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Fractional calculus is a new branch of analytical mathematics
which provides useful tools to model many physical and bio-
logical phenomena and optimal control of complex processes
with memory effects. Therefore, new advancement of frac-
tional calculus theory will greatly promote the development
of function space theory, functional theory, andmathematical
physics as well as their applications in differential and integral
equations.

This special issue mainly focuses on the latest achieve-
ments and recent development of fractional calculus in the
nonlinear analysis, optimal control, computational methods,
space theory, and applications for solving various fractional
differential equations; it contains 46 papers selected through
a rigorous peer-reviewed process. These papers almost cover
most of directions and applications in fractional calculus.

In what follows, we briefly review the highlights andmain
contributions of each paper.

In the paper titled “Existence Results for a Class of
Semilinear Fractional Partial Differential Equations with
Delay in Banach Spaces”, the authors consider the existence
and uniqueness of the mild solutions for a class of nonlinear
time fractional partial differential equations with delay by
using the theory of solution operator and the general Banach
contraction mapping principle. What is significant about this
paper is that it does not need extra conditions to ensure the
contraction constant 0 < 𝑘 < 1.

In the paper titled “Some Remarks on Estimate ofMittag-
Leffler Function”, the authors point out the mistakes in
the estimation process of Mittag-Leffler function, provide a

counterexample, and then propose some sufficient conditions
to guarantee that part of the estimate for Mittag-Leffler
function is correct. Meanwhile, numerical examples are
given to illustrate the validity of the two newly established
estimates.

In the paper titled “Differential Harnack Estimates for a
Semilinear Parabolic System”, the author uses the inequali-
ties to construct classical Harnack estimates by integrating
along space-time and then proves some differential Harnack
inequalities for positive solutions of a semilinear parabolic
system on hyperbolic space.

In the paper titled “Toeplitz Operator and Carleson
Measure on Weighted Bloch Spaces”, the author considers
Toeplitz operator acting on weighted Bloch spaces. Mean-
while, the inclusionmap fromweighted Bloch spaces into tent
space is also investigated.

In the paper titled “Solutions for a Class of Hadamard
Fractional Boundary Value Problems with Sign-Changing
Nonlinearity”, by using fixed point index methods, the
authors establish some existence theorems of positive (non-
trivial) solutions for a class of Hadamard fractional boundary
value problems with sign-changing nonlinearity.

In the paper titled “Option Pricing under the Jump
Diffusion and Multifactor Stochastic Processes”, the authors
extend the Hestonmodel to be a hybrid option pricing model
driven by multiscale stochastic volatility and jump diffusion
process. In this model the correlation effects have been taken
into consideration. For the reason that the combination of
multiscale volatility processes and jump diffusion process
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results in a high dimensional differential equation, an efficient
finite element method is proposed and the integral term
arising from the jump term is absorbed to simplify the
problem.The numerical results show an efficient explanation
for volatility smirks when one incorporates jumps into both
the stock process and the volatility process.

In the paper titled “Positive Solutions for a Higher-Order
Semipositone Nonlocal Fractional Differential Equation with
Singularities on Both Time and Space Variable”, the author
was concerned with a class of higher-order semipositone
nonlocal Riemann-Liouville fractional differential equations.
The existence results of positive solutions are given by Guo-
Krasnosel’skii fixed point theorem and Schauder’s fixed point
theorem.

In the paper titled “Two New Geraghty Type Contrac-
tions in Gb-Metric Spaces”, two Geraghty type contractions
are introduced in Gb-metric spaces, and some fixed point
theorems about the contractions are proved. At the end of
this article, a theorem about unique solution of an integral
function is proved.

In the paper titled “Solution of Hamilton-Jacobi-Bellman
Equation in Optimal Reinsurance Strategy under Dynamic
VaR Constraint”, the authors analyze the optimal reinsur-
ance strategy for insurers with a generalized mean-variance
premium principle. The surplus process of the insurer is
described by the diffusion model which is an approximation
of the classical Cramér-Lundberg model by assuming the
dynamic VaR constraints for proportional reinsurance; the
closed form expression of the optimal reinsurance strategy
and corresponding survival probability under proportional
reinsurance are obtained.

In the paper titled “Parameter Estimation for Fractional
Diffusion Process with Discrete Observations”, the authors
deal with the problem of estimating the parameters for
fractional diffusion process from discrete observations when
the Hurst parameter 𝐻 is unknown. With combination of
several methods, such as the Donsker type approximate
formula of fractional Brownian motion, quadratic variation
method, and the maximum likelihood approach, the authors
give the parameter estimations of the Hurst index, diffu-
sion coefficients, and volatility and then prove their strong
consistency. Finally, an extension for generalized fractional
diffusion process and further work are briefly discussed.

In the paper titled “Hermite-Hadamard-Fejér Inequal-
ities for Conformable Fractional Integrals via Preinvex
Functions”, the authors present a Hermite-Hadamard-Fejér
inequality for conformable fractional integrals by using
symmetric preinvex functions and also establish an identity
associated with the right hand side of Hermite-Hadamard
inequality for preinvex functions; then by using this identity
and preinvexity of functions and some well-known inequal-
ities, several new Hermite-Hadamard type inequalities for
conformal fractional integrals were established.

In the paper titled “Existence of Nontrivial Solutions
for Fractional Differential Equations with p-Laplacian”, by
combining the properties of the Green function with some
fixed point theorems, the authors consider the existence of
nontrivial solutions for fractional equations with 𝑝-Laplacian
operator.

In the paper titled “Fixed Point Theory and Positive
Solutions for a Ratio-Dependent Elliptic System”, the authors
consider a ratio-dependent predator-prey model under zero
Dirichlet boundary condition. By using topological degree
theory and fixed index theory, the necessary and sufficient
conditions for the existence of positive solutionswere studied,
and by bifurcation theory and energy estimates, the asymp-
totic behavior analysis of positive solutions was presented.

In the paper titled “Existence of Nontrivial Solutions for
Some Second-Order Multipoint Boundary Value Problems”,
by using fixed point theorems with lattice structure, the
existence of negative solution and sign-changing solution for
some second-order multipoint boundary value problems is
obtained.

In the paper titled “Existence of Uniqueness and Nonex-
istence Results of Positive Solution for Fractional Differ-
ential Equations Integral Boundary Value Problems”, the
author considered a class of fractional differential equations
with conjugate type integral conditions. Both the existence
of uniqueness and nonexistence of positive solution are
obtained by means of the iterative technique. The interesting
point is that the assumption on nonlinearity is closely asso-
ciated with the spectral radius corresponding to the relevant
linear operator.

In the paper titled “New Fixed PointTheorems andAppli-
cation of Mixed Monotone Mappings in Partially Ordered
Metric Spaces”, the authors consider the existence of a
coupled fixed point for mixed monotone mapping satisfying
a new contractive inequality which involves an altering
distance function in partially ordered metric spaces. Some
uniqueness results for coupled fixed points, as well as the
existence of fixed points of mixed monotone operators, are
established.

In the paper titled “Limit Cycles and Invariant Curves
in a Class of Switching Systems with Degree Four”, a
class of switching systems which have an invariant conic
is investigated. Half attracting invariant conic is found in
switching systems. The coexistence of small-amplitude limit
cycles, large amplitude limit cycles, and invariant algebraic
curves under perturbations of the coefficients of the systems
is proved.

In the paper titled “Positive Solutions for a System of
Fractional Differential Equations with Two Parameters”, the
existence of positive solutions in terms of different values
of two parameters for a system of conformable-type frac-
tional differential equations with the p-Laplacian operator is
obtained via Guo-Krasnosel’skii fixed point theorem.

In the paper titled “Impulsive Fractional Differential
Equations with 𝑝-Laplacian Operator in Banach Spaces”,
the authors study a class of boundary value problems with
multiple point boundary conditions of impulsive p-Laplacian
operator fractional differential equations. The sufficient con-
ditions for the existence of solutions in Banach spaces
are established by using the Kuratowski noncompactness
measure and the Sadovskii fixed point theorem. An example
is given to demonstrate the main results.

In the paper titled “Separated Boundary Value Problems
of Sequential Caputo and Hadamard Fractional Differential
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Equations”, the authors discuss the existence and unique-
ness of solutions for new classes of separated boundary
value problems of Caputo-Hadamard andHadamard-Caputo
sequential fractional differential equations by using standard
fixed point theorems. The application of the obtained results
with the aid of examples is demonstrated.

In the paper titled “The Existence and Uniqueness of
Solutions and Lyapunov-Type Inequality for CFR Fractional
Differential Equations”, the authors study CFR fractional
differential equations with the derivative of order 3 < 𝛼 <
4 and prove existence and uniqueness theorems for CFR-
type initial value problem. By Green’s function and its corre-
sponding maximum value, the Lyapunov-type inequality of
corresponding equations is obtained.

The paper titled “Solutions for Integral Boundary Value
Problems of Nonlinear Hadamard Fractional Differential
Equations” is aimed at establishing some existence theorems
of positive (nontrivial) solutions for integral boundary value
problems of nonlinearHadamard fractional differential equa-
tions by using fixed point methods.

In the paper titled “The Conjugate Gradient Viscosity
Approximation Algorithm for Split Generalized Equilibrium
and Variational Inequality Problems”, the authors study a
kind of conjugate gradient viscosity approximation algo-
rithm for finding a common solution of split generalized
equilibrium problem and variational inequality problem.
Under mild conditions, the authors prove that the sequence
generated by the proposed iterative algorithm converges
strongly to the common solution. Some numerical results
are illustrated to show the feasibility and efficiency of the
proposed algorithm.

In the paper titled “Some Properties for Solutions
of Riemann-Liouville Fractional Differential Systems with
a Delay”, the authors study properties for solutions of
Riemann-Liouville fractional differential systems with a
delay. Some results on integral inequalities are first presented
byHolder inequality. Then by using the obtained inequalities,
the properties on solutions for R-L fractional systems with
a delay are investigated and upper bound of solutions is
obtained. An illustrative example is considered to support the
results

In the paper titled “Existence Results for Impulsive Frac-
tional 𝑞-Difference Equation with Antiperiodic Boundary
Conditions”, the authors investigate the impulsive fractional
𝑞-difference equation with antiperiodic conditions. The exis-
tence and uniqueness results of solutions are established
via the theorem of nonlinear alternative of Leray-Schauder
type and the Banach contraction mapping principle. Two
examples are given to illustrate the main results.

The paper titled “Existence of Generalized Nash Equilib-
rium in 𝑛−Person Noncooperative Games under Incomplete
Preference” presents a new method to improve the existence
of Nash equilibrium. Based on the incomplete preference
corresponding to equivalence class set being a partial order
set, the author translates the incomplete preference problems
into the partial order problems. Using the famous Zorn
lemma, the existence theorems of fixed point for noncontin-
uous operators in incomplete preference sets are obtained.
Finally, the existence of generalized Nash equilibrium is

strictly proved in the 𝑛−person noncooperative games under
incomplete preference

In the paper titled “Positive Solutions for Higher Order
Nonlocal Fractional Differential Equation with Integral
Boundary Conditions”, by using the spectral analysis of
the relevant linear operator and Gelfand’s formula, some
properties of the first eigenvalue of a fractional differen-
tial equation were obtained; combining fixed point index
theorem, sufficient conditions for the existence of positive
solutions are established. An example is given to demonstrate
the application of the main results.

In the paper titled “Hopf Bifurcation of a Delayed Ecoepi-
demic Model with Ratio-Dependent Transmission Rate”,
the authors mainly focus on the effects of the time delay
due to the gestation of the predator for a developed delay
ecoepidemic model with ratio-dependent transmission rate.
Sufficient conditions for local stability and existence of a
Hopf bifurcation of the model are derived by regarding
the time delay as the bifurcation parameter. Furthermore,
properties of the Hopf bifurcation are investigated by using
the normal form theory and the center manifold theorem.
Finally, numerical simulations are carried out in order to
validate the obtained theoretical results

In the paper titled “Uniqueness of Successive Positive
Solution for Nonlocal Singular Higher-Order Fractional
Differential Equations Involving Arbitrary Derivatives”, by
means of fixed point theorem on mixed monotone operator,
the authors establish the uniqueness of positive solution
for some nonlocal singular higher-order fractional differen-
tial equations involving arbitrary derivatives. The iterative
schemes for approximating unique positive solution are
given.

The paper titled “Existence and Nonexistence of Positive
Solutions for Mixed Fractional Boundary Value Problem
with Parameter and 𝑝-Laplacian Operator” mainly studies
a class of mixed fractional boundary value problem with
parameter and 𝑝-Laplacian operator. Based on the Guo-
Krasnosel’skii fixed point theorem, results on the existence
and nonexistence of positive solutions for the fractional
boundary value problem are established. An example is then
presented to illustrate the effectiveness of the results

In the paper titled “Existence Results for Generalized
Bagley-Torvik Type Fractional Differential Inclusions with
Nonlocal Initial Conditions”, the authors prove the exis-
tence of solutions for the generalized Bagley-Torvik type
fractional-order differential inclusions with nonlocal condi-
tions. It allows one to apply the noncompactness measure
of Hausdorff, fractional calculus theory and the nonlinear
alternative for Kakutani maps fixed point theorem to obtain
the existence results under the assumptions that the nonlocal
item is compact continuous and Lipschitz continuous and
multifunction is compact and Lipschitz, respectively.

In the paper titled “On the Effective Reducibility of a
Class of Quasi-Periodic Linear Hamiltonian Systems Close
to Constant Coefficients”, the authors consider the effective
reducibility of a class of quasi-periodic linear Hamiltonian
system. Under nonresonant conditions, it is proved that this
system can be reduced to low order system and the change of
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variables that perform such a reduction is also quasi-periodic
with the same basic frequencies.

In the paper titled “A Note on the Fractional Generalized
Higher Order KdV Equation”, the author obtains exact solu-
tions to the fractional generalized higher order Korteweg-de
Vries equation using the complex method, showing that the
applied method is very useful and is practically well suited for
the nonlinear differential equations arising in mathematical
physics.

In the paper titled “The Eigenvalue Problem for Caputo
Type Fractional Differential Equation with Riemann-Stieltjes
Integral Boundary Conditions”, the authors investigate the
eigenvalue problem for Caputo fractional differential equa-
tion with Riemann-Stieltjes integral boundary conditions. By
using the Guo-Krasnoselskii’s fixed point theorem on cone
and the properties of the Green’s function, some new results
on the existence and nonexistence of positive solutions for the
fractional differential equation are obtained.

The paper titled “Synchronization of Different Uncer-
tain Fractional-Order Chaotic Systems with External Dis-
turbances via T-S Fuzzy Model” presents an adaptive
fuzzy synchronization control strategy for a class of differ-
ent uncertain fractional-order chaotic/hyperchaotic systems
with unknown external disturbances via T-S fuzzy systems,
where the parallel distributed compensation technology is
provided to design adaptive controller with fractional adap-
tation laws. T-S fuzzy models are employed to approximate
the unknown nonlinear systems and tracking error signals
are used to update the parametric estimates. The asymptotic
stability of the closed-loop system and the boundedness of
the states and parameters are guaranteed by fractional Lya-
punov theory. This approach is also valid for synchronization
of fractional-order chaotic systems with the same system
structure. One constructive example is given to verify the
feasibility and superiority of the proposed method.

In the paper titled “Positive Solutions for a Fractional
Boundary Value Problem with a Perturbation Term”, the
author obtains some new upper and lower estimates for the
Green’s function associated with a fractional boundary value
problem with a perturbation term. Criteria for the existence
of positive solutions of the problem are then obtained based
on these theories.

In the paper titled “The Exact Iterative Solution of
Fractional Differential Equation with Nonlocal Boundary
Value Conditions”, the authors deal with a singular non-
local fractional differential equation with Riemann-Stieltjes
integral conditions. The exact iterative solution is established
under the iterative technique. The iterative sequences have
been proved to converge uniformly to the exact solution, and
estimation of the approximation error and the convergence
rate have been derived. An example is also given to demon-
strate the results

In the paper titled “Fixed-Point Theorems for Systems of
Operator Equations and Their Applications to the Fractional
Differential Equations”, the authors study the existence and
uniqueness of positive solution for a class of nonlinear binary
operator equations systems by means of the cone theory and
monotone iterative technique, under more general condi-
tions. The iterative sequence of the solution and the error

estimation of the system are given. The authors also use
this new result to study the existence and uniqueness of
the solutions for fractional differential equations systems
involving integral boundary value conditions in ordered
Banach spaces as an application.

In the paper titled “Generalization of Hermite-Hadamard
Type Inequalities via Conformable Fractional Integrals”, the
authors establish a Hermite-Hadamard type identity and
several new Hermite-Hadamard type inequalities for con-
formable fractional integrals and present their applications to
special bivariate means.

In the paper titled “Fixed PointTheorems for Generalized
𝛼𝑠-𝜓-Contractions with Applications”, the authors study the
sufficient conditions for the existence of a unique common
fixed point of generalized 𝛼𝑠-𝜓-Geraghty contractions in an
𝛼𝑠-complete partial 𝑏-metric space. An example in support of
the findings is given.

In the paper titled “A New Sufficient Condition for
Checking the Robust Stabilization of Uncertain Descriptor
Fractional-Order Systems”, the authors consider the robust
asymptotical stabilization of uncertain class of descriptor
fractional-order systems. In the state matrix, the authors
require that the parameter uncertainties are time-invariant
and norm-bounded. A sufficient condition for the system
with the fractional-order 𝛼 satisfying 1 ⩽ 𝛼 < 2 in terms
of linear matrix inequalities is derived. The condition of the
proposed stability criterion for fractional-order system is easy
to be verified. An illustrative example is given to show that the
result is effective.

In the paper titled “Positive Solutions for a System of
Semipositone Fractional Difference Boundary Value Prob-
lems”, by using the fixed point index, the authors establish
two existence theorems for positive solutions to a system of
semipositone fractional difference boundary value problems.
Nonnegative concave functions and nonnegative matrices to
characterize the coupling behavior of our nonlinear terms are
adopted.

In the paper titled “Non-Nehari Manifold Method for
Fractional p-Laplacian Equation with a Sign-Changing Non-
linearity”, the authors consider a class of fractional p-
Laplacian equation. The nonlinear term 𝑓 has the subcritical
growth and may change sign. Under the condition that 𝑉
is coercive, the existence of ground state solutions for p-
Laplacian equation is established.

In the paper titled “𝐶∗-Algebra-Valued 𝐺-Metric Spaces
and Related Fixed-Point Theorems”, the authors introduce
the notion of the 𝐶∗-algebra-valued 𝐺-metric space. The
existence and uniqueness of some fixed-point theorems for
self-mappings with contractive or expansive conditions on
complete𝐶∗-algebra-valued 𝐺-metric spaces are established.
As an application, the authors prove the existence and
uniqueness of the solution of a type of differential equations.

In the paper titled “The Tensor Padé-Type Approximant
with Application in Computing Tensor Exponential Func-
tion”, tensor Padé-type approximant is defined by introduc-
ing a generalized linear functional for the first time. The
expression of TPTA is provided with the generating function
form.Moreover, bymeans of formal orthogonal polynomials,
the authors propose an efficient algorithm for computing



Journal of Function Spaces 5

TPTA. As an application, the TPTA for computing the
tensor exponential function is presented and some numerical
examples are given to demonstrate the efficiency of the
proposed algorithm.

In the paper titled “A New Approach to the Existence
of Quasiperiodic Solutions for Second-Order Asymmetric
𝑝-Laplacian Differential Equations”, the authors propose a
new estimate approach to study the existence of Aubry-
Mather sets and quasiperiodic solutions for the second-order
asymmetric 𝑝-Laplacian differential equations. By using the
Aubry-Mather theorem, the existence of Aubry-Mather sets
and quasiperiodic solutions under some reasonable condi-
tions are obtained. Particularly, the advantage of the approach
is that it not only gives a simpler estimation procedure, but
also weakens the smoothness assumption on the function
𝜓(𝑡, 𝑥) in the existing literature.

Through the special issue, we also hope to open the
opportunity for the journal readers tomake comments on the
work presented.
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In this paper, we consider a class of nonlinear time fractional partial differential equations with delay. We obtain the existence and
uniqueness of the mild solutions for the problem by the theory of solution operator and the general Banach contraction mapping
principle. We need not extra conditions to ensure the contraction constant 0 < 𝑘 < 1. Therefore, under some general conditions,
we obtain our main results.

1. Introduction

Fractional derivatives can describe the property of the
memory, and they have more advantages than integer-order
derivatives. Therefore, fractional differential equations have
been successfully applied in many fields, such as engineering
and physics. About the fractional differential equations, we
refer to these papers [1–9] and the references therein. In [7,
10], the authors studied the existence results of the fractional
integrodifferential equations of order 1 < 𝛽 ≤ 2. In [11,
12], the authors considered a class of fractional differential
equations, where the fractional derivative operator is 𝐴0𝐷𝛽𝑡
with fractional order 𝛽 and 𝐴 is a closed densely defined
operator in a Banach space. Goufo [13] studied the existence
results for a class of fractional fragmentation model by
theory of strongly continuous solution operators. In [14,
15], the authors investigated a class of space-time fractional
diffusion equations, while in [16] the authors studied a class
of linear fractional differential equations by the variational
iteration method and the Adomian decomposition method.
In [17–19], the authors studied the following fractional partial
differential equations:

𝑐𝐷𝛽𝑡 𝑢 (𝑥, 𝑡) − 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡)
= 𝑔 (𝑡, 𝑢 (𝑥, 𝜏1 (𝑡)) , 𝑢 (𝑥, 𝜏2 (𝑡)) , . . . , 𝑢 (𝑥, 𝜏𝑙 (𝑡))) ,

𝑡 ∈ [0, 𝑇0] ,
𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × [0, 𝑇0] ,
𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ Ω.

(1)

Ouyang [17] studied the existence of the local mild solutions
for such problem by Leray-Schauder’s fixed theorem. Zhu et
al. [18, 19] also studied the existence of the mild solutions
by strict set contraction and Banach contraction mapping
theorem of the problem. Li et al. [20] investigated the
following fractional differential equations:

𝑐𝐷𝛽𝑡 𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝐽1−𝛽𝑡 𝑓 (𝑡, 𝑢𝑡) , 𝑡 ∈ [0, 𝑇] ,
𝑢 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0] , (2)

where 𝛽 ∈ (0, 1). In [20], the Lipschitz coefficient of the
nonlinear function 𝑓 is a constant.
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Inspired by the above said work, we investigate the
following nonlinear fractional partial differential equations
with delay:

𝑐𝐷𝛽𝑡 𝑢 (𝑥, 𝑡) − 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡)
= 𝐽1−𝛽𝑡 𝑓 (𝑡, 𝑢 (𝑥, 𝜏1 (𝑡)) , . . . , 𝑢 (𝑥, 𝜏𝑙 (𝑡))) ,

𝑡 ∈ [0, 𝑇0] , 𝑥 ∈ Ω,
𝑢 (𝑥, 𝜃) = 𝜑 (𝑥, 𝜃) , 𝑥 ∈ Ω, 𝜃 ∈ [−𝑟, 0] ,

(3)

where 0 < 𝛽 < 1, 𝑐𝐷𝛽𝑡 is Caputo’s fractional derivative of order𝛽, 𝐽1−𝛽𝑡 is the Riemann-Liouville fractional integral of order1−𝛽, 𝑙 is a nature number,Ω ⊂ R𝑙 is a bounded domain with
regular boundary 𝜕Ω, 𝜏𝑖 : [0, 𝑇0] → [0, 𝑇0] (𝑖 = 1, 2, . . . , 𝑙)
are continuous functions, and these functions satisfy 0 ≤𝜏𝑖(𝑡) ≤ 𝑡 (𝑖 = 1, 2, . . . , 𝑙), 𝜑 ∈ 𝐶([−𝑟, 0]; 𝐸), 𝐸 = 𝐶(Ω;R), Ω =Ω ∪ 𝜕Ω.

In this paper, we consider the existence results of the
mild solutions of problem (3) by general Banach contraction
mapping theorem. We need not extra conditions to ensure
the contraction constant 0 < 𝑘 < 1. Under some general
conditions, we obtain our main results. Therefore, our results
presented in this paper improve many classical results.

2. Preliminaries

Let (𝐸, ‖ ⋅ ‖) be a Banach space and let 𝐶([0, 𝑇0]; 𝐸) = {𝑢 :[0, 𝑇0] → 𝐸 is continuous} be a Banach space with norm‖𝑢‖𝐶 = max{‖𝑢(𝑡)‖ : 𝑡 ∈ [0, 𝑇0]}.
Definition 1 (see [21, 22]). The Riemann-Liouville fractional
integral of a function ℎ : (0,∞) → R of order 𝛼 > 0 is
defined as

𝐽𝛼𝑡 ℎ (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 ℎ (𝑠) 𝑑𝑠, (4)

where ℎ(𝑡) ∈ 𝐿1((0, 𝑇0); 𝐸).
For convenience, we let

𝑓𝛼 (𝑡) = {{{{{
𝑡𝛼−1Γ𝛼 , 𝑡 > 0,
0, 𝑡 ≤ 0, (5)

and then

𝐽𝛼𝑡 ℎ (𝑡) = (𝑓𝛼 ∗ 𝑢) (𝑡) = ∫𝑡
0
𝑓𝛼 (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠. (6)

Definition 2 (see [21, 22]). The Riemann-Liouville fractional
derivative of a function ℎ : (0,∞) → R of order 𝛼 > 0 is
defined as

𝐷𝛼𝑡 ℎ (𝑡) = 𝐷𝑚𝑡 𝐽𝑚−𝛼𝑡 ℎ (𝑡) , (7)

where 𝐷𝑚𝑡 = 𝑑𝑚/𝑑𝑡𝑚, ℎ(𝑡) ∈ 𝐿1((0, 𝑇0); 𝐸), 𝐽𝑚−𝛼𝑡 ℎ(𝑡) ∈𝑊𝑚,1((0, 𝑇0); 𝐸).

Definition 3 (see [21, 22]). TheCaputo fractional derivative of
function ℎ of order 𝛼 > 0 is defined as

𝑐𝐷𝛼𝑡 ℎ (𝑡) = 𝐷𝛼𝑡 (ℎ (𝑡) − 𝑚−1∑
𝑘=0

𝑡𝑘𝑘!ℎ(𝑘) (0)) , (8)

where ℎ(𝑡) ∈ 𝐿1((0, 𝑇0); 𝐸) ∩ 𝐶𝑚−1((0, 𝑇0); 𝐸).
For the Riemann-Liouville fractional integral operator

and the Caputo fractional derivative operator, we have
𝑐𝐷𝛼𝑡 (𝐽𝛼𝑡 ℎ (𝑡)) = ℎ (𝑡) ,
𝐽𝛼𝑡 (𝑐𝐷𝛼𝑡 ℎ (𝑡)) = ℎ (𝑡) − 𝑚−1∑

𝑘=0

𝑡𝑘𝑘!ℎ(𝑘) (0) .
(9)

Definition 4 (see [23]). Let𝐴 be a closed linear operator with
dense domain 𝐷(𝐴) in a Banach space 𝐸; 𝛽 > 0. A family{𝑆𝛽(𝑡)}𝑡≥0 ⊂ 𝐵(𝐸) of bounded linear operators in 𝐸 is called a
solution operator for the integral equation

𝑢 (𝑡) = 𝑥 + 1Γ (𝛽) ∫
𝑡

0

𝐴𝑢 (𝑠)(𝑡 − 𝑠)1−𝛽 𝑑𝑠, 𝑡 ≥ 0, 𝑥 ∈ 𝐸, (10)

if the following conditions are satisfied:

(i) 𝑆𝛽(𝑡) is strongly continuous on R+ and 𝑆𝛽(0) = 𝐼.
(ii) 𝑆𝛽(𝑡)𝐷(𝐴) ⊂ 𝐷(𝐴) and 𝐴𝑆𝛽(𝑡)𝑥 = 𝑆𝛽(𝑡)𝐴𝑥 for all𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0.
(iii) 𝑆𝛽(𝑡)𝑥 is a solution of

𝑢 (𝑡) = 𝑥 + 1Γ (𝛽) ∫
𝑡

0

𝐴𝑢 (𝑠)(𝑡 − 𝑠)1−𝛽 𝑑𝑠 (11)

for all 𝑥 ∈ 𝐷(𝐴), 𝑡 ≥ 0.
We call 𝐴 the infinitesimal generator of 𝑆𝛽(𝑡) or say that𝐴 generates 𝑆𝛽(𝑡).
Let 𝑢(𝑡) = 𝑢(⋅, 𝑡); then the fractional partial differential

equation (3) can be rewritten in the following abstract form:

𝑐𝐷𝛽𝑡 𝑢 (𝑡)= 𝐴𝑢 (𝑡)
+ 𝐽1−𝛽𝑡 𝑓 (𝑡, 𝑢 (𝜏1 (𝑡)) , 𝑢 (𝜏2 (𝑡)) , . . . , 𝑢 (𝜏𝑙 (𝑡))) ,

𝑡 ∈ [0, 𝑇0] ,
𝑢 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

(12)

where

𝐷 (𝐴) = {𝑢 ∈ 𝐶 (Ω,R) ; 𝑢 ∈ 𝐶 (Ω,R)} ,
𝐴𝑢 = 𝑢,
𝑡 ∈ [−𝑟, 0] ,

(13)

and 𝑓 : [0, 𝑇0] × 𝐶([−𝑟, 0]; 𝐸) × 𝐶([−𝑟, 0]; 𝐸) ⋅ ⋅ ⋅ × 𝐶([−𝑟,0]; 𝐸) → 𝐸 is defined by 𝑓(𝑡, 𝜑, 𝜑 ⋅ ⋅ ⋅ 𝜑)(𝑥) = 𝑓(𝑡, 𝜑(⋅, 𝑥),𝜑(⋅, 𝑥) ⋅ ⋅ ⋅ 𝜑(⋅, 𝑥)) for 𝑡 ∈ [0, 𝑇0], 𝜑 ∈ 𝐶([−𝑟, 0]; 𝐸) and 𝑥 ∈ Ω.
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It is easy to see that 𝐴 generates a 𝐶0 semigroup {𝑇(𝑡)𝑡≥0}
on 𝐸. Theorem 3.1 in [23] means that 𝐴 is the infinitesimal
generator of a solution operator 𝑆𝛽(𝑡)𝑡≥0.

Definition 5 (see [24]). If 𝑢 ∈ 𝐶([−𝑟, 𝑇0]; 𝐸) is a mild
solution of problem (12), then𝑢 satisfies the following integral
equations:

𝑢 (𝑡) = {{{
𝑆𝛽 (𝑡) 𝜑 (0) + ∫𝑡

0
𝑆𝛽 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝜏1 (𝑠)) , 𝑢 (𝜏2 (𝑠)) , . . . , 𝑢 (𝜏𝑙 (𝑠))) 𝑑𝑠, 𝑡 ∈ [0, 𝑇0] ,𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0] . (14)

3. Main Results

We define the operator F : 𝐶([−𝑟, 𝑇0]; 𝐸) → 𝐶([−𝑟, 𝑇0]; 𝐸)
by

F𝑢 (𝑡) = {{{
𝑆𝛽 (𝑡) 𝜑 (0) + ∫𝑡

0
𝑆𝛽 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝜏1 (𝑠)) , 𝑢 (𝜏2 (𝑠)) , . . . , 𝑢 (𝜏𝑙 (𝑠))) 𝑑𝑠, 𝑡 ∈ [0, 𝑇0] ,𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0] . (15)

Theorem 6. Assume that the conditions (𝐻1) and (𝐻2) hold.(𝐻1)�ere exists a real number𝑀 > 0 such that ‖𝑆𝛽(𝑡)‖ ≤𝑀, 𝑡 ∈ [0, 𝑇0].(𝐻2) �e function 𝑓 : [0, 𝑇0] × 𝐶([−𝑟, 0]; 𝐸) ×𝐶([−𝑟, 0]; 𝐸) ⋅ ⋅ ⋅ × 𝐶([−𝑟, 0]; 𝐸) → 𝐸 is continuous in 𝑡
on [0, 𝑇0], and there exist nonnegative Lebesgue integrable
functions 𝐿 𝑖 ∈ 𝐿1(𝐽,R+) (𝑖 = 1, 2, . . . , 𝑙) such that𝑓 (𝑡, 𝑢1, 𝑢2, . . . , 𝑢𝑙) − 𝑓 (𝑡, V1, V2, . . . , V𝑙)

≤ 𝑙∑
𝑖

𝐿 𝑖 (𝑡) 𝑢𝑖 − V𝑖
 , (16)

where 𝑡 ∈ [0, 𝑇0], 𝑢𝑖, V𝑖 ∈ 𝐶([−𝑟, 0]; 𝐸).
�en problem (12) has a unique mild solution 𝑢 ∈𝐶([−𝑟, 𝑇0]; 𝐸), which means that (3) has a unique mild

solution.

Proof. For any 0 < 𝜀 < 1, by the property of the Lebesgue inte-
grable function, there exists a continuous function 𝜙(𝑠) such
that ∫𝑇0

0
|𝐿(𝑠) − 𝜙(𝑠)|𝑑𝑠 < 𝜀, where 𝐿(𝑠) = 𝑀∑𝑙𝑖 𝐿 𝑖(𝑠). From

conditions (𝐻1)-(𝐻2) and (15), for any 𝑢, V ∈ 𝐶([−𝑟, 𝑇0]; 𝐸),
we obtain

‖(F𝑢) (𝑡) − (FV) (𝑡)‖ ≤ ∫𝑡
0
𝑆𝛽 (𝑡 − 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝜏1 (𝑠)) , . . . , 𝑢 (𝜏𝑙 (𝑠)))
− 𝑓 (𝑠, V (𝜏1 (𝑠)) , . . . , V (𝜏𝑙 (𝑠))) 𝑑𝑠
≤ ∫𝑡
0
𝑀 𝑙∑
𝑖

𝐿 𝑖 (𝑠) 𝑢 (𝜏𝑖 (𝑠)) − V (𝜏𝑖 (𝑠)) 𝑑𝑠
≤ ∫𝑡
0
𝐿 (𝑠) 𝑑𝑠 ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸)

≤ (∫𝑡
0

𝐿 (𝑠) − 𝜙 (𝑠) 𝑑𝑠 + ∫𝑡
0

𝜙 (𝑠) 𝑑𝑠) ‖𝑢

− V‖𝐶([−𝑟,𝑇0];𝐸) ≤ (𝜀 + 𝑁𝑡) ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸)
= (𝐶01𝜀1 + 𝐶11 (𝑁𝑡)11! ) ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸)

(17)

where𝑁 = max𝑡∈𝐽|𝜙(𝑡)|. Next, for any nature number 𝑛, we
will prove the following inequality:

(F𝑛𝑢) (𝑡) − (F𝑛V) (𝑡)
≤ (𝐶0𝑛𝜀𝑛 + 𝐶1𝑛𝜀𝑛−1 (𝑁𝑡)11! + ⋅ ⋅ ⋅ + 𝐶𝑛𝑛𝜀𝑛−𝑛 (𝑁𝑡)𝑛𝑛! )
⋅ ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸) .

(18)

Obviously, for 𝑛 = 1, (18) holds. Assume that 𝑛 = 𝑘 and (18)
holds; that is,

(F𝑘𝑢) (𝑡) − (F𝑘V) (𝑡)
≤ (𝐶0𝑘𝜀𝑘 + 𝐶1𝑘𝜀𝑘−1 (𝑁𝑡)11! + ⋅ ⋅ ⋅ + 𝐶𝑘𝑘𝜀𝑘−𝑘 (𝑁𝑡)𝑘𝑘! )
⋅ ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸) .

(19)

By (15), (𝐻1)-(𝐻2), and formula 𝐶𝑚𝑘+1 = 𝐶𝑚𝑘 + 𝐶𝑚−1𝑘 , we have

(F𝑘+1𝑢) (𝑡) − (F𝑘+1V) (𝑡)
≤ ∫𝑡
0
𝑀𝑓 (𝑠, (F𝑘𝑢) (𝜏1 (𝑠)) , . . . , (F𝑘𝑢) (𝜏𝑙 (𝑠)))

− 𝑓 (𝑠, (F𝑘V) (𝜏1 (𝑠)) , . . . , (F𝑘V) (𝜏𝑙 (𝑠))) 𝑑𝑠
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≤ ∫𝑡
0
𝐿 (𝑠) (F𝑘𝑢) (𝜏𝑖 (𝑠)) − (F𝑘V) (𝜏𝑖 (𝑠)) 𝑑𝑠

≤ (∫𝑡
0

𝐿 (𝑠) − 𝜙 (𝑠)
⋅ (𝐶0𝑘𝜀𝑘 + 𝐶1𝑘𝜀𝑘−1 (𝑁𝑠)11! + ⋅ ⋅ ⋅ + 𝐶𝑘𝑘𝜀𝑘−𝑘 (𝑁𝑠)𝑘𝑘! ) 𝑑𝑠)
⋅ ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸) + (∫𝑡

0

𝜙 (𝑠)
⋅ (𝐶0𝑘𝜀𝑘 + 𝐶1𝑘𝜀𝑘−1 (𝑁𝑠)11! + ⋅ ⋅ ⋅ + 𝐶𝑘𝑘𝜀𝑘−𝑘 (𝑁𝑠)𝑘𝑘! ) 𝑑𝑠)
⋅ ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸) ≤ 𝜀(𝐶0𝑘𝜀𝑘 + 𝐶1𝑘𝜀𝑘−1 (𝑁𝑡)11! + ⋅ ⋅ ⋅
+ 𝐶𝑘𝑘𝜀𝑘−𝑘 (𝑁𝑡)𝑘𝑘! ) ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸) + 𝑁∫𝑡

0
(𝐶0𝑘𝜀𝑘

+ 𝐶1𝑘𝜀𝑘−1 (𝑁𝑠)11! + ⋅ ⋅ ⋅ + 𝐶𝑘𝑘𝜀𝑘−𝑘 (𝑁𝑠)𝑘𝑘! ) 𝑑𝑠 ‖𝑢
− V‖𝐶([−𝑟,𝑇0];𝐸) ≤ {𝜀(𝐶0𝑘𝜀𝑘 + 𝐶1𝑘𝜀𝑘−1 (𝑁𝑡)11! + ⋅ ⋅ ⋅
+ 𝐶𝑘𝑘𝜀𝑘−𝑘 (𝑁𝑡)𝑘𝑘! ) + (𝐶0𝑘𝜀𝑘 (𝑁𝑡)11! + 𝐶1𝑘𝜀𝑘−1 (𝑁𝑡)22!
+ ⋅ ⋅ ⋅ + 𝐶𝑘𝑘𝜀𝑘−𝑘 (𝑁𝑡)𝑘+1𝑘 + 1! )} ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸)
≤ (𝐶0𝑘+1𝜀𝑘+1 + 𝐶1𝑘+1𝜀𝑘 (𝑁𝑡)11! + ⋅ ⋅ ⋅ + 𝐶𝑘+1𝑘+1𝜀(𝑘+1)−(𝑘+1)
⋅ (𝑁𝑡)𝑘+1(𝑘 + 1)! ) ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸) .

(20)

By mathematical induction, we obtain that (18) holds for 𝑛 =𝑘 + 1. Therefore, for any 𝑛, we have
F𝑛𝑢 −F

𝑛V𝐶([−𝑟,𝑇0];𝐸)
≤ (𝐶0𝑛𝜀𝑛 + 𝐶1𝑛𝜀𝑛−1𝑑11! + ⋅ ⋅ ⋅ + 𝐶𝑛𝑛𝜀𝑛−𝑛𝑑

𝑛

𝑛! )
⋅ ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸) ,

(21)

where 𝑑 = 𝑁𝑇0. It is easy to see that

lim
𝑘→∞

(𝜀𝑘−1𝑘 ( 𝑘𝑘 − 1)
𝑘−1)1/𝑘 = 𝜀 < 1. (22)

Therefore, we choose sufficiently large nature number 𝐾 > 2
such that

(𝜀𝐾−1𝐾( 𝐾𝐾 − 1)
𝐾−1)1/𝐾 ≡ 𝛼 < 1. (23)

For any nature number 𝑛 > 2𝐾, such that 𝑛 = 𝐾ℎ+𝑝(0 ≤ 𝑝 <𝐾). Obviously, ℎ = [𝑛/𝐾] < [𝑛/2]. For any sufficiently large
positive integer 𝑛 > 2𝐾; by the Stirling formula

𝑛! = (𝑛𝑒)
𝑛√2𝜋𝑛 (1 + 𝑂(1𝑛)) (24)

and by (23), we have

𝑆1 ≡ 𝐶0𝑛𝜀𝑛 + 𝐶1𝑛𝜀𝑛−1𝑑11! + ⋅ ⋅ ⋅ + 𝐶ℎ𝑛𝜀𝑛−ℎ𝑑
ℎ

ℎ!
≤ 𝜀𝑛−ℎ𝐶ℎ𝑛 (1 + 𝑑 + 𝑑22! + ⋅ ⋅ ⋅ + 𝑑ℎℎ! ) = 𝜀𝑛−ℎ𝐶ℎ𝑛𝑂 (1)
= 𝑂 (1) 𝜀𝑛−ℎ𝑛𝑛√2𝜋𝑛 (1 + 𝑂 (1/ℎ))ℎℎ√2𝜋ℎ√2𝜋 (𝑛 − ℎ) (𝑛 − ℎ)𝑛−ℎ
= 𝑂(𝐾ℎ√ℎ)( 𝑏𝐾𝐾 − 1)

(𝑛−ℎ)ℎ

= 𝑂((𝑏𝐾−1𝐾(𝐾/ (𝐾 − 1))𝐾−1)ℎ√ℎ ) = 𝑂(𝛼𝐾ℎ√ℎ )
= 𝑂( 𝛼𝑛√𝑛) .

(25)

On the other hand, without loss of generality, we assume that𝑑 = 𝑁𝑇0 > 1. By Stirling formula and 𝐶[𝑛/2]𝑛 = 𝑂(2𝑛/√𝑛), we
get

𝑆2 ≡ 𝐶ℎ+1𝑛 𝜀𝑛−ℎ−1 𝑑ℎ+1(ℎ + 1)! + ⋅ ⋅ ⋅ + 𝐶𝑛𝑛𝜀𝑛−𝑛𝑑
𝑛

ℎ!
≤ 1(ℎ + 1)!𝐶[𝑛/2]𝑛 (𝜀𝑛−ℎ−1𝑑ℎ+1 + 𝑏𝑛−𝑛𝑑𝑛)
= 𝑏𝑛−ℎ𝐶ℎ𝑛𝑂(1)
= 𝑂 (2𝑛/√𝑛) 𝑒ℎ+1 (𝜀𝑛−ℎ−1𝑑ℎ+1 + 𝜀𝑛−𝑛𝑑𝑛)√2𝜋 (ℎ + 1) (ℎ + 1)ℎ+1 (1 + 𝑂 (1/ (ℎ + 1)))
≤ 𝑂 (2𝑛/√𝑛) 𝑒ℎ+1 (1 + 𝑑 + 𝑑2 + ⋅ ⋅ ⋅ + 𝑑ℎ+1 + ⋅ ⋅ ⋅ + 𝑑𝑛)√2𝜋 (ℎ + 1) (ℎ + 1)ℎ+1
≤ 𝑂 (1) 2𝑛𝑒ℎ+1𝑑𝑛+1√𝑛√ℎ + 1 (ℎ + 1)ℎ+1 ≤ 𝑂 (1) 2𝑛𝑒ℎ+1𝑑𝑛+1ℎℎ+2
= 𝑜 ( 1ℎ𝜆+1) = 𝑜 ( 1𝑛𝜆+1) (𝑛 → +∞) ,

(26)
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where 𝜆 > 0. By (21), (25), and (26), we get

F𝑛𝑢 −F
𝑛V𝐶([−𝑟,𝑇0];𝐸) ≤ (𝑆1 + 𝑆2) ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸)

= [𝑂( 𝛼𝑛√𝑛) + 𝑜 ( 1ℎ𝜆+1)] ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸)
= 𝑜( 1𝑛𝜆+1) ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸) , (𝑛 → +∞) .

(27)

Therefore, for fixed constant 𝜆 > 0, there exists a positive
integer 𝑛0 such that, for any 𝑢, V ∈ 𝐶([−𝑟, 𝑇0]; 𝐸), we have
F𝑛𝑢 −F

𝑛V𝐶([−𝑟,𝑇0];𝐸) ≤ 1𝑛𝑟+1 ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸) ,
∀𝑛 > 𝑛0.

(28)

By general Banach contraction mapping principle, for oper-
ator F there exists a unique fixed point 𝑢 ∈ 𝐶([−𝑟, 𝑇0]; 𝐸),
which means that problem (3) has a unique mild solu-
tion.

Remark 7. In Theorem 6, we obtain the existence and
uniqueness of the global mild solution of problem (3) under
the uniform Lipschitz condition of the function 𝑓. In next
Theorem 8, we assume that the function 𝑓 satisfies the local
Lipschitz condition.

Theorem 8. Let 𝑓 : [0, 𝑇0] × 𝐶([−𝑟, 0]; 𝐸) × 𝐶([−𝑟, 0]; 𝐸) ×⋅ ⋅ ⋅ × 𝐶([−𝑟, 0]; 𝐸) → 𝐸 be continuous in 𝑡 for 𝑡 ∈ [0, 𝑇0],
and 𝑓 satisfies the following local Lipschitz contition: for any

 > 0, there exist nonnegative Lebesgue integrable functions𝐿𝑖 ∈ 𝐿1(𝐽,R+) (𝑖 = 1, 2, . . . , 𝑙) such that𝑓 (𝑡, 𝑢1, 𝑢2, . . . , 𝑢𝑙) − 𝑓 (𝑡, V1, V2, . . . , V𝑙)
≤ 𝑙∑
𝑖

𝐿𝑖 (𝑡) 𝑢𝑖 − V𝑖
 , (29)

where 𝑡 ∈ [0, 𝑇0], 𝑢𝑖, V𝑖 ∈ 𝐶([−𝑟, 0]; 𝐸) with ‖𝑢𝑖‖ ≤ , ‖V𝑖‖ ≤ .
�en there exists a 𝜏 > 0 such that problem (3) has a unique

mild solution on [−𝑟, 𝜏).
Proof. For all fixed 𝜉 > 0, there exists 𝛿 ∈ [0, 𝑇0] such
that ‖𝑆𝛽(𝑡)𝜑(0) − 𝜑(0)‖ ≤ 𝜉/2 as 𝑡 ∈ [0, 𝛿]. Let 𝛿1 > 0
such that 𝑀∗ ∫𝛿1

0
∑𝑙𝑖 𝐿𝑖(𝑠)𝑑𝑠 + R𝛿1 ≤ 𝜉/2, where R =

sup𝑠∈[0,𝛿1]‖𝑓(𝑠, 0, 0, . . . , 0)‖, ‖𝑆𝛽(𝑡)‖ ≤ 𝑀∗, 𝑡 ∈ [0, 𝛿1]. Take𝜏 = min{𝛿, 𝛿1}. Let
𝐷𝜉 = {𝑢 ∈ 𝐶 ([−𝑟, 𝜏] ; 𝐸) : 𝑢 (𝑠) = 𝜑 (𝑠) if 𝑠

∈ [−𝑟, 0] and sup
𝑠∈[0,𝜏]

u (s) − 𝜑 (0) ≤ 𝜉} .
(30)

Obviously, 𝐷𝜉 is a closed subset of 𝐶([−𝑟, 𝜏]; 𝐸); thus 𝐷𝜉 is a
Banach space. Now we consider the mapping

Q : 𝐷𝜉 → 𝐶 ([−𝑟, 𝜏] ; 𝐸) (31)

by

Q𝑢 (𝑡) = {{{
𝑆𝛽 (𝑡) 𝜑 (0) + ∫𝑡

0
𝑆𝛽 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝜏1 (𝑠)) , 𝑢 (𝜏2 (𝑠)) , . . . , 𝑢 (𝜏𝑙 (𝑠))) 𝑑𝑠, 𝑡 ∈ [0, 𝜏] ,

𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0] . (32)

Next, we will prove that Qmaps 𝐷𝜉 into 𝐷𝜉.
Let 𝑢 ∈ 𝐷𝜉; we have
(Q𝑢) (𝑡) − 𝜑 (0) ≤ 𝑆𝛽 (𝑡) 𝜑 (0) − 𝜑 (0) + ∫𝑡

0
𝑆𝛽 (𝑡

− 𝑠) 𝑓 (𝑠, 𝑢 (𝜏1 (𝑠)) , . . . , 𝑢 (𝜏𝑙 (𝑠))) 𝑑𝑠 ≤ 𝑆𝛽 (𝑡)
⋅ 𝜑 (0) − 𝜑 (0) + ∫𝜏

0
𝑆𝛽 (𝑡 − 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝜏1 (𝑠)) , . . . , 𝑢 (𝜏𝑙 (𝑠)))
− 𝑓 (𝑠, 0, . . . , 0) 𝑑𝑠 + ∫𝑡

0
𝑆𝛽 (𝑡 − 𝑠)

⋅ 𝑓 (𝑠, 0, . . . , 0) 𝑑𝑠 ≤ 𝑆𝛽 (𝑡) 𝜑 (0) − 𝜑 (0)
+𝑀∗ ∫𝜏

0

𝑙∑
𝑖

𝐿𝑖 (𝑠) 𝑑𝑠 +𝑀∗R𝜏 ≤ 𝜉.

(33)

Therefore, Qmaps 𝐷𝜉 into 𝐷𝜉.

Let 𝑢, V ∈ 𝐷𝜉 and 𝑡 ∈ [0, 𝜏]; we have
‖(Q𝑢) (𝑡) − (QV) (𝑡)‖ ≤ ∫𝑡

0
𝑆𝛽 (𝑡 − 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝜏1 (𝑠)) , . . . , 𝑢 (𝜏𝑙 (𝑠)))− 𝑓 (𝑠, V (𝜏1 (𝑠)) , . . . , V (𝜏𝑙 (𝑠))) 𝑑𝑠
≤ 𝑀∗ ∫𝑡

0

𝑙∑
𝑖

𝐿𝑖 (𝑠) 𝑢 (𝜏𝑖 (𝑠)) − V (𝜏𝑖 (𝑠)) 𝑑𝑠
≤ ∫𝑡
0
𝐿 (𝑠) 𝑑𝑠 ‖𝑢 − V‖𝐶([−𝑟,𝜏];𝐸)

≤ (∫𝑡
0

𝐿 (𝑠) − 𝜙 (𝑠) 𝑑𝑠 + ∫𝑡
0

𝜙 (𝑠) 𝑑𝑠) ‖𝑢
− V‖𝐶([−𝑟,𝜏];𝐸) ≤ (𝜀 + 𝑁𝑡) ‖𝑢 − V‖𝐶([−𝑟,𝑇0];𝐸)
= (𝐶01𝜀1 + 𝐶11 (𝑁𝑡)11! ) ‖𝑢 − V‖𝐶([−𝑟,𝜏];𝐸) ,

(34)
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where 𝐿(𝑠) = 𝑀∗∑𝑙𝑖 𝐿𝑖(𝑠). The following proof of the
remainder is similar to the proof ofTheorem 6.Therefore, for
fixed constant 𝜆 > 0, there exists a positive integer 𝑛0 such
that, for any 𝑢, V ∈ 𝐷𝜉, we have
Q𝑛𝑢 − Q

𝑛V𝐶([−𝑟,𝜏];𝐸) ≤ 1𝑛𝜆+1 ‖𝑢 − V‖𝐶([−𝑟,𝜏];𝐸) ,
∀𝑛 > 𝑛0.

(35)

By general Banach contraction mapping principle, for oper-
ator Q there exists a unique fixed point 𝑢 ∈ 𝐶([−𝑟, 𝜏]; 𝐸),
which means that 𝑢 ∈ 𝐶([−𝑟, 𝜏]; 𝐸) is the unique mild
solution of problem (12). That is, problem (3) has a unique
mild solution.

4. An Application

Using the main results of this paper, we can solve the
following time fractional partial differential equation with
delay:

𝑐𝐷𝛽𝑡 𝑢 (𝑥, 𝑡) = 𝜕2𝜕𝑥2 𝑢 (𝑥, 𝑡) + 𝐽1−𝛽𝑡 𝑡(1 + 𝑡2)𝑢 (𝑥, sin 𝑡) ,
𝑡 ∈ [0, 𝑇0] , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝜃) = 𝜑 (𝑥, 𝜃) , 𝜃 ∈ [−𝑟, 0] , 𝑥 ∈ Ω,
(36)

where 0 < 𝛽 ≤ 1. Similar to Section 2, we can rewrite the time
fractional partial differential equation (36) as the following
abstract fractional evolution equation:
𝑐𝐷𝛽𝑡 𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝐽1−𝛽𝑡 𝑓 (𝑡, 𝑢 (𝜏 (𝑡))) , 𝑡 ∈ [0, 𝑇0] ,

𝑢 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0] . (37)

Therefore, all the conditions ofTheorems 6 and 8 are satisfied;
for problem (36), there exists a unique mild solution.

5. Conclusion

This paper considers the existence and uniqueness of themild
solutions for a class of nonlinear fractional partial differential
equations with delay by general Banach contraction mapping
principle. We know that the Banach contraction mapping
principle needs the special conditions to ensure the contrac-
tion constant 0 < 𝑘 < 1. In this paper, we successfully
overcome this condition. We need not extra conditions to
ensure the contraction constant 0 < 𝑘 < 1. Therefore,
under some general conditions, we obtain the main results of
this paper. Our results generalize and improve many classical
results [18–20].
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The estimate of Mittag-Leffler function has been widely applied in the dynamic analysis of fractional-order systems in some
recently published papers. In this paper, we show that the estimate for Mittag-Leffler function is not correct. First, we point out
the mistakes made in the estimation process of Mittag-Leffler function and provide a counterexample. Then, we propose some
sufficient conditions to guarantee that part of the estimate for Mittag-Leffler function is correct. Meanwhile, numerical examples
are given to illustrate the validity of the two newly established estimates.

1. Introduction

Fractional calculus can date back to the seventeenth century,
and now it has attracted considerable research interests due to
its widespread applications in many fields. There are mainly
two types of methods in the dynamic analysis of fractional-
order nonlinear systems, that is, Lyapunov function based
method and estimation based method. When estimation
based method is employed, the solution of the fractional-
order system being studied is usually expressed in terms
of the Mittag-Leffler function. Obviously, the correctness
of the estimate of Mittag-Leffler function is crucial to the
whole estimation process and plays an important role if
the estimation based method is adopted. Recently, estima-
tion based method has been widely applied to the study
of finite-time stability and synchronization of fractional-
order memristor-based neural networks [1–7], stability and
stabilization of nonlinear fractional-order systems [8–13],
finite-time stability of fractional-order neural networks [14,
15], synchronization of fractional-order chaotic systems [16],
consensus analysis of fractional-order multiagent systems
[17–19], etc. The estimate on Mittag-Leffler function was first
proposed in [20]. The definition of Mittag-Leffler function
and the estimate of Mittag-Leffler function can be described
by Definition 1 and Lemma 2, respectively, as follows.

Definition 1 (see [21]). The Mittag-Leffler function with one
parameter is defined as

𝐸𝛼 (𝑧) = ∞∑
𝑘=0

𝑧𝑘Γ (𝑘𝛼 + 1) , (1)

where 𝛼 > 0 and 𝑧 ∈ 𝐶.
The Mittag-Leffler function with two parameters is

defined as

𝐸𝛼,𝛽 (𝑧) = ∞∑
𝑘=0

𝑧𝑘Γ (𝑘𝛼 + 𝛽) , (2)

where 𝛼 > 0 and 𝛽 > 0.When 𝛽 = 1, one has 𝐸𝛼,1(𝑧) = 𝐸𝛼(𝑧),
and when 𝛼 = 1 and 𝛽 = 1, one further has 𝐸1,1(𝑧) = 𝑒𝑧.
Lemma 2 (see [20]). ForMittag-Leffler function, the following
properties hold.

(i) �ere exist constants 𝑀1,𝑀2 ≥ 1 such that, for any 0 <𝛼 < 1, 𝐸𝛼,1 (𝐴𝑡𝛼) ≤ 𝑀1 𝑒𝐴𝑡 , (3)

𝐸𝛼,𝛼 (𝐴𝑡𝛼) ≤ 𝑀2 𝑒𝐴𝑡 , (4)

where𝐴 denotes amatrix and ‖⋅‖ denotes any vector or induced
matrix norm.
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(ii) If 𝛼 ≥ 1, then for 𝛽 = 1, 2, 𝛼
𝐸𝛼,𝛽 (𝐴𝑡𝛼) ≤ 𝑒𝐴𝑡𝛼 . (5)

If 𝐴 is a diagonal stability matrix, then there exists a constant𝑁 > 0 such that for 𝑡 ≥ 0
𝐸𝛼,𝛽 (𝐴𝑡𝛼) ≤ 𝑁𝑒−𝜔𝑡, 0 < 𝛼 < 1, (6)
𝐸𝛼,𝛽 (𝐴𝑡𝛼) ≤ 𝑒−𝜔𝑡, 1 ≤ 𝛼 < 2, (7)

where −𝜔 (𝜔 > 0) is the largest eigenvalue of the diagonal
matrix 𝐴.

However, we have to point out that Lemma 2 is incorrect.
In [20], inequalities (3) and (4) are proved as follows:

𝐸𝛼,𝛽 (𝐴𝑡𝛼) = 
∞∑
𝑘=0

(𝐴𝑡𝛼)𝑘
Γ (𝑘𝛼 + 𝛽)


= 
∞∑
𝑘=0

𝑘!𝑡𝑘(1−𝛼)Γ (𝑘𝛼 + 𝛽) (𝐴𝑡)𝑘𝑘!


≤  sup
𝑘=0,1,2,...,∞

( 𝑘!𝑡𝑘(1−𝛼)Γ (𝑘𝛼 + 𝛽))
∞∑
𝑘=0

(𝐴𝑡)𝑘𝑘!


= sup
𝑘=0,1,2,...,∞

( 𝑘!𝑡𝑘(1−𝛼)Γ (𝑘𝛼 + 𝛽))

∞∑
𝑘=0

(𝐴𝑡)𝑘𝑘!


≤ sup
𝜏∈(1,∞)

( sup
𝑘=0,1,2,...,∞

( 𝑘!𝜏𝑘(1−𝛼)Γ (𝑘𝛼 + 𝛽))) 𝑒𝐴𝑡 .

(8)

Actually, there are two problems in the above-mentioned
proof. First,


∞∑
𝑘=0

𝑘!𝑡𝑘(1−𝛼)Γ (𝑘𝛼 + 𝛽) (𝐴𝑡)𝑘𝑘!


≤  sup
𝑘=0,1,2,...,∞

( 𝑘!𝑡𝑘(1−𝛼)Γ (𝑘𝛼 + 𝛽))
∞∑
𝑘=0

(𝐴𝑡)𝑘𝑘!


(9)

does not necessarily hold. In fact, (9) holds if all the elements𝑎𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛) of matrix 𝐴 are nonnegative, because matrix
norms, such as 1-norm, 2-norm, and ∞-norm, have the
property of weak monotony. In other words, (9)may not hold
when there exist negative elements in 𝐴 or 𝐴𝑘. Second,
sup𝑘=0,1,2,...,∞(𝑘!/𝑡𝑘(1−𝛼)Γ(𝑘𝛼 + 𝛽)) does not exist when 0 <𝛼 < 1 and 𝛽 = 1, 𝛼. To confirm this point, let 𝑁(𝑘) =𝑘!/𝑡𝑘(1−𝛼)Γ(𝑘𝛼 + 𝛽); when 𝑡 = 2𝑠 and 𝛼 = 0.9, the behavior
of 𝑁(𝑘) with 𝛽 = 1 and 𝛽 = 𝛼 is shown in Figures 1(a) and
1(b), respectively. It can be obviously observed from Figure 1
that 𝑁(𝑘) goes to infinity as 𝑘 goes to infinity, so𝑁(𝑘) has no
supremum when 𝛽 = 1 or 𝛽 = 𝛼 as 𝑘 goes to infinity for a
fixed value of 𝑡.

Next, a counterexample is presented to show that𝐸𝛼,𝛽(𝐴𝑡𝛼) does not satisfy inequality (3) or (4). Assume that

𝐴 = [ 1 2 22 3 4
7 8 1

]; by simple calculation, it has three dif-
ferent eigenvalues, i.e., 𝜆1 = 9.6135, 𝜆2 = −0.3146,
and 𝜆3 = −4.2990. Hence, a nonsingular matrix 𝑃 =
[ −0.3085 −0.7235 −0.1680−0.5589 0.6641 −0.4379
−0.7698 −0.1885 0.8832

] can be determined to make

𝑃−1𝐴𝑃 = Λ = diag (𝜆1, 𝜆2, 𝜆3) (10)

and

𝐸𝛼,𝛽 (𝐴𝑡𝛼) = ∞∑
𝑘=0

(𝑃Λ𝑡𝛼𝑃−1)𝑘
Γ (𝑘𝛼 + 𝛽) = 𝑃∞∑

𝑘=0

(Λ𝑡𝛼)𝑘
Γ (𝑘𝛼 + 𝛽)𝑃−1

= 𝑃[[[
[

𝐸𝛼,𝛽 (𝜆1𝑡𝛼) 0 0
0 𝐸𝛼,𝛽 (𝜆2𝑡𝛼) 0
0 0 𝐸𝛼,𝛽 (𝜆3𝑡𝛼)

]]]
]

𝑃−1.
(11)

For each fixed value of 𝑡, 𝐸𝛼,𝛽(𝜆𝑖𝑡𝛼), 𝑖 = 1, 2, 3 can be
calculated by means of the OPC algorithm [22]. Thus,𝐸𝛼,𝛽(𝐴𝑡𝛼) can be calculated through (11). When 𝛼 = 0.9, the
behaviors of ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖1/‖𝑒𝐴𝑡‖1 with 𝛽 = 1 and 𝛽 = 𝛼 are
displayed in Figures 2(a) and 2(b), respectively. It is obvious
that ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖1/‖𝑒𝐴𝑡‖1 goes to infinity as 𝑡 goes to infinity,
so inequalities (3) and (4) are incorrect.

The conclusion on inequality (6) is straightforward if
inequalities (3) and (4) are correct. Because inequalities (3)
and (4) are not correct, inequality (6) is not correct either.
For example, let 𝐴 = diag(−1, −5, −8); the behavior of‖𝐸0.9,𝛽(𝐴𝑡0.9)‖1/𝑒−𝑡 for 𝛽 = 1 and 𝛽 = 𝛼 = 0.9 is
shown in Figures 3(a) and 3(b), respectively. It is clear that‖𝐸0.9,𝛽(𝐴𝑡0.9)‖1/𝑒−𝑡 goes to infinity as 𝑡 goes to infinity for𝛽 = 1 and 𝛽 = 𝛼, so inequality (6) does not hold.

Next, we consider the case that 𝛼 ≥ 1. In [20], inequality
(5) is proved as follows:

𝐸𝛼,𝛽 (𝐴𝑡𝛼) = 
∞∑
𝑘=0

(𝐴𝑡𝛼)𝑘
Γ (𝑘𝛼 + 𝛽)


= 
∞∑
𝑘=0

𝑘!Γ (𝑘𝛼 + 𝛽)
(𝐴𝑡𝛼)𝑘

𝑘!


≤  sup
𝑘=0,1,2,...,∞

( 𝑘!Γ (𝑘𝛼 + 𝛽))
∞∑
𝑘=0

(𝐴𝑡𝛼)𝑘
𝑘!


= sup
𝑘=0,1,2,...,∞

( 𝑘!Γ (𝑘𝛼 + 𝛽))
𝑒𝐴𝑡𝛼

≤ sup
𝑘=0,1,2,...,∞

( 𝑘!Γ (𝑘 + 1))
𝑒𝐴𝑡𝛼

= 𝑒𝐴𝑡𝛼 .

(12)

With the same argument as stated for (8),
∞∑
𝑘=0

𝑘!Γ (𝑘𝛼 + 𝛽)
(𝐴𝑡𝛼)𝑘

𝑘!


≤  sup
𝑘=0,1,2,...,∞

( 𝑘!Γ (𝑘𝛼 + 𝛽))
∞∑
𝑘=0

(𝐴𝑡𝛼)𝑘
𝑘!


(13)
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Figure 1: The behavior of 𝑁(𝑘) with (a) 𝛽 = 1 and (b) 𝛽 = 𝛼.

does not necessarily hold and it is true if all the elements𝑎𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛) of matrix 𝐴 are nonnegative. The other
problem with (12) is that sup𝑘=0,1,2,...,∞(𝑘!/Γ(𝑘𝛼 + 𝛽)) ≤
sup𝑘=0,1,2,...,∞(𝑘!/Γ(𝑘+1)) does not hold for 1 < 𝛼 < 2 and 𝛽 =𝛼 as sup𝑘=0,1,2,...,∞(𝑘!/Γ(𝑘𝛼 + 𝛽)) ≥ 1/Γ(𝛽) = 1/Γ(𝛼) > 1. For
example, when 𝛼 = 𝛽 = 1.5, sup𝑘=0,1,2,...,∞(𝑘!/Γ(𝑘𝛼 + 𝛽)) ≥1/Γ(1.5) ≈ 1.1284 > 1. The behavior of Gamma function and
its derivative is depicted in Figures 4(a) and 4(b), respectively.
From Figure 4, it is clear that 0.8 < Γ(𝑧) < 1 for 1 < 𝑧 < 2.
Hence, we can conclude that sup𝑘=0,1,2,...,∞(𝑘!/Γ(𝑘𝛼 + 𝛽)) ≥1/Γ(𝛽) > 1 for 𝛽 = 𝛼 when 1 < 𝛼 < 2.

From the above discussions, we can infer that inequality
(5) holds only under some particular conditions; that is, we
have to impose some restrictions on matrix 𝐴 and 𝛼, 𝛽.
Conclusion 3. Suppose all the elements 𝑎𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛) of
matrix 𝐴 are nonnegative; if 1 ≤ 𝛼 < 2, then for 𝛽 = 1, 2,
inequality (5) holds.

Conclusion 4. Suppose all the elements 𝑎𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛) of
matrix 𝐴 are nonnegative; if 𝛼 ≥ 2, then for 𝛽 = 1, 2, 𝛼,
inequality (5) holds.

Now, a counterexample is presented to show that
if the conditions in Conclusion 3 or Conclusion 4 are
not satisfied, inequality (5) may not be correct. For
instance, let 𝐴 = diag(−1, −5, −8); then the behav-
ior of ‖𝐸1.5,𝛽(𝐴𝑡1.5)‖1/‖𝑒𝐴𝑡1.5‖1 for 𝛽 = 1, 𝛽 = 2,
and 𝛽 = 1.5 is shown in Figures 5(a)–5(c), respec-
tively. It is obvious that ‖𝐸1.5,𝛽(𝐴𝑡1.5)‖1/‖𝑒𝐴𝑡1.5‖1 goes to
infinity as 𝑡 goes to infinity, so inequality (5) does not
hold.

Similarly, (7) is incorrect because (5) is incorrect. The
behavior of ‖𝐸1.5,𝛽(𝐴𝑡1.5)‖1/𝑒−𝑡 for 𝛽 = 1, 𝛽 = 2, and 𝛽 =1.5 is shown in Figures 6(a)–6(c), respectively, which is in
contradiction to inequality (7).

2. Main Results

In this section, some sufficient conditions are derived to
guarantee that ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖ can be bounded by 𝐹‖𝑒𝐴𝑡𝛼‖ for
some 𝐹 > 0, which can be formulated by the following two
theorems.

Theorem 5. If matrix 𝐴 is diagonalizable, and the largest real
part of eigenvalues 𝜆𝑖 (𝑖 = 1, 2, . . . , 𝑛) of 𝐴 is positive, then for1 < 𝛼 < 2 and anyone of the following two conditions:

(i) 𝛽 > 0,
(ii) 𝛽 = 0 and 𝐴 has no zero eigenvalue,

lim
𝑡→+∞

𝐸𝛼,𝛽 (𝐴𝑡𝛼)𝑒𝐴𝑡𝛼 = 0, (14)

and further there exists a positive constant 𝐹 such that for 𝑡 ≥ 0
𝐸𝛼,𝛽 (𝐴𝑡𝛼) ≤ 𝐹 𝑒𝐴𝑡𝛼 , (15)

where ‖ ⋅ ‖ denotes 1-norm, 2-norm, or ∞-norm of a matrix.

To prove Theorem 5, another two lemmas are presented
as follows, which will be used later.

Lemma 6 (see [21]). If 𝛼 < 2, 𝛽 is an arbitrary real number,𝜇 satisfies 𝜋𝛼/2 < 𝜇 < min{𝜋, 𝜋𝛼}, and 𝐶1 and 𝐶2 are real
constants, then

𝐸𝛼,𝛽 (𝑧) ≤ 𝐶1 (1 + |𝑧|)(1−𝛽)/𝛼 exp (Re (𝑧1/𝛼))
+ 𝐶21 + |𝑧| ,

(16)

where |arg (𝑧)| ≤ 𝜇, |𝑧| ≥ 0.
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Figure 2: The behavior of ‖𝐸0.9,𝛽(𝐴𝑡0.9)‖1/‖𝑒𝐴𝑡‖1 with (a) 𝛽 = 1 and (b) 𝛽 = 𝛼.
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Lemma 7 (see [21]). If 𝛼 < 2, 𝛽 is an arbitrary real number, 𝜇
satisfies 𝜋𝛼/2 < 𝜇 < min{𝜋, 𝜋𝛼}, and𝐶 is a real constant, then

𝐸𝛼,𝛽 (𝑧) ≤ 𝐶1 + |𝑧| , (17)

where 𝜇 ≤ |arg (𝑧)| ≤ 𝜋, |𝑧| ≥ 0.
Now, the proof of Theorem 5 can proceed.

Proof. Because 𝐴 is diagonalizable, there exists a nonsingular
matrix 𝑃 such that 𝑃−1𝐴𝑃 = Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑛). Then𝐸𝛼,𝛽(𝐴𝑡𝛼) = 𝑃𝐸𝛼,𝛽(Λ𝑡𝛼)𝑃−1 and 𝑒𝐴𝑡𝛼 = 𝑃𝑒Λ𝑡𝛼𝑃−1. Since

𝜆𝐼 − 𝑒𝐴𝑡𝛼  = 𝜆𝐼 − 𝑃𝑒Λ𝑡𝛼𝑃−1 = 𝑃𝜆𝐼𝑃−1 − 𝑃𝑒Λ𝑡𝛼𝑃−1
= 𝑃 (𝜆𝐼 − 𝑒Λ𝑡𝛼) 𝑃−1
= |𝑃| 𝜆𝐼 − 𝑒Λ𝑡𝛼  𝑃−1 = 𝜆𝐼 − 𝑒Λ𝑡𝛼  ,

(18)

𝑒𝐴𝑡𝛼 and 𝑒Λ𝑡𝛼 are with the same characteristic polynomial and
eigenvalues, so ‖𝑒𝐴𝑡𝛼‖ ≥ 𝜌(𝑒𝐴𝑡𝛼) = max1≤𝑖≤𝑛{|𝑒𝜆𝑖𝑡𝛼 |}. Let 𝑚 =
max1≤𝑖≤𝑛{Re(𝜆𝑖)} > 0; then ‖𝑒𝐴𝑡𝛼‖ ≥ 𝑒𝑚𝑡𝛼 .

Let 𝜃𝑖 be the principal value of the argument of 𝜆𝑖.
According to the magnitude of the principal value 𝜃𝑖 of the
argument of 𝜆𝑖, the cases where |𝜃𝑖| ≤ 𝜋𝛼/2 and 𝜋𝛼/2 < |𝜃𝑖| ≤𝜋 are considered, separately.

Case 1. If |𝜃𝑖| ≤ 𝜋𝛼/2, it follows from Lemma 6 that𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)
≤ 𝐶1 (1 + 𝜆𝑖𝑡𝛼)(1−𝛽)/𝛼 𝑒Re((𝜆𝑖𝑡𝛼)1/𝛼) + 𝐶21 + 𝜆𝑖𝑡𝛼
= 𝐶1 (1 + 𝜆𝑖 𝑡𝛼)(1−𝛽)/𝛼 𝑒Re(𝜆1/𝛼𝑖 𝑡) + 𝐶21 + 𝜆𝑖 𝑡𝛼
= 𝐶1 (1 + 𝜆𝑖 𝑡𝛼)(1−𝛽)/𝛼 𝑒|𝜆𝑖|1/𝛼 cos((𝜃𝑖+2𝑘𝜋)/𝛼)𝑡

+ 𝐶21 + 𝜆𝑖 𝑡𝛼
≤ 𝐶1 (1 + min

1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼)(1−𝛽)/𝛼 𝑒(max1≤𝑖≤𝑛|𝜆𝑖|)1/𝛼𝑡

+ 𝐶21 + min1≤𝑖≤𝑛
𝜆𝑖 𝑡𝛼 ,

(19)

where 𝑘 = 0, 1, 2, . . . , 𝑞 − 1. 𝑞 is the numerator of 𝛼, where𝛼 = 𝑞/𝑝, (𝑝, 𝑞) = 1.
Case 2. If 𝜋𝛼/2 < |𝜃𝑖| ≤ 𝜋, it follows from Lemma 7 that

𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼) ≤ 𝐶1 + 𝜆𝑖𝑡𝛼 = 𝐶1 + 𝜆𝑖 𝑡𝛼
≤ 𝐶1 + min1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼 .
(20)
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Then, it follows from (19) and (20) that

𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)
≤ 𝐶1 (1 + min

1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼)(1−𝛽)/𝛼 𝑒(max1≤𝑖≤𝑛|𝜆𝑖|)1/𝛼𝑡

+ 𝐶𝑚𝑎𝑥1 + min1≤𝑖≤𝑛
𝜆𝑖 𝑡𝛼 ,

(21)

where 𝐶𝑚𝑎𝑥 = max{𝐶2, 𝐶}.
Thus, we have

lim
𝑡→+∞

𝐸𝛼,𝛽 (𝐴𝑡𝛼)𝑒𝐴𝑡𝛼 ≤ lim
𝑡→+∞

𝑃𝐸𝛼,𝛽 (Λ𝑡𝛼) 𝑃−1𝑒𝑚𝑡𝛼
≤ lim
𝑡→+∞

‖𝑃‖ 𝐸𝛼,𝛽 (Λ𝑡𝛼) 𝑃−1𝑒𝑚𝑡𝛼
= lim
𝑡→+∞

‖𝑃‖max1≤𝑖≤𝑛 {𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)} 𝑃−1𝑒𝑚𝑡𝛼

≤ lim
𝑡→+∞

𝐶1 (1 + min
1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼)(1−𝛽)/𝛼

⋅ 𝑒((max1≤𝑖≤𝑛|𝜆𝑖|)
1/𝛼−𝑚𝑡𝛼−1)𝑡 × ‖𝑃‖ 𝑃−1

+ lim
𝑡→+∞

𝐶𝑚𝑎𝑥𝑒−𝑚𝑡𝛼1 + min1≤𝑖≤𝑛
𝜆𝑖 𝑡𝛼 ‖𝑃‖ 𝑃−1 .

(22)

When any one of the following two conditions is satisfied:

(1) 𝛽 ≥ 1,
(2) 0 < 𝛽 < 1 and ∃𝑖 ∈ {1, 2, . . . , 𝑛} such that 𝜆𝑖 = 0,

we have

lim
𝑡→+∞

(1 + min
1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼)(1−𝛽)/𝛼 𝑒((max1≤𝑖≤𝑛|𝜆𝑖|)1/𝛼−𝑚𝑡𝛼−1)𝑡

= 0.
(23)

When 0 ≤ 𝛽 < 1 and 𝜆𝑖 ̸= 0 (𝑖 = 1, 2, . . . , 𝑛), the following
equality can be derived by L'Hospital's rule,

lim
𝑡→+∞

(1 + min
1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼)(1−𝛽)/𝛼 𝑒((max1≤𝑖≤𝑛 |𝜆𝑖|)1/𝛼−𝑚𝑡𝛼−1)𝑡 = lim
𝑡→+∞

(1 − 𝛽)min1≤𝑖≤𝑛
𝜆𝑖 (1 + min1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼)(1−(𝛽+𝛼))/𝛼 𝑡𝛼−1
𝑒(𝑚𝑡𝛼−1−(max1≤𝑖≤𝑛|𝜆𝑖|)1/𝛼)𝑡 (𝛼𝑚𝑡𝛼−1 − (max1≤𝑖≤𝑛

𝜆𝑖)1/𝛼) . (24)

As

lim
𝑡→+∞

(1 + min
1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼)(1−(𝛽+𝛼))/𝛼 𝑡𝛼−1

= lim
𝑡→+∞

𝑡𝛼−1
(1 + min1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼)(𝛽+𝛼−1)/𝛼
= lim
𝑡→+∞

𝑡−𝛽
(𝑡−𝛼 + min1≤𝑖≤𝑛

𝜆𝑖)(𝛽+𝛼−1)/𝛼

= {{{{{
0, 𝛽 ̸= 0,

1
(min1≤𝑖≤𝑛

𝜆𝑖)(𝛼−1)/𝛼 , 𝛽 = 0,

(25)

and

lim
𝑡→+∞

𝑒(𝑚𝑡𝛼−1−(max1≤𝑖≤𝑛|𝜆𝑖|)1/𝛼)𝑡

⋅ (𝛼𝑚𝑡𝛼−1 − (max1≤𝑖≤𝑛
𝜆𝑖)1/𝛼) = +∞, (26)

it can be obtained from (24) that lim𝑡→+∞(1 +
min1≤𝑖≤𝑛|𝜆𝑖|𝑡𝛼)(1−𝛽)/𝛼𝑒((max1≤𝑖≤𝑛|𝜆𝑖|)1/𝛼−𝑚𝑡𝛼−1)𝑡 = 0 when 0 ≤ 𝛽 <1 and 𝜆𝑖 ̸= 0 (𝑖 = 1, 2, . . . , 𝑛). To summarize,

lim
𝑡→+∞

(1 + min
1≤𝑖≤𝑛

𝜆𝑖 𝑡𝛼)(1−𝛽)/𝛼 𝑒((max1≤𝑖≤𝑛|𝜆𝑖|)1/𝛼−𝑚𝑡𝛼−1)𝑡

= 0
(27)

if conditions (i) or (ii) inTheorem 5 are satisfied. It is obvious
that lim𝑡→+∞(𝐶𝑚𝑎𝑥𝑒−𝑚𝑡𝛼/(1 + min1≤𝑖≤𝑛|𝜆𝑖|𝑡𝛼)) = 0. Accord-
ing to (22), we have lim𝑡→+∞(‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖/‖𝑒𝐴𝑡𝛼‖) = 0.
Due to the continuity of matrix norms, there exists a positive
constant 𝐹 such that ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖/‖𝑒𝐴𝑡𝛼‖ ≤ 𝐹, which implies
that inequality (15) holds. This completes the proof.

Now, an example is presented to verify the correctness of
the newly established Theorem 5. Assume that 𝐴 = [ 1 2 22 3 4

7 8 1
]; it

is diagonalizable and the eigenvalues are 𝜆1 = 9.6135, 𝜆2 =−0.3146, 𝜆3 = −4.2990, respectively. Hence, the largest real
part of the eigenvalues is 𝑚 = 9.6135 > 0; then the behavior
of ‖𝐸1.5,𝛽(𝐴𝑡1.5)‖1/‖𝑒𝐴𝑡1.5‖1 for 𝛽 = 0, 𝛽 = 0.3, 𝛽 = 0.8, 𝛽 = 1,𝛽 = 2, and 𝛽 = 1.5 is shown in Figures 7(a)–7(f), respectively.
It can be seen from Figure 7 that ‖𝐸1.5,𝛽(𝐴𝑡1.5)‖1/‖𝑒𝐴𝑡1.5‖1
converges to zero, which indicates the validity of Theorem 5.

Remark 8. Note that the condition that 1 < 𝛼 < 2
is needed in Theorem 5. If 0 < 𝛼 < 1, then (1 +
min1≤𝑖≤𝑛|𝜆𝑖|𝑡𝛼)(1−𝛽)/𝛼𝑒((max1≤𝑖≤𝑛 |𝜆𝑖|)

1/𝛼−𝑚𝑡𝛼−1)𝑡 may go to infinity
as 𝑡 goes to infinity, so the process of the proof cannot be
carried out and the conclusion in Theorem 5 may not be
obtained. To get the similar estimate of Mittag-Leffler func-
tion for 0 < 𝛼 < 1, an extra restriction has to be imposed on
the eigenvalues of matrix 𝐴, which is given in the following
Theorem 9.
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Figure 7: The behavior of ‖𝐸1.5,𝛽(𝐴𝑡1.5)‖1/‖𝑒𝐴𝑡1.5‖1 for (a) 𝛽 = 0, (b) 𝛽 = 0.3, (c) 𝛽 = 0.8, (d) 𝛽 = 1, (e) 𝛽 = 2, and (f) 𝛽 = 1.5.

Theorem 9. If matrix 𝐴 is diagonalizable and satisfies the
following two conditions:

(i) the largest real part of eigenvalues 𝜆𝑖 (𝑖 = 1, 2, . . . , 𝑛)
of 𝐴 is positive,

(ii) the principal value 𝜃𝑖 of the argument of 𝜆𝑖 satisfies𝜋𝛼/2 < |𝜃𝑖| ≤ 𝜋, ∀𝑖 = 1, 2, . . . , 𝑛,
then for 0 < 𝛼 < 1 and 𝛽 ∈ 𝑅,

lim
𝑡→+∞

𝐸𝛼,𝛽 (𝐴𝑡𝛼)𝑒𝐴𝑡𝛼 = 0, (28)

and further there exists a positive constant𝐺 such that for 𝑡 ≥ 0
𝐸𝛼,𝛽 (𝐴𝑡𝛼) ≤ 𝐺 𝑒𝐴𝑡𝛼 , (29)

where ‖ ⋅ ‖ denotes 1-norm, 2-norm, or ∞-norm of a matrix.

Proof. According to condition (ii) in Theorem 9, (20) holds
for each 𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑛. Thus we have

lim
𝑡→+∞

𝐸𝛼,𝛽 (𝐴𝑡𝛼)𝑒𝐴𝑡𝛼 ≤ lim
𝑡→+∞

𝑃𝐸𝛼,𝛽 (Λ𝑡𝛼) 𝑃−1𝑒𝑚𝑡𝛼
≤ lim
𝑡→+∞

‖𝑃‖ 𝐸𝛼,𝛽 (Λ𝑡𝛼) 𝑃−1𝑒𝑚𝑡𝛼

= lim
𝑡→+∞

‖𝑃‖max1≤𝑖≤𝑛 {𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)} 𝑃−1𝑒𝑚𝑡𝛼
≤ lim
𝑡→+∞

𝐶𝑒−𝑚𝑡𝛼1 + min1≤𝑖≤𝑛
𝜆𝑖 𝑡𝛼 ‖𝑃‖ 𝑃−1 = 0.

(30)

Similarly, we can prove that there exists a positive
constant 𝐺 such that ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖/‖𝑒𝐴𝑡𝛼‖ ≤ 𝐺, which
implies that inequality (15) holds. This completes the
proof.

Now, an example is presented to verify the correctness of
Theorem 9. Assume that 𝐴 = [ −3 0 00 1 2

0 −1 1
]; it is diagonalizable

and the eigenvalues are 𝜆1 = −3, 𝜆2 = 1 − 𝑗√2, 𝜆3 =1 + 𝑗√2, respectively, where 𝑗 = √−1. It is obvious that the
largest real part of the eigenvalues is 𝑚 = 1 > 0. Choose𝛼 = 0.5; then |𝜃1| = 𝜋 > 𝜋𝛼/2 = 0.25𝜋, |𝜃2| = |𝜃3| =0.9553 ∈ (0.25𝜋, 𝜋]. Hence the two conditions in Theorem 9
are all satisfied, and Figures 8(a)–8(c) depict the behavior of
‖𝐸0.5,𝛽(𝐴𝑡0.5)‖1/‖𝑒𝐴𝑡0.5‖1 for 𝛽 = 0.5, 𝛽 = 1, and 𝛽 = 3,
respectively, which shows that ‖𝐸0.5,𝛽(𝐴𝑡0.5)‖1/‖𝑒𝐴𝑡0.5‖1 con-
verges to zero and indicates the validity of Theorem 9.

Remark 10. Note that the condition that matrix𝐴 is diagonal-
izable is needed in Theorems 5 and 9; otherwise, there exists
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Figure 8: The behavior of ‖𝐸0.5,𝛽(𝐴𝑡0.5)‖1/‖𝑒𝐴𝑡0.5‖1 for (a) 𝛽 = 0.5, (b) 𝛽 = 1, and (c) 𝛽 = 3.

a nonsingular matrix 𝑃 such that 𝑃−1𝐴𝑃 = 𝐽 = diag(𝐽1,𝐽2, . . . , 𝐽𝑠), where 𝐽𝑖 = diag(𝐽𝑖1, 𝐽𝑖2, . . . , 𝐽𝑖𝑟𝑖) and

𝐽𝑖𝑘 =
[[[[[
[

𝜆𝑖 1
𝜆𝑖 d

d 1
𝜆𝑖

]]]]]
]𝑢𝑖𝑘×𝑢𝑖𝑘

. (31)

One can obtain that 𝐸𝛼,𝛽(𝐴𝑡𝛼) = 𝑃𝐸𝛼,𝛽(𝐽𝑡𝛼)𝑃−1 and 𝑒𝐴𝑡𝛼 =
𝑃𝑒𝐽𝑡𝛼𝑃−1. In the proof of Theorems 5 and 9, the lower bound
of ‖𝑒𝐴𝑡𝛼‖ = ‖𝑃𝑒𝐽𝑡𝛼𝑃−1‖ and the upper bound of ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖ =‖𝑃𝐸𝛼,𝛽(𝐽𝑡𝛼)𝑃−1‖ are needed. When A is not diagnosable,
‖𝑒𝐴𝑡𝛼‖ ≥ 𝑒𝑚𝑡𝛼 still holds but the upper bound of ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖ =‖𝑃𝐸𝛼,𝛽(𝐽𝑡𝛼)𝑃−1‖ is difficult to obtain. The difficulties are
described as follows.

For the Jordan block (31), we have

𝐸𝛼,𝛽 (𝐽𝑖𝑘𝑡𝛼) = 𝑄𝑖𝑘

[[[[[[[[[[[[[[[[
[

𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼) 𝑑𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)𝑑 (𝜆𝑖𝑡𝛼)
12!

𝑑2𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)
𝑑 (𝜆𝑖𝑡𝛼)2 . . . 1(𝑢𝑖𝑘 − 1)!

𝑑𝑢𝑖𝑘−1𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)
𝑑 (𝜆𝑖𝑡𝛼)𝑢𝑖𝑘−1

𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼) 𝑑𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)𝑑 (𝜆𝑖𝑡𝛼) . . . 1(𝑢𝑖𝑘 − 2)!
𝑑𝑢𝑖𝑘−2𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)

𝑑 (𝜆𝑖𝑡𝛼)𝑢𝑖𝑘−2
𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼) . . . 1(𝑢𝑖𝑘 − 3)!

𝑑𝑢𝑖𝑘−3𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)
𝑑 (𝜆𝑖𝑡𝛼)𝑢𝑖𝑘−3

d
...

𝐸𝛼,𝛽 (𝜆𝑖𝑡𝛼)

]]]]]]]]]]]]]]]]
]𝑢𝑖𝑘×𝑢𝑖𝑘

𝑄−1𝑖𝑘 , (32)

where 𝑄𝑖𝑘 = [[
[

1 1 1 ... 1
1/𝑡𝛼 1/𝑡𝛼 ... 1/𝑡𝛼

1/𝑡2𝛼 ... 1/𝑡2𝛼

d
...

1/𝑡(𝑢𝑖𝑘−1)𝛼

]]
]

is a nonsingular

matrix such that 𝑄−1𝑖𝑘 (𝐽𝑖𝑘𝑡𝛼)𝑄𝑖𝑘 = [ 𝜆𝑖𝑡
𝛼 1

𝜆𝑖𝑡
𝛼 d
d 1
𝜆𝑖𝑡
𝛼

]
𝑢𝑖𝑘×𝑢𝑖𝑘

.

As 𝐽𝑡𝛼 is composed of 𝐽𝑖𝑘𝑡𝛼, it is difficult calculate‖𝐸𝛼,𝛽(𝐽𝑡𝛼)‖ via (32), so the upper bound of ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖
is difficult to obtain and ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖/‖𝑒𝐴𝑡𝛼‖ is difficult to
estimate.

To the best of our knowledge, the estimate of Mittag-
Leffler function by the exponential function is still an open
problem due to the complexity ofMittag-Leffler function and
deserves further research.

3. Conclusion

In this paper, several counterexamples are presented to
numerically show that the estimate for Mittag-Leffler func-
tion used in some recently published papers is not completely
correct and the mistakes made in the estimation process
are mainly due to the misuse of the properties of matrix
norms. Besides, some sufficient conditions are developed to
guarantee that the estimate ‖𝐸𝛼,𝛽(𝐴𝑡𝛼)‖ ≤ 𝐹‖𝑒𝐴𝑡𝛼‖ holds for
some 𝐹 > 0 and numerical examples are given to verify the
correctness of the newly developed results.
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In this paper, we prove differential Harnack inequalities for positive solutions of a semilinear parabolic system on hyperbolic space.
We use the inequalities to construct classical Harnack estimates by integrating along space-time.

1. Introduction

In this paper, we study the following problem:

𝑓𝑡 = Δ𝑓 + e𝜇𝑡𝑔𝑝, R
𝑛 × (0, +∞) ,

𝑔𝑡 = Δ𝑔 + e]𝑡𝑓𝑞, R
𝑛 × (0, +∞) ,

𝑓 (𝑥, 0) = 𝑓0,
𝑔 (𝑥, 0) = 𝑔0,

R
𝑛,

(1)

where 𝑝, 𝑞, 𝜇, ] are positive constants.
P. Li and S.-T.Yau in [1] were first pioneers to the study

of differential Harnack inequalities which were brought to
general parabolic geometric flows by R. Hamilton (see [2]).
Using these inequalities can derive ancient solutions, bounds
on gradient Ricci solitons, Holder continuity. Differential
Harnack inequalities are important aspects of properties of
partial differential equations. Paper [3] described differen-
tial Harnack inequalities to the initial value problem of a
semilinear parabolic equation when the semilinear term is𝑒𝜇𝑡𝑓𝑝, 𝜇 > 0. There have been numerous interesting results
on the properties of solutions of partial differential equations,
such as existence of solutions [4–17], nonexistence and blow-
up of solutions [18–22], and asymptotic behaviors of solutions
[23–28].

Let (𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡)) be positive smooth solutions to (1)
and (𝑢, V) fl (log𝑓, log𝑔). The main object of our study is
the following Harnack quantities:

𝐻1 ≡ 𝛼Δ𝑢 + 𝛽1 |∇𝑢|2 + 𝑐e𝜇𝑡+𝑝V−𝑢 + 𝜓1 (𝑡) + 𝜙1 (𝑥) ,
𝐻2 ≡ 𝛼ΔV + 𝛽2 |∇V|2 + 𝑐e]𝑡+𝑞𝑢−V + 𝜓2 (𝑡) + 𝜙2 (𝑥) , (2)

where 𝛼, 𝛽𝑖, 𝑐 ∈ R, 𝛼 > max{𝛽1, 𝛽2} and 𝜓𝑖, 𝜙𝑖 will be chosen
suitably 𝑖 = 1, 2.

We will derive our differential Harnack estimate.

Theorem 1. Let (𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡)) be positive classical solutions
to (1), and (𝑢, V) fl (log𝑓, log𝑔). If 𝛼, 𝛽𝑖, 𝑘𝑖, and 𝑐 satisfy

𝛼 > max {𝛽1, 𝛽2} ≥ 0,
𝑘1 − 𝑝𝑘2 ≥ 0,
𝑘2 − 𝑞𝑘1 ≥ 0,
𝑘𝑖 ≥ 𝑛𝛼22 (𝛼 − 𝛽𝑖) > 0,
− 𝛽2 + 𝛼𝑝 + 𝑐 (1 − 𝑝) ≥ 0,
− 𝛽1 + 𝛼𝑞 + 𝑐 (1 − 𝑞) ≥ 0,
4𝑛𝛼2𝛽1𝑐 + 1 − 𝑝2 (𝛼 − 𝛽1)−𝑝𝛽2 + 𝛼𝑝2 + 𝑐𝑝 (1 − 𝑝) ≥ 0,
4𝑛𝛼2𝛽2𝑐 + 1 − 𝑞2 (𝛼 − 𝛽2)−𝑞𝛽1 + 𝛼𝑞2 + 𝑐𝑞 (1 − 𝑞) ≥ 0,

(3)
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then we have

𝐻1 ≡ 𝛼Δ𝑢 + 𝛽1 |∇𝑢|2 + 𝑐e𝜇𝑡+𝑝V−𝑢 + 𝑘1𝑡 ≥ 0,
𝐻2 ≡ 𝛼ΔV + 𝛽2 |∇V|2 + 𝑐e𝜇𝑡+𝑞𝑢−V + 𝑘2𝑡 ≥ 0,

(4)

for all 𝑡.
The paper is organized as follows. In Section 2 we prove

Theorem 1 which describes differential Harnack estimate.
There are applications of Theorem 1 in Section 3.

2. Harnack Estimate

In this section, we shall first obtain our differential Harnack
inequalities, relying on the parabolic maximum principle.

Lemma 2. Suppose (𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡)) are positive solutions to
(1) and (𝑢, V) fl (log𝑓, log𝑔) and (𝐻1,𝐻2) are defined as in
(2). Assume that 𝛼, 𝛽1, 𝛽2, and 𝑐 satisfy

𝛼 > max {𝛽1, 𝛽2} ≥ 0,
− 𝛽2 + 𝛼𝑝 + 𝑐 (1 − 𝑝) ≥ 0,
− 𝛽1 + 𝛼𝑞 + 𝑐 (1 − 𝑞) ≥ 0,
4𝑛𝛼2𝛽1𝑐 + 1 − 𝑝2 (𝛼 − 𝛽1)−𝑝𝛽2 + 𝛼𝑝2 + 𝑐𝑝 (1 − 𝑝) ≥ 0,
4𝑛𝛼2𝛽2𝑐 + 1 − 𝑞2 (𝛼 − 𝛽2)−𝑞𝛽1 + 𝛼𝑞2 + 𝑐𝑞 (1 − 𝑞) ≥ 0.

(5)

Then we have

𝜕𝑡𝐻1 ≥ Δ𝐻1 + 2∇𝐻1 ⋅ ∇𝑢 + ℎ11𝐻1
+ e𝜇𝑡+𝑝V−𝑢 (𝑝𝐻2 − 𝐻1) + ℎ12,

𝜕𝑡𝐻2 ≥ Δ𝐻2 + 2∇𝐻2 ⋅ ∇V + ℎ21𝐻2
+ e]𝑡+𝑞𝑢−V (𝑞𝐻1 − 𝐻2) + ℎ22,

(6)

where

ℎ11 = 2 (𝛼 − 𝛽1)
⋅ 1𝑛𝛼2 {𝐻1 − 2 (𝛽1 |∇𝑢|2 + 𝑐e𝜇𝑡+𝑝V−𝑢 + 𝜓1 + 𝜙1)} ,

ℎ12 = 𝜕𝑡𝜓1 − Δ𝜙1 + 2𝑛𝛼2 (𝛼 − 𝛽1) (𝜓1 + 𝜙1)2

− 𝑛𝛼2 ∇𝜙124𝛽1 (𝛼 − 𝛽1) (𝜓1 + 𝜙1)
+ e𝜇𝑡+𝑝V−𝑢 (𝑐𝜇 + 𝜓1 + 𝜙1 − 𝑝 (𝜓2 + 𝜙2)) ,

ℎ21 = 2 (𝛼 − 𝛽2)
⋅ 1𝑛𝛼2 {𝐻2 − 2 (𝛽2 |∇V|2 + 𝑐e]𝑡+𝑞𝑢−V + 𝜓2 + 𝜙2)} ,

ℎ22 = 𝜕𝑡𝜓2 − Δ𝜙2 + 2𝑛𝛼2 (𝛼 − 𝛽2) (𝜓2 + 𝜙2)2

− 𝑛𝛼2 ∇𝜙224𝛽2 (𝛼 − 𝛽2) (𝜓2 + 𝜙2)
+ e]𝑡+𝑞𝑢−V (𝑐] + 𝜓2 + 𝜙2 − 𝑞 (𝜓1 + 𝜙1)) .

(7)

Proof. Substituting (𝑓, 𝑔) = (e𝑢, eV) into (1), we have
𝑢𝑡 = Δ𝑢 + |∇𝑢|2 + e𝜇𝑡+𝑝V−𝑢,
V𝑡 = ΔV + |∇V|2 + e]𝑡+𝑞𝑢−V. (8)

Using the above equations, we have

(𝜕𝑡 − Δ)Δ𝑢
= 2 |∇∇𝑢|2 + 2∇𝑢 ⋅ ∇Δ𝑢

+ e𝜇𝑡+𝑝V−𝑢 (𝑝ΔV − Δ𝑢 + 𝑝∇V − ∇𝑢2) ,
(𝜕𝑡 − Δ) (|∇𝑢|2)

= 2∇𝑢 ⋅ ∇ |∇𝑢|2 − 2 |∇∇𝑢|2 + 2e𝜇𝑡+𝑝V−𝑢∇𝑢
⋅ (𝑝∇V − ∇𝑢) .

(9)

Furthermore, applying (2) and Cauchy-Schwarz inequality|∇∇𝑢|2 ≥ (1/𝑛)(Δ𝑢)2 yields
𝜕𝑡𝐻1 − Δ𝐻1 − 2∇𝐻1 ⋅ ∇𝑢 = 2 (𝛼 − 𝛽1) |∇∇𝑢|2

+ e𝜇𝑡+𝑝V−𝑢 (𝑝𝐻2 − 𝐻1)
+ e𝜇𝑡+𝑝V−𝑢 {(𝛼𝑝2 − 𝑝𝛽2 + 𝑐𝑝 (1 − 𝑝)) |∇V|2
− 2𝑝 (𝛼 − 𝛽1) ∇𝑢 ⋅ ∇V} + e𝜇𝑡+𝑝V−𝑢 (𝛼 − 𝛽1) |∇𝑢|2
+ e𝜇𝑡+𝑝V−𝑢 (𝑐𝜇 + 𝜓1 + 𝜙1 − 𝑝 (𝜓2 + 𝜙2)) + 𝜕𝑡𝜓1
− Δ𝜙1 − 2∇𝑢 ⋅ ∇𝜙1 ≥ 2 (𝛼 − 𝛽1) 1𝑛𝛼2𝐻1 {𝐻1
− 2 (𝛽1 |∇𝑢|2 + 𝑐e𝜇𝑡+𝑝V−𝑢 + 𝜓1 + 𝜙1)} + 2 (𝛼 − 𝛽1)
⋅ 1𝑛𝛼2𝛽1 {𝛽1 |∇𝑢|4 + 2 |∇𝑢|2 (𝑐e𝜇𝑡+𝑝V−𝑢 + 𝜓1 + 𝜙1)}
+ 2 (𝛼 − 𝛽1) 1𝑛𝛼2 (𝑐e𝜇𝑡+𝑝V−𝑢 + 𝜓1 + 𝜙1)2
+ e𝜇𝑡+𝑝V−𝑢 (𝑝𝐻2 − 𝐻1)
+ e𝜇𝑡+𝑝V−𝑢 {𝑝 (𝛼𝑝 − 𝛽2 + 𝑐 (1 − 𝑝)) |∇V|2
− 2𝑝 (𝛼 − 𝛽1) ∇𝑢 ⋅ ∇V} + e𝜇𝑡+𝑝V−𝑢 (𝛼 − 𝛽1) |∇𝑢|2
+ e𝜇𝑡+𝑝V−𝑢 (𝑐𝜇 + 𝜓1 + 𝜙1 − 𝑝 (𝜓2 + 𝜙2)) + 𝜕𝑡𝜓1
− Δ𝜙1 − 2∇𝑢 ⋅ ∇𝜙1

(10)
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If 𝛼𝑝 − 𝛽2 + 𝑐(1 − 𝑝) ≥ 0, the above inequality is
≥ 2 (𝛼 − 𝛽1) 1𝑛𝛼2
⋅ 𝐻1 {𝐻1 − 2 (𝛽1 |∇𝑢|2 + 𝑐e𝜇𝑡+𝑝V−𝑢 + 𝜓1 + 𝜙1)}
+ e𝜇𝑡+𝑝V−𝑢 (𝑝𝐻2 − 𝐻1) + 4𝛽1𝑛𝛼2 (𝛼 − 𝛽1) (𝜓1 + 𝜙1)
⋅ |∇𝑢|2 + 2 (𝛼 − 𝛽1)
⋅ 1𝑛𝛼2 {𝛽21 |∇𝑢|4 + (𝑐e𝜇𝑡+𝑝V−𝑢 + 𝜓1 + 𝜙1)2}

+ ( 4𝑛𝛼2𝛽1𝑐 + 1 − 𝑝 (𝛼 − 𝛽1)𝛼𝑝 − 𝛽2 + 𝑐 (1 − 𝑝)) (𝛼 − 𝛽1)
⋅ e𝜇𝑡+𝑝V−𝑢 |∇𝑢|2

+ e𝜇𝑡+𝑝V−𝑢 (𝑐𝜇 + 𝜓1 + 𝜙1 − 𝑝 (𝜓2 + 𝜙2)) + 𝜕𝑡𝜓1
− Δ𝜙1 − 2∇𝑢 ⋅ ∇𝜙1

(11)

First note the following inequality:

4𝛽1𝑛𝛼2 (𝛼 − 𝛽1) (𝜓1 + 𝜙1) |∇𝑢|2 − 2∇𝑢 ⋅ ∇𝜙1
≥ − 𝑛𝛼2 ∇𝜙124𝛽1 (𝛼 − 𝛽1) (𝜓1 + 𝜙1) .

(12)

If 𝛼 > 𝛽1 and (4/𝑛𝛼2)𝛽1𝑐+1−𝑝2(𝛼−𝛽1)/(−𝑝𝛽2+𝛼𝑝2+𝑐𝑝(1−𝑝)) ≥ 0, the above inequality is
≥ 2 (𝛼 − 𝛽1) 1𝑛𝛼2
⋅ 𝐻1 {𝐻1 − 2 (𝛽1 |∇𝑢|2 + 𝑐e𝜇𝑡+𝑝V−𝑢 + 𝜓1 + 𝜙1)}
+ e𝜇𝑡+𝑝V−𝑢 (𝑝𝐻2 − 𝐻1) − 𝑛𝛼2 ∇𝜙124𝛽1 (𝛼 − 𝛽1) (𝜓1 + 𝜙1)
+ e𝜇𝑡+𝑝V−𝑢 (𝑐𝜇 + 𝜓1 + 𝜙1 − 𝑝 (𝜓2 + 𝜙2)) + 𝜕𝑡𝜓1
− Δ𝜙1 + 2𝑛𝛼2 (𝛼 − 𝛽1) (𝜓1 + 𝜙1)2 .

(13)

For𝐻2, we have similar results.

𝜕𝑡𝐻2 − Δ𝐻2 − 2∇𝐻2 ⋅ ∇V ≥ 2 (𝛼 − 𝛽2) 1𝑛𝛼2𝐻2 {𝐻2
− 2 (𝛽2 |∇V|2 + 𝑐e]𝑡+𝑞𝑢−V + 𝜓2 + 𝜙2)} + 2 (𝛼 − 𝛽2)
⋅ 1𝑛𝛼2𝛽2 {𝛽2 |∇V|4 + 2 |∇V|2 (𝑐e]𝑡+𝑞𝑢−V + 𝜓2 + 𝜙2)}
+ 2 (𝛼 − 𝛽2) 1𝑛𝛼2 (𝑐e]𝑡+𝑞𝑢−V + 𝜓2 + 𝜙2)2
+ e]𝑡+𝑞𝑢−V (𝑞𝐻1 − 𝐻2)
+ e]𝑡+𝑞𝑢−V {𝑞 (−𝛽1 + 𝛼𝑞 + 𝑐 (1 − 𝑞)) |∇𝑢|2

− 2𝑞 (𝛼 − 𝛽2) ∇𝑢 ⋅ ∇V} + e]𝑡+𝑞𝑢−V (𝛼 − 𝛽2) |∇V|2
+ e]𝑡+𝑞𝑢−V (𝑐] + 𝜓2 + 𝜙2 − 𝑞 (𝜓1 + 𝜙1)) + 𝜕𝑡𝜓2
− Δ𝜙2 − 2∇V ⋅ ∇𝜙2

(14)

If 𝛼𝑞 − 𝛽1 + 𝑐(1 − 𝑞) ≥ 0, the above inequality is
≥ 2 (𝛼 − 𝛽2) 1𝑛𝛼2
⋅ 𝐻2 {𝐻2 − 2 (𝛽2 |∇V|2 + 𝑐e]𝑡+𝑞𝑢−V + 𝜓2 + 𝜙2)}
+ e]𝑡+𝑞𝑢−V (𝑞𝐻1 − 𝐻2) + 4𝛽2𝑛𝛼2 (𝛼 − 𝛽2) (𝜓2 + 𝜙2)
⋅ |∇V|2 + 2 (𝛼 − 𝛽2)
⋅ 1𝑛𝛼2 {𝛽22 |∇V|4 + (𝑐e]𝑡+𝑞𝑢−V + 𝜓2 + 𝜙2)2}

+ ( 4𝑛𝛼2𝛽2𝑐 + 1 − 𝑞2 (𝛼 − 𝛽2)−𝑞𝛽1 + 𝛼𝑞2 + 𝑐𝑞 (1 − 𝑞))
⋅ (𝛼 − 𝛽2) e]𝑡+𝑞𝑢−V |∇V|2

+ e]𝑡+𝑞𝑢−V (𝑐] + 𝜓2 + 𝜙2 − 𝑞 (𝜓1 + 𝜙1)) + 𝜕𝑡𝜓2
− Δ𝜙2 − 2∇V ⋅ ∇𝜙2.

(15)

If (4/𝑛𝛼2)𝛽2𝑐 + 1 − 𝑞2(𝛼 − 𝛽2)/(−𝑞𝛽1 + 𝛼𝑞2 + 𝑐𝑞(1 − 𝑞)) ≥ 0,
the above inequality is

≥ 2 (𝛼 − 𝛽2) 1𝑛𝛼2
⋅ 𝐻2 {𝐻2 − 2 (𝛽2 |∇V|2 + 𝑐e]𝑡+𝑞𝑢−V + 𝜓2 + 𝜙2)}
+ e]𝑡+𝑞𝑢−V (𝑞𝐻1 − 𝐻2) − 𝑛𝛼2 ∇𝜙224𝛽2 (𝛼 − 𝛽2) (𝜓2 + 𝜙2)
+ e]𝑡+𝑞𝑢−V (𝑐] + 𝜓2 + 𝜙2 − 𝑞 (𝜓1 + 𝜙1)) + 𝜕𝑡𝜓2
− Δ𝜙2 + 2𝑛𝛼2 (𝛼 − 𝛽2) (𝜓2 + 𝜙2)2 .

(16)

This completes the proof of Lemma 2.

Next, we need to compute specific 𝜓𝑖(𝑡) and 𝜙𝑖(𝑥) that
guarantee ℎ𝑖2 > 0 for the maximum principle to be applicable
where 𝑖 = 1, 2.
Lemma 3. Assume 𝑘1 − 𝑝𝑘2 ≥ 0, 𝑘2 − 𝑞𝑘1 ≥ 0, 𝑙1 − 𝑝𝑙2 ≥ 0,𝑙2 − 𝑞𝑙1 ≥ 0 and

𝑘𝑖 ≥ 𝑛𝛼22 (𝛼 − 𝛽𝑖) > 0,
𝑙𝑖 ≥ 𝑛𝛼22 (𝛼 − 𝛽𝑖) (6 +

𝑛𝛼2𝛽𝑖 (𝛼 − 𝛽𝑖)) , 𝑖 = 1, 2.
(17)
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If 𝜓𝑖(𝑡) = 𝑘𝑖/𝑡, 𝜙𝑖(𝑥) = ∑𝑛𝑚=1(𝑙𝑖/(𝑥𝑚 − 𝑎𝑚)2 + 𝑙𝑖/(𝑏𝑚 − 𝑥𝑚)2),𝑖 = 1, 2 for 𝑥 ∈ Ω = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × ⋅ ⋅ ⋅[𝑎𝑛, 𝑏𝑛], then for
some 𝑥0 ∈ Ω, ℎ12|𝑥=𝑥0 > 0 and ℎ22|𝑥=𝑥0 > 0.
Proof. From 𝑘1 − 𝑝𝑘2 ≥ 0, 𝑘2 − 𝑞𝑘1 ≥ 0 and 𝑙1 − 𝑝𝑙2 ≥ 0,𝑙2 −𝑞𝑙1 ≥ 0, we get 𝑐𝜇+𝜓1 +𝜙1 −𝑝(𝜓2 +𝜙2) ≥ 0 and 𝑐]+𝜓2 +𝜙2 − 𝑞(𝜓1 + 𝜙1) ≥ 0.

Now applying Lemma 2 yields

ℎ12 ≥ 𝜕𝑡𝜓1 − Δ𝜙1 + 2𝑛𝛼2 (𝛼 − 𝛽1) (𝜓1 + 𝜙1)2

− 𝑛𝛼2 ∇𝜙124𝛽1 (𝛼 − 𝛽1) (𝜓1 + 𝜙1) ,
ℎ22 ≥ 𝜕𝑡𝜓2 − Δ𝜙2 + 2𝑛𝛼2 (𝛼 − 𝛽2) (𝜓2 + 𝜙2)2

− 𝑛𝛼2 ∇𝜙224𝛽2 (𝛼 − 𝛽2) (𝜓2 + 𝜙2) .

(18)

By the definitions of 𝜓𝑖 and 𝜙𝑖, we obtain
Δ𝜙𝑖 = 𝑛∑

𝑚=1

( 6𝑙𝑖(𝑥𝑚 − 𝑎𝑚)4 +
6𝑙𝑖(𝑏𝑚 − 𝑥𝑚)4) ,

∇𝜙𝑖2 =
𝑛∑
𝑚=1

( −2𝑙𝑖(𝑥𝑚 − 𝑎𝑚)3 +
2𝑙𝑖(𝑏𝑚 − 𝑥𝑚)3)

2

,
(19)

and

∇𝜙𝑖2𝜓𝑖 + 𝜙𝑖 ≤
𝑛∑
𝑚=1

( 2√𝑙𝑖(𝑥𝑚 − 𝑎𝑚)2 +
2√𝑙𝑖(𝑏𝑚 − 𝑥𝑚)2)

2

. (20)

If

𝑘𝑖 ≥ 𝑛𝛼22 (𝛼 − 𝛽𝑖) > 0,
𝑙𝑖 ≥ 𝑛𝛼22 (𝛼 − 𝛽𝑖) (6 +

𝑛𝛼2𝛽𝑖 (𝛼 − 𝛽𝑖)) , 𝑖 = 1, 2,
(21)

then ℎ12 > 0 and ℎ22 > 0.
This proves Lemma 3.

Proof of Theorem 1. Choose

𝜓𝑖 (𝑡) = 𝑘𝑖𝑡 ,
𝜙𝑖 (𝑥) = 𝑛∑

𝑚=1

( 𝑙𝑖(𝑥𝑚 − 𝑎𝑚)2 +
𝑙𝑖(𝑏𝑚 − 𝑥𝑚)2) ,

(22)

𝑖 = 1, 2 for 𝑥 ∈ Ω = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × ⋅ ⋅ ⋅[𝑎𝑛, 𝑏𝑛]. Note that
lim
𝑡→0

𝐻𝑖 = ∞ = lim
𝑥𝑚→𝑎𝑚

𝐻𝑖 = lim
𝑥𝑚→𝑏𝑚

𝐻𝑖,
𝑚 = 1, 2, ⋅ ⋅ ⋅, 𝑛, 𝑖 = 1, 2. (23)

Assume that there exists a first time 𝑡0 and point𝑥0 ∈ Ωwhere𝐻1(𝑥0, 𝑡0) = 0 and𝐻2(𝑥0, 𝑡0) > 0. At (𝑥0, 𝑡0); we have
∇𝐻1 = 0,
Δ𝐻1 ≥ 0,
𝜕𝑡𝐻1 ≤ 0.

(24)

Lemma 3 implies that

𝜕𝑡𝐻1 − Δ𝐻1 − 2∇𝐻1 ⋅ ∇𝑢 − ℎ11𝐻1
− e𝜇𝑡+𝑝V−𝑢 (𝑝𝐻2 − 𝐻1) ≥ ℎ12 > 0 (25)

This is a contradiction. Assume that there exist a first time 𝑡0
and point 𝑥0 ∈ Ω where𝐻2(𝑥0, 𝑡0) = 0 and𝐻1(𝑥0, 𝑡0) > 0. At(𝑥0, 𝑡0), we have

∇𝐻2 = 0,
Δ𝐻2 ≥ 0,
𝜕𝑡𝐻2 ≤ 0.

(26)

Lemma 3 implies that

𝜕𝑡𝐻2 − Δ𝐻2 − 2∇𝐻2 ⋅ ∇V − ℎ21𝐻2
− e]𝑡+𝑞𝑢−V (𝑞𝐻1 − 𝐻2) ≥ ℎ22, (27)

This is a contradiction. Furthermore, 𝐻1(𝑥0, 𝑡0) = 0 and𝐻2(𝑥0, 𝑡0) = 0 cause the same contradiction as𝐻1(𝑥0, 𝑡0) = 0
and𝐻2(𝑥0, 𝑡0) > 0. Thus𝐻1(𝑥, 𝑡) > 0 and𝐻2(𝑥, 𝑡) > 0 for all𝑥, 𝑡 > 0.

Taking Ω → R𝑛 which obtains 𝜙𝑖 → 0 then gives the
desired result.

3. Applications

In this section, we shall give an application of Theorem 1.
We integrate along space-time to derive a classical Harnack
inequality.

3.1. Classical Harnack Inequality. In this subsection, we
integrate our differential Harnack inequality of Theorem 1
along space-time to derive a classical Harnack inequality.

Proposition 4. Let (𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡)) be positive classical solu-
tions to (1) and (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) fl (log𝑓, log𝑔). Suppose that𝑥1, 𝑥2 ∈ R𝑛 and 𝑡2 > 𝑡1 > 0. Assume further that 𝛼 ≥2max{𝛽1, 𝛽2}, 𝛼 ≥ 𝑐 and 𝑘𝑖 = 𝑛𝛼2/2(𝛼 − 𝛽𝑖), 𝑖 = 1, 2. Then we
have

𝑓 (𝑥1, 𝑡1) ≤ 𝑓 (𝑥2, 𝑡2) (𝑡2𝑡1)
𝑛

exp( 𝑥2 − 𝑥122 (𝑡2 − 𝑡1)) ,

𝑔 (𝑥1, 𝑡1) ≤ 𝑔 (𝑥2, 𝑡2) (𝑡2𝑡1)
𝑛

exp( 𝑥2 − 𝑥122 (𝑡2 − 𝑡1)) .
(28)

Proof. Define the one-variable functions 𝑤𝑖 : [𝑡1, 𝑡2] → R
as

𝑤1 (𝑡) fl 𝑢 (𝛾 (𝑡) , 𝑡) ,
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𝑤2 (𝑡) fl V (𝛾 (𝑡) , 𝑡)
(29)

for any𝐶1 path 𝛾 : [𝑡1, 𝑡2] → R𝑛 such that 𝛾(𝑡1) = 𝑥1, 𝛾(𝑡2) =𝑥2.
Applying Theorem 1, we have

Δ𝑢 ≥ −𝛼−1 (𝛽1 |∇𝑢|2 + 𝑐e𝜇𝑡+𝑝V−𝑢 + 𝑘1𝑡 ) . (30)

It yields that

𝑑𝑑𝑡𝑤1 (𝑡) = 𝑢𝑡 + ∇𝑢 ⋅ 𝑑𝛾𝑑𝑡
= Δ𝑢 + |∇𝑢|2 + e𝜇𝑡+𝑝V−𝑢 + ∇𝑢 ⋅ 𝑑𝛾𝑑𝑡
≥ −𝛼−1 (𝛽1 |∇𝑢|2 + 𝑐e𝜇𝑡+𝑝V−𝑢 + 𝑘1𝑡 ) + |∇𝑢|2

+ e𝜇𝑡+𝑝V−𝑢 + ∇𝑢 ⋅ 𝑑𝛾𝑑𝑡
≥ (12 − 𝛽1𝛼 ) |∇𝑢|2 + (1 − 𝑐𝛼) e𝜇𝑡+𝑝V−𝑢 − 𝑘1𝛼𝑡

− 12

𝑑𝛾𝑑𝑡


2 ≥ −12


𝑑𝛾𝑑𝑡


2 − 𝑛𝑡 ,

(31)

where𝛼 ≥ 0,𝛼 ≥ 2𝛽1,𝛼 ≥ 𝑐 and 𝑘1 = 𝑛𝛼2/2(𝛼−𝛽1). Similarly,

𝑑𝑑𝑡𝑤2 (𝑡) ≥ −12

𝑑𝛾𝑑𝑡


2 − 𝑛𝑡 , (32)

for 𝛼 ≥ 0, 𝛼 ≥ 2𝛽2, 𝛼 ≥ 𝑐 and 𝑘2 = 𝑛𝛼2/2(𝛼 − 𝛽2).
By

∫𝑡2
𝑡1


𝑑𝛾𝑑𝑡


2 𝑑𝑡 ≥ 𝑥2 − 𝑥12𝑡2 − 𝑡1 ,

∫𝑡2
𝑡1

− 𝑑𝑑𝑡𝑤𝑖 (𝑡) ≤ inf
𝛾(𝑡)

∫𝑡2
𝑡1

(12

𝑑𝛾𝑑𝑡


2 + 𝑛𝑡 )𝑑𝑡, 𝑖 = 1, 2,

(33)

applying (𝑢, V) = (log𝑓, log𝑔) gives Proposition 4.
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In this paper, we consider Toeplitz operator acting on weighted Bloch spaces. Meanwhile, the inclusion map from weighted Bloch
spaces into tent space is also investigated.

1. Introduction

Denote the open unit disk of the complex plane C by D and
the boundary of D by 𝜕D. Let 𝐻(D) denote the space of all
functions analytic in D. For any 𝑎 ∈ D,

𝜑𝑎 (𝑧) = 𝑎 − 𝑧1 − 𝑎𝑧 , 𝑧 ∈ D (1)

is the automorphism ofDwhich exchanges 0 for 𝑎. Recall that
𝛽 (𝑧, 𝑎) = 12 log1 +

𝜑𝑎 (𝑧)1 − 𝜑𝑎 (𝑧) (2)

is the Bergman metric. For any 0 < 𝑟 < ∞, 𝑎 ∈ D,
𝐷 (𝑎, 𝑟) = {𝑧 ∈ 𝐷 : 𝛽 (𝑧, 𝑎) < 𝑟} (3)

is the Bergman disk. Let |𝐷(𝑎, 𝑟)| denote the normalized area
of𝐷(𝑎, 𝑟). From [1], we see that |𝐷(𝑎, 𝑟)| ≈ (1 − |𝑎|2)2 when 𝑟
is fixed.

For 0 < 𝑝 < ∞ and 𝛼 > −1, the weighted Bergman space𝐴𝑝𝛼 is the space of all 𝑓 ∈ 𝐻(D) such that

𝑓𝑝𝐴𝑝𝛼 fl ∫D 𝑓 (𝑧)𝑝 (1 − |𝑧|2)𝛼 𝑑𝐴 (𝑧) < ∞. (4)

When 𝛼 = 0, 𝐴𝑝𝛼 is the classical Bergman space. We refer the
readers to [1, 2] for more results onweighted Bergman spaces.

Let 0 < 𝛼 < ∞. An 𝑓 ∈ 𝐻(D) is said to belong to the
weighted Bloch space, denoted byB𝛼, if𝑓B𝛼 = sup

𝑧∈D

(1 − |𝑧|2)𝛼 𝑓 (𝑧) < ∞. (5)

The spaceB𝛼 has been studied extensively in [3]. See [1, 4–8]
for the study of some operators on weighted Bloch spaces.

Let 𝜑 ∈ 𝐿∞(D). The Toeplitz operator 𝑇𝜑 with symbol 𝜑
is defined by

𝑇𝜑𝑓 (𝑧) = ∫
D

𝜑 (𝑤) 𝑓 (𝑤)(1 − 𝑤𝑧)2+𝛼 𝑑𝐴𝛼 (𝑤) , (6)

where 𝑑𝐴𝛼(𝑤) = (1 − |𝑤|2)𝛼𝑑𝐴(𝑤). There are many results
related to 𝑇𝜑, see [1] and the references therein. Especially,
some characterizations for the operator 𝑇𝜑 on 𝐿2𝛼 have been
obtained by many authors. SinceB𝛼 ⊆ 𝐴1𝛼, it is nature to ask

𝑇𝜑𝑓 ∈B𝛼 ⇐⇒?, 𝑓 ∈B𝛼. (7)

The following theorem is the first main result in this
paper.

Theorem 1. Let 0 < 𝛼 < ∞ and 𝜑 ∈ 𝐿1(D) be harmonic.Then
the following statements hold.

(1) 𝑇𝜑 : B𝛼+1 → B𝛼+1 is bounded if and only if 𝜑 is
bounded.

(2) 𝑇𝜑 :B𝛼+1 →B𝛼+1 is compact if and only if 𝜑 = 0.
Given a positive Borel measure 𝜇, the Toeplitz operator

with the symbol 𝜇 is defined by

𝑇𝜇𝑓 (𝑧) = ∫
D

𝑓 (𝑤)(1 − 𝑤𝑧)2+𝛼 𝑑𝜇 (𝑤) , 𝑓 ∈ 𝐿1 (𝑑𝐴𝛼) . (8)

For the Toeplitz operator 𝑇𝜇, we have the following result.
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Theorem 2. Let 0 < 𝛼, 𝑟 < ∞ and 𝜇 be a positive Borel
measure. Then the following statements hold.

(1) 𝑇𝜇 :B𝛼+1 → B𝛼+1 is bounded if and only if

sup
𝑎∈D

𝜇 (𝐷 (𝑎, 𝑟))
(1 − |𝑎|2)2+𝛼 < ∞. (9)

(2) 𝑇𝜇 :B𝛼+1 →B𝛼+1 is compact if and only if

lim
|𝑎|→0

𝜇 (𝐷 (𝑎, 𝑟))
(1 − |𝑎|2)2+𝛼 = 0. (10)

For 𝐼 ⊂ 𝜕D, |𝐼| = (1/2𝜋) ∫
𝐼
|𝑑𝜉| is the normalized length

of the subarc 𝐼 and the corresponding Carleson square for 𝐼
is defined as follows (see [9]).

𝑆 (𝐼) = {𝑟𝜉 ∈ D : 𝑟 ∈ [1 − |𝐼| , 1) , 𝜉 ∈ 𝐼} . (11)

For 0 < 𝑝 < ∞, a positive Borel measure 𝜇 on D is said
to be a 𝑝-Carleson measure if

𝜇𝑝 š sup
𝐼⊂𝜕D

(𝜇 (𝑆 (𝐼))|𝐼|𝑝 )
1/2 < ∞. (12)

If 𝑝 = 1, 𝑝-Carleson measure is the classical Carleson
measure. FromLemma 3.1.1 of [10], for𝑝, 𝑞 ∈ (0,∞)we know
that 𝜇 is a 𝑝-Carleson measure if and only if

𝜇𝑝,𝑞 fl sup
𝑧∈D

(∫
D

(1 − |𝑧|2)𝑞
|1 − 𝑧𝑤|𝑝+𝑞𝑑𝜇 (𝑤))

1/2

< ∞. (13)

Moreover, ‖𝜇‖𝑝,𝑞 ≈ ‖𝜇‖𝑝.
Let 0 < 𝑝, 𝑞 < ∞ and 𝜇 be a positive Borel measure onD.

The tent space 𝑇𝑝,𝑞𝜇 is the class of all 𝑓 ∈ 𝐻(D) which satisfy

sup
𝐼⊆𝜕D

1|𝐼|𝑝 ∫𝑆(𝐼) 𝑓 (𝑧)𝑞 𝑑𝜇 (𝑧) < ∞. (14)

The tent space 𝑇𝑝,2𝜇 was introduced by J. Xiao [11] to studied
Carleson measure for 𝑄𝑠 space. He proved that 𝑄𝑠 space is
continuously contained in 𝑇𝑝,2𝜇 if and only if

sup
𝐼⊆𝜕D

𝜇 (𝑆 (𝐼))|𝐼|𝑠 (log 2|𝐼|)
2 < ∞. (15)

J. Pau and R. Zhao [12] generalized the main results in [11]. In
[13], J. Liu and Z.Lou studiedMorrey spaces.They proved that
an equivalent condition for Morrey spaces 𝐿2,𝑠 continuously
contained in 𝑇𝑝,2𝜇 is that 𝜇 is a Carleson measure. See [14, 15]
for more information of the Morrey space.

We state the last main result in this paper as follows.

Theorem3. Let 0 < 𝛼 < ∞ and 𝜇 be a positive Borel measure.
Then the following statements hold.

(1) The inclusion map 𝐼𝑑 : B𝛼+1 → 𝑇2+𝛼,1𝜇 is bounded if
and only if 𝜇 is a (2 + 2𝛼)-Carleson measure.

(2) The inclusion map 𝐼𝑑 : B𝛼+1 → 𝑇2+𝛼,1𝜇 is compact if
and only if 𝜇 is a vanishing (2 + 2𝛼)-Carleson measure.

Throughout this paper, the letter 𝐶 will denote constants
andmay differ fromone occurrence to the other.Thenotation𝐴 ≲ 𝐵 means that there is a positive constant C such that𝐴 ≤ 𝐶𝐵. The notation 𝐴 ≈ 𝐵means 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴.
2. Proofs of Main Results

To prove our main results in this paper, we need some
auxiliary results. The following result can be found in [16,
Theorem 3.8].

Lemma 4. Let 𝑝 ≥ 1, 𝛼 > 0, −1 + 𝑝𝛼 < 𝜂 < ∞, and 𝑐 > 0.
Then 𝑓 ∈B𝛼+1 if and only if

sup
𝑧∈D

∫
D

𝑓 (𝑤) − 𝑓 (𝑧)𝑝 (1 − |𝑧|
2)𝑐+𝑝𝛼

|1 − 𝑧𝑤|2+𝑐+𝜂 𝑑𝐴𝜂 (𝑤) < ∞. (16)

FromLemma 4, we can easily deduce the following result.

Lemma 5. Let 𝑝 ≥ 1, 𝛼 > 0, −1 + 𝑝𝛼 < 𝜂 < ∞, and 𝑐 > 0.
Then 𝑓 ∈B𝛼+1 if and only if

sup
𝑎∈D

∫
D

𝑓 (𝑧)𝑝 (1 − |𝑎|
2)𝑐+𝑝𝛼

|1 − 𝑎𝑧|2+𝑐+𝜂 𝑑𝐴𝜂 (𝑧) < ∞. (17)

Proof. First assume that 𝑓 ∈B𝛼+1. It is clear that
𝑓 (𝑧) ≲

𝑓B𝛼+1(1 − |𝑧|2)𝛼 , 𝑧 ∈ D. (18)

Thus,

∫
D

𝑓 (𝑧)𝑝 (1 − |𝑎|
2)𝑐+𝑝𝛼

|1 − 𝑎𝑧|2+𝑐+𝜂 𝑑𝐴𝜂 (𝑧)
≲ ∫

D

𝑓 (𝑧) − 𝑓 (𝑎)𝑝 (1 − |𝑎|
2)𝑐+𝑝𝛼

|1 − 𝑎𝑧|2+𝑐+𝜂 𝑑𝐴𝜂 (𝑧)
+ ∫

D

𝑓 (𝑎)𝑝 (1 − |𝑎|
2)𝑐+𝑝𝛼

|1 − 𝑎𝑧|2+𝑐+𝜂 𝑑𝐴𝜂 (𝑧)
≲ 𝑓𝑝B𝛼+1 + 𝑓𝑝B𝛼+1 ∫

D

(1 − |𝑎|2)𝑐
|1 − 𝑎𝑧|2+𝑐+𝜂𝑑𝐴𝜂 (𝑧)

≲ 𝑓𝑝B𝛼+1 .

(19)

The proof of the inverse direction is similar to the above
statements we omit the details. The proof is complete.

Proof of Theorem 1. (1) First assume that 𝜑 ∈ 𝐿∞(D). For 𝑓 ∈
B𝛼+1, since

𝑓B𝛼+1 ≈ sup
𝑧∈D

(1 − |𝑧|2)𝛼 𝑓 (𝑧) , (20)
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we obtain𝑇𝜑𝑓B𝛼+1 ≈ sup
𝑧∈D

(1 − |𝑧|2)𝛼 𝑇𝜑𝑓 (𝑧)
= sup
𝑧∈D

(1 − |𝑧|2)𝛼 ∫D
𝜑 (𝑤)𝑓 (𝑤)(1 − 𝑤𝑧)2+𝛼𝑑𝐴𝛼 (𝑤)


≲ sup
𝑧∈D

(1 − |𝑧|2)𝛼 ∫
D

𝜑 (𝑤) 𝑓 (𝑤)|1 − 𝑤𝑧|2+𝛼 𝑑𝐴𝛼 (𝑤)
≲ 𝜑𝐿∞(D) 𝑓B𝛼+1
⋅ (sup
𝑧∈D

(1 − |𝑧|2)𝛼 ∫
D

1|1 − 𝑤𝑧|2+𝛼 𝑑𝐴 (𝑤))
≲ 𝜑𝐿∞(D) 𝑓B𝛼+1 .

(21)

Hence 𝑇𝜑 :B𝛼+1 →B𝛼+1 is bounded.
Conversely, assume that 𝑇𝜑 :B𝛼+1 →B𝛼+1 is bounded.

For 𝑧 ∈ D, set
𝑓𝑧 (𝑤) = (1 − |𝑧|

2)2
(1 − 𝑧𝑤)2+𝛼 ∈B𝛼+1. (22)

It is easy to check that ‖𝑓𝑧‖B𝛼+1 ≈ 1. Using Lemma 5 with𝑝 = 1, 𝜂 = 𝛼 and 𝑐 = 2 + 𝛼, we get
∞ > 𝑇𝜑 ≳ 𝑇𝜑𝑓𝑧B1+𝛼
≳ ∫

D

𝑇𝜑𝑓𝑧 (𝑤) (1 − |𝑧|
2)2+2𝛼

|1 − 𝑧𝑤|2(2+𝛼) 𝑑𝐴𝛼 (𝑤)
= (1 − |𝑧|2)𝛼 ∫

D

𝑇𝜑𝑓𝑧 (𝜑𝑧 (𝑤)) 𝑑𝐴𝛼 (𝑤)
≳ (1 − |𝑧|2)𝛼 𝑇𝜑𝑓𝑧 (𝜑𝑧 (0)) ≳ 𝜑 (𝑧) ,

(23)

which implies that 𝜑 ∈ 𝐿∞(D), as desired.
(2) Sufficiency. The result is obvious.
Necessity. For any 𝑧𝑛 ∈ D, let

𝑓𝑧𝑛 (𝑤) = (1 −
𝑧𝑛2)2(1 − 𝑧𝑛𝑤)2+𝛼 , 𝑤 ∈ D. (24)

𝑓𝑧𝑛 ∈ B1+𝛼. It is easy to check that 𝑓𝑧𝑛 → 0 uniformly on
compact subsets on D as |𝑧𝑛| → 1. From the fact that 𝑇𝜑 is
compact onB𝛼+1 →B𝛼+1 and the proof of (1), we have

0 ← 𝑇𝜑𝑓𝑧𝑛B𝛼+1
≳ ∫

D

𝑇𝜑𝑓𝑧𝑛 (𝑤) (1 −
𝑧𝑛2)2+2𝛼1 − 𝑧𝑛𝑤2(2+𝛼) 𝑑𝐴𝛼 (𝑤)

≳ (1 − |𝑧|2)𝛼 𝑇𝜑𝑓𝑧𝑛 (𝜑𝑧𝑛 (0)) ≳ 𝜑 (𝑧𝑛) .
(25)

By the arbitrariness of 𝑧𝑛 and the Maximal Module Principle,
we get 𝜑 = 0.The proof is complete.

Proof of Theorem 2. (1) First suppose that 𝑇𝜇 : B𝛼+1 →
B𝛼+1 is bounded. For any 𝑎 ∈ D, from the proof ofTheorem 1,
we obtain that 𝑓𝑎 ∈B𝛼+1 and ‖𝑓𝑎‖B𝛼+1 ≲ 1. Thus,

∞ > 𝑇𝜇 ≳ (1 − |𝑎|2)𝛼 𝑇𝜇𝑓𝑎 (𝑎)
= (1 − |𝑎|2)𝛼 ∫D

𝑓𝑎 (𝑤)(1 − 𝑤𝑎)2+𝛼 𝑑𝜇 (𝑤)


= (1 − |𝑎|2)𝛼 ∫
D

(1 − |𝑎|2)2
|1 − 𝑤𝑎|4+2𝛼 𝑑𝜇 (𝑤)

≥ (1 − |𝑎|2)𝛼 ∫
𝐷(𝑎,𝑟)

(1 − |𝑎|2)2
|1 − 𝑤𝑎|4+2𝛼 𝑑𝜇 (𝑤)

≈ 𝜇 (𝐷 (𝑎, 𝑟))(1 − |𝑎|2)2+𝛼 ,

(26)

as desired.
Conversely, suppose that

sup
𝑎∈D

𝜇 (𝐷 (𝑎, 𝑟))
(1 − |𝑎|2)2+𝛼 < ∞. (27)

Then we can get that 𝜇 is a Carleson measure for 𝐿1(𝑑𝐴𝛼). If𝑔 ∈ 𝐿1 and𝑓 ∈B𝛼+1, we can easily obtain that𝑓𝑔 ∈ 𝐿1(𝑑𝐴𝛼).
Using Fubini’s Theorem, we obtain
∫D 𝑔 (𝑧) 𝑇𝜇𝑓 (𝑧) (1 − |𝑧|2)𝛼 𝑑𝐴 (𝑧)


= ∫D 𝑔 (𝑧) (1 − |𝑧|

2)𝛼 𝑑𝐴 (𝑧) ∫
D

𝑓 (𝑤)(1 − 𝑤𝑧)2+𝛼 𝑑𝜇 (𝑤)


= ∫D 𝑓 (𝑤)𝑑𝜇 (𝑤) ∫D
(1 − |𝑧|2)𝛼 𝑔 (𝑧)
(1 − 𝑤𝑧)2+𝛼 𝑑𝐴 (𝑧)


≤ ∫

D

𝑔 (𝑤) 𝑓 (𝑤) 𝑑𝜇 (𝑤)
≲ ∫

D

𝑔 (𝑤) 𝑓 (𝑤) 𝑑𝐴𝛼 (𝑤) ≲ 𝑔𝐿1 𝑓B𝛼+1 .

(28)

Hence 𝑇𝜇 :B𝛼+1 →B𝛼+1 is bounded.
(2) Suppose that 𝑇𝜇 : 𝐵𝛼+1 →B𝛼+1 is compact. Let 𝑎𝑛 ∈

D. Set

𝑓𝑎𝑛 (𝑧) = (1 −
𝑎𝑛2)2(1 − 𝑎𝑛𝑧)2+𝛼 , 𝑧 ∈ D. (29)

Then 𝑓𝑎𝑛 ∈B𝛼+1 and 𝑓𝑎𝑛 → 0 uniformly on compact subset
on D as |𝑎𝑛| → 1.Thus,

𝑇𝜇𝑓𝑎𝑛B𝛼+1 ≥ (1 − 𝑎𝑛2)𝛼 𝑇𝜇𝑓𝑎𝑛 (𝑎𝑛)
= (1 − 𝑎𝑛2)𝛼

∫D
𝑓𝑎𝑛 (𝑤)(1 − 𝑤𝑎𝑛)2+𝛼 𝑑𝜇 (𝑤)
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= (1 − 𝑎𝑛2)𝛼 ∫
D

(1 − 𝑎𝑛2)21 − 𝑤𝑎𝑛4+2𝛼 𝑑𝜇 (𝑤)

≥ (1 − 𝑎𝑛2)𝛼 ∫
𝐷(𝑎𝑛,𝑟)

(1 − 𝑎𝑛2)21 − 𝑤𝑎𝑛4+2𝛼 𝑑𝜇 (𝑤)
≈ 𝜇 (𝐷 (𝑎𝑛, 𝑟))(1 − 𝑎𝑛2)2+𝛼 ,

(30)

which implies the desired result.
Conversely, assume that

lim
|𝑎|→1

𝜇 (𝐷 (𝑎, 𝑟))
(1 − |𝑎|2)2+𝛼 = 0. (31)

We know that 𝜇 is a vanishing Carlesonmeasure for 𝐿1(𝑑𝐴𝛼).
We want to show that 𝑇𝜇 is compact. Using Fubini’s Theorem
we have

∫
D

𝑇𝜇𝑓 (𝑧)𝑔 (𝑧) 𝑑𝐴𝛼 (𝑧) = ∫
D

𝑔 (𝑧) 𝑓 (𝑧)𝑑𝜇 (𝑧) . (32)

If 𝑔 ∈ 𝐿1 and 𝑓 ∈ B𝛼+1, we can easily obtain 𝑓𝑔 ∈𝐿1(𝑑𝐴𝛼). Therefore,

∫D 𝑇𝜇𝑓 (𝑧)𝑔 (𝑧) 𝑑𝐴𝛼 (𝑧)
 ≤ ∫D 𝑔 (𝑧) 𝑓 (𝑧) 𝑑𝜇 (𝑧)

≲ ∫
D

𝑔 (𝑧) 𝑓 (𝑧) 𝑑𝐴𝛼 (𝑧) ≲ 𝑔𝐿1 𝑓B𝛼+1 .
(33)

That is, 𝑇𝜇𝑓B𝛼+1 ≲ 𝑓B𝛼+1 . (34)

If 𝑓𝑛 → 0 weakly inB𝛼+1, it follows that ‖𝑇𝜇𝑓𝑛‖B𝛼+1 → 0.
The proof of Theorem 2 is complete.

Proof of Theorem 3. (1) Suppose that 𝐼𝑑 : B𝛼+1 → 𝑇2+𝛼,1𝜇 is
bounded. For 𝑎 ∈ D, set

𝑓𝑎 (𝑧) = (1 − |𝑎|
2)2

(1 − 𝑎𝑧)2+𝛼 , 𝑧 ∈ D. (35)

Then 𝑓𝑎 ∈B𝛼+1. For any 𝐼 ⊆ 𝜕D, we get
𝜇 (𝑆 (𝐼))|𝐼|2+2𝛼 ≲ 1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓𝑎 (𝑧) 𝑑𝜇 (𝑧) < ∞, (36)

as desired.
Conversely, assume that 𝜇 is a (2+2𝛼)-Carlesonmeasure.

Let 𝑓 ∈B𝛼+1. Using the well-known fact

𝑓 (𝑏) ≲ 1
(1 − |𝑏|2)𝛼 , 𝑏 ∈ D, (37)

we have

1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓 (𝑤) 𝑑𝜇 (𝑤)
≲ 1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓 (𝑤) − 𝑓 (𝑏) 𝑑𝜇 (𝑤)
+ 1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓 (𝑏) 𝑑𝜇 (𝑤)

≲ 1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓 (𝑤) − 𝑓 (𝑏) 𝑑𝜇 (𝑤) + 𝜇 (𝑆 (𝐼))|𝐼|2+2𝛼 .

(38)

Note that

𝜇 (𝑆 (𝐼))|𝐼|2+𝛼 ≲ 𝜇 (𝑆 (𝐼))|𝐼|2+2𝛼 . (39)

Then 𝜇 is a Carleson measure for 𝐿1(𝑑𝐴𝛼). Since B𝛼+1 ⊆𝐿1(𝑑𝐴𝛼), combined with Lemma 4, we obtain

1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓 (𝑤) − 𝑓 (𝑏) 𝑑𝜇 (𝑤)
≈ (1 − |𝑏|2)2+𝛼 ∫

𝑆(𝐼)


𝑓 (𝑤) − 𝑓 (𝑏)
(1 − 𝑏𝑤)4+2𝛼

 𝑑𝜇 (𝑤)

≲ (1 − |𝑏|2)2+𝛼 ∫
D


𝑓 (𝑤) − 𝑓 (𝑏)
(1 − 𝑏𝑤)4+2𝛼

 𝑑𝜇 (𝑤)

≲ (1 − |𝑏|2)2+𝛼 ∫
D


𝑓 (𝑤) − 𝑓 (𝑏)
(1 − 𝑏𝑤)4+2𝛼

 𝑑𝐴𝛼 (𝑤)

≲ ∫
D

𝑓 (𝑤) − 𝑓 (𝑏) (1 − |𝑏|
2)2+𝛼1 − 𝑏𝑤4+2𝛼 𝑑𝐴𝛼 (𝑤)

≲ 𝑓B𝛼+1 .

(40)

Hence 𝐼𝑑 :B𝛼+1 → 𝑇2+𝛼,1𝜇 is bounded.
(2) Suppose that 𝐼𝑑 :B𝛼+1 → 𝑇2+𝛼,1𝜇 is compact. Let 𝑎𝑛 ∈

D such that |𝑎𝑛| → 1 as 𝑛 → ∞. We know that 𝑓𝑎𝑛 ∈B𝛼+1
and𝑓𝑎𝑛 → 0 uniformly on compact subsets ofD as 𝑛 → ∞.
ByTheorem 5.15 of [1] it follows that𝑓𝑎𝑛 → 0weakly as 𝑛 →∞.Hence for the compact operator 𝐼𝑑 :B𝛼+1 → 𝑇2+𝛼,1𝜇 , we
have ‖𝑓𝑎𝑛‖𝑇2+𝛼,1𝜇 → 0 as 𝑛 → ∞.Thus,

𝜇 (𝑆 (𝐼𝑛))𝐼𝑛2+2𝛼 ≲
1

(1 − 𝑎𝑛2)2+𝛼 ∫𝑆(𝐼𝑛)
𝑓𝑎𝑛 (𝑧) 𝑑𝜇 (𝑧)

≲ 𝑓𝑎𝑛𝑇2+𝛼,1𝜇 → 0
(41)

as 𝑛 → ∞.Hence𝜇 is a vanishing (2+2𝛼)-Carlesonmeasure.
Conversely, assume that 𝜇 is a vanishing (2+2𝛼)-Carleson

measure. Let 𝑓𝑛 ∈ B𝛼+1, ‖𝑓𝑛‖B𝛼+1 ≲ 1, and 𝑓𝑛 → 0
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(𝑛 → ∞) uniformly on compact subsets of D. Then it is
easy to get that

1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓𝑛 (𝑧) 𝑑𝜇 (𝑧)
≲ 1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓𝑛 (𝑧) 𝑑𝜇𝑟 (𝑧)
+ 1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓𝑛 (𝑧) 𝑑 (𝜇 − 𝜇𝑟) (𝑧)

≲ 1|𝐼|2+𝛼 ∫𝑆(𝐼) 𝑓𝑛 (𝑧) 𝑑𝜇𝑟 (𝑧)
+ 𝜇 − 𝜇𝑟2 𝑓𝑛B𝛼+1 .

(42)

Let 𝑟 → 1− and 𝑛 → ∞; we get the desired result.The proof
is complete.
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Germany, 2006.

[11] J. Xiao, “The Qp Carleson measure problem,” Advances in
Mathematics, vol. 217, no. 5, pp. 2075–2088, 2008.

[12] J. Pau and R. Zhao, “Carleson measures, Riemann-Stieltjes and
multiplication operators on a general family of function spaces,”
Integral Equations and Operator Theory, vol. 78, no. 4, pp. 483–
514, 2014.

[13] J. Liu and Z. Lou, “Carleson measure for analytic Morrey
spaces,” Nonlinear Analysis, vol. 125, pp. 423–432, 2015.

[14] P. Li, J. Liu, and Z. Lou, “Integral operators on analytic Morrey
spaces,” Science China Mathematics, vol. 57, no. 9, pp. 1961–1974,
2014.

[15] J. Liu and Z. Lou, “Properties of analytic Morrey spaces and
applications,” Mathematische Nachrichten, vol. 288, no. 14-15,
pp. 1673–1693, 2015.

[16] J. Pau, R. Zhao, and K. Zhu, “WeightedBMO andHankel opera-
tors between Bergman spaces,” Indiana University Mathematics
Journal, vol. 65, no. 5, pp. 1639–1673, 2016.

https://projecteuclid.org/euclid.jiea/1510304525
https://projecteuclid.org/euclid.jiea/1510304525


Research Article
Solutions for a Class of Hadamard Fractional Boundary
Value Problems with Sign-Changing Nonlinearity

Keyu Zhang 1 and Zhengqing Fu 2

1School of Mathematics, Qilu Normal University, Jinan 250013, China
2College of Mathematics and System Sciences, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Keyu Zhang; keyu 292@163.com

Received 1 August 2018; Revised 25 October 2018; Accepted 30 December 2018; Published 4 February 2019

Academic Editor: Yong H. Wu

Copyright © 2019 Keyu Zhang and Zhengqing Fu. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Using fixed pointmethodswe establish some existence theorems of positive (nontrivial) solutions for a class of Hadamard fractional
boundary value problems with sign-changing nonlinearity.

1. Introduction

In this paper, using fixed point methods we study the exis-
tence of positive (nontrivial) solutions for the Hadamard
fractional boundary value problems with sign-changing non-
linearity:

−𝐷𝛼𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [1, 𝑒] ,
𝑢 (1) = 𝛿𝑢 (1) = 𝛿𝑢 (𝑒) = 0, (1)

where 𝛼 ∈ (2, 3] is a real number, 𝐷𝛼 is the left-sided
Hadamard fractional derivative of order 𝛼, 𝛿𝑢(𝑡) = 𝑡𝑑𝑢(𝑡)/𝑑𝑡,
and 𝑓 ∈ 𝐶([1, 𝑒] × R+,R) is a sign-changing function; i.e.,
there exists a constant 𝑀 > 0 such that

(H0) 𝑓(𝑡, 𝑢) + 𝑀 ≥ 0 for all (𝑡, 𝑢) ∈ [1, 𝑒] ×R+.
As is known, fractional differential equations have been

paid special attention bymany researchers for the reason that
they serve as an excellent tool for wide applications in various
disciplines of science and engineering such as mechanics,
electricity, chemistry, and control theory; for more details,
we refer to books [1–3]. In recent years, there have been a
large number of papers dealing with the existence of solutions
of nonlinear initial (boundary) value problems of fractional
differential equations by using some techniques of nonlinear
analysis, such as fixed-point results [4–13], iterative methods
[14–23], the topological degree [24–29], the Leray-Schauder
alternative [30, 31], and stability [32].

In [4], the authors studied the following abstract evo-
lution of the system for HIV-1 population dynamics, which
takes the form in fractional sense:

𝐷𝛼𝑡 𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡) , 𝐷𝛽𝑡 𝑢 (𝑡) , V (𝑡)) = 0,
𝐷𝛾𝑡 V (𝑡) + 𝜆𝑔 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,
𝐷𝛽𝑡 𝑢 (0) = 𝐷𝛽+1𝑡 𝑢 (0) = 0,

𝐷𝛽𝑡 𝑢 (1) = ∫1
0
𝐷𝛽𝑡 𝑢 (𝑠) 𝑑𝐴 (𝑠) ,

V (0) = V (0) = 0,
V (1) = ∫1

0
V (𝑠) 𝑑𝐵 (𝑠) ,

(2)

where 𝑓 : (0, 1) × [0, +∞)3 → (−∞,+∞) and 𝑔 : (0, 1) ×
[0, +∞) → (−∞,+∞) are two semipositone functions. By
using the Guo-Krasnosel’skii fixed point theorem, they not
only obtained the existence of positive solutions for (2) but
also discussed the effect of parameters 𝜆 on the existence of
solutions.

In [14], the authors adopted generalized 𝛼-contractive
map to study some fractional integro-differential equa-
tions with the Caputo-Fabrizio derivation and obtained the
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approximate solutions for these problems by using of some
appropriate Lipschitz conditions for their nonlinearities.

In [15], Cui used the convergence of Cauchy sequences
in complete spaces to obtain the unique solution for the
fractional boundary value problems:

𝐷𝑝𝑡 𝑥 (𝑡) + 𝑝 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑞 (𝑡) = 0, 𝑡 ∈ (0, 1) ,
𝑥 (0) = 𝑥 (0) = 0,
𝑥 (1) = 0,

(3)

where𝑓 is a Lipschitz continuous function, with the Lipschitz
constant associated with the first eigenvalue for the relevant
operator. This method can also be applied in papers [16, 17]
and references therein.

However, as a generalization of fractional calculus by
Riemann and Liouville, Hadamard fractional equations have
seldom been studied in the literature; we only refer to
[8–10, 22, 23, 29, 32] and references therein. In [8], the
authors used the Guo-Krasnosel’skii fixed point theorem on
cones to establish the existence and nonexistence of positive
solutions for (1) with nonnegative nonlinearity 𝜆𝑎(𝑡)𝑓(𝑢)
and considered solvability for the influence of the parameter
intervals.

In [32], the authors used Banach and Schauder fixed point
theorem to obtain the existence and Hyers-Ulam stability of
solutions for Hadamard fractional impulsive Cauchy prob-
lems of the form
𝐻𝐷𝛼1+𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝛼 ∈ (0, 1) ,

𝑡 ∈ (1, 𝑒] \ {𝑡1, 𝑡2, . . . , 𝑡𝑚} ,
Δ𝑢 (𝑡𝑖)=𝐻𝐽1−𝛼1+ 𝑢 (𝑡+𝑖 ) −𝐻𝐽1−𝛼1+ 𝑢 (𝑡−𝑖 ) = 𝑝𝑖,

𝑝𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑚,
𝐻𝐽1−𝛼1+ 𝑢 (1+) = 𝑢0, 𝑢0 ∈ R,

(4)

where 𝑓 satisfies a Lipschitz condition.
In this paper, motivated by works aforementioned, we

used fixed point methods to study the existence of solu-
tions for (1) with sign-changing nonlinearity. We have the
main results: (i) when the nonlinear term 𝑓 grows both
superlinearly and sublinearly at ∞, we use the fixed point
index theory to obtain two existence theorems of positive
solutions for (1); (ii) when𝑓 satisfies an appropriate Lipschitz
condition, we obtain a unique solution for (1) and establish
a sequence of iterations uniformly converges to the unique
solution.

2. Preliminaries

Definition 1 (see [1–3]). The left-sided Hadamard fractional
derivative of order 𝛼 ∈ [𝑛 − 1, 𝑛), 𝑛 ∈ Z+, of a function 𝑓 is
given by

𝐷𝛼𝑓 (𝑡) = 1
Γ (𝑛 − 𝛼) (𝑡 𝑑

𝑑𝑡)
𝑛

∫𝑡
1
(ln 𝑡

𝑠)
𝑛−𝛼+1 𝑓 (𝑠) 𝑑𝑠

𝑠 ,
1 ≤ 𝑡 ≤ 𝑒,

(5)

where Γ(⋅) is the Gamma function.

We now offer Green’s function for (1). From Lemma 2.1 of
[8], (1) is equivalent to the integral equation

𝑢 (𝑡) = ∫𝑒
1
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

𝑠 , 𝑡 ∈ [1, 𝑒] , (6)

where

𝐺 (𝑡, 𝑠) = 1
Γ (𝛼)

⋅ {{{{{

(1 − ln 𝑠)𝛼−2 (ln 𝑡)𝛼−1 , 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑒,
(1 − ln 𝑠)𝛼−2 (ln 𝑡)𝛼−1 − (ln( 𝑡

𝑠))
𝛼−1 , 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑒.

(7)

Lemma 2 (see [10, Lemma 2.2]). Let𝐺 be defined by (7).�en
the following inequalities are satisfied:

𝐺 (𝑡, 𝑠) ≥ 0,
(ln 𝑡)𝛼−1 𝐺 (𝑒, 𝑠) ≤ 𝐺 (𝑡, 𝑠) ≤ 𝐺 (𝑒, 𝑠) ,

∀ (𝑡, 𝑠) ∈ [1, 𝑒] × [1, 𝑒] ,
(8)

where 𝐺(𝑒, 𝑠) = (1 − ln 𝑠)𝛼−2 − (1 − ln 𝑠)𝛼−1 and ∀𝑠 ∈ [1, 𝑒].
Lemma3. Let𝜑(𝑡) = (1−ln 𝑡)𝛼−2−(1−ln 𝑡)𝛼−1 and∀𝑡 ∈ [1, 𝑒].
�en the following inequalities are satisfied:

∫𝑒
1
(ln 𝑡)𝛼−1 𝜑 (𝑡) 𝑑𝑡

𝑡 ⋅ 𝜑 (𝑠) ≤ ∫𝑒
1
𝐺 (𝑡, 𝑠) 𝜑 (𝑡) 𝑑𝑡

𝑡
≤ ∫𝑒
1
𝜑 (𝑡) 𝑑𝑡

𝑡 ⋅ 𝜑 (𝑠) , ∀𝑠 ∈ [1, 𝑒] .
(9)

�is is a direct result from Lemma 2, so we omit its proof.
Moreover, for convenience, let

𝜅1 = ∫𝑒
1
(ln 𝑡)𝛼−1 𝜑 (𝑡) 𝑑𝑡

𝑡 ,

𝜅2 = ∫𝑒
1
𝜑 (𝑡) 𝑑𝑡

𝑡 .
(10)

Let 𝐸 fl 𝐶[1, 𝑒], ‖𝑢‖ fl sup𝑡∈[1,𝑒]|𝑢(𝑡)|, and 𝑃 fl {𝑢 ∈ 𝐸 :
𝑢(𝑡) ≥ 0, ∀𝑡 ∈ [1, 𝑒]}. �en (𝐸, ‖ ⋅ ‖) becomes a real Banach
space and 𝑃 is a cone on 𝐸. Define 𝐵𝜌 fl {𝑢 ∈ 𝐸 : ‖𝑢‖ < 𝜌} for
𝜌 > 0 in the sequel.

Define 𝑃0 = {𝑢 ∈ 𝑃 : 𝑢(𝑡) ≥ (ln 𝑡)𝛼−1‖𝑢‖ and ∀𝑡 ∈ [1, 𝑒]}.
�en 𝑃0 is also a cone on 𝐸. In what follows, we verify that
when 𝑢 ∈ 𝑃0, ‖𝑢‖ ≥ (𝑀/Γ(𝛼)) ∫𝑒

1
(1 − ln 𝑠)𝛼−2(𝑑𝑠/𝑠); we have

𝑢(𝑡)−𝑤(𝑡) ≥ 0,∀𝑡 ∈ [1, 𝑒], where𝑤 is a solution for the problem

−𝐷𝛼𝑢 (𝑡) = 𝑀, 𝑡 ∈ [1, 𝑒] ,
𝑢 (1) = 𝛿𝑢 (1) = 𝛿𝑢 (𝑒) = 0, (11)

where𝑀 is defined by (H0). From (1) and (6),𝑤 takes the form
as follows:

𝑤 (𝑡) = 𝑀∫𝑒
1
𝐺 (𝑡, 𝑠) 𝑑𝑠

𝑠 , 𝑡 ∈ [1, 𝑒] , (12)
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where 𝐺 is defined by (7). Indeed, when 𝑢 ∈ 𝑃0, from (7) we
have

𝑢 (𝑡) − 𝑤 (𝑡) ≥ (ln 𝑡)𝛼−1 ‖𝑢‖ − 𝑀∫𝑒
1
𝐺 (𝑡, 𝑠) 𝑑𝑠

𝑠
≥ (ln 𝑡)𝛼−1 ‖𝑢‖ − 𝑀

Γ (𝛼) ∫𝑒
1
(1 − ln 𝑠)𝛼−2 (ln 𝑡)𝛼−1 𝑑𝑠𝑠

= (ln 𝑡)𝛼−1 (‖𝑢‖ − 𝑀
Γ (𝛼) ∫𝑒

1
(1 − ln 𝑠)𝛼−2 𝑑𝑠𝑠 ) ≥ 0,

∀𝑡 ∈ [1, 𝑒] .

(13)

For semipositone condition (H0), we need to construct an
appropriate operator with which to study problem (1). Hence,
we consider the modified problem

−𝐷𝛼𝑢 (𝑡) = 𝑓 (𝑡,max {𝑢 (𝑡) − 𝑤 (𝑡) , 0}) + 𝑀,
𝑡 ∈ [1, 𝑒] ,

𝑢 (1) = 𝛿𝑢 (1) = 𝛿𝑢 (𝑒) = 0,
(14)

where 𝑤 is a solution for (11). Clearly, we are easy to show
that if 𝑢 solves (14), 𝑤 solves (11), and 𝑢(𝑡) − 𝑤(𝑡) ≥ 0( ̸≡ 0)
and ∀𝑡 ∈ [1, 𝑒]; then 𝑢(𝑡) − 𝑤(𝑡) is a positive solution for (1).
Consequently, we turn to study themodified problem (14). From
(1) and (6), (14) is equivalent to the integral equation

𝑢 (𝑡)
= ∫𝑒
1
𝐺 (𝑡, 𝑠) [𝑓 (𝑠,max {𝑢 (𝑠) − 𝑤 (𝑠) , 0}) + 𝑀] 𝑑𝑠

𝑠 ,
𝑡 ∈ [1, 𝑒] , 𝑢 ∈ 𝐸.

(15)

Hence, we can define an operator 𝐴 : 𝑃 → 𝑃 as follows:

(𝐴𝑢) (𝑡)
= ∫𝑒
1
𝐺 (𝑡, 𝑠) [𝑓 (𝑠,max {𝑢 (𝑠) − 𝑤 (𝑠) , 0}) + 𝑀] 𝑑𝑠

𝑠 ,
𝑡 ∈ [1, 𝑒] , 𝑢 ∈ 𝐸.

(16)

It is not difficult to prove that if 𝐴𝑢0 = 𝑢0, then 𝑢0 is a solution
for (14). Moreover, from Lemma 2 we easily have 𝐴(𝑃) ⊂ 𝑃0.

Now, we offer some basic theorems for fixed point meth-
ods used in our problem.

Lemma 4 (see [33]). Let 𝐸 be a real Banach space and 𝑃 a
cone on 𝐸. Suppose that Ω ⊂ 𝐸 is a bounded open set and that
𝐴 : Ω ∩ 𝑃 → 𝑃 is a continuous compact operator. If there
exists 𝜔0 ∈ 𝑃\{0} such that

𝜔 − 𝐴𝜔 ̸= 𝜆𝜔0, ∀𝜆 ≥ 0, 𝜔 ∈ 𝜕Ω ∩ 𝑃, (17)

then 𝑖(𝐴, Ω ∩ 𝑃, 𝑃) = 0, where 𝑖 denotes the fixed point index
on 𝑃.
Lemma5 (see [33]). Let 𝐸 be a real Banach space and𝑃 a cone
on 𝐸. Suppose that Ω ⊂ 𝐸 is a bounded open set with 0 ∈ Ω

and that 𝐴 : Ω ∩ 𝑃 → 𝑃 is a continuous compact operator.
If

𝜔 − 𝜆𝐴𝜔 ̸= 0, ∀𝜆 ∈ [0, 1] , 𝜔 ∈ 𝜕Ω ∩ 𝑃, (18)

then 𝑖(𝐴,Ω ∩ 𝑃, 𝑃) = 1.
3. Positive Solutions for (1)

Let 𝜆1 = 𝜅−11 , 𝜆2 = 𝜅−12 , and N = (𝑀/Γ(𝛼)) ∫𝑒
1
(1 −

ln 𝑠)𝛼−2(𝑑𝑠/𝑠). Then we give some assumptions for nonlinear
term 𝑓.

(H1) lim inf𝑢→+∞(𝑓(𝑡, 𝑢)/𝑢) > 𝜆1 uniformly on 𝑡 ∈
[1, 𝑒],

(H2) there exist 𝑄 : [1, 𝑒] → R+ such that

𝑓 (𝑡,max {𝑢 (𝑡) − 𝑤 (𝑡) , 0}) + 𝑀 ≤ 𝑄 (𝑡) ,
∀ (𝑡, 𝑢) ∈ [1, 𝑒] × [0, 𝑀

Γ (𝛼) ∫𝑒
1
(1 − ln 𝑠)𝛼−2 𝑑𝑠𝑠 ] , (19)

where ∫𝑒
1
𝜑(𝑡)𝑄(𝑡)(𝑑𝑡/𝑡) < N,

(H3) lim sup𝑢→+∞(𝑓(𝑡, 𝑢)/𝑢) < 𝜆2 uniformly on 𝑡 ∈
[1, 𝑒],

(H4) there exist 𝑙 ∈ (1, 𝑒), 𝑄 : [1, 𝑒] → R+ such that

𝑓 (𝑡,max {𝑢 (𝑡) − 𝑤 (𝑡) , 0}) + 𝑀 ≥ 𝑄 (𝑡) ,
∀ (𝑡, 𝑢) ∈ [1, 𝑒] × [0, 𝑀

Γ (𝛼) ∫𝑒
1
(1 − ln 𝑠)𝛼−2 𝑑𝑠𝑠 ] , (20)

where ∫𝑒
1
(ln 𝑙)𝛼−1𝜑(𝑡)𝑄(𝑡)(𝑑𝑡/𝑡) > N,

(H5) 𝑓 ∈ 𝐶([1, 𝑒] ×R,R), and there exists 𝑘 ∈ (0, 1) such
that |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤ 𝑘𝜆2|𝑢 − V| for 𝑡 ∈ [1, 𝑒], 𝑢, V ∈ R,

(H6) 𝑓(𝑡, 0) ̸≡ 0 for 𝑡 ∈ [1, 𝑒].
We now state our main results and offer their proofs.

Theorem6. Suppose that (H0)-(H2)hold.�en (1) has at least
a positive solution.

Proof. We first prove that there exist 𝑅 > N large enough
such that

𝑢 − 𝐴𝑢 ̸= 𝜆𝜑∗0 , ∀𝜆 ≥ 0, 𝑢 ∈ 𝜕𝐵𝑅 ∩ 𝑃, (21)

where 𝜑∗0 ∈ 𝑃0 is a given element. If false, there exits 𝑢 ∈
𝜕𝐵𝑅∩𝑃, 𝜆0 ≥ 0 such that 𝑢−𝐴𝑢 = 𝜆0𝜑∗0 . Note that𝐴(𝑃) ⊂ 𝑃0;
then 𝐴𝑢 ∈ 𝑃0 for 𝑢 ∈ 𝑃, and thus 𝑢 ∈ 𝑃0. This also implies
that 𝑢(𝑡) ≥ for 𝑡 ∈ [1, 𝑒].

Note that𝑢 ∈ 𝜕𝐵𝑅∩𝑃; then ‖𝑢‖ = 𝑅 > N, and𝑢(𝑡)−𝑤(𝑡) ≥
0 for 𝑢 ∈ 𝑃0, 𝑡 ∈ [1, 𝑒]. From (H1) we have

lim inf
𝑢→+∞

𝑓 (𝑡,max {𝑢 − 𝑤, 0}) + 𝑀
𝑢 − 𝑤

= lim inf
𝑢→+∞

𝑓 (𝑡, 𝑢 − 𝑤) + 𝑀
𝑢 − 𝑤 > 𝜆1

(22)

uniformly on 𝑡 ∈ [1, 𝑒]. As a result, there exist 𝜀1 > 0 and
𝑐1 > 0 such that

𝑓 (𝑡, 𝑢 (𝑡) − 𝑤 (𝑡)) + 𝑀
≥ (𝜆1 + 𝜀1) (𝑢 (𝑡) − 𝑤 (𝑡)) − 𝑐1, ∀𝑡 ∈ [1, 𝑒] . (23)
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This implies that

𝑢 (𝑡) ≥ (𝐴𝑢) (𝑡)
≥ ∫𝑒
1
𝐺 (𝑡, 𝑠) [(𝜆1 + 𝜀1) (𝑢 (𝑠) − 𝑤 (𝑠)) − 𝑐1] 𝑑𝑠

𝑠
≥ (𝜆1 + 𝜀1) ∫

𝑒

1
𝐺 (𝑡, 𝑠) (𝑢 (𝑠) − 𝑤 (𝑠)) 𝑑𝑠

𝑠 − 𝑐1𝜅2.
(24)

Note that (12) is multiplied by 𝜑(𝑡) on both sides of the above
and integrated over [1, 𝑒] and use Lemma 3 to obtain

∫𝑒
1
𝑢 (𝑡) 𝜑 (𝑡) 𝑑𝑡

𝑡 ≥ ∫𝑒
1
𝜑 (𝑡)

⋅ [(𝜆1 + 𝜀1) ∫
𝑒

1
𝐺 (𝑡, 𝑠) (𝑢 (𝑠) − 𝑤 (𝑠)) 𝑑𝑠

𝑠
− 𝑐1𝜅2] 𝑑𝑡

𝑡 ≥ 𝜆1 + 𝜀1
𝜆1 ∫𝑒

1
𝜑 (𝑡) (𝑢 (𝑡)

− 𝑤 (𝑡)) 𝑑𝑡
𝑡 − 𝑐1𝜅22 = (1 + 𝜀1𝜅1) ∫

𝑒

1
𝑢 (𝑡)

⋅ 𝜑 (𝑡) 𝑑𝑡
𝑡 − (1 + 𝜀1𝜅1) ∫

𝑒

1
𝜑 (𝑡)

⋅ 𝑀∫𝑒
1
𝐺 (𝑡, 𝑠) 𝑑𝑠

𝑠
𝑑𝑡
𝑡 − 𝑐1𝜅22 ≥ (1 + 𝜀1𝜅1)

⋅ ∫𝑒
1
𝑢 (𝑡) 𝜑 (𝑡) 𝑑𝑡

𝑡 − 𝑀(1 + 𝜀1𝜅1) 𝜅22 − 𝑐1𝜅22 .

(25)

Consequently, we have

∫𝑒
1
𝑢 (𝑡) 𝜑 (𝑡) 𝑑𝑡

𝑡 ≤ (𝜀1𝜅1)−1 (𝑀 (1 + 𝜀1𝜅1) + 𝑐1) 𝜅22. (26)

Noting that 𝑢 ∈ 𝑃0, we have

‖𝑢‖∫𝑒
1
(ln 𝑡)𝛼−1 𝜑 (𝑡) 𝑑𝑡

𝑡
≤ (𝜀1𝜅1)−1 (𝑀 (1 + 𝜀1𝜅1) + 𝑐1) 𝜅22,

and ‖𝑢‖ ≤ 𝜀−11 𝜅−21 (𝑀 (1 + 𝜀1𝜅1) + 𝑐1) 𝜅22 .
(27)

Therefore, if we choose 𝑅 > max{N, 𝜀−11 𝜅−21 (𝑀(1 + 𝜀1𝜅1) +
𝑐1)𝜅22}, then (21) holds true. From Lemma 4 we have

𝑖 (𝐴, 𝐵𝑅 ∩ 𝑃, 𝑃) = 0. (28)

On the other hand, we prove that

𝑢 ̸= 𝜆𝐴𝑢, ∀𝜆 ∈ [0, 1] , 𝑢 ∈ 𝜕𝐵N ∩ 𝑃. (29)

If false, there exist 𝑢 ∈ 𝜕𝐵N ∩ 𝑃, 𝜆∗1 ∈ [0, 1] such that 𝑢 =
𝜆∗1𝐴𝑢; this implies 𝑢(𝑡) ≤ (𝐴𝑢)(𝑡), ∀𝑡 ∈ [1, 𝑒], and ‖𝑢‖ ≤
‖𝐴𝑢‖. However, from (H2) we have

(𝐴𝑢) (𝑡)
= ∫𝑒
1
𝐺 (𝑡, 𝑠) [𝑓 (𝑠,max {𝑢 (𝑠) − 𝑤 (𝑠) , 0}) + 𝑀] 𝑑𝑠

𝑠
≤ ∫𝑒
1
𝜑 (𝑠) 𝑄 (𝑠) 𝑑𝑠

𝑠 < N = ‖𝑢‖ ,
for 𝑢 ∈ 𝜕𝐵N ∩ 𝑃.

(30)

This indicates that ‖𝐴𝑢‖ < ‖𝑢‖ for 𝑢 ∈ 𝜕𝐵N ∩ 𝑃. This has
a contradiction, and thus (29) holds true. From Lemma 5 we
have

𝑖 (𝐴, 𝐵N ∩ 𝑃, 𝑃) = 1. (31)

From (28) and (31), we obtain

𝑖 (𝐴, (𝐵𝑅\𝐵N) ∩ 𝑃, 𝑃) = 𝑖 (𝐴, 𝐵𝑅 ∩ 𝑃, 𝑃)
− 𝑖 (𝐴, 𝐵N ∩ 𝑃, 𝑃) = −1.

(32)

Therefore the operator 𝐴 has at least one fixed point 𝑢 in
(𝐵𝑅\𝐵N) ∩ 𝑃 with ‖𝑢‖ ≥ N, and then 𝑢(𝑡) − 𝑤(𝑡) is a positive
solution for (1). This completes the proof.

Theorem 7. Suppose that (H0), (H3), and (H4) hold. �en (1)
has at least a positive solution.

Proof. We first prove that there exist 𝑅 > N large enough
such that

𝑢 ̸= 𝜆𝐴𝑢, ∀𝜆 ∈ [0, 1] , 𝑢 ∈ 𝜕𝐵𝑅 ∩ 𝑃. (33)

If false, there exist𝑢 ∈ 𝜕𝐵𝑅∩𝑃, 𝜆∗2 ∈ [0, 1] such that𝑢 = 𝜆∗2𝐴𝑢,
and 𝑢 ∈ 𝑃0 for the fact that 𝐴𝑢 ∈ 𝑃0 when 𝑢 ∈ 𝑃. This also
implies 𝑢(𝑡) ≤ (𝐴𝑢)(𝑡), 𝑡 ∈ [1, 𝑒].

Note that𝑢 ∈ 𝜕𝐵𝑅∩𝑃; then ‖𝑢‖ = 𝑅 > N, and𝑢(𝑡)−𝑤(𝑡) ≥
0 for 𝑢 ∈ 𝑃0, 𝑡 ∈ [1, 𝑒]. From (H3) we have

lim sup
𝑢→+∞

𝑓 (𝑡,max {𝑢 − 𝑤, 0}) + 𝑀
𝑢 − 𝑤

= lim sup
𝑢→+∞

𝑓 (𝑡, 𝑢 − 𝑤) + 𝑀
𝑢 − 𝑤 < 𝜆2

(34)

uniformly on 𝑡 ∈ [1, 𝑒]. As a result, there exist 𝜀2 ∈ (0, 𝜆2) and𝑐2 > 0 such that
𝑓 (𝑡, 𝑢 (𝑡) − 𝑤 (𝑡)) + 𝑀

≤ (𝜆2 − 𝜀2) (𝑢 (𝑡) − 𝑤 (𝑡)) + 𝑐2, ∀𝑡 ∈ [1, 𝑒] . (35)

This implies that

𝑢 (𝑡) ≤ (𝐴𝑢) (𝑡)
≤ ∫𝑒
1
𝐺 (𝑡, 𝑠) [(𝜆2 − 𝜀2) (𝑢 (𝑠) − 𝑤 (𝑠)) + 𝑐2] 𝑑𝑠

𝑠
≤ (𝜆2 − 𝜀2) ∫

𝑒

1
𝐺 (𝑡, 𝑠) (𝑢 (𝑠) − 𝑤 (𝑠)) 𝑑𝑠

𝑠 + 𝑐2𝜅2.
(36)
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Note that (12) is multiplied by 𝜑(𝑡) on both sides of the above
and integrated over [1, 𝑒] and use Lemma 3 to obtain

∫𝑒
1
𝑢 (𝑡) 𝜑 (𝑡) 𝑑𝑡

𝑡 ≤ ∫𝑒
1
𝜑 (𝑡)

⋅ [(𝜆2 − 𝜀2) ∫
𝑒

1
𝐺 (𝑡, 𝑠) (𝑢 (𝑠) − 𝑤 (𝑠)) 𝑑𝑠

𝑠
+ 𝑐2𝜅2] 𝑑𝑡

𝑡 ≤ 𝜆2 − 𝜀2
𝜆2 ∫𝑒

1
𝜑 (𝑡) (𝑢 (𝑡)

− 𝑤 (𝑡)) 𝑑𝑡
𝑡 + 𝑐2𝜅22 ≤ (1 − 𝜀2𝜅2) ∫

𝑒

1
𝑢 (𝑡)

⋅ 𝜑 (𝑡) 𝑑𝑡
𝑡 + (1 − 𝜀2𝜅2) ∫

𝑒

1
𝜑 (𝑡)

⋅ 𝑀∫𝑒
1
𝐺 (𝑡, 𝑠) 𝑑𝑠

𝑠
𝑑𝑡
𝑡 + 𝑐2𝜅22 ≤ (1 − 𝜀2𝜅2)

⋅ ∫𝑒
1
𝑢 (𝑡) 𝜑 (𝑡) 𝑑𝑡

𝑡 + 𝑀(1 − 𝜀2𝜅2) 𝜅22 + 𝑐2𝜅22 .

(37)

Consequently, we have

∫𝑒
1
𝑢 (𝑡) 𝜑 (𝑡) 𝑑𝑡

𝑡 ≤ (𝜀2𝜅2)−1 (𝑀 (1 − 𝜀2𝜅2) + 𝑐2) 𝜅22. (38)

Noting that 𝑢 ∈ 𝑃0, we obtain
‖𝑢‖∫𝑒
1
(ln 𝑡)𝛼−1 𝜑 (𝑡) 𝑑𝑡

𝑡
≤ (𝜀2𝜅2)−1 (𝑀 (1 − 𝜀2𝜅2) + 𝑐2) 𝜅22,

and ‖𝑢‖ ≤ (𝜀2𝜅1𝜅2)−1 (𝑀 (1 − 𝜀2𝜅2) + 𝑐2) 𝜅22.
(39)

Taking 𝑅 > max{N, (𝜀2𝜅1𝜅2)−1(𝑀(1−𝜀2𝜅2)+𝑐2)𝜅22}, then (33)
is satisfied. From Lemma 5 we have

𝑖 (𝐴, 𝐵𝑅 ∩ 𝑃, 𝑃) = 1. (40)

On the other hand, we prove that

𝑢 − 𝐴𝑢 ̸= 𝜆𝜑∗1 , ∀𝜆 ≥ 0, 𝑢 ∈ 𝜕𝐵N ∩ 𝑃, (41)

where 𝜑∗1 ∈ 𝑃 is a given element. If false, there exist 𝑢 ∈
𝜕𝐵N ∩ 𝑃, 𝜆3 ≥ 0 such that 𝑢 − 𝐴𝑢 = 𝜆3𝜑∗1 ; this implies
𝑢(𝑡) ≥ (𝐴𝑢)(𝑡), 𝑡 ∈ [1, 𝑒], and thus ‖𝑢‖ ≥ ‖𝐴𝑢‖. However,
from (H4) we have

‖𝐴𝑢‖ = max
𝑡∈[1,𝑒]

(𝐴𝑢) (𝑡)

≥ ∫𝑒
1
𝐺 (𝑙, 𝑠) [𝑓 (𝑠,max {𝑢 (𝑠) − 𝑤 (𝑠) , 0}) + 𝑀] 𝑑𝑠

𝑠
≥ ∫𝑒
1
(ln 𝑙)𝛼−1 𝜑 (𝑠) 𝑄 (𝑠) 𝑑𝑠

𝑠 > N = ‖𝑢‖

(42)

for 𝑢 ∈ 𝜕𝐵N ∩𝑃.This has a contradiction, and thus (41) holds
true. From Lemma 4 we have

𝑖 (𝐴, 𝐵N ∩ 𝑃, 𝑃) = 0. (43)

From (40) and (43), we obtain

𝑖 (𝐴, (𝐵𝑅\𝐵N) ∩ 𝑃, 𝑃) = 𝑖 (𝐴, 𝐵𝑅 ∩ 𝑃, 𝑃)
− 𝑖 (𝐴, 𝐵N ∩ 𝑃, 𝑃) = 1.

(44)

Therefore the operator 𝐴 has at least one fixed point 𝑢 in
(𝐵𝑅\𝐵N) ∩ 𝑃 with ‖𝑢‖ ≥ N, and then 𝑢(𝑡) − 𝑤(𝑡) is a positive
solution for (1). This completes the proof.

From (6), we define an operator 𝑇 : 𝐸 → 𝐸 as follows:

(𝑇𝑢) (𝑡) = ∫𝑒
1
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

𝑠 , 𝑢 ∈ 𝐸. (45)

Then 𝑇 is a completely continuous operator, and 𝑢 is a
solution for (1) if and only if 𝑢 is a fixed point of 𝑇.
Theorem 8. Suppose that (H5)-(H6) hold. �en (1) has only a
nontrivial solution, denoted by 𝑢∗, and for all 𝑢0 ∈ 𝐸, 𝑢0(𝑡) ̸≡
0, 𝑡 ∈ [1, 𝑒], the sequence 𝑢𝑛 = 𝑇𝑢𝑛−1 (𝑛 = 1, 2, . . .) uniformly
converges to 𝑢∗.
Proof. (H6) ensures that 0 is not a solution for (1). Then if (1)
has a solution, this solution is nontrivial. For all 𝑛 ∈ N, from
Lemma 3 we have

𝑢𝑛+1 (𝑡) − 𝑢𝑛 (𝑡) = (𝑇𝑢𝑛) (𝑡) − (𝑇𝑢𝑛−1) (𝑡)
= ∫
𝑒

1
𝐺 (𝑡, 𝑠) (𝑓 (𝑠, 𝑢𝑛 (𝑠)) − 𝑓 (𝑠, 𝑢𝑛−1 (𝑠))) 𝑑𝑠

𝑠


≤ ∫𝑒
1
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢𝑛 (𝑠)) − 𝑓 (𝑠, 𝑢𝑛−1 (𝑠)) 𝑑𝑠𝑠

≤ 𝑘𝜆2 ∫
𝑒

1
𝜑 (𝑠) 𝑢𝑛 (𝑠) − 𝑢𝑛−1 (𝑠) 𝑑𝑠𝑠

= 𝑘𝜆2 ∫
𝑒

1
𝜑 (𝑡) (𝑇𝑢𝑛−1) (𝑡) − (𝑇𝑢𝑛−2) (𝑡) 𝑑𝑡𝑡

≤ 𝑘𝜆2 ∫
𝑒

1
𝜑 (𝑡) ∫𝑒

1
𝐺 (𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢𝑛−1 (𝑠)) − 𝑓 (𝑠, 𝑢𝑛−2 (𝑠)) 𝑑𝑠𝑠
𝑑𝑡
𝑡

≤ 𝑘2𝜆2∫
𝑒

1
𝜑 (𝑡) 𝑢𝑛−1 (𝑡) − 𝑢𝑛−2 (𝑡) 𝑑𝑡𝑡

...
≤ 𝑘𝑛𝜆2 ∫

𝑒

1
𝜑 (𝑡) 𝑢1 (𝑡) − 𝑢0 (𝑡) 𝑑𝑡𝑡 .

(46)

On the other hand, letting V = 0 and 𝑓0 =
max𝑡∈[1,𝑒]|𝑓(𝑡, 0)| in (H5), we have

𝑓 (𝑡, 𝑢) ≤ 𝑘𝜆2 |𝑢| + 𝑓0, ∀𝑢 ∈ R, 𝑡 ∈ [1, 𝑒] . (47)
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Noting that 𝑢1 = 𝑇𝑢0, we obtain
∫𝑒
1
𝜑 (𝑡) 𝑢1 (𝑡) − 𝑢0 (𝑡) 𝑑𝑡𝑡
≤ (1 + 𝑘)∫𝑒

1
𝜑 (𝑡) 𝑢0 (𝑡) 𝑑𝑡𝑡 + 𝜅22𝑓0 fl 𝛽1.

(48)

Therefore, for all 𝑛 ∈ N, we have
𝑢𝑛+1 (𝑡) − 𝑢𝑛 (𝑡) ≤ 𝑘𝑛𝛽1𝜆2, ∀𝑡 ∈ [1, 𝑒] . (49)

Consequently, for all 𝑛,𝑚 ∈ N, we have
𝑢𝑛+𝑚 (𝑡) − 𝑢𝑛 (𝑡)

≤ 𝑢𝑛+𝑚 (𝑡) − 𝑢𝑛+𝑚−1 (𝑡)
+ 𝑢𝑛+𝑚−1 (𝑡) − 𝑢𝑛+𝑚−2 (𝑡) + ⋅ ⋅ ⋅
+ 𝑢𝑛+1 (𝑡) − 𝑢𝑛 (𝑡)

≤ 𝛽1𝜆2 (𝑘𝑛+𝑚−1 + 𝑘𝑛+𝑚−2 + ⋅ ⋅ ⋅ + 𝑘𝑛) ≤ 𝑘𝑛 𝛽1𝜆21 − 𝑘
→ 0, when 𝑛 → ∞.

(50)

This implies {𝑢𝑛} is a Cauchy sequence, and from 𝐸’s com-
pleteness, there exists 𝑢∗ ∈ 𝐸 such that lim𝑛→∞𝑢𝑛 = 𝑢∗.
Taking the limits for sequence 𝑢𝑛 = 𝑇𝑢𝑛−1 and we have
𝑇𝑢∗ = 𝑢∗; i.e., 𝑢∗ is a nontrivial solution for (1).

Next we prove that (1) has only a solution. If 𝑢, V ∈ 𝐸 are
solutions for (1) and 𝑢 ̸= V, then 𝑇𝑛𝑢 = 𝑢 and 𝑇𝑛V = V for all
𝑛 ∈ N. By (H5) we obtain

|𝑢 (𝑡) − V (𝑡)| = (𝑇𝑛𝑢) (𝑡) − (𝑇𝑛V) (𝑡) = 𝑇 (𝑇𝑛−1𝑢)
⋅ (𝑡) − 𝑇 (𝑇𝑛−1V) (𝑡)

≤ ∫𝑒
1
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, (𝑇𝑛−1𝑢) (𝑠))

− 𝑓 (𝑠, (𝑇𝑛−1V) (𝑠)) 𝑑𝑠𝑠
≤ 𝑘𝜆2 ∫

𝑒

1
𝜑 (𝑠) (𝑇𝑛−1𝑢) (𝑠) − (𝑇𝑛−1V) (𝑠) 𝑑𝑠𝑠

≤ 𝑘𝜆2 ∫
𝑒

1
𝜑 (𝑡) ∫𝑒

1
𝐺 (𝑡, 𝑠)

⋅ 𝑓 (𝑠, (𝑇𝑛−2𝑢) (𝑠)) − 𝑓 (𝑠, (𝑇𝑛−1V) (𝑠)) 𝑑𝑠𝑠
𝑑𝑡
𝑡

≤ 𝑘2𝜆2 ∫
𝑒

1
𝜑 (𝑡) (𝑇𝑛−2𝑢) (𝑡) − (𝑇𝑛−1V) (𝑡) 𝑑𝑡𝑡

...
≤ 𝑘𝑛−1𝜆2 ∫

𝑒

1
𝜑 (𝑡) |(𝑇𝑢) (𝑡) − (𝑇V) (𝑡)| 𝑑𝑡𝑡

= 𝑘𝑛−1𝜆2 ∫
𝑒

1
𝜑 (𝑡) |𝑢 (𝑡) − V (𝑡)| 𝑑𝑡𝑡

≤ 𝑘𝑛−1 ‖𝑢 − V‖ .

(51)

This implies that

‖𝑢 − V‖ ≤ 𝑘𝑛−1 ‖𝑢 − V‖ , for all 𝑛 ∈ N. (52)

Noting that 𝑘 ∈ (0, 1), then there exists 𝑁 ∈ N, when
𝑛 > 𝑁, 𝑘𝑛−1 < 1, and thus a contradiction for the above
inequality. This obtains the uniqueness of solutions for (1).
This completes the proof.

In what follows, we offer some examples for our main
results. Let 𝛼 = 2.5, 𝑙 = √𝑒. Then 𝜅1 = ∫𝑒

1
(ln 𝑡)𝛼−1𝜑(𝑡)(𝑑𝑡/𝑡) ≈

0.1227, 𝜅2 = ∫𝑒
1
𝜑(𝑡)(𝑑𝑡/𝑡) = 4/15 ≈ 0.2667, and N =

(𝑀/Γ(𝛼)) ∫𝑒
1
(1 − ln 𝑠)𝛼−2(𝑑𝑠/𝑠) ≈ 0.5015𝑀.

Example 9. Let 𝑓(𝑡, 𝑢) = (1/𝑀𝑒ln 𝑡)𝑢2 − 𝑀 for all 𝑡 ∈ [1, 𝑒],
𝑢 ∈ R+, and 𝑄 ≡ 1.8𝑀. Then lim inf𝑢→+∞(𝑓(𝑡, 𝑢)/𝑢) =
lim inf𝑢→+∞(((1/𝑀𝑒ln 𝑡)𝑢2 − 𝑀)/𝑢) = +∞ > 𝜆1 uniformly
on 𝑡 ∈ [1, 𝑒], and when (𝑡, 𝑢) ∈ [1, 𝑒] × [0,N], 𝑓(𝑡, 𝑢) +
𝑀 ≤ (1/𝑀)0.2515𝑀2 + 𝑀 ≈ 1.2515𝑀 ≤ 𝑄(𝑡). Moreover,
∫𝑒
1
𝜑(𝑡)𝑄(𝑡)(𝑑𝑡/𝑡) ≈ 0.48𝑀 < N. Therefore, (H1) and (H2)

hold.

Example 10. Let 𝑓(𝑡, 𝑢) = (6𝑀/𝑒−0.5015𝑀)𝑒−𝑢 − 𝑀 for all
𝑡 ∈ [1, 𝑒], 𝑢 ∈ R+, and 𝑄 ≡ 5.4𝑀. Then lim sup𝑢→+∞(𝑓(𝑡,
𝑢)/𝑢) = lim sup𝑢→+∞(((6𝑀/𝑒−0.5015𝑀)𝑒−𝑢 −𝑀)/𝑢) = 0 < 𝜆2
uniformly on 𝑡 ∈ [1, 𝑒], and when (𝑡, 𝑢) ∈ [1, 𝑒] × [0,N],
𝑓(𝑡, 𝑢) + 𝑀 ≥ (6𝑀/𝑒−0.5015𝑀)𝑒−0.5015𝑀 − 𝑀 + 𝑀 = 6𝑀 ≥
𝑄(𝑡). Moreover, ∫𝑒

1
(0.5)1.5𝜑(𝑡)5.4𝑀(𝑑𝑡/𝑡) ≈ 0.5093𝑀 > N.

Therefore, (H3) and (H4) hold.

Example 11. Let 𝑓(𝑡, 𝑢) = 3.7𝑘𝑢 + 𝑔(𝑡), where 𝑘 ∈ (0, 1) and
𝑔 ∈ 𝐶([1, 𝑒],R) with 𝑔(𝑡) ̸≡ 0 for 𝑡 ∈ [1, 𝑒]. Therefore, (H5)
and (H6) hold.
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In financial markets, there exists long-observed feature of the implied volatility surface such as volatility smile and skew. Stochastic
volatility models are commonly used to model this financial phenomenon more accurately compared with the conventional
Black-Scholes pricing models. However, one factor stochastic volatility model is not good enough to capture the term structure
phenomenon of volatility smirk. In our paper, we extend theHestonmodel to be a hybrid option pricingmodel driven bymultiscale
stochastic volatility and jump diffusion process. In our model the correlation effects have been taken into consideration. For the
reason that the combination of multiscale volatility processes and jump diffusion process results in a high dimensional differential
equation (PIDE), an efficient finite element method is proposed and the integral term arising from the jump term is absorbed to
simplify the problem. The numerical results show an efficient explanation for volatility smirks when we incorporate jumps into
both the stock process and the volatility process.

1. Introduction

Due to the well-known phenomenon of volatility ‘smile’ and
‘smirk’ exhibited in option pricing processes, many attempts
have been made to solve the problem by extending the classi-
cal Black-Scholes models [1] and relaxing the assumptions.
One of the famous approaches is to replace the constant
volatility by a process described by the volatility model
such as a local volatility model or a stochastic volatility
model, which is widely studied to capture the phenomenon
of volatility skew. The local volatility model assumes that
the local volatility of the stock is a function of stock price
and time 𝑡. For example, in Dupire’s Model [2], the classical
Black-Scholes model is modified to include a time dependent
local volatility rather than a constant volatility. The constant
elasticity of variance model (CEVmodel) attempts to capture
the stochastic nature of volatility and the leverage effect by
assuming 𝜎(𝑆𝑡) = 𝑆𝛾𝑡 , which is firstly developed in [3] and
then applied to calibrate and estimate the energy commodity
market in [4]. Different from the local volatility model, the
stochastic volatility model assumes that the volatility process

is related to another stochastic process instead of the stock
price process itself. The commonly used model is the Heston
model [5], from which Heston generalises the Black-Scholes
model to a two-dimensional stochastic model by allowing
the volatility to follow a Cox Ingersoll Ross model (CIR)
process and derives a semiclosed solution by applying the
method of characteristic function. Stein and Stein [6] also
promote a stochastic volatility model driven by the OU
process. Other stochastic volatility models are proposed for
different formation of stochastic volatility. The traditional
Heston model [7] assumes that the underlying volatility
process is a CIR process with the power of 1/2; the 3/2model
assumes that the diffusion of volatility process is a flipped
CIR process, raising the power of 3/2. The 4/2 process is the
combination of the CIR process and the flipped CIR process
(see [8]).

However, recent empirical study shows that the single-
factor Heston model is overly too restrictive and multifactor
stochastic models are required in order to obtain a more
accurate result. The multifactor model is based on the modi-
fication of the term structure. The term structure of volatility
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Figure 1: Variation of SPX price with time.

is much more complicated than that in single factor models.
The idea that the mean reversion rate of low frequency
data is different to that for the high frequency data has
been noticed by [9–11].Thus, multifactor stochastic processes
are introduced considering the different frequencies in the
observed data (see [12]). Heston decomposes the stochastic
volatility into multifactors by the principle analysis regarding
the frequency of the volatility.The author suggests that the use
of multifactor stochastic volatility may enhance the option
pricing model by a large extent, and at least two factors
should be taken into consideration in the study of path-
independent and path-dependent option pricing problems
(see [13]). The concept of time-scale is firstly proposed by
Fouque to model the volatility process as a combination
of fast-scale and slow-scale process (see [14–16]). In 2008,
Fouque proposed a numerical algorithm based on asymptotic
approximation and asymptotic homogenization to study the
effect of the fast and the slow scale of the volatility OUprocess
on option pricing (see [16]). The definition of time-scale is
distinguished by the fluctuation frequency of the volatility
process.The fast-scale volatility relates to the highly frequent
short period fluctuation, while the slow-scale volatility relates
to the less frequent and long termvariation.Thephenomenon
of time-scale can easily be observed by stock prices generated
by using the 27 years daily SPX data downloaded from the
Chicago Board Options Exchange (CBOE) website, as shown
in Figure 1. Slow scale volatility can be tracked from the
long period variation, and it does not have to be mean
reversion, while the fast scale volatility is the smaller but
drastic oscillations between the peak and the bottom.

An alternative approach to capture the leptokurtic fea-
tures and the implied volatility smile is the jump diffusion
model. The jump process can be used to sketch the unex-
pected abrupt change of stock price within a short period.
The pioneering work of Merton in [17] assumes that the
asset return process follows a Brownian motion plus a jump
process, and the jump process is a compound Poisson process
with constant jump intensity and normally distributed jump-
size distribution. Different from Merton’s Model, the work
of Kou in [18] assumes that the distribution of the jump-
size is a double exponential distribution instead of a normal
distribution for the simplicity of computation. More recent
work proves that combination of the stochastic volatility

model and the traditional jump diffusion model leads to
more accurate models. Bates introduces the SVJ (stochastic
volatility with jumps) model by allowing both jump diffusion
and stochastic volatility in the return process. The SVJ
model is then extended in [19] to incorporate the jump term
not only in the return process, but also in the stochastic
process (see [19]). The SVJ model is also studied in [20], in
which the authors assume an affine structure of characteristic
function and apply fast Fourier transformation to solve the
SVJ problem to obtain a semianalytic solution.

Many numerical algorithms have been proposed to study
the option pricing. The traditional Black-scholes equation
is a convection-diffusion parabolic equation, and the finite
difference scheme for solving the equation is studied in detail
by [21]. In [22], Hull and White suggest a modification
to the explicit finite difference method (FDM) for valuing
derivatives, which ensures a more accurate approximation
with small time steps, and the approach has been applied
to calculate bond options under two different interest rate
processes. A FDM scheme to price the PIDE arising from a
jump diffusion model is presented in [23], and an explicit-
implicit FDM scheme was proposed for solving the PIDE
to price the European and Barrier options with Levy pro-
cess. Convergence and stability are also considered in [23].
Another important work on the application of the FDM
method is studied in [24], in which an alternating direction
implicit method (ADI) is applied to solve the PIDE arising
from the Possion jump. The ADI approach is shown to be
unconditionally stable and efficient when it is combined
with the fast Fourier transform (FFT) methods (see [24]).
The finite difference method (FDM) is applied in [25] to
solve the variance swaps problem using the assumption of
constant volatility (see [1]), in which the two-dimensional
(2D) problem is tranformed to a system of one-dimensional
partial differential equations, and the price of variance swap is
calculated as the average of all the solutions.The FEMensures
more flexibility and adaptivity ofmesh compared to the FDM.
The FEM is suitable for pricing almost all option types.Three
simple applications of the FEMapproach in option pricing are
given in [26], including the standard Black-scholes equation,
the stochastic volatility model, and the path-dependent Asian
option. The FEM is also applied to study the multiasset
American type option in [27]. By adding the penalty term
with continuous Jacobian and solving the final ordinary
differential equation (ODE) with an adaptive variable order
and variable step size solver SUNDIALS, the authors prove
that their approach is efficient even for multidimensional
PDEs.

In this paper, our contribution includes two aspects.
Firstly, we extend the multiscale volatility model in [28]
by incorporating both multiscale volatility processes and
the jump diffusion process to price European options and
the expectation of the realised volatility. The jump term
is included both in the stock process and in the volatility
process, and the correlation effect is also taken into consider-
ation. Secondly, we develop an efficient FEMmethod to solve
the problem numerically. Inclusion of both of the two factors
and the jump results in a high dimensional partial integral
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differential equation (PIDE). Our chosen element is eight-
nodal hexahedron, which can be seen as a tensor product of
three one-dimensional non-parametric elements.This largely
simplifies the problem by absorbing the integral part in only
one tensor (one dimensional problem).

The paper is organised into five sections. In Section 1, we
briefly introduce the background of the work and our main
contribution. Section 2 describes the model of the underlying
asset price, with the volatility following amultiscale stochastic
process, which incorporates the jump diffusion term. Sec-
tion 3 presents the numerical algorithm we use to solve the
problem. Numerical results are given in Section 4, followed
by a conclusion in Section 5.

2. Model Setup

Theprice of stock is assumed to follow the following stochas-
tic process:

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝑓 (𝑦, 𝑧) 𝑆𝑑𝑊(0)𝑡 + 𝑆𝑑𝐽𝑆, (1)

where 𝑓(𝑦, 𝑧) is a function of two factors 𝑦 and 𝑧 which
denotes fast/slow scale volatility. If 𝑓(𝑦, 𝑧) = √𝑦 + √𝑧, the
volatility process is formed by a CIR process; if 𝑓(𝑦, 𝑧) =√𝑦+1/√𝑧, the volatility is a 4/2 process which can be viewed
as a combination of the CIR process and the 3/2 process,
and the assumption is in line with the idea that the volatility
should not remain too close to zero (see [8]). It is assumed
that 𝑦 and 𝑧 follow the stochastic processes

𝑑𝑦 = 1𝜉𝛼 (𝑦) 𝑑𝑡 +
1
√𝜉𝛽 (𝑦) 𝑑𝑊

(1)
𝑡 , (2)

𝑑𝑧 = 𝜎𝑐 (𝑧) 𝑑𝑡 + √𝜎𝑔 (𝑧) 𝑑𝑊(2)𝑡 . (3)

The concept of fast-scale and slow-scale is distinguished
by the frequencies of the observed volatility data, and it is sug-
gested to consider them simultaneously in [12]. Additionally,
we assume that the Brownian motion (𝑊(0)𝑡 ,𝑊(1)𝑡 ,𝑊(2)𝑡 ) are
correlated with the following correlation: cov(𝑊(0)𝑡 ,𝑊(1)𝑡 ) =𝜌1, cov(𝑊(0)𝑡 ,𝑊(2)𝑡 ) = 𝜌2, and cov(𝑊(1)𝑡 ,𝑊(2)𝑡 ) = 0 for
simplicity.

In this paper, we consider both the European option and
the variance swap. For the case of European put option, the
pay-off function at the maturity time is

𝑈(𝑇, 𝑆, 𝑦, 𝑧) = max {𝐾 − 𝑆, 0} . (4)

Variance and volatility swap are well-known financial
derivatives which allow investors to trade the realized volatil-
ity against the current implied volatility. Different from
European options, variance swap and volatility swap are time-
dependent.The pay-off function of a variance swap, as shown
in (5), is convex in volatility. This phenomenon indicates
that the variance swap will boost the gains and discount
the losses, which explains why the variance swap is more
attractive than the volatility swap.The difference between the
realized volatility and the implied volatility is that the realized
volatility 𝜎2𝑅 is calculated by applying the historical data of

option prices, while the implied one is derived from the prices
of options.

The realized volatility is commonly approximated by the
following two formulas:

𝜎2𝑅 = 𝐴𝐹𝑁
𝑁−1∑
𝑖=0

(𝑆𝑖+1 − 𝑆𝑖𝑆𝑖 )2 ,

𝜎2𝑅 = 𝐴𝐹𝑁
𝑁−1∑
𝑖=0

(ln 𝑆𝑖+1𝑆𝑖 )
2 ,

(5)

where 𝑆𝑖+1 denotes the underlying stock price at the (𝑖 + 1)th
time step. AF is the annualized factor and 𝐴𝐹 = 12 if the
sampling frequency is everymonth. In this paper, we let𝐴𝐹 =𝑁/𝑇 as a simplification. The pay-off of the variance swap is

𝑉 (𝑇, 𝑥, 𝑦, 𝑧) = 𝐿 ⋅ 𝐸𝑄 (𝜎2𝑅 − 𝐾) , (6)

which is equal to zero under the assumption of zero entry
cost. Therefore, the fair strike price can be defined as 𝐾 =𝐸𝑄[𝜎2𝑅]. As a result, the variance swap pricing problem
becomes calculating the expected value of the realized vari-
ance in the risk neutral world.

We apply the dimensional reduction technique due to
[25] by introducing a new variable 𝐼𝑡 driven by the underlying
process

𝐼𝑡 = ∫𝑡
0
𝛿 (𝑡𝑖−1 − 𝜏) 𝑆𝜏𝑑𝜏, (7)

where 𝛿 is the Dirac delta function, which means 𝐼𝑡 = 0 if 𝑡 <𝑡𝑖−1 and 𝐼𝑡 = 𝑆𝑖−1 if 𝑡 ≥ 𝑡𝑖−1. The terminal condition becomes

𝑈𝑖 (𝑇, 𝑆, 𝑌, 𝑍, 𝐼) = (𝑆𝑖𝐼𝑖 − 1)
2 . (8)

For the reason that we are more interested in the relationship
between the maturity time and the strike price, we construct
a new variable 𝑋 = ln(𝑆/𝐼) and then obtain

𝑈𝑖 (𝑇, 𝑆, 𝑌, 𝑍, 𝐼) = (𝑒𝑋𝑖 − 1)2 . (9)

According to the Ito formula and (1), we obtain a new process

𝑑𝑥 = 𝜇𝑑𝑡 + 𝑓 (𝑦, 𝑧) 𝑑𝑊(0)𝑡 + 𝑑𝐽. (10)

If the problem in question is an European put option,

𝜇 = (𝑟 − 12𝑓2 (𝑦, 𝑧) + 𝜆 (1 − 𝐸 (𝑒𝑧))) , (11)

and the pay-off function is

𝑈(𝑇, 𝑆, 𝑦, 𝑧) = max {𝐾 (1 − 𝑒𝑥) , 0} . (12)

If the investigated problem is a variance swap, we have two
different situations,

𝜇 = 𝜇1 = (𝑟 − 12𝑓2 (𝑦, 𝑧) + 𝜆 (1 − 𝐸 (𝑒𝑧))) ,
𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖

(13)

𝜇 = 𝜇2 = (𝑟 − 𝑒𝑥 − 12𝑓2 (𝑦, 𝑧) + 𝜆 (1 − 𝐸 (𝑒𝑧))) ,
0 ≤ 𝑡 ≤ 𝑡𝑖−1,

(14)
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where𝐸(𝑒𝑧) = 𝑝𝜂1/(1−𝜂1)+(1−𝑝)𝜂2/(𝜂2+1) if the jump rate
follows the double exponential distribution as in Kou’s model
with the density of

𝑝 (𝑧) = 𝑝𝜂1𝑒−𝜂1𝑧𝐼𝑧≥0 + (1 − 𝑝) 𝜂2𝑒𝜂2𝑧𝐼𝑧<0. (15)

In contrast to the model (1) which absorbs the jump in the
stock process only, the multidimensional jump process is
more interesting. With this motivation, we include the jump
process in both the stock price process and the multiscale
volatility process, namely,

𝑑𝑦 = 1𝜉𝛼 (𝑦) 𝑑𝑡 +
1
√𝜉𝛽 (𝑦) 𝑑𝑊

(1)
𝑡 + 𝑑𝐽𝑌, (16)

𝑑𝑧 = 𝜎𝑐 (𝑧) 𝑑𝑡 + √𝜎𝑔 (𝑧) 𝑑𝑊(2)𝑡 + 𝑑𝐽𝑍. (17)

However, incorporating more factors makes the model
harder to tackle with, and thus development of an efficient
numerical method for high dimensional PIDE is of great
importance.

3. Algorithm of FEM

According to the Feyman-Kac theorem, we obtain the follow-
ing partial differential equation:

𝑢𝑡 +D𝑢 + C𝑢 + 𝜆∫
𝑅
[𝑢 (𝑥 + 𝜂) − 𝑢 (𝑥)] Γ (𝑑𝜂) − 𝑟𝑢

= 0,
(18)

with the infinitesimal generator of the three-dimensional
Markov process (𝑥𝑡, 𝑦𝑡, 𝑧𝑡). Letting 𝜏 = 𝑇 − 𝑡, we obtain
𝑢𝜏 −D𝑢 − C𝑢 − 𝜆∫

𝑅
[𝑢 (𝑥 + 𝜂) − 𝑢 (𝑥)] Γ (𝑑𝜂) + 𝑟𝑢

= 0,
(19)

with

D𝑢 (𝑥) = 12𝑓2 (𝑦, 𝑧)𝑈𝑥𝑥 +
1
2𝜉𝛽2 (𝑦)𝑈𝑦𝑦

+ 12𝜎𝑔 (𝑧) 𝑈𝑧𝑧
+ 𝜌1 1√𝜉𝛽 (𝑦) 𝑓 (𝑦, 𝑧) 𝑈𝑥𝑦
+ 𝜌2√𝜎𝑓 (𝑦, 𝑧) 𝑔 (𝑧) 𝑈𝑥𝑧
+ 𝜌12√𝜎𝜉 𝛽 (𝑧) 𝑔 (𝑧) 𝑈𝑦𝑧,

(20)

C𝑢 (𝑥) = 𝜇𝑈𝑥 + 1𝜉𝛼 (𝑦)𝑈𝑦 + 𝜎𝑐 (𝑧) 𝑈𝑧
+ 𝜆∫
𝑅
𝑈(𝑥 + 𝜂) Γ (𝑑𝜂) − 𝑟𝑈,

(21)

which can be rewritten in vector form by

𝜕𝑢
𝜕𝜏 − ∇ ⋅ 𝐴∇𝑢 − 𝐷 ⋅ ∇𝑢 + (𝑟 + 𝜆) 𝑢

− 𝜆∫
𝑅
𝑢 (𝑥 + 𝜂) Γ (𝑑𝜂) = 0,

(22)

where

𝐴 =
[[[[[[[
[

1
2𝑓2 (𝑦 + 𝑧)

1
2√𝜉𝜌1𝛽 (𝑦) 𝑓 (𝑦, 𝑧)

1
2√𝜎𝜌2𝑔 (𝑧) 𝑓 (𝑦, 𝑧)1

2√𝜉𝜌1𝛽 (𝑦) 𝑓 (𝑦, 𝑧)
1
2𝜉𝜌1𝛽2 (𝑦)

1
2𝜌12√

𝜎
𝜉 𝛽 (𝑧) 𝑔 (𝑧)1

2√𝜎𝜌2𝑔 (𝑧) 𝑓 (𝑦, 𝑧)
1
2𝜌12√

𝜎
𝜉 𝛽 (𝑧) 𝑔 (𝑧)

1
2𝜎𝜌2𝑔2 (𝑧)

]]]]]]]
]
,

𝐷 = [[[
[

𝜇𝑖1
𝜉𝛼 (𝑦)𝜎𝑐 (𝑧)

]]]
]
, 𝑖 = 1, 2.

(23)

In order to obtain option price, we have to solve the
differential equation (22). However, different from 𝜇1, 𝜇2
is a dynamic process which is related to time. Letting𝑛 = 𝑇/Δ𝑡, then (22) is divided into 𝑛 different partial
differential equations. We can then solve them one by one
and then substitute the solutions back into (6) to obtain the𝜎2𝑅.

The weak form of (22) can be written as

∫
Ω
(𝜕𝑢𝜕𝜏 − ∇ ⋅ 𝐴∇𝑢 − 𝐷 ⋅ ∇𝑢 + (𝑟 + 𝜆) 𝑢
− 𝜆∫
𝑅
𝑢 (𝑥 + 𝜂)) V𝑑Ω = 0.

(24)
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Thus, by applying the Green Theorem, we obtain

(𝜕𝑢𝜕𝜏 , V) + (𝐴∇𝑢, ∇V) − (𝐷 ⋅ ∇𝑢, V)
− 𝜆 (∫

𝑅
𝑢 (𝑥 + 𝜂) Γ (𝑑𝜂) , V) + (𝑟 + 𝛾) (𝑢, V)

= 0,
(25)

which is derived by using the divergence theorem

∫
Ω
(𝐴∇𝑢 ⋅ ∇V + ∇ ⋅ 𝐴∇𝑢V) 𝑑Ω =∯𝐴∇𝑢V ⋅ →𝑛𝑑𝑆, (26)

we assume that the test function vanishes on the boundary,
and (𝑎, 𝑏) denotes inner product.

Letting 𝑢 = ∑𝑛𝑖=1 𝑢𝑖(𝜏)𝜙𝑖, V = ∑𝑛𝑗=1 𝑢𝑗𝜙𝑗, then we obtain
the following ODE system:

𝑀�̇� + 𝐷𝑢 − 𝐶𝑢 − 𝐵𝑢 = 0, (27)

where the mass matrix 𝑀 = ∑𝑛𝑖=1(𝜙𝑖, 𝜙𝑗), the matrix of
the diffusion part 𝐷 = ∑𝑛𝑖=1(𝐴∇𝜙𝑖, ∇𝜙𝑗), the matrix of the
convection part 𝐶 = ∑𝑛𝑖=1(𝐷 ⋅ ∇𝜙𝑖, 𝜙𝑗),𝐴 = 𝑟∑𝑛𝑖=1(𝜙𝑖, 𝜙𝑗), and𝐵 = ∑𝑛𝑖=1(B𝜙𝑖, 𝜙𝑗) denotes the matrix of the integral part:

B𝜙𝑖 = 𝜆∫
𝑅
𝜙𝑖 (𝑥 + 𝜂, 𝑦, 𝑧) Γ (𝑑𝜂)

= 𝜆∫
𝑅
𝜙𝑖 (𝑥 + 𝜂, 𝑦, 𝑧) 𝑝 (𝜂) 𝑑𝜂.

(28)

The 8-node hexahedral elements can be seen as the tensor
product of three one-dimensional linear elements,

𝜙𝑒𝑖 (𝑥, 𝑦, 𝑧) = 𝜙𝑒𝑖 (𝑥) ⊗ 𝜙𝑒𝑖 (𝑦) ⊗ 𝜙𝑒𝑖 (𝑧) , (29)

with 𝜙𝑒𝑖 (𝑥), 𝜙𝑒𝑖 (𝑦), and 𝜙𝑒𝑖 (𝑧) denoting the one-dimensional
(1D) shape function in each dimension. For example, assume
the natural shape functions in one-dimension as

𝑁𝑑1 = 12 (1 − 𝜖) ,
𝑁𝑑2 = 12 (1 + 𝜖) .

(30)

If it is in x-dimension 𝑑 = 𝑥; if it is in y-dimension𝑑 = 𝑦; else, 𝑑 = 𝑧. Thus, the shape functions of the 8-node
hexahedral element are

𝜙𝑒𝑖 = 18 (1 + 𝜖𝜖𝑖) (1 + 𝜂𝜂𝑖) (1 + 𝜁𝜁𝑖) , (31)

with 𝜖𝑖, 𝜂𝑖, and 𝜁𝑖 denoting the natural coordinates of the ith
nodes. To be more specific, the 8-node hexahedral element
can be expanded into form shown in (see Table 1).

Table 1: 8-node hexahedral element.

𝑁1 = 18 (1 + 𝜖𝑖)(1 + 𝜂𝑖)(1 + 𝜁𝑖) 𝑁5 = 18 (1 − 𝜖𝑖)(1 + 𝜂𝑖)(1 + 𝜁𝑖)
𝑁2 = 18 (1 + 𝜖𝑖)(1 + 𝜂𝑖)(1 − 𝜁𝑖) 𝑁6 = 18 (1 − 𝜖𝑖)(1 + 𝜂𝑖)(1 − 𝜁𝑖)
𝑁3 = 18 (1 + 𝜖𝑖)(1 − 𝜂𝑖)(1 − 𝜁𝑖) 𝑁7 = 18 (1 − 𝜖𝑖)(1 − 𝜂𝑖)(1 + 𝜁𝑖)
𝑁4 = 18 (1 + 𝜖𝑖)(1 − 𝜂𝑖)(1 − 𝜁𝑖) 𝑁8 = 18 (1 − 𝜖𝑖)(1 − 𝜂𝑖)(1 − 𝜁𝑖)

LetΦ𝑖 denote the integral term,

Φ𝑖 (𝑥𝑙) = ∫
𝑅
𝜙𝑖 (𝑥𝑙 + 𝜂) 𝑝 (𝜂) 𝑑𝜂

= ∫𝑥𝑖+1
𝑥𝑖

𝜙𝑖 (𝑥) 𝑝 (𝑥 − 𝑥𝑙) 𝑑𝜂

= ℎ2 ∫
1

−1
𝜙𝑖 (𝜉) 𝑝 ((𝜉2 + 𝑖 − 𝑙) ℎ)𝑑𝜉

= ℎ4 ∫
1

0
𝜉𝑝((𝜉2 + 𝑖 − 𝑙 −

1
2) ℎ)𝑑𝜉

+ ℎ4 ∫
1

0
(1 − 𝜉) 𝑝 ((𝜉2 + 𝑖 − 𝑙) ℎ)𝑑𝜉,

(32)

where 𝑝(⋅) is a double exponential density function and
according to (32) andΦ𝑖(𝑥𝑙) is determined by the relationship
between integers 𝑖 and 𝑙. Substituting (32) into (28), the
integral term can be rewritten as

B𝜙𝑖 = 𝜆∫
𝑅
𝜙𝑖 (𝑥 + 𝜂, 𝑦, 𝑧) 𝑝 (𝜂) 𝑑𝜂

= 𝜆∫
𝑅
𝜙𝑖 (𝑥 + 𝜂) 𝑝 (𝜂) 𝑑𝜂𝜙𝑖 (𝑦) 𝜙𝑖 (𝑧)

= Φ𝑖 (𝑥) ⊗ 𝜙𝑖 (𝑦) ⊗ 𝜙𝑖 (𝑧) ,

(33)

with function Φ𝑖(𝑥) = 𝜆 ∫𝑅 𝜙𝑖(𝑥 + 𝜂)𝑝(𝜂)𝑑𝜂 approximating
by the finite element interpolation Φ𝑖(𝑥) ≈ 𝐼𝑛Φ𝑖(𝑥) =∑𝑙Φ𝑖(𝑥𝑙)𝜙𝑙(𝑥).

The detail proof is in the Appendix. By simple calculation,
we obtain

𝑝𝜆
4𝜂1ℎ𝑒

−𝜂1(𝑖−𝑙−1)ℎ (𝑒−𝜂1ℎ/2 − 1)2 𝑖 − 𝑙 ≥ 1
1
4𝜆 +

𝑝𝜆
4𝜂1ℎ (𝑒

−𝜂1ℎ/2 − 1) + (1 − 𝑝) 𝜆4𝜂2ℎ (𝑒−𝜂2ℎ/2 − 1)
𝑖 = 𝑙

(1 − 𝑝) 𝜆
4𝜂2ℎ 𝑒−𝜂2(𝑖−𝑙−1)ℎ (𝑒−𝜂2ℎ/2 − 1)2 𝑖 − 𝑙 ≤ −1

(34)
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Table 2: Parameters of model.

𝑘1 = 17.38863 𝑎1 = 0.04480 𝑏1 = 1 𝜌1 = −0.99000 𝜎1 = 3.70537𝑘2 = 16.20866 𝑎2 = 0.04275 𝑏2 = 1 𝜌2 = −0.82897 𝜎2 = 2.77650

Therefore, 𝐵 can be seen as a Kronecker product of inner
products in three dimensions:

𝐵 = 𝐵𝑥 ⊗ 𝐵𝑦 ⊗ 𝐵𝑧 =
𝑛∑
𝑖=1

(Φ𝑖 (𝑥) , 𝜙𝑗 (𝑥))
⋅ (𝜙𝑖 (𝑦) , 𝜙𝑗 (𝑦)) (𝜙𝑖 (𝑧) , 𝜙𝑗 (𝑧)) .

(35)

Moreover,

(𝜙𝑖, 𝜙𝑗) =
{{{{{{{{{{{

2
3ℎ, 𝑖𝑓 𝑗 = 𝑖
1
6ℎ, 𝑖𝑓 𝑗 = 𝑖 ± 1
0, 𝑒𝑙𝑠𝑒

(36)

Let 𝑅 = 𝐷 − 𝐶 + 𝐵, (27) can be written as

𝑀�̇� + 𝑅𝑢 = 0. (37)

To solve the ODE system (37), we simply apply the back-
ward Euler method, considering its unconditional stability
property

(𝑀Δ𝑡 + 𝑅)𝑈𝑛+1 = 𝑈𝑛. (38)

4. Numerical Results and Discussion

In this section, we present our numerical results for European
options and variance swap by allowing both multiscale
volatility and jump properties. Firstly, we start simulating
both the stock price process and the multiscale volatility
processes to show the motivation of our study. Then we apply
the FEM algorithm to solve the three-dimensional PIDE.The
validity of our algorithm is verified by comparing our results
with the results of the two factors Heston Model in [13].
Pricing of variance swap is also studied in our paper as an
application.

4.1. Validity and Motivation of Our Model. To show the
motivation of our model, we firstly apply Monte Carlo
simulation to generate a sample path of the stock price.
Figure 2 is the stock price generated by the models (1) and (2)
by the classic Euler-Maruyama Method [29]. As we can see
from the figure that the asset process is a martingale process
and upward sloping.

In terms of the algorithm validity, we apply our FEM
method to solve the model and compare the result with
the semi-analytical result shown in [13]. It is seen from
Figure 3(a) that our result is well fitted. Figure 3(b) shows the
underlying trajectory of the fast scale volatility process, which
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Figure 2: Simulation of stock price process.

is highly oscillated due to the small fast-scale rate 𝜉 = 0.01.
The slow scale volatility is simulated in Figure 3(c) with the
slow scale rate 𝜎 = 0.01.The incorporation of jump process in
both stock price processes has practical significance, as shown
in Figures 4(a) and 4(b).

However, analytic solution only exists for some special
cases if we can find the characteristic function. For other
models, it is not possible to obtain.

4.2. The Effects of Multi-Scale Volatility and Jump Term. Our
method is applied to determine the option price of the
classical European option model (12) as well as the strike
price of variance swap with the payoff function shown in
Figure 8(a). To be specific, let 𝛼(𝑦) = 𝑘1(𝑎1 − 𝑏1𝑦), 𝛽(𝑦) =𝜎1√𝑦, 𝑐(𝑧) = 𝑘2(𝑎2 − 𝑏2𝑧), 𝑔(𝑧) = 𝜎2√𝑧, and 𝑓(𝑦, 𝑧) =√𝑦+√𝑧. Both the fast-scale process and the slow scale process
are assumed to be mean reverted process.The parameters we
selected are from the calibrated results of [30]. 𝜆 = 0, our
model reduces to the original multiscale volatility model by
[31]. Parameters in (1) and (2) are shown in Table 2.

Figures 5(a) and 5(c) are the surface plot of the option
price and strike price of variance swapwhen the value of slow-
scale stochastic volatility 𝑧 is fixed and equivalent to 0.0278.
If both stock price and volatilities are all variables, we obtain
the three-dimensional plot shown in Figures 5(b) and 5(d).

To show the validity of our approach, another set of
data shown in Table 3 has been applied from [13] with the
numerical result shown in Figures 6(a) and 6(b).When𝜆 ̸= 0,
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Figure 5: Option price.

Table 3: Parameters of model.

𝑘1 = 8.5 𝑎1 = 0.03 𝑏1 = 1 𝜌1 = −0.84 𝜎1 = 0.68𝑘2 = 0.24 𝑎2 = 0.02 𝑏2 = 1 𝜌2 = −0.77 𝜎2 = 1.0531

the jump process here is assumed to be a double exponential
process with 𝜂1 = 25, 𝜂2 = 50, and 𝑝 = 0.3.

It can be seen from Figures 6(c) and 6(d) that the jump
intensity has significant effect on option price. Hence, our
model is more general compared to the multi-factor Heston
model. The option price increases with the jump intensity 𝜆,
mainly because the growth of jump intensity leads to large
uncertainty and risk exposure rate, which offers investors
more possibilities to be in the money.

Different from jumps, the effect of stochastic volatility
is a combination result of fast-scale and slow-scale volatility
correction. The effects of fast scale rates and slow scale rates
are displayed in Figures 7(a) and 7(b), respectively. As we can
see from Figure 7(a), the option price increases with the fast-
scale rate, while in Figure 7(b), the option price decreases

with the slow scale rate, and the effects of fast-scale rate
outweigh the effects of the slow-scale rate in a short period.

Also, the jump terms can also be incorporated into both
the fast scale volatility and the slow scale volatility process.
The change of the option price, though small, can be seen
from Figure 8(a). In Figure 8(a), MSJ denotes the multiscale
stochastic volatility model with jumps in the stock price
process, MS1J denotes the MSJ model with one jump term in
the fast scale volatility, and MSV2J denotes the MSJ model
incorporating jump terms in each of the three processes.
For the reason that we expand the dimension by Kronecker
method, we can avoid the loop and consequently save a lot of
time. To make it more understandable, we compare the time
(9.3490) that we assemble 3Dmatrix by using the nested loop
with the time of the Kronecker method (5.2345𝑒−04), which
is much faster.

We also study the fair strike price of variance swap. Fig-
ure 8(b) shows the relationship between the strike price and
the maturity time of variance swap, which is anticorrelated
due to the introduction of fast and slow scale volatility. The
fast scale and slow scale rate we choose in this analysis are𝜉 = 0.01 and 𝜎 = 0.1 separately. The result verifies that
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volatility provides a measure of risk exposure. The longer the
investors hold the contract, the higher risk they are exposed.

5. Conclusions

In this paper, the finite element method and the dimension
reduction technique are applied to obtain the approximate
solution for the classical European option price and the
fair strike price of variance swaps under both multiscale
stochastic volatility and jump diffusion process. The time
scale rate of stochastic volatility is used to model the short
term and the long term perturbation of volatility process. Our
numerical results are compared withMonte Carlo simulation
and are a good fit.We find that the option price increases with
the jump rate and volatility value, which is in line with the
reality. In terms of the effects of multiscale volatility, it is a
combination result. As assumed in our model, the volatility
of the stock process is driven by both the fast scale volatility
and the slow scale volatility. The fast scale volatility always
relates to the short term volatility with high frequency, while
the slow scale volatility relates to the long term volatility and
ismore smooth.The option price increases with the fast-scale
rate and decreases with the slow scale rate, and the effect of
slow scale volatility outweighs the effect of fast scale volatility
in a long run. Also, the strike price of variance swap is found
to be anti-correlated with the maturity time. Volatility is a
measure of risk, and the strike price decreases as the maturity
time increases.

The significance of this work is in two aspects. Firstly,
the exact solution can be obtained only for some specified
models. For most partial differential equations, especially the
high dimensional ones, closed form solution is impossible to
obtain, and hence it becomes necessary to use the numerical
approach in order to solve the problem. Secondly, even

though stochastic volatility has already been considered in
some work, multifactors in volatility are not to be tackled due
to the high dimensional difficulties, and we combine both
multiscale rate and jump process to make the result more
reliable. In addition, the numerical method and dimensional
reduction technique proposed in our paper can be applied
to solve some other similar three-dimensional pricing prob-
lems.

For the future research, we are more interested in the
calibration of this model with high-frequency data and the
study of the skew effect. The application of the multiscale
model in other financial derivatives can also be a future study
area.

Appendix

In this appendix, we show the detail of approximating the
integration term by interpolation method. We have the
following approximation:

B (𝜙𝑖, 𝜙𝑗) =
𝑙=𝑗+1∑
𝑙=𝑗−1

B𝜙𝑖 (𝑥𝑙) (𝜙𝑙, 𝜙𝑖)

= 16𝑗B𝜙𝑖 (𝑥𝑗−1) +
2
3ℎB𝜙𝑖 (𝑥𝑗)

+ 16ℎB𝜙𝑖 (𝑥𝑗+1) ,

(A.1)

with

B𝜙𝑗 (𝑥𝑙) = 𝜆∫𝑥𝑗+1
𝑥𝑗−1

𝜙𝑖 (𝑥𝑙 + 𝑧) 𝑝 (𝑧) 𝑑𝑧

= ∫𝑥𝑖+1
𝑥𝑖−1

𝜙𝑖 (𝑥) 𝑝 (𝑥 − 𝑥𝑙) 𝑑𝑥,
(A.2)
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with 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗+1]. To be consistent with the natural
element, we map it to the interval of 𝜖 ∈ [−1, 1] by letting

𝜖 (𝑥) = 1
2ℎ (𝑥 − 𝑥𝑗+1) +

1
2ℎ (𝑥 − 𝑥𝑗−1) . (A.3)

Thus, we can rewrite (A.2) in the form of

∫1
−1
𝜙𝑖 (𝜖) 𝑝 ((𝜖 + 𝑖 − 𝑙) ℎ) ℎ𝑑𝜖, (A.4)

𝑧 = 𝑥 − 𝑥𝑙 = 𝜖ℎ + (𝑖 − 𝑙)ℎ being only related to the difference
of (𝑖 − 𝑙).
Data Availability

The data used to support the findings of this study are
included within the supplementary information files.

Conflicts of Interest

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors acknowledge the support of the Humanities and
Social Science Foundation ofMinistry of Education of China,
Grant no. 17YJC630236. The first author also acknowledges
the financial support from Curtin International Postgradu-
ate Research Scholarship (CIPRS) and Chinese Scholarship
Council (CSC).

References

[1] F. Black and M. Scholes, “The pricing of options corporate
liabilities,” Journal of Political Economy, vol. 81, pp. 637–659,
1973.

[2] B. Dupire, “Pricing and hedging with smiles,” Mathematics of
Derivative Securities, vol. 1, no. 1, pp. 103–111, 1997.

[3] J. C. Cox and S. A. Ross, “The valuation of options for alternative
stochastic processes,” Journal of Financial Economics, vol. 3, no.
1-2, pp. 145–166, 1976.

[4] H. Geman and Y. F. Shih, “Modeling commodity prices under
the CEV model,”The Journal of Alternative Investments, vol. 11,
no. 3, pp. 65–84, 2009.

[5] S. L. Heston, “Closed-form solution for options with stochastic
volatility with applications to bond and currency options,” The
Review of Financial Studies, vol. 6, no. 2, pp. 327–343, 1993.

[6] E. M. Stein and J. C. Stein, “Stock price distributions with
stochastic volatility: an analytic approach,” Review of Financial
Studies , vol. 4, no. 4, pp. 727–752, 1991.

[7] S. Heston, A Simple New Formula for Options with Stochastic
Volatility, Social Science Electronic Publishing, Rochester, NY,
USA, 1997.

[8] M. Grasselli, “The 4/2 stochastic volatility model: a unified
approach for the Heston and the 3/2 model,” Mathematical
Finance, vol. 27, no. 4, pp. 1013–1034, 2017.

[9] K. R. French, G. W. Schwert, and R. F. Stambaugh, “Expected
stock returns and volatility,” Journal of Financial Economics, vol.
19, no. 1, pp. 3–29, 1987.

[10] G.W. Schwert, “WhyDoes StockMarket Volatility ChangeOver
Time?”The Journal of Finance, vol. 44, no. 5, pp. 1115–1153, 1989.

[11] J. Y. Campbell, S. J. Grossman, and J. Wang, “Trading volume
and serial correlation in stock returns,”The Quarterly Journal of
Economics, vol. 108, no. 4, pp. 905–939, 1993.

[12] G. Chacko and L.M.Viceira, “Dynamic consumption and port-
folio choice with stochastic volatility in incomplete markets,”
The Review of Financial Studies, vol. 18, no. 4, pp. 1369–1402,
2005.

[13] P. Christoffersen, S. Heston, and K. Jacobs, “The shape and term
structure of the index option smirk: why multifactor stochastic
volatility models work so well,”Management Science, vol. 55, no.
12, pp. 1914–1932, 2009.

[14] N. Clarke and K. Parrott, “Multigrid for American option pric-
ing with stochastic volatility,” Applied Mathematical Finance,
vol. 6, no. 3, pp. 177–195, 1999.

[15] J. F. Muzy, J. Delour, and E. Bacry, “Modelling fluctuations
of financial time series: From cascade process to stochastic
volatility model,” The European Physical Journal B, vol. 17, no.
3, pp. 537–548, 2000.

[16] J. P. Fouque and X. Zhou, “Perturbed Gaussian copula,” in
Econometrics and Risk Management, pp. 103–121, Emerald
Group Publishing Limited, Bingley, UK, 2008.

[17] R. C. Merton, “Option pricing when underlying stock returns
are discontinuous,” Journal of Financial Economics, vol. 3, no.
1-2, pp. 125–144, 1976.

[18] S. G. Kou, “A jump-diffusion model for option pricing,” Man-
agement Science, vol. 48, no. 8, pp. 1086–1101, 2002.

[19] D.Duffie, J. Pan, andK. Singleton, “Transformanalysis and asset
pricing for affine jump-diffusions,” Econometrica, vol. 68, no. 6,
pp. 1343–1376, 2000.

[20] E. Pillay and J. G. OHara, “FFT based option pricing under a
mean reverting process with stochastic volatility and jumps,”
Journal of Computational andAppliedMathematics, vol. 235, no.
12, pp. 3378–3384, 2011.

[21] D. J. Duffy, Finite Difference Methods in Financial Engineering:
A Partial Differential Equation Approach, John Wiley & Sons,
New York, NY, USA, 2006.

[22] J. Hull and A. White, “Valuing derivative securities using the
explicit finite difference method,” Journal of Financial and
Quantitative Analysis, vol. 25, no. 1, pp. 87–100, 1990.

[23] R. Cont and E. Voltchkova, “A finite difference scheme for
option pricing in jump diffusion and exponential Lvy models,”
SIAM Journal on Numerical Analysis, vol. 43, no. 4, pp. 1596–
1626, 2005.

[24] L. Andersen and J. Andreasen, “Jump-diffusion processes:
volatility smile fitting and numerical methods for option pric-
ing,” Review of Derivatives Research, vol. 4, no. 3, pp. 231–262,
2000.

[25] T. Little and V. Pant, “A finite difference method for the valu-
ation of variance swaps,” in Quantitative Analysis in Financial
Markets: Collected Papers of the New York University Mathe-
matical Finance Seminar, vol. III, pp. 275–295, World Scientific
Publishing Company, Farrer Road, Singapore, 2002.

[26] Y. Achdou and O. Pironneau, “Finite element methods for
option pricing,” Universit Pierre et Marie Curie, 2007.

[27] P. Kovalov, V. Linetsky, and M. Marcozzi, “Pricing multi-
asset American options: a finite element method-of-lines with
smooth penalty,” Journal of Scientific Computing, vol. 33, no. 3,
pp. 209–237, 2007.



12 Journal of Function Spaces

[28] J.-P. Fouque, G. Papanicolaou, R. Sircar, andK. Solna,Multiscale
Stochastic Volatility for Equity, Interest Rate, and Credit Deriva-
tives, Cambridge University Press, Cambridge, UK, 2011.

[29] D. J. Higham, “An algorithmic introduction to numerical
simulation of stochastic differential equations,” SIAM Review,
vol. 43, no. 3, pp. 525–546, 2001.

[30] J.-P. Fouque and Y. F. Saporito, “Heston stochastic vol-of-vol
model for joint calibration of VIX and S&P 500 options,”
Quantitative Finance, vol. 18, no. 6, pp. 1003–1016, 2018.

[31] J.-P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, “Multi-
scale stochastic volatility asymptotics,” Multiscale Modeling &
Simulation, vol. 2, no. 1, pp. 22–42, 2003.



Research Article
Positive Solutions for a Higher-Order Semipositone Nonlocal
Fractional Differential Equation with Singularities on Both Time
and Space Variable

Kemei Zhang

School of Mathematics Sciences, Qufu Normal University, Qufu 273165, Shandong, China

Correspondence should be addressed to Kemei Zhang; zhkm90@126.com

Received 6 August 2018; Accepted 15 January 2019; Published 3 February 2019

Academic Editor: Shanhe Wu

Copyright © 2019 Kemei Zhang.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we consider the following higher-order semipositone nonlocal Riemann-Liouville fractional differential equation𝐷𝛼0+𝑥(𝑡) + 𝑓(𝑡, 𝑥(𝑡), 𝐷𝛽0+𝑥(𝑡)) + 𝑒(𝑡) = 0, 0 < 𝑡 < 1,𝐷𝛽0+𝑥(0) = 𝐷𝛽+10+ 𝑥(0) = ⋅ ⋅ ⋅ = 𝐷𝑛+𝛽−20+ 𝑥(0) = 0, and 𝐷𝛽0+𝑥(1) = ∑𝑚−2𝑖=1 𝜂𝑖𝐷𝛽0+𝑥(𝜉𝑖),
where 𝐷𝛼0+ and 𝐷𝛽0+ are the standard Riemann-Liouville fractional derivatives. The existence results of positive solution are given
by Guo-krasnosel’skii fixed point theorem and Schauder’s fixed point theorem.

1. Introduction

In this paper, we devote to the investigation of the following
nonlinear fractional differential equation

𝐷𝛼0+𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) ,𝐷𝛽0+𝑥 (𝑡)) + 𝑒 (𝑡) = 0,
0 < 𝑡 < 1,

𝐷𝛽0+𝑥 (0) = 𝐷𝛽+10+ 𝑥 (0) = ⋅ ⋅ ⋅ = 𝐷𝑛+𝛽−20+ 𝑥 (0) = 0,
𝐷𝛽0+𝑥 (1) =

𝑚−2∑
𝑖=1

𝜂𝑖𝐷𝛽0+𝑥 (𝜉𝑖) ,

(1)

where 𝐷𝛼0+ and 𝐷𝛽0+ are the standard Riemann-Liouville
derivatives, 𝛼 ≥ 2, 1 ≤ 𝛼 − 𝛽 ≤ 𝑛 − 1, 𝑛 − 1 < 𝛼 ≤ 𝑛, 0 <𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ < 𝜉𝑚−2 < 1, 0 < ∑𝑚𝑖=1 𝜂𝑖𝜉𝑖𝛼−𝛽−1 < 1. The
nonlinear term 𝑓(𝑡, 𝑢, V) is continuous and may be singular
on both 𝑡 = 0, 1 and V = 0; 𝑒(𝑡) ∈ 𝐿1([0, 1],R) permits sign-
changing.

Differential equation models can describe many nonlin-
ear phenomena in applied mathematics, economics, finance,
engineering, and physical and biological processes [1, 2]. In

recent years, there has been a great deal of research on the
existence and/or uniqueness of solution in studying FDEs
nonlocal problems for their wide applications in modeling
some important physical laws (see [3–16], for instance).

In [3], the authors were concerned with the existence of
monotone positive solutions to the following fractional-order
multipoint boundary value problems

𝐷𝛼0+𝑢 (𝑡) + 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝑢 (0) = 0,
𝑢 (1) = 𝑚∑

𝑖=0

𝜂𝑖𝑢 (𝜉𝑖) ,
(2)

where 0 < 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ < 𝜉𝑚 < 1, 2 < 𝛼 < 3, 𝜂𝑖 ≥ 0,
and ∑𝑚𝑖=1 𝜂𝑖𝜉𝑖𝛼−2 < 1. The authors obtained the existence of
monotone positive solutions and establish iterative schemes
for approximating the solutions.

In [4], the authors investigated the existence of positive
solutions of the following fractional differential equation
multipoint boundary value problems with changing sign
nonlinearity
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𝐷𝛼0+𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝑢 (0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−2) = 0,

𝑢(𝑖) (1) = 𝑚−2∑
𝑗=0

𝜂𝑗𝑢 (𝜉𝑗) ,
(3)

where 𝜆 is a positive parameter, 𝛼 ≥ 2, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑖 ∈
N, 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝜂𝑗 ≥ 0 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑚 − 2), 0 < 𝜉1 < 𝜉2 <⋅ ⋅ ⋅ < 𝜉𝑚−2 < 1, and 𝑓may change sign and may be singular at𝑡 = 0, 1. By employing the cone expansion and compression
fixed point theorem, the existence of positive solutions was
obtained.

In [5], the authors established the uniqueness of a positive
solution to the following higher-order fractional differential
equation:

𝐷𝛼0+𝑢 (𝑡) + 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷𝜇10+𝑢 (𝑡) , ⋅ ⋅ ⋅ , 𝐷𝜇𝑛−20+ 𝑢 (𝑡))
= 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢𝜇1 (0) = ⋅ ⋅ ⋅ = 𝑢𝜇𝑛−2 (0) = 0,
𝐷𝜇0+𝑢 (1) =

𝑚−2∑
𝑖=1

𝜂𝑖𝐷𝛽0+𝑥 (𝜉𝑖) ,
(4)

where 𝑓 : [0, 1] × (0, +∞)𝑛−1 → [0, +∞) is continuous and𝑓(𝑡, 𝑢1, . . . , 𝑢𝑛−1)may be singular at 𝑢1 = 0, . . . , 𝑢𝑛−1 = 0, and𝑞(𝑡) : (0, 1) → [0, +∞) is continuous and may be singular
at 𝑡 = 0 and/or 𝑡 = 1. By using the fixed point theorem
for the mixed monotone operator, the existence of unique
positive solutions for above singular nonlocal boundary value
problems of fractional differential equations is established.
The nonlinear term 𝑓 in [11] is nonnegative.

In [11], the authors studied the existence of positive solu-
tions for the following nonlocal fractional-order differential
equations with sign-changing singular perturbation.

− 𝐷𝛼+20+ 𝑦 (𝑡) + 𝐷𝛼0+𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝐷𝛼0+𝑦 (𝑡)) + 𝑒 (𝑡) ,
𝑡 ∈ (0, 1) ,

𝑎𝐷𝛼0+𝑦 (0) − 𝑏𝐷𝛼+10+ 𝑦 (0) =
𝑚−2∑
𝑗=1

𝑎𝑗𝐷𝛼0+𝑦 (𝜉𝑗) ,

𝑐𝐷𝛼0+𝑦 (1) − 𝑑𝐷𝛼+10+ 𝑦 (1) =
𝑚−2∑
𝑗=1

𝑏𝑗𝐷𝛼0+𝑦 (𝜉𝑗) ,

(5)

where 0 < 𝛼 ≤ 1, 𝑎, 𝑐 ≥ 0, 𝑏, 𝑑 > 0, 0 < 𝜉𝑗 < 1, 𝑎𝑗, 𝑏𝑗 ∈[0, +∞), 𝑓 : (0, 1) × [0,∞) × (0,∞) → (0,∞) is continuous
and may be singular near the zero for the third argument,
and 𝑒(𝑡) ∈ 𝐿1([0, 1],R) may be sign-changing. By means
of Schauder’s fixed point theorem, the conditions for the
existence of positive solutions are established, respectively,
for the cases where the nonlinearity is positive, negative, and
semipositone.

Motivated by the work mentioned above, we consider the
fractional-order singular nonlocal BVP (1) and establish the

existence results of positive solutions for (1). The main tools
used in this paper are Guo-krasnosel’skii fixed point theorem
and Schauder’s fixed point theorem. For the concepts and
properties about the cone theory and the fixed point theorem,
one can refer to [17–21].

The rest of this paper is organized as follows: in Section 2,
we present some useful preliminaries and lemmas. The main
results are given in Section 3 and Section 4, in which the
singular cases with respect to the time variables and space
variables are discussed, respectively.

2. Preliminaries and Some Lemmas

Definition 1 (see [1, 2]). The Riemann-Liouville fractional
integral of order 𝛼 > 0 of a function 𝑥(𝑡) : (0,∞) → R

is given by

𝐼𝛼0+𝑥 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑥 (𝑠) 𝑑𝑠 (6)

provided the right-hand side is pointwisely defined on (0, ∞).
Definition 2 (see [1, 2]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0 of a function 𝑥(𝑡) : (0,∞) → R is
given by

𝐷𝛼0+𝑥 (𝑡) = 1Γ (𝑛 − 𝛼) ( 𝑑𝑑𝑡)
𝑛 ∫𝑡
0

𝑥 (𝑠)
(𝑡 − 𝑠)𝛼−𝑛+1𝑑𝑠 (7)

provided the right-hand side is pointwisely defined on (0, ∞),
where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of the number𝛼.
Lemma 3 (see [1, 2]). 	e unique solution of the following
linear Riemann-Liouville fractional differential equation of
order 𝛼 > 0

𝐷𝛼0+𝑥 (𝑡) = 0 (8)

is

𝑥 (𝑡) = 𝑐1𝑡𝛼−1 + 𝑐2𝑡𝛼−2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝛼−𝑛, (9)

where 𝑐𝑖 = 1, 2, . . . , 𝑛, 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part
of the number 𝛼.
Lemma 4 (see [1, 2]). If 𝑥 ∈ 𝐿1(0, 1) and 𝐷𝛼0+𝑥 ∈ 𝐿1(0, 1),
then

𝐼𝛼0+𝐷𝛼0+𝑥 (𝑡) = 𝑥 (𝑡) + 𝑐1𝑡𝛼−1 + 𝑐2𝑡𝛼−2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝛼−𝑛, (10)

where 𝑐𝑖 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, 𝑛 = [𝛼] + 1.
The similar proof of the following three lemmas can be

traced to [5, 12]; in order to be convenient for readers to read,
we now give the detailed process of proof for Lemma 5; the
proofs for other two lemmas are omitted here.
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Lemma 5. Let ℎ ∈ 𝐿1(0, 1) and 0 < ∑𝑚𝑖=1 𝜂𝑖𝜉𝑖𝛼−𝛽−1 < 1, then
the unique solution of the problem

𝐷𝛼−𝛽0+ 𝑥 (𝑡) + ℎ (𝑡) = 0, 0 < 𝑡 < 1,
𝑥 (0) = 𝑥 (0) = ⋅ ⋅ ⋅ = 𝑥(𝑛−2) (0) = 0,
𝑥 (1) = 𝑚−2∑

𝑖=1

𝜂𝑖𝑥 (𝜉𝑖)
(11)

can be expressed uniquely by

𝑥 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (12)

where

𝐺 (𝑡, 𝑠) = 1Γ (𝛼 − 𝛽) 𝑔 (0)
⋅ {{{

𝑔 (𝑠) [𝑡 (1 − 𝑠)]𝛼−𝛽−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
𝑔 (𝑠) [𝑡 (1 − 𝑠)]𝛼−𝛽−1 − (𝑡 − 𝑠)𝛼−𝛽−1 𝑔 (0) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(13)

𝑔 (𝑠) = 1 − ∑
𝑠≤𝜉𝑖

𝜂𝑖 (𝜉𝑖 − 𝑠1 − 𝑠 )
𝛼−𝛽−1 , (14)

Proof. By Lemma 4, the solution of (13) can be written as

𝑥 (𝑡) = − 1Γ (𝛼 − 𝛽) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠 + 𝐶1𝑡𝛼−𝛽−1

+ 𝐶2𝑡𝛼−𝛽−2 + ⋅ ⋅ ⋅ + 𝐶𝑛𝑡𝛼−𝛽−𝑛.
(15)

It follows from 𝑥(0) = 𝑥(0) = ⋅ ⋅ ⋅ = 𝑥(𝑛−2)(0) = 0 that 𝐶2 =⋅ ⋅ ⋅ = 𝐶𝑛 = 0, i.e.,
𝑥 (𝑡) = − 1Γ (𝛼 − 𝛽) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠 + 𝐶1𝑡𝛼−𝛽−1; (16)

thus

𝑥 (1) = − 1Γ (𝛼 − 𝛽) ∫
1

0
(1 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠 + 𝐶1,

𝑥 (𝜉𝑖) = − 1Γ (𝛼 − 𝛽) ∫
𝜉𝑖

0
(𝜉𝑖 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠

+ 𝐶1𝜉𝑖𝛼−𝛽−1,
(17)

which, together with the boundary value condition 𝑥(1) =∑𝑚−2𝑖=1 𝜂𝑖𝑥(𝜉𝑖), implies that

− 1Γ (𝛼 − 𝛽) ∫
1

0
(1 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠 + 𝐶1

= 𝑚−2∑
𝑖=1

𝜂𝑖 (− 1Γ (𝛼 − 𝛽) ∫
𝜉𝑖

0
(𝜉𝑖 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠

+ 𝐶1𝜉𝑖𝛼−𝛽−1) ,

𝐶1(1 − 𝑚−2∑
𝑖=1

𝜂𝑖𝜉𝛼−𝛽−1𝑖 ) = 1Γ (𝛼 − 𝛽) ∫
1

0
(1 − 𝑠)𝛼−𝛽−1

⋅ ℎ (𝑠) 𝑑𝑠 − 𝑚−2∑
𝑖=1

𝜂𝑖 ∫𝜉𝑖0 (𝜉𝑖 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠Γ (𝛼 − 𝛽) ,

𝐶1 = ∫1
0

(1 − 𝑠)𝛼−𝛽−1
(1 − ∑𝑚−2𝑖=1 𝜂𝑖𝜉𝛼−𝛽−1𝑖 ) Γ (𝛼 − 𝛽)ℎ (𝑠) 𝑑𝑠

− 𝑚−2∑
𝑖=1

𝜂𝑖 ∫𝜉𝑖
0
(𝜉𝑖 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠

Γ (𝛼 − 𝛽) (1 − ∑𝑚−2𝑖=1 𝜂𝑖𝜉𝛼−𝛽−1𝑖 ) .
(18)

i.e.,

𝐶1 = 1𝑔 (0) Γ (𝛼 − 𝛽) [∫
1

0
(1 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠

− 𝑚−2∑
𝑖=1

𝜂𝑖 ∫𝜉𝑖
0
(𝜉𝑖 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠]

= 1𝑔 (0) Γ (𝛼 − 𝛽) [∫
1

0
(1 − 𝑠)𝛼−𝛽−1 𝑔 (𝑠) ℎ (𝑠) 𝑑𝑠;

(19)

thus

𝑥 (𝑡) = − 1Γ (𝛼 − 𝛽) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠 + 𝐶1𝑡𝛼−𝛽−1

= 1𝑔 (0) Γ (𝛼 − 𝛽)
⋅ ∫𝑡
0
[𝑡𝛼−𝛽−1 (1 − 𝑠)𝛼−𝛽−1 𝑔 (𝑠) − (𝑡 − 𝑠)𝛼−𝛽−1 𝑔 (0)]

⋅ ℎ (𝑠) 𝑑𝑠 − 1𝑔 (0) Γ (𝛼 − 𝛽)
⋅ ∫1
𝑡
𝑡𝛼−𝛽−1 (1 − 𝑠)𝛼−𝛽−1 ℎ (𝑠) 𝑑𝑠 = ∫1

0
𝐺 (𝑡, 𝑠)

⋅ ℎ (𝑠) 𝑑𝑠.

(20)

Lemma 6. If 0 < ∑𝑚𝑖=1 𝜂𝑖𝜉𝑖𝛼−𝛽−1 < 1, then the function 𝑔
satisfies the following conditions:

(1) 𝑔 is a nondecreasing function on [0, 1];
(2) there exist𝑀1 ≥ 𝑚1 ≥ 0, such that𝑚1𝑡+𝑔(0) ≤ 𝑔(𝑡) ≤𝑀1𝑡 + 𝑔(0), for any 𝑡 ∈ [0, 1], where 𝑀1 = sup0<𝑡≤1((𝑔(𝑡) −𝑔(0))/𝑡),𝑚1 = inf0<𝑡≤1((𝑔(𝑡) − 𝑔(0))/𝑡).

Remark 7. It is easy to prove that 𝑚1 > 0.
Lemma 8. 	e function 𝐺(𝑡, 𝑠) defined by (13) has the follow-
ing properties:

(1) 𝐺(𝑡, 𝑠) > 0 for any (𝑡, 𝑠) ∈ (0, 1);
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(2) 𝐺(𝑡, 𝑠) ≥ (𝑚1/𝑔(0)Γ(𝛼−𝛽))𝑠(1 − 𝑠)𝛼−𝛽−1𝑡𝛼−𝛽−1 for any(𝑡, 𝑠) ∈ [0, 1];
(3) 𝐺(𝑡, 𝑠) ≤ ((𝑀1 + 𝑔(0)[𝛼 − 𝛽])/𝑔(0)Γ(𝛼 −𝛽))𝑠(1 − 𝑠)𝛼−𝛽−1𝑡𝛼−𝛽−1 for any (𝑡, 𝑠) ∈ [0, 1];
(4) 𝐺(𝑡, 𝑠) ≤ 𝑀𝑠(1 − 𝑠)𝛼−𝛽−1,

where [𝛼 − 𝛽] denotes the integer part of the number 𝛼 − 𝛽,
𝑀 = 𝑀1 + 𝑔 (0) (𝛼 − 𝛽 − 1)𝑔 (0) Γ (𝛼 − 𝛽) . (21)

Set V(𝑡) = 𝐷𝛽
0+
𝑥(𝑡), then (1) can be transformed into the

following form:

𝐷𝛼−𝛽0+ V (𝑡) + 𝑓 (𝑡, 𝐼𝛽0+V (𝑡) , V (𝑡)) + 𝑒 (𝑡) = 0,
0 < 𝑡 < 1,

V (0) = V (0) = ⋅ ⋅ ⋅ = V(𝑛−2) (0) = 0,
V (1) = 𝑚−2∑

𝑖=1

𝜂𝑖V (𝜉𝑖) .
(22)

FromLemma 5,we know that the solution V(𝑡) of (22) satisfies
V (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼𝛽0+V (𝑠) , V (𝑠)) + 𝑒 (𝑠)] 𝑑𝑠. (23)

Lemma 9 (see [17, 18]). Suppose that 𝐸 is a Banach space and𝐷 ⊂ 𝐸 is a bounded convex closed set, the operator 𝐴 : 𝐷 →𝐷 is completely continuous, then 𝐴 has one fixed point on𝐷.

