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1. Introduction

The concept of complex dynamic systems arises in many varieties, including the areas
of energy generation, storage and distribution, ecosystems, gene regulation and health
delivery, safety and security systems, telecommunications, transportation networks, and the
rapidly emerging research topics seeking to understand and analyse. Such systems are often
concurrent and distributed, because they have to react to various kinds of events, signals,
and conditions. They may be characterized by a system with uncertainties, time delays,
stochastic perturbations, hybrid dynamics, distributed dynamics, chaotic dynamics, and a
large number of algebraic loops. This special issue provides a platform for researchers to
report their recent results on various mathematical methods and techniques for modelling
and control of complex dynamic systems and identifying critical issues and challenges for
future investigation in this field. This special issue amazingly attracted one-hundred-and-
eighteen submissions, and twenty-seven of them are selected through a rigorous review
procedure.

The selected papers contribute mathematical modelling, parameter identification,
monitoring and diagnosis, optimization, and control for a variant of complex systems such
as chaotic systems (4 papers), impulsive and singular systems (4 papers), nonlinear systems
(12 papers), delay systems (3 papers), stochastic systems (3 papers), and gene complex
network (1 paper). From the viewpoint of modelling, the related papers mainly investigate
mathematical modelling for complex systems by using physical laws or deal with model
identification by using the data based training and estimation. Along with the dynamic
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equation models, graph-based model is of interest for modelling complex gene regulation
network. From the viewpoint of control, the adopted techniques mainly include adaptive
control, impulsive control, sliding mode control, fuzzy control, nonlinear optimization, and
optimal control. From the view of application, the involved systems include mechanical
dynamic systems, biological systems, aerospace systems, fluid dynamic systems, energy
systems, and ecological-economic systems.

We are going to introduce the selected papers in the categories of chaotic systems,
impulsive and singular systems, nonlinear systems/processes, time-delay systems, stochastic
systems, and gene complex network.

2. Modelling and Control for Chaotic Systems

For modelling and control of chaotic systems, the paper entitled “The chaotic prediction for aero-
engine performance parameters based on nonlinear PLS regression” is contributed by C. Zhang and
J. Yue. On the basis of the actual air-borne data of the aircraft communications addressing and
reporting system, a nonlinear partial least square regression method is proposed to predict
chaotic function of the engine exhaust temperature time series of the aero-engine, which will
benefit the condition monitoring and diagnosis for aero engines.

The paper entitled “Dynamic analysis of a hybrid squeeze film damper mounted rub-impact
rotor-stator system,” authored by C. C.-Jian, presents a detailed analysis on dynamic behaviour
of a rotor-stator system. It reveals that its dynamic behaviours may suddenly evolve into
chaos from periodic motions without any transition. The presented results provide useful
insights into the design and development of a rotor-bearing complex system.

The paper entitled “Optimal control for a class of chaotic systems,” authored by J. Zhang
and W. Tang, presents an optimal state-feedback control strategy for a class of chaotic systems.
The system considered is transformed into a set of uncertain piecewise linear systems, and
an optimal robust controller is designed by solving an optimisation problem under the
constraints of nonlinear inequalities.

In the paper entitled “Bifurcation analysis for a kind of nonlinear finance system with delayed
feedback and its application to control of chaos,” R. Zhang presents a quantitative distribution
analysis on the roots of the associate characteristic equation for a kind of nonlinear
finance systems with time-delay feedback. The conditions of ensuring the existence of Hopf
bifurcation are addressed and the explicit formulas are derived for determining the stability
and direction of the bifurcating periodic solutions.

3. Modelling and Control of Impulsive and Singular Systems

For modelling and control of impulsive and singular systems, the paper entitled “The analysis
and control for singular ecological-economic model with harvesting and migration” is contributed by
Q. Zhang et al. This paper presents a singular ecological-economic model for the populations
with harvesting and migration. The local stability and dynamic behaviour of the model are
investigated. By transforming the singular model into a single-input single-output model,
variable structure control is applied to eliminate the complex behaviours of the considered
problem.

The paper entitled “Multi-state dependent impulsive control for pest management,”
authored by H. Cheng et al., presents a combined control strategy for pest management. The
combined control strategy adopts different control methods according to different thresholds.
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The existence and convergence of the first-order periodic solution of such systems are further
analysed.

The paper entitled “Dynamic analysis of a predator-prey (Pest) model with disease in prey
and involving an impulsive control strategy,” is contributed by M. Zhao et al., which presents a
dynamic analysis of a predator-prey (pest) model with disease in prey. The model involves
an impulsive control strategy to release infected prey at fixed times. Theoretical analysis on
the local asymptotical stability and global attractivity for the semitrivial periodic solution is
also presented.

In paper entitled “A matrix method for determining eigenvalues and stability of singular
neutral delay-differential systems,” J. Ma et al. present an analysis on the eigenvalues and
stability of singular neutral delay-differential systems. The matrix pencil and linear operator
methods are used to derive a new algebraic criterion to obtain imaginary axis eigenvalues. In
addition, a criterion for the asymptotic stability is introduced.

4. Modelling and Control of Nonlinear Systems/Processes

In the paper entitled “Adaptive fault detection for complex dynamic processes based on jit updated
data set,” J. Li et al. presents a fault detection technique for nonlinear complex industrial
processes. Just-in-time and k-nearest neighbour methods are integrated to construct a flexible
and adaptive detection scheme. The updating of the database is taken into account in the
design of fault detection algorithm.

The paper, “Computation of the added masses of an unconventional airship,” authored by
N. Azouz et al., presents a modelling method for an unmanned airship. An aerodynamic
investigation is firstly presented and a mathematical analysis of the velocity potential flow of
the shape of the airship is developed. The whole system, described by nonlinear equations
subjected to boundary conditions, governing the interaction air-structure, is solved in an
analytical setting.

In the paper entitled “Nonlinearities in drug release process from polymeric microparticles:
long-time-scale behavior,” E. S. Bacaita et al. present a theoretical model of the drug release
process from polymeric microparticles through dispersive fractal approximation of motion.
The drug release process takes place through cnoidal oscillations modes of a normalized
concentration field, which indicates that the drug particles assemble in a lattice of nonlinear
oscillators occur macroscopically.

The paper “Application of the poor man’s navier-stokes equations to real-time control of fluid
flow,” authored by J. M. Polly and J. M. McDonough, presents an application study of the
Poor Man’s Navier Stokes (PMNS) equations to real time control of fluid flow. The PMNS
equations comprise a discrete dynamic system that is algebraic so that they can be easily and
rapidly solved. Theoretical analysis of the PMNS equations is discussed and a control force
is added to control the fluid flow.

In the paper entitled “Data fusion based hybrid approach for the estimation of urban arterial
travel time,” S. P. Anusha et al. present a data based approach to estimate the travel time in
urban arterials in India. Three different approaches are proposed, namely, highway capacity
manual based method, Kalman filter based method and hybrid method.

In the paper entitled, “Adaptive control of a two-item inventory modelwith unknown demand
rate coefficients,” Alshamrani presents a multiitem inventory model with unknown demand
coefficients. The output of the system is tracked by an adaptive control approach with
a nonlinear feedback. The asymptotic stability of the adaptive controlled system is proven
by the Lyapunov technique.
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In the paper entitled, “Optimal control of a spatio-temporal model for malaria: synergy
treatment and prevention,” M. Zorom et al. present a metapopulation model for malaria with
two control variables, treatment and prevention, distributed between n different patches.
A mathematical model with three patches is constructed using optimal control techniques.
Based on the model, qualitative suggestions for treatment and prevention of Malaria are
provided.

In the paper entitled “Nonsmooth recursive identification of sandwich systems with backlash-
like hysteresis,” R. Dong et al. present a recursive gradient identification algorithm based on
the bundle method for sandwich systems with backlash-like hysteresis. A dynamic parameter
estimation scheme is developed to handle the nonsmooth problem caused by the backlash
embedded in the system. The bundle method is used to estimate the search direction of the
subgradient algorithm.

In the paper entitled “The hybrid adaptive control of T-S fuzzy system based on niche,” T.
Zhao et al. presents a hybrid adaptive fuzzy control method with the function of continuous
supervisory control. The method is based on the niche characteristics, whose control law
is designed by tracking, continuous supervisory, and adaptive compensation. An adaptive
compensator and adaptive laws of parameters are designed to embody system adaptability.

The paper entitled “Stability and limit oscillations of a control event-based sampling
criterion,” authored by M. De La Sen et al., investigates the presence of limit oscillations
in an adaptive sampling system. An extended sampling criterion is proposed and the limit
oscillations are interpreted on the basis of adaptive sampling in nonlinear dynamic systems.

In the paper entitled “Modeling optimal scheduling for pumping system to minimize
operation cost and enhance operation reliability,” Y. Luo et al. present an optimal scheduling
plan for pumping system to minimize operation cost and enhance operation reliability. The
operation reliability is explored by investigating vibration level and a model is built as a
function of the capacity and rotation speed of the pump for the operation reliability.

In the paper entitled “Improving the solution of least squares support vector machines with
application to a blast furnace system,” L. Jian et al. present a strategy to speed up the search of
the solution of the least square support vector machine (LSSVM) by using minimal residual
method to solve saddle point systems in LSSVM directly. The proposed method is validated
by a blast furnace industrial process.

5. Modelling and Control of Systems with Time Delays

In the paper, entitled “Modelling and analysis of epidemic diffusion within small-world network,”
M. Liu and Y. Xiao present two different models, Susceptible-Exposure-Infected-Recovered-
Susceptible model and Susceptible-Exposure-Infected-Quarantine-Recovered-Susceptible
model, to describe the rule of epidemic diffusion. The models are analysed within the small-
world network. Theoretical properties such as condition for occurrence of disease diffusion,
existence, and global stability of the disease free equilibrium are addressed.

In the paper entitled “Synchronization of coupled networks with mixed delays by inter-
mittent control,” the synchronization of coupled networks with mixed delay is investigated
by employing Lyapunov functional method and intermittent control. A sufficient condition
is derived to ensure the global synchronization of coupled networks and an intermittent
controller is designed to control the system.

In the paper entitled “Type-K exponential ordering with application to delayed hopfield-
type neural networks,” B.-W. Wang presents order-preserving and convergent results for
delay functional differential equations without quasi-monotone condition under type-K
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exponential ordering. The delayed Hopfield-type neural networks with a type K monotone
interconnection matrix are considered as an application and the attractor is obtained.

6. Modelling and Control of Stochastic Systems

For modelling and control of stochastic systems, the paper entitled “Pareto design of decoupled
sliding-mode controllers for nonlinear systems based on a multiobjective genetic algorithm,” authored
by M. J. Mahmoodabadi et al., presents the pareto design of decoupled sliding-mode
controller based on multiobjective genetic algorithm for several fourth-order coupled
nonlinear systems. The decoupled sliding mode controller is applied to stabilize the fourth-
order coupled systems at the equilibrium point. The optimal parameters of the decoupled
sliding-mode controller are obtained using the multiobjective genetic algorithm.

In the paper entitled “Mean square almost periodic solutions for impulsive stochastic
differential equations with delays,” R. Zhang et al. present a result on existence and uniqueness
of mean square almost periodic solutions for a class of impulsive stochastic differential
equations with delay. This is an extension of the earlier works reported in the literature.

In the paper entitled “Bank liquidity and the global financial crisis,” F. Gideon et al.
present an analysis on the stochastic dynamics of bank liquidity parameters such as liquid
assets and net cash outflow in the case of global financial crisis. Numerical results relating
to bank behaviour are obtained and a theoretical-quantitative approach to bank liquidity
provisioning is provided.

7. Modelling and Regulation of Gene Complex Network

The paper entitled “Modules identification in gene positive networks of hepatocellular carcinoma
using pearson agglomerative method and pearson cohesion coupling modularity” is contributed by
J. Hu and Z. Gao. The paper firstly addresses the concepts of gene network community and
gene positive network on the basis of weighted undirected graphs. A module identification
algorithm is developed to calculate the threshold values of gene positive networks. The
fourteen strong modules and thirteen very strong modules are obtained and the relations
between these modules are analysed. The biological significance of these modules is
explained. The research may provide new clues and ideas for liver cancer treatment.

The special issue involves a variety of research issues for complex systems, which
provides a platform for the research community to share their knowledge and experience
in complex systems modelling, dynamic analyses, optimization, and control.
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This paper shows how to obtain the values of the numerator and denominator Kharitonov
polynomials of an interval plant from its value set at a given frequency. Moreover, it is proven
that given a value set, all the assigned polynomials of the vertices can be determined if and only if
there is a complete edge or a complete arc lying on a quadrant. This algorithm is nonconservative
in the sense that if the value-set boundary of an interval plant is exactly known, and particularly
its vertices, then the Kharitonov rectangles are exactly those used to obtain these value sets.

1. Introduction

In reference to the identification problem, these have been widely motivated and analysed
over recent years [1]. Van Overschee and De Moor in [2] explains a subspace identification
algorithm. In [3] the authors present a robust identification procedure for a priori classes of
models in H∞; the authors consider casual, linear time invariant, stable, both continuous or
discrete time models, and only SISO systems.

Interval plants have been widely motivated and analysed over recent years. For
further engineering motivation, among the numerous papers and books, [4–9] must be
pointed out and the references thereof.

The identification problem using the interval plant framework, that is, to compute
an interval plant from the frequency response, has not been completely solved. Interval plant
identification was investigated by Bhattacharyya et al. [5], who developed a method in which
identification is carried out for interval plants so that the numerator and denominator have
the same degree, starting from the variation of the coefficient values of a nominal transfer
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function at certain intervals. So, the identification of a nominal transfer function is carried
out first, and then the intervals of variation of the coefficients are determined.

A different approach was developed by Hernández et al. [10] studying the problem
from the extreme point results point of view. This was a first step for the identification of
an interval plant, showing three main properties to characterize the value set lying on a
quadrant. Then an algorithm for the identification of interval plants from the vertices of the
value sets is obtained. However, this algorithm solves the identification problem when the
value set contains at least five vertices in a quadrant.

This paper improves the results obtained in [10] and shows how to obtain the values
of the numerator and denominator Kharitonov polynomials when the value sets have less
than five vertices in the same quadrant. Identification with such an interval plant allows
engineers predict the worst case performance and stability margins using the results on
interval systems, particularly extreme point results.

2. Problem Statement

Let us consider a linear interval plant of real coefficients, of the form

P(s, a, b) =
Np(s, a)
DP (s, b)

, (2.1)

where Np(s, a) and DP (s, b) are interval polynomials given as

Np(s, a) = amsm + am−1s
m−1 + · · · + a0, a ∈ A =

{
a : a−i ≤ ai ≤ a+i , i = 0, . . . , m

}
,

DP (s, b) = bnsn + bn−1s
n−1 + · · · + b0, b ∈ B =

{
b : b−i ≤ bi ≤ b+i , i = 0, . . . , n

}
,

(2.2)

with m ≥ 1, n ≥ 1, 0 /∈ Dp(s, b), and where vectors a = [a0, a1, . . . , am], am /= 0, and b =
[b0, b1, . . . , bn], bn /= 0 are the uncertainty parameters that lie in the hyperrectangles A and B,
respectively.

Numerator and denominator polynomial families are characterized by their respective
Kharitonov polynomials, and they can be expressed in terms of their even and odd parts, at
s = jω, as follows:

Family Np(s) :

kn1 = pemin
(
jω

)
+ jpomin

(
jω

)
, kn2 = pemax

(
jω

)
+ jpomin

(
jω

)
,

kn3 = pemax
(
jω

)
+ jpomax

(
jω

)
, kn4 = pemin

(
jω

)
+ jpomax

(
jω

)
,

(2.3)

where

pemin
(
jω

)
=a−0 −a+2ω2+a−4ω

4−a+6ω6+· · · , pemax
(
jω

)
=a+0 − a−2ω2+a+4ω

4−a−6ω6+· · · ,

pomin
(
jω

)
=a−1ω−a+3ω3+a−5ω

5−a+7ω7+· · · , pomax
(
jω

)
=a+1ω−a−3ω3+a+5ω

5−a−7ω7 + · · · .
(2.4)
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Family Dp(s):

kd1 = qemin
(
jω

)
+ jqomin

(
jω

)
, kd2 = qemax

(
jω

)
+ jqomin

(
jω

)
,

kd3 = qemax
(
jω

)
+ jqomax

(
jω

)
, kd4 = qemin

(
jω

)
+ jqomax

(
jω

)
,

(2.5)

where

qemin
(
jω

)
=b−0 −b+2ω2+b−4ω

4−b+6ω6+· · · , qemax
(
jω

)
=b+0 −b−2ω2+b+4ω

4−b−6ω6+· · · ,

qomin
(
jω

)
=b−1ω−b+3ω3+b−5ω

5−b+7ω7+· · · , qomax
(
jω

)
=b+1ω−b−3ω3+b+5ω

5−b−7ω7 + · · · .
(2.6)

As is well known, the values G(jω) of the complex plane obtained for the transfer
function G(s) at a given frequency are denominated as a value set. The identification of the
system consists in determining the transfer function coefficients from the value set.

As can be observed in [10], when the values {kn1(jω), kn2(jω), kn3(jω), kn4(jω)} and
{kd1(jω), kd2(jω), kd3(jω), kd4(jω)} are known, then the system of equations given in [10,
equation 14] can be solved and therefore the interval plant is identified (see [10] for details).

As is shown [10] the vertices of the value-set boundary of an interval plant can be
assigned as

vi =
nj

dk
, (2.7)

where nj, j = 1, 2, 3, 4 and dk, k = 1, 2, 3, 4 are the assigned polynomials numerator and
denominator, respectively. When they are in the same quadrant they are a Sorted Set of Vertices
(SSV).

As is well known, the Kharitonov polynomials values can be obtained from

kn1
(
jω

)
= min[Re(n1, n3)] +j min[Im(n1, n3)],

kn2
(
jω

)
= max[Re(n1, n3)] + j min[Im(n1, n3)],

kn3
(
jω

)
= max[Re(n1, n3)] + j max[Im(n1, n3)],

kn4
(
jω

)
= min[Re(n1, n3)] + j max[Im(n1, n3)],

kd1
(
jω

)
= min[Re(d1, d3)] + j min[Im(d1, d3)],

kd2
(
jω

)
= max[Re(d1, d3)] + j min[Im(d1, d3)],

kd3
(
jω

)
= max[Re(d1, d3)] + j max[Im(d1, d3)],

kd4
(
jω

)
= min[Re(d1, d3)] + j max[Im(d1, d3)].

(2.8)

It must be pointed out that the results presented in [10] must be considered as the background
necessary for this work. Thus, the geometry of the value set is described in [10] and
the concepts necessary for its description are defined, (such as the successor, predecessor
element, etc.) and the fundamental properties on which this work is based are proven.
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Figure 2: Segment and no complete arcs.

This paper is organized as follows. Section 3 shows how to determine the assigned
polynomial with the only condition that there is a complete segment in a quadrant. Similarly
Section 4 shows it when there is an arc in a quadrant. Section 5 illustrates the algorithm and
examples. Finally, the conclusions are shown in Section 6.

3. Assigned Polynomial Determination When There Is a Complete
Segment in a Quadrant

In order to determine the polynomials numerator and denominator associated to a vertex of
the value set boundary with the minimum number of elements, the situation of a segment in
a quadrant will be considered. So, let S1 be a segment of the value-set boundary with vertices
v1 = n1/d1 and v2 = n2/d1. Continuity segment-arc in a quadrant (see [10, Theorem 2])
implies that there will be a successor arc with vertices v2 = n2/d1, v2 succ = n2/d2λ counter-
clockwise and a predecessor arc with vertices v1 pred = n1/d4λ counter-clockwise. When these
arcs are completed the denominators are vertices of the Kharitonov rectangle. Figures 1 and
2 show this situation.
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Figure 3: vx vertex of two elements, arc-segment.

As was shown, the values of n1, n2, and d1 can be calculated from the complete
segment based on a normalization (see [10, Theorem 4]). The following normalization
simplifies the nomenclature.

Lemma 3.1 (segment normalization). Let S1 be a complete segment of the value-set boundary with
vertices v1 = n1/d1 and v2 = n2/d1 and the normalization d1 = cos(ϕ(d1)) + j sin(ϕ(d1)), where
ϕ(d1) = 360◦ − arg(v2 − v1) arg(v2 − v1) being the argument of the segment v2 − v1. Then n1 =
v1d1, n2 = v2d1, d2λ = n2/v2 succ , and d4λ = n1/v1 pred , where v2 succ (v1 pred ) is any point of the
next (previous) arc of the segment S1.

Proof. It is trivial. This normalization is one of the infinite possible solutions [10] for a value
set. This normalization implies fitting d1 with modulus |d1| = 1 and angle so that the segment
of the Kharitonov polynomial numerator with vertices n1 and n2 will be parallel to the real
axis counter-clockwise. Thus, from the information with a complete segment in a quadrant
the values of d1, n1, n2, d2λ, and d4λ can be calculated.

This paper deals with the general case where n2R /= 0, n2I /= 0, n1R /= 0, and n1I /= 0.
Given a vertex vx = nx/dx in a quadrant, the target is to determine the polynomials nx

and dx. The vertex vx belongs to a part of a segment and a part of an arc, due to the continuity
segment-arc in a quadrant. So, vx will be the vertex of two elements, arc-segment (Figure 3)
or segment-arc (Figure 4).

The following Lemma shows the necessary conditions on the denominator dx to be a
solution of vx = nx/dx.

Lemma 3.2 (denominator condition). Let S1 be a complete segment in a quadrant and let dx be the
denominator of a vertex vx = nx/dx in a quadrant. Then it is a necessary condition that dx satisfies
one of the following conditions:

(1) (d1R < d2λR and d1I < d4λI) and {(dxR = d1R and dxI = d1I) [dx = d1] or (dxR =
d1R and dxI ≥ d1I) [dx = d4] or (dxI = d1I and dxR ≥ d1R) [dx = d2] or (dxR >
d1R and dxI > d1I) [dx = d3]},
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Figure 4: vx vertex of two elements, segment-arc.

(2) (d1R > d4λR and d1I < d2λI) and {(dxR = d1R and dxI = d1I) [dx = d1] or (dxR =
d1R and dxI ≥ d1I) [dx = d2] or (dxI = d1I and dxR ≤ d1R) [dx = d4] or (dxR <
d1R and dxI > d1I) [dx = d3]},

(3) (d1R > d2λR and d1I > d4λI) and {(dxR = d1R and dxI = d1I) [dx = d1] or (dxR =
d1R and dxI ≤ d1I) [dx = d4] or (dxI = d1I and dxR ≤ d1R) [dx = d2] or (dxR <
d1R and dxI < d1I) [dx = d3]},

(4) (d1R < d4λR and d1I > d2λI) and {(dxR = d1R and dxI = d1I) [dx = d1] or (dxR =
d1R and dxI ≤ d1I) [dx = d2] or (dxI = d1I and dxR ≥ d1R) [dx = d4] or (dxR >
d1R and dxI < d1I) [dx = d3]},

where diR is the real part of di and diI is the imaginary part of di, and the corresponding assigned
denominator is shown between brackets.

Proof. The proof is obtained directly from the information of a complete segment in a
quadrant and the properties of the Kharitonov rectangle. So, from the complete segment and
the normalization (Lemma 3.1), the values of d1, d2λ, and d4λ are known. Then, d1 can be
established as kd1, kd2, kd3, or kd4.

(1) If (d1R < d2λR and d1I < d4λI) then d1 is kd1. Given a value dx, it will be a vertex
of the Kharitonov rectangle denominator only if dxR = d1R and dxI = d1I (dx is
d1 = kd1) or dxR = d1R and dxI > d1I (dx is d4 = kd4) or dxI = d1I and dxR > d1R

(dx is d2 = kd2) or dxR > d1R and dxI > d1I (dx is d3 = kd3). (Figures 5(a), 5(b),
5(c), and 5(d)).

Note that if any of these conditions is not satisfied, then dx cannot be a solution.
For example, if dxR = d1R and dxI < d1I , dx does not belong to the rectangle with
vertex d1, d2λ, and d4λ are elements of the successor and predecessor edges. Figure 6
shows these considerations.

(2) Similarly, if (d1R > d4λR and d1I < d2λI) then d1 is kd2. Given a value dx, it will be
a vertex of the Kharitonov rectangle denominator only if dxR = d1R and dxI = d1I

(dx is d1 = kd2) or dxR = d1R and dxI > d1I (dx is d2 = kd3) or dxI = d1I and dxR <
d1R (dx is d4 = kd1) or dxR < d1R and dxI > d1I (dx is d3 = kd4).

(3) If d1R > d2λR and d1I > d4λI then d1 is kd3. Given a value dx, it will be a vertex
of the Kharitonov rectangle denominator only if dxR = d1R and dxI = d1I (dx is
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Figure 5: Cases where dx is a vertex of the kharitonov rectangle denominator.

d1 = kd3) or dxR = d1R and dxI < d1I (dx is d4 = kd2) or dxI = d1I and dxR < d1R

(dx is d2 = kd4) or dxR < d1R and dxI < d1I (dx is d3 = kd1).

(4) Finally, if d1R < d4λR and d1I > d2λI then d1 is kd4. Given a value dx, it will be a
vertex of the Kharitonov rectangle denominator only if dxR = d1R and dxI = d1I

(dx is d1 = kd4) or dxR = d1R and dxI < d1I (dx is d2 = kd1) or dxI = d1I and dxR >
d1R (dx is d4 = kd3) or dxR > d1R and dxI < d1I (dx is d3 = kd2).

On the other hand, the behaviour of a segment on the complex plane when divided by a
complex number is well known. The following property shows this behaviour.

Property 1. Let Sx = S/dx be a segment on the complex plane with vertices vx1 and vx2

counter-clockwise where S is a segment with vertices na and nb counter-clockwise. Let dx
be a complex number with argument arg(dx). Let ϕ(Sx) be ϕ(Sx) ≡ arg(vx2 − vx1). Then the
relation between the argument of dx and ϕ(Sx), is given by

(1) arg(dx) = −ϕ(Sx) if and only if arg(nb − na) = 0◦,

(2) arg(dx) = 90◦ − ϕ(Sx) if and only if arg(nb − na) = 90◦,

(3) arg(dx) = 180◦ − ϕ(Sx) if and only if arg(nb − na) = 180◦,

(4) arg(dx) = 270◦ − ϕ(Sx) if and only if arg(nb − na) = 270◦.

The following Theorem shows how to characterize and calculate the polynomials nx and dx
associated with a vertex vx = nx/dx from the information of the boundary with a segment Sx
in a quadrant, vx = nx/dx belonging to a segment-arc.
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Figure 7: Vertices for the conditions of the Theorem 3.3.

Theorem 3.3 (predecessor). Let S1 be a complete segment of the value-set boundary with vertices
v1 = n1/d1 and v2 = n2/d1, the successor arc with vertices v2 = n2/d1, v2 succ = n2/d2λ counter-
clockwise, and the predecessor arc with vertices v1 pred = n1/d4λ, v1 = n1/d1 counter-clockwise. Let
Sx be a segment with vertices vx pred = nx pred /dx and vx = nx/dx counter-clockwise, where vx
belongs to the intersection of Sx and an arc of the boundary (Figure 7). Then

(1) arg(vx/v2) = arg(d1) + ϕ(Sx) (condition C1) and the denominator dx of vx defined by
n2/vx satisfies the denominator condition (Lemma 3.2), if and only if nx = n2 and cannot
be any other assigned polynomial,

(2) when nx /=n2, arg(vx/v1) = arg(d1) + ϕ(Sx) + 90◦ (condition C2) and the denominator
dx of vx defined by n1/vx satisfies the denominator condition (Lemma 3.2) if and only if
nx = n1 and cannot be any other assigned polynomial,

(3) when nx /=n1 and nx /=n2, tan(arg(vx) − ϕ(Sx) + 90◦)n2R > n2I (condition C3), and the
denominator dx of vx defined by n2R[1 + j tan(arg(vx) − ϕ(Sx) + 90◦)]/vx satisfies the
denominator condition (Lemma 3.2) if and only if nx = n3 = n2R[1 + j tan(arg(vx) −
ϕ(Sx) + 90◦)] and cannot be any other assigned polynomial,

(4) when nx /=n1, nx /=n2, and nx /=n3, tan(arg(vx)−ϕ(Sx)+180◦)n1R > n1I (condition C4),
and the denominator dx of vx defined by n1R[1+j tan(arg(vx)−ϕ(Sx)+180◦)]/vx satisfies
the denominator condition (Lemma 3.2) if and only if nx = n4 = n1R[1 + j tan(arg(vx) −
ϕ(Sx) + 180◦)].
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Proof. From the complete segment S1 using the normalization (Lemma 3.1) the values of
d1, n1 = v1d1, n2 = v2d1, d2λ = n2/v2succ, and d4λ = n1/v1pred are known. Obviously the
value vx is known.

(1) ⇐ If nx = n2 the value of dx = n2/vx can be calculated and the denominator
condition (Lemma 3.2) is satisfied. On the other hand, the quotient of the vertices vx = n2/dx
and v2 = n2/d1 is vx/v2 = d1/dx, and arg(vx/v2) = arg(d1) − arg(dx). Sx = S2/dx, where
S2 is part of the segment with vertices n1 and n2, then arg(n2 − n1) = 0◦ (normalization).
Thus arg(dx) = −ϕ(Sx) (Property 1) and arg(vx/v2) = arg(d1) + ϕ(Sx); Theorem 3.3(C1) is
satisfied.

⇒ In order to demonstrate the “only if” part, it must be proven that if Theorem 3.3(C1)
and the denominator condition are satisfied then the solution dx = n2/vx, nx = n2 is unique.
It must be noted that Theorem 3.3(C1) can be satisfied when (a) nx = n3, (b) nx = n4 or (c)
nx = n1 and in all the cases, the value of dx determined, verify the denominator condition.

Let dx be the denominator of vx determined by n2/vx, verifying Theorem 3.3(C1), and
denominator condition, and let Sx = S2/dx where S2 is part of the segment with vertices n1

and n2, arg(n2 − n1) = 0◦.
(a) Let d∗

x be the denominator of vx determined by n3/vx. Then Sx = S3/d
∗
x where S3

is part of the segment with vertices n2 and n3, arg(n3 − n2) = 90◦ (normalization) and using
Property 1 arg(d∗

x) = 90◦ − ϕ(Sx). As vx is the same vertex, then arg(n3/d
∗
x) = arg(n2/dx),

and arg(n3) = arg(n2) + 90◦. nx = n3 verify Theorem 3.3(C1), because

arg
(
vx
v2

)
= arg(n2) + 90◦ − arg(n2) + arg(d1) − 90◦ + ϕ(Sx) = arg(d1) + ϕ(Sx). (3.1)

Let α = arg(n2) with tan(α) = n2I/n2R. Then arg(n3) = α + 90◦ and tan(α + 90◦) = n3I/n3R =
n3I/n2R (by normalization n3R = n2R). Thus n3 = n2R + jn3I = n2R + j tan(α + 90◦)n2R =
n2R−j(n2

2R/n2I). Moreover arg(d∗
x) = 90◦+arg(dx), and if dx = dxR+jdxI then d∗

x = ρej(π/2)dx =
−ρdxI + jρdxR. As vx = n2/dx and vx = n3/d

∗
x, then n2d

∗
x = n3dx and they have equal real and

imaginary parts.
Re[n2d

∗
x] = Re[n3dx] then

−ρdxIn2R − ρdxRn2I = n2RdxR +
n2

2R

n2I
dxI ,

−ρdxIn2Rn2I − ρdxRn2
2I = n2Rn2IdxR + n2

2RdxI ,

−(ρn2I + n2R
)
dxRn2I =

(
n2R + ρn2I

)
dxIn2R.

(3.2)

Thus dxI/dxR = −n2I/n2R

Im[n2d
∗
x] = Im[n3dx] then

ρdxRn2R − ρdxIn2I = dxIn2R − dxR
n2

2R

n2I
,

ρdxRn2Rn2I − ρdxIn2
2I = dxIn2Rn2I − dxRn2

2R,(
n2Iρ + n2R

)
n2RdxR = dxIn2I

(
n2R + ρn2I

)
.

(3.3)

Thus dxI/dxR = n2R/n2I .
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Taking into account both conditions, n2R/n2I = −n2I/n2R ⇔ n2
2R < 0. This relation is

impossible. Therefore, if dx is a solution then d∗
x is not, and nx = n3 is not a solution.

(b) Let d∗
x be the denominator of vx determined by n4/vx. Then Sx = S4/d

∗
x where S4

is part of the segment with vertices n3 and n4, arg(n4 − n3) = 180◦ (normalization) and using
Property 1 arg(d∗

x) = 180◦ − ϕ(Sx). As vx is the same vertex, then arg(n4/d
∗
x) = arg(n2/dx)

and arg(n4) = arg(n2) + 180◦. nx = n4 verify Theorem 3.3(C1), because

arg
(
vx
v2

)
= arg(n2) + 180◦ − arg(n2) + arg(d1) − 180◦ + ϕ(Sx) = arg(d1) + ϕ(Sx). (3.4)

In this case the demonstration is trivial noting that arg(d∗
x) = 180◦ + arg(dx). This is not

possible because the Kharitonov polynomial denominator cannot contain the zero.
(c) Let d∗

x be the denominator of vx determined by n1/vx. Then Sx = S1/d
∗
x where S1

is part of the segment with vertices n4 and n1, arg(n1 − n4) = 270◦ (normalization) and using
Property 1 arg(d∗

x) = 270◦ − ϕ(Sx). As vx is the same vertex, then arg(n1/d
∗
x) = arg(n2/dx),

and arg(n1) = arg(n2) + 270◦. nx = n1 verify Theorem 3.3(C1), because

arg
(
vx
v2

)
= arg(n2) + 270◦ − arg(n2) + arg(d1) − 270◦ + ϕ(Sx) = arg(d1) + ϕ(Sx). (3.5)

Let α = arg(n2) with tan(α) = n2I/n2R. Then arg(n1) = α + 270◦ and tan(α + 270◦) = n1I/n1R =
n2I/n1R (by normalization n3R = n2R). Thus n1 = n1R + jn2I = (n2I/ tan(α + 270◦)) + jn2I =
−(n2

2I/n2R) + jn2I . Moreover arg(d∗
x) = 270◦ + arg(dx), and if dx = dxR + jdxI then d∗

x =
ρej3(π/2)dx = ρdxI − jρdxR. As vx = n2/dx and vx = n1/d

∗
x, then n2d

∗
x = n1dx and they have

equals real and imaginary parts.
Re[n2d

∗
x] = Re[n1dx] then

+ρdxIn2R + ρdxRn2I = − n
2
2I

n2R
dxR − n2IdxI ,

(
n2I + n2Rρ

)
dxIn2R = −(n2Rρ + n2I

)
dxRn2I .

(3.6)

Thus dxI/dxR = −n2I/n2R.
Im[n2d

∗
x] = Im[n1dx] then

−ρdxRn2R + ρdxIn2I = −dxI
n2

2I

n2R
+ dxRn2I ,

−ρdxRn2Rn2R + ρdxIn2In2R = −dxIn2
2I + dxRn2In2R,

(
n2I + ρn2R

)
dxIn2I = dxRn2R

(
ρn2R + n2I

)
.

(3.7)

Thus dxI/dxR = n2R/n2I .
Taking into account both conditions, n2R/n2I = −n2I/n2R. This relation is impossible.

Therefore, if dx is a solution, d∗
x is not and nx = n1 cannot be a solution.

(2) ⇐ If nx = n1 the value of dx = n1/vx can be calculated and the denominator condi-
tion (Lemma 3.2) is satisfied. On the other hand, the quotient of the vertices vx = n1/dx and
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v2 = n1/d1 is vx/v1 = d1/dx, and arg(vx/v1) = arg(d1) − arg(dx). Sx = S1/dx where S1 is
part of the segment with vertices n4 and n1, then arg(n1 − n4) = 270◦ (normalization). Thus
arg(dx) = 270◦ − ϕ(Sx) (Property 1) and arg(vx/v1) = arg(d1) + ϕ(Sx) + 90◦; Theorem 3.3(C2)
is satisfied.

⇒ In order to demonstrate the “only if” part, it must be proven that if Theorem 3.3(C2)
and the denominator condition are satisfied then the solution dx = n1/vx, nx = n1 is unique.
It must be noted that Theorem 3.3(C2) can be satisfied when (a) nx = n3 or (b) nx = n4 and in
all the cases, the value of dx determined, verify the denominator condition.

Let dx be the denominator of vx determined by n1/vx, verifying Theorem 3.3(C2), and
denominator condition, and let Sx = S1/dx where S1 is part of the segment with vertices n4

and n1, arg(n2 − n1) = 270◦.
(a) Let d∗

x be the denominator of vx determined by n3/vx. Then Sx = S3/d
∗
x where S3

is part of the segment with vertices n2 and n3, arg(n3 − n2) = 90◦ (normalization) and using
Property 1 arg(d∗

x) = 90◦ − ϕ(Sx). As vx is the same vertex, then arg(n3/d
∗
x) = arg(n1/dx)

and arg(n3) = arg(n1) + 180◦. nx = n3 verify Theorem 3.3(C2), because

arg
(
vx
v1

)
= arg(n1) + 180◦ − arg(n1) + arg(d1) − 90◦ + ϕ(Sx) = arg(d1) + ϕ(Sx) + 90◦. (3.8)

In this case the demonstration is trivial noting that arg(d∗
x) = −180◦ + arg(dx). This is

not possible because the Kharitonov polynomial denominator cannot contain the zero.
(b) Let d∗

x be the denominator determined by n4/vx. Then Sx = S4/d
∗
x where S4 is

part of the segment with vertices n3 and n4, arg(n4 − n3) = 180◦ (normalization) and using
Property 1 arg(d∗

x) = 180◦ − ϕ(Sx). As vx is the same vertex, then arg(n4/d
∗
x) = arg(n1/dx),

and arg(n4) = arg(n1) + 270◦. nx = n4 verify Theorem 3.3(C2), because

arg
(
vx
v1

)
= arg(n1) + 270◦ − arg(n1) + arg(d1) − 180◦ + ϕ(Sx) = arg(d1) + ϕ(Sx) + 90◦. (3.9)

Let α = arg(n1) with tan(α) = n1I/n1R. Then arg(n1) = α + 270◦ and tan(α + 270◦) =
n4I/n4R = −n1R/n1I (by normalization n1R = n4R). Thus n4 = n4R + jn4I = n1R + jn2R tan(α +
270◦) = n1R − j(n2

1R/n1I). Moreover arg(d∗
x) = −90◦ + arg(dx), and if dx = dxR + jdxI then

d∗
x = ρej3(π/2)dx = ρdxI − jρdxR. How vx = n1/dx and vx = n4/d

∗
x, then n1d

∗
x = n4dx and they

have equals real and imaginary parts.
Re[n1d

∗
x] = Re[n4dx]

ρdxIn1R + ρdxRn1I = +
n2

1R

n1I
dxI + n1RdxR,

ρdxIn1Rn1I + ρdxRn1In1I = +n2
1RdxI + n1RdxRn1I ,

(
ρn1I − n1R

)
dxIn1R =

(
n1R − ρn1I

)
dxRn1I .

(3.10)

Thus dxI/dxR = −n1I/n1R.
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Im[n1d
∗
x] = Im[n4dx]

−ρdxRn1R + ρdxIn1I = −dxR
n2

1R

n1I
+ dxIn1R,

−ρdxRn1Rn1I + ρdxIn1In1I = −dxRn2
1R + dxIn1Rn1I ,

(−ρn1I + n1R
)
dxRn1R =

(
n1R − ρn1I

)
dxIn1I .

(3.11)

and finally dxI/dxR = n1R/n1I .
Taking into account both conditions, −n1I/n1R = n1R/n1I . This relation is impossible.

Therefore, if dx is a solution, d∗
x is not and nx = n4 is not a solution.

(3) ⇐ If nx = n3 then dx = n3/vx cannot be directly calculated because n3 is not
known. First, Theorem 3.3(C3) is developed. If nx = n3 then Sx = S3/dx where S3 is part
of the segment with vertices n2 and n3 and arg(n3 − n2) = 90◦. Thus arg(dx) = 90◦ − ϕ(Sx)
(Property 1) and arg(n3) = arg(vx) + arg(dx) = arg(vx) + 90◦ − ϕ(Sx).

As n2R = n3R, then n3 = n3R + jn3I = n2R + jn2R tan(arg(vx) + 90◦ − ϕ(Sx)). On the
other hand, n3I is greater than n2I because it is counter-clockwise. Therefore tan(arg(vx) −
ϕ(Sx)+90◦)n2R > n2I (Theorem 3.3(C3)) is satisfied and dx can be calculated by the expression
dx = n3/vx = n2R[1 + j tan(arg(vx) − ϕ(Sx) + 90◦)]/vx.

⇒ In order to demonstrate the “only if” part, it must be proven that if Theorem 3.3(C3)
and the denominator condition are satisfied then the solution dx = n3/vx, nx = n3 is unique.
If nx /=n2 and nx /=n1, it must be noted that Theorem 3.3(C3) can be satisfied when nx = n4.

Let dx be the denominator of vx determined by n3/vx verifying Theorem 3.3(C3) and
denominator condition. Sx = S3/d

∗
x where S3 is part of the segment with vertices n2 and n3,

arg(n3 − n2) = 90◦.
Let d∗

x be the denominator of vx determined by n4/vx. Then Sx = S4/d
∗
x where S4 is

part of the segment with vertices n3 and n4, arg(n4 − n3) = 180◦ (normalization) and using
Property 1 arg(d∗

x) = 180◦ − ϕ(Sx) = arg(dx) + 90◦. Thus d∗
x = ρej(π/2)dx = −ρdxI + jρdxR.

As vx is the same vertex, arg(n4/d
∗
x) = arg(n3/dx), and then arg(n4) = arg(n3) + 90◦.

Let α = arg(n3), then α + 90◦ = arg(n4) = arg(vx) + arg(d∗
x) = arg(vx =) + 180◦ − ϕ(Sx),

and because arg(n3) verifies n3 = n2R tan(α) > n2I (by normalization), Theorem 3.3(C3) is
satisfied.

n3 = n2R+j tan(α)n2R = n2R+jn2R(n3R/n3I). If nx = n4 then n4 = n1R+j tan(α+90◦)n1R =
n1R − jn1R(n3R/n3I). As vx = n3/dx and vx = n4/d

∗
x, then n2d

∗
x = n3dx and they have equal

real and imaginary parts.
Re[n3d

∗
x] = Re[n4dx]

−n2RρdxI − n3IρdxR = n1RdxR + dxIn1R
n2R

n3I
,

−n2Rn3IρdxI − n3In3IρdxR = n1Rn3IdxR + dxIn1Rn3R,

−(n3Iρ + n1R
)
n2RdxI =

(
n1R + n3Iρ

)
n3IdxR,

(3.12)

and finally dxI/dxR = −n3I/n3R.
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Im[n3d
∗
x] = Im[n4dx]

−n3IρdxI + n2RρdxR = dxIn1R − dxRn1R
n2R

n3I
,

−n3In3IρdxI + n3In2RρdxR = dxIn1Rn3I − dxRn1Rn2R,

−(n3Iρ + n1R
)
dxIn3I = −(n3Iρ + n1R

)
dxRn2R

(3.13)

and finally dxI/dxR = n3R/n3I .
Taking into account both conditions, −n3I/n3R = n3R/n3I . This relation is impossible.

Therefore, if dx is a solution, d∗
x is not, and nx = n3 is not a solution.

(4) ⇐ If nx = n4 then dx = n4/vx cannot be directly calculated because n4 is not known.
First, Theorem 3.3(C4) is developed.

If nx = n4 then Sx = S4/dx where S4 is part of the segment with vertices n3 and n4

verifying that arg(n4 − n3) = 180◦. Thus arg(dx) = 180◦ − ϕ(Sx) (Property 1) and arg(n4) =
arg(vx) + arg(dx) = arg(vx) + 180◦ − ϕ(Sx). Moreover, n1R = n4R. Then n4 = n4R + jn4I =
n1R + jn1R tan(arg(vx) + 180◦ − ϕ(Sx)). On the other hand, n4I is greater than n1I because it is
counter-clockwise.

Therefore the condition tan(arg(vx) − ϕ(Sx) + 180◦)n1R > n1I Theorem 3.3(C4) is
satisfied and dx can be calculated using the expression dx = n4/vx = n1R[1 + j tan(arg(vx) −
ϕ(Sx) + 180◦)]/vx.

⇒ If nx /=n2, nx /=n1 and nx /=n3 it is nx = n4.

Remark 3.4. This theorem is used in the example of Section 5, for the value set III (frequency
w = 1.2) in order to assign the second and fifth vertices.

The following Theorem is analogous to Theorem 3.3 when Sx is a segment with
vertices vx = nx/dx and vxsucc = nxsucc/dx counter-clockwise, and belonging to an arc-
segment.

Theorem 3.5 (successor). Let S1 be a complete segment of the value-set boundary with vertices
v1 = n1/d1 and v2 = n2/d1, the successor arc to S1, with vertices v2 = n2/d1, v2 succ = n2/d2λ

counter-clockwise, and the predecessor arc to S1 with vertices v1 pred = n1/d4λ, v1 = n1/d1 counter-
clockwise. Let Sx be a boundary segment with vertices vx = nx/dx and vx succ = nx succ /dx counter-
clockwise, where vx belongs to the intersection of an arc of the boundary and Sx. Then

(1) arg(vx/v2) = arg(d1)+ϕ(Sx)−90◦ (condition C1) and the denominator dx of vx defined by
n2/vx satisfies the denominator condition (Lemma 3.2), if and only if nx = n2 and cannot
be any other assigned polynomial,

(2) when nx /=n2, arg(vx/v1) = arg(d1)+ϕ(Sx) (condition C2) and the denominator dx of vx
of defined by n1/vx satisfies the denominator condition (Lemma 3.2) if and only if nx = n1

and cannot be any other assigned polynomial,

(3) when nx /=n1 and nx /=n2, tan(arg(vx) − ϕ(Sx) + 180◦)n2R > n2I (condition C3), and
the denominator dx of vx defined by n2R[1 + j tan(arg(vx) − ϕ(Sx) + 180◦)]/vx satisfies
the denominator condition (Lemma 3.2) if and only if nx = n3 = n2R[1 + j tan(arg(vx) −
ϕ(Sx) + 180◦)] and cannot be any other assigned polynomial,
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Figure 8: Arc and two complete segments.

(4) when nx /=n1, nx /=n2, and nx /=n3, tan(arg(vx)−ϕ(Sx)+270◦)n1R > n1I (condition C4),
and the denominator dx of vx defined by n1R[1+j tan(arg(vx)−ϕ(Sx)+270◦]/vx satisfies
the denominator condition (Lemma 3.2) if and only if nx = n4 = n1R[1 + j tan(arg(vx) −
ϕ(Sx) + 270◦)].

Proof. Analogous to Theorem 3.3.

Remark 3.6. This theorem is used in the example of Section 5, for the value set III (frequency
w = 1.2) in order to assign the third, fifth, and sixth vertices.

4. Assigned Polynomial Determination When There Is a Complete
Arc in a Quadrant

In order to determine the polynomials numerator and denominator associated to a vertex of
the value set boundary with the minimum number of elements, the situation of an arc in a
quadrant will be considered. So, let A1 be an arc of the value-set boundary with vertices v1 =
n1/d1 and v2 = n1/d2. A continuity arc-segment in a quadrant (see [10, Theorem 2]) implies
that there will be a successor segment with vertices v2 = n1/d2, v2succ = n2λ/d2 counter-
clockwise and a predecessor segment with vertices v1 = n1/d1 and v1pred = n4λ/d1 counter-
clockwise.

When these segments are completed the denominators are vertices of the Kharitonov
rectangle. Figure 8 shows this situation.

As was shown, the values of d1, d2, and n1 can be calculated from the complete arc
based on a normalization (see [10, Theorem 5]). The following normalization simplifies the
nomenclature.

Lemma 4.1 (arc normalization). Let A1 be a complete arc of the value-set boundary with vertices
v1 = n1/d1 and v2 = n1/d2, the normalization n1 = cos(ϕ(n1)) + j sin(ϕ(n1)), where ϕ(n1) =
360◦ − arg(1/v2 − 1/v1), arg(1/v2 − 1/v1) being the argument of the segment 1/v2 − 1/v1. Then
d1 = n1/v1, d2 = n1/v2, n4λ = d1v1 pred, and n2λ = d2v2 succ, where v2 succ (v1 pred ) is any point of
the next (previous) segment of the arc A1.
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Figure 9: (a) vx vertex of two elements, segment-arc. (b) vx vertex of two elements, arc-segment.

Proof. It is trivial. This normalization is one of the infinite possible solutions for a value set.
This normalization implies fitting n1 with modulus |n1| = 1 and angle so that the segment of
the Kharitonov polynomial denominator with vertices d1 and d2 will be parallel to the real
axis counter-clockwise. Thus, from the information with a complete arc in a quadrant the
values of d1, d2, n1, n2λ, and n4λ can be calculated.

This paper deals with the general case where d2R /= 0, d2I /= 0, d1R /= 0, and d1I /= 0.
Given a vertex vx = nx/dx in a quadrant, the target is to determine the polynomials

nx and dx. The vertex vx belongs to a part of an arc and a part of a segment, due to the
continuity arc-segment in a quadrant. So, vx will be the vertex of two elements, segment-arc
(Figure 9(a)) or arc-segment (Figure 9(b)).

The following Lemma shows the necessary conditions on the denominator dx to be a
solution of vx = nx/dx.
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Lemma 4.2 (numerator condition). Let A1 be a complete arc in a quadrant and let nx be the
numerator of a vertex vx = nx/dx in a quadrant. Then it is a necessary condition that nx satisfies
one of the following conditions:

(1) (n1R < n2λR and n1I < n4˘I) and {(nxR = n1R and nxI = n1I) [nx = n1] or (nxR =
n1R and nxI ≥ n1I) [nx = n4] or (nxI = n1I and nxR ≥ n1R) [nx = n2] or (nxR >
n1R and nxI > n1I) [nx = n3]},

(2) (n1R > n4λR and n1I < n2˘I) and {(nxR = n1R and nxI = n1I) [nx = n1] or (nxR =
n1R and nxI ≥ n1I) [nx = n2] or (nxI = n1I and nxR ≤ n1R) [nx = n4] or (nxR <
n1R and nxI > n1I) [nx = n3]},

(3) (n1R > n2λR and n1I > n4˘I) and {(nxR = n1R and nxI = n1I) [nx = n1] or (nxR =
n1R and nxI ≤ n1I) [nx = n4] or (nxI = n1I and nxR ≤ n1R) [nx = n2] or (nxR <
n1R and nxI < n1I) [nx = n3]},

(4) (n1R < n4λR and n1I > n2˘I) and {(nxR = n1R and nxI = n1I) [nx = n1] or (nxR =
n1R and nxI ≤ n1I) [nx = n2] or (nxI = n1I and nxR ≥ n1R) [nx = n4] or (nxR >
n1R and nxI < n1I) [nx = n3]},

where niR is the real part of ni and niI is the imaginary part of ni, and the corresponding assigned
numerator is shown between brackets.

Proof. The proof is obtained directly from the information of a complete arc in a quadrant and
the properties of the Kharitonov rectangle. So, from the complete arc and the normalization
(Lemma 3.2), the values of n1, n2λ, and n4λ are known. Then, n1 can be established as kn1, kn2,
kn3, or kd4.

(1) If (n1R < n2λR and n1I < n4˘I) then n1 is kn1. Given a value nx, it will be a vertex
of the Kharitonov rectangle numerator only if nxR = n1R and nxI = n1I (nx is n1 =
kn1) or nxR = n1R and nxI > n1I (nx is n4 = kn4) or nxI = n1I and nxR > n1R

(nx is n2 = kn2) or nxR > n1R and nxI > n1I (nx is n3 = kn3). Note that if any
of these conditions is not satisfied, then nx cannot be a solution. For example, if
nxR = n1R and nxI < n1I, nx does not belong to the rectangle with vertex n1, n2λ,
and n4λ are elements of the successor and predecessor edge.

(2) Similarly, if (n1R > n4λR and n1I < n2˘I) then n1 is kn2. Given a value nx, it will be a
vertex of the Kharitonov rectangle numerator only if nxR = n1R and nxI = n1I (nx
is n1 = kn2) or nxR = n1R and nxI > n1I (nx is n2 = kn3) or nxI = n1I and nxR < n1R

(nx is n4 = kn1) or nxR < n1R and nxI > n1I (nx is n3 = kn4).

(3) If n1R > n2λR and n1I > n4˘I then n1 is kn3. Given a value nx, it will be a vertex of the
Kharitonov rectangle numerator only if nxR = n1R and nxI = n1I (nx is n1 = kn3)
or nxR = n1R and nxI < n1I (nx is n4 = kn2) or nxI = n1I and nxR < n1R (nx is
n2 = kn4) or nxR < n1R and nxI < n1I (nx is n3 = kn1).

(4) Finally, if n1R < n4λR and n1I > n2˘I then n1 is kn4. Given a value nx, it will be a
vertex of the Kharitonov rectangle numerator only if nxR = n1R and nxI = n1I (nx
is n1 = kn4) or nxR = n1R and nxI < n1I (nx is n2 = kn1) or nxI = n1I and nxR > n1R

(nx is n4 = kn3) or nxR > n1R and nxI < n1I (nx is n3 = kn2).

On the other hand, the behaviour of an arc on the complex plane when it is divided by
a complex number is well known. The following property shows this behaviour.
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Property 2. Let Ax = nx/S be an arc on the complex plane with vertices vx1 and vx2 counter-
clockwise where S is a segment with vertices da and db counter-clockwise. Let nx be a
complex number with argument arg(nx). Let ϕ(Ax) be ϕ(Ax) ≡ arg(1/vx2 − 1/vx1). Then
the relation between the argument of nx and ϕ(Ax), is given by

(1) arg(nx) = −ϕ(Ax) if and only if arg(db − da) = 0◦,

(2) arg(nx) = 90◦ − ϕ(Ax) if and only if arg(db − da) = 90◦,

(3) arg(nx) = 180◦ − ϕ(Ax) if and only if arg(db − da) = 180◦,

(4) arg(nx) = 270◦ − ϕ(Ax) if and only if arg(db − da) = 270◦.

The following Theorem shows how to characterize and calculate the polynomials nx
and dx associated with a vertex vx = nx/dx from the information of the boundary with an arc
Ax in a quadrant, belonging to an arc-segment.

Theorem 4.3 (predecessor). Let A1 be an arc of the value-set boundary with vertices v1 = n1/d1

and v2 = n1/d2, the successor segment with vertices v2 = n1/d2, v2 succ = n2λ/d2 counter-clockwise,
and the predecessor segment with vertices v1 pred = n4λ/d1, v1 = n1/d1 counter-clockwise Let Ax be
an arc with vertices vx pred = nx/dx pred and vx = nx/dx counter-clockwise. Then

(1) arg(v2/vx) = arg(n1) + ϕ(Ax) (condition C1) and nx satisfies the numerator condition,
where nx = d2vx, if and only if dx = d2 and cannot be any other assigned polynomial,

(2) when dx /=d2, arg(v1/vx) = arg(n1)+ϕ(Ax)+90◦ (condition C2) and nx = d1vx satisfies
the numerator condition if and only if dx = d1 and cannot be any other assigned polynomial,

(3) when dx /=d1 and dx /=d2, tan(arg(1/vx) − ϕ(Ax) + 90◦)d2R > d2I (condition C3), and
nx = d2R[1 + j tan(arg(1/vx) − ϕ(Ax) + 90◦)]vx satisfies the numerator condition if and
only if dx = d3 = d2R(1 + j tan(arg(1/vx) − ϕ(Ax) + 90◦)) and cannot be any other
assigned polynomial,

(4) when dx /=d1, dx /=d2, and dx /=d3, tan(arg(1/vx) − ϕ(Ax) + 180◦)d1R > d1I (condition
C4), and nx = d1R[1+j tan(arg(1/vx)−ϕ(Ax)+180◦)]vx satisfies the numerator condition
if and only if dx = d4 = d1R(1 + j tan(arg(1/vx) − ϕ(Ax) + 180◦)).

Proof. Analogous to Theorem 3.3.

Remark 4.4. This theorem is used in the example of Section 5, for the value set I (frequency
w = 1.0) in order to assign the fifth and seventh vertices, and for the value set II (frequency
w = 1.1) to assign the third, fifth, and seventh vertices.

The following theorem is analogous to Theorem 4.3 when Ax is an arc with vertices
vx = nx/dx and vxsucc = nx/dxsucc counter-clockwise, and belonging to a segment-arc.

Theorem 4.5 (successor). Let A1 be a complete arc of the value-set boundary with vertices v1 =
n1/d1 and v2 = n1/d2, the successor segment with vertices v2 = n1/d2, v2 succ = n2λ/d2 counter-
clockwise and the predecessor segment with vertices v1 pred = n4λ/d1, v1 = n1/d1 counter-clockwise.
Let Ax be an arc with vertices vx succ = nx/dx succ and vx = nx/dx counter-clockwise

Then

(1) arg(v2/vx) = ϕ(Ax) + arg(n1) − 90◦ (condition C1) and nx satisfies the numerator
condition, where nx = d2vx, if and only if dx = d2 and cannot be any other assigned
polynomial,
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(2) when dx /=d2, arg(v1/vx) = ϕ(Ax) + arg(n1) (condition C2) and nx = d1vx satisfies the
numerator condition if and only if dx = d1 and cannot be any other assigned polynomial,

(3) when dx /=d1 and dx /=d2, tan(arg(1/vx) − ϕ(Ax) + 180◦)d2R > d2I (condition C3), and
nx = d2R[1+ j tan(arg(1/vx)−ϕ(Ax) + 180◦)]vx satisfies the numerator condition if and
only if dx = d3 = d2R(1 + j tan(arg(1/vx) − ϕ(Ax) + 180◦)) and cannot be any other
assigned polynomial,

(4) when dx /=d1, dx /=d2, and dx /=d3, tan(arg(1/vx) − ϕ(Ax) + 270◦)d1R > d1I (condition
C4), and nx = d1R[1+j tan(arg(1/vx)−ϕ(Ax)+270◦)]vx satisfies the numerator condition
if and only if dx = d4 = d1R(1 + j tan(arg(1/vx) − ϕ(Ax) + 270◦)).

Proof. Analogous to Theorem 3.3.

Remark 4.6. This theorem is used in the example of Section 5, for the value set I (frequency
w = 1.0) in order to assign the third, fourth, and sixth vertices, and for the value set II
(frequency w = 1.1) to assign the fourth and sixth vertices.

Finally, the following theorem points out the necessary and sufficient condition.

Theorem 4.7. Given a value set, all the assigned polynomials of the vertices can be determined if
and only if there is a complete edge or a complete arc lying on a quadrant when the normalized edge
satisfies n2R /= 0, n2I /= 0, n1R /= 0, and n1I /= 0 or the normalized arc satisfies d2R /= 0, d2I /= 0, d1R /= 0,
and d1I /= 0.

Proof. It is obvious from Theorems 3.3–4.5.

5. Algorithm and Examples

Algorithm 5.1. Given a value set with a complete segment or a complete arc in a quadrant, to
obtain the Kharitonov polynomials the following.

(1) If there is a complete segment in a quadrant, S1, with vertices v1 = n1/d1 and v2 =
n2/d1, the successor arc with vertices v2 = n2/d1, v2succ = n2/d2λ counter-clockwise
and the predecessor arc with vertices v1pred = n1/d4λ, v1 = n1/d1 counter-clockwise
then for all vertex vx = nx/dx:

(a) if vx = nx/dx is a vertex intersection of a segment and an arc counter-
clockwise, then the assigned polynomials numerator and denominator, nx and
dx, determine applying Theorem 3.3,

(b) if vx = nx/dx is a vertex intersection of an arc and a segment counter-
clockwise, then the assigned polynomials numerator and denominator, nx and
dx, determine applying Theorem 3.5.

(2) If there is a complete arc in a quadrant, A1, with vertices v1 = n1/d1 and v2 = n1/d2,
the successor segment with vertices v2 = n1/d2, v2succ = n2λ/d2 counter-clockwise
and the predecessor segment with vertices v1pred = n4λ/d1, v1 = n1/d1 counter-
clockwise, then given a vertex vx = nx/dx:

(a) if vx = nx/dx is a vertex intersection of an arc and a segment counter-
clockwise, then the assigned polynomials numerator and denominator, nx and
dx, determine applying Theorem 4.3,
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Table 1: Value set boundary information.

ω = 1.0 ω = 1.1 ω = 1.2
(a) (b) (c) (a) (b) (c) (a) (b) (c)
v1 1.5676 + 2.5946j 0 v1 −2.8422 + 2.9830j 0 v1 6.1015 + 5.2779j 1
v2 2.0000 + 8.0000j 1 v2 −0.9808 + 2.4599j 1 v2 6.5135 + 6.8573j 0
v3 0.8000 + 10.4000j 0 0 + 3.0420j 0 0 + 8.5560j 0

0 + 10.0000j 1 v3 0.4996 + 3.0386j 1 v3 −3.0339 + 6.1294j 1
v4 −4.8000 + 7.6000j 0 v4 2.3317 + 3.0261j 0 v4 −2.2110 + 5.1007j 0
v5 −3.5862 + 1.0345j 1 v5 5.1859 + 6.6181j 1 v5 −0.4710 + 3.4462j 1
v6 2.5517 + 0.6207j 0 v6 5.2164 + 8.6623j 0 0 + 3.6463j 0
v7 −1.3443 + 1.2131j 1 0 + 8.7404j 0 v6 1.4690 + 3.4428j 1

0 + 2.3336j 1 v7 −3.8291 + 3.7385j 1 v7 2.9559 + 3.2369j 0
(a): Vertex (vi) or cut point (blank) with an axis. (b): Value of the vertex or cut point.
(c): Edge (2.1) or arc (0) between this element and the next element. If the element is the last, the next element is the first.

(b) if vx = nx/dx is a vertex intersection of a segment and an arc counter-
clockwise, then the assigned polynomials numerator and denominator, nx and
dx, determine applying Theorem 4.5.

(3) Calculate the values of the assigned polynomials nj , dk, solving the equation system
(2.7):

vi =
nj

dk
. (5.1)

(4) Calculate the numerator and denominator rectangles with Kharitonov
polynomial values N = (kn1(jω), kn2(jω), kn3(jω), kn4(jω)), D =
(kd1(jω), kd2(jω), kd3(jω), kd4(jω)) applying (2.8).

Example 5.2. Figure 10 shows three value sets of an interval plant. The necessary information
(Table 1) is

(i) the vertices,

(ii) the intersections with the axis,

(iii) the shape of the boundary’s elements: arc or segment.

This example illustrates how to obtain the assigned polynomials and the numerator and
denominator rectangles for each value set, and remarks the theorem used in each step.

5.1. Value Set at Frequency ω = 1.0

The complete arc with vertices v1 = n1/d1 = 1.5676+2.5946j and v2 = n1/d2 = 2.0000+8.0000j
is taken as initial element. Then Theorems 4.3 and 4.5 will be applied. So

v2succ =
n2λ

d2
= 0.8000 + 10.4000j, v1pred =

n4λ

d1
= 2.3336j. (5.2)
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Figure 10: Three value sets of an interval plant.

Applying the arc normalization (Lemma 4.1) the following data are obtained

ϕ(n1) = 229.40, n1 = −0.6508 − 0.7592j, d1 = −0.3254 + 0.0542j, d2 = −0.1085 + 0.0542j,

n4λ = −0.1266 − 0.7594j, n2λ = −0.6508 − 1.0846j.
(5.3)

Then, all the other vertices are assigned as follows.
(1) Vertex v3 = vx = nx/dx = 0.8000 + 10.4000j. Then vxpred = nx/dxpred = 2.0000 +

8.0000j. These are the vertices of an edge, and Theorem 4.5 is applied, vxsucc = 10.0000j,
ϕ(Ax) = 210.97.

Case 1. Theorem 4.5(C1) is satisfied: arg(v2/vx) = ϕ(Ax) + arg(n1) − 90 = 350.36 and nx =
d2vx = −0.6508 − 1.0846j satisfies the Numerator Condition (Lemma 4.2(4), nx = n2):

(n1R = −0.6508 < n4λR = −0.1266, n1I = −0.7592 > n2λI = −1.0846),

(nxR = n1R = −0.6508, nxI = −1.0846 ≤ n1I = −0.7592).
(5.4)

Then dx = d2 = −0.1085 + 0.0542j. Therefore v3 = vx = n2/d2.
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(2) Vertex v4 = vx = nx/dx = −4.8000+7.6000j. Then vxpred = 10j. These are the vertices
of an edge, and Theorem 4.5 is applied: vxsucc = −3.5862 + 1.0345j, ϕ(Ax) = 174.29.

Case 1. Theorem 4.5(C1) is satisfied: arg(v2/vx) = ϕ(Ax) + arg(n1) − 90 = 313.69 and nx =
d2vx = 0.1084 − 1.0847j satisfies the Numerator Condition (Lemma 4.2(4), nx = n3). Then
dx = d2 = −0.1085 + 0.0542j. Therefore v4 = vx = n3/d2.

(3) Vertex v5 = vx = nx/dx = −3.5862 + 1.0345j. Then vxpred = nx/dxpred = −4.8000 +
7.6000j. These are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 174.29.

Case 1. Theorem 4.3(C1) is not satisfied: arg(v2/vx) = 272.06/= arg(n1) + ϕ(Ax) = 43.69.

Case 2. Theorem 4.3(C2) is not satisfied:arg(v1/vx) = 254.95/= arg(n1) + ϕ(Ax) + 90 = 133.69.

Case 3. Theorem 4.3(C3) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 90)d2R = 0.2712 > d2I = 0.0542
and nx = 0.1085 − 1.0846j satisfies the Numerator Condition (Lemma 4.2(4)) nx = n3. Then
dx = d3 = −0.1085 + 0.2712j v5 = vx = n3/d3.

(4) Vertex v6 = vx = nx/dx = −2.5517 + 0.6207j. Then vxpred = nx/dxpred = −3.5862 +
1.0345j. These are the vertices of an edge, and Theorem 4.5 is applied: vxsucc−1.3443+1.2131j,
ϕ(Ax) = 261.87.

Case 1. Theorem 4.5(C1) is not satisfied: arg(v2/vx) = 269.64/=ϕ(Ax) + arg(n1) − 90 = 41.27.

Case 2. Theorem 4.5(C2) is not satisfied: arg(v1/vx) = 252.53/=ϕ(Ax) + arg(n1) = 131.27.

Case 3. Theorem 4.5(C3) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 180)d2R = 0.2712 > d2I = 0.0542
and nx = 0.1085 − 0.7592j satisfies the Numerator Condition (Lemma 4.2(3)) nx = n4: then
dx = d3 = −0.1085 + 0.2712j and v6 = vx = n4/d3.

(5) Vertex v7 = vx = nx/dx = −1.3443 + 1.2131j. Then vxpred = nx/dxpred = −2.5517 +
0.6207j. These are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 261.87.

Case 1. Theorem 4.3(C1) is not satisfied: arg(v2/vx) = 298.03/= arg(n1) + ϕ(Ax) = 131.27.

Case 2. Theorem 4.3(C2) is not satisfied: arg(v1/vx) = 280.93/= arg(n1) + ϕ(Ax) + 90 = 221.27.

Case 3. Theorem 4.3(C3) is not satisfied: tan(arg(1/vx) − ϕ(Ax) + 90)d2R = −0.1302 < d2I =
0.0542.

Case 4. Theorem 4.3(C4) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 180)d1R = 0.2712 > d1I = 0.0542
and nx = 0.1085 − 0.7592j satisfies the Numerator Condition (Lemma 4.2(4)) nx = n4. Then
dx = d4 = −0.3254 + 0.2712j; v7 = vx = n4/d4.

In summary, the assigned polynomials are

v1 =
n1

d1
, v2 =

n1

d2
, v3 =

n2

d2
, v4 =

n3

d2
, v5 =

n3

d3
, v6 =

n4

d3
, v7 =

n4

d4
,

(5.5)

and the values can be calculated: from normalization,

n1 = −0.6508 − 0.7592j, d1 = −0.3254 + 0.0542j, d2 = −0.1085 + 0.0542j, (5.6)
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and from the vertices,

v3 : n2 = −0.6508 − 1.0846j, d2 = −0.1085 + 0.0542j,

v4 : n3 = 0.1084 − 1.0847j, d2 = −0.1085 + 0.0542j,

v5 : n3 = 0.1085 − 1.0846j, d3 = −0.8464 + 2.0152j,

v6 : n4 = 0.1085 − 0.7592j, d3 = −0.1085 + 0.2712j,

v7 : n4 = 0.1085 − 0.7593j, d4 = −0.3254 + 0.2712j.

(5.7)

Then

kn1
(
jω

)
= −0.6508 − 1.0847j, kn2

(
jω

)
= 0.1085 − 1.0847j,

kn3
(
jω

)
= 0.1085 − 0.7592j, kn4

(
jω

)
= −0.6508 − 0.7592j,

kd1
(
jω

)
= −0.3254 + 0.0542j, kd2

(
jω

)
= −0.1085 + 0.0542j,

kd3
(
jω

)
= −0.1085 + 0.2712j, kd4

(
jω

)
= −0.3254 + 0.2712j.

(5.8)

Table 2 shows the results of the algorithm for the value set at frequency ω = 1.0.
From these Kharitonov rectangles the value set given in Figure 11(a) is directly

obtained.

5.2. Value Set at Frequency ω = 1.1

The complete arc with vertices v1 = n1/d1 = −2.8422 + 2.9830j and v2 = n1/d2 = −0.9808 +
2.4599j is taken as initial element. Then Theorems 4.3 and 4.5 will be applied. So

v2succ =
n2λ

d2
= 3.0420j, v1pred =

n4λ

d1
= −3.8291 + 3.7385j. (5.9)

Applying the arc normalization (Lemma 4.1) the following data are obtained:

ϕ(n1) = 360 − arg
(

1
v2

− 1
v1

)
= 81.05, n1 = 0.1556 + 0.9878j,

d1 =
n1

v1
= 0.1475 − 0.1927j;

d2 =
n1

v2
= 0.3247 − 0.1927j, n4λ = d1v1pred = 0.1556 + 1.2895j,

(5.10)

n2λ = d2v2succ = 0.5862 + 0.9878j. (5.11)

Then, all the other vertices are assigned as follows.
(1) Vertex v3 = vx = nx/dx = 0.4996+ 3.0386j. Then vxpred = nx/dxpred = 3.0420j. These

are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 8.95.
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Figure 11

Cases 1 and 2. Theorem 4.3(C1) and (C2) are not satisfied.

Case 3. Theorem 4.3(C3) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 90)d2R = 0.0022 > d2I = −0.1927
and nx = 0.1555 + 0.9878j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n1. Then
dx = d3 = 0.3247 + 0.0022j v3 = vx = n1/d3.

(2) Vertex v4 = vx = nx/dx = 2.3317 + 3.0261j. Then vxpred = nx/dxpred = 0.4996 +
3.0386j. These are the vertices of an edge, and Theorem 4.5 is applied: vxsucc = 5.1859+6.6181j
and ϕ(Ax) = 127.23.

Cases 1 and 2. Theorem 4.5(C1) and (C2) are not satisfied.

Case 3. Theorem 4.5(C3) is satisfied: tan(arg(1/vx)−ϕ(Ax)+180)d2R = 0.0022 > d2I = −0.1927
and nx = 0.7505 + 0.9878j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n2. Then
dx = d3 = 0.3247 + 0.0022j. v4 = vx = n2/d3.
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(3) Vertex v5 = vx = nx/dx = 5.1859 + 6.6181j. Then vxpred = nx/dxpred = 2.3317 +
3.0261j. These are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 127.23.

Cases 1, 2, and 3. Theorem 4.3(C1), (C2), and (C3) are not satisfied.

Case 4. Theorem 4.3(C4) is satisfied: tan(arg(1/vx)−ϕ(Ax)+180)d1R = 0.0022 > d1I = −0.1927
and nx = 0.7505 + 0.9878j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n2. Then
dx = d4 = 0.1475 + 0.0022j v5 = vx = n2/d4.

(4) Vertex v6 = vx = nx/dx = 5.2164 + 8.6623j. Then vxpred = nx/dxpred = 5.1859 +
6.6181j. These are the vertices of an edge, and Theorem 4.5 is applied: vxsucc = 8.7404j,
ϕ(Ax) = 210.20.

Cases 1, 2, and 3. Theorem 4.5(C1), (C2), and (C3) are not satisfied.

Case 4. Theorem 4.5(C4) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 270)d1R = 0.0022 > d1I =
−0.1927 and nx = 0.7505+ 1.2895j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n3:
then dx = d4 = 0.1475 + 0.0022j, v6 = vx = n3/d4.

(5) Vertex v7 = vx = nx/dx = −3.8291 + 3.7385j. Then vxpred = nx/dxpred = 8.7404j.
These are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 186.88.

Case 1. Theorem 4.3(C1) is not satisfied.

Case 2. Theorem 4.3(C2) is satisfied: arg(v1/vx) = arg(n1) + ϕ(Ax) + 90 = 357.93 and nx =
d1vx = 0.1556 + 1.2895j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n4. Then
dx = d1 = 0.1475 − 0.1927j, v7 = vx = n4/d1.

In summary, the assigned polynomials are

v1 =
n1

d1
, v2 =

n1

d2
, v3 =

n1

d3
, v4 =

n2

d3
, v5 =

n2

d4
, v6 =

n3

d4
, v7 =

n4

d1
(5.12)

and the values can be calculated: from normalization,

n1 = 0.1556 + 0.9878j, d1 = 0.1475 − 0.1927j, d2 = 0.3247 − 0.1927j, (5.13)

and from the vertices,

v3 : n1 = 0.1555 + 0.9878j, d3 = 0.3247 + 0.0022j,

v4 : n2 = 0.7505 + 0.9878j, d3 = 0.3247 + 0.0022j,

v5 : n2 = 0.7505 + 0.9878j, d4 = 0.1475 + 0.0022j,

v6 : n3 = 0.7505 + 1.2895j, d4 = 0.1475 + 0.0022j,

v7 : n4 = 0.1556 + 1.2895j, d1 = 0.1475 − 0.1927j.

(5.14)
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Then

kn1
(
jω

)
= 0.1555 + 0.9878j, kn2

(
jω

)
= 0.7505 + 0.9878j,

kn3
(
jω

)
= 0.7505 + 1.2895j, kn4

(
jω

)
= 0.1556 + 1.2895j,

kd1
(
jω

)
= 0.1475 − 0.1927j, kd2

(
jω

)
= 0.3247 − 0.1927j,

kd3
(
jω

)
= 0.3247 + 0.0022j, kd4

(
jω

)
= 0.1475 + 0.0022j.

(5.15)

Table 3 shows the results of the algorithm for the value set at frequency ω = 1.1.
From these Kharitonov rectangles the value set given in Figure 11(b) is directly

obtained.

5.3. Value Set at Frequency ω = 1.2

The complete edge with vertices v1 = n1/d1 = 6.1015 + 5.2779j and v2 = n2/d1 = 6.5135 +
6.8573j is taken as initial element. Then Theorems 3.3 and 3.5 will be applied. So

v2succ =
n2

d2λ
= 8.5560j, v1pred =

n1

d4λ
= 2.9559 + 3.2369j. (5.16)

Applying the edge normalization (Lemma 3.1) the following data are obtained:

φ(d1) = 360 − arg(v2 − v1) = 284.62, d1 = cos
(
ϕ(d1)

)
+ j sin

(
ϕ(d1)

)
= 0.2524 − 0.9676j,

n1 = v1d1 = 6.6471 − 4.5717j, n2 = v2d1 = 8.2793 − 4.5717j,

d2λ =
n2

v2succ
= −0.5343 − 0.9677j, d4λ =

n1

v1pred
= 0.2524 − 1.8230j.

(5.17)

Then, all the other vertices are assigned as follows.
(1) Vertex v3 = vx = nx/dx = −3.0339 + 6.1294j. Then vxpred = nx/dxpred = 8.5560j.

These are the vertices of an arc, and Theorem 3.5 is applied: vxsucc = −2.2110 + 5.1007j and
ϕ(Sx) = arg(vxsucc − vx) = 308.66.

Cases 1 and 2. Theorem 3.5(C1) and (C2) are not satisfied.

Case 3. Theorem 3.5(C3) is satisfied: tan(arg(vx)−ϕ(Sx)+180)n2R = −1.8087 > n2I = −4.571 and
dx = n2R[1 + j tan(arg(vx) − ϕ(Sx) + 180)]/vx = −0.7740 − 0.9676j satisfies the Denominator
Condition (Lemma 3.2(3)) dx = d2: then nx = n3 = n2R[1 + j tan(arg(vx) − ϕ(Sx) + 180)] =
8.2793 − 1.8087j; v3 = vx = n3/d2.

(2) Vertex v4 = vx = nx/dx = −2.211 + 5.1007j. Then vxpred = nx/dxpred = −3.0339 +
6.1294j. These are the vertices of an edge, and Theorem 3.3 is applied: ϕ(Sx) = arg(vx −
vxpred) = 308.66.

Cases 1 and 2. Theorem 3.3(C1) and (C2) are not satisfied.

Case 3. Theorem 3.3(C3) is satisfied: tan(arg(vx)−ϕ(Sx)+90)n2R = 30.4258 > n2I = −4.5717 but
dx = n2R[1+j tan(arg(vx)−ϕ(Sx)+90)]/vx = 4.4292−3.5431j does not satisfy the Denominator
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Condition: (d1R = 0.2524 > d2λR = −0.5343 and d1I = −0.9676 > d4λI = −1.8230) (Case 3) but
(dxR = 4.4292/=d1R = 0.2524) then dx /=d1 and dx /=d4 (dxI = −3.5431/=d1I − 0.9676) then
dx /=d2(dxR = 4.4292 > d1R = 0.2524 and dxI = −3.5431 < d1I = −0.9676) then dx /=d3.

Case 4. Theorem 3.3(C4) is satisfied: tan(arg(vx) − ϕ(Sx) + 180)n1R = −1.8088 > n1I = −4.5717
and dx = n1R[1+j tan(arg(vx)−ϕ(Sx)+180)]/vx = −0.7741−0.9676j satisfies the Denominator
Condition (Lemma 3.2(3)) dx = d2:

(d1R = 0.2524 > d2λR = −0.5343, d1I = −0.9676 > d4λI = −1.8230),

(dxI = d1I = −0.9676, dxR = −0.7740 ≤ d1R = 0.2524).
(5.18)

Then nx = n4 = n1R[1 + j tan(arg(vx) − ϕ(Sx) + 180)] = 6.6471 − 1.8088j, v4 = vx = n4/d2.

(3) Vertex v5 = vx = nx/dx = −0.47099 + 3.4462j. Then vxpred = nx/dxpred = −2.2110 +
5.1007j. These are the vertices of an arc, and Theorem 3.5 is applied: vxsucc = 3.6463j and
ϕ(Sx) = arg(vxsucc − vx) = 23.01.

Cases 1, 2, and 3. Theorems 3.5(C1) and (C2) are not satisfied. Theorem 3.5(C3) is satisfied but
dx = 8.3397 − 3.5422j does not satisfy the Denominator Condition (Lemma 3.2(3)).

Case 4. Theorem 3.5(C4) is satisfied: tan(arg(vx) − ϕ(Sx) + 270)n1R = −1.8098 > n1I = −4.5717
and dx = n1R[1+j tan(arg(vx)−ϕ(Sx)+270)]/vx = −0.7743−1.8230j satisfies the Denominator
Condition (Lemma 3.2(3)).

Then nx = n4 = n1R[1+ j tan(arg(vx)−ϕ(Sx)+270)] = 6.6471−1.8098j, v5 = vx = n4/d3.

(4) Vertex v6 = vx = nx/dx = 1.469 + 3.4428j. Then vxpred = nx/dxpred = 3.6463j.
These are the vertices of an arc, and Theorem 3.5 is applied: vxsucc = 2.9559 + 3.2369j and
ϕ(Sx) = arg(vxsucc − vx) = 352.12.

Cases 1, 2, and 3. Theorem 3.5(C1) and (C2) are not satisfied. Theorem 3.5(C3) is satisfied but
dx = 8.3440 + 1.1554j does not satisfy the Denominator Condition (Lemma 3.2(3)).

Case 4. Theorem 3.5(C4) is satisfied: tan(arg(vx) − ϕ(Sx) + 270)n1R = −1.8089 > n1I = −4.5717
and dx = 0.2524 − 1.8230j satisfies the Denominator Condition (Lemma 3.2(3)) dx = d4.

Then nx = n4 = n1R[1+ j tan(arg(vx)−ϕ(Sx)+270)] = 6.6471−1.8089j, v6 = vx = n4/d4.

(5) Vertex v7 = vx = nx/dx = 2.9559 + 3.2369j. Then vxpred = nx/dxpred = 1.4690 +
3.4428j. These are the vertices of an edge, and Theorem 3.3 is applied: ϕ(Sx) = arg(vx −
vxpred) = 352.12.

Case 1. Theorem 3.3(C1) is not satisfied.

Case 2. Theorem 3.3(C2) is satisfied: arg(vx/v1) = arg(d1)+ϕ(Sx)+90 = 6.74 and dx = n1/vx =
0.2524− 1.8230j satisfies the Denominator Condition (Lemma 3.2(3)) dx = d4. Then nx = n1 =
6.6471 − 4.5717j, v7 = vx = n1/d4.

In summary, the assigned polynomials are

v1 =
n1

d1
, v2 =

n2

d1
, v3 =

n3

d2
, v4 =

n4

d2
, v5 =

n4

d3
, v6 =

n4

d4
, v7 =

n1

d4
,

(5.19)
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and the values can be calculated: from normalization,

d1 = 0.2524 − 0.9676, n1 = 6.6471 − 4.5717j, n2 = 8.2793 − 4.5717j, (5.20)

and from the vertices,

v3 : n3 = 8.2793 − 1.8087j, d2 = −0.7741 − 0.9676j,

v4 : n4 = 6.6471 − 1.8087j, d2 = −0.7741 − 0.9676j,

v5 : n4 = 6.6471 − 1.8087j, d3 = −0.7743 − 1.8230j,

v6 : n4 = 6.6471 − 1.8087j, d4 = 0.2524 − 1.8230j,

v7 : n1 = 6.6471 − 4.5717j, d4 = 0.2524 − 1.8230j.

(5.21)

Then

kn1
(
jω

)
= 6.6471 − 4.5717j, kn2

(
jω

)
= 8.2793 − 4.5717j,

kn3
(
jω

)
= 8.2793 − 1.8087j, kn4

(
jω

)
= 6.6471 − 1.8087j,

kd1
(
jω

)
= −0.7743 − 1.8230j, kd2

(
jω

)
= 0.2524 − 1.8230j,

kd3
(
jω

)
= 0.2524 − 0.9676j, kd4

(
jω

)
= −0.7743 − 0.9676j.

(5.22)

Table 4 shows the results of the algorithm for the value set at frequeny w = 1.2.
From these kharitonov rectangles the value set given in Figure 11(c) is directly

obtained.
Finally, solving the equation system [10, equation (16)], the interval plant is obtained:

Gp(s) =
[10 11]s3 + [7 8]s2 + [6 6.5]s + [5 7.5]

[0.75 1.25]s3 + [2 2.5]s2 + [1.5 2]s + [1 1.5]
. (5.23)

Applying Gp(s = jω) at ω = 1.0, ω = 1.1 and ω = 1.2 the value sets given in Figure 12 are
obtained.

6. Conclusions

This paper shows how to obtain the values of the numerator and denominator Kharitonov
polynomials of an interval plant from its value set at a given frequency. Moreover, it is proven
that given a value set, all the assigned polynomials of the vertices can be determined if and
only if there is a complete edge or a complete arc lying on a quadrant, that is, if there are two
vertices in a quadrant. This necessary and sufficient condition is not restrictive and practically
all the value sets satisfy it. Finally, the interval plant can be identified solving the equation
system between the Kharitonov rectangles and the parameters of the plant.

The algorithm has been formulated using the frequency domain properties of linear
interval systems. The identification procedure of multilinear (affine, polynomial) systems
will be studied using the results in [11].
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Figure 12: Value sets obtained at w = 1.0, w = 1.1, and w = 1.2.
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The solution of least squares support vector machines (LS-SVMs) is characterized by a specific
linear system, that is, a saddle point system. Approaches for its numerical solutions such as
conjugate methods Sykens and Vandewalle (1999) and null space methods Chu et al. (2005) have
been proposed. To speed up the solution of LS-SVM, this paper employs the minimal residual
(MINRES) method to solve the above saddle point system directly. Theoretical analysis indicates
that the MINRES method is more efficient than the conjugate gradient method and the null
space method for solving the saddle point system. Experiments on benchmark data sets show
that compared with mainstream algorithms for LS-SVM, the proposed approach significantly
reduces the training time and keeps comparable accuracy. To heel, the LS-SVM based on MINRES
method is used to track a practical problem originated from blast furnace iron-making process:
changing trend prediction of silicon content in hot metal. The MINRES method-based LS-SVM can
effectively perform feature reduction and model selection simultaneously, so it is a practical tool
for the silicon trend prediction task.

1. Introduction

As one kernel method, SVM works by embedding the input data x, z ∈ X into a Hilbert
space H by a high-dimensional mapping Φ(·), and then trying to find a linear relation among
the high-dimensional embedded data points [1, 2]. This process is implicitly performed by
specifying a kernel function which satisfies k(x, z) = Φ(x)TΦ(z), that is, the inner product
of the embedded points. Given observed samples {xi, yi}ni=1 with size n, SVM formulates the
learning problem as a variational problem of finding a decision function f that minimizes the
regularized risk functional [3, 4]

min
f∈H

R
[
f
]
=

1
n

n∑

i=1

V
(
yi, f(xi)

)
+ λ
∥∥f
∥∥2
H, (1.1)
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where V (·, ·) is called a loss function, λ is the so-called regularization parameter to trade off
the empirical risk with the complexity of f , that is, ‖f‖H, the norm in a reproducing kernel
Hilbert space H. By the representer theorem [3, 5], the optimal decision function f satisfying
(1.1) has the form

f(x) =
n∑

i=1

αik(xi, x) + b, (1.2)

where αi ∈ R for i = 1, . . . , n, b ∈ R. This equation can be easily used to tackle a
practical problem if the kernel function is specified. To overcome the high computational
complexity of traditional SVM, an interesting variant of the standard SVM, least squares
support vector machines, has been proposed by Suykens and Vandewalle [6]. In the case
of LS-SVM, the inequality constraints in �2 soft margin SVM are converted into equality
constraints. The model training process of LS-SVM is performed by solving a specific linear
equations, that is, a saddle point system which can be efficiently solved by iterative methods
instead of a quadratic programming problem. Besides computational superiority extensive
empirical studies have shown that LS-SVM is comparable to SVM in terms of generalization
performance [7]; these features make LS-SVM an attractive algorithm and also a successful
alternative to SVM. For the training of the LS-SVM, Van Gestel et al. [7] proposed to
reformulate the n + 1 order saddle point system into two n order symmetric positive definite
systems which can be solved in turn by the conjugate gradient (CG) algorithm. To speed
up the training of LS-SVM, Chu et al. [8] employed the null space method to transform the
saddle point system into a reduced n − 1 order symmetric positive definite system which
was solved with the CG algorithm also. The minimal residual (MINRES) method proposed
by Paige and Saunders is a specialized method for solving a nonsingular symmetric system
[9]. This method can avoid the LU factorization and does not suffer from break-down, so it
is an efficient numerical method for solving symmetric but indefinite systems. The Karush-
Kuhn-Tucker system of LS-SVM is a specified linear system, that is, a saddle point system.
Considering the above point, to speed up the solution of LS-SVM model we employ the
MINRES method to solve the linear system directly. The main contribution of this paper is
to provide a potential alternative to the solution of LS-SVM model. Theoretical analysis of
the three numerical algorithms for the solution of LS-SVM model indicates that the MINRES
method is the optimal choice. Experiments on benchmark data sets show that compared with
the CG method proposed by Suykens et al. and the null space method proposed by Chu et
al., the MINRES solver significantly improves the computational efficiency and at the same
time keeps almost the same generalized performance with the above two methods. To heel,
the MINRES method-based LS-SVM model is constructed and further employed to identify
blast furnace (BF) iron-making process, a complex nonlinear system. Practical application to a
typical real BF indicates that the established MINRES method-based LS-SVM model is a good
candidate to predict the changing trend of the silicon content in BF hot metal with low time
cost. The possible application of this work is to aid the BF operators to judge the inner state of
BF getting hot or chilling in time properly, which can provide a guide for them to determine
the direction of controlling BF in advance. The rest of this paper is organized as follows.
In Section 2, we give a review for LS-SVM. Section 3 presents three numerical solutions for
LS-SVM. It is followed by extensive experimental validations of the proposed method in
Section 4. Section 5 concludes the paper and points out the possible future research.
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2. Formulation of LS-SVM

The primal problem of LS-SVM can be formulated following unified format:

min
w,b,e

1
2
wTw +

C

2

n∑

i=1

e2
i

s.t. yi = wTΦ(xi) + b + ei, i = 1, . . . , n,

(2.1)

for both regression analysis and pattern classification. In (2.1) n is the total number of training
samples, xi is the ith input vector, yi is the ith output value/label for regression/classification
problem, ei is the ith error variable, C > 0 is the regularization parameter, and b is the bias
term. The Lagrangian of (2.1) is given below:

L(w, b, e;α) =
1
2
wTw +

C

2

n∑

i=1

e2
i −

n∑

i=1

αi
(
wTΦ(xi) + b + ei − yi

)
, (2.2)

where αi is the ith Lagrange multiplier. For the convex program (2.1), it is obvious that
the Slater constraint qualification holds. Therefore, the optimal solution of (2.1) satisfies its
Karush-Kuhn-Tucker system

∂L

∂w
= 0 −→ w =

n∑

i=1

αiΦ(xi),

∂L

∂b
= 0 −→

n∑

i=1

αi = 0,

∂L

∂ei
= 0 −→ αi = Cei, i = 1, . . . , n,

∂L

∂αi
= 0 −→ yi = wTΦ(xi) + b + ei, i = 1, . . . , n.

