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It is our pleasure to bring this special issue of the International Journal of Differential

Equations dedicated to fractional differential equations (FDEs).
In recent years, a growing number of work by many authors from various fields

of science and engineering deal with dynamical systems described by fractional partial

differential equations. Due to the extensive applications of FDEs in engineering and science,

research in this area has grown significantly all around the world.

This special issue of Fractional Differential Equations consists of 13 original articles

covering various aspects of FDEs and their applications by some of the prominent researchers

in the field. These papers could be broadly grouped into three categories, namely, numerical

and approximate schemes to solve fractional dynamical models (1st to 5th paper), existence

and uniqueness of solutions of fractional differential equations and other theoretical results

(6th to 11th paper), and application of fractional differential equations in various fields (12th

and 13th paper). Other papers could also have been considered in this last category. However,

because of their emphasis, they have been included in the first two categories.

The first paper introduces a new modified step variational iteration method for solving

biochemical reaction model. The second and third papers use homotopy analysis method for

solving a space- and time-fractional foam drainage equation and nonlinear coupled equations

with parameters derivative, respectively. The fourth paper develops a new application of

Mittag-Leffler function method and extends the application of the method to fractional

linear differential equations. The fifth paper proposes an explicit numerical method for the
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fractional Cable equation together with a stability and convergence analysis of the numerical

method by means of a kind of von Neumann method.

The sixth paper investigates Malliavin calculus of Bismut type for fractional powers

of Laplacians in semigroup theory. The seventh paper derives a sufficient condition on

asymptotical stability of nonlinear fractional differential system with Caputo derivative.

The eighth paper studies existence and uniqueness theorem of fractional mixed Volterra-

Fredholm integro-differential equation with integral boundary conditions. The ninth paper

proves the existence of positive solution for fractional differential equation with nonlocal

boundary consider. The tenth paper gives existence of solutions for a nonlinear fractional

multipoint boundary value problem at resonance. The eleventh paper proves the uniqueness

of the Gellerstedt problem by energy integral method and the existence by reducing it to the

ordinary differential equations.

The twelfth paper studies slip effects on fractional viscoelastic fluids. The final paper

addresses antisynchronization phenomena in nonidentical fractional-order chaotic systems

using active control.

Thus, this special issue provides a wide spectrum of current research in the area of

FDEs, and we hope that experts in this and related fields would find it useful.

Fawang Liu
Om P. Agrawal
Shaher Momani

Nikolai N. Leonenko
Wen Chen
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A new method called the modification of step variational iteration method (MoSVIM) is
introduced and used to solve the fractional biochemical reaction model. The MoSVIM uses general
Lagrange multipliers for construction of the correction functional for the problems, and it runs by
step approach, which is to divide the interval into subintervals with time step, and the solutions
are obtained at each subinterval as well adopting a nonzero auxiliary parameter to control the
convergence region of series’ solutions. The MoSVIM yields an analytical solution of a rapidly
convergent infinite power series with easily computable terms and produces a good approximate
solution on enlarged intervals for solving the fractional biochemical reaction model. The accuracy
of the results obtained is in a excellent agreement with the Adam Bashforth Moulton method
(ABMM).

1. Introduction

The mathematical modelling of numerous phenomena in various areas of science and

engineering using fractional derivatives naturally leads, in most cases, to what is called

fractional differential equations (FDEs). Although the fractional calculus has a long history

and has been applied in various fields in real life, the interest in the study of FDEs and

their applications has attracted the attention of many researchers and scientific societies

beginning only in the last three decades [1, 2]. Since the exact solutions of most of the FDEs

cannot be found easily, thus analytical and numerical methods must be used. For example,
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the ABMM is one of the most used methods to solve fractional differential equations [3–

5]. Several of the other numerical analytical methods for solving fractional problems are

the Adomian decomposition method (ADM), the homotopy perturbation method (HPM)
and the homotopy analysis method (HAM). For example, Ray [6] and Abdulaziz et al. [7]
used ADM to solve fractional diffusion equations and solve linear and nonlinear fractional

differential equations, respectively. Hosseinnia et al. [8] presented an enhanced HPM to

obtain an approximate solution of FDEs, and Abdulaziz et al. [9] extended the application

of HPM to systems of FDEs. The HAM was applied to fractional KDV-Burgers-Kuromoto

equations [10], systems of nonlinear FDEs [11], and fractional Lorenz system [12].
Another powerful method which can also give explicit form for the solution is the

variational iteration method (VIM). It was proposed by He [13, 14], and other researchers

have applied VIM to solve various problems [15–17]. For example, Song et al. [18] used

VIM to obtain approximate solution of the fractional Sharma-Tasso-Olever equations. Yulita

Molliq et al. [19, 20] solved fractional Zhakanov-Kuznetsov and fractional heat-and wave-

like equations using VIM to obtain the approximate solution have shown the accuracy and

efficiently of VIM. Nevertheless, VIM is only valid for short-time interval for solving the

fractional system.

In this paper, we propose a modification of VIM to overcome this weakness of VIM.

In particular, motivated by the work of [12] the procedure of dividing the time interval of

solution in VIM to subintervals with the same step sizeΔt and the solution at each subinterval

must necessary to satisfy the initial condition at each of the subinterval has been considered.

Unfortunately, this idea does not give a good approximate solution when compared to the

ABMM. Therefore, to obtain a good approximate solution which has a good agreement

with ABMM, another idea is used: motivated by HAM, a nonzero auxiliary parameter is

considered into the correction functional in VIM. This parameter was inserted to adjust

and control the convergence region of the series solutions. In general, it is straightforward to

choose a proper value of from the so-called -curve. We call this modification involving time

step and auxiliary parameter the MoSVIM. Strictly speaking MoSVIM is a modification of

our earlier proposed method—step variational iteration method—which is still under review

[21].
As an application, this paper investigates for the first time the applicability and

effectiveness of MoSVIM to obtain the approximate solutions of the fractional version of the

biochemical reaction model as studied in [22] for interval [0, T]. The fractional biochemical

reaction model (shortly called FBRM) is considered in the following form:

dθu

dt
= −u +

(
β − α

)
v + uv,

dθv

dt
=

1

μ

(
u − βv − uv

)
,

(1.1)

subject to initial conditions

u(0) = 1, v(0) = 0, (1.2)

where θ is a parameter describing the order of the fractional derivative (0 < θ ≤ 1), α, β, and

μ are dimensionless parameters.
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Our objective is to provide an alternative analytical method to achieve the solution

and also highlight the limitations of solutions using VIM, MoVIM, and SVIM for solving the

fractional biochemical reaction model when compared to ABMM.

2. Basic Definitions

Fractional calculus unifies and generalizes the notions of integer-order differentiation and n-

fold integration [1, 2]. We give some basic definitions and properties of fractional calculus

theory which will be used in this paper.

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cμ, μ ∈ if there exists a

real number p > μ, such that f(x) = xpf1(x), where f1(x) ∈ C[0,∞), and it is said to be in the

space Cqμ if and only if f (q) ∈ Cμ, q ∈ N.

The Riemann-Liouville fractional integral operator is defined as follows.

Definition 2.2. The Riemann-Liouville fractional integral operator of order θ ≥ 0, of a function

f ∈ Cμ, μ ≥ −1, is defined as

Jθf(x) =
1

Γ(θ)

∫x

0

(x − t)θ−1f(t) dt, θ > 0, x > 0,

J0f(x) = f(x).

(2.1)

In this paper only real and positive values of θ will be considered.

Properties of the operator Jθ can be found in [2], and we mention only the following:

For f ∈ Cμ, μ ≥ −1, θ, η ≥ 0, and γ ≥ −1,

(1) JθJηf(x) = Jθ+ηf(x),

(2) JθJηf(x) = JηJθf(x),

(3) Jθxγ = (Γ(γ + 1)/Γ(θ + γ + 1))xθ+γ .

The Reimann-Liouville derivative has certain disadvantages when trying to model real-

world phenomena with FDEs. Therefore, we will introduce a modified fractional differential

operator Dθ
∗ proposed by Caputo in his work on the theory of viscoelasticity [23].

Definition 2.3. The fractional derivative of f(x) in Caputo sense is defined as

Dθ
∗f(x) = J

q−θDqf(x)

=
1

Γ
(
q − θ

) ∫x

0

(x − ξ)q−θ−1f (q)(ξ)dξ,

for q − 1 < θ ≤ q, q ∈ , x > 0, f ∈ Cq

−1.

(2.2)
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In addition, we also need the following property.

Lemma 2.4. If q − 1 < θ ≤ q, q ∈ , and f ∈ Cqμ, μ ≥ −1, then

Dθ
∗J

θf(x) = f(x),

JθDθ
∗f(x) = f(x) −

q−1∑
i=0

f (i)(0+)
xi

i!
, x > 0.

(2.3)

The Caputo differential derivative is considered here because the initial and boundary

conditions can be included in the formulation of the problems [1]. The fractional derivative

is taken in the Caputo sense as follows.

Definition 2.5. For m to be the smallest integer that exceeds θ, the Caputo fractional derivative

operator of order θ > 0 is defined as

Dθ
t u(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ
(
q − θ

)∫ t

0

(t − ξ)q−θ−1 ∂
qu(ξ)
∂ξq

dξ, for q − 1 < θ < q,

∂qu(t)
∂tq

, for θ = q ∈ .

(2.4)

For more information on the mathematical properties of fractional derivatives and

integrals, one can consult [1, 2].

3. Step Variational Iteration Method

The approximate solutions of fractional biochemical reaction model will be obtained in this

paper. A simple way of ensuring validity of the approximations is solving under arbitrary

initial conditions. In this case, [0, T] is regarded as interval. From idea of Alomari et al.

[12], the [0, T] interval is divided to subintervals with time step Δt, and the solution at

each subinterval was obtained. So it is necessary to satisfy the initial condition at each of

the subinterval. Thus the step technique can describe as the following formula:

ui,n+1(t) = ui,n(t) +
∫ t−t∗

0

λi(ξ)
[
Lui,n(ξ) +Nũi,n(ξ) − gi(ξ)

]
dξ, (3.1)

where λi, for i = 1, . . . , m, is a general Lagrange multiplier, L is linear operator, N is nonlinear

operator, and g is inhomogeneous term. As knowledge, the optimal general Lagrange

multiplier is obtained by constructing the correction functional as in VIM which is ũi,n is

considered as restricted variations, that is, δũi,n = 0.

Accordingly, the initial values u1,0, u2,0, . . . , um,0 will be changed for each subinterval,

that is, u1(t∗) = c∗1 = u1,0, u2(t∗) = c∗2 = u2,0, . . . , um(t∗) = c∗m = um,0, and it should be satisfied

through the initial conditions ui,n(t∗) = 0 for all n ≥ 1, so

ui(t) � ui,n(t − t∗), i = 0, 1, . . . , m, (3.2)
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where t∗ starting from t0 = 0 until tJ = T , J is number of subinterval. To carry out the solution

on every subinterval of equal length Δt, the values of the following initial conditions are

shown below:

c∗i = ui(t
∗), i = 0, 1, . . . , m. (3.3)

In general, we do not have this information at our clearance except at the initial point

t∗ = t0 = 0, but these values can be obtained by assuming that the new initial condition is

the solution in previous interval (i.e., if the solution in interval [tj , tj+1] is necessary, then the

initial conditions of this interval will be as follows:

ci = ui(t) � ui,n
(
tj − tj−1

)
, (3.4)

where ci, i = 0, 1, . . . , m are the initial conditions in the interval [tj , tj+1]).

4. Modified Step Variational Iteration Method

Furthermore, to implement the modification of SVIM, we consider /= 0, a nonzero auxiliary

parameter. Multiply by correction functional in (3.1), yield

ui,n+1(t) = ui,n(t) +
∫ t−t∗

0

λi(ξ)
[
Lui,n(ξ) +Nũi,n(ξ) − gi(ξ)

]
dξ, (4.1)

where i = 0, 1, 2, . . . , m, m ∈ and is the convergence-control parameter which ensures

that this assumption can be satisfied. The subscript n denotes the nth iteration.

Accordingly, the successive approximations un(t), n ≥ 0 of the solution u(t) will

be readily obtained by selecting initial approximation u0 that at least satisfies the initial

conditions. The computations and plotting of figures for the algorithm, has been done using

Maple package.

5. Application

In this section, we demonstrate the efficiency of MoSVIM od fractional biochemical reaction

model in (1.1). The correction functionals for the system (1.1) can be approximately

constructed as used by VIM and (2.4) to find the general Lagrange multiplier in the following

forms:

un+1(t) = un(t) +
∫ t

0

λ1(ξ)
[

dqun

dξq
+ un −

(
β − α

)
ṽn − unvn

]
dξ,

vn+1(t) = vn(t) +
∫ t

0

λ2(ξ)
[

dqvn

dξq
− 1

μ

(
ũn − βvn − unvn

]
dξ,

(5.1)

where λ1 and λ2 are general Lagrange multipliers which can be identified optimally via

variational theory. n denotes the nth iteration. ũn, ṽn, and unvn denote restricted variations,
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that is, δũn = 0, δṽn = 0, and δunvn = 0. In this case, the general Lagrange multiplier can be

easily determined by choosing the number of order q, that is, q = 1. Thus, the following sets

of stationary conditions was obtained as follows:

1 + λ1(t)|ξ=t = 0, λ1(ξ) − λ′1(ξ) = 0,

1 + λ2(t)|ξ=t = 0, βλ2(ξ)μ − λ′2(ξ) = 0.

(5.2)

Therefore, the general Lagrange multipliers can be easily identified as

λ1(ξ) = −e(ξ−t),

λ2(ξ) = −eβ(ξ−t)/μ.
(5.3)

Here, the general Lagrange multiplier in (5.3) is expanded by Taylor series and is chosen only

one term in order to calculate, the general Lagrange multiplier can write as follows

λ1(ξ) = −1,

λ2(ξ) = −β
μ
.

(5.4)

Substituting the general Lagrange multipliers in (5.4) into the correction functional in (5.1)
results in the following iteration formula:

un+1(t) = un(t) −
∫ t−t∗

0

[
dθun

dξ
+ un −

(
β − α

)
vn − unvn

]
dξ,

vn+1(t) = vn(t) −
∫ t−t∗

0

β

μ

[
dθvn

dξ
− 1

μ

(
un − βvn − unvn

)]
dξ.

(5.5)

Furthermore, we multiply the nonzero auxiliary parameter by (5.5) which yields:

un+1(t) = un(t) −
∫ t−t∗

0

[
dθun

dξ
+ un −

(
β − α

)
vn − unvn

]
dξ,

vn+1(t) = vn(t) −
∫ t−t∗

0

β

μ

[
dθvn

dξ
− 1

μ

(
un − βvn − unvn

)]
dξ.

(5.6)

Then, the interval [0, 2] is divided into subintervals with time step Δt, and we get the solution

at each subinterval. In this case, the initial condition is regarded as initial approximation,
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which is necessary satisfied at each of the subinterval, that is, u(t∗) = c∗1 = u0, v(t∗) = c∗2 = v0,

and the initial conditions should be satisfied un(t∗) = 0, vn(t∗) = 0 for all n ≥ 1, so

u1 = c1 −
[
c1 −

5

8
c2 − c1c2

]
(t − t∗),

v1 = c2 − 100 [−c1 + c2 + c1c2](t − t∗),

u2 = c1 −
[
c1(t − t∗) −

5

8
c2(t − t∗) − c1c2(t − t∗)

]

−
[
−30553

37952
c1(t − t∗)7/5 +

9897

19670
c2(t − t∗)7/5 + c1(t − t∗)

− 127

4
c1(t − t∗)2 +

505

16
c2(t − t∗)2 +

329

4
c1(t − t∗)2c2

+
30553

37952
c1c2(t − t∗)7/5 − 5

8
c2(t − t∗) +

100

3
2(t − t∗)3c2

1

− 200

3
2(t − t∗)3c2

1c2 +
125

6
2(t − t∗)3c2

2 +
325

6
2(t − t∗)3c1c

2
2

+
100

3
2(t − t∗)3c2

1c
2
2 − 50(t − t∗)2 c2

1 + 50(t − t∗)2 c2
1c2

−1

2
(t − t∗)2 c1c

2
2 − c1c2(t − t∗)

]
,

v2 = c2 − [−100c1(t − t∗) + 100c2(t − t∗) + 100c1c2(t − t∗)]

−
[

1583520

1967
c1(t − t∗)7/5 − 1583520

1967
c2(t − t∗)7/5 − 100c1(t − t∗)

− 1583520

1967
c1c2(t − t∗)7/5 + 5050 c1(t − t∗)2 − 20125

4
c2(t − t∗)2

− 10100 c1(t − t∗)2c2 −
10000

3
2(t − t∗)3c2

1 +
16250

3
2(t − t∗)3c1c2

+
20000

3
2(t − t∗)3c2

1c2 −
6250

3
2(t − t∗)3c2

2 −
16250

3
2(t − t∗)3c1c

2
2

− 10000

3
2(t − t∗)3c2

1c
2
2 + 5000(t − t∗)2 c2

2 − 5000(t − t∗)2 c2
1c2

+
125

4
(t − t∗)2 c2

2 + 50(t − t∗)2 c1c
2
2 + 100c1c2(t − t∗)

+100c2(t − t∗)
]
.

(5.7)
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Figure 1: -curve for fractional biochemical reaction model using the third iteration MoSVIM with different
value of θ, that is, (0.7, 0.8).

Here, the iteration was chosen from previously research by Goh et al. [24]. Thus, the solution

will be as follows:

u(t) � u5(t − t∗),

v(t) � v5(t − t∗),
(5.8)

where t∗ start from t0 = 0 until tJ = T = 2. To carry out the solution on every subinterval of

equal length Δt, the values of the following initial conditions is presented below:

c1 = u(t∗), c2 = v(t∗). (5.9)

In general, we do not have this information at our clearance except at the initial point

t∗ = t0 = 0, but we can obtain these values by assuming that the new initial condition is

the solution in the previous interval (i.e., If we need the solution in interval 	tj , tj+1
 then the

initial conditions of this interval will be as

c1 = u(t) � u5

(
tj − tj−1

)
,

c2 = v(t) � v5

(
tj − tj−1

)
,

(5.10)

where c1, c2 are the initial conditions in the interval [tj , tj+1]).

6. Result and Discussion

To investigate the influence of on convergence of the solution series, we plot the -curves

of u4(0.01) and v4(0.01) using the fifth iteration of MoSVIM when θ = 0.7, and θ = 0.8 as

shown in Figure 1. We found that the range of values for is between 0.1 and 0.7. Because

the accuracy and efficiency, Δt = 0.001 was chosen as the benchmark for comparison between

MoSVIM and ABMM. The constants μ = 0.1, β = 1, τ = 0.375 were fixed, as was chosen
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Figure 2: Approximate solution of fractional biochemical reaction model via the fifth iterate MoSVIM,
SVIM and ABMM with different value of = 0.25; (a) θ = 0.7, (b) θ = 0.8.

by Hashim et al. [25]. In this case, the computational algorithms for the system in (1.1) are

written using the Maple software. A good solutions of fractional biochemical reaction model

when = 0.25 and θ = 0.7 and θ = 0.8 was presented in Tables 1 and 2, respectively. From

the tables, MoSVIM is more accurate than SVIM in different value of θ, that is, θ = 0.7 and

θ = 0.8. Figure 2 shows comparison of MoSVIM and SVIM. From the figure, MoSVIM solution

is more closer to ABMM solution if it compare to SVIM solution. The comparison of MoSVIM,

VIM and MoVIM is shown to exhibit the accuracy of MoSVIM, see Figure 3. From the figure,

MoSVIM solutions is more accurate than the VIM and MoVIM solutions, and also is in good

agreement with that of ABMM with Δt = 0.001.

7. Conclusions

In this paper, an algorithm of fractional biochemical reaction model (FBRM) using step

modified variational iteration method (MoSVIM) was developed. For computations and

plots, the Maple package were used. We found that MoSVIM is a suitable technique to
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Figure 3: Approximate solution of fractional biochemical reaction model via the fifth iterate MoSVIM, VIM,
MOVIM and ABMM with different value = 0.25; (a) θ = 0.7, (b) θ = 0.8.

Table 1: Approximate solution of fractional biochemical reaction model for θ = 0.7, = 0.25 using fifth
iterate of SVIM and MoSVIM, respectively, and ABMM in comparison with Δt = 0.001.

u(t) v(t)

t SVIM
MoSVIM

ABMM SVIM
MoSVIM

ABMM
= 0.25 = 0.25

0.2 0.8386059622 0.94971579713 0.8997902940 0.4573898218 0.4875079322 0.4460892838

0.4 0.7085282553 0.90710678781 0.8613048034 0.4161477755 0.4760660497 0.4472272725

0.6 0.5912666037 0.86552788930 0.8298424157 0.3731707422 0.4643967818 0.4425233401

0.8 0.4871830355 0.82499870384 0.8023145667 0.3293135117 0.4525101582 0.4366487301

1.0 0.3963375974 0.78553782917 0.7774913063 0.28564459059 0.4404180963 0.4304899916

1.2 0.3184413078 0.74716268585 0.7547144581 0.2433500553 0.4281344807 0.4243110704

1.4 0.2528478376 0.70988933887 0.7335763272 0.2035911835 0.4156752212 0.4182067957

1.6 0.1985917817 0.67373231562 0.7138006533 0.1673493331 0.4030582851 0.4122134576

1.8 0.1544686371 0.63870442274 0.6951883968 0.1353025692 0.3903036993 0.4063440765

2.0 0.1191395751 0.60481656498 0.6775895839 0.1077686026 0.3774335172 0.4006016629
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Table 2: Approximate solution of fractional biochemical reaction model for θ = 0.8, = 0.25 using fifth
iterate of SVIM and MoSVIM, respectively, and ABMM in comparison with Δt = 0.001.

u(t) v(t)

t SVIM
MoSVIM

ABMM SVIM
MoSVIM

ABMM
= 0.25 = 0.25

0.2 0.8774940768 0.9483122837 0.9097501570 0.4679040865 0.4873856458 0.4527160444

0.4 0.7705371139 0.9082752827 0.8712461769 0.4357928339 0.4766431773 0.4544461158

0.6 0.6714218302 0.8691504634 0.83806131857 0.4023638935 0.4657006445 0.4488806205

0.8 0.5804145345 0.8309540052 0.80798209220 0.3679711022 0.4545663318 0.4419163408

1.0 0.4976827145 0.7937012985 0.78014908465 0.3330695561 0.4432499550 0.4345614413

1.2 0.4232727663 0.7574068186 0.75409601514 0.2982002140 0.4317049001 0.4271103147

1.4 0.3570935610 0.7220839956 0.72952829585 0.2639592227 0.4201174892 0.4196723265

1.6 0.2989092929 0.6877450824 0.70624217621 0.2309539383 0.4083285633 0.4122937832

1.8 0.2483439988 0.6544010212 0.68408785674 0.1997517207 0.3964119332 0.4049957868

2.0 0.2048982187 0.6220613114 0.66295019827 0.1708306193 0.3843851419 0.3977883047

solve the fractional problem. This modified method yields an analytical solution in iterations

of a rapid convergent infinite power series with enlarged intervals. Comparison between

MoSVIM, MoVIM and ABMM were made; the MoSVIM was found to be more accurate

than the MoVIM. MoSVIM is easier in calculation yet powerful method and also is readily

applicable to the more complex cases of fractional problems which arise in various fields of

pure and applied sciences.
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The analytical solution of the foam drainage equation with time- and space-fractional derivatives
was derived by means of the homotopy analysis method (HAM). The fractional derivatives
are described in the Caputo sense. Some examples are given and comparisons are made; the
comparisons show that the homotopy analysis method is very effective and convenient. By
choosing different values of the parameters α, β in general formal numerical solutions, as a result,
a very rapidly convergent series solution is obtained.

1. Introduction

Many phenomena in engineering, physics, chemistry, and other science can be described

very successfully by models using the theory of derivatives and integrals of fractional order.

Interest in the concept of differentiation and integration to noninteger order has existed since

the development of the classical calculus [1–3]. By implication, mathematical modeling of

many physical systems are governed by linear and nonlinear fractional differential equations

in various applications in fluid mechanics, viscoelasticity, chemistry, physics, biology, and

engineering.

Since many fractional differential equations are nonlinear and do not have exact

analytical solutions, various numerical and analytic methods have been used to solve these

equations. The Adomian decomposition method (ADM) [4], the homotopy perturbation

method (HPM) [5], the variational iteration method (VIM) [6], and other methods have been

used to provide analytical approximation to linear and nonlinear problems [7, 8]. However,

the convergence region of the corresponding results is rather small.

In 1992, Liao [9–13] employed the basic ideas of the homotopy in topology to propose

a general analytic method for nonlinear problems, namely, Homotopy Analysis Method
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(HAM). This method has been successfully applied to solve many types of nonlinear

problems in science and engineering, such as the viscous flows of non-Newtonian fluids [14],
the KdV-type equations [15], higher-dimensional initial boundary value problems of variable

coefficients [16], and finance problems [17]. The HAM contains a certain auxiliary parameter

h which provides us with a simple way to adjust and control the convergence region and rate

of convergence of the series solution.

The HAM offers certain advantages over routine numerical methods. Numerical

methods use discretization which gives rise to rounding off errors causing loss of accuracy

and requires large computer memory and time. This computational method yields analytical

solutions and has certain advantages over standard numerical methods. The HAM method is

better since it does not involve discretization of the variables and hence is free from rounding

off errors and does not require large computer memory or time.

The study of foam drainage equation is very significant for that the equation is a simple

model of the flow of liquid through channels (Plateau borders [18]) and nodes (intersection

of four channels) between the bubbles, driven by gravity and capillarity [19]. It has been

studied by many authors [20–22]. The study for the foam drainage equation with time and

space-fractional derivatives of this form

Dα
t u =

1

2
uuxx − 2u2D

β
xu +

(
D
β
xu

)2
, 0 < α, β ≤ 1, x > 0, (1.1)

has been investigated by the ADM and VIM method in [23, 24]. The fractional derivatives are

considered in the Caputo sense. When α = β = 1, the fractional equation reduces to the foam

drainage equation of the form

ut =
1

2
uuxx − 2u2ux + (ux)2. (1.2)

In this paper, we extend the application of HAM to obtain analytic solutions to the space-

and time-fractional foam drainage equation. Two cases of special interest such as the time-

fractional foam drainage equation and the space-fractional foam drainage equation are

discussed in details. Further, we give comparative remarks with the results obtained using

ADM and VIM method (see [23, 24]).
The paper has been organized as follows. Notations and basic definitions are given

in Section 2. In Section 3 the homotopy analysis method is described. In Section 4 we extend

the method to solve the space- and time-fractional foam drainage equation. Discussion and

conclusions are presented in Section 5.

2. Description on the Fractional Calculus

Definition 2.1. A real function f(t), t > 0 is said to be in the space Cμ, μ ∈ R if there exists a

real number p > μ, such that f(t) = tpf1(t) where f1 ∈ (0, ∞), and it is said to be in the space

C
μ
n l if and only if h(n) ∈ Cμ, n ∈N. Clearly Cμ ⊂ Cν if ν ≤ μ.
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Definition 2.2. The Riemann-Liouville fractional integral operator (Jα) of order α ≥ 0, of a

function f ∈ Cμ, μ ≥ −1, is defined as

Jαf(x) =
1

Γ(α)

∫x

0

(x − t)α−1f(t)dt, α > 0, x > 0,

J0f(x) = f(x).

(2.1)

Γ(α) is the well-known Gamma function. Some of the properties of the operator Jα, which we

will need here, are as follows:

for f ∈ Cμ, μ ≥ −1, α, β ≥ 0 and γ ≥ −1,

JαJβf(x) = Jα+βf(x),

JαJβf(x) = JβJαf(x),

Jαtγ =
Γ
(
γ + 1

)
Γ
(
α + γ + 1

) tα+γ .
(2.2)

Definition 2.3. For the concept of fractional derivative, there exist many mathematical

definitions [2, 25–28]. In this paper, the two most commonly used definitions: the Caputo

derivative and its reverse operator Riemann-Liouville integral are adopted. That is because

Caputo fractional derivative [2] allows the traditional assumption of initial and boundary

conditions. The Caputo fractional derivative is defined as

Dα
t u(x, t) =

∂αu(x, t)
∂tα

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(n − α)

∫ t

0

(t − τ)n−α−1 ∂
nu(x, t)
∂tn

dτ, n − 1 < α < n,

∂nu(x, t)
∂tn

, α = n ∈N.

(2.3)

Here, we also need two basic properties about them:

DαJαf(x) = f(x),

JαDαf(x) = f(x) −
∞∑
k=0

f (k)(0+)
xk

k!
, x > 0.

(2.4)

Definition 2.4. The MittagLeffler function Eα(z) with a > 0 is defined by the following series

representation, valid in the whole complex plane:

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C. (2.5)
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3. Basic Idea of HAM

To describe the basic ideas of the HAM, we consider the following differential equation:

N
[
Dα
t u(x, t)

]
= 0, t > 0, (3.1)

where N is nonlinear operator, Dα
t stand for the fractional derivative and is defined as in

(2.3), x, t denotes independent variables, and u(x, t) is an unknown function, respectively.

By means of generalizing the traditional homotopy method, Liao [9] constructs the

so-called zero-order deformation equation

(
1 − q

)
L
[
φ
(
x, t, q

)
− u0(x, t)

]
= qhH(t)N

[
Dα
t φ

(
x, t, q

)]
, (3.2)

where q ∈ [0, 1] is the embedding parameter, h/= 0 is a nonzero auxiliary parameter, H(t)/= 0

is an auxiliary function, L is an auxiliary linear operator, u0(x, t) is initial guesse of u(x, t), and

φ(x, t, q) is unknown function. It is important that one has great freedom to choose auxiliary

things in HAM. Obviously, when q = 0 and q = 1, it holds that

φ(x, t, 0) = u0(x, t), φ(x, t, 1) = u(x, t), (3.3)

respectively. Thus, as q increases from 0 to 1, the solution φ(x, t, q) varies from the initial guess

u0(x, t) to the solution u(x, t). Expanding φ(x, t, q) in Taylor series with respect to q, we have

φ
(
x, t, q

)
= u0(x, t) +

+∞∑
m=1

um(x, t)qm, (3.4)

where

um(x, t) =
1

m!

∂mφ
(
x, t, q

)
∂qm

∣∣∣∣∣
q=0

. (3.5)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary

function are so properly chosen, the series (3.4) converges at q = 1, then we have

u(x, t) = u0(x, t) +
+∞∑
m=1

um(x, t), (3.6)

which must be one of solutions of original nonlinear equation, as proved by Liao [11]. As

h = −1 and H(t) = 1, (3.2) becomes

(
1 − q

)
L
[
φ1

(
x, t, q

)
− u0(x, t)

]
+ qN

[
Dα
t φ

(
x, t, q

)]
= 0, (3.7)
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which is used mostly in the homotopy perturbation method [29], whereas the solution

obtained directly, without using Taylor series. According to definition (3.5), the governing

equation can be deduced from the zero-order deformation equation (3.2). Define the vector

−→un = {u0(x, t), u1(x, t), . . . , un(x, t)}. (3.8)

Differentiating (3.2) m times with respect to the embedding parameter q and then setting

q = 0 and finally dividing them by m!, we have the so-called mth-order deformation equation

L
[
um(x, t) − χmum−1(x, t)

]
= hH(t)Rm

(−→um−1

)
, (3.9)

where

Rm

(−→um−1

)
=

1

(m − 1)!
∂m−1N

[
Dα
t φ

(
x, t, q

)]
∂qm−1

∣∣∣∣∣
q=0

,

χm =

⎧⎨⎩0, m � 1,

1, m > 1.

(3.10)

Applying the Riemann-Liouville integral operator Jα on both side of (3.9), we have

um(x, t) = χmum−1(x, t) − χm
n−1∑
i=0

uim−1(0
+)
ti

i!
+ hH(t)JαRm

(−→um−1

)
. (3.11)

It should be emphasized that um(x, t) form � 1 is governed by the linear equation (3.9) under

the linear boundary conditions that come from original problem, which can be easily solved

by symbolic computation software such as Matlab. For the convergence of the above method

we refer the reader to Liao’s work.

Liao [10] proved that, as long as a series solution given by the homotopy analysis

method converges, it must be one of exact solutions. So, it is important to ensure that the

solution series is convergent. Note that the solution series contain the auxiliary parameter

h, which we can choose properly by plotting the so-called h-curves to ensure solution series

converge.

Remark 3.1. The parameters α and β can be arbitrarily chosen as, integer or fraction, bigger or

smaller than 1. When the parameter is bigger than 1, we will need more initial and boundary

conditions such as u′0(x, 0), u
′′
0(x, 0), . . . and the calculations will become more complicated

correspondingly. In order to illustrate the problem and make it convenient for the readers,

we only confine the parameter to [0, 1] to discuss.

4. Application

In this section we apply this method for solving foam drainage equation with time- and

space-fractional derivatives.
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Example 4.1. Consider the following form of the time-fractional equation:

Dα
t u =

1

2
uuxx − 2u2ux + u2

x, 0 < α ≤ 1, x > 0, (4.1)

with the initial condition

u(x, 0) = −
√
c tanh

(√
cx

)
, (4.2)

where c is the velocity of wavefront [15].
The exact solution of (4.1) for the special case α = β = 1 is

u(x, t) =

⎧⎨⎩−√c tanh
(√

c(x − ct)
)
, x � ct,

0, x > ct.
(4.3)

For application of homotopy analysis method, in view of (4.1) and the initial condition given

in (4.2), it in convenient to choose

u0(x, t) = −
√
c tanh

(√
cx

)
, (4.4)

as the initial approximate. We choose the linear operator

L
[
φ
(
x, t; q

)]
= Dα

t , (4.5)

with the property L(c) = 0, where c is constant of integration. Furthermore, we define a

nonlinear operator as

N
[
φ
(
x, t, q

)]
= Dα

t φ
(
x, t, q

)
− 1

2
φ
(
x, t, q

)
φxx

(
x, t, q

)
+ 2

(
φ
(
x, t, q

))2
φx

(
x, t, q

)
−

(
φx

(
x, t, q

))2
.

(4.6)

We construct the zeroth-order and the mth-order deformation equations where

Rm

(−→um−1

)
= Dα

t um−1 −
1

2

m−1∑
k=0

uk(um−1−k)xx + 2
m−1∑
k=0

k∑
j=0

ujuk−j(um−1−k)x

−
m−1∑
k=0

(uk)x(um−1−k)x.

(4.7)
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We now successively obtain

u1(x, t) =
1

Γ(α + 1)

[
h
(
−1 + tanh

(√
cx

)2
)
tαc2

]
,

u2(x, t) =
1

Γ(α + 1)2

[√
c tanh

(√
cx

)
Γ(α + 1)2 + h

√
c tanh

(√
cx

)
Γ(α + 1)2

− htαc2Γ(α + 1) + htαc2Γ(α + 1) tanh
(√

cx
)2 − h2tαc2Γ(α + 1)

+ h2tαc2Γ(α + 1) tanh
(√

cx
)2 + h2t2ac7/2 tanh

(√
cx

)
−2h2t2ac7/2 tanh

(√
cx

)3
]
,

...

(4.8)

By taking α = 1, h = −1, we reproduce the solution of problem as follows:

u(x, t) =
1

Γ(α + 1)3

[
−
√
c tanh

(√
cx

)
Γ(α + 1)3 + tαc2Γ(α + 1)2

− tαc2Γ(α + 1)2 tanh
(√

cx
)2 + 2t2αc7/2 tanh

(√
cx

)
Γ(α + 1)

− 2t2αc7/2 tanh
(√

cx
)3Γ(α + 1) + 13t3αc5 tanh

(√
cx

)2

−13t3αc5 tanh
(√

cx
)4 + 3t3αc5 tanh

(√
cx

)6 − 3t3αc5
]
.

(4.9)

Figures 1 and 2 show the HAM and exact solutions of time-fractional foam drainage equation

with h = −1, n = 3, α = 1. It is obvious that, when α = 1, the solution is nearly identical with

the exact solution. Figures 3 and 4 show the approximate solutions of time-fractional foam

drainage equation with h = −1, n = 3, α = 0.5 and α = 0.75, respectively.

Remark 4.2. This example has been solved using ADM and VIM in [23, 24]. The graphs drawn

and Tables by h = −1 are in excellent agreement with that graphs drawn with ADM and VIM.

Example 4.3. Considering the operator form of the space-fractional equation

ut =
1

2
uuxx − 2u2D

β
xu +

(
D
β
xu

)2
, 0 < β ≤ 1, x > 0, (4.10)

with the initial condition

u(x, 0) = x2. (4.11)
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Figure 1: HAM solution with α = 1.
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Figure 5: HAM solution with β = 1/2.

For application of homotopy analysis method, in view of (4.10) and the initial condition given

in (4.2), it is inconvenient to choose

u0(x, t) = x2. (4.12)

Initial condition has been taken as the above polynomial to avoid heavy calculation of

fractional differentiation.

We choose the linear operator

L
[
φ
(
x, t, q

)]
=
∂φ

(
x, t, q

)
∂t

, (4.13)
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with the property L(c) = 0, where c is constant of integration. Furthermore, we define a

nonlinear operator as

N
[
φ
(
x, t, q

)]
= φt

(
x, t, q

)
− 1

2
φ
(
x, t, q

)
φxx

(
x, t, q

)
+ 2

(
φ
(
x, t, q

))2
D
β
xφ

(
x, t, q

)
−

(
D
β
xφ

(
x, t, q

))2
.

(4.14)

We construct the zeroth-order and the mth-order deformation equations where

Rm

(−→um−1

)
= (ut)m−1 −

1

2

m−1∑
k=0

uk(um−1−k)xx + 2
m−1∑
k=0

k∑
j=0

ujuk−jD
β
xum−1−k

−
m−1∑
k=0

D
β
xukD

β
xum−1−k.

(4.15)

We now successively obtain

u1(x, t) = −hx2t + 4
hx6−βt

Γ
(
3 − β

) − 4
hx4−2βt

Γ
(
3 − β

)2
,

u2(x, t) =
1

Γ
(
3 − β

)2

[
− 14h2t2x4−2ββ + 4h2t2x4−2ββ2 + 18hx4−2βht2

− 4h2tx4−2β − 4htx4−2β

+
h2x8−3βπ1/2

(
−4 + β

)(
−5 + β

)(
−6 + β

)
t24β

8Γ
(
(7/2) − β

)
+

128h2x6−4β4−βt2Γ
(
(5/2) − β

)
π1/2Γ

(
5 − 3β

) ]

+
1

Γ
(
3 − β

)[
−h2x10−2βπ1/2

(
−4 + β

)(
−5 + β

)(
−6 + β

)
t24β

16Γ
(
(7/2) − β

)
−

64h2x8−3β4−βt2Γ
(
(5/2) − β

)
π1/2Γ

(
5 − 3β

) + 4htx6−β + 4h2tx6−β

−38h2t62x6−β + 11h2t2β2x6−β
]

− 16h2t2x8−3β

Γ
(
3 − β

)3
− hx2t − h2x2t + t2x2h2.

...

(4.16)



International Journal of Differential Equations 11

10
20

30
40

50

0

5
10

15
20

0 0

0.5

1

1.5

2

2.5

×1015

t
x

u

Figure 6: HAM solution with β = 1.

Figures 5 and 6 show the HAM solutions of space-fractional foam drainage equation with

h = −1, n = 3, β = 0.5 and β = 1, respectively.

Remark 4.4. This example has been solved using ADM and VIM in [23, 24]. The graphs drawn

and Tables by h = −1 are in excellent agreement with that graphs drawn with ADM and VIM.

