laws to identify the unknown parameters and design adaptive control strategies
to achieve outer synchronization in the drive-response system. As special cases, two succinct corollaries are presented for
different instances. All the theoretical results are proved through strict mathematical deduction based on Lyapunov stability
theory, and a numerical example is also carried out to illustrate the effectiveness.

1. Introduction

In the past decades, there has been tremendous interest in
studying circadian rhythms of mammals at the cellular level
[1–8]. Based on experimental findings of system biology
and network biology, several gene regulatory network models
have been established to describe the circadian rhythm sys-
tem [3, 4]. Experimental evidence has shown that the circa-
dian rhythms are controlled by a pacemaker located in the
suprachiasmatic nucleus (SCN) of the hypothalamus [5]
and the circadian oscillator is usually described by a Goodwin
oscillator model, which describes a protein which represses
the transcription of its own gene via an inhibitor [6]. Now,
the Goodwin oscillator model and its variants have been
widely adopted as one of the classic hypothetical genetic
oscillators [7, 8]. The SCN consists of a dorsomedial shell
and a ventrolateral core, and the ventrolateral core can be
defined by cells containing vasoactive intestinal polypeptide

(VIP) [9]. The circadian oscillators are coupled with each
other via the rhythmic influence from VIP, and the VIP is
required to maintain circadian synchrony of the SCN [10].
However, we know nothing about the dynamics of the VIP
except its fundamental observational properties. Based on
these observational properties, the Van der Pol oscillator
was usually employed to describe the dynamics of the VIP
[11]. In this paper, we will carry out a modified circadian
rhythm network model with unknown parameters and inves-
tigate its several dynamical properties from the viewpoint of
complex network dynamics with the help of nonlinear
dynamics theory.

Recent years have seen significant advances in the study
of complex network dynamics [12, 13], and its related studies
will lead to more potential applications in the future. Syn-
chronization is a kind of typical collective behaviors and
basic motions in nature, which is one of the main research
focuses in complex network science. From the viewpoint of
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mathematics, the core of synchronization is the stability of
the zero solution of network error systems [14–16]. In previ-
ous studies, two effective methods are usually employed: the
first one is to study synchronization induced by the mutual
couplings between nodes [17, 18], and the second one is
to design reasonable control laws [19–21]. A great number
of researches on the first method have indicated that syn-
chronization without external control needs certain require-
ment in both network structures and node dynamics.
Therefore, a variety of external control approaches have been
developed such as pinning control [22, 23], sliding mode
control [24, 25], and feedback control [26, 27].

However, there are still lots of urgent and challenging
problems in practical application. For instance, we often
know very little about the exact values of system parame-
ters, or there are some time-varying parameters. Under
the effects of these uncertainties, the achieved synchroniza-
tion might be destroyed and broken. Therefore, it is neces-
sary to design an adaptive control law that adapts itself to
these uncertainties, which is a popular control technique
used for complex network models with unknown parame-
ters [28–30]. The theoretical basis of adaptive control is
parameter identification. As far as complex networks are
concerned, three dynamic properties of uncertain networks
need to be discussed, i.e., parameter identification, adaptive
control, and outer synchronization [31]. In order to achieve
each one of the three research goals above, Lyapunov stabil-
ity is usually employed, which will show the convergence of
the error systems and the parameter identification laws at
the same time. Due to the convenience and effectiveness
of adaptive control, it has been widely applied to many
fields of science and technology, including secure communi-
cation, chaos generator design, biological systems, and infor-
mation science.

As far as the circadian rhythm model is concerned, it is
more difficult to get the exact values of the system parame-
ters, and this becomes one of the interesting and significant
questions remaining open for discussion. In order to estimate
or evaluate the unknown parameters existing in the circadian
rhythm model, lots of researches have been carried out.
Based on the time series data of a certain group of individuals
in a circadian rhythm model, Tong [32] obtained the estima-
tions of the group level, group amplitude, and group phase.
Later, the estimations of the true values of unknown param-
eters were investigated for different circadian rhythm models
[33–35]. Now, it has become an interesting and significant
research direction in the fields of system biology. To the best
of our knowledge, most of the previous results were based on
the statistical method or experimental data, and few theoret-
ical researches have been carried out. Motivated by the dis-
cussions mentioned above, this paper aims at providing
theoretical estimations of unknown parameters existing in
such a network. It may help us build more accurate mathe-
matical models and better understand the circadian rhythms
of mammals. Therefore, the subject of this paper has a certain
degree of innovation, and it may also have some latent appli-
cations. By proposing appropriate parameter updating laws
and adaptive control strategies, we identify the unknown
parameters successfully and the network realizes outer