(2.3)

After eliminating variables w and e the Karush-Kuhn-Tucker system (2.3) can be reformu-
lated following saddle point system [10]:

⎡

⎣K +
1
C
I 1n

1T
n 0

⎤

⎦
[
α
b

]
=
[
y
0

]
, (2.4)

where Kij := k(xi, xj) = Φ(xi)
TΦ(xj), I stands for unit matrix, 1n denotes an n-dimensional

vector of all ones, and y = (y1, . . . , yn)
T.
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3. Solution of LS-SVM

In this section, we give a brief review and some analysis of the three mentioned numerical
algorithms for solution of LS-SVM.

3.1. Conjugate Gradient Methods

The kernel matrix K is a symmetric positive semidefinite matrix and the diagonal term 1/C
is positive, so the matrix H := K + (1/C)I is symmetric and positive definite. Through the
following matrix transformation

MT

⎡

⎣K +
1
C
I 1n

1T
n 0

⎤

⎦MM−1
[
α
b

]
=MT

[
y
0

]
, (3.1)

where

M =
[
I H−11n
0 1

]
, (3.2)

the saddle point system (2.4) can be factorized into a positive definite system [11]

[
H 0
0 1T

nH
−11n

][
α +H−11nb

b

]
=
[

y
1T
nH

−1y

]
. (3.3)

Suykens et al. suggested the use of the CG method for the solution of (3.3) and
proposed to solve two n order positive definite systems. More exactly, their algorithm can
be described as follows.

Step 1. Employ the CG algorithm to solve the linear equations Hη = 1n and get the
intermediate variable η.

Step 2. Solve the intermediate variable μ from Hμ = y by the CG method.

Step 3. Obtain Lagrange dual variables α = μ − bη and bias term b = 1T
nμ/1T

nη.
The output of any new data x can subsequently be deduced by computing the decision

function f(x) = wTΦ(x) + b =
∑n

i=1 αik(xi, x) + b.

3.2. Null Space Methods

In what was mentioned previously, to get the intermediate variable η and μ two n order
positive definite systems need to be solved by CG methods. Chu et al. [8] proposed an
interesting method to the numerical solution of LS-SVM by solving one n − 1 order reduced
system of linear equations. The improved method suggested by Chu et al. can be seen as one
kind of null space method. The saddle point system (2.4) can be written as

Hα + 1nb = y, 1nα = 0. (3.4)
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Chu et al. specified a particular solution of 1nα = 0 as α̂ = 0 and the null space of 1nα = 0 as

Z =
[
In−1

−1T
n−1

]
. (3.5)

Through solving the following reduced system of order n − 1 for the auxiliary unknown ν,

ZTHZν = ZTy, (3.6)

the solution of the saddle point system (2.4) can be obtained as α = Zν and b = (1/n)1T
n(y −

Hα).

3.3. Minimal Residual Methods

The vector sequences in the CG method correspond to a factorization of a tridiagonal
matrix similar to the coefficient matrix. Therefore, a breakdown of the algorithm can occur
corresponding to a zero pivot if the matrix is indefinite. Furthermore, for indefinite matrices
the minimization property of the CG method is no longer well defined. The MINRES method
proposed by Paige and Saunders [9] is a variant of the CG method that avoids the LU
factorization and does not suffer from breakdown. It minimizes the residual in the �2-norm
which is an efficient numerical algorithm for solving symmetric but indefinite systems; the
corresponding convergence behavior of the MINRES method for indefinite systems has been
analyzed by Van der Vorst [12]. The purpose of this paper is to employ the MINRES method
to solve the saddle point system (2.4) directly. Next we gave a brief review of the MINRES
algorithm. Let x0 be an initial guess for the solution of the symmetric indefinite linear system
Ax = b. One can obtain the iterative sequence xm, m = 1, 2, . . . such that

‖rm‖2 = ‖b −Axm‖2 = min
x∈x0+Km(A,r0)

‖b −Ax‖2, (3.7)

where rm = b −Axm is the mth residual for m = 1, 2, . . ., and

Km(A, r0) = span
{
r0, Ar0, . . . , A

m−1r0

}
(3.8)

is the mth Krylov subspace. Lanczos methods can be used to generate an orthonormal basis
of Km(A, r0), and then only two basis vectors are needed to compute xm; see, for example,
[12]. The detailed implementation of the MINRES algorithm can be found in [12].

It has been shown that rounding errors are propagated to the approximate solution
with a factor proportional to the square of the condition number of coefficient matrix [12];
one should be careful with the MINRES method for ill-conditioned systems.

3.4. Some Analysis on These Three Numerical Algorithms

The properties of short recurrences and optimization [12] make the CG method the first
choice for the solution of a symmetric positive definite system. Suykens et al. transformed



6 Journal of Applied Mathematics

the n + 1 order saddle point system (2.4) into two n order positive definite systems which
are solved by CG methods. However, it is time consuming to solve two n order positive
definite systems with large scales. To overcome this shortcoming, Chu et al. [8] transformed
equivalently the original n + 1 order system into an n order symmetric positive definite
system, and then the CG method can be used. This method can be seen as a null space
method. Unfortunately, the transformation may destroy heavily the sparse structure and
increase greatly the condition number of the original system. This can hugely slow down
the convergence rate of the CG algorithm. Theoretical analysis about the influence of the
transformation on the condition number is indispensable, but it is rather difficult. We leave
it as an open problem. In this paper, the MINRES method is directly applied to solve the
original saddle point problem of n + 1 order. Similar to the CG method, the MINRES method
also has properties of short recurrences and optimization.

In light of the analysis mentioned above, the MINRES method should be the first
choice for the solution of LS-SVM model, since it avoids solving two linear systems and
destroying the sparse structure of the original saddle point system simultaneously.

4. Numerical Implementations

4.1. Experiments on Benchmark Data Sets

In this section we give the experimental test results on the accuracy and efficiency of our
method. For comparison purpose, we implement the CG method proposed by Suykens and
Vandewalle [6] and the null space method suggested by Chu et al. [8]. All experiments
are implemented with MATLAB version 7.8 programming environment running on an IBM
compatible PC under Window XP operating system, which is configured with Intel Core
2.1 Ghz CPU and 2 G RAM. The generalized used Gaussian RBF kernel k(x, z) = exp(−‖x −
z‖2/σ2) is selected as the kernel function. We use the default setting for kernel width σ2, that
is, set kernel width as the dimension of inputs.

We first compare three algorithms on three benchmark data sets: Boston, Concrete, and
Abalone, which are download from UCI [13]. Each data set is randomly partitioned into 70%
training and 30% test sets. We also list the condition numbers of coefficients matrices solved
by three methods for the analysis of the computing efficiencies. As shown in Tables 1–3 the
condition number for the CG method is the least one and the condition number for the null
space method significantly increases.

The columns of Cond in Tables 1, 2, and 3 show that compared with the CG method the
condition number for the MINRES method increases a bit, but much less than the condition
number of the null space method. The orders of linear equations solved by the CG method,
the null space method, and the MINRES method are n, n − 1, and n + 1, respectively. The
condition numbers for the CG method and the MINRES method are very close, but we
have to solve two systems of n − 1 order using CG methods. Hence, the running time of
the MINRES method should be less than that of the CG method. CPU column in Tables 1–3
shows that the MINRES method-based LS-SVM model costs much less running time than the
CG method and the null space method-based LS-SVM model in all cases of setting C. So the
MINRES method-based LS-SVM model is a preferable algorithm for solving LS-SVM model.
In the next subsection, we will employ the MINRES method-based LS-SVM model to solve a
practical problem.
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Table 1: Experimental results of three methods on Boston data set.

Boston data set, 506 samples, 13-d inputs, σ2 equals 13
log2C Conjugate gradient method Null space method MINRES method

Cond† CPU‡ MSE∗ Cond CPU MSE Cond CPU MSE
−5 4 0.3281 49.1027 366.9451 0.8438 49.1027 45.6283 0.2500 49.1027
−4 8 0.4688 39.4132 369.0926 0.6250 39.4132 31.6150 0.3438 39.4132
−3 15 0.3438 29.7686 388.1770 0.7656 29.7686 26.3388 0.3125 29.7686
−2 28 0.4531 24.2532 460.1920 0.7656 24.2532 29.2813 0.3281 24.2532
−1 60 0.2500 21.0322 474.6254 1.0625 21.0322 61.3493 0.4219 21.0322
0 116 0.3438 15.5875 566.2504 1.2500 15.5875 119.071 0.1875 15.5875
1 234 0.7188 13.6449 946.4564 1.1250 13.6449 239.374 0.4375 13.6449
2 472 0.9531 13.0252 1945.300 1.0625 13.0252 482.447 0.6875 13.0252
3 924 0.9375 10.9810 2244.342 1.4063 10.9810 944.042 0.6406 10.9810
4 1734 1.3594 10.3168 5229.460 1.2500 10.3168 1776.31 0.8906 10.3168
5 3801 1.5469 10.2063 10785.92 1.4844 10.2063 3876.97 1.1406 10.2063
6 7530 2.0469 11.3937 24998.71 1.9063 11.3937 7682.07 1.2969 11.3937
7 14618 2.4531 11.7750 47781.41 2.2188 11.7750 14932.2 1.6875 11.7750
8 29769 3.0625 12.9925 61351.85 2.9844 12.9925 30382.8 2.3750 12.9925
9 58387 3.4063 14.0194 101181.8 3.5938 14.0194 59619.0 2.6875 14.0194
10 119285 4.0313 17.2330 285440.0 4.8281 17.2330 121708 3.5313 17.2330

Cond† denotes the condition number, CPU‡ stands for running time, MSE∗ is mean square error.

4.2. Application on Blast Furnace System

Blast furnace, one kind of metallurgical reactor used for producing pig iron, is often called hot metal.
The chemical reactions and heat transport phenomena take place throughout the furnace as
the solid materials move downwards and hot combustion gases flow upwards. The main
principle involved in the BF iron-making process is the thermochemical reduction of iron
oxide ore by carbon monoxide. During the iron-making period, a great deal of heat energy
is produced which can heat up the BF temperature approaching 2000◦C. The end products
consisting of slag and hot metal sink to the bottom and are tapped periodically for the
subsequent refining. It will take about 6–8 h for a cycle of iron-making [11]. BF iron-making
process is a highly complex nonlinear process with the characteristics of high temperature,
high pressure, concurrence of transport phenomena, and chemical reactions. The complexity
of the BF and the occurrence of a variety of process disturbances have been obstacles for the
adoption of modeling and control in the process. Generally speaking, to control a BF system
often means to control the hot metal temperature and components, such as silicon content,
sulfur content in hot metal, and carbon content in hot metal within acceptable bounds.
Among these indicators, the silicon content often acts as a chief indicator to represent the
thermal state of the BF, an increasing silicon content meaning a heating of the BF while a
decreasing silicon content indicating a cooling of the BF [11, 14]. Thus, the silicon content is a
reliable measure of the thermal state of the BF, and it becomes a key stage to predict the silicon
content for regulating the thermal state of the BF. Therefore, it has been the active research
issue to build silicon prediction model in the recent decades, including numerical prediction
models [15] and trend prediction models [11].

In this subsection, the tendency prediction of silicon content in hot metal is
transformed as a binary classification problem. Samples with increasing silicon content are
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Table 2: Experimental results of three methods on Concrete data set.

Concrete data set, 1030 samples, 8-d inputs, σ2 equals 8
log2C Conjugate gradient method Null space method MINRES method

Cond CPU MSE Cond CPU MSE Cond CPU MSE
−5 7 2.0781 140.8498 738.137223 3.6719 140.8498 51.5204280 1.6406 140.8498
−4 13 2.3594 111.2384 745.054714 3.6563 111.2384 39.7005872 1.8906 111.2383
−3 25 2.8125 89.3458 796.627246 3.8281 89.3458 31.7895802 2.0938 89.3459
−2 50 2.4844 74.4146 850.938881 3.9688 74.4146 51.4318149 2.0469 74.4146
−1 102 3.0000 60.2984 954.604170 4.3906 60.2984 104.293122 2.2969 60.2984
0 199 3.4219 50.4491 1397.13474 4.8438 50.4491 202.202543 2.8281 50.4490
1 399 4.0625 43.5416 1737.97400 5.7188 43.5416 406.110983 3.2500 43.5416
2 787 4.8750 41.5463 2369.65769 6.4219 41.5463 799.643656 3.8594 41.5463
3 1561 6.3125 36.5797 5375.87469 7.3750 36.5797 1586.70628 4.2500 36.5797
4 3197 8.0000 33.4861 7342.75323 8.7188 33.4861 3247.47638 5.0156 33.4861
5 6411 10.3281 33.1452 18274.6591 10.8438 33.1452 6510.73913 6.2188 33.1452
6 12530 13.8750 33.4936 37192.6189 12.9063 33.4936 12732.7611 8.2813 33.4936
7 25614 18.5781 33.8690 73008.8645 15.8594 33.8690 26010.1838 11.0156 33.8690
8 51260 25.1250 32.6925 126475.189 19.5938 32.6925 52056.7280 14.8906 32.6925
9 101053 33.9531 35.1044 249234.605 25.2969 35.1044 102657.615 19.9219 35.1043
10 199734 46.3125 40.4777 557864.123 32.9219 40.4777 202961.396 27.0625 40.4777
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Figure 1: Evolution of silicon content in hot metal.

denoted by +1 whereas a decreasing silicon content is denoted by −1. In the present work,
the experimental data is collected from a medium-sized BF with the inner volume of about
2500 m3. The variables closely related to the silicon content are measured as the candidate
inputs for modeling. Table 4 presents the variables information from the studied BF. There
are totally 801 data points collected with the first 601 points as train set and the residual 200
points as testing set. The sampling interval is about 1.5 h for the current BF. Figure 1 illustrates
the evolution of the silicon content in hot metal.

There are in total 15 candidate variables listed in Table 4 from which to select model
inputs. Generally, too many input parameters will increase the complexity of model while
too little inputs will reduce the accuracy of model. A tradeoff has to be taken between the
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Table 3: Experimental results of three methods on Abalone data set.

Abalone data set, 4177 samples, 7-d inputs, σ2 equals 7
log2C Conjugate gradient method Null space method MINRES method

Cond CPU MSE Cond CPU MSE Cond CPU MSE
−5 42.341 20.343 5.3623 2955.9655 39.7344 5.3623 369.9433 12.9531 5.3623
−4 84.059 22.984 5.1143 3028.4495 41.1406 5.1143 332.0862 14.2344 5.1143
−3 167.846 26.343 4.7978 3043.4615 42.6719 4.7978 306.5691 16.0156 4.7978
−2 337.691 33.281 4.6923 3567.1431 46.8125 4.6923 338.1679 18.4688 4.6923
−1 666.823 39.315 4.4360 4888.3227 50.8438 4.4360 667.7842 22.3125 4.4360
0 1327.351 47.531 4.4744 5355.5805 54.6563 4.4744 1329.291 26.2656 4.4744
1 2700.547 58.015 4.4217 9894.2450 59.8438 4.4217 2704.345 34.1719 4.4217
2 5275.703 74.859 4.3948 8239.2388 69.2031 4.3948 5283.506 42.5469 4.3948
3 10709.216 94.765 4.4169 18279.897 80.4219 4.4169 10724.46 54.7813 4.4169
4 21357.750 124.359 4.5053 24472.420 97.7500 4.5053 21388.43 71.3906 4.5053
5 42427.822 177.171 4.6144 105161.60 133.2656 4.6144 42489.70 103.6406 4.6144
6 85153.757 221.468 4.6857 185913.18 155.9219 4.6857 85276.97 129.3750 4.6857
7 171369.064 312.078 4.7145 212162.90 212.4531 4.7145 171614.1 181.8750 4.7145
8 344731.082 430.640 4.8621 705659.56 289.4531 4.8621 345216.0 260.5469 4.8621
9 681509.920 602.765 5.2294 1162595.7 395.6250 5.2294 682494.5 360.5625 5.2294
10 1363883.053 840.625 5.6517 3106655.0 549.4844 5.6517 1365853 488.6250 5.6517

Table 4: A list of input variables.

Variable name [unit] Abbreviation Range F-score Mean accuracy
Latest silicon content (wt%) Si 0.13–1.13 0.1269 81.786%
Sulfur content (wt%) S 0.012–0.077 0.0570 82.857%
Basicity of ingredients (wt%) BI 0.665–1.609 0.0229 81.786%
Feed speed (mm/h) FS 16.725–297.510 0.0132 83.214%
Blast volume (m3/min) BV 1454.30–5580.200 0.0054 83.747%
CO2 percentage in top gas (wt%) CO2 7.921–22.892 0.0048 83.750%
Pulverized coal injection (ton) PCI 0.230–98.533 0.0037 83.214%
CO percentage in top gas (wt%) CO 9.267–27.374 0.0036 82.500%
Blast temperature (◦C) BT 1086.100–1239.700 0.0031 83.571%
Oxygen enrichment percentage (wt%) OEP −0.001–14.688 0.0019 83.393%
H2 percentage in top gas (wt%) H2 2.564–4.065 0.0005 83.214%
Coke load of ingredients (wt%) CLI 2.032–5.071 0.0004 82.857%
Furnace top temperature (◦C) TP 62.703–264.130 0.0002 82.679%
Blast pressure (kPa) BP 59.585–367.780 0.0001 83.214%
Furnace top pressure (kPa) TP 8.585–199.790 0.0001 82.679%

model complexity and accuracy when selecting the inputs. Therefore, it is necessary to screen
out less important variables as inputs from these 15 candidate variables. Here, the inputs are
screened out by an integrative way that combines F-score method [16] for variables ranking
and cross-validation method for variables and model parameters selection.
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F-score is an effective tool for feature selection in data mining and can give feature
ranking by evaluating the discrimination of two sets with real values. For those 15 candidate
variables in Table 4, their F-scores are defined as follows:

Fs(i) =
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⎝ 1
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(4.1)

where x(i), x(i)
+ and x

(i)
− stand for the mean of the ith attribute of the whole training, positive

and negative examples, respectively, while x(i)
j,+ and x

(i)
j,− are the ith variable of the jth positive

and negative instance, respectively. Hence, a variable ranking can be achieved through F-
score method. Table 4 gives the results of F-scores of all 15 variables, which are ranked
according to the F-score values. As one kernel-based learning model, the kernel parameter σ2,
and regularized parameter C play an important role in LS-SVM, so one should pay attention
to selecting proper parameters. Grid search-based ten-fold cross-validation is executed on the
train set for searching the optimal (σ2,C). The searching grid for model parameters is set as

[
2−5, 2−4, . . . , 210

]
×
[
2−5, 2−4, . . . , 210

]
. (4.2)

Mean accuracy in Table 4 stands for the average accuracy under ten-fold cross-
validation experiments of LS-SVM model on some grid points with the best performance.
In the current work, we first select the variable with highest F-score as model input and then
add variables one by one according to their F-scores. Mean accuracy under all kinds of input
variables can be achieved and the results are shown in Table 4. The following are shown by
the mean accuracy column: (1) at the beginning, the mean accuracy increases gradually as
more candidate variables are taken as model inputs; (2) the largest mean accuracy appears
when CO2 is included within the input set; (3) when the mean accuracy is beyond the
maximum, it will fluctuate as the residual variables are added by turns into the input set.
These results indicate that, as the studied BF is concerned, the optimal input set is [Si, S, BI, FS,
BV, CO2] with the model parameters setting (σ2, C) = (29, 28). Table 5 lists the LS-SVM model
accuracy including with/without feature and model selection versions on testing set. In the
case of without feature and model selection version, all candidate variables are selected as
inputs, and we use the default setting for LS-SVM model; that is, set kernel width σ2 equal to
the dimension of input variable and set regularized parameter C as 1. The information in the
second row of this table, such as 34/42, denotes that there are 42 times predicted results that
are ascending trend, and 34 times predictions are successful. The confidence level of the LS-
SVM model without model and feature selection fluctuates severely between the ascending
and descending prediction from 80.95% to 58.86%. The difference of confidence levels of LS-
SVM model with model and feature selection between ascending and descending prediction
is reduced to 2.19% indicating that model and feature selection procedure enhances the
stability of the LS-SVM model obviously. As the last column of Table 5 shows, TSA of LS-
SVM model with feature and model selection procedure is significantly improved compared
with LS-SVM model without feature and model selection, so the selection procedure is
indispensable for the current practical application. Table 6 lists the running time of three
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Table 5: Predictive results of LS-SVM model with/without feature and model selection.

Inputs (σ2,C) Ascend (99∗) Descend (101) TSA†

15 (15, 1) 34/42 = 80.95% 93/158 = 58.86% 127/200 = 63.5%
6 (29, 28) 73/94 = 77.66% 80/106 = 75.47% 153/200 = 76.5%

99∗ means 99 observations are ascending trend; TSA† stands for testing set accuracy.

Table 6: Running time of three numerical methods on model identification.

Algorithm
Conjugate
gradient
method

Null
space

method

MINRES
method

CPU 1948 2800 1488

mentioned numerical algorithms when performing feature and model selection procedure.
The cost time of the MINRES method is reduced significantly compared with the other
algorithms. In a word, the feature and model selection procedure can be effectively performed
for the MINRES method-based LS-SVM, and it is meaningful for practical using.

5. Conclusions and Points of Possible Future Research

In this paper, we have proposed an alternative, that is, the MINRES method, to the solution of
LS-SVM model which is formulated as a saddle point system. Numerical experiments on UCI
benchmark data sets show that the proposed numerical solution method of LS-SVM model
is more efficient than the algorithms proposed by Suykens and Vandewalle [6] and Chu et
al. [8]. To heel, the MINRES method-based LS-SVM model including feature selection from
extensive candidate and model parameter selection is proposed and employed for the silicon
content trend prediction task. The practical application to a typical real BF indicates that the
proposed MINRES method-based LS-SVM model is a good candidate to predict the trend of
silicon content in BF hot metal with low running time.

However, it should be pointed out that despite the MINRES method-based LS-SVM
model displaying low running time, lack of metallurgical information may be the root to the
limited accuracy of the current prediction model. So there is much work worth investigating
in the future to further improve the model accuracy and increase the model transparency,
such as constructing predictive model by integrating domain knowledge and extracting
rules. The extracted rules can account for the output results with detailed and definite inputs
information, which may further serve for the control purpose by linking the output results
with controlled variables. These investigations are deemed to be helpful to further improve
the efficiency of predictive model.
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A novel fault detection technique is proposed to explicitly account for the nonlinear, dynamic, and
multimodal problems existed in the practical and complex dynamic processes. Just-in-time (JIT)
detection method and k-nearest neighbor (KNN) rule-based statistical process control (SPC)
approach are integrated to construct a flexible and adaptive detection scheme for the control
process with nonlinear, dynamic, and multimodal cases. Mahalanobis distance, representing the
correlation among samples, is used to simplify and update the raw data set, which is the first merit
in this paper. Based on it, the control limit is computed in terms of both KNN rule and SPC method,
such that we can identify whether the current data is normal or not by online approach. Noted that
the control limit obtained changes with updating database such that an adaptive fault detection
technique that can effectively eliminate the impact of data drift and shift on the performance
of detection process is obtained, which is the second merit in this paper. The efficiency of the
developed method is demonstrated by the numerical examples and an industrial case.

1. Introduction

Fault has been a constant topic of research for several decades [1–4]. Several fault detection
methods have been developed to solve problems since there exists a growing need for fault
detection in the real process engineering not only from the plant’s safety perspective but also
from considering the quality of the process products [5–7]. Moreover, the existing methods
used to fault detection have been applied into a broad range of areas such as chemical process,
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networked control systems and semiconduction process, and so forth [8–11]. The dynamic
change, multiple mode, and nonlinearity exist objectively in the most of the aforementioned
process, such as semiconduction process, tank reactors, and so forth [9–11], which has
brought new challenges to the analysis and implementation of fault detection. Therefore,
they must be taken into account carefully in developing a high-performance and adaptive
fault identification method to detect the abnormal cases as early as possible.

As summarized in [12], the technologies of process analysis and operation are derived
broadly into two categories: model-based approach and data-based approach. In the model-
based approach, static or dynamic models are built for the process under normal operating
situation. The difference between the actual process output and nominal model’s output is
monitored to determine whether any fault occurs or not [5, 13–18]. Noted that many con-
trol processes are data rich but information poor, which senses the data-based method is
strongly needed to obtain a flexible and high-efficiency detection manger systems. Among
the reported results in the literature, to mention a few, data-driven KNN fault detection
was addressed in [9]. Based on it, [10] proposed an improved principal component analysis
(PCA) KNN technique to implement the fault identification. Noted that data-based fault
monitoring and identification methods were also investigated in [11, 18, 19].

It should be pointed out the nonlinearity, dynamics, and multimode are the inevitable
obstacles for either model-based approach or data-based approach when process detection
is required in the real-world applications. Various methods, including statistical process
control (SPC), multivariate statistical process control (MSPC), qualitative knowledge-based
methods, artificial intelligence, and various integrated methods, have been developed and
performed in the available literature [20–23]. Well known that PCA is used in MSPC widely,
the existing nonlinear PCA method [24, 25], dynamic PCA method [26], and independent
component analysis PCA method [18] have been presented to address the nonlinearity, dyna-
mics, and multimode faced by fault detection, respectively. Since JIT is inherently adaptive
in nature, which is achieved by storing the current measured data in the database [27, 28],
and is capable of detecting and diagnosing whether the query is normal or not by on-line
and adaptive approach [19], as shown in Figure 1, data-based JIT method has attracted much
more scholars’ attention in the recent years (see [12]). Reference [12] proposed a data-based
JIT-SPC detection and identification technique, in which the distance was calculated and
checked every time when fault detection need to be conducted. References [9, 10] applied
KNN rule to fault detection for semiconductor manufactory process, in which k-nearest
neighbors were used to tackle the multimodal problem. However, though nonlinear PCA
method [24, 25], dynamic PCA method [26], independent component analysis PCA method
[18], data-based JIT [12, 18, 19], and KNN methods [9, 10] have been reported, the efficient
method which can naturally handle nonlinear correlation among the variables, dynamic
change of the systems and multimodal batch trajectories have not been fully investigated
so far.

As a matter of fact, it is crucial for realizing the desired performance in detection to
determine an appropriate normal operation data stored in database, since too much data will
have heavy load on both storage cost and computation, while, less data naturally effect on the
efficacy of detection technique. How to determine an appropriate raw data set so that cost,
computation complexity, and performance of detection can be compromised is a challenge.
Based on the Mahalanobis distance between samples, the simplification of raw data set is
studied in [29], in which the simplifying procedure is terminated in terms of the desired
number of samples. However, how to determine number of samples that is closely related
to quality of detection was not investigated. Well known to all, data drift and shift exist
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in the practical complex dynamic process inevitably, which can be produced due to much
more insuperable causes, such as aging of instrument, variation of temperature, effect of
environment, and difference in the coming materials, and so forth [30]. In this case, some
of queries with drift and shift that might be normal are mistaken for faults, or that might
be fault are falsely identified as normalities. Then, it is of paramount importance to actively
regulate the control limit (CL) by on-line approach, which will surely improve the quality
of fault detection. However, to the best of authors’ knowledge, how to simplify and update
the raw samples set to light the computation load and realize high performance have not
been investigated fully to date. Especially for data-driven fault detection with time-varying
control limit, few results have been available in the literature so far, which motivates the
present study.

The overall goal in this paper is to propose a flexible, adaptive JIT scheme of fault
detection. By computing the Mahalanobis distance between normal samples, as well as
Mahalanobis distance from the query to the normal operation data stored in the database, the
raw data set is simplified and updated. Moreover, the updated database-based time-varying
CL is derived in terms of KNN rule combined with SPC method, such that the judgment is
conducted every time when fault detection is required as shown in Figure 2. Moreover, the
integration of JIT method and KNN technique is well suited for the nonlinear, dynamic and
multimodal fault detection process. Finally, simulation results and industrial case illustrate
the efficiency of the method proposed.

2. Simplifying the Raw Data Set

In this section, we will describe the method of simplifying the raw data set.
In the practical detection of the process, the huge amounts of raw data bring the

serious calculation load and cost spending for fault detection, identification, and diagnosis.



4 Journal of Applied Mathematics

Since the closer Mahalanobis distance between two samples is, the more similar their basic
features are, we take mean of them to retain the common characteristics, and this mean is put
into the raw data set to replace the original two samples, which can keep the characteristics
of raw data set to the greatest extent [29]. Let X denotes the raw data matrix with n samples
(rows) and m variables (columms). The specific procedure is as follows.

Algorithm 2.1.
Step 1. Let Z(n×m) = X(n×m), and the covariance matrix of X is defined as: V = (vij) =

((xi − xi)′(xj −xj)/(n−1)). Where xi, xj (i, j = 1, 2, . . . , m) denote the stochastic variables, and
xi and xj denote the mean of them.

Step 2. Calculate the Mahalanobis distance between every sample and all the other
samples stored in data set Z, which is denoted as mdij (i, j = 1, 2, . . . , n) and is placed in
Mahalanobis distance matrix MD(n × n) = (mdij).

Step 3. Find out the minimum and nonzero element in each raw in the matrix MD,
which is placed in row vector v(1 × n), and the place (column number) of each minimum
element in each row is recorded in row vector p(1 × n). Based on it, finding out the minimum
value in v(1×n), and if it’s place in v(1×n) is i and No. i element is j in vector p(1×n), thenmdij
is the minimum value in the matrix MD(n × n), which presents the minimum Mahalanobis
distance between the sample i and the sample j in raw data set.

Step 4. Let M = Z, and we use the mean of the sample i and the sample j to replace
the sample i, and delete the sample j, then the row number of the matrix Z is reduced a line.
Define Γ = ((zi − zi)′(zj − zj)/(l − 1)), where zi, zj (i, j = 1, 2, . . . , m), and l denotes the row
number of the matrix Z. If 1 ≥ Trace(Γ)/Trace(V) ≥ ε, where 0 < ε ≤ 1, return to Step 2;
otherwise, M is the simplified data matrix. Exit.

Pseudocode 1 is given.

Remark 2.2. Motivated by PCA [10, 19, 31], where combination of variables that capture the
largest amount of information in data set is found, the inequality 1 ≥ Trace(Γ)/Trace(V) ≥ ε
realizes the preservation and update of the original information to the greatest extent in
Algorithm 2.1. Note that Trace(Γ) and Trace(V) denote the trace of covariance matrix of
simplified or update data set and original data set, respectively, and well known that Trace(V)
is equal to the sum of all the eigenvalues of matrix V. In this sense that the threshold ε
is selected to maximize the retention of the originally statistical information. For example,
ε = 0.98 means that 98% of the variance in raw data set is represented by the new simplified
data set Z. Obviously, Algorithm 2.1 is a kind of logical and promising way for the data-
driven fault detection.

Remark 2.3. Different from [29], in which though the raw data is reduced based on Maha-
lanobis distance between samples, the subjectively determined number of simplified data
has an essential effect on high-performance detection process. In this paper, the threshold
that limits the extent of reducing the raw data is given, which is a preferable way that com-
promises the accuracy of fault detection and the computation complexity as well as lower
cost.

Remark 2.4. Apparently, simplification and update scheme of raw data set presented for fault
detection also apply to data-driven fault monitoring, diagnosis, and isolation, since the pro-
per number of raw data still need to be determined and data drift and shift still needs to be
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for i = 1 : m
for j = 1 : m

cov(i, j) = sum((x(:, i) − mean(x(:, i))).
∗(x(:, j) − mean(x(:, j))))/(size(x, 1) − 1);

end
end
Z = X;
ss1 = eig(cov);
[sm1, sn1] = size(ss1);
lmd1 = 0

for i = 1 : sm1
lmd1 = lmd1 + ss1(i);

end
while 1
[p, q] = size(Z)
for i = 1 : q

for j = 1 : q
cov(i, j) = sum((z(:, i) − mean(z(:, i))).
∗(z(:, j) − mean(z(:, j))))/(size(z, 1) − 1);

end
end
ss = eig(cov);
[sm, sn] = size(ss)
lmd = 0

for i = 1 : sm
lmd = lmd + ss(i);

end
if lmd/lmd1 < ε||lmd/lmd1 > 1

break
end
[n,m] = size(Z);
d = zeros(n, n);
M = Z;

for i = 1 : n
for j = 1 : n
d(i, j) = d(i, j) + (z(i, :) − z(j, :)) ∗ inv(cov)
∗(z(i, :) − z(j, :))T

end
end
md = zeros(n − 1, n − 1);

for i = 1 : n
for j = 1 : n

if d(i, j) > 0
md(i, j) = d(i, j);

else
md(i, j) = 10000;

end
end

end
[The Min,The Min ID] = min(md′)
v = The Min;
p = The Min ID;
[The Min,The Min ID] = min(v);
i = The Min ID;
j = p(i);
z(i, :) = (z(i, :) + z(j, :))/2;
z(j, :) = [ ];

end

Pseudocode 1
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Figure 3: Flow chart of proposed detection method.

coped with. In this sense that the simplification and update technique suggested in this paper
is quite general.

3. Detection Method

In this section, we will give the fault detection method including off-line and on-line cases as
shown in Figure 3.

3.1. Off-Line Model Building

Algorithm 3.1.
Step 1. Set i = 1, and s is the number of simplified data set.
Step 2. Find k nearest neighbors (see [30]) for each sample i in the simplified data set

and calculate the distances between sample i and its k-nearest neighbors.
Step 3. Estimate the cumulative density function of the above-squared distances by the

function “ksdensity” in Matlab, which is denoted as fi(x).
Step 4. Calculate expectation of the KNN-squared distance based on the obtained

cumulative density function in terms of the definition of expectation, and the expectation
is denoted as Xi.
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Step 5. Set i = i + 1. If i ≤ s, go to Step 2; otherwise, go to Step 6.
Step 6. Estimate the cumulative distribution function of the expectation to obtain the

CL.

Remark 3.2. At Step 2, Euclidean distance is used, which is simple and easy, but any other
distance is also suitable for the method proposed. The obtained CL in Algorithm 3.1 is based
on the statistical test concept in the same way as SPC, in this sense off-line model is cons-
tructed by the KNN rule-based SPC approach.

Remark 3.3. In general, the estimation of probability density function in multidimensional
space is difficultly derived [12]. To overcome this difficulty, we try to estimate the probability
density functions of squared distance and expectation of squared distance in Step 3 and Step
4 from stochastic variable point of view. In addition, expectation of squared distance can be
also obtained by taking an average over squared distances.

Remark 3.4. Since there are similar statistical characteristics for the normal samples and the
distance between the fault sample and the nearest neighboring samples must be greater than
the normal sample’s distance to the nearest neighboring samples [9, 10, 12], setting CL to
detect faults in terms of cumulative distribution function of the expectation is sound and
effective. CL proposed in this paper means that the expectation values of vast majority
distance for the normal samples do not exceed it. For example, 95% control limit means that
the value within which 95% of population of normal operation data (expectation values)
is included. Here, 95% is also called confidence level based on probability and statistical
theory.

3.2. On-Line Fault Detection

Algorithm 3.5.
Step 1. Calculate the distance between the query and k nearest neighbors in the simp-

lified data set.
Step 2. Estimate the cumulative density function of the above-squared distances.
Step 3. Calculate expectation based on the obtained cumulative density function.
Step 4. The query is abnormal if the expectation is beyond its CL, otherwise, this query

is normal.
Step 5. If the query is normal, to update, it can be put into the normal samples database,

which will be also simplified by using the technique described in Algorithm 2.1. In this case,
the updated database is used to compute the new CL to continue to identify the next query
in Step 1.

Remark 3.6. Compared with [9, 10, 12, 19], the technique that simplifies and updates raw data
set is a main contribution in this paper. More importantly, the time-varying CL can be derived,
such that adaptive fault detection can be implemented by on-line approach, which will elimi-
nate the impact of data drift and shift on the quality of fault detection. Different from [18]
wherein just-in-time-learning (JITL) along with two-step independent component analysis
and principal component analysis was studied, in this paper, the database is updated and
simplified. Moreover, note that the amount of database will not randomly increase when nor-
mal queries are added to it. The reason is that Algorithm 2.1 is implemented once the on-line
detection process is completed. In other words, the updated database still can be simplified
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Table 1: Control limits under the different thresholds.

Thresholds Number of left samples Maximum Mahalanobis distance CL
0.99 292 4.8747e − 005 8.1465e − 004
0.95 271 3.0298e − 004 8.7031e − 004
0.6 124 0.0028 0.0026

by virtue of Algorithm 2.1. Obviously, high fault detection capability and low cost can be
owned due to the usage of Algorithms 2.1–3.5.

Remark 3.7. In fact, the difficulties posed by nonlinearity, dynamics, and multiple modes of
control process on fault detection have been addressed explicitly by the detection method
proposed, which comes as no surprise, since the KNN technique, SPC method as well as
on-line and update scheme are integrated.

4. Numerical Examples

In this section, two examples are given to show the effectiveness of the fault detection tech-
nique. The first example aims at the single modal case to show the efficacy of simplified data
set based detection procedure presented in this paper. The second example is used in the
multimodal case to compare with JIT method [12].

Example 4.1. Consider the following dominant nonlinear process mode [9, 10]:

x1 = x2
2 + noise. (4.1)

Firstly, 30 normal runs are operated for verifying the method of simplifying raw data set. Here
threshold ε = 0.95 is set. By Algorithm 2.1, the 28 samples are left. Figures 4 and 5 show the
raw data set and the simplified data set, respectively.

Continue to operate the system (4.1), we obtain 300 normal data used for the raw data,
5 normal runs used for validation, and 5 faults introduced, which is shown in Figure 6. The
number of nearest neighbors k is set to be 10, and the confidence level is chosen as 99% to
obtain the CL. Table 1 gives the number of left raw data set used for training, the maximum
Mahalanobis distance, and the CL under the different thresholds ε, and the histogram of
simplified raw data and fault detection is shown in Figure 7, where the percentages of left
date to raw data and detected faults to total faults are clearly seen. Here, the maximum
Mahalanobis distance means that the samples with smaller distance than it can be merged
based on Algorithm 2.1. Correspondingly, the detection results under thresholds 0.99, 0.95,
and 0.6 are also shown in Figures 8, 9, and 10, respectively. As illustrated in Figures 7–10, the
amount of left data become gradually less and less and the CL is increasing with the decrease
in threshold, consequently, the effect of fault detection becomes bad as expected.

Note that the threshold ε decided has a significant impact on the detection results,
obviously, the bigger the threshold is, the more accurate detection operates. Simulation results
presented illustrate that defection performance does not suffer degradation by virtue of the
simplified data set. FD-KNN [9] is applied into this nonlinear case, and the detection result is
shown in Figure 11. It should be pointed out though a better detection result is also obtained
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by using FD-KNN approach [9], the raw data set is simplified before implementing the
detection in this paper, which will contribute to the saving storage space and reducing the
computational complexity.

Example 4.2. Considering the following bimodal case [9, 10]:

A y1 = 2y2 + noise,

B y1 = 1.5y2 + 6 + noise.
(4.2)
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The above two cases are operated to produce 200 normal samples, respectively, and
continue to be operated to produce 100 normal samples and 10 faults that are used for the
validation and fault defection, respectively, which is given in Figure 12. For comparative
analysis, 5 normal data and 10 fault data are marked. Similar to Example 4.1, the number
of nearest neighbors k is set to be 10, and the confidence level is chosen as 99% to obtain the
CL.
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Figure 9: Detection result under the threshold ε = 0.95.

By Algorithm 2.1, the raw data set is simplified. Moreover, the simplified data set is
updated by on-line approach when the 100 normal data and 10 faults are detected. As shown
in Table 2, at the end of the detection, the number of left raw data is 358, it is obvious that
the amount of data set is not increased unlimitedly due to the threshold ε = 0.9. There is no
doubt that the on-line and update method proposed in this paper can surely reduce the cost of
data storage and computation load. The detection results by the method in this paper and JIT
method [12] are presented in Figures 13 and 14, respectively. Moreover, the embedded son
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Table 2: Summary of parameters in Example 4.2.

Raw data 400
Threshold 0.99
Left data 358
Confidence level 99%
CL 0.0067
Normal data 100
Fault data 10
Updated data set 344
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Figure 10: Detection result under the threshold ε = 0.6.

figures in Figures 13 and 14 are used to emphasize the CL and the verification of training
data and validation. From Figure 12, the CL is time-varying as the normal and fault data are
identified. Note that since only normal data 33, 34, and 47 are mistaken for faults by the
method proposed, whereas normal data 33, 34, 47, 6, and 62 are mistaken for faults by the
JIT method [12], the better detection result is obtained in this paper using the original and
update CL than the one in [12]. Here, the original CL means CL that is obtained in terms of
simplified database by off-line approach. Comparatively speaking, the threshold determined
subjectively in advance during calculating the sparse distance might partially degrade the
performance of fault detection. Likewise, the tradeoff of storage cost and high detection per-
formance is realized.

5. Case Study

In this section, an AL stack etch process was performed on a commercial scale Lam 9600
plasma etch tool at Texas Instrument, Inc. [9, 32, 33]. The data are taken from MACHINE
DATA, OES DATA, and RFM DATA during three experiments [33]. As pointed out by [9],
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the unique characteristics associated with semiconductor process different from other pro-
duction processes include the unequal batch duration, unequal step duration, and process
drift and shift, therefore, data from the different experiments of the same resource have dif-
ferent mean and different covariance structures, which can be seen more clearly in the case of
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Figure 13: Fault detection by the method proposed in this paper.
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Figure 14: Fault detection by JIT method.

different resources. Due to the multimodal characteristic, the detection process based on the
method proposed in this paper is as follows.

Step 1. Data preprocessing: we choose 10 normal batches and 10 process variables
selected from the three data resources, such that the meaningful results can be obtained. Then,
30 normal batches are stored in the raw database. Further, the data is unfolded as the 2-D
array by using the way in [9].

Step 2. The data set is simplified by Algorithm 2.1.
Step 3. The CL is computed by Algorithm 3.1.
Step 4. Another 15 normal batches are selected for the validation from the three dif-

ferent resources, in which 5 normal batches are used from each of resources. Moreover, 5
faults are also chosen from the intentionally induced during the experiments in the above
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Figure 15: Fault detection for etch process.

resources for detection. Note that Algorithm 2.1 still can be used to undate the raw data set to
produce the time-varying CL.

Following the aforementioned steps, threshold ε = 0.9 is determined in the detection
for the etch process, and 29 normal batches can be obtained after Step 2. Moreover, the CL
7.9682e + 009 is computed as original CL under confidence level 0.99. Known that if the query
is normal, then it will be put into the simplified data set during identifying the normal data
and fault data. It is worth pointing out the number of data in the database will be not surely
increasing unlimitedly at the same time of updating the database due to Step 4. In this case,
the final number of samples in the database is 36. The detection result is shown in Figure 15,
where all of faults are identified correctly under the time-varying control limit by the method
proposed in this paper. However, note that if raw data set is not updated, all of 5 faults can not
be detected under the original CL computed. It is certain that some original faults with small
data drift due to the effect of temperature and environment can be identified more easily in
terms of the method of updating raw data set by online approach than the methods without
applying the technology of update data set.

6. Conclusion

This research presented aims at highlighting the following two aspects: on one hand, the raw
data set is simplified and updated by JIT approach based on the Mahalanobis distance bet-
ween samples; on the other hand, combining the KNN rule with SPC method, the time-
varying CL can be obtained to solve the nonlinear, multimodal, and data drift and shift prob-
lems existed in the practical case study. Numerical examples and an industrial case study
show that the method proposed is an adaptive, flexible, and high-performance fault detection
technique.
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This paper presents a modelling of an unmanned airship. We are studying a quadrotor flying wing.
The modelling of this airship includes an aerodynamic study. A special focus is done on the com-
putation of the added masses. Considering that the velocity potential of the air surrounding the
airship obeys the Laplace’s equation, the added masses matrix will be determined by means of the
velocity potential flow theory. Typically, when the shape of the careen is quite different from that
of an ellipsoid, designers in preprocessing prefer to avoid complications arising from mathematical
analysis of the velocity potential. They use either complete numerical studies, or geometric approx-
imation methods, although these methods can give relatively large differences compared to exper-
imental measurements performed on the airship at the time of its completion. We tried to develop
here as far as possible the mathematical analysis of the velocity potential flow of this uncon-
ventional shape using certain assumptions. The shape of the careen is assumed to be an elliptic
cone. To retrieve the velocity potential shapes, we use the spheroconal coordinates. This leads
to the Lamé’s equations. The whole system of equations governing the interaction air-structure,
including the boundary conditions, is solved in an analytical setting.

1. Introduction

The rapid expansion of the capabilities of airships in the last decade and the growing of the
range of missions they designed to support lead to the design of complex shapes of the
careens.

Exhaustive studies in that topic were presented by [1, 2]. Traditionally, ellipsoidal
shapes are used for airships [3–5]. However, and in order to optimize their performances, dif-
ferent original shapes have been tested in the last years. This is due to the advances in
aerodynamics, control theory, and embedded electronics. The airship studied here departs
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Figure 1: The flying wing Airship MC500.

with the traditional shapes. The MC500 is a flying wing (Figure 1), developed by the French
network DIRISOFT.

The MC500 is an experimental prototype for a set of great innovating airships. A
precise dynamics model is needed for this kind of unmanned airships including the air-
structure interaction. This will enable the elaboration of convenient algorithms of control,
stabilization, or navigation of these flying objects.

The aerodynamic forces have a large influence on the dynamic behaviour of the
airships. Among the aerodynamic solicitations, the added masses phenomenon is one of the
most important. In fact, when hovering or in case of low speed displacement, the lift and drag
forces and torques could be neglected.

The added masses phenomenon is well known for airships and similarly for sub-
marines. When an airship moves in an incompressible and infinite inviscid fluid, the kinetic
energy of the fluid produces an effect equivalent to an important increase of the mass and
the inertia moments of the body. This contribution may be of the same magnitude as the
terms of mass or inertia of the airship. Apart from ellipsoidal shapes [6] or thin rectangular
plates [7] where the theory is well established for many decades, the analysis of this problem
for unconventional shapes in preprocessing is usually done by approximate methods. We can
quote the geometric method, consisting of an extension of a 2D analysis and requiring the
introduction of empirical parameters [8, 9], or the fully numerical methods consisting of
modeling both the airship and the surrounding air [10, 11].

As opposed to other treatments of this problem, the derivation proposed here is based
on the velocity potential flow theory [6, 7, 12]. We tried to pursue the analytical study to an
advanced stage with some assumptions. The shape of the careen of the MC500 is considered
as a cone with elliptic section. When we consider that the velocity potential of the air obeys the
Laplace’s equation, the added masses matrix could be determined by solving this equation,
using the spheroconal coordinates. Solving the Laplace’s equation for such configuration
leads to the Lamé’s equations. We have dedicated a section of this paper for the determination
of the ellipsoidal harmonic series issued from these equations with the specific boundary
conditions. Such series developed for the first time by Lamé [13] were improved particularly
by Liouville and Sturm in their famous theory and by Hermite [14] and were applied in dif-
ferent fields. Byerly [15] and later Hobson [16] gave an important comprehensive literature
about this topic.
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Significant recent works, such as the works of Boersma and Jansen [17] in electromag-
netic field, and those of Garmier and Barriot [18] in astrophysics could be quoted. In this
work, we are trying to apply this theory for the air-structure interaction.

2. Dynamic Model

2.1. Kinematics

The airship MC500 is assumed to be a rigid flying object.
We use two reference frames. First an earth-fixed frame R0 = (O,X0,Y0, Z0) assumed

to be Galilean. Then a local reference frame Rm = (G,Xm,Ym,Zm) fixed to the airship. Its axes
are selected as follows:

Xm and Ym are the transverse axis of the airship, Zm: the normal axis directed
downwards.

To describe the orientation of the airship, we use a parameterization in yaw, pitch, and
roll. The configuration of the object is described by means of three rotations defined by three
angles of orientation, that is, the yaw ψ, pitch θ, and roll φ.

The whole transformation between the local reference frame Rm and the global frame
is given by Goldstein [19]:

JT1
(
η2
)
=

⎛

⎝
cθ · cψ cθ · sψ −sθ

sφ · sθ · cψ − cφ · sψ sφ · sθ · sψ + cφ · cψ sφ · cθ
cφ · sθ · cψ + sφ · sψ cφ · sθ · sψ − sφ · cψ cφ · cθ

⎞

⎠, (2.1)

such as JT1 (η2) · J1(η2) = J1(η2) · JT1 (η2) = I3. We denote by cθ = cos θ; sφ = sinφ.
Using the rotation matrix J1(η2), the expression of the linear speed in the reference

frame R0 is given by

η̇1 = J1
(
η2
) · ν1. (2.2)

The angular speed is expressed as follows:

η̇2 = J2
(
η2
) · ν2 (2.3)

with

J2
(
η2
)
=

⎛

⎜⎜
⎝

1 sφ tan θ cφ tan θ
0 cφ −sφ
0

sφ

cθ

cφ

cθ

⎞

⎟⎟
⎠. (2.4)

It is noticed that the parameterization by the Euler angles has a singularity in Θ = π/2 + kπ .
This parameterization is acceptable because it is not possible for an airship to reach

this singular orientation of 90 degrees pitching angle.
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2.2. Dynamics

As mentioned previously, a specificity of the lighter than air vehicles is illustrated by the
added masses phenomenon. When a big and light object moves in the air, the kinetic energy
of the particles of air produces an effect equivalent to an important growing of the mass and
inertia of the body. As the airship displays a very large volume, its added masses and inertias
become significant.

The basis of the analysis of the motion of a rigid body immersed in a perfect fluid is
established by Lamb [6]. He proves that the kinetic energy T of the body with the surrounding
fluid can be expressed as a quadratic function of the six components of the translation and
rotation velocity as follows:

T =
1
2
νT (Mb +Ma)︸ ︷︷ ︸

M

ν = Tb + Ta, (2.5)

where Ma is the added mass matrix due to the motion of the surrounding air and Mb is the
mass matrix of the body.

For an airship fully immersed in the air, the 6 × 6 added mass matrix Ma is assumed
to be positive and definite. As the added kinetic energy Ta, it will be discussed in the next
section. The whole mass matrix M is assumed symmetric block-diagonal matrix:

M =
(
MTT 0

0 MRR

)
. (2.6)

For the computation of the whole dynamics model, we choose to use the Kirchoff’s equation
[20]:

d

dt

(
∂T

∂ν1

)
+ ν2 ∧ ∂T

∂ν1
= τ1,

d

dt

(
∂T

∂ν2

)
+ ν2 ∧ ∂T

∂ν2
+ ν1 ∧ ∂T

∂ν1
= τ2,

(2.7)

where ∧ is the vectorial product, τ1 and τ2 are, respectively, the external forces and torques,
including the rotors effects, the weight (mg), the buoyancy B, and the aerodynamic lift (FL)
and drag (FD).

The dynamical system of the airship becomes [21–23]

(
MTT 0

0 MRR

)(
ν̇1

ν̇2

)
=
(

τ1 − ν2 ∧ (MTTν1)
τ2 − ν2 ∧ (MRRν2) − ν1 ∧ (MTTν1)

)
. (2.8)

Description of the Rotors

The MC500 has four electric engines driving rotors. Each rotor has two parallel contrarotating
propellers to avoid any aerodynamic torque (Figure 2). The rotor can swivel in two directions.
A rotation of angle βi around the Y axis (−180◦ ≤ βi ≤ 180◦) and a rotation of angle γi around
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Figure 2: Position of the rotors.

an axis ZiR normal to Y and initially coinciding with the Z axis (−30◦ ≤ γi ≤ 30◦). A fictive
axis XiR completes the rotor frame.

Let us denote Pi by the position of the rotor i. We can then define a rotation matrix Ji3
between the frame (Pi, XiR, Y, ZiR) and the local frame Rm such as

Ji3 =

⎛

⎝
cγicβi −sγicβi sβi
sγi cγi 0

−cγisβi sγisβi cβi

⎞

⎠. (2.9)

If we suppose that the intensity of the thrust force of the rotor i is ‖Fi‖, this force could be
introduced in the second member of the dynamic equation as

Fi = Ji3‖Fi‖ · eXm, (2.10)

where eXm is a unitary vector along the Xm axis.
The torque produced by this rotor in the centre of inertia G is Fi ∧ PiG.

Weight and Buoyancy

An important characteristic of the airships is the buoyancy Bu. This force represents a natural
static lift, corresponding roughly to 1 Kg for each m3 of helium involved in the careen. We
suppose here that this force is applied in the centre of buoyancy B different from the centre
of inertia G:

Bu = ρair · V · g, (2.11)

where V is the volume of the careen, ρair is the density of the air, and g the gravity.
Let us note FWB and MWB the force and the moment due to the weight and buoyancy.
We have

FWB =
(
mg − Bu

) · JT1 eZ, MWB = Bu ·
(
JT1 · eZ ∧ BG

)
. (2.12)
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Aerodynamic Forces FA

Such as other flying objects, the airships are subjected to aerodynamic forces. The resultant
of these forces could be divided into two component forces, one parallel to the direction of
the relative wind and opposite to the motion, called Drag, and the other perpendicular to the
relative wind, called Lift. The MC500 is designed with an original shape oriented to a best
optimization of the ratio lift upon drag forces.

However, and as first study, we try to evaluate the behaviour of the airship in the case
of low velocity or while hovering. In these cases, the effect of these forces could be neglected.

The global dynamic system could be expressed in a compact form as follows [21, 24]:

M · ν̇ = τ +QG (2.13)

with

τ =
(
τ1

τ2

)
, (2.14)

such as

τ1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4∑

i=1

‖Fi‖ · cγi · cβi −
(
mg − Bu

) · sθ
4∑

i=1

‖Fi‖sγi +
(
mg − Bu

) · sφ · cθ

−
4∑

i=1

‖Fi‖cγi · sβi +
(
mg − Bu

)
cφ · cθ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

τ2 = −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c
4∑

i=1

‖Fi‖ · sγi + b1
(‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)

+ b3
(‖F3‖cγ3 · sβ3 − ‖F4‖cγ4 · sβ4

)
+ BuzB · sφ · cθ

−c
4∑

i=1

‖Fi‖cγi · cβi
+ a
(‖F4‖cγ4 · sβ4 + ‖F3‖cγ3 · sβ3 − ‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)
+ BuzB · sθ

b1
(‖F1‖cγ1 · cβ1 − ‖F2‖cγ2 · cβ2

)
+ b3
(‖F3‖cγ3 · cβ3 − ‖F4‖cγ4 · cβ4

)

+a
(‖F4‖sγ4 + ‖F3‖sγ3 − ‖F1‖sγ1 − ‖F2‖sγ2

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

QG =
( −ν2 ∧ (MTTν1)

−ν2 ∧ (MRRν2) − ν1 ∧ (MTTν1)

)
.

(2.15)

3. Computation of the Added Masses

3.1. Spheroconal Coordinates

Much of the current airships developed and studied in the literature are considered as
ellipsoidal. This particular shape has a wide popularity in this field due to the existence of



Journal of Applied Mathematics 7

Figure 3: Transverse sections of the MC500.

a large and reliable knowledge and experimentations for both ellipsoidal airships and their
alter ego submarines. However for our flying wing airship, we should use a more convenient
approximation for the aerodynamic study.

The MC500 airship is a collection of aerodynamic profiles, with symmetry around the
x-z axis. Each transverse section of the careen parallel to the plan y-z gives roughly an ellipse.
This motivated us to model as first assumption the airship as an elliptic cone (Figure 3).

To take into account the interaction of the airship with the surrounding fluid, a model
of the flow is needed.

A variation of this study may be performed by calculating the fluid pressure around
the airship through the Bernoulli equation [25].

Here, we use the potential flow theory with the following assumptions.

(a) The air can be considered as an ideal fluid with irrotational flow and uniform
density ρf , that is, an incompressible fluid.

(b) A velocity potential Φf exists and satisfies the Laplace’s equation throughout the
fluid domain:

∇2Φf = 0, (3.1)

and satisfies the nonlinear free surface condition, body boundary condition, and
initial conditions.

Finally we suppose that the velocity of the air is null far from the airship:

Φf∞ −→ 0. (3.2)

(c) The velocity of the fluid obeys the equation:

Vf = ∇Φf . (3.3)
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Figure 4: Representation of the spheroconal coordinates in the elliptic cone.

In his study [6], Lamb proves that the kinetic energy Ta of the fluid surrounding a moving
rigid body can be expressed as a quadratic function of the six components of the translation
and rotation velocity ν = (u, v,w, p, q, r)T and can also be expressed as function of the velocity
potential of this fluid by the following relation:

Ta =
1
2
νTMaν = −1

2
ρf

∫∫

∂S

Φf

∂Φf

∂nO
dS. (3.4)

nO is an outward normal vector. Φf can be splitted on

Φf = νTΦ = uΦ1 + vΦ2 +wΦ3 + pΦ4 + qΦ5 + rΦ6, (3.5)

where Φ appears as a collection of six spatial potential Φi functions of x, y, z that verify
the Laplace’s equation. To extract the terms of the added mass matrix, we should define the
spatial potential Φ of the moving fluid. In some cases it could be determined using geometric
means [8, 26]. Here we choose to use the potential flow theory. We can then express the
components of the added mass matrix Ma in function of the velocity potential flow of the air
surrounding the airship Φ such as

Maij = −ρf
∫∫

S

Φi

∂Φj

∂nO
dS. (3.6)

For solving the Laplace’s equation (3.1) and according to the configuration of the careen, we
use the spheroconal coordinates [16]. This assumption seems acceptable in that stage.

A first parameterisation by the coordinates (ρ,Θ, ϕ) is used, for example, by Boersma
and Jansen [17], Kraus and Levine [27] (Figure 4), where ρ is the distance of a point to the
origin, ϕ is the azimuthal angle (0 ≤ ϕ ≤ 2π), and Θ is the longitudinal angle. Θ = Θ0

represents the external surface of the elliptic cone.
This parameterisation has the advantage to be physically significant. However, in our

case, it leads to intractable calculations. We prefer to use the parameterisation (ρ, μ, ζ) given
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by Hobson [16]. The equation of the surface of an elliptic cone is given by G. A. Korn and T.
M. Korn [28] such as

x2

μ2
+

y2

μ2 − a2
+

z2

μ2 − b2
= 0. (3.7)

a, b, and μ0 are parameters that define the elliptic cone.
With

b2 	 ζ2 	 a2 	 μ2 	 μ2
0, (3.8)

ρ is always the distance of a point to the origin. We define then the Cartesian coordinates (x,
y, z) as

x =
ρμζ

ab
,

y =
ρ

a

√(
μ2 − a2)(ζ2 − a2)

a2 − b2
,

z =
ρ

b

√(
μ2 − b2)(ζ2 − b2)

b2 − a2
.

(3.9)

By analogy with the azimuthal angle in the previous parameterisation, we can introduce an
angle ϕ defined by

cos2ϕ =
b2 − ζ2

b2 − a2
,

sin2ϕ =
ζ2 − a2

b2 − a2
,

such that ζ =
√
a2cos2 ϕ + b2 sin2 ϕ, (3.10)

with (0 ≤ ϕ ≤ 2π).
The surface of the elliptic cone is now defined by μ = μ0. By varying this parameter,

one can see its influence on the shape of the cone in Figure 5.
To express the components of the fluid velocity Vf in the conical elliptic reference

frame, we define three unitary vectors �eρ, �eϕ, �eμ. With

�eρ =
1
hρ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂x

∂ρ

∂y

∂ρ

∂z

∂ρ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, �eϕ =
1
hϕ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂x

∂ϕ

∂y

∂ϕ

∂z

∂ϕ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, �eμ =
1
hμ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂x

∂μ

∂y

∂μ

∂z

∂μ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.11)
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Figure 5: Influence of the parameter μ on the shape of the cone.

hi are the scale factors. One can easily verify that these three angles form an orthonormal
basis, and the velocity of the fluid could be expressed as

�Vf = Vρ · �eρ + Vϕ · �eϕ + Vμ · �eμ. (3.12)

The surface of the elliptic cone is defined by μ = μ0; �eμ appears as the normal vector to the
surface in a given point.

3.2. Laplace’s Equation

With the spheroconal coordinates, the Laplace’s equation (3.1) becomes [16]

(
μ2 − ζ2

)∂2Φ
∂α2

+
(
ρ2 − ζ2

)∂2Φ
∂β2

+
(
ρ2 − μ2

)∂2Φ
∂γ2

= 0 (3.13)

with

α = b
∫ρ

b

dt
√
(t2 − a2)(t2 − b2)

, β = b
∫μ

a

dt
√
(b2 − t2)(t2 − a2)

,

γ = b
∫ ζ

0

dt
√
(a2 − t2)(b2 − t2)

.

(3.14)

To solve the Laplace’s equation (3.13), we use the traditional separation of variables:

Φ
(
ρ, μ, ζ

)
= R
(
ρ
) · Z(μ) · Y (ζ). (3.15)
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Replacing (3.16) in (3.12) gives

μ2 − ζ2

R

d2R

dα2
+
ρ2 − ζ2

Z

d2Z

dβ2
+
ρ2 − μ2

Y

d2Y

dγ2
= 0. (3.16)

This equation can be splitted on three separated differential equations:

d2R

dα2
−
[
n(n + 1)ρ2 −

(
a2 + b2

)
s
]
R = 0,

d2Z

dβ2
+
[
n(n + 1)μ2 −

(
a2 + b2

)
s
]
Z = 0,

d2Y

dγ2
−
[
n(n + 1)ζ2 −

(
a2 + b2

)
s
]
Y = 0.

(3.17)

And by replacing α, β, and γ by their expressions in (3.14), one can obtain

(
ρ2 − a2

)(
ρ2 − b2

)d2R

dρ2
+ r
(

2ρ2 − a2 − b2
)dR
dρ

−
[
n(n + 1)ρ2 −

(
a2 + b2

)
s
]
R = 0,

(
μ2 − a2

)(
μ2 − b2

)d2Z

dμ2
+ μ
(

2μ2 − a2 − b2
)dZ
dμ

−
[
n(n + 1)μ2 −

(
a2 + b2

)
s
]
Z = 0,

(
ζ2 − a2

)(
ζ2 − b2

)d2Y

dζ2
+ ζ
(

2ζ2 − a2 − b2
)dY
dζ

−
[
n(n + 1)ζ2 −

(
a2 + b2

)
s
]
Y = 0.

(3.18)

The solutions of these equations are ellipsoidal harmonics or Lamé’s functions. The Lamé’s
equations are usually written in a general form as

(
x2 − a2

)(
x2 − b2

)d2En
dr2

+ x
(

2x2 − a2 − b2
)dEn
dx

−
[
n(n + 1)x2 −

(
a2 + b2

)
s
]
En = 0. (3.19)

For a given n integer, we can find z = (a2 + b2) · s such that the particular solution of (3.19)
can be written as [18]

Ezn(x) = ψn(x)P
z
n (x). (3.20)

Those solutions are the Lamé’s functions of first kind with

Pzn (x) =
m∑

j=0

ajx
2j is Lamés′s polynomial, (3.21)
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Table 1: Characteristics of lamé’s functions of first kind.

Function Principal product m Number Value of the index i

Kzi
n (x) ψn(x) = xn−2k k k + 1 i = 0, . . . , k

Lzin (x) ψn(x) = x1−n+2k
√
|x2 − a2| n − k − 1 n − k i = k + 1, . . . , n

Mzi
n (x) ψn(x) = x1−n+2k

√
|x2 − b2| n − k − 1 n − k i = n + 1, . . . , 2n − k

Nzi
n (x) ψn(x) = xn−2k

√
|(x2 − a2)(x2 − b2)| k − 1 k i = 2n − k + 1, . . . , 2n

Total = 2n + 1.

where m depends on the integer k, as shown in Table 1:

k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n

2
, if n is even,

n − 1
2

, if n is odd.

(3.22)

ψn(x) is called the principal product.
There are four different Lamé’s functions that differ from their characteristics. We

present them in Table 1.
zi is an eigenvalue. We remark that zi corresponds to a value of the parameter z in

(3.19), which determines as many equations as there are values of zi.
For a given value of n, the unknowns are the coefficients aj (3.23) and the parameters

zi. We consider as a first step the functions Kz
n(x); the other functions could be defined

similarly.
If we introduce the expressions (3.20) and (3.21) in (3.19), we obtain the following

recurrence’s relation:

2
(
k − j + 1

)(
2n − 2k + 2j − 1

)

︸ ︷︷ ︸
λj

aj−1 +
[(
a2 + b2

)(
n − 2k + 2j

)(
n − 2k + 2j

) − z
]

︸ ︷︷ ︸
�j

aj

− a2b2(n − 2k + 2j + 2
)(
n − 2k + 2j + 1

)

︸ ︷︷ ︸
σj

aj+1 = 0,

(3.23)

or

λjaj−1 +
(
�j − z

)
aj + σjaj+1 = 0 for j = 0, . . . , k. (3.24)

Knowing that ak+1 = 0, the iteration will stop at rank k. And if we introduce the conditions:

a−1 = ak+1 = 0, (3.25)
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the whole recurrence’s relations (3.28) can be written in a matrix form such as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�0 σ0 0 0 0 · · · 0
λ1 �1 σ1 0 0 · · · 0
0 λ2 �2 σ2 0 · · · 0

0 0 λ3 �3 σ3
...

...
...

. . . 0
0 0 · · · 0 λk−1 �k−1 σk−1

0 0 · · · 0 0 λk �k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
ΩK

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0

a1
...
...
...

ak−1

ak

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Λ

= z ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0

a1
...
...
...

ak−1

ak

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Λ

,
(3.26)

or

ΩKΛ = z ·Λ. (3.27)

ΩK is a square matrix of dimension (k + 1). The vector Λ is an eigenvector associated to the
eigenvalue z.

There are basically (2k + 1) eigenvalues and eigenvectors. In fact we show that it is
possible to find a diagonal matrix D and a symmetric matrix SK such as

SK = D ·ΩK ·D−1, (3.28)

with

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c0 0 0 · · · 0

0 c1 0 · · · ...

0 0 c2 · · · ...
. . . 0

0 0 · · · 0 ck

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, where

⎧
⎪⎨

⎪⎩

c0 = 1,

cj =

√
σj−1

λj
· cj−1 for j = 1, . . . , k.

(3.29)

The matrix Sk is diagonalizable such as Sk = RT ·Δ ·R, where Δ is diagonal and R is an
orthogonal matrix. Accordingly, ΩK is diagonalizable and admits 2k + 1 separate eigenvalues
zi associated to k + 1 eigenvectors Λi, so k + 1 functions Kzi

n (x) for i = 0, . . . , k.
ΩK has the same eigenvalues than Sk. Knowing that Sk is symmetric, its eigenvalues

zi and eigenvectors Λs are obtained conventionally using the algorithm QR. Then the
eigenvectors of ΩK are given by Λ = D−1Λs.

The computation of the three other functions Lzin (x), M
zi
n (x), and Nzi

n (x) is in the same
manner.

Each of the functions Kzi
n (x), L

zi
n (x), M

zi
n (x), and Nzi

n (x) admits exactly i zeros in the
interval ]a, b[.

For i ≥ k/2, the value of zi corresponding to Kzi
n (x) is equal to zi−1 corresponding to

Nzi−1
n (x), and the values of zi corresponding to Lzin (x) and Mzi

n (x) are identical.
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However, the computation shows a significant numerical instability if the value of n
increases beyond 10. This is due to the computation of the coefficients aj in the expression
(3.21).

A technique was proposed by Dobner and Ritter [29] to stabilize such computation.
They proposed to use another expression of the polynomial Pn such as

Pzn (x) =
m∑

j=0

aj

(

1 − x2

a2

)

. (3.30)

This variation gives a more stable computation.
The product E(r) · E(μ) · E(ν) satisfies the potential equation (3.19) within the elliptic

cone. However for the external space other kinds of solutions are needed which vanish at
infinity.

There is another kind of function Fzn(x) solution of (3.19) which vanishes at infinity.
These functions are called Lamé’s functions of second kind. They are defined by Hobson [16]:

Fn(x) = (2n + 1)En(x) ·
∫∞

x

dt

(En(x))2√t2 − a2
√
t2 − b2

. (3.31)

For each value of Ezin (x) we have a function Fzin (x). We have then (2k + 1) Lamé’s functions
of second kind.

Recalling that surface of the elliptic cone is given by the relation μ = μ0, the spatial
velocity potential flow Φ, solution of (3.13), is then [16]

Φ =
∞∑

n=0

2n+1∑

i=1

An,i

Fzin
(
μ
)

Fzin
(
μ0
)Ezin
(
ρ
) · Ezin (ζ), (3.32)

where An,i are constants to be defined using the boundary conditions.

3.3. Boundary Condition

In addition to the relations (3.1)–(3.3) the velocity potential flow Φ verifies a kinematical
boundary condition on the surface of the elliptic cone such as

∂Φf

∂no
= ∇Φf · no = νT1 · no. (3.33)

nO is an outward normal vector to the surface:

no =
(
∂x

∂μ
,
∂y

∂μ
,
∂z

∂μ

)T
. (3.34)
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The relation (3.33) can then be written as

u
∂x

∂μ
+ v

∂y

∂μ
+w

∂z

∂μ
= ρ · g(ζ) = ∂Φf

∂μ
(3.35)

with

∂x

∂μ
=
ρζ

ab
,

∂y

∂μ
=
ρμ

a

√√
√
√

(
ζ2 − a2)

(a2 − b2)
(
μ2 − a2

) ,

∂z

∂μ
=
ρμ

b

√√√
√

(
ζ2 − b2)

(b2 − a2)
(
μ2 − b2

) ,

g(ζ) =
u · ζ
ab

+
v · μ0

a

√√√
√

(
ζ2 − a2)

(a2 − b2)
(
μ2

0 − a2
) +

w · μ0

b

√√√
√

(
ζ2 − b2)

(b2 − a2)
(
μ2

0 − b2
) .

(3.36)

Let us denote k = a/b. And suppose that 0 ≺ α ≺ K and 0 ≺ γ ≺ 4K with K is the complete
elliptic integral F(k, π/2).

For a function of α, β, and γ on the boundary surface μ = μ0 we will have

∫
f
(
α, β, γ

)
dS =

1
b2

∫K

0
dα

∫4K

0
f
(
α, β0, γ

)(
ρ2 − ζ2

)√(
ρ2 − μ2

)(
ζ2 − μ2

)
dγ. (3.37)

We can then solve the problem for the potential Φ in a given point in the space with the
boundary conditions defined on the surface of the airship μ = μ0.

The relations (3.32) and (3.35) give

∂Φ
∂μ

∣∣∣∣
μ=μ0

=
∞∑

n=0

2n+1∑

i=1

An,iE
zi
n

(
ρ
)
Ezin (ζ)

Ḟzin
(
μ0
)

Fzin
(
μ0
) = ρ · g(ζ). (3.38)

Using (3.37) and (3.38) we obtain An,i and then Φ and by the way Maij .
We can now deduce the different components of the mass matrix M.
Finally, the vector of gyroscopic forces QG can then be expressed in a developed form

as

QG =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

M22vr −M33qw
M33pw −M11ur
M11uq −M22vp
−M46pq + (M55 −M66)qr
M46p

2 + (M66 −M44)pr −M46r
2

(M44 −M55)pq +M46qr

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.39)
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This leads to the developed dynamic model:

M11 · u̇ =
4∑

i=1

‖Fi‖cγi · cβi −
(
mg − Bu

)
sθ −M33q ·w +M22r · v,

M22 · v̇ =
4∑

i=1

‖Fi‖sγi +
(
mg − Bu

)
sφ · cθ +M33p ·w −M11r · u,

M33 · ẇ = −
4∑

i=1

‖Fi‖cγi · sβi +
(
mg − Bu

)
cφ · cθ +M11u · q −M22v · p,

(3.40a)

ṗ =
1

(
M44M66 −M2

46

)

×
{

−M66c
4∑

i=1

‖Fi‖sγi + (M46 −M66)b1
(‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)

+ (M46 −M66)b3
(‖F3‖cγ3 · sβ3 − ‖F4‖cγ4 · sβ4

)

+M46a
(‖F4‖sγ4 + ‖F3‖sγ3 − ‖F1‖sγ1 − ‖F2‖sγ2

) −M66BuzGsφ · cθ

−M46(M44 −M55 +M66)pq +
(
M55M66 −M2

46 −M2
66

)
qr

}

,

M55 · q̇ = −c
4∑

i=1

‖Fi‖cγi · cβi + a
(‖F4‖cγ4 · sβ4 + ‖F3‖cγ3 · sβ3 − ‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)

− BuzG · sθ +M46p
2 + (M66 −M44)pr +M46r

2,

ṙ =
1

(
M44M66 −M2

46

)

×
{

M46 · c
4∑

i=1

‖Fi‖sγi + (M46 −M44)b1
(‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)

+ (M46 −M44)b3
(‖F3‖cγ3 · sβ3 − ‖F4‖cγ4 · sβ4

)

−M44a
(‖F4‖sγ4 + ‖F3‖sγ3 − ‖F1‖sγ1 − ‖F2‖sγ2

)
+M46BuzGsφ · cθ

+
(
M2

44 +M
2
46 −M44M55

)
pq +M46(M44 −M55 +M66)qr

}

.

(3.40b)

4. Results and Discussion

In this section we present the computation results of the added mass matrix of the MC500.
Since any comparison with a similarly shaped airship is impossible at present, we conducted
the calculation by the geometric method that we present here briefly in order to compare the
results of our method.

Geometric method is well known and discussed extensively elsewhere [6, 8, 12, 20].
In a 2D analysis the planar coefficients mij are established for the standard shapes (rectangle,
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Table 2: Comparison between the two methods of computation.

Added masses terms M11
(kg)

M22
(kg)

M33
(kg)

M44
(kg·m2)

M55
(kg·m2)

M66
(kg·m2)

M46
(kg·m2)

Velocity potential method 583 620 687 9413 10456 18700 160
Geometric method 648 633 708 9973 11920 19341 168

circle, ellipse, etc.). Following the exhaustive study of Brenner [8], we model our flying wing
as a truncated cone (T) with elliptic section.

The airship is divided into a dozen cross-sections to optimize the inclusion of changes
in transverse dimensions in the 3D calculation.

The computing of the terms of the added masses matrix can be seen, for example, as

Ma11 =
∫

(T)
m11
(
y, z
)
dx, (4.1)

where m11 is a 2D added mass coefficient for the forward motion.
According to the large difference of size between the diagonal and off-diagonal terms,

we will neglect these last terms, keeping only the term Ma46.

4.1. Results

We present here some characteristics of the geometry of the airship: zG = 0.5 m; a = 2.5 m;
b = 6.5 m; c = 2 m; b1 = 5.4 m; b3 = 6.5 m; volume V = 500 m3. Numerical results are presented
in Table 2.

4.2. Discussion

The first results described here show that thanks to the application of the velocity potential
flow theory to this unconventional airship it is possible to obtain reasonable values of the
added masses matrix. To our knowledge, this is the first attempt to compute the added masses
using this technique for an elliptic cone-shaped airship.

Some differences can be observed between the two methods to certain terms of the
added masses matrix. Experimental studies on the prototype nearing completion will confirm
the accuracy of our method.

Although some geometric assumptions are made, it nonetheless demonstrates the
capability of this method to compute interesting values of the added masses matrix.

Validation of our technique will allow a good estimation of the added masses matrix
in preprocessing phase for this kind of airship. The development of an airship is usually
done by iterative techniques (model, stability, propulsion, sizing of the control, rudders, etc.);
obtaining a fairly accurate aerodynamic model early design allows better refinement of the
final model the airship.
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5. Conclusion

In this paper a dynamic model of an unconventional airship is presented. The original shape
of the careen induces a necessary reformulation of the dynamic and aerodynamic study of
these flying objects. A special focus is put on the computation of the added masses. According
with the original shape, an assumption of elliptic cone was made to define the careen. The
ellipsoidal harmonics and the Lamé’s equations are revisited for the analysis of the velocity
potential flow, according to the constraints of fluid-structure interaction. The first results seem
promising.

Nomenclature

η1 = [x0, y0, z0]
T : Vector position of the origin expressed in the fixed reference

frame R0

η2 = [φ, θ, ψ]T : Vector orientation of the pointer Rm in regards to R and given by
the Euler angles

η = [η1, η2]
T : Vector attitude compared to R0

η̇ : Velocity vector compared to R0 expressed in R0

ν1 = [u, v,w]T : Velocity vector expressed in Rm

ν2 = [p, q, r]T : Vector of angular velocities expressed in Rm

ν = [ν1, ν2]
T : The 6 × 1 velocity vector

m : The mass of the airship
I3 : The identity matrix 3 × 3.
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elliptiques,” Acta Mathematica, vol. 8, no. 1, 1886.

[15] W. Byerly, 1893An Elementary Treatise on Fourier’S Series and on Spherical, Cylindrical and ellipsoidal
harmonics, Ed Dover, New York, NY, USA.

[16] E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New
York, NY, USA, 1955.

[17] J. Boersma and J. K. M. Jansen, Electromagnetic Field Singularities at the Tip of an Elliptic Cone, vol. 90,
Eindhoven University of Technology, Eindhoven, The Netherlands, 1990.

[18] R. Garmier and J.-P. Barriot, “Ellipsoidal harmonic expansions of the gravitational potential:
theory and application,” Celestial Mechanics & Dynamical Astronomy. An International Journal of Space
Dynamics, vol. 79, no. 4, pp. 235–275, 2001.

[19] H. Goldstein, Classical Mechanics, Safko & Poole, 3rd edition, 2001.
[20] T. Fossen, Guidance and Control of Ocean Vehicles, Wiley press, 1996.
[21] S. Bennaceur, A. Abichou, and N. Azouz, “Modelling and control of flexible airship,” in Proceedings

of the 1st Mediterranean Conference on Intelligent Systems and Automation (CISA ’08), pp. 397–407, July
2008.

[22] Z. Gao and S. X. Ding, “Fault estimation and fault-tolerant control for descriptor systems via
proportional, multiple-integral and derivative observer design,” IET Control Theory & Applications,
vol. 1, no. 5, pp. 1208–1218, 2007.

[23] Z. Gao, H. Wang, and T. Chai, “A robust fault detection filtering for stochastic distribution systems
via descriptor estimator and parametric gain design,” IET Control Theory & Applications, vol. 1, no. 5,
pp. 1286–1293, 2007.

[24] Z. Gao, “PD observer parametrization design for descriptor systems,” Journal of the Franklin Institute,
vol. 342, no. 5, pp. 551–564, 2005.

[25] F. Axisa and J. Antunes, Modelling of Mechanical Systems: Fluid-Structure Interaction, Butterworth-
Heinemann, 2006.

[26] F. Imlay, “The complete expressions for added mass of a rigid body moving in an ideal fluid,” Tech.
Rep. 1528, Hydrodynamics laboratory, 1961.

[27] L. Kraus and L. M. Levine, “Diffraction by an elliptic cone,” Communications on Pure and Applied
Mathematics, vol. 14, pp. 49–68, 1961.

[28] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book,
New York, NY, USA, 1968.

[29] H.-J. Dobner and S. Ritter, “Verified computation of Lamé functions with high accuracy,” Computing,
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In this study, a gene positive network is proposed based on a weighted undirected graph, where
the weight represents the positive correlation of the genes. A Pearson agglomerative clustering
algorithm is employed to build a clustering tree, where dotted lines cut the tree from bottom to
top leading to a number of subsets of the modules. In order to achieve better module partitions,
the Pearson correlation coefficient modularity is addressed to seek optimal module decomposition
by selecting an optimal threshold value. For the liver cancer gene network under study, we obtain
a strong threshold value at 0.67302, and a very strong correlation threshold at 0.80086. On the
basis of these threshold values, fourteen strong modules and thirteen very strong modules are
obtained respectively. A certain degree of correspondence between the two types of modules is
addressed as well. Finally, the biological significance of the two types of modules is analyzed and
explained, which shows that these modules are closely related to the proliferation and metastasis
of liver cancer. This discovery of the new modules may provide new clues and ideas for liver
cancer treatment.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world.
Most of the liver cancer patients are in advanced states when they are firstly clinically
diagnosed, which leads to poor treatment and high mortality. It is known that the nature
of liver cancer is abnormal expression of genes caused by a variety of reasons. There are
a lot of modules in a cell, and these modules work together to implement a function of
the cell. The functional modules are composed of genes which are similar to each other
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in physiological or functional aspects. When the gene functional modules receive impacts,
they may lead to disease [1]. Microarray data are the results of many gene expressions,
which consist in the information of the gene function modules [2]. There is a very important
biological significance to identify gene functional modules in terms of a large-scale gene
expression profiling. Cancer gene therapy has become a new treatment method following
surgical resection, radiotherapy and chemotherapy, and interventional therapy. For instance,
the recently discovered adeno-associated virus AAV3 may be useful for attacking human
liver cancers.

The gene network is a complex dynamic system. Therefore, the process of finding gene
modules is actually a process of discovering community structure from a complex network.
The correlation between genes may be strong or weak, leading to a variant of collections of
genes. Clearly, a strong community of a collection of related genes is what we are looking
for. Currently, there are a number of community discovery methods of complex networks
such as GN-splitting algorithm [3] and NEWSMAN cohesion algorithm [4], both of them
use graphs without weights. In order to reflect the size of the gene intensity, it motivates
us to use graphs with weights. It is worthy to mentions that Pearson values can be used
to measure the correlation between genes. As Pearson values may be positive or negative,
the absolute of Pearson was used to express the weights in [5] so that the intensity of
correlation was obtained. Unfortunately, the positive correlation (mutual promotion) and
negative correlation (mutual inhibition) were not considered in the method [5]. The genes in
functional modules are a collaboration which may have mutually reinforcing relationships.
Therefore it motivates us to use the Pearson values greater than 0 as the weights to reflect the
concerned positive correlations of genes.

In this study, we are looking for the genes with similar function; therefore we will
use an undirected weighted graph to describe gene network relationship. To the best of our
knowledge, the present functions of modules are mainly for gene network graphs without
weights, for example, Q function [6], which are invalid for our weighed graphs. Motivated
by this, we design a PCC modularity algorithm to measure the performance of the modular
decomposition.

According to experiments, if the module decomposition is optimized without
considering the size of the threshold, it may lead to the obtained decompositions make no
practical sense. In order to overcome this drawback, we propose a modified algorithm, that is,
interval PCC modularity (IPM). For instance, in order to obtain a set of very strong modules,
we preset the threshold range at the interval [0.8, 1], and we can find a maximum modularity
in the interval.

2. Construction of the GPN Network

2.1. Definition of Network and Storage

A connection matrix C is used to store gene community networks (GCN), whose element is
cij , defined by

cij =

{
pij i > j

0 i ≤ j, (2.1)

where pij is the Pearson correlation coefficient of the nodes i and j, and pij ∈ [−1, 1].
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Figure 1: A GPN network: GPN10.

Remark 2.1. (1) pij = 0 indicates there is not linear relationship between two genes.
(2) pij > 0 implies a positive correlation between genes. Particularly when pij = 1, it

indicates a completely positive correlation between genes.
(3) pij < 0 means a negative correlation between genes, and pij = −1 represents a

completely negative correlation between genes.

Therefore from (2.1), one has cij ∈ [−1, 1]. When cij = 0 there is no edge between nodes
i and j.

The connection matrix is a lower triangular matrix, which stores an undirected
weighted graph. It is noticed that no closed loops and no two-directional sides exist in the
graph. This matrix is named as Pearson connection matrix (PCM).

2.2. The Type of the Network

The GCN networks can be divided into three kinds.

(1) Gene positive network (GPN): extract a network from the GCN where the values
of all the edges in the network are greater than 0.

(2) Gene negative network (GNN): remove the edges with the weights greater than 0
to form a network.

(3) Gene absolute network (GAN): the weights of the edges are taken as the absolute
values of the GCN network.

Genes in a module should reinforce mutually, which means the Pearson value of genes
should be greater than 0. As a result, the GPN network will be used in this study, which is
defined as follows:

cij =

{
pij i > j, pij ∈ (0, 1]
0 i ≤ j. (2.2)

A GPN network of 10 genes is depicted by Figure 1.
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Figure 2: The PAM clustering tree of GNP10.

3. Pearson Agglomerative Method (PAM)

3.1. The Basic Idea of the PAM Algorithm

Hierarchical clustering is a conventional method to find a social network community
structure, which can be classified into two types [7]: agglomerative method and divisive
method. The main principle of the PAM proposed here is to first calculate the functional
similarity between nodes using the Pearson method. Then to add new edges to a raw network
composed of n nodes and 0 edge starting from the node pairs with the most similarity. This
process is repeated and may end in any node. This procedure from an empty graph to form
a resulting graph can be described by Figure 2. In this figure, x-axis is the node and y-axis is
the distance between nodes. We call this tree structure as PAM Clustering tree.

The distance of the genes is defined by [8]

dij =
√

1 − cij , cij ∈ [0, 1]. (3.1)

The larger the distance is, the relationship between genes become farther and vice
versa. In our GPN, the weights are positives. Therefore the definition (3.1) can be used to
measure disturbances of genes in this study.

In Figure 2, when the dashed line moves up from the bottom of the tree gradually, the
variant nodes can be integrated into a greater community. The whole network becomes one
community as the dashed line move up to the top. The tree structure corresponds to different
community structure when it is cutoff from any location using dashed line.

If the red dotted line is placed at 0.775, we can obtain five modules as follows: {G5,
G6, G7}, {G1, G3, G4}, {G2}, {G8, G9}, and {G10}.

3.2. Algorithm Implementation

In terms of the definition of the distance matrix D = [dij], the PAM algorithm can be
addressed in the following steps.

(1) Initialize the network with n communities, where every node is a unique
community.
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(2) Calculate the minimum distance using Dijkstra algorithm [9], and then combine
the minimum distance node pairs.

(3) Repeat step 2 until the whole network is merged to one community. The maximum
execution times are n − 1.

We call this tree structure as “PAM clustering tree”.

4. PCC Modularity Assessments

Similar to the GN algorithm [3] and other decomposition methods, the PAM algorithm
cannot determine what kind of decomposition is optimal. It is of significance to value the
performance of the decompositions. In [6], the modularity Q function was used to measure
the quality of network partitioning. Unfortunately, for communities with big differences, the
Q function is not ideal to assess the performance of module partitioning [9]. For the weighted
networks, we introduce a standard function to measure the quality of network partitioning,
namely, the PCC module function.

Here, the network is assumed to be divided into N modules: C1, C2, . . . , CN .

4.1. Cohesion (Coh)

Cohesion (Coh) is the measure of the relevance of the internal nodes in a module. For a
module with n nodes, the maximum edges are (n(n − 1))/2 and the maximum weight of the
edge is 1. We use the ownership of the internal value which is divided by (n(n − 1))/2 to
represent the cohesion, described by

Coh(Ci) =

⎧
⎨

⎩

I(Ci)
ni(ni − 1)/2

ni > 1

1, ni = 1,
(4.1)

where Ci is the ith module; ni is the number of nodes of the module; I(Ci) is the sum of the
ownership values in the module, expressed as I(Ci) =

∑mi

k=1 wk, where mi is the number of
edges in the module and wk is the weight for the kth edge. The weights are not greater than
1, so I(Ci) ≤ mi. If the module has only one node, its cohesion is defined as 1.

4.2. Coupling (Cou)

The coupling (Cou) is a measure of the degree of association between modules, defined by

Cou(Ci) =

⎧
⎨

⎩

O(Ci)
I(Ci) +O(Ci)

, ni > 1

1, ni = 1,
(4.2)

where O(Ci) is the sum of the weights of external edges connected to the module, expressed
as O(Ci) =

∑si
r=1 wr , in which si is the number of external edges connected to the module,

and wr is the weight of the rth edge. If the module has only one node, its coupling is defined
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as 1. When 1/2 < Cou(Ci) < 1, it is equivalent to I(Ci) < O(Ci), which indicates the internal
strength of the module is less than the external strength, and the division of this module is
generally unreasonable.

Equation (4.2) reflects the dependence of a module to the other. The lower is the
coupling, the higher is the independence of the modules.