5. Conclusion

In this paper, we have successfully developed HAM for solving space- and time-fractional

foam drainage equation. HAM provides us with a convenient way to control the convergence

of approximation series by adapting h, which is a fundamental qualitative difference in

analysis between HAM and other methods. The obtained results demonstrate the reliability

of the HAM and its wider applicability to fractional differential equation. It, therefore,

provides more realistic series solutions that generally converge very rapidly in real physical

problems.

Matlab has been used for computations in this paper.
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The homotopy analysis method (HAM) is employed to obtain symbolic approximate solutions
for nonlinear coupled equations with parameters derivative. These nonlinear coupled equations
with parameters derivative contain many important mathematical physics equations and reaction
diffusion equations. By choosing different values of the parameters in general formal numerical
solutions, as a result, a very rapidly convergent series solution is obtained. The efficiency and
accuracy of the method are verified by using two famous examples: coupled Burgers and mKdV
equations. The obtained results show that the homotopy perturbation method is a special case of
homotopy analysis method.

1. Introduction

Fractional differential equations have gained importance and popularity during the past

three decades or so, mainly due to its demonstrated applications in numerous seemingly

diverse fields of science and engineering. For example, the nonlinear oscillation of earthquake

can be modeled with fractional derivatives, and the fluid-dynamic traffic model with

fractional derivatives can eliminate the deficiency arising from the assumption of continuum

traffic flow. The differential equations with fractional order have recently proved to be

valuable tools to the modeling of many physical phenomena [1, 2]. This is because of the

fact that the realistic modeling of a physical phenomenon does not depend only on the

instant time, but also on the history of the previous time which can also be successfully

achieved by using fractional calculus. Most nonlinear fractional equations do not have exact

analytic solutions, so approximation and numerical techniques must be used. The Adomain

decomposition method [3], the homotopy perturbation method [4], the variational iteration
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method [5], and other methods have been used to provide analytical approximation to linear

and nonlinear problems. However, the convergence region of the corresponding results is

rather small. In 1992, Liao employed the basic ideas of the homotopy in topology to propose

a general analytic method for nonlinear problems, namely, homotopy analysis method [6–

10]. This method has been successfully applied to solve many types of nonlinear problems

in science and engineering, such as the viscous flows of non-Newtonian fluids [11], the

KdV-type equations [12], finance problems [13], fractional Lorenz system [14], and delay

differential equation [15]. The HAM contains a certain auxiliary parameter h which provides

us with a simple way to adjust and control the convergence region and rate of convergence

of the series solution.

The HAM offers certain advantages over routine numerical methods. Numerical

methods use discretization which gives rise to rounding off errors causing loss of accuracy

and requires large computer memory and time. This computational method yields analytical

solutions and has certain advantages over standard numerical methods. The HAM method is

better since it does not involve discretization of the variables and hence is free from rounding

off errors and does not require large computer memory or time.

In this paper, we extend the application of HAM to discuss the explicit numerical

solutions of a type of nonlinear-coupled equations with parameters derivative in this form:

∂αu

∂tα
= L1(u, v) +N1(u, v), t > 0,

∂βv

∂tβ
= L2(u, v) +N2(u, v), t > 0,

(1.1)

where Li and Ni (i = 1, 2) are the linear and nonlinear functions of u and v, respectively, α

and β are the parameters that describe the order of the derivative. Different nonlinear coupled

systems can be obtained when one of the parameters α or β varies. The study of (1.1) is very

necessary and significant because when α and β are integers, it contains many important

mathematical physics equations.

The paper has been organized as follows. Notations and basic definitions are given

in Section 2. In Section 3 the homotopy analysis method is described. In Section 4 applying

HAM for two famous coupled examples: Burgers and mKdV equations. Discussion and

conclusions are presented in Section 5.

2. Description on the Fractional Calculus

Definition 2.1. A real function f(t), t > 0 is said to be in the space Cμ, μ ∈ R if there exists a

real number p > μ, such that f(t) = tpf1(t) where f1 ∈ (0,∞), and it is said to be in the space

C
μ
n l if and only if h(n) ∈ Cμ, n ∈N. Clearly Cμ ⊂ Cν if ν ≤ μ.

Definition 2.2. The Riemann-Liouville fractional integral operator (Jα) of order α ≥ 0, of a

function f ∈ Cμ, μ ≥ −1, is defined as

Jαf(x) =
1

Γ(α)

∫x

0

(x − t)α−1f(t)dt, x > 0.

J0f(x) = f(x).

(2.1)
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Γ(α) is the well-known Gamma function. Some of the properties of the operator Jα, which we

will need here, are as follows.

For f ∈ Cμ, μ ≥ −1, α, β ≥ 0 and γ ≥ −1

JαJβf(x) = Jα+βf(x),

JαJβf(x) = JβJαf(x),

Jαtγ =
Γ
(
γ + 1

)
Γ
(
α + γ + 1

) tα+γ .
(2.2)

Definition 2.3. For the concept of fractional derivative, there exist many mathematical

definitions [1, 16–19]. In this paper, the two most commonly used definitions: the Caputo

derivative and its reverse operator Riemann-Liouville integral are adopted. That is because

Caputo fractional derivative [1] allows the traditional assumption of initial and boundary

conditions. The Caputo fractional derivative is defined as

Dα
t u(x, t) =

∂αu(x, t)
∂tα

=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(n − α)

∫ t

0

(t − τ)n−α−1 ∂
nu(x, t)
∂tn

dτ, n − 1 < α < n,

∂nu(x, t)
∂tn

, α = n ∈N.

(2.3)

Here, we also need two basic properties about them:

DαJαf(x) = f(x),

JαDαf(x) = f(x) −
∞∑
k=0

f (k)(0+)
xk

k!
, x > 0.

(2.4)

Definition 2.4. The Mittag-Leffler function Eα(z) with a > 0 is defined by the following series

representation, valid in the whole complex plane:

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C. (2.5)

3. Basic Idea of HAM

To describe the basic ideas of the HAM, we consider the operator form of (1.1):

N
[
Dα
t u(x, t)

]
= 0, t > 0,

N
[
D
β

t v(x, t)
]
= 0, t > 0,

(3.1)

where N is nonlinear operator, Dα
t and D

β

t stand for the fractional derivative and are defined

as in (2.3), t denotes an independent operator, and u(x, t), v(x, t) are unknown functions.
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By means of generalizing the traditional homotopy method, Liao [6] constructs the

so-called zero-order deformation equations:

(
1 − q

)
L
[
φ1

(
x, t, q

)
− u0(x, t)

]
= q hH(t)N

[
Dα
t φ1

(
x, t, q

)]
, (3.2)

(
1 − q

)
L
[
φ2

(
x, t, q

)
− v0(x, t)

]
= q hH(t)N

[
D
β

t φ2

(
x, t, q

)]
, (3.3)

where q ∈ [0, 1] is the embedding parameter, h/= 0 is a non-zero auxiliary parameter, H(t)/= 0

is an auxiliary function, L is an auxiliary linear operator, u0(x, t), v0(x, t) are initial guesses

of u(x, t), v(x, t) and φ1(x, t, q), φ2(x, t, q) are two unknown functions, respectively. It is

important that one has great freedom to choose auxiliary things in HAM. Obviously, when

q = 0 and q = 1, the following holds:

φ1(x, t, 0) = u0(x, t), φ1(x, t, 1) = u(x, t),

φ2(x, t, 0) = v0(x, t), φ2(x, t, 1) = v(x, t),
(3.4)

respectively. Thus, as q increases from 0 to 1, the solution φ1(x, t, q), φ2(x, t, q) varies from the

initial guess u0(x, t), v0(x, t) to the solution u(x, t), v(x, t). Expanding φ1(x, t, q), φ2(x, t, q) in

Taylor series with respect to q, we have

φ1

(
x, t, q

)
= u0(x, t) +

+∞∑
m=1

um(x, t)qm,

φ2

(
x, t, q

)
= v0(x, t) +

+∞∑
m=1

vm(x, t)qm,

(3.5)

where

um(x, t) =
1

m!

∂mφ1

(
x, t, q

)
∂qm

∣∣
q=0,

vm(x, t) =
1

m!

∂mφ2

(
x, t, q

)
∂qm

∣∣
q=0.

(3.6)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary

function are so properly chosen, the series (3.5) converges at q = 1, then we have

u(x, t) = u0(x, t) +
+∞∑
m=1

um(x, t),

v(x, t) = v0(x, t) +
+∞∑
m=1

vm(x, t),

(3.7)
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which must be one of solutions of original nonlinear equation, as proved by Liao [8]. As

h = −1 and H(t) = 1, (3.2) and (3.3) become

(
1 − q

)
L
[
φ1

(
x, t, q

)
− u0(x, t)

]
+ qN

[
φ1

(
x, t, q

)]
= 0,(

1 − q
)
L
[
φ2

(
x, t, q

)
− u0(x, t)

]
+ qN

[
φ2

(
x, t, ; q

)]
= 0,

(3.8)

which is used mostly in the homotopy perturbation method [20], where as the solution

obtained directly, without using Taylor series. According to the definition (3.6), the governing

equation can be deduced from the zero-order deformation equation (3.2). Define the vector

−→un = {u0(x, t), u1(x, t), . . . , un(x, t)}, −→vn = {v0(x, t), v1(x, t), . . . , vn(x, t)}. (3.9)

Differentiating equations (3.2) and (3.3) m times with respect to the embedding parameter

q and then setting q = 0 and finally dividing them by m!, we have the so-called mth-order

deformation equation:

L
[
um(x, t) − χmum−1(x, t)

]
= hH(t)R1,m

(−→um−1

)
,

L
[
vm(x, t) − χmvm−1(x, t)

]
= hH(t)R2,m

(−→vm−1

)
,

(3.10)

where

R1,m

(−→um−1

)
=

1

(m − 1)!
∂m−1Dα

t

[
φ1

(
x, t, q

)]
∂qm−1

∣∣
q=0 ,

R2,m

(−→vm−1

)
=

1

(m − 1)!
∂m−1D

β

t

[
φ2

(
x, t, q

)]
∂qm−1

∣∣
q=0 ,

χm =

{
0, m � 1,

1, m > 1.

(3.11)

Applying the Riemann-Liouville integral operator Jα, Jβ on both side of (3.10), we have

um(x, t) = χmum−1(x, t) − χm
n−1∑
i=0

uim−1(0
+)
ti

i!
+ hH(t)JαR1,m

(−→um−1

)
,

vm(x, t) = χmvm−1(x, t) − χm
n−1∑
i=0

vim−1(0
+)
ti

i!
+ hH(t)JβR2,m

(−→vm−1

)
.

(3.12)

It should be emphasized that um(x, t), vm(x, t) for m � 1 is governed by the linear equation

(3.10), under the linear boundary conditions that come from original problem, which can

be easily solved by symbolic computation software such as MATLAB. For the convergence
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of the above method we refer the reader to Liao’s work. Liao [7] proved that, as long as a

series solution given by the homotopy analysis method converges, it must be one of exact

solutions. So, it is important to ensure that the solution series is convergent. Note that the

solution series contain the auxiliary parameter h, which we can choose properly by plotting

the so-called h-curves to ensure solution series converge.

Remark 3.1. The parameters α and β can be arbitrarily chosen as, integer or fraction, bigger

or smaller than 1. When the parameters are bigger than 1, we will need more initial and

boundary conditions such as u′0(x, 0), u
′′
0(x, 0), . . . and the calculations will become more

complicated correspondingly. In order to illustrate the problem and make it convenient for

the readers, we only confine the parameters to [0, 1] to discuss.

4. Application

4.1. The Nonlinear Coupled Burgers Equations with Parameters Derivative

In order to illustrate the method discussed above, we consider the nonlinear coupled Burgers

equations with parameters derivative in an operator form:

Dα
t u − Lxxu − 2uLxu + Lxuv = 0, (0 < α ≤ 1),

D
β

t v − Lxxv − 2vLxv + Lxuv = 0,
(
0 < β ≤ 1

)
,

(4.1)

where t > 0, Lx = ∂/∂x and the fractional operators Dα
t and D

β

t are defined as in (2.3).
Assuming the initial value as

u(x, 0) = sin x, v(x, 0) = sin x. (4.2)

The exact solutions of (4.1) for the special case: α = β = 1 are

u(x, t) = e−t sin x, v(x, t) = e−t sin x. (4.3)

For application of homotopy analysis method, in view of (4.1) and the initial condition given

in (4.2), it is convenient to choose

u0(x, t) = sin x, v0(x, t) = sin x, (4.4)

as the initial approximate of (4.1). We choose the linear operators

L1

[
φ1

(
x, t, q

)]
= Dα

t

[
φ1

(
x, t, q

)]
,

L2

[
φ2

(
x, t, q

)]
= Dβ

t

[
φ2

(
x, t, q

)]
,

(4.5)
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with the property L(c) = 0 where c is constant of integration. Furthermore, we define a system

of nonlinear operators as

N1

[
φi

(
x, t, q

)]
= Dα

t

[
φ1

(
x, t, q

)]
−
∂2φ1

(
x, t, q

)
∂x2

− 2φ1

(
x, t, q

)∂φ1

(
x, t, q

)
∂x

+
∂
[
φ1

(
x, t, q

)
φ2

(
x, t, q

)]
∂x

N2

[
φi

(
x, t, q

)]
= Dβ

t

[
φ2

(
x, t, q

)]
−
∂2φ2

(
x, t, q

)
∂x2

− 2φ2

(
x, t, q

)∂φ2

(
x, t, q

)
∂x

+
∂
[
φ1

(
x, t, q

)
φ2

(
x, t, q

)]
∂x

.

(4.6)

We construct the zeroth-order and the mth-order deformation equations where

R1,m

(−→um−1

)
= Dα

t [um−1] − (um−1)xx − 2
m−1∑
k=0

uk(um−1−k)x +

(
m−1∑
k=0

ukvm−k−1

)
x

,

R2,m

(−→vm−1

)
= Dβ

t [vm−1] − (vm−1)xx − 2
m−1∑
k=0

vk(vm−1−k)x +

(
m−1∑
k=0

ukvm−k−1

)
x

.

(4.7)

We start with an initial approximation u(x, 0) = sin(x), v(x, 0) = sin(x), thus we can obtain

directly the other components as

u1 =
hta sin(x)
Γ(a + 1)

,

u2 =
− sin x

a2Γ(b + 1)Γ(a)2Γ(a + (1/2))

×
[
a2Γ(b + 1)Γ(a)2Γ

(
a +

1

2

)
− a2Γ(b + 1)Γ(a)2

Γ
(
a +

1

2

)
h + haΓ(a)Γ(2a + 1)taΓ(b + 1) + h2aΓ(a)Γ

(
a +

1

2

)
taΓ(b + 1) + 2h2aΓ(a)

Γ
(
a +

1

2

)
t(b+a) cos(x) − 2h2t(2a) cos(x)Γ(b + 1)Γ

(
a +

1

2

)

+h2t(2a)a2Γ(b + 1)Γ(a)2

]
...
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v1 =
htb sin(x)
Γ(b + 1)

,

v2 =
− sin x(

b2Γ(a + 1)Γ(b)2Γ(b + (1/2))
)

×
[
b2Γ(a + 1)Γ(b)2Γ(2b + 1)h + hbΓ(b) ,

Γ(2b + 1)tbΓ(a + 1) + h2bΓ(b)Γ(2b + 1)tbΓ(b + 1) + 2h2bΓ(b)Γ(2b + 1),

t(a+b) cos(x) − 2h2t(2b) cos(x)Γ(a + 1)Γ(2b + 1) + h2

(
1

t

)(−b)
tbb2Γ(a + 1),

Γ(b)2
]

... (4.8)

The absolute error of the 6th-order HAM and exact solution with h = −1 as shown in Figure 1.

Also the absolute errors |u(t) − φ6(t)| have been calculated in Table 1. Figure 2 shows the

numerical solutions of the nonlinear coupled Burgers equations with parameters derivative

with h = −1, α = β = 1. Figure 3 shows the explicit numerical solutions with h = −1, α = 1/4,

and β = 1/3 at t = 0.02.

As suggested by Liao [7], the appropriate region for h is a horizontal line segment.

We can investigate the influence of h on the convergence of the solution series gevin by the

HAM, by plotting its curve versus h, as shown in Figure 4.

Remark 4.1. This example has been solved using homotopy perturbation method [21]. The

graphs drawn and tables by h = −1 are in excellent agreement with that graphs drawn with

HPM.

4.2. The Nonlinear Coupled mKdV Equations with Parameters Derivative

In order to illustrate the method discussed above, we consider the nonlinear coupled mKdV

equations with parameters derivative in an operator form:

Dα
t u − 1

2
uxxx + 3u2ux −

3

2
vxx − 3(uv)x + 3λux = 0,

D
β

t v + vxxx + 3vvx + 3uxvx − 3u2vx − 3λvx = 0,

(4.9)

with the initial conditions,

u(x, 0) =
b

2k
+ k tanh(kx), v(x, 0) =

λ

2

(
1 +

k

b

)
+ b tanh(kx). (4.10)
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Figure 1: The comparison of the 6th-order HAM and exact solution with h = −1, α = β = 1.

Table 1: The comparison of the results of the HAM (h = −1) and exact solution for the u(x, t), α = β = 1.

x t φ6 u(x, t) Realtive error

10 0.01 −5.3861e-001 −0.9002497662 4.5253e × 10−13

10 0.02 −5.3325e-001 −0.8912921314 1.4459 × 10−11

10 0.03 −5.2794e-001 −0.8824236265 1.0962 × 10−10

5 0.01 −0.9493828183 −0.9493828187 7.9781 × 10−13

5 0.02 −0.9399363019 −0.9399363019 2.5486 × 10−11

5 0.03 −0.9305837792 −0.9305837793 1.9322 × 10−10

-2 0.01 −0.5386080102 −0.5386080104 7.5651 × 10−13

-2 0.02 −0.5332487712 −0.5332487712 2.4167 × 10−11

-2 0.03 −0.5279428571 −0.5279428572 1.8322 × 10−10

As we know, when α = β = 1 (4.9) has the kink-type soliton solutions

u(x, t) =
b

2k
+ k tanh(kξ),

v(x, t) =
λ

2

(
1 +

k

b

)
+ b tanh(kξ),

(4.11)

constructed by Fan [22], where ξ = x + (1/4)(−4k2 − 6λ + 6kλ/b + 3b2/k2)t, k /= 0, and b /= 0.

For application of homotopy analysis method, in view of (4.9) and the initial condition given

in (4.10), it in convenient to choose

u(x, 0) =
b

2k
+ k tanh(kx), v(x, 0) =

λ

2

(
1 +

k

b

)
+ b tanh(kx), (4.12)
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Table 2: The comparison of the results of the HAM (h = −1) and exact solution for the u(x, t), α = β = 1.

x t |∑5
i=0 u(i) − Exact| |∑5

i=0 v(i) − Exact|
−15 0.002 8.0672 × 10−8 2.4426 × 10−8

−12 0.002 5.9539 × 10−7 1.8038 × 10−7

−6 0.002 3.0257 × 10−6 1.3270 × 10−6

6 0.002 3.0263 × 10−6 1.3481 × 10−6

12 0.002 5.9550 × 10−7 1.7722 × 10−7

15 0.002 8.0686 × 10−8 2.3998 × 10−8

as the initial approximate of (4.10). We choose the linear operators

L1

[
φ1

(
x, t, q

)]
= Dα

t

[
φ1

(
x, t, q

)]
,

L2

[
φ2

(
x, t, q

)]
= Dβ

t

[
φ2

(
x, t, q

)]
,

(4.13)

with the property L(c) = 0 where c is constant of integration. Furthermore, we define a system

of nonlinear operators as

N1

[
φi

(
x, t, q

)]
= Dα

t

[
φ1

(
x, t, q

)]
− 1

2

∂3φ1

(
x, t, q

)
∂x3

+ 3φ1

(
x, t, q

)2 ∂φ1

(
x, t, q

)
∂x

,

− 3

2

∂2φ2

(
x, t, q

)
∂x2

− 3
∂
[
φ1

(
x, t, q

)
φ2

(
x, t, q

)]
∂x

+ 3λ
∂φ1

(
x, t, q

)
∂x

,

N2

[
φi

(
x, t, q

)]
= Dβ

t

[
φ2

(
x, t, q

)]
+
∂3φ2

(
x, t, q

)
∂x3

+ 3φ2

(
x, t, q

)∂φ2

(
x, t, q

)
∂x

,

+ 3
∂φ1

(
x, t, q

)
∂x

∂φ2

(
x, t, q

)
∂x

− 3φ1

(
x, t, q

)2 ∂φ2

(
x, t, q

)
∂x

− 3λ
∂φ2

(
x, t, q

)
∂x

.

(4.14)

We construct the zeroth-order and the mth-order deformation equations where

R1,m

(−→um−1

)
= Dα

t [um−1] −
1

2
(um−1)xxx + 3

m−1∑
i=0

ui

m−1−i∑
k=0

uk(vm−1−i−k)x,

− 3

2
(vm−1)xx − 3

(
m−1∑
k=0

ukvm−k−1

)
x

+ 3λ(um−1)x,

R2,m

(−→vm−1

)
= Dβ

t [vm−1] + (vm−1)xxx + 3
m−1∑
k=0

vk(vm−1−k)x + 3
m−1∑
k=0

(uk)x(vm−k−1)x,

− 3
m−1∑
i=0

ui

m−1−i∑
k=0

uk(vm−1−i−k)x − 3λ(vm−1)x.

(4.15)
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We start with an initial approximation u(x, 0) = (b/2k) + k tanh(kx), v(x, 0) = (λ/2)(1 +
(k/b)) + b tanh(kx), with k = 0.1, b = 1, k = 1/3, thus we can obtain directly the other

components as follows:

u1 =
1177

1620
hta

−1 + tanh ((1/3)x)2

Γ(a + 1)
,

u2 =
1

437400
− 656100Γ(a + b + 1)a2Γ(b + 1)Γ(a)2Γ(2a + 1) − 145800,

Γ(a + b + 1)a2Γ(b + 1)Γ(a)2Γ(2a + 1) tanh

(
1

3
x

)
− 656100Γ(a + b + 1)a2,

Γ(b + 1)Γ(a)2Γ(2a + 1)h − 145800Γ(a + b + 1)a2Γ(b + 1)Γ(a)2Γ(2a + 1),

h tanh

(
1

3
x

)
− 327510h2t(b+a)a2Γ(b + 1)Γ(a)2Γ(2a + 1) + 1310040h2t(b+a),

a2Γ(b + 1)Γ(a)2Γ(2a + 1) tanh

(
1

3
x

)2

− 982530h2t(b+a)a2Γ(b + 1)Γ(a)2,

Γ(2a + 1) tanh

(
1

3
x

)4

− 317790hΓ(a + b + 1)aΓ(a)Γ(2a + 1)taΓ(b + 1),

+ · · ·
...

v1 =
1213

540
htb

−1 + tanh ((1/3)x)2

Γ(b + 1)
,

v2 =
1

145800
− 145800b2Γ(a + 1)Γ(b)2Γ(2b + 1)h tanh

(
1

3
x

)
− 145800b2,

Γ(a + 1)Γ(b)2Γ(2b + 1) tanh

(
1

3
x

)
− 9720b2Γ(a + 1)Γ(b)2Γ(2b + 1)h,

− 327510hbΓ(b)Γ(2b + 1)tbΓ(a + 1) − 327510h2bΓ(b)Γ(2b + 1)tbΓ(a + 1),

+ 317790h2bΓ(b)Γ(2b + 1)t(b+a) − 635580h2bΓ(b)Γ(2b + 1)t(b+a),

tanh

(
1

3
x

)2

− 282480h2bΓ(b)Γ(2b + 1)t(b+a) tanh

(
1

3
x

)3

+ 141240h2b,

tanh

(
1

3
x

)4

+ · · ·

...

(4.16)
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Figure 2: Explicit numerical solutions with h = −1, α = β = 1.
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Figure 3: Explicit numerical solutions with h = −1, α = 1/4, and β = 1/3.

The absolute error of the 6th-order HAM and exact solution with h = −1 as shown in

Figure 5. Also the absolute errors |u(t) − φ6(t)| have been calculated for in Table 2. Figure 6

shows the numerical solutions of the nonlinear coupled Burgers equations with parameters

derivative with h = −1, α = β = 1. Figure 7 shows the explicit numerical solutions with h = −1,

α = 1/2, and β = 2/3 at t = 0.002.

As suggested by Liao [7], the appropriate region for h is a horizontal line segment.

We can investigate the influence of h on the convergence of the solution series gevin by the

HAM, by plotting its curve versus h, as shown in Figure 8.

Remark 4.2. This example has been solved using homotopy perturbation method [21]. The

graphs drawn and tables by h = −1 are in excellent agreement with those graphs drawn with

HPM.

5. Conclusion

In this paper, based on the symbolic computation MATLAB, the HAM is directly extended to

derive explicit and numerical solutions of the nonlinear coupled equations with parameters
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Figure 4: The h-curves obtained from the 5-order HAM approximate solution.
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Figure 5: The comparison of the 6th-order HAM and exact solution with = −1, α = β = 1, λ = 0.1, b = 1, and
k = 1/3.

derivative. HAM provides us with a convenient way to control the convergence of

approximation series by adapting h, which is a fundamental qualitative difference in analysis

between HAM and other methods. The obtained results demonstrate the reliability of the

HAM and its wider applicability to fractional differential equation. It, therefore, provides

more realistic series solutions that generally converge very rapidly in real physical problems.

MATLAB has been used for computations in this paper.
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Figure 6: Explicit numerical solutions with h = −1, α = β = 1, λ = 0.1, b = 1, and k = 1/3.
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Figure 7: Explicit numerical solutions with h = −1, α = 1/2, β = 2/3, λ = 0.1, b = 1, and k = 1/3.
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Figure 8: The h-curves obtained from the 5-order HAM approximate solution.
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We develop a new application of the Mittag-Leffler Function method that will extend the
application of the method to linear differential equations with fractional order. A new solution
is constructed in power series. The fractional derivatives are described in the Caputo sense. To
illustrate the reliability of the method, some examples are provided. The results reveal that the
technique introduced here is very effective and convenient for solving linear differential equations
of fractional order.

1. Introduction

Fractional differential equations have excited, in recent years, a considerable interest both

in mathematics and in applications. They were used in modeling of many physical and

chemical processes and engineering (see, e.g., [1–6]). In its turn, mathematical aspects of

fractional differential equations and methods of their solutions were discussed by many

authors: the iteration method in [7], the series method in [8], the Fourier transform technique

in [9, 10], special methods for fractional differential equations of rational order or for

equations of special type in [11–16], the Laplace transform technique in [3–6, 16, 17],
and the operational calculus method in [18–23]. Recently, several mathematical methods

including the Adomian decomposition method [18–25], variational iteration method [23–26]
and homotopy perturbation method [27, 28] have been developed to obtain the exact and

approximate analytic solutions. Some of these methods use transformation in order to reduce

equations into simpler equations or systems of equations, and some other methods give the

solution in a series form which converges to the exact solution.

The reason of using fractional order differential (FOD) equations is that FOD equations

are naturally related to systems with memory which exists in most biological systems. Also

they are closely related to fractals which are abundant in biological systems. The results
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derived from the fractional system are of a more general nature. Respectively, solutions to the

fractional diffusion equation spread at a faster rate than the classical diffusion equation and

may exhibit asymmetry. However, the fundamental solutions of these equations still exhibit

useful scaling properties that make them attractive for applications.

The concept of fractional or noninteger order derivation and integration can be traced

back to the genesis of integer order calculus itself [29]. Almost all of the mathematical theory

applicable to the study of noninteger order calculus was developed through the end of the

19th century. However, it is in the past hundred years that the most intriguing leaps in

engineering and scientific application have been found. The calculation techniques in some

cases meet the requirement of physical reality. The use of fractional differentiation for the

mathematical modeling of real-world physical problems has been widespread in recent years,

for example, the modeling of earthquake, the fluid dynamic traffic model with fractional

derivatives, and measurement of viscoelastic material properties. Applications of fractional

derivatives in other fields and related mathematical tools and techniques could be found in

[30–41]. In fact, real-world processes generally or most likely are fractional order systems.

The derivatives are understood in the Caputo sense. The general response expression

contains a parameter describing the order of the fractional derivative that can be varied to

obtain various responses.

2. Fractional Calculus

There are several approaches to the generalization of the notion of differentiation to fractional

orders, for example, the Riemann-Liouville, Grünwald-Letnikov, Caputo, and generalized

functions approach [42]. The Riemann-Liouville fractional derivative is mostly used by

mathematicians but this approach is not suitable for real-world physical problems since

it requires the definition of fractional order initial conditions, which have no physically

meaningful explanation yet. Caputo introduced an alternative definition, which has the

advantage of defining integer order initial conditions for fractional order differential

equations [42]. Unlike the Riemann-Liouville approach, which derives its definition from

repeated integration, the Grünwald-Letnikov formulation approaches the problem from the

derivative side. This approach is mostly used in numerical algorithms.

Here, we mention the basic definitions of the Caputo fractional-order integration and

differentiation, which are used in the upcoming paper and play the most important role in

the theory of differential and integral equation of fractional order.

The main advantages of Caputo approach are the initial conditions for fractional

differential equations with the Caputo derivatives taking on the same form as for integer

order differential equations.

Definition 2.1. The fractional derivative of f(x) in the Caputo sense is defined as

Dαf(x) = Im−αDmf(x)

=
1

Γ(m − α)

∫x

0

(x − t)m−α+1f (m)(t)dt
(2.1)

for m − 1 < α ≤ m, m ∈N, x > 0.
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For the Caputo derivative we have DαC = 0, C is constant,

Dαtn =

⎧⎪⎪⎨⎪⎪⎩
0, (n ≤ α − 1),

Γ(n + 1)
Γ(n − α + 1)

tn−α, (n > α − 1).

⎫⎪⎪⎬⎪⎪⎭. (2.2)

Definition 2.2. Form to be the smallest integer that exceeds α, the Caputo fractional derivative

of order α > 0 is defined as

Dαu(x, t) =
∂αu(x, t)
∂tα

=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(m − α)
∫ t

0
(t − τ)m−α+1 ∂

mu(x, τ)
∂τm

dτ, for m − 1 < α < m

∂mu(x, t)
∂tm

, for α = m ∈N

⎫⎪⎪⎬⎪⎪⎭.

(2.3)

3. Analysis of the Method

The Mittag-Leffler (1902–1905) functions Eα and Eα,β [42], defined by the power series

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞∑
k=0

zk

Γ
(
αk + β

) , α > 0, β > 0, (3.1)

have already proved their efficiency as solutions of fractional order differential and integral

equations and thus have become important elements of the fractional calculus theory and

applications.

In this paper, we will explain how to solve some of differential equations with

fractional level through the imposition of the generalized Mittag-Leffler function Eα(z). The

generalized Mittag-Leffler method suggests that the linear term y(x) is decomposed by an

infinite series of components:

y = Eα(axα) =
∞∑
n=0

an
xnα

Γ(nα + 1)
. (3.2)

We will use the following definitions of fractional calculus:

Dαy =
∞∑
n=1

an
x(n−1)α

Γ((n − 1)α + 1)
, (3.3)

D2αy =
∞∑
n=2

an
x(n−2)α

Γ((n − 2)α + 1)
. (3.4)

This is based on the Caputo fractional is derivatives. The convergence of the Mittag Leffler

function discussed in [42].
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4. Applications and Results

In this section, we consider a few examples that demonstrate the performance and efficiency

of the generalized Mittag-Leffler function method for solving linear differential equations

with fractional derivatives.

Example 4.1. Consider the following fractional differential equation [43]:

dαy

dxα
= Ay. (4.1)

By using (3.3) into (4.1) we find

∞∑
n=1

an
x(n−1)α

Γ((n − 1)α + 1)
−A

∞∑
n=0

an
xnα

Γ(nα + 1)
= 0. (4.2)

Combining the alike terms and replacing (n) by (n + 1) in the first sum, we assume the form

∞∑
n=0

an+1 xnα

Γ(nα + 1)
−A

∞∑
n=0

an
xnα

Γ(nα + 1)
= 0,

∞∑
n=0

(
an+1 −Aan

) xnα

Γ(nα + 1)
= 0.

(4.3)

With the coefficient of xnα equal to zero and identifying the coefficients, we obtain recursive

an+1 −Aan = 0 =⇒ an+1 = Aan,

at n = 0, a1 = Aa0 = A,

at n = 1, a2 = Aa1 =⇒ a2 = A2,

at n = 2, a3 = Aa2 =⇒ a3 = A3.

(4.4)

Substituting into (3.2)

y(x) = a0 + a1 xα

Γ(α + 1)
+ a2 x2α

Γ(2α + 1)
+ a3 x3α

Γ(3α + 1)
+ · · · ,

y(x) = 1 +A
xα

Γ(α + 1)
+A2 x2α

Γ(2α + 1)
+A3 x3α

Γ(3α + 1)
+ · · · .

(4.5)

The general solution is

y(x) =
∞∑
n=0

Anxnα

Γ(nα + 1)
. (4.6)
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We can write the general solution in the Mittag-Leffler function form as

y(x) = Eα(Anxα). (4.7)

As α = 1, we have the exact solution:

y(x) =
∞∑
n=0

(Ax)n

Γ(n + 1)
= eAx, (4.8)

which is the exact solution of the standard form.

Example 4.2. Consider the fractional differential equation [44]

d2αy

dx2α
− y = 0. (4.9)

By using (3.2) and (3.4) into (4.9) we find

∞∑
n=2

an
x(n−2)α

Γ((n − 2)α + 1)
−

∞∑
n=0

an
xnα

Γ(nα + 1)
= 0. (4.10)

Combining the alike terms and replacing (n) by (n + 2) in the first sum, we assume the form

∞∑
n=0

an+2 xnα

Γ(nα + 1)
−

∞∑
n=0

an
xnα

Γ(nα + 1)
= 0,

∞∑
n=0

(
an+2 − an

) xnα

Γ(nα + 1)
= 0.

(4.11)

With the Coefficient of xnα equal to zero and identifying the coefficients, we obtain recursive

an+2 = an. (4.12)

Substituting into (3.2), we find that:

y(x) = 1 + a
xα

Γ(α + 1)
+

x2α

Γ(2α + 1)
+ a2 x3α

Γ(3α + 1)
+ · · · . (4.13)

If a = 1, we can write the general solution in the Mittag-Leffler function form as

y(x) =
∞∑
n=0

xα

Γ(nα + 1)
= Eα(xα) (4.14)

which is the exact solution of the linear fractional differential equation (4.9).
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Example 4.3. Consider the fractional differential equation [43]

d2αy

dx2α
+
dαy

dxα
− 2y = 0. (4.15)

By using (3.2) and (3.4) into (4.15) we find

∞∑
n=2

an
x(n−2)α

Γ((n − 2)α + 1)
+

∞∑
n=1

an
x(n−1)α

Γ((n − 1)α + 1)
− 2

∞∑
n=0

an
xnα

Γ(nα + 1)
= 0. (4.16)

Combining the alike terms and replacing (n) by (n + 2) in the first sum, we assume the form

∞∑
n=0

an+2 xnα

Γ(nα + 1)
+

∞∑
n=0

an+1 xnα

Γ(nα + 1)
− 2

∞∑
n=0

an
xnα

Γ(nα + 1)
= 0,

∞∑
n=0

(
an+2 + an+1 − 2an

) xnα

Γ(nα + 1)
= 0

(4.17)

With the coefficient of xnα equal to zero and identifying the coefficients, we obtain recursive

an+2 = 2an − an+1. (4.18)

Substituting into (3.2), we find that:

y(x) = 1 + a
xα

Γ(α + 1)
+ (2 − a) x2α

Γ(2α + 1)
+ (a − 2)

x3α

Γ(3α + 1)
+ · · · . (4.19)

If a = 1, we can write the general solution in the Mittag-Leffler function form as

y(x) =
∞∑
n=0

xα

Γ(nα + 1)
= Eα(xα) (4.20)

which is the solution of the linear fractional differential equation (4.15).

5. Conclusions

A new generalization of the Mittag-Leffler function method has been developed for linear

differential equations with fractional derivatives. The new generalization is based on the

Caputo fractional derivative. It may be concluded that this technique is very powerful and

efficient in finding the analytical solutions for a large class of linear differential equations of

fractional order.
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An explicit numerical method to solve a fractional cable equation which involves two temporal
Riemann-Liouville derivatives is studied. The numerical difference scheme is obtained by
approximating the first-order derivative by a forward difference formula, the Riemann-Liouville
derivatives by the Grünwald-Letnikov formula, and the spatial derivative by a three-point
centered formula. The accuracy, stability, and convergence of the method are considered. The
stability analysis is carried out by means of a kind of von Neumann method adapted to fractional
equations. The convergence analysis is accomplished with a similar procedure. The von-Neumann
stability analysis predicted very accurately the conditions under which the present explicit method
is stable. This was thoroughly checked by means of extensive numerical integrations.

1. Introduction

Fractional calculus is a key tool for solving some relevant scientific problems in physics,

engineering, biology, chemistry, hydrology, and so on [1–6]. A field of research in which

the fractional formalism has been particularly useful is that related to anomalous diffusion

processes [1, 7–13]. This kind of process is singularly abundant and important in biological

media [14–16]. In this context, the electrodiffusion of ions in neurons is an anomalous

diffusion problem to which the fractional calculus has recently been applied. The precise

origin of the anomalous character of this diffusion process is not clear (see [17] and references

therein), but in any case the consideration of anomalous diffusion in the modeling of

electrodiffusion of ions in neurons seems pertinent. This problem has been addressed recently

by Langlands et al. [17, 18]. An equation that plays a key role in their analysis is the following

fractional cable (or telegrapher’s or Cattaneo) equation (model II):

∂u

∂t
=
∂1−γ1

∂t1−γ1

(
K
∂2u

∂x2

)
− μ2 ∂

1−γ2u

∂t1−γ2
, (1.1)
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where

∂γ

∂tγ
f(t) ≡ 1

Γ
(
n − γ

) dn

dτn

∫ t

0

dτ
f(τ)

(t − τ)1+γ−n , (1.2)

with n − 1 < γ < n and n = integer, is the Riemann-Liouville fractional derivative. Here

u is the difference between the membrane potential and the resting membrane potential,

γ1 is the exponent characterizing the anomalous flux of ions along the nerve cell, and γ2 is

the exponent characterizing the anomalous flux across the membrane [17, 18]. Some earlier

fractional cable equations were discussed in [19, 20].
A variety of analytical and numerical methods to solve many classes of fractional

equations have been proposed and studied over the last few years [10, 21–30]. Of the

numerical methods, finite difference methods have been particularly fruitful [31–38]. These

methods can be broadly classified as explicit or implicit [39]. An implicit method for dealing

with (1.1) has recently been considered by Liu et al. [38]. Although implicit methods are

more cumbersome than explicit methods, they usually remain stable over a larger range

of parameters, especially for large timesteps, which makes them particularly suitable for

fractional diffusion problems. Nevertheless, explicit methods have some features that make

them widely appreciated [32, 39]: flexibility, simplicity, small computational demand, and

easy generalization to spatial dimensions higher than one. Unfortunately, they can become

unstable in some cases, so that it is of great importance to determine the conditions under

which these methods are stable. In this paper we will discuss an explicit finite difference

scheme for solving the fractional cable equation, which is close to the methods studied in

[32, 33]. We shall address two main questions: (i) whether this kind of method can cope with

fractional equations involving different fractional derivatives, such as the fractional cable

equation; (ii) whether the von Neumann stability analysis put forward in [32, 34] is suitable

for this kind of equation.

2. The Numerical Method

Henceforth, we will use the notation xj = jΔx, tm = mΔt, and u(xj , tm) = u
(m)
j � U

(m)
j , where

U
(m)
j is the numerical estimate of the exact solution u(x, t) at x = xj and t = tm.