Lemma 10 (see [20] (Guo-krasnosel’skii fixed point theo-
rem)). Let Ω1 and Ω1 be two bounded open sets in Banach
space𝐸 such that 𝜃 ∈ Ω1 andΩ1 ⊂ Ω2,𝐴 : 𝑃⋂(Ω2\Ω1) → 𝑃
a completely continuous operator, where 𝜃 denotes the zero
element of𝐸 and𝑃 a cone of𝐸. Suppose that one of the following
conditions

(i) ‖𝐴𝑥‖ ≥ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω1 and ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈𝑃 ∩ 𝜕Ω2;
(ii) ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω1 and ‖𝐴𝑥‖ ≥ ‖𝑥‖, ∀𝑥 ∈𝑃 ∩ 𝜕Ω2

holds. 	en 𝐴 has at least one fixed point in 𝑃 ∩ (Ω2 \ Ω1).
3. Main Result I: 𝑓 Is Singular with Respect to
the Time Variables

Let𝐸 = 𝐶[0, 1], ‖𝑢‖ = max0≤𝑡≤1|𝑢(𝑡)|, then (𝐸, ‖⋅‖) is a Banach
space. Set

𝑃 = {V ∈ 𝐸 : V (𝑡) ≥ 𝑚1𝑀1 + 𝑔 (0) [𝛼 − 𝛽] 𝑡
𝛼−𝛽−1 ‖V‖ , 𝑡

∈ [0, 1]} ,
(24)

where [𝛼 − 𝛽] denotes the integer part of the number 𝛼 − 𝛽.
Then 𝑃 ⊂ 𝐸 is a positive cone of 𝐸. For convenience, we list
some conditions which will be used in this section.

(𝐻1) For any (𝑡, 𝑥, 𝑦) ∈ (0, 1) × [0, +∞) × [0, +∞),
0 ≤ 𝑓 (𝑡, 𝑥, 𝑦) ≤ 𝜙 (𝑡) (𝜌 (𝑥) + ℎ (𝑦)) , (25)

where 𝜙 ∈ 𝐶(0, 1), 𝜙(𝑡) > 0 on (0, 1), 𝜌(𝑥) > 0 is continuous
and increasing on [0, +∞), ℎ(𝑥) > 0 is continuous and
decreasing on [0, +∞).

(𝐻2)
0 < ∫1
0
𝑠 (1 − 𝑠)𝛼−𝛽−1 (𝜙 (𝑠) + 𝑒+ (𝑠) + 𝑒− (𝑠)) 𝑑𝑠

< +∞,
(26)

where 𝑒+ = max{𝑒(𝑡), 0}, 𝑒− = −min{𝑒(𝑡), 0} are the positive
part and negative part of 𝑒(𝑡), respectively.

(𝐻3) There exists 𝑟1 > 0, such that

𝜌(𝑟1 + ‖𝑤‖Γ (𝛽) )∫1
0
𝑠 (1 − 𝑠)𝛼−𝛽−1 𝜙 (𝑠) 𝑑𝑠

+ ∫1
0
𝑠 (1 − 𝑠)𝛼−𝛽−1 [ℎ (0) 𝜙 (𝑠) + 𝑒+ (𝑠)] 𝑑𝑠

< 𝑟1𝑀,
(27)

where𝑤(𝑡) is the solution of the following linear equation

𝐷𝛼−𝛽0+ V (𝑡) + 𝑒− (𝑡) = 0, 0 < 𝑡 < 1,
V (0) = V (0) = ⋅ ⋅ ⋅ = V(𝑛−2) (0) = 0,
V (1) = 𝑚−2∑

𝑖=1

𝜂𝑖V (𝜉𝑖) ,
(28)

i.e., 𝑤(𝑡) = ∫1
0
𝐺(𝑡, 𝑠)𝑒−(𝑠)𝑑𝑠.

(𝐻4) There exists [𝑎, 𝑏] ⊂ (0, 1) such that

lim
𝑥+𝑦→+∞

𝑓 (𝑡, 𝑥, 𝑦)
𝑥 + 𝑦 > 𝐿 (29)

uniformly holds for 𝑡 ∈ [𝑎, 𝑏], where
𝐿 = 2Γ (𝛼 − 𝛽) 𝑔 (0) (𝑀1 + 𝑔 (0) [𝛼 − 𝛽])

𝑚12𝑎𝛼−𝛽−1 ∫𝑏𝑎 𝑠𝛼−𝛽 (1 − 𝑠)𝛼−𝛽−1 𝑑𝑠
. (30)

For any V ∈ 𝑃, let
[V (𝑡) − 𝑤 (𝑡)]∗ = max {V (𝑡) − 𝑤 (𝑡) , 0} , (31)

and define operator

𝐹V (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠)

⋅ [𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗)
+ 𝑒+ (𝑠)] 𝑑𝑠,

(32)

From condition (𝐻1) and (𝐻2), it is easy to know that 𝐹 is well
defined.
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Lemma 11. 𝐹 : 𝑃 → 𝑃 is a completely continuous operator.

Proof. For any V ∈ 𝑃, it follows from Lemma 8 that

𝐹V (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠)

⋅ [𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗)
+ 𝑒+ (𝑠)] 𝑑𝑠 ≤ 𝑀1 + 𝑔 (0) [𝛼 − 𝛽]𝑔 (0) Γ (𝛼 − 𝛽)
⋅ 𝑡𝛼−𝛽−1 ∫1

0
𝑠 (1 − 𝑠)𝛼−𝛽−1

⋅ [𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗)
+ 𝑒+ (𝑠)] 𝑑𝑠 ≤ 𝑀1 + 𝑔 (0) [𝛼 − 𝛽]𝑔 (0) Γ (𝛼 − 𝛽) ∫1

0
𝑠 (1

− 𝑠)𝛼−𝛽−1
⋅ [𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗)
+ 𝑒+ (𝑠)] 𝑑𝑠,

𝐹V (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠)

⋅ [𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗)
+ 𝑒+ (𝑠)] 𝑑𝑠 ≥ 𝑚1𝑔 (0) Γ (𝛼 − 𝛽)𝑡𝛼−𝛽−1 ∫

1

0
𝑠 (1

− 𝑠)𝛼−𝛽−1
⋅ [𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗)
+ 𝑒+ (𝑠)] 𝑑𝑠,

(33)

which deduce that 𝐹V(𝑡) ≥ (𝑚1/(𝑀1 + 𝑔(0)[𝛼 −𝛽]))𝑡𝛼−𝛽−1‖𝐹V‖, i.e., 𝐹 : 𝑃 → 𝑃.
Let 𝐵 ⊂ 𝑃 be a bounded set, i.e., there exists 𝐿1 > 0 such

that ‖V‖ ≤ 𝐿1 for any V ∈ 𝐵, then
0 ≤ [V (𝑡) − 𝑤 (𝑡)]∗ ≤ 𝐿1 + ∫1

0
𝐺 (𝑡, 𝑠) 𝑒− (𝑠) 𝑑𝑠 ≤ 𝐿1

+ ∫1
0
𝑀𝑠 (1 − 𝑠)𝛼−𝛽−1 𝑒− (𝑠) 𝑑𝑠 ≐ �̃�.

(34)

𝐹V (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠)

⋅ [𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗)
+ 𝑒+ (𝑠)] 𝑑𝑠 ≤ ∫1

0
𝐺 (𝑡, 𝑠)

⋅ [𝜙 (𝑠) (𝜌 (𝐼𝛽0+�̃�) + ℎ (0)) + 𝑒+ (𝑠)] 𝑑𝑠

≤ 𝑀(𝜌( �̃�𝛽Γ (𝛽)) + ℎ (0))∫1
0
𝑠 (1 − 𝑠)𝛼−𝛽−1

⋅ 𝜙 (𝑠) 𝑑𝑠 +𝑀∫1
0
𝑠 (1 − 𝑠)𝛼−𝛽−1 𝑒+ (𝑠) 𝑑𝑠

< +∞,
(35)

therefore

‖𝐹V‖ ≤ 𝑀(𝜌( �̃�𝛽Γ (𝛽)) + ℎ (0))
⋅ ∫1
0
𝑠 (1 − 𝑠)𝛼−𝛽−1 𝜙 (𝑠) 𝑑𝑠

+𝑀∫1
0
𝑠 (1 − 𝑠)𝛼−𝛽−1 𝑒+ (𝑠) 𝑑𝑠

(36)

for any V ∈ 𝐵, which implies that 𝐹 is uniformly bounded.
From (𝐻2), the absolutely continuity of integral and the

uniformly continuity of𝐺(𝑡, 𝑠) on [0, 1], we know that for any𝜀 > 0, ∃𝛿 > 0, such that

∫𝛿
0
𝑠 (1 − 𝑠)𝛼−𝛽−1 𝜙 (𝑠) 𝑑𝑠
< 𝜀
6𝑀(𝜌 (�̃�/𝛽Γ (𝛽)) + ℎ (0)) ,

(37)

∫𝛿
1−𝛿

𝑠 (1 − 𝑠)𝛼−𝛽−1 𝜙 (𝑠) 𝑑𝑠
< 𝜀
6𝑀(𝜌 (�̃�/𝛽Γ (𝛽)) + ℎ (0)) ,

(38)

and 𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠) < 𝜀
3𝑙 (𝜌 (�̃�/𝛽Γ (𝛽)) + ℎ (0)) (39)

for any 𝑡1, 𝑡2, 𝑠 ∈ [0, 1] with |𝑡1 − 𝑡2| < 𝛿.
(37)-(39), together with Lemma 8, imply that

𝐹V (𝑡1) − 𝐹V (𝑡2) ≤ ∫1
0

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)
⋅ 𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗) 𝑑𝑠
= ∫𝛿
0

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)
⋅ 𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗) 𝑑𝑠
+ ∫1
1−𝛿

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)
⋅ 𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗) 𝑑𝑠
+ ∫1−𝛿
𝛿

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)
⋅ 𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗) 𝑑𝑠
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≤ 2𝑀∫𝛿
0
𝑠 (1 − 𝑠)𝛼−𝛽−1 𝜙 (𝑠)

⋅ (𝜌 (𝐼𝛽0+�̃�) + ℎ (0)) 𝑑𝑠 + 2𝑀∫1
1−𝛿

𝑠 (1 − 𝑠)𝛼−𝛽−1
⋅ 𝜙 (𝑠) (𝜌 (𝐼𝛽0+�̃�) + ℎ (0)) 𝑑𝑠
+ ∫1−𝛿
𝛿

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)
⋅ 𝑙 (𝜌 (𝐼𝛽0+�̃�) + ℎ (0)) 𝑑𝑠 < 𝜀3 + 𝜀3 + 𝜀3 = 𝜀

(40)

for any 𝑡1, 𝑡2 ∈ [0, 1] with |𝑡1 − 𝑡2| < 𝛿 and any V ∈ 𝐵, where𝑙 = max𝛿≤𝑡≤1−𝛿𝜙(𝑡), which deduces that 𝐹 is equicontinuous
on [0, 1].Thus, according to Ascoli-Arzela theorem, we know
that 𝐹𝐵 is a relatively compact set, and that 𝐹 is a completely
continuous operator.

Theorem 12. Suppose that (𝐻1) − (𝐻4) hold, then the FVP (1)
has at least one positive solution.

Proof. For any V ∈ 𝜕𝑃𝑟1 , where 𝑃𝑟1 = {V ∈ 𝑃 | ‖V‖ < 𝑟1}, by
(32), Lemma 8 and condition (𝐻3), one can get that

𝐹V (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠)

⋅ [𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗)
+ 𝑒+ (𝑠)] 𝑑𝑠 ≤ ∫1

0
𝐺 (𝑡, 𝑠)

⋅ [𝜙 (𝑠) (𝜌 (𝐼𝛽0+ (V (𝑠) − 𝑤 (𝑠)) + ℎ (0))
+ 𝑒+ (𝑠)] 𝑑𝑠 ≤ ∫1

0
𝐺 (𝑡, 𝑠)

⋅ [𝜙 (𝑠) (𝜌 (𝐼𝛽0+ (‖V‖ + ‖𝑤‖)) + ℎ (0)) + 𝑒+ (𝑠)] 𝑑𝑠
= 𝑀∫1

0
𝑠 (1 − 𝑠)𝛼−𝛽−1

⋅ [𝜙 (𝑠) (𝜌 (𝐼𝛽0+ (𝑟1 + ‖𝑤‖)) + ℎ (0)) + 𝑒+ (𝑠)] 𝑑𝑠
= 𝑀∫1

0
𝑠 (1 − 𝑠)𝛼−𝛽−1

⋅ [𝜙 (𝑠) (𝜌(𝑟1 + ‖𝑤‖Γ (𝛽) ) + ℎ (0)) + 𝑒+ (𝑠)] 𝑑𝑠
< 𝑟1 = ‖V‖ ,

(41)

i.e., ‖𝐹V‖ ≤ ‖V‖, V ∈ 𝜕𝑃𝑟1 .
By condition (𝐻4), ∃𝑋 > 0, such that

𝑓 (𝑡, 𝑥, 𝑦) > 𝐿 (𝑥 + 𝑦) (42)

for any 𝑥 > 𝑋 and any 𝑡 ∈ [𝑎, 𝑏]. Choose 𝑟2 such that

𝑟2 > max{𝑟1, 2𝑐1, 2 (𝑀1 + 𝑔 (0) [𝛼 − 𝛽])𝑋𝑚1𝑎𝛼−𝛽−1 } , (43)

where

𝑐1 = (𝑀1 + 𝑔 (0) [𝛼 − 𝛽])2 ⋅ ∫10 (1 − 𝑠)𝛼−𝛽−1 𝑒− (𝑠) 𝑑𝑠𝑚1Γ (𝛼 − 𝛽) 𝑔 (0) . (44)

For any V ∈ 𝜕𝑃𝑟2 , where 𝑃𝑟2 = {V ∈ 𝑃 | ‖V‖ < 𝑟2}. Because
𝑤 (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑒− (𝑠) 𝑑𝑠

≤ 𝑀1 + 𝑔 (0) [𝛼 − 𝛽]Γ (𝛼 − 𝛽) 𝑔 (0)
⋅ 𝑡𝛼−𝛽−1 ∫1

0
(1 − 𝑠)𝛼−𝛽−1 𝑒− (𝑠) 𝑑𝑠

≤ (𝑀1 + 𝑔 (0) [𝛼 − 𝛽])2 ⋅ ∫10 (1 − 𝑠)𝛼−𝛽−1 𝑒− (𝑠) 𝑑𝑠𝑚1Γ (𝛼 − 𝛽) 𝑔 (0) 𝑟2
⋅ V (𝑡) = 𝑐1𝑟2 V (𝑡) ,

(45)

so we have

V (𝑡) − 𝑤 (𝑡) ≥ (1 − 𝑐1𝑟2) V (𝑡) ≥ 12V (𝑡) , (46)

and then for 𝑡 ∈ [𝑎, 𝑏],
V (𝑡) − 𝑤 (𝑡) ≥ 12V (𝑡) ≥ 12 ⋅ 𝑚1𝑎𝛼−𝛽−1𝑀1 + 𝑔 (0) [𝛼 − 𝛽] ⋅ ‖V‖

= 12 ⋅ 𝑚1𝑎𝛼−𝛽−1𝑀1 + 𝑔 (0) [𝛼 − 𝛽] ⋅ 𝑟2 > 𝑋
(47)

follows from (43) and the definition of cone 𝑃.
From (42), (43), and (47), one can obtain that

𝐹V (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠)

⋅ [𝑓 (𝑠, 𝐼𝛽0+ [V (𝑠) − 𝑤 (𝑠)]∗ , [V (𝑠) − 𝑤 (𝑠)]∗)
+ 𝑒+ (𝑠)] 𝑑𝑠 ≥ ∫𝑏

𝑎
𝐺 (𝑡, 𝑠) 𝐿 (𝐼𝛽0+ (V (𝑠) − 𝑤 (𝑠))

+ (V (𝑠) − 𝑤 (𝑠))) + 𝑒+ (𝑠) ]𝑑𝑠 ≥ 𝐿∫𝑏
𝑎
𝐺 (𝑡, 𝑠)

⋅ 12V (𝑠) 𝑑𝑠 ≥ 𝐿2 ⋅ 𝑚1Γ (𝛼 − 𝛽) 𝑔 (0) ⋅ ∫
𝑏

𝑎
𝑠 (1

− 𝑠)𝛼−𝛽−1 𝑡𝛼−𝛽−1V (𝑠) 𝑑𝑠 ≥ 𝐿2 ⋅ 𝑚1𝑎𝛼−𝛽−1Γ (𝛼 − 𝛽) 𝑔 (0)
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⋅ 𝑚1𝑀1 + 𝑔 (0) [𝛼 − 𝛽] ⋅ ∫
𝑏

𝑎
𝑠 (1 − 𝑠)𝛼−𝛽−1 𝑠𝛼−𝛽−1𝑑𝑠

⋅ ‖V‖ = 𝐿2 ⋅ 𝑚1𝑎𝛼−𝛽−1Γ (𝛼 − 𝛽) 𝑔 (0) ⋅
𝑚1𝑀1 + 𝑔 (0) [𝛼 − 𝛽]

⋅ ∫𝑏
𝑎
(1 − 𝑠)𝛼−𝛽−1 𝑠𝛼−𝛽𝑑𝑠 ⋅ ‖V‖ ≥ 𝐿2 ⋅ 𝑚1𝑎𝛼−𝛽−1Γ (𝛼 − 𝛽) 𝑔 (0)

⋅ 𝑚1𝑀1 + 𝑔 (0) [𝛼 − 𝛽] ⋅ ∫
𝑏

𝑎
(1 − 𝑠)𝛼−𝛽−1 𝑠𝛼−𝛽𝑑𝑠 ⋅ 𝑟2

= 𝑟2 = ‖V‖ ,
(48)

i.e., ‖𝐹V‖ ≥ ‖V‖, V ∈ 𝜕𝑃𝑟2 .
It follows from Lemma 10 that 𝐹 has at least fixed point

V1 ∈ 𝑃𝑟2 \ 𝑃𝑟1 , i.e., V1 satisfies
𝐷𝛼−𝛽0+ V1 (𝑡) + 𝑓 (𝑡, 𝐼𝛽0+ (V1 (𝑡) − 𝑤 (𝑡)) , V1 (𝑡) − 𝑤 (𝑡))

+ 𝑒 (𝑡) = 0, 0 < 𝑡 < 1,
V1 (0) = V1 (0) = ⋅ ⋅ ⋅ = V(𝑛−2)1 (0) = 0,
V1 (1) = 𝑚−2∑

𝑖=1

𝜂𝑖V1 (𝜉𝑖) .
(49)

Set V1(𝑡) = V1(𝑡) − 𝑤(𝑡), noticing that V1(𝑡), 𝑤(𝑡) are the
solutions of BVP (32) and (49), respectively; therefore we can
conclude that V1(𝑡) is a positive solution of (22). Let 𝑥1(𝑡) =𝐼𝛽0+V1(𝑡), then 𝑥1(𝑡) is a positive solution of the nonlinear
fractional differential equations (1).

4. Main Result II: 𝑓 Is Singular with
Respect to Both the Time Variables and
the Space Variable

In this section, we always suppose that the following condi-
tion holds.

(𝐻5) 𝑓(𝑡, 𝑢, V) : (0, 1) × [0,∞) × (0,∞) → [0,∞)
is continuous, there exist 𝜀 ∈ (0, 1) and 𝜇1, 𝜇2 ∈ 𝐶+[0, 1],𝜇1(𝑡) ̸≡ 0 for 𝑡 ∈ [0, 1] such that

𝜇1 (𝑡)(𝑥 + 𝑦)𝜀 ≤ 𝑓 (𝑡, 𝑥, 𝑦) ≤
𝜇2 (𝑡)(𝑥 + 𝑦)𝜀 (50)

for any (𝑥, 𝑦) ∈ [0,∞) × (0,∞), 𝑡 ∈ (0, 1), where
𝐶+ [0, 1] = {𝑥 (𝑡) ∈ 𝐶 [0, 1] | 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 1]} (51)

Set

𝜑 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑒 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] , (52)

it follows from Lemma 5 that 𝜑(𝑡) is the solution of the
following linear equation

𝐷𝛼−𝛽0+ V (𝑡) + 𝑒 (𝑡) = 0, 0 < 𝑡 < 1,
V (0) = V (0) = ⋅ ⋅ ⋅ = V(𝑛−2) (0) = 0,
V (1) = 𝑚−2∑

𝑖=1

𝜂𝑖V (𝜉𝑖) .
(53)

Denote

𝑎1 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝜇1 (𝑠) 𝑑𝑠,

𝑎2 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝜇2 (𝑠) 𝑑𝑠,

𝜑∗ = inf
0≤𝑡≤1

𝜑 (𝑡) ,
𝜑∗ = sup
0≤𝑡≤1

𝜑 (𝑡) ,
𝑎1∗ = min

0≤𝑡≤1
𝑎1 (𝑡) ,

𝑎∗1 = max
0≤𝑡≤1

𝑎1 (𝑡) ,
𝑎2∗ = min

0≤𝑡≤1
𝑎2 (𝑡) ,

𝑎∗2 = max
0≤𝑡≤1

𝑎2 (𝑡) .

(54)

Clearly, 𝑎∗𝑗 ≥ 𝑎𝑗∗ > 0, 𝑗 = 1, 2.
Theorem 13. Suppose that the condition (H5) holds and 𝜑∗ ≥0. 	en the FVP (1) has at least one positive solution.

Proof. Because 𝜑∗ ≥ 0, so we can choose 𝑅 > 0 large enough
such that

𝑟𝑅𝜀 + 𝜑∗ ≥ 1𝑅,
𝑅𝜀 (𝑎∗2 + 𝜑∗) ≤ 𝑅,

(55)

where 𝑟 = 𝑎1∗/[1 + 1/(1 + 𝛽Γ(𝛽))]𝜀. In fact, since

lim
𝑥→+∞

𝑥𝜀𝑥 = 0 < min{𝑟, 1𝑎∗2 + 𝜑∗} , (56)

there exists 𝑋1 > 0 such that 𝑥𝜀/𝑥 < min{𝑟, 1/(𝑎∗2 + 𝜑∗)} for
any 𝑥 > 𝑋1, i.e.,

𝑟𝑥𝜀 ≥ 1𝑥, 𝑥𝜀 (𝑎∗2 + 𝜑∗) ≤ 𝑥 (57)

for any 𝑥 > 𝑋1. If 𝜑∗ > 0, then from lim𝑥→+∞[1/𝑥 − 𝑟/𝑥𝜀] =0 < 𝜑∗, one can get that there exists 𝑋2 > 0 such that 1/𝑥 −𝑟/𝑥𝜀 < 𝜑∗ for any 𝑥 > 𝑋2, i.e.,
𝑟𝑥𝜀 + 𝜑∗ ≥ 1𝑥 (58)
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for any 𝑥 > 𝑋2. By (57) (58), we can choose 𝑅 > max{𝑋1, 𝑋2}
such that 𝑅 satisfies (55). Set

𝐷 = {V ∈ 𝐶+ [0, 1] : 1𝑅 ≤ V (𝑡) ≤ 𝑅, 𝑡 ∈ [0, 1]} . (59)

For any V ∈ 𝐷1, from (23) we have

𝐼𝛽0+V (𝑡) = 1Γ (𝛽) ∫
𝑡

0
(𝑡 − 𝑠)𝛽−1 V (𝑠) 𝑑𝑠

≤ 𝑅Γ (𝛽) ∫
𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑑𝑠 = 𝑅𝑡𝛽𝛽Γ (𝛽) ≤ 𝑅𝛽Γ (𝛽) ,

(60)

𝐼𝛽0+V (𝑡) = 1Γ (𝛽) ∫
𝑡

0
(𝑡 − 𝑠)𝛽−1 V (𝑠) 𝑑𝑠

≥ 1𝑅Γ (𝛽) ∫
𝑡

0
(𝑡 − 𝑠)𝛽−1 𝑑𝑠 = 𝑡𝛽𝑅𝛽Γ (𝛽) .

(61)

It follows from (60), (61), and (H5) that

𝜇1 (𝑡)𝑅𝜀 (1 + 1/𝛽Γ (𝛽))𝜀 ≤
𝜇1 (𝑡)

(V (𝑡) + 𝐼𝛽0+V (𝑡))𝜀
≤ 𝑓 (𝑡, 𝐼𝛽0+V (𝑡) , V (𝑡)) ,

𝑓 (𝑡, 𝐼𝛽0+V (𝑡) , V (𝑡)) ≤ 𝜇2 (𝑡)
(V (𝑡) + 𝐼𝛽0+V (𝑡))𝜀

≤ 𝜇2 (𝑡)(1/𝑅 + 𝑡𝛽/𝑅𝛽Γ (𝛽))𝜀
≤ 𝑅𝜀𝜇2 (𝑡) ,

(62)

i.e.,

𝜇1 (𝑡)𝑅𝜀 (1 + 1/𝛽Γ (𝛽))𝜀 ≤ 𝑓 (𝑡, 𝐼𝛽0+V (𝑡) , V (𝑡)) ≤ 𝑅𝜀𝜇2 (𝑡) . (63)

And then

𝑇V (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼𝛽0+V (𝑠) , V (𝑠)) + 𝑒 (𝑠)] 𝑑𝑠

= ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝛽0+V (𝑠) , V (𝑠)) 𝑑𝑠 + 𝜑 (𝑡)

≤ ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝛽0+V (𝑠) , V (𝑠)) 𝑑𝑠 + 𝜑∗

≤ 𝑅𝜀 ∫1
0
𝐺 (𝑡, 𝑠) 𝜇2 (𝑠) 𝑑𝑠 + 𝜑∗ < +∞,

(64)

which deduces that the operator 𝑇 is well defined.
Now, we shall prove that 𝑇 : 𝐷 → 𝐷. For V ∈ 𝐷, it

is easy to see that 𝑇V(𝑡) ∈ 𝐶+[0, 1], and by (55) (63) we can
obtain that

𝑇V (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼𝛽0+V (𝑠) , V (𝑠)) + 𝑒 (𝑠)] 𝑑𝑠

= ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝛽0+V (𝑠) , V (𝑠)) 𝑑𝑠 + 𝜑 (𝑡)

≥ 1
𝑅𝜀 (1 + 1/𝛽Γ (𝛽))𝜀 ∫

1

0
𝐺 (𝑡, 𝑠) 𝜇1 (𝑠) 𝑑𝑠

+ 𝜑 (𝑡) ≥ 1
𝑅𝜀 (1 + 1/𝛽Γ (𝛽))𝜀 𝑎1∗ + 𝜑∗ ≥

1𝑅,

(65)

𝑇V (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼𝛽0+V (𝑠) , V (𝑠)) + 𝑒 (𝑠)] 𝑑𝑠

= ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝛽0+V (𝑠) , V (𝑠)) 𝑑𝑠 + 𝜑 (𝑡)

≤ 𝑅𝜀 ∫1
0
𝐺 (𝑡, 𝑠) 𝜇2 (𝑠) 𝑑𝑠 + 𝜑∗ ≤ 𝑅𝜀𝑎∗2 + 𝜑∗

≤ 𝑅𝜀 (𝑎∗2 + 𝜑∗) ≤ 𝑅.

(66)

i.e., 𝑇 : 𝐷 → 𝐷.
Next, let us prove that 𝑇 : 𝐷 → 𝐷 is completely

continuous.
For any {V𝑛} ⊂ 𝐷, V0 ∈ 𝐷, and V𝑛 → V0.The continuity

of 𝑓 deduces that

𝑓 (𝑡, 𝐼𝛽0+V𝑛 (𝑡) , V𝑛 (𝑡)) → 𝑓(𝑡, 𝐼𝛽0+V0 (𝑡) , V0 (𝑡)) ,
𝑛 → ∞, (67)

and it follows from (63) that
𝑓 (𝑡, 𝐼𝛽0+V𝑛 (𝑡) , V𝑛 (𝑡)) − 𝑓 (𝑡, 𝐼𝛽0+V0 (𝑡) , V0 (𝑡))
≤ 2𝑅𝜖max {max

0≤𝑡≤1
𝜇1 (𝑡) , max

0≤𝑡≤1
𝜇2 (𝑡)} . (68)

By using the Lebesgue dominated convergence theorem, we
obtain that

lim
𝑛→∞

𝑇V𝑛 − 𝑇V0 = lim
𝑛→∞

max
0≤𝑡≤1

∫
1

0
𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝐼𝛽0+V𝑛 (𝑠) , V𝑛 (𝑠)) − 𝑓 (𝑠, 𝐼𝛽0+V0 (𝑠) , V0 (𝑠))] 𝑑𝑠


≤ lim
𝑛→∞

max
0≤𝑡≤1

∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝛽0+V𝑛 (𝑠) , V𝑛 (𝑠)) − 𝑓 (𝑠, 𝐼𝛽0+V0 (𝑠) , V0 (𝑠)) 𝑑𝑠
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= max
0≤𝑡,𝑠≤1

𝐺 (𝑡, 𝑠) ⋅ ∫1
0

lim
𝑛→∞

𝑓 (𝑠, 𝐼𝛽0+V𝑛 (𝑠) , V𝑛 (𝑠)) − 𝑓 (𝑠, 𝐼𝛽0+V0 (𝑠) , V0 (𝑠)) 𝑑𝑠 = 0,
(69)

and this implies that 𝑇 is a continuous operator.
Now, we shall prove that 𝑇 : 𝐷 → 𝐷 is compact. For any

V ∈ 𝐷, 𝑇V ∈ 𝐷, which deduces that 1/𝑅 ≤ 𝑇V(𝑡) ≤ 𝑅, for𝑡 ∈ [0, 1], i.e., 𝑇 is uniformly bounded.
Since 𝐺(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]), it is also uniformly

continuous on [0, 1] × [0, 1], and then for any 𝜀 > 0, ∃𝛿 > 0,
s.t., for any (𝑡1, 𝑠), (𝑡2, 𝑠) ∈ [0, 1] × [0, 1] with |𝑡1 − 𝑡2| < 𝛿, we
always have

𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠) < 𝜀
𝑅𝜀 ∫1
0
𝜇2 (𝑠) 𝑑𝑠 + ∫10 |𝑒 (𝑠)| 𝑑𝑠

. (70)

Thus, one can obtain by virtue of (63) (70) that

𝑇V (𝑡1) − 𝑇V (𝑡2) =
∫
1

0
[𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)]

⋅ [𝑓 (𝑠, 𝐼𝛽V (𝑠) , V (𝑠)) + 𝑒 (𝑠)] 𝑑𝑠 ≤ ∫
1

0

𝐺 (𝑡1, 𝑠)
− 𝐺 (𝑡2, 𝑠) [𝑓 (𝑠, 𝐼𝛽0+V (𝑠) , V (𝑠)) + |𝑒 (𝑠)|] 𝑑𝑠
< [𝑅𝜀 ∫1

0
𝜇2 (𝑠) 𝑑𝑠 + ∫1

0
|𝑒 (𝑠)| 𝑑𝑠]

⋅ 𝜀
𝑅𝜀 ∫1
0
𝜇2 (𝑠) 𝑑𝑠 + ∫10 |𝑒 (𝑠)| 𝑑𝑠

= 𝜀

(71)

for any 𝑡1, 𝑡2 ∈ [0, 1] with |𝑡1 − 𝑡2| < 𝛿 and any V ∈ 𝐷1, which
shows that 𝑇 : 𝐷 → 𝐷 is equicontinuous. Thus, Arzela-
Ascoli theorem guarantees that 𝑇 : 𝐷 → 𝐷 is completely
continuous. Existence of at least one fixed point V1 ∈ 𝐷
follows from Lemma 6, i.e., 𝑢1(𝑡) = 𝐼𝛽0+V1(𝑡) is a positive
solution of differential equation (1), which satisfies

1𝑅Γ (𝛼)𝑡𝛼 ≤ 𝑢1 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 V1 (𝑠) 𝑑𝑠

≤ 𝑅Γ (𝛼) 𝑡𝛼.
(72)
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In this work, two Geraghty type contractions are introduced in 𝐺𝑏-metric spaces, and some fixed point theorems about the
contractions are proved. At the end of this article, a theorem about unique solution of an integral function is proved.

1. Introduction

It is well known that fixed point theorem is an important tool
for solving many equations in the study of mathematics, such
as integral equations [1] and differential equations [2]. It can
be applied in several subjects as well, like game theory [3] and
economics [4].

Thenotion of𝐺-metric spaces was introduced byMustafa
and Sims [5] as a generalization of metric spaces. Thereafter,𝐺-metric spaces have been studied and applied to obtain
different kinds of fixed point theorems, see [6–12]. Aghajani
et al. [13] introduced the notion of𝐺𝑏-metric spaces based on𝐺-metric spaces and 𝑏-metric spaces introduced by Bakhtin
in [14]. Also, some further fixed point theorems were studied
after 𝐺𝑝-metric spaces, which related to partial metric spaces
and𝐺-metric spaces, introduced by Zand andNezhad in [15].
Ansari et al. [16] proved some common fixed point results
in complete 𝐺𝑝-metric spaces with a new approach. More
recently, someGeraghty type contraction results were studied
in various metric spaces, see [17–19].

In this work, we introduce two Geraghty type contrac-
tions in 𝐺𝑏-metric spaces and investigate some fixed point
theorems about such contractions. In [13], 𝐺𝑏-metric space
was introduced as follows.

Definition 1 (see [13]). Let𝑋 be a nonempty set and 𝑠 ≥ 1 be
a given real number. Suppose that 𝐺𝑏 : 𝑋 ×𝑋×𝑋 → [0,∞)
is a function satisfying the following properties:

(1) 𝐺𝑏(𝑢, V, 𝑤) = 0 if 𝑢 = V = 𝑤;

(2) 0 < 𝐺𝑏(𝑢, 𝑢, V) for all 𝑢, V ∈ 𝑋 with 𝑢 ̸= V;
(3) 𝐺𝑏(𝑢, 𝑢, V) ≤ 𝐺𝑏(𝑢, V, 𝑤) for all 𝑢, V, 𝑤 ∈ 𝑋with V ̸= 𝑤;
(4) 𝐺𝑏(𝑢, V, 𝑤) = 𝐺𝑏(𝑝{𝑢, V, 𝑤}), where𝑝 is a permutation

of 𝑢, V, 𝑤;
(5) 𝐺𝑏(𝑢, V, 𝑤) ≤ 𝑠(𝐺𝑏(𝑢, 𝑐, 𝑐) + 𝐺𝑏(𝑐, V, 𝑤)) for all𝑢, V, 𝑤, 𝑐 ∈ 𝑋.

Then the function is called a generalized 𝑏-metric or a𝐺𝑏-
metric on 𝑋. The pair (𝑋,𝐺𝑏) is called a 𝐺𝑏-metric space.

It is obvious that 𝐺𝑏-metric space is effectively larger than
that of 𝐺-metric space. Actually, each 𝐺-metric space is a 𝐺𝑏-
metric space with 𝑠 = 1.
Definition 2 (see [13]). A 𝐺𝑏-metric space is said to be
symmetric if 𝐺𝑏(𝑢, V, V) = 𝐺𝑏(V, 𝑢, 𝑢) for all 𝑢, V ∈ 𝑋.

Proposition 3 (see [13]). Let𝑋 be a𝐺𝑏-metric space.�en for
each 𝑢, V, 𝑤, 𝑐 ∈ 𝑋, it satisfies the following properties:

(1) If 𝐺𝑏(𝑢, V, 𝑤) = 0, then 𝑢 = V = 𝑤;
(2) 𝐺𝑏(𝑢, V, 𝑤) ≤ 𝑠(𝐺𝑏(𝑢, 𝑢, V) + 𝐺𝑏(𝑢, 𝑢, 𝑤));
(3) 𝐺𝑏(𝑢, V, V) ≤ 2𝑠𝐺𝑏(V, 𝑢, 𝑢);
(4) 𝐺𝑏(𝑢, V, 𝑤) ≤ 𝑠(𝐺𝑏(𝑢, 𝑐, 𝑤) + 𝐺𝑏(𝑐, V, 𝑤)).
In this paper, we denoteN as the set of all positive integers

and R as the set of all real numbers.

Definition 4 (see [13]). Let (𝑋,𝐺𝑏) be a 𝐺𝑏-metric space and{𝑥𝑛} be a sequence in 𝑋 such that lim𝑛,𝑚→∞𝐺𝑏(𝑥, 𝑥𝑛, 𝑥𝑚) =
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0, 𝑥 ∈ 𝑋, then {𝑥𝑛} is 𝐺𝑏-convergent; that is, for any 𝜀 > 0,
there exists 𝑁 ∈ N such that 𝐺𝑏(𝑥, 𝑥𝑛, 𝑥𝑚) < 𝜀, for all 𝑛,𝑚 ≥𝑁.

Proposition 5 (see [13]). Let 𝑋 be a 𝐺𝑏-metric space. �e
following statements are equivalent:

(1) {𝑥𝑛} is 𝐺𝑏-convergent to 𝑥;
(2) 𝐺𝑏(𝑥𝑛, 𝑥𝑛, 𝑥) → 0 as 𝑛 → +∞;
(3) 𝐺𝑏(𝑥𝑛, 𝑥, 𝑥) → 0 as 𝑛 → +∞;
(4) 𝐺𝑏(𝑥𝑛, 𝑥𝑚, 𝑥) → 0 as 𝑛,𝑚 → +∞.

Definition 6 (see [13]). Let 𝑋 be a 𝐺𝑏-metric space. A
sequence {𝑥𝑛} is called a𝐺𝑏-Cauchy sequence if for any 𝜀 > 0,
there is𝑁 ∈ N such that 𝐺𝑏(𝑥𝑛, 𝑥𝑚, 𝑥𝑙) < 𝜀 for all 𝑛,𝑚, 𝑙 ≥ 𝑁;
that is, 𝐺𝑏(𝑥𝑛, 𝑥𝑚, 𝑥𝑙) → 0 as 𝑛,𝑚, 𝑙 → ∞.

Definition 7 (see [13]). A 𝐺𝑏-metric space 𝑋 is called 𝐺𝑏-
complete if every 𝐺𝑏-Cauchy sequence is 𝐺𝑏-convergent in𝑋.

LetA be the family of all functions 𝛼 : [0,∞) → [0, 1)
which satisfies the condition lim𝑛→∞𝛼(𝑝𝑛) = 1 implying
lim𝑛→∞𝑝𝑛 = 0.
Example 8. Let

𝛼1 (𝑝) = {{{{{
11 + 𝑝 , 𝑝 > 012 , 𝑝 = 0,

𝛼2 (𝑝) = {{{{{{{
𝑝2 + 13𝑝2 + 1 , 𝑝 > 013 , 𝑝 = 0.

(1)

Then 𝛼1, 𝛼2 ∈ A.

LetB be the family of all functions 𝛽 : [0,∞) → [0, 1/𝑠)
which satisfies the condition lim𝑛→∞𝛽(𝑞𝑛) = 1/𝑠 implying
lim𝑛→∞𝑞𝑛 = 0.
Example 9. Let

𝛽 (𝑞) = {{{{{
1𝑠 𝑒−𝑞, 𝑞 > 01𝑠 + 1 , 𝑞 = 0. (2)

Then, 𝛽(𝑞) ∈ B.

In [20], Karapınar et al. proved the following result.

Theorem 10. Let (𝑋, 𝜎) be a complete metric-like space and𝑇 : 𝑋 → 𝑋 be a mapping. Suppose that there exists 𝛼 ∈ A

such that

𝜎 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝜎 (𝑥, 𝑦)) 𝜎 (𝑥, 𝑦) , (3)

for all 𝑥, 𝑦 ∈ 𝑋, then 𝑇 has a unique fixed point 𝑢 ∈ 𝑋 with𝜎(𝑢, 𝑢) = 0.

Recently, Aydi et al. [21] introduced a type of Geraghty
contraction in metric-like spaces and proved a fixed point
theorem about such contraction as follows:

Theorem 11. Let (𝑋, 𝜎) be a complete metric-like space and𝑇 :𝑋 → 𝑋 be a mapping. Suppose that there exists 𝛼 ∈ A such
that

𝜎 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝐹 (𝑥, 𝑦)) 𝐹 (𝑥, 𝑦) (4)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝐹 (𝑥, 𝑦) = 𝜎 (𝑥, 𝑦) + 𝜎 (𝑥, 𝑇𝑥) − 𝜎 (𝑦, 𝑇𝑦) . (5)

�en 𝑇 has a unique fixed point 𝑢 ∈ 𝑋 with 𝜎(𝑢, 𝑢) = 0.
In our work, enlightened by the preceding works, we

introduce the Geraghty contraction to the 𝐺𝑏-metric space
and prove fixed point theorems for Geraghty type contrac-
tions. At the end, we give an application about a unique
solution of an integral function.

2. Main Results

Theorem 12. Let (𝑋,𝐺𝑏) be a complete 𝐺𝑏-metric space and𝑇 : 𝑋 → 𝑋 be a given mapping. Suppose there exists 𝛽 ∈ B

such that

𝐺𝑏 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ≤ 𝛽 (𝐹 (𝑥, 𝑦)) 𝐹 (𝑥, 𝑦) , (6)

for all 𝑥, 𝑦 ∈ 𝑋 where

𝐹 (𝑥, 𝑦) = 𝐺𝑏 (𝑥, 𝑦, 𝑦)
+ 𝐺𝑏 (𝑥, 𝑇𝑥, 𝑇𝑥) − 𝐺𝑏 (𝑦, 𝑇𝑦, 𝑇𝑦) . (7)

�en 𝑇 has a unique fixed point 𝑢 ∈ 𝑋.

Proof. Let 𝑥0 ∈ 𝑋. Define a sequence {𝑥𝑛} in 𝑋 by 𝑥𝑛+1 =𝑇𝑥𝑛 = 𝑇𝑛+1𝑥0 for all 𝑛 ∈ N. Assume that 𝐺𝑏(𝑥𝑛0 ,𝑥𝑛0+1, 𝑥𝑛0+1) = 0 for some 𝑛0, then 𝑥0 is the fixed point of 𝑇;
the proof is completed. Thus, we assume 𝐺𝑏(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) ̸=0 for all 𝑛 ∈ N. From (6), we have

0 < 𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 𝐺𝑏 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛, 𝑇𝑥𝑛)
≤ 𝛽 (𝐹 (𝑥𝑛−1, 𝑥𝑛)) 𝐹 (𝑥𝑛−1, 𝑥𝑛) , 𝑛 ≥ 1, (8)

where

𝐹 (𝑥𝑛−1, 𝑥𝑛)
= 𝐺𝑏 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛)

+ 𝐺𝑏 (𝑥𝑛−1, 𝑇𝑥𝑛−1, 𝑇𝑥𝑛−1) − 𝐺𝑏 (𝑥𝑛, 𝑇𝑥𝑛, 𝑇𝑥𝑛)
= 𝐺𝑏 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛)

+ 𝐺𝑏 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛) − 𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) .
(9)

Take

𝐺𝑏(𝑛) = 𝐺𝑏 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛) . (10)
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Then, (8) becomes

0 < 𝐺𝑏(𝑛+1) ≤ 𝛽 (𝐺𝑏(𝑛) + 𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1))
⋅ (𝐺𝑏(𝑛) + 𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) . (11)

Suppose that there exists 𝑛0 > 0 such that 𝐺𝑏(𝑛0) ≤ 𝐺𝑏(𝑛0+1),
then from (11), we have

𝐺𝑏(𝑛0+1) ≤ 𝛽 (𝐺𝑏(𝑛0+1)) 𝐺𝑏(𝑛0+1) < 1𝑠 𝐺𝑏(𝑛0+1), 𝑠 ≥ 1, (12)

which is a contradiction.
Thus, for all 𝑛 > 0, 𝐺𝑏(𝑛) > 𝐺𝑏(𝑛+1). From (11), we have

0 < 𝐺𝑏(𝑛+1) ≤ 𝛽 (2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) (2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) . (13)

The real sequence {𝐺𝑏(𝑛)} is decreasing; suppose there exists𝛾 ≥ 0 such that lim𝑛→∞𝐺𝑏(𝑛) = 𝛾. Assume that 𝛾 > 0. Taking𝑛 → ∞ in (13), we get

𝛾 = lim
𝑛→∞

𝐺𝑏(𝑛+1)
≤ lim
𝑛→∞

[𝛽 (2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) (2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1))] . (14)

There are two situations that need to be discussed.
(A)When 𝑠 = 1, then (14) becomes

𝛾 = lim
𝑛→∞

𝐺𝑏(𝑛+1)
≤ lim
𝑛→∞

[𝛽 (2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) (2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1))]
≤ 1𝑠 lim
𝑛→∞

(2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) = 1𝑠 𝛾 = 𝛾.
(15)

We can obtain

lim
𝑛→∞

𝛽 (2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) = 1. (16)

Since 𝛽 ∈ B, we get

𝛾 = lim
𝑛→∞

(2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) = 0, (17)

which is a contradiction.
(B)When 𝑠 > 1, according to (14) we have
𝛾 = lim
𝑛→∞

𝐺𝑏(n+1)
≤ lim
𝑛→∞

[𝛽 (2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) (2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1))]
≤ 1𝑠 lim
𝑛→∞

(2𝐺𝑏(𝑛) − 𝐺𝑏(𝑛+1)) = 1𝑠 𝛾, 𝑠 > 1,
(18)

which is a contradiction.
In conclusion of the above two conditions, we have 𝛾 = 0,

that is

lim
𝑛→∞

𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 0. (19)

Note that

𝐺𝑏 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) ≤ 2𝑠𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) , (20)

thus, we get

lim
𝑛→∞

𝐺𝑏 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) = 0. (21)

We shall prove that {𝑥𝑛} is a Cauchy sequence in (𝑋,𝐺𝑏).
Equation

lim
𝑛,𝑚→∞

𝐺𝑏 (𝑥𝑛, 𝑥𝑚, 𝑥𝑚) = 0, 𝑚 > 𝑛, (22)

will be proved.
Suppose (22) does not hold. Then there exists 𝜀 > 0 for

which we can find subsequences {𝑥𝑚𝑖} and {𝑥𝑛𝑖} of {𝑥𝑛} with𝑚𝑖 > 𝑛𝑖 > 𝑖 such that for every 𝑖
𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖) ≥ 𝜀. (23)

Corresponding to 𝑛𝑖, we can find 𝑚𝑖 with the smallest index
and 𝑚𝑖 > 𝑛𝑖 and satisfying (23), then

𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) < 𝜀. (24)

By (23) and (24), we have

𝜀 ≤ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖)
≤ 𝑠 [𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑛𝑖+1, 𝑥𝑛𝑖+1) + 𝐺𝑏 (𝑥𝑛𝑖+1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖)] . (25)

Taking 𝑖 → ∞ in (25) and using (19), we obtain

𝜀 ≤ lim inf
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖)
≤ 𝑠 lim inf
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖+1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖) . (26)

Back to (6), there is

𝐺𝑏 (𝑥𝑛𝑖+1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖) = 𝐺𝑏 (𝑇𝑥𝑛𝑖 , 𝑇𝑥𝑚𝑖−1, 𝑇𝑥𝑚𝑖−1)
≤ 𝛽 (𝐹 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1)) 𝐹 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1)
= 𝛽 (𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)
+ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑛𝑖+1, 𝑥𝑛𝑖+1) − 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖))
⋅ (𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)
+ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑛𝑖+1, 𝑥𝑛𝑖+1) − 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖)) .

(27)

Let

M = 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)
+ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑛𝑖+1, 𝑥𝑛𝑖+1) − 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖) . (28)

Taking 𝑖 → ∞ in the above inequations and by (19), (24), we
have

lim inf
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖+1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖) ≤ 𝜀 lim inf
𝑖→∞

𝛽 (M) . (29)

Then we obtain1𝜀 lim inf
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖+1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖) ≤ lim inf
𝑖→∞

𝛽 (M) . (30)
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From (26) and (30), we get

1𝑠 = 1𝜀 ⋅ 𝜀𝑠 ≤ 1𝜀 lim inf
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖+1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖)
≤ lim inf
𝑖→∞

𝛽 (M) ≤ lim sup
𝑖→∞

𝛽 (M) ≤ 1𝑠 .
(31)

We deduce that

lim
𝑖→∞

𝛽 (M) = 1𝑠 . (32)

Since 𝛽 ∈ B and by (19), then

lim
𝑖→∞

M = lim
𝑖→∞

(𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)
+ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑛𝑖+1, 𝑥𝑛𝑖+1) − 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖))
= lim
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) = 0.
(33)

From (19) and (33), we have

𝜀 ≤ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖) ≤ 𝑠 [𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) + 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖)] → 0 as 𝑖 → ∞, (34)

which is a contradiction. Thus

lim
𝑛,𝑚→∞

𝐺𝑏 (𝑥𝑛, 𝑥𝑚, 𝑥𝑚) = 0, (35)

and {𝑥𝑛} is a Cauchy sequence in complete 𝐺𝑏-metric space.
So there exists 𝑢 ∈ 𝑋, such that

lim
𝑛→∞

𝐺𝑏 (𝑥𝑛, 𝑢, 𝑢) = 0. (36)

By Proposition 3, we have 𝐺𝑏(𝑢, 𝑥𝑛, 𝑥𝑛) ≤ 2𝑠𝐺𝑏(𝑥𝑛, 𝑢, 𝑢);
therefore by (36) we get

lim
𝑛→∞

𝐺𝑏 (𝑢, 𝑥𝑛, 𝑥𝑛) = 0. (37)

We shall prove that 𝑢 is a fixed point of 𝑇. Assume that 𝑢 ̸=𝑇𝑢, then 𝐺𝑏(𝑢, 𝑇𝑢, 𝑇𝑢) > 0. From (6) and (7), we have

𝐺𝑏 (𝑥𝑛+1, 𝑇𝑢, 𝑇𝑢) = 𝐺𝑏 (𝑇𝑥𝑛, 𝑇𝑢, 𝑇𝑢)
≤ 𝛽 (𝐹 (𝑥𝑛, 𝑢)) 𝐹 (𝑥𝑛, 𝑢)
< 1𝑠 𝐹 (𝑥𝑛, 𝑢) ,

(38)

where

𝐹 (𝑥𝑛, 𝑢) = 𝐺𝑏 (𝑥𝑛, 𝑢, 𝑢)
+ 𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) − 𝐺𝑏 (𝑢, 𝑇𝑢, 𝑇𝑢) . (39)

We also have

𝐺𝑏 (𝑢, 𝑇𝑢, 𝑇𝑢)
≤ 𝑠 (𝐺𝑏 (𝑢, 𝑇𝑥𝑛, 𝑇𝑥𝑛) + 𝐺𝑏 (𝑇𝑥𝑛, 𝑇𝑢, 𝑇𝑢))
= 𝑠𝐺𝑏 (𝑢, 𝑥𝑛+1, 𝑥𝑛+1) + 𝑠𝐺𝑏 (𝑥𝑛+1, 𝑇𝑢, 𝑇𝑢)
≤ 𝑠𝐺𝑏 (𝑢, 𝑥𝑛+1, 𝑥𝑛+1) + 𝑠𝛽 (𝐹 (𝑥𝑛, 𝑢)) 𝐹 (𝑥𝑛, 𝑢)
< 𝑠𝐺𝑏 (𝑢, 𝑥𝑛+1, 𝑥𝑛+1) + 𝐹 (𝑥𝑛, 𝑢) .

(40)

Taking 𝑛 → ∞ in the above inequation and using (36), (37),
and (38) obtains

𝐺𝑏 (𝑢, 𝑇𝑢, 𝑇𝑢)
≤ 𝑠 lim
𝑛→∞

𝐺𝑏 (𝑢, 𝑥𝑛+1, 𝑥𝑛+1)
+ 𝑠 lim
𝑛→∞

[𝛽 (𝐹 (𝑥𝑛, 𝑢)) 𝐹 (𝑥𝑛, 𝑢)]
≤ 𝑠 lim
𝑛→∞

𝐺𝑏 (𝑢, 𝑥𝑛+1, 𝑥𝑛+1) + lim
𝑛→∞

𝐹 (𝑥𝑛, 𝑢)
≤ 0 + lim

𝑛→∞
𝐺𝑏 (𝑥𝑛, 𝑢, 𝑢)

+  lim𝑛→∞𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) − lim
𝑛→∞

𝐺𝑏 (𝑢, 𝑇𝑢, 𝑇𝑢)
≤ 𝐺𝑏 (𝑢, 𝑇𝑢, 𝑇𝑢) ,

(41)

which implies

lim
𝑛→∞

𝑠𝛽 (𝐹 (𝑥𝑛, 𝑢)) = 1. (42)

Since 𝛽 ∈ B, then

lim
𝑛→∞

𝐹 (𝑥𝑛, 𝑢) = 0, (43)

which is a contradiction. Thus 𝐺𝑏(𝑢, 𝑇𝑢, 𝑇𝑢) = 0 and so 𝑢 =𝑇𝑢. Consequently, 𝑢 is a fixed point of 𝑇.
We shall prove that such 𝑢 is the unique fixed point of 𝑇.

We argue by contradiction. Assume there exists V, V ̸= 𝑢 such
that V = 𝑇V. We have𝐹 (𝑢, V) = 𝐺𝑏 (𝑢, V, V) + 𝐺𝑏 (𝑢, 𝑢, 𝑢) − 𝐺𝑏 (V, V, V)= 𝐺𝑏 (𝑢, V, V) . (44)

From (6), we have

0 < 𝐺𝑏 (𝑢, V, V) = 𝐺𝑏 (𝑇𝑢, 𝑇V, 𝑇V)
≤ 𝛽 (𝐹 (𝑢, V)) 𝐹 (𝑢, V) = 𝛽 (𝐺𝑏 (𝑢, V, V)) 𝐺𝑏 (𝑢, V, V)
< 1𝑠 𝐺𝑏 (𝑢, V, V) ,

(45)

which is a contradiction. Thus, 𝑇 has a unique fixed point.
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We now present the following result.

Theorem 13. Let (𝑋,𝐺𝑏) be a complete 𝐺𝑏-metric space and𝑇 : 𝑋 → 𝑋 be a given mapping. Suppose there exists 𝛼 ∈ A

such that

𝐺𝑏 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ≤ 𝛼 (𝐹 (𝑥, 𝑦)) 𝐹 (𝑥, 𝑦) (46)

for all 𝑥, 𝑦 ∈ 𝑋 where

𝐹 (𝑥, 𝑦) = 1𝑠2 (𝐺𝑏 (𝑥, 𝑦, 𝑦)
+ 𝐺𝑏 (𝑥, 𝑇𝑥, 𝑇𝑥) − 𝐺𝑏 (𝑦, 𝑇𝑦, 𝑇𝑦)) .

(47)

�en 𝑇 has a unique fixed point 𝑢∗ ∈ 𝑋.

Proof. Let 𝑥0 ∈ 𝑋. Define a sequence {𝑥𝑛} in 𝑋 by 𝑥𝑛+1 =𝑇𝑥𝑛 = 𝑇𝑛+1𝑥0. Assume that 𝐺𝑏(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 0 for 𝑛 = 𝑛0,
that is, 𝐺𝑏(𝑥𝑛0 , 𝑥𝑛0+1, 𝑥𝑛0+1) = 0, then 𝑥𝑛0 = 𝑥𝑛0+1, i.e., 𝑇𝑥𝑛0 =𝑥𝑛0 . Therefore 𝑥𝑛0 is a fixed point of 𝑇.

Suppose 𝐺𝑏(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) ̸= 0 for all 𝑛 ∈ N. From (46)
we have

0 < 𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 𝐺𝑏 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛, 𝑇𝑥𝑛)
≤ 𝛼 (𝐹 (𝑥𝑛−1, 𝑥𝑛)) 𝐹 (𝑥𝑛−1, 𝑥𝑛) , (48)

where

𝐹 (𝑥𝑛−1, 𝑥𝑛) = 1𝑠2 (𝐺𝑏 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛)
+ 𝐺𝑏 (𝑥𝑛−1, 𝑇𝑥𝑛−1, 𝑇𝑥𝑛−1) − 𝐺𝑏 (𝑥𝑛, 𝑇𝑥𝑛, 𝑇𝑥𝑛))
= 1𝑠2 (𝐺𝑏 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛)
+ 𝐺𝑏 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛) − 𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1)) .

(49)

Take

𝐺∗𝑏(𝑛) = 𝐺𝑏 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛) . (50)

Then (48) becomes

𝐺∗𝑏(𝑛+1) ≤ 𝛼 [ 1𝑠2 (𝐺∗𝑏(𝑛) + 𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1))]
⋅ 1𝑠2 (𝐺∗𝑏(𝑛) + 𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1)) .

(51)

Suppose there exists 𝑛0 > 0 such that 𝐺∗𝑏(𝑛0) ≤ 𝐺∗𝑏(𝑛0+1). From
(51), we have

𝐺∗𝑏(𝑛0+1) ≤ 𝛼( 1𝑠2𝐺∗𝑏(𝑛0+1)) ⋅ ( 1𝑠2𝐺∗𝑏(𝑛0+1))
< 1𝑠2𝐺∗𝑏(𝑛0+1),

(52)

which is a contradiction. Thus 𝐺∗𝑏(𝑛) > 𝐺∗𝑏(𝑛+1) for all 𝑛 > 0,
and the real sequence {𝐺∗𝑏(𝑛)} is decreasing.

Suppose there exists 𝛿 ∈ R such that lim𝑛→∞𝐺∗𝑏(𝑛) = 𝛿.
Now we shall prove that

𝛿 = 0. (53)

Applying (51), we get

𝐺∗𝑏(𝑛+1) ≤ 𝛼 [ 1𝑠2 (2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1))]
⋅ 1𝑠2 (2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1))

< 𝛼 [ 1𝑠2 (2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1))]
⋅ (2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1)) ≤ 2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1).

(54)

Take 𝑛 → ∞ in (54) to write

𝛿 = lim
𝑛→∞

𝐺∗𝑏(𝑛+1)
≤ lim
𝑛→∞

𝛼 [ 1𝑠2 (2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1))]
⋅ lim
𝑛→∞

(2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1))
≤ lim
𝑛→∞

(2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1)) = 𝛿.
(55)

We obtain

lim
𝑛→∞

𝛼 [ 1𝑠2 (2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1))] = 1. (56)

Since 𝛼 ∈ A, then

lim
𝑛→∞

1𝑠2 (2𝐺∗𝑏(𝑛) − 𝐺∗𝑏(𝑛+1)) = 1𝑠2 ⋅ 𝛿 = 0. (57)

Thus

𝛿 = 0. (58)

That is

lim
𝑛→∞

𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 0. (59)

Note that

𝐺𝑏 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) ≤ 2𝑠𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) , (60)

then we can get

lim
𝑛→∞

𝐺𝑏 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) = 0. (61)

Now we shall prove that {𝑥𝑛} is a Cauchy sequence in 𝐺𝑏-
metric spaces. We will prove that

lim
𝑛,𝑚→∞

𝐺𝑏 (𝑥𝑛, 𝑥𝑚, 𝑥𝑚) = 0, 𝑚 > 𝑛. (62)

Suppose (62) does not hold, then there exists 𝜀 > 0 for which
we can find subsequences {𝑥𝑚𝑖} and {𝑥𝑛𝑖} of {𝑥𝑛} with 𝑚𝑖 >𝑛𝑖 > 𝑖 such that

𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖) ≥ 𝜀. (63)
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Corresponding to 𝑛𝑖, we can find 𝑚𝑖 with the smallest index
satisfying (63) and 𝑚𝑖 > 𝑛𝑖. That is

𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) < 𝜀. (64)

From (46) and (63), we have

𝜀 ≤ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖) = 𝐺𝑏 (𝑇𝑥𝑛𝑖−1, 𝑇𝑥𝑚𝑖−1, 𝑇𝑥𝑚𝑖−1)
≤ 𝛼 (𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1)) ⋅ 𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1)
< 𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1) ,

(65)

where

𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1) = 1𝑠2 (𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)
+ 𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑛𝑖 , 𝑥𝑛𝑖) − 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖)) .

(66)

From (65), (66), and applying (59), we have

𝜀 ≤ lim inf
𝑖→∞

𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1)
= 1𝑠2 lim inf

𝑖→∞
𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) . (67)

On the other hand, applying (64) we have

𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)
≤ 𝑠𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑛𝑖 , 𝑥𝑛𝑖) + 𝑠𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)
< 𝑠𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑛𝑖 , 𝑥𝑛𝑖) + 𝑠𝜀.

(68)

Taking 𝑛 → ∞ in the above inequations, we have

lim sup
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) ≤ 𝑠𝜀. (69)

From (67) and (69) we obtain

𝜀 ≤ 1𝑠2 lim inf
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)
≤ 1𝑠2 lim sup

𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) ≤ 1𝑠2 ⋅ 𝑠𝜀 = 𝜀𝑠 ,
(70)

which is a contradiction with 𝑠 > 1.
We shall consider the situation which with 𝑠 = 1. From

(63) and (64) we have

𝜀 ≤ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖)
≤ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) + 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖)
< 𝜀 + 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖) .

(71)

Taking 𝑛 → ∞ in (71) and by (59) we have

lim
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖) = 𝜀. (72)

In the meantime,𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) − 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖)
≤ 𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑛𝑖 , 𝑥𝑛𝑖) + 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)
− (𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) − 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖))
= 𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑛𝑖 , 𝑥𝑛𝑖) + 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖) .

(73)

By taking 𝑛 → ∞ and using (59) in the above inequation,
we can deduce that

lim
𝑖→∞

𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1) = 𝜀. (74)

By (46), we have

𝜀 ≤ 𝐺𝑏 (𝑥𝑛𝑖 , 𝑥𝑚𝑖 , 𝑥𝑚𝑖) = 𝐺𝑏 (𝑇𝑥𝑛𝑖−1, 𝑇𝑥𝑚𝑖−1, 𝑇𝑥𝑚𝑖−1)
≤ 𝛼 (𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1)) 𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1)
< 𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1) ,

(75)

where

𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1)
= 𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1, 𝑥𝑚𝑖−1)

+ 𝐺𝑏 (𝑥𝑛𝑖−1, 𝑥𝑛𝑖 , 𝑥𝑛𝑖) − 𝐺𝑏 (𝑥𝑚𝑖−1, 𝑥𝑚𝑖 , 𝑥𝑚𝑖) .
(76)

By using (59), we obtain

lim
𝑖→∞

𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1) = 𝜀. (77)

Taking 𝑖 → ∞ in (75), we can deduce that

lim
𝑖→∞

𝛼 (𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1)) = 1. (78)

Since 𝛼 ∈ A, we have

lim
𝑖→∞

𝐹 (𝑥𝑛𝑖−1, 𝑥𝑚𝑖−1) = 0, (79)

which is a contradiction. In conclusion of two situations, {𝑥𝑛}
is a Cauchy sequence in complete 𝐺𝑏-metric spaces. So there
exists 𝑢∗ ∈ 𝑋 such that

lim
𝑛→∞

𝐺𝑏 (𝑥𝑛, 𝑢∗, 𝑢∗) = 0. (80)

We can confirm that 𝐺𝑏(𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗) = 0. In fact, if𝐺𝑏(𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗) ̸= 0, from (46) and (47) we have

𝐺𝑏 (𝑥𝑛+1, 𝑇𝑢∗, 𝑇𝑢∗) = 𝐺𝑏 (𝑇𝑥𝑛, 𝑇𝑢∗, 𝑇𝑢∗)
≤ 𝛼 (𝐹 (𝑥𝑛, 𝑢∗)) ⋅ 𝐹 (𝑥𝑛, 𝑢∗)
< 𝐹 (𝑥𝑛, 𝑢∗) ,

(81)
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where

𝐹 (𝑥𝑛, 𝑢∗) = 1𝑠2 (𝐺𝑏 (𝑥𝑛, 𝑢∗, 𝑢∗)
+ 𝐺𝑏 (𝑥𝑛, 𝑇𝑥𝑛, 𝑇𝑥𝑛) − 𝐺𝑏 (𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗))
= 1𝑠2 (𝐺𝑏 (𝑥𝑛, 𝑢∗, 𝑢∗)
+ 𝐺𝑏 (𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) − 𝐺𝑏 (𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗))

→ 1𝑠2𝐺𝑏 (𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗)
as 𝑛 → ∞.

(82)

We also have𝐺𝑏 (𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗) ≤ 𝑠𝐺𝑏 (𝑢∗, 𝑇𝑥𝑛, 𝑇𝑥𝑛)
+ 𝑠𝐺𝑏 (𝑇𝑥𝑛, 𝑇𝑢∗, 𝑇𝑢∗)

≤ 𝑠𝐺𝑏 (𝑢∗, 𝑥𝑛+1, 𝑥𝑛+1)
+ 𝑠𝛼 (𝐹 (𝑥𝑛, 𝑢∗)) 𝐹 (𝑥𝑛, 𝑢∗)

< 𝑠𝐺𝑏 (𝑢∗, 𝑥𝑛+1, 𝑥𝑛+1)
+ 𝑠𝐹 (𝑥𝑛, 𝑢∗) .

(83)

Taking 𝑛 → ∞ in the above inequation and using (80), we
obtain𝐺𝑏 (𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗)

≤ lim
𝑛→∞

𝐺𝑏 (𝑢∗, 𝑥𝑛+1, x𝑛+1)
+ 𝑠 lim
𝑛→∞

𝛼 (𝐹 (𝑥𝑛, 𝑢∗)) 𝐹 (𝑥𝑛, 𝑢∗)
≤ 𝑠 lim
𝑛→∞

𝐹 (𝑥𝑛, 𝑢∗) = 1𝑠 𝐺𝑏 (𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗) .
(84)

When 𝑠 = 1, we have
lim
𝑛→∞

𝛼 (𝐹 (𝑥𝑛, 𝑢∗)) = 1. (85)

Since 𝛼 ∈ A, then

lim
𝑛→∞

𝐹 (𝑥𝑛, 𝑢∗) = 𝐺𝑏 (𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗) = 0, (86)

which is a contradiction.
When 𝑠 > 1, we get a contradiction from (84).
Thus, in conclusion of two situations, 𝐺𝑏(𝑢∗, 𝑇𝑢∗, 𝑇𝑢∗) =0 and so 𝑇𝑢∗ = 𝑢∗. 𝑢∗ is a fixed point of 𝑇. We shall prove

that such 𝑢∗ is the unique fixed point of 𝑇. We argue by
contradiction. Assume there exists V∗, V∗ ̸= 𝑢∗ such that

V∗ = 𝑇V∗. (87)

We have𝐹 (𝑢∗, V∗) = 𝐺𝑏 (𝑢∗, V∗, V∗)
+ 𝐺𝑏 (𝑢∗, 𝑢∗, 𝑢∗) − 𝐺𝑏 (V∗, V∗, V∗)

= 𝐺𝑏 (𝑢∗, V∗, V∗) .
(88)

From (46), we have

0 < 𝐺𝑏 (𝑢∗, V∗, V∗) = 𝐺𝑏 (𝑇𝑢∗, 𝑇V∗, 𝑇V∗)
≤ 𝛼 (𝐹 (𝑢∗, V∗)) 𝐹 (𝑢∗, V∗)
= 𝛼 ( 1𝑠2𝐺𝑏 (𝑢∗, V∗, V∗)) 1𝑠2𝐺𝑏 (𝑢∗, V∗, V∗)
< 1𝑠2𝐺𝑏 (𝑢∗, V∗, V∗) ,

(89)

which is a contradiction. Thus, there exists a unique fixed
point 𝑢∗ ∈ 𝑋 such that 𝑢∗ = 𝑇𝑢∗.
3. Application

Let 𝑋 = 𝐶([0, 1],R) be the set of real continuous functions
defined on [0, 1]. Take the 𝐺𝑏-metric 𝐺𝑏 : 𝑋 × 𝑋 × 𝑋 →[0,∞) given by

𝐺𝑏 (𝑥, 𝑦, 𝑧) = ( sup
𝑡∈[0,1]

𝑥 (𝑡) − 𝑦 (𝑡)
+ sup
𝑡∈[0,1]

|𝑥 (𝑡) − 𝑧 (𝑡)| + sup
𝑡∈[0,1]

𝑦 (𝑡) − 𝑧 (𝑡))2 ,
(90)

for all 𝑥, 𝑦 ∈ 𝑋. Then (𝑋,𝐺𝑏) is 𝐺𝑏-metric spaces with 𝑠 ≥ 1.
Consider the following integral equation

𝑥 (𝑡) = 𝑃 (𝑡) + ∫1
0
𝑆 (𝑡, 𝑢) 𝑓 (𝑢, 𝑥 (𝑢)) 𝑑𝑢, 𝑡 ∈ [0, 1] , (91)

where 𝑓 : [0, 1] × R → R and 𝑃 : [0, 1] → R are two
continuous functions and 𝑆 : [0, 1] × [0, 1] → [0,∞) is
a function such that 𝑆(𝑡, .) ∈ 𝐿1([0, 1]) for all 𝑡 ∈ [0, 1].
Consider the operator 𝑇 : 𝑋 → 𝑋 defined by

𝑇 (𝑥 (𝑡)) = 𝑃 (𝑡) + ∫1
0
𝑆 (𝑡, 𝑢) 𝑓 (𝑢, 𝑥 (𝑢)) 𝑑𝑢,

𝑡 ∈ [0, 1] . (92)

Theorem 14. Suppose that the following conditions are satis-
fied:

(1) there exists 𝜂 : 𝑋 × 𝑋 → [0,∞) for all 𝑢 ∈ [0, 1]
0 ≤ 𝑓 (𝑥, 𝑥 (𝑢)) − 𝑓 (𝑢, 𝑦 (𝑢))
≤ 𝜂 (𝑥, 𝑦) 𝑥 (𝑢) − 𝑦 (𝑢) ∀𝑥, 𝑦 ∈ 𝑋, (93)

(2) there exists 𝛽 : [0,∞) → [0, 1/𝑠) such that
sup
𝑡∈[0,1]

∫1
0
𝑆 (𝑡, 𝑢) 𝜂 (𝑥, 𝑦) 𝑑𝑢

≤ √𝛽((2 sup
𝑡∈[0,1]

|𝐽|)2 + (2 sup
𝑡∈[0,1]

|𝐾|)2 − (2 sup
𝑡∈[0,1]

|𝐿|)2)
(94)
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where

𝐽 = 𝑥 − 𝑦,
𝐾 = 𝑥 − 𝑇𝑥,
𝐿 = 𝑦 − 𝑇𝑦.

(95)

�en the integral equation (91) has a unique solution in 𝑋.

Proof. It is clear that any fixed point of (92) is a solution of
(91). By conditions (1) and (2), we get

𝐺𝑏 (𝑇 (𝑥 (𝑡)) , 𝑇 (𝑦 (𝑡)) , 𝑇 (𝑦 (𝑡)))
= (2 sup
𝑡∈[0,1]

𝑇 (𝑥 (𝑡)) − 𝑇 (𝑦 (𝑡)))2

= (2 sup
𝑡∈[0,1]

∫
1

0
𝑆 (𝑡, 𝑢) 𝑓 (𝑢, 𝑥 (𝑢)) 𝑑𝑢 − ∫1

0
𝑆 (𝑡, 𝑢)

⋅ 𝑓 (𝑢, 𝑦 (𝑢)) 𝑑𝑢)
2 = (2 sup

𝑡∈[0,1]

∫
1

0
𝑆 (𝑡, 𝑢)

⋅ [𝑓 (𝑢, 𝑥 (𝑢)) − 𝑓 (𝑢, 𝑦 (𝑢))] 𝑑𝑢))
2

≤ (2 sup
𝑡∈[0,1]

∫1
0
𝑆 (𝑡, 𝑢) 𝜂 (𝑥, 𝑦) 𝑥 (𝑢) − 𝑦 (𝑢) 𝑑𝑢)2

= (2 sup
𝑡∈[0,1]

∫1
0
𝑆 (𝑡, 𝑢) 𝜂 (𝑥, 𝑦)

⋅ 12 ((2 𝑥 (𝑢) − 𝑦 (𝑢))2)1/2 𝑑𝑢)2 ≤ 𝐹 (𝑥, 𝑦)
⋅ ( sup
𝑡∈[0,1]

∫1
0
𝑆 (𝑡, 𝑢) 𝜂 (𝑥, 𝑦) 𝑑𝑢)2 ≤ 𝐹 (𝑥, 𝑦)

⋅ 𝛽 (𝐹 (𝑥, 𝑦))

(96)

where

𝐹 (𝑥, 𝑦) = (2 sup
𝑡∈[0,1]

|𝐽|)2

+ (2 sup
𝑡∈[0,1]

|𝐾|)2 − (2 sup
𝑡∈[0,1]

|𝐿|)2 ,
(97)

with

𝐽 = 𝑥 − 𝑦,
𝐾 = 𝑥 − 𝑇𝑥,
𝐿 = 𝑦 − 𝑇𝑦.

(98)

Then for all 𝑥, 𝑦 ∈ 𝑋 we obtain

𝐺𝑏 (𝑇 (𝑥) , 𝑇 (𝑦) , 𝑇 (𝑦)) ≤ 𝛽 (𝐹 (𝑥, 𝑦)) 𝐹 (𝑥, 𝑦) . (99)

This implies thatTheorem 12 holds.Thus the operator 𝑇 has a
unique fixed point; that is, the integral function has a unique
solution in 𝑋.

4. Conclusion

In this paper, we present somefixed point theorems about two
new Geraghty type contractions in the setting of 𝐺𝑏-metric
spaces.

In the third section, we study an application about the
unique solution of a class of integral functions to illustrate
our fixed point theorems.
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Point Theorem for Geraghty-Type Contraction in Partially
Ordered Metric Spaces,” Journal of Function Spaces, vol. 2018,
Article ID 9063267, 11 pages, 2018.

[19] E. Ameer, M. Arshad, and W. Shatanawi, “Common fixed
point results for generalized 𝛼*-𝜓-contraction multivalued
mappings in b-metric spaces,” Journal of Fixed Point�eory and
Applications, vol. 19, no. 4, pp. 3069–3086, 2017.

[20] E. Karapinar, H. H. Alsulami, and M. Noorwali, “Some exten-
sions for Geragthy type contractive mappings,” Journal of
Inequalities and Applications, vol. 2015, no. 1, p. 303, 2015.

[21] H. Aydi, A. Felhi, and H. Afshari, “NewGeraghty type contrac-
tions on metric-like spaces,” Journal of Nonlinear Sciences and
Applications, vol. 10, no. 2, pp. 780–788, 2017.



Research Article
Solution of Hamilton-Jacobi-Bellman Equation in Optimal
Reinsurance Strategy under Dynamic VaR Constraint

YuzhenWen and Chuancun Yin

School of Statistics, Qufu Normal University, Shandong 273165, China

Correspondence should be addressed to YuzhenWen; wenyzhen@163.com

Received 18 August 2018; Accepted 19 December 2018; Published 8 January 2019

Academic Editor: Yong H. Wu

Copyright © 2019 Yuzhen Wen and Chuancun Yin. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper analyzes the optimal reinsurance strategy for insurers with a generalized mean-variance premium principle.The surplus
process of the insurer is described by the diffusionmodel which is an approximation of the classical Cramér-Lunderbergmodel.We
assume the dynamic VaR constraints for proportional reinsurance.We obtain the closed form expression of the optimal reinsurance
strategy and corresponding survival probability under proportional reinsurance.

1. Introduction

In practice, reinsurance is an important way for an insurer
to control its risk exposure. In the actuarial literature, the
optimal reinsurance problem of minimising ruin probability
or equivalently maximising survival probability has been
studied extensively in the past two decades. As one type
of typical reinsurance strategy, proportional reinsurance
has received great attention from both the academics and
practitioners. Among others, Choulli et al. (2003), Højgaard
and Taksar [1, 2], Schmidli [3, 4], Taksar [5], and Zhang et al.
[6] work on the proportional reinsurance.

In the existing literature, the expected value principle
is commonly used as the reinsurance premium principle
due to its simplicity and popularity in practice. For details,
the readers are referred to Bäuerle [7], Bai and Zhang [8],
and Liang and Bayraktar [9]. Generally speaking, expected
value principle is commonly used in life insurance whose
claim frequency and claim sizes are stable and smooth,
while the variance premium principle is extensively used
in property insurance; see Zhou and Yuen [10] and Sun
et al. [11]. Similarly to Zhang et al. [6], in this paper, we
focus on a generalized mean-variance premium principle,

which includes the expected value principle and the variance
principle as special cases.

More recently, the problem of optimal reinsurance design
has been studied by using risk measures such as the Value-
at-Risk (VaR), Conditional Value-at-Risk (CVaR), and con-
ditional tail expectation (CTE) (to name a few, Cai and Tan
[12], Cheung et al. [13], and Cai et al. [14, 15]). Latterly static
risk measures have been extended to the dynamic version;
see Yiu [16], Alexander and Baptista [17], Cuoco et al. [18],
Chen et al. [19], and Zhang et al. [6], all of which investi-
gate the optimal reinsurance problem under dynamic VaR
constraint.

In this paper, we investigate an optimal proportional
reinsurance problem under dynamic VaR constraint. Assume
that an insurer aims to maximize the survival probability.
With this assumption, we obtain the closed form expres-
sions. The rest of the paper is organized as follows. In
Section 2, we provide a general formulation of the optimal
reinsurance problem. Then we investigate the insurance
company’s maximum survival probability under dynamic
VaR constraints, and the corresponding optimal reinsurance
strategy is given in proportional reinsurance settings in
Section 3.
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2. Formulation

Let (Ω,F, 𝑃) be a probability space with a filtration {F𝑡}𝑡≥0.
Consider a Cramér-Lundbergmodel with the surplus process
of an insurance company being given by

𝑈 (𝑡) = 𝑢0 + 𝑐𝑡 −
𝑁(𝑡)∑
𝑖=1

𝑌𝑖 = 𝑢0 + 𝑐𝑡 − 𝑆 (𝑡) , (1)

where 𝑢0 is the initial surplus, the claim arrival process{𝑁(𝑡)}𝑡≥0 is a Poisson process with constant intensity 𝜆 > 0,
and the random variables 𝑌𝑖, 𝑖 = 1, 2, . . ., are i.i.d claim
sizes independent of 𝑁(𝑡). We let 𝑇𝑖 denote the 𝑖-th claim
occurrence time and 𝐹(𝑦) denote the claim size distribution
with finite first and second moments 𝑚1, 𝑚2. The premium
rate 𝑐 is assumed to be calculated via the expected value
principle; that is,

𝑐 = (1 + 𝜂) 𝜆𝑚1, (2)

where 𝜂 > 0 is the relative loading factor.
In this paper, the insurer can purchase proportional

reinsurance to adjust the exposure to insurance risk. The
proportional reinsurance level is associated with the risk
exposure 𝑞(𝑡) at time 𝑡. We assume 𝑞(𝑡) ∈ [0, 1] for all 𝑡, and
it means the insurer purchases proportional reinsurance. In
this case, for each claim, the insurer only pays its 𝑞(𝑡)𝑌, while
the reinsurer pays the rest (1 − 𝑞(𝑡))𝑌 for each claim.

For a chosen reinsurance policy 𝑞(𝑡), let {𝑈𝑞(𝑡), 𝑡 ≥ 0}
denote the associated surplus process; that is, 𝑈𝑞(𝑡) is the
surplus of insurer at time t. This process then evolves as

𝑑𝑈𝑞 (𝑡) = (𝑐 − 𝑐𝑞) 𝑑𝑡 − 𝑞 (𝑡) 𝑑𝑁(𝑡)∑
𝑖=1

𝑌𝑖, (3)

where 𝑐𝑞 is the net reinsurance rate which the reinsurer
receives from the insurer. We assume that the reinsurance
premium is calculated by the following generalized mean-
variance principle (1 + 𝜃)[E(⋅) + 𝜁D(⋅)], where 𝜃, 𝜁 ≥ 0, and E

andD denote the expectation and variance, respectively.Thus
we have

𝑐𝑞𝑡 = (1 + 𝜃) 𝜆 [(1 − 𝑞 (𝑡))𝑚1 + 𝜁 (1 − 𝑞 (𝑡))2𝑚2] 𝑡, (4)

and the premium rate for the insurer is

𝑐 − 𝑐𝑞 = (𝜂 − 𝜃) 𝜆𝑚1 + (1 + 𝜃) 𝜆𝑞 (𝑡)𝑚1
+ 𝜆 (1 + 𝜃) 𝜁 (1 − 𝑞 (𝑡))2𝑚2.

(5)

According to Grandell (1991), the surplus process after
reinsurance can be approximated by the following diffusion
process:

𝑈𝑞 (𝑡) = 𝑢 + ∫𝑡
0
[(𝜂 − 𝜃) 𝜆𝑚1 + 𝜃𝜆𝑞 (𝑠)𝑚1

+ 𝜆 (1 + 𝜃) 𝜁 (1 − 𝑞 (𝑠))2𝑚2] 𝑑𝑠 + ∫
𝑡

0
𝑞 (𝑠)

⋅ √𝜆𝑚2𝑑𝐵 (𝑠) ,

(6)

where {𝐵(𝑡)}𝑡≥0 is a standard Brownian motion.

We define the ruin time

𝜏𝑞 = inf {𝑡 > 0, 𝑈𝑞 (𝑡) ≤ 0} (7)

where the superscript 𝑞 emphasises that the surplus process
and the ruin time are controlled by an admissible policy 𝑞.
Denote the survival probability given the initial surplus 𝑢 by

𝜐𝑞 (𝑢) = P (𝜏𝑞 = ∞ | 𝑈𝑞 (0) = 𝑢) , (8)

and the maximum survival probability by

𝜐 (𝑢) = max
𝑞∈Π

𝜐𝑞 (𝑢) . (9)

Our objective is to find the value function 𝜐(𝑢) and the
optimal policy 𝑞∗ such that

𝜐 (𝑢) = 𝜐𝑞∗ (𝑢) . (10)

3. Maximizing Survival Probability

Under the proportional reinsurance, the insurer could trans-
fer a fraction 1 − 𝑞(𝑡) of the incoming claims to a reinsurer,
where 𝑞(𝑡) isF𝑡-measurable and satisfies 0 ≤ 𝑞(𝑡) ≤ 1 for all𝑡. The diffusion approximation of insurance company’s claim
process becomes

𝑑𝑆𝑞 (𝑡) = 𝜆𝑞 (𝑡)𝑚1𝑑𝑡 + 𝑞 (𝑡) √𝜆𝑚2𝑑𝐵 (𝑡) ,
𝑆𝑞 (0) = 0,

(11)

where 𝐵(𝑡) is a standard Brownian motion. The insurer’s
surplus process satisfies the stochastic differential equation

𝑑𝑈𝑞 (𝑡) = [(𝜂 − 𝜃) 𝜆𝑚1 + 𝜃𝜆𝑞 (𝑠)𝑚1
+ 𝜆 (1 + 𝜃) 𝜁 (1 − 𝑞 (𝑠))2𝑚2] 𝑑𝑡 + 𝑞 (𝑡)
⋅ √𝜆𝑚2𝑑𝐵 (𝑡) ,

𝑈𝑞 (0) = 𝑢0.

(12)

Taking ℎ > 0 is small enough, we assume that risk
exposure does not change over the short time period [𝑡, 𝑡+ℎ].
This means that the risk exposure remains roughly constant
in the given time period; that is, E[𝑞(𝑠)𝑌] = E[𝑞(𝑡)𝑌],
√𝜆E[(𝑞(𝑠)𝑌)2] = √𝜆E[(𝑞(𝑡)𝑌)2], 𝑠 ∈ [𝑡, 𝑡 + ℎ]. This setting is
reasonable because the insurer can only adjust its reinsurance
business at discrete time; and the decision made is based on
the holding at time 𝑡. Thus, we rewrite the claim dynamics as

𝑆𝑞 (𝑡 + ℎ) − 𝑆𝑞 (𝑡) = ∫𝑡+ℎ
𝑡
𝜆E [𝑞 (𝑠) 𝑌] 𝑑𝑠

+ ∫𝑡+ℎ
𝑡

√𝜆E [(𝑞 (𝑠) 𝑌)2]𝑑𝐵 (𝑠)
fl 𝜆𝑞 (𝑡)𝑚1ℎ
+ 𝑞 (𝑡) √𝜆𝑚2 ∫

𝑡+ℎ

𝑡
𝑑𝐵 (𝑠) .

(13)
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3.1. Dynamic VaR, CVaR, andWorst-Case CVaR. For a given
confidence level 1 − 𝛼 ∈ (0, 1) and a given horizon ℎ > 0, the
VaR at time 𝑡 of a proportional reinsurance policy 𝑞, denoted
by 𝑉𝑎𝑅𝛼,ℎ𝑡 , is defined as

𝑉𝑎𝑅𝛼,ℎ𝑡
≜ inf {𝐿 : P (𝑆𝑞 (𝑡 + ℎ) − 𝑆𝑞 (𝑡) ≥ 𝐿 | F𝑡) < 𝛼} . (14)

The dynamic Conditional Value-at-Risk 𝐶𝑉𝑎𝑅𝛼,ℎ𝑡 is given by

𝐶𝑉𝑎𝑅𝛼,ℎ𝑡 ≜ E [𝑆𝑞 (𝑡 + ℎ) − 𝑆𝑞 (𝑡) | 𝑆𝑞 (𝑡 + ℎ) − 𝑆𝑞 (𝑡)
≥ 𝑉𝑎𝑅𝛼,ℎ𝑡 ] .

(15)

The dynamic worst-case CVaR is defined as

𝑤𝑐𝐶𝑉𝑎𝑅𝛼,ℎ𝑡
≜ sup
𝑝(⋅)∈P1

inf
𝑎∈R
{𝑎 + 1𝛼E𝑝 [(𝑆𝑞 (𝑡 + ℎ) − 𝑆𝑞 (𝑡) − 𝑎)+]} ,

(16)

where

P1 = {𝑝 (⋅) : E𝑝 [𝑆𝑞 (𝑡 + ℎ) − 𝑆𝑞 (𝑡)]
= 𝜆ℎ𝑚1𝑞 (𝑡) ,E𝑝 [(𝑆𝑞 (𝑡 + ℎ) − 𝑆𝑞 (𝑡))2]
= 𝜆ℎ𝑚2𝑞 (𝑡)2 + (𝜆ℎ𝑚1𝑞 (𝑡))2}

(17)

Proposition 1 (Zhang et al. [6]).

𝑉𝑎𝑅𝛼,ℎ𝑡 = 𝜆ℎ𝑞 (𝑡)𝑚1 − Φ−1 (𝛼) 𝑞 (𝑡) √𝜆ℎ𝑚2,
𝐶𝑉𝑎𝑅𝛼,ℎ𝑡 = 𝜆ℎ𝑞 (𝑡)𝑚1 + 𝜙 (Φ

−1) (𝛼)
𝛼 𝑞 (𝑡) √𝜆ℎ𝑚2,

𝑤𝑐𝐶𝑉𝑎𝑅𝛼,ℎ𝑡 = 𝜆ℎ𝑞 (𝑡)𝑚1 + √1 − 𝛼𝛼 𝑞 (𝑡) √𝜆ℎ𝑚2,
0 ≤ 𝑉𝑎𝑅𝛼,ℎ𝑡 ≤ 𝐶𝑉𝑎𝑅𝛼,ℎ𝑡 ≤ 𝑤𝑐𝐶𝑉𝑎𝑅𝛼,ℎ𝑡
< 𝑈𝑞 (𝑡) ,

(18)

where 𝜙(𝑥) and Φ(𝑥) denote the probability density function
and the cumulative distribution function of a standard normal
random variable, respectively.Φ−1(𝑥) is the inverse function ofΦ(𝑥).
3.2. HJB Equation. Using the dynamic programming tech-
nique, we obtain that the value function 𝜐(𝑢) satisfies the
following Hamilton-Jacobi-Bellman (HJB) equation:

max
𝑞∈[0,1]

{[(𝜂 − 𝜃) 𝜆𝑚1 + 𝜃𝜆𝑞𝑚1 − 𝜆 (1 + 𝜃) 𝜁 (1 − 𝑞)2𝑚2] 𝜐 (𝑢) + 12𝜆𝑞2𝑚2𝜐 (𝑢)} = 0, (19)

s.t. 𝑞 ∈ [0, 1] ;
𝑉𝑎𝑅𝛼,ℎ𝑡 ≤ 𝑘𝑢;
𝜐 (0) = 0, 𝜐 (+∞) = 1,

(20)

where 𝑘 (0 < 𝑘 < +∞) is a constant.
Next we try to construct a solution of the HJB equa-

tion (19) with the boundary condition (20). Suppose that

𝜂𝑚1 ≤ 𝜃𝑚1 + (1 + 𝜃)𝜁𝑚2, 𝜐(𝑢) with 𝜐(𝑢) > 0, 𝜐(𝑢) ̸= 0
satisfies (19) and (20).

Theorem 2. (a) If 𝜃 ≥ 2𝜂, the function

𝜑 (𝑢) =
{{{{{{{{{

𝜑(𝐴𝑘 ) − 𝜑 (
𝐴
𝑘 )

∫𝐴/𝑘
𝑢

𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤
∫𝐴/𝑘
0

𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤 , if 0 < 𝑢 ≤ 𝐴𝑘 ,
𝜑 (𝐴𝑘 ) + [1 − 𝜑(

𝐴
𝑘 )] [1 − 𝑒−(2𝜂𝑚1/𝑚2)(𝑢−𝐴/𝑘)] , if 𝑢 ≥ 𝐴𝑘 ,

(21)

is a smooth (C2) solution to the HJB equation, where

𝐴 = 𝜆𝑚1ℎ − Φ−1 (𝛼)√𝜆𝑚2ℎ,
𝜑 (𝐴𝑘 ) =

2𝜂𝑚1/𝑚2
2𝜂𝑚1/𝑚2 + (𝐴/𝑘)−△2 𝑒−𝑘△1/𝐴𝑒𝐴△3/𝑘/ ∫𝐴/𝑘0 𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤,

(22)
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△1 = 2𝐴2[(𝜂 − 𝜃)𝑚1 − (1 + 𝜃)𝜁𝑚2]/𝑘2𝑚2, △2 = 2𝐴[𝜃𝑚1 +2(1 + 𝜃)𝜁𝑚2]/𝑘𝑚2,△3 = 2(1 + 𝜃)𝜁. �e maximum of the le	
side of HJB equation is attained at

𝑞∗ (𝑢) = {{{{{

𝑘𝑢
𝐴 , if 𝑢 < 𝐴𝑘 ,
1, if 𝑢 ≥ 𝐴𝑘 .

(23)

(b) If 𝜃 < 2𝜂, the function
𝜑 (𝑢)

=
{{{{{{{
𝜑 (𝑢1) − 𝜑 (𝑢1) ∫

𝑢1

𝑢
𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤

∫𝑢1
0
𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤, if 0 < 𝑢 ≤ 𝑢1,

𝜑 (𝑢1) + [1 − 𝜑 (𝑢1)] [1 − 𝑒−△4(𝑢−𝑢1)] , if 𝑢 ≥ 𝑢1,
(24)

is a smooth (C2) solution to the HJB equation, where
𝜑 (𝑢1)
= △4
△4 + 𝑢−△21 𝑒−△1/𝑢1𝑒△3𝑢1/ ∫𝑢1

0
𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤 ,

(25)

△4 = ((1/2)𝜃2𝑚21 + 2𝜁𝜂(1 + 𝜃)𝑚1𝑚2)/𝑚2[𝜁(1 + 𝜃)𝑚2 + (𝜃 −𝜂)𝑚1], 𝑢1 = (𝐴/𝑘)(((𝜃 − 𝜂)𝑚1 + (1 + 𝜃)𝜁𝑚2)/((1 + 𝜃)𝜁𝑚2 +(1/2)𝜃𝑚1)). �e maximum of the le	 side of HJB equation is
attained at

𝑞∗ (𝑢) =
{{{{{{{

𝑘𝑢
𝐴 , if 𝑢 < 𝑢1,
(𝜃 − 𝜂)𝑚1 + (1 + 𝜃) 𝜁𝑚2(1 + 𝜃) 𝜁𝑚2 + (1/2) 𝜃𝑚1 , if 𝑢 ≥ 𝑢1.

(26)

Proof. We solve the HJB equation analytically. First we need
to determine the optimal strategy 𝑞∗(𝑢). Differentiating the
terms inside the maximum in (19) with respect to 𝑞(𝑢) and
setting to 0 yield

𝑞0 (𝑢) = 𝜃𝑚1 + 2𝜁 (1 + 𝜃)𝑚22𝜁 (1 + 𝜃)𝑚2 − 𝑚2 (𝜑/𝜑) . (27)

The dynamic VaR constraint implies 𝑞(𝑢) ≤ 𝑘𝑢/𝐴, when𝐴 is defined by (27). Normally, we take 0 < 𝛼 < 1/2; hence,𝐴
is always positive.

(1) For 𝑢 ≥ 𝐴/𝑘, we have 𝑘𝑢/𝐴 ≥ 1. Then, from 𝑞(𝑢) ≤𝑘𝑢/𝐴 obtained from the dynamic VaR constraint and the
requirement that the retained proportion of claims 𝑞(𝑢) is
always within [0, 1], we have 𝑞(𝑢) ∈ [0, 1].

(a) If 𝑞0(𝑢) ≥ 1, we let 𝑞∗(𝑢) = 1, and then the HJB
equation becomes

𝜂𝑚1𝜑 (𝑢) + 12𝑚2𝜑 (𝑢) = 0, (28)

which implies

𝜑 (𝑢)
𝜑 (𝑢) = −

2𝜂𝑚1𝑚2 . (29)

Inserting it into (28), we obtain

𝑞0 (𝑢) = 𝜃𝑚1 + 2𝜁 (1 + 𝜃)𝑚22𝜁 (1 + 𝜃)𝑚2 + 2𝜂𝑚1 . (30)

(i) If 𝜃 ≥ 2𝜂, we have 𝑞0(𝑢) ≥ 1; consequently 𝑞∗(𝑢) = 1,
and then the HJB equation becomes (30).

(ii) If 𝜃 < 2𝜂, we have 𝑞0(𝑢) < 1, where conflict exits.
(b) If 𝑞0(𝑢) < 1, we have 𝑞∗(𝑢) = 𝑞0(𝑢), and then the HJB

equation becomes

𝜑 (𝑢)
𝜑 (𝑢) = −

(1/2) 𝜃2𝑚21 + 2𝜁𝜂 (1 + 𝜃)𝑚1𝑚2𝑚2 [𝜁 (1 + 𝜃)𝑚2 + (𝜃 − 𝜂)𝑚1] , (31)

which implies

𝑞0 (𝑢) = 𝜁 (1 + 𝜃)𝑚2 + (𝜃 − 𝜂)𝑚1(1/2) 𝜃𝑚1 + 𝜁 (1 + 𝜃)𝑚2 . (32)

(i) If 𝜃 ≥ 2𝜂, we have 𝑞0(𝑢) ≥ 1, where conflict exits.
(ii) If 𝜃 < 2𝜂, we have 𝑞0(𝑢) < 1; consequently 𝑞∗(𝑢) =𝑞0(𝑢) = (𝜁(1 + 𝜃)𝑚2 + (𝜃 − 𝜂)𝑚1)/((1/2)𝜃𝑚1 + 𝜁(1 +𝜃)𝑚2), and then the HJB equation becomes (32).

(2) When 0 < 𝑢 < 𝐴/𝑘, we have 𝑘𝑢/𝐴 < 1; thus 0 ≤𝑞(𝑢) ≤ 𝑘𝑢/𝐴.
(a) If 𝑞0(𝑢) ≥ 𝑘𝑢/𝐴, we have 𝑞∗(𝑢) = 𝑘𝑢/𝐴, and then the

HJB equation becomes

[(𝜂 − 𝜃)𝑚1 + 𝜃𝑘𝑢𝐴 𝑚1 − 𝜁 (1 + 𝜃) (1 −
𝑘𝑢
𝐴 )
2𝑚2]

⋅ 𝜑 (𝑢) + 12𝑚2 (
𝑘𝑢
𝐴 )
2 𝜑 (𝑢) = 0.

(33)

We have

𝜑 (𝑢)
𝜑 (𝑢)
= −(𝜂 − 𝜃)𝑚1 + 𝜃 (𝑘𝑢/𝐴)𝑚1 − 𝜁 (1 + 𝜃) (1 − 𝑘𝑢/𝐴)2𝑚2(1/2)𝑚2 (𝑘𝑢/𝐴)2 ,

(34)

which implies

𝑞0 (𝑢) = 12 (
𝑘𝑢
𝐴 )
2

⋅ 1
𝑘𝑢/𝐴 − ((𝜃 − 𝜂)𝑚1 + (1 + 𝜃) 𝜁𝑚2) / (𝜃𝑚1 + 2𝜁 (1 + 𝜃)𝑚2) .

(35)

We have 𝜑(𝑢) < 0 when 𝑢 > (𝐴/𝑘)(((𝜃 −𝜂)𝑚1 + (1 + 𝜃)𝜁𝑚2)/((1 + 𝜃)𝜁𝑚2 + (1/2)(𝜃𝑚1 +
√𝜃2𝑚21 + 4(1 + 𝜃)𝜁𝜂𝑚1𝑚2))), and we have 𝑞0(𝑢) > 0 when
𝑢 > (𝐴/𝑘)(((𝜃 − 𝜂)𝑚1 + (1 + 𝜃)𝜁𝑚2)/(2(1 + 𝜃)𝜁𝑚2 + 𝜃𝑚1)).
We have 𝜑(𝑢) < 0 and 𝑞0(𝑢) > 0 when 𝑢 >(𝐴/𝑘)(((𝜃 − 𝜂)𝑚1 + (1 + 𝜃)𝜁𝑚2)/((1 + 𝜃)𝜁𝑚2 + (1/2)(𝜃𝑚1 +
√𝜃2𝑚21 + 4(1 + 𝜃)𝜁𝜂𝑚1𝑚2))).

For 𝐴/𝑘 > 𝑢 > (𝐴/𝑘)(((𝜃 − 𝜂)𝑚1 + (1 + 𝜃)𝜁𝑚2)/((1 +
𝜃)𝜁𝑚2 + (1/2)(𝜃𝑚1 + √𝜃2𝑚21 + 4(1 + 𝜃)𝜁𝜂𝑚1𝑚2))), we have
the following.



Journal of Function Spaces 5

(i) If 𝜃 ≥ 2𝜂, we have 𝑞0(𝑢) ≥ 𝑘𝑢/𝐴; consequently𝑞∗(𝑢) = 𝑞0(𝑢) = 𝑘𝑢/𝐴, and then the HJB equation
becomes (34).

(ii) If 𝜃 < 2𝜂, we have 𝑞0(𝑢) < 𝑘𝑢/𝐴, where conflict exits.
For 𝑢 ≤ (𝐴/𝑘)(((𝜃 − 𝜂)𝑚1 + (1 + 𝜃)𝜁𝑚2)/((1 + 𝜃)𝜁𝑚2+

(1/2)(𝜃𝑚1 + √𝜃2𝑚21 + 4(1 + 𝜃)𝜁𝜂𝑚1𝑚2))), we have 𝜑(𝑢) ≥0; therefore 𝜑(𝑢) is convex for small 𝑢. Through the
analysis of the HJB equation (19), for 0 ≤ 𝑢 ≤(𝐴/𝑘)(((𝜃 − 𝜂)𝑚1 + (1 + 𝜃)𝜁𝑚2)/((1 + 𝜃)𝜁𝑚2 + (1/2)(𝜃𝑚1 +
√𝜃2𝑚21 + 4(1 + 𝜃)𝜁𝜂𝑚1𝑚2))), the maximum of the left side of
the HJB is attained at 𝑞∗(𝑢) = 𝑘𝑢/𝐴 and the HJB equation
becomes (34).

(b) When 𝑞0(𝑢) ≤ 𝑘𝑢/𝐴, it is reasonable to let 𝑞∗(𝑢) =𝑞0(𝑢). Similar to (a), we have the following conclusions.
For 0 ≤ 𝑢 ≤ (𝐴/𝑘)(((𝜃−𝜂)𝑚1+ (1+𝜃)𝜁𝑚2)/((1+𝜃)𝜁𝑚2+(1/2)𝜃𝑚1)), the optimal strategy is obtained at 𝑞∗(𝑢) = 𝑘𝑢/𝐴.
For (𝐴/𝑘)(((𝜃 − 𝜂)𝑚1 + (1 + 𝜃)𝜁𝑚2)/((1 + 𝜃)𝜁𝑚2 +(1/2)𝜃𝑚1)) < 𝑢 ≤ 𝐴/𝑘, we have the following.
(i) If 𝜃 ≥ 2𝜂, we have 𝑞0(𝑢) ≥ 1 > 𝑘𝑢/𝐴, where conflict

exits.
(ii) If 𝜃 < 2𝜂, we have 𝑞0(𝑢) < 𝑘𝑢/𝐴; consequently,𝑞∗(𝑢) = 𝑞0(𝑢) = ((𝜃−𝜂)𝑚1+(1+𝜃)𝜁𝑚2)/((1+𝜃)𝜁𝑚2+(1/2)𝜃𝑚1), and then the HJB equation becomes (32).

From the previous analysis, we have the following conclu-
sions.

(i) If 𝜃 ≥ 2𝜂, the maximum of the left side of HJB
equation is attained at

𝑞∗ (𝑢) = {{{{{

𝑘𝑢
𝐴 , if 𝑢 < 𝐴𝑘 ,
1, if 𝑢 ≥ 𝐴𝑘 .

(36)

(ii) If 𝜃 < 2𝜂, the maximum of the left side of HJB
equation is attained at

𝑞∗ (𝑢) =
{{{{{{{

𝑘𝑢
𝐴 , if 𝑢 < 𝑢1,
(𝜃 − 𝜂)𝑚1 + (1 + 𝜃) 𝜁𝑚2(1 + 𝜃) 𝜁𝑚2 + (1/2) 𝜃𝑚1 , if 𝑢 ≥ 𝑢1.

(37)

In the following, we will solve the HJB equation in each
situation.

For 𝜃 ≥ 2𝜂 and 𝑢 < 𝐴/𝑘, the HJB equation is (34), which
is equivalent to (35). Taking integral from 𝑢 to𝐴/𝑘, we obtain

𝜑 (𝑢) = 𝜑(𝐴𝑘 ) − 𝐾∫
𝐴/𝑘

𝑢
𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤, (38)

where △1 = 2𝐴2[(𝜂 − 𝜃)𝑚1 − (1 + 𝜃)𝜁𝑚2]/𝑘2𝑚2, △2 =2𝐴[𝜃𝑚1 + 2(1 + 𝜃)𝜁𝑚2]/𝑘𝑚2, and △3 = 2(1 + 𝜃)𝜁. Applying
the boundary condition 𝜑(0) = 0 we obtain

𝐾 = 𝜑 (𝐴/𝑘)
∫𝐴/𝑘
0

𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤. (39)

For 𝜃 ≥ 2𝜂 and 𝑢 ≥ 𝐴/𝑘, the corresponding HJB is (29),
which is equivalent to (30). Taking integral form𝐴/𝑘 to 𝑢, we
obtain

𝜑 (𝑢) = 𝜑(𝐴𝑘 )
+ 𝑚22𝜂𝑚1𝜑

 (𝐴𝑘 ) [1 − 𝑒−(2𝜂𝑚1/𝑚2)(𝑢−𝐴/𝑘)] .
(40)

Applying the boundary condition 𝛿(+∞) = 1 we obtain
𝜑 (𝑢) = 𝜑 (𝐴𝑘 )

+ [1 − 𝜑 (𝐴/𝑘)] [1 − 𝑒−(2𝜂𝑚1/𝑚2)(𝑢−𝐴/𝑘)] .
(41)

Considering that 𝜑(𝑥) is twice continuously differentiable, it
should satisfy 𝜑(𝐴/𝑘−) = 𝜑(𝐴/𝑘+); that is,

𝜑 (𝐴/𝑘) (𝐴/𝑘)−△2 𝑒−𝑘△1/𝐴𝑒𝐴△3/𝑘
∫𝐴/𝑘
0

𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤
= 2𝜂𝑚1𝑚2 [1 − 𝜑(

𝐴
𝑘 )] ,

(42)

which leads to

𝜑(𝐴𝑘 ) =
2𝜂𝑚1/𝑚2

2𝜂𝑚1/𝑚2 + (𝐴/𝑘)−△2 𝑒−𝑘△1/𝐴𝑒𝐴△3/𝑘/ ∫𝐴/𝑘0 𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤. (43)

Thus, if 𝜃 ≥ 2𝜂, we have the function

𝜑 (𝑢) =
{{{{{{{{{

𝜑(𝐴𝑘 ) − 𝜑(
𝐴
𝑘 )

∫𝐴/𝑘
𝑢

𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤
∫𝐴/𝑘
0

𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤, if 0 < 𝑢 ≤ 𝐴𝑘 ,
𝜑 (𝐴𝑘 ) + [1 − 𝜑 (

𝐴
𝑘 )] [1 − 𝑒−(2𝜂𝑚1/𝑚2)(𝑢−𝐴/𝑘)] , if 𝑢 ≥ 𝐴𝑘 .

(44)
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If 𝜃 < 2𝜂 and 𝑢 < 𝑢1, the HJB equation is (34), and
the HJB equation is (32) for 𝜃 < 2𝜂 and 𝑢 ≥ 𝑢1. From
the procedure that is similar to the previous analysis we
can get the following function is a C2 solution to HJB; that
is,

𝜑 (𝑢)

=
{{{{{{{{{

𝜑 (𝑢1) − 𝜑 (𝑢1) ∫
𝑢1

𝑢
𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤

∫𝑢1
0
𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤 , if 0 < 𝑢 ≤ 𝑢1,

𝜑 (𝑢1) + [1 − 𝜑 (𝑢1)] [1 − 𝑒−△4(𝑢−𝑢1)] , if 𝑢 ≥ 𝑢1,
(45)

where

△4 = (1/2) 𝜃
2𝑚21 + 2𝜁𝜂 (1 + 𝜃)𝑚1𝑚2𝑚2 [𝜁 (1 + 𝜃)𝑚2 + (𝜃 − 𝜂)𝑚1] ,

𝜑 (𝑢1)

= △4
△4 + 𝑢−△21 𝑒−△1/𝑢1𝑒△3𝑢1/ ∫𝑢1

0
𝑤−△2𝑒−△1/𝑤𝑒△3𝑤𝑑𝑤.

(46)

This ends the proof.

When the value function is twice continuously differen-
tiable, then it is the unique solution of the HJB equation (see,
e.g., [20]), and we have the following result.

Proposition 3. �e value function V(𝑥) coincides with the
smooth function 𝜑(𝑥) defined in �eorem 2 and the optimal
control, which represents the optimal proportional reinsurance
strategy, is described by the 𝑞∗(𝑢) in �eorem 2, where
{𝑈𝑞∗(𝑡), 𝑡 ≥ 0} is the corresponding surplus process.
Remark 4. When 𝜁 = 0, Theorem 2 coincides with theorem
3.1 in Zhang et al. [6].

Corollary 5. When 𝜃 = 0, the generalized mean-variance
premium principle is mean-variance premium principle, and
we have the following:

𝜑 (𝑢) =
{{{{{{{
𝜑 (𝑢1) − 𝜑 (𝑢1) ∫

𝑢1

𝑢
𝑤−4𝐴𝜁/𝑘𝑒−2𝐴2(𝜂𝑚1−𝜁𝑚2)/𝑤𝑘2𝑚2𝑒2𝜁𝑤𝑑𝑤

∫𝑢1
0
𝑤−4𝐴𝜁/𝑘𝑒−2𝐴2(𝜂𝑚1−𝜁𝑚2)/𝑤𝑘2𝑚2𝑒2𝜁𝑤𝑑𝑤, if 0 < 𝑢 ≤ 𝑢1,

𝜑 (𝑢1) + [1 − 𝜑 (𝑢1)] [1 − 𝑒−(2𝜁𝜂𝑚1/𝜁𝑚2−𝜂𝑚1)(𝑢−𝑢1)] , if 𝑢 ≥ 𝑢1,
(47)

is a smooth (C2) solution to the HJB equation, where

𝜑 (𝑢1) = 2𝜁𝜂𝑚1/ (𝜁𝑚2 − 𝜂𝑚1)
2𝜁𝜂𝑚1/ (𝜁𝑚2 − 𝜂𝑚1) + 𝑢−4𝐴𝜁/𝑘1 𝑒−2𝐴2(𝜂𝑚1−𝜁𝑚2)/𝑢1𝑘2𝑚2𝑒2𝜁𝑢1/ ∫𝑢1

0
𝑤−4𝐴𝜁/𝑘𝑒−2𝐴2(𝜂𝑚1−𝜁𝑚2)/𝑤𝑘2𝑚2𝑒2𝜁𝑤𝑑𝑤, (48)

𝑢1 = (𝐴/𝑘)(1 − 𝜂𝑚1/𝜁𝑚2). �e maximum of the le	 side of
HJB equation is attained at

𝑞∗ (𝑢) = {{{{{

𝑘𝑢
𝐴 , if 𝑢 < 𝑢1,
1 − 𝜂𝑚1𝜁𝑚2 , if 𝑢 ≥ 𝑢1. (49)

Corollary 6. When there is no dynamic VaR, CVaR, or
wcCVaR constraints, that is, 𝑘 = ∞, and the model becomes
the unconstrained reinsurance problem, we have the following.

(a) If 𝜃 ≥ 2𝜂, the optimal reinsurance strategy is 𝑞∗ = 1,
and the optimal survival probability is

𝜑 (𝑢) = 1 − 𝑒−(2𝜂𝑚1/𝑚2)𝑢. (50)

(b) If 𝜃 < 2𝜂, the optimal reinsurance strategy is 𝑞∗ = ((𝜃 −𝜂)𝑚1 + (1 + 𝜃)𝜁𝑚2)/((1 + 𝜃)𝜁𝑚2 + (1/2)𝜃𝑚1), and the optimal
survival probability is

𝜑 (𝑢)
= 1
− 𝑒−(((1/2)𝜃2𝑚21+2𝜁𝜂(1+𝜃)𝑚1𝑚2)/𝑚2[𝜁(1+𝜃)𝑚2+(𝜃−𝜂)𝑚1])𝑢.

(51)
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This paper deals with the problem of estimating the parameters for fractional diffusion process from discrete observations when the
Hurst parameter𝐻 is unknown.With combination of several methods, such as the Donsker type approximate formula of fractional
Brownian motion, quadratic variation method, and the maximum likelihood approach, we give the parameter estimations of the
Hurst index, diffusion coefficients, and volatility and then prove their strong consistency. Finally, an extension for generalized
fractional diffusion process and further work are briefly discussed.

1. Introduction

In recent years, many scholars have found that some financial
time series data tend to be shown as biased randomwalk, long
memory, and self-similarity, etc., which made the stochastic
differential equation model driven by Brownian motion no
longer applicable to describe financial data. Perhaps the
most popular approach for modeling long memory is the
use of fractional Brownian motion (hereafter fBm) that has
been verified as a good model to describe the long memory
property of some time series.

Compared with the traditional efficient market hypoth-
esis theory, fractional market theory can accurately depict
the actual law of financial market, such as the Ornstein-
Uhlenbeck process driven by fractional Brownian motion,
which ismore consistent with the characteristics of long-term
memory, in place of Vasicek model that is suitable to simulate
the short-term interest rate model.

Although the study of fractional Brownian motion has
been going on for decades, statistical inference problems
related are just in its infancy. Such questions have been
recently treated in several papers [1–3]: in general, the
techniques used to construct maximum likelihood estima-
tors (MLE) for the drift parameter are based on Girsanov

transforms for fBm and depend on the properties of the
deterministic fractional operators related to the fBm. Gen-
erally speaking, these papers focused on the problems of
estimating the unknown parameters in the continuous-time
case. Prakasa Rao [4] gave an extensive review on most of
the recent developments related to the parametric and other
inference procedures for stochastic models driven by fBm.
The latest study can be found in Xiao and Yu [5, 6], who
developed the asymptotic theory for least square estimators
for two parameters in the drift function in the fractional
Vasicek model with a continuous record of observations.
Another possibility is to use Euler-type approximations for
the solution of the above equation and to construct an MLE
estimator based on the density of the observations given
”the past”, for the case of stochastic equations driven by
Brownian motion. “Real-world” data is, however, typically
discretely sampled (e.g., stock prices collected once a day
or, at best, at every tick). Therefore, statistical inference for
discretely observed diffusions is of great interest for practical
purposes and at the same time it poses a challenging problem.
Some papers are devoted to the parameter estimation for the
models with fBm and discrete observations; see, e.g., Hu and
Nualart[1], Hu and Song [7], Mishura and Ralchenko [8],
Zhang, Xiao, Zhang and Niu [9], and Sun and Shi [10].
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In this paper, we shall consider the parameter estima-
tion problem for fractional linear diffusion process (FLDP).
Assume that we have the model

𝑑𝑋𝑡 = (𝛼 − 𝛽𝑋𝑡) 𝑑𝑡 + 𝜎𝑑𝐵𝐻𝑡 , (1)

which can describe the intrinsic characteristics of interest rate
more accurately in practical problem. The drift parameter 𝛼,𝛽 can characterize, respectively, the long-term equilibrium
interest rate level and the rate of the short-term interest
rates deviate from long-term interest rates. In general, the
parameters of long-term equilibrium level of short-term
interest rate are unknown. We assume 𝛽 > 0 throughout
the paper so that the process is ergodic (when 𝛽 < 0 the
solution to (1) will diverge), 𝜎 describes the volatility of
interest rates, and (𝐵𝐻𝑡 )𝑡≥0 is a fBm with Hurst parameter𝐻 ∈ (0, 1). In this paper, we suppose the Hurst index 𝐻, the
diffusion coefficients 𝛼, 𝛽, and the volatility 𝜎 are unknown
parameters to be estimated. We will furthermore show the
strong consistence of these estimators.

In the case of diffusion process driven by Brownian
motion, the most important methods are either maximum
likelihood estimation or least square estimation. Since fBm
is not a Markov process, the Kalman filter method cannot
be applied to estimate the parameters of stochastic process
driven by fBm. Consequently, it is a convenient way to handle
the estimation problem by replacing fBm with its associated
disturbed random walk. In this paper, we follow Zhang et.
al. [9] to use discrete expressions of fractional Bronwnian
motion with Donsker type approximate formula, which
can, to some extent, simplify calculation and simulation.
Although we do not have martingales in the model, this
construction involving random walks allows using martin-
gales arguments to obtain the asymptotic behaviour of the
estimators.

Our paper is organized as follows. In Section 2, we pro-
pose MLE estimators for FLDP from discrete observations.
The almost sure convergence of the estimators is provided in
the latter part of this section. In Section 4, an extension for
generalized fractional diffusion process is briefly discussed.
Finally, Section 5 includes conclusions and directions of
further work.

2. Estimation Procedure

It is worth emphasizing that the solution of (1) is given by

𝑋𝑡 = 𝑋0 + ∫𝑡
0
(𝛼 − 𝛽𝑋𝑠) 𝑑𝑠 + 𝜎𝐵𝐻𝑡 , (2)

where the unknown parameters included 𝛼, 𝛽, 𝜎 and 𝐻. We
nowproceed to estimate these parameters based on quadratic
variation method and maximum likelihood approach.

Let {𝑋𝑡, 𝑡 ∈ 𝑅} be the FLDP with 𝐻 > 1/2 and suppose
that 𝜋𝑛 = {𝜏𝑛𝑘 , 𝑘 = 0, 1, . . . , 𝑖𝑛}, 𝑛 ≥ 1, 𝑖𝑛 ↑ ∞, be a sequence
of partitions of the interval [0, 𝑇]. If partition 𝜋𝑛 is uniform,
then 𝜏𝑛𝑘 = 𝑘𝑇/𝑖𝑛 for all 𝑘 ∈ {0, 1, . . . , 𝑖𝑛}. If 𝑖𝑛 ≡ 𝑛, we write𝑡𝑛𝑘 instead of 𝜏𝑛𝑘 . Assume that process 𝑋𝑡 is observed at time
points (𝑖/𝑚𝑛)𝑇, 𝑖 = 1, 2, . . . , 𝑚𝑛, where𝑚𝑛 = 𝑛𝑘𝑛 and 𝑘𝑛 grows

faster than 𝑛𝑙𝑛𝑛, but the growth does not exceed polynomial,
e.g., 𝑘𝑛 = 𝑛𝑙𝑛𝜃𝑛, 𝜃 > 1 or 𝑘𝑛 = 𝑛2.

In applications, the estimation of 𝐻 ∈ (0, 1) (called the
Hurst index) is a fundamental problem. Its solution depends
on the theoretical structure of a model under consideration.
Therefore particularmodels usually deserve separate analysis.

According to the notation of Kubilius Skorniakov [11],
suppose there are two hypotheses:

(𝐶1) Δ𝑋𝜏𝑛
𝑘
= 𝑋𝜏𝑛

𝑘
− 𝑋𝜏𝑛

𝑘−1
= 𝑂𝜔 (𝑑𝐻−𝜀𝑛 ) ,

(𝐶2) Δ(2)𝑋𝜏𝑛
𝑘
= Δ𝑋𝜏𝑛

𝑘
− Δ𝑋𝜏𝑛

𝑘−1

= 𝜎Δ(2)𝐵𝐻𝜏𝑛
𝑘−1

+ 𝑂𝜔 (𝑑2(𝐻−𝜀)𝑛 ) ,
(3)

for all 𝜀 ∈ (0,𝐻 − 1/2), where 𝑑𝑛 = 𝑚𝑎𝑥1≤𝑘≤𝑚𝑛(𝜏𝑛𝑘−𝜏𝑛𝑘−1)𝑌𝑛 =𝑂𝜔(𝑎𝑛) means for a sequence of r.v. 𝑌𝑛, and 𝑎𝑛 ⊂ (0,∞), and
there exists a.s. non-negative r.v. 𝜍, such that |𝑌𝑛 | ≤ 𝜍⋅𝑎𝑛.These
two conditions are used to prove the strongly consistent and
asymptotically normality of the estimator 𝐻 from discrete
observatios.

Denote

𝑊𝑛,𝑘 = 𝑘𝑛∑
𝑖=−𝑘𝑛+2

(Δ(2)𝑋𝑠𝑛
𝑖
+𝑡𝑛
𝑘
)2

= 𝑘𝑛∑
𝑖=−𝑘𝑛+2

(𝑋𝑠𝑛
𝑖
+𝑡𝑛
𝑘
− 2𝑋𝑠𝑛

𝑖−1
+𝑡𝑛
𝑘
+ 𝑋𝑠𝑛

𝑖−2
+𝑡𝑛
𝑘
)2 ,

(4)

where 1 ≤ 𝑘 ≤ 𝑛 and 𝑠𝑛𝑖 = (𝑖/𝑚𝑛)𝑇,
Then, the estimator of Hurst parameter 𝐻 can be written

as

�̂� = 12 + 12 ln 𝑘𝑛 ln( 2𝑚𝑛
𝑚𝑛∑
𝑘=2

(Δ(2)𝑋𝑡𝑛
𝑘
)2𝑊𝑛,𝑘−1 ) . (5)

Next, we turn to the estimation problem of the diffusion
parameter 𝜎2. When 𝐻 is known, Xiao et al. [12] obtained
the estimators based on approximating integrals via Riemann
sums with Hurst index 𝐻 ∈ (1/2, 3/4). In contrast, we
suppose in this paper the Hurst index is unknown. Therefore
in the next estimation, the estimator of 𝐻 will be embedded
in the equation. For simplicity, denote 𝑋𝜏𝑛

𝑖
≜ 𝑋𝑖ℎ, 𝐵𝐻𝜏𝑛

𝑘−1
=𝐵𝐻,𝑚𝑛𝑖 , 𝑖 = 1, . . . , 𝑚𝑛, ℎ = 𝑇/𝑚𝑛. Thus, the full sequence of𝑚𝑛 observations can be written as {𝑋ℎ, 𝑋2ℎ, . . . , 𝑋𝑚𝑛ℎ}.

For the diffusion parameter, we easily obtain an estimator
for the diffusion parameter by using quadratic variations,
such

𝜎2 = ∑𝑚𝑛−1𝑖=1 (𝑋(𝑖+1)ℎ − 𝑋𝑖ℎ)2(𝑚𝑛 − 1) ℎ2�̂� , (6)

which converges (in 𝐿2 and almost surely) to 𝜎2.
Finally, we are in a position to estimate the drift param-

eter. Note that 𝐵𝐻𝑡 − 𝐵𝐻𝑡−1 is not independent and the process𝐵𝐻𝑡 is not a semimartingale; therefore the martingale type
techniques cannot be used to study this estimator. This
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problem will be avoided by the use of the random walks
that approximate 𝐵𝐻𝑡 . Based on the results on Sottinen [13],
the fractional Brownian motion can be approximated by a
”disturbed” random walk, which was called Donsker type
approximation for fBm.

Lemma 1. The fBm with Hurst parameter 𝐻 > 1/2 can be
represented by its associated disturbed random walk:

𝐵𝐻,𝑚𝑛𝑡 = ⌊𝑚𝑛𝑡⌋∑
𝑖=1

√𝑚𝑛 (∫𝑖/𝑚𝑛
(𝑖−1)/𝑚𝑛

𝐾𝐻(⌊𝑚𝑛𝑡⌋𝑚𝑛 , 𝑠) 𝑑𝑠) 𝜀𝑖, (7)

with 𝐾𝐻(𝑡, 𝑠) = 𝑐𝐻(𝐻 − 1/2)𝑠1/2−𝐻 ∫𝑡
𝑠
(𝑢 − 𝑠)𝐻−1/2𝑢𝐻−1/2𝑑𝑢,

which is the kernel function that transforms the standard
Brownian motion into a fractional one, 𝑐𝐻 is the normalizing
constant 𝑐𝐻 = √2𝐻Γ(2/3 − 𝐻)/Γ(𝐻 + 1/2)Γ(2 − 2𝐻), and 𝜀𝑖
are i.i.d. random variables with 𝐸𝜀𝑖 = 0 and var 𝜀𝑖 = 1, and⌊𝑥⌋ denotes the greatest integer not exceeding 𝑥.

Sottinen (2011) proved that 𝐵𝐻,𝑚𝑛𝑡 converges weakly in
the skorohod topology to the fractional Brownian motion.
With the estimators �̂�, 𝜎 plug-in, the replacing model still
kept the main properties of the original process, such as long
range dependence and asymptotic self-similar. Therefore, the
martingales can be used to treat this replacing model.

In general, numerical approximation of model (1) can be
presented by Euler scheme:

𝑋(𝑖+1)ℎ = 𝑋𝑖ℎ + (𝛼 − 𝛽𝑋𝑖ℎ) ℎ + 𝜎 (𝐵𝐻,𝑚𝑛(𝑖+1)ℎ − 𝐵𝐻,𝑚𝑛𝑖ℎ ) ,
𝑖 = 1, . . . , 𝑚𝑛 − 1. (8)

Set

𝑓𝑖 (𝜀1, 𝜀2, . . . , 𝜀𝑖)
= √𝑚𝑛 𝑖∑

𝑗=1

[∫𝑗ℎ
(𝑗−1)ℎ

(𝐾𝐻 ((𝑖 + 1) ℎ, 𝑠) − 𝐾𝐻 (𝑖ℎ, 𝑠)) 𝑑𝑠] 𝜀𝑗 (9)

to denote the contribution of the 𝑛 − 1 first jumps of the
random walk and

𝐹𝑖 = √𝑚𝑛 ∫(𝑖+1)ℎ
𝑖ℎ

𝐾𝐻 ((𝑖 + 1) ℎ, 𝑠) 𝑑𝑠 (10)

to denote the contribution of the last jump.

With the approximation of fBm (Lemma 1), we can write

𝐵𝐻,𝑚𝑛(𝑖+1)ℎ − 𝐵𝐻,𝑚𝑛𝑖ℎ = 𝑓𝑖 (𝜀1, 𝜀2, . . . , 𝜀𝑖) + 𝐹𝑖𝜀𝑖+1,
𝑖 = 1, . . . , 𝑚𝑛 − 1. (11)

with which (8) can be written as

𝑋(𝑖+1)ℎ = 𝑋𝑖ℎ + (𝛼 − 𝛽𝑋𝑖ℎ) ℎ
+ 𝜎 [𝑓𝑖 (𝜀1, 𝜀2, . . . , 𝜀𝑖) + 𝐹𝑖𝜀𝑖+1] . (12)

Hence we have

𝐸 [𝑋(𝑖+1)ℎ − 𝑋𝑖ℎ | 𝑋𝑖ℎ]
= (𝛼 − 𝛽𝑋𝑖ℎ) ℎ + 𝜎 (𝑓𝑖 (𝜀1, 𝜀2, . . . , 𝜀𝑖)) ,

var [𝑋(𝑖+1)ℎ − 𝑋𝑖ℎ | 𝑋𝑖ℎ] = �̂�2𝐹2𝑖 .
(13)

We assume that random variables 𝜀𝑖 follow a standard
normal law 𝑁(0, 1). Then, the random variable 𝑋(𝑖+1)ℎ is
conditionally Gaussian and the conditional density of𝑋(𝑖+1)ℎ
given 𝑋ℎ, 𝑋2ℎ, . . . , 𝑋𝑖ℎ can be written as

𝑓𝑋(𝑖+1)ℎ |𝑋ℎ,𝑋2ℎ,...,𝑋𝑖ℎ (𝑥(𝑖+1)ℎ | 𝑥ℎ, 𝑥2ℎ, . . . , 𝑥𝑖ℎ) = 1
√2𝜋𝜎2𝐹2𝑖

⋅ exp{−12
⋅ (𝑥(𝑖+1)ℎ − 𝑥𝑖ℎ − (𝛼 − 𝛽𝑥𝑖ℎ) ℎ − 𝜎𝑓𝑖 (𝜀1, 𝜀2, . . . , 𝜀𝑖))2𝐹2𝑖 } .

(14)

The likelihood function can be expressed as

𝐿 (𝛼, 𝛽) = 𝑓𝑋ℎ (𝑥ℎ) 𝑓𝑋2ℎ|𝑋ℎ (𝑥2ℎ | 𝑥ℎ)
⋅ ⋅ ⋅ 𝑓𝑋𝑚𝑛ℎ|𝑋ℎ,𝑋2ℎ,...,𝑋(𝑚𝑛−1)ℎ (𝑥𝑚𝑛ℎ | 𝑥ℎ, 𝑥2ℎ, . . . , 𝑥(𝑚𝑛−1)ℎ)
= 𝑚𝑛∏
𝑖=1

1
√2𝜋𝜎2𝐹2𝑖 exp{−12

⋅ (𝑥(𝑖+1)ℎ − 𝑥𝑖ℎ − (𝛼 − 𝛽𝑥𝑖ℎ) ℎ − 𝜎𝑓𝑖 (𝜀1, 𝜀2, . . . , 𝜀𝑖))2𝐹2𝑖 } .

(15)

This leads to the MLE of 𝛼 and 𝛽

�̂� = ∑𝑚𝑛−1𝑖=0 ((𝑦𝑖ℎ − 𝛽ℎ𝑥𝑖ℎ) /𝐹2𝑖 )∑𝑁−1𝑖=0 (ℎ/𝐹2𝑖 ) , (16)

𝛽 = (1ℎ) ∑𝑚𝑛−1𝑖=0 (𝑥𝑖ℎ/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (𝑦𝑖ℎ/𝐹2𝑖 ) − ∑𝑚𝑛−1𝑖=0 (1/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (𝑦𝑖ℎ𝑥𝑖ℎ/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (𝑥2
𝑖ℎ
/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (1/𝐹2𝑖 ) − (∑𝑚𝑛−1𝑖=0 (𝑥𝑖ℎ/𝐹2𝑖 ))2 , (17)

where𝑦𝑖ℎ = 𝑥(𝑖+1)ℎ−𝑥𝑖ℎ−𝜎𝑓𝑖(𝜀1, 𝜀2, . . . , 𝜀𝑖) = (𝛼−𝛽𝑋𝑖ℎ)ℎ+
V𝑖, V𝑖 = 𝜎𝐹𝑖𝜀𝑖+1, 𝑖 = 1, 2, . . . , 𝑚𝑛 − 1. Remark 2. Note that the parameter estimators of drift coeffi-

cients are related to the volatility 𝜎, while, in fact, 𝜎2 can be
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(at least theoretically) computed on any finite time interval.
Furthermore, fBm is self-similar to stationary increments and
it satisfies 𝐸|𝐵𝐻𝑡 −𝐵𝐻𝑠 | = |𝑡−𝑠|2𝐻 for every 𝑠, 𝑡 ∈ [0, 𝑇]. For this
reason, we may assume that the diffusion coefficient is equal
to 1.

3. The Asymptotic Properties

In this section, we turn to study the strong consistency of
these estimators by (5), (6), (16), and (17).

Theorem 3. Assume that solution of (1) satisfies hypotheses
(C1) and (C2), then estimator �̂� converges to 𝐻 almost surely
as𝑚𝑛 goes to infinity.

Detailed proof can be found inKubilus and Skorniakov [11].

Theorem 4. The estimator �̂�2 converges to 𝜎2 almost surely as𝑚𝑛 goes to infinity.
Proof. With the strong consistency of �̂� to 𝐻 and that �̃�2 ≜(∑𝑚𝑛−1𝑖=1 (𝑋(𝑖+1)ℎ − 𝑋𝑖ℎ)2)/(𝑚𝑛 − 1)ℎ2𝐻 → 𝜎2 with probability
1 as 𝑚𝑛 goes to infinity, it can be easily shown that estimator�̂�2 converges to 𝜎2 almost surely as 𝑚𝑛 → ∞.

Theorem 5. With probability one, �̂� → 𝛼, 𝛽 → 𝛽, as𝑚𝑛 → ∞.

Proof. Clearly, the consistency of �̂� can be inferred combined
with (16) and consistency of 𝛽. We just prove that 𝛽 is strong
consistent.

A simple calculation shows that

𝛽 − 𝛽 = 1ℎ ∑𝑚𝑛−1𝑖=0 (V𝑖/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (𝑥𝑖ℎ/𝐹2𝑖 ) − ∑𝑚𝑛−1𝑖=0 (1/𝐹2𝑖 )∑𝑁−1𝑖=0 (V𝑖𝑥𝑖ℎ/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (𝑥2
𝑖ℎ
/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (1/𝐹2𝑖 ) − (∑𝑚𝑛−1𝑖=0 (𝑥𝑖ℎ/𝐹2𝑖 ))2

= (𝑇/𝑚𝑛)∑𝑚𝑛−1𝑖=0 (1/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (V𝑖𝑥𝑖ℎ/𝐹2𝑖 ) − ∑𝑚𝑛−1𝑖=0 (V𝑖/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (𝑥𝑖ℎ/𝐹2𝑖 )(𝑇/𝑚𝑛)2∑𝑚𝑛−1𝑖=0 (𝑥2
𝑖ℎ
/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (1/𝐹2𝑖 ) − (∑𝑚𝑛−1𝑖=0 (𝑥𝑖ℎ/𝐹2𝑖 ))2 = 𝑀𝑛< 𝑀>𝑛 ,

(18)

where 𝑀𝑛 = (𝑇/𝑚𝑛) ∑𝑚𝑛−1𝑖=0 (1/𝐹2𝑖 )∑𝑚𝑛−1𝑖=0 (V𝑖ℎ𝑥𝑖ℎ/𝐹2𝑖 ) −∑𝑚𝑛−1𝑖=0 (𝑦𝑖ℎ/𝐹2𝑖 ) ∑𝑚𝑛−1𝑖=0 (𝑥𝑖ℎ/𝐹2𝑖 ) is a square-integrable martin-
gle and < 𝑀>𝑛 = (𝑇/𝑚𝑛)2∑𝑚𝑛−1𝑖=0 (𝑥2𝑖ℎ/𝐹2𝑖 ) ∑𝑚𝑛−1𝑖=0 (1/𝐹2𝑖 ) −(∑𝑚𝑛−1𝑖=0 (𝑥𝑖ℎ/𝐹2𝑖 ))2 is quadratic characteristic of𝑀𝑛.

Using the assumption of 𝐻 ∈ (1/2, 1) and fractional
integral, we have the explicit solution of (1) that can be
expressed as

𝑋𝑡 = (1 − 𝑒−𝛽𝑡) 𝛼𝛽 + 𝜎∫𝑡
0
𝑒−𝛽(𝑡−𝑠)𝑑𝐵𝐻𝑠 , 𝑡 ≥ 0, (19)

where the integral can be understood in the Skorohod sense.
As a consequence, for any 𝑖, we have

𝐸 [𝑋2𝑖ℎ] = 𝐸[(1 − 𝑒−𝛽𝑖ℎ) 𝛼𝛽]2

+ (𝜎∫𝑖ℎ
0

𝑒−𝛽(𝑡−𝑠)𝑑𝐵𝐻𝑠 )2

+ 2 (1 − 𝑒−𝛽𝑖ℎ) 𝛼𝛽𝜎∫𝑖ℎ
0

𝑒−𝛽(𝑡−𝑠)𝑑𝐵𝐻𝑠 ]
≤ 2{[(1 − 𝑒−𝛽𝑖ℎ) 𝛼𝛽]2 + 𝜎2𝑒−2𝛽𝑖ℎ𝐻Γ (2𝐻)𝛽2𝐻 }

(20)

Hence, for any 𝑖, we obtain that 𝐸[𝑋2𝑖ℎ] is bounded.
Moreover, by using Cauchy-Schwartz inequality, we
show that (see also in [14], with a slight modification
below)

𝐸 𝐵𝐻,𝑚𝑛(𝑖+1)ℎ − 𝐵𝐻,𝑚𝑛
𝑖ℎ

2 = 𝐸[
[
⌊𝑚𝑛(𝑖+1)ℎ⌋∑
𝑗=⌊𝑚𝑛𝑖ℎ⌋

√𝑚𝑛 ∫𝑗/𝑚𝑛
(𝑗−1)/𝑚𝑛

(𝐾𝐻(⌊𝑚𝑛 (𝑖 + 1) ℎ⌋𝑚𝑛 , 𝑠) − 𝐾𝐻(⌊𝑚𝑛𝑖ℎ⌋𝑚𝑛 , 𝑠))𝑑𝑠𝜀𝑗]]
2

= [[
⌊𝑚𝑛(𝑖+1)ℎ⌋∑
𝑗=⌊𝑚𝑛𝑖ℎ⌋

√𝑚𝑛 ∫𝑗/𝑚𝑛
(𝑗−1)/𝑚𝑛

(𝐾𝐻(⌊𝑚𝑛 (𝑖 + 1) ℎ⌋𝑚𝑛 , 𝑠) − 𝐾𝐻(⌊𝑚𝑛𝑖ℎ⌋𝑚𝑛 , 𝑠))𝑑𝑠]]
2

≤ ⌊𝑚𝑛(𝑖+1)ℎ⌋∑
𝑗=⌊𝑚𝑛𝑖ℎ⌋

𝑚𝑛 ∫𝑗/𝑚𝑛
(𝑗−1)/𝑚𝑛

((𝐾𝐻(⌊𝑚𝑛 (𝑖 + 1) ℎ⌋𝑚𝑛 , 𝑠) − 𝐾𝐻(⌊𝑚𝑛𝑖ℎ⌋𝑚𝑛 , 𝑠)))2 𝑑𝑠
≤ 𝑚𝑛 ∫(𝑖+1)ℎ

𝑖ℎ
((𝐾𝐻(⌊𝑚𝑛 (𝑖 + 1) ℎ⌋𝑚𝑛 , 𝑠) − 𝐾𝐻(⌊𝑚𝑛𝑖ℎ⌋𝑚𝑛 , 𝑠)))2 𝑑𝑠
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≤ ∫𝑇
0
((𝐾𝐻(⌊𝑚𝑛 (𝑖 + 1) ℎ⌋𝑚𝑛 , 𝑠) − 𝐾𝐻(⌊𝑚𝑛𝑖ℎ⌋𝑚𝑛 , 𝑠)))2 𝑑𝑠 = 

⌊𝑚𝑛 (𝑖 + 1) ℎ⌋𝑚𝑛 − ⌊𝑚𝑛𝑖ℎ⌋𝑚𝑛

2𝐻 ≤ 1𝑚2𝐻𝑛 ,

(21)

By standard calculations, we will have

𝐹2𝑖 + 𝐸 [𝑓2𝑖 ] = 𝐸 𝐵𝐻,𝑚𝑛(𝑖+1)ℎ − 𝐵𝐻,𝑚𝑛𝑖ℎ 2 ≤ 1𝑚2𝐻𝑛 , (22)

and it holds that

𝐹2𝑗 ≤ 1𝑚2𝐻𝑛 . (23)

Now, (20) combined with (23) shows that 𝑀𝑛/ < 𝑀>𝑛 →0, 𝑎.𝑠. as𝑚𝑛 → ∞.
Remark 6. The asymptotic normality of estimators is not
involved in the results of this paper. In fact, Kubilius and
Skorniakov [11] proposed the asymptotic normality of the
estimators �̂�; in view of Remark 2, the asymptotic of 𝜎 is
trivial. For the parameter estimation of fractional diffusion
process (1), there are usually two key challenges: the likeli-
hood is intractable and the data is not Markovian. With the
Donsker type approximation formula, the statistical inference
of fractional diffusion process (FDP) can be simplified to
a certain extent. It has proved that the estimator of drift
parameter is 𝐿𝑝(𝑝 ≥ 1)- consistent and the asymptotic
normality may be obtained with more complex operations by
the future studies of this area.

4. Extension

Fractional stochastic differential equations have been widely
used in the fields of finance, hydrology, information, and
stochastic networks. Although model (1) is concerned of
simpler linear function, our method can be expected to be
applicable for general fractional diffusion processes, such as

𝑑𝑋𝑡 = 𝜇 (𝑋𝑡; 𝜃) 𝑑𝑡 + 𝜎𝑑𝐵𝐻𝑡 , (24)

where 𝜇(.; 𝜃) is drift functions representing the conditional
mean of the infinitesimal change of 𝑋𝑡 at time 𝑡; 𝜎𝑑𝐵𝐻𝑡 is the
random perturbation. Here we suppose the diffusion func-
tion is constant for simplicity. As far as we know, for a general
smooth and elliptic coefficient 𝜎(.), only the uniqueness of
the invariant measure is shown in Haier and Ohashi [15],
with an interesting extension to the hypoelliptic case in Haier
and Pillai [16]. Nothing is known about the convergence
of estimate equation, not to mention rates. Suppose 𝑋𝑡 is
observed at a discrete set of instants 𝜏𝑛𝑖 = (𝑖/𝑚𝑛)𝑇, 𝑖 =1, 2, . . . , 𝑚𝑛.With the Donsker type approximate formula and
the above estimation procedure, we use the following global
estimation equations to estimate parameter 𝜃:

𝑞𝑛 (𝜃) = 𝑚𝑛−1∑
𝑖=1

{ ̇𝑔 (𝜃, 𝑋𝑖ℎ)
⋅ {𝑋(𝑖+1)ℎ − 𝑋𝑖ℎ − 𝑔 (𝜃, 𝑋𝑖ℎ) − 𝜎𝑓𝑖 (𝜀1, . . . , 𝜀𝑖)} = 0,

(25)

where ̇𝑔(𝜃, 𝑋𝑖ℎ) is the derivative of 𝑔(𝜃, 𝑋𝑖ℎ) on 𝜃. The
asymptotic property of the estimators is expected to be
studied in the future and how to obtain the asymptotic theory
is still an open question.

On the other hand, our method can extend to another
self-similar process still with long memory (but not Gaus-
sian), which is called Rosenblatt process 𝑍𝐻𝑡 . In contrast
to the fBm model, the density of Rosenblatt process is not
explicitly known any more. However, it can be written as a
double integral of a two-variable deterministic with respect
to the Wiener process. The method based on random walks
approximation offers a solution to the problem of estimating
the parameters in fractional diffusion process driven by
Rosenblatt process.

5. Concluding Remarks

In this paper, we proposed the estimators of FLDP, such as
theHurst index, drift coefficients, and volatility, and provided
the strong consistency for these estimators. With the Donsker
representation of fractional Brownian motion, the statistical
inference of FLDPmay be simplified.However, it is important
to note that this approximation is satisfied in the sense of
weak convergence. This means only when with large number
of samples can the simulation be much better. On the other
hand, the approximate representation of FLDP is based on
the Euler scheme, which is the main source of the error
in the computations. There is always a trade-off between
the number of Euler steps and the number of simulations,
but what is usually computationally costly is the number of
Euler steps. The rate of convergence depended on 𝐻 and the
closer the value of 𝐻 to 1/2. This study also suggests several
important directions for further research. How to estimate
parameters in FDP from discrete time observations and how
to obtain the asymptotic theory are open questions.
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In this paper, we present a Hermite-Hadamard-Fejér inequality for conformable fractional integrals by using symmetric preinvex
functions.We also establish an identity associatedwith the right hand side of Hermite-Hadamard inequality for preinvex functions;
then by using this identity and preinvexity of functions and some well-known inequalities, we find several newHermite-Hadamard
type inequalities for conformal fractional integrals.

1. Introduction

Let 𝐼 ∈ R be an interval and ℎ : 𝐼 → R be a convex function
defined on 𝐼 such that 𝜅1, 𝜅2 ∈ 𝐼 with 𝜅1 < 𝜅2. Then the well-
knownHH (Hermite-Hadamard) inequality [1] states that

ℎ (𝜅1 + 𝜅22 ) ≤ 1𝜅2 − 𝜅1 ∫
𝜅2

𝜅1

ℎ (𝑥) 𝑑𝑥 ≤ ℎ (𝜅1) + ℎ (𝜅2)2 (1)

holds. If the function ℎ is concave on 𝐼, then both inequalities
in (1) hold in the reverse direction.

In the last few years, many researchers have shown their
extensive attention on the generalizations, extensions, vari-
ations, refinements, and applications of the HH inequality
(see [2–15]).Themost well-known generalization of theHH

inequality is the Hermite-Hadamard-Fejér inequality [16]. In
1906, Fejér [16] established the following weighted general-
ization of the Hermite-Hadamard inequality for symmetric
functions:

ℎ(𝜅1 + 𝜅22 )∫𝜅2
𝜅1

𝑔 (𝑥) 𝑑𝑥 ≤ 1𝜅2 − 𝜅1 ∫
𝜅2

𝜅1

𝑔 (𝑥) ℎ (𝑥) 𝑑𝑥
≤ ℎ (𝜅1) + ℎ (𝜅2)2 ∫𝜅2

𝜅1

𝑔 (𝑥) 𝑑𝑥
(2)

for all convex functions ℎ : 𝐼 → R, 𝜅1, 𝜅2 ∈ 𝐼 with 𝜅1 < 𝜅2
and 𝑔 : [𝜅1, 𝜅2] → R+ is symmetric with respect to (𝜅1 +𝜅2)/2.

It is well known that the convex sets and convex functions
play important roles in the nonlinear programming and
optimization theory. Many generalizations and extensions
have been considered for the classical convexity in the last
few decades. A significant generalization of convex functions
is that of invex functions introduced by Hanson in [17].
The basic properties of the preinvex functions and their
roles in optimization theory can be found in [18]. The HH

inequalities for preinvex and log-preinvex functions were
established by Noor [19, 20].

Now, we recall some notions and definitions in invexity
analysis, whichwill be used throughout the paper (see [21, 22]
and references therein).

LetA ∈ R be a nonempty set and the functions ℎ : A →
R and Ψ : A × A → R be continuous.

Definition 1. The set A ⊆ R𝑛 is said to be invex with respect
to Ψ(.,.) if

𝜇1 + 𝑠Ψ (𝜇2, 𝜇1) ∈ A (3)

for all 𝜇1, 𝜇2 ∈ A and 𝑠 ∈ [0, 1].
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The invex set A is also called a Ψ-connected set. IfΨ(𝜇2, 𝜇1) = 𝜇2 − 𝜇1, then the invex set is also a convex set,
but some of the invex sets are not convex [21].

Definition 2. The function ℎ is said to be preinvex with
respect to Ψ on the invex setA if

ℎ (𝜇1 + 𝑠Ψ (𝜇2, 𝜇1)) ≤ (1 − 𝑠) ℎ (𝜇1) + 𝑠ℎ (𝜇2) (4)

for all 𝜇1, 𝜇2 ∈ A and 𝑠 ∈ [0, 1]. The function ℎ is called
preconcave if −ℎ is preinvex.

The followingConditionCwas introduced byMohan and
Neogy [23].

Condition C. Suppose A is an open invex subset of R𝑛 with
respect to Ψ : A × A → R and Ψ satisfies

Ψ (𝜇2, 𝜇2 + 𝑠Ψ (𝜇1, 𝜇2)) = −𝑠Ψ (𝜇1, 𝜇2) ,
Ψ (𝜇1, 𝜇2 + 𝑠Ψ (𝜇1, 𝜇2)) = (1 − 𝑠) Ψ (𝜇1, 𝜇2) (5)

for any 𝜇1, 𝜇2 ∈ A and 𝑠 ∈ [0, 1].
From Condition C, we clearly see that

Ψ(𝜇2 + 𝑠2Ψ(𝜇1, 𝜇2) , 𝜇2 + 𝑠1Ψ(𝜇1, 𝜇2))
= (𝑠2 − 𝑠1)Ψ (𝜇1, 𝜇2) (6)

for any 𝜇1, 𝜇2 ∈ A and 𝑠 ∈ [0, 1].
The following HH inequality for the preinvex functions

was proved by Noor [20].

Theorem 3. Let ℎ : 𝐾 = [𝜅1, 𝜅1 + Ψ(𝜅2, 𝜅1)] → (0,∞) be a
preinvex function on the interval 𝐾∘ (the interior of K) and 𝜅1,𝜅2 ∈ 𝐾∘ with 𝜅1 < 𝜅1 +Ψ(𝜅2, 𝜅1). Then the following inequality
holds:

ℎ(2𝜅1 + Ψ (𝜅2, 𝜅1)2 )
≤ 1Ψ (𝜅2, 𝜅1) ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

ℎ (𝑥) 𝑑𝑥 ≤ ℎ (𝜅1) + ℎ (𝜅2)2 .
(7)

Several important variants ofHH inequality for preinvex
functions have been provided in the literature [24]. Recently,
the authors in [25] defined a new well-behaved simple frac-
tional derivative called the “conformable fractional deriva-
tive”. Namely, the conformable fractional derivative of order0 < 𝛼 ≤ 1 at 𝑠 > 0 for the function ℎ : [0,∞) → R is defined
by

𝐷𝛼 (ℎ) (𝑠) = lim
𝜖→0

ℎ (𝑠 + 𝜖𝑠1−𝛼) − ℎ (𝑠)
𝜖 . (8)

If the conformable fractional derivative of ℎ of order 𝛼 exists,
then we say that ℎ is 𝛼-fractional differentiable. The fractional
derivative at 0 is defined as ℎ𝛼(0) = lim𝑠→0+ℎ𝛼(𝑠).

Next, we present some basic results related to con-
formable fractional derivative in the following theorem.

Theorem 4 (see [25]). Let 𝛼 ∈ (0, 1] and ℎ1, ℎ2 be 𝛼-differen-
tiable at a point 𝑠 > 0. Then

(i) (𝑑𝛼/𝑑𝛼𝑠)(𝑠𝑛) = 𝑛𝑠𝑛−𝛼 for all 𝑛 ∈ R.
(ii) (𝑑𝛼/𝑑𝛼𝑠)(𝑐) = 0 for any constant 𝑐 ∈ R.
(iii) (𝑑𝛼/𝑑𝛼𝑠)(𝜅1ℎ1(𝑠) + 𝜅2ℎ2(𝑠)) = 𝜅1(𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠)) +𝜅2(𝑑𝛼/𝑑𝛼𝑠)(ℎ2(𝑠)) for all 𝜅1, 𝜅2 ∈ R.
(iv) (𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠)ℎ2(𝑠))=ℎ1(𝑠)(𝑑𝛼/𝑑𝛼𝑠)(ℎ2(𝑠))+ℎ2(𝑠)(𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠)).
(v) (𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠)/ℎ2(𝑠))=(ℎ2(𝑠)(𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠))−ℎ1(𝑠)(𝑑𝛼/𝑑𝛼𝑠)(ℎ2(𝑠)))/(ℎ2(𝑠))2.
(vi) (𝑑𝛼/𝑑𝛼𝑠)((ℎ1 ∘ ℎ2)(𝑠)) = ℎ1(ℎ2(𝑠))(𝑑𝛼/𝑑𝛼𝑠)(ℎ2(𝑠)) if ℎ1

differentiable at ℎ2(𝑠).
If in addition ℎ1 is differentiable, then

𝑑𝛼𝑑𝛼𝑠 (ℎ1 (𝑠)) = 𝑠1−𝛼 𝑑𝑑𝑠 (ℎ1 (𝑠)) . (9)

Definition 5 (see [25] conformable fractional integral). Let𝛼 ∈ (0, 1] and 0 ≤ 𝜅1 < 𝜅2. A function ℎ1 : [𝜅1, 𝜅2] → R
is 𝛼-fractional integrable on [𝜅1, 𝜅2] if the integral

∫𝜅2
𝜅1

ℎ1 (𝑥) 𝑑𝛼𝑥 fl ∫𝜅2
𝜅1

ℎ1 (𝑥) 𝑥𝛼−1𝑑𝑥 (10)

exists and is finite. All 𝛼-fractional integrable functions on[𝜅1, 𝜅2] are indicated by 𝐿𝛼([𝜅1, 𝜅2]).
Remark 6.

𝐼𝜅1𝛼 (ℎ1) (𝑠) = 𝐼𝜅11 (𝑠𝛼−1ℎ1) = ∫𝑠
𝜅1

ℎ1 (𝑥)𝑥1−𝛼 𝑑𝑥, (11)

where the integral is the usual Riemann improper integral
and 𝛼 ∈ (0, 1].

Recently, the conformable integrals and derivatives have
been the subject of intensive research, and many remarkable
properties and inequalities involving the conformable inte-
grals and derivatives can be found in the literature [26–38].

In [39], Anderson provided the conformable integral
version ofHH inequality as follows.

Theorem 7 (see [39]). If 𝛼 ∈ (0, 1] and ℎ1 : [𝜅1, 𝜅2] →
R is an 𝛼-fractional differentiable function such that 𝐷𝛼ℎ is
increasing, then we have the following inequality:

𝛼𝜅𝛼2 − 𝜅𝛼1 ∫𝜅2
𝜅1

ℎ (𝑥) 𝑑𝛼𝑥 ≤ ℎ (𝜅1) + ℎ (𝜅2)2 . (12)

Moreover if the function ℎ is decreasing on [𝜅1, 𝜅2], then we
have

ℎ (𝜅1 + 𝜅22 ) ≤ 𝛼𝜅𝛼2 − 𝜅𝛼1 ∫𝜅2
𝜅1

ℎ (𝑥) 𝑑𝛼𝑥. (13)

If 𝛼 = 1, then this reduces to the classicalHH inequality.
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In this paper, we first establish the Hermite-Hadamard-
Fejér inequality for conformable fractional integrals by using
symmetric preinvex functions; then we presentHH inequal-
ities as their special cases (see Corollary 9). Secondly, we give
an identity associated with the right side of HH inequality
for preinvex functions using the conformable fractional
integrals; then we establish HH inequalities for preinvex
functions by use of Hölder inequality, powermean inequality,
and preinvexity of functions.

2. Hermite-Hadamard-Fejér Inequalities for
Conformable Fractional Integrals

The preinvex version of Fejer-Hermite-Hadamard inequality
can be represented in conformable fractional integrals forms
as follows.

Theorem 8. Suppose that 𝜅1, 𝜅2 ∈ 𝐾 such that Ψ(𝜅2, 𝜅1) > 0,ℎ : 𝐾 = [𝜅1, 𝜅1 + Ψ(𝜅2, 𝜅1)] → (0,∞) is a preinvex
function and symmetric with respect to (2𝜅1 + Ψ(𝜅2, 𝜅1))/2,
and 𝑔 : [𝜅1, 𝜅2] → R is a nonnegative integrable function.
Also assume that Ψ satisfies Condition C; then the inequality

ℎ(2𝜅1 + Ψ (𝜅2, 𝜅1)2 )∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

𝑔 (𝑥) 𝑑𝛼𝑥
≤ ∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑔 (𝑥) 𝑑𝛼𝑥
≤ ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2 ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

𝑔 (𝑥) 𝑑𝛼𝑥
(14)

holds for any 𝛼 ∈ (0, 1].
Proof. Since ℎ : 𝐾 → R is preinvex function and is
symmetric with respect to (2𝜅1 + Ψ(𝜅2, 𝜅1))/2, then for any𝑥, 𝑦 ∈ 𝐾 and 𝑡 = 1/2, we have

ℎ(𝑥 + Ψ (𝑦, 𝑥)2 ) ≤ ℎ (𝑥) + ℎ (𝑦)2 (15)

i.e., with 𝑥 = 𝜅1 + (1 − 𝑠)Ψ(𝜅2, 𝜅1) and 𝑦 = 𝜅1 + 𝑠Ψ(𝜅2, 𝜅1),
inequality (15) becomes

ℎ(𝜅1 + (1 − 𝑠) Ψ (𝜅2, 𝜅1)
+ Ψ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1) , 𝜅1 + (1 − 𝑠)Ψ (𝜅2, 𝜅1))2 )
= ℎ(𝜅1 + (1 − 𝑠) Ψ (𝜅2, 𝜅1)
+ (𝑠 − 1 + 𝑠)Ψ (𝜅2, 𝜅1)2 ) (using Condition C)
= ℎ(𝜅1 + (1 − 𝑠) Ψ (𝜅2, 𝜅1) + (2𝑠 − 1)Ψ (𝜅2, 𝜅1)2 )

= ℎ(2𝜅1 + Ψ (𝜅2, 𝜅1)2 )
≤ ℎ (𝜅1 + (1 − 𝑠) Ψ (𝜅2, 𝜅1)) + ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))2
= ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) . (ℎ is symmetric)

(16)
By change of variables, we have

ℎ(2𝜅1 + Ψ (𝜅2, 𝜅1)2 )∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

𝑔 (𝑥) 𝑑𝛼𝑥
= Ψ (𝜅2, 𝜅1) ℎ(2𝜅1 + Ψ (𝜅2, 𝜅1)2 )
⋅ ∫1
0

𝑔 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1 𝑑𝑠
≤ Ψ (𝜅2, 𝜅1) ∫1

0
ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))

⋅ 𝑔 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1 𝑑𝑠
= ∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑔 (𝑥) 𝑑𝛼𝑥.

(17)

So we can write

ℎ(2𝜅1 + Ψ (𝜅2, 𝜅1)2 )∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

𝑔 (𝑥) 𝑑𝛼𝑥
≤ ∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑔 (𝑥) 𝑑𝛼𝑥.
(18)

To prove the second inequality in (14), we know that ℎ is
preinvex and Ψ satisfies Condition C, so we have

ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))
= ℎ (𝜅1 + Ψ (𝜅2, 𝜅1) + (1 − 𝑠) Ψ (𝜅1, 𝜅1 + Ψ (𝜅2, 𝜅1)))
≤ 𝑠ℎ (𝜅1 + Ψ (𝜅2, 𝜅1)) + (1 − 𝑠) ℎ (𝜅1) ,

(19)

and similarly

ℎ (𝜅1 + (1 − 𝑠) Ψ (𝜅2, 𝜅1))
= ℎ (𝜅1 + Ψ (𝜅2, 𝜅1) + 𝑠Ψ (𝜅1, 𝜅1 + Ψ (𝜅2, 𝜅1)))
≤ 𝑠ℎ (𝜅1) + (1 − 𝑠) ℎ (𝜅1 + Ψ (𝜅2, 𝜅1)) .

(20)

Now with 𝑥 = 𝜅1 + 𝑠Ψ(𝜅2, 𝜅1), we have
∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑔 (𝑥) 𝑥𝛼−1𝑑𝑥
= ∫1
0

ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑔 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))
⋅ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1 𝑑𝑠 ≤ Ψ (𝜅2, 𝜅1)
⋅ ∫1
0

[𝑠ℎ (𝜅1 + Ψ (𝜅2, 𝜅1)) + (1 − 𝑠) ℎ (𝜅1)]
× 𝑔 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1 𝑑𝑠 (using (19)) .

(21)
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Also

∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑔 (𝑥) 𝑥𝛼−1𝑑𝑥
= ∫1
0

ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑔 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))
⋅ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1 𝑑𝑠
= ∫1
0

ℎ (𝜅1 + (1 − 𝑠) Ψ (𝜅2, 𝜅1)) 𝑔 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))
⋅ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1 𝑑𝑠 (ℎ is symmetric)
≤ Ψ (𝜅2, 𝜅1)
⋅ ∫1
0

[𝑠ℎ (𝜅1) + (1 − 𝑠) ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))]
× 𝑔 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1 𝑑𝑠 (using (20)) .

(22)

If we add (21) and (22), we obtain

2∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑔 (𝑥) 𝑑𝛼𝑥 ≤ Ψ (𝜅2, 𝜅1)
⋅ (ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1)))
⋅ ∫1
0

𝑔 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1 𝑑𝑠
= (ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1)))
⋅ ∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

𝑔 (𝑥) 𝑥𝛼−1𝑑𝑥.

(23)

So we can write

∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑔 (𝑥) 𝑑𝛼𝑥
≤ ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2 ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

𝑔 (𝑥) 𝑑𝛼𝑥.
(24)

From inequalities (18) and (24), we obtain over required
result.

Corollary 9. If we put 𝑔(𝑥) = 1 in (14), then we get

ℎ(2𝜅1 + Ψ (𝜅2, 𝜅1)2 )
≤ 𝛼(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

ℎ (𝑥) 𝑑𝛼𝑥
≤ ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2 .

(25)

3. HH Type Inequalities for Conformable
Fractional Integrals

Lemma 10. Let 𝜅1, 𝜅2 ∈ 𝐾 with Ψ(𝜅2, 𝜅1) > 0 and ℎ : 𝐾 =[𝜅1, 𝜅1+Ψ(𝜅2, 𝜅1)] → (0,∞) be an 𝛼-fractional differentiable

function on (𝜅1, 𝜅1 + Ψ(𝜅2, 𝜅1)) for 𝛼 ∈ (0, 1]. If 𝐷𝛼(ℎ) ∈𝐿𝛼([𝜅1, 𝜅1 + Ψ(𝜅2, 𝜅1)]), then the following identity holds:

ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2 − 𝛼(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1
⋅ ∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑑𝛼𝑥
= Ψ (𝜅2, 𝜅1)2 ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) [∫1

0
((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))2𝛼−1

− 𝜅𝛼1 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1) × 𝐷𝛼 (ℎ) (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))
⋅ 𝑠1−𝛼𝑑𝛼𝑠 + ∫1

0
((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))2𝛼−1

− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1) × 𝐷𝛼 (ℎ) (𝜅1
+ 𝑠Ψ (𝜅2, 𝜅1)) 𝑠1−𝛼𝑑𝛼𝑠] .

(26)

Proof. Integrating by parts, we have

𝐼 = ∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))2𝛼−1
− 𝜅𝛼1 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1)𝐷𝛼 (ℎ) (𝜅1
+ 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠 + ∫1

0
((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))2𝛼−1

− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1)
× 𝐷𝛼 (ℎ) (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠
= ∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) ℎ (𝜅1
+ 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠 + ∫1

0
((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼

− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼) ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠
= ((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))Ψ (𝜅2, 𝜅1)


1

0

− ∫1
0

𝛼 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1Ψ(𝜅2, 𝜅1)
⋅ ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))Ψ (𝜅2, 𝜅1) 𝑑𝑠 + ((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼

− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼) ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))Ψ (𝜅2, 𝜅1)

1

0

− ∫1
0

𝛼 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1Ψ(𝜅2, 𝜅1)
⋅ ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))Ψ (𝜅2, 𝜅1) 𝑑𝑠
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= 1Ψ (𝜅2, 𝜅1) [((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) ℎ (𝜅1
+ Ψ (𝜅2, 𝜅1)) − 𝛼∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

ℎ (𝑥) 𝑑𝛼𝑥]
+ 1Ψ (𝜅2, 𝜅1) [((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) ℎ (𝜅1)
− 𝛼∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑑𝛼𝑥]
= ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 )Ψ (𝜅2, 𝜅1) (ℎ (𝜅1) + ℎ (𝜅1
+ Ψ (𝜅2, 𝜅1))) − 2𝛼Ψ (𝜅2, 𝜅1) ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

ℎ (𝑥) 𝑑𝛼𝑥,
(27)

where we have used the change of variable 𝑥 = 𝜅1 +Ψ(𝜅2, 𝜅1) and then multiplied both sides byΨ(𝜅2, 𝜅1)/(2((𝜅1+Ψ(𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 )) to get the desired result in (26).

Remark 11. If we set 𝛼 = 1 in (26), then we obtain the result
which is proved by Barani et al. in [40]

− ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2
+ 1Ψ (𝜅2, 𝜅1) ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

ℎ (𝑥) 𝑑𝑥
= Ψ (𝜅2, 𝜅1)2 ∫1

0
(1 − 2𝑠) ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠.

(28)

Theorem 12. Let 𝜅1, 𝜅2 ∈ 𝐾 such that Ψ(𝜅2, 𝜅1) > 0 and ℎ :𝐾 = [𝜅1, 𝜅1 + Ψ(𝜅2, 𝜅1)] → (0,∞) be an 𝛼-differentiable
function on (𝜅1, 𝜅1+Ψ(𝜅2, 𝜅1)) for 𝛼 ∈ (0, 1] such that𝐷𝛼(ℎ) ∈𝐿𝛼([𝜅1, 𝜅1 + Ψ(𝜅2, 𝜅1)]). If |ℎ| is preinvex, then we have the
following inequality:

ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2
− 𝛼(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

ℎ (𝑥) 𝑑𝛼𝑥
≤ Ψ (𝜅2, 𝜅1)4 [ℎ (𝜅1) + ℎ (𝜅2)] .

(29)

Proof. From Lemma 10, using the property of the modulus
and preinvexity of |ℎ|, we have

ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2 − 𝛼(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1
⋅ ∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑑𝛼𝑥
= 

Ψ (𝜅2, 𝜅1)2 ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 )

⋅ ∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))2𝛼−1
− 𝜅𝛼1 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1) × 𝐷𝛼 (ℎ) (𝜅1
+ 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠 + ∫1

0
((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))2𝛼−1

− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼−1) × 𝐷𝛼 (ℎ)
⋅ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠


≤ Ψ (𝜅2, 𝜅1)2 ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) [∫1

0
((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼

− 𝜅𝛼1 ) ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠
+ ∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼)
⋅ ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠]
≤ Ψ (𝜅2, 𝜅1)2 ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) [∫1

0
((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼

− 𝜅𝛼1 ) [(1 − 𝑠) ℎ (𝜅1) + 𝑠 ℎ (𝜅2)] 𝑑𝑡
+ ∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼)
⋅ [(1 − 𝑠) ℎ (𝜅1) + 𝑠 ℎ (𝜅2)] 𝑑𝑠]
= Ψ (𝜅2, 𝜅1)4 [ℎ (𝜅1) + ℎ (𝜅2)] .

(30)

Theorem 13. Let 𝜅1, 𝜅2 ∈ 𝐾 such that Ψ(𝜅2, 𝜅1) > 0 and ℎ :𝐾 = [𝜅1, 𝜅1 + Ψ(𝜅2, 𝜅1)] → (0,∞) be an 𝛼-differentiable
function on (𝜅1, 𝜅1+Ψ(𝜅2, 𝜅1)) for 𝛼 ∈ (0, 1] such that𝐷𝛼(ℎ) ∈𝐿𝛼([𝜅1, 𝜅1 +Ψ(𝜅2, 𝜅1)]). If |ℎ|𝑞 is preinvex for 𝑞 > 1 and 𝑞−1 +𝑝−1 = 1, then we have the following inequality:

ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2
− 𝛼(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

ℎ (𝑥) 𝑑𝛼𝑥
≤ Ψ (𝜅2, 𝜅1)2 ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) [

[(A1 (𝛼, 𝑝))1/𝑝

⋅ ( ℎ (𝜅1)𝑞 + ℎ (𝜅2)𝑞2 )
1/𝑞

+ (A2 (𝛼, 𝑝))1/𝑝

⋅ ( ℎ (𝜅1)𝑞 + ℎ (𝜅2)𝑞2 )
1/𝑞]

] ,

(31)



6 Journal of Function Spaces

where

A1 (𝛼, 𝑝) = ∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 )𝑝 𝑑𝑠,
A2 (𝛼, 𝑝)

= ∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼)𝑝 𝑑𝑠.
(32)

Proof. From Lemma 10, using the property of the modulus
and preinvexity of |ℎ|𝑞, we have


ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2 − 𝛼(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1
⋅ ∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑑𝛼𝑥
≤ Ψ (𝜅2, 𝜅1)2 ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) [∫1

0
((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼

− 𝜅𝛼1 ) ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠
+ ∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼)
⋅ ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠] .

(33)

Now by Hölder’s inequality

∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 )
⋅ ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠
≤ (∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 )𝑝 𝑑𝑠)1/𝑝

⋅ (∫1
0

ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝑞 𝑑𝑠)
1/𝑞

≤ (∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 )𝑝 𝑑𝑠)1/𝑝

⋅ (∫1
0

(1 − 𝑠) ℎ (𝜅1)𝑞 + 𝑠 ℎ (𝜅2)𝑞 𝑑𝑠)
1/𝑞

= (A1 (𝛼, 𝑝))1/𝑝(ℎ (𝜅1)𝑞 + ℎ (𝜅2)𝑞2 )
1/𝑞

.

(34)

Similarly, we have

∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼) ℎ (𝜅1
+ 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠 ≤ (∫1

0
((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼

− (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼)𝑝 𝑑𝑠)1/𝑝

⋅ (∫1
0

ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝑞 𝑑𝑠)
1/𝑞

≤ (∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼

− (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼)𝑝 𝑑𝑠)1/𝑝 (∫1
0

(1 − 𝑠)
⋅ ℎ (𝜅1)𝑞 + 𝑠 ℎ (𝜅2)𝑞 𝑑𝑠)

1/𝑞 = (A2 (𝛼, 𝑝))1/𝑝

⋅ ( ℎ (𝜅1)𝑞 + ℎ (𝜅2)𝑞2 )
1/𝑞

.
(35)

Hence, we have the result in (31).

Remark 14. If we set 𝛼 = 1 in (31), then we have the following
inequality:


ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2
− 1Ψ (𝜅2, 𝜅1) ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

ℎ (𝑥) 𝑑𝑥
≤ Ψ (𝜅2, 𝜅1)(1 + 𝑝)1/𝑝 [

[
ℎ (𝜅1)𝑞 + ℎ (𝜅2)𝑞2 ]

]
1/𝑞

.
(36)

Theorem 15. Let 𝜅1, 𝜅2 ∈ 𝐾 such that Ψ(𝜅2, 𝜅1) > 0 and ℎ :𝐾 = [𝜅1, 𝜅1 + Ψ(𝜅2, 𝜅1)] → (0,∞) be an 𝛼-differentiable
function on (𝜅1, 𝜅1+Ψ(𝜅2, 𝜅1)) for 𝛼 ∈ (0, 1] such that𝐷𝛼(ℎ) ∈𝐿𝛼([𝜅1, 𝜅1 +Ψ(𝜅2, 𝜅1)]). If |ℎ|𝑞 is preinvex for 𝑞 > 1 and 𝑞−1 +𝑝−1 = 1, then we have the following inequality:


ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2
− 𝛼(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ∫𝜅1+Ψ(𝜅2,𝜅1)

𝜅1

ℎ (𝑥) 𝑑𝛼𝑥
≤ Ψ (𝜅2, 𝜅1)2 ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) [ (A1 (𝛼))1−1/𝑞

⋅ (A2 (𝛼) ℎ (𝜅1)𝑞 + A3 (𝛼) ℎ (𝜅2)𝑞)1/𝑞
+ (B1 (𝛼))1−1/𝑞 (B2 (𝛼) ℎ (𝜅1)𝑞
+ B3 (𝛼) ℎ (𝜅2)𝑞)1/𝑞 ,

(37)
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where

A1 (𝛼) = (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+1 − 𝜅𝛼+11(𝛼 + 1)Ψ (𝜅2, 𝜅1) − 𝜅𝛼1 ,
B2 (𝛼) = (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − [(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+1 − 𝜅𝛼+11(𝛼 + 1)Ψ (𝜅2, 𝜅1) ] ,
A2 (𝛼) = − 𝜅𝛼+11(𝛼 + 1)Ψ (𝜅2, 𝜅1) [(𝛼 + 2)Ψ (𝜅2, 𝜅1) + 𝜅1(𝛼 + 2)Ψ (𝜅2, 𝜅1) ]

+ (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+2(𝛼 + 1) (Ψ (𝜅2, 𝜅1))2 (𝛼 + 2) − 𝜅𝛼12 ,
A3 (𝛼) = (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼2

− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+1(𝛼 + 1)Ψ (𝜅2, 𝜅1) [(𝛼 + 2)Ψ (𝜅2, 𝜅1) − (𝜅1 + Ψ (𝜅2, 𝜅1))(𝛼 + 2)Ψ (𝜅2, 𝜅1) ]
− 𝜅𝛼+21(𝛼 + 1) (Ψ (𝜅2, 𝜅1))2 (𝛼 + 2) ,

B2 (𝛼) = (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼2
+ 𝜅𝛼+11(𝛼 + 1)Ψ (𝜅2, 𝜅1) [(𝛼 + 2)Ψ (𝜅2, 𝜅1) + 𝜅1(𝛼 + 2)Ψ (𝜅2, 𝜅1) ] ,
− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+2(𝛼 + 1) (Ψ (𝜅2, 𝜅1))2 (𝛼 + 2)

B3 (𝛼) = (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼2
− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+1(𝛼 + 1)Ψ (𝜅2, 𝜅1) [(𝛼 + 2)Ψ (𝜅2, 𝜅1) − (𝜅1 + Ψ (𝜅2, 𝜅1))(𝛼 + 2)Ψ (𝜅2, 𝜅1) ]
− 𝜅𝛼+21(𝛼 + 1) (Ψ (𝜅2, 𝜅1))2 (𝛼 + 2) .

(38)

Proof. From Lemma 10, using the property of the modulus
and preinvexity of |ℎ|𝑞, we have


ℎ (𝜅1) + ℎ (𝜅1 + Ψ (𝜅2, 𝜅1))2 − 𝛼(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1
⋅ ∫𝜅1+Ψ(𝜅2,𝜅1)
𝜅1

ℎ (𝑥) 𝑑𝛼𝑥

≤ Ψ (𝜅2, 𝜅1)2 ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) [∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼
− 𝜅𝛼1 ) ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠
+ ∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼)
⋅ ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠] .

(39)

Now by the power-mean inequality

∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠
≤ (∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) 𝑑𝑠)1−1/𝑞

× (∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 )
⋅ ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝑞 𝑑𝑠)

1/𝑞 ,

(40)

and similarly, we have

∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼) ℎ (𝜅1
+ 𝑠Ψ (𝜅2, 𝜅1)) 𝑑𝑠 ≤ (∫1

0
((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼

− (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼) 𝑑𝑠)1−1/𝑞

⋅ (∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼)
⋅ ℎ (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝑞 𝑑𝑠)

1/𝑞 .

(41)

Now by the preinvexity of |ℎ|𝑞 from above, we have

∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) [(1 − 𝑠) ℎ (𝜅1)𝑞 + 𝑠 ℎ (𝜅2)𝑞] 𝑑𝑠 = ℎ (𝜅1)𝑞 ∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) (1 − 𝑠) 𝑑𝑠
+ ℎ (𝜅2)𝑞 ∫1

0
((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) 𝑠𝑑𝑠 = ℎ (𝜅1)𝑞(− 𝜅𝛼+11(𝛼 + 1)Ψ (𝜅2, 𝜅1) [ (𝛼 + 2)Ψ (𝜅2, 𝜅1) + 𝜅1(𝛼 + 2)Ψ (𝜅2, 𝜅1) ]

+ (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+2(𝛼 + 1) (Ψ (𝜅2, 𝜅1))2 (𝛼 + 2) − 𝜅𝛼12 ) + ℎ (𝜅2)𝑞((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼2
− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+1(𝛼 + 1)Ψ (𝜅2, 𝜅1) [(𝛼 + 2)Ψ (𝜅2, 𝜅1) − (𝜅1 + Ψ (𝜅2, 𝜅1))(𝛼 + 2)Ψ (𝜅2, 𝜅1) ] − 𝜅𝛼+21(𝛼 + 1) (Ψ (𝜅2, 𝜅1))2 (𝛼 + 2))

(42)



8 Journal of Function Spaces

and

∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼)
⋅ [(1 − 𝑠) ℎ (𝜅1)𝑞 + 𝑠 ℎ (𝜅2)𝑞] 𝑑𝑠 = ℎ (𝜅1)𝑞
⋅ ∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼) (1 − 𝑠) 𝑑𝑠
+ ℎ (𝜅2)𝑞 ∫1

0
((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼) 𝑠𝑑𝑠

= ℎ (𝜅1)𝑞((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼2
+ 𝜅𝛼+11(𝛼 + 1)Ψ (𝜅2, 𝜅1) [(𝛼 + 2)Ψ (𝜅2, 𝜅1) + 𝜅1(𝛼 + 2)Ψ (𝜅2, 𝜅1) ]
− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+2(𝛼 + 1) (Ψ (𝜅2, 𝜅1))2 (𝛼 + 2)) + ℎ (𝜅2)𝑞

⋅ ((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼2
− (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+1(𝛼 + 1)Ψ (𝜅2, 𝜅1) [(𝛼 + 2)Ψ (𝜅2, 𝜅1) − (𝜅1 + Ψ (𝜅2, 𝜅1))(𝛼 + 2)Ψ (𝜅2, 𝜅1) ]
− 𝜅𝛼+21(𝛼 + 1) (Ψ (𝜅2, 𝜅1))2 (𝛼 + 2)) ,

(43)

where we have the following:

A1 (𝛼) = ∫1
0

((𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼 − 𝜅𝛼1 ) 𝑑𝑠
= (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+1 − 𝜅𝛼+11(𝛼 + 1)Ψ (𝜅2, 𝜅1) − 𝜅𝛼1 ,

B1 (𝛼)
= ∫1
0

((𝜅1 + Ψ (𝜅2, 𝜅1))𝛼 − (𝜅1 + 𝑠Ψ (𝜅2, 𝜅1))𝛼) 𝑑𝑠
= (𝜅1 + Ψ (𝜅2, 𝜅1))𝛼

− [(𝜅1 + Ψ (𝜅2, 𝜅1))𝛼+1 − 𝜅𝛼+11(𝛼 + 1)Ψ (𝜅2, 𝜅1) ] .

(44)

Hence, we have the result in (37).
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Combining the properties of the Green function with some point theorems, we consider the existence of nontrivial solutions for
fractional equations with 𝑝-Laplacian operator 𝐷𝛽

0+
𝜙𝑝[𝐷𝛼0+ (𝑝(𝑡)𝑢(𝑡))] + 𝑓(𝑡, 𝑢(𝑡)) = 0, 0 < 𝑡 < 1, 𝑎𝑢(0) − 𝑏𝑝(0)𝑢(0) = 0, and

𝑐𝑢(1) + 𝑑𝑝(1)𝑢(1) = 0,𝐷𝛼0+ (𝑝(𝑡)𝑢(𝑡))|𝑡=0 = 0, where 𝑎, 𝑏, 𝑐, 𝑑 are constants and 𝑝(⋅) : [0, 1] → (0, +∞) is continuous.

1. Introduction

Fractional-order models are better than integer order models
to describe the real word, which appear frequently in various
fields, such as electrical circuits, biology, material, control
theory, and physics (see [1–5]). With the rapid development
of the theory of fractional differential equations, during the
last two decades, the existence of nontrivial solutions of
fractional differential equations has been studied by many
researchers in nonsingular case as well as singular case. See
[6–19]. Usually, the proof is based on either the method of
upper and lower solutions, fixed point theorems, alternative
principle of Leray-Schauder, topological degree theory, or
critical point theory. To our attention, based on a fixed point
theorem in cones, K. Lan and W. Lin [20] obtain some new
results on existence of multiple positive solutions of systems
of nonlinear Caputo fractional differential equations with
some of general separated boundary conditions

−𝑐𝐷𝑞𝑧𝑖 (𝑡) = 𝑓𝑖 (𝑡, 𝑧 (𝑡)) , 𝑡 ∈ (0, 1) ,
𝛼𝑧𝑖 (0) − 𝛽𝑧𝑖 (0) = 0,
𝛾𝑧𝑖 (1) + 𝛿𝑧𝑖 (1) = 0,

(1)

where 𝑧(𝑡) = (𝑧1(𝑡), . . . , 𝑧𝑛(𝑡)), 𝑓𝑖 : [0, 1] × R𝑛+ → R+ is
continuous on [0, 1] ×R𝑛+, and

𝑐𝐷𝑞 is the Caputo differential
operator of order 𝑞 ∈ (1, 2). 𝛼, 𝛽, 𝛾, 𝛿 are positive real

numbers. The relations between the linear Caputo fractional
differential equations and the corresponding linear Hammer-
stein integral equations are studied, which show that suitable
Lipschitz type conditions are needed when one studies the
nonlinear Caputo fractional differential equations.

Recently, fractional differential equations with 𝑝-
Laplacian operator have gained its popularity and importance
due to its distinguished applications in numerous diverse
fields of science and engineering, such as viscoelasticity
mechanics, non-Newtonian mechanics, electrochemistry,
fluid mechanics, combustion theory, and material science.
There have appeared some results for the existence of
solutions or positive solutions of boundary value problems
for fractional differential equations with 𝑝-Laplacian
operator; see [15, 21–26] and the references therein. For
example, under different conditions K. Hasib, W. Chen and
H. Sun [21] apply some classical fixed-point theorems to
study the existence of positive solution for a class of singular
fractional differential equations with nonlinear 𝑝-Laplacian
operator in Caputo sense

𝐷𝛽𝜙𝑝 (𝐷𝜖𝑢 (𝑡)) + Θ (𝑡) 𝜑1 (𝑡, 𝑢 (𝑡)) = 0,
𝜙𝑝 (𝐷𝜖𝑢 (𝑡))(𝑖)𝑡=0 = 0,

𝑖 = 1, . . . , 𝑛 − 1
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𝑢(𝑗) (0) = 0 = 𝑢 (1) ,
𝑗 = 1, . . . , 𝑛,

(2)

where 𝐷𝛽, 𝐷𝜖 is Caputo fractional derivative, 𝑛 − 1 < 𝛽, 𝜖 ≤𝑛, 𝜙𝑝(𝑟) = |𝑟|𝑝−2𝑟 is 𝑝-Laplacian operator, and Θ(⋅) is
continuous functions. In addition, Hyers-Ulam stability of
the proposed problem is also considered.

Inspired by the references, based on some fixed point
theorems in cones, under different combinations of local
superlinearity and local sublinearity of the function𝑓, wewill
deal with the existence of nontrivial solutions for a certain 𝑝-
Laplacian fractional differential equation

𝐷𝛽
0+
𝜙𝑝 (𝐷𝛼0+ (𝑝 (𝑡) 𝑢 (𝑡))) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0,

0 < 𝛼, 𝛽 < 1,
𝑎𝑢 (0) − 𝑏𝑝 (0) 𝑢 (0) = 0,
𝑐𝑢 (1) + 𝑑𝑝 (1) 𝑢 (1) = 0,

(𝐷𝛼0+ (𝑝 (𝑡) 𝑢 (𝑡)))𝑡=0 = 0,

(3)

where 𝑎, 𝑏, 𝑐, 𝑑 are constants with satisfying 0 < 𝑎𝑑 + 𝑏𝑐 +
𝑎𝑐 ∫1
0
(1/𝑝(𝑠))𝑑𝑠 < +∞, 𝑝(⋅) : [0, 1] → R+ is continuous,

and𝜙𝑝(𝑟) = |𝑟|𝑝−2𝑟 is𝑝-Laplacian operator, where 1/𝑝+1/𝑞 =1 and 𝜙𝑞 denotes inverse of 𝑝-Laplacian operator. Now we
give some notations as follows.

Definition 1 (see [2]). The fractional integral of order 𝛼 > 0
of a function 𝑢 : (0, +∞) → R is given by

𝐼𝛼0+𝑢 (𝑡) = 1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑢 (𝑠) 𝑑𝑠, (4)

provided that the right-hand side integral is pointwise
defined on (0, +∞), where Γ(𝛼) = ∫+∞

0
𝑒−𝑠𝑠𝛼−1𝑑𝑠.

Definition 2 (see [2]). The Caputo fractional derivative of
order 𝛼 > 0 of a continuous function 𝑢 : (0, +∞) → R
is given by

𝐷𝛼0+𝑢 (𝑡) = 1
Γ (𝑛 − 𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝑛−𝛼−1 𝑢(𝑛) (𝑠) 𝑑𝑠, (5)

for 𝑛 = [𝛼] + 1, where [𝛼] is used for the integer part of𝛼, provided that the right-hand side integral is pointwise
defined on (0, +∞).
Lemma 3 (see [2, Theorem 2.22]). Let 𝛼 ∈ (𝑛 − 1, 𝑛], 𝑢 ∈𝐴𝐶𝑛−1.Then

𝐼𝛼0+𝐷𝛼0+𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅ + 𝑐𝑛−1𝑡𝑛−1, (6)

where 𝑐𝑖 = −𝑢(𝑖)(0)/𝑖!, 𝑖 = 1, . . . , 𝑛 − 1.

The paper is organized as follows. In Section 2, we
give some notations and the Green function is examined
whether it is increasing or decreasing and positive or negative
function. In Section 3, we will give the main results, which are
illustrated by some examples.

2. Preliminaries

Lemma 4. Let ℎ(𝑡) ∈ 𝐴𝐶([0, 1]) and 0 < 𝛼, 𝛽 < 1. Then the
solution of the fractional differential equationwith𝑝-Laplacian
operator

𝐷𝛽
0+
𝜙𝑝 (𝐷𝛼0+ (𝑝 (𝑡) 𝑢 (𝑡))) + ℎ (𝑡) = 0,

𝑎𝑢 (0) − 𝑏𝑝 (0) 𝑢 (0) = 0,
𝑐𝑢 (1) + 𝑑𝑝 (1) 𝑢 (1) = 0,
𝐷𝛼0+ (𝑝 (𝑡) 𝑢 (𝑡))𝑡=0 = 0

(7)

can be expressed by

𝑢 (𝑡)
= ∫1
0
𝐺 (𝑡, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏, (8)

where

𝐺 (𝑡, 𝜏) = 1
𝜌Γ (𝛼)

{{{{{{{{{{{

(𝑏 + 𝑎∫𝑡
0

1
𝑝 (𝑠)𝑑𝑠)(𝑑 (1 − 𝜏)𝛼−1 + 𝑐∫

1

𝑡

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠) − 𝐻 (𝑡, 𝜏) , 0 ≤ 𝜏 ≤ 𝑡 ≤ 1;

(𝑏 + 𝑎∫𝑡
0

1
𝑝 (𝑠)𝑑𝑠)(𝑑 (1 − 𝜏)𝛼−1 + 𝑐∫

1

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠) , 0 ≤ 𝑡 ≤ 𝜏 ≤ 1,

𝜌 = 𝑎𝑑 + 𝑏𝑐 + 𝑎𝑐∫1
0

1
𝑝 (𝑠)𝑑𝑠,

𝐻 (𝑡, 𝜏) = 𝑎 (𝑑 + 𝑐∫1
𝑡

1
𝑝 (𝑠)𝑑𝑠)∫

𝑡

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠.

(9)
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Proof. Via some computations, from Lemma 3 it follows that

𝑝 (𝑡) 𝑢 (𝑡) + 𝑐1
= −𝐼𝛼0+ (𝜙𝑞 (𝑐0 + 1

Γ (𝛽) ∫
𝑡

0
(𝑡 − 𝑠)𝛽−1 ℎ (𝑠) 𝑑𝑠)) . (10)

Since 𝑝(𝑡) > 0, we have
𝑢 (𝑡) = − 𝑐1𝑝 (𝑡) −

1
Γ (𝛼) 𝑝 (𝑡) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1

⋅ 𝜙𝑞 (𝑐0 + 1
Γ (𝛽) ∫

𝑠

0
(𝑠 − 𝜏)𝛽−1 ℎ (𝜏) 𝑑𝜏)𝑑𝑠.

(11)

Integrating both sides from 0 to 𝑡, we can obtain

𝑢 (𝑡) = 𝑢 (0) − 𝑐1 ∫
𝑡

0

1
𝑝 (𝑠)𝑑𝑠

− ∫𝑡
0

1
Γ (𝛼) 𝑝 (𝑠) ∫

𝑠

0
(𝑠 − 𝜏)𝛼−1

⋅ 𝜙𝑞 (𝑐0 + 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠.

(12)

Due to 𝐷𝛼0+(𝑝(𝑡)𝑢(𝑡))|𝑡=0 = 0, we get 𝑐0 = 0 and
𝑝(0)𝑢(0) = −𝑐1. According to the boundary conditions𝑎𝑢(0) − 𝑏𝑝(0)𝑢(0) = 0, we have 𝑎𝑢(0) + 𝑏𝑐1 = 0 and 𝑢(0) =−(𝑏/𝑎)𝑐1. Since

𝑐𝑢 (1) + 𝑑𝑝 (1) 𝑢 (1) = 0,
𝑝 (1) 𝑢 (1) = −𝑐1 − 1

Γ (𝛼) ∫
1

0
(1 − 𝑠)𝛼−1 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝑠
0
(𝑠 − 𝜏)𝛽−1 ℎ (𝜏) 𝑑𝜏)𝑑𝑠,

𝑢 (1) = 𝑢 (0) − 𝑐1 ∫
1

0

1
𝑝 (𝑠)𝑑𝑠

− ∫1
0

1
Γ (𝛼) 𝑝 (𝑠) ∫

𝑠

0
(𝑠 − 𝜏)𝛼−1

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠,

(13)

it is clear that

0 = 𝑐 {𝑢 (0) − 𝑐1 ∫
1

0

1
𝑝 (𝑠)𝑑𝑠

− ∫1
0

1
Γ (𝛼) 𝑝 (𝑠) ∫

𝑠

0
(𝑠 − 𝜏)𝛼−1

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠}

+ 𝑑{−𝑐1 − 1
Γ (𝛼) ∫

1

0
(1 − 𝑠)𝛼−1 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝑠
0
(𝑠 − 𝜏)𝛽−1 ℎ (𝜏) 𝑑𝜏)𝑑𝑠} .

(14)

Since 𝑢(0) = −(𝑏/𝑎)𝑐1, we have
𝑐1 (−𝑏𝑐 + 𝑎𝑑𝑎 − 𝑐∫1

0

1
𝑝 (𝑠)𝑑𝑠)

= ∫1
0

𝑑 (1 − 𝑠)𝛼−1
Γ (𝛼) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1

⋅ ℎ (𝜏) 𝑑𝜏)𝑑𝑠

+ ∫1
0
∫𝑠
0

𝑐 (𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠) 𝜙𝑞 (

1
Γ (𝛽)

⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠,

(15)

which follows that

𝑐1 = −𝑎𝜌 {∫
1

0

𝑑 (1 − 𝑠)𝛼−1
Γ (𝛼) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 ℎ (𝜏) 𝑑𝜏)𝑑𝑠

+ ∫1
0
∫𝑠
0

𝑐 (𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠) 𝜙𝑞 (

1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠} .

(16)

Then substituting 𝑐1 and 𝑢(0), we obtain

𝑢 (𝑡) = 𝑏
𝜌 {∫
1

0

𝑑 (1 − 𝑠)𝛼−1
Γ (𝛼) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 ℎ (𝜏) 𝑑𝜏) 𝑑𝑠

+ ∫1
0
∫𝑠
0

𝑐 (𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠) 𝜙𝑞 (

1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠} + 𝑎

𝜌 ∫
𝑡

0

1
𝑝 (𝑠)𝑑𝑠
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⋅ {∫1
0

𝑑 (1 − 𝑠)𝛼−1
Γ (𝛼) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 ℎ (𝜏) 𝑑𝜏) 𝑑𝑠

+ ∫1
0
∫𝑠
0

𝑐 (𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠) 𝜙𝑞 (

1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠}

− ∫𝑡
0
∫𝑠
0

(𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠)𝜙𝑞 (

1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠

= 𝑏 + 𝑎 ∫𝑡
0
(1/𝑝 (𝑠)) 𝑑𝑠
𝜌 {∫1

0

𝑑 (1 − 𝑠)𝛼−1
Γ (𝛼) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 ℎ (𝜏) 𝑑𝜏)𝑑𝑠

+ ∫1
0
∫𝑠
0

𝑐 (𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠) 𝜙𝑞 (

1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠}

− ∫𝑡
0
∫𝑠
0

(𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠)𝜙𝑞 (

1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏 𝑑𝑠

= 𝑏 + 𝑎 ∫𝑡
0
(1/𝑝 (𝑠)) 𝑑𝑠
𝜌 {∫1

0

𝑑 (1 − 𝜏)𝛼−1
Γ (𝛼) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏

+ ∫1
0
∫1
𝜏

𝑐 (𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠) 𝑑𝑠𝜙𝑞 (

1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏} − ∫𝑡

0
∫𝑡
𝜏

(𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠)𝑑𝑠

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏

= 𝑏 + 𝑎 ∫𝑡
0
(1/𝑝 (𝑠)) 𝑑𝑠
𝜌 {∫1

0
(𝑑 (1 − 𝜏)𝛼−1Γ (𝛼) + ∫1

𝜏

𝑐 (𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠) 𝑑𝑠) 𝜙𝑞 (

1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔) 𝑑𝜏}

− ∫𝑡
0
∫𝑡
𝜏

(𝑠 − 𝜏)𝛼−1
Γ (𝛼) 𝑝 (𝑠)𝑑𝑠𝜙𝑞 (

1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 ℎ (𝜔) 𝑑𝜔)𝑑𝜏,

(17)

which implies the expression of the Green function 𝐺(𝑡, 𝑠).

Lemma 5. Assume that 𝑎, 𝑏, 𝑐, 𝑑 > 0, and 𝑝(𝑡) : [0, 1] →(0, +∞).The Green function 𝐺(𝑡, 𝜏) has the following proper-
ties:

(i) 𝐺(𝑡, 𝜏) > 0, for 0 ≤ 𝑡, 𝜏 ≤ 1;
(ii) 𝐺(𝑡, 𝜏) is an increasing function andmax𝑡∈[0,1]𝐺(𝑡, 𝜏) =𝐺(1, 𝜏);
(iii) For 0 ≤ 𝑡, 𝜏 ≤ 1, there exists a 𝐶(𝑡) = (𝑏 +

𝑎∫𝑡
0
(1/𝑝(𝑠))𝑑𝑠)/(𝑏+𝑎 ∫1

0
(1/𝑝(𝑠))𝑑𝑠) ∈ (0, 1) such that

𝐺 (𝑡, 𝜏) ≥ 𝐶 (𝑡) 𝐺 (1, 𝜏) . (18)

Proof. (i) For 0 ≤ 𝑡 ≤ 𝜏 ≤ 1,
𝐺 (𝑡, 𝜏) = 1

𝜌Γ (𝛼) (𝑏 + 𝑎∫
𝑡

0

1
𝑝 (𝑠)𝑑𝑠)

⋅ (𝑑 (1 − 𝜏)𝛼−1 + 𝑐∫1
𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠) .

(19)

Since 𝑎, 𝑏, 𝑐, 𝑑 > 0 and 𝑝(𝑡) > 0, we have 𝜌 = 𝑎𝑑 + 𝑏𝑐 +
𝑎𝑐 ∫1
0
(1/𝑝(𝑠))𝑑𝑠 > 0 and 𝐺(𝑡, 𝜏) > 0.

For 0 ≤ 𝜏 ≤ 𝑡 ≤ 1,
𝐺 (𝑡, 𝜏) = 1

𝜌Γ (𝛼) {(𝑏 + 𝑎∫
𝑡

0

1
𝑝 (𝑠)𝑑𝑠)

⋅ (𝑑 (1 − 𝜏)𝛼−1 + ∫1
𝑡

𝑐 (𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠)

− 𝑎(𝑑 + 𝑐∫1
𝑡

1
𝑝 (𝑠)𝑑𝑠)∫

𝑡

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠} .

(20)

Let

ℎ (𝑡) = (𝑏 + 𝑎∫𝑡
0

1
𝑝 (𝑠)𝑑𝑠)

⋅ (𝑑 (1 − 𝜏)𝛼−1 + ∫1
𝑡

𝑐 (𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠)

− 𝑎(𝑑 + 𝑐∫1
𝑡

1
𝑝 (𝑠)𝑑𝑠)∫

𝑡

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠.

(21)
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Via some computations, we get

ℎ (𝑡) = −(𝑏 + 𝑎∫𝑡
0

1
𝑝 (𝑠)𝑑𝑠)

𝑐 (𝑡 − 𝜏)𝛼−1
𝑝 (𝑡)

+ 𝑎
𝑝 (𝑡) (𝑑 (1 − 𝜏)𝛼−1 + ∫

1

𝑡

𝑐 (𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠)

− 𝑎 (𝑑 + 𝑐 ∫1
𝑡
(1/𝑝 (𝑠)) 𝑑𝑠)

𝑝 (𝑡) (𝑡 − 𝜏)𝛼−1

+ 𝑎𝑐
𝑝 (𝑡) ∫

𝑡

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠

= −𝜌 (𝑡 − 𝜏)𝛼−1𝑝 (𝑡) + 𝑎𝑑 (1 − 𝜏)𝛼−1
𝑝 (𝑡)

+ 𝑎𝑐
𝑝 (𝑡) ∫

1

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠.

(22)

Let 𝐹(𝑡) = −𝜌(𝑡 − 𝜏)𝛼−1 + 𝑎𝑑(1 − 𝜏)𝛼−1 + 𝑎𝑐 ∫1
𝜏
((𝑠 −

𝜏)𝛼−1/𝑝(𝑠))𝑑𝑠. Since 𝐹(𝑡) = −(𝛼 − 1)(𝑡 − 𝜏)𝛼−2𝜌 > 0 and
𝐹(𝜏) = 𝑎𝑑(1 − 𝜏)𝛼−1 + 𝑎𝑐 ∫1

𝜏
((𝑠 − 𝜏)𝛼−1/𝑝(𝑠))𝑑𝑠 > 0, we obtain

𝐹(𝑡) ≥ 𝐹(𝜏) > 0, which implies that ℎ(𝑡) = 𝐹(𝑡)/𝑝(𝑡) > 0 andℎ(𝑡) is increasing on [𝜏, 𝑡). Furthermore, for 0 ≤ 𝜏 ≤ 𝑡 ≤ 1, we
have

𝐺 (𝑡, 𝜏) = ℎ (𝑡)
𝜌Γ (𝛼) ≥

ℎ (𝜏)
𝜌Γ (𝛼) = (𝑏 + 𝑎∫

𝜏

0

1
𝑝 (𝑠)𝑑𝑠)

⋅ (𝑑 (1 − 𝜏)𝛼−1 + ∫1
𝜏

𝑐 (𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠) > 0.

(23)

(ii) For 0 ≤ 𝑡 ≤ 𝜏 ≤ 1, since

𝜕𝐺 (𝑡, 𝜏)
𝜕𝑡
= 𝑎
𝜌Γ (𝛼) (𝑑 (1 − 𝜏)𝛼−1 + 𝑐∫

1

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠) 1

𝑝 (𝑡)
> 0,

(24)

we obtain that𝐺(𝑡, 𝜏) is increasing on 𝑡 in (0, 1], which implies
that 𝐺(𝑡, 𝜏) ≤ 𝐺(1, 𝜏).

For 0 ≤ 𝜏 ≤ 𝑡 ≤ 1, from the proof of (i) it follows that𝐺(𝑡, 𝜏) is increasing on 𝑡 in (0, 1) and 𝐺(𝑡, 𝜏) ≤ 𝐺(1, 𝜏).
Then from the above discussion, we can obtain the

conclusion

max
𝑡∈[0,1]

𝐺 (𝑡, 𝜏) = 𝐺 (1, 𝜏) . (25)

(iii) For 0 ≤ 𝑡 ≤ 𝜏 ≤ 1,

𝐺 (𝑡, 𝜏)
𝐺 (1, 𝜏) =

𝜌Γ (𝛼) (𝑏 + 𝑎 ∫𝑡
0
(1/𝑝 (𝑠)) 𝑑𝑠) (𝑑 (1 − 𝜏)𝛼−1 + ∫1

𝜏
(𝑐 (𝑠 − 𝜏)𝛼−1 /𝑝 (𝑠)) 𝑑𝑠)

𝜌Γ (𝛼) (𝑏 + 𝑎 ∫1
0
(1/𝑝 (𝑠)) 𝑑𝑠) (𝑑 (1 − 𝜏)𝛼−1 + ∫1

𝜏
(𝑐 (𝑠 − 𝜏)𝛼−1 /𝑝 (𝑠)) 𝑑𝑠) = 𝑏 + 𝑎 ∫𝑡

0
(1/𝑝 (𝑠)) 𝑑𝑠

𝑏 + 𝑎 ∫1
0
(1/𝑝 (𝑠)) 𝑑𝑠 = 𝐶 (𝑡) . (26)

For 0 ≤ 𝜏 ≤ 𝑡 ≤ 1,

𝐺 (𝑡, 𝜏)
𝐺 (1, 𝜏) =

𝜌Γ (𝛼) { (𝑏 + 𝑎 ∫𝑡
0
(1/𝑝 (𝑠)) 𝑑𝑠) (𝑑 (1 − 𝜏)𝛼−1 + 𝑐 ∫1

𝑡
((𝑠 − 𝜏)𝛼−1 /𝑝 (𝑠)) 𝑑𝑠)

𝜌Γ (𝛼) {𝑑 (1 − 𝜏)𝛼−1 (𝑏 + 𝑎 ∫1
0
(1/𝑝 (𝑠)) 𝑑𝑠) − 𝑎𝑑∫1

𝜏
((𝑠 − 𝜏)𝛼−1 /𝑝 (𝑠)) 𝑑𝑠}

− 𝑎 (𝑑 + 𝑐 ∫1
𝑡
(1/𝑝 (𝑠)) 𝑑𝑠) ∫𝑡

𝜏
((𝑠 − 𝜏)𝛼−1 /𝑝 (𝑠)) 𝑑𝑠}

𝜌Γ (𝛼) {𝑑 (1 − 𝜏)𝛼−1 (𝑏 + 𝑎∫1
0
(1/𝑝 (𝑠)) 𝑑𝑠) − 𝑎𝑑 ∫1

𝜏
((𝑠 − 𝜏)𝛼−1 /𝑝 (𝑠)) 𝑑𝑠}

≥ 𝑑 (1 − 𝜏)𝛼−1 (𝑏 + 𝑎 ∫𝑡
0
(1/𝑝 (𝑠)) 𝑑𝑠) + 𝑐 (𝑏 + 𝑎 ∫𝑡

0
(1/𝑝 (𝑠)) 𝑑𝑠) ∫1

𝑡
((𝑠 − 𝜏)𝛼−1 /𝑝 (𝑠)) 𝑑𝑠

𝑑 (1 − 𝜏)𝛼−1 (𝑏 + 𝑎 ∫1
0
(1/𝑝 (𝑠)) 𝑑𝑠)

− 𝑎 (𝑑 + 𝑐 ∫1
𝑡
(1/𝑝 (𝑠)) 𝑑𝑠) ∫𝑡

𝜏
((𝑠 − 𝜏)𝛼−1 /𝑝 (𝑠)) 𝑑𝑠

𝑑 (1 − 𝜏)𝛼−1 (𝑏 + 𝑎 ∫1
0
(1/𝑝 (𝑠)) 𝑑𝑠) .

(27)

Let
𝐾 (𝑡) = 𝑐 (𝑏 + 𝑎∫𝑡

0

1
𝑝 (𝑠)𝑑𝑠)∫

1

𝑡

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠

− 𝑎 (𝑑 + 𝑐∫1
𝑡

1
𝑝 (𝑠)𝑑𝑠)∫

𝑡

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠,

𝐾1 (𝑡) = 𝑎𝑐 ∫
1

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠 − (𝑡 − 𝜏)𝛼−1 𝜌.

(28)
On one hand, since
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𝐾 (𝑡) = 𝑎𝑐
𝑝 (𝑡) ∫

1

𝑡

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠 − 𝑐 (𝑏 + 𝑎∫𝑡

0

1
𝑝 (𝑠)𝑑𝑠)

⋅ (𝑡 − 𝜏)𝛼−1𝑝 (𝑡) + 𝑎𝑐
𝑝 (𝑡) ∫

𝑡

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠 − 𝑎 (𝑑

+ 𝑐∫1
𝑡

1
𝑝 (𝑠)𝑑𝑠)

(𝑡 − 𝜏)𝛼−1
𝑝 (𝑡)

= 1
𝑝 (𝑡) {𝑎𝑐 ∫

1

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠

− (𝑡 − 𝜏)𝛼−1 (𝑏𝑐 + 𝑎𝑑 + 𝑎𝑐 ∫1
0

1
𝑝 (𝑠)𝑑𝑠)}

= 1
𝑝 (𝑡) {𝑎𝑐 ∫

1

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠 − (𝑡 − 𝜏)𝛼−1 𝜌} ,

(29)

we have 𝐾(𝑡) = 𝐾1(𝑡)/𝑝(𝑡). On the other hand, it is not hard
to obtain that 𝐾1(𝑡) = −(𝛼 − 1)(𝑡 − 𝜏)𝛼−2𝜌 > 0. Then 𝐾1(𝑡) is
increasing on 𝑡, which implies that

𝐾1 (𝑡) ≥ 𝐾1 (𝜏) = 𝑎𝑐 ∫
1

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠 > 0. (30)

Hence, we get 𝐾(𝑡) > 0. Furthermore, 𝐾(𝑡) is increasing on𝑡 and
𝐾 (𝑡) ≥ 𝐾 (𝜏) = 𝑐 (𝑏 + 𝑎∫𝜏

0

1
𝑝 (𝑠)𝑑𝑠)∫

1

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠

> 0.
(31)

Then, we have

𝐺 (𝑡, 𝜏)
𝐺 (1, 𝜏)

≥ 𝑑 (𝑏 + 𝑎 ∫𝑡
0
(1/𝑝 (𝑠)) 𝑑𝑠) (1 − 𝜏)𝛼−1 + 𝐾 (𝑡)

𝑑 (𝑏 + 𝑎∫1
0
(1/𝑝 (𝑠)) 𝑑𝑠) (1 − 𝜏)𝛼−1

≥ 𝑑 (𝑏 + 𝑎 ∫𝑡
0
(1/𝑝 (𝑠)) 𝑑𝑠) (1 − 𝜏)𝛼−1

𝑑 (𝑏 + 𝑎 ∫1
0
(1/𝑝 (𝑠)) 𝑑𝑠) (1 − 𝜏)𝛼−1

= 𝑏 + 𝑎 ∫𝑡
0
(1/𝑝 (𝑠)) 𝑑𝑠

𝑏 + 𝑎 ∫1
0
(1/𝑝 (𝑠)) 𝑑𝑠 = 𝐶 (𝑡) .

(32)

Therefore, from the above discussion, we get the conclu-
sion 𝐺(𝑡, 𝜏) ≥ 𝐶(𝑡)𝐺(1, 𝜏), 𝑡 ∈ (0, 1) and it is clear to see that0 < 𝐶(𝑡) < 1.

At the end of this section, we give some notations and
crucial lemmas.

Let 𝐸 = 𝐶[0, 1] be the Banach space and it endowed with
the norm ‖𝑢‖ = max𝑡∈[0,1]{|𝑢(𝑡)| : 𝑢 ∈ 𝐸}. Define a subcone𝐾 as

𝐾 = {𝑢 ∈ 𝐸 : 𝑢 (𝑡) ≥ 𝐶 (𝑡) ‖𝑢‖ , 𝑡 ∈ [0, 1]} . (33)

For any given 𝑟 > 0, let
Ω(𝑟) = {𝑢 ∈ 𝐾 : ‖𝑢‖ < 𝑟} ,
𝜕Ω (𝑟) = {𝑢 ∈ 𝐾 : ‖𝑢‖ = 𝑟} . (34)

Lemma 6 (see [27]). Let 𝐸 be a Banach space, 𝐸1 a closed,
convex subset of 𝐸,Ω an open subset of 𝐸1, and 0 ∈ Ω. Suppose
that 𝑇 : Ω → 𝐸1 is completely continuous. Then either

(i) 𝑇 has a fixed point inΩ, or
(ii) there are an 𝑢 ∈ 𝜕Ω (the boundary of Ω in 𝐸1) and𝜆 ∈ (0, 1) with 𝑢 = 𝜆𝑇𝑢.

Lemma 7 (see [27]). Let 𝐸 be a Banach space and 𝐾 ⊂ 𝐸 be
a cone in 𝐸. Assume Ω1, Ω2 are open subsets of 𝐸 with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let 𝑇 : 𝐾 ∩ (Ω2 \ Ω1) → 𝐾 be a completely
continuous operator such that either

(i) ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ 𝐾∩𝜕Ω1 and ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ 𝐾∩𝜕Ω2;
or

(ii) ‖𝑇𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ 𝜕Ω1 and ‖𝑇𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ 𝐾 ∩ 𝜕Ω2.
Then 𝑇 has a fixed point in 𝐾 ∩ (Ω2 \ Ω1).

Lemma 8 (see [21]). Let 𝜙𝑝 be a 𝑝−Laplacian operator. Then

(i) If 1 < 𝑝 ≤ 2, 𝑥1𝑥2 > 0 and |𝑥1|, |𝑥2| ≥ 𝜆 > 0, then𝜙𝑝 (𝑥1) − 𝜙𝑝 (𝑥2) ≤ (𝑝 − 1) 𝜆𝑝−2 𝑥1 − 𝑥2 . (35)

(ii) If 𝑝 > 2, and |𝑥1|, |𝑥2| ≤ 𝜆∗, then𝜙𝑝 (𝑥1) − 𝜙𝑝 (𝑥2) ≤ (𝑝 − 1) 𝜆∗(𝑝−2) 𝑥1 − 𝑥2 . (36)

3. Existence Results

For convenience, the following assumptions hold throughout
this paper:

(𝐴1) 𝑓 : (0, 1) × (0, +∞) → R is continuous;
(𝐴1) 𝑓 : (0, 1) × (0, +∞) → [0, +∞) is continuous;
(𝐴2) there exists positive constants 𝜇1, 𝜇2 and 𝑘 ∈ [0, 1]

such that 𝑓 satisfies

𝑓 (𝑡, 𝑢 (𝑡)) ≤ 𝜙𝑝 (𝜇1 |𝑢 (𝑡)|𝑘 + 𝜇2) ; (37)

(𝐴3) there exists a positive constant 𝐿 such that for all 𝑢, V ∈𝑉,
𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V) ≤ 𝐿 |𝑢 (𝑡) − V (𝑡)| . (38)

In addition, let

𝜛0 = ∫
1

0
𝜏𝛽𝐺 (1, 𝜏) 𝑑𝜏,

𝜔 = ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)𝑑𝜏,

max
0≤𝑡≤1

𝑓 (𝑡, 𝑢 (𝑡)) = 𝜇.
(39)
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Theorem 9. Suppose that (𝐴1), (𝐴2), and (𝐴3) hold and 𝑝 >2. Then problem (3) has a unique solution if

𝐿 (𝑞 − 1) (𝜆∗)𝑞−2
Γ (𝛽 + 1) 𝜛0 < 1

and (2 − 𝑞) (𝑞 − 1)(𝑞−1)/(2−𝑞) 𝐿1/(2−𝑞)𝜛1/(2−𝑞) + 𝜇 ≤ 0.
(40)

Proof. By Lemma 4, (3) is equivalent to the following integral
equation:

𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏.

(41)

Define an operator 𝑇 : 𝐶[0, 1] → 𝐶[0, 1] by
𝑇𝑢 (𝑡) = ∫1

0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏.

(42)

From (𝐴1) and (𝐴2), the operator 𝑇 is well defined.
Let 𝐵𝑟0 = {𝑢 ∈ 𝐶[0, 1] : ‖𝑢‖ ≤ 𝑟0} with 𝑟0 = (𝑞 −

1)(𝑞−1)/(2−𝑞)𝐿(𝑞−1)/(2−𝑞)𝜛1/(2−𝑞). Then we have

‖𝑇𝑢‖ = ∫
1

0
𝐺 (𝑡, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≤ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1

⋅ (𝑓 (𝜔, 𝑢 (𝜔)) − 𝑓 (𝜔, 0) + 𝑓 (𝜔, 0)) 𝑑𝜔)𝑑𝜏

≤ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ((𝐿𝑟0 + 𝜇) 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)𝑑𝜏 = 𝜙𝑞 (𝐿𝑟0 + 𝜇)

⋅ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)𝑑𝜏

= 𝜛 (𝐿𝑟0 + 𝜇)𝑞−1 .

(43)

Let 𝑔(𝑟) = 𝐿𝑟 − 𝜛−1/(𝑞−1)𝑟1/(𝑞−1) + 𝜇, and then we have

𝑔 (𝑟0) = 𝐿(𝑞−1)(𝑞−1)/(2−𝑞)𝐿(𝑞−1)/(2−𝑞)𝜛1/(2−𝑞)
− 𝜛−1/(𝑞−1) [(𝑞 − 1)(𝑞−1)/(2−𝑞)

⋅ 𝐿(𝑞−1)/(2−𝑞)𝜛1/(2−𝑞)]1/(𝑞−1) + 𝜇 = (𝑞 − 1)(𝑞−1)/(2−𝑞)
⋅ 𝐿1/(2−𝑞)𝜛1/(2−𝑞) − (𝑞 − 1)1/(2−𝑞) 𝐿1/(2−𝑞)𝜛1/(2−𝑞)
+ 𝜇 = (𝑞 − 1)1/(2−𝑞) 𝐿1/(2−𝑞)𝜛1/(2−𝑞) [(𝑞 − 1)−1 − 1]
+ 𝜇 = (2 − 𝑞) (𝑞 − 1)(𝑞−1)/(2−𝑞) 𝐿1/(2−𝑞)𝜛1/(2−𝑞) + 𝜇
≤ 0,

(44)

which implies that ‖𝑇𝑢‖ = 𝜛(𝐿𝑟0 + 𝜇)𝑞−1 ≤ 𝑟0.Therefore, we
proved that 𝑇 : 𝐵𝑟0 → 𝐵𝑟0 .

For any 𝑢, V ∈ 𝐸, by Lemma 8, we have

‖𝑇𝑢 − 𝑇V‖ = ∫
1

0
𝐺 (𝑡, 𝜏)

⋅ {𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)

− 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, V (𝜔)) 𝑑𝜔)}𝑑𝜏

≤ ∫1
0
𝐺 (1, 𝜏) {(𝑞 − 1) (𝜆∗)𝑞−2 

1
Γ (𝛽)

⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔 − 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, V (𝜔)) 𝑑𝜔} 𝑑𝜏

≤ (𝑞 − 1) (𝜆∗)𝑞−2
Γ (𝛽) ∫1

0
𝐺 (1, 𝜏) ∫𝜏

0
(𝜏 − 𝜔)𝛽−1

⋅ 𝑓 (𝜔, 𝑢 (𝜔)) − 𝑓 (𝜔, V (𝜔)) 𝑑𝜔 𝑑𝜏
≤ 𝐿 (𝑞 − 1) (𝜆∗)𝑞−2

Γ (𝛽 + 1) ∫1
0
𝜏𝛽𝐺 (1, 𝜏) 𝑑𝜏 ‖𝑢 − V‖

≤ 𝐿 (𝑞 − 1) (𝜆∗)𝑞−2
Γ (𝛽 + 1) 𝜛0 ‖𝑢 − V‖ .

(45)

Since (𝐿(𝑞 − 1)(𝜆∗)𝑞−2/Γ(𝛽 + 1))𝜛0 < 1, from Banach’s
contraction mapping principle it follows that there exists a
unique fixed point for the operator 𝑇, which corresponds to
the unique solution for problem (3).

Lemma 10. Assume that (A1) and (𝐴2) hold. Then the
operator 𝑇 : 𝐾 → 𝐾 is completely continuous.

Proof. For any 𝑢 ∈ 𝐾, according to Lemma 5, we can get

𝑇𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏



8 Journal of Function Spaces

≤ ∫1
0
𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏,

(46)

and

𝑇𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≥ 𝐶 (𝑡) ∫1
0
𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏.

(47)

So we have

𝑇𝑢 (𝑡) ≥ 𝐶 (𝑡) ‖𝑇𝑢‖ , 𝑡 ∈ [0, 1] . (48)

This implies 𝑇 : 𝐾 → 𝐾.
Given 𝑅 > 𝑟 > 0, now we show that 𝑇 is completely

continuous on Ω(𝑅) \ Ω(𝑟).
Firstly, we will show that 𝑇 is continuous, and we only

need to prove that ‖𝑇(𝑢𝑛) − 𝑇(𝑢)‖ → 0 for any 𝑢𝑛 → 𝑢 as𝑛 → ∞. It is clear that
𝑇 (𝑢𝑛) − 𝑇 (𝑢) = max

0≤𝑡≤1

∫
1

0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢𝑛 (𝜔)) 𝑑𝜔) 𝑑𝜏

− ∫1
0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔) 𝑑𝜏

≤ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 (

1
Γ (𝛽)

⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢𝑛 (𝜔)) 𝑑𝜔) − 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔) 𝑑𝜏.

(49)

From the continuity of 𝑓, 𝜙𝑞(⋅), we have
𝜙𝑞 ( 1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢𝑛 (𝜔)) 𝑑𝜔)

→ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)

(50)

as 𝑛 → ∞. Therefore, ‖𝑇(𝑢𝑛) − 𝑇(𝑢)‖ → 0, as 𝑛 → ∞,
and 𝑇 is continuous.

Next, we show that the operator 𝑇 is uniformly bounded.
By (𝐴2), we get

‖𝑇 (𝑢)‖ = max
0≤𝑡≤1

∫
1

0
𝐺 (𝑡, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≤ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 (

1
Γ (𝛽)

⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝜙𝑝 (𝜇1 |𝑢 (𝑡)|𝑘 + 𝜇2) 𝑑𝜔)

 𝑑𝜏

= ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)𝑑𝜏

⋅ (𝜇1 |𝑢 (𝑡)|𝑘 + 𝜇2) ≤ 𝜔 (𝜇1 ‖𝑢 (𝑡)‖𝑘 + 𝜇2) ,

(51)

which implies that the operator 𝑇 is uniformly bounded on
Ω(𝑅) \ Ω(𝑟).

Finally, we show that the operator 𝑇 is equicontinuous.
Before that, we will proceed with 𝜕𝐺(𝑡, 𝜏)/𝜕𝑡 being bounded.

For 0 ≤ 𝑡 ≤ 𝜏 ≤ 1,
𝜕𝐺 (𝑡, 𝜏)

𝜕𝑡
= 𝑎
𝜌Γ (𝛼) 𝑝 (𝑡) (𝑑 (1 − 𝜏)𝛼−1 + 𝑐∫

1

𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠) .

(52)

Since the function 𝑝(⋅), 𝑑(1 − 𝜏)𝛼−1 and ∫1
𝜏
((𝑠 − 𝜏)𝛼−1/𝑝(𝑠))𝑑𝑠

are bounded, there exists a positive constant 𝑀1 such that|𝜕𝐺(𝑡, 𝜏)/𝜕𝑡| ≤ 𝑀1. In a similar way, for 0 ≤ 𝜏 ≤ 𝑡 ≤ 1,
there exists a positive constant 𝑀2 such that


𝜕𝐺 (𝑡, 𝜏)

𝜕𝑡
 =


1

𝜌Γ (𝛼) 𝑝 (𝑡) (−𝜌 (𝑡 − 𝜏)𝛼−1

+ 𝑎𝑑 (1 − 𝜏)𝛼−1 + 𝑎𝑐 ∫1
𝜏

(𝑠 − 𝜏)𝛼−1
𝑝 (𝑠) 𝑑𝑠) ≤ 𝑀2.

(53)

Choosing 𝑀 = max{𝑀1,𝑀2}, we can obtain |𝜕𝐺(𝑡, 𝜏)/𝜕𝑡| ≤
𝑀.

Finally, for any 𝑡1, 𝑡2 ∈ [0, 1] with 𝑡1 < 𝑡2, there exists a𝜉 ∈ (𝑡1, 𝑡2) such that

𝑇𝑢 (𝑡2) − 𝑇𝑢 (𝑡1) =
∫
1

0
𝐺 (𝑡2, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔) 𝑑𝜏
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− ∫1
0
𝐺 (𝑡1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

= ∫
1

0
(𝐺 (𝑡2, 𝜏) − 𝐺 (𝑡1, 𝜏))

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

= ∫
1

0

𝜕𝐺 (𝑡, 𝜏)
𝜕𝑡

𝑡=𝜉 (𝑡2 − 𝑡1)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≤ ∫
1

0
𝑀(𝑡2 − 𝑡1) (𝜇1 |𝑢 (𝑡)|𝑘 + 𝜇2)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)𝑑𝜏

≤ 𝑀(𝜇1 ‖𝑢 (𝑡)‖𝑘 + 𝜇2)
⋅ ∫1
0

𝜙𝑞 (
1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔) 𝑑𝜏

𝑡2 − 𝑡1 .
(54)

Thus, the operator 𝑇 is equicontinuous. According to Arzela-
Ascoli theorem, 𝑇 : Ω(𝑅) \ Ω(𝑟) → 𝐸 is compact.

Theorem 11. Suppose that (𝐴1) and (𝐴2) hold. In addition,

(C1) there exists a continuous function 𝑔 : R+ → R+ such
that

𝑓 (𝑡, 𝑢 (𝑡)) ≤ 𝜙𝑝 (𝑔 (‖𝑢‖)) ,
for any 𝑡 ∈ [0, 1] , 𝑢 ∈ R; (55)

(C2) there exists a constant 𝑅 such that 𝑅/𝜛𝑔(𝑅) > 1.
Then problem (3) has at least one solution.

Proof. Now we show the (ii) of Lemma 6 does not hold. If 𝑢
is a solution of (3), then, for 𝜆 ∈ (0, 1), we have

‖𝑢‖ = 𝜆 ‖𝑇𝑢‖ = 𝜆 ∫
1

0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≤ 𝜆∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝜙𝑝 (𝑔 (‖𝑢‖)) 𝑑𝜔)𝑑𝜏

≤ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)

⋅ 𝜙𝑝 (𝜙𝑞 (𝑔 (‖𝑢‖))) 𝑑𝜏 ≤ 𝑔 (‖𝑢‖) 𝜛.
(56)

Let 𝐵𝑅 = {𝑢 ∈ 𝐸 : ‖𝑢‖ < 𝑅}. From the above inequality and(C2), it yields a contradiction. Therefore, the operator 𝑇 has
a fixed point in 𝐵𝑅.

For 𝑟 > 0, define the following functions:
𝑓𝑀 (𝑡, 𝑟) = max {𝑓 (𝑡, 𝑢 (𝑡)) | 𝐶 (𝑡) 𝑟 ≤ 𝑢 ≤ 𝑟} ,
𝑓𝑚 (𝑡, 𝑟) = min {𝑓 (𝑡, 𝑢 (𝑡)) | 𝐶 (𝑡) 𝑟 ≤ 𝑢 ≤ 𝑟} . (57)

Theorem 12. Suppose that (𝐴1) and (𝐴2) hold. In addition,
there exist 𝑟0, 𝑅0 ∈ R+ such that one of the following conditions
satisfied:

(𝐵1)
𝑟0 ≤ ∫

1

0
𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓𝑚 (𝜔, 𝑟0) 𝑑𝜔) 𝑑𝜏

< +∞

(58)

and

∫1
0
𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓𝑀 (𝜔, 𝑟0) 𝑑𝜔)𝑑𝜏

≤ 𝑅0;

(59)

or

(𝐵2)
∫1
0
𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓𝑀 (𝜔, 𝑥0) 𝑑𝜔)𝑑𝜏

< 𝑟0

(60)

and

𝑅0 ≤ ∫
1

0
𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓𝑀 (𝜔, 𝑟0) 𝑑𝜔) 𝑑𝜏

< +∞.

(61)

Then problem (3) has a positive solution 𝑢0 ∈ 𝐾 such that𝑟0 ≤ ‖𝑢0‖ ≤ 𝑅0.
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Proof. We only verify the case (𝐵1). On one hand, for any 𝑢 ∈𝜕Ω(𝑟0), we have 𝐶(𝑡)𝑟0 ≤ 𝑢 ≤ 𝑟0 and
‖𝑇 (𝑢)‖ = max

0≤𝑡≤1

∫
1

0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≥ max
0≤𝑡≤1

∫
1

0
𝐶 (𝑡) 𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

= max
0≤𝑡≤1

𝐶 (𝑡) ∫
1

0
𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≥ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≥ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓𝑚 (𝜔, 𝑟0) 𝑑𝜔)𝑑𝜏 ≥ 𝑟0 = ‖𝑢‖ .

(62)

Thus, ‖𝑇(𝑢)‖ ≥ ‖𝑢‖, for any 𝑢 ∈ 𝜕Ω(𝑟0).
On the other hand, for any 𝑢 ∈ 𝜕Ω(𝑅0), we have 𝐶(𝑡)𝑅0 ≤𝑢 ≤ 𝑅0, 𝑡 ∈ [0, 1] and
‖𝑇 (𝑢)‖ = max

0≤𝑡≤1

∫
1

0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≤ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≤ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑓𝑀 (𝜔, 𝑅0) 𝑑𝜔) 𝑑𝜏 ≤ 𝑅0

= ‖𝑢‖ .

(63)

Then, ‖𝑇(𝑢)‖ ≥ ‖𝑢‖, for any 𝑢 ∈ 𝜕Ω(𝑅0).
Therefore, By Lemma 7, the operator 𝑇 has a fixed point

𝑢0 ∈ Ω(𝑅0) \ Ω(𝑟0) with 𝑟0 ≤ ‖𝑢0‖ ≤ 𝑅0.

Theorem 13. Suppose that (𝐴1) holds. In addition

(𝐷1) lim𝑢→0+ (𝑓(𝑡, 𝑢)/𝑢1/(𝑞−1)) = 0;
(𝐷2) there exists a constant 𝐾 > 0 such that 𝑓(𝑡, 𝑢) ≤ 𝐾;
(𝐷3) there exists 𝑅 > 0 and 𝜃 ∈ (0, 1/2) such that

min
𝜗𝑅≤𝑢≤𝑅

𝑓 (𝑡, 𝑢) > (𝜎𝑅)1/(𝑞−1) , (64)

where

0 < 𝜗 = min
𝜃≤𝑡≤1−𝜃

𝐶 (𝑡) < 1,

𝜎 = ( min
𝜃≤𝑡≤1−𝜃

𝐶 (𝑡) ∫1−𝜃
𝜃

𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)𝑑𝜏)

−1

.
(65)

Then problem (3) has at least two solutions.

Proof. Since lim𝑢→0+ (𝑓(𝑡, 𝑢)/𝑢1/(𝑞−1)) = 0, there exist 𝜀 > 0
and 𝑟 > 0 such that𝑓(𝑡, 𝑢) < 𝜀𝑢1/(𝑞−1), for 0 ≤ 𝑢 ≤ 𝑟, 𝑡 ∈ [0, 1],
where 𝜀 satisfies 𝜀𝑞−1𝜛 < 1. For 𝑢 ∈ 𝜕Ω(𝑟) = {𝑢 ∈ 𝐸 : ‖𝑢‖ <𝑟}, we have

‖𝑇𝑢‖ = ∫
1

0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≤ ∫
1

0
𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 (𝜀𝑢1/(𝑞−1)) 𝑑𝜔) 𝑑𝜏

≤ 𝜀𝑞−1 ‖𝑢‖∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 ( 1

Γ (𝛽)
⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)𝑑𝜏 ≤ 𝜀𝑞−1𝜛 ‖𝑢‖ < ‖𝑢‖ .

(66)

Choosing 𝑅 > 𝐾𝑞−1𝜛. For 𝑢 ∈ 𝜕Ω(𝑅), we have
‖𝑇𝑢‖ = ∫

1

0
𝐺 (𝑡, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≤ ∫1
0
𝐺 (1, 𝜏) 𝜙𝑞 (𝐾 1

Γ (𝛽) ∫
𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)𝑑𝜏

= 𝐾𝑞−1𝜛 < 𝑅 = ‖𝑢‖ .

(67)
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For any 𝑢 ∈ 𝜕Ω(𝑅), choosing 𝑡0 ∈ (𝜃, 1 − 𝜃), we have 𝑢(𝑡0) ∈[𝜗𝑅, 𝑅]. Furthermore, we have

𝑇𝑢 (𝑡0) =
∫
1

0
𝐺 (𝑡0, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≥ ∫
1

0
𝐶 (𝑡0) 𝐺 (1, 𝜏)

⋅ 𝜙𝑞 ( 1
Γ (𝛽) ∫

𝜏

0
(𝜏 − 𝜔)𝛽−1 𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≥ ∫1−𝜃
𝜃

𝐶 (𝑡0) 𝐺 (1, 𝜏) 𝜙𝑞 ( 1
Γ (𝛽)

⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 min

𝜗𝑅≤𝑢≤𝑅
𝑓 (𝜔, 𝑢 (𝜔)) 𝑑𝜔)𝑑𝜏

≥ [ min
𝜃≤𝑡≤1−𝜃

𝐶 (𝑡)]∫1−𝜃
𝜃

𝐺 (1, 𝜏) 𝜙𝑞 ( 1
Γ (𝛽)

⋅ ∫𝜏
0
(𝜏 − 𝜔)𝛽−1 𝑑𝜔)𝜙𝑞 ((𝜎𝑅)1/(𝑞−1))𝑑𝜏

= 𝛿−1𝛿𝑅 = 𝑅 = ‖𝑢‖ .

(68)

By Lemma 7, problem (3) has at least two positive solution
𝑟 ≤ ‖𝑢1(𝑡)‖ ≤ 𝑅 and 𝑅 ≤ ‖𝑢2(𝑡)‖ ≤ 𝑅.

At the end of this section, we give some examples to
illustrate our main results.

Example 1. Let us consider the problem

𝐷𝛽
0+
𝜙𝑝 (𝐷𝛼0+ (𝑝 (𝑡) 𝑢 (𝑡)))
+ 𝜙𝑝 (sin 𝑡 (arctan 𝑢1/3 + cos 𝑢1/2 + 3)) = 0,

𝑎𝑢 (0) − 𝑏𝑝 (0) 𝑢 (0) = 0,
𝑐𝑢 (1) + 𝑑𝑝 (1) 𝑢 (1) = 0,
𝐷𝛼0+ (𝑝 (𝑡) 𝑢 (𝑡))𝑡=0 = 0.

(69)

It is clear to see that |𝑓(𝑡, 𝑢)| = |𝜙𝑝(sin 𝑡(arctan 𝑢1/3+cos 𝑢1/2+3))| ≤ 𝜙𝑝(‖𝑢‖1/3 + ‖𝑢‖1/2 + 3) = 𝜙𝑝(𝑔(‖𝑢‖)), for 𝑡 ∈ [0, 1],𝑢 ∈ R. In addition, there exists a sufficiently large 𝑅 > 0, we
have 𝑅/𝜛𝑔(𝑅) > 1. Therefore, problem (69) has at least one
solution byTheorem 11.

Example 2. Let us consider the problem

𝐷𝛽
0+
𝜙𝑝 (𝐷𝛼0+ (𝑝 (𝑡) 𝑢 (𝑡)))
+ (𝜎𝑝)𝑝−1 + 1
(𝑝𝜗)𝑝 𝑒−𝑝𝜗 (sin 𝑡 + 2) 𝑒−𝑢𝑢𝑝 = 0,

𝑎𝑢 (0) − 𝑏𝑝 (0) 𝑢 (0) = 0,
𝑐𝑢 (1) + 𝑑𝑝 (1) 𝑢 (1) = 0,
𝐷𝛼0+ (𝑝 (𝑡) 𝑢 (𝑡))𝑡=0 = 0.

(70)

Since 𝑓(𝑡, 𝑢) = (((𝜎𝑝)𝑝−1 + 1)/(𝑝𝜗)𝑝𝑒−𝑝𝜗)(sin 𝑡 + 2)𝑒−𝑢𝑢𝑝,
we have 𝑓(𝑡, 𝑢)/𝑢𝑝−1 = (((𝜎𝑝)𝑝−1 + 1)/(𝑝𝜗)𝑝𝑒−𝑝𝜗)(sin 𝑡 +2)𝑢𝑒−𝑢 → 0 as 𝑢 → 0+, and (𝐷2) hold. By some calcu-
lations, we get 𝑓(𝑡, 𝑢) = (((𝜎𝑝)𝑝−1 + 1)/(𝑝𝜗)𝑝𝑒−(𝑝−1)𝜗)(sin 𝑡 +2)𝑒−𝑢𝑢𝑝−1(1/𝑝 − 𝑢), and it is clear to see that 𝑓(𝑡, 𝑢) > 0,
for 𝑢 ∈ (0, 1/𝑝), and 𝑓(𝑡, 𝑢) < 0, for 𝑢 ∈ (1/𝑝, +∞).
Let 𝑅 = 1/𝑝, and then for any 𝑢 ∈ (𝜗(1/𝑝), 1/𝑝), we have
min𝑢∈[𝜗(1/𝑝),1/𝑝]𝑓(𝑡, 𝑢) = (((𝜎𝑝)𝑝−1 + 1)/(𝑝𝜗)𝑝𝑒−𝑝𝜗)(sin 𝑡 +
2)(𝑝𝜗)𝑝𝑒−(1/𝑝)𝜗 ≥ (𝑝𝜎)𝑝−1 + 1 ≥ (𝑅𝜗)𝑝−1, and (𝐷3) holds.
Therefore, problem (70)has at least twopositive solutions 𝑢(𝑡)
byTheorem 13.
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We consider a ratio-dependent predator-prey model under zero Dirichlet boundary condition. By using topological degree theory
and fixed index theory, we study the necessary and sufficient conditions for the existence of positive solutions. Then we present the
asymptotic behavior analysis of positive solutions, by bifurcation theory and energy estimates.

1. Introduction and Preliminaries

There is growing results about elliptic system, which comes
from biological and physiological evidence, such as [1–
9]. A more suitable general predator-prey model should
be based on the so-called ratio-dependent theory, which
asserts that the per capita predator growth rate should be a
function of the ratio of prey to predator abundance. In recent
years, such model has been studied extensively, and many
important phenomena have been observed (see [4–6, 10–12]
and references therein).

In this paper, we consider the following semilinear elliptic
systemwith ratio-dependent function response and Dirichlet
boundary condition:

− △ 𝑢 = 𝑢 (𝜆 − 𝑢) − 𝑏𝑢V𝑢 + 𝑚V
, 𝑖𝑛 Ω

− △ V = V(−𝑘 + 𝑢𝑢 + 𝑚V
) , 𝑖𝑛 Ω

𝑢 = V = 0, 𝑜𝑛 𝜕Ω.
(1)

Here Ω is a bounded domain in R𝑁(𝑁 ≥ 1) with smooth
boundary 𝜕Ω. In the biological model, the two unknown
functions 𝑢(𝑥), V(𝑥) represent the spatial distribution density
of the prey and predator. 𝜆 is termed the birth rate of the prey,
while 𝑘 is the death rate of the predator and 𝑏 is a positive
constant sometimes referred to as the conversion rate. The

Holling-Tanner interaction term 𝑏𝑢V/(𝑢 +𝑚V) represents the
rate at which the prey is consumed by the predator with 𝑚 >0.

We remark that problem (1) with homogeneous Neu-
mann boundary condition was discussed in [6]. We will
consider what is more general in this paper, where the
parameters𝜆, 𝑏 are positive and 𝑘 ∈ R.What ismore, since (1)
comes from the biological module, our results and methods
are different from those in [13–16] and references therein,
which are also the Dirichlet boundary problems.

We say that a solution (𝑢, V) of (1) is positive solution if
both 𝑢(𝑥) > 0, V(𝑥) > 0 for all 𝑥 ∈ Ω and (𝜕𝑢/𝜕𝑛)(𝑥) <0, (𝜕V/𝜕𝑛)(𝑥) < 0 for all𝑥 ∈ 𝜕Ω; i.e., (𝑢, V) is also a coexistence
state of (1).

Now, we give some notations, definitions and well-known
facts which will be used in the sequel.

For each 𝑞 ∈ 𝐶(Ω), let 𝜆1(𝑞) be the principal eigenvalue
of − △ 𝑢 + 𝑞 (𝑥) 𝑢 = 𝜆𝑢, 𝑥 ∈ Ω𝑢 = 0, 𝑥 ∈ 𝜕Ω. (2)

As is well known, the principal eigenvalue 𝜆1(𝑞) is given by
the following variational characterization

𝜆1 (𝑞) = inf
𝜙∈𝐻1
0
(Ω),‖𝜙‖

𝐿2(Ω)
=1
∫
Ω
(∇𝜙2 + 𝑞 (𝑥) 𝜙2) 𝑑𝑥 (3)
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We denote 𝜆1(0) by 𝜆1; some useful properties can be seen [6,
Proposition A.1] or [17, Lemma 5.2].

For 𝑞 ∈ 𝐶(Ω), let 𝑝 be a sufficiently large constant such
that 𝑝 − 𝑞(𝑥) > 0 for all 𝑥 ∈ Ω. Define a compact linear
operator 𝑇 : 𝐶(Ω) → 𝐶(Ω) by 𝑢 = 𝑇V = (− △ +𝑝)−1(𝑝 −𝑞(𝑥))V, where𝑢 ∈ 𝐶(Ω) is the unique solution of the following
problem: − △ 𝑢 + 𝑝𝑢 = (𝑝 − 𝑞 (𝑥)) V, 𝑥 ∈ Ω𝑢 = 0, 𝑥 ∈ 𝜕Ω. (4)

Denote 𝑟(𝑇) be the spectral radius of𝑇.Then the relationship
between 𝜆1(𝑞) and 𝑟(𝑇) can be given as [2, Proposition 1].

Theorem 1 (see [2]). (1) 𝜆1(𝑞) > 0 ⇐⇒ 𝑟(𝑇) < 1;(2) 𝜆1(𝑞) < 0 ⇐⇒ 𝑟(𝑇) > 1;(3) 𝜆1(𝑞) = 0 ⇐⇒ 𝑟(𝑇) = 1.
From Theorem 1, we see that it is crucial to determine the

eigenvalue 𝜆1(𝑞). The following theorem is established by [2]
(see also Theorem 2.4 [1]).

Theorem 2 (see [1, 2]). Let 𝑞(𝑥) ∈ 𝐿∞(Ω) and 𝜙 ≥ 0, 𝜙 ̸≡ 0
inΩ with 𝜙 = 0 on 𝜕Ω. Then we have

(a) If 0 ̸≡ − △ 𝜙 + 𝑞(𝑥)𝜙 ≤ 0, then 𝜆1(𝑞) < 0;
(b) If 0 ̸≡ − △ 𝜙 + 𝑞(𝑥)𝜙 ≥ 0, then 𝜆1(𝑞) > 0;
(c) If − △ 𝜙 + 𝑞(𝑥)𝜙 ≡ 0, then 𝜆1(𝑞) = 0.
Some concepts of cone, total wedge, topological degree and

fixed point index in a cone can be seen in [18–21] and so on.

Let 𝐸 be a Banach space and 𝑊 ⊂ 𝐸 be a total wedge.
Let 𝐴 : 𝑊 → 𝑊 be a compact operator with a fixed point𝑦 ∈ 𝑊 and let 𝐷 be a relatively open subset of𝑊 such that𝐴 has no fixed point on the boundary of 𝐷. We denote by
deg𝑊(𝐼 − 𝐴, 𝐷) the degree of 𝐼 − 𝐴 in 𝐷 relative to𝑊 and by𝑖𝑛𝑑𝑒𝑥𝑊(𝐴, 𝑦) the fixed point index of 𝐴 at 𝑦 relative to𝑊.

Theorem3 (see [21, 22]). Assume that𝑊 is a total wedge, and
let 𝐴 : 𝑊 → 𝑊 be a compact operator with a fixed point𝑦 ∈ 𝑊 and it is Frechlet differentiable at 𝑦. Let 𝐿 = 𝐴(𝑦) be
the Frechlet derivative of 𝐴 at 𝑦. Then 𝐿 maps𝑊𝑦 into itself.
Moreover, if 𝐼−𝐿 is invertible on𝑊𝑦, then the following results
hold:

(i) If 𝐿 has property 𝑎 on𝑊𝑦, then 𝑖𝑛𝑑𝑒𝑥𝑊(𝐴, 𝑦) = 0;
(ii) If 𝐿 does not has property 𝑎 on 𝑊𝑦, then𝑖𝑛𝑑𝑒𝑥𝑊(𝐴, 𝑦) = (−1)𝜎, where 𝜎 is the sum of

multiplicities of all eigenvalues of 𝐿, which is greater
than 1.

2. Existence of Positive Solutions of (1)

In the sequel, for simplicity of notation and more transparent
analysis, we redefine

𝑝 (𝑢, V) = {{{
𝑢V𝑢 + 𝑚V

, (𝑢, V) ̸= (0, 0)0, (𝑢, V) = (0, 0) (5)

It is easy to see that, for 𝑢 ̸= 0,
𝑝𝑢 (𝑢, V) = 𝑚V2(𝑢 + 𝑚V)2 ⇒ 𝑝𝑢 (𝑢, 0) = 0,
𝑝V (𝑢, V) = 𝑢2(𝑢 + 𝑚V)2 ⇒ 𝑝V (𝑢, 0) = 1,
𝑝𝑢 (𝑢, V) = − 2𝑚V2(𝑢 + 𝑚V)3 ⇒ 𝑝𝑢 (𝑢, 0) = 0,
𝑝V (𝑢, V) = − 2𝑚𝑢2(𝑢 + 𝑚V)3 ⇒ 𝑝V (𝑢, 0) = −2𝑚𝑢 ,
𝑝𝑢V (𝑢, V) = 𝑝V𝑢 = 2𝑚𝑢V(𝑢 + 𝑚V)3 ⇒ 𝑝𝑢V (𝑢, 0) = 0.

(6)

while 𝑝𝑢 (0, 0) = 𝑝V (0, 0) = 0. (7)

Under the definition of 𝑝(𝑢, V), it is obvious that (1) has a
trivial solution (0, 0) and only one semitrivial solution (𝑢𝜆, 0)
(if 𝜆 > 𝜆1, 𝑘 > −𝜆1), where 𝑢𝜆 is the unique positive solution
of − △ 𝑢 = 𝜆𝑢 − 𝑢2, 𝑥 ∈ Ω𝑢 = 0, 𝑥 ∈ 𝜕Ω. (8)

Lemma 4. Ifmodel (1) has a positive solution, then 𝜆 > 𝜆1 and−𝜆1 < 𝑘 < 1 − 𝜆1.
Proof. Assume (𝑢, V) is a positive solution of (1), and then− △ 𝑢 < 𝜆𝑢, 𝑥 ∈ Ω− △ V < (1 − 𝑘) V, 𝑥 ∈ Ω𝑢 = V = 0, 𝑥 ∈ 𝜕Ω. (9)

It follows from the property of the principal eigenvalue that𝜆 > 𝜆1 and 1 − 𝑘 > 𝜆1, that is, 𝑘 < 1 − 𝜆1.
On the other hand, since (𝑢, V) satisfies

− △ V = V(−𝑘 + 𝑢𝑢 + 𝑚V
) , 𝑥 ∈ Ω

V = 0, 𝑥 ∈ 𝜕Ω (10)

one has

0 = 𝜆1 (𝑘 − 𝑢𝑢 + 𝑚V
) < 𝜆1 (𝑘) = 𝑘 + 𝜆1. (11)

So 𝑘 > −𝜆1.
Remark 5. Above lemma is about the necessary condition for
(1) to have positive solutions. Next we show that 𝜆 > 𝜆1 and−𝜆1 < 𝑘 < 1 − 𝜆1 are also the sufficient conditions for the
existence of a positive solution of (1). We will use fixed point
index theory.
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Lemma6. Assuming 𝑘 > −𝜆1, then any positive solution (𝑢, V)
of (1) has a priori bounds𝑢 (𝑥) ≤ 𝜆,

V (𝑥) ≤ 𝜆 (𝜆 + 𝑘)𝑏 (− △ +𝑘)−1 (1)𝐶(Ω) . (12)

Proof. Since part 1 is a simple consequence of a standard
comparison argument, we omit it. For part 2, by a direct
calculation, we get that

− △ (𝑢 + 𝑏V) = 𝑢 (𝜆 − 𝑢) − 𝑏𝑢V𝑢 + 𝑚V
+ 𝑏𝑢V𝑢 + 𝑚V

− 𝑘𝑏V
= −𝑘𝑏V + 𝑢 (𝜆 − 𝑢)= −𝑘 (𝑢 + 𝑏V) + 𝑢 (𝜆 + 𝑘 − 𝑢) .

(13)

and hence (− △ +𝑘) (𝑢 + 𝑏V) = 𝑢 (𝜆 + 𝑘 − 𝑢) . (14)

As 𝜆1 + 𝑘 > 0, we have
V = 1𝑏 [−𝑢 + (− △ +𝑘)−1 (𝑢 (𝜆 + 𝑘 − 𝑢))] . (15)

Therefore 𝜆 + 𝑘 > 0. Otherwise, if 𝜆 + 𝑘 ≤ 0, then (− △+𝑘)(𝑢 + 𝑏V) < 0, which implies 𝑢 + 𝑏V < 0, a contradiction.
Consequently 𝜆 + 𝑘 > 0 is necessary for the existence of a
positive solution; in such case𝑏V ≤ 𝑏V + 𝑢 = (− △ +𝑘)−1 [𝑢 (𝜆 + 𝑘 − 𝑢)]≤ 𝜆 (𝜆 + 𝑘) (− △ +𝑘)−1 (1) , (16)

then

V ≤ 𝜆 (𝜆 + 𝑘)𝑏 (− △ +𝑘)−1 (1)𝐶(Ω) . (17)

Remark 7. Above result shows that the coexistence states of
(1) have a priori bounds as soon as 𝑘 varies in compact
subinterval of (−𝜆1, 1 − 𝜆1).

Now we introduce the following notations:𝐸 = 𝐶 (Ω) × 𝐶 (Ω) ,𝑊 = 𝐾 × 𝐾,𝑤ℎ𝑒𝑟𝑒 𝐾 = {𝑢 ∈ 𝐶 (Ω) : 𝑢 (𝑥) ≥ 0 𝑖𝑛 Ω} ,𝐷 = {(𝑢, V) ∈ 𝑊 : 𝑢 ≤ 𝜆 + 1, V ≤ 𝑄 + 1} ,
(18)

𝑄 = (𝜆(𝜆 + 𝑘)/𝑏)‖(− △ +𝑘)−1(1)‖𝐶(Ω)
From Lemma 6, nonnegative solutions of (1) must be in𝐷. Define a positive and compact operator 𝐴 : 𝐸 → 𝐸 by

𝐴 (𝑢, V) = (− △ +𝑝)−1(𝑢(𝜆 − 𝑢) − 𝑏𝑢V𝑢 + 𝑚V
+ 𝑝𝑢

V ( 𝑢𝑢 + 𝑚V
− 𝑘) + 𝑝V ) (19)

where 𝑝 is s sufficiently large number such that 𝑝 + 𝜆 − 𝑢 −𝑏V/(𝑢 + 𝑚V) > 0 and 𝑝 + 𝑢/(𝑢 + 𝑚V) − 𝑘 > 0 for 𝑢, V ∈[0, 𝜆] × [0, 𝑄].
Remark 8. Note that (1) is equivalent to (𝑢, V) = 𝐴(𝑢, V) by
elliptic regularity, and therefore in order to show the existence
of positive solutions of (1), it suffices to prove𝐴 has nontrivial
fixed points in 𝐷.

We next compute the fixed point index of the trivial and
semitrivial solution of (1).We have shown that (1) has a trivial
solution (𝑢, V) = (0, 0) and a semitrivial solution (𝑢𝜆, 0) since𝜆 > 𝜆1 and 𝑘 > −𝜆1. Moreover the following lemma holds.

Lemma 9. Assuming that 𝜆 > 𝜆1 and 𝑘 > −𝜆1, then
(i) deg𝑊(𝐼 − 𝐴,𝐷) = 1;
(ii) 𝑖𝑛𝑑𝑒𝑥𝑊(𝐴, (0, 0)) = 0;
(iii) 𝑖𝑛𝑑𝑒𝑥𝑊(𝐴, (𝑢𝜆, 0)) = 0 if 𝑘 < 1 − 𝜆1; and𝑖𝑛𝑑𝑒𝑥𝑊(𝐴, (𝑢𝜆, 0)) = 1 if 𝑘 > 1 − 𝜆1.

Proof. (i) For each 𝑡 ∈ [0, 1], we define a positive and compact
operator 𝐴 𝑡 : 𝐸 → 𝐸 by

𝐴 𝑡 (𝑢, V)
= (− △ +𝑝)−1(𝑡𝑢 (𝜆 − 𝑢) − 𝑏𝑢V𝑢 + 𝑚V

+ 𝑝𝑢𝑡V (−𝑘 + 𝑢𝑢 + 𝑚V
) + 𝑝V ) (20)

Then 𝐴1 = 𝐴, 𝐴 𝑡 has no fixed point on 𝜕𝐷 and 𝐴 𝑡(𝐷) ⊂ 𝑊.
Thus deg𝑊(𝐼 − 𝐴 𝑡, 𝐷) is well defined for all 𝑡 ∈ [0, 1]. By the
homotopy invariance of Laray-Schauder degree and (0, 0) the
only fixed point of 𝐴0 in𝐷, we obtain

deg𝑊 (𝐼 − 𝐴,𝐷) = deg𝑊 (𝐼 − 𝐴0, 𝐷)= 𝑖𝑛𝑑𝑒𝑥𝑊 (𝐴0, (0, 0)) . (21)

Set

𝐿 = 𝐴0 (0, 0) = (− △ +𝑝)−1 (𝑝 00 𝑝) (22)

Assume that 𝐿(𝜉1, 𝜉2) = (𝜉1, 𝜉2) for some (𝜉1, 𝜉2) ∈ 𝑊(0,0) =𝐾×𝐾. It is easy to see (𝜉1, 𝜉2) = (0, 0). Thus 𝐼 − 𝐿 is invertible
on 𝑊(0,0). Since 𝜆1 > 0, we see 𝑟(𝐿) < 1 by Theorem 1, this
implies that 𝐿 does not have property 𝑎 on 𝑊(0,0). Thus by
Theorem 3 (ii), 𝑖𝑛𝑑𝑒𝑥𝑊(𝐴0, (0, 0)) = 1.