4.3. PCC Modularity

It is evident that the model partition needs high cohesion and low coupling. The formula
Coh(Ci)[1 − Cou(Ci)] can be used to describe the tightness of connection within the
community Ci and reflect the independence of the community. Thus, the new modularity
is defined as

PCC(Ci) = Coh(Ci)[1 − Cou(Ci)] (4.3)

The PCC can be understood as “Pearson”, “Cohesion”, and “Coupling”. Substitution
(4.1) and (4.2) into (4.3) yields:

PCC(Ci) =

⎧
⎪⎨

⎪⎩

2I(Ci)2

ni(ni − 1)[I(Ci) +O(Ci)]
, ni > 1

0, ni = 1.
(4.4)

If a module has only one node, it is called outlier module, whose PCC is 0.
The average of all the modules of PCC is used to measure the division of the entire

network, which is defined as

PCC(C1, C2, . . . , CN) =
∑N

i=1 PCC(Ci)
N

, (4.5)

where N denotes the number of modules. When the number of nonisolated point modules is
R, the number of outlier modules is N − R. Since the PCC value of outlier module is 0, (4.5)
can be rewritten as

PCC(C1, C2, . . . , CN) =
∑R

i=1 PCC(Ci)
N

. (4.6)

In other words, the network is divided into N modules. Since the PCC value of each
module is not greater than 1, one thus has PCC(C1, C2, . . . , CN) ≤ R/N.

5. The Relationship of Threshold and Modularity

5.1. One-to-One Map of Threshold to Modularity

From Figure 2, when the dotted line is set as D = 0.775, the network can be divided into five
modules. In terms of (3.1), the threshold can be calculated as T =

√
1 −D2 = 0.41. Removing

the edges whose PCC values are less than 0.41, Figure 1 can be transformed into Figure 3.
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Figure 3: The decomposition of the network GPN10 by using T = 0.41.

Table 1: The relationships among T, PCC, and N.

T 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N 2 3 4 5 6 7 8 9 10
PCC 0.07 0.24 0.18 0.22 0.19 0.13 0.05 0.04 0

As a result, when the threshold is T = 0.41, the network GPN10 in Figure 1 is divided
into five modules: {G5, G6, G7}, {G1, G3, G4,}, {G2}, {G8, G9}, and {G10}. This partition is
the same as Figure 2.

Rather than building PAM-tree to divide the modules, we can decompose the network
by using threshold value. A modular decomposition corresponds to a module function;
therefore a threshold only has a corresponding module function.

For instance, by setting different thresholds, we can obtain the resulting decomposi-
tions (see Table 1), and each module corresponds to the modularity of a PCC. Under the
same modularity premise, in order to ensure internal correlation of each module stronger, we
choose a larger threshold.

Based on the decomposition of the network GPN10, Table 1 reflects the relationships
among “T”, “PCC”, and “N”, where “T” is threshold, “PCC” is PCC modularity, and “N” is
the number of modules.

As each threshold corresponds to one decomposition, each threshold corresponds to
one modularity as well. From Figure 4, when the threshold T = 0.2, the decomposition of
the network GPN10 is optimal. In this case, the network GPN10 is broken down into three
modules: {G1, G2, G3, G4, G5, G6, G7}, {G8, G9}, and {G10}.

5.2. The Definition of Interval PCC Modularity (IPM)

The absolute value of correlation coefficient is greater and the correlation is stronger. The
correlation coefficient is close to 1 or −1, the correlation is very strong. The correlation
coefficient is close to 0, the correlation is weak.

Generally, we judge the intensity of two variables by the range of correlation
coefficients (see Table 2).

According to Table 2, we define five different ranges of modularity.

(1) Modularity of very weak correlation: PCC(T), T ∈ [0.0, 0.2).

(2) Modularity of weak correlation: PCC(T), T ∈ [0.2, 0.4).
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Table 2: The intensity of Pearson correlation coefficient.

Correlation
coefficient

0.8–1.0 Very strong correlation
0.6–0.8 Strong correlation
0.4–0.6 Moderate correlation
0.2–0.4 Weak correlation
0.0–0.2 Very weak or no correlation

(3) Modularity of moderate correlation: PCC(T), T ∈ [0.4, 0.6).

(4) Modularity of strong correlation: PCC(T), T ∈ [0.6, 0.8).

(5) Modularity of very strong correlation: PCC(T), T ∈ [0.8, 1.0].

Generally, we find a strong correlation or strong related modules by using (4.1) and
(4.2).

6. Results

6.1. Obtain the HCC Gene Modules

The liver cancer microarray data is taken from Chen et al. [10], which is available at
http://genome-www.stanford.edu/hcc/supplement.shtml. The 1648 genes are differentially
expression in HCC and nontumor liver in 156 liver tissues (74 nontumor liver and 82 HCC).
We only study the gene expression of HCC. The Missing values are replaced by the average
of the gene expression data under corresponding data column or sequence.

We build the GPN network of 1648 HCC genes. Next we, respectively, test the PCC
value in the threshold interval [0.8, 1] and [0.6, 0.8). According to the maximum of PCC
value, GPN network is, respectively, divided into the HCC very strong correlation modules
and the HCC strong correlation modules.
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Figure 6: The decomposition diagram of HCC GPN network when the threshold T = 0.80086.

6.1.1. Very Strong Correlation Modules (VSCM) of HCC

In the threshold interval [0.8, 1], the PCC curve is given by Figure 5, which shows that the
PCC is downtrend. Within the threshold interval [0.8, 1], as the threshold is greater, the
modular decomposition is getting worse. When the threshold is between 0.8 and 0.80086,
the modularity PCC values are equal. In order to make the module correlation coefficient
greater, we choose the threshold T = 0.80086. In this case, the modularity PCC = 0.0441.

In Figure 6, when the threshold T = 0.80086, the network is broken down into 1360
modules, including 150 nonisolated point module. According to formula (4.6), the PCC <
150/1360 = 0.1103.

In Figure 7, there are 13 modules and 121 genes in total, where each module is not less
than five nodes. The modules numbered and arranged according to gene-related strengths
from strong to weak. In order to distinguish the Very Strong Correlation Modules (VSCM)
from the strong correlation modules (SCM), we mark VSCM and SCM with “S” and “W”
respectively, which means “strong” and “weak”.

In Table 3, “NO” is the abbreviation for “No Gene information” and “Trans” means
“Transcribed locus”. The number of genes is given in the bracket, for example, SERPINA5(5)
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Table 3: Thirteen gene modules of HCC very strong correlation modules (VSCM).

Module Number The detailed genes of each module

S1 5 SERPINA5 5 , LOC100507281

S2 18 WNT4, SLU7, CSF2RA, IGKC 3 , NCF1, EPB72, IGHG3, Trans, IGL 5 , TNFSF10,
NAPA, CSF2

S3 21 NO 11 , Trans 7 , C2orf55, SLC35E1, TRIOBP
S4 6 Trans, ZFP92 2 , TAGLN 2 , AEBP1
S5 5 C1R 2 , C1S 2 , FGA
S6 6 CKAP2, AQP4, HAMP, Transcribed locus 3

S7 18 LRRC8C, EDNRA, BIRC5, MT1B 2 , Trans, AGXT, MT1H, MT1G, MT1F 2 , MT1E,
MT1L, NO, LARP4 3 , DLG4

S8 5 NO, Trans, RS10 2 , CDNA
S9 6 GRN, C19orf6, RAD23A, ZNF451, RER1, ABCF1
S10 5 TUBA2, TUBA1 2 , TUBA3, Trans

S11 13 PLK, TROAP, Trans, CENPM, MYBL2, PTTG1, NUSAP1, CDC20, FOXM1, UBE2C,
CDC2, KIAA0101, IFIT1

S12 8 RPS20 2 , EIF3S6 2 , NO 2 , RPL30, Trans
S13 5 SPARC 2 , THY1 2 , COL4A2

means that there are five SERPINA5 genes. Green denotes the genes in the module with low
expression and red indicates the genes with high expression.

6.1.2. Strong Correlation Modules (SCM) of HCC

In the threshold interval (0.6, 0.8], we obtain strong modularity PCC curve as found in
Figure 8.

When T = 0.67302, the optimal PCC is 0.0687. In this case, the HCC GPN network is
divided into N = 955 modules (see Figure 9) and the number of the nonisolated modules is
R = 164. By the formula (4.6), we can get that the PCC < 164/955 = 0.172.

We selected the modules with more than five nodes and arranged according to the
order of strength from strong to weak order as follows (see Figure 10).

In Figure 10, there are 14 modules and 505 nodes in total. The modules with fewer
nodes are W1, W6, W8, W12, W13, and W14. The modules containing a large number of
nodes are W11, W4, W3, W2, W5, and W7.

In Table 4, there are 14 strong modules in total, involving 504 genes. The number of
gene duplication is marked in brackets. Red means the gene is highly expressed in HCC and
green indicates genes in low expression. The genes in W3 have both high expression and low
expression, therefore it is not colored.
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Figure 9: When the threshold T = 0.67302, the network is broken down into 955 modules in which there
are 164 nonisolated point modules.

Generally, HCC strong correlation modules (SCMs) may include the genes of HCC
with very strong correlation modules (VSCMs). In Table 4, blue bolds mark genes which
appeared in the VSCMs. This kind of inclusion relations are shown in Table 5.

Table 5 shows the inclusion relationship of the VSCM and the SCMs. The table can also
be described as W5 ≥ S3; W7 ≥ S7; W2 ≥ B2; W11 ≥ S11 + S12 + S10 + S8; W10 ≥ S6; W13 ≥ S9;
W1 = S1; W3 ≥ S4 + S13; W4 ≥ S5.

6.2. Biological Explanation of the HCC Gene Modules

The biological explanation of the HCC gene modules, if not otherwise specified, all refers
to the Stanford gene database: http://smd.stanford.edu/cgi-bin/source/sourceSearch. As
there are too many genes, we only provide the biological explanation for the important genes
in the each module. According to the major functions of the genes in every group, we name
each module.
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Table 4: Fourteen gene modules of HCC strong correlation modules (SCM).

Module Number The detailed genes of each module

W1 5 SERPINA5 5 , LOC100507281

W2 29
WNT4, SLU7, CSF2RA, IGKC 3 , NCF1, EPB72, IGHG3, Trans, IGL 5 , TNFSF10,
NAPA, CSF2, CD69, TF, NO, PSMF1, EDR2, HNT, KLRK1, SYT6, ID4, HCLS1,
CD53

W3 40

Trans, ZFP92 2 , TAGLN 2 , AEBP1, SPARC 2 , THY1 2 , COL4A2, ID3, COL6A1,
FGF12B, TMEM204, MYO10, CSNK2B, PDGFRA, SVEP1, SVEP1, SRPX,
CRISPLD2, RBMS3, PYGM, MFAP4, COL6A2, PODN, LAMA2, NGFR, NRG2,
CYR61, SLC15A2, SCYA2, TSPYL1, ID4, CRHBP, THY1, NOTCH3, COL15A1,
LOXL2

W4 123

CPS1, ZNF248, HRSP12, PCBD1, ALDOB 2 , ENC1, APOC3 2 , PAH, CD302,
POR, Trans 7 , SERPING1 2 , IVD, APOH, SCYA14, PBP, SORD, EVX1, UGP2 2 ,
C21ORF4, GALE, HSD17B6, CYP2A7, MST1 2 , APOA1, C1R 2 , C1S 2 , FGA,
C1RL, PROML1, LRRN3, LANCL1, ACOX1, CYP2C, BDH1, PIPOX, MPDZ,
HSD11B1, RGN, PCK1, CHD9, ACAA2 2 , FACL2, PON3 2 , D4S234E, AZGP,
RNAC 2 , ADH6 2 , ADH4 2 , ADH2, APOC4, SLC27A5, MMSDH 3 , PCK2,
CPB2 2 , CPN2, DEPDC7, CYP4V2, LY9, GRHPR, AMDHD1 2 , ACADSB,
ST3GAL6, SPRYD4, CYB5, ADI1, NO 4 , QDPR, PLG, CYP27A1, GYS2, CTH,
SHMT, ARHB 2 , OGDHL, ACY1, APCS, PXMP2, EDNRB, C14orf45 2 , SCP2 2 ,
DHTKD1, KNG, ALAS1, MARC2, SULT2A1, CYP2J2, CTSO, SOD1, MYO1B 2 ,
SYBU, PVRL3, PDK, KIAA0317

W5 25 NO 13 , Trans 9 , C2orf55, SLC35E1, TRIOBP, L3MBTL4
W6 6 PTMS, SDHAP1, RBP5 2 , IKBKAP, HAAO

W7 22 LRRC8C, EDNRA, BIRC5, MT1B 2 , Trans 2 , AGXT, MT1H, MT1G 2 , MT1F 2 ,
MT1E, MT1L, NO, LARP4 3 , DLG4, CDK5, TFG

W8 5 AFF4, NUFIP2, LEAP2 3
W9 9 SERPINA3, FGB 4 , Trans, FGA, FGG, CFI
W10 8 CKAP2, AQP4, HAMP, Trans 4 , LOC257396

W11 212

EIF4B, RB1CC1 3 , MTF2, MAL2, MAL2, CDNA 2 , HMG17, CSNK2B, CUTA,
ASAP1 2 , RCC2, LMNB2, MAPK13, HJURP, SMC4, CMTM1, NO 6 , SEMG2,
14ORF4, RPS10 3 , Trans 6 , RPS16, KLK3, HBG1, RPLP0, RPS5, RPS19, CPNE1,
ETV1, TUBB 2 , WNK1, RTN3, C1orf43, PAX8, FAM83H, TUBG2, TUBG1,
TSEN54, UBE2M, TRIM28, SNRPB, HGS, STARD3, GPS1, CLPTM1, ARF3,
ASNA1, TAF2E, USP5, SHC1, VARS2, ASF1B, PKMYT1, SERPINB3, E2F1, NLRP2,
H2AFX, MLF1IP, ILF3 2 , C1orf9, NAP1L1, SCNM1, LAPTM4B 2 , TOP2A, HN1,
TUBA2, TUBA1 2 , TUBA3, BUB1, HSU, CKS1, CBX1, SLC1A4, KPNA2, EIF4A2,
TMEM106C, EHMT2, SF3B4, SCAMP3, FLAD1, TCFL1, UBAP2L, PRCC, UBE2Q1,
HTCD37, SNX27 3 , PYGO2, FAM189B, NCSTN, RPRD2, USP21, MCM4,
SNHG10, GMNN 2 , PLK, TROAP, CENPM, MYBL2, CENPW, TPX2, ZNF261,
ZWINT, LAP18, PTTG1, NUSAP1, CDC20, FOXM1, UBE2C, CDC2, MAD2L1,
KIAA0101, CDKN3 2 , RRM2 2 , IFIT1 2 , FAM72B 2 , CEP55 3 , KNSL5 2 ,
NUDT1 2 , TRIP13, MCM5 2 , NRM, CDK4, KIAA1522, RDBP, PEA15, NPM1,
UBR5, MRPL42 2 , XPOT 2 , MZT1, ACLY, PAPPA, ILF2 2 , TCEB1, ASPH,
ATP6V1H, YWHAZ 3 , ZNF706, RPS20 2 , EIF3S6 2 , RPL30, RAD21, BIG1,
MTDH, POLR2K, ARMC1 3 , COPS5, CANX, KIAA0196, PTK2, TCEA1,
NSMCE2, ZHX1, UQCRB, NBS1, FAM49B, DEK, UBA2, TIMP1, PSPH, LAMB1,
SRXN1, PIR, TACC3, MCM3, DR1, CDC7, MCM6, RASSF3, POLA, YKT6

W12 7 TIGD5, MAF1, PUF60, CYC1, SHARPIN, GPAA1, Trans
W13 6 GRN, C19orf6, RAD23A, ZNF451, RER1, ABCF1
W14 7 HIST1H2AC, HIST1H2BK, HIST1H2BC, HIST2H2BE 2 , CPS1, Trans
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Figure 10: Fourteen gene modules of HCC strong correlation modules with no less than five nodes.

Table 5: The inclusion relationship of the VSCM and the SCMs.

SCM W5 W7 W2 W11 W10 W13 W1 W3 W4
VSCM S3 S7 S2 S11 S12 S10 S8 S6 S9 S1 S4 S13 S5

6.2.1. Comparison with Other Results

In this section, we will show the comparison of our results with the experimental results of
Chen et al. [10] and Yan et al. [1].

The module S2 (or W2) agrees with the module D in Chen et al. [10] and the module C
in Yan et al. [1], which is in relation to B lymphocytes. The disorder of B-cell immune function
has a lot to do with liver cancer.

The module S4 agrees with the module E in Chen et al. [10], which is stroma cell
module. The function of the module S13 relates to the endothelial cell, and the module G in
Chen et al. [10] has the similar capability.

The module W3 contains the genes both from the module S4 and S13. Since S4 genes
means stroma cells, while the S13 genes are all located in the stroma, the module W4 is a
generalized stroma cell module. The W4 functions as the module D given by Yan et al. [1].
In the HCC, the genes of S4 are in lower level expression, while the expression level of S13
is higher. The module W3 not only contains the highly expressed genes, but also includes
the gene with low expression. From this viewpoint, the model W3 is different from any other
modules.

The module S5 (or W4) functions as the module K by Yan et al. [1], whose function is
about complement. Bacterial infection of the liver cells may be related to genetic disorders of
the complement component module.

The module S10 is consistent with the module J by Yan et al. [1], in which the main
genes are about the tubulins α1, α2, and α3. Tubulin abnormalities have impacts on the
occurrence and development of liver cancer.

The genes of module S11 all appear in the module A given by Chen et al. [10]. The
function of the module is also identical to the feature of the module A from Yan et al. [1],
which is related to the cell cycle and proliferation of cancer cells.
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Figure 11: The gene network of module S1.

The genes in the module S12 are about ribosomal proteins, which functions as the same
as in the module G in the reference by Yan et al. [1]. Ribosomal protein dysfunction may be
related with liver cancer.

The function of module W11 is consistent with the module A given by Chen et al. [10],
whose function is about cell proliferation. It is noted that the proliferation module A from
Chen et al. [10] does not include S8, S10, and S12. In fact, tumor cell proliferation not only
relates to cell cycle, but also relates to ribosomes, and tubulin. Because ribosomal synthesis
protein and microtubule protein involves in mitosis, both of the two process are essential in
cell proliferation.

The module W14 of histone is consistent with the module I from Yan et al. [1]. The
occurrence of liver cancer may be associated with abnormal expression of the histone.

We have found that twelve gene modules such as S2, S4, S13, S5, S10, S11, S12, W2,
W3, W4, W11, and W14 have specific functions and are largely in line with the gene clusters
found by Yan et al. [1] or Chen et al. [10]. It has proven that the PAM algorithm and the PCC
modularity can effectively discover gene function modules.

6.2.2. The Specific Modules of VSCM

In this subsection, we will focus on the modules only existing in this study. The specific
modules of VSCM are S1, S3, S6, S7, S8, and S9, in which only S8, S9 are highly expressed.

(1) Hemostasis Module S1

In Figure 11, the key gene of the module S1 is SERPINA5, which plays the hemostatic role in
the blood plasma. Additionally, SERPINA5 is able to inhibit the migration of HCC cells. The
low expression of SERPINA5 genes probably promotes the occurrence and development of
HCC.

(2) Transport Module S3

In Figure 12, NO means no gene information and trans represents Transcribed locus. TROPBP
and SLC35E1 are the key genes in S3. TRIOB is closely related to HCC [11]. Moreover,
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Figure 12: The gene network of module S3.
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Figure 13: The gene network of module S16.

the transport function of the solute carrier SLC35E1 is related to cancer [12]. Therefore the
module should be responsible for transport in hepatoma cells.

(3) Iron Regulation Module S6

The key genes in Figure 13 are CHAP2, AQP4, and HAMP. CKAP2 is a cytoskeleton-
associated protein involved in mitotic progression. AQP4 encodes a member of the aquaporin
family of intrinsic membrane proteins. Decrease in aquaporin expression [13] may lead to the
increase of the resistance to apoptosis in hepatocellular carcinoma. The product encoded by
this gene HAMP is involved in the maintenance of iron homeostasis. This module relates to
the regulation of the iron.
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(4) Metalloproteins Module S7 (see Figure 14)

The genes in this module are most from the metalloproteins (MTs) family, such as MT1B
and MT1G. MTs play a key role in the transport of essential heavy metals, detoxification of
toxic metals, and protection of cells against oxidation stress. The increasing of the MTs levels
in cancer cells are probably related to their increased proliferation and protection against
apoptosis [14].

(5) Antiterminator Module S8

From Figure 15, RPS10 (ribosomal protein S10) are the most important genes in this module.
RPS10 (as known as NusE) reflects another function [15] which is different from the ribosome
module S12. Ribosomal S10 relates to liver cancer [16], and RPS10 play an antitermination
role in the transcription process [17]. Therefore, ribosomal S10 may be the antitermination
factor for liver cancer.

(6) Immortal Module S9 (see Figure 16)

This module is the most important module of all modules, where any two genes are strongly
correlated. For each gene function, we can conclude as follows.

(1) GRN are a potent growth factor, which can promote the excessive proliferation of
tumor cells.

(2) C19orf6 (also known as membralin) relates NMDAR1 receptor activity, which
promotes tumor to differentiation and invasion and metastasis.

(3) RAD23A involves in negative regulation of HIV-1 replication, and VPR prevents
cell division. Therefore RAD23A with high expression is to promote tumor cell
division.
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Figure 16: The gene network of module S9.

(4) ZNF451 may negatively regulate the steroid hormone receptor coactivator of
transcription factor (Src), where Src protein plays an important role in the
proliferation of hepatoma cells during apoptosis.

(5) The protein encoded by RER1 is a multipass membrane protein, which facilitates
gamma-secretase complex assembly.

(6) The protein encoded by ABCF1 is a member of the superfamily of ATP-binding
cassette (ABC) transporters. This protein may be regulated by tumor necrosis
factor-alpha and play a role in enhancement of protein synthesis and the
inflammation process. The gene overexpression in HCC will reduce the efficiency
of drug treatment.

Summing up the narrative, the module may be the secret of liver cancer cells
“immortal”.
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6.2.3. The Specific Modules of SCM

The specific modules of SCM are W6, W8, W9, and W12, in which only W12 is highly
expressed.

(1) Antigrowth Inhibition Module W6

From Figure 17, one can see that the important genes of this module are HAAO, SDHAP1,
and RBP5. Specifically, the quinolinic acid, which is the resulting product of HAAO, inhibits
the growth of hepatoma cells. SDHAP1 is a marker enzyme of mitochondrial, which provides
electron to respiratory chain. Retinoic acid that produced by RBP5 after the second oxidation
can inhibit the growth of hepatoma cells.

As a result, the low expression of the genes in this module is to cut off the aerobic
capacity of the respiratory chain of electronic sources, making the oxidation products inhibit
the growth of cancer cells to be synthesized. Therefore, this module is named as antigrowth
inhibitory module.

(2) Antimicrobial Peptides Module W8

In Figure 18, LEAP2 (liver expressed antimicrobial peptide 2) is the most important genes of
the module W8, which has antibacterial activity.

(3) Fibrinogen Module W9 (see Figure 19)

There are nine fibrinogen (FIB) genes in module W9, such as FGA, FGB, and FGG. FIB is
a glycoprotein synthesized by the liver and plays an important physiological role in the
coagulation process. It is worthy to point out that the FIB increases in early stage, but
decreases in advanced liver cancer [18]. This module is a low expression; therefore the data
should be from advanced liver cancer.

(4) Antiapoptotic Module W12

From Figure 20, the most important three genes in the module W12 are SHARPIN, CYC1
and PUF60. SHARPIN interferes with TNF-induced cell death [19], CYC1 access to electrons



Journal of Applied Mathematics 19

LEAP2

LEAP2LEAP2

AFF4

NUFIP2

Figure 18: The gene network of module W8.

FGA

FGB

FGBFGB

FGB

Trans

CFI

SERPINA3
FGG

Figure 19: The gene network of module W9.

for respiratory chain, and PUF60 may increase a greater degree of apoptosis resistance of
cancer cells. This module provides electrons of respiratory chain to smoothly synthesis anti-
apoptotic protein; therefore this module plays the role of antiapoptotic.

7. Conclusions

By using the Pearson agglomerative method (PAM) and Pearson correlation coefficient (PCC)
modularity, we have investigated the modules decompositions and the decompositions
valuations for liver cancer genes. By using the data from Chen et al. [10], and the proposed
methods in this study, we have obtained 13 very strong correlation modules and 14 strong
correlation modules. In addition to some common modules, we have found a number of new
functional modules.

Coagulation modules are the hemostatic module S1 and fibrin module W9. It is noted
that the fibrinogen will be a huge increase in the early liver cancer, but in advanced liver
cancer, the fiber protein content would be down to a level slightly lower than normal.
Fibrinogen can be used as one of the detection of early stage liver cancer.
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With respect to the reasons of the cancer cells unlimited reproduction, we have found
antiterminate module S8, die module S9, antigrowth inhibition module W6, and antiapoptotic
module W12. In which only W6 is in a low expression, and the others are highly expressed.
One of the most modules is the immortal module S9, which may be the command center of
unlimited reproduction of the entire tumor.

There are two modules associated with the metals. Iron regulation module S6 and
metalloproteins module S7. These two modules are in low expression, but their functions are
very different. (1) Module S6 is to increase the iron content, making more iron ions combined
with more oxygen, and provide a steady stream of energy for the proliferation and metastasis
of liver cancer. (2) Metalloproteins in module S7 relates to tumor differentiation, and the
content of which is low in liver cancer.
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According to the integrated pest management strategies, we propose a model for pest control
which adopts different control methods at different thresholds. By using differential equation
geometry theory and the method of successor functions, we prove the existence of order one
periodic solution of such system, and further, the attractiveness of the order one periodic solution
by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to
illustrate the feasibility of our main results. Our results show that our method used in this paper
is more efficient and easier than the existing ones for proving the existence of order one periodic
solution.

1. Introduction

It is of great value to study pest management method applied in agricultural production;
entomologists and the whole society have been paying close attention to how to control
pests effectively and to save manpower and material resources. In agricultural production,
pesticides-spraying (chemical control) and release of natural enemies (biological control) are
the ways commonly used for pest control. But if we implement chemical control as soon as
pests appear, many problems are caused: the first is environmental pollution; the second is
increase of costs including human and material resources and time; the third is killing natural
enemies, such as parasitic wasp; the last is pests’ resistance to pesticides, which brings great
negative effects instead of working as well as had been expected [1–3]. The second way,
which controls pests with the help of the increasing natural enemies, can avoid problems
caused by chemical control and gets more and more attention. So many scholars have been
studying and discussing it [4–8]. Considering the effectiveness of the chemical control and
nonpollution and limitations of the biological one, people have proposed the method of
integrated pest management (IPM), which is a pest management system integrating all
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appropriate ways and technologies to control economic injury level (EIL) caused by pest
populations in view of population dynamics and its relevant environment. In the process of
practical application, people usually implement the following two schemes for the integrated
pest management: one is to implement control at a fixed time to eradicate pests [9, 10]; the
other is to implement measures only when the amount of pests reaches a critical level, which
is to make the amount less than certain economic impairment level, not to wipe out pests
[11–13]. Salazar conducted an experiment of broad bean being damaged by bean sprouts
worm in 1976 and found “crops’ compensation to damage of pests”, that is, yields of crops
which had been damaged a little by pests in the early growth are actually higher than those
without damage. In other words, we do not want to wipe out pests but to control them to a
certain economic injury level (EIL). So, the second is used most in the process of agricultural
industry. Tang and Cheke [14] first proposed the “Volterra” model in the from of a state-
dependent impulsive model:

x′(t) = x(t)
(
a − by(t)),

y′(t) = y(t)(−d + cx(t)),
x /=ET,

Δx(t) = −αx(t),
Δy(t) = q,

x = ET,

(1.1)

and they applied this model to pest management and proved existence and stability of
periodic solution of first and second order. Then Tang and Cheke [14] also proposed bait-
dependent digestive model with state pulse:

x′(t) = x(t)
(
a − by(t)),

y′(t) = y(t)
(

λbx(t)
1 + bhx(t)

− d
)
,

x /=hmax,

Δx(t) = −αx(t),
Δy(t) = q,

x = hmax,

(1.2)

they had the existence of positive periodic solution and stability of orbit. Recently Jiang
and Lu et al. [15–17] have proposed pest management model with state pulse and phase
structure and several predator-prey models with state pulse and had the existence of semi-
trivial periodic solution and positive periodic solution and stability of orbit.

It is worth mentioning that the vast majority of research on population dynamics
system with state pulse considers single state pulse, which is to say, only when the amount
of population reaches the same economic threshold can measures be taken (e.g., chemical
control and biological control); but this single state-pulse control does not confirm to
reality. In fact, we often need to use different control methods under different states in
real life. For example, in the process of pest management, when the amount of pests is
small, biological control is implemented; when the amount is large, combination control is
applied. Tang et al. [18] have investigated and developed a mathematical model with hybrid
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impulsive model:

x′(t) = rx(t)(1 − δx(t)) − bx(t)y(t), x < ET,

y′(t) = y(t)(cx(t) − a), t = λm,

x(t+) =
(
1 − p1

)
x(t),

y(t+) =
(
1 − p2

)
y(t),

x(t) = ET,

y(λ+m) =
(
1 + p3

)
y(λ+) + q, t = λm.

(1.3)

Motivated by Tang, on the basis of the above analysis, we set up the following predicator-prey
system with different control methods in different thresholds:

x′(t) = x(t)
(
a − by(t)),

y′(t) = y(t)
(

λbx(t)
1 + bhx(t)

− d
)
,

x /=h1, h2 or x = h1, y > y
∗,

Δx(t) = 0,
Δy(t) = δ,

x = h1, y � y∗,

Δx(t) = −αx(t),
Δy(t) = −βy(t) + q, x = h2,

(1.4)

where x(t) and y(t) represent, respectively, the prey and the predator population densities
at time t; a, b, λ, h1, h2 and d are all positive constants and h1 < h2; y∗ = a/b. α, β ∈ (0, 1)
represent the fraction of pest and predator, respectively, which die due to the pesticide when
the amount of prey reaches economic threshold h2 and q is the release amount of predator.
λbx(t)/(1+ bhx(t)) is the per capita functional response of the predator. When the amount of
the prey reaches the threshold h1 at time th1 , controlling measures are taken (releasing natural
enemies) and the amount of predator abruptly turns to y(th1) + δ. When the amount of the
prey reaches the threshold h2 at time th2 , spraying pesticide, and releasing natural enemies
and the amount of prey and predator abruptly turn to (1 − α)x(th2) and (1 − β)y(th2) + q,
respectively. Refer to [17] Liu et al. for details.

2. Preliminaries

First, we give some basic definitions and lemmas.

Definition 2.1. A triple (X,Π, R+) is said to be a semidynamical system if X is a metric space,
R+ is the set of all nonnegative real, and Π(P, t) : X ×R+ → X is a continuous map such that:

(i) Π(P, 0) = P for all P ∈ X;

(ii) Π(P, t) is continuous for t and s;

(iii) Π(Π(P, t)) = Π(P, t + s) for all P ∈ X and t, s ∈ R+. Sometimes a semi-dynamical
system (X,Π, R+) is denoted by (X,Π).
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Definition 2.2. Assuming that

(i) (X,Π) is a semi-dynamical system;

(ii) M is a nonempty subset of X;

(iii) function I : M → X is continuous and for any P ∈M, there exists a ε > 0 such that
for any 0 < |t| < ε, Π(P, t) /∈ M.

Then, (X,Π,M, I) is called an impulsive semi-dynamical system.
For any P , the function ΠP : R+ → X defined as ΠP (t) = Π(P, t) is continuous, and

we call ΠP (t) the trajectory passing through point P . The set C+(P) = {Π(P, t)/0 ≤ t < +∞} is
called positive semitrajectory of point P . The set C−(P) = {Π(P, t)/ −∞ < t ≤ 0} is called the
negative semi-trajectory of point P .

Definition 2.3. One considers state-dependent impulsive differential equations:

x′(t) = P
(
x, y

)
,

y′(t) = Q
(
x, y

)
,

(
x, y

)
/∈ M

(
x, y

)
,

Δx(t) = α
(
x, y

)
,

Δy(t) = β
(
x, y

)
,

(
x, y

) ∈M(
x, y

)
,

(2.1)

where M(x, y) and N(x, y) represent the straight line or curve line on the plane, M(x, y)
is called impulsive set. The function I is continuous mapping, I(M) = N, I is called the
impulse function. N(x, y) is called the phase set. We define “dynamic system” constituted
by the definition of solution of state impulsive differential equation (2.1) as “semicontinuous
dynamic systems”, which is denoted as (Ω, f, I,M).

Definition 2.4. Suppose that the impulse setM and the phase setN are both lines, as shown in
Figure 1. Define the coordinate in the phase set N as follows: denote the point of intersection
Q between N and x-axis as O, then the coordinate of any point A in N is defined as the
distance between A and Q and is denoted by yA. Let C denote the point of intersection
between the trajectory starting from A and the impulse set M, and let B denote the phase
point of C after impulse with coordinate yB. Then, we define B as the successor point of A,
and then the successor function of point A is that f(A) = yB − yA.

Definition 2.5. A trajectory Π̃(P0, t) is called order one periodic solution with period T if there
exists a point P0 ∈N and T > 0 such that P = Π(P0, t) ∈M and P+ = I(P) = P0.

We get these lemmas from the continuity of composite function and the property of
continuous function.

Lemma 2.6. Successor function defined in Definition 2.1 is continuous.

Lemma 2.7. In system (1.4), if there existA ∈N, B ∈N satisfying successor function f(A)f(B) <
0, then there must exist a point P (P ∈ N) satisfying f(P) = 0 the function between the point of A
and the point of B, thus there is an order one periodic solution in system (1.4).
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Figure 1: Successor function defined.

Next, we consider the model (1.4) without impulse effects:

x′(t) = x(t)
(
a − by(t)),

y′(t) = y(t)
(

λbx(t)
1 + bhx(t)

− d
)
.

(2.2)

It is well known that the system (2.2) possesses

(I) two steady states O(0, 0)-saddle point, and R(d/b(λ − dh), a/b) = R(x∗, y∗)(λ >
dh)-stable centre;

(II) a unique closed trajectory through any point in the first quadrant contained inside the point
R.

In this paper, we assume that the condition λ > dh holds. By the biological background
of system (1.4), we only consider D = {(x, y) : x ≥ 0, y ≥ 0}. Vector graph of system (2.2) can
be seen in Figure 2.

This paper is organized as follows. In the next section, we present some basic
definitions and an important lemmas as preliminaries. In Section 3, we prove existence for
an order one periodic solution of system (1.4). The sufficient conditions for the attractiveness
of order one periodic solutions of system (1.4) are obtained in Section 4. At last, we state
conclusion, and the main results are carried out to illustrate the feasibility by numerical
simulations.
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Figure 2: Illustration of vector graph of system (2.2).

3. Existence of the Periodic Solution

In this section, we will investigate the existence of an order one periodic solution of system
(1.4) by using the successor function defined in this paper and qualitative analysis. For this
goal, we denote thatM1 = {(x, y)/x = h1, 0 ≤ y ≤ a/b}, and thatM2 = {(x, y) | x = h2, y ≥ 0}.
Phase set of set M is that N1 = I(M1) = {(x, y) | x = h1, a/b < y ≤ (a/b) + δ} and that
N2 = I(M2) = {(x, y) | x = (1 − α)h2, y ≥ q}. Isoclinic line is denoted, respectively, by lines:
L1 = {(x, y) | y = a/b, x ≥ 0} and L2 = {(x, y) | x = d/b(λ − dh), y ≥ 0}.

For the convenience, if P ∈ Ω −M, F(P) is defined as the first point of intersection of
C+(P) and M, that is, there exists a t1 ∈ R+ such that F(P) = Π(P, t1) ∈ M, and for 0 < t <
t1,Π(P, t) /∈ M; if B ∈N,R(B) is defined as the first point of intersection of C−(P) and N, that
is, there exists a t2 ∈ R+ such that R(B) = Π(B,−t2) ∈ N, and for −t < t < 0,Π(B, t) /∈ N. For
any point P , we denote yP as its ordinate. If the point P(h, yP ) ∈ M, then pulse occurs at the
point P , the impulsive function transfers the point P into P+ ∈ N. Without loss of generality,
unless otherwise specified we assume the initial point of the trajectory lies in phase set N.

Due to the practical significance, in this paper we assume the set always lies in the left
side of stable centre R, that is, h1 < d/b(λ − dh) and (1 − α)h2 < d/b(λ − dh).

In the light of the different position of the set N1 and the set N2, we consider the
following three cases.

Case 1 (0 < h1 < d/b(λ − dh)). In this case, set M1 and N1 are both in the left side of stable
center R (as shown in Figure 3). Take a point B1(h1, (a/b) + ε) ∈ N1 above A, where ε > 0
is small enough, then there must exist a trajectory passing through B1 which intersects with
M1 at point P1(h1, yp1), we have yp1 < a/b. Since p1 ∈ M1, pulse occurs at the point P1,
the impulsive function transfers the point P1 into P+

1 (h1, yp1 + δ) and P+
1 must lie above B1,

therefore inequation (a/b) + ε < yp1 + δ holds, thus the successor function of B1 is f(B1) =
yp1 + δ − ((a/b) + ε) > 0.
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Figure 3: 0 < h1 < (d/b(1 − dh))(a/b) < yP2 + δ + < yP1 + δ.

On the other hand, the trajectory with the initial point P+
1 intersects M1 at point

P2(h1, yp2), in view of vector field and disjointness of any two trajectories, we know yp2 <
yp1 < a/b. Supposing the point P2 is subject to impulsive effects to point P+

2 (h1, yp+2 ), where
yp+2 = yp2 + δ, the position of P+

2 has the following two cases.

Subcase 1.1 (a/b < yp2 + δ < yp1 + δ). In this case, the point P+
2 lies above the point A and

below P+
1 , then we have f(P+

1 ) = yp2 + δ − (yp1 + δ) < 0.
By Lemma 2.7, there exists an order one periodic solution of system (1.4), whose initial

point is between B1 and P+
1 in set N1.

Subcase 1.2 (a/b ≥ yp2 + δ (as shown in Figure 4)). The point P+
2 lies below the point A, that

is, P+
2 ∈ M1, then pulse occurs at the point P+

2 , the impulsive function transfers the point P+
2

into P++
2 (h1, yp2 + 2δ).

If a/b < yp2 + 2δ < yp1 + δ, like the analysis of Subcase 1.1, there exists an order one
periodic solution of system (1.4).

If a/b > yp2 + 2δ, that is, P++
2 ∈ M1, then we repent the above process until there

exists k ∈ Z+ such that P++
2 jumps to Pi+2 ((h1, yp2 + (k + 2)δ) after k times’ impulsive

effects which satisfies a/b < yp2 +(k+2)δ < yp1 +δ. Like the analysis of Subcase 1.1,
there exists an order one periodic solution of system (1.4).

Now, we can summarize the above results as the following theorem.

Theorem 3.1. If λ > dh, 0 < h1 < d/b(λ − dh), then there exists an order one periodic solution of
the system (1.4).
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Figure 4: 0 < h1 < (d/b(1 − dh))(a/b) > yP2 + δ.

Remark 3.2. It shows from the proved process of Theorem 3.1 that the number of natural
enemies should be selected appropriately, which aims to reduce releasing impulsive times
to save manpower and resources.

Case 2 (h2 < d/b(λ − dh)). In this case, set M2 and N2 are both in the left side of stable center
R, in the light of the different position of the set N2, we consider the following two cases.

Subcase 2.1 (0 < h1 < (1−α)h2 < h2 < d/b(λ−dh)). In this case, the setN2 is in the right side of
M1 (as shown in Figure 5). The trajectory passing through point A which tangents to N2 at
point A intersects with M2 at point P0(h2, yp0). Since the point P0 ∈ M2, then impulse occurs
at point P0. Supposing the point P0 is subject to impulsive effects to point P+

0 ((1 − α)h2, yP+
0
),

where yP+
0
= (1 − β)yP0 + q, the position of P+

0 has the following three cases:
(1) ((1−β)yP0+q > a/b). Take a point B1((1−α)h2, ε+a/b) ∈N2 aboveA, where ε > 0 is

small enough. Then there must exist a trajectory passing through the pointB1 which intersects
with the set M2 at point P1(h2, yP1). In view of continuous dependence of the solution on
initial value and time, we know yP1 < yP0 and the point P1 is close to P0 enough, so we have
the point P+

1 is close to P+
0 enough and yP+

1
< yP+

0
, then we obtain f(B1) = yP+

1
− yB1 > 0.

On the other hand, the trajectory passing through point B tangents to N1 at point B.
Set F(S) = P2(h2, yP2) ∈ M2. Denote the coordinates of impulsive point P+

2 ((1 − α)h2, yP+
2
)

corresponding to the point P2(h2, yP2).

If yS ≥ yP+
0

then yP+
2
< yP+

0
< yS. So we obtain f(S) = yP+

2
− yS < 0. There exists an

order one periodic solution of system (1.4), whose initial point is between the point
B1 and the point S in set N2 (Figure 5).

If yS < yP+
0

and yP+
2
≤ yS, we have f(S) = yP+

2
−yS ≤ 0, we conclude that there exists

an order one periodic solution of system (1.4).
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Figure 5: h2 < d/b(1 − dh), h1 < (1 − α)h2 < h2.

If yS < yP+
0

and yP+
2
> yS, from the vector field of system (1.4), we know the

trajectory of system (1.4) with any initiating point on the N2 will ultimately stay
in Ω1 = {(x, y)/0 ≤ x ≤ h1, y ≥ 0} after one impulsive effect. Therefore there is no
an order one periodic solution of system (1.4).

(2) ((1 − β)yP0 + q < a/b (as shown in Figure 6)). In this case, the point P+
0 lies below

the point A, that is, (1 − β)yP0 + q < a/b, thus the successor function of the point A is f(A) =
(1 − β)yP0 + q − a/b < 0.

Take another point B1((1−α)h2, ε) ∈N2, where ε > 0 is small enough. Then there must
exist a trajectory passing through the point B1 which intersects M2 at point P1(h2, yP1) ∈ M2.
Suppose the point P1(h2, yP1) is subject to impulsive effects to point P+

1 ((1 − α)h2, yP+
1
), then

we have yP+
1
> ε. So we have f(B1) = yP+

1
− ε > 0.

From Lemma 2.7, there exists an order one periodic solution of system (1.4), whose
initial point is between B1 and A in set N2.

(3) ((1 − β)yP0 + q = a/b). P+
0 coincides with A, and the successor function of A is that

f(A) = 0, so there exists an order one periodic solution of system (1.4) which is just a part of
the trajectory passing through the A.

Now, we can summarize the above results as the following theorem.

Theorem 3.3. Assuming that λ > dh and 0 < h1 < (1 − α)h2 < h2 < d/b(λ − dh).
If yP+

0
≤ yA, there exists an order one periodic solutions of the system (1.4).

If yP+
0
> yA, if yS ≥ yP+

0
or yS < yP+

0
, and yS > yP+

2
, there exists an order one periodic

solutions of the system (1.4).

If yP+
0
> yA, yS < yP+

0
and yS < yP+

2
, there is no an order one periodic solutions of the system

(1.4). The trajectory of system (1.4)with any initiating point on theN2 will ultimately stay
in Ω1 = {(x, y)/0 ≤ x ≤ h1, y ≥ 0} after one impulsive effect.
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Figure 6: h2 < d/b(1 − dh), (1 − β)yP0 + q < a/b.

Subcase 2.2 (0 < (1−α)h2 < h1 < h2 < d/b(λ−dh)). In this case, the set N2 is on the left side of
N1. Any trajectory from initial point (x+

0 , y
+
0 ) ∈ N2 will intersect with M1 at some point with

time increasing. By the analysis of Case 1, the trajectory from initial point (x+
0 , y

+
0 ) ∈ N2 on

the set N2 will stay in the region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1}. Similarly, any trajectory
from initial point (x+

0 , y
+
0 ) ∈ Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2} will stay in the region

Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1} after one impulsive effect or free from impulsive effect.

Theorem 3.4. If λ > dh, 0 < (1 − α)h2 < h1 < h2 < d/b(λ − dh), there is no an order one periodic
solutions to the system (1.4), and the trajectory with initial point (x+

0 , y
+
0 ) ∈ Ω0 = {(x, y) | x ≥

0, y ≥ 0, x ≤ h2} will stay in the region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1}.

Case 3 (d/b(λ − dh) < h2). In this case, the set M2 is on the right side of stable center R. In
the light of the different position of N2, we consider the following two subcases.

Subcase 3.1 (h1 < (1 − α)h2 < d/b(λ − dh) < h2). In this case, the set M2 is in the right side of
R. Then there exists a unique closed trajectory Γ1 of system (1.4) which contains the point R
and is tangent to M2 at the point A.

Since Γ1 is closed trajectory, we take their the minimal value δmin of abscissas at the
trajectory Γ1, namely, δmin ≤ x holds for any abscissas of Γ1.

(1) (h1 < (1 − α)h2 < δmin < d/b(λ − dh) < h2). In this case, there is a trajectory, which
contains the point R(d/b(λ − dh), a/b) and is tangent to the N2 at the point B intersects
M2 at a point P1(h2, yP1) ∈ M2. Suppose point P1 is subject to impulsive effects to point
P+

1 ((1−α)h2, yP+
1
), here yP+

1
= (1−β)yP1+q. The position of P+

1 has the following three sub-cases.

If (1 − β)yP1 + q < a/b (Figure 7), the point P+
1 lies below the point B. Like the

analysis of Subcase 2.1(2), we can prove there exists an order one periodic solution
to the system (1.4) in this case.
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Figure 7: h1 < (1 − α)h2 < δmin < d/(λ − hd)(1 − β)yP1 + q < a/b.
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Figure 8: h1 < (1 − α)h2 < δmin < d/(λ − hd)(1 − β)yP1 + q > a/b.

If (1 − β)yP1 + q > a/b, the point P+
1 lies above the point B; the trajectory from

initiating point P+
1 intersects with the line L1 at point C. If h1 ≤ yC (Figure 8),

we have yP1 > yP2 and yP+
1
> yP+

2
, then the successor function of P+

1 is that
f(P+

1 ) = yP+
2
− yP+

1
< 0. Then, we know that there exists an order one periodic

solution of system (1.4), whose initial point is between the point P+
1 and B in set

N2. If h1 > yC (Figure 9), there is a trajectory which is tangent to the N1 at a point
D intersects with M2 at a point P3(h2, yP3) ∈M2, P3 jumps to P+

3 after the impulsive
effects. If yP+

3
≤ yB1 , we can easily know that there exists an order one periodic

solution of system (1.4). If yP+
3
> yB1 , by the qualitative analysis of the system (1.4),

we know that trajectory with any initiating point on the N2 will ultimately stay in
Γ1 after a finite number of impulsive effects.

If (1 − β)yP1 + q = a/b, the point P+
1 coincides with the point B, and the successor

function of the point B is that f(B) = 0; then there exists an order one periodic
solution which is just a part of the trajectory passing through the point B.
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Figure 9: h1 < (1 − α)h2 < δmin < d/(λ − hd) < h2(1 − β)yP1 + q > a/b, h1 > yc.

Now, we can summarize the above results as the following theorem.

Theorem 3.5. Assuming that λ > dh and h1 < (1 − α)h2 < δmin < d/b(λ − dh) < h2.

If (1 − β)yP1 + q ≤ a/b, there exists an order one periodic solution to the system (1.4).

If (1 − β)yP1 + q > a/b and h1 ≤ yC, then there exists an order one periodic solution to the
system (1.4).

If (1 − β)yP1 + q > a/b, h1 > yC and yP+
3
≤ yB1 , then there exists an order one periodic

solution to the system (1.4).

(2) (h1 < δmin < (1 − α)h2 < d/b(λ − dh) < h2). In this case, denote the closed trajectory Γ1

of system (1.4) intersects withN2 two points A1((1 − α)h2, yA1) and A2((1 − α)h2, yA2) (as shown
in Figure 10). Since A ∈ M2, impulse occurs at the point A. Suppose point A is subject to impulsive
effects to point P+

0 ((1 − α)h2, yP+
0
), here yP+

0
= (1 − β)(a/b) + q.

If (1 − β)(a/b) + q = yA1 or (1 − β)(a/b) + q = yA2 , then P
+
0 coincides with A1 or P+

0
coincides with A2, and the successor function of A1 or A2 is that f(A1) = 0 or f(A2) = 0.
So, there exists an order one periodic solution of system (1.4) which is just a part of the
trajectory Γ1.

If (1−β)(a/b) + q < yA2 , the point P
+
0 lies below the pointA2. Like the analysis of Subcase

2.1(2), we can prove there exists an order one periodic solution to the system (1.4) in this
case.

If (1 − β)(a/b) + q > yA1 (as shown in Figure 11), the point P+
0 is above the point A1.

Like the analysis of Subcase 3.1(1), we obtain sufficient conditions of existence of order one
periodic solution to the system (1.4).

Theorem 3.6. Assuming that λ > dh, h1 < (1 − α)h2 < δmin < d/b(λ − dh) < h2.

If (1 − β)(a/b) + q ≤ yA2 , there exists an order one periodic solution to the system (1.4).

If (1 − β)(a/b) + q > yA1 and h1 ≤ yC, then there exists an order one periodic solution to
the system (1.4).
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Figure 11: h1 < δmin < (1 − α)h2 < d/(λ − hd) < h2.

If (1 − β)(a/b) + q > yA1 , (1 − β)yP1 + q > a/b, h1 > yC, and yP+
3
≤ yB1 , then there exists

an order one periodic solution to the system (1.4).

(3) (yA2 < (1−β)(a/b)+q < yA1 ). In this case, we note that the point P+
0 must lie between the

pointA1 and the pointA2 (As shown in Figure 12). Taking a point B1 ∈M2 such that B1 jumps toA2

after the impulsive effect, denoteA2 = B+
1 . Since yP+

0
> yB+

1
, we have yA > yB1 . Let R(B1) = B+

2 ∈N2,
take a point B2 ∈ M2 such that B2 jumps to B+

2 after the impulsive effects, then we have yB+
1
> yB+

2
,

yB1 > yB2 . This process continues until there exists a B
+
K ∈ N2 (K ∈ Z+) satisfying yB+

k
< q. So

we obtain a sequence {B+
k}k=1,2,...,K of the set M2 and a sequence {Bk}k=1,2,...,K of set N2 satisfying

R(Bk−1) = B+
k ∈ N2, yB+

k−1
> yB+

k
. In the following, we will prove the trajectory of system (1.4) with

any initiating point of setN2 will ultimately stay in Γ1.

From the vector field of system (1.4), we know the trajectory of system (1.4) with any
initiating point between the point A1 and A2 will be free from impulsive effect and ultimately
will stay in Γ1.
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Figure 12: yA2 < (1 − β)(a/b) + q < yA1 .

For any point below A2, it must lie between B+
k

and B+
k−1, here k = 2, 3, . . . , K + 1 and

A2 = B+
1 . After k times’ impulsive effects, the trajectory with this initiating point will arrive at

some point of the set N2 which must be between A1 and A2, and then ultimately stay in Γ1.
Denote the intersection of the trajectory passing through the point B which tangents to

N1 at point B with the set N2 at S((1−α)h2, yS). With time increasing, the trajectory of system
(1.4) from any initiating point on segment A1S intersect with the set N2 at some point which
is below A2; so just like the analysis above we obtain, it will ultimately stay in Γ1. So for any
point below S, will ultimately stay in region Γ1 with time increasing.

Now, we can summarize the above results as the following theorem.

Theorem 3.7. Assuming that λ > dh, h1 < δmin < (1 − α)h2 < d/b(λ − dh) < h2, and yA2 <
(1 − β)(a/b) + q < yA1 , there is no periodic solution in system (1.4), and the trajectory with any
initiating point on the setN2 will stay in Γ1 or in the region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1}.

Subcase 3.2 (0 < (1−α)h2 < h1 < d/b(λ−dh) < h2). In this case, the set N2 is on the left side of
the set N1 and M2 in the right side of R. Like the analysis of Subcase 2.2, we can know that
any trajectory with initial point (x+

0 , y
+
0 ) ∈ Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2} will stay in the

region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1} after one impulsive effect or free from impulsive
effect.

4. Attractiveness of the Order One Periodic Solution

In this section, under the condition of existence of order one periodic solution to system (1.4)
and the initial value of pest population x(0) ≤ h2, we discuss its attractiveness. We focus on
Case 1 and Case 2; by similar method, we can obtain similar results about Case 3.
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Figure 13: There is a unique order one periodic solution (Theorem 4.1).

Theorem 4.1. Assuming that λ > dh, h1 < d/(b(λ − dh)) and δ ≥ a/b.
If yP+

0
> yP+

2
> yP+ or yP+

0
< yP+

2
< yP+ (Figure 14), then

(I) there exists a unique order one periodic solution of system (1.4),

(II) if (1 − α)h2 < h1, order one periodic solution of system (1.4) is attractive in the region
Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2}.

Proof. By the derivation of Theorem 3.1, we know there exists an order one periodic solution
of system (1.4). We assume trajectory P̂P+ and segment PP+ formulate an order one periodic
solution of system (1.4), that is, there exists a P+ ∈ N2 such that the successor function of P+

satisfies f(P+) = 0. First, we will prove the uniqueness of the order one periodic solution.
We take any two points C1(h1, yC1) ∈ N1, C2(h1, yC2) ∈ N1 satisfying yC2 > yC1 > yA,

then we obtain two trajectories whose initiate points are C1 and C2 intersects the set M1

two points D1(h1, yD1) and D2(h1, yD2), respectively, (Figure 13). In view of the vector field of
system (1.4) and the disjointness of any two trajectories without impulse, we know yD1 > yD2 .
Suppose the points D1 and D2 are subject to impulsive effect to points D+

1 (h1, yD+
1
) and

D+
2 (h2, yD+

2
), respectively, then we have yD+

1
> yD+

2
and f(C1) = yD+

1
− yC1 , f(C2) = yD+

2
− yC2 ,

so we get f(C1) − f(C2) < 0, thus we obtain the successor function f(x) is decreasing
monotonously of N1, so there is a unique point P+ ∈ N1 satisfying f(P+) = 0, and the
trajectory ̂P+PP+ is a unique order one periodic solution of system (1.4).

Next, we prove the attractiveness of the order one periodic solution ̂P+PP+ in the
region Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2}. We focus on the case yP+

0
> yP+

2
> yP+ ; by

similar method, we can obtain similar results about case yP+
0
< yP+

2
< yP+ (Figure 14).

Take any point P+
0 (h1, yP+

0
) ∈ N1 above P+. Denote the first intersection point

of the trajectory from initiating point P+
0 (h1, yP+

0
) with the set M1 at P1(h1, yP1), and

the corresponding consecutive points are P2(h1, yP2), P3(h1, yP3), P4(h1, yP4), . . . , respectively.
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Figure 14: Order one periodic solution is attractive (Theorem 4.1).

Consequently, under the effect of impulsive function, the corresponding points after pulse
are P+

1 (h1, yP+
1
), P+

2 (h1, yP+
2
), P+

3 (h1, yP+
3
), . . . .

Due to conditions yP+
0
> yP+

2
> yP+ , yP+

k
= yPk + δ, δ ≥ a/b and disjointness of any two

trajectories, then we get a sequence {P+
k
}k=1,2,... of the set N1 satisfying

yP+
1
< yP+

3
< · · · < yP+

2k−1
< yP+

2k+1
< · · · < yP+ < · · · < yP+

2k
< yP+

2k−2
< · · · < yP+

2
< yP+

0
. (4.1)

So the successor function f(P+
2k−1) = yP+

2k
− yP+

2k−1
> 0 and f(P+

2k) = yP+
2k+1

− yP+
2k
< 0 hold.

Series {yP2k−1}k=1,2,... increases monotonously and has upper bound, so limk→∞ yP+
2k−1

exists.
Next, we will prove limk→∞ yP+

2k−1
= yP+ . Set limk→∞ P2k−1 = C+, we will prove P+ = C+.

Otherwise P+ /=C+, then there is a trajectory passing through the point C+ which intersects
the set M1 at point C̃, then we have yC̃ > yP , yC̃+ > yP+ . Since f(C+) ≥ 0 and P+ /=C+,
according to the uniqueness of the periodic solution, then we have f(C+) = yC̃+ − yC+ > 0,
thus yC+ < yP+ < yC̃+ hold. Analogously, let trajectory passing through the point C+ which

intersects the set M1 at point ˜̃C, and the corresponding consecutive points is
˜̃̃
C, then yC̃ >

y ˜̃̃
C
> yp > y ˜̃C

, yC̃+ > y ˜̃̃
C

+ > y ˜̃C
+ > yp+ > yC+ , then we have f( ˜̃C

+
) = y ˜̃̃

C
+ − y ˜̃C

+ > 0, this is,

contradict to the fact that C+ is a limit of sequence {P+
2k−1}k=1,2,..., so we obtain P+ = C+. So, we

obtain limk→∞ yP+
2k−1

= yP+ . Similarly, we can prove limk→∞ yP+
2k
= yP+ .

From above analysis, we know there exists a unique order one periodic solution in
system (1.4), and the trajectory from initiating any point of the N1 will ultimately tend to be
order one periodic solution ̂P+PP+.
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Figure 15: Attractneness of order one periodic solution (Theorem 4.3).

Any trajectory from initial point (x+
0 , y

+
0 ) ∈ Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2} will

intersect with N1 at some point with time increasing on the condition that (1 − α)h2 < h1 <
h2 < d/b(λ−dh); therefore the trajectory from initial point on N1 ultimately tends to be order
one periodic solution ̂P+PP+. Therefore, order one periodic solution ̂P+PP+ is attractive in
the region Ω0. This completes the proof.

Remark 4.2. Assuming that λ > dh, h1 < h2 < d/b(λ − dh) and δ ≥ a/b, if yP+ < yP+
0
< yP+

2
or

yP+ > yP+
0
> yP+

2
then the order one periodic solution is unattractive.

Theorem 4.3. Assuming that λ > dh, h1 < (1 − α)h2 < h2 < d/b(λ − dh) and yP+
0
< yA (as shown

in Figure 15), then

(I) There exists an odd number of order one periodic solutions of system (1.4) with initial value
between C+

1 and A in setN2.

(II) If the periodic solution is unique, then the periodic solution is attractive in region Ω2, here
Ω2 is open region which is constituted by trajectory ĜB, segment BH, segment HE, and
segment EG.

Proof. (I) According to the Subcase 2.1(2), f(A) < 0 and f(C+
1 ) > 0, and the continuous

successor function f(x), there exists an odd number of root satisfying f(x) = 0, then we
can get there exists an odd number of order one periodic solutions of system (1.4) with initial
value between C+

1 and A in set N2.
(II) By the derivation of Theorem 3.3, we know there exists an order one periodic

solution of system (1.4) whose initial point is between C+
1 and P+

0 in the set N2. Assume
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trajectory P̂+P and segment PP+ formulate the unique order one periodic solution of system
(1.4) with initial point P+ ∈N2.

On the one hand, take a point C+
1 ((1 − α)h2, yC+

1
) ∈ N2 satisfying yC+

1
= ε < q and

yC+
1
< yP+ . The trajectory passing through the point C+

1 ((1 − α)h2, ε) which intersects with
the set M2 at point C2(h2, yC2), that is, F(C+

1 ) = C2 ∈ M2, then we have yC2 < yP , thus
yC+

2
< yP+ , since yC+

2
= (1 − β)yC2 + q > ε. So, we obtain f(C+

1 ) = yC+
2
− yC+

1
= yC+

2
− ε > 0;

Set F(C+
2 ) = C3 ∈ M2, because yC+

1
< yC+

2
< yP+ , we know yC2 < yC3 < yP , then we have

yC+
2
< yC+

3
< yP+ and f(C+

2 ) = yC+
3
−yC+

2
> 0. This process is continuing, then we get a sequence

{C+
k
}k=1,2,... of the set N2 satisfying

yC+
1
< yC+

2
< · · · < yC+

k
< · · · < yP+ (4.2)

and f(C+
k
) = yC+

k+1
−yC+

k
> 0. Series {yC+

k
}k=1,2,... increase monotonously and have upper bound,

so limk→∞ yC+
k

exists. Like the proof of Theorem 4.1, we can prove limk→∞ yC+
k
= yP+ .

On the other hand, set F(P+
0 ) = D1 ∈ M2, then D1 jumps to D+

1 ∈ N2 under the
impulsive effects. Since yP+ < yP+

0
< yA, we have yP < yD1 < yP0 , thus we obtain yP+ <

yD+
1
< yP+

0
, f(P+

0 ) = yD+
1
− yP+

0
< 0. Set F(D+

1 ) = D2 ∈ M2, then D2 jumps to D+
2 ∈ N2 under

the impulsive effects. We have yP+ < yD+
2
< yD+

1
; this process is continuing, we can obtain a

sequence {D+
k}k=1,2,..., of the set N2 satisfying

yP+
0
> yD+

1
> yD+

2
> · · · > yD+

k
> · · · > yP+ (4.3)

and f(D+
k) = yD+

k+1
−yD+

k
< 0. Series {yD+

k
}k=1,2,... decreases monotonously and has lower bound,

so limk→∞ yD+
k

exists. Similarly, we can prove limk→∞ yD+
k
= yP+ .

Any point Q ∈ N2 below A must be in some interval [yD+
k+1
, yD+

k
)k=1,2,..., [yD+

1
, yP+

0
),

[yP+
0
, yA), [yC+

k
, yC+

k+1
)k=1,2,.... Without loss of generality, we assume the point Q ∈ [yD+

k+1
, yD+

k
).

The trajectory with initiating point Q moves between trajectory ̂D+
k
Dk+1 and ̂D+

k+1Dk+2 and
intersects with M2 at some point between Dk+2 and Dk+1; under the impulsive effects, it
jumps to the point of N2 which is between [yD+

k+2
, yD+

k+1
), then trajectory Π̃(Q, t) continues to

move between trajectory ̂D+
k+1Dk+2 and ̂D+

k+2Dk+3. This process can be continued unlimitedly.
Since limk→∞yD+

k
= yP+ , the intersection sequence of trajectory Π̃(Q, t), and the set N2 will

ultimately tend to the point P+. Similarly, if Q ∈ [yC+
k
, yC+

k+1
), we also can get the intersection

sequence of trajectory Π̃(Q, t) and the set N2 will ultimately tend to point P+. Thus, the
trajectory initiating any point below A ultimately tend to the unique order one periodic
solution ̂P+PP+.

Denote the intersection of the trajectory passing through the point B which tangents
to N1 at the point B with the set N2 at a point S((1 − α)h2, yS). The trajectory from any
initiating point on segment AS will intersect with the set N2 at some point below A with
time increasing. So like the analysis above, we obtain the trajectory from any initiating point
on segment AS will ultimately tend to be the unique order one periodic solution ̂P+PP+.

Since the trajectory with any initiating point of the Ω2 will certainly intersect with
the set N2, then from the above analysis, we know the trajectory with any initiating point
on segment AS will ultimately tend to be order one periodic solution ̂P+PP+. Therefore, the
unique order one periodic solution ̂P+PP+ is attractive in the region Ω2. This completes the
proof.
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Figure 16: Attractneness of order one periodic solution (Theorem 4.5).

Remark 4.4. Assuming that λ > dh, h1 < (1 − α)h2 < h2 < d/b(λ − dh), and yC+
1
< yA < yP+

0
,

then the order one periodic solution with initial point between A and P+
0 is unattractive.

Theorem 4.5. Assuming that λ > dh, h1 < (1 − α)h2 < h2 < d/b(λ − dh), yP+
0
> yP+

1
> yA

(Figure 16) then, there exists a unique order one periodic solution of system (1.4) which is attractive
in the region Ω2, here Ω2 is open region which enclosed by trajectory ĜB, segment BH, segmentHE

and segment EG.

Proof. By the derivation of Theorem 3.3, we know there exists an order one periodic solution
of system (1.4). We assume trajectory P̂+P and segment PP+ formulate an order one periodic
solution of system (1.4), that is, P+ ∈N2 is its initial point satisfying f(P+) = 0. Like the proof
of Theorem 4.1, we can prove the uniqueness of the order one periodic solution of system
(1.4).

Next, we prove the attractiveness of the order one periodic solution ̂P+PP+ in the
region Ω2.

Denote the first intersection point of the trajectory from initiating point P+
0

with the impulsive set M2 at P1(h, yP1), and the corresponding consecutive points are
P2(h, yP2), P3(h, yP3), P4(h, yP4) · · · respectively. Consequently, under the effect of impulsive
function I, the corresponding points after pulse are P+

1 (h, yP+
1
), P+

2 (h, yP+
2
), P+

3 (h, yP+
3
), . . . . In

view of yP+
0
> yP+

1
> yA and disjointness of any two trajectories, we have

yP+
1
< yP+

3
< · · · < yP+

2k−1
< yP+

2k+1
< · · ·yP+

2k
< yP+

2k−2
< yP+

2
< yP+

0
. (4.4)

So f(P+
2k−1) = yP+

2k
−yP+

2k−1
> 0 and f(P+

2k) = yP+
2k+1

−yP+
2k
< 0 hold. Like the proof of Theorem 4.1,

we can prove limk→∞ yP+
2k−1

= limk→∞ yP+
2k
= yP+ .
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Figure 17: The time series and phase diagram for system (1.4) starting from initial value (0.85, 0.2) (red),
(0.8, 0.5) (green), and (0.75, 0.11) (blue), δ = 0.6, h1 = 1 < x∗.

The trajectory from initiating point between B+
0 and P+

0 will intersect with impulsive
set N2 with time increasing, under the impulsive effects it arrives at a point of N2 which
is between [yP+

2k−1
, yP+

2k+1
) or [yP+

2k
, yP+

2k−2
). Then like the analysis of Theorem 4.3, we know the

trajectory from any initiating point between B+
0 and P+

0 will ultimately tend to be order one
periodic solution ̂P+PP+.

Denote the intersection of the trajectory passing through point B which tangents to N1

at point B with the set N2 at S. Since the trajectory from initiating any point below S of the
set N2 will certain intersect with set N2, next we only need to prove the trajectory with any
initiating point below S of the set N2 will ultimately tend to be order one periodic solution
̂P+PP+.
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Figure 18: The time series and phase diagram for system (1.4) starting from initial value (0.8, 0.1) (red),
(0.7, 0.5) (green), and (0.75, 0.3) (blue) α = 0.6, β = 0.3, q = 0.8, h2 = 1.8, h1 < h2 < x

∗.

Assume a point B0 of set M2 jumps to B+
0 under the impulsive effect. Set R(B0) = B+

1 ∈
N2. Assume point B1 of set N2 jumps to B+

1 under the impulsive effect. Set R(B1) = B+
2 ∈ N2.

This process is continuing until there exists a BK+
0
∈ N (K+

0 ∈ N2) satisfying yBK+
0
< q. So we

obtain a sequence {Bk}k=0,1,2,...,K0
of set M2 and a sequence {B+

k}k=0,1,2,...,K0
of set N2 satisfying

R(Bk−1) = B+
k , yB+

k
< yB+

k−1
. For any point of set N2 below B+

0 , it must lie between B+
k+1 and B+

k

here k = 1, 2, . . . , K0. After K0 + 1 times’ impulsive effects, the trajectory with this initiating
point will arrive at some point of the set N2 which must be between B+

0 and P+
0 , and then will

ultimately tend to order one periodic solution ̂P+PP+. There is no order one periodic solution
with the initial point below B+

0 .



22 Journal of Applied Mathematics

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

1.5 2 2.5 3 3.5

y
(t
)

x(t)

(a)

3.5

3

2.5

2

1.5

10 20 30 40 50 60 70 80 90 100

t

x
(t
)

(b)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

y
(t
)

10 20 30 40 50 60 70 80 90 100

t

(c)

Figure 19: The time series and phase diagram for system (1.4) starting from initial value (1, 0.7) (red), (1.4,
0.5) (green), and (1.2,1) (blue) α = 0.6, β = 0.3, q = 0.8, h2 = 3.5, h1 < x

∗ < h2.

The trajectory with any initiating point in segment AS will intersect with the set N2 at
some point below B+

0 with time increasing. Like the analysis above, we obtain the trajectory
initiating any point on segment AS will ultimately tend to be the unique order one periodic
solution ̂P+PP+.

From above analysis, we know there exists a unique order one periodic solution in
system (1.4), and the trajectory from any initiating point below S will ultimately tend to be
order one periodic solution ̂P+PP+. Therefore, order one periodic solution ̂P+PP+ is attractive
in the region Ω2. This completes the proof.
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5. Conclusion

In this paper, a state-dependent impulsive dynamical model concerning different control
methods at different thresholds is proposed, we find a new method to study existence and
attractiveness of order one periodic solution of such system. We define semicontinuous
dynamical system and successor function, demonstrate the sufficient conditions that system
(1.4) exists order one periodic solution with differential geometry theory and successor
function. Besides, we successfully prove the attractiveness of the order one periodic solution
by sequence convergence rules and qualitative analysis.The method can be also extended to
mechanical dynamical systems with impacts, for example [19, 20].

These results show that the state-dependent impulsive effects contribute significantly
to the richness of the dynamics of the model. The conditions of existence of order one periodic
solution in this paper have more extensively applicable scope than the conditions given in
[14]. Our results show that, in theory, a pest can be controlled such that its population size is
no larger than its ET by applying effects impulsively once, twice, or at most, a finite number of
times, or according to a periodic regime. The methods of the theorems are proved to be new
in this paper, and these methods are more efficient and easier to operate than the existing
research methods which have been applied the models with impulsive state feedback control
[16–18, 21], so they are deserved further promotion. In this paper, according to the integrated
pest management strategies, we propose a model for pest control which adopts different
control methods at different thresholds, the corresponding control is exerted, which leads to
the two state impulses in model. Certainly, many biological systems will always be described
by three or more state variables, which are the main work in the future.

In order to testify the validity of our results, we consider the following example.

x′(t) = x(t)
(
0.4 − 0.5y(t)

)
,

y′(t) = y(t)
(

0.25x(t)
1 + 0.1x(t)

− 0.6
)
,

x /=h1, h2 or x = h1, y > y
∗,

Δx(t) = 0,
Δy(t) = δ,

x = h1, y � y∗,

Δx(t) = −αx(t),
Δy(t) = −βy(t) + q, x = h2,

(5.1)

where α, β ∈ (0, 1), δ > 0, q > 0, 0 < h1 < h2. Now, we consider the impulsive effects influences
on the dynamics of system (5.1).

Example 5.1. Existence and attractiveness of order one periodic solution.
We set h1 = 1, α = 0.6, β = 0.8, q = 0.8, h2 = 1.8, initiating points are (0.85, 0.2) (red),

(0.8, 0.5) (green), and (0.75, 0.11) (blue), respectively. Figure 17 shows that the conditions of
Theorems 3.1 and 4.1 hold, system (5.1) exists order one periodic solution. The trajectory
from different initiating must ultimately tend to be the order one periodic solution. Therefore,
order one periodic solution is attractive.

Example 5.2. Existence and attractiveness of positive periodic solution.
We set h1 = 0.7, α = 0.6, β = 0.8, q = 0.8, h2 = 1.8, h1 < (1 − α)h2 < x

∗, initiating points
are (0.8, 0.1) (red), (0.7, 0.5) (green), and (0.75, 0.3) (blue), respectively. Figure 18 shows that
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the conditions of Theorems 3.3 and 4.3 hold, there exists order one periodic solution of the
system (5.1), and the trajectory from different initiating must ultimately tend to be the order
one periodic solution. Therefore, order one periodic solution is attractive.

Example 5.3. Existence and attractive of positive periodic solutions.
We set h1 = 0.7, α = 0.6, β = 0.8, q = 0.8, h2 = 3.5, h1 < (1 − α)h2 < x∗ < h2,

initiating points are (1, 0.7) (red), (1.4, 0.5) (green), and (1.2, 1) (blue) as shown in Figure 19.
Therefore, the conditions of Theorems 3.6 and 4.5 hold, then system (5.1) exists order one
periodic solution, and it is attractive.
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A theoretical model of the drug release process from polymeric microparticles (a particular type
of polymer matrix), through dispersive fractal approximation of motion, is built. As a result, the
drug release process takes place through cnoidal oscillations modes of a normalized concentration
field. This indicates that, in the case of long-time-scale evolutions, the drug particles assemble in
a lattice of nonlinear oscillators occur macroscopically, through variations of drug concentration.
The model is validated by experimental results.

1. Introduction

Polymer matrices can be produced in one of the following forms: micro/nanoparticles,
micro/nanocapsules, hydrogels, films, and patches. Due to the multitude of biocompatible
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polymers in the experimental protocol, drug proper delivery via many administration routes
occurs. No matter what their form might be, drug carrier polymer matrices should have the
following characteristics: biocompatibility, biodegradability, and controlled release capacity.
The last one refers to the relationship between the efficient, nontoxic drug administration
and therapeutic window type concentration, that is, minimum concentration is required to
produce the wanted effect, but in the case of high levels, a toxic barrier occurs.

Given the importance of the released drug concentration, numerous studies have been
performed with the purpose of identifying the mathematical function that describes time
dependence. Many papers show how various factors, such as polymer molecular weight
[1, 2], polymer chemistry, monomer ratios [3, 4], pH of release media, additives to the release
media [5, 6], and particle size [7], affect the release kinetics. At the same time, certain
phenomena appearing in the release process have been studied. Of these, we mention (in
approximate order of their occurrence) polymer swelling and degradation [8–11], drug
dissolution and diffusion [12, 13], and above all, permanent chemical and physical interaction
among components (drug, polymer, and release medium). Since all these phenomena are
not independent, their analysis becomes complicated; consequently, it will not be possible
to treat them separately and cumulate the effects. For example, microparticle morphology
changes due to polymer degradation, their surfaces becoming highly porous. This will lead
to increased diffusion coefficients and hence certain connected phenomena, such as polymer
degradation and drug diffusion [7].

The multitude of phenomena and dependencies occurring in drug release process
as well as numerous structural entities (polymer, drug, and release medium) will turn the
system into a complex one. Consequently, the complete theoretical analysis becomes more
difficult in terms of performing.

Nevertheless, significant amount of work has been accomplished in mathematical
modeling, with the purpose of predicting the concentration of the released drug and
providing the analysis of fundamental processes that govern release. Higuchi [14] was among
the first who produced a drug release model from nonswelling and nondissolving polymer
matrices, assuming that such phenomenon is purely controlled through diffusion. A number
of other models have also been proposed in order to predict drug release in the case of erosion
[9, 11], swelling [8], and dissolution [13] influenced processes. These mathematical patterns
have chosen only two phenomena, with the purpose of simplifying mathematical modeling,
which, otherwise, proves to be quite difficult.

That is the main reason why it is necessary to use alternative approaches with reduced
number of the approximations. One of such possible approaches is the fractal one [15, 16]. Its
use is justified by natural and synthetic polymers that have been included in the category of
fractional-dimensioned objects whose structures and behaviour can be described by means
of fractal geometry [17, 18]. Moreover, it has been observed that the dynamics of drug release
systems is a fractal one, because, in spite of complex phenomena and factors, mathematical
expressions describing drug release kinetics from a variety of polymer matrices are power
type laws (Higuchi [14] for nonswelling and nondissolving polymer, Ritger and Peppas [19]
for nonswellable polymer in the form of slabs, spheres, cylinders, or discs, Peppas Sahlin [20]
for solute release, Alfrey et al. [21] for diffusion in glassy polymers, etc.) specific for the fractal
system evolution [22]. At the same time, it is quite important to emphasize that correlation of
experimental data with the above-mentioned laws revealed good correlation in the first part
(approximate 60%) of the release kinetics, the correlation coefficient decreasing according to
time evolution.
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Studies on the release from different types of systems (HPMC matrices [23], inert
porous matrices [24], and sponges [25, 26]) have been performed. Such approach analyzes
drug release kinetics through Monte Carlo simulation. In this perspective, release systems are
considered as three-dimensional lattices with leak sites located at the boundaries of the lattice
pattern. Particles are free to move inside the porous network according to the random walk
model of the Fickian diffusion (the moving particles act as hard spheres colliding with each
other and having no possibility to mutually penetrate).

The first studies started with simplifying approximations. Kosmidis et al. [23] consider
that porosity has a constant value. Later on, Villalobos et al. [24] improved the model,
assumed that network porosity behaves dynamically, and considered the effects of drug
spatial distribution and initial drug concentration. All these approaches proved the validity
of Weibull function (a continuous probability distribution function) for the entire release
kinetics and consequently eliminate Peppas’ temporal limitation of the equation and criticism
lacking kinetic basis and physical nature of parameters [27].

Our new approach considers the entire system (drug-loaded polymer matrix in the
release environment) as a type of “fluid” totally lacking interaction or neglecting physical
interactions among particles. At the same time, the induced complexity is replaced by
fractality. This will lead to particles moving on certain trajectories called geodesics within
fractal space. This assumption represents the basis of the fractal approximation of motion in
scale relativity theory (SRT) [28, 29], leading to a generalized fractal “diffusion” equation that
can be analyzed in terms of two approximations (dissipative and dispersive).

The comparison between dissipative approximation (with dominant convective and
dissipative processes) and the dispersive one allows theoretical demonstration of Weibull
function that best describes the behaviour of drug release systems at short time scales. These
phenomena will be the object of subsequent analysis since they are responsible for certain
types of behaviour and characterized by high degree of nonlinearity in drug release systems.

This paper is structured as follows: theoretical model (Section 2), experimental results
that validate the theoretical model (Section 3), and conclusions (Section 4).

2. Theoretical Model

2.1. Consequences of Nondifferentiability

We suppose that the drug release process takes place on continuous, but nondifferentiable
curves (fractal curves). Then, nondifferentiability implies [28–30] the following.

(i) A continuous and a nondifferentiable curve (or almost nowhere differentiable) is
explicitly scale dependent, and its length tends to infinity, when the scale interval
tends to zero. In other words, a continuous and nondifferentiable space is fractal,
and in the general meaning Mandelbrot used this concept [15];

(ii) Physical quantities will be expressed through fractal functions, namely, through
functions that are dependent both on coordinate field and resolution scale. The
invariance of the physical quantities in relation with the resolution scale generates
special types of transformations, called resolution-scale transformations. In what
follows, we will explain the above statement.
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ε dε

ε dε

Figure 1: Dilatation-scale invariance.

Let F(x) be a fractal function in the interval x ∈ [a, b], and let the sequence of values
for x be

xa = x0, x1 = x0 + ε, . . . , xk = x0 + kε, xn = x0 + nε = xb. (2.1)

Let us note by F(x, ε) the broken line that connects the points

F(x0), . . . , F(xk), . . . , F(xn). (2.2)

We can now say that F(x, ε) is a ε-scale approximation.
Let us now consider F(x, ε) as a ε-scale approximation of the same function. Since F(x)

is everywhere almost self-similar, if ε and ε are sufficiently small, both approximations F(x, ε)
and F(x, ε) must lead to the same results; in the particular case, a fractal phenomenon is
studied through approximation. By comparing the two cases, one notices that scale expansion
is related to the increase dε of ε, according to an increase dε of ε (see Figure 1). But, in this
case, we have

dε

ε
=
dε

ε
= dρ, (2.3)

a situation in which we can consider the infinitesimal-scale transformation as being

ε′ = ε + dε = ε + εdρ. (2.4)

Such transformation in the case of function F(x, ε) leads to

F
(
x, ε′

)
= F

(
x, ε + εdρ

)
, (2.5)
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respectively, if we limit ourselves to a first-order approximation:

F
(
x, ε′

)
= F(x, ε) +

∂F(x, ε)
∂ε

(
ε′ − ε) = F(x, ε) +

∂F(x, ε)
∂ε

εdρ. (2.6)

Moreover, let us notice that for an arbitrary but fixed ε0, we obtain

∂ ln(ε/ε0)
∂ε

=
∂(ln ε − ln ε0)

∂ε
=

1
ε
, (2.7)

a situation in which (2.6) can be written as follows:

F
(
x, ε′

)
= F(x, ε) +

∂F(x, ε)
∂ ln(ε/ε0)

dρ =
[

1 +
∂

∂ ln(ε/ε0)
dρ

]
F(x, ε). (2.8)

Therefore, we can introduce the dilatation operator

D̂ =
∂

∂ ln(ε/ε0)
. (2.9)

At the same time, relation (2.9) shows that the intrinsic variable of resolution is not ε,
but ln(ε/ε0).

The fractal function is explicitly dependant on the resolution (ε/ε0); therefore, we have
to solve the differential equation

dF

d ln(ε/ε0)
= P(F), (2.10)

where P(F) is now an unknown function. The simplest explicit suggested form for P(F) is
linear dependence [29]

P(F) = A + BF, A, B = const., (2.11)

in which case the differential equation (2.10) takes the form

dF

d ln(ε/ε0)
= A + BF. (2.12)

Hence, by integration and substituting

B = −τ, (2.13a)

−A
B

= F0, (2.13b)
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we obtain

F

(
ε

ε0

)
= F0

[
1 +

(
ε0

ε

)τ]
. (2.14)

This solution is independent as compared to parameterization on fractal curve.
We can now generalize the previous result by considering that F is dependent on

parameterization of the fractal curve. If p characterizes the position on the fractal curve, then,
following the same algorithm as above, the solution will be as a sum of two terms, that is,
both classical and differentiable (depending only on position) and fractal, nondifferentiable
(depending on position and, divergently, on ε/ε0)

F

(
p,

ε

ε0

)
= F0

(
p
)
[

1 + ξ
(
p
)
(
ε0

ε

)τ(p)
]

, (2.15)

where ξ(p) is a function depending on parameterization of the fractal curve.
The following particular cases are to be considered.
(ii1) In asymptotic small-scale regime ε � ε0, τ is constant (with no scale depen-

dence) and power-law dependence on resolution is obtained:

F

(
p,

ε

ε0

)
= T

(
p
)
(
ε0

ε

)τ

, (2.16a)

T
(
p
)
= F0

(
p
)
Q
(
p
)
. (2.16b)

At this stage, some power laws should also be considered, namely, those equations
describing drug release kinetics from a different type of polymer matrix [14, 19–21]. Conse-
quently, through the appropriate correspondence among quantities from (2.16a) and (2.16b)
and those from drug release processes, we will obtain the following:

(a) Higuchi law:

Mt

M∞
= kH · t1/2, (2.17)

where Mt and M∞ are cumulative amounts of drug release at time t and infinity, respectively,
and kH is a constant characteristic of the system [14];

(b) Peppas law:

Mt

M∞
= k · tn, (2.18)

where k is an experimentally obtained parameter, and n is a real number geometrically
related to the system and to drug release mechanism. The n value is used to characterize
different release mechanisms, that is, n = 0.5 indicates a Fickian diffusion. In their turn,
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different from 0.5 n values refer to mass transport according to non-Fickian model [31]. This
equation is a generalization of a square-root time law and an approximation for short times
of Weibull function.

In these expressions, we recognize the standard form of self-similar fractal behaviour
with fractal dimension DF = DT + τ , which has already been used for accurately describing
many physical and biological systems [15]. The topological dimensions are here DT = 1, since
we deal with length, but this can be easily generalized to surfaces (DT = 2) and volumes
(DT = 3). Therefore, such result is not a consequence of postulation or deduction, but an
aftermath of first principle theoretical analysis.

Considering that the resolution ε is a length, ε = δX, the scale-dependent length is
given, by definition, by the law

X
(
p, δX

)
= X0

(
p
) ·

(
λ

δX

)DF−1

, (2.19)

where λ is a scale characteristic length, and the exponent is identified with τ = DF − 1.
Now, in the above solution, one may use time t as parameter, and if one constantly

moves along the curve, one obtains X0(t) = at. Then, a differential version of the above
relation will be

δX = aδt ·
(

λ

δX

)DF−1

, (2.20)

so that the following fundamental relation among space and time elements on a fractal curve
or function is obtained:

δXDF ∝ δt. (2.21)

In other words, they are differential elements of different orders.
(ii2) In the asymptotic big-scale regime ε � ε0, τ is constant (with no scale depen-

dence), and, in terms of resolution, one obtains an independent law

F

(
p,

ε

ε0

)
−→ F0

(
p
)
. (2.22)

Particularly, if F(p, ε/ε0) are the coordinates in given space, we can write

X

(
p,

ε

ε0

)
= x

(
p
)
[

1 + ξ
(
p
)
(
ε0

ε

)τ]
. (2.23)

In this situation, ξ(p) becomes a highly fluctuating function which can be described
by stochastic process, while τ represents (according to previous description) the difference
between fractal and topological dimensions. The result is a sum of two terms, a classical, dif-
ferentiable one (dependent only on the position) and a fractal, nondifferentiable one (depen-
dent both on the position and, divergently, on ε/ε0). This represents the importance of the
above analysis.
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By differentiating these two parts, we obtain

dX = dx + dξ, (2.24)

where dx is the classical differential element, and dξ is a differential fractal one.
(iii) There is infinity of fractal curves (geodesics) relating to any couple of points (or

starting from any point) and applied for any scale. The phenomenon can be easily understood
at the level of fractal surfaces, which, in their turn, can be described in terms of fractal
distribution of conic points of positive and negative infinite curvature. As a consequence,
we have replaced velocity on a particular geodesic by fractal velocity field of the whole
infinite ensemble of geodesics. This representation is similar to that of fluid mechanics [32]
where the motion of the fluid is described in terms of its velocity field v = (x(t), t), density
ρ = (x(t), t), and, possibly, its pressure. We will, indeed, recover the fundamental equations
of fluid mechanics (Euler and continuity equations), but we will write them in terms of a
density of probability (as defined by the set of geodesics) instead of a density of matter and
adding an additional term of quantum pressure (the expression of fractal geometry).

(iv) The local differential time invariance is broken, so the time derivative of the fractal
field Q can be written as twofold:

d+Q

dt
= lim

Δt→ 0+

Q(t + Δt) −Q(t)
Δt

, (2.25a)

d−Q
dt

= lim
Δt→ 0−

Q(t) −Q(t −Δt)
Δt

. (2.25b)

Both definitions are equivalent in the differentiable case dt → −dt. In the nondifferen-
tiable situation, these definitions are no longer valid, since limits are not defined anymore.
Fractal theory defines physics in relationship with the function behavior during the “zoom”
operation on the time resolution δt, here identified with the differential element dt
(substitution principle), which is considered an independent variable. The standard field
Q(t) is therefore replaced by fractal field Q(t,dt), explicitly dependent on time resolution
interval, whose derivative is not defined at the unnoticeable limit dt → 0. As a consequence,
this leads to the two derivatives of the fractal field Q as explicit functions of the two variables
t and dt,

d+Q

dt
= lim

Δt→ 0+

Q(t + Δt,Δt) −Q(t,Δt)
Δt

, (2.26a)

d−Q
dt

= lim
Δt→ 0−

Q(t,Δt) −Q(t −Δt,Δt)
Δt

. (2.26b)

Notation “+” corresponds to the forward process, while “−” to the backward one.
(v) Let P(x1, x2) be a point of the fractal curve, and let us consider a line which starts

from this point. Let Mbe the first intersection of this line with the fractal curve. By dXi
+, we

denote the components of the vector PM, to the right of the line (d), and by dXi
− the com-

ponents of the vector PM′, to the left of the line (d)—see Figure 2.
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P

M

X1

X2

x1

M′

(d)

Figure 2: The continuous curves which are not fractals but have certain points where they are not
differentiable.

If we consider all the lines (segments) starting from P , we denote the average of these
vectors by dxi

±, that is,

〈
dXi

+

〉
= dxi

+, i = 1, 2, (2.27a)

〈
dXi

−
〉
= dxi

−, i = 1, 2. (2.27b)

Since, according to (2.24), we can write

dXi
+ = dxi

+ + dξi+, (2.28a)

dXi
− = dxi

− + dξi−, (2.28b)

it results that

〈
dξi+

〉
= 0, (2.29a)

〈
dξi−

〉
= 0. (2.29b)

(vi) The differential fractal part satisfies, according to (2.21), the fractal equation

d+ξ
i = λi+(dt)

1/DF , (2.30a)

d−ξi = λi−(dt)
1/DF , (2.30b)
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where λi+ and λi− are some constant coefficients, and DF is a constant fractal dimension. We
note that the use of any Kolmogorov or Hausdorff [15, 28, 33–35] definitions can be accepted
for fractal dimension, but once a certain definition is admitted, it should be used until the end
of analyzed dynamics.

(vii) The local differential time reflection invariance is recovered by combining the two
derivatives, d+/dt and d−/dt, in the complex operator

d̂

dt
=

1
2

(
d+ + d−

dt

)
− i

2

(
d+ − d−

dt

)
. (2.31)

Applying this operator to the “position vector,” a complex speed yields

V̂ =
d̂X
dt

=
1
2

(
d+X + d−X

dt

)
− i

2

(
d+X − d−X

dt

)
=

V+ +V−
2

− i
V+ −V−

2
= V − iU, (2.32)

with

V =
V+ +V−

2
, (2.33a)

U =
V+ −V−

2
. (2.33b)

The real part, V, of the complex speed V̂ represents the standard classical speed, which
does not depend on resolution, while the imaginary part, U, is a new quantity coming from
resolution-dependant fractal.