In order to get the numerical difference algorithm, we discretize the continuous

differential and integro-differential operators as follows. For the discretization of the

fractional Riemann-Liouville derivative we use the Grünwald-Letnikov formula

d1−γ

dt1−γ
u(x, t) = Δ1−γ

t u(x, tm) +O(Δt) (2.1)

with

Δα
t f(tm) =

1

(Δt)α
m∑
k=0

ω
(α)
k
f(tm−k), (2.2)

ω
(α)
k

=
(

1 − 1 + α
k

)
ω

(α)
k−1
, (2.3)
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and ω
(α)
0 = 1. These coefficients come from the generating function [40]

(1 − z)α =
∞∑
k=0

ω
(α)
k
zk. (2.4)

To discretize the integer derivatives we use standard formulas: for the second-order spatial

derivative we employ the three-point centered formula

∂2

∂x2
u
(
xj , tm

)
= Δ2

xu
(m)
j +O(Δx)2 (2.5)

with

Δ2
xu

(m)
j =

u
(
xj+1, tm

)
− 2u

(
xj , tm

)
+ u

(
xj−1, tm

)
(Δx)2

, (2.6)

and for the first-order time derivative we use the forward derivative

∂

∂t
u
(
xj , tm

)
= δtum+1

j +O(Δt), (2.7)

where

δtu
m+1
j =

u
(
xj , tm+1

)
− u

(
xj , tm

)
Δt

. (2.8)

Inserting (2.1), (2.5), and (2.7) into (1.1), one gets

δtu
(m+1)
j −KΔ1−γ1

t

(
Δ2
xu

(m)
j

)
+ μ2Δ1−γ2

t u
(m)
j = T(x, t), (2.9)

where, as can easily be proved, the truncating error T(x, t) is

T(x, t) = O(Δt) +O(Δx)2. (2.10)

Neglecting the truncating error we get the finite difference scheme we are seeking:

δtU
(m+1)
j −KΔ1−γ1

t Δ2
xU

(m)
j + μ2Δ1−γ2

t U
(m)
j = 0, (2.11)

that is,

U
(m+1)
j = U(m)

j + S
m∑
k=0

ω
1−γ1

k

(
U

(m−k)
j+1 − 2U

(m−k)
j +U(m−k)

j−1

)
− μ2(Δt)γ2

m∑
k=0

ω
1−γ2

k
U

(m−k)
j , (2.12)
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where

S = K
(Δt)γ1

(Δx)2
. (2.13)

To test this algorithm, we solved (1.1) in the interval −L/2 ≤ x ≤ L/2, with absorbing

boundary conditions, u(x = −L/2, t) = u(x = L/2, t) = 0, and initial condition given by a

Dirac’s delta function centered at x = 0: u(x, 0) = δ(x). The exact solution of this problem for

L → ∞ is [17]

u(x, t) =
1√

4tγ1π

∞∑
k=0

(
−μ2tγ2

)k
k!

H2,0
1,2

⎡⎢⎢⎣ x2

4tγ1

∣∣∣∣∣∣∣∣
(

1 − γ1

2
+ γ2k, γ1

)
(0, 1),

(
1

2
+ k, 1

)
⎤⎥⎥⎦, (2.14)

where H denotes the Fox H function [10, 41]. In our numerical procedure, the exact initial

condition u(x, 0) = δ(x) is approximated by

u
(
xj , 0

)
=

⎧⎨⎩
1

Δx
, j = 0,

0, j /= 0.
(2.15)

The explicit difference scheme (2.12) is tested by comparing the analytical solution with the

numerical solution for several cases of the problem described following (2.13) with different

values of γ1 and γ2. We have computed the analytical solution by means of (2.14) truncating

the series at k = 20. The corresponding Fox H function was evaluated by means of the series

expansion described in [10, 41] truncating the infinite series after the first 50 terms. In Figures

1 and 2 we show the analytical and numerical solution for two values of γ1 and γ2 at x = 0 and

x = 0.5. The differences between the exact and the numerical solution are shown in Figures 3

and 4. One sees that, except for very short times, the agreement is quite good. The large value

of the error for small times is due in part to the approximation of the Dirac’s delta function at

x = 0 by (2.15). This is clearly appreciated when noticing the quite different scales of Figures

3 and 4: the error is much smaller for x = 0.5 than for x = 0. For the cases with γ1 = 1/2 we

used a smaller value of Δt and, simultaneously, a larger value of Δx than for the cases with

γ1 = 1 in order to keep the numerical scheme stable. This issue will be discussed in Section 3.

3. Stability

As usual for explicit methods, the present explicit difference scheme (2.12) is not

unconditionally stable, that is, for any given set of values of γ1, γ2, μ, and K there are choices

of Δx and Δt for which the method is unstable. Therefore, it is important to determine the

conditions under which the method is stable. To this end, here we shall employ the fractional

von Neumann stability analysis (or Fourier analysis) put forward in [32] (see also [33–35]).
The question we address is to what extent this procedure is valid for fractional diffusion

equations that involve fractional derivatives of different order.

Proceeding as [32], we start by recognizing that the solution of our problem can be

written as the linear combination of subdiffusive modes, u
(m)
j =

∑
q ζ

(m)
q eiqjΔx, where the
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Figure 1: Numerical solution at the mid-point x = 0 (hollow symbols) and x = 0.5 (filled symbols) of the
fractional cable equation for γ1 = 1 and γ2 = 1 (squares) and γ2 = 1/2 (circles) with Δx = 1/20, Δt = 10−4,
K = μ = 1, and L = 5. Lines are the exact solutions given by (2.14).
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Figure 2: Numerical solution at the mid-point x = 0 (hollow symbols) and x = 0.5 (filled symbols) of the
fractional cable equation for γ1 = 1/2 and γ2 = 1 (squares) and γ2 = 1/2 (circles) with Δx = 1/10, Δt = 10−5,
K = μ = 1, and L = 5. Lines are the exact solutions given by (2.14).

sum is over all the wave numbers q supported by the lattice. Therefore, following the von

Neumann ideas, we reduce the problem of analyzing the stability of the solution to the

problem of analyzing the stability of a single generic subdiffusion mode, ζ(m)eiqjΔx. Inserting

this expression into (2.12) one gets

ζ(m+1) = ζ(m) + S
m∑
k=0

ω
(1−γ1)
k

(
eiqΔx − 2 + e−iqΔx

)
ζ(m−k) − μ2(Δt)γ2

m∑
k=0

ω
(1−γ2)
k

ζ(m−k). (3.1)

The stability of the mode is determined by the behavior of ζ(m). Writing

ζ(m+1) = ξζ(m) (3.2)
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Figure 3: Absolute error |U(m)
j − u(m)

j | of the numerical method for the problems considered in Figures 1

and 2 at x = 0. Squares: γ2 = 1; circles: γ2 = 1/2; hollow symbols: γ1 = 1; filled symbols: γ1 = 1/2.
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Figure 4: ErrorU
(m)
j −u(m)

j of the numerical method for the problem considered in Figures 1 and 2 at x = 0.5.

Squares: γ2 = 1; circles: γ2 = 1/2; hollow symbols: γ1 = 1; filled symbols: γ1 = 1/2.

and assuming that the amplification factor ξ of the subdiffusive mode is independent of time,

we get

ξ = 1 + S
m∑
k=0

ω
(1−γ1)
k

(
eiqΔx − 2 + e−iqΔx

)
ξ−k − μ2(Δt)γ2

m∑
k=0

ω
(1−γ2)
k

ξ−k. (3.3)

If |ξ| > 1 for some q, the temporal factor of the solution grows to infinity [c.f., (3.2)], and

the mode is unstable. Considering the extreme value ξ = −1, one gets from (3.3) that the

numerical method is stable if this inequality holds:

S ≤ Sm× =
−2 + μ2(Δt)γ2

∑m
k=0 ω

(1−γ2)
k

(−1)k

−4
∑m

k=0 ω
(1−γ1)
k

(−1)k
, (3.4)
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where

S = S sin2

(
qΔx

2

)
. (3.5)

If one defines S× = limm→∞S
m
× , one gets

S ≤ S× =
−2 + μ2(Δt)γ2

∑∞
k=0 ω

(1−γ2)
k

(−1)k

−4
∑∞

k=0 ω
1−γ1

k
(−1)k

. (3.6)

But from (2.4) with z = −1 one sees that
∑∞

k=1(−1)kω(1−γ)
k

= 21−γ , so that

S× =
2γ2 − μ2(Δt)γ2

22+γ2−γ1
. (3.7)

Therefore, because S ≤ S, we find that a sufficient condition for the present method to be

stable is that S ≤ S×. In Figures 5 and 6 we show two representative examples of the problem

considered in Figure 2 but for two values of S, respectively, larger and smaller than the

stability bound provided by (3.7). One sees that the value of S that one chooses is crucial:

when S is smaller than S× one is inside the stable region and gets a sensible numerical solution

(Figure 5); otherwise one gets an evidently unstable and nonsensical solution (Figure 6).

4. Numerical Check of the Stability Analysis

In this section we describe a comprehensive check of the validity of our stability analysis

by using many different values of the parameters γ1, γ2, Δt, and Δx and testing whether

the stability of the numerical method is as predicted by (3.7). Without loss of generality, we

assume μ = K = 1 in all cases. We proceed in the following way. First, we choose a set of

values of γ1, γ2, Δx, and S and integrate the corresponding fractional cable equation. If

∣∣∣Um−1
j −Um

j

∣∣∣ > λ (4.1)

for λ = 10 within the first 1000 integrations, then we say the method is unstable; otherwise,

we label the method as stable. We generated Figure 7 by starting the integration for values

of S well below the theoretical stability limit given by (3.7) and kept increasing its value by

0.001 until condition (4.1) was first reached. The last value for which the method was stable

is recorded and plotted in Figure 7. The limit value λ = 10 is arbitrary, but choosing any other

reasonable value does not significantly change these plots.

5. Convergence Analysis

In this section we show that the present numerical method is convergent, that is, that the

numerical solution converges towards the exact solution when the size of the spatiotemporal
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Figure 5: Exact solution (lines) and numerical solution (symbols) provided by our method for the
fractional cable equation with γ1 = 0.5 and γ2 = 0.5 for different numbers of timesteps when Δx = 1/10,

Δt = 10−5, K = μ = 1, L = 5, and S = (Δt)γ1/(Δx)2 = 0.316. This case is inside the stability region because
S is smaller than the stability limit S× = (2γ2 − μ2(Δt)γ2)/(22+γ2−γ1) � 0.352 . . . provided by (3.7). The inset
shows the results on logarithmic scale.
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Figure 6: Numerical solution (circles) provided by our explicit method for the fractional cable equation
with γ1 = 0.5 and γ2 = 0.5 after 100 timesteps when Δx = 1/10, Δt = 1.3 × 10−5, K = μ = 1, L = 5, and

S = (Δt)γ/(Δx)2 = 0.36. Note that this value is larger than the stability limit S× = (2γ2−μ2(Δt)γ2)/(22+γ2−γ1) �
0.352 . . . provided by (3.7). The broken line is to guide the eye.

discretization goes to zero. Let us define e
(k)
j as the difference between the exact and

numerical solutions at the point (xj , tm): e
(k)
j = u

(k)
j − U

(k)
j . Taking into account (2.9) and

(2.11), one gets the equation that describes how this difference evolves:

e
(m+1)
j − e(m)

j − S
m∑
k=0

ω
(1−γ1)
k

(
e
(m−k)
j+1 − 2e

(m−k)
j + e(m−k)

j−1

)
+ μ2(Δt)γ2

m∑
k=0

ω
(1−γ2)
k

e
(m−k)
j

= T
(
xj , tk

)
≡ T (m)

j .

(5.1)
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Figure 7: Stability bound S versus γ1 for several values of γ2 where Δx = 1/20, and K = μ = 1. Symbols are
numerical estimates. Lines correspond to the theoretical prediction (3.7).

As we did in the previous section for U
(k)
j , we write e

(k)
j and T

(m)
j as a combination of (sub)

diffusion modes, e
(k)
j =

∑
q ζ

(k)
q eiqjΔx and T

(m)
j =

∑
q χ

(m)
q eiqjΔx, and analyze the convergence

of a single but generic q-mode [36, 39, 42]. Therefore, replacing e
(k)
j by ζ(k)eiqjΔx and T

(m)
j by

χ(m)eiqjΔx in (5.1), we get

ζ(m+1) = ζ(m) + S
m∑
k=0

ω
(1−γ1)
k

ζ(m−k) + μ2(Δt)γ2

m∑
k=0

ω
(1−γ2)
k

ζ(m−k) + χ(m). (5.2)

Now we will prove by induction that |ζ(m)| = O(Δt) + O(Δx)2 for all m. To start,

U
(0)
j satisfies the initial condition by construction, so that e

(0)
j = 0. This means that ζ(0) = 0.

Therefore, from (5.2) one gets ζ(1) = χ(0). But from (2.10) one knows that |T (0)
j | = |χ(0)| =

O(Δt) + O(Δx)2, so that |ζ(1)| = O(Δt) + O(Δx)2. Let us now assume that |ζ(k)| = O(Δt) +
O(Δx)2 holds for k = 1, . . . , m. Then we will prove that |ζ(m+1)| = O(Δt) +O(Δx)2. From (5.2)
we obtain

∣∣∣ζ(m+1)
∣∣∣ ≤ ∣∣∣χ(m)

∣∣∣ + ∣∣∣ζ(m)
∣∣∣ + S∣∣∣ζ{m}

∣∣∣ m∑
k=0

∣∣∣ω(1−γ1)
k

∣∣∣ − μ2(Δt)γ2

∣∣∣ζ{m}
∣∣∣ m∑
k=0

∣∣∣ω(1−γ2)
k

∣∣∣, (5.3)

where |ζ{m}| is the maximum value of |ζ(k)| for k = 0, . . . , m. Taking into account (2.4), using

the value z = 1, and because ω
(α)
0 = 1, it is easy to see that

∑∞
k=1 ω

(α)
k

= −1 or, equivalently,∑∞
k=1 |ω

(α)
k

| = 1 since ω
(α)
k

< 0 for k ≥ 1 (see (2.3)). Therefore
∑m

k=0 |ω
(1−γ)
k

| is bounded (in
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fact, it is smaller than 2). Using this result in (5.3), together with |ζ(k)| ≤ C(Δt + (Δx)2) and

|χ(k)| ≤ C(Δt + (Δx)2), we find that

∣∣∣ζ(m+1)
∣∣∣ ≤ C(

Δt + (Δx)2
)
. (5.4)

Therefore the amplitude of the subdiffusive modes goes to zero when the spatiotemporal

mesh goes to zero. Employing the Parseval relation, this means that the norm of the error

‖e(k)‖2 ≡ ∑
j |e

(k)
j |

2
=

∑
q |ζ

(k)
q |

2
goes to zero when Δt and Δx go to zero. This is what we

aimed to prove.

6. Conclusions

An explicit method for solving a kind of fractional diffusion equation that involves

several fractional Riemann-Liouville derivatives, which are approximated by means of the

Grünwald-Letnikov formula, has been considered. The method was used to solve a class

of equations of this type (fractional cable equations) with free boundary conditions, Dirac’s

delta initial condition, and different fractional exponents. The error of the numerical method

is compatible with the truncating error, which is of order O(Δt) +O(Δx)2. It was also proved

that the method is convergent. Besides, it was also found that a fractional von-Neumann

stability analysis, which provides very precise stability conditions for standard fractional

diffusion equations, leads also to a very accurate estimate of the stability conditions for cable

equations.
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We translate into the language of semi-group theory Bismut’s Calculus on boundary processes
(Bismut (1983), Lèandre (1989)) which gives regularity result on the heat kernel associated with
fractional powers of degenerated Laplacian. We translate into the language of semi-group theory
the marriage of Bismut (1983) between the Malliavin Calculus of Bismut type on the underlying
diffusion process and the Malliavin Calculus of Bismut type on the subordinator which is a jump
process.

1. Introduction

Let X1
0 , X

1
1 , . . . , X

m
1 , X

2
0 , X

2
1 , . . . , X

m
2 be 2m + 2 vector fields on R

d with bounded derivatives at

each order. Let

L
1 =

∂

∂s
+X1

0 +
1

2

∑
i>0

(
X1
i

)2

(1.1)

be an Hoermander’s type operator on R
1+d. Let

L
2 =

∂

∂s
+X2

0 +
1

2

∑
i>0

(
X2
i

)2

(1.2)

be a second Hoermander’s operator on R
1+d. Bismut [1] considers the generator

A = −1

2

√
−2L1 − 1

2

√
−2L2 (1.3)
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and the Markov semi-group exp[tA]. This semi-group has a probabilistic representation. We

consider a Brownian motion t → zt independent of the others Brownian motions Bit. Bismut

introduced the solution of the stochastic differential equation starting at x in Stratonovitch

sense:

dxt(x) = Izt<0

(
X1

0(xt(x))dt +
∑
i>0

X1
i (xt(x))dB

i
t

)

+ Izt>0

(
X2

0(xt(x))dt +
∑
i>0

X2
i (xt(x))dB

i
t

)
,

(1.4)

where t → Bit are m independent Brownian motions.

Let us introduce the local time t → Lt associated with t → zt and its right inverse

t → At (see [2, 3]). Then,

exp[tA]f(0, x) = E
[
f(At, xAt

(x))
]
. (1.5)

Such operator is classically related to the Dirichlet Problem [3].
Classically [4],

exp
[
tL1

]
f(x) = E

[
f
(
x1
t (x)

)]
, (1.6)

where x1
t (x) is the solution of the Stratonovitch differential equation starting at x:

dx1
t (x) = X

1
0

(
x1
t (x)

)
dt +

∑
X1
i

(
x1
t (x)

)
dBit, (1.7)

The question is as following: is there an heat-kernel associated with the semi-group exp[tL1]?
This means that

exp
[
tL1

]
f(x) =

∫
Rd

f
(
y
)
pt

(
x, y

)
dy. (1.8)

There are several approaches in analysis to solve this problem, either by using tools

of microlocal analysis or tools of harmonic analysis. Malliavin [5] uses the probabilistic

representation of the semi-group. Malliavin uses a heavy apparatus of functional analysis

(number operator on Fock space or equivalently Ornstein-Uhlenbeck operator on the Wiener

space, Sobolev spaces on the Wiener space) in order to solve this problem.

Bismut [6] avoids using this machinery to solve this hypoellipticity problem. In

particular, Bismut’s approach can be adapted immediately to the case of the Poisson process

[7]. The main difficulty to treat in the case of a Poisson process is the following: in general the

solution of a stochastic differential equation with jumps is not a diffeomorphism when the

starting point is moving (see [8–10]).
The main remark of Bismut in [1] is that if we consider the jump process t → x1

At
(x),

then it is a diffeomorphism almost surely in x. So, Bismut mixed the tools of the Malliavin
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Calculus for diffusion (on the process t → x1
t (x)) and the tools of the Malliavin Calculus for

Poisson process (on the jump process t → At) in order to show that this is the problem if

E
[
f(At, xAt

(x))
]
=

∫
R1+d

qt
(
s, y

)
f
(
s, y

)
dsdy. (1.9)

Developments on Bismut’s idea was performed by Léandre in [9, 11]. Let us remark that this

problem is related to study the regularity of the Dirichlet problem (see [1, page 598]) (see

[12–14] for related works).
Recently, we have translated into the language of semi-group theory the Malliavin

Calculus of Bismut type for diffusion [15]. We have translated in semi-group theory a lot

of tools on Poisson processes [16–22]. Especially, we have translated the Malliavin Calculus

of Bismut type for Poisson process in semi-group theory in [17]. It should be tempting to

translate in semi-group theory Bismut’s Calculus on boundary process. It is the object of this

work.

On the general problematic on this work, we refer to the review papers of Léandre

[23–25]. It enters in the general program to introduce stochastic analysis tools in the theory

of partial differential equation (see [26–28]).

2. Statements of the Theorems

Let us recall some basis on the study of fractional powers of operators [29]. Let L be a

generator of a Markovian semi-group Ps. Then,

−
√
−L = C

∫∞

0

s−3/2(Ps − I)ds. (2.1)

The results of this paper could be extended to generators of the type

A =
∫∞

0

g(s)(Ps − I)ds, (2.2)

where
∫∞

0
g(t) ∧ 1dt < ∞ and g ≥ 0, but we have chosen the operator of the type (1.3) to be

more closely related to the original intuition on Bismut’s Calculus on boundary process. Let

be Ed = R
1+d×Gd×Md where Gd is the space of invertible matrices on R

d and Md the space of

symmetric matrices on R
d. (s, x,U, V ) is the generic element of Ed. V is called the Malliavin

matrix.

On Ed, we consider the vector fields:

X̂1
i =

(
0, Xi,DX

1
i (x)U, 0

)
,

Ŷ 1 =

(
0, 0, 0,

m∑
i=1

〈
U−1Xi, ·

〉2
)
.

(2.3)
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We consider the Malliavin generator L̂
1 on Ed:

L̂1 =
∂

∂s
+ X̂1

0 +
1

2

∑
i>0

(
X̂1
i

)2
+ Ŷ 1. (2.4)

We consider the Malliavin semi-group P̂ 1
t associated and

√
−L̂1.

We perform the same algebraic considerations on L
2. We get L̂2, P̂ 2

t , and
√
−L̂2. Let us

consider the total generator

Â = −
√
−L̂1 −

√
−L̂2 (2.5)

and the Malliavin semi-group exp[tÂ].
We get a theorem which enters in the framework of the Malliavin Calculus for heat-

kernel.

Theorem 2.1. Let one suppose that the Malliavin condition in x is checked:

exp
[
tÂ

][
detV −p](0, x, I, 0) <∞ (2.6)

holds for all p, then

exp[tA]f(0, x) =
∫

R1+d
f
(
s, y

)
qt

(
s, y

)
dsdy, (2.7)

where qt(s, y) is the density of a probability measure on R
1+d.

Theorem 2.2. If the quadratic form

∑
i>0

〈
X1
i (x), ·

〉2
+

∑
i>0

〈
X2
i (x), ·

〉2

(2.8)

is invertible in x, then the Malliavin condition holds in x.

Remark 2.3. We give simple statements to simplify the exposition. It should be possible by the

method of this paper to translate the results of [9, part III], got by using stochastic analysis as

a tool.

3. Integration by Parts on the Underlying Diffusion

We consider the vector fields on R
1+d+1,

X
j,1

i,s,t =
(

0, X
j

i (x), Z
j

i,s,t

)
, (3.1)
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where Z
j

i,s,t = 〈φ(x), hjs,t〉i (φ(x) is a convenient matrix on R
m which depends smoothly on x

and whose derivatives at each order are bounded. (s, t) → h
j

s,t does not depend on x, and

h
j

s,t belong to R
m). Let f̃ be a smooth function on R

1+d+1, D̃f̃ denotes its gradient, and D̃2f̃

denotes its Hessian.

We consider the generator L
j,1

s,t acting on smooth functions on R
1+d+1,

L
j,1

s,t f̃ =
∂

∂s
f̃ +

〈
X
j

0(x), D̃f̃
〉
+

1

2

∑
i>0

〈
DX

j

i (x)X
j

i (x), D̃f̃
〉

+
1

2

∑
i>0

〈
X
j,1

i,s,t, D̃
2f̃ , X

j,1

i,s,t

〉
.

(3.2)

In (3.2), the generator is written under Itô’s form. It generates a time inhomogeneous in the

parameter s semi-group P
j,1

s,t . We can consider

−
√
−L

j,1

·,t = C
∫∞

0

s−3/2
(
P
j,1

s,t − I

)
ds. (3.3)

We put

A
1
t = −

√
−L

j,1

·,t −
√
−L

j,2

·,t
. (3.4)

It generates a semi-group P 1
t .

Let us consider the Hoermander’s type generator associated with the smooth Lipschitz

vector fields on R
1+d+d((s, x,U) on R

1+d+d):

X
j,2

i =
(

0, X
j

i , DX
j

iU
)
,

Y
j,2

0,s,t =
(

0, 0,
∑

X
j

i (x)Z
j

i,s,t

)
=

(
0, 0, Y

j

i,s,t

)
,

L
j,2

s,t = X
j,2

0 +
1

2

∑
i>1

(
X
j,2

i

)2
+ Yj,2

0,s,t.

(3.5)

We consider the heat semi-group associated with L
j,2

s,t

∂

∂s
P
j,2

s,t f̃ = L
j,2

s,tP
j,2

s,t f̃ . (3.6)

Let us recall [15, Theorem 2.2] that

P
j,1

s,t

[
uf

]
(s0, x0, 0) = P

j,2

s,t

[〈
Df,U

〉]
(s0, x0, 0), (3.7)



6 International Journal of Differential Equations

where f depends only on (s, x). In the left-hand side of (3.7), we apply the enlarged semi-

group to the test function (s, x, u) → f(s, x)u and in the right-hand side we apply the semi-

group to the test function (s, x,U) → 〈Df,U〉. u belongs to R and U belongs to R
d. From

this, we deduce the following.

Lemma 3.1. One has the relation

−L
j,1

·,t
[
uf

]
(s0, x0, 0) = −L

j,2

·,t
[〈
Df,U

〉]
(s0, x0, 0). (3.8)

Let us consider the semi-group P 2
t associated with

A
2
t = −

√
−L

1,2
·,t −

√
−L

2,2
·,t . (3.9)

We get, with the same notations for (s, x, u,U) the following.

Theorem 3.2. For f bounded continuous with compact support in (s, x), one has the following
relation:

P 2
t

[〈
Df,U

〉]
(s0, x0, 0) = P 1

t

[
fu

]
(s0, x0, 0). (3.10)

Proof. For the integrability conditions, we refer to the appendix.

We remark that ∂/∂u commute with A
1
t , therefore with P 1

t . We deduce that

P 1
t

[
fu

]
(s0, x0, u0) = u0 exp[tA]

[
f
]
(s0, x0) + P 1

t

[
fu

]
(s0, x0, 0). (3.11)

By the method of variation of constants,

P 1
t

[
fu

]
(s0, x0, 0) =

∫ t

0

exp[(t − s)A]
[
A

1
s

[
u exp[sA]

[
f
]
(·, ·, 0)

]]
(s0, x0)ds. (3.12)

In order to show that, we follow the lines of (2.17) and (2.18) in [15]. We apply A
1
t to (3.11).

By Lemma 3.1,

A
1
s

[
u exp[sA]

[
f
]
(·, ·)

]
(s1, x1, 0) = A

2
s

[〈
D

(
exp[sA]

)
, U

〉]
(s1, x1, 0). (3.13)

Let us consider the vector fields on R
1+d × Gd,

X
j,3

i =
(

0, X
j

i , DX
j

iU
)
. (3.14)

We consider the Hoermander’s type operator associated with these vector fields:

L
j,3 = Xj,3

0 +
1

2

∑
i>0

(
X
j,3

i

)2
. (3.15)
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We consider the generator

A
3
t = −

√
−L

1,3
s,t −

√
−L

2,3
s,t
. (3.16)

It generates a semi-group P 3
t . By lemma 3.2 of [15], we have

D exp[sA]
[
f
]
(s1, x1) = P 3

s

[
DfV

]
(s1, x1, I). (3.17)

By [15, Equation (3.18)],

P
j,2

s,t

[
P 3
t

[
DfU

]
(·, I)V

]
(s1, x1, 0) =

∑
i

∫ s

0

P
j

s−v,t

[∑
i

〈
Y
j

i,v,t, P
j,3

v,t

[
P 3
t

[
DfU

]
(·, I)

]〉]
(s1, x1, 0).

(3.18)

In [15, Equation (3.18)], we consider the semi-group P
′
t instead of the semi-group P

j,2

s,t and the

test function Df instead as of the test function P 3
t [DfU](·, I) here. Y

j

i,v,t is considered as an

element of R and not as a one-order differential operator:

∂

∂s
P
j,3

s,t f̃ = L
j,3

s,tP
j,3

s,t f̃ . (3.19)

Therefore,

A
2
t

[
P 3
t

[
DfV

]
(·, I)V

]
(s1, x1, 0)

=
∑
i,j

C

∫∞

0

s−3/2

∫ s

0

P
j

s−v,t

[〈∑
i

Y
j

i,v,t, P
j,3

v,t

[
P 3
t

[
DfU

]
(·, I)

]〉]
(s1, x1, 0)dv ds.

(3.20)

We write

A
2
t = A

3
t + Ã

3
t , (3.21)

where

Ã3
t

[
fU

]
(s0, x0, U0) =

∑
j

C

∫∞

0

s−3/2
(
P
j,2

s,t − P
j,3

s,t

)[
fU

]
(s0, x0, U0)ds. (3.22)

The Volterra expansion (see [15, Equation (3.17)]) if it converges gives the following formula:

P
j,2

s,t

[
fU

]
(s0, x0, U0) =

∑∫
0<s1<s2<···<sn<t

ds1 · · ·dsnPj,3s1

∑
Y
j

i,s1,t
· · ·Pj,3sn−sn−1

×
∑

Y
j

i,sn,t
· · ·Pj,3t−sn

[
fU

]
(s0, x0, U0).

(3.23)
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But u0 → P
j,3

s,t [fU](s0, x0, U0) is linear in u0. Therefore:

P
j,2

s,t

[
fU

]
(s0, x0, U0) = P

j,3

s,t

[
fU

]
(s0, x0, U0) +

∫s

0

P
j
v

〈∑
i

Y
j

i,v,t, P
j,3

s−v,t
[
fU

]〉
(s0, x0, U0)dv.

(3.24)

In this last formula, Y
j

i,s,t are considered as differential operators.

Therefore, Ã3
t [fU](s0, x0, U0) does not depend on U0 and is equal to

∑
i,j

C

∫∞

0

s−3/2

∫ s

0

P
j
v

〈∑
i

Y
j

i,v,t, P
j,3

s−v,t
[
fU

]
(s0, x0, I)

〉
dsdv, (3.25)

where Y
j

i,s,t are considered as elements of R
d. We deduce as in [15, Equation (3.17)],

P 2
t

[
fU

]
(s0, x0, 0) =

∫ t

0

exp[(t − s)A]Ã3
sP

3
s

[
fU

]
(s0, x0, 0)ds. (3.26)

But U0 → P 3
s [fU](s0, x0, U0) is linear. Therefore,

Ã3
t P

3
t

[
fU

]
(s0, x0, 0) =

∑
i,j

C

∫∞

0

s−3/2

∫s

0

P
j
v

〈∑
i

Y
j

i,v,t, P
j,3

s−v,t

[
P 3
t

[
fU

]]
(s0, x0, I)

〉
dsdv.

(3.27)

It remains to replace f by Df in this last equation and to compare (3.26) with (3.13) and

(3.20).

We consider the Malliavin generator Â. We can perform the same algebraic

construction as in Theorem 3.2. We get two semi-groups P̂ 2
t and P̂ 1

t . Ŷ
j

i,s,t and Ẑ
j

i,s,t are smooth

with bounded derivatives in x̂ = (x,U,U−1, V ). We get by the same procedure the following.

Theorem 3.3. If f̂ is bounded with bounded derivatives and with compact support in s, then one gets

P̂ 2
t

[〈
Df̂, Û

〉]
(s0, x̂, 0) = P̂ 1

t

[
f̂ û

]
(s0, x̂, 0), (3.28)

where one take does not derivative in the direction of s in Df̂ .

We can perform the same improvements as in [15, page 512]. We define on R
d × R

d1 ×
· · · × R

dk some vectors fields:

X
j,tot

i =
(
X
j,1

i (x1), . . . , X
j,l

i (x1, . . . , xl), X
j,k

i (x1, . . . , xk)
)
, (3.29)
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where

X
j,l

i

(
x1, . . . , xl

)
= Xj,l

1,i

(
x1, . . . , xl−1

)
xl

∂

∂xl
+Xl

2,i

(
x1, . . . , xl

) ∂

∂xl
+Xl

3,i

(
x1, . . . , xl−1

)
(3.30)

where X
j,l

1,i, X
j,l

2,i have derivatives bounded at each order and X
j,l

3,i has derivative with

polynomial growth.

We can consider the generator Â
tot associated with these vector fields and perform the

same algebraic computations as in Theorem 3.2. We get two semi-groups P̂ 2,tot
t and P̂ 1,tot

t · Ŷ j

i,s,t

and Ẑ
j

i,s,t are smooth with bounded derivatives in x̂ = (x,U,U−1, V ). We get by the same

procedure the following.

Theorem 3.4. If f̂ tot is bounded with bounded derivatives and with compact support in s, then one
gets

P̂ 2,tot
t

[〈
Df̂ tot, Û

〉](
s0, x̂

tot, 0
)
= P̂ 1,tot

t

[
f̂ totû

](
s0, x̂

tot, 0
)
, (3.31)

where Df̂ tot does not include derivative in the direction of s.

We refer to the appendix for the proof and the subsequent estimates.

Remark 3.5. Let us show from where come these identities, by using (1.4): we consider a

time interval [At−, At]. On this random time interval, we do the following translation on the

leading Brownian motion Bis:

(i) if zs > 0 on this time interval, then dBis is transformed in dBis + λ〈φ(xs), h2
s,t〉ids for

a small parameter λ,

(ii) if zs < 0 on this time interval, then dBis is transformed in dBis + λ〈φ(xs), h1
s,t〉ids for

a small parameter λ.

According to the fact that f has compact support (this means that we consider

bounded values of At), the transformed Brownian motion has an equivalent law through

the Girsanov exponential to the original Brownian motions. The term in u in Theorem 3.2

come that from the fact we take the derivative in λ = 0 of the Girsanov exponential. When

we do this transformation, we get a random process xλt (x). Derivation of it in λ = 0 is done

classically according to the stochastic flow theorem, which leads to the study of generators of

the type L
j,2

s,t and of the type L
j,3.

4. Integration by Parts on the Subordinator

Let us consider diffusion type generator of the previous part:

L = Y0 +
1

2

∑
Y 2
i ,

L

√
t =

(√
t
)2
Y0 +

1

2

∑
i>0

(√
tYi

)2
.

(4.1)
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Let us consider the semi-group

∂

∂t
Pt = LPt (4.2)

and the semi-group

∂

∂s
P
√
t

s = L

√
tP

√
t

s . (4.3)

We have classically

Pt = P
√
t

1 , (4.4)

where the smooth vector fields are Lipschitz.

Therefore, we can write

−
√
−L = C

∫∞

0

s−3/2
(
P
√
s

1 − I

)
ds. (4.5)

We consider a diffeomorphsim fλ(s) of [0,∞[ with bounded derivative of first order in λ

equal to s if s < ε and equals to s if s > 2 (we suppose λ small). We can write

√
−Aλ = C

∫∞

0

(
fλ(s))

−3/2P

√
fλ(s)

1 − s−3/2
I

)
ds. (4.6)

We do this operation on the two operators on R
1+d giving A. We get a generator A

λ.

According the line of stochastic analysis, we consider a generator A
λ,1 on R

1+d+1. If L
1

is a generator on R
1+d with associated semi-group Ps, then we consider A

λ,1 the generator on

R
1+d+1,

A
λ,1f(s0, x0, u0) =

∑
j

C

∫∞

0

(
fλ(s)−3/2

[
P
j,
√
fλ(s)

1 f(s0, x0, u0Jλ(s))
]
− s−3/2f(s0, x0, u0)

)
ds,

(4.7)

where Jλ(s) is the Jacobian of the transformation s → fλ(s). By doing this procedure in (1.3),
we deduce a global generator A

λ,1 and a semi-group Pλ,1t associated with it.

It is not clear that Pλ,1t is a Markovian semi-group. We decompose

A
λ,1 = A

λ,1,ε + A
λ,1,εc , (4.8)

where

A
λ,1,εf(s0, x0, u0) =

∑
j

C

∫ε

0

(
s−3/2P

j,
√
s

1 f(s0, x0, u0) − s−3/2f(s0, x0, u0)
)
ds. (4.9)
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A
λ,1,ε generates a Markovian semi-group Pλ,1,εt . But A

λ,1,εc is a bounded operator on the set

of bounded continuous functions on R
1+d+1 endowed with the uniform norm. The Volterra

expansion converges on this set:

Pλ,1t f(s0, x0, u0) = P
λ,1,ε
t f(s0, x0, u0) +

∑
n

∫
0<s1<···<sn<t

Pλ,1,εs1
A
λ,1,εcPλ,1,εs2−s1

· · ·Aλ,1,εcPλ,1,εt−sn ds1 · · ·dsn.

(4.10)

Theorem 4.1 (Girsanov). For f with compact support in (s, x), one has

Pλ,1t

[
uf

]
(s0, x0, 1) = exp[tA]

[
f
]
(s0, x0). (4.11)

Proof. By linearity,

Pλ,1t

[
uf

]
(s0, x0, u0) = u0P

λ,1
t

[
uf

]
(s0, x0, 1). (4.12)

But by an elementary change of variable,

A
λ,1

[
uPλ,1t

[
uf

]
(·, ·, 1)

]
= A

[
Pλ,1t

[
uf

]
(·, ·, 1)

]
. (4.13)

The result holds by the unicity of the solution of the parabolic equation associated with A. To

state the integrability of u, we refer to [16].

Remark 4.2. Let us show from where this formula comes. In the previous part, we have done

a perturbation of the leading Brownian motion Bit. Here, we do a perturbation of ΔAs into

fλ(ΔAs) = ΔAλ
s . By standard result on Levy processes, the law of the Levy process Aλ

t is

equivalent to the law of At. Moreover, Aλ
t and Bit are independents. Therefore, the result.

Bismut’s idea to state hypoellipticity result is to take the derivative in λ of

Pλ,1t

[
uf

]
(s0, x0, 1) = exp[tA]

[
f
]
(s0, x0) (4.14)

in order to get an integration by parts.

First of all, let us compute (∂/∂λ)P
√
fλ(s)

t f in λ = 0. It is fulfilled by the next

considerations. Let us consider a generator written under Hoermander’s form:

L
λ = gλY0 +

1

2
g2
λ

∑
i>0

Y 2
i , (4.15)

where gλ are smooth and where the vector fields Yi are smooth Lipschitz on R
d̃. We consider

the semi-group Pλ,·t associated with it. Let us introduce the vector fields on R
d̃+d̃:

Yλ,1
i =

(
gλYi, gλDYiU +

d

dλ
gλYi

)
. (4.16)
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Let us consider the diffusion generator

L
λ,1 = Yλ,1

0 +
1

2

∑
i>0

(
Yλ,1
i

)2
. (4.17)

Associated with it there is a semi-group Pλ,1,·t .

Proposition 4.3. For f smooth with compact support, one has

∂

∂λ
Pλ,·t

[
f
]
(x̃) = Pλ,1,·t

[〈
df,U

〉]
(x̃, 0). (4.18)

Proof. Let us introduce the vector fields on R
d̃+d̃:

Yλ,2
i =

(
gλYi, gλDYiU

)
(4.19)

and the generator

L
λ,2 = Yλ,2

0 +
1

2

∑
i>0

(
Yλ,2
i

)2
. (4.20)

Associated with it there is a semi-group Pλ,2,·t .

If the Volterra expansion converges, then

Pλ,1,·t

[〈
df,U

〉]
(x̃, 0) =

∑∫
0<s1<···<sn<t

ds1 · · ·dsnPλ,2,·s1

(
L
λ,1 − L

λ,2
)

× Pλ,2,·s2−s1

(
L
λ,1 − L

λ,2
)
· · ·

(
L
λ,1 − L

λ,2
)
Pλ,2,·t−sn

[〈
df,U

〉]
(x̃, 0).