(ii) Observe that 𝐴(0, 0) = (0, 0). Let 𝐿 = 𝐴(0, 0) and
then

𝐿 = (− △ +𝑝)−1(𝜆 + 𝑝 00 −𝑘 + 𝑝) (23)
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Assuming that 𝐿(𝜉1, 𝜉2) = (𝜉1, 𝜉2) for some (𝜉1, 𝜉2) ∈ 𝑊(0,0),
then − △ 𝜉1 = 𝜆𝜉1, 𝑖𝑛 Ω𝜉1 = 0, 𝑜𝑛 𝜕Ω.− △ 𝜉2 = −𝑘𝜉2, 𝑖𝑛 Ω𝜉2 = 0, 𝑜𝑛 𝜕Ω.

(24)

Since 𝜆 > 𝜆1 and 𝑘 > −𝜆1, we see that 𝜉1 = 𝜉2 = 0.
Thus 𝐼 − 𝐿 is invertible on𝑊(0,0). By Theorem 1, we see 𝑟𝜆 fl𝑟((− △ +𝑝)−1(𝜆 + 𝑝)) > 1 and 𝑟𝜆 is the principle eigenvalue
of the operator (− △ +𝑝)−1(𝜆 + 𝑝) with a corresponding
eigenfunction 𝜙𝜆 > 0 in Ω. Set 𝑡𝜆 = 1/𝑟𝜆 ∈ (0, 1) and then(𝜙𝜆, 0) ∉ 𝑆(0,0) = {(0, 0)}, but(𝐼 − 𝑡𝜆𝐿) (𝜙𝜆, 0) = (0, 0) ∈ 𝑆(0,0). (25)

This shows that 𝐿 has property 𝑎, and thus𝑖𝑛𝑑𝑒𝑥𝑊(𝐴, (0, 0)) = 0 byTheorem 3 (i).
(iii) The second part is a straightforward consequence of

Lemma 4 and (i)(ii). In fact, from Lemma 4, the nonnegative
solutions of (1) are (0, 0) and (𝑢𝜆, 0) if 𝑘 > 1 − 𝜆1, so by the
properties of topological degree, we have

deg𝑊 (𝐼 − 𝐴, 𝐷) = 𝑖𝑛𝑑𝑒𝑥𝑊 (𝐴, (0, 0))+ 𝑖𝑛𝑑𝑒𝑥𝑊 (𝐴, (𝑢𝜆, 0)) . (26)

Combining (i) and (ii) above and (26), we have𝑖𝑛𝑑𝑒𝑥𝑊(𝐴, (𝑢𝜆, 0)) = 1.
Next, give the proof of the first part. Observe 𝐴(𝑢𝜆, 0) =(𝑢𝜆, 0). Let 𝐿 = 𝐴(𝑢𝜆, 0), and then

𝐿 = (− △ +𝑝)−1 (𝜆 − 2𝑢𝜆 + 𝑝 −𝑏0 −𝑘 + 𝑝 + 1) (27)

Assume that 𝐿(𝜉, 𝜂) = (𝜉, 𝜂) for some (𝜉, 𝜂) ∈ 𝑊(𝑢𝜆,0) =𝐶(Ω) × 𝐾; i.e., (𝜉, 𝜂) satisfies− △ 𝜉 + (2𝑢𝜆 − 𝜆) 𝜉 = −𝑏𝜂, 𝑖𝑛 Ω− △ 𝜂 − 𝜂 = −𝑘𝜂, 𝑖𝑛 Ω𝜉 = 𝜂 = 0, 𝑜𝑛 𝜕Ω. (28)

Taking 𝜂 ∈ 𝐾, it follows from the second equation of (28) and
Theorem 2 that −𝑘 = −1 + 𝜆1, if 𝜂 ̸= 0, which contradicts𝑘 ̸= 1 − 𝜆1. So 𝜂 = 0. Then we get from the first equation of
(28) − △ 𝜉 + (2𝑢𝜆 − 𝜆) 𝜉 = 0, 𝑖𝑛 Ω𝜉 = 0, 𝑜𝑛 𝜕Ω. (29)

If 𝜉 ̸= 0, then 𝜆1(2𝑢𝜆 − 𝜆) = 0 by Theorem 2. On the
other hand, 𝜆1(2𝑢𝜆 − 𝜆) > 𝜆1(𝑢𝜆 − 𝜆) = 0, and we get a
contradiction. Therefore (𝜉, 𝜂) = (0, 0) and 𝐼 − 𝐿 is invertible
on𝑊(𝑢𝜆,0).

We claim that 𝐿 has property 𝑎 on𝑊(𝑢𝜆,0). In fact, set

𝐵 = (− △ +𝑝)−1 (−𝑘 + 1 + 𝑝) (30)

Since 𝑘 < 1 − 𝜆1, by Theorem 1 (ii), 𝑟𝑘 fl 𝑟(𝐵) > 1 is an
eigenvalue of 𝐵 with a corresponding eigenfunction 𝜙𝑘 > 0.
Since 𝑆(𝑢𝜆,0) = 𝐶(Ω)× {0}, we see (0, 𝜙𝑘) ∈ 𝑊(𝑢𝜆 ,0) \ 𝑆(𝑢𝜆,0). Set𝑡𝑘 = 𝑟−1𝑘 ∈ (0, 1), and then

(𝐼 − 𝑡𝑘𝐿)( 0𝜙𝑘)
= ( 0𝜙𝑘) − 𝑡𝑘 (− △ +𝑝)−1( −𝑏𝜙𝑘(−𝑘 + 𝑝 + 1) 𝜙𝑘)
= ((− △ +𝑝)−1 (𝑡𝑘𝑏𝜙𝑘)0 ) ∈ 𝑆(𝑢𝜆,0).

(31)

This proves that 𝐿 has property 𝑎. Therefore 𝑖𝑛𝑑𝑒𝑥𝑊(𝐴,(𝑢𝜆, 0)) = 0.
Lemma 10. If 𝜆 > 𝜆1 and −𝜆1 < 𝑘 < 1 − 𝜆1, then (1) has a
positive solution.

Proof. By Lemma 9, we have

deg𝑊 (𝐼 − 𝐴,𝐷) − 𝑖𝑛𝑑𝑒𝑥𝑊 (𝐴, (0, 0))− 𝑖𝑛𝑑𝑒𝑥𝑊 (𝐴, (𝑢𝜆, 0)) = 1. (32)

Hence (1) has at least a positive solution.

From Lemmas 4 and 10, we get the following.

Lemma 11. Model (1) admits a positive solution if and only if𝜆 > 𝜆1 and −𝜆1 < 𝑘 < 1 − 𝜆1.
3. Structure of Solutions with 𝑘 as
a Bifurcation Parameter

In this section we shall regard 𝑘 as a bifurcation parameter
and suppose that all other constants are fixed. For all values
of 𝑘, we have the branch of zero solutions of (1) 𝑆0 = {(𝑘, 0, 0) :𝑘 ∈ R}. Suppose 𝜆 > 𝜆1 and 𝑘 > −𝜆1, and then (1) also has
the branch of semitrivial solutions 𝑆1 = {(𝑘, 𝑢𝜆, 0) : 𝑘 ∈ R}.
We next give some results about the bifurcation from (𝑢𝜆, 0).
Lemma 12. (i) The trivial steady state (0, 0) is locally asymp-
totically stable if 𝜆 < 𝜆1 and 𝑘 > 𝜆1, while it is unstable if𝜆 > 𝜆1 or 𝑘 < −𝜆1.

(ii) Assume that 𝜆 > 𝜆1. Then the semitrivial solution
steady state (𝑢𝜆, 0) is locally asymptotically stable if 𝑘 > 1−𝜆1,
while it is unstable if 𝑘 < 1 − 𝜆1.
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Proof. From the linearization principle eigenvalue problem− △𝜙 − [𝜆𝜙 − 2𝑢𝜙 − 𝑏𝑝𝑢 (𝑢, V) 𝜙 − 𝑏𝑝V (𝑢, V) 𝜓]= 𝜂𝜙, 𝑖𝑛 Ω− △𝜓 − [−𝑘𝜓 + 𝑝𝑢 (𝑢, V) 𝜙 + 𝑝V (𝑢, V) 𝜓] = 𝜂𝜓, 𝑖𝑛 Ω𝜙 = 𝜓 = 0, 𝑜𝑛 𝜕Ω.
(33)

The stability of (𝑢𝜆, 0) is determined by the problem− △ 𝜙 − 𝜆𝜙 + 2𝑢𝜆𝜙 + 𝑏𝜓 = 𝜂𝜙, 𝑖𝑛 Ω− △ 𝜓 + 𝑘𝜓 − 𝜓 = 𝜂𝜓, 𝑖𝑛 Ω𝜙 = 𝜓 = 0, 𝑜𝑛 𝜕Ω. (34)

Since (34) is not completely coupled, we only need to consider
the following two eigenvalue problems:− △ 𝜙 − 𝜆𝜙 + 2𝑢𝜆𝜙 = 𝜂𝜙, 𝑖𝑛 Ω𝜙 = 0, 𝑜𝑛 𝜕Ω. (35)

and − △ 𝜓 + 𝑘𝜓 − 𝜓 = 𝜂𝜓, 𝑖𝑛 Ω𝜓 = 0, 𝑜𝑛 𝜕Ω. (36)

Then an eigenvalues of (34) must be an eigenvalues of (35) or
(36) (see [11, 12] and references therein). Denote the principle
eigenvalue of (35) and (36) by 𝜆∗ and 𝜆∗, respectively. Then𝜆∗ = 𝜆1 (2𝑢𝜆 − 𝜆) > 𝜆1 (𝑢𝜆 − 𝜆) = 0𝜆∗ = 𝜆1 (𝑘 − 1) = 𝑘 − 1 + 𝜆1. (37)

Combining above results, one can see that if 𝑘 > 1 − 𝜆1, then
all eigenvalues of (34) are positive, and thus (𝑢𝜆, 0) is locally
asymptotically stable. On the other hand, if 𝑘 < 1 − 𝜆1, then
(34) has a negative eigenvalue, which implies the instability
of (𝑢𝜆, 0).

Similarly, combining with the definition of𝑝(𝑢, V), we can
get (i).

First we shall obtain a local result on bifurcation from 𝑆1,
as the results of [23].

Lemma 13. Let𝜆 > 𝜆1 be fixed.Then 𝑘 = 1−𝜆1 is a bifurcation
value of (1) where positive solutions bifurcate from the line of
semi-trivial solutions 𝑆1. The set of positive solutions to (1) near(1 − 𝜆1, 𝑢𝜆, 0) is a smooth curveΓ = {(𝑘 (𝑠) , 𝑢𝜆 − 𝑢 (𝑠) , V (𝑠)) , 𝑠 ∈ (0, 𝛿)} (38)

such that 𝑘(0) = 1 − 𝜆1, 𝑢(𝑠) = 𝑠𝜑1(𝑥) + 𝑜(|𝑠|), and V(𝑠) =𝑠𝜑2(𝑥) + 𝑜(|𝑠|). Moreover

𝑘 (0) = −𝑚∫
Ω
(𝜑32 (𝑥) /𝑢𝜆) 𝑑𝑥∫
Ω
𝜑22 (𝑥) 𝑑𝑥 (39)

and 𝑘 = 1−𝜆1 is the unique bifurcation value for which positive
solutions bifurcate form 𝑆1.

Proof. We apply the similar proof of Lemma 12 [4]. By
changing the variables 𝑤 = 𝑢𝜆 − 𝑢, define𝐺 (𝑘, 𝑤, V)

= (△𝑤 + 𝜆𝑤 − 2𝑢𝜆𝑤 + 𝑤2 + 𝑏𝑝 (𝑢𝜆 − 𝑤, V)△V + 𝑝 (𝑢𝜆 − 𝑤, V) − 𝑘V ) (40)

A simple calculation implies that

𝐺𝑘 (𝑘, 𝑤, V) = ( 0−V)
𝐺𝑘(𝑤,V) (𝑘, 𝑤, V) [𝜙, 𝜓] = ( 0−𝜓)
𝐺(𝑤,V) (𝑘, 0, 0) [𝜙, 𝜓] = (△𝜙 + 𝜆𝜙 − 2𝑢𝜆𝜙 + 𝑏𝜓△𝜓 + (1 − 𝑘) 𝜓 )

𝐺(𝑤,V)(𝑤,V) (𝑘, 0, 0) [𝜙, 𝜓]2 = (2𝜙2 − 2𝑚𝑢𝜆 𝜓2−2𝑚𝑢𝜆 𝜓2 )
(41)

By letting (𝑤, V) = (0, 0), we can find that only when 𝑘 =1−𝜆1, does𝐺(𝑤,V)(𝑘, 0, 0)[𝜙, 𝜓] = 0have a solutionwith𝜓 > 0.
Thus 𝑘1 = 1−𝜆1 is the only bifurcation point along 𝑆1, where
positive solution of (1) bifurcates. At (𝑘, 𝑤, V) = (𝑘1, 0, 0), it is
easy to verify that the kernel𝑁(𝐺(𝑤,V) (𝑘1, 0, 0)) = 𝑠𝑝𝑎𝑛 {(𝜑1, 𝜑2)} , (42)

where (𝜑1, 𝜑2) ̸= (0, 0) satisfies△𝜙 + 𝜆𝜙 − 2𝑢𝜆𝜙 + 𝑏𝜓 = 0, 𝑖𝑛 Ω△𝜓 + (1 − 𝑘1) 𝜓 = 0, 𝑖𝑛 Ω𝜙 = 𝜓 = 0, 𝑜𝑛 𝜕Ω. (43)

Since 𝑘1 = 1 − 𝜆1, we can choose 𝜑2 > 0, and then𝜑1 = (− △ +2𝑢𝜆 − 𝜆)−1 (𝑏𝜑2) > 0. (44)

The range of the operator is given by𝑅𝐺(𝑤,V) (𝑘1, 0, 0)
= {(𝑓, 𝑔) ∈ 𝑌1 × 𝑌2 : ∫

Ω
𝑔 (𝑥) 𝜑2 (𝑥) 𝑑𝑥 = 0} (45)

which is of codimension one and𝐺𝑘(𝑤,V) (𝑘1, 0, 0) [𝜑1, 𝜑2] = (0, −𝜑2)∉ 𝑅𝐺(𝑤,V) (𝑘1, 0, 0) , (46)

since ∫
Ω
𝜑22(𝑥)𝑑𝑥 > 0. Thus we can conclude that the set of

positive solutions to (1) near (𝑘1, 𝑢𝜆, 0) is Γ. Moreover

𝑘 (0) = −⟨𝐺(𝑤,V)(𝑤,V) (𝑘1, 0, 0) [𝜑1, 𝜑2]2 , 𝑙⟩2 ⟨𝐺𝑘(𝑤,V) (𝑘1, 0, 0) [𝜑1, 𝜑2] , 𝑙⟩
= −𝑚∫

Ω
(𝜑32 (𝑥) /𝑢𝜆) 𝑑𝑥∫
Ω
𝜑22 (𝑥) 𝑑𝑥 < 0, (47)
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where 𝑙 is the linear functional defined by ⟨[𝑓, 𝑔], 𝑙⟩ =∫
Ω
𝑔(𝑥)𝜑2(𝑥)𝑑𝑥. Therefore the bifurcation at (𝑘1, 𝑢𝜆, 0) is

always subcritical.
Suppose that there is a sequence {(𝑘𝑛, 𝑢𝑛, V𝑛)} of coexis-

tence states of (1) with lim𝑛→∞(𝑘𝑛, 𝑢𝑛, V𝑛) = (𝑘, 𝑢𝜆, 0) for
some 𝑘 ∈ R. Then from the V-equation of (1), we find for
every 𝑛 ≥ 1− △ V𝑛V𝑛𝐶(Ω) = −𝑘𝑛 V𝑛V𝑛𝐶(Ω) + V𝑛V𝑛𝐶(Ω) 𝑢𝑛𝑢𝑛 + 𝑚V𝑛

(48)

or equivalently
V𝑛V𝑛𝐶(Ω)
= (−△)−1(−𝑘 V𝑛V𝑛𝐶(Ω) + V𝑛V𝑛𝐶(Ω) 𝑢𝑛𝑢𝑛 + 𝑚V𝑛

)
+ (𝑘 − 𝑘𝑛) (−△)−1( V𝑛V𝑛𝐶(Ω))

(49)

By the compactness of (− △ )−1, it is easy to see that along
some subsequence, relabeled by 𝑛, we have

lim
𝑛→∞

V𝑛V𝑛𝐶(Ω) = 𝜙 > 0 (50)

for some 𝜙 ∈ 𝐶10(Ω) with ‖𝜙‖𝐶(Ω) = 1. Thus passing the limit𝑛 → ∞ in (49), we find that𝜙 = (−△)−1 (−𝑘 + 1) 𝜙 ⇐⇒ −△ 𝜙 = (−𝑘 + 1) 𝜙. (51)

Therefore 𝑘 = 1 − 𝜆1, which concludes the proof.

Remark 14. Above results together with Lemma 4 show that
the bifurcation of nonnegative solutions from 𝑆1 at (𝑘1, 𝑢𝜆, 0)
must be to the left, while Lemma 4 also shows that the branch
of nontrivial solutions cannot extend too far to the left.

We now investigate the global nature of the above curve
of nontrivial nonnegative solution in the 𝑘 − (𝑢, V) plane, i.e.,
in R × 𝐶(Ω) × 𝐶(Ω), to show that hypotheses of Th3.2 [24]
are satisfied.

Writing 𝑈 = 𝑢𝜆 − 𝑢 and 𝑉 = V, it is easy to check that(𝑈,𝑉) is a nonnegative solution of (1) if and only if 0 ≤ 𝑈 ≤𝑢𝜆, 𝑉 ≥ 0 and (𝑈,𝑉) satisfies
− △ 𝑈 = 𝜆𝑈 − 2𝑢𝜆𝑈 + 𝑈2 + 𝑏 (𝑢𝜆 − 𝑈)𝑉𝑢𝜆 − 𝑈 + 𝑚𝑉
− △ 𝑉 = −𝑘𝑉 + (𝑢𝜆 − 𝑈)𝑉𝑢𝜆 − 𝑈 + 𝑚𝑉.

(52)

Rewrite (52) as

(𝑈𝑉)
= (−△)−1(𝑈(𝜆 − 2𝑢𝜆 + 𝑈) + 𝑏 (𝑢𝜆 − 𝑈)𝑉𝑢𝜆 − 𝑈 + 𝑚𝑉−𝑘𝑉 + (𝑢𝜆 − 𝑈)𝑉𝑢𝜆 − 𝑈 + 𝑚𝑉 ) (53)

Define 𝑇 : R × 𝐶1(Ω) × 𝐶1(Ω) → 𝐶1(Ω) × 𝐶1(Ω) by
𝑇 (𝑘, 𝑢, V) = (−△)−1 (𝜆 − 2𝑢𝜆 𝑏0 −𝑘 + 1)(𝑢V)

+ (−△)−1(𝑢2 + 𝑏 (𝑢𝜆 − 𝑢) V𝑢𝜆 − 𝑢 + 𝑚V
− 𝑏V

−V + (𝑢𝜆 − 𝑢) V𝑢𝜆 − 𝑢 + 𝑚V

)
= 𝐾 (𝑘) (𝑢, V) + 𝑅 (𝑘, 𝑢, V)

(54)

Then 𝐾(𝑘) is a linear compact operator and the Frechlet
derivative 𝑅(𝑢,V)(𝑘, 0, 0) = 0. Let 𝐻 = 𝐼 − 𝑇 and then𝐻(𝑘, 𝑢, V) = 0 with 0 ≤ 𝑢 ≤ 𝑢𝜆 and V ≥ 0 if and only if(𝑘, 𝑢𝜆 − 𝑢, V) is a nonnegative solution of (1).

Wemust calculate the index 𝑖(𝑇(𝑘, ⋅), 0)when 𝑘 is close to𝑘0 fl 1 − 𝜆1. This index is equal to (−1)𝛽, where 𝛽 is the sum
of the algebraic multiplicities of eigenvalue of 𝐾(𝑘) > 1.

Suppose that 𝜇 > 0 is an eigenvalue of 𝐾(𝑘). Then there
exists a nonzero function V such that−𝜇 △ V − V = −𝑘V 𝑖𝑛 Ω,

V = 0 𝑜𝑛 𝜕Ω. (55)

i.e., −𝑘 is an eigenvalue of (55). Conversely, if 𝜇 ≥ 1 and −𝑘
is an eigenvalue of (55) with corresponding eigenfunction V,
then (𝑢, V) is an eigenfunction of 𝐾(𝑘) corresponding to the
eigenvalue 𝜇, where 𝑢 is the unique solution of

−𝜇 △ 𝑢 − 𝜆𝑢 + 2𝑢𝜆𝑢 = 𝑏V 𝑖𝑛 Ω,𝑢 = 0 𝑜𝑛 𝜕Ω. (56)

Since all eigenvalues of −△−𝜆+2𝑢𝜆 are positive and 𝜇 ≥ 1, it
follows that −△−𝜆+2𝑢𝜆 is invertible. The eigenvalues of (55)
form an increasing sequence 𝑟1(𝜇) < 𝑟2(𝜇) ≤ 𝑟3(𝜇) ≤ ⋅ ⋅ ⋅ and𝜇 → 𝑟𝑖(𝜇) is a continuous increasing function. Thus 𝜇 ≥ 1
is an eigenvalue of 𝐾(𝑘) if and only if 𝑘 = 𝑟𝑖(𝜇) for some 𝜇.
Clearly 𝑟𝑖(1) = 𝜆𝑖(−1).

(i) Suppose 𝑘 > 𝑘0 ⇐⇒ −𝑘 < −𝑘0 and 𝜇 ≥ 1 is an
eigenvalue of𝐾(𝑘).Then −𝑘 is an eigenvalue of (55) and −𝑘 >
the least eigenvalue of − △ −1, i.e., −𝑘 > 𝜆1(−1) = 𝜆1 − 1.
But −𝑘 < −𝑘0 = 𝜆1 − 1, a contradiction. Hence 𝐾(𝑘) has no
eigenvalues > 1 and so 𝑖(𝑇(𝑘, ⋅), 0) = 1.

(ii) Now suppose−𝑟2(1) < 𝑘 < 𝑘0, i.e., 𝑟2(1) > −𝑘 > −𝑘0 =𝑟1(1). Since 𝜇 → 𝑟1(𝜇) is increasing with lim𝜇→∞𝑟1(𝜇) =∞, there exists a unique 𝜇 > 1 (𝜇1 say) such that −𝑘 = 𝑟1(𝜇1).
Since −𝑘 < 𝑟2(1), it follows that −𝑘 < 𝑟𝑖(𝜇) for 𝑖 = 2, 3, ⋅ ⋅ ⋅ and𝜇 ≥ 1. Thus 𝜇1 is the only eigenvalue of𝐾(𝑘) which is greater
than 1.We now to show that 𝜇1 is a simple eigenvalue of𝐾(𝑘).
The discussion above shows that𝑁(𝐾 − 𝜇1𝐼) = 𝑠𝑝𝑎𝑛{(𝜙, 𝜓)},
where 𝜓 is the principal eigenfunction corresponding to the
eigenvalue −𝑘 of

−𝜇1 △ V − V = −𝑘V 𝑖𝑛 Ω,
V = 0 𝑜𝑛 𝜕Ω. (57)
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and 𝜙 = (−𝜇 △ −𝜆 + 2𝑢𝜆)−1𝜓. Thus dim𝑁(𝐾(𝑘) − 𝜇1𝐼) = 1.
Suppose that (𝜙, 𝜓) ∈ 𝑅(𝐾(𝑘)− 𝜇1𝐼). Then there exists V such
that−𝜇1 △ V + 𝑘V − V = − △ 𝜓 = 𝜇−11 (−𝑘𝜓 + 𝜓) 𝑜𝑛 Ω. (58)

Multiplying by 𝜓 and integrating over Ω shows that 𝜓 =0, which is impossible. Hence 𝑅(𝐾(𝑘) − 𝜇1𝐼) ∩ 𝑁(𝐾(𝑘) −𝜇1𝐼) = {0} and so 𝜇1 is a simple eigenvalue of 𝐾(𝑘). Thus𝑖(𝑇(𝑘, ⋅), 0) = −1 whenever 𝑘 < 𝑘0.
Therefore Theorem 3.2 [24] can be applied to 𝑇.
Let

𝑃1 = {𝑢 ∈ 𝐶 (Ω) : 𝑢 (𝑥) > 0 𝑓𝑜𝑟 𝑥 ∈ Ω 𝑎𝑛𝑑 𝜕𝑢𝜕𝑛 (𝑥)
< 0 𝑓𝑜𝑟 𝑥 ∈ 𝜕Ω}

𝑃 = {(𝑘, 𝑢, V) : 𝑘 ∈ R 𝑎𝑛𝑑 𝑢, V ∈ 𝑃1}
(59)

By arguments similar to those used in Section 4 of [24], it can
be proved that there exists a continuum 𝐶 inR×𝐶(Ω)×𝐶(Ω)
emanating from (𝑘0, 𝑢𝜆, 0) such that

(i) if (𝑘, 𝑢, V) ∈ 𝐶, then (𝑢𝜆 − 𝑢, V) = 𝑇(𝑘, 𝑢𝜆 − 𝑢, V);
(ii) if (𝑘, 𝑢, V) ∈ 𝐶 and 𝑢, V ≥ 0, then (𝑘, 𝑢, V) is a solution

of (1).
(iii) close to the bifurcation point (𝑘0, 𝑢𝜆, 0), 𝐶 consists of

the points (𝑘, 𝑢, V) on the curve given by Lemma 13.

Clearly 𝐶 ⊂ 𝑃 in a neighbourhood of the bifurcation
point (𝑘0, 𝑢𝜆, 0).
Theorem 15. Assume 𝜆 ̸= 𝜆1 + 𝑏/𝑚

(i) If (𝑘, 𝑢, V) ∈ 𝐶 − {(𝑘0, 𝑢𝜆, 0)}, then 𝑢, V ∈ 𝑃1, i.e., 𝐶 −{(𝑘0, 𝑢𝜆, 0)} ⊂ 𝑃;
(ii) 𝐶 is unbounded inR × 𝐶(Ω) × 𝐶(Ω).

Proof. (i) Suppose that 𝐶 contains a point (𝑘, 𝑢, V) ̸=(𝑘0, 𝑢𝜆, 0) which lies outside of 𝑃. Then there exists a point(�̂�, �̂�, V̂) ∈ 𝐶−{(𝑘0, 𝑢𝜆, 0)}∩𝜕𝑃which is the limit of a sequence
of points {(𝑘𝑛, 𝑢𝑛, V𝑛)} in𝐶∩𝑃. As (�̂�, �̂�, V̂) ∈ 𝜕𝑃, either𝑢 ∈ 𝜕𝑃1
or V̂ ∈ 𝜕𝑃1.

(1) Suppose V̂ ∈ 𝜕𝑃1. Then V̂ ≥ 0 for 𝑥 ∈ Ω and either
V̂(𝑥) = 0 for some 𝑥 ∈ Ω or (𝜕V/𝜕𝑛)(𝑥) = 0 for some 𝑥 ∈ 𝜕Ω.
It follows that

− △ V̂ + [𝑀 + 𝑘 − V̂�̂� + 𝑚V̂
] V̂ = 𝜇V̂ ≥ 0 𝑖𝑛 Ω (60)

where𝑀 is a constant chosen sufficient large so that the term
in the square bracket is positive for all 𝑥 ∈ Ω. It follows from
the strongmaximumprinciple that V̂ ≡ 0. A similar argument
shows that if �̂� ∈ 𝜕𝑃1, then �̂� ≡ 0. Thus �̂� ≡ 0 or V̂ ≡ 0.

(2) Suppose �̂� ≡ 0 and V̂ ≡ 0.Then (�̂�, �̂�, V̂) = (�̂�, 0, 0), and
so (�̂�, �̂�, V̂) lies on the trivial branch of solutions 𝑆0. The only
trivial nonnegative solutions which are close to 𝑆0 lie on the
semitrivial 𝑆1, and so there cannot exist a sequence in 𝐶 ∩ 𝑃

converging to (�̂�, �̂�, V̂). Therefore it is impossible that both �̂�
and V̂ are identically zero.

(3) Suppose 𝑢𝑛 → �̂� ≡ 0, then V𝑛0 and we find from
the first equation of (1)− △ 𝑢𝑛𝑢𝑛𝐶(Ω) = 𝑢𝑛𝑢𝑛𝐶(Ω) (𝜆 − 𝑢𝑛)− 𝑏 𝑢𝑛𝑢𝑛𝐶(Ω) V𝑛𝑢𝑛 + 𝑚V𝑛

(61)

Then by 𝐿𝑝− theory and bootstrapping arguments, ∃𝜙 > 0
such that

lim𝑛→∞(𝑢𝑛/‖𝑢𝑛‖𝐶(Ω)) = 𝜙 and

− △ 𝜙 = (𝜆 − 𝑏𝑚)𝜙,𝜙𝜕Ω = 0. (62)

which is impossible, since 𝜆 − 𝑏/𝑚 ̸= 𝜆1.
(4) Suppose that V̂ ≡ 0. Then �̂� ̸= 0, (�̂�, �̂�, v̂) ∈𝑆1 and there bifurcate from (�̂�, �̂�, V̂) nontrivial, nonnegative

solutions. While we have shown that 𝑘0 is the unique
bifurcation value for which positive solutions bifurcate from𝑆1, then �̂� = 𝑘0. That is impossible.

Therefore, if (𝑘, 𝑢, V) ∈ 𝐶 − (𝑘0, 𝑢𝜆, 0), then (𝑘, 𝑢, V) ∈ 𝑃.
(ii) 𝐶 must satisfy one of the three alternatives discussed

beforeTheorem 15. Because of (i) above,𝐶 contains no pair of
points of the form (𝑘, 𝑢𝜆−𝑢, V) and (𝑘, 𝑢𝜆+𝑢, −V) and𝐶 cannot
join up with another bifurcation point of the form (𝑘, 𝑢𝜆, 0)
on 𝑆1. Hence 𝐶 joins (𝑘, 𝑢𝜆, 0) to∞; i.e., 𝐶 is unbounded.

Based on above preparations, we have the bifurcation
results as follows.

Theorem 16. Assume 𝑘 > −𝜆 ,𝜆 > 𝜆1
𝑎𝑛𝑑 𝜆 ̸= 𝜆1 + 𝑘𝑚.

(63)

Then there exists an unbounded component 𝐶+ = 𝐶 −{(𝑘0, 𝑢𝜆, 0)} of the set of positive solutions of (1) such that(𝑘0, 𝑢𝜆, 0) ∈ 𝐶+ and (𝑘, 𝑢𝜆, 0) ∉ 𝐶+ if 𝑘 ̸= 𝑘0. i.e., P𝑘𝐶+ =(−𝜆1, 1 − 𝜆1), whereP𝑘 stands for the projection operator into
the 𝑘− component of the term.

4. Asymptotic Behavior Analysis of Positive
Solutions of (1)

In this section, we give the sketch of asymptotic behavior for
positive solution as the parameter 𝑘 → −𝜆1.

Suppose (63) and let (𝑢, V) be a coexistence of (1). Then,
since 𝑢 ≤ 𝑢𝜆 ≤ 𝜆, there exists a constant 𝑀 such that‖𝑢‖𝐶(Ω) ≤ 𝑀. Hence owing to Lemma 6, there exists a
constant 𝐶(𝑘) such that

‖V‖𝐶(Ω) ≤ 1𝑏 (− △ +𝑘)−1 (𝜆 (𝜆 + 𝑘))𝐶(Ω) fl 𝐶 (𝑘) . (64)
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Note that
lim
𝑘→−𝜆1

𝐶 (𝑘) = ∞. (65)

Theorem 17. Suppose 𝜆 − 𝑏/𝑚 > 𝜆1. Let {𝑘𝑛} be a sequence
such that −𝜆1 < 𝑘𝑛 < 1 − 𝜆1,

lim
𝑛→∞

𝑘𝑛 = −𝜆1. (66)

For each 𝑛 ≥ 1, let (𝑘𝑛, 𝑢𝑛, V𝑛) be a coexistence of (1); then
lim
𝑛→∞

V𝑛 = ∞𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑎𝑛𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 Ω (67)

and

lim
𝑛→∞

𝑢𝑛 = 𝑢0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 Ω, (68)

where 𝑢0 is the unique positive solution of

− △ 𝑢 = (𝜆 − 𝑏𝑚)𝑢 − 𝑢2, 𝑖𝑛 Ω
𝑢 = 0, 𝑜𝑛 𝜕Ω (69)

Proof. By the global bifurcation theory orTheorem 15, we get‖V𝑛‖𝐶(Ω) → ∞. From the second equation of (1)

− △V𝑛V𝑛𝐶(Ω) = −𝑘𝑛 V𝑛V𝑛𝐶(Ω) + 𝑢𝑛𝑢𝑛 + 𝑚V𝑛

V𝑛V𝑛𝐶(Ω) , 𝑖𝑛 Ω
V𝑛
𝜕Ω = 0.

(70)

Since 0 < 𝑢𝑛V𝑛/(𝑢𝑛 + 𝑚V𝑛) ≤ 𝑢𝑛/𝑚 ≤ 𝜆/𝑚 in Ω, by using𝐿𝑝− regularity theory and Schauder bootstrapping technique
(see [17] Chapter 5), ∃𝜙 > 0 inΩ such that V𝑛/‖V𝑛‖𝐶(Ω) → 𝜙.
In fact, 𝜙 is the principal eigenfunction corresponding to 𝜆1.
This implies that for any compact subset Ω0 of Ω, V𝑛 → ∞
uniformly inΩ0.

On the other hand, from the first equation of (1)− △𝑢𝑛= 𝑢𝑛 (𝜆 − 𝑢𝑛)
− 𝑏𝑢𝑛𝑢𝑛/ V𝑛𝐶(Ω) + 𝑚 (V𝑛/ V𝑛𝐶(Ω)) V𝑛V𝑛𝐶(Ω) ,𝑖𝑛 Ω𝑢𝑛𝜕Ω = 0.

(71)

Similar to arguments above,∃𝑢0 > 0 inΩ, such that 𝑢𝑛 → 𝑢0
onΩ uniformly and 𝑢0 satisfies− △ 𝑢0 = 𝑢0 (𝜆 − 𝑏𝑚) − 𝑢20, 𝑖𝑛 Ω

𝑢0𝜕Ω = 0. (72)

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Chinese National Science
Foundation (11471187, 11571197).

References

[1] C. Cosner, D. L. Deangelis, J. S. Ault, and D. B. Olson, “Effects
of spatial grouping on the functional response of predators,”
Theoretical Population Biology, vol. 56, no. 1, pp. 65–75, 1999.

[2] E. N. Dancer, “On positive solutions of some pairs of differential
equations,” Transactions of the American Mathematical Society,
vol. 284, no. 2, pp. 729–743, 1984.

[3] X. Du and A. Mao, “Existence and Multiplicity of Nontrivial
Solutions for a Class of Semilinear Fractional Schrödinger
Equations,” Journal of Function Spaces, vol. 2017, Article ID
3793872, 7 pages, 2017.

[4] Y. Du and J. Shi, “Allee effect and bistability in a spatially het-
erogeneous predator-preymodel,”Transactions of the American
Mathematical Society, vol. 359, no. 9, pp. 4557–4593, 2007.

[5] G. Guo and J. Wu, “The effect of mutual interference between
predators on a predator-prey model with diffusion,” Journal of
Mathematical Analysis and Applications, vol. 389, no. 1, pp. 179–
194, 2012.

[6] K. Kuto and Y. Yamada, “Positive solutions for Lotka-Volterra
competition systems with large cross-diffusion,” Applicable
Analysis: An International Journal, vol. 89, no. 7, pp. 1037–1066,
2010.

[7] X. Zhang, L. Liu, Y. Wu, and Y. Cui, “The existence and nonex-
istence of entire large solutions for a quasilinear Schrödinger
elliptic system by dual approach,” Journal of Mathematical
Analysis and Applications, vol. 464, no. 2, pp. 1089–1106, 2018.

[8] A. Qian, “Infinitely many sign-changing solutions for a
Schrödinger equation,” Advances in Difference Equations, vol.
2011, article 39, 6 pages, 2011.

[9] P. Y. H. Pang and M. X. Wang, “Qualitative analysis of a ratio-
dependent predator-prey system with diffusion,” Proceedings of
the Royal Society of Edinburgh, Section: AMathematics, vol. 133,
no. 4, pp. 919–942, 2003.

[10] X. Zhang, Y. Wu, and Y. Cui, “Existence and nonexistence
of blow-up solutions for a Schrödinger equation involving a
nonlinear operator,” Applied Mathematics Letters, vol. 82, pp.
85–91, 2018.

[11] J. Zhou, C.-G. Kim, and J. Shi, “Positive steady state solutions
of a diffusive Leslie-Gower predator-prey model with Holling
type II functional response and cross-diffusion,” Discrete and
Continuous Dynamical Systems - Series A, vol. 34, no. 9, pp.
3875–3899, 2014.

[12] J. Zhou and C.-G. Kim, “Positive solutions for a Lotka-Volterra
prey-predator model with cross-diffusion and Holling type-II
functional response,” Science China Mathematics, vol. 57, no. 5,
pp. 991–1010, 2014.



Journal of Function Spaces 9

[13] A. Qian, “Sing-changing solutions for nonlinear problems with
strong resonance,” Electronic Journal of Differential Equations,
vol. 17, pp. 1–8, 2012.

[14] A. Mao and S. Luan, “Sign-changing solutions of a class of
nonlocal quasilinear elliptic boundary value problems,” Journal
of Mathematical Analysis and Applications, vol. 383, no. 1, pp.
239–243, 2011.

[15] X. Wang, A. Mao, and A. Qian, “High energy solutions of
modified quasilinear fourth-order elliptic equation,” Boundary
Value Problems, Paper No. 54, 13 pages, 2018.

[16] X. Zhang, L. Liu, Y. Wu, and Y. Cui, “Entire blow-up solutions
for a quasilinear p-Laplacian Schrödinger equation with a non-
square diffusion term,”Applied Mathematics Letters, vol. 74, pp.
85–93, 2017.

[17] Y. H. Du, Order structure and topological methods in nonlinear
partial differential equations, Mainland Press, Singapre, 2006.

[18] J. Liu and A. Qian, “Ground state solution for a Schrödinger-
Poisson equation with critical growth,”Nonlinear Analysis: Real
World Applications, vol. 40, pp. 428–443, 2018.

[19] A. Mao and Y. Chen, “Existence and concentration of solutions
for sublinear Schrodinger-Poisson equations,” Indian Journal of
Pure and Applied Mathematics, vol. 49, no. 2, pp. 339–348, 2018.

[20] X. Du and Z. Zhao, “On fixed point theorems of mixed
monotone operators,” Fixed Point Theory and Applications, vol.
2011, Article ID 563136, 8 pages, 2011.

[21] J. Liu and Z. Zhao, “Multiple solutions for impulsive problems
with non-autonomous perturbations,” Applied Mathematics
Letters, vol. 64, pp. 143–149, 2017.

[22] C.Wang,R. Liu, J. Shi, andC.M. del Rio, “Spatiotemporalmutu-
alistic model of mistletoes and birds,” Journal of Mathematical
Biology, vol. 68, no. 6, pp. 1479–1520, 2014.

[23] M. G. Crandall and P. H. Rabinowitz, “Bifurcation from simple
eigenvalues,” Journal of Functional Analysis, vol. 8, pp. 321–340,
1971.

[24] J. Blat and K. J. Brown, “Global bifurcation of positive solutions
in some systems of elliptic equations,” SIAM Journal on Mathe-
matical Analysis, vol. 17, no. 6, pp. 1339–1353, 1986.



Research Article
Existence of Nontrivial Solutions for Some Second-Order
Multipoint Boundary Value Problems

Hongyu Li and Junting Zhang

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China

Correspondence should be addressed to Hongyu Li; sdlhy1978@163.com

Received 4 July 2018; Revised 7 November 2018; Accepted 25 November 2018; Published 11 December 2018

Academic Editor: Yong H. Wu

Copyright © 2018 Hongyu Li and Junting Zhang.This is an open access article distributed under theCreativeCommonsAttribution
License,whichpermits unrestricteduse, distribution, and reproduction in anymedium, provided the original work is properly cited.

By using fixed point theorems with lattice structure, the existence of negative solution and sign-changing solution for some second-
order multipoint boundary value problems is obtained.

1. Introduction

In this paper, the following second-order ordinary differential
equation will be considered:

−𝑥 (𝑡) = 𝜑 (𝑡, 𝑥 (𝑡)) , 0 ≤ 𝑡 ≤ 1, (1)

subject to the multipoint boundary condition

𝑥 (0) = 0,
𝑥 (1) = 𝑚−2∑

𝑖=1

𝛽𝑖𝑥 (𝛼𝑖) ,
(2)

where 𝛽𝑖 > 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚 − 2; ∑𝑚−2𝑖=1 𝛽𝑖 < 1; 0 < 𝛼1 < 𝛼2 <⋅ ⋅ ⋅ < 𝛼𝑚−2 < 1, and ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 < 1.
The multipoint boundary value problems of ordinary

differential equations arise in different areas of applied
mathematics and physics. In 1992, Gupta studied nonlinear
second-order three-point boundary value problems (see [1]).
Since then, different types of nonlinear multipoint boundary
value problems have been studied. Up to now, many great
achievements about multipoint boundary value problems
have been made. For example, many authors have inves-
tigated the existence of nontrivial solutions for nonlinear
multipoint boundary value problems. Most of them have
used upper and lower solution method, fixed point index
theory, Guo-Krasnosel’skii fixed point theorem, bifurcation
theory, fixed point theorems on cones, and so on (see [2–
27] and references therein). For instance, in [2], the author

considered the second-order multipoint boundary value
problem

𝑦 (𝑡) + 𝑓 (𝑦) = 0, 0 ≤ 𝑡 ≤ 1,
𝑦 (0) = 0,
𝑦 (1) = 𝑚−2∑

𝑖=1

𝛼𝑖𝑦 (𝜂𝑖) .
(3)

By using fixed point index and Leray-Schauder degree meth-
ods, the author showed existence of multiple sign-changing
solutions for the boundary value problem (3). In [14], the
authors have considered the following multipoint boundary
value problem:

− (𝐿𝜑) (𝑡) = 𝜆𝑓 (𝑡, 𝜑 (𝑡)) , 0 ≤ 𝑡 ≤ 1,
𝜑 (0) = 0,
𝜑 (1) = 𝑚−2∑

𝑖=1

𝛽𝑖𝜑 (𝜂𝑖) .
(4)

The authors have used global bifurcation method to obtain
the existence of positive solution of the boundary value
problem (4).

In recent years, some authors combine the theory of
lattice and the theory of topological degree, so they have
obtained some fixed point theorems with lattice structure
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for nonlinear operators which are not assumed to be cone
mappings (see [28–34]). At present, a few authors have used
those fixed point theorems with lattice structure to study
boundary value problems (see [6, 17, 28–37]). For example,
in [35], by using fixed point theorems with lattice structure,
the authors considered the existence of positive solution and
sign-changing solution for integral boundary value problem
under sublinear condition. In [37], the authors considered
the existence of positive solution for fourth-order differential
equation with fixed point theorems with lattice structure. In
[6], the author considered the following second-order three-
point boundary value problem:

−𝑢 (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 1,
𝑢 (0) = 0,
𝑢 (1) = 𝛼𝑢 (𝛽) ,

(5)

where 𝑔 : [0, 1] × (−∞,+∞) → (−∞,+∞) is continuous,0 < 𝛼 < 1, 0 < 𝛽 < 1. The author used fixed point theorems
with lattice structure to study the existence of sign-changing
solutions for the boundary value problem (5) under the
unilaterally asymptotically linear condition.

Motivated by [6, 17, 28–37], we shall study the existence
of nontrivial solutions for the boundary value problem (1),
(2). In this paper, we assume that the nonlinear term satisfies
superlinear conditions concerning the first eigenvalue corre-
sponding to the relevant linear operator.Themethodweuse is
fixed point theorems with lattice structure. Andwe obtain the
sufficient condition about the existence of negative solution
and sign-changing solution for the boundary value problem
(1), (2). The method is different from those of [2, 4]. And
the main results are different from those of the work [2, 4].
This paper is arranged as follows. In Section 2, we give some
definitions and fixed point theorems with lattice structure. In
Section 3, we shall give some lemmas and the main results
about the existence of nontrivial solutions (including negative
solution and sign-changing solution) for the boundary value
problem (1), (2). Finally, in Section 4, some examples are
given to illustrate our main results.

2. Preliminaries

Let 𝐸 be an ordered Banach space in which the partial
ordering ≤ is induced by a cone 𝑃 ⊂ 𝐸. 𝑃 is called normal
if there exists a positive constant 𝑁 > 0 such that 𝜃 ≤ 𝑢 ≤ V
implies ‖𝑢‖ ≤ 𝑁‖V‖. 𝑃 is called solid if int P ̸= 𝜃, i.e., 𝑃 has
nonempty interior. 𝑃 is called total if 𝐸 = 𝑃 − 𝑃. If 𝑃 is solid,
then 𝑃 is total. For the concepts and the properties about the
cones, we refer to [31, 38, 39].

We call 𝐸 a lattice under the partial ordering ≤, if sup{𝑢, V}
and inf{𝑢, V} exist for arbitrary 𝑢, V ∈ 𝐸.

For 𝑢 ∈ 𝐸, let
𝑢+ = sup {𝑢, 𝜃} ,
𝑢− = sup {−𝑢, 𝜃} . (6)

𝑢+ and 𝑢− are called positive part and negative part of 𝑢,
respectively. Taking |𝑢| = 𝑢+ + 𝑢−, then |𝑢| ∈ 𝑃. For

the definition and the properties of the lattice, we refer to
[40].

For convenience, we use the following notations:

𝑢+ = 𝑢+,
𝑢− = −𝑢−, (7)

and clearly

𝑢+ ∈ 𝑃,
𝑢− ∈ (−𝑃) ,
𝑢 = 𝑢+ + 𝑢−.

(8)

Definition 1 (see [28–31]). Let 𝐷 ⊂ 𝐸 and 𝐹 : 𝐷 → 𝐸 be a
nonlinear operator. If there exists 𝑢∗ ∈ 𝐸 such that

𝐹𝑢 = 𝐹𝑢+ + 𝐹𝑢− + 𝑢∗, ∀𝑢 ∈ 𝐷, (9)

then 𝐹 is said to be quasi-additive on lattice.
Let𝐵 : 𝐸 → 𝐸 be a bounded linear operator. If𝐵(𝑃) ⊂ 𝑃,

then the operator 𝐵 is called to be positive.
In this section, we assume that 𝐸 is a Banach space, 𝑃 is a

total cone, the partial ordering ≤ in 𝐸 is induced by 𝑃, and 𝐸
is a lattice in the partial ordering ≤.

Let𝐵 : 𝐸 → 𝐸 be a positive completely continuous linear
operator; 𝐵∗ the conjugated operator of 𝐵; 𝑟(𝐵) a spectral
radius of 𝐵; and 𝑃∗ the conjugated cone of 𝑃. Since 𝑃 ⊂ 𝐸
is a total cone, by Krein-Rutman theorem, we can infer that if𝑟(𝐵) ̸= 0, then there exist 𝑢 ∈ 𝑃 \ {𝜃} and 𝑓∗ ∈ 𝑃∗ \ {𝜃}, such
that

𝐵𝑢 = 𝑟 (𝐵) 𝑢,
𝐵∗𝑓∗ = 𝑟 (𝐵)𝑓∗. (10)

For 𝛿 > 0. Let
𝑃 (𝑓∗, 𝛿) = {𝑢 ∈ 𝑃 | 𝑓∗ (𝑢) ≥ 𝛿 ‖𝑢‖} . (11)

Then 𝑃(𝑓∗, 𝛿) is also a cone in 𝐸.
Definition 2 (see [30, 31, 41]). If there exist 𝑢 ∈ 𝑃 \ {𝜃}, 𝑓∗ ∈𝑃∗ \ {𝜃}, and 𝛿 > 0 such that (10) holds, and 𝐵 maps 𝑃 into𝑃(𝑓∗, 𝛿), then the positive linear operator 𝐵 is said to satisfy
H condition.

Let 𝑃 be a cone of a Banach space 𝐸. If 𝑢 ∈ (𝑃 \ {𝜃}) is a
fixed point of 𝐴, then 𝑢 is said to be a positive fixed point of𝐴. If 𝑢 ∈ ((−𝑃) \ {𝜃}) is a fixed point of operator 𝐴, then 𝑢 is
said to be a positive fixed point of operator 𝐴. If 𝑢 ∈ (𝑃 \ {𝜃})
is a fixed point of operator 𝐴, then 𝑢 is said to be a negative
fixed point of operator 𝐴. If 𝑢 ∉ (𝑃 ∪ (−𝑃)) is a fixed point of
operator𝐴, then 𝑢 is said to be a sign-changing fixed point of
operator 𝐴.

In [30], Sun and Liu considered computation for the
topological degree about superlinear operators which are not
cone mappings and obtained the following results.

Lemma 3. Let the cone 𝑃 ⊂ 𝐸 be solid, and 𝐴 : 𝐸 → 𝐸
be a completely continuous operator, and 𝐴 = 𝐵𝐹, where 𝐵 is
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a positive completely continuous linear operator satisfying H
condition and 𝐹 is quasi-additive on lattice. Assume that(i) there exist 𝑐1 > 𝑟−1(𝐵) and 𝑢1 ∈ 𝑃 such that

𝐹𝑢 ≥ 𝑐1𝑢 − 𝑢1, ∀𝑢 ∈ 𝑃; (12)

(ii) there exist 0 < 𝑐2 < 𝑟−1(𝐵) and 𝑢2 ∈ 𝑃 such that

𝐹𝑢 ≥ 𝑐2𝑢 − 𝑢2, ∀𝑢 ∈ (−𝑃) ; (13)

(iii) 𝐴𝜃 = 𝜃, the Fréchet derivative𝐴𝜃 of𝐴 at 𝜃 exists, and 1 is
not an eigenvalue of𝐴𝜃.

Then the operator 𝐴 has at least one nonzero fixed point.
In [31], Sun further obtained the following result about

the existence of sign-changing fixed points for superlinear
operators.

Lemma 4. Let the conditions in Lemma 3 hold, and 𝛽 denote
the sum of the algebraic multiplicities for all eigenvalues of 𝐴𝜃
lying in (1, +∞). In addition, assume that(iv) 𝛽 ̸= 0, 𝛽 is an even number;(v) 𝐴(𝑃 \ {𝜃}) ⊂ int𝑃, 𝐴((−𝑃) \ {𝜃}) ⊂ int(−𝑃).
Then the operator 𝐴 has at least one negative fixed point and
one sign-changing fixed point.

3. Main Results

For convenience, we list the following conditions.(C1) 𝜑 : [0, 1] × 𝑅1 → 𝑅1 is continuous, 𝜑(𝑡, 0) = 0, ∀𝑡 ∈[0, 1].(C2)The sequence of positive solutions of the equation

sin√𝑦 = 𝑚−2∑
𝑖=1

𝛽𝑖 sin (𝛼𝑖√𝑦) (14)

is

0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ < 𝜆𝑛 < 𝜆𝑛+1 < ⋅ ⋅ ⋅ . (15)

(C3) lim𝑥→0(𝜑(𝑡, 𝑥)/𝑥) = 𝜂 uniformly on 𝑡 ∈ [0, 1].
Let 𝑋 = 𝐶[0, 1] with supremum norm ‖𝑥‖ =

sup0≤𝑡≤1|𝑥(𝑡)|. Set 𝑃 = {𝑥 ∈ 𝑋 | 𝑥(𝑡) ≥ 0, 𝑡 ∈ [0, 1]}, the𝑃 is a solid cone in𝑋. And under the partial order ≤ which is
induced by 𝑃, 𝑋 is a lattice.

In the following, we define some operators 𝐴, 𝐵, and Φ:

(𝐴𝑥) (𝑡) = ∫1
0

𝐾 (𝑡, 𝑠) 𝜑 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] , (16)

(𝐵𝑥) (𝑡) = ∫1
0

𝐾 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] , (17)

(Φ𝑥) (𝑡) = 𝜑 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] , (18)

where

𝐾(𝑡, 𝑠) = 𝑔 (𝑡, 𝑠) + 𝑡 ∑𝑚−2𝑖=1 𝛽𝑖𝑔 (𝛼𝑖, 𝑠)
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 , (19)

𝑔 (𝑡, 𝑠) = {{{
𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1. (20)

Obviously, 𝐴 = 𝐵Φ, and the nontrivial fixed points of the
operator 𝐴 are nontrivial solutions of the boundary value
problem (1), (2) (see [3]).

Lemma 5 (see [2]). Let 𝜇 be a positive number, and the linear
operator 𝐵 be defined by (17). Eigenvalues of the linear operator𝜇𝐵 are

𝜇
𝜆1 ,

𝜇
𝜆2 , ⋅ ⋅ ⋅ ,

𝜇
𝜆𝑛 , ⋅ ⋅ ⋅ , (21)

and algebraic multiplicity of 𝜇/𝜆𝑛 is equal to 1, where 𝜆𝑛 is
defined by (C2).
Lemma 6. The linear operator 𝐵 satisfies H condition.

Proof. By (C2), Lemma 5, and the definition of the spectral
radius, we know that

𝑟 (𝐵) = sup
𝜆∈{1/𝜆𝑛,𝑛=1,2,⋅⋅⋅ }

|𝜆| = 1
𝜆1 > 0. (22)

By (20), we have

𝑔 (𝛼𝑖, 𝑠) ≥ 𝛼𝑖 (1 − 𝛼𝑖) 𝑠 (1 − 𝑠) , ∀𝑠 ∈ [0, 1] . (23)

𝑔 (𝑡, 𝑠) ≤ 𝑠 (1 − 𝑠) , ∀𝑡, 𝑠 ∈ [0, 1] . (24)

By (19) and (23), we have

𝐾 (𝑡, 𝑠) ≥ 𝑡∑𝑚−2𝑖=1 𝛽𝑖𝑔 (𝛼𝑖, 𝑠)
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖

≥ 𝑡∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 (1 − 𝛼𝑖) 𝑠 (1 − 𝑠)
1 + ∑𝑚−2𝑖=1 𝛽𝑖 (1 − 𝛼𝑖) ,

∀𝑡, 𝑠 ∈ [0, 1] .

(25)

From (24) and (25), we have

𝐾 (𝑡, 𝑠) ≥ 𝑡∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 (1 − 𝛼𝑖)
1 + ∑𝑚−2𝑖=1 𝛽𝑖 (1 − 𝛼𝑖)𝑔 (𝜏, 𝑠) ,

∀𝜏, 𝑡, 𝑠 ∈ [0, 1] .
(26)

By (19), we have

𝐾 (𝑡, 𝑠) ≥ 𝑡∑𝑚−2𝑖=1 𝛽𝑖𝑔 (𝛼𝑖, 𝑠)
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 ≥ 𝑡∑𝑚−2𝑖=1 𝛽𝑖𝜏𝑔 (𝛼𝑖, 𝑠)

1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖
≥ 𝑡∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 (1 − 𝛼𝑖)
1 + ∑𝑚−2𝑖=1 𝛽𝑖 (1 − 𝛼𝑖)

∑𝑚−2𝑖=1 𝛽𝑖𝜏𝑔 (𝛼𝑖, 𝑠)
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 ,

∀𝜏, 𝑡, 𝑠 ∈ [0, 1] .

(27)

Hence, by adding (26) to (27), we have

2𝐾 (𝑡, 𝑠) ≥ 𝑡 ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 (1 − 𝛼𝑖)
1 + ∑𝑚−2𝑖=1 𝛽𝑖 (1 − 𝛼𝑖) (𝑔 (𝜏, 𝑠)

+ ∑𝑚−2𝑖=1 𝛽𝑖𝜏𝑔 (𝛼𝑖, 𝑠)
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 ) ,

(28)
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i.e.,

𝐾(𝑡, 𝑠) ≥ 𝑀𝑡𝐾 (𝜏, 𝑠) , ∀𝜏, 𝑡, 𝑠 ∈ [0, 1] , (29)

where𝑀 = ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖(1 − 𝛼𝑖)/2(1 + ∑𝑚−2𝑖=1 𝛽𝑖(1 − 𝛼𝑖)).
Let

(𝐵∗𝑥) (𝑡) = ∫1
0

𝐾∗ (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠, ∀𝑡 ∈ [0, 1] , (30)

where 𝐾∗(𝑡, 𝑠) = 𝐾(𝑠, 𝑡). Obviously, 𝑟(𝐵∗) = 𝑟(𝐵) = 1/𝜆1 >0. By Krein-Rutman theorem, there exist 𝑥(𝑡) ∈ 𝑃 \ {𝜃} and𝑥∗(𝑡) ∈ 𝑃 \ {𝜃} such that

(𝐵𝑥) (𝑡) = 𝑟 (𝐵) 𝑥 (𝑡) , (31)

(𝐵∗𝑥∗) (𝑡) = 𝑟 (𝐵) 𝑥∗ (𝑡) . (32)

By (29) and (32), we obtain

𝑥∗ (𝑠) = 𝑟−1 (𝐵) (𝐵∗𝑥∗) (𝑠)
= 𝑟−1 (𝐵)∫1

0

𝐾∗ (𝑠, 𝑡) 𝑥∗ (𝑡) 𝑑𝑡

= 𝑟−1 (𝐵)∫1
0

𝐾 (𝑡, 𝑠) 𝑥∗ (𝑡) 𝑑𝑡

≥ 𝑀𝑟−1 (𝐵)∫1
0

𝑡𝐾 (𝜏, 𝑠) 𝑥∗ (𝑡) 𝑑𝑡

= [𝑀𝑟−1 (𝐵)∫1
0

𝑡𝑥∗ (𝑡) 𝑑𝑡]𝐾 (𝜏, 𝑠) ,
∀𝜏, 𝑠 ∈ [0, 1] .

(33)

Set

𝑓∗ (𝑢) = ∫1
0

𝑥∗ (𝑡) 𝑢 (𝑡) 𝑑𝑡, ∀𝑢 ∈ 𝑋, 𝑡 ∈ [0, 1] . (34)

Obviously, 𝑓∗ ∈ 𝑃∗ \ {𝜃}, and by (34), for 𝑢 ∈ 𝑋, we have

𝑓∗ (𝐵𝑢) = ∫1
0

𝑥∗ (𝑡) (𝐵𝑢) (𝑡) 𝑑𝑡

= ∫1
0

𝑥∗ (𝑡) 𝑑𝑡 ∫1
0

𝐾 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

= ∫1
0

∫1
0

𝐾 (𝑡, 𝑠) 𝑥∗ (𝑡) 𝑢 (𝑠) 𝑑𝑡 𝑑𝑠

= ∫1
0

(∫1
0

𝐾∗ (𝑠, 𝑡) 𝑥∗ (𝑡) 𝑑𝑡) 𝑢 (𝑠) 𝑑𝑠

= ∫1
0

𝑟 (𝐵) 𝑥∗ (𝑠) 𝑢 (𝑠) 𝑑𝑠 = 𝑟 (𝐵) 𝑓∗ (𝑢) .

(35)

That is,

𝐵∗𝑓∗ = 𝑟 (𝐵) 𝑓∗. (36)

From (33) and (35), we have

𝑓∗ (𝐵𝑢) = 𝑟 (𝐵) ∫1
0

𝑥∗ (𝑠) 𝑢 (𝑠) 𝑑𝑠

≥ 𝑀∫1
0

𝑥∗ (𝑡) 𝑡𝑑𝑡 ∫1
0

𝐾 (𝜏, 𝑠) 𝑢 (𝑠) 𝑑𝑠

= (𝑀∫1
0

𝑡𝑥 ∗ (𝑡) 𝑑𝑡) (𝐵𝑢) (𝜏) ,
∀𝜏 ∈ [0, 1] .

(37)

By (37), we have

𝑓∗ (𝐵𝑢) ≥ 𝛿 ‖𝐵𝑢‖ , (38)

where 𝛿 = 𝑀∫1
0
𝑡𝑥∗(𝑡)𝑑𝑡 > 0.

Therefore, from (31), (36), and (38), it is easy to know that
the linear operator 𝐵 satisfies H condition.

Theorem 7. Suppose that (C1), (C2), and (C3) hold. In
addition, assume that there exists 𝛾 > 0 such that

lim inf
𝑥→+∞

𝜑 (𝑡, 𝑥)
𝑥 ≥ 𝜆1 + 𝛾, uniformly on 𝑡 ∈ [0, 1] ; (39)

lim sup
𝑥→−∞

𝜑 (𝑡, 𝑥)
𝑥 ≤ 𝜆1 − 𝛾, uniformly on 𝑡 ∈ [0, 1] . (40)

If 𝜂 ̸= 𝜆1, 𝜆2, ⋅ ⋅ ⋅ , 𝜆𝑛, ⋅ ⋅ ⋅ , where 𝜆𝑖 is defined by (C2), then
the boundary value problem (1), (2) has at least one nontrivial
solution.

Proof. By (C1), we easily know that 𝐴 : 𝑋 → 𝑋 is a
completely continuous operator, and 𝐵 : 𝑋 → 𝑋 is a
bounded positive linear completely continuous operator (see
[3]). By Lemma 6, we know that the linear operator 𝐵 satisfies
H condition.

For 𝑥 ∈ 𝑋, let

𝑥+ (𝑡) = {{{
𝑥 (𝑡) , 𝑥 (𝑡) ≥ 0,
0, 𝑥 (𝑡) < 0,

𝑥− (𝑡) = {{{
𝑥 (𝑡) , 𝑥 (𝑡) ≤ 0,
0, 𝑥 (𝑡) > 0,

(41)

and then 𝑥(𝑡) = 𝑥+(𝑡) + 𝑥−(𝑡).
By 𝜑(𝑡, 0) = 0, we have

Φ(𝑥) = 𝜑 (𝑡, 𝑥 (𝑡)) = 𝜑 (𝑡, 𝑥+ (𝑡) + 𝑥− (𝑡))
= 𝜑 (𝑡, 𝑥+ (𝑡)) + 𝜑 (𝑡, 𝑥− (𝑡))
= Φ (𝑥+) + Φ (𝑥−) .

(42)

From (42), we know that Φ is quasi-additive on lattice.
From (39) and (40), there exists 𝐶 > 0 such that

𝜑 (𝑡, 𝑥)
𝑥 ≥ 𝜆1 + 𝛾

4 , ∀𝑥 ≥ 𝐶, 𝑡 ∈ [0, 1] , (43)

𝜑 (𝑡, 𝑥)
𝑥 ≤ 𝜆1 − 𝛾

4 , ∀𝑥 ≤ −𝐶, 𝑡 ∈ [0, 1] . (44)
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By (43) and (44), we have

𝜑 (𝑡, 𝑥) ≥ (𝜆1 + 𝛾
4)𝑥, ∀𝑥 ≥ 𝐶, 𝑡 ∈ [0, 1] , (45)

𝜑 (𝑡, 𝑥) ≥ (𝜆1 − 𝛾
4)𝑥, ∀𝑥 ≤ −𝐶, 𝑡 ∈ [0, 1] . (46)

Let 𝐶 = max0≤𝑡≤1,|𝑥|≤𝐶|𝜑(𝑡, 𝑥)|. Then by (45) and (46), we
have

𝜑 (𝑡, 𝑥) ≥ (𝜆1 + 𝛾
4) 𝑥 − 𝐶, ∀𝑥 ≥ 0, 𝑡 ∈ [0, 1] ,

𝜑 (𝑡, 𝑥) ≥ (𝜆1 − 𝛾
4) 𝑥 − 𝐶, ∀𝑥 ≤ 0, 𝑡 ∈ [0, 1] ,

(47)

i.e.,

Φ𝑥 ≥ ℎ1𝑥 − 𝐶, ∀𝑥 ∈ 𝑃,
Φ𝑥 ≥ ℎ2𝑥 − 𝐶, ∀𝑥 ∈ (−𝑃) , (48)

where ℎ1 = 𝜆1 + 𝛾/4, ℎ2 = 𝜆1 − 𝛾/4.Obviously, we have
ℎ1 > 𝑟−1 (𝐵) ,
ℎ2 < 𝑟−1 (𝐵) . (49)

In the following, we prove that 𝐴𝜃 = 𝜂𝐵.
In fact, by 𝜑(𝑡, 0) = 0, ∀𝑡 ∈ [0, 1], we have 𝐴𝜃 = 𝜃. From(C3), ∀𝜖 > 0, ∃𝛿 > 0, when 0 < |𝑥| < 𝛿, we have


𝜑 (𝑡, 𝑥)

𝑥 − 𝜂 < 𝜖, (50)

i.e.,
𝜑 (𝑡, 𝑥) − 𝜂𝑥 < 𝜖 |𝑥| , ∀𝑡 ∈ [0, 1] , 0 < |𝑥| < 𝛿. (51)

So
Φ𝑥 − 𝜂𝑥 ≤ 𝜖 ‖𝑥‖ , ∀ ‖𝑥‖ < 𝛿. (52)

Therefore, by (52), we have
𝐴𝑥 − 𝐴𝜃 − 𝜂𝐵𝑥 = 𝐵 (Φ𝑥 − 𝜂𝑥)

≤ ‖𝐵‖ ⋅ (Φ𝑥 − 𝜂𝑥) ≤ 𝜖 ‖𝐵‖ ⋅ ‖𝑥‖ ,
∀ ‖𝑥‖ < 𝛿.

(53)

So

lim
‖𝑥‖→0

𝐴𝑥 − 𝐴𝜃 − 𝜂𝐵𝑥‖𝑥‖ = 0, (54)

i.e.,

𝐴𝜃 = 𝜂𝐵. (55)

Since 𝑟(𝐴𝜃) = 𝜂𝑟(𝐵), we know that 1 is not the eigenvalue
of 𝐴𝜃 by Lemma 6 and (C2).

By the above proof, we know that the conditions of
Lemma 3 hold. So by Lemma 3, the boundary value problem
(1), (2) has at least one nontrivial solution.

Theorem 8. Assume that (C1) − (C3), (39), and (40) are satis-
fied. In addition, suppose that 𝜑(𝑡, 𝑥)𝑥 > 0, ∀𝑡 ∈ [0, 1], 𝑥 ̸= 0,
and 𝜆2𝑛0 < 𝜂 < 𝜆2𝑛0+1, where 𝑛0 is a natural number. Then
the boundary value problem (1), (2) has at least one negative
solution and one sign-changing solution.

Proof. By (17), for ∀𝑥 ∈ 𝑃 \ {𝜃}, we have
(𝐵𝑥) (𝑡) = ∫1

0

𝐾(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

= ∫1
0

𝑔 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

+ 𝑡∑𝑚−2𝑖=1 𝛽𝑖 ∫10 𝑔 (𝛼𝑖, 𝑠) 𝑥 (𝑠) 𝑑𝑠
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖

≤ 𝑡 (1 − 𝑡) ∫1
0

𝑥 (𝑠) 𝑑𝑠

+ 𝑡∑𝑚−2𝑖=1 𝛽𝑖
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 ∫

1

0

𝑥 (𝑠) 𝑑𝑠

= [𝑡 (1 − 𝑡) + 𝑡 ∑𝑚−2𝑖=1 𝛽𝑖
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 ]∫

1

0

𝑥 (𝑠) 𝑑𝑠.

(56)

(𝐵𝑥) (𝑡) = ∫1
0

𝑔 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

+ 𝑡∑𝑚−2𝑖=1 𝛽𝑖 ∫10 𝑔 (𝛼𝑖, 𝑠) 𝑥 (𝑠) 𝑑𝑠
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖

≥ 𝑡∑𝑚−2𝑖=1 𝛽𝑖 ∫10 𝑔 (𝛼𝑖, 𝑠) 𝑥 (𝑠) 𝑑𝑠
1 − ∑𝑚−2𝑖=1 𝛽𝑖𝛼𝑖 .

(57)

From (56) and (57), we obtain that

𝐵 (𝑃 \ {𝜃}) ⊂ int 𝑃. (58)

Similarly, we know that

𝐵 (−𝑃 \ {𝜃}) ⊂ int (−𝑃) . (59)

Since 𝜑(𝑡, 𝑥)𝑥 > 0, ∀𝑡 ∈ [0, 1], 𝑥 ̸= 0, we have 𝜑(𝑡, 𝑥) >0, ∀𝑥 > 0, 𝑡 ∈ [0, 1], and 𝜑(𝑡, 𝑥) < 0, ∀𝑥 < 0, 𝑡 ∈ [0, 1]. So
we have

(Φ𝑥) ∈ 𝑃 \ {𝜃} , ∀𝑥 ∈ 𝑃 \ {𝜃} . (60)

(Φ𝑥) ∈ (−𝑃) \ {𝜃} , ∀𝑥 ∈ (−𝑃) \ {𝜃} . (61)

By (58)-(61), we have

𝐴 (𝑃 \ {𝜃}) ⊂ int𝑃,
𝐴 ((−𝑃) \ {𝜃}) ⊂ int (−𝑃) . (62)

Let 𝛽 be the sum of algebraic multiplicities for all the
eigenvalues of𝐴𝜃, lying in the interval (1,∞). By (55),
Lemma 5, and 𝜆2𝑛0 < 𝜂 < 𝜆2𝑛0+1, we know that

𝛽 = 2𝑛0. (63)
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By (62) and (63), we know that the conditions (iv) and (v)
in Lemma 4 hold. By the proof of Theorem 7, the conditions
(i), (ii), and (iii) in Lemma 4 are satisfied. Therefore, by
Lemma 4, the boundary value problem (1), (2) has at least one
negative solution and one sign-changing solution.

4. Examples

We consider second-order four-point boundary value prob-
lem

−𝑥 (𝑡) = 𝜑 (𝑡, 𝑥 (𝑡)) , 0 ≤ 𝑡 ≤ 1,
𝑥 (0) = 0,
𝑥 (1) = 1

3𝑥 (
1
3) +

1
2𝑥 (

1
2) .

(64)

By simple calculations, 𝜆1 ≈ 5.602, 𝜆2 ≈ 42.32, 𝜆3 ≈99.97, and 𝜆4 ≈ 148.87 are solutions of the equation
sin√𝑥 = 1

3 sin √𝑥
3 + 1

2 sin √𝑥
2 . (65)

Example 1. Choose

𝜑 (𝑡, 𝑥)

=

{{{{{{{{{{{{{{{{{{{{{{{

8𝑥 + (𝑡 − 1)√𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ [4, +∞) ,
30 + 5𝑡

3 (𝑥 − 1) − 3𝑡, 𝑡 ∈ [0, 1] , 𝑥 ∈ (1, 4) ,
3𝑥 − 3 (1 + 𝑡) 𝑥2, 𝑡 ∈ [0, 1] , 𝑥 ∈ [−1, 1] ,
8 − 𝑡
7 (𝑥 + 1) − (6 + 3𝑡) , 𝑡 ∈ [0, 1] , 𝑥 ∈ (−8, −1) ,

2𝑥 + (𝑡 − 1) 3√𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ (−∞, −8] .

(66)

By (66), it is easy to know that 𝜑 : [0, 1] × (−∞,+∞) →(−∞,+∞) is continuous, and 𝜑(𝑡, 0) = 0, ∀𝑡 ∈ [0, 1]. By
calculation, 𝜂 = 3 < 𝜆1. We can choose 𝛾 = 2. Then we have

lim inf
𝑥→+∞

𝜑 (𝑡, 𝑥)
𝑥 = 8 ≥ 𝜆1 + 𝛾,

lim sup
𝑥→−∞

𝜑 (𝑡, 𝑥)
𝑥 = 2 ≤ 𝜆1 − 𝛾.

(67)

So byTheorem7, the boundary value problem (64) has at least
one nontrivial solution.

Example 2. Choose

𝜑 (𝑡, 𝑥)

=

{{{{{{{{{{{{{{{{{{{{{{{

10𝑥 + (1 − 𝑡) 3√𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ [8, +∞) ,
31 − 3𝑡

7 (𝑥 − 1) + (51 + 𝑡) , 𝑡 ∈ [0, 1] , 𝑥 ∈ (1, 8) ,
50𝑥 + (1 + 𝑡) 𝑥5/3, 𝑡 ∈ [0, 1] , 𝑥 ∈ [−1, 1] ,
−21 − 4𝑡

26 (𝑥 + 1) − (51 + 𝑡) , 𝑡 ∈ [0, 1] , 𝑥 ∈ (−27, −1) ,
𝑥 + (1 − 𝑡) 3√𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ (−∞,−27] .

(68)

By (68), we know that 𝜑 : [0, 1] × (−∞,+∞) →(−∞,+∞) is continuous, 𝜑(𝑡, 0) = 0, ∀𝑡 ∈ [0, 1], and

𝜑(𝑡, 𝑥)𝑥 > 0, ∀𝑡 ∈ [0, 1], 𝑥 ̸= 0. By calculation, 𝜆2 ≤ 𝜂 =50 < 𝜆3. We can choose 𝛾 = 4. Then we have

lim inf
𝑥→+∞

𝜑 (𝑡, 𝑥)
𝑥 = 10 ≥ 𝜆1 + 𝛾,

lim sup
𝑥→−∞

𝜑 (𝑡, 𝑥)
𝑥 = 1 ≤ 𝜆1 − 𝛾.

(69)

So by Theorem 8, the boundary value problem (64) has at
least one negative solution and one sign-changing solution.

Example 3. Choose

𝜑 (𝑡, 𝑥)

=

{{{{{{{{{{{{{{{{{{{{{{{{{

45
32𝑥2 + (1 − 𝑡) 3√𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ [8, +∞) ,
31 − 3𝑡

7 (𝑥 − 1) + (61 + 𝑡) , 𝑡 ∈ [0, 1] , 𝑥 ∈ (1, 8) ,
60𝑥 + (1 + 𝑡) 𝑥5/3, 𝑡 ∈ [0, 1] , 𝑥 ∈ [−1, 1] ,
−31 − 4𝑡

26 (𝑥 + 1) − (61 + 𝑡) , 𝑡 ∈ [0, 1] , 𝑥 ∈ (−27, −1) ,
𝑥 + (1 − 𝑡) 3√𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ (−∞, −27] .

(70)

By (70), we know that 𝜑 : [0, 1] × (−∞,+∞) →(−∞,+∞) is continuous, 𝜑(𝑡, 0) = 0, ∀𝑡 ∈ [0, 1], and𝜑(𝑡, 𝑥)𝑥 > 0, ∀𝑡 ∈ [0, 1], 𝑥 ̸= 0. By calculation, 𝜆2 ≤ 𝜂 =60 < 𝜆3. We can choose 𝛾 = 3. Then we have

lim inf
𝑥→+∞

𝜑 (𝑡, 𝑥)
𝑥 = +∞ ≥ 𝜆1 + 𝛾,

lim sup
𝑥→−∞

𝜑 (𝑡, 𝑥)
𝑥 = 1 ≤ 𝜆1 − 𝛾.

(71)

So by Theorem 8, the boundary value problem (64) has at
least one negative solution and one sign-changing solution.
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In this paper, we consider a class of fractional differential equations with conjugate type integral conditions. Both the existence of
uniqueness and nonexistence of positive solution are obtained by means of the iterative technique.The interesting point lies in that
the assumption on nonlinearity is closely associated with the spectral radius corresponding to the relevant linear operator.

1. Introduction

In this paper, we consider the existence of uniqueness and
nonexistence of positive solution for the following fractional
differential equations:

𝐷𝛼0+𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,
𝑢 (0) = 𝑢 (0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−2) (0) = 0,

𝐷𝛽0+𝑢 (1) = ∫𝜂
0
𝑎 (𝑡)𝐷𝛾0+𝑢 (𝑡) 𝑑𝑡,

(1)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 3, 0 < 𝛽 < 1, Γ(𝛼 −
𝛽) ∫𝜂
0
𝑎(𝑡)𝑡𝛼−𝛾−1𝑑𝑡 < Γ(𝛼 − 𝛾), 𝜂 ∈ (0, 1], 𝐷𝛼0+ is the standard

Riemann-Liouville derivative, 𝑓 : (0, 1) × [0, +∞) → [0,+∞) is continuous, and 𝑎(𝑡) ∈ 𝐿1[0, 1] is nonnegative.
In the recent years, many results were obtained to deal

with the existence of solutions for nonlinear differential
equations by using nonlinear analysis methods; see [1–16]
and references therein. The fractional nonlocal boundary
value problems have particularly attracted a great deal of
attention (see [17–27]). While there are a lot of works dealing
with the existence and multiplicity of solutions for nonlinear
fractional differential equations, the results dealing with the
uniqueness of solution are relatively scarce (see [28–35]).
The main tool used in most of the papers dealing with
the uniqueness of solution is the Banach contraction map

principle provided that the nonlinearity 𝑓 is a Lipschitz
continuous function. When 1 ≤ 𝛽 < 𝛼 − 1, and 𝑓 is con-
tinuous on [0, 1] × (−∞,+∞), Zhang and Zhong [34] estab-
lished the uniqueness results of solution to problem (1) by
using the Banach contraction map principle. It is worth
mentioning that only positive solutions are meaningful in
most practical problems. As far as we know, the nonexistence
of positive solution has seldom been considered up to now.

Motivated by the above work, the aim of this paper is
to establish the existence of uniqueness and nonexistence of
positive solution to problem (1). Our analysis relies on the
iterative technique on the cone derived from the properties of
the Green function. This article provides some new insights.
Firstly, the uniqueness results are obtained under some
conditions concerning the spectral radius with respect to the
relevant linear operator. In addition, the error estimation of
the iterative sequences is given. Secondly, we impose weaker
positivity conditions on 𝑓; that is, the Lipschitz constant is
generalized to a function and 𝑓(𝑡, 𝑥) may be singular at 𝑡 =0, 1. Finally, the nonexistence results of positive solution are
obtained under conditions concerning the spectral radius of
the relevant linear operator.

2. Preliminaries

For the convenience of the reader, we present here the neces-
sary definitions from fractional calculus theory and lemmas.
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Definition 1. The fractional integral of order 𝛼 > 0 of a
function 𝑢 : (0, +∞) → 𝑅 is given by

𝐼𝛼0+𝑢 (𝑡) = 1
Γ (𝛼) ∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑢 (𝑠) 𝑑𝑠 (2)

provided that the right-hand side is point-wise defined on(0, +∞).
Definition 2. The Riemann-Liouville fractional derivative of
order 𝛼 > 0 of a function 𝑢 : (0, +∞) → 𝑅 is given by

𝐷𝛼0+𝑢 (𝑡) = 1
Γ (𝑛 − 𝛼) ( 𝑑

𝑑𝑡)
𝑛 ∫𝑡
0
(𝑡 − 𝑠)𝑛−𝛼−1 𝑢 (𝑠) 𝑑𝑠, (3)

where 𝑛 = [𝛼] + 1; [𝛼] denotes the integer part of number𝛼, provided that the right-hand side is point-wise defined on(0, +∞).
For convenience, we here list the assumptions to be used

throughout the paper.(𝐴1) 𝑎(𝑡) ∈ 𝐿1[0, 1] is nonnegative, and
Δ fl Γ (𝛼 − 𝛾) − Γ (𝛼 − 𝛽)∫𝜂

0
𝑎 (𝑡) 𝑡𝛼−𝛾−1𝑑𝑡 > 0; (4)

(𝐴2) 𝑓 : (0, 1) × [0, +∞) → [0, +∞) is continuous.
Lemma 3 ([34]). For any 𝑦 ∈ 𝐿[0, 1] ∩ 𝐶(0, 1), the unique
solution of the boundary value problem

𝐷𝛼0+𝑢 (𝑡) + 𝑦 (𝑡) = 0, 0 < 𝑡 < 1,
𝑢 (0) = 𝑢 (0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−2) (0) = 0,

𝐷𝛽0+𝑢 (1) = ∫𝜂
0

𝑎 (𝑡) 𝐷𝛾0+𝑢 (𝑡) ,
(5)

is

𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (6)

where

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) + ℎ (𝑠) 𝑡𝛼−1,
𝐺1 (𝑡, 𝑠) = 1

Γ (𝛼)
⋅ {{{

𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 − (𝑡 − 𝑠)𝛼−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝐺2 (𝑡, 𝑠) = 1
Γ (𝛼)

⋅ {{{
𝑡𝛼−𝛾−1 (1 − 𝑠)𝛼−𝛽−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
𝑡𝛼−𝛾−1 (1 − 𝑠)𝛼−𝛽−1 − (𝑡 − 𝑠)𝛼−𝛾−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

ℎ (𝑠) = Γ (𝛼 − 𝛾)
Δ ∫𝜂

0
𝑎 (𝑡) 𝐺2 (𝑡, 𝑠) 𝑑𝑡.

(7)

Lemma 4. 	e function 𝐺1(𝑡, 𝑠) has the following properties:
(1) 𝐺1(𝑡, 𝑠) > 0, ∀𝑡, 𝑠 ∈ (0, 1);
(2) Γ(𝛼)𝐺1(𝑡, 𝑠) ≤ 𝑡𝛼−1(1 − 𝑠)𝛼−𝛽−1, ∀𝑡, 𝑠 ∈ [0, 1];
(3) 𝛽𝑠(1 − 𝑠)𝛼−𝛽−1𝑡𝛼−1 ≤ Γ(𝛼)𝐺1(𝑡, 𝑠) ≤ 𝑠(1 − 𝑠)𝛼−𝛽−1,∀𝑡, 𝑠 ∈ [0, 1].

Proof. It is obvious that (1) and (2) hold. In the following, we
will prove (3).

Case (i) (0 < 𝑠 ≤ 𝑡 < 1). Noticing 𝛼 > 2, we have
𝜕
𝜕𝑡 [𝑡𝛼−1 − (𝑡 − 𝑠)𝛼−1

(1 − 𝑠)𝛼−2]

= (𝛼 − 1) 𝑡𝛼−2 [1 − ( 𝑡 − 𝑠
𝑡 (1 − 𝑠))

𝛼−2] ≥ 0,
(8)

which implies

𝑡𝛼−1 − (𝑡 − 𝑠)𝛼−1
(1 − 𝑠)𝛼−2 ≤ 1 − (1 − 𝑠) = 𝑠. (9)

Noticing 0 < 𝛽 < 1, we have
𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 − (𝑡 − 𝑠)𝛼−1

= (1 − 𝑠)𝛼−𝛽−1 [𝑡𝛼−1 − (𝑡 − 𝑠)𝛼−1
(1 − 𝑠)𝛼−𝛽−1]

≤ (1 − 𝑠)𝛼−𝛽−1 [𝑡𝛼−1 − (𝑡 − 𝑠)𝛼−1
(1 − 𝑠)𝛼−2]

≤ 𝑠 (1 − 𝑠)𝛼−𝛽−1 .

(10)

On the other hand, it follows from

𝜕
𝜕𝑠 [𝛽𝑠 + (1 − 𝑠)𝛽] ≤ 0, ∀𝑠 ∈ [0, 1) (11)

that

𝛽𝑠 + (1 − 𝑠)𝛽 ≤ 1, ∀𝑠 ∈ [0, 1] . (12)

Therefore,

𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 − (𝑡 − 𝑠)𝛼−1
≥ 𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 − (𝑡 − 𝑠)𝛽 (𝑡 − 𝑡𝑠)𝛼−𝛽−1

= 𝑡𝛼−1 [1 − (1 − 𝑠
𝑡)
𝛽] (1 − 𝑠)𝛼−𝛽−1

≥ 𝑡𝛼−1 [1 − (1 − 𝑠)𝛽] (1 − 𝑠)𝛼−𝛽−1
≥ 𝛽𝑠 (1 − 𝑠)𝛼−𝛽−1 𝑡𝛼−1.

(13)

Case (ii) (0 ≤ 𝑡 ≤ 𝑠 ≤ 1). It is easy to see that
𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 ≤ 𝑠𝛼−1 (1 − 𝑠)𝛼−𝛽−1 ≤ 𝑠 (1 − 𝑠)𝛼−𝛽−1 . (14)
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On the other hand, we have

𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1 ≥ 𝑠𝑡𝛼−1 (1 − 𝑠)𝛼−𝛽−1
≥ 𝛽𝑠 (1 − 𝑠)𝛼−𝛽−1 𝑡𝛼−1. (15)

It follows from (10), (13), (14), and (15) that (3) holds.

Lemma 5. 	e function 𝐺(𝑡, 𝑠) has the following properties:
(1) 𝐺(𝑡, 𝑠) > 0, ∀𝑡, 𝑠 ∈ (0, 1);
(2) 𝐺(𝑡, 𝑠) ≤ 𝑡𝛼−1Φ1(𝑠), ∀𝑡, 𝑠 ∈ [0, 1];
(3) 𝛽𝑡𝛼−1Φ2(𝑠) ≤ 𝐺(𝑡, 𝑠) ≤ Φ2(𝑠), ∀𝑡, 𝑠 ∈ [0, 1],

where

Φ1 (𝑠) = (1 − 𝑠)𝛼−𝛽−1
Γ (𝛼) + ℎ (𝑠) ,

Φ2 (𝑠) = 𝑠 (1 − 𝑠)𝛼−𝛽−1
Γ (𝛼) + ℎ (𝑠) .

(16)

Proof. It can be directly deduced from Lemma 4 and the
definition of 𝐺(𝑡, 𝑠), so we omit the proof.

Let 𝐸 = 𝐶[0, 1] be endowed with the maximum norm‖𝑢‖ = max0≤𝑡≤1|𝑢(𝑡)|, 𝐵𝑟 = {𝑢 ∈ 𝐸 : ‖𝑢‖ < 𝑟}. Define cones 𝑃,𝑄 by

𝑃 = {𝑢 ∈ 𝐸 : 𝑢 (𝑡) ≥ 0} ,
𝑄 = {𝑢 ∈ 𝑃 : 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑙𝑢 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛽 ‖𝑢‖ 𝑡𝛼−1

≤ 𝑢 (𝑡) ≤ 𝑙𝑢𝑡𝛼−1} .
(17)

It is clear that 𝑄 is nonempty set since 𝑡𝛼−1 ∈ 𝑄.
For convenience, we list here one more assumption to be

used later:(𝐴3)There exists 𝜆 ∈ 𝐶(0, 1) ∩ 𝐿[0, 1] such that
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) ≤ 𝜆 (𝑡) 𝑥 − 𝑦 ,

𝑡 ∈ [0, 1] , 𝑥, 𝑦 ∈ [0,∞) . (18)

Moreover,

0 < ∫1
0
Φ1 (𝑠) 𝜆 (𝑠) 𝑑𝑠 < +∞;

0 < ∫1
0
Φ1 (𝑠) 𝑓 (𝑠, 0) 𝑑𝑠 < +∞.

(19)

Define operators 𝐴 and 𝑇 as follows:

𝐴𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

𝑇𝜆𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝜆 (𝑠) 𝑢 (𝑠) 𝑑𝑠.

(20)

Lemma 6. Assume that (𝐴3) holds; then 𝐴 : 𝑃 → 𝑄.

Proof. It is clear that 𝑓(𝑡, 𝑥) ≤ 𝜆(𝑡)𝑥 + 𝑓(𝑡, 0), ∀𝑥 ≥ 0. For
any 𝑢 ∈ 𝑃, we have

|𝐴𝑢 (𝑡)| = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ ∫1
0
Φ1 (𝑠) 𝜆 (𝑠) ‖𝑢‖ 𝑑𝑠

+ ∫1
0
Φ1 (𝑠) 𝑓 (𝑠, 0) 𝑑𝑠.

(21)

Then 𝐴 is well-defined on 𝑃. It follows from Lemma 5 that𝐴 : 𝑃 → 𝑄.

By virtue of the Krein-Rutmann theorem and Lemma 5,
we have the following lemma.

Lemma 7. Assume that (𝐴3) holds. 	en 𝑇𝜆 : 𝑃 → 𝑄 is a
completely continuous linear operator. Moreover, the spectral
radius 𝑟(𝑇𝜆) > 0 and 𝑇𝜆 has a positive eigenfunction 𝜑1
corresponding to its first eigenvalue (𝑟(𝑇𝜆))−1; that is, 𝑇𝜆𝜑1 =𝑟(𝑇𝜆)𝜑1.
3. Main Results

Theorem 8. Assume that (𝐴3) holds. 	en (1) has a unique
positive solution if the spectral radius 𝑟(𝑇𝜆) ∈ (0, 1).
Proof. It follows from 0 < ∫1

0
Φ1(𝑠)𝑓(𝑠, 0)𝑑𝑠 < +∞ that 𝜃 is

not a fixed point of 𝐴. Then we only need to prove that 𝐴 has
a unique fixed point in 𝑄.

Firstly, we will prove 𝐴 has a fixed point in 𝑄.
For any 𝑢 ∈ 𝑄, let

𝑙𝑢 = ∫1
0
Φ1 (𝑠) 𝜆 (𝑠) 𝑢 (𝑠) 𝑑𝑠. (22)

Then

𝛽 ‖𝑢‖ 𝑡𝛼−1 ≤ (𝑇𝜆𝑢) (𝑡) ≤ 𝑙𝑢𝑡𝛼−1. (23)

By Lemma 7, we have that 𝑇𝜆𝜑1 = 𝑟(𝑇𝜆)𝜑1. It is easy to see
that

𝛽 𝜑1𝑟 (𝑇𝜆) 𝑡𝛼−1 ≤ 𝜑1 (𝑡) ≤ 𝑙𝜑1𝑟 (𝑇𝜆) 𝑡
𝛼−1. (24)

For any 𝑢0 ∈ 𝑄, set

𝑢𝑛 = 𝐴 (𝑢𝑛−1) , 𝑛 = 1, 2, ⋅ ⋅ ⋅ . (25)

We may suppose that 𝑢1 − 𝑢0 ̸= 𝜃 (otherwise, the proof is
finished). It follows from (23) and (24) that

𝑇𝜆 (𝑢1 − 𝑢0) ≤ 𝑟 (𝑇𝜆) 𝑙|𝑢1−𝑢0|𝛽 𝜑1 𝜑1. (26)

Then, we have𝑢2 − 𝑢1
= ∫
1

0
𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢1 (𝑠)) − 𝑓 (𝑠, 𝑢0 (𝑠))] 𝑑𝑠
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≤ ∫1
0
𝐺 (𝑡, 𝑠) 𝜆 (𝑠) 𝑢1 (𝑠) − 𝑢0 (𝑠) 𝑑𝑠

≤ 𝑟 (𝑇𝜆) 𝑙|𝑢1−𝑢0|𝛽 𝜑1 𝜑1.
(27)

By induction, we can get

𝑢𝑛+1 − 𝑢𝑛 ≤ [𝑟 (𝑇𝜆)]𝑛 𝑙|𝑢1−𝑢0|𝛽 𝜑1 𝜑1, 𝑛 = 1, 2, ⋅ ⋅ ⋅ . (28)

Then, for any 𝑛, 𝑚 ∈ N, one has
𝑢𝑛+𝑚 − 𝑢𝑛 ≤ 𝑢𝑛+𝑚 − 𝑢𝑛+𝑚−1 + ⋅ ⋅ ⋅ + 𝑢𝑛+1 − 𝑢𝑛

≤ ([𝑟 (𝑇𝜆)]𝑛+𝑚−1 + ⋅ ⋅ ⋅ + [𝑟 (𝑇𝜆)]𝑛) 𝑙|𝑢1−𝑢0|𝛽 𝜑1𝜑1

≤ [𝑟 (𝑇𝜆)]𝑛 𝑙|𝑢1−𝑢0|[1 − 𝑟 (𝐿𝜆)] 𝛽 𝜑1𝜑1.
(29)

It follows from 𝑟(𝑇𝜆) < 1 that
𝑢𝑛+𝑚 − 𝑢𝑚 → 0 (𝑛 → ∞) , (30)

which implies {𝑢𝑛} is a Cauchy sequence. Therefore, there
exists 𝑢∗ ∈ 𝑄 such that {𝑢𝑛} converges to 𝑢∗. Clearly 𝑢∗ is
a fixed point of 𝐴.

In the following, we will prove the fixed point of 𝐴 is
unique.

Suppose V ̸= 𝑢∗ is a positive fixed point of 𝐴. Then there
exists 𝑙|𝑢∗−V| > 0 such that

𝑇𝜆 (𝑢∗ − V) ≤ 𝑟 (𝑇𝜆) 𝑙|𝑢∗−V|
𝛽 𝜑1 𝜑1. (31)

Therefore,
𝐴𝑢∗ − 𝐴V

= ∫
1

0
𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢∗ (𝑠)) − 𝑓 (𝑠, V (𝑠))] 𝑑𝑠

≤ ∫1
0
𝐺 (𝑡, 𝑠) 𝜆 (𝑠) 𝑢∗ (𝑠) − V (𝑠) 𝑑𝑠

≤ 𝑟 (𝑇𝜆) 𝑙|𝑢∗−V|
𝛽 𝜑1 𝜑1.

(32)

By induction, we can get

𝐴𝑛𝑢∗ − 𝐴𝑛V ≤ [𝑟 (𝑇𝜆)]𝑛 𝑙|𝑢∗−V|
𝛽 𝜑1 𝜑1. (33)

It follows from 𝑟(𝑇𝜆) < 1 that
𝑢∗ − V = 𝐴𝑛𝑢∗ − 𝐴𝑛V → 0 (𝑛 → ∞) , (34)

which implies the positive fixed point of 𝐴 is unique.

Remark 9. The unique positive solution 𝑢∗ of (1) can be
approximated by the iterative schemes: for any 𝑢0 ∈ 𝑄, let

𝑢𝑛 = 𝐴 (𝑢𝑛−1) , 𝑛 = 1, 2, . . . , (35)

and then 𝑢𝑛 → 𝑢∗. Furthermore, we have error estimation

𝑢𝑛 − 𝑢∗ ≤ [𝑟 (𝑇𝜆)]𝑛 𝑙|𝑢1−𝑢0|[1 − 𝑟 (𝑇𝜆)] 𝛽 𝜑1𝜑1, (36)

and with the rate of convergence
𝑢𝑛 − 𝑢∗ = 𝑂 ([𝑟 (𝑇𝜆)]𝑛) . (37)

Remark 10. The spectral radius satisfies 𝑟(𝑇𝜆) =
lim𝑛→∞‖𝑇𝑛𝜆‖1/𝑛 and 𝑟(𝑇𝜆) ≤ ‖𝑇𝑛𝜆‖1/𝑛. Particularly,

𝑟 (𝑇𝜆) ≤ 𝑇𝜆 = sup
0≤𝑡≤1

∫1
0
𝐺 (𝑡, 𝑠) 𝜆 (𝑠) 𝑑𝑠. (38)

Theorem 11. Assume that the following condition holds:(𝐴4) 	ere exists 𝜆1 ∈ 𝐶(0, 1) ∩ 𝐿[0, 1] satisfying
0 < ∫1
0
Φ1 (𝑠) 𝜆1 (𝑠) 𝑑𝑠 < +∞, (39)

such that

𝑓 (𝑡, 𝑥) ≤ 𝜆1 (𝑡) 𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ [0,∞) . (40)

	en (1) has no positive solution if the spectral radius 𝑟(𝑇𝜆1) ∈(0, 1), where
𝑇𝜆1𝑢 (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝜆1 (𝑠) 𝑢 (𝑠) 𝑑𝑠. (41)

Proof. We only need to prove that 𝐴 has no fixed point in𝑄\{𝜃}. Otherwise, there exists V ∈ 𝑄 \ {𝜃}, such that 𝐴V = V.
By Lemma 7, we have that the spectral radius 𝑟(𝑇𝜆1) > 0

and 𝑇𝜆1 has a positive eigenfunction 𝜓1 satisfying
𝑇𝜆1𝜓1 = 𝑟 (𝑇𝜆1) 𝜓1. (42)

It is clear that 𝜓1 ∈ 𝑄 \ {𝜃}. Therefore, there exists 𝑐1 > 0 such
that

V ≤ 𝑐1𝜓1. (43)

It follows from 𝑓(𝑡, 𝑥) ≤ 𝑏1(𝑡)𝑥 that V = 𝐴V ≤ 𝑇𝜆1V. It is
obvious that 𝑇𝜆1 is increasing on 𝑄. By induction, we can get
V ≤ 𝑇𝑛𝜆1V, ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . Thus,

V ≤ 𝑇𝑛𝜆1V ≤ 𝑇𝑛𝜆1𝑐1𝜓1 = 𝑐1 [𝑟 (𝑇𝜆1)]𝑛 𝜓1,
∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . (44)

Noticing 𝑟(𝑇𝜆1) < 1, we have V = 𝜃, which contradicts with
V ∈ 𝑄 \ {𝜃}.
Theorem 12. Assume that the following condition holds:(𝐴5) 	ere exists 𝜆2 ∈ 𝐶(0, 1) ∩ 𝐿[0, 1] satisfying

0 < ∫1
0
Φ1 (𝑠) 𝜆2 (𝑠) 𝑑𝑠 < +∞, (45)
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such that

𝑓 (𝑡, 𝑥) ≥ 𝜆2 (𝑡) 𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ [0,∞) . (46)

	en (1) has no positive solution if the spectral radius 𝑟(𝑇𝜆2) >1, where
𝑇𝜆2𝑢 (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝜆2 (𝑠) 𝑢 (𝑠) 𝑑𝑠. (47)

Proof. Suppose that there exists V ∈ 𝑄 \ {𝜃}, such that 𝐴V = V.
By Lemma 7, we have that the spectral radius 𝑟(𝑇𝜆2) > 0

and 𝑇𝜆2 has a positive eigenfunction 𝜓2 satisfying
𝑇𝜆2𝜓2 = 𝑟 (𝑇𝜆2)𝜓2. (48)

It is clear that 𝜓2 ∈ 𝑄 \ {𝜃}. Therefore, there exists 𝑐2 > 0 such
that

V ≥ 𝑐2𝜓1. (49)

It follows from 𝑓(𝑡, 𝑥) ≥ 𝜆2(𝑡)𝑥 that V = 𝐴V ≥ 𝑇𝜆2V.
Noticing that 𝑇𝜆2 is increasing on 𝑄, by induction, we have
V ≥ 𝑇𝑛𝜆2V, ∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . Thus,

V ≥ 𝑇𝑛𝜆2V ≥ 𝑇𝑛𝜆2𝑐2𝜓2 = 𝑐2 [𝑟 (𝑇𝜆2)]𝑛 𝜓2,
∀𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . (50)

It follows from 𝑟(𝑇𝜆1) > 1 that ‖V‖ = ∞, which contradicts
with V ∈ 𝑄.

4. Example

Example 1. Consider the following integral boundary value
problem:

{{{{{

𝐷5/20+ 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,
𝑢 (0) = 𝑢 (0) = 0, 𝐷1/20+ 𝑢 (1) = ∫1

0

1
√𝑡𝐷
1/2
0+ 𝑢 (𝑡) 𝑑𝑡, (51)

with

𝑓 (𝑡, 𝑥) = 1 + 𝑥 + |sin 𝑥|
2𝐶√𝑡 , (52)

where

𝐶 = 8
3√𝜋 − √𝜋

2 . (53)

By direct calculations, we have

Δ = Γ (2) − Γ (2)∫1
0

𝑡
√𝑡𝑑𝑡 = 1

3 . (54)

It is clear that (𝐴1) and (𝐴2) hold. Clearly, we have
𝐺1 (𝑡, 𝑠)

= 4
3√𝜋

{{{
𝑡3/2 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
𝑡3/2 (1 − 𝑠) − (𝑡 − 𝑠)3/2 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝐺2 (𝑡, 𝑠) = 4
3√𝜋

{{{
𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

ℎ (𝑠) = 16
3√𝜋𝑠 (1 − √𝑠) ,

Φ1 (𝑠) = 4 (1 − 𝑠)
3√𝜋 + ℎ (𝑠) ,

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) + ℎ (𝑠) 𝑡𝛼−1.
(55)

Let 𝜆(𝑡) = 1/𝐶√𝑡; then we have
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) ≤ 𝜆 (𝑡) 𝑥 − 𝑦 ,

𝑡 ∈ [0, 1] , 𝑥, 𝑦 ∈ [0,∞) . (56)

It is easy to get that (𝐴3) holds.
Denote

𝑒 (𝑡) ≡ 1, 𝑡 ∈ [0, 1] . (57)

By direct calculations, we have

(𝑇𝜆𝑒) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝜆 (𝑠) 𝑑𝑠 = 8𝑡3/2

3√𝜋𝐶 − √𝜋𝑡2
2𝐶 , (58)

(𝑇2𝜆𝑒) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝜆 (𝑠) (𝑇𝜆𝑒) (𝑠) 𝑑𝑠 = ( 4

3√𝜋𝐶)2

⋅ [(5
7 − 27𝜋

280 ) 𝑡3/2 − 8
35𝑡7/2 + 9𝜋2

1024𝑡4]

≤ ( 4
3√𝜋𝐶)2

⋅ [(5
7 − 27𝜋

280 ) 𝑡3/2 − 8
35𝑡7/2 + 9𝜋2

1024𝑡7/2]

≈ ( 4
3√𝜋𝐶)2 (0.41135𝑡3/2 − 0.14183𝑡7/2) .

(59)

∀𝑡 ∈ [0, 1], we have
( 8𝑡3/2

3√𝜋𝐶 − √𝜋𝑡2
2𝐶 )



= 4𝑡1/2 − 𝜋𝑡
√𝜋𝐶 ≥ 0,

(0.41135𝑡3/2 − 0.14183𝑡7/2)
= 0.617025𝑡1/2 − 0.496405𝑡5/2 ≥ 0.

(60)

Therefore,

max
0≤𝑡≤1

(𝑇𝜆𝑒) (𝑡) = (𝑇𝜆𝑒) (1) = 1,

max
0≤𝑡≤1

(𝑇2𝜆𝑒) (𝑡) ≤ ( 4
3√𝜋𝐶)2 (0.41135 − 0.14183)

≈ 0.39898.
(61)
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It is obvious that𝐿𝜆 = max
0≤𝑡≤1

(𝑇𝜆𝑒) (𝑡) = 1, (62)

and 𝐿2𝜆 = max
0≤𝑡≤1

(𝑇2𝜆𝑒) (𝑡) < 1. (63)

which implies that

𝐿2𝜆1/2 < 1, (64)

Lemma 7 and Remark 10 can guarantee that

0 < 𝑟 (𝐿𝜆) ≤ 𝐿2𝜆1/2 < 1 < 𝐿𝜆 = 1. (65)

So all of the assumptions of Theorem 8 are satisfied. As a
result, BVP (51) has a unique positive solution.

Example 2. Consider BVP (51) with

𝑓 (𝑡, 𝑥) = 𝑥 + |sin 𝑥|
2𝐶√𝑡 . (66)

Clearly, we have

𝑓 (𝑡, 𝑥) ≤ 𝜆 (𝑡) 𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ [0,∞) . (67)

It is not difficult to check that (𝐴4) holds.
It follows from Example 1 that

0 < 𝑟 (𝐿𝜆) < 1 < 𝐿𝜆 = 1. (68)

So all of the assumptions of Theorem 11 are satisfied. As a
result, BVP (51) has no positive solution.

5. Conclusions

In this paper, we consider the existence of positive solution for
fractional differential equations with conjugate type integral
conditions. Both the existence of uniqueness and nonexis-
tence of positive solution are established under conditions
closely associated with the spectral radius with respect to
the relevant linear operator. In addition, the unique positive
solution can be approximated by an iterative scheme, and the
error estimation of the iterative sequences is also given.
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We consider the existence of a coupled fixed point for mixed monotone mapping 𝐹 : 𝑋 × 𝑋 → 𝑋 satisfying a new contractive
inequality which involves an altering distance function in partially orderedmetric spaces.We also establish some uniqueness results
for coupled fixed points, as well as the existence of fixed points of mixed monotone operators.The presented results generalize and
develop some existing results. In addition to an example as well as an application, we establish some uniqueness results for a system
of integral equations.

1. Introduction and Preliminaries

In this paperwe aim to establish coupled fixed point theorems
for a mixed monotone mapping in a metric space endowed
with partial order. The concept of the mixed monotone
operator was introduced by Guo and Lakshmikantham in [1].
Existence of fixed points in a metric space has been studied
for a long time (see [2–10]).TheBanach contraction principle,
which plays a very important role in nonlinear analysis, is the
most famous tool in the study of a fixed point theorem. In the
last decade, there has been a trend to weaken the requirement
on the contraction by considering metric spaces endowed
with partial order. It is of interest to determine if it is still
possible to establish the existence of a unique fixed point
assuming that the operator considered is monotone in such
a setting.

Recently, there have been a lot of generalizations of the
Banach contraction-mapping principle in the literature (see
[11–28]). Investigation of the existence of fixed points for
single-valued mappings in partially ordered metric spaces
was initially considered by Ran and Reurings in [29] who
proved the existence of a unique fixed point.

Following basically the same approach as the one in [29],
Bhaskar and Lakshmikantham in [30] proved a fixed point
theorem for a mixed monotone mapping in a metric space

endowed with partial order. Bhaskar and Lakshmikantham
extended [29, Theorem 2.1] to mixed monotone operators
so that they can enlarge, in a unified manner, the class of
problems that can be investigated. The authors in [30] also
established some uniqueness results for coupled fixed points,
as well as the existence of fixed points of 𝐹.

Based on the works in [30], Zhao in [31] obtained a more
general coupled fixed point theorem for mixed monotone
operators. Another generalization of the contraction princi-
ple was suggested by Alber and Guerre-Delabriere. In 1997,
Alber and Guerre-Delabriere [32] introduced the concept
of weak contractions in Hilbert spaces. This concept was
extended to metric spaces by Rhoades in [33].

Definition 1. Amapping𝑇 : 𝑋 → 𝑋, where (𝑋, 𝑑) is ametric
space, is said to be weakly contractive if

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) − 𝜓 (𝑑 (𝑥, 𝑦)) , (1)
where 𝑥, 𝑦 ∈ 𝑋 and 𝜓 is an altering distance function.

The notion of altering distance function was introduced
by Khan et al. [34]. An altering distance function is a control
function that alters distance between two points in a metric
space.

It was shown in [32] that, for Hilbert spaces, weakly
contractive maps possess a unique fixed point, without any
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additional assumptions, and it was noted that the same is true
at least for uniformly smooth and uniformly convex Banach
spaces. In [33], Rhoades proved that the theorem remains
true in arbitrary completemetric spaces, whichwas improved
and extended by Dutta and Choudhury in [35]. Recently,
a new version of the context of ordered metric spaces has
been proved by Harjani and Sadarangani in [12]. We refer the
readers to [36–41] for more related works.

Motivated by the papers mentioned above, we aim to
establish coupled fixed point results for mixed monotone
operator 𝐹 which is weakly contractive in partially ordered
complete metric spaces. Our main results are Theorems 3,
6, and 8. To the best of our knowledge, there are no similar
results in the literature on the existence of the coupled fixed
point. Compared with the results obtained in the [32, 33,
35], 𝜓 in our results is not necessary to be an altering
distance function, whichmeans that𝐹 satisfies amore general
contractive condition. On the other hand, our result is still
valid for 𝐹 not necessarily continuous if we require that the
underlying metric space 𝑋 has an additional property. Our
main results will generalize and develop the results given in
[12].

In Section 2, we give the proof of our main results. In
Section 3, as an application of our theorems, we consider
the existence of a unique solution to a system of integral
equations.

2. Coupled Fixed Point Theorems

Let (𝑋, ≤) be a partially ordered set and let 𝑑 be ametric on 𝑋
such that (𝑋, 𝑑) is a completemetric space. Further, we endow
the product space 𝑋 × 𝑋 with the following partial order:

for (𝑥, 𝑦) , (𝑢, V) ∈ 𝑋 × 𝑋,
(𝑢, V) ≤ (𝑥, 𝑦) ⇐⇒

𝑥 ≥ 𝑢, 𝑦 ≤ V.
(2)

Definition 2 (see [34]). A function 𝜑 : [0, +∞) →[0, +∞) is called an altering distance function if the following
conditions are satisfied:

(i) 𝜑 is continuous and nondecreasing
(ii) 𝜑(𝑡) = 0 ⇐⇒ 𝑡 = 0
Next we introduce a set of functions

Ψ fl {𝜓 ∈ 𝐶 ([0, +∞) , [0, +∞)) | 𝜓 (0)
= 0, and for any 𝑡 > 0, 𝜓 (𝑡) > 0} . (3)

It follows fromDefinition 2 that if𝜑 is an altering distance
function, 𝜑 ∈ Ψ.

The first main result is the following coupled fixed point
result.

Theorem 3. Assume

(H1) 𝜓 ∈ Ψ (𝜓 is not necessary to be an altering distance
function)

(H2) 𝐹 : 𝑋 × 𝑋 → 𝑋 being a mixed monotone mapping,
there exist a constant 𝑘 ∈ (0, 1) such that
𝜑 (𝑑 (𝐹 (𝑢, V) , 𝐹 (𝑥, 𝑦)) + 𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑦, 𝑥)))

≤ 𝑘𝜑 (𝑑 (𝑢, 𝑥) + 𝑑 (V, 𝑦))
− 𝜓 (𝑘 [𝑑 (𝑢, 𝑥) + 𝑑 (V, 𝑦)])

(4)

and, for each 𝑢 ≥ 𝑥, V ≤ 𝑦, 𝜑 is an altering distance
function which satisfies

𝜑 (𝑡 + 𝑠) ≤ 𝜑 (𝑡) + 𝜑 (𝑠) , ∀𝑡, 𝑠 ∈ [0, +∞) (5)

(H3) there exist (𝑢0, V0) ∈ 𝑋 × 𝑋 such that 𝑢0 ≤ 𝐹(𝑢0, V0)
and V0 ≥ 𝐹(V0, 𝑢0)

(H4)

(a) 𝐹 is continuous or
(b) 𝑋 has the following properties:

(i) If a nondecreasing sequence {𝑢𝑛} → 𝑢, then𝑢𝑛 ≤ 𝑢, ∀𝑛
(ii) If a nonincreasing sequence {V𝑛} → V, then

V𝑛 ≥ V, ∀𝑛
	en there exist 𝑢, V ∈ 𝑋, such that

𝑢 = 𝐹 (𝑢, V)
and V = 𝐹 (V, 𝑢) . (6)

Proof. Since

𝑢0 ≤ 𝐹 (𝑢0, V0)
and V0 ≥ 𝐹 (V0, 𝑢0) , (7)

let 𝐹(𝑢0, V0) = 𝑢1, 𝐹(V0, 𝑢0) = V1, 𝐹(𝑢1, V1) = 𝑢2, and 𝐹(V1,𝑢1) = V2; we have 𝑢0 ≤ 𝑢1 V0 ≥ V1. Denote
𝐹2 (𝑢0, V0) = 𝐹 (𝐹 (𝑢0, V0) , 𝐹 (V0, 𝑢0)) = 𝐹 (𝑢1, V1)

= 𝑢2,
𝐹2 (V0, 𝑢0) = 𝐹 (𝐹 (V0, 𝑢0) , 𝐹 (𝑢0, V0)) = 𝐹 (V1, 𝑢1)

= V2.
(8)

Note that 𝑢0 ≤ 𝑢1, V0 ≥ V1; it follows from the mixed
monotone property of 𝐹 that

𝐹 (𝑢1, V1) ≥ 𝐹 (𝑢0, V1) ≥ 𝐹 (𝑢0, V0) ,
𝐹 (V1, 𝑢1) ≤ 𝐹 (V0, 𝑢1) ≤ 𝐹 (V0, 𝑢0) , (9)

which implies

𝑢2 = 𝐹2 (𝑢0, V0) = 𝐹 (𝑢1, V1) ≥ 𝐹 (𝑢0, V0) = 𝑢1,
V2 = 𝐹2 (V0, 𝑢0) = 𝐹 (V1, 𝑢1) ≤ 𝐹 (V0, 𝑢0) = V1. (10)
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For 𝑛 = 1, 2, ⋅ ⋅ ⋅ , let
𝑢𝑛+1 = 𝐹𝑛+1 (𝑢0, V0) = 𝐹 (𝐹𝑛 (𝑢0, V0) , 𝐹𝑛 (V0, 𝑢0)) ,
V𝑛+1 = 𝐹𝑛+1 (V0, 𝑢0) = 𝐹 (𝐹𝑛 (V0, 𝑢0) , 𝐹𝑛 (𝑢0, V0)) . (11)

i.e.,

𝑢𝑛+1 = 𝐹 (𝑢𝑛, V𝑛) ,
V𝑛+1 = 𝐹 (V𝑛, 𝑢𝑛) . (12)

It is easy to see that

𝑢0 ≤ 𝐹 (𝑢0, V0) = 𝑢1 ≤ 𝐹2 (𝑢0, V0) = 𝑢2 ≤ ⋅ ⋅ ⋅
≤ 𝐹𝑛+1 (𝑢0, V0) ≤ ⋅ ⋅ ⋅,

V0 ≥ 𝐹 (V0, 𝑢0) = V1 ≥ 𝐹2 (V0, 𝑢0) = V2 ≥ ⋅ ⋅ ⋅
≥ 𝐹𝑛+1 (V0, 𝑢0) ≥ ⋅ ⋅ ⋅,

(13)

i.e.,

𝑢0 ≤ 𝑢1 ≤ ⋅ ⋅ ⋅ ≤ 𝑢𝑛 ≤ ⋅ ⋅ ⋅,
V0 ≥ V1 ≥ ⋅ ⋅ ⋅ ≥ V𝑛 ≥ ⋅ ⋅ ⋅,

𝑛 = 1, 2, ⋅ ⋅ ⋅ .
(14)

By (4) (12), we have

𝜑 (𝑑 (𝑢𝑛+1, 𝑢𝑛) + 𝑑 (V𝑛+1, V𝑛))
= 𝜑 (𝑑 (𝐹 (𝑢𝑛, V𝑛) , 𝐹 (𝑢𝑛−1, V𝑛−1))
+ 𝑑 (𝐹 (V𝑛, 𝑢𝑛) , 𝐹 (V𝑛−1, 𝑢𝑛−1))) ≤ 𝑘𝜑 (𝑑 (𝑢𝑛, 𝑢𝑛−1)
+ 𝑑 (V𝑛, V𝑛−1)) − 𝜓 (𝑘 [𝑑 (𝑢𝑛, 𝑢𝑛−1) + 𝑑 (V𝑛, V𝑛−1)]) ,

(15)

and thus

𝜑 (𝑑 (𝑢𝑛+1, 𝑢𝑛) + 𝑑 (V𝑛+1, V𝑛))
≤ 𝑘𝜑 (𝑑 (𝑢𝑛, 𝑢𝑛−1) + 𝑑 (V𝑛, V𝑛−1)) . (16)

From 𝑘 ∈ [0, 1), we have
𝜑 (𝑑 (𝑢𝑛+1, 𝑢𝑛) + 𝑑 (V𝑛+1, V𝑛))

≤ 𝜑 (𝑑 (𝑢𝑛, V𝑛−1) + 𝑑 (V𝑛, V𝑛−1)) . (17)

Since 𝜑 is continuous and nondecreasing,

𝑑 (𝑢𝑛+1, 𝑢𝑛) + 𝑑 (V𝑛+1, V𝑛)
≤ 𝑑 (𝑢𝑛, 𝑢𝑛−1) + 𝑑 (V𝑛, V𝑛−1) . (18)

Let 𝜉𝑛 = 𝑑(𝑢𝑛+1, 𝑢𝑛) + 𝑑(V𝑛+1, V𝑛). From 0 ≤ 𝜉𝑛+1 ≤ 𝜉𝑛, {𝜉𝑛} is
a Cauchy sequence, and thus there exist 𝜉 ≥ 0 such that

lim
𝑛→∞

[𝑑 (𝑢𝑛+1, 𝑢𝑛) + 𝑑 ( (V𝑛+1, V𝑛)] = 𝜉. (19)

Now we claim 𝜉 = 0. In fact, by (14) and (𝐻1), one has
𝜑 (𝜉) = lim

𝑛→∞
𝜑 (𝜉𝑛)

= lim
𝑛→∞

𝜑 (𝑑 (𝑢𝑛+1, 𝑢𝑛) + 𝑑 (V𝑛+1, V𝑛))
≤ 𝑘 lim
𝑛→∞

𝜑 (𝑑 (𝑢𝑛, 𝑢𝑛−1) + 𝑑 (V𝑛, V𝑛−1))
− lim
𝑛→∞

𝜓 (𝑘 [𝑑 (𝑢𝑛, 𝑢𝑛−1) + 𝑑 (V𝑛, V𝑛−1)])
= 𝑘𝜑 (𝜉) − lim

𝑛→∞
𝜓 (𝑘𝜉𝑛−1) = 𝑘𝜑 (𝜉) − lim

𝑡→𝑘𝜉
𝜓 (𝑡)

≤ 𝑘𝜑 (𝜉)

(20)

which implies 𝜑(𝜉) = 0, so is 𝜉.
Next we will show {𝑢𝑛} and {V𝑛} are Cauchy sequences.
Arguing indirectly we suppose {𝑢𝑛} is not a Cauchy

sequence. Thus, there exists a positive constant 𝜖 such that,
for any 𝐾 > 0, there exist 𝑛𝑘 > 𝑚𝑘 > 𝐾 such that

𝑑 (𝑢𝑛𝑘 , 𝑢𝑚𝑘) + 𝑑 (V𝑛𝑘 , V𝑚𝑘) ≥ 𝜖. (21)

For 𝑚𝑘, let 𝑛𝑘 be the smallest integer satisfying 𝑛𝑘 ≥ 𝑚𝑘 and
(21). Thus, one has

𝑑 (𝑢𝑛𝑘−1, 𝑢𝑚𝑘) + 𝑑 (V𝑛𝑘−1, V𝑚𝑘) < 𝜖, (22)

which implies

𝑑 (𝑢𝑛𝑘 , 𝑢𝑚𝑘) + 𝑑 (V𝑛𝑘 , V𝑚𝑘)
≤ 𝑑 (𝑢𝑛𝑘 , 𝑢𝑛𝑘−1) + 𝑑 (𝑢𝑛𝑘−1, 𝑢𝑚𝑘) + 𝑑 (V𝑛𝑘 , V𝑛𝑘−1)

+ 𝑑 (V𝑛𝑘−1, V𝑚𝑘)
≤ 𝑑 (𝑢𝑛𝑘 , 𝑢𝑛𝑘−1) + 𝑑 (V𝑛𝑘 , V𝑛𝑘−1) + 𝜖 = 𝜉𝑛𝑘−1 + 𝜖,

(23)

and, by (21) and 𝜉𝑛 → 0 (𝑛 → ∞), we have

𝑠𝑘 fl 𝑑 (𝑢𝑛𝑘 , 𝑢𝑚𝑘) + 𝑑 (V𝑛𝑘 , V𝑚𝑘) → 𝜖, 𝑘 → ∞. (24)

The triangular inequality gives us

𝑠𝑘 ≤ 𝑑 (𝑢𝑛𝑘 , 𝑢𝑛𝑘+1) + 𝑑 (𝑢𝑛𝑘+1, 𝑢𝑚𝑘+1)
+ 𝑑 (𝑢𝑚𝑘+1, 𝑢𝑚𝑘) + 𝑑 (V𝑛𝑘 , V𝑛𝑘+1)
+ 𝑑 (V𝑛𝑘+1, V𝑚𝑘+1) + 𝑑 (V𝑚𝑘+1, V𝑚𝑘)

= 𝜉𝑛𝑘 + 𝜉𝑚𝑘 + 𝑑 (𝑢𝑛𝑘+1, 𝑢𝑚𝑘+1) + 𝑑 (V𝑛𝑘+1, V𝑚𝑘+1) ,
(25)

and thus

𝜑 (𝑠𝑘)
= 𝜑 (𝜉𝑛𝑘 + 𝜉𝑚𝑘 + 𝑑 (𝑢𝑛𝑘+1, 𝑢𝑚𝑘+1) + 𝑑 (V𝑛𝑘+1, V𝑚𝑘+1))
≤ 𝜑 (𝜉𝑛𝑘 + 𝜉𝑚𝑘) + 𝜑 (𝑑 (𝑢𝑛𝑘+1, 𝑢𝑚𝑘+1))

+ 𝜑 (𝑑 (V𝑛𝑘+1, V𝑚𝑘+1)) .
(26)
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By (14),

𝜑 (𝑑 (𝑢𝑛𝑘+1, 𝑢𝑚𝑘+1)) + 𝜑 (𝑑 (V𝑛𝑘+1, V𝑚𝑘+1))
= 𝜑 (𝑑 (𝐹 (𝑢𝑛𝑘 , V𝑛𝑘) , 𝐹 (𝑢𝑚𝑘 , V𝑚𝑘))
+ 𝑑 (𝐹 (V𝑛𝑘 , 𝑢𝑛𝑘) , 𝐹 (V𝑚𝑘 , 𝑢𝑚𝑘)))
≤ 𝑘𝜑 (𝑑 (𝑢𝑛𝑘 , 𝑢𝑚𝑘) + 𝑑 (V𝑛𝑘 , V𝑚𝑘))
− 𝜓 (𝑘 [𝑑 (𝑢𝑛𝑘 , 𝑢𝑚𝑘) + 𝑑 (V𝑛𝑘 , V𝑚𝑘)]) = 𝑘𝜑 (𝑠𝑘)
− 𝜓 (𝑘𝑠𝑘) .

(27)

From (26) (27), one has

𝜑 (𝑠𝑘) ≤ 𝜑 (𝜉𝑛𝑘 + 𝜉𝑚𝑘) + 𝑘𝜑 (𝑠𝑘) − 𝜓 (𝑠𝑘)
≤ 𝜑 (𝜉𝑛𝑘 + 𝜉𝑚𝑘) + 𝜑 (𝑠𝑘) − 𝜓 (𝑠𝑘) , (28)

and, letting 𝑘 → ∞ in the above inequality,

lim
𝑘→∞

𝜑 (𝑠𝑘) ≤ lim
𝑘→∞

[𝜑 (𝜉𝑛𝑘 + 𝜉𝑚𝑘) + 𝜑 (𝑠𝑘)]
− lim
𝑘→∞

𝜓 (𝑠𝑘) . (29)

From (𝐻1), note that 𝜉𝑛 → 0, 𝑠𝑘 → 𝜖; we have
𝜑 (𝜖) ≤ 𝜑 (0) + 𝜑 (𝜖) − lim

𝑘→∞
𝜓 (𝑠𝑘)

= 𝜑 (𝜖) − lim
𝑘→∞

𝜓 (𝑠𝑘) < 𝜑 (𝜖) , (30)

which is a contradiction. This shows that {𝑢𝑛} and {V𝑛} are
Cauchy sequences. Since 𝑋 is a complete metric space, there
exist 𝑢, V ∈ 𝑋 such that

𝑢𝑛 → 𝑢,
V𝑛 → V,
𝑛 → ∞.

(31)

Case (a). Assume 𝐹 is continuous. Then

𝑢 = lim
𝑛→∞

𝑢𝑛 = lim
𝑛→∞

𝐹 (𝑢𝑛−1, V𝑛−1)
= 𝐹 ( lim
𝑛→∞

𝑢𝑛−1, lim
𝑛→∞

V𝑛−1) = 𝐹 (𝑢, V) ,
V = lim
𝑛→∞

V𝑛 = lim
𝑛→∞

𝐹 (V𝑛−1, 𝑢𝑛−1)
= 𝐹 ( lim
𝑛→∞

V𝑛−1, lim
𝑛→∞

𝑢𝑛−1) = 𝐹 (V, 𝑢) ,

(32)

and, thus, (𝑢, V) ∈ 𝑋 × 𝑋 is a coupled fixed point of 𝐹.
Case (b). Assume 𝑋 has the following properties:

(i) If a nondecreasing sequence {𝑢𝑛} → 𝑢, then 𝑢𝑛 ≤𝑢, ∀𝑛
(ii) If a nonincreasing sequence {V𝑛} → V, then V𝑛 ≥

V, ∀𝑛

By (14) (31), we have

𝑢𝑛 ≥ 𝑢,
V𝑛 ≤ V,

𝑛 = 1, 2, ⋅ ⋅ ⋅ .
(33)

Again, the triangular inequality gives us

𝑑 (𝑢, 𝐹 (𝑢, V)) ≤ 𝑑 (𝑢, 𝑢𝑛+1) + 𝑑 (𝑢𝑛+1, 𝐹 (𝑢, V))
= 𝑑 (𝑢, 𝑢𝑛+1) + 𝑑 (𝐹 (𝑢𝑛, V𝑛) , 𝐹 (𝑢, V)) . (34)

From (𝐻1) (𝐻2), observing that 𝜑 is nondecreasing and using𝑢𝑛 ≤ 𝑢, V𝑛 ≥ V, we get

𝜑 (𝑑 (𝑢, 𝐹 (𝑢, V))) ≤ 𝜑 (𝑑 (𝑢, 𝑢𝑛+1) + 𝑑 (𝑢𝑛+1, 𝐹 (𝑢, V)))
= 𝜑 (𝑑 (𝑢, 𝑢𝑛+1)) + 𝑑 (𝐹 (𝑢𝑛, V𝑛) , 𝐹 (𝑢, V)) )
≤ 𝜑 (𝑑 (𝑢, 𝑢𝑛+1)) + 𝜑 (𝑑 (𝐹 (𝑢𝑛, V𝑛) , 𝐹 (𝑢, V)))
≤ 𝜑 (𝑑 (𝑢, 𝑢𝑛+1)) + 𝜑 (𝑑 (𝐹 (𝑢𝑛, V𝑛) , 𝐹 (𝑢, V))
+ 𝑑 (𝐹 (V𝑛, 𝑢𝑛) , 𝐹 (V, 𝑢))) ≤ 𝜑 (𝑑 (𝑢, 𝑢𝑛+1))
+ 𝑘𝜑 (𝑑 (𝑢𝑛, 𝑢) + 𝑑 (V𝑛, V))
− 𝜓 (𝑘 (𝑑 (𝑢𝑛, 𝑢) + 𝑑 (V𝑛, V))) → 0

(as 𝑛 → ∞)

(35)

and we get 𝜑(𝑑(𝑢, 𝐹(𝑢, V))) = 0. Then 𝑢 = 𝐹(𝑢, V). Similarly,
we get V = 𝐹(V, 𝑢). The proof is completed.

Corollary 4. Let (𝑋, ≤) be a partially ordered set and let 𝑑 be a
metric on𝑋 such that (𝑋, 𝑑) is a complete metric space. Assume𝐹 : 𝑋 × 𝑋 → 𝑋 is a fixed monotone operator and

(f1) there exist (𝑢0, V0) ∈ 𝑋 × 𝑋 such that 𝑢0 ≤ 𝐹(𝑢0, V0)
and V0 ≥ 𝐹(V0, 𝑢0)

(f2) there exist 𝜓 ∈ Ψ, 𝑘 ∈ (0, 1), for 𝑢, V, 𝑥, 𝑦 ∈ 𝑋 with𝑢 ≥ 𝑥, V ≤ 𝑦,
𝑑 (𝐹 (𝑢, V) , 𝐹 (𝑥, 𝑦)) + 𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑦, 𝑥))

≤ 𝑘 (𝑑 (𝑢, 𝑥) + 𝑑 (V, 𝑦))
− 𝜓 (𝑘 (𝑑 (𝑢, 𝑥) + 𝑑 (V, 𝑦)))

(36)

(f3)

(a) 𝐹 is continuous or
(b) 𝑋 has the following properties:

(i) If a nondecreasing sequence {𝑢𝑛} → 𝑢, then𝑢𝑛 ≤ 𝑢, ∀𝑛
(ii) If a nonincreasing sequence {V𝑛} → V, then

V𝑛 ≥ V, ∀𝑛
	en there exist 𝑢, V ∈ 𝑋 such that

𝑢 = 𝐹 (𝑢, V)
and V = 𝐹 (V, 𝑢) . (37)
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Proof. Let 𝜑(𝑡) = 𝑡, 𝑡 ∈ [0, +∞). The proof is finished by
Theorem 3.

Note that, in (36), 𝜓 is not necessary to be an altering
distance function.

Corollary 5. Let (𝑋, ≤) be a partially ordered set and let 𝑑 be a
metric on𝑋 such that (𝑋, 𝑑) is a complete metric space. Assume𝐹 : 𝑋 × 𝑋 → 𝑋 is a fixed monotone operator and

(f1) there exist (𝑢0, V0) ∈ 𝑋 × 𝑋 such that 𝑢0 ≤ 𝐹(𝑢0, V0)
and V0 ≥ 𝐹(V0, 𝑢0)

(f2) there exist 𝜓 ∈ Ψ, 𝑘 ∈ (0, 1), for 𝑢, V, 𝑥, 𝑦 ∈ 𝑋 with𝑢 ≥ 𝑥, V ≤ 𝑦,
𝑑 (𝐹 (𝑢, V) , 𝐹 (𝑥, 𝑦)) + 𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑦, 𝑥))

≤ 𝑘2 [𝑑 (𝑢, 𝑥) + 𝑑 (V, 𝑦)] (38)

(f3)

(a) 𝐹 is continuous or
(b) 𝑋 has the following property:

(i) If a nondecreasing sequence {𝑢𝑛} → 𝑢, then𝑢𝑛 ≤ 𝑢, ∀𝑛
(ii) If a nonincreasing sequence {V𝑛} → V, then

V𝑛 ≥ V, ∀𝑛
	en there exist 𝑢, V ∈ 𝑋 such that

𝑢 = 𝐹 (𝑢, V)
and V = 𝐹 (V, 𝑢) . (39)

Proof. Let 𝜓(𝑡) = 𝑡/2, 𝑡 ∈ [0, +∞). The proof is finished by
Corollary 4.

Next, we discuss the uniqueness of the coupled fixed
point. Since the contractivity assumption is made only on
comparable elements in 𝑋 × 𝑋, Theorem 3 cannot guarantee
the uniqueness of the coupled fixed point. Before stating our
uniqueness results, we require that the product space 𝑋 × 𝑋
endowed with the partial order mentioned earlier have the
following property:(𝐻5) For every (𝑢, V), (𝑠, 𝑤) ∈ 𝑋 × 𝑋, there exists (𝑥, 𝑦) ∈𝑋 × 𝑋 which is comparable to (𝑢, V) and (𝑠, 𝑤).

Note that (𝐻5) is equivalent to (see [42]) the following:(𝐻5) Every pair of elements in 𝑋 × 𝑋 has either a lower
bound or an upper bound.

Next, we state our second main result.

Theorem 6. Assume (𝐻1) − (𝐻4) and (𝐻5) (or (𝐻5)) hold.
	en the coupled fixed point of 𝐹 is unique.

Proof. By (𝐻1) − (𝐻4), applying Theorem 3, 𝐹 has a coupled
fixed point. Let (𝑢, V), (𝑤, 𝑠) be the coupled fixed points of 𝐹,
i.e.,

𝑢 = 𝐹 (𝑢, V) ,
V = 𝐹 (V, 𝑢) ,

𝑤 = 𝐹 (𝑤, 𝑠) ,
𝑠 = 𝐹 (𝑠, 𝑤) .

(40)

To show the uniqueness, we need to prove 𝑢 = 𝑤, V = 𝑠.
By (𝐻5), there exists (𝑥, 𝑦) ∈ 𝑋 × 𝑋 which is comparable

to (𝑢, V) and (𝑠, 𝑤). Let
𝑥0 = 𝑥,
𝑦0 = 𝑦,

𝑥𝑛+1 = 𝐹 (𝑥𝑛, 𝑦𝑛) ,
𝑦𝑛+1 = 𝐹 (𝑥𝑛, 𝑦𝑛) .

(41)

Since (𝑥, 𝑦) is comparable to (𝑢, V) with respect to the
ordering in 𝑋 × 𝑋, we suppose

(𝑥0, 𝑦0) = (𝑥, 𝑦) ≤ (𝑢, V) . (42)

Then, for 𝑛 = 1, 2, . . .,
(𝑥𝑛, 𝑦𝑛) ≤ (𝑢, V) . (43)

In fact, (42) implies that

𝑥0 = 𝑥 ≤ 𝑢,
𝑦0 = 𝑦 ≥ V. (44)

For 𝑛 = 1, by the mixed monotone property, we have

𝑥1 = 𝐹 (𝑥0, 𝑦0) ≤ 𝐹 (𝑢, 𝑦0) ≤ 𝐹 (𝑢, V) = 𝑢,
𝑦1 = 𝐹 (𝑦0, 𝑥0) ≥ 𝐹 (V, 𝑥0) ≥ 𝐹 (V, 𝑢) = V,

i.e., (𝑥1, 𝑦1) ≤ (𝑢, V) .
(45)

For 𝑛 = 𝑘, we suppose (𝑥𝑘, 𝑦𝑘) ≤ (𝑢, V). Therefore, for 𝑛 =𝑘 + 1, we have
𝑥𝑘+1 = 𝐹 (𝑥𝑘, 𝑦𝑘) ≤ 𝐹 (𝑢, 𝑦𝑘) ≤ 𝐹 (𝑢, V) = 𝑢,
𝑦𝑘+1 = 𝐹 (𝑦𝑘, 𝑥𝑘) ≥ 𝐹 (V, 𝑥𝑘) ≥ 𝐹 (V, 𝑢) = V,

i.e., (𝑥𝑘+1, 𝑦𝑘+1) ≤ (𝑢, V) ,
(46)

which implies (43) holds.
From (41) (𝐻2),

𝜑 (𝑑 (𝑢, 𝑥𝑛+1) + 𝑑 (𝑦𝑛+1, V))
= 𝜑 ( 𝑑 (𝐹 (𝑢, V) , 𝐹 (𝑥𝑛, 𝑦𝑛))

+ 𝑑 (𝐹 (𝑦𝑛, 𝑥𝑛) , 𝐹 (V, 𝑢))
≤ 𝑘𝜑 (𝑑 (𝑢, 𝑥𝑛) + 𝑑 (V, 𝑦𝑛))

− 𝜓 (𝑘 [𝑑 (𝑢, 𝑥𝑛) + 𝑑 (V, 𝑦𝑛)])
≤ 𝜑 (𝑑 (𝑢, 𝑥𝑛) + 𝑑 (V, 𝑦𝑛))

(47)
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which implies

𝑑 (𝑢, 𝑥𝑛+1) + 𝑑 (𝑦𝑛+1, V) ≤ 𝑑 (𝑢, 𝑥𝑛) + 𝑑 (V, 𝑦𝑛) . (48)

Set 𝜉𝑛 fl 𝑑(𝑢, 𝑥𝑛) + 𝑑(𝑦𝑛, V), 𝑛 ∈ N. By (48), we have 0 ≤𝜉𝑛+1 ≤ 𝜉𝑛. Then, there exists 𝜉 ∈ R+ = [0, +∞) such that

𝜉 = lim
𝑛→∞

𝜉𝑛 = lim
𝑛→∞

[𝑑 (𝑢, 𝑥𝑛) + 𝑑 (𝑦𝑛, V)] . (49)

If 𝜉 > 0, by (𝐻2),
𝜑 (𝜉) = lim

𝑛→∞
𝜑 (𝜉𝑛) ≤ lim

𝑛→∞
(𝑘𝜑 (𝜉𝑛)) − lim

𝑛→∞
𝜓 (𝑘𝜉𝑛)

= 𝑘𝜑 (𝜉) − lim
𝑛→∞

𝜓 (𝑘𝜉𝑛) < 𝑘𝜑 (𝜉) < 𝜑 (𝜉) (50)

which is a contradiction. So 𝜉 = 0. We have

0 = lim
𝑛

𝜉𝑛 = lim
𝑛→∞

[𝑑 (𝑢, 𝑥𝑛) + 𝑑 (𝑦𝑛, V)] = 0, (51)

and then
lim
𝑛→∞

𝑑 (𝑢, 𝑥𝑛) = lim
𝑛→∞

𝑑 (𝑦𝑛, V) = 0. (52)

Similarly, we also have

lim
𝑛→∞

𝑑 (𝑤, 𝑥𝑛) = lim
𝑛→∞

𝑑 (𝑦𝑛, 𝑠) = 0. (53)

It follows from (52) (53) that

(𝑢, V) = (𝑤, 𝑠) . (54)

Corollary 7. In addition to the hypothesis of Corollary 4,
suppose (𝐻5)(𝑜𝑟(𝐻5)) holds.	en𝐹 has a unique coupled fixed
point.

Next, we state our third main result.

Theorem 8. In addition to the hypothesis of 	eorem 6,
suppose one of the followings holds:

(i) Elements of the coupled fixed point (𝑢, V) are comparable
(ii) 𝑢0 and V0 are comparable
(iii) Every pair of elements of X has an upper bound or a

lower bound in 𝑋
	en, we have 𝑢 = V; that is, 𝐹 has a unique fixed point:

𝐹 (𝑢, 𝑢) = 𝑢. (55)

Proof. From Theorem 6, 𝐹 has a unique coupled fixed point(𝑢, V).
Case (i). Since 𝑢 and V are comparable, we have 𝑢 ≥ V or𝑢 ≤ V. Suppose 𝑢 ≥ V; then 𝑢 = 𝐹(𝑢, V) and V = 𝐹(V, 𝑢)
are comparable. By (4) in (𝐻2), one obtains

𝜑 (2𝑑 (𝑢, V)) = 𝜑 (𝑑 (𝑢, V) + 𝑑 (V, 𝑢))
= 𝜑 (𝑑 (𝐹 (𝑢, V) , 𝐹 (V, 𝑢)) + 𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑢, V)))
≤ 𝑘𝜑 (𝑑 (𝑢, V) + 𝑑 (V, 𝑢))

− 𝜓 (𝑘 [𝑑 (𝑢, V) + 𝑑 (V, 𝑢)]) ≤ 𝑘𝜑 (2𝑑 (𝑢, V)) .
(56)

Noting 𝑘 ∈ (0, 1), it follows from (56) that 𝑑(𝑢, V) = 0, i.e.,𝑢 = V.

Case (ii). Since 𝑢0 and V0 are comparable, we have 𝑢0 ≥ V0 or𝑢0 ≤ V0. Suppose we are in the first case, 𝑢0 ≥ V0. Let

𝑢𝑛+1 = 𝐹 (𝑢𝑛, V𝑛) ,
V𝑛+1 = 𝐹 (V𝑛, 𝑢𝑛) ,

𝑛 = 0, 1, 2 ⋅ ⋅ ⋅ .
(57)

FromTheorem 3, the coupled fixed point (𝑢, V) satisfies
𝑢 = lim
𝑛→∞

𝑢𝑛 = lim
𝑛→∞

𝐹 (𝑢𝑛, V𝑛) ,
V = lim
𝑛→∞

V𝑛 = lim
𝑛→∞

𝐹 (V𝑛, 𝑢𝑛) . (58)

By 𝑢0 ≥ V0 and the mixed monotone property of 𝐹, one has
𝑢1 = 𝐹 (𝑢0, V0) ≥ 𝐹 (V0, 𝑢0) = V1, (59)

and, hence, by induction one obtains

𝑢𝑛 ≥ V𝑛, 𝑛 = 0, 1, 2 ⋅ ⋅ ⋅ . (60)

On the one hand, it follows from the continuity of the distance𝑑 that

𝑑 (𝑢, V) = 𝑑 ( lim
𝑛→∞

𝐹 (𝑢𝑛, V𝑛) , lim
𝑛→∞

𝐹 (V𝑛, 𝑢𝑛))
= lim
𝑛→∞

𝑑 (𝐹 (𝑢𝑛, V𝑛) , 𝐹 (V𝑛, 𝑢𝑛))
= lim
𝑛→∞

𝑑 (𝑢𝑛+1, V𝑛+1) .
(61)

On the other hand, by (4) in (𝐻2), one gets
𝜑 (2𝑑 (𝑢𝑛+1, V𝑛+1)) = 𝜑 (𝑑 (𝑢𝑛+1, V𝑛+1)

+ 𝑑 (V𝑛+1, 𝑢𝑛+1)) = 𝜑 (𝑑 (𝐹 (𝑢𝑛, V𝑛) , 𝐹 (V𝑛, 𝑢𝑛))
+ 𝑑 (𝐹 (V𝑛, 𝑢𝑛) , 𝐹 (𝑢𝑛, V𝑛))) ≤ 𝑘𝜑 (𝑑 (𝑢𝑛, V𝑛)
+ 𝑑 (V𝑛, 𝑢𝑛)) − 𝜓 (𝑘 (𝑑 (𝑢𝑛, V𝑛) + 𝑑 (V𝑛, 𝑢𝑛)))
≤ 𝑘𝜑 (2𝑑 (𝑢𝑛, V𝑛)) ≤ 𝑘 ⋅ 𝑘𝜑 (2𝑑 (𝑢𝑛−1, V𝑛−1))
≤ 𝑘𝑛𝜑 (2𝑑 (𝑢1, V1)) ,

(62)

which implies

0 = lim
𝑛→∞

𝜑 (2𝑑 (𝑢𝑛+1, V𝑛+1)) = 𝜑 (2𝑑 (𝑢, V)) (63)

and therefore 𝑑(𝑢, V) = 0, which finishes the proof.

Case (iii). If 𝑢, V are comparable, see Case (i). If 𝑢, V are not
comparable, then there exists 𝑤 ∈ 𝑋 comparable to 𝑢 and
V. Without loss of generality, we suppose 𝑢 ≤ 𝑤, V ≤ 𝑤 (the
other case is similar). In view of the order of 𝑋 × 𝑋 (or 𝑋2 for
short), one has

(𝑢, V) ≥ (𝑢, 𝑤) ,
(𝑢, 𝑤) ≤ (𝑤, 𝑢) ,
(𝑤, 𝑢) ≥ (V, 𝑢) ;

(64)
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that is, (𝑢, V), (𝑢, 𝑤), (𝑢, 𝑤), (𝑤, 𝑢), (𝑤, 𝑢), (V, 𝑢) are compara-
ble in 𝑋2.

Inspired by [31], we consider the functional 𝑑2 : 𝑋2 ×𝑋2 → R+ = [0, +∞) defined by

𝑑2 (𝑌, 𝑉) = 12 [𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)] ,
for 𝑌 = (𝑥, 𝑦) , 𝑉 = (𝑢, V) ∈ 𝑋2.

(65)

𝑑2 is a metric on 𝑋2 and, moreover, if (𝑋, 𝑑) is complete,
then (𝑋2, 𝑑2) is a complete metric space, too. Define another
operator 𝑇 : 𝑋2 → 𝑋2 as follows:

𝑇 (𝑉) = (𝐹 (𝑢, V) , 𝐹 (V, 𝑢)) for 𝑉 = (𝑢, V) ∈ 𝑋2. (66)

For 𝑌 = (𝑥, 𝑦), 𝑉 = (𝑢, V) ∈ 𝑋2, let 𝑌 = (𝑦, 𝑥), 𝑉 = (V, 𝑢); one
has

𝑑2 (𝑌, 𝑉) = 𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)
2 ,

𝑑2 (𝑇 (𝑌) , 𝑇 (𝑉))
= 𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢))

2
= 𝑑 (𝐹 (𝑌) , 𝐹 (𝑉)) + 𝑑 (𝐹 (𝑌) , 𝐹 (𝑉))

2 .

(67)

By contractive condition (4) in (𝐻2), we get a Banach type
contraction condition:

𝜑 ( 2𝑑2 (𝑇 (𝑌) , 𝑇 (𝑉))
= 𝜑 (𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) + 𝑑 (𝐹 (𝑦, 𝑥) , 𝐹 (V, 𝑢)))
≤ 𝑘𝜑 (2𝑑2 (𝑌, 𝑉)) ,

(68)

and thus
𝜑 ( 2𝑑2 (𝑇 (𝑇 (𝑌)) , 𝑇 (𝑇 (𝑉)))

≤ 𝑘𝜑 (2𝑑2 (𝑇 (𝑌) , 𝑇 (𝑉))) ≤ 𝑘2𝜑 (2𝑑2 (𝑌, 𝑉)) , (69)

and, hence, by induction we have

𝜑 ( 2𝑑2 (𝑇𝑛 (𝑌) , 𝑇𝑛 (𝑉)) ≤ 𝑘𝑛𝜑 (2𝑑2 (𝑌, 𝑉)) ,
𝑛 = 1, 2, 3, ⋅ ⋅ ⋅ . (70)

Now, applying (70) to the comparable pairs 𝑌 =(𝑢, V), 𝑉 = (𝑢, 𝑤), 𝑌 = (𝑢, 𝑤), 𝑉 = (𝑤, 𝑢), 𝑌 = (𝑤, 𝑢), 𝑉 =(V, 𝑢), one obtains
𝜑 ( 2𝑑2 (𝑇𝑛 ((𝑢, V)) , 𝑇𝑛 ((𝑢, 𝑤)))

≤ 𝑘𝑛𝜑 (2𝑑2 ((𝑢, V) , (𝑢, 𝑤))) = 𝑘𝑛𝜑 (𝑑 (V, 𝑤)) , (71)

𝜑 ( 2𝑑2 (𝑇𝑛 ((𝑢, 𝑤)) , 𝑇𝑛 ((𝑤, 𝑢)))
≤ 𝑘𝑛𝜑 (2𝑑2 ((𝑢, 𝑤) , (𝑤, 𝑢))) = 𝑘𝑛𝜑 (2𝑑 (𝑢, 𝑤)) , (72)

𝜑 ( 2𝑑2 (𝑇𝑛 ((𝑤, 𝑢)) , 𝑇𝑛 ((V, 𝑢)))
≤ 𝑘𝑛𝜑 (2𝑑2 ((𝑤, 𝑢) , (V, 𝑢))) = 𝑘𝑛𝜑 (𝑑 (𝑤, V)) . (73)

Now, for 𝑌 = (𝑢, V), 𝑉 = (V, 𝑢), note that 𝑢 = 𝐹(𝑢, V) =𝐹(𝑌), V = 𝐹(V, 𝑢) = 𝐹(𝑉); we get
𝑇 (𝑌) = (𝐹 (𝑢, V) , 𝐹 (V, 𝑢)) = (𝑢, V) = 𝑌,

𝑑 (𝑢, V) = 𝑑 (𝐹 (𝑌) , 𝐹 (𝑉)) = 𝑑 (𝐹 (𝑢, V) , 𝐹 (V, 𝑢))
= 𝑑 (𝐹 (𝑉) , 𝐹 (𝑌)) .

(74)

So, using the triangle inequality and (4) (71)-(74), we have
𝜑 (2𝑑 (𝑢, V))

= 𝜑 (2 × 𝑑 (𝐹 (𝑌) , 𝐹 (𝑉)) + 𝑑 (𝐹 (𝑉) , 𝐹 (𝑌))
2 )

= 𝜑 (2𝑑2 (𝑇𝑛 ((𝑢, V)) , 𝑇𝑛 ((V, 𝑢))))
≤ 𝜑 (2𝑑2 (𝑇𝑛 ((𝑢, V)) , 𝑇𝑛 ((𝑢, 𝑤))))

+ 𝜑 (2𝑑2 (𝑇𝑛 ((𝑢, 𝑤)) , 𝑇𝑛 ((𝑤, 𝑢))))
+ 𝜑 (2𝑑2 (𝑇𝑛 ((𝑤, 𝑢)) , 𝑇𝑛 ((V, 𝑢))))

≤ 𝑘𝑛 [𝜑 (𝑑 (V, 𝑤)) + 𝜑 (2𝑑 (𝑢, 𝑤)) + 𝜑 (𝑑 (𝑤, V))]
→ 0 (as 𝑛 → ∞) ,

(75)

which implies 𝑑(𝑢, V) = 0, so 𝑢 = V.

Corollary 9. In addition to the hypothesis of Corollary 7,
suppose one of the followings holds:

(i) Elements of the coupled fixed point (𝑢, V) are comparable
(ii) 𝑢0 and V0 are comparable
(iii) Every pair of elements of X has an upper bound or a

lower bound in 𝑋
	en, we have 𝑢 = V; that is, 𝐹 has a unique fixed point:

𝐹 (𝑢, 𝑢) = 𝑢. (76)
Remark 10. Corollary 9 includes theorems in [31].

Example 11. Let𝑋 = R, 𝑑(𝑥, 𝑦) = |𝑥−𝑦| and 𝐹 : 𝑋×𝑋 → 𝑋
be defined by

𝐹 (𝑥, 𝑦) = 16 (𝑥 − 2𝑦) , (𝑥, 𝑦) ∈ 𝑋2 = 𝑋 × 𝑋. (77)

Then,
(i) 𝐹 has a coupled fixed point
(ii) 𝐹 has a unique coupled fixed point
(iii) 𝐹 has a unique fixed point

Proof. Let 𝜑(𝑡) = 4𝑡, 𝜓(𝑡) = 𝑡, 𝑡 ∈ [0, +∞). Since
𝐹 (𝑥, 𝑦) = 16 (𝑥 − 2𝑦) , (𝑥, 𝑦) ∈ 𝑋2, (78)

one gets, for (𝑢, V), (𝑚, 𝑛) ∈ 𝑋2,
𝑑 (𝐹 (𝑢, V) , 𝐹 (𝑚, 𝑛)) = 16 |𝑢 − 2V − 𝑚 + 2𝑛|

= 16 |(𝑢 − 𝑚) + 2 (𝑛 − V)|
≤ 16 |𝑢 − 𝑚| + 13 |𝑛 − V| ,

(79)
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𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑛, 𝑚)) = 16 |V − 2𝑢 − 𝑛 + 2𝑚|
= 16 |(V − 𝑛) + 2 (𝑚 − 𝑢)|
≤ 16 |𝑛 − V| + 13 |𝑢 − 𝑚| ,

(80)

and

𝜑 (𝑑 (𝐹 (𝑢, V) , 𝐹 (𝑚, 𝑛)) + 𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑛, 𝑚)))
≤ 2 |(𝑢 − 𝑚)| + 2 |(𝑛 − V)| . (81)

Note that

𝑑 (𝑢, 𝑚) + 𝑑 (V, 𝑛) = |𝑢 − 𝑚| + |𝑛 − V| , (82)

and, for 𝑘 ∈ [2/3, 1),
𝑘𝜑 (𝑑 (𝑢, 𝑚) + 𝑑 (V, 𝑛)) − 𝜓 (𝑘 [𝑑 (𝑢, 𝑚) + 𝑑 (V, 𝑛)])

= 3𝑘 |𝑢 − 𝑚| + 3𝑘 |𝑛 − V| , (83)

and, hence, (81) (83) imply that

𝜑 (𝑑 (𝐹 (𝑢, V) , 𝐹 (𝑚, 𝑛)) + 𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑛, 𝑚)))
≤ 𝑘𝜑 (𝑑 (𝑢, 𝑚) + 𝑑 (V, 𝑛))

− 𝜓 (𝑘 [𝑑 (𝑢, 𝑚) + 𝑑 (V, 𝑛)]) .
(84)

On the other hand, 𝐹 is continuous and 𝑢0 = −1, V0 = 1
satisfy

𝐹 (𝑢0, V0) = 16 (𝑢0 − 2V0) = − 12 > −1 = 𝑢0,
𝐹 (V0, 𝑢0) = 16 (V0 − 2𝑢0) = 12 < 1 = V0.

(85)

(i) As mentioned above, by Theorem 3, 𝐹 has a coupled
fixed point

(ii) Since𝑋2 has property (𝐻5) or (𝐻5), byTheorem 6, the
uniqueness of the coupled fixed point is obtained

(iii) Noting that 𝑢0 and V0 are comparable, by Theorem 8
(ii), 𝐹 has a unique fixed point

3. Applications to Integral Equations

As an application to the fixed point theorem proved in
Section 2, we shall study a class of integral equation

𝑢 (𝑥) = ∫𝑛
𝑚

(𝑞1 (𝑥, 𝑦) + 𝑞2 (𝑥, 𝑦))
⋅ (𝑓 (𝑦, 𝑢 (𝑦)) + 𝑔 (𝑦, 𝑢 (𝑦))) 𝑑𝑦 + 𝑝 (𝑥) ,

(86)

where 𝑥 ∈ 𝐼 = [𝑚, 𝑛]. We will establish existence and
uniqueness results. It is well known that some boundary value

problems are equivalent to an integral equation or a system of
integral equations.

Let 𝑋 = 𝐶(𝐼,R) be a partially ordered set such that, for𝑢, V ∈ 𝑋,

𝑢 ≤ V ⇐⇒
𝑢 (𝑥) ≤ V (𝑥) ,

𝑥 ∈ 𝐼.
(87)

𝑋 is endowed with the sup metric:

𝑑 (𝑢, V) = sup
𝑥∈𝐼

|𝑢 (𝑥) − V (𝑥)| , 𝑢, V ∈ 𝑋, (88)

so (𝑋, 𝑑) is a complete metric space. The corresponding
metric 𝑑1 on 𝑋2 is defined by

𝑑1 ((𝑢1, V1) , (𝑢2, V2))
= 12 [sup

𝑥∈𝐼

𝑢1 (𝑥) − 𝑢2 (𝑥) + sup
𝑥∈𝐼

V1 (𝑥) − V2 (𝑥)] , (89)

and then consider on 𝑋2 the partial order relation:
(𝑢1, V1) ≤ (𝑢2, V2) ⇐⇒

𝑢1 (𝑥) ≤ 𝑢2 (𝑥)
and V1 (𝑥) ≥ V2 (𝑥) ,

𝑥 ∈ 𝐼.
(90)

A pair (𝛼, 𝛽) ∈ 𝑋2 is called a 𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑙𝑜𝑤𝑒𝑟 − 𝑢𝑝𝑝𝑒𝑟 solution
of (86) if

𝛼 (𝑥)
≤ ∫𝑛
𝑚

𝑞1 (𝑥, 𝑦) (𝑓 (𝑦, 𝛼 (𝑦)) + 𝑔 (𝑦, 𝛽 (𝑦))) 𝑑𝑦
+ ∫𝑛
𝑚

𝑞2 (𝑥, 𝑦) (𝑓 (𝑦, 𝛽 (𝑦)) + 𝑔 (𝑦, 𝛼 (𝑦))) 𝑑𝑦
+ 𝑝 (𝑥) ,

𝛽 (𝑥)
≥ ∫𝑛
𝑚

𝑞1 (𝑥, 𝑦) (𝑓 (𝑦, 𝛽 (𝑦)) + 𝑔 (𝑦, 𝛼 (𝑦))) 𝑑𝑦
+ ∫𝑛
𝑚

𝑞2 (𝑥, 𝑦) (𝑓 (𝑦, 𝛼 (𝑦)) + 𝑔 (𝑦, 𝛽 (𝑦))) 𝑑𝑦
+ 𝑝 (𝑥) .

(91)

If 𝛼 = 𝛽, 𝛼 will be a solution of (86).



Journal of Function Spaces 9

Let 𝜃 : [0, +∞) → [0, +∞) be a nondecreasing function
such that

𝜃 (𝑢) = 𝑢2 − 𝜓 ( 𝑢2 ) , 𝑢 ∈ [0, +∞) , (92)

where 𝜓 ∈ Ψ satisfies 𝜓(𝑡1 + 𝑡2) ≤ 𝜓(𝑡1) + 𝜓(𝑡2), 𝑡1, 𝑡2 ∈[0, +∞).
We make the following assumptions:
(i) 𝑞1 ∈ 𝐶(𝐼 × 𝐼, [0, +∞)), 𝑞2 ∈ 𝐶(𝐼 × 𝐼, (−∞, 0])
(ii) 𝑝 ∈ 𝐶(𝐼,R)
(iii) 𝑓, 𝑔 ∈ 𝐶(𝐼 × R,R)
(iv) there exist constants 𝜆, 𝜇 > 0 such that, for 𝑢, V ∈

R, 𝑢 ≥
0 ≤ 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, V) ≤ 𝜆𝜃 (𝑢 − V) ,
− 𝜇𝜃 (𝑢 − V) ≤ 𝑔 (𝑥, 𝑢) − 𝑔 (𝑥, V) ≤ 0,
max {𝜆, 𝜇} sup

𝑥∈𝐼

∫𝑛
𝑚

(𝑞1 (𝑥, 𝑦) − 𝑞2 (𝑥, 𝑦)) 𝑑𝑦 ≤ 14 ,
(93)

(v) (𝛼, 𝛽) ∈ 𝑋2 is a 𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑙𝑜𝑤𝑒𝑟−𝑢𝑝𝑝𝑒𝑟 solution of (86)
Theorem 12. Suppose (𝑖) − (V) hold. 	en (86) has a unique
solution.

Proof. In order to obtain the (unique) solution of (86), define
for 𝑥 ∈ [𝑚, 𝑛] the operator 𝐹 : 𝑋 × 𝑋 → 𝑋 by

𝐹 (𝑢, V) (𝑥)
= ∫𝑛
𝑚

𝑞1 (𝑥, 𝑦) (𝑓 (𝑦, 𝑢 (𝑦)) + 𝑔 (𝑦, V (𝑦))) 𝑑𝑦

+ ∫𝑛
𝑚

𝑞2 (𝑥, 𝑦) (𝑓 (𝑦, V (𝑦)) + 𝑔 (𝑦, 𝑢 (𝑦))) 𝑑𝑦
+ 𝑝 (𝑥) , ∀𝑥 ∈ [𝑚, 𝑛] .

(94)

If (𝑢, V) ∈ 𝑋2 is a coupled fixed point of 𝐹, then we have

𝑢 (𝑥) = 𝐹 (𝑢, V) (𝑥) ,
V (𝑥) = 𝐹 (V, 𝑢) (𝑥) . (95)

It is obvious that the fixed point of 𝐹 is the solution of (86).
In what follows, we will show that 𝐹 has a unique fixed
point.

(1)We will show that the operator 𝐹 has a unique coupled
fixed point in 𝑋2

Firstly, by (v), we have

𝛼 ≤ 𝐹 (𝛼, 𝛽) ,
𝐹 (𝛽, 𝛼) ≤ 𝛽. (96)

Secondly, we check 𝐹 is mixed monotone for 𝑢1, 𝑢2 ∈ 𝑋
such that 𝑢1 ≤ 𝑢2. From (i) and (iv), we have

𝐹 (𝑢1, V) (𝑥) − 𝐹 (𝑢2, V) (𝑥)
= ∫𝑛
𝑚

𝑞1 (𝑥, 𝑦) ( 𝑓 (𝑦, 𝑢1 (𝑦)) − (𝑓 (𝑦, 𝑢2 (𝑦))) 𝑑𝑦
+ ∫𝑛
𝑚

𝑞2 (𝑥, 𝑦) (𝑔 (𝑦, 𝑢1 (𝑦)) − 𝑔 (𝑦, 𝑢2 (𝑦))) 𝑑𝑦
≤ 0.

(97)

Similarly, for V1, V2 ∈ 𝑋 such that V1 ≤ V2, we have

𝐹 (𝑢, V1) (𝑥) − 𝐹 (𝑢, V2) (𝑥)
= ∫𝑛
𝑚

𝑞1 (𝑥, 𝑦) ( 𝑔 (𝑦, V1 (𝑦)) − (𝑔 (𝑦, V2 (𝑦))) 𝑑𝑦
+ ∫𝑛
𝑚

𝑞2 (𝑥, 𝑦) (𝑓 (𝑦, V1 (𝑦)) − 𝑓 (𝑦, V2 (𝑦))) 𝑑𝑦
≥ 0,

(98)

which yields that 𝐹 is mixed monotone.
Thirdly, we show that𝐹 verifies the contraction condition.

Let us consider 𝑢, V, 𝑎, 𝑏 ∈ 𝑋 with 𝑢 ≥ 𝑎, V ≤ 𝑏;
we have

𝑑 (𝐹 (𝑢, V) , 𝐹 (𝑎, 𝑏)) = sup
𝑥∈𝐼

∫
𝑛

𝑚
𝑞1 (𝑥, 𝑦) [( 𝑓 (𝑦, 𝑢 (𝑦)) − 𝑓 (𝑦, 𝑎 (𝑦)) − ( 𝑔 (𝑦, 𝑏 (𝑦)) − 𝑔 (𝑦, V (𝑦))] 𝑑𝑦

− ∫𝑛
𝑚

𝑞2 (𝑥, 𝑦) [( 𝑓 (𝑦, 𝑏 (𝑦)) − 𝑓 (𝑦, V (𝑦)) − ( 𝑔 (𝑦, 𝑢 (𝑦)) − 𝑔 (𝑦, 𝑎 (𝑦))] 𝑑𝑦
≤ sup
𝑥∈𝐼

{∫𝑛
𝑚

𝑞1 (𝑥, 𝑦) [𝜆𝜃 (𝑢 (𝑦) − 𝑎 (𝑦)) + 𝜇𝜃 (𝑏 (𝑦) − V (𝑦))] 𝑑𝑦

− ∫𝑛
𝑚

𝑞2 (𝑥, 𝑦) [𝜆𝜃 (𝑏 (𝑦) − V (𝑦)) + 𝜇𝜃 (𝑢 (𝑦) − 𝑎 (𝑦))] 𝑑𝑦} ≤ max {𝜆, 𝜇}
⋅ sup
𝑥∈𝐼

∫𝑛
𝑚

(𝑞1 (𝑥, 𝑦) − 𝑞2 (𝑥, 𝑦)) [𝜃 (𝑢 (𝑦) − 𝑎 (𝑦)) + 𝜃 (𝑏 (𝑦) − V (𝑦))] 𝑑𝑦.

(99)
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Similarly, one obtains

𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑏, 𝑎)) ≤ max {𝜆, 𝜇}
⋅ sup
𝑥∈𝐼

∫𝑛
𝑚

(𝑞1 (𝑥, 𝑦) − 𝑞2 (𝑥, 𝑦))
⋅ [𝜃 (𝑢 (𝑦) − 𝑎 (𝑦)) + 𝜃 (𝑏 (𝑦) − V (𝑦))] 𝑑𝑦.

(100)

Since

𝜃 (𝑢 (𝑦) − 𝑎 (𝑦)) ≤ 𝜃 (𝑑 (𝑢, 𝑎)) ,
𝜃 (𝑏 (𝑦) − V (𝑦)) ≤ 𝜃 (𝑑 (𝑏, V)) , (101)

which together with (iv) imply that

𝑑 (𝐹 (𝑢, V) , 𝐹 (𝑎, 𝑏)) + 𝑑 (𝐹 (V, 𝑢) , 𝐹 (𝑏, 𝑎)) = 2
⋅ max {𝜆, 𝜇} sup

𝑥∈𝐼

∫𝑛
𝑚

(𝑞1 (𝑥, 𝑦) − 𝑞2 (𝑥, 𝑦))
⋅ [𝜃 (𝑢 (𝑦) − 𝑎 (𝑦)) + 𝜃 (𝑏 (𝑦) − V (𝑦))] 𝑑𝑦
≤ 𝜃 (𝑑 (𝑢, 𝑎)) + 𝜃 (𝑑 (𝑏, V)) = 12 [𝑑 (𝑢, 𝑎) + 𝑑 (𝑏, V)]
− [𝜓 ( 12𝑑 (𝑢, 𝑎)) + 𝜓 ( 12 𝑑 (𝑏, V))]
≤ 𝑑 (𝑢, 𝑎) + 𝑑 (𝑏, V)2 − 𝜓 ( 𝑑 (𝑢, 𝑎) + 𝑑 (𝑏, V)2 ) ,

(102)

which proves that 𝐹 verifies contraction condition (36) in
Corollary 4.

Next, we consider a monotone nondecreasing sequence{𝑢𝑛} ⊂ 𝑋 converging to 𝑢 ∈ 𝑋. Then, for every 𝑥 ∈ 𝐼, the
sequence of real numbers

𝑢1 (𝑥) ≤ 𝑢2 (𝑥) ≤ ⋅ ⋅ ⋅ ≤ 𝑢𝑛 (𝑥) ≤ ⋅ ⋅ ⋅ , (103)

converges to 𝑢(𝑥). So, for all 𝑥 ∈ 𝐼, 𝑛 ∈ N, 𝑢𝑛(𝑥) ≤ 𝑢(𝑥)
Hence, 𝑢𝑛 ≤ 𝑢, for all 𝑛. Similarly, we can verify that the limit
V(𝑥) ofmonotone nonincreasing sequence {V𝑛} in𝑋 is a lower
bound for all the elements in the sequence. That is, V ≤ V𝑛 for
all 𝑛.

Therefore, it follows fromCorollary 4 that 𝐹 has a coupled
fixed point (𝑢0, V0) ∈ 𝑋2, i.e.,

𝑢0 = 𝐹 (𝑢0, V0)
and V0 = 𝐹 (V0, 𝑢0) . (104)

On the other hand, 𝑋 has property (𝐻5) since, for any𝑔, ℎ ∈ 𝑋, 𝑀(𝑥) = max(𝑔(𝑥), ℎ(𝑥)), 𝑚(𝑥) = min(𝑔(𝑥), ℎ(𝑥)),
for each 𝑥 ∈ 𝐼, are in 𝑋 and are the upper and lower bounds
of 𝑔, ℎ, respectively. Then, by Corollary 7, 𝐹 has a unique
coupled fixed point.

(2) Noting that (𝛼, 𝛽) is a coupled 𝑙𝑜𝑤𝑒𝑟 − 𝑢𝑝𝑝𝑒𝑟 solution
of (86), one obtains 𝛼(𝑥) ≤ 𝛽(𝑥) for all 𝑥 ∈ 𝐼. So, 𝛼 and 𝛽 are
comparable. By Corollary 9, 𝐹 has a unique fixed point
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In this paper, a class of switching systems which have an invariant conic 𝑥2 +𝑐𝑦2 = 1, 𝑐 ∈ 𝑅, is investigated. Half attracting invariant
conic 𝑥2 + 𝑐𝑦2 = 1, 𝑐 ∈ 𝑅, is found in switching systems. The coexistence of small-amplitude limit cycles, large amplitude limit
cycles, and invariant algebraic curves under perturbations of the coefficients of the systems is proved.

1. Introduction

It is well known that the 16th problem stated in 1900 by D.
Hilbert is considered to be themost difficult problem in the 23
problems; it is far frombeing solved. Over past three decades,
there have been many good results about this problem. As
far as the maximal number of small-amplitude limit cycles
which are bifurcated from an elementary center or focus is
concerned, the best known result obtained by Bautin in 1952
[1] is 𝑀(2) = 3, where 𝑀(𝑛) denotes the maximal number
of small-amplitude limit cycles around a singular point with
𝑛 being the degree of polynomials in the system. For cubic-
degree system, many good results have also been obtained.
For example, a cubic system was constructed by Lloyd and
Pearson [2] to show 9 limit cycles with the aid of purely
symbolic computation. Moreover, Yu and Tian [3] proved
that there can exist 12 limit cycles around an elementary
center in a planar cubic-degree polynomial system. As far as
we know this is the best result obtained so far for cubic-degree
polynomial systems with all limit cycles around a single
singular point. For 𝑛 ≥ 4, because of the difficulty of computa-
tion of focal values, there are very few results. An example of a
quartic systemwith 8 limit cycles bifurcating fromafine focus
[4] was given by Huang et al.Theory of rotated equations and
applications to a population model can be found in [5]; they
gave a new method to solve the center problem.

As far as the maximal number of limit cycles of polyno-
mial systems is concerned, the best results published were
given as follows. Articles [6, 7] proved that 𝐻(2) ⩾ 4, then
[8–10] gave 𝐻(3) ⩾ 12 and [11, 12] obtained 𝐻(4) ⩾ 16 etc.
Here, 𝐻(𝑛) denotes the maximal number of limit cycles of
polynomial systems. Furthermore, 13 limit cycles bifurcated
from 𝑍2-equivariant systems with degree 3 were proved
in [13–15], respectively. An improvement on the number
of limit cycles bifurcating from a nondegenerate center of
homogeneous polynomial systems was given in [16].

Center and the coexistence of large and small-amplitude
limit cycles problems are two closely related questions of the
16th problem. Algebraic trajectories play an important role
in the dynamical behavior of polynomial systems, so it has
been an interesting problem in planar polynomial systems.
Over the past twenty years, many interesting results were
got for quadratic systems; the authors in [17, 18] proved that
quadratic systems with a pair of straight lines or an invariant
hyperbola, ellipse, can have no limit cycles other than the
possible ellipse itself. Furthermore, if there is an invariant
line, there can be no more than one limit cycle. The case of
parabola was considered in [19]. For cubic systems, there exist
different classes of cubic systems in which there may coexist
an invariant hyperbola or straight lines with limit cycles (see
[20–28]). For a given family of real planar polynomial systems
of ordinary differential equations depending on parameters,
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the problem of how to find the systems in the family which
become time-reversible was solved in [29].

In modelling many practical problems in science and
engineering, switching systems have been widely used
recently.The richness of dynamical behavior found in switch-
ing systems covers almost all the phenomena discussed in
general continuous systems. For example, the maximum
number of limit cycles bifurcating from the periodic orbits
of the quadratic isochronous centers of switching system
was studied in [30]. In [31], limit cycles in a class of
continuous and switching cubic polynomial systems were
investigated. Bifurcation of limit cycles in switching quadratic
systems with two zones was considered in [30] . In [32,
33], the authors considered nonsmooth Hopf bifurcation in
switching systems. Limit cycles bifurcating from centers of
discontinuous quadratic systems were studied by Chen and
Du [34]. Switching Bautin system was also investigated in
[35]; they got 10 limit cycles for this system. 𝑍2-equivariant
cubic systems were also investigated, and 14 limit cycles were
obtained in [36]. Bifurcation of periodic orbits by perturbing
high-dimensional piecewise smooth integrable systems was
investigated in [37]. Bifurcation theory for finitely smooth
planar autonomous differential systems was considered in
[38]. All results obtained show that the dynamical behavior of
switching systems is more complex than continuous system.

About algebraic invariant curves, as far as we know, there
are few papers to consider switching system with algebraic
invariant curves. In this paperwe are concernedwith the limit
cycle problem and the center problem for a class of degree
four polynomial differential systems
𝑑𝑥
𝑑𝑡

= 𝜆𝑥 + 𝑦 (−1 − 𝑏𝑥 − 𝑒𝑦 + (1 + 𝑐𝑑) 𝑥2

+ 𝑐 (1 + 2𝑐𝑑) 𝑦2 + 𝑏𝑥3 + 𝑒𝑥2𝑦 + 𝑏𝑐𝑥𝑦2 + 𝑐𝑒𝑦3)

− (𝑥3 + 𝑐𝑥𝑦2) 𝜆,

𝑑𝑦
𝑑𝑡

= 𝜆𝑦 + 𝑥 (1 − 𝑐𝑦 − (1 + 𝑑) 𝑥2 − 𝑐 (1 + 2𝑑) 𝑦2

+ 𝑐𝑥2𝑦 + 𝑐2𝑦3) − 𝜆 (𝑥2𝑦 + 𝑐𝑦3) ,

𝑑𝑥
𝑑𝑡

= 𝜆1𝑥 + 𝑦 (−1 − 𝑏1𝑥 − 𝑒1𝑦 + (1 + 𝑐𝑑1) 𝑥
2

+ 𝑐 (1 + 2𝑐𝑑1) 𝑦
2 + 𝑏1𝑥

3 + 𝑒1𝑥
2𝑦 + 𝑏1𝑐𝑥𝑦

2 + 𝑐𝑒1𝑦
3)

− (𝑥3 + 𝑐1𝑥𝑦
2) 𝜆1,

𝑑𝑦
𝑑𝑡

= 𝜆1𝑥 + 𝑥 (1 − 𝑐𝑦 − (1 + 𝑑1) 𝑥
2 − 𝑐 (1 + 2𝑑1) 𝑦

2

+ 𝑐𝑥2𝑦 + 𝑐2𝑦3) − 𝜆1 (𝑥
2𝑦 + 𝑐1𝑦

3) ,

(1)

which have an invariant conic 𝑥2 + 𝑐𝑦2 = 1, 𝑐 ∈ 𝑅, and we
prove the coexistence of large elliptic limit cycle that contains
at least four small-amplitude limit cycles generated by Hopf
bifurcations.

The rest of the paper is organized as follows. In the
next section, we prove that the switching system (1) has an

invariant conic 𝑥2 + 𝑐𝑦2 = 1, 𝑐 ∈ 𝑅, and there exists
a large limit cycle in switching system (1); half attracting
invariant conic 𝑥2 + 𝑐𝑦2 = 1, 𝑐 ∈ 𝑅, is found in switching
systems. In Section 3, the first eight Lyapunov constants will
be computed; bifurcation of limit cycles and center conditions
of (1) are investigated. Section 4 is devoted to discuss the
number of limit cycles with different parameter 𝑐 of (1). At
last, coexistence of invariant curve and limit cycles of (1) is
drawn in Section 5.

2. Invariant Curve and Large Limit Cycle of (1)

In this section, we will prove that the switching system (1) has
an invariant conic 𝑥2 + 𝑐𝑦2 = 1, 𝑐 ∈ 𝑅, and there exists a large
limit cycle in switching system (1).

Lemma 1. 	e conic ℎ(𝑥, 𝑦) = 𝑥2 + 𝑐𝑦2 − 1 = 0, 𝑐 ∈ 𝑅, is
an invariant algebraic curve of system (1). In particular, if 𝑐 >
0 and 𝑑𝑑1 ̸= 0, this conic is an elliptic hyperbolic limit cycle,
attracting if 𝜆 > 0, 𝜆1 > 0, a repelling if 𝜆 ≤ 0, 𝜆1 ≤ 0, and half
attracting if 𝜆𝜆1 < 0.

Proof. It is easy to know that the conic ℎ(𝑥, 𝑦) = 𝑥2 + 𝑐𝑦2 − 1,
𝑐 ∈ 𝑅, is an invariant algebraic curve of systems

𝑑𝑥
𝑑𝑡

= 𝜆𝑥 + 𝑦 (−1 − 𝑏𝑥 − 𝑒𝑦 + (1 + 𝑐𝑑) 𝑥2

+ 𝑐 (1 + 2𝑐𝑑) 𝑦2 + 𝑏𝑥3 + 𝑒𝑥2𝑦 + 𝑏𝑐𝑥𝑦2 + 𝑐𝑒𝑦3)

− (𝑥3 + 𝑐𝑥𝑦2) 𝜆,

𝑑𝑦
𝑑𝑡

= 𝜆𝑦 + 𝑥 (1 − 𝑐𝑦 − (1 + 𝑑) 𝑥2 − 𝑐 (1 + 2𝑑) 𝑦2

+ 𝑐𝑥2𝑦 + 𝑐2𝑦3) − 𝜆 (𝑥2𝑦 + 𝑐𝑦3) ,

(2)

and

𝑑𝑥
𝑑𝑡

= 𝜆1𝑥 + 𝑦 (−1 − 𝑏1𝑥 − 𝑒1𝑦 + (1 + 𝑐𝑑1) 𝑥
2

+ 𝑐 (1 + 2𝑐𝑑1) 𝑦
2 + 𝑏1𝑥

3 + 𝑒1𝑥
2𝑦 + 𝑏1𝑐𝑥𝑦

2 + 𝑐𝑒1𝑦
3)

− (𝑥3 + 𝑐1𝑥𝑦
2) 𝜆1,

𝑑𝑦
𝑑𝑡

= 𝜆1𝑥 + 𝑥 (1 − 𝑐𝑦 − (1 + 𝑑1) 𝑥
2 − 𝑐 (1 + 2𝑑1) 𝑦

2

+ 𝑐𝑥2𝑦 + 𝑐2𝑦3) − 𝜆1 (𝑥
2𝑦 + 𝑐1𝑦

3) ,

(3)

because

𝑑ℎ (𝑥, 𝑦)
𝑑𝑡

= ℎ (𝑥, 𝑦) 𝑘𝑖 (𝑥, 𝑦) , 𝑖 = 1, 2, (4)
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Figure 1: The half attracting conic when 𝜆 > 0, 𝜆1 < 0 or 𝜆 < 0, 𝜆1 > 0.

respectively, where

𝑘1 (𝑥, 𝑦) = −𝜆𝑥
2 + (1 − 𝑐) 𝑥𝑦 − 𝑐𝜆𝑦2 + 𝑏𝑥2𝑦

+ (𝑐2 + 𝑒) 𝑥𝑦2,

𝑘2 (𝑥, 𝑦) = −𝜆1𝑥
2 + (1 − 𝑐) 𝑥𝑦 − 𝑐𝜆1𝑦

2 + 𝑏1𝑥
2𝑦

+ (𝑐2 + 𝑒1) 𝑥𝑦
2.

(5)

In particular, according to Lemma 1 in [39], if 𝑐 > 0 and 𝑑 ̸= 0,
this conic is an elliptic hyperbolic limit cycle of system (2),
attracting if 𝜆 > 0 and a repelling if 𝜆 < 0. Similarly, if 𝑐 > 0
and 𝑑1 ̸= 0, this conic is an elliptic hyperbolic limit cycle of
system (3), attracting if 𝜆1 > 0 and a repelling if 𝜆1 < 0.
Especially, if 𝑐 > 0 and 𝑑𝑑1 ̸= 0 and 𝜆𝜆1 < 0, the stability of
the conic 𝑥2 + 𝑐𝑦2 = 1, 𝑐 ∈ 𝑅, is contradict for the upper half
system and lower half system.

So, for switching system (1), the conic 𝑥2 + 𝑐𝑦2 = 1, 𝑐 ∈
𝑅, is an invariant algebraic curve. Furthermore, if 𝑐 > 0 and
𝑑𝑑1 ̸= 0, this conic is an elliptic hyperbolic limit cycle, and

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝜆 > 0, 𝜆1 > 0;

𝑟𝑒𝑝𝑒𝑙𝑙𝑖𝑛𝑔 𝜆 < 0, 𝜆1 < 0;

ℎ𝑎𝑙𝑓𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝜆𝜆1 < 0.

(6)

Remark 2. For planar continuous system, if 𝑐 > 0 and 𝑑 ̸= 0,
the conic 𝑥2 + 𝑐𝑦2 = 1, 𝑐 ∈ 𝑅, is an elliptic hyperbolic
limit cycle, attracting if 𝜆 > 0, a repelling if 𝜆 ≤ 0. For
switching system, half attracting cases which are different
from continuous systems appear. Namely, for the conic 𝑥2 +
𝑐𝑦2 = 1, 𝑐 ∈ 𝑅, it is attracting (repelling) for 𝑦 > 0
and repelling (attracting) for 𝑦 < 0. It is an interesting
phenomena; see Figure 1.

3. Bifurcation of Limit Cycle and Center
Conditions of (1)

First of all, it is easy to know that the origin of upper half
system and lower half system is a fine focus if 𝜆𝜆1 ̸= 0, so
we let 𝜆 = 𝜆1 = 0 in order to consider the center conditions

and the number of small limit cycles.With the aid of symbolic
computation, we obtain the following result.

Theorem 3. For system (1), the first eight Lyapunov constants
at the origin are given by

𝜇1 = −
2
3
(𝑏1 − 𝑏) ,

𝜇2 =
𝑏𝜋
8
(𝑒1 + 𝑒) ,

𝜇3 = −
2𝑏
45
(6𝑑 + 3𝑐𝑑 + 12𝑐2𝑑 − 6𝑑1 − 3𝑐𝑑1 − 12𝑐

2𝑑1

+ 4𝑐𝑒) ,

(7)

with two cases: (I) 𝑐 = ±√2/2.

𝜇4 =
𝑏𝑐 (64 + 21𝑐) 𝑒2𝜋
288 (4 + 𝑐)

,

𝜇5 = 0,

𝜇6 =
𝑏𝑐𝑑1𝜋
96

(−9 + 𝑏2 + 7𝑐 − 6𝑐𝑑1) ,

𝜇7 =
𝑏𝑐𝑑1𝜋
829440𝑐

(11763 + 2434𝑏2 − 66𝑏4 − 16486𝑐

− 3792𝑏2𝑐 + 544𝑏4𝑐) ,

𝜇8 =
𝑏𝜋

978447237120𝑐3
(−632874756819

− 1564815308390𝑏2 − 48058429290𝑏4

+ 31851335688𝑏6 − 1734059496𝑏8

+ 903172527570𝑐 + 2206928649816𝑏2𝑐

+ 78231277128𝑏4𝑐 − 42656920272𝑏6𝑐

+ 1359726496𝑏8𝑐) ,

(8)
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(II) 𝑐 ̸= ±√2/2.

𝜇4 =
𝑏𝑐𝜋

288 (2 + 𝑐 + 4𝑐2)
(−48𝑑1 − 24𝑐𝑑1 + 48𝑐

3𝑑1

+ 192𝑐4𝑑1 + 16𝑐𝑒 − 32𝑐
3𝑒 + 64𝑒2 + 21𝑐𝑒2) ,

𝜇5 = −
𝑏𝑐𝑒

14175 (−1 + 2𝑐2) (2 + 𝑐 + 4𝑐2)2
(14400

− 1440𝑏2 + 12240𝑐 − 720𝑏2𝑐 + 8824𝑐2 + 304𝑐3

+ 1440𝑏2𝑐3 − 54816𝑐4 + 5760𝑏2𝑐4 − 25440𝑐5

− 36768𝑐6 − 48256𝑐7 − 8192𝑐8 − 1152𝑒2

− 10764𝑐𝑒2 − 128130𝑐2𝑒2 − 74937𝑐3𝑒2

− 43644𝑐4𝑒2) ,

𝜇6 = −
𝑏𝑐𝑒2𝜋

1658880 (−1 + 2𝑐2)2 (2 + 𝑐 + 4𝑐2)2
(−938880

− 740160𝑐 + 1065264𝑐2 − 483240𝑐3 + 2351920𝑐4

− 1092224𝑐5 − 3670368𝑐6 + 8556192𝑐7

+ 4228224𝑐8 + 2964992𝑐9 + 409600𝑐10 − 58752𝑒2

+ 1558128𝑐𝑒2 + 8882094𝑐2𝑒2 + 6387798𝑐3𝑒2

+ 3861933𝑐4𝑒2 + 2842044𝑐5𝑒2 + 2182200𝑐6𝑒2) ,

𝜇7 = −
8𝑏𝑐𝑒

8037225 (2 + 𝑐 + 4𝑐2)3 𝑓 (𝑐)2
𝑓1 (𝑐) ,

𝜇8 = −
8𝑏𝑐𝑒𝜋

2799360 (2 + 𝑐 + 4𝑐2)3 𝑓 (𝑐)3
𝑓2 (𝑐) .

(9)

where

𝑓 (𝑐) = −19584 + 519376𝑐 + 2960698𝑐2 + 2129266𝑐3

+ 1287311𝑐4 + 947348𝑐5 + 727400𝑐6,

𝑓1 (𝑐) = (−16642999723622400

− 533641875920732160𝑐

− 1422483722108868096𝑐2

− 6179682878361868032𝑐3

− 16468630764742211040𝑐4

− 20952718578375299760𝑐5

− 47133134356437147504𝑐6

− 20260317246600069740𝑐7

+ 1872045962529690518𝑐8

+ 124503308483978457972𝑐9

+ 384905600471956478466𝑐10

+ 639925619448235723897𝑐11

+ 995949036122547224578𝑐12

+ 1051854664680123230362𝑐13

+ 989202162935234549752𝑐14

+ 722398370839930377872𝑐15

+ 477074650742338886960𝑐16

+ 266605013954075833728𝑐17

+ 102005297657011481216𝑐18

+ 26101293898978550016𝑐19

+ 1081597406307225600𝑐20

− 1162211975363604480𝑐21

+ 2379375230976000𝑐22) ,

𝑓2 (𝑐) = (117360 + 92520𝑐 + 101562𝑐
2 + 245445𝑐3

− 90866𝑐4 + 627418𝑐5 + 277064𝑐6 + 185312𝑐7

+ 25600𝑐8) × (−452567167393333248

+ 2718583098083868672𝑐

+ 5921329078274770944𝑐2

+ 37901532550847576832𝑐3

+ 126508437153358233984𝑐4

+ 178634371590216048576𝑐5

+ 516471221184905286240𝑐6

+ 812488329237341411240𝑐7

+ 1323104926777377304180𝑐8

+ 2033464466845502085698𝑐9

+ 1247927693968900807483𝑐10

+ 1013721170261169909103𝑐11

+ 215716197433324981017𝑐12

+ 1064766586075843968365𝑐13
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+ 4034487317277427888208𝑐14

+ 5640449144757272315336𝑐15

+ 6613022295691417350356𝑐16

+ 5376059971880816237612𝑐17

+ 4585410563561734908832𝑐18

+ 3103125495812061611648𝑐19

+ 1361862580731165716224𝑐20

+ 378280087173029995008𝑐21

+ 12407010796058419200𝑐22

− 18830025122086993920𝑐23

+ 39259691311104000𝑐24) .
(10)

Note that in computing the above expressions 𝜇𝑘, 𝑘 = 2, . . . , 8,
and 𝜇1 = 𝜇2 = ⋅ ⋅ ⋅ = 𝜇𝑘−1 = 0 have been used.

The following proposition follows directly from Theo-
rem 3.

Proposition 4. 	efirst eight Lyapunov constants at the origin
of system (1) become zero if and only if one of the following
conditions is satisfied:

𝜆1 = 𝜆 = 0,

𝑏1 = 𝑏 = 0;
(11)

𝜆1 = 𝜆 = 0,

𝑏1 = 𝑏,

𝑒1 = −𝑒,

𝑑1 = 𝑑,

𝑐 = 0;

(12)

𝜆1 = 𝜆 = 0,

𝑏1 = 𝑏,

𝑒1 = −𝑒,

𝑑1 = 𝑑,

𝑒 = 0.

(13)

	ey are also the center conditions of system (1).

Proof. When the conditions in (11) hold, system (1) can be
brought to

𝑑𝑥
𝑑𝑡

= 𝑦 (−1 − 𝑒𝑦 + (1 + 𝑐𝑑) 𝑥2 + 𝑐 (1 + 2𝑐𝑑) 𝑦2

+ 𝑒𝑥2𝑦 + 𝑐𝑒𝑦3) ,

𝑑𝑦
𝑑𝑡

= 𝑥 (1 − 𝑐𝑦 − (1 + 𝑑) 𝑥2 − 𝑐 (1 + 2𝑑) 𝑦2 + 𝑐𝑥2𝑦

+ 𝑐2𝑦3) ,

(𝑦 > 0) ,

𝑑𝑥
𝑑𝑡

= 𝑦 (−1 − 𝑒1𝑦 + (1 + 𝑐𝑑1) 𝑥
2 + 𝑐 (1 + 2𝑐𝑑1) 𝑦

2

+ 𝑒1𝑥
2𝑦 + 𝑐𝑒1𝑦

3) ,

𝑑𝑦
𝑑𝑡

= 𝑥 (1 − 𝑐𝑦 − (1 + 𝑑1) 𝑥
2 − 𝑐 (1 + 2𝑑1) 𝑦

2 + 𝑐𝑥2𝑦

+ 𝑐2𝑦3) ,

(𝑦 < 0) .

(14)

Obviously, the system is symmetric with the 𝑦-axis, and so
the origin is a center of system (14).

When the conditions in (12) hold, system (1) can be
rewritten as

𝑑𝑥
𝑑𝑡

= 𝑦 (−1 − 𝑏𝑥 − 𝑒𝑦 + 𝑥2 + 𝑏𝑥3 + 𝑒𝑥2𝑦) ,

𝑑𝑦
𝑑𝑡

= 𝑥 (1 − (1 + 𝑑) 𝑥2) ,

(𝑦 > 0) ,

𝑑𝑥
𝑑𝑡

= 𝑦 (−1 − 𝑏𝑥 + 𝑒𝑦 + 𝑥2 + 𝑏𝑥3 − 𝑒𝑥2𝑦) ,

𝑑𝑦
𝑑𝑡

= 𝑥 (1 − (1 + 𝑑) 𝑥2) ,

(𝑦 < 0) ,

(15)

which is symmetric with the 𝑥-axis, and so the origin is a
center of system (15).

When the conditions in (13) hold, system (1) becomes a
continuous system

𝑑𝑥
𝑑𝑡

= 𝑦 (1 + 𝑏𝑥) (−1 + 𝑥2 + 𝑐𝑦2) ,

𝑑𝑦
𝑑𝑡

= 𝑥 (−1 + 𝑐𝑦) (−1 + 𝑥2 + 𝑐𝑦2) .
(16)

By elementary integration, the above system in Ω = (𝑥, 𝑦) |
𝑥2 + 𝑐𝑦2 < 1 is topologically equivalent to the system

𝑑𝑥
𝑑𝑡

= 𝑦 (1 + 𝑏𝑥) ,

𝑑𝑦
𝑑𝑡

= 𝑥 (−1 + 𝑐𝑦) ,
(17)
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which has the first analytic integral

𝐻(𝑥, 𝑦) = 𝑏𝑐 (𝑏𝑦 − 𝑐𝑥) + 𝑏2 ln (1 − 𝑐𝑦)

+ 𝑐2 ln (1 + 𝑏𝑥) .
(18)

Remark 5. The phase plane of system (16) can be drawn by
Maple; see Figure 2.

As far as limit cycles are concerned, it follows from
Theorem 3 that at most 8 limit cycles can bifurcate from the
origin of system (1). We have the following theorem.

Theorem6. If the origin of system (1) is a 8th-orderweak focus,
then for 0 < 𝛿1, 𝛿2 ≪ 1, 8 small-amplitude limit cycles can
bifurcate from the origin of the perturbed system (1).

Proof. When the origin of system (1) is a 8th-order weak
focus, the conditions

𝑏1 = 𝑏,

𝑒1 = −𝑒,

𝑑 = 6𝑑1 + 3𝑐𝑑1 + 12𝑐2𝑑1 − 4𝑐𝑒
3 (2 + 𝑐 + 4𝑐2)

,

𝑑1 = −
𝑒1 (−16𝑐 + 32𝑐

3 + 64𝑒1 + 21𝑐𝑒1)
24 (−1 + 2𝑐2) (2 + 𝑐 + 4𝑐2)

,

𝑏2 = 1
720 (−1 + 2𝑐2) (2 + 𝑐 + 4𝑐2)

(−14400 − 12240𝑐

− 8824𝑐2 − 304𝑐3 + 54816𝑐4 + 25440𝑐5 + 36768𝑐6

+ 48256𝑐7 + 8192𝑐8 + 1152𝑒2 + 10764𝑐𝑒2

+ 128130𝑐2𝑒2 + 74937𝑐3𝑒2 + 43644𝑐4𝑒2) ,

𝑒2 = − 8
3𝑓 (𝑐)

(−117360 − 92520𝑐 + 133158𝑐2

− 60405𝑐3 + 293990𝑐4 − 136528𝑐5 − 458796𝑐6

+ 1069524𝑐7 + 528528𝑐8 + 370624𝑐9 + 51200𝑐10) ,

𝑐 = −2.09067, −1.9427, −0.763201, 0.581824

(19)

should be satisfied. Furthermore, one has the following:
When 𝑐 = −2.09067,

𝜕 (𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6, 𝜇7)
𝜕 (𝑏1, 𝑒1, 𝑑, 𝑑1, 𝑏, 𝑒, 𝑐)

= −2.23342 × 106 ̸= 0. (20)

When 𝑐 = −1.9427,

𝜕 (𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6, 𝜇7)
𝜕 (𝑏1, 𝑒1, 𝑑, 𝑑1, 𝑏, 𝑒, 𝑐)

= 1.31166 × 106 ̸= 0. (21)

Figure 2: The phase plane of system (16) when 𝑏 = 1, 𝑐 = 1 or
𝑏 = 1, 𝑐 = −1.

When 𝑐 = −0.763201,

𝜕 (𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6, 𝜇7)
𝜕 (𝑏1, 𝑒1, 𝑑, 𝑑1, 𝑏, 𝑒, 𝑐)

= −0.23494 ̸= 0. (22)

When 𝑐 = 0.581824,

𝜕 (𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6, 𝜇7)
𝜕 (𝑏1, 𝑒1, 𝑑, 𝑑1, 𝑏, 𝑒, 𝑐)

= −0.000330085 ̸= 0. (23)

So it implies that 8 small-amplitude limit cycles can
bifurcate from the origin of the perturbed system (1).

4. Number of Limit Cycles with Different
Parameter 𝑐 of (1)

In this section, we devote to discuss the number of limit cycles
with different parameter 𝑐 of (1).The following theorem could
be concluded fromTheorem 3.

Theorem 7. 	e number of limit cycles with different parame-
ter 𝑐 of (1) can be shown in the Table 1.

Proof. Let 𝜇1 = 𝜇2 = 𝜇3 = 0, it is easy to obtain that

𝑏1 = 𝑏;

𝑒1 = −𝑒;

𝑑 = 6𝑑1 + 3𝑐𝑑1 + 12𝑐
2𝑑1 − 4𝑐𝑒

3 (2 + 𝑐 + 4𝑐2)
.

(24)

If 𝑐 = 0, it is easy to check that the origin is a three-order weak
focus. Furthermore, if 𝑐 ̸= 0, when 𝑐 = √2/2, the Lyapunov
constants in case 1 yield that the origin is a seventh order weak
focus.

When 𝑐 ̸= √2/2, the Lyapunov constants 𝜇4 = 𝜇5 = 𝜇6 =
𝜇7 = 0, 𝜇8 ̸= 0 yield that the origin is an eighth-order weak
focus if

𝑑1 = −
𝑒1 (−16𝑐 + 32𝑐3 + 64𝑒1 + 21𝑐𝑒1)
24 (−1 + 2𝑐2) (2 + 𝑐 + 4𝑐2)

,

𝑏2 =
𝑓3 (𝑐)

720 (−1 + 2𝑐2) (2 + 𝑐 + 4𝑐2)
= 𝐹3 (𝑐) ,

𝑒2 = −
8𝑓4 (𝑐)
3𝑓 (𝑐)

= 𝐹4 (𝑐) ,

(25)
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Table 1: The maximum number of small limit cycles around the
origin for different parameter c.

Parameter c
The maximum number of
small limit cycle around

the origin
(−∞, −6.14829) 6
(−6.14829, −2.09067) 7
-2.09067 8
(−2.09067, −1.94278) 7
-1.94278 8
(−1.94278, −0.7632018) 7
-0.7632018 8
(−0.7632018, −0.707107] 7
(−0.707107, −0.588861] 6
(−0.588861, −0.44638) 7
[−0.44638, −0.031805] 6
(−0.031805, 0) 7
0 3
(0, 0.031805) 7
[0.031805, 0.129745] 6
(0.129745,0.581824) 7
0.581824 8
(0.581824,0.707107] 7
(0.707107,+∞) 6

where

𝑓3 (𝑐) = −14400 − 12240𝑐 − 8824𝑐
2 − 304𝑐3

+ 54816𝑐4 + 25440𝑐5 + 36768𝑐6

+ 48256𝑐7 + 8192𝑐8 + 1152𝑒2 + 10764𝑐𝑒2

+ 128130𝑐2𝑒2 + 74937𝑐3𝑒2 + 43644𝑐4𝑒2;

𝑓4 (𝑐) = −117360 − 92520𝑐 + 133158𝑐
2 − 60405𝑐3

+ 293990𝑐4 − 136528𝑐5 − 458796𝑐6

+ 1069524𝑐7 + 528528𝑐8 + 370624𝑐9

+ 51200𝑐10.

(26)

and 𝑐 satisfy that

𝑓 (𝑐) = −19584 + 519376𝑐 + 2960698𝑐2 + 2129266𝑐3

+ 1287311𝑐4 + 947348𝑐5 + 727400𝑐6 ̸= 0.
(27)

It is easy to conclude that if 𝐹3(𝑐) > 0, 𝐹4(𝑐) > 0 and 𝑓1(𝑐) =
0, 𝑓2(𝑐) ̸= 0, there exist 8 limit cycles; namely,

𝑐 ≈ −2.09067, −1.9427, −0.763201, 0.581824. (28)

If 𝐹3(𝑐) > 0, 𝐹4(𝑐) > 0, and 𝑓1(𝑐) ̸= 0, there exist 7 small limit
cycles.

0.4

0.2

−0.2

−0.4

1.00.5−0.5−1.0

Figure 3: When 𝑐 = −2.09067, an invariant algebraic curve 𝑥2 −
2.09067𝑦2 = 1 and eight small limit cycles.

1.00.5

0.5

−0.5

−0.5

−1.0

Figure 4: When 𝑐 = −√2/2, an invariant algebraic curve 𝑥2 −
(√2/2)𝑦2 = 1 and seven small limit cycles.

If 𝐹3(𝑐)𝐹4(𝑐) ≤ 0, there exist 6 limit cycles.
When 𝑐 ̸= √2/2, 𝑓(𝑐) = 0, the Lyapunov constants 𝜇4 =

𝜇5 = 0, 𝜇6 ̸= 0 yield that the origin is a sixth-orderweak focus.
The conclusion can be given in Table 1 for simplify.

5. Coexistence of Invariant Curve and Limit
Cycles of (1)

From above discussion, we study the coexistence of invariant
curve and limit cycles of (1), by perturbation method of small
parameters, the following conclusions could be got easily; for
example, when 𝑐 = −2.09067, there exist eight small limit
cycles at least and 𝑥2−2.09067𝑦2 = 1 is an invariant algebraic
curve.Thedistribution of limit cycle can be drawn in Figure 3.

When 𝑐 = −√2/2, there exist seven small limit cycles at
least and 𝑥2 − (√2/2)𝑦2 = 1 is an invariant algebraic curve.
The distribution of limit cycle can be drawn in Figure 4.

When 𝑐 = 0, there exist three small limit cycles at least and
𝑥 = 1 and 𝑥 = −1 are two invariant lines. The distribution of
limit cycle can be drawn in Figure 5.

When 𝑐 = 0.581824, there exist eight small limit cycles
and a large limit cycle 𝑥2 + 0.581824𝑦2 = 1 at the same
time, namely, nine limit cycles in total for this system. The
distribution of limit cycle can be drawn in Figure 6.

When 𝑐 = √2/2, there exist seven small limit cycles at
least and there is a large limit cycle 𝑥2 + (√2/2)𝑦2 = 1 at the
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0.2

0.1

−0.1

−0.2

1.00.5−0.5−1.0

Figure 5: When 𝑐 = 0, two invariant lines 𝑥 = ±1 and three small
limit cycles.

1.0

0.5

−0.5

−1.0

1.00.5−0.5−1.0

Figure 6: When 𝑐 = 0.581824, an invariant algebraic curve 𝑥2 +
0.581824𝑦2 = 1 and eight small limit cycles.

1.0

0.5

−0.5

−1.0

1.00.5−0.5−1.0

Figure 7: When 𝑐 = √2/2, an invariant algebraic curve 𝑥2 +
(√2/2)𝑦2 = 1 and seven small limit cycles.

1.0

0.5

−0.5

−1.0

1.00.5−0.5−1.0

Figure 8: When 𝑐 = 1, an invariant algebraic curve 𝑥2 + 𝑦2 = 1 and
six small limit cycles.

same time. The distribution of limit cycles can be drawn in
Figure 7.

When 𝑐 = 1, there exist six small limit cycles at least and
there is a large limit cycle 𝑥2 + 𝑦2 = 1 at the same time. The
distribution of limit cycles can be drawn in Figure 8.

6. Conclusion

In this paper, a class of switching systems is investigated; the
coexistence of small limit cycles and algebraic an invariant
curve is proves. An interesting phenomenon that the alge-
braic invariant curve𝑥2+𝑐𝑦2 = 1, 𝑐 > 0, can be half attracting
is found.
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In this paper, the existence of positive solutions in terms of different values of two parameters for a system of conformable-type
fractional differential equations with the p-Laplacian operator is obtained via Guo-Krasnosel’skii fixed point theorem.

1. Introduction

In this paper, we study the existence of positive solutions for
the following system of fractional differential equations:

𝐷𝛼1 (𝜙𝑝1 (𝐷𝛼1𝑥 (𝑡))) = 𝜆𝑔 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 0 < 𝑡 < 1,
𝐷𝛼2 (𝜙𝑝2 (𝐷𝛼2𝑦 (𝑡))) = 𝜇𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 0 < 𝑡 < 1, (1)

subject to the following boundary condition:

𝑥 (0) = 𝑥 (1) = 0,
𝐷𝛼1𝑥 (0) = 𝐷𝛼1𝑥 (1) = 0,

𝑦 (0) = 𝑦 (1) = 0,
𝐷𝛼2𝑦 (0) = 𝐷𝛼2𝑦 (1) = 0,

(2)

where 𝛼1, 𝛼2 ∈ (1, 2] are real numbers; 𝐷𝛼1 and 𝐷𝛼2 are the
conformable fractional derivative; 𝜙𝑝𝑖(𝑠) = |𝑠|𝑝𝑖−2𝑠, 𝑝𝑖 >1, 𝜙𝑞𝑖 = 𝜙−1𝑝𝑖 , 1/𝑝𝑖 + 1/𝑞𝑖 = 1, 𝑖 = 1, 2; 𝑔, 𝑓 : [0, 1] ×
[0, +∞) → [0, +∞) are continuous; 𝜆 and 𝜇 are positive
parameters.

Fractional differential equations have many applications
in various fields such as biological science, chemistry, physics,
and engineering. Many authors have made large achieve-
ments about the study of fractional differential equations
boundary value problems. Most results have adopted the
Riemann-Liouville and Caputo-type fractional derivatives;

we can see [1–28] and the references therein; for example,
in [28], by using Guo-Krasnosel’skii fixed point theorem,
the authors obtained the various existence results for pos-
itive solutions about a system of Riemann-Liouville type
fractional boundary value problems with two parameters
and the p-Laplacian operator. As we know, there is another
kind of fractional derivative which is conformable fractional
derivative. Recently, in [29], the authors Khalil R. et al.
first introduced a new simple well-behaved definition of the
fractional derivative called conformable fractional derivative.
They first presented the definition of conformable fractional
derivative of order 𝛼 ∈ (0, 1] and generalized the definition
to include order 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ N. In [30], Abdeljawad
proceeded on to develop the definitions and set the basic
concepts in this new simple interesting fractional calculus.
Since then, there are a few authors to study the boundary
value problems for conformable-type fractional differential
equations; for example, we can see [31–33] and the reference
therein. In [33], the authors applied approximation method
and fixed point theorems on cone to consider the existence
and multiplicity of positive solution about the following
fractional differential equationwith the p-Laplacian operator:

𝐷𝛼 (𝜙𝑝 (𝐷𝛼𝑢 (𝑡))) = 𝜆𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,
𝑢 (0) = 𝑢 (1) = 0,

𝐷𝛼𝑢 (0) = 𝐷𝛼𝑢 (1) = 0,
(3)
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where 𝛼 ∈ (1, 2] is a real number, 𝐷𝛼 is the conformable
fractional derivative, 𝜙𝑝(𝑠) = |𝑠|𝑝−2𝑠, 𝑝 > 1, and 𝑓 : [0, 1] ×[0, +∞) → [0, +∞) is continuous.

There are few papers about the system of fractional differ-
ential equations concerning conformable fractional deriva-
tive. System (1), (2) is a new type of conformable fractional
differential equations. Motivated by the recent papers [28,
33, 34], we consider the existence of positive solutions of
the system for conformable fractional differential equations
(1), (2). By using Guo-Krasnosel’skii fixed point theorem,
we establish some sufficient conditions on 𝑔, 𝑓, 𝜆, 𝜇 for the
existence of at least one positive solutions of system (1), (2)
for appropriately chosen parameters.

The organization of this paper is as follows. In Section 2,
we recall some concepts about the conformable fractional
derivative and give some lemmas with respect to the corre-
sponding Green’s function. In Section 3, we give some results
about the existence of positive solutions of system (1), (2). In
Section 4, we summarize themain results of the third section.

2. Preliminaries

For the convenience of the reader, we give the following
concepts and lemmas of conformable fractional calculus, and
some auxiliary results that will be used to prove our main
theorems (see [29–33]).

Definition 1. Let 𝛼 ∈ (𝑛, 𝑛 + 1] and 𝑓 be a n-differential
function at 𝑡 > 0, then the fractional conformable derivative
of order 𝛼 at 𝑡 > 0 is given by

𝐷𝛼𝑓 (𝑡) = 𝐷𝛼−𝑛𝑓(𝑛) (𝑡)
= lim
𝜖→0

𝑓(𝑛) (𝑡 + 𝜖𝑡𝑛+1−𝛼) − 𝑓(𝑛) (𝑡)
𝜖 ,

(4)

provided the limit of the right hand side exists. If𝑓 is 𝛼-differentiable in some (0, 𝑎), where 𝑎 > 0,
and lim𝑡→0+ 𝐷𝛼𝑓(𝑡) exists, then define 𝐷𝛼𝑓(0) =
lim𝑡→0+ 𝐷𝛼𝑓(𝑡).
Definition 2. Let𝛼 ∈ (𝑛, 𝑛+1].The fractional integral of order𝛼 > 0 at 𝑡 > 0 of a function 𝑓 : (0, +∞) → (0, +∞) is given
by

𝐼𝛼𝑓 (𝑡) = 𝐼𝑛+1 (𝑡𝛼−𝑛−1𝑓 (𝑡))
= 1
𝑛! ∫
𝑡

0
(𝑡 − 𝑠)𝑛 𝑠𝛼−𝑛−1𝑓 (𝑠) 𝑑𝑠, (5)

where 𝐼𝑛+1 denotes the integration operator of order 𝑛 + 1.
Lemma 3. Let 𝛼 ∈ (𝑛, 𝑛 + 1] and 𝑓, 𝑔 be 𝛼-differentiable at a
point 𝑡 > 0. 
en

(i) 𝐷𝛼[𝑎𝑓 + 𝑏𝑔] = 𝑎𝐷𝛼(𝑓) + 𝑏𝐷𝛼(𝑔), ∀𝑎, 𝑏 ∈ 𝑅1.
(ii) 𝐷𝛼𝑡𝑘 = 0, where 𝑘 = 0, 1, . . . , 𝑛.
(iii) 𝐷𝛼(𝐶) = 0, for all constant functions 𝑓(𝑡) = 𝐶.
(iv) 𝐷𝛼(𝑓𝑔) = 𝑓𝐷𝛼(𝑔) + 𝑔𝐷𝛼(𝑓).

(v) 𝐷𝛼(𝑓/𝑔) = (𝑔𝐷𝛼(𝑓) − 𝑓𝐷𝛼(𝑔))/𝑔2.
(vi) If, in addition, 𝑓 is differentiable, then 𝐷𝛼𝑓(𝑡) =

𝑡𝑛+1−𝛼𝑓(𝑛+1)(𝑡).
(vii) If, in addition, 𝑓 is differentiable at 𝑔(𝑡), then 𝐷𝛼(𝑓 ∘

𝑔)(𝑡) = 𝑓(𝑛)(𝑔(𝑡))𝐷𝛼𝑔(𝑡).
Lemma 4. Given 𝛼 ∈ (𝑛, 𝑛 + 1] and 𝑓 a continuous function
defined in the domain of 𝐼𝛼, one has that 𝐷𝛼𝐼𝛼𝑓(𝑡) = 𝑓(𝑡) for𝑡 > 0.
Lemma 5 (mean value theorem). Let 𝑎 > 0 and 𝑓 : [𝑎, 𝑏] →𝑅1 be a given function that satisfies

(i) 𝑓 is continuous on [𝑎, 𝑏],
(ii) 𝑓 is 𝛼-differentiable for some 𝛼 ∈ (0, 1).


en, there exists 𝑐 ∈ (𝑎, 𝑏) such that
𝐷𝛼𝑓 (𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)

(1/𝛼) 𝑏𝛼 − (1/𝛼) 𝑎𝛼 . (6)

Lemma 6. Given 𝛼 ∈ (𝑛, 𝑛 + 1] and 𝑓 : [0, +∞) → 𝑅1 an𝛼-differentiable function, one has that 𝐷𝛼𝑓(𝑡) = 0 if and only
if 𝑓(𝑡) = 𝑎0 + 𝑎1𝑡 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑡𝑛, where 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑅1.
Lemma 7. Given 𝑎 ∈ (𝑛, 𝑛 + 1] and 𝑥 ∈ 𝐶(0, +∞) an 𝛼-
differentiable function that belongs to 𝐶(0, 1) ∩𝐿(0, 1), one has
that 𝐼𝛼𝐷𝛼𝑥(𝑡) = 𝑥(𝑡) + 𝑐0 + 𝑐1𝑡 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝑛, for some 𝑐𝑘 ∈ 𝑅1,𝑘 = 0, 1, . . . , 𝑛.

By Lemma 2.7 in [33], we can obtain the following
lemmas.

Lemma 8 (see [33]). Let 𝑢 ∈ 𝐶[0, 1] and 𝛼1, 𝛼2 ∈ (1, 2]. 
en
the conformable fractional differential equation

𝐷𝛼𝑖 (𝜙𝑝 (𝐷𝛼𝑖𝑥 (𝑡))) = 𝑢 (𝑡) , 0 < 𝑡 < 1,
𝑥 (0) = 𝑥 (1) = 0,

𝐷𝛼𝑖𝑥 (0) = 𝐷𝛼𝑖𝑥 (1) = 0
(7)

has a unique solution

𝑥 (𝑡) = ∫1
0
𝐾𝑖 (𝑡, 𝑠) 𝜙𝑞𝑖 (∫

1

0
𝐾𝑖 (𝑠, 𝜏) 𝑢 (𝜏)) 𝑑𝑠, (8)

where

𝑘𝑖 (𝑡, 𝑠) = {{{
(1 − 𝑡) 𝑠𝛼𝑖−1, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
𝑡𝑠𝛼𝑖−2 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, (9)

and 𝑖 = 1, 2.
Lemma 9 (see [33]). 
e function 𝐾𝑖(𝑡, 𝑠) (𝑖 = 1, 2) defined
by (9) has the following properties:

(i) 𝐾𝑖(𝑡, 𝑠) > 0, for all 𝑡, 𝑠 ∈ (0, 1);
(ii) min1/4≤𝑡≤3/4𝐾𝑖(𝑡, 𝑠) ≥ (1/4)max0≤𝑡≤1𝐾𝑖(𝑡, 𝑠) =(1/4)𝐾𝑖(𝑠, 𝑠), for 𝑠 ∈ (0, 1).
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Lemma 10 (see [35]). Let 𝐸 be a Banach space, 𝑃 ⊂ 𝐸 be a
cone, Ω1 and Ω2 be bounded open subsets of 𝐸, 𝜃 ∈ Ω1, andΩ1 ⊂ Ω2. Assume that 𝑇 : 𝑃 ∩ (Ω2 \ Ω1) → 𝑃 is a completely
continuous operator such that

(i) ‖𝑇𝑢‖ ≤ ‖𝑢‖, ∀𝑢 ∈ 𝑃 ∩ 𝜕Ω1, ‖𝑇𝑢‖ ≥ ‖𝑢‖, ∀𝑢 ∈ 𝑃 ∩𝜕Ω2
or

(ii) ‖𝑇𝑢‖ ≥ ‖𝑢‖, ∀𝑢 ∈ 𝑃 ∩ 𝜕Ω1, ‖𝑇𝑢‖ ≤ ‖𝑢‖, ∀𝑢 ∈ 𝑃 ∩𝜕Ω2.

en the operator 𝑇 has at least one fixed point in 𝑃 ∩
(Ω2 \ Ω1).

3. Main Results

Let𝑋 = 𝐶[0, 1] with supremum norm ‖𝑥‖ = max0≤𝑡≤1 |𝑥(𝑡)|.
Let 𝐸 = 𝑋 × 𝑋 with the norm ‖(𝑥, 𝑦)‖𝐸 = ‖𝑥‖ + ‖𝑦‖. Then 𝐸
is a Banach space. We define the cone

𝑃 = {(𝑥, 𝑦) ∈ 𝐸 | 𝑥 (𝑡) ≥ 0, 𝑦 (𝑡) ≥ 0, ∀𝑡

∈ [0, 1] , min
1/4≤𝑡≤3/4

(𝑥 (𝑡) + 𝑦 (𝑡)) ≥ 1
4 (𝑥, 𝑦)𝐸} .

(10)

In the following, we define the operators 𝐴, 𝐵 : 𝐸 → 𝑋
and 𝑇 : 𝐸 → 𝐸:

𝐴 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐾1 (𝑡, 𝑠)

⋅ 𝜙𝑞1 (𝜆∫
1

0
𝐾1 (𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠,

𝑡 ∈ [0, 1] ,

𝐵 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐾2 (𝑡, 𝑠)

⋅ 𝜙𝑞2 (𝜇∫
1

0
𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠,

𝑡 ∈ [0, 1] ,
𝑇 (𝑥, 𝑦) = (𝐴 (𝑥, 𝑦) , 𝐵 (𝑥, 𝑦)) , (𝑥, 𝑦) ∈ 𝐸,

(11)

where𝐾𝑖(𝑡, 𝑠) (𝑖 = 1, 2) is defined by (9).
Obviously, the nontrivial fixed points of the operator 𝑇 in

P are positive solutions of system (1), (2).

Lemma 11. 
e operator 𝑇 : 𝑃 → 𝑃 is a completely
continuous operator.

Proof. It is obvious that 𝐴(𝑥, 𝑦)(𝑡) ≥ 0, 𝐵(𝑥, 𝑦)(𝑡) ≥ 0 for(𝑥, 𝑦) ∈ 𝑃, 𝑡 ∈ [0, 1]. By Lemma 8, we have

𝐴 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐾1 (𝑡, 𝑠)

⋅ 𝜙𝑞1 (𝜆∫
1

0
𝐾1 (𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ 𝜙𝑞1 (𝜆) ∫
1

0
𝑠 (1 − 𝑠)𝛼1−1

⋅ 𝜙𝑞1 (∫
1

0
𝐾1 (𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠,

(12)

and

𝐵 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐾2 (𝑡, 𝑠)

⋅ 𝜙𝑞2 (𝜇∫
1

0
𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ 𝜙𝑞2 (𝜇) ∫
1

0
𝑠 (1 − 𝑠)𝛼2−1

⋅ 𝜙𝑞2 (∫
1

0
𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠.

(13)

Then 𝑇 (𝑥, 𝑦)𝐸 = 𝐴 (𝑥, 𝑦) + 𝐵 (𝑥, 𝑦) ≤ 𝜙𝑞1 (𝜆)
⋅ ∫1
0
𝑠 (1 − 𝑠)𝛼1−1

⋅ 𝜙𝑞1 (∫
1

0
𝐾1 (𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠

+ 𝜙𝑞2 (𝜇) ∫
1

0
𝑠 (1 − 𝑠)𝛼2−1

⋅ 𝜙𝑞2 (∫
1

0
𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠.

(14)

On the other hand, by Lemma 9, we have

min
1/4≤𝑡≤3/4

𝐴 (𝑥, 𝑦) (𝑡) ≥ 1
4𝜙𝑞1 (𝜆) ∫

1

0
𝐾1 (𝑠, 𝑠)

⋅ 𝜙𝑞1 (∫
1

0
𝐾1 (𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠

≥ 1
4 𝐴 (𝑥, 𝑦) ,

(15)

and

min
1/4≤𝑡≤3/4

𝐵 (𝑥, 𝑦) (𝑡) ≥ 1
4𝜙𝑞2 (𝜇) ∫

1

0
𝐾2 (𝑠, 𝑠)

⋅ 𝜙𝑞2 (∫
1

0
𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠

≥ 1
4 𝐵 (𝑥, 𝑦) .

(16)
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So we have

min
1/4≤𝑡≤3/4

(𝐴 (𝑥, 𝑦) (𝑡) + 𝐵 (𝑥, 𝑦) (𝑡))
≥ min
1/4≤𝑡≤3/4

𝐴 (𝑥, 𝑦) (𝑡) + min
1/4≤𝑡≤3/4

𝐵 (𝑥, 𝑦) (𝑡)
≥ 1
4 (𝑥, 𝑦)𝐸 ,

(17)

i.e., 𝑇(𝑃) ⊂ 𝑃.
By the paper [33], we know that 𝐴 and 𝐵 are completely

continuous operator. It is obvious that 𝑇 is completely
continuous. The proof is completed.

Denote

𝑔0 = lim
𝑥+𝑦→0+

max
𝑡∈[0,1]

𝑔 (𝑡, 𝑥, 𝑦)
𝜙𝑝1 (𝑥 + 𝑦) .

𝑓0 = lim
𝑥+𝑦→0+

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑥, 𝑦)
𝜙𝑝2 (𝑥 + 𝑦) .

𝑔∞ = lim
𝑥+𝑦→+∞

min
1/4≤𝑡≤3/4

𝑔 (𝑡, 𝑥, 𝑦)
𝜙𝑝1 (𝑥 + 𝑦) .

𝑓∞ = lim
𝑥+𝑦→+∞

min
1/4≤𝑡≤3/4

𝑓 (𝑡, 𝑥, 𝑦)
𝜙𝑝2 (𝑥 + 𝑦) .

𝐶1 = ∫1
0
𝑠 (1 − 𝑠)𝛼1−1 𝜙𝑞1 (∫

1

0
𝐾1 (𝑠, 𝜏) 𝑑𝜏) 𝑑𝑠,

𝐶2 = ∫1
0
𝑠 (1 − 𝑠)𝛼2−1 𝜙𝑞2 (∫

1

0
𝐾2 (s, 𝜏) 𝑑𝜏) 𝑑𝑠.

𝐶3 = ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼1−1 𝜙𝑞1 (∫
3/4

1/4
𝐾1 (𝑠, 𝜏) 𝑑𝜏)𝑑𝑠,

𝐶4 = ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼2−1 𝜙𝑞2 (∫
3/4

1/4
𝐾2 (𝑠, 𝜏) 𝑑𝜏)𝑑𝑠.

(18)

Theorem 12. Assume that 𝑔0, 𝑓0, 𝑔∞, 𝑓∞ ∈ (0, +∞), 𝑀1 <𝑀2 and 𝑀3 < 𝑀4, then for each 𝜆 ∈ (𝑀1,𝑀2) and 𝜇 ∈(𝑀3,𝑀4), system (1), (2) has a positive solution (𝑥(𝑡), 𝑦(𝑡)),𝑡 ∈ [0, 1], where
𝑀1 = 𝜙𝑝1 ( 8

𝐶3)
1
𝑔∞ ,

𝑀2 = 𝜙𝑝1 ( 1
2𝐶1)

1
𝑔0 ,

𝑀3 = 𝜙𝑝2 ( 8
𝐶4)

1
𝑓∞ ,

𝑀4 = 𝜙𝑝2 ( 1
2𝐶2)

1
𝑓0 .

(19)

Proof. Let 𝜆 ∈ (𝑀1,𝑀2) and 𝜇 ∈ (𝑀3,𝑀4). Then there exists
a number 𝜖 > 0 such that 𝜖 < min{𝑔∞, 𝑓∞}, and

𝜙𝑝1 ( 8
𝐶3)

1
𝑔∞ − 𝜖 ≤ 𝜆 ≤ 𝜙𝑝1 ( 1

2𝐶1)
1

𝑔0 + 𝜖 ,

𝜙𝑝2 ( 8
𝐶4)

1
𝑓∞ − 𝜖 ≤ 𝜇 ≤ 𝜙𝑝2 ( 1

2𝐶2)
1

𝑓0 + 𝜖 .
(20)

For the above 𝜖 > 0, we know that there exists 𝑅1 > 0 such
that

𝑔 (𝑡, 𝑥, 𝑦) < (𝑔0 + 𝜖) 𝜙𝑝1 (𝑥 + 𝑦) ,
0 ≤ 𝑥 + 𝑦 ≤ 𝑅1, 𝑡 ∈ [0, 1] .

𝑓 (𝑡, 𝑥, 𝑦) < (𝑓0 + 𝜖) 𝜙𝑝2 (𝑥 + 𝑦) ,
0 ≤ 𝑥 + 𝑦 ≤ 𝑅1, 𝑡 ∈ [0, 1] .

(21)

Let Ω1 = {(𝑥, 𝑦) ∈ 𝐸 | ‖(𝑥, 𝑦)‖𝐸 < 𝑅1}. For any (𝑥, 𝑦) ∈𝑃 ∩ 𝜕Ω1, we have

𝐴 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐾1 (𝑡, 𝑠) 𝜙𝑞1 (𝜆∫

1

0
𝐾1 (𝑠, 𝜏)

⋅ 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠 ≤ 𝜙𝑞1 (𝜆)

⋅ ∫1
0
𝐾1 (𝑡, 𝑠) 𝜙𝑞1 (∫

1

0
𝐾1 (𝑠, 𝜏)

⋅ [(𝑔0 + 𝜖) 𝜙𝑝1 (𝑥 (𝜏) + 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ 𝜙𝑞1 (𝜆) 𝜙𝑞1 (𝑔0 + 𝜖) ∫
1

0
𝑠 (1 − 𝑠)𝛼1−1

⋅ 𝜙𝑞1 (∫
1

0
𝐾1 (𝑠, 𝜏) 𝜙𝑝1 (𝑥 (𝜏) + 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ 𝜙𝑞1 (𝜆) 𝜙𝑞1 (𝑔0 + 𝜖) ∫
1

0
𝑠 (1 − 𝑠)𝛼1−1

⋅ 𝜙𝑞1 (∫
1

0
𝐾1 (𝑠, 𝜏) 𝜙𝑝1 (‖𝑥‖ + 𝑦) 𝑑𝜏) 𝑑𝑠

= 𝜙𝑞1 (𝜆 (𝑔0 + 𝜖)) 𝐶1 (‖𝑥‖ + 𝑦) ≤ 1
2 (𝑥, 𝑦)𝐸 .

(22)

So

𝐴 (𝑥, 𝑦) ≤ 1
2 (𝑥, 𝑦)𝐸 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω1. (23)
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Similarly, we have

𝐵 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐾2 (𝑡, 𝑠) 𝜙𝑞2 (𝜇∫

1

0
𝐾2 (𝑠, 𝜏)

⋅ 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠 ≤ 𝜙𝑞2 (𝜇)

⋅ ∫1
0
𝐾2 (𝑡, 𝑠) 𝜙𝑞2 (∫

1

0
𝐾2 (𝑠, 𝜏)

⋅ [(𝑓0 + 𝜖) 𝜙𝑝2 (𝑥 (𝜏) + 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ 𝜙𝑞2 (𝜇) 𝜙𝑞2 (𝑓0 + 𝜖) ∫
1

0
𝑠 (1 − 𝑠)𝛼2−1

⋅ 𝜙𝑞2 (∫
1

0
𝐾2 (𝑠, 𝜏) 𝜙𝑝2 (𝑥 (𝜏) + 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ 𝜙𝑞2 (𝜇) 𝜙𝑞2 (𝑓0 + 𝜖) ∫
1

0
𝑠 (1 − 𝑠)𝛼2−1

⋅ 𝜙𝑞2 (∫
1

0
𝐾2 (𝑠, 𝜏) 𝜙𝑝2 (‖𝑥‖ + 𝑦) 𝑑𝜏)𝑑𝑠

= 𝜙𝑞2 (𝜆 (𝑓0 + 𝜖)) 𝐶2 (‖𝑥‖ + 𝑦) ≤ 1
2 (𝑥, 𝑦)𝐸 .

(24)

So

𝐵 (𝑥, 𝑦) ≤ 1
2 (𝑥, 𝑦)𝐸 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω1. (25)

Hence
𝑇 (𝑥, 𝑦)𝐸 = 𝐴 (𝑥, 𝑦) + 𝑏 (𝑥, 𝑦) ≤ (𝑥, 𝑦)𝐸 ,

∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω1.
(26)

On the other hand, for the above 𝜖 > 0, there exists �̃�2 > 0
such that

𝑔 (𝑡, 𝑥, 𝑦) ≥ (𝑔∞ − 𝜖) 𝜙𝑝1 (𝑥 + 𝑦) ,
𝑥 + 𝑦 ≥ �̃�2 > 0, 𝑡 ∈ [14 ,

3
4] ,

𝑓 (𝑡, 𝑥, 𝑦) ≥ (𝑓∞ − 𝜖) 𝜙𝑝2 (𝑥 + 𝑦) ,
𝑥 + 𝑦 ≥ �̃�2 > 0, 𝑡 ∈ [14 ,

3
4] .

(27)

Let 𝑅2 = max{2𝑅1, 4�̃�2}. Let Ω2 = {(𝑥, 𝑦) ∈𝐸 | ‖(𝑥, 𝑦)‖𝐸 < 𝑅2}. For any (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω2, we
have min1/4≤𝑡≤3/4 {𝑥(𝑡) + 𝑦(𝑡)} ≥ (1/4)(‖𝑥‖ + ‖𝑦‖) =
(1/4)‖(𝑥, 𝑦)‖𝐸 = 𝑅2/4 ≥ �̃�2. So by Lemma 9, we have

𝐴 (𝑥, 𝑦) (14) = ∫1
0
𝐾1 (14 , 𝑠) 𝜙𝑞1 (𝜆∫

1

0
𝐾1 (𝑠, 𝜏)

⋅ 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠 ≥ 1
4𝜙𝑞1 (𝜆)

⋅ ∫1
0
𝑠 (1 − 𝑠)𝛼1−1 𝜙𝑞1 (∫

3/4

1/4
𝐾1 (𝑠, 𝜏)

⋅ 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠 ≥ 1
4𝜙𝑞1 (𝜆)

⋅ ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼1−1 𝜙𝑞1 (∫
3/4

1/4
𝐾1 (𝑠, 𝜏) (𝑔∞ − 𝜖)

⋅ 𝜙𝑝1 (𝑥 (𝜏) + 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 1
4𝜙𝑞1 (𝜆)

⋅ 𝜙𝑞1 (𝑔∞ − 𝜖) ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼1−1 𝜙𝑞1 (∫
3/4

1/4
𝐾1 (𝑠, 𝜏)

⋅ 𝜙𝑝1 (14 (‖𝑥‖ + 𝑦)) 𝑑𝜏) 𝑑𝑠 =
1
16

⋅ 𝜙𝑞1 (𝜆 (𝑔∞ − 𝜖)) 𝐶3 ((𝑥, 𝑦)𝐸) ≥ 1
2 (𝑥, 𝑦)𝐸 .

(28)

So

𝐴 (𝑥, 𝑦) ≥ 1
2 (𝑥, 𝑦)𝐸 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω2. (29)

Similarly, we have

𝐵 (𝑥, 𝑦) (34) = ∫1
0
𝐾2 (34 , 𝑠) 𝜙𝑞2 (𝜇∫

1

0
𝐾2 (𝑠, 𝜏)

⋅ 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠 ≥ 1
4𝜙𝑞2 (𝜇)

⋅ ∫1
0
𝑠 (1 − 𝑠)𝛼2−1 𝜙𝑞2 (∫

3/4

1/4
𝐾2 (𝑠, 𝜏)

⋅ 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠 ≥ 1
4𝜙𝑞2 (𝜇)

⋅ ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼2−1 𝜙𝑞2 (∫
3/4

1/4
𝐾2 (𝑠, 𝜏) (𝑓∞ − 𝜖)

⋅ 𝜙𝑝2 (𝑥 (𝜏) + 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 1
4𝜙𝑞2 (𝜇)

⋅ 𝜙𝑞2 (𝑓∞ − 𝜖) ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼2−1 𝜙𝑞2 (∫
3/4

1/4
𝐾2 (𝑠, 𝜏)
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⋅ 𝜙𝑝2 (14 (‖𝑥‖ + 𝑦)) 𝑑𝜏)𝑑𝑠 =
1
16

⋅ 𝜙𝑞2 (𝜆 (𝑓∞ − 𝜖)) 𝐶4 ((𝑥, 𝑦)𝐸) ≥ 1
2 (𝑥, 𝑦)𝐸 .

(30)

So

𝐵 (𝑥, 𝑦) ≥ 1
2 (𝑥, 𝑦)𝐸 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω2. (31)

Hence

𝑇 (𝑥, 𝑦)𝐸 = 𝐴 (𝑥, 𝑦) + 𝐵 (𝑥, 𝑦) ≥ (𝑥, 𝑦)𝐸 ,
∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω2. (32)

By Lemma 10 and (26) (32), the operator 𝑇 has one fixed
point (𝑥, 𝑦) ∈ 𝑃∩(Ω2\Ω1).That is, (𝑥, 𝑦) is a positive solution
of system (1), (2).

Similar to the proof of Theorem 12, we can easily obtain
the following results.

Theorem 13. Assume that 𝑔0 = 0, 𝑔∞, 𝑓0, 𝑓∞ ∈ (0, +∞) and𝑀3 < 𝑀4, then for each 𝜆 ∈ (𝑀1, +∞) and 𝜇 ∈ (𝑀3,𝑀4),
system (1), (2) has a positive solution (𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 14. Assume that 𝑓0 = 0, 𝑔∞, 𝑔0, 𝑓∞ ∈ (0, +∞) and𝑀1 < 𝑀2, then for each 𝜆 ∈ (𝑀1,𝑀2) and 𝜇 ∈ (𝑀3, +∞),
system (1), (2) has a positive solution (𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 15. Assume that 𝑔0 = 0, 𝑓0 = 0, 𝑔∞, 𝑓∞ ∈(0, +∞), then for each 𝜆 ∈ (𝑀1, +∞) and 𝜇 ∈ (𝑀3, +∞),
system (1), (2) has a positive solution (𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 16. Assume that 𝑔0, 𝑓0 ∈ (0, +∞), 𝑔∞ = +∞ or𝑔0, 𝑓0 ∈ (0, +∞), 𝑓∞ = +∞, then for each 𝜆 ∈ (0,𝑀2)
and 𝜇 ∈ (0,𝑀4), system (1), (2) has a positive solution(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 17. Assume that 𝑔0 ∈ (0, +∞), 𝑓0 = 0, 𝑓∞ = +∞
or 𝑔0 ∈ (0, +∞), 𝑓0 = 0, 𝑔∞ = +∞, then for each 𝜆 ∈(0,𝑀2) and 𝜇 ∈ (0, +∞), system (1), (2) has a positive solution(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 18. Assume that 𝑔0 = 𝑓0 = 0, 𝑓∞ = +∞ or𝑔0 = 𝑓0 = 0, 𝑔∞ = +∞, then for each 𝜆 ∈ (0, +∞) and 𝜇 ∈(0, +∞), system (1), (2) has a positive solution (𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈[0, 1].

Denote

𝑔0 = lim
𝑥+𝑦→0+

min
𝑡∈[1/4,3/4]

𝑔 (𝑡, 𝑥, 𝑦)
𝜙𝑝1 (𝑥 + 𝑦) .

𝑓0 = lim
𝑥+𝑦→0+

min
𝑡∈[1/4,3/4]

𝑓 (𝑡, 𝑥, 𝑦)
𝜙𝑝2 (𝑥 + 𝑦) .

𝑔∞ = lim
𝑥+𝑦→+∞

max
𝑡∈[0,1]

𝑔 (𝑡, 𝑥, 𝑦)
𝜙𝑝1 (𝑥 + 𝑦) .

𝑓∞ = lim
𝑥+𝑦→+∞

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑥, 𝑦)
𝜙𝑝2 (𝑥 + 𝑦) .

(33)

Theorem 19. Assume that 𝑔0, 𝑓0, 𝑔∞, 𝑓∞ ∈ (0, +∞), 𝑀1 <𝑀2 and 𝑀3 < 𝑀4, then for each 𝜆 ∈ (𝑀1,𝑀2) and 𝜇 ∈
(𝑀3,𝑀4), system (1), (2) has a positive solution (𝑥(𝑡), 𝑦(𝑡)),𝑡 ∈ [0, 1], where

𝑀1 = 𝜙𝑝1 ( 8
𝐶3)

1
𝑔0 ,

𝑀2 = 𝜙𝑝1 ( 1
2𝐶1)

1
𝑔∞ ,

𝑀3 = 𝜙𝑝2 ( 8
𝐶4)

1
𝑓0 ,

𝑀4 = 𝜙𝑝2 ( 1
2𝐶2)

1
𝑓∞ .

(34)

Proof. Let 𝜆 ∈ (𝑀1,𝑀2) and 𝜇 ∈ (𝑀3,𝑀4).Then there exists
a number 𝜖 > 0 such that 𝜖 < min{𝑔0, 𝑓0}, and

𝜙𝑝1 ( 8
𝐶3)

1
𝑔0 − 𝜖 ≤ 𝜆 ≤ 𝜙𝑝1 ( 1

2𝐶1)
1

𝑔∞ + 𝜖 ,

𝜙𝑝2 ( 8
𝐶4)

1
𝑓0 − 𝜖 ≤ 𝜇 ≤ 𝜙𝑝2 ( 1

2𝐶2)
1

𝑓∞ + 𝜖 .
(35)

For the above 𝜖 > 0, we know that there exists 𝑅3 > 0 such
that

𝑔 (𝑡, 𝑥, 𝑦) > (𝑔0 − 𝜖) 𝜙𝑝1 (𝑥 + 𝑦) ,
𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 + 𝑦 ≤ 𝑅3, 𝑡 ∈ [14 ,

3
4] ,

𝑓 (𝑡, 𝑥, 𝑦) > (𝑓0 − 𝜖) 𝜙𝑝2 (𝑥 + 𝑦) ,
𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 + 𝑦 ≤ 𝑅3, 𝑡 ∈ [14 ,

3
4] .

(36)

Let Ω3 = {(𝑥, 𝑦) ∈ 𝐸 | ‖(𝑥, 𝑦)‖𝐸 < 𝑅3}. For any (𝑥, 𝑦) ∈𝑃 ∩ 𝜕Ω3, we have min1/4≤𝑡≤3/4 {𝑥(𝑡) + 𝑦(𝑡)} ≥ (1/4)(‖𝑥‖ +‖𝑦‖) = (1/4)‖(𝑥, 𝑦)‖𝐸. So by Lemma 9, we obtain
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𝐴 (𝑥, 𝑦) (14) = ∫1
0
𝐾1 (14 , 𝑠) 𝜙𝑞1 (𝜆∫

1

0
𝐾1 (𝑠, 𝜏)

⋅ 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 1
4𝜙𝑞1 (𝜆)

⋅ ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼1−1 𝜙𝑞1 (∫
3/4

1/4
𝐾1 (𝑠, 𝜏)

⋅ 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 1
4𝜙𝑞1 (𝜆)

⋅ ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼1−1 𝜙𝑞1 (∫
3/4

1/4
𝐾1 (𝑠, 𝜏) (𝑔0 − 𝜖)

⋅ 𝜙𝑝1 (𝑥 (𝜏) + 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠 ≥ 1
4𝜙𝑞1 (𝜆)

⋅ 𝜙𝑞1 (𝑔0 − 𝜖) ∫
3/4

1/4
𝑠 (1 − 𝑠)𝛼1−1 𝜙𝑞1 (∫

3/4

1/4
𝐾1 (𝑠, 𝜏)

⋅ 𝜙𝑝1 (14 (‖𝑥‖ + 𝑦)) 𝑑𝜏)𝑑𝑠 =
1
16

⋅ 𝜙𝑞1 (𝜆 (𝑔0 − 𝜖)) 𝐶3 ((𝑥, 𝑦)𝐸) ≥ 1
2 (𝑥, 𝑦)𝐸 .

(37)

So

𝐴 (𝑥, 𝑦) ≥ 1
2 (𝑥, 𝑦)𝐸 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω3. (38)

Similarly, we get

𝐵 (𝑥, 𝑦) (34) = ∫1
0
𝐾2 (34 , 𝑠) 𝜙𝑞2 (𝜇∫

1

0
𝐾2 (𝑠, 𝜏)

⋅ 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 1
4𝜙𝑞2 (𝜇)

⋅ ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼2−1 𝜙𝑞2 (∫
3/4

1/4
𝐾2 (𝑠, 𝜏)

⋅ 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 1
4𝜙𝑞2 (𝜇)

⋅ ∫3/4
1/4

𝑠 (1 − 𝑠)𝛼2−1 𝜙𝑞2 (∫
3/4

1/4
𝐾2 (𝑠, 𝜏) (𝑓0 − 𝜖)

⋅ 𝜙𝑝2 (𝑥 (𝜏) + 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 1
4𝜙𝑞2 (𝜇)

⋅ 𝜙𝑞2 (𝑓0 − 𝜖)∫
3/4

1/4
𝑠 (1 − 𝑠)𝛼2−1 𝜙𝑞2 (∫

3/4

1/4
𝐾2 (𝑠, 𝜏)

⋅ 𝜙𝑝2 (14 (‖𝑥‖ + 𝑦)) 𝑑𝜏)𝑑𝑠 =
1
16

⋅ 𝜙𝑞2 (𝜇 (𝑓0 − 𝜖)) 𝐶3 ((𝑥, 𝑦)𝐸) ≥ 1
2 (𝑥, 𝑦)𝐸 .

(39)

So
𝐵 (𝑥, 𝑦) ≥ 1

2 (𝑥, 𝑦)𝐸 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω3. (40)

Hence𝑇 (𝑥, 𝑦)𝐸 = 𝐴 (𝑥, 𝑦) + 𝐵 (𝑥, 𝑦) ≥ (𝑥, 𝑦)𝐸 ,
∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω3. (41)

We define the functions 𝑔, 𝑓 : [0, 1] × [0, +∞) →
[0, +∞), 𝑔(𝑡, 𝑢) = max0≤𝑥+𝑦≤𝑢 𝑔(𝑡, 𝑥, 𝑦), and 𝑓(𝑡, 𝑢) =
max0≤𝑥+𝑦≤𝑢 𝑓(𝑡, 𝑥, 𝑦). So it is obvious that 𝑔(𝑡, 𝑢) and 𝑓(𝑡, 𝑢)
are nondecreasing on 𝑢 for every 𝑡 ∈ [0, 1]; and 𝑔(𝑡, 𝑥, 𝑦) ≤
𝑔(𝑡, 𝑢), 𝑓(𝑡, 𝑥, 𝑦) ≤ 𝑓(𝑡, 𝑢), 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 + 𝑦 ≤ 𝑢, 𝑡 ∈[0, 1]; and they satisfy the conditions

lim sup
𝑢→+∞

max
𝑡∈[0,1]

𝑔 (𝑡, 𝑢)
𝜙𝑝1 (𝑢) ≤ 𝑔∞,

lim sup
𝑢→+∞

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑢)
𝜙𝑝2 (𝑢) ≤ 𝑓∞.

(42)

For the above 𝜖 > 0, there exists �̃�4 > 0 such that
𝑔 (𝑡, 𝑢)
𝜙𝑝1 (𝑢) ≤ lim sup

𝑢→+∞
max
𝑡∈[0,1]

𝑔 (𝑡, 𝑢)
𝜙𝑝1 (𝑢) + 𝜖 ≤ 𝑔∞ + 𝜖,

𝑡 ∈ [0, 1] , 𝑢 ≥ �̃�4,
𝑓 (𝑡, 𝑢)
𝜙𝑝2 (𝑢) ≤ lim sup

𝑢→+∞
max
𝑡∈[0,1]

𝑓 (𝑡, 𝑢)
𝜙𝑝2 (𝑢) + 𝜖 ≤ 𝑓∞ + 𝜖,

𝑡 ∈ [0, 1] , 𝑢 ≥ �̃�4.

(43)

So 𝑔(𝑡, 𝑢) ≤ (𝑔∞+𝜖)𝜙𝑝1(𝑢),𝑓(𝑡, 𝑢) ≤ (𝑓∞+𝜖)𝜙𝑝2(𝑢), and𝑡 ∈ [0, 1], 𝑢 ≥ �̃�4.
By the definition of 𝑔, 𝑓, we get 𝑔(𝑡, 𝑥, 𝑦) ≤

𝑔(𝑡, ‖(𝑥, 𝑦)‖𝐸), 𝑓(𝑡, 𝑥, 𝑦) ≤ 𝑓(𝑡, ‖(𝑥, 𝑦)‖𝐸). Let
𝑅4 = max{2𝑅3, �̃�4}. Let Ω4 = {(𝑥, 𝑦) ∈ 𝐸 | ‖(𝑥, 𝑦)‖𝐸 < 𝑅4}.
For any (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω4, we have
𝐴 (𝑥, 𝑦) (𝑡) = ∫1

0
𝐾1 (𝑡, 𝑠)

⋅ 𝜙𝑞1 (𝜆∫
1

0
𝐾1 (𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ 𝜙𝑞1 (𝜆) ∫
1

0
𝑠 (1 − 𝑠)𝛼1−1

⋅ 𝜙𝑞1 (∫
1

0
𝐾1 (𝑠, 𝜏) 𝑔 (𝜏, (𝑥, 𝑦)𝐸) 𝑑𝜏)𝑑𝑠

≤ 𝜙𝑞1 (𝜆) 𝜙𝑞1 (𝑔∞ + 𝜖) ∫1
0
𝑠 (1 − 𝑠)𝛼1−1

⋅ 𝜙𝑞1 (∫
1

0
𝐾1 (𝑠, 𝜏) 𝜙𝑝1 ((𝑥, 𝑦)𝐸)) 𝑑𝜏)𝑑𝑠

= 𝜙𝑞1 (𝜆 (𝑔∞ + 𝜖)) 𝐶1 ((𝑥, 𝑦)𝐸) ≤ 1
2 (𝑥, 𝑦)𝐸 .

(44)
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So
𝐴 (𝑥, 𝑦) ≤ 1

2 (𝑥, 𝑦)𝐸 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω4. (45)

Similarly, we have

𝐵 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐾2 (𝑡, 𝑠)

⋅ 𝜙𝑞2 (𝜇∫
1

0
𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) 𝑑𝑠

≤ 𝜙𝑞2 (𝜇) ∫
1

0
𝑠 (1 − 𝑠)𝛼2−1

⋅ 𝜙𝑞2 (∫
1

0
𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, (𝑥, 𝑦)𝐸) 𝑑𝜏) 𝑑𝑠

≤ 𝜙𝑞2 (𝜇) 𝜙𝑞2 (𝑓∞ + 𝜖)∫1
0
𝑠 (1 − 𝑠)𝛼2−1

⋅ 𝜙𝑞2 (∫
1

0
𝐾2 (𝑠, 𝜏) 𝜙𝑝2 ((𝑥, 𝑦)𝐸)) 𝑑𝜏)𝑑𝑠

= 𝜙𝑞2 (𝜇 (𝑓∞ + 𝜖))𝐶2 ((𝑥, 𝑦)𝐸) ≤ 1
2 (𝑥, 𝑦)𝐸 .

(46)

So
𝐵 (𝑥, 𝑦) ≤ 1

2 (𝑥, 𝑦)𝐸 , ∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω4. (47)

Hence𝑇 (𝑥, 𝑦)𝐸 = 𝐴 (𝑥, 𝑦) + 𝐵 (𝑥, 𝑦) ≤ (𝑥, 𝑦)𝐸 ,
∀ (𝑥, 𝑦) ∈ 𝑃 ∩ 𝜕Ω4. (48)

By Lemma 10 and (41) (48), the operator 𝑇 has one fixed
point (𝑥, 𝑦) ∈ 𝑃∩ (Ω4 \Ω3). So (𝑥, 𝑦) is a positive solution of
system (1), (2).

Similar to the proof of Theorem 19, we can easily obtain
the following results.

Theorem 20. Assume that 𝑔0, 𝑔∞, 𝑓0 ∈ (0, +∞), 𝑓∞ =
0 and 𝑀1 < 𝑀2, then for each 𝜆 ∈ (𝑀1,𝑀2) and
𝜇 ∈ (𝑀3, +∞), system (1), (2) has a positive solution(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 21. Assume that 𝑔0, 𝑓∞, 𝑓0 ∈ (0, +∞), 𝑔∞ =
0 and 𝑀3 < 𝑀4, then for each 𝜆 ∈ (𝑀1, +∞) and
𝜇 ∈ (𝑀3,𝑀4), system (1), (2) has a positive solution(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 22. Assume that 𝑔0, 𝑓0 ∈ (0, +∞), 𝑔∞ = 0, 𝑓∞ =
0, then for each 𝜆 ∈ (𝑀1, +∞) and 𝜇 ∈ (𝑀3, +∞), system (1),
(2) has a positive solution (𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 23. Assume that 𝑔∞, 𝑓∞ ∈ (0, +∞), 𝑔0 = +∞ or
𝑓0 = +∞, 𝑔∞, 𝑓∞ ∈ (0, +∞), then for each 𝜆 ∈ (0,𝑀2)
and 𝜇 ∈ (0,𝑀4), system (1), (2) has a positive solution(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].

Theorem 24. Assume that 𝑔0 = +∞, 𝑔∞ ∈ (0, +∞), 𝑓∞ =
0 or 𝑓0 = +∞, 𝑔∞ ∈ (0, +∞), 𝑓∞ = 0, then for each 𝜆 ∈
(0,𝑀2) and 𝜇 ∈ (0, +∞), system (1), (2) has a positive solution(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 25. Assume that 𝑓∞ ∈ (0, +∞), 𝑔∞ = 0, 𝑔0 =+∞ or 𝑓∞ ∈ (0, +∞), 𝑓0 = +∞, 𝑔∞ = 0, then for each
𝜆 ∈ (0, +∞) and 𝜇 ∈ (0,𝑀4), system (1), (2) has a positive
solution (𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
Theorem 26. Assume that 𝑔0 = +∞, 𝑔∞ = 0, 𝑓∞ = 0 or
𝑔∞ = 0, 𝑓∞ = 0, 𝑓0 = +∞, then for each 𝜆 ∈ (0, +∞)
and 𝜇 ∈ (0, +∞), system (1), (2) has a positive solution(𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 1].
4. Conclusion

In this paper, we investigate the existence of positive solu-
tions for a system of conformable-type fractional differential
equations with two parameters and the p-Laplacian operator.
By employing Guo-Krasnosel’skii fixed point theorem, under
different combinations of sublinearity and superlinearity of
the nonlinearities 𝑓, 𝑔, various sufficient conditions for the
existence of at least one positive solutions of system (1), (2)
are derived in terms of appropriately chosen parameters 𝜆, 𝜇.
Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The project is supported by the Youth Science Foundation of
China (11801322), the National Natural Science Foundation of
China (11571207), and Shandong Natural Science Foundation
(ZR2018MA011).

References

[1] J. Wu, X. Zhang, L. Liu, Y. Wu, and Y. Cui, “The convergence
analysis and error estimation for unique solution of a p-
Laplacian fractional differential equation with singular decreas-
ing nonlinearity,” Boundary Value Problems, vol. 2018, Article
ID 82, 2018.

[2] X. Zhang, L. Liu, Y. Wu, and Y. Zou, “Existence and uniqueness
of solutions for systems of fractional differential equations with
Riemann-Stieltjes integral boundary condition,” Advances in
Difference Equations, vol. 2018, Article ID 204, 2018.

[3] Q. Sun, H. Ji, and Y. Cui, “Positive solutions for boundary
value problems of fractional differential equation with integral
boundary conditions,” Journal of Function Spaces, vol. 2018,
Article ID 6461930, 6 pages, 2018.



Journal of Function Spaces 9

[4] C. Zhai and R. Jiang, “Unique solutions for a new coupled sys-
tem of fractional differential equations,” Advances in Difference
Equations, vol. 2018, Article ID 1, 2018.