2.2. Covariant Total Derivative in Drug Release Mechanism

Let us now assume that curves describing drug release (continuous but nondifferentiable)
are immersed in a 3-dimensional space, and that X of components Xi (i = 1, 3) is the position
vector of a point on the curve. Let us also consider the fractal field Q(X, t) and expand its
total differential up to the third order

d+Q =
∂Q

∂t
dt +∇Q · d+X +

1
2

∂2Q

∂Xi∂Xj
d+X

id+X
j +

1
6

∂3Q

∂Xi∂Xj∂Xk
d+X

id+X
jd+X

k, (2.34a)

d−Q =
∂Q

∂t
dt +∇Q · d−X +

1
2

∂2Q

∂Xi∂Xj
d−Xid−Xj +

1
6

∂3Q

∂Xi∂Xj∂Xk
d−Xid−Xjd−Xk, (2.34b)

where only the first three terms were used in Nottale’s theory (i.e., second-order terms in
the motion equation). Relations (2.34a) and (2.34b) are valid in any point both for the spatial
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manifold and for the points X on the fractal curve (selected in relations (2.34a) and (2.34b)).
Hence, the forward and backward average values of these relations take the form

〈d±Q〉 =
〈
∂Q

∂t
dt

〉
+ 〈∇Q · d±X〉 + 1

2

〈
∂2Q

∂Xi∂Xj
d±Xid±Xj

〉

+
1
6

〈
∂3Q

∂Xi∂Xj∂Xk
d±Xid±Xjd±Xk

〉

,

(2.35)

〈d−Q〉 =
〈
∂Q

∂t
dt

〉
+ 〈∇Q · d−X〉 + 1

2

〈
∂2Q

∂Xi∂Xj
d−Xid−Xj

〉

+
1
6

〈
∂3Q

∂Xi∂Xj∂Xk
d−Xid−Xjd−Xk

〉

.

(2.36)

The following aspects should be mentioned: the mean value of function f and its
derivatives coincide with themselves, and the differentials d±Xi and dt are independent;
therefore, the average of their products coincides with the product of averages. Consequently,
(2.35) and (2.36) become

d+Q =
∂Q

∂t
dt +∇Q〈d+X〉 + 1

2
∂2Q

∂Xi∂Xj

〈
d+Xid+Xj

〉
+

1
6

∂3Q

∂Xi∂Xj∂Xk

〈
d+Xid+Xjd+Xk

〉
,

(2.37a)

d−Q =
∂Q

∂t
dt +∇Q〈d−X〉 + 1

2
∂2Q

∂Xi∂Xj

〈
d−Xid−Xj

〉
+

1
6

∂3Q

∂Xi∂Xj∂Xk

〈
d−Xid−Xjd−Xk

〉
,

(2.37b)

or more, using (2.28a) and (2.28b) with characteristics (2.29a) and (2.29b),

d+Q =
∂Q

∂t
dt +∇Q · d+X +

1
2

∂2Q

∂Xi∂Xj

(
d+xid+xj +

〈
d+ξ

id+ξ
j
〉)

+
1
6

∂3Q

∂Xi∂Xj∂Xk

(
d+xid+xjd+xk +

〈
d+ξ

id+ξ
jd+ξ

k
〉)

,

(2.38a)

d−Q =
∂Q

∂t
dt +∇Q · d−X +

1
2

∂2Q

∂Xi∂Xj

(
d−xid−xj +

〈
d−ξid−ξj

〉)

+
1
6

∂3Q

∂Xi∂Xj∂Xk

(
d−xid−xjd−xk +

〈
d−ξid−ξjd−ξk

〉)
.

(2.38b)

Even if the average value of the fractal coordinate d±ξi is null (see (2.29a) and (2.29b)),
for higher order of fractal coordinate average, the situation can still be different. Firstly, let
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us focus on the averages 〈d+ξ
id+ξ

j〉 and 〈d−ξid−ξj〉. If i /= j, these averages are zero due to the
independence of d±ξi and d±ξj . So, using (2.30a) and (2.30b), we can write

〈
d+ξ

id+ξ
j
〉
= λi+λ

j
+(dt)

(2/DF)−1dt, (2.39a)

〈
d−ξid−ξj

〉
= λi−λ

j
−(dt)

(2/DF)−1dt. (2.39b)

Then, let us consider the averages 〈d+ξ
id+ξ

jd+ξ
k〉 and 〈d−ξid−ξjd−ξk〉. If i /= j /= k, these

averages are zero due to independence of d±ξi on d±ξj and d±ξk. Now, using (2.30a) and
(2.30b), we can write

〈
d+ξ

id+ξ
jd+ξ

k
〉
= λi+λ

j
+λ

k
+(dt)

(3/DF)−1dt, (2.40a)

〈
d−ξid−ξjd−ξk

〉
= λi−λ

j
−λ

k
−(dt)

(3/DF)−1dt. (2.40b)

Then, (2.38a) and (2.38b) may be written as follows:

d+Q =
∂Q

∂t
dt + d+x · ∇Q +

1
2

∂2Q

∂Xi∂Xj
d+xid+xj +

1
2

∂2Q

∂Xi∂Xj
λi+λ

j
+(dt)

(2/DF)−1dt

+
1
6

∂3Q

∂Xi∂Xj∂Xk
d+xid+xjd+xk +

1
6

∂3Q

∂Xi∂Xj∂Xk
λi+λ

j
+λ

k
+(dt)

(3/DF)−1dt,

(2.41a)

d−Q =
∂Q

∂t
dt + d−x · ∇Q +

1
2

∂2Q

∂Xi∂Xj
d−xid−xj +

1
2

∂2Q

∂Xi∂Xj
λi−λ

j
−(dt)

(2/DF)−1dt

+
1
6

∂3Q

∂Xi∂Xj∂Xk
d−xid−xjd−xk +

1
6

∂3Q

∂Xi∂Xj∂Xk
λi−λ

j
−λ

k
−(dt)

(3/DF)−1dt.

(2.41b)

If we divide by dt and neglect the terms containing differential factors (for details on
the method, see [36, 37]), (2.41a) and (2.41b) are reduced to

d+Q

dt
=

∂Q

∂t
+V+ · ∇Q +

1
2

∂2Q

∂Xi∂Xj
λi+λ

j
+(dt)

(2/DF)−1 +
1
6

∂3Q

∂Xi∂Xj∂Xk
λi+λ

j
+λ

k
+(dt)

(3/DF)−1,

(2.42a)

d−Q
dt

=
∂Q

∂t
+V− · ∇Q +

1
2

∂2Q

∂Xi∂Xj
λi−λ

j
−(dt)

(2/DF)−1 +
1
6

∂3Q

∂Xi∂Xj∂Xk
λi−λ

j
−λ

k
−(dt)

(3/DF)−1.

(2.42b)
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These relations also allow us to define the operator

d+

dt
=

∂

∂t
+V+ · ∇ +

1
2

∂2

∂Xi∂Xj
λi+λ

j
+(dt)

(2/DF)−1 +
1
6

∂3

∂Xi∂Xj∂Xk
λi+λ

j
+λ

k
+(dt)

(3/DF)−1, (2.43a)

d−
dt

=
∂

∂t
+V− · ∇ +

1
2

∂2

∂Xi∂Xj
λi−λ

j
−(dt)

(2/DF)−1 +
1
6

∂3

∂Xi∂Xj∂Xk
λi−λ

j
−λ

k
−(dt)

(3/DF)−1. (2.43b)

Under these circumstances, let us calculate (∂̂Q/∂t). Taking into account (2.43a),
(2.43b), (2.31), and (2.32), we will obtain

∧
∂Q

∂t
=

1
2

[
d+Q

dt
+
d−Q
dt

− i

(
d+Q

dt
− d−Q

dt

)]

=
1
2
∂Q

∂t
+

1
2
V+ · ∇Q + λi+λ

j
+

1
4
(dt)(2/DF)−1 ∂2Q

∂Xi∂Xj
+ λi+λ

j
+λ

k
+

1
12

(dt)(3/DF)−1 ∂3Q

∂Xi∂Xj∂Xk

+
1
2
∂Q

∂t
+

1
2
V− · ∇Q + λi−λ

j
−

1
4
(dt)(2/DF)−1 ∂2Q

∂Xi∂Xj
+ λi−λ

j
−λ

k
−

1
12

(dt)(3/DF)−1 ∂3Q

∂Xi∂Xj∂Xk

− i

2
∂Q

∂t
− i

2
V+ · ∇Q − λi+λ

j
+
i

2
(dt)(2/DF)−1 ∂2Q

∂Xi∂Xj
− λi+λ

j
+λ

k
+
i

12
(dt)(3/DF)−1 ∂3Q

∂Xi∂Xj∂Xk

+
i

2
∂Q

∂t
+

i

2
V− · ∇Q + λi−λ

j
−
i

2
(dt)(2/DF)−1 ∂2Q

∂Xi∂Xj
+ λi−λ

j
−λ

k
−
i

12
(dt)(3/DF)−1 ∂3Q

∂Xi∂Xj∂Xk

=
∂Q

∂t
+
(
V+ +V−

2
− i

V+ −V−
2

)
· ∇Q

+
(dt)(2/DF)−1

4

[(
λi+λ

j
+ + λi−λ

j
−
)
− i

(
λi+λ

j
+ − λi−λ

j
−
)] ∂2Q

∂Xi∂Xj

+
(dt)(3/DF)−1

12

[(
λi+λ

j
+λ

k
+ + λi−λ

j
−λ

k
−
)
− i

(
λi+λ

j
+λ

k
+ − λi−λ

j
−λ

k
−
)] ∂3Q

∂Xi∂Xj∂Xk

=
∂Q

∂t
+

∧
V ·∇Q +

(dt)(2/DF)−1

4

[(
λi+λ

j
+ + λi−λ

j
−
)
− i

(
λi+λ

j
+ − λi−λ

j
−
)] ∂2Q

∂Xi∂Xj

+
(dt)(3/DF)−1

12

[(
λi+λ

j
+λ

k
+ + λi−λ

j
−λ

k
−
)
− i

(
λi+λ

j
+λ

k
+ − λi−λ

j
−λ

k
−
)] ∂3Q

∂Xi∂Xj∂Xk
.

(2.44)

This relation also allows us to define the fractal operator

∂̂

∂t
=

∂

∂t
+ V̂ · ∇ +

(dt)(2/DF)−1

4

[(
λi+λ

j
+ + λi−λ

j
−
)
− i

(
λi+λ

j
+ − λi−λ

j
−
)] ∂2

∂Xi∂Xj

+
(dt)(3/DF)−1

12

[(
λi+λ

j
+λ

k
+ + λi−λ

j
−λ

k
−
)
− i

(
λi+λ

j
+λ

k
+ − λi−λ

j
−λ

k
−
)] ∂3

∂Xi∂Xj∂Xk
.

(2.45)
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Particularly, by choosing

λi+λ
j
+ = −λi−λj− = 2Dδij , (2.46a)

λi+λ
j
+λ

k
+ = −λi−λj−λk+ = 2

√
2D3/2δijk, (2.46b)

the fractal operator (2.45) takes the usual form

∂̂

∂t
=

∂

∂t
+ V̂ · ∇ − iD(dt)(2/DF)−1Δ +

√
2

3
D3/2(dt)(3/DF)−1∇3. (2.47)

We now apply the principle of scale covariance and postulate that the passage from
classical (differentiable) to “fractal” mechanics can be implemented by replacing the standard
time derivative operator, d/dt, with the complex operator ∂̂/∂t (this results in a generaliza-
tion of Nottale’s [28, 29] principle of scale covariance). Consequently, we are now able to
write the diffusion equation in its covariant form

∂̂Q

∂t
=

∂Q

∂t
+
(
V̂ · ∇

)
Q − iD(dt)(2/DF)−1ΔQ +

√
2

3
D3/2(dt)(3/DF)−1∇3Q = 0. (2.48)

This means that at any point on a fractal path, the local temporal ∂tQ, the nonlinear
(convective), (V̂·∇)Q, the dissipative, ΔQ, and the dispersive, ∇3Q, terms keep their balance.

The dissipative approximation was applied for the drug release processes, and the
result was a Weibull type function that was analyzed in [38, 39]. In what follows, we will
focus on dispersive approximation.

2.3. The Dispersive Approximation

Let us now consider that, in comparison with dissipative processes, convective and dispersive
processes are dominant ones. Consequently, we are now able to write the diffusion equation
in its covariant form, as a Korteweg de Vries type equation

∂̂Q

dt
=

∂Q

∂t
+
(
V̂ · ∇

)
Q +

√
2

3
D3/2(dt)(3/DFD)−1∇3Q = 0. (2.49)

If we separate the real and imaginary parts from (2.49), we will obtain

∂Q

∂t
+V · ∇Q +

√
2

3
D3/2(dt)(3/DF)−1∇3Q = 0, (2.50a)

−U · ∇Q = 0. (2.50b)
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By adding them, the fractal diffusion equation is

∂Q

∂t
+ (V −U) · ∇Q +

√
2

3
D3/2(dt)(3/DF)−1∇3Q = 0. (2.51)

From (2.50b), we see that, at fractal scale, there will be no Q field gradient.
Assuming that |V − U| = σ · Q with σ = constant (in systems with self-structuring

processes, the speed fluctuations induced by fractal/nonfractal are proportional with the
concentration field [22]), in the particular one-dimensional case, (2.51) will lack parameters

τ = ωt, (2.52a)

ξ = kx, (2.52b)

Φ =
Q

Q0
, (2.52c)

and normalizing conditions

σQ0k

6ω
=

√
2

3
D3/2(dt)(3/DF)−1k3

ω
= 1 (2.53)

take the form

∂τφ + 6φ∂ξφ + ∂ξ ξ ξφ = 0. (2.54)

In relations (2.52a), (2.52b), (2.52c), and (2.53), ω corresponds to a characteristic
pulsation, k to the inverse of a characteristic length, and Q0 to balanced concentration.

Through substitutions

w(θ) = φ
(
τ, ξ

)
, (2.55a)

θ = ξ − uτ, (2.55b)

(2.54), by double integration, becomes

1
2
w

′2 = F(w) = −
(
w3 − u

2
w2 − gw − h

)
, (2.56)

with g, h are two integration constants, and u is the normalized phase velocity. If F(w) has
real roots, (2.54) has the stationary solution

φ
(
ξ, τ, s

)
= 2a

(
E(s)
K(s)

− 1
)
+ 2a · cn2

[√
a

s

(
ξ − u

2
τ + ξ0

)
; s
]
, (2.57)
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Figure 3: One-dimensional cnoidal oscillation modes of the field Φ.

where cn is Jacobi’s elliptic function of s modulus [39], a is the amplitude, ξ0 is a constant of
integration, and

K(s) =
∫π/2

0

(
1 − s2sin2ϕ

)−1/2
dϕ, (2.58a)

E(s) =
∫π/2

0

(
1 − s2sin2ϕ

)1/2
dϕ, (2.58b)

are the complete elliptic integrals [40].
Parameter s represents measure characterizing the degree of nonlinearity in the sys-

tem. Therefore, the solution (2.57) contains (as subsequences for s = 0) one-dimensional har-
monic waves, while for, s → 0 one-dimensional wave packet. These two subsequences define
the nonquasiautonomous regime of the drug release process [22, 36, 37], that is, the system
should receive external energy in order to develop. For s = 1, the solution (2.57) becomes
one-dimensional soliton, while for s → 1, one-dimensional soliton packet will be generated.
The last two imply a quasiautonomous regime (self-evolving and independent [22]) for drug
particle release process [22, 36, 37].

The three-dimensional plot of solution (2.57) shows one-dimensional cnoidal oscilla-
tion modes of the concentration field, generated by similar trajectories of the drug particles
(see Figure 3). We mention that cnoidal oscillations are nonlinear ones, being described by
the elliptic function cn, hence the name (cnoidal).

It is known that in nonlinear dynamics, cnoidal oscillation modes are associated with
nonlinear lattice of oscillators (the Toda lattice [41]). Consequently, large-time-scale drug
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particle ensembles can be compared to a lattice of nonlinear oscillators which facilitates drug
release process.

3. Experimental Results

Most of the experimental data in the literature reveal that, on average, drug release from
polymeric matrices takes place according to a power law in the first 60% of the release curve
and/or to exponential Weibull function on the entire drug release curve, reaching an average
constant balanced value. The majority of these experimental results are carried out on rela-
tively short time intervals, dissolution and diffusion being the dominant systems. The system
exhibits a “burst effect” due to highly concentrated gradient. The phenomenon is followed
by linear evolution on a constant value that corresponds to the balanced state with diluted
gradient.

Nevertheless, some experimental results with long enough time intervals allow com-
plete evolution of the process (polymer degradation stage is included here) and show unusu-
ally strong fluctuating behaviour.

Experimental data of drug release, at short and long time scales, for polymeric micro-
particles (as polymeric matrices) are presented below.

3.1. Materials

The following materials were used: low-molecular-weight chitosan-CS, deacetylation degree
75–80% (Aldrich), type B gelatin-GEL (Aldrich), glutaraldehyde-GA (Aldrich)-25% aqueous
solution, sodium tripolyphosphate-TPP (Sigma), Levofloxacin-LEV (Sigma), Tween 80
(Aldrich), and Span 80 (Aldrich).

3.2. Preparation of Microparticles by Ionic Gelation and
Covalent Cross-Linking in O/W/O Emulsion

Microparticles were prepared using an original double cross-linking method of a CS-GEL
mixture. Different weight ratios CS/GEL (in terms of amino groups of both polymers) were
dissolved in acetic acid solution 2%, and then Tween 80 was added to make a 2% (w/w)
surfactant in the solution. The mixture was magnetically stirred until the surfactant was com-
pletely dissolved. Two different solutions of 2% Span 80 in toluene were prepared according
to O1/W (v/v) = 1/4 and O2/(O1 + W) = 4/1. The organic phase O1 was dripped within
the aqueous polymer phase, W under homogenization with an Ultraturax device at 9000 rpm.
The primary emulsion was transformed into a double one through dripping in the second
organic phase O2, according to the same hydrodynamic regime. The emulsion was then
gelled by slowly adding a TPP solution at a rate of 2 mL/min with continuous stir for extra
10 min.

The suspension was then transferred to a round-bottom flask and mechanically stirred
at 500 rpm. A certain amount of a saturated solution of GA in toluene was consecutively
added and stirred for 60 min. The particles were separated by centrifugation (6000 rpm) and
repeatedly washed with acetone and water in order to eliminate residual compounds. After
hexane wash, the particles were dried at room temperature.



18 Journal of Applied Mathematics

Table 1: The variable parameters in the preparation protocol.

Sample code CS/GEL (w/w) Conc. of TPP sol. (%) NH2/TPP (mols/mols)
C3

1/1

1

2.4/1C1 5
C4 10
C2 15
C7

1/1 5%

1.17/1
C1 2.4/1
C5 4.8/1
C6 11.7/1
C5 1/1

5% 4.8/1C8 1/0
C9 3/1

3.3. Preparation Parameters

A two-step solidification method was used. The first step, which has critical influence over
the subsequent particle shape and size, included ionic cross-linking with TPP effect through
phosphate bridges among amino functionalities in both types of polymeric chains. The GA
covalent cross-linking (also taking place in NH2 groups) was performed with the purpose
of stabilizing gel capsules. Our study analyzes the influence of the following cross-linking
reaction parameters on the levofloxacin release kinetics:

(i) concentration of the ionic cross-linker,

(ii) ratio among amino functionalities of the two polymers and the ionic crosslinker,

(iii) polymer composition of the polymer mixture.

Table 1 shows the variable parameters in the preparation protocol that have been
grouped according to the variable parameters.

3.4. Levofloxacin Release Kinetics

3.4.1. Levofloxacin Release Kinetics at Small-Time Scales

If the experimental time scale is of minutes order, the evolution of the released drug concen-
tration will be described by Peppas law. In this case, the correlated factor ranges between
0.8413 and 0.9983. Experimental and Peppas curves can be observed in Figure 4 (the Peppas
parameters and the correlation coefficient R2 for each sample are given in Table 2). The plots
group according to variable preparation parameters (for a better observation of the first
points, time scale is 500 min, although the fitting was made on the points up to 1440 min
(one day)). Relative errors range between 1% and 5%, with no important influence on release
kinetic evolution.

Previous works have shown the form dependence [38, 39] between the value of param-
eter n in Peppas equation (considered as short-time approximation of Weibull function) and
the fractal dimension of the drug particle during the release process (Df)

n =
2
Df

. (3.1)
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(a) (b)

(c)

Figure 4: Levofloxacin release kinetics (experimental and Peppas fitting), at time scale of hours order, at
different concentration of TPP solution (a), NH2: TPP mol ratios (b), and NH2 mols (c).

Thus, according to experimental data, the following values were obtained in Table 2.
One first observation refers to the proportional dependence among experimental

variable, on one hand, and Peppas parameters, on the other, in the particular case of the
third sample group, that is, n increases with the chitosan/gelatin ratio. This proves to be
experimentally useful if we want to obtain a Fickian diffusion. At the same time, the concen-
tration of the released drug proves to be very low. This could be explained by drug crystal-
lization inside the microparticle and the dependence of its release (dissolution followed by
diffusion) on polymer degradation.

In our opinion, the value of the fractal dimension is important as long as its values are
unusually high and indicate that either fractal dimension must be considered as function of
structure “classes,” or drug release processes (implicitly drug particle trajectories) have high
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Table 2: The variable parameters of the preparation protocol.

Sample code Conc. of TPP sol. (%) k n Fractal dimension R2

C3 1 0.0142 0.3225 6.20 0.9884
C1 5 0.0176 0.2879 6.95 0.9645
C4 10 0.0069 0.4326 4.62 0.9932
C2 15 0.0261 0.2357 8.49 0.8413
Sample code NH2/TPP (mols/mols) k n Fractal dimension R2

C7 1.17/1 0.0032 0.5131 3.90 0.9983
C1 2.4/1 0.0176 0.2879 6.95 0.9645
C5 4.8/1 0.0431 0.128 15.63 0.9787
C6 11.7/1 0.0116 0.3529 5.67 0.9879
Sample code CS/GEL (w/w) k n Fractal dimension R2

C5 1/1 0.0431 0.128 15.63 0.9787
C8 1/0 0.0256 0.1854 10.79 0.9539
C9 3/1 0.0201 0.2994 6.68 0.9895

degrees of complexity and nonlinearities, implying many freedom degrees in the phase space
[42].

This analysis (small concentration of the released drug and high fractal dimensions)
made us continue the experiment until the system reached a stationary state.

3.4.2. Levofloxacin Release Kinetics at Large-Time Scales

The experiments at large-time scales (of days order) revealed unusual behavior characterized
by large variations. The release kinetics of levofloxacin is plotted in Figure 5. The relative
errors range between 1% and 5%, and, for better visualization, the error bars are plotted in
Figure 6.

Experiments have been performed for 28 days, the concentration of the released drug
being measured daily, at the same hour. The general characteristic of the above kinetics refers
to strong variations of concentration in time, approximately at the same moment.

In the following section, we will explain the evolution of these systems through the
theoretical model (developed in Section 2) based on fractal approximation of motion.

3.5. The Correspondence between Theoretical Model
and Experimental Results

In what follows, we identify the field Φ from relation (2.57) with normalized concentration
field of the released drug from microparticles.

For best correlation between experimental data and the theoretical model (for each
sample), we used a planar intersection of the graph in Figure 3, where the two variables are
y = (ξ − τu)/2 and x = s. With these variables, (2.57) becomes

φ1
(
x, y

)
= 2a

(
E(x)
K(x)

− 1
)
+ 2a · cn2

[√
a

x

(
y + ξ0

)
;x

]
. (3.2)
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(a) (b)

(c)

Figure 5: Experimental release kinetics of levofloxacin, at time scale of days order, at different concentration
of TPP solution (a), NH2: TPP mol ratios (b), and NH2 mols (c).

Thus, in order to find the one-dimensional equation for a planar intersection, per-
pendicular to plane xOy, we used y = mx + n (linear function equation), where m and n
are two parameters. This equation is transformed into a parametric equation by means of the
following substitutions:

x =
l√

m2 + 1
, (3.3a)

y = n +m
l√

m2 + 1
, (3.3b)

in (3.2).
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Table 3: Parameters of the planar intersections.

Sample code Conc. of TPP sol. (%) n m
C3 1 3.342 9.17
C1 5 6.902 8.024
C4 10 8.125 13.486
C2 15 9.479 12.25
Sample code NH2/TPP (mols/mols) n m
C7 1.17/1 7.322 4.297
C1 2.4/1 6.902 8.024
C5 4.8/1 2.414 8.665
C6 11.7/1 4.24 12.747
Sample code CS/GEL (w/w) n m
C5 1/1 2.414 8.665
C8 1/0 8.303 5.941
C9 3/1 8.678 3.738

Afterwards, we obtain one-dimensional function

φ2(t,m, n) = φ1

(
t√

m2 + 1
, n +m

t√
m2 + 1

)
. (3.4)

The highest value of the correlation coefficient (for two vectors: one obtained from
this very function, the other from experimental data) for different values of m and n (in the
particular experimental case) will represent the best approximation of experimental data with
the theoretical model.

Our goal was to find the right correlation coefficient which should be higher than
0.6-0.7, in order to demonstrate the relevance of the model we had in view. Figure 6 shows
experimental and theoretical curves that were obtained through our method, where R2

represents the correlation coefficient and η a normalized variable which is simultaneously
dependent on normalized time and on nonlinear degree of the system (s parameter). Geomet-
rically, η represents the congruent angle formed by the time axis and the vertical intersection
plane.

Parameters m and n of the planar intersections for the above theoretical curves are
shown in Table 3.

We must mention that for each sample the fitting process was an independent one.
The corresponding intersection plane that offers best correlation factors had to be identified
by each sample in turn.

A first observation refers to the correlation among plane and variable parameters
(within experimental protocol) differ from Peppas small-time-scale fitting.

We consider that this could be a starting point in establishing dependence among
experimental parameters involved in the protocol. The purpose of this analysis is to obtain
polymer matrices together with characteristics of release kinetics, taking into account that
until now, this type of dependence had to pass through intermediary stages of the physical
and chemical characterization of polymer matrices.

The few experimental data could not sustain a general conclusion on the existing
dependence among plane and experimental parameters, but this will be the purpose of a
next paper.
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Figure 6: Continued.
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Figure 6: The best correlations among experimental and theoretical curves (blue line—experimental curve,
red line—theoretical curve).

4. Conclusions

If the particle moves on fractal curves, a new model for drug release mechanism from
polymer matrix (namely, polymeric particles) is obtained. This model offers new alternatives
for the theoretical study of drug release process (on large time scale) in the presence of all
phenomena and considering a highly complex and implicitly nonlinear system. Conse-
quently, the concentration field has cnoidal oscillation modes, generated by similar trajec-
tories of drug particles. This means that the drug particle ensemble (at time large scale) works
in a network of nonlinear oscillators, with oscillations around release boundary. Moreover,
the normalized concentration field simultaneously depends on normalized time nonlinear
system (through s parameter).

The fitting procedure among experimental and theoretical curves revealed the existing
correlation of some characteristics of the release kinetics (the parameters of the intersection
plane) with variable experimental parameters.

At the same time, we consider that this could be a starting point in establishing
dependence among experimental parameters, taking into account that until now, this type of
dependence had to pass through intermediary stages of physical and chemical characteristics
of polymer matrices.
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Control of fluid flow is an important, underutilized process possessing potential benefits ranging
from avoidance of separation and stall on aircraft wings to reduction of friction in oil and gas
pipelines to mitigation of noise from wind turbines. But the Navier-Stokes (N.-S.) equations, whose
solutions describe such flows, consist of a system of time-dependent, multidimensional, nonlinear
partial differential equations (PDEs) which cannot be solved in real time using current computing
hardware. The poor man’s Navier-Stokes (PMNS) equations comprise a discrete dynamical system
that is algebraic—hence, easily (and rapidly) solved—and yet which retains many (possibly all)
of the temporal behaviors of the PDE N.-S. system at specific spatial locations. Herein, we outline
derivation of these equations and discuss their basic properties. We consider application of these
equations to the control problem by adding a control force. We examine the range of behaviors that
can be achieved by changing this control force and, in particular, consider controllability of this
(nonlinear) system via numerical experiments. Moreover, we observe that the derivation leading
to the PMNS equations is very general and may be applied to a wide variety of problems governed
by PDEs and (possibly) time-delay ordinary differential equations such as, for example, models of
machining processes.

1. Introduction

Given the ever-increasing capabilities of computers and electronic technology, the ability to
control a fluid with a range of actuators is already being investigated [1–5] both in laboratory
experiments and in numerical simulations. State-of-the-art industrial applications do not
exhibit the full potential of control that researchers may envision. Fortunately, it is likely only
a matter of time before phenomena such as separation on airfoils, effects of friction factors,
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and mitigation of turbulence effects are able to be attenuated or amplified to achieve desired
outcomes. For example, ability to maintain laminar flow over an airfoil is clearly important,
yet not only maintaining, but regaining laminar behavior from a separated flow via real-time
control is most desirable. In the petroleum industry, the speed at which oil may be pumped
is always subject to frictional losses in the pipelines and pumps. Reducing friction factors
through real-time control adds to the general efficiency of such systems. On the other end of
the power generation spectrum, control of blade interaction (e.g., pitch and rotation rate) with
ambient wind can help reduce chatter and other efficiency losses as well as noise generation
in wind farms.

Control schemes may be open loop or closed loop, having different methods of actu-
ation or correction and different algorithms to provide instruction and commands—largely
depending on whether open or closed. At present, some methods include microelectrome-
chanical systems (MEMSs) sensors and actuators (as in [2]), local blowing and suction
controllers (see, e.g., [4] and [6]), microscale flaps (e.g., [5]), controlled waving plates (as
in Techet et al. [7]), and many others. A review of feedback-based methods is provided in
Moin and Bewley [8]. It is not our goal to present a comprehensive fluid flow control system
herein, or to restrict the study to a particular type of sensor or actuator. Rather, we focus on
control of turbulence generically and consider application of forces to a low-order model of
the N.-S. equations, the poor man’s Navier-Stokes (PMNS) equations, to accomplish this.

The notion of turbulence control has been researched for roughly the past 20 years,
with a substantial mathematical formalism contributed by Abergel and Temam [9] in 1990.
Though numerical simulations of turbulence were becoming more feasible at that time,
the computing capability of even current modern supercomputers does not allow direct
numerical simulations (DNSs) at the smallest of length scales for practical flow geometries
and Reynolds numbers. Furthermore, it is well known that analytical solutions of the Navier-
Stokes equations are still very much an open problem. Even with the increased processor
speed and multicore parallel computing available to researchers today, wall functions and
nonphysical subgrid-scale (SGS) quantities are still used to obtain solutions. In order to
control turbulent behaviors in real time, speed and simplicity are essential. Furthermore,
the amount of (physical) correction and actuation needed in order to produce the desired
outcome should be easily determined and provided.

We propose herein the direct modeling of flow velocities through a discrete dynamical
system (DDS) with the addition of an adjustable body—or control—force to achieve a desired
system response. The behavior of this system has been shown to exhibit many—possibly all—
of the temporal behaviors found in the full (PDE) N.-S. system at specific spatial locations.
Through a straightforward process, the full N.-S. system is reduced to a coupled discrete
dynamical system of equations resembling the much studied logistic map ([10]). It has been
shown in 2D (by McDonough and Huang [11]) that the coupled system undergoes the
usual bifurcation sequence exhibited by the one-dimensional map, and furthermore that the
coupled 2D system contains additional regimes which are not possessed by one-dimensional
maps and at the same time retains behaviors found in N.-S. type differential systems. In 3D,
the DDS appears to be equally suitable for use as a velocity model (see [12]). The system has
been shown to be a practical and realistic model of SGS velocities for large-eddy simulation
as well as for the complete velocity. The system of PMNS equations can be fit to local
velocimetry measurements of flow over a backward-facing step (see [13]); thus, the system
response is sufficiently sophisticated to reproduce laboratory observations. Computationally,
the equations are algebraic, and thus very efficiently evaluated, lending themselves naturally
for application to control of small-scale turbulence.
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Using a DDS to model naturally occurring phenomena is not a new idea—ecologist
Robert May constructed the logistic map to model population dynamics [10]. Furthermore,
the work of Lorenz [14] led to a “low-order” model consisting of ordinary differential
equations (ODEs) via a procedure similar to what is employed herein. The seminal work
of Ruelle and Takens [15] viewed the N.-S. equations as a dynamical system capable of
generating chaotic, yet deterministic, solutions associated with a “strange attractor.” It has
been generally accepted for at least the past decade that the description of turbulence as
a deterministically chaotic system is justified (see, e.g., Frisch [16]). Thus, it is from this
treatment of the N.-S. equations as a dynamical system that we consider the problem of
turbulence control via a closely related DDS.

To implement a control force in the system of PMNS equations, we add a body force to
the right-hand side of the N.-S. equations. Since the PMNS equations model local velocities
directly, a positive constant control force generally increases the value of the velocity in the
respective direction. From studies such as [6], it is apparent that wall-bounded turbulence can
be controlled via suction and blowing in the direction normal to the wall. The study herein
proposes a numerically analogous approach by varying the value of this additional control
force, thus adding to, or taking from, the velocity component magnitude generated by the
PMNS equations corresponding to wall-normal directions.

Turbulent flows are known to have relatively high dimension for even low Reynolds
number due to the spatial and temporal scales over which they occur (see [8]). Furthermore,
without considering variable control forces, the PMNS dynamical system contains nine
bifurcation parameters. The codimension of the system is therefore sufficiently high that
analytical approaches to studying its behavior quickly become intractable. Though it has
already been shown that the PMNS system is capable of chaotic behavior (see [11, 12]),
it is worthwhile to mention that chaotic attractors are known to exist within systems with
codimension as low as one (e.g., Hopf bifurcations of the N.-S. equations). The system is
therefore very complex, and though previous studies have shed light on some of its features,
this investigation continues an ongoing effort to explore the gamut of potentially useful
characteristics it possesses.

In the following, sections we will outline the derivation of the PMNS equations
beginning with the full PDE system of equations. The behavior of the DDS in general is the
subject of continuous research, a precis of which will be included herein. We then present
regime maps illustrating the types of behaviors that the PMNS equations are capable of
reproducing and the corresponding bifurcation parameter and body force values for each
regime. The aforementioned system complexity due to high codimension motivates the
creation of the regime maps. In doing so, the system behavior is understood throughout the
domain of bifurcation parameter space. From these regime maps, we deduce appropriate
control forces and then implement these while iterating the PMNS equations to demonstrate
controllability of the system toward a desired behavior. Time series of these results are shown.

2. Analysis

Here, we describe the treatment applied to the N.-S. equations by which we derive the PMNS
equations. After the derivation, we present a brief discussion of the features that are common
to PMNS and full N.-S. equations, specifically the symmetry between equations and highly
coupled nature of the full PDE system. Then we discuss the extension of these equations to a
control context.
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2.1. Derivation of PMNS Equations

We begin with the incompressible N.-S. equations,

Ut +U · ∇U = −∇P + νΔU, ∀(x, t) ∈ Ω × (
t0, tf

]
, Ω ⊆ R

3, (2.1)

and the divergence-free constraint,

∇ ·U = 0, (2.2)

so that there are as many equations as necessary to obtain the velocity components and
pressure P . In (2.1), the velocity vector in the 3D domain Ω is given as U = (u, v,w)T ; ν is the
kinematic viscosity; the Laplace and gradient operators are given as Δ and ∇, respectively,
within the appropriate coordinate system. The t subscript denotes partial differentiation with
respect to time; t0 and tf are initial and final times, respectively.

As is frequently used in theoretical analysis of N.-S. equations, we employ a Leray
projection to a divergence-free subspace of solutions, thus eliminating the pressure gradient
in (2.1). We refer the reader to Constantin and Foias [17] or Foias et al. [18] for details. After
the typical scaling of dependent and independent variables and Leray projection, the 3D N.-S.
equations take the dimensionless form

ut + uux + vuy +wuz =
1

Re
Δu, (2.3)

vt + uvx + vvy +wvz =
1

Re
Δv, (2.4)

wt + uwx + vwy +wwz =
1

Re
Δw, (2.5)

which is a 3D system of Burgers’ equations. The x, y, and z subscripts denote partial
differentiation with respect to the spatial variables, and Re is the Reynolds number: Re =
UL/ν, with U and L denoting the appropriate velocity and length scales, respectively.

Consistent with the mathematical understanding of the N.-S. equations (see, e.g., [17]),
we begin with representing velocity components in Fourier space:

u(x, t) =
∞∑

k=−∞
ak(t)ϕk(x), (2.6)

v(x, t) =
∞∑

k=−∞
bk(t)ϕk(x), (2.7)

w(x, t) =
∞∑

k=−∞
ck(t)ϕk(x), (2.8)

with the 3D wavevector k ≡ (k1, k2, k3)
T . We assume that the tensor product basis set {ϕk} is

complete in L2(Ω) and orthonormal. Furthermore, we note that construction of such a basis
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could be difficult for some computational purposes—for example, in constructing proper
orthogonal decomposition (POD) algorithms. It is, however, not necessary to do so for the
study herein (which distinguishes our approach from POD). For brevity, the following details
of the derivation will be provided for only the x-momentum equation, with treatment of the
y- and z-momentum equations being identical.

The Galerkin procedure is applied to (2.3), (2.4), (2.5) resulting in an infinite system of
ODEs for the Fourier coefficients contained within. Substitution of (2.6), (2.7), and (2.8) into
(2.3) leads to

∑

l

ȧlϕl + i
∑

l,m

(l1 +m1)alamϕlϕm + i
∑

l,m

(l2 +m2)albmϕlϕm

+ i
∑

l,m

(l3 +m3)alcmϕlϕm = − 1
Re

[
∑

l

(
l21 + l

2
2 + l

2
3

)
alϕl

]

.

(2.9)

Considering the equations without the imaginary factor (which can be removed via
methods analogous to those of elementary ODE analysis), inner products of the above
equation and each basis function are formed. Employing orthonormality then reduces the
x-momentum equation to

ȧk +
∑

l,m

A
(1)
lm,kalam +

∑

l,m

A
(2)
lm,kalbm +

∑

l,m

A
(3)
lm,kalcm = −η

(a)

Re
|k|2ak, (2.10)

where k = −∞, . . . ,∞. The factor η(a) is a normalization constant arising from the fact that
derivatives of basis functions may not possess the same normalization as the functions
themselves. Similarly, there are η(b) and η(c) terms in the omitted y- and z-equations,
respectively. The A(i)

lm,k factors, with i = 1, 2, 3, are the Galerkin triple products, for example,

A
(1)
lm,k = (l1 +m1)

∫
ϕlϕmϕkdx, (2.11)

with analogous terms B(i)
lm,k and C

(i)
lm,k used in the y- and z-equations, respectively.

Removing all but a single arbitrary wavevector in (2.10) results in a single equation,
with analogous results for the y- and z-momentum equations also shown:

ȧ = −A(1)a2 −A(2)ab −A(3)ac − η(a)

Re
|k|2a, (2.12)

ḃ = −B(1)ba − B(2)b2 − B(3)bc − η(b)

Re
|k|2b, (2.13)

ċ = −C(1)ca − C(2)cb − C(3)c2 − η(c)

Re
|k|2c, (2.14)

with wavevector subscript notation suppressed, and dot (·) notation indicating ordinary
differentiation with respect to time. The above equations are a system of three nonlinear
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ODEs. We discretize these using an explicit single-step forward Euler integration method
in time and denote the time-step parameter as τ . This leads to

an+1 = an − τ
[

A(1)(an)2 +A(2)anbn +A(3)ancn +
η(a)

Re
|k|2an

]

, (2.15)

bn+1 = bn − τ
[

B(1)bnan + B(2)(bn)2 + B(3)bncn +
η(b)

Re
|k|2bn

]

, (2.16)

cn+1 = cn − τ
[

C(1)cnan + C(2)cnbn + C(3)(cn)2 +
η(c)

Re
|k|2cn

]

. (2.17)

Again for brevity, we omit analysis of the y- and z-direction equations and rearrange the
x-momentum equation as

an+1 = τA(1)an
(

1 − (
η(a)/Re

)|k|2τ
τA(1)

− an
)

− τA(2)anbn − τA(3)ancn. (2.18)

Recalling the logistic map

an+1 = βan(1 − an), (2.19)

we note that to recover this form in the above equation requires

1 − (
η(a)/Re

)|k|2τ
τA(1)

= 1, (2.20)

which implies

1 − η(a)

Re
|k|2τ = τA(1). (2.21)

Having recovered the form of the logistic map via the requirement in (2.20), it is observed that
as Re → ∞, the left-hand side of (2.21) approaches unity from below. As this term approaches
one, the first term on the right-hand side of (2.18) becomes the logistic map, as shown in the
following expressions.

Thus, the advanced time step equations can be expressed as

an+1 =

(

1 − η(a)

Re
|k|2τ

)

an(1 − an) − τA(2)anbn − τA(3)ancn, (2.22)

bn+1 =

(

1 − η(b)

Re
|k|2τ

)

bn(1 − bn) − τB(1)bnan − τB(3)bncn, (2.23)

cn+1 =

(

1 − η(c)

Re
|k|2τ

)

cn(1 − cn) − τC(1)cnan − τC(2)cnbn. (2.24)
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Now define the following bifurcation parameters:

β1 = 1 − η(a)

Re
|k|2τ, (2.25)

β2 = 1 − η(b)

Re
|k|2τ, (2.26)

β3 = 1 − η(c)

Re
|k|2τ, (2.27)

γ12 = τA(2) γ13 = τA(3), (2.28)

γ21 = τB(1) γ23 = τB(3), (2.29)

γ31 = τC(1) γ32 = τC(2). (2.30)

Then the equations of motion collapse to the algebraic system

a(n+1) = β1a
(n)

(
1 − a(n)

)
− γ12a

(n)b(n) − γ13a
(n)c(n), (2.31)

b(n+1) = β2b
(n)

(
1 − b(n)

)
− γ21b

(n)a(n) − γ23b
(n)c(n), (2.32)

c(n+1) = β3c
(n)

(
1 − c(n)

)
− γ31c

(n)a(n) − γ32c
(n)b(n). (2.33)

Here, we employ parentheses with the time-level indices to emphasize that these equations
comprise an iterated map. Following [11], and in deference to Frisch [16], we term (2.31),
(2.32), and (2.33) the “poor man’s Navier-Stokes (PMNS) equations.”

For the study performed herein, we consider the isotropic case, which means that the
γij values are all equal to one another, and the βi values are also equal to one another. Note that
if γij = 0, for all i, j, then we recover the logistic map (2.19). Also notice that as Re approaches
infinity, the value of βi approaches unity from below. In the DDS of PMNS equations, we
limit the starting values between zero and one. Noting that the function f(a) ≡ a(1 − a) has
a maximum range of 1/4 for a ∈ [0, 1], we rescale the βi values by a factor of 4 (as done by
May [10]) to obtain the typical scaling for DDSs. Thus, as in the logistic map, the range of
βi values is between zero and four. It is well known that as the bifurcation parameter of the
logistic map increases, the system behavior becomes increasingly chaotic. This is in accord
with our formulation of the bifurcation parameter β, which is a function of the Reynolds
number. As Re increases, so does the value of β, and the system behaves correspondingly
chaotically.

Note the similar structure of all three components of (2.31), (2.32), and (2.33). This
feature is shared with the full N.-S. system of PDEs. Moreover, each equation is nonlinear, and
this property is not shared with other often-studied DDSs shown to exhibit chaotic behaviors,
for example, discretization of the Lorenz equations (see [14]) or the related 2D DDS due to
Hénon [19]. An in-depth investigation of the coupled nature of the PMNS equations is not
performed herein, yet may be found in [11, 12]. At present, it is simply important to note that
“symmetrical” structure and nonlinearity are desirable qualities preserved in the derivation
of the PMNS system from the N.-S. equations.
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2.2. Control of PMNS Equations

In order to carry out the intended computational experiments, we must begin with valid
ranges for the bifurcation parameters βi and γij . Consideration of isotropy, mentioned above,
greatly reduces the space of bifurcation parameter values to consider. Instead of a nine-
dimensional space of parameters, we set all βi, i = 1, 2, 3, values equal to one another. The
bifurcation parameters γij , i, j = 1, 2, 3 and i /= j, are also set equal. From the studies contained
in [11, 12], we know which values of bifurcation parameters produce behavior that is of
interest in the context of this study of turbulence control and collect data beginning in this
subset of bifurcation parameter space.

The following section contains results collected via numerical experiments allowing
bifurcation parameters to vary while simultaneously applying a “control force.” The control
force is simply a constant added to the right-hand side of the PMNS equations. This is
analogous to adding a force at specified wavevectors as is commonly done in DNS and
may be viewed as suction or blowing, akin to the study performed by Moin and Bewley
[6]. With aCF, bCF, and cCF, the control—or body—forces for each equation, and including the
simplification of isotropy, we will solve the following DDS:

a(n+1) = βa(n)
(

1 − a(n)
)
− γa(n)b(n) − γa(n)c(n) + aCF, (2.34)

b(n+1) = βb(n)
(

1 − b(n)
)
− γb(n)a(n) − γb(n)c(n) + bCF, (2.35)

c(n+1) = βc(n)
(

1 − c(n)
)
− γc(n)a(n) − γc(n)b(n) + cCF. (2.36)

3. Results and Discussion

Here, we present results from iteration of the DDS of (2.34), (2.35), and (2.36) for a range
of bifurcation parameter values. We will focus on the isotropic case as already noted above.
The bifurcation parameters will vary as β ∈ [0, 4], with assigned values of γ (which can
typically range from −0.8 to 0.8, with the range depending on values of β). With varying β
(related to Re) and fixed γ , we will allow the control force aCF to vary and observe the range
of behavior types which the system of PMNS equations will produce. Following the analysis
techniques in [11, 12], we first describe the types of discernible behavior the system exhibits.
Our method of categorizing behaviors—or regime types—is via processing and analysis of
the temporal power spectra. Observing the power spectra of the time series output from the
DDS and classifying the behavior types into regimes will allow a comparative study of the
system behavior, as well as provide insight into the transitions between the regimes as the
bifurcation parameter and control force are varied. Having discriminated the regime types,
we further explore the ability to control the time series of the DDS by “turning on” the control
force to obtain a desired system behavior. Thus, given a specific behavior type corresponding
to a pair of bifurcation parameters, we attempt to control the system by means of the control
force aCF.

The majority of the data presented in this work was calculated on a 376-node Dell high-
performance computing cluster at the University of Kentucky Computing Center. Regime
map calculations were performed in parallel using OpenMP with three cores from a 2.66 GHz
Intel Xeon X5650 six-core processor. Less intensive calculations (i.e., calculating a single time
series) were performed on a desktop computer with a 3.60 GHz Intel Pentium 4 and are
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computed nearly instantaneously. Computations were performed using double precision (64-
bit) Fortran. In regime map cases, for each point corresponding to a pair of β and aCF values,
the DDS was iterated 1 × 104 times. A radix-2 fast-Fourier transform was applied to the last
212 (or 4096) iterations to produce power spectra for regime identification. In cases where a
single time series was computed, the system was iterated 2 × 104 times with the control force
activated at iteration number 104. Though the computing resources used to conduct these
experiments are somewhat powerful, it is important to observe that the PMNS equations
may be iterated O(105) times nearly instantly using a modern laptop computer. Advances
in mobile computing hardware and chip technology will soon render the computation of
numerous iterations of an algebraic map (such as the PMNS equations) a trivial task for even
the smallest and most ubiquitous of devices.

3.1. Regime Maps

As in the studies [11, 12], we present regime maps containing the behavior types—
or regimes—which the system of PMNS equations is capable of producing. In the
aforementioned investigations, various regime types were distinguished from one another
in an automatic and objective fashion. Thus, given a pair of β and γ bifurcation parameters
and a value of the control force aCF, the system response can be characterized. Furthermore,
from those studies, the range of values for which to allow the control force to vary, given
a pair of bifurcation parameters, is known via numerical experimentation. The behaviors
exhibited by the 3D PMNS equations include all of those behaviors produced by the 1D
family of logistic maps and the types of N.-S. regimes found in laboratory experiments.
Regime types are distinguished from one another via the power spectral density (PSD), and
thus their classification requires human definition of power and frequency criteria for which
one regime is distinguished from another. Some discussion of this procedure is appropriate
here; however, more detail is included in the two aforementioned studies.

Our goal is to distinguish the various behavior types which the DDS will produce,
and do so automatically and objectively. Though some insight may be gained by calculating
the fractal dimension, Lyapunov exponents, or other statistical quantities (or by constructing
bifurcation diagrams), these will not allow automatic regime classification of the chaotic
behaviors of which the DDS is capable. (Some comparison of these methods and their
effectiveness is given in [12], and we refer the reader to this citation for more detail, though
it suffices to say that the method we present is the most effective for our intents and
purposes.) Thus, in order to understand the system behavior as bifurcation parameters—
including control forces—are varied, we perform computations across the full range of values
with O(1010) realizations of the DDS contained within some regime maps. Furthermore, we
also compute regime maps over restricted subdomains of bifurcation parameter and control
force such that we can clearly study the transitions and localized—in bifurcation parameter
space—behaviors. With so many instances of the equations, our means of classifying regime
types must be efficient, automatic, and objective.

Identification of the regime type needs to be only qualitative. Thus, the PSD appears
to contain sufficient information to permit distinguishing one regime from an inherently
different one. The following is a list of the regime types which we have identified in the
time series produced by the DDS via this technique: (i) steady, (ii) periodic, (iii) periodic
with different fundamental frequency, (iv) subharmonic, (v) phase locked, (vi) quasiperiodic,
(vii) noisy subharmonic, (viii) noisy phase locked, (ix) noisy quasiperiodic with fundamental
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Figure 1: (a) 2501 × 1251 regime map for γ = −0.05 with Δβ = 0.0016 = ΔaCF, (b) legend of regime types.

frequency, (x) noisy quasiperiodic without fundamental frequency, (xi) broadband with
fundamental frequency, (xii) broadband with different fundamental frequency, (xiii)
broadband without fundamental frequency, and (xiv) divergent, as displayed in Figure 1.

Some discussion of the nomenclature and criteria for categorizing the regimes is due.
Several of the regimes are referred to as “noisy” along with another description which
identifies a distinguishing or primary characteristic of the behavior. This is to imply some
broadband features of the PSD along with a salient distinguishing characteristic. Differing
from laboratory experiments, the numerical DDS evaluation is of course done entirely within
the computer. Thus, there is no “noise” in the sense of the type of signal fluctuation coming
from instrumentation or sensors as would be a concern in laboratory experiments. The
broadband noise which is observed in the PSDs we consider herein is an actual feature of the
DDS. It has been shown in [11, 12] that this noisy behavior exhibits at least a mild sensitivity
to initial conditions (SIC) which is known as the “hallmark of chaos” (see, e.g., [20]), thus
implying existence of a strange attractor in dissipative systems as considered herein. For
further information on the nature of the PMNS equations themselves, the regime types, and
the process by which these regimes are distinguished, we defer to the studies in [11, 12].

Figure 1(a) shows the regime map corresponding to a fixed value of γ = −0.05 for β
ranging from zero to four with the forcing term aCF between −0.56 and 1.44. Other values of
γ will also be used, but the results presented herein focus on bifurcation parameter γ near
zero. This is not done for simplification; rather it is a choice which permits a more complete
investigation of the behaviors achievable via control (and is typical in LES runs where the βi
and γij are computed rather than assigned). In the studies of [11, 12], no control force terms
were used, and the regime maps were computed allowing both β and γ to vary. The types of
behavior which the PMNS equations exhibit over the range of β values with γ fixed near zero
include nearly all possible regimes, so this choice of γ results in a thorough investigation.

A key of the colors corresponding to each behavior type is presented in Figure 1(b).
There are several features of the regime map worth indicating specifically. Attention should
be given to the bifurcation sequence which occurs as the β value and the aCF value are
increased. For most of the map (β < 3.3), the sequence corresponds to that of the usual 1D
logistic map, (2.19):

steady −→ periodic −→ subharmonic −→ chaotic. (3.1)
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For β values larger than three, the system begins to show more erratic behavior with a less
clearly defined bifurcation sequence. This region of the map for values of β > 3.3 will be
of special interest later as we consider regime maps corresponding to different values of γ .
Notice that the regions of the map corresponding to steady and periodic, even including the
regions of subharmonic and quasiperiodic, are clearly demarcated. The boundaries between
the more noisy and chaotic regime types are less clearly defined and thus complicate the
matter of choosing a control parameter value.

After the system bifurcates from subharmonic behavior, as the value of control force
and bifurcation parameter are increased, there are several locations where the boundaries
between the regimes are not well defined. This result is shared with the 2D and 3D studies
of the PMNS equations in [11, 12] and is not unique to the implementation of a control
force. The unclear boundary between regimes is what will be referred to as a “fractal region”
and is an interesting and important result which is addressed in the two aforementioned
investigations. This unclear boundary persists regardless of how finely we are able to resolve
bifurcation parameter space, that is, very small steps in the β and aCF directions. We will
provide a high-resolution “zoom-in” of fractal and other interesting regions below.

The same type of behavior is observed in Figures 2(a), 2(b), and 2(c), where the same
values of β and aCF are allowed to vary with γ fixed at γ = 0.0, γ = 0.05, and γ = 0.1,
respectively. We present these regime maps to show the numerous possibilities of controlling
the PMNS equations—within a small range of control force values—given a particular pair
of bifurcation parameters. To better illustrate this, it is clear from Figure 1, corresponding to
γ = −0.05, that for β > 3.3 there are at least eight unique regime types available within a
small range of β and aCF values. The sequence of bifurcations, as β and/or aCF is increased, is
somewhat unstructured. This region for β > 3.3 becomes much more ordered when γ is held
fixed at zero, as shown in Figure 2(a). In this case—as shown in the studies of [11, 12]—the
aforementioned bifurcation sequence corresponding to the logistic map (2.19) is sustained
across the entire range of β values.

The ordered sequence of bifurcations presented in Figure 2(a) shows that there are
well-defined regions for which the values of control force and bifurcation parameter can be
determined and thus used in a control scheme. Given a pair of bifurcation parameters, the
control force required to achieve a particular behavior type is immediately known from the
regime maps presented herein. As the value of γ is increased, as in Figures 2(b) and 2(c), a
“window” of periodic behavior appears near β = 3.0, and for β = 3.5, there is an interesting
bifurcation sequence as β is increased:

steady −→ quasiperiodic −→ subharmonic −→ phaselock −→ chaos. (3.2)

Figure 2(c), however, shows that the aforementioned region of subharmonic behavior is
consumed by the adjacent quasiperiodicity and even some “islands” of phase-lock behavior.
The change from γ = 0.05 to γ = 0.1 shown in Figures 2(b) and 2(c) illustrates the wide variety
of achievable behaviors which will be available via changing the control force.

To better exhibit the range of control possibilities within a small range of bifurcation
parameter and control force, a localized regime map is presented in Figure 3. It should
be noted that this regime map is not simply a visual magnification of the corresponding
subregion in Figure 1 for which β > 3.3. Rather, it is produced from a higher-resolution
calculation consisting of 11212 points with Δβ = 0.000625 = ΔaCF, that is, the bifurcation
parameter grid is much finer. Herein, many fractal boundaries exist between the regimes; yet
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Figure 2: 2501 × 1251 regime maps (a), (b), and (c) for which γ = 0.00, γ = 0.05, and γ = 0.10, respectively,
with Δβ = 0.0016 = ΔaCF.

there are still very clear regions of behavior types, and the SIC characteristic of the PMNS
equations does not present a problem with respect to determining a suitable control force.
Furthermore, there exist ample regions of noisy behavior which may be useful for triggering
turbulent activity when desired (e.g., increased thermal advection, avoidance of boundary-
layer separation, etc.).

There is a tendency for regime types to orient themselves into regions aligned along the
direction of varying control force (vertically in the regime maps). When attempting to vary
the control force to achieve a different regime type, this presents a problem. In these regions,
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Figure 3: 1121 × 1121 regime map for γ = −0.05 with Δβ = 0.000625 = ΔaCF.

shown clearly in Figure 3, adjusting the control force aCF will lead to a bifurcation in behavior
due to the “shape” of the regime in bifurcation parameter space. In addition to this problem,
a change of control force will often times lead from one chaotic regime to another, or, worse
yet, to a nonphysical result such as divergence. Note that this pattern of regime types oriented
along the direction of the control force occurs for ranges of β corresponding to chaotic
behaviors. That said, the degree to which the regime types are structured in this manner is not
consistent for all combinations of bifurcation parameters. The case of Figure 3 considers γ =
−0.05. The tendency for regimes to be structured in this manner depends largely on the value
of γ and needs to be studied in further detail. It may in fact be the case that certain values
of γ exhibit different bifurcation sequences, and thus control is limited to certain regions
of bifurcation parameter space in which more desirable regime combinations and bifurcation
sequences may be found.

Despite this obstacle, there are still regions where the control force may be varied to
achieve a particular regime with a priori knowledge of the appropriate control force for a
given set of bifurcation parameters. This is shown in the preceding discussion. From (2.25),
(2.26), (2.27), (2.28), (2.29), and (2.30), it is clear that the bifurcation parameters contain
physical quantities which govern the behavior of the N.-S. equations, that is, the bifurcation
parameters correspond to physical flow scenarios. The regime maps presented herein show
that given a set of bifurcation parameters—or a physical scenario—employing a control force
will alter the system, allowing for a robust control to nearly any desired outcome.

3.2. Control of Time Series

In this subsection, we use contents of the regime map in Figure 1 to help select bifurcation
parameters leading to a chaotic behavior. Given the bifurcation parameters corresponding to
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Figure 4: Time series response of the PMNS equations. Control force aCF is changed half way through
2 × 104 iterations with β = 3.3, γ = −0.05, and aCF = 0.17. Control of broadband w/o fund. freq. to (a)
quasiperiodicity, (b) phase lock, (c) subharmonic, (d) periodic, and (e) steady, by setting aCF equal to
0.035, 0.098, 0.06, 0.00, and −0.2, respectively.

a particular chaotic regime type, we successfully employ a control force to induce bifurcation
to other less chaotic regimes. In the context of applying the PMNS equations to a real-time
control system, the bifurcation parameters corresponding to a given scenario can, in principle,
be computed via physical data collected from sensors. Thus, the range of control force values
appropriate for achieving the desired behavior type could be easily computed via on-board
hardware in many specific systems.

Figure 4 shows the time series of the PMNS equations while allowing the value of the
control force to change during system evolution. The DDS was iterated 1 × 104 times prior to
applying the control force required to obtain the desired system response. Prior to application
of the external force, the methods we employ for detecting the regime type distinguish the
behavior as broadband without a fundamental frequency. In starting with this regime type,
the PMNS equations produce time series which are erratic and chaotic—essentially “white
noise.” Controlling the time series of this most chaotic regime is considered herein, though it
should be noted that the PMNS equations can be controlled between essentially any regime
types. Thus, the results presented in Figure 4 are only a small fraction of the possible control
scenarios that can be achieved via this technique. We focus on controlling the broadband
without fundamental frequency regime to show that our procedure is capable of handling
even the most chaotic behaviors.

The regime map in Figure 1 was constructed with γ = −0.05 and varying values of β
and aCF. Though there are many combinations possible, we choose β = 3.3 and aCF = 0.17
so that the behavior of the x-component of velocity is broadband without a fundamental
frequency. Many other combinations of β and aCF would have produced similar results; thus,
there is nothing special about these values. Given the known behavior of the PMNS equations
using these values of β and aCF, we then allow the DDS to evolve additional 1× 104 iterations
after changing the value of aCF. The second value of aCF also comes from the regime map
in Figure 1. For example, to produce a quasiperiodic behavior from the chaotic broadband,
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Figure 5: Time series response (x-direction) of the PMNS equations with y-direction control force bCF is
changed half way through 2 × 104 iterations with β = 2.552, γ = −0.05, and bCF = 0.5872. Control of
broadband w/o fund. freq. to (a) quasiperiodicity, (b) phase lock, (c) subharmonic, (d) periodic, and (e)
steady, by setting bCF equal to 0.03888, 0.548, 0.38, 0.25, and 0.12, respectively.

the value of aCF is changed to 0.035. Again, there are many other values to which the control
force can be changed so that the DDS will produce quasiperiodicity from the broadband
signal, but a value must be assigned a priori.

The ability to control the x-direction component of velocity is clearly demonstrated in
Figure 4, and the same would also be true of the y- and z-direction components. Ability to
control a velocity component with wall-normal direction forcing as has been experimentally
investigated via blowing and suction (see [4, 6]) and is easily simulated with the PMNS
equations, the results of which are presented in Figure 5. Regime maps as constructed in
Figures 2 and 3 can be constructed for the case of varying wall-normal control force bCF, as
performed in previous studies (see [12] for details). From those regime maps, appropriate
values of the control force bCF are obtained and used to calculate the time series shown in
Figure 5.

It is clear from both Figures 4 and 5 that the system responds very quickly to a change
in control force and does not require substantial time to stabilize. This is in contrast with the
initial behavior of the DDS, where many iterations may be required before initial transient
behavior decays and the salient behavior of the system can be determined (as explained in
[11, 12]). Not only can velocity be controlled within very few iterations, but the efficiency of
the PMNS equations allows these sorts of computations to be performed quickly in wall-clock
time.

A noticeable difference between control of the PMNS system with streamwise control
force (Figure 4) and wall-normal control force (Figure 5) is the increased time required to
stabilize in the cases of phase-locked and steady behaviors. Notice that among each behavior
type, the response to change in streamwise control force (Figure 4) requires similar times to
stabilize. The wall-normal control force case differs from this in that the time required for
the phase-locked and steady behaviors to stabilize is slightly longer than in other cases. This
difference is quite negligible from the perspective of system control as only few additional
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iterations are required. That having been said, this observation may allude to more interesting
characteristics of the phase lock regime which has been previously studied in [11, 12] and
maybe important from the perspective of dynamical systems analysis.

Significant research has been conducted in recent years to control dynamical systems
(e.g., [21–23]). The majority of this work, however, does not pertain to systems which model
physics, especially fluid motion. The results presented herein are unique in two ways. First,
the dynamical system modeled is directly derived from the equations of fluid motion. Second,
the control parameter analogously corresponds to a method which is frequently used in
laboratory experiments of turbulence control, namely, suction and blowing.

Though the PMNS dynamical system models the motions of fluids, the attempts to
control this system may be compared with other studies in which a more general dynamical
system is controlled. In [22], a 4D chaotic system is controlled by means of recursive
backstepping, and it is shown that chaotic behavior may be eradicated in a similar fashion
as in the present study. Control of the system from chaotic to stable states of steady or
periodic behavior was exhibited, and the system response times were relatively short. A
control problem of a different nature is studied in [23], where a finite-time control scheme
is implemented to synchronize two different dynamical systems with chaotic behavior.
Effective control is demonstrated as the trajectories of one system converge to those of the
other. Furthermore, convergence occurs rapidly once control is implemented.

Results from those general dynamical systems previously discussed have much in
common with the time series results presented in Figures 4 and 5. The primary shared features
are the ability to control the system to periodic or other stable trajectories. Moreover, rapid
system response is observed in each. With the exception of the transition to phase-locked and
steady behaviors in the case using a wall-normal control force, the response times herein only
span a few iterations. These are expected to be quicker than the results contained in [22, 23],
where an algorithm depending on the system output is implemented. No such algorithm is
yet developed for the PMNS equations, and the control is achieved with a priori knowledge
of the appropriate control force required for a given set of bifurcation parameters from the
regime maps shown in Figures 2 and 3. In the following section, we discuss a simple outline
for a potential control scheme.

3.3. A Control Algorithm

Here, we present one (of probably many) possible algorithms by means of which the PMNS
equations might be used to control turbulent fluid flow. It is important to observe that
these equations can be rapidly evaluated, as already emphasized, and their simple algebraic
structure is such as to permit easy implementations on microprocessors.

For simplicity, we assume that the desired flow regime is known, although one can
easily envision situations where this might not be true. Then to achieve this desired behavior,
carry out the following steps.

(1) Collect flow data, possibly (but not necessarily) at many locations.

(2) Use these data to construct PMNS equation bifurcation parameters.

(3) Run the PMNS equations and use the regime map algorithm to identify the current
physical flow regime.
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(4) If regime is the desired one, return to 1. If it is not, begin systematic perturbation
of control force parameters with PMNS equation and regime map calculations until
desired flow regime is obtained.

(5) Convert PMNS equation control force to physical one and send corresponding
signal to controller.

We remark that there are a number of details still to be treated in this control procedure,
not the least of which is the need to perform implementations on microprocessors. But in
this regard, the only part of the algorithm involving more than a few lines of code is the
regime map program, and even this is relatively small and should easily fit on modern
microprocessors. The more difficult parts of the algorithm are physically collecting sufficient
data to build PMNS equation bifurcation parameters with adequate accuracy to be of use,
and similarly inverting the process to convert PMNS equation control parameters to physical
ones. Clearly, these issues are system dependent; some work is currently in progress to permit
investigation of these ideas for a particularly simple system.

4. Summary and Conclusions

In this study, we have derived a discrete dynamical system directly from the 3D,
incompressible Navier-Stokes equations and investigated the use of these equations within
the context of turbulence control. We have studied the possible behaviors which the PMNS
equations may exhibit and included computational results for O(1010) instances. Having
a priori knowledge of the system behavior, we are able to select bifurcation parameters
and control forces such that time series of the PMNS equations are controlled during their
evolution. In doing this, we demonstrated the ability of the equations to control a velocity
field, and we propose that due to their efficiency, the PMNS equations are well suited for
turbulence control.

Derivation of the PMNS equations is, in principle, quite general and can be applied to
a wide variety of problems governed by PDEs and (possibly) time-delay ODEs (e.g., models
of machining processes). The derivation does not introduce any nonphysical quantities
or attempt to model any physical ones. The PMNS equations have been shown to have
significant potential as a “synthetic velocity” model, and herein, the ability to manipulate
velocity fields across a wide variety flow behaviors was shown. The subject of ongoing
investigations and future work will be implementation of the PMNS equations into hardware
for use within a real-time control system similar to that described above.

Nomenclature

U = (u, v,w)T : 3D velocity vector
ν: Kinematic viscosity
P : Pressure
Re: Reynolds number
t: Time
Ω: Spatial domain in R

3

k: Wavevector
ηi: Normalization constant, i = a, b, c
τ : Time step parameter
βi: Bifurcation parameter, i = 1, 2, 3
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γij : Bifurcation parameter, i, j = 1, 2, 3 with i /= j
n: Iteration counter
aCF: u-direction forcing term
bCF: v-direction forcing term
cCF: w-direction forcing term.
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Travel time estimation in urban arterials is challenging compared to freeways and multilane
highways. This becomes more complex under Indian conditions due to the additional issues
related to heterogeneity, lack of lane discipline, and difficulties in data availability. The fact that
most of the urban arterials in India do not employ automatic detectors demands the need for
an effective, yet less data intensive way of estimating travel time. An attempt has been made in
this direction to estimate total travel time in an urban road stretch using the location based flow
data and sparse travel time data obtained using GPS equipped probe vehicles. Three approaches
are presented and compared in this study: (1) a combination of input-output analysis for mid-
blocks and Highway Capacity Manual (HCM) based delay calculation at signals named as base
method, (2) data fusion approach which employs Kalman filtering technique (nonhybrid method),
and (3) a hybrid data fusion HCM (hybrid DF-HCM) method. Data collected from a stretch of
roadway in Chennai, India was used for the corroboration. Simulated data were also used for
further validation. The results showed that when data quality is assured (simulated data) the base
method performs better. However, in real field situations, hybrid DF-HCM method outperformed
the other methods.

1. Introduction

Characterization of traffic systems is complex in nature due to the dynamic interaction
between the system components, namely, the vehicles, road, and the road users. The
uncertainties associated with human behavior makes the system more complex making
modeling of the system a challenging task. Estimation and prediction of various parameters
associated with this system is also difficult due to the associated uncertainties. The usual
parameters used for characterizing the system include flow, speed, density, and travel time.
The present study is dealing with the estimation of one of these parameters, namely, travel
time. To obtain travel time information of all vehicles in a stream by direct measurement
is both time consuming and costly, and it is impractical to collect this information from
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all the road stretches in a network. Travel time in urban roads experience high short-term
variability and hence cannot be measured using point detection. Being a spatial parameter,
direct measurement of it needs either vehicle tracking devices or vehicle reidentification
feature. However, majority of the vehicle tracking or reidentification techniques available
such as automatic vehicle locators (AVL) and automatic vehicle identifiers (AVI) require
participation, which limits the sample size. This underlines the need to estimate travel
time from other easily measurable location based parameters such as flow and speed and
has been an important research topic for many years. However, majority of researches on
travel time estimation and prediction were reported for freeways, where traffic flow is not
much affected by external factors such as traffic signals and conflicting movements. Travel
time estimation and prediction is more complex and challenging on an urban network due
to the influence of signals, presence of opposing movements, mid-link sources and sinks,
and random fluctuations in travel demand. The situation is grave for Indian conditions
because of the additional complexities related to heterogeneity, lack of lane discipline, and
nonavailability of a reliable historic data base. Hence, methods which are cost effective and
less demanding in terms of data base need to be explored.

Travel time, being a spatial parameter, is difficult to be measured directly from field.
Most of the direct travel time measurement techniques such as test car methods or vehicle
re-identification are expensive, immature, or involve privacy concerns and hence majority of
the studies depend on indirect methods for travel time estimation. Most of the indirect travel
time estimation and forecasting methods can be grouped under extrapolation techniques [1],
regression models [2, 3], pattern recognition techniques [4], time series analysis [5], use of
filtering techniques [6, 7], neural networks [8], methods based on traffic flow theory [9–14],
data fusion techniques [15], and combination of above methods [16–19].

Many of the above methods require a good data base and may not be feasible for
locations where automated data collection is not yet functional. Under such conditions,
methods which demand less amount of data are required. Indian traffic characterised by its
heterogeneity and lack of lane discipline poses additional challenges in terms of automated
data collection. Most of the existing location based sensors are lane based and will fail
under less or no lane disciplined traffic. Thus, accurate measurement of all the traffic
parameters automatically is still a difficult task under Indian traffic conditions. Preliminary
developments in this area are showing some promise in terms of traffic counts and hence
the present study assumes that traffic count is the only location based data available. On the
other hand, spatial data collection using GPS is a proven technology and is applicable under
Indian conditions too. However, due to less participation, data from only a sample of the
entire population, mainly from public transit, can be obtained using this technology. Thus,
there is a need to have multiple sensors to characterise the entire traffic stream.

The present study develops a methodology for estimating stream travel time for an
urban arterial using flow data obtained from location based sensors and GPS data obtained
from limited number of probe vehicles. This approach known as data fusion (DF) is not
explored under Indian traffic conditions. To improve the estimation accuracy, a hybrid DF-
HCM method using data fusion for mid-block sections and HCM approach for the delay
calculation at intersection is attempted. To compare the performance, a base method which
employs input-output analysis for mid-blocks and HCM for intersection is also carried out.
The usefulness of analysing separately the delay at signals is tested by comparing with
the total travel time till intersection being estimated by using the nonhybrid method which
employs data fusion alone for the whole stretch. A brief literature review on these approaches
is given below.
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Data fusion is a broad area of research in which data from several sensors are
combined to provide comprehensive and accurate information [20]. The advantages of
using data fusion include increased confidence, reduced ambiguity, improved detection,
increased robustness, enhanced spatial and temporal coverage, and decreased costs [20–22].
The basic idea of data fusion is to estimate parameters by using more than one measurement
from different sources or sensors. This may be due to lack of availability of enough data
from a single source or to capture the advantages of different data sources. Some specific
applications of data fusion in the field of transportation engineering are discussed below.

Kwon et al. [23] proposed a linear regression model for travel time prediction by
combining both loop detector and probe vehicle data. They showed that linear regression
on current flow, occupancy measurements, departure time, and day of week is beneficial for
short-term travel time prediction while historical method is better for long-term travel time
prediction. Zhang and Rice [24] used a linear model with varying coefficients to predict the
travel time on freeways using loop detector and probe vehicle data. The coefficients vary as
smooth functions of departure time. The coefficients have to be estimated offline and stored
and after that the model can be used real-time. El-Faouzi et al. [25] put forward a model based
on the Dempster-Shafer theory. They used travel time from loop detector and toll collection
data to estimate travel time. The model required the likelihood that the data sources are
giving the correct data. El-Faouzi [22] carried out a similar work using Bayesian method
using travel time data from loop detector and probe vehicle to estimate travel time. The
results showed that the travel time estimate using data fusion approach was better than the
estimate obtained if the data sources were used individually. Chu et al. [21] used simulated
loop detector and probe vehicle data to estimate travel time using a model based approach
with Kalman filtering technique. Ivan [26] used the ANN technique to detect traffic incidents
on signalized arterials using simulated travel time data from loop detector and probe vehicle
data.

Another simple analytical model that uses readily available count data from upstream
and downstream ends of a link for the estimation of travel time is the cumulative counts
(input-output) method [9, 10, 12–14, 27]. However, a major drawback of the input-output
method is its dependency on the accuracy of flow counts for travel time estimation [9–
13, 27, 28]. Some of the other reported approaches include traffic flow theory based
[11, 29, 30]. It can be seen from the above literature review that majority of the models
discussed above are limited to freeways, and it may not be feasible to apply them directly on
urban networks without further calibration due to differences in behaviour of traffic on the
freeway and urban facilities. Moreover, the models developed for freeways generally provide
average travel time for the link as a whole, which may not be a true representation in case
of links with intersections, turning movements, and so forth. Thus, for better performance,
intersection delays may have to be dealt separately. The present study analyse the validity
of this assumption by comparing the accuracy of the estimated travel time with and without
considering the intersection separately.

The first and one of the most popular methods for intersection delay estimation was
developed by Webster [31] from a combination of theoretical and numerical simulation
approaches that became the basis for all subsequent delay models. Modifications to the above
model under varying traffic conditions were reported by Miller [32] and Newell [33]. The
delay model suggested in Highway Capacity Manual usually known as HCM model [34] is a
modified Webster’s model incorporating the effect of progression and platooning. Attempts
to overcome the assumption of steady-state condition by using time-dependent functions
are reported in [35]. Other reported studies include deterministic queueing method [28, 36],



4 Journal of Applied Mathematics

modified input-output technique [18], shock-wave theory based models [37, 38], and the use
of Markov Chain processes [39, 40].

Overall, it can be seen that most of the reported studies on travel time and delay
estimation used data collected from homogeneous and lane-disciplined traffic, either directly
from the field or indirectly through simulation models. The traffic conditions existing in India
is complex and different with its heterogeneity and lack of lane discipline. There are only
limited studies [7, 41, 42] which addressed heterogeneous traffic characteristics. None of
those studies estimated the stream travel time in an urban arterial taking signals into account.
Also, lack of automated data collection methods in India makes it difficult to explore many
of the statistical, time series, and machine learning techniques which are data driven since
a good data base is required for applying such techniques. Thus, the application of a new
approach for urban arterial travel time estimation with less data requirement is an area that
will be of interest for countries like India and requires additional research and is discussed in
this study.

The present study compares the performance of three different travel time estimation
methodologies, which uses flow data as the main input. The estimation methodologies
include two hybrid methods namely base method and data fusion-HCM and a non-hybrid
method. The study stretch consists of a midblock and an intersection. The total travel time
of the stretch is considered as the sum of travel time in the midblock section, without being
influenced by the intersections, and the travel time at intersection, taking into account the
delays at signals. Mid-block travel time is estimated using two approaches, namely, input-
output analysis and data fusion approach. Input-output analysis is a popular approach and
utilizes the cumulative count at entry and exit to find the travel time of vehicles within
the section. HCM method is the most popular approach for estimating delay at signalized
intersections. The method of applying input-output analysis for the midblock and HCM
method for the intersection to obtain the total travel time of vehicles in the study stretch
can be considered as a base approach and is entitled as base method. The other approach
presents a data fusion method for mid-block travel time estimation and HCM analysis for the
intersection area and will be called as hybrid DF-HCM method. The data fusion approach
utilizes the location based flow data and the sparse travel time data obtained from probe
vehicles for estimating the travel time of the stream. The total travel time of the stretch is
then obtained by summing up the mid-block travel time and delay incurred at the bounding
intersection. The necessity for analyzing the intersections separately was validated using a
non-hybrid approach, where the total travel time is estimated using data fusion alone for
the whole stretch without separating into mid-block and intersection area. In this approach,
the total travel time is directly estimated using the data fusion approach without separately
analysing the delay at intersection. The data till intersection stop line is used in this case
for the data fusion approach assuming that the delay is implicitly captured by the flow
and travel time data till stop line. A comparison of these three methodologies is carried
out to understand the best method for travel time estimation under heterogeneous traffic
conditions. This is one of the first study under Indian conditions that have applied data
fusion techniques as well as hybrid technique for the estimation of travel time. The study
has illustrated an efficient method to estimate the stream travel time in urban arterials with
limited GPS data and location based flow data. The results of the study stressed the necessity
of analyzing the intersections separately for more reliable estimates of travel time in urban
roads.
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2. Data Collection

Under Indian traffic conditions, a ready-to-use data archive is not available and hence the
study relied upon field data collected manually and simulated data using VISSIM simulation
package for corroborating the estimation methods.

2.1. Field Data

The test bed selected for the present study is a six-lane busy arterial road, namely, Rajiv
Gandhi Salai in Chennai, India. Traffic in one direction only was considered for the present
study. Data requirements based on the selected methodology included flow data from three
locations as shown in Figure 1. The distance between location 1 and location 2, which is before
the influence of intersection, is 1.72 km and between location 2 and intersection (location 3)
is 0.1 km, making the total section under consideration to be of 1.82 km.

Two pedestrian over bridges were identified to mount the cameras for covering
location 1 and 2. The intersection area covering the stop line at location 3 was recorded
using a camera mounted on a convenient luminaire support. To ensure that the three-video
recordings could be synchronized during replay in the lab, the time clocks in all the three
cameras were set to a common time at the start of the data collection. Data were collected
over three days for a total of six hours for the complete analysis and another two days for a
total of three and a half hours from the mid-block alone for comparing input-output method
with data fusion approach.

The required location based data, namely, the flow was collected using videographic
technique. Initial snap shots of the traffic inside the study stretch were taken from elevated
points to get the initial count of vehicles in the section required for input-output analysis.
Photographs taken from entry and exit points along with additional photographs taken
from in-between elevated points were required to capture the whole length of the section.
Classified flow data at the three-data collection points were extracted manually for two-
wheeler, three-wheeler, and four-wheeler categories from the videos in a temporal resolution
of one minute. The required flow data were extracted manually due to lack of automated
procedures. Travel time data required for validation was also extracted manually from videos
by reidentifying vehicles at various locations.

The limited travel time data required for the data fusion model were collected using
test vehicles equipped with GPS units. The test vehicles comprised of two cars, two three-
wheelers, and two two-wheelers which provided travel time data. These vehicles were
travelling back and forth between entry and exit points continuously during the data
collection period. Moreover, GPS data were available from route number 5C of the public
transport bus passing through the stretch. The GPS raw data included time, latitude, and
longitude at every five seconds interval. From this, travel time data were extracted using the
software package ArcGIS [43].

Due to the lack of automated video data extraction, all the above field data collection
and extraction were carried out manually, which was laborious and time consuming. The
data collection procedure required lot of coordination for collecting the video simultaneously
from three different locations, along with initial snapshots, and GPS data from all different
types of vehicles. An error in video recording even in one location makes the entire data
not useful for analysis. Due to these difficulties, it was decided to simulate the field traffic
conditions using collected field data, and carry out further analysis using the data generated
using the calibrated simulated network. The details of the simulation are detailed below.
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Figure 1: Schematic representation of the study corridor.

2.2. Simulated Data

VISSIM 5.3 from the PTV vision [44] was used in the present study to simulate the traffic
conditions for testing the accuracy of the travel time estimation model under varying traffic
conditions. A road stretch similar to the field test bed was created in VISSIM using a
satellite image. For realistic representation of field conditions, data on intersection geometry,
signal timing and phasing, vehicle types, traffic composition, vehicle input, proportion
of turning traffic, and speed distribution were entered from field. Less lane disciplined,
traffic movement was achieved by placing the vehicles anywhere on the lane, by setting
the option for over-taking through left and right side of vehicle and allowing a diamond-
shaped queuing at the intersection. To account for the nonstandard vehicles types, static,
and dynamic characteristics of most of the regular vehicle types in terms of length, width,
acceleration, and deceleration, and speed ranges were defined based on field values.

Signal timing and phase change data from the field were used in the simulation with
a total cycle time of 145 s, red time of 98 s, green time 45 s, and amber time 2 s. Classified
flow data for two-wheeler, three-wheeler, and four-wheeler categories extracted manually
for the three locations is used for calibration and validation of the simulation. Five-minute
aggregated flow and composition at location 1 were used as dynamic inputs for calibration.
Data generated at the other two locations were compared with the field values for validation.

During calibration, several parameters in VISSIM were adjusted to match the field sce-
nario. Simulations were performed with different random seeds with an average of five to ten
values for each influencing parameter. Parameters were calibrated such that the error in flow,
density, and travel time/speed was reduced. The errors were quantified in terms of mean
absolute percentage error and were comparable with other similar studies in VISSIM [45, 46].

3. Methodology

3.1. Estimation Schemes

As mentioned already, in this study, the total travel time is estimated using a hybrid DF-
HCM method making use of data fusion approach for the mid-block and HCM approach
for intersection. A comparison is carried out using the base method employing input-
output analysis which uses a simple deductive principle of cumulative counts (input-
output method) for estimating the link travel time and HCM analysis for the intersection
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area. The total travel time of the stretch is then estimated as the sum of mid-block and
intersection travel time. Also, the need for analysing intersection delay separately is verified
by comparing with a direct estimation of travel time till intersection using non-hybrid method
which employs data fusion approach alone for the whole section. The basic approach of the
above methods, namely, model based approach using data fusion, input-output method, and
HCM approach are discussed below.

3.2. Data Fusion Method

This section details the methodology adopted for fusing both Eulerian video data and
Lagrangian GPS data for estimating the travel time. The methodology was motivated from
the study of Chu et al. [21]. The estimation scheme is based on the conservation equation and
the fundamental traffic flow equation given in (3.1), and (3.2), respectively:

∂q

∂x
+
∂k

∂t
= 0, (3.1)

q = kV, (3.2)

where q is the flow in PCU/hour, k is the density in PCU/km, and V is the space mean speed
in km/hour, with x being the distance and t being the time.

By discretising (3.1), the density at time t can be represented as

k(t) = k(t − 1) +
Δt × {qentry(t − 1, t) − qexit(t − 1, t)

}

Δx
, (3.3)

where qentry(t− 1, t) and qexit(t− 1, t) are, respectively, the flow in PCU/h at the entry and exit
points during the time interval (t−1) to t. Δt is the data aggregation interval (1 minute in this
study).

A filtering technique is used to estimate the density by assuming a value for the initial
density, k(0). Then the average travel time taken by the vehicles to reach the exit point from
the entry is given by

tt(t) =
Δx
V (t)

=
Δx × k(t)
q(t − 1, t)

, (3.4)

where tt(t) is the travel time at time t, q(t − 1, t) is the flow along the section during (t−1) to t
which is given by

q =

⎧
⎪⎪⎨

⎪⎪⎩

qentry, if
(
qexit − qentry

)
> qcritical

qexit, if
(
qentry − qexit

)
> qcritical

qentry + qexit

2
, if

∣∣qentry − qexit
∣∣ < qcritical.

(3.5)

Average of the flows at entry and exit points is used under normal conditions,
when the flows at both ends are comparable without any shock-wave propagation. When
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the flows at the entry and exit are not comparable, minimum of the two was adopted to
capture the density variation within the stretch. In the present study, qcritical was selected as
20 PCU/minute.

In the above formulation, since the initial density in the section, k(0) is unknown, there
is a need for a parameter estimation scheme. The use of techniques such as Kalman Filtering
or High Gain Observer (HGO) based parameter identification are reported in literature for
similar applications [21, 47, 48]. In the present study, a Kalman filter based estimation scheme
is adopted.

The Kalman filter (KF) is a recursive algorithm [49] and is usually applicable to system
models which can be written in the state space representation. It is a model based tool for
estimation and prediction and incorporates the stochastic nature of parameters. The KF can
be of different types such as discrete Kalman filter, extended Kalman filter, and adaptive
Kalman filter. The selection of the filter depends on the nature of the governing equations. In
the present problem, as state equation (3.3) and the measurement equation (3.4) are linear,
the Discrete Kalman Filter (DKF) is used. The present study uses flow data from the video
and travel time from limited test vehicles to estimate average stream travel time. The state
variable used is traffic density and the travel time is the measurement variable. The state
(process) and measurement (observation) equations of DKF can be derived from (3.3) and
(3.4) and are given below.

State equation:

k(t) = k(t − 1) + u(t − 1, t) +w(t − 1), (3.6)

Measurement equation:

tt(t) = H(t) × k(t) + z(t), (3.7)

where u(t − 1, t) is the input which depends on the flow and is given by

u(t − 1, t) =
qentry(t − 1, t) − qexit(t − 1, t)

Δx
, (3.8)

H(t) is the transition matrix which converts the density to travel time and is given by

H(t) =
Δx

q(t − 1, t)
, (3.9)

and w(t−1) and z(t) are the process disturbance and the measurement noise, respectively.
These are assumed to be Gaussian with zero mean and variances Q and R, respectively.
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The Kalman filter algorithm is given by

k(t) = k̂(t − 1)+ + u(t − 1, t),

P(t) = P(t − 1)+ +Q,

G(t) = P(t)H(t)T
[
H(t)P(t)H(t)T + R

]−1
,

k̂(t)+ = k(t) +G(t)
[
tt(t) −H(t)k(t)

]
,

P(t)+ = P(t) −G(t)H(t)P(t),

(3.10)

where k(t) is the a priori estimate of density calculated using the measurements prior to
the instant t and P(t) is the a priori error covariance associated with k(t). k̂(t)+ and P(t)+

are the a posteriori density estimate and its covariance, respectively, after incorporating the
measurements till time t. G(t) is the Kalman gain which is used in the correction process.

The above steps are repeated at every time steps, and the correction step was carried
out only at the intervals when a measurement of GPS travel time is available.

3.3. Input-Output Method

The input-output (cumulative count) method as given by Nam and Drew [50] involves
constructing the cumulative vehicle counts (N) on the y-axis and time on the x-axis, as shown
in Figure 2.

The classical analytical procedure for travel time estimation considers cumulative flow
plots N(X1, t) and N(X2, t) at upstream entrance and downstream exit of the link. The total
travel time of vehicles during a given time interval, say between tn and tn−1, is then given
by the area between the two curves for that time period, represented by the shaded region
in Figure 2. The area can be calculated considering all vehicles that are entering, exiting,
or entering and exiting. In this study, all vehicles that are exiting in the time period are
considered, and the area is calculated accordingly. Corresponding analytical expression for
total travel time (area of trapezoid) is given by

T(tn) =
1
2
[(
tn−1 − t′′

)
+
(
tn − t′

)] ×m(tn), (3.11)

where, t′ = time of entry of the last vehicle that exits the link during tn−1 to tn, t′′ = time of
entry of the first vehicle that exits the link during the tn−1 to tn, m(tn) = the total number of
vehicles that exit the link during tn−1 to tn.

Under the first-in first-out condition m(tn) can be given as

m(tn) = Q(X2, tn) −Q(X2, tn−1), (3.12)

where, Q(X2, tn) = cumulative number of vehicles exiting at tn, Q(X2, tn−1) = cumulative
number of vehicles exiting at tn−1.
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Figure 2: Illustration of input output analysis.

Interpolating the values of t′ and t′′ and substituting them in (3.11), the total travel
time T(tn) can be calculated. The average travel time of vehicles exiting the link during the
given interval (TT) is then obtained by dividing the total travel time T(tn) by the number
of vehicles exiting the link for the same period as T(tn)/m(tn) where m(tn) is the number of
vehicles that exit during the interval.

3.4. HCM Delay Method

HCM delay method [34] is for estimating delay at an intersection over a given time period.
Using this method, the average delay per vehicle for a lane group can be calculated using
(3.13).

d =
(
d1 × fPF

)
+ d2 + d3,

d1 =
0.5 × C[1 − g/C]2

1 − [min(1, X)
(
g/C

)] ,

d2 = 900 × T
⎡

⎣(X − 1) +

√

(X − 1)2 +
8kIX
cT

⎤

⎦,

fPF =
(1 − P)fp
1 − g/C ,

(3.13)

where, d = average overall delay per vehicle (seconds/vehicles); d1 = uniform delay (s/veh);
d2 = incremental or random delay (s/veh); d3 = residual demand delay or initial queue delay
(s/veh); PF = progression adjustment factor; X = volume to capacity ratio of the lane group;
C = traffic signal cycle time (seconds); c = capacity of the lane group (veh/h); g = effective
green time for the through lane group (seconds); T = duration of analysis period (hours);
k = incremental delay factor (0.50 for pre timed signals); I = upstream filtering/metering
adjustment factor (1.0 for an isolated intersection); P = proportion of vehicles arriving during
the green interval; fPF = progression adjustment factor.
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The above delay calculation of HCM requires flow values at location 3, free flow
running time between the location 2 and location 3, cycle timings, capacity of the lane group,
vehicle arrival type, and progression adjustment factor as input values. Out of these, the flow
values and cycle timings were directly obtained from the field. The capacity of the lane group
was calculated from the field using saturation flow rate and green cycle time ratio as given
by c = s × g/C [34]. A value of 3564 vehicles per hour was obtained as capacity value which
closely matched the value given in IRC: 106-1990 [51] for three-lane arterial road. Hence, the
standard value of 3600 vehicles per hour as per IRC: 106-1990 for three-lane arterial road was
taken for analysis. HCM Exhibits 16-11 and 16-12 [34] were used to determine the arrival type
and progression adjustment factor for the known volume condition and vehicle distribution
over green time. The value corresponding to arrival type 4 and green cycle time ratio of 0.3
was chosen for the progression adjustment factor.