(4.21)

But Ũ0 → Pλ,2,·t [〈df,U〉](x̃, Ũ0) is linear in Ũ0 and therefore the quantity (Lλ,1 −
L
λ,2)Pλ,2,·t−sn [〈df,U〉](x̃, Ũ0) does not depend on Ũ0. Therefore the Volterra expansion reads

Pλ,1,·t

[〈
df,U

〉]
(x̃, 0) =

∫ t

0

Pλs

(
L
λ,1 − L

λ,2
)
Pλ,2,·t−s

[〈
df,U

〉]
(x̃, 0). (4.22)

Let us compute L
λ,1 − L

λ,2. It is equal to

∑
i>0

gλg
′
λ〈DYiYi,DU〉 +

∑
i>0

gλg
′
λ〈Yi,DUDX, Yi〉 + g ′

λ〈Y0, DU〉. (4.23)

We use the relation (see [15, Lemma 3.2])

DXP
λ,·
t f(x̃) =

〈
Pλ,2,·t

[〈
Df,U

〉]
(x̃, I), ·

〉
(4.24)
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and the relation

DUP
λ,2,·
t

[〈
df,U

〉](
X̃, 0

)
= Pλ,2,·t

[〈
df,U

〉](
X̃, Ĩ

)
. (4.25)

Therefore,

(
L
λ,1 − L

λ,2
)
Pλ,2,·t

[〈
Df,U

〉]
(x̃0, U0) = g ′

λ

〈
Y0, DP

λ,·
t

〉
+

∑
i>0

gλg
′
λ

〈
DYiYi,DP

λ,·
t

〉
+

∑
i>0

gλg
′
λ

〈
Yi,D

2Pλ,·t , Yi
〉
.

(4.26)

We insert this formula in the right-hand side of (4.23) and we see that Pλ,1,·t (〈Df,U〉)(x̃, 0)
satisfies the same parabolic equation as (∂/∂λ)Pλ,·t f(x).

Remark 4.4. Let us show from where this formula comes. Classically,

Pλ,·t

[
f
]
(x) = E

[
f
(
xλt (x)

)]
, (4.27)

where xλt is the solution of the Stratonovitch equation starting at x:

dxλs (x) = gλY0

(
xλs (s)

)
ds +

∑
i>0

gλYi
(
xλs (s)

)
dBis. (4.28)

Therefore,Us = (∂/∂s)xλs (x) is solution starting at 0 of the Stratonovitch differential equation:

dUs = g ′
λY0

(
xλs (s)

)
ds +

∑
i>0

g ′
λYi

(
xλs (s)

)
dBis

+ gλ
〈
DY0(xsλ(x)), Uλ

s

〉
ds +

∑
i>0

gλ
〈
DYi

(
xλs (x)

)
, Uλ

s

〉
dBis

(4.29)

which can be solved classically by using the method of variation of constant [4].
Let us introduce the generator on R

1+d+1+1+d
A
λ,2:

A
λ,2f(s0, x0, u0, v0, U0)

=
∑
j

C

∫∞

0

(
fλ(s)−3/2P

j,
√
fλ(s),2,·

1 f(s0, u0, u0Jλ(s), v0, U0) − s−3/2f(s0, x0, u0, v0, U0)
)
ds.

(4.30)

It generates a semi-group Pλ,2t . In order to see that, we split the generator by keeping the

values od s〈ε or s〉ε and we proceed as for A
λ,1 (see (4.10)).
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We get the following.

Theorem 4.5. For f smooth with compact support in s and with derivatives of each order bounded,
one has the relation if one takes only derivatives in (s0, x0) of the considered expressions:

DPλ,1t

[
f
]
(s0, x0, u0) = P

λ,2
t

[〈
Df, v,U

〉]
(s0, x0, u0, 1, I). (4.31)

Proof. We have

∂

∂t
DPλ,1t =

∑
j

C

∫∞

0

(
fλ(s)−3/2DP

j,
√
fλ(s)

1 Pλ,1t

[
f
]
(s0, u0, u0Jλ(s)) − s−3/2DPλ,1t f(s0, x0, u0)

)
ds.

(4.32)

But by [15, Lemma 3.2.]:

DP
j,
√
fλ(s)

1 f(s0, u0, u0Jλ(s)) = P
j,
√
fλ(s),2,·

1

[〈
Df, v,U

〉]
(s0, x0, u0Jλ(s), 1, I) (4.33)

Therefore DPλ,1t satisfies the parabolic equation associated with Pλ,2t [〈df, v,U〉](s0, x0,

u0, 1, I). Only the integrability of U puts any problem. It is solved by the appendix since f

has compact support in s.

Theorem 4.6. For f with compact support in x̃ in R
d̃.

Pλ,1,·t

[〈
df,U

〉](
x̃0, Ũ0

)
= Pλ,2,·t

[〈
df,U

〉](
x̃0, Ũ0

)
+ Pλ,1,·t

[〈
df,U

〉](
x̃0, 0̃

)
(4.34)

if Ũ, Ũ0 belong to R
d̃.

Proof. If the Volterra expansion converges, then

Pλ,1,·t

[〈
df,U

〉](
x̃, Ũ0

)
= Pλ,2,·t

[〈
df,U

〉](
x̃, Ũ0

)
+

∑∫
0<s1<···<sn<t

ds1 · · ·dsnPλ,2,·s1

(
L
λ,1 − L

λ,2
)

× Pλ,2,·s2−s1

(
L
λ,1 − L

λ,2
)
· · ·

(
L
λ,1 − L

λ,2
)
Pλ,2,·t−sn

[〈
df,U

〉](
x̃, Ũ0

)
.

(4.35)

But Ũ0 → Pλ,2,·t [〈df,U〉](x̃, Ũ0) is linear in Ũ0 and therefore the quantity (Lλ,1 −
L
λ,2)Pλ,2,·t−sn [〈df,U〉](x̃, Ũ0) do not depend of Ũ0. Therefore the Volterra expansion reads

Pλ,1,·t

[〈
df,U

〉](
x̃, Ũ0

)
= Pλ,2,·t

[〈
df,U

〉](
x̃, Ũ0

)
+

∫ t

0

Pλs

(
L
λ,1 − L

λ,2
)
Pλ,2,·t−s

[〈
df,U

〉]
(x̃, 0)ds

(4.36)
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But the last term in the right-hand side of (4.26) is equal to Pλ,1,·t [〈df,U〉](x̃, 0) by the end of

the proof of the Proposition 4.3.

Remark 4.7. Analogous formula works for D exp[tA]f .

Let us compute αt = (∂/∂λ)P 0,1
t [uf](s0, x0, 1). We remark that

P
j,
√
fλ(s)

1

[
uf

]
(s0, x0, u0Jλ(s)) = P

j,
√
fλ(s)

1

[
f
]
(s0, x0)u0Jλ(s). (4.37)

Namely, the generator of P
j,
√
fλ(s)

t does not act on the u0 component such that the two sides

of (4.37) satisfy the same parabolic equality.

Therefore,

dtαt = Aαt +
∑
j

C

∫∞

0

f ′
0(s)s

−5/2P
j,
√
s

1

[
exp[tA]

[
f
]]
ds +

∑
j

C

∫∞

0

s−3/2J ′0(s)P
j,
√
s

1

[
exp[tA]

[
f
]]
ds

+
∑
j

C

∫∞

0

s−3/2 ∂

∂λ
P
j,
√
s

1

[
exp[tA]

[
f
]]
ds

= Aαt + a1(t) + a2(t) + a3(t),
(4.38)

where J ′0(s) = (∂/∂λ)J0(s), Therefore,

αt =
∫ t

0

exp[(t − s)A](a1(s) + a2(s) + a3(s))ds. (4.39)

a3(t) in the previous expression is the only term which contains a derivative of f , because by

Proposition 4.3,

∂

∂λ
P
j,
√
s

1

[
exp tA

][
f
]
(s0, x0) = P

j,
√
s,1,·

1

[〈
D exp[tA]

[
f
]
, u,U

〉]
(s0, x0, 0, 0). (4.40)

Let A
3 be the generator on R

1+d+1+d:

A
3f(s0, x0, u0, U0) = C

∑
j

∫∞

0

s−3/2
(
P
j,
√
s,1,·

1

[
f
]
(s0, x0, u0, U0) − f(s0, x0, u0, U0)

)
ds.

(4.41)

It generates a semi-group, P 3
t . We get the following.
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Theorem 4.8. For f with compact support in s and with bounded derivatives at each order, we have

P 3
t

[〈
df, u,U

〉]
(s0, x0, 0, 0)

=
∫ t

0

exp[(t − v)A]

⎡⎣∑
j

C

∫∞

0

s−3/2P
j,
√
s,1,·

1

[〈
D exp[vA]

[
f
]
, u,U

〉]
(s0, x0, 0, 0)ds

⎤⎦dv.
(4.42)

Proof. If the Volterra expansion converges, then

P 3
t

[〈
df,U

〉]
(s0, x0, 0, 0) =

∑
n

∫
0<s1<···<sn<t

ds1 · · ·dsnP 2
s1

(
A

3 − A
2
)
· · ·P 2

sn−sn−1

(
A

3 − A
2
)

× P 2
t−sn

[〈
df, u,U

〉]
(s0, x0, 0, 0).

(4.43)

But P 2
t−sn[〈df, u,U〉](s0, x0, u0, U0) is linear in (u0, U0). Let us explain the details of that. We

have to compute

(
P
j,
√
s,1,·

1 − Pj,
√
s,2,·

1

)
P 2
t−sn

[〈
df, u,U

〉]
(s0, x0, u0, U0). (4.44)

By the technique of the beginning of the proof of Proposition 4.3, it does not depend on

(u0, U0). Therefore, the Volterra expansion reads:

P 3
t

[〈
df,U

〉]
(s0, x0, 0, 0) =

∫
0<v<t

P 2
v

(
A

3 − A
2
)
· P 2

t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0)dv. (4.45)

But

(
A

3 − A
2
)
· P 2

t−v
[〈
df, u,U

〉]
(s0, x0, u0, U0). (4.46)

does not depend on (u0, U0). Therefore, the right-hand side of formula (4.45) is equal to

∫
0<v<t

exp[vA]
(
A

3 − A
2
)
· P 2

t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0)dv. (4.47)

But

A
2 · P 2

t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0) =

∑
j

C

∫∞

0

s−3/2P
j,
√

2,2,0
s P 2

t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0) = O

(4.48)
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because (u0, U0) → P
j

t−v[〈df, u,U〉](s0, x0, u0, U0) is linear in (u0, U0) and because the vector

fields which give the generator of P
j,
√
s,2,·

s are linear in u0, U0. Therefore,

∫
0<v<t

exp[vA]
(
A

3 − A
2
)
· P 2

t−v
[〈
df, u,U

〉]
(s0, x0, 0, 0)dv

=
∫

0<v<t

exp[vA]dv
∑
j

C

∫∞

0

s−3/2P
j,
√
s,1,·

1

[
P 2
t−v

[〈
df, u,U

〉]]
(s0, x0, 0, 0)ds.

(4.49)

But by an analog of Theorem 4.5,

P 2
t−v

[〈
df, u,U

〉]
(s0, x0, u0, U0) =

〈
D exp[tA], u0, U0

〉
. (4.50)

We can summarize the previous considerations in the next theorem.

Theorem 4.9. If fλ(s) is a diffeomorphism of [0,∞[ equal to s if s ∈ [0, ε[ and if s > 1, then one
has the following integration by part formula if f is with compact support in s, bounded with bounded
derivatives at each order:

0 =
∑
j

C

∫ t

0

du exp[(t − u)A]
[∫∞

0

f ′
0(s)s

−5/2P
j,
√
s

1

[
exp[tA]

[
f
]]]

(s0, x0)

+
∑
j

C

∫ t

0

du exp[(t − u)A]
[∫∞

0

J ′0(s)s
−3/2P

j,
√
s

1

[
exp[tA]

[
f
]]]

(s0, x0)

+ P 3
t

[〈
df, u,U

〉]
(s0, x0, 0, 0),

(4.51)

where J ′0(s) = (∂/∂λ)J0(s).

Theorem 4.10. Let one suppose that fλ(s) = s + λs5 near 0. Then, (4.51) is still true.

Proof. It is enough to show that wecan approximate fλ(s) by a function fε
λ
(s) equal to s if

s < ε. Let us give some details on this approximation. We consider a smooth function g from

R into [0, 1] equal to zero if s ≤ 1/2 and equal to 1 if s > 1. We put

fλ(s) = s + g
(
s

ε

)
λs5,

∂

∂λ
fε0 (s) = g

(
s

ε

)
s5,

∂

∂λ
Jε0 (s) = g

′
(
s

ε

)
s5

ε
+ 5g

(
s

ε

)
s4.

(4.52)
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We remark that

(i) if s ≤ ε/2, then g ′(s/ε)s5/ε = 0,

(ii) if s > ε, then g ′(s/ε)s5/ε = 0,

(iii) if s ∈ [ε/2, ε], then |g ′(s/ε)s5/ε| ≤ Cs4.

P 3,ε
t is the semi-group associated with A

3,ε where we replace in the construction of

(4.41) fλ(s) by fε
λ
(s):

P 3,ε
t

[〈
df, u,U

〉]
(s0, x0, 0, 0) −→ P 3

t

[〈
df, u,U

〉]
(s0, x0, 0, 0). (4.53)

By the appendix,

P 3,ε
s

[(
|u|p + |U|p

)
h
]
(s, x, u0, U0) <∞ (4.54)

if h is compact support in s. Let us consider the generator A3,ε associated with fε
λ
. If g =

〈df, u,U〉, then we have by Duhamel principle

P 3
1

[
g
]
(s0, x0, 0, 0) = P

3,ε
1

[
g
]
(s0, x0, 0, 0) +

∫1

0

P 3,ε
s

[(
A − A

3,ε
)
P 3

1−s
[
g
]]
(s0, x0, 0, 0). (4.55)

By the proof of Theorem 4.8, P 3
1−s[g](s0, x0, u0, U0) is affine in (u0, U0). Namely, in the proof

of this theorem, we have removed the P 2
1−s[g](s0, x0, u0, U0) which is equal to zero in u0 =

0, U0 = 0 because this expression is linear in u0, U0. Its component in (u0, U0) is smooth with

bounded derivatives at each order. By Theorem 4.6, (A3,ε − A)P 3
1−s[g](s0, x0, u0, U0) is still

affine in (u0, U0) and its components in (u0, U0) are smooth with bounded derivatives at each

order. Moreover, if g1 is affine in (u0, U0) with components in (u0, U0) smooth with bounded

derivatives at each order, then we get that, for s ≤ 1,

sup
s0,x0

∣∣∣(Pj,√s,1,01 − Pε,j,
√
s,1,·

1

)[
g1

]
(s0, x0, u0, U0)

∣∣∣ ≤ C(ε)s(|u0| + |U0|), (4.56)

where C(ε) → 0 when ε → 0. This can be seen as an appliation of the Duhamel formula

applied to the two semi-groups t → P
j,
√
s,1,·

t [g1] and t → P
ε,j,

√
s,1,·

t [g1]. Then, the result arises

from the Duhamel formula (4.55).

We can consider vector fields at the manner of (3.30) and fλ(s) = s + λs5 in a

neighborhood of 0. We get a generator A
tot and semi-groups P

j,
√
s,tot

s and P 3,tot
t . We have with

the extension of Theorem 4.10 the following.
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Theorem 4.11 (Bismut). If fλ(s) = s+λs5 in a neighborhood of 0 and is equal to 1 if s > 1, then one
has the following integration by parts: let f tot be a function with compact support in s, bounded with
bounded derivatives at each order. Then,

0 =
∑
j

C

∫ t

0

du exp
[
(t − u)Atot

][∫∞

0

f ′
0(s)s

−5/2P
j,
√
s,tot

1

[
exp

[
tAtot

][
f tot

]]](
s0, x

tot
0

)

+
∑
j

C

∫ t

0

du exp
[
(t − u)Atot

][∫∞

0

J ′0(s)s
−3/2P

j,
√
s,tot

1

[
exp

[
tAtot

][
f tot

]]](
s0, x

tot
0

)
+ P 3,tot

t

[〈
df tot, u,U

〉](
s0, x

tot
0 , 0, 0

)
.

(4.57)

5. The Abstract Theorem

The proof of Theorem 2.1 follows the idea of Malliavin [5]. If there exist Cl such that, for

function f with compact support in [0, 1] × [0, l]d,

∣∣exp[tA]
[
Df

]
(0, x)

∣∣ ≤ Cl

∥∥f∥∥
∞ (5.1)

then the heat kernel qt(s, y) exists.

There are two partial derivatives to treat:

(i) the partial derivative in the time of the subordinator s,

(ii) the partial derivatives in the space of the underlying diffusion x.

Let us begin by the most original part of Bismut’s Calculus on boundary process, that

is, the integration by parts in the time s.

We look at (4.42). We remark (see the next part) that

P 3,tot
t

[
u−p

]
(0, x, 0, 0) <∞ (5.2)

for all p. So, we take f tot(s, x, u) = f(s, x)1/u and we apply (4.42) for this convenient semi-

group. We get

exp[tA]
[
∂

∂s
f

]
(0, x) = −P 3,tot

t

[〈
Dxf,U

〉 1

u

]
(0, x, 0, 0) + R (5.3)

R can be estimated by using the appendix by Cl‖f‖∞ for f with compact support in [0, l] ×
[0, l]d and by (5.2).
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Lemma 5.1. For a conveniently enlarged semi-group in the manner of Theorem 3.4, one has for f
with compact support in s

P 2,tot
t

[〈
Df tot, U

〉](
s0, x

tot
0 , 0

)
= exp

[
tÂtot

][〈
Df tot, UV

〉](
s0, x

tot
0 , I, 0

)
. (5.4)

Proof. If f̃ is a function with compact support depending only of s, xtot and V , we have

P 2,tot
t

[
f̃
](
s0, x

tot
0 , 0

)
= exp

[
tÂtot

][
f̃(·, UV )

](
s0, x

tot
0 , I, 0

)
. (5.5)

We do the change of variable U → U and V → UV on the Malliavin generator Â
tot. By

using Lemma 3.7 of [15], it is transformed in A
2,totf̃(s, xtot, U, V ) where for A

2,tot we consider

the same type of operator as A
2 but with the modified vector fields:

X
j,2

i =
(

0, X
j,tot

i , DX
j

iU,DX
j

i V
)
,

Y
j,2

0 =
(

0, 0, 0,
∑(

X
j

i

)t(
U−1X

j

i

))
.

(5.6)

It remains to use the appendix to show the Lemma.

We consider Z
j

i=
t(U−1X

j

i ). By the previous Lemma and Malliavin hypothesis,

P 2,tot
t

[
detV −pg

](
0, xtot

0 , I, 0
)
<∞ (5.7)

for all p if g(s) has compact support (V is a matrix). After we consider a test function of the

type of Bismut, we consider the component ui of U in (5.3). We consider the Bismut function

fV −1(ui/u). We integrate by parts as in Theorem 3.4. We deduce under Malliavin assumption

that

∣∣∣∣P 3,tot
t

[〈
Dxf,U

〉 1

u

]
(0, x, 0, 0)

∣∣∣∣ ≤ Cl

∥∥f∥∥
∞ (5.8)

if f has compact support in [0, l] × [0, l]d.

By the same way, we deduce that if f has compact support in [0, l] × [0, l]dthen

∣∣exp[tA]
[
Dxf

]
(0, x, 0, 0)

∣∣ ≤ Cl

∥∥f∥∥
∞. (5.9)

Therefore, the result is obtained .

Remark 5.2. We could do integration by parts to each order in order to show that the semi-

group exp[tA] has a smooth heat-kernel under Malliavin assumption.
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6. Inversion of the Malliavin Matrix

Proof of Theorem 2.2. Let s1 < s2 and let ξ be of modulus 1. Then,

exp
[
tÂ

][
I[0,s1]IV (ξ)≤ε

]
(0, x, I, 0) ≥ exp

[
tÂ

][
I[0,s1]IV (ξ)≤ε

]
(0, x, I, 0). (6.1)

These two quantities are equal in t = 0 when we consider the semi-group exp[tÂ]. Let us

compute their derivative in time t. The derivative of the left-hand side is bigger than the

derivative of the right-hand side because

Â
[
I[0,s1]IV (ξ)≤ε

]
(s, x,U, V ) ≥ Â

[
I[0,s2]IV (ξ)≤ε

]
(s, x,U, V ). (6.2)

(These two quantities are negative.)
By the result of the appendix,

exp
[
tÂ

][
I[0,t]

{
I|U−1−I|>C + I|U−I|>C + I|·−x|>C + IV>C

}]
(0, x, I, 0) ≤ C

(
p
)
tp (6.3)

for all p.

Lemma 6.1. If |ξ| = 1, then there exist C and C0 independent of ξ such that

exp
[
εÂ

][
I|V ξ|<C0εI[0,ε]

]
(0, x, I, 0) < 1 − Cε1/2. (6.4)

Proof. We consider a convex function decreasing from [0,∞[ into [0, 1] equal to 1 in 0 and

tending to 0 at infinity. Let us introduce

αs = exp
[
sÂ

][
g

( |V ξ|
ε

)
I[0,ε]

]
(0, x, I, 0). (6.5)

In order to consider the derivative in s of αs, we study the expression

βε = Â

[
g

( |V ξ|
ε

)
I[0,ε]

](
s′, x′, U′, V ′). (6.6)

We have only to consider by (6.3) the case where s′ is small enough, |x′ − x| is small enough,

|U − I| is small enough, and the positive matrix V ′ is small enough. For that we have to

estimate

γu =
∑
j

(
P
j,2
u

[
g

( |V ξ|
ε

)](
s′, x′, U′, V ′) − g( |V ′ξ|

ε

))
(6.7)
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for u between 0 and ε. The first derivative of γu has an equivalent −Cε−1 when ε → 0, and its

second derivative has a bound Cε−2 when ε → 0. Therefore,

0 ≥ γu ≥ −Cu
ε

(6.8)

on [0, ε] and

βε ≥ −C
ε

∫ε

0

s−1/2ds = −Cε−1/2. (6.9)

We deduce from that that

αε ≤ 1 − Cε1/2. (6.10)

Remark 6.2. We could improve (6.4) by showing that

exp
[
εÂ

][
I|V ξ|<C0εI[0,ε]

](
s′, x′, U′, V ′) < 1 − Cε1/2 (6.11)

if s′ is small enough, |x′ − x| is small enough, |U′ − I| is small enough, and the positive matrix

V ′ is small enough.

We consider a very small α. We slice the time interval [0, εα] in εα−1 intervals of length

ε. We have

exp
[
tÂ

][
I[0,l]IV (ξ)≤ε

]
(0, x, I, 0) ≤ exp

[
εαÂ

][
I[0,l]IV (ξ)≤ε

]
(0, x, I, 0)

≤ exp
[
εαÂ

][
I[0,ε]IV (ξ)≤ε

]
(0, x, I, 0)

≤
{

sup
|x′−x|≤C0, |U−I|≤C0

exp
[
εÂ

][
I[0,ε]IV (ξ)≤ε

](
0, x′, U′, 0

)}εα−1

+ Cεp

(6.12)

for a small C0. This last quantity is smaller than Cεp for all p by the previous lemma if α is

small enough. The proof of Theorem 2.2 follows from

exp
[
tÂ

][
V p

I[0,l]
]
(0, x, I, 0) ≤ ∞ (6.13)

for all p by using the result of the appendix. The result follows by standard methods (see [15,

Equations (4.8) and (4.9)].
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It remains to show the following.

Theorem 6.3. For all p > 0,

P 3,tot
t

[
u−p

]
(0, x, 0, 0) ≤ ∞. (6.14)

Proof. We remark that if we consider only functions of u, then

P 3,tot
t

[
f
]
(0, x, u, 0) = P 4

t

[
f
]
(u), (6.15)

where P 4
t is a Lévy semi-group with generator

A
4f(u) = C

∫∞

0

ds

s3/2

(
f
(
s5g(s) + u

)
− f(u)

)
, (6.16)

where g(s) = 1 on a neighborhood of 0, is with compact support and is positive. The result

follows from the adaptation in [17, 18] of the proof of [7] in semi-group theory. We remark

that

P 4
t

[
u−p

]
(0) = C

∫∞

0

βp−1P 4
t

[
exp

[
−βu

]]
(0)dβ. (6.17)

By using the adaptation in semi-group theory of the exponential martingales of Levy process

of [17, 18], we have

P 4
t

[
exp

[
−βu

]]
(0) = exp

[
t

∫∞

0

[
exp

[
−βs5g(s)

]
− 1

) ds

s3/2

]
. (6.18)

The result holds from the Tauberian theorem of [7, 17, 18].

Appendix

Burkholder-Davies-Gundy Inequality

Theorem A.4. Let s0 > 0 and p ∈ N. Then,

P̂ 2,tot
t

[
I[0,s0]

∣∣xtot
∣∣2p

](
0, xtot

0 , 0
)
<∞. (A.1)

Proof. Following the idea of [17, Appendix], we consider the auxiliary function

FC
(
xtot

)
=

∣∣xtot
∣∣2p + 1

1 + |xtot|2k/C
. (A.2)
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We get

d

dt
P̂ 2,tot
t

[
I[0,s0]FC

(
xtot

)](
0, xtot

0 , 0
)

= P̂ 2,tot
t

⎡⎣∫ s0−s

0

du

u3/2

∑
j

(
P
j,2,tot
u [FC]

(
xtot

)
− FC

(
xtot

))⎤⎦(
0, xtot

0 , 0
)
.

(A.3)

Let us consider an improvement of the Gronwall lemma: if |xs − x0| ≤
∫s

0
|xu|du, then

|xt − x0| ≤ Kt|x0| if t ∈ [0, 1].
We remark that

∣∣∣Lj,2,totFC
(
xtot

)∣∣∣ ≤ KFC(xtot
)

(A.4)

for K independent of C. Then, by the modified Gronwall lemma,

∣∣∣Pj,2,tot
u |FC|

(
xtot

)
− FC

(
xtot

)∣∣∣ ≤ KuFC(xtot
)
,∣∣∣∣ ddt P̂ 2,tot

t

[
I[0,s0]FC

(
xtot

)](
0, xtot

0 , 0
)∣∣∣∣ ≤ KFC(xtot

)
+KP̂ 2,tot

t

[
I[0,s0]FC

(
xtot

)](
0, xtot

0 , 0
)
,

(A.5)

where K does not depend on C.

By Gronwall lemma,

P̂ 2,tot
t

[
I[0,s0]FC

(
xtot

)](
0, xtot

0 , 0
)
≤ K <∞, (A.6)

where K does not depend on C. The result arises by doing C → ∞.

By the same procedure, we get the following.

Theorem A.5. Let be s0 > 0 and p ∈ N. Then

P̂ 2,tot
t

[
I[0,s0]|U|2p

](
0, xtot

0 , U0

)
<∞ (A.7)

and we get the following.

Theorem A.6. Let s0 > 0 and p ∈ N:

P 3,tot
t

[
I[0,s0]

(∣∣xtot
∣∣ + |u| + |U|

)2p
](

0, xtot
0 , u0, U0

)
<∞. (A.8)

Remark A.7. We can show (6.3) by the same way.
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This paper deals with the stability of nonlinear fractional differential systems equipped with the
Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using
a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are
applied to the analysis of the stability of fractional differential systems. In addition, some other
sufficient conditions on stability are also presented.

1. Introduction

Fractional calculus is more than 300 years old, but it did not attract enough interest at the

early stage of development. In the last three decades, fractional calculus has become popular

among scientists in order to model various physical phenomena with anomalous decay,

such as dielectric polarization, electrode-electrolyte polarization, electromagnetic waves, and

viscoelastic systems [1]. Recent advances in fractional calculus have been reported in [2].
Recently, stability of fractional differential systems has attracted increasing interest. In

1996, Matignon [3] firstly studied the stability of linear fractional differential systems with the

Caputo derivative. Since then, many researchers have done further studies on the stability of

linear fractional differential systems [4–11]. For the nonlinear fractional differential systems,

the stability analysis is much more difficult and only a few are available.

Some authors [12, 13] studied the following nonlinear fractional differential system:

CD
q

0,tx(t) = f(t, x(t)), (1.1)
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with initial values x(0) = x(0)
0 , . . . , x(m−1)(0) = x(m−1)

0 , where m− 1 < q ≤ m. They discussed the

continuous dependence of solution on initial conditions and the corresponding structural

stability by applying Gronwall’s inequality. In [14] the authors dealt with the following

fractional differential system:

D
q

0,tx(t) = f(t, x(t)), (1.2)

where 0 < q ≤ 1, D
q

0,t denotes either the Caputo, or the Riemann-Liouville fractional deriva-

tive operator. They proposed fractional Lyapunov’s second method and firstly extended the

exponential stability of integer order differential systems to the Mittag-Leffler stability of

fractional differential systems. Moreover, the pioneering work on the generalized Mittag-

Leffler stability and the generalized fractional Lyapunov direct method was proposed in [15].
In this paper, we further study the stability of nonlinear fractional differential systems

with Caputo derivative by utilizing a Lyapunov-like function. Taking into account the re-

lation between asymptotical stability and generalized Mittag-Leffler stability, we are able

to weaken the conditions assumed for the Lyapunov-like function. In addition, based on

the comparison principle of fractional differential equations [16, 17], we also study the

stability of nonlinear fractional differential systems by utilizing the comparison method. Our

contribution in this paper is that we have relaxed the condition of the Lyapunov-like function

and that we have further studied the stability. The present paper is organized as follows.

In Section 2, some definitions and lemmas are introduced. In Section 3, sufficient conditions

on asymptotical stability and generalized Mittag-Leffler stability are given. The comparison

method is applied to the analysis of the stability of fractional differential systems in Section 4.

Conclusions are included in the last section.

2. Preliminaries and Notations

Let us denote by R+ the set of nonnegative real numbers, by R the set of real numbers,

and by Z+ the set of positive integer numbers. Let 0 < q < 1 and set Cq([t0, T],R) = {f ∈
C((t0, T],R), (t − t0)qf(t) ∈ C([t0, T],R)}, and Cq([t0, T] × Ω,R) = {f(t, x(t)) ∈ C((t0, T] ×
Ω,R), (t − t0)qf(t, x(t)) ∈ C([t0, T]×Ω,R)}, whereC((t0, t],R) denotes the space of continuous

functions on the interval (t0, t].
Let us first introduce several definitions, results, and citations needed here with

respect to fractional calculus which will be used later. As to fractional integrability and

differentiability, the reader may refer to [18].

Definition 2.1. The fractional integral with noninteger order q ≥ 0 of function x(t) is defined

as follows:

D
−q
t0,t
x(t) =

1

Γ
(
q
) ∫ t

t0

(t − τ)q−1x(τ)dτ, (2.1)

where Γ(·) is the Gamma function.
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Definition 2.2. The Riemann-Liouville derivative with order q of function x(t) is defined as

follows:

RLD
q

t0,t
x(t) =

1

Γ
(
m − q

) dm

dtm

∫ t

t0

(t − τ)m−q−1x(τ)dτ, (2.2)

where m − 1 ≤ q < m and m ∈ Z+.

Definition 2.3. The Caputo derivative with noninteger order q of function x(t) is defined as

follows:

CD
q

t0,t
x(t) =

1

Γ
(
m − q

) ∫ t

t0

(t − τ)m−q−1x(m)(τ)dτ, (2.3)

where m − 1 < q < m and m ∈ Z+.

Definition 2.4. The Mittag-Leffler function is defined by

Eα(z) =
∞∑
k=0

zk

Γ(kα + 1)
, (2.4)

where α > 0, z ∈ R. The two-parameter Mittag-Leffler function is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ
(
kα + β

) , (2.5)

where α > 0 and β ∈ R, z ∈ R.

Clearly Eα(z) = Eα,1(z). The following definitions are associated with the stability

problem in the paper.

Definition 2.5. The constant xeq is an equilibrium of fractional differential system D
q

t0,t
x(t) =

f(t, x) if and only if f(t, xeq) = D
q

t0,t
x(t)|

x(t)=xeq
for all t > t0, where D

q

t0,t
means either the

Caputo or the Riemann-Liouville fractional derivative operator.

Throughout the paper, we always assume that xeq = 0.

Definition 2.6 (see [15]). The zero solution of D
q

t0,t
x(t) = f(t, x(t)) with order q ∈ (0, 1) is said

to be stable if, for any initial value x0, there exists an ε > 0 such that ‖x(t)‖ ≤ ε for all t > t0.

The zero solution is said to be asymptotically stable if, in addition to being stable, ‖x(t)‖ → 0

as t → +∞.

Definition 2.7. Let B ⊂ R
n be a domain containing the origin. The zero solution of D

q

t0,t
x(t) =

f(t, x(t)) is said to be Mittag-Leffler stable if

‖x(t)‖ ≤
{
m(x0)Eq

(
−λ(t − t0)q

)}b
, (2.6)

where t0 is the initial time and x0 is the corresponding initial value, q ∈ (0, 1), λ ≥ 0, b > 0,

m(0) = 0, m(x) ≥ 0, and m(x) is locally Lipschitz on x ∈ B ⊂ R
n with the Lipschitz constant

L0.
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Definition 2.8. Let B ⊂ R
n be a domain containing the origin. The zero solution of D

q

t0,t
x(t) =

f(t, x(t)) is said to be generalized Mittag-Leffler stable if

‖x(t)‖ ≤
{
m(x0)(t − t0)−γEq,1−γ

(
−λ(t − t0)q

)}b
, (2.7)

where t0 is the initial time and x0 is the corresponding initial value, q ∈ (0, 1), −q < γ ≤ 1 − q,

λ ≥ 0, b > 0,m(0) = 0, m(x) ≥ 0, andm(x) is locally Lipschitz on x ∈ B ⊂ R
n with the Lipschitz

constant L0.

Remark 2.9. Mittag-Leffler stability and generalized Mittag-Leffler stability both belong to

algebraical stability, which also imply asymptotical stability (see [15]).

Definition 2.10. A function α(r) is said to belong to class-K if α : R+ → R+ is continuous

function such that α(0) = 0 and it is strictly increasing.

Definition 2.11 (see [19]). The class-K functions α(r) and β(r) are said to be with local growth

momentum at the same level if there exist r1 > 0, ki > 0 (i = 1, 2) such that k1α(r) ≥ β(r) ≥
k2α(r) for all r ∈ [0, r1]. The class-K functions α(r) and β(r) are said to be with global growth

momentum at the same level if there exist ki > 0 (i = 1, 2) such that k1α(r) ≥ β(r) ≥ k2α(r) for

all r ∈ R+.

It is useful to recall the following lemmas for our developments in the sequel.

Lemma 2.12 (see [20]). Let v,w ∈ C1−q([t0, T],R) be locally Hölder continuous for an exponent
0 < q < ν ≤ 1, h ∈ C([t0, T] × R,R) and

(i) RLD
q

t0,t
v(t) ≤ h(t, v(t)),

(ii) RLD
q

t0,t
w(t) ≥ h(t,w(t)), t0 < t ≤ T ,

with nonstrict inequalities (i) and (ii), where v0 = Γ(q)v(t)(t − t0)1−q|t=t0 and w0 = Γ(q)w(t)
(t − t0)1−q|t=t0 . Suppose further that h satisfies the standard Lipschitz condition

h(t, x) − h
(
t, y

)
≤ L

(
x − y

)
, x ≥ y, L > 0. (2.8)

Then, v0 ≤ w0 implies v(t) ≤ w(t), t0 < t ≤ T .

Remark 2.13. In Lemma 2.12, if we replace RLD
q

t0,t
by CD

q

t0,t
, but other conditions remain

unchanged, then the same result holds.

Lemma 2.14 (see [16]). Let v,w ∈ C1−q([t0, T],R), h ∈ C([t0, T] × R,R) and

(i) v(t) ≤ (v0/Γ(q))(t − t0)q−1 + (1/Γ(q))
∫ t
t0
(t − s)q−1h(s, v(s))ds,

(ii) w(t) ≥ (w0/Γ(q))(t − t0)q−1 + (1/Γ(q))
∫ t
t0
(t − s)q−1h(s,w(s))ds,

where t0 < t ≤ T , v0 = Γ(q)v(t)(t − t0)1−q|t=t0 , w0 = Γ(q)w(t)(t − t0)1−q|t=t0 , and 0 < q < 1. Assume
that both inequalities are nonstrict and h(t, x) is nondecreasing in x for each t. Further, suppose that
h satisfies the standard Lipschitz condition

h(t, x) − h
(
t, y

)
≤ L

(
x − y

)
, x ≥ y, L > 0. (2.9)

Then, v0 ≤ w0 implies v(t) ≤ w(t), t0 < t ≤ T .
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Remark 2.15. In Lemmas 2.12 and 2.14, T can be +∞.

3. Stability of Nonlinear Fractional Differential Systems

Let us consider the following nonlinear fractional differential system [14, 15]:

CD
q

t0,t
x(t) = f(t, x(t)), (3.1)

with the initial condition x0 = x(t0), where f : [t0,∞) × Ω → R
n is piecewise continuous in

t and Ω ⊂ R
n is a domain that contains the equilibrium point xeq = 0, 0 < q < 1. Here and

throughout the paper, we always assume there exists a unique solution x(t) ∈ C1[t0,∞) to

system (3.1) with the initial condition x(t0).
Recently, Li et al. [14, 15] investigated the Mittag-Leffler stability and the generalized

Mittag-Leffler stability (the asymptotic stability) of system (3.1) by using the fractional

Lyapunov’s second method, where the following theorem has been presented.

Theorem 3.1. Let xeq = 0 be an equilibrium point of system (3.1) with t0 = 0, and let D ⊂ R
n be

a domain containing the origin. Let V (t, x(t)) : [0,∞) × D → R+ be a continuously differentiable
function and locally Lipschitz with respect to x such that

α1‖x‖a ≤ V (t, x(t)) ≤ α2‖x‖ab, (3.2)

CD
p

0,tV (t, x(t)) ≤ −α3‖x‖ab, (3.3)

where t ≥ 0, x ∈ D, p ∈ (0, 1), and α1, α2, α3, a, and b are arbitrary positive constants. Then xeq = 0

is Mittag-Leffler stable (locally asymptotically stable). If the assumptions hold globally on R
n, then

xeq = 0 is globally Mittag-Leffler stable (globally asymptotically stable).

In the following, we give a new proof for Theorem 3.1.

Proof of Theorem 3.1. From (3.2) and (3.3), we can get

CD
p

0,tV (t, x(t)) ≤ −α3

α2
V (t, x(t)). (3.4)

Obviously, for the initial value V (0, x(0)), the linear fractional differential equation

CD
p

0,tV (t, x(t)) = −α3

α2
V (t, x(t)) (3.5)

has a unique solution V (t, x(t)) = V (0, x(0))Ep((−α3/α2)tp).
Taking into account Remark 2.13 and the relationship between (3.4) and (3.5), we

obtain

V (t, x(t)) ≤ V (0, x(0))Ep
(
−α3

α2
tp

)
, (3.6)
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where Ep((−α3/α2)tp) is a nonnegative function [21]. Substituting (3.6) in (3.2) yields

‖x(t)‖ ≤
[
V (0, x(0))

α1
Ep

(
−α3

α2
tp

)]1/a

, (3.7)

where Ep((−α3/α2)tp) → 0 (t → +∞) from the asymptotic expansion of Mittag-Leffler

function [22]. Hence the proof is completed.

According to the above results, we have the following theorem.

Theorem 3.2. Let xeq = 0 be an equilibrium point of system (3.1), and let D ⊂ R
n be a domain

containing the origin. Assume that there exist a continuously differentiable function V (t, x(t)) :

[t0,∞) × D → R+ and class-K function α satisfying

V (t, x(t)) ≥ α(‖x‖), (3.8)

CD
p

t0,t
V (t, x(t)) ≤ 0, (3.9)

where x ∈ D, p ∈ (0, 1). Then xeq = 0 is locally stable. If the assumptions hold globally on R
n, then

xeq = 0 is globally stable.

Proof. Proceeding the same way as that in the proof of Theorem 3.1, it follows from (3.9) that

V (t, x(t)) ≤ V (t0, x(t0)). Again taking into account (3.8), one can get

‖x(t)‖ ≤ α−1(V (t0, x(t0))), (3.10)

where t ≥ t0. Therefore, the equilibrium point xeq = 0 is stable. So the proof is finished.