[5] Y. Zou and G. He, “A fixed point theorem for systems of non-
linear operator equations and applications to (p1,p2)-Laplacian
system,” Mediterranean Journal of Mathematics, vol. 15, Article
ID 74, 2018.

[6] X. Qiu, J. Xu, D. O’Regan, and Y. Cui, “Positive solutions for
a system of nonlinear semipositone boundary value problems
with Riemann-Liouville fractional derivatives,” Journal of Func-
tion Spaces, vol. 2018, Article ID 7351653, 10 pages, 2018.

[7] Y. Cui, W. Ma, Q. Sun, and X. Su, “New uniqueness results
for boundary value problem of fractional differential equation,”
Nonlinear Analysis: Modelling and Control, vol. 23, pp. 31–39,
2018.

[8] T. Qi, Y. Liu, and Y. Cui, “Existence of solutions for a class of
coupled fractional differential systems with nonlocal boundary
conditions,” Journal of Function Spaces, vol. 2017, Article ID
6703860, 9 pages, 2017.

[9] Y. Cui, “Uniqueness of solution for boundary value problems for
fractional differential equations,” Applied Mathematics Letters,
vol. 51, pp. 48–54, 2016.

[10] Y. Zou, L. Liu, and Y. Cui, “The existence of solutions for four-
point coupled boundary value problems of fractional differen-
tial equations at resonance,” Abstract and Applied Analysis, vol.
2014, Article ID 314083, 8 pages, 2014.

[11] Z. Bai, “Eigenvalue intervals for a class of fractional boundary
value problem,” Computers & Mathematics with Applications,
vol. 64, no. 10, pp. 3253–3257, 2012.

[12] Z. Bai, S. Zhang, S. Sun, andC. Yin, “Monotone iterativemethod
for a class of fractional differential equations,” Electronic Journal
of Differential Equations, vol. 2016, no. 06, pp. 1–8, 2016.

[13] Y. Cui and Y. Zou, “Existence results and themonotone iterative
technique for nonlinear fractional differential systems with
coupled four-point boundary value problems,” Abstract and
Applied Analysis, vol. 2014, Article ID 242591, 6 pages, 2014.

[14] H. Li, “Existence of nontrivial solutions for superlinear three-
point boundary value problems,”ActaMathematicae Applicatae
Sinica, vol. 33, no. 4, pp. 1043–1052, 2017.

[15] X. Zhang, L. Liu, Y. Wu, and Y. Cui, “New result on the critical
exponent for solution of an ordinary fractional differential
problem,” Journal of Function Spaces, vol. 2017, Article ID
3976469, 4 pages, 2017.

[16] Z. Bai and W. Sun, “Existence and multiplicity of positive
solutions for singular fractional boundary value problems,”
Computers & Mathematics with Applications, vol. 63, no. 9, pp.
1369–1381, 2012.

[17] Y. Zou and G. He, “The existence of solutions to integral
boundary value problems of fractional differential equations
at resonance,” Journal of Function Spaces, vol. 2017, Article ID
2785937, 7 pages, 2017.

[18] X. Zhang and Q. Zhong, “Triple positive solutions for nonlocal
fractional differential equations with singularities both on time
and space variables,” Applied Mathematics Letters, vol. 80, pp.
12–19, 2018.

[19] R. Pu, X. Zhang, Y. Cui, P. Li, and W. Wang, “Positive solu-
tions for singular semipositone fractional differential equation
subject tomultipoint boundary conditions,” Journal of Function
Spaces, vol. 2017, Article ID 5892616, 7 pages, 2017.

[20] Z. Bai, S. Sun, and Y. Chen, “The existence and uniqueness of a
class of fractional differential equations,” Abstract and Applied
Analysis, vol. 2014, Article ID 486040, 6 pages, 2014.

[21] M. Zuo, X. Hao, L. Liu, and Y. Cui, “Existence results for
impulsive fractional integro-differential equation of mixed type
with constant coefficient and antiperiodic boundary condi-
tions,” Boundary Value Problems, vol. 2017, Article ID 161, 2017.

[22] T. Qi, Y. Liu, and Y. Zou, “Existence result for a class of coupled
fractional differential systems with integral boundary value
conditions,” Journal of Nonlinear Sciences and Applications.
JNSA, vol. 10, no. 7, pp. 4034–4045, 2017.

[23] Y. Zou and G. He, “On the uniqueness of solutions for a class of
fractional differential equations,” Applied Mathematics Letters,
vol. 74, pp. 68–73, 2017.

[24] Z. Bai, X. Dong, and C. Yin, “Existence results for impulsive
nonlinear fractional differential equation with mixed boundary
conditions,” Boundary Value Problems, vol. 2016, Article ID 63,
2016.

[25] Y. Cui, Q. Sun, and X. Su, “Monotone iterative technique for
nonlinear boundary value problems of fractional order p ∈ (2
, 3 ],”Advances in Difference Equations, vol. 2017, Article ID 248,
2017.

[26] X. Zhang and Q. Zhong, “Uniqueness of solution for higher-
order fractional differential equations with conjugate type
integral conditions,” Fractional Calculus and Applied Analysis,
vol. 20, no. 6, pp. 1471–1484, 2017.

[27] Z. Bai, W. Sun, and W. Zhang, “Positive solutions for boundary
value problems of singular fractional differential equations,”
Abstract and Applied Analysis, vol. 2013, Article ID 129640, 7
pages, 2013.

[28] X. Hao, H. Wang, L. Liu, and Y. Cui, “Positive solutions
for a system of nonlinear fractional nonlocal boundary value
problems with parameters and p-Laplacian operator,”Boundary
Value Problems, vol. 2017, Article ID 182, 2017.

[29] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new
definition of fractional derivative,” Journal of Computational
and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[30] T. Abdeljawad, “On conformable fractional calculus,” Journal of
Computational and Applied Mathematics, vol. 279, pp. 57–66,
2015.

[31] H. Batarfi, J. Losada, J. Nieto, and W. Shammakh, “Three-
point boundary value problems for conformable fractional
differential equations,” Journal of Function Spaces, vol. 2015,
Article ID 706383, 6 pages, 2015.

[32] B. Bayour and D. Torres, “Existence of solution to a local
fractional nonlinear differential equation,” Journal of Computa-
tional and Applied Mathematics, vol. 312, pp. 127–133, 2017.

[33] X. Dong, Z. Bai, and S. Zhang, “Positive solutions to bound-
ary value problems of p-Laplacian with fractional derivative,”
Boundary Value Problems, vol. 2017, Article ID 5, 2017.

[34] R. Jiang and C. Zhai, “Positive solutions for a system of fourth-
order differential equations with integral boundary conditions
and twoparameters,”NonlinearAnalysis:Modelling andControl,
vol. 23, no. 3, pp. 401–422, 2018.

[35] D. Guo, Nonlinear Functional Analysis, Shandong Science and
Technology Publishing House, Jinan, 2001.



Research Article
Impulsive Fractional Differential Equations with p-Laplacian
Operator in Banach Spaces

Jingjing Tan ,1 Kemei Zhang ,2 and Meixia Li 1,3

1School of Mathematics and Information Science, Weifang University, Shandong 261061, China
2School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China
3College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Correspondence should be addressed to Jingjing Tan; tanjingjing1108@163.com

Received 1 May 2018; Accepted 18 October 2018; Published 15 November 2018

Academic Editor: Yong H. Wu

Copyright © 2018 Jingjing Tan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study a class of boundary value problem (BVP) with multiple point boundary conditions of impulsive p-Laplacian
operator fractional differential equations. We establish the sufficient conditions for the existence of solutions in Banach spaces.
Our analysis relies on the Kuratowski noncompactness measure and the Sadovskii fixed point theorem. An example is given to
demonstrate the main results.

1. Introduction

With the development of the theory of fractional order
calculus, fractional differential equations are getting more
and more extensively used (see[1–15]). For instance, the
impulsive fractional differential equations are widely used in
various scientific fields, such as the problem of dynamics of
populations subject to abrupt changes, harvesting, diseases,
and so on. Lakshmikantham et al. [16], Bainov and Simeonov
[17], and Benchohra et al. [18] have done in-depth studies
on this issue. Moreover, the p-Laplacian operator differential
equation was first proposed by Leibenson [19] in order to
study the problem of turbulent flow in a porous medium. He
converted this problem into the existence of solution of the
following differential equation:

(𝜑𝑝 (𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ (0, 1) . (1)

𝜑𝑝 is the p-Laplacian operator, 𝜑𝑞 is the inverse function of𝜑𝑝 with 𝜑𝑞(𝑠) = |𝑠|𝑞−2𝑠, and 𝑝, 𝑞 satisfy 1/𝑝 + 1/𝑞 = 1.
In recent years, many results about the solutions of the p-
Laplacian operator fractional differential equation BVP have
been obtained (see [20–26]). The research of the solutions of
the BVP with p-Laplacian operator and with impulsive has
been attracting increasing interest.

Zhao and Gong [27] study the solution of the following
impulsive fractional differential equations with generalized
periodic boundary conditions:

𝐶
D
𝑞𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

Δ𝑢 (𝑡)|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑢 (𝑡𝑘)) , 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑚,
Δ𝑢 (𝑡)𝑡=𝑡𝑘 = 𝐽𝑘 (𝑢 (𝑡𝑘)) , 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑚,

𝑎𝑢 (0) − 𝑏𝑢 (1) = 0,
𝑎𝑢 (0) − 𝑏𝑢 (1) = 0.

(2)

Bymeans of the Schauder and Guo- Krasnosel’skii fixed point
theorem, they get the existence of single andmultiple positive
solutions of the above BVP. By the technique of the Guo-
Krasnosel’skii fixed point theorem and the Leggett-Williams
theorem,Wang et al. [28] obtained the results of the following
BVP.

D
𝜂
0+
(𝜙𝑝 (D𝛼0+𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

0 < 𝛼 ≤ 2, 0 < 𝜂 ≤ 1,
𝑢 (0) = 0,
𝑢 (1) = 𝑎𝑢 (𝜉) ,
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D
𝛼
0+
𝑢 (0) = 0,

0 < 𝜉 < 1, 0 ≤ 𝑎 ≤ 1
(3)

The results about the BVP with multiple point boundary
conditions of impulsive p-Laplacian operator fractional dif-
ferential equations are few, especially in Banach space.

In this paper, we study the following BVP with multiple
point boundary conditions of impulsive p-Laplacian operator
fractional differential equations in Banach space 𝐸:
D
𝛽
0+ (𝜑𝑝 (D𝛼0+𝑥)) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡)) ,

1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1,
Δ𝑥 (𝑡)|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑥 (𝑡𝑘)) ,
Δ𝑥 (𝑡)𝑡=𝑡𝑘 = 𝐽𝑘 (𝑥 (𝑡𝑘)) ,

𝑥 (0) = 𝑥 (0) = ∫1
0
𝑎1 (𝑥 (𝑠)) 𝑑𝑠,

𝑥 (1) = 𝑥 (1) = ∫1
0
𝑎2 (𝑥 (𝑠)) 𝑑𝑠,

D
𝛼
0+𝑥 (0) = 𝜃,

(4)

where 𝜃 is the zero element of 𝐸, D𝛼0+ and D
𝛽
0+ are the

fractional derivatives of order 𝛼(𝛼 > 0), 𝐼 = [0, 1], 𝑡 ∈ 𝐼 =𝐼\{𝑡1, 𝑡2, ⋅ ⋅ ⋅ , 𝑡𝑚}, 𝜑𝑝(𝑠) = ‖𝑠‖𝑝−2𝑠with 𝑝 > 1.𝑓 : 𝐼×𝐸×𝐸 →𝐸, 𝐼𝑘, 𝐽𝑘 : 𝐸 → 𝐸, and 𝑎1, 𝑎2 : 𝐸 → 𝐸 are continuous. The
impulsive point set {𝑡𝑘}𝑚𝑘=1 satisfies 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑚 <𝑡𝑚+1 = 1; we denote 𝑇0 = [𝑡0, 𝑡1], 𝑇𝑘 = (𝑡𝑘, 𝑡𝑘+1], 1 ≤ 𝑘 ≤ 𝑚.
We denote by 𝑥(𝑡+𝑘 ) and 𝑥(𝑡−𝑘 ) the right and left limits of 𝑥(𝑡)
at the point 𝑡 = 𝑡𝑘, i.e., 𝑥(𝑡+𝑘 ) = limℎ→0+𝑥(𝑡+𝑘 + ℎ) and 𝑥(𝑡−𝑘 ) =
limℎ→0−𝑥(𝑡+𝑘 + ℎ). We establish the existence of solution to
BVP (4). by the technique of the Kuratowski noncompactness
measure and the Sadovskii fixed point theorem. The main
innovations of this paper are as follows. Firstly, we study
the impulsive fractional differential equations with the p-
Laplacian Operator. Secondly, we study the BVP in Banach
space. Thirdly, the nonlinear term contains the derivatives𝑥(𝑡).

The paper is organized as follows. In Section 2, we recall
some definitions and lemmas. In Section 3, the main results
of this paper are discussed. Finally, one example is given in
Section 4.

2. Preliminaries

First, we recall some definitions and preliminary.

Definition 1 (see [29]). Let 𝛼 > 0, 𝑓 ∈ 𝐶([0,∞), 𝑅).(1)The fractional integral of order 𝛼(𝛼 > 0) of 𝑓 is given
by

I
𝛼
0+𝑓 (𝑥) = 1Γ (𝛼) ∫

𝑥

0

𝑓 (𝑡)
(𝑥 − 𝑡)1−𝛼 𝑑𝑡; (5)

(2) the fractional derivative of order 𝛼(𝛼 > 0) of 𝑓 is given by

D
𝛼
0+𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ( 𝑑𝑑𝑡)

𝑛 ∫𝑡
0

𝑓 (𝑠)
(𝑡 − 𝑠)𝛼−𝑛+1𝑑𝑠, (6)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of 𝛼 and the
right side integral is pointwise defined on [0,∞).
Lemma 2 (see[30, 31]). Let 𝑓(𝑥) be integrable, 𝛼 > 0, 𝛽 > 𝛼 >0. �en

(1)

I
𝛼
0+D
𝛼
0+𝑓 (𝑥) = 𝑓 (𝑥) + 𝑐1𝑥𝛼−1 + 𝑐2𝑥𝛼−2 + ⋅ ⋅ ⋅

+ 𝑐𝑛𝑥𝛼−𝑛, (7)

where 𝑐𝑖 ∈ 𝑅, 𝑖 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑁,𝑁 = ⌈𝛼⌉.
(2)

D
𝛼
0+I
𝛽
0+𝑓 (𝑥) = I

𝛽−𝛼
0+ 𝑓 (𝑥) ,

D
𝛼
0+I
𝛼
0+𝑓 (𝑥) = 𝑓 (𝑥) . (8)

Definition 3 (see [32]). Let 𝑆 be a bounded set in a real Banach
space 𝐸; the Kuratowski noncompactness measure of 𝑆 is
given by

𝛼 (𝑆) = inf {𝛿 > 0 : 𝑆 = 𝑚⋃
𝑖=1

𝑆𝑖, diam (Si) < 𝛿, i

= 1, 2, ⋅ ⋅ ⋅ ,m} ,
(9)

where diam(Si) denote the diameters of 𝑆𝑖.
Remark 4. From the definition, it is obvious that 0 ≤ 𝛼(𝑆) <∞.

Lemma 5 (see [33]). If 𝐻 ⊂ 𝐶(𝐼) is bounded and equicon-
tinuous, then 𝛼𝐸(𝐻(𝑡)) is continuous on 𝐼 and 𝛼𝐶(𝐻) =
max𝑡∈𝐼𝛼𝐸(𝐻(𝑡)), 𝛼𝐸(∫𝐼 𝑥(𝑡)𝑑𝑡 : 𝑥 ∈ 𝐻) ≤ ∫

𝐼
𝛼𝐸(𝐻(𝑡))𝑑𝑡,

where𝐻(𝑡) = {𝑥(𝑡) : 𝑥 ∈ 𝐻} for each 𝑡 ∈ 𝐼.
Definition 6 (see [32]). Let 𝐸1 and 𝐸2 be real Banach spaces,𝐷 ⊂ 𝐸1, and 𝐴 : 𝐷 → 𝐸2 be a continuous and bounded
operator;𝐴 is called a k-set contraction operator if there exists
a constant 𝑘 ≥ 0, for any bounded set 𝑆 in 𝐷, such that𝛼(𝐴(𝑆)) ≤ 𝑘𝛼(𝑆).
Remark 7 (see [34]). 𝐴 is called a strict set contraction
operator if 𝑘 < 1. It is clear that a strict set contraction
operator is a condensing operator.

In the following, we define the basic space of this paper.
Denote

𝑃𝐶 (𝐼) = {𝑥 ∈ 𝐶 (𝐼) | 𝑥 ∈ 𝐶 (𝐼) ∩ 𝐶 (𝐼) , 𝑥 (𝑡−𝑘 ) ,
𝑥 (𝑡−𝑘 ) , 𝑥 (𝑡+𝑘) and 𝑥 (𝑡+𝑘 ) exist with 𝑥 (𝑡−𝑘 )
= 𝑥 (𝑡𝑘) and 𝑥 (𝑡−𝑘 ) = 𝑥 (𝑡𝑘) , 1 ≤ 𝑘 ≤ 𝑚}
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𝑄𝐶 (𝐼) = {𝑥 ∈ 𝑃𝐶 (𝐼) : sup
𝑡∈𝐼

‖𝑥 (𝑡)‖1 + 𝑡 < +∞} ,
𝐷𝐶 (𝐼) = {𝑥 ∈ 𝑃𝐶 (𝐼) : sup

𝑡∈𝐼

‖𝑥 (𝑡)‖1 + 𝑡
< +∞ and sup

𝑡∈𝐼

𝑥 (𝑡) < +∞} ,
(10)

and it is easy to see that𝐷𝐶(𝐼) is Banach space with the norm
‖𝑥‖𝐷 = max{sup

𝑡∈𝐼

‖𝑥 (𝑡)‖1 + 𝑡 , 𝑥𝐶} . (11)

The basic space used in this paper is 𝐷𝐶(𝐼). The Kuratowski
noncompactness measures in 𝐸, 𝐶(𝐼), and DC(I) are denoted
by 𝛼𝐸(⋅), 𝛼𝐶(⋅), and 𝛼𝐷(⋅), respectively.

The following Sadovskii fixed point theorem is needed for
the proof of our main results.

Lemma 8 ((Sadovskii)(see [32])). Let𝐷 be a bounded, closed,
and convex subset of the Banach space 𝐸. If the operator 𝐴 :𝐷 → 𝐷 is condensing, then 𝐴 has a fixed point in𝐷.

3. Existence of Solutions

Before proceeding further, let us give some denotations as
follows:

𝑀 = 10𝑚 + 4
Γ (𝛼) Γ (𝛽)𝑞−1 ,

𝑙 = 𝑀∫1
0
[(1 + 𝑡) 𝑙1 (𝑡) + 𝑙2 (𝑡)] 𝑑𝑡,

𝐾𝜌 = {𝑥 ∈ 𝐷𝐶 (𝐼) : ‖𝑥‖𝐷 ≤ 𝜌} ,
𝐾𝑟 = {𝑥 ∈ 𝐸 : ‖𝑥‖ ≤ 𝑟} ,

𝐹 (𝑠) = 1Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) 𝑑𝜏,

𝐿 = max {𝐿1, 𝐿2, 𝐿3, 𝐿4} ,
𝑀1 = max {max

𝑡∈𝐼
𝑎 (𝑡) ,max

𝑡∈𝐼
𝑏 (𝑡) ,max

𝑡∈𝐼
𝑐 (𝑡)} ,

𝑀2 = max
𝑖=1,⋅⋅⋅ ,𝑚

{𝑎1 (𝑥) , 𝑎2 (𝑥) , 𝐼𝑖 (𝑥) , 𝐽𝑖 (𝑥)} .

(12)

For simplicity of presentation, we list some conditions.(H1) 𝑎, 𝑏, 𝑐 ∈ 𝐶(𝐼) are nonnegative functions and satisfy

∫𝑡
0

𝑓 (𝑠, 𝑥, 𝑦) 𝑑𝑠 ≤ 𝜑𝑝 [𝑎 (𝑡) ‖𝑥‖ + 𝑏 (𝑡) 𝑦 + 𝑐 (𝑡)] ,
∀𝑥 ∈ 𝐸,

∫1
0
[(1 + 𝑡) 𝑎 (𝑡) + 𝑏 (𝑡)] 𝑑𝑡 < 𝑀−1,

∫1
0
𝑐 (𝑡) 𝑑𝑡 < +∞.

(13)

(H2) For any 𝑟 > 0, [𝛼, 𝛽] ⊂ 𝐼, 𝑓(𝑡, 𝑥, 𝑦) is uniformly
continuous on [𝛼, 𝛽] × 𝐾𝑟 × 𝐾𝑟.(H3) For any 𝑥, 𝑦 ∈ 𝐸,‖𝑎𝑘(𝑥) − 𝑎𝑘(𝑦)‖ ≤ 𝐿𝑘‖𝑥 − 𝑦‖ (𝑘 =1, 2), ‖𝐼𝑖(𝑥)− 𝐼𝑖(𝑦)‖ ≤ 𝐿3‖𝑥−𝑦‖, and ‖𝐽𝑖(𝑥)− 𝐽𝑖(𝑦)‖ ≤ 𝐿4‖𝑥−𝑦‖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚.(H4) For all 𝑡 ∈ 𝐼 and all bounded subsets 𝐷1, 𝐷2 ⊂ 𝐸,
there exist 𝑙1, 𝑙2 ∈ 𝐿[0,∞) such that

∫𝑡
0
𝛼𝐸 (𝑓 (𝑠, 𝐷1, 𝐷2)) 𝑑𝑠
≤ 𝜑𝑝 ([𝑙1 (𝑡) 𝛼𝐸 (𝐷1) + 𝑙2 (𝑡) 𝛼𝐸 (𝐷2)])

(14)

with 𝑙 < 1.
Lemma 9. Given 𝑦 ∈ 𝐶(𝐼), the following BVP,

D
𝛽
0+ (𝜑𝑝 (D𝛼0+𝑥 (𝑡))) = 𝑦 (𝑡) ,

Δ𝑥 (𝑡)|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑥 (𝑡𝑘)) ,
Δ𝑥 (𝑡)𝑡=𝑡𝑘 = 𝐽𝑘 (𝑥 (𝑡𝑘)) ,

𝑥 (0) = 𝑥 (0) = ∫1
0
𝑎1 (𝑥 (𝑠)) 𝑑𝑠,

𝑥 (1) = 𝑥 (1) = ∫1
0
𝑎2 (𝑥 (𝑠)) 𝑑𝑠,

D
𝛼
0+𝑥 (0) = 𝜃,

(15)

has a unique solution satisfying the following.

𝑥 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠

+ 𝑚+1∑
𝑖=1

𝛼 (2 − 𝑡)Γ (𝛼) ∫𝑡𝑖
𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠
+ 1Γ (𝛼) ∫

𝑡

𝑡𝑘

(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠 + (2 − 𝑡)
⋅ ∫1
0
[𝑎1 (𝑥 (𝑠)) − 𝑎2 (𝑥 (𝑠))] 𝑑𝑠 + 𝑚∑

𝑖=1

(2 − 𝑡)

⋅ [ (1 − 𝑡𝑚)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠

+ [𝐼𝑖 (𝑥 (𝑡𝑖)) + (2 − 𝑡𝑚) 𝐽𝑖 (𝑥 (𝑡𝑖))]] + 𝑚−1∑
𝑖=1

(2 − 𝑡)

⋅ [ (𝑡𝑚 − 𝑡𝑖)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠
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+ (𝑡𝑚 − 𝑡𝑖) 𝐽𝑖 (𝑥 (𝑡𝑖))]

+ 𝑘∑
𝑖=1

[ (𝑡 − 𝑡𝑖)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠

+ 1Γ (𝛼) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠]

+ 𝑘∑
𝑖=1

[𝐼𝑖 (𝑥 (𝑡𝑖)) + (𝑡 − 𝑡𝑘) 𝐽𝑖 (𝑥 (𝑡𝑖))] + 𝑘−1∑
𝑖=1

(𝑡𝑘 − 𝑡𝑖)
⋅ 𝐽𝑖 (𝑥 (𝑡𝑖))

(16)

Proof. From (15) and Lemma 2, we know

𝜑𝑝 (D𝛼0+𝑥 (𝑡)) = I
𝛽
0+𝑦 (𝑡) + 𝑐0. (17)

Because ofD𝛼0+𝑥(0) = 𝜃, we can obtain that 𝑐0 = 0. According
to the definition of the p-Laplacian operator it follows that

D
𝛼
0+𝑥 (𝑡) = 𝜑𝑞 (I𝛽0+𝑦 (𝑡)) . (18)

Therefore

𝑥 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠 − 𝑐1

− 𝑐2𝑡,
(19)

𝑥 (𝑡) = 1Γ (𝛼 − 1) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−2 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠 − 𝑐2. (20)

If 𝑡 ∈ 𝑇1, then
𝑥 (𝑡) = 1Γ (𝛼) ∫

𝑡

𝑡1

(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠 − 𝑑1
− 𝑑2 (𝑡 − 𝑡1) ,

𝑥 (𝑡) = 1Γ (𝛼 − 1) ∫
𝑡

𝑡1

(𝑡 − 𝑠)𝛼−2 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠 − 𝑑2.
(21)

For 𝑑1 and 𝑑2 ∈ 𝑅, we have
𝑥 (𝑡−1 ) = 1Γ (𝛼) ∫

𝑡1

0
(𝑡1 − 𝑠)𝛼−1 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠 − 𝑐1

− 𝑐2𝑡1,
𝑥 (𝑡+1 ) = −𝑑1,
𝑥 (𝑡−1 ) = 1Γ (𝛼 − 1) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−2 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠

− 𝑐2,
𝑥 (𝑡+1 ) = −𝑑2.

(22)

When 𝑡 ∈ 𝑇𝑘, we can also obtain

𝑥 (𝑡) = 1Γ (𝛼) ∫
𝑡

𝑡𝑘

(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠
+ 𝑘−1∑
𝑖=1

[∫𝑡𝑖
𝑡𝑖−1

𝑡𝑖 (𝑡𝑘 − 𝑡𝑖) (𝑡𝑖 − 𝑠)𝛼−2Γ (𝛼 − 1)
+ (𝑡𝑘 − 𝑡𝑖) 𝐽𝑖 (𝑥 (𝑡𝑖))]
+ 𝑘∑
𝑖=1

{∫𝑡𝑖
𝑡𝑖−1

[(𝑡𝑖 − 𝑠)𝛼−1Γ (𝛼) + (𝑡 − 𝑡𝑘) (𝑡𝑖 − 𝑠)𝛼−2Γ (𝛼 − 1) ]
+ 𝐼𝑖 (𝑥 (𝑡𝑖)) + (𝑡 − 𝑡𝑘) 𝐽𝑖 (𝑥 (𝑡𝑖))} − 𝑐1 − 𝑐2𝑡,

(23)

and taking the boundary condition of (15) into consideration,
some tedious manipulation yields the following.

𝑐1 = −𝑚+1∑
𝑖=1

{∫𝑡𝑖
𝑡𝑖−1

[(𝑡𝑖 − 𝑠)𝛼−1Γ (𝛼) + (𝑡𝑖 − 𝑠)𝛼−2Γ (𝛼 − 1) ]
⋅ 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠}
− 𝑚∑
𝑖=1

{∫𝑡𝑖
𝑡𝑖−1

(1 − 𝑡𝑚) (𝑡𝑖 − 𝑠)𝛼−2Γ (𝛼 − 1) 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠

+ 𝐼𝑖 (𝑥 (𝑡𝑖)) + (2 − 𝑡𝑚) 𝐽𝑖 (𝑥 (𝑡𝑖))}

− 𝑚−1∑
𝑖=1

{∫𝑡𝑖
𝑡𝑖−1

(𝑡𝑚 − 𝑡𝑖) (𝑡𝑖 − 𝑠)𝛼−2Γ (𝛼 − 1) 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠

+ (𝑡𝑚 − 𝑡𝑖) 𝐽𝑖 (𝑥 (𝑡𝑖))} − ∫1
0
[2𝑎1 (𝑥 (𝑠))

− 𝑎2 (𝑥 (𝑠))] 𝑑𝑠

(24)

𝑐2 = 𝑚+1∑
𝑖=1

{∫𝑡𝑖
𝑡𝑖−1

[(𝑡𝑖 − 𝑠)𝛼−1Γ (𝛼) + (𝑡𝑖 − 𝑠)𝛼−2Γ (𝛼 − 1) ]

⋅ 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠}

+ 𝑚∑
𝑖=1

{∫𝑡𝑖
𝑡𝑖−1

(1 − 𝑡𝑚) (𝑡𝑖 − 𝑠)𝛼−2Γ (𝛼 − 1) 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠

+ 𝐼𝑖 (𝑥 (𝑡𝑖)) + (2 − 𝑡𝑚) 𝐽𝑖 (𝑥 (𝑡𝑖))}

+ 𝑚−1∑
𝑖=1

{∫𝑡𝑖
𝑡𝑖−1

(𝑡𝑚 − 𝑡𝑖) (𝑡𝑖 − 𝑠)𝛼−2Γ (𝛼 − 1) 𝜑𝑞 (I𝛽0+𝑦 (𝑠)) 𝑑𝑠

+ (𝑡𝑚 − 𝑡𝑖) 𝐽𝑖 (𝑥 (𝑡𝑖))} + ∫1
0
𝑎1 (𝑥 (𝑠)) 𝑑𝑠

(25)



Journal of Function Spaces 5

Substituting (24) and (25) into (19), we can get (16), which
implies that the solution of BVP (15) is given by (16).

From Lemma 9, we can establish the following conclu-
sion.

Lemma 10. If (H1) is satisfied, then BVP (4) has a unique
solution satisfying

𝑥 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ 𝑚+1∑
𝑖=1

𝛼 (2 − 𝑡)Γ (𝛼) ∫𝑡𝑖
𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + 1Γ (𝛼)
⋅ ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + (2 − 𝑡)
⋅ ∫1
0
[𝑎1 (𝑥 (𝑠)) − 𝑎2 (𝑥 (𝑠))] 𝑑𝑠 + 𝑚∑

𝑖=1

(2 − 𝑡)

⋅ { (1 − 𝑡𝑚)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ [𝐼𝑖 (𝑥 (𝑡𝑖)) + (2 − 𝑡𝑚) 𝐽𝑖 (𝑥 (𝑡𝑖))]} + 𝑚−1∑
𝑖=1

(2 − 𝑡)

⋅ { (𝑡𝑚 − 𝑡𝑖)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠
+ (𝑡𝑚 − 𝑡𝑖) 𝐽𝑖 (𝑥 (𝑡𝑖))}

+ 𝑘∑
𝑖=1

{ (𝑡 − 𝑡𝑖)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ 1Γ (𝛼) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠}

+ 𝑘∑
𝑖=1

[𝐼𝑖 (𝑥 (𝑡𝑖)) + (𝑡 − 𝑡𝑘) 𝐽𝑖 (𝑥 (𝑡𝑖))] + 𝑘−1∑
𝑖=1

(𝑡𝑘 − 𝑡𝑖)
⋅ 𝐽𝑖 (𝑥 (𝑡𝑖)) .

(26)

Proof. The proof is almost identical to Lemma 9, with the
major change being the substitution of 𝑦(𝑡) for 𝑓(𝑡, 𝑥(𝑡),𝑥(𝑡)).
Remark 11. From Lemma 10, we can get the conclusion that
the solutions to the BVP (4) are equivalent to the fixed point
of the following operator:

(𝑇𝑥) (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ 𝑚+1∑
𝑖=1

𝛼 (2 − 𝑡)Γ (𝛼) ∫𝑡𝑖
𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + 1Γ (𝛼)

⋅ ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + (2 − 𝑡)
⋅ ∫1
0
[𝑎1 (𝑥 (𝑠)) − 𝑎2 (𝑥 (𝑠))] 𝑑𝑠 + 𝑚∑

𝑖=1

(2 − 𝑡)

⋅ { (1 − 𝑡𝑚)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ [𝐼𝑖 (𝑥 (𝑡𝑖)) + (2 − 𝑡𝑚) 𝐽𝑖 (𝑥 (𝑡𝑖))]} + 𝑚−1∑
𝑖=1

(2 − 𝑡)

⋅ { (𝑡𝑚 − 𝑡𝑖)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠
+ (𝑡𝑚 − 𝑡𝑖) 𝐽𝑖 (𝑥 (𝑡𝑖))}

+ 𝑘∑
𝑖=1

{ (𝑡 − 𝑡𝑖)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ 1Γ (𝛼) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠}

+ 𝑘∑
𝑖=1

[𝐼𝑖 (𝑥 (𝑡𝑖)) + (𝑡 − 𝑡𝑘) 𝐽𝑖 (𝑥 (𝑡𝑖))] + 𝑘−1∑
𝑖=1

(𝑡𝑘 − 𝑡𝑖)
⋅ 𝐽𝑖 (𝑥 (𝑡𝑖)) , ∀𝑥 ∈ 𝐷𝐶 (𝐼) .

(27)

Taking derivative to both sides of (27), we have

(𝑇𝑥) (𝑡) = 1Γ (𝛼 − 1) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ 1Γ (𝛼 − 1) ∫
𝑡

𝑡𝑘

(𝑡 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠
− ∫1
0
[𝑎1 (𝑥 (𝑠)) − 𝑎2 (𝑥 (𝑠))] 𝑑𝑠

− 𝑚+1∑
𝑖=1

𝛼Γ (𝛼) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

− 𝑚∑
𝑖=1

{ (1 − 𝑡𝑚)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ [𝐼𝑖 (𝑥 (𝑡𝑖)) + (2 − 𝑡𝑚) 𝐽𝑖 (𝑥 (𝑡𝑖))]}

− 𝑚−1∑
𝑖=1

{ (𝑡𝑚 − 𝑡𝑖)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ (𝑡𝑚 − 𝑡𝑖) 𝐽𝑖 (𝑥 (𝑡𝑖))}
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+ 𝑘∑
𝑖=1

{ 1Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ 𝐽𝑖 (𝑥 (𝑡𝑖))} , ∀𝑥 ∈ 𝐷𝐶 (𝐼) .
(28)

Lemma 12. If (H1), (H2), and (H3) are satisfied, then operator𝑇 : 𝐷𝐶(𝐼) → 𝐷𝐶(𝐼) is continuous and bounded.
Proof.

Step 1. For any 𝑥 ∈ 𝐷𝐶(𝐼), we prove that 𝑇 is well defined and(𝑇𝑥)(𝑡) ∈ 𝐷𝐶(𝐼). From condition (H1), we have

∫1
0

𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 = ∫1
0

𝜑𝑞 (
1Γ (𝛽)

⋅ ∫𝑠
0
(𝑠 − 𝜏)𝛽−1 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

≤ ∫1
0
𝜑𝑞 ( 1Γ (𝛽) ∫

𝑠

0

𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) 𝑑𝜏)
≤ 𝜑𝑞 ∫1

0
( 1Γ (𝛽)𝜑𝑝 [𝑎 (𝑠) ‖𝑥‖ + 𝑏 (𝑠) 𝑥

+ 𝑐 (𝑠)]) 𝑑𝑠 ≤ Γ (𝛽)1−𝑞𝑀1 (3 ‖𝑥‖𝐷 + 1) .

(29)

Together with the definition of operator 𝑇, we have

(𝑇𝑥) (𝑡)1 + 𝑡

 ≤
11 + 𝑡 {


1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 +


𝑚+1∑
𝑖=1

𝛼 (2 − 𝑡)Γ (𝛼) ∫𝑡𝑖
𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠


+ 
1Γ (𝛼) ∫
𝑡

𝑡𝑘

(𝑡 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠
 +

(2 − 𝑡) ∫
1

0
[𝑎1 (𝑥 (𝑠)) − 𝑎2 (𝑥 (𝑠))] 𝑑𝑠


+ 
𝑚∑
𝑖=1

(2 − 𝑡) { (1 − 𝑡𝑚)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + [𝐼𝑖 (𝑥 (𝑡𝑖)) + (2 − 𝑡𝑚) 𝐽𝑖 (𝑥 (𝑡𝑖))]}


+ 
𝑚−1∑
𝑖=1

(2 − 𝑡) { (𝑡𝑚 − 𝑡𝑖)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + (𝑡𝑚 − 𝑡𝑖) 𝐽𝑖 (𝑥 (𝑡𝑖))}

+ 
𝑘∑
𝑖=1

{ (𝑡 − 𝑡𝑖)Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + 1Γ (𝛼) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠}


+ 
𝑘∑
𝑖=1

[𝐼𝑖 (𝑥 (𝑡𝑖)) + (𝑡 − 𝑡𝑘) 𝐽𝑖 (𝑥 (𝑡𝑖))]
 +


𝑘−1∑
𝑖=1

(𝑡𝑘 − 𝑡𝑖) 𝐽𝑖 (𝑥 (𝑡𝑖))


≤ 10𝑚 + 4Γ (𝛼) ∫1
0

𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + (11𝑚 + 1)𝑀2 < +∞.

(30)

As above, from (28), a tedious calculation gives

(𝑇𝑥) (𝑡) ≤ 5𝑚 + 3Γ (𝛼) ∫1
0

𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠
+ (5𝑚 + 1)𝑀2 < +∞.

(31)

From (30) and (31), we have that (𝑇𝑥)(𝑡) is well defined and(𝑇𝑥)(𝑡) ∈ 𝐷𝐶(𝐼) for any 𝑥 ∈ 𝐷𝐶(𝐼).
Step 2. We prove that 𝑇 is bounded. For any 𝑥 ∈ 𝐾𝜌, from
(29)−(31), we get


(𝑇𝑥) (𝑡)1 + 𝑡

 ≤ (3𝜌 + 1)𝑀𝑀1 + (11𝑚 + 1)𝑀2,
(𝑇𝑥) (𝑡) ≤ (3𝜌 + 1)𝑀𝑀1 + (5𝑚 + 1)𝑀2.

(32)

So 𝑇 is bounded operator.

Step 3. It is time to prove that 𝑇 is continuous. Let 𝑥𝑛, 𝑥 ∈𝐷𝐶(𝐼), and for any 𝑠 ∈ 𝐼, 𝜀 > 0, there exists 𝑁1 > 0, when𝑛 ≥ 𝑁1, satisfying that ‖𝑥𝑛 − 𝑥‖𝐷 < 𝜀/(22𝑚 + 2)𝐿. So {𝑥𝑛} is
a bounded subset of 𝐷𝐶(𝐼); let 𝜂 > 0 such that ‖𝑥𝑛‖𝐷 ≤ 𝜂;
taking limit, we obtain ‖𝑥‖𝐷 ≤ 𝜂. From (H2), we know that,
for any 𝜀 > 0 and 𝑠 ∈ 𝐼, there exists𝑁2 > 0; when 𝑛 ≥ 𝑁2, we
have

𝑓 (𝑠, 𝑥𝑛 (𝑠) , 𝑥𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠))
≤ 𝑀1/(1−𝑞) ( 𝜀2)

1/(𝑞−1) . (33)

Taking 𝑁 = max{𝑁1, 𝑁2}, for any 𝜀 > 0, 𝑛 ≥ 𝑁, and 𝑡 ∈ 𝐼,
according to (27), (28), we have


(𝑇𝑥𝑛) (𝑡)1 + 𝑡 − (𝑇𝑥) (𝑡)1 + 𝑡

 ≤
10𝑚 + 4Γ (𝛼) (1 + 𝑡) {∫

1

0
𝜑𝑞 ( 1Γ (𝛽)
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⋅ ∫𝑠
0

𝑓 (𝜏, 𝑥𝑛 (𝜏) , 𝑥𝑛 (𝜏)) − 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) 𝑑𝜏)𝑑𝑠}
+ 2 − 𝑡1 + 𝑡 ∫

1

0
[𝑎1 (𝑥𝑛 (𝑠)) − 𝑎1 (𝑥 (𝑠)) + 𝑎1 (𝑥𝑛 (𝑠))

− 𝑎1 (𝑥 (𝑠))] 𝑑𝑠 + 11 + 𝑡 [3𝑚𝐿3 + (8𝑚 − 3) 𝐿4] 𝑥𝑛 (𝑠)
− 𝑥 (𝑠) ≤ 𝜀2 (1 + 𝑡) + (11𝑚 + 1)1 + 𝑡 𝐿 𝑥𝑛 (𝑠) − 𝑥 (𝑠)
≤ 𝜀2 (1 + 𝑡) + 𝜀2 (1 + 𝑡) < 𝜀,

(34)

(𝑇𝑥𝑛) (𝑡) − (𝑇𝑥) (𝑡) ≤ 5𝑚Γ (𝛼) {∫
1

0
𝜑𝑞 ( 1Γ (𝛽)

⋅ ∫𝑠
0

𝑓 (𝜏, 𝑥𝑛 (𝜏) , 𝑥 (𝜏)) − 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) 𝑑𝜏)𝑑𝑠}
+ ∫1
0
[𝑎1 (𝑥𝑛 (𝑠)) − 𝑎1 (𝑥 (𝑠)) + 𝑎1 (𝑥𝑛 (𝑠))

− 𝑎1 (𝑥 (𝑠))] 𝑑𝑠 + [𝑚𝐿3 + (4𝑚 − 1) 𝐿4] 𝑥𝑛 (𝑠)
− 𝑥 (𝑠) ≤ (5𝑚 + 3) 𝜀10𝑚 + 4 + (5𝑚 + 1) 𝜀22𝑚 + 2 < 𝜀.

(35)

Thus ‖(𝑇𝑥𝑛)(𝑡)/(1+𝑡)−(𝑇𝑥)(𝑡)/(1+𝑡)‖𝐷 < 𝜀. So𝑇 : 𝐷𝐶(𝐼) →𝐷𝐶(𝐼) is continuous.
Lemma 13. If (H1)−(H3) are satisfied,𝑈 is a bounded subset of𝐷𝐶(𝐼). �en (𝑇𝑈)(𝑡)/(1 + 𝑡) and (𝑇𝑈)(𝑡) are equicontinuous
on 𝐼.
Proof. In fact, from the boundedness of 𝑈, that is, for any𝑥 ∈ 𝑈, there exists 𝜂 > 0 such that ‖𝑥‖𝐷 ≤ 𝜂. Suppose that𝑡, 𝑡 ∈ 𝐼 with 𝑡 < 𝑡; by the mean value theorem, we have
the following.


(𝑇𝑥) (𝑡)
1 + 𝑡 − (𝑇𝑥) (𝑡)

1 + 𝑡


≤ 1Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

− ∫𝑡
0

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠


+ 1Γ (𝛼)

∫
𝑡

𝑡𝑘

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

− ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

 + [
3𝑚 + 2Γ (𝛼 − 1)

⋅ ∫1
0
𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + 3𝑚𝑀1]


2 − 𝑡1 + 𝑡 − 2 − 𝑡1 + 𝑡



+ 𝑚Γ (𝛼 − 1)


𝑡1 + 𝑡 − 𝑡1 + 𝑡
 ∫
1

0
𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ 𝑚𝑀1 (𝑡 − 𝑡)
≤ 1Γ (𝛼)

∫
𝑡

0

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ ∫𝑡
𝑡

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

− ∫𝑡
0

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠


+ 1Γ (𝛼)

∫
𝑡

𝑡𝑘

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

+ ∫𝑡
𝑡

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

− ∫𝑡
𝑡𝑘

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠

 + 3 [
3𝑚 + 2Γ (𝛼 − 1)

⋅ ∫1
0
𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + 3𝑚𝑀1] (𝑡 − 𝑡)

+ 𝑚Γ (𝛼 − 1) ∫
1

0
𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 (𝑡 − 𝑡) + 𝑚𝑀1 (𝑡

− 𝑡) ≤ 1Γ (𝛼)
∫
𝑡

0

[
[
(𝑡 − 𝑠)𝛼−1
1 + 𝑡 − (𝑡 − 𝑠)𝛼−1

1 + 𝑡 ]
]

⋅ 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠


+ 1Γ (𝛼)
∫
𝑡

𝑡

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠


+ 1Γ (𝛼)

∫
𝑡

𝑡𝑘

[
[
(𝑡 − 𝑠)𝛼−1
1 + 𝑡 − (𝑡 − 𝑠)𝛼−1

1 + 𝑡 ]
]

⋅ 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠


+ 1Γ (𝛼)
∫
𝑡

𝑡

(𝑡 − 𝑠)𝛼−1
1 + 𝑡 𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠


+ 3 [ 3𝑚 + 2Γ (𝛼 − 1) ∫

1

0
𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + 3𝑚𝑀1] (𝑡 − 𝑡)
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+ 𝑚Γ (𝛼 − 1) ∫
1

0
𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 (𝑡 − 𝑡) + 𝑚𝑀1 (𝑡

− 𝑡) ≤ 2Γ (𝛼)

(𝑡)𝛼
1 + 𝑡 −

(𝑡)𝛼
1 + 𝑡 −

(𝑡 − 𝑡)𝛼
1 + 𝑡


⋅ ∫𝑡
0

𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + 2Γ (𝛼)
⋅ ∫1
0

𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 (𝑡 − 𝑡)
+ 3 [ 3𝑚 + 2Γ (𝛼 − 1) ∫

1

0
𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + 3𝑚𝑀1] (𝑡 − 𝑡)

+ 𝑚Γ (𝛼 − 1) ∫
1

0
𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 (𝑡 − 𝑡) + 𝑚𝑀1 (𝑡

− 𝑡) ≤ [10𝑚 + 18Γ (𝛼) ∫1
0

𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + 10𝑚𝑀1]
⋅ (𝑡 − 𝑡)

(36)

Let

𝛿 = [(10𝑚 + 18) (3𝜂 + 1)𝑀1Γ (𝛼) Γ (𝛽)𝑞−1 + 10𝑚𝑀1]
−1 ⋅ 𝜀2 . (37)

From (37),


(𝑇𝑥) (𝑡)
1 + 𝑡 − (𝑇𝑥) (𝑡)

1 + 𝑡
 < 𝜀. (38)

For the case of 𝑡 ≥ 𝑡, using the samemethodswe can also get
(38). So (𝑇𝑈)(𝑡)/(1 + 𝑡) is equicontinuous on 𝐼. An argument
similar to the one used in (𝑇𝑈)(𝑡)/(1 + 𝑡) shows that

(𝑇𝑥) (𝑡) − (𝑇𝑥) (𝑡) < 𝜀. (39)

So (𝑇𝑈)(𝑡) is equicontinuous on 𝐼.
Lemma 14 (see [35]). Let condition (H1) be satisfied and𝑈 be
a bounded subset of 𝐷𝐶(𝐼). �en

𝛼𝐷 (𝑇𝑈)
= max{sup

𝑡∈𝐼
𝛼𝐸 ((𝑇𝑈) (𝑡)1 + 𝑡 ) , sup

𝑡∈𝐼
𝛼𝐸 (𝑇𝑈) (𝑡)} . (40)

Theorem 15. Let conditions (H1)−(H4) be satisfied.�en BVP
(4) has at least one solution belonging to 𝐷𝐶(𝐼).
Proof. By Remark 11, we need only to show that the operator𝑇 has a fixed point in 𝐷𝐶(𝐼). Let

𝐾𝑅 = {𝑥 ∈ 𝐷𝐶 (𝐼) : ‖𝑥‖𝐷 ≤ 𝑅} , (41)

where

𝑅 > [(11𝑚 + 1)𝑀−1𝑀2 + ∫1
0
𝑐 (𝑠) 𝑑𝑠]

⋅ [𝑀−1 − ∫1
0
[(1 + 𝑡) 𝑎 (𝑡) + 𝑏 (𝑡)] 𝑑𝑡]−1 .

(42)

Step 1. we prove that 𝑇𝐾𝑅 ⊂ 𝐾𝑅. In fact, for any 𝑥 ∈ 𝐾𝑅, 𝑡 ∈ 𝐼,
by (27), we have


(𝑇𝑥) (𝑡)1 + 𝑡

 ≤
10𝑚 + 4Γ (𝛼) ∫1

0

𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + (11𝑚 + 1)
⋅ 𝑀2 ≤ 𝑀[∫1

0
[(1 + 𝑡) 𝑎 (𝑡) + 𝑏 (𝑡)] 𝑑𝑡 ‖𝑥‖𝐷

+ ∫1
0
𝑐 (𝑡) 𝑑𝑡] + (11𝑚 + 1)𝑀2

≤ 𝑀{∫1
0
[(1 + 𝑡) 𝑎 (𝑡) + 𝑏 (𝑡)] 𝑑𝑡𝑅 + 𝑅 [𝑀−1

− ∫1
0
[(1 + 𝑡) 𝑎 (𝑡) + 𝑏 (𝑡)] 𝑑𝑡] − (11𝑚 + 1)

⋅ 𝑀−1𝑀2} + (11𝑚 + 1)𝑀2 < 𝑅,

(43)

(𝑇𝑥) (𝑡) ≤ 5𝑚 + 3Γ (𝛼) ∫1
0

𝜑𝑞 (𝐹 (𝑠)) 𝑑𝑠 + (5𝑚 + 1)
⋅ 𝑀2 < 𝑀[∫1

0
[(1 + 𝑡) 𝑎 (𝑡) + 𝑏 (𝑡)] 𝑑𝑡 ‖𝑥‖𝐷

+ ∫1
0
𝑐 (𝑡) 𝑑𝑡] + (5𝑚 + 1)𝑀2

≤ 𝑀{∫1
0
[(1 + 𝑡) 𝑎 (t) + 𝑏 (𝑡)] 𝑑𝑡𝑅 + 𝑅 [𝑀−1

− ∫1
0
[(1 + 𝑡) 𝑎 (𝑡) + 𝑏 (𝑡)] 𝑑𝑡

− (11𝑚 + 1)𝑀−1𝑀2]} + (5𝑚 + 1)𝑀2 < 𝑅.

(44)

From (43) and (44), we know ‖𝑇𝑥‖𝐷 < 𝑅. Thus, from
Lemma 12, 𝑇𝐾𝑅 ⊂ 𝐾𝑅 follows.
Step 2. It is time to prove that 𝑇 is a strict set contraction
operator. Let 𝐷 = 𝑐𝑜𝐷(𝑇𝐾𝑅). It is easy to see that 𝐷
is nonempty, bounded, convex, and closed subset of 𝐾𝑅.
According to Lemma 13, (𝑇𝐾𝑅)(𝑡)/(1 + 𝑡) and (𝑇𝐾𝑅)(𝑡)
are equicontinuous on 𝐼, so (𝐷)(𝑡)/(1 + 𝑡) and (𝐷)(𝑡) are
equicontinuous on 𝐼. From the definition of𝐷, we get𝐷 ⊂ 𝐾𝑅
and 𝑇𝐾𝑅 ⊂ 𝐷, and by Lemma 12, 𝑇 : 𝐷 → 𝐷 is bounded
and continuous. From (H2), it follows that {𝑓(𝑠, 𝑥(𝑠), 𝑥(𝑠)) :𝑥 ∈ 𝐷} are equicontinuous on 𝐼. For any 𝑡 ∈ 𝐼 and 𝑈 ⊂ 𝐷, by(H3) and Lemma 2, we obtain
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𝛼𝐸 ((𝑇𝑈) (𝑡)1 + 𝑡 ) ≤ 11 + 𝑡 [ 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜑𝑞 ( 1Γ (𝛽) ∫

𝑠

0
(𝑠 − 𝜏)𝛽−1 𝛼𝐸 ({𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) : 𝑥 ∈ 𝑈}) 𝑑𝜏)𝑑𝑠

+ 𝑚+1∑
𝑖=1

𝛼 (2 − 𝑡)Γ (𝛼) ∫𝑡𝑖
𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 ( 1Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 𝛼𝐸 ({𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) : 𝑥 ∈ 𝑈}) 𝑑𝜏)𝑑𝑠 + 1Γ (𝛼) ∫

𝑡

𝑡𝑘

(𝑡 − 𝑠)𝛼−1

⋅ 𝜑𝑞 ( 1Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 𝛼𝐸 ({𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) : 𝑥 ∈ 𝑈}) 𝑑𝜏) 𝑑𝑠

+ 𝑚∑
𝑖=1

(2 − 𝑡) (1 − 𝑡𝑚)Γ (𝛼) ∫𝑡𝑖
𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 ( 1Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 𝛼𝐸 ({𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) : 𝑥 ∈ 𝑈}) 𝑑𝜏) 𝑑𝑠

+ 𝑘∑
𝑖=1

𝑡 − 𝑡𝑖Γ (𝛼 − 1) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−2 𝜑𝑞 ( 1Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 𝛼𝐸 ({𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) : 𝑥 ∈ 𝑈}) 𝑑𝜏)𝑑𝑠

+ 𝑘∑
𝑖=1

1Γ (𝛼) ∫
𝑡𝑖

𝑡𝑖−1

(𝑡𝑖 − 𝑠)𝛼−1 𝜑𝑞 ( 1Γ (𝛽) ∫
𝑠

0
(𝑠 − 𝜏)𝛽−1 𝛼𝐸 ({𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) : 𝑥 ∈ 𝑈}) 𝑑𝜏)𝑑𝑠] ≤ 10𝑚 + 41 + 𝑡

⋅ ∫1
0
𝜑𝑞 ( 1Γ (𝛽)𝛼𝐸 ({𝑓 (𝜏, 𝑥 (𝜏) , 𝑥 (𝜏)) : 𝑥 ∈ 𝑈}) 𝑑𝜏) 𝑑𝑠 ≤ 𝑀1 + 𝑡 ∫

1

0
[𝑙1 (𝑠) 𝛼𝐸 (𝑈 (𝑠)) + 𝑙2 (𝑠) 𝛼𝐸 (𝑈 (𝑠))] 𝑑𝑠

≤ 𝑀1 + 𝑡 ∫
1

0
[(1 + 𝑠) 𝑙1 (𝑠) + 𝑙2 (𝑠)] 𝑑𝑠𝛼𝐷 (𝑈) .

(45)

Since 𝑡 is arbitrary, we obtain
sup
𝑡∈𝐼

𝛼𝐸 ((𝑇𝑈) (𝑡)1 + 𝑡 ) ≤ 𝑙𝛼𝐷 (𝑈) . (46)

Using similar methods, we can also show that

sup
𝑡∈𝐼

𝛼𝐸 ((𝑇𝑈) (𝑡)) ≤ 𝑙𝛼𝐷 (𝑈) . (47)

Form (46) and (47), using Lemma 14 we get

𝛼𝐷 (𝑇𝑈) ≤ 𝑙𝛼𝐷 (𝑈) . (48)

Obviously, 0 ≤ 𝑙 < 1, From Remark 7, 𝑇 is a condensing
operator too. It follows from the Sadovskii fixed point
theorem that 𝑇 has at least one fixed point in 𝐷; therefore,
BVP(4) has at least one solution in 𝐷𝐶(𝐼).
Remark 16. If 𝐸 = [0,∞), we can get the following result.

Corollary 17. Let 𝑓 ∈ 𝐶[𝐼 × [0,∞) × [0,∞), [0,∞)] and(H1) − (H4) be satisfied.�en BVP (4) has at least one solution
in𝐷𝐶[𝐼 × [0,∞) × [0,∞), [0,∞)].
Proof. Letting 𝐸 = [0,∞) in Theorem 15, we can prove the
desired result.

Corollary 18. Suppose the following assumptions holds:(H1) 𝑎, 𝑏, 𝑐 ∈ 𝐶(𝐼) are nonnegative functions and satisfy
∫𝑡
0

𝑓 (𝑠, 𝑥) 𝑑𝑠 ≤ 𝜑𝑝 [𝑎 (𝑡) ‖𝑥‖ + 𝑏 (𝑡)] , ∀𝑥 ∈ 𝐸,

∫1
0
(1 + 𝑡) 𝑎 (𝑡) 𝑑𝑡 < 𝑀−1,

∫1
0
𝑏 (𝑡) 𝑑𝑡 < +∞;

(49)

(H2) for any 𝑟 > 0, [𝛼, 𝛽] ⊂ 𝐼, 𝑓(𝑡, 𝑥) is uniformly
continuous on [𝛼, 𝛽] × 𝐾𝑟;(H3) for any 𝑥, 𝑦 ∈ 𝐸,‖𝑎𝑘(𝑥) − 𝑎𝑘(𝑦)‖ ≤ 𝐿𝑘‖𝑥 − 𝑦‖ (𝑘 =1, 2), ‖𝐼𝑖(𝑥)− 𝐼𝑖(𝑦)‖ ≤ 𝐿3‖𝑥−𝑦‖, and ‖𝐽𝑖(𝑥)− 𝐽𝑖(𝑦)‖ ≤ 𝐿4‖𝑥−𝑦‖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚;(H4) for all 𝑡 ∈ 𝐼 and all bounded subsets 𝐷 ⊂ 𝐸, there
exists 𝑙1 ∈ 𝐿[0,∞) such that

∫𝑡
0
𝛼𝐸 (𝑓 (𝑠, 𝐷)) 𝑑𝑠 ≤ 𝜑𝑝 (𝑙1 (𝑡) 𝛼𝐸 (𝐷)) (50)

with 𝑙 = 𝑀∫1
0
𝑙1(𝑡)𝑑𝑡 < 1. �en the following BVP,

D
𝛽
0+ (𝜑𝑝 (D𝛼0+𝑥)) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

Δ𝑥 (𝑡)|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑥 (𝑡𝑘)) ,
Δ𝑥 (𝑡)𝑡=𝑡𝑘 = 𝐽𝑘 (𝑥 (𝑡𝑘)) ,

𝑥 (0) = 𝑥 (0) = ∫1
0
𝑎1 (𝑥 (𝑠)) 𝑑𝑠,

𝑥 (1) = 𝑥 (1) = ∫1
0
𝑎2 (𝑥 (𝑠)) 𝑑𝑠,

D
𝛼
0+𝑥 (0) = 𝜃,

(51)

has at least one solution belonging to 𝑄𝐶(𝐼).
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Proof. The proofs are similar to Theorem 15, except the
need for substitution of 𝑓(𝑡, 𝑥(𝑡)) for nonlinear term𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡)).
4. Illustrative Example

Let 𝐸 = 𝑙∞ = {𝑥 = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛, ⋅ ⋅ ⋅ ), sup𝑛|𝑥𝑛| < +∞, 𝑡 ∈𝐼} and equipped with the norm ‖𝑥‖ = sup𝑛|𝑥𝑛|.The following
BVP

D
1/2
0+ (𝜑3/2 (D3/20+ 𝑥𝑛)) (𝑡) = [[

[
𝑥𝑛 (𝑡)8 (1 + 𝑡) (1 + 𝑡2)

+ √sin (𝑥2𝑛 (𝑡))2 + √sin (𝑥𝑛 (𝑡))236𝑛3𝑒√𝑡 ]]
]

1/2

,

Δ𝑥𝑛 (𝑡)𝑡=1/2 =
𝑥𝑛 ((1/2)−)2 + 𝑥𝑛 ((1/2)−) ,

Δ𝑥𝑛 (𝑡)𝑡=1/2 =
𝑥𝑛 ((1/2)−)2 + 𝑥𝑛 ((1/2)−) ,

𝑥𝑛 (0) = 𝑥𝑛 (0) = ∫1
0

𝑥𝑛 (𝑠)4 + 𝑥𝑛 (𝑠)𝑑𝑠,
𝑥𝑛 (1) = 𝑥𝑛 (1) = ∫1

0

𝑥𝑛 (𝑠)6 + 𝑥𝑛 (𝑠)𝑑𝑠,
D
3/2
0+ 𝑥𝑛 (0) = 0

(52)

can be regarded as a problemwith the form of BVP (4), where

𝑓 (𝑡, 𝑥, 𝑦)
= (𝑓1 (𝑡, 𝑥, 𝑦) , 𝑓2 (𝑡, 𝑥, 𝑦) , ⋅ ⋅ ⋅ , 𝑓𝑛 (𝑡, 𝑥, 𝑦) , ⋅ ⋅ ⋅) ,

𝑓𝑛 (𝑡, 𝑥, 𝑦) = [[
[

𝑥𝑛 (𝑡)8 (1 + 𝑡) (1 + 𝑡2)

+ √sin (𝑥2𝑛 (𝑡))2 + √sin (𝑦𝑛 (𝑡))236𝑛3𝑒√𝑡 ]]
]

1/2

.

(53)

Clearly 𝐿1 = 1/4, 𝐿2 = 1/6, 𝐿3 = 𝐿4 = 1/2, and
∫𝑡
0

𝑓𝑛 (𝑠, 𝑥, 𝑦) 𝑑𝑠
≤ 𝜑3/2 ([ 18 (1 + 𝑡) (1 + 𝑡2) + 1

36𝑒√𝑡 ] ‖𝑥‖
+ 1
36𝑒√𝑡 𝑦) .

(54)

Let 𝑎(𝑡) = 1/8(1 + 𝑡)(1 + 𝑡2) + 1/36𝑒√𝑡, 𝑏(𝑡) = 1/36𝑒√𝑡, and𝑐(𝑡) = 0. According to Γ(1/2) ≈ 1.772 and Γ(3/2) ≈ 0.8862,
we have

𝑀 = 10𝑚 + 4
Γ (𝛼) Γ (𝛽)𝑞−1 = 6.6979,

∫1
0
[(1 + 𝑡) 𝑎 (𝑡) + 𝑏 (𝑡)] 𝑑𝑡 = 0.0242 < 𝑀−1,

∫1
0
𝑐 (𝑡) 𝑑𝑡 = 0 < +∞,

𝑙 = 𝑀∫1
0
[(1 + 𝑡) 𝑙1 (𝑡) + 𝑙2 (𝑡)] 𝑑𝑡 = 0.162 < 1

(55)

where 𝑙1(𝑡) = 1/8(1 + 𝑡)(1 + 𝑡2) + 1/36𝑒√𝑡 and 𝑙2(𝑡) = 1/36𝑒√𝑡.
So, all the conditions of Theorem 15 are satisfied. Therefore,
BVP (52) has at least one solution.

5. Conclusion

In this paper, we present some sufficient conditions which
ensure the existence of solution to BVP (4) in Banach spaces.
Through construction space 𝐷𝐶(𝐼), using the technique of
the Kuratowski noncompactness measure and the Sadovskii
fixed point theorem, we obtain some new existence criteria
for BVP (4). As far as we know, only a few papers have dealt
with the boundary value problem for impulsive p-Laplacian
fractional differential equations, especially in Banach space.
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In this paper, we discuss the existence and uniqueness of solutions for new classes of separated boundary value problems of
Caputo-Hadamard and Hadamard-Caputo sequential fractional differential equations by using standard fixed point theorems. We
demonstrate the application of the obtained results with the aid of examples.

1. Introduction

Fractional differential equations have been of increasing
importance for the past decades due to their diverse appli-
cations in science and engineering such as biophysics,
bioengineering, virology, control theory, signal and image
processing, blood flow phenomena, etc.; see [1–6]. Many
interesting results of the existence of solutions of various
classes of fractional differential equations have been obtained;
see [7–15] and the references therein.

Sequential fractional differential equations are also found
to be of much interest [16, 17]. In fact, the concept of sequen-
tial fractional derivative is closely related to the nonsequential
Riemann-Liouville derivatives, for details, see [3]. For some
recent results on boundary value problems for sequential
fractional differential equations; see [18–22] and references
cited therein.

In this paper, we discuss existence and uniqueness of solu-
tions for two sequential Caputo-Hadamard and Hadamard-
Caputo fractional differential equations subject to separated
boundary conditions as

𝐶𝐷𝑝 (𝐻𝐷𝑞𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (𝑎, 𝑏) ,

𝛼1𝑥 (𝑎) + 𝛼2 (𝐻𝐷𝑞𝑥) (𝑎) = 0,
𝛽1𝑥 (𝑏) + 𝛽2 (𝐻𝐷𝑞𝑥) (𝑏) = 0,

(1)

and
𝐻𝐷𝑞 (𝐶𝐷𝑝𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (𝑎, 𝑏) ,

𝛼1𝑥 (𝑎) + 𝛼2 (𝐶𝐷𝑝𝑥) (𝑎) = 0,
𝛽1𝑥 (𝑏) + 𝛽2 (𝐶𝐷𝑝𝑥) (𝑏) = 0,

(2)

where 𝐶𝐷𝑝 and𝐻𝐷𝑞 are the Caputo andHadamard fractional
derivatives of orders 𝑝 and 𝑞, respectively, 0 < 𝑝, 𝑞 ≤ 1, 𝑓 :[𝑎, 𝑏]×R → R is a continuous function, 𝑎 > 0 and𝛼𝑖, 𝛽𝑖 ∈ R,𝑖 = 1, 2.

It can be observed that the sequential Caputo-Hadamard
and Hadamard-Caputo fractional differential equations in (1)
and (2) are different type when 𝑝 = 1 and 𝑞 = 1, since

𝑑
𝑑𝑡 (𝑡

𝑑
𝑑𝑡𝑥 (𝑡)) = 𝑡𝑑2𝑥 (𝑡)

𝑑𝑡2 + 𝑑𝑥 (𝑡)
𝑑𝑡 = 𝑓 (𝑡, 𝑥 (𝑡)) , (3)
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and

𝑡 𝑑𝑑𝑡 (
𝑑
𝑑𝑡𝑥 (𝑡)) = 𝑡𝑑2𝑥 (𝑡)

𝑑𝑡2 = 𝑓 (𝑡, 𝑥 (𝑡)) , (4)

for 𝑡 ∈ (𝑎, 𝑏), respectively.
The rest of the paper is arranged as follows. In Section 2,

we establish basic results that lay the foundation for defining a
fixed point problem equivalent to the given problems (1) and
(2).Themain results, based on Banach’s contraction mapping
principle, Krasnoselskii’s fixed point theorem, and nonlinear
alternative of Leray-Schauder type, are obtained in Section 3.
Illustrating examples are discussed in Section 4.

2. Preliminaries

In this section, we introduce some notations and definitions
of fractional calculus [4, 5] and present preliminary results
needed in our proofs later.

Definition 1 (see [5]). For an at least 𝑛-times differentiable
function𝑔 : [𝑎,∞) → R, the Caputo derivative of fractional
order 𝑞 is defined as

𝐶𝐷𝑞𝑔 (𝑡) = 1
Γ (𝑛 − 𝑞) ∫𝑡

𝑎
(𝑡 − 𝑠)𝑛−𝑞−1 𝑔(𝑛) (𝑠) 𝑑𝑠,

𝑛 − 1 < 𝑞 < 𝑛, 𝑛 = [𝑞] + 1,
(5)

where [𝑞] denotes the integer part of the real number 𝑞.
Definition 2 (see [5]). The Riemann-Liouville fractional inte-
gral of order 𝑞 of a function 𝑔 : [𝑎,∞) → R is defined as

𝑅𝐿𝐼𝑞𝑔 (𝑡) = 1
Γ (𝑞) ∫𝑡

𝑎

𝑔 (𝑠)
(𝑡 − 𝑠)1−𝑞 𝑑𝑠, 𝑞 > 0, (6)

provided the integral exists.

Definition 3 (see [5]). For an at least 𝑛-times differentiable
function 𝑔 : [𝑎,∞) → R, the Caputo-type Hadamard
derivative of fractional order 𝑞 is defined as

𝐻𝐷𝑞𝑔 (𝑡) = 1
Γ (𝑛 − 𝑞) ∫𝑡

𝑎
(log 𝑡𝑠)

𝑛−𝑞−1 𝛿𝑛𝑔 (𝑠) 𝑑𝑠𝑠 ,
𝑛 − 1 < 𝑞 < 𝑛, 𝑛 = [𝑞] + 1,

(7)

where 𝛿 = 𝑡(𝑑/𝑑𝑡), log(⋅) = log𝑒(⋅).
Definition 4 (see [5]). The Hadamard fractional integral of
order 𝑞 is defined as

𝐻𝐼𝑞𝑔 (𝑡) = 1
Γ (𝑞) ∫𝑡

𝑎
(log 𝑡𝑠)

𝑞−1 𝑔 (𝑠) 𝑑𝑠𝑠 , 𝑞 > 0, (8)

provided the integral exists.

Lemma 5 (see [5]). For 𝑞 > 0, the general solution of the
fractional differential equation 𝐶𝐷𝑞𝑢(𝑡) = 0 is given by

𝑢 (𝑡) = 𝑐0 + 𝑐1 (𝑡 − 𝑎) + ⋅ ⋅ ⋅ + 𝑐𝑛−1 (𝑡 − 𝑎)𝑛−1 , (9)

where 𝑐𝑖 ∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 (𝑛 = [𝑞] + 1).

In view of Lemma 5, it follows that
𝑅𝐿𝐼𝑞 (𝐶𝐷𝑞𝑢) (𝑡) = 𝑢 (𝑡) + 𝑐0 + 𝑐1 (𝑡 − 𝑎) + ⋅ ⋅ ⋅

+ 𝑐𝑛−1 (𝑡 − 𝑎)𝑛−1 , (10)

for some 𝑐𝑖 ∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 (𝑛 = [𝑞] + 1).
Lemma 6 (see [23]). Let 𝑢 ∈ 𝐴𝐶𝑛𝛿[𝑎, 𝑏] or 𝐶𝑛𝛿[𝑎, 𝑏] and 𝑞 ∈ C,
where 𝑋𝑛𝛿[𝑎, 𝑏] = {𝑔 : [𝑎, 𝑏] → C : 𝛿𝑛−1𝑔(𝑡) ∈ 𝑋[𝑎, 𝑏]}.
Then, we have

𝐻𝐼𝑞 (𝐻𝐷𝑞) 𝑢 (𝑡) = 𝑢 (𝑡) − 𝑛−1∑
𝑘=0

𝑐𝑘 (log ( 𝑡
𝑎))
𝑘 , (11)

where 𝑐𝑖 ∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1 (𝑛 = [𝑞] + 1).
In order to define the solution of the boundary value

problem (1), we consider the linear variant
𝐶𝐷𝑝 (𝐻𝐷𝑞𝑥) (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ (𝑎, 𝑏) ,

𝛼1𝑥 (𝑎) + 𝛼2 (𝐻𝐷𝑞𝑥) (𝑎) = 0,
𝛽1𝑥 (𝑏) + 𝛽2 (𝐻𝐷𝑞𝑥) (𝑏) = 0,

(12)

where 𝑦 ∈ 𝐶([𝑎, 𝑏],R).
Lemma 7. Let

Ω fl 𝛽1𝛼2 − 𝛼1 (𝛽1 (log (𝑏/𝑎))
𝑞

Γ (𝑞 + 1) + 𝛽2) ̸= 0. (13)

Then, the unique solution of the separated boundary value
problem of sequential Caputo and Hadamard fractional differ-
ential equation (12) is given by the integral equation

𝑥 (𝑡) = 𝛽1Ω (𝛼1 (log (𝑡/𝑎))
𝑞

Γ (𝑞 + 1) − 𝛼2)𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝𝑦) (𝑏)

+ 𝛽2Ω (𝛼1 (log (𝑡/𝑎))
𝑞

Γ (𝑞 + 1) − 𝛼2) 𝑅𝐿𝐼𝑝𝑦 (𝑏)
+ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝𝑦) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] .

(14)

Proof. Taking the Riemann-Liouville fractional integral of
order 𝑝 to the first equation of (12), we get

(𝐻𝐷𝑞𝑥) (𝑡) = 𝑐1 + 𝑅𝐿𝐼𝑝𝑦 (𝑡) , 𝑐1 ∈ R. (15)

Again taking the Hadamard fractional integral of order 𝑞 to
the above equation, we obtain

𝑥 (𝑡) = 𝑐2 + 𝑐1 (log (𝑡/𝑎))
𝑞

Γ (𝑞 + 1) + 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝𝑦) (𝑡) ,
𝑐2 ∈ R.

(16)

Substituting 𝑡 = 𝑎 in (15)-(16) and applying the first boundary
condition of (12), it follows that

𝛼2𝑐1 + 𝛼1𝑐2 = 0. (17)
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For 𝑡 = 𝑏 in equations (15)-(16) and using the second
boundary condition of (12), it yields

𝑐1 (𝛽1 (log (𝑏/𝑎))
𝑞

Γ (𝑞 + 1) + 𝛽2) + 𝛽1𝑐2
= −𝛽1𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝𝑦) (𝑏) − 𝛽2𝑅𝐿𝐼𝑝𝑦 (𝑏) .

(18)

Solving the linear system of (17) and (18) for finding two
constants 𝑐1, 𝑐2, we get

𝑐1 = 𝛼1𝛽1Ω 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝𝑦) (𝑏) +
𝛼1𝛽2Ω 𝑅𝐿𝐼𝑝𝑦 (𝑏) (19)

and

𝑐2 = −𝛽1𝛼2Ω 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝𝑦) (𝑏) −
𝛼2𝛽2Ω 𝑅𝐿𝐼𝑝𝑦 (𝑏) . (20)

Substituting constants 𝑐1 and 𝑐2 in (16), we get the integral
equation (14). The converse follows by direct computation.
The proof is completed.

In the same way, we can prove the following lemma,
which concerns a linear variant of problem (2):

𝐻𝐷𝑞 (𝐶𝐷𝑝𝑥) (𝑡) = 𝑧 (𝑡) , 𝑡 ∈ (𝑎, 𝑏) ,
𝛼1𝑥 (𝑎) + 𝛼2 (𝐶𝐷𝑝𝑥) (𝑎) = 0,
𝛽1𝑥 (𝑏) + 𝛽2 (𝐶𝐷𝑝𝑥) (𝑏) = 0,

(21)

where 𝑧 ∈ 𝐶([𝑎, 𝑏],R).
Lemma 8. Let

Ω∗ fl 𝛽1𝛼2 − 𝛼1 (𝛽1 (𝑏 − 𝑎)𝑝
Γ (𝑝 + 1) + 𝛽2) ̸= 0. (22)

Then, the unique solution of the separated boundary value
problem of sequential Caputo and Hadamard fractional differ-
ential equation (21) is given by the integral equation

𝑥 (𝑡) = 𝛽1Ω∗ (𝛼1 (𝑡 − 𝑎)𝑝
Γ (𝑝 + 1) − 𝛼2) 𝑅𝐿𝐼𝑝 (𝐻𝐼𝑞𝑧) (𝑏)

+ 𝛽2Ω∗ (𝛼1 (𝑡 − 𝑎)𝑝
Γ (𝑝 + 1) − 𝛼2)𝐻𝐼𝑞𝑧 (𝑏)

+ 𝑅𝐿𝐼𝑝 (𝐻𝐼𝑞𝑧) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] .

(23)

3. Main Results

We set some abbreviate notations for sequential Riemann-
Liouville and Hadamard fractional integrals of a function
with two variables as

𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝜙) = 1
Γ (𝑞) Γ (𝑝)

⋅ ∫𝜙
𝑎
∫𝑠
𝑎
(log𝜙𝑠 )

𝑞−1 (𝑠 − 𝑟)𝑝−1 𝑓 (𝑟, 𝑥 (𝑟)) 𝑑𝑟𝑑𝑠𝑠 ,
(24)

and

𝑅𝐿𝐼𝑝 (𝐻𝐼𝑞 (𝑓𝑥)) (𝜙) = 1
Γ (𝑝) Γ (𝑞)

⋅ ∫𝜙
𝑎
∫𝑠
𝑎
(𝜙 − 𝑠)𝑝−1 (log 𝑠𝑟)

𝑞−1 𝑓 (𝑟, 𝑥 (𝑟)) 𝑑𝑟𝑟 𝑑𝑠,
(25)

where 𝜙 ∈ {𝑡, 𝑏}. Also we use this one for a single Riemann-
Liouville and Hadamard fractional integrals of orders 𝑝 and𝑞, respectively.

In this section, we will use fixed point theorems to prove
the existence and uniqueness of solution for problems (1) and
(2). To accomplish our purpose, we define the Banach space
C = 𝐶([𝑎, 𝑏],R), of all continuous functions on [𝑎, 𝑏] to R

endowed with the norm ‖𝑥‖ = sup{|𝑥(𝑡)|, 𝑡 ∈ [𝑎, 𝑏]}. In
addition, we define the operatorK : C → C by

K𝑥 (𝑡)
= 𝛽1Ω (𝛼1 (log (𝑡/𝑎))

𝑞

Γ (𝑞 + 1) − 𝛼2)𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑏)

+ 𝛽2Ω (𝛼1 (log (𝑡/𝑎))
𝑞

Γ (𝑞 + 1) − 𝛼2) 𝑅𝐿𝐼𝑝 (𝑓𝑥) (𝑏)
+ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑡) ,

(26)

where Ω ̸= 0 is defined by (13) and 𝑓𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)). Note
that the separated boundary value problem (1) has solutions
if and only if 𝑥 = K𝑥 has fixed points.

For computational convenience we put

Ω1
= 𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏)

+ 𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))
𝑞

Γ (𝑞 + 1) + 𝛼2) 𝑅𝐿𝐼𝑝 (1) (𝑏)
+ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏) .

(27)

To prove the existence theorems of problem (2), we define the
operatorA : C → C by

A𝑥 (𝑡)
= 𝛽1Ω∗ (𝛼1 (𝑡 − 𝑎)𝑝

Γ (𝑝 + 1) − 𝛼2) 𝑅𝐿𝐼𝑝 (𝐻𝐼𝑞 (𝑓𝑥)) (𝑏)

+ 𝛽2Ω∗ (𝛼1 (𝑡 − 𝑎)𝑝
Γ (𝑝 + 1) − 𝛼2)𝐻𝐼𝑞 (𝑓𝑥) (𝑏)

+ 𝑅𝐿𝐼𝑝 (𝐻𝐼𝑞 (𝑓𝑥)) (𝑡) .

(28)

Now, we prove the existence and uniqueness result for
problem (1). For problem (2) the proof is similar and
omitted.
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Theorem 9. Suppose that(𝐻1) there exists a function 𝜓(𝑡) > 0, 𝑡 ∈ [𝑎, 𝑏], such that
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) ≤ 𝜓 (𝑡) 𝑥 − 𝑦

for all 𝑡 ∈ [𝑎, 𝑏] and 𝑥, 𝑦 ∈ R. (29)

If 𝜓∗Ω1 < 1, where 𝜓∗ = sup{𝜓(𝑡) : 𝑡 ∈ [𝑎, 𝑏]}, then the
separated boundary value problem (1) has a unique solution
on [𝑎, 𝑏].
Proof. Firstly, we define a ball 𝐵𝑟 as 𝐵𝑟 = {𝑥 ∈ C : ‖𝑥‖ ≤ 𝑟},
where the constant 𝑟 satisfies

𝑟 ≥ 𝑀Ω11 − 𝜓∗Ω1 , (30)

where 𝑀 = sup{𝑓(𝑡, 0) : 𝑡 ∈ [𝑎, 𝑏]}. Next, we will show that
K𝐵𝑟 ⊂ 𝐵𝑟. For any 𝑥 ∈ 𝐵𝑟 and using the triangle inequality|𝑓𝑥| ≤ |𝑓𝑥 − 𝑓0| + |𝑓0|, we have

|K𝑥 (𝑡)| ≤
𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)
⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑏)
+ 𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2) 𝑅𝐿𝐼𝑝 (𝑓𝑥) (𝑏)
+ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑡)
≤ 𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)
⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥 − 𝑓0 + 𝑓0)) (𝑏)
+ 𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)
⋅ 𝑅𝐿𝐼𝑝 (𝑓𝑥 − 𝑓0 + 𝑓0) (𝑏)
+ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥 − 𝑓0 + 𝑓0)) (𝑏)
≤ 𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)
⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝜓∗𝑟 + 𝑀)) (𝑏)
+ 𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2) 𝑅𝐿𝐼𝑝 (𝜓∗𝑟 + 𝑀)
⋅ (𝑏) + 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝜓∗𝑟 + 𝑀)) (𝑏) = 𝜓∗Ω1𝑟 + 𝑀Ω1
≤ 𝑟,

(31)

which implies thatK𝐵𝑟 ⊂ 𝐵𝑟. Let 𝑥, 𝑦 ∈ 𝐵𝑟, then
K𝑥 (𝑡) −K𝑦 (𝑡) ≤

𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))
𝑞

Γ (𝑞 + 1) + 𝛼2)
⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥 − 𝑓𝑦)) (𝑏)
+ 𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2) 𝑅𝐿𝐼𝑝 (𝑓𝑥 − 𝑓𝑦)
⋅ (𝑏) + 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥 − 𝑓𝑦)) (𝑡)
≤ 𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2) 𝜓∗ 𝑥 − 𝑦
⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏)
+ 𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)𝜓∗ 𝑥 − 𝑦
⋅ 𝑅𝐿𝐼𝑝 (1) (𝑏) + 𝜓∗ 𝑥 − 𝑦𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑡)
= 𝜓∗Ω1 𝑥 − 𝑦 ,

(32)

which yields that ‖K𝑥−K𝑦‖ ≤ 𝜓∗Ω1‖𝑥−𝑦‖. Since𝜓∗Ω1 < 1,
we deduce that the operator K is a contraction. By Banach
contraction mapping principle the operator K has a unique
fixed point, which leads that problem (1) has a unique solution
on [𝑎, 𝑏].
Theorem 10. Let (𝐻1) inTheorem 9 holds. If𝜓∗Ω∗1 < 1, where
Ω∗1 =

𝛽1|Ω∗| (𝛼1 (𝑏 − 𝑎)𝑝
Γ (𝑝 + 1) + 𝛼2) 𝑅𝐿𝐼𝑝 (𝐻𝐼𝑞 (1)) (𝑏)

+ 𝛽2|Ω∗| (𝛼1 (𝑏 − 𝑎)𝑝
Γ (𝑝 + 1) + 𝛼2)𝐻𝐼𝑞 (1) (𝑏)

+ 𝑅𝐿𝐼𝑝 (𝐻𝐼𝑞 (1)) (𝑏) ,

(33)

then the separated boundary value problem (2) has a unique
solution on [𝑎, 𝑏].

Our second existence result is based on Krasnoselskii’s
fixed point theorem.

Theorem 11 ((Krasnoselskii’s fixed point theorem) [24]). Let𝑄 be a closed, bounded, convex, and nonempty subset of a
Banach space 𝑋. Let 𝐴, 𝐵 be operators such that

(a) 𝐴𝑥 + 𝐵𝑦 ∈ 𝑄 where 𝑥, 𝑦 ∈ 𝑄;
(b) 𝐴 is compact and continuous;
(c) 𝐵 is a contraction mapping.

Then there exists 𝑧 ∈ 𝑄 such that 𝑧 = 𝐴𝑧 + 𝐵𝑧.
Theorem 12. Let𝑓 : [𝑎, 𝑏]×R → R be a continuous function
satisfying (𝐻1) in Theorem 9. In addition, assume that

(𝐻2) |𝑓(𝑡, 𝑥)| ≤ 𝜑(𝑡), ∀(𝑡, 𝑥) ∈ [𝑎, 𝑏] × R and 𝜑 ∈𝐶([𝑎, 𝑏],R+).
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If

𝜓∗ [𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏)] < 1, (34)

then the separated boundary value problem (1) has at least one
solution on [𝑎, 𝑏].
Proof. Let 𝐵𝜌 = {𝑥 ∈ C : ‖𝑥‖ ≤ 𝜌}, where a constant 𝜌
satisfying 𝜌 ≥ 𝜑∗Ω1 and 𝜑∗ = sup{𝜑(𝑡) : 𝑡 ∈ [𝑎, 𝑏]}. We
decompose the operator K into two operators K1 and K2
on 𝐵𝜌 with
K1𝑥 (𝑡)

= 𝛽1Ω (𝛼1 (log (𝑡/𝑎))
𝑞

Γ (𝑞 + 1) − 𝛼2)𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑏)

+ 𝛽2Ω (𝛼1 (log (𝑡/𝑎))
𝑞

Γ (𝑞 + 1) − 𝛼2) 𝑅𝐿𝐼𝑝 (𝑓𝑥) (𝑏) ,
𝑡 ∈ [𝑎, 𝑏] ,

K2𝑥 (𝑡) = 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑡) , 𝑡 ∈ [𝑎, 𝑏] .

(35)

Note that the ball 𝐵𝜌 is a closed, bounded, and convex subset
of the Banach spaceC.

Now, we will show that K1𝑥 + K2𝑦 ∈ 𝐵𝜌 for satisfying
condition (a) of Theorem 11. Setting 𝑥, 𝑦 ∈ 𝐵𝜌, then we have

K1𝑥 (𝑡) +K2𝑦 (𝑡)
≤ 𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)
⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑏)
+ 𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2) 𝑅𝐿𝐼𝑝 (𝑓𝑥) (𝑏)
+ 𝐻𝐼𝑞𝑅𝐿𝐼𝑝 (𝑓𝑦) (𝑡)
≤ 𝜑∗ (𝛼1𝛽1|Ω|

(log (𝑏/𝑎))𝑞
Γ (𝑞 + 1) + 𝛽1𝛼2|Ω| )𝐻𝐼𝑞𝑅𝐿𝐼𝑝 (1)

⋅ (𝑏) + 𝜑∗ (𝛼1𝛽2|Ω|
(log (𝑏/𝑎))𝑞
Γ (𝑞 + 1) + 𝛼2𝛽2|Ω| ) 𝑅𝐿𝐼𝑝 (1)

⋅ (𝑏) + 𝜑∗𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏) = 𝜑∗Ω1 ≤ 𝜌.

(36)

This means that K1𝑥 + K2𝑦 ∈ 𝐵𝜌. To prove that K2 is a
contraction mapping, for 𝑥, 𝑦 ∈ 𝐵𝜌, we have

K2𝑥 −K2𝑦 ≤ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥 − 𝑓𝑦)) (𝑏)
≤ 𝜓∗ [𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏)] 𝑥 − 𝑦

(37)

by condition (𝐻1), which is a contraction, by (34). Therefore,
the condition (c) ofTheorem 11 is satisfied. Next we will show
that the operatorK1 is compact and continuous. By using the

continuity of the function 𝑓 on [𝑎, 𝑏] × R, we can conclude
that the operatorK1 is continuous. For 𝑥 ∈ 𝐵𝜌, it follows thatK1𝑥 ≤ 𝜑∗Ω2, (38)

where
Ω2
= 𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏)

+ 𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))
𝑞

Γ (𝑞 + 1) + 𝛼2) 𝑅𝐿𝐼𝑝 (1) (𝑏) ,
(39)

which implies that the setK1𝐵𝜌 is uniformly bounded. Now
we are going to prove that K1𝐵𝜌 is equicontinuous. For 𝜏1,𝜏2 ∈ [𝑎, 𝑏] such that 𝜏1 < 𝜏2 and for 𝑥 ∈ 𝐵𝜌, we haveK1𝑥 (𝜏2) −K1𝑥 (𝜏1)

≤ 𝛼1𝛽1|Ω| Γ (𝑞 + 1)
(log (

𝜏2𝑎 ))𝑞 − (log (𝜏1𝑎 )𝑞)
⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑏)
+ 𝛼1𝛽2|Ω| Γ (𝑞 + 1)

(log (
𝜏2𝑎 ))𝑞 − (log (𝜏1𝑎 )𝑞)

⋅ 𝑅𝐿𝐼𝑝 (𝑓𝑥) (𝑏)
≤ 𝜑∗Ω2 (log (

𝜏2𝑎 ))𝑞 − (log (𝜏1𝑎 )𝑞) ,

(40)

which is independent of 𝑥 and also tends to zero as 𝜏1 →𝜏2. Hence the set K1𝐵𝜌 is equicontinuous. Therefore the set
K1𝐵𝜌 is relatively compact. By applying the Arzelá-Ascoli
theorem, the operator K1 is compact on 𝐵𝜌. Therefore the
operatorsK1 andK2 satisfy the assumptions of Theorem 11.
By the conclusion of Theorem 11, we get that the separated
boundary value problem (1) has at least one solution on [𝑎, 𝑏].
This completes the proof.

Theorem 13. Assume that (𝐻1) and (𝐻2) are fulfilled. If𝜓∗[𝑅𝐿𝐼𝑝(𝐻𝐼𝑞(1))(𝑏)] < 1, then the separated boundary value
problem (2) has at least one solution on [𝑎, 𝑏].

The above theorem can be proved by applying Krasnosel-
skii’s fixed point theorem to the operatorA defined in (28).

Remark 14. If the operators K1 and K2 are interchanged,
then we have the existence results as follows:

(i) If𝜓∗Ω2 < 1, then problem (1) has at least one solution
on [𝑎, 𝑏].

(ii) If 𝜓∗Ω∗2 < 1, then problem (2) has at least one
solution on [𝑎, 𝑏], where

Ω∗2 =
𝛽1|Ω∗| (𝛼1 (𝑏 − 𝑎)𝑝

Γ (𝑝 + 1) + 𝛼2) 𝑅𝐿𝐼𝑝 (𝐻𝐼𝑞 (1)) (𝑏)

+ 𝛽2|Ω∗| (𝛼1 (𝑏 − 𝑎)𝑝
Γ (𝑝 + 1) + 𝛽2)𝐻𝐼𝑞 (1) (𝑏) .

(41)
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However, in application to existence theory, the computation
of values 𝐻𝐼𝑞(𝑅𝐿𝐼𝑝(1))(𝑏) and 𝑅𝐿𝐼𝑝(𝐻𝐼𝑞(1))(𝑏) is easier thanΩ2 and Ω∗2 , respectively.

The third existence result will be proved by applying
Leray-Schauder nonlinear alternative.

Theorem 15 ((nonlinear alternative for single valued maps)
[25]). Let 𝐸 be a Banach space, 𝐶 a closed, convex subset of
𝐸,𝑈 an open subset of𝐶, and 0 ∈ 𝑈. Suppose thatD : 𝑈 → 𝐶
is a continuous; compact (that is,D(𝑈) is a relatively compact
subset of 𝐶) map. Then either

(i) D has a fixed point in𝑈 or
(ii) there is a 𝑥 ∈ 𝜕𝑈 (the boundary of 𝑈 in 𝐶) and ] ∈(0, 1) with 𝑥 = ]D(𝑥).
Let us state and prove the existence theorem.

Theorem 16. Suppose that
(𝐻3) there exist a continuous nondecreasing function 𝜉 :[0,∞) → (0,∞) and a function 𝜂 ∈ 𝐶([𝑎, 𝑏],R+) such that

𝑓 (𝑡, 𝑥) ≤ 𝜂 (𝑡) 𝜉 (|𝑥|) for each (𝑡, 𝑥) ∈ [𝑎, 𝑏] ×R; (42)

(𝐻4) there exists a constant 𝐾 > 0 such that
𝐾𝜂 𝜉 (𝐾)Ω1 > 1. (43)

Then the separated boundary value problem (1) has at least one
solution on [𝑎, 𝑏].
Proof. Let the operator K be defined in (26). Let us prove
that the operatorKmaps bounded sets (balls) into bounded
sets in C. For a constant 𝜆 > 0, we define a bounded ball𝐵𝜆 = {𝑥 ∈ C : ‖𝑥‖ ≤ 𝜆}. Then for 𝑡 ∈ [𝑎, 𝑏], one has

|K𝑥 (𝑡)| ≤
𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)
⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑏)
+ 𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2) 𝑅𝐿𝐼𝑝 (𝑓𝑥) (𝑏)
+ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑡) ≤ 𝜂 𝜉 (|𝑥|)
⋅ 𝛽1|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏)

+ 𝜂 𝜉 (|𝑥|)
𝛽2|Ω| (𝛼1 (log (𝑏/𝑎))

𝑞

Γ (𝑞 + 1) + 𝛼2)
⋅ 𝑅𝐿𝐼𝑝 (1) (𝑏) + 𝜂 𝜉 (|𝑥|)𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏) ≤ 𝜂
⋅ 𝜉 (𝜆)Ω1,

(44)

which implies that

‖K𝑥‖ ≤ 𝜂 𝜉 (𝜆)Ω1. (45)

After that we will show that the operator K maps bounded
sets into equicontinuous sets ofC. Let 𝜏1, 𝜏2 be any two points
in [𝑎, 𝑏] such that 𝜏1 < 𝜏2. Then for 𝑥 ∈ 𝐵𝜆, we have

(K𝑥) (𝜏2) − (K𝑥) (𝜏1)
≤ 𝛼1𝛽1|Ω| Γ (𝑞 + 1)

(log (
𝜏2𝑎 ))𝑞 − (log (𝜏1𝑎 ))𝑞

⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝑏)
+ 𝛼1𝛽2|Ω| Γ (𝑞 + 1)

(log (
𝜏2𝑎 ))𝑞 − (log (𝜏1𝑎 ))𝑞

⋅ 𝑅𝐿𝐼𝑝 (𝑓𝑥) (𝑏)
+ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝜏2) − 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (𝑓𝑥)) (𝜏1)
≤ 𝜂 𝜉 (𝜆) 𝛼1𝛽1|Ω| Γ (𝑞 + 1)

(log (
𝜏2𝑎 ))𝑞 − (log (𝜏1𝑎 ))𝑞

⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝑏)
+ 𝜂 𝜉 (𝜆) 𝛼1𝛽2|Ω| Γ (𝑞 + 1)

(log (
𝜏2𝑎 ))𝑞 − (log (𝜏1𝑎 ))𝑞

⋅ 𝑅𝐿𝐼𝑝 (1) (𝑏) + 𝜂 𝜉 (𝜆)
⋅ 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝜏2) − 𝐻𝐼𝑞 (𝑅𝐿𝐼𝑝 (1)) (𝜏1) .

(46)

As 𝜏1 → 𝜏2, the right-hand side of the above inequality
tends to zero independently of 𝑥 ∈ 𝐵𝜌. Hence, by applying
the Arzelá-Ascoli theorem, the operator K : C → C is
completely continuous.

The result will be followed from the Leray-Schauder
nonlinear alternative if we prove the boundedness of the set
of the solutions to equation 𝑥 = ]K𝑥 for ] ∈ (0, 1). Let 𝑥 be a
solution of the operator equation𝑥 = K𝑥.Then, for 𝑡 ∈ [𝑎, 𝑏],
by directly computation, we have

|𝑥 (𝑡)| ≤ 𝜂 𝜉 (‖𝑥‖)Ω1, (47)

which leads to

‖𝑥‖𝜂 𝜉 (‖𝑥‖)Ω1 ≤ 1. (48)

From the assumption (𝐻4), there exists a positive constant 𝐾
such that ‖𝑥‖ ̸= 𝐾. Let us set

𝑈 = {𝑥 ∈ C : ‖𝑥‖ < 𝐾} . (49)

It is easy to see that the operator K : 𝑈 → C is continuous
and completely continuous. From the choice of 𝑈, there is
no 𝑥 ∈ 𝜕𝑈 such that 𝑥 = ]K𝑥 for some ] ∈ (0, 1).
Therefore, by the nonlinear alternative of Leray-Schauder
type (Theorem 15), we deduce that the operatorK has a fixed
point 𝑥 ∈ 𝑈 which is a solution of problem (1). The proof is
completed.
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Theorem 17. Assume that the condition (𝐻3) inTheorem 16 is
satisfied. If a positive constant 𝐾1 satisfying

𝐾1𝜂 𝜉 (𝐾1)Ω∗1 > 1, (50)

then the separated boundary value problem (2) has at least one
solution on [𝑎, 𝑏].

The next two special cases can be obtained by setting𝜂(𝑡) = 1, 𝑡 ∈ [𝑎, 𝑏] and 𝜉(𝑦) = 𝐸𝑦 + 𝐺, 𝑦 ∈ [0,∞) with
two constants 𝐸 ≥ 0, 𝐺 > 0.
Corollary 18. Let 𝑓 : [𝑎, 𝑏] × R → R be a continuous
function satisfying |𝑓(𝑡, 𝑥)| ≤ 𝐸|𝑥| + 𝐺, for all 𝑥 ∈ R. Then

(i) if𝐸Ω1 < 1, then the separated boundary value problem
(1) has at least one solution on [𝑎, 𝑏];

(ii) if𝐸Ω∗1 < 1, then the separated boundary value problem
(2) has at least one solution on [𝑎, 𝑏].

4. Examples

In this section, we present some examples to illustrate our
results.

Example 1. Consider the following sequential Caputo-
Hadamard fractional differential equations with separated
boundary conditions

𝐶𝐷1/2 (𝐻𝐷1/3𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,
𝑡 ∈ (1

2 ,
5
2) ,

1
4𝑥 (1

2) + 3
5 (𝐻𝐷1/3𝑥) (1

2) = 0,
5
8𝑥 (5

2) + 7
9 (𝐻𝐷1/3𝑥) (5

2) = 0.

(51)

Here 𝑝 = 1/2, 𝑞 = 1/3, 𝑎 = 1/2, 𝑏 = 5/2, 𝛼1 = 1/4,𝛼2 = 3/5, 𝛽1 = 5/8, and 𝛽2 = 7/9. From given information,
we find that Ω = −0.0244992447, 𝐻𝐼1/3(𝑅𝐿𝐼1/2(1))(5/2) =
1.622871815, and 𝑅𝐿𝐼1/2(1)(5/2) = 1.595769121 which yieldΩ1 = 87.06444876.

(i) Let 𝑓 : [1/2, 5/2] ×R → R with

𝑓 (𝑡, 𝑥) = cos2 𝜋𝑡
2 ((𝑡 − 1/2) + 90) (

𝑥2 + |𝑥|
|𝑥| + 1 ) + 1

2 . (52)

It follows that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦) ≤ cos2 𝜋𝑡
((𝑡 − 1/2) + 90) 𝑥 − 𝑦

fl 𝜓 (𝑡) 𝑥 − 𝑦 .
(53)

Then condition (𝐻1) is satisfiedwith𝜓∗ = 1/90.Thus𝜓∗Ω1 =0.9673827640 < 1. Hence, by Theorem 9, problem (51) with
(52) has a unique solution on [1/2, 5/2].

(ii) Given 𝑓 : [1/2, 5/2] × R → R by

𝑓 (𝑡, 𝑥) = cos2 𝜋𝑡
2 ((𝑡 − 1/2) + 2) (

𝑥2 + |𝑥|
|𝑥| + 1 ) + 1

2. (54)

Observe that the function 𝑓 defined in (54) satisfies (𝐻1)
with 𝜓∗ = 1/2. But the Theorem 9 can not be applied
to this case because the value of 𝜓∗Ω1 = 43.53222438 >1. However, by the benefit of Theorem 12, we have
𝜓∗[𝐻𝐼1/3(𝑅𝐿𝐼1/2(1))(5/2)] = 0.8114359075 < 1. By the
conclusion of Theorem 12, problem (51) with (54) has at least
one solution on [1/2, 5/2].
Example 2. Consider the following sequential Hadamard-
Caputo fractional differential equations with separated
boundary conditions

𝐻𝐷3/4 (𝐶𝐷2/5𝑥) (𝑡) = 𝑔 (𝑡, 𝑥 (𝑡)) ,
𝑡 ∈ (1

8 ,
7
8) ,

3
11𝑥 (1

8) + 𝜋
4 (𝐶𝐷2/5𝑥) (1

8) = 0,
√2
9 𝑥 (7

8) + 2
13 (𝐶𝐷2/5𝑥) (7

8) = 0.

(55)

Here 𝑞 = 3/4, 𝑝 = 2/5, 𝑎 = 1/8, 𝑏 = 7/8, 𝛼1 = 3/11, 𝛼2 =𝜋/4, 𝛽1 = √2/9, and 𝛽2 = 2/13. From above information, we
can find that Ω∗ = 0.03840540910, 𝑅𝐿𝐼2/5(𝐻𝐼3/4(1))(7/8) =
1.526044488, and 𝐻𝐼3/4(1)(7/8) = 1.792656288which can be
computed the value of Ω∗1 = 15.74791264.

(i) The function 𝑔 : [1/8, 7/8] ×R → R is defined by

𝑔 (𝑡, 𝑥) = 8 sin4 𝜋𝑡
263 + 8𝑡 ( 𝑥6

𝑥4 + 1 + 1) . (56)

Setting 𝜂(𝑡) = (8 sin4 𝜋𝑡/(263 + 8𝑡)) and 𝜉(𝑦) = 𝑦2 + 1,
we see that the condition (𝐻3) of Theorem 16 is satisfied
with the above function 𝑔(𝑡, 𝑥). In addition, we can find
that ‖𝜂‖ = 1/33. Then there exists a constant 𝐾 such that𝐾 ∈ (0.7350333746, 1.360482441) satisfying inequality (50).
Therefore, applying Theorem 17, problem (55) with (56) has
at least one solution on [1/8, 7/8].

(ii) Let 𝑔 : [1/8, 7/8] ×R → R by

𝑔 (𝑡, 𝑥) = 𝑒−(𝑡−1/8)2
16 ( 𝑥8

|𝑥|7 + 1) + 3
4 (1 + 𝑡2) . (57)

It is easy to see that the function 𝑔(𝑡, 𝑥) defined in (57) can be
expressed as |𝑔(𝑡, 𝑥)| ≤ (1/16)|𝑥| + (3/4). Then (1/16)Ω∗1 =0.9842445400 < 1. Using (ii) of the Corollary 18, the problem
(55) with (57) has at least one solution on [1/8, 7/8].
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In this paper, we research CFR fractional differential equations with the derivative of order 3 < 𝛼 < 4. We prove existence and
uniqueness theorems for CFR-type initial value problem. By Green’s function and its corresponding maximum value, we obtain the
Lyapunov-type inequality of corresponding equations. As for application, we study the eigenvalue problem in the sense of CFR.

1. Introduction

In the past decades, fractional calculus arose ([1–3]) and
received extensive attention of many researchers. In recent
years, it becomes more important because the subject of
fractional calculus frequently appears in various fields such
as science and engineering. Recently, some new fractional
differential definitions have been created. With the rising of
fractional computation, the research on the quantitative and
qualitative properties of fractional differential equations has
become a hot topic; see papers [4–15] and the references
therein.

In [4–7], the authors presented new fractional derivatives
withMittsg-Leffler kernels and exponential-type kernels.The
boundary value problem of fractional equations emerged
as new branch in the field of differential equation due to
its wide applications. In [8], Abdeljawad defined the higher
order fractional derivative in the sense of Abdon and Baleanu
and obtained a Lyapunov-type inequality for ABR fractional
boundary value problem

( 𝐴𝐵𝑅𝑎 𝐷𝛼𝑦) (𝑡) + 𝑞 (𝑡) 𝑦 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏, 2 < 𝛼 < 3,
𝑦 (𝑎) = 𝑦 (b) = 0, (1)

and if 𝑦 is a nontrivial solution, then

∫𝑏
𝑎
𝑇 (𝑠) 𝑑𝑠 > 4

𝑏 − 𝑎 , (2)

where

𝑇 (𝑠)
= [ 3 − 𝛼

𝐵 (𝛼 − 2) 𝑞 (𝑡) +
𝛼 − 2

𝐵 (𝛼 − 2) ( 𝑎𝐼𝛼−2 𝑞 (𝑠)) (𝑡)] .
(3)

In [5], Abdeljawad defined the higher order fractional
derivative in the sense of Caputo and Fabrizio and obtained a
Lyapunov-type inequality for CFR fractional boundary value
problem

( 𝐶𝐹𝑅𝑎 𝐷𝛼𝑦) (𝑡) + 𝑞 (𝑡) 𝑦 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏, 2 < 𝛼 < 3,
𝑦 (𝑎) = 𝑦 (𝑏) = 0, (4)

and if 𝑦 is a nontrivial solution, then

∫𝑏
𝑎
𝑅 (𝑠) 𝑑𝑠 > 4

𝑏 − 𝑎 , (5)

where

𝑅 (𝑠) = [ 3 − 𝛼
𝐵 (𝛼 − 2) 𝑞 (𝑡) +

𝛼 − 2
𝐵 (𝛼 − 2) ∫

𝑏

𝑎

𝑞 (𝑠) 𝑑𝑠] . (6)
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In this paper, we study the existence and uniqueness for
initial problems

( 𝐶𝐹𝑅𝑎 𝐷𝛼𝑦) (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑎 < 𝑡 < 𝑏, 2 < 𝛼 < 3,
𝑦 (𝑎) = 𝑐1,
𝑦 (𝑎) = 𝑐2,

(7)

and

( 𝐶𝐹𝑅𝑎 𝐷𝛼𝑦) (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑎 < 𝑡 < 𝑏, 3 < 𝛼 < 4,
𝑦 (𝑎) = 𝑐1,
𝑦 (𝑎) = 𝑐2,
𝑦 (𝑎) = 𝑐3.

(8)

We also consider the following boundary value problem:

( 𝐶𝐹𝑅𝑎 𝐷𝛼𝑦) (𝑡) + 𝑞 (𝑡) 𝑦 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏, 3 < 𝛼 < 4,
𝑦 (𝑎) = 𝑦 (𝑎) = 𝑦 (𝑏) = 0, (9)

where is 𝐶𝐹𝑅𝑎 𝐷𝛼 the Riemann-Liouville fractional deriva-
tive in the sense of Caputo and Fabrizio and 𝑞 : [𝑎, 𝑏] → 𝑅
is a continuous function.

Let us introduce the concepts of the Riemann-Liouville
fractional integral and the Riemann-Liouville fractional
derivative in the sense of Caputo and Fabrizio.

Definition 1 (see [1]). Let 𝛼 > 0 and 𝑓 be a real function
defined on [𝑎, 𝑏]. The Riemann-Liouville fractional integral
of order 𝛼 is defined by

( 𝑎𝐼𝛼𝑓) (𝑡) = 1
Γ (𝛼) ∫

𝑡

𝑎
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠) 𝑑𝑠,

𝛼 > 0, 𝑡 ∈ [𝑎, 𝑏] ,
(10)

where Γ(𝛼) is defined by

Γ (𝛼) = ∫∞
0

𝑡𝛼−1𝑒−𝑡𝑑𝑡, 𝛼 > 0. (11)

This is fractionalizing of the 𝑛 − 𝑖𝑡𝑒𝑟𝑎𝑡𝑒𝑑 integral

( 𝑎𝐼𝑛𝑓) (𝑡) = 1
(𝑛 − 1)! ∫

𝑡

𝑎
(𝑡 − 𝑠)𝑛−1 𝑓 (𝑠) 𝑑𝑠,

𝑡 ∈ [𝑎, 𝑏] .
(12)

Definition 2 (see [5]). Let 𝑓 ∈ 𝐻1[𝑎, 𝑏], 𝑎 < 𝑏, 𝛼 ∈ [0, 1),
then the Riemann-Liouville fractional derivative in the sense
of Caputo and Fabrizio is defined by

( 𝐶𝐹𝑅𝑎 𝐷𝛼𝑓) (𝑡)
= 𝐵 (𝛼)
1 − 𝛼

𝑑
𝑑𝑡 ∫
𝑡

𝑎
𝑓 (𝑥) 𝑒[−𝛼((𝑡−𝑥)𝛼/(1−𝛼))]𝑑𝑥. (13)

The associated fractional integral is

( 𝐶𝐹𝑎 𝐼𝛼𝑓) (𝑡) = 1 − 𝛼
𝐵 (𝛼)𝑓 (𝑡) + 𝛼

𝐵 (𝛼) ∫
𝑡

𝑎
𝑓 (𝑠) 𝑑𝑠, (14)

where 𝐵(𝛼) > 0 is a normalization function satisfying B(0) =𝐵(1) = 1.
Definition 3 (see [5]). Let 𝑛 < 𝛼 ≤ 𝑛 + 1 and 𝑓 be such
that 𝑓(𝑛) ∈ 𝐻1[𝑎, 𝑏], 𝑎 < 𝑏. Set 𝛽 = 𝛼 − 𝑛, 𝛽 ∈ (0, 1), then
the Riemann-Liouville fractional derivative in the sense of
Caputo and Fabrizio has the following form:

( 𝐶𝐹𝑅𝑎 𝐷𝛼𝑓) (𝑡) = ( 𝐶𝐹𝑅𝑎 𝐷𝛽𝑓(𝑛)) (𝑡) . (15)

The associated fractional integral is

( 𝐶𝐹𝑎 𝐼𝛼𝑓) (𝑡) = ( 𝑎𝐼𝑛 ( 𝐶𝐹𝑎 𝐼𝛽𝑓)) (𝑡) . (16)

We also give a proposition which will be used in this
article.

Proposition 4 (see [5]). For 𝑢(𝑡) ∈ [𝑎, 𝑏] and 𝑛 ≤ 𝛼 ≤ 𝑛 + 1,
we have

( 𝐶𝐹𝑅𝑎 𝐷𝛼 ⋅ 𝐶𝐹𝑎 𝐼𝛼𝑢) (𝑡) = 𝑢 (𝑡) ,
( 𝐶𝐹𝑎 𝐼𝛼 ⋅ 𝐶𝐹𝑅𝑎 𝐷𝛼𝑢) (𝑡) = 𝑢 (𝑡) − 𝑛−1∑

𝑘=0

𝑢(𝑘) (𝑎)
𝑘! (𝑡 − 𝑎)𝑘 . (17)

2. Existence and Uniqueness Theorems

In this section, we establish existence and uniqueness theo-
rems forCFR-type initial value problemand give correspond-
ing proofs. We make some conditions as the mark (𝐴0):
(𝐴0) 𝑓 (𝑡, 𝑦1) − 𝑓 (𝑡, 𝑦2) ≤ 𝐴 𝑦1 − 𝑦2 ,

𝐴 > 0, 𝑓 : [𝑎, 𝑏] × 𝑅 → 𝑅, 𝑦 : [𝑎, 𝑏] → 𝑅. (18)

Theorem 5. Consider the initial value problem (7). Suppose
that (𝐴0) holds; if

𝐴
𝐵 (𝛼 − 2) [

(3 − 𝛼) (𝑏 − 𝑎)2
2 + (𝛼 − 2) (𝑏 − 𝑎)3

6 ] < 1, (19)

then system (7) has a unique solution of the form

𝑦 (𝑡) = 𝑐1 + 𝑐2 (𝑡 − 𝑎) + 𝐶𝐹𝑎 𝐼𝛼𝑓 (𝑡, 𝑦 (𝑡)) . (20)

Proof. First, applying 𝐶𝐹𝑎 𝐼𝛼 to system (7) and using
Proposition 4 with 𝛽 = 𝛼 − 2, then we have (20). On
the other hand, if we apply 𝐶𝐹𝑅𝑎 𝐷𝛼 to (20) and using
Proposition 4, then we obtain (7). It is clear that 𝑦(𝑡) satisfies
the system (7) if and only if it satisfies (20).

We endow the set 𝐶[𝑎, 𝑏] with the norm ‖𝑥‖ =
max𝑡∈[𝑎,𝑏]|𝑥(𝑡)|. We define the linear operator 𝑇:

(𝑇𝑥) (𝑡) = 𝑐1 + 𝑐2 (𝑡 − 𝑎) + 𝐶𝐹𝑎 𝐼𝛼𝑓 (𝑡, 𝑥 (𝑡)) . (21)
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Then, for arbitrary 𝑥1, 𝑥2 ∈ [𝑎, 𝑏], 𝛽 = 𝛼 − 2, we have
(𝑇𝑥1) (𝑡) − (𝑇𝑥2) (𝑡)

=  𝐶𝐹𝑎 𝐼𝛼 [𝑓 (𝑡, 𝑥1 (𝑡)) − 𝑓 (𝑡, 𝑥2 (𝑡))] ≤ 𝐴𝐶𝐹𝑎 𝐼𝛼 𝑥1
− 𝑥2 = 𝐴𝑎𝐼2 ( 𝐶𝐹𝑎 𝐼𝛽 𝑥1 − 𝑥2)
= 𝐴𝑎𝐼2(1 − 𝛽

𝐵 (𝛽) 𝑥1 − 𝑥2 + 𝛽
𝐵 (𝛽) ∫

𝑡

𝑎

𝑥1 − 𝑥2 𝑑𝑠)

= 𝐴(1 − 𝛽
𝐵 (𝛽) ∫

𝑡

𝑎
(𝑡 − 𝑠) 𝑥1 − 𝑥2 𝑑𝑠

+ 𝛽
2𝐵 (𝛽) ∫

𝑡

𝑎
(𝑡 − 𝑠)2 𝑥1 − 𝑥2 𝑑𝑠)

= 𝐴( 3 − 𝛼
𝐵 (𝛼 − 2) ∫

𝑡

𝑎
(𝑡 − 𝑠) 𝑥1 − 𝑥2 𝑑𝑠

+ 𝛼 − 2
2𝐵 (𝛼 − 2) ∫

𝑡

𝑎
(𝑡 − 𝑠)2 𝑥1 − 𝑥2 𝑑𝑠)

≤ 𝐴[ 3 − 𝛼
𝐵 (𝛼 − 2) ∫

𝑡

𝑎
(𝑡 − 𝑠) 𝑑𝑠

+ 𝛼 − 2
2𝐵 (𝛼 − 2) ∫

𝑡

𝑎
(𝑡 − 𝑠)2 𝑑𝑠] 𝑥1 − 𝑥2

≤ 𝐴
𝐵 (𝛼 − 2) [

(3 − 𝛼) (𝑏 − 𝑎)2
2 + (𝛼 − 2) (𝑏 − 𝑎)3

6 ]
⋅ 𝑥1 − 𝑥2 ≤ 𝑥1 − 𝑥2 .

(22)

Hence T is a contraction. Form the Banach contraction
principle, there exists a unique 𝑥 such that 𝑇𝑥 = 𝑥. The proof
is complete.

Theorem 6. Consider the initial value problem (8). Suppose
that (𝐴0) holds; if

𝐴
𝐵 (𝛼 − 3) [

(4 − 𝛼) (𝑏 − 𝑎)3
6 + (𝛼 − 3) (𝑏 − 𝑎)4

24 ] < 1, (23)

then system (8) has a unique solution of the form

𝑦 (𝑡) = 𝑐1 + 𝑐2 (𝑡 − 𝑎) + 𝑐3 (𝑡 − 𝑎)2 + 𝐶𝐹𝑎 𝐼𝛼𝑓 (𝑡, 𝑦 (𝑡)) . (24)

Proof. Applying 𝐶𝐹𝑎 𝐼𝛼 to system (8) and using Proposition 4
with 𝛽 = 𝛼 − 3, then we have (24). On the other hand, if we
apply 𝐶𝐹𝑅𝑎 𝐷𝛼 to (24) and using Proposition 4, then we obtain
(8). It is clear that 𝑦(𝑡) satisfies system (8) if and only if it
satisfies (24).

We endow the set 𝐶[𝑎, 𝑏] with the norm ‖𝑥‖ =
max𝑡∈[𝑎,𝑏]|𝑥(𝑡)|. We define the linear operator T:

(𝑇𝑥) (𝑡) = 𝑐1 + 𝑐2 (𝑡 − 𝑎) + 𝑐3 (𝑡 − 𝑎)2
+ 𝐶𝐹𝑎 𝐼𝛼𝑓 (𝑡, 𝑦 (𝑡)) . (25)

Then, for arbitrary 𝑥1, 𝑥2 ∈ [𝑎, 𝑏], 𝛽 = 𝛼 − 3, we have
(𝑇𝑥1) (𝑡) − (𝑇𝑥2) (𝑡)

=  𝐶𝐹𝑎 𝐼𝛼 [𝑓 (𝑡, 𝑥1 (𝑡)) − 𝑓 (𝑡, 𝑥2 (𝑡))] ≤ 𝐴𝐶𝐹𝑎 𝐼𝛼 𝑥1
− 𝑥2 = 𝐴𝑎𝐼3 ( 𝐶𝐹𝑎 𝐼𝛽 𝑥1 − 𝑥2)
= 𝐴𝑎𝐼3 (1 − 𝛽

𝐵 (𝛽) 𝑥1 − 𝑥2 + 𝛽
𝐵 (𝛽) ∫

𝑡

𝑎

𝑥1 − 𝑥2 𝑑𝑠)

= 𝐴( 1 − 𝛽
2𝐵 (𝛽) ∫

𝑡

𝑎
(𝑡 − 𝑠)2 𝑥1 − 𝑥2 𝑑𝑠

+ 𝛽
6𝐵 (𝛽) ∫

𝑡

𝑎
(𝑡 − 𝑠)3 𝑥1 − 𝑥2 𝑑𝑠)

= 𝐴( 4 − 𝛼
2𝐵 (𝛼 − 3) ∫

𝑡

𝑎
(𝑡 − 𝑠)2 𝑥1 − 𝑥2 𝑑𝑠

+ 𝛼 − 3
6𝐵 (𝛼 − 3) ∫

𝑡

𝑎
(𝑡 − 𝑠)3 𝑥1 − 𝑥2 𝑑𝑠)

≤ 𝐴[ 4 − 𝛼
2𝐵 (𝛼 − 3) ∫

𝑡

𝑎
(𝑡 − 𝑠)2 𝑑𝑠

+ 𝛼 − 3
6𝐵 (𝛼 − 3) ∫

𝑡

𝑎
(𝑡 − 𝑠)3 𝑑𝑠] 𝑥1 − 𝑥2

≤ 𝐴
𝐵 (𝛼 − 3) [

(4 − 𝛼) (𝑏 − 𝑎)3
6 + (𝛼 − 3) (𝑏 − 𝑎)4

24 ]
⋅ 𝑥1 − 𝑥2 ≤ 𝑥1 − 𝑥2 ,

(26)

Hence T is a contraction. Form the Banach contraction prin-
ciple, there exists a unique 𝑥 such that 𝑇𝑥 = 𝑥. The proof is
complete.

3. Lyapunov Inequality for the CFR Boundary
Value Problem

In this section, we establish some results for the CFR
boundary value problem and give corresponding proofs.

Theorem 7. 𝑦 ∈ 𝐶[𝑎, 𝑏] is a solution of the boundary value
problem (9) if and only if 𝑦 satisfies the integral equation

𝑦 (𝑡) = ∫𝑏
𝑎
𝐺 (𝑡, 𝑠) 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠, (27)

where 𝐺(𝑡, 𝑠) is Green’s function defined as

𝐺 (𝑡, 𝑠)

=
{{{{{{{{{

(𝑡 − 𝑎)2
2 (𝑏 − 𝑎)2 (𝑏 − 𝑠)2 , 𝑎 ≤ 𝑡 ≤ 𝑠 ≤ 𝑏,
(𝑡 − 𝑎)2
2 (𝑏 − 𝑎)2 (𝑏 − 𝑠)2 − (𝑡 − 𝑠)2

2 , 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏,
(28)
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and

𝑇 (𝑠, 𝑦 (𝑠)) = ( 𝐶𝐹𝑎 𝐼𝛽𝑞 (⋅) 𝑦 (⋅)) (𝑠)
= 1 − 𝛽
𝐵 (𝛽)𝑞 (𝑠) 𝑦 (𝑠)

+ 𝛽
𝐵 (𝛽) ( 𝑎𝐼1𝑞 (⋅) 𝑦 (⋅)) (𝑠) ,

𝛽 = 𝛼 − 3.

(29)

Proof. From (9), we have

𝐶𝐹𝑅
𝑎 𝐷𝛼𝑦 (𝑡) = −𝑞 (𝑡) 𝑦 (𝑡) . (30)

Apply integral 𝐶𝐹𝑎 𝐼𝛼 on the (30); we have

𝐶𝐹
𝑎 𝐼𝛼 ( 𝐶𝐹𝑅𝑎 𝐷𝛼𝑦 (𝑡)) = 𝐶𝐹𝑎 𝐼𝛼 (−𝑞 (𝑡) 𝑦 (𝑡)) . (31)

Then, by Proposition 4 and Definitions 2 and 3, we obtain

𝑦 (𝑡) + 𝑐1 + 𝑐2 (𝑡 − 𝑎) + 𝑐3 (𝑡 − 𝑎)2
= −𝑎𝐼3 ⋅ 𝐶𝐹𝑎 𝐼𝛽𝑞 (𝑡) 𝑦 (𝑡)
= −𝑎𝐼3 [1 − 𝛽

𝐵 (𝛽)𝑞 (𝑡) 𝑦 (𝑡) +
𝛽

𝐵 (𝛽) ( 𝑎𝐼1𝑞 (⋅) 𝑦 (⋅)) (𝑠)]

= −12 ∫𝑏
𝑎
(𝑡 − 𝑠)2 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

(32)

Then, we have

𝑦 (𝑡) = 𝑐1 + 𝑐2 (𝑡 − 𝑎) + 𝑐3 (𝑡 − 𝑎)2

− 1
2 ∫𝑡
𝑎
(𝑡 − 𝑠)2 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠, (33)

for some real constants 𝑐𝑖 ∈ 𝑅(𝑖 = 1, 2, 3).
From 𝑦(𝑎) = 0, we get immediately that 𝑐1 = 0. By the

boundary condition 𝑦(𝑎) = 0, we can obtain that 𝑐2 = 0.
Hence,

𝑦 (𝑡) = 𝑐3 (𝑡 − 𝑎)2 − 1
2 ∫𝑡
𝑎
(𝑡 − 𝑠)2 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠. (34)

Using the boundary condition 𝑦(𝑏) = 0 yields
𝑐3 = 1

2 (𝑏 − 𝑎)2 ∫
𝑏

𝑎
(𝑏 − 𝑠)2 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠. (35)

Hence, equality (33) becomes

𝑦 (𝑡) = (𝑡 − 𝑎)2
2 (𝑏 − 𝑎)2 ∫

𝑏

𝑎
(𝑏 − 𝑠)2 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

− 1
2 ∫𝑡
𝑎
(𝑡 − 𝑠)2 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠.

(36)

By splitting the integral as follows:

∫𝑏
𝑎
(𝑏 − 𝑠)2 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

= ∫𝑡
𝑎
(𝑏 − 𝑠)2 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ ∫𝑏
𝑡
(𝑏 − 𝑠)2 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠.

(37)

We have that (27) holds. The proof is completed.

Corollary 8. For 𝑠 ∈ [𝑎, 𝑏], the function 𝐺 in (28) satisfied the
following properties:

max
𝑡∈[𝑎,𝑏]

𝐺 (𝑡, 𝑠) = 𝐺 (𝑡∗, 𝑠) ,

max
𝑠∈[𝑎,𝑏]

𝐺(𝑡∗, 𝑠) = (𝑏 − 𝑠)2 (𝑠 − 𝑎)
2 (2𝑏 − 𝑠 − 𝑎) ,

(38)

where

𝑡∗ = 𝑎 ((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 𝑠
((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1 . (39)

Proof. First, we define the function

𝑔1 (𝑡, 𝑠) = (𝑡 − 𝑎)2
2 (𝑏 − 𝑎)2 (𝑏 − 𝑠)2 , (40)

and

𝑔2 (𝑡, 𝑠) = (𝑡 − 𝑎)2
2 (𝑏 − 𝑎)2 (𝑏 − 𝑠)2 − (𝑡 − 𝑠)2

2 . (41)

Differentiating 𝑔1(𝑡, 𝑠) with respect to 𝑡, we get
𝜕𝑔1 (𝑡, 𝑠) = (𝑏 − 𝑠)2

(𝑏 − 𝑎)2 (𝑡 − 𝑎) ≥ 0. (42)

Hence, 𝑔1(𝑡, 𝑠) is an increasing function on 𝑡.
Then,

𝑔2 (𝑡, 𝑠) = (𝑡 − 𝑎)2
2 (𝑏 − 𝑎)2 (𝑏 − 𝑠)2 − (𝑡 − 𝑠)2

2
= 1
2 [( 𝑏 − 𝑠

𝑏 − 𝑎)
2 (𝑡 − 𝑎)2 − (𝑡 − 𝑠)2]

= 1
2 {[( 𝑏 − 𝑠

𝑏 − 𝑎)
2 − 1] 𝑡2 + [2𝑠 − 2𝑎 ( 𝑏 − 𝑠

𝑏 − 𝑎)
2] 𝑡

+ [( 𝑏 − 𝑠
𝑏 − 𝑎)

2 𝑎2 − 𝑠2]} = ((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1
2

⋅ 𝑡2 + [𝑠 − 𝑎( (𝑏 − 𝑠)
(𝑏 − 𝑎))

2] 𝑡

+ ((𝑏 − 𝑠) / (𝑏 − 𝑎))2 𝑎2 − 𝑠2
2 .

(43)
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Choose

𝑡∗ = − 𝑏
2𝑎 = 𝑎 ((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 𝑠

((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1 . (44)

Then, we have

𝑡∗ − 𝑎 = 𝑎 − 𝑠
((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1 > 0 (45)

and

𝑡∗ − 𝑏 = (𝑎 − 𝑏) ((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − (𝑠 − 𝑏)
((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1

< (𝑠 − 𝑏) ((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − (𝑠 − 𝑏)
((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1 = 𝑠 − 𝑏

< 0.

(46)

It is clear that 𝑡∗ ∈ [𝑎, 𝑏]. Then,

𝑡∗ − 𝑠 = 𝑎 ((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 𝑠
((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1 − 𝑠

= (𝑎 − 𝑠) ((𝑏 − 𝑠) / (𝑏 − 𝑎))2
((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1 > 0.

(47)

Clearly, 𝑡∗ > 𝑠. Hence, we get the maximum at 𝑡∗,
max
𝑡∈[𝑎,𝑏]

𝐺 (𝑡, 𝑠) = 𝐺 (𝑡∗, 𝑠)

= 1
2
(𝑏 − 𝑠)2
(𝑏 − 𝑎)2 [

𝑎 ((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 𝑠
((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1 − 𝑎]

2

− 1
2 [𝑎 ((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 𝑠

((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1 − 𝑠]
2

= 1
2
(𝑏 − 𝑠)2
(𝑏 − 𝑎)2 [

𝑎 − 𝑠
((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1]

2

− 1
2 [(𝑎 − 𝑠) ((𝑏 − 𝑠) / (𝑏 − 𝑎))2

((𝑏 − 𝑠) / (𝑏 − 𝑎))2 − 1 ]
2

= 1
2
(𝑏 − 𝑠)2
(𝑏 − 𝑎)2

(𝑎 − 𝑠)2 (𝑏 − 𝑎)4
[(𝑏 − 𝑠)2 − (𝑏 − 𝑎)2]2

− 1
2

(𝑎 − 𝑠)2 (𝑏 − 𝑠)4
[(𝑏 − 𝑠)2 − (𝑏 − 𝑎)2]2

= 1
2

(𝑎 − 𝑠)2 (𝑏 − 𝑠)2
[(𝑏 − 𝑠)2 − (𝑏 − 𝑎)2]2 [(𝑏 − 𝑎)2 − (𝑏 − 𝑠)2]

= (𝑏 − 𝑠)2 (𝑠 − 𝑎)
2 (2𝑏 − 𝑠 − 𝑎) .

(48)

The proof is complete.

From (29), we have the following Corollary 9.

Corollary 9. For 𝑦 ∈ 𝐶[𝑎, 𝑏], 3 < 𝛼 < 4, and 𝛽 = 𝛼 − 3, for
any 𝑡 ∈ [𝑎, 𝑏], we have

𝑇 (𝑡, 𝑦 (𝑡)) ≤ 𝑅 (𝑡) 𝑦 , (49)

where

𝑅 (𝑡) = 4 − 𝛼
𝐵 (𝛼 − 3) 𝑞 (𝑡) +

𝛼 − 3
𝐵 (𝛼 − 3) ∫

𝑡

𝑎

𝑞 (𝑠) 𝑑𝑠. (50)

Proof. Form (29), we have
𝑇 (𝑠, 𝑦 (𝑠))

= 
1 − 𝛽
𝐵 (𝛽)𝑞 (𝑠) 𝑦 (𝑠) +

𝛽
𝐵 (𝛽) ( 𝑎𝐼1𝑞 (⋅) 𝑦 (⋅)) (𝑠)


≤ 1 − 𝛽
𝐵 (𝛽) 𝑞 (𝑠) 𝑦 (𝑠) +

𝛽
𝐵 (𝛽) ∫

𝑡

𝑎

𝑞 (𝑠) 𝑑𝑠 𝑦 (𝑠)
≤ 1 − 𝛽
𝐵 (𝛽) 𝑞 (𝑠) 𝑦 (𝑠) +

𝛽
𝐵 (𝛽) ∫

𝑡

𝑎

𝑞 (𝑠) 𝑑𝑠 𝑦 (𝑠)
= [1 − 𝛽

𝐵 (𝛽) 𝑞 (𝑠) +
𝛽

𝐵 (𝛽) ∫
𝑡

𝑎

𝑞 (𝑠) 𝑑𝑠] 𝑦 (𝑠) .

(51)

By 𝛽 = 𝛼 − 3, we obtain (49). The proof is complete.

Theorem 10. If the boundary value problem (9) has a nontriv-
ial continuous solution, then

∫𝑏
𝑎
(𝑏 − 𝑠) (𝑠 − 𝑎) |𝑅 (𝑠)| 𝑑𝑠 ≥ 4. (52)

Proof. Let 𝑦 ∈ 𝑌 = 𝐶[𝑎, 𝑏] be a nontrivial solution of the
boundary value problem (9) and

𝑦 = sup
𝑡∈[𝑎,𝑏]

{𝑦 (𝑡)} . (53)

FromTheorem 7, 𝑦 satisfies the integral equation

𝑦 (𝑡) = ∫𝑏
𝑎
𝐺 (𝑡, 𝑠) 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠. 𝑡 ∈ [𝑎, 𝑏] , (54)

where 𝐺(𝑡, 𝑠) is defined in (28) and 𝑇(𝑠, 𝑦(𝑠)) is defined in
(29).

By (48), we have

𝑦 (𝑡) ≤ ∫𝑏
𝑎

sup
𝑡∈[𝑎,𝑏]

|𝐺 (𝑡, 𝑠)| 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

≤ ∫𝑏
𝑎

(𝑏 − 𝑠)2 (𝑠 − 𝑎)
2 (2𝑏 − 𝑠 − 𝑎) 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

≤ ∫𝑏
𝑎

(𝑏 − 𝑠)2 (𝑠 − 𝑎)
4 (𝑏 − 𝑠) 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

= 1
4 ∫𝑏
𝑎
(𝑏 − 𝑠) (𝑠 − 𝑎) 𝑇 (𝑠, 𝑦 (𝑠)) 𝑑𝑠.

(55)
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Form Corollary 9, we obtain

𝑦 ≤ 1
4 (∫𝑏
𝑎
(𝑏 − 𝑠) (𝑠 − 𝑎) |𝑅 (𝑠)| 𝑑𝑠) 𝑦 , (56)

then we get the inequality in (52). This completes the proof.

Theorem 11. If the boundary value problem (9) has a nontriv-
ial continuous solution, then

∫𝑏
𝑎
|𝑅 (𝑠)| 𝑑𝑠 ≥ 16

(𝑎 − 𝑏)2 , (57)

where R(t) is defined in (50).

Proof. Define the function

𝐻(𝑠) = (𝑏 − 𝑠) (𝑠 − 𝑎) = −𝑠2 + (𝑎 + 𝑏) 𝑠 − 𝑎𝑏,
𝑠 ∈ [𝑎, 𝑏] . (58)

Then, we have

𝐻 (𝑠) = −2𝑠 + (𝑎 + 𝑏) . (59)

Observe that 𝐻(𝑠) = 0 if and only if

𝑠 = 𝑠∗ = 𝑎 + 𝑏
2 . (60)

It is easily to see that 𝑠∗ ∈ [𝑎, 𝑏].
Hence, we get

max
𝑠∈[𝑎,𝑏]

𝐻(𝑠) = 𝐻 (𝑠∗) = −(𝑎 + 𝑏
2 )2 + (𝑎 + 𝑏)2

2 − 𝑎𝑏

= (𝑎 − 𝑏)2
4 .

(61)

Applying the result in (52), we have

∫𝑏
𝑎
|𝑅 (𝑠)| 𝑑𝑠 ≥ 4

𝐻 (𝑠∗) =
16

(𝑎 − 𝑏)2 . (62)

The proof is complete.

Example 12. Consider the following fractional differential
equation:

𝐶𝐹𝑅
𝑎 𝐷𝛼𝑦 (𝑡) + 𝜆𝑦 (𝑡) = 0, 0 < 𝑡 < 1, 3 < 𝛼 < 4,

𝑦 (0) = 𝑦 (0) = 𝑦 (1) = 0. (63)

If 𝜆 is an eigenvalue to the boundary value problem (9), then

|𝜆| ≥ 16 [ 4 − 𝛼
𝐵 (𝛼 − 3) +

𝛼 − 3
2𝐵 (𝛼 − 3)]

−1 . (64)

Proof. By using Corollary 9, we have

𝑅 (𝑡) = 4 − 𝛼
𝐵 (𝛼 − 3) |𝜆| +

𝛼 − 3
𝐵 (𝛼 − 3) (∫

1

0
|𝜆| 𝑑𝑡)

= |𝜆| [ 4 − 𝛼
𝐵 (𝛼 − 3) +

𝛼 − 3
𝐵 (𝛼 − 3)𝑡] .

(65)

FromTheorem 11, we have

∫1
0
𝑅 (𝑠) 𝑑𝑠 = |𝜆| [ 4 − 𝛼

𝐵 (𝛼 − 3) +
𝛼 − 3

2𝐵 (𝛼 − 3)] > 16. (66)

Hence, we have

|𝜆| ≥ 16 [ 4 − 𝛼
𝐵 (𝛼 − 3) +

𝛼 − 3
2𝐵 (𝛼 − 3)]

−1 . (67)

That concludes the proof.

4. Conclusions

In this paper, compared with existing results of fractional
differential equations, we extend the order from 𝛼 ∈ (2, 3)
to 𝛼 ∈ (3, 4). We prove existence and uniqueness theorems
for initial value problem in the frame of CFR-type derivative
of order 2 < 𝛼 < 3 and 3 < 𝛼 < 4 by using Banach
Contraction Theorem. Then, we use our extension to obtain
new Lyapunov-type inequality for CFR fractional boundary
value problem with order 3 < 𝛼 < 4 by Green’s function and
its correspondingmaximumvalue. As for application, we give
an example on the eigenvalue problem.
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In this paper using fixed pointmethodswe establish some existence theorems of positive (nontrivial) solutions for integral boundary
value problems of nonlinear Hadamard fractional differential equations.

1. Introduction

In this work we study the following integral boundary
value problems of nonlinear Hadamard fractional differential
equations

𝐷𝛽 (𝜑𝑝 (𝐷𝛼𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) , 1 < 𝑡 < 𝑒,
𝑢 (1) = 𝑢 (1) = 𝑢 (𝑒) = 0,

𝐷𝛼𝑢 (1) = 0,
𝜑𝑝 (𝐷𝛼𝑢 (𝑒)) = 𝜇 ∫𝑒

1
𝜑𝑝 (𝐷𝛼𝑢 (𝑡)) d𝑡

𝑡 ,

(1)

where 𝛼, 𝛽, and 𝜇 are three positive real numbers with 𝛼 ∈
(2, 3], 𝛽 ∈ (1, 2], and 𝜇 ∈ [0, 𝛽), 𝜑𝑝(𝑠) = |𝑠|𝑝−2𝑠 is the 𝑝-
Laplacian for 𝑝 > 1, 𝑠 ∈ R, and 𝑓 is a continuous function
on [1, 𝑒] × R. Moreover, let 𝜑−1𝑝 = 𝜑𝑞 with 1/𝑝 + 1/𝑞 = 1. In
what follows, we offer some related definitions and lemmas
for Hadamard fractional calculus.

Definition 1 (see [1, Page 111]). The 𝛼th Hadamard fractional
order derivative of a function 𝑦 : [1, +∞) → R is defined by

𝐷𝛼𝑦 (𝑡) = 1
Γ (𝑛 − 𝛼) (𝑡 d

d𝑡 )
𝑛

∫𝑡
1

(log 𝑡
𝑠 )𝑛−𝛼−1 𝑦 (𝑠) d𝑠

𝑠 , (2)

where 𝛼 > 0, 𝑛 = [𝛼] + 1, and [𝛼] denotes the largest
integer which is less than or equal to 𝛼. Moreover, we here

also offer the 𝛼th Hadamard fractional order integral of 𝑦 :
[1, +∞) → R which is defined by

𝐼𝛼𝑦 (𝑡) = 1
Γ (𝛼) ∫𝑡

1
(log 𝑡

𝑠 )𝛼−1 𝑦 (𝑠) d𝑠
𝑠 , (3)

where Γ is the gamma function.

Lemma 2 (see [1, Theorem 2.3]). Let 𝛼 > 0, 𝑛 = [𝛼] + 1. Then

𝐼𝛼𝐷𝛼𝑦 (𝑡) = 𝑦 (𝑡) + 𝑐1 (log 𝑡)𝛼−1 + 𝑐2 (log 𝑡)𝛼−2 + ⋅ ⋅ ⋅
+ 𝑐𝑛 (log 𝑡)𝛼−𝑛 ,

(4)

where 𝑐𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛.
In recent years, there have been some significant develop-

ments in the study of boundary value problems for nonlinear
fractional differential equations; we refer to [2–11] and the
references therein. For more related works, see also [12–49].
For example, by using monotone iterative methods, Wang
et al. [3] investigated a class of boundary value problems of
Hadamard fractional differential equations involving non-
local multipoint discrete and Hadamard integral boundary
conditions and established monotone iterative sequences,
which can converge to the unique positive solution of their
problems. Similar methods are also applied in [4, 5, 12–15].

For differential equations with the 𝑝-Laplacian, see, for
example, [6, 7, 15–20] and the references therein. In [6],Wang
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considered the nonlinear Hadamard fractional differential
equation with integral boundary condition and 𝑝-Laplacian
operator

𝐷𝛽𝜑𝑝 (𝐷𝛼𝑢 (𝑡)) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ (1, 𝑇) ,
𝑢 (𝑇) = 𝜆𝐼𝜎𝑢 (𝜂) ,

𝐷𝛼𝑢 (1) = 0,
𝑢 (1) = 0,

(5)

where 𝑓 grows (𝑝 − 1)–sublinearly at +∞, and by using
the Schauder fixed point theorem, a solution existence result
is obtained. In [7], Li and Lin used the Guo-Krasnosel’skii
fixed point theorem to obtain the existence and uniqueness
of positive solutions for (1) with 𝜇 = 0.

However, we note that these are seldom considered
Hadamard fractional differential equations with the 𝑝-
Laplacian in the literature; in this paper we are devoted to this
direction. We first utilize the Guo-Krasnosel’skii fixed point
theorem to obtain two positive solutions existence theorems
when 𝑓 grows (𝑝 − 1)–superlinearly and (𝑝 − 1)–sublinearly
with the 𝑝-Laplacian, and secondly by using the fixed point
index, we obtain a nontrivial solution existence theorem
without the 𝑝-Laplacian, but the nonlinearity can allow being

sign-changing and unbounded from below. This improves
and generalizes some semipositone problems [21–31].

2. Preliminaries

In this section, we first calculate Green’s functions associated
with (1) and then transform the boundary value problem into
its integral form. For this, we give the following lemma.

Lemma 3. Let 𝛼, 𝛽, 𝜇, 𝜑𝑝, and 𝐷𝛼, 𝐷𝛽 be as in (1). Then (1)
can take the integral form

𝑢 (𝑡) = ∫𝑒
1

𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
𝜏 ) d𝑠

𝑠 ,
for 𝑡 ∈ [1, 𝑒] ,

(6)

where

𝐺 (𝑡, 𝑠) = 1
Γ (𝛼)

⋅ {
{{

(log 𝑡)𝛼−1 (1 − log 𝑠)𝛼−2 − (log 𝑡 − log 𝑠)𝛼−1 , 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑒,
(log 𝑡)𝛼−1 (1 − log 𝑠)𝛼−2 , 1 ≤ 𝑡 ≤ 𝑠 ≤ 𝑒,

(7)

and

𝐻 (𝑡, 𝜏) = 𝐻1 (𝑡, 𝜏) + 𝜇
(𝛽 − 𝜇) Γ (𝛽) (log 𝑡)𝛽−1 log 𝜏 (1 − log 𝜏)𝛽−1 , for 𝑡, 𝜏 ∈ [1, 𝑒] ,

𝐻1 (𝑡, 𝜏) = 1
Γ (𝛽)

{
{{

(log 𝑡)𝛽−1 (1 − log 𝜏)𝛽−1 − (log 𝑡 − log 𝜏)𝛽−1 , 1 ≤ 𝜏 ≤ 𝑡 ≤ 𝑒,
(log 𝑡)𝛽−1 (1 − log 𝜏)𝛽−1 , 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑒.

(8)

Proof. Use𝑦(𝑡) to replace𝑓(𝑡, 𝑢) in (1). Let𝐷𝛽(𝜑𝑝(𝐷𝛼𝑢(𝑡))) =
𝑦(𝑡). Then from Lemma 2 we have

𝜑𝑝 (𝐷𝛼𝑢 (𝑡)) = 𝐼𝛽𝑦 (𝑡) + 𝑐1 (log 𝑡)𝛽−1 + 𝑐2 (log 𝑡)𝛽−2 ,
for 𝑐𝑖 ∈ R, 𝑖 = 1, 2.

(9)

Note that 𝐷𝛼𝑢(1) = 0 implies 𝜑𝑝(𝐷𝛼𝑢(1)) = 0, and then 𝑐2 =
0. Therefore, we obtain

𝜑𝑝 (𝐷𝛼𝑢 (𝑡)) = 𝐼𝛽𝑦 (𝑡) + 𝑐1 (log 𝑡)𝛽−1 . (10)

Next, we calculate 𝜑𝑝(𝐷𝛼𝑢(𝑒)) and 𝜇 ∫𝑒
1

𝜑𝑝(𝐷𝛼𝑢(𝑡))(d𝑡/𝑡):
𝜑𝑝 (𝐷𝛼𝑢 (𝑒)) = 𝐼𝛽𝑦 (𝑒) + 𝑐1

= 𝑐1 + 1
Γ (𝛽) ∫𝑒

1
(1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏

𝜏 , (11)

and

𝜇 ∫𝑒
1

𝜑𝑝 (𝐷𝛼𝑢 (𝑡)) d𝑡
𝑡

= 𝜇 ∫𝑒
1

𝐼𝛽𝑦 (𝑡) d𝑡
𝑡 + 𝜇𝑐1 ∫

𝑒

1
(log 𝑡)𝛽−1 d𝑡

𝑡

= 𝜇𝑐1
𝛽 + 𝜇

Γ (𝛽) ∫𝑒
1

∫𝑡
1

(log 𝑡 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏
d𝑡
𝑡 .

(12)

The condition 𝜑𝑝(𝐷𝛼𝑢(𝑒)) = 𝜇 ∫𝑒
1

𝜑𝑝(𝐷𝛼𝑢(𝑡))(d𝑡/𝑡) enables
us to obtain

𝑐1 = 𝜇𝛽
(𝛽 − 𝜇) Γ (𝛽) ∫𝑒

1
∫𝑡
1

(log 𝑡 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏
d𝑡
𝑡

− 𝛽
(𝛽 − 𝜇) Γ (𝛽) ∫𝑒

1
(1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏

𝜏 .
(13)

Substituting 𝑐1 into (10) gives
𝜑𝑝 (𝐷𝛼𝑢 (𝑡)) = 1

Γ (𝛽) ∫𝑡
1

(log 𝑡 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏

− 𝛽 (log 𝑡)𝛽−1
(𝛽 − 𝜇) Γ (𝛽) ∫𝑒

1
(1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏

𝜏

+ 𝜇𝛽 (log 𝑡)𝛽−1
(𝛽 − 𝜇) Γ (𝛽) ∫𝑒

1
∫𝑡
1

(log 𝑡 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏
d𝑡
𝑡
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= 1
Γ (𝛽) ∫𝑡

1
(log 𝑡 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏

𝜏 − (log 𝑡)𝛽−1
Γ (𝛽)

⋅ ∫𝑒
1

(1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏 + (log 𝑡)𝛽−1

Γ (𝛽)

⋅ ∫𝑒
1

(1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏 − 𝛽 (log 𝑡)𝛽−1

(𝛽 − 𝜇) Γ (𝛽)

⋅ ∫𝑒
1

(1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏 + 𝜇𝛽 (log 𝑡)𝛽−1

(𝛽 − 𝜇) Γ (𝛽)

⋅ ∫𝑒
1

∫𝑡
1

(log 𝑡 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏
d𝑡
𝑡 = − 1

Γ (𝛽)

⋅ ∫𝑡
1

[(log 𝑡)𝛽−1 (1 − log 𝜏)𝛽−1 − (log 𝑡 − log 𝜏)𝛽−1]

⋅ 𝑦 (𝜏) d𝜏
𝜏 − 1

Γ (𝛽) ∫𝑒
𝑡

(log 𝑡)𝛽−1 (1 − log 𝜏)𝛽−1

⋅ 𝑦 (𝜏) d𝜏
𝜏 + 𝜇𝛽 (log 𝑡)𝛽−1

(𝛽 − 𝜇) Γ (𝛽)
⋅ ∫𝑒
1

∫𝑡
1

(log 𝑡 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏
d𝑡
𝑡

− 𝜇 (log 𝑡)𝛽−1
(𝛽 − 𝜇) Γ (𝛽) ∫𝑒

1
(1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏

𝜏

= − ∫𝑒
1

𝐻1 (𝑡, 𝜏) 𝑦 (𝜏) d𝜏
𝜏 + 𝜇𝛽 (log 𝑡)𝛽−1

(𝛽 − 𝜇) Γ (𝛽)
⋅ ∫𝑒
1

∫𝑒
𝜏

(log 𝑡 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝑡
𝑡
d𝜏
𝜏

− 𝜇 (log 𝑡)𝛽−1
(𝛽 − 𝜇) Γ (𝛽) ∫𝑒

1
(1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏

𝜏

= − ∫𝑒
1

𝐻1 (𝑡, 𝜏) 𝑦 (𝜏) d𝜏
𝜏 + 𝜇 (log 𝑡)𝛽−1

(𝛽 − 𝜇) Γ (𝛽)

⋅ ∫𝑒
1

(1 − log 𝜏)𝛽 𝑦 (𝜏) d𝜏
𝜏 − 𝜇 (log 𝑡)𝛽−1

(𝛽 − 𝜇) Γ (𝛽)
⋅ ∫𝑒
1

(1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏 = − ∫𝑒

1
𝐻1 (𝑡, 𝜏)

⋅ 𝑦 (𝜏) d𝜏
𝜏 − ∫𝑒

1

𝜇
(𝛽 − 𝜇) Γ (𝛽) (log 𝑡)𝛽−1

⋅ log 𝜏 (1 − log 𝜏)𝛽−1 𝑦 (𝜏) d𝜏
𝜏 = − ∫𝑒

1
𝐻 (𝑡, 𝜏)

⋅ 𝑦 (𝜏) d𝜏
𝜏 .

(14)

Note that −𝜑𝑝(𝐷𝛼𝑢(𝑡)) = 𝜑𝑝(−𝐷𝛼𝑢(𝑡)), and hence we obtain

− 𝐷𝛼𝑢 (𝑡) = 𝜑𝑞 (∫𝑒
1

𝐻 (𝑡, 𝜏) 𝑦 (𝜏) d𝜏
𝜏 ) ,

for 𝛼 ∈ (2, 3] , 𝑡 ∈ [1, 𝑒] .
(15)

Then, if we let 𝑥(𝑡) = 𝜑𝑞(∫𝑒
1

𝐻(𝑡, 𝜏)𝑦(𝜏)(d𝜏/𝜏)), 𝑡 ∈ [1, 𝑒],
from Lemma 2 we obtain

𝑢 (𝑡) = −𝐼𝛼𝑥 (𝑡) + 𝑐1 (log 𝑡)𝛼−1 + 𝑐2 (log 𝑡)𝛼−2

+ 𝑐3 (log 𝑡)𝛼−3 , for 𝑐𝑖 ∈ R, 𝑖 = 1, 2, 3.
(16)

The condition 𝑢(1) = 𝑢(1) = 0 implies that 𝑐2 = 𝑐3 = 0. Then
we substitute 𝑒 into the first derivative of 𝑢, and we calculate
𝑐1 as follows:

𝑐1 = 1
Γ (𝛼) ∫𝑒

1
(1 − log 𝑠)𝛼−2 𝑥 (𝑠) d𝑠

𝑠 . (17)

As a result, from (16) we have

𝑢 (𝑡) = − 1
Γ (𝛼) ∫𝑡

1
(log 𝑡 − log 𝑠)𝛼−1 𝑥 (𝑠) d𝑠

𝑠
+ 1

Γ (𝛼) ∫𝑒
1

(log 𝑡)𝛼−1 (1 − log 𝑠)𝛼−2 𝑥 (𝑠) d𝑠
𝑠

= ∫𝑒
1

𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝑦 (𝜏) d𝜏
𝜏 ) d𝑠

𝑠 ,
for 𝑡 ∈ [1, 𝑒] .

(18)

This completes the proof.

Lemma 4. Green’s functions 𝐺, 𝐻 defined by (7) and (8) have
the following properties:

(i) 𝐺, 𝐻 are continuous, nonnegative functions on [1, 𝑒] ×
[1, 𝑒],

(ii) (log 𝑡)𝛼−1[(1− log 𝑠)𝛼−2−(1− log 𝑠)𝛼−1] ≤ Γ(𝛼)𝐺(𝑡, 𝑠) ≤
(1 − log 𝑠)𝛼−2 − (1 − log 𝑠)𝛼−1, for 𝑡, 𝑠 ∈ [1, 𝑒].

From [7, Lemma 7] and [8, Lemma 2.2] we easily obtain
this lemma, so we omit its proof.

Let

𝐺1 (𝑡, 𝑠) = ∫𝑒
1

𝐺 (𝑡, 𝜏) 𝐻 (𝜏, 𝑠) d𝜏
𝜏 ,

𝜙 (𝑠) = 1
Γ (𝛼)

⋅ ∫𝑒
1

[(1 − log 𝑡)𝛼−2 − (1 − log 𝑡)𝛼−1] 𝐻 (𝑡, 𝑠) d𝑡
𝑡 ,

for 𝑡, 𝑠 ∈ [1, 𝑒] .

(19)

Then we obtain the following lemma.

Lemma 5. There exist 𝜅1 = ∫𝑒
1

(log 𝑡)𝛼−1𝜙(𝑡)(d𝑡/𝑡), 𝜅2 =
∫𝑒
1

𝜙(𝑡)(d𝑡/𝑡) such that
𝜅1𝜙 (𝑠) ≤ ∫𝑒

1
𝐺1 (𝑡, 𝑠) 𝜙 (𝑡) d𝑡

𝑡 ≤ 𝜅2𝜙 (𝑠) ,
for 𝑠 ∈ [1, 𝑒] .

(20)
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Proof. We only prove the left inequality above. From
Lemma 4(ii) we have

∫𝑒
1

𝐺1 (𝑡, 𝑠) 𝜙 (𝑡) dt𝑡 = ∫𝑒
1

∫𝑒
1

𝐺 (𝑡, 𝜏)

⋅ 𝐻 (𝜏, 𝑠) d𝜏
𝜏 𝜙 (𝑡) d𝑡

𝑡 ≥ 1
Γ (𝛼)

⋅ ∫𝑒
1

∫𝑒
1

(log 𝑡)𝛼−1 [(1 − log 𝜏)𝛼−2 − (1 − log 𝜏)𝛼−1]

⋅ 𝐻 (𝜏, 𝑠) d𝜏
𝜏 𝜙 (𝑡) d𝑡

𝑡 = 𝜅1𝜙 (𝑠) .

(21)

This completes the proof.

Let E = 𝐶[1, 𝑒] be the Banach space equipped with the
norm ‖𝑢‖ = max𝑡∈[1,𝑒]|𝑢(𝑡)|. Then we define two sets on E as
follows:

𝑃 = {𝑢 ∈ E : 𝑢 (𝑡) ≥ 0, ∀𝑡 ∈ [1, 𝑒]} ,
𝑃0 = {𝑢 ∈ E : 𝑢 (𝑡) ≥ (log 𝑡)𝛼−1 ‖𝑢‖ , ∀𝑡 ∈ [1, 𝑒]} . (22)

Consequently, 𝑃, 𝑃0 are cones on E. From Lemma 3 we can
define an operator 𝐴 onE as follows:

(𝐴𝑢) (𝑡)
= ∫𝑒
1

𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
𝜏 ) d𝑠

𝑠 ,
for 𝑢 ∈ E, 𝑡 ∈ [1, 𝑒] .

(23)

The continuity of 𝐺, 𝐻, 𝑓 implies that 𝐴 : E → E is
a completely continuous operator and the existence of solu-
tions for (1) if and only if the existence of fixed points for 𝐴.

Lemma 6 (see [50]). Let E be a Banach space and Ω a
bounded open set in E. Suppose that 𝐴 : Ω → E is a
continuous compact operator. If there exists 𝑢0 ∈ 𝐸 \ {0} such
that

𝑢 − 𝐴𝑢 ̸= 𝜇𝑢0, ∀𝑢 ∈ 𝜕Ω, 𝜇 ≥ 0, (24)

then the topological degree deg(𝐼 − 𝐴, Ω, 0) = 0.
Lemma 7 (see [50]). Let E be a Banach space and Ω a
bounded open set in E with 0 ∈ Ω. Suppose that 𝐴 : Ω → E

is a continuous compact operator. If

𝐴𝑢 ̸= 𝜇𝑢, ∀𝑢 ∈ 𝜕Ω, 𝜇 ≥ 1, (25)

then the topological degree deg(𝐼 − 𝐴, Ω, 0) = 1.
Lemma 8 (see [50]). Let E be a Banach space and 𝑃 ⊂ E

a cone in E. Assume that Ω1, Ω2 are open subsets of E with
0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let 𝐴 : 𝑃 ∩ (Ω2 \ Ω1) → 𝑃 be a
completely continuous operator such that either

(G1) ‖𝐴𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈ 𝜕Ω1 ∩ 𝑃, and ‖𝐴𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈
𝜕Ω2 ∩ 𝑃,

or
(G2) ‖𝐴𝑢‖ ≥ ‖𝑢‖, 𝑢 ∈ 𝜕Ω1 ∩ 𝑃, and ‖𝐴𝑢‖ ≤ ‖𝑢‖, 𝑢 ∈

𝜕Ω2 ∩ 𝑃.
Then 𝐴 has a fixed point in 𝑃 ∩ (Ω2 \ Ω1).

3. Positive Solutions for (1)

Let 𝐵 fl {𝑢 ∈ E : ‖𝑢‖ < } for  > 0. Now, we first list our
assumptions on 𝑓:

(H1) 𝑓 ∈ 𝐶([0, 1] × R+,R+),
(H2) there exist 𝛿1 ∈ (1, 𝑒), 𝑡0 ∈ (1, 𝑒) such that

lim inf𝑢→+∞(𝑓(𝑡, 𝑢)/𝜑𝑝(𝑢)) ≥ 𝜑𝑝(𝑁1), lim inf𝑢→0+(𝑓(𝑡, 𝑢)/
𝜑𝑝(𝑢)) ≥ 𝜑𝑝(𝑁2), uniformly on 𝑡 ∈ [𝛿1, 𝑒], where 2𝑁−11 ,
𝑁−12 ∈ (0, (log 𝛿1)𝛼−1 ∫𝑒1 𝐺(𝑡0, 𝑠)𝜑𝑞(∫𝑒

𝛿1
𝐻(𝑠, 𝜏)(d𝜏/𝜏))(d𝑠/𝑠)),

(H3) there exists 𝜌1 > 0 such that 𝑓(𝑡, 𝑢) ≤ 𝜑𝑝(𝑁3𝜌1),
∀𝑢 ∈ [0, 𝜌1], 𝑡 ∈ [1, 𝑒], where 𝑁−13 > ∫𝑒

1
𝐺(𝑒, 𝑠)𝜑𝑞(∫𝑒

1
𝐻(𝑠,

𝜏)(d𝜏/𝜏))(d𝑠/𝑠),
(H4) lim sup𝑢→+∞(𝑓(𝑡, 𝑢)/𝜑𝑝(𝑢)) ≤ 𝜑𝑝(𝑀1),

lim sup𝑢→0+(𝑓(𝑡, 𝑢)/𝜑𝑝(𝑢)) ≤ 𝜑𝑝(𝑀2), uniformly on
𝑡 ∈ [1, 𝑒], where (2𝑀1)−1, 𝑀−12 > ∫𝑒

1
𝐺(𝑒, 𝑠)𝜑𝑞(∫𝑒

1
𝐻(𝑠, 𝜏)(d𝜏/

𝜏))(d𝑠/𝑠),
(H5) there exist 𝜌2 > 0, 𝛿1 ∈ (1, 𝑒), 𝑡0 ∈ (1, 𝑒) such that

𝑓(𝑡, 𝑢) ≥ 𝜑𝑝(𝑀3𝜌2), ∀𝑢 ∈ [(log 𝛿1)𝛼−1𝜌2, 𝜌2], 𝑡 ∈ [𝛿1, 𝑒],
where

𝑀−13 ∈ (0, ∫𝑒
1

𝐺 (𝑡0, 𝑠) 𝜑𝑞 (∫𝑒
𝛿1

𝐻 (𝑠, 𝜏) d𝜏
𝜏 ) d𝑠

𝑠 ) . (26)

Lemma 9. Suppose that (H1) holds. Then 𝐴(𝑃) ⊂ 𝑃0.
Proof. If 𝑢 ∈ 𝑃, from Lemma 4 we have

(𝐴𝑢) (𝑡) ≤ 1
Γ (𝛼) ∫𝑒

1
[(1 − log 𝑠)𝛼−2 − (1 − log 𝑠)𝛼−1]

⋅ 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
𝜏 ) d𝑠

𝑠 ,
∀𝑡 ∈ [1, 𝑒] .

(27)

On the other hand,

(𝐴𝑢) (𝑡) ≥ (log 𝑡)𝛼−1 ⋅ 1
Γ (𝛼)

⋅ ∫𝑒
1

[(1 − log 𝑠)𝛼−2 − (1 − log 𝑠)𝛼−1]

⋅ 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
𝜏 ) d𝑠

𝑠
≥ (log 𝑡)𝛼−1 ‖𝐴𝑢‖ , ∀𝑡 ∈ [1, 𝑒] .

(28)

This completes the proof.

Remark 10. Our aim is to find operator equation 𝑢 = 𝐴𝑢
has fixed points in 𝑃, and from Lemma 9, these fixed points
must belong to the cone 𝑃0. Therefore, our work space can be
chosen 𝑃0 rather than 𝑃.

In what follows, we discuss the existence of positive
solutions for (1) in 𝑃0.
Theorem 11. Suppose that (H1)-(H3) hold.Then (1) has at least
two positive solutions.



Journal of Function Spaces 5

Proof. From (H3), when 𝑢 ∈ 𝜕𝐵𝜌1 ∩ 𝑃0, we have
(𝐴𝑢) (𝑡)
≤ max
𝑡∈[1,𝑒]

∫𝑒
1

𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
𝜏 ) d𝑠

𝑠
≤ ∫𝑒
1

𝐺 (𝑒, 𝑠) 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝜑𝑝 (𝑁3𝜌1) d𝜏
𝜏 ) d𝑠

𝑠
= 𝑁3𝜌1∫

𝑒

1
𝐺 (𝑒, 𝑠) 𝜑𝑞 (∫𝑒

1
𝐻 (𝑠, 𝜏) d𝜏

𝜏 ) d𝑠
𝑠 < 𝜌1,

∀𝑡 ∈ [1, 𝑒] .

(29)

Hence, we obtain

‖𝐴𝑢‖ < ‖𝑢‖ , for 𝑢 ∈ 𝜕𝐵𝜌1 ∩ 𝑃0. (30)

On the other hand, by the second limit inequality in (H2),
there exists 𝑟1 ∈ (0, 𝜌1) such that

𝑓 (𝑡, 𝑢) ≥ 𝜑𝑝 (𝑁2𝑢) , ∀𝑢 ∈ [0, 𝑟1] , 𝑡 ∈ [𝛿1, 𝑒] . (31)

Note that if 𝑢 ∈ 𝜕𝐵𝑟1 ∩ 𝑃0, 𝑡 ∈ [𝛿1, 𝑒], from the definition of
𝑃0 we have

𝑢 (𝑡) ≥ (log 𝛿1)𝛼−1 ‖𝑢‖ . (32)

This, together with (31), implies that

‖𝐴𝑢‖ = max
𝑡∈[1,𝑒]

(𝐴𝑢) (𝑡) ≥ (𝐴𝑢) (𝑡0) = ∫𝑒
1

𝐺 (𝑡0, 𝑠)

⋅ 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
𝜏 ) d𝑠

𝑠
≥ ∫𝑒
1

𝐺 (𝑡0, 𝑠) 𝜑𝑞 (∫𝑒
𝛿1

𝐻 (𝑠, 𝜏)

⋅ 𝜑𝑝 (𝑁2 (log 𝛿1)𝛼−1 ‖𝑢‖) d𝜏
𝜏 ) d𝑠

𝑠
= 𝑁2 (log 𝛿1)𝛼−1 ‖𝑢‖ ∫𝑒

1
𝐺 (𝑡0, 𝑠)

⋅ 𝜑𝑞 (∫𝑒
𝛿1

𝐻 (𝑠, 𝜏) d𝜏
𝜏 ) d𝑠

𝑠 > ‖𝑢‖ ,
for 𝑢 ∈ 𝜕𝐵𝑟1 ∩ 𝑃0.

(33)

By the first limit inequality in (H2), there exist 𝑅1 > 𝜌1 and𝐶1 > 0 such that

𝑓 (𝑡, 𝑢) ≥ 𝜑𝑝 (𝑁1𝑢) − 𝐶1, ∀𝑢 ∈ R
+, 𝑡 ∈ [𝛿1, 𝑒] . (34)

Note that 𝑅1 can be chosen large enough, and if 𝑢 ∈ 𝜕𝐵𝑅1 ∩𝑃0,
together with (32), there exists 𝐶2 > 0 such that

𝑓 (𝑡, 𝑢) ≥ 𝜑𝑝 (𝑁1 (log 𝛿1)𝛼−1 𝑅1 − 𝐶2) ,
∀𝑡 ∈ [𝛿1, 𝑒] .

(35)

Combining this and (33), we find

‖𝐴𝑢‖ ≥ ∫𝑒
1

𝐺 (𝑡0, 𝑠) 𝜑𝑞 (∫𝑒
𝛿1

𝐻 (𝑠, 𝜏)

⋅ 𝜑𝑝 (𝑁1 (log 𝛿1)𝛼−1 𝑅1 − 𝐶2) d𝜏
𝜏 ) d𝑠

𝑠
= (𝑁1 (log 𝛿1)𝛼−1 𝑅1 − 𝐶2) ∫𝑒

1
𝐺 (𝑡0, 𝑠)

⋅ 𝜑𝑞 (∫𝑒
𝛿1

𝐻 (𝑠, 𝜏) d𝜏
𝜏 ) d𝑠

𝑠 ≥ 2𝑅1 − 𝐶3,

(36)

where 𝐶3 = 𝐶2 ∫𝑒1 𝐺(𝑡0, 𝑠)𝜑𝑞(∫𝑒
𝛿1

𝐻(𝑠, 𝜏)(d𝜏/𝜏))(d𝑠/𝑠). Conse-
quently, we have

‖𝐴𝑢‖ > ‖𝑢‖ , for 𝜕𝐵𝑅1 ∩ 𝑃0, if ‖𝑢‖ → ∞. (37)

In summary, from (30), (33), and (37) with 𝑅1 > 𝜌1 > 𝑟1,
Lemma 8 enables us to obtain that (1) has at least two positive
solutions in (𝐵𝑅1 \𝐵𝜌1)∩𝑃0 and (𝐵𝜌1 \𝐵𝑟1)∩𝑃0.This completes
the proof.

Theorem 12. Suppose that (H1), (H4)-(H5) hold. Then (1) has
at least two positive solutions.

Proof. If 𝑢 ∈ 𝜕𝐵𝜌2 ∩ 𝑃0, we have ‖𝑢‖ = 𝜌2, and 𝑢 ∈
[(log 𝛿1)𝛼−1𝜌2, 𝜌2], for 𝑢 ∈ 𝑃0, 𝑡 ∈ [𝛿1, 𝑒]. Hence, from (H5)
we obtain

‖𝐴𝑢‖
≥ ∫𝑒
1

𝐺 (𝑡0, 𝑠) 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
𝜏 ) d𝑠

𝑠
≥ ∫𝑒
1

𝐺 (𝑡0, 𝑠) 𝜑𝑞 (∫𝑒
𝛿1

𝐻 (𝑠, 𝜏) 𝜑𝑝 (𝑀3𝜌2) d𝜏
𝜏 ) d𝑠

𝑠
≥ 𝑀3𝜌2 ∫

𝑒

1
𝐺 (𝑡0, 𝑠) 𝜑𝑞 (∫𝑒

𝛿1

𝐻 (𝑠, 𝜏) d𝜏
𝜏 ) d𝑠

𝑠 > 𝜌2.

(38)

This indicates that

‖𝐴𝑢‖ > ‖𝑢‖ , for 𝑢 ∈ 𝜕𝐵𝜌2 ∩ 𝑃0. (39)

On the other hand, by the second limit inequality in (H4),
there exists 𝑟2 ∈ (0, 𝜌2) such that

𝑓 (𝑡, 𝑢) ≤ 𝜑𝑝 (𝑀2𝑢) , ∀𝑢 ∈ [0, 𝑟2] , 𝑡 ∈ [1, 𝑒] . (40)

This, if 𝑢 ∈ 𝜕𝐵𝑟2 ∩ 𝑃0, implies that

‖𝐴𝑢‖
≤ ∫𝑒
1

𝐺 (𝑒, 𝑠) 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝜑𝑝 (𝑀2𝑢 (𝜏)) d𝜏
𝜏 ) d𝑠

𝑠
≤ ∫𝑒
1

𝐺 (𝑒, 𝑠) 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝜑𝑝 (𝑀2𝑟2) d𝜏
𝜏 ) d𝑠

𝑠
= 𝑀2𝑟2 ∫

𝑒

1
𝐺 (𝑒, 𝑠) 𝜑𝑞 (∫𝑒

1
𝐻 (𝑠, 𝜏) d𝜏

𝜏 ) d𝑠
𝑠 < 𝑟2.

(41)
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This gives

‖𝐴𝑢‖ < ‖𝑢‖ , for 𝑢 ∈ 𝜕𝐵𝑟2 ∩ 𝑃0. (42)

By the first limit inequality in (H4), there exist 𝑅2 > 𝜌2 and𝐶4 > 0 such that

𝑓 (𝑡, 𝑢) ≤ 𝜑𝑝 (𝑀1𝑢 + 𝐶4) , ∀𝑢 ∈ R
+, 𝑡 ∈ [1, 𝑒] . (43)

Consequently, if 𝑢 ∈ 𝜕𝐵𝑅2∩𝑃0 with𝑅2 large enough,we obtain

‖𝐴𝑢‖ ≤ ∫𝑒
1

𝐺 (𝑒, 𝑠)

⋅ 𝜑𝑞 (∫𝑒
1

𝐻 (𝑠, 𝜏) 𝜑𝑝 (𝑀1𝑅2 + 𝐶4) d𝜏
𝜏 ) d𝑠

𝑠
= (𝑀1𝑅2 + 𝐶4) ∫𝑒

1
𝐺 (𝑒, 𝑠) 𝜑𝑞 (∫𝑒

1
𝐻 (𝑠, 𝜏) d𝜏

𝜏 ) d𝑠
𝑠

≤ 1
2 𝑅2 + 𝐶5,

(44)

where 𝐶5 = 𝐶4 ∫𝑒1 𝐺(𝑒, 𝑠)𝜑𝑞(∫𝑒
1

𝐻(𝑠, 𝜏)(d𝜏/𝜏))(d𝑠/𝑠). Hence,
we have

‖𝐴𝑢‖ < ‖𝑢‖ , for 𝑢 ∈ 𝜕𝐵𝑅2 ∩ 𝑃0, if ‖𝑢‖ → ∞. (45)

In a word, from (39), (42), and (45) with 𝑅2 > 𝜌2 > 𝑟2,
Lemma 8 enables us to obtain that (1) has at least two positive

solutions in (𝐵𝑅2 \𝐵𝜌2)∩𝑃0 and (𝐵𝜌2 \𝐵𝑟2)∩𝑃0.This completes
the proof.

Example 13. Let

𝑓 (𝑡, 𝑢)

= {
{{

𝜌𝑝−1−𝛾11 𝑁𝑝−13 𝑢𝛾1 , 𝑢 ∈ (𝜌1, +∞) , 𝑡 ∈ [1, 𝑒] ,
𝜌𝑝−1−𝛾21 𝑁𝑝−13 𝑢𝛾2 , 𝑢 ∈ [0, 𝜌1] , 𝑡 ∈ [1, 𝑒] ,

(46)

where 𝛾1 ∈ (𝑝 − 1, +∞), 𝛾2 ∈ (0, 𝑝 − 1), and 𝑁3, 𝜌1 are defined
by (H3).Then

lim inf
𝑢→+∞

𝑓 (𝑡, 𝑢)
𝜑𝑝 (𝑢) = lim inf

𝑢→+∞

𝜌𝑝−1−𝛾11 𝑁𝑝−13 𝑢𝛾1
𝑢𝑝−1 = +∞

≥ 𝜑𝑝 (𝑁1) ,

lim inf
𝑢→0+

𝑓 (𝑡, 𝑢)
𝜑𝑝 (𝑢) = lim inf

𝑢→0+

𝜌𝑝−1−𝛾21 𝑁𝑝−13 𝑢𝛾2
𝑢𝑝−1 = +∞

≥ 𝜑𝑝 (𝑁2) .

(47)

Moreover, for 𝑢 ∈ [0, 𝜌1], 𝑡 ∈ [1, 𝑒] we have
𝑓 (𝑡, 𝑢) ≤ 𝜌𝑝−1−𝛾21 𝑁𝑝−13 𝜌𝛾21 = (𝑁3𝜌1)𝑝−1 . (48)

Therefore, (H1)-(H3) hold.

Example 14. Let

𝑓 (𝑡, 𝑢) = {
{{

(log 𝛿1)−(𝛼−1)𝛾3 𝜌𝑝−1−𝛾32 𝑀𝑝−13 𝑢𝛾3 , 𝑢 ∈ [(log 𝛿1)𝛼−1 𝜌2, +∞) , 𝑡 ∈ [1, 𝑒] ,
(log 𝛿1)−(𝛼−1)𝛾4 𝜌𝑝−1−𝛾42 𝑀𝑝−13 𝑢𝛾4 , 𝑢 ∈ [0, (log 𝛿1)𝛼−1 𝜌2) , 𝑡 ∈ [1, 𝑒] , (49)

where 𝛾3 ∈ (0, 𝑝−1), 𝛾4 ∈ (𝑝−1, +∞), and 𝑀3, 𝜌2 are defined
by (H5). Then

lim sup
𝑢→+∞

𝑓 (𝑡, 𝑢)
𝜑𝑝 (𝑢)

= lim sup
𝑢→+∞

(log 𝛿1)−(𝛼−1)𝛾3 𝜌𝑝−1−𝛾32 𝑀𝑝−13 𝑢𝛾3
𝑢𝑝−1 = 0

≤ 𝜑𝑝 (𝑀1) ,
lim sup
𝑢→0+

𝑓 (𝑡, 𝑢)
𝜑𝑝 (𝑢)

= lim sup
𝑢→0+

(log 𝛿1)−(𝛼−1)𝛾4 𝜌𝑝−1−𝛾42 𝑀𝑝−13 𝑢𝛾4
𝑢𝑝−1 = 0

≤ 𝜑𝑝 (𝑀2) .

(50)

Moreover, for 𝑢 ∈ [(log 𝛿1)𝛼−1𝜌2, 𝜌2], 𝑡 ∈ [𝛿1, 𝑒] we have
𝑓 (𝑡, 𝑢) ≥ (log 𝛿1)−(𝛼−1)𝛾3 𝜌𝑝−1−𝛾32 𝑀𝑝−13 𝑢𝛾3

= (𝑀3𝜌2)𝑝−1 .
(51)

Therefore, (H1), (H4)-(H5) hold.

4. Nontrivial Solutions for (1)

In this section we consider the boundary value problem (1)
without the 𝑝-Laplacian, i.e., 𝑝 = 2. In this case, (1) can be
transformed into its integral form as follows:

𝑢 (𝑡) = ∫𝑒
1

𝐺 (𝑡, 𝑠) ∫𝑒
1

𝐻 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) d𝜏
𝜏
d𝑠
𝑠

= ∫𝑒
1

𝐺1 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) d𝑠
𝑠 , for 𝑡 ∈ [1, 𝑒] .

(52)

As said in Section 3, we define an operator, still denoted by𝐴,
as follows:

(𝐴𝑢) (𝑡) = ∫𝑒
1

𝐺1 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) d𝑠
𝑠 ,

for 𝑢 ∈ E, 𝑡 ∈ [1, 𝑒] .
(53)
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In what follows, we aim to find the existence of fixed points
of 𝐴. For this, we list our assumptions on 𝑓:

(H6) 𝑓 ∈ 𝐶([1, 𝑒] × R,R),
(H7) There exist nonnegative functions 𝑎(𝑡), 𝑏(𝑡) ∈ E

with 𝑏 ̸≡ 0 and 𝐾(𝑢) ∈ 𝐶(R,R+) such that

𝑓 (𝑡, 𝑢) ≥ −𝑎 (𝑡) − 𝑏 (𝑡) 𝐾 (𝑢) , ∀𝑢 ∈ R, 𝑡 ∈ [1, 𝑒] . (54)

Moreover,

lim
|𝑢|→∞

𝐾 (𝑢)
|𝑢| = 0, (55)

(H8) lim inf |𝑢|→∞(𝑓(𝑡, 𝑢)/|𝑢|) > 𝜅−11 , uniformly in 𝑡 ∈
[1, 𝑒],

(H9) lim inf |𝑢|→0(|𝑓(𝑡, 𝑢)|/|𝑢|) < 𝜅−12 , uniformly in 𝑡 ∈
[1, 𝑒].
Theorem 15. Suppose that (H6)-(H9) hold. Then (1) has at
least one nontrivial solution.

Proof. From (H9) there exist 𝜀3 ∈ (0, 𝜅−12 ) and 𝑟3 > 0 such
that

𝑓 (𝑡, 𝑢) ≤ (𝜅−12 − 𝜀3) |𝑢| , ∀𝑡 ∈ [1, 𝑒] , |𝑢| ∈ [0, 𝑟3) . (56)

For this 𝑟3, we show that

𝐴𝑢 ̸= 𝜇𝑢, 𝑢 ∈ 𝜕𝐵𝑟3 , 𝜇 ≥ 1. (57)

If otherwise, there exist 𝑢1 ∈ 𝜕𝐵𝑟3 , 𝜇1 ≥ 1 such that

𝐴𝑢1 = 𝜇1𝑢1, (58)

and hence, we obtain

𝑢1 (𝑡) = 1
𝜇1

(𝐴𝑢1) (𝑡) ≤ (𝐴𝑢1) (𝑡)

≤ ∫𝑒
1

𝐺1 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢1 (𝑠)) d𝑠
𝑠

≤ (𝜅−12 − 𝜀3) ∫𝑒
1

𝐺1 (𝑡, 𝑠) 𝑢1 (𝑠) d𝑠
𝑠 .

(59)

Multiply both sides of the above inequality by 𝜙(𝑡) and
integrate from 1 to 𝑒 and together with Lemma 5 we obtain

∫𝑒
1

𝑢1 (𝑡) 𝜙 (𝑡) d𝑡
𝑡

≤ (𝜅−12 − 𝜀3) ∫𝑒
1

∫𝑒
1

𝐺1 (𝑡, 𝑠) 𝑢1 (𝑠) d𝑠
𝑠 𝜙 (𝑡) d𝑡

𝑡
≤ (𝜅−12 − 𝜀3) 𝜅2 ∫𝑒

1

𝑢1 (𝑡) 𝜙 (𝑡) d𝑡
𝑡 .

(60)

This implies that ∫𝑒
1

|𝑢1(𝑡)|𝜙(𝑡)(d𝑡/𝑡) = 0, and 𝑢1 ≡ 0 for the
fact that 𝜙(𝑡) ̸≡ 0, for 𝑡 ∈ [1, 𝑒], which contradicts 𝑢1 ∈ 𝜕𝐵𝑟3 .
Therefore, (57) is true, and from Lemma 7 we obtain

deg (𝐼 − 𝐴, 𝐵𝑟3 , 0) = 1. (61)
On the other hand, by (H8), there exist 𝜀4 > 0 and 𝑋0 > 0
such that

𝑓 (𝑡, 𝑢) ≥ (𝜅−11 + 𝜀4) |𝑢| , ∀𝑡 ∈ [1, 𝑒] , |𝑢| > 𝑋0. (62)

For every fixed 𝜖 with ‖𝑏‖𝜖 ∈ (0, 𝜀4), ‖𝑏‖ = max𝑡∈[1,𝑒]|𝑏(𝑡)|,
and from (H7), there exists 𝑋1 > 𝑋0 such that

𝐾 (𝑢) ≤ 𝜖 |𝑢| , ∀ |𝑢| > 𝑋1. (63)

Combining the two inequalities above, (H7) enables us to find

𝑓 (𝑡, 𝑢) ≥ (𝜅−11 + 𝜀4) |𝑢| − 𝑎 (𝑡) − 𝑏 (𝑡) 𝐾 (𝑢)
≥ (𝜅−11 + 𝜀4) |𝑢| − 𝑎 (𝑡) − 𝜖𝑏 (𝑡) |𝑢|
≥ (𝜅−11 + 𝜀4 − ‖𝑏‖ 𝜖) |𝑢| − 𝑎 (𝑡) ,

∀ |𝑢| > 𝑋1, 𝑡 ∈ [1, 𝑒] .

(64)

If we take 𝐶6 = (𝜅−11 + 𝜀4 − ‖𝑏‖𝜖)𝑋1 + max𝑡∈[1,𝑒],|𝑢|≤𝑋1|𝑓(𝑡, 𝑢)|,
𝐾∗ = max|𝑢|≤𝑋1𝐾(𝑢). Then we easily have

𝑓 (𝑡, 𝑢) ≥ (𝜅−11 + 𝜀4 − ‖𝑏‖ 𝜖) |𝑢| − 𝑎 (𝑡) − 𝐶6,
∀𝑢 ∈ R, 𝑡 ∈ [1, 𝑒] .

(65)

Note that 𝜖 can be chosen arbitrarily small, and we let

𝑅3 ≥ max
{
{{

(𝜅−11 + 2 (𝜀4 − ‖𝑏‖ 𝜖)) ∫𝑒
1

𝑊 (𝑠) (𝑎 (𝑠) + ‖𝑏‖ 𝐾∗ + 𝐶6) (d𝑠/𝑠)
(𝜀4 − ‖𝑏‖ 𝜖) Γ (𝛼) − ‖𝑏‖ 𝜖 (𝜅−11 + 2 (𝜀4 − ‖𝑏‖ 𝜖)) ∫𝑒

1
𝑊 (𝑠) (d𝑠/𝑠) , ∫𝑒

1
𝑊 (𝑠) (𝑎 (𝑠) + ‖𝑏‖ 𝐾∗ + 𝐶6) (d𝑠/𝑠)

Γ (𝛼) − ‖𝑏‖ 𝜖 ∫𝑒
1

𝑊 (𝑠) (d𝑠/𝑠)
}
}}

, (66)

where 𝑊(𝑠) = ∫𝑒
1

(1 − log 𝜏)𝛼−2𝐻(𝜏, 𝑠)(d𝜏/𝜏), for 𝑠 ∈ [1, 𝑒].
Now we prove that

𝑢 − 𝐴𝑢 ̸= 𝜇𝜙, ∀𝑢 ∈ 𝜕𝐵𝑅3 , 𝜇 ≥ 0, (67)
where 𝜙 is defined by (19). Indeed, if (67) is not true, then
there exists 𝑢2 ∈ 𝜕𝐵𝑅3 and 𝜇0 > 0 such that

𝑢2 − 𝐴𝑢2 = 𝜇0𝜙. (68)

Let �̃�(𝑡) = ∫𝑒
1

𝐺1(𝑡, 𝑠)[𝑎(𝑠) + 𝑏(𝑠)𝐾(𝑢2(𝑠)) + 𝐶6](d𝑠/𝑠). Then
�̃� ∈ 𝑃0 and

�̃� (𝑡) = ∫𝑒
1

𝐺1 (𝑡, 𝑠) [𝑎 (𝑠) + 𝑏 (𝑠) 𝐾 (𝑢2 (𝑠)) + 𝐶6] d𝑠
𝑠

≤ ∫𝑒
1

∫𝑒
1

1
Γ (𝛼) (log 𝑡)𝛼−1 (1 − log 𝜏)𝛼−2𝐻 (𝜏, 𝑠) d𝜏

𝜏
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⋅ [𝑎 (𝑠) + 𝑏 (𝑠) 𝐾 (𝑢2 (𝑠)) + 𝐶6] d𝑠
𝑠

≤ 1
Γ (𝛼) (log 𝑡)𝛼−1 ∫𝑒

1
∫𝑒
1

(1 − log 𝜏)𝛼−2𝐻 (𝜏, 𝑠) d𝜏
𝜏

⋅ [𝑎 (𝑠) + 𝑏 (𝑠) 𝐾 (𝑢2 (𝑠)) + 𝐶6] d𝑠
𝑠

= 1
Γ (𝛼) (log 𝑡)𝛼−1 ∫𝑒

1
𝑊 (𝑠)

⋅ [𝑎 (𝑠) + 𝑏 (𝑠) 𝐾 (𝑢2 (𝑠)) + 𝐶6] d𝑠
𝑠 .

(69)

Consequently, we have

‖�̃�‖ ≤ 1
Γ (𝛼) ∫𝑒

1
𝑊 (𝑠) [𝑎 (𝑠) + 𝑏 (𝑠) 𝐾 (𝑢2 (𝑠)) + 𝐶6] d𝑠

𝑠
≤ 1

Γ (𝛼) ∫𝑒
1

𝑊 (𝑠) (𝑎 (𝑠) + 𝐶6) d𝑠
𝑠

+ ‖𝑏‖
Γ (𝛼) (∫

|𝑢2|≤𝑋1

𝑊 (𝑠) 𝐾 (𝑢2 (𝑠)) d𝑠
𝑠

+ ∫
|𝑢2|>𝑋1

𝑊 (𝑠) 𝐾 (𝑢2 (𝑠)) d𝑠
𝑠 ) ≤ 1

Γ (𝛼)
⋅ ∫𝑒
1

𝑊 (𝑠) (𝑎 (𝑠) + ‖𝑏‖ 𝐾∗ + 𝐶6) d𝑠
𝑠 + ‖𝑏‖ 𝜖

Γ (𝛼)
⋅ ∫
|𝑢2|>𝑋1

𝑊 (𝑠) 𝑢2 (𝑠) d𝑠
𝑠 ≤ 1

Γ (𝛼)
⋅ ∫𝑒
1

𝑊 (𝑠) (𝑎 (𝑠) + ‖𝑏‖ 𝐾∗ + ‖𝑏‖ 𝜖𝑅3 + 𝐶6) d𝑠
𝑠 .

(70)

Plus �̃� into (68) gives

𝑢2 (𝑡) + �̃� (𝑡) = (𝐴𝑢2) (𝑡) + �̃� (𝑡) + 𝜇0𝜙 (𝑡)
= ∫𝑒
1

𝐺1 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢2 (𝑠)) + 𝑎 (𝑠) + 𝑏 (𝑠) 𝐾 (𝑢2 (𝑠))

+ 𝐶6] d𝑠
𝑠 + 𝜇0𝜙 (𝑡) .

(71)

Note that 𝑓(𝑠, 𝑢2(𝑠)) + 𝑎(𝑠) + 𝑏(𝑠)𝐾(𝑢2(𝑠)) + 𝐶6 ∈ 𝑃, 𝑠 ∈ [1, 𝑒]
and 𝜙 ∈ 𝑃0. Lemma 9 enables us to know that 𝑢2 + �̃� ∈ 𝑃0.
From (65) we have

(𝐴𝑢2) (𝑡) + �̃� (𝑡) = ∫𝑒
1

𝐺1 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢2 (𝑠)) + 𝑎 (𝑠)

+ 𝑏 (𝑠) 𝐾 (𝑢2 (𝑠)) + 𝐶6] d𝑠
𝑠 ≥ ∫𝑒

1
𝐺1 (𝑡, 𝑠)

⋅ [𝑓 (𝑠, 𝑢2 (𝑠)) + 𝑎 (𝑠) + 𝐶6] d𝑠
𝑠 ≥ ∫𝑒

1
𝐺1 (𝑡, 𝑠)

⋅ (𝜅−11 + 𝜀4 − ‖𝑏‖ 𝜖) 𝑢2 (𝑠) d𝑠
𝑠 ≥ ∫𝑒

1
𝐺1 (𝑡, 𝑠) (𝜅−11

+ 𝜀4 − ‖𝑏‖ 𝜖) 𝑢2 (𝑠) d𝑠
𝑠 .

(72)

On the other hand, we have

𝜅−11 ∫𝑒
1

𝐺1 (𝑡, 𝑠) [𝑢2 (𝑠) + �̃� (𝑠)] d𝑠
𝑠

+ (𝜀4 − ‖𝑏‖ 𝜖) ∫𝑒
1

𝐺1 (𝑡, 𝑠) 𝑢2 (𝑠) d𝑠
𝑠

− 𝜅−11 ∫𝑒
1

𝐺1 (𝑡, 𝑠) �̃� (𝑠) d𝑠
𝑠

≥ 𝜅−11 ∫𝑒
1

𝐺1 (𝑡, 𝑠) [𝑢2 (𝑠) + �̃� (𝑠)] d𝑠
𝑠 .

(73)

This inequality holds if

(𝜀4 − ‖𝑏‖ 𝜖) ∫𝑒
1

𝐺1 (𝑡, 𝑠) 𝑢2 (𝑠) d𝑠
𝑠

− 𝜅−11 ∫𝑒
1

𝐺1 (𝑡, 𝑠) �̃� (𝑠) d𝑠
𝑠 ≥ 0.

(74)

Indeed, 𝑢2 + �̃� ∈ 𝑃0 implies that 𝑢2(𝑡) + �̃�(𝑡) ≥ (log 𝑡)𝛼−1‖𝑢2 +
�̃�‖ ≥ (log 𝑡)𝛼−1(‖𝑢2‖ − ‖�̃�‖), for 𝑡 ∈ [1, 𝑒]. Consequently,

(𝜀4 − ‖𝑏‖ 𝜖) ∫𝑒
1

𝐺1 (𝑡, 𝑠) [𝑢2 (𝑠) + �̃� (𝑠)] d𝑠
𝑠

− (𝜅−11 + 𝜀4 − ‖𝑏‖ 𝜖) ∫𝑒
1

𝐺1 (𝑡, 𝑠) �̃� (𝑠) d𝑠
𝑠

≥ (𝜀4 − ‖𝑏‖ 𝜖) (𝑅3 − ‖�̃�‖) ∫𝑒
1

𝐺1 (𝑡, 𝑠) (log 𝑠)𝛼−1 d𝑠
𝑠

− 𝜅−11 + 𝜀4 − ‖𝑏‖ 𝜖
Γ (𝛼)

⋅ ∫𝑒
1

𝑊 (𝑠) (𝑎 (𝑠) + ‖𝑏‖ 𝐾∗ + ‖𝑏‖ 𝜖𝑅3 + 𝐶6) d𝑠
𝑠

⋅ ∫𝑒
1

𝐺1 (𝑡, 𝑠) (log 𝑠)𝛼−1 d𝑠
𝑠 ≥ 0.

(75)

As a result, we have

(𝐴𝑢2) (𝑡) + �̃� (𝑡) ≥ 𝜅−11 ∫𝑒
1

𝐺1 (𝑡, 𝑠) [𝑢2 (𝑠) + �̃� (𝑠)] d𝑠
𝑠

fl 𝜅−11 𝑇 (𝑢2 + �̃�) (𝑡) , ∀𝑡 ∈ [1, 𝑒] ,
(76)

where (𝑇𝑢)(𝑡) = ∫𝑒
1

𝐺1(𝑡, 𝑠)𝑢(𝑠)(d𝑠/𝑠), for 𝑢 ∈ E, 𝑡 ∈ [1, 𝑒].
Using (68) we obtain

𝑢2 + �̃� = 𝐴𝑢2 + �̃� + 𝜇0𝜙 ≥ 𝜅−11 𝑇 (𝑢2 + �̃�) + 𝜇0𝜙
≥ 𝜇0𝜙. (77)

Define

𝜇∗ = sup {𝜇 > 0 : 𝑢2 + �̃� ≥ 𝜇𝜙} . (78)

Note that 𝜇0 ∈ {𝜇 > 0 : 𝑢2 + �̃� ≥ 𝜇𝜙}, and then 𝜇∗ ≥ 𝜇0,𝑢2 + �̃� ≥ 𝜇∗𝜙. From Lemma 5 we have

𝜅−11 𝑇 (𝑢2 + �̃�) ≥ 𝜇∗𝜅−11 𝑇𝜙 ≥ 𝜇∗𝜙, (79)
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and hence

𝑢2 + �̃� ≥ 𝜅−11 𝑇 (𝑢2 + �̃�) + 𝜇0𝜙 ≥ (𝜇0 + 𝜇∗) 𝜙, (80)

which contradicts the definition of 𝜇∗. Therefore, (67) holds,
and from Lemma 6 we obtain

deg (𝐼 − 𝐴, 𝐵𝑅3 , 0) = 0. (81)

This, together with (61), implies that

deg (𝐼 − 𝐴, 𝐵𝑅3 \ 𝐵𝑟3 , 0)
= deg (𝐼 − 𝐴, 𝐵𝑅3 , 0) − deg (𝐼 − 𝐴, 𝐵𝑟3 , 0) = −1.

(82)

Therefore the operator 𝐴 has at least one fixed point in 𝐵𝑅3 \
𝐵𝑟3 , and (1) has at least one nontrivial solution. This completes
the proof.

Example 16. Let 𝑓(𝑡, 𝑢) = 𝑎|𝑢| − 𝑏𝑘(𝑢), 𝑘(𝑢) = ln(|𝑢| + 1), 𝑢 ∈
R, 𝑡 ∈ [1, 𝑒], where 𝑎 ∈ (𝜅−11 , +∞) and 𝑏 ∈ (𝑎, 𝑎 + 𝜅−12 ). Then
lim|𝑢|→+∞(𝑘(𝑢)/|𝑢|) = 0, and lim|𝑢|→+∞((𝑎|𝑢| − 𝑏 ln(|𝑢| +
1))/|𝑢|) = 𝑎 > 𝜅−11 , lim|𝑢|→0(|𝑎|𝑢| − 𝑏 ln(|𝑢| + 1)|/|𝑢|) = |𝑎 −
𝑏| < 𝜅−12 . Therefore, (H6)-(H9) hold.
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In this paper, we study a kind of conjugate gradient viscosity approximation algorithm for finding a common solution of split
generalized equilibrium problem and variational inequality problem. Under mild conditions, we prove that the sequence generated
by the proposed iterative algorithm converges strongly to the common solution. The conclusion presented in this paper is the
generalization, extension, and supplement of the previously known results in the corresponding references. Some numerical results
are illustrated to show the feasibility and efficiency of the proposed algorithm.

1. Introduction

Let𝐻1 and𝐻2 be real Hilbert spaces with inner product ⟨⋅, ⋅⟩
and norm ‖ ⋅ ‖. Let 𝐶 and 𝑄 be nonempty closed convex
subsets of 𝐻1 and 𝐻2, respectively. Let {𝑥𝑛} be a sequence
in 𝐻1; then 𝑥𝑛 → 𝑥 (respectively, 𝑥𝑛 ⇀ 𝑥) will denote
strong (respectively, weak) convergence of the sequence {𝑥𝑛}.
Assume 𝑤𝜔(𝑥𝑘) = {𝑥 : ∃𝑥𝑘𝑗 ⇀ 𝑥} to stand for the weak 𝜔-
limit set of 𝑥𝑘.

The split feasibility problem (SFP) originally introduced
by Censor and Elfving [1] is to find

𝑥 ∈ 𝐶 such that 𝐴𝑥 ∈ 𝑄, (1)

where 𝐴 : 𝐻1 → 𝐻2 is a bounded linear operator. It serves
as a model for many inverse problems where constraints are
imposed on the solutions in the domain of a linear operator
as well as in these operator’s ranges. The applications of the
split feasibility problem are very comprehensive such as CT in
medicine, intelligence antennas, and the electronic warning
systems in military, the development of fast image processing
technology and HDTV, etc. Many authors generalize SFP
to a lot of important problems, such as multiple-sets split
feasibility problem, split equality fixed point problem, split
variational inequality problem, split variational inclusion

problem, and split equilibrium problem, and the theories and
algorithms are studied and details can be seen in [2–15] and
references therein.

The fixed point problem (FPP) for the mapping 𝑇 is to
find 𝑥 ∈ 𝐶 such that

𝑇𝑥 = 𝑥. (2)

We denote Fix(𝑇) fl {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥} the set of solution of
FPP.

Let 𝐵 : 𝐶 → 𝐻1 be a nonlinear mapping.The variational
inequality problem (VIP) is to find 𝑥 ∈ 𝐶 such that

⟨𝐵𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (3)

The solution set of VIP is denoted by VI(𝐶, 𝐵). It is well
known that if 𝐵 is strongly monotone and Lipschitz continu-
ous mapping on 𝐶, then VIP has a unique solution.

For finding a common problem of Fix(𝑇) ∩ VI(𝐶, 𝐵),
Takahashi and Toyoda [16] introduced the following iterative
scheme:

𝑥0 chosen arbitrary,
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑇𝑃𝐶 (𝑥𝑛 − 𝜆𝑛𝐵𝑥𝑛) , ∀𝑛 ≥ 0, (4)
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where 𝐵 is 𝜌-inverse-strongly monotone, {𝛼𝑛} is a sequence
in (0, 1), and {𝜆𝑛} is a sequence in (0, 2𝜌). They showed that
if Fix(𝑇) ∩VI(𝐶, 𝐵) ̸= 0, then the sequence {𝑥𝑛} generated by
(4) converges weakly to 𝑧0 ∈ Fix(𝑇) ∩ VI(𝐶, 𝐵).

On the other hand, there are several numerical methods
for solving variational inequalities and related optimization
problems; see [5, 17–24] and the references therein.

In 2013, Kazmi and Rizvi [25] introduced the split
generalized equilibrium problem (SGEP). Let 𝐹1, ℎ1 : 𝐶 ×𝐶 → 𝑅 and 𝐹2, ℎ2 : 𝑄 × 𝑄 → 𝑅 be nonlinear bifunctions
and 𝐴 : 𝐻1 → 𝐻2 be a bounded linear operator; then
the split generalized equilibrium problem (SGEP) is to find𝑥∗ ∈ 𝐶 such that

𝐹1 (𝑥∗, 𝑥) + ℎ1 (𝑥∗, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶 (5)

and such that
𝑦∗ = 𝐴𝑥∗ ∈ 𝑄 solves 𝐹2 (𝑦∗, 𝑦) + ℎ2 (𝑦∗, 𝑦) ≥ 0,

∀𝑦 ∈ 𝑄. (6)

Denote the solution sets of generalized equilibrium prob-
lem (GEP) (5) and GEP (6) by GEP(𝐹1, ℎ1) and GEP(𝐹2, ℎ2),
respectively. The solution set of SGEP is denoted by Γ ={𝑥∗ ∈ GEP(𝐹1, ℎ1) : 𝐴𝑥∗ ∈ GEP(𝐹2, ℎ2)}. They proposed the
following iterative method for finding a common solution of
split generalized equilibrium and fixed point problem.

Let {𝑥𝑛} and {𝑢𝑛} be the sequences generated by 𝑥0 ∈ 𝐶
and

𝑢𝑛 = 𝑇(𝐹1,ℎ1)𝑟𝑛
(𝑥𝑛 + 𝛿𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛) ,
𝑥𝑛+1 = 𝛼𝑛𝛾𝑓 (𝑥𝑛) + 𝛽𝑛𝑥𝑛

+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷) 1𝑠𝑛 ∫
𝑠𝑛

0

𝑇 (𝑠) 𝑢𝑛𝑑𝑠,
(7)

where 𝑆 = {𝑇(𝑠) : 0 ≤ 𝑠 < ∞} is a nonexpansive semigroup
on 𝐶 and 𝐹𝑖𝑥(𝑆) ∩ Γ ̸= 0, 𝑠𝑛 is a positive real sequence which
diverges to +∞, {𝛼𝑛}, {𝛽𝑛} ⊂ (0, 1), {𝑟𝑛} ⊂ (0,∞), and 𝛿 ∈(0, 1/𝐿), 𝐿 is the spectral radius of the operator 𝐴∗𝐴, 𝐴∗ is
the adjoint of 𝐴, and

𝑇(𝐹1,ℎ1)𝑟 (𝑥) = {𝑧 ∈ 𝐶 : 𝐹1 (𝑧, 𝑦) + ℎ1 (𝑧, 𝑦)
+ 1𝑟 ⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

(8)

𝑇(𝐹2,ℎ2)𝑠 (𝑤) = {𝑑 ∈ 𝑄 : 𝐹2 (𝑑, 𝑒) + ℎ2 (𝑑, 𝑒)
+ 1𝑠 ⟨𝑒 − 𝑑, 𝑑 − 𝑤⟩ ≥ 0, ∀𝑒 ∈ 𝑄} .

(9)

Under suitable conditions, they proved a strong conver-
gence theorem for the sequence generated by the proposed
iterative scheme. But the calculation of integral is generally
not easy.Therefore, it is necessary to reconsider the algorithm
for solving this kind of problem.

Motivated by Kazmi and Rivi [25] as well as Che and
Li [2], we introduce and study a kind of conjugate gradi-
ent viscosity approximation algorithm for finding a com-
mon solution of split generalized equilibrium problem and

variational inequality problem. Under mild conditions, we
prove that the sequence generated by the proposed iterative
algorithm converges strongly to the common solution of
VI(𝐶, 𝐵) and SGEP.The results presented in this paper are the
generalization, extension, and supplement of the previously
known results in the corresponding references. Numerical
results show the feasibility and efficiency of the proposed
algorithm.

2. Preliminaries

In this section, we introduce some concepts and results which
are needed in sequel.

A mapping 𝑇 : 𝐻1 → 𝐻1 is called
(1) contraction, if there exists a constant 𝛼 ∈ (0, 1) such

that
𝑇𝑥 − 𝑇𝑦 ≤ 𝛼 𝑥 − 𝑦 , ∀𝑥, 𝑦 ∈ 𝐻1. (10)

If 𝛼 = 1, then 𝑇 is called nonexpansive.
(2) monotone, if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐻1. (11)

(3) 𝜂-stronglymonotone, if there exists a positive constant𝜂 such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂 𝑥 − 𝑦2 , ∀𝑥, 𝑦 ∈ 𝐻1. (12)

(4) 𝛼-inverse strongly monotone (𝛼-ism), if there exists a
constant 𝛼 > 0 such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼 𝑇𝑥 − 𝑇𝑦2 , ∀𝑥, 𝑦 ∈ 𝐻1. (13)

(5) firmly nonexpansive, if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝑇𝑥 − 𝑇𝑦2 , ∀𝑥, 𝑦 ∈ 𝐻1. (14)

Amapping𝑃𝐶 is said to bemetric projection of𝐻1 onto𝐶
if, for every point 𝑥 ∈ 𝐻1, there exists a unique nearest point
in 𝐶 denoted by 𝑃𝐶𝑥 such that

𝑥 − 𝑃𝐶𝑥 ≤ 𝑥 − 𝑦 , ∀𝑦 ∈ 𝐶. (15)

It is well known that 𝑃𝐶 is a nonexpansive mapping and is
characterized by the following properties:

𝑃𝐶𝑥 − 𝑃𝐶𝑦2 ≤ ⟨𝑥 − 𝑦, 𝑃𝐶𝑥 − 𝑃𝐶𝑦⟩ ,
∀𝑥, 𝑦 ∈ 𝐻1, (16)

⟨𝑥 − 𝑃𝐶𝑥, 𝑦 − 𝑃𝐶𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐶, (17)

𝑥 − 𝑦2 ≥ 𝑥 − 𝑃𝐶𝑥2 + 𝑦 − 𝑃𝐶𝑥2 ,
∀𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐶 (18)

and
(𝑥 − 𝑦) − (𝑃𝐶𝑥 − 𝑃𝐶𝑦)2

≥ 𝑥 − 𝑦2 − 𝑃𝐶𝑥 − 𝑃𝐶𝑦2 , ∀𝑥, 𝑦 ∈ 𝐻1.
(19)
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A linear bounded operator 𝐵 is strongly positive if there
exists a constant 𝛾 > 0 with the property

⟨𝐵𝑥, 𝑥⟩ ≥ 𝛾 ‖𝑥‖2 , ∀𝑥 ∈ 𝐻1. (20)

A mapping 𝑇 : 𝐻1 → 𝐻1 is said to be averaged if and
only if it can be written as the average of the identity mapping
and a nonexpansive mapping; i.e.,

𝑇 = (1 − 𝛼) 𝐼 + 𝛼𝑆, (21)

where 𝛼 ∈ (0, 1), 𝑆 : 𝐻1 → 𝐻1 is nonexpansive,
and 𝐼 is the identity operator on 𝐻1. More precisely, we
say that 𝑇 is 𝛼-averaged. We note that averaged mapping is
nonexpansive. Furthermore, firmly nonexpansive mapping
(in particular, projection on nonempty closed and convex
subset) is averaged.

Let𝐵 be amonotonemapping of𝐶 into𝐻1. In the context
of the variational inequality problem, the characterization of
projection (17) implies the following relation:

𝑢 ∈ VI (𝐶, 𝐵) ⇐⇒ 𝑢 = 𝑃𝐶 (𝑢 − 𝜆𝐵𝑢) , 𝜆 > 0. (22)

In the proof of our results, we need the following
assumptions and lemmas.

Lemma 1 (see [26]). If 𝑥, 𝑦, 𝑧 ∈ 𝐻1, then
(i) ‖𝑥 + 𝑦‖2 ≤ ‖𝑥‖2 + 2⟨𝑦, 𝑥 + 𝑦⟩.
(ii) For any 𝜆 ∈ [0, 1],

𝜆𝑥 + (1 − 𝜆) 𝑦2 = 𝜆 ‖𝑥‖2 + (1 − 𝜆) 𝑦2
− 𝜆 (1 − 𝜆) 𝑥 − 𝑦2 .

(23)

(iii) For 𝑎, 𝑏, 𝑐 ∈ [0, 1] with 𝑎 + 𝑏 + 𝑐 = 1,
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧2 = 𝑎 ‖𝑥‖2 + 𝑏 𝑦2 + 𝑐 ‖𝑧‖2

− 𝑎𝑏 𝑥 − 𝑦2 − 𝑎𝑐 ‖𝑥 − 𝑧‖2
− 𝑏𝑐 𝑦 − 𝑧2 .

(24)

Assumption 2. Let 𝐹 : 𝐶 × 𝐶 → 𝑅 be a bifunction satisfying
the following assumption:

(i) 𝐹(𝑥, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶.
(ii) 𝐹 is monotone; i.e., 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0, ∀𝑥 ∈ 𝐶.
(iii) 𝐹 is upper hemicontinuous; i.e., for each 𝑥, 𝑦, 𝑧 ∈ 𝐶,

lim sup
𝑡→0

𝐹 (𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ 𝐹 (𝑥, 𝑦) . (25)

(iv) For each 𝑥 ∈ 𝐶 fixed, the function 𝑦 → 𝐹(𝑥, 𝑦) is
convex and lower semicontinuous.

Let ℎ : 𝐶 × 𝐶 → 𝑅 such that
(i) ℎ(𝑥, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶
(ii) for each 𝑦 ∈ 𝐶 fixed, the function 𝑥 → ℎ(𝑥, 𝑦) is

upper semicontinuous
(iii) for each 𝑥 ∈ 𝐶 fixed, the function 𝑦 → ℎ(𝑥, 𝑦) is

convex and lower semicontinuous

And assume that, for fixed 𝑟 > 0 and 𝑧 ∈ 𝐶, there exists
a nonempty compact convex subset 𝐾 of 𝐻1 and 𝑥 ∈ 𝐶 ∩ 𝐾
such that

𝐹 (𝑦, 𝑥) + ℎ (𝑦, 𝑥) + 1𝑟 ⟨𝑦 − 𝑥, 𝑥 − 𝑧⟩ < 0,
∀𝑦 ∈ 𝐶 \ 𝐾.

(26)

Lemma 3 (see [25]). Assume that 𝐹1, ℎ1 : 𝐶 × 𝐶 → 𝑅 satisfy
Assumption 2. Let 𝑟 > 0 and 𝑥 ∈ 𝐻1. �en, there exists 𝑧 ∈ 𝐶
such that

𝐹1 (𝑧, 𝑦) + ℎ1 (𝑧, 𝑦) + 1𝑟 ⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,
∀𝑦 ∈ 𝐶.

(27)

Lemma 4 (see [1]). Assume that the bifunctions 𝐹1, ℎ1 : 𝐶 ×𝐶 → 𝑅 satisfy Assumption 2 and ℎ1 is monotone. For 𝑟 > 0
and for all 𝑥 ∈ 𝐻1, define a mapping 𝑇(𝐹1,ℎ1)𝑟 : 𝐻1 → 𝐶 as (8).
�en, the following conclusions hold.

(1) 𝑇(𝐹1,ℎ1)𝑟 is single-valued.
(2) 𝑇(𝐹1,ℎ1)𝑟 is firmly nonexpansive.
(3) 𝐹𝑖𝑥(𝑇(𝐹1,ℎ1)𝑟 ) = 𝐺𝐸𝑃(𝐹1, ℎ1).
(4) 𝐺𝐸𝑃(𝐹1, ℎ1) is compact and convex.

Furthermore, assume that 𝐹2, ℎ2 : 𝑄 × 𝑄 → 𝑅 satisfy
Assumption 2. For 𝑠 > 0 and, for all 𝑤 ∈ 𝐻2, 𝑇(𝐹2,ℎ2)𝑠 : 𝐻2 →𝑄 is defined as (9). By Lemma 4, we easily observe that𝑇(𝐹2,ℎ2)𝑠

is single-valued and firmly nonexpansive, GEP(𝐹2, ℎ2, 𝑄) is
compact and convex, and Fix(𝑇(𝐹2,ℎ2)𝑠 ) = GEP(𝐹2, ℎ2, 𝑄),
where GEP(𝐹2, ℎ2, 𝑄) is the solution set of the following
generalized equilibrium problem, which is to find 𝑦∗ ∈ 𝑄
such that 𝐹2(𝑦∗, 𝑦) + ℎ2(𝑦∗, 𝑦) ≥ 0, ∀𝑦 ∈ 𝑄.

We observe that GEP(𝐹2, ℎ2) ⊂ GEP(𝐹2, ℎ2, 𝑄). Further,
it is easy to prove that Γ is a closed and convex set.

Lemma 5 (see [27, 28]). Assume that 𝑇 : 𝐻1 → 𝐻1 is
nonexpansive operator. For all (𝑥, 𝑦) ∈ 𝐻1 × 𝐻1, the following
inequality is true

⟨(𝑥 − 𝑇 (𝑥)) − (𝑦 − 𝑇 (𝑦)) , 𝑇 (𝑦) − 𝑇 (𝑥)⟩
≤ 12 (𝑇 (𝑥) − 𝑥) − (𝑇 (𝑦) − 𝑦)2 .

(28)

And for all (𝑥, 𝑦) ∈ 𝐻1 × 𝐹𝑖𝑥(𝑇), one has
⟨𝑥 − 𝑇 (𝑥) , 𝑦 − 𝑇 (𝑥)⟩ ≤ 12 ‖𝑇 (𝑥) − 𝑥‖2 . (29)

Lemma 6 (see [29]). Assume A is a strongly positive linear
bounded operator on Hilbert space 𝐻1 with coefficient 𝛾 > 0
and 0 < 𝜌 ≤ ‖𝐴‖−1. �en ‖𝐼 − 𝜌𝐴‖ ≤ 1 − 𝜌𝛾.
Lemma 7 (see [30, 31]). Assume that {𝑎𝑛} is a sequence of
nonnegative real numbers such that

𝑎𝑛+1 ≤ (1 − 𝛾𝑛) 𝑎𝑛 + 𝛾𝑛𝛿𝑛 + 𝛽𝑛, 𝑛 ≥ 0, (30)

where {𝛾𝑛} and {𝛽𝑛} are sequences in (0, 1) and {𝛿𝑛} is a
sequence in R, such that
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(i)∑∞𝑛=0 𝛾𝑛 = ∞.
(ii) lim sup𝑛→∞𝛿𝑛 ≤ 0 or∑∞𝑛=0 |𝛾𝑛𝛿𝑛| < ∞.
(iii)∑∞𝑛=0 𝛽𝑛 < ∞.
�en lim𝑛→∞𝑎𝑛 = 0.
According to [28], it is easy to prove the following Lemma.

Lemma 8. Let 𝐹1, ℎ1 : 𝐶 × 𝐶 → 𝑅 be bifunctions satisfying
Assumption 2 and, for 𝑟 > 0, the mapping 𝑇(𝐹1,ℎ1)𝑟 is defined as
(8). Let 𝑥, 𝑦 ∈ 𝐻1, and 𝑟1, 𝑟2 > 0. �en

𝑇(𝐹1 ,ℎ1)𝑟2
𝑦 − 𝑇(𝐹1,ℎ1)𝑟1

𝑥 ≤ 𝑦 − 𝑥
+ 

𝑟2 − 𝑟1𝑟2

𝑇(𝐹1,ℎ1)𝑟2

𝑦 − 𝑦 .
(31)

Lemma 9 (see [32, 33]). Let 𝑇 : 𝐻 → 𝐻 be given. We have
the following:

(i) 𝑇 is nonexpansive, iff the complement 𝐼 − 𝑇 is 1/2-ism
(ii) if 𝑇 is v-ism, then, for 𝛾 > 0, 𝛾𝑇 is V/𝛾-ism
(iii) 𝑇 is averaged, iff the complement 𝐼 − 𝑇 is V-ism for

some V > 1/2; indeed, for 𝛼 ∈ (0, 1), 𝑇 is 𝛼-averaged, iff 𝐼 − 𝑇
is 1/2𝛼-ism
Lemma 10 (see [4, 32]). Let the operators 𝑆, 𝑇,𝑉 : 𝐻 → 𝐻
be given.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉, where 𝑆 is averaged, 𝑉 is
nonexpansive, and 𝛼 ∈ (0, 1), then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive, iff the complement 𝐼 − 𝑇 is
firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉, where 𝑆 is firmly nonexpansive,𝑉 is nonexpansive, and 𝛼 ∈ (0, 1), then 𝑇 is averaged.
(iv) �e composite of finitely many averaged mappings is

averaged. �at is, if each of the mappings {𝑇𝑖}𝑁𝑖=1 is averaged,
then so is the composite 𝑇1, . . . , 𝑇𝑁. In particular, if 𝑇1 is 𝛼1-
averaged and 𝑇2 is 𝛼2-averaged, where 𝛼1, 𝛼2 ∈ (0, 1), then the
composite 𝑇1𝑇2 is 𝛼-averaged, where 𝛼 = 𝛼1 + 𝛼2 − 𝛼1𝛼2.

(v) If themappings {𝑇𝑖}𝑁𝑖=1 are averaged and have a common
fixed point, then

𝑁⋂
𝑖=1

Fix (𝑇𝑖) = Fix (𝑇1, . . . , 𝑇𝑁) . (32)

In the following, we give the relation between the projec-
tion operator and average mapping.

Lemma 11. Assume that the variational inequality problem (3)
is solvable. If 𝐵 is 𝛽-ism from 𝐶 into 𝐻1, then 𝑃𝐶(𝐼 − 𝜆𝐵) is(2𝛽 + 𝜆)/4𝛽-averaged.
Proof. Note that 𝐵 is𝛽-ism, which implies that 𝜆𝐵 is 𝛽/𝜆-ism;
i.e., 𝐼−(𝐼−𝜆𝐵) is𝛽/𝜆-ism. By Lemma 9(iii), we can see that 𝐼−𝜆𝐵 is 𝜆/2𝛽-averaged. Since the projection 𝑃𝐶 is 1/2-averaged,
it is easy to see from Lemma 10 that the composite 𝑃𝐶(𝐼−𝜆𝐵)
is (2𝛽 + 𝜆)/4𝛽-averaged for 0 < 𝜆 < 2𝛽 according to

12 + 𝜆2𝛽 − 12 ⋅ 𝜆2𝛽 = 2𝛽 + 𝜆4𝛽 , (33)

which completes the proof.

As a result we have that, for each 𝑛, 𝑃𝐶(𝐼 − 𝜆𝑛𝐵) is (2𝛽 +𝜆𝑛)/4𝛽-averaged. Therefore, we can write

𝑃𝐶 (𝐼 − 𝜆𝑛𝐵) = 2𝛽 − 𝜆𝑛4𝛽 𝐼 + 2𝛽 + 𝜆𝑛4𝛽 𝑇𝑛
= (1 − 𝑏𝑛) 𝐼 + 𝑏𝑛𝑇𝑛,

(34)

where 𝑇𝑛 is nonexpansive and 𝑏𝑛 = (2𝛽 + 𝜆𝑛)/4𝛽 ∈ [1/2, 1].
Lemma 12 (see [28]). Let {𝑥𝑛} and {𝑧𝑛} be bounded sequence
in a Banach space X and let {𝛽𝑛} be a sequence in [0, 1] with0 < lim inf𝑛→∞𝛽𝑛 ≤ lim sup𝑛→∞𝛽𝑛 < 1. Suppose 𝑥𝑛+1 =(1−𝛽𝑛)𝑧𝑛+𝛽𝑛𝑥𝑛 for all integers 𝑛 ≥ 0 and lim sup𝑛→∞(‖𝑧𝑛+1−𝑧𝑛‖ − ‖𝑥𝑛+1 − 𝑥𝑛‖) ≤ 0. �en lim𝑛→∞‖𝑧𝑛 − 𝑥𝑛‖ = 0.
3. Main Results

In this section, we give the main results of this paper. First, we
describe the algorithm for finding a common solution of split
generalized equilibrium and variational inequality problems.

Throughout the rest of this paper, let𝑓 be a contraction of𝐻1 into itself with coefficient 𝜂 ∈ (0, 1),𝐴 be a bounded linear
operator, 𝐵 be a 𝛽-inverse strongly monotone mapping from𝐶 into 𝐻1, and 𝐷 be a strongly positive linear bounded self-
adjoint operator on𝐻1 with coefficient 𝛾 > 0 and 0 < 𝛾 < 𝛾/𝜂.

Now, we give the description of the algorithm.

Algorithm 13. Let 𝑥0 ∈ 𝐻1 be arbitrary and 𝛼 > 0. Assume
that {𝛼𝑛}, {𝛽𝑛}, {𝛾𝑛} ⊂ (0, 1), {𝜆𝑛} ⊂ (0, 2𝛽), {𝑟𝑛} ⊂ (0,∞), and𝜉 ∈ (0, 1/𝐿), where 𝐿 is the spectral radius of the operator𝐴𝐴∗ and 𝐴∗ is the adjoint of 𝐴. Calculate sequences {𝑢𝑛},{𝑦𝑛}, and {𝑥𝑛} by the following iteration formula.

𝑢𝑛 = 𝑇(𝐹1,ℎ1)𝑟𝑛
(𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛) ,
𝑦𝑛 = 𝑢𝑛 + 𝛼𝑑𝑛+1,

𝑥𝑛+1 = 𝛼𝑛𝛾𝑓 (𝑥𝑛) + 𝛽𝑛𝑥𝑛 + ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷)𝑦𝑛,
(35)

where 𝑑𝑛+1 = (1/𝛼)(𝑇𝑛𝑢𝑛 − 𝑢𝑛) + 𝛾𝑛𝑑𝑛, 𝑑0 = (1/𝛼)(𝑇0𝑢0 − 𝑢0)
and 𝑇𝑛 is defined by (34).

As follows, we propose the convergence analysis of
Algorithm 13.

Theorem14. Let𝐻1 and𝐻2 be two realHilbert spaces and𝐶 ⊂𝐻1, 𝑄 ⊂ 𝐻2 be nonempty closed convex subsets. Let 𝐹1, ℎ1 :𝐶 × 𝐶 → 𝑅 and 𝐹2, ℎ2 : 𝑄 × 𝑄 → 𝑅 satisfy Assumption 2;ℎ1, ℎ2 are monotone and𝐹2 is upper semicontinuous in the first
argument. Assume that Ω fl 𝑉𝐼(𝐶, 𝐵) ∩ Γ ̸= 0 and {𝑥𝑛}, {𝑢𝑛},
and {𝑦𝑛} are generated by (35). Suppose that {𝛼𝑛}, {𝛽𝑛} ⊂ (0, 1),{𝛾𝑛} ⊂ (0, 1/2), {𝜆𝑛} ⊂ (0, 2𝛽), {𝑟𝑛} ⊂ (0,∞) satisfy the
following conditions:

(C1) lim𝑛→∞𝛼𝑛 = 0, ∑∞𝑛=0 𝛼𝑛 = ∞.
(C2) 0 < lim inf𝑛→∞𝛽𝑛 ≤ lim sup𝑛→∞𝛽𝑛 < 1.
(C3) 𝛾𝑛 = 𝑜(𝛼𝑛).
(C4) lim inf𝑛→∞𝜆𝑛 > 0, lim𝑛→∞|𝜆𝑛+1 − 𝜆𝑛| = 0.
(C5) lim𝑛→∞(|𝑟𝑛+1 − 𝑟𝑛|/𝑟𝑛+1) = 0.
(C6) {𝑇𝑛𝑢𝑛 − 𝑢𝑛} is bounded.
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�en the sequence {𝑥𝑛} converges strongly to 𝑞 ∈ Ω, where𝑞 = 𝑃Ω(𝐼 − 𝐷 + 𝛾𝑓)𝑞, which is the unique solution of the
variational inequality problem

⟨(𝐷 − 𝛾𝑓) 𝑞, 𝑥 − 𝑞⟩ ≥ 0, ∀𝑥 ∈ Ω, (36)

or equivalently, 𝑞 is the unique solution to the minimization
problem

min
𝑥∈Ω

12 ⟨𝐷𝑥, 𝑥⟩ − ℎ (𝑥) , (37)

where ℎ is a potential function for 𝛾𝑓 such that ℎ(𝑥) = 𝛾𝑓(𝑥)
for 𝑥 ∈ 𝐻1.
Proof. Some equalities and inequalities in the following can
be obtained according to the proof of Theorem 1 in [25].
However, we give the detailed proof process in order to read
handily.

From (C1) and (C2), without loss of generality we assume
that 𝛼𝑛 ≤ (1 − 𝛽𝑛)‖𝐷‖−1 for all 𝑛 ∈ 𝑁. By Lemma 6, we have‖𝐼 − 𝜌𝐷‖ ≤ 1 − 𝜌𝛾 if 0 < 𝜌 ≤ ‖𝐷‖−1. Now suppose that‖𝐼 −𝐷‖ ≤ 1 − 𝛾. Since𝐷 is a strongly positive linear bounded
self-adjoint operator on𝐻1, we obtain

‖𝐷‖ = sup {|⟨𝐷𝑥, 𝑥⟩| : 𝑥 ∈ 𝐻1, ‖𝑥‖ = 1} . (38)

Notice that

⟨((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷)𝑥, 𝑥⟩ = 1 − 𝛽𝑛 − 𝛼𝑛 ⟨𝐷𝑥, 𝑥⟩
≥ 1 − 𝛽𝑛 − 𝛼𝑛 ‖𝐷‖ ≥ 0, (39)

which shows that (1 − 𝛽𝑛)𝐼 − 𝛼𝑛𝐷 is positive definite.
Furthermore, we have(1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷

= sup {⟨((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷)𝑥, 𝑥⟩ : 𝑥 ∈ 𝐻1, ‖𝑥‖
= 1} = sup {1 − 𝛽𝑛 − 𝛼𝑛 ⟨𝐷𝑥, 𝑥⟩ : 𝑥 ∈ 𝐻1, ‖𝑥‖ = 1}
≤ 1 − 𝛽𝑛 − 𝛼𝑛𝛾.

(40)

Since 𝑓 is a contraction mapping with constant 𝜂 ∈ (0, 1), for
all 𝑥, 𝑦 ∈ 𝐻1, we have𝑃Ω (𝐼 − 𝐷 + 𝛾𝑓) (𝑥) − 𝑃Ω (𝐼 − 𝐷 + 𝛾𝑓) (𝑦)

≤ (𝐼 − 𝐷 + 𝛾𝑓) (𝑥) − (𝐼 − 𝐷 + 𝛾𝑓) (𝑦)
≤ ‖𝐼 − 𝐷‖ 𝑥 − 𝑦 + 𝛾 𝑓 (𝑥) − 𝑓 (𝑦)
≤ (1 − 𝛾) 𝑥 − 𝑦 + 𝛾𝜂 𝑥 − 𝑦
≤ (1 − (𝛾 − 𝛾𝜂)) 𝑥 − 𝑦 ,

(41)

which implies that 𝑃Ω(𝐼 − 𝐷 + 𝛾𝑓) is a contraction mapping
from 𝐻1 into itself. It follows from the Banach contraction
principle that there exists an element 𝑞 ∈ Ω such that 𝑞 =𝑃Ω(𝐼 − 𝐷 + 𝛾𝑓)𝑞.
Step 1 (we show that {𝑥𝑛} is bounded). Let 𝑥∗ ∈ Ω; i.e., 𝑥∗ ∈ Γ;
we have 𝑥∗ = 𝑇(𝐹1,ℎ1)𝑟𝑛

𝑥∗ and 𝐴𝑥∗ = 𝑇(𝐹2 ,ℎ2)𝑟𝑛
𝐴𝑥∗.

In the following, we compute
𝑢𝑛 − 𝑥∗2 = 𝑇(𝐹1,ℎ1)𝑟𝑛

(𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2 ,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛)

− 𝑥∗2 = 𝑇(𝐹1,ℎ1)𝑟𝑛
(𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛)
− 𝑇(𝐹1,ℎ1)𝑟𝑛

𝑥∗2 ≤ 𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛

− 𝑥∗2 = 𝑥𝑛 − 𝑥∗2 + 𝜉2 𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛2

+ 2𝜉 ⟨𝑥𝑛 − 𝑥∗, 𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛⟩ .

(42)

Thus, we have
𝑢𝑛 − 𝑥∗2
≤ 𝑥𝑛 − 𝑥∗2

+ 𝜉2 ⟨(𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛, 𝐴𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛⟩
+ 2𝜉 ⟨𝑥𝑛 − 𝑥∗, 𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛⟩ .
(43)

On the other hand, we have

𝜉2 ⟨(𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛, 𝐴𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛⟩
≤ 𝐿𝜉2 (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛2 .
(44)

and

2𝜉 ⟨𝑥𝑛 − 𝑥∗, 𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛⟩

= 2𝜉 ⟨𝐴 (𝑥𝑛 − 𝑥∗) , (𝑇(𝐹2 ,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛⟩

= 2𝜉 ⟨𝐴 (𝑥𝑛 − 𝑥∗) + (𝑇(𝐹2 ,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛

− (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛, (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛⟩
= 2𝜉 {⟨𝑇(𝐹2,ℎ2)𝑟𝑛

𝐴𝑥𝑛 − 𝐴𝑥∗, (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛⟩

− (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛2}

≤ 2𝜉 {12 (𝑇(𝐹2 ,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛2

− (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛2}

≤ −𝜉 (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛2 ,

(45)

where the first inequality is derived from (29).
From (43)-(45), we have
𝑢𝑛 − 𝑥∗2 ≤ 𝑥𝑛 − 𝑥∗2

+ 𝜉 (𝐿𝜉 − 1) (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛2 .

(46)

Noticing that 𝜉 ∈ (0, 1/𝐿), we obtain
𝑢𝑛 − 𝑥∗2 ≤ 𝑥𝑛 − 𝑥∗2 . (47)
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As follows, we prove that {𝑑𝑛} is bounded. The proof
is by induction. It is true trivially for 𝑛 = 0. Let 𝑀1 =
max{‖𝑑0‖, (2/𝛼)sup𝑛∈𝑁‖𝑇𝑛𝑢𝑛 − 𝑢𝑛‖}. From (C6), it is shown
that 𝑀1 < ∞. Assume that ‖𝑑𝑛‖ ≤ 𝑀1 for some 𝑛; we prove
that it holds for 𝑛+1. According to the triangle inequality, we
obtain

𝑑𝑛+1 =  1𝛼 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) + 𝛾𝑛𝑑𝑛
≤ 1𝛼 𝑇𝑛𝑢𝑛 − 𝑢𝑛 + 𝛾𝑛 𝑑𝑛 ≤ 1𝛼 ⋅ 𝛼2𝑀1 + 𝑀12
= 𝑀1,

(48)

which implies that ‖𝑑𝑛‖ ≤ 𝑀1 for all 𝑛 ∈ 𝑁; i.e., {𝑑𝑛} is
bounded.

It is easy to see that 𝑥∗ ∈ 𝑉𝐼(𝐶, 𝐵) according to 𝑥∗ ∈ Ω.
By (22), we have 𝑃𝐶(𝐼 − 𝜆𝐵)𝑥∗ = 𝑥∗, which, together with
(34), implies that

𝑏𝑛𝑇𝑛𝑥∗ = 𝑃𝐶 (𝐼 − 𝜆𝐵) 𝑥∗ − (1 − 𝑏𝑛) 𝑥∗ = 𝑏𝑛𝑥∗; (49)

that is,

𝑇𝑛𝑥∗ = 𝑥∗. (50)

By the definition of {𝑦𝑛}, (47), and {𝑇𝑛} being nonexpan-
sive, we have

𝑦𝑛 − 𝑥∗ = 𝑢𝑛 + 𝛼𝑑𝑛+1 − 𝑥∗
= 𝑇𝑛 (𝑢𝑛) + 𝛼𝛾𝑛𝑑𝑛 − 𝑇𝑛𝑥∗
≤ 𝑢𝑛 − 𝑥∗ + 𝛼𝛾𝑛𝑀1
≤ 𝑥𝑛 − 𝑥∗ + 𝛼𝛾𝑛𝑀1.

(51)

As a result, it follows from (51), Lemma 6,and the fact that𝛼𝑛 → 0 and 𝛾𝑛 = 𝑜(𝛼𝑛) that when 𝑛 is large enough,
𝑥𝑛+1 − 𝑥∗ = 𝛼𝑛 (𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗) + 𝛽𝑛 (𝑥𝑛 − 𝑥∗)
+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷) (𝑦𝑛 − 𝑥∗) ≤ 𝛼𝑛 𝛾𝑓 (𝑥𝑛)
− 𝐷𝑥∗ + 𝛽𝑛 𝑥𝑛 − 𝑥∗ + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)
⋅ (𝑥𝑛 − 𝑥∗ + 𝛼𝛾𝑛𝑀1) ≤ 𝛼𝑛𝛾 𝑓 (𝑥𝑛) − 𝑓 (𝑥∗)
+ 𝛼𝑛 𝛾𝑓 (𝑥∗) − 𝐷𝑥∗ + 𝛽𝑛 𝑥𝑛 − 𝑥∗ + (1 − 𝛽𝑛
− 𝛼𝑛𝛾) (𝑥𝑛 − 𝑥∗ + 𝛼𝛾𝑛𝑀1) ≤ 𝛼𝑛𝛾𝜂 𝑥𝑛 − 𝑥∗
+ 𝛼𝑛 𝛾𝑓 (𝑥∗) − 𝐷𝑥∗ + (1 − 𝛼𝑛𝛾) 𝑥𝑛 − 𝑥∗ + (1
− 𝛽𝑛 − 𝛼𝑛𝛾) 𝛼𝛾𝑛𝑀1 ≤ (1 − 𝛼𝑛 (𝛾 − 𝛾𝜂)) 𝑥𝑛 − 𝑥∗
+ 𝛼𝑛 (𝛾 − 𝛾𝜂) 𝛼𝑀1 +

𝛾𝑓 (𝑥∗) − 𝐷𝑥∗𝛾 − 𝛾𝜂
≤ max{𝑥𝑛 − 𝑥∗ , 𝛼𝑀1 +

𝛾𝑓 (𝑥∗) − 𝐷𝑥∗𝛾 − 𝛾𝜂 } ,

(52)

where the third inequality is true because 𝛽𝑛 ∈ (0, 1), 𝛼𝑛 →0, and 𝛾𝑛 = 𝑜(𝛼𝑛). As a result,
(1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝛼𝛾𝑛𝑀1 ≤ 𝛼𝛼𝑛𝑀1, (53)

when 𝑛 is large enough.
Hence, {𝑥𝑛} is bounded and so are {𝑢𝑛} and {𝑦𝑛}.

Step 2 (we show that lim𝑛→∞‖𝑥𝑛+1 − 𝑥𝑛‖ = 0). Since 𝑇(𝐹1,ℎ1)𝑟𝑛+1

and 𝑇(𝐹2,ℎ2)𝑟𝑛+1
both are firmly nonexpansive, for 𝜉 ∈ (0, 1/𝐿), the

mapping 𝑇(𝐹1 ,ℎ1)𝑟𝑛+1
(𝐼 + 𝜉𝐴∗(𝑇(𝐹2,ℎ2)𝑟𝑛+1

− 𝐼)𝐴) is nonexpansive; see
[34, 35]. Noticing that 𝑢𝑛 = 𝑇(𝐹1,ℎ1)𝑟𝑛

(𝑥𝑛 +𝜉𝐴∗(𝑇(𝐹2,ℎ2)𝑟𝑛
−𝐼)𝐴𝑥𝑛)

and 𝑢𝑛+1 = 𝑇(𝐹1,ℎ1)𝑟𝑛+1
(𝑥𝑛+1 + 𝜉𝐴∗(𝑇(𝐹2,ℎ2)𝑟𝑛+1

− 𝐼)𝐴𝑥𝑛+1), we have
from Lemma 8 that𝑢𝑛+1 − 𝑢𝑛

≤ 𝑇(𝐹1,ℎ1)𝑟𝑛+1
(𝑥𝑛+1 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛+1

− 𝐼)𝐴𝑥𝑛+1)
− 𝑇(𝐹1,ℎ1)𝑟𝑛+1

(𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2 ,ℎ2)𝑟𝑛+1
− 𝐼)𝐴𝑥𝑛)

+ 𝑇(𝐹1,ℎ1)𝑟𝑛+1
(𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛+1

− 𝐼)𝐴𝑥𝑛)
− 𝑇(𝐹1,ℎ1)𝑟𝑛

(𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2 ,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛) ≤ 𝑥𝑛+1

− 𝑥𝑛 + 𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛+1
− 𝐼)𝐴𝑥𝑛

− (𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛) +

1 −
𝑟𝑛𝑟𝑛+1


⋅ 𝑇(𝐹1,ℎ1)𝑟𝑛+1

(𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛+1
− 𝐼)𝐴𝑥𝑛)

− (𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛+1
− 𝐼)𝐴𝑥𝑛) ≤ 𝑥𝑛+1 − 𝑥𝑛

+ 𝜉 ‖𝐴‖ 𝑇(𝐹2 ,ℎ2)𝑟𝑛+1
𝐴𝑥𝑛 − 𝑇(𝐹2,ℎ2)𝑟𝑛

𝐴𝑥𝑛 + 𝜁𝑛 ≤ 𝑥𝑛+1
− 𝑥𝑛 + 𝜉 ‖𝐴‖ 1 −

𝑟𝑛𝑟𝑛+1

𝑇(𝐹2,ℎ2)𝑟𝑛+1

𝐴𝑥𝑛 − 𝐴𝑥𝑛 + 𝜁𝑛
= 𝑥𝑛+1 − 𝑥𝑛 + 𝜉 ‖𝐴‖ 𝜎𝑛 + 𝜁𝑛,

(54)

where 𝜎𝑛 fl |1 − 𝑟𝑛/𝑟𝑛+1|‖𝑇(𝐹2,ℎ2)𝑟𝑛+1
𝐴𝑥𝑛 − 𝐴𝑥𝑛‖ and 𝜁𝑛 fl |1 −

𝑟𝑛/𝑟𝑛+1|‖𝑇(𝐹1,ℎ1)𝑟𝑛+1
(𝑥𝑛+𝜉𝐴∗(𝑇(𝐹2,ℎ2)𝑟𝑛

−𝐼)𝐴𝑥𝑛)−(𝑥𝑛+𝜉𝐴∗(𝑇(𝐹2,ℎ2)𝑟𝑛+1
−𝐼)𝐴𝑥𝑛)‖.

Furthermore, one has𝑦𝑛+1 − 𝑦𝑛 = 𝑢𝑛+1 + 𝛼𝑑𝑛+2 − (𝑢𝑛 + 𝛼𝑑𝑛+1)
≤ 𝑇𝑛+1𝑢𝑛+1 − 𝑇𝑛𝑢𝑛

+ 𝛼 𝛾𝑛+1𝑑𝑛+1 − 𝛾𝑛𝑑𝑛
≤ 𝑇𝑛+1𝑢𝑛+1 − 𝑇𝑛+1𝑢𝑛

+ 𝑇𝑛+1𝑢𝑛 − 𝑇𝑛𝑢𝑛
+ 𝛼 𝛾𝑛+1𝑑𝑛+1 − 𝛾𝑛𝑑𝑛

≤ 𝑢𝑛+1 − 𝑢𝑛 + 𝑇𝑛+1𝑢𝑛 − 𝑇𝑛𝑢𝑛
+ 𝛼𝑀1 (𝛾𝑛+1 + 𝛾𝑛)

(55)



Journal of Function Spaces 7

It follows from (34) that

𝑇𝑛+1𝑢𝑛 − 𝑇𝑛𝑢𝑛 =

𝑃𝐶 (𝐼 − 𝜆𝑛+1𝐵) − (1 − 𝑏𝑛+1) 𝐼𝑏𝑛+1 𝑢𝑛

− 𝑃𝐶 (𝐼 − 𝜆𝑛𝐵) − (1 − 𝑏𝑛) 𝐼𝑏𝑛 𝑢𝑛


= 
4𝛽𝑃𝐶 (𝐼 − 𝜆𝑛+1𝐵) − (2𝛽 − 𝜆𝑛+1) 𝐼2𝛽 + 𝜆𝑛+1 𝑢𝑛

− 4𝛽𝑃𝐶 (𝐼 − 𝜆𝑛𝐵) − (2𝛽 − 𝜆𝑛) 𝐼2𝛽 + 𝜆𝑛 𝑢𝑛
 =


4𝛽𝑃𝐶 (𝐼 − 𝜆𝑛+1𝐵)2𝛽 + 𝜆𝑛+1 𝑢𝑛

− 4𝛽𝑃𝐶 (𝐼 − 𝜆𝑛𝐵)2𝛽 + 𝜆𝑛 𝑢𝑛 + (2𝛽 − 𝜆𝑛)2𝛽 + 𝜆𝑛 𝑢𝑛 −
(2𝛽 − 𝜆𝑛+1)2𝛽 + 𝜆𝑛+1 𝑢𝑛


≤ 

4𝛽 [(2𝛽 + 𝜆𝑛) 𝑃𝐶 (𝐼 − 𝜆𝑛+1𝐵) − (2𝛽 + 𝜆𝑛+1) 𝑃𝐶 (𝐼 − 𝜆𝑛𝐵)](2𝛽 + 𝜆𝑛+1) (2𝛽 + 𝜆𝑛)
⋅ 𝑢𝑛

 +


4𝛽 (𝜆𝑛+1 − 𝜆𝑛)(2𝛽 + 𝜆𝑛+1) (2𝛽 + 𝜆𝑛)𝑢𝑛


≤ 
4𝛽 (𝜆𝑛 − 𝜆𝑛+1) 𝑃𝐶 (𝐼 − 𝜆𝑛+1𝐵)(2𝛽 + 𝜆𝑛+1) (2𝛽 + 𝜆𝑛) 𝑢𝑛


+ 

4𝛽 (2𝛽 + 𝜆𝑛+1) [𝑃𝐶 (𝐼 − 𝜆𝑛+1𝐵) − 𝑃𝐶 (𝐼 − 𝜆𝑛𝐵)](2𝛽 + 𝜆𝑛+1) (2𝛽 + 𝜆𝑛) 𝑢𝑛


+ 
4𝛽 (𝜆𝑛+1 − 𝜆𝑛)(2𝛽 + 𝜆𝑛+1) (2𝛽 + 𝜆𝑛)𝑢𝑛

 ≤
1𝛽 𝜆𝑛 − 𝜆𝑛+1

⋅ (𝑃𝐶 (𝐼 − 𝜆𝑛+1𝐵) 𝑢𝑛 + 4𝛽 𝐵𝑢𝑛
+ 𝑢𝑛) ≤ 𝑀2 𝜆𝑛+1 − 𝜆𝑛 ,

(56)

where 𝑀2 = sup𝑛∈𝑁{(1/𝛽)(‖𝑃𝐶(𝐼 − 𝜆𝑛+1𝐵)𝑢𝑛‖ + 4𝛽‖𝐵𝑢𝑛‖ +‖𝑢𝑛‖)}.
Hence from (54)-(56), we get

𝑦𝑛+1 − 𝑦𝑛 ≤ 𝑥𝑛+1 − 𝑥𝑛 + 𝜉 ‖𝐴‖ 𝜎𝑛 + 𝜁𝑛
+𝑀2 𝜆𝑛+1 − 𝜆𝑛 + 𝛼𝑀1 (𝛾𝑛+1 + 𝛾𝑛) . (57)

Set 𝑥𝑛+1 = (1 − 𝛽𝑛)𝑧𝑛 + 𝛽𝑛𝑥𝑛; it follows that
𝑧𝑛 = 𝑥𝑛+1 − 𝛽𝑛𝑥𝑛1 − 𝛽𝑛

= 𝛼𝑛𝛾𝑓 (𝑥𝑛) + ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷)𝑦𝑛1 − 𝛽𝑛 .
(58)

As a result,

𝑧𝑛+1 − 𝑧𝑛
= 

𝛼𝑛+1𝛾𝑓 (𝑥𝑛+1) + ((1 − 𝛽𝑛+1) 𝐼 − 𝛼𝑛+1𝐷)𝑦𝑛+11 − 𝛽𝑛+1
− 𝛼𝑛𝛾𝑓 (𝑥𝑛) + ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷)𝑦𝑛1 − 𝛽𝑛



= 
𝛼𝑛+1 (𝛾𝑓 (𝑥𝑛+1) − 𝐷𝑦𝑛+1)1 − 𝛽𝑛+1

− 𝛼𝑛 (𝛾𝑓 (𝑥𝑛) − 𝐷𝑦𝑛)1 − 𝛽𝑛 + 𝑦𝑛+1 − 𝑦𝑛


≤ 𝛼𝑛+11 − 𝛽𝑛+1
𝛾𝑓 (𝑥𝑛+1) − 𝐷𝑦𝑛+1

+ 𝛼𝑛1 − 𝛽𝑛
𝛾𝑓 (𝑥𝑛) − 𝐷𝑦𝑛 + 𝑦𝑛+1 − 𝑦𝑛

≤ 𝛼𝑛+11 − 𝛽𝑛+1
𝛾𝑓 (𝑥𝑛+1) − 𝐷𝑦𝑛+1

+ 𝛼𝑛1 − 𝛽𝑛
𝛾𝑓 (𝑥𝑛) − 𝐷𝑦𝑛 + 𝑥𝑛+1 − 𝑥𝑛 + 𝜉 ‖𝐴‖

⋅ 𝜎𝑛 + 𝜁𝑛 +𝑀2 𝜆𝑛+1 − 𝜆𝑛 + 𝛼𝑀1 (𝛾𝑛+1 + 𝛾𝑛) .
(59)

Letting 𝑛 → ∞, from (C1)-(C5), we have

lim sup
𝑛→∞

(𝑧𝑛+1 − 𝑧𝑛 − 𝑥𝑛+1 − 𝑥𝑛) ≤ 0. (60)

By Lemma 12, we obtain

lim
𝑛→∞

𝑧𝑛 − 𝑥𝑛 = 0. (61)

Further,
lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛 = lim
𝑛→∞

(1 − 𝛽𝑛) 𝑧𝑛 − 𝑥𝑛 = 0. (62)

Step 3 (we show that lim𝑛→∞‖𝑢𝑛 − 𝑥𝑛‖ = 0). Since 𝑥∗ ∈ Ω,𝑥∗ = 𝑇(𝐹1,ℎ1)𝑟𝑛
𝑥∗, and 𝑇(𝐹1,ℎ1)𝑟𝑛

is firmly nonexpansive, we obtain

𝑢𝑛 − 𝑥∗2 = 𝑇(𝐹1,ℎ1)𝑟𝑛
(𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2 ,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛)
− 𝑥∗2 = 𝑇(𝐹1,ℎ1)𝑟𝑛

(𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛)

− 𝑇(𝐹1,ℎ1)𝑟𝑛
𝑥∗2 ≤ ⟨𝑢𝑛 − 𝑥∗, 𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)
⋅ 𝐴𝑥𝑛 − 𝑥∗⟩ = 12 {𝑢𝑛 − 𝑥∗2 + 𝑥𝑛
+ 𝜉𝐴∗ (𝑇(𝐹2 ,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛 − 𝑥∗2 − (𝑢𝑛 − 𝑥∗)
− [𝑥𝑛 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛 − 𝑥∗]2} = 12 {𝑢𝑛
− 𝑥∗2 + 𝑥𝑛 − 𝑥∗2 − 𝑢𝑛 − 𝑥𝑛2 + 2𝜉⟨𝑢𝑛
− 𝑥∗, 𝐴∗ (𝑇(𝐹2 ,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛⟩} .

(63)

Hence, we obtain
𝑢𝑛 − 𝑥∗2

≤ 𝑥𝑛 − 𝑥∗2 − 𝑢𝑛 − 𝑥𝑛2
+ 2𝜉 𝐴 (𝑢𝑛 − 𝑥∗) (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛 .
(64)
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Furthermore,

𝑦𝑛 − 𝑥∗2 = 𝑢𝑛 + 𝛼𝑑𝑛+1 − 𝑥∗2
≤ 𝑢𝑛 − 𝑥∗2 + 2𝛼𝛾𝑛 ⟨𝑦𝑛 − 𝑥∗, 𝑑𝑛⟩
≤ 𝑢𝑛 − 𝑥∗2 +𝑀3𝛾𝑛,

(65)

where𝑀3 = sup𝑛∈𝑁2𝛼⟨𝑦𝑛 − 𝑥∗, 𝑑𝑛⟩.
By Lemma 1 (𝑖𝑖𝑖), (46), and (65), we have

𝑥𝑛+1 − 𝑥∗2 = 𝛼𝑛𝛾𝑓 (𝑥𝑛) + 𝛽𝑛𝑥𝑛
+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷)𝑦𝑛 − 𝑥∗2
= 𝛼𝑛 (𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗) + 𝛽𝑛 (𝑥𝑛 − 𝑥∗)
+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷) (𝑦𝑛 − 𝑥∗)2
≤ (𝛼𝑛 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗ + 𝛽𝑛 𝑥𝑛 − 𝑥∗
+ (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑦𝑛 − 𝑥∗)2
= (𝛼𝑛𝛾 

1𝛾 (𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗) + 𝛽𝑛 𝑥𝑛 − 𝑥∗
+ (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑦𝑛 − 𝑥∗)

2 ≤ 𝛼𝑛𝛾 1
𝛾2 𝛾𝑓 (𝑥𝑛)

− 𝐷𝑥∗2 + 𝛽𝑛 𝑥𝑛 − 𝑥∗2 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑦𝑛
− 𝑥∗2 ≤ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2 + 𝛽𝑛 𝑥𝑛 − 𝑥∗2

+ (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑦𝑛 − 𝑥∗2 ≤ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛)
− 𝐷𝑥∗2 + 𝛽𝑛 𝑥𝑛 − 𝑥∗2 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)
⋅ (𝑥𝑛 − 𝑥∗2 + 𝜉 (𝐿𝜉 − 1) (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛2
+𝑀3𝛾𝑛) = 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2 + 𝛽𝑛 𝑥𝑛 − 𝑥∗2
+ (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑥𝑛 − 𝑥∗2 − (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝜉 (1
− 𝐿𝜉) (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛2 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)𝑀3𝛾𝑛.

(66)

As a result,

(1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝜉 (1 − 𝐿𝜉) (𝑇(𝐹2 ,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛2

≤ 𝑥𝑛 − 𝑥∗2 − 𝑥𝑛+1 − 𝑥∗2
+ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)𝑀3𝛾𝑛

≤ (𝑥𝑛 − 𝑥∗ + 𝑥𝑛+1 − 𝑥∗) 𝑥𝑛 − 𝑥𝑛+1
+ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)𝑀3𝛾𝑛.

(67)

According to𝛼𝑛 → 0, 𝛾𝑛 = 𝑜(𝛼𝑛), (1−𝛽𝑛−𝛼𝑛𝛾)𝜉(1−𝐿𝜉) >0, and lim𝑛→∞‖𝑥𝑛+1 − 𝑥𝑛‖ = 0, we obtain
lim
𝑛→∞

(𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛 = 0. (68)

From (65), (64), and Lemma 1 (𝑖𝑖𝑖), we obtain
𝑥𝑛+1 − 𝑥∗2 = 𝛼𝑛𝛾𝑓 (𝑥𝑛) + 𝛽𝑛𝑥𝑛
+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷)𝑦𝑛 − 𝑥∗2
= 𝛼𝑛 (𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗) + 𝛽𝑛 (𝑥𝑛 − 𝑥∗)
+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷) (𝑦𝑛 − 𝑥∗)2
≤ (𝛼𝑛 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗ + 𝛽𝑛 𝑥𝑛 − 𝑥∗
+ (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑦𝑛 − 𝑥∗)2
= (𝛼𝑛𝛾 

1𝛾 (𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗)
 + 𝛽𝑛 𝑥𝑛 − 𝑥∗

+ (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑦𝑛 − 𝑥∗)
2 ≤ 𝛼𝑛𝛾 1

𝛾2 𝛾𝑓 (𝑥𝑛)
− 𝐷𝑥∗2 + 𝛽𝑛 𝑥𝑛 − 𝑥∗2 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑦𝑛
− 𝑥∗2 ≤ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2 + 𝛽𝑛 𝑥𝑛 − 𝑥∗2

+ (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑦𝑛 − 𝑥∗2 ≤ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛)
− 𝐷𝑥∗2 + 𝛽𝑛 𝑥𝑛 − 𝑥∗2 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)
⋅ (𝑢𝑛 − 𝑥∗2 +𝑀3𝛾𝑛) ≤ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2
+ 𝛽𝑛 𝑥𝑛 − 𝑥∗2 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾) (𝑥𝑛 − 𝑥∗2
− 𝑢𝑛 − 𝑥𝑛2
+ 2𝜉 𝐴 (𝑢𝑛 − 𝑥∗) (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛 +𝑀3𝛾𝑛)
= 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2 + 𝛽𝑛 𝑥𝑛 − 𝑥∗2 + (1 − 𝛽𝑛
− 𝛼𝑛𝛾) 𝑥𝑛 − 𝑥∗2 − (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑢𝑛 − 𝑥𝑛2
+ 2𝜉 (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝐴 (𝑢𝑛 − 𝑥∗)
⋅ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)𝑀3𝛾𝑛.