The additional free flow running time for the delay stretch (constant value for a
particular link) is added to the estimated delay to obtain the total travel time between the two
locations. The free flow running time is obtained by dividing the distance between locations
2 and 3, La,s by the free flow speed ffs of the stretch. Thus, the total travel time of the delay
stretch is obtained as

TT = d +
La,s
ffs

, (3.14)

where, TT is the total travel time of the delay stretch and d is the estimated delay value.
The total link travel time of 1.82 km stretch is then computed as the sum of mid-

block travel time (1.72 km) and the travel time in the delay stretch (0.1 km). Each of the
modules of base, hybrid DF-HCM, and non-hybrid method is corroborated using field data
and simulated data and is detailed in the section below.

4. Corroboration of the Estimation Scheme

In order to evaluate the performance of the above methods, the estimated mean link travel
times using these methods were plotted against the actual travel times using both field data
and simulated data. The actual travel time data required for the validation of the results while
using field data were obtained through GPS equipped test vehicles as well as by manually
re-identifying vehicles from videos. GPS data were collected using three cars, three auto
rickshaws, two motor bikes, and five buses as representative samples of each classification.
Throughout the data collection period, these GPS test vehicles, except the buses, were made
to travel along the study section repeatedly. Figures 3, 4, and 5 shows the plots of travel times
predicted by the three methods compared to the actual travel time from the field data and
simulated data. It can be seen that the hybrid DF-HCM model is able to capture the variations
in the actual travel time better than the other two methods.

The errors in travel time estimation in the above cases were quantified using mean
absolute percentage error (MAPE) and root mean squared error (RMSE). The mean absolute
percentage error is obtained using

MAPE =

(
1
N

N∑

k=1

|Nmeas(k) −Nest(k)|
Nmeas(k)

)

× 100%, (4.1)

where Nest(k) and Nmeas(k) are the estimated and the measured average travel time of the
study stretch during the kth interval of time with N being the total number of time intervals.
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Figure 3: Sample travel time results using field data.
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Figure 4: Travel time comparison for a 2 hrs simulated data.
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Figure 5: Sample plot for travel time comparison from 6:00 A.M–10:00 P.M simulated data.
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MAPE meets most of the criteria required for a summary measure such as measurement
validity, reliability, ease of interpretation, clarity of presentation, and support of statistical
evaluation. However, as noted by most researchers [52], the distribution of MAPE is often
asymmetrical or right skewed and undefined for zero values. Hence, a scale dependent
measure called root mean square error (RMSE) is also used which is often helpful when
different methods applied to the same set of data are compared. However, there is no absolute
criterion for a “good” value of any of the scale dependent measures as they are on the same
scale as the data [53]. The lesser the value of RMSE, the better is the forecast obtained. RMSE
expresses the expected value of the error and has the same unit as the data which makes the
size of a typical error visible. the root mean square error is given by

RMSE =

√√
√
√ 1
N

N∑

k=1

[Nmeas(k) −Nest(k)]
2, (4.2)

where Nest(k) and Nmeas(k) are the estimated and the measured average travel time of the
study stretch during the kth interval of time with N being the total number of time intervals.

The MAPE and RMSE values obtained are shown in Figures 6 and 7 and can be seen
that the errors are within acceptable ranges [52, 53]. According to Lewis’ scale of judgment of
forecasting accuracy [49], any forecast with a MAPE value of less than 10% can be considered
highly accurate, 11%–20% is good, 21%–50% is reasonable, and 51% or more is inaccurate.

It can be observed that in the case of field data, hybrid DF-HCM method performed
better than the other two methods. The results using simulated data show both base and
hybrid DF-HCM methods performing comparably and both performing better than the non-
hybrid method. Thus, the results clearly show that analysing the delays at intersections
separately brings in more accuracy to travel time estimation. Also, it can be observed that
input-output method is too constrained by the flow data quality and can be used only
when the flow data accuracy is guaranteed such as from simulation. This is further checked
by comparing the performance of two more days of field data for mid-block section, and
the MAPE and RMSE is as shown in Table 1. It can be seen that in these cases, the data
fusion method outperformed the input-output method unlike the case of using data from
simulation confirming that with uncertainty in flow values as obtained from field, the data
fusion method outperforms the input-output approach.

Overall, it can be observed that the proposed data fusion method is a better candidate
for travel time estimation compared to input-output method in the mid-block sections. Input-
output method can be considered in cases where the accuracy of flow values is guaranteed.
Also, it can be clearly observed that, analysing the intersection delay separately brings in
more accuracy to the travel time estimation. This leads to the conclusion that intersection
delay needs to be analysed separately to determine the total travel time of urban arterials.
Thus, the proposed data fusion method can be used in mid-block sections along with HCM
method for delay estimation at intersections to determine the total travel time of urban
arterials.

5. Summary and Conclusions

The negative impacts of growth in vehicular population include congestion and delays,
and are much debated topics currently all over the world. India, with its rapid growth in
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economy and corresponding growth in vehicular population, is no exception to this. The
heterogeneous nature of traffic and lack of lane discipline makes these issues more complex.
Characterization and analysis of this type of traffic existing in developing countries demand
a different approach than what is followed in western countries with homogenous and lane
disciplined traffic. While dealing with urban arterials, there are additional challenges due to
the high variability in traffic characteristics. In countries such as India, another challenge is
in terms of data availability and hence less data intensive methods for travel time estimation
are to be employed.

The present study analysed the application of data fusion technique for travel time
estimation in an Indian urban arterial. The study attempted a hybrid DF-HCM method
and compared its performance with a base method and a non-hybrid data fusion model
to obtain the total travel time of the whole section. The performance of the models for
varying traffic flow conditions was tested using field and simulated data. The results showed
hybrid DF-HCM model as the best candidate for travel time estimation in urban arterials.
The non-hybrid method was found to have the highest error stressing the need for analysis
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Table 1: Performance of models in terms of MAPE and RMSE for mid-block.

Method/Date MAPE (%) RMSE (min)
Input-output Data fusion Input-output Data fusion

June 30 21.9 18.9 0.132 0.096
Sept 23 13.6 9.0 0.28 0.12

of the intersections separately for better performance. Among the hybrid models, data
fusion method gave promising results under field conditions. When the accuracy of flow
value was guaranteed, such as using simulated data, both the base and hybrid DF-HCM
methods showed comparable performance with a slightly better performance from the input-
output method. Hence, for real-time field implementations such as ATIS for urban arterials,
the hybrid approach using data fusion for mid-block sections along with separate delay
estimation at signalized intersections brings in the maximum accuracy of the predicted travel
time information showing its potential for any such real time ITS implementations.
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The prediction of the aero-engine performance parameters is very important for aero-engine
condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine
exhaust temperature (EGT) time series which come from actual air-borne ACARS data is
reconstructed through selecting some suitable nearby points. The partial least square (PLS) based
on the cubic spline function or the kernel function transformation is adopted to obtain chaotic
predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic
prediction algorithm based on biweight kernel function transformation has significant advantage
in overcoming multicollinearity of the independent variables and solve the stability of regression
model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares
(OLS) method and 10.38 percent less than that of the linear PLS approach. At the same time, the
forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.

1. Introduction

Aeroengine condition monitoring is applied as a better way to estimate aero-engine condition
and reliability amongst most of the commercial airlines [1, 2]. Predicting and detecting
abnormal behavior of main aeroengine performance parameters is of great importance in
the aeroengine condition monitoring. With the development of modern industry, one typical
aeroengine becomes a more and more integrative and complex system, of which working
condition and fault are very difficult to predict and judge, and the influence and harm
caused by system faults are also more serious than ever. Therefore, there will be a growing
demand for effective prediction methods of long-term trend of aeroengine system to predict
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abnormal behavior of significant performance parameters and potential faults. Then we can
take preventive maintenance measure to avoid faults occurrence, shorten aircraft down time,
thereby reducing maintenance cost and improving aeroengine life.

The aeroengine system is a complex system with nonlinear and dynamic chaos action,
so it is difficult to establish an exact analytic mathematical model of performance parameters.
As a result, analysis usually depends on time series obtained from observation. But in
practical monitoring the availability of obtaining characteristic data is very limited, and
one fault usually shows various changes in performance parameters, and a same change
may result from different faults [3, 4]. However, extracting multiple fault characteristic of
parameters usually brings complexity and redundancy, which may bring difficulty for the
following prediction. The theory of chaotic prediction is a mathematics method to deal with
inexactness, uncertainty, and incompletion, which is remarkable efficiency in aspects of data
reduction and feature extraction.

Studies on chaos prediction can be traced back to Parker and Chua (1989) [5]. More
sophisticated approaches of nonlinear chaotic time series prediction mainly rely on neural
network [6], support vector theory [7], fuzzy rules [8], a simple least square algorithm
[9]. In recent years, considerable interest has been aroused in the study of nonlinear chaos
prediction with the actual observation of aeroengine dynamic system [10, 11]. These papers
summarize the prediction model of nonlinear chaos system based on ordinary least squares
(OLS); however, there are some practical problems in those models such as serious multi-
collinearity and poor robustness of regression function.

Partial least squares (PLS) can overcome information overlaps caused by multi-
collinearity since it adopts canonical correlation analysis, which improves accuracy of
nonlinear system modeling [12]. What is more, PLS adopts cross validity method, which
rejects redundancy principal component and enhances regression equations robustness.
Hence, in our investigation the designed chaotic algorithm is based on the nonlinear partial
least squares (NPLS) regression and the prediction research on the time series.

2. Data Pretreatment

Typical aeroengine performance parameters are exhaust gas temperature (EGT), low-spool
rotor speed (NI), high-spool rotor speeds (N2), and fuel flow (WF) [13]. These four
measurements are often called the four basic parameters, which can be recorded in the air-
borne equipment on most new and old aeroengines. Note that we take the most important
performance parameter, EGT, as example to analyze in this paper; the other parameters can
be fitted in the same method.

2.1. Similarly Correcting EGT Sequence

According to operating principle of the aeroengine, the data of main performance parameters
of the same aeroengine in different external flight conditions such as the external atmosphere
total temperature, total pressure, MACH numbers are quite different, so the original engine
exhaust temperature EGT data usually cannot be directly used for comparison analysis. To
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solve this problem, similar theory is adopted to eliminate the influence of external conditions
on the aeroengine EGT sequence [14].

EGTcor =
EGTobs

θT2
, (2.1)

where EGTobs is the original EGT data, EGTcor is the corrected value of EGTobs, θT2 = (TAT +
273.15)/288.15, TAT is the total air temperature.

2.2. Eliminating Outliers According to Layida Criterion

If outliers exist in the data, they will seriously affect the prediction accuracy of an algorithm.
Layida criterion is the most commonly used for discrimination outliers, of which the
precondition is that there is sufficient data [15]. For time series {Xi}(i = 1, . . . , n), if n is large
enough (normally n > 80), and only random disturbance exists in all data. Assume that the
random time series is following a normal distribution whose mean is μ and deviation is σ2,
so the probability that the deviation (Xi − μ) falls in ±3σ ranges is about 0.3%. According to
Layida criterion, if the absolute deviation of a time series data Xi(i = 1, . . . , n) is larger than
3σ, then Xi can be judged as an outlier and should be removed.

Let the number of sample be N, the observed value of time series is {xi}(i = 1, . . . ,N),
the sample mean and standard deviation is x and S, respectively. If the sample point xi meets
|xi−x| > 3S, then xi is an outlier which will be eliminated. x and S should be computed again
after all the outliers are removed.

3. Chaos Prediction Model Based on Nonlinear Partial Least Squares
(PLS) Regression

Suppose observed time series is {xn}(n = 1, 2, . . . ,N), the chaotic phase space sn is
reconstructed by [16].

sn =
(
xn, xn−τ , . . . , xn−(m−1)τ

) ∈ Rm, n = (m − 1)τ + 1, (m − 1)τ + 2, . . . ,N, (3.1)

where τ is the delay time, m is the embedding dimension and N is the length of the time
series.

3.1. Characterizing Chaos through Lyapunov Exponents

Through the years, the existence of chaos has been characterized in time series by means of
several methods, among others: analysis of Fourier spectra, fractal power spectra, entropy,
fractal dimension, and calculation of Lyapunov exponents. However, several of these
methods have proven not to be very efficient [16]. The Lyapunov exponents provide all the
information about the local and global complexity of chaos, therefore the measurement of
Lyapunov exponents has been an effective method to judge whether a time series is caused
by a chaotic dynamical system.

The Lyapunov exponents λ1, λ2, . . . , λd are the average rates of expansion (λi > 0) or
contraction (λi < 0) near a limit set of a dynamical system [16]. In fact, the LE is a quantitative
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measure of the divergence of several trajectories in the system. There is one LE for each
direction in the d-dimensional phase space where the system is embedded. The variable d
represents the Lyapunov dimension or phase space dimension. The LE does not change when
the initial conditions of a trajectory are modified or when some perturbation occurs in the
system. If at least one LE is positive, the system presents chaotic motion [17]; hence if chaos
exists in a dynamical system, the largest Lyapunov exponent must be positive.

We will calculate the largest Lyapunov exponents according to the algorithm offered
by Wolf et al. (1985) [17]; the numerical results are shown in Table 1.

3.2. Chaos Prediction Model

Let state vector at time T be sT , we obtain the nearest neighbor points sα1 , sα2 , . . . , sαK by
calculating the Euclidean distance between the target points sT and any one of reconstruction
vectors [18], where

sαi =
(
xαi , xαi−τ , . . . , xαi−(m−1)τ

)
, i = 1, 2, . . . , K. (3.2)

Let X be the sample matrix of reconstructed variable,

X =

⎡

⎢⎢⎢
⎣

xα1 xα1−τ · · · xα1−(m−1)τ

xα2 xα2−τ · · · xα2 −(m−1)τ
...

...
...

...
xαK xαK−τ · · · xαK−(m−1)τ

⎤

⎥⎥⎥
⎦

∈ RK×m. (3.3)

Let y be the prediction variable, then the nonlinear chaos prediction model is described
as

y = f(x1, x2, . . . , xm), (3.4)

where xi is the ith column of X, i = 1, 2, . . . , m, y = [xα1+p , xα2+p, . . . , xαK+p] ∈ RK, p is the
length of prediction step.

In practice, the observed data sets of independent variable and dependent variable
can usually be obtained. However, the model form of their relations is unknown especially in
case of higher dimensions, and the problem becomes more complicated when the relationship
between the dependent variable and independent variables is nonlinear. Usually (3.4) is fitted
by additive model or multiplicative model. For the sake of computation convenience, we
consider the addition model of each independent variable; that is,

y = f1(x1) + f2(x2) + · · · + fm(xm) + ε. (3.5)

At present, the nonlinear relationship between the original variable usually is into a
quasi-linear relationship, after then, the prediction model is established by an effective linear
theory method. Spline function and kernel function are commonly used in the transformation
of the basic functions.
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Table 1: Comparative analysis of the optimal results based on various forecasting methods.

Forecasting method Embedding
dimension (m) Delay time (τ) Subset

numbers
Largest Lyapunov

exponent NMSE

Cubic spline interpolation 9 3 5 0.25 0.6400
Uniform kernel 8 19 2 0.16 0.5529
Epanechnikov kernel 8 19 2 0.17 0.5529
Bi-weight kernel 8 19 2 0.38 0.5431
Tri-weight kernel 9 3 5 0.29 0.5918
Gaussian kernel 3 10 4 0.32 0.6325
PLS 9 3 0 0.15 0.6469
OLS 30 16 0 0.098 0.7081

(1) Cubic Spline Function Transformation

Let f̂j(xj)(j = 1, 2, . . . , m) be the cubic spline fitting function, then,

y = β0 + f̂1(x1) + f̂2(x2) + · · · + f̂m(xm) + ε, (3.6)

where

f̂j
(
xj
)
=

Mj+2∑

l=0

βj,lΩ3

(
xj − ξj,l−1

hj

)

, (3.7)

Ω3

(
xj − ξj,l−1

hj

)

= zj,l =
1

3!h3
j

4∑

k=0

(−1)k
(

4
k

)
(
xj − ξj,l−3+k

)3
, (3.8)

ξj,l−1 = min
(
xj
)
+ (l − 1)hj ,

hj =
max

(
xj
) − min

(
xj
)

Mj

(
l = 0, 1, . . . ,Mj + 2

)
,

(3.9)

where β0, βj,l are the model parameters to be determined; ξj,l−1, hj ,Mj are range points,
segment length and section number are divided on the variable xj , respectively.

The minimum observed value of variables is recorded as min(xj) and the maximum as
max(xj), then the nonlinear prediction function relationship between independent variables
and dependent variable can be transformed as the following equation:

y = β0 +
m∑

j=1

f̂j
(
xj
)
+ ε = β0 +

p∑

j=1

Mj+2∑

l=0

βj,lΩ3

(
xj − εj,l−1

hj

)

+ ε. (3.10)

Equations (3.6)–(3.8) show that the relationship between y and zj,l is linear, and the
relationship between xj and zj,l is nonlinear, so the chaos prediction model with cubic spline
function transformation is a quasi-linear regression model (see in (3.10)).
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(2) Kernel Function Transformatio

The principle of Kernel function transformation is same as spline function transforma-
tion; that is, a kernel function transformation based on one dimensional nonlinear function
fj(xj), and the cubic spline function{Ω3((xj − ξj,l−1)/hj)(l = 0, 1, . . . ,Mj + 2)} is replaced by
basic function {K((xj −ξj,l−1)/hj)(l = 0, 1, . . . ,Mj +2)}. Thus, the chaos prediction model with
kernel function transformation is as follows [19]:

ŷ = β0 +
p∑

j=1

f̂j
(
xj
)
= β0 +

p∑

j=1

Mj+2∑

l=0

βj,lK

(
xj − ξj,l−1

hj

)

. (3.11)

The commonly used kernel functions include uniform kernel function, Epanechnikov
kernel function, biweight kernel function, tri-weight kernel function and Gaussian kernel
function.

3.3. Nonlinear Partial Least Squares Regression (NPLS)

However, there exist some problems when establishing the above quasi-linear regression
model based on ordinary least squares method, because the dimension of regression model
will increase significantly after a function change, which may lead to the result that the
number of sample points is less than the number of transformed variables; on the other
hand, the data of reconstructed variable x1, x2, . . . , xm are come from the same series, and
the nonlinear correlation exists between each other. So it is not appropriate to employ the
ordinary least squares method to estimate the model parameters when the multicollinear
relationship among the new transformed independent variables is found. One of the effective
methods to solve this problem is to use partial least squares method (PLS) to estimate
parameter of the predictive model.

In this paper, a modified chaos prediction approach based on nonlinear PLS regression
with basic function transformation is developed. The cubic spline function and various kernel
function transformation are used in our model, and the comparative analysis between them
is presented in Section 5.

3.4. Prediction Evaluation

Normally, prediction accuracy is evaluated by the mean squared error MSE,

MSE =
1
P

P∑

p=1

(
xT+p − x̂T+p

)2
, (3.12)

where x̂T+p is predict value, xT+p is observed value. However MSE is concerned with the
order of the magnitude of the observed data. In this paper, the normalized mean square error
NMSE is used as the evaluation criterion of prediction.

NMSE =
MSE
σ2

, (3.13)
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where σ2 is sample variance of the prediction sequence. Our investigation adopts the mean
of 20 predicted values NMSE in order to overcome contingency.

4. Algorithm and Algorithm Flowchart

Step 1. The observational data of aeroengine performance parameter EGT are collected and
similarly corrected, and then the outliers are removed according to Layida criterion.

Step 2. For the selected embedding dimension m (1 ≤ m ≤ m max) and delay time τ(1 ≤
τ ≤ τ max), the chaos phase space on pretreated EGT time series is reconstructed, and
the appropriate nearby points are selected to construct independent variable matrix X and
dependent variable vector y.

Step 3. Choose section number M (1 ≤ M ≤ M max); each row vector xj(j = 1, 2, . . . , m) in
independent variable matrix X is transformed to Zj by various basis function transformation
such as (3.8), then

Zj =
(
zj,0, zj,1, . . . , zj,M+2

)
. (4.1)

Step 4. The new independent variable Zj and dependent variable y are standardized and
marked as (Z̃, ỹ) = (Z̃1, Z̃2, . . . , Z̃m, ỹ), so the prediction model is described as

ỹ =
p∑

j=1

M+2∑

l=0

αj,lz̃j,l + ε, (4.2)

where αj,l(j = 1, 2, . . . , m; l = 0, 1, . . . ,M + 2) are the parameter of regression model (4.2),
ε is the stochastic error and follows the normal distribution with zero mean and the same
variance.

Step 5. The partial least squares (PLS) is applied to build regression model (4.2). The number
of appropriate PLS components is extracted by effective cross-method [20]; estimate the
regression coefficients αj,l(j = 1, 2, . . . , m; l = 0, 1, . . . ,M + 2), and obtain the regression
coefficients β0,βj,l(j = 1, 2, . . . , m; l = 0, 1, . . . ,M + 2) of original model (3.5) by returning αj,l.

Step 6. If estimation of prediction model for all the combination of M are completed, then go
to step 7, otherwise go to step 3.

Step 7. Calculate the predicted value according to prediction function (3.6) and calculate the
corresponding predicted NMSE.

Step 8. If the calculation of the combination of all the embedding dimensionm and delay time
τ is completed, then go to step 9, otherwise go to step 2.

Step 9. Find out the optimal prediction model with the smallest NMSE, and obtain the
corresponding dimension m, delay time τ and section number M.

Algorithm flow chart is shown in Figure 1.
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Figure 1: Algorithm flowchart.

5. Results and Analysis

The in-the-wing ACARS data of four PW4077D aeroengines have been collected for one year,
and about 1400 EGT data of each engine were selected to form a time series used in numerical
example analysis.

The maxim value of embedding dimension m max, the delay time τ max, and the
segment number M max in the above algorithm are estimated after a large amount of
experiment. In our research, the range of m is among 1–30, τ is 1–20, M is 1–8, respectively.
The cubic spline function and five kernel function introduced in Section 2 are employed for
transformation, and we minimize chaotic prediction NMSE based on PLS algorithm.
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Table 2: The optimal results after selecting independent variable by Bootstrap method based on NPLS.

Forecasting method Embedding
dimension (m)

Delay time
(τ)

Subset
numbers NMSE

Cubic spline interpolation 9 3 5 0.6480
Uniform kernel 28 6 4 0.5753
Epanechnikov kernel 9 3 7 0.5917
Bi-weight kernel 8 19 2 0.5606
Triweight kernel 9 3 5 0.5786
Gaussian kernel 3 10 4 0.6510
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Figure 2: Comparison of original values and predictive values.

The numerical results of the first engine are shown in Table 1, in which line 1 to line 6
show the prediction results based on various NPLS, line 7 to line 8 show the prediction results
based on the common PLS and OLS.

As can be seen in Table 1, all the largest Lyapunov exponents are positive and it
is clarified that the nonlinear and chaotic natures exist in EGT sequence. The first seven
NMSE calculated based on PLS are all less than that based on OLS, which indicates that
there is an obvious advantage of PLS over OLS in fitting chaotic prediction models. The
NMSE of PLS based on various nonlinear transform methods is even less than that of free
transformed PLS, and it indicates that there is a greater advantage of chaotic prediction based
on PLS in forecasting aeroengine EGT. PLS prediction algorithm based on biweight Kernel
transformation is the optimal chaotic prediction algorithm, estimated optimal embedding
dimension is 8, the delay time is 19, and the number of nonlinear transformation section is 2.

PLS regression model includes all of the original selected variables, and there is
multi-collinearity in the independent variables, which can affect the prediction accuracy.
The model parameters estimated based on PLS is of a pretty complex nonlinear character,
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Figure 4: Embedding dimension analysis of some forecasting methods.

so the independent variables cannot be selected by the parameter test of linear methods.
In this paper, the nonparametric statistical method (Bootstrap [20]) is adopted to select the
independent variables transformed with kernel function and Cubic spline function, and to
find the minimum NMSE; the optimal results of the first engine are shown in Table 2.

Table 2 shows the predictive results based on various NPLS algorithm after selecting
independent variable by Bootstrap method. Only the optimal predictive NMSE based on
triweight Kernel function transformation decreases, and the minimum NMSE in Table 2 is
larger than that in Table 1; it indicates that better NMSE cannot be achieved by Bootstrap test
for selecting independent variables.
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Figure 2 shows the comparison of the prediction values based on OLS, PLS, and
biweight Kernel transformation chaos algorithm with the original value. The PLS algorithm
based on biweight Kernel function transformation has the optimal NMSE in Figure 2.
However, not all of the predictive value has the minimum forecast NMSE.

The deviation between the predictive value and original value based on the above
three algorithms are shown in Figure 3. The fluctuations of the deviations curve based on
biweight Kernel method with the optimal NMSE is the smallest, and larger predicted error is
not appeared in its deviation sequence.
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Table 3: Optimal results of three engines based on various forecasting methods.

Forecasting method Second aeroengine Third aeroengine Fourth aeroengine

m τ Subset
numbers

NMSE m τ Subset
numbers

NMSE m τ Subset
numbers

NMSE

Cubic spline interpolation 8 5 4 0.6041 9 2 5 0.3354 17 3 5 0.3800

Uniform kernel 12 2 4 0.5411 7 2 2 0.3741 10 3 4 0.3529

Epanechnikov kernel 12 2 4 0.5706 9 2 2 0.3417 17 3 4 0.3329

Bi-weight kernel 12 2 4 0.5143 9 2 2 0.2574 17 3 4 0.2431

Triweight kernel 11 3 3 0.5717 9 3 4 0.2805 19 5 5 0.3918

Gaussian kernel 5 9 3 0.5675 14 2 4 0.4521 17 2 3 0.4325

PLS 26 3 0 0.6876 17 3 0 0.4688 28 3 0 0.4192

OLS 12 7 0 0.7515 8 11 0 0.5742 16 7 0 0.4937

Through the numerical results of the first engine we also find that the search range of
designed algorithm is enormous and it takes a long time, so we hope to further reduce search
range and the algorithm complexity. The percentages of the number of NMSE in Table 1
which falls in [min (NMSE),min (NMSE) + 0.03] are statistically analyzed, and the results
are shown in Figures 4, 5 and 6.

As can be seen from Figure 4 to Figure 6, the percentage of NMSE falling in
[min(NMSE),min(NMSE) + 0.03] is lower for different value of m, τ , M, which indicates
that the probability of obtaining suboptimal solution by our algorithm is very low, and also
illustrates that the selection of variables is of significant importance to improve the prediction
accuracy. From Figure 4 we can see that when the dimension of predicted model is over 15,
there is no optimal NMSE which falls within the range above mentioned, So the range of m in
the algorithm can be selected among ranging from 1 to 15. Figures 5 and 6 also show that the
predicted NMSE distribution of various delay time and section number are more dispersed,
so the search range of τ and M cannot be minimized.

The brief computational results of the other three engines are as in Table 3.
From the above calculation results we can see that the algorithm based on various

nonlinear PLS (Cubic Spline Interpolation, Uniform Kernel, Epanechnikov Kernel, biweight
Kernel, Tri-weight Kernel, and Gaussian Kernel) is superior to that based on PLS, and the
algorithm based on PLS is superior to that based on OLS. The results in Tables 1 and 3
show that the predictive results derived from the algorithm based on biweight Kernel are
the optimal among the four aeroengines. And there are no significant difference between the
first aeroengines and the second aeroengines in the same aircraft in predictive NMSE, so we
can conclude that the proposed algorithm is stable for predicting the aeroengine parameter
EGT.

Tables 1 and 3 also show that the optimal values of the embedding dimension (m),
delay time (τ), subset numbers (M) searched by various NPLS algorithm are approximately
the same, but they are quite different among the four aeroengines.

6. Conclusion

The chaos prediction model based on NPLS through Kernel function or Cubic Spline function
transformation is developed and is applied in predicting the aeroengine performance
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parameters EGT. Numerical results show that the proposed model is able to effectively
predict the performance parameter EGT with a higher degree of accuracy. The optimal
embedding dimension is 8, the delay time is 19, and the number of segments is 2. NPLS
chaotic prediction algorithm based on biweight Kernel function transformation is the optimal
EGT prediction algorithm because of the smallest predictive NMSE. Our prediction NMSE is
16.5 percent less than that of the traditional linear least squares (OLS) method and 10.38
percent less than that of the linear PLS approach. The NPLS algorithm of chaotic prediction
with selection variables through Bootstrap test fails to make NMSE further reduced. And
we find that reducing calculation time complexity by lessening search range of embedding
dimension will not affect the prediction accuracy of EGT. It is proved that the proposed
algorithm is robust by the predictive results from four aeroengines.

In particular, the conservative baselines of main aeroengine performance parameters
are given in ECM program provided by jet engine manufacturers [14]. Set the baseline value
of EGT be EGTbase, the deviation between EGTcor and EGTbase can be defined as

ΔEGT = EGTcor − EGTbase. (6.1)

The trend plot of the deviation (ΔEGT) sequence in continuous flights is routinely
used by airlines for the performance monitoring and diagnostics [13]. On the basis of our
prediction algorithm, the EGTcor of upcoming flights can be predicted, and then a layout
for trending of the deviation of main performance parameters for upcoming flights can
be provided. Experienced power maintainer or engineer look at a given trend shift in the
measurement deviations can identify significant behavior disparities, evaluate the aeroengine
condition, and isolate the faulty module or component using the ECM trend plot reports and
related PW4000 fingerprint.

In summary, accurately forecasting the aeroengine performance parameters is of
great importance in the aeroengine condition monitoring. The anomalies of the aeroengine
performance parameters can be detected in time by the predictive value calculated from
our algorithm, then maintenance measures are taken early to prevent the aeroengine from
failure effectively, which assists to reduce aircraft down time, and improve the reliability of
the aeroengine.
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This paper considers a multiitem inventory model with unknown demand rate coefficients.
An adaptive control approach with a nonlinear feedback is applied to track the output of the
system toward the inventory goal level. The Lyapunov technique is used to prove the asymptotic
stability of the adaptive controlled system. Also, the updating rules of the unknown demand rate
coefficients are derived from the conditions of the asymptotic stability of the perturbed system.
The linear stability analysis of the model is discussed. The adaptive controlled system is modeled
by a system of nonlinear differential equations, and its solution is discussed numerically.

1. Introduction

The area of adaptive control has grown rapidly to be one of the richest fields in the control
theory. Many books and research monographs already exist on the topics of parameter
estimation and adaptive control. Adaptive control theory is found to be very useful in
solving many problems in different fields, such as management science, dynamic systems,
and inventory systems [1–3].

(i) El-Gohary and Yassen [4] used an adaptive control approach and synchronization
procedures to the coupled dynamo system with unknown parameters. Based on
the Lyapunov stability technique, an adaptive control laws were derived such that
the coupled dynamo system is asymptotically stable and the two identical dynamo
systems are asymptotically synchronized. Also the updating rules of the unknown
parameters were derived;
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(ii) El-Gohary and Al-Ruzaiza [5] studied the adaptive control of a continuous-time
three-species prey-predator populations. They have derived the nonlinear feedback
control inputs which asymptotically stabilized the system about its steady states;

(iii) Tadj et al. [6] discussed the optimal control of an inventory system with
ameliorating and deteriorating items. They considered different cases for the
difference between the ameliorating and deteriorating items;

(iv) Foul et al. [7] studied the problem of adaptive control of a production and inventory
system in which a manufacturing firm produces a single product, then it sells
some of its production and stocks the remaining. They applied a model reference
adaptive control system with a feedback to track the output of the system toward
the inventory goal level;

(v) Alshamrani and El-Gohary [8] studied the problem of optimal control of the
two-item inventory system with different types of deterioration. They derived
the optimal inventory levels and continuous rates of supply from the optimality
conditions;

(vi) Many other studies which are concerned with the production and inventory
systems, multiitem inventory control, and inventory analysis can be found in
references [9–14]. Such studies have discussed the optimal control of a multi-item
inventory model, the stability conditions of a multi-item inventory model with
different demand rates, and the optimal control of multi-item inventory systems
with budgetary constraints.

This paper is concerned with a two-item inventory system with different types
of deteriorating items subjected to unknown demand rate coefficients. We derive the
controlled inventory levels and continuous rates of supply. Further, the updating rules
of the unknown demand rate coefficients are derived from the conditions of asymptotic
stability of the reference model. The resulting controlled system is modeled by a system of
nonlinear differential equations, and its solution is discussed numerically for different sets of
parameters and initial states.

The motivation of this study is to extend and generalize the two-item inventory system
with different types of deterioration and applying an adaptive control approach to this
system in order to get an asymptotic controlled system. This paper generalizes some of the
models available in the literature, see for example, [6, 9].

The rest of this paper is organized as follows. In Section 2, we present the mathematical
model of the two-item system. Also, stability analysis of the model is discussed in Section 2.
Section 3 discusses the adaptive control problem of the system. Numerical solution and
examples are presented in Section 4. Finally, Section 5 concludes the paper.

2. The Two-Item Inventory System

This section uses the mathematical methods to formulate the two-item inventory system with
two different type of deteriorations. In this model, we consider a factory producing two items
and having a finished goods warehouse.
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2.1. The Model Assumptions and Formulation

This subsection is devoted to introduce the model assumptions and its formulation. It is
assumed that the inventory supply rates are equal to the production rates, while the demand
rates may adopt two different types. Throughout this paper we use i, j = 1, 2 for the two
different types of items. Moreover, the following variables and parameters are used:

xi(t): the ith item inventory level at time t;

ui(t): rate of continuous supply to xi at time t;

xio: the ith item initial state inventory level;

dixi: linear demand rate at instantaneous level of inventory xi, where di is a
constant;

θii: the deterioration coefficient due to self-contact of the ith item inventory level xi;

aij : the demand coefficient of xi due to presence of units of xj , where (i /= j);

θi: the natural deterioration rate of the ith item inventory level xi;

xi: the value of the ith item inventory level at the steady state;

ui: the value of the ith item continuous rate of supply at the steady state;

âij(t): the dynamic estimator of demand coefficient of xi due to presence of units of
xj , where (i /= j).

The main problem of this paper is to present the adaptive control problem for the two-
item inventory system as a control problem with two state variables and two control variables
which are the inventory levels xi(t), i = 1, 2 and the two continuous supply rates ui(t), i = 1, 2,
respectively.

Also, since an analytical solution of the resulting control system is nonlinear and
its analytical solution is not available, we solve it numerically and display the solution
graphically. We show that the solution of the adaptive controlled system covers different
modes of demand rates.

2.2. The Mathematical Model and Stability Analysis

In this subsection, we present a suitable mathematical form for a two-item inventory system
with two types of deteriorations. This mathematical form must be simple to deal with
any response of the two-item inventory model with deterioration to any given input. The
differential equations system that governs the time evolution of the two-item inventory
system is found to be as follows [8]:

ẋ1(t) = u1(t) − x1(t)(d1 + θ1 + a12x2(t) + θ11x1(t)),

ẋ2(t) = u2(t) − x2(t)(d2 + θ2 + a21x1(t) + θ22x2(t)),
(2.1)

with the following nonnegatively conditions:

xi(t) ≥ 0, ui(t) ≥ 0, di(t) > 0, θi(t) > 0, θii > 0, i = 1, 2, (2.2)
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and with the following boundary conditions:

xi(0) = xi0, i = 1, 2. (2.3)

In this paper, we consider the inventory goal levels xi and the goal rates of the
continuous rate of supply ui to be their values at the steady state of the system. The advantage
of this study is to prove the asymptotic stability of the two-item inventory system using the
Liapunov technique about the steady state of the system.

Next, we will derive the steady state solution of (2.1). The steady state of the system
(2.1) can be derived by putting both of ẋ1(t) and ẋ2(t) equal zero, that is,

x1(d1 + θ1 + a12x2 + θ11x1) − u1 = 0,

x2(d2 + θ2 + a21x1 + θ22x2) − u2 = 0.
(2.4)

Solving (2.4), we get x1 as a function of x2 as follows:

x1 =
[
−(d1 + θ1 + a12x2) ±

√
(d1 + θ1 + a12x2)

2 + 4θ11u1

]
(2θ11)

−1, (2.5)

where the values of x2 are the roots of the equation:

(
θ22 − a12a21

2θ11

)
x2

2 +
a21

2θ11

[√
(d1 + θ1 + a12x2)

2 + 4θ11u1 − d1 − θ1

]
x2 + d2 + θ2 − u2 = 0. (2.6)

In what follows, we discuss the numerical solution for the (2.4) for fixed values of the
parameters di, θi, θii, (i = 1, 2) and a12, a21:

(1) in this example, we discuss the numerical solution of (2.4) for constant rates of
supply u1 = 2.25 and u2 = 3.25, the steady states are given in Table 1;

(2) in this example, we discuss the numerical solution of (2.4) for the supply rates u1 =
5x1 + 6x2 and u2 = 45x1 + 25x2 of the inventory levels, the steady states are given in
Table 2;

(3) in this example, we discuss the numerical solution of (2.4) for supply rates u1 =
2x2

1 + 3x2
2 + 5x1x2 and u2 = 5x2

1 + 15x2
2 + 45x1x2 of the inventory levels, the steady

states are given in Table 3.

Figure 1 displays the numerical solution for the two-item inventory system with the
quadratic continuous rates of supply u1 = αx1x2 and u2 = βx1x2, with the initial inventory
levels x1(0) = 3 and x2(0) = 15, and with the following set of parameters in Table 4.

Figure 2 displays the numerical solution for the two-item inventory with constant
continuous rates of supply u1 = α and u2 = β, with the initial inventory levels x1(0) = 3
and x2(0) = 5, and the following set of parameters in Table 5.

2.3. Linear Stability Analysis

The concept of stability is concerned with the investigation and characterization of the
behavior of dynamic systems. Stability analysis plays a crucial role in system theory and
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Table 1

Model parameters Steady states (x1, x2)

d1 = 10, d2 = 20, a12 = 2.5, a21 = 3.5,
θ1 = 0.1, θ2 = 0.15, θ11 =
0.01, and θ22 = 0.01

(−1010,−0.00996), negative
(−6.4,−4.624), negative
(0.225, 0.156), positive

Table 2

Model parameters Steady states (x1, x2)

d1 = 10, d2 = 20, a12 = 25, a21 =
45, θ1 = 0.05, θ2 = 0.25, θ11 =
0.2, and θ22 = 0.2

(0, 0), null state
(−149.81, 0.995), negative

(0.22, 1.93), positive

control engineering and has been investigated extensively in the past century. Some of the
most fundamental concepts of stability were introduced by the Russian mathematician and
engineer Alexandr Lyapunov in [15].

In this section, we discuss the linear stability analysis of the system (2.1) about its
steady states (2.4). We classify the roots of the characteristic equation of the Jacobian matrix
of the system (2.1) about its steady states (2.4).

The characteristic equation is given by:

λ2 − bλ + c = 0, (2.7)

where the coefficients b and c are:

b =

{
2∑

i=1

(
∂ui
∂xi

− ui
xi

− θiixi
)}

(x1,x2)=(x1,x2)

c =
{(

∂u1

∂x1
− u1

x1
− θ11x1

)(
∂u2

∂x2
− u2

x2
− θ22x2

)
−
(
∂u1

∂x2
− a12x1

)(
∂u2

∂x1
− a21x2

)}

(x1,x2)=(x1,x2)
.

(2.8)

The roots of the characteristic equation are:

λ = b ±
√
b2 − 4c. (2.9)

The roots of the characteristic equation will be complex numbers with negative real
parts if the following conditions can be satisfied:

2∑

i=1

[
∂ui
∂xi

− ui
xi

− θiixi
]

(x1,x2)=(x1,x2)
< 0,

{(
∂u1

∂x1
− ∂u2

∂x2
− u1

x1
+
u2

x2
− θ11x1 + θ2x2

)2

− 4
(
∂u1

∂x2
− a12x1

)(
∂u2

∂x1
− a21x2

)}

(x1,x2)=(x1,x2)

< 0.

(2.10)
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Table 3

Model parameters Steady states (x1, x2)

d1 = 50, d2 = 40, a12 = 75, a21 = 55, θ1 =
0.15, θ2 = 0.25, θ11 = 0.2, and θ22 = 0.2

(0, 0), null state
(−2.4 + 1.72I,−0.786 + 0.04I), imaginary

(0.099, 2.9), positive

Table 4

Parameter θ11 θ22 a12 a21 d1 d2 θ1 θ2 u1 u2 α β

Value 0.12 0.15 6 5 6 8 0.02 0.04 100 50 8 5

Therefore the system (2.1) is stable in the linear sense if the conditions (2.10) are
satisfied, otherwise this system is absolutely unstable. The absolutely stability of system (2.1)
needs further complicated mathematical analysis.

The roots of the characteristic equation will be negative real numbers if the following
conditions can be satisfied:

2∑

i=1

[
∂ui
∂xi

− ui
xi

− θiixi
]

(x1,x2)=(x1,x2)
< 0,

{(
∂u1

∂x1
− ∂u2

∂x2
− u1

x1
+
u2

x2
− θ11x1 + θ2x2

)2

+ 4
(
∂u1

∂x2
− a12x1

)(
∂u2

∂x1
− a21x2

)}

(x1,x2)=(x1,x2)

> 0

{(
∂u1

∂x1
− u1

x1
− θ11x1

)(
∂u2

∂x2
− u2

x2
− θ22x2

)
−
(
∂u1

∂x2
− a12x1

)(
∂u2

∂x1
− a21x2

)}

(x1,x2)=(x1,x2)
> 0.

(2.11)

If the conditions (2.11) are satisfied, then the system (2.1) is stable in the linear sense,
otherwise this system is absolutely unstable. The absolutely stability of system (2.1) needs
further complicated mathematical analysis.

Next, we discuss some special cases in which the rates of supply take different
functions of the inventory levels:

(1) when the supply rates do not depend on the inventory levels, the linear stability
conditions are reduced to

x1

x2
<
u1 + θ11x

2
1

u2 + θ22x
2
2

(2.12)

or

u1 + θ11x
2
1

a12x
2
1

<
u2 + θ22x

2
2

a21x
2
2

; (2.13)
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Table 5

Parameter θ11 θ22 a12 a21 d1 d2 θ1 θ2 α β

Value 0.2 0.5 0.6 0.5 0.6 0.8 0.02 0.04 8 5
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(c) The two items inventory limit cycle

Figure 1: (a) and (b) are the first and the second inventory levels, respectively, of the uncontrolled system,
with quadratic rates of supply. (c) is the trajectory of the inventory system in x1x2-plane.

(2) when the supply rates are linear function of the inventory levels, ui = αixi, i = 1, 2,
the linear stability conditions are reduced to

(θ22x2 − θ1x1)
2 < 4a12a21x1x2 (2.14)

or

(α1 + θ11x1)(α2 + θ22x2) > a12a21x1x2; (2.15)

(3) when the supply rates are quadratic functions of the inventory levels, ui =
αix1x2, i = 1, 2, the linear stability conditions are reduced to

(θ22x2 − θ11x1)
2 < 4(α1 − a12)(α2 − a21)x1x2 (2.16)
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Figure 2: (a) and (b) are the first and the second inventory levels of the uncontrolled system, with constant
rates of supply. (c) is the trajectory of the inventory system in x1x2-plane.

or

(θ22x2 − θ11x1)
2 + 4(α1 − a12)(α2 − a21)x1x2 > 0,

θ11θ22 > (α1 − a12)(α2 − a21).
(2.17)

In what follows, we study the problem of adaptive control. In order to study this
problem, we start by obtaining the perturbed system of the two-item inventory model about
its steady states (x1, x2). To obtain this perturbed system, we introduce the following new
variables:

ξi(t) = xi(t) − xi, vi(t) = ui(t) − ui, (i = 1, 2), (2.18)

Substituting from (2.18) into (2.1) and using (2.4), we get

ξ̇1(t) = −ξ1[d1 + θ1 + a12ξ2 + a12x2 + θ11(ξ1 + 2x1)] − a12x1ξ2 + v1,

ξ̇2(t) = −ξ2[d2 + θ2 + a21ξ1 + a21x1 + θ22(ξ2 + 2x2)] − a21x2ξ1 + v2.
(2.19)
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The system (2.19) will be used to study the problem of adaptive control of the two-item
inventory model with deteriorating item and unknown demand coefficients.

In adaptive control systems, we are concerned with changing the properties of
dynamic systems so that they can exhibit acceptable behavior when perturbed from their
operating point using a feedback approach.

3. The Adaptive Control Problem

The problem that we address in this section is the adaptive control of the two-item inventory
system with different types of deterioration which are subjected to unknown demand rate
coefficients. In such study, we assume that the demand coefficients a12 and a21 are unknown
parameters. So we assume that the functions â12(t) and â21(t) represent their dynamic
estimators. Using this assumption, we can rewrite the system (2.19) in the following form:

ξ̇1(t) = −ξ1[d1 + θ1 + â12ξ2 + â12x2 + θ11(ξ1 + 2x1)] − â12x1ξ2 + v1,

ξ̇2(t) = −ξ2[d2 + θ2 + â21ξ1 + â21x1 + θ22(ξ2 + 2x2)] − â21x2ξ1 + v2.
(3.1)

The adaptive law is usually a differential equation whose state is designed using stability
considerations or simple optimization techniques to minimize the difference between the
state and its estimator with respect to the state at each time t.

In what follows, we discuss the asymptotic stability of the special solution of the
system (3.1) which is given by

ξi(t) = 0, vi = 0, (i = 1, 2), â12(t) = a12, â21(t) = a21. (3.2)

This solution corresponds to the steady states solution of the system (2.1). So the
asymptotic stability of this solution leads to the asymptotic stability of the (2.1) about its
steady state.

The following theorem determines both of the perturbations of the continuous rates
of supply vi and the updating rules of â12(t) and â21(t) of demand rate coefficients from the
conditions of the asymptotic stability of the solution (3.2).

Theorem 3.1. If the perturbations of the continuous supply rates and the updating rules of the
unknown parameters â12(t) and â21(t) are given by

v1(t) = a12x1ξ2 + a12ξ1ξ2 + θ11ξ
3
1 − k1ξ1,

v2(t) = a21x2ξ1 + a21ξ1ξ2 + θ22ξ
3
2 − k2ξ2,

(3.3)

˙̂a12(t) = x2ξ1ξ2 + x2ξ
2
1 + ξ

2
1ξ2 −m1(â12 − a12),

˙̂a21(t) = x1ξ1ξ2 + x1ξ
2
2 + ξ1ξ

2
2 −m2(â21 − a21),

(3.4)

where ki,mi, and (i = 1, 2) are positive real constant, then the solution (3.2) is asymptotically stable
in the Liapunov sense.
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Proof. The proof of this theorem can be reached by using the Liapunov technique. Assume
that the Liapunov function of the system of equations (3.2) and (3.4) is

2V (ξi, â12, â21) =
2∑

i=1

ξ2
i + (â12 − a12)

2 + (â21 − a21)
2. (3.5)

Differentiating the function V in (3.5):

V̇ = ξ1 ξ̇1 + ξ2 ξ̇2 + (â12 − a12)ȧ12 + (â21 − a21)ȧ21. (3.6)

Substituting from (3.1) into (3.6), we get

V̇ = ξ1

[
−(d1 + θ1)ξ1 − x1â12ξ2 − x2â12ξ1 − â12ξ1ξ2 − θ11ξ

2
1 − 2x1ξ1 + v1

]

+ ξ2

[
−(d2 + θ2)ξ2 − x2â21ξ1 − x1â21ξ2 − â21ξ1ξ2 − θ22ξ

2
2 − 2x2ξ2 + v2

]

+ (â12 − a12)ȧ12 + (â21 − a21)ȧ21.

(3.7)

Substituting from (3.1), (3.3), and (3.4) into (3.7), and after some simple calculations,
we get

V̇ = −
[
m1(â12 − a12)

2 +m2(â21 − a21)
2 + (d1 + θ1 + a12x2 + 2θ11x1)ξ2

1 ,

+(d2 + θ2 + a21x1 + 2θ22x2)ξ2
2

]
,

(3.8)

since the coefficients d1 + θ1 +a12x2 + 2θ11x1 and d2 + θ2 +a21x1 + 2θ22x2 are positive, then V̇ is
a negative definite function of ξi, â12, and â21, so the solution (3.3) is asymptotically stable
in the Liapunov sense, which completes the proof.

In Section 4, we will discuss the numerical solution of the controlled two-item
inventory system with unknown demand rate coefficients for different values of the
parameters and different initial states.

4. Numerical Solution and Examples

The objective of this section is to study the numerical solution of the problem of determining
an adaptive control strategy for the two-item inventory system subjected to different types of
deterioration and unknown demand rate coefficients. To illustrate the solution procedure,
let us consider simple examples in which the system parameters and initial states take
different values. In these examples, the numerical solutions of the controlled two-item
inventory system with unknown demand rate coefficients are presented. The numerical
solution algorithm is based on the numerical integration of the system using the Runge-Kutta
method.
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Table 6

Parameter θ11 θ22 a12 a21 x1 x2 k1 k2 m1 m2 θ1 θ2 d1 d2

Value 0.18 0.26 6.0 8.0 0.4 0.2 0.25 0.5 1.0 0.5 0.1 0.25 5.0 6.0

Table 7

Parameter θ11 θ22 a12 a21 x1 x2 k1 k2 m1 m2 θ1 θ2 d1 d2

Value 0.15 0.3 15.0 10.0 5.0 0.6 5 3 9.0 7.0 0.3 0.2 10.0 15.0

Substituting from (3.3) into (3.1) and adding the system (3.4), we can get the adaptive
control system as follows:

ξ̇1(t) = − (d1 + θ1)ξ1(t) − â12ξ1(t)ξ2(t) − a12x2ξ1(t) − 2θ11x1ξ1(t)

− â12x1ξ2(t) + a12ξ1(t)ξ2(t) + a12x1ξ2(t) + θ11ξ1(t)2 − k1ξ1(t),

ξ̇2(t) = − (d2 + θ2)ξ2(t) − â21ξ1(t)ξ2(t) − a21x1ξ2(t) − 2θ22x2ξ2(t)

− â21x2ξ1(t) + a21ξ1(t)ξ2(t) + a21x2ξ1(t) + θ22ξ2(t)2 − k2ξ2(t),

˙̂a12(t) = ξ1(t)2ξ2(t) + x2ξ1(t)2 + x1ξ1(t)ξ2(t) −m1(â12(t) − a12),

˙̂a21(t) = ξ2(t)2ξ1(t) + x1ξ2(t)2 + x2ξ1(t)ξ2(t) −m2(â21(t) − a21).

(4.1)

Clearly, this system is non-linear and its general solution is not available, so we will discuss
its solution numerically. Next, we solve this system numerically for some particular values of
the parameters and initial states.

4.1. Example 1

In this example, a numerical solution of the adaptive controlled system (4.1) is displayed
graphically assuming constant demand rates. The following set of parameter values is used
in Table 6 with the following initial values of perturbations of inventory levels and estimators
of demand rate coefficients: ξ1(0) = 2; ξ2(0) = 10; â12(0) = 10; â21(0) = 13.

The numerical results are illustrated in Figure 3. We conclude that both of the
perturbations of inventory levels and the estimators of demand rate coefficients tend to zero
and their real values, respectively. This means that both of the inventory levels and demand
rate coefficients asymptotically tend to their values at the steady state.

4.2. Example 2

In this example, a numerical solution of the adaptive controlled system (4.1) is displayed
graphically when the demand rate is a linear function of the inventory level. The following
set of parameter values is used in Table 7 with the following initial values of perturbations
of inventory levels and estimators of demand rate coefficients: ξ1(0) = 5; ξ2(0) = 15; â12(0) =
5; â21(0) = 8.
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Figure 3: (a) and (b) are the perturbation of the first and second inventory levels about their inventory
goal levels as the demand rate is a constant. (c) and (d) are the difference between dynamic estimators of
the first and second demand rates and their real values.

The numerical results are illustrated in Figure 4. We conclude that both of the
perturbations of inventory levels and the estimators of demand rate coefficients tend to zero
and their real values, respectively. This means that both of the inventory levels and demand
rate coefficients asymptotically tend to their values at the steady state. Also, we can easily
notice that the estimators of the unknown demand rate coefficients are exponentially tend to
the exact values.

4.3. Example 3

In this example, a numerical solution of the adaptive controlled system (4.1) is displayed
graphically when the demand rate is an exponential function of time. The following set
of parameter values is used in Table 8 with the following initial values of perturbations of
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Figure 4: (a) and (b) are the perturbation of the first and second inventory levels about their inventory goal
levels as the demand rate is a linear function of the inventory level. (c) and (d) are the difference between
dynamic estimators of the first and second demand rates and their real values.

Table 8

Parameter θ11 θ22 a12 a21 x1 x2 k1 k2 m1 m2 θ1 θ2 d1 d2

Value 0.08 0.06 20.0 15.0 0.2 1.0 0.02 0.015 0.1 0.2 0.15 0.1 20.0 30.0

inventory levels and estimators of demand rate coefficients: ξ1(0) = 25; ξ2(0) = 0.2; â12(0) =
0.2; â21(0) = 10.

The numerical results are illustrated in Figure 5. We conclude that both of the
perturbations of inventory levels and the estimators of demand rate coefficients tend to zero
and their real values, respectively. This means that both of the inventory levels and demand
rate coefficients asymptotically tend to their values at the steady state.
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Figure 5: (a) and (b) are the perturbation of the first and second inventory levels about their inventory
goal levels as the demand rate is an exponential function of the time. (c) and (d) are the difference between
dynamic estimators of the first and second demand rates and their real values.

Table 9

Parameter θ11 θ22 a12 a21 x1 x2 k1 k2 m1 m2 θ1 θ2 d1 d2

Value 0.08 0.06 20 15 2 1 20 15 25 30 0.15 0.1 20 30

4.4. Example 4

In this example, a numerical solution of the adaptive controlled system (4.1) is displayed
graphically when the demand rate is an exponential function of time. The following set
of parameter values is used in Table 9 with the following initial values of perturbations of
inventory levels and estimators of demand rate coefficients: ξ1(0) = 1; ξ2(0) = 2; â12(0) =
0.2; â21(0) = 10.

The numerical results are illustrated in Figure 6. We conclude that both of the
perturbations of inventory levels and the estimators of demand rate coefficients tend to zero
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Figure 6: (a) and (b) are the perturbation of the first and second inventory levels about their inventory
goal levels as the demand rate is an exponential function of the time. (c) and (d) are the difference between
dynamic estimators of the first and second demand rates and their real values.

and their real values, respectively. This means that both of the inventory levels and demand
rate coefficients asymptotically tend to their values at the steady state.

5. Conclusion

We have shown in this paper how to use an adaptive control approach to study the
asymptotic stabilization of a two-item inventory model with unknown demand rate
coefficients. A non-linear feedback approach is used to derive the continuous rate of supply.
The Liapunov technique is used to prove the asymptotic stability of the adaptive controlled
system. Also, the updating rules of the unknown demand rate coefficients have been derived
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by using the conditions of the asymptotic stability of the perturbed system. Some numerical
examples are presented to:

(1) investigate the asymptotic behavior of both inventory levels and demand rate
coefficient at the steady state;

(2) estimate the unknown demand rate coefficients.
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We propose a metapopulation model for malaria with two control variables, treatment and
prevention, distributed between n different patches (localities). Malaria spreads between these
localities through human travel. We used the theory of optimal control and applied a mathematical
model for three connected patches. From previous studies with the same data, two patches were
identified as reservoirs of malaria infection, namely, the patches that sustain malaria epidemic
in the other patches. We argue that to reduce the number of infections and semi-immunes (i.e.,
asymptomatic carriers of parasites) in overall population, two considerations are needed, (a) For
the reservoir patches, we need to apply both treatment and prevention to reduce the number of
infections and to reduce the number of semi-immunes; neither the treatment nor prevention were
specified at the beginning of the control application, except prevention that seems to be effective
at the end. (b) For unreservoir patches, we should apply the treatment to reduce the number of
infections, and the same strategy should be applied to semi-immune as in (a).

1. Introduction

Malaria is a mosquito-borne infection caused by protozoa of the genus plasmodium. Parasites
are transmitted indirectly from humans to humans by the bite of infected female mosquitoes
of the genus Anopheles. Malaria is a public health problem for tropical countries, which
has negative impacts on development. The fight against mosquitoes passes through the
draining of marshes or conversion to running water and elimination of stagnant water
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especially around houses. These measures are difficult to apply where health facilities are
inadequate [1].

Mathematical models coupled to microeconomic concepts can be applied to malaria
control using the theory of optimal control [2–5]. The latter has already been used to discuss
strategies to reduce or eradicate other diseases such as chronic myeloid leukemia [6], AIDS
[7, 8], tuberculosis [9, 10], smoking [11], West Nile virus [12], and Chikungunya disease [13].

Human movements play a key role in the spatiotemporal spread of malaria [14, 15].
Models have already been proposed to study malaria spread, but neither control variables
such as treatment and prevention nor human mobility were considered [16, 17]. In [18],
a model with control variables (synergy prevention and treatment) was developed for
malaria spread. Because human population was assumed to be motionless, their model
is only applicable within a small geographical region. A model that takes into account
human mobility was developed in [19] to analyze the impact of human migration within
n geographical patches (localities) on the malaria spread.

Our model is not an extension of the model developed in [18] but rather the one
developed in [19].

First, in [19], the authors have considered two infectious classes in the human
population: infectious and semi-immune individuals (i.e., asymptomatic carriers). This
consideration is very important because an experimental evidence showed that 60–90% of
humans in endemic area are semi-immune [1, 16, 17]. Introduction of semi-immunes in their
model presents the difficulty to introduce the control variable, mainly the treatment variable
because treated individuals may become either susceptible or semi-immune depending on
the type of the used drugs. In this paper, we will introduce a parameter which has a role of
regulation denoted by θ to derive a biological meaningful model (see Figure 1).

Second, the model developed in [19] is of the metapopulation type that considers the
explicit movement of humans between many patches. Because the mathematical analysis of
their model has provided a methodology to identify the spatial reservoirs of malaria infection
(i.e., the patches that sustain malaria epidemic in the other patches) based on the theory
of the type reproductive number, our main objective in this paper is to extend their results
by introducing control variables (treatment and prevention) within each patch. With these
innovations, the simulations identify the best strategy of control and answer the following
question: what control should be used when the patch is (or is not) a reservoir? This question
is not trivial because the infectious individuals can migrate in all the other patches.

The paper is structured as follows: in Section 2, we summarize the main points of
the metapopulation model from [19] by introducing prevention and treatment controls.
Furthermore, we show that it is mathematically well posed. Section 3 includes the
formulation of the objective function with the discount rate, and properties of optimal control
existence follow its characterization. In Section 4, we present the results of simulations and
discussion for three connected patches by migration according to the type of reservoir of
infections. The last section includes the conclusion and perspectives.

2. Mathematical Modelling

2.1. Model Description

In this section, a metapopulation model with control variables (prevention and treatment) is
developed. In the sequel, we use even and odd index to represent the human and mosquito
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Figure 1: A conceptual mathematical model for malaria transmission involving human hosts and vector
mosquitoes in each patch i, i = 1, . . . , n. The dotted arrow shows the direction of the transmission from
humans to mosquitoes (through infectious humans to susceptible mosquitoes) or from mosquitoes to
humans (through infectious mosquitoes to susceptible humans); u2i and v2i represent the prevention and
treatment control over time, respectively. Φ2i = (1 − u2i) ̂Φ2i and Φ2i−1 = (1 − u2i) ̂Φ2i−1 represent the force of
infection from mosquitoes to humans and from humans to mosquitoes, respectively, where ̂Φ2i and ̂Φ2i−1
are defined in (2.2). The other parameters are described in Table 1.

variables, respectively, as in [1]. Within each small patch, the human hosts are split into three
subclasses: susceptible S2i, infectious I2i, and semi-immune R2i. N2i(t) = S2i(t) + I2i(t) +R2i(t)
denotes the total size of the human population in the patch i at time t. The mosquito
population is split into two subclasses: susceptible S2i−1 and infectious I2i−1 in the patch i, i =
1, . . . , n. The total size of the mosquito population is denoted by N2i−1(t) = S2i−1(t) + I2i−1(t) at
time t. Nh(t) =

∑n
i=1 N2i(t) and Nv(t) =

∑n
i=1 N2i−1(t) denote the total size of the human and

mosquito population for the complete system, respectively, at any time t (See Figure 1). The
model with control reads as follows: for all i = 1, . . . , n,

dS2i

dt
= Λ2i + β2iR2i + ρ2iI2i −

(

μ2i + Φ2i
)

S2i + θλ2iv2iI2i +
n
∑

j=1

(

mS
ijS2j −mS

jiS2i

)

, (2.1a)

dI2i

dt
= Φ2iS2i − ε2iI2i − λ2iv2iI2i +

n
∑

j=1

(

mI
ijI2j −mI

jiI2i

)

, (2.1b)

dR2i

dt
= α2iI2i − δ2iR2i + (1 − θ)λ2iv2iI2i +

n
∑

j=1

(

mR
ijR2j −mR

jiR2i

)

, (2.1c)

dS2i−1

dt
= Λ2i−1 − μ2i−1S2i−1 −Φ2i−1S2i−1, (2.1d)

dI2i−1

dt
= Φ2i−1S2i−1 − μ2i−1I2i−1, (2.1e)
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where ε2i = α2i + γ2i + ρ2i + μ2i and δ2i = β2i + μ2i. Initial conditions are assumed to satisfy
S2i(0) > 0, S2i−1(0) > 0, I2i(0) ≥ 0, R2i(0) ≥ 0, and I2i−1(0) ≥ 0 for i = 1, . . . , n.

In the above model, Φ2i and Φ2i−1 denote the force of infection from mosquitoes to
humans and from humans to mosquitoes, respectively. Therefore, infection only involves
vectors or hosts present in the patch; there is no between-patch infection. These forces
of infection are modeled to take into account the prevention as in [18] as follows: Φ2i =
(1 − u2i) ̂Φ2i and Φ2i−1 = (1 − u2i) ̂Φ2i−1 where

̂Φ2i =
ã2i−1ã2iN2i−1

ã2i−1N2i−1 + ã2iN2i
σ2i−1,2i

I2i−1

N2i−1
,

̂Φ2i−1 =
ã2i−1ã2iN2i

ã2i−1N2i−1 + ã2iN2i

(

σ2i,2i−1
I2i

N2i
+ σ̂2i,2i−1

R2i

N2i

)

(2.2)

are defined in [17] for one patch, ã2i, ã2i−1, σ2i−1,2i, σ2i,2i−1 ∈ R+, σ̂2i,2i−1 ∈ R

∗
+. The infection

force Φ2i and Φ2i−1 depends on the individuals within patch i and not in another patch j /= i:
infection that only involves those individuals (vectors or hosts) present in the patch is no
between-patch infection.

u2i is the prevention effort for humans which reduces the infection rate with a failure
probability 1 − u2i if prevention controls are introduced. The control function u2i represents
time-dependent efforts of prevention on human and practiced on a time interval [0, T].
Prevention could come from surveillance, treating vector-breading ground, and reducing
vector-host contacts. Note that when u2i = 0, then Φ2i and Φ2i−1 correspond to those used
in [19].

λ2iv2i is the per capita recovery rate of humans. 0 ≤ λ2i ≤ 1 is the proportion of effective
treatment of humans. The control function v2i represents the measure of the rate at which
infected humans are cured by drugs or vaccination on a time interval [0, T].

The difference between the effects of drugs is related to the fact that they act at different
stages of the parasite-cell mutation in the human body. There are drugs that act against
preerythrocytic stages, against the asexual blood stages, and against antigens of sexual stages
that prevent fertilization in the stomach of the mosquito [20]. We thought that each drug has
its own effect on the mode of healing. Therefore, there are drugs that favor the individuals
who immunize quickly, while there are others that favor the total healing without being
immunized. We then introduced the model of parameter θ, which regulates the process. θ
is the probability that the treated infectious humans pass the sensitive compartment, and
1 − θ is the probability to pass the semi-immune compartment. When using treatments
that immunize the majority of patients, θ tends to 1, and these patients will go into the
compartment of the semi-immune. Otherwise, θ tends to 0, and the patients will move into
the susceptible compartment.

We also provide an insight into the major assumptions made in the original model in
[19] as follows: disease-induced death rate of semi-immune was assumed to be negligible
because this host acquires some immunity. Human mobility from one patch to another was
considered, while immigration of mosquitoes was neglected because they can explore only a
few kilometers during their lives. During the travel, humans do not change status. mπ

ij , π =
S, I, R denote the constant rate of travel of humans from an area j to an area i for all i /= j with
Mπ = [mπ

ij], and π = S, I, R denote the travel rate matrices. The matrices MS were assumed
to be irreducible and mπ

ii = 0, π = S, I, R; i = 1, . . . , n.
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Table 1: Parameters for the model described in any patch i, i = 1, . . . , n.

Parameters and biological description

Λ2i: recruitment into the susceptible human Λ2i > 0
α2i: rate of progression from the infectious human class to the semi-immune class α2i > 0
ρ2i: rate of progression from the infectious human class to the susceptible human class ρ2i > 0
β2i: rate of progression from the semi-immune class to the susceptible human class β2i > 0
γ2i: disease-induced death rate γ2i ≥ 0
μ2i: naturally induced death rate of the human population μ2i > 0
μ2i−1: naturally induced death rate of the mosquitoes μ2i−1 > 0
Λ2i−1: recruitment into susceptible mosquitoes class Λ2i−1 > 0
σ̂2i,2i−1: probability of transmission of the infection from a semi-immune human to

a susceptible mosquito σ̂2i,2i−1 > 0

σ2i−1,2i: probability of transmission of infection from an infectious mosquito to
a susceptible human σ2i−1,2i ∈ [0; 1]

σ2i,2i−1: probability of transmission of infection from an infectious human to
a susceptible mosquito σ2i,2i−1 ∈ [0; 1]

ã2i: maximum number of mosquito bites a human can receive per time unit ã2i ≥ 0
ã2i−1: number of time one mosquito would “want to” bite humans per time unit ã2i−1 ≥ 0

Table 1 summarizes the parameters and their biological description that will be used
in the metapopulation model.

By adding up (2.1a)–(2.1c) and (2.1d)-(2.1e), we obtain expressions for the total
human and mosquito populations, respectively, in patch i = 1, . . . , n:

dN2i

dt
= Λ2i − μ2iN2i − γ2iI2i +

∑

π=S,I,R

⎛

⎝

n
∑

j=1

mπ
ijπ2j −

n
∑

j=1

mπ
jiπ2i

⎞

⎠,

dN2i−1

dt
= Λ2i−1 − μ2i−1N2i−1.

(2.3)

Let Ω = (R+ \ {0})2n × R

3n
+ , and denote the points in Ω by (S, I)T , where S =

(S2, S1, . . . , S2n, S2n−1) and I = (I2, R2, I1, . . . , I2n, R2n, I2n−1). Then we rewrite the system (2.1a)–
(2.1e) in compact form

dS

dt
= Ψ1(S, I),

dI

dt
= Ψ2(S, I).

(2.4)

For any initial condition (S(0), I(0)) in Ω, system (2.1a)–(2.1e) has a unique globally defined
solution (S(t), I(t)) which remains in Ω. Moreover, the total human population, Nh(t), and
mosquitoes, Nv(t), are bounded for all t ≥ 0. This latter result was proved in [19].
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2.2. Formulation of the Objective Functional

In this section, we formulate the optimal control problem with the following functional
objective (cost):

J(u2, v2, . . . , u2n, v2n) =
n
∑

i=1

[

∫T

0
e−rt

(

I2i + R2i +
A2i

2
(u2i)2 +

B2i

2
(v2i)2

)

dt − Υi(S2i(T))

]

.

(2.5)

∑n
i=1 I2i and

∑n
i=1 R2i are the number of infected and semi-immune of n patches, respectively.

The term (A2i/2)(u2i)
2+(B2i/2)(v2i)

2 is the cost of prevention and treatment whereA2i, B2i > 0
are the weight factor in the cost of control. Υi(S2i(T)) is the fitness of the susceptibles at
the end of the process as a result of the treatment and prevention efforts for the patch
i = 1, . . . , n. We also take the same form of the Υi(S2i(T)) = WS

2iS2i(T), WS
2i ≥ 0 as in [18].

r is the discount rate. The discount rate is included to allow for long-term changes, thus
giving greater emphasis to control in the short rather than the long term [21]. In the above
formulation, one can note that the time t = 0 is the time when treatment and prevention are
initiated, and the time t = T is the time when treatment and prevention are stopped.

Additionally to the above assumptions, we assume that finance for treatment and
prevention is not transferable through time, so that money which is not spent immediately
cannot be saved for the future purchase of treatment and prevention.

Basically, we assume that the costs are proportional to the square of the corresponding
control function due to some mathematics properties (positivity, convexity. . .).

2.3. Existence of an Optimal Control

The basic framework of this section is to characterize the optimal control and to prove the
existence and uniqueness of the optimal control. We begin to simplify the writing by noting
(u2, . . . , u2n, v2, . . . , v2n) = (u, v) and (u∗2, . . . , u

∗
2n, v

∗
2, . . . , v

∗
2n) = (u∗, v∗). Because the model is

linear with respect to the control variables and bounded by a linear system with respect to
the state variables, the conditions for the existence of an optimal control are satisfied. While
applying the Fleming and Rishel theorem [22], the existence of the 2n-upplet optimal control
can be obtained in our case.

Given

U = {(u, v), u, v, measurable 0 ≤ a2i ≤ u2i ≤ b2i ≤ 1, 0 ≤ c2i ≤ v2i ≤ d2i ≤ 1}, (2.6)

therefore, one can state the following theorem.

Theorem 2.1. Given the objective functional J(u, v) defined by

J(u, v) :=
n
∑

i=1

[

∫T

0
e−rt

(

I2i + R2i +
A2i

2
(u2i)2 +

B2i

2
(v2i)2

)

dt − Υi(S2i(T))

]

, (2.7)
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for all t ∈ [0; T] subject to the equations of system (2.1a)–(2.1e) with S2i(0) > 0, S2i−1(0) >
0, R2i(0) ≥ 0, I2i(0) ≥ 0, and I2i−1(0) ≥ 0 for i = 1, . . . , n, then there exists 2n-upplet optimal
control (u∗, v∗) such that

J(u∗, v∗) = min
(u,v)∈U

J(u, v), (2.8)

when the following conditions are satisfied:

(i) the class of all initial conditions with the 2n-upplet optimal control in the admissible control
set and corresponding state variables is nonempty,

(ii) the admissible control set U is convex and closed,

(iii) the right-hand side of the state system is bounded by a linear function in the state and
control,

(iv) the integrand of the objective functional is convex on U and is bounded below by
∑n

i=1(h2i(|u2i|2 + |v2i|2)�2i/2 − k2i), where h2i, k2i > 0, and �2i > 1,

(v) the function
∑n

i=1 Υ
i(S2i(T)) is continuous with respect to the variable S2i.

Proof.

(i) It is obtained by definition.

(ii) By definition, the admissible control set U is convex and closed.

(iii) The right-hand side of the state system (2.1a)–(2.1e) is bounded by a linear function
in the state (refer to Theorem 1 of [19]). Our state system is bilinear in the control
variable.

(iv) To show that the integrand of the objective functional is convex on U, we must
prove that

F2i

⎛

⎝t, I2i, R2i,
2
∑

j=1

η2jX2j

⎞

⎠ ≤
2
∑

j=1

η2jF2i
(

t, I2i, R2i, X2j
)

, (2.9)

where
∑2

j=1 η2j = 1, X2j = (u2j , v2j) and

J(u, v) +
n
∑

i=1

S2i(T) =
n
∑

i=1

∫T

0
e−rt

(

I2i + R2i +
A2i

2
(u2i)2 +

B2i

2
(v2i)2

)

dt

=
n
∑

i=1

∫T

0
F2i(t, I2i, R2i, X2i),

(2.10)
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where

F2i(t, I2i, R2i, X2i) = e−rt
(

I2i + R2i +
Ai

2
(u2i)2 +

B2i

2
(v2i)2

)

, (2.11)

F2i

⎛

⎝t, I2i, R2i,
2
∑

j=1

η2jX2j

⎞

⎠ = I2i + R2i +
A2i

2

⎛

⎝

2
∑

j=1

η2ju2j

⎞

⎠

2

+
B2i

2

⎛

⎝

2
∑

j=1

η2jv2j

⎞

⎠

2

≤ I2i + R2i +
A2i

2

2
∑

j=1

η2j
(

u2j
)2 +

B2i

2

2
∑

j=1

η2j
(

v2j
)2

≤
2
∑

j=1

η2j

(

I2i + R2i +
A2i

2
(

u2j
)2 +

B2i

2
(

v2j
)2
)

=
2
∑

j=1

η2jF2i
(

t, I2i, R2i, X2j
)

.

(2.12)

Since the sum of convex functions in the domain convex is convex, then there exists
h2i, k2i, �2i > 1 satisfying

e−rt
(

I2i + R2i +
A2i

2
(u2i)2 +

B2i

2
(v2i)2

)

≥
(

h2i

(

|u2i|2 + |v2i|2
)�2i/2 − k2i

)

, (2.13)

because the state variable is bounded. So summing member to member, one obtains
the result.

(v) The function Υi(S2i(T)) is continuous so that
∑n

i=1 Υ
i(S2i(T)) is also continuous.

2.4. Characterization of the 2n-Upplet Optimal Control

Since there exists 2n-upplet optimal control for minimizing the functional, (2.7), subject to
system (2.1a)–(2.1e), we derive the necessary conditions on the optimal control. We discuss
the theorem that relates to the characterization of the optimal control. In order to derive
the necessary conditions for this optimal control, we use Pontryagin’s maximum principle
[23]. The Lagrangian, sometimes called the Hamiltonian, augmented with penalty terms for
control constraints is defined as

L =
n
∑

i=1

(

I2i + R2i +
A2i

2
(u2i)2 +

B2i

2
(v2i)2

)

+
n
∑

i=1

λS2i

⎛

⎝Λ2i + β2iR2i + ρ2iI2i −
(

μ2i + Φ2i
)

S2i + θλ2iv2iI2i +
n
∑

j=1

(

mS
ijS2j −mS

jiS2i

)

⎞

⎠
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+
n
∑

i=1

λI2i

⎛

⎝Φ2iS2i − ε2iI2i − λ2iv2iI2i +
n
∑

j=1

(

mI
ijI2j −mI

jiI2i

)

⎞

⎠

+
n
∑

i=1

λR2i

⎛

⎝α2iI2i − δ2iR2i + (1 − θ)λ2iv2iI2i +
n
∑

j=1

(

mR
ijR2j −mR

jiR2i

)

⎞

⎠

+
n
∑

i=1

λS2i−1

(

Λ2i−1 − μ2i−1S2i−1 −Φ2i−1S2i−1
)

+
n
∑

i=1

λI2i−1

(

Φ2i−1S2i−1 − μ2i−1I2i−1
)

−
n
∑

i=1

ω2i(u2i − a2i) −
n
∑

i=1

�2i(b2i − u2i) −
n
∑

i=1

ζ2i(v2i − c2i) −
n
∑

i=1

ξ2i(d2i − v2i),

(2.14)

where λπ , π = S2i, I2i, R2i, S2i−1, I2i−1 is the costate variable to the state variable (S, I),
respectively, for patch i = 1, . . . , n. We can interpret λπ(t) as the marginal value or shadow
price of the last unit of S2i, S2i−1, I2i, I2i−1, and R2i was evaluated at time t [3]. For example,
λS2i is the increase in welfare if the number of susceptible is exogenously increased at time t.
λπ can be negative. The parametersω2i,�2i, ζ2i, ξ2i with i = 1, . . . , n are the penalty multipliers
satisfying these conditions:

ω2i ≥ 0, u2i − a2i ≥ 0, ω2i(u2i − a2i) = 0, i = 1, . . . , n,

�2i ≥ 0, b2i − u2i ≥ 0, �2i(b2i − u2i) = 0, i = 1, . . . , n,

ζ2i ≥ 0, v2i − c2i ≥ 0, ζ2i(v2i − c2i) = 0, i = 1, . . . , n,

ξ2i ≥ 0, dij − vij ≥ 0, ξ2i(d2i − v2i) = 0, i = 1, . . . , n.

(2.15)

The supplementary condition at the first and second line of the system (2.15) realized at
optimal control u∗2i and the last two lines of this system is realized at the optimal control v∗

2i.

Theorem 2.2. Given 2n-upplet optimal controls (u∗, v∗) and solutions (S, I) of the corresponding
state system (2.1a)–(2.1e), there exists adjoint variables λπ , with π = S2i, S2i−1, R2i, I2i, I2i−1 where
i = 1, . . . , n satisfying the following canonical equations:

dλS2i

dt
= rλS2i −

∂L

∂S2i
= rλS2i + λS2i

⎛

⎝μ2i + Φ2i

(

1 − ã2iS2i

ã2i−1N2i−1 + ã2iN2i

)

+
n
∑

j=1

mS
ji

⎞

⎠

− λI2iΦ2i

(

1 − ã2iS2i

ã2i−1N2i−1 + ã2iN2i

)

+ (λI2i−1 − λS2i−1)
ã2iS2i−1Φ2i−1

ã2i−1N2i−1 + ã2iN2i
,

dλI2i

dt
= rλI2i −

∂L

∂I2i
= rλI2i − 1 − λS2i

(

ρ2i +
ã2iS2iΦ2i

ã2i−1N2i−1 + ã2iN2i
+ θλ2iv2i

)

+ λI2i

⎛

⎝

ã2iS2iΦ2i

ã2i−1N2i−1 + ã2iN2i
+ ε2i + λ2iv2i +

n
∑

j=1

mI
ji

⎞

⎠ − λR2i(α2i + (1 − θ)α2iv2i)

+ (λS2i−1 − λI2i−1)
ã2i(ã2i−1(1 − u2i)σ2i,2i−1 −Φ2i−1)S2i−1

ã2i−1N2i−1 + ã2iN2i
,
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dλR2i

dt
= rλR2i −

∂L

∂R2i
= rλR2i − 1 − λS2i

(

β2i +
ã2iS2iΦ2i

ã2i−1N2i−1 + ã2iN2i

)

+ λI2i

ã2iS2iΦ2i

ã2i−1N2i−1 + ã2iN2i

+ λR2i

⎛

⎝δ2i +
n
∑

j=1

mR
ji

⎞

⎠ + (λS2i−1 − λI2i−1)
ã2i(ã2i−1(1 − u2i)σ̂2i, 2i−1 −Φ2i−1)S2i−1

ã2i−1N2i−1 + ã2iN2i
,

dλS2i−1

dt
= rλS2i−1 −

∂L

∂S2i−1
= rλS2i−1 + (λI2i − λS2i)

ã2i−1S2iΦ2i

ã2i−1N2i−1 + ã2iN2i

+ λS2i−1μ2i−1 + (λI2i−1 − λS2i−1)Φ2i−1

(

ã2i−1S2i−1

ã2i−1N2i−1 + ã2iN2i
− 1

)

,

dλI2i−1

dt
= rλI2i−1 −

∂L

∂I2i−1
= rλI2i−1 + (λS2i − λI2i)

ã2i−1(ã2i(1 − u2i)σ2i−1,2i −Φ2i)S2i

ã2i−1N2i−1 + ã2iN2i

+ λI2i−1μ2i−1 − (λS2i−1 − λI2i−1)
ã2i−1S2i−1Φ2i−1

ã2i−1N2i−1 + ã2iN2i
,

(2.16)

with the transversality conditions (terminal conditions):

λS2i(T) =
∂Υi

∂S2i

∣

∣

∣

∣

∣

t=T

, λπ(T) = 0, i = 1, . . . , n for π = I2i, I2i−1, R2i, S2i−1. (2.17)

Furthermore, the following characterization of optimal control holds:

u∗2i = max
(

a2i,min
(

b2i,
ã2i−1ã2i

A2i

[

λSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)S2i−1

ã2i−1N2i−1 + ã2iN2i

]))

,

v∗
2i = max

(

c2i,min
(

d2i,
−λ2iI2i(θλS2i − λI2i + (1 − θ)λR2i)

B2i

))

,

(2.18)

where λSj − λIj = −λSIj .

Proof. The adjoint equations and transversality conditions are standard results from
Pontryagin’s maximum principle. Also, solutions to the adjoint system exist and are bounded.
To determine the interior optimum of our Lagrangian, we take the partial derivatives of
Lagrangian L with respect to u∗2i and v∗

2i and set it equal to zero:

∂L

∂u2i
= − ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
− ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i

+�2i −ω2i +A2iu2i = 0,

∂L

∂v2i
= λ2iI2i(θλS2i − λI2i + (1 − θ)λR2i) + ξ2i − ζ2i + B2iv2i = 0.

(2.19)
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Solving for optimal control, we have

u∗2i =
1
A2i

[

ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i
−�2i +ω2i

]

,

v∗
2i =

1
B2i

[−λ2iI2i(θλS2i − λI2i + (1 − θ)λR2i) − ξ2i + ζ2i].

(2.20)

To determine an explicit expression for the optimal control without the penalty multipliers
ω2i, �2i, ζ2i, ξ2i, a standard optimality technique is used. We consider the following cases to
discuss the control: case of the prevention or case of the treatment.

(i) Case of prevention:

(1) on the set

{

ta2i < u
∗
2i < b2i, i = 1, . . . , n

}

, (2.21)

we have ω2i = �2i = 0. Hence, the optimal control is

u∗2i =
1
A2i

[

ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i

]

, (2.22)

(2) on the set

{

tu∗2i = b2i, i = 1, . . . , n
}

, (2.23)

we have ω2i(t) = 0. Hence,

b2i = u∗2i =
1
A2i

[

ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i
−�2i

]

.

(2.24)

This implies that

1
A2i

[

ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i

]

≥ b2i, (2.25)

since �2i(t) ≥ 0,

(3) on the set

{

tu∗2i = a2i, i = 1, . . . , n
}

, (2.26)



12 Journal of Applied Mathematics

we have �2i(t) = 0. Hence,

u∗2i =
1
A2i

[

ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i
+ω2i

]

.

(2.27)

This implies that

1
A2i

[

ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i

]

≤ a2i. (2.28)

Combining these cases, the optimal control u∗2i for i = 1, . . . , n is characterized
as

u∗2i = max
(

a2i,min
(

b2i,
ã2i−1ã2i

A2i

[

λSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)S2i−1

ã2i−1N2i−1 + ã2iN2i

]))

.

(2.29)

(ii) Case of treatment:

using similar arguments as in the case of prevention, we also obtain the second
optimal v∗

2i with i = 1, . . . , n control function is characterized by

v∗
2i = max

(

c2i,min
(

d2i,
−λ2iI2i(θλS2i − λI2i + (1 − θ)λR2i)

B2i

))

. (2.30)

3. Numerical Results and Discussion

3.1. Parameters

We fix the probability for treatment of infectious humans for patches 2 and 3 at θ = 0.5. Also
we take λ2j = 0.5, the weights of prevention and treatment A2j = B2j = 50, and the bounds of
all control a2j = c2j = 0, b2j = d2j = 1 with j = 2, 3. We fix the coefficient of fitness WS

2i = 1.
We take a very small discount rate r = 0.0001 because the daily discounting of the cost

decreases very slowly. The other parameters of the model were obtained from [1] as well as
the following value of the migration matrix: data for migration matrix for the semi-immune,
MR,

MR =

⎡

⎣

0 0.7 × 10−1 0.8 × 10−1

0.1 × 10−1 0 0.1 × 10−4

0.2 × 10−1 0.1 × 10−4 0

⎤

⎦, (3.1)
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MS, data for migration matrix for susceptible, and MI , data for migration matrix for the
infectious

MS =MI =

⎡

⎣

0 0.7 × 10−3 0.8 × 10−3

0.1 × 10−3 0 0.1 × 10−6

0.2 × 10−3 0.1 × 10−6 0

⎤

⎦. (3.2)

3.2. Implementation

To solve our problem of optimal control, we used the program MATLAB dynamic
optimisation code (DYNOPT), which is a set of MATLAB functions for the determination
of optimal control trajectory by describing the process, the cost to be minimized, subject to
equality and inequality constraints, and using orthogonal collocation on the finite elements
method [24]. For more information about this algorithm, we can see the user’s guide in [24].

We implemented the model with the initial condition: S2(0) = 15000; S4(0) = 50;
S6(0) = 1000; I2(0) = 1000; I4(0) = 50; I6(0) = 100; R2(0) = 100; R4(0) = 250; R6(0) = 10;
S1(0) = 5000; S3(0) = 8000; S5(0) = 5000; I1(0) = 50; I3(0) = 6000; I5(0) = 4000.

The weight assigned to the controls is much higher than the weight assigned to the
state variables because the two functions are not expressed in the same scale. The controls
are expressed in terms of cost, while infections and semi-immune are expressed in term of
number of individuals. We chose the time at T = 300 days for our simulation.

3.3. Results and Discussions

3.3.1. Basic Reproductive Number and Reservoir of Infection

The basic reproduction number generally denoted by R0 is the expected number of secondary
cases produced by a typical infective individual introduced into a completely susceptible
population, in the absence of any control measure [25, 26]. Using the data on Table 2 which
were compiled in [1] without control variable, R0 was equal to 3.864. Therefore, there is a
persistence of the disease in the whole population (patches 1, 2, and 3). In [1], it was shown
that only patches 2 and 3 constitute a reservoir of infection. Indeed, a subgroup of patches is
said to be a reservoir when only targeting a control on the reservoir is sufficient to eliminate
the malaria in the whole population (all the three patches). As such the patch 1 cannot sustain
an epidemic by itself.

3.3.2. Evolution over Time of the Optimal Control in the Three Patches

We seek the optimal solution by minimizing the number of infectious hosts and semi-
immune, in all patches by considering four cases: the first case where we seek the optimal
solution when we consider simultaneously prevention and treatment in the two patches
(see Figure 2(a)), the second case where we seek the optimal solution only with prevention
without treatment in two patches (see Figure 2(b)), the third case where we seek the optimal
solution only with the treatment without prevention in two patches (see Figure 2(c)), and
finally the fourth case where no strategy of prevention and treatment is applied. Figure 2
shows a strong preventive action early in the process of elimination of the disease and a high
processing action at the end of the process. Between these two strategies, prevention and
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Table 2: Value compiled in [1]: patches 2 and 3 correspond to rural areas, while patch 1 corresponds to
urban area.

Patch 1 Patch 2 Patch 3 Dimension
β2 = 2.7 × 10−3 β4 = 5.5 × 10−4 β6 = 5.5 × 10−4 Days−1

γ2 = 0, 9.0 × 10−4 γ4 = 9.0 × 10−5 γ6 = 7.3 × 10−5 Days−1

μ2 = 4.5 × 10−5 μ4 = 6.08 × 10−5 μ6 = 6.08 × 10−5 Humans−1 × days−1

α2 = 0.0035 α4 = 0.0035 α6 = 0.0035 Days−1

ρ2 = 0.0083 ρ4 = 0.035 ρ6 = 0.0335 Days−1

Λ2 = 4.0 Λ4 = 0.5 Λ6 = 0.3 Humans × days−1

Λ1 = 700 Λ3 = 500 Λ5 = 600 Mosquitoes × days−1

μ1 = 0.04 μ3 = 0.04 μ5 = 0.04 Mosquitoes−1 × days−1

ã1 = 0.6 ã3 = 0.70 ã5 = 0.50 1
ã2 = 6.0 ã4 = 19.0 ã6 = 19.0 1
σ12 = 0.022 σ34 = 0.022 σ56 = 0.022 1
σ21 = 0.24 σ43 = 0.48 σ65 = 0.48 1
σ̂21 = 0.024 σ̂43 = 0.048 σ̂65 = 0.048 1

treatment are preferred to reduce the number of infections and semi-immunes in all patches.
Interestingly, these results show that the dynamic of controls depends on the bounds that we
choose for the controls.

3.3.3. Dynamics of Human Infection in the Three Patches

Figures 3 and 4 show that the increase of susceptible hosts involves a decrease of infectious
hosts. Figure 4(a) shows that no action should be taken during the half time interval in a
patch which is our urban area. The second half time should be considered the treatment
of infections from two other patches. This is because it takes time (T/2) for production of
sick people from the reservoir area of infection, and after this time (T/2), we realize that
all the patches contain enough sick people. However, we must now apply a treatment in
the area that is not a reservoir of infection initially. This treatment will be done by setting
up at the entrances to the urban area by the distribution of drugs to fight malaria infection
before accessing it. These measures of treatment become necessary to prevent the urban area,
constitutes a reservoir of infection.

Figure 4(b) shows that the treatment is effective for the infectious 50(T/6) first days
because patch 2 is a reservoir of infection. Between days 50(T/6) and 250(5T/6), we must
apply simultaneously prevention and treatment, and after 250(5T/6) days, only prevention
can be applied in this patch.

Figure 4(c) shows that during the first 200(2T/3) days we must apply simultaneously
the prevention and the treatment, and after this time, only treatment should be applied to
reduce the number of infections in patch 3.

3.3.4. Dynamics of Semi-Immune in the Three Patches

Figure 5(a) shows that no strategies must be applied during the T/4 first days for the semi-
immune in patch 1. Between T/4 and 3T/4 days, we must apply simultaneously prevention
and treatment, and during the remaining period, only prevention should be applied.
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Figure 2: Results of the simulations achieved using data from Table 2 showing the evolution over time of
the optimal control in the two reservoirs of infection. (a) Optimal control for prevention and treatment; (b)
Optimal control for prevention control with no treatment control; (c) optimal control for treatment control
with no prevention control.