synchronization. Based on Lyapunov stability theory and
matrix theory, we give theoretical proof for adaptive outer
synchronization of the Goodwin oscillator network with
unknown parameters. As special cases, we present two suc-
cinct corollaries for different instances.

The organization of the remaining sections is as follows.
In Section 2, some preliminaries are introduced, including
the model descriptions of the Goodwin oscillator network
with unknown parameters. In Section 3, adaptive controllers
and parameter updating laws are designed, and their effec-
tiveness is also proved theoretically. In Section 4, a simple
example is provided to verify the validity of the theoretical
results. In the last section, conclusions are provided to sum-
marize the contributions of this paper and to highlight some
interesting issues as a further work.

1.1. Model Descriptions. The Goodwin model describes a
circadian oscillator consisting of three variables, which is
illustrated in Figure 1. A clock gene mRNA (a) produces a
clock protein (b), which activates a transcriptional inhibitor
(c), and in turn inhibits the transcription of the clock gene.
By the repression exerted by the inhibitor to the mRNA
synthesis, the three variables build up a closed negative
feedback loop.

The mathematical model for the circadian oscillator
is given as follows, in which each variable is governed
by a simple ordinary differential equation:

a t = v1K
n Kn + cn t −1 − δ1a t ,

b t = v2a t − δ2b t ,

c t = v3b t − δ3c t ,

1

where a t , b t , and c t can be interpreted as the concen-
trations of clock genes, clock proteins, and transcriptional
inhibitors, respectively; the constants v1, v2, and v3 are the
dimensionless transcription rates or translation rates; the
constants δ1, δ2, and δ3 are the dimensionless degradation
rates of the chemical molecules; and K and n are the param-
eters of the Hill function. The equations above describe
what is probably the simplest conceivable control process
consistent with certain essential features of the genetic
control of enzyme synthesis [6]. For instance, by choosing
K = 1, n = 10, v1 = v2 = v3 = 1, and δ1 = δ2 = δ3 = 0 1, the sys-
tem (1) produces a damped oscillator.

In order to produce physiological rhythms, many
researches considered the rhythmic influence of vasoactive
intestinal polypeptides (VIP). Then, a Goodwin oscillator
network model with a coupling term from VIP reads

ai t = v1K
n Kn + cni t −1 − δ1ai t + 〠

N

j=1
cijmj t ,

bi t = v2ai t − δ2bi t ,

ci t = v3bi t − δ3ci t ,
2
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where mj t , nj t
T is the concentration of VIP in the jth

cell. The coupling matrix C = cij N×N represents the cou-
pling configuration; if there is a coupling from cell i to cell j
, then denote the weight of this coupling as cij > 0; otherwise,
denote cij = 0. Different from most of the previous researches
on complex networks, it is assumed that cii ≥ 0 because the
term ciimi t describes the coupling from VIP in the cell i
to the Goodwin oscillator in the same cell. Throughout this
paper, we further assume that the coupling matrix has equal
row sums and equal column sums, i.e., there exists a nonneg-
ative constant l such that ∑N

i=1cij =∑N
j=1cij = 2l.