(69)

Therefore, one has

(1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑢𝑛 − 𝑥𝑛2 ≤ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2
+ (1 − 𝛼𝑛𝛾) 𝑥𝑛 − 𝑥∗2 − 𝑥𝑛+1 − 𝑥∗2
+ 2𝜉 (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝐴 (𝑢𝑛 − 𝑥∗)
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⋅ (𝑇(𝐹2,ℎ2)𝑟𝑛
− 𝐼)𝐴𝑥𝑛 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)𝑀3𝛾𝑛

≤ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2 + 𝑥𝑛 − 𝑥∗2
− 𝑥𝑛+1 − 𝑥∗2 + 2𝜉 (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝐴 (𝑢𝑛 − 𝑥∗)
⋅ (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)𝑀3𝛾𝑛
≤ 𝛼𝑛𝛾 𝛾𝑓 (𝑥𝑛) − 𝐷𝑥∗2 + 𝑥𝑛 − 𝑥𝑛+1
⋅ (𝑥𝑛 − 𝑥∗ + 𝑥𝑛+1 − 𝑥∗) + 2𝜉 (1 − 𝛽𝑛 − 𝛼𝑛𝛾)
⋅ 𝐴 (𝑢𝑛 − 𝑥∗) (𝑇(𝐹2,ℎ2)𝑟𝑛

− 𝐼)𝐴𝑥𝑛
+ (1 − 𝛽𝑛 − 𝛼𝑛𝛾)𝑀3𝛾𝑛.

(70)

According to 𝛼𝑛 → 0, 𝛾𝑛 = 𝑜(𝛼𝑛), (62), and (68), we obtain

lim
𝑛→∞

𝑢𝑛 − 𝑥𝑛 = 0. (71)

Step 4 (we show that lim𝑛→∞‖𝑇𝑛𝑢𝑛 −𝑢𝑛‖ = 0). From (58), we
have

𝑧𝑛 − 𝑦𝑛 = 𝛼𝑛1 − 𝛽𝑛 𝛾𝑓 (𝑥𝑛) −
𝛼𝑛1 − 𝛽𝑛𝐷𝑦𝑛. (72)

Hence,

𝑧𝑛 − 𝑦𝑛 ≤ 𝛼𝑛𝛾1 − 𝛽𝑛
𝑓 (𝑥𝑛) + 𝛼𝑛1 − 𝛽𝑛

𝐷𝑦𝑛 . (73)

From (C1) and (C2), one has

lim
𝑛→∞

𝑧𝑛 − 𝑦𝑛 = 0. (74)

By (74) and (61), we have

lim
𝑛→∞

𝑥𝑛 − 𝑦𝑛 = 0. (75)

Combining (71) and (75), one has

lim
𝑛→∞

𝑢𝑛 − 𝑦𝑛 = 0. (76)

Noting that

𝑦𝑛 − 𝑢𝑛 = 𝑇𝑛𝑢𝑛 − 𝑢𝑛 + 𝛼𝛾𝑛𝑑𝑛, (77)

one has

𝑇𝑛𝑢𝑛 − 𝑢𝑛 = 𝑦𝑛 − 𝑢𝑛 − 𝛼𝛾𝑛𝑑𝑛. (78)

It follows from (76) and 𝛼𝑛 → 0, 𝛾𝑛 = 𝑜(𝛼𝑛) that
lim
𝑛→∞

𝑇𝑛𝑢𝑛 − 𝑢𝑛 = 0. (79)

We claim that

lim sup
𝑛→∞

⟨(𝐷 − 𝛾𝑓) 𝑞, 𝑞 − 𝑥𝑛⟩ ≤ 0, (80)

where 𝑞 is the unique solution of the variational inequality⟨(𝐷 − 𝛾𝑓)𝑞, 𝑥 − 𝑞⟩ ≥ 0, ∀𝑥 ∈ Ω.
To show this inequality, we choose a subsequence {𝑥𝑛𝑖} of{𝑥𝑛} such that

lim sup
𝑛→∞

⟨(𝐷 − 𝛾𝑓) 𝑞, 𝑞 − 𝑥𝑛⟩
= lim
𝑖→∞

⟨(𝐷 − 𝛾𝑓) 𝑞, 𝑞 − 𝑥𝑛𝑖⟩ .
(81)

Since {𝑥𝑛𝑖} is bounded, there exists a subsequence of {𝑥𝑛𝑖}
which converges weakly to 𝑧 ∈ 𝐶. Without loss of generality,
we can assume that 𝑥𝑛𝑖 ⇀ 𝑧.
Step 5 (we show that 𝑧 ∈ Ω). First, we show that 𝑧 ∈ VI(𝐶, 𝐵).

Let𝑀 : 𝐻1 → 2𝐻1 be a set-valued mapping defined by

𝑀V = {{{
𝐵V + 𝑁𝐶V, V ∈ 𝐶,
0, V ∉ 𝐶, (82)

where𝑁𝐶V fl {𝑧 ∈ 𝐻1 : ⟨V−𝑢, 𝑧⟩ ≥ 0, ∀𝑢 ∈ 𝐶} is the normal
cone to 𝐶 at V ∈ 𝐶. Then 𝑀 is maximal monotone and 0 ∈𝑀V if and only if V ∈ VI(𝐶, 𝐵) (see [36]). Let (V, 𝑢) ∈ 𝐺(𝑀).
Therefore, we have

𝑢 ∈ 𝑀V = 𝐵V + 𝑁𝐶V, (83)

and so

𝑢 − 𝐵V ∈ 𝑁𝐶V. (84)

According to 𝑢𝑛 ∈ 𝐶, we obtain
⟨V − 𝑢𝑛, 𝑢 − 𝐵V⟩ ≥ 0. (85)

On the other hand, according to

𝑃𝐶 ((𝐼 − 𝜆𝑛𝐵) 𝑢𝑛) = 𝑢𝑛 + 𝑏𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) , (86)

where 𝑏𝑛 = (2𝛽 + 𝜆𝑛)/4𝛽, for ∀𝑛 ∈ 𝑁, and V ∈ 𝐻1, we have
⟨V − 𝑢𝑛 − 𝑏𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) , 𝑢𝑛 + 𝑏𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛)
− (𝑢𝑛 − 𝜆𝑛𝐵𝑢𝑛)⟩ ≥ 0. (87)

Therefore,

⟨V − 𝑢𝑛, 𝑏𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) + 𝜆𝑛𝐵𝑢𝑛⟩ − 𝑏𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛)2
− ⟨𝑏𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) , 𝜆𝑛𝐵𝑢𝑛⟩ ≥ 0. (88)

As a result,

⟨V − 𝑢𝑛, 𝑏𝑛𝜆𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) + 𝐵𝑢𝑛⟩
− ⟨𝑏𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) , 𝐵𝑢𝑛⟩ ≥ 0.

(89)
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Furthermore, according to (85) and (89), for ∀𝑛 ∈ 𝑁, one
has

⟨V − 𝑢𝑛, 𝑢⟩ ≥ ⟨V − 𝑢𝑛, 𝐵V⟩
− ⟨V − 𝑢𝑛, 𝑏𝑛𝜆𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) + 𝐵𝑢𝑛⟩
+ ⟨𝑏𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) , 𝐵𝑢𝑛⟩

= ⟨V − 𝑢𝑛, 𝐵V − 𝐵𝑢𝑛⟩
− ⟨V − 𝑢𝑛, 𝑏𝑛𝜆𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛)⟩
+ ⟨𝑏𝑛 (𝑇𝑛𝑢𝑛 − 𝑢𝑛) , 𝐵𝑢𝑛⟩ .

(90)

Replacing 𝑛 by 𝑛𝑖, one has
⟨V − 𝑢𝑛𝑖 , 𝑢⟩ ≥ ⟨V − 𝑢𝑛𝑖 , 𝐵V − 𝐵𝑢𝑛𝑖⟩

− ⟨V − 𝑢𝑛𝑖 , 𝑏𝑛𝑖𝜆𝑛𝑖 (𝑇𝑛𝑖𝑢𝑛𝑖 − 𝑢𝑛𝑖)⟩
+ ⟨𝑏𝑛𝑖 (𝑇𝑛𝑖𝑢𝑛𝑖 − 𝑢𝑛𝑖) , 𝐵𝑢𝑛𝑖⟩ .

(91)

Since ‖𝑢𝑛 − 𝑥𝑛‖ → 0 and 𝑥𝑛𝑖 ⇀ 𝑧, we have 𝑢𝑛𝑖 ⇀ 𝑧. Noting
that 𝐵 is 𝛽-ism, from (91) and (79), we have

⟨V − 𝑧, 𝑢⟩ ≥ 0. (92)

Since𝑀 is maximal monotone, one has 𝑧 ∈ 𝑀−10. Hence𝑧 ∈ 𝑉𝐼(𝐶, 𝐵).
Next, we prove 𝑧 ∈ Γ.
According to Algorithm 13, we have

𝑢𝑛𝑖 = 𝑇(𝐹1 ,ℎ1)𝑟𝑛𝑖
(𝑥𝑛𝑖 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛𝑖

− 𝐼)𝐴𝑥𝑛𝑖) . (93)

By (8), for any 𝑤 ∈ 𝐶, one has
0 ≤ 𝐹1 (𝑢𝑛𝑖 , 𝑤) + ℎ1 (𝑢𝑛𝑖 , 𝑤) + 1𝑟𝑛𝑖 ⟨𝑤 − 𝑢𝑛𝑖 , 𝑢𝑛𝑖

− (𝑥𝑛𝑖 + 𝜉𝐴∗ (𝑇(𝐹2,ℎ2)𝑟𝑛𝑖
− 𝐼)𝐴𝑥𝑛𝑖)⟩ = 𝐹1 (𝑢𝑛𝑖 , 𝑤)

+ ℎ1 (𝑢𝑛𝑖 , 𝑤) + 1𝑟𝑛𝑖 ⟨𝑤 − 𝑢𝑛𝑖 , 𝑢𝑛𝑖 − 𝑥𝑛𝑖⟩ − 𝜉𝑟𝑛𝑖 ⟨𝐴𝑤
− 𝐴𝑢𝑛𝑖 , (𝑇(𝐹2,ℎ2)𝑟𝑛𝑖

− 𝐼)𝐴𝑥𝑛𝑖⟩ ≤ 𝐹1 (𝑢𝑛𝑖 , 𝑤)
+ ℎ1 (𝑢𝑛𝑖 , 𝑤) + 1𝑟𝑛𝑖

𝑤 − 𝑢𝑛𝑖 𝑢𝑛𝑖 − 𝑥𝑛𝑖 + 𝜉𝑟𝑛𝑖
𝐴𝑤

− 𝐴𝑢𝑛𝑖 (𝑇(𝐹2,ℎ2)𝑟𝑛𝑖
− 𝐼)𝐴𝑥𝑛𝑖

(94)

According to the monotonicity of 𝐹1, we have
𝐹1 (𝑤, 𝑢𝑛𝑖)

≤ ℎ1 (𝑢𝑛𝑖 , 𝑤) + 1𝑟𝑛𝑖
𝑤 − 𝑢𝑛𝑖 𝑢𝑛𝑖 − 𝑥𝑛𝑖

+ 𝜉𝑟𝑛𝑖
𝐴𝑤 − 𝐴𝑢𝑛𝑖 (𝑇(𝐹2,ℎ2)𝑟𝑛𝑖

− 𝐼)𝐴𝑥𝑛𝑖
(95)

FromAssumption 2 (𝑖V) on 𝐹 and (𝑖𝑖) on ℎ, (68), and (71),
one has

𝐹1 (𝑤, 𝑧) ≤ ℎ1 (𝑧, 𝑤) . (96)

It follows from the monotonicity of ℎ1 that
𝐹1 (𝑤, 𝑧) + ℎ1 (𝑤, 𝑧) ≤ 0, ∀𝑤 ∈ 𝐶. (97)

For any 𝑡 ∈ (0, 1] and 𝑤 ∈ 𝐶, let 𝑤𝑡 = 𝑡𝑤 + (1 − 𝑡)𝑧. Since𝑧 ∈ 𝐶 and 𝐶 is convex, we obtain that 𝑤𝑡 ∈ 𝐶. Hence
𝐹1 (𝑤𝑡, 𝑧) + ℎ1 (𝑤𝑡, 𝑧) ≤ 0. (98)

From Assumption 2 (𝑖), (𝑖V) on 𝐹 and (𝑖), (𝑖𝑖𝑖) on ℎ, we have
0 ≤ 𝐹1 (𝑤𝑡, 𝑤𝑡) + ℎ1 (𝑤𝑡, 𝑤𝑡)
≤ 𝑡 [𝐹1 (𝑤𝑡, 𝑤) + ℎ1 (𝑤𝑡, 𝑤)]

+ (1 − 𝑡) [𝐹1 (𝑤𝑡, 𝑧) + ℎ1 (𝑤𝑡, 𝑧)]
≤ 𝑡 [𝐹1 (𝑤𝑡, 𝑤) + ℎ1 (𝑤𝑡, 𝑤)] ,

(99)

which implies that

𝐹1 (𝑤𝑡, 𝑤) + ℎ1 (𝑤𝑡, 𝑤) ≥ 0, ∀𝑤 ∈ 𝐶. (100)

Letting 𝑡 → 0 and by Assumption 2 (𝑖𝑖𝑖) on 𝐹 and (𝑖𝑖) on ℎ,
we obtain

𝐹1 (𝑧, 𝑤) + ℎ1 (𝑧, 𝑤) ≥ 0, ∀𝑤 ∈ 𝐶; (101)

that is, 𝑧 ∈ GEP(𝐹1, ℎ1).
As follows, we prove 𝐴𝑧 ∈ GEP(𝐹2, ℎ2).
Since𝐴 is a bounded linear operator, one has𝐴𝑥𝑛𝑖 ⇀ 𝐴𝑧.
Now, set 𝜁𝑛𝑖 = 𝐴𝑥𝑛𝑖−𝑇(𝐹2,ℎ2)𝑟𝑛𝑖

𝐴𝑥𝑛𝑖 . It follows from (68) that
lim𝑖→∞𝜁𝑛𝑖 = 0. Since𝐴𝑥𝑛𝑖 −𝜁𝑛𝑖 = 𝑇(𝐹2,ℎ2)𝑟𝑛𝑖

𝐴𝑥𝑛𝑖 , by (9) we have
𝐹2 (𝐴𝑥𝑛𝑖 − 𝜁𝑛𝑖 , �̃�) + ℎ2 (𝐴𝑥𝑛𝑖 − 𝜁𝑛𝑖 , �̃�)

+ 1𝑟𝑛𝑖 ⟨�̃� − (𝐴𝑥𝑛𝑖 − 𝜁𝑛𝑖) , (𝐴𝑥𝑛𝑖 − 𝜁𝑛𝑖) − 𝐴𝑥𝑛𝑖⟩
≥ 0, ∀�̃� ∈ 𝑄.

(102)

Furthermore, one has

𝐹2 (𝐴𝑥𝑛𝑖 − 𝜁𝑛𝑖 , �̃�) + ℎ2 (𝐴𝑥𝑛𝑖 − 𝜁𝑛𝑖 , �̃�)
+ 1𝑟𝑛𝑖 ⟨�̃� − 𝐴𝑥𝑛𝑖 + 𝜁𝑛𝑖 , −𝜁𝑛𝑖⟩ ≥ 0, ∀�̃� ∈ 𝑄. (103)
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From the upper semicontinuity of 𝐹2(𝑥, 𝑦) and ℎ2(𝑥, 𝑦)
on 𝑥, we have

𝐹2 (𝐴𝑧, �̃�) + ℎ2 (𝐴𝑧, �̃�) ≥ 0, ∀�̃� ∈ 𝑄, (104)

which means that 𝐴𝑧 ∈ GEP(𝐹2, ℎ2). As a result, 𝑧 ∈ Γ.
Therefore, 𝑧 ∈ Ω.
Since 𝑞 = 𝑃Ω(𝐼 − 𝐷 + 𝛾𝑓)𝑞 is the unique solution of the

variational inequality problem ⟨(𝐷−𝛾𝑓)𝑞, 𝑥−𝑞⟩ ≥ 0, ∀𝑥 ∈ Ω,
by (81) and 𝑧 ∈ Ω, we have

lim sup
𝑛→∞

⟨(𝐷 − 𝛾𝑓) 𝑞, 𝑞 − 𝑥𝑛⟩ ≤ 0. (105)

Step 6 (finally, we show that {𝑥𝑛} converges strongly to 𝑞). It is
obvious that𝑦𝑛 − 𝑞 = 𝑇𝑛𝑢𝑛 − 𝑞 + 𝛼𝛾𝑛𝑑𝑛

≤ 𝑇𝑛𝑢𝑛 − 𝑇𝑛𝑞 + 𝛼𝛾𝑛 𝑑𝑛
≤ 𝑢𝑛 − 𝑞 + 𝛼𝑀1𝛾𝑛 = 𝑢𝑛 − 𝑞 +𝑀4𝛾𝑛
≤ 𝑥𝑛 − 𝑞 +𝑀4𝛾𝑛,

(106)

where𝑀4 = 𝛼𝑀1. And the first inequality is true because 𝑞 ∈Ω and 𝑇𝑛𝑞 = 𝑞 according to the same reasoning to equality
(50). The last inequality is obtained by 𝑞 ∈ Ω and the same
reasoning to inequality (47).Thus, fromLemma 1 (𝑖), we have𝑥𝑛+1 − 𝑞2 = 𝛼𝑛𝛾𝑓 (𝑥𝑛) + 𝛽𝑛𝑥𝑛

+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷)𝑦𝑛 − 𝑞2
= 𝛼𝑛 (𝛾𝑓 (𝑥𝑛) − 𝐷𝑞) + 𝛽𝑛 (𝑥𝑛 − 𝑞)
+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷) (𝑦𝑛 − 𝑞)2 ≤ 𝛽𝑛 (𝑥𝑛 − 𝑞)
+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷) (𝑦𝑛 − 𝑞)2 + 2𝛼𝑛 ⟨𝛾𝑓 (𝑥𝑛)
− 𝐷𝑞, 𝑥𝑛+1 − 𝑞⟩ ≤ (𝛽𝑛 𝑥𝑛 − 𝑞
+ (1 − 𝛽𝑛 − 𝛼𝑛𝛾) 𝑦𝑛 − 𝑞))2 + 2𝛼𝑛𝛾 ⟨𝑓 (𝑥𝑛)
− 𝑓 (𝑞) , 𝑥𝑛+1 − 𝑞⟩ + 2𝛼𝑛 ⟨𝛾𝑓 (𝑞) − 𝐷𝑞, 𝑥𝑛+1 − 𝑞⟩
≤ ((1 − 𝛼𝑛𝛾) 𝑥𝑛 − 𝑞 + (1 − 𝛽𝑛 − 𝛼𝑛𝛾)𝑀4𝛾𝑛)2
+ 2𝛼𝑛𝛾𝜂 𝑥𝑛 − 𝑞 𝑥𝑛+1 − 𝑞 + 2𝛼𝑛 ⟨𝛾𝑓 (𝑞)
− 𝐷𝑞, 𝑥𝑛+1 − 𝑞⟩ ≤ (1 − 𝛼𝑛𝛾)2 𝑥𝑛 − 𝑞2 +𝑀5𝛾𝑛
+ 𝛼𝑛𝛾𝜂 𝑥𝑛 − 𝑞2 + 𝛼𝑛𝛾𝜂 𝑥𝑛+1 − 𝑞2
+ 2𝛼𝑛 ⟨𝛾𝑓 (𝑞) − 𝐷𝑞, 𝑥𝑛+1 − 𝑞⟩ ,

(107)

where𝑀5 = sup𝑛∈𝑁{2(1 − 𝛼𝑛𝛾)(1 − 𝛽𝑛 − 𝛼𝑛𝛾)𝑀4‖𝑥𝑛 − 𝑞‖ +(1 − 𝛽𝑛 − 𝛼𝑛𝛾)2𝑀24𝛾𝑛}.
As a result,

(1 − 𝛼𝑛𝛾𝜂) 𝑥𝑛+1 − 𝑞2
≤ (1 − 2𝛼𝑛𝛾 + 𝛼2𝑛𝛾2 + 𝛼𝑛𝛾𝜂) 𝑥𝑛 − 𝑞2 +𝑀5𝛾𝑛

+ 2𝛼𝑛 ⟨𝛾𝑓 (𝑞) − 𝐷𝑞, 𝑥𝑛+1 − 𝑞⟩ ,
(108)

which implies that

𝑥𝑛+1 − 𝑞2 ≤ (1 − 2 (𝛾 − 𝛾𝜂) 𝛼𝑛1 − 𝛼𝑛𝛾𝜂 ) 𝑥𝑛 − 𝑞2

+ 2 (𝛾 − 𝛾𝜂) 𝛼𝑛1 − 𝛼𝑛𝛾𝜂 (𝛼𝑛𝛾2 𝑥𝑛 − 𝑞2 +𝑀5 (𝛾𝑛/𝛼𝑛)2 (𝛾 − 𝛾𝜂)
+ 1𝛾 − 𝛾𝜂 ⟨𝛾𝑓 (𝑞) − 𝐷𝑞, 𝑥𝑛+1 − 𝑞⟩) = (1 − 𝑡𝑛)
⋅ 𝑥𝑛 − 𝑞2 + 𝑡𝑛𝛿𝑛,

(109)

where 𝑡𝑛 = 2(𝛾 − 𝛾𝜂)𝛼𝑛/(1 − 𝛼𝑛𝛾𝜂), 𝛿𝑛 = (𝛼𝑛𝛾2‖𝑥𝑛 − 𝑞‖2 +𝑀5(𝛾𝑛/𝛼𝑛))/2(𝛾 − 𝛾𝜂) + (1/(𝛾 − 𝛾𝜂))⟨𝛾𝑓(𝑞) − 𝐷𝑞, 𝑥𝑛+1 − 𝑞⟩.
According to (80), (𝐶1), (𝐶3), and 𝜂𝛾 < 𝛾, we have∑∞𝑛=0 𝑡𝑛 = ∞ and lim sup𝑛→∞𝛿𝑛 ≤ 0.
By Lemma 7, 𝑥𝑛 → 𝑞, which completes the proof.

4. Consequently Results

In the above section, we discuss the iterative algorithm and
prove the strong convergence theorem for finding a common
solution of split generalized equilibrium and variational
inequality problems. In this section, we give some corollaries,
which can find a common solution of the special issues
obtained from split generalized equilibrium and variational
inequality problems.

If ℎ1 = ℎ2 = 0, then SGEP (5)-(6) reduces to the following
split equilibrium problem (SEP).

Let 𝐹1 : 𝐶 × 𝐶 → 𝑅 and 𝐹2 : 𝑄 × 𝑄 → 𝑅 be nonlinear
bifunctions and𝐴 : 𝐻1 → 𝐻2 be a bounded linear operator;
then SEP is to find 𝑥∗ ∈ 𝐶 such that

𝐹1 (𝑥∗, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶, (110)

and such that

𝑦∗ = 𝐴𝑥∗ ∈ 𝑄 solves 𝐹2 (𝑦∗, 𝑦) ≥ 0, ∀𝑦 ∈ 𝑄. (111)

The solution set of SEP (110)-(111) is denoted by Γ1. And
𝑇𝐹1𝑟 (𝑥) = {𝑧 ∈ 𝐶 : 𝐹1 (𝑧, 𝑦) + 1𝑟 ⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩

≥ 0, ∀𝑦 ∈ 𝐶} ,
(112)

𝑇𝐹2𝑠 (𝑤) = {𝑑 ∈ 𝑄 : 𝐹2 (𝑑, 𝑒) + 1𝑠 ⟨𝑒 − 𝑑, 𝑑 − 𝑤⟩
≥ 0, ∀𝑒 ∈ 𝑄} .

(113)

According toTheorem 14, we can obtain the following corol-
lary.

Corollary 15. Let 𝐻1 and 𝐻2 be two real Hilbert spaces and𝐶 ⊂ 𝐻1, 𝑄 ⊂ 𝐻2 be nonempty closed convex subsets. Let 𝐹1 :𝐶 × 𝐶 → 𝑅 and 𝐹2 : 𝑄 × 𝑄 → 𝑅 satisfy Assumption 2 and𝐹2 is upper semicontinuous in the first argument. Assume that
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Ω fl VI(𝐶, 𝐵) ∩ Γ1 ̸= 0, 𝑥0 ∈ 𝐻1 and {𝑢𝑛}, {𝑦𝑛}, and {𝑥𝑛} are
generated by the following iterative scheme:

𝑢𝑛 = 𝑇𝐹1𝑟𝑛 (𝑥𝑛 + 𝜉𝐴∗ (𝑇𝐹2𝑟𝑛 − 𝐼)𝐴𝑥𝑛) ,
𝑦𝑛 = 𝑢𝑛 + 𝛼𝑑𝑛+1,

𝑥𝑛+1 = 𝛼𝑛𝛾𝑓 (𝑥𝑛) + 𝛽𝑛𝑥𝑛 + ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐷)𝑦𝑛,
(114)

where 𝑑𝑛+1 = (1/𝛼)(𝑇𝑛𝑢𝑛 − 𝑢𝑛) + 𝛾𝑛𝑑𝑛, 𝑑0 = (1/𝛼)(𝑇0𝑢0 − 𝑢0),𝛼 > 0, and 𝑇𝑛 is defined by (34). Suppose that {𝛼𝑛}, {𝛽𝑛} ⊂(0, 1), {𝛾𝑛} ⊂ (0, 1/2), {𝜆𝑛} ⊂ (0, 2𝛽), {𝑟𝑛} ⊂ (0,∞)
satisfy conditions (C1)-(C6) in�eorem 14.�en sequence {𝑥𝑛}
converges strongly to 𝑞 ∈ Ω, where 𝑞 = 𝑃Ω(𝐼 −𝐷+𝛾𝑓)𝑞, which
is the unique solution of the variational inequality problem

⟨(𝐷 − 𝛾𝑓) 𝑞, 𝑥 − 𝑞⟩ ≥ 0, ∀𝑥 ∈ Ω, (115)

or equivalently, 𝑞 is the unique solution to the minimization
problem

min
𝑥∈𝑄

12 ⟨𝐷𝑥, 𝑥⟩ − ℎ (𝑥) , (116)

where ℎ is a potential function for 𝛾𝑓 such that ℎ(𝑥) = 𝛾𝑓(𝑥)
for 𝑥 ∈ 𝐻1.

Furthermore, if 𝐹1 = 𝐹2 = 𝐹, 𝐻1 = 𝐻2 = 𝐻, and 𝐴 =0, then SEP (110)-(111) reduce to the following equilibrium
problem (EP).

Let 𝐹 : 𝐶 × 𝐶 → 𝑅 be nonlinear bifunction; then EP is
to find 𝑥∗ ∈ 𝐶 such that

𝐹 (𝑥∗, 𝑥) ≥ 0, ∀𝑥 ∈ 𝐶. (117)

The solution set of EP (117) is denoted by Γ2. And
𝑇𝐹𝑟 (𝑥) = {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦) + 1𝑟 ⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩

≥ 0, ∀𝑦 ∈ 𝐶} .
(118)

According to Corollary 15, let 𝐷 = 𝐼, and we can obtain the
following corollary.

Corollary 16. Let 𝐻 be real Hilbert space and 𝐶 ⊂ 𝐻 be
nonempty closed convex subset. Let 𝐹 : 𝐶 × 𝐶 → 𝑅 satisfy
Assumption 2. Assume that Ω fl VI(𝐶, 𝐵) ∩ Γ2 ̸= 0, 𝑥0 ∈ 𝐻1,
and {𝑢𝑛}, {𝑦𝑛}, and {𝑥𝑛} are generated by the following iterative
scheme:

𝑢𝑛 = 𝑇𝐹𝑟𝑛 (𝑥𝑛) ,
𝑦𝑛 = 𝑢𝑛 + 𝛼𝑑𝑛+1,

𝑥𝑛+1 = 𝛼𝑛𝛾𝑓 (𝑥𝑛) + 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛 − 𝛼𝑛) 𝑦𝑛,
(119)

where 𝑑𝑛+1 = (1/𝛼)(𝑇𝑛𝑢𝑛 − 𝑢𝑛) + 𝛾𝑛𝑑𝑛, 𝑑0 = (1/𝛼)(𝑇0𝑢0 − 𝑢0),𝛼 > 0, and 𝑇𝑛 is defined by (34). Suppose that {𝛼𝑛}, {𝛽𝑛} ⊂(0, 1), {𝛾𝑛} ⊂ (0, 1/2), {𝜆𝑛} ⊂ (0, 2𝛽), {𝑟𝑛} ⊂ (0,∞)
satisfy conditions (C1)-(C6) in�eorem 14.�en sequence {𝑥𝑛}
converges strongly to 𝑞 ∈ Ω, where 𝑞 = 𝑃Ω𝛾𝑓(𝑞).

Table 1: The final value and the cpu time for different initial points.

Init. Fina. Sec.
𝑥 = (0.7060, 0.0318)𝑇 𝑥 = (4.9924, 3.9939)𝑇 1.14𝑥 = (5.4722, 1.3862)𝑇 𝑥 = (4.9924, 3.9939)𝑇 1.35𝑥 = (89.0903, 95.9291)𝑇 𝑥 = (4.9924, 3.9939)𝑇 1.36
5. Numerical Examples

In this section, we show some insight into the behavior of
Algorithm 13. The whole codes are written in Matlab 7.0. All
the numerical results are carried out on a personal Lenovo
Thinkpad computer with Intel(R) Core(TM) i7-6500U CPU
2.50GHz and RAM 8.00GB.

Example 1. In the variational inequality problem (3) as well as
the split generalized equilibriumproblem (5) and (6), let𝐻1 =𝐻2 = 𝑅2, 𝐶 = {(𝑥1, 𝑥2)𝑇 ∈ 𝑅2 | 1 ≤ 𝑥1 ≤ 5, 0.5 ≤ 𝑥2 ≤ 4},𝑄 = {(𝑦1, 𝑦2)𝑇 ∈ 𝑅2 | 2 ≤ 𝑦1 ≤ 10, 3 ≤ 𝑦2 ≤ 24}, 𝐹1(𝑥, 𝑦) =ℎ1(𝑥, 𝑦) = 𝑒𝑇(𝑥−𝑦), ∀𝑥, 𝑦 ∈ 𝐶, 𝐹2(𝑥, 𝑦) = ℎ2(𝑥, 𝑦) = 5𝑒𝑇(𝑥−𝑦), ∀𝑥, 𝑦 ∈ 𝑄, and𝐴 = ( 2 00 6 ),𝐵 = ( 1/2 0

0 1/2
), where 𝑒 = (1, 1)𝑇.

It is easy to see that the optimal solution of Example 1
is 𝑥∗ = (5, 4)𝑇. Now, we use Algorithm 13 to compute the
solution of the problem. Let𝛼 = 1/2, 𝜉 = 1/7,𝐷 = ( 9/10 0

0 9/10
),𝛾 = 1.2, 𝑟𝑛 = 1/10 + 1/2𝑛, 𝜆𝑛 = 1/𝑛, 𝛼𝑛 = 1/√𝑛, 𝛽𝑛 =1/10 + 1/𝑛2, 𝛾𝑛 = 1/𝑛2, and 𝑓(𝑥) = 𝑥/2, ∀𝑥 ∈ 𝐻1. The

stopping criterion is ‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ 𝜖. For 𝜖 = 10−7 and
different initial points which are presented randomly, such as

𝑥 = rand (2, 1) ,
𝑥 = 10 ∗ rand (2, 1) ,
𝑥 = 1000 ∗ rand (2, 1) ,

(120)

separately. Table 1 shows the initial value, the final value, and
the cpu time for the above three cases. We denote Init., Fina.,
and Sec. the initial value, the final value, and the cpu time in
seconds, respectively.

From Table 1, we can see that the final value 𝑥 is not
influenced by the initial value.

To show the changing tendency of the final value 𝑥 for
different 𝜖, Table 2 gives the different 𝜖, the initial value, the
final value, and the cpu time in seconds.

Now, we further express the status that the final value 𝑥
tends to optimal solution 𝑥∗ through Figures 1 and 2. We
carry out 100 experiments for different 𝜖 from 10−7 to 10−9.
From Figures 1 and 2, we know that the final value 𝑥 tends to
the optimal solution 𝑥∗ when 𝜖 tends to 0, which illustrates
the efficiency of Algorithm 13.

6. Conclusion

In this paper, we study the split generalized equilibrium
problem and variational inequality problem. For finding
their common solution, we propose a kind of conjugate
gradient viscosity approximation algorithm. Under mild
conditions, we prove that the sequence generated by the
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Table 2: The final value and the cpu time for different 𝜖.
𝜖 Init. Fina. Sec.
10−5 𝑥 = (8.0028, 1.4189)𝑇 𝑥 = (4.9640, 3.9712)𝑇 0.0810−6 𝑥 = (7.4313, 3.9223)𝑇 𝑥 = (4.9835, 3.9868)𝑇 0.3010−7 𝑥 = (5.4722, 1.3862)𝑇 𝑥 = (4.9924, 3.9939)𝑇 1.35
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Figure 1: The behaviors of first coordinate of 𝑥 for different 𝜖.
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Figure 2: The behaviors of the second coordinate of 𝑥 for different𝜖.

iterative algorithm converges strongly to the common solu-
tion. In comparison to [25], the authors introduce and study
an effective iterative algorithm to approximate a common
solution of a split generalized equilibrium problem and a
fixed point problem. Under suitable conditions, they proved
a strong convergence theorem for the sequence generated
by the iterative scheme. Furthermore, we can study the
iterative algorithm for finding a common solution of the
split generalized equilibrium problem, variational inequality
problem, and fixed point problem.
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In this paper, we study properties for solutions of Riemann-Liouville (R-L) fractional differential systems with a delay. Some results
on integral inequalities are first presented by H ̈𝑜lder inequality. Then we investigate properties on solutions for R-L fractional
systems with a delay by using the obtained inequalities and obtain upper bound of solutions. Finally, an illustrative example is
considered to support our new results.

1. Introduction

Fractional differential equations have been studied for several
centuries. At first the researches were only on the pure
theoretical aspect. In the last few years, more and more frac-
tional differential equations have been applied to described
some actual researches, such as mechanics, aerodynamics,
chemistry, and the electrodynamics of complex mediums [1–
8].

Integral inequalities play an important role in researches
not only on properties of solutions for various differential
and integral equations [9–12], but also on some fractional
differential equations. Recently, some results are obtained on
properties of solutions for a fractional differential equation
with or without delays. For example, Ma [13] obtained
upper bounds for solutions of a class of nonlinear fractional
differential systems by a result of two dimensional linear
integral inequalities. Ye [14] studied theHenry-Gronwall type
retarded integral inequalities and then obtained a certain
properties of fractional differential equations with delay.This
paper studies some properties for solutions of R-L fractional
differential systems with a delay. First, we obtain some
results on the integral inequalities byH ̈𝑜lder inequality. Then,
using the obtained inequalities, properties are investigated on
solutions for R-L fractional systems with a delay, and upper
bound of solutions is obtained. Moreover, an illustrative

example is studied to show that new results presented in this
paper work very well.

2. Main Results

This section is devoted to studying properties of solutions for
R-L fractional differential systems with a delay and presents
the main result of this paper. First, we give some lemmas on
integral inequalities.

Lemma 1 (let 𝐼 = [𝑡0, +∞) and R+ = [0, +∞)). Suppose𝑎𝑖(𝑡), 𝑏𝑖(𝑡), and 𝑐𝑖(𝑡) ∈ 𝐶(𝐼,R+), 𝜙𝑖(𝑡) ∈ 𝐶([𝑡0 − 𝜏, 𝑡0],R+),𝑎𝑖(𝑡0) = 𝜙𝑖(𝑡0), 𝑖 = 1, 2, and 𝜏 > 0 is a contant. If 𝑢𝑖(𝑡) ∈𝐶([𝑡0 − 𝜏, +∞),R+) and
𝑢1 (𝑡) ≤ 𝑎1 (𝑡)

+ ∫𝑡
𝑡0

[𝑏1 (𝑠) 𝑢1 (𝑠 − 𝜏) + 𝑐1 (𝑠) 𝑢2 (𝑠 − 𝜏)] 𝑑𝑠,
𝑡 ∈ [𝑡0, +∞) ,𝑢2 (𝑡) ≤ 𝑎2 (𝑡)

+ ∫𝑡
𝑡0

[𝑏2 (𝑠) 𝑢1 (𝑠 − 𝜏) + 𝑐2 (𝑠) 𝑢2 (𝑠 − 𝜏)] 𝑑𝑠,
𝑡 ∈ [𝑡0, +∞) ,
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𝑢1 (𝑡) ≤ 𝜙1 (𝑡) , 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0) ,
𝑢2 (𝑡) ≤ 𝜙2 (𝑡) , 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0) ,

(1)

then

[𝑢1 (𝑡)𝑢2 (𝑡)] ≤ 𝐴 (𝑡) + 𝐹 (𝑡) , 𝑡 ∈ 𝐼, (2)

where 𝐴(𝑡) = [ 𝑎1(𝑡)𝑎2(𝑡) ],
𝐹 (𝑡)

= {{{{{{{
exp{∫𝑡

𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}∫𝑡0+𝜏

𝑡0

𝐻(𝑠)Φ (𝑠 − 𝜏) 𝑑𝑠 + ∫𝑡
𝑡0+𝜏
[exp{∫𝑡

𝜉
𝐻(𝑠) 𝑑𝑠}𝐻 (𝜉) 𝐴 (𝜉 − 𝜏)] 𝑑𝜉, 𝑡 ∈ [𝑡0 + 𝜏, +∞) ,

∫𝑡
𝑡0

𝐻(𝑠)Φ (𝑠 − 𝜏) 𝑑𝑠, 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏] ,
(3)

𝐻(𝑡) = [𝑏1 (𝑡) 𝑐1 (𝑡)𝑏2 (𝑡) 𝑐2 (𝑡)] ,

Φ (𝑡) = [𝜙1 (𝑡)𝜙2 (𝑡)] .
(4)

Proof. Set V1(𝑡) = ∫𝑡𝑡0[𝑏1(𝑠)𝑢1(𝑠 − 𝜏)+ 𝑐1(𝑠)𝑢2(𝑠 − 𝜏)]𝑑𝑠, V2(𝑡) =∫𝑡
𝑡0
[𝑏2(𝑠)𝑢1(𝑠−𝜏)+𝑐2(𝑠)𝑢2(𝑠−𝜏)]𝑑𝑠.Then, 𝑢𝑖(𝑡) ≤ 𝑎𝑖(𝑡)+ V𝑖(𝑡),

V𝑖(𝑡) ≥ 0(𝑖 = 1, 2), are nondecreasing for 𝑡 ∈ [𝑡0, +∞). Hence,
for 𝑡 ∈ [𝑡0 + 𝜏, +∞), we have

V1 (𝑡) = 𝑏1 (𝑡) 𝑢1 (𝑡 − 𝜏) + 𝑐1 (𝑡) 𝑢2 (𝑡 − 𝜏)
≤ 𝑏1 (𝑡) [𝑎1 (𝑡 − 𝜏) + V1 (𝑡 − 𝜏)]
+ 𝑐1 (𝑡) [𝑎2 (𝑡 − 𝜏) + V2 (𝑡 − 𝜏)]

= [𝑏1 (𝑡) 𝑎1 (𝑡 − 𝜏) + 𝑐1 (𝑡) 𝑎2 (𝑡 − 𝜏)]
+ 𝑏1 (𝑡) V1 (𝑡 − 𝜏) + 𝑐1 (𝑡) V2 (𝑡 − 𝜏)

≤ [𝑏1 (𝑡) 𝑎1 (𝑡 − 𝜏) + 𝑐1 (𝑡) 𝑎2 (𝑡 − 𝜏)]
+ 𝑏1 (𝑡) V1 (𝑡) + 𝑐1 (𝑡) V2 (𝑡) ,

(5)

V2 (𝑡) = 𝑏2 (𝑡) 𝑢1 (𝑡 − 𝜏) + 𝑐2 (𝑡) 𝑢2 (𝑡 − 𝜏)
≤ 𝑏2 (𝑡) [𝑎1 (𝑡 − 𝜏) + V1 (𝑡 − 𝜏)]
+ 𝑐2 (𝑡) [𝑎2 (𝑡 − 𝜏) + V2 (𝑡 − 𝜏)]

= [𝑏2 (𝑡) 𝑎1 (𝑡 − 𝜏) + 𝑐2 (𝑡) 𝑎2 (𝑡 − 𝜏)]
+ 𝑏2 (𝑡) V1 (𝑡 − 𝜏) + 𝑐2 (𝑡) V2 (𝑡 − 𝜏)

≤ [𝑏2 (𝑡) 𝑎1 (𝑡 − 𝜏) + 𝑐2 (𝑡) 𝑎2 (𝑡 − 𝜏)]
+ 𝑏2 (𝑡) V1 (𝑡) + 𝑐2 (𝑡) V2 (𝑡) .

(6)

Set𝑊(𝑡) = [ V1(𝑡)V2(𝑡)
]. (5) and (6) can be rewritten as amatrix

form

𝑊 (𝑡) ≤ 𝐻 (𝑡) 𝐴 (𝑡 − 𝜏) + 𝐻 (𝑡)𝑊 (𝑡) . (7)

Then we have

[exp{−∫𝑡
𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}𝑊 (𝑡)]

≤ exp{−∫𝑡
𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}𝐻 (𝑡) 𝐴 (𝑡 − 𝜏) .

(8)

Hence,

∫𝑡
𝑡0+𝜏
[exp{−∫𝜉

𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}𝑊 (𝜉)] 𝑑𝜉

≤ ∫𝑡
𝑡0+𝜏
[exp{−∫𝜉

𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}𝐻 (𝜉)𝐴 (𝜉 − 𝜏)] 𝑑𝜉.

(9)

That is,

exp{−∫𝑡
𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}𝑊 (𝑡) − 𝑊(𝑡0 + 𝜏)

≤ ∫𝑡
𝑡0+𝜏
[exp{−∫𝜉

𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}𝐻 (𝜉) 𝐴 (𝜉 − 𝜏)] 𝑑𝜉.

(10)

Then

𝑊(𝑡)
≤ exp{∫𝑡

𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}𝑊 (𝑡0 + 𝜏)

+ ∫𝑡
𝑡0+𝜏
[exp{∫𝑡

𝜉
𝐻(𝑠) 𝑑𝑠}𝐻 (𝜉) 𝐴 (𝜉 − 𝜏)] 𝑑𝜉.

(11)

When 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏], from (1),

𝑊(𝑡) = [V1 (𝑡)
V2 (𝑡)]
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≤ [[[
[
∫𝑡
𝑡0

[𝑏1 (𝑠) 𝜙1 (𝑠 − 𝜏) + 𝑐1 (𝑠) 𝜙2 (𝑠 − 𝜏)] 𝑑𝑠
∫𝑡
𝑡0

[𝑏2 (𝑠) 𝜙1 (𝑠 − 𝜏) + 𝑐2 (𝑠) 𝜙2 (𝑠 − 𝜏)] 𝑑𝑠
]]]
]

= ∫𝑡
𝑡0

𝐻(𝑠)Φ (𝑠 − 𝜏) 𝑑𝑠.
(12)

Let

𝐹 (𝑡)

= {{{{{{{
exp{∫𝑡

𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}∫𝑡0+𝜏

𝑡0

𝐻(𝑠)Φ (𝑠 − 𝜏) 𝑑𝑠 + ∫𝑡
𝑡0+𝜏
[exp{∫𝑡

𝜉
𝐻(𝑠) 𝑑𝑠}𝐻 (𝜉) 𝐴 (𝜉 − 𝜏)] 𝑑𝜉, 𝑡 ∈ [𝑡0 + 𝜏, +∞) ,

∫𝑡
𝑡0

𝐻(𝑠)Φ (𝑠 − 𝜏) 𝑑𝑠, 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏] ,
(13)

Thus,

[𝑢1 (𝑡)𝑢2 (𝑡)] ≤ 𝐴 (𝑡) + 𝑊 (𝑡) ≤ 𝐴 (𝑡) + 𝐹 (𝑡) , 𝑡 ∈ 𝐼. (14)

Therefore, (2) is satisfied and the proof is completed.

Lemma 2. Suppose 𝑎𝑖(𝑡), 𝑏𝑖(𝑡), and 𝑐𝑖(𝑡) ∈ 𝐶(𝐼,R+), 𝜙𝑖(𝑡) ∈𝐶([𝑡0 − 𝜏, 𝑡0],R+), 𝑎𝑖(𝑡0) = 𝜙𝑖(𝑡0), 𝑖 = 1, 2, and 𝜏 > 0 and0 < 𝛽 < 1 are constants. If 𝑢𝑖(𝑡) ∈ 𝐶([𝑡0 − 𝜏, +∞),R+) and
𝑢1 (𝑡) ≤ 𝑎1 (𝑡) + ∫𝑡

𝑡0

(𝑡 − 𝑠)𝛽−1
⋅ [𝑏1 (𝑠) 𝑢1 (𝑠 − 𝜏) + 𝑐1 (𝑠) 𝑢2 (𝑠 − 𝜏)] 𝑑𝑠,

𝑡 ∈ [𝑡0, +∞) ,
𝑢2 (𝑡) ≤ 𝑎2 (𝑡) + ∫𝑡

𝑡0

(𝑡 − 𝑠)𝛽−1

⋅ [𝑏2 (𝑠) 𝑢1 (𝑠 − 𝜏) + 𝑐2 (𝑠) 𝑢2 (𝑠 − 𝜏)] 𝑑𝑠,
𝑡 ∈ [𝑡0, +∞) ,

𝑢1 (𝑡) ≤ 𝜙1 (𝑡) , 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0) ,
𝑢2 (𝑡) ≤ 𝜙2 (𝑡) , 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0) ,

(15)

then,
(i) when 1/2 < 𝛽 < 1, set

[𝑢1 (𝑡)𝑢2 (𝑡)] = [
𝑒𝑡𝑤1/21 (𝑡)
𝑒𝑡𝑤1/22 (𝑡)] (16)

and we have

𝑊(𝑡) = [𝑤1 (𝑡)𝑤2 (𝑡)] ≤ 𝐴 (𝑡) + 𝑄 (𝑡) , (17)

where

𝑄 (𝑡)

= {{{{{{{
exp{∫𝑡

𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠}∫𝑡0+𝜏

𝑡0

𝐻(𝑠) Ψ (𝑠 − 𝜏) 𝑑𝑠 + ∫𝑡
𝑡0+𝜏
[exp{∫𝑡

𝜉
𝐻(𝑠) 𝑑𝑠}𝐻 (𝜉) 𝐴 (𝜉 − 𝜏)] 𝑑𝜉, 𝑡 ∈ [𝑡0 + 𝜏, +∞) ,

∫𝑡
𝑡0

𝐻(𝑠) Ψ (𝑠 − 𝜏) 𝑑𝑠, 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏] ,
(18)

𝐴 (𝑡) = [𝛼1 (𝑡)𝛼2 (𝑡)] ,

𝐻 (𝑡) = [𝑙1 (𝑡) 𝑚1 (𝑡)𝑙2 (𝑡) 𝑚2 (𝑡)] ,

Ψ (𝑡) [𝜓1 (𝑡)𝜓2 (𝑡)] = [
𝑒−2𝑡𝜙21 (𝑡)
𝑒−2𝑡𝜙22 (𝑡)] ,

(19)
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and 𝛼𝑖(𝑡) = 2𝑒−2𝑡𝑎2𝑖 (𝑡), 𝑙𝑖(𝑡) = (Γ(2𝛽 − 1)/22𝛽−3)𝑒−2𝜏𝑏2𝑖 (𝑡),𝑚𝑖(𝑡) = (Γ(2𝛽 − 1)/22𝛽−3)𝑒−2𝜏𝑐2𝑖 (𝑡), 𝑖 = 1, 2;
(ii) when 0 < 𝛽 ≤ 1/2, let 𝑝 = 1 + 𝛽, 𝑞 = 1 + 1/𝛽

[𝑢1 (𝑡)𝑢2 (𝑡)] = [[
𝑒𝑡𝑤1/𝑞1 (𝑡)
𝑒𝑡𝑤1/𝑞2 (𝑡)

]
]

(20)

and we have

�̃� (𝑡) = [𝑤1 (𝑡)𝑤2 (𝑡)] ≤ 𝐴 (𝑡) + 𝑄 (𝑡) , (21)

where

𝑄 (𝑡)

= {{{{{{{
exp{∫𝑡

𝑡0+𝜏
�̃� (𝑠) 𝑑𝑠}∫𝑡0+𝜏

𝑡0

�̃� (𝑠) Ψ̃ (𝑠 − 𝜏) 𝑑𝑠 + ∫𝑡
𝑡0+𝜏
[exp{∫𝑡

𝜉
�̃� (𝑠) 𝑑𝑠} �̃� (𝜉)𝐴 (𝜉 − 𝜏)] 𝑑𝜉, 𝑡 ∈ [𝑡0 + 𝜏, +∞) ,

∫𝑡
𝑡0

�̃� (𝑠) Ψ̃ (𝑠 − 𝜏) 𝑑𝑠, 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏] ,
(22)

𝐴 (𝑡) = [�̃�1 (𝑡)�̃�2 (𝑡)] ,

�̃� (𝑡) = [�̃�1 (𝑡) �̃�1 (𝑡)�̃�2 (𝑡) �̃�2 (𝑡)] ,

Ψ̃ (𝑡) = [�̃�1 (𝑡)�̃�2 (𝑡)] = [
𝑒−𝑞𝑡𝜙𝑞1 (𝑡)𝑒−𝑞𝑡𝜙𝑞2 (𝑡)]

(23)

and �̃�𝑖(𝑡) = 2𝑞−1[𝑒−𝑡𝑎𝑖(𝑡)]𝑞, �̃�𝑖(𝑡) = (41/𝛽Γ1/𝛽(𝛽2)/𝑝𝛽)𝑒−𝑞𝜏𝑏𝑞𝑖 (𝑡),�̃�𝑖(𝑡) = (41/𝛽Γ1/𝛽(𝛽2)/𝑝𝛽)𝑒−𝑞𝜏𝑐𝑞𝑖 (𝑡), 𝑖 = 1, 2.
Proof. (i) Suppose 𝛽 > 1/2. By H ̈𝑜lder inequality and (𝑎 +𝑏)2 ≤ 2(𝑎2 + 𝑏2), for 𝑡 ∈ [𝑡0 + 𝜏, +∞) and 𝑖 = 1, 2, we have

𝑢𝑖 (𝑡) ≤ 𝑎𝑖 (𝑡) + ∫𝑡
𝑡0

(𝑡 − 𝑠)𝛽−1 𝑒𝑠𝑒−𝑠 [𝑏𝑖 (𝑠) 𝑢1 (𝑠 − 𝜏)
+ 𝑐𝑖 (𝑠) 𝑢2 (𝑠 − 𝜏)] 𝑑𝑠 ≤ 𝑎𝑖 (𝑡) + [∫𝑡

𝑡0

(𝑡
− 𝑠)2(𝛽−1) 𝑒2𝑠𝑑𝑠]1/2 {∫𝑡

𝑡0

𝑒−2𝑠 [𝑏𝑖 (𝑠) 𝑢1 (𝑠 − 𝜏)
+ 𝑐𝑖 (𝑠) 𝑢2 (𝑠 − 𝜏)]2 𝑑𝑠}

1/2 ≤ 𝑎𝑖 (𝑡)
+ 21/2 [∫𝑡

𝑡0

(𝑡 − 𝑠)2(𝛽−1) 𝑒2𝑠𝑑𝑠]1/2

⋅ {∫𝑡
𝑡0

[𝑏2𝑖 (𝑠) 𝑒−2𝑠𝑢21 (𝑠 − 𝜏)
+ 𝑐2𝑖 (𝑠) 𝑒−2𝑠𝑢22 (𝑠 − 𝜏)] 𝑑𝑠}

1/2 = 𝑎𝑖 (𝑡)

+ 21/2 [−∫0
𝑡−𝑡0

𝑠2(𝛽−1)𝑒2(𝑡−𝑠)𝑑𝑠]1/2

⋅ {∫𝑡
𝑡0

[𝑏2𝑖 (𝑠) 𝑒−2𝑠𝑢21 (𝑠 − 𝜏)
+ 𝑐2𝑖 (𝑠) 𝑒−2𝑠𝑢22 (𝑠 − 𝜏)] 𝑑𝑠}

1/2 ≤ 𝑎𝑖 (𝑡)
+ 𝑒𝑡2𝛽−1 [∫

+∞

0
(2𝑠)(2𝛽−1)−1 𝑒−2𝑠𝑑 (2𝑠)]1/2

⋅ {∫𝑡
𝑡0

[𝑏2𝑖 (𝑠) 𝑒−2𝑠𝑢21 (𝑠 − 𝜏)
+ 𝑐2𝑖 (𝑠) 𝑒−2𝑠𝑢22 (𝑠 − 𝜏)] 𝑑𝑠}

1/2 .
(24)

Thus,

𝑢2𝑖 (𝑡) ≤ 2𝑎2𝑖 (𝑡) + 𝑒2𝑡22𝛽−3 Γ (2𝛽 − 1)
⋅ ∫𝑡
𝑡0

[𝑏2𝑖 (𝑠) 𝑒−2𝑠𝑢21 (𝑠 − 𝜏)
+ 𝑐2𝑖 (𝑠) 𝑒−2𝑠𝑢22 (𝑠 − 𝜏)] 𝑑𝑠, (𝑖 = 1, 2) .

(25)

Let 𝑤𝑖(𝑡) = [𝑒−𝑡𝑢𝑖(𝑡)]2, 𝛼𝑖(𝑡) = 2𝑒−2𝑡𝑎2𝑖 (𝑡), 𝑙𝑖(𝑡) = (Γ(2𝛽 −1)/22𝛽−3)𝑒−2𝜏𝑏2𝑖 (𝑡), 𝑚𝑖(𝑡) = (Γ(2𝛽 − 1)/22𝛽−3)𝑒−2𝜏𝑐2𝑖 (𝑡), 𝑖 =1, 2. Then, for 𝑡 ∈ [𝑡0, +∞), we have
𝑤𝑖 (𝑡) ≤ 𝛼𝑖 (𝑡)

+ ∫𝑡
𝑡0

[𝑙𝑖 (𝑡) 𝑤1 (𝑠 − 𝜏) + 𝑚𝑖 (𝑡) 𝑤2 (𝑠 − 𝜏)] 𝑑𝑠. (26)
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Set 𝜓𝑖(𝑡) = 𝑒−2𝑡𝜙2𝑖 (𝑡)(𝑖 = 1, 2). For 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0]
𝑤𝑖 (𝑡) ≤ 𝜓𝑖 (𝑡) (𝑖 = 1, 2) . (27)

By (26), (27), and Lemma 1, (17) is satisfied.
(ii) Suppose 0 < 𝛽 ≤ 1/2. Set 𝑝 = 𝛽 + 1 and 𝑞 = 1 + 1/𝛽.

Then 1/𝑝 + 1/𝑞 = 1. By H ̈𝑜lder inequality and (𝑎 + 𝑏)𝑙 ≤2𝑙−1(𝑎𝑙 + 𝑏𝑙)(0 < 𝑙 < 1), for 𝑡 ∈ [𝑡0 + 𝜏, +∞) and 𝑖 = 1, 2, we
have

𝑢𝑖 (𝑡) ≤ 𝑎𝑖 (𝑡) + ∫𝑡
𝑡0

(𝑡 − 𝑠)𝛽−1 𝑒𝑠𝑒−𝑠 [𝑏𝑖 (𝑠) 𝑢1 (𝑠 − 𝜏)
+ 𝑐𝑖 (𝑠) 𝑢2 (𝑠 − 𝜏)] 𝑑𝑠 ≤ 𝑎𝑖 (𝑡) + [∫𝑡

𝑡0

(𝑡
− 𝑠)𝑝(𝛽−1) 𝑒𝑝𝑠𝑑𝑠]1/𝑝 {∫𝑡

𝑡0

𝑒−𝑞𝑠 [𝑏𝑖 (𝑠) 𝑢1 (𝑠 − 𝜏)
+ 𝑐𝑖 (𝑠) 𝑢2 (𝑠 − 𝜏)]𝑞 𝑑𝑠}

1/𝑞 ≤ 𝑎𝑖 (𝑡)
+ 21/𝑝𝑒𝑡 [∫∞

0
𝑠𝛽2−1𝑒−𝑝𝑠𝑑𝑠]1/𝑝 {∫𝑡

𝑡0

[𝑏𝑞𝑖 (𝑠)
⋅ 𝑒−𝑞𝑠𝑢𝑞1 (𝑠 − 𝜏) + 𝑐𝑞𝑖 (𝑠) 𝑒−𝑞𝑠𝑢𝑞2 (𝑠 − 𝜏)] 𝑑𝑠}

1/𝑞

≤ 𝑎𝑖 (𝑡) + 2
1/𝑝𝑒𝑡Γ1/𝑝 (𝛽2)
𝑝𝛽2/𝑝 {∫𝑡

𝑡0

[𝑏𝑞𝑖 (𝑠) 𝑒−𝑞𝑠𝑢𝑞1 (𝑠 − 𝜏)

+ 𝑐𝑞𝑖 (𝑠) 𝑒−𝑞𝑠𝑢𝑞2 (𝑠 − 𝜏)] 𝑑𝑠}
1/𝑞 .

(28)

Thus,

[𝑒−𝑡𝑢𝑖 (𝑡)]𝑞 ≤ 2𝑞−1 [𝑒−𝑡𝑎𝑖 (𝑡)]𝑞 + 2
2/𝛽Γ1/𝛽 (𝛽2)
𝑝𝛽

⋅ ∫𝑡
𝑡0

[𝑏𝑞𝑖 (𝑠) 𝑒−𝑞𝑠𝑢𝑞1 (𝑠 − 𝜏)
+ 𝑐𝑞𝑖 (𝑠) 𝑒−𝑞𝑠𝑢𝑞2 (𝑠 − 𝜏)] 𝑑𝑠, 𝑖 = 1, 2.

(29)

Let 𝑤𝑖(𝑡) = [𝑒−𝑡𝑢𝑖(𝑡)]𝑞, �̃�𝑖(𝑡) = 2𝑞−1[𝑒−𝑡𝑎𝑖(𝑡)]𝑞, �̃�𝑖(𝑡) =(41/𝛽Γ1/𝛽(𝛽2)/𝑝𝛽)𝑒−𝑞𝜏𝑏𝑞𝑖 (𝑡), 𝑚𝑖(𝑡) = (41/𝛽Γ1/𝛽(𝛽2)/𝑝𝛽)𝑒−𝑞𝜏𝑏𝑞𝑖 (𝑡), 𝑖 = 1, 2. Then, we have

𝑤𝑖 (𝑡) ≤ 𝛼𝑖 (𝑡)
+ ∫𝑡
𝑡0

[𝑙𝑖 (𝑠) 𝑤1 (𝑠 − 𝜏) + 𝑚𝑖 (𝑠) 𝑤2 (𝑠 − 𝜏)] 𝑑𝑠,
𝑡 ∈ [𝑡0, +∞) .

(30)

Set 𝜓𝑖(𝑡) = 𝑒−𝑞𝑡𝜙𝑞𝑖 (𝑡)(𝑖 = 1, 2). For 𝑡 ∈ [𝑡0 − 𝜏, 𝑡0],
𝑤𝑖 (𝑡) ≤ 𝜓𝑖 (𝑡) (𝑖 = 1, 2) . (31)

By (30), (31), and Lemma 1, (21) is satisfied and the proof is
completed.

Now, we introduce some definitions on Riemann-
Liouville fractional derivative and fractional primitive.

Definition 3 (see [2]). The fractional derivative of order 0 <𝛼 < 1 of a function 𝑥(𝑡) ∈ 𝐶(R,R) is given by

𝐷𝛼 = 1Γ (1 − 𝛼) 𝑑𝑑𝑥 ∫
𝑡

𝑎
(𝑠 − 𝑡)−𝛼 𝑥 (𝑠) 𝑑𝑠. (32)

Definition 4 (see [2]). The fractional derivative of order 0 <𝛼 < 1 of a function 𝑥(𝑡) ∈ 𝐶(R,R) is given by

𝐼𝛼 = 1Γ (𝛼) ∫
𝑡

𝑎
(𝑠 − 𝑡)𝛼−1 𝑥 (𝑠) 𝑑𝑠. (33)

Consider the following Riemann-Liouville fractional dif-
ferential system with a delay:

𝐷𝛼𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡 − 𝜏)) ,
𝐷𝛼𝑦 (𝑡) = 𝑔 (𝑡, 𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡 − 𝜏)) ,

𝑡 ∈ [𝑡0, +∞) ,
𝐷𝛼−1𝑥 (𝑡) = 𝜉,

(34)

𝐷𝛼−1𝑦 (𝑡) = 𝜂,
𝑡 ∈ [𝑡0 − 𝜏, 𝑡0] ,

(35)

where 0 < 𝛼 < 1, 𝜏 > 0, 𝜉, 𝜂 are constants, and 𝑓, 𝑔 :[𝑡0, +∞)×R2 → R are continuous functions. Then, a result
can be obtained on the solutions of system (34).

Theorem 5. Consider system (34). 𝑓(𝑡, 𝑥, 𝑦) and 𝑔(𝑡, 𝑥, 𝑦) ∈𝐶([𝑡0, +∞) × R2,R) and satisfy the following condition:
𝑓 (𝑡, 𝑥, 𝑦) ≤ 𝑏1 (𝑡) |𝑥| + 𝑐1 (𝑡) 𝑦 ,
𝑔 (𝑡, 𝑥, 𝑦) ≤ 𝑏2 (𝑡) |𝑥| + 𝑐2 (𝑡) 𝑦 ,

(36)

where 𝑏𝑖(𝑡) and 𝑐𝑖(𝑡) ∈ 𝐶([𝑡0, +∞),R+). Then, solutions of
system (34) satisfy that

(i) when 1/2 < 𝛼 < 1,
[|𝑥 (𝑡)|𝑦 (𝑡)] = [[

𝑒𝑡𝑤1/21 (𝑡)
𝑒𝑡𝑤1/22 (𝑡)

]
]
, (37)

[𝑤1 (𝑡)𝑤2 (𝑡)] ≤ 𝐴 (𝑡) + 𝑅 (𝑡) , (38)

where
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𝑅 (𝑡)

= {{{{{{{
exp{∫𝑡

𝑡0+𝜏
𝐻(𝑠) 𝑑𝑠} ∫𝑡0+𝜏

𝑡0

𝐻(𝑠)Ψ (𝑠 − 𝜏) 𝑑𝑠 + ∫𝑡
𝑡0+𝜏
[exp{∫𝑡

𝜉
𝐻(𝑠) 𝑑𝑠}𝐻 (𝜉) 𝐴 (𝜉 − 𝜏)] 𝑑𝜉, 𝑡 ∈ [𝑡0 + 𝜏, +∞) ,

∫𝑡
𝑡0

𝐻(𝑠) Ψ (𝑠 − 𝜏) 𝑑𝑠, 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏] ,
(39)

𝐴 (𝑡) = [𝛼1 (𝑡)𝛼2 (𝑡)] ,

𝐻 (𝑡) = [𝑙1 (𝑡) 𝑚1 (𝑡)𝑙2 (𝑡) 𝑚2 (𝑡)] ,

Ψ (𝑡) = [𝑒−2𝑡𝑎21 (𝑡)𝑒−2𝑡𝑎22 (𝑡)] ,

(40)

𝑎1(𝑡) = (𝜉/Γ(𝛼))𝑡𝛼−1, 𝑎2(𝑡) = (𝜂/Γ(𝛼))𝑡𝛼−1 and 𝛼𝑖(𝑡) =2𝑒−2𝑡𝑎2𝑖 (𝑡), 𝑙𝑖(𝑡) = (Γ(2𝛼 − 1)/22𝛼−3)𝑒−2𝜏𝑏2𝑖 (𝑡),𝑚𝑖(𝑡) = (Γ(2𝛼 −1)/22𝛼−3)𝑒−2𝜏𝑐2𝑖 (𝑡), 𝑖 = 1, 2;
(ii) when 0 < 𝛼 ≤ 1/2,

[|𝑥 (𝑡)|𝑦 (𝑡)] = [
𝑒𝑡𝑤1/𝑞1 (𝑡)𝑒𝑡𝑤1/𝑞2 (𝑡)] , (41)

[𝑤1 (𝑡)𝑤2 (𝑡)] ≤ 𝐴 (𝑡) + �̃� (𝑡) , (42)

where

�̃� (𝑡)

= {{{{{{{
exp{∫𝑡

𝑡0+𝜏
�̃� (𝑠) 𝑑𝑠}∫𝑡0+𝜏

𝑡0

�̃� (𝑠) Ψ̃ (𝑠 − 𝜏) 𝑑𝑠 + ∫𝑡
𝑡0+𝜏
[exp{∫𝑡

𝜉
�̃� (𝑠) 𝑑𝑠} �̃� (𝜉) 𝐴 (𝜉 − 𝜏)] 𝑑𝜉, 𝑡 ∈ [𝑡0 + 𝜏, +∞) ,

∫𝑡
𝑡0

�̃� (𝑠) Ψ̃ (𝑠 − 𝜏) 𝑑𝑠, 𝑡 ∈ [𝑡0, 𝑡0 + 𝜏] ,
(43)

𝐴 (𝑡) = [�̃�1 (𝑡)�̃�2 (𝑡)] ,

�̃� (𝑡) = [�̃�1 (𝑡) �̃�1 (𝑡)�̃�2 (𝑡) �̃�2 (𝑡)] ,

Ψ̃ (𝑡) = [�̃�1 (𝑡)�̃�2 (𝑡)] = [
𝑒−𝑞𝑡𝜙𝑞1 (𝑡)𝑒−𝑞𝑡𝜙𝑞2 (𝑡)]

(44)

𝑝 = 1 + 𝛼, 𝑞 = 1 + 1/𝛼 and �̃�𝑖(𝑡) = 2𝑞−1[𝑒−𝑡𝑎𝑖(𝑡)]𝑞,�̃�𝑖(𝑡) = (41/𝛼Γ1/𝛼(𝛼2)/𝑝𝛼)𝑒−𝑞𝜏𝑏𝑞𝑖 (𝑡), �̃�𝑖(𝑡) =(41/𝛼Γ1/𝛼(𝛼2)/𝑝𝛼)𝑒−𝑞𝜏𝑐𝑞𝑖 (𝑡), 𝑖 = 1, 2.
Proof. Fractional differential system (34) with a delay can be
converted to the following integral equation:
𝑥 (𝑡)
= 𝜉Γ (𝛼)𝑡𝛼−1
+ 1Γ (𝛼) ∫

𝑡

𝑡0

(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠, 𝑥 (𝑠 − 𝜏) , 𝑦 (𝑠 − 𝜏)) 𝑑𝑠,

𝑦 (𝑡)
= 𝜂Γ (𝛼) 𝑡𝛼−1

+ 1Γ (𝛼) ∫
𝑡

𝑡0

(𝑡 − 𝑠)𝛼−1 𝑔 (𝑠, 𝑥 (𝑠 − 𝜏) , 𝑦 (𝑠 − 𝜏)) 𝑑𝑠,
𝑡 ∈ [𝑡0, +∞) ,

𝑥 (𝑡) = 𝜉Γ (𝛼) 𝑡𝛼−1,
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𝑦 (𝑡) = 𝜂Γ (𝛼) 𝑡𝛼−1,
𝑡 ∈ [𝑡0 − 𝜏, 𝑡0] .

(45)

By condition (36), we have

|𝑥 (𝑡)| ≤ 𝜉Γ (𝛼) 𝑡𝛼−1 + 1Γ (𝛼) ∫
𝑡

𝑡0

(𝑡 − 𝑠)𝛼−1
⋅ [𝑏1 (𝑠) |𝑥 (𝑠 − 𝜏)| + 𝑐1 (𝑠) 𝑦 (𝑠 − 𝜏)] 𝑑𝑠,

𝑦 (𝑡) ≤
𝜂Γ (𝛼)𝑡𝛼−1 + 1Γ (𝛼) ∫

𝑡

𝑡0

(𝑡 − 𝑠)𝛼−1
⋅ [𝑏2 (𝑠) |𝑥 (𝑠 − 𝜏)| + 𝑐2 (𝑠) 𝑦 (𝑠 − 𝜏)] 𝑑𝑠,

𝑡 ∈ [𝑡0, +∞) ,
|𝑥 (𝑡)| = 𝜉Γ (𝛼) 𝑡𝛼−1,
𝑦 (𝑡) =

𝜂Γ (𝛼)𝑡𝛼−1,
𝑡 ∈ [𝑡0 − 𝜏, 𝑡0] .

(46)

Set 𝑎1(𝑡) = (|𝜉|/Γ(𝛼))𝑡𝛼−1 and 𝑎2(𝑡) = (|𝜂|/Γ(𝛼))𝑡𝛼−1.
Then, according to Lemma 2, the result is obtained and the
proof is completed.

3. An Illustrative Example

In this section, we give an illustrative example to show
effectiveness of results obtained in this paper.

Example 1. Consider the following fractional differential
equation:

𝐷3/4𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡 − 1) , 𝑦 (𝑡 − 1)) ,
𝐷3/4𝑦 (𝑡) = 𝑔 (𝑡, 𝑥 (𝑡 − 1) , 𝑦 (𝑡 − 1)) , 𝑡 ∈ [1, +∞) ,
𝐷−1/4𝑥 (𝑡) = 𝐷−1/4𝑦 (𝑡) = Γ (34) , 𝑡 ∈ [0, 1] ,

(47)

where 𝑓(𝑡, 𝑥, 𝑦) = 𝑔(𝑡, 𝑥, 𝑦) = (𝑒/√Γ(1/2))(𝑡 − 1)1/4[𝑥 + 𝑦],𝑡 ∈ [1, +∞).
It is obvious that |𝑓(𝑡, 𝑥, 𝑦)| = |𝑔(𝑡, 𝑥, 𝑦)| ≤ (𝑒/√Γ(1/2))(𝑡 − 1)1/4[|𝑥| + |𝑦|], 𝑡 ∈ [1, +∞). From (47) and

Theorem 5, we obtain 𝑎1(𝑡) = 𝑎2(𝑡) = 𝑡−1/4, 𝛼1(𝑡) = 𝛼2(𝑡) =2𝑡−1/2𝑒−2𝑡, 𝑙𝑖(𝑡) = 𝑚𝑖(𝑡) = 2√𝑡 − 1, 𝑖 = 1, 2. Thus, 𝐴(𝑡) =2𝑡−1/2𝑒−2𝑡 [ 11 ],𝐻(𝑡) = 2√𝑡 − 1 [ 1 11 1 ], Ψ(𝑡) = 𝑡−1/2𝑒−2𝑡 [ 11 ].
Set

[|𝑥 (𝑡)|𝑦 (𝑡)] = [
𝑒𝑡𝑤1/21 (𝑡)
𝑒𝑡𝑤1/22 (𝑡)] . (48)

Therefore,

[𝑤1 (𝑡)𝑤2 (𝑡)] ≤ 𝐴 (𝑡) + 𝑅 (𝑡) , (49)

where for 𝑡 ∈ [1, 2],
𝑅 (𝑡) = ∫𝑡

1
𝐻(𝑠)Ψ (𝑠 − 1) 𝑑𝑠 = 2[11]∫

𝑡

1
𝑒−2(𝑠−1)𝑑𝑠

= (1 − 𝑒−2(𝑡−1)) [11] ,
(50)

and for 𝑡 ∈ [2, +∞),
𝑅 (𝑡) = exp{∫𝑡

2
𝐻(𝑠) 𝑑𝑠} [∫2

1
𝐻(𝑠)Ψ (𝑠 − 1) 𝑑𝑠

+ ∫𝑡
2
exp{∫𝑡

𝜉
𝐻(𝑠) 𝑑𝑠}𝐻 (𝜉)𝐴 (𝜉 − 1) 𝑑𝜉] ≤ 2

⋅ exp {43 (𝑡 − 1)3/2}[2 (1 − 𝑒−2)
+ 16𝑒(4/3)(𝑡−1)3/2 ∫𝑡

1
𝑒−2𝜉𝑑𝜉] [11] ≤ 4 [𝑒(4/3)(𝑡−1)

3/2

+ 4𝑒(8/3)(𝑡−1)3/2−4] [11] .

(51)
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In this paper, we investigate the impulsive fractional 𝑞-difference equation with antiperiodic conditions. The existence and
uniqueness results of solutions are established via the theorem of nonlinear alternative of Leray-Schauder type and the Banach
contraction mapping principle. Two examples are given to illustrate our results.

1. Introduction

In this paper, we are concerned with the existence and
uniqueness of solutions for the following impulsive fractional𝑞-difference equation with antiperiodic boundary conditions

𝑐𝐷𝛼𝑞𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑇𝑢 (𝑡) , 𝑆𝑢 (𝑡)) ,
𝑡 ∈ 𝐽 = 𝐽 \ {𝑡1, 𝑡2, . . . , 𝑡𝑚} ,

Δ𝑢|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑢 (𝑡−𝑘 )) ,
Δ𝐷𝑞𝑢𝑡=𝑡𝑘 = 𝐼∗𝑘 (𝑢 (𝑡−𝑘 )) ,

𝑘 = 1, 2, . . . , 𝑚,
𝑢 (0) = −𝑢 (1) ,

𝑐𝐷𝛽𝑞𝑢 (0) = −𝑐𝐷𝛽𝑞𝑢 (1) ,

(1)

where 𝑞 ∈ (0, 1), 1 < 𝛼 ≤ 2, 0 < 𝛽 < 1, 𝛼 − 𝛽 − 1 > 0,𝐽 = [0, 1],𝐷𝑞 is 𝑞-derivative, 𝑐𝐷𝛼𝑞 , and 𝑐𝐷𝛽𝑞 denote the Caputo𝑞-derivative of orders 𝛼 and 𝛽, respectively. 𝑓 ∈ 𝐶(𝐽×R×R×
R,R), 𝐼𝑘, 𝐼∗𝑘 ∈ 𝐶(R,R) (𝑘 = 1, 2, . . . , 𝑚),R is the set of all real
numbers, and 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑚 < 𝑡𝑚+1 = 1. 𝑇 and 𝑆 are
linear operators defined by

𝑇𝑢 (𝑡) = ∫𝑡
0
𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑞𝑠,

𝑆𝑢 (𝑡) = ∫1
0
ℎ (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑞𝑠,

𝑡 ∈ 𝐽,
(2)

where 𝑘 ∈ 𝐶(𝐷,R), ℎ ∈ 𝐶(𝐽×𝐽,R),𝐷 = {(𝑡, 𝑠) ∈ 𝐽×𝐽 : 𝑡 ≥ 𝑠}.Δ𝑢|𝑡=𝑡𝑘 = 𝑢(𝑡+𝑘 ) − 𝑢(𝑡−𝑘 ), where 𝑢(𝑡+𝑘 ) and 𝑢(𝑡−𝑘 ) represent the
right and left limits of 𝑢(𝑡) at 𝑡 = 𝑡𝑘, Δ𝐷𝑞𝑢|𝑡=𝑡𝑘 = 𝐷𝑞𝑢(𝑡+𝑘 ) −𝐷𝑞𝑢(𝑡−𝑘 ) has a similar meaning.

Fractional 𝑞-difference calculus plays a very important
role in modern applied mathematics due to their deep
physical background and has been studied extensively [1–
4]. Impulsive differential equations are important in both
theory and applications. Considerable effort has been devoted
to differential equations with or without impulse, for exam-
ple, [5–21]. In recent years, impulsive fractional difference
and differential equations with antiperiodic conditions have
received much attention; see [22–27] and the references
therein. Zhang andWang [24] have applied cone contraction
fixed point theorem to establish the existence of solutions to
nonlinear fractional differential equation with impulses and
antiperiodic boundary conditions
𝑐𝐷𝛼𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

1 < 𝛼 ≤ 2, 𝑡 ∈ 𝐽 \ {𝑡1, 𝑡2, . . . , 𝑡𝑚} , 𝐽 = [0, 𝑇] ,
Δ𝑢|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑢 (𝑡𝑘)) ,
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Δ𝑢𝑡=𝑡𝑘 = 𝐼∗𝑘 (𝑢 (𝑡𝑘)) ,
𝑘 = 1, 2, . . . , 𝑝,

𝑢 (0) = −𝑢 (𝑇) ,
𝑢 (0) = −𝑢 (𝑇) ,

(3)

where 𝑐𝐷𝛼 is the Caputo fractional derivative, 𝑓 ∈ 𝐶(𝐽 ×
R,R), 𝐼𝑘, 𝐼∗𝑘 ∈ 𝐶(R,R). By using Banach fixed point theorem,
Schaefer fixed point theorem, and nonlinear alternative of
Leray-Schauder type theorem, some existence results of
solutions for problem (3) are obtained in [25]. Ahmad et
al. [28] studied existence of solutions for the following
antiperiodic boundary value problem (BVP for short) of
impulsive fractional 𝑞-difference equation
𝑐
𝑡𝑘
𝐷𝛼𝑘𝑞𝑘𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽𝑘 ⊆ [0, 𝑇] , 𝑡 ̸= 𝑡𝑘,
Δ𝑥|𝑡=𝑡𝑘 = 𝑥 (𝑡+𝑘 ) − 𝑥 (𝑡𝑘) = 𝜑𝑘 ( 𝑡𝑘−1𝐼𝛽𝑘−1𝑞𝑘−1 𝑥 (𝑡𝑘)) ,

𝑘 = 1, 2, . . . , 𝑚,
𝑡𝑘
𝐷𝑞𝑘𝑥 (𝑡+𝑘 ) − 𝑡𝑘−1𝐷𝑞𝑘−1𝑥 (𝑡𝑘) = 𝜑∗𝑘 (𝑡𝑘−1𝐼𝛾𝑘−1𝑞𝑘−1𝑥 (𝑡𝑘)) ,

𝑘 = 1, 2, . . . , 𝑚,
𝑥 (0) = −𝑥 (𝑇) ,
0𝐷𝑞0𝑥 (0) = − 𝑡𝑚𝐷𝑞𝑚𝑥 (𝑇) ,

(4)

where 𝑐𝑡𝑘𝐷𝛼𝑘𝑞𝑘 denotes the Caputo 𝑞𝑘-fractional derivative of
order 𝛼𝑘 on 𝐽𝑘, 1 < 𝛼𝑘 ≤ 2, 0 < 𝑞𝑘 < 1, 𝑓 ∈ 𝐶(𝐽 ×
R,R), 𝜑𝑘, 𝜑∗𝑘 ∈ 𝐶(R,R), 𝑘 = 1, 2, . . . , 𝑚. 𝑡𝑘𝐼𝛽𝑘𝑞𝑘 and 𝑡𝑘𝐼𝛾𝑘𝑞𝑘
denote the Riemann-Liouville 𝑞𝑘-integral of orders 𝛽𝑘 and 𝛾𝑘,
respectively.

In this paper we are concerned with the existence and
uniqueness of solutions for impulsive fractional 𝑞-difference
equation antiperiodic BVP. By applying the theorem of
nonlinear alternative of Leray-Schauder type and Banach
contraction mapping principle, we show the existence and
uniqueness of solutions for the BVP (1). Some ideas of this
paper are from [29, 30].

2. Preliminaries and Lemmas

For 𝑞 ∈ (0, 1), let
[𝑎]𝑞 = 1 − 𝑞𝑎1 − 𝑞 ,

(𝑎; 𝑞)∞ = ∞∏
𝑖=0

(1 − 𝑎𝑞𝑖) ,

(𝑎; 𝑞)𝛼 = (𝑎; 𝑞)∞(𝑎𝑞𝛼; 𝑞)∞ ,
(𝑎, 𝛼 ∈ R) .

(5)

We define the 𝑞-analogue of the power function (𝑎 − 𝑏)𝑛 with𝑛 ∈ N0 is

(𝑎 − 𝑏)0 = 1,
(𝑎 − 𝑏)𝑛 = 𝑛−1∏

𝑘=0

(𝑎 − 𝑏𝑞𝑘) ,
𝑛 ∈ N, 𝑎, 𝑏 ∈ R,

(6)

and, for 𝛼 ∈ R,

(𝑎 − 𝑏)(𝛼) = 𝑎𝛼 ∞∏
𝑛=0

𝑎 − 𝑏𝑞𝑛𝑎 − 𝑏𝑞𝛼+𝑛 . (7)

The 𝑞-derivative of 𝑓 is defined by

(𝐷𝑞𝑓) (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑞𝑥)
(1 − 𝑞) 𝑥 ,

(𝐷𝑞𝑓) (0) = lim
𝑥→0

(𝐷𝑞𝑓) (𝑥)
(8)

and 𝑞-derivative of higher order by
(𝐷0𝑞𝑓) (𝑥) = 𝑓 (𝑥) ,
(𝐷𝑛𝑞𝑓) (𝑥) = 𝐷𝑞 (𝐷𝑛−1𝑞 𝑓) (𝑥) , 𝑛 ∈ N. (9)

The 𝑞-integral of 𝑓 is defined by

(𝐼𝑞𝑓) = ∫𝑥
0
𝑓 (𝑡) 𝑑𝑞𝑡 = 𝑥 (1 − 𝑞) ∞∑

𝑛=0

𝑓 (𝑥𝑞𝑛) 𝑞𝑛,
𝑥 ∈ [0, 𝑏] .

(10)

Lemma 1 (see [31]). (1) If |𝑓| is 𝑞-integral on the interval [0, 𝑥],
then | ∫𝑥

0
𝑓(𝑡)𝑑𝑞𝑡| ≤ ∫𝑥0 |𝑓(𝑡)|𝑑𝑞𝑡.

(2) If 𝑓 and 𝑔 are 𝑞-integral on the interval [0, 𝑥], 𝑓(𝑡) ≤𝑔(𝑡) for all 𝑡 ∈ [0, 𝑥], then ∫𝑥
0
𝑓(𝑡)𝑑𝑞𝑡 ≤ ∫𝑥0 𝑔(𝑡)𝑑𝑞𝑡.

Definition 2 (see [2]). Let 𝛼 ≥ 0 and 𝑓 be a function defined
on [0, 𝑏]. The fractional 𝑞-integral of the Riemann-Liouville
type is defined by (𝐼0𝑞𝑓)(𝑥) = 𝑓(𝑥) and
(𝐼𝛼𝑞𝑓) (𝑥) = 1Γ𝑞 (𝛼) ∫

𝑥

0
(𝑥 − 𝑞𝑡)(𝛼−1) 𝑓 (𝑡) 𝑑𝑞𝑡,

𝛼 > 0, 𝑥 ∈ [0, 𝑏] .
(11)

Definition 3 (see [3]). The fractional 𝑞-derivative of the
Caputo type of order 𝛼 ≥ 0 is defined by

(𝑐𝐷𝛼𝑞𝑓) (𝑥) = (𝐼[𝛼]−𝛼𝑞 𝐷[𝛼]𝑞 𝑓) (𝑥) , 𝛼 ≥ 0, (12)

where [𝛼] is the smallest integer greater than or equal to 𝛼. If𝑓(𝑥) = 𝑥𝛽−1, 𝛽 > 0, then 𝑐𝐷𝛼𝑞𝑓(𝑥) = (Γ𝑞(𝛽)/Γ𝑞(𝛽−𝛼))𝑥𝛽−𝛼−1.
Lemma4 (see [2, 3]). Let 𝛼, 𝛽 ≥ 0 and𝑓 be a function defined
on [0, 𝑏]. 	e following formulas hold:

(1) (𝐼𝛽𝑞 𝐼𝛼𝑞𝑓)(𝑥) = (𝐼𝛼+𝛽𝑞 𝑓)(𝑥);
(2) (𝐷𝛼𝑞𝐼𝛼𝑞𝑓)(𝑥) = 𝑓(𝑥).
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Lemma 5 (see [3]). Let 𝛼 ∈ R+ \ N and 𝑎 < 𝑥. 	en

(𝐼𝛼𝑞 𝑐𝐷𝛼𝑞𝑓) (𝑥) = 𝑓 (𝑥) −
[𝛼]−1∑
𝑘=0

(𝐷𝑘𝑞𝑓) (𝑎)Γ𝑞 (𝑘 + 1) 𝑥
𝑘 (𝑎𝑥 : 𝑞)

𝑘
. (13)

If 𝛼 ≥ 𝑚 ≥ 𝛽, then 𝑐𝐷𝛽𝑞𝐼𝛼𝑞𝑓(𝑥) = 𝐼𝑚−𝛽𝑞 𝐼𝛼−𝑚𝑞 𝑓(𝑥) = 𝐼𝛼−𝛽𝑞 𝑓(𝑥).
Lemma 6 (see [3]). For 𝛽 ∈ R+, 𝜆 ∈ (−1, +∞) and 0 ≤ 𝑎 <𝑡 ≤ 𝑏,

𝐼𝛽𝑞 ((𝑡 − 𝑎)(𝜆)) = Γ𝑞 (𝜆 + 1)Γ𝑞 (𝛽 + 𝜆 + 1) (𝑡 − 𝑎)
(𝛽+𝜆) . (14)

In particular, when 𝜆 = 0 and 𝑎 = 0, using 𝑞-integration by
part,

(𝐼𝛽𝑞 1) (𝑡) = 1Γ𝑞(𝛽) ∫
𝑡

0
(𝑡 − 𝑞𝑠)(𝛽−1) 𝑑𝑞𝑠 = 1Γ𝑞 (𝛽 + 1) 𝑡

𝛽. (15)

Lemma 7 (see [32] (nonlinear alternative of Leray-Schauder
type)). Let 𝑋 be a Banach space, 𝑈 be a bounded open subset

of 𝑋 with 0 ∈ 𝑈, and 𝑃 : 𝑈 → 𝑋 be a completely continuous
operator. 	en, either there exists 𝑥 ∈ 𝜕𝑈 such that 𝑥 = 𝜆𝑃𝑥
for 𝜆 ∈ (0, 1) or there exists a fixed point 𝑥∗ ∈ 𝑈.

Let 𝑃𝐶(𝐽,R) = {𝑢 : 𝑢 ia a map from 𝐽 into R such that𝑢(𝑡) is continuous at 𝑡 ̸= 𝑡𝑘, le
 continuous at 𝑡 = 𝑡𝑘 and its
right limit at 𝑡 = 𝑡𝑘 exists for 𝑘 = 1, . . . , 𝑚}; then 𝑃𝐶(𝐽,R) is a
Banach space with the norm ‖𝑢‖𝑃𝐶 = sup{|𝑢(𝑡)| : 𝑡 ∈ 𝐽}.
Lemma 8. For ℎ ∈ 𝑃𝐶(𝐽,R), the solution of impulsive BVP,

𝑐𝐷𝛼𝑞𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐽,
Δ𝑢|𝑡=𝑡𝑘 = 𝐼𝑘 (𝑢 (𝑡−𝑘 )) ,

Δ𝐷𝑞𝑢𝑡=𝑡𝑘 = 𝐼∗𝑘 (𝑢 (𝑡−𝑘 )) ,
𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = −𝑢 (1) ,
𝑐𝐷𝛽𝑞𝑢 (0) = − 𝑐𝐷𝛽𝑞𝑢 (1) ,

(16)

is given by

𝑢 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

1Γ𝑞 (𝛼) ∫
𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠 − 12Γ𝑞 (𝛼) ∫

1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠 − 12

𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 ))
+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) (

12 − 𝑡)∫
1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠 + 12

𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) −
𝑚∑
𝑖=1

𝑡𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) , 𝑡 ∈ [0, 𝑡1) ,
1Γ𝑞 (𝛼) ∫

𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠 − 12Γ𝑞 (𝛼) ∫

1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) (
12 − 𝑡)∫

1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠 + 12

𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) − 12
𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))
− 𝑚∑
𝑖=𝑘+1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) +
𝑚∑
𝑖=𝑘+1

(𝑡𝑖 − 𝑡) 𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) , 𝑘 = 1, . . . , 𝑚 − 1,
1Γ𝑞 (𝛼) ∫

𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠 − 12Γ𝑞 (𝛼) ∫

1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) (
12 − 𝑡)∫

1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠 + 12

𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) − 12
𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) , 𝑡 ∈ [𝑡𝑚, 1] .

(17)

Proof. In view of Definitions 2 and 3 and Lemma 5, for 𝑡 ∈𝐽𝑘 = [𝑡𝑘, 𝑡𝑘+1], 𝑘 = 0, 1, 2, . . . , 𝑚, we have

𝑢 (𝑡) = 𝐼𝛼𝑞 ℎ (𝑡) + 𝑑𝑘 + 𝑒𝑘𝑡
= 1Γ𝑞 (𝛼) ∫

𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠 + 𝑑𝑘 + 𝑒𝑘𝑡, (18)

and

(𝐷𝑞𝑢) (𝑡) = 1Γ𝑞 (𝛼 − 1) ∫
𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−2) ℎ (𝑠) 𝑑𝑞𝑠 + 𝑒𝑘. (19)

It follows from Definition 3, Lemma 5, and (18) that

𝑐𝐷𝛽𝑞𝑢 (𝑡) = 1Γ𝑞 (𝛼 − 𝛽) ∫
𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠

+ 𝑒𝑘 𝑡1−𝛽Γ𝑞 (2 − 𝛽) , 𝑡 ∈ 𝐽𝑘.
(20)

Applying 𝑐𝐷𝛽𝑞𝑢(0) = − 𝑐𝐷𝛽𝑞𝑢(1) in (20), we obtain

𝑒𝑚 = − Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) ∫
1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠. (21)
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Note boundary conditions Δ𝑢|𝑡=𝑡𝑘 = 𝐼𝑘(𝑢(𝑡−𝑘 )) andΔ𝐷𝑞𝑢|𝑡=𝑡𝑘 = 𝐼∗𝑘 (𝑢(𝑡−𝑘 )); we get
𝑑𝑘 − 𝑑𝑘−1 + (𝑒𝑘 − 𝑒𝑘−1) 𝑡𝑘 = 𝐼𝑘 (𝑢 (𝑡−𝑘 )) ,

𝑒𝑘 − 𝑒𝑘−1 = 𝐼∗𝑘 (𝑢 (𝑡−𝑘 )) ,
𝑘 = 1, 2, . . . , 𝑚.

(22)

Applying (21) and (22), we have

𝑒𝑘 = 𝑒𝑚 − 𝑚∑
𝑖=𝑘+1

𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))

= − Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) ∫
1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠

− 𝑚∑
𝑖=𝑘+1

𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) .

(23)

Thanks to 𝑢(0) = −𝑢(1), it is derived that

𝑑0 = − 1Γ𝑞 (𝛼) ∫
1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠 − 𝑑𝑚 − 𝑒𝑚, (24)

and

𝑑𝑚 + 𝑑0 = − 1Γ𝑞 (𝛼) ∫
1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠 − 𝑒𝑚

= − 1Γ𝑞 (𝛼) ∫
1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) ∫
1

0
(1 − q𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠.

(25)

By (22), we get

𝑑𝑚 − 𝑑0 = 𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) −
𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) . (26)

Combining (25) and (26), we have

𝑑𝑚 = 12 [− 1Γ𝑞 (𝛼) ∫
1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) ∫
1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠

+ 𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) −
𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))] ,

𝑑𝑘 = 𝑑𝑚 − 𝑚∑
𝑖=𝑘+1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) +
𝑚∑
𝑖=𝑘+1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))

= − 12Γ𝑞 (𝛼) ∫
1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠 + Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽)

⋅ ∫1
0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠 + 12

𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 ))

− 12
𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) −
𝑚∑
𝑖=𝑘+1

𝐼𝑖 (𝑢 (𝑡−𝑖 ))

+ 𝑚∑
𝑖=𝑘+1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) .
(27)

Therefore, for 𝑡 ∈ 𝐽𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚 − 1,
𝑢 (𝑡)
= 1Γ𝑞 (𝛼) ∫

𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

− 12Γ𝑞 (𝛼) ∫
1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽) ∫
1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠

+ 12
𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) − 12
𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))

− 𝑚∑
𝑖=𝑘+1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) +
𝑚∑
𝑖=𝑘+1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))

− Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽)𝑡 ∫
1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠

− 𝑡 𝑚∑
𝑖=𝑘+1

𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))

= 1Γ𝑞 (𝛼) ∫
𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

− 12Γ𝑞 (𝛼) ∫
1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) (
12 − 𝑡)∫

1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠

+ 12
𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) − 12
𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))

− 𝑚∑
𝑖=𝑘+1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) +
𝑚∑
𝑖=𝑘+1

(𝑡𝑖 − 𝑡) 𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) ,

(28)
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and, for 𝑡 ∈ 𝐽𝑚,
𝑢 (𝑡)
= 1Γ𝑞 (𝛼) ∫

𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

− 12Γ𝑞 (𝛼) ∫
1

0
(1 − 𝑞𝑠)(𝛼−1) ℎ (𝑠) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) (
12 − 𝑡)∫

1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) ℎ (𝑠) 𝑑𝑞𝑠

+ 12
𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) − 12
𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) .

(29)

3. Main Results

Define an operator 𝐴 : 𝑃𝐶(𝐽,R) → 𝑃𝐶(𝐽,R) by
𝐴𝑢 (𝑡) = 1Γ𝑞 (𝛼)

⋅ ∫𝑡
0
(𝑡 − 𝑞𝑠)(𝛼−1) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑞𝑠

− 12Γ𝑞 (𝛼)
⋅ ∫1
0
(1 − 𝑞𝑠)(𝛼−1) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) (
12 − 𝑡)

⋅ ∫1
0
(1 − 𝑞𝑠)(𝛼−𝛽−1) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑞𝑠

+ 12
𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) − 12
𝑚∑
𝑖=1

𝑡𝑖𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))

− 𝑚∑
𝑖=𝑘+1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) +
𝑚∑
𝑖=𝑘+1

(𝑡𝑖 − 𝑡) 𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))
𝑡 ∈ 𝐽𝑘, 𝑘 = 0, 1, . . . , 𝑚.

(30)

Theorem 9. Assume that(𝐻1)	ere exist nonnegative functions 𝐿𝑗(𝑡) ∈ 𝐶(𝐽) (𝑗 =1, 2, 3) such that
𝑓 (𝑡, 𝑢1, V1, 𝑤1) − 𝑓 (𝑡, 𝑢2, V2, 𝑤2)
≤ 𝐿1 (𝑡) 𝑢1 − 𝑢2 + 𝐿2 (𝑡) V1 − V2


+ 𝐿3 (𝑡) 𝑤1 − 𝑤2

(31)

for 𝑡 ∈ 𝐽, 𝑢𝑖, V𝑖, 𝜔𝑖 ∈ R, 𝑖 = 1, 2.

(𝐻2)	ere exist positive numbers𝑁 and𝑁∗ such that𝐼𝑘 (𝑢) − 𝐼𝑘 (V) ≤ 𝑁 |𝑢 − V| ,
𝐼∗𝑘 (𝑢) − 𝐼∗𝑘 (V) ≤ 𝑁∗ |𝑢 − V| ,

𝑢, V ∈ R, 𝑘 = 1, 2, . . . , 𝑚.
(32)

(𝐻3)
𝜒 = 3 (𝐿1 + 𝐿2𝑘0 + 𝐿3ℎ0)2Γ𝑞 (𝛼 + 1)

+ Γ𝑞 (2 − 𝛽) (𝐿1 + 𝐿2𝑘0 + 𝐿3ℎ0)2Γ𝑞 (𝛼 − 𝛽 + 1) + 32𝑚𝑁
+ 52𝑚𝑁∗ < 1,

(33)

where 𝐿 𝑖 = max{𝐿 𝑖(𝑡) : 𝑡 ∈ 𝐽}, 𝑖 = 1, 2, 3, 𝑘0 = max{|𝑘(𝑡, 𝑠)| :(𝑡, 𝑠) ∈ 𝐷}, ℎ0 = max{|ℎ(𝑡, 𝑠)| : (𝑡, 𝑠) ∈ 𝐷0}.
Then BVP (1) has a unique solution.

Proof. For 𝑢, V ∈ 𝑃𝐶(𝐽,R) and 𝑡 ∈ 𝐽, we have
|(𝐴𝑢) (𝑡) − (𝐴V) (𝑡)|
≤ ∫𝑡
0

(𝑡 − 𝑞𝑠)(𝛼−1)
Γ𝑞 (𝛼)

𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠))
− 𝑓 (𝑠, V (𝑠) , 𝑇V (𝑠) , 𝑆V (𝑠)) 𝑑𝑞𝑠 + 12
⋅ ∫1
0

(1 − 𝑞𝑠)(𝛼−1)
Γ𝑞 (𝛼)

𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠))
− 𝑓 (𝑠, V (𝑠) , 𝑇V (𝑠) , 𝑆V (𝑠)) 𝑑𝑞𝑠
+ Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽) ∫

1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠))
− 𝑓 (𝑠, V (𝑠) , 𝑇V (𝑠) , 𝑆V (𝑠)) 𝑑𝑞𝑠 + 12
⋅ 𝑚∑
𝑖=1

𝐼 (𝑢 (𝑡−𝑖 )) − 𝐼𝑖 (V (𝑡−𝑖 ))𝑖 + 12
𝑚∑
𝑖=1

𝑡𝑖 𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))

− 𝐼∗𝑖 (V (𝑡−𝑖 )) +
𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡−𝑖 )) − 𝐼𝑖 (V (𝑡−𝑖 ))
+ 𝑚∑
𝑖=1

𝑡𝑖 𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) − 𝐼∗𝑖 (V (𝑡−𝑖 )) + 𝑡
𝑚∑
𝑖=1

𝐼∗𝑖 (𝑢 (𝑡−𝑖 ))

− 𝐼∗𝑖 (V (𝑡−𝑖 )) ≤ 1Γ𝑞 (𝛼) ∫
𝑡

0
(𝑡 − 𝑞𝑠)(𝛼−1)

⋅ (𝐿1 (𝑠) |𝑢 (𝑠) − V (𝑠)|
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+ 𝐿2 (𝑠) ∫
𝑠

0
𝑘 (𝑠, 𝜏) (𝑢 (𝜏) − V (𝜏)) 𝑑𝑞𝜏

+ 𝐿3 (𝑠)
∫
1

0
ℎ (𝑠, 𝜏) (𝑢 (𝜏) − V (𝜏)) 𝑑𝑞𝜏

) 𝑑𝑞𝑠
+ 12Γ𝑞 (𝛼) ∫

1

0
(1 − 𝑞𝑠)(𝛼−1) (𝐿1 (𝑠) |𝑢 (𝑠) − V (𝑠)|

+ 𝐿2 (𝑠) ∫
𝑠

0
𝑘 (𝑠, 𝜏) (𝑢 (𝜏) − V (𝜏)) 𝑑𝑞𝜏

+ 𝐿3 (𝑠)
∫
1

0
ℎ (𝑠, 𝜏) (𝑢 (𝜏) − V (𝜏)) 𝑑𝑞𝜏

) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽) ∫
1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1)

⋅ (𝐿1 (𝑠) |𝑢 (𝑠) − V (𝑠)|
+ 𝐿2 (𝑠) ∫

𝑠

0
𝑘 (𝑠, 𝜏) (𝑢 (𝜏) − V (𝜏)) 𝑑𝑞𝜏

+ 𝐿3 (𝑠)
∫
1

0
ℎ (𝑠, 𝜏) (𝑢 (𝜏) − V (𝜏)) 𝑑𝑞𝜏

) 𝑑𝑞𝑠
+ 32
𝑚∑
𝑖=1

𝐼𝑖 (𝑢 (𝑡+𝑖 )) − 𝐼𝑖 (V (𝑡−𝑖 )) +
𝑚∑
𝑖=1

(32𝑡𝑖 + 𝑡)

⋅ 𝐼∗𝑖 (𝑢 (𝑡+𝑖 )) − 𝐼∗𝑖 (V (𝑡−𝑖 )) ≤ 1Γ𝑞 (𝛼) ∫
𝑡

0
(𝑡

− 𝑞𝑠)(𝛼−1) (𝐿1 ‖𝑢 − V‖𝑃𝐶 + 𝐿2𝑘0 ‖𝑢 − V‖𝑃𝐶
+ 𝐿3ℎ0 ‖𝑢 − V‖𝑃𝐶) 𝑑𝑞𝑠 + 12Γ𝑞 (𝛼) ∫

1

0
(1

− 𝑞𝑠)(𝛼−1) (𝐿1 ‖𝑢 − V‖𝑃𝐶 + 𝐿2𝑘0 ‖𝑢 − V‖𝑃𝐶
+ 𝐿3ℎ0 ‖𝑢 − V‖𝑃𝐶) 𝑑𝑞𝑠 + Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽) ∫

1

0
(1

− 𝑞𝑠)(𝛼−𝛽−1) (𝐿1 ‖𝑢 − V‖𝑃𝐶 + 𝐿2𝑘0 ‖𝑢 − V‖𝑃𝐶
+ 𝐿3ℎ0 ‖𝑢 − V‖𝑃𝐶) 𝑑𝑞𝑠 + 32𝑚𝑁‖𝑢 − V‖𝑃𝐶
+ 52𝑚𝑁∗ ‖𝑢 − V‖𝑃𝐶 ≤ (𝐿1 + 𝐿2𝑘0 + 𝐿3ℎ0)
⋅ ( 1Γ𝑞 (𝛼 + 1) +

12Γ𝑞 (𝛼 + 1) +
Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽 + 1)) ‖𝑢

− V‖𝑃𝐶 + (32𝑚𝑁 + 52𝑚𝑁∗) ‖𝑢 − V‖𝑃𝐶
= {3 (𝐿1 + 𝐿2𝑘0 + 𝐿3ℎ0)2Γ𝑞 (𝛼 + 1)

+ Γ𝑞 (2 − 𝛽) (𝐿1 + 𝐿2𝑘0 + 𝐿3ℎ0)2Γ𝑞 (𝛼 − 𝛽 + 1) + 32𝑚𝑁 + 52

⋅ 𝑚𝑁∗}‖𝑢 − V‖𝑃𝐶 = 𝜒 ‖𝑢 − V‖𝑃𝐶 ,
(34)

and then ‖𝐴𝑢 − 𝐴V‖𝑃𝐶 ≤ 𝜒‖𝑢 − V‖𝑃𝐶, and hence 𝐴 is
a contraction operator. It follows from Banach contraction
mapping principle that BVP (1) has a unique solution.

Theorem 10. Assume the following:(𝐻4)	ere exist continuous andnondecreasing function𝑔 :[0, +∞) → (0, +∞) and 𝑎(𝑡) ∈ 𝐶[0, 1] such that
𝑓 (𝑡, 𝑢, V, 𝑤) ≤ 𝑎 (𝑡) 𝑔 (max {|𝑢| , |V| , |𝑤|}) ,

𝑡 ∈ [0, 1] , 𝑢, V, 𝑤 ∈ R. (35)

(𝐻5) 	ere exist continuous and nondecreasing functions𝜑, 𝜓 : [0, +∞) → (0, +∞) such that
𝐼𝑘 (𝑢) ≤ 𝜑 (|𝑢|) ,
𝐼∗𝑘 (𝑢) ≤ 𝜓 (|𝑢|) ,

𝑢 ∈ R, 𝑘 = 1, . . . , 𝑚.
(36)

(𝐻6)	ere exists constant𝑀 > 0 such that
𝑀 > 𝑎𝑔 (max {𝑀, 𝑘0𝑀, ℎ0𝑀})

⋅ ( 32Γ𝑞 (𝛼 + 1) +
Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽 + 1)) + 3𝑚2 𝜑 (𝑀)

+ 52𝑚𝜓 (𝑀) ,
(37)

where 𝑎 = max{𝑎(𝑡) : 𝑡 ∈ [0, 1]}.
Then BVP (1) has at least one solution.

Proof. The continuity of 𝑓, 𝐼𝑘, 𝐼∗𝑘 implies that operator 𝐴 :𝑃𝐶(𝐽,R) → 𝑃𝐶(𝐽,R) is continuous. Let 𝐵 ⊂ 𝑃𝐶(𝐽,R) be
bounded; then there exist positive constants 𝑃1, 𝑃2, and 𝑃3
such that |𝑓(𝑡, 𝑢(𝑡), 𝑇𝑢(𝑡), 𝑆𝑢(𝑡))| ≤ 𝑃1, |𝐼𝑖(𝑢(𝑡−𝑖 ))| ≤ 𝑃2, and|𝐼∗𝑖 (𝑢(𝑡−𝑖 ))| ≤ 𝑃3 for all 𝑡 ∈ 𝐽, 𝑢 ∈ 𝐵, 𝑖 = 1, 2, . . . , 𝑚. Thus, we
have

|(𝐴𝑢) (𝑡)| ≤ ∫𝑡
0

(𝑡 − 𝑞𝑠)(𝛼−1)
Γ𝑞 (𝛼) 𝑃1𝑑𝑞𝑠

+ 12 ∫
1

0

(1 − 𝑞𝑠)(𝛼−1)
Γ𝑞 (𝛼) 𝑃1𝑑𝑞𝑠
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+ 12Γ𝑞 (2 − 𝛽)∫
1

0

(1 − 𝑞𝑠)(𝛼−𝛽−1)
Γ𝑞 (𝛼 − 𝛽) 𝑃1𝑑𝑞𝑠

+ 𝑚2 𝑃2 + 𝑃32
𝑚∑
𝑖=1

𝑡𝑖 + 𝑚𝑃2 + 𝑃3 𝑚∑
𝑖=1

𝑡𝑖 + 𝑚𝑃3
≤ 3𝑃12Γ𝑞 (𝛼 + 1) +

Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽 + 1)𝑃1 +
3𝑚2 𝑃2

+ 52𝑚𝑃3.
(38)

Consequently, operator 𝐴 is uniformly bounded on 𝐵.
On the other hand, for 𝑡𝑘 ≤ 𝜏1 < 𝜏2 ≤ 𝑡𝑘+1, 𝑢 ∈ 𝐵, we

have

(𝐴𝑢) (𝜏2) − (𝐴𝑢) (𝜏1) =


1Γ𝑞 (𝛼) ∫
𝜏2

0
(𝜏2 − 𝑞𝑠)(𝛼−1)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑞𝑠 − 1Γ𝑞 (𝛼)
⋅ ∫𝜏1
0
(𝜏1 − 𝑞𝑠)(𝛼−1)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑞𝑠
+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽) (𝜏1 − 𝜏2) ∫

1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑞𝑠
+ 𝑚∑
𝑖=𝑘+1

𝐼∗𝑖 (𝑢 (𝑡−𝑖 )) (𝜏1 − 𝜏2)
 ≤

1Γ𝑞 (𝛼)
⋅ ∫𝜏1
0

(𝜏2 − 𝑞𝑠)(𝛼−1) − (𝜏1 − 𝑞𝑠)(𝛼−1)
⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑞𝑠 + 1Γ𝑞 (𝛼)
⋅ ∫𝜏2
𝜏1

(𝜏2 − 𝑞𝑠)(𝛼−1) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑇𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑞𝑠

+ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽)𝑃1
𝜏2 − 𝜏1 ∫1

0
(1 − 𝑞𝑠)(𝛼−𝛽−1) 𝑑𝑞𝑠

+ 𝑚𝑃3 𝜏2 − 𝜏1 ≤ 𝑃1 𝜏
𝛼
2 − 𝜏𝛼1Γ𝑞 (𝛼 + 1) + 𝑃1

⋅ Γ𝑞 (2 − 𝛽)Γ𝑞 (𝛼 − 𝛽 + 1)
𝜏2 − 𝜏1 + 𝑚𝑃3 𝜏2 − 𝜏1 ,

(39)

which tends to zero as 𝜏2 → 𝜏1; then 𝐴 is equicontinuous on𝐽𝑘. Hence by 𝑃𝐶-type Arzela-AscoliTheorem ([33]), operator𝐴 : 𝑃𝐶(𝐽,R) → 𝑃𝐶(𝐽,R) is completely continuous.

Let 𝑢 ∈ 𝑃𝐶(𝐽,R) be such that 𝑢(𝑡) = 𝜆(𝐴𝑢)(𝑡) for some𝜆 ∈ (0, 1); then
|𝑢 (𝑡)| = |𝜆 (𝐴𝑢) (𝑡)| ≤ |(𝐴𝑢) (𝑡)|
≤ ∫𝑡
0

(𝑡 − 𝑞𝑠)(𝛼−1)
Γ𝑞 (𝛼) 𝑎𝑔 (max {‖𝑢‖𝑃𝐶 , 𝑘0 ‖𝑢‖𝑃𝐶 ,

ℎ0 ‖𝑢‖𝑃𝐶}) 𝑑𝑞𝑠 + 12
⋅ ∫1
0

(1 − 𝑞𝑠)(𝛼−1)
Γ𝑞 (𝛼) 𝑎𝑔 (max {‖𝑢‖𝑃𝐶 , 𝑘0 ‖𝑢‖𝑃𝐶 ,

ℎ0 ‖𝑢‖𝑃𝐶}) 𝑑𝑞𝑠 + 12Γ𝑞 (2 − 𝛽)
⋅ ∫1
0

(1 − 𝑞𝑠)(𝛼−𝛽−1)
Γ𝑞 (𝛼 − 𝛽) 𝑎𝑔 (max {‖𝑢‖𝑃𝐶 , 𝑘0 ‖𝑢‖𝑃𝐶 ,

ℎ0 ‖𝑢‖𝑃𝐶}) 𝑑𝑞𝑠 + 12𝑚𝜑 (‖𝑢‖𝑃𝐶) + 12
⋅ 𝜓 (‖𝑢‖𝑃𝐶) 𝑚∑

𝑖=1

𝑡𝑖 + 𝑚𝜑 (‖𝑢‖𝑃𝐶) + 𝜓 (‖𝑢‖𝑃𝐶) 𝑚∑
𝑖=1

𝑡𝑖
+ 𝑚𝜓(‖𝑢‖𝑃𝐶) ≤ 𝑎𝑔 (max {‖𝑢‖𝑃𝐶 , 𝑘0 ‖𝑢‖𝑃𝐶 ,
ℎ0 ‖𝑢‖𝑃𝐶}) ( 32Γ𝑞 (𝛼 + 1) +

Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽 + 1)) + 3𝑚2
⋅ 𝜑 (‖𝑢‖𝑃𝐶) + 52𝑚𝜓 (‖𝑢‖𝑃𝐶) ,

(40)

and hence

‖𝑢‖𝑃𝐶 ≤ 𝑎𝑔 (max {‖𝑢‖𝑃𝐶 , 𝑘0 ‖𝑢‖𝑃𝐶 , ℎ0 ‖𝑢‖𝑃𝐶})
⋅ ( 32Γ𝑞 (𝛼 + 1) +

Γ𝑞 (2 − 𝛽)2Γ𝑞 (𝛼 − 𝛽 + 1)) + 3𝑚2
⋅ 𝜑 (‖𝑢‖𝑃𝐶) + 52𝑚𝜓(‖𝑢‖𝑃𝐶) .

(41)

Let 𝑈 = {𝑢 ∈ 𝑃𝐶(𝐽,R) : ‖𝑢‖ < 𝑀}; then operator 𝐴 : 𝑈 →𝑃𝐶(𝐽,R) is completely continuous. By (𝐻6), one has 𝑢 ̸= 𝜆𝐴𝑢
for any 𝜆 ∈ (0, 1) and 𝑢 ∈ 𝜕𝑈. By Lemma 7, BVP (1) has at
least one solution.

4. Examples

Example 1. Consider the BVP

𝑐𝐷3/21/2𝑢 (𝑡) = 𝑢 (𝑡) + 1100 + 150 + 𝑡2 ∫
𝑡

0

𝑢 (𝑠)𝑒(𝑡+𝑠) 𝑑𝑞𝑠
+ 𝑒−𝑡80 ∫

1

0

𝑢 (𝑠)2 + 𝑡 + 𝑠𝑑𝑞𝑠,
𝑡 ∈ [0, 1] \ {12} ,
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Δ𝑢|𝑡=1/2 = |𝑢 (1/2)|10 + |𝑢 (1/2)| ,
Δ𝐷1/2𝑢𝑡=1/2 = |𝑢 (1/2)|20 + |𝑢 (1/2)| ,

𝑢 (0) = −𝑢 (1) ,
𝑐𝐷1/41/2𝑢 (0) = − 𝑐𝐷1/41/2𝑢 (1) .

(42)

Let

𝑓 (𝑡, 𝑢, V, 𝑤) = 𝑢 + 1100 + 150 + 𝑡2 V + 𝑒−𝑡80 𝑤,
(𝑇𝑢) (𝑡) = ∫𝑡

0
𝑒−(𝑡+𝑠)𝑢 (𝑠) 𝑑𝑞𝑠,

(𝑆𝑢) (𝑡) = ∫1
0

𝑢 (𝑠)2 + 𝑡 + 𝑠𝑑𝑞𝑠.
(43)

By direct computation, 𝑘0 = max{𝑒−(𝑡+𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1} =1, ℎ0 = max{1/(2 + 𝑡 + 𝑠) : 0 ≤ 𝑠, 𝑡 ≤ 1} = 1/2. For any𝑢1, 𝑢2, V1, V2, 𝜔1, 𝜔2 ∈ R and 𝑡 ∈ 𝐽, we have
𝑓 (𝑡, 𝑢1, V1, 𝑤1) − 𝑓 (𝑡, 𝑢2, V2, 𝑤2)
≤ 1100 𝑢1 − 𝑢2 + 150 V1 − V2

 + 180 𝑤1 − 𝑤2 ,
𝐼𝑘 (𝑢) − 𝐼𝑘 (V) ≤ 110 |𝑢 − V| ,
𝐼∗𝑘 (𝑢) − 𝐼∗𝑘 (V) ≤ 120 |𝑢 − V| .

(44)

Let 𝐿1(𝑡) = 1/100, 𝐿2(𝑡) = 1/50, 𝐿3(𝑡) = 1/80,𝑁 = 1/10, and𝑁∗ = 1/20; then
𝜒 = 3 (𝐿1 + 𝐿2𝑘0 + 𝐿3ℎ0)2Γ1/2 (5/2)

+ Γ1/2 (7/4) (𝐿1 + 𝐿2𝑘0 + 𝐿3ℎ0)2Γ1/2 (9/4) + 32𝑁 + 52𝑁∗
≈ 0.307 < 1.

(45)

Then, (𝐻1)-(𝐻3) hold. It follows from Theorem 9 that BVP
(42) has a unique solution.

Example 2. Consider the BVP

𝑐𝐷3/2𝑞 𝑢 (𝑡) = 𝑡260 (sin 𝑢 (𝑡) + ∫
𝑡

0
cos (𝑢 (𝑠)) 𝑑𝑞𝑠

+ ∫1
0

1
(𝑢 (𝑠))2 + 𝑡2 + 1𝑑𝑞𝑠) , 𝑡 ∈ [0, 1] \ {12} ,

Δ𝑢|𝑡=1/2 = |𝑢 (1/2)|20 + |𝑢 (1/2)| ,

Δ𝐷𝑞𝑢𝑡=1/2 = |𝑢 (1/2)|30 + |𝑢 (1/2)| ,
𝑢 (0) = −𝑢 (1) ,
𝑐𝐷1/4𝑞 𝑢 (0) = − 𝑐𝐷1/4𝑞 𝑢 (1) .

(46)

Let

𝑓 (𝑡, 𝑢, V, 𝑤) = 𝑡260 (sin 𝑢 + V + 𝑤) ,
(𝑇𝑢) (𝑡) = ∫𝑡

0
cos (𝑢 (𝑠)) 𝑑𝑞𝑠,

(𝑆𝑢) (𝑡) = ∫1
0

𝑑𝑞𝑠
(𝑢 (𝑠))2 + 𝑡2 + 1 ;

(47)

then

𝑓 (𝑡, 𝑢 (𝑡) , 𝑇𝑢 (𝑡) , 𝑆𝑢 (𝑡)) ≤ 160 (1 + 𝑡 + 1)
≤ 6 (𝑡 + 1) .

(48)

Let 𝑔(𝑟) = 6, 𝑎(𝑡) = 𝑡+1; then 𝑎 = max{𝑡+1 : 𝑡 ∈ [0, 1]} = 2.
Choose 𝜑(𝑢) = 1 and 𝜓(𝑢) = 1; we have

2 × 6 × ( 32Γ1/2 (5/2) +
Γ1/2 (7/4)2Γ1/2 (9/4)) + 32 + 52

≈ 19.87.
(49)

Let 𝑀 = 20; then condition (𝐻6) holds. Therefore, by
Theorem 10, BVP (46) has at least one solution.
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To prove the existence of Nash equilibrium by traditional ways, a common condition that the preference of playersmust be complete
has to be considered. This paper presents a new method to improve it. Based on the incomplete preference corresponding to
equivalence class set being a partial order set, we translate the incomplete preference problems into the partial order problems.
Using the famous Zorn lemma, we get the existence theorems of fixed point for noncontinuous operators in incomplete preference
sets. These new fixed point theorems provide a new way to break through the limitation. Finally, the existence of generalized Nash
equilibrium is strictly proved in the 𝑛−person noncooperative games under incomplete preference.

1. Introduction and Preliminaries

As a kind of strategy combinations, Nash equilibrium is
closely bound up with many important mathematical prob-
lems, and many problems in economy and engineering tech-
nology can also be described as a Nash equilibrium problem.
Recently, the existence of the Nash equilibrium of noncoop-
erative games has been studied [1–4]. In [1], the existence
of uncertainty for generalized Nash equilibrium is proved
by introducing the uncertainty to study generalized games.
Using maximization theorem, the author presented the exis-
tence of Nash equilibrium in generalized games, and in these
results, the strategy set is noncompact and has infinite players
[2]. In [3] the existence theorem of generalized Nash equi-
librium in games is given where strategy space has abstract
convex structure. Assuming strategy set is a 𝐻 space, the
equilibrium existence theorems have been given in [4]. In the
above studies, either the partial order relation on policy sets
is required to satisfy, or every total order subset in policy sets
must have an upper bound or certain convexity condition.

For a long time, the preference of rational decision-
makers on management and economics should satisfy
the completeness. But in practice, they show the indeci-
sion on many major issues. Since the preference without

completeness is a kind of more general order structure, it
can make preference relation and the partial order relation
unified completely. The research of preference without com-
pleteness is started from the von Neumann and Morgenstern
in [5]. Aumman and Bewley have made the classic study in
[6, 7]; Schmeidler has studied the existence of economic equi-
libriumwith infinite number of institutions under incomplete
preference in [8].

In noncooperative games, the policy set composed of
player’s selection strategies is a set which cannot meet
the needs of completeness. If preference does not meet
the completeness, Pareto optimality is meaningless and the
traditional method of partial order will lose effectiveness
without the antisymmetry axiom inevitably. Therefore, it is
consistent with the realistic decision-making environment
to study the existence of generalized Nash equilibrium of
noncooperative game, but the study of this part has seldom
been seen in the past literature research.

In this article, based on the equivalence class set which
corresponds to the elements of incomplete preference set
being a partial order set, the problem under incomplete
preference is translated into the problem with partial order.
This method overcomes the difficulties which are brought
about by the elements in the set without the completeness.
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Using the famous Zorn lemma, we get the existence theorems
of fixed point for noncontinuous operators in incomplete
preference sets. The fixed point theorems provide a new way
for breaking through the limitations. The existence of gen-
eralized Nash equilibrium is strictly proven in the 𝑛−person
noncooperative games under incomplete preference.

Here some concepts and theorems are given, which are
related to incomplete preference.

Let𝐸 be a nonempty set. An ordering relation ⪯ on 𝐸may
satisfy the following axiom:
Reflexive: 𝑥 ⪯ 𝑥, for any 𝑥 ∈ 𝐸;
Symmetry: If 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑥, then 𝑥 = 𝑦, for any 𝑥, 𝑦 ∈ 𝐸;
Transitive: If 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑧, then 𝑥 ⪯ 𝑧,for any 𝑥, 𝑦, 𝑧 ∈ 𝐸;
Complete: If 𝑥 ⪯ 𝑦, 𝑦 ⪯ 𝑥, for any 𝑥, 𝑦 ∈ 𝐸, there is at least
one inequality to be established.

Definition 1 (see [9]). Let 𝐸 be a nonempty set. An order
relation ≤ defined among certain elements of 𝐸 is said
to be partial order if the order relation satisfies reflexive,
transitivity, and antisymmetry axioms. Then (𝐸 ≤) is called
a poset.

Definition 2 (see [10]). Let 𝐸 be a nonempty set. An order
relation defined among certain elements of 𝐸 is said to be
incomplete preference order if the order relation satisfies
reflexive and transitivity axioms, which is denoted by ⪯. If
completeness axiom is still satisfied for incomplete preference
order, the order relation is said to be preference order, which
is still denoted by ⪯. Then (𝐸 ⪯) is called an incomplete
preference set.

Definition 3 (see [11]). Let 𝐸 be an incomplete preference set.
For any 𝑥, 𝑦 ∈ 𝐸, we say that 𝑥, 𝑦 are indifference, which is
denoted by 𝑥 ∼ 𝑦, whenever both 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑥 hold.

Remark 4. 𝑥 ∼ 𝑦  𝑥 = 𝑦, but 𝑥 = 𝑦 ⇒ 𝑥 ∼ 𝑦.

Remark 5. The indifference relation ∼ the equivalence rela-
tion.

Definition 6 (see [11]). Let 𝐸 be an incomplete preference
set. If for any complete preference subset of 𝐸, there is
denumerable set {𝑥

𝑛
} ⊂ 𝑀 such that if 𝑥 ∈ 𝑀, 𝑥 ̸= sup𝑀,

there is 𝑥
𝑛0
∈ {𝑥
𝑛
} which satisfies 𝑥 ⪯ 𝑥

𝑛0
, then 𝐸 is said to be

pseudo separable in incomplete preference.
Let 𝐸 be an incomplete preference set, and Ω is a subset

in 𝐸. The order relation ≤ in quotient set Ω/ ∼ is elicited by
the incomplete preference relation ⪯ in 𝐸. Let [𝑥] = {𝑦 ∈ Ω |
𝑥 ∼ 𝑦}, and [𝑥] is an equivalence class set inΩ.

Definition 7 (see [11]). For any [𝑥], [𝑦] ∈ Ω/ ∼, if there are
𝑢 ∈ [𝑥], V ∈ [𝑦] such that 𝑢 ⪯ V, we write [𝑥] ⪯ [𝑦].

Lemma8 (see [11]). Let 𝐸 be an incomplete preference set, and
Ω is a subset in 𝐸. �e order relation ≤ in quotient set Ω/ ∼
which is elicited by the incomplete preference relation ⪯ in 𝐸 is
a partial order. �en the quotient set Ω/ ∼ is a poset.

Lemma 9 (see [11]). If Ω is incomplete preference pseudo
separable, thenΩ/ ∼ is incomplete preference pseudo separable.

Lemma 10 (see [12] (Zorn Lemma)). Let 𝐸 be a nonempty
partial ordered set. If every total ordered subset in 𝐸 has an
upper bound in 𝐸, then there is a maximal element in 𝐸.

2. Existence Theorems for Fixed Point on
Incomplete Preference Sets

Partial order method is discussed and applied greatly in
mathematics, and the conclusion on the partial order is
becoming a very complete system [13–23]. But few scholars
study the fixed point and extreme value theorems on incom-
plete preference set.

Definition 11. Let (𝐸, ⪯𝐸), (𝑈, ⪯𝑈) be incomplete preference
sets, and let 𝑇 : 𝐸 → 2𝑈 be an order-increasing set-valued
mapping. 𝑇 is said to be order-increasing upward, if 𝑥⪯𝐸𝑦
in 𝐸, for any 𝑢 ∈ 𝑇(𝑥); there is V ∈ 𝑇(𝑦) such that 𝑢 ⪯𝑈V;
𝑇 is said to be order-increasing downward, if 𝑥 ⪯𝐸𝑦 in 𝐸, for
anyV ∈ 𝑇(𝑦); there is 𝑢 ∈ 𝑇(𝑥) such that 𝑢⪯𝑈V. If 𝑇 is both
order-increasing upward and order-increasing downward, 𝑇
is said to be order-increasing.

Definition 12. Let (𝐸, ⪯) be incomplete preference set, and let
𝑇 : 𝐸 → 2𝐸\Φ be an order-increasing set-valued mapping.
An element 𝑥 ∈ 𝐸 is called a generalized fixed point of 𝑇, if
there are 𝑥∗ ∈ 𝐸, 𝑢 ∈ 𝑇𝑥∗ such that 𝑥∗ ∼ 𝑢.

Let (𝐸, ⪯) be incomplete preference set, and let 𝑇 : 𝐸 →
2𝑢 be an order-increasing set-valued mapping. The following
notation will be used in Theorem 13:

𝑆𝑇 (𝑥) = {𝑥 ∈ 𝐸 | 𝑥 ⪯ 𝑢, 𝑦 ∈ 𝑇 (𝑥)} . (1)

Theorem 13. Let (𝐸, ⪯) be an incomplete preference pseudo
separable set, and let 𝑇 : 𝐸 → 2𝐸 be an order-increasing set-
valued mapping. If 𝑇 satisfies the following conditions:
(𝐴
1
) Every increasing sequence in 𝑆𝑇(𝑥) has an upper

bound in 𝑆𝑇(𝑥)
(𝐴
2
)�ere is a 𝑥

0
∈ 𝐸 with 𝑥

0
⪯ 𝑢, for some 𝑢 ∈ 𝑇𝑥

0

then 𝑇 has a generalized fixed point; that is, there are 𝑥∗ ∈
𝐸, 𝑢 ∈ 𝑇𝑥∗ such that 𝑥∗ ∼ 𝑢.

Proof. Let Ω = {𝑥 ∈ 𝐸 | 𝑥 ⪯ 𝑢, 𝑦 ∈ 𝑇(𝑥)}. From the
condition (𝐴

2
), it implies that Ω is a nonempty set in 𝐸. Take

an arbitrary total ordered subset 𝑀 ⊂ Ω. Since 𝑀 is also
an arbitrary total ordered subset of incomplete preference
pseudo separable set (𝐸, ⪯), there is denumerable set {𝑥

𝑛
} ⊂

𝑀 such that if 𝑥 ∈ 𝑀,𝑥 ̸= sup𝑀, there is 𝑥
𝑛0
∈ {𝑥
𝑛
} which

satisfy 𝑥 ⪯ 𝑥
𝑛0
.

Let

𝑧
1
= 𝑥
1
,

𝑧𝑛 = max {𝑥𝑛, 𝑧𝑛−1} , 𝑛 = 2, 3 ⋅ ⋅ ⋅ .

𝑧
𝑛
⊂ 𝑀 ⊂ Ω(𝑥) .

(2)

Since 𝑀 is an arbitrary total ordered subset, {𝑧
𝑛
} is well

defined. So

𝑧
1
⪯ 𝑧
2
⪯ ⋅ ⋅ ⋅ 𝑧

𝑛
⪯ ⋅ ⋅ ⋅ . (3)
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For any 𝑥 ∈ 𝑀,𝑥 ̸= sup𝑀, by the condition (𝐴
1
), there

is a point 𝑧∗ ∈ Ω such that 𝑧
𝑛
⪯ 𝑧∗, and since (𝐸, ⪯)

is an incomplete preference pseudo separable set, there is a
𝑥
𝑛0
∈ {𝑥
𝑛
} such that 𝑥 ⪯ 𝑥

𝑛0
. By the definition of {𝑧

𝑛
}, we get

𝑥 ⪯ 𝑥𝑛0 ⪯ 𝑧𝑛 ⪯ 𝑧
∗. (4)

That is, 𝑧∗ ∈ Ω is an upper bound of total ordered subset𝑀.
Let [𝑥] = {𝑦 ∈ Ω | 𝑥 ∼ 𝑦}; then [𝑥] is equivalence

class set in Ω. Assuming that Ω/ ∼= {[𝑥], 𝑥 ∈ Ω} is a
quotient set corresponding to the equivalence relation∼, then
applying Lemmas 8 and 9, we get that the order relation ≤
in quotient set Ω/ ∼ which is elicited by the incomplete
preference relation ⪯ in Ω is a partial order.

Take an arbitrary total ordered subset𝑁 ⊂ Ω/ ∼, next, to
show that the set𝑁 has an upper bound inΩ/ ∼.

Let

𝑊 = ⋃[𝑥] ⊂ Ω. (5)

It is easy to know that𝑊 is total ordered subset in Ω. In fact,
for any 𝑥, 𝑦 ∈ 𝑊, there are [𝑥], [𝑦] ∈ 𝑁. Since 𝑁 is total
ordered subset in Ω/ ∼, we can get that either [𝑥] ≤ [𝑦] or
[𝑦] ≤ [𝑥] is valid. According to the relation between partial
order and incomplete preference, we have that either 𝑥 ⪯ 𝑦
or 𝑦 ⪯ 𝑥 is valid. So𝑊 is total ordered subset in Ω.

For any [𝑧] ∈ 𝑁, by the definition of𝑊, we get 𝑧 ∈ 𝑊.
Since every total ordered subset in Ω has an upper bound,
there is 𝑥

0
∈ 𝑊 such that 𝑧 ⪯ 𝑥

0
. So [𝑧] ≤ [𝑥

0
]; that

is, every total ordered subset in Ω/ ∼ has an upper bound.
Then applying Zorn lemma, we have that there is a maximal
element [𝑥∗] inΩ/ ∼. By the definition ofΩ/ ∼, we have that
𝑥∗ is the maximal element inΩ.

Since 𝑥∗ is the maximal element in Ω, there is 𝑢 ∈ 𝑇(𝑥∗)
such that 𝑥∗ ⪯ 𝑢. Supposing that 𝑢 �⪯𝑥

∗, the monotonicity of
𝑇 together with 𝑢 ∈ 𝑇(𝑥∗), 𝑥∗ ⪯ 𝑢 implies that there is V ∈
𝑇(𝑢) such that 𝑢 ⪯ V. It means 𝑢 ∈ Ω, and it is contradictory
with which 𝑥∗ is the maximal element in Ω. So 𝑢 ⪯ 𝑥∗ is
proved. Hence there are 𝑥∗ ∈ 𝐸, 𝑢 ∈ 𝑇𝑥∗ such that 𝑥∗ ∼ 𝑢;
that is, 𝑇 has a generalized fixed point.

Corollary 14. Let (𝐸, ⪯) be an incomplete preference pseudo
separable set, and let 𝑇 : 𝐸 → 2𝐸\Φ be an order-increasing
set-valued mapping. If 𝑇 satisfies the following conditions:
(𝐴
1
) Every increasing sequence in 𝑆𝑇(𝑥) has an upper

bound in 𝑆𝑇(𝑥)
(𝐴
2
)�ere is 𝑥

0
∈ 𝐸 with 𝑥

0
⪯ 𝑢, for some 𝑢 ∈ 𝑇𝑥

0

(𝐴
3
) If 𝑥 ∼ 𝑦, 𝑥, 𝑦 ∈ 𝐸, then 𝑇𝑥 = 𝑇𝑦

then 𝑇 has a fixed point; that is, there are 𝑥∗ ∈ 𝐸, 𝑢 ∈ 𝑇𝑥∗
such that 𝑥∗ ∈ 𝑇𝑥∗.

3. Existence of Nash Equilibrium
Points in Generalized Games under
Incomplete Preferences

The incomplete preference we present in the paper is more
general order relation than the preference in the field of
economic management and coincident with the reality of
economic phenomenon. It can be applied to the existence

of generalized Nash equilibrium of noncooperative game
theory.

Definition 15. Let 𝑛 be a positive integer greater than 1.
An 𝑛−person noncooperative game consists of the following
elements:

(1)The set of 𝑛 players is denoted by 𝐼 = {𝑖 = 1, 2, 3, . . . , 𝑛};
(2) For any 𝑖 ∈ 𝐼, let 𝑆

𝑖
be the strategy set of player 𝑖

and (𝑆
𝑖
, ⪯
𝑖
) be an incomplete preference pseudo separable set;

denote 𝑆 = 𝑆1 × 𝑆2 × ⋅ ⋅ ⋅ × 𝑆𝑛;
(3) Let 𝑃

𝑖
: 𝑆 → 𝑈, 𝑖 = 1, 2, 3, . . . , 𝑛 be the payoff function

for player 𝑖; denote 𝑃 = {𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
}.

The game is denoted by Γ = (𝑁, 𝑆, 𝑃,𝑈).
Every player in the 𝑛−person noncooperative game inde-

pendently chooses his own strategy 𝑥
𝑖
∈ 𝑆
𝑖
, 𝑖 = 1, 2, 3, . . . , 𝑛,

to maximize his payoff function 𝑃
𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑈. For

any 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑆, denote

𝑥
−𝑖
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖−1
, 𝑥
𝑖+1
, . . . , 𝑥

𝑛
) ∈ 𝑆,

𝑆
−𝑖
= 𝑆
1
× 𝑆
2
× ⋅ ⋅ ⋅ × 𝑆

𝑖−1
× 𝑆
𝑖+1
× ⋅ ⋅ ⋅ × 𝑆

𝑛
.

(6)

Then 𝑥
−𝑖
∈ 𝑆
−𝑖
, and 𝑥 can be written as 𝑥 = (𝑥

𝑖
, 𝑥
−𝑖
).

Definition 16. Let Γ = (𝑁, 𝑆, 𝑃,𝑈) be an 𝑛−person noncoop-
erative game.The strategy𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑆 is said to be

a generalized Nash equilibrium in the noncooperative game
Γ = (𝑁, 𝑆, 𝑃, 𝑈) under the incomplete preference, if there is
strategy 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑆, for every 𝑖 = 1, 2, 3, . . . , 𝑛;

the following order inequality holds

𝑃
𝑖
(𝑥
𝑖
, 𝑥
−𝑖
) �⪰
𝑈𝑃
𝑖
(𝑥
𝑖
, 𝑥
−𝑖
) , ∀𝑥

𝑖
∈ 𝑆
𝑖
. (7)

Lemma 17. Let (𝑆
𝑖
, ⪯𝑠𝑖) be an incomplete preference pseudo

separable set. 𝑆 = 𝑆
1
× 𝑆
2
× ⋅ ⋅ ⋅ × 𝑆

𝑛
is a coordinate ordering

set composed of 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
, for any 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑆, the order relation ⪯𝑠 in 𝑆 induced by the

partial order ⪯𝑆𝑖 , denoted as the following:

𝑥⪯𝑠𝑦 ⇐⇒ 𝑥
𝑖
⪯𝑆𝑖𝑦
𝑖
, ∀𝑖 = 1, 2, 3, . . . , 𝑛. (8)

�en (𝑆, ⪯𝑠) is an incomplete preference pseudo separable set.

Proof. First we show that (𝑆, ⪯𝑠) is an incomplete preference
set. Since (𝑆

𝑖
, ⪯𝑠𝑖) is incomplete preference set, for any 𝑥 =

(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑆, we can get 𝑥𝑖 ⪯𝑠𝑖𝑥𝑖, ∀𝑖 = 1, 2, 3, . . . , 𝑛. So
𝑥⪯𝑠𝑥. Hence the order relation ⪯𝑠 satisfies reflexive axiom.

For any 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
), and

𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ 𝑆, which satisfy 𝑥 ⪯𝑠𝑦, 𝑦⪯𝑠𝑧 ∈ 𝑆.

By Definition 15, we have 𝑥
𝑖
⪯𝑆𝑖𝑦
𝑖
, 𝑦
𝑖
⪯𝑆𝑖𝑧
𝑖
. Since (𝑆

𝑖
, ⪯𝑠𝑖) is

incomplete preference set, we have 𝑥
𝑖
⪯𝑠𝑖𝑧
𝑖
. So 𝑥⪯𝑠𝑧; that is,

𝑆 = 𝑆1 × 𝑆2 × ⋅ ⋅ ⋅ × 𝑆𝑛 is incomplete preference set.
Next we prove that the incomplete preference set (𝑆, ⪯𝑠)

is pseudo separable, for any 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑆, since

(𝑆
𝑖
, ⪯𝑠𝑖) is pseudo separable,
Let𝑀

𝑖
be an arbitrary total ordered subset of set 𝑆

𝑖
; then

there is denumerable set {𝑥𝑛
𝑖
} ⊂ 𝑀

𝑖
such that if 𝑥

𝑖
∈ 𝑀
𝑖
, 𝑥
𝑖
̸=

sup𝑀
𝑖
, there is 𝑥𝑛

𝑖 𝑛0
∈ {𝑥𝑛
𝑖
} which satisfies 𝑥𝑛

𝑖
⪯ 𝑥𝑛
𝑖 𝑛0

.
Define the following

𝑀 = 𝑀
1
×𝑀
2
× ⋅ ⋅ ⋅ × 𝑀

𝑛
. (9)
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Let 𝑥𝑛 = {𝑥𝑛
1
, 𝑥𝑛
2
, . . . , 𝑥𝑛

𝑛
}, 𝑥𝑛
𝑛0
= {𝑥𝑛
1𝑛0
, 𝑥𝑛
2𝑛0
, . . . , 𝑥𝑛

𝑛𝑛0
}; then

by the definition of𝑀, we have 𝑥𝑛 ∈ 𝑀.This together with
𝑥𝑛
𝑛0
∈ {𝑥𝑛} implies that 𝑥𝑛 ⪯𝑠𝑥𝑛

𝑛0
. Hence the incomplete

preference set (𝑆, ⪯𝑠) is pseudo separable.

Theorem 18. Let Γ = (𝑁, 𝑆, 𝑃, 𝑈) be an 𝑛−person noncoop-
erative game. Suppose that, for any 𝑥 ∈ 𝑆, the payoff function
𝑃
𝑖
, 𝑖 = 1, 2, 3, . . . , 𝑛, satisfies the following conditions:
(𝐺
1
) Every total ordered subset in 𝑃

𝑖
(𝑆
𝑖
, 𝑥
−𝑖
) has an upper

bound in 𝑃
𝑖
(𝑆
𝑖
, 𝑥
−𝑖
);

(𝐺
2
) Every increasing sequence in the inverse image {𝑧

𝑖
∈

𝑆
𝑖
: 𝑃
𝑖
(𝑆
𝑖
, 𝑥
−𝑖
) 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑃

𝑖
(𝑆
𝑖
, 𝑥
−𝑖
)} has

an upper bound;
(𝐺
3
) For any 𝑥, 𝑦 ∈ 𝑆, 𝑥 ⪯𝑆𝑦, if there is 𝑧

𝑖
∈ 𝑆
𝑖
with

𝑃
𝑖
(𝑧
𝑖
, 𝑥
−𝑖
) to be a maximal element of 𝑃

𝑖
(𝑆
𝑖
, 𝑥
−𝑖
), then there is

𝜔
𝑖
∈ 𝑆
𝑖
with 𝑧

𝑖
⪯𝑠𝑖𝜔
𝑖
such that 𝑃

𝑖
(𝜔
𝑖
, 𝑦
−𝑖
) is a maximal element

of 𝑃
𝑖
(𝑆
𝑖
, 𝑦
−𝑖
);

(𝐺
4
) If there are 𝑝, 𝑞 ∈ 𝑆 such that 𝑝⪯𝑠𝑞 and 𝑃

𝑖
(𝑞
𝑖
, 𝑝
−𝑖
) is

a maximal element of 𝑃
𝑖
(𝑆
𝑖
, 𝑝
−𝑖
);

(𝐺
5
) If 𝑝∼𝑠𝑞, 𝑝, 𝑞 ∈ 𝑆 such that 𝑃

𝑖
(𝑝
𝑖
, 𝑥
−𝑖
) = 𝑃
𝑖
(𝑞
𝑖
, 𝑥
−𝑖
).

�en there is a generalized Nash equilibrium in the
𝑛−person noncooperative game Γ = (𝑁, 𝑆, 𝑃, 𝑈).

Proof. Since (𝑆𝑖, ⪯𝑠𝑖) is an incomplete preference pseudo sep-
arable set, for every 𝑖 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑛, then, from Lemma 17,
(𝑆, ⪯𝑠) is also an incomplete preference pseudo separable set
equipped with the product order ⪯𝑠.

For every fixed 𝑖 = 1, 2, 3, . . . , 𝑛, define a set-valued
mapping 𝑇

𝑖
: 𝑆 → 2𝑆𝑖\Φ as the following:

𝑇
𝑖 (𝑥) = {𝑧𝑖 ∈ 𝑆𝑖 :

𝑃
𝑖
(𝑆
𝑖
, 𝑥
−𝑖
) is a maximal element of 𝑃

𝑖
(𝑆
𝑖
, 𝑥
−𝑖
)} ,

(10)

for all 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑆.

From assumption 𝐺
1
of this theorem, for every fixed

element 𝑥 ∈ 𝑆, every total ordered subset in 𝑃
𝑖
(𝑆
𝑖
, 𝑥
−𝑖
) has

an upper bound in (𝑈, ⪯𝑈). Then applying Zorn Lemma, the
set 𝑃
𝑖
(𝑆
𝑖
, 𝑥
−𝑖
)} has a maximal element. Therefore, 𝑇

𝑖
(𝑥) is a

nonempty subset of 𝑆𝑖. Then we define

𝑇 (𝑥) = 𝑇1 (𝑥) × 𝑇2 (𝑥) × ⋅ ⋅ ⋅ × 𝑇𝑛 (𝑥) , 𝑥 ∈ 𝑆. (11)

For any arbitrary 𝑥 ∈ 𝑆, with respect to the set 𝑇(𝑥), we
write

𝑆𝑇 (𝑥) = {𝑥 ∈ 𝑆 : 𝑥 ⪯𝑠𝑧, 𝑧 ∈ 𝑇 (𝑥)} . (12)

For every 𝑖 = 1, 2, 3, . . . , 𝑛, we have

𝑆𝑇
𝑖 (𝑥) = {𝑥𝑖 ∈ 𝑆𝑖 : 𝑥𝑖 ⪯

𝑠𝑖𝑧
𝑖
, 𝑧
𝑖
∈ 𝑇
𝑖 (𝑥)} = {𝑥𝑖 ∈ 𝑆𝑖 : 𝑥𝑖

⪯𝑠𝑖 𝑧
𝑖
, 𝑧
𝑖
∈ 𝑆
𝑖
,

𝑃
𝑖
(𝑧
𝑖
, 𝑥
−𝑖
) is a maximal element of 𝑃

𝑖
(𝑆
𝑖
, 𝑥
−𝑖
)} .

(13)

Now we prove that the operator 𝑇 satisfies the conditions
in Theorem 18. Firstly, we will show that the operator 𝑇 is
order-increasing. For any given 𝑥⪯𝑆𝑦 in 𝑆, and for any 𝑧 =
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ 𝑇(𝑥), for every 𝑖 = 1, 2, . . . , 𝑛, we have

𝑧
𝑖
∈ 𝑇
𝑖
(𝑥); that is, 𝑃

𝑖
(𝑧
𝑖
, 𝑥
−𝑖
) is a maximal element of

𝑃
𝑖
(𝑆
𝑖
, 𝑥
−𝑖
). Then from hypothesis 𝐺

3
of this theorem, there is

𝜔
𝑖
∈ 𝑆
𝑖
with 𝑧

𝑖
⪯𝑠𝑖𝜔
𝑖
such that 𝑃

𝑖
(𝜔
𝑖
, 𝑦
−𝑖
) is a maximal element

of 𝑃
𝑖
(𝑆
𝑖
, 𝑦
−𝑖
); that is, 𝜔

𝑖
∈ 𝑇
𝑖
(𝑦). Let 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
).

We obtain that 𝑧 ⪯𝑆𝜔 and 𝜔 ∈ 𝐷(𝑦). Hence the operator 𝑇
is order-increasing.

From assumption 𝐺
2
of this theorem, every increasing

sequence in 𝑇
𝑖
(𝑥) has an upper bound.Then we can similarly

show that every increasing sequence in 𝑆𝑇
𝑖
(𝑥) has an upper

bound. In fact, take an arbitrary total ordered subset 𝑀 ⊂
𝑆𝑇(𝑥). Since 𝑀 is also a total ordered subset of incomplete
preference pseudo separable set (𝐸, ⪰), there is denumerable
set {𝑥

𝑛
} ⊂ 𝑀 such that for any 𝑥 ∈ 𝑀,𝑥 ̸= sup𝑀, there are

𝑥
𝑛0
∈ {𝑥
𝑛
}, 𝑢(𝑥) ∈ 𝑇(𝑥), which satisfy 𝑥 ⪯𝑆𝑥

𝑛0
, 𝑥 ⪯𝑆𝑢(𝑥).

From the above discussion, we have that there is 𝑒(𝑥) ∈
𝑇(𝑥
𝑛0
) such that 𝑢(𝑥) ⪯𝑆𝑒(𝑥). Thus we obtain a mapping 𝑒 :

𝑆𝑇(𝑥) → 𝑇(𝑥) satisfying the following order inequality:
𝑥 ⪯ 𝑢(𝑥) ⪯𝑆𝑒(𝑥), 𝑢(𝑥) ∈ 𝑇(𝑥) with 𝑒(𝑥) ∈ 𝑇(𝑥). For any
an increasing sequence {𝑥

𝑛
} in 𝑆𝑇(𝑥), we have that there is

𝑧∗ ∈ Ω such that 𝑥
𝑛
⪯𝑆𝑧∗. By the definition of {𝑧

𝑛
}, we get

𝑥⪯𝑆𝑥
𝑛0
. (14)

So we have that {𝑥
𝑛
} is an increasing sequence; then {𝑒(𝑥

𝑛
)}

is an increasing sequence in 𝑇(𝑥). since every increasing
sequence in 𝑇(𝑥) has an upper bound in 𝑇(𝑥), we have that
there is 𝑧∗ ∈ 𝑇(𝑥) such that 𝑒(𝑥

𝑛
) ⪯𝑆𝑧∗. Since 𝑥

𝑛
⪯𝑆𝑒(𝑥

𝑛
), we

have 𝑥𝑛 ⪯𝑆𝑧∗. Hence every increasing sequence in 𝑆𝑇(𝑥) has
an upper bound in 𝑆𝑇(𝑥).

Then applying Theorem 13, it implies that the operator 𝑇
has a generalized point; that is, there are 𝑥∗ ∈ 𝐸, 𝑢 ∈ 𝑇𝑥∗ such
that 𝑥∗∼𝑆𝑢. Since the operator𝑇 is order-increasing, there are
𝑢 ∈ 𝑇(𝑥∗) and V ∈ 𝑇(𝑢) such that 𝑢⪯𝑆V.

From assumption𝐺
5
of this theorem, if 𝑥∗∼𝑆𝑢, we can get

𝑃
𝑖
(𝑥∗
𝑖
, 𝑥
−𝑖
) = 𝑃
𝑖
(𝑢
𝑖
, 𝑥
−𝑖
) . (15)

Since 𝑢 ∈ 𝑇(𝑥∗), we have that 𝑃
𝑖
(𝑢
𝑖
, 𝑥∗
−𝑖
) is a maximal

element of 𝑃
𝑖
(𝑆
𝑖
, 𝑥∗
−𝑖
). This together with 𝑃

𝑖
(𝑥∗
𝑖
, 𝑥
−𝑖
) =

𝑃
𝑖
(𝑢
𝑖
, 𝑥
−𝑖
) implies that 𝑃

𝑖
(𝑥∗
𝑖
, 𝑥∗
−𝑖
) is a maximal element of

𝑃
𝑖
(𝑆
𝑖
, 𝑥∗
−𝑖
). It implies that for any 𝑥∗ = (𝑥∗

1
, 𝑥∗
2
, . . . , 𝑥∗

𝑛
) ∈ 𝑆,

𝑖 = 1, 2, 3, . . . , 𝑛, the following inequality is established

𝑃
𝑖
(𝑥
𝑖
, 𝑥∗
−𝑖
) �⪰
𝑈𝑃
𝑖
(𝑥∗
𝑖
, 𝑥
−𝑖
) , ∀𝑥

𝑖
∈ 𝑆
𝑖
. (16)

This shows that 𝑥∗ = (𝑥∗
1
, 𝑥∗
2
, . . . , 𝑥∗

𝑛
) ∈ 𝑆 is a generalized

Nash equilibrium in the 𝑛−person noncooperative game Γ =
(𝑁, 𝑆, 𝑃, 𝑈).

4. Conclusion

Incomplete preference is more general order relation than
complete preference in the field of economic management,
because restriction on order relation is eased. So it is more
consistent with the reality of economic management phe-
nomenons. The generalized game model under the incom-
plete preference can play an important application in eco-
nomic management problems. Generalized game plays an
important role to prove existence of general equilibrium.
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But many economic problems ultimately come down to
nonlinear problems which are denoted by the utility function
without preference in an order infinite dimensional space.
The traditional general game model cannot deal with the
problems such as the utility function without preference,
incomplete preference, order infinite dimension space, or
nonlinear problem. Now since there are no ready-made
methods to deal with the problems, new research methods
must be sought. The generalized game model under the
incomplete preference, which is proposed in this paper, can
deal with the problems. But in this paper, the research is
limited to the existence of the equilibrium. The stability of
equilibrium and new game model which are more close to
the reality are our next step research direction.
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In this paper, by using the spectral analysis of the relevant linear operator and Gelfand’s formula, some properties of the first
eigenvalue of a fractional differential equation were obtained; combining fixed point index theorem, sufficient conditions for the
existence of positive solutions are established. An example is given to demonstrate the application of our main results.

1. Introduction

Fractional differential equations describe many phenomena
in various fields of engineering and scientific disciplines
such as physics, biophysics, chemistry, control theory, signal
and image processing, and aerodynamics (see [1, 2]). In the
last decade, boundary value problems of fractional calculus
have received a great attention, based on various analytic
techniques, and a variety of results concerning the existence
of solutions can be found in the literature [3–19]. For example,
Zhang [17] studied the following singular fractional boundary
value problem (FBVP):

𝐷𝛼0+𝑦 (𝑡) + 𝑞 (𝑡) 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡) , . . . , 𝑦(𝑛−2) (𝑡)) = 0,
0 < 𝑡 < 1,

𝑦 (0) = 𝑦 (0) = ⋅ ⋅ ⋅ = 𝑦(𝑛−2) (0) = 𝑦(𝑛−2) (1) = 0,
(1)

where 𝛼 ∈ (𝑛 − 1, 𝑛], 𝑛 ≥ 2, 𝐷𝛼0+ is the standard Riemann-
Liouville derivative, the nonlinear term 𝑓 = 𝑔 + ℎ, and 𝑔
and ℎ have different monotone properties. By using a mixed
monotone method, a unique positive solution is obtained.

Integral boundary conditions arise in thermal conduction
problems [20], semiconductor problems [21], and hydrody-
namic problems [22]. Recently, the existence and multiplicity
of positive solutions for nonlinear ordinary differential equa-
tions with integral boundary value problems have received
a great deal of attention. To identify a few, see [23–27] and
the references therein for integer order integral boundary

value problems and [28–33] for fractional order integral
boundary value problems. In [28], authors using monotone
iterative technique investigated the existence and uniqueness
of the positive solutions of higher-order nonlocal fractional
differential equations of the type

𝐷𝛼0+𝑦 (𝑡) + 𝑓 (𝑡, 𝑦 (𝑡)) = 0, 0 < 𝑡 < 1, 𝑛 − 1 < 𝛼 ≤ 𝑛,
𝑦 (0) = 𝑦 (0) = ⋅ ⋅ ⋅ = 𝑦(𝑛−2) (0) = 0,

𝑦 (1) = 𝜆 [𝑦] ,
(2)

where 𝑓 ∈ 𝐶((0, 1) × R+,R+). By means of Schauders fixed
point theorem, FBVP (2) are also studied in [29]. In [30], the
authors investigated problems (2) with 𝑓(𝑡, 𝑦(𝑡)) replaced by𝑞(𝑡)𝑓(𝑡, 𝑦(𝑡)), and the existence and multiplicity of positive
solutions are obtained by means of the fixed point index
theory in cones.

Inspired by the work of the above papers, the aim of this
paper is to establish the existence of positive solutions for the
following nonlinear fractional differential equation involving
Stieltjes integrals conditions:

−𝐷𝛼0+𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡) , . . . , 𝑦(𝑛−2) (𝑡)) ,
0 < 𝑡 < 1,

𝑦 (0) = 𝑦 (0) = ⋅ ⋅ ⋅ = 𝑦(𝑛−2) (0) = 0,
𝑦(𝑛−2) (1) = 𝜆 [𝑦(𝑛−2)] ,

(3)
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where 𝐷𝛼0+ is the Riemann-Liouville fractional derivative,
𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 2, 𝜆[𝑧] = ∫1

0
𝑧(𝑡)𝑑𝐴(𝑡) is a linear

functional on 𝐶[0, 1] given by a Stieltjes integral with 𝐴
representing a suitable function of bounded variation, and𝑑𝐴 can be a signed measure. 𝑓 : (0, 1) × (R+0 )𝑛−1 → R+ is
a continuous function, the nonlinearity 𝑓(𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1)
may be singular at 𝑡 = 0, 1, and 𝑧1 = 𝑧2 = ⋅ ⋅ ⋅ = 𝑧𝑛−1 = 0.
HereR+ = [0, +∞) and R+0 = (0, +∞).

Our work presented in this paper has the following fea-
tures. First of all, we discuss the boundary value problemwith
the Stieltjes integral boundary conditions𝜆[𝑧] = ∫1

0
𝑧(𝑡)𝑑𝐴(𝑡)

appearing in the boundary conditions of FBVP (2) as more
general which was not considered in the literature [15], cov-
ering two-point,multipoint, and nonlocal problems as special
cases. The second new feature is that the nonlinearity 𝑓 is
allowed to depend on higher order derivatives of unknown
function 𝑦(𝑡) up to 𝑛 − 2 order which was not considered in
the literature [28–30]. Thirdly, we allow that the nonlinearity𝑓(𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1)may be singular at 𝑡 = 0, 1 and 𝑧1 = 𝑧2 =⋅ ⋅ ⋅ = 𝑧𝑛−1 = 0. Therefore, our study improves and extends
the previous results to some degree in the relevant literature
[17, 28–30].

The rest of this paper is organized as follows. In Section 2,
we present some lemmas that are used to prove our main
results. In Section 3, the existence of positive solutions is
established under some sufficient conditions. In Section 4,
an example is given to demonstrate the application of our
theoretical results.

2. Basic Definitions and Preliminaries

In this paper, our work is based on the theory of fractional
calculus, and, for details on definitions of Riemann-Liouville
fractional calculus, we refer the reader to [1, 2].

Let 𝐸 = 𝐶[0, 1], and then 𝐸 is a Banach space with the
norm ‖𝑦‖ = max0≤𝑡≤1|𝑦(𝑡)|, for any 𝑦 ∈ 𝐸. Let 𝑃 = {𝑦 ∈ 𝐸 :𝑦(𝑡) ≥ 0 for 𝑡 ∈ [0, 1]} be a cone in 𝐸 and construct a subcone
of 𝑃 as follows:

𝐾 = {𝑦 ∈ 𝑃 : 𝑦 (𝑡) ≥ 𝑡𝛼−𝑛+1 (1 − 𝑡) 𝑦 for 𝑡 ∈ [0, 1]} . (4)

For any 𝑟 > 0, let 𝐾𝑟 = {𝑦 ∈ 𝐾 : ‖𝑦‖ < 𝑟}, 𝜕𝐾𝑟 = {𝑦 ∈ 𝐾 :‖𝑦‖ = 𝑟}, and 𝐾𝑟 = {𝑦 ∈ 𝐾 : ‖𝑦‖ ≤ 𝑟}.
Set

𝐺 (𝑡, 𝑠) = 1Γ (𝛼 − 𝑛 + 2)
⋅ {{{

[𝑡 (1 − 𝑠)]𝛼−𝑛+1 − (𝑡 − 𝑠)𝛼−𝑛+1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
[𝑡 (1 − 𝑠)]𝛼−𝑛+1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(5)

Lemma 1 (see [17]). Let 𝑞 ∈ 𝐶𝑟[0, 1](𝐶𝑟[0, 1] = {𝑞 ∈𝐶[0, 1], 𝑡𝑟𝑞 ∈ 𝐶[0, 1], 0 ≤ 𝑟 < 1}). Then the boundary value
problem

−𝐷𝛼−𝑛+20+ 𝑢 (𝑡) = 𝑞 (𝑡) ,
0 < 𝑡 < 1, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 2,

𝑢 (0) = 0, 𝑢 (1) = 0
(6)

has a unique solution

𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑑𝑠. (7)

According to the theory of fractional calculus, the unique
solution of the problem

−𝐷𝛼−𝑛+20+ 𝑢 (𝑡) = 𝑞 (𝑡) ,
0 < 𝑡 < 1, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 2,

𝑢 (0) = 0, 𝑢 (1) = 𝜆 [𝑢]
(8)

is 𝛾(𝑡) = 𝑡𝛼−𝑛+1 with 𝜆[𝑢] replaced by 1 and 𝑞(𝑡) ≡ 0. As in
[27], Green’s function for boundary value problem (8) is given
by

𝐻(𝑡, 𝑠) = 𝛾 (𝑡)1 − 𝜆 [𝛾]G (𝑠) + 𝐺 (𝑡, 𝑠) , (9)

whereG(𝑠) fl ∫1
0
𝐺(𝑡, 𝑠)𝑑𝐴(𝑡).

Lemma2. Suppose thatG(𝑠) ≥ 0 for 𝑠 ∈ [0, 1] and 0 ≤ 𝜆[𝛾] <1, and then the functions 𝐺(𝑡, 𝑠) and𝐻(𝑡, 𝑠) have the following
properties:

(1) 𝐺(𝑡, 𝑠) and𝐻(𝑡, 𝑠) are nonnegative and continuous for(𝑡, 𝑠) ∈ [0, 1] × [0, 1].
(2) 𝐺(𝑡, 𝑠) satisfies

𝑡𝛼−𝑛+1 (1 − 𝑡) 𝑠 (1 − 𝑠)𝛼−𝑛+1Γ (𝛼 − 𝑛 + 1) ≤ 𝐺 (𝑡, 𝑠)
≤ 𝑠 (1 − 𝑠)𝛼−𝑛+1Γ (𝛼 − 𝑛 + 1) , 𝑓𝑜𝑟 𝑡, 𝑠 ∈ [0, 1] .

(10)

(3) 𝐻(𝑡, 𝑠) satisfies
𝑡𝛼−𝑛+1 (1 − 𝑡)Φ (𝑠) ≤ 𝐻 (𝑡, 𝑠) ≤ Φ (𝑠) ,

𝑓𝑜𝑟 𝑡, 𝑠 ∈ [0, 1] , (11)

where

Φ (𝑠) = G (𝑠)1 − 𝜆 [𝛾] + 𝑠 (1 − 𝑠)𝛼−𝑛+1Γ (𝛼 − 𝑛 + 1) . (12)

Throughout this paper, we adopt the following assump-
tions:

(H0) 𝐴 is a function of bounded variation, G(𝑠) ≥ 0
for 𝑠 ∈ [0, 1] and 0 ≤ 𝜆[𝛾] < 1.
(H1) 𝑓 : (0, 1) × (R+0 )𝑛−1 → R+ is a continuous
function and, for any 0 < 𝑟 < 𝑅 < +∞,

lim
𝑚→+∞

sup
𝑧1∈𝐾𝑅/(𝑛−2)!
⋅⋅⋅
𝑧𝑛−2∈𝐾𝑅
𝑧𝑛−1∈𝐾𝑅\𝐾𝑟

∫
𝐻(𝑚)

Φ (𝑠)

⋅ 𝑓 (𝑠, 𝑧1 (𝑠) , 𝑧2 (𝑠) , . . . , 𝑧𝑛−1 (𝑠)) 𝑑𝑠 = 0,
(13)

where𝐻(𝑚) = [0, 1/𝑚] ∪ [(𝑚 − 1)/𝑚, 1].
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In order to overcome the difficulty due to the dependance
of 𝑓 on derivatives, we consider the following modified
problem:

− 𝐷𝛼−𝑛+20+ 𝑥 (𝑡)
= 𝑓 (𝑡, 𝐼𝑛−20+ 𝑥 (𝑡) , 𝐼𝑛−30+ 𝑥 (𝑡) , . . . , 𝐼10+𝑥 (𝑡) , 𝑥 (𝑡)) ,

0 < 𝑡 < 1,
𝑥 (0) = 0, 𝑥 (1) = 𝜆 [𝑥]

(14)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 2.
Lemma 3 (see [15]). The nonlocal FBVP (3) has a positive
solution 𝑦(𝑡) = 𝐼𝑛−20+ 𝑥(𝑡) if and only if the nonlinear fractional
integrodifferential equation (14) has a positive solution 𝑥(𝑡).

Define a nonlinear operator 𝑇 : 𝐾\ {0} → 𝑃 and a linear
operator 𝐿 : 𝐸 → 𝐸 as follows:

(𝑇𝑥) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . ,

𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] ,
(15)

(𝐿𝑥) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] . (16)

Observe that problem (14) has solutions if the operator
equation 𝑥 = 𝑇𝑥 has fixed points.

Lemma 4 (Krein-Rutmann [34]). Let 𝐿 : 𝐸 → 𝐸 be a
continuous linear operator, 𝑃 be a total cone, and 𝐿(𝑃) ⊂ 𝑃.
If there exist 𝜓 ∈ 𝐸 \ (−𝑃) and a positive constant 𝑐 such
that 𝑐𝐿(𝜓) ≥ 𝜓, then the spectral radius 𝑟(𝐿) ̸= 0 and 𝐿
has a positive eigenfunction corresponding to its first eigenvalue𝜆 = (𝑟(𝐿))−1.
Lemma 5 (Gelfand’s formula [34]). For a bounded linear
operator 𝐿 and the operator norm ‖ ⋅ ‖, the spectral radius of𝐿 satisfies

𝑟 (𝐿) = lim
𝑚→+∞

𝐿𝑚1/𝑚 . (17)

Lemma 6. Assume that (𝐻0) holds. Then 𝐿 : 𝐾 → 𝐾
defined by (16) is a completely continuous linear operator,
and the spectral radius 𝑟(𝐿) ̸= 0; moreover 𝐿 has a positive
eigenfunction 𝜑∗ corresponding to its first eigenvalue 𝜆1 =(𝑟(𝐿))−1.
Proof. For any 𝑥 ∈ 𝐾, by Lemma 2, we can obtain

‖𝐿𝑥‖ = max
𝑡∈[0,1]

∫1
0
𝐻(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 ≤ ∫1

0
Φ (𝑠) 𝑥 (𝑠) 𝑑𝑠. (18)

On the other hand, from Lemma 2, we also have

(𝐿𝑥) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

≥ 𝑡𝛼−𝑛+1 (1 − 𝑡) ∫1
0
Φ (𝑠) 𝑥 (𝑠) 𝑑𝑠.

(19)

Then (18) and (19) yield that

(𝐿𝑥) (𝑡) ≥ 𝑡𝛼−𝑛+1 (1 − 𝑡) ‖𝐿𝑥‖ . (20)

Consequently, 𝐿 : 𝐾 → 𝐾. And, from the uniform
continuity of 𝐻(𝑡, 𝑠), (𝑡, 𝑠) ∈ [0, 1] × [0, 1], we have that𝐿 : 𝐾 → 𝐾 is a completely continuous linear operator.

Next we will show that 𝐿 has the first eigenvalue 𝜆1 > 0 by
using Krein-Rutmann’s theorem. In fact, by Lemma 2, there
exists 𝑡0 ∈ (0, 1) such that 𝐻(𝑡0, 𝑡0) > 0. Thus there exists[𝑎, 𝑏] ⊂ (0, 1) such that 𝑡0 ∈ (𝑎, 𝑏) and 𝐻(𝑡, 𝑠) > 0 for all𝑡, 𝑠 ∈ [𝑎, 𝑏]. Choose 𝑥 ∈ 𝐾 such that 𝑥(𝑡0) > 0 and 𝑥(𝑡) = 0
for all 𝑡 ∉ [𝑎, 𝑏]. Then, for any 𝑡 ∈ [𝑎, 𝑏], we have

(𝐿𝑥) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 ≥ ∫𝑏

𝑎
𝐻(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

> 0.
(21)

So there exists 𝑐 > 0 such that 𝑐(𝐿𝑥)(𝑡) ≥ 𝑥(𝑡) for 𝑡 ∈ [0, 1].
From Lemma 4, we know that the spectral radius 𝑟(𝐿) ̸= 0
and 𝐿 has a positive eigenfunction 𝜑∗ corresponding to its
first eigenvalue 𝜆1 = (𝑟(𝐿))−1; i.e., 𝜆1𝐿𝜑∗ = 𝜑∗.The proof is
completed.

Lemma 7. Assume that (𝐻0), (𝐻1) hold; then 𝑇 : 𝐾𝑅 \𝐾𝑟 →𝐾 is completely continuous.

Proof. First, we prove 𝑇(𝐾𝑅 \ 𝐾𝑟) ⊂ 𝐾. In fact, for any 𝑥 ∈𝐾𝑅 \ 𝐾𝑟, Lemma 2 implies that

(𝑇𝑥) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . ,

𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠 ≤ ∫1
0
Φ(𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) ,

𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] .
(22)

Hence,

‖𝑇𝑥‖ ≤ ∫1
0
Φ (𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) ,

𝑥 (𝑠)) 𝑑𝑠.
(23)

On the other hand, from Lemma 2, we also have

(𝑇𝑥) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
≥ 𝑡𝛼−𝑛+1 (1 − 𝑡) ∫1

0
Φ(𝑠)

⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
≥ 𝑡𝛼−𝑛+1 (1 − 𝑡) ‖𝑇𝑥‖ .

(24)

Therefore, 𝑇(𝐾𝑅 \ 𝐾𝑟) ⊂ 𝐾.
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Next, for any 𝑟 > 0, we assert that

sup
𝑥∈𝜕𝐾𝑟

∫1
0
Φ (𝑠)

⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
< +∞,

(25)

which implies that 𝑇 : 𝐾 \ {0} → 𝑃 is well defined. In fact, it
follows from (𝐻1) that there exists a natural number 𝑚 such
that

sup
𝑥∈𝜕𝐾𝑟

∫
𝐻(𝑚)

Φ(𝑠)
⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
< 1.

(26)

For any 𝑥 ∈ 𝜕𝐾𝑟, as 𝑥 ∈ 𝐾, we have

𝑡𝛼−𝑛+1 (1 − 𝑡) ‖𝑥‖ ≤ 𝑥 (𝑡) ≤ ‖𝑥‖ = 𝑟, 𝑡 ∈ [0, 1] , (27)

and

𝑟𝑡𝛼−𝑛+𝑖+1 (1 − 𝑡) Γ (𝛼 − 𝑛 + 2)Γ (𝛼 − 𝑛 + 𝑖 + 2)
= ‖𝑥‖ 𝑡𝛼−𝑛+𝑖+1 (1 − 𝑡)B (𝑖, 𝛼 − 𝑛 + 2)Γ (𝑖)
≤ ‖𝑥‖Γ (𝑖) ∫

𝑡

0
(𝑡 − 𝑠)𝑖−1 𝑠𝛼−𝑛+1 (1 − 𝑡) 𝑑𝑠 ≤ 𝐼𝑖0+𝑥 (𝑡)

= 1Γ (𝑖) ∫
𝑡

0
(𝑡 − 𝑠)𝑖−1 𝑥 (𝑠) 𝑑𝑠 ≤ 1𝑖! ‖𝑥‖ = 𝑟𝑖! ,

𝑡 ∈ [0, 1] , 𝑖 = 1, 2, . . . , 𝑛 − 2,

(28)

where B(⋅, ⋅) is the beta function. So, for any 1/𝑚 ≤ 𝑡 ≤ 1 −1/𝑚, (27) and (28) yield that

𝑟𝑚𝛼−𝑛+2 ≤ 𝑥 (𝑡) ≤ 𝑟,
Γ (𝛼 − 𝑛 + 2) 𝑟𝑚𝛼−𝑛+𝑖+2Γ (𝛼 − 𝑛 + 𝑖 + 2) ≤ 𝐼𝑖0+𝑥 (𝑡) ≤ 𝑟𝑖! ,

𝑖 = 1, 2, . . . , 𝑛 − 2.
(29)

From (26) and (29), we have

sup
𝑥∈𝜕𝐾𝑟

∫1
0
Φ (𝑠)

⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
≤ sup
𝑥∈𝜕𝐾𝑟

∫
𝐻(𝑚)

Φ (𝑠)
⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
+ sup
𝑥∈𝜕𝐾𝑟

∫1−1/𝑚
1/𝑚

Φ(𝑠)
⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
< 1 +𝑀1 ∫1

0
Φ(𝑠) 𝑑𝑠 < +∞,

(30)

where

𝑀1 = max{𝑓 (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1) : (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1)
∈ [ 1𝑚, 1 − 1𝑚] × [Γ (𝛼 − 𝑛 + 2) 𝑟𝑚𝛼Γ (𝛼) , 𝑟(𝑛 − 2)!]
× [Γ (𝛼 − 𝑛 + 2) 𝑟𝑚𝛼−1Γ (𝛼 − 1) , 𝑟(𝑛 − 3)!] × ⋅ ⋅ ⋅
× [ Γ (𝛼 − 𝑛 + 2) 𝑟𝑚𝛼−𝑛+3Γ (𝛼 − 𝑛 + 3) , 𝑟] × [ 𝑟𝑚𝛼−𝑛+2 , 𝑟]} .

(31)

Thus (25) is true which implies that 𝑇 is uniformly bounded
on any bounded set.

Now we will show that 𝑇 : 𝐾𝑅 \ 𝐾𝑟 → 𝐾 is continuous.
Let 𝑥𝑗, 𝑥0 ∈ 𝐾𝑅 \ 𝐾𝑟 and ‖𝑥𝑗 − 𝑥0‖ → 0 (𝑗 → ∞). For any𝜀 > 0, by (𝐻1), there exists a natural number 𝑘 > 0 such that

sup
𝑥∈𝐾𝑅\𝐾𝑟

∫
𝐻(𝑘)

Φ(𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , . . . , 𝑥 (𝑠)) 𝑑𝑠 < 𝜀4 . (32)

Since 𝑓(𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1) is uniformly continuous on[1/𝑘, 1 − 1/𝑘] × [Γ(𝛼 − 𝑛 + 2)𝑟/𝑘𝛼Γ(𝛼), 𝑟/(𝑛 − 2)!] × ⋅ ⋅ ⋅ ×[𝑟/𝑘𝛼−𝑛+2, 𝑟], we have that
lim
𝑗→+∞

𝑓 (𝑡, 𝐼𝑛−20+ 𝑥𝑗 (𝑡) , . . . , 𝑥𝑗 (𝑡))
− 𝑓 (𝑡, 𝐼𝑛−20+ 𝑥0 (𝑡) , . . . , 𝑥0 (𝑡)) = 0

(33)

holds uniformly on 𝑡 ∈ [1/𝑘, 1 − 1/𝑘]. It follows from the
Lebesgue control convergence theorem that

∫1−1/𝑘
1/𝑘

Φ (𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥𝑗 (𝑠) , . . . , 𝑥𝑗 (𝑠))
− 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥0 (𝑠) , . . . , 𝑥0 (𝑠)) 𝑑𝑠 → 0,

𝑎𝑠 𝑗 → ∞.
(34)
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Thus, for the above 𝜀 > 0, there exists a natural number 𝐽 such
that, for 𝑗 > 𝐽, we have

∫1−1/𝑘
1/𝑘

Φ(𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥𝑗 (𝑠) , . . . , 𝑥𝑗 (𝑠))
− 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥0 (𝑠) , . . . , 𝑥0 (𝑠)) 𝑑𝑠 < 𝜀2 .

(35)

It follows from (32) and (35) that when 𝑗 > 𝐽,
𝑇𝑥𝑗 − 𝑇𝑥0 ≤ ∫

𝐻(𝑘)
Φ(𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥𝑗 (𝑠) , . . . , 𝑥𝑗 (𝑠))

− 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥0 (𝑠) , . . . , 𝑥0 (𝑠)) 𝑑𝑠
+ ∫1−1/𝑘
1/𝑘

Φ (𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥𝑗 (𝑠) , . . . , 𝑥𝑗 (𝑠))
− 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥0 (𝑠) , . . . , 𝑥0 (𝑠)) 𝑑𝑠 ≤ 2
⋅ sup
𝑥∈𝐾𝑅\𝐾𝑟

∫
𝐻(𝑘)

Φ(𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , . . . , 𝑥 (𝑠)) 𝑑𝑠
+ 𝜀2 < 2 × 𝜀4 + 𝜀2 = 𝜀.

(36)

Hence, 𝑇 : 𝐾𝑅 \ 𝐾𝑟 → 𝐾 is continuous.
For any bounded set 𝐵 ⊂ 𝐾𝑅 \ 𝐾𝑟, we show that 𝑇(𝐵) is

equicontinuous. In fact, by (𝐻1), for any 𝜀 > 0, there exists a
natural number 𝑙 such that

sup
𝑥∈𝐾𝑅\𝐾𝑟

∫
𝐻(𝑙)

Φ (𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , . . . , 𝑥 (𝑠)) 𝑑𝑠 < 𝜀4 . (37)

Let

𝑀2 = max{𝑓 (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1) : (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1)
∈ [1𝑙 , 1 − 1𝑙 ] × [Γ (𝛼 − 𝑛 + 2) 𝑟𝑙𝛼Γ (𝛼) , 𝑟(𝑛 − 2)!]
× [Γ (𝛼 − 𝑛 + 2) 𝑟𝑙𝛼−1Γ (𝛼 − 1) , 𝑟(𝑛 − 3)!] × ⋅ ⋅ ⋅
× [ Γ (𝛼 − 𝑛 + 2) 𝑟𝑙𝛼−𝑛+3Γ (𝛼 − 𝑛 + 3) , 𝑟] × [ 𝑟𝑙𝛼−𝑛+2 , 𝑟]} .

(38)

Since𝐻(𝑡, 𝑠) is uniformly continuous on [0, 1]× [0, 1], for the
above 𝜀 > 0 and a fixed 𝑠 ∈ [1/𝑙, 1 − 1/𝑙], there exists 𝛿 > 0
such that

𝐻 (𝑡, 𝑠) − 𝐻 (𝑡, 𝑠) < 𝜀2 (𝑀2 + 1) . (39)

for |𝑡−𝑡| < 𝛿, 𝑡, 𝑡 ∈ [0, 1]. Hence, for |𝑡−𝑡| < 𝛿, 𝑡, 𝑡 ∈ [0, 1],
and 𝑥 ∈ 𝐵, we have

𝑇𝑥 (𝑡) − 𝑇𝑥 (𝑡) ≤ ∫
𝐻(𝑘)

𝐻 (𝑡, 𝑠) − 𝐻 (𝑡, 𝑠)
⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
+ ∫1−1/𝑘
1/𝑘

𝐻 (𝑡, 𝑠) − 𝐻 (𝑡, 𝑠)
⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠 ≤ 2
⋅ sup
𝑥∈𝐾𝑅\𝐾𝑟

∫
𝑒(𝑘)

Φ(𝑠)
⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
+ sup
𝑥∈𝐾𝑅\𝐾𝑟

∫1−1/𝑘
1/𝑘

𝐻 (𝑡, 𝑠) − 𝐻(𝑡, 𝑠)
⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠 < 2 × 𝜀4
+ 𝜀2 = 𝜀,

(40)

which show that 𝑇(𝐵) is equicontinuous. According to the
Ascoli-Arzela theorem, 𝑇 : 𝐾𝑅 \ 𝐾𝑟 → 𝐾 is completely
continuous. The proof is completed.

Lemma 8 (see [35]). Let 𝐾 be a cone in Banach space 𝐸.
Suppose that 𝑇 : 𝐾𝑟 → 𝐾 is a completely continuous operator.

(i) If there exists 𝑦0 ∈ 𝐾 \ {𝜃} such that 𝑦 − 𝑇𝑦 ̸= 𝜇𝑦0 for
any 𝑦 ∈ 𝜕𝐾𝑟 and 𝜇 ≥ 0, then 𝑖(𝑇,𝐾𝑟, 𝐾) = 0.

(ii) If 𝑇𝑦 ̸= 𝜇𝑦 for any 𝑦 ∈ 𝜕𝐾𝑟 and 𝜇 ≥ 1, then𝑖(𝑇,𝐾𝑟, 𝐾) = 1.
3. Main Results

Theorem 9. Suppose that the conditions (𝐻0) and (𝐻1) are
satisfied, and

lim inf
𝑧1→0
⋅⋅⋅
𝑧𝑛−1→0

𝑓 (𝑡, 𝑧1, . . . , 𝑧𝑛−1)𝑧1 + ⋅ ⋅ ⋅ + 𝑧𝑛−1 > 𝜆1,

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 𝑡 ∈ [0, 1] ,
(41)

lim sup
𝑧1+⋅⋅⋅+𝑧𝑛−1→+∞
𝑧𝑛−1→+∞

𝑓 (𝑡, 𝑧1, . . . , 𝑧𝑛−1)𝑧𝑛−1 < 𝜆1,
𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 𝑡 ∈ [0, 1] ,

(42)

where 𝜆1 is the first eigenvalue of 𝐿 defined by (16). Then the
FBVP (3) has at least one positive solution.
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Proof. By (41), there exists 𝑟 > 0 such that
𝑓 (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1) ≥ 𝜆1 (𝑧1 + 𝑧2 + ⋅ ⋅ ⋅ + 𝑧𝑛−1) ,

𝑧1 ≤ 𝑟(𝑛 − 2)! , . . . , 𝑧𝑛−1 ≤ 𝑟, 𝑡 ∈ [0, 1] .
(43)

Let𝜑∗ be the positive eigenfunction of 𝐿 corresponding to𝜆1,
and thus 𝜑∗ = 𝜆1𝐿𝜑∗. For any 𝑥 ∈ 𝜕𝐾𝑟, by virtue of (27) and
(28), that is𝐼𝑛−20+ 𝑥 (𝑠) ≤ 𝑟(𝑛 − 2)! , . . . , 𝐼10+𝑥 (𝑠) ≤ 𝑟,

|𝑥 (𝑠)| ≤ 𝑟, 𝑡 ∈ [0, 1] ,
(44)

from (43) and (44), we have

(𝑇𝑥) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
≥ 𝜆1 ∫1

0
𝐻(𝑡, 𝑠) (𝐼𝑛−20+ 𝑥 (𝑠) + 𝐼𝑛−30+ 𝑥 (𝑠) + ⋅ ⋅ ⋅

+ 𝐼10+𝑥 (𝑠) + 𝑥 (𝑠)) 𝑑𝑠 ≥ 𝜆1 (𝐿𝑥) (𝑡) ,
𝑡 ∈ [0, 1] .

(45)

We may suppose that 𝑇 has no fixed point on 𝜕𝐾𝑟
(otherwise, the proof is finished). Now we show that

𝑥 − 𝑇𝑥 ̸= 𝜇𝜑∗, 𝑥 ∈ 𝜕𝐾𝑟, 𝜇 ≥ 0. (46)

If, otherwise, there exist 𝑥0 ∈ 𝜕𝐾𝑟 and 𝜇0 ≥ 0 such that𝑥0 − 𝑇𝑥0 = 𝜇0𝜑∗, obviously, 𝜇0 > 0 and 𝑥0 = 𝑇𝑥0 + 𝜇0𝜑∗ ≥𝜇0𝜑∗. Let 𝜇 = sup{𝜇 | 𝑥0 ≥ 𝜇𝜑∗}, and then 𝜇 ≥ 𝜇0 > 0 and𝑥0 ≥ 𝜇𝜑∗. Since 𝐿(𝐾) ⊂ 𝐾, we have 𝜆1𝐿𝑥0 ≥ 𝜆1𝜇𝐿𝜑∗ = 𝜇𝜑∗.
Therefore, by (45), we have

𝑥0 = 𝑇𝑥0 + 𝜇0𝜑∗ ≥ 𝜆1𝐿𝑥0 + 𝜇0𝜑∗ ≥ 𝜇𝜑∗ + 𝜇0𝜑∗
= (𝜇 + 𝜇0) 𝜑∗, (47)

which contradicts the definition of 𝜇. Hence (46) is true and
it follows from Lemma 8 that

𝑖 (𝑇, 𝐾𝑟, 𝐾) = 0. (48)

Now we choose a constant 0 < 𝜌 < 1 and define a linear
operator �̃�𝑥 = 𝜌𝜆1𝐿𝑥, and then �̃� : 𝐸 → 𝐸 is a bounded
linear operator and �̃�(𝐾) ⊂ 𝐾. Moreover �̃�𝜑∗ = 𝜌𝜆1𝐿𝜑∗ =𝜌𝜑∗, so the spectral radius of �̃� is 𝑟(�̃�) = 𝜌 and �̃� also has the
first eigenvalue (𝑟(�̃�))−1 = 𝜌−1 > 1. By Gelfand’s formula, we
know

𝜌 = lim
𝑚→+∞

�̃�𝑚1/𝑚 . (49)

Let 𝜀0 = (1/2)(1 − 𝜌); by (49), there exists a sufficiently
large natural number𝑀 such that𝑚 ≥ 𝑀 implies that ‖�̃�𝑚‖ ≤(𝜌 + 𝜀0)𝑚. For any 𝑥 ∈ 𝐸, define

‖𝑥‖∗ = 𝑀∑
𝑖=1

(𝜌 + 𝜀0)𝑀−𝑖 �̃�𝑖−1𝑥 , (50)

where �̃�0 = 𝐼 is the identity operator. Clearly, ‖ ⋅ ‖∗ is also the
norm of 𝐸.

On the other hand, it follows from (42) that there exists𝑅0 > 𝑟 such that

𝑓 (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1) ≤ 𝜌𝜆1𝑧𝑛−1,𝑧1 + ⋅ ⋅ ⋅ + 𝑧𝑛−1 ≥ 𝑅0, 𝑧𝑛−1 ≥ 𝑅0. (51)

Let

𝑀0 = sup
𝑥∈𝜕𝐾𝑅0

∫1
0
Φ(𝑠)

⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠,
(52)

and then, by (25), we know that 𝑀0 < +∞. For the sake of
convenience, let𝑀∗0 = ‖𝑀0‖∗ and choose

𝑅 > max{𝑅0, 2𝑀∗0𝜀0 (𝜌 + 𝜀0)𝑀−1} . (53)

In the following we will prove that

𝑇𝑥 ̸= 𝜇𝑥, 𝑥 ∈ 𝜕𝐾𝑅, 𝜇 ≥ 1. (54)

If, otherwise, there exist 𝑥1 ∈ 𝜕𝐾𝑅 and 𝜇1 ≥ 1 such that𝑇𝑥1 = 𝜇1𝑥1. It follows from 𝑅 > 𝑅0 and 𝑥1 ∈ 𝐶[0, 1] that
there exists 0 < 𝑡1 ≤ 1 such that 𝑥1(𝑡1) = 𝑅0. Thus let 𝑥(𝑡) =
min{𝑥1(𝑡), 𝑅0}, and then we have ‖𝑥‖ = 𝑅0 and 𝑥 ∈ 𝜕𝐾𝑅0 .
Now set

𝐷 (𝑥1) = {𝑡 ∈ [0, 1] : 𝑥1 (𝑡) > 𝑅0} , (55)

and then, for any 𝑡 ∈ 𝐷(𝑥1), we have |𝑥1(𝑡)| > 𝑅0 and|𝐼𝑛−20+ 𝑥1(𝑡) + 𝐼𝑛−30+ 𝑥1(𝑡) + ⋅ ⋅ ⋅ + 𝐼10+𝑥1(𝑡) + 𝑥1(𝑡)| > 𝑅0. It follows
from (51) and Lemma 2 that

(𝑇𝑥1) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥1 (𝑠) , 𝐼𝑛−30+ 𝑥1 (𝑠) , . . . ,

𝐼10+𝑥1 (𝑠) , 𝑥1 (𝑠)) 𝑑𝑠 ≤ ∫
𝐷(𝑥1)

𝐻(𝑡, 𝑠) 𝑓 (𝑠,
𝐼𝑛−20+ 𝑥1 (𝑠) , 𝐼𝑛−30+ 𝑥1 (𝑠) , . . . , 𝐼10+𝑥1 (𝑠) , 𝑥1 (𝑠)) 𝑑𝑠
+ ∫
[0,1]\𝐷(𝑥1)

𝐻(𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥1 (𝑠) , 𝐼𝑛−30+ 𝑥1 (𝑠) , . . . ,
𝐼10+𝑥1 (𝑠) , 𝑥1 (𝑠)) 𝑑𝑠 ≤ 𝜌𝜆1 ∫1

0
𝐻(𝑡, 𝑠) 𝑥1 (𝑠) 𝑑𝑠

+ ∫1
0
Φ(𝑠) 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥1 (𝑠) , 𝐼𝑛−30+ 𝑥1 (𝑠) , . . . , 𝐼10+𝑥1 (𝑠) ,

𝑥1 (𝑠)) 𝑑𝑠 ≤ (�̃�𝑥1) (𝑡) + 𝑀0, 𝑡 ∈ [0, 1] .

(56)

Noticing that �̃�(𝐾) ⊂ 𝐾 is a bounded linear operator, and
from (56), we have

0 ≤ (�̃�𝑗 (𝑇𝑥1)) (𝑡) ≤ (�̃�𝑗 (�̃�𝑥1 +𝑀0)) (𝑡) ,
𝑗 = 0, 1, 2, . . . ,𝑀 − 1. (57)
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Then (57) yields that�̃�𝑗 (𝑇𝑥1) ≤ �̃�𝑗 (�̃�𝑥1 +𝑀0) ,
𝑗 = 0, 1, 2, . . . ,𝑀 − 1, (58)

which leads to

𝑇𝑥1∗ =
𝑀∑
𝑖=1

(𝜌 + 𝜀0)𝑀−𝑖 �̃�𝑖−1 (𝑇𝑥1)
≤ 𝑀∑
𝑖=1

(𝜌 + 𝜀0)𝑀−𝑖 �̃�𝑖−1 (�̃�𝑥1 +𝑀0)
= �̃�𝑥1 +𝑀0∗ .

(59)

Since 𝑥1 ∈ 𝜕𝐾𝑅 and ‖𝑥1‖ = 𝑅, from (50), we have

𝑥1∗ > (𝜌 + 𝜀0)𝑀−1 𝑥1 = (𝜌 + 𝜀0)𝑀−1 𝑅 > 2𝜀0𝑀
∗
0 , (60)

which implies that

𝑀∗0 < 𝜀02 𝑥1∗ . (61)

By (50), (59), and (61), we have

𝜇1 𝑥1∗ = 𝑇𝑥1∗ ≤ �̃�𝑥1 + 𝑀∗0
= 𝑀∑
𝑖=1

(𝜌 + 𝜀0)𝑀−𝑖 �̃�𝑖−1 (𝐿𝑥1) +𝑀∗0
= (𝜌 + 𝜀0)𝑀−1∑

𝑖=1

(𝜌 + 𝜀0)𝑀−𝑖−1 �̃�𝑖𝑥1
+ �̃�𝑀𝑥1 +𝑀∗0

≤ (𝜌 + 𝜀0)𝑀−1∑
𝑖=1

(𝜌 + 𝜀0)𝑀−𝑖−1 �̃�𝑖𝑥1
+ (𝜌 + 𝜀0)𝑀 𝑥1 +𝑀∗0

= (𝜌 + 𝜀0) 𝑀∑
𝑖=1

(𝜌 + 𝜀0)𝑀−𝑖 �̃�𝑖−1𝑥1 +𝑀∗0
= (𝜌 + 𝜀0) 𝑥1∗ +𝑀∗0
≤ (𝜌 + 𝜀0) 𝑥1∗ + 𝜀02 𝑥1∗ = 𝜌 + 34 𝑥1∗ .

(62)

Notice that 𝜇1 ≥ 1, we have (𝜌 + 3)/4 ≥ 1, and then 𝜌 ≥ 1,
which is a contradiction with 0 < 𝜌 < 1. Thus (54) is indeed
true, and, by Lemma 8, we have

𝑖 (𝑇, 𝐾𝑅, 𝐾) = 1. (63)

It follows from (48) and (63) that

𝑖 (𝑇, 𝐾𝑅 \ 𝐾𝑟, 𝐾) = 𝑖 (𝑇,𝐾𝑅, 𝐾) − 𝑖 (𝑇, 𝐾𝑟, 𝐾) = 1. (64)

Then 𝑇 has at least one fixed point on𝐾𝑅 \𝐾𝑟. Consequently,
problem (14) has at least one positive solution, which implies
that the FBVP (3) has at least one positive solution.

Now we consider another case of problem (14). For this,
we define a linear operator 𝐿𝜏 for any sufficiently small 0 <𝜏 < 1 as follows:

(𝐿𝜏𝑥) (𝑡) = ∫1−𝜏
𝜏

𝐻(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] . (65)

From Lemma 6, we know 𝐿𝜏 is also a completely continuous
linear operator, and the spectral radius 𝑟(𝐿𝜏) ̸= 0, and
moreover 𝐿𝜏 has a positive eigenfunction 𝜑𝜏 corresponding
to its first eigenvalue 𝜆𝜏 = (𝑟(𝐿𝜏))−1.
Lemma 10. Suppose that (𝐻0) holds, and there exists an
eigenvalue �̃�1 of 𝐿 such that

lim
𝜏→0+

𝜆𝜏 = �̃�1. (66)

Proof. Take 𝜏1 ≥ 𝜏2 ≥ ⋅ ⋅ ⋅ ≥ 𝜏𝑘 ≥ ⋅ ⋅ ⋅ and 𝜏𝑘 → 0 (𝑘 →+∞). So, for any 𝑗 > 𝑘 and 𝜑 ∈ 𝐸, we have
(𝐿𝜏𝑘𝜑) (𝑡) ≤ (𝐿𝜏𝑗𝜑) (𝑡) ≤ (𝐿𝜑) (𝑡) , 𝑡 ∈ [0, 1] , (67)

and

(𝐿𝑖𝜏𝑘𝜑) (𝑡) ≤ (𝐿𝑖𝜏𝑗𝜑) (𝑡) ≤ (𝐿𝑖𝜑) (𝑡) ,
𝑡 ∈ [0, 1] , 𝑖 = 2, 3, . . . , (68)

where 𝐿𝑖𝜏𝑘 = 𝐿(𝐿𝑖−1𝜏𝑘 ), 𝑖 = 2, 3, ⋅ ⋅ ⋅ . Consequently, ‖𝐿𝑖𝜏𝑘‖ ≤
‖𝐿𝑖𝜏𝑗‖ ≤ ‖𝐿𝑖‖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ . From Gelfand’s formula, we get𝜆1 ≤ 𝜆𝜏𝑗 ≤ 𝜆𝜏𝑘 , where 𝜆1 is the first eigenvalue of 𝐿. Since{𝜆𝜏𝑘} is monotonous with lower boundedness 𝜆1, let

lim
𝑘→+∞

𝜆𝜏𝑘 = �̃�1. (69)

Now we shall show that �̃�1 is an eigenvalue of 𝐿. Suppose𝜑𝜏𝑘 is a positive eigenfunction of 𝐿𝜏𝑘 corresponding to 𝜆𝜏𝑘
with ‖𝜑𝜏𝑘‖ = 1, 𝑘 = 1, 2, . . .; i.e.,
𝜑𝜏𝑘 (𝑡) = 𝜆𝜏𝑘 ∫

1−𝜏𝑘

𝜏𝑘

𝐻(𝑡, 𝑠) 𝜑𝜏𝑘 (𝑠) 𝑑𝑠 = 𝜆𝜏𝑘𝐿𝜏𝑘𝜑𝜏𝑘 (𝑡) ,
𝑡 ∈ [0, 1] .

(70)

Notice that

𝜆𝜏𝑘𝜑𝜏𝑘 = max
0≤𝑡≤1

∫1−𝜏𝑘
𝜏𝑘

𝐻(𝑡, 𝑠) 𝜑𝜏𝑘 (𝑠) 𝑑𝑠 ≤ ∫
1

0
Φ (𝑠) 𝑑𝑠,

𝑘 = 1, 2, . . . ,
(71)

and thus {𝜆𝜏𝑘𝜑𝜏𝑘} ⊂ 𝐸 is uniformly bounded.
On the other hand, for any 𝑘 and 𝑡1, 𝑡2 ∈ [0, 1], we have𝐿𝜏𝑘𝜑𝜏𝑘 (𝑡1) − 𝐿𝜏𝑘𝜑𝜏𝑘 (𝑡2)

≤ ∫1−𝜏𝑘
𝜏𝑘

𝐻 (𝑡1, 𝑠) − 𝐻 (𝑡2, 𝑠) 𝜑𝜏𝑘 (𝑠) 𝑑𝑠.
(72)
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It follows from (72) that {𝐿𝜏𝑘𝜑𝜏𝑘} ⊂ 𝐸 is equicontinuous since𝐻(𝑡, 𝑠) is uniformly continuous on [0, 1]×[0, 1]. Without loss
of generality, we may suppose that, by Arzela-Ascoli theorem
and lim𝑘→+∞𝜆𝜏𝑘 = �̃�1, we get that 𝜑𝜏𝑘 → 𝜑0 as 𝑘 → +∞.
This leads to ‖𝜑0‖ = 1 and then, by (70), we have

𝜑0 (𝑡) = �̃�1 ∫1
0
𝐻(𝑡, 𝑠) 𝜑0 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] ; (73)

that is, 𝜑0 = �̃�1𝐿𝜑0. The proof is completed.

Theorem 11. Suppose that conditions (𝐻0) and (𝐻1) are
satisfied, and

lim inf
𝑧1→0
⋅⋅⋅
𝑧𝑛−1→0

𝑓 (𝑡, 𝑧1, . . . , 𝑧𝑛−1)𝑧𝑛−1 < 𝜆1,

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 𝑡 ∈ [0, 1] ,
(74)

lim sup
𝑧1+⋅⋅⋅+𝑧𝑛−1→+∞

𝑓 (𝑡, 𝑧1, . . . , 𝑧𝑛−1)𝑧1 + ⋅ ⋅ ⋅ + 𝑧𝑛−1 > �̃�1,
𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 𝑡 ∈ [0, 1] ,

(75)

where 𝜆1, �̃�1 are the eigenvalues of 𝐿 and 𝜆1 is the first
eigenvalue of 𝐿. Then the FBVP (3) has at least one positive
solution.

Proof. It follows from (74) that there exists 𝑟 > 0 such that

𝑓 (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1) ≤ 𝜆1𝑧𝑛−1,
𝑧1 ≤ 𝑟(𝑛 − 2)! , . . . , 𝑧𝑛−1 ≤ 𝑟, 𝑡 ∈ [0, 1] .

(76)

Thus for any 𝑥 ∈ 𝜕𝐾𝑟, noticing𝐼𝑛−20+ 𝑥 (𝑠) ≤ 𝑟(𝑛 − 2)! , . . . , 𝐼10+𝑥 (𝑠) ≤ 𝑟,
|𝑥 (𝑠)| ≤ 𝑟, 𝑡 ∈ [0, 1] ,

(77)

by (76), we have

(𝑇𝑥) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
≤ 𝜆1 ∫1

0
𝐻(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 = 𝜆1 (𝐿𝑥) (𝑡) ,

𝑡 ∈ [0, 1] .

(78)

In fact, we may suppose that 𝑇 has no fixed point on 𝜕𝐾𝑟
(otherwise, the proof is finished). Now we show that

𝑇𝑥 ̸= 𝜇𝑥, 𝑥 ∈ 𝜕𝐾𝑟, 𝜇 ≥ 1. (79)

Otherwise, there exist 𝑥0 ∈ 𝜕𝐾𝑟 and 𝜇0 ≥ 1 such that𝑇𝑥0 = 𝜇0𝑥0. We know 𝜇0 > 1 and from (78) we have

𝜇0𝑥0 = 𝑇𝑥0 ≤ 𝜆1𝐿𝑥0. (80)

By using induction for (80), we have
𝜇𝑚0 𝑥0 ≤ 𝜆𝑚1 𝐿𝑚𝑥0, 𝑚 = 1, 2, ⋅ ⋅ ⋅ (81)

which implies that

𝐿𝑚 ≥
𝐿𝑚𝑥0𝑥0 ≥ 𝜇𝑚0 𝑥0𝜆𝑚1 𝑥0 =

𝜇𝑚0𝜆𝑚1 . (82)

By Gelfand’s formula, we know

𝑟 (𝐿) = lim
𝑚→+∞

𝐿𝑚1/𝑚 ≥ 𝜇0𝜆1 >
1𝜆1 , (83)

which is a contradiction with 𝑟(𝐿) = 𝜆−11 . Hence (79) is true
and, by Lemma 8, we have

𝑖 (𝑇, 𝐾𝑟, 𝐾) = 1. (84)

For a fixed sufficiently small 0 < 𝜏 < 1, let
𝜒𝜏 = 𝜏𝛼Γ (𝛼 − 𝑛 + 2)Γ (𝛼) + 𝜏𝛼−1Γ (𝛼 − 𝑛 + 2)Γ (𝛼 − 1) + ⋅ ⋅ ⋅

+ 𝜏𝛼−𝑛+3Γ (𝛼 − 𝑛 + 2)Γ (𝛼 − 𝑛 + 3) + 𝜏𝛼−𝑛+2.
(85)

So it follows from (74) and lim𝜏→0+𝜆𝜏 = �̃�1 that there exist a
sufficiently small 𝜏 > 0 and 𝑅 > 𝑟 such that

𝑓 (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1) ≥ 𝜆𝜏 (𝑧1 + 𝑧2 + ⋅ ⋅ ⋅ + 𝑧𝑛−1) ,
𝑧1 + 𝑧2 + ⋅ ⋅ ⋅ + 𝑧𝑛−1 ≥ 𝜒𝜏𝑅, 𝑡 ∈ [0, 1] , (86)

where 𝜆𝜏 is the first eigenvalue of 𝐿𝜏.
Let 𝜑𝜏 be the positive eigenfunction of 𝐿𝜏 corresponding

to 𝜆𝜏, and then 𝜑𝜏 = 𝜆𝜏𝐿𝜏𝜑𝜏. For any 𝑥 ∈ 𝜕𝐾𝑅, 𝑠 ∈ [𝜏, 1 − 𝜏],
we have
𝐼𝑛−20+ 𝑥 (𝑠) + 𝐼𝑛−30+ 𝑥 (𝑠) + ⋅ ⋅ ⋅ , 𝐼10+𝑥 (𝑠) + 𝑥 (𝑠)

= 1Γ (𝑛 − 2) ∫
𝑠

0
(𝑠 − 𝜏)𝑛−3 𝑥 (𝜏) 𝑑𝜏 + 1Γ (𝑛 − 3)

⋅ ∫𝑠
0
(𝑠 − 𝜏)𝑛−4 𝑥 (𝜏) 𝑑𝜏 + ⋅ ⋅ ⋅ + 1Γ (1)

⋅ ∫𝑠
0
(𝑠 − 𝜏)1−1 𝑥 (𝜏) 𝑑𝜏 + 𝑥 (𝑠) ≥ 1Γ (𝑛 − 2)

⋅ ∫𝑠
0
(𝑠 − 𝜏)𝑛−3 𝜏𝛼−𝑛+1 (1 − 𝜏) 𝑑𝜏 ‖𝑥‖

+ 1Γ (𝑛 − 3) ∫
𝑠

0
(𝑠 − 𝜏)𝑛−4 𝜏𝛼−𝑛+1 (1 − 𝜏) 𝑑𝜏 ‖𝑥‖ + ⋅ ⋅ ⋅

+ 1Γ (1) ∫
𝑠

0
(𝑠 − 𝜏)1−1 𝜏𝛼−𝑛+1 (1 − 𝜏) 𝑑𝜏 ‖𝑥‖

+ 𝑠𝛼−𝑛+1 (1 − 𝑠) ‖𝑥‖ ≥ (𝜏𝛼Γ (𝛼 − 𝑛 + 2)Γ (𝛼)
+ 𝜏𝛼−1Γ (𝛼 − 𝑛 + 2)Γ (𝛼 − 1) + ⋅ ⋅ ⋅ + 𝜏𝛼−𝑛+3Γ (𝛼 − 𝑛 + 2)Γ (𝛼 − 𝑛 + 3)
+ 𝜏𝛼−𝑛+2)𝑅 = 𝜒𝜏𝑅.

(87)
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By (86) and (87), we have

(𝑇𝑥) (𝑡) = ∫1
0
𝐻(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
≥ ∫1−𝜏
𝜏

𝐻(𝑡, 𝑠)
⋅ 𝑓 (𝑠, 𝐼𝑛−20+ 𝑥 (𝑠) , 𝐼𝑛−30+ 𝑥 (𝑠) , . . . , 𝐼10+𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠
≥ 𝜆𝜏 ∫1−𝜏

𝜏
𝐻(𝑡, 𝑠) (𝐼𝑛−20+ 𝑥 (𝑠) + 𝐼𝑛−30+ 𝑥 (𝑠)

+ ⋅ ⋅ ⋅ , 𝐼10+𝑥 (𝑠) + 𝑥 (𝑠)) 𝑑𝑠 ≥ 𝜆𝜏 ∫1−𝜏
𝜏

𝐻(𝑡, 𝑠)
⋅ 𝑥 (𝑠) 𝑑𝑠 = 𝜆𝜏 (𝐿𝜏𝑥) (𝑡) , 𝑡 ∈ [0, 1] .

(88)

Proceeding as for the proof of Theorem 9, we get

𝑥 − 𝑇𝑥 ̸= 𝜇𝜑𝜏, 𝑥 ∈ 𝜕𝐾𝑅, 𝜇 ≥ 0. (89)

By Lemma 8, we have

𝑖 (𝑇, 𝐾𝑅, 𝐾) = 0. (90)

It follows from (84) and (90) that

𝑖 (𝑇,𝐾𝑅 \ 𝐾𝑟, 𝐾) = 𝑖 (𝑇, 𝐾𝑅, 𝐾) − 𝑖 (𝑇, 𝐾𝑟, 𝐾) = −1. (91)

Then 𝑇 has at least one fixed point on𝐾𝑅 \𝐾𝑟. Consequently,
problem (14) has at least one positive solution, which implies
that the FBVP (3) has at least one positive solution.

Remark 12. In thiswork, the nonlinearity𝑓(𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑛−1)
may be singular at 𝑡 = 0, 1 and 𝑧1 = 𝑧2 = ⋅ ⋅ ⋅ = 𝑧𝑛−1 = 0. To
the best of our knowledge, very little work has been done for
the case where 𝑓 can be singular at 𝑧1 = 𝑧2 = ⋅ ⋅ ⋅ = 𝑧𝑛−1 = 0.
4. An Example

Example 1. Consider the following problem:

𝐷7/20+ 𝑦 (𝑡) + (𝑦 + 𝑦 + 𝑦)−1/4 + ln𝑦
√1 − 𝑡 = 0,

0 < 𝑡 < 1,
𝑦 (0) = 𝑦 (0) = 𝑦 (0) = 0, 𝑦 (1) = 𝜆 [𝑦] ,

(92)

where 𝛼 = 7/2, 𝑓(𝑡, 𝑧1, 𝑧2, 𝑧3) = ((𝑧1 + 𝑧2 + 𝑧3)−1/4 +
ln 𝑧3)/√1 − 𝑡, and (𝑡, 𝑧1, 𝑧2, 𝑧3) ∈ (0, 1) × (R+0 )3. Obviously,𝑓 is singular at 𝑡 = 1 and 𝑧1 = 𝑧2 = 𝑧3 = 0. Clearly,
𝐺 (𝑡, 𝑠)

= {{{{{{{
𝐺1 (𝑡, 𝑠) = [𝑡 (1 − 𝑠)]1/2Γ (3/2) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
𝐺2 (𝑡, 𝑠) = [𝑡 (1 − 𝑠)]1/2 − (𝑡 − 𝑠)1/2Γ (3/2) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(93)

In the following we discuss that condition (𝐻0) holds when𝜆[⋅] take different cases.
(1) Let 𝜆[𝑦] = 0. In this case, we have

𝜆 [𝛾] = 0,
G (𝑠) = 0,
Φ (𝑠) = 𝑠 (1 − 𝑠)1/2Γ (1/2) ≤ 13 (1 − 𝑠)1/2Γ (1/2) .

(94)

(2) Now, let 𝜆[𝑦] = ∫1
0
𝑦(𝑡)(4 − 5𝑡)𝑑𝑡. Note that the

function ℎ(𝑡) = 4−5𝑡 changes the sign on the interval[0, 1]. In this case, we have

𝜆 [𝛾] = ∫1
0
𝑡1/2𝑑𝐴 (𝑡) = ∫1

0
𝑡1/2 (4 − 5𝑡) 𝑑𝑡 = 23 < 1,

G (𝑠) = ∫1
0
𝐺 (𝑡, 𝑠) (4 − 5𝑡) 𝑑𝑡

= 1Γ (5/2) (1 − 𝑠)1/2 𝑠 (3 − 2𝑠) ≥ 0, 𝑠 ∈ [0, 1] ,
Φ (𝑠) = G (𝑠)1 − 𝜆 [𝛾] + 𝑠 (1 − 𝑠)𝛼−𝑛+1Γ (𝛼 − 𝑛 + 1)

= 3𝑠 (1 − 𝑠)1/2 (3 − 2𝑠)Γ (5/2) + 𝑠 (1 − 𝑠)1/2Γ (1/2)
≤ 13 (1 − 𝑠)1/2Γ (1/2) .

(95)

(3) Let 𝜆[𝑦] = (1/2)𝑦(1/2). In this case, we have

𝜆 [𝛾] = ∫1
0
𝑡1/2𝑑𝐴 (𝑡) = √24 ≈ 0.353553 < 1,

0 ≤ G (𝑠) = 12𝐺(12 , 𝑠)

= {{{{{{{

[(1/2) (1 − 𝑠)]1/2Γ (3/2) , 12 ≤ 𝑠 ≤ 1,[(1/2) (1 − 𝑠)]1/2 − (1/2 − 𝑠)1/2Γ (3/2) , 0 ≤ 𝑠 ≤ 12 .

≤ (√2/4) (1 − 𝑠)1/2
Γ (3/2) , 𝑠 ∈ [0, 1] ,

Φ (𝑠) = G (𝑠)1 − 𝜆 [𝛾] + 𝑠 (1 − 𝑠)𝛼−𝑛+1Γ (𝛼 − 𝑛 + 1)
≤ √2 (1 − 𝑠)1/2
(4 − √2) Γ (3/2) +

𝑠 (1 − 𝑠)1/2Γ (1/2) ≤ 13 (1 − 𝑠)1/2Γ (1/2) .

(96)

(4) Let 𝜆[𝑦] = 2𝑦(1/2) − 𝑦(3/4). Note that the
coefficients 𝑏1 = 2, 𝑏2 = −1; i.e., not all of the
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coefficients must be positive, some coefficients of 𝑏𝑖
can be negative. In this case, we have

𝜆 [𝛾] = ∫1
0
𝑡1/2𝑑𝐴 (𝑡) = √2 − √32 ≈ 0.548188 < 1,

G (𝑠) =
{{{{{{{{{{{{{{{{{

2𝐺2 (12 , 𝑠) − 𝐺2 (34 , 𝑠) , 0 ≤ 𝑠 < 12 ,
2𝐺1 (12 , 𝑠) − 𝐺2 (34 , 𝑠) , 12 ≤ 𝑠 ≤ 34 ,
2𝐺1 (12 , 𝑠) − 𝐺1 (34 , 𝑠) , 34 < 𝑠 ≤ 1.

(97)

Then 0 ≤ G(𝑠) < 1, 𝑠 ∈ [0, 1], and
Φ(𝑠) = G (𝑠)1 − 𝜆 [𝛾] + 𝑠 (1 − 𝑠)𝛼−𝑛+1Γ (𝛼 − 𝑛 + 1)

≤ 2√2 (1 − 𝑠)1/2
(2 − 2√2 + √3) Γ (3/2) +

𝑠 (1 − 𝑠)1/2Γ (1/2)
≤ 13 (1 − 𝑠)1/2Γ (1/2) .

(98)

Seen from above, condition (𝐻0) holds in different cases
1-4. Now we define a cone

𝐾 = {𝑦 ∈ 𝐶 [0, 1] : 𝑦 (𝑡) ≥ 𝑡1/2 (1 − 𝑡) 𝑦 𝑓𝑜𝑟 𝑡
∈ [0, 1]} . (99)

For any 0 < 𝑟 < 𝑅 < +∞ and 𝑧3 ∈ 𝐾𝑅 \ 𝐾𝑟, we have
0 ≤ 𝑟𝑡5/2 (1 − 𝑡) ≤ 𝑡1/2 (1 − 𝑡) 𝑟 = 𝑡1/2 (1 − 𝑡) 𝑧3
≤ 𝑧3 (𝑡) ≤ 𝑅, 𝑡 ∈ [0, 1] ,

0 ≤ 23𝑟𝑡5/2 (1 − 𝑡) ≤ 23𝑟𝑡3/2 (1 − 𝑡)
= 𝑟𝑡3/2 (1 − 𝑡) Γ (3/2)Γ (5/2) ≤ 𝑧2 (𝑡) = 𝐼10+𝑧3 (𝑡) ≤ 𝑅,

𝑡 ∈ [0, 1] ,

0 ≤ 415𝑟𝑡5/2 (1 − 𝑡) = 𝑟𝑡5/2 (1 − 𝑡) Γ (3/2)Γ (7/2) ≤ 𝑧1 (𝑡)
= 𝐼20+𝑧3 (𝑡) ≤ 𝑅2 , 𝑡 ∈ [0, 1] .

(100)

Noticing that ln 𝑧3 is decreasing on (0, 1) and is increasing on[1, +∞), so we have
ln 𝑧3 (𝑡) ≤ ln 𝑟𝑡5/2 (1 − 𝑡) + |ln𝑅|
≤ |ln 𝑟| + |ln𝑅| + ln 𝑡5/2 (1 − 𝑡) ,

(𝑧1 (𝑡) + 𝑧2 (𝑡) + 𝑧3 (𝑡))−1/4
≤ (2915𝑟)

−1/4 𝑡−5/8 (1 − 𝑡)−1/4 .
(101)

Consequently

∫1
0
[ln 𝑡1/2 (1 − 𝑡) + (2915𝑟)

−1/4 𝑡−5/8 (1 − 𝑡)−1/4]𝑑𝑡
≤ 12 ∫

1

0
|ln 𝑡| 𝑑𝑡 + ∫1

0
|ln (1 − 𝑡)| 𝑑𝑡

+ (2915𝑟)
−1/4 ∫1
0
𝑡−5/8 (1 − 𝑡)−1/4 𝑑𝑡

≤ 32 + (2915𝑟)
−1/4

B(38 , 34) < +∞.

(102)

The absolute continuity of integral leads to

lim
𝑚→+∞

∫
𝐻(𝑚)

[ln 𝑡1/2 (1 − 𝑡)
+ (2915𝑟)

−1/4 𝑡−5/8 (1 − 𝑡)−1/4]𝑑𝑡 = 0.
(103)

Hence

lim
𝑚→+∞

sup
𝑧1∈𝐾𝑅/2
𝑧2∈𝐾𝑅
𝑧3∈𝐾𝑅\𝐾𝑟

∫
𝐻(𝑚)

Φ(𝑠) 𝑓 (𝑠, 𝑧1 (𝑠) , 𝑧2 (𝑠) , 𝑧3 (𝑠)) 𝑑𝑠 ≤ lim
𝑚→+∞

sup
𝑧1∈𝐾𝑅/2
𝑧2∈𝐾𝑅
𝑧3∈𝐾𝑅\𝐾𝑟

∫
𝐻(𝑚)

13 (1 − 𝑠)1/2Γ (1/2)

× (𝑧1 (𝑠) + 𝑧2 (𝑠) + 𝑧3 (𝑠))−1/4 + ln 𝑧3 (𝑠)√1 − 𝑠 𝑑𝑠
≤ lim
𝑚→+∞

sup
𝑧1∈𝐾𝑅/2
𝑧2∈𝐾𝑅
𝑧3∈𝐾𝑅\𝐾𝑟

∫
𝐻(𝑚)

13Γ (1/2) [|ln𝑅| + |ln 𝑟| + ln 𝑠1/2 (1 − 𝑠) + (2915𝑟)
−1/4 𝑠−5/8 (1 − 𝑠)−1/4]𝑑𝑠 = 26Γ (1/2) [|ln𝑅|

+ |ln 𝑟|] lim
𝑚→+∞

1𝑚 + 13Γ (1/2) lim
𝑚→+∞

∫
𝐻(𝑚)

[ln 𝑠1/2 (1 − 𝑠) + (2915𝑟)
−1/4 𝑠−5/8 (1 − 𝑠)−1/4] 𝑑𝑠 = 0,

(104)



Journal of Function Spaces 11

On the other hand, it is obvious that

lim inf
𝑧1→0
𝑧2→0
𝑧3→0

𝑓 (𝑡, 𝑧1, 𝑧2, 𝑧3)𝑧1 + 𝑧2 + 𝑧3

= lim inf
𝑧1→0
𝑧2→0
𝑧3→0

(𝑧1 + 𝑧2 + 𝑧3)−1/2 + ln 𝑧3√𝑡 (1 − 𝑡) (𝑧1 + 𝑧2 + 𝑧3) = +∞,

lim sup
𝑧1+𝑧2+𝑧3→+∞
𝑧3→+∞

𝑓 (𝑡, 𝑧1, 𝑧2, 𝑧3)𝑧3
= lim sup
𝑧1+𝑧2+𝑧3→+∞
𝑧3→+∞

(𝑧1 + 𝑧2 + 𝑧3)−1/2 + ln 𝑧3𝑧3√𝑡 (1 − 𝑡) = 0,

(105)

uniformly on 𝑡 ∈ [0, 1], which implies that

lim sup
𝑧1+𝑧2+𝑧3→+∞
𝑧3→+∞

𝑓 (𝑡, 𝑧1, 𝑧2, 𝑧3)𝑧3 < 𝜆1

< lim inf
𝑧1→0
𝑧2→0
𝑧3→0

𝑓 (𝑡, 𝑧1, 𝑧2, 𝑧3)𝑧1 + 𝑧2 + 𝑧3 .
(106)

Therefore, all conditions of Theorem 9 are satisfied. Thus
Theorem 9 ensures that FBVP (92) has at least one positive
solution.
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A delayed ecoepidemic model with ratio-dependent transmission rate has been proposed in this paper. Effects of the time delay
due to the gestation of the predator are the main focus of our work. Sufficient conditions for local stability and existence of a Hopf
bifurcation of the model are derived by regarding the time delay as the bifurcation parameter. Furthermore, properties of the Hopf
bifurcation are investigated by using the normal form theory and the center manifold theorem. Finally, numerical simulations are
carried out in order to validate our obtained theoretical results.

1. Introduction

In recent years, many dynamical models characterizing the
propagation of infectious disease [1–3], spread of computer
viruses [4–6], and dynamics of some other systems [7–10] are
studied by scholars. Ecoepidemiological research deals with
the study of the spread of diseases among interacting pop-
ulations, where the epidemic and demographic aspects are
merged within one model. And they have been investigated
by many scholars at home and abroad since the pioneer
work of Kermack and McKendrick [11], and the interests
in investigating the dynamics of ecoepidemic models will
be increasing steadily due to its importance from both the
mathematical and the ecological points of view.

Many scholars studied different predator-prey models
with disease infection in the prey. Chakraborty et al. [12] stud-
ied a ratio-dependent ecoepidemic model with prey harvest-
ing and they assumed that both the susceptible and infected
prey are subjected to combined harvesting. Upadhyay and
Roy [13] proposed an ecoepidemic model with simple law of
mass action andmodified Holling type II functional response
based on the model in [14]. They analyzed stability (linear
and nonlinear) of the model. Zhang et al. [15] proposed a
three species ecoepidemic model perturbed by white noise

and they studied stochastic stability and longtime behavior of
the model. Zhou et al. [16] studied local and global stability
of a modified Leslie-Gower predator-prey model with prey
infection. Some delayed ecoepidemic models with disease
infection in the prey have been proposed, and the effect of the
delay on the models has been investigated [17–19]. Similarly,
some scholars proposed and investigated the ecoepidemic
models with disease in predators. Sarwardi et al. [20] and
Shaikh et al. [21] studied a Leslie-Gower Holling type II pre-
dator-prey model with disease in predator and Leslie-Gower
Holling type III predator-preymodelwith disease in predator,
respectively. Some other ecoepidemic models with disease in
predators one can refer to include [22–29].

Clearly, most of the epidemic models above are formu-
lated based on the bilinear transmission rate, which is based
on the law of mass action. As stated in [30], transmission
rate plays an important role in the modelling of epidemic
dynamics and the infection probability per contact is likely
influenced by the number of infective individuals.Thus, it can
be concluded that nonlinear transmission rate seems more
reasonable than the bilinear one. To study the effect of a
nonlinear incidence rate on the dynamics of an ecoepidemic
model, Maji et al. [31] proposed the following ecoepidemic
model based the work of Morozov [32]:
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𝑑𝑆 (𝑡)𝑑𝑡 = 𝑆 (𝑡) [𝑟 (1 − 𝑆 (𝑡) + 𝐼 (𝑡)𝐾 )
− (𝜆0 + 𝑎𝑃 (𝑡)1 + 𝑏𝑃 (𝑡)) 𝐼 (𝑡)𝑆 (𝑡) + 𝐼 (𝑡)] ,𝑑𝐼 (𝑡)𝑑𝑡 = (𝜆0 + 𝑎𝑃 (𝑡)1 + 𝑏𝑃 (𝑡)) 𝑆 (𝑡) 𝐼 (𝑡)𝑆 (𝑡) + 𝐼 (𝑡) − 𝑑𝐼 (𝑡)
− 𝛼1𝐼 (𝑡) 𝑃 (𝑡)1 + 𝛽𝐼 (𝑡) ,𝑑𝑃 (𝑡)𝑑𝑡 = 𝛼2𝐼 (𝑡) 𝑃 (𝑡)1 + 𝛽𝐼 (𝑡) − 𝛿𝑃 (𝑡) ,

(1)

where 𝑆(𝑡) > 0, 𝐼(𝑡) ≥ 0, and 𝑃(𝑡) > 0 present the
densities of the healthy prey, the infected prey, and the
predator population, respectively. More parameters are listed
in Table 1.They studied stability and persistence of system (1).

As we know, delay differential equations exhibit much
more complicated dynamics than ordinary differential equa-
tions, and delays can make a dynamical system lose its
stability and can induce various oscillations and periodic
solutions [17, 23, 26, 33–38]. It is interesting to study the effect
of time delay on system (1). To this end, and considering the
time required for the gestation of the predator, we incorporate
time delay due to the gestation of the predator into system (1)
and get the following delayed ecoepidemic system:

𝑑𝑆 (𝑡)𝑑𝑡 = 𝑆 (𝑡) [𝑟 (1 − 𝑆 (𝑡) + 𝐼 (𝑡)𝐾 )
− (𝜆0 + 𝑎𝑃 (𝑡)1 + 𝑏𝑃 (𝑡)) 𝐼 (𝑡)𝑆 (𝑡) + 𝐼 (𝑡)] ,𝑑𝐼 (𝑡)𝑑𝑡 = (𝜆0 + 𝑎𝑃 (𝑡)1 + 𝑏𝑃 (𝑡)) 𝑆 (𝑡) 𝐼 (𝑡)𝑆 (𝑡) + 𝐼 (𝑡) − 𝑑𝐼 (𝑡)
− 𝛼1𝐼 (𝑡) 𝑃 (𝑡)1 + 𝛽𝐼 (𝑡) ,𝑑𝑃 (𝑡)𝑑𝑡 = 𝛼2𝐼 (𝑡 − 𝜏) 𝑃 (𝑡 − 𝜏)1 + 𝛽𝐼 (𝑡 − 𝜏) − 𝛿𝑃 (𝑡) ,

(2)

subjected to the initial condition:

𝑆 (𝜃) = 𝜙1 (𝜃) > 0,𝐼 (𝜃) = 𝜙2 (𝜃) > 0,𝑃 (𝜃) = 𝜙3 (𝜃) > 0, 𝜃 ∈ [−𝜏, 0) (3)

where 𝜏 is the time delay due to the gestation of the predator.
This paper is organized as follows. Section 2 deals with

local stability and existence of the Hopf bifurcation. In
Section 3, direction and stability of the Hopf bifurcation are
obtained by using center manifold and normal form theory.
In Section 4, some numerical simulations are presented in
order to verify the analytical findings. Conclusions and
discussions are presented in Section 5.

2. Local Stability of the Positive Equilibrium

By direct computation, we can conclude that if 𝛼2 > 𝛿𝛽, then
system (2) has positive equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑃∗), where

𝐼∗ = 𝛿𝛼2 − 𝛿𝛽,
𝑃∗ = 𝐶2𝑆2∗ + 𝐶1𝑆∗ + 𝐶0𝐷2𝑆2∗ + 𝐷1𝑆∗ + 𝐷0 ,

(4)

where 𝑆∗ is the positive root of (5)𝐾5𝑆5 + 𝐾4𝑆4 + 𝐾3𝑆3 + 𝐾2𝑆2 + 𝐾1𝑆 + 𝐾0 = 0, (5)

with𝐾0 = − (𝐴2𝐶20 + 𝐴1𝐶0𝐷0 + 𝐴0𝐷20) ,𝐾1 = 𝐵2𝐶20 + 𝐵1𝐶0𝐷0 + 𝐵0𝐷20 − 2𝐴2𝐶0𝐶1 − 𝐴1𝐶1𝐷0− 𝐴1𝐶0𝐷1 − 2𝐴0𝐷0𝐷1,𝐾2 = 2𝐵2𝐶0𝐶1 + 𝐵1𝐶1𝐷0 + 𝐵1𝐶0𝐷1 + 2𝐵0𝐷0𝐷1− 𝐴2𝐶21 − 2𝐴2𝐶0𝐶2 − 𝐴1𝐶2𝐷0 − 𝐴1𝐶1𝐷1− 𝐴1𝐶0𝐷2 − 𝐴0𝐷21 − 2𝐴0𝐷0𝐷2,𝐾3 = 𝐵2𝐶21 + 2𝐵2𝐶0𝐶2 + 𝐵1𝐶2𝐷0 + 𝐵1𝐶1𝐷1+ 𝐵1𝐶0𝐷2 + 𝐵0𝐷21 + 2𝐵0𝐷0𝐷2 − 2𝐴2𝐶1𝐶2− 𝐴1𝐶2𝐷1 − 𝐴1𝐶1𝐷2 − 2𝐴0𝐷1𝐷2,𝐾4 = 2𝐵2𝐶1𝐶2 + 𝐵1𝐶2𝐷1 + 𝐵1𝐶1𝐷2 + 2𝐵0𝐷1𝐷2− 𝐴2𝐶22 − 𝐴1𝐶2𝐷2 − 𝐴0𝐷22,𝐾5 = 𝐵2𝐶22 + 𝐵1𝐶2𝐷2,

(6)

and 𝐴0 = 𝑑𝐼∗ (1 + 𝛽𝐼∗) ,𝐴1 = 𝛼1𝐼∗ + 𝑏𝑑𝐼∗ (1 + 𝛽𝐼∗) ,𝐴2 = 𝑏𝛼1𝐼∗,𝐵0 = (𝜆0 − 𝑑𝐼∗) (1 + 𝛽𝐼∗) ,𝐵1 = [𝑎 + 𝑏 (𝜆0 − 𝑑𝐼∗)] (1 + 𝛽𝐼∗) − 𝛼1,𝐵2 = −𝑏𝛼1,𝐶0 = 𝑟 (𝐾 − 𝐼∗) 𝐼∗ − 𝑘𝜆0𝐼∗,𝐶1 = 𝑅 (𝐾 − 2𝐼∗) ,𝐶2 = −𝑟,𝐷0 = 𝐾𝐼∗ (𝑏𝜆0 + 𝑎) ,𝐷1 = 𝑏𝑟𝐼∗,𝐷2 = 𝑏𝑟.

(7)



Journal of Function Spaces 3

Table 1: Parameters and their meanings in this paper.

Parameter Description𝐾 The carrying capacity of the environment𝑟 Themaximal per capita growth rate of the healthy prey𝜆0 The transmission rate in the absence of predator𝑎 The predator density mediated additional disease transmission rate𝑏 The inhibitory effect𝑑 The death rate of the infected prey population𝛼1 The per capita predator consumption rate𝛼2 The conversion efficiency of the predator𝛽 The encounter rate between the predator and the infected prey

The Jacobian matrix of system (2) at 𝐸∗(𝑆∗, 𝐼∗, 𝑃∗) is
𝐽 (𝐸∗) = (𝑎11 𝑎12 𝑎13𝑎21 𝑎22 𝑎230 𝑏32𝑒−𝜆𝜏 𝑎33 + 𝑏33𝑒−𝜆𝜏), (8)

where

𝑎11 = 𝑆∗𝐼∗(𝑆∗ + 𝐼∗)2 (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) − 𝑟𝑆∗𝐾 ,
𝑎12 = −(𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 𝑆2∗(𝑆∗ + 𝐼∗)2 − 𝑟𝑆∗𝐾 ,
𝑎13 = − 𝑎𝑆∗𝐼∗(𝑆∗ + 𝐼∗) (1 + 𝑏𝑃∗)2 ,
𝑎21 = (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 𝐼2∗(𝑆∗ + 𝐼∗)2 ,𝑎22 = 𝛼1𝛽𝐼∗𝑃∗(1 + 𝛽𝐼∗)2 − (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗ ) 𝑆∗𝐼∗(𝑆∗ + 𝐼∗)2 ,𝑎23 = 𝑎𝑆∗𝐼∗(𝑆∗ + 𝐼∗) (1 + 𝑏𝑃∗)2 − 𝛼1𝐼∗1 + 𝛽𝐼∗ ,𝑎33 = −𝛿,
𝑏32 = 𝛼2𝑃∗(1 + 𝛽𝐼∗)2 ,𝑏33 = 𝛼2𝐼∗1 + 𝛽𝐼∗ .

(9)

Thus, the characteristic equation of 𝐽(𝐸∗) about the
positive equilibrium 𝐸∗ is given by

𝜆3 + 𝐴02𝜆2 + 𝐴01𝜆 + 𝐴00+ (𝐵02𝜆2 + 𝐵01𝜆 + 𝐵00) 𝑒−𝜆𝜏 = 0, (10)

with 𝐴00 = 𝑎33 (𝑎12𝑎21 − 𝑎11𝑎22) ,𝐴01 = 𝑎11𝑎22 + 𝑎11𝑎33 + 𝑎22𝑎33 − 𝑎12𝑎21,

𝐴02 = − (𝑎11 + 𝑎22 + 𝑎33) ,
𝐵00 = 𝑏32 (𝑎11𝑎23 − 𝑎13𝑎21) + 𝑏33 (𝑎12𝑎21 − 𝑎11𝑎22) ,𝐵01 = 𝑏33 (𝑎11 + 𝑎22) − 𝑎23𝑏32,𝐵02 = −𝑏33.

(11)

When 𝜏 = 0, (10) becomes𝜆3 + 𝑝2𝜆2 + 𝑝1𝜆 + 𝑝0 = 0, (12)

where 𝑝0 = 𝐴00 + 𝐵00,𝑝1 = 𝐴01 + 𝐵01,𝑝2 = 𝐴02 + 𝐵02. (13)

Based on the Routh-Hurwitz criterion and the discussion
in [31], it follows that the positive equilibrium 𝐸∗ is locally
asymptotically stable if the following condition holds: (𝐻1):𝑝0 > 0, 𝑝1 > 0 and 𝑝1𝑝2 > 𝑝0.

For 𝜏 > 0, let 𝜆 = 𝑖𝜔(𝜔 > 0) be the root of (10); then𝐵01 sin 𝜏𝜔 + (𝐵00 − 𝐵02𝜔2) cos 𝜏𝜔 = 𝐴02𝜔2 − 𝐴00,𝐵01 cos 𝜏𝜔 − (𝐵00 − 𝐵02𝜔2) sin 𝜏𝜔 = 𝜔3 − 𝐴01𝜔. (14)

Thus, 𝜔6 + 𝑙2𝜔4 + 𝑙1𝜔2 + 𝑙0, (15)

where 𝑙0 = 𝐴200 − 𝐵200,
𝑙1 = 𝐴201 − 𝐵201 − 2𝐴00𝐴02 + 2𝐵00𝐵02,
𝑙2 = 𝐴202 − 𝐵202 − 2𝐴01.

(16)

Suppose that(𝐻2) (15) has at least one positive root 𝜔0.
For 𝜔0, from (14)
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𝜏0 = 1𝜔0 × arccos{(𝐵01 − 𝐴02𝐵02) 𝜔40 + (𝐴00𝐵02 + 𝐴02𝐵22 − 𝐴01𝐵01) 𝜔20 − 𝐴00𝐵00𝐵201𝜔20 + (𝐵00 − 𝐵02𝜔20)2 } . (17)

Differentiating both sides of (10) with respect to 𝜏 yields
[𝑑𝜆𝑑𝜏]−1 = − 3𝜆2 + 2𝐴02𝜆 + 𝐴01𝜆 (𝜆3 + 𝐴02𝜆2 + 𝐴01𝜆 + 𝐴00)

+ 2𝐵02𝜆 + 𝐵01𝜆 (𝐵02𝜆2 + 𝐵01𝜆 + 𝐵00) − 𝜏𝜆 .
(18)

Further, we have

Re [𝑑𝜆𝑑𝜏]−1𝜏=𝜏0 = 𝑓 (V∗∗)(𝛽1𝜔0 − 𝛽3𝜔30)2 + (𝛽0 − 𝛽2𝜔20)2 , (19)

where 𝑓(V) = V3 + 𝑙2V2 + 𝑙1V + 𝑙0 and V = 𝜔2, V∗∗ = 𝜔20.
Obviously, if the condition (𝐻3)𝑓(𝜔20) ̸= 0 holds, then

Re[𝑑𝜆/𝑑𝜏]−1𝜏=𝜏0 ̸= 0. Therefore, based on the Hopf bifurcation
theorem in [39], we can obtain the following results.

Theorem 1. Suppose that the conditions (𝐻1)-(𝐻3) hold for
system (2). The positive equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑃∗) is locally
asymptotically stable when 𝜏 ∈ [0, 𝜏0) and a Hopf bifurcation
occurs at the positive equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑃∗) when 𝜏 = 𝜏0.
3. Property of the Hopf Bifurcation

Let 𝜏 = 𝜏0 + 𝜇, 𝜇 ∈ 𝑅; then 𝜇 = 0 is the Hopf bifurcation
value of system (2). Rescaling the time delay 𝑡 → (𝑡/𝜏), then
system (2) can be transformed into a functional differential
equation in 𝐶 = 𝐶([−1, 0], 𝑅3) as

�̇� (𝑡) = 𝐿𝜇𝑢𝑡 + 𝐹 (𝜇, 𝑢𝑡) (20)

where

𝐿𝜇𝜙 = (𝜏0 + 𝜇) (𝑀1𝜙 (0) + 𝑀2𝜙 (−1)) (21)

and

𝐹 (𝜇, 𝜙) = (𝜏0 + 𝜇) (𝐹1, 𝐹2, 𝐹3)𝑇 , (22)

with

𝑀1 = (𝑎11 𝑎12 𝑎13𝑎21 𝑎22 𝑎230 0 𝑎33),
𝑀2 = (0 0 00 0 00 𝑏32 𝑏33),

(23)

and 𝐹1 = 𝑔1𝜙21 (0) + 𝑔2𝜙1 (0) 𝜙2 (0) + 𝑔3𝜙1 (0) 𝜙3 (0)+ 𝑔4𝜙2 (0) 𝜙3 (0) + 𝑔5𝜙22 (0) + 𝑔6𝜙23 (0)+ 𝑔7𝜙31 (0) + 𝑔8𝜙32 (0) + 𝑔9𝜙33 (0)+ 𝑔10𝜙1 (0) 𝜙22 (0) + ⋅ ⋅ ⋅ ,𝐹2 = ℎ1𝜙21 (0) + ℎ2𝜙1 (0) 𝜙2 (0) + ℎ3𝜙1 (0) 𝜙3 (0)+ ℎ4𝜙2 (0) 𝜙3 (0) + ℎ5𝜙22 (0) + ℎ6𝜙23 (0)+ ℎ7𝜙31 (0) + ℎ8𝜙32 (0) + ℎ9𝜙33 (0)+ ℎ10𝜙1 (0) 𝜙22 (0) + ⋅ ⋅ ⋅ ,𝐹3 = 𝑘1𝜙22 (−1) + 𝑘2𝜙2 (−1) 𝜙3 (−1) + 𝑘3𝜙32 (−1)+ 𝑘4𝜙22 (−1) 𝜙3 (−1) + ⋅ ⋅ ⋅ ,

(24)

with 𝑔1 = (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 𝐼∗ (𝐼∗ − 𝑆∗)2 (𝑆∗ + 𝐼∗)3 − 𝑟2𝐾,
𝑔2 = (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 𝐼∗ (𝑆∗ − 𝐼∗)2 (𝑆∗ + 𝐼∗)3 ,
𝑔3 = 𝑎𝑆∗𝐼∗(𝑆∗ + 𝐼∗)2 (1 + 𝑏𝑃∗)2 ,
𝑔4 = 𝑎𝑆2∗(𝑆∗ + 𝐼∗)2 (1 + 𝑏𝑃∗)2 ,
𝑔5 = (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 𝑆2∗(𝑆∗ + 𝐼∗)3 ,
𝑔6 = 𝑎𝑏𝑆∗𝐼∗(𝑆∗ + 𝐼∗) (1 + 𝑏𝑃∗)3 ,
𝑔7 = (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 𝐼∗ (2𝑆∗ − 𝐼∗)6 (𝑆∗ + 𝐼∗)4 ,
𝑔8 = −(𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗ ) 𝑆2∗6 (𝑆∗ + 𝐼∗)4 ,
𝑔9 = (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 𝑆∗ (2𝐼∗ − 𝑆∗)6 (𝑆∗ + 𝐼∗)4 ,
𝑔10 = 2𝐼∗ (𝑆∗ − 𝐼∗)2 (𝑆∗ + 𝐼∗)4 ,
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ℎ1 = −(𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 𝐼2∗(𝑆∗ + 𝐼∗)3 ,
ℎ2 = (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗ ) 2𝑆∗𝐼∗(𝑆∗ + 𝐼∗)3 ,
ℎ3 = 𝑎𝐼2∗2 (1 + 𝑏𝑃∗)2 (𝑆∗ + 𝐼∗)2 ,
ℎ4 = 𝛼1𝛽𝐼∗(1 + 𝛽𝐼∗)2 − 𝑎𝑆∗𝐼∗(1 + 𝑏𝑃∗)2 (𝑆∗ + 𝐼∗)2 ,
ℎ5 = 𝛼1𝛽𝑃∗ (1 − 𝛽)2 (1 + 𝛽𝐼∗)3

+ (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 𝑆∗ (𝐼∗ − 𝑆∗)2 (1 + 𝛽𝐼∗)3 ,
ℎ6 = − 𝑎𝑏𝑆∗𝐼∗(𝑆∗ + 𝐼∗) (1 + 𝑏𝑃∗)3 ,
ℎ7 = (𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗ ) 𝐼2∗(𝑆∗ + 𝐼∗)4 ,
ℎ8 = 2𝛼1𝛽3𝐼∗𝑃∗(1 + 𝛽𝐼∗)4 + 2𝑆∗ (𝑆∗ − 𝐼∗)(𝑆∗ + 𝐼∗)4 ,
ℎ9 = 𝑎𝑏2𝑆∗𝐼∗(𝑆∗ + 𝐼∗) (1 + 𝑏𝑃∗)4 ,
ℎ10 = −(𝜆0 + 𝑎𝑃∗1 + 𝑏𝑃∗) 3𝑆∗𝐼∗(𝑆∗ + 𝐼∗)4 ,
𝑘1 = − 𝛼2𝛽𝑃∗(1 + 𝛽𝐼∗)3 ,𝑘2 = 𝛼2(1 + 𝛽𝐼∗)2 ,
𝑘3 = 𝛼2𝛽2𝑃∗(1 + 𝛽𝐼∗)4 ,
𝑘4 = − 𝛼2𝛽(1 + 𝛽𝐼∗)3 .

(25)

Thus, there exists a 3 × 3matrix function 𝜂(𝜃, 𝜇), 𝜃 ∈ [−1, 0],
such that

𝐿𝜇𝜙 = ∫0
−1
𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶. (26)

In view of (21), we choose𝜂 (𝜃, 𝜇) = (𝜏0 + 𝜇) (𝑀1𝛿 (𝜃) +𝑀2𝛿 (𝜃 + 1)) , (27)

where 𝛿 is the Dirac delta function.

For 𝜙 ∈ 𝐶([−1, 0], 𝑅3), define
𝐴 (𝜇) 𝜙 = {{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , −1 ≤ 𝜃 < 0,
∫0
−1
𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0, (28)

and

𝑅 (𝜇) 𝜙 = {{{
0, −1 ≤ 𝜃 < 0,𝐹 (𝜇, 𝜙) , 𝜃 = 0. (29)

Then system (20) is equivalent to

�̇� (𝑡) = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡. (30)

where 𝑢𝑡(𝜃) = 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].
For 𝜑 ∈ 𝐶1([0, 1], (𝑅3)∗), define

𝐴∗ (𝜑) = {{{{{{{
−𝑑𝜑 (𝑠)𝑑𝑠 , 0 < 𝑠 ≤ 1,
∫0
−1
𝑑𝜂𝑇 (𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0, (31)

and a bilinear inner product

⟨𝜑 (𝑠) , 𝜙 (𝜃)⟩ = 𝜑 (0) 𝜙 (0)
− ∫0
𝜃=−1

∫𝜃
𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (32)

where 𝜂(𝜃) = 𝜂(𝜃, 0).Then𝐴(0) and𝐴∗ are adjoint operators.
Next, we suppose that 𝜌(𝜃) = (1, 𝜌2, 𝜌3)𝑇𝑒𝑖𝜔0𝜏0𝜃 is

the eigenvector of 𝐴(0) belonging to +𝑖𝜔0𝜏0 and 𝜌∗(𝑠) =𝐷(1, 𝜌∗2 , 𝜌∗3 )𝑒𝑖𝜔0𝜏0𝑠 is the eigenvector of 𝐴∗(0) belonging to−𝑖𝜔0𝜏0. According to the definition of 𝐴(0) and 𝐴∗, we can
obtain

𝜌2 = 𝑎21 + 𝑎23𝜌3𝑖𝜔0 − 𝑎22 ,
𝜌3 = (𝑖𝜔0 − 𝑎11) (𝑖𝜔0 − 𝑎22) − 𝑎12𝑎21𝑎13 (𝑖𝜔0 − 𝑎22) − 𝑎12𝑎23 ,
𝜌∗2 = −𝑖𝜔0 + 𝑎22𝑎21 ,
𝜌∗3 = (𝑖𝜔0 + 𝑎11) (𝑖𝜔0 + 𝑎22) − 𝑎12𝑎21𝑏32𝑒𝑖𝜏0𝜔0 .

(33)

From (32), we can get

𝐷 = [1 + 𝜌2𝜌∗2 + 𝜌3𝜌∗3+ 𝜏0𝑒−𝑖𝜏0𝜔0 (𝑏32𝜌2𝜌∗2 + 𝑏33𝜌3𝜌∗3 )]−1 (34)

such that ⟨𝜌∗, 𝜌⟩ = 1.
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Following the method in [39] and using similar compu-
tation process in [40], we can get the following coefficients:𝑔20 = 2𝜏0𝐷[𝑔1 + 𝑔2𝜌2 + 𝑔3𝜌3 + 𝑔4𝜌2𝜌3 + 𝑔5𝜌22+ 𝑔6𝜌23 + 𝜌∗2 (ℎ1 + ℎ2𝜌2 + ℎ3𝜌3 + ℎ4𝜌2𝜌3 + ℎ5𝜌22+ ℎ6𝜌23) + 𝜌∗3 (𝑘1𝜌22𝑒−2𝑖𝜏0𝜔0 + 𝑘2𝜌2𝜌3𝑒−2𝑖𝜏0𝜔0)] ,𝑔11 = 𝜏0𝐷[2𝑔1 + 𝑔2 (𝜌2 + 𝜌2) + 𝑔3 (𝜌3 + 𝜌3)+ 𝑔4 (𝜌2𝜌3 + 𝜌2) + 2𝑔5𝜌2𝜌2 + 2𝑔6𝜌3𝜌3 + 𝜌∗2 (2ℎ1+ ℎ2 (𝜌2 | 𝜌2) +ℎ3 (𝜌3 + 𝜌3) + ℎ4 (𝜌2𝜌3 + 𝜌2)+ 2ℎ5𝜌2𝜌2 + 2ℎ6𝜌3𝜌3) + 𝜌∗3 (2𝑘1𝜌2𝜌2 + 𝑘2 (𝜌2𝜌3+ 𝜌2𝜌3))] ,𝑔02 = 2𝜏0𝐷[𝑔1 + 𝑔2𝜌2 + 𝑔3𝜌3 + 𝑔4𝜌2𝜌3 + 𝑔5𝜌22+ 𝑔6𝜌23 + 𝜌∗2 (ℎ1 + ℎ2𝜌2 + ℎ3𝜌3 + ℎ4𝜌2𝜌3 + ℎ5𝜌22+ ℎ6𝜌23) + 𝜌∗3 (𝑘1𝜌22𝑒2𝑖𝜏0𝜔0 + 𝑘2𝜌2𝜌3𝑒2𝑖𝜏0𝜔0)] ,

𝑔21 = 2𝜏0𝐷[𝑔1 (2𝑊(1)11 (0) + 𝑊(1)20 (0)) + 𝑔2 (𝑊(1)11 (0)
⋅ 𝜌2 + 12𝑊(1)20 (0) 𝜌2 +𝑊(2)11 (0) + 12𝑊(2)20 (0))+ 𝑔3 (𝑊(1)11 (0) 𝜌3 + 12𝑊(1)20 (0) 𝜌3 +𝑊(2)11 (0) + 12⋅ 𝑊(2)20 (0)) + 𝑔4 (𝑊(2)11 (0) 𝜌3 + 12𝑊(2)20 (0) 𝜌3+𝑊(3)11 (0) 𝜌2 + 12𝑊(3)20 (0) 𝜌2) + 𝑔5 (2𝑊(2)11 (0) 𝜌2+𝑊(2)20 (0) 𝜌2) + 𝑔6 (2𝑊(3)11 (0) 𝜌3 +𝑊(3)20 (0) 𝜌3)+ 3𝑔7 + 3𝑔8𝜌22𝜌2 + 3𝑔9𝜌23𝜌3 + 𝑔10 (𝜌2 + 2𝜌2𝜌2)+ 𝜌∗2 (ℎ1 (2𝑊(1)11 (0) + 𝑊(1)20 (0)) + ℎ2 (𝑊(1)11 (0) 𝜌2
+ 12𝑊(1)20 (0) 𝜌2 +𝑊(2)11 (0) + 12𝑊(2)20 (0))+ ℎ3 (𝑊(1)11 (0) 𝜌3 + 12𝑊(1)20 (0) 𝜌3 +𝑊(2)11 (0)+ 12𝑊(2)20 (0)) + ℎ4 (𝑊(2)11 (0) 𝜌3 + 12𝑊(2)20 (0) 𝜌3+𝑊(3)11 (0) 𝜌2 + 12𝑊(3)20 (0) 𝜌2) + ℎ5 (2𝑊(2)11 (0) 𝜌2+𝑊(2)20 (0) 𝜌2) + 𝑔6 (2𝑊(3)11 (0) 𝜌3 +𝑊(3)20 (0) 𝜌3)
+ 3ℎ7 + 3ℎ8𝜌22𝜌2 + 3ℎ9𝜌23𝜌3 + ℎ10 (𝜌2 + 2𝜌2𝜌2))
+ 𝜌∗3 (𝑘1 (2𝑊(2)11 (−1) 𝜌2𝑒−𝑖𝜏0𝜔0)

+ 𝑘2 (𝑊(2)11 (−1) 𝜌3𝑒−𝑖𝜏0𝜔0 + 12𝑊(2)20 (−1) 𝜌3𝑒𝑖𝜏0𝜔0+𝑊(3)11 (−1) 𝜌2𝑒−𝑖𝜏0𝜔0 + 12𝑊(3)20 (−1) 𝜌2𝑒𝑖𝜏0𝜔0)+ 3𝑘3𝜌2𝑒−2𝑖𝜏0𝜔0 + 𝑘4 (𝜌2𝑒−𝑖𝜏0𝜔0𝜌3
+ 2𝜌2𝜌2𝜌3𝑒−𝑖𝜏0𝜔0))] ,

(35)

with𝑊20 (𝜃) = 𝑖𝑔20𝜌 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔02𝜌 (0)3𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃
+ 𝐸1𝑒2𝑖𝜏0𝜔0𝜃,

𝑊11 (𝜃) = − 𝑖𝑔11𝜌 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔11𝜌 (0)𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃 + 𝐸2,
(36)

where𝐸1 and𝐸2 can be determined by the following two equa-
tions:

(2𝑖𝜔0 − 𝑎11 −𝑎12 −𝑎13−𝑎21 2𝑖𝜔0 − 𝑎22 −𝑎230 −𝑏32𝑒−2𝑖𝜏0𝜔0 2𝑖𝜔0 − 𝑎33 − 𝑏33𝑒−2𝑖𝜏0𝜔0)𝐸1
= 2(𝐸11𝐸12𝐸13),

(𝑎11 𝑎12 𝑎13𝑎21 𝑎22 𝑎230 𝑏32 𝑎33 + 𝑏33)𝐸2 = −(𝐸21𝐸22𝐸23),
(37)

and 𝐸11 = 𝑔1 + 𝑔2𝜌2 + 𝑔3𝜌3 + 𝑔4𝜌2𝜌3 + 𝑔5𝜌22 + 𝑔6𝜌23 ,𝐸12 = ℎ1 + ℎ2𝜌2 + ℎ3𝜌3 + ℎ4𝜌2𝜌3 + ℎ5𝜌22 + ℎ6𝜌23 ,𝐸13 = 𝑘1𝜌22𝑒−2𝑖𝜏0𝜔0 + 𝑘2𝜌2𝜌3𝑒−2𝑖𝜏0𝜔0 ,𝐸21 = 2𝑔1 + 𝑔2 (𝜌2 + 𝜌2) + 𝑔3 (𝜌3 + 𝜌3)+ 𝑔4 (𝜌2𝜌3 + 𝜌2) + 2𝑔5𝜌2𝜌2 + 2𝑔6𝜌3𝜌3,𝐸22 = 2ℎ1 + ℎ2 (𝜌2 | 𝜌2) + ℎ3 (𝜌3 + 𝜌3)+ ℎ4 (𝜌2𝜌3 + 𝜌2) + 2ℎ5𝜌2𝜌2 + 2ℎ6𝜌3𝜌3,𝐸23 = 2𝑘1𝜌2𝜌2 + 𝑘2 (𝜌2𝜌3 + 𝜌2𝜌3) .

(38)

Then, we can get the following coefficients which deter-
mine the properties of the Hopf bifurcation:

𝐶1 (0) = 𝑖2𝜏0𝜔0 (𝑔11𝑔20 − 2 𝑔112 − 𝑔0223 ) + 𝑔212 ,
𝜇2 = − Re {𝐶1 (0)}

Re {𝜆 (𝜏0)} ,
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𝛽2 = 2Re {𝐶1 (0)} ,
𝑇2 = − Im {𝐶1 (0)} + 𝜇2Im {𝜆 (𝜏0)}𝜏0𝜔0 .