In the above two theorems, the stronger requirements on function V have been

assumed to ensure the existence of CD
p

t0,t
V (t, x(t)). This undoubtedly increases the difficulty

in choosing the function V (t, x(t)). In fact, we can weaken the continuously differential

function V (t, x(t)) as V (t, x(t)) ∈ C1−p([t0,∞) × D,R+). Here we give the corresponding

results.

Theorem 3.3. Let xeq = 0 be an equilibrium point of system (3.1), and let D ⊂ R
n be a domain

containing the origin, V (t, x(t)) ∈ C1−p([t0,∞) × D,R+). Assume there exists a class-K function α
such that

V (t, x(t)) ≥ α(‖x‖), (3.11)

RLD
p

t0,t
V (t, x(t)) ≤ 0, (3.12)
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where t > t0 ≥ 0, x ∈ D, and p ∈ (0, 1). Then xeq = 0 is locally asymptotically stable. If the
assumptions hold globally on R

n, then xeq = 0 is globally asymptotically stable.

Proof. Note that the linear fractional differential equation

RLD
p

t0,t
V (t, x(t)) = 0 (3.13)

has a unique solution V (t, x(t)) = (V0/Γ(p))(t − t0)p−1 for initial value V0 = Γ(p)V (t, x(t))
(t − t0)1−p|t=t0 .

Taking into account Lemma 2.12 and the relationship between (3.12) and (3.13), we

obtain

V (t, x(t)) ≤ V0

Γ
(
p
) (t − t0)p−1. (3.14)

Substituting (3.14) into (3.11) gives

‖x(t)‖ ≤ α−1

(
V0

Γ
(
p
) (t − t0)p−1

)
−→ 0 (t −→ +∞), (3.15)

from the definition of class-K. This completes the proof.

Corollary 3.4. Let xeq = 0 be an equilibrium point of system (3.1), let D ⊂ R
n be a domain containing

the origin, and let V (t, x(t)) ∈ C1−p([t0,∞) × D,R+) be locally Lipschitz with respect to x. Assume
V (t, 0) = 0,

V (t, x(t)) ≥ a‖x‖b, RLD
p

t0,t
V (t, x(t)) ≤ 0, (3.16)

where t > t0 ≥ 0, x ∈ D, p ∈ (0, 1), and a, b are arbitrary positive constants. Then xeq = 0 is
generalized Mittag-Leffler stable. If the assumptions hold globally on R

n, then xeq = 0 is globally
generalized Mittag-Leffler stable.

Proof. In Theorem 3.3, by replacing α(‖x‖) by a‖x‖b, we can get

‖x(t)‖ ≤
{
V0

a
(t − t0)p−1Ep,p

(
0 · (t − t0)p

)}1/b

, (3.17)

so the conclusion holds.

Theorem 3.5. Let xeq = 0 be an equilibrium point of system (3.1), let D ⊂ R
n be a domain containing

the origin, and let V (t, x(t)) ∈ C1−p([t0,∞) × D,R+) be locally Lipschitz with respect to x. Assume
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(i) there exist class-K functions αi (i = 1, 2, 3) having global growth momentum at the same
level and satisfying

α1(‖x‖) ≤ V (t, x(t)) ≤ α2(‖x‖),

RLD
p

t0,t
V (t, x(t)) ≤ −α3(‖x‖),

(3.18)

(ii) there exists a > 0 such that α1(r) and ra have global growth momentum at the same level,

where t > t0 ≥ 0, x ∈ D, and p ∈ (0, 1). Then xeq = 0 is locally generalized Mittag-Leffler stable. If the
assumptions hold globally on R

n, then xeq = 0 is globally generalized Mittag-Leffler stable.

Proof. It follows from condition (i) that there exists k1 > 0 such that

RLD
p

t0,t
V (t, x(t)) ≤ −α3(‖x‖)

≤ −k1α2(‖x‖)

≤ −k1V (t, x(t)).

(3.19)

On the other hand, the linear fractional differential equation

RLD
p

t0,t
V (t, x(t)) = −k1V (t, x(t)) (3.20)

has a unique solution

V (t, x(t)) =
V0

Γ
(
p
) (t − t0)p−1 · Ep,p

(
−k1(t − t0)p

)
, (3.21)

for the initial value V0 = Γ(p)V (t, x(t))(t − t0)1−p|t=t0 .

Using (3.19), (3.20), and Lemma 2.12, we obtain

α1(‖x‖) ≤ V (t, x(t)) ≤ V0

Γ
(
p
) (t − t0)p−1 · Ep,p

(
−k1(t − t0)p

)
, (3.22)

where Ep,p(−k1(t − t0)p) is a nonnegative function [23, 24].
In addition, using condition (ii), one gets

(k2‖x‖)a ≤ α1(‖x‖), (3.23)

for all x ∈ D, where k2 > 0.

Substituting (3.23) into (3.22), we finally obtain

‖x(t)‖ ≤
{

V0

ka2Γ
(
p
) (t − t0)p−1Ep,p

(
−k1(t − t0)p

)}1/a

. (3.24)
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Hence, the zero solution of system (3.1) is locally generalized Mittag-Leffler stable.

If the assumptions hold globally on R
n, then xeq = 0 is globally generalized Mittag-Leffler

stable. The proof is completed.

Remark 3.6. The nonnegative function Ep,p(−k1(t − t0)p) tends to zero as t approaches infinity

from the asymptotic expansion of two-parameter Mittag-Leffler function [22], so the zero

solution of system (3.1) satisfying the conditions of Theorem 3.5 is also asymptotically stable.

4. The Comparison Results on the Stability

It is well known that the comparison method is an effective way in judging the stability of

ordinary differential systems. In this section, we will discuss similar results on the stability of

fractional differential systems by using the comparison method.

In what follows, we consider system (3.1) with f(t, 0) = 0 and the scalar fractional

differential equation

RLD
q

t0,t
u(t) = g(t, u), u0 = Γ

(
q
)
u(t)(t − t0)1−q

∣∣∣
t=t0

, (4.1)

where the initial value u0 ∈ R+, u(t) ∈ C1−q([t0,∞),R), g ∈ C([t0,∞) × R,R) is Lipschitz in

u and g(t, 0) = 0, 0 < q < 1. Also, we assume there exists a unique solution u(t) (t ≥ t0) for

system (4.1) with the initial value u0.

Theorem 4.1. For system (3.1), let xeq = 0 be an equilibrium point of system (3.1), and letΩ ⊂ R
n be

a domain containing the origin. Assume that there exist a Lyapunov-like function V ∈ C1−q([t0,∞)×
Ω,R+) and a class-K function α such that V (t, 0) = 0, V (t, x) ≥ α(‖x‖), and V (t, x) satisfies the
inequality

RLD
q

t0,t
V (t, x) ≤ g(t, V (t, x)), (t, x) ∈ [t0,∞) ×Ω. (4.2)

Suppose further that g(t, x) is nondecreasing in x for each t.

(i) If the zero solution of (4.1) is stable, then the zero solution of system (3.1) is stable;

(ii) if the zero solution of (4.1) is asymptotically stable, then the zero solution of system (3.1)
is asymptotically stable, too.

Proof. Let x(t) = x(t, t0, x0) denote the solution of system (3.1) with initial value x0 ∈ Ω. Along

the solution curve x(t), V (t, x(t) can be written as V (t) and

V (t) ≤ V0

Γ
(
q
)(t − t0)q−1 +

1

Γ
(
q
) ∫ t

t0

(t − s)q−1g(s, V (s))ds, (4.3)

where V0 = Γ(q)V (t)(t − t0)1−q|t=t0 . Applying the fractional integral operator D
−q
t0,t

to both sides

of (4.1) leads to

u(t) =
u0

Γ
(
q
)(t − t0)q−1 +

1

Γ
(
q
) ∫ t

t0

(t − s)q−1g(s, u(s))ds. (4.4)
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Now, taking u0 = V0 and applying Lemma 2.14 to inequalities (4.3) and (4.4), one has V (t) ≤
u(t), t > t0.

(i) If the zero solution of (4.1) is stable, then for any initial value u0 ≥ 0, there exists ε >

0 such that |u(t)| < ε for all t > t0. Therefore, taking into account V (t, x(t)) ≥ α(‖x‖),
one gets

α(‖x(t)‖) ≤ V (t, x) ≤ u(t) < ε, (4.5)

that is, ‖x(t)‖ < α−1(ε), and the zero solution of system (3.1) is stable.

(ii) One can directly derive

α(‖x(t)‖) ≤ V (t, x) ≤ u(t) < ε (4.6)

from the same argument in (i). Then, taking the limit to both sides of (4.6) and

combining with the definition of class-K function, one can obtain limt→+∞‖x(t)‖ =
0.

The proof is thus finished.

Remark 4.2. In Theorem 4.1 and system (4.1), if we replace order q by p ∈ (0, 1), but other

conditions remain unchanged, then the result in Theorem 4.1 still holds.

Especially, if the class-K function α(‖x‖) in Theorem 4.1 and ‖x‖a have global growth

momentum at the same level, then we can have similar comparison result on the generalized

Mittag-Leffler stability as follows.

Theorem 4.3. For system (3.1), let xeq = 0 be an equilibrium of system (3.1), and let Ω ⊂ R
n be a

domain containing the origin. Assume that there exists a Lyapunov-like function V ∈ C1−q([t0,∞) ×
Ω,R+) such that V (t, 0) = 0, V (t, x) ≥ k‖x‖a, and V (t, x) is locally Lipschitz in x and satisfies the
inequality

RLD
q

t0,t
V (t, x) ≤ g(t, V (t, x)), (t, x) ∈ [t0,∞) ×Ω, (4.7)

where k > 0, a > 0. Suppose further that g(t, x) is nondecreasing in x for each t. Then the zero
solution of system (3.1) is also locally generalized Mittag-Leffler stable if the zero solution of (4.1) is
locally generalized Mittag-Leffler stable. In addition, if the assumptions hold globally on R

n, then the
globally generalized Mittag-Leffler stability of zero solution of (4.1) implies the globally generalized
Mittag-Leffler stability of zero solution of system (3.1).

Proof. First, from Definition 2.8, if the zero solution of (4.1) is generalized Mittag-Leffler

stable, then there exist λ ≥ 0, b > 0, −q < γ ≤ 1 − q such that

|u(t)| ≤
{
m(u0)(t − t0)−γEq,1−γ

(
−λ(t − t0)q

)}b
, (4.8)

where m(0) = 0, m(x) ≥ 0 and m(x) is locally Lipschitz in x with Lipschitz constant L0.
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Taking u0 = V0 = Γ(q)V (t, x)(t − t0)1−q|t=t0 and noting that V (t, x) ≤ u(t) holds from

Theorem 4.1, then taking into account (4.8) and V (t, x) ≥ k‖x‖a, we obtain

k‖x(t)‖a ≤ V (t, x) ≤
{
m(u0)(t − t0)−γEq,1−γ

(
−λ(t − t0)q

)}b
. (4.9)

Furthermore,

‖x(t)‖ ≤

⎧⎪⎪⎨⎪⎪⎩
m

(
Γ
(
q
)
V (t, x(t0))(t − t0)1−q

∣∣∣
t=t0

)
k1/b

· (t − t0)−γEq,1−γ
(
−λ(t − t0)q

)
⎫⎪⎪⎬⎪⎪⎭

b/a

. (4.10)

Let M(x) = m(Γ(q)V (t, x)(t − t0)1−q|t=t0)/k1/b. Then it follows that

‖x(t)‖ ≤
{
M(x(t0))(t − t0)−γEq,1−γ

(
−λ(t − t0)q

)}b/a
, (4.11)

where M(0) = m(Γ(q)V (t, 0)(t − t0)1−q|t=t0)/k1/b = 0 due to V (t, 0) = 0. It is obvious that

M(x) is a nonnegative function from m(x), V (t, x) ≥ 0 and k > 0. In addition, M(x) is locally

Lipschitz in x since m(x) and V (t, x) are locally Lipschitz in x. So, the zero solution of system

(3.1) is generalized Mittag-Leffler stable. The proof is completed.

5. Conclusion

In this paper, we have studied the stability of the zero solution of nonlinear fractional

differential systems with the Caputo derivative and the commensurate order 0 < q < 1 by

using a Lyapunov-like function. Compared to [15], we weaken the continuously differential

function V (t, x) as V (t, x) ∈ C1−p([t0,∞)×D,R+). Sufficient conditions on generalized Mittag-

Leffler stability and asymptotical stability are derived. Meanwhile, comparison method

is applied to the analysis of the stability of fractional differential systems by fractional

differential inequalities.
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We study the existence and uniqueness of the solutions of mixed Volterra-Fredholm type integral
equations with integral boundary condition in Banach space. Our analysis is based on an
application of the Krasnosel’skii fixed-point theorem.

1. Introduction

In the last century, notable contributions have been made to both the theory and applications

of the fractional differential equations. For the theory part, Momani and Hadid have

investigated the local and global existence theorem of both fractional differential equation

and fractional integrodifferential equations; see [1–6]. Fractional-order differential equations

have recently proved to be valuable tools in the modeling of many phenomena in various

fields of science and engineering.

Integrodifferential equations with integral boundary conditions are often encountered

in various applications; it is worthwhile mentioning the applications of those conditions

in the study of population dynamics and cellular systems. For a detailed description of

the integral boundary conditions, we refer the reader to a recent paper [7]. In [8], Tidke

studied the problem of existence of global solutions to nonlinear mixed Volttera-Fredholm

integrodifferential equations with nonlocal condition.

Ahmad and Nieto [9] studied some existence results for boundary value problem

involving a nonlinear integrodifferential equation of fractional order with integral equation.
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Very recently N
′
Guérékata [10] discussed the existence of solutions of fractional

abstract differential equations with nonlocal initial condition. Anguraj et al. [11] studied

the existence and uniqueness theorem for the nonlinear fractional mixed Volterra-Fredholm

integrodifferential equation with nonlocal initial condition.

Motivated by these works, we study in this paper the existence of solution of boundary

value problem for fractional integrodifferential equations ( in the case 1 < α ≤ 2) in Banach

spaces by using Banach and Krasnosel’skii fixed-point theorems.

2. Preliminaries

First of all, we recall some basic definitions; see [12–15].

Definition 2.1. For a function f given on the interval [a, b], the Caputo fractional order

derivative of f is defined by

t
aD

α f(t) =
1

Γ(n − α)

∫ t

a

(t − s)n−α−1f (n)(s)ds, (2.1)

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.2. Let α > 0, then

t
aD

−α t
aD

α y(t) = y(t) + c0 + c1t + c2t
2 + · · · + cn−1t

n−1, (2.2)

for some ci ∈ R, i = 0, 1, . . . ,n − 1, n = [α] + 1.

Definition 2.3. Let f be a function which is defined almost everywhere (a.e) on [a, b], for α > 0,

we define

b
aD

−α f =
1

Γ(α)

∫b

a

(b − t)α−1f(t)dt, (2.3)

provided that the integral (Lebesgue) exists.

Theorem 2.4 (Krasnosel’skii fixed point theorem). LetM be a closed-convex bounded nonempty
subset of a Banach space X. Let A and B be two operators such that

(i) Ax + By =M, whenever x, y ∈M,

(ii) A is compact and continuous;

(iii) B is a contraction mapping,

then there exists z ∈M such that z = Az + Bz.
Let X be a Banach space with the norm ‖ · ‖. Let C = ([0, T], X) be Banach space ofall
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continuous functions ψ : [0, T] → X, with supermum norm ‖ψ‖ = sup{‖ψ(s)‖ : s ∈
[0, T]}. Consider the fractional mixed Volttera-Fredholm integrodifferential equation with boundary
conditions, which has the form

Dαy(t) = f

(
t, y(t),

∫ t

0

k
(
t, s, y(s)

)
ds,

∫T

0

h1

(
t, s, y(s)

)
ds

)
, (2.4)

y(0) − y′(0) =
∫T

0

g
(
y(s)

)
ds, y(T) − y′(T) =

∫T

0

h
(
y(s)

)
ds, (2.5)

where 1 < α ≤ 2, Dα is the Caputo fractional derivative and the nonlinear functions f : [0, T] × X ×
X ×X → X, k, h1 : [0, T] × [0, T] ×X → X and g, h : X → X satisfy the following hypotheses:

(H1) there exists constants G1, G2 such that ‖h(y)‖ ≤ G1,‖g(y)‖ ≤ G2 for y ∈ X,

(H2) there exists constants b1, b2 such that ‖ h(x) − h(y)‖ ≤ b1‖ x − y ‖ and

∥∥ g(x) − g
(
y
)∥∥ ≤ b2

∥∥ x − y
∥∥, ∀x, y ∈ X, (2.6)

(H3) there exists continuous functions p : [0, T] → R+ = [0,∞) and p1 : [0, T] → R+ such
that ‖

∫ t
0
(k(t, s, x) − k(t, s, y))ds‖ ≤ p(t) ‖x − y ‖ and ‖

∫ t
0
k(t, s, y)ds‖ ≤ p1(t) ‖y‖,

for every t, s ∈ [0, T] and x, y ∈ X,

(H4) there exists continuous functions q : [0, T] → R+ and q1 : [0, T] → R+

such that ‖
∫T

0
(h1(t, s, x) − h1(t, s, y)ds‖ ≤ q(t) ‖x − y ‖ and ‖

∫T
0
h1(t, s, y)ds‖ ≤

q1(t)‖y ‖for every t, s ∈ [0, T]andx, y ∈ X
(H5) there exists continuous function L : [0, T] → R+, and N1 is positive constant such that

‖f(t, x1, y1, z1) − f(t, x2, y2, z2)‖ ≤ L(t)K(‖x1 − x2‖ + ‖y1 − y2 ‖ + ‖z1 − z2‖)
andN1 = supt∈[0,T]‖f(t, 0, 0, 0)‖, for every t ∈ [0, T] and x1, y1, z1, x2, y2, z2 ∈ X, where
K : R+ → (0,∞) is continuous nondecreasing function satisfying K(γ(t)x) ≤ γ(t)K(x),
where γ is a continuous function γ : [0, T] → R+.

Lemma 2.5. Let 1 < α ≤ 2 and f : J ×X → X, where J = [0, T], be a continuous function, then the
solution of fractional differential equation (2.4) with the boundary condition (2.5) is

y(t) =
(1 + t)
T

∫T

0

h
(
y(s)

)
ds +

(
1 − (1 + t)

T

)∫T

0

g
(
y(s)

)
ds

− (1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
f

(
s, y(s),

∫ s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)

+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)
f

(
s, y(s),

∫ s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

+
∫ t

0

(t − s)α−1

Γ(α)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds.

(2.7)
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Proof. By Lemma 2.2, we reduce the problem (2.4)-(2.5) to an equivalent integral equation

y(t) = t
0I

α
f + C1 + C2t,

y(t) =
∫ t

0

(t − s)α−1

Γ(α)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds + C1 + C2t.

(2.8)

In view of the relations cDα Iαy(t) = y(t) and IαIβy(t) = Iα+βy(t), for α, β > 0, we obtain

y′(t) =
∫ t

0

(t − s)α−2

Γ(α − 1)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds + C2. (2.9)

Applying the boundary condition (2.5), we find that

y(0) = C1, y(T) =
∫T

0

(T − s)α−1

Γ(α)
f

(
s, y(s),

∫ s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

+ C1 + C2T,

y′(0) = C2, y′(T) =
∫T

0

(T − s)α−2

Γ(α − 1)
f

(
s, y(s),

∫ s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

+ C2,

(2.10)

that is,

C2 =
1

T

∫T

0

h
(
y(s)

)
ds − 1

T

∫T

0

g
(
y(s)

)
ds

− 1

T

∫T

0

(T − s)α−1

Γ(α)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

+
1

T

∫T

0

(T − s)α−2

Γ(α − 1)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds,

C1 =
1

T

∫T

0

h
(
y(s)

)
ds +

(
1 − 1

T

) ∫T

0

g
(
y(s)

)
ds

− 1

T

∫T

0

(T − s)α−1

Γ(α)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

+
1

T

∫T

0

(T − s)α−2

Γ(α − 1)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds.

(2.11)
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Therefore the solution of (2.4)-(2.5) is

y(t) =
(1 + t)
T

∫T

0

h
(
y(s)

)
ds +

(
1 − (1 + t)

T

)∫T

0

g
(
y(s)

)
ds

− (1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

+
∫ t

0

(t − s)α−1

Γ(α)
f

(
s, y(s),

∫ s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds,

(2.12)

which completes the proof.

3. The Main Result

Theorem 3.1. If the hypotheses (H1)–(H5) are satisfied, then the fractional integrodifferential
equation (2.4)-(2.5) has a unique solution on J .

Proof. Define F : C → C by

Fy(t) =
(1 + t)
T

∫T

0

h
(
y(s)

)
ds +

(
1 − (1 + t)

T

)∫T

0

g
(
y(s)

)
ds

− (1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

+
∫ t

0

(t − s)α−1

Γ(α)
f

(
s, y(s),

∫ s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds.

(3.1)

We show that F has a fixed point on Br. This fixed point is then a solution of (2.4)-(2.5). Firstly,

we show that FBr ⊂ Br, where Br = {y ∈ C : ‖y‖ ≤ r}. For y ∈ Br, we have

∥∥Fy(t)∥∥ ≤ (1 + t)
T

∫T

0

∥∥h(y(s))∥∥ ds +
(

1 − (1 + t)
T

)∫T

0

∥∥g(y(s))∥∥ds
+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)

∥∥∥∥∥f
(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)∥∥∥∥∥ds
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+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)

∥∥∥∥∥f
(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)∥∥∥∥∥ds
+

∫ t

0

(t − s)α−1

Γ(α)

∥∥∥∥∥f
(
s, y(s),

∫ s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)∥∥∥∥∥ds,
∥∥Fy(t)∥∥ ≤ (1 + t)

T

∫T

0

∥∥h(y(s))∥∥ds +
(

1 − (1 + t)
T

)∫T

0

∥∥g(y(s))∥∥ds
+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)

∥∥∥∥∥f
(
s, y(s),

∫S

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)

−f(s, 0, 0, 0) + f(s, 0, 0, 0)
∥∥∥∥∥ds

+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)

∥∥∥∥∥f
(
s, y(s),

∫S

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)

−f(s, 0, 0, 0) + f(s, 0, 0, 0)
∥∥∥∥∥ds

+
∫ t

0

(t − s)α−1

Γ(α)

∥∥∥∥∥f
(
s, y(s),

∫S

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)

−f(s, 0, 0, 0) + f(s, 0, 0, 0)
∥∥∥∥∥ds,

∥∥Fy(t)∥∥ ≤ (1 + t)
T

G1T +
(

1 − (1 + t)
T

)
G2T

+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)

∥∥∥∥∥f
(
s, y(s),

∫S

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)

−f(s, 0, 0, 0)
∥∥∥∥∥ds + (1 + t)

T

∫T

0

(T − s)α−2

Γ(α − 1)

∥∥f(s, 0, 0, 0)∥∥ds
+

∫ t

0

(t − s)α−1

Γ(α)

∥∥∥∥∥f
(
s, y(s),

∫S

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)

−f(s, 0, 0, 0)
∥∥∥∥∥ds +

∫ t

0

(t − s)α−1

Γ(α)

∥∥f(s, 0, 0, 0)∥∥ds
+

(
1 + t
T

)∫T

0

(T − s)α−1

Γ(α)

∥∥∥∥∥f
(
s, y(s),

∫S

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)

−f(s, 0, 0, 0)
∥∥∥∥∥ds +

(
1 + t
T

)∫T

0

(T − s)α−1

Γ(α)

∥∥f(s, 0, 0, 0)∥∥ds
≤ (1 + t)

T
G1T +

(
1 − (1 + t)

T

)
G2 T +

(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)
L(s)
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K

(∥∥y(s)∥∥ +

∥∥∥∥∥
∫S

0

k
(
s, τ, y(τ)

)
dτ

∥∥∥∥∥ +

∥∥∥∥∥
∫T

0

h1

(
s, τ, y(τ)

)
dτ)

∥∥∥∥∥
)
ds

+
(1 + t)N1

T

∫T

0

(T − s)α−2

Γ(α − 1)
ds +

(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
L(s)

K

(∥∥y(s)∥∥ +
∥∥∥∥∫ s

0

k
(
s, τ, y(τ)

)
dτ

∥∥∥∥ +

∥∥∥∥∥
∫T

0

h1

(
s, τ, y(τ)

)
dτ)

∥∥∥∥∥
)
ds

+
(1 + t)N1

T

∫T

0

(T − s)α−1

Γ(α)
ds +

∫ t

0

(t − s)α−1

Γ(α)
L(s)

K

(∥∥y(s)∥∥ +
∥∥∥∥∫ s

0

k
(
s, τ, y(τ)

)
dτ

∥∥∥∥ +

∥∥∥∥∥
∫T

0

h1

(
s, τ, y(τ)

)
dτ)

∥∥∥∥∥
)
ds

+N1

∫ t

0

(t − s)α−1

Γ(α)
ds

≤ (1 + t)G1 +
(

1 − (1 + t)
T

)
G2T +

(1 + t)N1

T(∫T

0

(T − s)α−2

Γ(α − 1)
ds +

∫T

0

(T − s)α−1

Γ(α)
ds

)
+N1

∫ t

0

(t − s)α−1

Γ(α)
ds

+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)
L(s)K

(∥∥y∥∥ + p1(s)
∥∥y∥∥ + q1(s)

∥∥y∥∥)
ds

+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
L(s)K

(∥∥y∥∥ + p1(s)
∥∥y∥∥ + q1(s)

∥∥y∥∥)
ds

+
∫ t

0

(t − s)α−1

Γ(α)
L(s)K

(∥∥y∥∥ + p1(s)
∥∥y∥∥ + q1(s)

∥∥y∥∥)
ds,

∥∥Fy(t)∥∥ ≤ (1 + t)G1 +
(

1 − (1 + t)
T

)
G2T

+
(1 + t)N1

T

(
Tα−1

Γ(α)
+

Tα

Γ(α + 1)

)
+N1

Tα

Γ(α + 1)

+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)
L(s)

(
1 + p1(s) + q1(s)

)
K

(∥∥y∥∥)
ds

+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
L(s)

(
1 + p1(s) + q1(s)

)
K

(∥∥y∥∥)
ds

+
∫ t

0

(t − s)α−1

Γ(α)
L(s)

(
1 + p1(s) + q1(s)

)
K

(∥∥y∥∥)
ds.

(3.2)



8 International Journal of Differential Equations

Since we have M1 = sup{L(t)( 1+p1(t)+q1(t)); t ∈ [0, T]}, and (1− ((1+ t)/T)) < (1− (1/T)),
we get

≤ (1 + t)G1 +
(

1 − 1

T

)
G2 T +

(1 + t)N1

T

(
Tα−1

Γ(α)
+

Tα

Γ(α + 1)

)
+N1

Tα

Γ(α + 1)

+
(1 + t)M1

T

∫T

0

(T − s)α−2

Γ(α − 1)
K

(∥∥y∥∥)
ds +

(1 + t)M1

T

∫T

0

(T − s)α−1

Γ(α)
K

(∥∥y∥∥)
ds

+M1

∫ t

0

(t − s)α−1

Γ(α)
K

(∥∥y∥∥)
ds

≤ (1 + t)G1 +
(

1 − 1

T

)
G2 T +

(1 + t)N1

T

(
Tα−1

Γ(α)
+

Tα

Γ(α + 1)

)
+N1

Tα

Γ(α + 1)

+
(1 + t)M1K(r)

T

∫T

0

(T − s)α−2

Γ(α − 1)
ds +

(1 + t)M1K(r)
T

∫T

0

(T − s)α−1

Γ(α)
ds

+M1K(r)
∫ t

0

(t − s)α−1

Γ(α)
ds

≤ (1 + t)G1 +
(

1 − 1

T

)
G2T +

(1 + t)N1

T

(
Tα−1

Γ(α)
+

Tα

Γ(α + 1)

)
+N1

Tα

Γ(α + 1)

+
(1 + t)M1K(r)

T

(
Tα−1

Γ(α)
+

Tα

Γ(α + 1)

)
+
M1K(r)Tα

Γ(α + 1)

≤ (1 + t)G1 + (T − 1)G2 +
(1 + t)
T

(N1 +M1K(r))

(
Tα−1

Γ(α)
+

Tα

Γ(α + 1)

)

+ (N1 +M1K(r))
Tα

Γ(α + 1)
,

∥∥Fy(t)∥∥ ≤ (1 + T)G1 + (T − 1)G2 +
(1 + T)
T

(N1 +M1K(r))

(
Tα−1

Γ(α)
+

Tα

Γ(α + 1)

)

+ (N1 +M1K(r))
Tα

Γ(α + 1)

≤ G1(1 + T) +G2(T − 1) +
C0(N1 +M1K(r))

Γ(α + 1)T2−α ,

(3.3)

where C0 = 2T2 + T + α(T + 1).
Now, take x, y ∈ C and for each t ∈ [0, T], we obtain

∥∥Fx(t) − Fy(t)∥∥ ≤ (1 + t)
T

∫T

0

∥∥h(x) − h(y)∥∥ds + (
1 − (1 + t)

T

)∫T

0

∥∥ g(x) − g
(
y
)∥∥ds

+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
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(
s, x(s),

∫s

0

k(s, τ, x(τ))dτ,
∫T

0

h1(s, τ, x(τ))dτ

)

−f
(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)∥∥∥∥∥ds
+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)∥∥∥∥∥f
(
s, x(s),

∫s

0

k(s, τ, x(τ))dτ ,
∫T

0

h1(s, τ, x(τ))dτ

)

−f
(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)∥∥∥∥∥ds
+

∫ t

0

(t − s)α−1

Γ(α)∥∥∥∥∥f
(
s, x(s),

∫s

0

k(s, τ, x(τ))dτ ,
∫T

0

h1(s, τ, x(τ))dτ

)

−f
(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)∥∥∥∥∥ds,
(3.4)

by using (H1)–(H5), we get

∥∥Fx(t) − Fy(t)∥∥ ≤ b1(1 + t)
T

∫T

0

∥∥x − y
∥∥ds + b2

(
1 − (1 + t)

T

)∫T

0

∥∥x − y
∥∥ ds

+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)
L(s)

K

(∥∥x(s) − y(s)∥∥ +
∥∥∥∥∫s

0

(
k(s, τ, x(τ)) − k

(
s, τ, y(τ)

))
dτ

∥∥∥∥
+

∥∥∥∥∥
∫T

0

(
h1(s, τ, x(τ)) − h1

(
s, τ, y(τ)

))
dτ

∥∥∥∥∥
)
ds

+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
L(s)

K

(∥∥x(s) − y(s)∥∥ +
∥∥∥∥∫s

0

(
k(s, τ, x(τ)) − k

(
s, τ, y(τ)

))
dτ

∥∥∥∥
+

∥∥∥∥∥
∫T

0

(
h1(s, τ, x(τ)) − h1

(
s, τ, y(τ)

))
dτ

∥∥∥∥∥
)
ds +

∫ t

0

(t − s)α−1

Γ(α)
L(s)
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K

(∥∥x(s) − y(s)∥∥ +
∥∥∥∥∫s

0

(
k(s, τ, x(τ)) − k

(
s, τ, y(τ)

))
dτ

∥∥∥∥
+

∥∥∥∥∥
∫T

0

(
h1(s, τ, x(τ)) − h1

(
s, τ, y(τ)

))
dτ

∥∥∥∥∥
)
ds

≤ b1(1 + t)
T

∫T

0

∥∥x − y
∥∥ds + b2

(
1 − (1 + t)

T

)∫T

0

∥∥x − y
∥∥ds

+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)
L(s)K

(∥∥x − y
∥∥ + p(s)

∥∥x − y
∥∥ + q(s)

∥∥x − y
∥∥)
ds

+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
L(s)K

(∥∥x − y
∥∥ + p(s)

∥∥x − y
∥∥ + q(s)

∥∥x − y
∥∥)
ds

+
∫ t

0

(t − s)α−1

Γ(α)
L(s)K

(∥∥x − y
∥∥ + p(s)

∥∥x − y
∥∥ + q(s)

∥∥x − y
∥∥)
ds

≤ b1(1 + t)
T

∫T

0

∥∥x − y
∥∥ds + b2

(
1 − 1

T

)∫T

0

∥∥x − y
∥∥ds

+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)
L(s)

(
1 + p(s) + q(s)

)
K

(∥∥x − y
∥∥)
ds

+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
L(s)

(
1 + p(s) + q(s)

)
K

(∥∥x − y
∥∥)
ds

+
∫ t

0

(t − s)α−1

Γ(α)
L(s)

(
1 + p(s) + q(s)

)
K

(∥∥x − y
∥∥)
ds .

(3.5)

Since we have M(t) = L(t)(1 + p(t) + q(t), M∗ = sup{M(t) : t ∈ [0, T]}, and, Let K(‖x − y‖) ≤
w‖x − y‖, (w > 0), then

∥∥Fx(t) − Fy(t)∥∥ ≤ b1(1 + t)
T

∫T

0

∥∥x − y
∥∥ds + b2

(
1 − 1

T

)∫T

0

∥∥x − y
∥∥ds

+
wM∗(1 + t)

T

∫T

0

(T − s)α−2

Γ(α − 1)

∥∥x − y
∥∥ds

+
w M∗(1 + t)

T

∫T

0

(T − s)α−1

Γ(α)

∥∥x − y
∥∥ds

+wM∗
∫ t

0

(t − s)α−1

Γ(α)

∥∥x − y
∥∥ds

≤
[
b1(1 + T) + b2(T − 1) +

wM∗C1(1 + T)
Γ(α + 1) T2−α

]∥∥ x − y
∥∥,

(3.6)
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where C1 = 2T2 + T + α(1 + T).
As b1(1+T)+b2(T −1)+(wM∗C1(1+T))/(Γ(α+1)T2−α) < 1, therefore f is a contraction.

Thus, the conclusion of the theorem is followed by the contraction mapping principle.

Theorem 3.2. Assume that (H1)–(H5) hold with

∥∥∥∥∥f
(
t, y(t),

∫ t

0

k
(
t, τ, y(τ)

)
dτ,

∫T

0

h1

(
t, τ, y(τ)

)
dτ

)∥∥∥∥∥ ≤ ψ(t), where ψ(t) ∈ L1(J). (3.7)

Then the boundary value problem (2.4)-(2.5) has at least one element on [0, T].

Proof. Consider Br = {y ∈ C : ‖y‖ ≤ r}. We define the operators A and B as

(Ax)(t) =
1

Γ(α)

∫ t

0

(t − s)α−1f

(
t, x(s),

∫ s

0

k(s, τ, x(τ))dτ,
∫T

0

h1(s, τ, x(τ))dτ

)
ds,

(Bx)(t) =
(1 + t)
T

∫T

0

h
(
y(s)

)
ds +

(
1 − (1 + t)

T

)∫T

0

g
(
y(s)

)
ds +

(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)

f

(
s, x(s),

∫s

0

k(s, τ, x(τ))dτ,
∫T

0

h1(s, τ, x(τ))dτ

)
ds

+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)
f

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ,
∫T

0

h1(s, τ, x(τ))dτ

)
ds.

(3.8)

Let us observe that if x, y ∈ Br, then Ax + By ∈ Br,

∥∥Ax + By
∥∥ =

∥∥∥∥∥
∫ t

0

(t − s)α−1

Γ(α)
f

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ,
∫T

0

h1(s, τ, x(τ))dτ

)
ds

+
(1 + t)
T

∫T

0

h
(
y(s)

)
ds +

(
1 − (1 + t)

T

)∫T

0

g
(
y(s)

)
ds +

(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)

f

(
s, y(s),

∫ s

0

k
(
s, τ, y(τ)

)
dτ ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds +

(1 + t)
T∫T

0

(T − s)α−1

Γ(α)
f

(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)
ds

∥∥∥∥∥
≤

∫ t

0

(t − s)α−1

Γ(α)

∥∥∥∥∥f
(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ,
∫T

0

h1(s, τ, x(τ))dτ

)∥∥∥∥∥ds
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+
(1 + t)
T

∫T

0

∥∥h(y(s))∥∥ds + (
1 − (1 + t)

T

)∫T

0

∥∥g(y(s))∥∥ds
+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)∥∥∥∥∥f
(
s, y(s),

∫ s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)∥∥∥∥∥ds
+
(1 + t)
T

∫T

0

(T − s)α−1

Γ(α)∥∥∥∥∥f
(
s, y(s),

∫s

0

k
(
s, τ, y(τ)

)
dτ,

∫T

0

h1

(
s, τ, y(τ)

)
dτ

)∥∥∥∥∥ds
≤

∥∥ψ∥∥
L1

∫ t

0

(t − s)α−1

Γ(α)
ds + (1 + t)G1

+
(

1 − (1 + t)
T

)
G2T +

(1 + t)
∥∥ψ∥∥

L1

T

∫T

0

(T − s)α−2

Γ(α − 1)
ds

+
(1 + t)

∥∥ψ∥∥
L1

T

∫T

0

(T − s)α−1

Γ(α)
ds

≤
∥∥ψ∥∥

L1
Tα

Γ(α + 1)
+ (1 + t)G1 +

(
1 − 1

T

)
G2T +

(1 + t)Tα−1
∥∥ψ∥∥

L1

TΓ(α)
+
(1 + t)Tα

∥∥ψ∥∥
L1

TΓ(α + 1)

≤
∥∥ψ∥∥

L1
Tα

Γ(α + 1)
+
(1 + t)Tα−1

∥∥ψ∥∥
L1

TΓ(α)
+
(1 + t)Tα

∥∥ψ∥∥
L1

TΓ(α + 1)
+ (1 + T)G1 + (T − 1)G2

≤ G1(1 + T) +G2(T − 1) +
C2T

α−2

Γ(α + 1)

∥∥ψ∥∥
L1
,

(3.9)

where C2 = 2T2 + T(α + 1) + T .

Now we prove that Bx is contraction mapping,

‖Bx1 − Bx2‖ ≤ (1 + t)
T

∫T

0

(T − s)α−1

Γ(α)

∥∥∥∥∥f
(
s, x1(s),

∫ s

0

k(s, τ, x1(τ))dτ ,
∫T

0

h1(s, τ, x1(τ))dτ

)

−f
(
s, x2(s)

∫s

0

k(s, τ, x2(τ))dτ ,
∫T

0

h1(s, τ, x2(τ))dτ

)∥∥∥∥∥ds
+
(1 + t)
T

∫T

0

(T − s)α−2

Γ(α − 1)

∥∥∥∥∥f
(
s, x1(s),

∫ s

0

k(s, τ, x1(τ))dτ,
∫T

0

h1(s, τ, x1(τ))dτ

)

−f
(
s, x2(s),

∫ s

0

k(s, τ, x2(τ))dτ ,
∫T

0

h1(s, τ, x2(τ))dτ

)∥∥∥∥∥ds
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≤ (1 + t)
T

[∫T

0

(T − s)α−2

Γ(α − 1)
L(s)

(
1 + p(s) + q(s)

)
K(‖x1 − x2‖)ds

+
∫T

0

(T − s)α−1

Γ(α)
L(s)

(
1 + p(s) + q(s)

)
K(‖x1 − x2‖)ds

]
.

(3.10)

Let K(‖x1 − x2‖) ≤ w‖x1 − x2‖, we obtain

‖Bx1 − Bx2‖ ≤ (1 + t)wM∗

T
‖ x1 − x2 ‖

[ ∫T

0

(T − s)α−2

Γ(α − 1)
ds +

∫T

0

(T − s)α−1

Γ(α)
ds

]
,

‖Bx1 − Bx2‖ ≤ (1 + T)wM∗

T

[
Tα−1

Γ(α)
+

Tα

Γ(α + 1)

]
‖ x1 − x2 ‖

≤ wM∗(1 + T)(α + T)
Γ(α + 1)T2−α ‖ x1 − x2 ‖.