In many previous studies [11], the concentration
dynamics of VIP was described by the following modi-
fied Van der Pol oscillators:

mi t = β1 ni t − 2 5 + β2 mi t − 2 5 − β3 mi t − 2 5 3 + kai t ,

ni t = β1 mi t − 2 5 ,

3

where βp, p = 1,2,3, and k are constants.
For ease of notations, we denote xi t = αi t , bi t ,

ci t
T and yi t = mi t , ni t

T and rewrite the network
(2)–(3) as follows:

xi t = f1 xi t α1 + f2 xi t α2 + 〠
N

j=1
cijΓyj t ,

yi t = g yi t β + kΓTxi t ,

4

where α1 = v1, v2, v3
T, α2 = δ1, δ2, δ3

T, and β = β1, β2,
β3

T are all real-valued vectors; the coupling component
matrix

Γ =
1 0

0 0

0 0

5

The matrix functions

f1 xi t = diag Kn Kn + cni t −1, ai t , bi t ∈ R3×3,

f2 xi t = −diag ai t , bi t , ci t ∈ R3×3,

g yi t =
ni t − 2 5 mi t − 2 5 mi t − 2 5 3

mi t − 2 5 0 0
,

6

where i = 1, 2,… ,N . Assuming that the parameters α1, α2,
andβ, and the network topology matrices C and C are all
unknown, we build the following response network:

xi t = f1 xi t α1 t + f2 xi t α2 t + 〠
N

j=1
cijΓyj t + Δx t + uxi t ,

yi t = g yi t β t + kΓTxi t + Δy t + uyi t ,

7

where xi t = ai t , bi t , ci t
T
, yi t = mi t , ni t

T, α1
t , α2 t , and β t are the updating laws of the
unknown parameters in the network (4); Δx t , Δy t
are the external disturbances such as wind and noise;
and uxi t , uyi t are the adaptive controllers left to be
designed in the next section, where i = 1, 2,… ,N . Net-
work (4) and network (7) form a drive-response system;
the next section will design adaptive controllers to make
the drive-response system realize the outer synchroniza-
tion and design parameter updating laws to identify the
unknown parameters.

2. Adaptive Control Schemes for
Outer Synchronization

Let us first carry out the definition of outer synchronization,
two hypotheses, and a lemma to prove the effectiveness of
our results.

Definition 1. The system (4)–(7) is said to achieve outer
synchronization if

lim
t→∞

exi t = 0,

lim
t→∞

eyi t = 0,
8

Gene

InhibitorProtein

VIP

Coupling

Repressiona(t)

b(t) c(t)

Kn

Kn + cn (t) 

Figure 1: Scheme of a circadian oscillator modeled by a Goodwin
oscillator. By the repression exerted by the inhibitor (c (t)) to the
clock gene mRNA synthesis (a (t)), the three variables build up a
closed negative feedback loop. The coupling from vasoactive
intestinal polypeptide (VIP) is required to maintain circadian
synchrony of the circadian oscillator.
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where exi t = xi t − xi t and eyi t = yi t − yi t , where
i = 1,… ,N .

Hypothesis 1. For any x ∈ R3 and y ∈ R2, denote X =
xT, yT T ∈ R5, and

F X, α1, α2, β = f1 x α1 + f2 x α2
T, g y β + kΓTx T T

9

Suppose that there exists a positive constant L such that

Y − X T F Y , α1, α2, β − F X, α1, α2, β ≤ L Y − X T Y − X

10

holds for any X, Y ∈ R5.

Since the function F X, α1, α2, β of the network (4) is
differentiable and the oscillator is a damped oscillator,
there exists a positive constant L satisfying Hypothesis 1
in theory.

Hypothesis 2. For the disturbances Δx t and Δy t , sup-
pose that there exist two positive constants 0 ≤ ρx, ρy <
∞ such that

Δx t ≤ ρx, Δy t ≤ ρy 11

The second hypothesis guarantees the boundedness of
the disturbances, and this paper yields adaptive controllers
that are robust against all possible bounded disturbances.

Lemma 1. For any vectors x ∈ R3 and y ∈ R2 and the matrix Γ
defined by (5), the following inequality holds:

2xTΓy ≤ xTΓΓTx + yTΓTΓy 12

Proof. Denote x = a, b, c T and y = m, n T; it follows from
(5) that ΓTx = a, 0 T, Γy = m,0,0 T, and 2xTΓy = 2ma. After
a simple deduction, one gets that

xTΓΓTx + yTΓTΓy = a2 +m2 13

Based on the inequality a2 +m2 ≥ 2am, the lemma
is proved.

Now, with the help of the preceding preliminaries
and Lyapunov stability theory, we turn to prove the fol-
lowing theorem.