(39)

In conclusion, we have the following results.

Theorem 2. For system (2), If 𝜇2 > 0 (𝜇2 < 0), then the Hopf
bifurcation is supercritical (subcritical). If𝛽2 < 0 (𝛽2 > 0), then
the bifurcating periodic solutions are stable (unstable). If 𝑇2 >0 (𝑇2 < 00), then the bifurcating periodic solutions increase
(decrease).

4. Numerical Simulation

We choose the same parameters of system (2) as those in [21]:𝑟 = 3, 𝐾 = 5, 𝜆0 = 1.5, 𝑎 = 1, 𝑏 = 1, 𝑑 = 0.5, 𝛼1 = 1,𝛼2 = 1, 𝛽 = 1, and 𝛿 = 0.5, while setting 𝜏 as the bifurcation
parameter. Then, we get the specific case of system (2) as
follows:

𝑑𝑆 (𝑡)𝑑𝑡 = 𝑆 (𝑡) [3 (1 − 𝑆 (𝑡) + 𝐼 (𝑡)5 )
− (1.5 + 𝑃 (𝑡)1 + 𝑃 (𝑡)) 𝐼 (𝑡)𝑆 (𝑡) + 𝐼 (𝑡)] ,𝑑𝐼 (𝑡)𝑑𝑡 = (1.5 + 𝑃 (𝑡)1 + 𝑃 (𝑡)) 𝑆 (𝑡) 𝐼 (𝑡)𝑆 (𝑡) + 𝐼 (𝑡) − 0.5𝐼 (𝑡)
− 𝐼 (𝑡) 𝑃 (𝑡)1 + 𝐼 (𝑡) ,𝑑𝑃 (𝑡)𝑑𝑡 = 𝐼 (𝑡 − 𝜏) 𝑃 (𝑡 − 𝜏)1 + 𝐼 (𝑡 − 𝜏) − 0.5𝑃 (𝑡) ,

(40)

from which we can obtain the unique positive equilibrium𝐸∗(3.107, 1, 2.328). Numerically for 𝜏 = 0 we have drawn the
figure of Lyapunov exponents (Figure 1). Since all the LEs are
negative, the system is stable for 𝜏 = 0. Further, we can obtain𝜔0 = 0.0042 and the critical value 𝜏0 = 0.3408 at which a
Hopf bifurcation occurs. As is shown in Figure 2,𝐸∗ is locally
asymptotically stable when 𝜏 = 0.265 < 𝜏0. In this case,
the three species in system (40) can coexist in an ideal stable
state. However, 𝐸∗ loses its stability and a family of periodic
solutions bifurcate from 𝐸∗ when 𝜏 = 0.405 > 𝜏0, which can
be illustrated by Figure 3.

On the other hand, by some complex calculations, we
can obtain 𝜆(𝜏0) = 0.002582 + 0.102144𝑖 and 𝐶 − 1(0) =−0.005236+0.000094𝑖. And further we have 𝜇2 = 2.0279 > 0,𝛽2 = −0.0105 < 0 and 𝑇2 = −144.7797 < 0. Thus, based
on theTheorem 2, we can conclude that the Hopf bifurcation
is supercritical and the bifurcating periodic solutions are
stable and decrease. Since the bifurcating periodic solutions
are stable, the three species in system (40) can coexist in
an oscillatory mode under some given conditions. This is
valuable from the viewpoint of biology.
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Figure 1: Lyapunov exponents for 𝜏 = 0, depicting a stable system.

5. Conclusions

In the present paper, we propose a delayed ecoepidemic
model by incorporating the time delay due to the gestation
of the predator in the model studied in [31]. Compared
with the work in [31], we mainly consider the effect of
the time delay on the stability of system (2). The model
investigated in our paper is more general since the time
required for the gestation of the predator and the results we
obtained are suitable complements to the literature [31]. By
regarding the time delay due to the gestation of the predator
as the bifurcation parameter, sufficient conditions for the
local stability of the model and the critical value 𝜏0 at which
a Hopf bifurcation occurs are derived. It is found that when
the value of the time delay is suitablely small, system (2) is
locally asymptotically stable. In this case, the densities of the
healthy prey, the infected prey, and the predator population
will tend to stabilization. Namely, the densities of the three
species will be in ideal stable state and the disease spreading
among the prey can be controlled. Once the value of the time
delay passes through the critical value 𝜏0, system (2) loses
stability and a family of periodic solutions bifurcate from the
positive equilibrium 𝐸∗, which shows that the delay due to
the gestation of the predator plays a very complicated role in
destabilizing the stability of system (2). In this case, the den-
sities of the three species may coexist in an oscillatory and
the disease spreading among the prey will be out of control.
In addition, the explicit formulae determining stability and
direction of the Hopf bifurcation are derived by using the
normal form theory and then center manifold theorem for
the further investigation.

It should be pointed out that predator-prey models in-
volving delays and also spatial diffusion are increasingly ap-
plied to the study of a variety of situations. Based on this
consideration, we will investigate the dynamics of the eco-
epidemic model with diffusion based on the delayed model
in our present paper in the near future.

Data Availability

All the data can be accessed in ourmanuscript in the Numeri-
cal Simulation.
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Figure 2: 𝐸∗ is locally asymptotically stable when 𝜏 = 0.265 < 𝜏0.
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Figure 3: 𝐸∗ loses its stability when 𝜏 = 0.405 > 𝜏0.
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In this article, by means of fixed point theorem on mixed monotone operator, we establish the uniqueness of positive solution for
some nonlocal singular higher-order fractional differential equations involving arbitrary derivatives. We also give iterative schemes
for approximating this unique positive solution.

1. Introduction

We are interested in investigating the existence and iterative
schemes of the unique positive solution for the following
fractional differential equation (FDE):

𝐷𝛼0+𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷𝛿0+𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,
𝐷𝛿0+𝑢 (0) = 𝐷𝛿+10+ 𝑢 (0) = ⋅ ⋅ ⋅ = 𝐷𝛿+𝑛−20+ 𝑢 (0) = 0,
𝐷𝜗0+𝑢 (1) = 𝜆∫𝜂

0
ℎ (𝑡) 𝐷𝜄0+𝑢 (𝑡) d𝑡,

(1)

where𝐷𝛼0+ is the standard Riemann-Liouville derivative, 𝑛 −1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 3, 𝜗−𝛿 ≥ 1, 𝛼−𝜗−1 > 0, 0 ≤ 𝛿 < 1, 0 < 𝜂 ≤ 1,𝜆 is a positive parameter with 0 ≤ 𝜆Γ(𝛼 − 𝜗) ∫𝜂
0
ℎ(𝑡)𝑡𝛼−𝜄−1d𝑡 <

Γ(𝛼−𝜄),𝑓 ∈ 𝐶(𝐽×𝑅+×𝑅+, 𝑅+), 𝐽 = (0, 1), 𝑅+ = (0, +∞), 𝑅+ =[0, +∞), 0 < 𝜆Γ(𝛼 − 𝜗) ∫𝜂
0
ℎ(𝑡)𝑡𝛼−𝜄−1d𝑡 < Γ(𝛼 − 𝜄), ℎ ∈ 𝐿1[0, 1]

is nonnegative, 𝑓(𝑡, 𝑥1, 𝑥2) permits singularities at 𝑥𝑖 = 0 (𝑖 =1, 2), and 𝑡 = 0, 1.
In recent years, fractional calculus and fractional mod-

els play more and more significant role in describing a
wide spectrum of nonlinear phenomena in natural sciences,

engineering, economics, biology, and signal and image pro-
cessing; see books and monographs [1–3] and references
[4–32] to name a few. More and more attention has been
paid to nonlocal problem of fractional differential equation
because of its wide applications to applied mathematics and
physics such as chemical engineering, underground water
flow, heat conduction, thermoelasticity, and plasma physics.
Under different conjugate type integral conditions such as
no parameters, only one or two parameters involved in
boundary conditions, [8–16, 33, 34] investigate the existence,
uniqueness, and multiplicity of positive solutions for FDEs
when𝑓 is either continuous or singular. Very recently, in [16],
we give two uniqueness results of solution for the following
FDE:

𝐷𝛼0+𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 ≤ 𝑡 ≤ 1,
𝑢 (0) = 𝑢 (0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−2) (0) = 0,

𝐷𝛽0+𝑢 (1) = 𝜆∫𝜂
0
ℎ (𝑡) 𝐷𝛾0+𝑢 (𝑡) d𝑡,

(2)

where 𝑓 ∈ 𝐶(𝐼 × 𝑅, 𝑅), 𝐼 = [0, 1], 𝑅 = (−∞,+∞), andℎ ∈ 𝐿1[0, 1] is nonnegative. The whole discussion is based
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on the Banach contraction map principle and the theory of𝑢0-positive linear operator.
Motivated by the above papers, in this article we aim to

obtain the uniqueness result of solution for BVP (1) by means
of theory on mixed monotone operator. This article admits
some new features. First, compared to [6–16] the problem
considered in this paper performs more general form since
another parameter 𝛿 is contained in boundary conditions.
Second, the nonlinearity 𝑓 is not only singular on space
variable 𝑢 but also relative with 𝛿-order derivative of an
unknown variable 𝑢. Finally, the method used in this paper
is different from that in [16].

2. Preliminaries and Several Lemmas

Definition 1 (see [3]). The Riemann-Liouville fractional inte-
gral of order 𝛼 > 0 of a function 𝑥 : (0,∞) → 𝑅 is given
by

𝐼𝛼0+𝑥 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑥 (𝑠) d𝑠 (3)

provided the right-hand side is pointwise defined on (0,∞).
Definition 2 (see [3]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0 of a continuous function 𝑥 :(0,∞) → 𝑅 is given by

𝐷𝛼0+𝑥 (𝑡) = 1Γ (𝑛 − 𝛼) ( d
d𝑡)
𝑛 ∫𝑡
0

𝑥 (𝑠)
(𝑡 − 𝑠)𝛼−𝑛+1d𝑠 (4)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of the number𝛼, provided that the right-hand side is pointwise defined on(0,∞).
Lemma 3 (see [23]). (1) If 𝑥 ∈ 𝐿(0, 1), ] > 𝜎 > 0, then

𝐼]0+𝐼𝜎0+𝑥 (𝑡) = 𝐼]+𝜎0+ 𝑥 (𝑡) ,
𝐷𝜎0+𝐼]0+𝑥 (𝑡) = 𝐼]−𝜎0+ 𝑥 (𝑡) ,
𝐷𝜎0+𝐼𝜎0+𝑥 (𝑡) = 𝑥 (𝑡) .

(5)

(2) If ] > 0, 𝜎 > 0, then
𝐷]
0+ 𝑡𝜎−1 = Γ (𝜎)Γ (𝜎 − ]) 𝑡𝜎−]−1. (6)

Let 𝑢(𝑡) = 𝐼𝛿0+𝑥(𝑡), 𝑥(𝑡) ∈ 𝐶[0, 1]. According to the defini-
tion of Riemann-Liouville derivative and Lemma 3, we have

𝐷𝛼0+𝑢 (𝑡) = d𝑛

d𝑡𝑛 𝐼𝑛−𝛼0+ 𝑢 (𝑡) = d𝑛

d𝑡𝑛 𝐼𝑛−𝛼0+ 𝐼𝛿0+𝑥 (𝑡)
= d𝑛

d𝑡𝑛 𝐼𝑛−𝛼+𝛿0+ 𝑥 (𝑡) = 𝐷𝛼−𝛿0+ 𝑥 (𝑡) ;
𝐷𝛿0+𝑢 (𝑡) = 𝐷𝛿0+𝐼𝛿0+𝑥 (𝑡) = 𝑥 (𝑡) ;
𝐷𝛿+10+ 𝑢 (𝑡) = 𝑥 (𝑡) , ⋅ ⋅ ⋅ , 𝐷𝛿+𝑛−20+ 𝑢 (𝑡) = 𝑥(𝑛−2) (𝑡) ;

𝐷𝛽+𝛿
0+
𝑢 (𝑡) = 𝐷𝛽

0+
𝑥 (𝑡) ,

𝐷𝛾+𝛿
0+
𝑢 (𝑡) = 𝐷𝛾

0+
𝑥 (𝑡) .

(7)

Let 𝛽 = 𝜗 − 𝛿, 𝛾 = 𝜄 − 𝛿.Then, by (7), BVP (1) can reduce to
the following modified fractional boundary value problems
(MFBVP):

𝐷𝛼−𝛿0+ 𝑥 (𝑡) + 𝑓 (𝑡, 𝐼𝛿0+𝑥 (𝑡) , 𝑥 (𝑡)) = 0, 0 < 𝑡 < 1,
𝑥 (0) = 𝑥 (0) = ⋅ ⋅ ⋅ = 𝑥(𝑛−2) (0) = 0,
𝐷𝛽0+𝑥 (1) = 𝜆∫𝜂

0
ℎ (𝑡)𝐷𝛾0+𝑥 (𝑡) d𝑡.

(8)

In a similar way, we can transform (8) into the form (1).Thus,
MFBVP (8) is equivalent to BVP (1).

Lemma 4. Let 𝑢(𝑡) = 𝐼𝛿0+𝑥(𝑡), 𝑥(𝑡) ∈ 𝐶[0, 1]. Then BVP (1)
can transform to (8). In addition, if 𝑥 ∈ 𝐶[0, 1] is a positive
solution for (8), then 𝐼𝛿0+𝑥 is a positive solution for BVP (1).

Proof. Substituting 𝑢(𝑡) = 𝐼𝛿0+𝑥(𝑡) into (1), we know from
Lemma 3 and (7) that

𝐷𝛼0+𝑢 (𝑡) = 𝐷𝛼−𝛿0+ 𝑥 (𝑡) ;
𝐷𝛿0+𝑢 (𝑡) = 𝑥 (𝑡) ;
𝐷𝛿+10+ 𝑢 (𝑡) = 𝑥 (𝑡) , ⋅ ⋅ ⋅ , 𝐷𝛿+𝑛−20+ 𝑢 (𝑡) = 𝑥(𝑛−2) (𝑡) ;
𝐷𝜗0+𝑢 (𝑡) = 𝐷𝛽+𝛿0+ 𝑢 (𝑡) = 𝐷𝛽0+𝑥 (𝑡) ,
𝐷𝜄0+𝑢 (𝑡) = 𝐷𝛾+𝛿0+ 𝑢 (𝑡) = 𝐷𝛾0+𝑥 (𝑡) .

(9)

Considering this together with the boundary value condi-
tions, we have

𝑥 (0) = 𝐷𝛿0+𝑢 (0) = 0,
𝑥(𝑖) (𝑡) = 𝐷𝛿+𝑖0+ 𝑢 (0) = 0,

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 − 2;
𝐷𝛽0+𝑥 (1) = 𝐷𝜗0+𝑢 (1) = 𝜆∫𝜂

0
ℎ (𝑡) 𝐷𝜄0+𝑢 (𝑡) d𝑡

= 𝜆∫𝜂
0
ℎ (𝑡) 𝐷𝛾0+𝑥 (𝑡) d𝑡,

(10)

and

𝐷𝛼−𝛿0+ 𝑥 (𝑡) = −𝑓 (𝑡, 𝐼𝛿0+𝑥 (𝑡) , 𝑥 (𝑡)) . (11)

Thus, (1) is converted to (8).
Additionally, suppose that 𝑥 ∈ 𝐶[0, 1] is a positive of (8).

Let 𝑢(𝑡) = 𝐼𝛿0+𝑥(𝑡). Then, by Lemma 3, one gets

𝐷𝛼0+𝑢 (𝑡) = 𝐷𝛼0+𝐼𝛿0+𝑥 (𝑡) = 𝐷𝛼−𝛿0+ 𝑥 (𝑡)
= −𝑓 (𝑡, 𝐼𝛿0+𝑥 (𝑡) , 𝑥 (𝑡))
= −𝑓 (𝑡, 𝑢 (𝑡) , 𝐷𝛿0+𝑢 (𝑡)) .

(12)
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The boundary condition 𝑥(0) = 𝑥(0) = ⋅ ⋅ ⋅ = 𝑥(𝑛−2)(0) = 0,𝐷𝛽0+𝑥(1) = 𝜆 ∫𝜂0 ℎ(𝑡)𝐷𝛾0+𝑥(𝑡)d𝑡 together with (9) implies that

𝐷𝛿0+𝑢 (0) = 𝐷𝛿+10+ 𝑢 (0) = ⋅ ⋅ ⋅ = 𝐷𝛿+𝑛−20+ 𝑢 (0) = 0,
𝐷𝜗0+𝑢 (1) = 𝜆∫𝜂

0
ℎ (𝑡) 𝐷𝜄0+𝑢 (𝑡) d𝑡.

(13)

That is to say, 𝐼𝛿0+𝑥(𝑡) is a positive solution of BVP (1).

Remark 5. Direct computation implies that

𝐼𝛿0+𝑡𝛼−𝛿−1 = 1Γ (𝛿) ∫
𝑡

0
(𝑡 − 𝑠)𝛿−1 𝑠𝛼−𝛿−1d𝑠

= 𝐵 (𝛿, 𝛼 − 𝛿)Γ (𝛿) 𝑡𝛼−1 = Γ (𝛼 − 𝛿)Γ (𝛼) 𝑡𝛼−1.
(14)

The following two lemmas are isomorphic forms of those in
[16].

Lemma 6 (see [16]). Assume that 𝜆Γ(𝛼 − 𝛿 −𝛽) ∫𝜂
0
ℎ(𝑡)𝑡𝛼−𝛿−𝛾−1d𝑡 ̸= Γ(𝛼 − 𝛿 − 𝛾).Then for any 𝑦 ∈ 𝐿(0, 1),

the unique solution of the boundary value problems

𝐷𝛼−𝛿0+ 𝑥 (𝑡) + 𝑦 (𝑡) = 0, 0 < 𝑡 < 1,
𝑥 (0) = 𝑥 (0) = ⋅ ⋅ ⋅ = 𝑥(𝑛−2) (0) = 0,

𝐷𝛽0+𝑥 (1) = 𝜆∫𝜂
0
ℎ (𝑡) 𝐷𝛾0+𝑥 (𝑡) d𝑡,

(15)

solves

𝑥 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑦 (𝑠) d𝑠, 𝑡 ∈ [0, 1] , (16)

where

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) + 𝐺2 (𝑡, 𝑠) , (17)

𝐺1 (𝑡, 𝑠)

= {{{{{{{

𝑡𝛼−𝛿−1 (1 − 𝑠)𝛼−𝛿−𝛽−1 − (𝑡 − 𝑠)𝛼−𝛿−1Γ (𝛼 − 𝛿) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
𝑡𝛼−𝛿−1 (1 − 𝑠)𝛼−𝛿−𝛽−1Γ (𝛼 − 𝛿) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

(18)

𝐺2 (𝑡, 𝑠) = 𝜆Γ (𝛼 − 𝛿 − 𝛽) 𝑡𝛼−𝛿−1
Γ (𝛼 − 𝛿 − 𝛾) − 𝜆Γ (𝛼 − 𝛿 − 𝛽) ∫𝜂

0
ℎ (𝑡) 𝑡𝛼−𝛿−𝛾−1d𝑡

⋅ ∫𝜂
0
ℎ (𝑡)𝐻 (𝑡, 𝑠) d𝑡,

(19)

𝐻(𝑡, 𝑠)

= {{{{{{{

𝑡𝛼−𝛿−𝛾−1 (1 − 𝑠)𝛼−𝛿−𝛽−1 − (𝑡 − 𝑠)𝛼−𝛿−𝛾−1Γ (𝛼 − 𝛿) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
𝑡𝛼−𝛿−𝛾−1 (1 − 𝑠)𝛼−𝛿−𝛽−1Γ (𝛼 − 𝛿) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

(20)

Here,𝐺(𝑡, 𝑠) is called theGreen function of BVP (15). Obviously,𝐺(𝑡, 𝑠) is continuous on [0, 1] × [0, 1].

Clearly, 𝑥 is a positive solution of BVP (8) if and only if𝑥 ∈ 𝐶[0, 1] is a solution of the following nonlinear integral
equation:

𝑥 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼𝛿0+𝑥 (𝑠) , 𝑥 (𝑠)) d𝑠. (21)

Lemma 7 (see [16]). The functions 𝐺1(𝑡, 𝑠) and 𝐺(𝑡, 𝑠) given
by (18) and (17), respectively, admit the following properties:(𝑎1) 𝐺1(𝑡, 𝑠) ≥ (1/Γ(𝛼 − 𝛿))𝑡𝛼−𝛿−1𝑠(1 − 𝑠)𝛼−𝛿−𝛽−1, ∀ 𝑡, 𝑠 ∈[0, 1];(𝑎2) 𝐺1(𝑡, 𝑠) ≤ (1/Γ(𝛼−𝛿))(𝛼−𝛿−1)𝑠(1−𝑠)𝛼−𝛿−𝛽−1, ∀ 𝑡, 𝑠 ∈[0, 1];(𝑎3) 𝐺(𝑡, 𝑠) ≤ 𝐽(𝑠), 𝐽(𝑠) = (1/Γ(𝛼 − 𝛿))(𝛼 − 𝛿 − 1)𝑠(1 −𝑠)𝛼−𝛿−𝛽−1 + 𝜆Γ(𝛼 − 𝛿 − 𝛽)/(Γ(𝛼 − 𝛿 − 𝛾) − 𝜆Γ(𝛼 − 𝛿 −𝛽) ∫𝜂
0
ℎ(𝑡)𝑡𝛼−𝛿−𝛾−1d𝑡) ⋅ ∫𝜂

0
ℎ(𝑡)𝐻(𝑡, 𝑠)d𝑡, ∀ 𝑡, 𝑠 ∈ [0, 1];

(𝑎4) (1/(𝛼 − 𝛿 − 1))𝑡𝛼−𝛿−1𝐽(𝑠) ≤ 𝐺(𝑡, 𝑠) ≤ (1/Γ(𝛼 −𝛿))Λ𝑡𝛼−𝛿−1(1 − 𝑠)𝛼−𝛿−𝛽−1, here Λ = (𝛼 − 𝛿 − 1) + (𝜆Γ(𝛼 −𝛿 − 𝛽)/(Γ(𝛼 − 𝛿 − 𝛾) − 𝜆Γ(𝛼 − 𝛿 − 𝛽) ∫𝜂
0
ℎ(𝑡)𝑡𝛼−𝛿−𝛾−1d𝑡)) ⋅

∫𝜂
0
ℎ(𝑡)𝑡𝛼−𝛿−𝛾−1d𝑡, ∀ 𝑡, 𝑠 ∈ [0, 1].
Let 𝑃 be a normal cone in a Banach space 𝐸 and nonzero

element 𝑒 ∈ 𝑃 with ‖𝑒‖ ≤ 1. A subset of cone 𝑃 is given as
follows:

𝑄𝑒 = {𝑥 ∈ 𝑃 | there exist constants 𝑚,𝑀
> 0 such that 𝑚𝑒 ≤ 𝑥 ≤ 𝑀𝑒} . (22)

Definition 8 (see [35]). Assume that 𝐴 : 𝑄𝑒 × 𝑄𝑒 → 𝑄𝑒. 𝐴 is
said to be mixed monotone if 𝐴(𝑥, 𝑦) is nondecreasing in 𝑥
and nonincreasing in 𝑦, i.e., if 𝑥1 ≤ 𝑥2 (𝑥1, 𝑥2 ∈ 𝑄𝑒) implies𝐴(𝑥1, 𝑦) ≤ 𝐴(𝑥2, 𝑦) for any 𝑦 ∈ 𝑄𝑒, and 𝑦1 ≤ 𝑦2 (𝑦1, 𝑦2 ∈𝑄𝑒) implies 𝐴(𝑥, 𝑦1) ≤ 𝐴(𝑥, 𝑦2) for any 𝑥 ∈ 𝑄𝑒.The element𝑥∗ ∈ 𝑄𝑒 is said to be a fixed point of 𝐴 if 𝐴(𝑥∗, 𝑥∗) = 𝑥∗.
Lemma 9 (see [17]). Suppose that 𝐴 : 𝑄𝑒 × 𝑄𝑒 → 𝑄𝑒 is a
mixed monotone operator and there exists a constant 𝜎, 0 ≤𝜎 < 1, such that
𝐴(𝑡𝑥, 1𝑡 𝑦) ≥ 𝑡𝜎𝐴 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑄𝑒, 0 < 𝑡 < 1. (23)

Then 𝐴 has a unique fixed point 𝑥∗ ∈ 𝑄𝑒. Moreover, for any(𝑥0, 𝑦0) ∈ 𝑄𝑒 × 𝑄𝑒,
𝑥𝑘 = 𝐴 (𝑥𝑘−1, 𝑦𝑘−1) ,
𝑦𝑘 = 𝐴 (𝑦𝑘−1, 𝑥𝑘−1) ,

𝑘 = 1, 2, ⋅ ⋅ ⋅
(24)

satisfy

𝑥𝑘 → 𝑥∗,
𝑦𝑘 → 𝑥∗, (25)

where 𝑥𝑘 − 𝑥∗ = 𝑜 (1 − 𝑟𝜎𝑘) ,
𝑦𝑘 − 𝑥∗ = 𝑜 (1 − 𝑟𝜎𝑘) ,

(26)

where, 𝑟 is a constant, 0 < 𝑟 < 1, and dependent on 𝑥0, 𝑦0.
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3. Main Result

Throughout this paper, we adopt the following assumptions:(H1) 𝑓(𝑡, 𝑥1, 𝑥2) = 𝜙(𝑡, 𝑥1, 𝑥2) +𝜓(𝑡, 𝑥1, 𝑥2), where, 𝜙, 𝜓 :𝐽×𝑅+×𝑅+ → 𝑅+ is continuous, 𝜙(𝑡, 𝑥1, 𝑥2) is nondecreasing
on 𝑥𝑖, and 𝜓(𝑡, 𝑥1, 𝑥2) is nonincreasing on 𝑥𝑖 (𝑖 = 1, 2).(H2) There exists 𝜎 ∈ 𝐽 such that for 𝑥𝑖 > 0 (𝑖 =1, 2), 𝑡, 𝑐 ∈ 𝐽

𝜙 (𝑡, 𝑐𝑥1, 𝑐𝑥2) ≥ 𝑐𝜎𝜙 (𝑡, 𝑥1, 𝑥2) ;
𝜓 (𝑡, 𝑐−1𝑥1, 𝑐−1𝑥2) ≥ 𝑐𝜎𝜓 (𝑡, 𝑥1, 𝑥2) . (27)

(H3)
0 < ∫1
0
(1 − 𝑠)𝛼−𝜗−1 𝑠−𝜎(𝛼−1)𝜓 (𝑠, 1, 1) d𝑠 < +∞;

0 < ∫1
0
(1 − 𝑠)𝛼−𝜗−1 𝜙 (𝑠, 1, 1) d𝑠 < +∞.

(28)

Remark 10. According to (H2), for any 𝑡 ∈ 𝐽, 𝑐 ≥ 1, 𝑥𝑖 > 0 (𝑖 =1, 2), one has
𝜙 (𝑡, 𝑐𝑥1, 𝑐𝑥2) ≤ 𝑐𝜎𝜙 (𝑡, 𝑥1, 𝑥2) ;

𝜓 (𝑡, 𝑐−1𝑥1, 𝑐−1𝑥2) ≤ 𝑐𝜎𝜓 (𝑡, 𝑥1, 𝑥2) . (29)

Theorem 11. Assume that (H1)−(H3) hold. Then, the BVP (1)
has a unique solution 𝑢∗, and there exists a constant 𝐷 > 1
such that

Γ (𝛼 − 𝛿)𝐷Γ (𝛼) 𝑡𝛼−1 ≤ 𝑢∗ (𝑡) ≤ 𝐷Γ (𝛼 − 𝛿)Γ (𝛼) 𝑡𝛼−1,
∀𝑡 ∈ [0, 1] .

(30)

Moreover, for any 𝑢0, we construct a successive sequence
𝑢𝑘+1 (𝑡) = 𝐼𝛿0+ {∫1

0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝑢𝑘 (𝑠) , 𝐷𝛿0+𝑢𝑘 (𝑠))

+ 𝜓 (𝑠, 𝑢𝑘 (𝑠) , 𝐷𝛿0+𝑢𝑘 (𝑠))] d𝑠} , 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,
(31)

and we have ‖𝑢𝑘 − 𝑢∗‖ → 0 as 𝑘 → ∞; the convergence rate
is

𝑢𝑘 − 𝑢∗ = 𝐼𝛿0+𝑥𝑘 − 𝐼𝛿0+𝑥∗ = 𝑜 (1 − 𝑟𝜎𝑘) , (32)

where 𝑟 is a constant with 0 < 𝑟 < 1 and is dependent on 𝑢0.
Proof. Let 𝑒(𝑡) = 𝑡𝛼−𝛿−1, and we define

𝑄𝑒 = {𝑥 ∈ 𝐶 [0, 1] | 1𝐷𝑒 (𝑡) ≤ 𝑥 (𝑡) ≤ 𝐷𝑒 (𝑡)} , (33)

where

𝐷 > max{[ 1Γ (𝛼 − 𝛿) ∫
1

0
𝑠 (1 − 𝑠)𝛼−𝜗−1 (𝜌𝜎𝑠𝜎(𝛼−1)𝜙 (𝑠, 1, 1) + 2−𝜎𝑏−𝜎𝜓 (𝑠, 1, 1)) d𝑠]1/(𝜎−1) , 1, 2𝜌,

[ ΛΓ (𝛼 − 𝛿) ∫
1

0
(1 − 𝑠)𝛼−𝜗−1 (2𝜎𝑏𝜎𝜙 (𝑠, 1, 1) + 𝜌−𝜎𝑠−𝜎(𝛼−1)𝜓 (𝑠, 1, 1)) d𝑠]1/(1−𝜎)} ,

(34)

where 𝑏 = max{Γ(𝛼 − 𝛿)/Γ(𝛼), 1}, 𝜌 = min{1, Γ(𝛼 − 𝛿)/Γ(𝛼)}.
We consider the existence of positive solution for (8). For any𝑥, 𝑦 ∈ 𝑄𝑒, define an operator 𝑇 as follows:

𝑇 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝐼𝛿0+𝑥 (𝑠) , 𝑥 (𝑠))

+ 𝜓 (𝑠, 𝐼𝛿0+𝑦 (𝑠) , 𝑦 (𝑠))] d𝑠.
(35)

It is clear that 𝑥 is a positive solution of BVP (8) if and only if𝑥 ∈ 𝐶[0, 1] is a fixed point of the operator 𝑇.
First, we are in position to show that 𝑇 : 𝑄𝑒 × 𝑄𝑒 → 𝑄𝑒

is well defined. By (H2) and Remark 5, for any 𝑥, 𝑦 ∈ 𝑄𝑒 we
have

𝜙 (𝑠, 𝐼𝛿0+𝑥 (𝑠) , 𝑥 (𝑠))
≤ 𝜙(𝑠, 𝐷Γ (𝛼 − 𝛿)Γ (𝛼) 𝑠𝛼−1, 𝐷𝑠𝛼−𝛿−1)

≤ 𝜙 (𝑠,𝐷𝑏 + 1,𝐷𝑏 + 1) ≤ (𝐷𝑏 + 1)𝜎 𝜙 (𝑠, 1, 1)
≤ 2𝜎𝑏𝜎𝐷𝜎𝜙 (𝑠, 1, 1) , 𝑠 ∈ (0, 1) ,

(36)

and

𝜓 (𝑠, 𝐼𝛿0+𝑦 (𝑠) , 𝑦 (𝑠)) ≤ 𝜓(𝑠, Γ (𝛼 − 𝛿)𝐷Γ (𝛼) 𝑠𝛼−1, 1𝐷𝑠𝛼−𝛿−1)
≤ 𝜓(𝑠, 𝜌𝐷𝑠𝛼−1, 𝜌𝐷𝑠𝛼−1)
≤ ( 𝜌𝐷𝑠𝛼−1)

−𝜎 𝜓 (𝑠, 1, 1)
= 𝜌−𝜎𝐷𝜎𝑠−𝜎(𝛼−1)𝜓 (𝑠, 1, 1) ,

𝑠 ∈ (0, 1) .

(37)
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Considering the fact that (𝜌/𝐷)𝑠𝛼−1 < 1, we have from
(34), (H2), and Remark 5 that

𝜙 (𝑠, 𝐼𝛿0+𝑥 (𝑠) , 𝑥 (𝑠)) ≥ 𝜙(𝑠, Γ (𝛼 − 𝛿)𝐷Γ (𝛼) 𝑠𝛼−1, 1𝐷𝑠𝛼−𝛿−1)
≥ 𝜙(𝑠, 𝜌𝐷𝑠𝛼−1, 𝜌𝐷𝑠𝛼−𝛿−1)
≥ 𝜙(𝑠, 𝜌𝐷𝑠𝛼−1, 𝜌𝐷𝑠𝛼−1)
≥ ( 𝜌𝐷𝑠𝛼−1)

𝜎 𝜙 (𝑠, 1, 1)
≥ 𝜌𝜎𝐷−𝜎𝑠𝜎(𝛼−1)𝜙 (𝑠, 1, 1) ,

𝑠 ∈ (0, 1) ,

(38)

and

𝜓 (𝑠, 𝐼𝛿0+𝑦 (𝑠) , 𝑦 (𝑠))
≥ 𝜓(𝑠, 𝐷Γ (𝛼 − 𝛿)Γ (𝛼) 𝑠𝛼−1, 𝐷𝑠𝛼−𝛿−1)
≥ 𝜓 (𝑠, 𝐷𝑏𝑠𝛼−1, 𝐷𝑏𝑠𝛼−𝛿−1) ≥ 𝜓 (𝑠, 𝐷𝑏 + 1,𝐷𝑏 + 1)
≥ (𝐷𝑏 + 1)−𝜎 𝜓 (𝑠, 1, 1) ≥ 2−𝜎𝑏−𝜎𝐷−𝜎𝜓 (𝑠, 1, 1) ,

𝑠 ∈ (0, 1) .

(39)

Thus, it follows from (36), (37), Lemma 7, and (H3) that

∫1
0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝐼𝛿0+𝑥 (𝑠) , 𝑥 (𝑠))
+ 𝜓 (𝑠, 𝐼𝛿0+𝑦 (𝑠) , 𝑦 (𝑠))] d𝑠 ≤ 1Γ (𝛼 − 𝛿)
⋅ Λ𝑡𝛼−𝛿−1∫1

0
(1 − 𝑠)𝛼−𝛿−𝛽−1 [2𝜎𝑏𝜎𝐷𝜎𝜙 (𝑠, 1, 1)

+ 𝜌−𝜎𝐷𝜎𝑠−𝜎(𝛼−1)𝜓 (𝑠, 1, 1)] d𝑠 = 1Γ (𝛼 − 𝛿)
⋅ Λ𝑡𝛼−𝛿−1∫1

0
(1 − 𝑠)𝛼−𝜗−1 [2𝜎𝑏𝜎𝐷𝜎𝜙 (𝑠, 1, 1)

+ 𝜌−𝜎𝐷𝜎𝑠−𝜎(𝛼−1)𝜓 (𝑠, 1, 1)] d𝑠 < +∞,
∀𝑡 ∈ [0, 1] .

(40)

This means that 𝑇 : 𝑄𝑒 × 𝑄𝑒 → 𝑃 is well defined.
On the other hand, we can easily see from (34) and (40)

that

𝑇 (𝑥, 𝑦) (𝑡) ≤ 𝐷𝑡𝛼−𝛿−1 = 𝐷𝑒 (𝑡) , ∀𝑡 ∈ [0, 1] . (41)

At the same time, by (38), (39), and Lemma 7, we know that

𝑇 (𝑥, 𝑦) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝐼𝛿0+𝑥 (𝑠) , 𝑥 (𝑠))

+ 𝜓 (𝑠, 𝐼𝛿0+𝑦 (𝑠) , 𝑦 (𝑠))] d𝑠 ≥ 1Γ (𝛼 − 𝛿)
⋅ 𝑡𝛼−𝛿−1∫1

0
𝑠 (1 − 𝑠)𝛼−𝛿−𝛽−1 [𝜌𝜎𝐷−𝜎𝑠𝜎(𝛼−1)𝜙 (𝑠, 1, 1)

+ 2−𝜎𝑏−𝜎𝐷−𝜎𝜓 (𝑠, 1, 1)] d𝑠 = 1Γ (𝛼 − 𝛿)
⋅ 𝑡𝛼−𝛿−1∫1

0
𝑠 (1 − 𝑠)𝛼−𝜗−1 [𝜌𝜎𝐷−𝜎𝑠𝜎(𝛼−1)𝜙 (𝑠, 1, 1)

+ 2−𝜎𝑏−𝜎𝐷−𝜎𝜓 (𝑠, 1, 1)] d𝑠 ≥ 1𝐷𝑡𝛼−𝛿−1 = 1𝐷
⋅ 𝑒 (𝑡) , ∀𝑡 ∈ [0, 1] .

(42)

It follows from (40)-(42) that 𝑇 : 𝑄𝑒 × 𝑄𝑒 → 𝑄𝑒 is well
defined.

Next, we shall prove that 𝑇 : 𝑄𝑒 × 𝑄𝑒 → 𝑄𝑒 is a mixed
monotone operator. To this end, let 𝑥1, 𝑥2 ∈ 𝑄𝑒 with 𝑥1 ≤𝑥2. For any 𝑦 ∈ 𝑄𝑒, it follows from (H1) together with the
monotonicity of the operator 𝐼𝛿0+ that
𝑇 (𝑥1, 𝑦) (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝐼𝛿0+𝑥1 (𝑠) , 𝑥1 (𝑠))

+ 𝜓 (𝑠, 𝐼𝛿0+𝑦 (𝑠) , 𝑦 (𝑠))] d𝑠 ≤ ∫1
0
𝐺 (𝑡, 𝑠)

⋅ [𝜙 (𝑠, 𝐼𝛿0+𝑥2 (𝑠) , 𝑥2 (𝑠))
+ 𝜓 (𝑠, 𝐼𝛿0+𝑦 (𝑠) , 𝑦 (𝑠))] d𝑠 = 𝑇 (𝑥2, 𝑦) (𝑡) ,

(43)

which implies that 𝑇(𝑥, 𝑦) is nondecreasing in 𝑥 for any 𝑦 ∈𝑄𝑒. In a similar manner, for any 𝑥, 𝑦1, 𝑦2 ∈ 𝑄𝑒 with 𝑦1 ≤ 𝑦2,
we have

𝑇 (𝑥, 𝑦1) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝐼𝛿0+𝑥 (𝑠) , 𝑥 (𝑠))

+ 𝜓 (𝑠, 𝐼𝛿0+𝑦1 (𝑠) , 𝑦1 (𝑠))] d𝑠 ≥ ∫1
0
𝐺 (𝑡, 𝑠)

⋅ [𝜙 (𝑠, 𝐼𝛿0+𝑥 (𝑠) , 𝑥 (𝑠))
+ 𝜓 (𝑠, 𝐼𝛿0+𝑦2 (𝑠) , 𝑦2 (𝑠))] d𝑠 = 𝑇 (𝑥, 𝑦2) (𝑡) .

(44)

This is to say, 𝑇(𝑥, 𝑦) is nonincreasing in 𝑦 for any 𝑥 ∈ 𝑄𝑒.
Thus, 𝑇 : 𝑄𝑒 × 𝑄𝑒 → 𝑄𝑒 is a mixed monotone operator.

Finally, by (H2), one has
𝑇 (𝑐𝑥, 𝑐−1𝑦) (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝑐𝐼𝛿0+𝑥 (𝑠) , 𝑐𝑥 (𝑠))

+ 𝜓 (𝑠, 𝑐−1𝐼𝛿0+𝑦 (𝑠) , 𝑐−1𝑦 (𝑠))] d𝑠 ≥ ∫1
0
𝐺 (𝑡, 𝑠)
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⋅ 𝑐𝜎 [𝜙 (𝑠, 𝐼𝛿0+𝑥 (𝑠) , 𝑥 (𝑠))
+ 𝜓 (𝑠, 𝐼𝛿0+𝑦 (𝑠) , 𝑦 (𝑠))] d𝑠 = 𝑐𝜎𝑇 (𝑥, 𝑡) (𝑡) ,

∀𝑡 ∈ [0, 1] , 𝑥, 𝑦 ∈ 𝑄𝑒,
(45)

which means that (23) in Lemma 9 is satisfied. Hence,
Lemma 9 guarantees that there exists a unique positive
solution 𝑥∗ for BVP (8). Let 𝑢∗(𝑡) = 𝐼𝛿0+𝑥∗(𝑡); then 𝑢∗ is the
unique positive solution for BVP (1).

In addition, for any 𝑢0(𝑡) = 𝐼𝛿0+𝑥0(𝑡) ∈ 𝑄𝑒, by Lemma 9,
constructing a successive sequence

𝑥𝑘+1 (𝑡) = ∫1
0
G (𝑡, 𝑠) [𝜙 (𝑠, 𝐼𝛿0+𝑥𝑘 (𝑠) , 𝑥𝑘 (𝑠))

+ 𝜓 (𝑠, 𝐼𝛿0+𝑥𝑘 (𝑠) , 𝑥𝑘 (𝑠))] d𝑠, 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,
(46)

and 𝑢𝑘+1(𝑡) = 𝐼𝛿0+𝑥𝑘+1(𝑡), then
𝑢𝑘+1 (𝑡) = 𝐼𝛿0+ {∫1

0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝑢𝑘 (𝑠) , 𝐷𝛿0+𝑢𝑘 (𝑠))

+ 𝜓 (𝑠, 𝑢𝑘 (𝑠) ,𝐷𝛿0+𝑢𝑘 (𝑠))] d𝑠} ,
𝑘 = 1, 2, ⋅ ⋅ ⋅ ,

(47)

and we have ‖𝑢𝑘 − 𝑢∗‖ = ‖𝐼𝛿0+𝑥𝑘 − 𝐼𝛿0+𝑥∗‖ → 0 as 𝑘 → ∞;
the convergence rate is

𝑢𝑘 − 𝑢∗ = 𝐼𝛿0+𝑥𝑘 − 𝐼𝛿0+𝑥∗ = 𝑜 (1 − 𝑟𝜎𝑘) , (48)

where 𝑟 is a constant with 0 < 𝑟 < 1 and is dependent on 𝑢0.
Moreover, by Remark 5, we get

Γ (𝛼 − 𝛿)𝐷Γ (𝛼) 𝑡𝛼−1 ≤ 𝑢∗ (𝑡) = 𝐼𝛿0+𝑥∗ (𝑡) ≤ 𝐷Γ (𝛼 − 𝛿)Γ (𝛼) 𝑡𝛼−1,
∀𝑡 ∈ [0, 1] .

(49)

4. An Example

Example 1. Consider the following fractional differential
equation integral boundary value problems:

𝐷9/20+ 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷1/40+ 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,
𝐷1/4
0+
𝑢 (0) = 𝐷5/4

0+
𝑢 (0) = 𝐷9/4

0+
𝑢 (0) = 𝐷13/4

0+
𝑢 (0) = 0,

𝐷7/40+ 𝑢 (1) = 23 ∫
4/5

0
𝑡−3/4𝐷3/20+ 𝑢 (𝑡) d𝑡,

(50)

where 𝛼 = 9/2, 𝑛 = 5, 𝛿 = 1/4, 𝜗 = 7/4, 𝜄 = 3/2, 𝜆 =2/3, ℎ(𝑡) = 𝑡−3/4,
𝑓 (𝑡, 𝑢 (𝑡) , 𝐷1/4

0+
𝑢 (𝑡)) = (𝑡−2/3 + cos 𝑡) 𝑢1/8 (𝑡)

+ 𝑡−1/4𝑢−1/9 (𝑡)
+ 6𝑡4/5 (𝐷1/4

0+
𝑢 (𝑡))1/7

+ (3 − 2𝑡) (𝐷1/4
0+
𝑢 (𝑡))−1/7 .

(51)

By simple computation, we have 𝜆Γ(𝛼 − 𝜗) ∫𝜂
0
ℎ(𝑡)𝑡𝛼−𝜄−1d𝑡 =

2/3 × Γ(11/4) × ∫4/5
0
𝑡−3/4 ⋅ 𝑡2d𝑡 = 2/3 × 1.6084 × 0.2690 =0.2884 < 2 = Γ(𝛼 − 𝜄). It is easy to know that (H1) holds for

𝜙 (𝑡, 𝑥1, 𝑥2) = (𝑡−2/3 + cos 𝑡) 𝑥11/8 + 6𝑡4/5𝑥21/7,
𝜓 (𝑡, 𝑥1, 𝑥2) = 𝑡−1/4𝑥1−1/9 + (3 − 2𝑡) 𝑥2−1/7.

(52)

At the same time, for any (𝑡, 𝑥1, 𝑥2) ∈ 𝐽 × 𝑅+ × 𝑅+ and 𝑐 ∈ 𝐽,
one has

𝜙 (𝑡, 𝑐𝑥1, 𝑐𝑥2) = 𝑐1/8 (𝑡−2/3 + cos 𝑡) 𝑥11/8
+ 𝑐1/76𝑡4/5𝑥21/7

≥ 𝑐1/7𝜙 (𝑡, 𝑥1, 𝑥2) ,
𝜓 (𝑡, 𝑐−1𝑥1, 𝑐−1𝑥2) = 𝑐1/9𝑡−1/4𝑥1−1/9

+ 𝑐1/7 (3 − 2𝑡) 𝑥2−1/7
≥ 𝑐1/7𝜓 (𝑡, 𝑥1, 𝑥2) .

(53)

Thus, (H2) is valid for 𝜎 = 1/7. Notice that 𝜙(𝑠, 1, 1) = 𝑠−2/3 +
cos 𝑠 + 6𝑠4/5, 𝜓(𝑠, 1, 1) = 𝑠−1/4 + (3 − 2𝑠), and one gets

∫1
0
(1 − 𝑠)𝛼−𝜗−1 𝑠−𝜎(𝛼−1)𝜓 (𝑠, 1, 1) d𝑠
= ∫1
0
(1 − 𝑠)7/4 𝑠−1/2 (𝑠−1/4 + 3 − 2𝑠) d𝑠 ≈ 5.9264

< +∞,
(54)

and

∫1
0
(1 − 𝑠)𝛼−𝜗−1 𝜙 (𝑠, 1, 1) d𝑠
= ∫1
0
(1 − 𝑠)7/4 (𝑠−2/3 + cos 𝑠 + 6𝑠4/5) d𝑠

< ∫1
0
(1 − 𝑠)7/4 (𝑠−2/3 + 1 + 6𝑠4/5) d𝑠 ≈ 3.0765

< +∞,

(55)

which implies that (H3) is also satisfied. Thus, byTheorem 11
we know that BVP (50) has a unique positive solution.



Journal of Function Spaces 7

In addition, for any initial 𝑢0 = 𝐼1/40+ 𝑥0 ∈ 𝑄𝑒, we construct
a successive sequence

𝑥𝑘+1 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝐼1/4

0+
𝑥𝑘 (𝑠) , 𝑥𝑘 (𝑠))

+ 𝜓 (𝑠, 𝐼1/4
0+
𝑥𝑘 (𝑠) , 𝑥𝑘 (𝑠))] d𝑠, 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,

(56)

and 𝑢𝑘+1(𝑡) = 𝐼1/40+ 𝑥𝑘+1(𝑡); then
𝑢𝑘+1 (𝑡) = 𝐼1/40+ {∫1

0
𝐺 (𝑡, 𝑠) [𝜙 (𝑠, 𝑢𝑘 (𝑠) , 𝐷1/40+ 𝑢𝑘 (𝑠))

+ 𝜓 (𝑠, 𝑢𝑘 (𝑠) ,𝐷1/40+ 𝑢𝑘 (𝑠))] d𝑠} ,
𝑘 = 1, 2, ⋅ ⋅ ⋅ ,

(57)

and we have ‖𝑢𝑘 − 𝑢∗‖ = ‖𝐼1/40+ 𝑥𝑘 − 𝐼1/40+ 𝑥∗‖ → 0 as 𝑘 → ∞;
the convergence rate is

𝑢𝑘 − 𝑢∗ = 𝐼𝛿0+𝑥𝑘 − 𝐼1/40+ 𝑥∗ = 𝑜 (1 − 𝑟(1/7)𝑘) , (58)

where 𝑟 is a constant with 0 < 𝑟 < 1 and is dependent on 𝑢0.
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This paper mainly studies a class of mixed fractional boundary value problem with parameter and 𝑝-Laplacian operator. Based
on the Guo-Krasnosel’skii fixed point theorem, results on the existence and nonexistence of positive solutions for the fractional
boundary value problem are established. An example is then presented to illustrate the effectiveness of the results.

1. Introduction

In this paper, we consider the existence and nonexistence of
positive solution for the following mixed fractional boundary
value problem (BVP):

𝐷𝛼0+ (𝜑𝑝 (𝑐𝐷𝛽0+𝑢 (𝑡))) + 𝜆𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,
𝑢 (1) = 𝑢 (0) = 𝑢 (0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−1) (0) = 0,
𝑐𝐷𝛽0+𝑢 (0) = 0,
𝑐𝐷𝛽0+𝑢 (1) = 𝑎𝑐𝐷𝛽0+𝑢 (𝜂) ,

(1)

where 𝜆 > 0 is a parameter, 1 < 𝛼 ≤ 2, 𝑛 − 1 < 𝛽 ≤ 𝑛, 𝑛 ≥ 2,𝐷𝛼0+ is the Riemann-Liouville derivative operator, 𝑐𝐷𝛽0+ is the
Caputo fractional derivative operator, 𝜑𝑝 is the 𝑝-Laplacian
operator defined by 𝜑𝑝(𝑠) = |𝑠|𝑝−2𝑠, (𝜑𝑝)−1 = 𝜑𝑞, 1/𝑝 + 1/𝑞 =
1, 𝑝 > 1, 𝜂 ∈ (0, 1), and 𝑎 > 0 and satisfies 1 − 𝑎𝑝−1𝜂𝛼−1 > 0,
and 𝑓 : [0, 1]×[0, +∞) → [0, +∞) is a continuous function.

The theory of fractional differential equation has gained
interesting by many researchers due to its deep real world
background and, in recent years, more and more papers
concern the boundary value problems for fractional-order
differential equations; see [1–27]. In [28], Wang, Xiang and

Liu use Krasnoselskii’s fixed point theorem and Leggett-
Williams theorem to obtain the existence results of BVP,
which is given in the following:

𝐷𝛾
0+
(𝜑𝑝 (𝐷𝛼0+𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝐷𝛼0+𝑢 (0) = 𝑢 (0) = 0,
𝑢 (1) = 𝑎𝑢 (𝜉) ,

𝐷𝛼0+𝑢 (1) = 𝑏𝐷𝛼0+𝑢 (𝜂) ,
(2)

where 1 < 𝛼, 𝛾 ≤ 2, 0 ≤ 𝑎, 𝑏 ≤ 1, 0 < 𝜉, 𝜂 < 1, 𝐷𝛼0+ and𝐷𝛾
0+
are Riemann-Liouville derivative operators, 𝜑𝑝 is the 𝑝-

Laplacian operator defined by 𝜑𝑝(𝑠) = |𝑠|𝑝−2𝑠, and 𝑓 : [0, 1] ×[0, +∞) → [0, +∞) is a continuous function.
Lu et al. in [29] investigated the BVP

𝐷𝛼0+ (𝜑𝑝 (𝐷𝛽0+𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,
𝑢 (0) = 𝑢 (0) = 𝑢 (1) = 0,

𝐷𝛽
0+
𝑢 (0) = 𝐷𝛽

0+
𝑢 (1) = 0,

(3)

where 1 < 𝛼 ≤ 2, 2 < 𝛽 ≤ 3, 𝐷𝛼0+ and 𝐷𝛽
0+

are
Riemann-Liouville derivative operators,𝜑𝑝 is the𝑝-Laplacian
operator defined by 𝜑𝑝(𝑠) = |𝑠|𝑝−2𝑠, and 𝑓 : [0, 1] ×
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[0, +∞) → [0, +∞) is a continuous function. By the use
of Guo-Krasnosel’skii fixed point theorem, the existence and
multiplicity results of BVP (3) are obtained.

In this paper, we study the existence and nonexistence of
positive solutions for the mixed fractional boundary value
problem as BVP (1), which leads to lots of difference and
new features. On one hand, compared to the papers men-
tioned above, which only involve one derivative, our study
involves both theRiemann-Liouville fractional derivative and
the Caputo fractional derivative, which making the studied
problems difficult. On the other hand, under different com-
binations of superlinearity and sublinearity of the function𝑓, results on the existence and nonexistence of positive
solutions are received and the impact of the parameter on
the existence and nonexistence of positive solutions is also
obtained.

2. Preliminaries and Lemmas

Definition 1 (see [30, 31]). The Caputo fractional-order
derivative of orders 𝛼 > 0 and 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N, is
defined as

𝑐𝐷𝛼0+𝑢 (𝑡) = 1Γ (𝑛 − 𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝑛−𝛼−1 𝑢(𝑛) (𝑠) 𝑑𝑠, (4)

where 𝑢 ∈ 𝐶𝑛(𝐽,R), R = (−∞,+∞), N denotes the natural
number set, 𝑛 = [𝛼]+1, and [𝛼] denotes the integer part of 𝛼.
Definition 2 (see [30, 31]). Let 𝛼 > 0 and let 𝑢 be piecewise
continuous on (0, +∞) and integrable on any finite subinter-
val of 𝐽. Then for 𝑡 > 0, we call

𝐼𝛼0+𝑢 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑢 (𝑠) 𝑑𝑠, (5)

the Riemann-Liouville fractional integral of 𝑢 of order 𝛼.
Lemma 3 (see [30, 31]). Let 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑢 ∈ 𝐶𝑛[0, 1]. Then

𝐼𝛼0+ (𝑐𝐷𝛼0+𝑢) (𝑡) = 𝑢 (𝑡) + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅ + 𝑐𝑛−1𝑡𝑛−1, (6)

where 𝑐𝑖 ∈ R (𝑖 = 1, 2, . . . , 𝑛 − 1) and 𝑛 is the smallest integer
greater than or equal to 𝛼.

Let 𝜑𝑝(𝑐𝐷𝛽0+𝑢(𝑡)) = V(𝑡); then V(0) = 0, V(1) = 𝑎𝑝−1V(𝜂),
and we now consider the following BVP:

𝐷𝛼0+V (𝑡) + 𝑦 (𝑡) = 0, 0 < 𝑡 < 1,
V (0) = 0,
V (1) = 𝑎𝑝−1V (𝜂) ,

(7)

Lemma 4 (see [32]). If 𝑦 ∈ 𝐶[0, 1], then BVP (7) has a unique
solution

V (𝑡) = ∫1
0
𝐻(𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (8)

where

𝐻(𝑡, 𝑠) = ℎ (𝑡, 𝑠) + 𝑎𝑝−1𝑡𝛼−11 − 𝑎𝑝−1𝜂𝛼−1 , (9)

ℎ (𝑡, 𝑠) =
{{{{{{{{{

(𝑡 (1 − 𝑠))𝛼−1 − (𝑡 − 𝑠)𝛼−1Γ (𝛼) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
(𝑡 (1 − 𝑠))𝛼−1Γ (𝛼) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1. (10)

For any given 𝑦 ∈ 𝐶[0, 1], consider the following BVP:
𝐷𝛼0+ (𝜑𝑝 (𝑐𝐷𝛽0+𝑢 (𝑡))) + 𝑦 (𝑡) = 0, 0 < 𝑡 < 1,
𝑢 (1) = 𝑢 (0) = 𝑢 (0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−1) (0) = 0,
𝑐𝐷𝛽0+𝑢 (0) = 0,
𝑐𝐷𝛽0+𝑢 (1) = 𝑎𝑐𝐷𝛽0+𝑢 (𝜂) .

(11)

By analysis, we know that (11) can be decomposed into the
BVP (7) and the BVP

𝑐𝐷𝛽0+𝑢 (𝑡) + 𝜑𝑞 (∫1
0
𝐻(𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠) = 0, 0 < 𝑡 < 1,

𝑢 (1) = 𝑢 (0) = 𝑢 (0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−1) (0) = 0.
(12)

Lemma 5. If 𝑦 ∈ 𝐶[0, 1], then BVP
𝑐𝐷𝛽0+𝑢 (𝑡) + 𝑦 (𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (1) = 𝑢 (0) = 𝑢 (0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−1) (0)
= 0

(13)

has a unique solution

𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (14)

where

𝐺 (𝑡, 𝑠) =
{{{{{{{{{{{

(1 − 𝑠)𝛽−1 − (𝑡 − 𝑠)𝛽−1Γ (𝛽) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
(1 − 𝑠)𝛽−1Γ (𝛽) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1. (15)

Proof. By Lemma 3, BVP (13) is equivalent to the following
integral equation:

𝑢 (𝑡) = −∫𝑡
0

(𝑡 − 𝑠)𝛽−1Γ (𝛽) 𝑦 (𝑠) 𝑑𝑠 + 𝑐1 + 𝑐2𝑡 + 𝑐3𝑡2 ⋅ ⋅ ⋅
+ 𝑐𝑛𝑡𝑛−1.

(16)

Conditions 𝑢(0) = 𝑢(0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−1)(0) = 0 imply that𝑐2 = 𝑐3 = ⋅ ⋅ ⋅ = 𝑐𝑛 = 0.That is,

𝑢 (𝑡) = −∫𝑡
0

(𝑡 − 𝑠)𝛽−1Γ (𝛽) 𝑦 (𝑠) 𝑑𝑠 + 𝑐1. (17)
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By 𝑢(1) = 0, we get
𝑐1 = −∫1

0

(1 − 𝑠)𝛽−1Γ (𝛼1) 𝑦 (𝑠) 𝑑𝑠. (18)

Combining (16) and (18), we can obtain (14). The proof is
completed.

Lemma 6. The Green functions 𝐻(𝑡, 𝑠) and 𝐺(𝑡, 𝑠) defined
separately by (9) and (15) have the following properties:

(1) 𝐻(𝑡, 𝑠) and 𝐺(𝑡, 𝑠) : [0, 1] × [0, 1] → [0, +∞) are
continuous.

(2) (1 − 𝑠)𝛽−1(1 − 𝑡𝛽−1)/Γ(𝛽) ≤ 𝐺(𝑡, 𝑠) ≤ (1 − 𝑠)𝛽−1/Γ(𝛽).
Proof. Obviously, (1) holds, in the following, andwe proof (3).
From the definition of 𝐺(𝑡, 𝑠), for 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, we know that
(3) holds.

For 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, we have 𝑡 − 𝑡𝑠 ≥ 𝑡 − 𝑠 and then

(1 − 𝑠)𝛽−1 − (𝑡 − 𝑠)𝛽−1 ≥ (1 − 𝑠)𝛽−1 − (𝑡 − 𝑡𝑠)𝛽−1
≥ (1 − 𝑠)𝛽−1 − 𝑡𝛽−1 (1 − 𝑠)𝛽−1
= (1 − 𝑠)𝛽−1 (1 − 𝑡𝛽−1) ,

(19)

so we know that (1 − 𝑠)𝛽−1(1 − 𝑡𝛽−1)/Γ(𝛽) ≤ 𝐺(𝑡, 𝑠). It is also
defined by𝐺(𝑡, 𝑠), and we obtain that𝐺(𝑡, 𝑠) ≤ (1−𝑠)𝛽−1/Γ(𝛽).
Thus, we get that (3) holds. The proof is completed.

Let 𝑋 = 𝐶[0, 1]; then 𝑋 is a Banach space with the norm‖𝑢‖ = sup𝑡∈[0,1]|𝑢(𝑡)|. For any 𝛾1, 𝛾2 ∈ (0, 1), 𝛾1 < 𝛾2, denote
𝐾 = {𝑢 ∈ 𝑋 : min

𝑡∈[𝛾1 ,𝛾2]
𝑢 (𝑡) ≥ 𝜔 ‖𝑢‖} , (20)

where 𝜔 = min𝑡∈[𝛾1 ,𝛾2](1 − 𝑡𝛽−1) and then 𝐾 is a positive cone
in𝑋. Define an integral operator 𝑇 : 𝐾 → 𝑋 by
𝑇𝑢 (𝑡) = 𝜑𝑞 (𝜆)

⋅ ∫1
0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠,

𝑡 ∈ [0, 1] .
(21)

We know that 𝑢 is a positive solutions of BVP (1) if and only
if 𝑢 is a fixed point of 𝑇 in𝐾.

Lemma 7. 𝑇 : 𝐾 → 𝐾 is a completely continuous operator.

Proof. By the routine discussion, 𝑇 : 𝐾 → 𝑋 is well defined
and we only prove 𝑇(𝐾) ⊆ 𝐾. For any 𝑢 ∈ 𝐾, 𝑡 ∈ [0, 1], by
Lemma 6, we have

𝑇𝑢 (𝑡) = 𝜑𝑞 (𝜆)
⋅ ∫1
0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ 𝜑𝑞 (𝜆)Γ (𝛽)
⋅ ∫1
0
(1 − 𝑠)𝛽−1 𝜑𝑞 (∫1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠,

(22)

and then

‖𝑇𝑢‖ ≤ 𝜑𝑞 (𝜆)Γ (𝛽)
⋅ ∫1
0
(1 − 𝑠)𝛽−1 𝜑𝑞 (∫1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠.

(23)

On the other hand, for 𝑡 ∈ [𝛾1, 𝛾2], by Lemma 6, we get

𝑇𝑢 (𝑡) ≥ 𝜑𝑞 (𝜆)Γ (𝛽) ∫1
0
(1 − 𝑠)𝛽−1 (1 − 𝑡𝛽−1)

⋅ 𝜑𝑞 (∫1
0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠

= (1 − 𝑡𝛽−1) 𝜑𝑞 (𝜆)Γ (𝛽) ∫1
0
(1 − 𝑠)𝛽−1

⋅ 𝜑𝑞 (∫1
0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠 ≥ 𝜔𝜑𝑞 (𝜆)Γ (𝛽)

⋅ ∫1
0
(1 − 𝑠)𝛽−1 𝜑𝑞 (∫1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠.

(24)

By (23) and (24), we can prove that𝑇𝑢(𝑡) ≥ 𝜔‖𝑇𝑢‖.Therefore,
we have 𝑇(𝐾) ⊆ 𝐾.

According to the Ascoli-Arzela theorem and the continu-
ity of 𝑓, we get that 𝑇 : 𝐾 → 𝐾 is completely continuous.
The proof is completed.

Lemma 8 (see [33]). Let 𝑃 be a positive cone in a Banach
space; 𝐸, Ω1, and Ω2 are bounded open sets in 𝐸, 𝜃 ∈ Ω1, andΩ1 ⊂ Ω2, 𝐴 : 𝑃 ∩ (Ω2 \ Ω1) → 𝑃 is a completely continuous
operator. If the conditions

‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω1, ‖𝐴𝑥‖ ≥ ‖𝑥‖, and ∀𝑥 ∈𝑃 ∩ 𝜕Ω2,
or

‖𝐴𝑥‖ ≥ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω1, ‖𝐴𝑥‖ ≤ ‖𝑥‖, and ∀𝑥 ∈𝑃 ∩ 𝜕Ω2,
are satisfied, then𝐴 has at least one fixed point in𝑃∩(Ω2 \Ω1).
3. Main Results

Denote

𝑓0 = lim inf
𝑥→0+

inf
𝑡∈[𝛾1 ,𝛾2]

𝑓 (𝑡, 𝑥)𝜑𝑝 (𝑥) ,
𝑓0 = lim sup

𝑥→0+
sup
𝑡∈[0,1]

𝑓 (𝑡, 𝑥)𝜑𝑝 (𝑥) ,
𝑓∞ = lim inf

𝑥→+∞
inf
𝑡∈[𝛾1 ,𝛾2]

𝑓 (𝑡, 𝑥)𝜑𝑝 (𝑥) ,
𝑓∞ = lim sup

𝑥→+∞
sup
𝑡∈[0,1]

𝑓 (𝑡, 𝑥)𝜑𝑝 (𝑥) ,
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𝐿1 = ∫1
0

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫1
0
𝐻(𝑠, 𝜏) 𝑑𝜏)𝑑𝑠,

𝐿2 = 𝜔2 ∫𝛾2
𝛾1

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫𝛾2
𝛾1

𝐻(𝑠, 𝜏) 𝑑𝜏)𝑑𝑠.
(25)

3.1. Existence of BVP (1)

Theorem 9. Assume 𝑓∞𝜑𝑝(𝐿−11 ) > 𝑓0𝜑𝑝(𝐿−12 ); then BVP (1)
has at least one positive solution for

𝜆 ∈ (𝜑𝑝 (𝐿−12 )𝑓∞ , 𝜑𝑝 (𝐿−11 )𝑓0 ) , (26)

where we impose 1/𝑓∞ = 0, if 𝑓∞ = +∞, and 1/𝑓0 = +∞, if𝑓0 = 0.
Proof. For any 𝜆 satisfying (26), there exists 𝜀0 > 0 such that

𝜑𝑝 (𝐿−12 )𝑓∞ − 𝜀0 ≤ 𝜆 ≤ 𝜑𝑝 (𝐿−11 )𝑓0 + 𝜀0 . (27)

By the definition of 𝑓0, there exists 𝑅1 > 0 such that
𝑓 (𝑡, 𝑥) ≤ (𝑓0 + 𝜀0) 𝜑𝑝 (𝑥) , 0 ≤ 𝑥 ≤ 𝑅1, 𝑡 ∈ [0, 1] . (28)

Let𝐾𝑅1 = {𝑢 ∈ 𝐾 : ‖𝑢‖ < 𝑅1}. For any 𝑢 ∈ 𝜕𝐾𝑅1 , 𝑡 ∈ [0, 1], by
the definition of ‖ ⋅ ‖, we know that

𝑢 (𝑡) ≤ |𝑢 (𝑡)| ≤ ‖𝑢‖ ≤ 𝑅1, 𝑡 ∈ [0, 1] . (29)

Thus, for any 𝑢 ∈ 𝜕𝐾𝑅1 , by (28) and (29), we have

𝑓 (𝑡, 𝑢 (𝑡)) ≤ (𝑓0 + 𝜀0) 𝜑𝑝 (𝑢 (𝑡)) , 𝑡 ∈ [0, 1] . (30)

Hence, for any 𝑢 ∈ 𝜕𝐾𝑅1 , by Lemmas 6 and (30), we conclude
that

𝑇𝑢 (𝑡) = 𝜑𝑞 (𝜆) ∫1
0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫1

0
𝐻(𝑠, 𝜏)

⋅ 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠 ≤ 𝜑𝑞 (𝜆)
⋅ ∫1
0

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫1
0
𝐻(𝑠, 𝜏) (𝑓0 + 𝜀0)

⋅ 𝜑𝑝 (𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠 ≤ 𝜑𝑞 (𝜆 (𝑓0 + 𝜀0)) ‖𝑢‖
⋅ ∫1
0

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫1
0
𝐻(𝑠, 𝜏) 𝑑𝜏)𝑑𝑠 ≤ ‖𝑢‖ .

(31)

Then, we have

‖𝑇𝑢‖ ≤ ‖𝑢‖ , 𝑢 ∈ 𝜕𝐾𝑅1 . (32)

On the other hand, by the definition of 𝑓∞, there exists𝑅 > 0 such that

𝑓 (𝑡, 𝑥) ≥ (𝑓∞ − 𝜀0) 𝜑𝑝 (𝑥) , 𝑥 ≥ 𝑅, 𝑡 ∈ [𝛾1, 𝛾2] . (33)

Choose 𝑅2 = max{𝑅/𝜔, 2𝑅1}. Let 𝐾𝑅2 = {𝑢 ∈ 𝐾 : ‖𝑢‖ < 𝑅2}.
For any 𝑢 ∈ 𝜕𝐾𝑅2 , by the definition of ‖ ⋅ ‖, we have

𝑢 (𝑡) ≥ 𝜔 ‖𝑢‖ ≥ 𝜔𝑅2 ≥ 𝑅, 𝑡 ∈ [𝛾1, 𝛾2] . (34)

For any 𝑢 ∈ 𝜕𝐾𝑅2 , by (33) and (34), we have

𝑓 (𝑡, 𝑢 (𝑡)) ≥ (𝑓∞ − 𝜀0) 𝜑𝑝 (𝑢 (𝑡))
≥ (𝑓∞ − 𝜀0) 𝜑𝑝 (𝜔𝑅2) , 𝑡 ∈ [𝛾1, 𝛾2] . (35)

Then, for any 𝑢 ∈ 𝜕𝐾𝑅2 , by Lemma 6 and (35), we have

𝑇𝑢 (𝑡) ≥ 𝜑𝑞 (𝜆)∫1
0

(1 − 𝑠)𝛽−1Γ (𝛽) (1 − 𝑡𝛽−1)
⋅ 𝜑𝑞 (∫1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 𝜑𝑞 (𝜆)

⋅ min
𝑡∈[𝛾1,𝛾2]

(1 − 𝑡𝛽−1) ∫𝛾2
𝛾1

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫𝛾2
𝛾1

𝐻(𝑠, 𝜏)
⋅ 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 𝜑𝑞 (𝜆)
⋅ 𝜔∫𝛾2
𝛾1

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫𝛾2
𝛾1

𝐻(𝑠, 𝜏) (𝑓∞ − 𝜀0)
⋅ 𝜑𝑝 (𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ 𝜑𝑞 (𝜆 (𝑓∞ − 𝜀0)) ‖𝑢‖
⋅ 𝜔2 ∫𝛾2
𝛾1

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫𝛾2
𝛾1

𝐻(𝑠, 𝜏) 𝑑𝜏)𝑑𝑠
≥ ‖𝑢‖ .

(36)

It follows from the above discussion, (32), (36), and
Lemmas 7 and 8, for any 𝜆 ∈ (𝜑𝑝(𝐿−12 )/𝑓∞, 𝜑𝑝(𝐿−11 )/𝑓0), that𝑇 has a fixed point 𝑢 ∈ 𝐾𝑅2 \ 𝐾𝑅1 , so BVP (1) has at least one
positive solution 𝑢; moreover 𝑢 satisfies 𝑅1 ≤ ‖𝑢‖ ≤ 𝑅2. The
proof is completed.

By the similar proof as Theorem 9, the following Theo-
rem 10 holds.

Theorem 10. Assume that 𝑓0𝜑𝑝(𝐿−11 ) > 𝑓∞𝜑𝑝(𝐿−12 ); then
BVP (1) has at least one positive solution for 𝜆 ∈ (𝜑𝑝(𝐿−12 )/𝑓0, 𝜑𝑝(𝐿−11 )/𝑓∞), where we impose 1/𝑓0 = 0, if 𝑓0 = +∞, and1/𝑓∞ = +∞, if 𝑓∞ = 0.
3.2. Nonexistence of BVP (1)

Theorem 11. Assume that 𝑓∞ < +∞ and 𝑓0 < +∞; then
there exists 𝜆0 > 0, such that for, 𝜆 ∈ (0, 𝜆0), BVP (1) has no
positive solution.
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Proof. By 𝑓∞ < +∞ and 𝑓0 < +∞, there exist positive
constants 𝑀1 and𝑀2 and 𝑟1 and 𝑟2 (𝑟1 < 𝑟2), such that

𝑓 (𝑡, 𝑥) ≤ 𝑀1𝜑𝑝 (𝑥) , 0 ≤ 𝑥 ≤ 𝑟1, 𝑡 ∈ [0, 1] ,
𝑓 (𝑡, 𝑥) ≤ 𝑀2𝜑𝑝 (𝑥) , 𝑥 ≥ 𝑟2, 𝑡 ∈ [0, 1] . (37)

Setting

𝑀0 = max
{{{
𝑀1,𝑀2, max

𝑡∈[0,1]
𝑟1≤𝑥≤𝑟2

𝑓 (𝑡, 𝑥)𝜑𝑝 (𝑥)
}}}
, (38)

we get

𝑓 (𝑡, 𝑥) ≤ 𝑀0𝜑𝑝 (𝑥) , 𝑥 ≥ 0, 𝑡 ∈ [0, 1] . (39)

Assume that 𝑢 is a positive solution of BVP (1); we will show
that it leads to a contradiction. Define 𝜆0 = (𝑀0)−1𝜑𝑝(𝐿−11 ),
and since 𝜆 ∈ (0, 𝜆0), we conclude that

𝑢 (𝑡) = 𝑇𝑢 (𝑡) = 𝜑𝑞 (𝜆) ∫1
0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫1

0
𝐻(𝑠, 𝜏)

⋅ 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠 ≤ 𝜑𝑞 (𝜆)
⋅ ∫1
0

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫1
0
𝐻(𝑠, 𝜏)

⋅ 𝑀0𝜑𝑝 (𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠 ≤ 𝜑𝑞 (𝜆𝑀0) ‖𝑢‖
⋅ ∫1
0

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫1
0
𝐻(𝑠, 𝜏) 𝑑𝜏) 𝑑𝑠

< 𝜑𝑞 (𝜆0𝑀0) ‖𝑢‖
⋅ ∫1
0

(1 − 𝑠)𝛽−1Γ (𝛽) 𝜑𝑞 (∫1
0
𝐻(𝑠, 𝜏) 𝑑𝜏) 𝑑𝑠 < ‖𝑢‖ .

(40)

Then, we have ‖𝑢‖ < ‖𝑢‖, which is a contradiction.
Therefore, BVP (1) has no positive solution for 𝜆 ∈ (𝜑𝑝(𝐿−12 )/𝑓0, 𝜑𝑝(𝐿−11 )/𝑓∞). The proof is completed.

By the similar proof as Theorem 11, the following Theo-
rem 12 holds.

Theorem 12. Assume that 𝑓∞ > 0, 𝑓0 > 0, 𝑓(𝑡, 𝑥) > 0 for𝑡 ∈ [𝛾1, 𝛾2], and 𝑥 > 0; then there exists 𝜆∗ > 0, such that, for𝜆 ∈ (𝜆∗, +∞), BVP (1) has no positive solution.

4. Examples

Consider the BVP

𝐷3/2
0+

(𝜑3/2 (𝑐𝐷3/20+ 𝑢 (𝑡))) + 𝜆𝑓 (𝑡, 𝑢 (𝑡)) = 0,
0 < 𝑡 < 1,

𝑢 (1) = 𝑢 (0) = 0,

𝑐𝐷3/20+ 𝑢 (0) = 0,
𝑐𝐷3/20+ 𝑢 (1) = 𝑎𝑐𝐷3/20+ 𝑢(12) ,

(41)

where 𝜆 > 0 is a parameter, 𝛼 = 𝛽 = 3/2, and 𝜂 = 1/2.
Let 𝑓(𝑡, 𝑥) = 𝑥3/(1 + 𝑡); choose [1/4, 1/3] ⊂ (0, 1), andthen𝑓∞ = +∞, 𝑓0 = 0. By Theorem 9, BVP (41) has at least one
positive solution for 𝜆 ∈ (0, +∞).
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In this article, we prove the existence of solutions for the generalized Bagley-Torvik type fractional order differential inclusions with
nonlocal conditions. It allows applying the noncompactness measure of Hausdorff, fractional calculus theory, and the nonlinear
alternative for Kakutani maps fixed point theorem to obtain the existence results under the assumptions that the nonlocal item
is compact continuous and Lipschitz continuous and multifunction is compact and Lipschitz, respectively. Our results extend the
existence theorems for the classical Bagley-Torvik inclusion and some related models.

1. Introduction

In this article, we will consider the following generalized
Bagley-Torvik type fractional differential inclusions:
𝑐𝐷V1𝑧 (𝑡) − 𝜒𝑐𝐷V2𝑧 (𝑡) ∈ 𝐺 (𝑡, 𝑧 (𝑡)) , 𝑡 ∈ (0, 1] = 𝐵,

𝑧 (0) = ℎ (𝑧) (1)

where 𝑐𝐷V1 and 𝑐𝐷V2 are Caputo fractional derivatives with0 < ]1 ≤ 1 and 0 < ]2 < ]1, 𝜒 ∈ R is a constant, and 𝐺 is a
multifunction.

By introducing nonlocal conditions into the initial-value
problems, Byszewski and Lakshmikantham [1] provided a
more accurate model for the nonlocal initial valued problem
since more information was incorporated in the experiment.
As a result, the negative impact of single initial value can be
significantly reduced. Concerning the initial-value problems,
the most recent developments can be referred to in [2, 3].
On the other hand, the fractional calculus and fractional
differential equations have many real applications in biology,
physics, and natural sciences and a number of results on
this topic have emerged in the last decade [4–6]. In [7],
EI-Sayed and Ibrahim initiated the research on fractional
multivalued differential inclusions. After that, many authors
were devoted to study the existence of solutions for fractional

differential inclusions [8–11]. Very recently, Wang et al. [12,
13] studied the controllability and topological structure of
the solution set for fractional impulsive differential inclu-
sions.

For the problem of fractional differential inclusions,
multiterm fractional differential equations are a hot research
direction owning to their wide use in practice and technique
sciences, for example, physics, mechanics, and chemistry.
An important result on multiterm fractional calculus is
formulated by Bagley and Torvik in [14]. Here the authors
deduced and tested a relation 𝐴𝑥(𝑡) + 𝐵𝑐𝐷3/2𝑥(𝑡) + 𝐶𝑥(𝑡) =𝑔(𝑡), where 𝑥(𝑡) is a function describing the motion of thin
plates in Newtonian fluids, 𝐴 = 𝑚, the mass of thin rigid
plate, 𝐵 = 2𝑠√V𝜌, where 𝑠 is area of the plate immersed in
Newtonian fluid, V is viscosity, 𝜌 is the fluid density, 𝐶 =𝑘, the stiffness of the spring, and 𝑔(𝑡) is an external force.
Later, the above equation was called Bagley-Torvik equation
[15]. Based on this model, the nonlinear multiterm fractional
differential equations were rediscovered and popularized by
Kaufmann and Yao in [16]. As far as the author knows, there
are few papers on the existence of the generalized Bagley-
Torvik type fractional differential inclusion (1) except for
Ibrahim, Dong, and Fan [17]. They studied the following
equation:
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𝑐𝐷𝜃V (𝑠) − 𝑎𝑐𝐷𝛿V (𝑠) + 𝑔 (𝑠, V (𝑠)) = 0; 0 < 𝑠 < 1,
V (0) = V0;
V (1) = V1;

(2)

where 𝑐𝐷𝜃 and 𝑐𝐷𝛿 are the Caputo fractional
derivatives, 1 < 𝜃 ≤ 2, 1 ≤ 𝛿 <𝜃.

In this article, we shall be concerned with the existence
of the generalized Bagley-Torvik type fractional differential
inclusions (1) by employing the noncompactness measure of
Hausdorff, fractional calculus, and the nonlinear alternative
for Kakutani maps fixed point theorem, when ℎ is compact
continuous and Lipschitz continuous and 𝐺 is compact and
Lipschitz, respectively. Our theory improves the results in
[6, 8–10, 16, 17] and extends (generalizes) the corresponding
results of Bagley-Torvik equation.

The structure of this article is as follows: somepreliminary
knowledge is introduced in Section 2; some existence criteria
are derived from (1) in Section 3; in the end, we use an
example to illustrate an application of the main result.

2. Preliminaries

Let 𝑌 be a metric space and 𝑊 a normed space; 𝐾(𝑊) ={Δ ⊆ 𝑊 : nonempty}; 𝐾𝑏(𝑊) = {Δ ⊆ 𝐾(𝑊) : bounded};𝐾𝑏𝑓(𝑊) = {Δ ⊆ 𝐾(𝑊) : closed and bounded}; 𝐾𝑝𝑐(𝑊) ={Δ ⊆ 𝐾(𝑊) : compact and convex}; 𝐾𝑓𝑐(𝑊) = {Δ ⊆ 𝐾(𝑊) :
closed and convex}.

Let 𝐸 be a Banach space. 𝐿𝑝(𝐵, 𝐸) fl {𝑢 : 𝐵 →
𝐸 is measurable and ∫1

0
‖𝑢(𝑡)‖𝑝𝑑𝑡 < +∞}. For 𝑢 ∈ 𝐿𝑝(𝐵, 𝐸),

1 < 𝑝 < ∞, the norm is defined as ‖𝑢‖𝑝 = (∫10 ‖𝑢(𝑡)‖𝑝𝑑𝑡)1/𝑝,
and 𝑝 is the conjugate exponent; that is, 1/𝑝 + 1/𝑝 = 1.
Denote the Hausdorff measure of noncompactness (MNC)𝛾 : 𝐾𝑏(𝐸) → R+ as

𝛾 (𝐷) = inf {𝜌
> 0 : there exist finite point 𝑥1, 𝑥2, . . . , 𝑥𝑛
∈ 𝐸 with 𝐷 ⊂ 𝑛⋃

𝑖=1

𝐵 (𝑥𝑖, 𝜌)} .
(3)

Proposition 1 (see [18]). The MNC 𝛾 enjoy the following
properties:

(1) monotone, if Δ 1, Δ 2 ∈ 𝐾𝑏(𝐸), Δ 1 ⊆ Δ 2 ⇒ 𝛾(Δ 1) ≤𝛾(Δ 2)
(2) nonsingular, if 𝛾({𝑏} ∪ Δ) = 𝛾(Δ), for all 𝑏 ∈ 𝐸 andΔ ⊆ 𝐾𝑏(𝐸)
(3) regular, if 𝛾(Δ) = 0 ⇐⇒ Δ is relative compact
(4) algebraically semiadditive, if 𝛾(Δ 1 + Δ 2) ≤ 𝛾(Δ 1) +𝛾(Δ 2), for Δ 1, Δ 2 ∈ 𝐾𝑏(𝐸)
(5) 𝛾(𝜔Δ) = |𝜔|𝛾(Δ)

We now denote the sequential MNC 𝛾0 as follows:
𝛾0 (Δ) = sup {𝛾 ({𝑥𝑚 : 𝑚 ≥ 1}) : {𝑥𝑚}∞𝑚=1 ⊆ Δ} . (4)

One can easily have that

𝛾0 (Δ) ≤ 𝛾 (Δ) ≤ 2𝛾0 (Δ) . (5)

Moreover, 𝛾0(Δ) = 𝛾(Δ), if 𝐸 is separable.
Proposition 2 (see [18]). For every bounded set Δ ⊆ 𝐶(𝐵, 𝐸),𝑠 ∈ 𝐵, the inequality

𝛾 (Δ (𝑠)) ≤ 𝛾𝑐 (Δ) (6)

holds, where Δ(𝑠) = {𝛿(𝑠) : 𝛿 ∈ Δ} ⊂ 𝐸 and 𝛾𝑐 is the
MNCdefined in𝐶(𝐵, 𝐸).Moreover, ifΔ is equicontinuous, then𝛾(Δ(𝑠)) is continuous. Moreover,

𝛾𝑐 (Δ) = sup {𝛾 (Δ (𝑠)) : 𝑠 ∈ 𝐵} . (7)

Lemma 3 (see [19]). Suppose {𝑔𝑚}∞𝑚=1 ⊂ 𝐿1(𝐵, 𝐸), 𝑎 ∈𝐿1(𝐵,R+); the inequality |𝑔𝑚(𝑡)| ≤ 𝑎(𝑡) holds; for every 𝑡 ∈ 𝐵,𝑚 ≥ 1. Then 𝛾({𝑔𝑚(𝑡)}∞𝑚=1) ∈ 𝐿1(𝐵,R+), and
𝛾({∫𝑡

0
𝑔𝑚 (𝑠) 𝑑𝑠 : 𝑚 ≥ 1}) ≤ 2∫𝑡

0
𝛾 ({𝑔𝑚 (𝑠)}∞𝑚=1) 𝑑𝑠. (8)

In what follows, we will recall some necessary definitions
and lemmas of the fractional order differential and integra
theory, which can be found in the literature [15].

Definition 4. Suppose 𝑔 ∈ 𝐿1(𝐵, 𝐸), 𝜄 > 0. If ∫𝑠
0
((𝑠 −

𝜂)𝜄−1/Γ(𝜄))𝑔(𝜂)𝑑𝜂 < ∞, then

𝐼𝜄0+𝑔 (𝑠) = ∫𝑠
0

(𝑠 − 𝜂)𝜄−1
Γ (𝜄) 𝑔 (𝜂) 𝑑𝜂 (9)

is called 𝜄 order Riemann-Liouville fractional integral of 𝑔.
Definition 5. Suppose 𝑔 ∈ 𝐿1(𝐵, 𝐸), 𝜄 > 0. we define

𝑐𝐷𝜄0+𝑔 (𝑠) = 1Γ (𝑛 − 𝜄) ∫
𝑠

0

𝑔(𝑛) (𝜂)
(𝑠 − 𝜂)𝜄−𝑛+1 𝑑𝜂 (10)

as the 𝜄 order Caputo fractional derivative of 𝑔, where 𝑛 =[𝜄] + 1.
Lemma 6. Suppose 𝜄 > 0 and 𝑔 ∈ 𝐿1(𝐵, 𝐸). Consider the
following differential equation:

𝑐𝐷𝜄0+𝑔 (𝑡) = 0. (11)

Then there exists some constants 𝑑𝑘 ∈ 𝐸, 𝑘 = 0, 1, 2, . . . 𝑛 − 1
such that

𝑔 (𝑡) = 𝑑0 + 𝑑1𝑡 + 𝑑2𝑡2 + ⋅ ⋅ ⋅ + 𝑑𝑛−1𝑡𝑛−1, (12)

where 𝑛 = [𝜄] + 1.
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Lemma 7. Suppose 𝑔 ∈ 𝐿1(𝐵, 𝐸), and 𝑔(𝑛) ∈ 𝐿1(𝐵, 𝐸); then
there exist 𝑑𝑘 ∈ 𝐸, 𝑘 = 0, 1, 2, . . . 𝑛 − 1 satisfying
𝐼𝜄𝑐0+𝐷𝜄0+𝑔 (𝑡) = 𝑔 (𝑡) + 𝑑0 + 𝑑1𝑡 + 𝑑2𝑡2 + ⋅ ⋅ ⋅ + 𝑑𝑛−1𝑡𝑛−1. (13)

For simplicity, we denote 𝑐𝐷𝜄0+ and 𝐼𝜄0+ by 𝑐𝐷𝜄 and 𝐼𝜄,
respectively. And let ((𝑝−1)/(]1𝑝−1))(𝑝−1)/𝑝 = 𝐶, ]1−]2 = 𝐶1.
Lemma 8. Let 0 < ]1 ≤ 1, 0 < ]2 < ]1. Assume that 𝑔 ∈𝐿1(𝐵, 𝐸). Then the solution of the equation,

𝑐𝐷V1𝑧 (𝑠) − 𝜒𝑐𝐷V2𝑧 (𝑠) = 𝑔 (𝑠) , a.e. 𝑠 ∈ 𝐵,
𝑧 (0) = 𝑧0, (14)

has the following form:

𝑧 (𝑠) = (1 − 𝜒𝑠𝐶1
Γ (𝐶1 + 1)) 𝑧0

+ 𝜒∫𝑠
0

(𝑠 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑧 (𝜂) 𝑑𝜂

+ ∫𝑠
0

(𝑠 − 𝜂)]1−1
Γ (]1) 𝑔 (𝜂) 𝑑𝜂.

(15)

Proof. In light of 0 < ]1 ≤ 1, from Lemma 7, there exists 𝑑0
satisfying

𝐼]1𝑐𝐷]1𝑧 (𝑠) = 𝑧 (𝑠) + 𝑑0, 𝑠 ∈ 𝐵. (16)

Moreover,

𝐼]1𝑐𝐷]1𝑧 (𝑠) = 𝜒𝐼]1𝑐𝐷]2𝑧 (𝑠) + 𝐼]1𝑔 (𝑠) . (17)

By Lemma 6, it follows that

𝐼]1𝑐𝐷]2𝑧 (𝑠) = 𝐼𝐶1 (𝐼]2𝑐𝐷]2𝑧 (𝑠)) = 𝐼𝐶1 (𝑧 (𝑠) + 𝑑0)
= 𝐼𝐶1𝑧 (𝑠) + 𝑑0𝑠𝐶1Γ (𝐶1 + 1) .

(18)

So we have

𝑧 (𝑠) + 𝑑0 = 𝜒𝐼𝐶1𝑧 (𝑠) + 𝜒 𝑑0𝑠𝐶1Γ (𝐶1 + 1) + 𝐼
]1𝑔 (𝑠) . (19)

Since 𝑧(0) = 𝑧0, we obtain 𝑑0 = −𝑧0. Substituting the value of𝑑0 into (19), the proof is complete.

Given 𝑧0 ∈ 𝐸, 𝑔 ∈ 𝐿1(𝐵, 𝐸). Define the operator 𝑆 by the
formula

𝑆𝑔 (𝑠) = (1 − 𝜒𝑠𝐶1
Γ (𝐶1 + 1)) 𝑧0

+ 𝜒∫𝑠
0

(𝑠 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑧 (𝜂) 𝑑𝜂

+ ∫𝑠
0

(𝑠 − 𝜂)]1−1
Γ (]1) 𝑔 (𝜂) 𝑑𝜂, ∀𝑠 ∈ 𝐵;

(20)

that is, 𝑆𝑔 is the solution of the above system (14).

For any 𝑤 belonging to 𝐶(𝐵, 𝐸), set
𝑆 𝑒𝑙 (𝑤)
= {𝑔 ∈ 𝐿1 (𝐵, 𝐸) : 𝑔 (𝑠) ∈ 𝐺 (𝑠, 𝑤 (𝑠)) a.e. 𝑠 ∈ 𝐵} . (21)

For given 𝑔𝑤 ∈ 𝑆 𝑒𝑙(𝑤), we define 𝑆ℎ(𝑤)𝑔𝑤 as a set of solutions
to the generalized Bagley-Torvik type fractional differential
system

𝑐𝐷V1𝑧 (𝑠) − 𝜒𝑐𝐷V2𝑧 (𝑠) = 𝑔𝑤 (𝑠) , a.e 𝑠 ∈ 𝐵,
𝑧 (0) = ℎ (𝑤) . (22)

Before ending this section, we define the solution of
the generalized Bagley-Torvik type fractional differential
inclusions (1).

Definition 9. If 𝑧(⋅) ∈ 𝐶(𝐵, 𝐸) and
𝑧 (𝑡) = (1 − 𝜒𝑡𝐶1

Γ (𝐶1 + 1))𝑔 (𝑧)

+ 𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑧 (𝜂) 𝑑𝜂

+ ∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔 (𝜂) 𝑑𝜂, 𝑡 ∈ 𝐵,

(23)

where 𝑔 ∈ 𝑆 𝑒𝑙(𝑧), then 𝑧 is a solution of the generalized
Bagley-Torvik type fractional differential inclusions (1).

3. Main Results

Here, we shall derive some existence criteria for the gen-
eralized Bagley-Torvik type differential system (1), whenℎ is compact continuous and Lipschitz continuous and 𝐺
is compact and Lipschitz, respectively. Our basic tools are
noncompactness measure of Hausdorff, fractional calculus,
and the nonlinear alternative for Kakutani maps fixed point
theorem. Before proceeding, we assume that 𝑝 > 1/]1 and ℎ
and 𝐺 satisfy the following conditions:

(h1) ℎ : 𝐶(𝐵, 𝐸) → 𝐸 is compact and continuous
mapping, and there exist positive constants 𝑐1, 𝑐2 satisfying‖ℎ(𝑧)‖ ≤ 𝑐1‖𝑧‖ + 𝑐2(𝐻𝐺1) ∀𝑧 ∈ 𝐸, 𝐺(⋅, 𝐸) : 𝐵 → 𝐾𝑓𝑐(𝐸)
admits a measurable selection(𝐻𝐺2) 𝐺(𝑡, ⋅) : 𝐸 → 𝐾𝑓𝑐(𝐸) is upper semicontinuous,
for almost every 𝑡 ∈ 𝐵(𝐻𝐺3) For every 𝑧 ∈ 𝐸 and 𝑡 ∈ 𝐵,‖𝐺(𝑡, 𝑧)‖ fl sup{‖𝜁‖ : 𝜁 ∈ 𝐺(𝑡, 𝑧)} ≤ 𝑙(𝑡)Σ(‖𝑧‖), where𝑙 ∈ 𝐿𝑝(𝐵,R+), and Σ : R+ → R+ is an increasing and
continuous function(𝐻𝐺4) For almost every 𝑡 ∈ 𝐵, there exists 𝑏 ∈ 𝐿𝑝(𝐵,R+);
the inequality 𝛾(𝐺(𝑡, Δ)) ≤ 𝑏(𝑡)𝛾(Δ) holds, where Δ ⊂ 𝐸 is a
bounded set.

In the sequel, we introduce some important lemmas
which are crucial to derive existence results.

Lemma 10 (see [20]). Under assumptions (𝐻𝐺1) − (𝐻𝐺4), if
there exists sequence {𝑤𝑚}∞𝑚=1 ⊂ 𝐶(𝐵, 𝐸), {𝑔𝑚}∞𝑚=1 ⊂ 𝐿1(𝐵, 𝐸),
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and 𝑔𝑚 ∈ 𝑆 𝑒𝑙(𝑤𝑚), 𝑚 ≥ 1, such that 𝑤𝑚 → 𝑤 and 𝑔𝑚 ⇀ 𝑔,
then 𝑔 ∈ 𝑆 𝑒𝑙(𝑤).
Lemma 11. Suppose that (h1) is satisfied; then, for any bounded
set Δ ⊂ 𝐶(𝐵, 𝐸), we obtain

𝛾 ({𝑆ℎ(𝑤)𝑔𝑤 (𝑡) : 𝑤 ∈ Δ, 𝑔𝑤 ∈ 𝑆 𝑒𝑙 (𝑤)})
≤ [ 4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝑏‖𝑝Γ (]1) ] 𝛾𝑐 (Δ) .
(24)

Proof. According to (5), for any 𝜖 > 0, there exist {𝑤𝑚}+∞𝑚=1 ⊂Δ and {𝑔𝑚}+∞𝑚=1 ⊂ 𝐿1(𝐵, 𝐸) satisfying 𝑔𝑚 ∈ 𝑆 𝑒𝑙(𝑤𝑚) for all𝑚 ≥ 1 and
𝛾 ({𝑆ℎ(𝑤)𝑔𝑤 (𝑡) : 𝑤 ∈ Δ, 𝑔𝑤 ∈ 𝑆 𝑒𝑙 (𝑤)})
≤ 2𝛾 ({𝑆ℎ(𝑤𝑚)𝑔𝑚 (𝑡) : 𝑚 ≥ 1}) + 𝜖.

(25)

Since

𝑆ℎ(𝑤𝑚)𝑔𝑚 (𝑡) = (1 − 𝜒𝑡𝐶1
Γ (𝐶1 + 1)) ℎ (𝑤𝑚)

+ 𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑤𝑚 (𝜂) 𝑑𝜂

+ ∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔𝑚 (𝜂) 𝑑𝜂,

(26)

now by (h1) and Proposition 1, it follows that

𝛾 ({𝑆ℎ(𝑤𝑚)𝑔𝑚 (𝑡) : 𝑚 ≥ 1})
= 𝛾({(1 − 𝜒𝑡𝐶1

Γ (𝐶1 + 1)) ℎ (𝑤𝑚)

+ 𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑤𝑚 (𝜂) 𝑑𝜂

+ ∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔𝑚 (𝜂) 𝑑𝜂) : 𝑚 ≥ 1})

= 𝛾({𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑤𝑚 (𝜂) 𝑑𝜂

+ ∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔𝑚 (𝜂) 𝑑𝜂) : 𝑚 ≥ 1}) .

(27)

By (𝐻𝐺4), we obtain
𝛾 ({𝑔𝑚 (𝑠)}+∞𝑚=1) ≤ 𝛾(𝐺(𝑠, {𝑤𝑚 (𝑠)}+∞𝑚=1)

≤ 𝑏 (𝑠) 𝛾 ({𝑤𝑚 (𝑠)}+∞𝑚=1)
≤ 𝑏 (𝑠) 𝛾 (Δ (𝑠)) .

(28)

Applying Proposition 1 and Lemma 3, one can easily achieve

𝛾 ({𝑆ℎ(𝑤𝑚)𝑔𝑚 (𝑡) : 𝑚 ≥ 1})
≤ 2 𝜒Γ (𝐶1 + 1)𝛾𝑐 (Δ)
+ 2Γ (]1) ∫

𝑡

0
(𝑡 − 𝜂)]1−1 𝑏 (𝜂) 𝛾 (Δ (𝜂)) 𝑑𝜂

≤ [ 2 𝜒Γ (𝐶1 + 1) +
2𝐶 ‖𝑏‖𝑝Γ (]1) ] 𝛾𝑐 (Δ) .

(29)

It follows from (25) that

𝛾 ({𝑆ℎ(𝑤)𝑔𝑤 (𝑡) : 𝑤 ∈ Δ, 𝑔𝑤 ∈ 𝑆 𝑒𝑙 (𝑤)})
≤ [ 4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝑏‖𝑝Γ (]1) ] 𝛾𝑐 (Δ) + 𝜖.
(30)

Since 𝜖 > 0 is arbitrary, we have
𝛾 ({𝑆ℎ(𝑤)𝑔𝑤 (𝑡) : 𝑤 ∈ Δ, 𝑔𝑤 ∈ 𝑆 𝑒𝑙 (𝑤)})
≤ [ 4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝑏‖𝑝Γ (]1) ] 𝛾𝑐 (Δ) .
(31)

A nonlinear alternative for Kakutani maps, which is
significant to develop our main results, is introduced as
follows.

Theorem 12 (see [21]). Let Δ ⊂ 𝐸 be a closed convex set and𝑊 ⊆ Δ be an open set with 0 ∈ 𝑊. Suppose 𝑇 : 𝑊 → 𝐾𝑓𝑐(Δ)
is compact, upper semicontinuous. If there exist no V ∈ 𝜕𝑊 and0 < 𝜇 < 1 satisfying V ∈ 𝜇𝑇(V), then 𝑇 has at least one fixed
point.

Next, we shall prove the existence result when ℎ is
compact continuous.

Theorem 13. Suppose (ℎ1) and (𝐻𝐺1) − (𝐻𝐺4) are satisfied.
If there exists 𝐿 > 0 such that
Γ (]1) [Γ (𝐶1 + 1) − (Γ (𝐶1 + 1) + 𝜒) 𝑐1 − 𝜒] 𝐿Γ (]1) (Γ (𝐶1 + 1) + 𝜒) 𝑐2 + Γ (𝐶1 + 1) Σ (𝐿) ‖𝑙‖𝑝 𝐶
> 1,

(32)

and
4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝑏‖𝑝Γ (]1) − 1 < 0, (33)

then the generalized Bagley-Torvik type differential inclusion
(1) has at least one solution in 𝐶(𝐵, 𝐸).
Proof. From ([22]), according to conditions (𝐻𝐺1) − (𝐻𝐺3),𝑆 𝑒𝑙(𝑤) is not empty, for every 𝑤 ∈ 𝐶(𝐵, 𝐸). Using (23), we
define the following multivalued operator:

𝑇 : 𝐶 (𝐵, 𝐸) → 𝐾(𝐶 (𝐵, 𝐸) (34)
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as

𝑇 (𝑤) = {𝑧 ∈ 𝐶 (𝐵, 𝐸) : 𝑧 (𝑡)

= (1 − 𝜒𝑡𝐶1
Γ (𝐶1 + 1)) ℎ (𝑤)

+ 𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑤 (𝜂) 𝑑𝜂

+ ∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔 (𝜂) 𝑑𝜂, 𝑔 ∈ 𝑆 𝑒𝑙 (𝑤)} .

(35)

Clearly, if𝑤 is a fixed point of𝑇, then𝑤 is a solution of (1).
Let 𝑟 > 0; 𝐵𝑟 is a bounded ball, defined as 𝐵𝑟 = {𝑤 ∈ 𝐶(𝐵, 𝐸) :‖𝑤‖ ≤ 𝑟}. Suppose Δ ⊂ 𝐵𝑟 is a bounded set and belongs to𝑐𝑜({0} ∪ 𝑇(Δ)). In order to utilize the nonlinear alternative
for Kakutani maps, we first need to show that 𝛾(Δ) = 0. Let𝑠1, 𝑠2 ∈ 𝐵, 0 < 𝑠1 < 𝑠2, 𝑧 ∈ 𝑇(Δ); there exist 𝑤 ∈ Δ andℎ ∈ 𝑆 𝑒𝑙(𝑤) such that

𝑧 (𝑡) = (1 − 𝜒𝑡𝐶1
Γ (𝐶1 + 1)) ℎ (𝑤)

+ 𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑤 (𝜂) 𝑑𝜂

+ ∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔 (𝜂) 𝑑𝜂, 𝑡 ∈ 𝐵.

(36)

By Hölder inequality and (𝐻𝐺3), we have
∫
𝑠2

0
(𝑠2 − 𝜂)]1−1 𝑔 (𝜂) 𝑑𝜂 − ∫𝑠1

0
(𝑠1 − 𝜂)]1−1 𝑔 (𝜂) 𝑑𝜂

≤ ∫𝑠1
0

(𝑠2 − 𝜂)]1−1 − (𝑠1 − 𝜂)]1−1 𝑔 (𝜂) 𝑑𝜂
+ ∫𝑠2
𝑠1

(𝑠2 − 𝜂)]1−1 𝑔 (𝜂) 𝑑𝜂 ≤ ]1 − 1
⋅ ∫𝑠1
0

𝑠1 − 𝑠]1−2 (𝑠2 − 𝑠1) 𝑔 (𝜂) 𝑑𝜂 + ‖𝑙‖𝑝Φ (𝑟)
⋅ (𝑠2 − 𝑠1)]1−1/𝑝 𝐶 ≤ ]1 − 1
⋅ (∫𝑠1
0

𝑠1 − 𝜂(]1−1)𝑝 𝑑𝜂)
(2−]1)/(1−]1)𝑝



⋅ (∫𝑠1
0
(𝑠2 − 𝑠1)(]1−1)𝑝 𝑑𝜂)1/(]1−1)𝑝



⋅ (∫𝑠1
0

𝑙 (𝜂)𝑝 𝑑𝜂)
1/𝑝 Σ (𝑟) + ‖𝑙‖𝑝 Σ (𝑟) (𝑠2

− 𝑠1)]1−1/𝑝 𝐶 ≤ ]1 − 1 𝑠1 𝑠2 − 𝑠1

⋅ (∫𝑠1
0

𝑠1 − 𝜂(]1−1)𝑝 𝑑𝜂)
(2−]1)/(1−]1)𝑝



‖𝑙‖𝑝 Σ (𝑟)
+ ‖𝑙‖𝑝 Σ (𝑟) (𝑠2 − 𝑠1)]1−1/𝑝 𝐶.

(37)

Taking into account the above inequality, one has

𝑧 (𝑠2) − 𝑧 (𝑠1) ≤
𝜒 (𝑠2)𝐶1 − (𝑠1)𝐶1 Γ (𝐶1 + 1) |ℎ (𝑤)|

+ 𝜒Γ (𝐶1)
∫
𝑠2

0
(𝑠2 − 𝜂)𝐶1−1 𝑤 (𝜂) 𝑑𝜂

− ∫𝑠1
0
(𝑠1 − 𝜂)𝐶1−1 𝑤 (𝜂) 𝑑𝜂

+ 1Γ (]1)
∫
𝑠2

0
(𝑠2 − 𝜂)]1−1 𝑔 (𝜂) 𝑑𝜂

− ∫𝑠1
0
(𝑠1 − 𝜂)]1−1 𝑔 (𝜂) 𝑑𝜂

≤
𝜒 (𝑠2)𝐶1 − (𝑠1)𝐶1 Γ (𝐶1 + 1) (𝑐1𝑟 + 𝑐2)

+ 𝜒 𝑟Γ (𝐶1 + 1) [
(𝑠2)𝐶1 − (𝑠1)𝐶1  + 2 (𝑠2 − 𝑠1)𝐶1]

+ 1Γ (]1) [
]1 − 1 𝑠1 𝑠2 − 𝑠1

⋅ (∫𝑠1
0

𝑠1 − 𝜂(]−1)𝑝 𝑑𝜂)
(2−]1)/(1−]1)𝑝



‖𝑙‖𝑝 Σ (𝑟)

+ ‖𝑙‖𝑝 Σ (𝑟) (𝑠2 − 𝑠1)]1−1/𝑝 𝐶] .

(38)

Applying the above inequality, |𝑧(𝑠2) − 𝑧(𝑠1)| → 0, as 𝑠1 →𝑠2. Hence, 𝑇(Δ) and Δ ⊆ 𝑐𝑜({0} ∪ 𝑇(Δ)) are equicontinuous.
Also because, for every 𝑡 ∈ 𝐵,
𝑇Δ (𝑡) ⊂ {𝑆ℎ(𝑤)𝑔𝑤 (𝑡) : 𝑤 ∈ Δ, 𝑔𝑤 ∈ 𝑆 𝑒𝑙 (𝑤)} . (39)

It follows from Lemma 11 that

𝛾 (𝑇Δ (𝑡)) ≤ 𝛾 ({𝑆ℎ(𝑤)𝑔𝑤 (𝑡) : 𝑤 ∈ Δ, 𝑔𝑤 ∈ 𝑆 𝑒𝑙 (𝑤)})
≤ [ 4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝑏‖𝑝Γ (]1) ] 𝛾 (Δ) .
(40)

Thus, one can obtain

𝛾 (𝑐𝑜 ({0} ∪ 𝑇 (Δ))) = 𝛾 (𝑇 (Δ))
≤ [ 4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝑏‖𝑝Γ (]1) ] 𝛾 (Δ) .
(41)

Since Δ ⊆ 𝑐𝑜({0} ∪ 𝑇(Δ)) and by (33), we know that 𝛾(Δ) = 0.
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Clearly, the multioperator 𝑇 has convex values. We still
need to prove the multioperator 𝑇 is closed on Δ. Suppose{𝑤𝑚}∞𝑚=1 ⊂ Δwith𝑤𝑚 → 𝑤 in𝐶(𝐵, 𝐸) and 𝑧𝑚 ∈ 𝑇(𝑤𝑚)with𝑧𝑚 → 𝑧 in 𝐶(𝐵, 𝐸). Moreover, assume {𝑔𝑚}+∞𝑚=1 ⊂ 𝐿1(𝐵, 𝐸) is
a sequence satisfying 𝑔𝑚 ∈ 𝑆 𝑒𝑙(𝑤𝑚) for any𝑚 ≥ 1 and

𝑧𝑚 (𝑡) = (1 − 𝜒𝑡𝐶1
Γ (𝐶1 + 1)) ℎ (𝑤𝑚)

+ 𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑤𝑚 (𝜂) 𝑑𝜂

+ ∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔𝑚 (𝜂) 𝑑𝜂.

(42)

Then the set {𝑔𝑚}∞𝑚=1 is integrally bounded. From (𝐻𝐺3), one
can achieve that𝑔𝑚 (𝜂) ≤ 𝐺 (𝜂, 𝑤𝑚) (𝜂) ) ≤ 𝑙 (𝜂) Σ (𝑤𝑚) ,

a.e. 𝜂 ∈ 𝐵, 𝑚 = 1, 2, . . . . (43)

Since 𝑤𝑚 → 𝑤 in 𝐶(𝐵, 𝐸), therefore {𝑤𝑚 : 𝑚 ≥ 1} is
bounded and belongs to 𝐶(𝐵, 𝐸). Invoking (𝐻𝐺4), we infer
that

𝛾 ({𝑔𝑚 (𝜂)}∞𝑚=1) ≤ 𝛾 (𝐺 (𝜂, {V𝑚 (𝜂)}∞𝑚=1))
≤ 𝑏 (𝜂) 𝛾 ({𝑤𝑚 (𝜂)}∞𝑚=1) = 0.

(44)

So the sequence {𝑔𝑚}∞𝑚=1 is semicompact. Applying the
proposition (see [22]), {𝑔𝑚}∞𝑚=1 is weakly compact.Therefore,
there is 𝑔 ∈ 𝐿1(𝐵, 𝐸) satisfying 𝑔𝑚 ⇀ 𝑔. Moreover, one has

∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔𝑚 (𝜂) 𝑑𝜂 → ∫

𝑡

0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔 (𝜂) 𝑑𝜂, (45)

which, together with (42) and 𝑔 being continuous, implies
that

𝑧𝑚 (𝑡) → (1 − 𝜒𝑡𝐶1
Γ (𝐶1 + 1)) ℎ (𝑤)

+ 𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑤 (𝜂) 𝑑𝜂

+ ∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔 (𝜂) 𝑑𝜂.

(46)

Then, one can obtain

𝑧 (𝑡) = (1 − 𝜒𝑡𝐶1
Γ (𝐶1 + 1))𝑔 (𝑤)

+ 𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑤 (𝜂) 𝑑𝜂

+ ∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔 (𝜂) 𝑑𝜂.

(47)

Thus 𝑔 ∈ 𝑆 𝑒𝑙(𝑤); i.e., 𝑧 ∈ 𝑇(𝑤). Equivalently, 𝑔𝑟𝑎𝑝ℎ(𝑇) is
closed, and 𝑇 is closed on Δ. Based on the above discussion,
it can be concluded that 𝑇 is u.s.c. on Δ (see [23]).

In the following, we are to find an open set 𝑊, which
satisfies the conditions of Theorem 12. Let 𝜇 ∈ (0, 1), 𝑤 ∈𝜇𝑇(𝑤). Then there exist 𝑤 ∈ 𝜕𝑊 and 𝑔 ∈ 𝑆 𝑒𝑙(𝑤) such that

𝑤 (𝑡) = 𝜇(1 − 𝜒𝑡𝐶1
Γ (𝐶1 + 1)) ℎ (𝑤)

+ 𝜇𝜒∫𝑡
0

(𝑡 − 𝜂)𝐶1−1
Γ (𝐶1) 𝑤 (𝜂) 𝑑𝜂

+ 𝜇∫𝑡
0

(𝑡 − 𝜂)]1−1
Γ (]1) 𝑔 (𝜂) 𝑑𝜂.

(48)

From (ℎ1) and (𝐻𝐺3), one can obtain

‖𝑤 (𝑡)‖ ≤ (1 + 𝜒Γ (𝐶1 + 1)) |ℎ (𝑤)|
+ 𝜒Γ (𝐶1) ∫

𝑡

0
(𝑡 − 𝜂)𝐶1−1 𝑤 (𝜂) 𝑑𝜂

+ 1Γ (]1) ∫
𝑡

0
(𝑡 − 𝜂)]1−1 𝑔 (𝜂) 𝑑𝜂

≤ (1 + 𝜒Γ (𝐶1 + 1)) (𝑐1 ‖𝑤‖ + 𝑐2)
+ 𝜒Γ (𝐶1 + 1) ‖𝑤‖
+ Σ (‖𝑤‖)Γ (]1) ∫

𝑡

0
(𝑡 − 𝜂)]1−1 𝑙 (𝜂) 𝑑𝜂

≤ (1 + 𝜒Γ (𝐶1 + 1)) (𝑐1 ‖𝑤‖ + 𝑐2)
+ 𝜒Γ (𝐶1 + 1) ‖𝑤‖ +

Σ (‖𝑤‖) ‖𝑙‖𝑝Γ (]1) 𝐶.

(49)

Consequently,

Γ (]1) [Γ (𝐶1 + 1) − (Γ (𝐶1 + 1) + 𝜒) 𝑐1 − 𝜒] ‖𝑤‖Γ (]1) (Γ (𝐶1 + 1) + 𝜒) 𝑐2 + Γ (𝐶1 + 1) Σ (‖𝑤‖) ‖𝑙‖𝑝 𝐶
≤ 1.

(50)

It follows from (32) that there exists 𝐿which satisfies ‖𝑤‖ ̸= 𝐿.
Denote

𝑊 = {𝑤 ∈ 𝐶 (𝐵, 𝐸) : ‖𝑤‖ < 𝐿} . (51)
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By the definition of 𝑊, for every 𝜇 ∈ (0, 1), there exists no𝑤 ∈ 𝜕𝑊 satisfying 𝑤 ∈ 𝜇𝑇(𝑤). Since 𝑇 : 𝑊 → 𝐾(𝐶(𝐵, 𝐸))
is compact and u.s.c., according toTheorem 12, 𝑇 has at least
one fixed point in𝑊.

Next, we assume the nonlocal item ℎ is Lipschitz contin-
uous; that is,

(h2) for every 𝑥1, 𝑥2 ∈ 𝐶(𝐵, 𝐸), there is 𝑘 satisfying|ℎ(𝑥1) − ℎ(𝑥2)| ≤ 𝑘|𝑥1 − 𝑥2|.
Now, we give the existence criterion for the generalized

Bagley-Torvik type fractional differential inclusions (1) when
the nonlocal item satisfies (h2).

Theorem 14. Suppose conditions (h2) and (𝐻𝐺1) − (𝐻𝐺4) are
satisfied. If there exists 𝐿 > 0, such that

Γ (]1) [Γ (𝐶1 + 1) − (Γ (𝐶1 + 1) + 𝜒) 𝑘 − 𝜒] 𝐿Γ (]1) (Γ (𝐶1 + 1) + 𝜒) |ℎ (0)| + Γ (𝐶1 + 1) Σ (𝐿) ‖𝑙‖𝑝 𝐶
> 1,

(52)

and

(1 + 𝜒Γ (𝐶1 + 1)) 𝑘 +
4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝑏‖𝑝Γ (]1) − 1 < 0, (53)

then the generalized Bagley-Torvik type differential inclusion
(1) has a solution in 𝐶(𝐵, 𝐸).
Proof. According toTheorem 13, themultioperator𝑇 is upper
semicontinuous. Suppose Δ ⊆ 𝐵𝑟 is bounded, and belongs to𝑐𝑜({0} ∪ 𝑇(Δ)). We need to prove 𝛾(Δ) = 0.

From (h2) and Lemma 11, one can infer that

𝛾 (𝑇Δ (𝑡)) ≤ 𝛾 ({𝑆ℎ(𝑤)𝑔𝑤 (𝑡) : 𝑤 ∈ Δ, 𝑔𝑤 ∈ 𝑆 𝑒𝑙 (𝑤)})
≤ (1 + 𝜒Γ (𝐶1 + 1)) 𝑘𝛾 (Δ) +

2 𝜒Γ (𝐶1 + 1)𝛾 (Δ)
+ 4Γ (]1) ∫

𝑡

0
(𝑡 − 𝜂)]1−1 𝑏 (𝑠) 𝛾 (Δ (𝜂)) 𝑑𝜂

≤ [(1 + 𝜒Γ (𝐶1 + 1)) 𝑘 +
4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝑏‖𝑝Γ (]1) ]
⋅ 𝛾 (Δ) .

(54)

Thus, one has

𝛾 (Δ) ≤ 𝛾 (𝑐𝑜 ({0} ∪ 𝑇 (Δ))) = 𝛾 (𝑇 (Δ))
≤ [(1 + 𝜒Γ (𝐶1 + 1)) 𝑘 +

4 𝜒Γ (𝐶1 + 1) +
4𝐶 ‖𝑏‖𝑝Γ (]1) ]

⋅ 𝛾 (Δ) .
(55)

Together with (53), one can conclude that 𝛾(Δ) = 0.
From a proof similar to Theorem 13, we can prove that

the multioperator 𝑇 has at least one fixed point, which is
a solution of the generalized Bagley-Torvik type fractional
differential inclusions (1).
Remark 15. Assume Ω(𝑥) = 𝑘1𝑥𝑝 + 𝑘2, ∀𝑥 > 0 for some𝑘1, 𝑘2 > 0 and 0 < 𝑝 < 1; then conditions (32) and (52) are
automatically satisfied.

Subsequently, we will investigate the case where 𝐺 is
Lipschitz-type about the Hausdorff metric. Before proceed-
ing, let us introduce the following definition.

Suppose (𝐸, 𝑑) is metric spaces, corresponding to (𝐸, ‖⋅‖).
Let 𝐴1, 𝐴2 ∈ 𝐾𝑏𝑓(𝐸), 𝑎1 ∈ 𝐴1. Denote

𝐷(𝑎1, 𝐴2) = inf {𝑑 (𝑎1, 𝑎2) : 𝑎2 ∈ 𝐴2} ,
𝜌 (𝐴1, 𝐴2) = sup {𝐷 (𝑎1, 𝐴2) : 𝑎1 ∈ 𝐴1} . (56)

A function 𝐻 : 𝐾𝑏𝑓(𝐸) × 𝐾𝑏𝑓(𝐸) → R+ is called the
Hausdorff metric on 𝐸, if

𝐻(𝐴1, 𝐴2) = max {𝜌 (𝐴1, 𝐴2) , 𝜌 (𝐴2, 𝐴1)} . (57)

Now, we make the following assumption:(𝐻𝐺5) there exists 𝜔 ∈ 𝐿𝑝(𝐵,R+), satisfying
𝐻(𝐺 (𝑠, 𝑧1 (𝑠)) , 𝐺 (𝑠, 𝑧2 (𝑧))) ≤ 𝜔 (𝑠) 𝑧1 − 𝑧2 ,

∀𝑠 ∈ 𝐵, 𝑧1, 𝑧2 ∈ 𝐶 (𝐵, 𝐸) , (58)

and for almost every 𝑠 ∈ 𝐵, ‖𝐺(𝑠, 𝑧(𝑠))‖ ≤ 𝜔(𝑠)(1 + ‖𝑧‖),𝑧 ∈ 𝐶(𝐵, 𝐸).
Noting that if (𝐻𝐺5) is satisfied, (𝐻𝐺3) and (𝐻𝐺4) are

automatically satisfied, in this case, the following theorems
automatically hold.

Theorem 16. Let ℎ and 𝐺 satisfy conditions (h1), (𝐻𝐺1),(𝐻𝐺2), and (𝐻𝐺5). If there exists 𝐿 > 0, such that

[Γ (]1) (Γ (𝐶1 + 1) − (Γ (𝐶1 + 1) + 𝜒) 𝑐1 − 𝜒) − (Γ (𝐶1 + 1) ‖𝜔‖𝑝 𝐶] 𝐿Γ (]1) (Γ (𝐶1 + 1) + 𝜒) 𝑐2 + Γ (𝐶1 + 1) ‖𝜔‖𝑝 𝐶 > 1, (59)

and

4 𝜒Γ (𝐶1 + 1) +
4𝐶 ‖𝜔‖𝑝Γ (]1) − 1 < 0, (60)

then the fractional differential inclusion (1) has at least one
solution.

Theorem 17. Assume ℎ and 𝐺 satisfy conditions (h2), (𝐻𝐺1),(𝐻𝐺2), and (𝐻𝐺5). If there exists 𝐿 > 0, such that
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[Γ (]1) (Γ (𝐶1 + 1) − (Γ (] + 1) + 𝜒) 𝑘 − 𝜒) − (Γ (𝐶1 + 1) ‖𝜔‖𝑝 𝐶] 𝐿Γ (]1) (Γ (𝐶1 + 1) + 𝜒) 𝑔 (0) + Γ (𝐶1 + 1) ‖𝜔‖𝑝 𝐶 > 1, (61)

and

(1 + 𝜒Γ (𝐶1 + 1)) 𝑘 +
4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝜔‖𝑝Γ (]1) < 1, (62)

then the fractional differential inclusion (1) has at least one
solution.

4. Example

Consider the following nonlocal problem of fractional differ-
ential inclusion.

Example 18. Discuss the following differential inclusion:

𝑐𝐷𝑧 (𝑠) − (√𝜋16 )
𝑐𝐷1/2𝑧 (𝑠) ∈ 𝐺 (𝑠, 𝑧 (𝑠)) , 𝑠 ∈ 𝐵

𝑧 (0) = 𝑚∑
𝑗=1

𝛽𝑗𝑧 (𝑠𝑗) ,
(63)

where 𝑠𝑗 (𝑗 = 1, 2, . . . , 𝑚) are certain constants, with 0 < 𝑠1 <𝑠2 < ⋅ ⋅ ⋅ < 𝑠𝑚 < 1, ]1 = 1, ]2 = 1/2, 𝐶1 = 1/2, ∑𝑚𝑗=1 𝛽𝑗 = 1/90,𝜒 = √𝜋/16. Let 𝑝 = 2 and 𝐺(𝑠, 𝑧) = [0, (1/3)𝑠4𝑧 + 1/6].
Clearly, for all 𝑠 ∈ 𝐵, ‖𝐺(𝑠, 𝑧)‖ ≤ (1/3)‖𝑧‖ + 1/6 =𝑙(𝑠)Σ(‖𝑧‖), and then ‖𝑙‖2 = 1, Σ(‖𝑧‖) = (1/3)‖𝑧‖ + 1/6.
Further, we suppose ℎ(𝑧) = ∑𝑚𝑗=1 𝛽𝑗𝑧(𝑠𝑗). Obviously,ℎ(0) = 0.Moreover,

𝐻(𝐺 (𝑠, 𝑧1) , 𝐺 (𝑠, 𝑧2)) ≤ 13𝑠4 𝑧1 − 𝑧2 ,
∀𝑧1, 𝑧2 ∈ 𝐶 (𝐵,R) , 𝑠 ∈ 𝐵,

ℎ (𝑧1) − ℎ (𝑧2) ≤
𝑚∑
𝑗=1

𝛽𝑗 𝑧1 (𝑠𝑗) − 𝑧2 (𝑠𝑗)
≤ 𝑚∑
𝑗=1

𝛽𝑗max
𝑠𝑗∈𝐵
{𝑧1 (𝑠𝑗) − 𝑧2 (𝑠𝑗)} ,

𝑧1, 𝑧2 ∈ 𝐶 (𝐵,R) .

(64)

Take 𝑏(𝑠) = (1/3)𝑠4, 𝑘 = ∑𝑚𝑗=1 𝛽𝑗 = 1/90.Then, one can easily
obtain that ‖𝑏‖2 = 1/9.

It is easy to check that (h2) and (𝐻𝐺1) − (𝐻𝐺4) hold.
Further, we can find 𝐿 = 3, such that

Γ (]1) (Γ (𝐶1 + 1) − (Γ (𝐶1 + 1) + 𝜒) 𝑘 − 𝜒) 𝐿Γ (]1) (Γ (𝐶1 + 1) + 𝜒) |ℎ (0)| + Γ (𝐶1 + 1) Σ (𝐿) ‖𝑙‖𝑝 𝐶
= 3 × (√𝜋/2 − √𝜋/160 − √𝜋/16)(√𝜋/2) ((1/3) × 3 + 1/6) > 1,

(65)

and

(1 + 𝜒Γ (𝐶1 + 1)) 𝑘 +
4 𝜒Γ (𝐶1 + 1) +

4𝐶 ‖𝑏‖𝑝Γ (]1)
= 180 + 12 + 49 < 1.

(66)

Therefore, according to Theorem 14, there exists at least one
solution in 𝐶(𝐵,R) for the problem (63).

5. Conclusion

This paper has studied the generalized Bagley-Torvik type
fractional order differential inclusions with nonlocal condi-
tions. By employing the noncompactness measure of Haus-
dorff and the nonlinear alternative for Kakutani maps fixed
point theorem, the existence results have been derived when
the nonlocal item is compact and Lipschitz continuous and
multifunction is compact and Lipschitz. An example has
been used to illustrate applications of the main result. Future
research directions include the extension of the present
results to other relevant cases, for example, controllability and
topological structure of the solution set [12, 13].
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In this paper, we consider the effective reducibility of the quasi-periodic linear Hamiltonian system �̇� = (𝐴 + 𝜀𝑄(𝑡, 𝜀))𝑥, 𝜀 ∈ (0, 𝜀0),
where 𝐴 is a constant matrix with possible multiple eigenvalues and 𝑄(𝑡, 𝜀) is analytic quasi-periodic with respect to 𝑡. Under
nonresonant conditions, it is proved that this system can be reduced to �̇� = (𝐴∗(𝜀)+𝜀𝑅∗(𝑡, 𝜀))𝑦, 𝜀 ∈ (0, 𝜀∗), where𝑅∗ is exponentially
small in 𝜀, and the change of variables that perform such a reduction is also quasi-periodic with the same basic frequencies as 𝑄.

1. Introduction

The question about the reducibility of quasi-periodic systems
plays an important role in the theory of ordinary differential
equations. In general, in order to understand the qualitative
behavior of a system, we need to obtain the information about
the existence and stability of solutions. During the last two
decades, the study of the existence of solutions for differential
equations has attracted the attention of many researchers; see
[1–10] and the references therein. Some classical tools have
been used to study the existence of solutions for differential
equations in the literature, including themethod of upper and
lower solutions, degree theory, some fixed point theorems in
cones for completely continuous operators, Schauder’s fixed
point theorem, and a nonlinear Leray-Schauder alternative
principle.

Compared with the existence of solutions, the study on
the dynamical stability behaviors of such equations is more
difficult, and the results are fewer in the literature. Here we
refer the reader to [11–16].

Before stating our problem, we give some definitions and
notations. A function𝑓 is said to be a quasi-periodic function
with a vector of basic frequencies 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑟) if𝑓(𝑡) = 𝐹(𝜃1, 𝜃2, . . . , 𝜃𝑟), where 𝐹 is 2𝜋 periodic in all its
arguments and 𝜃𝑗 = 𝜔𝑗𝑡 for 𝑗 = 1, 2, . . . , 𝑟. Moreover, if

𝐹(𝜃) (𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑟)) is analytic on𝐷𝜌 = {𝜃 ∈ C𝑟 : |Im𝜃𝑗|≤ 𝜌, 𝑗 = 1, 2, . . . , 𝑟}, we say that 𝑓(𝑡) is analytic quasi-periodic
on 𝐷𝜌.

It is well known that an analytic quasi-periodic function𝑓(𝑡) can be expanded as Fourier series

𝑓 (𝑡) = ∑
𝑘∈Z𝑟

𝑓𝑘𝑒⟨𝑘,𝜔⟩√−1𝑡 (1)

with Fourier coefficients defined by

𝑓𝑘 = 1
(2𝜋)𝑟 ∫

T 𝑟
𝐹 (𝜃1, 𝜃2, . . . , 𝜃𝑟) 𝑒−⟨𝑘,𝜃⟩√−1𝑑𝜃. (2)

We denote by ‖𝑓‖𝜌 the norm
𝑓𝜌 = ∑

𝑘∈Z𝑟

𝑓𝑘 𝑒|𝑘|𝜌. (3)

An 𝑛 × 𝑛 matrix 𝑄(𝑡) = (𝑞𝑖𝑗)1≤𝑖,𝑗≤𝑛 is said to be analytic quasi-
periodic on 𝐷𝜌 with frequencies 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑟), if all𝑞𝑖𝑗(𝑖, 𝑗 = 1, 2, . . . , 𝑛) are analytic quasi-periodic on 𝐷𝜌 with
frequencies 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑟). Define the norm of 𝑄 by

‖𝑄‖𝜌 = max
1≤𝑖≤𝑛

𝑛∑
𝑗=1

𝑞𝑖𝑗𝜌 . (4)
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It is easy to see that ‖𝑄1𝑄2‖𝜌 ≤ ‖𝑄1‖𝜌‖𝑄2‖𝜌. If 𝑄 is a constant
matrix, write ‖𝑄‖ = ‖𝑄‖𝜌 for simplicity. Denote the average
of 𝑄(𝑡) by 𝑄 = (𝑞𝑖𝑗)1≤𝑖,𝑗≤𝑛, where

𝑞𝑖𝑗 = lim
𝑇→∞

1
2𝑇 ∫𝑇
−𝑇

𝑞𝑖𝑗 (𝑡) 𝑑𝑡, (5)

for the existence of the limit, see [17].
Let𝐴(𝑡) be an 𝑛×𝑛 quasi-periodic matrix; the differential

equations �̇� = 𝐴(𝑡)𝑥, 𝑥 ∈ R𝑛, are called reducible if
there exists a nonsingular quasi-periodic change of variables𝑥 = 𝜙(𝑡)𝑦, such that 𝜙(𝑡) and 𝜙−1(𝑡) are quasi-periodic and
bounded, which changes �̇� = 𝐴(𝑡)𝑥 to ̇𝑦 = 𝐵𝑦, where 𝐵 is a
constant matrix. The well-known Floquet theorem states that
any periodic differential equations ̇𝑥 = 𝐴(𝑡)𝑥 can be reduced
to constant coefficient differential equations ̇𝑦 = 𝐵𝑦 bymeans
of a periodic change of variables with the same period as𝐴(𝑡).
But this is not true for the quasi-periodic coefficient system;
see [18]. Johnson and Sell [19] proved that �̇� = 𝐴(𝑡)𝑥 is
reducible if the quasi-periodic coefficient matrix𝐴(𝑡) satisfies
”full spectrum” condition.

Recently, many authors [20–23] considered the reducibil-
ity of the following system which is close to constant coeffi-
cients matrix:

�̇� = (𝐴 + 𝜀𝑄 (𝑡)) 𝑥. (6)

This problem was first considered by Jorba and Simó in [20].
Suppose that𝐴 is a constantmatrix with different eigenvalues;
they proved that if the eigenvalues of𝐴 and the frequencies of𝑄 satisfy some nonresonant conditions, then for sufficiently
small 𝜀0 > 0, there exists a nonempty Cantor set 𝐸 ⊂ (0, 𝜀0),
such that, for any 𝜀 ∈ 𝐸, system (6) is reducible. Moreover, the
relative measure of the set (0, 𝜀0)\𝐸 in (0, 𝜀0) is exponentially
small in 𝜀0. In [23], Xu obtained the similar result for the
multiple eigenvalues case.

In [21], Jorba and Simó extended the conclusion of the
linear system to the nonlinear system

�̇� = (𝐴 + 𝜀𝑄 (𝑡, 𝜀)) 𝑥 + 𝜀𝑔 (𝑡) + ℎ (𝑥, 𝑡) , 𝑥 ∈ R
𝑛. (7)

Suppose that 𝐴 has 𝑛 different nonzero eigenvalues; they
proved that, under some nonresonant conditions and non-
degeneracy conditions, there exists a nonempty Cantor set𝐸 ⊂ (0, 𝜀0), such that, for all 𝜀 ∈ 𝐸, system (7) is reducible.
Later, in [24], Wang and Xu considered the nonlinear quasi-
periodic system

�̇� = 𝐴𝑥 + 𝑓 (𝑥, 𝑡) , 𝑥 ∈ R
2, (8)

and they proved without any nondegeneracy condition that
one of two results holds: (1) system (8) is reducible to ̇𝑦 = 𝐵𝑦+𝑂(𝑦) for all 𝜀 ∈ (0, 𝜀0); (2) there exists a nonempty Cantor set𝐸 ⊂ (0, 𝜀0), such that system (8) is reducible to ̇𝑦 = 𝐵𝑦+𝑂(𝑦2)
for all 𝜀 ∈ 𝐸.

These papers above all deal with a total reduction to
constant coefficients. In [25], instead of a total reduction
to constant coefficients, Jorba, Ramirez-ros, and Villanueva
considered the effective reducibility of the following quasi-
periodic system:

̇𝑥 = (𝐴 + 𝜀𝑄 (𝑡, 𝜀)) 𝑥, |𝜀| ≤ 𝜀0, (9)

where 𝐴 is a constant matrix with different eigenvalues.
They proved that, under nonresonant conditions, by a quasi-
periodic transformation, system (9) is reducible to a quasi-
periodic system

̇𝑦 = (𝐴∗ (𝜀) + 𝜀𝑅∗ (𝑡, 𝜀)) 𝑦, |𝜀| ≤ 𝜀∗ ≤ 𝜀0, (10)

where 𝑅∗ is exponentially small in 𝜀. In [26], Li and Xu
obtained the similar result for Hamiltonian systems.

In this paper, we consider the case that 𝐴 has multiple
eigenvalues. Under some nonresonant conditions, we can
obtain the effective reducibility for system (9) similar to
[25, 26].

Now we are in a position to state the main result.

Theorem 1. Consider the following linearHamiltonian system:

�̇� = (𝐴 + 𝜀𝑄 (𝑡, 𝜀)) 𝑥, 𝑥 ∈ R
𝑛, (11)

where 𝐴 is a constant matrix with eigenvalues 𝜆1, . . . , 𝜆𝑛,𝑄(𝑡, 𝜀) is an analytic quasi-periodic function on 𝐷𝜌 with the
frequencies 𝜔 = (𝜔1, . . . , 𝜔𝑟), and 𝜀 ∈ (0, 𝜀0) is a small
parameter.

If 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛) and 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑟) satisfy the
nonresonant conditions,

(𝑘, 𝜔) √−1 − 𝜆𝑖 + 𝜆𝑗 ≥ 𝛼
|𝑘|𝜏 (12)

for all 𝑘 ∈ Z𝑟\{0}, 0 ≤ 𝑖, 𝑗 ≤ 𝑛, where 𝛼 > 0 is a small constant
and 𝜏 > 𝑟−1. In addition, we assume that𝐴+𝜀𝑄 has 𝑛 different
eigenvalues 𝜇1, . . . , 𝜇𝑛, and 𝛿 := min{𝜀−1|𝜇𝑖 − 𝜇𝑗| : 0 ≤ 𝑖, 𝑗 ≤𝑛, 𝑖�=𝑗} is a positive constant independent of 𝜀.

Then there exists some 𝜀∗ > 0 such that, for any 𝜀 ∈ (0, 𝜀∗),
there is an analytic quasi-periodic symplectic transformation𝑥 = 𝜓(𝑡, 𝜀)𝑦 on 𝐷𝜌, where 𝜓(𝑡, 𝜀) has same frequencies as𝑄(𝑡, 𝜀), which changes system (11) into the following linear
system:

�̇� = (𝐴∗ (𝜀) + 𝜀𝑅∗ (𝑡, 𝜀)) 𝑦, (13)

where 𝐴∗ is a constant matrix with

𝐴∗ − 𝐴 ≤ 𝑒 (𝛽 + 1) 𝑞
𝑒 − 1 𝜀, (14)

𝑅∗(𝑡, 𝜀) is an analytic quasi-periodic function on 𝐷𝜌 with the
frequencies 𝜔, and

𝑅∗ (𝑡, 𝜀)𝜌−𝑠 ≤ 𝑒2𝛽2𝑞
𝑒 − 1 exp(− ( 𝑑

𝜀1/2)
1/𝜏 𝑠) ,

𝑠 ∈ (0, 𝜌] .
(15)

Furthermore, a general explicit computation of 𝜀∗ and 𝑑 is
possible:

𝜀∗ = min{𝜀0, ( 𝛿 (𝑒 − 1)
(3𝑛 − 1) 𝑒𝛽𝑞)2 , 1

𝛽2} , 𝑑 = 𝛼
12𝑒𝛽𝑞 , (16)

where 𝛽 is the condition number of a matrix 𝑆 such that
𝑆−1(𝐴+𝜀𝑄)𝑆 is diagonal, that is, 𝛽 = 𝐶(𝑆) = ‖𝑆−1‖‖𝑆‖, and the
constant 𝑞 is the bound of 𝑄(𝑡, 𝜀) on 𝐷𝜌, that is, ‖𝑄(𝑡, 𝜀)‖𝜌 ≤ 𝑞.
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Remark 2. In general, 𝑄 depends on 𝜀, so does the average
𝑄. Below for simplicity, we do not indicate this dependence
explicitly.

Remark 3. In Hamiltonian system (11), 𝑛 is an even number.
In fact, a Hamiltonian system is 2𝑚-dimensional; moreover,
the eigenvalues 𝜆1, . . . , 𝜆2𝑚 of a 2𝑚 ×2𝑚Hamiltonian matrix
may be ordered so that 𝜆𝑘+𝑚 = −𝜆𝑘 (𝑘 = 1, . . . , 𝑚).

Now we give some remarks on this result. Firstly, here
we deal with the Hamiltonian system and have to find the
symplectic transformation, which is different from that in
[20, 23, 25]. Secondly, compared with [26], we can allow
the matrix 𝐴 to have multiple eigenvalues. Of course, if the
eigenvalues of 𝐴 are different, the nondegeneracy condition
holds naturally, then our result is just the same as in [26].

2. Some Lemmas

We need some lemmas which are provided in this section for
the proof of Theorem 1.

Lemma 4. Let 𝑄(𝑡) = ∑𝑘∈Z𝑟 𝑄𝑘𝑒⟨𝑘,𝜔⟩√−1𝑡 be analytic quasi-
periodic on 𝐷𝜌 with frequencies 𝜔. Let 𝑄(𝑡) = 𝑄(𝑡) − 𝑄,

𝑄≥𝑀 (𝑡) = ∑
𝑘∈Z𝑟,|𝑘|≥𝑀

𝑄𝑘𝑒⟨𝑘,𝜔⟩√−1𝑡, (17)

and𝑄𝑀 = 𝑄−𝑄≥𝑀, where 𝑀 > 0. Then we have the following
results:

(1) ‖𝑅‖, ‖𝑄‖𝜌, ‖𝑄𝑀‖𝜌 ≤ ‖𝑄‖𝜌.
(2) ‖𝑄≥𝑀‖𝜌−𝑠 ≤ ‖𝑄‖𝜌𝑒−𝑀𝑠, ∀𝑠 ∈ (0, 𝜌].
This lemma can be seen in [25].
The next lemma will be used to show the convergence.

Lemma 5. Let (𝑞𝑚)𝑚, (𝑎𝑚)𝑚, and (𝑟𝑚)𝑚 be sequences defined
by

𝑞𝑚+1 = 𝑞2𝑚,
𝑎𝑚+1 = 𝑎𝑚 + 𝑞𝑚+1,
𝑟𝑚+1 = 2 + 𝑞𝑚2 − 𝑞𝑚 𝑟𝑚 + 𝑞𝑚+1,

(18)

with initial values 𝑞1 = 𝑎1 = 𝑟1 = 𝑒−1.Then (𝑞𝑚)𝑚 is decreasing
to zero and (𝑎𝑚)𝑚, (𝑟𝑚)𝑚 are increasing and convergent to some
values 𝑎∞ and 𝑟∞, respectively, with 𝑎∞ < 1/(𝑒 − 1), 𝑟∞ <𝑒/(𝑒 − 1).

The proof of this lemma can be found in [25].

Lemma 6. Let 𝐷 be an 𝑛 × 𝑛 diagonal matrix with different
eigenvalues 𝜆1, . . . , 𝜆𝑛, and 𝛿 = min𝑖 ̸=𝑗(|𝜆𝑖 − 𝜆𝑗|). Then if 𝐴
verifies ‖𝐴 − 𝐷‖ ≤ 𝑏 ≤ 𝛿/(3𝑛 − 1), the following conditions
hold:

(1) 𝐴 has n different eigenvalues 𝜇1, . . . , 𝜇𝑛 and |𝜆𝑗 − 𝜇𝑗| ≤𝑏, 𝑗 = 1, . . . , 𝑛.
(2)There exists a regular matrix 𝑆 such that 𝑆−1𝐴𝑆 = 𝐷∗ =𝑑𝑖𝑎𝑔(𝜇1, . . . , 𝜇𝑛) satisfying 𝐶(𝑆) ≤ 2.

This lemma can be seen in [20].

3. Proof of Theorem 1

By the assumptions of Theorem 1, 𝐴 + 𝜀𝑄 has 𝑛 different
eigenvalues 𝜇1, ⋅ ⋅ ⋅ , 𝜇𝑛, then there exists a symplectic matrix𝑆 such that

𝑆−1 (𝐴 + 𝜀𝑄) 𝑆 = 𝐷 = diag (𝜇1, . . . , 𝜇𝑛) . (19)

Under the change of variables 𝑥 = 𝑆𝑥1, system (11) is changed
into

̇𝑥1 = (𝐷 + 𝜀𝑆−1 (𝑄 (𝑡) − 𝑄) 𝑆) 𝑥1 = (𝐷 + 𝜀𝑄 (𝑡)) 𝑥1, (20)

where 𝑄(𝑡) = 𝑆−1(𝑄(𝑡) − 𝑄)𝑆; it is easy to see that 𝑄 = 0.
Now we can consider the iteration step.
In the 𝑚-th step, we consider the system

̇𝑥𝑚 = (𝐴𝑚 (𝜀) + 𝜀𝑄𝑚 (𝑡) + 𝜀𝑅𝑚 (𝑡)) 𝑥𝑚, 𝑚 ≥ 1, (21)

where 𝐴1 = 𝐷, 𝑄1 = 𝑄𝑀, 𝑅1 = 𝑄≥𝑀 are Hamiltonian.
Suppose 𝐴𝑚, 𝑄𝑚, and 𝑅𝑚 are Hamiltonian. Assume

𝐴𝑚 − 𝐷 ≤ 𝑞∗𝑎𝑚𝜀3/2,
𝑄𝑚𝜌 ≤ 𝑞∗𝑞𝑚,

𝑅𝑚𝜌−𝑠 ≤ 𝑞∗𝑟𝑚𝑒−𝑀(𝜀)𝑠,
(22)

where 𝑞∗ = 𝛽𝑒𝑞, 𝑠 ∈ (0, 𝜌], 𝑎𝑚, 𝑞𝑚, and 𝑟𝑚 are defined in
Lemma 5.

Let the change of variables be 𝑥𝑚 = 𝑒𝜀𝑃𝑚𝑥𝑚+1; under this
symplectic transformation, system (21) is changed to

�̇�𝑚+1 = (𝑒−𝜀𝑃𝑚 (𝐴𝑚 + 𝜀𝑄𝑚 − 𝜀�̇�𝑚) 𝑒𝜀𝑃𝑚

+ 𝑒−𝜀𝑃𝑚 (𝜀�̇�𝑚𝑒𝜀𝑃𝑚 − 𝑑
𝑑𝑡 (𝑒𝜀𝑃𝑚)) + 𝜀𝑒−𝜀𝑃𝑚𝑅𝑚𝑒𝜀𝑃𝑚)

⋅ 𝑥𝑚+1 = ((𝐼 − 𝜀𝑃𝑚 + 𝐵𝑚) (𝐴𝑚 + 𝜀𝑄𝑚 − 𝜀�̇�𝑚)

⋅ (𝐼 + 𝜀𝑃𝑚 + 𝐵𝑚) + 𝑒−𝜀𝑃𝑚 (𝜀�̇�𝑚𝑒𝜀𝑃𝑚 − 𝑑
𝑑𝑡 (𝑒𝜀𝑃𝑚))

+ 𝜀𝑒−𝜀𝑃𝑚𝑅𝑚𝑒𝜀𝑃𝑚) 𝑥𝑚+1 = (𝐴𝑚 + 𝜀𝑄𝑚 − 𝜀�̇�𝑚
+ 𝜀𝐴𝑚𝑃𝑚 − 𝜀𝑃𝑚𝐴𝑚 + 𝜀𝑄∗𝑚 + 𝜀𝑒−𝜀𝑃𝑚𝑅𝑚𝑒𝜀𝑃𝑚) 𝑥𝑚+1,

(23)

where

𝜀𝑄∗𝑚 = −𝜀2𝑃𝑚 (𝑄𝑚 − �̇�𝑚) + 𝜀2 (𝑄𝑚 − �̇�𝑚) 𝑃𝑚
− 𝜀2𝑃𝑚 (𝐴𝑚 + 𝜀𝑄𝑚 − 𝜀�̇�𝑚) 𝑃𝑚
− 𝜀𝑃𝑚 (𝐴𝑚 + 𝜀𝑄𝑚 − 𝜀�̇�𝑚) 𝐵𝑚
+ (𝐴𝑚 + 𝜀𝑄𝑚 − 𝜀�̇�𝑚) 𝐵𝑚
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+ 𝐵𝑚 (𝐴𝑚 + 𝜀𝑄𝑚 − 𝜀�̇�𝑚) 𝑒𝜀𝑃𝑚
+ 𝑒−𝜀𝑃𝑚 (𝜀�̇�𝑚𝑒𝜀𝑃𝑚 − 𝑑

𝑑𝑡𝑒𝜀𝑃𝑚) ,
𝑒𝜀𝑃𝑚 = 𝐼 + 𝜀𝑃𝑚 + 𝐵𝑚,

𝑒−𝜀𝑃𝑚 = 𝐼 − 𝜀𝑃𝑚 + 𝐵𝑚,
(24)

and

𝐵𝑚 = (𝜀𝑃𝑚)2
2! + (𝜀𝑃𝑚)33! + ⋅ ⋅ ⋅ ,

𝐵𝑚 = (𝜀𝑃𝑚)2
2! − (𝜀𝑃𝑚)33! + ⋅ ⋅ ⋅ .

(25)

We would like to have

𝑄𝑚 + 𝐴𝑚𝑃𝑚 − �̇�𝑚 − 𝑃𝑚𝐴𝑚 = 0, (26)

and this is equivalent to

�̇�𝑚 = 𝐴𝑚𝑃𝑚 − 𝑃𝑚𝐴𝑚 + 𝑄𝑚. (27)

Now we want to solve (27) to obtain an analytic quasi-
periodic Hamiltonian solution 𝑃𝑚(𝑡) on𝐷𝜌 with the frequen-
cies 𝜔.

From (22), it follows that

𝐴𝑚 − 𝐷 ≤ 𝑞∗𝑎𝑚𝜀3/2 ≤ 𝛿𝜀
3𝑛 − 1, 𝜀 ∈ (0, 𝜀∗) . (28)

Thus by Lemma 6, 𝐴𝑚 has 𝑛 different eigenvalues 𝜆𝑚1 , . . . , 𝜆𝑚𝑛
and

𝜆𝑚𝑖 − 𝜇𝑖 ≤ 𝑞∗𝑎𝑚𝜀3/2. (29)

Since 𝐴𝑚 is Hamiltonian, from the discussion in Section 15
of [17], it follows that there exists a symplectic matrix 𝑆𝑚 such
that

𝑆−1𝑚 𝐴𝑚𝑆𝑚 = 𝐷𝑚 = diag (𝜆𝑚1 , . . . , 𝜆𝑚𝑛 ) ; (30)

moreover, 𝐶(𝑆𝑚) ≤ 2, where we let 𝐷1 = 𝐷, 𝜆1𝑖 = 𝜇𝑖 (𝑖 =1, 2, . . . , 𝑛).
If ⟨𝑘, 𝜔⟩ √−1 − 𝜆𝑚𝑖 + 𝜆𝑚𝑗  ≥ 𝐿𝜀1/2 (31)

for 0 < |𝑘| < 𝑀, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, where 𝐿 > 0, 𝑀 > 0 are
constants.

Making the change of variable 𝑃𝑚 = 𝑆𝑚𝑋𝑚𝑆−1𝑚 and
defining 𝑌𝑚 = 𝑆−1𝑚 𝑄𝑚𝑆𝑚, (27) becomes

�̇�𝑚 = 𝐷𝑚𝑋𝑚 − 𝑋𝑚𝐷𝑚 + 𝑌𝑚, 𝑌𝑚 = 0. (32)

Expand 𝑋𝑚 and 𝑌𝑚 into Fourier series
𝑋𝑚 (𝑡) = ∑

𝑘∈Z𝑟,0<|𝑘|<𝑀

𝑥𝑘𝑚𝑒⟨𝑘,𝜔⟩√−1𝑡,

𝑌𝑚 (𝑡) = ∑
𝑘∈Z𝑟,0<|𝑘|<𝑀

𝑦𝑘𝑚𝑒⟨𝑘,𝜔⟩√−1𝑡,
(33)

where 𝑥𝑘𝑚 = (𝑥𝑘𝑖𝑗,𝑚)1≤𝑖,𝑗≤𝑛 and 𝑦𝑘𝑚 = (𝑦𝑘𝑖𝑗,𝑚)1≤𝑖,𝑗≤𝑛.

Thus the coefficients must be

𝑥𝑘𝑖𝑗,𝑚 = 𝑦𝑘𝑖𝑗,𝑚
⟨𝑘, 𝜔⟩ √−1 − 𝜆𝑚𝑖 + 𝜆𝑚𝑗 . (34)

By (31), we have

𝑋𝑚𝜌 ≤ (𝐿𝜀1/2)−1 𝑌𝑚𝜌 ≤ (𝐿𝜀1/2)−1 𝐶 (𝑆𝑚) 𝑄𝑚𝜌
≤ 2 (𝐿𝜀1/2)−1 𝑄𝑚𝜌 ,

(35)

which implies

𝑃𝑚𝜌 ≤ 𝐶 (𝑆𝑚) 𝑋𝑚𝜌 ≤ 4 (𝐿𝜀1/2)−1 𝑄𝑚𝜌 . (36)

Now we prove that 𝑃𝑚 is Hamiltonian. To this end, we
only need to prove that 𝑋𝑚 is Hamiltonian. Since 𝐷𝑚 and 𝑌𝑚
are Hamiltonian, then 𝐷𝑚 = 𝐽𝐷𝑚𝐽 and 𝑌𝑚 = 𝐽𝑌𝑚𝐽, where𝐷𝑚𝐽 and 𝑌𝑚𝐽 are symmetric. Let 𝑋𝑚𝐽 = 𝐽−1𝑋𝑚, if 𝑋𝑚𝐽 is
symmetric, then𝑋𝑚 isHamiltonian. Belowweprove that𝑋𝑚𝐽
is symmetric. Substituting 𝑋𝑚 = 𝐽𝑋𝑚𝐽 into (32) yields that

�̇�𝑚𝐽 = 𝐷𝑚𝐽𝐽𝑋𝑚𝐽 − 𝑋𝑚𝐽𝐽𝐷𝑚𝐽 + 𝑌𝑚𝐽, (37)

and transposing (37), we get

�̇�𝑇𝑚𝐽 = 𝐷𝑚𝐽𝐽𝑋𝑇𝑚𝐽 − 𝑋𝑇𝑚𝐽𝐽𝐷𝑚𝐽 + 𝑌𝑚𝐽. (38)

It is easy to see that 𝐽𝑋𝑚𝐽 and 𝐽𝑋𝑇𝑚𝐽 are solutions of (32);
moreover, 𝐽𝑋𝑚𝐽 = 𝐽𝑋𝑇𝑚𝐽 = 0. Since the solution of (32) with
𝑋𝑚 = 0 is unique, we have that 𝐽𝑋𝑚𝐽 = 𝐽𝑋𝑇𝑚𝐽, which implies
that 𝑋𝑚 is Hamiltonian. Since 𝑆𝑚 is symplectic, it is easy to
see that 𝑃𝑚 = 𝑆𝑚𝑋𝑚𝑆−1𝑚 is Hamiltonian.

Thus, under the symplectic transformation 𝑥𝑚 =𝑒𝜀𝑃𝑚𝑥𝑚+1, system (21) is changed into the system

̇𝑥𝑚+1 = (𝐴𝑚 + 𝜀𝑄∗𝑚 + 𝜀𝑒−𝜀𝑃𝑚𝑅𝑚𝑒𝜀𝑃𝑚) 𝑥𝑚+1, (39)

where

𝜀𝑄∗𝑚 = −𝜀2𝑃𝑚 (−𝐴𝑚𝑃𝑚 + 𝑃𝑚𝐴𝑚)
+ 𝜀2 (−𝐴𝑚𝑃𝑚 + 𝑃𝑚𝐴𝑚) 𝑃𝑚
− 𝜀2𝑃𝑚 (𝐴𝑚 + 𝜀𝑃𝑚𝐴𝑚 − 𝜀𝐴𝑚𝑃𝑚) 𝑃𝑚
− 𝜀𝑃𝑚 (𝐴𝑚 + 𝜀𝑃𝑚𝐴𝑚 − 𝜀𝐴𝑚𝑃𝑚) 𝐵𝑚
+ (𝐴𝑚 + 𝜀𝑃𝑚𝐴𝑚 − 𝜀𝐴𝑚𝑃𝑚) 𝐵𝑚
+ 𝐵𝑚 (𝐴𝑚 + 𝜀𝑃𝑚𝐴𝑚 − 𝜀𝐴𝑚𝑃𝑚) 𝑒𝜀𝑃𝑚
+ 𝑒−𝜀𝑃𝑚 (𝜀�̇�𝑚𝑒𝜀𝑃𝑚 − 𝑑

𝑑𝑡𝑒𝜀𝑃𝑚) .

(40)

System (39) can be written in the following system:

�̇�𝑚+1 = (𝐴𝑚+1 + 𝜀𝑄𝑚+1 + 𝜀𝑒−𝜀𝑃𝑚𝑅𝑚𝑒𝜀𝑃𝑚) 𝑥𝑚+1, (41)
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where𝐴𝑚+1 = 𝐴𝑚+𝜀𝑄∗𝑚, 𝑄𝑚+1 = (𝑄∗𝑚−𝑄∗𝑚)𝑀, and 𝑅𝑚+1 =
(𝑄∗𝑚 − 𝑄∗𝑚)≥𝑀 + 𝑒−𝜀𝑃𝑚𝑅𝑚𝑒𝜀𝑃𝑚 are Hamiltonian and analytic
quasi-periodic on 𝐷𝜌 with the frequencies 𝜔.

Now we prove the convergence of the iteration as 𝑚 →∞.
We first prove (22) holds by mathematical induction. By

Lemma 4, it is easy to verify that

𝐴1 − 𝐷 = 0 ≤ 𝑞∗𝑎1𝜀3/2,
𝑄1𝜌 ≤ 𝑞∗𝑞1,
𝑅1𝜌 ≤ 𝑞∗𝑟1𝑒−𝑀(𝜀)𝑠,

(42)

where 𝑎1 = 𝑞1 = 𝑟1 = 𝑒−1, 𝛽 = 𝐶(𝑆), 𝑞∗ = 𝛽𝑒𝑞, 𝑠 ∈ (0, 𝜌],𝜀 ∈ (0, 𝜀∗).
Assume that (22) holds at the 𝑚-th step. By (22) and (36),

we have

𝑃𝑚𝜌 ≤ 4 (𝐿𝜀1/2)−1 𝑄𝑚𝜌 ≤ 4 (𝐿𝜀1/2)−1 𝑞∗𝑞𝑚. (43)

Hence

𝜀1/2𝑃𝑚𝜌 ≤ 𝑞𝑚2 < 1
2 , 𝜀 ∈ (0, 𝜀∗) , (44)

where 𝐿 = 8𝑞∗ is a constant. It is easy to see that
𝜀𝑃𝑚𝜌 ≤ 𝜀1/2𝑃𝑚𝜌 ≤ 𝑞𝑚2 < 1

2 , 𝜀 ∈ (0, 𝜀∗) . (45)

Thus

𝑒±𝜀𝑃𝑚𝜌 < 2. (46)

From (22), (44), (46), Lemmas 4 and 5, it follows that

𝑄∗𝑚𝜌 ≤ 𝑐𝜀1/2𝑞∗𝑞2𝑚𝜀1/2 ≤ 𝑞∗𝑞2𝑚𝜀1/2 = 𝑞∗𝑞𝑚+1𝜀1/2, (47)

where 𝑐 is a positive constant,
𝐴𝑚+1 − 𝐷 ≤ 𝐴𝑚 − 𝐷 + 𝜀𝑄∗𝑚𝜌

≤ 𝑞∗ (𝑎𝑚 + 𝑞𝑚+1) 𝜀3/2 = 𝑞∗𝑎𝑚+1𝜀3/2,
𝑄𝑚+1𝜌 ≤ 𝑄∗𝑚𝜌 ≤ 𝑞∗𝑞𝑚+1𝜀1/2 ≤ 𝑞∗𝑞𝑚+1,

𝑅𝑚+1𝜌−𝑠 ≤ (𝑄∗𝑚)≥𝑀𝜌−𝑠 + 1 + 𝜀𝑃𝑚1 − 𝜀𝑃𝑚
𝑅𝑚𝜌−𝑠

≤ (𝑞𝑚+1 + 2 + 𝑞𝑚2 − 𝑞𝑚 𝑟𝑚) 𝑞∗𝑒−𝑀(𝜀)𝑠

= 𝑞∗𝑟𝑚+1𝑒−𝑀(𝜀)𝑠, 𝑠 ∈ (0, 𝜌] .

(48)

By the mathematical induction, then (22) holds.

Belowwe prove (31) holds. If 𝑘 ∈ Z𝑟 and 0 < |𝑘| < 𝑀(𝜀) =
(𝑑/𝜀1/2)1/𝜏, from the nonresonant conditions of Theorem 1
and (29), it follows that

⟨𝑘, 𝜔⟩ √−1 − 𝜆𝑚𝑖 + 𝜆𝑚𝑗 
≥ ⟨𝑘, 𝜔⟩ √−1 − 𝜆𝑖 + 𝜆𝑗 − 𝜆𝑚𝑖 − 𝜇𝑖 − 𝜆𝑚𝑗 − 𝜇𝑗

− 𝜇𝑖 − 𝜆𝑖 − 𝜇𝑗 − 𝜆𝑗
≥ 𝛼

|𝑘|𝜏 − 2𝑞∗𝑎𝑚𝜀3/2 − 2𝑞𝛽𝜀
≥ 𝛼

|𝑘|𝜏 − 2𝑞∗𝑎∞𝜀3/2 − 2𝑞𝛽𝜀
≥ 𝛼

|𝑘|𝜏 − 2𝑞∗𝑎∞𝜀1/2 − 2𝑞𝜀1/2 > (𝛼
𝑑 − 4𝑞∗) 𝜀1/2

= 𝐿𝜀1/2,

(49)

where 𝑑 = 𝛼/12𝑞∗ and 𝐿 = 8𝑞∗. So for any 𝑚 ≥ 1, (31) holds.
Consequently, the iterative process can be carried out.The

composition of all of the changes 𝑒𝜀𝑃𝑚 is convergent because‖𝑒𝜀𝑃𝑚‖𝜌 ≤ 1 + 𝑞𝑚. That is, there exists an analytic quasi-
periodic function 𝜑(𝑡, 𝜀) on 𝐷𝜌 with the frequencies 𝜔, such
that the composition of all of the changes 𝑒𝜀𝑃𝑚 converges to𝜑(𝑡, 𝜀) as 𝑚 → ∞.

From (22) and Lemma 5, it follows that

lim
𝑚→∞

𝑄𝑚 = 0. (50)

By (22) and (41), we have

𝐴𝑚+1 − 𝐴𝑚 ≤ 𝜀 𝑄∗𝑚 ≤ 𝜀 𝑄∗𝑚𝜌 ≤ 𝑞∗𝑞𝑚+1𝜀3/2. (51)

Hence, according to Lemma 5, 𝐴𝑚 and 𝑅𝑚 are convergent as𝑚 → ∞. Let

lim
𝑚→∞

𝐴𝑚 = 𝐴∞,
lim
𝑚→∞

𝑅𝑚 = 𝑅∞. (52)

Then the final equation is

�̇�∞ = (𝐴∞ (𝜀) + 𝜀𝑅∞ (𝑡, 𝜀)) 𝑥∞, 𝜀 ∈ (0, 𝜀∗) . (53)

By (22) and Lemma 5, we have

𝐴∞ (𝜀) − 𝐷 ≤ 𝑞∗𝑎∞𝜀3/2 ≤ 𝑒𝛽𝑞
𝑒 − 1𝜀3/2 (54)

and
𝑅∞ (𝑡, 𝜀)𝜌−𝑠 ≤ 𝑞∗𝑟∞𝑒−𝑀(𝜀)𝑠

≤ 𝑒2𝛽𝑞
𝑒 − 1 exp(− ( 𝑑

𝜀1/2)
1/𝜏 𝑠) ,

𝑠 ∈ (0, 𝜌] ,
(55)

where 𝑑 = 𝛼/12𝛽𝑒𝑞.
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Under the change of variables 𝑥∞ = 𝑆−1𝑦, system (53) is
changed into (13) with

𝐴∗ = 𝑆𝐴∞𝑆−1,
𝑅∗ = 𝑆𝑅∞𝑆−1. (56)

Moreover,
𝐴∗ − 𝐴 = 𝐴∗ − (𝐴 + 𝜀𝑄) + 𝜀𝑄

≤ 𝑆𝐴∞𝑆−1 − 𝑆𝐷𝑆−1 + ‖𝜀𝑄‖𝜌
≤ 𝛽 𝑒𝛽𝑞

𝑒 − 1𝜀3/2 + 𝜀𝑞 ≤ 𝑒 (𝛽 + 1) 𝑞
𝑒 − 1 𝜀,

𝜀 ∈ (0, 𝜀∗) .
𝑅∗𝜌−𝑠 ≤ 𝑒2𝛽2𝑞

𝑒 − 1 exp(− ( 𝑑
𝜀1/2)
1/𝜏 𝑠) ,

𝑠 ∈ (0, 𝜌] , 𝜀 ∈ (0, 𝜀∗) ,

(57)

where 𝑑 = 𝛼/12𝑒𝛽𝑞.
Thus, under the symplectic transformation 𝑥 = 𝜑(𝑡,𝜀)𝑆−1𝑦 = 𝜓(𝑡, 𝜀)𝑦, Hamiltonian system (11) is changed into

Hamiltonian system (13). Therefore, Theorem 1 is proved
completely.
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We obtain exact solutions to the fractional generalized higher order Korteweg-de Vries (KdV) equation using the complex method.
It has showed that the applied method is very useful and is practically well suited for the nonlinear differential equations, those
arising in mathematical physics.

1. Introduction

Nonlinear fractional differential equations (NFDEs) are uni-
versally applied in signal processing, electrical networks,
acoustics, fluid dynamics, biology, chemistry, physics, etc.
For example, the singular behaviours [1–9] and impulsive
phenomena [10–19] often exhibit some blow-up properties
[20–25] which occur in a lot of complex physical processes.
NFDEs have been attracted extensive attention and have
been widely investigated [26–38]. Exact solutions of NFDEs
play an important role in the study of mathematical physics
phenomena. Therefore, seeking exact solutions of NFDEs is
an interesting and significant subject.

The fractional generalized higher order KdV equation
is a useful model. Applying the generalized exp(-Φ(𝜁))-
expansion method, Lu et al. [39] obtained exact solutions
of this equation. In this article, we would like to utilize
the complex method [40–43] to seek exact solutions to the
fractional generalized higher order KdV equation.

2. Preliminaries

Let 𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) be a continuous function and
] > 0 denote a constant discrete span. Define the operator𝐹𝑊(]) as follows:

𝐹𝑊(]) 𝑓 (𝑥) fl 𝑓 (𝑥 + ]) , (1)

then the fractional difference of 𝑓(𝑥) of order 𝜇 can be
expressed as

Δ𝜇𝑓 (𝑥) = (𝐹𝑊 − 1)𝜇 𝑓 (𝑥)
= ∞∑
𝑛=0

(−1)𝑛 (𝜇𝑛)𝑓 [𝑥 + (𝜇 − 𝑛) ]] , (2)

where 0 < 𝜇 ≤ 1, and its fractional derivative of order 𝜇 can
be expressed as

𝑓(𝜇) (𝑥) = lim
]→0

(∑∞𝑛=0 (−1)𝑛 ( 𝜇𝑛 ) 𝑓 [𝑥 + (𝜇 − 𝑛) ]]
]𝜇

) . (3)

The above is expressed as
1Γ (−𝜇) ∫

𝑥

0
(𝑥 − 𝑧)−𝜇−1 𝑓 (𝑧) 𝑑𝑧, 𝜇 < 0,

1Γ (1 − 𝜇) 𝑑𝑑𝑥 ∫
𝑥

0
(𝑥 − 𝑧)−𝜇 [𝑓 (𝑧) − 𝑓 (0)] 𝑑𝑧,

0 < 𝜇 < 1,
(𝑓(𝜇−𝑛) (𝑥))(𝑛) , 𝑛 ≤ 𝜇 ≤ 𝑛 + 1, 𝑛 ≥ 1.

(4)

Further, Jumarie’s modified Riemann-Liouville derivative
[44, 45] is given by

𝐷𝜇𝑥𝑥𝛾 = Γ (1 + 𝛾)
Γ (1 + 𝛾 − 𝜇)𝑥(𝛾−𝜇), 𝛾 > 0, (5)
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then its related NFDE is given by

𝑓 (𝑢, 𝑢𝑡, 𝑢𝑥, 𝐷𝜇𝑡 𝑢,𝐷𝜇𝑥𝑢,𝐷𝛾𝑡 𝑢,𝐷𝛾𝑥𝑢, . . .) = 0,
0 < 𝜇 ≤ 1. (6)

Let 𝑚 ∈ N fl {1, 2, 3, . . .}, 𝑟𝑗 ∈ {0, 1, 2, , . . .}, 𝑗 = 0, 1, . . . , 𝑚,𝑟 = (𝑟0, 𝑟1, . . . , 𝑟𝑚), and
𝐾𝑟 [𝑤] (𝑧) fl 𝑚∏

𝑗=0

[𝑤(𝑗) (𝑧)]𝑟𝑗 , (7)

then the degree of 𝐾𝑟[𝑤] is denoted by 𝑑(𝑟) fl ∑𝑚𝑗=0 𝑟𝑗. We
define the differential polynomial as

𝐹 (𝑤,𝑤, . . . , 𝑤(𝑚)) fl ∑
𝑟∈𝐻

𝑎𝑟𝐾𝑟 [𝑤] , (8)

in which 𝐻 is a finite index set and 𝑎𝑟 are constants.
The degree of 𝐹(𝑤,𝑤, . . . , 𝑤(𝑚)) can be denoted by
deg𝐹(𝑤,𝑤, . . . , 𝑤(𝑚)) fl max𝑟∈𝐻{𝑑(𝑟)}.

The ordinary differential equation (ODE) is given by

𝐹 (𝑤,𝑤, . . . , 𝑤(𝑚)) = 𝑐𝑤𝑛 + 𝑑, (9)

where 𝑐 ̸= 0, 𝑑 are constants, 𝑛 ∈ N.
Suppose that the meromorphic solutions 𝑤 of (9) have at

least one pole. Let 𝑝, 𝑞 ∈ N and insert the Laurent series

𝑤 (𝑧) = ∞∑
𝜏=−𝑞

𝛽𝜏𝑧𝜏, 𝛽−𝑞 ̸= 0, 𝑞 > 0, (10)

into (9); if it is determined 𝑝 different Laurent singular parts:
−1∑
𝜏=−𝑞

𝛽𝜏𝑧𝜏, (11)

then (9) is said to satisfy the weak ⟨𝑝, 𝑞⟩ condition.
Give two complex numbers ]1, ]2 such that Im(]1/]2) >0, let 𝐿 be the discrete subset 𝐿[2]1, 2]2] fl {] | ] = 2𝑐1]1 +2𝑐2]2, 𝑐1, 𝑐2 ∈ Z}, and L is isomorphic to Z × Z. Let the

discriminant Δ = Δ(𝑏1, 𝑏2) fl 𝑏31 − 27𝑏22 and
ℎ𝑛 fl ℎ𝑛 (𝐿) fl ∑

]∈𝐿\{0}

1
]𝑛
. (12)

Ameromorphic function℘(𝑧) fl ℘(𝑧, 𝑔2, 𝑔3)with double
periods 2]1, 2]2, which satisfies the equation

(℘ (𝑧))2 = 4℘3 (𝑧) − 𝑔2℘ (𝑧) − 𝑔3, (13)

in which Δ(𝑔2, 𝑔3) ̸= 0, 𝑔2 = 60ℎ4, and 𝑔3 = 140ℎ6, is called
the Weierstrass elliptic function.

If a meromorphic function 𝜍 is a rational function of 𝑧, an
elliptic function, or a rational function of 𝑒𝛼𝑧, 𝛼 ∈ C, then we
say that 𝜍 belongs to the class𝑊.

In 2009, Eremenko et al. [46] considered the following𝑚-order Briot-Bouquet equation (BBEq):

𝐹 (𝑤,𝑤(𝑚)) = 𝑛∑
𝑗=0

𝐹𝑗 (𝑤) (𝑤(𝑚))𝑗 = 0, (14)

where𝑚 ∈ N and 𝐹𝑗(𝑤) are constant coefficient polynomials.
For the𝑚-order BBEq, we have the lemma as follows.

Lemma 1 (see [41, 47, 48]). Let 𝑚, 𝑠, 𝑛, 𝑝 ∈ N, and
deg𝐹(𝑤,𝑤(𝑚)) < 𝑛, and the𝑚-order BBEq

𝐹 (𝑤,𝑤(𝑚)) = 𝑐𝑤𝑛 + 𝑑 (15)

satisfies weak ⟨𝑝, 𝑞⟩ condition, then the meromorphic solutions𝑤(𝑧) belong to the class 𝑊. Suppose that for some values of
parameters such solutions 𝑤 exist, then other meromorphic
solutions should form one-parametric family (𝑧 − 𝑧0), 𝑧0 ∈ C.
Then each elliptic solution with a pole at 𝑧 = 0 can be expressed
as

𝑤 (𝑧) = 𝑠−1∑
𝑖=1

𝑞∑
𝑗=2

(−1)𝑗 𝛽−𝑖𝑗(𝑗 − 1)! 𝑑𝑗−2𝑑𝑧𝑗−2

⋅ (14 [℘
 (𝑧) + 𝐶𝑖℘ (𝑧) − 𝐷𝑖 ]

2 − ℘ (𝑧)) + 𝑠−1∑
𝑖=1

𝛽−𝑖12
⋅ ℘ (𝑧) + 𝐶𝑖℘ (𝑧) − 𝐷𝑖 +

𝑞∑
𝑗=2

(−1)𝑗 𝛽−𝑠𝑗(𝑗 − 1)! 𝑑𝑗−2𝑑𝑧𝑗−2℘ (𝑧)
+ 𝛽0,

(16)

in which 𝛽−𝑖𝑗 are determined by (10), ∑𝑠𝑖=1 𝛽−𝑖1 = 0, and 𝐶2𝑖 =4𝐷3𝑖 − 𝑔2𝐷𝑖 − 𝑔3.
Each rational function solution 𝑅(𝑧) can be expressed as

𝑅 (𝑧) = 𝑠∑
𝑖=1

𝑞∑
𝑗=1

𝛽𝑖𝑗
(𝑧 − 𝑧𝑖)𝑗 + 𝛽0, (17)

and it has 𝑠(≤ 𝑝) distinct poles of multiplicity 𝑞.
Each simply periodic solution 𝑅(𝜂) is a rational function of𝜂 = 𝑒𝛼𝑧(𝛼 ∈ C) and can be expressed as

𝑅 (𝜂) = 𝑠∑
𝑖=1

𝑞∑
𝑗=1

𝛽𝑖𝑗
(𝜂 − 𝜂𝑖)𝑗 + 𝛽0, (18)

and it has 𝑠(≤ 𝑝) distinct poles of multiplicity 𝑞.
Lemma 2 (see [48, 49]). Weierstrass elliptic functions ℘(𝑧)
have the following addition formula:

℘ (𝑧 − 𝑧0) = −℘ (𝑧0) − ℘ (𝑧)
+ 14 [

℘ (𝑧) + ℘ (𝑧0)℘ (𝑧) − ℘ (𝑧0) ]2 . (19)

When 𝑔2 = 𝑔3 = 0, it can be degenerated to rational functions
according to

℘ (𝑧, 0, 0) = 1𝑧2 . (20)

When Δ(𝑔2, 𝑔3) = 0, it can also be degenerated to simple
periodic functions according to

℘ (𝑧, 3𝑑2, −𝑑3) = 2𝑑 − 3𝑑2 coth2√3𝑑2 𝑧. (21)
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3. Main Results

The fractional generalized higher order KdV equation [39] is
given as

𝐷𝜇𝑡 + 𝑢𝑢𝑥 − 𝑢𝑢𝑥𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥 = 0. (22)

Substituting traveling wave transform

𝑢 (𝑥, 𝑡) = 𝑤 (𝑧) , 𝑧 = 𝑘(𝑥 + 𝜆𝑡𝜇Γ (1 + 𝜇)) , (23)

into (22), we get

𝑘𝜆𝑤 + 𝑘𝑤𝑤 − 𝑘3𝑤𝑤 + 𝑘5𝑤(5) = 0, (24)

Integrating (24) yields

𝜆𝑤 + 𝑤22 + 𝑘2𝑤𝑤 − 𝑘22 (𝑤)2 + 𝑘4𝑤(4) + 𝛿 = 0, (25)

where 𝑘 and 𝜆 are constants and 𝛿 is the integral constant.
Theorem 3. If 𝑘 ̸= 0, then the meromorphic solutions 𝑤(𝑧) of
(25) have the following forms.(I)The rational function solutions

𝑤𝑟 (𝑧) = −30𝑘2
(𝑧 − 𝑧0)2 +

52 , (26)

where 𝜆 = −5/2, 𝛿 = 25/8, and 𝑧0 ∈ C.(II)The simply periodic solutions

𝑤𝑠 (𝑧) = −15𝑘2𝛼22 coth2
𝛼 (𝑧 − 𝑧0)2 + 10𝑘2𝛼2 + 52 , (27)

where 𝜆 = (3𝑘4𝛼4 − 5)/2, 𝛿 = (30𝑘6𝛼6 − 55𝑘4𝛼4 + 25)/8, and𝑧0 ∈ C.(III)The elliptic function solutions

𝑤𝑑 (𝑧) = −30𝑘2(−℘ (𝑧) + 14 (℘
 (𝑧) + 𝐷℘ (𝑧) − 𝐶 )2)

+ 30𝑘2𝐶 + 52 ,
(28)

where 𝐶2 = 4𝐷3 − 𝑔2𝐷 − 𝑔3, 𝑔2 = (2𝜆 + 5)/36𝑘4, and 𝑔3 =−(100 + 55𝜆 + 12𝛿)/9720𝑘6.
Proof. Substituting (10) into (25) we have 𝑝 = 1, 𝑞 = 2, 𝛽−2 =−30𝑘2, 𝛽−1 = 0, 𝛽0 = 5/2, 𝛽1 = 0, 𝛽2 = −(2𝜆 + 5)/24𝑘2, and𝛽3 is an arbitrary constant.

Therefore, (25) satisfies the weak ⟨1, 2⟩ condition. In the
following, we will show the meromorphic solutions of (25).

By (17), we infer that the indeterminant rational solutions
of (25) are

𝑅1 (𝑧) = 𝛽11𝑧2 + 𝛽12𝑧 + 𝛽10, (29)

with pole at 𝑧 = 0.

Inserting 𝑅1(𝑧) into (25), we have
12𝛽102 + 𝜆𝛽10 + 𝛿 + 𝜆𝛽11 + 𝛽11𝛽10𝑧

+ 2𝛽12𝛽10 + 𝛽112 + 2𝜆𝛽122𝑧2
+ 2𝑘2𝛽10𝛽11 + 𝛽12𝛽11𝑧3
+ 3𝑘2𝛽112 + 12𝑘2𝛽10𝛽12 + 𝛽1222𝑧4
+ 24𝑘4𝛽11 + 6𝑘2𝛽11𝛽12𝑧5 + 120𝑘4𝛽12 + 4𝑘2𝛽122𝑧6= 0,

(30)

then we get 𝛽12 = −30𝑘2, 𝛽11 = 0, and 𝛽10 = 5/2.
So we can determine that

𝑅1 (𝑧) = −30𝑘2𝑧2 + 52 , (31)

where 𝜆 = −5/2 and 𝛿 = 25/8.
Therefore the rational solutions of (25) are

𝑤𝑟 (𝑧) = −30𝑘2
(𝑧 − 𝑧0)2 +

52 , (32)

where 𝜆 = −5/2, 𝛿 = 25/8, and 𝑧0 ∈ C.
Let 𝜂 = 𝑒𝛼𝑧. To derive simply periodic solutions, we

substitute 𝑤 = 𝑅(𝜂) into (25) to yield
𝑘4𝛼4 (𝑅(4)𝜂4 + 6𝑅𝜂3 + 7𝑅𝜂2 + 𝑅𝜂) − 𝑘22 (𝛼𝑅𝜂)2

+ 𝑘2𝛼2𝑅 (𝜂𝑅 + 𝜂2𝑅) + 𝑅22 + 𝜆𝑅 + 𝛿 = 0.
(33)

Substituting

𝑅2 (𝑧) = 𝛽21(𝜂 − 1)2 +
𝛽22(𝜂 − 1) + 𝛽20 (34)

into (33), we obtain that

𝑅2 (𝑧) = − 30𝑘2𝛼2
(𝜂 − 1)2 −

30𝑘2𝛼2(𝜂 − 1) − 5𝑘2𝛼22 + 52 , (35)

where 𝜆 = (3𝑘4𝛼4 − 5)/2 and 𝛿 = (30𝑘6𝛼6 − 55𝑘4𝛼4 + 25)/8.
Substituting 𝜂 = 𝑒𝛼𝑧 into (35), we achieve simply periodic

solutions to (25) with pole at 𝑧 = 0
𝑤𝑠0 (𝑧) = − 30𝑘2𝛼2

(𝑒𝛼𝑧 − 1)2 −
30𝑘2𝛼2(𝑒𝛼𝑧 − 1) − 5𝑘2𝛼22 + 52

= −30𝑘2𝛼2 𝑒𝛼𝑧
(𝑒𝛼𝑧 − 1)2 −

5𝑘2𝛼22 + 52
= −15𝑘2𝛼22 coth2 𝛼𝑧2 + 10𝑘2𝛼2 + 52 ,

(36)

where 𝜆 = (3𝑘4𝛼4 − 5)/2 and 𝛿 = (30𝑘6𝛼6 − 55𝑘4𝛼4 + 25)/8.
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Thurs, simply periodic solutions of (25) are

𝑤𝑠 (𝑧) = −15𝑘2𝛼22 coth2
𝛼 (𝑧 − 𝑧0)2 + 10𝑘2𝛼2 + 52 , (37)

where 𝜆 = (3𝑘4𝛼4 − 5)/2, 𝛿 = (30𝑘6𝛼6 − 55𝑘4𝛼4 + 25)/8, and𝑧0 ∈ C.
From (16) of Lemma 1, the elliptic solutions of (25) are

expressed as

𝑤𝑑0 (𝑧) = 𝛽−2℘ (𝑧) + 𝛽30, (38)

with pole at 𝑧 = 0.
Putting 𝑤𝑑0(𝑧) into (25), we get

𝑤𝑑0 (𝑧) = −30𝑘2℘ (𝑧) + 52 , (39)

where𝑔2 = (2𝜆+5)/36𝑘4 and𝑔3 = −(100+55𝜆+12𝛿)/9720𝑘6.
So, the elliptic solutions of (25) are

𝑤𝑑 (𝑧) = −30𝑘2℘ (𝑧 − 𝑧0) + 52 , (40)

where 𝑧0 ∈ C.
We can apply the addition formula to rewrite it as

𝑤𝑑 (𝑧) = −30𝑘2(−℘ (𝑧) + 14 (℘
 (𝑧) + 𝐷℘ (𝑧) − 𝐶 )2)

+ 30𝑘2𝐶 + 52 ,
(41)

where 𝐶2 = 4𝐷3 − 𝑔2𝐷 − 𝑔3, 𝑔2 = (2𝜆 + 5)/36𝑘4, and 𝑔3 =−(100 + 55𝜆 + 12𝛿)/9720𝑘6.
Substitute traveling wave transform into the meromor-

phic solutions 𝑤(𝑧) of (25) to get traveling wave exact
solutions to the fractional generalized higher order KdV
equation. So we obtainTheorem 4 as follows.

Theorem4. If 𝑘 ̸= 0, then traveling wave solutions of (25) have
the following forms.(I)The rational function solutions

𝑤𝑟 (𝑥, 𝑡) = 𝑤𝑟 (𝑘𝑥 − 5𝑘𝑡𝜇2Γ (1 + 𝜇)) , (42)

where 𝜆 = −5/2, 𝛿 = 25/8, and 𝑧0 ∈ C.(II)The simply periodic solutions

𝑤𝑠 (𝑥, 𝑡) = 𝑤𝑠(𝑘𝑥 + (3𝑘5𝛼4 − 5𝑘) 𝑡𝜇
2Γ (1 + 𝜇) ) , (43)

where 𝜆 = (3𝑘4𝛼4 − 5)/2, 𝛿 = (30𝑘6𝛼6 − 55𝑘4𝛼4 + 25)/8, and𝑧0 ∈ C.(III)The elliptic function solutions

𝑤𝑑 (𝑥, 𝑡) = 𝑤𝑑 (𝑘𝑥 + 𝑘𝜆𝑡𝜇Γ (1 + 𝜇)) , (44)

where 𝐶2 = 4𝐷3 − 𝑔2𝐷 − 𝑔3, 𝑔2 = (2𝜆 + 5)/36𝑘4, and 𝑔3 =−(100 + 55𝜆 + 12𝛿)/9720𝑘6.

4. Conclusions

In this note, we have used the complex method to construct
exact solutions to the mentioned NFDE. Although we do
not show that the meromorphic solutions of the fractional
generalized higher order KdV equation belong to the class𝑊,
we can still obtain the meromorphic solutions to this NFDE
and then get its traveling wave exact solutions. The results
demonstrate that the applied method is direct and efficient
method, which allows us to do tedious and complicated
algebraic calculation. We can utilize these ideas to other
NFDEs.
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Marguerre–von Kármán shallow shell system,” Journal of Dif-
ferential Equations, vol. 249, no. 6, pp. 1241–1257, 2010.

[33] A. Qian, “Infinitely many sign-changing solutions for a
Schrödinger equation,” Advances in Difference Equations, vol.
2011, no. 39, 6 pages, 2011.

[34] H. Liu and F. Meng, “Interval oscillation criteria for second-
order nonlinear forced differential equations involving variable
exponent,” Advances in Difference Equations, Paper No. 291, 14
pages, 2016.

[35] K. M. Zhang, “On a sign-changing solution for some fractional
differential equations,” Boundary Value Problems, vol. 2017, no.
59, 8 pages, 2017.

[36] J. Shao, Z. Zheng, and F. Meng, “Oscillation criteria for
fractional differential equations with mixed nonlinearities,”
Advances in Difference Equations, p. 323, 2013.

[37] R. Xu and F.Meng, “Some newweakly singular integral inequal-
ities and their applications to fractional differential equations,”
Journal of Inequalities and Applications, vol. 2016, no. 78, 2016.

[38] Y. Wang and J. Jiang, “Existence and nonexistence of positive
solutions for the fractional coupled system involving general-
ized p-Laplacian,” Advances in Difference Equations, Paper No.
337, 19 pages, 2017.

[39] D. Lu, C. Yue, and M. Arshad, “Traveling Wave Solutions of
Space-Time Fractional Generalized Fifth-Order KdV Equa-
tion,” Advances in Mathematical Physics, vol. 2017, Article ID
6743276, 6 pages, 2017.

[40] W. Yuan, Y. Li, and J. Lin, “Meromorphic solutions of an
auxiliary ordinary differential equation using complexmethod,”
MathematicalMethods in the Applied Sciences, vol. 36, no. 13, pp.
1776–1782, 2013.

[41] W. J. Yuan, Y. D. Shang, Y. Huang, and H.Wang, “The represen-
tation ofmeromorphic solutions to certain ordinary differential



6 Journal of Function Spaces

equations and its applications,” Scientia SinicaMathematica, vol.
43, no. 6, pp. 563–575, 2013.

[42] W. Yuan, Q. Chen, J. Qi, and Y. Li, “The general traveling wave
solutions of the Fisher equation with degree three,” Advances in
Mathematical Physics, Art. ID 657918, 5 pages, 2013.

[43] Y. Gu, W. Yuan, N. Aminakbari, and Q. Jiang, “Exact Solutions
of the Vakhnenko-Parkes Equation with Complex Method,”
Journal of Function Spaces, vol. 2017, Article ID 6521357, 6 pages,
2017.

[44] G. Jumarie, “Modified Riemann-Liouville derivative and frac-
tional Taylor series of nondifferentiable functions further
results,”Computers&Mathematics with Applications, vol. 51, no.
9-10, pp. 1367–1376, 2006.

[45] G. Jumarie, “Table of some basic fractional calculus formulae
derived from amodified Riemann-Liouville derivative for non-
differentiable functions,” Applied Mathematics Letters, vol. 22,
no. 3, pp. 378–385, 2009.

[46] A. E. Eremenko, L. Liao, and T.W. Ng, “Meromorphic solutions
of higher order Briot-Bouquet differential equations,” Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol.
146, no. 1, pp. 197–206, 2009.

[47] N. A. Kudryashov, “Meromorphic solutions of nonlinear ordi-
nary differential equations,” Communications in Nonlinear Sci-
ence and Numerical Simulation, vol. 15, no. 10, pp. 2778–2790,
2010.

[48] S. Lang, Elliptic Functions, Springer, New York, NY, USA, 2nd
edition, 1987.

[49] R. Conte and M. Musette, “Elliptic general analytic solutions,”
Studies in Applied Mathematics, vol. 123, no. 1, pp. 63–81, 2009.



Research Article
The Eigenvalue Problem for Caputo Type Fractional Differential
Equation with Riemann-Stieltjes Integral Boundary Conditions

Wenjie Ma1 and Yujun Cui 2

1Department of Applied Mathematics, Shandong University of Science and Technology, Qingdao 266590, China
2State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of
Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Yujun Cui; cyj720201@163.com

Received 13 June 2018; Accepted 30 July 2018; Published 12 August 2018

Academic Editor: Liguang Wang

Copyright © 2018 Wenjie Ma and Yujun Cui. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper, we investigate the eigenvalue problem for Caputo fractional differential equation with Riemann-Stieltjes integral
boundary conditions 𝑐𝐷𝜃0+𝑝(𝑦) + 𝜇𝑓(𝑡, 𝑝(𝑦)) = 0, 𝑦 ∈ [0, 1], 𝑝(0) = 𝑝(0) = 0, 𝑝(1) = ∫1

0
𝑝(𝑦)𝑑𝐴(𝑦), where 𝑐𝐷𝜃0+ is Caputo

fractional derivative, 𝜃 ∈ (2, 3], and 𝑓 : [0, 1] × [0, +∞) → [0, +∞) is continuous. By using the Guo-Krasnoselskii’s fixed point
theoremon cone and the properties of theGreen’s function, some new results on the existence andnonexistence of positive solutions
for the fractional differential equation are obtained.

1. Introduction

The experience of the last few years has fully borne out
the fact that the integer order calculus is not as widely
used as fractional order calculus in some fields such as
chemistry, control theory, and signal processing. On the
remarkable survey of Agarwal, Benchohra, and Hamani [1] it
is pointed out that fractional differential equations constitute
a fundamental tool in the modeling of some phenomena
(see also [2–4]). The use of fractional order is more accurate
for the description of phenomena, so the study of fractional
differential equations becomes the mainstream with the help
of techniques of nonlinear analysis. We refer the reader to [5–
36] for recent results. For example, in [9], the author studied
the following fractional differential equation:

𝑐𝐷𝛼𝑥 (𝑦) + 𝑓 (𝑦, 𝑥 (𝑦)) = 0, 0 < 𝑦 < 1, (1)

with boundary conditions

𝑥 (0) = 𝑥 (0) = 0,
𝑥 (1) = 𝜇∫1

0
𝑥 (𝑠) 𝑑𝑠, (2)

where 𝛼 ∈ (2, 3], 𝜇 ∈ [0, 1), and 𝑐𝐷𝛼 is the Caputo derivative.
They solved the above problem by means of classical fixed
point theorems.

In [5], the boundary value problem for the following
nonlinear fractional differential equation was discussed:

𝐷𝛼0+𝑥 (𝑦) + 𝑎 (𝑦) 𝑓 (𝑦, 𝑥 (𝑦) , 𝑥 (𝑦)) = 0,
0 < 𝑦 < 1, (3)

with boundary conditions

𝑥 (0) = 𝑥 (0) = 𝑥 (0) = 𝑥 (1) = 0, (4)
where 𝐷𝛼0+ is the Riemann-Liouville differentiation, 𝛼 ∈(3, 4]. By using a fixed point theorem, a new result of the
existence of three positive solutions is obtained.

In [15], the authors investigated the following class of
BVP:
𝑐𝐷𝑞0+𝑥 (𝑦) = 𝑓 (𝑦, 𝑥 (𝑦) , 𝑐𝐷𝜎0+𝑥 (𝑦)) , 0 < 𝑦 < 1, (5)

with boundary conditions

𝑥 (0) = 𝑥 (0) = 0,
𝑥 (1) = 𝛼𝑥 (1) , (6)
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where 𝑞 ∈ (2, 3), 𝜎 ∈ (1, 2), 𝑓 : [0, 1] × 𝑅 × 𝑅 → 𝑅 is a given
function, and 𝑐𝐷𝑞0+ denotes the Caputo differentiation. The
author investigated this problem by using Banach contraction
principle, Leray-Schauder nonlinear alternative, properties
of the Green’s function, and Guo-Krasnoselskii fixed point
theorem on cone. Similar problems can be referred to in
[25].

In this paper, we investigate the eigenvalue problem for
Caputo fractional boundary value problem with Riemann-
Stieltjes integral boundary conditions

𝑐𝐷𝜃0+𝑝 (𝑦) + 𝜇𝑓 (𝑦, 𝑝 (𝑦)) = 0, 𝑦 ∈ [0, 1] ,
𝑝 (0) = 𝑝 (0) = 0,
𝑝 (1) = ∫1

0
𝑝 (𝑦) 𝑑𝐴 (𝑦) ,

(7)

where 𝜃 ∈ (2, 3), 𝑓 : [0, 1] × [0,∞) → (0,∞) is continuous,𝜇 > 0 is a parameter, 𝑐𝐷𝜃0+ is the Caputo fractional derivative,
and𝐴 is a bounded variation function with positive measures
with

𝐵 = ∫1
0
𝑦𝑑𝐴 (𝑦) < 1. (8)

Our proof is based on the properties of the Green’s function
and the Guo-Krasnosel’skii fixed point theorem on cone.

2. Preliminaries

In order to solve problem (7), we provide the properties
related to problem (7).

Definition 1 (see [3]). The Caputo’s fractional derivative of
order 𝜃 > 0 for a function 𝑥 ∈ 𝐶𝑛[0, +∞) is defined as

𝑐𝐷𝜃0+𝑥 (𝑦) = 1Γ (𝑛 − 𝜃) ∫
𝑦

0
(𝑦 − 𝑠)𝑛−𝜃−1 𝑥(𝑛) (𝑠) 𝑑𝑠,

𝑛 − 1 < 𝜃 < 𝑛,
(9)

where 𝑛 is the smallest integer greater than or equal to𝜃.
Lemma 2 (see [3]). Let 𝜃 > 0. If we assume 𝑥 ∈ 𝐶(0, 1) ∩𝐿(0, 1), then the fractional differential equation

𝑐𝐷𝜃0+𝑥 (𝑦) = 0 (10)

has the general solution 𝑥(𝑦) = 𝐶0 + 𝐶1𝑦 + ⋅ ⋅ ⋅ + 𝐶𝑛−1𝑦𝑛−1,𝐶𝑘 ∈ 𝑅, 𝑘 = 0, 1 . . . , 𝑛 − 1, where 𝑛 is the smallest integer
greater than or equal to 𝜃.
Lemma 3 (see [3]). Given that 𝑥 ∈ 𝐶(0, 1) ∩ 𝐿(0, 1) with a
fractional derivative of order 𝜃 that belongs to 𝐶(0, 1)∩𝐿(0, 1).
Then

𝐼𝜃0+ 𝑐𝐷𝜃0+𝑥 (𝑦) = 𝑥 (𝑦) + 𝐶0 + 𝐶1𝑦 + ⋅ ⋅ ⋅ + 𝐶𝑛−1𝑦𝑛−1,
for 𝐶𝑘 ∈ 𝑅, 𝑘 = 0, 1 . . . , 𝑛 − 1,

(11)

where 𝑛 is the smallest integer greater than or equal to 𝜃.
Firstly, we consider the following linear Caputo fractional

differential equation:

𝑐𝐷𝜃0+𝑝 (𝑦) + 𝜎 (𝑦) = 0, 𝑦 ∈ [0, 1] ,
𝑝 (0) = 𝑝 (0) = 0,
𝑝 (1) = ∫1

0
𝑝 (𝑦) 𝑑𝐴 (𝑦) .

(12)

Lemma 4. Let 𝜃 ∈ (2, 3] and assume that 𝜎 ∈ 𝐶[0, 1]. Then 𝑝
is the solution of the above boundary value problem (12), if and
only if 𝑝 satisfies the following integral equation:

𝑝 (𝑦) = ∫1
0
𝐺 (𝑦, 𝑠) 𝜎 (𝑠) 𝑑𝑠, (13)

where

𝐺 (𝑦, 𝑠) = 1Γ (𝜃)
{{{{{{{{{

𝑦1 − 𝐵 [(1 − 𝑠)𝜃−1 − ∫1
𝑠
(𝑦 − 𝑠)𝜃−1 𝑑𝐴 (𝑦)] − (𝑦 − 𝑠)𝜃−1 , 0 ≤ 𝑠 ≤ 𝑦 ≤ 1,

𝑦1 − 𝐵 [(1 − 𝑠)𝜃−1 − ∫1
𝑠
(𝑦 − 𝑠)𝜃−1 𝑑𝐴 (𝑦)] , 0 ≤ 𝑦 ≤ 𝑠 ≤ 1,

(14)

and

𝐵 = ∫1
0
𝑦𝑑𝐴 (𝑦) < 1. (15)

Proof. Applying the fractional integral of order 𝜃 to both sides
of (12) for 𝑦 ∈ [0, 1], we get the following formula:

𝐼𝜃0+ 𝑐𝐷𝜃0+𝑝 (𝑦) + 𝐼𝜃0+𝜎 (𝑦) = 0. (16)

According to 𝑝(0) = 𝑝(0) = 0 and Lemma 3, we obtain

𝑝 (𝑦) = 𝑐𝑦 − 1Γ (𝜃) ∫
𝑦

0
(𝑦 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠, (17)

where 𝑐 ∈ 𝑅. Since 𝑝(1) = ∫1
0
𝑝(𝑦)𝑑𝐴(𝑦), we deduce that

𝑐 − 1Γ (𝜃) ∫
1

0
(1 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠

= ∫1
0
(𝑐𝑦 − 1Γ (𝜃) ∫

𝑦

0
(𝑦 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠) 𝑑𝐴 (𝑦) .

(18)
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Therefore,

𝑐 = 1Γ (𝜃) (1 − 𝐵) [∫
1

0
(1 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠

− ∫1
0
∫𝑦
0
(𝑦 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑦)] .

(19)

Substituting the above equality into (17), one has

𝑝 (𝑦) = 𝑦Γ (𝜃) (1 − 𝐵) [∫
1

0
(1 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠

− ∫1
0
∫𝑦
0
(𝑦 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑦)] − 1Γ (𝜃)

⋅ ∫𝑦
0
(𝑦 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠

= 𝑦Γ (𝜃) (1 − 𝐵) [∫
1

0
(1 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠

− ∫1
0
∫1
𝑠
(𝑦 − 𝑠)𝜃−1 𝑑𝐴 (𝑦) 𝜎 (𝑠) 𝑑𝑠] − 1Γ (𝜃)

⋅ ∫𝑦
0
(𝑦 − 𝑠)𝜃−1 𝜎 (𝑠) 𝑑𝑠

(20)

and

𝐺 (𝑦, 𝑠) = 1Γ (𝜃)
{{{{{{{{{

𝑦1 − 𝐵 [(1 − 𝑠)𝜃−1 − ∫1
𝑠
(𝑦 − 𝑠)𝜃−1 𝑑𝐴 (𝑦)] − (𝑦 − 𝑠)𝜃−1 , 0 ≤ 𝑠 ≤ 𝑦 ≤ 1,

𝑦1 − 𝐵 [(1 − 𝑠)𝜃−1 − ∫1
𝑠
(𝑦 − 𝑠)𝜃−1 𝑑𝐴 (𝑦)] , 0 ≤ 𝑦 ≤ 𝑠 ≤ 1.

(21)

The proof is completed.

Lemma 5. The Green’s function 𝐺(𝑦, 𝑠) has the following
properties:

(i) Γ(𝜃)𝐺(𝑦, 𝑠) ≤ (1/(1 − 𝐵))(1 − 𝑠)𝜃−1, for 𝑦, 𝑠 ∈ [0, 1];
(ii) Γ(𝜃)𝐺(𝑦, 𝑠) ≥ 𝑁(1 − 𝑠)𝜃−1, for 𝑦 ∈ [1/4, 3/4] and 𝑠 ∈[0, 1], where

𝑁 = min
{{{
1 − ∫1
0
𝑦𝜃−1𝑑𝐴 (𝑦)

4 (1 − 𝐵) ,

min
𝑦∈[1/4,3/4]

𝑦 (1 − 𝑦)𝜃−2}}}
.

(22)

Proof. (i) Obviously, the inequality Γ(𝜃)𝐺(𝑦, 𝑠) ≤ (1/(1 −𝐵))(1 − 𝑠)𝜃−1 holds from the representation of 𝐺(𝑦, 𝑠).
(ii) In view of 𝐵 = ∫1

0
𝑦𝑑𝐴(𝑦) < 1 and 𝜃 ∈ (2, 3), we have

1 − ∫1
𝑠
𝑦𝜃−1𝑑𝐴(𝑦) > 0.

For 𝑦 ≤ 𝑠, we have
𝑦(1 − 𝐵) [(1 − 𝑠)𝜃−1 − ∫

1

𝑠
(𝑦 − 𝑠)𝜃−1 𝑑𝐴 (𝑦)]

≥ 𝑦
(1 − 𝐵) [(1 − 𝑠)𝜃−1 − ∫

1

𝑠
(𝑦 − 𝑦𝑠)𝜃−1 𝑑𝐴 (𝑦)]

≥ 𝑦
(1 − 𝐵) (1 − 𝑠)𝜃−1 [1 − ∫

1

𝑠
𝑦𝜃−1𝑑𝐴 (𝑦)]

≥ 𝑦 (1 − ∫1
0
𝑦𝜃−1𝑑𝐴 (𝑦))

(1 − 𝐵) (1 − 𝑠)𝜃−1 .

(23)

For 𝑠 ≤ 𝑦, we have
𝑦

(1 − 𝐵) [(1 − 𝑠)𝜃−1 − ∫
1

𝑠
(𝑦 − 𝑠)𝜃−1 𝑑𝐴 (𝑦)] − (𝑦

− 𝑠)𝜃−1 ≥ 𝑦
(1 − 𝐵) [(1 − 𝑠)𝜃−1

− ∫1
𝑠
(𝑦 − 𝑦𝑠)𝜃−1 𝑑𝐴 (𝑦)] − (𝑦 − 𝑦𝑠)𝜃−1

= 𝑦 (1 − 𝐵 + 𝐵)(1 − 𝐵) (1 − 𝑠)𝜃−1 − 𝑦
(1 − 𝐵)

⋅ ∫1
𝑠
(𝑦 − 𝑦𝑠)𝜃−1 𝑑𝐴 (𝑦) − 𝑦𝜃−1 (1 − 𝑠)𝜃−1

= 𝑦 (1 − 𝑠)𝜃−1 + 𝑦∫1
0
𝑦𝑑𝐴 (𝑦)

(1 − 𝐵) (1 − 𝑠)𝜃−1

− 𝑦
(1 − 𝐵) ∫

1

𝑠
(𝑦 − 𝑦𝑠)𝜃−1 𝑑𝐴 (𝑦) − 𝑦𝜃−1 (1 − 𝑠)𝜃−1

= (1 − 𝑠)𝜃−1 (𝑦 − 𝑦𝜃−1)
+ 𝑦
(1 − 𝐵) ((1 − 𝑠)𝜃−1 ∫

1

0
𝑦𝑑𝐴 (𝑦)

− ∫1
𝑠
(𝑦 − 𝑦𝑠)𝜃−1 𝑑𝐴 (𝑦)) = (1 − 𝑠)𝜃−1 (𝑦 − 𝑦𝜃−1)

+ 𝑦
(1 − 𝐵) (1 − 𝑠)𝜃−1 (∫

1

0
𝑦𝑑𝐴 (𝑦)
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− ∫1
0
𝑦𝜃−1𝑑𝐴 (𝑦)) = (1 − 𝑠)𝜃−1 (𝑦 − 𝑦𝜃−1)

+ 𝑦
(1 − 𝐵) (1 − 𝑠)𝜃−1 (∫

1

0
(𝑦 − 𝑦𝜃−1) 𝑑𝐴 (𝑦)) ≥ (1

− 𝑠)𝜃−1 (𝑦 − 𝑦𝜃−1) = (1 − 𝑠)𝜃−1 𝑦 (1 − 𝑦𝜃−2) .
(24)

Thus, the above two inequalities yield the inequality in (ii).
The proof is completed.

Let𝑋 = 𝐶[0, 1], ‖𝑝‖ = max𝑦∈[0,1]|𝑝(𝑦)|; then (𝑋, ‖ ⋅ ‖) is a
Banach space. We define the cone 𝑃 ⊂ 𝑋 by

𝑃 = {𝑝 ∈ 𝑋 : 𝑝 (𝑦) ≥ 𝑁 (1 − 𝐵) 𝑝 , 𝑦 ∈ [14 , 34]} . (25)

Let 𝐴𝜇 : 𝑋 → 𝑋 be the operator defined as

(𝐴𝜇𝑝) (𝑦) = 𝜇∫1
0
𝐺 (𝑦, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠. (26)

Thus, the fixed point of the above integral equation is
equivalent to the solution of the BVP (7).

Lemma 6. 𝐴𝜇(𝑃) ⊂ 𝑃 and 𝐴𝜇 : 𝑃 → 𝑃 is a completely
continuous operator, where 𝐴𝜇 is defined in (26).

Proof. By Lemma 5, for ∀𝑝 ∈ 𝑃, we have
(𝐴𝜇𝑝) (𝑦) = 𝜇∫1

0
𝐺 (𝑦, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

≥ 𝜇𝑁Γ (𝜃) ∫
1

0
(1 − 𝑠)𝜃−1 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

≥ 𝜇𝑁 (1 − 𝐵) max
𝑡∈[0,1]

∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

= 𝑁 (1 − 𝐵) 𝐴𝜇𝑝 , 𝑦 ∈ [14 , 34] .

(27)

Hence we have 𝐴𝜇(𝑃) ⊂ 𝑃. Let Ω ⊂ 𝑃 be bounded. Then
there exists a constant𝑀 > 0 such that ‖𝑝‖ ≤ 𝑀 for ∀𝑝 ∈ Ω.
Let 𝐿1 = max𝑦∈[0,1],𝑝∈[0,𝑀](𝜇𝑓(𝑦, 𝑝) + 1). Then

(𝐴𝜇𝑝) (𝑦) ≤ 𝐿1Γ (𝜃) (1 − 𝐵) ∫
1

0
(1 − 𝑠)𝜃−1 𝑑𝑠,

𝑦 ∈ [0, 1] .
(28)

Thus, 𝐴𝜇(Ω) is bounded. Put 𝑝 ∈ Ω and 𝑦1, 𝑦2 ∈ [0, 1]. We
deduce that

(𝐴𝜇𝑝) (𝑦1) − (𝐴𝜇𝑝) (𝑦2) = 𝜇
∫
1

0
𝐺(𝑦1, 𝑠)

⋅ 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠 − ∫1
0
𝐺(𝑦2, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠



= 𝜇 ∫
𝑦1

0
[ 𝑦11 − 𝐵 ((1 − 𝑠)𝜃−1 − ∫

1

𝑠
(𝑦1 − 𝑠)𝜃−1 𝑑𝐴 (𝑦))

− (𝑦1 − 𝑠)𝜃−1]𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠 + ∫𝑦2
𝑦1

𝑦11 − 𝐵 [(1 − 𝑠)𝜃−1

− ∫1
𝑠
(𝑦1 − 𝑠)𝜃−1 𝑑𝐴 (𝑦)]𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

+ ∫1
𝑦2

𝑦11 − 𝐵 [(1 − 𝑠)𝜃−1 − ∫1
𝑠
(𝑦1 − 𝑠)𝜃−1 𝑑𝐴 (𝑦)]

⋅ 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠
− ∫𝑦1
0
[ 𝑦21 − 𝐵 ((1 − 𝑠)𝜃−1 − ∫

1

𝑠
(𝑦2 − 𝑠)𝜃−1 𝑑𝐴 (𝑦))

− (𝑦2 − 𝑠)𝜃−1]𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠
− ∫𝑦2
𝑦1

[ 𝑦21 − 𝐵 ((1 − 𝑠)𝜃−1 − ∫
1

𝑠
(𝑦2 − 𝑠)𝜃−1 𝑑𝐴 (𝑦))

− (𝑦2 − 𝑠)𝜃−1]𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠 − ∫1
𝑦2

𝑦21 − 𝐵 [(1 − 𝑠)𝜃−1

− ∫1
𝑠
(𝑦2 − 𝑠)𝜃−1 𝑑𝐴 (𝑦)]𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠


= 𝜇 ∫

𝑦1

0
[(1 − 𝑠)𝜃−1 𝑦1 − 𝑦21 − 𝐵

− ∫1
𝑠
( 𝑦11 − 𝐵 (𝑦1 − 𝑠)𝜃−1 − 𝑦21 − 𝐵 (𝑦2 − 𝑠)𝜃−1)𝑑𝐴 (𝑦)

− (𝑦1 − 𝑠)𝜃−1 + (𝑦2 − 𝑠)𝜃−1]𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠
+ ∫𝑦2
𝑦1

[(1 − 𝑠)𝜃−1 𝑦1 − 𝑦21 − 𝐵
− ∫1
𝑠
( 𝑦11 − 𝐵 (𝑦1 − 𝑠)𝜃−1 − 𝑦21 − 𝐵 (𝑦2 − 𝑠)𝜃−1)𝑑𝐴 (𝑦)

+ (𝑦2 − 𝑠)𝜃−1]𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠
+ ∫1
𝑦2

[(1 − 𝑠)𝜃−1 𝑦1 − 𝑦21 − 𝐵
− ∫1
𝑠
( 𝑦11 − 𝐵 (𝑦1 − 𝑠)𝜃−1 − 𝑦21 − 𝐵 (𝑦2 − 𝑠)𝜃−1)𝑑𝐴 (𝑦)]

⋅ 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠 ≥
(𝑦1 − 𝑦2) 𝐿11 − 𝐵 ∫𝑦1

0
(1 − 𝑠)𝜃−1 𝑑𝑠

+ 𝐿1 ∫1
𝑠
∫𝑦1
0
[ 𝑦21 − 𝐵 (𝑦2 − 𝑠)𝜃−1

− 𝑦11 − 𝐵 (𝑦1 − 𝑠)𝜃−1] 𝑑𝑠 𝑑𝐴 (𝑦)
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+ 𝐿1 ∫𝑦1
0
[(𝑦2 − 𝑠)𝜃−1 − (𝑦1 − 𝑠)𝜃−1] 𝑑𝑠

+ (𝑦1 − 𝑦2) 𝐿11 − 𝐵 ∫𝑦2
𝑦1

(1 − 𝑠)𝜃−1 𝑑𝑠
+ 𝐿1 ∫1

𝑠
∫𝑦2
𝑦1

[ 𝑦21 − 𝐵 (𝑦2 − 𝑠)𝜃−1

− 𝑦11 − 𝐵 (𝑦1 − 𝑠)𝜃−1] 𝑑𝑠 𝑑𝐴 (𝑦)
+ 𝐿1 ∫𝑦2

𝑦1

(𝑦2 − 𝑠)𝜃−1 𝑑𝑠 + (𝑦1 − 𝑦2) 𝐿11 − 𝐵 ∫1
𝑦2

(1
− 𝑠)𝜃−1 𝑑𝑠 + 𝐿1 ∫1

𝑠
∫1
𝑦2

[ 𝑦21 − 𝐵 (𝑦2 − 𝑠)𝜃−1

− 𝑦11 − 𝐵 (𝑦1 − 𝑠)𝜃−1] 𝑑𝑠 𝑑𝐴 (𝑦)
= (𝑦1 − 𝑦2) 𝐿11 − 𝐵 ∫1

0
(1 − 𝑠)𝜃−1 𝑑𝑠

+ 𝐿1 ∫1
𝑠
∫1
0
[ 𝑦21 − 𝐵 (𝑦2 − 𝑠)𝜃−1

− 𝑦11 − 𝐵 (𝑦1 − 𝑠)𝜃−1] 𝑑𝑠 𝑑𝐴 (𝑦)
+ 𝐿1 ∫𝑦2

𝑦1

(𝑦2 − 𝑠)𝜃−1 𝑑𝑠 + 𝐿1 ∫𝑦1
0
[(𝑦2 − 𝑠)𝜃−1 − (𝑦1

− 𝑠)𝜃−1] 𝑑𝑠 = (𝑦1 − 𝑦2) 𝐿1(1 − 𝐵) 𝜃
+ Ł1 ∫1

𝑠
[𝑦1 (𝑦1 − 1)𝜃(1 − 𝐵) 𝜃 − 𝑦2 (𝑦2 − 1)𝜃(1 − 𝐵) 𝜃 ] 𝑑𝐴 (𝑦)

+ 𝐿1 ∫1
𝑠
[ 𝑦𝜃+12(1 − 𝐵) 𝜃 −

𝑦𝜃+11(1 − 𝐵) 𝜃] 𝑑𝐴 (𝑦)

+ 𝐿1 (𝑦𝜃2𝜃 − 𝑦𝜃1𝜃 ) .
(29)

Since𝑦, 𝑦(𝑦−1)𝜃, 𝑦𝜃+1, 𝑦𝜃 are uniformly continuous on [0, 1],𝐴𝜇(Ω) is equicontinuous, by using Arzela-Ascoli’s theorem,
we can prove that 𝐴𝜇 : 𝑃 → 𝑃 is completely continuous.
The proof is completed.

The following Guo-Krasnoselskii’s fixed point theorem is
used to prove the existence of positive solution of (7).

Theorem 7 (see [37]). Let 𝑃 be a cone of real Banach space 𝑋
and let Ω1 and Ω2 be two bounded open sets in 𝑋 such that0 ∈ Ω1 ∈ Ω1 ∈ Ω2. Let operator 𝐴 : 𝑃 ∩ (Ω2 \ Ω1) → 𝑃
be completely continuous operator. If one of the following two
conditions holds:

(1) ‖𝐴𝑝‖ ≤ ‖𝑝‖ for all 𝑝 ∈ 𝑃 ∩ 𝜕Ω1, ‖𝐴𝑝‖ ≥ ‖𝑝‖ for all𝑝 ∈ 𝑃 ∩ 𝜕Ω2,

(2) ‖𝐴𝑝‖ ≥ ‖𝑝‖ for all 𝑝 ∈ 𝑃 ∩ 𝜕Ω1, ‖𝐴𝑝‖ ≤ ‖𝑝‖ for all𝑝 ∈ 𝑃 ∩ 𝜕Ω2,
then 𝐴 has at least one fixed point in 𝑃 ∩ (Ω2 \ Ω1).

3. Existence of Positive Solutions

In this section, we investigate the existence of positive
solutions for integral boundary value problems of fractional
differential equation (7).

For convenience, we denote them by

ℎ0 = lim
𝑢→0+

sup
𝑦∈[0,1]

𝑓 (𝑦, 𝑢)
𝑢 ,

ℎ∞ = lim
𝑢→+∞

sup
𝑦∈[0,1]

𝑓 (𝑦, 𝑢)
𝑢 ,

ℎ∗0 = lim
𝑢→0+

inf
𝑦∈[1/4,3/4]

𝑓 (𝑦, 𝑢)
𝑢 ,

ℎ∗∞ = lim
𝑢→+∞

inf
𝑦∈[1/4,3/4]

𝑓 (𝑦, 𝑢)
𝑢 ,

𝐶 = 1Γ (𝜃 + 1) (1 − 𝐵) ,
𝐸 = 𝑁2 (1 − 𝐵)Γ (𝜃) ∫3/4

1/4
(1 − 𝑠)𝜃−1 𝑑𝑠.

(30)

Theorem 8. Suppose that 𝐶ℎ0 < 𝐸ℎ∗∞ holds; then for 𝜇 ∈(1/ℎ∗∞𝐸, 1/𝐶ℎ0), problem (7) has a positive solution. Here we
impose ℎ−10 = +∞ if ℎ0 = 0 and [ℎ∗∞]−1 = 0 if ℎ∗∞ = +∞.

Proof. Let 𝜇 ∈ (1/ℎ∗∞𝐸, 1/𝐶ℎ0) and 𝜖 > 0 satisfy1(ℎ∗∞ − 𝜖) 𝐸 ≤ 𝜇 ≤ 1𝐶 (ℎ0 + 𝜀) . (31)

According to the definition of ℎ0, we know that there exists a
constant 𝐸1 > 0 such that

𝑓 (𝑦, 𝑢) ≤ (ℎ0 + 𝜀) 𝑢, for 𝑢 ∈ [0, 𝐸1] , 𝑦 ∈ [0, 1] . (32)

Put Ω1 = {𝑝 ∈ 𝑃 : ‖𝑝‖ < 𝐸1}. Let 𝑝 ∈ 𝑃 ∩ 𝜕Ω1. We have‖𝑝‖ = 𝐸1 and
(𝐴𝜇𝑝) (𝑦) = 𝜇∫1

0
𝐺 (𝑦, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

≤ 𝜇Γ (𝜃) (1 − 𝐵) ∫
1

0
(1 − 𝑠)𝜃−1 (ℎ0 + 𝜀) 𝑝 (𝑠) 𝑑𝑠

≤ 𝜇 (ℎ0 + 𝜀)Γ (𝜃) (1 − 𝐵) ∫
1

0
(1 − 𝑠)𝜃−1 𝑑𝑠 ⋅ 𝑝

= (ℎ0 + 𝜀) 𝜇𝐶 ⋅ 𝑝 ≤ 𝑝 , 𝑦 ∈ [0, 1] .

(33)

Therefore, ‖𝐴𝜇𝑝‖ ≤ ‖𝑝‖ for 𝑝 ∈ 𝑃 ∩ 𝜕Ω1.
By the definition of ℎ∗∞, we know that there exists 𝐸2 > 0

such that

𝑓 (𝑦, 𝑢) ≥ (ℎ∗∞ − 𝜖) 𝑢, for 𝑢 ≥ 𝐸2 and 𝑦 ∈ [14 , 34] . (34)
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Let 𝐸3 = max{2𝐸1, 𝐸2/𝑁(1 − 𝐵)}, Ω2 = {𝑝 ∈ 𝑃 : ‖𝑝‖ <𝐸3}. Then for 𝑝 ∈ 𝑃 ∩ 𝜕Ω2, by (25) we have
min
𝑦∈[1/4,3/4]

𝑝 (𝑦) ≥ 𝑁 (1 − 𝐵) 𝑝 ≥ 𝐸2, (35)

and thus

(𝐴𝜇𝑝) (𝑦) = 𝜇∫1
0
𝐺 (𝑦, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

≥ 𝜇∫3/4
1/4

𝐺 (𝑦, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠
≥ 𝜇𝑁Γ (𝜃) ∫

3/4

1/4
(1 − 𝑠)𝜃−1 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

≥ 𝜇𝑁Γ (𝜃) ∫
3/4

1/4
(1 − 𝑠)𝜃−1 (ℎ∗∞ − 𝜖) 𝑝 (𝑠) 𝑑𝑠

≥ 𝜇𝑁2 (ℎ∗∞ − 𝜖) (1 − 𝐵)Γ (𝜃) ∫3/4
1/4

(1 − 𝑠)𝜃−1 𝑝 𝑑𝑠
= 𝜇𝐸 (ℎ∗∞ − 𝜖) ⋅ 𝑝 ≥ 𝑝 .

(36)

Therefore, ‖𝐴𝜇𝑝‖ ≥ ‖𝑝‖ for 𝑝 ∈ 𝑃 ∩ 𝜕Ω2.
By Theorem 7, if 𝜇 ∈ (1/ℎ∗∞𝐸, 1/𝐶ℎ0), we assert that 𝐴𝜇

has a fixed point in 𝑃 ∩ (Ω2 \ Ω1) and therefore problem (7)
has at least one positive solution. The proof is completed.

Theorem 9. Assume that ℎ∞𝐶 < 𝐸ℎ∗0 holds. Then for𝜇 ∈ (1/𝐸ℎ∗0 , 1/ℎ∞𝐶), the problem (7) has at least a positive
solution. Here we impose [ℎ∗0 ]−1 = 0 if ℎ∗0 = +∞ and [ℎ∞]−1 =+∞ if ℎ∞ = 0.
Proof. Let 𝜇 ∈ (1/𝐸ℎ∗0 , 1/ℎ∞𝐶) and 𝜖 > 0 such that

1(ℎ∗0 − 𝜖) 𝐸 ≤ 𝜇 ≤ 1𝐶 (ℎ∞ + 𝜀) . (37)

According to the definition of ℎ∗0 , there exists a constant 𝐸4 >0 such that

𝑓 (𝑦, 𝑢) ≥ (ℎ∗0 − 𝜖) 𝑢,
for 𝑢 ∈ (0, 𝐸4] and 𝑦 ∈ [14 , 34] .

(38)

PutΩ3 = {𝑝 ∈ 𝑃 : ‖𝑝‖ < 𝐸4}. Let 𝑝 ∈ 𝑃 ∩ 𝜕Ω3; we have
(𝐴𝜇𝑝) (𝑦) = 𝜇∫1

0
𝐺 (𝑦, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

≥ 𝜇∫3/4
1/4

𝐺(𝑦, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠
≥ 𝜇𝑁Γ (𝜃) ∫

3/4

1/4
(1 − 𝑠)𝜃−1 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

≥ 𝜇𝑁Γ (𝜃) ∫
3/4

1/4
(1 − 𝑠)𝜃−1 (ℎ∗0 − 𝜖) 𝑝 (𝑠) 𝑑𝑠

≥ 𝜇𝑁2 (ℎ∗0 − 𝜖) (1 − 𝐵)Γ (𝜃) ∫3/4
1/4

(1 − 𝑠)𝜃−1 𝑝 𝑑𝑠
= 𝜇𝐸 (ℎ∗0 − 𝜖) ⋅ 𝑝 ≥ 𝑝 .

(39)

Therefore, ‖𝐴𝜇𝑝‖ ≥ ‖𝑝‖ for 𝑝 ∈ 𝑃 ∩ 𝜕Ω3.
It follows from the definition of ℎ∞ that there exists a

constant 𝐸5 > 0 such that

𝑓 (𝑦, 𝑢) ≤ (ℎ∞ + 𝜀2) 𝑢, for 𝑢 ≥ 𝐸5 and 𝑦 ∈ [0, 1] . (40)

This together with the continuity of 𝑓 implies that

𝑓 (𝑦, 𝑢) ≤ (ℎ∞ + 𝜀2) 𝑢 +𝑀,
for 𝑢 ∈ 𝑅 and 𝑦 ∈ [0, 1]

(41)

holds for some𝑀 > 0.
Let 𝐸6 = max{2𝐸4, 𝐸5, 2𝑀/𝜀}, Ω4 = {𝑝 ∈ 𝑃 : ‖𝑝‖ < 𝐸6}.

For ∀𝑝 ∈ 𝑃 ∩ 𝜕Ω4, we conclude that
(𝐴𝜇𝑝) (𝑦) = 𝜇∫1

0
𝐺 (𝑦, 𝑠) 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

≤ 𝜇Γ (𝜃) (1 − 𝐵) ∫
1

0
(1 − 𝑠)𝜃−1 (ℎ∞ + 𝜀2) 𝑝 𝑑𝑠

+ 𝑀𝜇Γ (𝜃) (1 − 𝐵) ∫
1

0
(1 − 𝑠)𝜃−1 𝑑𝑠

= 𝜇𝐶((ℎ∞ + 𝜀2) 𝑝 +𝑀) ≤ 𝜇𝐶 (ℎ∞ + 𝜀) 𝑝
≤ 𝑝 .

(42)

Therefore, ‖𝐴𝜇𝑝‖ ≤ ‖𝑝‖ for ∀𝑝 ∈ 𝑃 ∩ 𝜕Ω4.
By Theorem 7, if 𝜇 ∈ (1/𝐸ℎ∗0 , 1/ℎ∞𝐶), we conclude that𝐴𝜇 has a fixed point in 𝑃 ∩ (Ω4 \ Ω3), and so problem (7) has

one positive solution. The proof is completed.

4. Nonexistence of Positive Solutions

In this section, we present some sufficient conditions for
nonexistence of positive solution to integral boundary value
problems of fractional differential equation (7).

Theorem 10. If ℎ0 < +∞ and ℎ∞ < +∞, then there exists
a 𝜇∗ > 0 such that problem (7) has no positive solution for𝜇 ∈ (0, 𝜇∗).
Proof. Since ℎ0 < +∞, ℎ∞ < +∞, we have 𝑓(𝑦, 𝑢) ≤ 𝑛1𝑢
for 𝑢 ∈ [0, 𝑟1], and 𝑓(𝑦, 𝑢) ≤ 𝑛2𝑢 for 𝑢 ∈ [𝑟2, +∞), where𝑛1, 𝑛2, 𝑟1, 𝑟2 are positive numbers with 𝑟1 < 𝑟2. Let 𝑛 =
max{𝑛1, 𝑛2,max𝑟1≤𝑢≤𝑟2(𝑓(𝑦, 𝑢)/𝑢)}; then we have 𝑓(𝑦, 𝑢) ≤𝑛𝑢 for 𝑢 ∈ [0, +∞). Suppose 𝑝0(𝑦) is a positive solution of
problem (7); then we are going to prove that this leads to a
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contradiction for 0 < 𝜇 < 𝜇∗ fl 1/𝐶𝑛. Since (𝐴𝜇𝑝0)(𝑦) =𝑝0(𝑦), for 𝑦 ∈ [0, 1], then
𝑝0 = 𝐴𝜇𝑝0

≤ 𝜇Γ (𝜃) (1 − 𝐵) ∫
1

0
(1 − 𝑠)𝜃−1 𝑓 (𝑦, 𝑝0 (𝑦)) 𝑑𝑠

≤ 𝜇𝐶𝑛 𝑝0 < 𝑝0 ,
(43)

which is a contradiction. Therefore this completes the proof.

Theorem 11. If ℎ∗0 > 0, ℎ∗∞ > 0, 𝑓(𝑡, 𝑢) > 0 for 𝑡 ∈ [1/4, 3/4]
and 𝑢 > 0, then there exists a 𝜇∗ > 0 such that problem (7) has
no positive solution for all 𝜇 > 𝜇∗.
Proof. Since ℎ∗0 > +∞, ℎ∗∞ > +∞, we have 𝑓(𝑦, 𝑢) ≥ 𝑚1𝑢
for 𝑢 ∈ [0, 𝑟1], and 𝑓(𝑦, 𝑢) ≥ 𝑚2𝑢 for 𝑢 ∈ [𝑟2, +∞),
where 𝑚1, 𝑚2, 𝑟1, 𝑟2 are positive numbers and 𝑟1 < 𝑟2. Let𝑚 = min{𝑚1, 𝑚2,min𝑟1≤𝑢≤𝑟2(𝑓(𝑦, 𝑢)/𝑢)} > 0; then we have𝑓(𝑦, 𝑢) ≥ 𝑚𝑢 for 𝑢 ∈ [0, +∞). Suppose 𝑝1(𝑦) is a positive
solution of problem (7); then we are going to prove that this
leads to a contradiction for 𝜇 > 𝜇∗ fl 1/𝐸𝑚𝑁(1 − 𝐵). Since𝐴𝜇𝑝1 = 𝑝1, then
𝑝1 = 𝐴𝜇𝑝1 ≥ 𝜇𝑁Γ (𝜃) ∫

3/4

1/4
(1 − 𝑠)𝜃−1 𝑓 (𝑠, 𝑝 (𝑠)) 𝑑𝑠

≥ 𝜇𝑚𝑁Γ (𝜃) ∫
3/4

1/4
(1 − 𝑠)𝜃−1 𝑝 (𝑠) 𝑑𝑠

≥ 𝜇𝑚𝑁Γ (𝜃) ∫
3/4

1/4
(1 − 𝑠)𝜃−1𝑁(1 − 𝐵) 𝑝1 𝑑𝑠

≥ 𝜇𝐸𝑚𝑁(1 − 𝐵) 𝑝1 > 𝑝1 ,

(44)

which is a contradiction. Therefore this completes the proof.

5. Example

Example 1. We consider the following fractional equation:

𝑐𝐷5/20+ 𝑝 (𝑦) + 𝜇 (𝑦𝑝3 (𝑦) − 𝑝 (𝑦) + 𝑒𝑝(𝑦) − 1) = 0,
𝑦 ∈ [0, 1] ,

𝑝 (0) = 𝑝 (0) = 0,
𝑝 (1) = 12 ∫

1

0
𝑝 (𝑦) 𝑑𝑦,

(45)

where 𝜃 = 5/2, 𝑓(𝑦, 𝑝) = 𝑦𝑝3 − 𝑝 + 𝑒𝑝 − 1, 𝐴(𝑦) = (1/2)𝑦,𝐵 = 1/4 < 1. We obtain 𝐶 = 8/15Γ(5/2), 𝑁 = 3/64, 𝐸 =27(9√3 − 1)/1310720Γ(5/2).
It is easy to see that, for all 𝑝 > 0,

sup
𝑦∈[0,1]

𝑓 (𝑦, 𝑝)
𝑝 = 𝑝2 − 1 + 𝑒𝑝 − 1𝑝 (46)

and

inf
𝑦∈[1/4,3/4]

𝑓 (𝑦, 𝑝)
𝑝 = 14𝑝2 − 1 + 𝑒𝑝 − 1𝑝 . (47)

Then ℎ0 = 0, ℎ∗∞ = ∞; from Theorem 8, problem (45) has a
positive solution.

Example 2. We consider the following fractional equation:

𝑐𝐷5/20+ 𝑝 (𝑦) + 𝜇 ( 3√𝑝 (𝑦) + 𝑦 ln (𝑝 (𝑦) + 3)) = 0,
𝑦 ∈ [0, 1] ,

𝑝 (0) = 𝑝 (0) = 0,
𝑝 (1) = 12 ∫

1

0
𝑝 (𝑦) 𝑑𝑦,

(48)

where 𝜃 = 5/2, 𝑓(𝑦, 𝑝) = 3√𝑝 + 𝑦 ln(𝑝 + 3), 𝐴(𝑦) = (1/2)𝑦,
and 𝐵 = 1/4 < 1. We obtain 𝐶 = 8/15Γ(5/2),𝑁 = 3/64, and𝐸 = 27(9√3 − 1)/1310720Γ(5/2).

One can easily see that, for all 𝑝 > 0,
sup
𝑦∈[0,1]

𝑓 (𝑦, 𝑝)
𝑝 = 3√𝑝 + ln (𝑝 + 3)

𝑝 (49)

and

inf
𝑦∈[1/4,3/4]

𝑓 (𝑦, 𝑝)
𝑝 = 3√𝑝 + (1/4) ln (𝑝 + 3)𝑝 . (50)

Then ℎ∞ = 0, ℎ∗0 = ∞; fromTheorem 9, problem (48) has a
positive solution.

Example 3. We consider the following fractional equation:

𝑐𝐷5/20+ 𝑝 (𝑦) + 𝜇𝑦𝑝 (𝑦) = 0, 𝑦 ∈ [0, 1] ,
𝑝 (0) = 𝑝 (0) = 0,
𝑝 (1) = 12 ∫

1

0
𝑝 (𝑦) 𝑑𝑦,

(51)

where 𝜃 = 5/2, 𝑓(𝑦, 𝑝) = 𝑦𝑝, 𝐴(𝑦) = (1/2)𝑦, and 𝐵 = 1/4 <1. We obtain 𝐶 = 8/15Γ(5/2),𝑁 = 3/64, and 𝐸 = 27(9√3 −1)/1310720Γ(5/2).
By direct calculation, we obtain that

ℎ0 = lim
𝑝→0+

sup
𝑦∈[0,1]

𝑓 (𝑦, 𝑝)
𝑝 = 1 < +∞ (52)

and

ℎ∞ = lim
𝑝→+∞

sup
𝑦∈[0,1]

𝑓 (𝑦, 𝑝)
𝑝 = 1 < +∞. (53)

Take 𝑛 = 1 and 𝜇∗ = 45√𝜋/32 > 0. By Theorem 10, problem
(51) has no positive solution for 0 < 𝜇 < 𝜇∗.
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Example 4. We consider the following fractional equation:
𝑐𝐷5/20+ 𝑝 (𝑦) + 𝜇𝑦𝑝 (𝑦) = 0, 𝑦 ∈ [0, 1] ,

𝑝 (0) = 𝑝 (0) = 0,
𝑝 (1) = 12 ∫

1

0
𝑝 (𝑦) 𝑑𝑦,

(54)

where 𝜃 = 5/2, 𝑓(𝑦, 𝑝) = 𝑦𝑝, 𝐴(𝑦) = (1/2)𝑦, and 𝐵 = 1/4 <1. We obtain 𝐶 = 8/15Γ(5/2),𝑁 = 3/64, and 𝐸 = 27(9√3 −1)/1310720Γ(5/2).
Obviously, we can infer that

ℎ∗0 = lim
𝑝→0+

inf
𝑦∈[1/4,3/4]

𝑓 (𝑦, 𝑝)
𝑝 = 14 > 0 (55)

and

ℎ∗∞ = lim
𝑝→+∞

inf
𝑦∈[1/4,3/4]

𝑓 (𝑦, 𝑝)
𝑝 = 14 > 0. (56)

Take 𝑚 = 1/4 and 𝜇∗ = 3.4√𝜋/81(9√3 − 1) × 108. By
Theorem 11, problem (54) has no positive solution for 𝜇 > 𝜇∗.
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This paper presents an adaptive fuzzy synchronization control strategy for a class of different uncertain fractional-order
chaotic/hyperchaotic systems with unknown external disturbances via T-S fuzzy systems, where the parallel distributed
compensation technology is provided to design adaptive controller with fractional adaptation laws. T-S fuzzy models are employed
to approximate the unknown nonlinear systems and tracking error signals are used to update the parametric estimates. The
asymptotic stability of the closed-loop system and the boundedness of the states and parameters are guaranteed by fractional
Lyapunov theory.This approach is also valid for synchronization of fractional-order chaotic systemswith the same system structure.
One constructive example is given to verify the feasibility and superiority of the proposed method.

1. Introduction

Fractional calculus is a mathematical topic being more than
300 years old, which can be traced back to the birth of
integer-order calculus.The fundamentals results of fractional
calculus were concluded in [1]. At present, researchers found
that fractional differential equations not only improve the
veracity in modeling physical systems but also generate a lot
of applications in physics, electrical engineering, robotics,
control systems, and chemical mixing [2–11]. In addition, the
chaotic behavior has been discovered in many fractional-
order systems, for instance, the fractional-order Chen’s sys-
tem, the fractional-order Chua’s system, and the fractional-
order Liu system. In view of chaotic potential value in control
systems and secure communication [12], chaos synchroniza-
tion was studied by more and more researches [13, 14].

The conventional nonlinear systems control approaches
suffer from discontented performance resulting from struc-
ture and parametric uncertainties, external disturbances.
Usually, it is very hard to provide accurate mathematical
models [15–25]. To control these uncertain systems, adaptive
fuzzy/neural-network control was proposed [26, 27]. This
method is effective and superior for handling parametric

and structure uncertainties, external disturbances in integer-
order nonlinear systems [28, 29], where tracking error is
developed to update adjusted parameters and fuzzy logic sys-
tems or neural networks are introduced to model unknown
physical systems as well as to approximate unknown non-
linear functions. There are two types of fuzzy logic systems:
Mamdani type and T-S type. T-S fuzzy logic system is first
proposed by Takagi and Sugeno [30]. Subsequently, many
works found that T-S fuzzy systems can uniformly approxi-
mate any continuous functions on a compact set with random
accuracy based on the Weierstrass approximation theorem
[31]. Moreover, it was also shown that the approximation
ability of T-S fuzzy systems was better than the Mamdani
fuzzy systems [32]. Therefore, many studies focused on
the chaos synchronization of fractional-order chaotic sys-
tems via T-S fuzzy models. For example, synchronization
of fractional-order modified chaotic system via new linear
control, backstepping control, and T-S fuzzy approaches was
investigated in [33]. Impulsive control for fractional-order
chaotic system was presented in [34]. Other results about the
synchronization of a fractional-order chaotic system via T-
S fuzzy approaches can be found in [35, 36]. However, only
chaos synchronization of fractional-order nonlinear systems
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with same structure based on T-S fuzzy systems is considered
in above previous works.

This work investigates the chaos synchronization of
fractional-order chaotic systems with different structures
based on T-S fuzzy systems, where external disturbances
in slaves system are considered. T-S fuzzy systems with
random rule consequents are introduced to model controlled
systems, whereas T-S fuzzy systems that have the same
rule consequents with Mamdani fuzzy systems are used to
approximate unknown nonlinear functions. The asymptotic
stability of closed-loop system is proofed based on fractional
Lyapunov stability theory. Compared to previous literature,
the main contributions of this paper are as follows:(1)This paper first considers the chaos synchronization of
the master system and slave system with different structure
based on T-S fuzzy systems, and the external disturbances
are assumed to be unknown. The required knowledge of
the disturbances is weaker than above previous works, for
example, in [34–36]. In theseworks, the external disturbances
are assumed to be bounded with known upper bounds.
However, in our control method, we do not need to know the
exact value of the upper bounds of external disturbances.(2) T-S fuzzy logic systems are used to model the con-
trolled systemand the final outputs of system can be obtained.
By combining the adaptive fuzzy control method and parallel
distributed compensation technique, an adaptive controller
with fractional-order laws is designed.The proposed method
is superior to some works based on linear matrix inequality
(LMI) and modified LMI [37].

2. Fundamentals of Fractional Calculus and
Fuzzy Logic Systems

2.1. Fractional Calculus. There are two frequently used defini-
tions for fractional integration and differentiation: Riemann-
Liouville (denote R-L) and Caputo definitions. In this paper,
we will consider Caputo’s definition, whose initial conditions
are as the same form of the integer-order one [38–40]. The
fractional integral is designed as [1]

𝐶
0𝐷−𝜇𝑡 𝑢 (𝑡) = 1

Γ (𝜇) ∫
𝑡

0

𝑢 (𝜉)
(𝑡 − 𝜉)1−𝜇 𝑑𝜉, (1)

where 𝜇 > 0, 𝑛 − 1 ≤ 𝜇 < 𝑛, and Γ(⋅) is Euler’s Gamma
function, which is defined as Γ(𝑠) = ∫∞

0
𝑡𝑠−1𝑒−𝑡𝑑𝑡. The

fractional derivative operator is given as

𝐶
0𝐷𝜇𝑡 𝑢 (𝑡) = 1

Γ (𝑛 − 𝜇) ∫
𝑡

0

𝑢(𝑛) (𝜉)
(𝑡 − 𝜉)𝜇+1−𝑛 𝑑𝜉. (2)

Some useful properties of fractional calculus that will be
used in the controller design are listed as follows.

Property 1 (see [1, 41–44]). Caputo’s fractional derivative and
integral are linear operations with 𝜆1, 𝜆2, 𝜇 ∈ 𝑅

𝐶
0𝐷𝜇𝑡 (𝜆1𝑢1 (𝑡) + 𝜆2𝑢2 (𝑡))
= 𝜆1 𝐶0𝐷𝜇𝑡 𝑢1 (𝑡) + 𝜆2 𝐶0𝐷𝜇𝑡 𝑢2 (𝑡) .

(3)

Property 2. Let 𝑥(𝑡) ∈ 𝐶𝑛[0, 𝑇]. Then we have

𝐶
0𝐷−𝜇𝑡 𝐶0𝐷𝜇𝑡 𝑢 (𝑡) = 𝑢 (𝑡) − 𝑛−1∑

𝑘=0

𝑢(𝑘) (0)
𝑘! 𝑡𝑘. (4)

Property 3 (see [1, 45–47]). The Laplace transform of (2) is

L [ 𝐶0𝐷𝜇𝑡 𝑓 (𝑡)] = 𝑠𝜇𝐹 (𝑠) − 𝑛−1∑
𝑘=0

𝑠𝜇−𝑘−1𝑓(𝑘) (0) , (5)

with 𝐹(𝑠) = L[𝑓(𝑡)].
Definition 4. The two-parameter Mittag-Leffler function was
defined by [1]

𝐸𝛼,𝛽 (𝑧) =
+∞∑
𝑘=0

𝑧𝑘
Γ (𝑘𝛼 + 𝛽) , (6)

with 𝛼, 𝛽 > 0 and 𝑧 ∈ 𝐶.The Laplace transform of theMittag-
Leffler function is given as

L [𝑡𝛽−1𝐸𝛼,𝛽 (−𝑎𝑡𝛼)] = 𝑠𝛼−𝛽
𝑠𝛼 + 𝑎 . (7)

In the subsequent paper, we only consider the case that𝜇 ∈ (0, 1).
2.2. Takagi-Sugeno Fuzzy Logic Systems. Unlike theMamdani
fuzzy logic systems, the ith rule of a Multi-Input and Mul-
tioutput general fractional-order Takagi-Sugeno (T-S) fuzzy
systems can be expressed as follows (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁):

𝑅𝑖: If 𝑥1(𝑡) is 𝐹𝑖1 and ⋅ ⋅ ⋅ and 𝑥𝑛(𝑡) is 𝐹𝑖𝑛, then
𝐶
0𝐷𝜇𝑡 x(𝑡) = 𝑓𝑖(𝑡, x(𝑡)),

with 𝐹𝑖𝑗 ∈ 𝑅, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 are fuzzy sets, x(𝑡) =
(𝑥1(𝑡), 𝑥2(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡))𝑇 ∈ 𝑅𝑛 is a state vector, and 𝑓𝑖(𝑡, x(𝑡))
is a random function. In this paper, singleton fuzzification,
center average defuzzification, and product inference are
adopted and a general fractional-order T-S fuzzy system can
be rewritten in the form

𝐶
0𝐷𝜇𝑡 x (𝑡) =

𝑁∑
𝑖=1

𝜇𝑖 (x (𝑡)) 𝑓𝑖 (𝑡, x (𝑡)) , (8)

where 𝜇𝑖(x(𝑡)) = ∏𝑛𝑗=1𝐹𝑖𝑗(𝑥𝑗(𝑡))/∑𝑁𝑖=1(∏𝑛𝑗=1𝐹𝑖𝑗(𝑥𝑗(𝑡))) satisfy-
ing ∑𝑁𝑖=1 𝜇𝑖(x(𝑡)) = 1 and 𝜇𝑖(x(𝑡)) ≥ 0.

Depending on the above statements, a main difference
of Mamdani fuzzy logic systems and T-S fuzzy systems is
that the rule consequents are functions for T-S fuzzy system
whereas the rule consequents are fuzzy sets for Mamdani
fuzzy logic systems.Moreover, the T-S fuzzy logic systems are
also universal approximators [31].

3. Adaptive Fuzzy Synchronization Control

3.1. Problem Statement. Consider the following fractional-
order chaotic system as the master system via T-S type fuzzy
systems. The 𝑖th rule can be expressed as (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁)
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𝑅𝑖: If 𝑥1(𝑡) is 𝐹𝑖1 and ⋅ ⋅ ⋅ and 𝑥𝑛(𝑡) is 𝐹𝑖𝑛, then
𝐶
0𝐷𝜇𝑡 x(𝑡) = 𝐴 𝑖x(𝑡) + b1,

where 𝐴 𝑖 is a constant matrix, x(𝑡) ∈ 𝐷1 ⊆ 𝑅𝑛 is the state
vector (𝐷1 is a compact set),b1 is a constant vector, and𝐹𝑖𝑗, 𝑗 =1, 2, ⋅ ⋅ ⋅ , 𝑛, are fuzzy sets. Hence, the final output of master
system can be rewritten as

𝐶
0𝐷𝜇𝑡 x (𝑡) =

𝑁∑
𝑖=1

𝜇𝑖 (x (𝑡)) [𝐴 𝑖x (𝑡) + b1] , (9)

with 𝜇𝑖(x(𝑡)) = ∏𝑛𝑗=1𝐹𝑖𝑗(𝑥𝑗(𝑡))/∑𝑁𝑖=1[∏𝑛𝑗=1𝐹𝑖𝑗(𝑥𝑗(𝑡))] satisfy-
ing 𝜇𝑖(x(𝑡)) ≥ 0 and ∑𝑁𝑖=1 𝜇𝑖(x(𝑡)) = 1.

Consider the following fractional-order chaotic system
with external disturbances in the equation as the slave system
based on T-S fuzzy models. The 𝑖th rule can be written in the
following form (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁):

𝑅𝑖: If 𝑦1(𝑡) is 𝐹𝑖1 and 𝑦2(𝑡) is 𝐹𝑖2 and ⋅ ⋅ ⋅ and 𝑦𝑛(𝑡) is 𝐹𝑖𝑛,
then 𝐶0𝐷𝜇𝑡 y(𝑡) = 𝐵𝑖y(𝑡) + b2 + u(𝑡) + d𝑖(𝑡, y),

where 𝐵𝑖 is a constant matrix, y(𝑡) ∈ 𝐷2 ⊆ 𝑅𝑛 is the state
vector (𝐷2 is a compact set), b2 is a constant vector, 𝐹𝑖𝑗, 𝑗 =1, 2, ⋅ ⋅ ⋅ , 𝑛, are fuzzy sets, 𝑢(𝑡) ∈ 𝑅 is control input, and
d𝑖(𝑡, y) ∈ 𝑅𝑛 are unknown external disturbances. Hence, the
final output of slave system can be obtained as

𝐶
0𝐷𝜇𝑡 y (𝑡)
= 𝑁∑
𝑖=1

𝜇𝑖 (y (𝑡)) [𝐵𝑖y (𝑡) + b2 + u (𝑡) + d𝑖 (𝑡, y)] ,
(10)

with 𝜇𝑖(y(𝑡)) = ∏𝑛𝑗=1𝐹𝑖𝑗(𝑦𝑗(𝑡))/∑𝑁𝑖=1[∏𝑛𝑗=1𝐹𝑖𝑗(𝑦𝑗(𝑡))] satisfying𝜇𝑖(y(𝑡)) ≥ 0 and ∑𝑁𝑖=1 𝜇𝑖(y(𝑡)) = 1.
The control objective of this work is to design a proper

adaptive controller 𝑢(𝑡) to synchronize the above chaotic
systems (9) and (10) with the tracking error signal

e (𝑡) = y (𝑡) − x (𝑡) (11)

asymptotically converging to zerowith randomaccuracy, that
is, lim𝑡→+∞‖e(𝑡)‖ = 0. The norm adopts Euclid norm in this
paper. In addition, all states and parameters in the closed-
loop system are bounded. The following assumptions are
necessary.

Assumption 5. The structure of master system (9) and slave
system (10) is different. The parameters and the structure
of the master system are complete unknown or partial
unknown, but the parameters and structure of the slave
system are known.

Assumption 6. The unknown disturbances d𝑖(𝑡, y) =(𝑑1𝑖 (𝑡, y), ⋅ ⋅ ⋅ , 𝑑𝑛𝑖 (𝑡, y))𝑇, (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁) satisfying
|𝑑𝑗𝑖 (𝑡, y)| ≤ 𝜌𝑗𝑖 (y) with 𝜌𝑗𝑖 (y) being a continuous function,
where 𝜌𝑗𝑖 (y) is the estimated value of the observed value for
|𝑑𝑗𝑖 (𝑡, y)|, for all y ∈ 𝐷2.

Remark 7. It is worth pointing out that Assumptions 5 and 6
are rational. Due to the boundedness of chaos systems, we
assume that 𝐷1 and 𝐷2 are compact sets. Since d𝑖(𝑡, y) are
unknown external disturbances and may be not continuous,
they are assumed to be unknown measurable nonlinear
functions. The slave systems and the controller lie on the
receiving terminal; hence, the parameters and the structure
of the master system may be complete unknown or partial
unknown, but the parameters and structure of the slave
system are known.

3.2. Control Design. The synchronization error dynamic
equation can be obtained from (11) as

𝐶
0𝐷𝜇𝑡 e (𝑡) = 𝐶0𝐷𝜇𝑡 y (𝑡) − 𝐶0𝐷𝜇𝑡 x (𝑡)

= 𝑁∑
𝑖=1

𝜇𝑖 (y (𝑡)) 𝐵𝑖y (𝑡) −
𝑁∑
𝑖=1

𝜇𝑖 (x (𝑡)) 𝐴 𝑖x (𝑡)

+m + u (𝑡) + 𝑁∑
𝑖=1

𝜇𝑖 (y (𝑡)) d𝑖 (𝑡, y) ,
(12)

withm = b2 − b1 being a constant vector.
Based on T-S fuzzy logic system universal approximation

theorem, T-S fuzzy systems 𝜌𝑗𝑖 (y, 𝜃𝑗𝑖 (𝑡)) that have the same
rule consequents with the Mamdani type fuzzy logic systems
are used to approximate to 𝜌𝑗𝑖 (y) in the Assumption 6,
𝑗 ∈ 1, 2, ⋅ ⋅ ⋅ , 𝑛 and 𝑖 ∈ 1, 2, ⋅ ⋅ ⋅ , 𝑁, where 𝜃𝑗𝑖 (𝑡) are
adjusted parameters in fuzzy systems. Denote �̂�𝑖(y, 𝜃𝑖(𝑡)) =(𝜌1𝑖 (y, 𝜃1𝑖 (𝑡)). ⋅ ⋅ ⋅ , 𝜌𝑛𝑖 (y, 𝜃𝑛𝑖 (𝑡)))𝑇. Using [48–50], we obtain the
ideal parameter as

𝜃∗𝑗𝑖 = arg min
𝜃
𝑗

𝑖
(𝑡)∈𝑅

sup
𝑡≥0

𝜌𝑗𝑖 (y, 𝜃𝑗𝑖 (𝑡)) − 𝜌𝑗𝑖 (y) . (13)

Then we obtain the optimal parameter vector as 𝜃∗𝑖 =
(𝜃∗1𝑖 , ⋅ ⋅ ⋅ , 𝜃∗𝑛𝑖 )𝑇. Hence, 𝜌𝑗𝑖 (y, 𝜃∗𝑗𝑖 ) is the ideal approximator
of 𝜌𝑗𝑖 (y); that is, �̂�𝑖(𝑦, 𝜃∗𝑖 ) is the ideal approximator of 𝜌𝑖(y).
The minimum approximation errors and the ideal parameter
errors of the fuzzy systems are defined as (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)

𝜀𝑗𝑖 (y) = 𝜌𝑗𝑖 (y) − 𝜌𝑗𝑖 (y, 𝜃∗𝑗𝑖 ) , (14)

𝜃𝑗𝑖 (𝑡) = 𝜃𝑗𝑖 (𝑡) − 𝜃∗𝑗𝑖 . (15)

According to [29, 51, 52], the approximation errors 𝜀𝑗𝑖 (y), 𝑗 =1, 2, ⋅ ⋅ ⋅ , 𝑛) are assumed to be bounded, that is, |𝜀𝑗𝑖 (y)| ≤ 𝜀∗𝑗𝑖
with the 𝜀∗𝑗𝑖 being constants and 𝜀∗𝑗𝑖 (y) being the estimate
value of 𝜀∗𝑗𝑖 . Thus, from the above analysis, we can obtain the
equations �̂�𝑖(y, 𝜃𝑖(𝑡)) = 𝜃𝑇𝑖 (𝑡)𝜑𝑖(y) and �̂�𝑖(y, 𝜃∗𝑖 ) = 𝜃∗𝑇𝑖 𝜑𝑖(y),
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where𝜑𝑖(y) is fuzzy base functions.Denoting �̃�𝑖(𝑡) = 𝜃𝑖(𝑡)−𝜃∗𝑖
and 𝜀𝑖(y) = (𝜀1𝑖 (y), ⋅ ⋅ ⋅ , 𝜀𝑛𝑖 (y))𝑇, one has
�̂�𝑖 (y, 𝜃𝑖 (𝑡)) − 𝜌𝑖 (y) = �̂�𝑖 (y, 𝜃𝑖 (𝑡)) − �̂�𝑖 (y, 𝜃∗𝑖 )

+ �̂�𝑖 (y, 𝜃∗𝑖 ) − 𝜌𝑖 (y)
= �̂�𝑖 (y, 𝜃𝑖 (𝑡)) − �̂�𝑖 (y, 𝜃∗𝑖 )
− 𝜀𝑖 (y)

= �̃�𝑇𝑖 (𝑡) 𝜑𝑖 (y) − 𝜀𝑖 (y) .