(3.11)

It is clear that B is contraction mapping, since x(t) is continuous, then Ax is continuous

‖Ax(t)‖ =

∥∥∥∥∥ 1

Γ(α)

∫ t

0

(t − s)α−1f

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ,
∫T

0

h1(s, τ, x(τ))dτ

)
ds

∥∥∥∥∥
≤

∥∥ψ∥∥
L1

∫ t

0

(t − s)α−1

Γ(α)
ds

‖Ax(t)‖ ≤
Tα

∥∥ψ∥∥
L1

Γ(α + 1)
.

(3.12)

Hence, A is uniformly bounded on Br. Now, let us prove that Ax(t) is equicontinuous, let

t1, t2 ∈ [0, T] and x ∈ Br. Using the fact that f is bounded on the compact set J × Br, thus

sup(t,s)∈J×Br‖f(s, x(s),
∫s

0
k(s, τ, x(τ))dτ ,

∫T
0
h1(s, τ, x(τ))dτ)‖ = c0 <∞,we get

‖Ax(t1) −Ax(t2)‖ =

∥∥∥∥∥ 1

Γ(α)

∫ t1

0

(t1 − s)α−1f

(
s, x(s),

∫s

0

k(s, τ, x(τ))dτ,

∫T

0

h1(s, τ, x(τ))dτ

)
ds − 1

Γ(α)

∫ t2

0

(t2 − s)α−1

f

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ,
∫T

0

h1(s, τ, x(τ))dτ

)
ds

∥∥∥∥∥
≤ 1

Γ(α)

∥∥∥∥∥
∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
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f

(
s, x(s),

∫ s

0

k(s, τ, x(τ))dτ,
∫T

0

h1(s, τ, x(τ))dτ

)
ds

∥∥∥∥∥
+

∥∥∥∥∥
∫ t2

t1

(t2 − s)α−1f

(
s, x(s),

∫s

0

k(s, τ, x(τ))dτ ,
∫T

0

h1(s, τ, x(τ))dτ

)
ds

∥∥∥∥∥
≤ c0

Γ(α + 1)
[
2(t2 − t1)α + (t1α − t2α)

]
.

(3.13)

So A is relatively compact. By Arzela-Ascoli theorem, A is compact. Now we conclude

the result of the theorem of Krasnosel’skii theorem.

Example 3.3. Consider the following fractional mixed Volterra-Fredholm integrodifferential

equation:

y(1.5)(t) =
1

10
+

1

10 +
∣∣y(t)∣∣ +

∫ t

0

∣∣y(t)∣∣
10 e|y(t)| + t

dt +

1∫
0

∣∣y(t)∣∣e−t
10 +

∣∣y(t)∣∣2
dt, (3.14)

with integral boundary conditions

y(0) − y′(0) =
∫1

0

1

10 +
∣∣y(t)∣∣dt, y(1) − y′(1) =

∫1

0

1

10 + e−|y(t)|
dt. (3.15)

Here,

∥∥g(y(t))∥∥ =

∥∥∥∥∥ 1

10 +
∣∣y(t)∣∣

∥∥∥∥∥ ≤ 1

10
,

∥∥g(x) − g(y)∥∥ ≤ 1

100

∥∥x − y
∥∥,

∥∥h(y(t))∥∥ =
∥∥∥∥ 1

10 + e−|y(t)|

∥∥∥∥ ≤ 1

10
,

∥∥h(x) − h(y)∥∥ ≤ 1

100

∥∥x − y
∥∥,

∥∥∥∥∥
∫ t

0

(
k(t, s, x) − k

(
t, s, y

))
ds

∥∥∥∥∥ ≤ 1

10et

∥∥x − y
∥∥,

∥∥∥∥∥∥∥
t∫
0

k
(
t, s, y

)
ds

∥∥∥∥∥∥∥ ≤ 1

10 + t
∥∥y(t)∥∥,

∥∥∥∥∥
∫ t

0

(
h1(t, s, x) − h1

(
t, s, y

))
ds

∥∥∥∥∥ ≤ 1

10et

∥∥x − y
∥∥,

∥∥∥∥∥∥∥
t∫
0

h1

(
t, s, y

)
ds

∥∥∥∥∥∥∥ ≤ 1

10 + t
∥∥y(t)∥∥,

∥∥f(
t, x1y1, z1

)
− f

(
t, x2, y2, z2

)∥∥ ≤ 1

10 + t
(
‖x1 − x2 ‖ +

∥∥y1 − y2

∥∥ + ‖z1 − z2 ‖
)
,

f(t, 0, 0, 0) =
1

10
.

(3.16)
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Hence, the conditions (H1)–(H5) hold with G1 = G2 = 0.1 , b1 = b2 = 0.01, M∗
1 = 0.12,

w = 0.1, Co = 6,N1 = 0.1,M∗ = 0.12, and C1 = 6, thus

b1(1 + T) + b2(T − 1) +
wM∗C1(1 + T)
Γ(α + 1)T2−α < 1 ⇐⇒ 0.01(2) +

(0.1)(0.12)6(2)
Γ(2.5)

< 1. (3.17)

We conclude from the above example that the integrodifferential equation has unique

solution.
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By using the fixed point theorem, existence of positive solutions for fractional differential equation
with nonlocal boundary condition Dα

0+u(t) + a(t)f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) =∑∞
i=1αiu(ξi) is considered, where 1 < α ≤ 2 is a real number, Dα

0+ is the standard Riemann-Liouville

differentiation, and ξi ∈ (0, 1), αi ∈ [0,∞) with
∑∞

i=1αiξ
α−1
i < 1, a(t) ∈ C([0, 1], [0,∞)), f(t, u) ∈

C([0, 1] × [0,∞), [0,∞)).

1. Introduction

Fractional differential equations have been of great interest recently. It is caused both by

the intensive development of the theory of fractional calculus itself and by the applications

of such constructions in various sciences such as physics, mechanics, chemistry, and

engineering. For details, see [1–6] and references therein.

It should be noted that most of papers and books on fractional calculus are devoted to

the solvability of linear initial fractional differential equations in terms of special functions [6–

8]. Recently, there are some papers that deal with the existence and multiplicity of solution (or

positive solution) of nonlinear initial fractional differential equation by the use of techniques

of nonlinear analysis (fixed-point theorems, Leray-Shauder theory, etc.); see [9–17].
Recently, Bai and Lü [15] studied the existence of positive solutions of nonlinear

fractional differential equation

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.1)
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where 1 < α ≤ 2 is a real number, Dα
0+ is the standard Riemann-Liouville differentiation, and

f : [0, 1] × [0,∞) → [0,∞) is continuous.

In this paper, we study the existence of positive solutions for fractional differential

equation with nonlocal boundary condition

Dα
0+u(t) + a(t)f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑
i=1

αiu(ξi),
(1.2)

where 1 < α ≤ 2 is a real number, Dα
0+ is the standard Riemann-Liouville differentiation,

and ξi ∈ (0, 1), αi ∈ [0,∞) with
∑∞

i=1αiξ
α−1
i < 1, a(t) ∈ C([0, 1], [0,∞)), f(t, u) ∈ C([0, 1] ×

[0,∞), [0,∞)).
We assume the following conditions hold throughout the paper:

(H1) ξi ∈ (0, 1), αi ∈ [0,∞) is both constants with
∑∞

i=1αiξ
α−1
i < 1,

(H2) a(t) ∈ C([0, 1], [0,∞)), a(t)/≡ 0 on [a, b] ⊂ (0, 1),

(H3) f(t, u) ∈ C([0, 1] × [0,∞), [0,∞)).

Remark 1.1. To our knowledge, there are no results about the existence of positive solutions

for problem (1.2).

2. The Preliminary Lemmas

For the convenience of the reader, we present here the necessary definitions from fractional

calculus theory. These definitions can be found in the recent literature.

Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds, (2.1)

provided the right side is pointwise defined on (0,∞).

Definition 2.2. The fractional derivative of order α > 0 of a function y : (0,∞) → R is given

by

Dα
0+y(t) =

1

Γ(n − α)

(
d

dt

)n ∫ t

0

y(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1, provided the right side is pointwise defined on (0,∞).

Definition 2.3. The map θ is said to be a nonnegative continuous concave functional on a cone

P of a real Banach space E, provided that θ : P → [0,∞) is continuous and

θ
(
tx + (1 − t)y

)
≥ tθ(x) + (1 − t)θ

(
y
)
, (2.3)

for all x, y ∈ P and 0 ≤ t ≤ 1.
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Remark 2.4. As a basic example, we quote for λ > −1,

Dα
0+t

λ =
Γ(λ + 1)

Γ(λ − α + 1)
tλ−α, (2.4)

giving in particular Dα
0+t

α−m = 0, m = 1, 2, . . . ,N, where N is the smallest integer greater than

or equal to α.

From Definition 2.2 and Remark 2.4, we then obtain the following.

Lemma 2.5. Let α > 0. If one assumes u ∈ C(0, 1) ∩ L(0, 1), then the fractional differential equation

Dα
0+u(t) = 0 (2.5)

has u(t) = C1t
α−1 + C2t

α−2 + · · · + CNt
α−N, Ci ∈ R, i = 1, 2, . . . ,N, whereN is the smallest integer

greater than or equal to α, as unique solutions.

Lemma 2.6. Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0 that
belongs to u ∈ C(0, 1) ∩ L(0, 1). Then,

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNt

α−N, (2.6)

for some Ci ∈ R, i = 1, 2, . . . ,N.

Lemma 2.7 (see [15]). Given y ∈ C[0, 1] and 1 < α ≤ 2, the unique solution of

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u(1) = 0
(2.7)

is

u(t) =
∫1

0

G(t, s)y(s)ds, (2.8)

where

G(t, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[t(1 − s)]α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.9)

Lemma 2.8. Suppose (H1) holds. Given y ∈ C[0, 1] and 1 < α ≤ 2, the unique solution of

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑
i=1

αiu(ξi)
(2.10)
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is

u(t) =
∫1

0

G(t, s)y(s)ds + B
(
y
)
tα−1, (2.11)

where

G(t, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[t(1 − s)]α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

B
(
y
)
=

∑∞
i=1αi

∫1

0
G(ξi, s)y(s)ds

1 − ∑∞
i=1αiξ

α−1
i

.

(2.12)

Proof. By applying Lemmas 2.6 and 2.7, we have

u(t) =
∫1

0

G(t, s)y(s)ds + C1t
α−1 + C2t

α−2. (2.13)

Because

∞∑
i=1

αi

∫1

0

G(ξi, s)ds =
∑∞

i=1αiξ
α−1
i (1 − ξi)

αΓ(α)
, αiξ

α−1
i (1 − ξi) < αiξα−1

i , (2.14)

by (H1),
∑∞

i=1αiξ
α−1
i (1 − ξi) is converge. Therefore,

∑∞
i=1αi

∫1

0
G(ξi, s)ds is converge. y(t) is

continuous function on [0, 1], so
∑∞

i=1αi
∫1

0
G(ξi, s)y(s)ds is converge.

By u(0) = 0, u(1) =
∑∞

i=1αiu(ξi), there are C2 = 0, C1 = (
∑∞

i=1αi
∫1

0
G(ξi, s)y(s)ds)/(1 −∑∞

i=1αiξ
α−1
i ). Therefore,

u(t) =
∫1

0

G(t, s)y(s)ds + B
(
y
)
tα−1,

B
(
y
)
=

∑∞
i=1αi

∫1

0
G(ξi, s)y(s)ds

1 − ∑∞
i=1αiξ

α−1
i

.

(2.15)

Lemma 2.9 (see [15]). The function G(t, s) defined by (2.9) satisfies the following conditions:

(1) G(t, s) > 0, for t, s ∈ (0, 1),

(2) there exists a positive function γ ∈ C(0, 1) such that

min
(1/4)≤t≤(3/4)

G(t, s) ≥ γ(s)max
0≤t≤1

G(t, s) = γ(s)G(s, s), 0 < s < 1. (2.16)
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Lemma 2.10 (see [18]). Let E be a Banach space, P ⊆ E a cone andΩ1, Ω2 two bounded open sets of
E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose thatA : P ∩ (Ω2 \Ω1) → P is a completely continuous operator
such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2

holds. Then, A has a fixed point in P ∩ (Ω2 \Ω1).

Lemma 2.11 (see [19]). Let P be a cone in real Banach space E, Pc = {x ∈ P | ‖x‖ ≤ c}, θ
a nonnegative continuous concave functional on P such that θ(x) ≤ ‖x‖, for all x ∈ Pc, and
P(θ, b, d) = {x ∈ P | b ≤ θ(x), ‖x‖ ≤ d}. Suppose that A : Pc → Pc is completely continuous, and
there exist constants 0 < a < b < d ≤ c such that

(C1) {x ∈ P(θ, b, d) | θ(x) > b}/= ∅, and θ(Ax) > b, x ∈ P(θ, b, d),

(C2) ‖Ax‖ ≤ a, for x ≤ a,

(C3) θ(Ax) > b for x ∈ P(θ, b, c) with ‖Ax‖ > d.

Then, A has at least three fixed points x1, x2, x3 with

‖x1‖ < a, b < θ(x2), a < ‖x3‖, θ(x3) < b. (2.17)

Remark 2.12. If there holds d = c, then condition (C1) of Lemma 2.11 implies condition (C3)
of Lemma 2.11.

3. The Main Results

Let E = C[0, 1] be endowed with the ordering u ≤ v if u(t) ≤ v(t) for all t ∈ [0, 1], and the

maximum norm, ‖u‖ = max0≤t≤1|u(t)|. Define the cone P ⊂ E by P = {u ∈ E | u(t) ≥ 0}.

Let the nonnegative continuous concave functional θ on the cone P be defined by

θ(u) = min(1/4)≤t≤(3/4)|u(t)|.

Lemma 3.1 (see [15]). Let T : P → E be the operator defined by Tu(t) :=
∫1

0
G(t, s)f(s, u(s))ds,

then T : P → P is completely continuous.

Lemma 3.2. Let A : P → E be the operator defined by

Au(t) :=
∫1

0

G(t, s)a(s)f(s, u(s))ds + B
(
a(·)f(·, u(·))

)
tα−1, (3.1)

then A : P → P is completely continuous.
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Proof. The proof is similar to Lemma 3.1, so we omit.

Denote

M =

⎛⎝∫1

0

G(s, s)a(s)ds +

∑∞
i=1αi

∫1

0
G(ξi, s)a(s)ds

1 − ∑∞
i=1αiξ

α−1
i

⎞⎠−1

,

N =

(∫3/4

1/4

γ(s)G(s, s)a(s)ds

)−1

.

(∗)

Theorem 3.3. Assume (H1)–(H3) hold, and there exist two positive constants r2 > r1 > 0 such that

(1) f(t, u) ≤Mr2, for all t ∈ [0, 1], u ∈ [0, r2],
(2) f(t, u) ≥Nr1, for all t ∈ [0, 1], u ∈ [0, r1], whereM,N is defined in (∗),

then problem (1.2) has at least one positive solution u such that r1 ≤ ‖u‖ ≤ r2.

Proof. By Lemmas 2.8 and 3.2, we know A : P → P is completely continuous, and problem

(1.2) has a solution u = u(t) if and only if u solves the operator equation u = Au. In order to

apply Lemma 2.10, we separate the proof into the following two steps.

Step 1. Let Ω2 = {u ∈ P | ‖u‖ ≤ r2}. For u ∈ ∂Ω2, we have 0 ≤ u(t) ≤ r2 for all t ∈ [0, 1]. It

follows from (1) that for t ∈ [0, 1],

‖Au‖ ≤
∫1

0

G(s, s)a(s)f(s, u(s))ds +

∑∞
i=1αi

∫1

0
G(ξi, s)a(s)f(s, u(s))ds

1 − ∑∞
i=1αiξ

α−1
i

≤Mr2

⎡⎣∫1

0

G(s, s)a(s)ds +

∑∞
i=1αi

∫1

0
G(ξi, s)a(s)ds

1 − ∑∞
i=1αiξ

α−1
i

⎤⎦
= r2 = ‖u‖.

(3.2)

Therefore,

‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2. (3.3)

Step 2. Let Ω1 = {u ∈ P | ‖u‖ ≤ r1}. For u ∈ ∂Ω1, we have 0 ≤ u(t) ≤ r1 for all t ∈ [0, 1]. By

assumption (2), for t ∈ [1/4, 3/4], there is

(Au)(t) =
∫1

0

G(t, s)a(s)f(s, u(s))ds +
tα−1

∑∞
i=1αi

∫1

0
G(ξi, s)a(s)f(s, u(s))ds

1 − ∑∞
i=1αiξ

α−1
i

≥
∫1

0

γ(s)G(s, s)a(s)f(s, u(s))ds

≥Nr

∫3/4

1/4

γ(s)G(s, s)a(s)ds

= r1 = ‖u‖.

(3.4)
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So,

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1. (3.5)

Therefore, by (ii) of Lemma 2.10, we complete the proof.

Example 3.4. Consider the problem

D3/2
0+ u(t) + u

2 +
sin t

4
+

1

5
= 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑
i=1

αiu(ξi),

(3.6)

where
∑∞

i=1αiξ
1/2
i = 1/5.

A simple computation showed M ≥ 1.4,N ≈ 13.6649. Choosing r1 = (1/70), r2 =
(9/10), we have

f(t, u) = u2 +
sin t

4
+

1

5
≤ 1.2207 ≤Mr2, (t, u) ∈ [0, 1] ×

[
0,

9

10

]
,

f(t, u) = u2 +
sin t

4
+

1

5
≥ 1

5
≥Nr1, (t, u) ∈ [0, 1] ×

[
0,

1

70

]
.

(3.7)

With the use of Theorem 3.3, problem (3.6) has at least one positive solutions u such

that (1/70) ≤ ‖u‖ ≤ (9/10).

Theorem 3.5. Assume (H1)–(H3) hold, and there exist constants 0 < a < b < c such that the
following assumptions hold:

(A1) f(t, u) < Ma for (t, u) ∈ [0, 1] × [0, a],

(A2) f(t, u) ≥Nb for (t, u) ∈ [1/4, 3/4] × [b, c],

(A3) f(t, u) ≤Mc for (t, u) ∈ [0, 1] × [0, c], whereM,N is defined in (∗).

Then, the boundary value problem (1.2) has at least three positive solutions u1, u2, u3 with

‖u1‖ < a, b < min
(1/4)≤t≤(3/4)

|u2| < ‖u2‖ ≤ c,

a < ‖u3‖ ≤ c, min
(1/4)≤t≤(3/4)

|u3| < b.
(3.8)
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Proof. We show that all the conditions of Lemma 2.9 are satisfied.

If u ∈ Pc, then ‖u‖ ≤ c. Assumption (A3) implies f(t, u(t)) ≤ Mc for 0 ≤ t ≤ 1.

Consequently,

‖Au‖ = max
0≤t≤1

∣∣∣∣∣∣
∫1

0

G(t, s)a(s)f(s, u(s))ds +
tα−1

∑∞
i=1αi

∫1

0
G(ξi, s)a(s)f(s, u(s))ds

1 − ∑∞
i=1αiξ

α−1
i

∣∣∣∣∣∣
≤

∫1

0

G(s, s)a(s)f(s, u(s))ds +
tα−1

∑∞
i=1αi

∫1

0
G(ξi, s)a(s)f(s, u(s))ds

1 − ∑∞
i=1αiξ

α−1
i

≤

⎡⎣∫1

0

G(s, s)a(s)ds +

∑∞
i=1αi

∫1

0
G(ξi, s)a(s)ds

1 − ∑∞
i=1αiξ

α−1
i

⎤⎦‖u‖

≤ ‖u‖.

(3.9)

Hence, A : Pc → Pc. In the same way, if u ∈ Pa, then assumption (A1) yields f(t, u(t)) <
Ma, 0 ≤ t ≤ 1. Therefore, condition (C2) of Lemma 2.11 is satisfied.

To check condition (C1) of Lemma 2.11, we choose u(t) = (b + c)/2, 0 ≤ t ≤ 1. It is

easy to see that u(t) = (b + c)/2 ∈ P(θ, b, c), θ(u) = (θ(b + c))/2 > b, and consequently,

{u ∈ P(θ, b, d) | θ(u) > b}/= ∅ Hence, if u ∈ P(θ, b, c), then b ≤ u(t) ≤ c for (1/4) ≤ t ≤ (3/4).
From assumption (A2), we have f(t, u(t)) ≥Nb for (1/4) ≤ t ≤ (3/4). So,

θ(Au) = min
(1/4)≤t≤(3/4)

|(Au)(t)|

≥
∫1

0

γ(s)G(s, s)a(s)f(s, u(s))ds

> Nb

∫3/4

1/4

γ(s)G(s, s)a(s)ds

= b = ‖u‖

(3.10)

θ(Au) > b, for all u ∈ P(θ, b, c).
This shows that condition (C1) of Lemma 2.11 is also satisfied.

By Lemma 2.11 and Remark 2.12, the boundary value problem (1.2) has at least three

positive solutions u1, u2, and u3 with

‖u1‖ < a, b < min
(1/4)≤t≤(3/4)

|u2|,

a < ‖u3‖, min
(1/4)≤t≤(3/4)

|u3| < b.
(3.11)

The proof is complete.
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Example 3.6. Consider the problem

D3/2
0+ u(t) + f(t, u) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑
i=1

αiu(ξi),
(3.12)

where
∑∞

i=1αiξ
1/2
i = (1/5),

f(t, u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
t

40

)
+ 14u2, u ≤ 1,

13 +
(
t

40

)
+ u, u > 1.

(3.13)

We have M ≥ 1.4,N ≈ 13.6649. Choosing a = (1/14), b = 1, c = 36, there hold

f(t, u) =
t

40
+ 14u2 ≤ 0.097 ≤Ma, (t, u) ∈ [0, 1] ×

[
0,

1

14

]
,

f(t, u) = 13 +
t

40
+ u ≥ 14.025 ≥Nb ≈ 13.7, (t, u) ∈

[
1

4
,

3

4

]
× [1, 36],

f(t, u) ≤ 13 +
t

40
+ u ≤ 48.025 ≤Mc ≈ 50.4, (t, u) ∈ [0, 1] × [0, 36].

(3.14)

With the use of Theorem 3.5, problem (3.12) has at least three positive solutions u1, u2, and

u3 with

max
0≤t≤1

|u1(t)| <
1

14
, 1 < min

(1/4)≤t≤(3/4)
|u2(t)| < max

0≤t≤1
|u2(t)| ≤ 36,

1

14
< max

0≤t≤1
|u3(t)| ≤ 36, min

(1/4)≤t≤(3/4)
|u3(t)| < 1.

(3.15)
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We discuss the existence of solution for a multipoint boundary value problem of fractional differ-
ential equation. An existence result is obtained with the use of the coincidence degree theory.

1. Introduction

In this paper, we study the multipoint boundary value problem

Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t), Dα−2
0+ u(t)

)
+ e(t), 0 < t < 1, (1.1)

I3−α
0+ u(0) = 0, Dα−2

0+ u(0) =
n∑
j=1

βjD
α−2
0+ u

(
ξj

)
, u(1) =

m∑
i=1

αiu
(
ηi

)
, (1.2)

where 2 < α ≤ 3, 0 < ξ1 < ξ2 < · · · < ξn < 1, n ≥ 1, 0 < η1 < · · · < ηm < 1, m ≥ 2, αi, βj ∈ R,

m∑
i=1

αiη
α−1
i =

m∑
i=1

αiη
α−2
i = 1,

n∑
j=1

βjξj = 0,
n∑
j=1

βj = 1, (1.3)
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f : [0, 1] × R
3 → R satisfying the Carathéodory conditions, e ∈ L1[0, 1]. Dα

0+ and Iα0+ are the

standard Riemann-Liouville derivative and integral, respectively. We assume, in addition,

that

R =
Γ(α)2Γ(α − 1)
Γ(2α)Γ(α + 1)

n∑
j=1

βjξ
α
j

(
1 −

m∑
i=1

αiη
2α−1
i

)

− Γ(α)2Γ(α − 1)
Γ(α + 2)Γ(2α − 1)

n∑
j=1

βjξ
α+1
j

(
1 −

m∑
i=1

αiη
2α−2
i

)

/= 0,

(1.4)

where Γ is the Gamma function. Due to condition (1.3), the fractional differential operator in

(1.1), (1.2) is not invertible.

Fractional differential equation can describe many phenomena in various fields

of science and engineering. Many methods have been introduced for solving fractional

differential equations, such as the popular Laplace transform method, the iteration method.

For details, see [1, 2] and the references therein.

Recently, there are some papers dealing with the solvability of nonlinear boundary

value problems of fractional differential equation, by use of techniques of nonlinear analysis

(fixed-point theorems, Leray-Schauder theory, etc.), see, for example, [3–6]. But there are few

papers that consider the fractional-order boundary problems at resonance. Very recently [7],
Y. H. Zhang and Z. B. Bai considered the existence of solutions for the fractional ordinary

differential equation

Dα
0+u(t) = f

(
t, u(t), Dα−(n−1)

0+ u(t), . . . , Dα−1
0+ u(t)

)
+ e(t), 0 < t < 1, (1.5)

subject to the following boundary value conditions:

In−α0+ u(0) = Dα−(n−1)
0+ u(0) = · · · = Dα−2

0+ u(0) = 0, u(1) = σu
(
η
)
, (1.6)

where n > 2 is a natural number, n − 1 < α ≤ n is a real number, f : [0, 1] × R
n → R is con-

tinuous, and e ∈ L1[0, 1], σ ∈ (0,∞), and η ∈ (0, 1) are given constants such that σηα−1 = 1.

Dα
0+ and Iα0+ are the standard Riemann-Liouville derivative and integral, respectively. By the

conditions, the kernel of the linear operator is one dimensional.

Motivated by the above work and recent studies on fractional differential equations

[8–18], in this paper, we consider the existence of solutions for multipoint boundary value

problem (1.1), (1.2) at resonance. Note that under condition (1.3), the kernel of the linear

operator in (1.1), (1.2) is two dimensional. Our method is based upon the coincidence degree

theory of Mawhin [18].
Now, we will briefly recall some notation and abstract existence result.

Let Y, Z be real Banach spaces, let L : dom(L) ⊂ Y → Z be a Fredholm map of

index zero, and let P : Y → Y, Q : Z → Z be continuous projectors such that Im(P) =
Ker(P), Ker(Q) = Im(L), and Y = Ker(L) ⊕ Ker(P), Z = Im(L) ⊕ Im(Q). It follows that

L|dom(L)∩Ker(P) : dom(L) ∩ Ker(P) → Im(L) is invertible. We denote the inverse of the map by
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KP . If Ω is an open-bounded subset of Y such that dom(L)∩Ω/= ∅, the mapN : Y → Z will be

called L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → Y is compact.

The theorem that we used is Theorem 2.4 of [18].

Theorem 1.1. Let L be a Fredholm operator of index zero andN be L-compact onΩ. Assume that the
following conditions are satisfied:

(i) Lx/=λNx for every (x, λ) ∈ [(dom(L) \ Ker(L)) ∩ ∂Ω] × (0, 1),

(ii) Nx /∈ Im(L) for every x ∈ Ker(L) ∩ ∂Ω,

(iii) deg(JQN|Ker(L),Ω ∩ Ker(L), 0)/= 0, where Q : Z → Z is a projection as above with
Im(L) = Ker(Q), and J : Im(Q) → Ker(L) is any isomorphism,

then the equation Lx =Nx has at least one solution in dom(L) ∩Ω.

The rest of this paper is organized as follows. In Section 2, we give some notation and

Lemmas. In Section 3, we establish an existence theorem of a solution for the problem (1.1),
(1.2).

2. Background Materials and Preliminaries

For the convenience of the reader, we present here some necessary basic knowledge and defi-

nitions for fractional calculus theory, and these definitions can be found in the recent literature

[1, 2].

Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds, (2.1)

provided the right side is pointwise defined on (0,∞). And we let I0
0+y(t) = y(t) for every

continuous y : (0,∞) → R.

Definition 2.2. The fractional derivative of order α > 0 of a function y : (0,∞) → R is given

by

Dα
0+y(t) =

1

Γ(n − α)

(
d

dt

)n ∫ t

0

y(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1, provided the right side is pointwise defined on (0,∞).

Lemma 2.3 (see [3]). Assume that u ∈ C(0, 1) ∩ L1[0, 1] with a fractional derivative of order α > 0

that belongs to C(0, 1) ∩ L1[0, 1], then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNt

α−N, (2.3)

for some Ci ∈ R, i = 1, 2, . . . ,N, whereN is the smallest integer greater than or equal to α.
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We use the classical space C[0, 1] with the norm ‖x‖∞ = maxt∈[0,1]|x(t)|. Given μ > 0

and N = [μ] + 1, one can define a linear space

Cμ[0, 1] :=
{
u | u(t) = Iμ0+x(t) + c1t

μ−1 + c2t
μ−2 + · · · + cN−1t

μ−(N−1), t ∈ [0, 1]
}
, (2.4)

where x ∈ C[0, 1] and ci ∈ R, i = 1, 2, . . . ,N − 1. By means of the linear function analysis

theory, one can prove that with the norm ‖u‖Cμ = ‖Dμ

0+u‖∞+· · ·+‖Dμ−(N−1)
0+ u‖∞+‖u‖∞, Cμ[0, 1]

is a Banach space.

Lemma 2.4 (see [7]). F ⊂ Cμ[0, 1] is a sequentially compact set if and only if F is uniformly bounded
and equicontinuous. Here, uniformly bounded means that there exists M > 0 such that for every
u ∈ F,

‖u‖Cμ =
∥∥∥Dμ

0+u
∥∥∥
∞
+ · · · +

∥∥∥Dμ−(N−1)
0+ u

∥∥∥
∞
+ ‖u‖∞ < M, (2.5)

and equicontinuous means that for all ε > 0, ∃δ > 0 such that

|u(t1) − u(t2)| < ε, (∀t1, t2 ∈ [0, 1], |t1 − t2| < δ, ∀u ∈ F),∣∣∣Dα−i
0+ u(t1) −Dα−i

0+ u(t2)
∣∣∣ < ε, (t1, t2 ∈ [0, 1], |t1 − t2| < δ, ∀u ∈ F, ∀i ∈ {0, . . . ,N − 1}).

(2.6)

Let Z = L1[0, 1] with the norm ‖g‖1 =
∫1

0
|g(s)|ds. Y = Cα−1[0, 1] = {u | u(t) = Iα−1

0+ x(t)+
ctα−2, t ∈ [0, 1]}, where x ∈ C[0, 1], c ∈ R, with the norm ‖u‖Cα−1 = ‖Dα−1

0+ u‖∞ + ‖Dα−2
0+ u‖∞ +

‖u‖∞, and Y is a Banach space.

Definition 2.5. By a solution of the boundary value problem (1.1), (1.2), we understand a

function u ∈ Cα−1[0, 1] such that Dα−1
0+ u is absolutely continuous on (0, 1) and satisfies (1.1),

(1.2).

Definition 2.6. We say that the map f : [0, 1] × R → R satisfies the Carathéodory conditions

with respect to L1[0, 1] if the following conditions are satisfied:

(i) for each z ∈ R, the mapping t → f(t, z) is Lebesgue measurable,

(ii) for almost every t ∈ [0, 1], the mapping z → f(t, z) is continuous on R,

(iii) for each r > 0, there exists ρr ∈ L1([0, 1],R) such that, for a.e., t ∈ [0, 1] and every

|z| ≤ r, we have |f(t, z)| ≤ ρr(t).

Define L to be the linear operator from dom(L) ∩ Y to Z with

dom(L) =
{
u ∈ Cα−1[0, 1] | Dα

0+u ∈ L1[0, 1], u satisfies (1.2)
}
,

Lu = Dα
0+u, u ∈ dom(L).

(2.7)

We define N : Y → Z by setting

Nu(t) = f
(
t, u(t), Dα−1

0+ u(t), Dα−2
0+ u(t)

)
+ e(t). (2.8)
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Then boundary value problem (1.1), (1.2) can be written as

Lu =Nu. (2.9)

Lemma 2.7. Let condition (1.3) and (1.4) hold, then L : dom(L) ∩ Y → Z is a Fredholm map of
index zero.

Proof. It is clear that Ker(L) = {atα−1 + btα−2 | a, b ∈ R} ∼= R
2.

Let g ∈ Z and

u(t) =
1

Γ(α)

∫ t

0

(t − s)α−1g(s)ds + c1t
α−1 + c2t

α−2, (2.10)

then Dα
0+u(t) = g(t) a.e., t ∈ (0, 1) and, if

∫1

0

(1 − s)α−1g(s)ds −
m∑
i=1

αi

∫ηi

0

(
ηi − s

)α−1
g(s)ds = 0,

n∑
j=1

βj

∫ ξj

0

(
ξj − s

)
g(s)ds = 0

(2.11)

hold. Then u(t) satisfies the boundary conditions (1.2), that is, u ∈ dom(L), and we have

{
g ∈ Z | g satisfies (2.11)

}
⊆ Im(L). (2.12)

Let u ∈ dom(L), then for Dα
0+u ∈ Im(L), we have

u(t) = Iα0+D
α
0+u(t) + c1t

α−1 + c2t
α−2 + c3t

α−3, (2.13)

which, due to the boundary value condition (1.2), implies that Dα
0+u satisfies (2.11). In fact,

from I3−α
0+ u(0) = 0, we have c3 = 0, from u(1) =

∑m
i=1 αiu(ηi), we have

∫1

0

(1 − s)α−1Dα
0+u(s)ds −

m∑
i=1

αi

∫ηi

0

(
ηi − s

)α−1
Dα

0+u(s)ds = 0, (2.14)

and from Dα−2
0+ u(0) =

∑n
j=1 βjD

α−2
0+ u(ξj), we have

n∑
j=1

βj

∫ ξj

0

(
ξj − s

)
Dα

0+u(s)ds = 0. (2.15)

Hence,

Im(L) ⊆
{
g ∈ Z | g satisfies (2.11)

}
. (2.16)
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Therefore,

Im(L) =
{
g ∈ Z | g satisfies (2.11)

}
. (2.17)

Consider the continuous linear mapping Q1 : Z → Z and Q2 : Z → Z defined by

Q1g =
∫1

0

(1 − s)α−1g(s)ds −
m∑
i=1

αi

∫ηi

0

(
ηi − s

)α−1
g(s)ds,

Q2g =
n∑
j=1

βj

∫ ξj

0

(
ξj − s

)
g(s)ds.

(2.18)

Using the above definitions, we construct the following auxiliary maps R1, R2 : Z → Z:

R1g =
1

R

⎡⎣Γ(α − 1)
Γ(α + 1)

n∑
j=1

βjξ
α
j Q1g(t) −

Γ(α)Γ(α − 1)
Γ(2α − 1)

(
1 −

m∑
i=1

αiη
2α−2
i

)
Q2g(t)

⎤⎦,
R2g = − 1

R

⎡⎣ Γ(α)
Γ(α + 2)

n∑
j=1

βjξ
α+1
j Q1g(t) −

(Γ(α))2

Γ(2α)

(
1 −

m∑
i=1

αiη
2α−1
i

)
Q2g(t)

⎤⎦.
(2.19)

Since the condition (1.4) holds, the mapping Q : Z → Z defined by

(
Qy

)
(t) =

(
R1g(t)

)
tα−1 +

(
R2g(t)

)
tα−2 (2.20)

is well defined.

Recall (1.4) and note that

R1

(
R1gt

α−1
)
=

1

R

⎡⎣Γ(α − 1)
Γ(α + 1)

n∑
j=1

βjξ
α
j Q1

(
R1gt

α−1
)

−Γ(α)Γ(α − 1)
Γ(2α − 1)

(
1 −

m∑
i=1

αiη
2α−2
i

)
Q2

(
R1gt

α−1
)⎤⎦

= R1g
1

R

⎡⎣Γ(α − 1)Γ
(
α2

)
Γ(α + 1)Γ(2α)

n∑
j=1

βjξ
α
j

(
1 −

m∑
i=1

αiη
2α−1
i

)

−
Γ(α − 1)Γ

(
α2

)
Γ(2α − 1)Γ(α + 2)

(
1 −

m∑
i=1

αiη
2α−2
i

)
n∑
j=1

βjξ
α+1
j

⎤⎦
= R1g,

(2.21)
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and similarly we can derive that

R1

(
R2gt

α−2
)
= 0,

R2

(
R1gt

α−1
)
= 0,

R2

(
R2gt

α−2
)
= R2g.

(2.22)

So, for g ∈ Z, it follows from the four relations above that

Q2g = R1

(
R1gt

α−1 + R2gt
α−2

)
tα−1 + R2

(
R1gt

α−1 + R2gt
α−2

)
tα−2

= R1

(
R1gt

α−1
)
tα−1 + R1

(
R2gt

α−2
)
tα−1 + R2

(
R1gt

α−1
)
tα−2 + R2

(
R2gt

α−2
)
tα−2

= R1gt
α−1 + R2gt

α−2

= Qg,

(2.23)

that is, the map Q is idempotent. In fact, Q is a continuous linear projector.

Note that g ∈ Im(L) implies Qg = 0. Conversely, if Qg = 0, then we must have

R1g = R2g = 0; since the condition (1.4) holds, this can only be the case if Q1g = Q2g = 0, that

is, g ∈ Im(L). In fact, Im(L) = Ker(Q).
Take g ∈ Z in the form g = (g − Qg) + Qg, so that g − Qg ∈ Im(L) = Ker(Q) and

Qg ∈ Im(Q). Thus, Z = Im(L)+ Im(Q). Let g ∈ Im(L)∩ Im(Q) and assume that g(s) = asα−1 +
bsα−2 is not identically zero on [0, 1], then, since g ∈ Im(L), from (2.11) and the condition

(1.4), we derive a = b = 0, which is a contradiction. Hence, Im(L) ∩ Im(Q) = {0}; thus,

Z = Im(L) ⊕ Im(Q).
Now, dim Ker(L) = 2 = co dim Im(L), and so L is a Fredholm operator of index zero.

Let P : Y → Y be defined by

Pu(t) =
1

Γ(α)
Dα−1

0+ u(0)tα−1 +
1

Γ(α − 1)
Dα−2

0+ u(0)tα−2, t ∈ [0, 1]. (2.24)

Note that P is a continuous linear projector and

Ker(P) =
{
u ∈ Y | Dα−1

0+ u(0) = Dα−2
0+ u(0) = 0

}
. (2.25)

It is clear that Y = Ker(L) ⊕ Ker(P).
Note that the projectors P and Q are exact. Define KP : Im(L) → dom(L) ∩ Ker(P) by

KPg(t) =
1

Γ(α)

∫ t

0

(t − s)α−1g(s)ds = Iα0+g(t). (2.26)
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Hence, we have

Dα−1
0+

(
KPg

)
(t) =

∫ t

0

g(s)ds, Dα−2
0+

(
KPg

)
(t) =

∫ t

0

(t − s)g(s)ds, (2.27)

then ‖KPg‖∞ ≤ (1/Γ(α))‖g‖1, ‖Dα−1
0+ (KPg)‖∞ ≤ ‖g‖1, ‖Dα−2

0+ (KPg)‖∞ ≤ ‖g‖1, and thus

∥∥KPg
∥∥
Cα−1 ≤

(
2 +

1

Γ(α)

)∥∥g∥∥
1
. (2.28)

In fact, if g ∈ Im(L), then (LKP )g = Dα
0+I

α
0+g = g. Also, if u ∈ dom(L) ∩ Ker(P), then

(
KPLg

)
(t) = Iα0+D

α
0+g(t) = g(t) + c1t

α−1 + c2t
α−2 + c3t

α−3, (2.29)

from boundary value condition (1.2) and the fact that u ∈ dom(L)∩Ker(P), we have c1 = c2 =
c3 = 0. Thus,

KP =
(
L|dom(L)∩Ker(P)

)−1
. (2.30)

Using (2.19), we write

QNu(t) = (R1Nu)tα−1 + (R2Nu)tα−2,

KP (I −Q)Nu(t) =
1

Γ(α)

∫1

0

(t − s)α−1[Nu(s) −QNu(s)]ds.
(2.31)

With arguments similar to those of [7], we obtain the following Lemma.