Figures 5(b) and 5(c) show that the same strategies of control should be considered
during the same period in patch 1 to reduce, respectively, the number of semi-immunes in
patches 2 and 3.

To summarize, we used a recent technique of identification of the spatial infection
of connected patches, to design a strategy based on the status of infection of the reservoirs
of infection. We show that it is better to treat people only in areas that do not constitute a
reservoir of infection and use simultaneously the prevention and the treatment to reduce the
number of infections in all patches constituting a reservoir of infection. While reducing the
number of semi-immunes, no differences in control strategies is made based on the type of
infection reservoir. Whatever the level of infection of the reservoir of infection, the strategy



16 Journal of Applied Mathematics

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

14000

16000

Days

Su
sc

ep
ti

bl
e 

ho
st

 fo
r 

pa
tc

h 
1

Optimal control
Prevention

Treatment
No control

(a)

Optimal control
Prevention

Treatment
No control

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

Days

Su
sc

ep
ti

bl
e 

ho
st

 fo
r 

pa
tc

h 
2

(b)

Optimal control
Prevention

Treatment
No control

0 50 100 150 200 250 300
0

500

1000

1500

Days

Su
sc

ep
ti

bl
e 

ho
st

 fo
r 

pa
tc

h 
3

(c)

Figure 3: Results of the simulations achieved using data from Table 2 showing the evolution over time
of susceptible hosts for the three patches. We show the four cases: black line optimal solution solved with
prevention and treatment in the 2 patches; blue line optimal solution solved with prevention control in the 2
patches; red line optimal solution solved with treatment control in the 2 patches; green line solution without
control. (a) Evolution of the susceptible hosts for patch 1; (b) evolution of the susceptible hosts for patch
2; (c) evolution of the susceptible hosts for patch 3.

to reduce the number of semi-immunes remains the same: no strategy is adopted in the early
stage of malaria control, then both treatment and prevention are implemented, and in the last
period, only prevention is implemented.

4. Conclusion

A mathematical model has been developed for malaria using the theory of optimal control.
The formulation of the optimal control includes n control variables for prevention and n
variables for treatment. The mathematical analysis proved the existence of an optimal control
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Figure 4: Results of the simulations achieved using data from Table 2 showing the evolution over time
of infectious host for the three patches. We show the four cases: black line optimal solution solved with
prevention and treatment in the 2 patches; blue line optimal solution solved with prevention control in
the 2 patches; red line optimal solution solved with treatment control in the 2 patches; green line solution
without control. (a) Evolution of the infectious hosts for patch 1; (b) evolution of the infectious hosts for
patch 2; (c) evolution of the infectious hosts for patch 3.

for n connected patches under suitable conditions using the Fleming and Rishel theorem.
Furthermore, using Pontryagin’s maximum principle, a characterization of the optimal
control was given. Numerical simulations were also performed showing the evolution over
time of the optimal control as well as the different health status of humans and mosquitoes
within each patch. These results underline the usefulness of a synergy control rather than
only the prevention or the treatment. The results of our simulation show that we must choose
a strategy based on the infectious status of the reservoir of infection. We show that it is
better to treat people only in areas that do not constitute a reservoir of infection and use
simultaneously the prevention and the treatment to reduce the number of infections in all
patches constituting a reservoir of infection. While reducing the number of semi-immunes,
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Figure 5: Results of the simulations achieved using data from Table 2 showing the evolution over time of
semi-immune host for the three patches. We show the four cases: black line optimal solution solved with
prevention and treatment in the 2 patches; blue line optimal solution solved with prevention control in the 2
patches; red line optimal solution solved with treatment control in the 2 patches; green line solution without
control. (a) Evolution of the semi-immune hosts for patch 1; (b) evolution of the semi-immune hosts for
patch 2; (c) evolution of the semi-immune hosts for patch 3.

no differences in control strategies is made based on the type of infection reservoir. Whatever
the level of infection of the reservoir of infection, the strategy to reduce the number of semi-
immunes remains the same: no strategy is adopted in the early stage of malaria control, then
both treatment and prevention are implemented, and in the last period, only prevention is
implemented.

To state our main perspectives, we will include a budget constraint in our optimal
problem. Before characterizing the optimal prevention and treatment, two cases may arise
under budget constraints: (i) when the budget allocation for the prevention and treatment is
sufficient; (ii) when the budget is insufficient. Moreover, it would be interesting to apply a
sensitivity analysis for some key parameters of the model.
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The dynamic behaviors of a predator-prey (pest) model with disease in prey and involving
an impulsive control strategy to release infected prey at fixed times are investigated for the
purpose of integrated pest management. Mathematical theoretical works have been pursuing
the investigation of the local asymptotical stability and global attractivity for the semitrivial
periodic solution and population persistent, which depicts the threshold expression of some
critical parameters for carrying out integrated pest management. Numerical analysis indicates that
the impulsive control strategy has a strong effect on the dynamical complexity and population
persistent using bifurcation diagrams and power spectra diagrams. These results show that if the
release amount of infective prey can satisfy some critical conditions, then all biological populations
will coexist. All these results are expected to be of use in the study of the dynamic complexity of
ecosystems.

1. Introduction

Predator-prey models with disease are a major concern and are now becoming a new field
of study known as ecoepidemiology. The disease factor in predator-prey systems has been
firstly considered by Anderson and May [1]. In subsequent years, many authors studied the
dynamics of ecological models with infected prey, and their papers mainly focused on this
issue [2–8]. The infection rate and the predation rate are the two primary factors, which can
control the chaotic dynamics of an ecoepidemiological system [9]. Das et al. [10] studied
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the HP model [11] by introducing disease in prey populations, which can be described as
follows:

ds

dt
= rs

(
1 − s

k

)
− αis − c1a1

p1s

b1 + s
,

di

dt
= αis − a2ip1 − d1i,

dp1

dt
= a1

p1s

b1 + s
+ c2ip1 − a3

p1p2

b2 + p1
− d2p1,

dp2

dt
= c3a3

p1p2

b2 + p1
− d3p2,

(1.1)

where s, i, p1, and p2 are respectively the susceptible prey population, infected prey
population, the intermediate predator population, and the top-predator population, a1 and
a2 are the maximal predation rate of intermediate predator for susceptible and infected prey,
respectively, a3 is the maximal predation rate of top-predator for intermediate predator, b1

and b2 are the half saturation constant for functional response of intermediate and the top-
predator respectively, c1 is the conversion rate of susceptible prey to intermediate predator,
c2 is the conversion rate of infected prey to intermediate predator, and c3 is the conversion
rate of intermediate predator to top predator.

Through the dimensionless transformation (seeing [10]), the system can change into
the following form:

dx

dt
= x(1 − x) − ais − b p1s

1 + cs
,

di

dt
= ais − dip1 − ei,

dp1

dt
= f

p1s

1 + cs
+ gip1 − h

p1p2

1 +mp1
− jp1,

dp2

dt
= k

p1p2

1 +mp1
− lp2.

(1.2)

In recent decades, technological revolutions have recently hit the industrial world;
thus, infected population can now be controlled by many methods such as spraying
pesticides and vaccination. It is well known that pest management involves using pesticides
and releasing natural enemies, which have been focused by many researchers [12–14].
Control of an infected population can be achieved by chemical or biological control or
both, which is called an impulsive control strategy in biomathematics. Systems with
impulsive control strategies to describe time-varying processes are characterized by the fact
that at certain moments, their states undergo abrupt change. Recently, impulsive control
strategies have been recently introduced into population ecology [15–18], chemotherapeutic
approaches to treat disease [19], and food webs [20–25].

Based on the two aspects discussed, the authors constructed a predator-prey model
with disease in prey (a pest) and involving an impulsive control strategy for the purpose of
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integrated pest management. The impulsive control strategy was used to introduce infected
prey (a pest) at a fixed time on the basis of system (1.2). The predator-prey model with
disease in prey and involving an impulsive control strategy can be described by the following
differential equations:

dx(t)
dt

= x(t)(1 − x(t)) − ax(t)y(t) − b x(t)z(t)
1 + cx(t)

,

dy(t)
dt

= ax(t)y(t) − dy(t)z(t) − ey(t),

dz(t)
dt

= f
x(t)z(t)
1 + cx(t)

+ gy(t)z(t) − h q(t)z(t)
1 +mz(t)

− jz(t),

dq(t)
dt

= K
q(t)z(t)

1 +mz(t)
− lq(t),

t /=nT,

Δx(t) = 0,
Δy(t) = p,
Δz(t) = 0,
Δq(t) = 0,

t = nT,

(1.3)

where x(t), y(t), z(t), and q(t) are respectively the densities of susceptible prey (a pest),
infected prey (a pest), the intermediate predator (natural enemy), and the top predator
at time t. Then, Δx(t) = x(t+) − x(t), Δy(t) = y(t+) − y(t), Δz(t) = z(t+) − z(t), and
Δq(t) = q(t+) − q(t). We have

a =
αk

r
, b =

c1a1k

rb1
, c =

k

b1
, d =

a2k

r
, e =

d1

r
, f =

a1k

b1r
,

g =
c2a2k

r
, h =

a3k

b2r
, m =

k

b1
, j =

d2

r
, K =

c3a3k

b2r
, l =

d3

r
,

(1.4)

where a1 and a2 are the maximal predation rates of the intermediate predator on susceptible
and infected prey respectively; a3 is the maximal predation rate of the top predator on the
intermediate predator; b1 and b2 are the half-saturation constants for functional response
of the intermediate prey and the top predator respectively; c1 is the conversion rate of
susceptible prey to intermediate predators; c2 and c3 are, respectively, the conversion rate of
infected prey to intermediate predators and the conversion rate of the intermediate predator
to the top predator; d1, d2, d3 are the death rates of infected prey, the intermediate predator,
and the top predator, respectively; α is the incidence rate; r is the intrinsic growth rate; k is
the carrying capacity (see [10]); p > 0 is the introduced amount of infective prey population
at t = nT , n ∈ N, N = {0, 1, 2 . . .}, where T is the period of the impulsive control. It is known
that pest outbreak will cause some serious ecological and economic problems, and we can
directly gather infected prey to increase the amount of infected prey and indirectly carry out
integrated pest management.

The paper is organized as follows: in the next section, a mathematical analysis of the
model is carried out. Section 3 describes some numerical simulations, and the last section
contains a brief discussion.
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2. Mathematical Analysis

Some important notations, lemmas, and definitions will be provided, which are frequently
used in subsequent proofs.

Let R+ = [0,+∞), R4
+ = {X = (x(t), y(t), z(t), q(t)) ∈ R4|X ≥ 0}. Denote f =

(f1, f2, f3, f4) as the map defined by the right-hand side of the first, second, third, and fourth
equations of system (1.3). LetV0 = {V : R+ × R4

+ → R+}, then V is said to belong to class V0 if

(1) V is continuous on (nT, (n + 1)T] × R4
+, n ∈ N, and for each X ∈

R4 lim(t,μ)→ (nT+,X)V (t, μ) = V (nT+, X) exists;

(2) V is locally Lipschitzian in X.

Definition 2.1 (see [26]). Let V ∈ V0, and then, for (nT, (n+1)T]×R4
+, the upper right derivative

of V (t, X) with respect to the impulsive differential system (1.3) can be defined as

D+V (t, X) = lim
h→ 0+

sup
1
h

[
V
(
t + h,X + hf(t, X)

) − V (t, X)
]
. (2.1)

The solution of system (1.3) is a piecewise continuous function X : R+ × R4
+, where

X(t) is continuous on(nT, (n+ 1)T], n ∈N, and X(nT+) = limt→nT+X(T) exists. Obviously the
smoothness properties of f can guarantee the global existence and uniqueness of the solution
of system (1.3); for details see [26–28].

Definition 2.2 (see [21]). system (1.3) is said to be uniformly persistent if there is an ω > 0
(independent of the initial conditions) such that every solution (x(t), y(t), z(t), q(t)) of system
(1.3) satisfies the following:

lim
t→∞

infx(t) ≥ ω, lim
t→∞

infy(t) ≥ ω, lim
t→∞

inf z(t) ≥ ω, lim
t→∞

inf q(t) ≥ ω. (2.2)

Definition 2.3 (see [24]). System (1.3) is said to be permanent if there exists a compact region
Ω0 ⊂ intR4

+ such that every solution (x(t), y(t), z(t), q(t)) of system (1.3) will eventually enter
and remain in the region Ω0.

Lemma 2.4 (see [24]). Suppose thatX(t) is a solution of system (1.3)withX(0+) ≥ 0; thenX(t) ≥ 0
for all t ≥ 0. Furthermore, X(t) > 0, t > 0 if X(0+) > 0.

Lemma 2.5. There exists a constant M such that x(t) ≤ M, y(t) ≤ M, z(t) ≤ M, and q(t) ≤ M
for each solution X = (x(t), y(t), z(t), q(t)) of system (1.3) for all sufficiently large t. Details can be
found in Theorem 2.2 of [29].

Lemma 2.6 (see [26]). Let V ∈ V0, and assume that

D+V (t, X) ≤ g(t, V (t, X)), t /=nT,

V (t, X(t+)) ≤ Φn(V (t, X(t))), t = nT,
(2.3)
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where g : R+ × R+ → R is continuous in (nT, (n + 1)T] for u ∈ R2
+, n ∈ N, lim(t,y)→ (nT+)g(t, v) =

g(nT+, u) existing, and φin (i = 1, 2) : R+ → R+ nondecreasing. Let r(t) be a maximal solution of the
scalar impulsive differential equation as follows:

du(t)
dt

= g(t, u(t)), t /=nT,

u(t+) = Φn(u(t)), t = nT,

u(0+) = u0,

(2.4)

existing on (0,+∞]. Then V (0+, X0) ≤ u0, implying that V (t, X(t)) ≤ r(t), t ≥ 0, where X(t) is
any solution of system (1.3). Note that if certain smoothness conditions on g exist to guarantee the
existence and uniqueness of solutions for (2.4), then r(t) is the unique solution of (2.4).

For convenience, some basic properties of certain subsystems of system (1.3) are now
provided as follows:

dy(t)
dt

= −ey(t), t /=nT,

y(t+) = y(t) + p, t = nT,

y(0+) = y0.

(2.5)

Therefore, the following lemma holds.

Lemma 2.7 (see [26]). For a positive periodic solution y∗(t) of system (2.5) and the solution y(t) of
system (2.5) with initial value y0 = y(0+) ≥ 0, |y(t) − y∗(t)| → 0, t → ∞, where

y∗(t) =
(
p exp(−e(t − nT))

1 − exp(−eT)
)
, t ∈ (nT, (n + 1)T], n ∈N,

y∗(0+) =
(

p

1 − exp(−eT)
)
,

y(t) =
(
y(0+) −

(
p

1 − exp(−eT)
))

exp(−eT) + y∗(t).

(2.6)

Next, the stability of susceptible prey and of predator-eradication periodic solutions will be studied.

Theorem 2.8. The solution (0, y∗(t), 0, 0) is said to be locally asymptotically stable if T < (p/e).

Proof. The local stability of periodic solution (0, y∗(t), 0, 0) may be determined by considering
the behavior of small-amplitude perturbations of the solution. Define

x(t) = u(t), y(t) = v(t) + y∗(t), z(t) = w(t), q(t) = h(t). (2.7)
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Substituting (2.7) into (1.3), a linearization of the system can be obtained as follows:

du(t)
dt

=
(
1 − ay∗(t)

)
u(t),

dv(t)
dt

= ay∗(t)u(t) − ev(t) − dy∗(t)w(t),

dw(t)
dt

=
(
gy∗(t) − j)w(t),

dh(t)
dt

= −lh(t),

t /=nT,

Δu(t) = 0,
Δv(t) = p,
Δw(t) = 0,
Δh(t) = 0,

t = nT.

(2.8)

This can be rewritten as

⎛

⎜⎜
⎝

u(t)
v(t)
w(t)
h(t)

⎞

⎟⎟
⎠ = φ(t)

⎛

⎜⎜
⎝

u(0)
v(0)
w(0)
h(0)

⎞

⎟
⎟
⎠, 0 ≤ t ≤ T, (2.9)

where φ(t) satisfies

dφ(t)
dt

=

⎛

⎜⎜
⎝

1 − ay∗(t) 0 0 0
ay∗(t) −e −dy∗(t) 0

0 0 gy∗(t) − j 0
0 0 0 −l

⎞

⎟⎟
⎠, (2.10)

with φ(0) = I, where I is the identity matrix, and

⎛

⎜⎜
⎝

u(nT+)
v(nT+)
w(nT+)
h(nT+)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

u(nT)
v(nT)
w(nT)
h(nT)

⎞

⎟⎟
⎠. (2.11)

Hence, the stability of the periodic solution (0, y∗(t), 0, 0) is determined by the eigenvalues of

θ =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠φ(t). (2.12)

If the absolute values of all eigenvalues are less than one, the periodic solution (0, y∗(t), 0, 0)
is locally stable. Then all eigenvalues of φ can be denoted by λ1, λ2, λ3, and λ4, where λ1 =
exp
∫T

0 (1 − ay∗(t))dt, λ2 = exp(−eT) < 1, λ3 = exp
∫T

0 (gy
∗(t) − j)dt, λ4 = exp(−lT) < 1.
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Clearly, |λ3| = exp(−gp) < 1 with |λ1| < 1 only if T < (p/e) according to the Floquet
theory of impulsive differential equations, and the periodic solution (0, y∗(t), 0, 0) is locally
stable. This completes the proof.

Theorem 2.9. The solution (0, y∗(t), 0, 0) is said to be globally attractive if gM < j and

1
a
<

p exp(−(dM + e)T)
1 − exp(−(dM + e)T)

. (2.13)

Proof. Let V (t) = fKx(t) + bKz(t) + bhq(t); then

V ′∣∣
(1.1) = fK

(
1 − ay(t))x(t) + bK(gy(t) − j)z(t) − fKx2(t) − bhlq(t). (2.14)

By Lemma 2.5, there exists a constant M > 0 such that x(t) ≤ M, y(t) ≤ M, z(t) ≤ M,
q(t) ≤M for each solution X = (x(t), y(t), z(t), q(t)) of system (1.3) with sufficiently large t.

Then,

dy(t)
dt

= ay(t)x(t) − dy(t)z(t) − ey(t) ≥ −(dM + e)y(t), t /=nT

Δy = p, t = nT

(2.15)

V |(1.1) = fK
(
1 − ay(t))x(t) + bK(gy(t) − j)z(t) − fKx2(t) − bhlq(t)

≤ fK
(
1 − ay(t))x(t) + bK(gM − j)z(t) − fKx(t) − bhlq(t).

(2.16)

By Lemmas 2.6 and 2.7, there exists a t1 > 0, and an ε > 0 can be selected to be small enough
so that y(t) ≥ y∗

1(t) − ε for all t ≥ t1. By (2.15),

y(t) ≥ y∗
1(t) − ε =

p exp(−(dM + e)T)
1 − exp(−(dM + e)T)

− ε,

λ
Δ=

p exp(−(dM + e)T)
1 − exp(−(dM + e)T)

− ε.
(2.17)

Let 1 − aλ < 0 and gM − j < 0. Therefore, when t ≥ t1, by (2.16), V ′|(1.1) < 0. So V (t) → 0
and x(t) → 0, z(t) → 0, q(t) → 0 as t → ∞. It is known from the fact that the limiting
state of system (1.3) is exactly system (2.5) and from Lemma 2.7 that (0, y∗(t), 0, 0) is globally
attractive. This completes the proof.

Theorem 2.10. System (1.3) is permanent if T > p/e, gM > j,

1
a
>

p exp(−(dM + e)T)
1 − exp(−(dM + e)T)

, bhlM >
p exp((aM − e)T)

1 − exp((aM − e)T) . (2.18)

Proof. From Lemma 2.5, there exists a constantM > 0 such that x(t) ≤M, y(t) ≤M, z(t) ≤M,
q(t) ≤ M for each solution X = (x(t), y(t), z(t), q(t)) of system (1.3) with t sufficiently large.
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From (2.15), it is known that y(t) ≥ y∗
1(t)−ε = (p exp(−(dM+e)T))/(1−exp(−(dM+e)T))−ε Δ=

δ1 for large enough t.
Therefore, it is only necessary to find a δ2 that satisfies x(t) > δ2, z(t) > δ2, q(t) > δ2.

This will be achieved in the following two steps.
Let δ3 > 0, δ4 > 0, γ = e − aδ3, and V (t) = fKx(t) + bKz(t) + bhq(t).
Then

V |(1.1) = fK
(
1 − ay(t))x(t) + bK(gy(t) − j)z(t) − fKx2(t) − bhlq(t)

≥ fK
(
1 − ay(t) −M)x(t) + bK(gy(t) − j)z(t) − fKx(t) − bhlq(t).

(2.19)

First, it will be proved that there exists a t2 ∈ (0,+∞) such that x(t2) > δ4, z(t2) > δ4, and
q(t2) > δ4 because V (t) is ultimately bounded.

Next, it will be proved that x(t) < δ3, z(t) < δ3, q(t) < δ3 cannot hold for all t ∈ (0,+∞).
Otherwise,

dy(t)
dt

= ay(t)x(t) − dy(t)z(t) − ey(t) ≤ (aδ3 − e)y(t), t /=nT

Δy = p, t = nT.

(2.20)

Then let v1(t) be the solution of

dv1(t)
dt

= (aδ3 − e)v1(t), t /=nT

Δv1(t) = p, t = nT.
(2.21)

It follows that y(t) < v1(t) and v1(t) → v∗
1(t)(t → ∞) where v∗

1(t) = (p exp(−γ(t − n)T))/(1 −
exp(−γT)).

So there exists a t3 > 0 such that

y(t) < v1(t) < v∗
1(t) + ε1 =

p exp
(−γ(t − n)T)

1 − exp
(−γT) + ε1 <

p

1 − exp
(−γT) + ε1. (2.22)

Then

V |(1.1) = fK
(
1 − ay(t))x(t) + bK(gy(t) − j)z(t) − fKx2(t) − bhlq(t)

≥ fK
(
1 − ay(t) −M)x(t) + bK(gy(t) − j)z(t) − fKx(t) − bhlq(t)

≥ fK

(

1 − a p

1 − exp
(−γT) + ε1 −M

)

x(t) + bK

(

g
p

1 − exp
(−γT) + ε1 − j

)

z(t).

(2.23)

According to the above conditions, V ′|(1.1) > 0; then V (t) → ∞ and x(t) → ∞, z(t) → ∞,
q(t) → ∞ as t → ∞; however, this is a contradiction. Therefore, V (t) is ultimately bounded.
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Figure 1: Dynamics of system (1.3) with b = 8, d = 3, c = 3, e = 0.2, f = 3, g = 2.5, h = 0.3, m = 1.2, j = 0.2,
k = 0.6, l := 0.008, a := 3, p = 1.03, T = 14. Time series of (a) susceptible prey, (b) infected prey, (c) the
intermediate predator, and (d) the top predator.

Second, if x(t) > δ3, z(t) > δ3, q(t) > δ3 for all t ≥ t2, then the objective has been
attained. To show this, let t∗ = inft≥t2{V (t) < δ5}, and it follows that V (t) ≥ δ5 for t ∈ [t2, t∗)
and that V (t∗) = δ5. Suppose that t∗ ∈ (n1T, (n1 + 1)T], n1 ∈ N. Select n2, n3 ∈ N such that
n2T > (ln(ε1/(M + p))/ − γ), exp(n3α1T) exp(α2(n2 + 1)T) > 1, where

α1 = fK

(

1 − a p

1 − exp
(−γT) + ε1 −M

)

x(t) + bK

(

g − p

1 − exp
(−γT) + ε1 − j

)

z(t) > 0,

α2 = − ap exp((aM − e)T)
1 − exp((aM − e)T)x(t) − jz(t) < 0.

(2.24)
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Figure 2: Bifurcation diagram of system (1.3) with initial conditions x(0) = 0.1, y(0) = 0.2, z(0) = 0.3, q(0) =
0.4, 7 ≤ T ≤ 37, b = 6, d = 3, c = 3, e = 0.2, f = 2, g = 2.5, h = 0.1, m = 2; j = 0.1, k = 0.6, l = 0.01, a = 3, and
p = 0.6.

Let T2 = n2T + n3T . It is claimed that there must be a t3 ∈ ((n1 + 1)T, (n1 + 1)T + T2] such that
V (t) ≥ δ5. Otherwise, consider (2.21) with v1(t∗+) = y(t∗+). Then

v1(t) =

(

v1((n1 + 1)T+) − p

1 − exp
(−γT)

)

exp
(−γ(t − (n1 + 1)T)

)
+ v∗

1(t). (2.25)

For t ∈ ((n + 1)T, (n + 1)T], n1 + 1 < n < n1 + n2 + n3 + 1, it can be shown that |v1(t) − v∗
1(t)| <

(M + p) exp(−γn1T) < ε1, y(t) ≤ v1(t) ≤ v∗
1(t) + ε1 for t ∈ ((n1 + n2 + 1)T, (n1 + 1)T + T2],

V ′∣∣
(1.1) ≥ fK

(

1 − a p

1 − exp
(−γT) + ε1 −M

)

x(t) + bK

(

g
p

1 − exp
(−γT) + ε1 − j

)

z(t)

= α1 > 0,
(2.26)

and V ((n1 + 1)T + T2) ≥ V ((n1 + n2 + 1)T) exp(α1n3T). For t ∈ [t∗, (n1 + n2 + 1)T], it can
be shown that V |(1.1) ≥ −α2V (t) > 0; then, V ((n1 + n2 + 1)T) ≥ V ∗(t) exp(−α2(n2 + 1)T), so
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Figure 3: Bifurcation diagram of system (1.3) with initial conditions x(0) = 0.1, y(0) = 0.2, z(0) = 0.3, q(0) =
0.4, 7 ≤ T ≤ 27, b = 10, d = 3, c = 3, e = 0.5, f = 5, g = 2.5, h = 0.1, m = 2; j = 0.2, k = 0.3, l = 0.01, a = 1.3,
and p = 0.6.

V ((n1 + 1)T + T2) ≥ V ∗(t) exp(−α2(n2 + 1)T + α1n3T) > δ5, which is a contradiction. Therefore,
there exists a t3 ∈ ((n1 + 1)T, (n1 + 1)T + T2] such that V (t) ≥ δ5, resulting in V (t) ≥
V ∗(t) exp(−α2(n1 + n2 + n3 + 1)T) Δ= δ6.

When t ≥ t3, the same procedure can be performed. According to the above discussion,
if Ω0 = {(x(t), y(t), z(t), q(t)) : V (t) = fKx(t) + bKz(t) + bhlq(t), δ ≤ V (t) ≤ M1} ⊂ intR3

+,
every solution of system (1.3) will eventually enter and remain in the region Ω0. This
completes the proof.

3. Numerical Analysis

3.1. Bifurcation

To study the dynamics of system (1.3), the period T and the impulsive control parameter p
are used as the bifurcation parameter. The bifurcation diagram provides a summary of the
basic dynamic behavior of the system [30, 31].
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Figure 4: Bifurcation diagram of system (1.3) with initial conditions x(0) = 0.1, y(0) = 0.2, z(0) = 0.3,
q(0) = 0.4, 0.1 ≤ p ≤ 2.4, b = 8, d = 3, c = 3, e = 0.2, and f = 3 s, g = 2.5, h = 0.1, m = 0.2, j = 0.1, k = 0.6,
l = 0.008, a = 3, p = 0.6.

First, the influence of the period T is studied using the time series shown in Figure 1.
The bifurcation diagrams are shown in Figures 2 and 3. Next, the influence of the impulsive
control parameter p is investigated. The bifurcation diagrams for this are shown in Figure 4.

To clearly see the dynamics of system (1.3), it is necessary to examine the phase
diagrams at different value of the period T and parameter p corresponding to the bifurcation
diagrams in Figures 2 and 4; the results of this analysis are shown in Figures 5 and 6.

Figures 2, 3, and 4 reveal the complex dynamics of system (1.3), including
period-doubling cascades, symmetry-breaking pitchfork bifurcation, chaos, and nonunique
dynamics. Because every bifurcation diagram is similar, only one needs to be explained. Take
Figure 4(a) as an example. When p ∈ [0, 0.124], the dynamics of the system are not obvious,
but with increasing p, the dynamics become more obvious. The system enters into a chaotic
band with periodic windows. When p is between 0.124 and 0.153, the chaotic behavior is
intense, as can be seen in Figure 6(a). When p moves beyond 0.153, the chaotic behavior
disappears. When p ∈ [0.203, 0.219], the chaotic attractor gains in strength, and the chaotic
behavior appears again. When p becomes greater than 0.219, periodic windows appear, as
can be seen in Figures 6(b) and 6(c). When p is in the interval between 0.328 and 0.35,
chaotic behavior ensues, as can be seen in Figure 6(d). As the value of p increases further,
the system enters a stable state, as is shown in Figures 6(e), 6(f), and 6(g). When p moves
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Figure 5: Periodic and chaotic behavior corresponding to Figure 2 as shown by phase diagrams: (a) T = 10,
(b) T = 17, (c) T = 15, and (d) T = 27.7.

beyond 1.001, an unexpectedly chaotic phase appears, as is shown in Figure 6(h). It is clear
that seasonal disturbances have little effect on the maximum density of all species; however,
serious periodic oscillations are generated, and weak periodic solutions lose their stability
and move into chaos. In summary, the key factor in the long-term dynamic behavior of system
(1.3) is impulse perturbations, but seasonal disturbances can aggravate periodic oscillations
and promote the emergence of chaos. Based on the above numerical simulation analysis, it is
clear that impulsive control strategy has an important effect on the dynamical behaviors of
the system, and weak periodic solutions lose their stability and move into chaos. In summary,
the key factor in the long-term dynamic behavior of system (1.3) is impulsive control strategy,
but disease disturbances can aggravate periodic oscillations and promote the emergence of
chaos.

3.2. The Iargest Lyapunov Exponent

To detect whether the system exhibits chaotic behavior, one of the commonest methods is to
calculate the largest Lyapunov exponent. The largest Lyapunov exponent takes into account
the average exponential rates of divergence or convergence of nearby orbits in phase space
[32]. A positive largest Lyapunov exponent indicates that the system is chaotic. If the largest
Lyapunov exponent is negative, there must be periodic windows or a stable state. Through
the largest Lyapunov exponent, it is possible to judge that at what time the system is chaotic,
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Figure 6: Periodic and chaotic behavior corresponding to Figure 3, as shown in phase diagrams: (a) p =
0.13, (b) p = 0.25, (c) p = 0.3, (d) p = 0.35, (e) p = 0.45, (f) p = 0.7, (g) p = 0.9, and (h) p = 1.0009.
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Figure 7: The largest Lyapunov exponents (LLE) corresponding to Figure 2.

0.4

0.3

0.2

0.1

0
8 9 10 11 12 13 14 15 16 17

T

−0.1

−0.2T
he

 la
rg

es
t L

ya
pu

no
v 

ex
po

ne
nt

Figure 8: The largest Lyapunov exponents (LLE) corresponding to Figure 3.

and at what time the system is stable. The largest Lyapunov exponents corresponding to
Figures 2, 3, and 4 can be calculated and are shown in Figures 7, 8, and 9, which shows the
accuracy and effectiveness of numerical simulation. Moreover, using the simulation of the
largest Lyapunov exponents, the existence of chaotic behavior in system (1.3) can be further
confirmed.

3.3. Strange Attractors and Power Spectra

To understand the qualitative nature of strange attractors, power spectra are used [33]. From
Section 3.2, it is known that the largest Lyapunov exponent for strange attractor (a) is 0.0413,
and for strange attractor (b) is 0.124. Therefore, they are both chaotic attractors, and the
exponent of (b) is larger than that of (a), which means that the chaotic dynamics of (b) are
more extreme than those of (a). The power spectrum of strange attractor (a) is composed
of strong broadband components and sharp peaks, as are shown in Figure 10(c). On the
contrary, in the spectrum of strong chaotic attractor (b), it is difficult to distinguish any sharp
peaks, as can be seen in Figure 10(d). These power spectra can be interpreted as meaning that
(a) comes from a strong limit cycle, but that (b) experiences some weak limit cycles. Hence, it
is obvious that the impulsive control strategy has a strong effect on the dynamical behaviors
of system (1.3) with t the period of the impulsive control T varying but that (b) experiences
some weak limit cycles.
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Figure 10: Strange attractors and power spectra: (a) strange attractor when T = 32, (b) strange attractor
when T = 21, (c) power spectrum of attractor (a), and (d) power spectrum of attractor (b).

4. Conclusions and Remarks

In the paper, the dynamic behaviors of a predator-prey (pest) model with disease in prey
and involving an impulsive control strategy are presented analytically and numerically.
The critical conditions are obtained to ensure the local asymptotical stability and global
attractivity of semitrivial periodic solution as well as population permanence. Numerical



Journal of Applied Mathematics 17

analysis indicates that the impulsive control strategy has a strong effect on the dynamical
complexity and population persistent using bifurcation diagrams and power spectra
diagrams. In addition, the largest Lyapunov exponents are computed. This computation
further confirms the existence of chaotic behavior and the accuracy of numerical simulation.
These results revealed that the introduction of disease and the use of an impulsive control
strategy can change the dynamic behaviors of the system. The same results also have been
observed in continuous-time models of predator-prey or three-species food-chain models
[34–37] and other systems [38]. In a word, it should be stressed that the impulsive control
strategy is an effective method to control complex dynamics of predator-prey (pest) model.
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This paper presents Pareto design of decoupled sliding-mode controllers based on a multiobjective
genetic algorithm for several fourth-order coupled nonlinear systems. In order to achieve an
optimum controller, at first, the decoupled sliding mode controller is applied to stablize the
fourth-order coupled nonlinear systems at the equilibrium point. Then, the multiobjective genetic
algorithm is applied to search the optimal coefficients of the decoupled sliding-mode control to
improve the performance of the control system. Considered objective functions are the angle and
distance errors. Finally, the simulation results implemented in the MATLAB software environment
are presented for the inverted pendulum, ball and beam, and seesaw systems to assure the
effectiveness of this technique.

1. Introduction

There are many control techniques that have been used to investigate the control behavior
of the nonlinear systems [1–4]. A variable structure control with sliding mode, which is
commonly known as sliding-mode control, is a nonlinear control strategy that is well-known
for its guaranteed stability, robustness against parameter variations, fast dynamic response,
and simplicity in implementation [1]. Although the sliding mode control method gives a
satisfactory performance for the second-order systems, its performance for a fourth-order
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coupled system is questionable. For example, in an inverted pendulum system controlled
by the sliding-mode control, either the pole or cart can be successfully controlled, but not
both. A remedy to this problem is to decouple the states and apply a suitable control law to
stabilize the whole system. Recently, a decoupled sliding-mode control has been proposed to
cope with this issue. It provides a simple way to decouple a class of fourth-order nonlinear
systems in two second-order subsystems such that each subsystem has a separate control
objective expressed in terms of a sliding surface [5, 6]. An important consequence of the using
decoupled sliding-mode control is that the second subsystem is successfully incorporated
into the first one via a two-level decoupling strategy.

It is very important to note that for design of the sliding-mode control and decoupled
sliding-mode control, the sliding surface parameters should be determined, properly. This
point is very crucial for the performance of the control system. The problem can be
solved using evolutionary optimization techniques such as the genetic algorithm [7–10].
In this paper, a new intelligent decoupled sliding-mode control scheme based on an
improved multiobjective genetic algorithm is proposed. Using this optimization algorithm,
the important parameters of the decoupled sliding mode controller are optimized in a way to
decrease the errors of the position and angle, simultaneously. The results obtained from this
study illustrate that there are some important optimal design facts among objective functions
which have been discovered via the Pareto optimum design approach. Such important design
facts could not be found without using the multiobjective Pareto optimization process. In the
end, simulations are presented to show the feasibility and efficiency of the proposed Pareto
optimum decoupled sliding-mode control for the nonlinear systems.

2. Sliding-Mode Control

Sliding-mode controller is a powerful robust control strategy to treat the model uncertainties
and external disturbances [11]. Furthermore, it has been widely applied to robust control
of nonlinear systems [12–18]. In this section we recall the general concepts of sliding mode
control for a second-order dynamic system. Suppose a nonlinear system is defined by the
general state space equation as follows:

ẋ = f(x, u, t), (2.1)

where x ∈ Rn is the state vector, u ∈ Rm the input vector, n is the order of the system, and m
is the number of inputs. Then, the sliding surface s(e, t) is given by the following:

s(e, t) =
{
e : HTe = 0

}
, (2.2)

where H ∈ Rn represents the coefficients or slope of the sliding surface. Here,

e = x − xd (2.3)

is the negative tracking error vector.
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Usually a time-varying sliding surface s(t) is simply defined in the state-space Rn by
the scalar equation as the following:

s(e, t) =
(
d

dt
+ λ
)n−1

e = 0, (2.4)

where λ is a strictly positive constant that can also be explained as the slope of the sliding
surface. For instance, if n = 2 (for a second-order system) then,

s = ė + λe, (2.5)

and hence, s is simply a weighted sum of the position and velocity error from (2.4). The
nth-order tracking problem is now being replaced by a first-order stabilization problem in
which scalar s is to be kept at zero by a governing reaching condition. By choosing Lyapunov
function V (x) = (1/2)s2, the following equation can guarantee that the reaching condition is
satisfied,

V̇ (x) = sṡ < 0. (2.6)

The existence and convergence conditions can be rewritten as follows:

sṡ ≤ −η|s|. (2.7)

This equation permits a nonswitching region. Here, η is a strictly positive constant, and its
value is usually chosen based on some knowledge of disturbances or system dynamics in
terms of some known amplitudes.

In this control method, by changing the control law according to certain predefined
rules which depend on the position of the error states of the system with respect to sliding
surfaces, those states are switched between stable and unstable trajectories until they reach
the sliding surface.

It can be shown that the sliding condition of (2.6) is always satisfied by the following:

u = ueq − k · sgn(s), (2.8)

where ueq is called equivalent-control input which is obtained by ṡ = 0. k is a design
parameter and k ≥ η.

Function sgn makes the high frequency chattering in control command. Using a
proper definition of a thin boundary layer around the sliding surface, the chattering can be
eliminated (Figure 1). This is accomplished by defining a boundary layer of thickness Φ,
and replacing function sgn with function sat. This function is as the following and shown in
Figure 2,

sat
( s
Φ

)
=

⎧
⎪⎨

⎪⎩

sgn
( s
Φ

)
if
∣∣∣
s

Φ

∣∣∣ ≥ 1

( s
Φ

)
if
∣∣∣
s

Φ

∣∣∣ < 1
. (2.9)
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s = 0

ė

2Φ

Figure 1: Sliding plant of a smooth controller.

S

1

−1

Φ−Φ

Sat (s/Φ)

Figure 2: Function Sat (s/Φ) to eliminate the chattering phenomena in the sliding mode controller.

3. Inverted Pendulum System

In this section, the model of an inverted pendulum is recalled. In fact, the work deals with
the stabilization control of a complicated, nonlinear, and unstable system. A pole, hinged to
a cart moving on a track, is balanced upwards by motioning of the cart via a DC motor. The
system observable state vector is x = [x1, x2, x3, x4]

T , including, respectively, the position of
the cart, the angle of the pole with respect to the vertical axis, and their derivatives. The force
to motion the cart may be expressed as F = αu, where u is the input that is the limited motor
supply voltage. The system dynamic model is as follows:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = f1(x) + b1(x)u,

ẋ4 = f2(x) + b2(x)u,

(3.1)
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Figure 3: Inverted pendulum system.

where

f1(x) =
a
(−fr − μx2

4 sinx2
) − l cos(x2)

(
μg sinx2 − Cx4

)

J + μl sin2x2
,

b1(x) =
aα

J + μl sin2x2
,

f2(x) =
l cos(x2)

(−fr − μx2
4 sinx2

)
+ μg sinx2 − Cx4

J + μl sin2x2
,

b2(x) =
l cosx2α

J + μl sin2x2
,

(3.2)

That is

l =
LM1

2(M2 +M1)
, a = l2 +

J

M2 +M1
, μ = (M2 +M1)l. (3.3)

Masses of the cart and pole are, respectively, M2 and M1, g represents the gravity
acceleration, L is the half length of the pole, and J is the overall inertia moment of the cart
and pole with respect to the system centre of mass. C is the rotational friction coefficient of
the pole, and fr is the horizontal friction coefficient of the cart (Figure 3). This system is a
nonlinear fourth-order system that includes two second-order subsystems in the canonical
form with states [x1, x3]

T and [x2, x4]
T .

4. Ball and Beam System

The ball and beam system is one of the most enduringly popular and important laboratory
models for teaching control systems engineering. Because it is very simple to understand as a
system, and control techniques that can stable it cover many important classical and modern
design methods. The system has a very important property, it is open-loop unstable. The
system is very simple, a steel ball rolling on the top of a long beam. The beam is mounted on
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Motor

m

Beam angle

J

Ball position

Figure 4: Ball and beam system.

the output shaft of an electrical motor, and so the beam can be tilted about its center axis by
applying an electrical control signal to the motor amplifier. The control job is to automatically
regulate the position of the ball on the beam by changing the angle of the beam. This is a
difficult control task because the ball does not stay in one place on the beam, and moves with
acceleration that is approximately proportional to the tilt of the beam. In control terminology,
the system is open-loop unstable because the system output (the ball position) increases
without any limitation for a fixed input (beam angle). Feedback control must be used to
stabilize the system and to keep the ball in a desired position on the beam.

Consider a ball and beam system depicted in Figure 4 and its dynamic is described
below:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = f1(x) + b1(x)u,

ẋ4 = f2(x) + b2(x)u,

(4.1)

where

f1(x) = − 5
7

(
g sin(x2) − x1x

2
4

)
,

b1(x) = 0,

f2(x) =
−mx1

(
2x3x4 − g cos(x2)

)

mx2
1 + J

,

b2(x) =
1

mx2
1 + J

.

(4.2)

The mass of the ball is m, g represents the gravity acceleration, and J is the inertia moment
of the beam (Figure 4). The system observable state vector is x = [x1, x2, x3, x4]

T , including,
respectively, the position of the ball, the angle of the beam with respect to the horizontal
axis, and their derivatives. This system is a nonlinear fourth-order system that includes two
second-order subsystems in the canonical form with states [x1, x3]

T and [x2, x4]
T .
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Figure 5: Seesaw system.

5. Seesaw System

According to the basic physical concepts, in the seesaw mechanism, if the vertical line
along the centre of gravity of the inverted wedge is not passing through the fulcrum
perpendicularly, then the inverted wedge will result in a torque and rotates until reaching
the stable state. If we want to balance the inverted wedge, we have to put an external force
to produce an appropriate opposite torque. For this reason, the inverted wedge is equipped
with a cart to balance the unstable system. The cart can move to produce the appropriate
torque against the internal force (Figure 5).

The observable state vector is x = [x1, x2, x3, x4]
T , including, respectively, the cart

position, the wedge angle with respect to the vertical axis, and their derivatives. The system
dynamic model is as the following:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = f1(x) + b1(x)u,

ẋ4 = f2(x) + b2(x)u,

(5.1)

where

f1(x) = g sin(x2) − Tc
m
x3,

b1(x) =
1
m
,

f2(x) =
Mgr2 sin(x2) +mg

√
x2

1 + r
2
1 sin(x2 + α) − fpx4

J
,

b2(x) =
r1

J
,

(5.2)

that is α = tan−1(x1/r1).
The cart and wedge masses are, respectively, m and M, g represents the gravity

acceleration, r1 is the height of the wedge, r2 is the height of mass centre, J is the inertia
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moment of the wedge, fp is the rotational friction coefficient of the wedge, and Tc is the
friction coefficient of the cart. This system is a nonlinear fourth-order system that includes
two second-order subsystems in the canonical form with states [x1, x3]

T and [x2, x4]
T .

6. Decoupled Sliding-Mode Control

Consider the nonlinear fourth-order coupled system expressed as the following.

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = f1(x) + b1(x)u,

ẋ4 = f2(x) + b2(x)u.

(6.1)

This system includes two second-order subsystems in the canonical form with states [x1, x3]
T

and [x2, x4]
T , and the sliding-mode control mentioned in the Section 2 can only control

one of these subsystems. Hence, the basic idea of the decoupled sliding-mode control is
proposed to design a control law such that the single input u simultaneously controls two
coupled subsystems to accomplish the desired performance [5, 6, 19]. To achieve this goal,
the following sliding surfaces are defined:

s1(x) = λ1 · (x2 − x2d − z) + x4 − x4d = 0 (6.2a)

s2(x) = λ2 · (x1 − x1d) + x3 − x3d = 0. (6.2b)

Here, z is a proportional value of s2 and has a proper range with respect to x2. A comparison
of (6.2a) with (2.5) shows the meaning of (6.2a): the control objective in the first subsystem
of (6.1) changes from x2 = x2d and x4 = x4d to x2 = x2d + z and x4 = x4d. On the other hand,
(6.2b) has the same meaning of (2.5) and its control objectives are x1 = x1d and x3 = x3d. Now,
let the control law for (6.2a) be a sliding mode with a boundary layer, then:

u1 = û1 −Gf1 sat(s1(x)b2(x)Gs1), Gf1 , Gs1 > 0, (6.3)

with

û1 = −b−1
1 (x)

(
f2(x) − ẍ2d + λ1x4 − λ1ẋ2d

)
. (6.4)

So

z = sat(s2 ·Gs2) ·Gf2 , 0 < Gf2 < 1, (6.5)

where Gs2 represents the inverse of the width of the boundary layer for s2, Gf2 transfers s2

to the proper range of x2. Notice, in (6.5) z is a decaying oscillation signal since Gf2 < 1.
Moreover, in (6.2a), if s1 = 0, then x2 = x2d + z and x4 = x4d.
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Now, the control sequence is as follows: when s2 /= 0, then z/= 0 in (6.2a) causes (6.3) to
generate a control action that reduces s2; as s2 decreases, z decreases too. Hence, at the limit
s2 → 0 with x1 → x1d, then z → 0 with x2 → x2d; so, s1 → 0, and the control objective
would be achieved [19].

7. Genetic Algorithm

Optimization in engineering design has always been of great importance and interest
particularly in solving complex real-world design problems. Basically, the optimization
process is defined as finding a set of values for a vector of design variables so that
it leads to an optimum value of an objective or cost function. In such single-objective
optimization problems, there may or may not exist some constraint functions on the design
variables, and they are, respectively, referred to as constrained or unconstrained optimization
problems. There are many calculus-based methods including gradient approaches to search
for mostly local optimum solutions and these are well documented in [20, 21]. However,
some basic difficulties in the gradient methods such as their strong dependence on the
initial guess can cause them to find a local optimum rather than a global one. This has led
to other heuristic optimization methods, particularly genetic algorithms (GAs) being used
extensively during the last decade. Such nature-inspired evolutionary algorithms [22, 23]
differ from other traditional calculus based techniques. The main difference is that GAs
work with a population of candidate solutions, not a single point in search space. This
helps significantly to avoid being trapped in local optima [24] as long as the diversity of
the population is well preserved.

One of complex real-world problems is the controller design, because it is necessary
to assign the control parameters. This parameter tuning is traditionally based on the trial
and error procedure; however, this problem can be solved via evolutionary algorithms,
for example, genetic algorithms. In the existing literature, several previous works have
considered the evolutionary algorithms for control design. For an overview of evolutionary
algorithms in the control engineering, [25] is appropriate. In particular, the pole placement
procedure to design a discrete-time regulator in [26] and the observer-based feedback
control design in [27] are formulated as multiobjective optimization problems and solved via
genetic algorithms. Moreover, in [28], two decoupled sliding-mode control configurations are
designed for a scale model of an oil platform supply ship while the genetic algorithm is used
for optimization.

A simple genetic algorithm includes individual selection from population based on
the fitness, crossover, and mutation with some probabilities to generate new individuals.
With the genetic operation going on, the individual maximum fitness and the population
average fitness are increased, steadily. When applied to a problem, GA uses a genetics-based
mechanism to iteratively generate new solutions from currently available solutions. It then
replaces some or all of the existing members of the current solution pool with the newly
created members. The motivation behind the approach is that the quality of the solution pool
should improve with the passage of time [22, 23].

8. Multiobjective Optimization

In multiobjective optimization problems which is also called multi-criteria optimization
problems or vector optimization problems, there are several objective or cost functions
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(a vector of objectives) to be optimized (minimized or maximized), simultaneously. These
objectives often conflict with each other so that as one objective function improves, another
deteriorates. Therefore, there is no single optimal solution that is best with respect to all
the objective functions. Instead, there is a set of optimal solutions, well-known as Pareto
optimal solutions [29–32], which distinguishes significantly the inherent natures between
single-objective and multiobjective optimization problems.

In fact, multiobjective optimization has been defined as finding a vector of decision
variables satisfying constraints to give acceptable values to all objective functions. Such
multiobjective minimization based on Pareto approach can be conducted using some
definitions [33].

8.1. Definition of Pareto Dominance

A vector �U = [u1, u2, . . . , un], is dominance to vector �V = [v1, v2, . . . , vn] (denoted by �U ≺ �V )
if and only if for all i ∈ {1, 2, . . . , n}, ui ≤ vi ∧ ∃j ∈ {1, 2, . . . , n} : uj < vj .

8.2. Definition of Pareto Optimality

A point X∗ ∈ Ω (Ω is a feasible region in Rn) is said to be Pareto optimal (minimal) if and
only if there is not X ∈ Ω which is dominance to X∗. Alternatively, it can be readily restated
as following. For all X ∈ Ω, X /=X∗, ∃i ∈ {1, 2, . . . , m} : fi(X∗) < fi(X).

8.3. Definition of Pareto Set

For a given multiobjective optimization problem, a Pareto set P ∗ is a set in the decision
variable space consisting of all the Pareto optimal vectors. P ∗ = {X ∈ Ω | �X′ ∈ Ω : F(X′) ≺
F(X)}.

8.4. Definition of Pareto Front

For a given multiobjective optimization problem, the Pareto front PT ∗ is a set of vectors of
objective functions which are obtained using the vectors of decision variables in the Pareto
set P ∗, that is PT ∗ = {F(X) = (f1(X), f2(X), . . . , fm(X)) : X ∈ P ∗}. In other words, the Pareto
front PT ∗ is a set of the vectors of objective functions mapped from P ∗.

In fact, evolutionary algorithms have been widely used for multiobjective opti-
mization because of their natural properties suited for these types of problems. This is
mostly because of their parallel or population-based search approach. Therefore, most
of the difficulties and deficiencies within the classical methods in solving multiobjective
optimization problems are eliminated. For example, there is no need for either several runs
to find all individuals of the Pareto front or quantification of the importance of each objective
using numerical weights. In this way, the original nondominated sorting procedure given by
Goldberg [22] was the catalyst for several different versions of multiobjective optimization
algorithms [29, 30]. However, it is very important that the genetic diversity within the
population be preserved sufficiently. This main issue in multiobjective optimization problems
has been addressed by many related research works [34]. Consequently, the premature
convergence of multiobjective optimization evolutionary algorithms is prevented, and the
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solutions are directed and distributed along the true Pareto front if such genetic diversity is
well provided. The Pareto-based approach of NSGAII [33] has been used recently in a wide
area of engineering multiobjective optimization problems because of its simple yet efficient
non-dominance ranking procedure in yielding different level of Pareto frontiers. However,
the crowding approach in such state-of-the-art multiobjective optimization problems [35] is
not efficient as a diversity preserving operator [36]. In this paper, a new diversity preserving
algorithm called ε-elimination diversity algorithm [36], as a multiobjective tool, searches the
definition space of decision variables and returns the optimum answers in Pareto form. In this
ε-elimination diversity approach that is used to replace the crowding distance assignment
approach in NSGAII [33], all the clones and/or ε-similar individuals based on Euclidean
norm of two vectors are recognized and simply eliminated from the current population.
Therefore, based on a predefined value of ε as the elimination threshold (ε = 0.01 has been
used in this paper) all the individuals in a front within this limit of a particular individual are
eliminated. It should be noted that such ε-similarity must exist both in the space of objectives
and in the space of the associated design variables. This will ensure that very different
individuals in the space of design variables having ε-similarity in the space of objectives
will not be eliminated from the population. Evidently, the clones or ε-similar individuals are
replaced from the population with the same number of new randomly generated individuals.
Meanwhile, this will additionally help to explore the search space of the given multiobjective
optimization problems more efficiently [36].

9. Multiobjective Optimization of Decoupled Sliding Mode Control

As mentioned before this, it is necessary for the practical engineering applications to
solve the optimization problems involving multiple design criteria which are also called
objective functions. Furthermore, the design criteria may conflict with each other so that
improving one of them will deteriorate since another. The inherent conflicting behavior of
such objective functions lead to a set of optimal solutions named Pareto solutions. These
types of problems can be solved using evolutionary multiobjective optimization techniques.
Here, for multiobjective optimization of the decoupled sliding mode controller, vector
[Gf1 , Gs1 , λ1, Gf2 , Gs2 , λ2] is the vector of selective parameters of the decoupled sliding mode
controller. Gf1 and Gs1 are positive constant. λ1 and λ2 are coefficients of sliding surfaces,
and Gs2 represents the inverse of the width of the boundary layer of s2. Gf2 transfers s2 to
the proper range of x2. The error of the position and the error of the angle are functions
of this vector’s components. This means that by selecting various values for the selective
parameters, we can make changes in the position and angel errors. In this paper, we are
concerned in choosing values for the selective parameters to minimize above two functions.
Clearly, this is an optimization problem with two object functions (errors of position
and angle) and six decision variables [Gf1 , Gs1 , λ1, Gf2 , Gs2 , λ2]. The regions of the selective
parameters are as follows:

Gs2 , Gf1 ,Gs1 : positive constant, Gs2 , Gf1 , Gs1 > 0,

λ1, λ2: coefficients of the sliding surface, λ1, λ2 > 0,

Gf2 : transfers s2 to a proper range of x2, 0 < Gf2 < 1.

The following parameters of the genetic algorithm are considered.
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Figure 6: Pareto front of the angle error and distance error for the inverted pendulum.
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Figure 7: Simulation results for the pole angle.

Population size = 100, chromosome length = 48, generations = 300, crossover
probability = 0.8, and mutation probability = 0.02. Also, the stopping criterion for this
algorithm is the maximum number of generations.

10. Simulation and Results for the Inverted Pendulum System

The simulation for the inverted pendulum system considered here is carried out by MATLAB
software. The initial values are as the following:

x1(0) = 0, x2(0) =
π

6
rad, x3(0) = 0, x4(0) = 0. (10.1)

The system parameters and constants used in the simulation are given in Table 1.
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Figure 12: Pareto front of the angle error and distance error for the ball and beam system.

Table 1: Inverted pendulum parameters.

The mass of the pole M1 0.5

The mass of the cart M2 2

The half length of the pole L 0.5

The inertia moment of the cart and pole J 0.4

The friction constant of the pole C 0.1

The friction constant of the cart fr 0.25

The gravity acceleration g 9.81

The force coefficient α 3
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Figure 13: Simulation results for the beam angle.
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Figure 14: Simulation results for the ball position.

When we apply the multiobjective genetic algorithm, we achieve a Pareto front of the
angle error and distance error as demonstrated in Figure 6.

Figure 6 is the chart resulted from multiobjective optimization which all the presented
points are nondominated to each other. Each point in this chart is a representative of a vector
of selective parameters which if we choose it for the decoupled sliding-mode controller, the
analysis tends to objective functions corresponding to that point of chart. The design variables
and objective functions of the optimum design points A, B, and C are presented in Table 2.

Achieving several solutions, all of which are considered optimum is a unique property
of multiobjective optimization. Designer in facing to Pareto charts, among several different
optimum points can choose a suitable multisided design point, easily. According to the Pareto
chart, we applied point C for simulation, as shown in Figures 7, 8, 9, 10, and 11.

The simulation results (Figures 7, 8, 9, 10, and 11) show that the pole and the cart can
be stabilized to the equilibrium point.
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The numerical results show that the control action is bounded between −15 and 10 (N),
and sliding surface s2(x) reaches to zero during the simulation.

11. Simulation and Results for the Ball and Beam System

The initial values of the ball and beam system are considered in the following form:

x1(0) = 0.1 m, x2(0) =
π

3
rad, x3(0) = 0, x4(0) = 0. (11.1)

The system parameters and constants used in the simulation are given in Table 3.
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Figure 18: Pareto front of the angle error and distance error for the seesaw system.

When the multiobjective genetic algorithm is applied, a Pareto front of the angle error
and distance error would be achieved (Figure 12).

Figure 12 shows the Pareto front obtained from the modified NSGAII algorithm in
an arbitrary run for the ball and beam system. In this figure, points A and C stand for the
best distance error and angle error, respectively. Furthermore, point B could be a trade-off
optimum choice when considering minimum values of both angle error and distance error.
Table 4 illustrates the design variables and objective functions corresponding to the optimum
design points A, B, and C.

The time responses of the ball and beam system related to point B are shown in
Figures 13, 14, 15, 16, and 17. These figures demonstrate that the ball and beam system can be
stabilized to the equilibrium point.
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Figure 19: Simulation results for the wedge angle.
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Figure 20: Simulation results for the cart position.
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Figure 21: Simulation results for the control action.
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Table 2: Comparison among points A, B, and C for Figure 6.

Point Gf1 Gs1 λ1 Gf2 Gs2 λ2 Angle error Distance error

A 9.9294 9.8941 1.4941 0.9608 0.1851 0.1459 0.3699 22.6927
B 9.9294 9.8941 1.4941 0.9608 0.1851 0.2987 0.4271 12.2111
C 9.8941 9.8941 1.4941 1.0000 0.1772 0.4946 0.5065 7.2827

Table 3: Ball and beam system parameters.

The mass of the ball m 0.05
The inertia moment of the beam J 0.0833
The gravity acceleration g 9.81

Table 4: Comparison among points A, B, and C for Figure 12.

Point Gf1 Gs1 λ1 Gf2 Gs2 λ2 Angle error Distance error

A 29.8443 1.5451 48.4345 0.6823 46.8690 0.1074 0.0824 0.6174
B 0.2957 0.4158 48.2388 0.6647 41.5855 0.4725 0.0944 0.1402
C 9.8843 1.0040 41.5855 0.6612 2.0569 1.5008 0.1525 0.0225

Table 5: Seesaw system parameters.

The mass of the cart m 0.46
The mass of the wedge M 1.52
The height of the wedge r1 0.148
The height of center of mass r2 0.123
The inertia moment of the wedge J 0.044
The friction coefficient of the wedge fp 0.3
The friction coefficient of the cart Tc 0.7
The gravity acceleration g 9.8

Table 6: Comparison among points A, B, and C for Figure 18.

Point Gf1 Gs1 λ1 Gf2 Gs2 λ2 Angle error Distance error

A 9.9612 7.6706 9.7671 0.0088 0.0060 0.0245 0.0963 0.4489
B 9.9612 0.2165 5.1082 0.0088 0.0557 0.0010 0.1319 0.3345
C 5.0306 0.29416 8.75766 0.60046 0.09306 0.9491 0.1984 0.1729

Furthermore, the simulation shows that the control action is bounded between −1.2
and 4 (N), and sliding surface s2(x) reaches to zero during simulation.

12. Simulation and Results for the Seesaw System

In this section, the simulation results for seesaw system are investigated. The initial values of
this system are described by the following equations:

x1(0) = 0.3 m, x2(0) = −π
6

rad, x3(0) = 0, x4(0) = 0. (12.1)
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The system parameters used in the simulation are given in Table 5.
Figure 18 demonstrates a Pareto front of two objective functions (angle error and

distance error) which is achieved of the multiobjective genetic algorithm (e.g. modified
NSGAII).

It is clear that all points in Figure 18 are nondominated to each other, and each point
in this chart is a representative of a vector of selective parameters for the decoupled sliding
mode controller. Moreover, choosing a better value for any objective function in the Pareto
front would cause a worse value for another objective function. Here, point B has been chosen
from Figure 18 to design an optimum decupled sliding mode controller (Figures 19, 20, 21,
22, and 23). Design variables and objective functions related to the optimum design points A,
B, and C are detailed in Table 6.

The simulations (Figures 19, 20, 21, 22, and 23) shows that the seesaw system is
stabilized to the equilibrium point after 3 seconds, and the control effort is bounded between
−5 and 10 (N).
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13. Conclusion

This paper proposes the decoupled sliding-mode technique for stabilising the coupled
nonlinear systems while the multiobjective genetic algorithm is employed in order to
optimize two objective functions. This method is a universal design method and suitable
to various kinds of control objects. Usage this method includes two steps. The first step is
to design the decoupled sliding-mode controller for the nonlinear system. The second step
is to apply the multiobjective optimization tool to search the definition space of decision
variables and to return the optimum answers in the Pareto form. The simulation results on
three different and typical control systems show good control and robust performance of the
proposed strategy.
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The synchronization of coupled networks with mixed delays is investigated by employing
Lyapunov functional method and intermittent control. A sufficient condition is derived to ensure
the global synchronization of coupled networks, which is controlled by the designed intermittent
controller. Finally, a numerical simulation is constructed to justify the theoretical analysis.

1. Introduction

Various large-scale and complicated systems can be modelled by complex networks, such as
the Internet, genetic networks, ecosystems, electrical power grids, and the social networks.
A complex network is a large set of interconnected nodes, which can be described by the
graph with the nodes representing individuals in the graph and the edges representing
the connections among them. The most remarkable recent advances in study of complex
networks are the developments of the small-world network model [1] and scale-free network
model [2], which have been shown to be very closer to most real-world networks as
compared with the random-graph model [3, 4]. Thereafter, small-world and scale-free
networks have been extensively investigated.

The dynamical behaviors of complex networks have become a focal topic of great
interest, particularly the synchronization phenomena, which is observed in natural, social,
physical, and biological systems and has been widely applied in a variety of fields, such as
secure communication, image processing, and harmonic oscillation generation. It is noted
that the dynamical behavior of a complex network is determined not only by the dynamical
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rules governing the isolated nodes, referred to as self-dynamics, but also by information flow
along the edges, which depends on the topology of the network. Synchronization in an array
of linearly coupled dynamical systems was investigated in [5]. Later, many results on local,
global, and partial synchronization in various coupled systems have also been obtained in
[6–15]. As a special case of coupled systems, coupled neural networks with time delay have
also been found to exhibit complex behaviors. The estimation and diagnosis for time delay
systems are discussed in [16, 17], and synchronization for coupled neural networks with time
delay has been investigated by many researchers, for example, [8–15].

In the case that the whole network cannot synchronize by itself, some controllers
should be designed and applied to force the network to synchronize. Recently, another
interesting intermittent control was introduced and studied, that is, the control time is
periodic, and in any period the time is composed of work time and rest time. It is a
straightforward engineering approach to process control of any typelan approach that
has been used for a variety of purposes in such engineering fields as manufacturing,
transportation, and communication. Intermittent control has been introduced to control
nonlinear dynamical systems [18] and has been studied in [19–26]. In [18], the authors
investigated numerically chaos synchronization under the condition that the interacting
systems, that is, master and slave systems are coupled intermittently. In [19, 20], the
stabilization problems of chaotic systems with or without delays by periodically intermittent
control were discussed. Huang et al. discussed the synchronization of coupled chaotic
systems with delay by using intermittent state feedback in [21]. In [25], the authors
synchronize coupled networks using pinning control and intermittent control. In [26], cluster
synchronization was studied for coupled networks without time delay using adaptive
intermittent control.

Another type of time delays, namely, distributed delays, has begun to receive research
attention. The main reason is that a neural network usually has a spatial nature due to the
presence of an amount of parallel pathways of a variety of axon sizes and lengths, and it
is desirable to model them by introducing continuously distributed delays over a certain
duration of time, such that the distant past has less influence compared to the recent behavior
of the state [27]. Therefore, both discrete and distributed time delays should be taken into
account [28–33]. Although synchronization has been investigated under intermittent control,
[25, 26], there is still no theoretical result of synchronization for coupled networks with mixed
delay.

Motivated by the above discussion, the intermittent controller will be designed to
achieve the synchronization for coupled networks with mixed delay. The rest of the paper
is organized as follows. In Section 2, some preliminary definitions and lemmas are briefly
outlined. Some synchronization criteria are given and intermittent controller are designed in
Section 3. An illustrative simulation is given to verify the theoretical analysis in Section 4.
Conclusions are finally drawn.

Notations

R

n is the n-dimensional Euclidean space; R

m×n denotes the set of m × n real matrix. I is
the identity matrix with appropriate dimension, and the superscript “T” represents the
transpose. Matrix dimensions, if not explicitly stated, are assumed to be compatible for
algebraic operations.
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2. Model Description and Preliminaries

Consider a dynamical network consisting of N identical and diffusively coupled nodes,
with each node being an n-dimensional delayed neural network. The state equations of the
network are

ẋi(t) = −Dxi(t) +Af(xi(t)) + Bg(xi(t − τ)) + C
∫ t

t−τ
h(xi(v))dv

+ I(t) +
N∑

j=1,j /= i

GijΓ
(
xj(t) − xi(t)

)
,

(2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ R

n is the state vector of the ith node; D =
diag(d1, d2, . . . , dn) > 0 denotes the rate with which the cell i resets its potential to the
resting state when isolated from other cells and inputs; A ∈ R

n×n, B ∈ R

n×n, and
C ∈ R

n×n represent the connection weight matrix, the discretely delayed connection
weight matrix, and the distributively delayed connection weights, respectively; f(xi(·)) =
[f1(xi1(·)), f2(xi2(·)), . . . , fn(xin(·))]T ∈ R

n, g(xi(·)) = [g1(xi1(·)), g2(xi2(·)), . . . , gn(xin(·))]T ∈
R

n and h(xi(·)) = [h1(xi1(·)), h2(xi2(·)),. . . , hn(xin(·))]T ∈ R

n are activation functions; I(t) is
the input vector of each node; Γ ∈ R

n×n is the inner coupling matrix; G = (Gij)N×N is the
coupling configuration matrix representing the topological structure of the network, where
Gij is defined as follows: if there exists a connection between node i and node j, Gij > 0,
otherwise Gij = 0 (j /= i), and the diagonal elements of matrix G are defined by

Gii = −
N∑

j=1,j /= i

Gij , (2.2)

which ensures the diffusion that
∑N

j=1 Gij = 0. Equivalently, network (2.1) can be rewritten in
a form as follows:

ẋi(t) = −Dxi(t) +Af(xi(t)) + Bg(xi(t − τ)) + C
∫ t

t−τ
h(xi(v))dv

+ I(t) +
N∑

j=1

GijΓxj(t), i = 1, 2, . . . ,N.

(2.3)

Suppose that the coupled network (2.3) is connected in the sense that there are no isolated
clusters, then the coupling matrix G is irreducible.

Note that a solution to an isolated node satisfies

ds(t)
dt

= −Ds(t) +Af(s(t)) + Bg(s(t − τ)) + C
∫ t

t−τ
h(s(v))dv + I(t). (2.4)
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To realize the synchronization of network (2.3), the intermittent strategy is selected, and the
controlled network can be described by

ẋi(t) = −Dxi(t) +Af(xi(t)) + Bg(xi(t − τ)) + C
∫ t

t−τ
h(xi(v))dv

+ I(t) +
N∑

j=1

GijΓxj(t) + ui, i = 1, 2, . . . ,N,

(2.5)

where

ui = −ki(t)(xi(t) − s(t)), (2.6)

k(t) is the intermittent linear state feedback control gain defined as follows:

ki(t) =

{
ki, nω ≤ t ≤ nω + δ,
0, nω + δ < t ≤ (n + 1)ω,

(2.7)

where ki ∈ R is a constant control gain, ω > 0 is the control period, and δ > 0 is called the
control width. In this paper, our goal is to design suitable δ, ω, and ki such that network
(2.5) synchronize with respect to the isolated node s(t). Denote ei(t) = xi(t) − s(t), then the
following error dynamical system is obtained:

ėi(t) = − Dei(t) +A
[
f(xi(t)) − f(s(t))

]
+ B

[
g(xi(t − τ)) − g(s(t − τ))

]

+ C

∫ t

t−τ
[h(xi(v)) − h(s(v))]dv +

N∑

j=1

GijΓej(t) − kiei(t), nω ≤ t ≤ nω + δ,

ėi(t) = − Dei(t) +A
[
f(xi(t)) − f(s(t))

]
+ B

[
g(xi(t − τ)) − g(s(t − τ))

]

+ C

∫ t

t−τ
[h(xi(v)) − s(v)]dv +

N∑

j=1

GijΓej(t), nω + δ < t ≤ (n + 1)ω.

(2.8)

(H) We assume that f , g, and h are Lipschitz continuous functions; there exist positive
constants Lf , Lg and Lh such that, for all x, y ∈ R

m,

∥∥f(x) − f(y)∥∥ ≤ Lf
∥∥x − y∥∥,

∥∥g(x) − g(y)∥∥ ≤ Lg
∥∥x − y∥∥,

∥∥h(x) − h(y)∥∥ ≤ Lh
∥∥x − y∥∥.

(2.9)
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Definition 2.1. For any positive integers p, q, r, s, we define the Kronecker product of two
matrices A ∈ R

p×q, B ∈ R

r×s as follows:

A ⊗ B =

⎡

⎢
⎣

a11B · · · a1qB
...

. . .
...

ap1B · · · apqB

⎤

⎥
⎦ ∈ R

pr×qs. (2.10)

Lemma 2.2. By the definition of Kronecker product, the following properties hold:

(1) (A ⊗ B)T = AT ⊗ BT ;
(2) (αA) ⊗ B = A ⊗ (αB), where α is a real number;

(3) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD).

Lemma 2.3. For any vectors x, y ∈ R

m, and positive-definite matrixQ ∈ R

m×m, the following matrix
inequality holds:

2xTy ≤ xTQx + yTQ−1y. (2.11)

Lemma 2.4 (Jensen’s inequality [34]). For any constant matrix V ∈ R

m×m, V > 0, scalar
0 < r(t) < r, vector function ν : [0, r] → R

m such that the integrations concerned are well defined,
then

r(t)
∫ r(t)

0
νT (s)Vν(s)ds ≥

(∫ r(t)

0
ν(s)ds

)T

V

(∫ r(t)

0
ν(s)ds

)

. (2.12)

Lemma 2.5 (Halanay inequality [35]). Let V : [μ − τ,∞) → [0,∞) be a continuous function
such that

dV (t)
dt

≤ −aV (t) + bmaxVt (2.13)

is satisfied for t ≥ μ. If a > b > 0, then

V (t) ≤ [
maxVμ

]
exp

{−r(t − μ)}, t ≥ μ, (2.14)

where maxVt = supt−τ≤θ≤tV (θ), and r > 0 is the smallest real root of the following equation:

−r = −a + b exp{rτ}. (2.15)

Lemma 2.6 (see [19]). Let V : [μ − τ,∞) → [0,∞) be a continuous function, such that

dV (t)
dt

≤ aV (t) + bmaxVt (2.16)
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is satisfied for t ≥ μ. If a > 0, b > 0, then

V (t) ≤ maxVt ≤
[
maxVμ

]
exp

{
(a + b)

(
t − μ)}, t ≥ μ, (2.17)

where maxVt = supt−τ≤θ≤tV (θ).

3. Criteria for Synchronization

Theorem 3.1. Suppose that assumption (H) holds. The controlled coupled network (2.5) globally
synchronizes to (2.4) if there are positive definite matrix P , positive constants α, β, γ, a1, a2, b1, b2

such that the following conditions hold:

(a) IN ⊗ (Q + a1P) +G ⊗ Γ −K ⊗ In ≤ 0,

(b) IN ⊗ (Q − a2P) +G ⊗ Γ ≤ 0,

(c) β−1L2
gIn − b1P ≤ 0,

(d) γ−1L2
h
In − b2P ≤ 0,

(e) a1 > b = b1 + τ2b2

(f) ρ = r(δ − τ) − (a2 + b)(ω − δ) > 0,

where Q = −PD + (α/4)PAATP + α−1L2
f In + (β/4)PBBTP + (γ/4)PCCTP + a1P , K =

diag(k1, k2, . . . , kN) and r is the positive solution of −r = −a1 + berτ .

Proof. Consider the following Lyapunov function:

V (t) =
1
2

N∑

i=1

ei(t)TPei(t) =
1
2
eT (IN ⊗ P)e(t), (3.1)

where e(t) = [eT1 (t), e
T
2 (t), . . . , e

T
N(t)]T . Calculate the derivative V (t) with respect to time t

along the trajectory of error system (2.8), and estimate it.
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For lω ≤ t ≤ lω + δ, using Lemma 2.3 and assumption, we have the following:

V̇ (t) =
N∑

i=1

eTi (t)Pėi(t)

=
N∑

i=1

eTi (t)P

⎡

⎣ −Dei(t) +A
(
f(xi(t)) − f(s(t))

)
+ B

(
g(xi(t − τ)) − g(s(t − τ))

)

+C

(∫ t

t−τ
h(xi(v))dv −

∫ t

t−τ
h(s(v))dv

)

+
N∑

j=1

GijΓej(t) − kiei(t)
⎤

⎦

≤
N∑

i=1

⎡

⎣ − eTi (t)PDei(t) +
α

4
eTi (t)PAA

TPei(t) + α−1∥∥f(xi(t)) − f(s(t))
∥
∥2

+
β

4
eTi (t)PBB

TPei(t) + β−1∥∥g(xi(t − τ)) − g(s(t − τ))
∥∥2

+
γ

4
eTi (t)PCC

TPei(t) + γ−1

∥∥∥∥∥

∫ t

t−τ
h(xi(v))dv −

∫ t

t−τ
h(s(v))dv

∥∥∥∥∥

2
⎤

⎦

+
N∑

i=1

N∑

j=1

Gije
T
i (t)Γej(t) −

N∑

i=1

kie
T
i (t)ei(t)

≤ eT (t)IN ⊗
(
− PD +

α

4
PAATP + α−1L2

f In

+
β

4
PBBTP +

γ

4
PCCTP + a1P

)
e(t) − a1e

T (t)(IN ⊗ P)e(t)

+ eT (t − τ)
[
IN ⊗

(
β−1L2

gIn − b1P
)]
e(t − τ) + b1e

T (t − τ)(IN ⊗ P)e(t − τ)

+

[∫ t

t−τ
e(v)dv

]T[
IN ⊗

(
γ−1L2

hIn − b2P
)][∫ t

t−τ
e(v)dv

]

+ b2

[∫ t

t−τ
e(v)dv

]T
(IN ⊗ P)

[∫ t

t−τ
e(v)dv

]

+ eT (t)(G ⊗ Γ −K ⊗ In)e(t).

(3.2)

From Jensen’s inequality in Lemma 2.4, we have

b2

[∫ t

t−τ
e(v)dv

]T
(IN ⊗ P)

[∫ t

t−τ
e(v)dv

]

≤ τb2

∫ t

t−τ
eT (v)(IN ⊗ P)e(v)dv. (3.3)

By condition (a), (c), (d), and (3.3), one has

V̇ (t) ≤ −a1V (t) + bmaxVt (3.4)
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For lω + δ ≤ t ≤ (l + 1)ω, from conditions (b), (c), and (d), one has

V̇ (t) < a2V (t) + bVt. (3.5)

Next, we will prove the error ‖e(t)‖ → 0.
From Lemma 2.5 and (3.2), one has

V (t) ≤ ‖V (0)‖τe−rt, for 0 ≤ t ≤ δ, (3.6)

where r is the unique positive solution of −r = −a1 + berτ .
From Lemma 2.6, one obtain the following:

V (t) ≤ ‖V (δ)‖τe(a2+b)(t−δ)

= max
δ−τ≤t≤δ

|V (t)|e(a2+b)(t−δ)

≤ ‖V (0)‖τe−r(δ−τ)e(a2+b)(t−δ),

(3.7)

for δ ≤ t ≤ ω.
Suppose that ω − τ > δ, then

‖V (ω)‖τ = max
ω−τ≤t≤ω

|V (t)|

≤ max
ω−τ≤t≤ω

{
‖V (0)‖τe−r(δ−τ)e(a2+b)(t−δ)

}

= ‖V (0)‖τe−r(δ−τ)e(a2+b)(ω−δ)

= ‖V (0)‖τe−ρ.

(3.8)

Using mathematical induction, we can prove, for any positive integer l,

‖V (lω)‖τ ≤ ‖V (0)‖τe−lρ. (3.9)

Assume (3.9) holds when k ≤ l. Now, we prove (3.9) is true when k = l + 1.
First, we have

‖V (lω)‖τ ≤ ‖V (0)‖τe−lρ. (3.10)

When t ∈ [lω, lω + δ],

V (t) ≤ ‖V (lω)‖τe−r(t−lω) ≤ ‖V (0)‖τe−lρe−r(t−lω). (3.11)
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Thus, for t ∈ [lω + δ, (l + 1)ω], we have

V (t) ≤ ‖V (lω + δ)‖τe(a2+b)(t−lω−δ)

=
[

max
lω+δ−τ≤t≤lω+δ

|V (t)|
]
e(a2+b)(t−lω−δ)

≤
[

max
lω+δ−τ≤t≤lω+δ

‖V (0)‖τe−lρe−r(t−lω)
]

× e(a2+b)(t−lω−δ)

≤ ‖V (0)‖τe−lρe−r(δ−τ)e(a2+b)(t−lω−δ),

‖V ((l + 1)ω)‖τ = max
(l+1)ω−τ≤t≤(l+1)ω

|V (t)|

≤ max
(l+1)ω−τ≤t≤(l+1)ω

[
‖V (0)‖τe−lρe−r(δ−τ)e(a2+b)(t−lω−δ)

]

= ‖V (0)‖τe−lρe−r(δ−τ)e(a2+b)(ω−δ)

= ‖V (0)‖τe−(l+1)ρ.

(3.12)

Thus, (3.9) holds for all positive integers k.
For any t > 0, there is n0 ≥ 0, such that n0ω ≤ t ≤ (n0 + 1)ω;

V (t) ≤ ‖V (n0ω)‖τe(a2+b)(t−n0ω)

≤ ‖V (0)‖τe−n0ρe(a2+b)ω

≤ ‖V (0)‖τe(a2+b)ωeρ exp
(
− ρ
ω
t
)
.

(3.13)

Let M = ‖V (0)‖τe(a2+b)ωeρ, one has the following inequality:

λm(P)‖e(t)‖2 ≤ V (t) ≤M exp
(
− ρ
ω
t
)
, for t ≥ 0. (3.14)

Obviously,

‖e(t)‖ ≤
√

M

λm(P)
exp

(
− ρ

2ω
t
)
, (3.15)

which means the coupled networks (2.5) achieve synchronization. The proof is completed.

Corollary 3.2. For given control period ω and control duration δ, coupled networks (2.5) achieve
synchronization, if the control gain K = kIN satisfies

k > Φ(r∗), (3.16)
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where

Φ(r) =M + r +
(

2L2
g + 2τ2L2

h

)
erτ ,

r∗ =
ω − δ
δ − τ

(
M + 2L2

g + 2τ2L2
h

)
.

(3.17)

Proof. In Theorem 3.1, let P = I, β = γ = 1, b1 = 2L2
g , b2 = 2L2

h
, obviously, (c) and (d) in

Theorem 3.1 hold.
Furthermore, let M = λM(Q) + λM(G) × λM(Γ), where λM(·) is the maximum of

eigenvalue, a1 = k − M > 0 and a2 = M, (a) and (b) in Theorem 3.1 hold. From the
above parameters and (f) in Theorem 3.1 hold if r > r∗ and r is the positive solution of
−r = −a1 + (2L2

g + 2τ2L2
h
)erτ , that is, k = r +M+Lf + (2L2

g + 2τ2L2
h
)erτ = Φ(r). Obviously, Φ(r)

is increasing function.
Therefore, (a)–(f) hold if

k > max[Φ(r∗),M] = Φ(r∗). (3.18)

Remark 3.3. Corollary 3.2 shows us how to determine the control gain in a simple way
provided that the control period ω and control duration δ are given.

4. Numerical Example

Consider the following coupled networks:

ẋi(t) = −Dxi(t) +Af(xi(t)) + Bg(xi(t − τ))

+ C
∫ t

t−τ
h(xi(v))dv +

N∑

j=1

GijΓxj(t),

xi(t) = φ(t), −τ ≤ t ≤ 0,

(4.1)

where xi(t) = [xi1(t), xi2(t)]
T , i = 1, 2, 3 are the state variable of the ith neural network.

Choose τ = 1, f(xi(t)) = g(xi(t)) = h(xi(t)) = (3/5)[tanh(xi1), tanh(xi2)]
T , and

D =
[

1 0
0 1

]
, A =

[
2.0 −0.1
−5.0 4.5

]
,

B =
[−1.5 −0.1
−0.2 −2

]
, C =

[−0.2 −0.1
−1.6 −3.2

]
, G =

⎡

⎣
−4 2 2
1 −2 1
1 2 −3

⎤

⎦,

(4.2)
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Figure 1: Error state ei1(t).

0 20 40 60 80 100 120 140 160 180

t

e i
2

2.5

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

Figure 2: Error state ei2(t).

and input vectors I =
[

0
0

]
, and ki(t) is the intermittent linear state feedback control gain

defined as the following:

ki(t) =

{
ki, kω ≤ t ≤ kω + δ,
0, kω + δ < t ≤ (k + 1)ω,

(4.3)

where the control gain k1 = k2 = k3 = 0.1, the control period ω = 3, and the control width
δ = 1.3. The above suitable δ, ω and K such that (4.1) synchronize. The synchronize errors
are given in Figures 1 and 2.
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5. Conclusion

In this paper, synchronization of coupled networks with mixed time delay has been investi-
gated via intermittent control. Some criteria for ensuring coupled networks synchronization
have been derived, and some analytical techniques have been proposed to obtain appropriate
control period ω, control width δ, and control gain for achieving network synchronization.
Finally, the simulation confirmed the effectiveness of the proposed intermittent controller.
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[4] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publications of the Mathematical Institute
of the Hungarian Academy of Sciences, vol. 5, pp. 17–61, 1960.

[5] C. W. Wu and L. O. Chua, “Synchronization in an array of linearly coupled dynamical systems,” IEEE
Transactions on Circuits and Systems, vol. 42, no. 8, pp. 430–447, 1995.

[6] C. W. Wu, “Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling,”
IEEE Transactions on Circuits and Systems, vol. 50, no. 2, pp. 294–297, 2003.

[7] E. M. Izhikevich and F. C. Hoppensteadt, “Slowly coupled oscillators: phase dynamics and
synchronization,” SIAM Journal on Applied Mathematics, vol. 63, no. 6, pp. 1935–1953, 2003.

[8] W. Lu and T. Chen, “Synchronization of coupled connected neural networks with delays,” IEEE
Transactions on Circuits and Systems, vol. 51, no. 12, pp. 2491–2503, 2004.

[9] G. Chen, J. Zhou, and Z. Liu, “Global synchronization of coupled delayed neural networks and
applications to chaotic CNN models,” International Journal of Bifurcation and Chaos in Applied Sciences
and Engineering, vol. 14, no. 7, pp. 2229–2240, 2004.

[10] W. Wang and J. Cao, “Synchronization in an array of linearly coupled networks with time-varying
delay,” Physica A, vol. 366, pp. 197–211, 2006.

[11] J. Cao, G. Chen, and P. Li, “Global synchronization in an array of delayed neural networks with hybrid
coupling,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 38, no. 2, pp. 488–498, 2008.
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An investigation is carried out on the systematic analysis of the dynamic behavior of the
hybrid squeeze-film damper (HSFD) mounted a rotor-bearing system with strongly nonlinear
oil-film force and nonlinear rub-impact force in the present study. The dynamic orbits of the
system are observed using bifurcation diagrams plotted using the dimensionless rotating speed
ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams,
power spectra, Poincaré maps, bifurcation diagrams, maximum Lyapunov exponents, and fractal
dimension of the rotor-bearing system. The dynamic behaviors are unlike the usual ways into
chaos (1T ⇒ 2T ⇒ 4T ⇒ 8T ⇒ 16T ⇒ 32T · · · ⇒ chaos or periodic ⇒ quasi-periodic ⇒ chaotic), it
suddenly gets in chaos from the periodic motion without any transition. The results presented in
this study provide some useful insights into the design and development of a rotor-bearing system
for rotating machinery that operates in highly rotating speed and highly nonlinear regimes.

1. Introduction

Squeeze-film damper (SFD) bearing is actually a special type of journal bearing with its
journal mechanically prevented from rotating but free to vibrate within the clearance space.
The hybrid squeeze-film damper (HSFD) and the porous squeeze-film damper (PSFD)
are the well-known applications of SFD and also useful for industry. Some literatures
discussed dynamic behaviors in SFD bearings and also found many interesting and useful
results. Holmes et al. [1] published a paper dealing with aperiodic behavior in journal
bearings and what may very well have been the first paper about aperiodic behavior
in journal bearing systems. Nikolajsent and Holmes [2] reported their observation of
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nonsynchronous vibrations in a test rig of a flexible, symmetric rotor on two identical plain
journal bearings supported by centralized squeeze-film dampers. Sykes and Holmes [3]
showed experimental observations of subharmonic motion in squeeze film bearings and
linked this to possible precursors of chaotic motion. At the same time, Kim and Noah
[4] analyzed the bifurcation of a modified Jeffcott rotor with bearing clearance. Ehrich
[5] used a simple numerical model of a Jeffcott rotor mounted on a nonlinear spring. It
was found that the vibratory response in the transition zone midway between adjacent
zones of subharmonic response has all the characteristics of chaotic behavior. Zhao et al.
[6] discussed the subharmonic and quasiperiodic motions of an eccentric squeeze film
damper-mounted rigid rotor system. Brown [7] studied a simple model of a rigid and
hydrodynamically supported journal bearing, using a short bearing theory. Theoretical
and experimental investigations were reported by Adiletta et al. [8–10] in which a rigid
rotor in short bearings would have subharmonic, quasiperiodic, and chaotic motion for
suitable values of the system parameters. Sundararajan and Noah [11] proposed a simple
shooting scheme along with an arc-length continuation algorithm with applications to
periodically forced rotor systems. The occurrence of periodic, quasiperiodic and chaotic
motions was predicted for various ranges of rotor speeds. Chang-Jian and Chen [12–
16] presented a series of papers discussing about flexible rotor supported by journal
bearings under nonlinear suspension and also combined with rub-impact effect, turbulent
effect and micropolar lubricant into consideration. They found very bountiful nonperiodic
responses occurring in rotor-bearing systems, and the studies would help engineers
or scientists escape undesired motions in either designing or operating rotor-bearing
systems.

Although virtually all physical phenomena in the real world can be regarded as
nonlinear, most of these phenomena can be simplified to a linear form given a sufficiently
precise linearization technique. However, this simplification is inappropriate for high-power,
high rotating speed system and its application during the design and analysis stage may
result in a flawed or potentially dangerous operation. As a result, nonlinear analysis methods
are generally preferred within engineering and academic circles. The current study performs
a nonlinear analysis of the dynamic behavior of a rotor-bearing system equipped with hybrid
squeeze-film damper under nonlinear rub-impact force effect. The nondimensional equation
of the rotor-bearing system is then solved using the fourth-order Runge-Kutta method. The
nonperiodic behavior of this system is characterized using phase diagrams, power spectra,
Poincaré maps, bifurcation diagrams, Lyapunov exponents, and the fractal dimension of the
system.

2. Mathematical Modeling

Figure 1 shows a rotor supported on HSFDs in parallel with retaining springs. The
bearing consists of four hydrostatic chambers and four hydrodynamic regions. The oil
film supporting force is dependent on the integrated action of hydrodynamic pressure and
hydrostatic pressure of HSFD. Figure 2(a) represents the cross-section of HSFD and rub-
impact rotor-stator model. The structure of this kind bearing should be popularized to consist
of 2N (N = 2, 3, 4 . . .) hydrostatic chambers and 2N hydrodynamic regions. In this study, oil
pressure distribution model in the HSFD is proposed to integrate the pressure distribution of
dynamic pressure region and static pressure region.
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2.1. The Instant Oil Film Supporting Force for HSFD

To analyze the pressure distribution, the Reynolds equation for constant lubricant properties
and noncompressibility should be assumed, then the Reynolds equation is introduced as
follows [12]:

1
R2

∂

∂θ

(
h3 ∂p

∂θ

)
+

1
R2

∂

∂z

(
h3 ∂p

∂z

)
= −12μΩ

∂h

∂θ
+ 12μ

∂h

∂t
. (2.1)

The supporting region of HSFD should be divided into three regions: static pressure region,
rotating direction dynamic pressure region, and axial direction dynamic pressure region,
as shown in Figure 2. In the part of HSFD with −a ≤ z ≤ a, the long bearing theory is
assumed and Reynolds equation is solved with the boundary condition of static pressure
region pc,i acquiring the pressure distribution p0(θ). In the part of HSFD with a ≤ |z| ≤ L/2,
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the short bearing theory is assumed and solves the Reynolds equation with the boundary
condition of p(z, θ)|z=±a = p0(θ) and p(z, θ)|z=±L/2 = 0, yielding the pressure distribution in
axis direction dynamic pressure region p(z, θ). Finally, a formula of pressure distribution in
whole supporting region is obtained.