Theorem 1. Under Hypothesis 1 and Hypothesis 2, let the
parameter updating laws

αp t = −〠
N

j=1
f p xj t exj t , p = 1, 2,

β t = −〠
N

j=1
gT yj t eyj t ,

14

and the adaptive controllers

uxi t = −ηxi t exi t − γxi t sign exi t + 〠
N

j=1
pij t Γyj t ,

ηxi t = kxie
T
xi t exi t , kxi > 0,

γxi t = ξxi exi t 1, ξxi > 0,

uyi t = −ηyi t eyi t − γyi t sign eyi t ,

ηyi t = kyie
T
yi t eyi t , kyi > 0,

γyi t = ξyi eyi t 1, ξyi > 0,

pij t = −eTxi t Γyj t
15

Then, the following conclusions hold:

(i) The parameter updating laws (14) satisfy

lim
t→∞

α1 t = α1,

lim
t→∞

α2 t = α2,

lim
t→∞

β t = β

16

(ii) There exist constants η∗xi, η∗yi, γ∗xi, γ∗yi such that the
adaptive controllers (15) satisfy

lim
t→∞

ηxi t = η∗xi,

lim
t→∞

ηyi t = η∗yi,

lim
t→∞

γxi t = γ∗xi,

lim
t→∞

γyi t = γ∗yi,

lim
t→∞

pij t = cij − cij

17

(iii) The system (4)–(7) achieves outer synchronization, i.e.,

lim
t→∞

exi t = lim
t→∞

eyi t = 0 18

where exi t 1 = exi t sign exi t and eyi t 1 = eyi t sign
eyi t , where i, j = 1, 2,… ,N.
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Proof. Denote ei t = eTxi t , eTyi t
T
, αp t = αp t − αp, p =

1, 2, and β t = β t − β, and consider the following Lyapu-
nov function:

V t = V1 t +V2 t +V3 t , 19

where

V1 t =
1
2
〠
N

i=1
eTi t ei t +

1
2
〠
N

i=1
〠
N

j=1
pij t + cij − cij

2
,

V2 t =
1
2
〠
2

p=1
αTp t αp t +

1
2
β
T
t β t ,

V3 t =
1
2
〠
N

i=1
k−1xi ηxi t − η∗xi

2 + k−1yi ηyi t − η∗yi
2

+ ξ−1xi γxi t − γ∗xi
2 + ξ−1yi γyi t − γ∗yi

2
,

20

where η∗xi, η∗yi, γ∗xi, γ∗yi are positive constants left to be chosen,
where i = 1, 2,… ,N . The aim of the proof is to select appro-
priate constants to ensure that V t < 0.

By the parameter updating laws (14) and the con-
trollers (15), the derivative of V2 t and V3 t along
the trajectories of (4)–(7) can be calculated as follows:

V2 t = −〠
2

p=1
〠
N

j=1
αTp t f p xj t exj t − 〠

N

j=1
β
T
t gT yj t eyj t ,

21

V3 t = 〠
N

i=1
ηxi t − η∗xi e

T
xi t exi t

+ ηyi t − η∗yi eTyi t eyi t + γxi t − γ∗xi exi t 1

+ γyi t − γ∗yi eyi t 1

22

It follows from Hypothesis 1 that the derivative of
V1 t can be written as

V1 t = 〠
N

i=1
eTi t F Xi t , α1 t , α2 t , β t

− F Xi t , α1, α2, β

+ 〠
N

i=1
〠
N

j=1
eTxi t cijΓyj t − cijΓyj t

+ 〠
N

i=1
eTxi t Δx t + eTyi t Δy t + eTxi t uxi t

+ eTyi t uyi t − 〠
N

i=1
〠
N

j=1
pij t + cij − cij e

T
xi t Γyj t

≤ 〠
N

i=1
eTi t F Xi t , α1 t , α2 t , β t

− F Xi t , α1, α2, β + Lei t

+ 〠
N

i=1
〠
N

j=1
cije

T
xi t Γeyj t − pij t e

T
xi t Γyj t

+ 〠
N

i=1
eTxi t Δx t + eTyi t Δy t + eTxi t uxi t

+ eTyi t uyi t ,

23

and then,

V1 t ≤ 〠
N

i=1
eTi t F Xi t , α1 t , α2 t , β t

− F Xi t , α1, α2, β + Lei t

+ 〠
N

i=1
〠
N

j=1
cije

T
xi t Γeyj t

+ 〠
N

i=1
eTxi t Δx t + eTyi t Δy t

− 〠
N

i=1
ηxi t e

T
xi t exi t + γxi t exi t 1

− 〠
N

i=1
ηyi t e

T
yi t eyi t + γyi t eyi t 1

24

Combining the identities ∑N
i=1cij =∑N

j=1cij = 2l,

F Xi t , α1 t , α2 t , β t − F Xi t , α1, α2, β

= αT1 t f1 xi t + αT2 t f2 xi t , βT
t gT yi t

T
,

25

and Lemma 1 together yields

V1 t ≤ 〠
2

p=1
〠
N

i=1
αTp t f p xi t exi t + 〠

N

i=1
β
T
t gT yi t eyi t

+ L〠
N

j=1
eTi t ei t +

1
2
〠
N

i=1
〠
N

j=1
cij e

T
xi t ΓΓTexi t

+ eTyj t ΓTΓeyj t + 〠
N

i=1
eTxi t Δx t − γxi t exi t 1

+ eTyi t Δy t − γyi t eyi t 1 − 〠
N

i=1
ηxi t e

T
xi t exi t
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+ ηyi t e
T
yi t eyi t ≤ 〠

2

p=1
〠
N

j=1
αTp t f p xj t exj t

+ 〠
N

j=1
β
T
t gT yj t eyj t + 〠

N

i=1
eTxi t Δx t

− γxi t exi t 1 + eTyi t Δy t − γyi t eyi t 1

+ 〠
N

i=1
L + l − ηxi t eTxi t exi t

+ L + l − ηyi t eTyi t eyi t

26

Then, one concludes from the inequalities (21), (22),
and (26) that

V t ≤ 〠
N

i=1
eTxi t Δx t − γ∗xi exi t 1 + eTyi t Δy t − γ∗yi eyi t 1

+ 〠
N

i=1
L + l − η∗xi e

T
xi t exi t + L + l − η∗yi eTyi t eyi t

27

Choosing the constants γ∗xi, γ∗yi, η∗xi, η∗yi large enough to
ensure that

ρx − γ∗xi < 0, ρy − γ∗yi < 0, L + l − η∗yi < 0, L + l − η∗yi < 0, 28

one finally proves that V t < 0. Based on Lyapunov sta-
bility theory, V2 t indicates the validity of the first item,
V3 t indicates the validity of the first two equalities of
the second item, the second term of V1 t indicates that
limt→∞pij t = cij − cij, and the first term of V1 t indicates
the validity of the third item. Hence, the three items are
all proved.

As special cases, when some of the three unknown
parameters are given and fixed, Theorem 1 remains valid.
For example, assuming that the parameters α1 and α2 are
both determined, one gets the following corollary.

Corollary 1. Consider the system (4)–(7) with α1 t = α1
and α2 t = α2 under Hypothesis 1 and Hypothesis 2 hold.
Choose the adaptive controllers (15) and the parameter updat-
ing the law

β t = −〠
N

j=1
gT yj t eyj t 29

The three statements in Theorem 1 still hold.

Proof. Choose the following Lyapunov function:

W t = V1 t +W2 t +V3 t , 30

where V1 t andV3 t are defined in the proof of Theo-
rem 1, and

W2 t =
1
2
β
T
t β t 31

Analogous to the proof of Theorem 1, it follows from
Lemma 1 that

V1 t ≤ 〠
N

i=1
eTxi t Δx t − γxi t exi t 1 + eTyi t Δy t

− γyi t eyi t 1 + 〠
N

i=1
L + l − ηxi t exi t

2

+ L + l − ηyi t eyi t
2 + 〠

N

j=1
β
T
t gT yj t eyj t ,

32

and

W2 t = −〠
N

j=1
β
T
t gT yj t eyj t 33

Thus, one gets

W t ≤ 〠
N

i=1
eTxi t Δx t − γ∗xi exi t 1 + eTyi t Δy t

− γ∗yi eyi t 1 + 〠
N

i=1
L + l − η∗xi e

T
xi t exi t

+ L + l − η∗yi eTyi t eyi t ,

34

which is similar to the inequality (27). The remainder of the
argument is analogous to that of Theorem 1, and it is omit-
ted here.