(16)

Remark 8. As shown in [53], if the rule consequences of T-S
fuzzy systems have the same formwith the rule consequences
of Mamdani type logic systems, then T-S type is equivalent to
Mamdani type fuzzy system.

Based on above discussion, the controller is designedwith
the fuzzy system �̂�𝑖(y, 𝜃𝑖(𝑡)) aswell as the estimate value 𝜀∗𝑗𝑖 (y)
as

u (𝑡) = u𝑑 (𝑡) + ũ (𝑡) + u1 (𝑡) = − 𝑁∑
𝑖=1

𝜇𝑖 (y (𝑡)) [𝐾e (𝑡)
+ 𝐵𝑖y (𝑡) + 𝐻𝑖sign (e (𝑡)) + 𝑇�̂�𝑖 (y, 𝜃𝑖 (𝑡)) +m]
+ 𝑁∑
𝑖=1

𝜇𝑖 (x (𝑡)) 𝐴 𝑖x (𝑡) ,
(17)

where the 𝑖th rule of u𝑑(𝑡) and ũ(𝑡) can be written as follows,
respectively, (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁):

𝑅𝑖: If 𝑦1(𝑡) is 𝐹𝑖1 and 𝑦2(𝑡) is 𝐹𝑖2 and ⋅ ⋅ ⋅ and 𝑦𝑛(𝑡) is 𝐹𝑖𝑛,
then u𝑑(𝑡) = −𝐾e(𝑡) − 𝐵𝑖y(𝑡) − m, with 𝐾 being an
adjusted control gain matrix.

𝑅𝑖: If 𝑥1(𝑡) is 𝐹𝑖1 and ⋅ ⋅ ⋅ and 𝑥𝑛(𝑡) is 𝐹𝑖𝑛, then ũ(𝑡) =𝐴 𝑖x(𝑡).
Let us denote u1(𝑡) = −∑𝑁𝑖=1 𝜇𝑖(y(𝑡))[𝑇�̂�𝑖(y, 𝜃𝑖(𝑡)) +𝐻𝑖sign(e(𝑡))], where 𝑇 = diag[sign(e1(𝑡)), ⋅ ⋅ ⋅ , sign(e𝑛(𝑡))],𝐻𝑖 = diag[𝜀∗1𝑖 (y), ⋅ ⋅ ⋅ , 𝜀∗𝑛𝑖 (y)].

In order to update parametric estimates, the fractional
adaptation laws are designed as

𝐶
0𝐷𝜇𝑡 𝜃𝑗𝑖 (𝑡) = 𝛼𝑖𝜇𝑖 (y (𝑡)) 𝑒𝑗 (𝑡) 𝜑𝑗𝑖 (y) , (18)

𝐶
0𝐷𝜇𝑡 𝜀∗𝑗𝑖 (y) = 𝛽𝑖𝜇𝑖 (y (t)) 𝑒𝑗 (𝑡) , (19)

with 𝛼𝑖, 𝛽𝑖 > 0 being adaptation rates which are constant
parameters. Taking the control law (17) into (12) and letting𝐾 = diag[𝑘1, ⋅ ⋅ ⋅ , 𝑘𝑛] (𝑘𝑗 > 0), we have

𝐶
0𝐷𝜇𝑡 e (𝑡) = −𝐾e (𝑡) + 𝑁∑

𝑖=1

𝜇𝑖 (y (𝑡))
⋅ [d𝑖 (𝑡, y) − 𝑇�̂�𝑖 (y, 𝜃𝑖 (𝑡)) − 𝐻𝑖sign (e (𝑡))] .

(20)

Multiplying both sides of (20) by e𝑇(𝑡) and letting 𝜀∗𝑗𝑖 (y) =𝜀∗𝑗𝑖 (y) − 𝜀∗𝑗𝑖 , one gets
e𝑇 (𝑡) 𝐶0𝐷𝜇𝑡 e (𝑡) ≤ −e𝑇 (𝑡) 𝐾e (𝑡) − 𝑁∑

𝑖=1

𝜇𝑖 (y (𝑡))

⋅ 𝑛∑
𝑗=1

𝑒𝑗 (𝑡) [𝜀∗𝑗𝑖 (y) + 𝜌𝑗𝑖 (y, 𝜃𝑗𝑖 (𝑡)) − 𝜌𝑗𝑖 (y)]

≤ −e𝑇 (𝑡) 𝐾e (𝑡) + 𝑁∑
𝑖=1

𝜇𝑖 (y (𝑡))

⋅ 𝑛∑
𝑗=1

𝑒𝑗 (𝑡) [𝜀∗𝑗𝑖 − 𝜀∗𝑗𝑖 (y) − 𝜃𝑗𝑖 (𝑡) 𝜑𝑗𝑖 (y)] = −e𝑇 (𝑡)

⋅ 𝐾e (𝑡) − 𝑁∑
𝑖=1

𝜇𝑖 (y (𝑡))

⋅ 𝑛∑
𝑗=1

𝑒𝑗 (𝑡) [𝜀∗𝑗𝑖 (y) + 𝜃𝑗𝑖 (𝑡) 𝜑j
𝑖 (y)] .

(21)

3.3. Stability Analysis. Here, fractional Lyapunov’s theory
is used to analyze the stability in closed-loop system. The
following Lemmas are proposed to simplify the stability
analysis.

Lemma 9 (see [54]). If 𝜇 ∈ (0, 1) and x(𝑡) ∈ 𝐶1, then
𝐶
0𝐷𝜇𝑡 x(𝑡)𝑇x(𝑡) ≤ 2x(𝑡)𝑇 𝐶0𝐷𝜇𝑡 x(𝑡).
Lemma 10. If 𝐶0𝐷𝜇𝑡 𝑥(𝑡) ≤ 0, then one gets x(𝑡) ≤ 𝑥(0); if
𝐶
0𝐷𝜇𝑡 𝑥(𝑡) ≥ 0, then one gets 𝑥(𝑡) ≥ 𝑥(0), with 𝜇 ∈ (0, 1) and𝑡 ∈ [0, +∞).
Proof. We only consider the front part. If 𝐶0𝐷𝜇𝑡 𝑥(𝑡) ≤ 0, let

ℎ (𝑡) = − 𝐶0𝐷𝜇𝑡 𝑥 (𝑡) . (22)

Both sides of (22) take Laplace transform and one obtains

L [ 𝐶0𝐷𝜇𝑡 𝑥 (𝑡)] + 𝐻 (𝑠) = 0. (23)

Using Property 3, one obtains the following:

𝑠𝜇𝑋(𝑠) − 𝑠𝜇−1𝑥 (0) + 𝐻 (𝑠) = 0. (24)

Further, one gets

𝑋(𝑠) = 𝑥 (0)
𝑠 − 𝐻 (𝑠)

𝑠𝜇 , (25)

with 𝑋(𝑠) = L[𝑥(𝑡)],𝐻(𝑠) = L[ℎ(𝑡)]. Both sides of (25)
make Laplace inverse transform and using the fractional
integral definition, one obtains

𝑥 (𝑡) = 𝑥 (0) − 𝐶0𝐷−𝜇𝑡 ℎ (𝑡)
= 𝑥 (0) − 1

Γ (𝜇) ∫
𝑡

0
(𝑡 − 𝜉)𝜇−1 ℎ (𝜉) 𝑑𝜉. (26)

From the above equation, we get 𝑥(𝑡) ≤ 𝑥(0), 𝑡 ∈ [0, +∞).
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Lemma 11. Let 𝑉(𝑡) = (1/2)x(𝑡)𝑇x(𝑡) + (1/2)y(𝑡)𝑇y(𝑡) with
x(𝑡), y(𝑡) ∈ 𝑅𝑛 be continuous and derivable functions. If there
exists a constant ℎ > 0 such that

𝐶
0𝐷𝜇𝑡𝑉 (𝑡) ≤ −ℎx (𝑡)𝑇 x (𝑡) , (27)

then ‖x(𝑡)‖ and ‖y(𝑡)‖ are bounded and lim𝑡→+∞‖x(𝑡)‖ = 0.
Proof. According to Lemma 10 and 𝐶

0𝐷𝜇𝑡𝑉(𝑡) ≤
−ℎx(𝑡)𝑇x(𝑡) ≤ 0, we obtain 𝑉(𝑡) ≤ 𝑉(0). Further, we
get the following:

‖x (𝑡)‖ ≤ √2𝑉 (0),
y (𝑡) ≤ √2𝑉 (0). (28)

This means that ‖x(𝑡)‖ and ‖y(𝑡)‖ are bounded.
We will proof that x(𝑡) tends to 0 asymptotically below.

Both sides of (27) commute with 𝜇-order integral; based on
Property 2, one gets

𝑉 (𝑡) − 𝑉 (0) ≤ −ℎ 𝐶0𝐷−𝜇𝑡 x (𝑡)𝑇 x (𝑡) . (29)

Further, one obtains

x (𝑡)𝑇 x (𝑡) ≤ 2𝑉 (0) − 2ℎ 𝐶0𝐷−𝜇𝑡 x (𝑡)𝑇 x (𝑡) . (30)

Hence, the following can be obtained from (30) with a
nonnegative function 𝑧(𝑡) as

x (𝑡)𝑇 x (𝑡) + 𝑧 (𝑡) = 2𝑉 (0) − 2ℎ 𝐶0𝐷−𝜇𝑡 x (𝑡)𝑇 x (𝑡) . (31)

Applying the Laplace transform to formula (31) and according
to the Definition 4, we have

L [x (𝑡)𝑇 x (𝑡)] = 2𝑉 (0) 𝑠𝜇−1
𝑠𝜇 + 2ℎ − 𝑍 (𝑠) 𝑠𝜇

𝑠𝜇 + 2ℎ
= L [2𝑉 (0) 𝐸𝜇,1 (−2ℎ𝑡𝜇)]
−L [𝑧 (𝑡)]L [𝑡−1𝐸𝜇,0 (−2ℎ𝑡𝜇)] .

(32)

Hence, using the Laplace inverse transform to (32), we have

x (𝑡)𝑇 x (𝑡) = 2𝑉 (0) 𝐸𝜇,1 (−2ℎ𝑡𝜇) − 𝑧 (𝑡)
∗ [𝑡−1] 𝐸𝜇,0 (−2ℎ𝑡𝜇) ,

(33)

with ∗ being the convolution operator. Since 𝑡−1 and𝐸𝜇,0(−2ℎ𝑡𝜇) are nonnegative functions, then x(𝑡)𝑇x(𝑡) ≤2𝑉(0)𝐸𝜇,1(−2ℎ𝑡𝜇). According to the results in [55], one
obtains that x(𝑡) is M-L stability and x(𝑡) tends to 0 asymp-
totically (namely, lim𝑡→∞‖x(𝑡)‖ = 0).

From above discussion, the boundedness of all signals
in closed-loop system and the convergence of tracking error
based on adaptive fuzzy control scheme via T-S fuzzy logic
systems is presented in the following theorem.

Theorem 12. For the master system (9) and slave system (10)
under the known initial conditions, if Assumptions 5 and 6 are
satisfied and the adaptive controller is given as (17) with the
fractional adaptation laws (18) and (19), then all signals in the
closed-loop system are bounded and the tracking error signal
tends to zero asymptotically.

Proof. Define the following Lyapunov function:

𝑉 (𝑡) = 1
2e𝑇 (𝑡) e (𝑡) +

𝑁∑
𝑖=1

1
2𝛼𝑖 �̃�
𝑇

𝑖 (𝑡) �̃�𝑖 (𝑡)

+ 𝑁∑
𝑖=1

1
2𝛽𝑖 �̃�
∗𝑇
𝑖 (y) �̃�∗𝑖 (y) ,

(34)

with �̃�𝑖(𝑡) = 𝜃𝑖(𝑡) − 𝜃∗𝑖 and �̃�∗𝑖 (y) = �̂�∗𝑖 (y) − 𝜀∗𝑖 . Hence, using
the Lemma 9, the 𝜇-order derivative of 𝑉(𝑡) with respect to
time 𝑡 is obtained as

𝐶
0𝐷𝜇𝑡𝑉 (𝑡) ≤ e𝑇 (𝑡) 𝐶0𝐷𝜇𝑡 e (𝑡) +

𝑁∑
𝑖=1

1
𝛼𝑖 �̃�
𝑇

𝑖 (𝑡) 𝐶0𝐷𝜇𝑡 �̃�𝑖 (𝑡)

+ 𝑁∑
𝑖=1

1
𝛽𝑖 �̃�
∗𝑇
𝑖 (y) 𝐶0𝐷𝜇𝑡 �̃�∗𝑖 (y)

(35)

Substituting (21) into (35), one gets
𝐶
0𝐷𝜇𝑡𝑉 (𝑡) ≤ −e𝑇 (𝑡) 𝐾e (𝑡)
+ 𝑁∑
𝑖=1

𝑛∑
𝑗=1

[ 1𝛼𝑖 𝜃
𝑗
𝑖 (𝑡) 𝐶0𝐷𝜇𝑡 𝜃𝑗𝑖 (𝑡)

− 𝜇𝑖 (y (𝑡)) 𝑒𝑗 (𝑡) 𝜃𝑗𝑖 (𝑡) 𝜑𝑗𝑖 (y)
+ 1
𝛽𝑖 𝜀
∗𝑗
𝑖 (y) 𝐶0𝐷𝜇𝑡 𝜀∗𝑗𝑖 (y)

− 𝜇𝑖 (y (𝑡)) 𝑒𝑗 (𝑡) 𝜀∗𝑗𝑖 (y)] ,

(36)

Taking (18) and (19) into (36), one gets the following inequal-
ity:

𝐶
0𝐷𝜇𝑡𝑉 ≤ −e𝑇 (𝑡) 𝐾e (𝑡) ≤ −𝜆𝑚𝑖𝑛e𝑇 (𝑡) e (𝑡) , (37)

where 𝜆𝑚𝑖𝑛 is the least eigenvalue of the positive definite
matrix 𝐾. According to Lemma 11 and above discussion,
we know that the tracking error signal e(𝑡) tends to 0
asymptotically (that is, lim𝑡→∞‖e(𝑡)‖ = 0) and �̃�𝑖(𝑡) and
�̃�∗𝑖 (y) are bounded. Further, it means that 𝜃𝑖(𝑡) and �̂�∗𝑖 (y) are
bounded. Because of the boundedness of e(𝑡) and x(𝑡), we
know that y(𝑡) is bounded. Based on the control design, u(𝑡)
is bounded.Therefore, we know that all signals in the closed-
loop system are bounded.

4. Simulation Example

In this section, in order to further illustrate the effective-
ness of the proposed control method designed in previous
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sections, one example about the synchronization for two
different uncertain fractional-order chaotic system is given.
Themaster system of a fractional-order chaotic system via T-
S fuzzy model is given as

𝐶
0𝐷𝜇𝑡 x (𝑡) =

𝑁∑
𝑖=1

𝜇𝑖 (x (𝑡)) [𝐴 𝑖x (𝑡) + b1] , (38)

the ith rule of master system is given by

𝑅1: If 𝑥1 is 𝐹11 and 𝑥2 is 𝐹12 and 𝑥3 is 𝐹13 , then
𝐶
0𝐷0.8𝑡 x(𝑡) = 𝐴1x(𝑡) + b1,
𝑅2: If 𝑥1 is 𝐹21 and 𝑥2 is 𝐹22 and 𝑥3 is 𝐹23 , then
𝐶
0𝐷0.8𝑡 x(𝑡) = 𝐴2x(𝑡) + b1.

The upper system is formulated to the alike form in (9)
with

𝐴1 = [[
[

−10 10 0
40 0 −62.6

25.04 0 −8
]]
]
,

𝐴2 = [[
[

−10 10 0
40 0 60.7

−24.28 0 −8
]]
]
,

b1 (𝑡) = (0, 0, 0)𝑇 .

(39)

Figure 1 depicts the simulation results of the master system
with the parameters 𝑁 = 2, 𝜇 = 0.8 with time step ℎ =0.005. Figure 1 shows 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) ∈ [−6.07, 6.26],[−10, 10.6], and [0.2, 9.05], respectively, that is, x(𝑡) ∈ 𝐷1 =[−6.07, 6.26] × [−10, 10.6] × [0.2, 9.05]. Obviously, Chaos was
found in system (38) with 𝜇 = 0.8.

Two fuzzy sets are defined for the state𝑥1 over the interval[−6.07, 6.26] with the membership functions as

𝐹11 (𝑥1 (𝑡)) = 1
2 (1 −

0.095 − 𝑥1 (𝑡)6.165 ) ,
𝐹21 (𝑥1 (𝑡)) = 1

2 (1 +
0.095 − 𝑥1 (𝑡)6.165 ) .

(40)

Two fuzzy sets are defined for the state𝑥2 over the interval[−10, 10.6] with the membership functions as

𝐹12 (𝑥2 (𝑡)) = 1
2 (1 −

0.3 − 𝑥2 (𝑡)10.3 ) ,
𝐹22 (𝑥2 (𝑡)) = 1

2 (1 −
0.3 − 𝑥2 (𝑡)10.3 ) .

(41)

Two fuzzy sets are defined for the state𝑥3 over the interval[0.2, 9.05] with the membership functions as

𝐹13 (𝑥3 (𝑡)) = 1
2 (1 −

4.625 − 𝑥3 (𝑡)4.425 ) ,
𝐹23 (𝑥3 (𝑡)) = 1

2 (1 −
4.625 − 𝑥3 (𝑡)4.425 ) .

(42)

The slave system of a fractional-order chaotic systemwith
unknown disturbances via T-S fuzzy model is given as
𝐶
0𝐷0.8𝑡 y (𝑡)
= 2∑
𝑖=1

𝜇𝑖 (y (𝑡)) [𝐵𝑖y (𝑡) + b2 + u (𝑡) + d𝑖 (𝑡, y)] .
(43)

The ith rule of slave system is given by

𝑅1: If 𝑦1 is 𝐹11 and 𝑦2 is 𝐹12 and 𝑦3 is 𝐹13 , then
𝐶
0𝐷0.8𝑡 y(𝑡) = 𝐵1y(𝑡) + b2 + u(𝑡) + d1(𝑡, y),
𝑅2: If 𝑦1 is 𝐹21 and 𝑦2 is 𝐹22 and 𝑦3 is 𝐹23 , then
𝐶
0𝐷0.8𝑡 y(𝑡) = 𝐵2y(𝑡) + b2 + u(𝑡) + d2(𝑡, y).

The upper system is formulated to the alike form in (10)
with

𝐵1 = [[
[

−30 30 0
0 22.2 −21.52
0 21.52 −2.94

]]
]
,

𝐵2 = [[
[

−30 30 0
0 22.2 29.21
0 −29.21 −2.94

]]
]
,

b2 (𝑡) = (0, 0, 0)𝑇 .

(44)

Figure 2 with u(𝑡) = 0 and without the external
disturbance is depicted the simulation results of the slave
system with the parameters below: 𝑁 = 2, 𝜇 = 0.8, for
time step ℎ = 0.005. Moreover, Chaos was found in system
(43) with 𝜇 = 0.8. Figure 2 shows 𝑦1(𝑡), 𝑦2(𝑡) and 𝑦3(𝑡) ∈[−29.21, 21.52], [−35.6, 26.5] and [0, 53.6], respectively, that
is, y(𝑡) ∈ 𝐷2 = [−29.21, 21.52] × [−35.6, 26.5] × [0, 53.6].

Two fuzzy sets are defined for the state𝑦1 over the interval[−29.21, 21.52] with the membership functions as follows:

𝐹11 (𝑦1 (𝑡)) = 1
2 (1 −

−3.845 − 𝑦1 (𝑡)25.365 ) ,
𝐹21 (𝑦1 (𝑡)) = 1

2 (1 +
−3.845 − 𝑦1 (𝑡)25.365 ) .

(45)

Two fuzzy sets are defined for the state𝑦2 over the interval[−35.6, 26.5] with the membership functions as follows:

𝐹12 (𝑦2 (𝑡)) = 1
2 (1 −

−4.55 − 𝑦2 (𝑡)31.05 ) ,
𝐹22 (𝑦2 (𝑡)) = 1

2 (1 −
−4.55 − 𝑦2 (𝑡)31.05 ) .

(46)

Two fuzzy sets are defined for the state𝑦3 over the interval[0, 53.6] with the membership functions as follows:

𝐹13 (𝑦3 (𝑡)) = 1
2 (1 −

26.8 − 𝑦3 (𝑡)26.8 ) ,
𝐹23 (𝑦3 (𝑡)) = 1

2 (1 −
26.8 − 𝑦3 (𝑡)26.8 ) .

(47)
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Figure 1: Master system.

In the simulation, the initial conditions of master system
and slave system are selected as x(0) = (1, 1, −2)𝑇and y(0) =(−2, −3, 3)𝑇. The parameters relating the synchronization
problem are set to 𝐾 = 𝐸 and 𝜌1(𝑦) = 𝜌2(𝑦) =
(1.5𝑦1, 1.5𝑦2, 1.5𝑦3)𝑇. Let e(𝑡) = (𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡))𝑇.

The controller is designed as

u (𝑡) = (𝑢1 (𝑡) , 𝑢2 (𝑡) , 𝑢3 (𝑡))𝑇
= −𝐹11 (𝑦1 (𝑡)) 𝐵1y (𝑡) − 𝑇�̂� (y, 𝜃 (𝑡)) − 𝐹21𝐵2y (𝑡)
− 𝐻sign (e (𝑡)) − e (𝑡) + 𝐹11𝐴1x (𝑡)
+ 𝐹21𝐴2x (𝑡) .

(48)

Let �̂�(y, 𝜃(𝑡)) = (𝜌1, 𝜌2, 𝜌3)𝑇, 𝐻 = (𝜀∗1(y), 𝜀∗2(y), and𝜀∗3(y))𝑇; then

𝑢1 (𝑡) = −𝑒1 (𝑡) − 10𝑥1 + 10𝑥2 + 30𝑦1 − 30𝑦2 − 𝑇𝜌1
− 𝜀∗1 (y) ,

𝑢2 (𝑡) = −𝑒2 (𝑡) + 40𝑥1 − 10𝑥1𝑥3 − 22.2𝑦2 + 𝑦1𝑦3
− 𝑇𝜌2 − 𝜀∗2 (y) ,

𝑢3 (𝑡) = −𝑒3 (𝑡) − 8𝑥3 + 4𝑥21 − 𝑦1𝑦2 + 2.94𝑦3 − 𝑇𝜌3
− 𝜀∗3 (y) .

(49)
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Figure 2: Slave system.

The fractional adaptation laws of 𝜃𝑗(y) and 𝜀∗𝑗(y), (𝑗 =1, 2, 3), with 𝛼 = 700, 𝛽 = 0.05 are designed to be
𝐶
0𝐷𝜇𝑡 𝜃1 (𝑡) = 𝛼 𝑒1 (𝑡) 𝜑1 (y) ,
𝐶
0𝐷𝜇𝑡 𝜀∗1 (y) = 𝛽 𝑒1 (𝑡) ,
𝐶
0𝐷𝜇𝑡 𝜃2 (𝑡) = 𝛼 𝑒2 (𝑡) 𝜑2 (y) ,
𝐶
0𝐷𝜇𝑡 𝜀∗2 (y) = 𝛽 𝑒2 (𝑡) ,
𝐶
0𝐷𝜇𝑡 𝜃3 (𝑡) = 𝛼 𝑒3 (𝑡) 𝜑3 (y) ,
𝐶
0𝐷𝜇𝑡 𝜀∗3 (y) = 𝛽 𝑒3 (𝑡) .

(50)

The simulation results of the proposed adaptive control
approach are shown in Figure 3, where subgraph (a) denotes
the tracking error trajectory and subgraph (b) denotes the

control trajectory. Define the initial conditions of the approx-
imation errors as 𝜀∗1(0) = 0, 𝜀∗2(0) = 0, 𝜀∗3(0) = 0. In
reducing the computation of the numerical simulation, x(𝑡)
and y(𝑡) are replaced by e(𝑡). Four fuzzy sets are defined for
the tracking errors 𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡) over the interval [−3, 3]
with the Gaussian membership functions, where the first
parameters are 1.1 and the second parameters are −3, −1, 1, 3,
respectively. Comparing the conventional control method
with the proposed method, we can see that the proposed
approach can synchronize two chaotic plants to desired high
accuracy and improve the performance as shown in Figure 3.

5. Conclusions

In this paper, synchronization of different fractional-order
chaotic or hyperchaotic systems with unknown disturbances
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Figure 3: (a) Synchronization error and (b) controller.

and parametric uncertainties is addressedwith adaptive fuzzy
control algorithm based on T-S fuzzy models. The distinctive
features of the proposed control approach are that T-S fuzzy
logic systems are introduced to approximate the unknown
disturbances and to model the unknown controlled systems;
both adaptive fuzzy controller and fractional adaptation
laws are developed based on combined fractional Lyapunov
stability theory and parallel distributed compensation tech-
nique. It is shown that the proposed control method can
guarantee that all the signals in the closed-loop system
remain bounded and the synchronization error converges
towards an arbitrary small neighbourhood of the origin
asymptotically. A simulation example is used for verifying the
effectiveness of the proposed control strategy. Further works
would focus on chaos synchronization control of different
uncertain fractional-order chaotic systems with time delay
and input saturation.
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We obtain some new upper and lower estimates for the Green’s function associated with a fractional boundary value problem with
a perturbation term. Criteria for the existence of positive solutions of the problem are then obtained based on it.

1. Introduction

In this paper, we are investigating the existence of positive
solution for fractional differential equation with a perturba-
tion term

−𝐷𝛼𝑥 (𝑡) + 𝑎 (𝑡) 𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) (1)

with the boundary condition (BC)

𝑥 (0) = 𝑥 (0) = 𝑥 (1) = 0, (2)

where 2 < 𝛼 < 3, 𝑎 ∈ 𝐶[0, 1], and 𝑓 ∈ 𝐶([0, 1] × [0, +∞),R).
Here, 𝐷𝛼𝑥 is the standard Riemann-Liouville derivative of
order 𝛼 > 0 of a continuous function 𝑥 : (0,∞) → R is
given by

𝐷𝛼𝑥 (𝑡) = 1
Γ (𝑛 − 𝛼) ( 𝑑

𝑑𝑡)
𝑛

∫𝑡
0

𝑥 (𝑠)
(𝑡 − 𝑠)𝛼−𝑛+1𝑑𝑠,

𝑛 − 1 ≤ 𝛼 < 𝑛
(3)

provided that the right-hand side is pointwise defined on
(0,∞).

Spurred by the extensively applicability of fractional
derivatives in a variety of mathematical models in science
and engineering [1–3], the subject of fractional differential
equations with boundary value problems, which emerged
as a new branch of differential equations, have attracted a
great deal of attention for decades. As a small sampling of
recent development, we refer the reader to [4–14]. When one

seeks the existence of solution of boundary value problems
for fractional differential equations, the usual method is
converted to a Fredholm integral equation and find the fixed
points by using various techniques of nonlinear analysis such
as Banach contraction map principle [13, 15], linear operator
theory [16, 17], Leggett-Williams fixed point theorem [12, 18],
Schauder fixed point theorem and Leray-Schauder nonlinear
alternative theory [19], andKrasnosel’skii fixed point theorem
[20]. It should be noted that the Green’s functions play a vital
role in the construction of an appropriate Fredholm integral
equation. However, as a result of the unusual feature of the
fractional calculus, the investigation on the Green’s functions
for fractional boundary value problems is still in the initial
stage. Recently, based on the spectral theory, the authors in
[21] give an associated Green’s function for BVP (1) (2) as
series of functions. This idea was also used in [22–24].

In the next section, we will study some new sharper upper
and lower estimates for the Green’s function of BVP (1) (2)
than the ones given in [21]. In Section 3, we employ the new
estimate to obtain the existence of a positive solution of BVP
(1) (2). The idea of this paper may trace to [21–27].

2. Some New Upper and Lower Estimates for
the Green’s Function

Firstly, we present the Green’s function for BVP (1) (2) which
is given in [21]. Let 𝐺0 : [0, 1] × [0, 1] → R be defined by

𝐺0 (𝑡, 𝑠)

Hindawi
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=
{{{
{{{
{

𝑡𝛼−1 (1 − 𝑠)𝛼−2 − (𝑡 − 𝑠)𝛼−1
Γ (𝛼) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡𝛼−1 (1 − 𝑠)𝛼−2
Γ (𝛼) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(4)

It is well known that the function 𝐺0(𝑡, 𝑠) is Green’s function
for BVP (1) (2) with 𝑎(𝑡) ≡ 0. In the following lemma we
present some properties of Green’s function 𝐺0(𝑡, 𝑠), see [28]
for details. Listed properties will be used later for estimating
the upper bound and the lower bound on Green’s function
𝐺(𝑡, 𝑠) of BVP (1) (2).

Lemma 1 (see [28]). The function 𝐺0(𝑡, 𝑠) defined by (4)
satisfies the following conditions:

(i) 0 ≤ 𝐺0(𝑡, 𝑠) ≤ 𝑡𝛼−1(1 − 𝑠)𝛼−2/Γ(𝛼), 0 ≤ 𝑡, 𝑠 ≤ 1,
(ii) 𝑡𝛼−1𝐺0(1, 𝑠) ≤ 𝐺0(𝑡, 𝑠) ≤ 𝐺0(1, 𝑠) = 𝑠(1 − 𝑠)𝛼−2/

Γ(𝛼), for 0 ≤ 𝑡, 𝑠 ≤ 1.
Let 𝑀 = ∫1

0
(|𝑎(𝑠)|(1 − 𝑠)𝛼−2/Γ(𝛼))𝑠𝛼−1 𝑑𝑠, 𝑀1 = ∫1

0
(|𝑎(𝑠)|

(1 − 𝑠)𝛼−2/Γ(𝛼))𝑑𝑠, 𝐴 = max𝑡∈[0,1] |𝑎(𝑡)|. For 𝑛 = 1, 2, . . .,
define

𝐺𝑛 (𝑡, 𝑠) = ∫1
0

𝑎 (𝜏) 𝐺0 (𝑡, 𝜏) 𝐺𝑛−1 (𝜏, 𝑠) 𝑑𝜏

= ∫1
0

⋅ ⋅ ⋅ ∫1
0

𝑎 (𝑟1) 𝐺0 (𝑡, 𝑟1)
⋅ 𝑎 (𝑟2) 𝐺0 (𝑟1, 𝑟2) ⋅ ⋅ ⋅ 𝑎 (𝑟𝑛) 𝐺0 (𝑟𝑛−1, 𝑟𝑛)
⋅ 𝐺0 (𝑟𝑛, 𝑠) 𝑑𝑟1 ⋅ ⋅ ⋅ 𝑑𝑟𝑛

(5)

and

𝐺 (𝑡, 𝑠) =
+∞

∑
𝑛=0

(−1)𝑛 𝐺𝑛 (𝑡, 𝑠) . (6)

It follows from Theorem 2.1 in [21] that the function 𝐺(𝑡, 𝑠)
defined by (6) as a series of functions that converge uniformly
is the Green’s function for BVP (1) (2) if 𝐴 < (𝛼 −
1)Γ(𝛼 + 1) holds. Furthermore, the function 𝐺(𝑡, 𝑠) satisfies
the following property:

(1 − 𝛿)𝐺0 (𝑡, 𝑠) ≤ 𝐺 (𝑡, 𝑠) ≤ (1 + 𝛿) 𝐺0 (𝑡, 𝑠) ,
𝑡, 𝑠 ∈ [0, 1] (7)

provided 𝐴 < (𝛼 − 1)Γ(𝛼 + 1)(𝛼 + 1)−1, where 𝛿 = 𝛼𝐴/((𝛼 −
1)Γ(𝛼 + 1) − 𝐴) < 1.

The uniform convergence of (6) follows from the fact that
‖𝑇‖ < 1, where the operator 𝑇 is defined by the following
form:

(𝑇𝑥) (𝑡) = ∫1
0

𝐺0 (𝑡, 𝑠) 𝑎 (𝑠) 𝑥 (𝑠) 𝑑𝑠, 𝑥 ∈ 𝐶 [0, 1] . (8)

Indeed, the uniform convergence of (6) can be obtained by
𝑟(𝑇) < 1 (see [21, 29]), where 𝑟(𝑇) is the spectral radius of 𝑇.

Lemma 2. If 𝑀 < 1 holds, then 𝑟(𝑇) < 1.
Proof. By Lemma 1, for any 𝑥 ∈ 𝐶[0, 1], we have

|(𝑇𝑥) (𝑡)| ≤ ∫1
0

𝐺0 (𝑡, 𝑠) |𝑎 (𝑠) 𝑥 (𝑠)| 𝑑𝑠

≤ 𝑡𝛼−1𝐴‖𝑥‖
Γ (𝛼) ∫1

0

(1 − 𝑠)𝛼−2 𝑑𝑠

= 𝐴 ‖𝑥‖
(𝛼 − 1) Γ (𝛼) 𝑡

𝛼−1.

(9)

Hence, we conclude that

(𝑇2𝑥) (𝑡) ≤ ∫1
0

𝐺0 (𝑡, 𝑠) |𝑎 (𝑠) (𝑇𝑥) (𝑠)| 𝑑𝑠

≤ 𝐴 ‖𝑥‖
(𝛼 − 1) Γ (𝛼) ∫1

0

𝑡𝛼−1 |𝑎 (𝑠)| (1 − 𝑠)𝛼−2
Γ (𝛼) 𝑠𝛼−1 𝑑𝑠

= 𝐴𝑀‖𝑥‖
(𝛼 − 1) Γ (𝛼) 𝑡

𝛼−1.

(10)

By induction, one has

(𝑇𝑛𝑥) (𝑡) ≤ 𝐴𝑀𝑛−1 ‖𝑥‖
(𝛼 − 1) Γ (𝛼) 𝑡

𝛼−1, (11)

which implies that

𝑇𝑛 ≤ 𝐴𝑀𝑛−1
(𝛼 − 1) Γ (𝛼) . (12)

Note that 𝑀 < 1. Then by the Gelfand formula, we get

𝑟 (𝑇) = lim
𝑛→+∞

𝑛√‖𝑇𝑛‖ ≤ 𝑀 < 1. (13)

Lemma 3. If 𝑀 + 𝑀1 < 1 holds, then for any 𝑡, 𝑠 ∈ [0, 1],
1 − 𝑀 − 𝑀1

1 − 𝑀 𝐺0 (𝑡, 𝑠) ≤ 𝐺 (𝑡, 𝑠)

≤ 1 − 𝑀 + 𝑀1
1 − 𝑀 𝐺0 (𝑡, 𝑠) .

(14)

Proof. By Lemma 1, for 𝑛 ≥ 1 and 𝑡, 𝑠 ∈ [0, 1], we have
𝐺𝑛 (𝑡, 𝑠) ≤ ∫1

0

⋅ ⋅ ⋅ ∫1
0

𝑎 (𝑟1) 𝐺0 (𝑡, 𝑟1) ⋅ 𝑎 (𝑟2)
⋅ 𝐺0 (𝑟1, 𝑟2) ⋅ ⋅ ⋅ 𝑎 (𝑟𝑛) 𝐺0 (𝑟𝑛−1, 𝑟𝑛)
⋅ 𝐺0 (𝑟𝑛, 𝑠) 𝑑𝑟1 ⋅ ⋅ ⋅ 𝑑𝑟𝑛
≤ ∫1
0

⋅ ⋅ ⋅ ∫1
0

𝑎 (𝑟1) 𝑡
𝛼−1 (1 − 𝑟1)𝛼−2

Γ (𝛼) ⋅ 𝑎 (𝑟2)

⋅ 𝑟1𝛼−1 (1 − 𝑟2)𝛼−2
Γ (𝛼) ⋅ ⋅ ⋅

𝑎 (𝑟𝑛) 𝑟𝑛−1𝛼−1 (1 − 𝑟𝑛)𝛼−2
Γ (𝛼)
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⋅ 𝑠 (1 − 𝑠)𝛼−2
Γ (𝛼) 𝑑𝑟1 ⋅ ⋅ ⋅ 𝑑𝑟𝑛 = 𝑡𝛼−1𝑠 (1 − 𝑠)𝛼−2

Γ (𝛼)

⋅ ∫1
0

𝑎 (𝑟1) 𝑟1𝛼−1 (1 − 𝑟1)𝛼−2
Γ (𝛼) 𝑑𝑟1

⋅ ∫1
0

𝑎 (𝑟2) 𝑟2𝛼−1 (1 − 𝑟2)𝛼−2
Γ (𝛼) 𝑑𝑟2

⋅ ⋅ ⋅ ∫1
0

𝑎 (𝑟𝑛−1) 𝑟𝑛−1𝛼−1 (1 − 𝑟𝑛−1)𝛼−2
Γ (𝛼) 𝑑𝑟𝑛−1

⋅ ∫1
0

𝑎 (𝑟𝑛) (1 − 𝑟𝑛)𝛼−2
Γ (𝛼) 𝑑𝑟𝑛 = 𝑀1𝑀𝑛−1

⋅ 𝑡𝛼−1𝑠 (1 − 𝑠)𝛼−2
Γ (𝛼) ≤ 𝑀1𝑀𝑛−1𝐺0 (𝑡, 𝑠) ,

𝑡, 𝑠 ∈ [0, 1] .
(15)

Then introducing the above inequality into (6) can lead to


+∞

∑
𝑛=1

(−1)𝑛 𝐺𝑛 (𝑡, 𝑠)

≤
+∞

∑
𝑛=1

𝐺𝑛 (𝑡, 𝑠)

≤
+∞

∑
𝑛=1

𝑀1𝑀𝑛−1𝐺0 (𝑡, 𝑠)

= 𝑀1
1 − 𝑀𝐺0 (𝑡, 𝑠) , 𝑡, 𝑠 ∈ [0, 1] .

(16)

It is easy to verify that if 𝑀 + 𝑀1 < 1, then 𝑀1/(1 − 𝑀) < 1.
Therefore, (14) follows from (6) and (16).

Similar to the proof of Lemmas 2 and 3, we can obtain the
following results.

Lemma 4. If 𝐴 < Γ(2𝛼 − 1)/Γ(𝛼 − 1) holds, then 𝑟(𝑇) < 1.
Lemma 5. If𝐴/(𝛼 − 1)Γ(𝛼) + 𝐴Γ(𝛼 − 1)/Γ(2𝛼 − 1) < 1 holds,
then for any 𝑡, 𝑠 ∈ [0, 1],

(1 − 𝛾)𝐺0 (𝑡, 𝑠) ≤ 𝐺 (𝑡, 𝑠) ≤ (1 + 𝛾)𝐺0 (𝑡, 𝑠) , (17)

where 𝛾 = (𝐴/(𝛼 − 1)Γ(𝛼))(1 − 𝐴Γ(𝛼 − 1)/Γ(2𝛼 − 1))−1.
By the properties of definite integral and 𝛼 ∈ (2, 3), we

assert that

∫1
0

𝜏𝛼−1 (1 − 𝜏)𝛼−2
Γ (𝛼) 𝑑𝜏 < ∫1

0

𝜏 (1 − 𝜏)𝛼−2
Γ (𝛼) 𝑑𝜏, (18)

that is

Γ (𝛼 − 1)
Γ (2𝛼 − 1) < 1

(𝛼 − 1) Γ (𝛼 + 1) . (19)

Thus, we obtain that

𝛾 = 𝐴/ (𝛼 − 1) Γ (𝛼)
1 − 𝐴Γ (𝛼 − 1) /Γ (2𝛼 − 1)

< 𝛼𝐴/ (𝛼 − 1) Γ (𝛼 + 1)
1 − 𝐴/ (𝛼 − 1) Γ (𝛼 + 1) = 𝛿.

(20)

This means that Lemmas 2–5 is more general and comple-
ments many known results.

Combining Lemmas 1 and 3, we obtain the following
result.

Theorem 6. If 𝑀 + 𝑀1 < 1 holds. Then for any 𝑡, 𝑠 ∈ [0, 1],
1 − 𝑀 − 𝑀1

1 − 𝑀 𝑡𝛼−1𝐺0 (1, 𝑠) ≤ 𝐺 (𝑡, 𝑠)

≤ 1 − 𝑀 + 𝑀1
1 − 𝑀 𝐺0 (1, 𝑠) .

(21)

Theorem 7. If 𝑥(𝑡) satisfies the boundary conditions (2),
−𝐷𝛼𝑥 (𝑡) + 𝑎 (𝑡) 𝑥 (𝑡) ≥ 0. (22)

If 𝑀 + 𝑀1 < 1 holds, then
𝑥 (𝑡) ≥ 1 − 𝑀 − 𝑀1

1 − 𝑀 + 𝑀1 𝑡
𝛼−1 ‖𝑥‖ , 𝑡 ∈ [0, 1] . (23)

3. Existence Theorems

In this section, we shall employ Theorem 6 to investigate
the existence results for BVP (1) (2). Let 𝐶[0, 1] be the
Banach space endowed with the maximum norm ‖𝑥‖ =
max𝑡∈[0,1]|𝑥(𝑡)|.
Theorem 8. Assume that there exist 𝑐2 > 𝑐1 > 0 such that

inf
𝑥∈Ω

∫1
0

𝐺0 (1, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 ≥ 𝑐1 (1 − 𝑀)
1 − 𝑀 − 𝑀1 (24)

and

sup
𝑥∈Ω

∫1
0

𝐺0 (1, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 ≤ 𝑐2 (1 − 𝑀)
1 − 𝑀 + 𝑀1 , (25)

where

Ω = {𝑥 ∈ 𝐶 [0, 1] : 𝑐1𝑡𝛼−1 ≤ 𝑥 (𝑡) ≤ 𝑐2, 𝑡 ∈ [0, 1]} . (26)

Then BVP (1) (2) has at least one positive solution in Ω.

Proof. Define an operator 𝑇 by

(𝑆𝑥) (𝑡) = ∫1
0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑥 ∈ 𝐶 [0, 1] , (27)

where 𝐺(𝑡, 𝑠) is given by (6). Obviously, 𝑥(𝑡) is a solution
of BVP (1)(2) if and only if 𝑥 ∈ 𝐶[0, 1] is a fixed point of
𝑆. Moreover, we can show that 𝑆 : 𝐶[0, 1] → 𝐶[0, 1] is
completely continuous.
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For any given 𝑥 ∈ Ω, by (24) and (25), we conclude that

(𝑆𝑥) (𝑡)
≥ 1 − 𝑀 − 𝑀1

1 − 𝑀 𝑡𝛼−1inf
𝑥∈𝑆

∫1
0

𝐺0 (1, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠
≥ 𝑐1𝑡𝛼−1

(28)

and

(𝑆𝑥) (𝑡) ≤ 1 − 𝑀 + 𝑀1
1 − 𝑀 sup

𝑥∈𝑆

∫1
0

𝐺0 (1, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠
≤ 𝑐2.

(29)

Therefore, 𝑆(Ω) ⊂ Ω. By Schauder’s fixed point theorem, 𝑆
has a fixed point 𝑥 in Ω which implies that BVP (1) (2) has at
least one positive solution in Ω.

The following corollaries are direct results of Theorem 8.

Corollary 9. Assume that there exist 𝑐2 > 𝑐1 > 0 such that for
any 𝑡 ∈ [0, 1], 𝑓(𝑡, ⋅) is nondecreasing on [0, 𝑐2],

∫1
0

𝐺0 (1, 𝑠) 𝑓 (𝑠, 𝑐1𝑠𝛼−1) 𝑑𝑠 ≥ 𝑐1 (1 − 𝑀)
1 − 𝑀 − 𝑀1 (30)

and

∫1
0

𝐺0 (1, 𝑠) 𝑓 (𝑠, 𝑐2) 𝑑𝑠 ≤ 𝑐2 (1 − 𝑀)
1 − 𝑀 + 𝑀1 . (31)

Then BVP (1) (2) has at least one positive solution inΩ.

Corollary 10. Assume that there exist 𝑐2 > 𝑐1 > 0 such that for
any 𝑡 ∈ [0, 1], 𝑓(𝑡, ⋅) is nonincreasing on [0, 𝑐2],

∫1
0

𝐺0 (1, 𝑠) 𝑓 (𝑠, 𝑐1𝑠𝛼−1) 𝑑𝑠 ≤ 𝑐2 (1 − 𝑀)
1 − 𝑀 + 𝑀1 (32)

and

∫1
0

𝐺0 (1, 𝑠) 𝑓 (𝑠, 𝑐2) 𝑑𝑠 ≥ 𝑐1 (1 − 𝑀)
1 − 𝑀 − 𝑀1 . (33)

Then BVP (1) (2) has at least one positive solution inΩ.

Example 11. Consider the BVP

−𝐷5/2𝑥 (𝑡) + 𝑡 (1 − 𝑡) 𝑥 (𝑡) = √𝑥 (𝑡), 𝑡 ∈ (0, 1) ,
𝑥 (0) = 𝑥 (0) = 𝑥 (1) = 0.

(34)

After simple computation, we have𝑀 = Γ(𝛼+1)/Γ(2𝛼+1) =
√𝜋/64, 𝑀1 = 1/Γ(𝛼 + 2) = 16√𝜋/105𝜋.

Let 𝑓(𝑡, 𝑥) = √𝑥. It is easy to see that (30) and (31) hold
when 𝑐1 is small enough and 𝑐2 is large enough. Then, by
Corollary 9, BVP (34) has at least one solution.
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We deal with a singular nonlocal fractional differential equation with Riemann-Stieltjes integral conditions. The exact iterative
solution is established under the iterative technique. The iterative sequences have been proved to converge uniformly to the exact
solution, and estimation of the approximation error and the convergence rate have been derived. An example is also given to
demonstrate the results.
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1. Introduction

Fractional differential equations arise in many engineering
and scientific disciplines; see [1–5]. Much attention has been
paid to study fractional differential equations both with
initial and boundary conditions; see, for example, [6, 7].
In [8, 9], they focused on sign-changing solution for some
fractional differential equations. In [10], they get the existence
of solutions for impulsive fractional differential equations. In
[11–13], they get the existence and multiplicity of nontrivial
solutions for a class of fractional differential equations.
The mainly techniques authors need are fixed point theory,
variational method, and global bifurcation techniques.

Also, ordinary differential equations and partial differen-
tial equations involving nonlocal boundary conditions have
been studied extensively in recent years, see [14–22], includ-
ing integral boundary conditions and multipoint boundary
conditions.

In [23], authors obtained results on the uniqueness of
positive solution for problem

D𝑝𝑥 (𝑡) + 𝑝 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑞 (𝑡) = 0, 𝑡 ∈ (0, 1) ,
𝑥 (0) = 𝑥 (0) = 0,
𝑥 (1) = 0,

(1)

where 2 < 𝑝 ≤ 3 is a real number. Under the assumption that
𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V) ≤ 𝑘𝜆1 |𝑢 − V| , (2)

where 𝑘 ∈ [0, 1), and 𝜆 is the first eigenvalue of the
corresponding linear operator.

Motivated by the above works, we study the following
nonlocal boundary value problems:

D𝑞𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑥 (1) = 𝑥 (1) = 0,
𝑥 (0) = ∫1

0
𝑥 (𝑡) 𝑑Λ (𝑡) ,

(3)

where 𝐷𝑞𝑥 denotes the left-handed Riemann-Liouville
derivative of order q and 2 < 𝑞 ≤ 3 is a real number.
𝜆[𝑥] = ∫1

0
𝑥(𝑡)𝑑Λ(𝑡) denotes a Stieltjes integral with a suitable

function Λ of bounded variation. Different from [23] and
other works, we only use the iterative methods to obtain the
existence and uniqueness of positive solution. Moreover, the
estimation of the approximation error and the convergence
rate have also been derived.

Hindawi
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For clarity in presentation, we also list below some
assumptions to be used later in the paper.(𝐻1) : 𝑓 : (0, 1)× (0, +∞) → [0, +∞) is continuous, and
for (𝑡, 𝑢) ∈ (0, 1) × (0, +∞), 𝑓 is increasing with respect to 𝑢
and there exists a constant 𝑘 ∈ (0, 1) such that, for ∀𝜎 ∈ (0, 1],

𝑓 (𝑡, 𝜎𝑢) ≥ 𝜎𝑘𝑓 (𝑡, 𝑢) . (4)

It is easy to see that if 𝜎 ∈ (1, +∞), then 𝑓(𝑡, 𝜎𝑢) ≤ 𝜎𝑘𝑓(𝑡, 𝑢).
(𝐻2) : 0 ≤ 𝐴 = ∫1

0
(1 − 𝑡)𝑞−1𝑑Λ(𝑡) < 1, 𝑞 ∈ (2, 3],

(𝐻3) : ∫1
0
𝑑Λ(𝑡) ≥ 0, ∫1

0
𝑑Λ(𝑡) ̸= 1.

2. Preliminaries

For the convenience of the reader, we present here some
necessary definitions from fractional calculus theory. These
definitions and properties can be found in the recent mono-
graph [23].

Definition 1. The Riemann-Liouville fractional integral of
order 𝑞 > 0 of a function 𝑥 : (0,∞) → 𝑅 is given by

𝐼𝑞𝑥 (𝑡) = 1
Γ (𝑞) ∫𝑡

0
(𝑡 − 𝑠)𝑞−1 𝑥 (𝑠) 𝑑𝑠, (5)

provided that the right-hand side is pointwise defined on(0,∞).
Definition 2. The Riemann-Liouville fractional derivative of
order 𝑞 > 0 of a continuous function 𝑥 : (0,∞) → 𝑅 is given
by

𝐷𝑞𝑥 (𝑡) = 1
Γ (𝑛 − 𝑞) ( 𝑑

𝑑𝑡)
𝑛 ∫𝑡
0

𝑥 (𝑠)
(𝑡 − 𝑠)𝑞−𝑛+1𝑑𝑠, (6)

where 𝑛1 ≤ 𝑞 < 𝑛, 𝑛 = [𝑞] + 1, 𝑞 > 0, provided that the
right-hand side is pointwise defined on (0,∞). In particular,

𝐷𝑛𝑥 (𝑡) = 𝑥(𝑛) (𝑡) , 𝑛 = 1, 2, 3, . . . . (7)

Lemma 3 (see [13]). Assume that (𝐻1) − (𝐻3) hold. Let 𝑦 ∈𝐿1((0, 1), [0, +∞)).Then boundary value problem

D𝑞𝑢 (𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (1) = 𝑢 (1) = 0,
𝑢 (0) = ∫1

0
𝑢 (𝑡) 𝑑Λ (𝑡)

(8)

has the unique solution given by the following formula:

𝑢 (𝑡) = ∫1
0

𝐺𝑞 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (9)

where
𝐺 (𝑡, 𝑠)

= {{{
(1 − 𝑡)𝑞−1 𝑠𝑞−1, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1;
(1 − 𝑡)𝑞−1 𝑠𝑞−1 − (𝑠 − 𝑡)𝑞−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐺𝑞 (𝑡, 𝑠) = 𝐺 (𝑡, 𝑠) + (1 − 𝑡)𝑞−11 − 𝐴 ∫1
0

𝐺 (𝑡, 𝑠) 𝑑Λ (𝑡) .
(10)

One can prove that 𝐺(𝑡, 𝑠), 𝐺𝑞(𝑡, 𝑠) have the following
properties.

Lemma 4. Note that 𝐺𝑞(𝑡, 𝑠) is the Green function of problem
(8).

Lemma 5 (see [12]). For 𝑡, 𝑠 ∈ [0, 1], one has
1

Γ (𝑞)𝑚 (𝑡) 𝑘 (𝑠) ≤ 𝐺 (𝑡, 𝑠) ≤ 1
Γ (𝑞 − 1)𝑘 (𝑠) ,

1
Γ (𝑞)𝑚 (𝑡) 𝑘 (𝑠) ≤ 𝐺 (𝑡, 𝑠) ≤ 1

Γ (𝑞 − 1)𝑚 (𝑡) ,
(11)

where

𝑘 (𝑠) = 𝑠𝑞−1 (1 − 𝑠) ,
𝑚 (𝑡) = 𝑡 (1 − 𝑡)𝑞−1 . (12)

Lemma 6.

𝑔 (𝑠) (1 − 𝑡)𝑞−1 ≤ 𝐺𝑞 (𝑡, 𝑠) ≤ 𝑀(1 − 𝑡)𝑞−1 (13)

where 𝑀 > 0 is a constant and 𝑔(𝑠) ∈ 𝐿1(0, 1) is nonnegative
for any 𝑠 ∈ (0, 1).
Proof. We have the estimation

𝐺𝑞 (𝑡, 𝑠) ≤ 1
Γ (𝑞 − 1) (1 − 𝑡)𝑞−1 + (1 − 𝑡)𝑞−11 − 𝐴

⋅ ∫1
0

1
Γ (𝑞 − 1) (1 − 𝑡)𝑞−1 𝑑Λ (𝑡)

= 1
Γ (𝑞 − 1) [

[
1 + ∫1
0
(1 − 𝑡)𝑞−1 𝑑Λ (𝑡)

1 − 𝐴 ]
]

(1 − 𝑡)𝑞−1

= [ 1
Γ (𝑞 − 1)

1
1 − 𝐴] (1 − 𝑡)𝑞−1 = 𝑀(1 − 𝑡)𝑞−1 ,

(14)

𝐺𝑞 (𝑡, 𝑠) ≥ 1
Γ (𝑞)

(1 − 𝑡)𝑞−11 − 𝐴
⋅ ∫1
0
𝑡 (1 − 𝑡)𝑞−1 𝑠𝑞−1 (1 − 𝑠) 𝑑Λ (𝑡)

= 1
Γ (𝑞) [(1 − 𝑡)𝑞−11 − 𝐴 ∫1

0
𝑡 (1 − 𝑡)𝑞−1 𝑑Λ (𝑡)]

⋅ 𝑠𝑞−1 (1 − 𝑠)
= [

[
1

Γ (𝑞)
∫1
0
𝑡 (1 − 𝑡)𝑞−1𝑑Λ (𝑡)

1 − 𝐴 𝑠𝑞−1 (1 − 𝑠)]
]

⋅ (1 − 𝑡)𝑞−1 = 𝑔 (𝑠) (1 − 𝑡)𝑞−1 ,

(15)

where𝑀 = (1/Γ(𝑞−1))(1/(1−𝐴)) and 𝑔(𝑠) = (1/Γ(𝑞))(∫1
0
𝑡(1

− 𝑡)𝑞−1𝑑Λ(𝑡)/(1 − 𝐴))𝑠𝑞−1(1 − 𝑠).Thus, (13) holds.
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3. The Main Results

Throughout this paper, we will work in the space 𝐸 = 𝐶[0, 1],
which is a Banach space if it is endowed with the norm ‖ 𝑢 ‖=
max𝑡∈[0,1]|𝑢(𝑡)| for any 𝑢 ∈ 𝐸.

Define the set 𝑃 in 𝐸 as follows:𝑃 = {𝑢 ∈ 𝐸 | there exists positive constants 0 < 𝑙𝑢 < 1 <𝐿𝑢 such that 𝑙𝑢(1 − 𝑡)𝑞−1 ≤ 𝑢(𝑡) ≤ 𝐿𝑢(1 − 𝑡)𝑞−1, 𝑡 ∈ [0, 1]}.
And define the operator 𝑇 : 𝐸 → 𝐸.

𝑇𝑢 (𝑡) = ∫1
0

𝐺𝑞 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠. (16)

Evidently (1 − 𝑡)𝑞−1 ∈ 𝑃. Therefore, 𝑃 is not empty.

Theorem 7. Assume that (𝐻1)-(𝐻3) hold. And
0 < ∫1
0

𝑓 (𝑡, (1 − 𝑡)𝑞−1) 𝑑𝑡 < ∞. (17)

Then BVP (3) has at least one positive solution 𝑢(𝑡), and there
exist constants 0 < 𝑙𝑢 < 1 < 𝐿𝑢 satisfying

𝑙𝑢 (1 − 𝑡)𝑞−1 ≤ 𝑢 (𝑡) ≤ 𝐿𝑢 (1 − 𝑡)𝑞−1 , 𝑡 ∈ [0, 1] . (18)

Proof. It is clear that 𝑢 is a solution of (3) if and only if 𝑢 is a
fixed point of 𝑇.
Claim 1.The operator 𝑇 : 𝑃 → 𝑃 is nondecreasing.

In fact, for 𝑢 ∈ 𝐸, it is obvious that 𝑢 ∈ 𝐸, 𝑇𝑢(1) =
𝑇𝑢(1) = 0, 𝑇𝑢(0) = ∫1

0
𝑇𝑢(𝑡)𝑑Λ(𝑡), and 𝑇𝑢(𝑡) > 0 for𝑡 ∈ (0, 1). For any 𝑢 ∈ 𝑃, we have that, for 𝑡 ∈ [0, 1],

𝑇𝑢 (𝑡) = ∫1
0
𝐺𝑞 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠.

≤ 𝑀 (1 − 𝑡)𝑞−1 𝑓 (𝑠, 𝐿𝑢 (1 − 𝑠)𝑞−1) 𝑑𝑠
≤ ∫1
0
𝑀(1 − 𝑡)𝑞−1 𝐿𝑘𝑢𝑓 (𝑠, (1 − 𝑠)𝑞−1)

≤ 𝐿𝑇𝑢 (1 − 𝑡)𝑞−1

(19)

and

𝑇𝑢 (𝑡) = ∫1
0
𝐺𝑞 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠.

≥ 𝑔 (𝑠) (1 − 𝑡)𝑞−1 𝑓 (𝑠, 𝑙𝑢 (1 − 𝑠)𝑞−1) 𝑑𝑠
≥ (1 − 𝑡)𝑞−1 𝑙𝑘𝑢 ∫1

0
𝑔 (𝑠) 𝑓 (𝑠, (1 − 𝑠)𝑞−1)

= 𝑙𝑇𝑢 (1 − 𝑡)𝑞−1 ,

(20)

where 𝐿𝑇𝑢 and 𝑙𝑇𝑢 are positive constants satisfying
𝐿𝑇𝑢 > max{1, ∫1

0
𝑀𝐿𝑘𝑢𝑓 (𝑠, (1 − 𝑠)𝑞−1)} ,

0 < 𝑙𝑇𝑢 < min{1, 𝑙𝑘𝑢 ∫1
0
𝑔 (𝑠) 𝑓 (𝑠, (1 − 𝑠)𝑞−1)} .

(21)

Thus, it follows that there are constants 0 < 𝑙𝑇𝑢 < 1 < 𝐿𝑇𝑢
such that, for 𝑡 ∈ [0, 1],

𝑙𝑇𝑢 (1 − 𝑡)𝑞−1 ≤ 𝑇𝑢 (𝑡) ≤ 𝐿𝑇𝑢 (1 − 𝑡)𝑞−1 . (22)

Therefore, for any 𝑢(𝑡) ∈ 𝑃, 𝑇𝑢(𝑡) ∈ 𝑃, i.e., 𝑇 is the operator𝑃 → 𝑃. From (16), it is easy to see that 𝑇 is nondecreasing
for 𝑢.Hence, Claim 1 holds.

Claim2.We take 𝑒(𝑡) = (1−𝑡)𝑞−1. Let𝛿 and 𝛾be fixed numbers
satisfying

0 < 𝛿 ≤ 𝑙1/(1−𝑘)𝑇𝑒 ,
𝛾 ≥ 𝐿1/(1−𝑘)𝑇𝑒 , (23)

and assume that

𝑢0 = 𝛿𝑒 (𝑡) ,
V0 = 𝛾𝑒 (𝑡) , (24)

𝑢𝑛 = 𝑇𝑢𝑛−1,
V𝑛 = 𝑇V𝑛−1,

𝑛 = 1, 2, 3, . . . .
(25)

Then

𝑢0 ≤ 𝑢1 ≤ . . . ≤ 𝑢𝑛 ≤ . . . V𝑛 ≤ . . . ≤ V1 ≤ V0, (26)

and there exists 𝑢∗ ∈ 𝑃 such that

𝑢𝑛 (𝑡) → 𝑢∗ (𝑡) ,
V𝑛 (𝑡) → 𝑢∗ (𝑡) , (27)

uniformly on [0, 1].
In fact, 0 < 𝑙𝑇𝑒 < 1 < 𝐿𝑇𝑒 since 𝑇𝑒 ∈ 𝑃.Therefore, 0 < 𝛿 <1 < 𝛾. From (24), we have 𝑢0, V0 ∈ 𝑃 and 𝑢0 ≤ V0.
On the other hand,

𝑢1 = 𝑇𝑢0 (𝑡) = ∫1
0

𝐺𝑞 (𝑡, 𝑠) 𝑓 (𝑠, 𝛿𝑒 (𝑠)) 𝑑𝑠
≥ 𝛿𝑘 ∫1

0
𝐺𝑞 (𝑡, 𝑠) 𝑓 (𝑠, 𝑒 (𝑠)) 𝑑𝑠 = 𝛿𝑘𝑇𝑒 ≥ 𝛿𝑘𝑙𝑇𝑒𝑒 (𝑡)

≥ 𝛿𝑘𝛿1−𝑘𝑒 (𝑡) = 𝑢0,
V1 = 𝑇V0 (𝑡) = ∫1

0
𝐺𝑞 (𝑡, 𝑠) 𝑓 (𝑠, 𝛾𝑒 (𝑠)) 𝑑𝑠

≤ 𝛾𝑘 ∫1
0

𝐺𝑞 (𝑡, 𝑠) 𝑓 (𝑠, 𝑒 (𝑠)) 𝑑𝑠 = 𝛾𝑘𝑇𝑒 ≤ 𝛾𝑘𝑙𝑇𝑒𝑒 (𝑡)
≤ 𝛾𝑘𝛾1−𝑘𝑒 (𝑡) = V0,

(28)

and since 𝑢0 ≤ V0 and 𝑇 is nondecreasing, by induction, (26)
holds.

Let 𝑐0 = 𝛿/𝛾, and then 0 < 𝑐0 < 1. It follows from (4) that

𝑇 (𝑐0𝑢) ≥ 𝑐𝑘0𝑇𝑢. (29)
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And for any natural number 𝑛,
𝑢𝑛 = 𝑇𝑢𝑛−1 = 𝑇𝑛𝑢0 = 𝑇𝑛 (𝛿𝑒 (𝑡)) = 𝑇𝑛 (𝑐0𝛾𝑒 (𝑡))

≥ 𝑐𝑘𝑛0 𝑇𝑛 (𝛾𝑒 (𝑡)) = 𝑐𝑘𝑛0 V𝑛.
(30)

Thus, for any natural number 𝑛 and 𝑝∗, we have
0 ≤ 𝑢𝑛+𝑝∗ − 𝑢𝑛 ≤ V𝑛 − 𝑢𝑛 ≤ (1 − 𝑐𝑘𝑛0 ) V𝑛

≤ (1 − 𝑐𝑘𝑛0 ) 𝛾𝑒 (𝑡) , (31)

which implies that there exists 𝑢∗ ∈ 𝑃 such that (27) holds
and Claim 2 holds.

Letting 𝑛 → ∞ in 𝑢𝑛 = 𝑇𝑢𝑛−1 and noting the fact that 𝑇
is continuous, we obtain 𝑢∗(𝑡) = 𝑇𝑢∗(𝑡), which is a positive
solution of BVP (3).The proof ofTheorem 7 is now complete.

Theorem 8. Assume that (𝐻1)-(𝐻3) hold. Then
(i) BVP (3) has unique positive solution 𝑢∗(𝑡), and there

exist constants 𝑙, 𝐿 with 0 < 𝑙 < 1 < 𝐿 such that

𝑙 (1 − 𝑡)𝑞−1 ≤ 𝑢∗ (𝑡) ≤ 𝐿 (1 − 𝑡)𝑞−1 , 𝑡 ∈ [0, 1] . (32)

(ii) For any initial value 𝑥0 ∈ 𝑃, there exists a sequence𝑥𝑛(𝑡) that uniformly converges to the unique positive solution𝑢∗(𝑡), and one has the error estimation

max {𝑥𝑛 (𝑡) − 𝑢∗ (𝑡)} = ∘ (1 − 𝜆𝑘𝑛) , (33)

where 𝜆 is a constant with 0 < 𝜆 < 1 and determined by 𝑥0.
Proof. Let 𝑢0, V0, 𝑢𝑛, V𝑛 be defined in (24) and (25).

(i) It follows fromTheorem 7 that BVP (3) has a positive
solution 𝑢∗(𝑡) ∈ 𝑃, which implies that there exist constants𝑙 and 𝐿 with 0 < l < 𝐿 < 1 such that 𝑢∗(𝑡) satisfies (18).
Let V∗(𝑡) be another positive solution of BVP (3); then from
Theorem 7 we have that there exist constants 𝑐1 and 𝑐2 with0 < 𝑐1 < 1 < 𝑐2 such that

𝑐1 (1 − 𝑡)𝑞−1 ≤ V∗ (𝑡) ≤ 𝑐2 (1 − 𝑡)𝑞−1 , 𝑡 ∈ [0, 1] . (34)

Let 𝛿 defined in (23) be small enough such that 𝛿 < 𝑐1 and 𝛾
defined in (23) be large enough such that 𝛾 > 𝑐2.Then

𝑢0 (𝑡) ≤ V∗ (𝑡) ≤ V0 (𝑡) , 𝑡 ∈ [0, 1] . (35)

Note that 𝑇V∗ = V∗ and 𝑇 is nondecreasing; we have

𝑢𝑛 (𝑡) ≤ V∗ (𝑡) ≤ V𝑛 (𝑡) , 𝑡 ∈ [0, 1] . (36)

Letting 𝑛 → ∞ in (36), we obtain that V∗ = 𝑢∗. Hence, the
positive solution of BVP (3) is unique.

(ii) From (i), we know that the positive solution 𝑢∗ to BVP
(3) is unique. For any 𝑥0 ∈ 𝑃, there exist constants 𝑙0 and 𝐿0
with 0 < 𝑙0 < 1 < 𝐿0 such that

𝑙0 (1 − 𝑡)𝑞−1 ≤ 𝑥0 (𝑡) ≤ 𝐿0 (1 − 𝑡)𝑞−1 , 𝑡 ∈ [0, 1] . (37)

Similar to (i), we can let 𝛿 and 𝛾 defined by (23) satisfy 𝛿 < 𝑙0
and 𝛾 > 𝐿0. Then

𝑢0 (𝑡) ≤ 𝑥0 (𝑡) ≤ V0 (𝑡) , 𝑡 ∈ [0, 1] . (38)

Let 𝑥𝑛 = 𝑇𝑥𝑛−1, 𝑛 = 1, 2, . . . . Note that 𝑇 is nondecreasing;
we have

𝑢𝑛 (𝑡) ≤ 𝑥𝑛 (𝑡) ≤ V𝑛 (𝑡) , 𝑡 ∈ [0, 1] . (39)

Letting 𝑛 → ∞ in (39), it follows that 𝑥𝑛 uniformly
converges to the unique positive solution 𝑢∗ for BVP (3),
where

𝑥𝑛 = ∫1
0
𝐺𝑞 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥𝑛−1 (𝑠)) 𝑑𝑠, 𝑛 = 1, 2, . . . . (40)

At the same time, (33) follows from (31). Thus, the proof of
the theorem is complete.

4. An Example

D5/2𝑥 (𝑡) + sin (𝑡) (𝑥1/2 (𝑡) + 𝑥1/3 (𝑡)) = 0,
𝑡 ∈ (0, 1) ,

𝑥 (1) = 𝑥 (1) = 0,
𝑥 (0) = ∫1

0
𝑥 (𝑡) 𝑑Λ (𝑡) ,

(41)

where

Λ (𝑡) =
{{{{{{{{{{{{{

0, 𝑡 ∈ [0, 12) ;
2, 𝑡 ∈ [1

2 , 34) ;
1, 𝑡 ∈ [3

4 , 1] .
(42)

Analysis 1. Let

𝑞 = 5
2 ,

𝑓 (𝑡, 𝑥) = sin (𝑡) (𝑥1/2 (𝑡) + 𝑥1/3 (𝑡)) ,
(43)

and then for any 𝜎 ∈ (0, 1), we take 𝑘 = 1/2 and have

𝑓 (𝑡, 𝜎𝑢) ≥ 𝜎𝑘𝑓 (𝑡, 𝑢) . (44)

Then (𝐻1) holds.
In addition, we have

0 < 𝐴 = ∫1
0
(1 − 𝑡)𝑞−1 𝑑Λ (𝑡) = √2

2 − 1
8 < 1.

0 < ∫1
0

𝑑Λ (𝑡) = 3
4 < 1.

(45)

Then (𝐻2) and (𝐻3) hold.
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And

0 < ∫1
0

𝑓 (𝑡, (1 − 𝑡)5/2−1) 𝑑𝑡 < ∞. (46)

Hence all conditions of Theorem 7 are satisfied, and
consequently we have the following corollary.

Corollary 9. Problem (41) has unique positive solution 𝑥∗(𝑡).
For any initial value 𝑥0 ∈ 𝑃, the successive iterative sequence𝑥𝑛(𝑡) generated by

𝑥𝑛 (𝑡) = ∫1
0
𝐺𝑞 (𝑡, 𝑠) sin (𝑠) (𝑥1/2𝑛−1 (𝑠) + 𝑥1/3𝑛−1 (𝑠)) 𝑑𝑠,

𝑛 = 1, 2, . . . ,
(47)

uniformly converges to the unique positive solution 𝑥∗(𝑡) on[0, 1]. One has the error estimation

max {𝑥𝑛 (𝑡) − 𝑥∗ (𝑡)} = ∘ (1 − 𝜆(1/2)𝑛) , (48)

where 𝜆 is a constant with 0 < 𝜆 < 1 and determined by the
initial value 𝑥0. And there are constants 𝑙, 𝐿 with 0 < 𝑙 < 1 < 𝐿
such that

𝑙 (1 − 𝑡)3/2 ≤ 𝑥∗ (𝑡) ≤ 𝐿 (1 − 𝑡)3/2 , 𝑡 ∈ [0, 1] . (49)
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We study the existence and uniqueness of positive solution for a class of nonlinear binary operator equations systems by means
of the cone theory and monotone iterative technique, under more general conditions. Also, we give the iterative sequence of the
solution and the error estimation of the system. Moreover, we use this new result to study the existence and uniqueness of the
solutions for fractional differential equations systems involving integral boundary value conditions in ordered Banach spaces as an
application. The results obtained in this paper are more general than many previous results and complement them.

1. Introduction

In this paper, using the cone theory and monotone iterative
technique, we consider the following nonlinear nonmono-
tone binary equations systems in real Banach spaces,

𝑥 = 𝐴 (𝑥, 𝑥) ,
𝑥 = 𝐵 (𝑥, 𝑥) , (1)

where 𝐴, 𝐵: 𝐷 × 𝐷 → 𝐸, 𝐷 is a subset of real Banach
spaces. There have appeared a series of research results
concerning the nonlinear operator equation 𝑥 = 𝐴(𝑥, 𝑥),𝑥 = 𝐴𝑥 [1–7], the sum of several classes of mixed-monotone
operator equations, and the nonlinear equations systems (1)
[8], in recent years. The techniques they used are cone and
semiorder [9, 10], the Granas fixed-point index theory [11],
the equivalent classes (which are called components) of a real
Banach space [12], the Ishikawa iteration process [13, 14], etc.

In [15], Zhang investigated the existence and uniqueness
of solutions for a class of nonlinear operator equations 𝑥 =𝐴𝑥 in ordered Banach space, by using the cone theory and
Banach contraction mapping principle. The assumption they
used is
− 𝐵𝑛0 (𝑥 − 𝑦) ≤ 𝐴𝑥 − 𝐴𝑦 ≤ 𝐵𝑛0 (𝑥 − 𝑦) ,

∀𝑥, 𝑦 ∈ 𝐸, 𝑥 ≥ 𝑦, (2)

where 𝑃 is a generating normal cone, 𝐴: 𝐸 → 𝐸 is a
nonlinear operator, 𝐵: 𝐸 → 𝐸 is a positive linear bounded
operator with 𝑟(𝐵) < 1 (where 𝑟(𝐵) is the spectral radius of𝐵), and 𝑛0 is a positive integer.

In [16], Zhang investigated the existence and uniqueness
theorems of fixed points to a class of mixed-monotone
operators with convexity and concavity, in which suppose
that there exist V > 𝜃, 𝑐 > 1/2 such that 𝜃 < 𝐴(V, 𝜃) ≤ V
and

𝐴 (𝜃, V) ≥ 𝑐𝐴 (V, 𝜃) . (3)

But in [15, 16], they did not consider the nonmonotone
binary operator equations systems 𝑥 = 𝐴(𝑥, 𝑥), 𝑥 = 𝐵(𝑥, 𝑥),
where 𝐴, 𝐵: 𝐷 × 𝐷 → 𝐸 are two nonlinear operators and𝐷 is the order interval in 𝐸. In this article, the existence and
uniqueness of positive solution for nonlinear nonmonotone
binary operator equations systems are established under
more general conditions, even not supposing the generat-
ing of cone 𝑃. Compared with [16], we do not need the
assumption of convexity-concavity. Moreover, the operators
we consider are 𝑇𝑚0-increasing in 𝑥 and the different upper
and lower bounds in formula (6) are more general; the
results here cannot be obtained by using Banach contraction
mapping principle. Also, different from the results in [15], the
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iterative sequence of the solution and the error estimation of
the system are obtained.

As an application, we study the existence and unique-
ness of positive solutions and iterative approximation of
the unique solution for the following fractional differential
equations involving integral boundary value problems:

−𝐷𝛼0+𝑢 (𝑡) = 𝑓1 (𝑡, 𝑢 (𝑡) , V (𝑡) , 𝐷𝛼𝑘0+𝑢 (𝑠) , 𝐷𝛿𝑘0+V (𝑠)) ,
𝑡 ∈ 𝐼,

−𝐷𝛼0+V (𝑡) = 𝑓2 (𝑡, V (𝑡) , 𝑢 (𝑡) , 𝐷𝛼𝑘0+V (𝑠) ,𝐷𝛿𝑘0+𝑢 (𝑠)) ,
𝑡 ∈ 𝐼, 𝑛 − 1 < 𝛼 ≤ 𝑛,

𝑢 (0) = 𝐷𝛾10+𝑢 (0) = 𝐷𝛾20+𝑢 (0) = ⋅ ⋅ ⋅ = 𝐷𝛾𝑛−20+ 𝑢 (0)
= 0,

V (0) = 𝐷𝛾10+V (0) = 𝐷𝛾20+V (0) = ⋅ ⋅ ⋅ = 𝐷𝛾𝑛−20+ V (0)
= 0,

𝐷𝛽10+𝑢 (1) = ∫𝜂
0
ℎ (𝑠) 𝐷𝛽20+𝑢 (𝑠) 𝑑𝐴𝑠

+ ∫1
0
𝑎 (𝑠) 𝐷𝛽30+𝑢 (𝑠) 𝑑𝐴 (𝑠) ,

𝐷𝛽10+V (1) = ∫𝜂
0
ℎ (𝑠) 𝐷𝛽20+V (𝑠) 𝑑𝐴𝑠

+ ∫1
0
𝑎 (𝑠) 𝐷𝛽30+V (𝑠) 𝑑𝐴 (𝑠) ,

(4)

where 𝑛 ≥ 2, 𝐷𝛼0+𝑢, 𝐷𝛼𝑘0+𝑢, 𝐷𝛿𝑘0+𝑢 (𝑘 = 1, 2, . . . , 𝑛 − 2), 𝐷𝛾𝑘0+𝑢,(𝑘 = 1, 2, . . . , 𝑛 − 2), 𝐷𝛽𝑖0+𝑢 (𝑖 = 1, 2, 3) is the standard
Riemann-Liouville derivatives and 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑘 − 1 <𝛼𝑘, 𝛿𝑘, 𝛾𝑘 ≤ 𝑘 (𝑘 = 1, 2, . . . , 𝑛 − 2), 𝑛 − 𝑘 − 1 < 𝛼 − 𝛼𝑘 ≤ 𝑛 − 𝑘,𝑛 − 𝑘 − 1 < 𝛼 − 𝛿𝑘 ≤ 𝑛 − 𝑘, 𝑛 − 𝑘 − 1 < 𝛼 − 𝛾𝑘 ≤ 𝑛 − 𝑘,(𝑘 = 1, 2, . . . , 𝑛 − 2), 𝛽1 ≥ 𝛽2, 𝛽1 ≥ 𝛽3, 𝛼 − 𝛽1 > 1, 𝛽 − 𝛽1 > 1,𝛽𝑖 − 𝛼𝑛−2 ≥ 0, 𝛽𝑖 − 𝛿𝑛−2 ≥ 0 (𝑖 = 1, 2, 3), 𝑓: 𝐼 × 𝐸4 → 𝐸 is
continuous and 𝑎, ℎ ∈ 𝐶(𝐼,R+), 𝐴 is a function of bounded
variation, ∫𝜂

0
𝐷𝛽20+V(𝑠)𝑑𝐴(𝑠), and ∫1

0
𝐷𝛽30+V(𝑠)𝑑𝐴(𝑠) denote the

Riemann-Stieltjes integral with respect to 𝐴.
Recently, fractional differential equations, arising in the

mathematicalmodeling of systems and processes, have drawn
more and more attention of the research community due
to their numerous applications in various fields of science
such as engineering, chemistry, physics, and mechanics.
Boundary value problems of fractional differential equations
have been investigated for many authors [17–22]. Now, there
are many papers dealing with the problem for different kinds
of boundary value conditions such as multipoint boundary
condition [23, 24], integral boundary condition [25–31], and
many other boundary conditions [32]. From the application,
we can see that the fixed-point theorems in this paper have
extensive applied background. The results presented here are
more general and complement many previous known results.

2. Preliminaries

Now we present briefly some definitions, lemmas, and basic
results that are to be used in the article; for convenience of the
reader, we refer the reader to [3, 4, 10, 33, 34] for more details.

Suppose that (𝐸, ‖ ⋅ ‖) is a real Banach space, and 𝜃 is the
zero element of 𝐸. Recall that a nonempty closed convex set𝑃 ⊂ 𝐸 is a cone if it satisfies (1) 𝑥 ∈ 𝑃, 𝜆 ≥ 0 ⇒ 𝜆𝑥 ∈ 𝑃;
(2) 𝑥 ∈ 𝑃, −𝑥 ∈ 𝑃 ⇒ 𝑥 = 𝜃. The real Banach space 𝐸 can
be partially ordered by a cone 𝑃 ⊂ 𝐸, i.e., 𝑥 ≤ 𝑦 if and only if𝑦−𝑥 ∈ 𝑃. If 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦, then we denote 𝑥 < 𝑦 or 𝑦 > 𝑥.
Let 𝐶[𝐼, 𝐸] = {𝑥(𝑡): 𝐼 → 𝐸 | 𝑥(𝑡) is continuous}. Then𝐶[𝐼, 𝐸] is a Banach space with the norm ‖𝑥‖𝑐 = max𝑡∈𝐼‖𝑥(𝑡)‖,
for 𝑥 ∈ 𝐶[𝐼, 𝐸].

The cone 𝑃 is called normal if there exists a constant 𝑁 >0 such that for all 𝑥, 𝑦 ∈ 𝐸, 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝑁‖𝑦‖,
and the smallest 𝑁 is called the normality constant of 𝑃. If𝑥1, 𝑥2 ∈ 𝐸, 𝑥1 ≤ 𝑥2, the set [𝑥1, 𝑥2] = {𝑥 ∈ 𝐸 | 𝑥1 ≤ 𝑥 ≤ 𝑥2}
is called the order interval between 𝑥1 and 𝑥2.
Definition 1 ([3, 4]). Let𝐷 be a subset of a real orderedBanach
space 𝐸; 𝐴: 𝐷 × 𝐷 → 𝐸 is said to be a mixed-monotone
operator if 𝐴(𝑥, 𝑦) is increasing in 𝑥 and decreasing in 𝑦; i.e.,𝑥𝑖, 𝑦𝑖 ∈ 𝐷 (𝑖 = 1, 2), 𝑥1 ≤ 𝑥2, 𝑦1 ≥ 𝑦2 imply 𝐴(𝑥1, 𝑦1) ≤𝐴(𝑥2, 𝑦2). The element 𝑥 ∈ 𝐷 is called a fixed point of 𝐴 if𝐴(𝑥, 𝑥) = 𝑥.

3. Main Results

Theorem 2. Let 𝐸 be a real Banach space, 𝑃 be a normal cone
in 𝐸, and 𝐷 = [𝑢0, V0] = {𝑥 ∈ 𝐸 | 𝑢0 ≤ 𝑥 ≤ V0} be
the order interval in 𝐸. Assume that 𝐴, 𝐵: 𝐷 × 𝐷 → 𝐸 are
two nonlinear operators, 𝑇, 𝐿: 𝐸 → 𝐸 are two positive linear
bounded operators and satisfy the following conditions:

(𝐽0) 𝑢0 ≤ 𝐴(𝑢0, V0), 𝐵(V0, 𝑢0) ≤ V0.(𝐽1) For all 𝑥 ∈ 𝐷, 𝐴(𝑥, 𝑦) and 𝐵(𝑥, 𝑦) are decreasing
in 𝑦, i.e., for any 𝑥 ∈ 𝐷, 𝑦1, 𝑦2 ∈ 𝐷, 𝑦1 ≤ 𝑦2 implies𝐴(𝑥, 𝑦1) ≥ 𝐴(𝑥, 𝑦2), 𝐵(𝑥, 𝑦1) ≥ 𝐵(𝑥, 𝑦2); and there exist two
positive numbers 𝑀𝑖 > 0 (𝑖 = 1, 2) such that for all 𝑦 ∈ 𝐷,𝑥1, 𝑥2 ∈ 𝐷, 𝑥1 ≤ 𝑥2,

𝐴 (𝑥2, 𝑦) − 𝐴 (𝑥1, 𝑦) ≥ −𝑇𝑚0 (𝑥2 − 𝑥1) ,
𝐵 (𝑥2, 𝑦) − 𝐵 (𝑥1, 𝑦) ≥ −𝑇𝑚0 (𝑥2 − 𝑥1) ;

(5)

(𝐽2) 𝐼 + 𝑇𝑚0 is reversible (𝐼 is the identity operator) and(𝐼 + 𝑇𝑚0)𝑥 ≥ 𝜃 ⇒ 𝑥 ∈ 𝑃.
(𝐽3) 𝑇𝐿 = 𝐿𝑇 and there exist two positive integers 𝑚0, 𝑛0

such that 𝑟[(𝐼 +𝑇𝑚0)−1][𝑟(𝐿𝑛0) + 𝑟(𝑇𝑚0)] < 1 (where 𝑟(⋅) is the
spectral radius of linear bounded operator) and

− 𝑇𝑚0 (𝑦 − 𝑥) ≤ 𝐵 (𝑦, 𝑥) − 𝐴 (𝑥, 𝑦) ≤ 𝐿𝑛0 (𝑦 − 𝑥) ,
∀𝑥, 𝑦 ∈ 𝐷, 𝑥 ≤ 𝑦. (6)
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Then the nonlinear operator equations system (1) has a unique
solution (𝑥∗, 𝑥∗) in𝐷×𝐷. And for any initial values𝑥0, 𝑦0 ∈ 𝐷,𝑥0 ≤ 𝑦0, by constructing successively the sequences as follows:
𝑥𝑛 = (𝐼 + 𝑇𝑚0)−1 [𝐴 (𝑥𝑛−1, 𝑦𝑛−1) + 𝑇𝑚0𝑥𝑛−1] ,
𝑦𝑛 = (𝐼 + 𝑇𝑚0)−1 [𝐵 (𝑦𝑛−1, 𝑥𝑛−1) + 𝑇𝑚0𝑦𝑛−1] ,

𝑛 = 1, 2, . . . ,
(7)

we have 𝑥𝑛 → 𝑥∗, 𝑦𝑛 → 𝑥∗ in 𝐸, as 𝑛 → ∞. Moreover, for
any 𝑟[(𝐼 + 𝑇𝑚0)−1][𝑟(𝐿𝑛0) + 𝑟(𝑇𝑚0)] < 𝛿 < 1, there exists 𝑛1
such that 𝑥𝑛 − 𝑥∗ ≤ 2𝑁𝛿𝑛 V0 − 𝑢0 ,𝑦𝑛 − 𝑥∗ ≤ 2𝑁𝛿𝑛 V0 − 𝑢0 ,

𝑛 ≥ 𝑛1.
(8)

Proof. Since 𝐼 + 𝑇𝑚0 is reversible, let
𝐹 (𝑥, 𝑦) = (𝐼 + 𝑇𝑚0)−1 [𝐴 (𝑥, 𝑦) + 𝑇𝑚0𝑥] ,
𝐺 (𝑦, 𝑥) = (𝐼 + 𝑇𝑚0)−1 [𝐵 (𝑦, 𝑥) + 𝑇𝑚0𝑦] ,

𝑥, 𝑦 ∈ 𝐷.
(9)

Then (7) can be written as
𝑥𝑛 = 𝐹 (𝑥𝑛−1, 𝑦𝑛−1) ,
𝑦𝑛 = 𝐺 (𝑦𝑛−1, 𝑥𝑛−1) ,

𝑛 = 1, 2, . . . .
(10)

By (𝐽1), (𝐽2), it is easy to prove that 𝐹 and 𝐺 satisfy the
following conditions:(𝐴1) By (𝐼 + 𝑇𝑚0) 𝑥 ≥ 𝜃 ⇒ 𝑥 ∈ 𝑃, we know 𝐹, 𝐺: 𝐷 ×𝐷 → 𝐸 are two mixed-monotone operators.(𝐴2) For all 𝑥, 𝑦 ∈ 𝐷,

𝐺(𝑦, 𝑥) − 𝐹 (𝑥, 𝑦)
= (𝐼 + 𝑇𝑚0)−1 [𝐵 (𝑦, 𝑥) + 𝑇𝑚0𝑦]

− (𝐼 + 𝑇𝑚0)−1 [𝐴 (𝑥, 𝑦) + 𝑇𝑚0𝑥]
= (𝐼 + 𝑇𝑚0)−1 [(𝐵 (𝑦, 𝑥) − 𝐴 (𝑥, 𝑦)) + 𝑇𝑚0 (𝑦 − 𝑥)] .

(11)

Combining with (𝐽3), it is easy to prove that
𝜃 ≤ 𝐺 (𝑦, 𝑥) − 𝐹 (𝑥, 𝑦) ≤ 𝐻 (𝑦 − 𝑥) ,

∀𝑥, 𝑦 ∈ 𝐷, 𝑥 ≤ 𝑦, (12)

where 𝐻 ≜ (𝐼 + 𝑇𝑚0)−1(𝐿𝑛0 + 𝑇𝑚0) and 𝐼 is the identity
operator.(𝐴3) Also, by (𝐽0), we have

𝐹 (𝑢0, V0) = (𝐼 + 𝑇𝑚0)−1 [𝐴 (𝑢0, V0) + 𝑇𝑚0𝑢0]
≥ (𝐼 + 𝑇𝑚0)−1 [𝑢0 + 𝑇𝑚0𝑢0] = 𝑢0,

(13)

𝐺 (V0, 𝑢0) = (𝐼 + 𝑇𝑚0)−1 [𝐵 (V0, 𝑢0) + 𝑇𝑚0V0]
≤ (𝐼 + 𝑇𝑚0)−1 [V0 + 𝑇𝑚0V0] = V0.

(14)

Thus, combining with (12), we have

𝑢0 ≤ 𝐹 (𝑢0, V0) ≤ 𝐺 (V0, 𝑢0) ≤ V0. (15)

Let 𝑢𝑛 = 𝐹(𝑢𝑛−1, V𝑛−1), V𝑛 = 𝐺(V𝑛−1, 𝑢𝑛−1) (𝑛 = 1, 2, . . .).
Thus, by (15), we know

𝑢0 ≤ 𝑢1 ≤ V1 ≤ V0. (16)

Therefore, by (𝐴1) and (𝐴2), using mathematical induction,
we can easily prove that

𝑢0 ≤ 𝑢1 ≤ ⋅ ⋅ ⋅ ≤ 𝑢𝑛 ≤ ⋅ ⋅ ⋅ ≤ V𝑛 ≤ ⋅ ⋅ ⋅ V1 ≤ V0. (17)

Firstly, we prove that

𝜃 ≤ V𝑛 − 𝑢𝑛 ≤ 𝐻𝑛 (V0 − 𝑢0) , 𝑛 = 1, 2, . . . . (18)

By (𝐴2), we can easily prove that

𝜃 ≤ V1 − 𝑢1 ≤ 𝐺 (V0, 𝑢0) − 𝐹 (𝑢0, V0) ≤ 𝐻 (V0 − 𝑢0) , (19)

i.e., (18) holds for 𝑛 = 1. Suppose that (18) holds for 𝑛 = 𝑘, i.e.,
𝜃 ≤ V𝑘 − 𝑢𝑘 ≤ 𝐻𝑘 (V0 − 𝑢0) . (20)

Then, for 𝑛 = 𝑘 + 1, by (𝐴1) and (𝐴2) we know
𝑢𝑘+1 = 𝐹 (𝑢𝑘, V𝑘) ≤ 𝐺 (V𝑘, 𝑢𝑘) = V𝑘+1,

𝜃 ≤ V𝑘+1 − 𝑢𝑘+1 = 𝐺 (V𝑘, 𝑢𝑘) − 𝐹 (𝑢𝑘, V𝑘)
≤ 𝐻 (V𝑘 − 𝑢𝑘) ≤ 𝐻𝑘+1 (V0 − 𝑢0) .

(21)

By (19)-(21), using mathematical induction, we know (18)
holds.

Next we prove that {𝑥𝑛} is a Cauchy sequence. From 𝑇𝐿 =𝐿𝑇, we have (𝐼 + 𝑇𝑚0)−1(𝐿𝑛0 + 𝑇𝑚0) = (𝐿𝑛0 + 𝑇𝑚0)(𝐼 + 𝑇𝑚0)−1.
Then

𝑟 [(𝐼 + 𝑇𝑚0)−1 (𝐿𝑛0 + 𝑇𝑚0)]
≤ 𝑟 [(𝐼 + 𝑇𝑚0)−1] 𝑟 (𝐿𝑛0 + 𝑇𝑚0)
≤ 𝑟 [(𝐼 + 𝑇𝑚0)−1] [𝑟 (𝐿𝑛0) + 𝑟 (𝑇𝑚0)] < 1.

(22)

Consequently, there exists 𝛿 > 0 such that

lim
𝑛→∞

𝐻𝑛1/𝑛 = 𝑟 (𝐻) = 𝑟 [(𝐼 + 𝑇𝑚0)−1 (𝐿𝑛0 + 𝑇𝑚0)]
≤ 𝑟 [(𝐼 + 𝑇𝑚0)−1] [𝑟 (𝐿𝑛0) + 𝑟 (𝑇𝑚0)]
< 𝛿 < 1.

(23)

Thus, there exists 𝑛1 such that
𝐻𝑛 < 𝛿𝑛, 𝑛 ≥ 𝑛1. (24)

Then by (17), we have

𝜃 ≤ 𝑢𝑛 ≤ 𝑢𝑛+𝑝 ≤ V𝑛+𝑝 ≤ V𝑛, 𝑛, 𝑝 = 1, 2, . . . . (25)
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Consequently, by (18) and (25), we have

𝜃 ≤ 𝑢𝑛+𝑝 − 𝑢𝑛 ≤ V𝑛 − 𝑢𝑛 ≤ 𝐻𝑛 (V0 − 𝑢0) ,
𝜃 ≤ V𝑛 − V𝑛+𝑝 ≤ V𝑛 − 𝑢𝑛 ≤ 𝐻𝑛 (V0 − 𝑢0) ,

𝑛, 𝑝 = 1, 2, . . . .
(26)

Therefore, by (24), (26) and the normality of cone 𝑃, we have
𝑢𝑛+𝑝 − 𝑢𝑛 ≤ 𝑁 𝐻𝑛 (V0 − 𝑢0) ≤ 𝑁𝛿𝑛 V0 − 𝑢0 ,
V𝑛 − V𝑛+𝑝

 ≤ 𝑁 𝐻𝑛 (V0 − 𝑢0) ≤ 𝑁𝛿𝑛 V0 − 𝑢0 ,
𝑛 ≥ 𝑛1, 𝑝 = 1, 2, . . . ,

(27)

where 𝑁 is the normality constant of 𝑃. Consequently, {𝑢𝑛}
and {V𝑛} areCauchy sequences. Since𝐸 is complete, thus there
exist 𝑢∗, V∗ ∈ 𝐷, such that

lim
𝑛→∞

𝑢𝑛 = 𝑢∗,
lim
𝑛→∞

V𝑛 = V∗. (28)

And by (17), we know

𝑢𝑛 ≤ 𝑢∗ ≤ V∗ ≤ V𝑛, 𝑛 = 0, 1, 2, . . . . (29)

Thus, 𝑢∗, V∗ ∈ 𝐷. By (18) and (29), we have

𝜃 ≤ V∗ − 𝑢∗ ≤ V𝑛 − 𝑢𝑛 ≤ 𝐻𝑛 (V0 − 𝑢0) ,
𝑛 = 0, 1, 2, . . . . (30)

Thus, by (26), (30) and the normality of cone 𝑃, we have
V∗ − 𝑢∗ ≤ 𝑁 𝐻𝑛 (V0 − 𝑢0) ≤ 𝑁𝛿𝑛 V0 − 𝑢0 → 0,

𝑛 → ∞. (31)

Consequently, 𝑢∗ = V∗. Let 𝑥∗ := 𝑢∗ = V∗; by (𝐴1) and (𝐴2),
we have

𝑢𝑛+1 = 𝐹 (𝑢𝑛, V𝑛) ≤ 𝐹 (𝑥∗, 𝑥∗) ≤ 𝐺 (𝑥∗, 𝑥∗)
≤ 𝐺 (V𝑛, 𝑢𝑛) = V𝑛+1, 𝑛 = 1, 2, . . . . (32)

Let 𝑛 → ∞, by (32) and the normality of 𝑃 we have𝐹(𝑥∗, 𝑥∗) = 𝐺(𝑥∗, 𝑥∗) = 𝑥∗. Therefore, by the definitions
of 𝐹 and 𝐺, we have 𝑥∗ = 𝐴(𝑥∗, 𝑥∗), 𝑥∗ = 𝐵(𝑥∗, 𝑥∗); i.e.,(𝑥∗, 𝑥∗) is the solution of operator equation (1).

Finally, we prove that (𝑥∗, 𝑥∗) is the unique solution of
operator equations systems (1) in𝐷×𝐷. In fact, suppose (𝑥, 𝑥)
is another solution of equations systems (1) in 𝐷 × 𝐷, then
by (𝐴1), using mathematical induction, we can easily see that𝑢𝑛 ≤ 𝑥 ≤ V𝑛 (𝑛 = 1, 2, . . .). Thus, by (28) and the normality of𝑃, we have 𝑥 = 𝑥∗. Therefore, the operator equations systems
(1) have a unique solution (𝑥∗, 𝑥∗) in 𝐷 × 𝐷.

Now for any initial points 𝑥0, 𝑦0 ∈ 𝐷, 𝑥0 ≤ 𝑦0, we
construct successively the sequences

𝑥𝑛 = 𝐹 (𝑥𝑛−1, 𝑦𝑛−1) ,
𝑦𝑛 = 𝐺 (𝑦𝑛−1, 𝑥𝑛−1) ,

𝑛 = 1, 2, . . . .
(33)

Since 𝑥0, 𝑦0 ∈ 𝐷, i.e.,

𝑢0 ≤ 𝑥0 ≤ 𝑦0 ≤ V0. (34)

Suppose

𝑢𝑛−1 ≤ 𝑥𝑛−1 ≤ 𝑦𝑛−1 ≤ V𝑛−1. (35)

Then

𝑢𝑛 = 𝐹 (𝑢𝑛−1, V𝑛−1) ≤ 𝑥𝑛 = 𝐹 (𝑥𝑛−1, 𝑦𝑛−1) ≤ 𝑦𝑛
= 𝐺 (𝑦𝑛−1, 𝑥𝑛−1) ≤ V𝑛 = 𝐺 (V𝑛−1, 𝑢𝑛−1) . (36)

Thus, by mathematical induction, we have

𝑢𝑛 ≤ 𝑥𝑛 ≤ 𝑦𝑛 ≤ V𝑛, 𝑛 = 0, 1, 2, . . . . (37)

By (18) and (37), we have

𝜃 ≤ 𝑥𝑛 − 𝑢𝑛 ≤ V𝑛 − 𝑢𝑛 ≤ 𝐻𝑛 (V0 − 𝑢0) , (38)

𝜃 ≤ 𝑥∗ − 𝑢𝑛 ≤ V𝑛 − 𝑢𝑛 ≤ 𝐻𝑛 (V0 − 𝑢0) . (39)

Thus,
𝑥𝑛 − 𝑥∗ ≤ 𝑥𝑛 − 𝑢𝑛 + 𝑥∗ − 𝑢𝑛

≤ 2𝑁𝐻𝑛 (V0 − 𝑢0) ≤ 2𝑁𝛿𝑛 V0 − 𝑢0 ,
𝑛 ≥ 𝑛1.

(40)

In the same way, we can prove that
𝑦𝑛 − 𝑥∗ ≤ 2𝑁𝛿𝑛 V0 − 𝑢0 , 𝑛 ≥ 𝑛1. (41)

Consequently, by (40) and (41) we know that (8) holds.

Taking 𝑚0 = 𝑛0 = 1 in Theorem 2, then we get the
following corollary.

Corollary 3. Let 𝐸 be a real Banach space, 𝑃 be a normal
cone in 𝐸, and 𝐷 = [𝑢0, V0] = {𝑥 ∈ 𝐸 | 𝑢0 ≤ 𝑥 ≤ V0} be
the order interval in 𝐸. Assume that 𝐴, 𝐵: 𝐷 × 𝐷 → 𝐸 are
two nonlinear operators, 𝑇, 𝐿: 𝐸 → 𝐸 are two positive linear
bounded operators and satisfy the following conditions:(𝑄0) 𝑢0 ≤ 𝐴(𝑢0, V0), 𝐵(V0, 𝑢0) ≤ V0.(𝑄1) For all 𝑥 ∈ 𝐷, 𝐴(𝑥, 𝑦) and 𝐵(𝑥, 𝑦) are decreasing
in 𝑦, i.e., for any 𝑥 ∈ 𝐷, 𝑦1, 𝑦2 ∈ 𝐷, 𝑦1 ≤ 𝑦2 implies𝐴(𝑥, 𝑦1) ≥ 𝐴(𝑥, 𝑦2), 𝐵(𝑥, 𝑦1) ≥ 𝐵(𝑥, 𝑦2); and there exist two
positive numbers 𝑀𝑖 > 0 (𝑖 = 1, 2) such that for all 𝑦 ∈ 𝐷,𝑥1, 𝑥2 ∈ 𝐷, 𝑥1 ≤ 𝑥2,

𝐴 (𝑥2, 𝑦) − 𝐴 (𝑥1, 𝑦) ≥ −𝑇 (𝑥2 − 𝑥1) ,
𝐵 (𝑥2, 𝑦) − 𝐵 (𝑥1, 𝑦) ≥ −𝑇 (𝑥2 − 𝑥1) ; (42)

(𝑄2) 𝑇𝐿 = 𝐿𝑇, 𝑟[(𝐼 + 𝑇)−1][𝑟(𝐿) + 𝑟(𝑇)] < 1 (where 𝑟(⋅)
is the spectral radius of linear bounded operator) and

− 𝑇 (𝑦 − 𝑥) ≤ 𝐵 (𝑦, 𝑥) − 𝐴 (𝑥, 𝑦) ≤ 𝐿 (𝑦 − 𝑥) ,
∀𝑥, 𝑦 ∈ 𝐷, 𝑥 ≤ 𝑦. (43)
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Then the nonlinear operator equations system (1) has a unique
solution (𝑥∗, 𝑥∗) in𝐷×𝐷. And for any initial values𝑥0, 𝑦0 ∈ 𝐷,𝑥0 ≤ 𝑦0, by constructing successively the sequences as follows:
𝑥𝑛 = (𝐼 + 𝑇)−1 [𝐴 (𝑥𝑛−1, 𝑦𝑛−1) + 𝑇𝑥𝑛−1] ,
𝑦𝑛 = (𝐼 + 𝑇)−1 [𝐵 (𝑦𝑛−1, 𝑥𝑛−1) + 𝑇𝑦𝑛−1] ,

𝑛 = 1, 2, . . . ,
(44)

we have 𝑥𝑛 → 𝑥∗, 𝑦𝑛 → 𝑥∗ in 𝐸, as 𝑛 → ∞. Moreover, for
any 𝑟[(𝐼 + 𝑇)−1][𝑟(𝐿) + 𝑟(𝑇)] < 𝛿 < 1, there exists 𝑛1 such that

𝑥𝑛 − 𝑥∗ ≤ 2𝑁𝛿𝑛 V0 − 𝑢0 , 𝑛 ≥ 𝑛1,
𝑦𝑛 − 𝑥∗ ≤ 2𝑁𝛿𝑛 V0 − 𝑢0 , 𝑛 ≥ 𝑛1. (45)

4. An Application for Fractional
Differential Equations Involving Integral
Boundary Value Problems

Now we present briefly some definitions, lemmas, and basic
results that are to be used in the article for convenience of the
reader. We refer the reader to [35–39] for more details.

Definition 4 ([35, 36, 38, 39]). The Riemann-Liouville frac-
tional integral of order 𝛼 > 0 of a function 𝑢: (0, +∞) → R

is given by

𝐼𝛼0+𝑢 (𝑡) = 1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑢 (𝑠) 𝑑𝑠 (46)

provided that the right-hand side is pointwise defined on(0, +∞).

Definition 5 ([35, 36, 38, 39]). The Riemann-Liouville frac-
tional derivative of order 𝛼 > 0 of a continuous function 𝑢:(0, +∞) → R is given by

𝐷𝛼0+𝑢 (𝑡) = 1
Γ (𝑛 − 𝛼) (

𝑑
𝑑𝑡)
𝑛 ∫𝑡
0

𝑢 (𝑠)
(𝑡 − 𝑠)𝛼−𝑛+1𝑑𝑠, (47)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of the number𝛼, provided that the right-hand side is pointwise defined on(0, +∞).
Lemma 6 ([35, 36, 38, 39]). (1) If 𝑢 ∈ 𝐿1(0, 1) and 𝛼 > 𝛽 > 0,
then

𝐼𝛼0+𝐼𝛽0+𝑢 (𝑡) = 𝐼𝛼+𝛽
0+

𝑢 (𝑡) ,
𝐷𝛽
0+
𝐼𝛼0+𝑢 (𝑡) = 𝐼𝛼−𝛽

0+
𝑢 (𝑡) ,

𝐷𝛽
0+
𝐼𝛽
0+
𝑢 (𝑡) = 𝑢 (𝑡) .

(48)

(2) If 𝑢 ∈ 𝐿1(0, 1) and 𝛼 > 0, then 𝐷𝛼0+𝑢(𝑡) = 0 has unique
solution

𝑢 (𝑡) = 𝑐1𝑡𝛼−1 + 𝑐2𝑡𝛼−2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝛼−𝑛, (49)

where 𝑐𝑖 ∈ R (𝑖 = 0, 1, 2, . . . , 𝑛), 𝑛 = [𝛼] + 1.
Lemma 7 ([35, 36, 38, 39]). Let 𝛼 > 0 and let 𝑓(𝑥) be
integrable; then

𝐼𝛼0+𝐷𝛼0+𝑓 (𝑢) = 𝑓 (𝑢) + 𝑐1𝑢𝛼−1 + 𝑐2𝑢𝛼−2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑢𝛼−𝑛, (50)

where 𝑐𝑖 ∈ R (𝑖 = 1, 2, . . . , 𝑛) and 𝑛 is the smallest integer
greater than or equal to 𝛼.
Lemma 8 ([37]). Let 𝑓 ∈ 𝐿1(0, 1) ∩ 𝐶(0, 1), 𝑛 − 1 < 𝛼 ≤ 𝑛.
Assume that the following condition is satisfied:

(𝐻) Γ (𝛼 − 𝛽1)Γ (𝛼 − 𝛽2) ∫
𝜂

0
ℎ (𝑡) 𝑡𝛼−𝛽2𝑑𝐴 (𝑡) + Γ (𝛼 − 𝛽1)Γ (𝛼 − 𝛽3) ∫

1

0
𝑎 (𝑡) 𝑡𝛼−𝛽3𝑑𝐴 (𝑡) < 1; (51)

then

𝐷𝛼−𝛼𝑛−2
0+

𝑢 (𝑡) + 𝑓 (𝑡) = 0, 𝑛 − 1 < 𝛼 ≤ 𝑛, 0 < 𝑡 < 1,
𝐷𝛾𝑛−2−𝛼𝑛−2
0+

𝑢 (0) = 0,
𝐷𝛽1−𝛼𝑛−2
0+

𝑢 (1) = ∫𝜂
0
ℎ (𝑠) 𝐷𝛽2−𝛼𝑛−2

0+
𝑢 (𝑠) 𝑑𝐴 (𝑠)

+ ∫1
0
ℎ (𝑠) 𝐷𝛽3−𝛼𝑛−2

0+
𝑢 (𝑠) 𝑑𝐴 (𝑠)

(52)

has a unique positive solution

𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] , (53)

where

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠)
+ 𝑡𝛼−𝛼𝑛−2−1
Γ (𝛼 − 𝛽2)Δ

−1 ∫𝜂
0
ℎ (𝑡) 𝐺2 (𝑡, 𝑠) 𝑑𝐴 (𝑡)

+ 𝑡𝛼−𝛼𝑛−2−1
Γ (𝛼 − 𝛽3)Δ

−1 ∫1
0
𝑎 (𝑡) 𝐺3 (𝑡, 𝑠) 𝑑𝐴 (𝑡) ,

(54)

in which

𝛿1 fl ∫𝜂
0
ℎ (𝑡) 𝑡𝛼−𝛽2−1𝑑𝐴 (𝑡) ,

𝛿2 fl ∫𝜂
0
𝑎 (𝑡) 𝑡𝛼−𝛽3−1𝑑𝐴 (𝑡) ,
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Δ = 1
Γ (𝛼 − 𝛽1) −

1
Γ (𝛼 − 𝛽2)𝛿1 −

1
Γ (𝛼 − 𝛽3)𝛿2,

𝐺1 (𝑡, 𝑠) = 1
Γ (𝛼 − 𝛼𝑛−2)

⋅ {{{
𝑡𝛼−𝛼𝑛−2−1 (1 − 𝑠)𝛼−𝛽1−1 − (𝑡 − 𝑠)𝛼−𝛼𝑛−2−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
𝑡𝛼−𝛼𝑛−2−1 (1 − 𝑠)𝛼−𝛽1−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐺2 (𝑡, 𝑠) = 1
Γ (𝛼 − 𝛼𝑛−2)

⋅ {{{
𝑡𝛼−𝛽2−1 (1 − 𝑠)𝛼−𝛽1−1 − (𝑡 − 𝑠)𝛼−𝛽2−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
𝑡𝛼−𝛽2−1 (1 − 𝑠)𝛼−𝛽1−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐺3 (𝑡, 𝑠) = 1
Γ (𝛼 − 𝛼𝑛−2)

⋅ {{{
𝑡𝛼−𝛽3−1 (1 − 𝑠)𝛼−𝛽1−1 − (𝑡 − 𝑠)𝛼−𝛽3−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
𝑡𝛼−𝛽2−1 (1 − 𝑠)𝛼−𝛽3−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(55)

Lemma 9 ([37]). If the condition (𝐻) in Lemma 8 is satisfied,
the Green function 𝐺(𝑡, 𝑠) has the following properties:

(1) 𝐺(𝑡, 𝑠) > 0, for all 𝑡, 𝑠 ∈ (0, 1).
(2) For any 𝑡, 𝑠 ∈ [0, 1], we have
𝜃 ≤ 𝑡𝛼−𝛼𝑛−2−1𝑙1 (𝑠) ≤ 𝐺 (𝑡, 𝑠) ≤ 𝐿1𝑡𝛼−𝛼𝑛−2−1 ≤ 𝐿1, (56)

where

𝑙1 (𝑠) = Δ−1
Γ (𝛼 − 𝛽2) ∫

𝜂

0
ℎ (𝑡) 𝐺2 (𝑡, 𝑠) 𝑑𝐴 (𝑡)

+ Δ−1
Γ (𝛼 − 𝛽3) ∫

1

0
𝑎 (𝑡) 𝐺3 (𝑡, 𝑠) 𝑑𝐴 (𝑡) ,

𝐿1 = 1
Γ (𝛼 − 𝛼𝑛−2)
+ Δ−1
Γ (𝛼 − 𝛽2)

1
Γ (𝛼 − 𝛼𝑛−2) ∫

𝜂

0
ℎ (𝑡) 𝑑𝐴 (𝑡)

+ Δ−1
Γ (𝛼 − 𝛽3)

1
Γ (𝛼 − 𝛼𝑛−2) ∫

1

0
𝑎 (𝑡) 𝑑𝐴 (𝑡) .

(57)

In the following, we need the following assumptions:
(𝐻0) max𝑡∈𝐼 ∫10 |𝐺(𝑡, 𝜏)|𝑑𝜏 < 1, where
𝐺 (𝑡, 𝜏)

= (𝑟1 + 𝑟2) 𝐺 (𝑡, 𝜏)
+ 𝑟3Γ (𝛼𝑛−2 − 𝛼𝑘) (∫

1

𝜏
𝐺 (𝑡, 𝑠) (𝑠 − 𝜏)𝛼𝑛−2−𝛼𝑘−1 𝑑𝑠)

+ 𝑟4Γ (𝛿𝑛−2 − 𝛿𝑘) (∫
1

𝜏
𝐺 (𝑡, 𝑠) (𝑠 − 𝜏)𝛿𝑛−2−𝛿𝑘−1 𝑑𝑠) ;

(58)

(𝐻1) 𝑓𝑖 ∈ 𝐶[𝐼 × 𝐸4, 𝐸] and there exists V0 ∈ 𝐶[𝐼, 𝐸] such that
∫1
0
𝐺 (𝑡, 𝑠) 𝑓2 (𝑠, V0 (𝑠) , 𝜃, 𝐼𝛼𝑛−2−𝛼𝑘0+ V0 (𝑠) , 𝜃) 𝑑𝑠
≤ V0 (𝑡) , ∀𝑡 ∈ 𝐼;

(59)

(𝐻2) For all 𝑥𝑖, 𝑦𝑖 ∈ 𝐸 (𝑖 = 1, 2, 3, 4), 𝑦1 ≥ 𝑥1, 𝑦2 ≤ 𝑥2, 𝑦3 ≥𝑥3, 𝑦4 ≤ 𝑥4,
𝑓𝑖 (𝑡, 𝑦1, 𝑦2, 𝑦3, 𝑦4) − 𝑓𝑖 (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4) ≥ 0,

∀𝑡 ∈ 𝐼, 𝑖 = 1, 2; (60)

(𝐻3) There exist four constants 𝑟𝑖 > 0 (𝑖 = 1, 2, 3, 4) such that
for any 𝑡 ∈ 𝐼, 𝑥𝑖, 𝑦𝑖 ∈ 𝐸 (𝑖 = 1, 2, 3, 4) with 𝑥1 ≤ 𝑦1, 𝑥2 ≥ 𝑦2,𝑥3 ≤ 𝑦3, 𝑥4 ≥ 𝑦4,

0 ≤ 𝑓2 (𝑡, 𝑦1, 𝑦2, 𝑦3, 𝑦4) − 𝑓1 (𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥4)
≤ 𝑟1 (𝑦1 − 𝑥1) + 𝑟2 (𝑥2 − 𝑦2) + 𝑟3 (𝑦3 − 𝑥3)

+ 𝑟4 (𝑥4 − 𝑦4) .
(61)

Theorem 10. Let 𝐸 be a real Banach space and 𝑃 be a normal
cone in 𝐸. Assume that the conditions (𝐻) and (𝐻0)–(𝐻3) are
satisfied. Then the system of nonlinear differential equations
(50) has unique positive symmetry solution (𝑤∗, 𝑤∗) ∈ 𝐷×𝐷,
where𝐷 = [𝜃, V0] ⊂ 𝐶[𝐼, 𝐸].Moreover, for any initial functions𝑥0, 𝑦0 ∈ 𝐷, there exist monotone iteration sequences {𝑥𝑛}, {𝑦𝑛},
such that 𝑥𝑛 → 𝑤∗, 𝑦𝑛 → 𝑤∗ in 𝐶[𝐼, 𝐸], as 𝑛 → ∞, where

𝑥𝑛 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥𝑛−1 (𝑠) , 𝑦𝑛−1 (𝑠) ,

𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑥𝑛−1 (𝑠) , 𝐼𝛿𝑛−2−𝛿𝑘0+ 𝑦𝑛−1 (𝑠)) 𝑑𝑠,
𝑦𝑛 (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓2 (𝑠, 𝑦𝑛−1 (𝑠) , 𝑥𝑛−1 (𝑠) ,

𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑦𝑛−1 (𝑠) , 𝐼𝛿𝑛−2−𝛿𝑘0+ 𝑥𝑛−1 (𝑠)) 𝑑𝑠,
𝑡 ∈ 𝐼, 𝑛 = 1, 2, 3, . . . .

(62)

Proof. It is well known that (𝑢, V) ∈ 𝐶[𝐼, 𝐸] × 𝐶[𝐼, 𝐸] is a
solution of the system (50) if and only if (𝑢, V) ∈ 𝐶[𝐼, 𝐸] ×𝐶[𝐼, 𝐸] is a solution of the system of nonlinear integral
equations

𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑢 (𝑠) ,

𝐼𝛿𝑛−2−𝛿𝑘0+ V (𝑠)) 𝑑𝑠,
V (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓2 (𝑠, V (𝑠) , 𝑢 (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ V (𝑠) ,

𝐼𝛿𝑛−2−𝛿𝑘0+ 𝑢 (𝑠)) 𝑑𝑠,
𝑡 ∈ 𝐼.

(63)
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Consider the operators𝐴, 𝐵:𝐷×𝐷 → 𝐶[𝐼, 𝐸] as follows:
𝐴 (𝑢, V) (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑢 (𝑠) ,

𝐼𝛿𝑛−2−𝛿𝑘0+ V (𝑠)) 𝑑𝑠,
𝐵 (V, 𝑢) (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓2 (𝑠, V (𝑠) , 𝑢 (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ V (𝑠) ,

𝐼𝛿𝑛−2−𝛿𝑘0+ 𝑢 (𝑠)) 𝑑𝑠,
𝑢, V ∈ 𝐷, 𝑡 ∈ 𝐼.

(64)

By (𝐻2), for all (𝑢1, V1), (𝑢2, V2) ∈ 𝐷 × 𝐷, 𝑢1 ≤ 𝑢2, V1 ≥ V2,𝑡 ∈ 𝐼, we obtain
𝐴 (𝑢2, V2) (𝑡) − 𝐴 (𝑢1, V1) (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑢2 (𝑠) ,

V2 (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑢2 (𝑠) , 𝐼𝛿𝑛−2−𝛿𝑘0+ V2 (𝑠)) 𝑑𝑠 − ∫1
0
𝐺 (𝑡,

𝑠) 𝑓1 (𝑠, 𝑢1 (𝑠) , V1 (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑢1 (𝑠) ,
𝐼𝛿𝑛−2−𝛿𝑘0+ V1 (𝑠)) 𝑑𝑠 ≥ 0,

(65)

𝐵 (𝑢2, V2) (𝑡) − 𝐵 (𝑢1, V1) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓2 (𝑠, 𝑢2 (𝑠) ,

V2 (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑢2 (𝑠) , 𝐼𝛿𝑛−2−𝛿𝑘0+ V2 (𝑠)) 𝑑𝑠 − ∫1
0
𝐺 (𝑡,

𝑠) 𝑓2 (𝑠, 𝑢1 (𝑠) , V1 (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑢1 (𝑠) ,
𝐼𝛿𝑛−2−𝛿𝑘0+ V1 (𝑠)) 𝑑𝑠 ≥ 0.

(66)

Consequently, 𝐴, 𝐵:𝐷×𝐷 → 𝐶[𝐼, 𝐸] are mixed-monotone.
By (𝐻1), for all 𝑡 ∈ 𝐼, we obtain

𝐴 (𝜃, V0) (𝑡)
= ∫1
0
𝐺 (𝑡, 𝑠) 𝑓1 (𝑠, 0, V0 (𝑠) , 0, 𝐼𝛿𝑛−2−𝛿𝑘0+ V0 (𝑠)) 𝑑𝑠

≥ 0,
(67)

𝐵 (V0, 𝜃) (𝑡)
= ∫1
0
𝐺 (𝑡, 𝑠) 𝑓2 (𝑠, V0 (𝑠) , 0, 𝐼𝛼𝑛−2−𝛼𝑘0+ V0 (𝑠) , 0) 𝑑𝑠

≤ V0 (𝑡) .
(68)

By (𝐻3), for any 𝑡 ∈ 𝐼, 𝑢, V ∈ 𝐷 with 𝑢 ≤ V,

𝐵 (V, 𝑢) (𝑡) − 𝐴 (𝑢, V) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠)

⋅ 𝑓2 (𝑠, V (𝑠) , 𝑢 (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ V (𝑠) , 𝐼𝛿𝑛−2−𝛿𝑘0+ 𝑢 (𝑠)) 𝑑𝑠
− ∫1
0
𝐺 (𝑡, 𝑠)

⋅ 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑢 (𝑠) , 𝐼𝛿𝑛−2−𝛿𝑘0+ V (𝑠)) 𝑑𝑠
≥ 0.

(69)

𝐵 (V, 𝑢) (𝑡) − 𝐴 (𝑢, V) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠)

⋅ 𝑓2 (𝑠, V (𝑠) , 𝑢 (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ V (𝑠) , 𝐼𝛿𝑛−2−𝛿𝑘0+ 𝑢 (𝑠)) 𝑑𝑠
− ∫1
0
𝐺 (𝑡, 𝑠)

⋅ 𝑓1 (𝑠, 𝑢 (𝑠) , V (𝑠) , 𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑢 (𝑠) , 𝐼𝛿𝑛−2−𝛿𝑘0+ V (𝑠)) 𝑑𝑠
≤ ∫1
0
𝐺 (𝑡, 𝑠) [𝑟1 (V (𝑠) − 𝑢 (𝑠)) + 𝑟2 (V (𝑠) − 𝑢 (𝑠))

+ 𝑟3 (𝐼𝛼𝑛−2−𝛼𝑘0+ V (𝑠) − 𝐼𝛼𝑛−2−𝛼𝑘0+ 𝑢 (𝑠))
+ 𝑟4 (𝐼𝛿𝑛−2−𝛿𝑘0+ V (𝑠) − 𝐼𝛿𝑛−2−𝛿𝑘0+ 𝑢 (𝑠))] 𝑑𝑠

= ∫1
0
(𝑟1 + 𝑟2) 𝐺 (𝑡, 𝑠) (V (𝑠) − 𝑢 (𝑠)) 𝑑𝑠 + ∫1

0
𝑟3𝐺 (𝑡, 𝑠)

⋅ 𝐼𝛼𝑛−2−𝛼𝑘0+ (V (𝑠) − 𝑢 (𝑠)) 𝑑𝑠 + ∫1
0
𝑟4𝐺 (𝑡, 𝑠)

⋅ 𝐼𝛿𝑛−2−𝛿𝑘0+ (V (𝑠) − 𝑢 (𝑠)) 𝑑𝑠
= ∫1
0
(𝑟1 + 𝑟2) 𝐺 (𝑡, 𝑠) (V (𝑠) − 𝑢 (𝑠)) 𝑑𝑠 + ∫1

0
𝑟3𝐺 (𝑡, 𝑠)

⋅ ( 1
Γ (𝛼𝑛−2 − 𝛼𝑘) ∫

𝑠

0
(𝑠 − 𝜏)𝛼𝑛−2−𝛼𝑘−1

⋅ (V (𝜏) − 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠 + ∫1
0
𝑟4𝐺 (𝑡, 𝑠)

⋅ ( 1
Γ (𝛿𝑛−2 − 𝛿𝑘) ∫

𝑠

0
(𝑠 − 𝜏)𝛿𝑛−2−𝛿𝑘−1

⋅ (V (𝜏) − 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

= ∫1
0
(𝑟1 + 𝑟2) 𝐺 (𝑡, 𝑠) (V (𝑠) − 𝑢 (𝑠)) 𝑑𝑠

+ ∫1
0

𝑟3Γ (𝛼𝑛−2 − 𝛼𝑘) (∫
1

𝜏
𝐺 (𝑡, 𝑠)

⋅ (𝑠 − 𝜏)𝛼𝑛−2−𝛼𝑘−1 𝑑𝑠) (V (𝜏) − 𝑢 (𝜏)) 𝑑𝜏

+ ∫1
0

𝑟4Γ (𝛿𝑛−2 − 𝛿𝑘) (∫
1

𝜏
𝐺 (𝑡, 𝑠) (𝑠 − 𝜏)𝛿𝑛−2−𝛿𝑘−1 𝑑𝑠)

⋅ (V (𝜏) − 𝑢 (𝜏)) 𝑑𝜏
= 𝐿 (V − 𝑢) (𝑡) ,

(70)
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where

𝐿𝑢 (𝑡) = ∫1
0
[(𝑟1 + 𝑟2) 𝐺 (𝑡, 𝜏)

+ 𝑟3Γ (𝛼𝑛−2 − 𝛼𝑘) (∫
1

𝜏
𝐺 (𝑡, 𝑠) (𝑠 − 𝜏)𝛼𝑛−2−𝛼𝑘−1 𝑑𝑠)

+ 𝑟4Γ (𝛿𝑛−2 − 𝛿𝑘) (∫
1

𝜏
𝐺 (𝑡, 𝑠) (𝑠 − 𝜏)𝛿𝑛−2−𝛿𝑘−1 𝑑𝑠)]

⋅ 𝑢 (𝜏) 𝑑𝜏, ∀𝑡 ∈ 𝐼.

(71)

Set

𝐺 (𝑡, 𝜏)
= (𝑟1 + 𝑟2) 𝐺 (𝑡, 𝜏)

+ 𝑟3Γ (𝛼𝑛−2 − 𝛼𝑘) (∫
1

𝜏
𝐺 (𝑡, 𝑠) (𝑠 − 𝜏)𝛼𝑛−2−𝛼𝑘−1 𝑑𝑠)

+ 𝑟4Γ (𝛿𝑛−2 − 𝛿𝑘) (∫
1

𝜏
𝐺 (𝑡, 𝑠) (𝑠 − 𝜏)𝛿𝑛−2−𝛿𝑘−1 𝑑𝑠) ,

∀𝑡 ∈ 𝐼;

(72)

then 𝐿𝑢(𝑡) = ∫1
0
𝐺(𝑡, 𝜏)𝑢(𝜏)𝑑𝜏. Consequently, for any 𝑡 ∈ 𝐼,

for any 𝑢, V ∈ 𝐷 with 𝑢 ≤ V,

0 ≤ 𝐵 (V, 𝑢) (𝑡) − 𝐴 (𝑢, V) (𝑡) ≤ 𝐿 (V − 𝑢) (𝑡) . (73)

In the following, we prove 𝑟(𝐿) < 1. In fact, by (𝐻0), since
max𝑡∈𝐼 ∫10 |𝐺(𝑡, 𝑠)|𝑑𝑠 < 1, there exists a constant 𝑚1 : 0 <
𝑚1 < 1 such that ∫1

0
|𝐺(𝑡, 𝑠)|𝑑𝑠 ≤ 𝑚1 < 1, for any 𝑡 ∈ 𝐼. Thus,

for all 𝑡 ∈ 𝐼, 𝑢 ∈ 𝐷,

‖(𝐿𝑢) (𝑡)‖ = ∫
1

0
𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

≤ ∫1
0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

≤ ∫1
0

𝐺 (𝑡, 𝑠) 𝑑𝑠 ‖𝑢‖𝑐
≤ 𝑚1 ‖𝑢‖𝑐 ,

(74)

(𝐿2𝑢) (𝑡) =
∫
1

0
𝐺 (𝑡, 𝑠) (𝐿𝑢) (𝑠) 𝑑𝑠

≤ ∫1
0

𝐺 (𝑡, 𝑠) (𝐿𝑢) (𝑠) 𝑑𝑠

≤ ∫1
0

𝐺 (𝑡, 𝑠) ‖(𝐿𝑢) (𝑠)‖ 𝑑𝑠

≤ (∫1
0

𝐺 (𝑡, 𝑠) 𝑑𝑠)𝑚1 ‖𝑢‖𝑐
≤ 𝑚21 ‖𝑢‖𝑐 .

(75)

By mathematical induction, we can easily prove that for all
natural number 𝑛,

(𝐿𝑛𝑢) (𝑡) ≤ 𝑚𝑛1 ‖𝑢‖𝑐 , 𝑡 ∈ 𝐼; (76)

therefore,
𝐿𝑛𝑢𝑐 = max

𝑡∈𝐼

(𝐿𝑛𝑢) (𝑡) ≤ 𝑚𝑛1 ‖𝑢‖𝑐 , (77)

consequently,

𝐿𝑛 ≤ 𝑚𝑛1 , (78)

thus, 𝑟(𝐿) = lim𝑛→∞‖𝐿𝑛‖1/𝑛 ≤ 𝑚1 < 1.
Thus, all conditions of Corollary 3 are satisfied; therefore,

the conclusions of Theorem 10 hold. Consequently, the proof
of Theorem 10 is completed.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

All authors contributed equally and significantly in writ-
ing this article. All authors read and approved the final
manuscript.

Acknowledgments

The work is supported financially by the National Natural
Science Foundation of China (11371221 and 11571296) and the
Australian Research Council.

References

[1] Y. Chen, “Existence theorems of coupled fixed points,” Journal
of Mathematical Analysis and Applications, vol. 154, no. 1, pp.
142–150, 1991.

[2] Y. Chen, “Fixed points of 𝑇-monotone operators,” Nonlinear
Analysis. Theory, Methods & Applications. An International
Multidisciplinary Journal, vol. 24, no. 8, pp. 1281–1287, 1995.

[3] D. Guo, “Fixed points of mixed monotone operators with
applications,” Applicable Analysis: An International Journal, vol.
31, no. 3, pp. 215–224, 1988.

[4] D. Guo and V. Lakshmikantham, “Coupled fixed points of
nonlinear operators with applications,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 11, no. 5, pp. 623–632, 1987.

[5] L. Liu, X. Zhang, J. Jiang, and Y. Wu, “The unique solution
of a class of sum mixed monotone operator equations and its
application to fractional boundary value problems,”The Journal
of Nonlinear Science and its Applications, vol. 9, no. 5, pp. 2943–
2958, 2016.



Journal of Function Spaces 9

[6] C.Zhai andM.Hao, “Fixedpoint theorems formixedmonotone
operators with perturbation and applications to fractional dif-
ferential equation boundary value problems,” Nonlinear Analy-
sis,Theory,Methods& Applications, vol. 75, no. 4, pp. 2542–2551,
2012.

[7] Z. Zhang and K. Wang, “On fixed point theorems of mixed
monotone operators and applications,”Nonlinear Analysis:The-
ory, Methods & Applications, vol. 70, no. 9, pp. 3279–3284, 2009.

[8] G. Li and H. Duan, “On random fixed point theorems of
randommonotone operators,”AppliedMathematics Letters, vol.
18, no. 9, pp. 1019–1026, 2005.

[9] Y. Wu, “New fixed point theorems and applications of mixed
monotone operator,” Journal of Mathematical Analysis and
Applications, vol. 341, no. 2, pp. 883–893, 2008.

[10] Z. Zhang, Variational, topological, and partial order methods
with their applications, vol. 29 of Developments in Mathematics,
Springer, Heidelberg, 2013.

[11] G. Infante and M. Maciejewski, “Multiple positive solutions of
parabolic systems with nonlinear, nonlocal initial conditions,”
Journal OfThe London Mathematical Society-Second Series, vol.
94, no. 3, pp. 859–882, 2016.

[12] P. Shen, “On the existence anduniqueness theorems of solutions
for a class of the systems ofmixedmonotone operator equations
with application,” Applied Mathematics-A Journal of Chinese
Universities Series B, vol. 13, no. 3, pp. 289–294, 1998.

[13] S. Hong, “Fixed points for mixed monotone multivalued oper-
ators in Banach spaces with applications,” Journal of Mathemat-
ical Analysis and Applications, vol. 337, no. 1, pp. 333–342, 2008.

[14] L. Liu, C. Liu, F. Wang, and Y. Wu, “Strong convergence of
a general iterative algorithm for asymptotically nonexpansive
semigroups in Banach spaces,” Journal of Nonlinear Science and
its Applications. JNSA, vol. 9, no. 10, pp. 5695–5711, 2016.

[15] X. Zhang, “Fixed point theorems for a class of nonlinear
operators in Banach spaces and applications,” International
Journal of Nonlinear Analysis and Applications, vol. 69, no. 2, pp.
536–543, 2008.

[16] Z. Zhang, “New fixed point theorems of mixed monotone
operators and applications,” Journal of Mathematical Analysis
and Applications, vol. 204, no. 1, pp. 307–319, 1996.

[17] L. Guo, L. Liu, and Y. Wu, “Iterative unique positive solutions
for singular 𝑝-Laplacian fractional differential equation system
with several parameters,” Nonlinear Analysis: Modelling and
Control, vol. 23, no. 2, pp. 182–203, 2018.

[18] X. Hao, “Positive solution for singular fractional differential
equations involving derivatives,” Advances in Difference Equa-
tions, Article ID 139, 2016.

[19] X. Hao, M. Zuo, and L. Liu, “Multiple positive solutions for
a system of impulsive integral boundary value problems with
sign-changing nonlinearities,”AppliedMathematics Letters, vol.
82, pp. 24–31, 2018.

[20] L. Liu, F. Sun, X. Zhang, and Y. Wu, “Bifurcation analysis
for a singular differential system with two parameters via to
topological degree theory,” Lithuanian Association of Nonlinear
Analysts. Nonlinear Analysis: Modelling and Control, vol. 22, no.
1, pp. 31–50, 2017.

[21] X. Zhang, L. Liu, and Y. Wu, “The uniqueness of positive
solution for a singular fractional differential system involving
derivatives,” Communications in Nonlinear Science and Numer-
ical Simulation, vol. 18, no. 6, pp. 1400–1409, 2013.

[22] X. Zhang, L. Liu, and Y. Wu, “Existence and uniqueness of
iterative positive solutions for singular Hammerstein integral

equations,” Journal of Nonlinear Sciences and Applications, vol.
10, no. 7, pp. 3364–3380, 2017.

[23] L. Guo, L. Liu, and Y. Wu, “Existence of positive solutions
for singular fractional differential equations with infinite-point
boundary conditions,” Nonlinear Analysis, Modelling and Con-
trol, vol. 21, no. 5, pp. 635–650, 2016.

[24] L. Guo, L. Liu, and Y. Wu, “Existence of positive solutions
for singular higher-order fractional differential equations with
infinite-point boundary conditions,” Boundary Value Problems,
Paper No. 114, 22 pages, 2016.

[25] X. Hao and H. Wang, “Positive solutions of semipositone
singular fractional differential systems with a parameter and
integral boundary conditions,” Open Mathematics, vol. 16, pp.
581–596, 2018.

[26] H. Li, L. Liu, and Y. Wu, “Positive solutions for singular non-
linear fractional differential equation with integral boundary
conditions,” Boundary Value Problems, 2015:232, 15 pages, 2015.

[27] L. Liu, X.Hao, andY.Wu, “Positive solutions for singular second
order differential equations with integral boundary conditions,”
Mathematical and ComputerModelling, vol. 57, no. 3-4, pp. 836–
847, 2013.

[28] L. Liu, H. Li, C. Liu, and Y. Wu, “Existence and uniqueness
of positive solutions for singular fractional differential systems
with coupled integral boundary conditions,” The Journal of
Nonlinear Science and its Applications, vol. 10, no. 1, pp. 243–262,
2017.

[29] X. Liu, L. Liu, and Y. Wu, “Existence of positive solutions
for a singular nonlinear fractional differential equation with
integral boundary conditions involving fractional derivatives,”
Boundary Value Problems, 2018:24 pages, 2018.

[30] Y. Wang, L. Liu, X. Zhang, and Y. Wu, “Positive solutions of
an abstract fractional semipositone differential system model
for bioprocesses of HIV infection,” Applied Mathematics and
Computation, vol. 258, pp. 312–324, 2015.

[31] Y. Wang, L. Liu, and Y. Wu, “Positive solutions for a nonlocal
fractional differential equation,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 74, no. 11, pp. 3599–3605, 2011.

[32] C. Yuan, “Multiple positive solutions for (n-1,n)-type semiposi-
tone conjugate boundary value problems of nonlinear fractional
differential equations,” Electronic Journal of Qualitative Theory
of Differential Equations, No. 36, 12 pages, 2010.

[33] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin ,
Germany, 1985.

[34] D.Guo andV. Lakshmikantham,Nonlinear Problems inAbstract
Cones, vol. 5 ofNotes and Reports in Mathematics in Science and
Engineering, Academic Press, New York, NY, USA, 1988.

[35] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, New York, NY,
USA, Elsevier, 2006.

[36] K. S.Miller and B. Ross,An Introduction to the Fractional Calcu-
lus and Fractional Differential Equations, A Wiley-Interscience
Publication, John Wiley & Sons, New York, NY, USA, 1993.

[37] D. Min, L. Liu, and Y. Wu, “Uniqueness of positive solutions for
the singular fractional differential equations involving integral
boundary value conditions,” Boundary Value Problems, 2018:23
pages, 2018.

[38] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[39] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives, Theory and Applications, Gordon and
Breach, Yverdon, Switzerland, 1993.



Research Article
Generalization of Hermite-Hadamard Type Inequalities via
Conformable Fractional Integrals

Muhammad Adil Khan,1,2 Yousaf Khurshid,2 Ting-Song Du ,3 and Yu-Ming Chu 4

1College of Science, Hunan City University, Yiyang 413000, China
2Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
3Department of Mathematics, College of Science, China Three Gorges University, Yichang 443002, China
4Department of Mathematics, Huzhou University, Huzhou 313000, China

Correspondence should be addressed to Yu-Ming Chu; chuyuming@zjhu.edu.cn

Received 20 May 2018; Revised 6 July 2018; Accepted 24 July 2018; Published 5 August 2018

Academic Editor: Lishan Liu

Copyright © 2018 Muhammad Adil Khan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We establish a Hermite-Hadamard type identity and several new Hermite-Hadamard type inequalities for conformable fractional
integrals and present their applications to special bivariate means.

1. Introduction

In the field of nonlinear programming and optimization
theory, no one can ignore the role of convex sets and
convex functions. For the class of convex functions, many
inequalities have been introduced such as Jensen’s, Hermite-
Hadmard, and Slater’s inequalities. Among those inequalities,
the most famous and important inequality is the Hermite-
Hadamard’s inequality [1] which can be stated as follows.

Let 𝐼 ⊆ R be an interval and ℎ : 𝐼 ⊆ R → R be a convex
function defined on 𝐼. Then the double inequality

ℎ (𝑎1 + 𝑎22 ) ≤ 1𝑎2 − 𝑎1 ∫
𝑎2

𝑎1

ℎ (𝑥) 𝑑𝑥 ≤ ℎ (𝑎1) + ℎ (𝑎2)2 (1)

holds for all 𝑎1, 𝑎2 ∈ 𝐼 with 𝑎1 < 𝑎2. Both inequalities in (1)
hold in the reverse direction if the function ℎ is concave on𝐼.

In the last 60 years, many efforts have gone on gen-
eralizations, extensions, variants, and applications for the
Hermite-Hadamard’s inequality (see [2–13]). Anderson [14]
and Sarikaya et al. [15] provide the important variants for the
Hermite-Hadamard’s inequality.

Recently, the author in [16] gave a new definition for the
(conformable) fractional derivative as follows.

Let 0 < 𝛼 ≤ 1 and ℎ : [0,∞) → R be a real-
valued function. Then the 𝛼-order (conformable) fractional
derivative of ℎ at 𝑠 > 0 is defined by

𝐷𝛼 (ℎ) (𝑠) = lim
𝜖→0

ℎ (𝑠 + 𝜖𝑠1−𝛼) − ℎ (𝑠)
𝜖 . (2)

ℎ is said to be 𝛼-differentiable if the 𝛼-order (conformable)
fractional derivative of ℎ exists, and the 𝛼-order (con-
formable) fractional derivative of ℎ at 0 is defined as ℎ𝛼(0) =
lim𝑠→0+ℎ𝛼(𝑠).

Now we discuss some theorems for the (conformable)
fractional derivative.

Theorem 1. Let 𝛼 ∈ (0, 1] and ℎ1, ℎ2 be 𝛼-differentiable at 𝑠 >0. Then one has the following:

(i) (𝑑𝛼/𝑑𝛼𝑠)(𝑠𝑛) = 𝑛𝑠𝑛−𝛼 for all 𝑛 ∈ R.
(ii) (𝑑𝛼/𝑑𝛼𝑠)(𝑐) = 0 for all constants 𝑐 ∈ R.
(iii) (𝑑𝛼/𝑑𝛼𝑠)(𝑎1ℎ1(𝑠) + 𝑎2ℎ2(𝑠)) = 𝑎1(𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠)) +𝑎2(𝑑𝛼/𝑑𝛼𝑠)(ℎ2(𝑠)) for all constants 𝑎1, 𝑎2 ∈ R.
(iv) (𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠)ℎ2(𝑠))=ℎ1(𝑠)(𝑑𝛼/𝑑𝛼𝑠)(ℎ2(𝑠))+ℎ2(𝑠)(𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠)).
(v) (𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠)/ℎ2(𝑠))=(ℎ2(𝑠)(𝑑𝛼/𝑑𝛼𝑠)(ℎ1(𝑠))−ℎ1(𝑠)(𝑑𝛼/𝑑𝛼𝑠)(ℎ2(𝑠)))/(ℎ2(𝑠))2.
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(vi) (𝑑𝛼/𝑑𝛼𝑠)(ℎ1(ℎ2(𝑠))) = ℎ1(ℎ2(𝑠))(𝑑𝛼/𝑑𝛼𝑠)(ℎ2(𝑠)) if ℎ1
is differentiable at ℎ2(𝑠).

In addition,
𝑑𝛼𝑑𝛼𝑠 (ℎ1 (𝑠)) = 𝑠1−𝛼

𝑑𝑑𝑠 (ℎ1 (𝑠)) (3)

if ℎ1 is differentiable.
Definition 2 (conformable fractional integral). Let 𝛼 ∈ (0, 1]
and 0 ≤ 𝑎1 < 𝑎2. Then the function ℎ1 : [𝑎1, 𝑎2] → R is said
to be 𝛼-fractional integrable on [𝑎1, 𝑎2] if the integral

∫𝑎2
𝑎1

ℎ1 (𝑥) 𝑑𝛼𝑥 fl ∫𝑎2
𝑎1

ℎ1 (𝑥) 𝑥𝛼−1𝑑𝑥 (4)

exists and is finite. All 𝛼-fractional integrable functions on[𝑎1, 𝑎2] are indicated by 𝐿𝛼([𝑎1, 𝑎2]).
Remark 3.

𝐼𝑎1𝛼 (ℎ1) (𝑠) = 𝐼𝑎11 (𝑠𝛼−1ℎ1) = ∫𝑠
𝑎1

ℎ1 (𝑥)𝑥1−𝛼 𝑑𝑥, (5)

where the integral is the usual Riemann improper integral
and 𝛼 ∈ (0, 1].

Recently, the conformable integrals and derivatives have
attracted the attention of many researchers, and many
remarkable properties and inequalities for the conformable
integrals and derivatives can be found in the literature [17–
24]. Anderson [14] found the conformable integral version of
the Hermite-Hadamard inequality as follows.

Theorem 4 (see [14]). If 𝛼 ∈ (0, 1] and ℎ1 : [𝑎1, 𝑎2] → R

is an 𝛼-fractional differentiable function such that 𝐷𝛼(ℎ) is
increasing, then we have the following inequality:

𝛼𝑎𝛼2 − 𝑎𝛼1 ∫
𝑎2

𝑎1

ℎ (𝑥) 𝑑𝛼𝑥 ≤ ℎ (𝑎1) + ℎ (𝑎2)2 . (6)

Moreover if the function ℎ is decreasing on [𝑎1, 𝑎2], then we
have

ℎ(𝑎1 + 𝑎22 ) ≤ 𝛼𝑎𝛼2 − 𝑎𝛼1 ∫
𝑎2

𝑎1

ℎ (𝑥) 𝑑𝛼𝑥. (7)

If 𝛼 = 1, then inequalities (6) and (7) reduce to the classical
Hermite-Hadamard’s inequalities.

The main purpose of the article is to present the
conformable fractional integrals version of the Hermite-
Hadamard’s inequality. We first establish an identity for the
conformable fractional integrals (Lemma 5) and discuss their
special cases. Then applying Jensen’s inequality, power mean
inequality, Hölder inequality, the convexity of the functions𝑥𝛼−1 and −𝑥𝛼 (𝑥 > 0, 𝛼 ∈ (0, 1]), and the identity given by
Lemma 5, we obtain inequalities for conformable fractional
integrals version of the Hermite-Hadamard’s inequality. At
last, using particular classes of convex functions we find
several new inequalities for some special bivariate means. For
some related results, see [25, 26].

2. Main Results

Themain results of our work can be calculated with the help
of the following lemma associated with inequality (8).

Lemma 5. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎1 < 𝑎2, 𝛼 ∈ (0, 1], andℎ : [𝑎1, 𝑎2] → R be an 𝛼-fractional differentiable function
on (𝑎1, 𝑎2). Then the identity

(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1
⋅ ∫𝑎2
𝑎1

ℎ (𝑠) 𝑑𝛼𝑠
= 𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 [∫

1

0
(((1 − 𝑡) 𝑎1 + 𝑡𝜂)2𝛼−1

− 𝜂𝛼 ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼−1) × 𝐷𝛼 (ℎ) ((1 − 𝑡) 𝑎1 + 𝑡𝜂)
⋅ 𝑡1−𝛼𝑑𝛼𝑡] + 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 [∫

1

0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)2𝛼−1

− 𝜂𝛼 ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼−1) × 𝐷𝛼 (ℎ) ((1 − 𝑡) 𝑎2 + 𝑡𝜂)
⋅ 𝑡1−𝛼𝑑𝛼𝑡]

(8)

holds for any 𝜂 ∈ [𝑎1, 𝑎2] if𝐷𝛼(ℎ) ∈ 𝐿𝛼([𝑎1, 𝑎2]).
Proof. It follows fromTheorem 1, Definition 2, and integrat-
ing by parts that

𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 ∫
1

0
(((1 − 𝑡) 𝑎1 + 𝑡𝜂)2𝛼−1

− 𝜂𝛼 ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼−1)𝐷𝛼 (ℎ) ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡
+ 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 ∫

1

0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)2𝛼−1

− 𝜂𝛼 ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼−1)𝐷𝛼 (ℎ) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡
= 𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 ∫

1

0
(((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼 − 𝜂𝛼) ℎ ((1 − 𝑡) 𝑎1

+ 𝑡𝜂) 𝑑𝑡 + 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 ∫
1

0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼

− 𝜂𝛼) ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡

(9)

= 𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 [(((1 − 𝑡) 𝑎1 + 𝑡𝜂)
𝛼 − 𝜂𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝜂 − 𝑎1

1

0

− ∫1
0
𝛼 ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼−1

⋅ (𝜂 − 𝑎1) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝜂 − 𝑎1 𝑑𝑡]
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+ 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 [(((1 − 𝑡) 𝑎2 + 𝑡𝜂)
𝛼 − 𝜂𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝜂 − 𝑎2

1

0

− ∫1
0
𝛼 ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼−1

⋅ (𝜂 − 𝑎2) ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝜂 − 𝑎2 𝑑𝑡]
= 𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 [

𝜂𝛼 − 𝑎𝛼1𝜂 − 𝑎1 ℎ (𝑎1) −
𝛼𝜂 − 𝑎1 ∫

𝜂

𝑎1

ℎ (𝑠) 𝑑𝛼𝑠]
+ 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 [

𝑎𝛼2 − 𝜂𝛼𝑎2 − 𝜂 ℎ (𝑎2) −
𝛼𝑎2 − 𝜂 ∫

𝑎2

𝜂
ℎ (𝑠) 𝑑𝛼𝑠]

= (𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1
⋅ ∫𝑎2
𝑎1

ℎ (𝑠) 𝑑𝛼𝑠,
(10)

where we have used the changes of variable 𝑠 = (1 − 𝑡)𝑎1 + 𝑡𝜂
and 𝑠 = (1 − 𝑡)𝑎2 + 𝑡𝜂 to get the desired result.

Remark 6. Let 𝛼 = 1. Then identity (8) becomes

(𝑎2 − 𝜂) ℎ (𝑎2) + (𝜂 − 𝑎1) ℎ (𝑎1)𝑎2 − 𝑎1 − 1𝑎2 − 𝑎1 ∫
𝑎2

𝑎1

ℎ (𝑠) 𝑑𝑠
= (𝜂 − 𝑎1)2𝑎2 − 𝑎1 ∫1

0
(𝑡 − 1) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡

+ (𝑎2 − 𝜂)2𝑎2 − 𝑎1 ∫1
0
(1 − 𝑡) ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡,

(11)

which was proved by Kavurmaci et al. in [2].

Theorem 7. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎1 < 𝑎2, 𝛼 ∈ (0, 1], andℎ : [𝑎1, 𝑎2] → R be an 𝛼-differentiable function on (𝑎1, 𝑎2).
Then the inequality


(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1
− 𝛼𝑎𝛼2 − 𝑎𝛼1 ∫

𝑎2

𝑎1

ℎ (𝑠) 𝑑𝛼𝑠 ≤
(𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1 [

12𝜂𝛼 ℎ (𝑎1)
− 13𝑎𝛼1 ℎ (𝑎1) − 16𝜂𝛼 ℎ (𝑎1) + 12𝜂𝛼 ℎ (𝜂)
− 16𝑎𝛼1 ℎ (𝜂) − 13𝜂𝛼 ℎ (𝜂)]
+ (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1 [

14𝑎𝛼2 ℎ (𝑎2) + 112𝜂𝛼−1𝑎2 ℎ (𝑎2)
+ 112𝜂𝑎𝛼−12 ℎ (𝑎2) + 112𝜂𝛼 ℎ (𝑎2)

− 12𝜂𝛼 ℎ (𝑎2) + 112𝑎𝛼2 ℎ (𝜂) + 112𝜂𝛼−1𝑎2 ℎ (𝜂)
+ 112𝜂𝑎𝛼−12 ℎ (𝜂) + 14𝜂𝛼 ℎ (𝜂) − 12𝜂𝛼 ℎ (𝜂)]

(12)

holds for any 𝜂 ∈ [𝑎1, 𝑎2] if 𝐷𝛼(ℎ) ∈ 𝐿𝛼([𝑎1, 𝑎2]) and |ℎ| is
convex on [𝑎1, 𝑎2].
Proof. Let 𝑥 > 0, 𝜑1(𝑥) = 𝑥𝛼−1, and 𝜑2(𝑥) = −𝑥𝛼. Then we
clearly see that both the functions 𝜑1 (𝑥) and𝜑2(𝑥) are convex.
From Lemma 5 and the convexity of 𝜑1, 𝜑2, and |ℎ|, we have


(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1
⋅ ∫𝑎2
𝑎1

ℎ (𝑠) 𝑑𝛼𝑠 ≤
(𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1

⋅ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡 + (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡 = (𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡 + (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼+1−1 − 𝜂𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡 ≤ (𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼))

⋅ ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡 + (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼−1 ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡 ≤ (𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼))
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⋅ ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡 + (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡 ≤ (𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼))

⋅ [(1 − 𝑡) ℎ (𝑎1) + 𝑡 ℎ (𝜂)] 𝑑𝑡 + (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)

⋅ [(1 − 𝑡) ℎ (𝑎2) + 𝑡 ℎ (𝜂)] 𝑑𝑡.
(13)

From the final upper bound above, we have the following:


(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1
− 𝛼𝑎𝛼2 − 𝑎𝛼1 ∫

𝑎2

𝑎1

ℎ (𝑠) 𝑑𝛼𝑠 ≤
(𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1 [

12𝜂𝛼 ℎ (𝑎1)
− 13𝑎𝛼1 ℎ (𝑎1) − 16𝜂𝛼 ℎ (𝑎1) + 12𝜂𝛼 ℎ (𝜂)
− 16𝑎𝛼1 ℎ (𝜂) − 13𝜂𝛼 ℎ (𝜂)]
+ (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1 [

14𝑎𝛼2 ℎ (𝑎2) + 112𝜂𝛼−1𝑎2 ℎ (𝑎2)
+ 112𝜂𝑎𝛼−12 ℎ (𝑎2) + 112𝜂𝛼 ℎ (𝑎2)
− 12𝜂𝛼 ℎ (𝑎2) + 112𝑎𝛼2 ℎ (𝜂) + 112𝜂𝛼−1𝑎2 ℎ (𝜂)
+ 112𝜂𝑎𝛼−12 ℎ (𝜂) + 14𝜂𝛼 ℎ (𝜂) − 12𝜂𝛼 ℎ (𝜂)] .

(14)

Remark 8. Let 𝛼 = 1. Then inequality (12) leads to


(𝜂 − 𝑎1) ℎ (𝑎1) + (𝑎2 − 𝜂) ℎ (𝑎2)𝑎2 − 𝑎1
− 1𝑎2 − 𝑎1 ∫

𝑎2

𝑎1

ℎ (𝑥) 𝑑𝑥

≤ (𝜂 − 𝑎1)2𝑎2 − 𝑎1 [ℎ (𝜂) + 2 ℎ (𝑎1)6 ]
+ (𝑎2 − 𝜂)2𝑎2 − 𝑎1 [ℎ (𝜂) + 2 ℎ (𝑎2)6 ] ,

(15)

which was proved by Kavurmaci et al. in [2].

Theorem 9. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎2 > 𝑎1, 𝛼 ∈ (0, 1], 𝑝, 𝑞 > 1
such that 1/𝑝 + 1/𝑞 = 1 and ℎ : [𝑎1, 𝑎2] → R be an 𝛼-
differentiable function on (𝑎1, 𝑎2). Then the inequality


(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1
⋅ ∫𝑎2
𝑎1

ℎ (𝑠) 𝑑𝛼𝑠 ≤
𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 [[(𝐴1 (𝛼, 𝑝))

1/𝑝

⋅ ( ℎ (𝑎1)𝑞 + ℎ (𝜂)𝑞2 )
1/𝑞]
]

+ 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 [[(𝐵1 (𝛼, 𝑝))
1/𝑝

⋅ ( ℎ (𝑎2)𝑞 + ℎ (𝜂)𝑞2 )
1/𝑞]
]

(16)

holds for any 𝜂 ∈ [𝑎1, 𝑎2] if 𝐷𝛼(ℎ) ∈ 𝐿𝛼([𝑎1, 𝑎2]) and |ℎ|𝑞 is
convex on [𝑎1, 𝑎2], where

𝐴1 (𝛼, 𝑝) = ∫1
0
(𝜂𝛼 − (((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)))𝑝 𝑑𝑡,

𝐵1 (𝛼, 𝑝)
= ∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂)

− 𝜂𝛼)𝑝 𝑑𝑡.

(17)

Proof. It follows from inequality (13) that


(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1
⋅ ∫𝑎2
𝑎1

ℎ (𝑠) 𝑑𝛼𝑠 ≤
𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1

⋅ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼))

⋅ ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂)) 𝑑𝑡 + 𝑎2 − 𝜂𝜂𝛼 − 𝑎𝛼1
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⋅ ∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡.
(18)

Making use of Hölder’s inequality, one has

∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡
≤ (∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼))𝑝 𝑑𝑡)1/𝑝

⋅ (∫1
0

ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝑞 𝑑𝑡)
1/𝑞

≤ (𝐴1 (𝛼, 𝑝))1/𝑝
⋅ (∫1
0
((1 − 𝑡) ℎ (𝑎1)𝑞 + 𝑡 ℎ (𝜂)𝑞) 𝑑𝑡)

1/𝑞

= (𝐴1 (𝛼, 𝑝))1/𝑝(
ℎ (𝑎1)𝑞 + ℎ (𝜂)𝑞2 )

1/𝑞

.

(19)

Similarly, we have

∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)
⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡
≤ (∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂)

− 𝜂𝛼)𝑝 𝑑𝑡)1/𝑝

× (∫1
0

ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝑞 𝑑𝑡)
1/𝑞 ≤ (𝐵1 (𝛼,

𝑝))1/𝑝 (∫1
0
((1 − 𝑡) ℎ (𝑎2)𝑞 + 𝑡 ℎ (𝜂)𝑞) 𝑑𝑡)

1/𝑞

≤ (𝐵1 (𝛼, 𝑝))1/𝑝(
ℎ (𝑎2)𝑞 + ℎ (𝜂)𝑞2 )

1/𝑞

.

(20)

Hence, we have the result in (16).

Remark 10. By putting 𝛼 = 1 in (16), we obtain the inequality


(𝜂 − 𝑎1) ℎ (𝑎1) + (𝑎2 − 𝜂) ℎ (𝑎2)𝑎2 − 𝑎1 − 1𝑎2 − 𝑎1 ∫

𝑎2

𝑎1

ℎ (𝑥) 𝑑𝑥
≤ ( 1𝑝 + 1)

1/𝑝 (12)
1/𝑞 [
[
(𝜂 − 𝑎1)2 [ℎ (𝜂)𝑞 + ℎ (𝑎1)𝑞]1/𝑞 + (𝑎2 − 𝜂)2 [ℎ (𝜂)𝑞 + ℎ (𝑎2)𝑞]1/𝑞𝑎2 − 𝑎1 ]

] ,
(21)

which was proved by Kavurmaci et al. in [2].

Theorem 11. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎1 < 𝑎2, 𝛼 ∈ (0, 1], 𝑞 >1 and ℎ : [𝑎1, 𝑎2] → R be an 𝛼-differentiable function on(𝑎1, 𝑎2). Then the inequality


(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1
⋅ ∫𝑎2
𝑎1

ℎ (𝑠) 𝑑𝛼𝑠 ≤
𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 [(𝐴1 (𝛼))

1−1/𝑞

⋅ {𝐴2 (𝛼) ℎ (𝑎1)𝑞 + 𝐴3 (𝛼) ℎ (𝜂)𝑞}1/𝑞]
+ 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 [(𝐵1 (𝛼))

1−1/𝑞

⋅ {𝐵2 (𝛼) ℎ (𝑎2) + 𝐵3 (𝛼) ℎ (𝜂)}1/𝑞]

(22)

holds for any 𝜂 ∈ [𝑎1, 𝑎2] if 𝐷𝛼(ℎ) ∈ 𝐿𝛼([𝑎1, 𝑎2]) and |ℎ|𝑞 is
convex on [𝑎1, 𝑎2], where

𝐴1 (𝛼) = 𝜂𝛼 − 𝑎𝛼12 ,
𝐵1 (𝛼) = 2𝑎𝛼2 + 𝜂𝛼−1𝑎2 + 𝜂𝑎𝛼−12 − 4𝜂𝛼6 ,
𝐴2 (𝛼) = 𝜂𝛼 − 𝑎𝛼13 ,
𝐴3 (𝛼) = 𝜂𝛼 − 𝑎𝛼16 ,
𝐵2 (𝛼) = 3𝑎𝛼2 + 𝜂𝛼−1𝑎2 + 𝜂𝑎𝛼−12 − 5𝜂𝛼12 ,
𝐵3 (𝛼) = 𝑎𝛼2 + 𝜂𝛼−1𝑎2 + 𝜂𝑎𝛼−12 − 3𝜂𝛼12 .

(23)

Proof. It follows from inequality (13) that
(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1
⋅ ∫𝑎2
𝑎1

ℎ (𝑠) 𝑑𝛼𝑠 ≤
𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1
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⋅ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼))

⋅ ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡 + 𝑎2 − 𝜂𝜂𝛼 − 𝑎𝛼1
⋅ ∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡.
(24)

Making use of the power mean inequality, we get

∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡
≤ (∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) 𝑑𝑡)1−1/𝑞

× (∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼))

⋅ ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝑞 𝑑𝑡)
1/𝑞 .

(25)

Similarly, we have

∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)
⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡
≤ (∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂)

− 𝜂𝛼) 𝑑𝑡)1−1/𝑞 × (∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1)

⋅ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)
⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝑞 𝑑𝑡)

1/𝑞 .

(26)

From the convexity of |ℎ|𝑞, we have
∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝑞 𝑑𝑡
≤ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼))

⋅ [(1 − 𝑡) ℎ (𝑎1)𝑞 + 𝑡 ℎ (𝜂)𝑞] 𝑑𝑡 = ℎ (𝑎1)𝑞
⋅ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) (1 − 𝑡) 𝑑𝑡 + ℎ (𝜂)𝑞

⋅ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) 𝑡𝑑𝑡 = 𝑓 (𝑎1)𝑞 (12

⋅ 𝜂𝛼 − 13𝑎𝛼1 − 16𝜂𝛼) + ℎ (𝜂)𝑞 (12𝜂𝛼 − 16𝑎𝛼1 − 13
⋅ 𝜂𝛼)

(27)

and

∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)
⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝑞 𝑑𝑡
≤ ∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂)

− 𝜂𝛼) [(1 − 𝑡) ℎ (𝑎2)𝑞 + 𝑡 ℎ (𝜂)𝑞] 𝑑𝑡
= ℎ (𝑎2)𝑞 (14𝑎𝛼2 + 112𝜂𝛼−1𝑎2 + 112𝜂𝑎𝛼−12 + 112𝜂𝛼
− 12𝜂𝛼) + ℎ (𝜂)𝑞 ( 112𝑎𝛼2 + 112𝜂𝛼−1𝑎2 + 112𝜂𝑎𝛼−12
+ 14𝜂𝛼 − 12𝜂𝛼) ,

(28)

where we have also used the facts that

∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) 𝑑𝑡 = 𝐴1 (𝛼)
= 𝜂𝛼 − 12𝑎𝛼1 − 12𝜂𝛼,

∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼) 𝑑𝑡
= 𝐵1 (𝛼) = 13𝑎𝛼2 + 16𝜂𝛼−1𝑎2 + 16𝜂𝑎𝛼−12 + 13𝜂𝛼 − 𝜂𝛼.

(29)

Hence, we have the result in (22).

Remark 12. If 𝛼 = 1, then inequality (22) becomes


(𝜂 − 𝑎1) ℎ (𝑎1) + (𝑎2 − 𝜂) ℎ (𝑎2)𝑎2 − 𝑎1 − 1𝑎2 − 𝑎1 ∫

𝑎2

𝑎1

ℎ (𝑥) 𝑑𝑥
≤ 12 (13)

1/𝑞 [
[
(𝜂 − 𝑎1)2 [ℎ (𝜂)𝑞 + 2 ℎ (𝑎1)𝑞]1/𝑞 + (𝑎2 − 𝜂)2 [ℎ (𝜂)𝑞 + 2 ℎ (𝑎2)𝑞]1/𝑞𝑎2 − 𝑎1 ]

] ,
(30)

which can be found in [2].
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Theorem 13. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎1 < 𝑎2, 𝛼 ∈ (0, 1], 𝑞 >1 and ℎ : [𝑎1, 𝑎2] → R be an 𝛼-differentiable function on(𝑎1, 𝑎2). Then the inequality


(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1
⋅ ∫𝑎2
𝑎1

ℎ (𝑠) 𝑑𝛼𝑠 ≤
𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 [(𝐴1 (𝛼))

1−1/𝑞

⋅ {𝐴2 (𝛼) ℎ (𝑎1)𝑞 + 𝐴3 (𝛼) ℎ (𝜂)𝑞}1/𝑞]
+ 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 [(𝐵1 (𝛼))

1−1/𝑞

⋅ {𝐵2 (𝛼) ℎ (𝑎2)𝑞 + 𝐵3 (𝛼) ℎ (𝜂)𝑞}1/𝑞]

(31)

is valid for any 𝜂 ∈ [𝑎1, 𝑎2] if 𝐷𝛼(ℎ) ∈ 𝐿𝛼([𝑎1, 𝑎2]) and |ℎ|𝑞 is
convex on [𝑎1, 𝑎2], where
𝐴1 (𝛼) = 𝜂𝛼 − [ 𝜂𝛼+1 − 𝑎𝛼+11(𝛼 + 1) (𝜂 − 𝑎1)] ,
𝐵1 (𝛼) = [ 𝜂𝛼+1 − 𝑎𝛼+12(𝛼 + 1) (𝑎2 − 𝜂)] − 𝜂𝛼,
𝐴2 (𝛼) = 12𝜂𝛼

+ 𝑎𝛼+11(𝛼 + 1) (𝜂 − 𝑎1) [
(𝛼 + 2) (𝜂 − 𝑎1) − 𝑎1(𝛼 + 2) (𝜂 − 𝑎1) ]

− 𝜂𝛼+2
(𝛼 + 1) (𝜂 − 𝑎1)2 (𝛼 + 2) ,

𝐵2 (𝛼) = − 𝑎𝛼+12(𝛼 + 1) (𝑎2 − 𝜂) [
(𝛼 + 2) (𝑎2 − 𝜂) + 𝑎2(𝛼 + 2) (𝑎2 − 𝜂) ]

+ 𝜂𝛼+2
(𝛼 + 1) (𝑎2 − 𝜂)2 (𝛼 + 2) −

12𝜂𝛼,
𝐴3 (𝛼) = 12𝜂𝛼

− 𝜂𝛼+1(𝛼 + 1) (𝜂 − 𝑎1) [
(𝛼 + 2) (𝜂 − 𝑎1) − 𝜂(𝛼 + 2) (𝜂 − 𝑎1) ]

− 𝑎𝛼+21(𝛼 + 1) (𝜂 − 𝑎1)2 (𝛼 + 2) ,
𝐵3 (𝛼) = 𝜂𝛼+1(𝛼 + 1) (𝑎2 − 𝜂) [

(𝛼 + 2) (𝑎2 − 𝜂) − 𝜂(𝛼 + 2) (𝑎2 − 𝜂) ]
− 𝑎𝛼+22(𝛼 + 1) (𝑎2 − 𝜂)2 (𝛼 + 2) −

12𝜂𝛼.

(32)

Proof. FromTheorem 1, Definition 2, and Lemma 5, we get


(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1
⋅ ∫𝑎2
𝑎1

ℎ (𝑠) 𝑑𝛼𝑠 =

𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1

⋅ ∫1
0
(((1 − 𝑡) 𝑎1 + 𝑡𝜂)2𝛼−1

− 𝜂𝛼 ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼−1)𝐷𝛼 (ℎ) ((1 − 𝑡) 𝑎1
+ 𝑡𝜂) 𝑑𝑡 + 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 ∫

1

0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)2𝛼−1

− 𝜂𝛼 ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼−1)𝐷𝛼 (ℎ) ((1 − 𝑡) 𝑎2
+ 𝑡𝜂) 𝑑𝑡 ≤

𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 ∫
1

0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1

+ 𝑡𝜂)𝛼) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡 + 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1
⋅ ∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼) ℎ ((1 − 𝑡) 𝑎2

+ 𝑡𝜂) 𝑑𝑡.

(33)

Making use of power mean inequality, we get

∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂𝛼) 𝑑𝑡
≤ (∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼) 𝑑𝑡)1−1/𝑞

× (∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝑞 𝑑𝑡)
1/𝑞 .

(34)

Similarly, we have

∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼) ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡
≤ (∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼) 𝑑𝑡)1−1/𝑞

× (∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼)

⋅ ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝑞 𝑑𝑡)
1/𝑞 .

(35)
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It follows from the convexity of |ℎ|𝑞 that
∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝑞 𝑑𝑡
≤ ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼)

⋅ [(1 − 𝑡) ℎ (𝑎1)𝑞 + 𝑡 ℎ (𝜂)𝑞] 𝑑𝑡
= ℎ (𝑎1)𝑞 ∫1

0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼) (1 − 𝑡) 𝑑𝑡

+ ℎ (𝜂)𝑞 ∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼) 𝑡𝑑𝑡

= ℎ (𝑎)1𝑞(12𝜂𝛼

+ 𝑎𝛼+11(𝛼 + 1) (𝜂 − 𝑎1) [
(𝛼 + 2) (𝜂 − 𝑎1) − 𝑎1(𝛼 + 2) (𝜂 − 𝑎1) ]

− 𝜂𝛼+2
(𝛼 + 1) (𝜂 − 𝑎1)2 (𝛼 + 2)) + ℎ (𝜂)𝑞(12𝜂𝛼

− 𝜂𝛼+1(𝛼 + 1) (𝜂 − 𝑎1) [
(𝛼 + 2) (𝜂 − 𝑎1) − 𝜂(𝛼 + 2) (𝜂 − 𝑎1) ]

− 𝑎𝛼+21(𝛼 + 1) (𝜂 − 𝑎1)2 (𝛼 + 2))

(36)

and

∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼) ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝑞 𝑑𝑡
≤ ∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼)

⋅ [(1 − 𝑡) ℎ (𝑎2)𝑞 + 𝑡 ℎ (𝜂)𝑞] 𝑑𝑡
= ℎ (𝑎2)𝑞 ∫1

0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼) (1 − 𝑡) 𝑑𝑡

+ ℎ (𝜂)𝑞 ∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼) 𝑡𝑑𝑡

= ℎ (𝑎2)𝑞
⋅ (− 𝑎𝛼+12(𝛼 + 1) (𝑎2 − 𝜂) [

(𝛼 + 2) (𝑎2 − 𝜂) + 𝑎2(𝛼 + 2) (𝑎2 − 𝜂) ]
+ 𝜂𝛼+2
(𝛼 + 1) (𝑎2 − 𝜂)2 (𝛼 + 2) −

12𝜂𝛼) + ℎ (𝜂)𝑞

⋅ ( 𝜂𝛼+1(𝛼 + 1) (𝑎2 − 𝜂) [
(𝛼 + 2) (𝑎2 − 𝜂) − 𝜂(𝛼 + 2) (𝑎2 − 𝜂) ]

− 𝑎𝛼+22(𝛼 + 1) (𝑎2 − 𝜂)2 (𝛼 + 2) −
12𝜂𝛼) ,

(37)

where we have used the identities

∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎1 + 𝑡𝜂)𝛼) 𝑑𝑡
= 𝜂𝛼 − [ 𝜂𝛼+1 − 𝑎𝛼+11(𝛼 + 1) (𝜂 − 𝑎1)] ,

∫1
0
(((1 − 𝑡) 𝑎2 + 𝑡𝜂)𝛼 − 𝜂𝛼) 𝑑𝑡
= [ 𝜂𝛼+1 − 𝑎𝛼+12(𝛼 + 1) (𝑎2 − 𝜂)] − 𝜂𝛼.

(38)

Hence, we have the result in (31).

Theorem 14. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎1 < 𝑎2, 𝛼 ∈ (0, 1] andℎ : [𝑎1, 𝑎2] → R be an 𝛼-differentiable function on (𝑎1, 𝑎2).
Then the inequality


(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1
− 𝛼𝑎𝛼2 − 𝑎𝛼1 ∫

𝑎2

𝑎1

ℎ (𝑠) 𝑑𝛼𝑠
≤ 𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 [𝐴1 (𝛼)

ℎ (𝐶1 (𝛼)𝐴1 (𝛼))
]

+ 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 [𝐵1 (𝛼)
ℎ (𝐶2 (𝛼)𝐵1 (𝛼) )

]

(39)

holds for any 𝜂 ∈ [𝑎1, 𝑎2] if 𝐷𝛼(ℎ) ∈ 𝐿1𝛼([𝑎1, 𝑎2]) and |ℎ|𝑞 is
concave on [𝑎1, 𝑎2] for some 𝑞 > 1, where

𝐴1 (𝛼) = 𝜂𝛼 − 𝑎𝛼12 ,
𝐵1 (𝛼) = 2𝑎𝛼2 + 𝜂𝛼−1𝑎2 + 𝜂𝑎𝛼−12 − 4𝜂𝛼6 ,
𝐶1 (𝛼) = 𝑎1𝜂𝛼 − 2𝑎𝛼+11 + 𝜂𝛼+16 ,
𝐶2 (𝛼)
= 3𝑎𝛼+12 + 𝜂𝛼−1𝑎22 + 2𝜂𝑎𝛼2 − 4𝑎2𝜂𝛼 + 𝜂𝛼+1𝑎𝛼−12 − 3𝜂𝛼+112 .

(40)

Proof. We clearly see that |ℎ| is concave because |ℎ|𝑞 is
concave for some 𝑞 > 1 (see [27]). From Theorem 1,
Definition 2, Lemma 5, the concavity of |ℎ|, and Jensen’s
integral inequality, we have
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(𝑎𝛼2 − 𝜂𝛼) ℎ (𝑎2) + (𝜂𝛼 − 𝑎𝛼1 ) ℎ (𝑎1)𝑎𝛼2 − 𝑎𝛼1 − 𝛼𝑎𝛼2 − 𝑎𝛼1 ∫

𝑎2

𝑎1

ℎ (𝑠) 𝑑𝛼𝑠
≤ 𝜂 − 𝑎1𝑎𝛼2 − 𝑎𝛼1 ∫

1

0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡

+ 𝑎2 − 𝜂𝑎𝛼2 − 𝑎𝛼1 ∫
1

0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼) ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡,

∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) ℎ ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡
≤ (∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) 𝑑𝑡) ×

ℎ
(∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡

∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) 𝑑𝑡 )


= 𝐴1 (𝛼) ℎ (𝐶1 (𝛼)𝐴1 (𝛼)) ,

∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼) ℎ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡
≤ (∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼) 𝑑𝑡)

×
ℎ
(∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡

∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼) 𝑑𝑡 )

 = 𝐵1 (𝛼) ℎ
 (𝐶2 (𝛼)𝐵1 (𝛼)) ,

(41)

where we have used the identities

∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) 𝑑𝑡 = 𝐴1 (𝛼)
= 𝜂𝛼 − 12𝑎𝛼1 − 12𝜂𝛼,

∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼) 𝑑𝑡
= 𝐵1 (𝛼) = 13𝑎𝛼2 + 16𝜂𝛼−1𝑎2 + 16𝜂𝑎𝛼−12 + 13𝜂𝛼 − 𝜂𝛼,

∫1
0
(𝜂𝛼 − ((1 − 𝑡) 𝑎𝛼1 + 𝑡𝜂𝛼)) ((1 − 𝑡) 𝑎1 + 𝑡𝜂) 𝑑𝑡
= 𝐶1 (𝛼)

= 12𝑎1𝜂𝛼 − 13𝑎𝛼+11 − 16𝑎1𝜂𝛼 + 12𝜂𝛼+1 − 16𝜂𝑎𝛼1
− 13𝜂𝛼+1

(42)

and

∫1
0
(((1 − 𝑡) 𝑎𝛼−12 + 𝑡𝜂𝛼−1) ((1 − 𝑡) 𝑎2 + 𝑡𝜂) − 𝜂𝛼)
⋅ ((1 − 𝑡) 𝑎2 + 𝑡𝜂) 𝑑𝑡 = 𝐶2 (𝛼) = 14𝑎𝛼+12 + 112
⋅ 𝜂𝛼−1𝑎22 + 16𝜂𝑎𝛼2 − 13𝑎2𝜂𝛼 + 112𝜂𝛼+1𝑎𝛼−12 − 14𝜂𝛼+1.

(43)

Remark 15. If 𝛼 = 1, then inequality (39) becomes


(𝜂 − 𝑎1) ℎ (𝑎1) + (𝑎2 − 𝜂) ℎ (𝑎2)𝑎2 − 𝑎1 − 1𝑎2 − 𝑎1 ∫

𝑎2

𝑎1

ℎ (𝑥) 𝑑𝑥
≤ 12 [[

(𝜂 − 𝑎1)2 ℎ ((𝜂 + 2𝑎1) /3) + (𝑎2 − 𝜂)2 ℎ ((𝜂 + 2𝑎2) /3)𝑎2 − 𝑎1 ]
] .

(44)
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3. Applications to Special Means

A bivariate function 𝑀 : (0,∞) × (0,∞) → (0,∞) is
said to be a mean if min{𝑥, 𝑦} ≤ 𝑀(𝑥, 𝑦) ≤ max{𝑥, 𝑦}
for all 𝑥, 𝑦 ∈ (0,∞). Recently, the mean value theory has
been the subject of intensive research, and many remarkable
inequalities and properties for various bivariate means can be
found in the literature [28–33].

In this section, we use the results obtained in Section 2 to
give some applications to the weighted arithmetic mean

𝐴 (𝑎1, 𝑎2; 𝑤1, 𝑤2) = 𝑤1𝑎1 + 𝑤2𝑎2𝑤1 + 𝑤2 (𝑎1, 𝑎2 > 0) (45)

and (𝛼, 𝑟)-th generalized logarithmic mean

𝐿 (𝛼,𝑟) (𝑎1, 𝑎2) = [ 𝛼 (𝑎𝛼+𝑟2 − 𝑎𝛼+𝑟1 )(𝛼 + 𝑟) (𝑎𝛼2 − 𝑎𝛼1 )]
1/𝑟

(𝑎1, 𝑎2 > 0, 𝑎1 ̸= 𝑎2, 𝑟 ∈ R, 𝑟 ̸= 0, 𝛼, −𝛼 ∈ (0, 1]) .
(46)

Proposition 16. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎1 < 𝑎2 and 𝑟 > 1. Then
the inequality

𝐴 (𝑎𝑟1, 𝑎𝑟2; 𝜂𝛼 − 𝑎𝛼1 , 𝑎𝛼2 − 𝜂𝛼) − 𝐿𝑟(𝛼,𝑟) (𝑎1, 𝑎2)
≤ 𝑟 (𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1 {12𝜂𝛼 𝑎1𝑟−1 − 13𝑎𝛼1 𝑎1𝑟−1
− 16𝜂𝛼 𝑎1𝑟−1 + 12𝜂𝛼 𝜂𝑟−1 − 16𝑎𝛼1 𝜂𝑟−1
− 13𝜂𝛼 𝜂𝑟−1} + 𝑟 (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1 {14𝑎𝛼2 𝑎2𝑟−1
+ 112𝜂𝛼−1𝑎2 𝑎2𝑟−1 + 112𝜂𝑎𝛼−12 𝑎2𝑟−1
+ 112𝜂𝛼 𝑎2𝑟−1 − 12𝜂𝛼 𝑎2𝑟−1 + 112𝑎𝛼2 𝜂𝑟−1
+ 112𝜂𝛼−1𝑎2 𝜂𝑟−1 + 112𝜂𝑎𝛼−12 𝜂𝑟−1 + 14𝜂𝛼 𝜂𝑟−1
− 12𝜂𝛼 𝜂𝑟−1}

(47)

holds for any 𝛼 ∈ (0, 1] and 𝜂 ∈ [𝑎1, 𝑎2].
Proof. Let ℎ(𝑥) = 𝑥𝑟. Then the result follows easily fromThe-
orem 7 and the convexity of ℎ(𝑥) on the interval [𝑎1, 𝑎2].
Proposition 17. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎1 < 𝑎2 and 𝑟 > 1. Then
the inequality

𝐴 (𝑎−11 , 𝑎−12 ; 𝜂𝛼 − 𝑎𝛼1 , 𝑎𝛼2 − 𝜂𝛼) − 𝐿𝑟(𝛼,−1) (𝑎1, 𝑎2)
≤ (𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1 {

12𝜂𝛼 𝑎1−2 − 13𝑎𝛼1 𝑎1−2 − 16𝜂𝛼 𝑎1−2

+ 12𝜂𝛼 𝜂−2 − 16𝑎𝛼1 𝜂−2 − 13𝜂𝛼 𝜂−2}
+ (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1 {

14𝑎𝛼2 𝑎2−2 + 112𝜂𝛼−1𝑎2 𝑎2−2
+ 112𝜂𝑎𝛼−12 𝑎2−2 + 112𝜂𝛼 𝑎2−2 − 12𝜂𝛼 𝑎2−2
+ 112𝑎𝛼2 𝜂−2 + 112𝜂𝛼−1𝑎2 𝜂−2 + 112𝜂𝑎𝛼−12 𝜂−2
+ 14𝜂𝛼 𝜂−2 − 12𝜂𝛼 𝜂−2}

(48)

holds for any 𝛼 ∈ (0, 1] and 𝜂 ∈ [𝑎1, 𝑎2].
Proof. Let ℎ(𝑥) = 1/𝑥. Then Proposition 17 follows from
Theorem 7 and the convexity of the function ℎ(𝑥) on the
interval [𝑎1, 𝑎2].
Proposition 18. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎1 < 𝑎2 and 𝑟 > 1. Then
the inequality𝐴 (𝑎𝑟1, 𝑎𝑟2; 𝜂𝛼 − 𝑎𝛼1 , 𝑎𝛼2 − 𝜂𝛼) − 𝐿𝑟(𝛼,𝑟) (𝑎1, 𝑎2)

≤ 𝑟 (𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1 [(𝐴1 (𝛼))1−1/𝑞
⋅ {𝐴2 (𝛼) 𝑎1(𝑟−1)𝑞 + 𝐴3 (𝛼) 𝜂(𝑟−1)𝑞}1/𝑞]
+ 𝑟 (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1 [(𝐵1 (𝛼))1−1/𝑞
⋅ {𝐵2 (𝛼) 𝑎2(𝑟−1)𝑞 + 𝐵3 (𝛼) 𝜂(𝑟−1)𝑞}1/𝑞]

(49)

holds for all 𝛼 ∈ (0, 1] and 𝜂 ∈ [𝑎1, 𝑎2], where 𝐴 𝑖(𝛼) and𝐵𝑖(𝛼) (𝑖 = 1, 2, 3) are defined as in Theorem 11.

Proof. Let ℎ(𝑥) = 𝑥𝑟.Then Proposition 18 follows fromTheo-
rem 11 and the convexity of ℎ(𝑥) on [𝑎1, 𝑎2] immediately.

Proposition 19. Let 𝑎1, 𝑎2 ∈ R+ with 𝑎1 < 𝑎2 and 𝑟 > 1. Then
the inequality𝐴 (𝑎−11 , 𝑎−12 ; 𝜂𝛼 − 𝑎𝛼1 , 𝑎𝛼2 − 𝜂𝛼) − 𝐿𝑟(𝛼,−1) (𝑎1, 𝑎2)

≤ (𝜂 − 𝑎1)𝑎𝛼2 − 𝑎𝛼1 [(𝐴1 (𝛼))
1−1/𝑞

⋅ {𝐴2 (𝛼) 𝑎1−2𝑞 + 𝐴3 (𝛼) 𝜂−2𝑞}1/𝑞]
+ (𝑎2 − 𝜂)𝑎𝛼2 − 𝑎𝛼1 [(𝐵1 (𝛼))

1−1/𝑞

⋅ {𝐵2 (𝛼) 𝑎2−2𝑞 + 𝐵3 (𝛼) 𝜂−2𝑞}1/𝑞]

(50)

holds for all 𝛼 ∈ (0, 1] and 𝜂 ∈ [𝑎1, 𝑎2], where 𝐴 𝑖(𝛼) and𝐵𝑖(𝛼) (𝑖 = 1, 2, 3) are defined as in Theorem 11.
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Proof. Let ℎ(𝑥) = 1/𝑥. Then the result follows easily from
Theorem 11 and the convexity of ℎ(𝑥) on the interval [𝑎1,𝑎2].
4. Conclusion

In the article, we establish an identity and several new
inequalities of Hermite-Hadamard type for conformable
fractional integrals by use of the convexity theory and Jesen’s
inequality, Hölder inequality, and power mean inequality
and present their applications to special bivariate means. The
given Hermite-Hadamard type inequalities for conformable
fractional integrals are the generalizations of the correspond-
ing results established by Kavurmaci, Avci, and Özdemir in
[2], and the idea may stimulate further research in the theory
of Hermite-Hadamard’s inequalities, conformable fractional
integrals, and generalized convex functions.
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We study the sufficient conditions for the existence of a unique common fixed point of generalized 𝛼𝑠-𝜓-Geraghty contractions in
an 𝛼𝑠-complete partial 𝑏-metric space. We give an example in support of our findings. Our work generalizes many existing results
in the literature. As an application of our findings we demonstrate the existence of the solution of the system of elliptic boundary
value problems.

1. Introduction and Preliminaries

The Banach contraction mapping principle is very important
in modern mathematics. For decades, several authors have
studied existence of fixed points by contraction mappings,
such as fuzzy mappings and others, and also get some impor-
tant results, for details we can see [1–5, 5–12]. Now the theory
of fixed point has been applied in many applied mathematics
[13, 14] besides integral equations and differential equations
[15]. For decades, people have done a lot of research on this
issue and got a lot of important results [16–20].

As is well known, the existence of the solution of bound-
ary value problems is an important of differential equations.
In this paper we study the sufficient conditions for the
existence of a unique common fixed point of generalized 𝛼𝑠-𝜓-Geraghty contractions in an 𝛼𝑠-complete partial 𝑏-metric
space. As an application of our findings we demonstrate the
existence of the solution of the system of elliptic boundary
value problems.

We first give some conceptions of this paper. In 1973,
Geraghty studied a generalization of Banach contraction
principle. In 2013, Cho introduced the notion of 𝛼-Geraghty
contractive typemappings and established some unique fixed
point theorems for suchmappings in complete metric spaces.

Popescu defined the concept of triangular 𝛼-orbital admissi-
ble mappings and proved the unique fixed point theorems for
the mentioned mappings which are generalized 𝛼-Geraghty
contraction type mappings. On the other hand, Karapinar
proved the existence of a unique fixed point theorem for a
triangular 𝛼-admissible mapping which is a generalized 𝛼-𝜓-
Geraghty contraction type mapping. Shukla [21] introduced
the concept of partial 𝑏-metric space and established some
fixed point theorems. We have Figure 1 where arrows stand
for inclusions. The inverse inclusions do not hold.

In this paper, we introduce the notion of generalized 𝛼𝑠-𝜓-Geraghty contraction type mappings and develop some
new common fixed point theorems for such mappings in
an 𝛼𝑠-complete partial 𝑏-metric space. An example and an
application are given to support the theory.

We denote the set of natural numbers, rational numbers,(−∞,+∞), (0, +∞), and [0, +∞) by N, Q, R, R+, and R+0 ,
respectively.

First we recall some definitions and properties of a partial𝑏-metric space.
Shukla generalized the notion of 𝑏-metric, as follows.

Definition 1 (see [21]). Let 𝑋 be a nonempty set and 𝑠 ≥ 1
be a real number. A mapping 𝑝𝑏 : 𝑋 × 𝑋 → R+0 is said
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partial metric space partial b-metric space

Figure 1

to be a partial 𝑏-metric if it satisfies following axioms, for all𝑥, 𝑦, 𝑧 ∈ 𝑋,
(𝑝𝑏1) 𝑥 = 𝑦 if and only if 𝑝𝑏(𝑥, 𝑦) = 𝑝𝑏(𝑥, 𝑥) = 𝑝𝑏(𝑦, 𝑦)
(𝑝𝑏2) 𝑝𝑏(𝑥, 𝑥) ≤ 𝑝𝑏(𝑥, 𝑦)
(𝑝𝑏3) 𝑝𝑏(𝑥, 𝑦) = 𝑝𝑏(𝑦, 𝑥);
(𝑝𝑏4) 𝑝𝑏(𝑥, 𝑦) ≤ 𝑠[𝑝𝑏(𝑥, 𝑧) + 𝑝𝑏(𝑧, 𝑦)] − 𝑝𝑏(𝑧, 𝑧).
The triplet (𝑋, 𝑝𝑏, 𝑠) is called a partial 𝑏-metric space.

Remark 1. The self-distance 𝑝𝑏(𝑥, 𝑥), referred to the size or
weight of 𝑥, is a feature used to describe the amount of
information contained in 𝑥.
Remark 2. Obviously, every partial metric space is a partial 𝑏-
metric space with coefficient 𝑠 = 1 and every 𝑏-metric space
is a partial 𝑏-metric space with zero self-distance. However,
the converse of this fact needs not to hold.

Example 3. Let 𝑋 = R+ and 𝑘 > 1; the mapping 𝑝𝑏 : X ×𝑋 → R+ defined by

𝑝𝑏 (𝑥, 𝑦) = {(𝑥 ∨ 𝑦)𝑘 + 𝑥 − 𝑦𝑘} for all 𝑥, 𝑦 ∈ 𝑋 (1)

is a partial 𝑏-metric on 𝑋 with 𝑠 = 2𝑘. For 𝑥 = 𝑦, 𝑝𝑏(𝑥, 𝑥) =𝑥𝑘 ̸= 0, so 𝑝𝑏 is not a 𝑏-metric on 𝑋.

Let 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that 𝑥 > 𝑧 > 𝑦. Then following
inequality always holds:

(𝑥 − 𝑦)𝑘 > (𝑥 − 𝑧)𝑘 + (𝑧 − 𝑦)𝑘 . (2)

Since𝑝𝑏(𝑥, 𝑦) = 𝑥𝑘+(𝑥−𝑦)𝑘 and𝑝𝑏(𝑥, 𝑧)+𝑝𝑏(𝑧, 𝑦)−𝑝𝑏(𝑧, 𝑧) =𝑥𝑘 + (𝑥 − 𝑧)𝑘 + (𝑧 − 𝑦)𝑘,
𝑝𝑏 (𝑥, 𝑦) > 𝑝𝑏 (𝑥, 𝑧) + 𝑝𝑏 (𝑧, 𝑦) − 𝑝𝑏 (𝑧, 𝑧) . (3)

This shows that 𝑝𝑏 is not a partial metric on 𝑋.

Example 4 (see [21]). Let 𝑋 be a nonempty set and 𝑝 be a
partial metric defined on𝑋.Themapping 𝑝𝑏 : 𝑋×𝑋 → R+

defined by

𝑝𝑏 (𝑥, 𝑦) = [𝑝 (𝑥, 𝑦)]𝑞 for all 𝑥, 𝑦 ∈ 𝑋 and 𝑞 > 1 (4)

defines a partial 𝑏-metric.

Definition 5. Let (𝑋, 𝑝𝑏, 𝑠) be a partial 𝑏-metric space. The
mapping 𝑑𝑝𝑏 : 𝑋 × 𝑋 → R+0 defined by

𝑑𝑝𝑏 (𝑥, 𝑦) = 2𝑝𝑏 (𝑥, 𝑦) − 𝑝𝑏 (𝑥, 𝑥) − 𝑝𝑏 (𝑦, 𝑦)
for all 𝑥, 𝑦 ∈ 𝑋 (5)

defines a metric on 𝑋, called induced metric.

In partial 𝑏-metric space (𝑋, 𝑝𝑏, 𝑠), we immediately have
a natural definition for the open balls:

𝐵𝑝𝑏 (𝑥; 𝜖) = {𝑦 ∈ 𝑋 | 𝑝𝑏 (𝑥, 𝑦) < 𝑝𝑏 (𝑥, 𝑥) + 𝜖}
for all 𝑥 ∈ 𝑋. (6)

Remark 6. Theopen balls in a partial 𝑏-metric space (𝑋, 𝑝𝑏, 𝑠)
may not be open set.

The following example justifies Remark 6.

Example 7. Let 𝑋 = {𝑎, 𝑏, 𝑐} and define 𝑝𝑏 as follows:𝑝𝑏(𝑎, 𝑎) = 𝑝𝑏(𝑐, 𝑐) = 1, 𝑝𝑏(𝑏, 𝑏) = 1/2, 𝑝𝑏(𝑎, 𝑏) = 𝑝𝑏(𝑏, 𝑎) = 3,𝑝𝑏(𝑎, 𝑐) = 𝑝(𝑐, 𝑎) = 3/2, 𝑝𝑏(𝑏, 𝑐) = 𝑝𝑏(𝑐, 𝑏) = 1. Then 𝑝 is a
partial 𝑏-metric, 𝑐 ∈ 𝐵𝑝𝑏(𝑎; 1) but, for any 𝑟 > 0, 𝐵𝑝𝑏(𝑐; 𝑟) does
not lie in 𝐵𝑝𝑏(𝑎; 1). This implies that 𝐵𝑝𝑏(𝑎; 1) is not an open
set in (𝑋, 𝑝𝑏, 𝑠).
Definition 8. Let (𝑋, 𝑝𝑏, 𝑠) be a partial 𝑏-metric space.

(1) A sequence {𝑥𝑛}𝑛∈N in (𝑋, 𝑝𝑏, 𝑠) is called a Cauchy
sequence if lim𝑛,𝑚→∞𝑝𝑏(𝑥𝑛, 𝑥𝑚) exists and is finite.

(2) A partial 𝑏-metric space (𝑋,𝑝𝑏, 𝑠) is said to be com-
plete if every Cauchy sequence {𝑥𝑛}𝑛∈N in𝑋 converges
with respect to topology induced by its convergence,
to a point 𝜐 ∈ 𝑋 such that

𝑝𝑏 (𝑥, 𝑥) = lim
𝑛,𝑚→∞

𝑝𝑏 (𝑥𝑛, 𝑥𝑚) . (7)

Lemma 9 (see [21]). Let (𝑋, 𝑝𝑏, 𝑠) be a partial 𝑏-metric space.
Then

(1) every Cauchy sequence in (𝑋, 𝑑𝑝𝑏) is also a Cauchy
sequence in (𝑋,𝑝𝑏, 𝑠) and vice versa;

(2) a partial 𝑏-metric (𝑋, 𝑝𝑏, 𝑠) is complete if and only if
the metric space (𝑋, 𝑑𝑝𝑏) is complete;

(3) a sequence {𝑥𝑛}𝑛∈N in 𝑋 converges to a point 𝜐 ∈ 𝑋 if
and only if

lim
𝑛→∞

𝑝𝑏 (𝜐, 𝑥𝑛) = 𝑝𝑏 (𝜐, 𝜐) = lim
𝑛→∞

𝑝𝑏 (𝑥𝑛, 𝑥𝑚) . (8)

Remark 10. We know that in a metric space limit of a
convergent sequence is always unique but in a partial 𝑏-
metric space the limit of a convergent sequence may not be
unique. Indeed, if 𝑋 = R+, let 𝜎 > 0 be any constant. Define𝑝𝑏 : 𝑋×𝑋 → R+ by𝑝𝑏(𝑥, 𝑦) = 𝑥∨𝑦+𝜎 for all 𝑥, 𝑦 ∈ 𝑋, then(𝑋,𝑝𝑏, 𝑠) is a partial 𝑏-metric space with arbitrary coefficient𝑠 ≥ 1. Define the sequence {𝑥𝑛} in 𝑋 by 𝑥𝑛 = 𝜌 for all 𝑛 ∈ N.
One can note that if 𝑦 ≥ 𝜌 then 𝑝𝑏(𝑥𝑛, 𝑦) = 𝑦 + 𝜎 = 𝑝𝑏(𝑦, 𝑦);
thus lim𝑛→∞𝑝𝑏(𝑥𝑛, 𝑦) = 𝑝𝑏(𝑦, 𝑦) for all 𝑦 ≥ 𝜌. Hence, the
limit of a convergent sequence is not unique.

Definition 11 (see [22]). Let𝑇 : 𝑋 → 𝑋 and𝛼 : 𝑋×𝑋 → R+0
be two mappings. We say that 𝑇 is 𝛼-admissible if 𝛼(𝑥, 𝑦) ≥ 1
implies 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1.
Definition 12 (see [22]). Let 𝑇 : 𝑋 → 𝑋 and 𝛼 : 𝑋 ×𝑋 → R+0 be two mappings. Then 𝑇 is said to be triangular𝛼-admissible if 𝑇 satisfies the following conditions:
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(𝑇1) 𝑇 is 𝛼-admissible.
(𝑇2) 𝛼(𝑥, 𝑢) ≥ 1 and 𝛼(𝑢, 𝑦) ≥ 1 imply 𝛼(𝑥, 𝑦) ≥ 1.

Definition 13 (see [23]). Let 𝑇 : 𝑋 → 𝑋 and 𝛼 : 𝑋 × 𝑋 →
R+0 be twomappings.Then𝑇 is said to be 𝛼-orbital admissible
if

(𝑇3) 𝛼(𝑥, 𝑇𝑥) ≥ 1 implies 𝛼(𝑇𝑥, 𝑇2𝑥) ≥ 1.
Definition 14 (see [23]). Let 𝑇 : 𝑋 → 𝑋 and 𝛼 : 𝑋 × 𝑋 →
R+0 be twomappings.Then𝑇 is said to be triangular 𝛼-orbital
admissible if 𝑇 is 𝛼-orbital admissible and

(𝑇4) 𝛼(𝑥, 𝑦) ≥ 1 and 𝛼(𝑦, 𝑇𝑦) ≥ 1 imply 𝛼(𝑥, 𝑇𝑦) ≥ 1.
LetΩ denote the class of all mappings 𝛽 : R+0 → [0, 1/𝑠)

such that, for any bounded sequence {𝑡𝑛} of positive reals,𝛽(𝑡𝑛) → 1/𝑠 implies 𝑡𝑛 → 0.
We let Ψ denote the class of the functions 𝜓 : [0,∞) →

R+0 satisfying the following conditions:

(1) 𝜓 is nondecreasing.
(2) 𝜓 is continuous.
(3) 𝜓(𝑡) = 0 if and only if 𝑡 = 0.

2. Main Results

Throughout this paper we let 𝑋 = (𝑋, 𝑝𝑏, 𝑠) be a partial 𝑏-
metric space, 𝛼𝑠 : 𝑋 × 𝑋 → R+0 be a mapping, and

𝑀(𝑥, 𝑦) = max{𝑝𝑏 (𝑥, 𝑦) , 𝑝𝑏 (𝑥, 𝑆𝑥) , 𝑝𝑏 (𝑦, 𝑇𝑦) ,
𝑝𝑏 (𝑥, 𝑇𝑦) + 𝑝𝑏 (𝑦, 𝑆𝑥)

2𝑠 } .
(9)

Definition 15. The space (𝑋, 𝑝𝑏, 𝑠) is said to be 𝛼𝑠-complete if
every Cauchy sequence {𝑥𝑛} in 𝑋 satisfying 𝛼𝑠(𝑥𝑛, 𝑥𝑛+1) ≥ 𝑠2
for all 𝑛 ∈ N converges in 𝑋.

Remark 16. If 𝑋 is a complete partial 𝑏-metric space, then 𝑋
is also an 𝛼𝑠-complete partial 𝑏-metric space but the converse
is not true. The following example explains this fact.

Example 17. Let𝑋 = (0,∞) and the partial 𝑏-metric 𝑝𝑏 : 𝑋 ×𝑋 → [0,∞) be defined by 𝑝𝑏(𝑥, 𝑦) = (𝑥 ∨ 𝑦)2, for all 𝑥, 𝑦 ∈𝑋. Define 𝛼2 : 𝑋 × 𝑋 → [0,∞) by
𝛼2 (𝑥, 𝑦) = {{{

4𝑒|𝑥−𝑦| if 𝑥, 𝑦 ∈ [1, 3] ;
0 otherwise. (10)

It is easy to see that (𝑋, 𝑝𝑏, 2) is not a complete partial 𝑏-
metric space, but (𝑋, 𝑝𝑏, 2) is an 𝛼2-complete partial 𝑏-metric
space. Indeed, if {𝑥𝑛} is a Cauchy sequence in 𝑋 such that𝛼2(𝑥𝑛, 𝑥𝑛+1) ≥ 4, for all 𝑛 ∈ N, then 𝑥𝑛 ∈ [1, 3], for all 𝑛 ∈ N.
Since [1, 3] is a closed subset of R, we see that ([1, 3], 𝑝𝑏, 2)
is a complete partial b-metric space and then there exists 𝑥 ∈[1, 3] such that 𝑥𝑛 → 𝑥 as 𝑛 → ∞.

Definition 18. Let (𝑋,⪯) be a partially ordered set. Two
mappings 𝑆, 𝑇 : 𝑋 → 𝑋 are said to be weakly increasing
mappings, if 𝑆(𝑥) ⪯ 𝑇𝑆(𝑥) and 𝑇(𝑦) ⪯ 𝑆𝑇(𝑦) hold for all𝑥, 𝑦 ∈ 𝑋.

Example 19. Let𝑋 = R+. Define 𝑆, 𝑇 : 𝑋 → 𝑋 by

𝑆 (𝑥) = {{{
𝑥1/2 if 𝑥 ∈ [0, 1]
𝑥2 if 𝑥 ∈ (1,∞)

and 𝑇 (𝑥) = {{{
𝑥 if 𝑥 ∈ [0, 1]
2𝑥 if 𝑥 ∈ (1,∞)

(11)

Then, 𝑆, 𝑇 are weakly increasing mappings.

Definition 20. The self-mappings 𝑆, 𝑇 : 𝑋 → 𝑋 are said to
be 𝛼𝑠-orbital admissible if the following condition holds.𝛼𝑠(𝑥, 𝑆𝑥) ≥ 𝑠2 and 𝛼𝑠(𝑥, 𝑇𝑥) ≥ 𝑠2 imply 𝛼𝑠(𝑆𝑥, 𝑇𝑆𝑥) ≥ 𝑠2
and 𝛼𝑠(𝑇𝑥, 𝑆𝑇𝑥) ≥ 𝑠2.

We note that Definitions 13 and 18 are particular cases of
Definition 20 (set 𝑆 = 𝑇 and define 𝛼𝑠(𝑥, 𝑦) ≥ 𝑠2 whenever𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥, respectively, in Definition 20).

Definition 21. Let 𝑆, 𝑇 : 𝑋 → 𝑋 be two mappings. The pair(𝑆, 𝑇) is said to be triangular 𝛼𝑠-orbital admissible, if

(i) the self-mappings 𝑆, 𝑇 are 𝛼𝑠-orbital admissible,

(ii) 𝛼𝑠(𝑥, 𝑦) ≥ 𝑠2, 𝛼𝑠(𝑦, 𝑆𝑦) ≥ 𝑠2 and 𝛼𝑠(𝑦, 𝑇𝑦) ≥ 𝑠2 imply𝛼𝑠(𝑥, 𝑆𝑦) ≥ 𝑠2 and 𝛼𝑠(𝑥, 𝑇𝑦) ≥ 𝑠2.
Example 22. Let 𝑀 = R+0 and 𝑝𝑏(𝑟1, 𝑟2) = (𝑟1 ∨ 𝑟2)2 for all𝑟1, 𝑟2 ∈ 𝑀 be a partial 𝑏-metric with 𝑠 = 2:

𝑆 (𝑟) = {{{
𝑟 if 𝑟 ∈ [0, 1) ;
1 if 𝑟 ∈ [1,∞) ,

𝑇 (𝑟) = {{{
𝑟1/3 if 𝑟 ∈ [0, 1) ;
1 if 𝑟 ∈ [1,∞) .

(12)

Define 𝛼𝑠 : 𝑀 × 𝑀 → R+0 by

𝛼𝑠 (𝑟1, 𝑟2) = {{{
4 + 𝑟2 − 𝑟1 if 𝑟1, 𝑟2 ∈ [0, 1) ;
0 if 𝑟1, 𝑟2 ∈ [1,∞) . (13)

Then it is easy to show that the mappings 𝑆, 𝑇 satisfy
conditions (i) and (ii) in Definition 21.

Lemma 23. Let 𝑆, 𝑇 : 𝑋 → 𝑋 be two mappings such that
the pair (𝑆, 𝑇) is triangular 𝛼𝑠-orbital admissible. Assume that
there exists 𝑥0 ∈ 𝑋 such that 𝛼𝑠(𝑥0, 𝑆𝑥0) ≥ 𝑠2. Define a
sequence {𝑥𝑛} in 𝑋 by 𝑥2𝑖+1 = 𝑆(𝑥2𝑖) and 𝑥2𝑖+2 = 𝑇(𝑥2𝑖+1),
where 𝑖 = 0, 1, 2, . . .. Then for 𝑛,𝑚 ∈ N ∪ {0} with 𝑚 > 𝑛, we
have 𝛼𝑠(𝑥𝑛, 𝑥𝑚) ≥ 𝑠2.
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Proof. Since 𝛼𝑠(𝑥0, 𝑆𝑥0) = 𝛼𝑠(𝑥0, 𝑥1) ≥ 𝑠2 and 𝑆, 𝑇 are 𝛼𝑠-
orbital admissible self-mappings,

𝛼𝑠 (𝑥0, 𝑆𝑥0) ≥ 𝑠2 implies

𝛼𝑠 (𝑆𝑥0, 𝑇𝑆𝑥0) = 𝛼𝑠 (𝑥1, 𝑇𝑥1) = 𝛼𝑠 (𝑥1, 𝑥2) ≥ 𝑠2
𝛼𝑠 (𝑥1, 𝑇𝑥1) ≥ 𝑠2 implies

𝛼𝑠 (𝑇𝑥1, 𝑆𝑇𝑥1) = 𝛼𝑠 (𝑥2, 𝑆𝑥2) = 𝛼𝑠 (𝑥2, 𝑥3) ≥ 𝑠2
𝛼𝑠 (𝑥2, 𝑆𝑥2) ≥ 𝑠2 implies

(14)

𝛼𝑠 (𝑆𝑥2, 𝑇𝑆𝑥2) = 𝛼𝑠 (𝑥3, 𝑇𝑥3) = 𝛼𝑠 (𝑥3, 𝑥4) ≥ 𝑠2. (15)

Applying the above argument repeatedly, we obtain 𝛼𝑠(𝑥𝑛,𝑥𝑚) ≥ 𝑠2 for all 𝑛,𝑚 ∈ N ∪ {0} with 𝑚 = 𝑛 + 1. Since 𝑆, 𝑇
are triangular 𝛼𝑠-orbital admissible mappings, 𝛼𝑠(𝑥𝑛, 𝑥𝑚) ≥𝑠2 for all 𝑛,𝑚 ∈ N ∪ {0} with 𝑚 > 𝑛.
Definition 24. We say the self-mapping 𝑆 : 𝑋 → 𝑋 is an𝛼𝑠-𝑝𝑏-continuous mapping if whenever {𝑥𝑛} is a sequence in𝑋 with 𝛼𝑠(𝑥𝑛, 𝑥𝑛+1) ≥ 𝑠2 for all 𝑛 ∈ N and 𝑥 ∈ 𝑋 such that
lim𝑛→∞𝑝𝑏(𝑥𝑛, 𝑥) = 0, then lim𝑛→∞𝑝𝑏(𝑆(𝑥𝑛), 𝑆(𝑥)) = 0.

Now, we introduce the concept of generalized 𝛼𝑠-𝜓-
Geraghty contractions as follows.

Definition 25. Theself-mappings 𝑆, 𝑇defined on (𝑋, 𝑝𝑏, 𝑠) are
called generalized 𝛼𝑠-𝜓-Geraghty contractions with respect
to 𝑝𝑏, if there exist 𝛽 ∈ Ω, 𝜓 ∈ Ψ, and 𝐿 ≥ 0 such that

𝜓 (𝛼𝑠 (𝑥, 𝑦) 𝑝𝑏 (𝑆𝑥, 𝑇𝑦))
≤ 𝛽 (𝜓 (𝑀(𝑥, 𝑦))) .𝜓 (𝑀 (𝑥, 𝑦))

+ 𝐿𝜓 (min {𝑝𝑏 (𝑥, 𝑆𝑥) , 𝑝𝑏 (𝑦, 𝑆𝑥)}) ,
(16)

for 𝑥, 𝑦 ∈ 𝑋 satisfying 𝛼𝑠(𝑥, 𝑦) ≥ 𝑠2.
The main result of this section is given by the following:

Theorem 26. Let (𝑋, 𝑝𝑏, 𝑠) be an 𝛼𝑠-complete partial 𝑏-metric
space. Let 𝑆, 𝑇 : 𝑋 → 𝑋 be generalized 𝛼𝑠-𝜓-Geraghty
contractions satisfying the following conditions:

(i) there exists 𝑥0 ∈ 𝑋 such that 𝛼𝑠(𝑥0, 𝑆𝑥0) ≥ 𝑠2;
(ii) the mappings 𝑆, 𝑇 are triangular 𝛼𝑠-orbital admissible;
(iii)

(a) the mappings 𝑆, 𝑇 are 𝛼𝑠-𝑝𝑏-continuous
(b) {𝑥𝑛} is a sequence in 𝑋 such that 𝛼𝑠(𝑥𝑛, 𝑥𝑛+1) ≥𝑠2 for all 𝑛 ∈ N and 𝑥𝑛 → 𝑥∗ ∈ 𝑋 as 𝑛 →∞, then there exists a subsequence {𝑥𝑛(𝑘)} of {𝑥𝑛}

such that 𝛼𝑠(𝑥𝑛(𝑘), 𝑥∗) ≥ 𝑠2 for all 𝑘 ∈ N.

Then 𝑆 and 𝑇 have a common fixed point in 𝑋. In addition,
if 𝑦∗ is also a common fixed point of the pair (𝑆, 𝑇) such that𝛼𝑠(𝑥∗, 𝑦∗) ≥ 𝑠2, then 𝑥∗ = 𝑦∗.
Proof. Firstly we prove that the self-mappings 𝑆, 𝑇 have at
most one common fixed point. Suppose that 𝜐 and 𝜔 are two
different common fixed points of 𝑆 and 𝑇. Then 𝑆(𝜐) = 𝜐 ̸=𝜔 = 𝑇(𝜔). It follows that 𝑝𝑏(𝑆(𝜐), 𝑇(𝜔)) = 𝑝𝑏(𝜐, 𝜔) > 0,𝑝𝑏(𝜐, 𝜐) = 0 and 𝑝𝑏(𝜔, 𝜔) = 0. Since 𝛼𝑠(𝜐, 𝜔) ≥ 𝑠2, contractive
condition (16) implies

𝜓 (𝑝𝑏 (𝜐, 𝜔)) = 𝜓 (𝑝𝑏 (𝑆 (𝜐) , 𝑇 (𝜔)))
≤ 𝜓 (𝛼𝑠 (𝜐, 𝜔) 𝑝𝑏 (𝑆 (𝜐) , 𝑇 (𝜔)))
≤ 𝛽 (𝜓 (𝑀(𝜐, 𝜔))) ⋅ 𝜓 (𝑀 (𝜐, 𝜔))

+ 𝐿𝜓 (min {𝑝𝑏 (𝜐, 𝑆𝜐) , 𝑝𝑏 (𝜔, 𝑆𝜐)})
< 𝜓 (𝑀(𝜐, 𝜔)) = 𝜓 (𝑝𝑏 (𝜐, 𝜔)) .

(17)

which is a contradiction. Hence, the pair (𝑆, 𝑇) has at most
one common fixed point.

(a). By assumption (i) and Lemma 23, we have

𝛼𝑠 (𝑥𝑛, 𝑥𝑛+1) ≥ 𝑠2, for all 𝑛 ∈ N. (18)

For 𝑖 ∈ N, we have

0 < 𝜓 (𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2))
≤ 𝜓 (𝛼𝑠 (𝑥2𝑖, 𝑥2𝑖+1) 𝑝𝑏 (𝑆𝑥2𝑖, 𝑇𝑥2𝑖+1))
≤ 𝛽 (𝜓 (𝑀(𝑥2𝑖, 𝑥2𝑖+1))) .𝜓 (𝑀 (𝑥2𝑖, 𝑥2𝑖+1))

+ 𝐿𝜓 (min {𝑝𝑏 (𝑥2𝑖, 𝑆𝑥2𝑖) , 𝑝𝑏 (𝑥2𝑖+1, 𝑆𝑥2𝑖)}) ,
(19)

where

𝑀(𝑥2𝑖, 𝑥2𝑖+1) = max{𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) , 𝑝𝑏 (𝑥2𝑖, 𝑆𝑥2𝑖) , 𝑝𝑏 (𝑥2𝑖+1, 𝑇𝑥2𝑖+1) , 𝑝𝑏 (𝑥2𝑖, 𝑇𝑥2𝑖+1) + 𝑝𝑏 (𝑥2𝑖+1, 𝑆𝑥2𝑖)2𝑠 }
= max{𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) , 𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) , 𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2) , 𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+2) + 𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+1)2𝑠 }
≤ max{𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) , 𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) , 𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2) , 𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) + 𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2)2𝑠 }
= max {𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) , 𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2)} .

(20)
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If max{𝑝𝑏(𝑥2𝑖, 𝑥2𝑖+1), 𝑝𝑏(𝑥2𝑖+1, 𝑥2𝑖+2)} = 𝑝𝑏(𝑥2𝑖+1, 𝑥2𝑖+2), then
by (29) we have

𝜓 (𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2))
≤ 𝛽 (𝜓 (𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2))) .𝜓 (𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2))
< 𝜓 (𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2)) ,

(21)

which is a contradiction. Thus we conclude that

max {𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) , 𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2)}
= 𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) . (22)

By (29), we get that 𝜓(𝑝𝑏(𝑥2𝑖+1, 𝑥2𝑖+2)) < 𝜓(𝑝𝑏(𝑥2𝑖, 𝑥2𝑖+1)).
Since 𝜓 is nondecreasing, we have

𝑝𝑏 (𝑥2𝑖+1, 𝑥2𝑖+2) < 𝑝𝑏 (𝑥2𝑖, 𝑥2𝑖+1) . (23)

This implies that

𝑝𝑏 (𝑥𝑛+1, 𝑥𝑛+2) < 𝑝𝑏 (𝑥𝑛, 𝑥𝑛+1) , for all 𝑛 ∈ N. (24)

Hence, we deduce that the sequence {𝑝𝑏(𝑥𝑛, 𝑥𝑛+1)} is non-
increasing. Therefore, there exists 𝑟 ≥ 0 such that
lim𝑛→∞𝑝𝑏(𝑥𝑛, 𝑥𝑛+1) = 𝑟. Now, we shall prove that 𝑟 = 0.
Suppose that 𝑟 > 0. By (16), we have

𝜓 (𝑝𝑏 (𝑥𝑛+1, 𝑥𝑛+2))
≤ 𝜓 (𝛼𝑠 (𝑥𝑛, 𝑥𝑛+1) 𝑝𝑏 (𝑆𝑥𝑛, 𝑇𝑥𝑛+1))
≤ 𝛽 (𝜓 (𝑀 (𝑥𝑛, 𝑥𝑛+1))) .𝜓 (𝑀 (𝑥𝑛, 𝑥𝑛+1))

+ 𝐿𝜓 (min {𝑝𝑏 (𝑥𝑛, 𝑆𝑥𝑛) , 𝑝𝑏 (𝑥𝑛+1, 𝑆𝑥𝑛)}) ,
(25)

which implies

𝜓 (𝑝𝑏 (𝑥𝑛+1, 𝑥𝑛+2))
≤ 𝛽 (𝜓 (𝑝𝑏 (𝑥𝑛, 𝑥𝑛+1))) .𝜓 (𝑝𝑏 (𝑥𝑛, 𝑥𝑛+1)) . (26)

Hence

𝜓 (𝑝𝑏 (𝑥𝑛+1, 𝑥𝑛+2))𝜓 (𝑝𝑏 (𝑥𝑛, 𝑥𝑛+1)) ≤ 𝛽 (𝜓 (𝑝𝑏 (𝑥𝑛, 𝑥𝑛+1))) < 1. (27)

This implies that lim𝑛→∞𝛽(𝜓(𝑝𝑏(𝑥𝑛, 𝑥𝑛+1))) = 1. Since 𝛽 ∈Ω, we have

lim
𝑛→∞

𝜓 (𝑝𝑏 (𝑥𝑛, 𝑥𝑛+1)) = 0, (28)

which yields

𝑟 = lim
𝑛→∞

𝑝𝑏 (𝑥𝑛, 𝑥𝑛+1) = 0, (29)

a contradiction. Now, we claim that {𝑥𝑛} is a Cauchy sequence
in (𝑋, 𝑝𝑏, 𝑠). Suppose, on thw contrary, that {𝑥𝑛} is not a
Cauchy sequence; that is, lim𝑛,𝑚→∞𝑝𝑏(𝑥𝑛, 𝑥𝑚) ̸= 0. Then
there exists 𝜖 > 0 for which we can find two subsequences{𝑥𝑚𝑘} and {𝑥𝑛𝑘} of {𝑥𝑛} such that 𝑛𝑘 is the smallest index for
which 𝑛𝑘 > 𝑚𝑘 > 𝑘,

𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘) ≥ 𝜖. (30)

This means that

𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘−1) < 𝜖. (31)

By the triangle inequality, we have

𝜖 ≤ 𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘)
≤ 𝑠 (𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘−1) + 𝑝𝑏 (𝑥𝑛𝑘−1 , 𝑥𝑛𝑘))

− 𝑝𝑏 (𝑥𝑛𝑘−1 , 𝑥𝑛𝑘−1)
≤ 𝑠 (𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘−1) + 𝑝𝑏 (𝑥𝑛𝑘−1 , 𝑥𝑛𝑘)) .

(32)

Thus,
𝜖𝑠 ≤ 𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘) < 𝜖 + 𝑝𝑏 (𝑥𝑛𝑘−1 , 𝑥𝑛𝑘) (33)

for all 𝑘 ∈ N. In the view of (33) and (29), we have

𝜖 ≤ lim
𝑘→∞

𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘) < 𝑠𝜖. (34)

Again by triangle inequality, we have

𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘) ≤ 𝑠 (𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑚𝑘+1) + 𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑛𝑘))
− 𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑚𝑘+1)

≤ 𝑠 (𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑚𝑘+1) + 𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑛𝑘))
≤ 𝑠𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑚𝑘+1) + 𝑠2𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑛𝑘+1)

+ 𝑠2𝑝𝑏 (𝑥𝑛𝑘+1 , 𝑥𝑛𝑘) − 𝑝𝑏 (𝑥𝑛𝑘+1 , 𝑥𝑛𝑘+1)
≤ 𝑠𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑚𝑘+1) + 𝑠2𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑛𝑘+1)

+ 𝑠2𝑝𝑏 (𝑥𝑛𝑘+1 , 𝑥𝑛𝑘)

(35)

and

𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑛𝑘+1)
≤ 𝑠 (𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑚𝑘) + 𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘+1))

− 𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑚𝑘)
≤ 𝑠𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑚𝑘) + 𝑠𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘+1)
≤ 𝑠𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑚𝑘) + 𝑠2𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘)

+ 𝑠2𝑝𝑏 (𝑥𝑛𝑘 , 𝑥𝑛𝑘+1) − 𝑝𝑏 (𝑥𝑛𝑘 , 𝑥𝑛𝑘)
≤ 𝑠𝑝𝑏 (𝑥𝑚𝑘+1 , 𝑥𝑚𝑘) + 𝑠2𝑝𝑏 (𝑥𝑚𝑘 , 𝑥𝑛𝑘)

+ 𝑠2𝑝𝑏 (𝑥𝑛𝑘 , 𝑥𝑛𝑘+1) .

(36)

By (29) and (34), we deduce that

𝜖𝑠2 ≤ lim
𝑘→+∞

𝑝 (𝑥𝑚𝑘+1 , 𝑥𝑛𝑘+1) < 𝑠3𝜖. (37)
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Also by application of triangle inequality, it follows that
𝜖𝑠 ≤ lim
𝑘→∞

𝑝𝑏 (𝑥𝑛𝑘+1 , 𝑥𝑚𝑘) ≤ 𝑠2𝜖. (38)

By Lemma 23, since 𝛼𝑠(𝑥𝑛𝑘+1 , 𝑥𝑚𝑘) ≥ 𝑠2, we have
𝜀𝑠 = max {𝜀𝑠 , 𝑠𝜀4 } ≤ lim

𝑘→∞
sup𝑀(𝑥𝑛(𝑘)+1, 𝑥𝑚(𝑘))

≤ max{𝑠2𝜀, 𝑠2𝜀4 } = 𝑠2𝜀.
(39)

Similarly, we can show that
𝜀𝑠 = max {𝜀𝑠 , 𝑠𝜀4 } ≤ lim

𝑘→∞
inf 𝑀(𝑥𝑛(𝑘)+1, 𝑥𝑚(𝑘))

≤ max{𝑠2𝜀, 𝑠2𝜀4 } = 𝑠2𝜀.
(40)

Thus, concluding above arguments we have

𝜓 (𝑠2𝜀) ≤ 𝜓(𝛼𝑠 (𝑥𝑛(𝑘)+1, 𝑥𝑚(𝑘))
⋅ lim
𝑘→∞

sup𝑝𝑏 (𝑥𝑛(𝑘)+2, 𝑥𝑚(𝑘)+1))
≤ 𝛽(𝜓 ( lim

𝑘→∞
sup𝑀(𝑥𝑛(𝑘)+1, 𝑥𝑚(𝑘))))

⋅ 𝜓 ( lim
𝑘→∞

sup𝑀(𝑥𝑛(𝑘)+1, 𝑥𝑚(𝑘))) + 0
≤ 𝛽 (𝜓 (𝑠2𝜀)) 𝜓 (𝑠2𝜀) < 𝜓 (𝑠2𝜀) ,

(41)

which is a contradiction. Thus {𝑥𝑛} is a Cauchy sequence in(𝑋,𝑝𝑏, 𝑠). Since (𝑋, 𝑝𝑏, 𝑠) is an 𝛼𝑠-complete partial 𝑏-metric
space, by Lemma 9(2), (𝑋, 𝑑𝑝𝑏) is an 𝛼𝑠-complete 𝑏-metric
space. Therefore, the sequence {𝑥𝑛} converges to some 𝑥∗ ∈(𝑋,𝑑𝑝𝑏). By Lemma 9(3), there exists 𝑥∗ ∈ 𝑋 such that
lim𝑛→∞𝑑𝑝𝑏(𝑥𝑛, 𝑥∗) = 0 if and only if

lim
𝑛→∞

𝑝𝑏 (𝑥∗, 𝑥𝑛) = 𝑝𝑏 (𝑥∗, 𝑥∗) = lim
𝑛,𝑚→∞

𝑝𝑏 (𝑥𝑛, 𝑥𝑚) . (42)

Since 𝑑𝑝𝑏(𝑥, 𝑦) = 2𝑝𝑏(𝑥, 𝑦) − 𝑝(𝑥, 𝑥) − 𝑝𝑏(𝑦, 𝑦), thus, consid-
ering (29) and axiom (𝑝𝑏2) with lim𝑛→∞𝑑𝑝𝑏(𝑥𝑛, 𝑥∗) = 0, we
conclude that

lim
𝑛→∞

𝑝𝑏 (𝑥𝑛, 𝑥𝑚) = 0. (43)

Combining (42) and (43), we have

lim
𝑛→∞

𝑝𝑏 (𝑥∗, 𝑥𝑛) = 𝑝𝑏 (𝑥∗, 𝑥∗) = lim
𝑛,𝑚→∞

𝑝𝑏 (𝑥𝑛, 𝑥𝑚)
= 0. (44)

Now lim𝑛→∞𝑝𝑏(𝑥∗, 𝑥𝑛) = 0 implies that lim𝑖→∞𝑝𝑏(𝑥2𝑖+1,𝑥∗) = 0 and lim𝑖→∞𝑝𝑏(𝑥2𝑖+2, 𝑥∗) = 0. As 𝑆 and 𝑇 are 𝛼𝑠-𝑝𝑏-
continuous mappings, we lim𝑖→∞𝑝𝑏(𝑆𝑥2𝑖+1, 𝑆𝑥∗) = 0. Thus

𝑝𝑏 (𝑥∗, 𝑆𝑥∗) = lim
𝑖→∞

𝑝𝑏 (𝑥2𝑖+2, 𝑆𝑥∗)
= lim
𝑖→∞

𝑝𝑏 (𝑆𝑥2𝑖+1, 𝑆𝑥∗) = 0, (45)

and so 𝑥∗ = 𝑆𝑥∗, and, similarly, 𝑥∗ = 𝑇𝑥∗. Therefore 𝑆 and 𝑇
have a common fixed point 𝑥∗ ∈ 𝑋.

(b).From (a)we know that the sequence {𝑥𝑛 } in𝑋 defined
by 𝑥2𝑖+1 = 𝑆𝑥2𝑖 and 𝑥2𝑖+2 = 𝑇𝑥2𝑖+1, where 𝑖 = 0, 1, 2, . . . with𝛼𝑠(𝑥𝑛, 𝑥𝑛+1) ≥ 𝑠2, for all 𝑛 ∈ N converges to 𝑥∗ ∈ 𝑋. There
exists a subsequence {𝑥𝑛(𝑘)} of {𝑥𝑛} such that𝛼𝑠(𝑥𝑛(𝑘), 𝑥∗) ≥ 𝑠2
for all 𝑘. Therefore,

𝜓 (𝑝𝑏 (𝑥2𝑛(𝑘)+1, 𝑇𝑥∗)) = 𝜓 (𝑝𝑏 (𝑆𝑥2𝑛(𝑘), 𝑇𝑥∗))
≤ 𝜓 (𝛼𝑠 (𝑥2𝑛(𝑘), 𝑥∗) 𝑝𝑏 (𝑆𝑥2𝑛(𝑘), 𝑇𝑥∗))
≤ 𝛽 (𝜓 (𝑀 (𝑥2𝑛(𝑘), 𝑥∗))) .𝜓 (𝑀 (𝑥2𝑛(𝑘), 𝑥∗))

+ 𝐿𝜓 (min {𝑝𝑏 (𝑥2𝑛(𝑘), 𝑆𝑥2𝑛(𝑘)) , 𝑝𝑏 (𝑥∗, 𝑆𝑥2𝑛(𝑘))}) ,
(46)

which implies

𝜓 (𝑝𝑏 (𝑥2𝑛(𝑘)+1, 𝑇𝑥∗))
≤ 𝛽 (𝜓 (𝑀 (𝑥2𝑛(𝑘), 𝑥∗))) .𝜓 (𝑀 (𝑥2𝑛(𝑘), 𝑥∗))

+ 𝐿𝜓 (min {𝑝𝑏 (𝑥2𝑛(𝑘), 𝑆𝑥2𝑛(𝑘)) , 𝑝𝑏 (𝑥∗, 𝑆𝑥2𝑛(𝑘))}) ,
(47)

where

𝑀(𝑥2𝑛(𝑘), 𝑥∗) = max{𝑝𝑏 (𝑥2𝑛(𝑘), 𝑥∗) ,
𝑝𝑏 (𝑥2𝑛(𝑘), 𝑆𝑥2𝑛(𝑘)) , 𝑝𝑏 (𝑥∗, 𝑇𝑥∗) ,
𝑝𝑏 (𝑥2𝑛(𝑘), 𝑆𝑥∗) + 𝑝𝑏 (𝑥∗, 𝑇𝑥2𝑛(𝑘))2𝑠 }
≤ max{𝑝𝑏 (𝑥2𝑛(𝑘), 𝑥∗) , 𝑝𝑏 (𝑥2𝑛(𝑘), 𝑥2𝑛(𝑘)+1) ,
𝑝𝑏 (𝑥∗, 𝑇𝑥∗) , 𝑝𝑏 (𝑥2𝑛(𝑘), 𝑇𝑥∗) + 𝑝𝑏 (𝑥∗, 𝑆𝑥2𝑛(𝑘))2𝑠 } .

(48)

Since

lim
𝑘→∞

sup
𝑝𝑏 (𝑥2𝑛(𝑘), 𝑇𝑥∗) + 𝑝𝑏 (𝑥∗, 𝑆𝑥2𝑛(𝑘))2𝑠

≤ 𝑝𝑏 (𝑥∗, 𝑇𝑥∗) + 𝑝𝑏 (𝑥∗, 𝑥∗)2𝑠 ,
(49)

then by letting 𝑘 → ∞ we have lim𝑘→∞𝑀(𝑥2𝑛(𝑘), 𝑥∗) =𝑝𝑏(𝑥∗, 𝑇𝑥∗). Suppose that 𝑝𝑏(𝑥∗, 𝑇𝑥∗) > 0. By (47), we have
𝜓 (𝑝𝑏 (𝑥2𝑛(𝑘)+1, 𝑇𝑥∗))
𝜓 (𝑀 (𝑥2𝑛(𝑘), 𝑥∗)) ≤ 𝛽 (𝜓 (𝑀(𝑥2𝑛(𝑘), 𝑥∗))) < 1. (50)

Letting 𝑘 → ∞ in above inequality, we obtain that

lim
𝑘→∞

𝛽 (𝜓 (𝑀(𝑥2𝑛(𝑘), 𝑥∗))) = 1. (51)

So lim𝑘→∞𝑀(𝑥2𝑛(𝑘), 𝑥∗) = 0. Hence 𝑝𝑏(𝑥∗, 𝑇𝑥∗) = 0, and
due to (𝑝𝑏1) and (𝑝𝑏2) we obtain so 𝑥∗ = 𝑇𝑥∗. Similarly we
can show that 𝑥∗ = 𝑆𝑥∗. Thus 𝑆 and 𝑇 have a common fixed
point 𝑥∗ ∈ 𝑋.
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Remark 27. We note that Theorem 26 is more general than
the results established in [24–26].

Example 28. Let𝑋 = [0, 1]. Define a function 𝑝𝑏 : 𝑋×𝑋 →[0, +∞) by 𝑝𝑏(𝑥, 𝑦) = (𝑥 ∨ 𝑦)2 + (𝑥 − 𝑦)2. Clearly, (𝑋, 𝑝𝑏, 𝑠)
is a complete partial 𝑏-metric space with the constant 𝑠 = 4.
Let 𝛽 be a function on [0,∞] defined by 𝛽(𝑡) = 1/(4 + 𝑡)
for all 𝑡 ≥ 0. Then 𝛽 ∈ Ω. Also, 𝜓 be a function on [0, +∞)
defined by 𝜓(𝑡) = 𝑡/2. Then 𝜓 ∈ Ψ. Define the mappings𝑆, 𝑇 : 𝑋 → 𝑋 by

𝑇 (𝑥) = {{{{{
2245𝑥, if 𝑥 ∈ [0, 12]

1, if 𝑥 ∈ (12 , 1]
and 𝑆 (𝑥) = 0

∀𝑥 ∈ 𝑋.
(52)

Also, we define the function 𝛼𝑠 : 𝑋 × 𝑋 → [0,∞) by
𝛼𝑠 (𝑥, 𝑦) = {{{

𝑠2, if 0 ≤ 𝑥, 𝑦 ≤ 120, otherwise. (53)

If {𝑥𝑛} is a Cauchy sequence such that 𝛼𝑠(𝑥𝑛, 𝑥𝑛+1) ≥ 𝑠2 for all𝑛 ∈ N, then {𝑥𝑛} ⊆ [0, 1/2]. Since ([0, 1/2], 𝑝𝑏) is a complete
partial 𝑏-metric space, then the sequence {𝑥𝑛} converges in[0, 1/2] ⊆ 𝑋. Thus (𝑋, 𝑝𝑏) is an 𝛼𝑠-complete partial 𝑏-metric
space. Let 𝛼𝑠(𝑥, 𝑆𝑥) ≥ 𝑠2 and 𝛼𝑠(𝑥, 𝑇𝑥) ≥ 𝑠2, and thus𝑥 ∈ [0, 1/2] and 𝑆𝑥, 𝑇𝑥 ∈ [0, 1/2] and so 𝛼𝑠(𝑆𝑥, 𝑇𝑆𝑥) ≥ 𝑠2
and 𝛼𝑠(𝑇𝑥, 𝑆𝑇𝑥) ≥ 𝑠2. Thus, (𝑆, 𝑇) is 𝛼𝑠-orbital admissible.
Let 𝑥, 𝑦 ∈ 𝑋 be such that 𝛼𝑠(𝑥, 𝑦) ≥2, 𝛼𝑠(𝑦, 𝑆𝑦) ≥ 1 and𝛼𝑠(𝑦, 𝑇𝑦) ≥ 𝑠2. Then we have 𝑥, 𝑦, 𝑆𝑦, 𝑇𝑦 ∈ [0, 1/2], which
implies that 𝛼𝑠(𝑥, 𝑆𝑦) ≥ 𝑠2 and 𝛼𝑠(𝑥, 𝑇𝑦) ≥ 𝑠2. Therefore(𝑆, 𝑇) is triangular 𝛼𝑠-orbital admissible. Let {𝑥𝑛} be a Cauchy
sequence such that 𝑥𝑛 → 𝑥 as 𝑛 → ∞ and 𝛼𝑠(𝑥𝑛, 𝑥𝑛+1) ≥𝑠2 for all 𝑛 ∈ N. Then {𝑥𝑛} ⊆ [0, 1/2] for all 𝑛 ∈ N.
So lim𝑛→∞𝑇𝑥𝑛 = lim𝑛→∞(2/245)𝑥𝑛 = (2/245)𝑥 = 𝑇𝑥.
Hence 𝑇 is 𝛼𝑠-continuous. Similarly, we can show that 𝑆 is𝛼𝑠-continuous. Let 𝑥0 = 1/4. Then

𝛼𝑠 (14 , 𝑆 (14)) = 𝛼𝑠 (14 , 0) ≥ 𝑠2. (54)

Let 𝑥, 𝑦 ∈ 𝑋 such that 𝛼𝑠(𝑥, 𝑦) ≥ 𝑠2. Then 𝑥, 𝑦 ∈ [0, 1/2] and
hence16245 ≤ 𝜓 (𝛼𝑠 (𝑥, 𝑦) 𝑝𝑏 (𝑆𝑥, 𝑇𝑦))

≤ 𝛽 (𝜓 (𝑀 (𝑥, 𝑦))) .𝜓 (𝑀 (𝑥, 𝑦))
+ 𝐿𝜓 (min {𝑝𝑏 (𝑥, 𝑆𝑥) , 𝑝𝑏 (𝑦, 𝑆𝑥)}) ≤ 19 ,

(55)

with 𝐿 ≥ 0. Thus all conditions of Theorem 26 are satisfied.
Hence 𝑆 and 𝑇 have a common fixed point (𝑥 = 0).
3. Consequences

Corollary29. Let (𝑋, 𝑝𝑏, 𝑠) be an𝛼𝑠-complete partial 𝑏-metric
space. Assume that

(i) there exist 𝛽 ∈ Ω and 𝐿 ≥ 0 such that, for all 𝑥, 𝑦 ∈𝑋 with 𝛼𝑠(𝑥, 𝑦) ≥ 𝑠2 the self-mappings 𝑆, 𝑇 satisfy the
following inequality:

𝛼𝑠 (𝑥, 𝑦) 𝑝𝑏 (𝑆𝑥, 𝑇𝑦)
≤ 𝛽 ((𝑀 (𝑥, 𝑦))) . (𝑀 (𝑥, 𝑦))

+ 𝐿 (min {𝑝𝑏 (𝑥, 𝑆𝑥) , 𝑝𝑏 (𝑦, 𝑆𝑥)}) ;
(56)

(ii) 𝑆, 𝑇 are triangular 𝛼𝑠-orbital admissible mappings;
(iii) there exists 𝑥0 ∈ 𝑋 such that 𝛼𝑠(𝑥0, 𝑆𝑥0) ≥ 𝑠2
(iv)

(a) 𝑆 and 𝑇 are 𝛼𝑠-continuous mappings;
(b) {𝑥𝑛} is a sequence in𝑋 with 𝛼𝑠(𝑥𝑛, 𝑥𝑛+1) ≥ 𝑠2 for

all 𝑛 ∈ N such that 𝑥𝑛 → 𝑥∗ ∈ 𝑋 as 𝑛 →∞, then there exists a subsequence {𝑥𝑛(𝑘)} of {𝑥𝑛}
such that 𝛼𝑠(𝑥𝑛(𝑘), 𝑥∗) ≥ 𝑠2 for all 𝑘 ∈ N.

Then 𝑆 and 𝑇 have a common fixed point 𝑥∗ ∈ 𝑋. In addition,
if 𝑦∗ is also a common fixed point of the pair (𝑆, 𝑇) such that𝛼𝑠(𝑥∗, 𝑦∗) ≥ 𝑠2, then 𝑥∗ = 𝑦∗.
Proof. Define 𝜓 : R+0 → R+0 by 𝜓(𝑡) = 𝑡 for all 𝑡 ∈ R+0 .

Corollary 30. Let 𝑌 = (𝑌, 𝑑, 𝑠) be an 𝛼𝑠-complete 𝑏-
metric space. Let 𝑆, 𝑇 : 𝑌 → 𝑌 be a generalized 𝛼𝑠-𝜓-
Geraghty contractions with respect to 𝑑 satisfying the following
conditions:

(i) There exists 𝑦0 ∈ 𝑌 such that 𝛼𝑠(𝑦0, 𝑆𝑦0) ≥ 𝑠2.
(ii) Themappings 𝑆, 𝑇 are triangular 𝛼𝑠-orbital admissible.
(iii)

(a) The mappings 𝑆, 𝑇 are 𝛼𝑠-𝑑-continuous.
(b) {𝑦𝑛} is a sequence in𝑌 such that 𝛼𝑠(𝑦𝑛, 𝑦𝑛+1) ≥ 𝑠2

for all 𝑛 ∈ N and 𝑦𝑛 → 𝑦∗ ∈ 𝑌 as 𝑛 → ∞,
then there exists a subsequence {𝑦𝑛(𝑘) } of {𝑦𝑛} such
that 𝛼𝑠(𝑦𝑛(𝑘), 𝑦∗) ≥ 𝑠2 for all 𝑘 ∈ N.

Then 𝑆 and 𝑇 have a common fixed point in 𝑌. In addition,
if 𝑦∗ is also a common fixed point of the pair (𝑆, 𝑇) such that𝛼𝑠(𝑥∗, 𝑦∗) ≥ 𝑠2, then 𝑥∗ = 𝑦∗.
Proof. Set 𝑝𝑏(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑋 in Theorem 26.

Corollary 31. Let (𝑋, ⪯) be a partially ordered set and (𝑋, ⪯, 𝑝𝑏, 𝑠) be an ordered complete partial 𝑏-metric space. Assume
that the weakly increasing mappings 𝑆, 𝑇 : 𝑋 → 𝑋 satisfy the
following conditions:

(i) there exist 𝛽 ∈ Ω𝜓 ∈ Ψ and 𝐿 ≥ 0 such that
𝜓 (𝑠2𝑝b (𝑆𝑥, 𝑇𝑦))

≤ 𝛽 (𝜓 (𝑀 (𝑥, 𝑦))) .𝜓 (𝑀(𝑥, 𝑦))
+ 𝐿𝜓 (min {𝑝𝑏 (𝑥, 𝑆𝑥) , 𝑝𝑏 (𝑦, 𝑆𝑥)}) ,

(57)

for all comparable 𝑥, 𝑦 ∈ 𝑋 (𝑖.𝑒. 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥);
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(ii) there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑆𝑥0
(iii)

(a) either 𝑆 or 𝑇 is continuous;
(b) {𝑥𝑛} is a nondecreasing sequence such that 𝑥𝑛 →𝑥∗ ∈ 𝑋 as 𝑛 → ∞, then there exists a

subsequence {𝑥𝑛(𝑘)} of {𝑥𝑛} such that 𝑥𝑛(𝑘) ⪯ 𝑥∗
for all 𝑘 ∈ N.

Then 𝑆 and 𝑇 have a common fixed point 𝑥∗ ∈ 𝑋. In addition,
if 𝑦∗ is also a common fixed point of the pair (𝑆, 𝑇) such that𝑥∗ ⪯ 𝑦∗, then 𝑥∗ = 𝑦∗.
Proof. Define the relation ⪯ on 𝑋 by

𝛼𝑠 (𝑥, 𝑦) = {{{
𝑠2, if 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥
0, otherwise. (58)

Proof follows from the proof of Theorem 26.

Definition 32. The self-mappings 𝑇 defined on (𝑋,𝑝𝑏, 𝑠) is
called a generalized 𝛼𝑠-𝜓-Geraghty contraction if there exist𝛽 ∈ Ω, 𝜓 ∈ Ψ, and 𝐿 ≥ 0 such that

𝜓 (𝛼𝑠 (𝑥, 𝑦) 𝑝𝑏 (𝑇𝑥, 𝑇𝑦))
≤ 𝛽 (𝜓 (𝐶 (𝑥, 𝑦))) .𝜓 (𝐶 (𝑥, 𝑦))

+ 𝐿𝜓 (min {𝑝𝑏 (𝑥, 𝑇𝑥) , 𝑝𝑏 (𝑦, 𝑇𝑥)}) ,
(59)

for 𝑥, 𝑦 ∈ 𝑋 satisfying 𝛼𝑠(𝑥, 𝑦) ≥ 𝑠2, where
𝐶 (𝑥, 𝑦) = max{𝑝𝑏 (𝑥, 𝑦) , 𝑝𝑏 (𝑥, 𝑇𝑥) , 𝑝𝑏 (𝑦, 𝑇𝑦) ,

𝑝𝑏 (𝑥, 𝑇𝑦) + 𝑝𝑏 (𝑦, 𝑇𝑥)
2𝑠 } .

(60)

Corollary33. Let (𝑋, 𝑝𝑏, 𝑠) be an𝛼𝑠-complete partial 𝑏-metric
space. Let 𝑇 : 𝑋 → 𝑋 be a generalized 𝛼𝑠-𝜓-Geraghty
contraction satisfying the following conditions:

(i) there exists 𝑥0 ∈ 𝑋 such that 𝛼𝑠(𝑥0, 𝑇𝑥0) ≥ 𝑠2;
(ii) the mapping 𝑇 is triangular 𝛼𝑠-orbital admissible;
(iii)

(a) the mapping 𝑇 is 𝛼𝑠-𝑝𝑏-continuous;
(b) {𝑥𝑛} is a sequence in 𝑋 such that 𝛼𝑠(𝑥𝑛, 𝑥𝑛+1) ≥𝑠2 for all 𝑛 ∈ N and 𝑥𝑛 → 𝑥∗ ∈ 𝑋 as 𝑛 →∞, then there exists a subsequence {𝑥𝑛(𝑘)} of {𝑥𝑛}

such that 𝛼𝑠(𝑥𝑛(𝑘), 𝑥∗) ≥ 𝑠2 for all 𝑘 ∈ N.

Then 𝑇 has a fixed point in 𝑋. In addition, if 𝑦∗ is also a
common fixed point of the pair (𝑆, 𝑇) such that 𝛼𝑠(𝑥∗, 𝑦∗) ≥ 𝑠2,
then 𝑥∗ = 𝑦∗.
Proof. Set 𝑆 = 𝑇 in Theorem 26.

We extend Definition 25 for all 𝑥, 𝑦 ∈ 𝑋 as follows

Definition 34. Theself-mappings 𝑆, 𝑇defined on (𝑋, 𝑝𝑏, 𝑠) are
called generalized 𝜓-Geraghty contractions, if there exist 𝛽 ∈Ω, 𝜓 ∈ Ψ, and 𝐿 ≥ 0 such that

𝜓 (𝑝𝑏 (𝑆𝑥, 𝑇𝑦))
≤ 𝛽 (𝜓 (𝑀 (𝑥, 𝑦))) .𝜓 (𝑀(𝑥, 𝑦))

+ 𝐿𝜓 (min {𝑝𝑏 (𝑥, 𝑆𝑥) , 𝑝𝑏 (𝑦, 𝑆𝑥)}) ,
(61)

for 𝑥, 𝑦 ∈ 𝑋.

Theorem 35. Let 𝑆, 𝑇 : 𝑋 → 𝑋 be two 𝑝𝑏-continuous
generalized 𝜓-Geraghty contractions defined on a complete
partial 𝑏-metric space (𝑋, 𝑝𝑏, 𝑠); then 𝑆 and 𝑇 have a common
fixed point.

Proof. The arguments follow as the same lines in proof of
Theorem 26.

4. Application

In this section, we present an application on existence of a
solution of a pair of elliptic boundary value problems. Let𝐶(𝐼) be the space of all continuous function defined on 𝐼 =[0, 1]. Consider the following pair of differential equations:

−𝑑2𝑥𝑑𝑡2 = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1]
𝑥 (0) = 𝑥 (1) = 0.

and − 𝑑2𝑦𝑑𝑡2 = 𝐾 (𝑡, 𝑦 (𝑡)) , 𝑡 ∈ [0, 1]
𝑦 (0) = 𝑦 (1) = 0,

(62)

where 𝑓,𝐾 : 𝐼 × 𝐶(𝐼) → R are continuous functions. The
Green function associated with (62) is defined by

𝐺 (𝑡, 𝑠) = {{{
𝑡 (1 − 𝜏) , 0 ≤ 𝑡 ≤ 𝜏 ≤ 1
𝜏 (1 − 𝑡) , 0 ≤ 𝜏 ≤ 𝑡 ≤ 1. (63)

Define the function 𝑝𝑏 : 𝐶(𝐼) × 𝐶(𝐼) → [0,∞) by
𝑝𝑏 (𝑥, 𝑦) = sup

𝑡∈𝐼

𝑥 (𝑡) − 𝑦 (𝑡)2 + 𝑘,
for all 𝑥, 𝑦 ∈ 𝐶 (𝐼) and 𝑘 > 0.

(64)

It is known that (𝐶(𝐼), 𝑝𝑏) is a complete partial 𝑏-metric space
with constant 𝑠 = 4. Now, define the operators 𝑆, 𝑇 : 𝐶(𝐼) →𝐶(𝐼) defined by

𝑆𝑥 (𝑡) = ∫1
0
𝐺 (𝑡, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

and 𝑇𝑥 (𝑡) = ∫1
0
𝐺 (𝑡, 𝜏)𝐾 (𝜏, 𝑦 (𝜏)) 𝑑𝜏,

(65)

for all 𝑡 ∈ 𝐼. Remark that (62) has a solution if and only if
operators 𝑆 and 𝑇 have a common fixed point.
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Theorem 36. Assume that there exist continuous functions𝑓,𝐾 : 𝐼 × 𝐶(𝐼) → R such that, for all 𝑥, 𝑦 ∈ 𝐶(𝐼) and 𝜌 ∈ R,
we have

𝑓 (𝑡, 𝑥) − 𝐾 (𝑡, 𝑦)2 ≤ 64 ln(𝑀(𝑥 (𝑡) , 𝑦 (𝑡)) + 1
𝜌 )
for all 𝑡 ∈ 𝐼,

(66)

where𝑀(𝑥(𝑡), 𝑦(𝑡)) is defined by (9) such that𝑀(𝑥(𝑡), 𝑦(𝑡)) >𝜌 > 0
Proof. It is well known that 𝑥∗ ∈ 𝐶2(𝐼) is a solution of (62)
if and only if 𝑥∗ ∈ 𝐶(𝐼) is a common solution of the integral
equations given by (65). Define the mappings 𝑆, 𝑇 : 𝐶(𝐼) →𝐶(𝐼) by (65). Hence the solution of (62) is equivalent to find
a common fixed point 𝑥∗ ∈ 𝐶(𝐼) of 𝑇 and 𝑆. Let 𝑥, 𝑦 ∈ 𝐶(𝐼).
By (i), we get

𝑆𝑥 (𝑡) − 𝑇𝑦 (𝑡)2
= [∫

1

0
𝐺 (𝑡, 𝜏) [𝑓 (𝜏, 𝑥 (𝜏)) − 𝐾 (𝜏, 𝑦 (𝜏))] 𝑑𝜏]

2

≤ [∫1
0
𝐺 (𝑡, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) − 𝐾 (𝜏, 𝑦 (𝜏)) 𝑑𝜏]

2

≤ [8∫1
0
𝐺 (𝑡, 𝜏) √ln(𝑀(𝑥 (𝜏) , 𝑦 (𝜏)) + 1

𝜌 )𝑑𝜏]
2

≤ [8∫1
0
𝐺 (𝑡, 𝜏) √ln(𝑀(𝑥 (𝜏) , 𝑦 (𝜏)) + 1

𝜌 )𝑑𝜏]
2

= 82 ln(𝑀(𝑥 (𝜏) , 𝑦 (𝜏)) + 1
𝜌 )

⋅ (sup
𝑡∈𝐼

[∫1
0
𝐺 (𝑡, 𝜏) 𝑑𝜏]2) .

(67)

Since ∫1
0
𝐺(𝑡, 𝜏)𝑑𝜏 = −𝑡2/2 + 𝑡/2 for all 𝑡 ∈ 𝐼, then we have

(sup𝑡∈𝐼[∫10 𝐺(𝑡, 𝜏)𝑑𝜏]2) = 1/82, which implies that

𝑆𝑥 (𝑡) − 𝑇𝑦 (𝑡)2 ≤ ln(𝑀(𝑥 (𝜏) , 𝑦 (𝜏)) + 1
𝜌 ) . (68)

It can easily be proved that M(𝑥, 𝑦) = sup𝜏∈𝐼M(𝑥(𝜏), 𝑦(𝜏)).
Thus,

ln (𝑝𝑏 (𝑆𝑥, 𝑇𝑦) + 1) ≤ ln (ln (𝑀 (𝑥, 𝑦) + 1) + 1)
= ln (ln (𝑀 (𝑥, 𝑦) + 1) + 1)

ln (𝑀 (𝑥, 𝑦) + 1) ln (𝑀 (𝑥, 𝑦) + 1) . (69)

Define the functions 𝜓 : [0,∞) → [0,∞) and 𝛽 : [0,∞)→ [0, 1/𝑠) by
𝜓 (𝑥) = ln (𝑥 + 1) (70)

and 𝛽 (𝑥) = {{{
𝜓 (𝑥)𝑥 , if 𝑥 ≥ 10
0, otherwise. (71)

Note that 𝜓 : [0,∞) → [0,∞) is continuous, nondecreas-
ing, positive in (0,∞), 𝜓(0) = 0, and 𝜓(𝑥) < 𝑥.

Hence 𝛽 ∈ Ω and

𝜓 (𝑝𝑏 (𝑆𝑥, 𝑇𝑦)) ≤ 𝛽 (𝜓 (𝑀(𝑥, 𝑦))) .𝜓 (𝑀 (𝑥, 𝑦)) (72)

for all 𝑥, 𝑦 ∈ 𝐶(𝐼). Therefore all assumptions of Theorem 35
are satisfied with 𝐿 = 0.Hence 𝑆 and 𝑇 have a common fixed
point 𝑥∗ ∈ 𝐶(𝐼); that is, 𝑆𝑥∗ = 𝑇𝑥∗ = 𝑥∗ which is a solution
of (62).
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We consider the robust asymptotical stabilization of uncertain a class of descriptor fractional-order systems. In the state matrix, we
require that the parameter uncertainties are time-invariant and norm-bounded.We derive a sufficient condition for the systemwith
the fractional-order 𝛼 satisfying 1 ≤ 𝛼 < 2 in terms of linear matrix inequalities (LMIs). The condition of the proposed stability
criterion for fractional-order system is easy to be verified. An illustrative example is given to show that our result is effective.