According to the above conditions, the instant oil film pressure distribution is as
follows. The instant pressure in rotating direction within the range of −a ≤ z ≤ a is

p0(θ) =

⎧
⎪⎪⎪⎨
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(2.4)

The instant pressure in the axis direction within the range of a ≤ |z| ≤ L/2 is

p(θ, z) =
(
L

2
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[
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The instant oil film forces of the different elements are determined by integrating (2.2)
and (2.5) over the area of the journal sleeve. In the static pressure region, the forces are

Frs =
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(2.7)

In the rotating direction dynamics pressure region, the forces are

Frc =
4∑
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(2.8)

In the axial direction dynamic pressure region, the forces are
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(2.9)

The resulting damper forces in the radial and tangential directions are determined by sum-
ming the above supporting forces. It is as follows:

Fr = Frs + Frc + Fra,

Fτ = Fτs + Fτc + Fτa.
(2.10)
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2.2. Rub-Impact Force

Figure 2(b) shows the radial impact force f1 and the tangential rub force f2. f1 and f2 could
be expressed as [17]

f1 = (e − δ)kc
f2 =

(
f + bv

)
f1, if e ≥ δ.

(2.11)

Then we could get the rub-impact forces in the horizontal and vertical directions as follows:

Rx = − (e − δ)kc
e

[
X − (f + bv

)
Y
]

Ry = − (e − δ)kc
e

[(
f + bv

)
X + Y

]
.

(2.12)

2.3. Dynamics Equation

The equations of rotor motion in the Cartesian coordinates can be written as

mẍ + dẋ + kx = mρω2 cosωt + fx + kx0 + Rx,

mÿ + dẏ + ky = mρω2 sinωt + fy + ky0 + Ry.
(2.13)

The origin of the o-xyz-coordinate system is taken to be the bearing center Ob. Dividing these
two equations by mcω2 and defining a nondimensional time φ = ωt and a speed parameter
s = ω/ωn, one obtains the following nondimensionalized equations of motion:

X′′ +
D

s
X′ +

1
s2
X = U cosφ +

B

s

(
XFr − YFτ

ε

)
+
X0

s2
+
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mcω2
, (2.14)

Y ′′ +
D

s
Y ′ +

1
s2
Y = U sinφ +

B

s

(
YFr +XFτ

ε

)
+
Y0

s2
+

Ry

mcω2
. (2.15)

Equations (2.14)∼(2.15) describe a nonlinear dynamic system. In the current study, the
approximate solutions of these coupled nonlinear differential equations are obtained using
the fourth-order Runge-Kutta numerical scheme.

3. Analytical Tools for Observing Nonlinear Dynamics of
Rotor-Bearing System

In the present study, the nonlinear dynamics of the rotor-bearing system equipped with HSFD
shown in Figure 1 are analyzed using Poincaré maps, bifurcation diagrams, the Lyapunov
exponent and the fractal dimension. The basic principles of each analytical method are
reviewed in the following subsections.



Journal of Applied Mathematics 7

3.1. Dynamic Trajectories and Poincaré Maps

The dynamic trajectories of the rotor-bearing system provide a basic indication as to whether
the system behavior is periodic or nonperiodic. However, they are unable to identify the
onset of chaotic motion. Accordingly, some other form of analytical method is required. In
the current study, the dynamics of the rotor-bearing system are analyzed using Poincaré maps
derived from the Poincaré section of the rotor system. A Poincaré section is a hypersurface in
the state-space transverse to the flow of the system of interest. In nonautonomous systems,
points on the Poincaré section represent the return points of a time series corresponding to
a constant interval T , where T is the driving period of the excitation force. The projection of
the Poincaré section on the y(nT) plane is referred to as the Poincaré map of the dynamic
system. When the system performs quasiperiodic motion, the return points in the Poincaré
map form a closed curve. For chaotic motion, the return points form a fractal structure
comprising many irregularly distributed points. Finally, for nT-periodic motion, the return
points have the form of n discrete points.

3.2. Power Spectrum

In this study, the spectrum components of the motion performed by the rotor-bearing system
are analyzed by using the Fast Fourier Transformation method to derive the power spectrum
of the displacement of the dimensionless dynamic transmission error. In the analysis, the
frequency axis of the power spectrum plot is normalized using the rotating speed, ω.

3.3. Bifurcation Diagram

A bifurcation diagram summarizes the essential dynamics of a rotor-train system and is
therefore a useful means of observing its nonlinear dynamic response. In the present analysis,
the bifurcation diagrams are generated using two different control parameters, namely
the dimensionless unbalance coefficient, β, and the dimensionless rotating speed ratio, s,
respectively. In each case, the bifurcation control parameter is varied with a constant step,
and the state variables at the end of one integration step are taken as the initial values for the
next step. The corresponding variations of the y(nT) coordinates of the return points in the
Poincaré map are then plotted to form the bifurcation diagram.

3.4. Lyapunov Exponent

The Lyapunov exponent of a dynamic system characterizes the rate of separation of
infinitesimally close trajectories and provides a useful test for the presence of chaos. In a
chaotic system, the points of nearby trajectories starting initially within a sphere of radius
ε0 form after time t an approximately ellipsoidal distribution with semiaxes of length εj(t).
The Lyapunov exponents of a dynamic system are defined by λj = limt→∞(1/t) log(εj(t)/ε0),
where λj denotes the rate of divergence of the nearby trajectories. The exponents of a system
are usually ordered into a Lyapunov spectrum, that is, λ1 > λ2 > · · · > λm. A positive value of
the maximum Lyapunov exponent (λ1) is generally taken as an indication of chaotic motion
[16].
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3.5. Fractal Dimension

The presence of chaotic vibration in a system is generally detected using either the Lyapunov
exponent or the fractal dimension property. The Lyapunov exponent test can be used for
both dissipative systems and nondissipative (i.e. conservative) systems, but is not easily
applied to the analysis of experimental data. Conversely, the fractal dimension test can only
be used for dissipative systems but is easily applied to experimental data. In contrast to
Fourier transform-based techniques and bifurcation diagrams, which provide only a general
indication of the change from periodic motion to chaotic behavior, dimensional measures
allow chaotic signals to be differentiated from random signals. Although many dimensional
measures have been proposed, the most commonly applied measure is the correlation
dimension dG defined by Grassberger and Procaccia due to its computational speed and the
consistency of its results. However, before the correlation dimension of a dynamic system
flow can be evaluated, it is first necessary to generate a time series of one of the system
variables using a time-delayed pseudo-phase-plane method. Assume an original time series
of xi = {x(iτ); i = 1, 2, 3, . . .N}, where τ is the time delay (or sampling time). If the system
is acted upon by an excitation force with a frequency ω, the sampling time, τ , is generally
chosen such that it is much smaller than the driving period. The delay coordinates are then
used to construct an n-dimensional vectorX = (x(jτ), x[(j+1)τ], x[(j+2)τ], . . . , x[(j+n−1)τ]),
where j = 1, 2, 3, . . . (N − n + 1). The resulting vector comprises a total of (N − n + 1) vectors,
which are then plotted in an n-dimensional embedding space. Importantly, the system flow
in the reconstructed n-dimensional phase space retains the dynamic characteristics of the
system in the original phase space. In other words, if the system flow has the form of a closed
orbit in the original phase plane, it also forms a closed path in the n-dimensional embedding
space. Similarly, if the system exhibits a chaotic behavior in the original phase plane, its
path in the embedding space will also be chaotic. The characteristics of the attractor in the
n-dimensional embedding space are generally tested using the function

∑N
i,j=1 H(r − |xi − xj |)

to determine the number of pairs (i, j) lying within a distance |xi − xj | < r in{xi}Ni=1, where
H denotes the Heaviside step function, N represents the number of data points, and r is the
radius of an n-dimensional hypersphere. For many attractors, this function exhibits a power
law dependence on r as r → 0, that is c(r) ∝ rdG . Therefore, the correlation dimension, dG,
can be determined from the slope of a plot of [log c(r)] versus [log r]. Chen and Yau [18]
showed that the correlation dimension represents the lower bound to the capacity or fractal
dimension dc and approaches its value asymptotically when the attracting set is distributed
more uniformly in the embedding phase space. A set of points in the embedding space is said
to be fractal if its dimension has a finite noninteger value. Otherwise, the attractor is referred
to as a “strange attractor.” To establish the nature of the attractor, the embedding dimension
is progressively increased, causing the slope of the characteristic curve to approach a steady-
state value. This value is then used to determine whether the system has a fractal structure or
a strange attractor structure. If the dimension of the system flow is found to be fractal (i.e. to
have a noninteger value), the system is judged to be chaotic.

In the current study, the attractors in the embedding space were constructed using
a total of 60000 data points taken from the time series corresponding to the displacement
of the system. Via a process of trial and error, the optimum delay time when constructing
the time series was found to correspond to one third of a revolution of the system. The
reconstructed attractors were placed in embedding spaces with dimensions of n = 2, 4, 6,
8, 10, 12, 14, 16, 18, and 20, respectively, yielding 10 different [log c(r)] versus [log r] plots
for each attractor. The number of data points chosen for embedding purposes (i.e., 60000)
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Figure 3: Bifurcation diagram ofX(nT) (a) and Y (nT) (b) versus rotor speed s (without rub-impact effect).

reflects the need for a compromise between the computation time and the accuracy of the
results. In accordance with Grassberger and Procaccia [19], the number of points used to
estimate the intrinsic dimension of the attracting set in the current analysis is less than
42M, where M is the greatest integer value less than the fractal dimension of the attracting
set.

4. Numerical Results and Discussions

The nonlinear dynamic equations presented in (2.14) to (2.15) for the HSFD rotor-bearing
system with strongly nonlinear oil-film force and nonlinear rub-impact force were solved
using the fourth-order Runge-Kutta method. The time step in the iterative solution procedure
was assigned a value of π/300, and the termination criterion was specified as an error
tolerance of less than 0.0001. The time series data corresponding to the first 800 revolutions
of the rotor was deliberately excluded from the dynamic analysis to ensure that the analyzed
data related to steady-state conditions. The sampled data were used to generate the dynamic
trajectories, Poincaré maps, and bifurcation diagrams of the spur rotor system in order to
obtain a basic understanding of its dynamic behavior. The maximum Lyapunov exponent
and the fractal dimension measure were then used to identify the onset of chaotic motion.
The rotating speed ratio s is one of the most significant and commonly used as a control
parameter in analyzing dynamic characteristics of bearing systems. Accordingly, the dynamic
behavior of the current rotor-bearing system was examined using the dimensionless rotating
speed ratio s as a bifurcation control parameter.

The bifurcation diagram in Figure 3 shows the long-term values of the rotational angle,
plotted with rotor displacement against the dimensionless speed s without rub-impact effect.
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Figure 4: Subharmonic motion at s = 2.6 (case 1); (a) Rotor trajectory; (b) Poincaré map; (c) and (d)
Displacement power in X and Y directions (without rub-impact effect).

Qualitatively different behavior was observed at values of s within the range of 0 < s < 5.
It can be seen that the dynamic motion of rotor trajectory in low speed is T-periodic motion
both in X and Y directions, and it drops to a lower spatial displacement mode at the speed
s = 2.3. As the speed is increased, the T-period motion loses its stability at s = 2.52, and a 2T -
periodic motion starts to build up. The jump phenomenon is also occurred under 2T -periodic
motion at s = 2.7. As the speed is further increased, the 2T -periodic motion loses its stability
at s = 2.82, and a T -periodic motion suddenly appears. The rotor trajectory, the Poincaré
map, and the displacement power spectrum in the X and Y directions at s = 2.6 are given in
Figure 4, from which the 0.5-subharmonic motion is shown by the double loops of the rotor
trajectory, two discrete points in the Poincaré map and peaks at 0.5 in the power spectrum.
The pressure distributions in the four oil chambers are shown in Figure 5. It can be seen that
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Figure 5: Pressure distribution in the static pressure chamber at s = 2.6 (without rub-impact effect).

the variations of pressure distributions are periodic, and the period is the same with the rotor
trajectory.

Figures 6(a) and 6(b) show the bifurcation diagrams for the rotor displacement
against the dimensionless rotating speed ratio with rub-impact effect. Compared with
bifurcation results without rub-impact effect, bifurcation results with rub-impact effect show
that dynamic trajectories perform strongly nonperiodic at low rotating speeds, but it would
escape nonperiodic motions to periodic motions. The bifurcation diagrams show that the
geometric centers of rotor in the horizontal and vertical directions perform nonperiodic
motion or the so-called chaotic motion at low values of the rotating speed ratio, that is,
s < 0.61. Figures 7, 8, and 9 represent phase diagrams, power spectra, Poincaré maps,
Lyapunov exponents, and the fractal dimensions of pinion center with s = 0.32, 0.36,
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Figure 6: Bifurcation diagram of HSFD rotor-bearing system using dimensionless rotating speed coeffi-
cient, s, as bifurcation parameter (with rub-impact effect).

and s = 0.42, respectively. The simulation results show that phase diagrams show disordered
dynamic behaviors with s = 0.32, 0.36 and s = 0.42; power spectra reveal numerous
excitation frequencies; the return points in the Poincaré maps form some geometrically fractal
structures, but the maximum Lyapunov exponent is positive with s = 0.36 and maximum
Lyapunov exponent is negative with s = 0.32 and s = 0.42. Thus, the results show that
the dynamic trajectory performs chaotic motion with s = 0.36, but they present no chaotic
motions with s = 0.32 and s = 0.42. Figures 10 and 11 are phase diagrams and Poincaré
maps for the route of subharmonic motion into chaos, out of chaos to periodic response at
different rotating speed ratios of s (with rub-impact effect). Unlike the usual ways into chaos
(1T ⇒ 2T ⇒ 4T ⇒ 8T ⇒ 16T ⇒ 32T · · · ⇒ chaos or periodic ⇒ quasi-periodic ⇒ chaotic),
it suddenly gets in chaos from the periodic motion without any transition or suddenly
escape from irregular motions into periodic motions in accordance with phase diagrams and
Poincaré maps.

5. Conclusions

A hybrid squeeze-film damper mounted rotor-bearing system with nonlinear oil-film force
and nonlinear rub-impact force has been presented and studied by a numerical analysis



Journal of Applied Mathematics 13

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

u

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

x

(a) Phase diagram

Normalized frequency

543210

1010

105

100

10−5

Po
w

er
 s

pe
ct

ru
m

 o
fx

(b) Power spectrum

0

−0.05

−0.1

−0.15

−0.2

−0.25

−0.3

−0.35

M
ax

im
um

 ly
ap

un
ov

 e
xp

on
en

t

Cycles of driving force

200 400 600

(c) Lyapunov exponent

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1
10.80.60.40.20−0.2−0.4−0.6−0.8−1

u
(n
T
)

x(nT)

(d) Poincaré map
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Figure 7: Simulation results obtained for rotor-bearing system with s = 0.32 (with rub-impact effect).
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Figure 8: Simulation results obtained for rotor-bearing system with s = 0.36 (with rub-impact effect).



Journal of Applied Mathematics 15

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

u

x

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

(a) Phase diagram

Normalized frequency

543210

1010

105

100

10−5

Po
w

er
 s

pe
ct

ru
m

 o
fx

(b) Power spectrum

M
ax

im
um

 ly
ap

un
ov

 e
xp

on
en

t

Cycles of driving force

200 400 600

0

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

−0.7

−0.8

−0.9

−1

(c) Lyapunov exponent

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1
10.80.60.40.20−0.2−0.4−0.6−0.8−1

u
(n
T
)

x(nT)

(d) Poincaré map
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Figure 9: Simulation results obtained for rotor-bearing system with s = 0.42 (with rub-impact effect).
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Figure 10: Continued.
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Figure 10: Phase diagrams for the route of subharmonic motion into chaos, out of chaos to periodic
response at different rotating speed ratios of s (with rub-impact effect).

of the nonlinear dynamic response in this study. The dynamics of the system have been
analyzed by reference to its dynamic trajectories, power spectra, Poincaré maps, bifurcation
diagrams, maximum Lyapunov exponents, and fractal dimensions. The bifurcation results
can be observed that HSFD may be used to improve dynamic irregularity. The system with
rub-impact force effect may be a strongly nonlinear effect, and the bifurcation results show
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Figure 11: Continued.
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Figure 11: Poincaré maps for the route of subharmonic motion into chaos, out of chaos to periodic response
at different rotating speed ratios of s (with rub-impact effect).

that HSFD mounted rotor-bearing system with rub-impact force effect present nonperiodic
motions at low rotating speeds and perform periodic motions at high rotating speeds. The
results will enable suitable values of the rotating speed ratio to be specified such that chaotic
behavior can be avoided, thus reducing the amplitude of the vibration within the system and
extending the system life.
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Nomenclature

B : Bearing parameter = 6μR2L2/mδ3ωn

d: Viscous damping of the rotor disk
D: d/mωn

e: Damper eccentricity = εδ
fx, fy: Components of the fluid film force in horizontal and vertical coordinates
Fr, Fτ : Components of the fluid film force in radial and tangential directions
h: Oil film thickness, h = δ(1 + ε cos θ)
k: Stiffness of the retaining springs
kd: Proportional gain of PD controller
kp: Derivative gain of PD controller
L: Bearing length
m: Masses lumped at the rotor mid-point
Om: Center of rotor gravity
Ob,Oj : Geometric center of the bearing and journal
p(θ): Pressure distribution in the fluid film
ps: Pressure of supplying oil
pc,i: Pressure in the static pressure chamber
R: Inner radius of the bearing housing
r: Radius of the journal.
r, t: Radial and tangent coordinates
s: Speed parameter = ω/ωn

U: ρ/δ
x, y, z: Horizontal, vertical and axial coordinates
x0, y0: Damper static displacements
X,Y,X0, Y0: x/δ, y/δ, x0/δ, y0/δ
ρ: Mass eccentricity of the rotor
φ: Rotational angle (φ = ωt)
ω: Rotational speed of the shaft
ϕb: Angle displacement of line ObOj from the x-coordinate (see Figure 1)
Ω: ϕ̇b
δ: Radial clearance = R − r,
θ: The angular position along the oil film from line O1O3 (see Figure 1)
μ: Oil dynamic viscosity
ε: e/δ
β: Distribution angle of static pressure region
(•), (′): Derivatives with respect to t and φ.
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A recursive gradient identification algorithm based on the bundle method for sandwich systems
with backlash-like hysteresis is presented in this paper. In this method, a dynamic parameter
estimation scheme based on a subgradient is developed to handle the nonsmooth problem caused
by the backlash embedded in the system. The search direction of the algorithm is estimated
based on the so-called bundle method. Then, the convergence of the algorithm is discussed.
After that, simulation results on a nonsmooth sandwich system are presented to validate the
proposed estimation algorithm. Finally, the application of the proposed method to an X-Y moving
positioning stage is illustrated.

1. Introduction

Usually, a sandwich system with backlash-like hysteresis is defined as the system that
a backlash-like hysteresis is sandwiched between two linear dynamic subsystems. In
engineering applications, many mechanical systems such as mechanical transmission
systems, servo control systems, and hydraulic valve systems can be described by the so-
called sandwich systems with backlash-like hysteresis. The reason to cause the backlash-
like hysteresis phenomenon is mainly due to the gaps existing in transmission mechanism
systems such as gearbox and ball screw.

Recently, identification of sandwich systems has become one of the interesting issues
in the domain of modeling and control for complex systems. References [1–3] proposed the
recursive identification methods for the sandwich system with smooth nonlinearities. The
main ideas of those approaches are to extend the linear system identification methods to
smooth nonlinear cases. Moreover, there have been some methods for the identification of
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Hammerstein or Wiener systems with backlash-like hysteresis [4–8], most of which are the
modified linear system identification methods.

However, until today, there have been very few publications concerning the
identification of the sandwich systems with backlash-like hysteresis. Reference [9] proposed
a method to identify the sandwich systems with backlash-like hysteresis, but the approach
is still based on idea to extend the linear system identification method to nonlinear cases.
On the other hand, the switching functions in that method have significant influence on the
convergence speed of the algorithm.

In this paper, a recursive gradient algorithm based on the bundle method is
proposed to identify parameters of the sandwich model. In this algorithm, the effect of the
nonsmoothness caused by the backlash-like hysteresis in sandwich system is considered. In
order to obtain the optimizing search direction at the nonsmooth points of the system, the
Clarke subgradient technique is utilized based on the idea of the bundle method [10–12].
By comparing with the above-mentioned available methods, the proposed method employs
the nonsmooth optimization technique to identify the nonsmooth sandwich systems with
backlash-like hysteresis. Thus, it will provide us with a new approach for dealing with on-
line modeling of nonsmooth dynamic systems. A numerical example will be presented to
evaluate the performance of the proposed approach. Finally, experimental results on an X-Y
moving positioning stage are illustrated.

2. Brief Description of Sandwich Systems with Backlash

The structure of a sandwich system with backlash-like hysteresis is shown in Figure 1,
in which a backlash-like hysteresis is embedded between the input and output linear
subsystems, that is, L1(·) and L2(·). It is assumed that input u(k) and output y(k) can be
measured directly, but the internal variables x(k) and v(k) are not measurable.

Suppose that both linear subsystems are stable, and the time delays q1 and q2 in L1(·)
and L2(·) are known, respectively. The corresponding discrete-time models of L1(·) and L2(·)
are, respectively, written as

x(k) = −
na∑

i2=1

ai2x(k − i2) +
nb∑

j2=0

bj2u
(
k − q1 − j2

)
,

y(k) = −
nc∑

i1=1

ci1y(k − i1) +
nd∑

j1=0

dj1v
(
k − q2 − j1

)
,

(2.1)

where na and nb are the orders of L1(·), q1 is the time delay, and ai2 as well as bj2 are the
coefficients of L1(·); nc and nd are the orders of L2(·), q2 is the time delay, and ci1 and dj1 are
the coefficients of L2(·). Let both b0 and d0 be equal to unity for unique representation.

Note that the backlash-like hysteresis shown in Figure 1 is specified by the slopes m1

and m2 as well as the absolute thresholds, D1 and D2, where 0 < m1 < ∞, 0 < m2 < ∞,
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u(k)
L1

x(k) m2

v

−D2
D1 x

m1

v(k)
L2

y(k)

Figure 1: The structure of the sandwich system with backlash-like hysteresis.

0 < D1 < ∞, and 0 < D2 < ∞. Hence, the discrete-time model of the backlash-like hysteresis
is described as

v(k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m1(x(k) −D1), x(k) >
v(k − 1)
m1

+D1, x(k) > x(k − 1), increase zone,

v(k − 1),
v(k − 1)
m2

−D2 ≤ x(k) ≤ v(k − 1)
m1

+D1, memory zone,

m2(x(k) +D2), x(k) <
v(k − 1)
m2

−D2, x(k) < x(k − 1), decrease zone.

(2.2)

For the convenience to describe the system, the discrete-time model of the backlash-
like hysteresis can be rewritten as

m(k) = m1 + (m2 −m1)g(k),

v1(k) = m(k)
(
x(k) + g(k)x(k) −D1g1(k) +D2g2(k)

)
,

v(k) = v1(k) + [v(k − 1) − v1(k)]
(
g1(k) − 1

)(
g2(k) − 1

)
,

(2.3)

where the switching functionsg(k), g1(k), and g2(k) are, respectively, defined as

g(k) =

{
0, Δx(k) > 0
1, Δx(k) ≤ 0,

g1(k) =

⎧
⎨

⎩
1, x(k) >

v(k − 1)
m1

+D1, x(k) > x(k − 1),

0, else,

g2(k) =

⎧
⎨

⎩
1, x(k) <

v(k − 1)
m2

−D2, x(k) < x(k − 1),

0, else,

(2.4)

where Δx(k) = x(k) − x(k − 1).
Thus, (2.1)–(2.3) present the model to describe the sandwich system with backlash-

like hysteresis. Hence, the unknown parameter vector of the model can be written as θ ∈
Rna+nb+nc+nd+4, where

θ = [c1, . . . , cnc , a1, . . . , anam1, m2, D1, D2, b1, . . . , bnb , d1, . . . , dnd]
T . (2.5)



4 Journal of Applied Mathematics

According to concept of the gradient algorithm, define the objective function as

Q
(
k, θ̂(k)

)
=

n∑

k=1

[
y(k) − ŷ

(
k, θ̂(k)

)]2

2
=

1
2

n∑

k=1

f
(
k, θ̂(k)

)
, (2.6)

where θ̂ is the estimate of θ, and ŷ(k, θ̂(k)) is the output of system model. The optimal
estimate of θ̂ can be obtained by minimizing the above-mentioned criterion.

3. The Nonsmooth Estimation of the Sandwich Model with
Backlash-Like Hysteresis

In this section, a gradient-based identification algorithm is proposed for identification of the
sandwich system with backlash-like hysteresis. Due to the nonsmoothness of the backlash,
the gradients of the system output with respect to the parameters of the backlash at
nonsmooth points will not exist. The smooth gradient-based methods directly applied to
nonsmooth systems may fail in convergence [13]. On the other hand, the genetic algorithms
[14] or Powell’s method [15], which are based on derivative-free techniques, may be
unreliable and become inefficient when the system structure is complicated. Thus, we should
find a special way for solving this problem. The simplest way to solve the problem is to apply
the Clarke subgradients [11] to the approximation of the gradients at the nonsmooth points.

The basic idea of the bundle method is to approximate the subdifferential ofQ(k, θ̂(k))
with respect to θ̂(k) by gathering the subgradients from previous iterations into a bundle
for the nonsmooth objective function Q(k, θ̂(k)). The gradient ∇Q(k, θ̂(k)) can change
discontinuously, and some change of the gradient may not be small in the neighborhood
of the minimum of the function. So the values of Q(k, θ̂(k)) and ∂Q(k, θ̂(k)) at a single point
θ̂(k) do not offer sufficient information of the local behavior of Q(k, θ̂(k)). The detail of the
bundle method can be found in [10–12] and reference therein.

Considering that the sandwich system with backlash-like hysteresis is locally Lipschitz
continuous, we have the following definition.

Definition 3.1 (see [11]). Let F: Rn × R → R be locally Lipschitz continuous. This allows one
to define a Clarke subgradient of F at ξ as dF(ξ):

dF(ξ) ∈ ∂F(ξ), subject to ∂F(ξ) = conv
{
∇F

(
ξi
)
| ξi −→ ξ,∇F

(
ξi
)

exists
}
, (3.1)

where “conv” denotes the convex hull of a set.
The set of all the Clarke subgradients is the Clarke subdifferential of Fat ξ which is

denoted by ∂F(ξ) [11].
Considering that backlash-like hysteresis is a nonsmooth mapping, the gradients

of parameters in L1(·) with respect to v(k) do not exist at a nonsmooth point.
Hence, we define the parameters of the backlash-like hysteresis and L1(·) as σ =
{m1, m2, D1, D2, a1 · · ·ana, b1 · · · bnb} ∈ R4+na+nb . Considering the cost function described by
(2.6), the gradients of f(·) with respect to σ will not exist at the nonsmooth points. Hence,
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at the nonsmooth points of Q(·), the Clarke subdifferential of f(·) with respect to σ, that is,
∂f(σ), can be obtained by

∂f(σ) = −conv

⎧
⎨

⎩

[
y(k) − ŷ

(
k, θ̂(k)

)]
⎛

⎝
nb∑

j1=0

dj1∂v̂(k−j1−q2)(σ)

⎞

⎠

⎫
⎬

⎭
, (3.2)

where ∂v̂(k−j1−q2)(σ) = conv{∇v̂(k−j1−q2)(σ)}, and ∇v̂(k−j1−q2)(σ) is the gradient of v̂, the output
of backlash-like hysteresis, with respect to σ at the smooth points. Thus, the corresponding
gradients of v̂(k − j1 − q2) with respect to σ at the smooth points are

∇v̂(k−j1−q2)(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
u
(
k − j1 − q2 − q 1

) − D̂1(k − 1), 0,

−m̂1(k − 1), 0,−m̂1(k − 1)x̂
(
k − 1 − j1 − q2

)
, . . . ,

−m̂1(k−1)x̂
(
k−na−j1−q2

)
,

m̂1(k−1)u
(
k−1−j1−q2−q 1

)
, . . . ,

m̂1(k − 1)u
(
k − nb − j1 − q2 − q 1

)]T
, in increase zones,

[0, 0, 0, 0, 0, . . . , 0, 0, . . . , 0]T , in memory zones,[
0, u

(
k − j1 − q2 − q 1

)
+ D̂2(k − 1), 0,

m̂2(k − 1),−m̂2(k − 1)x̂
(
k − 1 − j1 − q2

)
, . . . ,

−m̂2(k − 1)x̂
(
k − na − j1 − q2

)
,

m̂2(k − 1)u
(
k − 1 − j1 − q2 − q 1

)
, . . . , m̂2(k − 1)

u
(
k − nb − j1 − q2 − q 1

)]T
, in decrease zones,

(3.3)

where x̂(k) = −∑na
i2=1 âi2 x̂(k− i2) +

∑nb
j2=0 b̂j2u(k−q1 − j2), and the coefficients âi2 and b̂j2 are the

corresponding estimated values at the previous step.
Hence, based on (3.2) and (3.3), the Clarke subdifferential of f(·) with respect to σ

can be obtained at nonsmooth points of the system. Besides, as L2(·) is a smooth function, the
gradients of f(·) with respect to the parameters of the linear subsystems L2(·) always exist. So,
the Clarke subdifferential of f(·) with respect to all the unknown parameters of the sandwich
system can be determined.

The proper Clarke subgradient direction t(k, θ̂(k)) of f(·) with respect to the
parameters to be estimated at nonsmooth points can be derived based on

min
ϕ,d

(
ϕ(k) +

1
2

∥∥∥t
(
k, θ̂(k)

)∥∥∥
2
)

s.t. − βj(k) +
〈
hj(k), t

(
k, θ̂(k)

)〉
≤ ϕ(k), ∀j ∈ Jk,

(3.4)

where ‖ · ‖ denotes the Euclidean norm; Jk is a nonempty subset of {1, . . . , k}; set ϕ(k) is
the predicted amount of descent; hj(k) ∈ ∂f(k, θ̂

∗
j (k)) for j ∈ Jk, and θ̂

∗
j (k) are some trail

points (from the past iterations); βj(k) = max{|αj(k)|, γ(sj(k))2} is the locality measure
of subgradient; γ ≥ 0 is the distance measure parameter (γ = 0 if f(k, θ̂(k)) is convex),



6 Journal of Applied Mathematics

αj(k) = f(k, θ̂(k)) − f(k, θ̂
∗
j (k)) − hj(k)(θ̂(k) − θ̂

∗
j (k)) is the linearization error; sj(k) =

‖θ̂j(k) − θ̂
∗
j (k)‖ +

∑k−1
i=j ‖θ̂ i+1(k) − θ̂i(k)‖ is the distance measure to estimate ‖θ̂(k) − θ̂

∗
j (k)‖

without the requirement to store the trial point θ̂
∗
(k).

According to formula (3.4), t(k) and ϕ(k) are obtained, that is,

t
(
k, θ̂(k)

)
= −

∑

j∈Jk
λkj hj(k) =

∑

j∈J k

[
y(k) − ŷ

(
k, θ̂j(k)

)]
λkjwj(k) = e

(
k, θ̂(k)

)
hj(k), (3.5)

ϕ(k) = −
∥
∥
∥t(k, θ̂(k))

∥
∥
∥

2 −
∑

j∈J k
λkj βj(k), (3.6)

where wj(k) = ∂ŷ(k, θ̂)/∂θ|θ̂=θ̂j (k), e(k, θ̂(k))=y(k) − ŷ(k, θ̂j(k)), hj(k) =
∑

j∈J k λ
k
jwj(k), λkj ≥

0, and
∑

j∈J k λ
k
j = 1.

Remark 3.2. If f(·) is convex, the model f(k, θ̂(k)) is an underestimate for f(·), and the
nonnegative linearization error αj(k) measures the performance of an approximation of the
model to the original cost function. If f(·) is nonconvex, these facts are not valid anymore
because αj(k) may have a small or even negative value, although the trial point θ̂

∗
j (k) locates

far away from the current iteration point θ̂(k), and thus, the corresponding subgradient hj(k)
is worthless. For these reasons, the locality measure of subgradient βj(k) is introduced.

Therefore, the proposed recursive gradient estimation algorithm based on bundle
method for the sandwich model with backlash-like hysteresis is shown as follows.

Step 1. Select starting point θ0 ∈ Rna+nb+nc+nd+4 and stopping parameter δ > 0. Calculate
f(k,θ0) and vector hj(k) ∈ ∂f(k,θ0), where j ∈ Jk, Jk = {k0}, |Jk| ≤ k1, |Jk| is the element
number of Jk, and k1 is a given positive number. Set βj(k) = 0, k = k0 and the line search
parameters

q ∈ (0, 0.5), q∗ ∈ (
q, 1

)
, η(0) ∈ (0, 1]. (3.7)

Step 2. Calculate optimal solution (ϕ(k), t(k, θ̂(k))) based on formulas (3.2)–(3.6). If ϕ(k) ≥
−δ, then stop.

Step 3. Search for the largest step size η(k) ∈ [0, 1] such that η(k) ≥ η(0) and if

f
(
k, θ̂(k) + η(k)t(k)

)
≤ f

(
k, θ̂(k)

)
+ qη(k)ϕ(k), (3.8)

it holds

ϕ(k) = f
(
k, θ̂(k) + t(k)

)
− f

(
k, θ̂(k)

)
< 0. (3.9)

Then, we take a long step and set θ̂(k + 1) = θ̂(k) + η(k)t(k) and θ̂
∗
(k + 1) = θ̂(k + 1); go to

Step 4.
Otherwise, if 0 < η(k) < η(0), and formula (3.8) holds, then we take a short step and

set θ̂(k + 1) = θ̂(k) + η(k)t(k), and θ̂
∗
(k + 1) = θ̂(k) + η∗(k)t(k) where η∗(k) > η(k). Go to

Step 5.
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If η(k) = 0, and formula (3.8) holds, we take a null step, and namely set θ̂(k+1) = θ̂(k)
and θ̂

∗
(k + 1) = θ̂(k) + η∗(k)t(k); go to Step 5.

Step 4. Let Jk = Jk ∪ {k + 1}, k = k + 1; if k ≤ k1, then Jk = {1, . . . , k}, and if k > k1, then
Jk = Jk−1 ∪ {k} \ {k − k1}, then go to Step 2.

Step 5. Jk = Jk ∪ {k + 1}, k = k + 1; if k ≤ k1, then Jk = {1, · · · , k}, and if k > k1, then
Jk = Jk−1 ∪ {k} \ {k − k1}, and the proper Clarke subgradient hj(k) satisfies

−βj
(
k, θ̂(k)

)
+ hTj

(
k, θ̂(k)

)
t
(
k, θ̂(k − 1)

)
≥ q∗ϕ

(
k, θ̂(k − 1)

)
, (3.10)

then go to Step 2.

Remark 3.3. In long step, there is an obvious decrease in the value of the objective function.
Hence, it is unnecessary to detect discontinuities in the gradient of f(·). Thus, we just set
hj(k) ∈ ∂f(k, θ̂(k)). On the other hand, in short steps and null steps, the gradient of f(·) is
discontinuous. Then, based on (3.10), both θ̂(k) and θ̂

∗
(k) located on the opposite sides of

this discontinuity are guaranteed, and the new subgradient hj(k) ∈ ∂f(k,θ∗(k)) will force
an obvious modification of the next search direction. Hence, the algorithm approximates
the effectively searching direction at nonsmooth points based on the bundle method, which
cannot be realized by the smooth optimization techniques.

Remark 3.4. If the value of η(0) is too small, the convergence speed will be very sluggish,
while η(0) is too large, and the algorithm may not be convergent. Hence, it is important for
η(0) to be chosen properly. Usually, η(0) is chosen based on an empirical method.

Remark 3.5. If all the Clarke subgradients are included in Jk, the corresponding storage
capacity is infinite. Hence, the number of the subgradients in Jk must be constrained. In
the proposed algorithm, we give the upper bound of |Jk| ≤ k1, and the upper bound k1 is
specified by empirical method.

4. Convergence of the Estimation

For the convergence of the above-mentioned estimation algorithm, we have the following

Theorem 4.1. Suppose that η(k) and βj(k) satisfy

0 ≤ η(k) ≤ 2e2(k)h(k)h
T
(k) − βj(k)

e2(k)h
T
(k)h(k)

(
1 +

[
h(k)h

T
(k)

]) ,

(4.1)

βj(k) ≤ 2e2(k)
[
h(k)h

T
(k)

]
, (4.2)

respectively, then the parameters θ can be convergent to a local optimal value.
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Proof. The proof of this theorem can be found in Appendix.

5. Simulation

The proposed approach is used to identify a numerical sandwich system with backlash-like
hysteresis based on the measured system input and output. Suppose that the parameters of
the backlash-like hysteresis in the system are m1 = 1, m2 = 1.2, D1 = 0.5, and D2 = 0.6. The
linear subsystems L1(·) and L2(·) are

x(k) = −0.1x(k − 1) − 0.2x(k − 2) + 1.5u(k − 1),
(5.1)

y(k) = −1.2y(k − 1) − 0.32y(k − 2) + 2v(k − 1) − 0.1v(k − 2), (5.2)

respectively.
That implies a1 = 0.1, a2 = 0.2, b0 = 1.5, c1 = 1.2, c2 = 0.32, d0 = 2, and d1 = −0.1. In

the simulation, both b0 and d0 are assumed to be equal to unity for model uniqueness, which
implies that the corresponding equivalent true values of the coefficients are ã1 = 0.1, ã2 = 0.2,
c̃1 = 1.2, c̃2 = 0.32, d̃1 = −0.05, m̃1 = 3, m̃2 = 3.6, D̃1 = 0.33, and D̃2 = 0.4, respectively, but this
does not affect the properties of the whole system.

In the simulation, the signal to excite the system is a random sequence with variance
σ2 = 0.49. Choose δ = 1.0 × 10−4. In the proposed algorithm, based on Remark 3.4, select
η(0) = 0.015, k1 = 6, θ0 = [0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0]T , and β1(k0) = 0, respectively. For
comparison, the traditional gradient method is also used to estimate the parameters of the
system. In this method, the nonsmooth points of the system are omitted for the gradients of
the system do not exist at nonsmooth points. The initialized values of the parameters are the
same as those used in the proposed method. The optimizing step is chosen as 0.009.

Figure 2 illustrates the comparison of the estimated parameter convergence proce-
dures between the proposed method and the traditional gradient method. In Figure 2,
blue and solid lines denote the convergence procedures of the parameters estimated by
the proposed method, while red and dotted lines show the convergence procedures of the
parameters determined by the traditional gradient method. From Figure 2, we note that the
parameters of the backlash-like hysteresis converge slower than those of the linear submodels
especially the input linear submodel. Moreover, the proposed method has achieved faster
convergence than that of the traditional gradient method. It is noticed that the oscillation and
sharp jumps happened in the estimation procedure of the traditional gradient approach.

In the case that the system is affected by random noise, the proposed strategy can still
obtain better convergence of parameter estimation. In the simulation with noise, the signal to
noise rate (SNR) is equal to 46.5. All the initial values of the parameters are the same as those
in the noise-free case.

Figure 3 shows the comparison of the convergence procedures of the estimated
parameters in the case with noise between the proposed method and the traditional gradient
approach. Similar to the noise-free case, the blue and solid lines denote the convergence
procedures of the parameters estimated by the proposed method, while the red and dotted
lines show the convergence procedures of the parameters estimated by the traditional
gradient method. Obviously, the proposed method has obtained faster convergent results
than the traditional gradient method.
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Figure 2: The convergence of the estimated parameters (noise-free case): proposed method: blue and solid
line; traditional gradient method: red and dotted lines.

6. Application to an X-Y Moving Positioning Stage

The proposed identification approach is also applied to the modeling of an X-Y moving
positioning stage with the architecture shown in Figure 4. In this equipment, the movement
of the work platform of each axis is driven by a DC servomotor through a ball-screw-nut
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Figure 3: The convergence of the estimated parameters (noisy case): proposed method: blue and solid
lines; traditional gradient method: red and dotted line.

mechanism which transforms the rotational shaft movement into linear displacement. The
servomotor is controlled by a digital signal processor (TMS320LF-2407A). The displacement
of each axis is measured by a linear encoder (RGF2000H125B). The signals of both phase A
and phase B encoders are decoded by a quadrature decoding circuit which is based on the
decoding chip (Agilent HCTL-2020).

In this system, the servomotor can be considered as a second-order linear dynamic
subsystem. The movement of the work platform is also described by a linear second-
order dynamic model. Due to the inherent characteristic, both dead zone and backlash-like
hysteresis exist in this system. In order to simplify the identification procedure, the dead zone
is compensated by a dead zone inverse model-based compensator. Thus, in the identification,
only the effect of backlash-like hysteresis existing in the ball-screw-nut mechanism will
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Figure 4: The X-Y moving positioning stage.

be considered. Therefore, the identified system is actually a typical sandwich system with
backlash-like hysteresis. In this section, only the identification procedure of axis A will be
presented due to the limited space. The corresponding models used to describe the behavior
of axis A are shown as follows:

(1) the input linear model (L1):

x(k) = −a1x(k − 1) − a2x(k − 2) + b0u(k − 1), (6.1)

(2) the model of the backlash-like hysteresis:

v(k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m1(x(k) −D1), x(k) >
v(k − 1)
m1

+D1, x(k) > x(k − 1),

v(k − 1),
v(k − 1)
m2

−D2 ≤ x(k) ≤ v(k − 1)
m1

+D1,

m2(x(k) +D2), x(k) <
v(k − 1)
m2

−D2, x(k) < x(k − 1),

(6.2)

(3) the output linear model (L2):

y(k) = −c1y(k − 1) − c2y(k − 2) + d0v(k) + d1v(k − 1), (6.3)

where y(k) is the moving speed of the work platform.

Based on the operating requirement, a sequence of square wave plus sinusoidal wave
is used to excite the system within the operating range. The corresponding amplitude of the
input varies in the range between −1.09 V and 1.05 V, and the sample period is 0.5 ms.

In this model, both b0 and d0 are set to one. The initial values of the other parameters
are chosen as η(0) = 0.00116, μ = 1, θ0 = [0, 0, 0, 0, 1, 1, 0.001, 0.001, 0]T , and β(k0) = 0.
After 6700 steps, the convergence of the estimation is achieved. Figure 5 illustrates the
corresponding procedure of the parameter estimation. It shows that the estimate procedure
converges quickly. Figure 6 shows the corresponding mean square error (MSE) of the
parameter estimation. We can see that the MSE is decreased sharply in the beginning, at
the 180th step, and a local minimum can be found. After that, the algorithm jumps out of the
local minimum, and the corresponding MSE gradually converges to a constant of about 0.4.
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Figure 5: Convergence of parameters of the model of the X-Y moving positioning stage.

Then, the corresponding model validation result is shown in Figure 7(a), while
Figure 7(b) shows the comparison of the input-output plots between the proposed model
and the real data. The maximum relative modeling error is less than 11%. Moreover, it is
obvious that the obtained model can accurately approximate the behavior of the X-Y moving
positioning stage. Hence, it can be concluded that the proposed identification method is
rather promising in engineering application.

7. Conclusion

In this paper, a recursive gradient-based identification algorithm for the sandwich system
with backlash-like hysteresis is proposed. The subgradient is applied to the search of
gradient direction at the nonsmooth points of the system. In order to find the proper search
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Figure 7: Model validation result.

direction at the nonsmooth points, the technique of so-called bundle method is utilized.
Simulation results have shown that the proposed algorithm has provided us with an option
for identification of nonsmooth dynamic systems, and it provides a novel method to identify
the more complicated nonsmooth systems. The experimental results of X-Y stage also show
that the proposed method has potential in engineering applications.

Appendix

Based on (3.5) and Step 3 of the algorithm, it is obtained

θ̂(k + 1) = θ̂(k) + η(k)e
(
k, θ̂(k)

)
h(k). (A.1)

Subtracting the local optimal value θ1 from both sides of (A.1), it leads to

θ̂(k + 1) − θ1 = θ̂(k) − θ1 + η(k)e
(
k, θ̂(k)

)
h(k). (A.2)
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Rewrite (A.2) as

θ̃(k + 1) = θ̃(k) + η(k)e
(
k, θ̂(k)

)
h(k), (A.3)

where θ̃(k + 1) = θ̂(k + 1) − θ1.
Choose the quadratic function as

L(k + 1) = θ̃
T
(k + 1)θ̃(k + 1) + e2

(
k, θ̂(k + 1)

)
. (A.4)

According to (A.3), it leads to

θ̃
T
(k + 1)θ̃(k + 1) − θ̃

T
(k)θ̃(k) = 2η(k)e

(
k, θ̂(k)

)
θ̃
T
(k)h(k)

+ η2(k)e2
(
k, θ̂(k)

)
h
T
(k)h(k).

(A.5)

As f(k,θ) = [y(k) − ŷ(k,θ)] 2, if (3.5) holds, then the cutting-plane model is

ê1(k,θ) = max
{[
y(k) − ŷ

(
k, θ̂(k)

)]2
+ 2e

(
k, θ̂(k)

)(
θ̂
T
(k) − θT

)
h(k) − βj(k)

}
. (A.6)

Based on the definitions of βj(k) and αj(k), as well as the idea of bundle method, we
know that ê1(k,θ) ≤ f(k, θ̂(k)). Thus, considering (A.6) yields

2e
(
k, θ̂(k)

)(
θ̂
T
(k) − θT

)
h(k) ≤ βj(k). (A.7)

Choosing θ = θ1 and holding (A.7) yield

2e
(
k, θ̂(k)

)(
θ̂
T
(k) − θT1

)
h(k) ≤ βj(k). (A.8)

Based on (A.5) and (A.8), we obtain

θ̃(k + 1)θ̃
T
(k + 1) − θ̃(k)θ̃

T
(k) ≤ η(k)βj(k) + η2(k)e2

(
k, θ̂(k)

)
h
T
(k)h(k). (A.9)

According to the idea of the gradient algorithm and [16], we know that

e
(
k, θ̂(k + 1)

)
= e

(
k, θ̂(k)

)
+ Δe

(
k, θ̂(k)

)
. (A.10)
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Hence, the change of e(k) is written as

Δe
(
k, θ̂(k)

)
=

⎡

⎢
⎣
∂e

(
k, θ̂(k)

)

∂θ(k)

⎤

⎥
⎦

T

Δθ(k) = −h(k)Δθ(k). (A.11)

According to (3.5) and Step 3 of the algorithm, it yields:

Δθ(k) = η(k)t(k) = η(k)e
(
k, θ̂(k)

)
h
T
(k). (A.12)

From (A.11) and (A.12), we get

Δe
(
k, θ̂(k)

)
= −η(k)e

(
k, θ̂(k)

)
h(k)h

T
(k). (A.13)

According to (A.10) and (A.13), we obtain

e2
(
k, θ̂(k + 1)

)
−e2

(
k, θ̂(k)

)
= −2η(k)e2

(
k, θ̂(k)

)
h(k)h

T
(k)+η2(k)e2

(
k, θ̂(k)

)[
h(k)h

T
(k)

]2

.

(A.14)

Based on (A.4), (A.9), and (A.14), it leads to the following:

L(k1) − L(k) ≤ η(k)βj(k) | η2(k)e2
(
k, θ̂(k)

)
h
T
(k)h(k)

(
1 +

[
h(k)h

T
(k)

])

− 2η(k)e2
(
k, θ̂(k)

)
h(k)h

T
(k)

(A.15)

if 0 < η(k) ≤ (2e2(k, θ̂(k))h(k)h
T
(k) − βj(k))/e2(k, θ̂(k))h

T
(k)h(k)(1 + [h(k)h

T
(k)]) and

βj(k) < 2e2(k, θ̂(k))[h(k)h
T
(k)], we have

L(k + 1) − L(k) ≤ 0. (A.16)

Hence, the parameters θ can be convergent to a local optimal value.
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Based on the niche characteristics, a hybrid adaptive fuzzy control method with the function of
continuous supervisory control is proposed in this paper. Considering the close degree of Niche
as the consequent of adaptive T-S fuzzy control system, the hybrid control law is designed by
tracking, continuous supervisory, and adaptive compensation. Adaptive compensator is used in
the controller to compensate the approximation error of fuzzy logic system and the effect of the
external disturbance. The adaptive law of consequent parameters, which is achieved in this paper,
embodies system adaptability as biological individual. It is proved that all signals in the closed-
loop system are bounded and tracking error converges to zero by Lyapunov stability theory. The
effectiveness of the approach is demonstrated by the simulation results.

1. Introduction

In recent years, fuzzy technique has gained rapid development in complex nonlinear
plants [1]. Fuzzy logic offers human reasoning capabilities to capture nonlinearities and
uncertainties, which cannot be described by precise mathematical models. Theoretical proofs
of fuzzy models as universal approximators have been presented in the last decade [2, 3].
Fuzzy adaptive control methodologies have emerged in recent years as promising ways to
approach nonlinear control problems. Fuzzy control, in particular, has had an impact in
the control community because of the simple approach it provides to use heuristic control
knowledge for nonlinear control problems. Recently, fuzzy systems have aroused a great
resurgence of interest from part of the control community on the ground that they may be
applied to model ill-defined complex systems. Direct and indirect schemes are two staple
configurations for adaptive fuzzy controls. It has been established that indirect and direct
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controls (DAFC and IAFC) are able to incorporate plant knowledge and control knowledge,
respectively, to yield stable and robust control systems [4]. The last two decades or so have
witnessed a large quantity of results on indirect [5, 6] or direct [7–11] adaptive control
(IAC/DAC) using fuzzy systems. However, the fuzzy adaptive controller proposed in [6, 7]
ensure that the tracking error asymptotically convergence to zero (or a neighborhood of the
origin) if the minimum approximation error is squared integrable along the state trajectory.
And those algorithms are just confined to the linear and nonlinear systems whose state
variables are assumed to be available for measurement. In many complicated cases, all state
variables are not measurable such that output feedback or observer-based adaptive control
techniques have to be applied. In [12–15], observer-based IAC and DAC algorithms are
proposed for nonlinear systems, respectively. But [6, 12, 13] proposed adaptive control gain
is only applicable to nonlinear systems with unknown constant gain. So a hybrid adaptive
fuzzy control is needed.

In order to exploit the relative advantages of indirect and direct adaptive configu-
rations at the same time, some researchers have developed several hybrid IAC and DAC
algorithms [16–18] where a weighting factor, which can be adjusted by the tradeoff between
knowledge of the plant and knowledge of the control, is adopted to sum together the control
efforts from both the IAC and DAC. However, those schemes have their limitations. Above
all, they take full-state feedback, which can be unsuitable for nonlinear systems without
state variables available. Moreover, the conventional adaptive controller proposed in [19]
combines indirect, direct, and variable structure methods; nonetheless its plants are assumed
to be linear systems only. The author of [6] has developed a hybrid adaptive fuzzy control
(HAFC) for nonlinear systems. However, input gains are required to be a constant 1 and
control gain is an unknown constant. The HAFC algorithm of [20] can just be applied to robot
manipulators with bounds estimation whereas that of [21] derives an unsupported HAFC
scheme from a faulty Lyapunov derivative. On the other hand, a certain observer-based
combined direct and indirect adaptive fuzzy neural controller is developed in [22]. Sensor
fault may be in any form, even unbounded, which will make the system failure unavoidably.
Paper [23] proposed a reliable observer-based controller, which makes the system work well
no matter whether sensor faults occur or not.

Among various kinds of fuzzy models, there is a very important class of Takagi-
Sugeno (T-S) fuzzy models [24] which have recently gained much popularity because of
their special rule consequent structure and success in a functional approximation [6, 25]. In
the recent two years, with the stability theory of T-S fuzzy system drawing lots of researchers
attention, Yeh et al. [25] proposed stability analysis of interconnected and robustness design
of time-delay fuzzy systems using fuzzy Lyapunov method. Moreover, T-S fuzzy model plays
an important role in dealing with practical problems, such as oceanic structure [26], Vehicle
occupant classification [27], and engineering systems [28], in which T-S fuzzy systems are
applied to sensor fault estimation.

Upon all the fuzzy control method mentioned above, the consequent rules only
contain the mathematical expressions without the practical significances. In this paper, the
self-adaptability of the ecosystem is introduced into the fuzzy control method. Ecosystem
is a complex large system, the interaction between individuals within the system, ”the
interaction” between the system and the outside world, made the internal dynamics of
ecological system extremely complex. Biological evolution in complex ecosystems displays
a strong nonlinearity [29], and increasing complexity is an indication of biological evolution,
which makes it easier for organisms to adapt to environmental changes, and higher
adaptability is the performance of a higher degree of evolution, that is, the so-called “survival
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of the fittest” [30]. Because of the redundancy and stability of ecological system, individuals
acquire their own living ability and evolve to the advantage direction. This is why the
ecological system could keep balance. The stability of the system is closely related with
individuals’ ecological niche. Through such feature, Wang and Yi-min [31] discussed a
method of fuzzy control based on niche model. The basic concept and methods of niche are
introduced. Using the similarity measures, the capabilities of the living’s self-learning and
self-organization are joined in fuzzy system, gaining the fuzzy system which has the meaning
of niche. Considering the high-order nonlinearity, complexity, and biological individuals’
adaptability of ecological systems, we combine biological characteristics with adaptive fuzzy
control method and raise a new hybrid T-S fuzzy adaptive control way, which contains great
biological significance itself. The consequent of fuzzy system is parameter’s ecological niche
close degree functions for T-S model. In condition of immeasurable biological individuals’
ecological factors, in [17, 29], the author designs controller and obtains adaptive law with
consequent parameter which takes good tracking effect to changing error target function.
Fuzzy T-S system of ecological niche reflects the degree of biological exploiting and usage
and develops to its favorable way. During this course, the system moves forward by mutual
changes, coordination with environment and themselves. This fuzzy adaptive control of
niche reflects that the biology of individual organisms in the new environment has a strong
adaptability, strong in the biological and practical significance, but also provided a reference
value for the artificial cultivation of rare species. Therefore, fuzzy control background gets its
biological meaning in this way.

2. Problem Formulation

Consider the nth-order nonlinear system of the following form:

x(n) = f
(
x, ẋ, . . . , x(n−1)

)
+ g

(
x, ẋ, . . . , x(n−1)

)
u + d(t)

y = x,
(2.1)

where f and g are unknown but bounded functions, u, y ∈ R are the input, output of the
system, respectively, and y and d(t) is the external bounded disturbance. X = (x1, . . . , xn)

T =
(x, ẋ, . . . , x(n−1))T ∈ Rn is the state vector where not all xi are assumed to be available for
measurement. In order for the system (2.1) to be controllable, it is required that g(X)/= 0
for X in a certain controllability region Uc ⊂ Rn. Since g(X) is continuous, we assume 0 <
g(X) ≤ ∞ for X ∈ Uc. The control objective is to design a combined controller, tune the
correlation parameters of adaptive law, and force the system output y to follow a bounded
reference signal ym(t) under the constraint that all signals involved must be bounded. To
begin with, the signal vector ym(t), the tracking error vector e, and estimation error vector

e are defined as ym = (ym, ẏm, . . . , ẏ
(n−1)
m )

T ∈ Rn, e = ym − X = (e, ė, . . . , e(n−1))
T ∈ Rn, e =

ym −X = (e, ė, . . . , e(n−1))
T ∈ Rn, where X and e denote the estimates of X and e, respectively.

If the functions f(X) and g(X) are known and the system is free of external disturbance d(t),
then we can choose the controller u∗ to cancel the nonlinearity and design controller. Let
k0 = (k01, . . . , k0n)

T ∈ Rn be chosen such that all roots of the polynomial sn + k0ns
n−1 + · · · + k01
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are in the open left half-plane and control law of the certainty equivalent controller is obtained
as

u∗ =
1

g(X)

[
−f(X) + y(n)

m + k0
Te

]
. (2.2)

Substituting (2.2) to (2.1), we get the main objective of the control is limt→∞ e(t) = 0.
However f(X) and g(X) are unknown, the ideal controller (2.2) cannot be implemented,
and not all system states X can be measured. So we have to design an observer to estimate
the state vector X in the following.

3. T-S Fuzzy System Based on Niche

3.1. Description of T-S Fuzzy System Based on Niche

Because f(X) and g(X) are unknown, T-S fuzzy systems are used to approximate them. The
basic configuration of T-S [24] system is expressed as

Rl
f : if x1 is Al

1, . . . , xn is Al
n, then f̂l(X) =

3
2
− φ

⎡

⎣
λl
f
− λ

σl
f
+ σ

⎤

⎦,

Rl
g : if x1 is Gl

1 , . . . , xn is Gl
n, then ĝl(X) =

3
2
− φ

[
λlg − λ
σlg + σ

]

,

Rl
u : if x1 is Ul

1 , . . . , xn is Ul
n, then ûl(X) =

3
2
− φ

[
λlu − λ
σlu + σ

]

(l = 1, . . . , m).

(3.1)

Here, Al
i, G

l
i,U

l
i are fuzzy sets, λl = (x1, x2, . . . , xn) represents the real ecological factor of

ecologic niche, and λ = (x∗
1, x∗

2, . . . , x
∗
n) is the ideal ecological factor. Consequent indicates

the difference between real state of ecologic niche and ideal one. we choose Gaussian
membership function, which satisfies xli − xlj � δ, where xli, x

l
j are the centers and σ is

the variance of the functions. Then difference could be showed by approach functions as
H(A,B) = 3/2 − φ[(λlf − λ)/(σlf + σ)], where φ(x) = (1/

√
2π)

∫x
−∞ e−t

2/2dt. From approach

functions above, we could know consequent is a zero-order T-S mode. Here, we use al0 as
3/2 − φ[(λlf − λ)/(σlf + σ)] for convenience. Let m be the number of systems with central
average defuzzifier, and product inference and singleton fuzzifier can be expressed as

f̂
(
X | θf

)
=

∑m
l=1 a

l
0

(
∏n

i=1 exp
(
−
((
xi − xli

)
/σli

)2
))

X̃

∑m
l=1

∏n
i=1 exp

(
−
((
xi − xli

)
/σli

)2
) =

m∑

l=1

ξl(X)θlf = ξ(X)Tθf , (3.2)

where ξl(X) =
∏n

i=1 exp(−((xi − xli)/σli)
2
)X̃/

∑m
l=1

∏n
i=1 exp(−((xi − xli)/σli)

2
), θl

f
=

(al0, 0, . . . , 0) ∈ R1×(n+1), X̃ = [1, x1, . . . , xn]
T ; ξ(X) = (ξ1(X), . . . , ξm(X)) ∈ R1×m,
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θf =

⎛

⎝
θ1
f

...
θm
f

⎞

⎠ ∈ Rm×(n+1); ĝ(X | θg) = ξ(X)Tθg and uD(X | θD) = η(X)TθD can be

expressed similarly.

3.2. Niche T-S Model Parameter Optimization Method

Niche fuzzy T-S model based on parameter optimization of backpropagation algorithm
known input and output data (xp0 , y

p

0), x
p

0 ∈ U ∈ Rn, y
p

0 ∈ V ∈ R, the task is to determine

the form (3.2) Niche T-S model parameters, To fitting error ep = (1/2)[f̂(xp0) − y
p

0]
2

the
minimum. Assume M is known, by adjusting λl

f
, σl

f
, xli, σ

l
i , and let ep be the minimum.

To facilitate the discussion, use ê, f̂ , ŷ to represent ep, f̂(xp0), and y
p

0 . b =
∑m

l=1 Z
l, Zl =

∏n
i=1 exp(−((xi − xli)/σli)

2
), a =

∑m
l=1(a

l
0Z

l).
Using gradient descent to determines the parameters [6]

λlf
(
q + 1

)
= λlf

(
q
) − γ

∂ê

∂λlf

∣∣∣∣∣∣
q

, l = 1, 2, . . . , m, q = 0, 1, 2, . . . , γ (3.3)

determines the steps.
Then

∂ê

∂λlf
=
∂ê

∂f̂

∂f̂

∂a

∂a

∂al0

∂al0

∂λlf
=

(
f̂ − ŷ

)
· 1√

2π
e
−((λl

f
−λ)/(σl

f
+σ))

2
/2 · 1

σlf + σ
· 1
b
· ZlX. (3.4)

Then,

λlf
(
q + 1

)
= λlf

(
q
) − γ

(
f̂ − ŷ

)
· 1√

2π
e
−((λl

f
(q)−λ)/(σl

f
(q)+σ))

2
/2 · 1

σlf
(
q
)
+ σ

· 1
b
· ZlX. (3.5)

Equally,

σlf
(
q + 1

)
= σlf

(
q
) − γ

(
ŷ − f̂

)
· 1√

2π
e
−((λl

f
(q)−λ)/(σl

f
(q)+σ))

2
/2 ·

λlf
(
q
) − λ

(
σlf

(
q
)
+ σ

)2
· 1
b
· ZlX (3.6)
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adjustable parameters xli, σ
l
i with the same way:

xli
(
q + 1

)
= xli

(
q
) − γ

∂ê

∂xli

∣
∣
∣
∣
∣
q

= xli
(
q
) − γ

(
f̂ − ŷ

)(
f̂ − N

b

)
·

2
(
xi − xli

(
q
))

(
σli

(
q
))2

X

σli
(
q + 1

)
= σli

(
q
) − γ

∂ê

∂σli

∣
∣
∣
∣
∣
q

= σli
(
q
) − γ

(
f̂ − ŷ

)(
f̂ − N

b

)
·

2
(
xi − xli

(
q
))2

(
σli

(
q
))3

X,

(3.7)

where N =
∑m

l=1(3/2 − φ((λl
f
− λ)/(σl

f
+ σ))), λlg , σ

l
g , λ

l
u and σlu can be optimized directly.

4. Hybrid Controller with Supervisory and Compensation
Control Scheme

The overall control law is constructed as

u = αuI
(
X
)
+ (1 − α)uD

(
X | θ

)
+ us + uc, (4.1)

where uI is an indirect controller, uD is the output of the T-S controller, us is the supervisory
control to force the state within the constraint set, α ∈ [0, 1] is a weighting factor, and uc
is the compensate controller of adaptive control. Since X cannot be available and f(X) and
g(X) are unknown, we replace the functions f(X), g(X), and error vector e by estimation
functions f̂(X), ĝ(X), and e. The certainty equivalent controller can be rewritten as

u∗ =
1

g(X)

[
−f(X) + y(n)

m + k0
Te

]
. (4.2)

The indirect control law is written as uI = (1/ĝ(X))[−f̂(X) + y(n)
m + k0

Te]. Applying (4.2),
(4.1) to (2.1), the error dynamic equation is

ė = Ae − BkT0 e + B
{
α
[
f̂
(
X
)
− f(X) +

(
ĝ
(
X
)
− g(X)

)
uI

]}

+ (1 − α)g(X)(u∗ − uD) + Bg(X)(us + uc) − Bd,
(4.3)

defining kc = (kcn, . . . , kc1) as the observer vector, the observation errors are defined as ẽ =
e − e from (4.2) and [24] and we get

˙̃e = Λẽ + B
{
α
[
f̂
(
X
)
− f(X) + ĝ

(
X
)
− g(X)uI

]
+ (1 − α)g(X)(u∗ − uD)

}

− Bg(X)(us + uc) − Bd,
(4.4)
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where

Λ = A − kcCT =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

−kcn 1 0 0 · · · 0 0
−kc(n−1) 0 1 0 · · · 0 0

...
...

...
...

. . .
...

...
−kc2 0 0 0 · · · 0 1
−kc1 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
...
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
...
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.5)

Let A = A − BkT0 be strictly Hurwitz matrix; so there exists a positive definite symmetric

n × n matrix P , P which satisfies the Lyapunov equation ΛTP + PΛ = −Q, A
T
P + PA = −Q,

where Q and Q are arbitrary n × n definite symmetric matrix. Let Ve = (1/2)eTPe. Since Q
and kc are designer by the designer, we can choose Q and kc, such that V̇e ≤ 0. Hence, Ve is a
bounded function and there exists a constant value V e, such that Ve ≤ V e.

5. Hybrid Adaptive Control of Niche

We will develop the hybrid adaptive control such that the closed-loop output y(t) follows
ym(t). Let us replace f̂(X), ĝ(X), and uD(X) by f̂(X | θf), ĝ(X | θg), and uD(X | θD),
respectively. Therefore, the error dynamics (4.3) can be rewritten as

˙̃e = Λẽ + B
{
α
[
f̂
(
X | θf

)
− f(X) + ĝ

(
X | θg

)
− g(X)uI

]

+(1 − α)g(X)
(
u∗ − uD

(
X | θD

))}
+ Bg(X)(us + uc) − Bd.

(5.1)

Let Vẽ = (1/2)ẽTP ẽ then using (5.1), we have

V̇ẽ ≤ − 1
2
ẽTQẽ +

∣∣∣ẽTPB
∣∣∣
{
α
[∣∣∣f̂

(
X | θf

)∣∣∣ +
∣∣f(X)

∣∣ +
∣∣∣ĝ

(
X | θg

)
u
∣∣∣
I
+
∣∣g(X)uI

∣∣
]

+
∣∣(1 − α)g(X)u∗

∣∣ +
∣∣∣
(
g(X)uD

(
X | θD

))∣∣∣
}

+
∣∣∣ẽTPB

∣∣∣
[
(1 − α)∣∣g(X)α + uc

∣∣] − ẽTPBg(X)us.

(5.2)

In order to design us so that V̇ẽ ≤ 0, we need the following assumption.

Assumption 5.1. We could find three functions as fu(X), gu(X), gl(X) and get |f(X)| ≤
fu(X) ≈ fu(X) and 0 < gl(X) ≈ gl(X) ≤ g(X) ≤ gu(X) ≈ gu(X), in which X ∈ Uc and
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fu(X) ≈ fu(X) < ∞, gu(X) ≈ gu(X) < ∞. This is due to the fact that we can choose kc to let
X ≈ X. Also external disturbance is bounded. We design |d(t)| ≤ dm.

From Assumption 5.1, we choose the supervisory control us as

us =
(
Vẽ

V

)p

sgn
(
ẽTPB

)[ α

gl(X)

∣
∣
∣f̂

(
X |θf

)∣∣
∣+fu

(∣∣
∣ĝ

(
X |θg

)∣∣
∣+gu|uI |

)
+
(
fu(X)+

∣
∣
∣y(n)

m

∣
∣
∣+

∣
∣
∣kTe

∣
∣
∣
)]

+
(
Vẽ

V

)p

sgn
(
ẽTPB

)
(1 − α)

(
[|ud|] + 1

gl(X)

(
fu(X) +

∣
∣
∣y(n)

m

∣
∣
∣ +

∣
∣
∣k0

Te
∣
∣
∣
)
+ gu|uc| + dm

)
.

(5.3)

And we choose uc = co sgn(ẽTPB), and co is a nonnegative constant. Considering the case
Vẽ > V and substitute (5.3) into (5.2), we obtain V̇ẽ ≤ −(1/2)ẽTQẽ ≤ 0. Therefore, if the
closed-loop system with the fuzzy controller u as

u = αĝ−1
(
X | θg

)[
−f̂

(
X | θf

)
+
∣∣∣y(n)

m

∣∣∣ +
∣∣∣k0

Te
∣∣∣
]
+ (1 − α)uD

(
X | θD

)
+ us + uc (5.4)

works well in the sense that the error is not too large, if Vẽ ≤ V , then the supervisory control
us is zero. If the system tends to diverge, that is, Vẽ > V , then be us gins to force Vẽ ≤ V .

6. Design of Adaptive Law

In order to adjust the parameters in the fuzzy logic system, we have to derive adaptive laws.
Hence, the optimal parameters estimates θ∗

f
, θ∗g , and θ∗D are defined as

θ∗f = arg min
θf∈Ωf

⎡

⎣ sup
X∈ΩX,X∈ΩX

∣∣∣f̂
(
X | θf

)
− f(X)

∣∣∣

⎤

⎦,

θ∗g = arg min
θg∈Ωg

⎡

⎣ sup
X∈ΩX,X∈ΩX

∣∣∣ĝ
(
X | θg

)
− g(X)

∣∣∣

⎤

⎦,

θ∗D = arg min
θD∈ΩD

⎡

⎣ sup
X∈ΩX,X∈ΩX

∣∣∣u∗(X) − u
(
X | θD

)∣∣∣

⎤

⎦,

(6.1)

where Ωf ,Ωg,ΩD,ΩX , and ΩX , are compact sets of suitable bounds on θf , θg, θD,X, and X,
respectively, and they are defined as

Ωf =
{
θf :

∥∥θf
∥∥ ≤Mf

}
, Ωg =

{
θg :

∥∥θg
∥∥ ≤Mg

}
, ΩD = {θD : ‖θD‖ ≤MD},

ΩX =
{
X :

∥∥∥X
∥∥∥ ≤MX

}
, ΩX = {X : ‖X‖ ≤MX},

(6.2)
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where Mf,Mg,MD,MX and MX , are positive constants. Define the minimum approxima-
tion errors as

ω = α
[
f̂
(
X | θ∗f

)
− f(X) + ĝ

(
X | θ∗g

)
− g(X)uI

]
+ (1 − α)g(X)

(
u∗(X) − u

(
X | θ∗D

))
− d(t).

(6.3)

Now consider the Lyapunov function

V =
1
2
ẽTP ẽ +

1
2Γf

(
θf − θ∗f

)T(
θf − θ∗f

)
+

α

2Γg

(
θg − θ∗g

)T(
θg − θ∗g

)

+
(1 − α)

2ΓD

(
θD − θ∗D

)T(
θD − θ∗D

)
,

(6.4)

where Γf =

[ τf0

. . .
τfn

]

(n+1)(n+1)

and Γg and ΓD is expressed similarly.

We get the adaptive law as

θ̇f = −Γf ξ
(
X
)
BTPẽ, θ̇g = −Γgξ

(
X
)
BTPẽuI , θ̇D = −ΓDη

(
X
)
g(X)BTPẽ. (6.5)

So

(
θ̇f

)T =

⎡

⎢⎢⎢⎢⎢
⎣

ȧl0

ȧl1
...
ȧln

⎤

⎥⎥⎥⎥⎥
⎦

= ξ
(
X
)
BTPẽ

⎡

⎢⎢⎢
⎣

τf0

0
...
0

⎤

⎥⎥⎥
⎦
. (6.6)

Furthermore, the adaptive law of niche factors is derived as follows. We derived the adaptive
law of real ecologic factors, see Formula (6.7), (6.8), which represented the real niche always
develop towards the ideal one. It reflected the compensation of the control system to the
external disturbance:

λ̇f
(
q + 1

)
= − 1√

2π
e−((λf (q)+λ)/(σf (q)+σ))

2/2 1
σf

(
q
)
+ σ

τf0ξ
(
X
)
BTPẽ,

σ̇f
(
q + 1

)
=

1√
2π

e−((λf (q)+λ)/(σf (q)+σ))
2/2 λf

(
q
)
+ λ

(
σf

(
q
)
+ σ

)2
τf0ξ

(
X
)
BTPẽ.

(6.7)
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The same way we have

λ̇g
(
q + 1

)
= − 1√

2π
e−((λg(q)+λ)/(σg(q)+σ))

2/2 1
σg

(
q
)
+ σ

τg0B
TPẽuI ,

σ̇g
(
q + 1

)
=

1√
2π

e−((λg(q)+λ)/(σg(q)+σ))
2/2 λg

(
q
)
+ λ

(
σg

(
q
)
+ σ

)2
τg0B

TPẽuI ,

λ̇D
(
q + 1

)
= − 1√

2π
e−((λD(q)+λ)/(σD(q)+σ))

2/2 1
σD

(
q
)
+ σ

τD0η
(
X
)
g(X)BTPẽ,

σ̇D
(
q + 1

)
=

1√
2π

e−((λD(q)+λ)/(σD(q)+σ))
2/2 λD

(
q
)
+ λ

(
σD

(
q
)
+ σ

)2
τD0η

(
X
)
g(X)BTPẽ.

(6.8)

Applying us we have V̇ ≤ −(1/2)ẽTQẽ + ẽTPBω.
Design parameters of, vector adaptive law of θf , θg, θD, stability, and performance

analysis are similar to those of [18]; here we omit it.

7. Simulation

Form combined fuzzy adaptive control of two-dimensional predation system [32] as

dx1

dt
= x1

(
a − cx1 − bx1

2 − h(x)
)
− x2

αx2
1

1 + βx2
1

dx2

dt
= x2

(

−q + kαx2
1

1 + βx2
1

)

,

(7.1)

where x1(t) means total number of food at the time of t and x2(t) denotes the total number
of predators; a, b, c, q, k, α, β are the regular numbering ecology, and k is transforming
factor, q represents death ratio of predators. h(x) is the function of Holling’s functional
responses, and x2(αx2

1/(1 + βx2
1)) is the third kind of Holling’s functional responses. The

demonstration of the two-dimensional predator system without the controller is shown in
Figure 1.

In order to reach an ideal ecologic balance in this two-dimension predators system, we
get a way to control it, where h(x) = 0.0012x3

1, a = 1.0, b = 0.0014, c = 0.06, q = 0.2, k =
0.08, α = 5.0, β = 1.2.
Then

dx1

dt
= x1

[(
1 + 1.2x2

1

)(
1 − 0.06x1 − 0.0014x2

1 − 0.0012x3
1

)
− x1x2

]

dx2

dt
= x2

(
0.16x2

1 − 0.2
)
+ u

y = x1.

(7.2)
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Figure 1: Two-dimension predator system without the controller.

In order to establish the direct relation between output y and controller u, we need the
derivation of y. After derivating twice, we get

ÿ = ẍ1 = x1

[(
1 + 1.2x2

1

)(
0.8 − 0.06x1 − 0.0014x2

1 − 0.0012x3
1

)
− x1x2

]2

− x2
1x2

(
0.8 − 0.06x1 + 1.3586x2

1 − 0.0732x3
1 − 0.00168x4

1 − 0.00144x5
1 − x1x2

)

+ 2.3972x2
1 − 0.2196x3

1 − 0.00672x4
1 − 0.0072x5

1 − 0.06x1 − x2
1u.

(7.3)

Here, we command

f(X) = x1
[(

1 + 1.2x2
1

)(
0.8 − 0.06x1 − 0.0014x2

1 − 0.0012x3
1

) − x1x2
]2

− x2
1x2

(
0.8 − 0.06x1 + 1.3586x2

1 − 0.0732x3
1 − 0.00168x4

1 − 0.00144x5
1 − x1x2

)

+ 2.3972x2
1 − 0.2196x3

1 − 0.00672x4
1 − 0.0072x5

1 − 0.06x1

g(X) = −x2
1.

(7.4)

Then (7.2) and (7.3) could be shown as

ÿ = f(X) + g(X)u. (7.5)

If hoping to apply adaptive fuzzy controlling system here, we have to firstly confirm the
boundary of fu, gu, and gl. From [29], we know that 0.2 < |x1| < 5.5, 1.5 < |x2| < 5, then

∣∣f(x1, x2)
∣∣ ≤ 2.7205e + 0.03 ≈ 2.7205e + 0.03 = fu(x1, x2)

0 < gl(x1, x2) ≈ gl(x1, x2) = 0.04 ≤ ∣∣g(x1, x2)
∣∣ ≤ 30.25 = gu(x1, x2) ≈ gu(x1, x2).

(7.6)

According to the above, we find out that the scope of f(x1, x2) is larger than g(x1, x2).
Therefore, we choose τf0 = 50, τg0 = 1, τD0 = 15. Then we select Mf = 7.7,Mg = 31,MD =
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Figure 2: The trend of the prey numbers with T-S controller.

31, ε = 0.5, |u| ≤ 5. The proposal method of this paper does not need to predefine the reference
signal, but to reach the balance of each individual self-adaptively. Conveniently, we suppose
kc = [89 184] (in this way, s2 + k1s+ k2 could be stable.) and k0 = [4 4], we select Q =

[
10 13
13 28

]
,

from Λc
TP + PΛc = −Q, then we solve P =

[
29 −14
−14 7

]
. Q̂ as

[
40 25
25 30

]
, and Â =

[
0 1
−4 −4

]
so we have

P̂ =
[

15 5
5 5

]
; when letting λmin = 2.93, we could get V = 2λmin = 5.86. In this way, we get the

ideal = 0, σ = 1. The adaptive law comes out as follows:

λ̇f
(
q + 1

)
= − 50√

2π
e−(λf (q)/(σf (q)+1))2/2 1

σf
(
q
)
+ 1

ξ
(
X
)
BTPẽ

σ̇f
(
q + 1

)
=

50√
2π

e−(λf (q)/(σf (q)+1))2/2 λf
(
q
)

(
σf

(
q
)
+ 1

)2
ξ
(
X
)
BTPẽ

λ̇g
(
q + 1

)
= − 1√

2π
e−(λg(q)/(σg(q)+1))2/2 1

σg
(
q
)
+ 1

BTPẽuI

σ̇g
(
q + 1

)
=

1√
2π

e−((λg(q)+0)/(σg(q)+1))2/2 λg
(
q
)

(
σg

(
q
)
+ 1

)2
BTPẽuI

λ̇D
(
q + 1

)
= − 15√

2π
e−(λD(q)/(σD(q)+1))2/2 1

σD
(
q
)
+ 1

η
(
X
)
g(X)BTPẽ

σ̇D
(
q + 1

)
=

15√
2π

e−(λD(q)/(σD(q)+1))2/2 λD
(
q
)

(
σD

(
q
)
+ 1

)2
η
(
X
)
g(X)BTPẽ.

(7.7)

We choose x1(0) = 0.3, x2(0) = 1.0, then the trend of the prey and predator numbers with T-S
controller show as in Figures 2 and 3. The trend of the T-S controller is shown in Figure 4.

From the simulation figures, we can see that the prey and predator numbers reach
a stable status in a short period of time under the control of the proposed method in this
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Figure 3: The trend of the predator numbers with T-S controller.
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Figure 4: The trend of the T-S controller.

paper. The creature individuals show a characteristic of self-adaptation according to outside
changes.

From the figure of the trend of the T-S controller, it also reaches an ideal status to
maintain the overall balance of the two-dimension predator system. The ecological system is
optimized with the use of this control method.

8. Conclusion

For the ecological niche, a hybrid adaptive fuzzy control method with the function of
continuous supervisory control is proposed in this paper. Let the close degree of Niche which
contains parameters as the consequent of adaptive T-S fuzzy control system, then designs
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the hybrid control law by tracking, continuous supervisory and adaptive compensation.
Using gradient descent to optimize the parameters, we get the adaptive law of consequent
parameters, embodying biological individual’s ability of adaptability. Based on Lyapunov
stability theory, it is proved that all signals in the closed-loop system are bounded and
tracking error converges to zero. This paper shows that the fuzzy methods provide good
results in practical engineering problems. The performance of the developed approach is
illustrated by simulation, on two-dimension predation system model.
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To depict the rule of epidemic diffusion, two different models, the Susceptible-Exposure-Infected-
Recovered-Susceptible (SEIRS) model and the Susceptible-Exposure-Infected-Quarantine-Recov-
ered-Susceptible (SEIQRS) model, are proposed and analyzed within small-world network in this
paper. Firstly, the epidemic diffusion models are constructed with mean-filed theory, and condition
for the occurrence of disease diffusion is explored. Then, the existence and global stability of the
disease-free equilibrium and the endemic equilibrium for these two complex epidemic systems
are proved by differential equations knowledge and Routh-Hurwiz theory. At last, a numerical
example which includes key parameters analysis and critical topic discussion is presented to test
how well the proposed two models may be applied in practice. These works may provide some
guidelines for decision makers when coping with epidemic diffusion controlling problems.

1. Introduction

Disastrous epidemics such as SARS and H1N1 can significantly impact people’s life. The
outbreak of infections in Europe last year is another recent example. The infection, from
a strain of Escherichia coli, can lead to kidney failure and death and is difficult to treat
with antibiotics. It is now widely recognized that a large-scale epidemic diffusion can
conceivably cause many deaths and more people of permanent sequelae, which presents a
severe challenge to a local or regional health-care systems.

After an epidemic outbreak, public officials are faced with many critical and complex
issues, the most important of which is to make certain how the epidemic diffuses. Actually,
many recent research efforts have been devoted to understanding the prevention and control
of epidemics, such as those of Wein et al. [1], Wein et al. [2], Craft et al. [3], Kaplan et al. [4, 5],
and Matsuura et al. [6]. A very recent research by Shi and Dong [7] formulates and discusses
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models for the spread of infectious diseases with variable population sizes and vaccinations
on the susceptible individuals. Various mathematical models, such as susceptible-infected
(SI), susceptible-infected-recovered (SIR), susceptible-infected-susceptible (SIS), susceptible-
infected-recovered-susceptible (SIRS), susceptible-exposure-infective-recovered (SEIR), and
susceptible-infective-quarantine-recovered-susceptible (SIQRS), are proposed to analyze and
study the general characteristics of epidemic. It is worth mentioning that the major purpose
of these papers is to compare the performance of the following two strategies, the traced
vaccination (TV) strategy and the mass vaccination (MV) strategy. Furthermore, epidemic
diffusion models they adopted are based on traditional compartment models, while complex
topological structure of social contact network has not been considered.

As it is well known, a class of network with a topology interpolating between that
of lattices and random graphs is proposed by Watts and Strogatz [8]. In these models, a
fraction of the links of the lattice is randomized by connecting nodes, with probability p, with
any other node. For a range of p, the network exhibits “small world” behavior, where a local
neighborhood (as in lattices) coexists with a short average path length (as in random graphs).
Analysis of real networks reveals the existence of small worlds in many interaction networks,
including networks of social contacts [9]. Recently, attention has been focused on the impact
of network topology on the dynamics of the processes running on it with emphasis on the
spreading of infectious diseases. For many infectious diseases, a small-world network on an
underlying regular lattice is a suitable simplified model for the contact structure of the host
population. It is well known that the contact network plays an important role both in the
short-term and in the long-term dynamics of epidemic spread [10]. Thus, one of the major
motivations for studying the small world network in this paper is to better understand the
structure of social contact network, where there is a natural link between the epidemiological
modeling and the science of small world network.

Saramäki and Kaski [11] proposed an SIR model for modeling the spreading process of
randomly contagious diseases, such as influenza, based on a dynamic small-world network.
Masuda and Konno [12] presented a multistate epidemic process based on a complex
network. They analyzed the steady states of various multistate disease propagation models
with heterogeneous contact rates. Xu et al. [13] presented a modified SIS model based
on complex networks, small world and scale free, to study the spread of an epidemic
by considering the effect of time delay. Based on two-dimension small-world networks, a
susceptible-infected (SI) model with epidemic alert is proposed by Han [14]. This model
indicates that the broadcasting of a timely epidemic alert is helpful and necessary in the
control of epidemic spreading, and this is in agreement with the general view of epidemic
alert. Stone et al. [15] studied the relative effects of vaccinations and avoidance of infected
individuals in a susceptible-infected-recovered (SIR) epidemic model on a dynamic small-
world network. They derived the critical mobility required for an outbreak to occur as a
function of the disease’s infectivity, recovery rate, avoidance rate, and vaccination rate. Hsu
and Shih [16] focused on the human-to-human transmission of influenza- and investigated
the effects of air travel activities on an influenza pandemic in a small-world network. This
study also investigated how the small-world properties of an air transportation network
facilitate the spread of influenza around the globe. The results show that, as soon as the
influenza is spread to the top 50 global airports, the transmission is greatly accelerated. It is
worth mentioning that majority of the existing studies relies on different kinds of differential
equations. For instance, first-order partial differential equations are used to integrate the
age structures; second-order partial differential equations are suitable when a diffusion term
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Figure 1: Framework of Model I.

exists; and integral differential equations or differential equations are often used when time
delay or delay factors are considered [17].

In this paper, two different models (SEIRS, SEIQRS) based on small-world network
are formulated for the spread of infectious diseases. The existence and global stability of
the disease-free equilibrium and the endemic equilibrium for these two epidemic systems are
proved by differential equations knowledge and Routh-Hurwiz theory. A numerical example,
which includes key parameters analysis and critical topic discussion (e.g., medicine resources
demand forecasting) is presented to test how well the proposed two models may be applied
in practice.

The remainder of the paper is organized as follows. Section 2 presents the SEIRS model
considering small-world network effect. Section 3 introduces the SEIQRS model considering
small world network effect. Section 4 shows the numerical experiment and discussions.
Finally, Section 5 proposes the conclusions.

2. SEIRS Model in Small-World Network (Model I)

2.1. Basic Introduction

For the compartment model of epidemic diffusion in a mature theory, herein, we omit the
verbose introduction of the framework process. Readers who interest in such a topic can find
more nutriment in [7, 11, 13, 14]. In this section, we consider the situation that infected person
will not be quarantined, and we divide people in epidemic area into four groups: susceptible
people (S), exposed people (E), infected people (I), and recovered people (R). A survey
by Tham [18] shows that part of recovered people who are discharged from the healthcare
department will be reinfected again. Thus, considering the small-world network of the social
contact, the structure of susceptible-exposure-infective-recovered-susceptible (SEIRS) model
is shown as Figure 1.

Notations used in the following sections are specified as follows:

N: population size in epidemic area,

S(t): number of susceptible people, s(t) = S(t)/N,

E(t): number of exposed people, e(t) = E(t)/N,

I(t): number of infected people, i(t) = I(t)/N,

R(t): number of recovered people, r(t) = R(t)/N,

〈k〉: average degree distribution of small world network,

β: propagation coefficient of the epidemic,

γ : reinfected rate of recovered people,
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μ: recovered rate,

τ : incubation period of the epidemic,

d: death rate of infected people.

Intuitively, we have the first two equations:

S(t) + E(t) + I(t) + R(t) =N,

s(t) + e(i) + i(t) + r(t) = 1.
(2.1)

Based on mean-filed theory [19], the time-based parameter s(t) meets the following
equation from time t to t + Δt:

s(t + Δt) − s(t) = −β〈k〉s(t)i(t)Δt + γr(t)Δt. (2.2)

Thus, we get

s(t + Δt) − s(t)
Δt

= −β〈k〉s(t)i(t) + γr(t). (2.3)

It can be rewritten as

ds(t)
dt

= −β〈k〉s(t)i(t) + γr(t). (2.4)

Similarly, we have the other three ordinary differential equations as follows:

de(t)
dt

= β〈k〉s(t)i(t) − β〈k〉s(t − τ)i(t − τ),

di(t)
dt

= β〈k〉s(t − τ)i(t − τ) − di(t) − μi(t),

dr(t)
dt

= μi(t) − γr(t).

(2.5)

Thus, the SEIRS epidemic diffusion model which considers small-world network effect
can be formulated as follows (Model I):

ds(t)
dt

= −β〈k〉s(t)i(t) + γr(t),

de(t)
dt

= β〈k〉s(t)i(t) − β〈k〉s(t − τ)i(t − τ),

di(t)
dt

= β〈k〉s(t − τ)i(t − τ) − di(t) − μi(t),

dr(t)
dt

= μi(t) − γr(t).

(2.6)
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Here, β, 〈k〉, γ,μ,d, τ > 0. Initial conditions for this epidemic diffusion model are
demonstrated as follows:

i(0) = i0 � 1,

e(0) = 〈k〉i(0),
s(0) = 1 − e0 − i0,

r(0) = 0.

(2.7)

2.2. Analysis of the SEIRS Model

As to Model I, while such an epidemic diffusion system is stable, the number of people in
different groups will be unchanged. Hence, we have s(t) = s(t − τ), i(t) = i(t − τ), and we get

de(t)
dt

= β〈k〉s(t)i(t) − β〈k〉s(t − τ)i(t − τ) = 0, (2.8)

di(t)
dt

= β〈k〉s(t)i(t) − di(t) − μi(t). (2.9)

Equation (2.8) means that the number of exposed people is constant when epidemic
diffusion system is stable. As we all know, if an epidemic is wide spread, it should satisfy the
following condition:

di(t)
dt

∣∣∣∣
t=0

> 0. (2.10)

Together, this equation with (2.9), we can get

s0 >
d + μ
β〈k〉 . (2.11)

Equation (2.11) shows that the spread of epidemic outbreaks only when s0 meets the
above condition. As s(t) + e(t) + i(t) + r(t) = 1, combined with (2.6), we get

ds(t)
dt

= −β〈k〉s(t)i(t) + γ(1 − s(t) − e(t) − i(t)),

di(t)
dt

= β〈k〉s(t)i(t) − di(t) − μi(t).
(2.12)

Let ds(t)/dt = 0 and di(t)/dt = 0, we can get an obvious equilibrium point for such an
epidemic diffusion model as follows:

P1 = (s, i) = (1, 0). (2.13)
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As (2.13) shows, the number of infected people is zero, which indicates that spread of
epidemics in such an area does not happen. All people are susceptible individuals. Herein,
we refer to such a point as the disease-free equilibrium point.

In the other side, according to (2.8), the number of exposed people is constant. Thus,
combined with (2.12), we can get another equilibrium result as follows:

P2 = (s, i) =

(
d + μ
β〈k〉 ,

γ
[
β〈k〉(1 − e) − (d + μ

)]

β〈k〉(γ + d + μ
)

)

. (2.14)

Such a result shows that, when epidemic diffusion system is stable, a certain amount
of infected people exist in disaster area. Herein, we refer it as the endemic equilibrium point.

Lemma 2.1. Disease-free equilibrium point P1 is stable only when β < (d + μ)/〈k〉.