Lemma 2.8. KP(I−Q)N : Y → Y is completely continuous.

3. The Main Results

Assume that the following conditions on the function f(t, x, y, z) are satisfied:

(H1) there exists a constant A > 0, such that for u ∈ dom(L) \ Ker(L) satisfying

|Dα−1
0+ u(t)| + |Dα−2

0+ u(t)| > A for all t ∈ [0, 1], we have

Q1Nu(t)/= 0 or Q2Nu(t)/= 0, (3.1)
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(H2) there exist functions a, b, c, d, r ∈ L1[0, 1] and a constant θ ∈ [0, 1] such that for

all (x, y, z) ∈ R
3 and a.e., t ∈ [0, 1], one of the following inequalities is satisfied:

∣∣f(
t, x, y, z

)∣∣ ≤ a(t)|x| + b(t)∣∣y∣∣ + c(t)|z| + d(t)|z|θ + r(t),∣∣f(
t, x, y, z

)∣∣ ≤ a(t)|x| + b(t)∣∣y∣∣ + c(t)|z| + d(t)∣∣y∣∣θ + r(t),∣∣f(
t, x, y, z

)∣∣ ≤ a(t)|x| + b(t)∣∣y∣∣ + c(t)|z| + d(t)|x|θ + r(t),
(3.2)

(H3) there exists a constant B > 0 such that for every a, b ∈ R satisfying a2 + b2 > B,

then either

aR1N
(
atα−1 + btα−2

)
+ bR2N

(
atα−1 + btα−2

)
< 0, (3.3)

or else

aR1N
(
atα−1 + btα−2

)
+ bR2N

(
atα−1 + btα−2

)
> 0. (3.4)

Remark 3.1. R1N(atα−1 + btα−2) and R2N(atα−1 + btα−2) from (H3) stand for the images of

u(t) = atα−1 + btα−2 under the maps R1N and R2N, respectively.

Theorem 3.2. If (H1)–(H3) hold, then boundary value problem (1.1)-(1.2) has at least one solution
provided that

‖a‖1 + ‖b‖1 + ‖c‖1 <
1

τ
, (3.5)

where τ = 5 + 2/Γ(α) + 1/Γ(α − 1).

Proof. Set

Ω1 = {u ∈ dom(L) \ Ker(L) | Lu = λNu for some λ ∈ [0, 1]}, (3.6)

then for u ∈ Ω1, Lu = λNu; thus, λ/= 0, Nu ∈ Im(L) = Ker(Q), and hence QNu(t) = 0 for all

t ∈ [0, 1]. By the definition of Q, we have Q1Nu(t) = Q2Nu(t) = 0. It follows from (H1) that

there exists t0 ∈ [0, 1] such that |Dα−1
0+ u(t0)| + |Dα−2

0+ u(t0)| ≤ A. Now,

Dα−1
0+ u(t) = Dα−1

0+ u(t0) +
∫ t

t0

Dα
0+u(s)ds,

Dα−2
0+ u(t) = Dα−2

0+ u(t0) +
∫ t

t0

Dα−1
0+ u(s)ds,

(3.7)
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so ∣∣∣Dα−1
0+ u(0)

∣∣∣ ≤ ∥∥∥Dα−1
0+ u(t)

∥∥∥
∞

≤
∣∣∣Dα−1

0+ u(t0)
∣∣∣ + ∥∥Dα

0+u
∥∥

1

≤ A + ‖Lu‖1

≤ A + ‖Nu‖1,∣∣∣Dα−2
0+ u(0)

∣∣∣ ≤ ∥∥∥Dα−2
0+ u(t)

∥∥∥
∞

≤
∣∣∣Dα−2

0+ u(t0)
∣∣∣ + ∥∥∥Dα−1

0+ u
∥∥∥
∞

≤
∣∣∣Dα−2

0+ u(t0)
∣∣∣ + ∣∣∣Dα−1

0+ u(t0)
∣∣∣ + ∥∥Dα

0+u
∥∥

1

≤ A + ‖Lu‖1

≤ A + ‖Nu‖1.

(3.8)

Now by (3.8), we have

‖Pu‖Cα−1 =
∥∥∥∥ 1

Γ(α)
Dα−1

0+ u(0)tα−1 +
1

Γ(α − 1)
Dα−2

0+ u(0)tα−2

∥∥∥∥
Cα−1

=
∥∥∥∥ 1

Γ(α)
Dα−1

0 u(0)tα−1 +
1

Γ(α − 1)
Dα−2

0 u(0)tα−2

∥∥∥∥
∞

+
∥∥∥Dα−1

0+ u(0)
∥∥∥
∞
+

∥∥∥Dα−1
0+ u(0)t +Dα−2

0+ u(0)
∥∥∥
∞

≤
(

2 +
1

Γ(α)

)∣∣∣Dα−1
0+ u(0)

∣∣∣ + (
1 +

1

Γ(α − 1)

)∣∣∣Dα−2
0+ u(0)

∣∣∣
≤

(
2 +

1

Γ(α)

)
(A + ‖Nu‖1) +

(
1 +

1

Γ(α − 1)

)
(A + ‖Nu‖1).

(3.9)

Note that (I − P)u ∈ Im(KP ) = dom(L) ∩ Ker(P) for u ∈ Ω1, then, by (2.28) and (2.30),

‖(I − P)u‖Cα−1 = ‖KPL(I − P)‖Cα−1

≤
(

2 − 1

Γ(α)

)
‖L(I − P)u‖1

=
(

2 − 1

Γ(α)

)
‖Lu‖1

≤
(

2 − 1

Γ(α)

)
‖Nu‖1.

(3.10)
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Using (3.9) and (3.10), we obtain

‖u‖Cα−1 = ‖Pu + (I − P)u‖Cα−1

≤ ‖Pu‖Cα−1 + ‖(I − P)u‖Cα−1

≤
(

2 +
1

Γ(α)

)
(A + ‖Nu‖1) +

(
1 +

1

Γ(α − 1)

)
(A + ‖Nu‖1) +

(
2 +

1

Γ(α)

)
‖Nu‖1

=
(

5 +
2

Γ(α)
+

1

Γ(α − 1)

)
‖Nu‖1 +

(
3 +

1

Γ(α)
+

1

Γ(α − 1)

)
A

= τ‖Nu‖1 + C1,

(3.11)

where C1 = (3 + 1/Γ(α) + 1/Γ(α − 1))A is a constant. This is for all u ∈ Ω1,

‖u‖Cα−1 ≤ τ‖Nu‖1 + C1. (3.12)

If the first condition of (H2) is satisfied, then we have

max
{
‖u‖∞,

∥∥∥Dα−1
0+ u

∥∥∥
∞
,
∥∥∥Dα−2

0+ u
∥∥∥
∞

}
≤ ‖u‖Cα−1 ≤ τ

(
‖a‖1‖u‖∞ + ‖b‖1

∥∥∥Dα−1
0+ u

∥∥∥
∞
+ ‖c‖1

∥∥∥Dα−2
0+ u

∥∥∥
∞

+‖d‖1

∥∥∥Dα−2
0+ u

∥∥∥θ
∞
+ ‖r‖1 + ‖e‖1

)
+ C1,

(3.13)

and consequently,

‖u‖∞ ≤ τ

1 − ‖a‖1τ

(
‖b‖1

∥∥∥Dα−1
0+ u

∥∥∥
∞
+ ‖c‖1

∥∥∥Dα−2
0+ u

∥∥∥
∞
+ ‖d‖1

∥∥∥Dα−2
0+ u

∥∥∥θ
∞
+ ‖r‖1 + ‖e‖1

)

+
C1

1 − ‖a‖1τ
,

(3.14)

∥∥∥Dα−1
0+ u

∥∥∥
∞
≤ τ

1 − ‖a‖1τ − ‖b‖1τ

(
‖c‖1

∥∥∥Dα−2
0+ u

∥∥∥
∞
+ ‖d‖1

∥∥∥Dα−2
0+ u

∥∥∥θ
∞
+ ‖r‖1 + ‖e‖1

)

+
C1

1 − ‖a‖1τ − ‖b‖1τ
,

(3.15)

∥∥∥Dα−1
0+ u

∥∥∥
∞
≤

τ‖d‖1

∥∥Dα−2
0+ u

∥∥θ
∞

1 − ‖a‖1τ − ‖b‖1τ − ‖c‖1τ
+

τ(‖r‖1 + ‖e‖1) + C1

1 − ‖a‖1τ − ‖b‖1τ − ‖c‖1τ
. (3.16)
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Note that θ ∈ [0, 1) and ‖a‖1 + ‖b‖1 + ‖c‖1 < 1/τ , so there exists M1 > 0 such that ‖Dα−1
0+ u‖∞ ≤

M1 for all u ∈ Ω1. The inequalities (3.14) and (3.15) show that there exist M2,M3 > 0 such

that ‖Dα−1
0+ u‖∞ ≤ M2, ‖u‖∞ ≤ M3 for all u ∈ Ω1. Therefore, for all u ∈ Ω1, ‖u‖Cα−1 = ‖u‖∞ +

‖Dα−1
0+ u‖∞ + ‖Dα−2

0+ u‖∞ ≤ M1 +M2 +M3, that is, Ω1 is bounded given the first condition of

(H2). If the other conditions of (H2) hold, by using an argument similar to the above, we can

prove that Ω1 is also bounded.

Let

Ω2 = {u ∈ Ker(L) |Nu ∈ Im(L)}. (3.17)

For u ∈ Ω2, u ∈ Ker(L) = {u ∈ dom(L) | u = atα−1 + btα−2, a, b ∈ R, t ∈ [0, 1]}, and QN(atα−1 +
btα−2) = 0; thus, R1N(atα−1 + btα−2) = R2N(atα−1 + btα−2) = 0. By (H3), a2 + b2 ≤ B, that is, Ω2

is bounded.

We define the isomorphism J : Im(Q) → Ker(L) by

J
(
atα−1 + btα−2

)
= atα−1 + btα−2, a, b ∈ R. (3.18)

If the first part of (H3) is satisfied, let

Ω3 =
{
u ∈ KerL : −λJ−1u + (1 − λ)QNu = 0, λ ∈ [0, 1]

}
. (3.19)

For every atα−1 + btα−2 ∈ Ω3,

λ
(
atα−1 + btα−2

)
= (1 − λ)

[(
R1N

(
atα−1 + btα−2

))
tα−1 +

(
R2N

(
atα−1 + btα−2

))
tα−2

]
. (3.20)

If λ = 1, then a = b = 0, and if a2 + b2 > B, then by (H3),

λ
(
a2 + b2

)
= (1 − λ)

[
aR1N

(
atα−1 + btα−2

)
+ bR2N

(
atα−1 + btα−2

)]
< 0, (3.21)

which, in either case, obtain a contradiction. If the other part of (H3) is satisfied, then we take

Ω3 =
{
u ∈ KerL : λJ−1u + (1 − λ)QNu = 0, λ ∈ [0, 1]

}
, (3.22)

and, again, obtain a contradiction. Thus, in either case,

‖u‖Cα−1 = ‖u‖∞ +
∥∥∥Dα−1

0+ u
∥∥∥
∞
+

∥∥∥Dα−2
0+ u

∥∥∥
∞

=
∥∥∥atα−1 + btα−2

∥∥∥
Cα−1

=
∥∥∥atα−1 + btα−2

∥∥∥
∞
+ ‖aΓ(α)‖∞ + ‖aΓ(α)t + bΓ(α − 1)‖∞

≤ (1 + 2Γ(α))|a| + (1 + Γ(α − 1))|b|

≤ (2 + 2Γ(α) + Γ(α − 1))|a|,

(3.23)
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for all u ∈ Ω3, that is, Ω3 is bounded.

In the following, we will prove that all the conditions of Theorem 1.1 are satisfied.

Set Ω to be a bounded open set of Y such that U3
i=1Ωi ⊂ Ω. by Lemma 2.8, the operator

KP (I − Q)N : Ω → Y is compact; thus, N is L-compact on Ω, then by the above argument,

we have

(i) Lu/=λNx, for every (u, λ) ∈ [(dom(L) \ KerL) ∩ ∂Ω] × (0, 1),

(ii) Nu /∈ Im(L), for every u ∈ Ker(L) ∩ ∂Ω.

Finally, we will prove that (iii) of Theorem 1.1 is satisfied. Let H(u, λ) = ±Iu + (1 − λ)JQNu,

where I is the identity operator in the Banach space Y . According to the above argument, we

know that

H(u, λ)/= 0, ∀u ∈ ∂Ω ∩ Ker(L), (3.24)

and thus, by the homotopy property of degree,

deg
(
JQN|Ker(L),Ω ∩ Ker(L), 0

)
= deg(H(. . . , 0),Ω ∩ Ker(L), 0)

= deg(H(. . . , 1),Ω ∩ Ker(L), 0)

= deg(±I,Ω ∩ Ker(L), 0)

= ±1/= 0,

(3.25)

then by Theorem 1.1, Lu =Nu has at least one solution in dom(L)∩Ω, so boundary problem

(1.1), (1.2) has at least one solution in the space Cα−1[0, 1]. The proof is finished.
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Analogs of the Tricomi and the Gellerstedt problems with integral gluing conditions for mixed
parabolic-hyperbolic equation with parameter have been considered. The considered mixed-type
equation consists of fractional diffusion and telegraph equation. The Tricomi problem is equiv-
alently reduced to the second-kind Volterra integral equation, which is uniquely solvable. The
uniqueness of the Gellerstedt problem is proven by energy integrals’ method and the existence by
reducing it to the ordinary differential equations. The method of Green functions and properties
of integral-differential operators have been used.

1. Introduction

Mathematical model of the movement of gas in a channel surrounded by a porous environ-

ment was described by parabolic-hyperbolic equation. This was done in the fundamental

work of Gel’fand [1]. Modeling of heat transfer processes in composite environment with

finite and infinite velocities leads to boundary value problems (BVPs) for parabolic-hyper-

bolic equations [2]. Omitting the huge amount of works devoted to studying these kinds of

equations, we refer the readers to [3, 4].
We would like to note works [5–10], devoted to the studying of BVPs for parabolic-

hyperbolic equations, involving fractional derivatives. In turn, applications of Fractional-

order differential equations can be found in the monographs [11–15]. We also note some

recent papers [16–18], related to the fractional diffusion and diffusion-wave equations.

BVP for parabolic-hyperbolic equations with integral gluing condition for the first time

was investigated by Kapustin and Moiseev [19] and was generalized for this kind of equation,
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but with parameters, in the work [20]. Another motivation of the usage of integral gluing

conditions comes from the appearance of them in heat exchange processes [21].
The consideration of equations with parameters was interesting because of the pos-

sibility of studying some multidimensional analogues of the main BVP via reducing them

by Fourier transformation to the BVP for equations with parameters. On the other hand,

consideration of equations with parameters will give possibility to study some spectral prop-

erties of BVPs for this kind of equations such as the existence of nontrivial solutions for

corresponding homogeneous problem at some values of parameters [22].

2. Analog of the Tricomi Problem

Consider an equation

uxx −DαH(x)+2H(−x)
0y u = λu (2.1)

in the domain Ω = Ω1 ∪AA0 ∪Ω2. Here Ω1 = {(x, y) : 0 < x < 1, 0 < y < 1}, Ω2 is character-

istic triangle with endpoints A(0, 0), A0(0, 1), C(−1/2, 1/2), H(x) is Heaviside function,

Dα
atf(t) =

1

Γ(n − α)

(
d

dt

)n ∫ t

a

(t − s)−α+n−1f(s)ds (2.2)

is the αth Riemann-Liouville fractional-order derivative of a function f given on interval

[a, b], where n = [α] + 1 and [α] is the integer part of α, and Γ(·) is the Euler gamma function

defined by

Γ(α) =
∫∞

0

tα−1e−tdt, α > 0. (2.3)

For λ > 0 and 0 < α ≤ 1 given, we formulate the following problem called the analog of the

Tricomi problem.

Problem AT

To find a solution of (2.1), which belongs to the class of functions

W1 =
{
u : Dα−1

0y u ∈ C
(
Ω1

)
, uxx,D

α
0yu ∈ C(Ω1), ux

(
0±, y

)
∈ H(0; 1), u ∈ C

(
Ω2

)
∩ C2(Ω2)

}
,

(2.4)

satisfying the initial condition

lim
y→ 0

y1−αu
(
x, y

)
= ω(x), 0 ≤ x ≤ 1 (2.5)

together with the boundary conditions

u
(
−y/2, y/2

)
= ψ1

(
y
)
, 0 ≤ y ≤ 1,

u
(
1, y

)
= ψ2

(
y
)
, 0 ≤ y ≤ 1,

(2.6)
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and the gluing conditions

u
(
0−, y

)
=

1

Γ(1 − α)

∫y

0

u(0+, t)
(
y − t

)−α
dt, 0 < y ≤ 1,

∫y

0

ux
(
0−, t

)
J0

[√
λ
(
y − t

)]
dt =

1

Γ(1 − α)

∫y

0

ux(0+, t)
(
y − t

)−α
dt, 0 < y < 1.

(2.7)

Here ω(x), ψi(y) (i = 1, 2) are given functions such as limy→ 0y
1−αψ1(y) = ω(0).

Solution of the Cauchy problem for (2.1) in Ω2 defined as

u
(
x, y

)
=

1

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩τ−
(
y + x

)
+ τ−

(
y − x

)
+

∫y+x

y−x
ν−(t)J0

[√
λ
[(
y − t

)2 − x2
]]
dt

+λx
∫y+x

y−x
τ−(t)

J1

[√
λ
[(
y − t

)2 − x2
]]

√
λ
[(
y − t

)2 − x2
] dt

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

(2.8)

where Jk[·] is the first-kind Bessel function of the order k, τ−(y) = u(0−, y), ν−(y) = ux(0−, y).
We calculate u(−y/2, y/2) in order to use condition (2.5):

u
(
−y/2, y/2

)
=

1

2

⎧⎪⎨⎪⎩τ−(0) + τ−
(
y
)
−

∫y

0

ν−(t)J0

[√
λt

(
t − y

)]
dt + λ

y

2

∫y

0

τ−(t)
J1

[√
λt

(
t − y

)]
√
λt

(
t − y

) dt

⎫⎪⎬⎪⎭.

(2.9)

Considering the condition (2.5) and the following integral operator [23]

Bn,
√
λ

mx

[
f(x)

]
= f(x) +

∫x

m

f(t)
(
x −m
t −m

)1−n ∂

∂x
J0

[√
λ(t −m)(t − x)

]
dt, m, n = 0, 1, (2.10)

equality (2.9) can be written as follows

ψ1

(
y
)
=

1

2

{
ψ1(0) + B

0,
√
λ

0y

[
τ−

(
y
)]

−
∫y

0

B1,
√
λ

0t

[
ν−(t)

]
dt

}
. (2.11)

Now we use an integral operator

An,
√
λ

mx

[
f(x)

]
= f(x) −

∫x

m

f(t)
(
t −m
x −m

)n ∂

∂t
J0

[√
λ(x −m)(x − t)

]
dt, m, n = 0, 1, (2.12)
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which is mutually inverse with the operator (2.10). Applying the operator (2.12) to both sides

of (2.11), we obtain

A0,
√
λ

0y

[
ψ1

(
y
)]

=
1

2

{
ψ1(0) +A

0,
√
λ

0y

{
B0,

√
λ

0y

[
τ−

(
y
)]}

−A0,
√
λ

0y

{∫y

0

B1,
√
λ

0t

[
ν−(t)

]
dt

}}
. (2.13)

Considering the following properties of operators (2.10) and (2.12)

A0,
√
λ

0y

{
B0,

√
λ

0y

[
f
(
y
)]}

= f
(
y
)
, A0,

√
λ

0y

{∫y

0

B1,
√
λ

0t

[
f(t)

]
dt

}
=

∫y

0

f(t)J0

[√
λ
(
y − t

)]
dt,

(2.14)

we derive

2A0,
√
λ

0y

[
ψ1

(
y
)]

= ψ1(0) + τ−
(
y
)
−

∫y

0

ν−(t)J0

[√
λ
(
y − t

)]
dt. (2.15)

Taking gluing conditions (2.7) into account, we have

Dα−1
0y ν+

(
y
)
= Dα−1

0y τ+
(
y
)
− 2A0,

√
λ

0y

[
ψ1

(
y
)]

+ ψ1(0). (2.16)

Applying operator D1−α
0y to both sides of (2.16) and considering the following

composition rule [11]:

Dα
atD

β

atf(t) = D
α+β
at f(t), β ≤ 0, (2.17)

we get

τ+
(
y
)
= ν+

(
y
)
+ ψ∗

1

(
y
)
, 0 < y < 1, (2.18)

where ψ∗
1(y) = D

1−α
0y {2A0,

√
λ

0y [ψ1(y)] − ψ1(0)}.

Let us consider the following auxiliary problem:

uxx −Dα
0yu − λu = 0,

ux
(
0, y

)
= ν+

(
y
)
, u

(
1, y

)
= ψ2

(
y
)
, lim

y→ 0
y1−αu

(
x, y

)
= ω(x).

(2.19)

Solution of this problem can be defined as [24]

u
(
x, y

)
=

∫1

0

ω(ξ)G
(
x, y, ξ, 0

)
dξ −

∫y

0

ν+
(
η
)
G

(
x, y, 0, η

)
dη

+
∫y

0

ψ2

(
η
)
Gξ

(
x, y, 1, η

)
dη − λ

∫1

0

∫y

0

u
(
ξ, η

)
G

(
x, y, ξ, η

)
dξ dη,

(2.20)
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where

G
(
x, y, ξ, η

)
=

(
y − η

)β−1

2

∞∑
n=−∞

[
e

1,β

1,β

(
−|x − ξ + 2n|(

y − η
)β

)
+ e1,β

1,β

(
−|x + ξ + 2n|(

y − η
)β

)]
(2.21)

is the Green function of the problem (2.19),

e
1,β

1,β
(z) = Φ

(
−β, β, z

)
=

∞∑
n=0

zn

n!Γ
(
−βn + β

) (2.22)

is the function of Wright [25], β = α/2.

Considering (2.20) as an integral equation regarding the function u(x, y), we write

solution via resolvent of the kernel λG(x, y, ξ, η):

u
(
x, y

)
= P

(
x, y

)
−

∫y

0

ν+
(
η
)
K1

(
x, y, η

)
dη, (2.23)

where

P
(
x, y

)
=

∫1

0

ω(ξ)G
(
x, y, ξ, 0

)
dξ +

∫y

0

∫1

0

∫1

0

ω(ξ)G(s, t, ξ, 0)R
(
x, y, ξ, 0

)
dξ ds dt

+
∫y

0

ψ2

(
η
)[
G

(
x, y, 1, η

)
+

∫y

η

∫1

0

G
(
s, t, 1, η

)
R
(
x, y, 1, η

)
dsdt

]
dη,

K1

(
x, y, η

)
= G

(
x, y, 0, η

)
+

∫y

η

∫1

0

G
(
s, t, 0, η

)
R
(
x, y, 0, η

)
dsdt,

(2.24)

R(x, y, ξ, η) is a resolvent of the kernel λG(x, y, ξ, η).
From (2.23), tending x to 0+, we obtain

u
(
0+, y

)
= τ+

(
y
)
= P

(
0+, y

)
−

∫y

0

ν−
(
η
)
K1

(
0+, y, η

)
dη. (2.25)

Considering functional relation (2.18), from (2.25) we get

ν+
(
y
)
+

∫y

0

ν+
(
η
)
K1

(
y, η

)
dη = ψ∗

1

(
y
)
− P

(
0, y

)
. (2.26)

Equality (2.26) is the second-kind Volterra-type integral equation regarding the function

ν+(y). Since kernel K1(y, η) has weak singularity and functions on the right-hand side

are continuous, we can conclude that (2.26) is uniquely solvable [26], and solution can be

represented as

ν+
(
y
)
= Ψ

(
y
)
+

∫y

0

Ψ
(
η
)
K2

(
y, η

)
dη, (2.27)

where Ψ(y) = ψ∗
1(y) − P(0, y), K2(y, η) is the resolvent of the kernel K1(y, η).
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Once we have obtained ν+(y), considering (2.18) or (2.25) we find function τ+(y).
Then using gluing conditions (2.7) we find functions τ−(y), ν−(y). Finally, we can define

solution of the considered problem by the formula (2.23) in the domain Ω1, by formula (2.8)
in the domain Ω2.

Hence, we prove the following theorem.

Theorem 2.1. If

ω(x) ∈ C2[0, 1], ψi
(
y
)
∈ C1[0, 1] ∩ C2(0, 1) (i = 1, 2), (2.28)

then there exists unique solution of the Problem AT and is defined by formulas (2.23) and (2.8) in the
domains Ω1, Ω2, respectively.

3. Analog of the Gellerstedt Problem

We would like to note some related works. Regarding the consideration of Gellerstedt

problem for parabolic-hyperbolic equations with constant coefficients we refer the readers

to [3] and for loaded parabolic-hyperbolic equations work by Khubiev [27], and also for

Lavrent’ev-Bitsadze equation [28].
Consider an equation

0 =

⎧⎨⎩uxx −Dα
0yu − λu, Φ0

uxx − uyy + λu, Φi, (i = 1, 2)
(3.1)

in the domain Φ = (
⋃2
k=0 Φk)∪I0, where Φ0 is a domain, bounded by segmentsAA0,BB0,A0B0

of straight lines x = 0, x = 1, y = 1, respectively; Φ1 is a domain, bounded by the segment AE

of the axe x and by characteristics of (3.1) AC1 : x + y = 0, EC1 : x − y = r; Φ2 is a domain,

bounded by the segment EB of the axe x and by characteristics of (3.1) EC2 : x − y = r,

BC2 : x − y = 1; I0 is an interval 0 < x < 1, I1 is an interval 0 < x < r, and I2 is an interval

r < x < 1.

Problem AG

To find a solution of (3.1) from the class of functions

W2

=
{
u : Dα−1

0y u∈C
(
Φ0

)
, uxx,D

α
0yu ∈ C(Φ0), uy

(
x, 0±

)
∈H(I0), u ∈ C

(
Φi

)
∩ C2(Φi) (i = 1, 2)

}
,

(3.2)

satisfying boundary conditions

u
(
0, y

)
= ϕ1

(
y
)
, u

(
1, y

)
= ϕ2

(
y
)
, 0 ≤ y ≤ 1, (3.3)



International Journal of Differential Equations 7

u |AC1
= u

(x
2
,−x

2

)
= ϕ3(x), 0 ≤ x ≤ r, (3.4)

u |EC2
= u

(
(x + r)

2
,
(r − x)

2

)
= ϕ4(x), r ≤ x ≤ 1, (3.5)

together with gluing conditions

lim
y→ 0+

y1−αu
(
x, y

)
= lim

y→ 0+
u
(
x, y

)
, x ∈ I0, (3.6)

lim
y→ 0+

[
y1−α

(
y1−αu

(
x, y

))
y

]
=

∫x

0

lim
y→ 0+

uy
(
t, y

)
J0

[√
α(x − t)

]
dt, x ∈ I0 \ {r}. (3.7)

Here ϕj(·) (j =1, 4) are given functions such as limy→ 0+y
1−αϕ1(y)=ϕ3(0), limy→ 0+y

1−αu(r, y)=
ϕ4(r).

Theorem 3.1. If the following conditions

λ ≥ 0, ϕi
(
y
)
∈ C1[0, 1] ∩ C2(0, 1), ϕj(x) ∈ C1

(
Ii
)
∩ C2(Ii)

(
i = 1, 2; j = 3, 4

)
(3.8)

are fulfilled, then the Problem AG has a unique solution.

Proof. Introduce the following designations:

lim
y→ 0+

y1−αu
(
x, y

)
= τ+(x), lim

y→ 0−
u
(
x, y

)
= τ−(x), x ∈ I0,

lim
y→ 0+

[
y1−α

(
y1−αu

(
x, y

))
y

]
= ν+(x), lim

y→ 0−
uy

(
x, y

)
= ν−(x), x ∈ I0.

(3.9)

Solution of the Cauchy problem for (3.1) in the domain Φi (i = 1, 2) in case, when λ ≥ 0

has a form

u
(
x, y

)
=

1

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ τ−
(
x + y

)
+ τ−

(
x − y

)
+

∫x+y

x−y
ν−(t)J0

[√
λ
[
(x − t)2 − y2

]]
dt

+λy
∫x+y

x−y
τ−(t)

J1

[√
λ
[
(x − t)2 − y2

]]
√
λ
[
(x − t)2 − y2

] dt

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

(3.10)
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Using boundary conditions (3.4), (3.5), and gluing conditions (3.6), (3.7), from (3.10) we

obtain

ν+(x) = τ+(x) + ϕ∗
3(x), x ∈ I1, (3.11)

ν+(x) = τ+(x) + ϕ∗
4(x), x ∈ I2, (3.12)

where

ϕ∗
3(x) = ϕ3(0) −A0,

√
λ

0x

[
2ϕ3(x)

]
, ϕ∗

4(x) = ϕ4(r) −A0,
√
λ

rx

[
2ϕ4(x)

]
. (3.13)

According to [10], tending y to +0, from (3.1) we get

ν+
(
y
)
=

1

Γ(1 + α)

[
τ+

′′(x) − λτ+(x)
]
. (3.14)

In order to prove the uniqueness of the solution for the Problem AG, we need estimate the

following integral:

I =
∫1

0

τ+(x)ν+(x)dx. (3.15)

Considering homogeneous case of the condition (3.3) and taking designation (3.9) into

account, after some evaluations we derive

I = −
∫1

0

{[
τ+

′(x)
]2

+ λ[τ+(x)]2
}
dx. (3.16)

If λ ≥ 0, then I ≤ 0. On the other hand, if we consider homogeneous cases of (3.11) and (3.12),
one can easily be sure that I ≥ 0. Hence, we get that I ≡ 0. Based on (3.16) we can conclude

that τ+(x) = 0 for all x ∈ I0. Due to the solution of the first boundary problem [24] we can

conclude that u(x, y) ≡ 0 in Φ0. Further, according to the gluing conditions and the solution

of Cauchy problem, we have u(x, y) ≡ 0 in Φ.

Considering functional relations (3.11)–(3.14) and conditions (3.3)–(3.5), we get the

following problems:

τ+
′′(x) − (λ + Γ(1 + α))τ+(x) = ϕ∗

3(x)Γ(1 + α),

τ+(0) = ϕ3(0), τ+(r) = ϕ4(r), x ∈ I1,

(3.17)

τ+
′′(x) − (λ + Γ(1 + α))τ+(x) = ϕ∗

4(x)Γ(1 + α),

τ+(r) = ϕ4(r), τ+(1) = lim
y→+0

y1−αϕ2

(
y
)
, x ∈ I1.

(3.18)
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The problems (3.17) and (3.18) are model problems and can be solved directly. After the

finding function τ+(x) for all x ∈ I0, functions ν+(x) and τ−(x), ν−(x) can be defined by

formulas (3.14) and (3.6), (3.7), respectively. Finally, solution of the Problem AG can be

recovered by formulas (3.10) and (2.23) in the domains Φi (i = 1, 2) and Φ0, respectively, but

only with some changes in (2.23), precisely, Green function G(x, y, ξ, η) should be replaced

by

G∗(x, y, ξ, η) =

(
y − η

)β−1

2

∞∑
n=−∞

[
e

1,β

1,β

(
−|x − ξ + 2n|(

y − η
)β

)
− e1,β

1,β

(
−|x + ξ + 2n|(

y − η
)β

)]
, (3.19)

which is the Green function of the first boundary problem for the (3.1) in Φ0 [24].
Theorem 3.1 is proved.
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Unsteady flow of an incompressible Maxwell fluid with fractional derivative induced by a sudden
moved plate has been studied, where the no-slip assumption between the wall and the fluid is
no longer valid. The solutions obtained for the velocity field and shear stress, written in terms
of Wright generalized hypergeometric functions pΨq, by using discrete Laplace transform of the
sequential fractional derivatives, satisfy all imposed initial and boundary conditions. The no-slip
contributions, that appeared in the general solutions, as expected, tend to zero when slip parameter
is θ → 0. Furthermore, the solutions for ordinary Maxwell and Newtonian fluids, performing
the same motion, are obtained as special cases of general solutions. The solutions for fractional
and ordinary Maxwell fluid for no-slip condition also obtained as limiting cases, and they are
equivalent to the previously known results. Finally, the influence of the material, slip, and the
fractional parameters on the fluid motion as well as a comparison among fractional Maxwell,
ordinary Maxwell, and Newtonian fluids is also discussed by graphical illustrations.

1. Introduction

There are many fluids in industry and technology whose behavior cannot be explained

by the classical linearly viscous Newtonian model. The departure from the Newtonian

behavior manifests itself in a variety of ways: non-Newtonian viscosity (shear thinning

or shear thickening), stress relaxation, nonlinear creeping, development of normal stress

differences, and yield stress [1]. The Navier-Stokes equations are inadequate to predicted

the behavior of such type of fluids; therefore, many constitutive relations of non-Newtonian

fluids are proposed [2]. These constitutive relations give rise to the differential equations,

which, in general, are more complicated and higher order than the Navier-Stokes equations.

Therefore, it is difficult to obtain exact analytical solutions for non-Newtonian fluids [3].
Modeling of the equation governing the behaviors of non-Newtonian fluids in different
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circumstance is important from many points of view. For examples, plastics and polymers are

extensively handeled by the chemical industry, whereas biological and biomedical devices

like hemodialyser make use of the rheological behavior [4]. In general, the analysis of the

behavior of the fluid motion of non-Newtonian fluids tends to be much more complicated

and subtle in comparison with that of the Newtonian fluids [5].
The fractional calculus, almost as old as the standard differential and integral

one, is increasingly seen as an efficient tool and subtle frame work within which useful

generalization is quite long and arguments almost yearly. It includes fractal media, fractional

wave diffusion, fractional Hamiltonian dynamics, and biopolymer dynamics as well as

many other topics in physics. Fractional calculus is useful in the field of biorheology and

bioengineering, in part, because many tissue-like materials (polymers, gels, emulsions,

composites, and suspensions) exhibit power-law responses to an applied stress or strain

[6, 7]. An example of such power-law behavior in elastic tissue was observed recently for

viscoelastic measurements of the aorta, both in vivo and in vitro [8, 9], and the analysis

of these data was most conveniently performed using fractional order viscoelastic models.

The starting point of the fractional derivative model of non-Newtonian model is usually

a classical differential equation which is modified by replacing the time derivative of an

integer order by the so-called Riemann-Liouville/Caputo fractional calculus operators. This

generalization allows one to define precisely noninteger order integrals or derivatives. In

general, fractional model of viscoelastic fluids is derived from well-known ordinary model

by replacing the ordinary time derivatives, to fractional order time derivatives and this

plays an important role to study the valuable tool of viscoelastic properties. We include here

some investigation [10–18] in which the fractional calculus approach has been adopted for

the flows of non-Newtonian fluids. Furthermore, the one-dimensional fractional derivative

Maxwell model has been found very useful in modeling the linear viscoelastic response of

some polymers in the glass transition and the glass state [19]. In other cases, it has been shown

that the governing equations employing fractional derivatives are also linked to molecular

theories [20]. The use of fractional derivatives within the context of viscoelasticity was firstly

proposed by Germant [21]. Later, Bagley and Torvik [22] demonstrated that the theory of

viscoelasticity of coiling polymers predicts constitutive relations with fractional derivatives,

and Makris et al. [23] achieved a very good fit of the experimental data when the fractional

derivative Maxwell model has been used instead of the Maxwell model for the silicon gel

fluid. Furthermore, it is worth pointing out that Palade et al. [24] developed a fully objective

constitutive equation for an incompressible fluidreducible to the linear fractional derivative

Maxwell model under small deformations hypothesis.

A general view of the literature shows that the slip effects on the flows of non-

Newtonian fluids has been given not much attention. Especially, polymer melts exhibit a

macroscopic wall slip. The fluids exhibiting a boundary slip are important in technological

applications, for example, the polishing of artificial heart valves, rarefied fluid problems, and

flow on multiple interfaces. In the study of fluid-solid surface interactions, the concept of

slip of a fluid at a solid wall serves to describe macroscopic effects of certain molecular

phenomena. When the molecular mean free path length of the fluid is comparable to the

distance between the plates as in nanochannels or microchannels, the fluid exhibits non-

continuum effects such as slipflow, as demonstrated experimentally by Derek et al. [25].
Experimental observations show that [26–28] non-Newtonian fluids, such as polymer melts,

often exhibit macroscopic wall slip, which, in general, is described by a nonlinear and

nonmonotone relation between the wall slip velocity and the traction. A more realistic class

of slip flows are those in which the magnitude of the shear stress reaches some critical value,
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here called the slip yield stress, before slip occurs. In fact, some experiments show that the

onset slip and slip velocity may also depend on the normal stress at the boundary [26, 29].
Much of the research involving slip presumes that the slip velocity depends on the shear

stress. The slip condition is an important factor in sharskin, spurt, and hysteresis effects, but

the existing theory for non-Newtonian fluids with wall slippage is scant. We mention here

some recent attempt regarding exact analytical solutions of non-Newtonian fluids with slip

effects [30–36].
The objective of this paper is twofold. Firstly, is to give few more exact analytical

solutions for viscoelastic fluids with fractional derivative approach, which is more natural

and appropriate tool to describe the complex behavior of such fluids. Secondly, is to study the

slip effects on viscoelastic fluid flows, which is important due to their practical applications.

More precisely, our aim is to find the velocity field and the shear stress corresponding to

the motion of a Maxwell fluid due to a sudden moved plate, where no-slip assumption is

no longer valid. However, for completeness, we will determine exact solutions for a larger

class of such fluids. Consequently, motivated by the above remarks, we solve our problem

for Maxwell fluids with fractional derivatives. The general solutions are obtained using

the discrete Laplace transforms. They are presented in series form in terms of the Wright

generalized hypergeometric functions pΨq and presented as sum of the slip contribution and

the corresponding no-slip contributions. The similar solutions for ordinary Maxwell fluids

can easily be obtained as limiting cases of general solutions. The Newtonian solutions are

also obtained as special cases of fractional and ordinary Maxwell fluids. Furthermore, the

solutions for fractional and ordinary Maxwell fluid for no-slip condition also obtained as a

special cases, and they are similar with previously known results in the literature. Finally,

the influence of the material, slip and fractional parameters on the motion of fractional

and ordinary Maxwell fluids is underlined by graphical illustrations. The difference among

fractional Maxwell, ordinary Maxwell, and Newtonian fluid models is also highlighted.