1. Introduction

Descriptor systems arise naturally in many applications such
as aerospace engineering, social economic systems, and
network analysis. Sometimes we also call descriptor systems
singular systems. Descriptor system theory is an important
part in control systems theory. Since 1970s, descriptor systems
have been wildly studied, for example, descriptor linear
systems [1], descriptor nonlinear systems [2–4], and discrete
descriptor systems [5–7]. In particular, Dai has systematically
introduced the theoretical basis of descriptor systems in [8],
which is the first monograph on this subject. A detailed
discussion of descriptor systems and their applications can be
found in [9, 10].

It is well known that fractional-order systems have been
studied extensively in the last 20 years, since the fractional
calculus has been found many applications in viscoelastic
systems [11–14], robotics [15–18], finance system [19–21], and
many others [22–26]. Studying on fractional-order calculus
has become an active research field. To the best of our
knowledge, although stability analysis is a basic problem in
control theory, very fewworks existed for the stability analysis
for descriptor fractional-order systems.

Many problems related to stability of descriptor
fractional-order control systems are still challenging and
unsolved. For the nominal stabilization case, N’Doye et al.
[27] study the stabilization of one descriptor fractional-order
system with the fractional-order 𝛼, 1 < 𝛼 < 2, in terms of
LMIs. N’Doye et al. [28] derive some sufficient conditions
for the robust asymptotical stabilization of uncertain
descriptor fractional-order systems with the fractional-order𝛼 satisfying 0 < 𝛼 < 2. Furthermore, Ma et al. [29] study
the robust stability and stabilization of fractional-order
linear systems with positive real uncertainty. Note that,
in Example 1, by applying Theorem 2 [27], it is harder to
determine whether the uncertain descriptor fractional-
order system (6) is asymptotically stable. Therefore, it is
valuable to seek sufficient conditions, for checking the
robust asymptotical stabilization of uncertain descriptor
fractional-order systems.

In this paper, we study the stabilization of a class of
descriptor fractional-order systems with the fractional-order𝛼, 1 ≤ 𝛼 < 2, in terms of LMIs. We derive a new sufficient
condition for checking the robust asymptotical stabilization
of uncertain descriptor fractional-order systems with the
fractional-order 𝛼 satisfying 1 ≤ 𝛼 < 2, in terms of
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LMIs. It should be mentioned that, compared with some
prior works, our main contributions consist in the following:(1) we assume that the matrix of uncertain parameters in
the uncertain descriptor fractional-order system is diagonal.
Thus, compared with the results in [28], our conclusion,
Theorem 8, is more feasible and effective and has wider
applications; (2) compared with some stability criteria of
fractional-order nonlinear systems, for example, in [9, 22],
our method is easier to be used.

Notations: throughout this paper, R𝑚×𝑛 stands for the
set of 𝑚 by 𝑛 matrices with real entries, 𝑀𝑇 stands for the
transpose of 𝑀, 𝑆𝑦𝑚{𝑋} denotes the expression 𝑋𝑇 + 𝑋,𝐼𝑛 denotes the identity matrix of order 𝑛, diag(𝑎1, 𝑎2, . . . , 𝑎𝑛)
denotes the diagonalmatrix, and ∙will be used in somematrix
expressions to indicate a symmetric structure; i.e., if given
matrices 𝐻1 = 𝐻𝑇1 ∈ R𝑚×𝑚 and 𝐻2 = 𝐻𝑇2 ∈ R𝑛×𝑛, then

(𝐻1 ∙
𝐿 𝐻2) = (𝐻1 𝐿𝑇

𝐿 𝐻2) . (1)

2. Preliminary Results

Consider the following class of linear fractional-order sys-
tems:

𝐶
0𝐷𝛼𝑡 𝑥 (𝑡) = 𝐴𝑥 (𝑡) ,

𝑥 (0) = 𝑥0, (2)

where 0 < 𝛼 < 2 is the fractional-order, 𝑥(𝑡) ∈ R𝑛 is the state
vector, 𝐴 ∈ R𝑛×𝑛 is a constant matrix, and 𝐶0𝐷𝛼𝑡 represent the
fractional-order derivative, which can be expressed as

𝐶
0𝐷𝛼𝑡 𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1 𝑓(𝑛) (𝜏) 𝑑𝜏, (3)

where Γ(⋅) is the Euler Gamma function. For convenience,
we use 𝐷𝛼 to replace 𝐶0𝐷𝛼𝑡 in the rest of this paper. It is well
known that system (2) is stable if [30–32]

arg (spec (𝐴)) > 𝛼𝜋2 (4)

where 0 < 𝛼 < 2 and spec(𝐴) is the spectrum of all
eigenvalues of 𝐴.

The next lemma, given by Chilali et al. [33], contains the
necessary and sufficient conditions of (4) in terms of LMI,
when the fractional-order 𝛼 belongs to 1 ≤ 𝛼 < 2.
Lemma 1 (see [33]). Let 𝐴 ∈ R𝑛×𝑛 be a real matrix and 1 ≤𝛼 < 2. Then |arg(spec(𝐴))| > (𝜋/2)𝛼 if and only if there exists𝑃 > 0 such that

((𝐴𝑃 + 𝑃𝐴𝑇) sin 𝜃 ∙
(𝑃𝐴𝑇 − 𝐴𝑃) cos 𝜃 (𝐴𝑃 + 𝑃𝐴𝑇) sin 𝜃) < 0. (5)

Consider the following uncertain descriptor fractional-
order systems:

𝐸𝐷𝛼𝑥 (𝑡) = (𝐴 + Δ𝐴) 𝑥 (𝑡) + 𝐵𝑢 (𝑡)
𝑥 (0) = 𝑥0 (6)

where 1 ≤ 𝛼 < 2, 𝑥(𝑡) ∈ R𝑛 is the semistate vector, 𝑢(𝑡) ∈ R𝑚

is the control input, 𝐸 ∈ R𝑛×𝑛 is singular, 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈
R𝑛×𝑚 are constant matrices, and the time-invariant matrixΔ𝐴 corresponds to a norm-bounded parameter uncertainty,
which is the following form:

Δ𝐴 = 𝑀𝐴Δ𝑁𝐴 (7)

where 𝑀𝐴 and 𝑁𝐴 are real constant matrices of appropriate
sizes, and the uncertain matrix Δ = (𝛾𝑖𝑗)𝑝×𝑞 satisfies

ΔΔ𝑇 ≤ 𝐼𝑝. (8)

Remark 2. Condition ΔΔ𝑇 ≤ 𝐼𝑝 is rational because a lot
of system uncertainties satisfy this inequality. Besides, this
condition can also be used in many literatures, for example,
in [9, 34–39].

It is well known that the following system

𝐸𝐷𝛼𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)
𝑥 (0) = 𝑥0 (9)

is normalizable if and only if

rank [𝐸 𝐵] = 𝑛. (10)

Further we have that the uncertain descriptor fractional-
order systems (6) is normalizable if and only if the nominal
descriptor fractional-order system (9) is normalizable.

Lemma 3 (see [28], Theorem 1). System (6) is normalizable if
and only if there exist a nonsingular matrix 𝑃 and a matrix 𝑌
such that the following LMI

𝐸𝑃 + 𝐵𝑌 + 𝑃𝑇𝐸𝑇 + 𝑌𝑇𝐵𝑇 < 0 (11)

is satisfied. In this case, the gain matrix 𝐿 is given by

𝐿 = 𝑌𝑃−1. (12)

Assume that (6) is normalizable; by applying LMI (11), we
obtain 𝐿 ∈ R𝑚×𝑛 such that rank(𝐸 + 𝐵𝐿) = 𝑛. Consider the
feedback control for (6) in the following form:

𝑢 (𝑡) = −𝐿𝐷𝛼𝑥 (𝑡) + 𝐾𝑥 (𝑡) , (13)

where 𝐾 ∈ R𝑚×𝑛 is one gain matrix such that the obtained
normalized system is asymptotically stable.Then we have the
closed-loop system:

(𝐸 + 𝐵𝐿)𝐷𝛼𝑥 (𝑡) = (𝐴 + Δ𝐴 + 𝐵𝐾) 𝑥 (𝑡) , (14)

that is,

𝐷𝛼𝑥 (𝑡) = (𝐴1 + 𝐵1𝐾 + 𝐸1Δ𝐴) 𝑥 (𝑡) (15)

where

𝐸1 = (𝐸 + 𝐵𝐿)−1 ,
𝐴1 = 𝐸1𝐴,
𝐵1 = 𝐸1𝐵.

(16)
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To facilitate the description of our main results, we need
the following results.

In [28], N’Doye et al. derive a sufficient condition for
the robust asymptotical stabilization of uncertain descriptor
fractional-order systems with the fractional-order 𝛼 satisfy-
ing 1 ≤ 𝛼 < 2 in terms of LMIs.

Lemma 4 (see [28], Theorem 2). Assume that (6) is normal-
izable; then there exists gain matrix 𝐾 such that the uncertain
descriptor fractional-order system (6) with fractional-order 1 ≤𝛼 < 2 controlled by the control (13) is asymptotically stable, if
there exist matrices 𝑋 ∈ R𝑚×𝑛, 𝑃0 = 𝑃𝑇0 > 0 ∈ R𝑛×𝑛 and a real
scalar 𝛿 > 0, such that

[[[[[
[

Ω11 ∙ ∙ ∙
Ω21 Ω22 ∙ ∙
𝑁𝐴𝑃0 0 −𝛿𝐼 ∙

0 𝑁𝐴𝑃0 0 −𝛿𝐼
]]]]]
]

< 0 (17)

where

Ω11 = Ω22
= (𝑃0𝐴𝑇1 + 𝐴1𝑃0 + 𝐵1𝑋 + 𝑋𝑇𝐵𝑇1 ) sin 𝜃

+ 𝛿𝐸1𝑀𝐴 (𝐸1𝑀𝐴)𝑇 ,
Ω21 = (𝑃0𝐴𝑇1 − 𝐴1𝑃0 + 𝑋𝑇𝐵𝑇1 − 𝐵1𝑋) cos 𝜃,

(18)

with 𝜃 = 𝜋 − 𝛼(𝜋/2) and matrices 𝑃 and 𝑌 are given by LMI
(11).

Moreover, the gain matrix 𝐾 is given by

𝐾 = 𝑋𝑃−10 . (19)

Lemma 5 (see [40]). For any matrices 𝑋 and 𝑌 with appro-
priate sizes, we have

𝑋𝑇𝑌 + 𝑌𝑇𝑋 ≤ 𝜖𝑋𝑇𝑋 + 𝜖−1𝑌𝑇𝑌, (20)

for any 𝜖 > 0.
Lemma 6 (see [41]). Let 𝑋, 𝑌, and 𝑍 be real matrices of
appropriate sizes. Then, for any 𝑥 ∈ R𝑛,

max {(𝑥𝑇𝑋𝐹𝑌𝑥)2 : 𝐹𝑇𝐹 ≤ 𝐼}
= (𝑥𝑇𝑋𝑋𝑇𝑥) (𝑥𝑇𝑌𝑇𝑌𝑥) . (21)

3. Main Result

In this section, we present a new sufficient condition to design
the gain matrix𝐾. In the following theorem, Δ𝑀 and Δ𝑁 are
given nonsingular matrices, such that

Δ−1𝑀ΔΔ−1𝑁 (Δ−1𝑀ΔΔ−1𝑁)𝑇 ≤ 𝐼𝑝. (22)

From now on, we denote Δ̂ = Δ−1𝑀ΔΔ−1𝑁 , M̂ = 𝐸1𝑀𝐴Δ𝑀,
and N̂ = Δ𝑁𝑁𝐴𝑃. It is obvious that Δ̂Δ̂𝑇 ≤ 𝐼𝑝. Thus, for any

𝜖1 > 0 and 𝜖2 > 0, by using Lemmas 5 and 6 and Δ̂Δ̂𝑇 ≤ 𝐼𝑝,
we have

[
[
(M̂Δ̂N̂ + N̂𝑇Δ̂𝑇M̂𝑇) sin 𝜃 0

0 (M̂Δ̂N̂ + N̂𝑇Δ̂𝑇M̂𝑇) sin 𝜃]]
= [

[
M̂ (Δ̂ sin 𝜃) 0

0 M̂ (Δ̂ sin 𝜃)]][N̂ 0
0 N̂

]

+ [N̂ 0
0 N̂

]𝑇[[
M̂ (Δ̂ sin 𝜃) 0

0 M̂ (Δ̂ sin 𝜃)]]
𝑇

≤ 𝜖1 [[
M̂ (Δ̂ sin 𝜃) 0

0 M̂ (Δ̂ sin 𝜃)]]
[
[
M̂ (Δ̂ sin 𝜃) 0

0 M̂ (Δ̂ sin 𝜃)]]
𝑇

+ 1𝜖1 [
N̂ 0
0 N̂

]𝑇 [N̂ 0
0 N̂

]

≤ 𝜖1 [M̂ 0
0 M̂

][M̂ 0
0 M̂

]𝑇 + 1𝜖1 [
N̂ 0
0 N̂

]𝑇 [N̂ 0
0 N̂

]

(23)

and

[
[

0 (M̂Δ̂N̂ − N̂𝑇Δ̂𝑇M̂𝑇) cos 𝜃
(N̂𝑇Δ̂𝑇M̂𝑇 − M̂Δ̂N̂) cos 𝜃 0 ]

]
≤ 𝜖2 [M̂ 0

0 M̂
][M̂ 0

0 M̂
]𝑇 + 1𝜖2 [

N̂ 0
0 N̂

]𝑇 [N̂ 0
0 N̂

] ,
(24)

that is,

[
[
(M̂Δ̂N̂ + N̂𝑇Δ̂𝑇M̂𝑇) sin 𝜃 (M̂Δ̂N̂ − N̂𝑇Δ̂𝑇M̂𝑇) cos 𝜃
(N̂𝑇Δ̂𝑇M̂𝑇 − M̂Δ̂N̂) cos 𝜃 (M̂Δ̂N̂ + N̂𝑇Δ̂𝑇M̂𝑇) sin 𝜃]]
≤ (𝜖1 + 𝜖2) [M̂ 0

0 M̂
][M̂ 0

0 M̂
]𝑇

+ ( 1𝜖1 +
1𝜖2)[N̂ 0

0 N̂
]𝑇 [N̂ 0

0 N̂
] .

(25)

Remark 7. Note that, when 𝛿 = 2, we have 𝜖1 + 𝜖2 ≤ 2 and
1𝜖1 +

1𝜖2 ≥ 2 > 1𝛿 = 12 . (26)

That is, for any real scalar 𝛿 > 0, and two matrices𝑋 ∈ R𝑚×𝑛1

and 𝑌 ∈ R𝑛2×𝑚, we cannot obtain real scalars 𝜖1 > 0 and𝜖2 > 0 such that

(𝜖1 + 𝜖2)𝑋𝑋𝑇 + ( 1𝜖1 +
1𝜖2)𝑌𝑇𝑌 ≤ 𝛿𝑋𝑋𝑇 + 1𝛿𝑌𝑇𝑌, (27)

where

𝑋 = [𝐸1𝑀𝐴Δ𝑀 0
0 𝐸1𝑀𝐴Δ𝑀] ,

𝑌 = [Δ𝑁𝑁𝐴𝑃 0
0 Δ𝑁𝑁𝐴𝑃 ] .

(28)
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Theorem 8. Assume that (6) is normalizable; then there exists
a gain matrix 𝐾 such that the uncertain descriptor fractional-
order system (6) with fractional-order 1 ≤ 𝛼 < 2 controlled by
the controller (13) is asymptotically stable, if there existmatrices𝑋 ∈ R𝑚×𝑛, 𝑃 = 𝑃𝑇 > 0 ∈ R𝑛×𝑛 and two real scalars 𝜖1 > 0 and𝜖2 > 0, such that

[[[[[[
[

Ω̂11 ∙ ∙ ∙
Ω̂21 Ω̂22 ∙ ∙

Δ𝑁𝑁𝐴𝑃 0 −𝜖1𝐼 ∙
0 Δ𝑁𝑁𝐴𝑃 0 −𝜖1𝐼

]]]]]]
]

< 0, (29)

where

Ω̂11 = Ω̂22
= (𝑃𝐴𝑇1 + 𝐴1𝑃 + 𝐵1𝑋 + 𝑋𝑇𝐵𝑇1 ) sin 𝜃

+ (𝜖1 + 𝜖2) 𝐸1𝑀𝐴Δ𝑀 (𝐸1𝑀𝐴Δ𝑀)𝑇 ,
Ω̂21 = (𝑃𝐴𝑇1 − 𝐴1𝑃 + 𝑋𝑇𝐵𝑇1 − 𝐵1𝑋) cos 𝜃

(30)

with 𝜃 = 𝜋 − 𝛼(𝜋/2) and matrices 𝑃 and 𝑌 are given by LMI
(11).

Moreover, the gain matrix 𝐾 is given by

𝐾 = 𝑋𝑃−1. (31)

Proof. Suppose that there exist matrices𝑋 ∈ R𝑚×𝑛, 𝑃 = 𝑃𝑇 >0 ∈ R𝑛×𝑛 and two real scalars 𝜖1 > 0 and 𝜖2 > 0 such that (29)
holds. It is easy to derive that

[[[[[[[[[[[
[

Ω̂11 ∙ ∙ ∙ ∙ ∙
Ω̂21 Ω̂22 ∙ ∙ ∙ ∙

Δ𝑁𝑁𝐴𝑃 0 −𝜖1𝐼 ∙ ∙ ∙
0 Δ𝑁𝑁𝐴𝑃 0 −𝜖1𝐼 ∙ ∙

Δ𝑁𝑁𝐴𝑃 0 0 0 −𝜖2𝐼 ∙
0 Δ𝑁𝑁𝐴𝑃 0 0 0 −𝜖2𝐼

]]]]]]]]]]]
]

< 0. (32)

By using the Schur complement of (29), one obtains

[
[
((𝐴1𝑃 + 𝐵1𝑋) + (𝑃𝐴𝑇1 + 𝑋𝑇𝐵𝑇1 )) sin 𝜃 ((𝐴1𝑃 + 𝐵1𝑋) − (𝑃𝐴𝑇1 + 𝑋𝑇𝐵𝑇1 )) cos 𝜃((𝑃𝐴𝑇1 + 𝑋𝑇𝐵𝑇1 ) − (𝐴1𝑃 + 𝐵1𝑋)) cos 𝜃 ((𝐴1𝑃 + 𝐵1𝑋) + (𝑃𝐴𝑇1 + 𝑋𝑇𝐵𝑇1 )) sin 𝜃]] + 𝜖1 [M̂ 0

0 M̂
][M̂ 0

0 M̂
]𝑇

+ 1𝜖1 [
N̂ 0
0 N̂

]𝑇 [N̂ 0
0 N̂

] + 𝜖2 [M̂ 0
0 M̂

][M̂ 0
0 M̂

]𝑇 + 1𝜖2 [
N̂ 0
0 N̂

]𝑇 [N̂ 0
0 N̂

] < 0.
(33)

Write 𝐾 = 𝑋𝑃−1. It follows from applying (25) that

[
[

((𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴) 𝑃 + 𝑃 (𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴)𝑇) sin 𝜃 ((𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴) 𝑃 − 𝑃 (𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴)𝑇) cos 𝜃
(− (𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴) 𝑃 + 𝑃 (𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴)𝑇) cos 𝜃 ((𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴) 𝑃 + 𝑃 (𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴)𝑇) sin 𝜃]]
= [

[
((𝐴1𝑃 + 𝐵1𝐾𝑃) + (𝑃𝐴𝑇1 + 𝑃𝐾𝑇𝐵𝑇1 )) sin 𝜃 ((𝐴1𝑃 + 𝐵1𝐾𝑃) − (𝑃𝐴𝑇1 + 𝑃𝐾𝑇𝐵𝑇1 )) cos 𝜃((𝑃𝐴𝑇1 + 𝑃𝐾𝑇𝐵𝑇1 ) − (𝐴1𝑃 + 𝐵1𝐾𝑃)) cos 𝜃 ((𝐴1𝑃 + 𝐵1𝐾𝑃) + (𝑃𝐴𝑇1 + 𝑃𝐾𝑇𝐵𝑇1 )) sin 𝜃]]

+ [
[
(M̂Δ̂N̂ + N̂𝑇Δ̂𝑇M̂𝑇) sin 𝜃 0

0 (M̂Δ̂Δ𝑁𝑁𝐴𝑃 + N̂𝑇Δ̂𝑇M̂𝑇) sin 𝜃]] + [
[

0 (M̂Δ̂N̂ − N̂𝑇Δ̂𝑇M̂𝑇) cos 𝜃
(N̂𝑇Δ̂𝑇M̂𝑇 − M̂Δ̂N̂) cos 𝜃 0 ]

] < 0.

(34)

By using the above inequality (34) and Lemma 1, we
obtain

arg (𝑠𝑝𝑒𝑐 (𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴)) > 𝜋2 𝛼. (35)

Therefore, system (6) is asymptotically stable. This ends the
proof.

Remark 9. Write

𝑇 = [[[[
[

Ω̂11 ∙ ∙ ∙Ω̂21 Ω̂22 ∙ ∙Δ𝑁𝑁𝐴𝑃 0 −𝜖1𝐼 ∙0 Δ𝑁𝑁𝐴𝑃 0 −𝜖1𝐼
]]]]
]

− [[[
[

Ω11 ∙ ∙ ∙Ω21 Ω22 ∙ ∙𝑁𝐴𝑃0 0 −𝛿𝐼 ∙0 𝑁𝐴𝑃0 0 −𝛿𝐼
]]]
]

(36)
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Note that if we choose Δ𝑀 = 𝐼𝑝 and Δ𝑁 = 𝐼𝑞 in LMI (29),

𝑇 =
[[[[[[
[

(𝜖1 + 𝜖2 − 𝛿) 𝐸1𝑀𝐴 (𝐸1𝑀𝐴)𝑇 ∙ ∙ ∙
0 (𝜖1 + 𝜖2 − 𝛿) 𝐸1𝑀𝐴 (𝐸1𝑀𝐴)𝑇 ∙ ∙
0 0 − (𝜖1 − 𝛿) 𝐼 ∙
0 0 0 − (𝜖1 − 𝛿) 𝐼

]]]]]]
]

. (37)

It is easy to see the following:
(1) For given 𝛿, when 𝜖1 − 𝛿 > 0, it is always true that𝜖1 + 𝜖2 − 𝛿 > 0; that is, there do not exist 𝜖1 and 𝜖2

such that 𝑇 < 0. Therefore, Theorem 8 is not a special
case of Lemma 4 [28,Theorem 2], whenΔ𝑀 = 𝐼𝑝 andΔ𝑁 = 𝐼𝑞.

(2) For given 𝜖1 and 𝜖2, when 𝜖1 − 𝛿 < 0, there exists𝜖2 such that 𝑇 is positive definite; that is, there exists𝛿 such that 𝑇 > 0. Since conditions in Lemma 4
and Theorem 8 are both sufficient, we cannot derive
Lemma 4 by applying Theorem 8; that is, Theorem 8
is not a generalization of Lemma 4 [28, Theorem 2].

4. A Numerical Example

In this section, we assume that the matrix of uncertain
parameters Δ in the uncertain descriptor fractional-order
system (6) is diagonal. We provide a numerical example to
illustrate that Theorem 8 is feasible and effective with wider
applications.

Example 1. Consider the uncertain descriptor fractional-
order system described in (6) with parameters as follows:

𝐸 = [[
[
1 0 0.5
2 1 1
0 0 0

]]
]

,

𝐴 = [[
[
2.4 0.2 1.2
4 1.5 2
0 0 0

]]
]

,

𝐵 = [[
[
4 1
1 1
1 2

]]
]

𝑀𝐴 = [[
[
0.1 0 0
0.1 0.3 4.8
0 0.2 0

]]
]

,

𝑁𝐴 = [[[
[

0 0 0
0.2 0 1300 0.1 0

]]]
]

,

(38)

where 𝛼 = 1.23.

It is easy to check that rank(𝐸) = 2 < 3; that is, 𝐸 is
singular. By applying the LMI (11), we obtain

𝑃 = 108 × [[
[

0.2613 −1.5587 1.0635
−1.5587 −1.2010 −0.7272
1.0635 −0.7272 0.4664

]]
]

,

𝑌 = 108 × [−1.4992 0.7485 0.3345
0.6535 −0.2534 −2.4425] ,

(39)

and the gain matrix 𝐿
𝐿 = 𝑌𝑃−1 = [ 1.0224 −0.5004 −2.3944

−2.8016 1.6203 3.6775 ] . (40)

It follows from (16) that

𝐸1 = [[
[
−0.1025 0.3106 −0.2545
0.2781 0.3221 0.1544
−0.2483 0.1088 −0.1188

]]
]

,

𝐴1 = [[
[

0.9963 0.4454 0.4981
1.9559 0.5388 0.9780
−0.1605 0.1136 −0.0802

]]
]

,

𝐵1 = [[
[
−0.3541 −0.3010
1.5889 0.9091
−1.0030 −0.3770

]]
]

.

(41)

Firstly, we compute𝑃0,𝑋, 𝛿, and𝐾 by using Lemma 4 [28,
Theorem 2]. A feasible solution of LMI (11) is as follows:

𝑃0 = 10−7 × [[
[

0.0560 −0.0060 −0.1056
−0.0060 0.0489 −0.0407
−0.1056 −0.0407 0.2552

]]
]

,

𝑋 = [−0.0022 −0.0010 0.0056
0.0043 0.0001 −0.0087] ,

𝛿 = 10−15 × 1.0293,
𝐾 = 𝑋𝑃−10 = 108 × [−2.0350 −1.0959 −1.0150

1.7432 0.9354 0.8674 ] .

(42)
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We choose

Δ = [[[
[
cos (0.8) 0 0

0 𝑒−0.8 0
0 0 sin (0.1)

]]]
]

. (43)

It follows from (15) that

𝑆 = 𝐴1 + 𝐵1𝐾 + 𝐸1𝑀𝐴Δ𝑁𝐴
= 108 × [[

[
0.1959 0.1065 0.0983
−1.6487 −0.8909 −0.8242
1.3839 0.7465 0.6910

]]
]

(44)

and the arguments of all eigenvalues of 𝑆 are
3.1416,
3.1416,

0.
(45)

Based on those results, it is debatable whether or not system
(6) is stable.

In the second way, we compute 𝑃0, 𝑋, 𝜖1, 𝜖2, and 𝐾 by
usingTheorem 8; we choose

Δ𝑀 = [[[[
[

1 0 0
0 1 0
0 0 112

]]]]
]

,

Δ𝑁 = [[
[
1 0 0
0 1 0
0 0 12

]]
]

.
(46)

It is easy to check that

Δ−1𝑀ΔΔ−1𝑁 = [[[
[
cos (0.8) 0 0

0 𝑒−0.8 0
0 0 sin (0.1)

]]]
]

,

𝑀𝐴Δ𝑀 = [[
[
0.1 0 0
0.1 0.3 0.4
0 0.2 0

]]
]

,

Δ𝑁𝑁𝐴 = [[
[

0 0 0
0.2 0 0.4
0 0.1 0

]]
]

.

(47)

It follows that a feasible solution of LMI (11) is

𝑃0 = [[
[

3074 −5431 −1331
−5431 11221 885
−1331 885 1912

]]
]

,

𝑋 = [−6379 7189 4104
12249 −13814 −6269] ,

𝜖1 = 1055.1,
𝜖2 = 173.0328,

(48)

asymptotically stabilizing state-feedback gain is

𝐾 = 𝑋𝑃−10 = [−324.0313 −143.8217 −156.8345
840.6966 373.4044 409.0759 ] , (49)

𝑆 = 𝐴1 + 𝐵1𝐾 + 𝐸1Δ𝐴
= [[

[
−137.3101 −61.0208 −67.0911
251.3914 111.4837 123.6975
7.9010 3.5938 3.0047

]]
]

, (50)

and the arguments of all eigenvalues of 𝑆 are
3.1416,
3.1416,
3.1416.

(51)

Therefore, system (6) is stable.

5. Conclusion

In this paper, the robust asymptotical stability of uncertain
descriptor fractional-order systems (6) with the fractional-
order 𝛼 belonging to 1 ≤ 𝛼 < 2 has been studied. We derive a
new sufficient condition for checking the robust asymptotical
stabilization of (6) in terms of LMIs. Out results can be seen
as a generalization of [28,Theorem 2]. By adding appropriate
parameters into LMIs, our result has wider applications. One
special numerical example has shown that our results are
feasible and easy to be used.
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Using the fixed point index, we establish two existence theorems for positive solutions to a system of semipositone fractional
difference boundary value problems. We adopt nonnegative concave functions and nonnegative matrices to characterize the
coupling behavior of our nonlinear terms.

1. Introduction

In this paper we study the existence of positive solutions for
the system of fractional difference boundary value problems
involving semipositone nonlinearities:−Δ]

]−3𝑥 (𝑡) = 𝑓 (𝑡 + ] − 1, 𝑥 (𝑡 + ] − 1) , 𝑦 (𝑡 + ] − 1)) ,𝑡 ∈ [0, 𝑏 + 2]N0 ,−Δ]
]−3𝑦 (𝑡) = 𝑔 (𝑡 + ] − 1, 𝑥 (𝑡 + ] − 1) , 𝑦 (𝑡 + ] − 1)) ,𝑡 ∈ [0, 𝑏 + 2]N0 ,𝑥 (] − 3) = [Δ𝛼]−3𝑥 (𝑡)]𝑡=]−𝛼−2= [Δ𝛽]−3𝑥 (𝑡)]𝑡=]+𝑏+2−𝛽 = 0,𝑦 (] − 3) = [Δ𝛼]−3𝑦 (𝑡)]𝑡=]−𝛼−2= [Δ𝛽]−3𝑦 (𝑡)]𝑡=]+𝑏+2−𝛽 = 0,

(1)

where 2 < ] ≤ 3, 1 < 𝛽 < 2, ] − 𝛽 > 1, 0 < 𝛼 < 1, 𝑏 >3 (𝑏 ∈ N), and Δ]
]−3 is a discrete fractional operator. For the

nonlinear terms 𝑓, 𝑔, we assume the following.
(H0) 𝑓, 𝑔 : [] − 1, 𝑏 + ] + 1]N]−1

× R+ × R+ → R are
two continuous functions; moreover, there exists a positive
constant𝑀 > 0 such that

𝑓, 𝑔 (𝑡, 𝑥, 𝑦) ≥ −𝑀,
for all (𝑡, 𝑥, 𝑦) ∈ [] − 1, 𝑏 + ] + 1]N]−1

×R
+ ×R

+. (2)

Note that, in this paper, we use [𝑎, 𝑏]N𝑎 to stand for {𝑎, 𝑎+1, 𝑎+2, . . . , 𝑏}with 𝑏−𝑎 ∈ N1, whereN𝑎 fl {𝑎, 𝑎+1, 𝑎+2, ⋅ ⋅ ⋅ }.
Fractional calculus has been applied in physics, chem-

istry, aerodynamics, biophysics, and blood flow phenomena.
For example, CD4+T cells’ infections can be depicted by a
fractional order model𝐷𝛼1 (𝑇) = 𝑠 − 𝐾𝑉𝑇 − 𝑑𝑇 + 𝑏𝐼,𝐷𝛼2 (𝐼) = 𝐾𝑉𝑇 − (𝑏 + 𝛿) 𝐼,𝐷𝛼3 (𝑉) = 𝑁𝛿𝐼 − 𝑐𝑉, (3)

where𝐷𝛼𝑖 (𝑖 = 1, 2, 3) are fractional derivatives (see [1, 2]); we
also refer the reader to [1–45] and the references therein. In
[3], the authors considered the existence of positive solutions
for the semipositone discrete fractional system− Δ]1𝑦1 (𝑡)= 𝜆1𝑓1 (𝑡 + ]1 − 1, 𝑦1 (𝑡 + ]1 − 1) , 𝑦2 (𝑡 + ]2 − 1)) ,𝑡 ∈ [1, 𝑏 + 1]N ,
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2 Journal of Function Spaces− Δ]2𝑦2 (𝑡)= 𝜆2𝑓2 (𝑡 + ]2 − 1, 𝑦1 (𝑡 + ]1 − 1) , 𝑦2 (𝑡 + ]2 − 1)) ,𝑡 ∈ [1, 𝑏 + 1]N ,𝑦1 (]1 − 2) = 𝑦1 (]1 + 𝑏 + 1) = 0,𝑦2 (]2 − 2) = 𝑦2 (]2 + 𝑏 + 1) = 0,
(4)

where ]1, ]2 ∈ (1, 2]. Using the Guo-Krasnosel’skĭı fixed
point theorem, the authors showed that the problem has
positive solutions for sufficiently small values of 𝜆1, 𝜆2 >0. The growth conditions on 𝑓𝑖 (𝑖 = 1, 2) are superlinear;
i.e.,

lim
𝑦1+𝑦2→+∞

𝑓𝑖 (𝑡, 𝑥, 𝑦)𝑦1 + 𝑦2 = +∞,
lim
𝑦1+𝑦2→0

+

𝑓𝑖 (𝑡, 𝑥, 𝑦)𝑦1 + 𝑦2 = 0, (5)

uniformly for 𝑡 ∈ []𝑖, ]𝑖 + 𝑏]N]𝑖−2
. Using conditions of (5) type

the existence of solutions for various fractional boundary
value problems was considered in [1, 4–6, 9, 11–13].

In this paper, we use the fixed point index to obtain
two existence theorems for positive solutions to (1) with
semipositone nonlinearities. We adopt some appropriate
nonnegative concave functions and nonnegative matrices to
characterize the coupling behavior of our nonlinear terms.
Moreover, the growth conditions on+∞ of our nonlinearities𝑓, 𝑔 are an improvement of (5); see conditions (H1) and (H3)
in Section 3.

2. Preliminaries

We first recall some background materials from discrete
fractional calculus; formore details we refer the reader to [10].

Definition 1. We define 𝑡] fl Γ(𝑡 + 1)/Γ(𝑡 + 1 − ]) for any𝑡, ] ∈ R for which the right-hand side is well-defined. We use
the convention that if 𝑡+1−] is a pole of the Gamma function
and 𝑡 + 1 is not a pole, then 𝑡] = 0.
Definition 2. For ] > 0, the ]−th fractional sum of a function𝑓 is

Δ−]𝑎 𝑓 (𝑡) = 1Γ (]) 𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 𝑓 (𝑠) , for 𝑡 ∈ N𝑎+]. (6)

We also define the ]−th fractional difference for ] > 0 byΔ]
𝑎𝑓 (𝑡) = Δ𝑁Δ]−𝑁

𝑎 𝑓 (𝑡) , for 𝑡 ∈ N𝑎+𝑁−], (7)

where𝑁 ∈ N with 0 ≤ 𝑁 − 1 < ] ≤ 𝑁.
Let ℎ : []−1, 𝑏+]+1]N]−1

→ R be a continuous function.
Then we consider the fractional difference boundary value
problems−Δ]

]−3𝑦 (𝑡) = ℎ (𝑡 + ] − 1) , 𝑡 ∈ [0, 𝑏 + 2]N0 ,𝑦 (] − 3) = [Δ𝛼]−3𝑦 (𝑡)]𝑡=]−𝛼−2= [Δ𝛽]−3𝑦 (𝑡)]𝑡=]+𝑏+2−𝛽 = 0, (8)

where ], 𝛼, 𝛽, 𝑏 are as in (1). The following two lemmas are in
[9], so we omit their proofs.

Lemma 3 (see [9], Lemma 4). Problem (8) has a unique
solution

𝑦 (𝑡) = 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) ℎ (𝑠 + ] − 1) ,
𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1

, (9)

where

𝐺 (𝑡, 𝑠) = 1Γ (])
{{{{{{{{{{{{{

𝑡]−1 (] + 𝑏 − 𝛽 − 𝑠 + 1)]−𝛽−1(] + 𝑏 − 𝛽 + 2)]−𝛽−1 − (𝑡 − 𝑠 − 1)]−1 , 0 ≤ 𝑠 < 𝑡 − ] + 1 ≤ 𝑏 + 2,𝑡]−1 (] + 𝑏 − 𝛽 − 𝑠 + 1)]−𝛽−1(] + 𝑏 − 𝛽 + 2)]−𝛽−1 , 0 ≤ 𝑡 − ] + 1 ≤ 𝑠 ≤ 𝑏 + 2. (10)

Lemma 4 (see [9], Lemma 5). Green’s function (10) has the
following properties.

(i) 𝐺(𝑡, 𝑠) > 0, (𝑡, 𝑠) ∈ [] − 1, 𝑏 + ] + 1]N]−1
× [0, 𝑏 + 2]N0 ,

(ii) 𝑞∗(𝑡)𝐺(𝑏 + ] + 1, 𝑠) ≤ 𝐺(𝑡, 𝑠) ≤ 𝐺(𝑏 + ] + 1, 𝑠), (𝑡, 𝑠) ∈[]−1, 𝑏+]+1]N]−1
×[0, 𝑏+2]N0 , where 𝑞∗(𝑡)= 𝑡]−1/(𝑏+]+1)]−1.

Let 𝜑(𝑠 + ] − 1) = 𝐺(𝑏 + ] + 1, 𝑠) for 𝑠 ∈ [0, 𝑏 + 2]N0 . Then𝜑(𝑡) = 𝐺(𝑏 + ] + 1, 𝑡 − ] + 1) for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
. From

Lemma ??, the following inequalities are satisfied:

𝑏+]+1∑
𝑡=]−1

𝑞∗ (𝑡) 𝜑 (𝑡) ⋅ 𝜑 (𝑠 + ] − 1) ≤ 𝑏+]+1∑
𝑡=]−1

𝐺 (𝑡, 𝑠) 𝜑 (𝑡)
≤ 𝑏+]+1∑
𝑡=]−1

𝜑 (𝑡) ⋅ 𝜑 (𝑠 + ] − 1) , for 𝑠 ∈ [0, 𝑏 + 2]N0 . (11)

For convenience, we let
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𝜅1 = 𝑏+]+1∑
𝑡=]−1

𝑞∗ (𝑡) 𝜑 (𝑡) and

𝜅2 = 𝑏+]+1∑
𝑡=]−1

𝜑 (𝑡) . (12)

Let 𝐸 be the collection of all maps from []−3, 𝑏 + ]+1]N]−3
to R equipped with the max norm, ‖ ⋅ ‖. Then 𝐸 is a Banach
space. Define a set 𝑃 ⊂ 𝐸 by 𝑃 = {𝑦 ∈ 𝐸 : 𝑦(𝑡) ≥ 0, 𝑡 ∈[] − 1, 𝑏 + ] + 1]N]−1

}. Then 𝑃 is a cone in 𝐸. Note that 𝐸 × 𝐸 is
a Banach space with the norm ‖(𝑥, 𝑦)‖ fl max{‖𝑥‖, ‖𝑦‖}, and𝑃 × 𝑃 is a cone in 𝐸 × 𝐸.

From Lemma 3, for all 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, we have

that (1) is equivalent to

𝑥 (𝑡) = 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠)⋅ 𝑓 (𝑠 + ] − 1, 𝑥 (𝑠 + ] − 1) , 𝑦 (𝑠 + ] − 1)) ,
𝑦 (𝑡) = 𝑏+2∑

𝑠=0

𝐺 (𝑡, 𝑠)⋅ 𝑔 (𝑠 + ] − 1, 𝑥 (𝑠 + ] − 1) , 𝑦 (𝑠 + ] − 1)) ,
(13)

where 𝐺 is defined in (10).

Lemma 5 (see [46]). Let 𝐸 be a real Banach space and 𝑃 a
cone on 𝐸. Suppose that Ω ⊂ 𝐸 is a bounded open set and that𝐴 : Ω ∩ 𝑃 → 𝑃 is a continuous compact operator. If there
exists 𝜔0 ∈ 𝑃 \ {0} such that𝜔 − 𝐴𝜔 ̸= 𝜆𝜔0, ∀𝜆 ≥ 0, 𝜔 ∈ 𝜕Ω ∩ 𝑃, (14)

then 𝑖(𝐴,Ω ∩ 𝑃, 𝑃) = 0, where 𝑖 denotes the fixed point index
on 𝑃.
Lemma6 (see [46]). Let𝐸 be a real Banach space and𝑃 a cone
on 𝐸. Suppose that Ω ⊂ 𝐸 is a bounded open set with 0 ∈ Ω
and that 𝐴 : Ω ∩ 𝑃 → 𝑃 is a continuous compact operator. If𝜔 − 𝜆𝐴𝜔 ̸= 0, ∀𝜆 ∈ [0, 1] , 𝜔 ∈ 𝜕Ω ∩ 𝑃, (15)

then 𝑖(𝐴,Ω ∩ 𝑃, 𝑃) = 1.
3. Main Results

Let 𝜔 be a solution of−Δ]
]−3𝑦 (𝑡) = 1, 𝑡 ∈ [0, 𝑏 + 2]N0 ,𝑦 (] − 3) = [Δ𝛼]−3𝑦 (𝑡)]𝑡=]−𝛼−2= [Δ𝛽]−3𝑦 (𝑡)]𝑡=]+𝑏+2−𝛽 = 0, (16)

where ], 𝛼, 𝛽, 𝑏 are as in (1). Define 𝑧 = 𝑀𝜔, and then, from
Lemmas 3 and ??, we have

𝑧 (𝑡) = 𝑀𝜔 (𝑡) = 𝑀 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) ≤ 𝑀 𝑏+2∑
𝑠=0

𝜑 (𝑠 + ] − 1)
= 𝑀 𝑏+]+1∑
𝑠=]−1

𝜑 (𝑠) = 𝑀𝜅2. (17)

We note that (1) has a positive solution (𝑥, 𝑦) ∈ (𝑃×𝑃) \ {0} if
and only if (𝑥, 𝑦) = (𝑥+𝑧, 𝑦+𝑧) is a solution of the fractional
difference boundary value problems

− Δ]
]−3𝑥 (𝑡) = 𝑓 (𝑡 + ] − 1, 𝑥 (𝑡 + ] − 1)− 𝑧 (𝑡 + ] − 1) , 𝑦 (𝑡 + ] − 1) − 𝑧 (𝑡 + ] − 1)) ,𝑡 ∈ [0, 𝑏 + 2]N0 ,− Δ]
]−3𝑦 (𝑡) = 𝑔 (𝑡 + ] − 1, 𝑥 (𝑡 + ] − 1)− 𝑧 (𝑡 + ] − 1) , 𝑦 (𝑡 + ] − 1) − 𝑧 (𝑡 + ] − 1)) ,𝑡 ∈ [0, 𝑏 + 2]N0 ,𝑥 (] − 3) = [Δ𝛼]−3𝑥 (𝑡)]𝑡=]−𝛼−2= [Δ𝛽]−3𝑥 (𝑡)]𝑡=]+𝑏+2−𝛽 = 0,𝑦 (] − 3) = [Δ𝛼]−3𝑦 (𝑡)]𝑡=]−𝛼−2= [Δ𝛽]−3𝑦 (𝑡)]𝑡=]+𝑏+2−𝛽 = 0,

(18)

and (𝑥, 𝑦)(𝑡) ≥ (𝑧, 𝑧)(𝑡) for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, where

], 𝛼, 𝛽, 𝑏 are as in (1) and

𝑓 (𝑡, 𝑥, 𝑦)
= {{{{{{{{{{{{{{{

𝑓(𝑡, 𝑥, 𝑦) + 𝑀, 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, 𝑥, 𝑦 ≥ 0,𝑓 (𝑡, 𝑥, 0) + 𝑀, 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, 𝑥 > 0, 𝑦 < 0,𝑓 (𝑡, 0, 𝑦) + 𝑀, 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, 𝑥 < 0, 𝑦 > 0,𝑓 (𝑡, 0, 0) + 𝑀, 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, 𝑥, 𝑦 < 0,

(19)

and𝑔 (𝑡, 𝑥, 𝑦)
= {{{{{{{{{{{{{{{

𝑔 (𝑡, 𝑥, 𝑦) + 𝑀, 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, 𝑥, 𝑦 ≥ 0,𝑔 (𝑡, 𝑥, 0) + 𝑀, 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, 𝑥 > 0, 𝑦 < 0,𝑔 (𝑡, 0, 𝑦) + 𝑀, 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, 𝑥 < 0, 𝑦 > 0,𝑔 (𝑡, 0, 0) + 𝑀, 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, 𝑥, 𝑦 < 0.

(20)

Note that for (𝑥1, 𝑦1)(𝑡) ≥ (𝑥2, 𝑦2)(𝑡), we mean 𝑥1(𝑡) ≥ 𝑥2(𝑡),𝑦1(𝑡) ≥ 𝑦2(𝑡) for all 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
.
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For (𝑥, 𝑦) ∈ 𝑃 × 𝑃, and 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
, we define

the operators𝐵1 (𝑥, 𝑦) (𝑡) = 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠 + ] − 1, 𝑥 (𝑠 + ] − 1)− 𝑧 (𝑠 + ] − 1) , 𝑦 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1)) ,
𝐵2 (𝑥, 𝑦) (𝑡) = 𝑏+2∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠 + ] − 1, 𝑥 (𝑠 + ] − 1)− 𝑧 (𝑠 + ] − 1) , 𝑦 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1)) ,
(21)

and 𝐵 (𝑥, 𝑦) (𝑡) = (𝐵1, 𝐵2) (𝑥, 𝑦) (𝑡) . (22)

Then (H0) and using the Arzelà-Ascoli theorem in a standard
way establish that 𝐵 : 𝑃 × 𝑃 → 𝑃 × 𝑃 is a completely
continuous operator. It is clear that (𝑥, 𝑦) ∈ (𝑃 × 𝑃) \ {0} is a
positive solution for (18) if and only if (𝑥, 𝑦) ∈ (𝑃 × 𝑃) \ {0} is
a fixed point of 𝐵.

Let𝑃0 = {𝑦 ∈ 𝑃 : 𝑦(𝑡) ≥ 𝑞∗(𝑡)‖𝑦‖, ∀𝑡 ∈ []−1, 𝑏+]+1]N]−1
}.

Then from Lemma ?? we have𝐵𝑖 (𝑃 × 𝑃) ⊂ 𝑃0, 𝑖 = 1, 2. (23)

If we seek a fixed point (𝑥, 𝑦) of 𝐵 then 𝑥, 𝑦 ∈ 𝑃0 and𝑤 (𝑡) − 𝑧 (𝑡) ≥ 𝑞∗ (𝑡) ‖𝑤‖ − 𝑀𝜅2 ≥ 𝑞0 ‖𝑤‖ − 𝑀𝜅2,
for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1

, (24)

where 𝑤 = 𝑥, 𝑦, and 𝑞0 = min𝑡∈[]−1,𝑏+]+1]N]−1 𝑞∗(𝑡) > 0, so
as a result if ‖𝑥‖, ‖𝑦‖ ≥ 𝑞−10 𝑀𝜅2 then (𝑥, 𝑦)(𝑡) ≥ (𝑧, 𝑧)(𝑡) for𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1

(i.e., (𝑥 − 𝑧, 𝑦 − 𝑧)(𝑡) is a positive
solution for (1)).

For convenience, we use 𝑐1, 𝑐2, . . . to stand for different
positive constants. Let 𝐵 fl {𝑥 ∈ 𝐸 : ‖𝑥‖ < } for  > 0. Now,
we list our assumptions on 𝑓, 𝑔 (the first two are needed for
Theorem 10 and the last two are needed for Theorem 11):

(H1) There exist 𝑝, 𝑞 ∈ 𝐶(R+,R+) such that
(i) 𝑝 is concave and strictly increasing on R+,
(ii) there exists 𝑐1 > 0 such that𝑓 (𝑡, 𝑥, 𝑦) ≥ 𝑥 + 𝑝 (𝑦) − 𝑐1,𝑔 (𝑡, 𝑥, 𝑦) ≥ 𝑞 (𝑥) − 𝑐1,∀ (𝑡, 𝑥, 𝑦) ∈ [] − 1, 𝑏 + ] + 1]N]−1

×R
+ ×R

+, (25)

(iii) there is a 𝛾1 > 0 such that 𝜅1(1 + 𝛾1𝜅1) > 1 and𝑝 (𝜅2𝑞 (𝑥 (𝑡 + ] − 1) − 𝑧 (𝑡 + ] − 1)))≥ 𝜅2𝛾1 (𝑥 (𝑡 + ] − 1) − 𝑧 (𝑡 + ] − 1)) − 𝑐1 (26)

for 𝑥 ∈ R+ and 𝑡 ∈ [0, 𝑏 + 2]N0 .
(H2) For any (𝑡, 𝑥, 𝑦) ∈ []−1, 𝑏+]+1]N]−1

×[0, 𝑞−10 𝑀𝜅2]×[0, 𝑞−10 𝑀𝜅2], assume𝑓, 𝑔 (𝑡, 𝑥, 𝑦) < 𝑞−10 𝑀. (27)

(H3)There exist 𝑒𝑖 ≥ 0 (𝑖 = 1, 2, 3, 4)with 𝑒21 +𝑒22 ̸= 0, 𝑒23 +𝑒24 ̸= 0 such that
(i) 𝜅 = (1 − 𝑒1𝜅2)(1 − 𝑒4𝜅2) − 𝑒2𝑒3𝜅22 > 0, 𝑒1, 𝑒4 < 𝜅−12 ,
(ii) there exist 𝑐2 > 0 such that

(𝑓 (𝑡, 𝑥, 𝑦)𝑔 (𝑡, 𝑥, 𝑦)) ≤ (𝑒1𝑥 + 𝑒2𝑦 + 𝑐2𝑒3𝑥 + 𝑒4𝑦 + 𝑐2) ,
∀ (𝑡, 𝑥, 𝑦) ∈ [] − 1, 𝑏 + ] + 1]N]−1

×R
+ ×R

+. (28)

(H4) For any (𝑡, 𝑥, 𝑦) ∈ []−1, 𝑏+]+1]N]−1
×[0, 𝑞−10 𝑀𝜅2]×[0, 𝑞−10 𝑀𝜅2], assume

𝑓, 𝑔 (𝑡, 𝑥, 𝑦) > 𝑞−20 𝑀. (29)

Example 7. Let 𝑝(𝑦) = 𝑦19/20 and 𝑞(𝑥) = 𝑥2 for 𝑥, 𝑦 ∈ R+.
Then, for any 𝜔 > 0, we have

lim inf
𝑥→+∞

𝑝 (𝜔𝑞 (𝑥))𝑥 = lim inf
𝑥→+∞

𝜔19/20𝑥19/10𝑥 = +∞. (30)

Let 𝑓(𝑡, 𝑥, 𝑦) = (1/2𝜅2)𝑥 + (1/2𝜅2𝑒𝛽1+cos(𝑡𝑥))𝑦 − 𝑀 and𝑔(𝑡, 𝑥, 𝑦) = (1/𝑒𝛽2+sin(𝑡𝑥))(𝑞−10 𝑀)1−𝛽3𝜅−𝛽32 𝑥𝛽3 − 𝑀, where𝛽1, 𝛽2 > 1, 𝛽3 > 2, for (𝑡, 𝑥, 𝑦) ∈ []−1, 𝑏+]+1]N]−1
×R+×R+.

Then, for any (𝑡, 𝑥, 𝑦) ∈ [] − 1, 𝑏 + ] + 1]N]−1
× [0, 𝑞−10 𝑀𝜅2] ×[0, 𝑞−10 𝑀𝜅2], we have

𝑓 (𝑡, 𝑥, 𝑦) + 𝑀 = 12𝜅2 𝑥 + 12𝜅2𝑒𝛽1+cos(𝑡𝑥)𝑦< 12𝜅2 𝑞−10 𝑀𝜅2 + 12𝜅2 𝑞−10 𝑀𝜅2= 𝑞−10 𝑀,
(31)

and

𝑔 (𝑡, 𝑥, 𝑦) + 𝑀 = 1𝑒𝛽2+sin(𝑡𝑥) (𝑞−10 𝑀)1−𝛽3 𝜅−𝛽32 𝑥𝛽3< (𝑞−10 𝑀)1−𝛽3 𝜅−𝛽32 (𝑞−10 𝑀𝜅2)𝛽3= 𝑞−10 𝑀. (32)

Also,

lim inf
𝑥→+∞,𝑦→+∞

𝑓 (𝑡, 𝑥, 𝑦) + 𝑀𝑥 + 𝑝 (𝑦)
= lim inf
𝑥→+∞,𝑦→+∞

(1/2𝜅2) 𝑥 + (1/2𝜅2𝑒𝛽1+cos(𝑡𝑥)) 𝑦𝑥 + 𝑦19/20= +∞, for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
,

(33)
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and

lim inf
𝑥→+∞

𝑔 (𝑡, 𝑥, 𝑦) + 𝑀𝑞 (𝑥)
= lim inf
𝑥→+∞

(1/𝑒𝛽2+sin(𝑡𝑥)) (𝑞−10 𝑀)1−𝛽3 𝜅−𝛽32 𝑥𝛽3𝑥2= +∞,
uniformly on (𝑡, 𝑦) ∈ [] − 1, 𝑏 + ] + 1]N]−1

×R
+.

(34)

Thus, (H1)-(H2) are satisfied.

Example 8. Let𝑓(𝑡, 𝑥, 𝑦) = (𝑞−20 𝑀𝑒𝑞−10 𝑀𝜅2+𝑒|sin(𝑡𝑥𝑦)|)𝑒−(𝑥+𝑦)/2−𝑀 and 𝑔(𝑡, 𝑥, 𝑦) = (𝑞−20 𝑀𝑒𝑞−10 𝑀𝜅2 + 𝑒|cos(𝑡𝑥𝑦)|)𝑒−(𝑥+𝑦)/2 − 𝑀,
for (𝑡, 𝑥, 𝑦) ∈ [] − 1, 𝑏 + ] + 1]N]−1

× R+ × R+. Then, for any(𝑡, 𝑥, 𝑦) ∈ [] − 1, 𝑏 + ] + 1]N]−1
× [0, 𝑞−10 𝑀𝜅2] × [0, 𝑞−10 𝑀𝜅2],

we have 𝑓 (𝑡, 𝑥, 𝑦) + 𝑀, 𝑔 (𝑡, 𝑥, 𝑦) + 𝑀> 𝑞−20 𝑀𝑒𝑞−10 𝑀𝜅2𝑒−𝑞−10 𝑀𝜅2 = 𝑞−20 𝑀. (35)

Also,

lim sup
𝑥→+∞,𝑦→+∞

𝑓 (𝑡, 𝑥, 𝑦) + 𝑀𝑒1𝑥 + 𝑒2𝑦
= lim sup
𝑥→+∞,𝑦→+∞

(𝑞−20 𝑀𝑒𝑞−10 𝑀𝜅2 + 𝑒|sin(𝑡𝑥𝑦)|) 𝑒−(𝑥+𝑦)/2𝑒1𝑥 + 𝑒2𝑦= 0,
(36)

and

lim sup
𝑥→+∞,𝑦→+∞

𝑔 (𝑡, 𝑥, 𝑦) + 𝑀𝑒3𝑥 + 𝑒4𝑦
= lim sup
𝑥→+∞,𝑦→+∞

(𝑞−20 𝑀𝑒𝑞−10 𝑀𝜅2 + 𝑒|cos(𝑡𝑥𝑦)|) 𝑒−(𝑥+𝑦)/2𝑒3𝑥 + 𝑒4𝑦= 0,
(37)

for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
. Thus, (H3)-(H4) hold.

Remark 9. (i) In (H1), the growth condition for nonlinear
term 𝑓 depends on two variables 𝑥, 𝑦; however, in [7], this
corresponding condition only involves one variable.

(ii) When nonlinear terms 𝑓, 𝑔 grow sublinearly at +∞,
nonnegative matrices are used to depict the coupling behav-
ior of our nonlinearities.This is different from condition (H4)
in [7].

Theorem 10. Suppose that (H0)-(H2) hold. Then (1) has at
least one positive solution.

Proof. We first claim that there exists a sufficiently large
positive number 𝑅 > 𝑞−10 𝑀𝜅2 such that

(𝑥, 𝑦) ̸= 𝐵 (𝑥, 𝑦) + 𝜆 (𝑥0, 𝑦0) ,∀ (𝑥, 𝑦) ∈ 𝜕 (𝐵𝑅 × 𝐵𝑅) ∩ (𝑃 × 𝑃) , 𝜆 ≥ 0, (38)

where 𝑥0, 𝑦0 ∈ 𝑃0 are two given functions. Suppose not.Then
there exist (𝑥, 𝑦) ∈ 𝜕(𝐵𝑅 × 𝐵𝑅) ∩ (𝑃 × 𝑃) and 𝜆 ≥ 0 such that(𝑥, 𝑦) = 𝐵(𝑥, 𝑦) + 𝜆(𝑥0, 𝑦0), and so

𝑥 (𝑡) = 𝐵1 (𝑥, 𝑦) (𝑡) + 𝜆𝑥0 (𝑡) ,𝑦 (𝑡) = 𝐵2 (𝑥, 𝑦) (𝑡) + 𝜆𝑦0 (𝑡) ,
for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1

. (39)

This implies 𝑥(𝑡) ≥ 𝐵1(𝑥, 𝑦)(𝑡), and 𝑦(𝑡) ≥ 𝐵2(𝑥, 𝑦)(𝑡) for𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
. From (H1) we have

𝑥 (𝑡) ≥ 𝐵1 (𝑥, 𝑦) (𝑡) ≥ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) [𝑥 (𝑠 + ] − 1)− 𝑧 (𝑠 + ] − 1) + 𝑝 (𝑦 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1))
− 𝑐1] ≥ 𝑏+2∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑥 (𝑠 + ] − 1) + 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠)
⋅ 𝑝 (𝑦 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1)) − 𝑐3 ≥ 𝑏+2∑

𝑠=0

𝐺 (𝑡, 𝑠)
⋅ 𝑥 (𝑠 + ] − 1) + 𝑏+2∑

𝑠=0

𝐺 (𝑡, 𝑠) [𝑝 (𝑦 (𝑠 + ] − 1))
− 𝑝 (𝑧 (𝑠 + ] − 1))] − 𝑐3 ≥ 𝑏+2∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑥 (𝑠 + ] − 1)
+ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) 𝑝 (𝑦 (𝑠 + ] − 1)) − 𝑐4,
for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1

,

(40)

and𝑦 (𝑡) ≥ 𝐵2 (𝑥, 𝑦) (𝑡)≥ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) [𝑞 (𝑥 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1)) − 𝑐1]
≥ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) 𝑞 (𝑥 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1)) − 𝑐3,
for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1

.
(41)
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As a result, for 𝑡 ∈ [0, 𝑏 + 2]N0 , we have
𝑝 (𝑦 (𝑡 + ] − 1)) + 𝑝 (𝑐3) ≥ 𝑝 (𝑦 (𝑡 + ] − 1) + 𝑐3)≥ 𝑝[𝑏+2∑

𝑠=0

𝐺 (𝑡 + ] − 1, 𝑠)
⋅ 𝑞 (𝑥 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1))]
= 𝑝[𝑏+2∑

𝑠=0

𝐺 (𝑡 + ] − 1, 𝑠)
⋅ 𝜅−12 𝜅2𝑞 (𝑥 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1))] ≥ 𝑏+2∑

𝑠=0

𝐺 (𝑡
+ ] − 1, 𝑠) 𝜅−12 𝑝 (𝜅2𝑞 (𝑥 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1)))
≥ 𝑏+2∑
𝑠=0

𝐺 (𝑡 + ] − 1, 𝑠)
⋅ 𝜅−12 [𝜅2𝛾1 (𝑥 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1)) − 𝑐1]≥ 𝛾1 𝑏+2∑
𝑠=0

𝐺 (𝑡 + ] − 1, 𝑠) (𝑥 (𝑠 + ] − 1)
− 𝑧 (𝑠 + ] − 1)) − 𝑐5 ≥ 𝛾1 𝑏+2∑

𝑠=0

𝐺 (𝑡 + ] − 1, 𝑠) 𝑥 (𝑠 + ]− 1) − 𝑐6.

(42)

Thus

𝑝 (𝑦 (𝑡 + ] − 1)) ≥ 𝛾1 𝑏+2∑
𝑠=0

𝐺 (𝑡 + ] − 1, 𝑠) 𝑥 (𝑠 + ] − 1)− 𝑐7, (43)

and, therefore,

𝑥 (𝑡) ≥ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) 𝑥 (𝑠 + ] − 1)
+ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) 𝑝 (𝑦 (𝑠 + ] − 1)) − 𝑐4
≥ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) 𝑥 (𝑠 + ] − 1) + 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠)
⋅ [𝛾1 𝑏+2∑
𝜏=0

𝐺 (𝑠 + ] − 1, 𝜏) 𝑥 (𝜏 + ] − 1) − 𝑐7] − 𝑐4

≥ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) 𝑥 (𝑠 + ] − 1) + 𝛾1 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠)
⋅ 𝑏+2∑
𝜏=0

𝐺 (𝑠 + ] − 1, 𝜏) 𝑥 (𝜏 + ] − 1) − 𝑐8,
for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1

.
(44)

Multiply both sides of the above inequality by 𝜑(𝑡) and sum
from ] − 1 to 𝑏 + ] + 1 and together with (11) we obtain

𝑏+]+1∑
𝑡=]−1

𝑥 (𝑡) 𝜑 (𝑡) = 𝑏+2∑
𝑡=0

𝑥 (𝑡 + ] − 1) 𝜑 (𝑡 + ] − 1)
≥ 𝑏+2∑
𝑡=0

𝜑 (𝑡 + ] − 1) [𝑏+2∑
𝑠=0

𝐺 (𝑡 + ] − 1, 𝑠) 𝑥 (𝑠 + ] − 1)
+ 𝛾1 𝑏+2∑
𝑠=0

𝐺 (𝑡 + ] − 1, 𝑠)
⋅ 𝑏+2∑
𝜏=0

𝐺 (𝑠 + ] − 1, 𝜏) 𝑥 (𝜏 + ] − 1) − 𝑐8] ≥ (𝜅1
+ 𝛾1𝜅21) 𝑏+2∑

𝑡=0

𝑥 (𝑡 + ] − 1) 𝜑 (𝑡 + ] − 1) − 𝑐9 = (𝜅1
+ 𝛾1𝜅21) 𝑏+]+1∑

𝑡=]−1
𝑥 (𝑡) 𝜑 (𝑡) − 𝑐9.

(45)

From (23), (39), and 𝑥0 ∈ 𝑃0 we have 𝑥 ∈ 𝑃0. This implies

𝜅1 ‖𝑥‖ = ‖𝑥‖ 𝑏+]+1∑
𝑡=]−1

𝑞∗ (𝑡) 𝜑 (𝑡) ≤ 𝑏+]+1∑
𝑡=]−1

𝑥 (𝑡) 𝜑 (𝑡)
≤ 𝑐9𝜅1 (1 + 𝛾1𝜅1) − 1 , (46)

and

‖𝑥‖ ≤ 𝜅−11 𝑐9𝜅1 (1 + 𝛾1𝜅1) − 1 . (47)

Note that, from (23), (39), and 𝑦0 ∈ 𝑃0, we find 𝑦 ∈ 𝑃0.
Moreover, wemay assume𝑦(𝑡) ̸≡ 0, for 𝑡 ∈ []−1, 𝑏+]+1]N]−1

.
Then ‖𝑦‖ > 0 and 𝑝(‖𝑦‖) > 0. Thus, from the concavity of 𝑝,
we have
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𝜅1 𝑦 = 𝑦 𝑏+]+1∑
𝑡=]−1

𝑞∗ (𝑡) 𝜑 (𝑡) ≤ 𝑏+]+1∑
𝑡=]−1

𝑦 (𝑡) 𝜑 (𝑡)
= 𝑏+2∑
𝑡=0

𝑦 (𝑡 + ] − 1) 𝜑 (𝑡 + ] − 1)
= 𝑦𝑝 (𝑦) 𝑏+2∑𝑡=0 𝑦 (𝑡 + ] − 1)𝑦 𝑝 (𝑦) 𝜑 (𝑡 + ] − 1)
≤ 𝑦𝑝 (𝑦) 𝑏+2∑𝑡=0 𝑝 (𝑦 (𝑡 + ] − 1)) 𝜑 (𝑡 + ] − 1) .

(48)

This implies that𝑝 (𝑦) ≤ 𝜅−11 𝑏+2∑
𝑡=0

𝑝 (𝑦 (𝑡 + ] − 1)) 𝜑 (𝑡 + ] − 1) . (49)

From (40) and Lemma ?? we obtain𝑥 (𝑡) + 𝑐4 ≥ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) 𝑝 (𝑦 (𝑠 + ] − 1))
≥ 𝑏+2∑
𝑠=0

𝑞∗ (𝑡) 𝜑 (𝑠 + ] − 1) 𝑝 (𝑦 (𝑠 + ] − 1))
≥ 𝑞0 𝑏+2∑
𝑡=0

𝑝 (𝑦 (𝑡 + ] − 1)) 𝜑 (𝑡 + ] − 1) .
(50)

Combining the above two inequalities, we get𝑝 (𝑦) ≤ (𝜅1𝑞0)−1 (𝑥 (𝑡) + 𝑐4)≤ (𝜅1𝑞0)−1 [ 𝜅−11 𝑐9𝜅1 (1 + 𝛾1𝜅1) − 1 + 𝑐4] . (51)

From (H1), lim𝑧→+∞𝑝(𝑧) = +∞, and thus there existsM1 >0 such that ‖𝑦‖ ≤ M1.
Hence, we have ‖𝑥‖ ≤ 𝜅−11 𝑐9/(𝜅1(1 + 𝛾1𝜅1) − 1) and ‖𝑦‖ ≤

M1. As a result, choosing 𝑅 > max{𝑞−10 𝑀𝜅2, 𝜅−11 𝑐9/(𝜅1(1 +𝛾1𝜅1)−1),M1}wehave a contradiction (recall in general 𝜕(𝐴×𝐵) = (𝜕𝐴 × 𝐵) ∪ (𝐴 × 𝜕𝐵)). Thus (38) is true. Consequently
Lemma 5 (with 𝑅 chosen above) implies𝑖 (𝐵, (𝐵𝑅 × 𝐵𝑅) ∩ (𝑃 × 𝑃) , 𝑃 × 𝑃) = 0. (52)

Now we show that(𝑥, 𝑦) ̸= 𝜆𝐵 (𝑥, 𝑦) ,∀ (𝑥, 𝑦) ∈ 𝜕 (𝐵𝑞−1
0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

) ∩ (𝑃 × 𝑃) , 𝜆 ∈ [0, 1] . (53)

Suppose not. Then there exist (𝑥, 𝑦) ∈ 𝜕(𝐵𝑞−1
0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

) ∩(𝑃 × 𝑃), 𝜆0 ∈ [0, 1] such that (𝑥, 𝑦) = 𝜆0𝐵(𝑥, 𝑦). This implies
that𝑥 (𝑡) ≤ 𝐵1 (𝑥, 𝑦) (𝑡) ,𝑦 (𝑡) ≤ 𝐵2 (𝑥, 𝑦) (𝑡) ,

for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
. (54)

Hence, ‖𝑥‖ ≤ ‖𝐵1(𝑥, 𝑦)‖ and ‖𝑦‖ ≤ ‖𝐵2(𝑥, 𝑦)‖. However,
from (H2) we have

𝐵1 (𝑥, 𝑦) (𝑡) = 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠 + ] − 1, 𝑥 (𝑠 + ] − 1)− 𝑧 (𝑠 + ] − 1) , 𝑦 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1))
< 𝑏+2∑
𝑠=0

𝜑 (𝑠 + ] − 1) 𝑞−10 𝑀 = 𝑞−10 𝑀𝜅2,
(55)

for all 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
. This implies ‖𝐵1(𝑥, 𝑦)‖ <𝑞−10 𝑀𝜅2. Similarly, ‖𝐵2(𝑥, 𝑦)‖ < 𝑞−10 𝑀𝜅2. Thus, note that(𝑥, 𝑦) ∈ 𝜕(𝐵𝑞−1

0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

) ∩ (𝑃 × 𝑃), and we have(𝑥, 𝑦) = max {‖𝑥‖ , 𝑦}≤ max {𝐵1 (𝑥, 𝑦) , 𝐵2 (𝑥, 𝑦)} < 𝑞−10 𝑀𝜅2= (𝑥, 𝑦) . (56)

Clearly, this is a contradiction. Thus (53) is true. It follows
from Lemma 6 that𝑖 (𝐵, (𝐵𝑞−1

0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

) ∩ (𝑃 × 𝑃) , 𝑃 × 𝑃) = 1. (57)

From (52) and (57) we have𝑖 (𝐵, ((𝐵𝑅 × 𝐵𝑅) \ (𝐵𝑞−1
0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

)) ∩ (𝑃 × 𝑃) , 𝑃× 𝑃) = 0 − 1 = −1. (58)

Therefore the operator 𝐵 has at least one fixed point (𝑥, 𝑦) in((𝐵𝑅 × 𝐵𝑅) \ (𝐵𝑞−1
0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

)) ∩ (𝑃 × 𝑃) with ‖𝑥‖, ‖𝑦‖ ≥𝑞−10 𝑀𝜅2, and then (𝑥 − 𝑧, 𝑦 − 𝑧)(𝑡) is a positive solution for
(1). This completes the proof.

Theorem 11. Suppose that (H0), (H3), and (H4) hold.Then (1)
has at least one positive solution.

Proof. We show there exists a positive constant 𝑅 > 𝑞−10 𝑀𝜅2
such that(𝑥, 𝑦) ̸= 𝜆𝐵 (𝑥, 𝑦) ,∀ (𝑥, 𝑦) ∈ 𝜕 (𝐵𝑅 × 𝐵𝑅) ∩ (𝑃 × 𝑃) , 𝜆 ∈ [0, 1] . (59)

Suppose not. Then there exist (𝑥, 𝑦) ∈ 𝜕(𝐵𝑅 × 𝐵𝑅) ∩ (𝑃 ×𝑃), 𝜆0 ∈ [0, 1] such that (𝑥, 𝑦) = 𝜆0𝐵(𝑥, 𝑦). This implies that𝑥 (𝑡) ≤ 𝐵1 (𝑥, 𝑦) (𝑡) ,𝑦 (𝑡) ≤ 𝐵2 (𝑥, 𝑦) (𝑡) ,
for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1

. (60)
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From (H3) we have𝑥 (𝑡) ≤ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) [𝑒1 (𝑥 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1))+ 𝑒2 (𝑦 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1)) + 𝑐2]≤ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) [𝑒1𝑥 (𝑠 + ] − 1) + 𝑒2𝑦 (𝑠 + ] − 1)]+ 𝑐10, ∀ (𝑡, 𝑥, 𝑦) ∈ [] − 1, 𝑏 + ] + 1]N]−1
×R
+ ×R

+.
(61)

Similarly, we have𝑦 (𝑡) ≤ 𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) [𝑒3𝑥 (𝑠 + ] − 1) + 𝑒4𝑦 (𝑠 + ] − 1)]+ 𝑐10,∀ (𝑡, 𝑥, 𝑦) ∈ [] − 1, 𝑏 + ] + 1]N]−1
×R
+ ×R

+.
(62)

Consequently, for all 𝑡 ∈ [0, 𝑏+2]N0 , multiply both sides of the
above two inequalities by 𝜑(𝑡) and sum from ]− 1 to 𝑏 + ]+ 1
and together with (11) we obtain
𝑏+]+1∑
𝑡=]−1

𝑥 (𝑡) 𝜑 (𝑡) = 𝑏+2∑
𝑡=0

𝑥 (𝑡 + ] − 1) 𝜑 (𝑡 + ] − 1)
≤ 𝑏+2∑
𝑡=0

𝜑 (𝑡 + ] − 1)
⋅ [𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) [𝑒1𝑥 (𝑠 + ] − 1) + 𝑒2𝑦 (𝑠 + ] − 1)]
+ 𝑐10] ≤ 𝑒1𝜅2 𝑏+]+1∑

𝑡=]−1
𝑥 (𝑡) 𝜑 (𝑡)

+ 𝑒2𝜅2 𝑏+]+1∑
𝑡=]−1

𝑦 (𝑡) 𝜑 (𝑡) + 𝑐10 𝑏+]+1∑
𝑡=]−1

𝜑 (𝑡) .

(63)

Similarly, we have
𝑏+]+1∑
𝑡=]−1

𝑦 (𝑡) 𝜑 (𝑡) = 𝑏+2∑
𝑡=0

𝑦 (𝑡 + ] − 1) 𝜑 (𝑡 + ] − 1)
≤ 𝑏+2∑
𝑡=0

𝜑 (𝑡 + ] − 1)
⋅ [𝑏+2∑
𝑠=0

𝐺 (𝑡, 𝑠) [𝑒3𝑥 (𝑠 + ] − 1) + 𝑒4𝑦 (𝑠 + ] − 1)]
+ 𝑐10] ≤ 𝑒3𝜅2 𝑏+]+1∑

𝑡=]−1
𝑥 (𝑡) 𝜑 (𝑡)

+ 𝑒4𝜅2 𝑏+]+1∑
𝑡=]−1

𝑦 (𝑡) 𝜑 (𝑡) + 𝑐10 𝑏+]+1∑
𝑡=]−1

𝜑 (𝑡) .

(64)

Consequently, we obtain

(1 − 𝑒1𝜅2 −𝑒2𝜅2−𝑒3𝜅2 1 − 𝑒4𝜅2)(𝑏+]+1∑
𝑡=]−1

𝑥 (𝑡) 𝜑 (𝑡)
𝑏+]+1∑
𝑡=]−1

𝑦 (𝑡) 𝜑 (𝑡))
≤ (𝜅2𝑐10𝜅2𝑐10) .

(65)

From (H3)(i) we have

(𝑏+]+1∑
𝑡=]−1

𝑥 (𝑡) 𝜑 (𝑡)
𝑏+]+1∑
𝑡=]−1

𝑦 (𝑡) 𝜑 (𝑡))
≤ 1𝜅 (1 − 𝑒4𝜅2 𝑒2𝜅2𝑒3𝜅2 1 − 𝑒1𝜅2)(𝜅2𝑐10𝜅2𝑐10)
= (𝜅2𝑐10 (1 + 𝑒2𝜅2 − 𝑒4𝜅2)𝜅𝜅2𝑐10 (1 + 𝑒3𝜅2 − 𝑒1𝜅2)𝜅 ) .

(66)

Note that 𝑥, 𝑦 ∈ 𝑃0 from the fact that𝐵𝑖(𝑃×𝑃) ⊂ 𝑃0 (𝑖 = 1, 2).
This implies

‖𝑥‖ 𝑏+]+1∑
𝑡=]−1

𝑞∗ (𝑡) 𝜑 (𝑡) ≤ 𝑏+]+1∑
𝑡=]−1

𝑥 (𝑡) 𝜑 (𝑡)
≤ 𝜅2𝑐10 (1 + 𝑒2𝜅2 − 𝑒4𝜅2)𝜅 ,𝑦 𝑏+]+1∑

𝑡=]−1
𝑞∗ (𝑡) 𝜑 (𝑡) ≤ 𝑏+]+1∑

𝑡=]−1
𝑦 (𝑡) 𝜑 (𝑡)

≤ 𝜅2𝑐10 (1 + 𝑒3𝜅2 − 𝑒1𝜅2)𝜅 .
(67)

Hence ‖𝑥‖ ≤ 𝜅2𝑐10 (1 + 𝑒2𝜅2 − 𝑒4𝜅2)𝜅1𝜅 ,
𝑦 ≤ 𝜅2𝑐10 (1 + 𝑒3𝜅2 − 𝑒1𝜅2)𝜅1𝜅 . (68)

Thus if we choose𝑅 > max{𝑞−10 𝑀𝜅2, 𝜅2𝑐10(1+𝑒2𝜅2−𝑒4𝜅2)/𝜅1𝜅,
and 𝜅2𝑐10(1 + 𝑒3𝜅2 − 𝑒1𝜅2)/𝜅1𝜅} we have a contradiction.Thus
(59) is true. Lemma 6 (with 𝑅 chosen above) implies𝑖 (𝐵, (𝐵𝑅 × 𝐵𝑅) ∩ (𝑃 × 𝑃) , 𝑃 × 𝑃) = 1. (69)

We next prove that(𝑥, 𝑦) ̸= 𝐵 (𝑥, 𝑦) + 𝜆 (𝑥0, 𝑦0) ,∀ (𝑥, 𝑦) ∈ 𝜕 (𝐵𝑞−1
0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

) ∩ (𝑃 × 𝑃) , 𝜆 ≥ 0, (70)
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where 𝑥0, 𝑦0 ∈ 𝑃 are two fixed functions. Indeed, if not, there
exist (𝑥, 𝑦) ∈ 𝜕(𝐵𝑞−1

0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

) ∩ (𝑃 × 𝑃), 𝜆0 ≥ 0 such that(𝑥, 𝑦) = 𝐵(𝑥, 𝑦) + 𝜆0(𝑥0, 𝑦0). This implies that𝑥 (𝑡) ≥ 𝐵1 (𝑥, 𝑦) (𝑡) ,𝑦 (𝑡) ≥ 𝐵2 (𝑥, 𝑦) (𝑡) ,
for 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1

. (71)

Hence, ‖𝑥‖ ≥ ‖𝐵1(𝑥, 𝑦)‖ and ‖𝑦‖ ≥ ‖𝐵2(𝑥, 𝑦)‖. However,
from (H4) we have𝐵1 (𝑥, 𝑦) (𝑡) = 𝑏+2∑

𝑠=0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠 + ] − 1, 𝑥 (𝑠 + ] − 1)− 𝑧 (𝑠 + ] − 1) , 𝑦 (𝑠 + ] − 1) − 𝑧 (𝑠 + ] − 1))
> 𝑏+2∑
𝑠=0

𝑞∗ (𝑡) 𝜑 (𝑠 + ] − 1) 𝑞−20 𝑀 ≥ 𝑞−10 𝑀𝜅2,
(72)

for all 𝑡 ∈ [] − 1, 𝑏 + ] + 1]N]−1
. This implies ‖𝐵1(𝑥, 𝑦)‖ >𝑞−10 𝑀𝜅2. Similarly, ‖𝐵2(𝑥, 𝑦)‖ > 𝑞−10 𝑀𝜅2. Thus, note that(𝑥, 𝑦) ∈ 𝜕(𝐵𝑞−1

0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

) ∩ (𝑃 × 𝑃), and we have(𝑥, 𝑦) = max {‖𝑥‖ , 𝑦}≥ max {𝐵1 (𝑥, 𝑦) , 𝐵2 (𝑥, 𝑦)} > 𝑞−10 𝑀𝜅2= (𝑥, 𝑦) . (73)

This is a contradiction. So (70) is true. It follows from
Lemma 5 that𝑖 (𝐵, (𝐵𝑞−1

0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

) ∩ (𝑃 × 𝑃) , 𝑃 × 𝑃) = 0. (74)

From (69) and (74) we have𝑖 (𝐵, ((𝐵𝑅 × 𝐵𝑅) \ (𝐵𝑞−1
0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

)) ∩ (𝑃 × 𝑃) , 𝑃× 𝑃) = 1 − 0 = 1. (75)

Therefore the operator 𝐵 has at least one fixed point (𝑥, 𝑦) in((𝐵𝑅 × 𝐵𝑅) \ (𝐵𝑞−1
0
𝑀𝜅2

× 𝐵𝑞−1
0
𝑀𝜅2

)) ∩ (𝑃 × 𝑃) with ‖𝑥‖, ‖𝑦‖ ≥𝑞−10 𝑀𝜅2, and then (𝑥 − 𝑧, 𝑦 − 𝑧)(𝑡) is a positive solution for
(1). This completes the proof.
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We consider the following fractional p-Laplacian equation: (−Δ)𝛼𝑝𝑢 + 𝑉(𝑥)|𝑢|𝑝−2𝑢 = 𝑓(𝑥, 𝑢) − Γ(𝑥)|𝑢|𝑞−2𝑢, 𝑥 ∈ R𝑁, where𝑁 ≥ 2,
𝑝∗𝛼 > 𝑞 > 𝑝 ≥ 2, 𝛼 ∈ (0, 1), (−Δ)𝛼𝑝 is the fractional 𝑝-Laplacian, and Γ ∈ 𝐿∞(R𝑁) and Γ(𝑥) ≥ 0 for a.e. 𝑥 ∈ R𝑁. 𝑓 has the subcritical
growth but higher than Γ(𝑥)|𝑢|𝑞−2𝑢; however, the nonlinearity𝑓(𝑥, 𝑢)−Γ(𝑥)|𝑢|𝑞−2𝑢may change sign. If𝑉 is coercive, we investigate
the existence of ground state solutions for p-Laplacian equation.

1. Introduction

Consider the following nonlinear Schrödinger equation with
fractional 𝑝-Laplacian:
(−Δ)𝛼𝑝 𝑢 + 𝑉 (𝑥) |𝑢|𝑝−2 𝑢 = 𝑓 (𝑥, 𝑢) − Γ (𝑥) |𝑢|𝑞−2 𝑢,

𝑥 ∈ R
𝑁, (1)

where 𝑁 ≥ 2, 𝑝∗𝛼 > 𝑞 > 𝑝 ≥ 2, 𝛼 ∈ (0, 1), and (−Δ)𝛼𝑝 is the
fractional 𝑝-Laplacian. 𝑉(𝑥), Γ(𝑥), and 𝑓(𝑥, 𝑢) : R𝑁 ×R →
R satisfy the following assumptions:

( 𝑉 ) 𝑉 ∈ 𝐶(R𝑁,R), 𝑉0 fl inf𝑥∈R𝑁𝑉(𝑥) > 0, there exists a
constant 𝑑0 > 0 such that

lim
|𝑦|→∞

meas {𝑥 ∈ R
𝑁 : 𝑥 − 𝑦 ≤ 𝑑0, 𝑉 (𝑥) ≤ 𝑀} = 0,

∀𝑀 > 0, (2)

where meas (⋅) denotes the Lebesgue measure in R𝑁;

( Γ ) Γ ∈ 𝐿∞(R𝑁), Γ(𝑥) ≥ 0 for a.e. 𝑥 ∈ R𝑁;

( 𝑓1 ) 𝑓(𝑥, 𝑡) : R𝑁 × R → R is measurable, continuous
in 𝑡 ∈ R for a.e. 𝑥 ∈ R𝑁 and there are 𝐶 > 0 and2 ≤ 𝑝 < 𝑞 < 𝑟 < 𝑝∗𝛼 such that

𝑓 (𝑥, 𝑡) ≤ 𝐶 (1 + |𝑡|𝑟−1) for all 𝑡 ∈ R, 𝑥 ∈ R
𝑁, (3)

where 𝑝∗𝛼 = 𝑁𝑝/(𝑁 − 𝑝𝛼);
( 𝑓2 ) 𝑓(𝑥, 𝑡) = 𝑜(|𝑡|𝑝−1) as |𝑡| → 0 uniformly in 𝑥 ∈ R𝑁;
( 𝑓3 ) 𝐹(𝑥, 𝑡)/|𝑡|𝑞 → ∞ uniformly in 𝑥 as |𝑡| → ∞, where

𝐹(𝑥, 𝑡) = ∫𝑡
0
𝑓(𝑥, 𝜏)𝑑𝜏;

( 𝑓4 ) 𝑡 → 𝑓(𝑥, 𝑡)/|𝑡|𝑞−1 is nondecreasing on (−∞, 0) ∪(0,∞).
When 𝑝 = 2, (1) arises in the study of the nonlinear Frac-

tional Schrödinger equation

(−Δ)𝛼 𝑢 + 𝑉 (𝑥) 𝑢 = 𝑓 (𝑥, 𝑢) − Γ (𝑥) |𝑢|𝑞−2 𝑢,
𝑥 ∈ R

𝑁. (4)

Problems with this type have occurred in many different
fields, such as continuum mechanics, phase transition phe-
nomena, population dynamics, and game theory, as they are
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the typical outcome of stochastically stabilization of Lévy
processes; see [1–4].

When 𝛼 = 1 and Γ = 0, (4) reduces to be the nonlinear
Schrödinger equation

−Δ𝑢 + 𝑉 (𝑥) 𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R
𝑁. (5)

Using the Nehari-type monotonicity condition, Szulkin and
Weth [5] obtained the existence of ground state solutions
for (5). But in this paper, the Nehari manifold is usually
not smooth and the Nehari-type monotonicity condition for
the nonlinearity is not satisfied; then the Nehari manifold
method is invalid. In this paper, we are aimed to obtain
ground state solutions for (1) by the so-called non-Nehari
manifold method, which is established by Tang [6, 7]. Unlike
the Nehari manifold method, the main idea of our approach
lies on finding a minimizing sequence for the energy func-
tional outside the Nehari manifold by using the diagonal
method.

Now, we are ready to state the main result of this paper.

Theorem 1. Suppose that (𝑉), (Γ) and (𝑓1) − (𝑓4) hold. Then
(1) has a nontrivial ground state solution.

2. Preliminaries

In the paper, we will denote 𝑜𝑛(1) by the infinitesimal as 𝑛 →+∞. For the sake of simplicity, the norm of the space 𝐿𝑝(R𝑁)
will be denoted by ‖ ⋅ ‖𝑝, and integrals over the wholeR𝑁 will
be written ∫ .

We define the Gagliardo seminorm by

[𝑢]𝛼,𝑝 = (∫
𝑢 (𝑥) − 𝑢 (𝑦)𝑝𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑥 𝑑𝑦)

1/𝑝

, (6)

where𝑢 : R𝑁 → R is ameasurable function.Then fractional
Sobolev space𝑊𝛼,𝑝(R𝑁) is given by

𝑊𝛼,𝑝 (R𝑁)
= {𝑢 ∈ 𝐿𝑝 (R𝑁) : 𝑢 is measurable and [𝑢]𝛼,𝑝 < ∞} (7)

endowed with the norm

‖𝑢‖𝛼,𝑝 = ([𝑢]𝑝𝛼,𝑝 + ‖𝑢‖𝑝𝑝)1/𝑝 . (8)

For the basic properties of fractional Sobolev spaces, we refer
the interested reader to [8]. By condition (𝑉), we define the
fractional Sobolev space with potential 𝑉(𝑥) by

𝐸 fl {𝑢 ∈ 𝑊𝛼,𝑝 : ∫𝑉 (𝑥) |𝑢|𝑝 𝑑𝑥 < ∞} (9)

endowed with the norm

‖𝑢‖ fl ([𝑢]𝑝𝛼,𝑝 + ∫𝑉 (𝑥) |𝑢|𝑝 𝑑𝑥)1/𝑝 . (10)

The energy functional 𝐽 : 𝐸 → R defined by

𝐽 (𝑢) = 1𝑝 ∫
𝑢 (𝑥) − 𝑢 (𝑦)𝑝𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑥 𝑑𝑦

+ 1𝑝 ∫𝑉 (𝑥) |𝑢 (𝑥)|𝑝 𝑑𝑥
− ∫(𝐹 (𝑥, 𝑢) − 1𝑞Γ (𝑥) |𝑢|𝑞)𝑑𝑥.

(11)

Under our hypotheses, 𝐽 is well defined on 𝐸. It is well known
that 𝐽 ∈ 𝐶1(𝐸,R), and its derivative is given by

⟨𝐽 (𝑢) , V⟩
= ∫

R2𝑁

𝑢 (𝑥) − 𝑢 (𝑦)𝑝−2 (𝑢 (𝑥) − 𝑢 (𝑦)) (V (𝑥) − V (𝑦))𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑥 𝑑𝑦
+ ∫

R𝑁
𝑉 (𝑥) |𝑢|𝑝−2 𝑢V 𝑑𝑥

− ∫ (𝑓 (𝑥, 𝑢) V − Γ (𝑥) |𝑢|𝑞−2 𝑢V) 𝑑𝑥,

(12)

for 𝑢, V ∈ 𝐸. It is standard to verify that the weak solutions of
(1) correspond to the critical points of 𝐽. Now, we review the
main embedding result for the space 𝐸.
Lemma 2 ([9, Lemma 1]). Under assumption (𝑉), the embed-
ding 𝐸 → 𝐿𝑟(R𝑁) is compact for any 𝑟 ∈ [𝑝, 𝑝∗𝛼).

In the following lemma, wewill show that 𝐽 hasMountain
Pass geometric structure.

Lemma 3. Suppose that (𝑉), (Γ), and (𝑓1) − (𝑓4) hold.
(i) There is 𝛿0 > 0 such that 𝜌0 fl inf ‖𝑢‖=𝛿0𝐽(𝑢) > 𝐽(0) = 0.
(ii) For any 𝑢 ̸= 0, there exists 𝑡 > 0 such that 𝐽(𝑡𝑢) < 0.

Proof. (i) By (𝑓1) and (𝑓2), we have𝑓 (𝑥, 𝑢) ≤ 𝜀 |𝑢|𝑝−1 + 𝐶𝜀 |𝑢|𝑟−1 ,
|𝐹 (𝑥, 𝑢)| ≤ 𝜀𝑝 |𝑢|𝑝 + 𝐶𝜀𝑟 |𝑢|𝑟 . (13)

By 𝐸 → 𝐿𝑠(R𝑁) for 𝑠 ∈ [𝑝, 𝑝∗𝛼) and (13), we have

𝐽 (𝑢) = 1𝑝 ‖𝑢‖𝑝 − ∫𝐹 (𝑥, 𝑢) 𝑑𝑥 + 1𝑞 ∫ Γ (𝑥) |𝑢|𝑞 𝑑𝑥
≥ 1𝑝 ‖𝑢‖𝑝 − 𝜀𝐶1 ‖𝑢‖𝑝 − 𝐶𝜀𝐶2 ‖𝑢‖𝑟 .

(14)

By the arbitrariness of 𝜀 and 𝑝 < 𝑟, we get the conclusion.
(ii) Fix 𝑢 ̸= 0; by (𝑓3), we have𝐽 (𝑡𝑢)𝑡𝑞 = 1𝑝𝑡𝑞−𝑝 ‖𝑢‖𝑝

− ∫(𝐹 (𝑥, 𝑡𝑢)(𝑡𝑢)𝑞 𝑢𝑞 − 1𝑞Γ (𝑥) |𝑢|𝑞)𝑑𝑥
→ −∞,

(15)

as 𝑡 → +∞. Thus, there exists 𝑡 > 0 such that 𝐽(𝑡𝑢) < 0.
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Now, we define the Nehari manifold by

N fl {𝑢 ∈ 𝐸 \ {0} : ⟨𝐽 (𝑢) , 𝑢⟩ = 0} . (16)

It is easy to prove that N is not empty. And we have the
following lemma.

Lemma 4. Suppose that (𝑉), (Γ) and (𝑓1) − (𝑓4) hold. Let 𝜃 ∈[0, 1) ∪ (1,∞) and 𝑢 ∈ N; then 𝐽(𝜃𝑢) < 𝐽(𝑢).
Proof. By (𝑓4), we have

𝑓 (𝑥, 𝑠) ≤ 𝑓 (𝑥, 𝑡)
|𝑡|𝑞−1 |𝑠|𝑞−1 , 𝑠 < 𝑡;

𝑓 (𝑠) ≥ 𝑓 (𝑥, 𝑡)
|𝑡|𝑞−1 |𝑠|𝑞−1 , 𝑠 > 𝑡.

(17)

Then

𝐹 (𝑥, 𝑡) − 𝐹 (𝑥, 𝜃𝑡) = ∫𝑡
𝜃𝑡
𝑓 (𝑥, 𝑠) 𝑑𝑠 ≤ 1 − 𝜃𝑞𝑞 𝑓 (𝑥, 𝑡) 𝑡,

∀𝜃 ≥ 0, 𝑡 ∈ R.
(18)

Let ℎ(𝜃) = 𝑝𝜃𝑞 − 𝑞𝜃𝑝; then ℎ(𝜃) = 𝑝𝑞(𝜃𝑞−1 − 𝜃𝑝−1). By a
simple calculation, we have ℎ(1) = 0 and ℎ(𝜃) > ℎ(1) = 𝑝−𝑞
for all 𝜃 ∈ [0, 1) ∪ (1,∞). Thus,

𝜃𝑝 − 1𝑝 − 𝜃𝑞 − 1𝑞 = 𝑝 − 𝑞 − ℎ (𝜃)𝑝𝑞 < 0. (19)

Let 𝑢 ∈ N, it follows from (18) and (19) that

𝐽 (𝜃𝑢)
= 𝐽 (𝑢) + (𝐽 (𝜃𝑢) − 𝐽 (𝑢) − 𝜃𝑞 − 1𝑞 ⟨𝐽 (𝑢) , 𝑢⟩)
= 𝐽 (𝑢) + [𝜃𝑝 − 1𝑝 − 𝜃𝑞 − 1𝑞 ] ‖𝑢‖𝑝

+ ∫[𝜃𝑞 − 1𝑞 𝑓 (𝑥, 𝑢) 𝑢 − 𝐹 (𝑥, 𝜃𝑢) + 𝐹 (𝑥, 𝑢)] 𝑑𝑥
< 𝐽 (𝑢) .

(20)

Lemma 5. Suppose that (𝑉), (Γ) and (𝑓1) − (𝑓4) hold; let𝑚 fl
infN𝐽; then there exist {𝑢𝑛} ∈ 𝐸, 𝑐∗ ∈ (𝜌0, 𝑚] satisfying

𝐽 (𝑢𝑛) → 𝑐∗,
(1 + 𝑢𝑛) 𝐽 (𝑢𝑛) → 0. (21)

Proof. By (i) of Lemma 3, there exist 𝛿0 > 0 and 𝜌0 > 0 such
that

𝑢 ∈ 𝐸, ‖𝑢‖ = 𝛿0 ⇒ 𝐽 (𝑢) ≥ 𝜌0. (22)

Choose V𝑘 ∈ N such that

𝑚 ≤ 𝐽 (V𝑘) < 𝑚 + 1𝑘 , 𝑘 ∈ N. (23)

Since 𝐽(𝑡V𝑘) < 0 for large 𝑡 > 0, Mountain Pass Lemma
implies that there exists {𝑢𝑘,𝑛}𝑛∈N ⊂ 𝐸 satisfying

𝐽 (𝑢𝑘,𝑛) → 𝑐𝑘,𝐽 (𝑢𝑘,𝑛) (1 + 𝑢𝑘,𝑛) → 0,
𝑘 ∈ N,

(24)

where 𝑐𝑘 ∈ [𝜌0, sup𝑡≥0𝐽(𝑡V𝑘)]. By Lemma 4, we have 𝐽(V𝑘) =
sup𝑡≥0𝐽(𝑡V𝑘).Hence, by (23) and (24), we have

𝐽 (𝑢𝑘,𝑛) → 𝑐𝑘 < 𝑚 + 1𝑘 ,𝐽 (𝑢𝑘,𝑛) (1 + 𝑢𝑘,𝑛) → 0,
𝑘 ∈ N.

(25)

Now, we can choose a sequence {𝑛𝑘} ⊂ N such that

𝐽 (𝑢𝑘,𝑛𝑘) < 𝑚 + 1𝑘 ,
𝐽 (𝑢𝑘,𝑛𝑘) (1 + 𝑢𝑘,𝑛𝑘) < 1𝑘 ,

𝑘 ∈ N.
(26)

Let 𝑢𝑘 = 𝑢𝑘,𝑛𝑘 , 𝑘 ∈ N. Then, going if necessary to a subse-
quence, we have

𝐽 (𝑢𝑛) → 𝑐∗ ∈ [𝜌0, 𝑚] ,𝐽 (𝑢𝑛) (1 + 𝑢𝑛) → 0. (27)

3. Proof of Theorem 1

Proof of Theorem 1 . In view of Lemma 5, we find a Cerami
sequence {𝑢𝑛} satisfying (21). By (18), we have
1𝑞𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛 − 𝐹 (𝑥, 𝑢𝑛) ≥ 0,

for all 𝑥 ∈ R
𝑁, 𝑢𝑛 ∈ 𝐸.

(28)

Combining (21) and (28), for 𝑛 big enough, we have
𝑐∗ + 1 ≥ 𝐽 (𝑢𝑛) − 1𝑞 ⟨𝐽 (𝑢𝑛) , 𝑢𝑛⟩

= ( 1𝑝 − 1𝑞) 𝑢𝑛𝑝

+ ∫[1𝑞𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛 − 𝐹 (𝑥, 𝑢𝑛)] 𝑑𝑥
≥ ( 1𝑝 − 1𝑞) 𝑢𝑛𝑝 .

(29)
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It follows that ‖𝑢𝑛‖ is bounded. Passing to a subsequence, we
have 𝑢𝑛 ⇀ 𝑢0 in𝐸. By Lemma 2, we have 𝑢𝑛 → 𝑢0 in 𝐿𝑟(R𝑁)
for 𝑟 ∈ [𝑝, 𝑝∗𝛼). Then, by (13) and the Hölder inequality, we
have ∫ (𝑓 (𝑥, 𝑢𝑛) − 𝑓 (𝑥, 𝑢0)) (𝑢𝑛 − 𝑢0) 𝑑𝑥


≤ 𝜀 ∫ (𝑢𝑛𝑝−1 + 𝑢0𝑝−1) 𝑢𝑛 − 𝑢0 𝑑𝑥
+ 𝐶𝜀 ∫(𝑢𝑛𝑟−1 + 𝑢0𝑟−1) 𝑢𝑛 − 𝑢0 𝑑𝑥

≤ 𝜀 (𝑢𝑛𝑝−1𝑝 + 𝑢0𝑝−1𝑝 ) 𝑢𝑛 − 𝑢0𝑝
+ 𝐶𝜀 (𝑢𝑛𝑟−1𝑟 + 𝑢0𝑟−1𝑟 ) 𝑢𝑛 − 𝑢0𝑟 → 0

(30)

and ∫ Γ (𝑥) (𝑢𝑛𝑞−2 𝑢𝑛 − 𝑢0𝑞−2 𝑢0) (𝑢𝑛 − 𝑢0) 𝑑𝑥


≤ ‖Γ‖∞ ∫(𝑢𝑛𝑞−1 + 𝑢0𝑞−1) 𝑢𝑛 − 𝑢0 𝑑𝑥
≤ (𝑢𝑛𝑞−1𝑞 + 𝑢0𝑞−1𝑞 ) 𝑢𝑛 − 𝑢0𝑞 → 0.

(31)

It follows from (30), (31) and Simon inequality ((|𝑎|𝑝−2𝑎 −|𝑏|𝑝−2𝑏)(𝑎 − 𝑏) ≥ (1/2𝑝−2)|𝑎 − 𝑏|𝑝) that
⟨𝐽 (𝑢𝑛) − 𝐽 (𝑢0) , 𝑢𝑛 − 𝑢0⟩
= ∫ 1𝑥 − 𝑦𝑁+𝛼𝑝 [

𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)𝑝−2

⋅ (𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)) − 𝑢0 (𝑥) − 𝑢0 (𝑦)𝑝−2
⋅ (𝑢0 (𝑥) − 𝑢0 (𝑦))] [𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦) − 𝑢0 (𝑥)
+ 𝑢0 (𝑦)] 𝑑𝑥 𝑑𝑦 + ∫𝑉 (𝑥) [𝑢𝑛𝑝−2 𝑢𝑛
− 𝑢0𝑝−2 𝑢] (𝑢𝑛 − 𝑢0) 𝑑𝑥 − ∫ (𝑓 (𝑥, 𝑢𝑛)
− 𝑓 (𝑥, 𝑢0)) (𝑢𝑛 − 𝑢0) 𝑑𝑥 + ∫Γ (𝑥) (𝑢𝑛𝑞−2 𝑢𝑛
− 𝑢0𝑞−2 𝑢0) (𝑢𝑛 − 𝑢0) 𝑑𝑥 ≥ 12𝑝−2
⋅ ∫ (𝑢𝑛 (𝑥) − 𝑢𝑛 (𝑦)) − (𝑢0 (𝑥) − 𝑢0 (𝑦))𝑝𝑥 − 𝑦𝑁+𝛼𝑝 𝑑𝑥 𝑑𝑦
+ 12𝑝−2 ∫𝑉 (𝑥) 𝑢𝑛 − 𝑢0𝑝 𝑑𝑥 + 𝑜𝑛 (1) = 12𝑝−2 𝑢𝑛
− 𝑢0𝑝 + 𝑜𝑛 (1) .

(32)

On the other hand, by ⟨𝐽(𝑢𝑛), 𝑢𝑛 − 𝑢0⟩ → 0 and 𝑢𝑛 ⇀ 𝑢0,
we have

⟨𝐽 (𝑢𝑛) − 𝐽 (𝑢0) , 𝑢𝑛 − 𝑢0⟩ → 0. (33)

Combining (32) and (33), we have 𝑢𝑛 → 𝑢0 in 𝐸. Then, by𝐽 ∈ 𝐶1(𝐸,R), we have 𝐽(𝑢0) = 0. By (28), Lemma 5, and
Fatou’s lemma, we have

𝑚 ≥ 𝑐∗ = lim
𝑛→∞

[𝐽 (𝑢𝑛) − 1𝑞 ⟨𝐽 (𝑢𝑛) , 𝑢𝑛⟩]
= ( 1𝑝 − 1𝑞) lim

𝑛→∞

𝑢𝑛𝑝

+ lim
𝑛→∞

∫[1𝑞𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛 − 𝐹 (𝑥, 𝑢𝑛)] 𝑑𝑥
≥ ( 1𝑝 − 1𝑞) 𝑢0𝑝

+ ∫[1𝑞𝑓 (𝑥, 𝑢0) 𝑢0 − 𝐹 (𝑥, 𝑢0)] 𝑑𝑥
= 𝐽 (𝑢0) − 1𝑞 ⟨𝐽 (𝑢0) , 𝑢0⟩ = 𝐽 (𝑢0) .

(34)

This shows that 𝐽(𝑢0) ≤ 𝑚 and so 𝐽(𝑢0) = 𝑚 = infN𝐽 >0.
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We introduce the notion of the 𝐶∗-algebra-valued 𝐺-metric space. The existence and uniqueness of some fixed-point theorems
for self-mappings with contractive or expansive conditions on complete 𝐶∗-algebra-valued 𝐺-metric spaces are proved. As an
application, we prove the existence and uniqueness of the solution of a type of differential equations.

1. Introduction

As is known to all, the proverbial fixed-point theorem of
Banach has been widely used inmany branches ofmathemat-
ics and physics. There are a large number of generalizations
for such a theorem. In general, the theorem has been
extended in two directions. On the one hand, the usual con-
tractive condition is replaced with weakly contractive condi-
tions [1–7]. On the other hand, the action spaces are replaced
with different types of metric spaces. Particularly, in 2006,
Mustafa and Sims [8] introduced the concept of generalized
metric spaces (𝐺-metric spaces). Since then, many scholars
studied fixed-point theory in 𝐺-metric spaces and many
meaningful results are obtained.

Let us recall the basic definitions and conclusions on 𝐺-
metric spaces. Details can be seen in [8–20].

Definition 1 (see [8]). Let𝑋 be a nonempty set. Suppose that𝐺 : 𝑋 × 𝑋 × 𝑋 → R+ is a mapping satisfying

(1) 𝐺(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧;
(2) 0 < 𝐺(𝑥, 𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦;
(3) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑧 ̸= 𝑦;
(4) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋅ ⋅ ⋅ (symmetry

in all three variables);

(5) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, 𝑎 ∈𝑋(rectangle inequality).

Then𝐺 is called a generalizedmetric, or a𝐺-metric on𝑋.The
pair (𝑋, 𝐺) is called a 𝐺-metric space.

Definition 2 (see [8]). Let (𝑋, 𝐺) be a 𝐺-metric space, {𝑥𝑛} ⊆𝑋. If there exists 𝑥 ∈ 𝑋, such that lim𝑛,𝑚→∞𝐺(𝑥, 𝑥𝑛, 𝑥𝑚) = 0,
we say that the sequence {𝑥𝑛} is called 𝐺-convergent to 𝑥. If
for any 𝜀 > 0, there is an𝑁 ∈ N, such that, for all𝑚, 𝑛, 𝑙 > 𝑁,𝐺 (𝑥𝑛, 𝑥𝑚, 𝑥𝑙) < 𝜀, (1){𝑥𝑛} is called a 𝐺-Cauchy sequence.

Notice that, in a 𝐺-metric space (𝑋, 𝐺), the following
statements are equivalent:

(1) {𝑥𝑛} is 𝐺-convergent to 𝑥;
(2) 𝐺(𝑥𝑛, 𝑥𝑛, 𝑥) → 0 as 𝑛 → ∞;
(3) 𝐺(𝑥𝑛, 𝑥, 𝑥) → 0 as 𝑛 → ∞.

As we have known that 𝐶∗-algebra, which was first
proposed for its use in quantum mechanics to model
algebras of physical observable, is an important research
field of modern mathematics [21–29]. In 1947, I. Segal [28]
introduced the term “𝐶∗-algebra” to describe a “uniformly
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closed, self-adjoint algebra of bounded operators on aHilbert
space”.

Throughout this paper,A will denote a unital 𝐶∗-algebra
with a unit 𝐼; namely, A is a unital Banach algebra with an
involution ∗ such that ‖𝐴∗𝐴‖ = ‖𝐴‖2 (𝐴 ∈ A). Let H
be a Hilbert space and 𝐵(H) the set of all bounded linear
operators onH, then 𝐵(H) is a 𝐶∗-algebra with the operator
norm. LetA𝑠𝑎 be the set of all self-adjoint elements inA, and
define the spectrum of 𝐴 ∈ A to be the set 𝜎(𝐴) = {𝜆 ∈
C | 𝜆𝐼 − 𝐴 is not invertible}. An element 𝐴 ∈ A is positive
(denoted by 𝐴 ≥ 𝜃) if 𝐴 ∈ A𝑠𝑎 and 𝜎(𝐴) ⊆ R+, set A+ ={𝐴 ∈ A | 𝐴 ≥ 𝜃}, then A+ = {𝐴∗𝐴 | 𝐴 ∈ A} [27]. Using
the positive element, one can define a partial ordering “≤” on
A𝑠𝑎 as follows: 𝐴 ≤ 𝐵 if and only if 𝐵 − 𝐴 ≥ 𝜃. It is clear that
if 𝐴, 𝐵 ∈ A𝑠𝑎 and 𝐶 ∈ A, then 𝐴 ≤ 𝐵 ⇒ 𝐶∗𝐴𝐶 ≤ 𝐶∗𝐵𝐶,
and that if 𝐴, 𝐵 ∈ A+ are invertible, then 𝐴 ≤ 𝐵 ⇒ 𝜃 ≤𝐵−1 ≤ 𝐴−1.

Using the partial ordering “≤” onA𝑠𝑎, Ma introduced the
notion of𝐶∗-algebra-valuedmetric spaces and gave the fixed-
point theory for contractive or expansion mapping on such a
space [30, 31]. Let us recall the definition first.

Definition 3 (see [30]). Let 𝑋 be a nonempty set. If 𝑑 : 𝑋 ×𝑋 → A+ is a mapping satisfying
(1) 𝑑(𝑥, 𝑦) = 𝜃 ⇐⇒ 𝑥 = 𝑦;
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

then 𝑑 is called a 𝐶∗-algebra-valued metric on𝑋. (𝑋,A, 𝑑) is
called a 𝐶∗-algebra-valued metric space.

Definition 4 (see [30]). Let (𝑋,A, 𝑑) be a 𝐶∗-algebra-valued
metric space, {𝑥𝑛} ⊂ 𝑋, 𝑥 ∈ 𝑋. If for any 𝜀 > 0, there is an𝑁 ∈ N, such that for all 𝑛 > 𝑁, ‖𝑑(𝑥𝑛, 𝑥)‖ < 𝜀, then we say
this {𝑥𝑛} converges to 𝑥. We denote it by lim𝑛→∞𝑥𝑛 = 𝑥.

If for any 𝜀 > 0, there is an𝑁 ∈ N, such that, for all𝑚, 𝑛 >𝑁, ‖𝑑(𝑥𝑚, 𝑥𝑛)‖ < 𝜀, then we say {𝑥𝑛} is a Cauchy sequence
with respect to A. We say that (𝑋,A, 𝑑) is a complete 𝐶∗-
algebra-valued metric space if every Cauchy sequence with
respect toA is convergent.

Definition 5 (see [30]). Let (𝑋,A, 𝑑) be a 𝐶∗-algebra-valued
metric space. We call a mapping 𝑇 : 𝑋 → 𝑋 is a contractive
mapping on (𝑋,A, 𝑑) if there exists𝐴 ∈ Awith ‖𝐴‖ < 1 such
that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝐴∗𝑑(𝑥, 𝑦)𝐴, ∀𝑥, 𝑦 ∈ 𝑋.
Theorem 6 (see [30]). If (𝑋,A, 𝑑) is a complete 𝐶∗-algebra-
valuedmetric space and𝑇 is a contractivemapping, there exists
a unique fixed point in𝑋.

In this paper, we will define 𝐶∗-algebra-valued 𝐺-metric
spaces and prove some fixed point theorems on such spaces.
We also provide an application of the theory for a type of
differential equations.

2. Main Results

In this section, we first give the definition of a 𝐶∗-algebra-
valued 𝐺-metric spaces.

Definition 7. Let𝑋 be a nonempty set and 𝑆3 be the permuta-
tion group on {1, 2, 3}. If 𝐺 : 𝑋 ×𝑋×𝑋 → A+ is a mapping
satisfying

(1) 𝐺(𝑥1, 𝑥2, 𝑥3) = 𝜃 ⇐⇒ 𝑥1 = 𝑥2 = 𝑥3;
(2) 𝐺(𝑥𝜎(1), 𝑥𝜎(2), 𝑥𝜎(3)) = 𝐺(𝑥1, 𝑥2, 𝑥3) for all 𝑥1, 𝑥2, 𝑥3 ∈𝑋, 𝜎 ∈ 𝑆3;
(3) 𝐺(𝑥1, 𝑥1, 𝑥2) ≤ 𝐺(𝑥1, 𝑥2, 𝑥3) for all 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋

with 𝑥2 ̸= 𝑥3;
(4) 𝐺(𝑥1, 𝑥2, 𝑥3) ≤ 𝐺(𝑥1, 𝑎, 𝑎) + 𝐺(𝑎, 𝑥2, 𝑥3) for all 𝑥1, 𝑥2,𝑥3, 𝑎 ∈ 𝑋,𝐺 is called a𝐶∗-algebra-valued𝐺-metric on𝑋, and (𝑋,A, 𝐺)

is called a 𝐶∗-algebra-valued 𝐺-metric space.

Example 8. Let 𝑋 = {𝑥, 𝑦}. Notice that 𝑀2(C) of 2 × 2-
matrices with entries in C is identified with 𝐵(C2). This is a𝐶∗-algebra. Let 𝐺 (𝑥, 𝑥, 𝑥) = 𝐺 (𝑦, 𝑦, 𝑦) = 𝜃,𝐺 (𝑥, 𝑥, 𝑦) = 𝐼,𝐺 (𝑥, 𝑦, 𝑦) = 2𝐼 (2)

and extend𝐺 to all of𝑋×𝑋×𝑋 by symmetry in the variables.
Then 𝐺 is a 𝐶∗-algebra-valued 𝐺-metric on 𝑋, and (𝑋,𝑀2(C), 𝐺) is a 𝐶∗-algebra-valued 𝐺-metric space.

Definition 9. Let (𝑋,A, 𝐺) be a 𝐶∗-algebra-valued 𝐺-metric
space, {𝑥𝑛} ⊆ 𝑋, 𝑥 ∈ 𝑋. If for any 𝜀 > 0, there is an 𝑁 ∈ N,
such that for all 𝑚, 𝑛 > 𝑁, ‖𝐺(𝑥𝑚, 𝑥𝑛, 𝑥)‖ < 𝜀, then we say{𝑥𝑛} is 𝐺-convergent to 𝑥, and denote by 𝑥𝑛 𝐺→ 𝑥, (𝑛 → ∞).
Proposition 10. Let (𝑋,A, 𝐺) be a 𝐶∗-algebra-valued 𝐺-
metric space, {𝑥𝑛} ⊆ 𝑋, 𝑥 ∈ 𝑋. The following statements are
equivalent:

(1) 𝑥𝑛 𝐺→ 𝑥(𝑛 → ∞).
(2) 𝐺(𝑥𝑛, 𝑥𝑛, 𝑥) → 𝜃, as 𝑛 → ∞.
(3) 𝐺(𝑥𝑛, 𝑥, 𝑥) → 𝜃, as 𝑛 → ∞.

Proof. (1) ⇒ (2) If 𝑥𝑛 𝐺→ 𝑥, that is, for all 𝜀 > 0, ∃𝑁 ∈ N,
such that, for all, 𝑚, 𝑛 > 𝑁, ‖𝐺(𝑥𝑚, 𝑥𝑛, 𝑥)‖ < 𝜀, especially,‖𝐺(𝑥𝑛, 𝑥𝑛, 𝑥)‖ < 𝜀.Hence 𝐺(𝑥𝑛, 𝑥𝑛, 𝑥) → 𝜃, as 𝑛 → ∞.(2) ⇒ (3) If ∀𝜀 > 0, ∃𝑁 ∈ N, such that, for all 𝑛 >𝑁, ‖𝐺(𝑥𝑛, 𝑥𝑛, 𝑥)‖ < 𝜀/2, then when 𝑛 > 𝑁,𝐺 (𝑥𝑛, 𝑥, 𝑥) = 𝐺 (𝑥, 𝑥𝑛, 𝑥)≤ 𝐺 (𝑥, 𝑥𝑛, 𝑥𝑛) + 𝐺 (𝑥𝑛, 𝑥𝑛, 𝑥) < 𝜀, (3)

that is, 𝐺(𝑥𝑛, 𝑥, 𝑥) → 𝜃, as 𝑛 → ∞.(3) ⇒ (1) If 𝐺(𝑥𝑛, 𝑥, 𝑥) → 𝜃, as 𝑛 → ∞, then, for any𝜀 > 0, ∃𝑁1 ∈ N, such that for all 𝑛 > 𝑁1, ‖𝐺(𝑥𝑛, 𝑥, 𝑥)‖ < 𝜀/2;∃𝑁2 ∈ N, such that, for all 𝑚 > 𝑁2, ‖𝐺(𝑥𝑚, 𝑥, 𝑥)‖ < 𝜀/2. Let𝑁 = 𝑁1 + 𝑁2, for𝑚, 𝑛 > 𝑁,𝐺 (𝑥𝑚, 𝑥𝑛, 𝑥) ≤ 𝐺 (𝑥𝑚, 𝑥, 𝑥) + 𝐺 (𝑥, 𝑥𝑛, 𝑥) < 𝜀, (4)

that is, 𝑥𝑛 𝐺→ 𝑥(𝑛 → ∞).
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Definition 11. Let (𝑋,A, 𝐺) be a 𝐶∗-algebra-valued 𝐺-metric
space, {𝑥𝑛} ⊆ 𝑋. If for any 𝜀 > 0, there is an𝑁 ∈ N such that
for all𝑚, 𝑛, 𝑙 > 𝑁, ‖𝐺(𝑥𝑚, 𝑥𝑛, 𝑥𝑙)‖ < 𝜀, then the sequence {𝑥𝑛}
is called a 𝐺-Cauchy sequence. If any 𝐺-Cauchy sequence in(𝑋,A, 𝐺) is𝐺-convergent, then (𝑋,A, 𝐺) is called a complete𝐶∗-algebra-valued 𝐺-metric space.

Proposition 12. Let (𝑋,A, 𝐺) be a 𝐶∗-algebra-valued 𝐺-
metric space, {𝑥𝑛} ⊆ 𝑋. Then {𝑥𝑛} is a 𝐺-Cauchy sequence if
and only if for any 𝜀 > 0, there is an 𝑁 ∈ N, such that, for all𝑚, 𝑛 > 𝑁, ‖𝐺(𝑥𝑚, 𝑥𝑛, 𝑥𝑛)‖ < 𝜀.
Proof. It suffices to show the necessity. For any 𝜀 > 0, ∃𝑁1 ∈
N, such that for all 𝑚, 𝑛 > 𝑁1, ‖𝐺(𝑥𝑚, 𝑥𝑛, 𝑥𝑛)‖ < 𝜀/2; ∃𝑁2 ∈
N, such that for all 𝑛, 𝑙 > 𝑁2, ‖𝐺(𝑥𝑙, 𝑥𝑛, 𝑥𝑛)‖ < 𝜀/2. So for the
above 𝜀, let𝑁 = 𝑁1 + 𝑁2, when𝑚, 𝑛, 𝑙 > 𝑁,𝐺 (𝑥𝑚, 𝑥𝑛, 𝑥𝑙) ≤ 𝐺 (𝑥𝑚, 𝑥𝑛, 𝑥𝑛) + 𝐺 (𝑥𝑛, 𝑥𝑛, 𝑥𝑙)< 𝜀, (5)

that is, {𝑥𝑛} is a 𝐺-Cauchy sequence.
Example 13. Set𝑋 = C,A = 𝑀3(C). Let 𝛼, 𝛽 > 0; set𝐺 (𝑥, 𝑦, 𝑧)

= (𝑔 (𝑥, 𝑦, 𝑧) 0 00 𝛼𝑔 (𝑥, 𝑦, 𝑧) 00 0 𝛽𝑔 (𝑥, 𝑦, 𝑧)) , (6)

where 𝑔(𝑥, 𝑦, 𝑧) = |𝑥 − 𝑦| + |𝑦 − 𝑧| + |𝑧 − 𝑥|, then 𝐺 is a 𝐶∗-
algebra-valued 𝐺-metric on 𝑋, and (𝑋,A, 𝐺) is a complete𝐶∗-algebra-valued 𝐺-metric space.

It is easy to see that (𝑋,A, 𝐺) is a 𝐶∗-algebra-valued 𝐺-
metric space. We only need to prove the completeness. Let{𝑥𝑛} ⊆ (𝑋,A, 𝐺) be a𝐺-Cauchy sequence.Then for any 𝜀 > 0,
there is an𝑁 ∈ N, such that for all𝑚, 𝑛 > 𝑁,𝐺 (𝑥𝑚, 𝑥𝑛, 𝑥𝑛) = max {𝑔 (𝑥𝑚, 𝑥𝑛, 𝑥𝑛) , 𝛼𝑔 (𝑥𝑚, 𝑥𝑛, 𝑥𝑛) ,𝛽𝑔 (𝑥𝑚, 𝑥𝑛, 𝑥𝑛)} < 𝜀. (7)

So 𝑔(𝑥𝑚, 𝑥𝑛, 𝑥𝑛) = 2|𝑥𝑚 − 𝑥𝑛| < 𝜀. Since 𝑋 is complete, there
exists 𝑥 ∈ 𝑋, such that 𝑥𝑛 → 𝑥. Hence there is𝑁0 ∈ N such
that, for any 𝑛 > 𝑁0, |𝑥𝑛 − 𝑥| < 𝜀/2. It follows that𝐺 (𝑥𝑛, 𝑥, 𝑥)= max {2 𝑥 − 𝑥𝑛 , 2𝛼 𝑥 − 𝑥𝑛 , 2𝛽 𝑥 − 𝑥𝑛}= 2max {1, 𝛼, 𝛽} 𝑥𝑛 − 𝑥 < max {1, 𝛼, 𝛽} 𝜀. (8)

Therefore, 𝑥𝑛 𝐺→ 𝑥, and (𝑋,A, 𝐺) is complete.

Example 14. Suppose Ω is a compact Hausdorff space and 𝜇
is a positive regular Borel measure on Ω. Let 𝑋 = 𝐿∞(Ω, 𝜇),
the set of all essentially bounded complex-valuedmeasurable
functions on Ω, then 𝑋 is a Banach space with the essential
supremum norm ‖𝑓‖∞. Set H = 𝐿2(Ω, 𝜇) = {𝑓 : Ω → C |

∫
Ω
|𝑓(𝜔)|2𝑑𝜇(𝜔) < ∞}; H is a Hilbert space with the inner-

product

⟨𝑓, 𝑔⟩ = ∫
Ω
𝑓 (𝜔) 𝑔 (𝜔)𝑑𝜇 (𝜔) . (9)

For 𝑓 ∈ 𝐿∞(Ω, 𝜇), define𝑀𝑓 : H → H𝜑 → 𝑓𝜑. (10)

Then 𝑀𝑓 is bounded and moreover ‖𝑀𝑓‖ = ‖𝑓‖∞. Let 𝐺 :𝑋 × 𝑋 × 𝑋 → 𝐵(H) by𝐺 (𝑓, 𝑔, ℎ) = 𝑀|𝑓−𝑔|+|𝑔−ℎ|+|ℎ−𝑓|. (11)

Then 𝐺 is a 𝐶∗-algebra-valued 𝐺-metric and (𝑋, 𝐵(H), 𝐺) is
a complete 𝐶∗-algebra-valued 𝐺-metric space. We omit its
proof and leave it to readers.

Next, we define the contractive mapping on 𝐶∗-algebra-
valued 𝐺-metric space and prove the fixed point theorem for
contractive mappings.

Definition 15. Let (𝑋,A, 𝐺) be a 𝐶∗-algebra-valued𝐺-metric
space and 𝑇 : 𝑋 → 𝑋 is a mapping. If there exists 𝐴 ∈ A
with ‖𝐴‖ < 1 such that𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝐴∗𝐺 (𝑥, 𝑦, 𝑧) 𝐴, ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, (12)

then 𝑇 is called a contractive mapping on (𝑋,A, 𝐺).
Theorem 16. Let (𝑋,A, 𝐺) be a complete 𝐶∗-algebra-valued𝐺-metric space. If 𝑇 : 𝑋 → 𝑋 is a contractive mapping on (𝑋,
A, 𝐺), then there is a unique fixed point of 𝑇 on𝑋.
Proof. Let 𝑑(𝑥, 𝑦) = 𝐺(𝑥, 𝑥, 𝑦) + 𝐺(𝑥, 𝑦, 𝑦).

We first show that 𝑑 is a 𝐶∗-algebra-valued metric on 𝑋.
It suffices to show that𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑦, 𝑧) , ∀𝑥, 𝑦, 𝑧 ∈ 𝑋. (13)

That is, 𝐺 (𝑥, 𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑦)≤ 𝐺 (𝑥, 𝑥, 𝑧) + 𝐺 (𝑥, 𝑧, 𝑧) + 𝐺 (𝑦, 𝑦, 𝑧)+ 𝐺 (𝑦, 𝑧, 𝑧) . (14)

Since𝐺 (𝑥, 𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑦) = 𝐺 (𝑦, 𝑥, 𝑥) + 𝐺 (𝑥, 𝑦, 𝑦)≤ 𝐺 (𝑦, 𝑧, 𝑧) + 𝐺 (𝑧, 𝑥, 𝑥) + 𝐺 (𝑥, 𝑧, 𝑧)+ 𝐺 (𝑧, 𝑦, 𝑦)= 𝐺 (𝑥, 𝑥, 𝑧) + 𝐺 (𝑥, 𝑧, 𝑧) + 𝐺 (𝑦, 𝑧, 𝑧)+ 𝐺 (𝑦, 𝑦, 𝑧) ,
(15)

we have 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.
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Next, we show (𝑋,A, 𝑑) is a complete 𝐶∗-algebra-valued
metric space. Let {𝑥𝑛} ⊆ 𝑋 be a Cauchy sequence with respect
to A. Then for any 𝜀 > 0, there is an 𝑁 ∈ N such that for all𝑚, 𝑛 > 𝑁, ‖𝑑(𝑥𝑛, 𝑥𝑚)‖ < 𝜀, that is,𝐺 (𝑥𝑛, 𝑥𝑚, 𝑥𝑚) + 𝐺 (𝑥𝑛, 𝑥𝑛, 𝑥𝑚) < 𝜀. (16)

Since 𝜃 ≤ 𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) ≤ 𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) + 𝐺(𝑥𝑛, 𝑥𝑛, 𝑥𝑚),𝐺 (𝑥𝑛, 𝑥𝑚, 𝑥𝑚) ≤ 𝐺 (𝑥𝑛, 𝑥𝑚, 𝑥𝑚) + 𝐺 (𝑥𝑛, 𝑥𝑛, 𝑥𝑚)< 𝜀. (17)

So {𝑥𝑛} ⊆ 𝑋 is a 𝐺-Cauchy sequence. By the completeness of(𝑋,A, 𝐺), there exists an 𝑥 ∈ 𝑋, such that 𝑥𝑛 𝐺→ 𝑥(𝑛 → ∞).
That is, for any 𝜀 > 0, there is an 𝑁1 ∈ N such that, for all𝑛 > 𝑁1, ‖𝐺(𝑥𝑛, 𝑥, 𝑥)‖ < 𝜀/2; there is an𝑁2 ∈ N such that for
all𝑚 > 𝑁2, ‖𝐺(𝑥𝑚, 𝑥𝑚, 𝑥)‖ < 𝜀/2. Let𝑁 = 𝑁1 + 𝑁2, then for
all 𝑛 > 𝑁, we have 𝐺 (𝑥𝑛, 𝑥, 𝑥) < 𝜀2 ,𝐺 (𝑥𝑛, 𝑥𝑛, 𝑥) < 𝜀2 . (18)

Therefore,𝑑 (𝑥𝑛, 𝑥) = 𝐺 (𝑥𝑛, 𝑥, 𝑥) + 𝐺 (𝑥𝑛, 𝑥𝑛, 𝑥)≤ 𝐺 (𝑥𝑛, 𝑥, 𝑥) + 𝐺 (𝑥𝑛, 𝑥𝑛, 𝑥) < 𝜀. (19)

Hence lim𝑛→∞𝑥𝑛 = 𝑥, and (𝑋,A, 𝑑) is complete.
Moreover,𝑇 is a contractivemapping on (𝑋,A, 𝑑). In fact,
𝑑 (𝑇𝑥, 𝑇𝑦) = 𝐺 (𝑇𝑥, 𝑇𝑥, 𝑇𝑦) + 𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦)≤ 𝐴∗𝐺 (𝑥, 𝑥, 𝑦)𝐴 + 𝐴∗𝐺 (𝑥, 𝑦, 𝑦)𝐴= 𝐴∗ (𝐺 (𝑥, 𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑦)) 𝐴= 𝐴∗𝑑 (𝑥, 𝑦)𝐴.

(20)

It follows from Theorem 6 that there is an 𝑥 ∈ 𝑋 such that𝑇𝑥 = 𝑥.
Finally, we show the uniqueness of this fixed point. Let 𝑦

is another fixed point of 𝑇. If 𝑥 ̸= 𝑦, then𝜃 ≨ 𝐺 (𝑥, 𝑦, 𝑦) = 𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ≤ 𝐴∗𝐺 (𝑥, 𝑦, 𝑦)𝐴. (21)

Since ‖𝐺(𝑥, 𝑦, 𝑦)‖ ̸= 0,𝐺 (𝑥, 𝑦, 𝑦) ≤ 𝐴∗𝐺 (𝑥, 𝑦, 𝑦)𝐴≤ ‖𝐴‖2 𝐺 (𝑥, 𝑦, 𝑦) < 𝐺 (𝑥, 𝑦, 𝑦) . (22)

This is a contradiction. So 𝑥 = 𝑦.
Remark 17. (1) In the theorem above, the completeness of 𝑋
is essential. For example, let 𝑋 = (0, 1) ⊆ R and 𝐺 : 𝑋 × 𝑋 ×𝑋 → 𝐵(H) satisfy 𝐺(𝑥, 𝑦, 𝑧) = (|𝑥 − 𝑦| + |𝑦 − 𝑧| + |𝑧 − 𝑥|)𝐼,

then (𝑋, 𝐵(H), 𝐺) is a𝐶∗-algebra-valued𝐺-metric space, but(𝑋, 𝐵(H), 𝐺) is not complete. Considering the mapping𝑇 : 𝑋 → 𝑋
𝑥 → 12𝑥 (23)

𝑇 is a contractive mapping, but 𝑇 has no fixed point.
(2) In the definition of contractive mapping, the element𝐴 ∈ A does not depend on the choice of 𝑥, 𝑦, 𝑧. If𝐴 depends

on 𝑥, 𝑦, 𝑧, then 𝑇may not have a fixed point.
Indeed, let𝑋 = R and𝐺 : 𝑋×𝑋×𝑋 → 𝐵(H) be defined

by𝐺(𝑥, 𝑦, 𝑧) = (|𝑥−𝑦|+|𝑦−𝑧|+|𝑧−𝑥|)𝐼.Then (𝑋, 𝐵(H), 𝐺) is
a complete 𝐶∗-algebra-valued 𝐺-metric space. Let 𝑓(𝑥) = 𝜋/2 + 𝑥 − arctan𝑥. If 𝑥 < 𝑦 < 𝑧, then𝐺 (𝑓 (𝑥) , 𝑓 (𝑦) , 𝑓 (𝑧))= (𝑥 − 𝑦 − arctan𝑥 + arctan𝑦+ 𝑦 − 𝑧 − arctan𝑦 + arctan 𝑧+ |𝑧 − 𝑥 − arctan 𝑧 + arctan𝑥|) 𝐼

= (𝑥 − 𝑦 + 𝑦 − 𝑥1 + 𝜉2  + 𝑦 − 𝑧 + 𝑧 − 𝑦1 + 𝜂2 
+ 𝑧 − 𝑥 + 𝑥 − 𝑧1 + 𝜁2 ) 𝐼 = ( 𝜉21 + 𝜉2 𝑥 − 𝑦
+ 𝜂21 + 𝜂2 𝑦 − 𝑧 + 𝜁21 + 𝜁2 |𝑧 − 𝑥|) 𝐼 ≤ 𝛼 (𝑥 − 𝑦
+ 𝑦 − 𝑧 + |𝑧 − 𝑥|) 𝐼 = √𝛼𝐼𝐺 (𝑥, 𝑦, 𝑧)√𝛼𝐼,

(24)

where 𝜉 ∈ (𝑥, 𝑦), 𝜂 ∈ (𝑦, 𝑧), 𝜁 ∈ (𝑥, 𝑧), and 𝛼 = max{𝜉2/(1 +𝜉2), 𝜂2/(1 + 𝜂2), 𝜁2/(1 + 𝜁2)} < 1 depends on 𝑥, 𝑦, 𝑧, but 𝑓 has
no fixed point.

(3) When ‖𝐴‖ = 1, 𝑇may not have a unique fixed point.
Consider 𝑋 = 𝑙∞(N) = {(𝑥1, 𝑥2, ⋅ ⋅ ⋅ ) | 𝑥𝑛 ∈ C, 𝑛 ∈ N and

sup𝑛|𝑥𝑛| < +∞}, for𝑥 = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ ) ∈ 𝑙∞(N), and let ‖𝑥‖∞ =
sup𝑛|𝑥𝑛|. Define 𝐺 : 𝑋 × 𝑋 × 𝑋 → 𝑀2(C) by𝐺 (𝑥, 𝑦, 𝑧) = (𝑥 − 𝑦∞ + 𝑦 − 𝑧∞ + ‖𝑧 − 𝑥‖∞) 𝐼. (25)

Then (𝑋,𝑀2(C), 𝐺) is a complete 𝐶∗-algebra-valued 𝐺-
metric space. Let

𝑇 (𝑥1, 𝑥2, 𝑥3, ⋅ ⋅ ⋅) = (1 + 𝑥2, 12 + 𝑥3, 122 + 𝑥4, ⋅ ⋅ ⋅) . (26)

Then 𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤ 𝐺 (𝑥, 𝑦, 𝑧) . (27)

But for each 𝛼 ∈ C, 𝑥 = (𝛼, 𝛼 − 1, 𝛼 − 3/2, ⋅ ⋅ ⋅ , 𝛼 −∑𝑛−1𝑖=0 (1/2𝑖),⋅ ⋅ ⋅ ) is a fixed point, which means the fixed point is not
unique.

What follows is the definition of the expansion mapping
on 𝐶∗-algebra-valued 𝐺-metric space and the fixed-point
theorem for expansion mappings.
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Definition 18. Let (𝑋,A, 𝐺) be a𝐶∗-algebra-valued𝐺-metric
space. If 𝑇 : 𝑋 → 𝑋 satisfies the condition𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≥ 𝐴∗𝐺 (𝑥, 𝑦, 𝑧) 𝐴, (28)

where 𝐴 ∈ A is invertible and ‖𝐴−1‖ < 1, we call 𝑇 an
expansion mapping on (𝑋,A, 𝐺).
Theorem 19. Let (𝑋,A, 𝐺) be a complete 𝐶∗-algebra-valued𝐺-metric space and 𝑇 : 𝑋 → 𝑋 a expansion mapping on (𝑋,
A, 𝐺). If 𝑇 is surjective, then there is a unique fixed point for𝑇.
Proof. First we show 𝑇 is injective. Indeed, if 𝑇𝑥 = 𝑇𝑦, then𝜃 = 𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑦) ≥ 𝐴∗𝐺 (𝑥, 𝑦, 𝑦)𝐴. (29)

Since 𝐴∗𝐺(𝑥, 𝑦, 𝑦)𝐴 ∈ A+, 𝐴∗𝐺(𝑥, 𝑦, 𝑦)𝐴 = 𝜃, and since 𝐴
is invertible, 𝐺(𝑥, 𝑦, 𝑦) = 𝜃.Therefore 𝑥 = 𝑦.

Next we show that𝑇 has a unique fixed point in𝑋. In fact,𝑇 is bijective and so 𝑇 is invertible. Since ∀𝑥, 𝑦, 𝑧 ∈ 𝑋,𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≥ 𝐴∗𝐺 (𝑥, 𝑦, 𝑧) 𝐴. (30)

Replace 𝑥, 𝑦, 𝑧 by 𝑇−1𝑥, 𝑇−1𝑦, 𝑇−1𝑧, respectively, we get
𝐺 (𝑥, 𝑦, 𝑧) ≥ 𝐴∗𝐺(𝑇−1𝑥, 𝑇−1𝑦, 𝑇−1𝑧)𝐴. (31)

Hence𝐺(𝑇−1𝑥, 𝑇−1𝑦, 𝑇−1𝑧) ≤ (𝐴∗)−1 𝐺 (𝑥, 𝑦, 𝑧) 𝐴−1. (32)

Thus𝐺(𝑇−1𝑥, 𝑇−1𝑦, 𝑇−1𝑧) ≤ (𝐴−1)∗ 𝐺 (𝑥, 𝑦, 𝑧) 𝐴−1. (33)

By Theorem 16, there is a unique 𝑥 ∈ 𝑋, such that 𝑇−1𝑥 = 𝑥,
and therefore there is a unique 𝑥 ∈ 𝑋, such that 𝑇𝑥 = 𝑥.

The following lemma is necessary for another fixed-point
theorem, for detail, see [27].

Lemma 20. SetA = {𝐴 ∈ A : 𝐴𝐵 = 𝐵𝐴, ∀𝐵 ∈ A}.
(1) If 𝐴, 𝐵 ∈ A+ and 𝐴𝐵 = 𝐵𝐴, then 𝐴𝐵 ∈ A+.
(2) If 𝐴 ∈ A, 𝐵, 𝐶 ∈ A with 𝐵 ≥ 𝐶 ≥ 𝜃 and 𝐼 − 𝐴 ∈ A is

invertible, then (𝐼 − 𝐴)−1𝐵 ≥ (𝐼 − 𝐴)−1𝐶.
Theorem 21. Let (𝑋,A, 𝐺) be a complete 𝐶∗-algebra-valued𝐺-metric space, 𝑇 : 𝑋 → 𝑋. If there exists an𝐴 ∈ (A)+, ‖𝐴‖< 1/6 such that for any 𝑥, 𝑦 ∈ 𝑋,𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)≤ 𝐴 (𝐺 (𝑇𝑥, 𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑧) + 𝐺 (𝑥, 𝑦, 𝑇𝑧)) , (34)

or𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)≤ 𝐴 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑇𝑧) + 𝐺 (𝑇𝑥, 𝑦, 𝑇𝑧)) , (35)

then 𝑇 has a unique fixed point in𝑋.

Proof. Without loss of generality, we can assume 𝐴 ̸= 𝜃.
(1) Suppose that 𝑇 satisfies

𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)≤ 𝐴 (𝐺 (𝑇𝑥, 𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑧) + 𝐺 (𝑥, 𝑦, 𝑇𝑧)) ,∀𝑥, 𝑦, 𝑧 ∈ 𝑋. (36)

Since 𝐴 ∈ (A)+,𝐴 (𝐺 (𝑇𝑥, 𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑧) + 𝐺 (𝑥, 𝑦, 𝑇𝑧)) ≥ 𝜃. (37)

For 𝑥0 ∈ 𝑋, set 𝑥𝑛+1 = 𝑇𝑥𝑛 = 𝑇𝑛+1𝑥0, 𝑛 = 1, 2, ⋅ ⋅ ⋅ , and𝐵 = 𝐺(𝑥1, 𝑥0, 𝑥0).Then

𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) = 𝐺 (𝑇𝑥𝑛, 𝑇𝑥𝑛−1, 𝑇𝑥𝑛−1)≤ 𝐴 (𝐺 (𝑇𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1) + 𝐺 (𝑥𝑛, 𝑇𝑥𝑛−1, 𝑥𝑛−1)+ 𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑇𝑥𝑛−1)) = 𝐴𝐺 (𝑥𝑛+1, 𝑥𝑛−1, 𝑥𝑛−1)+ 2𝐴𝐺 (𝑥𝑛, 𝑥𝑛, 𝑥𝑛−1) ≤ 𝐴 (𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛)+ 𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1)) + 2𝐴 (𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1)+ 𝐺 (𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛−1)) = 𝐴𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛)+ 5𝐴𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1) ,

(38)

That is,

(𝐼 − 𝐴)𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) ≤ 5𝐴𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1) . (39)

Since 𝐴 ∈ (A)+ with ‖𝐴‖ < 1/6, we have (𝐼 − 𝐴)−1 ∈ (A)+
and furthermore𝐴(𝐼−𝐴)−1 ∈ (A)+ with ‖5𝐴(𝐼−𝐴)−1‖ < 1.
Therefore,

𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) ≤ 5𝐴 (𝐼 − 𝐴)−1 𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1) . (40)

Let 𝑡 = 5𝐴(𝐼 − 𝐴)−1, for 𝑛 + 1 > 𝑚,

𝐺 (𝑥𝑛+1, 𝑥𝑚, 𝑥𝑚)≤ 𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) + 𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1) ⋅ ⋅ ⋅+ 𝐺 (𝑥𝑚+1, 𝑥𝑚, 𝑥𝑚)
≤ (𝑡𝑛 + 𝑡𝑛−1 + ⋅ ⋅ ⋅ + 𝑡𝑚)𝐺 (𝑥1, 𝑥0, 𝑥0) = 𝑛∑

𝑘=𝑚

𝑡𝑘𝐵
= 𝑛∑
𝑘=𝑚

𝑡𝑘/2𝐵1/22 ≤  𝑛∑𝑘=𝑚 𝑡𝑘/2𝐵1/22
 𝐼

≤ 𝑛∑
𝑘=𝑚

𝑡𝑘/22 𝐵1/22 𝐼 ≤ 𝐵1/22 𝑛∑
𝑘=𝑚

‖𝑡‖𝑘 𝐼
≤ 𝐵1/22 ‖𝑡‖𝑚1 − ‖𝑡‖𝐼 → 𝜃 (𝑚 → ∞) .

(41)
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This implies that {𝑥𝑛} is a 𝐺-Cauchy sequence in 𝑋. Since(𝑋,A, 𝐺) is complete, there exists an 𝑥 ∈ 𝑋 such that 𝑥𝑛 𝐺→𝑥(𝑛 → ∞), i.e., 𝑇𝑥𝑛−1 𝐺→ 𝑥(𝑛 → ∞). Since𝐺 (𝑇𝑥, 𝑥, 𝑥) ≤ 𝐺 (𝑇𝑥, 𝑇𝑥𝑛, 𝑇𝑥𝑛) + 𝐺 (𝑇𝑥𝑛, 𝑥, 𝑥)≤ 𝐴 (𝐺 (𝑇𝑥, 𝑥𝑛, 𝑥𝑛) + 𝐺 (𝑥, 𝑇𝑥𝑛, 𝑥𝑛)+ 𝐺 (𝑥, 𝑥𝑛, 𝑇𝑥𝑛)) + 𝐺 (𝑥𝑛+1, 𝑥, 𝑥) ≤ 𝐴𝐺 (𝑇𝑥, 𝑥, 𝑥)+ 𝐴𝐺 (𝑥, 𝑥𝑛, 𝑥𝑛) + 2𝐴𝐺 (𝑥, 𝑥𝑛, 𝑥𝑛+1)+ 𝐺 (𝑥𝑛+1, 𝑥, 𝑥) .
(42)

That is (𝐼 − 𝐴)𝐺 (𝑇𝑥, 𝑥, 𝑥) ≤ 𝐴𝐺 (𝑥, 𝑥𝑛, 𝑥𝑛)+ 2𝐴𝐺 (𝑥, 𝑥𝑛, 𝑥𝑛+1)+ 𝐺 (𝑥𝑛+1, 𝑥, 𝑥) . (43)

Then‖𝐺 (𝑇𝑥, 𝑥, 𝑥)‖ ≤ 𝐴 (𝐼 − 𝐴)−1⋅ (𝐺 (𝑥, 𝑥𝑛, 𝑥𝑛) + 2 𝐺 (𝑥, 𝑥𝑛, 𝑥𝑛+1))+ (𝐼 − 𝐴)−1 𝐺 (𝑥𝑛+1, 𝑥, 𝑥) → 0 (𝑛 → ∞) , (44)

and hence 𝑇𝑥 = 𝑥 and 𝑥 is the fixed point of 𝑇 on𝑋.
Next, we show the uniqueness of 𝑥. If there exists another

fixed point 𝑦 ∈ 𝑋, then𝜃 ≤ 𝐺 (𝑥, 𝑥, 𝑦) = 𝐺 (𝑇𝑥, 𝑇𝑥, 𝑇𝑦)≤ 𝐴 (𝐺 (𝑇𝑥, 𝑥, 𝑦) + 𝐺 (𝑥, 𝑇𝑥, 𝑦) + 𝐺 (𝑥, 𝑥, 𝑇𝑦))= 𝐴𝐺 (𝑥, 𝑥, 𝑦) + 2𝐴𝐺 (𝑥, 𝑥, 𝑦) , (45)

i.e., 𝐺 (𝑥, 𝑥, 𝑦) ≤ 2𝐴 (𝐼 − 𝐴)−1 𝐺 (𝑥, 𝑥, 𝑦) . (46)

Since ‖5𝐴(𝐼 − 𝐴)−1‖ < 1, ‖2𝐴(𝐼 − 𝐴)−1‖ < 1. Hence 𝐺(𝑥, 𝑥,𝑦) = 𝜃, and 𝑥 = 𝑦.
(2) The case when𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)≤ 𝐴 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑇𝑧) + 𝐺 (𝑇𝑥, 𝑦, 𝑇𝑧)) ,∀𝑥, 𝑦, 𝑧 ∈ 𝑋 (47)

can be proved similarly and we omitted it.

Definition 22. Let (𝑋,A, 𝐺) be a𝐶∗-algebra-valued𝐺-metric
space. We say 𝐺 is symmetric if 𝐺(𝑥, 𝑥, 𝑦) = 𝐺(𝑥, 𝑦, 𝑦) for all𝑥, 𝑦 ∈ 𝑋.

It is easy to show that, in Example 8, 𝐺 is not symmetric
and, in Example 13, 𝐺 is symmetric.

Theorem 23. Let (𝑋,A, 𝐺) be a complete 𝐶∗-algebra-valued𝐺-metric space and 𝐺 symmetric. If 𝑇 : 𝑋 → 𝑋 is a mapping
satisfying that for 𝑥, 𝑦 ∈ 𝑋𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)≤ 𝐴 (𝐺 (𝑇𝑥, 𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑧) + 𝐺 (𝑥, 𝑦, 𝑇𝑧)) , (48)

or𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)≤ 𝐴 (𝐺 (𝑇𝑥, 𝑇𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑇𝑧) + 𝐺 (𝑇𝑥, 𝑦, 𝑇𝑧)) , (49)

where 𝐴 ∈ (A)+ and ‖𝐴‖ < 1/4, then 𝑇 has a unique fixed
point in𝑋.
Proof. Without loss of generality, one can assume 𝐴 ̸= 𝜃.

We only consider the case when 𝑇 satisfies𝐺 (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)≤ 𝐴 (𝐺 (𝑇𝑥, 𝑦, 𝑧) + 𝐺 (𝑥, 𝑇𝑦, 𝑧) + 𝐺 (𝑥, 𝑦, 𝑇𝑧)) . (50)

Since𝐴 ∈ (A)+, 𝐴(𝐺(𝑇𝑥, 𝑦, 𝑧) +𝐺(𝑥, 𝑇𝑦, 𝑧) +𝐺(𝑥, 𝑦, 𝑇𝑧)) ≥𝜃.
For 𝑥0 ∈ 𝑋, set 𝑥𝑛+1 = 𝑇𝑥𝑛 = 𝑇𝑛+1𝑥0, 𝑛 = 1, 2, ⋅ ⋅ ⋅ , and𝐵 = 𝐺(𝑥1, 𝑥0, 𝑥0). If 𝐺 is symmetric,𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) = 𝐺 (𝑇𝑥𝑛, 𝑇𝑥𝑛−1, 𝑇𝑥𝑛−1)≤ 𝐴 (𝐺 (𝑇𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1) + 𝐺 (𝑥𝑛, 𝑇𝑥𝑛−1, 𝑥𝑛−1)+ 𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑇𝑥𝑛−1)) = 𝐴𝐺 (𝑥𝑛+1, 𝑥𝑛−1, 𝑥𝑛−1)+ 2𝐴𝐺 (𝑥𝑛, 𝑥𝑛, 𝑥𝑛−1) ≤ 𝐴 (𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛)+ 𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1)) + 2𝐴𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1)= 𝐴𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) + 3𝐴𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1) .

(51)

That is,(𝐼 − 𝐴)𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) ≤ 3𝐴𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1) . (52)

Since 𝐴 ∈ (A)+ with ‖𝐴‖ < 1/4, then 𝐼 − 𝐴 is invertible and(𝐼 − 𝐴)−1 ∈ (A)+ and ‖3𝐴(𝐼 − 𝐴)−1‖ < 1.Therefore

𝐺 (𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛) ≤ 3𝐴 (𝐼 − 𝐴)−1 𝐺 (𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−1) . (53)

Just like the proof ofTheorem 21, we can prove that, for 𝑛+1 >𝑚, 𝐺 (𝑥𝑛+1, 𝑥𝑚, 𝑥𝑚) → 𝜃 (𝑚 → ∞) . (54)

This implies that {𝑥𝑛} is a𝐺-Cauchy sequence in𝑋; thus there
exists an 𝑥 ∈ 𝑋 such that 𝑥𝑛 𝐺→ 𝑥(𝑛 → ∞) i.e., 𝑇𝑥𝑛−1 𝐺→𝑥(𝑛 → ∞). Similarly, we can show that𝑇𝑥 = 𝑥, 𝑥 is the fixed
point of 𝑇 on𝑋.

Theuniqueness of the fixed point can be proved similarly.
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3. Applications

For fixed-point theorems, there are a number of applications
in differential equations and integral equations.

Consider the second-order differential equation:𝑑2𝑢𝑑𝑡2 = 𝐾 (𝑡, 𝑢 (𝑡)) ,
𝑢 (0) = 𝑢 (1) = 0, (∗)

where 𝑢 : [0, 1] → [0,∞) and 𝐾 : [0, 1] × R+ → R+ are
continuous. Then the equation has a unique solution if and
only if 𝑢(𝑡) = ∫1

0
𝑔(𝑡, 𝑠)𝐾(𝑠, 𝑢(𝑠))𝑑𝑠, 𝑡 ∈ [0, 1] has a unique

solution, where

𝑔 (𝑡, 𝑠) = {{{
𝑡 (1 − 𝑠) , 0 ≤ 𝑠 < 𝑡 ≤ 1;𝑠 (1 − 𝑡) , 0 ≤ 𝑡 < 𝑠 ≤ 1. (55)

Let 𝑋 = 𝐶([0, 1],R+) ⊆ 𝐿∞([0, 1],R+),A = 𝐵(𝐿2[0, 1]),𝐺(𝑢, V, 𝑤) = 𝑀|𝑢−V|+|V−𝑤|+|𝑤−𝑢|, then (𝑋,A, 𝐺) is a complete𝐶∗-algebra-valued 𝐺-metric space. Let 𝑇 : 𝑋 → 𝑋 be a
mapping defined by

𝑇𝑢 (𝑡) = ∫1
0
𝑔 (𝑡, 𝑠) 𝐾 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, (56)

then (∗) has a unique solution if and only if 𝑇 has a unique
fixed point.

Theorem 24. If |𝐾(𝑠, 𝑥) − 𝐾(𝑠, 𝑦)| ≤ |𝑥 − 𝑦|, ∀𝑠 ∈ [0, 1],𝑥, 𝑦 ∈ R+, equation (∗) has a unique solution.
Proof.‖𝐺 (𝑇𝑢, 𝑇V, 𝑇𝑤)‖ = 𝑀|𝑇𝑢−𝑇V|+|𝑇V−𝑇𝑤|+|𝑇𝑤−𝑇𝑢| = ‖𝑇𝑢− 𝑇V‖∞ + ‖𝑇V − 𝑇𝑤‖∞ + ‖𝑇𝑤 − 𝑇𝑢‖∞

= max
𝑡∈[0,1]

∫10 𝑔 (𝑡, 𝑠) (𝐾 (𝑠, 𝑢 (𝑠)) − 𝐾 (𝑠, V (𝑠))) 𝑑𝑠
+ max
𝑡∈[0,1]

∫10 𝑔 (𝑡, 𝑠) (𝐾 (𝑠, V (𝑠)) − 𝐾 (𝑠, 𝑤 (𝑠))) 𝑑𝑠
+ max
𝑡∈[0,1]

∫10 𝑔 (𝑡, 𝑠) (𝐾 (𝑠, 𝑤 (𝑠)) − 𝐾 (𝑠, 𝑢 (𝑠))) 𝑑𝑠
≤ max
𝑡∈[0,1]

∫1
0
𝑔 (𝑡, 𝑠) |𝐾 (𝑠, 𝑢 (𝑠)) − 𝐾 (𝑠, V (𝑠))| 𝑑𝑠

+ max
𝑡∈[0,1]

∫1
0
𝑔 (𝑡, 𝑠) |𝐾 (𝑠, V (𝑠)) − 𝐾 (𝑠, 𝑤 (𝑠))| 𝑑𝑠

+ max
𝑡∈[0,1]

∫1
0
𝑔 (𝑡, 𝑠) |𝐾 (𝑠, 𝑤 (𝑠)) − 𝐾 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

≤ max
𝑡∈[0,1]

∫1
0
𝑔 (𝑡, 𝑠) |𝑢 (𝑠) − V (𝑠)| 𝑑𝑠 + max

𝑡∈[0,1]
∫1
0
𝑔 (𝑡, 𝑠)

⋅ |V (𝑠) − 𝑤 (𝑠)| 𝑑𝑠 + max
𝑡∈[0,1]

∫1
0
𝑔 (𝑡, 𝑠) |𝑤 (𝑠)

− 𝑢 (𝑠)| 𝑑𝑠 = max
𝑡∈[0,1]

∫1
0
𝑔 (𝑡, 𝑠) (|𝑢 (𝑠) − V (𝑠)|

+ |V (𝑠) − 𝑤 (𝑠)| + |𝑤 (𝑠) − 𝑢 (𝑠)|) 𝑑𝑠 ≤ ‖𝐺 (𝑢,
V, 𝑤)‖ max

𝑡∈[0,1]
∫1
0
𝑔 (𝑡, 𝑠) 𝑑𝑠

(57)

For a fixed 𝑡 ∈ [0, 1],
∫1
0
𝑔 (𝑡, 𝑠) 𝑑𝑠 = ∫𝑡

0
𝑡 (1 − 𝑠) 𝑑𝑠 + ∫1

𝑡
𝑠 (1 − 𝑡) 𝑑𝑠

= 12 + 𝑡22 − 𝑡2 ≤ 12 .
(58)

Therefore,

‖𝐺 (𝑇𝑢, 𝑇V, 𝑇𝑤)‖ ≤ 12 ‖𝐺 (𝑢, V, 𝑤)‖ (59)

and 𝑇 has a unique fixed point.
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Tensor exponential function is an important function that is widely used. In this paper, tensor Pad ́𝑒-type approximant (TPTA) is
defined by introducing a generalized linear functional for the first time. The expression of TPTA is provided with the generating
function form. Moreover, by means of formal orthogonal polynomials, we propose an efficient algorithm for computing TPTA. As
an application, the TPTA for computing the tensor exponential function is presented. Numerical examples are given to demonstrate
the efficiency of the proposed algorithm.

1. Introduction

Tensor exponential function is an important function that is
widely used, owing to its key role in the solution of tensor
differential equations [1–4]. For instance, Markovian master
equation can be written as tensor differential equations(𝜕/𝜕𝑡)P(𝑡) = A ⋅ P(𝑡), where the probabilities tensor P(𝑡) ∈
R𝑛1×𝑛2×⋅⋅⋅×𝑛𝑑 [5]. Consider the initial value problem defined by
the tensor ordinary differential equation [6, 7]

Ẏ (𝑡) = AY (𝑡) ,
Y (𝑡0) = Y0, (1)

where the superimposed dot denotes differentiation with
respect to 𝑡 and A and Y0 are given constant tensors. The
solution to system (1) isY(𝑡) = exp[(𝑡 − 𝑡0)A]Y0, and exp(⋅)
is the tensor exponential function.

To solve (1), we need to calculate an exponential function
about tensor A. Recently, tensor computation, especially
eigenvalues of tensors, has attracted attention of many schol-
ars; some important results have been found in the current
literature [8–15]. For instance, computation of exp(A𝑡) is
required in applications such as finite strain hyperelastic-
based multiplicative plasticity models [7, 16–19]. Explicitly,

for a generic tensor A, the tensor exponential can be
expressed bymeans of its series representation [7] (see p.749).

exp (A) = ∞∑
𝑛=0

1𝑛!A𝑛, (2)

and the preceding series is absolutely convergent for any
argument A and, as its scalar counterpart, can be used to
evaluate the tensor exponential function to any prescribed
degree of accuracy [16].The computation of (2) is carried out
by simply truncating the infinite series with 𝑛𝑚𝑎𝑥 terms:

exp (A) = 𝑛𝑚𝑎𝑥∑
𝑛=0

1𝑛!A𝑛, (3)

with 𝑛𝑚𝑎𝑥 being such that (1/𝑛𝑚𝑎𝑥)‖A𝑛𝑚𝑎𝑥‖ ≤ 𝜖𝑡𝑜𝑙.
However, the accuracy and effectiveness of the preceding

algorithm is limited by round-off and choice of termination
criterion [16]. Pad ́𝑒 approximant has become by far the most
widely used one in calculation of exponential function or
formal power series due to the following reasons: first, the
series may converge too slowly to be of any use and the
approximation can accelerate its convergence; second, only
few coefficients of the series may be known and a good
approximation to the series is needed to obtain properties of
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the function that it represents [20]. For instance,matrix Pad ́𝑒-
type approximant (MPTA) [21] can be used to simplify the
high degree multivariable system by approximating transfer
functionmatrix𝐺(𝑠) that can be expanded into a power series
with matrix coefficients, i.e., 𝐺(𝑠) = ∑∞𝑖=0 𝑐𝑖𝑠𝑖, where 𝑐𝑖 ∈ C𝑠×𝑡.
The key to construct TPTA is to maintain the same order of
tensor A with different powers. For this issue, we introduce
t-product [22, 23] of two tensors to solve it. In addition,
in order to give the definition of TPTA, we introduce a
generalized linear functional in the tensor space for the first
time.

This paper is organized as follows. In Section 2, we
provide some preliminaries. First, we introduce the t-product
of two tensors; then, we show the definitions of tensor
exponential function and the Frobenius norm of a tensor. In
Section 3.1, we define the tensor Pad ́𝑒-type approximant by
using generalized linear functional; the expression of TPTA is
of the form of tensor numerator and scalar denominator; and
then we introduce the definition of orthogonal polynomial
with respect to generalized linear functional and sketch an
algorithm to compute the TPTA. Numerical examples are
given and analyzed in Section 4. Finally, we finish the paper
with concluding remarks in Section 5.

2. Preliminaries

There arise mainly a problem for approximating tensor
exponential function. That is how to expand 𝑒A𝑡 into the
power series for order-𝑝 (𝑝 ≥ 3) tensors. For a Symmetric and
second-order tensor 𝐴, higher powers of 𝐴 can be computed
by the Cayley-Hamilton theorem [24], but it fails for the
order-𝑝 (𝑝 ≥ 3) tensors. Therefore, we shall utilize the t-
product to obtain higher powers of order-𝑝 (𝑝 ≥ 3) tensors
in this section. Firstly, we introduce some notations and basic
definitions which will be used in the sequel. Throughout this
paper tensors are denoted by calligraphic letters (e.g.,A,B),
while capital letters represent matrices, and lowercase letters
refer to scalars.

An order-𝑝 tensor,A, can be written as

A = (𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑝) ∈ R
𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝 . (4)

Thus, a matrix is considered a second-order tensor, and a
vector is a first-order tensor [22], for 𝑖 = 1, . . . , 𝑛𝑝, denoted
byA𝑖 ∈ R𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝−1 , the tensor whose order is 𝑝 − 1 and is
created by holding the 𝑝th index ofA fixed at 𝑖. For example,
consider a third-order tensor, A = (𝑎𝑖1𝑖2𝑖3) ∈ R3×3×3. Fixing
the 3rd index of A, we can get three 3 × 3 matrices, namely,
2-order tensor, which are 𝐴1, 𝐴2, and 𝐴3 and with ele-
ments𝐴1 : 𝑎111 𝑎121 𝑎131 𝑎211 𝑎221 𝑎231 𝑎311 𝑎321 𝑎331 ,𝐴2 : 𝑎112 𝑎122 𝑎132 𝑎212 𝑎222 𝑎232 𝑎312 𝑎322 𝑎332 ,𝐴3 : 𝑎113 𝑎123 𝑎133 𝑎213 𝑎223 𝑎233 𝑎313 𝑎323 𝑎333 , (5)

respectively.
Now, we will define the t-product of two tensors.

Definition 1 (see [22, 23]). Let A ∈ R𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝 . Then the
block circulant pattern tensor ofA is denoted by

𝑐𝑖𝑟𝑐 (A) = (
(

A1 A𝑛𝑝 A𝑛𝑝−1 ⋅ ⋅ ⋅ A2

A2 A1 A𝑛𝑝 ⋅ ⋅ ⋅ A3... d d d
...

A𝑛𝑝 A𝑛𝑝−1 ⋅ ⋅ ⋅ A2 A1

)
)

, (6)

whereA𝑖 ∈ R𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝−1 , 𝑖 = 1, 2, . . . , 𝑛𝑝.
Define unfold(⋅) to an 𝑛1×𝑛2×⋅ ⋅ ⋅×𝑛𝑝 tensor by an 𝑛1𝑛𝑝×𝑛2 × ⋅ ⋅ ⋅ × 𝑛𝑝−1 block tensor in the following way:

𝑢𝑛𝑓𝑜𝑙𝑑 (A) = (
(

A1

A2...
A𝑛𝑝

)
)

. (7)

If A is order-3 tensor, then 𝑢𝑛𝑓𝑜𝑙𝑑(A) is a block vector.
Similarly, define fold(⋅) as the inverse operation, which takes
an 𝑛1𝑛𝑝 ×𝑛2 × ⋅ ⋅ ⋅ × 𝑛𝑝−1 block tensor and returns an 𝑛1 ×𝑛2 ×⋅ ⋅ ⋅ × 𝑛𝑝 tensor; then𝑓𝑜𝑙𝑑 (𝑢𝑛𝑓𝑜𝑙𝑑 (A)) = A. (8)

Definition 2 (see [23]). Let A be R𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝 and B be
R𝑛2×𝑙×𝑛3 ⋅⋅⋅×𝑛𝑝 .Then the t-productA*B is the 𝑛1×𝑙×𝑛3×⋅ ⋅ ⋅×𝑛𝑝
tensor defined recursively as

A*B = 𝑓𝑜𝑙𝑑 (𝑐𝑖𝑟𝑐 (A) *𝑢𝑛𝑓𝑜𝑙𝑑 (B)) . (9)

Remark 3. IfA andB are order-2 tensors, then the product
“∗” can be replaced by standard matrix multiplication.

Remark 4. The 𝑘 times power of A is defined as A𝑘 =
A*A* ⋅ ⋅ ⋅ *A (𝑘 times); “∗” denotes the t-product.
Example 5. Letting

A = ( 1 0 −1 3 1 02 1 0 2 0 00 −1 1 1 −1 2 ) ∈ R
3×3×2, (10)

then, from Definition 2, we have

A
4 = A*A*A*A

= ( 271 113 −98 237 104 −119242 97 −96 242 96 −96−73 −46 56 −94 −52 43 ) . (11)

Remark 6. One of the characteristic features of t-product is
that it ensures that the order of multiplication result of two
tensors does not change, whereas other tensormultiplications
do not have the feature; that is why we chose the t-product as
the multiplication of tensors.
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The tensor exponential function is a tensor function
on tensors analogous to the ordinary exponential function,
which can be defined as follows.

Definition 7. Let A be an 𝑛1 × 𝑛2 × ⋅ ⋅ ⋅ × 𝑛𝑝 real or complex
tensor. The tensor exponential function of 𝑡, denoted by 𝑒A𝑡
or exp(A𝑡), is the 𝑛1 × 𝑛2 × ⋅ ⋅ ⋅ × 𝑛𝑝 tensor given by the power
series 𝑒A𝑡 = ∞∑

𝑘=0

1𝑘! (A𝑡)𝑘 , (12)

where A0 is defined to be the identity tensor I (see
Definition 8) with the same orders asA.

Definition 8 (see [23]). The 𝑛 × 𝑛 × 𝑙1 × ⋅ ⋅ ⋅ × 𝑙𝑝−2 order-𝑝
identity tensor (𝑝 > 3) I is the tensor such that I1 is the𝑛 × 𝑛 × 𝑙1 × ⋅ ⋅ ⋅ × 𝑙𝑝−3 order-(𝑝 − 1) identity tensor, andI𝑗 is
the order-(𝑝 − 1) zero tensor, for 𝑗 = 2, 3, . . . , 𝑙𝑝−2.

By Definition 8, we can define tensor inverse, transpose,
and orthogonality. However, we do not discuss these works
here, as it is beyond the scope of the present work. For the
details of these definitions of tensor, we refer to reader to [22,
23, 25] and the references therein.

Let A ∈ R𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝 ; then the norm of a tensor is the
square root of the sum of the squares of all its entries [25];
i.e.,

‖A‖ = √ 𝑛1∑
𝑖1=1

𝑛2∑
𝑖2=1

⋅ ⋅ ⋅ 𝑛𝑝∑
𝑖𝑝=1

𝑎2𝑖1𝑖2 ⋅⋅⋅𝑖𝑝 . (13)

This is analogous to thematrix Frobenius norm.The inner
product of two same-sized tensorsA,B ∈ R𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝 is the
sum of the products of their elements [25]; i.e.,(A,B) = 𝑛1∑

𝑖1=1

𝑛2∑
𝑖2=1

⋅ ⋅ ⋅ 𝑛𝑝∑
𝑖𝑝=1

𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑝𝑏𝑖1𝑖2 ⋅⋅⋅𝑖𝑝 . (14)

It follows immediately that (A,A) = ‖A‖2.
3. Tensor Pad ́𝑒-Type Approximant

Let 𝑓(𝑥) be a given power series with tensor coefficients; i.e.,𝑓 (𝑥) = A0 +A1𝑥 +A2𝑥2 + ⋅ ⋅ ⋅ +A𝑛𝑥𝑛 + ⋅ ⋅ ⋅ ,
A𝑖 ∈ R

𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝 , 𝑥 ∈ R. (15)

Let P denote the set of scalar polynomials in one real
variable whose coefficients belong to the real field R and P𝑘
denote the set of elements of P of degree less than or equal to𝑘.

Let 𝜙 : P → R𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝 be a linear functional on P. Let
it act on 𝑡 by 𝜙 (𝑡𝑖) = A𝑖, 𝑖 = 0, 1, 2, . . . . (16)

Then, by the linearity of 𝜙, we have𝜙 ((1 − 𝑡𝑥)−1) = 𝜙 (1 + 𝑡𝑥 + (𝑡𝑥)2 + ⋅ ⋅ ⋅ + (𝑡𝑥)𝑛 + ⋅ ⋅ ⋅)= A0 +A1𝑥 +A2𝑥2 + ⋅ ⋅ ⋅ +A𝑛𝑥𝑛+ ⋅ ⋅ ⋅ = 𝑓 (𝑥) . (17)

3.1. Definition of Tensor Pad ́𝑒-Type Approximant. Let V𝑛(𝑥) =𝑏0 + 𝑏1𝑥 + ⋅ ⋅ ⋅ + 𝑏𝑛𝑥𝑛 (𝑏𝑛 ̸= 0) be a scalar polynomial of P𝑛 of
exact degree 𝑛. In this case, V𝑛(𝑥) is said to be quasi-monic.
Define the tensor polynomialW𝑛−1(𝑥) associated with V𝑛(𝑥)
with tensor-valued coefficients, by

W𝑛−1 (𝑥) = 𝜙(V𝑛 (𝑥) − V𝑛 (𝑡)𝑥 − 𝑡 ) . (18)

It is easily seen that W𝑛−1(𝑥) is a tensor polynomial of exact
degree 𝑛 − 1 in 𝑥. Set

Ṽ𝑛 (𝑥) = 𝑥𝑛V𝑛 (𝑥−1) , (19)

W̃𝑛−1 (𝑥) = 𝑥𝑛−1W𝑛−1 (𝑥−1) . (20)

Then, the polynomials Ṽ𝑛(𝑥) and W̃𝑛−1(𝑥) are obtained from
V𝑛(𝑥) andW𝑛−1(𝑥), respectively, by reversing the numbering
of the coefficients. By the procedure given above, the follow-
ing conclusion is obtained.

Theorem 9. Let Ṽ𝑛(0) ̸= 0; then W̃𝑛−1(𝑥)/Ṽ𝑛(𝑥) − 𝑓(𝑥) =𝑂(𝑥𝑛).
Proof. Expanding (V𝑛(𝑥) − V𝑛(𝑡))/(𝑥 − 𝑡) in (18) and applying𝜙 yields that

W̃𝑛−1 (𝑥) = 𝑛−1∑
𝑙=0

(𝑛−𝑙−1∑
𝑖=0

𝑏𝑙+𝑖+1A𝑖)𝑥𝑙
= 𝑛−1∑
𝑙=0

( 𝑙∑
𝑖=0

𝑏𝑛−𝑙+𝑖A𝑖)𝑥𝑙. (21)

Computing Ṽ𝑛(𝑥)𝑓(𝑥), we get
Ṽ𝑛 (𝑥) 𝑓 (𝑥) = ( 𝑛∑

𝑗=0

𝑏𝑛−𝑗𝑥𝑗)(∞∑
𝑖=0

A𝑖𝑥𝑖)
= ∞∑
𝑙=0

( 𝑙∑
𝑖=0

𝑏𝑛−𝑙+𝑖A𝑖)𝑥𝑙. (22)

Thus,

Ṽ𝑛 (𝑥) 𝑓 (𝑥) − W̃𝑛−1 (𝑥) = ∞∑
𝑙=𝑛

( 𝑙∑
𝑖=0

𝑏𝑛−𝑙+𝑖A𝑖)𝑥𝑙= 𝑂 (𝑥𝑛) . (23)
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Definition 10. 𝑅𝑛−1,𝑛(𝑥) = W̃𝑛−1(𝑥)/Ṽ𝑛(𝑥) is called a tensor
Pad ́𝑒-type approximant with order 𝑛 for the given power
series (15) and is denoted by (𝑛 − 1/𝑛)𝑓(𝑥).
Remark 11. The polynomial V𝑛(𝑥), called the generating
polynomial of (𝑛 − 1/𝑛)𝑓 with respect to power series 𝑓(𝑥),
can be arbitrarily chosen.

Remark 12. The tensor Pad ́𝑒-type approximant (𝑛 − 1/𝑛)𝑓
possesses the degree constraint, which is caused by its
construction process.The constraint implies that the method
does not construct tensor Pad ́𝑒-type approximant of type(𝑚/𝑛) when𝑚 is different from 𝑛 − 1.

To fill this gap, we define a new tensor Pad ́𝑒-type approx-
imant by introducing a generalized linear functional.

Let 𝜙(𝑞) : P → R𝑛1×𝑛2×⋅⋅⋅×𝑛𝑝 be a generalized linear
functional on P. Let it act on 𝑡 by𝜙(𝑞) (𝑡𝑖) = A𝑞+𝑖, 𝑖 = 0, 1, 2, . . . . (24)

Similarly to what was done for W𝑛−1(𝑥), we consider the
polynomialW𝑞(𝑥) associated with V𝑛(𝑥), and defined by

W𝑞 (𝑥) = 𝜙(𝑞) (V𝑛 (𝑥) − V𝑛 (𝑡)𝑥 − 𝑡 ) , 𝑞 = 𝑚 − 𝑛 + 1. (25)

Set

W̃𝑞 (𝑥) = 𝑥𝑛−1W𝑞 (𝑥−1) , (26)

and define

P𝑚𝑛 (𝑥) = Ṽ𝑛 (𝑥)𝑚−𝑛∑
𝑖=0

A𝑖𝑥𝑖 + 𝑥𝑚−𝑛+1W̃𝑞 (𝑥) , 𝑚 ≥ 𝑛. (27)

Then we have the following conclusion.

Theorem 13. Let Ṽ𝑛(0) ̸= 0; then P𝑚𝑛(𝑥)/Ṽ𝑛(𝑥) − 𝑓(𝑥) =𝑂(𝑥𝑚+1).
Proof. Let 𝑓𝑚−𝑛+1 be the formal power series𝑓𝑚−𝑛+1 (𝑥) = ∞∑

𝑗=0

A𝑚−𝑛+1+𝑗𝑥𝑗. (28)

Then 𝑥𝑚−𝑛+1𝑓𝑚−𝑛+1 (𝑥) = 𝑓 (𝑥) − 𝑚−𝑛∑
𝑖=0

A𝑖𝑥𝑖. (29)

Expanding (25) and using (26) we obtain

W̃𝑞 (𝑥) = 𝑛−1∑
𝑞=0

( 𝑞∑
𝑖=0

𝑏𝑛−𝑞+𝑖A𝑚−𝑛+1+𝑖)𝑥𝑞. (30)

Computing the product Ṽ𝑛(𝑥)𝑓𝑚−𝑛+1(𝑥), we find that

Ṽ𝑛 (𝑥) 𝑓𝑚−𝑛+1 (𝑥) = ∞∑
𝑞=0

( 𝑞∑
𝑖=0

𝑏𝑛−𝑞+𝑖A𝑚−𝑛+1+𝑖)𝑥𝑞. (31)

ByTheorem 9, one has

W̃𝑞 (𝑥)
Ṽ𝑛 (𝑥) = (𝑛 − 1𝑛)𝑓𝑚−𝑛+1 (𝑥) . (32)

Then, for𝑚 ≥ 𝑛 we deduce from (27) and (29) that

Ṽ𝑛 (𝑥) 𝑓 (𝑥) −P𝑚𝑛 (𝑥)= Ṽ𝑛 (𝑥)(𝑚−𝑛∑
𝑖=0

A𝑖𝑥𝑖 + 𝑥𝑚−𝑛+1𝑓𝑚−𝑛+1 (𝑥))
− Ṽ (𝑥)𝑚−𝑛∑

𝑖=0

A𝑖𝑥𝑖 + 𝑥𝑚−𝑛+1W̃𝑞 (𝑥)= 𝑥𝑚−𝑛+1 (Ṽ𝑛 (𝑧) 𝑓𝑚−𝑛+1 − W̃𝑞 (𝑥))= 𝑥𝑚−𝑛+1 {∞∑
𝑞=𝑛

( 𝑞∑
𝑖=0

𝑏𝑛−𝑞+𝑖A𝑚−𝑛+1+𝑖)𝑥𝑞}= 𝑂(𝑥𝑚+1) .
(33)

Now, we can achieve (𝑚/𝑛)𝑓(𝑥) by the above procedure,
and it will be denoted byP𝑚𝑛(𝑥)/Ṽ𝑛(𝑥).
Definition 14. 𝑅𝑚,𝑛(𝑥) = P𝑚𝑛(𝑥)/Ṽ𝑛(𝑥) is called TPTA with
order𝑚 + 1 and is denoted by (𝑚/𝑛)𝑓(𝑥).
Algorithm 15 (compute 𝑅𝑚,𝑛(𝑥) = P𝑚𝑛(𝑥)/Ṽ𝑛(𝑥) with V𝑛(𝑥)
being arbitrarily chosen).

(1) Set 𝑞 = 𝑚−𝑛+1 and chose a quasi-monic polynomial
V𝑛(𝑥).

(2) Use (19) to compute Ṽ𝑛(𝑥).
(3) ComputeW𝑞(𝑥) and W̃𝑞(𝑥) by (25) and (26), respec-

tively.

(4) Substitute Ṽ𝑛(𝑥) and W̃𝑞(𝑥) into (27) to compute
P𝑚𝑛(𝑥).

(5) Set 𝑅𝑚,𝑛(𝑥) = P𝑚𝑛(𝑥)/Ṽ𝑛(𝑥).
Example 16. Let𝑓 (𝑥) = ( 1 0 0 1 1 −10 2 −1 2 2 1 )

+ ( 1 0 2 1 1 −21 2 −1 2 3 1 )𝑥
+ ( 1 2 1 1 0 −10 2 −1 3 2 0 )𝑥2 + ⋅ ⋅ ⋅= A0 +A1𝑥 +A2𝑥2 + ⋅ ⋅ ⋅ .

(34)

Now we apply Algorithm 15 to compute TPTA of type(2/2) for this example.



Journal of Function Spaces 5(1) Chose V2(𝑥) = 𝑥2 − 2𝑥 + 4, 𝑞 = 𝑚 − 𝑛 + 1 = 1.(2) Use (19) to compute Ṽ2(𝑥):
Ṽ2 (𝑥) = 1 − 2𝑥 + 4𝑥2. (35)(3) By using (25) and (26) we get

W1 (𝑥)= ( 𝑥 − 1 2 2𝑥 + 1 𝑥 − 1 𝑥 − 2 1 − 2𝑥𝑥 2𝑥 − 2 −𝑥 + 1 2𝑥 − 1 3𝑥 − 2 𝑥 − 2 ) , (36)

and

W̃1 (𝑥)= ( 1 − 𝑥 2𝑥 𝑥 1 − 𝑥 1 − 2𝑥 𝑥 − 10 2 − 2𝑥 𝑥 − 1 2 − 𝑥 2 − 2𝑥 1 − 2𝑥 ) . (37)

(4) Substituting Ṽ2(𝑥) and W̃1(𝑥) into (27), we obtain
P22 (𝑥) = Ṽ2 (𝑥)A0 + 𝑥W̃1 (𝑥)= ( 3𝑥2 − 𝑥 + 1 2𝑥2 −3𝑥2 + 2𝑥 3𝑥2 − 𝑥 + 1 2𝑥2 − 𝑥 + 1 −𝑥2 − 1−2𝑥2 + 𝑥 6𝑥2 − 2𝑥 + 2 −3𝑥2 + 𝑥 − 1 7𝑥2 − 2𝑥 + 2 4𝑥2 − 𝑥 + 2 2𝑥2 − 𝑥 + 1 ) . (38)

(5) Set 𝑅22(𝑥) = P22(𝑥)/Ṽ2(𝑥). It is easy to verify that
P22 (𝑥)
Ṽ2 (𝑥) − 𝑓 (𝑥) = 𝑂 (𝑥3) . (39)

3.2. Algorithm for Computing TPTA. Generally, the precision
of TPTA is limited, since the denominator polynomials of
TPTA are arbitrarily prescribed. In this subsection, in order
to improve the precision of approximation, we propose an
algorithm for computing the denominator polynomials and
illustrate the efficiency of this algorithm in next section.

First, we give the following conclusion.

Theorem 17 (error formula).𝑓 (𝑥) − (𝑛 − 1𝑛)𝑓 (𝑥) = 𝑥𝑛
Ṽ𝑛 (𝑥)𝜙 ( V𝑛 (𝑡)1 − 𝑡𝑥) . (40)

Proof. Note that 𝜙 is a linear functional on P, only acting on𝑡. From (18) and (20) we deduced that

W̃𝑛−1 (𝑥) = 𝑥𝑛−1W𝑛−1 (𝑥−1)= 𝑥𝑛−1𝜙(𝑥V𝑛 (𝑥−1) − 𝑥V𝑛 (𝑡)1 − 𝑡𝑥 )
= 𝜙(𝑥𝑛V𝑛 (𝑥−1) − 𝑥𝑛V𝑛 (𝑡)1 − 𝑡𝑥 )
= 𝜙(𝑥𝑛V𝑛 (𝑥−1)1 − 𝑡𝑥 ) − 𝑥𝑛𝜙( V𝑛 (𝑡)1 − 𝑡𝑥)= Ṽ𝑛 (𝑥) 𝑓 (𝑥) − 𝑥𝑛𝜙(V𝑛 (𝑡) )1 − 𝑡𝑥 ) ,

(41)

and then this error formula holds.

In terms of the error formula, it holds that𝑓 (𝑥) − (𝑛 − 1𝑛)𝑓 (𝑥) = 𝑥𝑛
Ṽ𝑛 (𝑥)𝜙 ( V𝑛 (𝑡)1 − 𝑡𝑥) = 𝑥𝑛

Ṽ𝑛 (𝑥)⋅ 𝜙 (V𝑛 (𝑡) + V𝑛 (𝑡) 𝑡𝑥 + V𝑛 (𝑡) 𝑡2𝑥2 + ⋅ ⋅ ⋅)= 𝑥𝑛
Ṽ𝑛 (𝑥) (𝜙 (V𝑛 (𝑡)) + 𝜙 (V𝑛 (𝑡) 𝑡) 𝑥+ 𝜙 (V𝑛 (𝑡) 𝑡2) 𝑥2 + ⋅ ⋅ ⋅) .

(42)

If we impose that V𝑛(𝑡) satisfies the condition 𝜙(V𝑛(𝑡)) =0, then the first term of (42) disappears, and the order of
approximation becomes 𝑛 + 1. If, in addition, we also impose
the condition 𝜙(𝑡V𝑛(𝑡)) = 0, the second term in the expansion
of the error also disappears, and the order of approximation
becomes 𝑛 + 2, and so on. We indicate that V𝑛(𝑥) depends on𝑛+1 arbitrary constants; however, on the other side, a rational
function is defined apart from a multiplying factor in its
numerator and its denominator. It implies that (𝑛 − 1/𝑛)𝑓(𝑥)
depends on 𝑛 arbitrary constants. So let us take V𝑛(𝑡) such that𝜙 (V𝑛 (𝑡) 𝑡𝑘) = 0, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1. (43)

Definition 18. V𝑛(𝑡) in (43) is called an orthogonal polynomial
with respect to the linear functional 𝜙 and (𝑛 − 1/𝑛)𝑓(𝑥) in
(42) is also called a TPTA for the given power series (15) when
(43) is satisfied.

From (43) we obtain𝜙 (V𝑛 (𝑡) 𝑡𝑘) = 𝑛∑
𝑖=0

𝑏𝑖A𝑖+𝑘 = 0, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1. (44)

Let 𝑏𝑛 = 1 in (44); then it follows that

𝑛−1∑
𝑖=0

𝑏𝑖A𝑖+𝑘 = −A𝑘+𝑛, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1. (45)
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Forming the scalar product of both sides of (45) with
A0,A1, . . . ,A𝑛−1, respectively, we get
𝑛−1∑
𝑖=0

𝑏𝑖 (A𝑖+𝑘,A𝑘) = − (A𝑘+𝑛,A𝑘) ,𝑘 = 0, 1, 2, . . . , 𝑛 − 1. (46)

Denote𝐻𝑛 (A0)
= ( (A0,A0) (A1,A0) ⋅ ⋅ ⋅ (A𝑛−1,A0)(A1,A1) (A2,A1) ⋅ ⋅ ⋅ (A𝑛,A1)... ... d

...(A𝑛−1,A𝑛−1) (A𝑛,A𝑛−1) ⋅ ⋅ ⋅ (A2𝑛−2,A𝑛−1)),
→ℎ 𝑛 = ( −(A𝑛,A0)− (A𝑛+1,A1)...− (A2𝑛−1,A𝑛−1)),

(47)

and call det(𝐻𝑛(A0)) the Hankel determinant of 𝑓(𝑥) with
respect to the coefficientsA0,A1, . . . ,A𝑛−1.

Then (46) is converted into𝐻𝑛 (A0) 𝑥 = →ℎ 𝑛, 𝑥 = (𝑏0, 𝑏1, . . . , 𝑏𝑛−1)𝑇 . (48)

In the case of TPTA, V𝑛(𝑥) is not arbitrarily chosen any
more but is determined by the preceding system. The choice
of V𝑛(𝑥) can help to improve the accuracy of approximation,
but unfortunately we have not been able to guarantee that the
solution of system (48) comes into existence, so far. We only
give the following basic theorem about system (48) on the
basis of linear algebra.

Theorem 19. The solution of (48) exists if and only if𝑟𝑎𝑛𝑘(𝐻𝑛(A0)) = 𝑟𝑎𝑛𝑘(𝐻𝑛(A0) : →ℎ 𝑛). Moreover, the solution
is unique if det(𝐻𝑛(A0)) ̸= 0.
Proof. The proof of the assertion follows from the simple fact
that, for a system of linear equations, described by 𝐴𝑥 = 𝑏,
where 𝐴 is matrix and 𝑥, 𝑏 are vectors, the solution of system
(48) comes into existence for 𝑥 if and only if 𝑟𝑎𝑛𝑘(𝐴) =𝑟𝑎𝑛𝑘(𝐴 : 𝑏); i.e., the right-hand vector must be in the vector
space spanned by the columns of the coefficient matrix 𝐴.
Moreover, if det(𝐻𝑛(A0)) ̸= 0, according to Cramer’s rule,
the solution is unique.

Theorem 20 (existence). Let 𝑓(𝑥) be given power series (15);
then (𝑛 − 1/𝑛)𝑓 and (𝑚/𝑛)𝑓 exist and are unique if and only if𝑑𝑒𝑡(𝐻𝑛(A0)) ̸= 0.
Proof. “⇐” ByTheorem 19, if 𝑑𝑒𝑡(𝐻𝑛(A0)) ̸= 0, it means that
nonhomogeneous equation (48) exists as a unique solution𝑏0, 𝑏1, . . . , 𝑏𝑛−1 for V𝑛(𝑥). From (19), it also means that Ṽ𝑛(𝑥)
and W̃𝑛−1(𝑥) exist. Hence, by the construction of (𝑛 − 1/𝑛)𝑓,
existence holds.

“⇒” Let (𝑛 − 1/𝑛)𝑓 = W̃𝑛−1(𝑥)/Ṽ𝑛−1(𝑥) exist and be
unique; then it implies that𝑟𝑎𝑛𝑘 (𝐻𝑛 (A0)) = 𝑟𝑎𝑛𝑘 (𝐻𝑛 (A0) : →ℎ 𝑛) , (49)

and if 𝑑𝑒𝑡(𝐻𝑛(A0)) = 0, then 𝑟𝑎𝑛𝑘(𝐻𝑛(A0) : →ℎ 𝑛) < 𝑛;
the fact that equation (46) has 𝑛 − 𝑟𝑎𝑛𝑘(𝐻𝑛(A0) : →ℎ 𝑛)
solutions, namely, that we can construct 𝑛 − 𝑟𝑎𝑛𝑘(𝐻𝑛(A0) :→ℎ 𝑛) generating polynomials, which is contradictory to the
uniqueness of (𝑛 − 1/𝑛)𝑓, holds.

Theproof of existence anduniqueness of (𝑚/𝑛)𝑓 is similar
to the preceding process.

Theorem 21. Let det(𝐻𝑛(A0)) ̸= 0; then (𝑛 − 1/𝑛)𝑓(𝑥) =
W̃𝑛−1(𝑥)/Ṽ𝑛(𝑥), where the generating polynomial V𝑛(𝑥) is given
by

V𝑛 (𝑥) = 𝑑𝑒𝑡(𝐻𝑛 (A0) →𝛾→𝛿 𝑇 𝑥𝑛) , (50)

where →𝛾 = ((A𝑛,A0), (A𝑛+1,A1), . . . , (A2𝑛−1,A𝑛−1))𝑇, →𝛿 𝑇 =(1, 𝑥, . . . , 𝑥𝑛−1), and Ṽ𝑛(𝑥) and W̃𝑛−1(𝑥) are given by (19) and
(20), respectively.

Now, we can derive an algorithm to calculate (𝑚/𝑛)𝑓(𝑥)
using (26), (27), and (50).

Algorithm 22 (compute (𝑚/𝑛)𝑓(𝑥) = P𝑚𝑛(𝑥)/Ṽ𝑛(𝑥)).
(1) Use (14) to calculate𝐻𝑛(A0) and →𝛾 .
(2) Use (50) and (19) to compute V𝑛(𝑥) and Ṽ𝑛(𝑥), respec-

tively.

(3) Set 𝑞 = 𝑚 − 𝑛 + 1 and computeW𝑞(𝑥) and W̃𝑞(𝑥) by
W𝑞 (𝑥) = 𝜙(𝑚−𝑛+1) (V𝑛 (𝑥) − V𝑛 (𝑡)𝑥 − 𝑡 ) ,
W̃𝑞 (𝑥) = 𝑥𝑛−1W𝑞 (𝑥−1) . (51)

(4) Compute the numerator of TPTA by

P𝑚𝑛 (𝑥) = Ṽ𝑛 (𝑥)𝑚−𝑛∑
𝑖=0

A𝑖𝑥𝑖 + 𝑥𝑚−𝑛+1W̃𝑞 (𝑥) . (52)

(5) Obtain (𝑚/𝑛)𝑓(𝑥) = P𝑚𝑛(𝑥)/Ṽ𝑛(𝑥).
4. Application for Computing the Tensor
Exponential Function

The method of truncated infinite series has abroad applica-
tions in finite single crystal plasticity for computing tensor
exponential function [16]. However, the accuracy and effec-
tiveness of such algorithmare limited by round-off and choice
of termination criterion. In this section, we will utilize the
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method of TPTA to compute tensor exponential function.We
start by briefly reviewing some basic equations thatmodel the
behaviour of single crystals in the finite strain range [16].

Consider a single crystal model𝐹 = 𝐹𝑒𝐹𝑝, (53)

where 𝐹𝑒 and 𝐹𝑝 denote elastic part and plastic part, respec-
tively.

For a single crystal with a total number 𝑛𝑠𝑦𝑠𝑡 of slip
systems, the evolution of the inelastic deformation gradient,𝐹𝑝, is defined by means of the following rate form:�̇�𝑝𝐹𝑝−1 = 𝑛𝑠𝑦𝑠𝑡∑

𝛼=1

̇𝛾𝛼𝑠𝛼0 ⊗ 𝑚𝛼0 , (54)

where ̇𝛾𝛼 denotes the contribution of slip system 𝛼 to the total
inelastic rate of deformation. The vectors 𝑠𝛼0 and 𝑚𝛼0 denote,
respectively, the slip direction and normal direction of slip
system 𝛼.

The above tensor differential equation can be discretized
in an implicit fashion with use of the tensor exponential
function. The implicit exponential approximation to the
inelastic flow equation results in the following discrete form:𝐹𝑝𝑛+1 = exp(𝑛𝑠𝑦𝑠𝑡∑

𝛼=1

Δ𝛾𝛼𝑠𝛼0 ⊗ 𝑚𝛼0)𝐹𝑝𝑛 . (55)

The above formula is analogous to the exact solution of
initial value problem (1) and it is necessary to calculate

exp(𝑛𝑠𝑦𝑠𝑡∑
𝛼=1

Δ𝛾𝛼𝑠𝛼0 ⊗ 𝑚𝛼0) . (56)

In [7], the author used Algorithm 23 to calculate (56).

Algorithm 23 (truncated infinite series method [7] (p.749)).

(1) Given tensorX, initialise 𝑛 = 0 and exp(X) fl I.
(2) Increment counter 𝑛 fl 𝑛 + 1.
(3) Compute 𝑛! andX𝑛.
(4) Add new term to the series exp(X) fl exp(X) +(1/𝑛!)X𝑛.
(5) Check convergence, ifX𝑛𝑛! < 𝜖𝑡𝑜𝑙, 𝑡ℎ𝑒𝑛 𝑒𝑥𝑖𝑡, 𝑒𝑙𝑠𝑒 𝑔𝑜𝑡𝑜 (1) . (57)

Example 24. Consider a tensor exponential function
exp(A𝑥); the entries of A are 𝑎121 = 1, 𝑎221 = −2, 𝑎122 = 2,𝑎222 = −1, and zero elsewhere.

To find a tensor Pad ́𝑒-type approximation of type (3/3)
for the tensor exponential function, first we should expand
exp(A𝑥) into power series by means of Definition 7. We can
obtain

exp (A𝑥) = ( 1 0 0 00 1 0 0 ) + ( 0 1 0 20 −2 0 −1 )𝑥
+( 0 −2 0 −520 52 0 2 )𝑥2
+( 0 136 0 1460 −146 0 −136 )𝑥3
+( 0 −4024 0 −41240 4124 0 4024 )𝑥4 + ⋅ ⋅ ⋅

= A0 +A1𝑥 +A2𝑥2 +A3𝑥3 +A4𝑥4+ ⋅ ⋅ ⋅ .

(58)

By Algorithm 22, the following can be done.(1) Use (14) to compute𝐻3(A0) and →𝛾 :
𝐻3 (A0) = ( 2 −2 5210 −14 413412 −613 36524 ),

→𝛾 = ( −73−616−54760 ).
(59)

(2) Use (50) to calculate V3(𝑥):
V3 (𝑥) = 150411080 + 394760 𝑥 + 118910 𝑥2 + 149318 𝑥3, (60)

and compute Ṽ3(𝑥) by (19), so we get
Ṽ3 (𝑥) = 150411080 𝑥3 + 394760 𝑥2 + 118910 𝑥 + 149318 . (61)

(3) Set 𝑞 = 𝑚 − 𝑛 + 1 = 1 and computeW1(𝑥), W̃1(𝑥):
W1 (𝑥) = ( 0 149318 𝑥2 − 422990 𝑥 + 1039135 0 14939 𝑥2 + 5479180 𝑥 + 150415400 −14939 𝑥2 − 5479180 𝑥 − 15041540 0 −149318 𝑥2 + 422990 𝑥 − 1039135 ) , (62)
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Table 1: Numerical results of Example 24 at different points by using Algorithm 22.𝑥 (1, 2, 1) (2, 2, 1) (1, 2, 2) (2, 2, 2) 𝑅𝑒𝑠0.1 𝑒A𝑥 0.08200959 0.82282781 0.17717281 -0.08200959 8.34e-12(3/3)𝑒A𝑥 (𝑥) 0.08200778 0.82282688 0.17717311 -0.08200778

0.2 𝑒A𝑥 0.13495955 0.68377119 0.31622880 -0.13495955 1.62e-9(3/3)𝑒A𝑥 (𝑥) 0.13493452 0.68375764 0.31624235 -0.134934520.3 𝑒A𝑥 0.16712428 0.57369394 0.42630605 -0.16712428 3.14e-8(3/3)𝑒A𝑥 (𝑥) 0.16701602 0.57363058 0.42636941 -0.167016020.4 𝑒A𝑥 0.18456291 0.48575712 0.51424287 -0.18456291 2.38e-7(3/3)𝑒A𝑥 (𝑥) 0.18427224 0.48557038 0.51442961 -0.18427224

Table 2: The exact value of exp(A).(1, 2, 1) (2, 2, 1) (1, 2, 2) (2, 2, 2)
exp(A) 0.15904705 0.20883238 0.79116761 −0.15904705

and

W̃1 (𝑥) = ( 0 149318 − 422990 𝑥 + 1039135 𝑥2 0 14939 + 5479180 𝑥 + 15041540 𝑥20 −14939 − 5479180 𝑥 − 15041540 𝑥2 0 −149318 + 422990 𝑥 − 1039135 𝑥2 ). (63)

(4) Substitute Ṽ3(𝑥) and W̃1(𝑥) into (27) to compute
P33(𝑥):

P33 (𝑥)
= ( 150411080 𝑥3 + 394760 𝑥2 + 118910 𝑥 + 149318 1039135 𝑥3 − 422990 𝑥2 + 149318 𝑥 0 15041540 𝑥3 + 5479180 𝑥2 + 14939 𝑥0 −150411080 𝑥3 + 318190 𝑥2 − 422990 𝑥 + 149318 0 −1039135 𝑥3 + 422990 𝑥2 − 149318 𝑥 ) . (64)

(5) Obtain (𝑚/𝑛)𝑓(𝑥) = P33(𝑥)/Ṽ3(𝑥).
In Table 1 we compare the number of exact figures given

by the method of TPTA of type (3/3) with corresponding
exact value of exp(A𝑥) referring to the entries of (1, 2, 1),(2, 2, 1), (1, 2, 2), and (2, 2, 2). We also compute the norm of
absolute residual tensor (denoted by 𝑅𝑒𝑠). Here,

𝑅𝑒𝑠 (𝑥𝑖) = exp (A𝑥𝑖) − (33)𝑒A𝑥 (𝑥𝑖)2 , (65)

where the operation ‖ ⋅ ‖ is defined by (13).
From Table 1, it is observed that the estimates from TPTA

can reach the desired accuracy.

Example 25. Let 𝑓(𝑥) be given by Example 24.

By Algorithm 22 for preceding example again, we cal-
culate (𝑚/𝑚)𝑓(1), 𝑚 = 1, 2, 3, 4, 5. The exact value and
approximant value associated with the entries of (1, 2, 1),(2, 2, 1), (1, 2, 2), and (2, 2, 2) are listed in Tables 2 and 3,
respectively, where 𝑥 = 1.

From Table 3, we can see that (3/3)𝑒A𝑥 has the best
approximation for this example. We also compute exp(A)
by using Algorithm 23, and the corresponding numerical
results are listed in Table 4. By comparison of Table 3 with
Table 4, we find that it requires at most 6 coefficients (since𝑚 = 3) of power series expansion of exp(A𝑥) to achieve an
error of 10−5 in Algorithm 22, while requiring 11 coefficients
in Algorithm 23. It is straightforward to understand that
Algorithm 23 is more expensive than Algorithm 22 especially
for higher order tensor exponential function. In practical
applications, only few coefficients of the seriesmay be known,
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Table 3: Numerical approximations of exp(A) using Algorithm 22 for Example 25.𝑚 (1, 2, 1) (2, 2, 1) (1, 2, 2) (2, 2, 2) 𝑅𝑒𝑠1 0.50000000 0.00000000 1.00000000 −0.50000000 3.19e-12 −2.12500000 0.75000000 0.25000000 2.12500000 1.10e+13 0.15503865 0.20377270 0.79622729 −0.15503865 8.33e-54 0.17454584 0.22682585 0.77317481 −0.17454584 1.12e-35 0.17625313 0.19112365 0.80887636 −0.17625313 1.21e-3

Table 4: Numerical results of Example 25 by using Algorithm 23.𝑛𝑚𝑎𝑥 (1, 2, 1) (2, 2, 1) (1, 2, 2) (2, 2, 2) 𝑅𝑒𝑠1 1 −1 2 2 4.332 −1 1.5 −0.5 1 6.023 1.16666666 −0.83333333 1.83333333 −1.16666666 4.204 −0.50000000 0.87500000 0.12500000 0.50000000 1.755 0.50833333 −0.14166666 1.14166666 −0.50833333 4.89e-16 0.00277777 0.36527777 0.63472222 −0.00277777 9.77e-27 0.21964285 0.14821428 0.85178571 −0.21964285 1.47e-28 0.13829365 0.22958829 0.77041170 −0.13829365 1.72e-39 0.16541280 0.20246638 0.79753361 −0.16541280 1.62e-410 0.15735119 0.21060267 0.78939732 −0.15735119 1.22e-511 0.15957013 0.20838371 0.79161628 −0.15957013 8.77e-7

so, wemay get the desired results bymeans of TPTA.Thus the
effectiveness of the proposed Algorithm 22 is verified.

5. Conclusion

In this paper, we presented tensor Pad ́𝑒-type approximant
method for computing tensor exponential function; the
expression of TPTA is of the form of tensor numerator
and scalar denominator. In order to have a tensor Pad ́𝑒-
type approximant with the higher possible precision of
approximation, we proposed an algorithm for computing
denominator polynomials of TPTA, and its effectiveness
has been investigated in one example of tensor exponential
function. The key to the TPTA to be applied to the tensor
exponential function is that it can be expanded into power
series with the same order tensors coefficients by means of t-
product. Of course, there are several ways to multiply tensors
[26–30], but the order of the resulting tensormay be changed.
For example, ifA is 𝑛1 × 𝑛2 × 𝑛3 andB is 𝑛1 ×𝑚2 ×𝑚3, then
the contracted product [26] ofA andB is 𝑛2 ×𝑛3 ×𝑚2 ×𝑚3.
So, the choice of the multiplication of two tensors is an open
question for expanding tensor exponential function, and the
corresponding tensor Pad ́𝑒 approximant theoretic is a subject
of further research.
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For 𝑝 ≥ 2 and 𝜙𝑝(𝑠) := |𝑠|𝑝−2𝑠, we propose a new estimate approach to study the existence of Aubry-Mather sets and quasiperiodic
solutions for the second-order asymmetric 𝑝-Laplacian differential equations (𝜙𝑝(𝑥)) + 𝜆𝜙𝑝(𝑥+) − 𝜇𝜙𝑝(𝑥−) = 𝜓(𝑡, 𝑥), where 𝜆
and 𝜇 are two positive constants satisfying 𝜆−1/𝑝 + 𝜇−1/𝑝 = 2/𝜔 with 𝜔 ∈ R+, 𝜓(𝑡, 𝑥) ∈ 𝐶0,1(S𝑝 × R) is a continuous function, 2𝜋𝑝-
periodic in the first argument and continuously differentiable in the second one, 𝑥± = max{±𝑥, 0}, 𝜋𝑝 = 2𝜋(𝑝 − 1)1/𝑝/𝑝 sin(𝜋/𝑝),
and S𝑝 = R/2𝜋𝑝Z. Using the Aubry-Mather theorem given by Pei, we obtain the existence of Aubry-Mather sets and quasiperiodic
solutions under some reasonable conditions. Particularly, the advantage of our approach is that it not only gives a simpler estimation
procedure, but also weakens the smoothness assumption on the function 𝜓(𝑡, 𝑥) in the existing literature.

1. Introduction

In recent years, all kinds of nonlinear dynamic behavior,
such as the existence of positive solutions [1–16] and sign-
changing solutions [17, 18], the existence and uniqueness
of solutions [19–25], the existence and multiplicity results
[26–30], and the existence of unbounded solutions[31, 32],
have been widely investigated for some nonlinear ordinary
differential equations and partial differential equations due to
the application inmany fields such as physics,mechanics, and
the engineering technique fields. In the present paper, we deal
with the existence of Aubry-Mather sets and quasiperiodic
solutions for the second-order differential equations with a𝑝-Laplacian and an asymmetric nonlinear term

(𝜙𝑝 (𝑥)) + 𝜆𝜙𝑝 (𝑥+) − 𝜇𝜙𝑝 (𝑥−) = 𝜓 (𝑡, 𝑥) , (1)

where 𝜙𝑝(𝑠) := |𝑠|𝑝−2𝑠, 𝑝 ≥ 2, 𝑥± = max{±𝑥, 0}, and 𝜆 and 𝜇
are positive constants satisfying

1𝜆1/𝑝 + 1𝜇1/𝑝 = 2𝜔, 𝜔 ∈ R
+, (2)

where 𝜓(𝑡, 𝑥) ∈ 𝐶0,1(S𝑝 × R) is a continuous function, 2𝜋𝑝-
periodic in the first argument and continuously differentiable
in the second one, where S𝑝 = R/2𝜋𝑝Z. Since the pioneering
works of Aubry [33] andMather [34], the existence of Aubry-
Mather sets and quasiperiodic solutions for a variety of
differential equations, such as Hamiltonian systems [35–41],
and reversible systems [42–44] had been widely investigated
due to the application inmany fields such as one-dimensional
crystal model of solid state physics, differential geometry, and
dynamical systems (see [45, 46]).

If 𝑝 = 2, then 𝜋𝑝 = 𝜋 and (1) reduces to the following
piecewise linear equation:

𝑥 + 𝜆𝑥+ − 𝜇𝑥− = 𝜓 (𝑡, 𝑥) (3)

and (2) becomes

1√𝜆 + 1
√𝜇 = 2𝜔, 𝜔 ∈ R

+. (4)

The first result is due to Capietto and Liu [38], who proved
that the existence of Aubry-Mather sets and quasiperiodic
solutions of (3) for some 𝜔 ∈ Q+ in (4), provided that
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𝜓(𝑡, 𝑥) = 𝑒(𝑡) − 𝜙(𝑥), 𝑒(𝑡) ∈ 𝐶2(R/2𝜋Z), and the pertur-
bation term 𝜙(𝑥) ∈ 𝐶2(R) ∩ 𝐿∞(R) satisfies some growth
conditions. Recently, this result was extended to a much
weaker smoothness nonlinearity 𝜓(𝑡, 𝑥). In [41], by using the
Aubry-Mather theorem generalized by Pei [37], the present
author [41] studied the existence of Aubry-Mather sets and
quasiperiodic solutions of (3), under the condition that 𝜔 ∈
R+ in (4) and 𝜓(𝑡, 𝑥) ∈ 𝐶0,1(S𝑝 × R) can be allowed to be
either a bounded function or an unbounded function, which
differs from above existing results.

In [39], (3) has been generalized to the following 𝑝-
Laplacian-like nonlinear differential equation:

(𝑝 − 1)−1 (𝜙𝑝 (𝑥)) + 𝜆𝜙𝑝 (𝑥+) − 𝜇𝜙𝑝 (𝑥−) + 𝑔 (𝑥)
= ℎ (𝑡) , (5)

where 𝑝 > 1, 𝜆 and 𝜇 are positive constants satisfying (2) with𝜔 = 𝑛 ∈ N,𝑔(𝑥) ∈ 𝐶1(R)∩𝐿∞(R), and ℎ(𝑡) ∈ 𝐶2(S𝑝) is a 2𝜋𝑝-
periodic function. They considered the existence of Aubry-
Mather sets and quasiperiodic solutions of (5) when 𝑔(𝑥)
satisfies some further approximate properties at infinity. We
notice that in [39], to overcome the barriers of weak smooth-
ness, they made use of exchange of the role of time and angle
variables skills and showed the existence of Aubry-Mather
sets and quasiperiodic solutions by employing a version
of Aubry-Mather theorem obtained by Pei [37]. Moreover,
the results in [39] need the smoothness requirement of the
perturbation function at least to 𝐶2 smooth in 𝑡.

Now a natural question to ask is whether the smoothness
of the function ℎ(𝑡) in (5) is further reduced; we can also
obtain the same results as [13]. In this paper, we will deal
with this interesting problem and answer this question in the
form of Theorem 1 with more general case (1) than that of
(5). Because of the presence of weak smoothness nonlinearity,
the methods of seeking the existence of Aubry-Mather sets
and quasiperiodic solutions for problems as [38, 39] do not
seem to be applicable to (1). This phenomenon provokes
some mathematical difficulties, which make the study of (1)
particularly interesting. Our approach here is mainly based
on the direct proof of the Poincaré map of the transformed
system satisfying monotone twist property and is developed
from the present author (see the recent papers [41, 44]) but
is more subtle than the ones in [38–40]. More efforts have
to be made to estimate the monotone twist property for the
Poincaré map of the transformed system, but the procedure
is a little simpler than those in [38–40]. One important
advantage of our approach is that it does not require any high
smoothness assumptions on function 𝜓(𝑡, 𝑥). Our results
improve and generalize some results of the previous studies
[39, 41] to some extent.

The main result of this paper is the following theorem.

Theorem 1. Suppose that (2) holds. Moreover, 𝜓(𝑡, 𝑥) ∈𝐶0,1(S𝑝 × R) satisfies the following conditions:(𝐴1) The limit is

lim
|𝑥|→+∞

𝜓𝑥 (𝑡, 𝑥) = 0, uniformly in 𝑡 ∈ [0, 2𝜋𝑝] . (6)

(𝐴2) There exist constants 𝑑 ≥ 0, 𝛽 > 0, such that
sgn (𝑥) [(𝑝 − 1) 𝜓 (𝑡, 𝑥) − 𝑥𝜓𝑥 (𝑡, 𝑥)] > 𝛽,

for ∀ |𝑥| ≥ 𝑑 and ∀𝑡 ∈ [0, 2𝜋𝑝] . (7)

Then there exists 𝜀0 > 0, such that, for any 𝛼 ∈ (2𝜔𝜋𝑝,2𝜔𝜋𝑝+𝜀0), (1) possesses an Aubry-Mather type solution 𝑧𝛼(𝑡) =(𝑥𝛼(𝑡), 𝑥𝛼(𝑡)) with rotation number 𝛼; that is,
(i) if 𝛼 = 𝑘/𝑚 is rational and (𝑘,𝑚) = 1, the solutions𝑧𝑖𝛼(𝑡) = 𝑧𝛼(𝑡 + 2𝜋𝑝𝑖), 0 ≤ 𝑖 ≤ 𝑚 − 1, are mutually unlinked

periodic solutions of period 𝑚;
(ii) if 𝛼 is irrational, the solution 𝑧𝛼(𝑡) is either a usual

quasiperiodic solution or a generalized one.

Remark 2. A solution is called generalized quasiperiodic one
if the closed set

𝑀𝛼 ≡ {𝑧𝛼 (2𝜋𝑝𝑖) , 𝑖 ∈ Z} (8)

is Denjoy’s minimal set (see its definition in [47]).

Remark 3. Using the rule of L’Hospital to condition (𝐴1), it
can easily be seen that

lim
|𝑥|→+∞

𝜓 (𝑡, 𝑥)𝑥 = 0, uniformly in 𝑡 ∈ [0, 2𝜋𝑝] . (𝜓0)
Remark 4. We noticed that the perturbations 𝑔(𝑥) and ℎ(𝑡)
in [39] need to be bounded. But from (𝐴1) and (𝐴2) of this
paper, it is easy to verify that the perturbation 𝜓(𝑡, 𝑥) can
be either a bounded function or an unbounded function.
For example, we can set 𝜓(𝑡, 𝑥) to be a bounded function
arctan𝑥 ⋅ (1 + sin2((𝜋/𝜋𝑝)𝑡)) or an unbounded function
𝑥1/3 ⋅ (1 + cos2((𝜋/𝜋𝑝)𝑡)) for 𝑡 ∈ [0, 2𝜋𝑝] when 𝑑 = 1 and𝛽 = 𝜋/4 − 1/2 in Theorem 1. Moreover, positive constant𝜔 = 𝑛 ∈ N satisfying (1.2) in [39] has been extended to the
case 𝜔 ∈ R+ in this paper.Thus, our situation is more general
than the results obtained in [39] for 𝑝 ≥ 2.
Remark 5. If 𝑝 = 2, let us point out that the results in
Theorem 1 have covered the conclusions obtained by Wang
[41]. Besides, the estimation process in this paper is much
more meticulous than that in [41] since the 𝑝-Laplacian(𝜙𝑝(𝑥)) of a function 𝑥(𝑡), with 𝑝 > 2, is no longer
linear.Therefore, the results obtained in this paper are natural
generalizations and refinements of the results obtained in
[41].

The main idea of our proof is acquired from [39, 41]. The
proof of Theorem 1 is based on an Aubry-Mather theorem
due to Pei [37]. The rest of this manuscript is as follows.
In Section 2, we introduce some action-angle variables
transformation to transform system (1) into an equivalent
integral Hamiltonian system and then present some growth
properties on the corresponding action and angle variables
functions. In Section 3, we provide some crucial estimates by
some lemmas which say that the Poincaré mapping of the
new system is monotone twist around the infinity. At last,
Section 4 gives the proof of Theorem 1 by using Pei’s Aubry-
Mather theorem [37].
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2. Preliminaries

2.1. The Action and Angle Variables. Let 𝑆𝑝(𝑡) = sin𝑝𝑡 be the
solution of

(𝜙𝑝 (𝑢)) + 𝜙𝑝 (𝑢) = 0 (9)

satisfying the initial condition 𝑢(0) = 0, 𝑢(0) = 1. Then it
follows from [48] that 𝑆𝑝(𝑡) = sin𝑝𝑡 is a 2𝜋𝑝-periodic 𝐶2 odd
function with sin𝑝(𝜋𝑝 − 𝑡) = sin𝑝𝑡, for 𝑡 ∈ [0, 𝜋𝑝/2], and
sin𝑝(2𝜋𝑝 − 𝑡) = −sin𝑝𝑡 for 𝑡 ∈ [𝜋𝑝, 2𝜋𝑝]. Moreover, for 𝑡 ∈(0, 𝜋𝑝/2), 𝑆𝑝(𝑡) > 0, 𝑆𝑝(𝑡) > 0 and 𝑆𝑝 : [0, 𝜋𝑝/2] → [0, (𝑝 −
1)1/𝑝] can be implicitly given by

∫sin𝑝𝑡

0

𝑑𝑠
(1 − 𝑠𝑝/ (𝑝 − 1))1/𝑝 = 𝑡. (10)

Introducing a new variable 𝑦 = −𝜙𝑝(𝑥), then (9) is
equivalent to the planar system

𝑥 = −𝜙𝑞 (𝑦) ,
𝑦 = 𝜙𝑝 (𝑥) , (11)

where 𝑞 is the conjugate exponent of𝑝 : 𝑝−1+𝑞−1 = 1. Letting(𝑥, 𝑦) = (𝐶𝑝(𝑡), 𝑆𝑝(𝑡)) be the unique solution of (11) satisfying(𝐶𝑝(0), 𝑆𝑝(0)) = (1, 0), then the functions 𝐶𝑝(𝑡) and 𝑆𝑝(𝑡)
are much similar to cosine and sine. It follows from [49] that𝐶𝑝(𝑡) ∈ 𝐶2 and 𝑆𝑝(𝑡) ∈ 𝐶1 are 2𝜋𝑝-periodic, and for∀ 𝑛 ∈ Z,𝐶𝑝(𝑡) = 0 iff 𝑡 = 𝜋𝑝/2 + 𝑛𝜋𝑝, and 𝑆𝑝(𝑡) = 0 iff 𝑡 = 𝑛𝜋𝑝.
Moreover, 𝐶𝑝(𝑡) = −𝜙𝑞(𝑆𝑝(𝑡)) and 𝑆𝑝(𝑡) = 𝜙𝑝(𝐶𝑝(𝑡)), and(1/𝑝)|𝐶𝑝(𝑡)|1/𝑝 + (1/𝑞)|𝑆𝑝(𝑡)|1/𝑞 ≡ 1/𝑝.

Now we consider (1). Set 𝑦 = −𝜙𝑝(𝑥) in (1); then (1) can
be rewritten as a planar system

𝑥 = −𝜙𝑞 (𝑦) ,
𝑦 = 𝜆𝜙𝑝 (𝑥+) − 𝜇𝜙𝑝 (𝑥−) − 𝜓 (𝑡, 𝑥) , (12)

where 𝑞 = 𝑝/(𝑝 − 1) is the conjugate exponent of 𝑝.
Lemma 6. For 𝑝 ≥ 2 and for any (𝑥0, 𝑦0) ∈ R2, 𝑡0 ∈ R, the
solution

𝑧 (𝑡) = (𝑥 (𝑡, 𝑡0, 𝑥0, 𝑦0) , 𝑦 (𝑡, 𝑡0, 𝑥0, 𝑦0)) (13)

of (12) satisfying the initial condition 𝑧(𝑡0) = (𝑥0, 𝑦0) is unique
and exists on the whole 𝑡-axis.
Proof. Theproof of uniqueness can be established similarly to
the proof of Proposition 2 in [50]; the global existence result
can be acquired similarly to Lemma 3.1 in [51].

Let (𝐶(𝑡), 𝑆(𝑡)) be the solution of the following homoge-
neous system:

𝑥 = −𝜙𝑞 (𝑦) ,
𝑦 = 𝜆𝜙𝑝 (𝑥+) − 𝜇𝜙𝑝 (𝑥−) ,

𝑥 (0) = 1,
𝑦 (0) = 0.

(14)

Then, by using (2) and direct computation, one obtains the
following.

Lemma 7. (i) Both 𝐶(𝑡) ∈ 𝐶2 and 𝑆(𝑡) ∈ 𝐶1 are 2𝜋𝑝/𝜔-
periodic functions, and 𝐶(𝑡) can be given by

𝐶 (𝑡)

= {{{{{{{
𝐶𝑝 (𝜆1/𝑝𝑡) , 0 ≤ |𝑡| ≤ 𝜋𝑝2𝜆1/𝑝 ,
𝐶𝑝 (𝜇1/𝑝 (𝑡 − 𝜋𝑝2𝜆1/𝑝 + 𝜋𝑝2𝜇1/𝑝)) , 𝜋𝑝2𝜆1/𝑝 ≤ 𝑡 ≤ 𝜋𝑝𝜔 .

(15)

(ii) 𝐶(𝑡) = −𝜙𝑞(𝑆(𝑡)) and 𝑆(𝑡) = 𝜆𝜙𝑝(𝐶(𝑡)+) −𝜇𝜙𝑝(𝐶(𝑡)−).
(iii) (1/𝑞)|𝑆(𝑡)|𝑞 + (1/𝑝)(𝜆|𝐶(𝑡)+|𝑝 + 𝜇|𝐶(𝑡)−|𝑝) = 𝜆/𝑝.
Now we introduce an action-angle variables transforma-

tion by the mappingΨ : S𝑝 × (0, +∞) → R2 \ {(0, 0)}, where(𝑥, 𝑦) = Ψ(𝜃, 𝐼) defined by the formula

𝑥 = (𝛾𝐼)1/𝑝 𝐶( 𝜃𝜔) ,
𝑦 = (𝛾𝐼)1/𝑞 𝑆 ( 𝜃𝜔) ,

(16)

where 𝛾 = 𝜆−1𝜔𝑝 is a constant. This transformation is said
to be a generalized symplectic transformation because its
Jacobian is equal to 1.
2.2. Some Properties on Action and Angle Variables Functions.
Under the transformation Ψ and using Lemma 7 (iii), (12) is
changed into

̇𝜃 = Φ1 (𝑡, 𝜃, 𝐼) ,
̇𝐼 = Φ2 (𝑡, 𝜃, 𝐼) , (17)

where Φ1(𝑡, 𝜃, 𝐼) = 𝜔 + 𝑥(𝜃, 𝐼)𝜓(𝑡, 𝑥(𝜃, 𝐼))/𝑝𝐼, Φ2(𝑡, 𝜃, 𝐼) =𝜙𝑞(𝑦(𝜃, 𝐼))𝜓(𝑡, 𝑥(𝜃, 𝐼))/𝜔.
We notice that the relation between (17) and (12) is that

if 𝜃(𝑡) = 𝜃(𝑡; 𝜃0, 𝐼0), 𝐼(𝑡) = 𝐼(𝑡; 𝜃0, 𝐼0) are the solutions of (17)
with the initial value condition 𝜃(0) = 𝜃0, 𝐼(0) = 𝐼0, then

𝑥 (𝑡) = 𝑥 (𝑡; 𝜃0, 𝐼0) = 𝑥 (𝜃 (𝑡; 𝜃0, 𝐼0) , 𝐼 (𝑡; 𝜃0, 𝐼0))
= (𝛾𝐼 (𝑡; 𝜃0, 𝐼0))1/𝑝 𝐶(𝜃 (𝑡; 𝜃0, 𝐼0)𝜔 ) (18)

and

𝑦 (𝑡) = 𝑦 (𝑡; 𝜃0, 𝐼0) = 𝑦 (𝜃 (𝑡; 𝜃0, 𝐼0) , 𝐼 (𝑡; 𝜃0, 𝐼0))
= (𝛾𝐼 (𝑡; 𝜃0, 𝐼0))1/𝑞 𝑆(𝜃 (𝑡; 𝜃0, 𝐼0)𝜔 ) (19)

are the solutions of (12) with initial data 𝑥(0) =𝑥(0; 𝜃0, 𝐼0), 𝑦(0) = 𝑦(0; 𝜃0, 𝐼0). By Lemma 6, (17) has a
unique solution for 𝐼0 > 0 and 𝜃0 ∈ R. Moreover, this
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solution has continuous derivatives with respect to initial
data 𝜃0 and 𝐼0.

For notional convenience, hereinafter, we write 𝑥, 𝑦, 𝜃, 𝐼
instead of 𝑥(𝜃(𝑡; 𝜃0, 𝐼0), 𝐼(𝑡; 𝜃0, 𝐼0)), 𝑦(𝜃(𝑡; 𝜃0, 𝐼0), 𝐼(𝑡; 𝜃0, 𝐼0)),𝜃(𝑡; 𝜃0, 𝐼0), 𝐼(𝑡; 𝜃0, 𝐼0), respectively.

Firstly, by some simple calculations, we have the follow-
ing.

Lemma 8. (i) 𝜕𝑥/𝜕𝐼 = 𝑥/𝑝𝐼, 𝜕𝑦/𝜕𝐼 = 𝑦/𝑞𝐼, 𝜕𝑥/𝜕𝜃 =−(1/𝜔)𝜙𝑞(𝑦), 𝜕𝑦/𝜕𝜃 = (𝜆𝜙𝑝(𝑥+) − 𝜇𝜙𝑝(𝑥−))/𝜔.
(ii) |𝐶(𝑡)| ≤ max{1, (𝜆/𝜇)1/𝑝} := 𝐶∞, |𝑆(𝑡)| ≤ (𝑞𝜆/𝑝)1/𝑞 := 𝑆∞.
Now we are concerned with the growth estimates with

regard to 𝐼(𝑡; 𝜃0, 𝐼0) and 𝜃(𝑡; 𝜃0, 𝐼0).
Lemma 9. The limit

lim
𝐼0→+∞

𝐼 (𝑡; 𝜃0, 𝐼0) = +∞ (20)

holds uniformly on 𝑡 ∈ [0, 2𝜋𝑝].
Proof. In view of (𝜓0) and (16), there exist constants 𝐷 > 0,𝐾 > 0, such that

𝐼 (𝑡) =

𝜙𝑞 (𝑦 (𝜃, 𝐼)) 𝜓 (𝑡, 𝑥 (𝜃, 𝐼))

𝜔
 ≤ 𝐷𝐼 (𝑡) + 𝐾,

∀𝐼 ̸= 0.
(21)

Then, by the Gronwall inequality, one has

𝑒−2𝜋𝐷𝐼0 − 𝐾𝐷 (1 − 𝑒−2𝜋𝐷) ≤ 𝐼 (𝑡)
≤ 𝑒2𝜋𝐷𝐼0 + 𝐾𝐷 (𝑒2𝜋𝐷 − 1)

(22)

for all 𝑡 ∈ [0, 2𝜋𝑝].
So, by (22), 𝐼(𝑡; 𝜃0, 𝐼0) → +∞ as 𝐼0 → +∞ uniformly for𝑡 ∈ [0, 2𝜋𝑝].
According to (22), it is easy to see the following.

Corollary 10. ∀ 𝜃0 ∈ R and ∀ 𝑡 ∈ [0, 2𝜋𝑝], there exist
constants 𝜌2 > 𝜌1 > 0 and 𝐼 > 0, such that

𝜌1𝐼0 ≤ 𝐼 (𝑡; 𝜃0, 𝐼0) ≤ 𝜌2𝐼0 (23)

when 𝐼0 ≥ 𝐼.
Lemma 11. ∀ 𝜃0 ∈ R and ∀ 𝑡 ∈ [0, 2𝜋𝑝], there exists
constant 𝐼 > 0, such that

𝜔2 ≤ 𝜃 (𝑡; 𝜃0, 𝐼0) ≤ 2𝜔 (24)

if 𝐼0 ≥ 𝐼.
Proof. Since (𝜓0) holds, then, for every 𝜀 > 0, there exists𝑀 = 𝑀(𝜀) > 0, such that

𝜓 (𝑡, 𝑥) ≤ 𝜀 |𝑥| (25)

if |𝑥| ≥ 𝑀 and ∀ 𝑡 ∈ [0, 2𝜋𝑝]. Hence,
𝑑𝜃𝑑𝑡 = 𝜔 + 𝑥𝜓 (𝑡, 𝑥)𝑝𝐼 ≥ 𝜔 − 𝜀𝑥2𝑝𝐼 . (26)

Thus, by using action-angle variables transformation (16) and
Lemma 9, there exists 𝐼1 > 0 such that 𝑑𝜃/𝑑𝑡 ≥ 𝜔/2 if 𝐼0 ≥ 𝐼1.

For if |𝑥| ≤ 𝑀, we assume that |𝜓(𝑡, 𝑥)| ≤ 𝜓∞, where𝜓∞ = max{|𝜓(𝑡, 𝑥)| : 𝑡 ∈ [0, 2𝜋𝑝], |𝑥| ≤ 𝑀}, and then

𝑑𝜃𝑑𝑡 = 𝜔 + 𝑥𝜓 (𝑡, 𝑥)𝑝𝐼 ≥ 𝜔 − 𝜓∞ |𝑥|𝑝𝐼 . (27)

So, by (16), Lemma 8 (ii), and Lemma 9, there exists a
constant 𝐼2 > 0, such that 𝑑𝜃/𝑑𝑡 ≥ 𝜔/2 if 𝐼0 ≥ 𝐼2.

If we choose 𝐼 = max{𝐼1, 𝐼2}, then 𝐼0 ≥ 𝐼 implies 𝑑𝜃/𝑑𝑡 ≥𝜔/2.
Exploiting the same arguments, one can show that the

inequality on the right side of (i) holds.

3. Twist Property and Proof of Theorem 1

Let the Poincaré mapping 𝑃 of equation (17) be

𝑃 : (𝜃0, 𝐼0) → (𝜃 (2𝜋𝑝, 𝜃0, 𝐼0) , 𝐼 (2𝜋𝑝, 𝜃0, 𝐼0)) . (28)

In order to apply the Aubry-Mather theorem developed
by Pei [37], we only need to show that the Poincaré mapping𝑃 is a monotone twist map around the infinity; that is, it is
enough to show 𝜕𝜃(2𝜋; 𝜃0, 𝐼0)/𝜕𝐼0 < 0 if 𝐼0 ≫ 1. In the
following we are going to give its detailed proofs by some
lemmas.

Similarly, for notional convenience, hereinafter, we
also write 𝑥, 𝑦, 𝜃, 𝐼 instead of 𝑥(𝜃(𝑡; 𝜃0, 𝐼0), 𝐼(𝑡; 𝜃0, 𝐼0)),𝑦(𝜃(𝑡; 𝜃0, 𝐼0), 𝐼(𝑡; 𝜃0, 𝐼0)), 𝜃(𝑡; 𝜃0, 𝐼0), 𝐼(𝑡; 𝜃0, 𝐼0), respectively.
Lemma 12. The following convergences hold uniformly on 𝑡 ∈[0, 2𝜋𝑝]:

(i) 𝑥𝜓(𝑡, 𝑥)/𝐼 → 0; 𝑥2𝜓𝑥(𝑡, 𝑥)/𝐼 → 0, as 𝐼0 → +∞.
(ii) 𝜙𝑞(𝑦)𝜓(𝑡, 𝑥)/𝐼 → 0; 𝜙𝑞(𝑦)𝑥𝜓𝑥(𝑡, 𝑥)/𝐼 → 0, as 𝐼0 →+∞.
(iii) 𝑥𝜓2(𝑡, 𝑥)𝜙𝑞(𝑦)𝜙𝑝(𝑥)/𝐼2 → 0; 𝑥𝜓(𝑡, 𝑥)𝜓𝑥(𝑡, 𝑥)𝜙2𝑞(𝑦)/

𝐼2 → 0; 𝑥2𝜓𝑥(𝑡, 𝑥)𝜓(𝑡, 𝑥)𝜙𝑞(𝑦)𝜙𝑝(𝑥)/𝐼2 → 0;
𝑥2𝜓2𝑥(𝑡, 𝑥)𝜙2𝑞(𝑦)/𝐼2 → 0, as 𝐼0 → +∞.

Proof. If (𝐴1) and (𝜓0) hold, then to each 𝜀 > 0 there
corresponds a positive number 𝑀 = 𝑀(𝜀) > 0, such that

𝜓𝑥 (𝑡, 𝑥) ≤ 𝜀2𝛾2/𝑝 (29)

and
𝜓 (𝑡, 𝑥) ≤ 𝜀2𝛾2/𝑝 |𝑥| (30)

when |𝑥| ≥ 𝑀 and 𝑡 ∈ [0, 2𝜋𝑝], where 𝛾 = 𝜆−1𝜔𝑝 is a constant
given in (16).
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Denote 𝑉1(𝜀) = max{|𝜓(𝑡, 𝑥)| : 𝑡 ∈ [0, 2𝜋𝑝], |𝑥| ≤ 𝑀},𝑉2(𝜀) = max{|𝜓𝑥(𝑡, 𝑥)| : 𝑡 ∈ [0, 2𝜋𝑝], |𝑥| ≤ 𝑀}.
(i) By action-angle variables transformation (16) and

Lemma 8 (ii) and 𝑝 ≥ 2, we have

𝑥𝜓 (𝑡, 𝑥)𝐼

 ≤
𝑀𝑉1 (𝜀)𝐼 + 𝜀𝑥22𝛾2/𝑝𝐼

≤ 𝑀𝑉1 (𝜀)𝐼 + 𝜀2𝐼1−2/𝑝 ;
𝑥2𝜓𝑥 (𝑡, 𝑥)𝐼

 ≤
𝑀2𝑉2 (𝜀)𝐼 + 𝜀𝑥22𝛾2/𝑝𝐼

≤ 𝑀2𝑉2 (𝜀)𝐼 + 𝜀2𝐼1−2/𝑝 .

(31)

Then, given 𝐼 > 0, choosing 𝐼0 so that 𝐼0 ≥ 𝐼, by using
Corollary 10, provided

𝐼 (𝑡) ≥ max{2𝑀𝑉1 (𝜀)𝜀 ; 2𝑀2𝑉2 (𝜀)𝜀 ; 1} , (32)

we have


𝑥𝜓 (𝑡, 𝑥)𝐼

 ≤
𝜀2 + 𝜀2 ≤ 𝜀;


𝑥2𝜓𝑥 (𝑡, 𝑥)𝐼

 ≤
𝜀2 + 𝜀2 ≤ 𝜀.

(33)

Since 𝜀 > 0 is arbitrary, the proof of (i) is complete.
For (ii), observe that 𝑝 ≥ 2, and, combining (16) and

Lemma 8 (ii), one has


𝜙𝑞 (𝑦) 𝜓 (𝑡, 𝑥)

𝐼
 ≤

𝜀 𝑦𝑞−1 |𝑥|
2𝛾2/𝑝𝐼 + 𝑉1 (𝜀) 𝑦𝑞−1𝐼

≤ 𝜀2𝐶∞𝑆𝑞−1∞ 𝐼2/𝑝−1
+ 𝑉1 (𝜀) 𝛾1/𝑝𝑆𝑞−1∞ 𝐼−1/𝑞;


𝜙𝑞 (𝑦) 𝑥𝜓𝑥 (𝑡, 𝑥)

𝐼
 ≤

𝜀 𝑦𝑞−1 |𝑥|
2𝛾2/𝑝𝐼 + 𝑀 𝑦𝑞−1 𝑉2 (𝜀)𝐼

≤ 𝜀2𝐶∞𝑆𝑞−1∞ 𝐼2/𝑝−1
+ 𝑀𝛾1/𝑝𝑉2 (𝜀) 𝑆𝑞−1∞ 𝐼−1/𝑞.

(34)

Then, given 𝐼 > 0, choosing 𝐼0 so that 𝐼0 ≥ 𝐼, by using
Corollary 10, provided

𝐼1/𝑞 (𝑡)
≥ max{2𝑉1 (𝜀) 𝑆𝑞−1∞ 𝛾1/𝑝

𝜀 ; 2𝑀𝑉2 (𝜀) 𝑆𝑞−1∞ 𝛾1/𝑝
𝜀 ; 1} , (35)

we have


𝜙𝑞 (𝑦) 𝜓 (𝑡, 𝑥)

𝐼
 <

𝜎𝜀2 + 𝜀2 ;

𝜙𝑞 (𝑦) 𝑥𝜓𝑥 (𝑡, 𝑥)

𝐼
 <

𝜎𝜀2 + 𝜀2 ,
(36)

where 𝜎 = 𝐶∞𝑆𝑞−1∞ . Since 𝜀 > 0 is arbitrary, (ii) is proved.
(iii) Set 𝜂1 = 𝑞𝐶𝑝+2∞ 𝑆𝑞−2∞ , 𝜂2 = 𝑞𝑀𝑝+2𝑆𝑞−2∞ 𝛾1−2/𝑞, ]1 =𝐶2∞𝑆2(𝑞−1)∞ , ]2 = 𝑀𝑉2(𝜀)𝛾2/𝑝𝑆2(𝑞−1)∞ . In view of (16), Lemma 7

(ii), and 𝑝 ≥ 2, we can get


𝑥𝜓2 (𝑡, 𝑥) 𝜙𝑞 (𝑦) 𝜙𝑝 (𝑥)

𝐼2


= 
(𝑞 − 1) 𝑥𝜓2 (𝑡, 𝑥) 𝜙𝑝 (𝑥) 𝑦𝑞−2

𝐼2


≤ 𝑞 |𝑥|𝑝+2 𝑦𝑞−2 𝜀24𝛾4/𝑝𝐼2 + 𝑞𝑀𝑝+2 𝑦𝑞−2𝐼2
≤ 𝜀24 𝑞𝐼4/𝑝−2𝐶𝑝+2∞ 𝑆𝑞−2∞ + 𝑞𝑀𝑝+2𝑆𝑞−2∞ 𝛾1−2/𝑞

𝐼1+2/𝑞
≤ 𝜀2𝜂12 𝐼4/𝑝−2 + 𝜂22𝐼1+2/𝑞 ;

𝑥𝜓 (𝑡, 𝑥) 𝜓𝑥 (𝑡, 𝑥) 𝜙2𝑞 (𝑦)
𝐼2


≤ 𝑦2(𝑞−1) |𝑥|2 𝜀2

4𝛾4/𝑝𝐼2 + 𝑀𝑉1 (𝜀) 𝑉2 (𝜀) 𝑦2(𝑞−1)𝐼2
≤ 𝜀24 𝐼4/𝑝−2𝐶2∞𝑆2(𝑞−1)∞ + 𝑀𝑉1 (𝜀) 𝑉2 (𝜀) 𝛾2/𝑝𝑆2(𝑞−1)∞𝐼2/𝑞
≤ 𝜀2]1𝐼4/𝑝−22 + 𝑉1 (𝜀) ]22𝐼2/𝑞 ;


𝑥2𝜓𝑥 (𝑡, 𝑥) 𝜓 (𝑡, 𝑥) 𝜙𝑞 (𝑦) 𝜙𝑝 (𝑥)

𝐼2


=

(𝑞 − 1) 𝑥2𝜓 (𝑡, 𝑥) 𝜓𝑥 (𝑡, 𝑥) 𝜙𝑝 (𝑥) 𝑦𝑞−2𝐼2


≤ 𝑞 |𝑥|𝑝+2 𝑦𝑞−2 𝜀24𝛾4/𝑝𝐼2 + 𝑞𝑀𝑝+1𝑉1 (𝜀) 𝑉2 (𝜀) 𝑦𝑞−2𝐼2
≤ 𝜀24 𝑞𝐼4/𝑝−2𝐶𝑝+2∞ 𝑆𝑞−2∞

+ 𝑞𝑀𝑝+2𝑉1 (𝜀) 𝑉2 (𝜀) 𝑆𝑞−2∞ 𝛾1−2/𝑞
𝐼1+2/𝑞
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≤ 𝜀2𝜂12 𝐼4/𝑝−2 + 𝑉1 (𝜀) 𝑉2 (𝜀) 𝜂22𝐼1+2/𝑞 ;

𝑥2𝜓2𝑥 (𝑡, 𝑥) 𝜙2𝑞 (𝑦)

𝐼2


≤ |𝑥|2 𝑦2(𝑞−1) 𝜀24𝛾4/𝑝𝐼2 + 𝑀2𝑉2 (𝜀) 𝑦2(𝑞−1)𝐼2
≤ 𝜀24 𝐼4/𝑝−2𝐶2∞𝑆2(𝑞−1)∞ + 𝑀2𝑉2 (𝜀) 𝛾2/𝑝𝑆2(𝑞−1)∞𝐼2/𝑞
≤ 𝜀2]1𝐼4/𝑝−22 + 𝑀]22𝐼2/𝑞 .

(37)

Then, given 𝐼 > 0, choosing 𝐼0 so that 𝐼0 ≥ 𝐼, by using
Corollary 10, provided

𝐼1/𝑞 (𝑡) ≥ max{(𝜂2𝜀 )1/(𝑞+2) ; (𝑉1 (𝜀) ]2𝜀 )1/2 ;

(𝑉1 (𝜀) 𝑉2 (𝜀) 𝜂2𝜀 )1/(𝑞+2) ; (𝑀]2𝜀 )1/2 ; 1} ,
(38)

we have 
𝑥𝜓2 (𝑡, 𝑥) 𝜙𝑞 (𝑦) 𝜙𝑝 (𝑥)

𝐼2
 ≤

𝜂1𝜀22 + 𝜀2 ;

𝑥𝜓 (𝑡, 𝑥) 𝜓𝑥 (𝑡, 𝑥) 𝜙2𝑞 (𝑦)

𝐼2
 ≤

]1𝜀22 + 𝜀2 ;

𝑥2𝜓𝑥 (𝑡, 𝑥) 𝜓 (𝑡, 𝑥) 𝜙𝑞 (𝑦) 𝜙𝑝 (𝑥)

𝐼2
 ≤

𝜂1𝜀22 + 𝜀2 ;

𝑥2𝜓2𝑥 (𝑡, 𝑥) 𝜙2𝑞 (𝑦)

𝐼2
 ≤

]1𝜀22 + 𝜀2 .

(39)

Since 𝜀 > 0 is arbitrary, the proof of (iii) is finished.
∀ 𝑡 ∈ [0, 2𝜋𝑝], set
𝑏1 (𝑡) = 𝜕Φ1𝜕𝐼 = −𝑥 [(𝑝 − 1) 𝜓 (𝑡, 𝑥) − 𝑥𝜓𝑥 (𝑡, 𝑥)]

𝑝2𝐼2 ,

𝑏2 (𝑡) = 𝜕Φ1𝜕𝜃 = −𝜙𝑞 (𝑦)
𝜔𝑝𝐼 [𝜓 (𝑡, 𝑥) + 𝑥𝜓𝑥 (𝑡, 𝑥)] ,

𝑏3 (𝑡) = 𝜕Φ2𝜕𝜃
= [𝜆𝜙𝑝 (𝑥+) − 𝜇𝜙𝑝 (𝑥−)] 𝜙𝑞 (𝑦) 𝜓 (𝑡, 𝑥)

𝜔2
− 𝜙2𝑞 (𝑦) 𝜓𝑥 (𝑡, 𝑥)

𝜔2 .

(40)

As a result of Lemma 9, Corollary 10, and Lemma 12, we
have the following.

Lemma 13. ∀ 𝑡, 𝑠 ∈ [0, 2𝜋𝑝], the following conclusions hold:
(i) 𝑏1(𝑡) = 𝑜(1/𝐼0), as 𝐼0 → +∞.
(ii) 𝑏2(𝑡) = 𝑜(1), as 𝐼0 → +∞.
(iii) 𝑏1(𝑡) ⋅ 𝑏3(𝑠) = 𝑜(1), as 𝐼0 → +∞.

Let us consider the variational equation of (17) with respect
to the initial value 𝐼0. One can verify that

̇𝜃𝐼0 = 𝑏1 (𝑡) 𝜕𝐼𝜕𝐼0 + 𝑏2 (𝑡) 𝜕𝜃𝜕𝐼0 ,
̇𝐼𝐼0 = −𝑏2 (𝑡) 𝜕𝐼𝜕𝐼0 + 𝑏3 (𝑡) 𝜕𝜃𝜕𝐼0 .

(41)

Lemma 14. For all 𝑡 ∈ (0, 2𝜋𝑝], 𝐼0 → +∞, one has

(i) 𝜃𝐼0(𝑡; 𝜃0, 𝐼0) → 0;
(ii) 𝐼𝐼0(𝑡; 𝜃0, 𝐼0) = 1 + 𝑜(1);
(iii) 𝜃𝜃0(𝑡; 𝜃0, 𝐼0) = 1 + 𝑜(1).

Proof. From variational equations (41) and Lemma 13, one
has

𝜃𝐼0 (𝑡) = 𝑒∫𝑡0 𝑏2(𝑠)𝑑𝑠 ⋅ ∫𝑡
0
𝑒−∫𝑠0 𝑏2(𝑡)𝑑𝑡𝑏1 (𝑠) ⋅ 𝐼𝐼0 (𝑠) 𝑑𝑠

= (1 + 𝑜 (1)) ∫𝑡
0
𝑏1 (𝑠) ⋅ 𝐼𝐼0 (𝑠) 𝑑𝑠,

𝐼𝐼0 (𝑡) = 𝑒−∫𝑡0 𝑏2(𝑠)𝑑𝑠 ⋅ (1 + ∫𝑡
0
𝑒∫𝑠0 𝑏2(𝑡)𝑑𝑡𝑏3 (𝑠) ⋅ 𝜃𝐼0 (𝑠) 𝑑𝑠)

= 1 + 𝑜 (1)
+ (1 + 𝑜 (1)) ∫𝑡

0
𝑏3 (𝑠) ⋅ (∫𝑠

0
𝑏1 (𝑡) ⋅ 𝐼𝐼0 (𝑡) 𝑑𝑡) 𝑑𝑠

= 1 + 𝑜 (1) + 𝑜 (1) ∫𝑡
0
∫𝑠
0
𝐼𝐼0 (𝑡) 𝑑𝑡 𝑑𝑠,

(42)

and here we have used 𝜃𝐼0(0) = 0 and 𝐼𝐼0(0) = 1.
Hence, for all 𝑡 ∈ (0, 2𝜋𝑝], 𝐼0 → +∞, we have 𝐼𝐼0(𝑡) =

1 + 𝑜(1) and 𝜃𝐼0(𝑡) = (1 + 𝑜(1)) ∫𝑡0 𝑏1(𝑠)𝑑𝑠 → 0. Thus, (i) and
(ii) are proved.

To prove (iii), we consider the variational equation of (17)
about 𝜃0; one can get

̇𝜃𝜃0 = 𝑏1 (𝑡) 𝜕𝐼𝜕𝜃0 + 𝑏2 (𝑡) 𝜕𝜃𝜕𝜃0 ,
̇𝐼𝜃0 = −𝑏2 (𝑡) 𝜕𝐼𝜕𝜃0 + 𝑏3 (𝑡) 𝜕𝜃𝜕𝜃0 .

(43)

By using a similar argument in (ii), we can also show that𝜃𝜃0(𝑡; 𝜃0, 𝐼0) = 1 + 𝑜(1), ∀𝑡 ∈ (0, 2𝜋𝑝], as 𝐼0 → +∞. This
completes the proof of Lemma 14.

Next, we will develop an estimate of upper bound and
lower bound for 𝑏1(𝑡).
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Lemma 15. Let 𝑑 ≥ 0 satisfy (𝐴2).
(i) If |𝑥(𝑡; 𝜃0, 𝐼0)| ≤ 𝑑 for all 𝑡 ∈ [0, 2𝜋𝑝], then there exists

a constant 𝐸𝑑 > 0, such that |𝑏1(𝑡)| ≤ 𝐸𝑑/𝐼2(𝑡).
(ii) If |𝑥(𝑡; 𝜃0, 𝐼0)| ≥ 𝑑 for all 𝑡 ∈ [0, 2𝜋𝑝], then there exists

a constant 𝐹𝑑 > 0, such that |𝑏1(𝑡)| ≥ 𝐹𝑑/𝐼2(𝑡). Moreover, if|𝑥(𝑡; 𝜃0, 𝐼0)| ≥ 𝑑, then 𝑏1(𝑡) < 0.
Proof. (i) If |𝑥(𝑡; 𝜃0, 𝐼0)| ≤ 𝑑, take𝑀𝑑 = max|𝑥|≤𝑑, 𝑡∈[0,2𝜋𝑝]|(𝑝−1)𝜓(𝑥, 𝑡) − 𝑥𝜓𝑥(𝑥, 𝑡)|. Then

𝑏1 (𝑡) =

−𝑥 [(𝑝 − 1) 𝜓 (𝑡, 𝑥) − 𝑥𝜓𝑥 (𝑡, 𝑥)]

𝑝2𝐼2


≤ |𝑥|𝑀𝑑𝑝2𝐼2 (𝑡) ≤ 𝑑𝑀𝑑𝑝2𝐼2 (𝑡) .
(44)

Writing 𝐸𝑑 = 𝑑𝑀𝑑/𝑝2, we have |𝑏1(𝑡)| ≤ 𝐸𝑑/𝐼2(𝑡).
(ii) If |𝑥(𝑡; 𝜃0, 𝐼0)| ≥ 𝑑, with condition (𝐴2), it is easy to

know that (𝑝 − 1)𝑥𝜓(𝑡, 𝑥) − 𝑥2𝜓𝑥(𝑡, 𝑥) > 𝛽𝑥 when 𝑥 ≥ 𝑑 and(𝑝 − 1)𝑥𝜓(𝑡, 𝑥) − 𝑥2𝜓𝑥(𝑡, 𝑥) > −𝛽𝑥 when 𝑥 ≤ −𝑑. Hence,𝑏1(𝑡) < 0 and
𝑏1 (𝑡) =


−𝑥 [(𝑝 − 1) 𝜓 (𝑡, 𝑥) − 𝑥𝜓𝑥 (𝑡, 𝑥)]

𝑝2𝐼2


≥ 𝛽 |𝑥|𝑝2𝐼2 (𝑡) ≥ 𝑑𝛽𝑝2𝐼2 (𝑡) .
(45)

Therefore, setting 𝐹𝑑 = 𝑑𝛽/𝑝2, we obtain |𝑏1(𝑡)| ≥ 𝐹𝑑/𝐼2(𝑡). The proof is complete.

Let 𝑏1(𝑡) = 𝑏+1 (𝑡) − 𝑏−1 (𝑡) with 𝑏±1 (𝑡) = max{±𝑏1(𝑡), 0}. To
estimate that the integral of 𝑏+1 (𝑡) on [0, 2𝜋] is smaller than
the integral of 𝑏−1 (𝑡) on [0, 2𝜋], we need the following lemma.

Lemma 16. Let 𝑑 ≥ 0 be as in Theorem 1. Define Δ𝑡 = {𝑡 ∈[0, 2𝜋𝑝] | |𝑥(𝑡; 𝜃0, 𝐼0)| ≤ 𝑑}. Then there exist 𝐼0 > 0, 𝑇 > 0,
such that

|Δ𝑡| ≤ 𝑇
𝐼1/𝑞0 , (46)

for all 𝐼0 ≥ 𝐼0.
Proof. According to Lemma 11, we see thatΔ𝑡 → 0 if and only
if Δ𝜃 → 0.

By the action-angle variables transformation (16), it is not
difficult to verify that there exists 𝜏 > 0 such that |tanΔ𝜃| ≤𝜏𝑑/𝐼1/𝑞(𝑡)whenΔ𝜃 → 0.Therefore, by using Corollary 10, we
know that there exist 𝐼0 > 0, 𝑇 > 0, such that

|Δ𝑡| ≤ 𝑇
𝐼1/𝑞0 , (47)

for all 𝐼0 ≥ 𝐼0. Thus, we prove Lemma 16.

The next lemma gives the estimates of 𝜕𝜃(2𝜋𝑝; 𝜃0, 𝐼0)/𝜕𝐼0
for 𝐼0 ≫ 1.

Lemma 17. For 𝐼0 ≫ 1, one gets 𝜃𝐼0(2𝜋𝑝) < 0.
Proof. The following results immediately from Corollary 10,
Lemma 15, and Lemma 16:

𝜃𝐼0 (2𝜋𝑝) = (1 + 𝑜 (1)) ∫2𝜋𝑝
0

𝑏1 (𝑠) 𝑑𝑠
= (1 + 𝑜 (1)) (∫

𝑏1(𝑡)≤0
𝑏1 (𝑠) 𝑑𝑠 + ∫

𝑏1(𝑡)≥0
𝑏1 (𝑠) 𝑑𝑠)

≤ − (1 + 𝑜 (1)) ( 𝐹𝑑𝜌22𝐼20 (2𝜋𝑝 − |Δ𝑡|) − 𝐸𝑑𝜌21𝐼20 |Δ𝑡|)

≤ (1 + 𝑜 (1)) ((𝜌21𝐹𝑑 + 𝜌22𝐸𝑑) 𝑇
𝜌21𝜌22𝐼2+1/𝑞0 − 2𝜋𝑝𝐹𝑑𝜌22𝐼20 ) .

(48)

So, if 𝐼1/𝑞0 > (𝜌21𝐹𝑑+𝜌22𝐸𝑑)𝑇/2𝜋𝑝𝐿𝑑𝜌21 , we have 𝜃𝐼0(2𝜋𝑝) <0.
4. Proof of Theorem 1

Now we start to give the proof of Theorem 1.

Proof of Theorem 1. Based on Lemma 17 and the Aubry-
Mather theorem [37], we can see that the Poincaré map 𝑃
of system (17) is a monotone twist map when 𝐼0 ≫ 1. At
last, using similar arguments as in [37], we may broaden the
Poincaré map 𝑃 to a new map �̂� which is a whole monotone
twist homeomorphism on the cylinder S1 × R and agree
with 𝑃 on S1 × [𝐼0, +∞) with a fixed constant 𝐼0 ≫ 1.
Hence, the existence of Aubry-Mather sets𝑀𝜎 of �̂� is ensured
by the Aubry-Mather theorem due to Pei [37]. Moreover,
for some small 𝜀0 > 0, all those Aubry-Mather sets with
rotation number 𝛼 ∈ (2𝜔𝜋𝑝, 2𝜔𝜋𝑝 + 𝜀0) lie in the domain
S1×[𝐼0, +∞).Therefore, they happen to be the Aubry-Mather
sets of the Poincaré map of 𝑃. From the above discussions,
we have showed the existence of Aubry-Mather sets; this
implies that (1) has an Aubry-Mather type solution 𝑢𝛼(𝑡) =(𝑥𝛼(𝑡), 𝑥𝛼(𝑡)) with rotation number 𝛼. This completes the
proof of Theorem 1.
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