It follows from the proof of Theorem 1 that the functions
γxi t and γyi t are designed for the disturbances Δx t and
Δy t . Therefore, we obtain the following corollary without
considering the disturbances.

Corollary 2. Consider the system (4)–(7) under Hypothesis 1.
If the disturbances Δx t = Δy t = 0, choose the parameter
updating laws (14) and the adaptive controllers

uxi t = −ηxi t exi t + 〠
N

j=1
pij t Γyj t ,

ηxi t = kxie
T
xi t exi t , kxi > 0,

uyi t = −ηyi t eyi t ,

ηyi t = kyie
T
yi t eyi t , kyi > 0,

pij t = −eTxi t Γyj t ,

35

where i, j = 1, 2,… ,N ; the three statements of Theorem 1
still hold.
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Proof. Choose the following Lyapunov function:

W t = V1 t +V2 t +W3 t , 36

where V1 t and V2 t are defined in the proof of
Theorem 1, and

W3 t =
1
2
〠
N

i=1
k−1xi ηxi t − η∗xi

2 + k−1yi ηyi t − η∗yi
2

37

Analogous to the proof of Theorem 1, it follows from
Lemma 1 that

V1 t ≤ 〠
2

p=1
〠
N

j=1
αTp t f p xj t exj t

+ 〠
N

j=1
β
T
t gT yj t eyj t

+ 〠
N

i=1
L + l − ηxi t exi t

2

+ L + l − ηyi t eyi t
2 ,

38

and

W3 t = 〠
N

i=1
ηxi t − η∗xi exi t

2

+ ηyi t − η∗yi eyi t
2

39

Thus, one has

W t ≤ 〠
N

i=1
L + l − η∗xi e

T
xi t exi t

+ L + l − η∗yi eTyi t eyi t ,
40

which is similar to the inequality (27). The remainder of
the argument is analogous to that of Theorem 1, and it is
omitted here.

3. A Numerical Example

In this section, a special case of the system (4)–(7) is given to
illustrate the effectiveness of the three statements of Theorem
1 one by one.

For clarity, we choose the coupling matrices as follows,
the row sums of which are equal to 5:

C =

3 2 0 0 0 0

0 3 2 0 0 0

0 0 3 2 0 0

0 0 0 3 2 0

0 0 0 0 3 2

2 0 0 0 0 3

,

C =

2 0 0 0 0 3

3 2 0 0 0 0

0 3 2 0 0 0

0 0 3 2 0 0

0 0 0 3 2 0

0 0 0 0 3 2

41

The topology structure corresponding to the above cou-
pling matrices is shown in Figure 2. For instance, the element
c21 = 3 implies that there is a coupling from the oscillator y2
to the oscillator x1, and the weight of this coupling is 3; the
element c11 = 3 implies that there is a coupling from the
oscillator y1 to the oscillator x1, and the weight of this cou-
pling is 3.

Based on the previous results [6], we set the parameters
of the drive network (4) as K = 1, n = 4, k = 1, α1 = v1, v2,
v3

T = 0 1,0 1,0 1 T, α2 = δ1, δ2, δ3
T = 0 35,0 35,0 35 T,

and β = β1, β2, β3
T = 0 28,1,0 2 T. The initial values α1 0 ,

α2 0 , and β 0 are selected randomly in 0, 1 × 0, 1 × 0, 1 ,
the initial values xi 0 and xi 0 are selected randomly
in 0, 1 × 0, 1 × 0, 1 , the initial values yi 0 and yi 0
are selected randomly in 0, 1 × 0, 1 , and the distur-
bances Δx t = cos t, −sin t, sin t T and Δy t = −cos t, 2
sin t, −3 sin t T. Then, with the help of Matlab, the following
figures are provided to verify the effectiveness of the obtained
theoretical results.