2. The Differential Equations Governing the Flow

The equations governing the flow of an incompressible fluid include the continuity equation

and the momentum equation. In the absence of body forces, they are

∇ ·V = 0, ∇ · T = ρ
∂V
∂t

+ ρ(V · ∇)V, (2.1)

where ρ is the fluid density, V is the velocity field, t is the time, and ∇ represents the gradient

operator. The Cauchy stress T in an incompressible Maxwell fluid is given by [10, 11, 14–17]

T = −pI + S, S + λ
(
Ṡ − LS − SLT

)
= μA, (2.2)

where −pI denotes the indeterminate spherical stress due to the constraint of incompress-

ibility, S is the extrastress tensor, L is the velocity gradient, A = L + LT is the first Rivlin

Ericsen tensor, μ is the dynamic viscosity of the fluid, λ is relaxation time, the superscript

T indicates the transpose operation, and the superposed dot indicates the material time

derivative. The model characterized by the constitutive equations (2.2) contains as special
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case the Newtonian fluid model for λ → 0. For the problem under consideration, we assume

a velocity field V and an extrastress tensor S of the form

V = V
(
y, t

)
= u

(
y, t

)
i, S = S

(
y, t

)
, (2.3)

where i is the unit vector along the x-coordinate direction. For these flows, the constraint of

incompressibility is automatically satisfied. If the fluid is at rest up to the moment t = 0, then

V
(
y, 0

)
= 0, S

(
y, 0

)
= 0, (2.4)

and (2.1)–(2.3) yield the meaningful equation

(
1 + λ

∂

∂t

)
∂u

(
y, t

)
∂t

= −1

ρ

(
1 + λ

∂

∂t

)
∂p

∂x
+ ν

∂2u
(
y, t

)
∂y2

,

(
1 + λ

∂

∂t

)
τ
(
y, t

)
= μ

∂u
(
y, t

)
∂y

,

(2.5)

where τ(y, t) = Sxy(y, t) is the nonzero shear stress and ν = μ/ρ is the kinematic viscosity of

the fluid.

The governing equations corresponding to an incompressible Maxwell fluid with

fractional derivatives, performing the same motion in the absence of a pressure gradient in

the flow direction, are (cf. [4, 15, 17])

(
1 + λαDα

t

)∂u(y, t)
∂t

= ν
∂2u

(
y, t

)
∂y2

,
(
1 + λαDα

t

)
τ
(
y, t

)
= μ

∂u
(
y, t

)
∂y

, (2.6)

where α is the fractional parameter and the fractional differential operator so-called Caputo

fractional operator Dα
t is defined by [37, 38]

Dα
t f(t) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(1 − α)

∫ t

0

f ′(τ)
(t − τ)α

dτ, 0 < α < 1,

df(t)
dt

, α = 1,

(2.7)

and Γ(•) is the Gamma function. In the following, the system of fractional partial differential

equations (2.6), with appropriate initial and boundary conditions, will be solved by means of

Fourier sine and Laplace transforms. In order to avoid lengthy calculations of residues and

contour integrals, the discrete inverse Laplace transform method will be used [10–18].

3. Statement of the Problem

Consider an incompressible Maxwell fluid with fractional derivatives occupying the space

lying over an infinitely extended plate which is situated in the (x, z) plane and perpendicular

to the y-axis. Initially, the fluid is at rest, and at the moment t = 0+, the plate is impulsively

brought to the constant velocity U in its plane. Here, we assume the existence of slip

boundary between the velocity of the fluid at the wall u(0, t) and the speed of the wall, and
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the relative velocity between u(0, t) and the wall is assumed to be proportional to the shear

rate at the wall. Due to the shear, the fluid above the plate is gradually moved. Its velocity

is of the form (2.3)1 while the governing equations are given by (2.6). The appropriate initial

and boundary conditions are [39]

u
(
y, 0

)
=
∂u

(
y, 0

)
∂t

= 0; τ
(
y, 0

)
= 0, y > 0, (3.1)

u(0, t) = UH(t) + θH(t)
∂u

(
y, t

)
∂y

∣∣∣∣∣
y=0

; t ≥ 0, (3.2)

whereH(t) is the Heaviside function and θ is the slip strength or slip coefficient. If θ = 0, then

the general assumed no-slip boundary condition is obtained. If θ is finite, fluid slip occurs at

the wall, but its effect depends upon the length scale of the flow. Furthermore, the natural

conditions

u
(
y, t

)
,

∂u
(
y, t

)
∂y

−→ 0 as y −→ ∞, t > 0 (3.3)

have to be also satisfied. They are consequences of the fact that the fluid is at rest at infinity,

and there is no shear in the free stream.

4. Solution of the Problem

4.1. Calculation of the Velocity Field

Applying the Laplace transform to (2.6)1, using the Laplace transform formula for sequential

fractional derivatives [37, 38], and taking into account the initial conditions (3.1)1,2, we find

that

∂u
(
y, q

)
∂y2

−
q
(
1 + λαqα

)
ν

u
(
y, q

)
= 0, (4.1)

subject to the boundary conditions

u
(
0, q

)
=
U

q
+ θ

∂u
(
y, q

)
∂y

∣∣∣∣∣
y=0

, u
(
y, q

)
,
∂u

(
y, q

)
∂y

−→ 0 as y −→ ∞, (4.2)

where u(y, q) is the image function of u(y, t) and q is a transform parameter. Solving (4.1)
and (4.2), we get

u
(
y, q

)
=

U

q
{

1 + θ
[
q
(
1 + λαqα

)
/ν

]1/2
} exp

⎧⎨⎩−
[
q
(
1 + λαqα

)
ν

]1/2

y

⎫⎬⎭. (4.3)
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In order to obtain u(y, t) = L−1{u(y, q)} and to avoid the lengthy and burdensome

calculations of residues and contours integrals, we apply the discrete inverse Laplace

transform method [10–18]. However, for a suitable presentation of the velocity field, we

firstly rewrite (4.3) in series form

u
(
y, q

)
=
U

q
+U

∞∑
k=1

⎛⎝−θ

√
λα

ν

⎞⎠k
∞∑
m=0

Γ(m − (k/2))(−λ−α)m

m!Γ(−k/2)
1

q−(α+1)(k/2)+αm+1

+U
∞∑
k=0

θk
∞∑
m=1

ym

m!

⎛⎝−

√
λα

ν

⎞⎠k+m
∞∑
n=0

Γ(n − ((k +m)/2))(−λ−α)n

n!Γ(−(k +m)/2)
1

q−(α+1)(k+m/2)+αn+1
,

(4.4)

where we use the fact that

(−1)k
Γ(α + 1)

Γ(α − k + 1)
=

Γ(k − α)
Γ(−α) . (4.5)

Inverting (4.4) by means of discrete inverse Laplace transform, we find that

u
(
y, t

)
= UH(t) +UH(t)

∞∑
k=1

⎛⎝−θ

√
λα

ν

⎞⎠k

t−(α+1)(k/2)
∞∑
m=0

Γ(m − (k/2))(−tα/λα)m
m!Γ(−k/2)Γ(−(k/2)(α + 1) + αn + 1)

+UH(t)
∞∑
k=0

θk
∞∑
m=1

ym

m!

⎛⎝−

√
λα

ν

⎞⎠k+m

t−(α+1)((k+m)/2)

×
∞∑
n=0

Γ(n − ((k +m)/2))(−tα/λα)n
n!Γ(−(k +m)/2)Γ(−((k +m)/2)(α + 1) + αn + 1)

.

(4.6)

In term of Wright generalized hypergeometric function [40], we rewrite the above equation

as a simpler form

u
(
y, t

)
= UH(t) +UH(t)

∞∑
k=1

⎛⎝−θ

√
λα

ν

⎞⎠k

t−(α+1)k/2
1Ψ2

[
− tα

λα

∣∣∣∣(−k/2,1)

(−k/2,0),(−(k/2)(α+1)+1,α)

]

+UH(t)
∞∑
k=0

θk
∞∑
m=1

ym

m!

⎛⎝−

√
λα

ν

⎞⎠k+m

t−(α+1)(k+m/2)
1Ψ2

[
− t

α

λα

∣∣∣∣(−(k+m)/2,1)

(−(k+m)/2,0),(−((k+m)/2)(α+1)+1,α)

]
,

(4.7)
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where the Wright generalized hypergeometric function pΨq is defined as

pΨq

[
z|(a1,A1),...(ap,Ap)

(b1,B1),...(bq,Bq)

]
=

∞∑
n=0

(z)n
∏p

j=1Γ
(
aj +Ajn

)
n!

∏q

j=1Γ
(
bj + Bjn

) . (4.8)

In order to justify the initial conditions (3.1)1,2, we use the initial value theorem of Laplace

transform [41]

u
(
y, 0

) = lim
t→ 0

u
(
y, t

)
= lim

q→∞

[
qu

(
y, q

)]
= 0,

∂tu
(
y, 0

)
= lim

t→ 0
∂t u

(
y, t

)
= lim

q→∞

[
q2u

(
y, q

)
− qu

(
y, 0

)]
= 0.

(4.9)

Furthermore, to justify the boundary condition (3.2), we have

θ
∂u

(
y, t

)
∂y

∣∣∣∣∣
y=0

= UH(t)
∞∑
k=0

⎛⎝−θ

√
λα

ν

⎞⎠k+1

t−(α+1)((k+1)/2)
1Ψ2

[
− t

α

λα

∣∣∣∣(−(k+1)/2,1)

(−(k+1)/2,0),(−((k+1)/2)(α+1)+1,α)

]

= UH(t)
∞∑
k=1

⎛⎝−θ

√
λα

ν

⎞⎠k

t−(α+1)(k/2)
1Ψ2

[
− tα

λα

∣∣∣∣(−(k+1)/2,1)

(−(k+1)/2,0),(−((k+1)/2)(α+1)+1,α)

]
,

u(0, t) = UH(t) +UH(t)
∞∑
k=1

⎛⎝−θ

√
λα

ν

⎞⎠k

t−(α+1)(k/2)
1Ψ2

[
− t

α

λα

∣∣∣∣(−(k/2),1)

(−k/2,0),(−(k/2)(α+1)+1,α)

]
.

(4.10)

It is easy to see that the exact solution (4.7) satisfies the boundary condition (3.2).

4.2. Calculation of the Shear Stress

Applying the Laplace transform to (2.6)2 and using the initial condition (3.1)3, we find that

τ
(
y, q

)
=

μ

1 + λαqα
∂u

(
y, q

)
∂y

, (4.11)

where τ(y, q) is the Laplace transform of τ(y, t). Using (4.3) in (4.11), we find that

τ
(
y, q

)
= −

μU
[
q(1 + λαqα)

]−1/2

√
ν
{

1 + θ
[
q
(
1 + λαqα

)
/ν

]1/2
} exp

⎧⎨⎩−
[
q
(
1 + λαqα

)
ν

]1/2

y

⎫⎬⎭, (4.12)
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in order to obtain τ(y, t) under the suitable form, we write (4.12) in series form

τ
(
y, q

)
= −μU

ν

∞∑
k=0

θk
∞∑
m=0

ym

m!

⎛⎝−

√
λα

ν

⎞⎠k+m−1

×
∞∑
n=0

Γ(n − (k +m − 1)/2)(−λ−α)n

n!Γ(−(k +m − 1)/2)
1

q−(α+1)((k+m−1)/2)+αn
.

(4.13)

Inverting (4.13) by means of the discrete inverse Laplace transform, we find the shear stress

τ(y, t) under simple form

τ
(
y, t

)
= −ρUH(t)

∞∑
k=0

θk
∞∑
m=0

ym

m!

⎛⎝−

√
λα

ν

⎞⎠k+m−1

t−(α+1)((m+k−1)/2)−1

×
∞∑
n=0

Γ(n − (k +m − 1)/2)(−tα/λα)n
n!Γ(−(k +m − 1)/2)Γ(−(α + 1)(k +m − 1)/2 + αn)

,

(4.14)

or equivalently

τ
(
y, t

)
= −ρUH(t)

∞∑
k=0

θk
∞∑
m=0

ym

m!

⎛⎝−

√
λα

ν

⎞⎠k+m−1

t−(α+1)((m+k−1)/2)−1

× 1Ψ2

[
− t

α

λα

∣∣∣∣(−(k+m−1)/2,1)

(−(k+m−1)/2,0),(−((k+m−1)/2)(α+1),α)

]
.

(4.15)

5. The Special Cases

5.1. Ordinary Maxwell Fluid with Slip Effects

Making α → 1 into (4.7) and (4.15), we obtain the velocity field

u
(
y, t

)
= UH(t) +UH(t)

∞∑
k=1

⎛⎝−θ

√
λ

ν

⎞⎠k

t−k 1Ψ2

[
− t
λ

∣∣∣∣(−k/2,1)

(−k/2,0),(−k+1,1)

]
,

+UH(t)
∞∑
k=0

θk
∞∑
m=1

ym

m!

⎛⎝−

√
λ

ν

⎞⎠k+m

t−(k+m)
1Ψ2

[
− t
λ

∣∣∣∣(−(k+m)/2,1)

(−(k+m)/2,0),(−(k+m)+1,1)

]
,

(5.1)

and the associated shear stress
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τ
(
y, t

)
= −ρUH(t)

∞∑
k=0

θk
∞∑
m=0

ym

m!

⎛⎝−

√
λ

ν

⎞⎠k+m

t−(k+m)
1Ψ2

[
− t
λ

∣∣∣∣(−(k+m−1)/2,1)

(−(k+m−1)/2,0),(−(k+m)+1,1)

]
, (5.2)

corresponding to an ordinary Maxwell fluid performing the same motion.

5.2. Fractional Maxwell Fluid without Slip Effects

Making θ → 0 into (4.7) and (4.15), we obtain the solutions for velocity field

u
(
y, t

)
= UH(t) +UH(t)

∞∑
m=1

ym

m!

⎛⎝−

√
λα

ν

⎞⎠m

t−(α+1)(m/2)
1Ψ2

[
− t

α

λα

∣∣∣∣(−m/2,1)

(−m/2,0),(−(m/2)(α+1)+1,α)

]
(5.3)

and the associated shear stress

τ
(
y, t

)
= −ρUH(t)

∞∑
m=0

ym

m!

⎛⎝−

√
λα

ν

⎞⎠m−1

t−(α+1)((m−1)/2)−1
1Ψ2

[
− t

α

λα

∣∣∣∣(−(m−1)/2,1)

(−(m−1)/2,0),(−((m−1)/2)(α+1),α)

]
,

(5.4)

they are equivalent to the known solutions obtained in [42, 43] for Sokes’ first problem of

fractional Maxwell fluid.

5.3. Ordinary Maxwell Fluid without Slip Effects

Making α → 1 into (5.3) and (5.4), we recover the solutions for velocity field shear stress for

Stokes’ first problem of ordinary Maxwell fluid.

5.4. Newtonian Fluid with Slip Effects

Finally, making λ → 0 into (4.3) and (4.12), the solutions for a Newtonian fluid with slip

effects are obtained

u
(
y, t

)
= UW−1/2,1

(
− y
√
νt

)
+U

∞∑
k=1

(
− θ√

νt

)k

W−1/2,−(k/2)+1

(
− y
√
νt

)
,

τ
(
y, t

)
= − μU√

νt
W−1/2,−1/2

(
− y
√
νt

)
− μU
√
νt

∞∑
k=1

(
− θ√

νt

)k

W−1/2,−(k−1)/2

(
− y
√
νt

)
,

(5.5)

in which

Wa,b(z) =
∞∑
n=0

zn

n!Γ(an + b)
, z ∈ C (5.6)
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Figure 1: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for fractional Maxwell fluid given
by (4.7) and (4.15), for U = 1, y = 1, ν = 0.379, μ = 33, λ = 1.5, α = 0.2, θ = 0.5, and different values of t.

is the Wright function [40]. Using the definition of Wright function and the series expression

of error function, we can easily prove that

W−1/2,1(−z) = erfc
(z

2

)
, W−1/2,1/2(−z) =

1√
π

exp

(
−z

2

4

)
. (5.7)

Substituting (5.7) into (5.5), we can reduce to

u
(
y, t

)
= uN

(
y, t

)
+U

∞∑
k=1

(
− θ√

νt

)k

W−1/2,−(k/2)+1

(
− y
√
νt

)
,

τ
(
y, t

)
= τN

(
y, t

)
− μU
√
νt

∞∑
k=1

(
− θ√

νt

)k

W−1/2,−(k−1)/2

(
− y
√
νt

)
,

(5.8)

where

uN
(
y, t

)
= U erfc

(
y

2
√
νt

)
, τN

(
y, t

)
= − μU

√
πνt

exp

(
− y2

4νt

)
(5.9)

are classical solutions for Stokes’ first problem of Newtonian fluid [42, 44].

6. Numerical Results and Conclusions

In this paper, the unsteady flow of fractional Maxwell fluid over an infinite plate, where the

no-slip assumption between the wall and the fluid is no longer valid, is studied by means
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Figure 2: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for fractional Maxwell fluid given
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Figure 3: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for fractional Maxwell fluid given
by (4.7) and (4.15), for U = 1, y = 1, ν = 0.379, μ = 33, λ = 1.5, α = 0.2, and different values of θ.

of the discrete Laplace transforms. The motion of the fluid is due to the plate that at time

t = 0+ is suddenly moved with a constant velocity U in its plane. Closed-form solutions

are obtained for the velocity u(y, t) and the shear stress τ(y, t) in series form in terms of

the Wright generalized hypergeometric functions. These solutions, presented as a sum of

the slip contribution and the corresponding no-slip contributions, satisfy all imposed initial

and boundary conditions. The corresponding solutions for ordinary Maxwell fluids are also
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Figure 5: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for fractional Maxwell fluid given
by (4.7) and (4.15), for U = 1, y = 1, ν = 0.379, μ = 33, α = 0.2, θ = 0.5, t = 5 s, and different values of λ.

obtained from general solutions for α → 1. In the special case when θ → 0, the general

solution reduces to previously known results for Stokes’ first problem.

In order to reveal some relevant physical aspects of the obtained results, the diagrams

of the velocity field u(y, t) and the shear stress τ(y, t) have been drawn against y and t for

different values of t, material constants ν, λ, slip parameter θ, and fractional parameter α.

From all figures, it is clear that increasing the slip parameter at the wall the velocity decreases

at the wall. Figures 1 and 2 are prepared to show the effect of time on velocity and shear
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stress profiles with and without slip effects. It is clear that velocity and shear stress (in
absolute value) are smaller when slip parameter is nonzero. It is also noted that velocity

on the whole flow domain while the shear stress (in absolute value) on large part of flow

domain are increasing functions of time t. Figures 3 and 4 are sketched to see the influence

of slip effects on fluid motion for two different values of y. It is noted that velocity and shear

stress (in absolute value), as expected are decrease when slip parameter θ and y increase.
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Figure 9: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for fractional Maxwell fluid given
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The influence of relaxation time and kinematic viscosity ν on fluid motion are presented in

Figures 5–8. As expected, the two material parameter have opposite effects on fluid motion.

For instance, the velocity and shear stress decreases with respect to λ. More important for

us is to see the effects of fractional and slip parameter on fluid motion. It is observed that

velocity and shear stress either slip effects present or not are increasing functions of fractional

parameter, as shown in Figures 9 and 10. The effect of slip parameter is clear from Figure 11.
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Figure 11: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for fractional Maxwell fluid given
by (4.7) and (4.15), for U = 1, y = 1, ν = 0.379, μ = 33, λ = 1.5, α = 0.2, t = 5 s, and different values of θ.

Finally, for comparison, the velocity field and the shear stress corresponding to the three

models (fractional Maxwell, ordinary Maxwell, and Newtonian) are together depicted in

Figures 12–14 for three different values of slip parameter and the same values of t and of

the material constants. It is clearly seen from Figures 12 and 13 that the ordinary Maxwell

fluid swiftest and the fractional Maxwell fluid is the slowest near the moving plate for slip

parameters θ = 0.0 and θ = 0.2. However, the monotonicity is change on large part of the

flow domain. The shear stress corresponding to ordinary Maxwell fluid is highest near the



16 International Journal of Differential Equations

0 1 2 3 4
0

0.3

0.7

1

Newtonian

y

u
(y

)

θ = 0

Fractional Maxwell

Ordinary Maxwell

(a)

0 1 2 3 4
−24

−16

−8

0

y

θ = 0

τ
(y

)

Newtonian

Fractional Maxwell

Ordinary Maxwell

(b)

Figure 12: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for fractional Maxwell, ordinary
Maxwell and Newtonian fluids, for U = 1, y = 1, ν = 0.379, μ = 33, λ = 1.5, α = 0.2, t = 2 s, and θ = 0.0.

0 1 2 3 4
0

0.3

0.6

0.9

y

u
(y

)

θ = 0.2

Newtonian

Fractional Maxwell

Ordinary Maxwell

(a)

0 1 2 3 4
−21

−14

−7

0

y

θ = 0.2

τ
(y

)

Newtonian

Fractional Maxwell

Ordinary Maxwell

(b)

Figure 13: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for fractional Maxwell, ordinary
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moving plate. For higher values of slip parameter the fractional Maxwell fluid is swiftest

and the ordinary Maxwell is slowest and shear stress corresponding to fractional Maxwell

fluid is largest on the whole flow domain as it is clear from Figure 14. It is important to

note the difference between fractional and ordinary Maxwell fluid that, when slip effect is

not present, the ordinary Maxwell fluid have oscillating behavior near the moving plate as
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shown in Figure 12, which is the natural one, ordinary Maxwell fluid being the viscoelastic

fluid. However the fractional Maxwell fluid have no oscillation. The units of the material

constants in all figures are SI units.
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Antisynchronization phenomena are studied in nonidentical fractional-order differential systems.
The characteristic feature of antisynchronization is that the sum of relevant state-variables vanishes
for sufficiently large value of time variable. Active control method is used first time in the literature
to achieve antisynchronization between fractional-order Lorenz and Financial systems, Financial
and Chen systems, and Lü and Financial systems. The stability analysis is carried out using
classical results. We also provide numerical results to verify the effectiveness of the proposed
theory.

1. Introduction

In their pioneering work [1, 2], Pecora and Carroll have shown that chaotic systems can be

synchronized by introducing appropriate coupling. The notion of synchronization of chaos

has further been explored in secure communications of analog and digital signals [3] and for

developing safe and reliable cryptographic systems [4]. For the synchronization of chaotic

systems, a variety of approaches have been proposed which include nonlinear feedback [5],
adaptive [6, 7], and active controls [8, 9].

Antisynchronization (AS) is a phenomenon in which the state vectors of the synchro-

nized systems have the same amplitude but opposite signs to those of the driving system.

Hence the sum of two signals converges to zero when AS appears. Antisynchronization has

applications in lasers [10], in periodic oscillators, and in communication systems. Using AS

to lasers, one may generate not only drop-outs of the intensity but also short pulses of high

intensity, which results in the pulses of special shapes.
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Active control method is used to AS for two identical integer order systems by Ho et al.

[11] and for nonidentical systems by Li and Zhou [12]. Nonlinear control scheme was used

by Li et al. [13] to study AS. Al-Sawalha [14] have reported AS between Chua’s system and

Nuclear spin generator (NSG) system. Recently AS between Lorenz system, Lü system, and

Four-scroll system is investigated by Elabbasy and El-Dessoky [15].
Fractional calculus deals with derivatives and integration of arbitrary order [16–18]

and has deep and natural connections with many fields of applied mathematics, engineering,

and physics. Fractional calculus has a wide range of applications in control theory [19],
viscoelasticity [20], diffusion [21–27], turbulence, electromagnetism, signal processing [28,

29], and bioengineering [30]. Analysis of fractional-order dynamical systems involving

Riemann-Liouville as well as Caputo derivatives has been dealt with by present authors

[31, 32].
Synchronization of fractional-order chaotic systems was first studied by Deng and Li

[33] who carried out synchronization in case of the fractional Lü system. Further they have

investigated synchronization of fractional Chen system [34]. Li and Deng have summarized

the theory and techniques of synchronization in [35]. The theory for synchronization prob-

lems in an ω-symmetrically coupled fractional differential systems have been studied by

Zhou and Li [36]. Since then many fractional systems have been investigated by various

researchers. A few examples in this regards are Li et al. [37] (Chua system), Wang et al.

[38] (Chen system), Wang and Zhang [39] (unified system), Wang and He [40] (unified

system), Yu and Li [41] (Rossler hyperchaos system), and Tavazoei and Haeri [42] (Lü

system and Chen system). Of late Matouk [43] has synchronized fractional Lü system with

fractional Chen system and fractional Chen system with fractional Lorenz system. Hu et al.

[44] have synchronized fractional Lorenz and fractional Chen systems. Further Bhalekar and

Daftardar-Gejji [45] have investigated the interrelationship between the (fractional) order

and synchronization in different chaotic dynamical systems. However, it seems that there are

no previous results on AS of two nonidentical fractional-order chaotic systems.

In the present paper, we study the antisynchronization of the following fractional

systems using active control method: (i) Lorenz with Financial, (ii) Financial with Chen, and

(iii) Lü with Financial.

2. Preliminaries

2.1. Fractional Calculus

Basic definitions and properties of fractional derivative/integrals are given below [16, 17, 46].

Definition 2.1. A real function f(t), t > 0, is said to be in space Cα, α ∈ R if there exists a real

number p (> α), such that f(t) = tpf1(t) where f1(t) ∈ C[0,∞).

Definition 2.2. A real function f(t), t > 0, is said to be in space Cm
α , m ∈ N ∪ {0} if f (m) ∈ Cα.

Definition 2.3. Let f ∈ Cα and α ≥ −1, then the (left-sided) Riemann-Liouville integral of order

μ, μ > 0 is given by

Iμf(t) =
1

Γ
(
μ
) ∫ t

0

(t − τ)μ−1f(τ)dτ, t > 0. (2.1)
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Definition 2.4. The (left-sided) Caputo fractional derivative of f , f ∈ Cm
−1, m ∈ N ∪ {0}, is

defined as

Dμf(t) =
dm

dtm
f(t), μ = m

= Im−μ d
mf(t)
dtm

, m − 1 < μ < m, m ∈ N.

(2.2)

Note that for m − 1 < μ ≤ m, m ∈ N,

IμDμf(t) = f(t) −
m−1∑
k=0

dkf

dtk
(0)

tk

k!
,

Iμtν =
Γ(ν + 1)

Γ
(
μ + ν + 1

) tμ+ν.
(2.3)

2.2. Numerical Method for Solving Fractional Differential Equations

Numerical methods used for solving ODEs have to be modified for solving fractional differ-

ential equations (FDEs). A modification of Adams-Bashforth-Moulton algorithm is proposed

by Diethelm et al. in [47–49] to solve FDEs.

Consider for α ∈ (m − 1, m] the initial value problem (IVP)

Dαy(t) = f
(
t, y(t)

)
, 0 ≤ t ≤ T,

y(k)(0) = y(k)
0 , k = 0, 1, . . . , m − 1.

(2.4)

The IVP (2.4) is equivalent to the Volterra integral equation

y(t) =
m−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0

(t − τ)α−1f
(
τ, y(τ)

)
dτ. (2.5)

Consider the uniform grid {tn = nh/n = 0, 1, . . . ,N} for some integer N and h := T/N. Let

yh(tn) be approximation to y(tn). Assume that we have already calculated approximations

yh(tj), j = 1, 2, . . . , n, and we want to obtain yh(tn+1) by means of the equation

yh(tn+1) =
m−1∑
k=0

tkn+1

k!
y
(k)
0 +

hα

Γ(α + 2)
f
(
tn+1, y

P
h (tn+1)

)
+

hα

Γ(α + 2)

n∑
j=0

aj,n+1f
(
tj , yn

(
tj
))
, (2.6)

where

aj,n+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nα+1 − (n − α)(n + 1)α if j = 0,(
n − j + 2

)α+1 +
(
n − j

)α+1 − 2
(
n − j + 1

)α+1
if 1 ≤ j ≤ n,

1 if j = n + 1.

(2.7)
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The preliminary approximation yP
h
(tn+1) is called predictor and is given by

yPh (tn+1) =
m−1∑
k=0

tkn+1

k!
y
(k)
0 +

1

Γ(α)

n∑
j=0

bj,n+1f
(
tj , yn

(
tj
))
, (2.8)

where

bj,n+1 =
hα

α

((
n + 1 − j

)α − (
n − j

)α)
. (2.9)

Error in this method is

maxj=0,1,...,N

∣∣y(
tj
)
− yh

(
tj
)∣∣ = O(hp), (2.10)

where p = min(2, 1 + α).

3. System Description

The fractional-order Lorenz system [50, 51] is described by

Dαx = σ
(
y − x

)
,

Dαy = rx − y − xz,

Dαz = xy − μz,

(3.1)

where σ = 10 is the Prandtl number, r = 28 is the Rayleigh number over the critical Rayleigh

number, and μ = 8/3 gives the size of the region approximated by the system. The minimum

effective dimension for this system is 2.97 [51].
In [52] Chen proposed the financial system to fractional-order

Dαx = z +
(
y − a

)
x,

Dαy = 1 − by − x2,

Dαz = −x − cz,

(3.2)

where a = 3, b = 0.1, and c = 1. The minimum effective dimension for which the system

exhibits chaos is given by 2.32 [52].
Li and Peng [53] studied chaos in fractional-order Chen system

Dαx = a1

(
y − x

)
,

Dαy = (c1 − a1)x − xz + c1y,

Dαz = xy − b1z,

(3.3)

where a1 = 35, b1 = 3, and c1 = 27. The minimum effective dimension reported is 2.92 [53].
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Fractional-order Lü system is the lowest-order chaotic system among all the chaotic

systems reported in the literature [54]. The minimum effective dimension reported is 0.30.

The system is given by

Dαx = a2

(
y − x

)
,

Dαy = c2y − xz,

Dαz = xy − b2z,

(3.4)

where a2 = 35, b2 = 3, and c2 = 28.

4. Antisynchronization between Fractional-Order Lorenz and
Financial System

In this section, we study the antisynchronization between Lorenz and Financial systems. As-

suming that the Lorenz system drives the Financial system, we define the drive (master) and

response (slave) systems as follows:

Dαx1 = σ
(
y1 − x1

)
,

Dαy1 = rx1 − y1 − x1z1,

Dαz1 = x1y1 − μz1,

(4.1)

Dαx2 = z2 +
(
y2 − a

)
x2 + u1(t),

Dαy2 = 1 − by2 − x2
2 + u2(t),

Dαz2 = −x2 − cz2 + u3(t).

(4.2)

The unknown terms u1, u2, u3 in (4.2) are active control functions to be determined. Define

the error functions as

e1 = x1 + x2, e2 = y1 + y2, e3 = z1 + z2. (4.3)

Equation (4.3) together with (4.1) and (4.2) yields the error system

Dαe1 = (a − σ)x1 + σy1 + x1y1 − z1 − ae1 − y1e1 − x1e2 + e1e2 + e3 + u1(t),

Dαe2 = 1 + rx1 − x2
1 + (b − 1)y1 − x1z1 + 2x1e1 − e2

1 − be2 + u2(t),

Dαe3 = x1 +
(
c − μ

)
z1 + x1y1 − e1 − ce3 + u3(t).

(4.4)
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We define active control functions ui(t) as

u1(t) = V1(t) − (a − σ)x1 − σy1 − x1y1 + z1 + y1e1 + x1e2 − e1e2,

u2(t) = V2(t) − 1 − rx1 + x2
1 − (b − 1)y1 + x1z1 − 2x1e1 + e2

1,

u3(t) = V3(t) − x1 −
(
c − μ

)
z1 − x1y1.

(4.5)

The terms Vi(t) are linear functions of the error terms ei(t). With the choice of ui(t) given by

(4.5), the error system (4.5) becomes

Dαe1 = −ae1 − e3 + V1(t),

Dαe2 = −be2 + V2(t),

Dαe3 = −e1 − ce3 + V3(t).

(4.6)

The control terms Vi(t) are chosen so that the system (4.6) becomes stable. There is not a

unique choice for such functions. We choose

⎛⎜⎜⎝
V1

V2

V3

⎞⎟⎟⎠ = A

⎛⎜⎜⎝
e1

e2

e3

⎞⎟⎟⎠, (4.7)

where A is a 3 × 3 real matrix, chosen so that for all eigenvalues λi of the system (4.6) the

condition

∣∣arg(λi)
∣∣ > απ

2
(4.8)

is satisfied. (The stability condition (4.8) is discussed in the literature [55–57]). If we choose

A =

⎛⎜⎜⎝
a − 1 0 −1

0 −1 + b 0

1 0 c − 1

⎞⎟⎟⎠, (4.9)

then the eigenvalues of the linear system (4.6) are −1, −1, and −1. Hence the condition

(4.8) is satisfied for α < 2. Since we consider only the values α ≤ 1, we get the required

antisynchronization.

4.1. Simulation and Results

Parameters of the Lorenz system are taken as σ = 10, r = 28, μ = 8/3 and Financial system

as a = 3, b = 0.1, c = 1. The fractional-order α is taken to be 0.99 for which both the systems

are chaotic. The initial conditions for drive and response system are x1(0) = 10, y1(0) = 5,
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Figure 1: (a) Signals x1, x2, (b) Signals y1, y2, (c) Signals z1, z2, and (d) Error system.

z1(0) = 10 and x2(0) = 2, y2(0) = 3, z2(0) = 2, respectively. Initial conditions for the error

system are thus e1(0) = 12, e2(0) = 8, and e3(0) = 12. Figures 1(a)–1(c) show the antisyn-

chronization between Lorenz and Financial system; the response system is given by dashed

line. The errors e1(t) (solid line), e2(t) (dashed line) and e3(t) (dot-dashed line) in the anti-

synchronization are shown in Figure 1(d).

5. Antisynchronization between Financial and Chen Systems of
Fractional Order

Assuming that Chen system is antisynchronized with Financial system; define the drive sys-

tem as

Dαx1 = z1 +
(
y1 − a

)
x1,

Dαy1 = 1 − by1 − x2
1,

Dαz1 = −x1 − cz1

(5.1)

and the response system as

Dαx2 = a1

(
y2 − x2

)
+ u4,

Dαy2 = (c1 − a1)x2 − x2z2 + c1y2 + u5,

Dαz2 = x2y2 − b1z2 + u6.

(5.2)
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Let e1 = x1 + x2, e2 = y1 + y2, and e3 = z1 + z2 be error functions. For antisynchronization, it

is essential that the errors ei → 0 as t→ ∞. Note that

Dαe1 = (a1 − a)x1 − a1y1 + x1y1 + z1 − a1e1 + a1e2 + u4(t),

Dαe2 = 1 + (a1 − c1)x1 − x2
1 − (b + c1)y1 − x1z1

+ (c1 − a1)e1 + z1e1 + c1e2 + x1e3 − e1e3 + u5(t),

Dαe3 = −x1 + x1y1 + (b1 − c)z1 − y1e1 − x1e2 + e1e2 − b1e3 + u6(t).

(5.3)

The control functions are chosen as

u4 = V4 − (a1 − a)x1 + a1y1 − x1y1 − z1,

u5 = V5 − 1 − (a1 − c1)x1 + x2
1 + (b + c1)y1 + x1z1 − z1e1 − x1e3 + e1e3,

u6 = V6 + x1 − x1y1 − (b1 − c)z1 + y1e1 + x1e2 − e1e2.

(5.4)

The linear functions V4, V5, V6 are given by

V4 = (a1 − 1)e1 − a1e2,

V5 = −(a1 − c1)e1 − (c1 + 1)e2,

V6 = (b1 − 1)e3.

(5.5)

With the values given in (5.4) and (5.5), the error system (5.3) becomes

⎛⎜⎜⎝
Dαe1

Dαe2

Dαe3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1 0 0

0 −1 0

0 0 −1

⎞⎟⎟⎠
⎛⎜⎜⎝
e1

e2

e3

⎞⎟⎟⎠. (5.6)

It can be observed that the coefficient matrix of the error system (5.6) has eigenvalues −1,

−1, −1. So the system is stable and antisynchronization is achieved.

5.1. Simulations and Results

We take parameters for fractional-order Chen system as a1 = 35, b1 = 3, c1 = 27. Parameters

for the Financial system are same as given in Section 4.1. Experiments are done for fixed

value of fractional-order α = 0.95, which is same for drive and response system (5.1) and

(5.2). The initial conditions for the systems (5.1) and (5.2) are x1(0) = 2, y1(0) = 3, z1(0) = 2

and x2(0) = 10, y2(0) = 25, z2(0) = 36, respectively. For the error system (5.6), the initial

conditions turns out to be e1(0) = 12, e2(0) = 28, e3(0) = 38. The simulation results are

summarized in Figure 2. Antisynchronization between fractional Financial and Chen system

is shown in Figure 2(a) (signals x1, x2), Figure 2(b) (signals y1, y2), and Figure 2(c) (signals

z1, z2). Note that the drive systems are shown by solid lines, whereas response systems are
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Figure 2: (a) Signals x1, x2, (b) Signals y1, y2, (c) Signals z1, z2, and (d) Error system.

shown by dashed lines. The errors e1(t) (solid line), e2(t) (dashed line), and e3(t) (dot-dashed

line) in the antisynchronization are shown in Figure 2(d).

6. Antisynchronization between Fractional Lü and Financial System

In this case, consider Lü system as the drive system

Dαx1 = a2

(
y1 − x1

)
,

Dαy1 = c2y1 − x1z1,

Dαz1 = x1y1 − b2z1,

(6.1)

and the response system as the Financial system

Dαx2 = z2 +
(
y2 − a

)
x2 + u7,

Dαy2 = 1 − by2 − x2
2 + u8,

Dαz2 = −x2 − cz2 + u9.

(6.2)
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Let e1 = x1+x2, e2 = y1+y2, and e3 = z1+z2 be error functions. For antisynchronization,

it is essential that the errors ei → 0 as t → ∞. To achieve this one should choose the control

terms u7, u8, u9 properly. The error system thus becomes

Dαe1 = (a − a2)x1 + a2y1 + x1y1 − z1 − ae1 − y1e1 − x1e2 + e1e2 + e3 + u7,

Dαe2 = 1 − x2
1 + (b + c2)y1 − x1z1 + 2x1e1 − e2

1 − be2 + u8,

Dαe3 = x1 + x1y1 + (c − b2)z1 − e1 − ce3 + u9.

(6.3)

The control functions are chosen as

u7 = V7 − (a − a2)x1 − a2y1 − x1y1 + z1 + y1e1 + x1e2 − e1e2,

u8 = V8 − 1 + x2
1 − (b + c2)y1 + x1z1 − 2x1e1 + e2

1,

u9 = V9 − x1 − x1y1 − (c − b2)z1.

(6.4)

The linear functions V7, V8, V9 are given by

V7 = (a − 1)e1 − e3,

V8 = (−1 + b)e2,

V9 = e1 + (c − 1)e3.

(6.5)

With the values given in (6.4) and (6.5), the error system (6.3) becomes

⎛⎜⎜⎝
Dαe1

Dαe2

Dαe3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1 0 0

0 −1 0

0 0 −1

⎞⎟⎟⎠
⎛⎜⎜⎝
e1

e2

e3

⎞⎟⎟⎠. (6.6)

It can be observed that the coefficient matrix of the error system (6.6) has eigenvalues −1,

−1, −1. So the system is stable and antisynchronization is achieved.

6.1. Simulations and Results

Parameters for the Lü system are a2 = 35, b2 = 3, c2 = 28, whereas parameters for Financial

system are unaltered. The initial conditions for drive system are x1(0) = 0.2, y1(0) = 0,

z1(0) = 0.5, whereas the initial conditions for response system are x2(0) = 2, y2(0) = 3,

z2(0) = 2. Hence the initial conditions for the error system (6.6) are e1(0) = 2.2, e2(0) = 3,

e3(0) = 2.5. We perform the numerical simulations for fractional order α, namely, 0.91 of

the drive system (6.1) and response system (6.2). Figures 3(a), 3(b), and 3(c) show antisyn-

chronization between fractional Lü and Financial system for α = 0.91. Figure 3(d) shows the

errors e1(t) (solid line), e2(t) (dashed line), and e3(t) (dot-dashed line) in the antisynchroni-

zation for α = 0.91.

Mathematica 7 has been used for computations in the present paper.
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Figure 3: (a) α = 0.91, Signals x1, x2, (b) α = 0.91, Signals y1, y2, (c) α = 0.91, Signals z1, z2, and (d) α = 0.91,
Error system.

7. Conclusions

Antisynchronization of nonidentical fractional-order chaotic systems has been done first time

in the literature using active control. The fractional Financial system is controlled by fractional

Lorenz system, the fractional Chen system is controlled by fractional Financial system, and

the fractional Financial system is controlled by fractional Lü system.
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