Figures 3 and 4 are presented to verify the validity of the
parameter laws (14). As can be seen, the parameter updating
laws (14) are in a good agreement with the actual value of the
corresponding parameters; i.e.,

lim
t→∞

v1 t = lim
t→∞

v2 t = lim
t→∞

v3 t = 0 1,

lim
t→∞

δ1 t = lim
t→∞

δ2 t = lim
t→∞

δ3 t = 0 1,

lim
t→∞

β1 t = 0 28,

lim
t→∞

β2 t = 1,

lim
t→∞

β3 t = 0 2

42
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Therefore, the first item of Theorem 1 is verified by
Figures 3 and 4.

Figure 5 depicts the time evolutions of the control gains
ηxi t of the adaptive controllers (15). As can be seen, for
each adaptive control gain ηxi t , there exists a positive con-
stant η∗xi such that

lim
t→∞

ηxi t = η∗xi, i = 1, 2,… , 6 43

The time evolutions of ηyi t , γxi t , γyi t are all similar
to those of ηxi t , i = 1, 2⋯ , 6, and we omitted them here.
The time evolutions of the topology updating laws pij t in
the adaptive controllers (15) are plotted in Figure 6, which
verifies that

lim
t→∞

pij t 6×6
= cij − cij 6×6

=

1 2 0 0 0 −3

−3 1 2 0 0 0

0 −3 1 2 0 0

0 0 −3 1 2 0

0 0 0 −3 1 2

2 0 0 0 −3 1
44

t→ 

0
0 2 4 6 8 10

0.5

1

�̄�i(t)

v̄i(t)

v̄1(t)

v̄2(t)

v̄3(t)

�̄�1(t)

�̄�2(t)

�̄�3(t)

Figure 3: Parameter identification of the system (4)–(7): limt→∞
α1 t = α1 and limt→∞α2 t = α2.

Adaptive
controllers

Disturbances

x1y1

x2y2

x3y3

x4y4

x5y5

x6y6

x4y4

x5y5

x1y1

x2y2

x3y3

x6y6

Figure 2: The topology structure of a special case of the network (4)–(7) with N = 6.
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0

0.5

1

1.5

2

2.5
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𝛽1(t)

𝛽2(t)

𝛽3(t)

0 2 4 6 8 10

Figure 4: Parameter identification of the system (4)–(7): limt→∞β
t = β.
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In particular, the blue lines indicate that limt→∞pii t = 1,
the red lines indicate that limt→∞pi,i+1 t = 2, the magenta
lines indicate that limt→∞pi+1,i t = −3, and the black lines
indicate that limt→∞p61 t = 2, limt→∞p16 t = −3, and
limt→∞pij t = 0 for other elements. Therefore, the second
item of Theorem 1 is verified by Figures 5 and 6.

Finally, the time evolutions of the outer synchronization
errors ei t = exi t + eyi t , where i = 1, 2,… , 6 are
shown in Figure 7, which shows that the errors converge to
zero and outer synchronization is achieved under the adap-
tive control schemes.

4. Conclusions

Based on Lyapunov stability theory, this paper has discussed
the dynamic principles of mammals’ circadian rhythms,
where the suprachiasmatic nucleus (SCN) of the hypothala-
mus was modeled by a Goodwin oscillator and the vasoactive
intestinal polypeptides (VIP) was modeled by a Van der Pol
oscillator. Considering that it is very difficult to get the exact
values of the system parameters, this paper has proposed
effective parameter updating laws to identify the unknown
parameters. The result has been proved based on strict theo-
retical reduction, and it should have a theoretical advantage
over the previous results, which were based on the statistical
method or experimental data. Another contribution of this
paper is the problem of outer synchronization under adaptive

control. Noticing that the coupling manner is different from
the widely accepted coupling of the classical complex net-
work, this paper has designed targeted adaptive controllers
to synchronize the drive Goodwin oscillator network and
the response one. The effectiveness of the obtained results
has been verified both theoretically and numerically.

We hope that the results can provide theoretical guidance
for biology experiments in spite of the confusing biological
applications, and we will continue to study the context of
the biological interpretation later. Another possible further
work is the identification of unknown time-varying parame-
ters since this paper is only applicable to the identification of
given and fixed parameters.
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