Proof. As P1 = (s, i) = (1, 0), we can obtain the Jacobi matrix of (2.12) as follows:

JP1 =

⎡

⎢⎢
⎣

∂Π1

∂s

∂Π1

∂i

∂Π2

∂s

∂Π2

∂i

⎤

⎥⎥
⎦ =

[−γ −β〈k〉 − γ
0 β〈k〉 − d − μ

]
. (2.15)

Here, Π1 and Π2 are the two differential equations in (2.12). The secular equation for
the Jacobi matrix is

(
λ + γ

)(
λ − β〈k〉 + d + μ

)
= 0. (2.16)

It is easy to get the two characteristic roots for this secular equation, which are −γ
and β〈k〉 − d − μ. Based on Routh-Hurwiz stability criterion, when β < (d + μ)/〈k〉, real
parts of the two characteristic roots are negative. Thus, the disease-free equilibrium point
P1 = (s, i) = (1, 0) is stable only when β < (d + μ)/〈k〉.

Lemma 2.2. Endemic equilibrium point P2 is stable only when β > (d + μ)/〈k〉(1 − e).

Proof. Similarly as Lemma 2.1, coupling with (2.14), the Jacobi matrix of (2.12) can be
rewritten as follows:

JP2 =

⎡

⎢⎢⎢
⎣

γ
[−β〈k〉(1 − e) − γ]
(
γ + d + μ

) −d − μ − γ
γ
[
β〈k〉(1 − e) − (d + μ

)]

(
γ + d + μ

) 0

⎤

⎥⎥⎥
⎦
. (2.17)

The secular equation for (2.17) can be expressed as follows:

aλ2 + bλ + c = 0. (2.18)
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Figure 2: Framework of Model II.

Herein, a = 1, b = γ[β〈k〉(1− e) + γ]/(γ +d+μ), and c = γ[β〈k〉(1− e)− (d+μ)]. Based
on the quadratic equation theory, such a secular equation contains two characteristic roots λ1

and λ2, and satisfies

λ1 + λ2 = −b
a
= −γ

[
β〈k〉(1 − e) + γ]
(
γ + d + μ

) < 0, (2.19)

λ1 · λ2 =
c

a
= γ
[
β〈k〉(1 − e) − (d + μ

)]
. (2.20)

According to Routh-Hurwiz stability criterion, if we want to get two negative
characteristic roots λ1 and λ2 again, the (2.20) should be constant greater than zero, which
means that β > (d+μ)/〈k〉(1− e) should be satisfied. Thus, only when β > (d+μ)/〈k〉(1− e),
the endemic equilibrium point P2 is stable.

3. SEIQRS Model Considering Small-World Network Effect (Model II)

3.1. Basic Introduction

In this section, the quarantine measure are considered in disaster area, and people in epidemic
area are divided into five groups here: susceptible people (S), exposed people (E), infected
people (I), quarantined people (Q), and recovered people (R). Framework of epidemic
diffusion in this section is illustrated as Figure 2.

Likewise, the SEIQRS epidemic diffusion model which considers small-world network
effect can be formulated as follow (Model II):

ds(t)
dt

= −β〈k〉s(t)i(t) + γr(t),

de(t)
dt

= β〈k〉s(t)i(t) − β〈k〉s(t − τ)i(t − τ),

di(t)
dt

= β〈k〉s(t − τ)i(t − τ) − d1i(t) − δi(t),

dq(t)
dt

= δi(t) − d2q(t) − μq(t),

dr(t)
dt

= μq(t) − γr(t).

(3.1)
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Here, Q(t) stands for number of quarantined people, q(t) = Q(t)/N. s(t) + e(t) + i(t) +
q(t) + r(t) = 1. d1 is death rate of infected people, d2 is death rate of quarantined people, and
δ is quarantine rate of infected people. Moreover, β, 〈k〉, γ, δ,μ,d1,d2, τ > 0. Initial conditions
for Model II are presented as follows:

i(0) = i0 � 1,

e(0) = 〈k〉i(0),
s(0) = 1 − e0 − i0,

q(0) = 0,

r(0) = 0.

(3.2)

3.2. Analysis of the Epidemic Diffusion Model

Similar as Section 2.2, combined with (2.8) and (3.2), the (3.1) can be converted as follows:

ds(t)
dt

= −β〈k〉s(t)i(t) + γ[1 − s(t) − e(t) − i(t) − q(t)],

di(t)
dt

= β〈k〉s(t)i(t) − (d1 + δ)i(t),

dq(t)
dt

= δi(t) − (d2 + μ
)
q(t).

(3.3)

Let ds(t)/dt = 0, di(t)/dt = 0 and dq(t)/dt = 0, two equilibrium points for Model II
can be solved and shown as follows:

P3 =
(
s, i, q

)
= (1 − e, 0, 0),

P4 =
(
s, i, q

)
=
(
d1 + δ
β〈k〉 , B,

δ

d2 + μ
B

)
.

(3.4)

Herein, B = γ[β〈k〉(1 − e) − (d1 + δ)](d2 + μ)/β〈k〉[(d1 + δ + γ)(d2 + μ) + γδ], P3 is the
disease-free equilibrium point, and P4 is the endemic equilibrium point.

Lemma 3.1. Disease-free equilibrium point P3 is stable only when β < (d1 + δ)/〈k〉(1 − e).

Lemma 3.2. Endemic equilibrium point P4 is stable only when β > (d1 + δ)/〈k〉(1 − e).

The proof procedure for Lemmas 3.1 and 3.2 is similar as in Section 2. Thus, it is trivial
to do the work again.

Remark 3.3. From the above four lemmas, we can get the first conclusion that threshold of the
epidemic diffusion depends on some key parameters, such as average degree distribution of
the small-world network, recovered rate, death rate of infected people, and also a number of
exposed people when the system is stable.
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Figure 3: Numerical simulation for Model I and Model II.

4. Numerical Simulation and Discussion

4.1. Numerical Experiment

In this section, we take a numerical simulation to test how well the proposed two models may
be applied in practice. The initial values of parameters in the proposed epidemic diffusion
models are acquired from [20] and by interviews with public health care administrative
personnel, which are given as follows: β = 2 × 10−5, 〈k〉 = 6, γ = 2 × 10−4, δ = 0.3, μ = 0.2,
d = d1 = 5 × 10−3, d2 = 1 × 10−3, τ = 5 (day), N = 104, and i(0) = 1 × 10−3. We use MATLAB 7.0
mathematical solver together with Runge-Kutta method to simulate these two models. The
tests are performed on an Intel(R) Core(TM) i3 CPU 2.4 GHz with 2 GB RAM under Microsoft
Windows XP. Figure 3 is the numerical simulation of these two epidemic models. The curves
respectively represent the different groups of people over time.

As Figure 3 shows, both infected curves I(t) in Model I and Model II exhibit similar
trends, namely, the number of infected people will first increase along with the spreading the
epidemic, and then it will decrease after the epidemic is brought under control. Threshold
value of epidemic diffusion exists in both Model I and Model II. The rush of I(t) is around
on the 32-33 day. It seems that the quarantine measure does not work in our example. On
the contrary, by comparing Figure 3(a) with Figure 3(b), one can observe that the number
of infected people in Model II is way below it in Model I, suggesting that the quarantine
measure will significantly reduce the infectivity in the disaster area. Similarly, trend can be
found in E(t) curve. We conclude all these result owe to the quarantine measure in Model II.

Based on the theory analysis in Sections 2 and 3, one can observe that some factors,
such as β and 〈k〉, are key parameters in epidemic diffusion system. Herein, we present a
short sensitivity analysis for them. Holding all the other parameters fixed as given in the
numerical example, except that β takes on four different values ranging from β = 2 × 10−5 to
8×10−5 with an increment of 2×10−5, Figure 4 shows that number of infected people changed
over time. As Figure 4 shows, one can observe that, no matter in Model I or Model II, there
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Figure 4: Number of infected people with different β.

almost have no differences among these curves in the first 15–20 days. However, differences
is obvious in the following days. The larger initial size of β is, the faster increments speed
is. Figure 4 tells us that controlling the propagation coefficient is an effective way to prevent
the spread of the epidemic. By comparison with Figures 4(a) and 4(b), a number of infected
people in Model II is also way below it in Model I, such result enlightens us again that the
quarantine measure is an important factor in epidemic controlling.

It holds all the other parameters are fixed as given in the numerical example, except
that 〈k〉 takes on four different values ranging from 4 to 10 with an increment of 2. Figure 5
shows that the number of infected people is changed over time. Similarly, no matter in Model
I or in Model II, a number of infected people shows a positive proportional to the parameter
〈k〉. Figure 5 transfers an important information, that is, self-quarantine and decreasing the
contact with people around are effective strategies for controlling epidemic diffusion. Such
a conclusion explains that why Chinese government implements a series of strict quarantine
measures during the SARS period.

4.2. A Critical Topic Discussion

The purpose of dynamic analysis of epidemic diffusion models considering small-world
network effect in this paper is to depict the epidemic diffusion rule and provide guidance for
the emergency management practice. One critical topic of emergency management practice is
to forecast the medicine resources demand. However, it is often difficult to predict the actual
demand based on historical data (for many events, the historical data may not even exist).
Moreover, before 2003, when SARS hit Asia, such an operation in some parts of China has
always been done unsystematically (based on the decision maker’s experience), which leads
to stock-out or surplus phenomenon happening occasionally.

Based on dynamic analysis of epidemic diffusion models in the above sections, herein,
we are going to discuss how to forecast the time-varying demand in disaster area. Let D(t)
represents demand for medicine resources in disaster area at time t. Obviously, the more
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Figure 5: Number of infected people with different 〈k〉.

people infected, the more resources would be demanded, which can be rewritten as

D(t) ∝ f[I(t) +Q(t)]. (4.1)

Furthermore, each infected person or quarantined person should be cured for certain
time (the cure cycle), for example, 30 days. During the cure cycle, demand of medicine
resources for each person may shows a property of nonlinearity. Here, we use a function ϕ(t)
to represent it. Hence, the total demand of medicine resources for each infected/quarantined
person is

ψ =
∫ c

0
ϕ(t)dt, (4.2)

where c is the cure cycle.
To Model I, average demand for medicine resources at time t can be formulated as

DI(t) =
I(t) · ψ

c
=
N

c

∫ c

0
ϕ(t)dt

∫ t

0
β〈k〉s(t − τ)i(t − τ) − di(t) − μi(t)dt. (4.3)

Hence, we get

dDI(t)
dt

= Λ
[
β〈k〉s(t − τ)i(t − τ) − di(t) − μi(t)

]
, (4.4)
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where Λ is a constant. Similarly, to Model II, we have

DII(t) =
[I(t) +Q(t)] · ψ

c

=
N

c

∫ c

0
ϕ(t)dt

(∫ t

0
β〈k〉s(t−τ)i(t−τ) − d1i(t) − δi(t)dt+

∫ t

0
δi(t)− d2q(t)− μq(t)dt

)

,

(4.5)

dDII(t)
dt

= Λ
[
β〈k〉s(t − τ)i(t − τ) − d1i(t) − d2q(t) − μq(t)

]
. (4.6)

To depict the variation trend of demand for medicine resources, here, we let Λ = 1.
Such an operation will not affect the final result. According to (4.4) and (4.6), holding all
the parameters fixed as given in the above numerical example, one can get the demand for
medicine resources by these two models as Figure 6 shows.

As Figure 6 shows, variation trend of demand for medicine resources presents an
obvious three different stages. At the first stage (e.g., 0–15 days), epidemic has just outbreak,
and it has not yet caused a widespread diffusion. Such a period is the best rescue time.
Demand for medicine resources in this period are kept in low level. Hence, medicine
resources inventory in local health departments should be distributed to infected people
as quickly as possible. If the rescue opportunities in first stage are missed, epidemic will
cause a widespread diffusion in the following time, which brings us to the second stage. In
such a stage (e.g., 15–70 days), demand for medicine resources is time varying, resources
distribution program in such a stage should be varied over time correspondingly. All
these changes make the emergency work much more trouble. At the third stage (e.g., 70-
more days), demand for medicine resources shows stable again. The inventory of medicine
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resources in local health departments should be replenished at this period; meanwhile, a
fraction of medicine resources should be allocated to the remaining infected areas.

5. Conclusions

In this paper, we analyze two different epidemic models (SEIRS, SEIQRS) considering small-
world network effect, and we prove the global stability of the disease-free equilibrium and
the endemic equilibrium for them. A numerical example, which includes key parameters
analysis and critical topic discussion, is presented to test how well the proposed two models
may be applied in practice. The novelty of our model against the existing works in literature
is characterized by the following aspects

(1) While most research on epidemic diffusion studies a compartment model taking
no consideration the complexity of social contact network, the models proposed in this paper
address the small world network effect in match of the course of an epidemic diffusion.

(2) Based on the theory analysis and numerical simulation, epidemic diffusion rules
are depicted, and a series of suggestions for emergency management practice is presented.
These methods remarkably outperform the traditional measurements and will be much more
suitable for real operations.

As the limitations of the models, they are developed in geographic area where an
epidemic disease has been spreading and does not consider possible cross area diffusion
between two or more geographic areas. We assume that once an epidemic outbreaks, the
government has effective means to separate the epidemic areas so that cross-area spread can
be basically prevented. However, this cannot always be guaranteed in reality.
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This paper investigates the presence of limit oscillations in an adaptive sampling system. The
basic sampling criterion operates in the sense that each next sampling occurs when the absolute
difference of the signal amplitude with respect to its currently sampled signal equalizes a
prescribed threshold amplitude. The sampling criterion is extended involving a prescribed set of
amplitudes. The limit oscillations might be interpreted through the equivalence of the adaptive
sampling and hold device with a nonlinear one consisting of a relay with multiple hysteresis whose
parameterization is, in general, dependent on the initial conditions of the dynamic system. The
performed study is performed on the time domain.

1. Introduction

Nonperiodic sampling theory opens a set of new technical possibilities compared with the
classical sampling with periodic sampling period [1–17]. Those possibilities are as follows:

(1) to adapt the sampled signals to get better performances [1–3, 6, 8, 9, 16]: for
instance, if that signal varies rapidly, then the sampling period is made smaller and
vice versa. In general, some constraints in terms of bandwidth, stability, and
technical requirements related to circuitry or computing should be respected so that
the sampling rate has to belong to some appropriate admissibility domain;

(2) transmission errors from data to results in algebraic problems like controllability,
and observability, might be reduced by a judicious selection of the sampling
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instants when choosing a fixed sampling period. The reason is that the condition
number of the matrix defining the problem depends on such a choice and one can
convert a one-parameter optimization problem (a fixed sampling period) into a
multiple one (the whole set of distinct sampling periods). In particular, the smaller
the condition number of the coefficient matrix is, the smaller are the relative trans-
mission errors from the data to the results depending on each particular problem
dealt with [13, 14, 16]. The technique might be used by its “ad-hoc” implementation
in a great variety of problems like biology measurements, economics, control theory
and engineering, [16], statistics, random sampling [18–22];

(3) to improve the adaptation transients in recursive identification or adaptive control
of both classical or hybrid systems by combining the estimation algorithm with the
signal adaptation, [2, 3, 9, 16]. Related adaptive sampling techniques can be used in
the context of expert systems to improve the performances under supervisory rules
(see, e.g., [17] and references therein).

Nonperiodic sampling being updated under certain adaptive sampling laws can
often be interpreted as event-driven [23, 24], since, although sampling occurs through
time, most of sampling rules involve signal comparison rules related to their immediate
previous sampled values or involve certain performance tests. There are a set of background
interesting papers, available in the literature, in which sampling is considered either state-
dependent, random, or based in stochastic considerations, in general, and used in a number of
applications. See, for instance, [19–22, 25–27] and references therein. The constant difference
of amplitudes sampling criterion consists of keeping constant the absolute increment of
the signal being sampled inbetween each two consecutive sampling instants. The sampling
criterion together with its associate sampling and zero-order-hold device is equivalent to
a separate nonlinearity which is fully equivalent to a multiple relay with hysteresis (i.e.,
a multiple bang-bang device with hysteresis). See [1, 15, 18, 28–32] and some references
there in. In particular, the sampling criterion based on constant difference of amplitudes was
generalized in [1] to the use of several threshold amplitudes the initial sampling criterion
proposal of [30] based on a single constant difference of amplitudes. This equivalence
motivates that the discretized system exhibits some properties being commonly associated
with certain nonlinear systems, like for instance, the potential existence of limit oscillations.
A close nonlinear model was proposed in [21] for feedback-based stabilization by triggering
the plant output samples through the crossings, with hysteresis, of the signal through its
quantization levels. In [22], a close problem related to saturating quantized measurements
is focused on. It is well known that limit cycles are highly unsuitable in applications where
the objective is to get a zero asymptotic tracking errors. However, they are pursued as an
objective for the design of oscillators is some applications as in the design of tank circuits for
tuning a suited frequency in radio or TV. There are unified sampling formulations available
in the background literature including the presence of sampling constraints in [33, 34] and
references there in, and work is also in progress to extend results to the presence of internal
delays [35].

This paper characterizes and formalizes mathematically in the time domain the above
sampling criterion by extending some previous background results in [1, 18], where the study
of oscillations was only approximate and made in a first-harmonic approximation in the
frequency domain by using the describing function approach, while the stability properties
were not investigated. The results are obtained in the time domain rather than in the
frequency one. This allows not to necessarily assume in the problem statement that the linear
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dynamics exhibits low-pass filtering properties so as to justify the use of a first-harmonic
approximation method, as it was done in [1, 15, 18] which was an important limitation in
those papers. In this way, such an assumption is no longer needed in the subsequent study
which is performed with an exact analytic treatment rather than involving an approximate
one. Also, a set of difference amplitudes, rather than a constant fixed one, are allowed in
a generalized version of that sampling criterion in order to generalize the problem and to
improve its potential applicability. If there is just a single amplitude available to be used as
adaptive sampling threshold, then the sampling criterion is referred to as constant amplitude
difference sampling criterion (CADSC). If several amplitudes are used, then the sampling
criterion is referred to as sampling-dependent amplitude difference sampling criterion (SDADSC).
Note that the model obtained in [4] for nonperiodically sampled systems is basically a linear
time-varying difference equation. This model is useful to describe discretized systems under
varying sampling periods. The time-varying coefficients of the discrete equation depend on
both the sequence of sampling periods and the continuous-time parameters. Thus, it may be
applied also to the criterion of constant difference of amplitudes. However, some properties
like, for instance, the ability of generating limit oscillations are not easily discovered from an
earlier inspection when using such a time- varying linear equation. The analysis method for
stability and limit oscillations consists basically of the following steps:

(a) describe the linear uncontrolled continuous-timer system by an ordinary differen-
tial equation of nth order submitted to a piecewise constant control input which
varies at a set of sampling instants with, in general, time-varying sampling periods.
The “ad hoc” control device for this purpose is referred to as a sampling and hold
device. The solution of such a differential system is referred to as the “output” of
the system;

(b) discretize the equivalent differential system of nth order at generic sampling
instants. Since the input is piecewise constant with discontinuities at such time
instants, the solution of the differential equation for any given initial conditions
coincides with that of the discretized system at sampling instants. The feedback
law for a regulator with unity feedback is introduced so that the piecewise constant
feedback control takes the minus values of the output at sampling instants;

(c) define the generic sampling instants as those generated by the event-driven law
of constant absolute difference of amplitudes of the feedback error inbetween each
two consecutive sampling instants. This is generalized for a set of prescribed ampli-
tudes in a more general sampling criterion. The amplitude, or the set of amplitudes,
parameterize the solution together with the parameters of the continuous-time
differential equation. It is seen that the zero-order and hold device together with the
sampling criterion is equivalent to a relay with a multiple hysteresis. This suggests
that limit cycles of the solution can potentially exist;

(d) limit cycles are found by investigating double points of the solution in the time
domain.

The dynamic system studied in this paper is complex in the sense that a continuous-
time dynamic system is controlled by a feedback law consisting of an adaptive sampling
criterion which is based on the use of a set of threshold amplitudes to calculate the sequence
of sampling instants. For a second-order case study given in Section 5, it is shown that
the zero-order hold used for discretization plus the adaptive sampling criterion itself are
jointly equivalent to a relay device with multiple hysteresis. The whole feedback type is



4 Journal of Applied Mathematics

hybrid since it consist of a continuous-time system under nonlinear feedback and, in this
sense, the whole system is a complex dynamic system. The equivalent multiple relay with
hysteresis nonlinearity in the feedback-loop allows to interpret the presence of sustained limit
oscillations as an asymptotic solution of the state-space trajectory of the closed-loop system.

2. Some Preliminary Framework and Basic Results

Notation. R is the set of real numbers, R0+ := {R � z ≥ 0} and R+ := {R � z > 0} ≡ R0+ \ {0}:

(i) N the set of natural numbers, N0 = N ∪ {0} and k := {1, 2, . . . , k} ⊂ N is the set of
natural numbers ranging from 1 to k;

(ii) PC(R0+,R) is the set of piecewise continuous functions on R0+;

(iii) PC(n−1)([0, Tper];R) is the set of real almost everywhere piecewise (n − 1)th
continuous-time differentiable functions on the definition domain [0, Tper];

(iv) In is the nth order identity matrix;

(v) the disjunction logic rule (spelled “or”) and the conjunction logic rule (spelled
“and”) are denoted by the symbols ∨ and ∧, respectively;

(vi) the �2 (or spectral) vector norm of z ∈ Rq is defined as ‖z‖2 =
√
zTz (with the

superscript “T” standing for transposition. The �2-vector norm coincides with the
Froebenius or Euclidean vector norm;

(vii) for a real matrix M ∈ Rp×q, its �2-induced matrix norm is

‖M‖2 := max

(‖Mz‖
2

‖z‖2
: 0 < ‖z‖2 ≤ 1

)

= max
(√

zTz : ‖z‖2 = 1
)

= max
(∣∣∣λi

(
MTM

)∣∣∣
1/2

: λi ∈ σ
(
MTM

)
; ∀i ∈ nσ

)
,

(2.1)

where σ(MTM) is the spectrum of the square matrix MTM consisting of 1 ≤ nσ ≤ q
distinct real eigenvalues λi; i ∈ nσ . The above positive real maximum defining the
spectral ‖M‖2 will be denoted by λmax(MTM). If q = p, then ‖M‖2

2 = ‖MTM‖2 =
λmax(MTM) = |λmax(M)|2;

(viii) f ∈ CT ( Rp × [tk, tk+1); Rq) is a testing real vector function f : Rp × [tk, tk+1) → Rq

within a testing class CT being of the form f(xτ , τ), where “s” stands for cartesian
product of sets, with xτ being a real p-dimensional strip on [tk, tk+1) where tk and
tk+1 are two consecutive sampling instants from some sampling criterion SC. Thus,
f is a piecewise real vector function from Rp to Rq on [tk, tk+ 1) valued at some
argument vector function x : Rp × [tk, tk+1) → Rq.

Consider the ordinary linear time-invariant differential equation:

A(D)y(t) = B(D)u(t), Diy(0) = y(i)(0) ∈ R, (2.2)

under a piecewise continuous control input u ∈ PC(R0+,R) to be specified later on, where
R0+ := {R � z ≥ 0} and the polynomials A(D) and B(D) of real coefficients in the time-
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derivative operator D := d/dt (subject to D0 = 1 and Di = DDi−1; for all i ∈ N), which is
formally equivalent to the Laplace transform argument “s,” are

A(D) =
n∑

i=0

aiD
n−i, B(D) =

m∑

i=0

biD
m−i, (2.3)

where a0 /= 0, b0 /= 0 and n := deg(A(D)) ≥ m := deg(B(D)) so that the transfer function
G(s) = B(s)/A(s) is realizable, where the Laplace argument “s” is formally equivalent to
the time derivative operator “D = d/dt.” It is assumed with no loss in generality that the
polynomial A(D) is monic, that is, a0 = 1, since any other nonzero value a0 /= 1 can also lead
to the differential equation (2.2) after normalization by a0 of all the remaining coefficients of
A(D) and B(D). It is also assumed that any potential zero cancellations in those polynomials,
if any, are stable. This guarantees that the state-space realization is either minimal (i.e., no
such cancellations exist) or, otherwise, any existing uncontrollable/unobservable mode is
stable so that it does not contribute to the asymptotic solution as time tends to infinity. It is
well known that the differential equation (2.2) can be described by a nth order differential
system of first-order differential equations. Through the paper, it will be assumed that the
differential system (2.2)-(2.3) will be controlled by a unity feedback control using, in general,
nonperiodically samples y(ti); i ∈ N0 of the solution y(t). The unity feedback control law is
from a zero-order sampling and hold device by

u(t) = e(tk) := y(tk) − r(tk); ∀t ∈ [tk, tk+1), (2.4)

where r ∈ PC(R0+,R) and e ∈ PC(R0+,R) are, the reference function and the error feedback
respectively, and

SI :=
{
tk ∈ R0+ : t0 ∈ R0+, ∞ ≥ t ≥ tk+1 > tk, ∀k ∈ ID ⊂ N0

}
,

SP :=
{
Tk ∈ R+ : Tk := tk+1 − tk ≤ T ≤ ∞, ∀k ∈ ID ⊂ N0

}
,

(2.5)

are, the totally ordered set of sampling instants of indicator set ID ⊂ N0 and the associated set
of sampling periods with the same indicator set, respectively. Note that u ∈ PC(R0+,R) and
it is, in particular, piecewise constant. The following simple sampling process consistency
result holds directly from (2.5).

Lemma 2.1. Assume by convention, and with no loss in generality, that the first sampling instant
t0 = 0 and that k ∈ N ∩ ID ⇒ (k − 1) ∈ ID. Then,

t <∞ ⇐⇒
[

(Card(ID) = Card(SI) = Card(SP) = k + 1 <∞)

∧
(
∃tk := max

j∈ID

(
tj
) ≤ t <∞

)
∧
(

T = lim sup
j→∞

Tj = Tk = ∞
)]

,

t = ∞ ⇐⇒
[
(Card(ID) = Card(SI) = Card(SP) = ℵ0) ∧

(
¬∃tk := max

j ∈ ID

(
tj
)
<∞

)
∧
(
T <∞

)]
.

(2.6)
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The convention t0 = 0 does not imply loss in generality and it is adopted to simplify the
exposition. The convention k ∈ N∩ID ⇒ (k−1) ∈ ID means that no natural number is missed
inbetween any two consecutive ones in the enumeration of the members of SI and SP. The first
part of Lemma 2.1 related to t <∞ means that the sampling process stops in finite time so that
there is a maximum and last finite sampling instant and a last unbounded sampling period
(therefore, the sequence of sampling periods is unbounded with infinite superior limit), and
also that the number of sampling instants and periods is finite. The part of Lemma 2.1 for
t = ∞ states that the sampling process never ends so that there are infinitely many sampling
instants and periods belonging to their respective numerable sets. Therefore, the cardinal of
those sets is denoted by ℵ0 related to infinite cardinals of numerable sets while the ∞ symbol
is usually applied to cardinals of nonnumerable sets of infinitely many elements.

2.1. General Sampling Criterion and a Particular Sampling
Criterion of Interest

A general sampling criterion SC is defined as an iterative procedure for some given testing
function of the error and/or some of its time derivatives on a next tentative sampling period:

tk+1 ∈ SI = SI(SC) is generated by the sampling criterion SC; ∀k ∈ N0 if

tk+1 := Arg min
(
R0+� t > tk : f ∈ CT

(
Die×[tk, t)⊂RJ×[tk, t), some i∈J ⊆n−1 ∪ {0};R

)

satisfies SC; tk ∈ SI
)
∈ SI,

(2.7)

where t0 ∈ SI. Therefore, given a set of sampling instants tj ∈ SI for all j ∈ k∪{0}, then tk+1 ∈ SI
or Tk = ∞ if the sampling criterion ends such that Card(SI) = k + 1 < ∞. Sampling criteria
through testing functions have been obtained in [1–3, 9, 14]. Some of them generate sampling
periods in-between consecutive sampling instants as being inversely proportional to the time
derivative of the sampled function, or to a combination of consecutive time derivatives,
between a maximum admissibility interval (chosen from engineering requirements a such
a stability or suited bandwidth). Other types of sampling criteria are chosen through integral
criteria over the current sampling period of a quadratic, or some higher even power, of the
error time integral between the sampled function and its previous sampled value. A very
important one is the so-called criterion of constant difference of amplitudes, firstly proposed
in [30], and then generalized formally in [1], and intuitively focused on in [18], to the use of
a set of amplitudes which are thresholds of the variation of the sampled signal for each next
sampling process. The whole element consisting of the sampling and hold device plus the
CADSC (or the more general SDADSC) is, equivalently, modelled with a multiple-hysteresis
relay, [1, 15, 18]. This curious nonlinearity in the control law allows an easy interpretation
about why sustained oscillations can appear even when the main forward dynamics is
linear. If a tracker is being designed, then the use of multiple amplitudes as signal sampling
thresholds allows to decrease the amplitude of eventual sustained oscillations and then to
improve the tracking servo from a control engineering point of view. Those sampling criteria
have the important property, that they are able to generate sustained oscillations of great
interest in oscillator design but unsuitable in tracking control problems since a permanent
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error between the tracked reference and the governed output signals always exists (see
also [16, 17, 23]). In particular, some more general sampling criteria are obtained in [17]
which include as particular cases many of those ones existing by that date in the background
literature. Some of the results in this paper apply to generic sampling criteria (2.7) irrespective
of each particular SC. Other specific results are mainly concerned with a particular sampling
criterion, the so-called, SDADSC [1], which is defined implicitly as follows:

tk+1 = Arg min(R0+ � t > tk : |e(t) − e(tk)| = δk ∈ R+, tk ∈ SI) ∈ SI, (2.8)

for some given sampling set STδ := {δk ∈ R+ : 0 < δ ≤ δk ≤ δ < ∞, for all k ∈ ID}
of amplitude thresholds of the SC. Note from (2.2)–(2.4) that the solution of (2.2) is unique
for each set of initial conditions from Picard-Lindelöff theorem for existence and uniqueness
of systems of differential equations from continuity and complete induction arguments
as follows. Provided that a unique solution exists on [t0, tk) for given initial conditions
Diy(0) = y(i)(0) ∈ R, a continuous and time-differentiable solution also exists and it is
unique on [t0, tk], and since the input is piecewise constant on [tk, tk+1), it is also continuous
and time-differentiable on [tk, tk+1) for all tk ∈ SI. Furthermore, the solution is everywhere
continuously time-differentiable if n−m ≥ 2. This follows from the uniqueness of the solutions
of ordinary differential equations (ODE) for each given set of initial conditions. The following
consistency lemma follows. If δk = δ ∈ R+ for all k ∈ N0 in (2.8), then the sampling criterion
becomes, in particular, the CADSC [1].

Lemma 2.2. t0 ∈ SI ⇒ tk ∈ SI for all k ∈ N, via the sampling rule (2.7), irrespective of the sampling
set of amplitudes STδ.

Proof. Proceed by complete induction by assuming that tj ∈ SI for all j ∈ k so that from (2.8):

tj+1 = Arg
(
t > tj :

∣∣e(t) − e(tj
)∣∣ = δj ∈ R+, tj ∈ SI

) ∈ SI, ∀j ∈ k − 1 ∪ {0} ⊂ ID

⇐⇒ [(
tj+1 = Arg

(
t > tj :

∣∣e(t) − e(tj
)∣∣

= δj ∈ R+, ∀tj(≤ tk−1) ∈ SI
) ∈ SI

)]
; ∀j ∈ k − 1 ∪ {0} ⊂ ID

∧ (tk+1 = Arg (t > tk : |e(t) − e(tk)| = δk ∈ R+, tk ∈ SI) ∈ SI
)]

⇐⇒ tj+1 = Arg
(
t > tj :

∣∣e(t) − e(tj
)∣∣ = δj ∈ R+, ∀tj(≤ tk) ∈ SI

) ∈ SI; ∀j ∈ k ∪ {0} ⊂ ID.
(2.9)

The sampling criterion (2.8) and its particular version for constant amplitude is of
major theoretical interest because the study of the dynamics it generates combines properties
of discrete-time systems with some properties of nonlinear systems since, in particular, limit
cycles appear in the solution of (2.2)–(2.4) for both the SDADSC, [1, 18]. If δk = δ is a positive
real constant then the sampling criterion is the CADSC, [1, 15–18]. It has been also used in
some practical applications, in particular, for tuning PID controllers, [1]. Since the generation
of each next sampling period is given by an implicit function in such sampling criteria, the
whole control scheme might be considered in the framework of event-driven processes. It is
known that for any nonsingular real matrix T ∈ Rn×n, a time-differentiable real-state vector
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function x : R0+ → Rn satisfying x(t) = T(y(t), Dy(t), . . . , Dn−1y(t))T may be defined so that
(2.2)–(2.4) is equivalent to the nth order dynamic feedback system:

ẋ(t) = Ax(t) + b
(
r(tk) − y(tk)

)
, y(t) = cTx(t), ∀t ∈ [tk , tk+1), (2.10)

where A ∈ Rn×n and b, c ∈ Rn are the matrix of dynamics and the control and output
vectors of the continuous-time system, which depend on the coefficients of the polynomials
A(D) and B(D) and on the entries to the matrix T, subject to initial conditions x(0) =
T(y(0), Dy(0), . . . , Dn−1y(0))T at t = 0. Equation (2.10) holds for any set of sampling instants
SI independent of the particular sampling criterion (2.7). The solution of the first equation
in (2.10) within [tk , tk+1) yields directly, again irrespective of SC, the following discrete-time
system:

x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)u(tk) = Ψ(Tk)x(tk) + Γ(Tk)r(tk),

=
k∏

i = 0

[Ψ(Ti)]x(0) +
k∑

i=0

k∏

j = i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti),

(2.11a)

y(tk+1) = cTx(tk+1), (2.11b)

where

Ψ(Tk) := Φ(Tk) − Γ(Tk)cT = eATk
(

In −
(∫Tk

0
eA(Tk−τ) dτ

)

bcT
)

(2.12a)

Φ(Tk) := eA Tk , Γ(Tk) :=

(∫Tk

0
eA(Tk− τ) dτ

)

b, (2.12b)

where Φ(Tk) and Ψ(Tk) are the open-loop (i.e., control-free) and closed-loop (i.e., controlled)
matrices of dynamics, respectively, and Γ(Tk) and c are the control and output vectors,
respectively.

2.2. Basic Stability Results

The global BIBO (bounded-input bounded-output) stability of the controlled closed-loop
system is discussed provided that the uncontrolled transfer function: G(s) := cT(sIn −A)−1b
is stable and it possesses a sufficiently small static gain related to the admissible variation
domain of the time-varying sampling periods. In the regulation case (i.e., the case of
identically zero reference signal r(t)), the closed-loop system is globally asymptotically
Lyapunov stable. Note that the static gain of |G(s)|, |G(0)| = |cTA−1b|, varies linearly with
|bTc| since det(A)/= 0 if A is a stability matrix. Note that the assumption of smallness of the
static gain of the open-loop transfer function is always achievable via incorporation of an
amplifier of sufficiently small gain K to the forward loop provided that such a condition
is not directly satisfied by the given transfer function so that |KcTb| is as sufficiently small
as requested. It is proven in the next result that if the maximum allowable time-varying
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sampling period Tmax increases, then the allowed |G(0)| being compatible with stability
decreases correspondingly. If the minimum allowable sampling period Tmin increases then
such a gain may increase while keeping the stability. The inequality useful for stability in
Theorem 2.3 below is |bTc| ≤ (1 − ε − e−rTmin)r/Tmax(1 − e−rTmax), with ε < 1 − e−rTmin and
max(Reλi(A) < −r < 0; λi(A) ∈ σ(A) for all i ∈ nσA). The stability abscissa of the system
matrix is also relevant in the sense that the gain is allowed to increase as such an abscissa
increases. The subsequent result is concerned with such considerations.

Theorem 2.3. Assume that there is an admissibility bounded interval [Tmin, Tmax] such that Tk ∈
[Tmin, Tmax] for all Tk ∈ SP for some given sampling criterion SC. Assume also that A is a stability
matrix (i.e., G(s) := cT (sIn −A)−1b is a stable transfer function). Then, if |bTc| is sufficiently small
according to an explicit trade-off related to the size of [Tmin, Tmax] and the stability abscissa of the
matrix A, then the closed-loop system is BIBO stable. Furthermore, it is globally asymptotically
Lyapunov stable in the regulation case without any extra assumptions on the uncontrolled transfer
function.

Proof. Direct calculations with (2.12a) and (2.12b) yield:

‖Ψ(Tk)‖2 ≤
∥∥∥eATk

∥∥∥
2

∥∥∥∥∥
In −

(∫Tk

0
e−Aτ dτ

)

bcT
∥∥∥∥∥

2

≤ e−rTk + 1 − e−rTk
r

Tk
∣∣∣bTc

∣∣∣

≤ e−rTmin +
1 − e−rTmax

r
Tmax

∣∣∣bTc
∣∣∣ ≤ 1 − ε < 1

(2.13)

provided that |bTc| ≤ (1−ε−e−rTmin)r/Tmax(1−e−rTmax), for some prefixed real constant ε ∈ (0, 1)
satisfying 0 < ε < 1 − e−rTmin , max(Reλi(A) < −r < 0;λi(A) ∈ σ(A) for all i ∈ nσA) (for some
1 ≤ nσA ≤ n being the number of distinct eigenvalues of A), and Tk ∈ �Tmin, Tmax� for all Tk ∈
SP and any given sampling criterion SC. Proceeding recursively and taking �2-vector and
matrix norms in (2.11a) and (2.11b), one gets since

‖Ψ(Tk)‖2 ≤ ρ := 1 − ε < 1,

‖Γ(Tk)‖2 ≤

(
1 − e−rTk

)

r

∣∣∣bTc
∣∣∣ ≤

(
1 − ε − e−rTmin

)

Tmax
,

(2.14)

‖x(tk+1)‖2 ≤
∥∥∥∥∥

k∏

i= 0

[Ψ(Ti)]

∥∥∥∥∥
2

‖x(0)‖2 +
k∑

i= 0

∥∥∥∥∥∥

k∏

j = i+1

[
Ψ
(
Tj
)]
∥∥∥∥∥∥

2

‖Γ(Ti)‖2|r(ti)|

≤ εk‖x(0)‖2 +
1 − ε − e−rTmin

Tmax

(
k∑

i = 0

εk−i
)

max
i∈ k ∪ {0}

(|r(ti)|)

≤ εk‖x(0)‖2 +
1 − ε − e−rTmin

(1 − ε)Tmax
max
i∈N0

(|r(ti)|)

≤ Kx(‖x(0)‖2) +Kr0Kr

<∞, ∀tk+1 ∈ SI,

(2.15)
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where Kr0 := (1 − ε − e−rTmin)/(1 − ε)Tmax, Kr := maxi∈N0(‖r(ti)‖2), and then

0 ≤ lim sup
k→∞

‖x(tk+1)‖2 ≤ Kr0 max
i ∈ N0

(|r(ti)|) ≤ Kr0Kr <∞, (2.16)

since εk → 0 as k → ∞. Equations (2.11a) and (2.11b)-(2.12a) and (2.12b) are replaced
within the inter-sample time intervals with:

x(tk + τ) = Ψ(τ)x(tk) + Γ(τ)r(tk), ∀τ ∈ �0, Tk), (2.17)

Ψ(τ) := Φ(τ) − Γ(τ)cT = eAτ
(
In −

(∫ τ

0
eA(τ− τ

′
)dτ

′
)
bcT

)
, ∀τ ∈ �0, Tk),

Φ(τ) := eAτ , Γ(τ) :=
(∫ τ

0
eA(τ− τ

′
)dτ

′
)
b, ∀τ ∈ �0, Tk), ∀Tk ∈ SP,

(2.18)

so that, one gets from (2.17)-(2.18) by using (2.15)-(2.16):

‖x(tk + τ)‖2 ≤ ‖Ψ(τ)‖2‖x(tk)‖2 + ‖Γ(τ)‖2|r(tk)|

≤ K′
εk(‖x(0)‖2) +

(
Kr0 + r−1

∣∣∣bTc
∣∣∣
)
Kr <∞, ∀τ ∈ �0, Tk), ∀Tk ∈ SP,

(2.19)

0 ≤ lim sup
k→∞

‖x(tk + τ)‖2 ≤
(
Kr0 + r−1

∣∣∣bTc
∣∣∣
)
Kr <∞, ∀τ ∈ �0, Tk), ∀Tk ∈ SP. (2.20)

Thus, the dynamic system (2.11a) and (2.11b)-(2.12a) and (2.12b) is bounded-input-
bounded-output (BIBO) stable for any uniformly bounded reference r(t). If the reference
is identically zero (regulation), then Kr = 0 so that, one gets from (2.16)–(2.20), that
limk→∞x(tk + τ) = 0 for all τ ∈ [0, Tk) for all Tk ∈ SP, irrespective of the initial conditions
so that the dynamic system is globally asymptotically Lyapunov stable. The proof is
complete.

It is obvious that Ψ(Tk) is a convergent matrix (i.e., a stability matrix in the discrete
sense then all its eigenvalues have modulus less than unity) under the conditions of
Theorem 2.3. Note that, otherwise, the state at sampling instants would be at least critically
stable and would diverge for certain bounded inputs which could be fixed by construction.
Since the system is globally Lyapunov stable then it also exhibits ultimate boundedness in
the usual Lyapunov sense as direct conclusion from Theorem 2.3. A more general ultimate
boundedness results is now derived without invoking a sufficiently small static gain of
the uncontrolled system for a string of consecutive products of the matrix Ψ(Tk) being
convergent.

Theorem 2.4. The following properties hold:
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(i) assume that for a given SC and each k ∈ ID, there exists 1 ≤ i = i(k) ≤ i < ∞ such that
‖Ψ(tk, tk+ i)‖2 ≤ ε1 < 1, where Ψ(tk, tk+i) :=

∏k+i−1
j = k [Ψ(Tj)]. Thus, the system is BIBO-

stable for any bounded initial state and possesses the ultimate boundedness property for any
bounded reference sequence r(tk) for all tk ∈ SI;

(ii) if ‖Ψ(tk, tk+�)‖2 ≤ K(k, �) ≤ KΨ < ∞ (which holds in particular if ‖Ψ(Tk)‖2 ≤ 1
for all tk ∈ SP) and ‖∑k

i = 0
∏k

j=i+1[Ψ(Tj)]Γ(Ti)r(ti)‖2
< ∞ for all k ∈ N, then the sys-

tem is BIBO-stable for any bounded initial state.

Proof. For any finite k ∈ ID, define the nonnegative scalar function v(‖x(tk)‖2) := xT (tk)x(tk).
Then, for some finite 1 ≤ i = i(k) ≤ i:

v(‖x(tk+i)‖2) − v(‖x(tk)‖2) = x
T (tk+i)x(tk+i) − xT (tk)x(tk)

≤
⎡

⎣
k+i−1∑

�=i

⎛

⎝

∥
∥
∥∥∥∥

k+i−1∏

j=k+1

[
Ψ
(
Tj
)]
∥
∥
∥∥∥∥

2

‖Γ(T�)‖2|r(T�)|
⎞

⎠

⎤

⎦

2

+

⎛

⎝2

∥∥∥∥∥∥

k+i−1∏

j=k

[
Ψ
(
Tj
)]
∥∥∥∥∥∥

2

k+i−1∑

�=i

⎛

⎝

∥∥∥∥∥∥

k+i−1∏

j=k+1

[
Ψ
(
Tj
)]
∥∥∥∥∥∥

2

‖Γ(T�)‖ 2|r(T�)|
⎞

⎠

−
(

1 − ε2
1

)
∥∥∥∥∥∥

k+i−1∏

j=k

[
Ψ
(
Tj
)]
∥∥∥∥∥∥

2

2

‖x(tk)‖2

⎞

⎟
⎠

× ‖x(tk)‖2v
(‖x(tk+i)‖ 2

) − v(‖x(tk)‖2)

= xT (tk+i)x(tk+i) − xT (tk)x(tk)

≤ K2
kr(tk, tk+i) + (2 KkΨ(tk, tk+ i)Kkr( tk, tk+i)

−
(

1 − ε2
1

)
K2
kΨ(tk, tk+i)‖x (tk)‖2

)
‖x(tk)‖2

≤ K2
kr +

(
2KkΨKkr −

(
1 − ε2

1

)
K2
kΨ(tk, tk+i)‖x(tk)‖ 2

)
‖x(tk)‖2,

(2.21)

where
0 ≤ KkΨ(tk, tk+i) :=

∥∥∥∥∥∥

k+i−1∏

j=k

[
Ψ
(
Tj
)]
∥∥∥∥∥∥

2

≤ KΨ <∞,

0 ≤ Krk(tk, tk+i) :=
k+i−1∑

� = i

⎛

⎝

∥∥∥∥∥∥

k+i−1∏

j=k+1

[
Ψ
(
Tj
)]
∥∥∥∥∥∥

2

‖Γ(T�)‖2|r(T�)|
⎞

⎠ ≤ Kr <∞,

(2.22)

with KΨ := maxk≤j≤k+i(KkΨ(tk, tk+i) : k ∈ ID) and Kr := maxk ≤ j ≤k+i(Krk(tk, tk+i) : k ∈ ID)
being independent of k. Now, proceed by contradiction by assuming that {‖x(t�)‖2}�∈ID is
unbounded. Thus, there exists a subsequence {‖x(tk)‖2}k∈ID0⊆ID which diverges for some
numerable subset ID0 of ID so that v(‖x(tk+i)‖2) > v(‖x(tk)‖2) and limk→∞v(‖x(tk)‖2) = ∞.
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Choose k ∈ ID0 being arbitrarily large but finite, k + i(k) ∈ ID0 so that ‖x(tk)‖2 ≥
max((2KkΨKkr +ε2)/(1−ε2

1)K
2
kΨ(tk, tk+i),Mk) withMk being an arbitrarily large positive real

number depending on k and ε2 ∈ R+. This is always possible since {‖x(tk)‖2}k∈ID0 diverges
and 0 ≤ ε1 < 1. From (2.21), one gets:

0 < v(‖x(tk+i)‖2) − v(‖x(tk)‖2)

≤ K2
kr +

(
2KkΨKkr −

(
1 − ε2

1

)
K2
kΨ(tk, tk+i)‖x(tk)‖2

)
‖x(tk)‖2

≤ K2
kr − ε3Mk ≤ 0,

(2.23)

if Mk ≥ K
2
kr/ε3 which leads to a contradiction. As a result, {‖x(tk)‖2}k∈ID is bounded from

above if there exists 1 ≤ i = i(k) ≤ i < ∞ such that ‖Ψ(tk, tk+i)‖2 ≤ ε1 < 1, and the reference
sequence is uniformly bounded. Using a similar technique as in Theorem 2.3, it may be
proved that the state is bounded within any intersample period on [tk,∞), for all k ∈ ID
and finite and any sampling criterion SC (i.e., for any tk ∈ SI generated from any SC).
Therefore, the system possesses the property of ultimate boundedness. On the other hand,
the recursive equations (2.15) lead to a bounded solution sequence on any interval [0, tk)
of finite measure if the reference sequence is uniformly bounded since all the matrices of
parameters of the discrete-time dynamic system are bounded for finite time irrespective of
further considerations. Therefore, ultimate boundedness implies BIBO stability and global
stability of the unforced discrete-time system. The proof of Property (i) is complete. Property
(ii) follows directly by taking upper bounds via the use of norms in (2.12b).

The following result parallel to Theorem 2.4 is concerned with instability:

Theorem 2.5. Assume that for a given SC and each k ∈ ID, there exists∞ > i = i(k) ≥ j ∈ N such
that ‖Ψ(tk, tk+i)‖2 ≥ ε1 > 1. Thus, the discrete-time (2.17)-(2.18) system is unstable.

Proof. Take the set of sampling instants tj ∈ SI for the given SC and zero reference input. Now,
take initial conditions x(tk) at a finite tk ∈ SI which are a nonzero eigenvector of Ψ(tk, tk+j�) so
that lim�→∞ inf ‖Ψ(tk, tk+j�)x(tk)‖2 ≥ lim�→∞ inf ε�1‖x(tk)‖2 = ∞. Then, the system is unstable.

Note that the stability condition in terms of the modulus of eigenvalues being less than
unity is equivalent in terms of positive definiteness of the matrix of dynamics to:

ε2
0In ≤ Ψ

T
(tk, tk+i)Ψ(tk, tk+i) ≤ ε2

1In, (2.24)

where 0 ≤ ε0 ≤ ε1 < 1, which could be alternative used in both the statement and proof of
Theorem 2.4.

3. Oscillations and Periodic Oscillations

Concerning the discrete-time system (2.17)-(2.18), whose expression at sampling instants
are (2.11a) and (2.11b)-(2.12a) and (2.12b) for any sampling criterion SC, the following
definitions for weak and strong oscillatory solutions will apply.
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Definition 3.1. The discrete-time system (2.11a) and (2.11b)-(2.12a) and (2.12b) has a weak
oscillatory output solution for a given sampling criterion SC and some initial conditionx (0) ∈
Rn if for any given t ∈ R0+, such that y(t)/= 0, there exist finite real numbers α(t) ≥ εα and
β(t) ≥ εβ, being in general dependent on t, for some εαεβ ∈ R+, such that sign(δy(t, t +
α(t))δy(tk, t + α(t) + β(t))) ≤ 0, where δy(t, t′) := y(t′) − y(t).

Definition 3.2. The discrete-time system (2.11a) and (2.11b)-(2.12a) and (2.12b) has a strong
oscillatory output solution for some initial condition x(0) ∈ Rn if for any given t ∈ R0+, such
that y(t)/= 0, sign(δy(t, t + α(t))δy(tk, t + α(t) + β(t))) < 0 and y(t + α(t)) and y(t + α(t) + β(t))
are not both zero.

Definition 3.3. The discrete-time system (2.17)-(2.18) has a periodic weak oscillatory output
solution of oscillation period Tper ∈ R+, for some initial condition x(0) ∈ Rn, if sign(δy(t, t +
Tper/2) δy(t, t + Tper)) ≤ 0, y(t, t + Tper) = y(t), for all t ∈ R+.

Definition 3.4. The discrete-time system (2.17)-(2.18) has a periodic strong oscillatory output
solution of oscillation period Tper for some initial condition x (0) ∈ Rn if it has a periodic weak
oscillatory output for such a period and, furthermore, sign(δy(t, t + Tper/2)δy(t, t + Tper)) < 0
if y(t, t + Tper) = y(t) = 0, for all t ∈ R+.

Note that a solution may be oscillatory (Definitions 3.1-3.2) without being periodic
(Definitions 3.3-3.4) when there are changes in the sign of the incremental output along
intervals of finite duration. A weak oscillation compared to a strong oscillation allows
positive or negative increments of the output at finite intervals always of the same sign. The
above Definitions 3.1-3.4 might also be refereed to, in general, to nonsymmetric oscillations
related to their deviations from zero. Note that trivial solutions, that is, those being identically
zero are not periodic solutions according to the given definitions. Note also that periodic
solutions can possess an oscillation period which is not the sum of any fixed set of consecutive
sampling periods even for such a set obeying a rule implying some repetitive sequence of
periods. It turns out that the concepts of oscillation and periodic oscillation may be extended
to any of the components of the state vector. The next result establishes clear implications
among Definitions 3.1-3.4.

Theorem 3.5. If an output solution is strongly oscillatory, then it is also weakly oscillatory.
If an output solution is strongly periodic oscillatory then it is also weakly periodic oscillatory.
If an output solution is weakly (strongly) periodic oscillatory, then it is also weakly (strongly)

oscillatory.

Note that oscillations are not always detectable for any given sampling criterion at
arbitrary sampling instants since hidden oscillations can exist which cannot be detected
at sampling instants. However, sufficient conditions for existence of oscillations can be
formulated at sampling instants as stated in the subsequent results, whose proofs are direct
conclusions of Definitions 3.1-3.2.

Theorem 3.6. The discrete-time system (2.11a) and (2.11b)-(2.12a) and (2.12b) exhibits a weak
oscillatory output at sampling instants for a given sampling criterion SC and some initial condition
x(0) ∈ Rn if for any tk ∈ SI, such that y(tk)/= 0, there exist finite natural numbers k1(k) and k2(k),
being in general dependent on k ∈ ID, such that sign(δy(tk, tk+k1(k))δy(tk, tk+k1(k)+k2(k))) ≤ 0, where
δy(tk, tj) := y(tj) − y(tk).
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Theorem 3.7. The discrete-time system (2.11a) and (2.11b)-(2.12a) and (2.12b) has a
strong oscillatory output at sampling instants for some initial condition x(0) ∈ Rn if
sign(δy(tk, tk+k1(k))δy(tk, tk+k1(k)+k2(k))) < 0 but y(tk+k1(k)) and y(tk+k1(k)+k2(k)) are not both zero.

Remark 3.8. The existence of weak and strong oscillations under the sufficient conditions of
Theorems 3.6 and 3.7, respectively, may be investigated explicitly by the use of the state
evolution over a finite number of consecutive sampling instants through (2.11b) together
with the output expression at sampling instants in the second formula of (2.11a).

Note that the detection of periodic oscillations involving sampling instants only is
not feasible even in terms of sufficient-type conditions since the period of such oscillations
is not necessarily the exact sum of a consecutive number of limit sampling periods. See,
for instance, [1, 15, 16], for SDADSC and CADSC, respectively. The following result states
that stable uncontrolled systems which are closed-loop stable under unity feedback, fulfil the
conditions of Theorem 2.4 and which do not have stable equilibrium points exhibit oscillatory
responses.

Theorem 3.9. Assume that the closed-loop discrete-time system has no stable equilibrium point, while
the uncontrolled system is stable under the conditions of Theorem 2.4, and the sampling criterion also
fulfils the conditions of Theorem 2.4. Then, any solution of the discrete-time closed-loop system is at
least weakly oscillatory and bounded.

Proof. Since any state solution is bounded for bounded initial conditions and do not converge
to a constant equilibrium point, it follows that all the state components verify the incremental
changes of sign of Definition 4.1, since no one can either converge to a constant or to be
unbounded.

A direct related result which follows from Theorem 2.5 is now stated by simple
inspection without a formal proof.

Theorem 3.10. Assume that the closed-loop discrete-time system has no stable equilibrium point
while the discrete-time system is unstable under the conditions of Theorem 2.5 for some sampling
criterion SC. Then, no solution of the discrete-time closed-loop system can be bounded, while it can be
weakly oscillatory and unbounded.

Limit cycles are asymptotic isolated limit periodic oscillations in certain nonlinear
systems which are usually independent of the initial conditions (as, e.g., the well-known
Van der Pol equation). Since some nonlinear systems can also posses oscillations which
depend on initial conditions, as for instance, the also well-known Duffing equation modelling
certain nonlinear strings with combined linear and cubic effects, no difference is made at the
moment between both situations. More precisely, a limit cycle on a plane or a nth-dimensional
manifold is a closed trajectory having the property that at least one another trajectory spirals
into either as time tends to infinity (stable limit cycles or a self-sustained periodic oscillations)
or as time tends to minus infinity (unstable limit cycles). It turns out that a limit cycle exist in
the dynamic system of Section 2 only if for a given sampling criterion SC:

lim
k → ∞

Diy(tk + τ ) = Diy∗(τ), ∀i ∈ n − 1 ∪ {0}, (3.1)

for some periodic function y∗ ∈ PC(n−1)([0, Tper];R) of period Tper > 0 such that:
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(1) all its time derivatives until order (n − 1) exist and are almost everywhere con-
tinuous except at the sampling instants;

(2) Dny∗(t) exists everywhere on its definition domain, but it is not required to be
continuous in-between sampling instants, so that it is not required for the limit
cycle to satisfy y∗ ∈ PC(n)([0, Tper];R);

(3) Dny∗(0+) = D(n)y∗(T+
per) forall τ ∈ [0, Tper) such that tk + τ /∈ SI and for (tk + τ)

+ =
t+k+i if tk+i ∈ SI for some i ∈ N.

4. Limit Oscillations under Sampling Criteria

Note from (2.11a) and (2.11b)-(2.12a) and (2.12b) and (2.17)-(2.18) that for any SC:

x(tk+� + τ) = Ψ(τ)(Ψ(Tk )x(tk) + Γ(Tk)r(tk)) + Γ(τ)r(tk+�)

= Ψ(τ)

⎛

⎝
k+�−1∏

i=k

[Ψ(Ti)]x(tk )
k+�−1∑

i=k

k+�−1∏

j=i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti)

⎞

⎠

+ Γ(τ)r(tk+�)y(tk+� + τ) = cTx(tk + τ)

= cTΨ(τ)

⎛

⎝
k+�−1∏

i=k

[Ψ(Ti)]x(tk) +
k+�−1∑

i=k

k+�−1∏

j=i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti)

⎞

⎠ + Γ(τ)r(tk+�),

(4.1)

for all tk ∈ SI, for all τ ∈ �0, Tk+�), for all Tk ∈ SP, and for all k ∈ ID, for all � ∈ N, subject
to the parameterizations (2.18) becoming (2.12a) and (2.12b) at sampling instants. If a limit
oscillation exists then, one gets for (4.1):

∃ lim
SI�tk+� →∞

x(tk+� + τ)

= lim
SP�Tk+ i , ID�k → ∞

x∗
(

k+�−1∑

i=k

Tk+i + τ

)

= lim
SI�tk → ∞, Ti∈SP

⎛

⎝Ψ(τ)

⎛

⎝
k+�−1∏

i=k

[Ψ(Ti)]x(tk )+
k+�−1∑

i=k

k+�−1∏

j=i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti)

⎞

⎠+Γ(τ)r(tk+�)

⎞

⎠

= lim
SP�Tk+i , ID�k→∞

⎛

⎝Ψ(τ)

⎛

⎝
k+�−1∏

i = k

[Ψ(Ti)]x∗(tk)+
k+�−1∑

i=k

k+�−1∏

j=i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti)

⎞

⎠+Γ(τ)r(tk+�)

⎞

⎠,

(4.2)
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for all � ∈ p and some finite p ∈ N0, for some τ ∈ R0+. Thus,

x∗
(

ti +
p∑

i = 1

Ti + τ

)

= x∗
(
ti
)

=

⎛

⎝Ψ(τ)

⎛

⎝
i+p−1∏

j = i

[
Ψ
(
Tj
)]
x∗
(
ti
)

+
i+p−1∑

j=1

i+p−1∏

�=j+1

[
Ψ
(
T�
)]

Γ
(
Tj
)
r
(
tj
)
⎞

⎠Γ(τ)r
(
ti+p
)
⎞

⎠,

(4.3)

where the following limits have to exist for Tk ∈ SP, tk ∈ SI, k ∈ ID for all i ∈ p, that is, for the
sampling periods and sampling instants with a certain repeated string sequence, where t0 in
arbitrary starting limit reference sampling instant:

∃ lim
ID� k→∞

Tk+ i := Ti = Tp+i,

∃ lim
ID� k→ ∞

tk+i := ti = tp+i,

∃ lim
ID� k→∞

r(tk+i) := r
(
ti
)
= r
(
tp+i
)
.

(4.4)

Then, the period of the limit oscillation is Tper :=
∑p

i=1 Ti + τ , some real τ ∈ [0, T1). A similar
limiting equation using (4.2) into the output equation: y(tk+� + τ) = cTx(tk + τ) describes the
limit oscillation in the output as tk → ∞. The following four lemmas related to the necessary
condition of the existence of a limit cycle independent of a particular SC follow from (4.3)-
(4.4) and simple topological considerations about uniqueness of the state- trajectory solution:

Lemma 4.1. If (4.3), subject to (4.4), holds, then ∃ limt→∞x(t + τ) = x∗(τ) = x∗(τ + Tper); for all
τ ∈ [0, Tper) and then a limit oscillation of the state-trajectory solution exists.

Proof. Note that limk→∞x(tk+i) = x∗(ti) = x∗(ti + Tper) and limk→∞x(tk + τ) = x∗(τ) =
x∗(τ + Tper) for Tper :=

∑p

i=1 Ti + τ , for some parameterizing τ ∈ [0, T1), for all i ∈ p that
is, at a discrete set of (p + 1) limit sampling instants as time tends to infinity, some p ∈ N0

and this sequence of identities is repeated with period Tper. The statetrajectory inbetween
consecutive samples is prescribed according to the values of the limit reference and the state
trajectory components cannot intersect at any time so that the periodic limit identity holds in
continuous-time as time tends to infinity, and the result is proven.

Lemma 4.2. Assume that distinct double points x∗(ti) (i ∈ p) exist satisfying (4.3), subject to (4.4)
for some p ∈ N0, or equivalently,

⎛

⎝In −Ψ(τ)

⎛

⎝
i +p−1∏

j = i

[
Ψ
(
Tj
)]
⎞

⎠

⎞

⎠x∗
(
ti
)
=

i+p−1∑

j=1

i+p−1∏

�=j+1

[
Ψ
(
T�
)]

Γ
(
Tj
)
r
(
tj
)
, (4.5)



Journal of Applied Mathematics 17

for all i ∈ p and some τ ∈ [0, T1). Assume also that if p = 1 then x∗ (ti) satisfying the above identity
is not an equilibrium point. Then, the existing limit oscillation may be tested by any of the double
points, in particular, by the limit double point x∗(t1) satisfying:

⎛

⎝In −Ψ(τ)

⎛

⎝
p∏

j=1

[
Ψ
(
Tj
)]
⎞

⎠

⎞

⎠x∗
(
t1
)
=

p∑

j=1

p∏

�=j+1

[
Ψ
(
T�
)]

Γ
(
Tj
)
r
(
tj
)
. (4.6)

If the reference sequence is identically zero, then a limit oscillation exists verifying double points

x ∈ Ker

(
In −Ψ(τ)

(∏p

j=1

[
Ψ
(
Tj
)]))

{
Peq
}

if Ker

(
In −Ψ(τ)

(∏p

j=1

[
Ψ
(
Tj
)]))

{
Peq
} /= {0}.

(4.7)

Proof. It follows from (4.3)-(4.4) and Lemma 4.1 since the state-trajectory solution is unique
for any initial conditions, sampling periods and reference sequence and a periodic limit
oscillation exist. Since the limit double points are distinct, they are not equilibrium points
since the state-trajectory solution is unique if p > 1. If p = 1, the double point is not an
equilibrium one as a requirement of the lemma statement.

Lemma 4.3. If Lemmas 4.1-4.2 hold for a given set of p ∈ N0 limit sampling periods Ti for all i ∈ p
and some real τ ∈ [0, T1), then there is no other limit oscillation for the same sets of limit sampling
periods and limit reference sequence neighboring the one with oscillation period Tper :=

∑p

i= 1 Ti + τ .

Proof. If τ → τ + Δτ then Tper → Tper + Δτ provided identical limit sampling periods Ti
for all i ∈ p. Since all state-trajectories are distinct, any two closed trajectories cannot be
everywhere identical. Thus, two trajectories with identical initial conditions should bifurcate
to different subtrajectories to complete both distinct closed paths at points inside the
common parts of both trajectories. This contradicts the fact that state-trajectory solutions are
unique.

Lemma 4.4. All the closed state trajectory solutions verifying Lemmas 4.1–4.3 are either stable or any
unstable one, if any, is surrounded by two stable ones, namely, point-wise strictly bounded from above
and below by two distinct stable closed state-trajectory solutions. Furthermore, any two closed stable
trajectories cannot be arbitrarily close to each other.

Proof. The two matrices Ψ(τ)(
∏p

j = 1[Ψ(Tj)]) have to posses at least to complex conjugate

eigenvalues at the unit circumference for both tuples (p� , τ�, T j� ; j ∈ p1); � = 1, 2 associated
with the limit closed state-trajectory solutions. Otherwise, the system would be either BIBO
stable or unstable from Theorems 2.4-2.5. Then, since all the eigenvalues are within the closed
unity circle, the system is BIBO stable from Theorem 2.4 so that any state-trajectory solution
can be unbounded. Thus, all existing limit oscillations are bounded for all time and then either
stable or surrounded by two stable ones. On the other hand, if any two stable trajectories
are arbitrary and close to each other then it would be destroyed by any arbitrarily small
disturbance so they would not be stable.
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Lemma 4.4 dictates that potential limit cycles of the solutions are separated to each
other so that there is no accumulation closed attractor of the state-space trajectories. The
interpretation of the implications of Lemma 4.4 for a linear dynamics of dimension n = 2 is
direct. For n > 2, it is possible to interpret the lemma consequences in a plane corresponding
to a 2nd-dimensional system for two of the state components in the same above way while,
for the remaining components, we can consider the surrounding trajectories being equal to
that one under consideration. The whole surrounding closed trajectories are still distinct from
the study for the second-order subsystem.

5. Limit Oscillations for the Constant and Sampling-Dependent
Amplitude Difference Sampling Criteria

5.1. The CADSC

The presence of limit oscillations is now discussed for the CADSC from the study of
oscillations for sampling criteria in the above section. The conditions of stable limit oscillation
for the CADSC are from (4.4)–(4.6) for a double point x∗(t1) to exist satisfying:

⎛

⎝In −Ψ(τ)

⎛

⎝
p∏

j=1

[
Ψ
(
Tj
)]
⎞

⎠

⎞

⎠x∗
(
t1
)
=

p∑

j=1

p∏

�=j+1

[
Ψ
(
T�
)]

Γ
(
Tj
)
r
(
tj
)
, (5.1)

(i ∈ p) for some p ∈ N0 and some real τ ∈ [0, T1); and, furthermore,

[
y∗
(
t1
)
, y∗
(
t2
)
, . . . , y∗

(
tp
)
, y∗
(
tp + τ

)]

= cT

⎡

⎣In,Ψ
(
T1

)
, . . . ,

p∏

j=1

[
Ψ
(
Tj
)]
,Ψ(τ)

⎛

⎝
p∏

j=1

[
Ψ
(
Tj
)]
⎞

⎠

⎤

⎦x∗
(
t1
)

=
[
�δ, (� + 1)δ, . . . ,

(
� + p1 − 1

)
δ,
(
� + p1 − 2

)
δ, . . .

(
� + p1 − p2 − 1

)
δ,
(
� + p1 − p2

)
δ, . . . ,

(
� + p − 1

)
δ,
(
� + p − 1

)
δ + τ

]

(5.2)

for some p1 = p1(�), p2 = p2(�) ≤ p ∈ N0 and some finite � ∈ N0. Since the limit oscillation
may be tested starting at any sampling point, it turns out that any limit oscillation verifying
(5.2) for some � ∈ N is also verified 1 ≤ j ≤ � by redefining the integers p1(j); p2(j) ≤ p. A
brief intuitive explanation of (5.2) follows. Take any positive value of the limit oscillation for
a certain � ∈ N such that (5.1)-(5.2) hold together for some p1(�), p2(�) ≤ p ∈ N0 for some
p ∈ N0 and some real τ ∈ [0, T1). Then, a limit oscillation with the system output satisfying
(5.2) starting with no loss in generality by a positive value, continuing to increase p1 times by
step-by-step positive increments δ at each sampling instant, then decreasing p2 times, then
increasing again to complete the closed trajectory. Note that for any � ∈ N0 satisfying the
given constraints, p = (p − p2(�)) + p2(�) and |p − 2p2(�)| ≤ 2 since the number of negative
increments is some p2(�) ≤ p ∈ N0, and the number of positive increments is then p − 2p2(�),
while the absolute difference of amplitude increments is of at most two.
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5.2. The SDADSC

The study of oscillations can be directly generalized to the SDADSC as follows in the sub-
sequent technical result whose proofs is obvious from (5.1)-(5.2).

Theorem 5.1. (1) Assume that a SDADSC is defined to generate the set of sampling instants SI with
a potential set of amplitudes STδ := {δk ∈ R+ : 0 < δ ≤ δk ≤ δ <∞, for all k ∈ ID} so that ID has a
finite cardinal card ID = fl0 ≥ 1 (If γ0 = 1, one has the particular CADSC);

(2) consider any strictly ordered finite sequence of γ ≥ γ0 amplitudes with possible repetitions
STδ = STδ(γ) := {δ1, δ2, . . . , δγ : δi = δj ∈ STD, ∀i ∈ γ, some j ∈ γ0};

Let a finite real number M be defined asM =M(j) :=
∑�

i=0 δ(ti), where � ∈ N0 is some finite
positive integer defined according to δ(ti) = δk ∈ STδ for all ti ∈ SI and some chosen k = k(ti) ∈ γ0.
Also, define accordingly a set of real numbers M1 = M + δ1 and Mi+1 = Mi + δ ı̀ for all i ∈ γ is
defined from the given set STδ of amplitudes. If γ > γ0, then STδ contains (γ − γ0) repeated elements.

Thus, if (5.1) is defined with p = j + γ + 1 and (5.2) holds with its right-hand side being
replaced with the tuple [ M, M1, . . . , Mγ+1 + τ], then a limit oscillation exists which satisfies the
extended version of (5.1) under the above replacements.

Note from Theorem 5.1 that by appropriate choice of the limiting sequence STδ of
amplitudes, the amplitudes of sustained oscillations might be reduced compared to the use
of a single amplitude.

Example 5.2. First, consider the linear dynamic system of transfer function:

G(s) =
Y (s)
U(s)

= K
s + 1
s2

, (5.3)

where Y (s) and U(s) are the Laplace transforms in the Laplace argument “s” of the output
y(t) of a linear time-invariant dynamic system and its time-differentiable control input u(t)
under zero initial conditions. Under linear unit control feedback u(t) = −y(t), the closed-loop
differential equation becomes y′′(t)+K(y′(t)+y(t)) = 0 subject to any initial conditions y(0) =
y0 and y′(0) = y01. Note the following features in the context of limit sustained oscillations:

(1) this system is globally asymptotically stable (then, its solution y(t) is oscillation-
free) for any K > 0 and might describe a wide set of real processes, for instance, a mechanical
system subject to damping and stiffness or the control of the angular position of a satellite
with respect to its axis under a derivative or tachometric control. It can also describe
mathematically a linear electric circuit with two energy storing devices specified by capacitors
and/or inductors with at least one dissipative device, that is, a resistor which can be in
practice either a separated dissipative device or dissipative effects of the inductors/capaci-
tors;

(2) on the other hand, note that, in order to design an electronic oscillator, that is, an
electronic system whose asymptotic solution is periodic irrespective of the initial conditions, a
nonlinear effect should be included in the system. In this context, note that the solution of the
above damped second-order differential equation converges asymptotically to zero for any
initial conditions and then it is not periodic so that it cannot be used in that way for the design
of oscillators. Note, furthermore, that a typical and well-used class of electric oscillators in
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applications consists of those being typically synthesized with a saturation function f(u(t)) =
satuM0 ,uM

(u(t)) of a certain amplifier linear gainK = uM/uM0 in the linear mode, of saturation
threshold uM0 and saturated value uM, that is,

satuM0 ,uM(u(t)) =

⎧
⎨

⎩

Ku(t) if |u (t)| ≤ uM0 ,

uM sign(u(t)) otherwise,
(5.4)

together with a linear electric network being of at least third order. The oscillation condition at
a frequency ω0 is that the first-harmonic of the closed-loop response of the frequency domain
satisfies 1 +KG(jω0) = 0, obtained under the replacement s → jω0 with j =

√−1, provided
that such an equation has a real solution ω0 > 0. The amplitude y of the such a first harmonic
y(t) = y sin(ω0t + ϕ) is approximately calculated from the companion complex identity
G(jω0) = Csat(uM0 , uM), where Csat(uM0 , uM) is the critical locus (i.e., the minus describing
function −(satu(t))/y(t), an extended concept of the frequency response for certain separable
or analytical nonlinearities, [36]) which is real for the case of saturations parameterized by
the pair (uM0 , uM) so that the gain in the linear mode of the saturation is K = uM/uM0 .
Note that 1 + Csat(uM0 , uM)G(jω0) = 0 replaces intuitively the condition 1 + KG(jω0) = 0 of
complex conjugate modes for the replacement (−1/K) → Csat(uM0 , uM). The precision of the
computation of the locus Csat(uM0 , uM), and then the precision of the calculated amplitude of
the oscillation first-harmonic, depends on the type of describing function calculated for the
saturation. See [36] and references therein for a number of useful describing functions/critical
locus for different nonlinearities through different, but mutually close, useful definitions of
describing function. The temporal asymptotic solution y(t) tends to the limit cycle of first-
harmonic y(t) = y sin(ω0t + ϕ) for any initial conditions;

(3) it is well known that electronic oscillators with basic saturated amplifiers of gain
K (in their linear mode) require also linear network of at least third- order to be synthesized.
See, for instance, [36]. This is because the impulse response hodograph G(jω) (being the
Fourier transform, if it exists, of the impulse response of the dynamic system) of the linear
feed-forward part of first- and second-order jointly stable and inversely stable systems (i.e.,
both poles and zeros are in Re s < 0) are always in the third and fourth quadrants of the
complex plane. As a result, they cannot cut the critical locus of a saturation nonlinearity for
some frequency since such a critical locus is always allocated in the negative real semi axis;

(4) it is now described, in the context of the current problem at hand, how sustained
oscillations can be obtained from the above described CADSC and SDADSC criteria by using
just second-order systems of transfer functions G(s) = K(s + 1)/s2 in the feedforward loop.
This implies that the order of the auxiliary linear network to synthesize the oscillator can be
diminished related to the typical design using electronic circuitry whose basic amplifier in
saturation mode needs the use of an auxiliary network of at least third-order. Then, consider
again the feedback differential equation referred to above but under discrete control at, in
general, nonperiodic sampling for CADSC and SDADSC:

y”(t) +K
(
y′(t) + 1

)
= Ku(t), u(t) = −y(ti), ∀t ∈ [ti, ti+1), (5.5)

where {ti} is the real sequence of sampling instants, and {Ti = ti+1 − ti}is the real sequence of
sampling periods under the CADSC or the SDADSC sampling criteria for all i ∈ N0 = N∪{0}.
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The above feedback system is a regulator since the control signal u(t) = e(t) = −y(ti) for all t ∈
[ti, ti+1) is generated by a zero-order hold under an identically zero external reference signal.
If the control is identically zero then the resulting linear feedback is globally asymptotically
Lyapunov stable to the origin which is the sole stable equilibrium point. However, the use of
the sampling criteria translates into the presence of limit cycles that is, asymptotic oscillations
being the limits of the solution trajectories in the phase plane. The following values are taken:
K = 1, A = 0.2154 for the single threshold case as the sampling amplitude in the CADSC
criterion and the set of amplitudes Samp ≡ {A1, A2, A3, A4} = {0.12, 0.1677, 0.2154, 0.2631} for
the SDADSC criterion injected in this order to implement the sampling criterion. Since the
control is a regulator, r ≡ 0 for all time, then the sampling criterion becomes

|e(t) − e(ti)| =
∣
∣y(t) − y(ti)

∣
∣ = A, ∀t ∈ [ti, ti+1), (5.6)

for the CADSC, and

|e(t) − e(ti)| =
∣∣y(t) − y(ti)

∣∣ = A(ti) = A[i/4], ∀t ∈ [ti, ti+1), (5.7)

where [i/4] = Integer Part(i/4); for all i ∈ N0 = N ∪ {0} for the SDADSC. Note that the
sampling criteria (5.6) and (5.7) can be interpreted as a separated nonlinearity of the dynamic
systems (5.5) consisting of a multi-relay with hysteresis displayed in Figure 1 where m(ti) =
−u(ti). In such a way, the sampling and hold device with the sampling criteria is equivalent
to such a nonlinearity which could be potentially be generated in a completely different way
by using relays with hysteresis. In the case of the SDADSC, the amplitudes are taken to vary
consecutively in the defined order in the set of amplitudes of the sampling criterion. The
asymptotic phase plot for the CADSC criterion and SDADSC criterion are, a limit cycle of
fundamental amplitude and frequency 0.39 and 0.3079 cycles/sec., and another limit cycle of
amplitude 0.31 and frequency 0.3095 cycles/sec., respectively. Both limit cycles to which the
phase portraits of the trajectory solutions asymptotically converge are shown in Figure 2. A
direct interpretation of why the asymptotic solution is a stable limit cyclic, so that the solution
is bounded and the whole system is (nonasymptotically) stable relies on the equivalence
of the tandem sampling criteria CADSC and SDADSC through a companion zero-order
hold to two variants of the multiple hysteretic relay nonlinearity of Figure 1. Note that it
is well known that nonlinear systems under certain conditions can generate limit cycles. The
sequences of constant asymptotic sampling periods reached in both cases are also listed in
the figure. Note that the fundamental amplitude of the second limit cycle corresponding to
the SDADSC is reduced more that 20% with respect to the first one while the fundamental
frequencies differ only in about 0.50%, the second one being very slightly larger than the first
one. It has been also observed under exhaustive inspection of related examples by modifying
their parameterizations that the duration of the transient time interval towards the limit cycle
solution is slightly shorter under the first criterion compared to the second one.

If the sampling criterion is modified to the constant amplitude-based sampling
criterion |y(t)+y(ti)| = A for all t ∈ [ti, ti+1) (i.e., modified CADSC) and to the multithreshold
sampling criterion obtained via its right-hand-side replacement by the same multithreshold
sequence as above, that is, Samp ≡ {A1, A2, A3, A4} = {0.12, 0.1677, 0.2154, 0.2631} (i.e.,
modified SDADSC) then one gets the results of Figure 3 below. Note the complex geometry
of the asymptotic oscillations of the standard criteria displayed in Figure 2 compared to the
more smooth shaped ones of the modified ones displayed in Figure 3. It can be pointed
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Figure 1: Multirelay with hysteresis nonlinear characteristics of the sampling criterion.
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Figure 2: Phase plane plot for the solution versus its first time derivative exhibiting closed limit trajectories.

out that other potential sampling criteria, not been subject to constant or varying (within a
prescribed set) differences of amplitude can lead to asymptotically stable solutions provided
that the admissibility domain for the sampling intervals defined by such sampling criteria is
constrained to the stability domain of a constant sampling provided that the continuous part
of the dynamic system is globally asymptotically stable. See, for instance, Theorem 2.3.

Remark 5.3. Note that Example 5.2 is based on a transfer function description of the linear
part. Thus, the above mathematical results on the limit asymptotic solutions are applicable to
any minimal state-space realization, since in this case the dimension of the linear system
coincides with the order of the transfer function (i.e., its number of poles). In the case
of nonminimal realizations (then being either noncontrollable or nonobservable or both),
the above discussed results still hold if the cancelled modes are strictly stable since their
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Figure 3: Phase plane plot of the modified sampling criteria for the solution versus its first time derivative
exhibiting limit cycles.

contribution to the state-space trajectories and their timederivatives the relevant order vanish
asymptotically as time tends to infinity.

6. Conclusions

This paper has been devoted to investigate the solutions and, in particular, their stability
and instability properties as well as the possible presence of sustained oscillations in discrete
linear dynamic systems under sampling laws which generate time-varying sampling periods
in general. Two sampling criteria have been specially emphasized, namely, (a) the so-called
constant amplitude difference sampling criterion (CADSC), under which the signal of interest is
sampled at each time that it reaches a prescribed threshold variation which is the positive real
constant defining the sampling criterion; (b) the more general sampling criterion is referred
to as a sampling-dependent amplitude difference sampling criterion (SDADSC) which involves a
set of at least two distinct of such amplitudes. Both sampling criteria possess the property
that, together with their associate sampling and zero-order hold device, are characterized as
a relay with multiple hysteresis. Such a nonlinear model is expected to potentially generate
potentially sustained limit oscillations of the solution. The analysis has been fully performed
in the time domain so that, contrarily to the case of the use of frequency-domain analysis
methods, no specific assumption is needed about low-pass filtering constraints of the linear
auxiliary network in order to perform the analysis of the first-harmonic of the existing
sustained oscillations. It is noticed that, the proposed analysis, no separation of the first-order
harmonic of the whole oscillation has to be taken in mind.
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To keep the resources renewable, a singular ecological-economic model is proposed for the
populations with harvesting and migration. The local stability and the dynamic behavior of the
model are studied. Singular induced bifurcation appears when economic interest is zero, which
is different from the ordinary differential models. In order to apply variable structure control
to eliminate these complex behaviors, the singular model is transformed into a single-input
and single-output model with parameter varying within definite intervals. And then, a variable
structure controller is designed to make the model stable. Finally, an inshore-offshore fishery
model is given to illustrate the proposed method, and some numerical simulations are shown
to demonstrate the control results.

1. Introduction

The management of renewable resources is important for the development of human and
society. In exploiting the biological resources, both the economic profit and the environmental
effects should be taken into account, which initiates a new research area: biomathematics.
Interactions of mathematics and biology promote the development of the biosciences greatly
in a certain extent. Since most of biological theories evolve rapidly, it is necessary to develop
some useful mathematical models to describe the consequences of these biological models.

Singular model as a branch of modern control theory can describe a class of practical
models more accurately. Compared with the ordinary differential models, singular models
exhibit more complicated dynamics, such as the impulse phenomenon. They have more
applications in power systems, aerospace engineering, chemical processes, social economic
systems, biological systems, network analysis, and so forth. With the help of the singular
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models for the power systems and bifurcation theory, complex dynamical behaviors of the
power systems have been extensively studied, which reveal the instability mechanism of
power systems [1–3]. Applications of singular models are also found in neural networks [4],
fault diagnosis [5, 6], robotics [7, 8] and epidemic [9–11], economics [12, 13], and chemistry
[14]. As far as the singular system theory is concerned, there are a few research results in
biology. Since a singular biological economics model with stage structure was established
to model the biological systems in [15], some singular biological models appeared [16–19].
These ideas are based on the economic theory [20]:

Net Economic Revenue = Total Revenue − Total Cost. (1.1)

This formula presents some solid preliminary on singular biological systems.
In biology, many mathematicians, ecologists, and economists are concerned with the

exploitation of renewable resources in recent years, and some results are achieved [21–24].
Though the harvesting can bring economic profit for people, the overexploitation may cause
the extinction of some populations. In order to prevent the population from damages, some
methods are introduced, such as, to raise taxes or to make the young population forbidden
to be harvested. We propose a singular ecological-economic model to model such a problem.
Singular model is often strongly nonlinear and unstable. In this case, one of control methods,
which are able to perform high-quality automatic control, is demanded.

Variable structure control is considered to be used in this paper. It is a flexible control
method to deal with some models with uncertain parameters and external disturbances.
The main advantage of this technique is that once the system state variables reach a sliding
surface, the structure of the feedback loop is adaptively altered to slide the state variables
along the sliding surface. Thereafter, the system response depends on the gradients of the
sliding surface and remains insensitive to parameter variations and external disturbances.
Variable structure control with sliding mode was first proposed by Emelyanov [25] and
was elaborated in the 1970s [26, 27]. In their pioneer works, variable structure controls are
used to handle some linear models, and then expanded to nonlinear models, multi-input
and multioutput models, discrete time models, infinite-dimensional models and stochastic
models [28–33]. In recent years, variable structure control is applied to a wide variety of
engineering fields successfully, such as robot control, flight control, motor control, and power
control [34–36].

The main contents of the paper are as follows. In Section 1, in order to prevent the
extinction of some populations, a singular ecological-economic model is proposed for the
populations with harvesting and migration. In Section 2, when the local stability and the
dynamic behavior for the model are discussed, singular induced bifurcation appears, and
a control method is demanded to eliminate this bifurcation. In Section 3, in order to apply
variable structure control, the singular model is transformed into a single-input and single-
output model with parameters varying within definite intervals. In Section 4, an inshore-
offshore model is given to illustrate the analysis results, and the simulations illustrate the
effectiveness of the proposed method.

2. Modeling

In order to model growth of the populations, numerous models have been introduced. The
generalized logistic growth model can provide an adequate approximation for the growth
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Figure 1: The migration between the harvesting permitted region and the harvesting forbidden region.

of the populations. However, if there is no harvesting, the populations would continue to
increase rapidly. Therefore, the harvesting is an effective measure to maintain the diversity of
species and protect the renewable resources. The equation of the harvested populations reads

dx

dt
= γx

(
1 − x

K

)
− qEx, (2.1)

where x is the number of population, γ is a positive constant which is called the intrinsic
growth rate, E is the harvesting effort, q is catch-ability coefficient, and K is usually the
environment carrying capacity or saturation level. Some papers studied the model (2.1) with
a constant effort E. But it is only suitable for some special case. In practice, the harvesting
effort E is usually time-varying. For convenience in calculation, the condition q = 1 is usually
assumed. If E > γ , a rapid collapse of the populations will occur. The extinction of population
is inevitable, and the ecological balance will be destroyed.

In order to keep the resources renewable and prevent the extinction of some
populations, the populations can be divided into two regions: Ω1 and Ω2. In region Ω1, the
harvesting is permitted, while the harvesting is forbidden in region Ω2. If there is a difference
between region Ω1 and region Ω2, the migration can occur between two regions, which is
assumed to be proportional to the difference, and the proportional coefficient is positive. To
better understand relation of the populations between two regions, a concise schematic is
shown in Figure 1.

From Figure 1, it can be seen that the two regions are connected, and the population
can migrate freely between two regions. The number of population in region Ω1 is x1, and
x2 is the number of population in region Ω2. The ultimate aim in harvesting the biological
resources is to get economic profits and practical value. Generally, from the economic
aspect, we know that the harvesting behavior changes with many market factors. Therefore,
studying the relation between economic profits and the harvesting can help us better protect
sustainable resources. If considering the economic profits in the model (2.1), the following
mathematical model of the exploited population with protective region, called a singular
ecological-economic model, is proposed:

dx1

dt
= γx1

(
1 − x1

K1

)
− α(x1 − x2) − Ex1,

dx2

dt
= γx2

(
1 − x2

K2

)
+ α(x1 − x2),

0 =
(
px1 − c

)
E −m,

(2.2)
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where p is the unit price, c is the unit cost, m is the economic profit, and α > 0 is the migration
proportional coefficient between two regions. Considering the practical significance, p and
c are positive constants. K1 and K2 are the environment carrying capacity of Ω1 and Ω2,
respectively. The differential equations are the growth rate of the population in region Ω1

and Ω2. The algebraic equation is an economic model, which represents the relations of the
total income, the total cost, and the economic profits.

Remark 2.1. In the management of sustainable resources, the model (2.2) not only considers
the ecological balance but also includes the economic profits when the population is
harvested, which combines the biological control problems with the economic problems. The
model (2.2) provides an effective way for human being to maintain the ecological resources
sustainable when we get economic profit.

Considering the biological significance, the model (2.2) is discussed in the following
interval:

R3
+ =
{
χ = (x1, x2, E) | x1 ≥ 0, x2 ≥ 0, E ≥ 0

}
. (2.3)

If m = 0, the economic equilibrium occur, that is, the income is equal to the cost. When
the economic profit is zero, the population reaches the maximum harvesting effort, and it is
called the overfishing. In the exploitation of population resources, a collapse of the population
may occur.

Due to the limitation of the environment, the number of populations cannot exceed
the environment maximum carrying capacity. Otherwise, due to the crowded environment,
a large number of populations will die gradually. So the state variables and the parameters
satisfy the following conditions:

0 < x1 < K1 max, 0 < x2 < K2 max, 0 < K1 < K1 max, 0 < K2 < K2 max, 0 < E < γ,
(2.4)

where K1 max and K2 max are the maximum environment carrying capacities of Ω1 and Ω2,
respectively.

3. Local Stability Analysis

For convenience, the environment carrying capacity in Ω1 is assumed to be proportional to
that in Ω2, and the ratio is η, that is, ηK1 = K2 (η > 0). For the model (2.2), the equilibrium
points are the solutions for the equations:

γx1

(
1 − x1

K1

)
− α(x1 − x2) − Ex1 = 0,

γx2

(
1 − x2

ηK1

)
+ α(x1 − x2) = 0,

(
px1 − c

)
E −m = 0.

(3.1)
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By solving (3.1), we get two equilibrium points for the model (2.2):

p0 =
(

0, 0,−m
c

)
,

p1 = (x10, x20, E0) =

(

x0,

(
m

α
(
px0 − c

) + 1 − γ

α
+
γx0

αK1

)

x0,
m

px0 − c

)

.

(3.2)

Here x0 /= 0 is the root of the equation:

C0x
3 + C1x

2 + C2x + C3 = 0, (3.3)

where C0 = γp(K1α −K1γ + γ)
2, C1 = 2ηK1pmγ(K1α −K1γ + γ) − 2pcγ(K1α −K1γ + γ)

2, C2 =
γc2(K1α −K1γ + γ)

2−2ηK1cmγ(K1α−K1γ+γ)+αpη3K1
3m(α−γ)+K1

2m2γ ,C3 = −αη3K1
3mc(α−

γ).
When the coefficients Ci (i = 0, 1, 2, 3) satisfy certain conditions, there is a positive

solution for (3.3). Here, we suppose that the positive equilibrium point p1 exists. We are
interested in the local stability of the model (2.2) at the equilibrium points p0 and the positive
equilibrium point p1. In order to analyze the local stability of the model (2.2), let

F(X, E) =

⎛

⎜⎜⎜
⎝

γx1

(
1 − x1

K1

)
− α(x1 − x2) − Ex1

γx2

(
1 − x2

ηK1

)
+ α(x1 − x2)

⎞

⎟⎟⎟
⎠

G(X, E) =
(
px1 − c

)
E −m,

(3.4)

where X = [ x1 x2 ]. The local stability of the model (2.2) at the equilibrium points p0 is
discussed by the following theorem.

Theorem 3.1. If 0 < γ < α +m/2c and γ(γ − 2α) + (γ − α +m/c) > 0, the model (2.2) is locally
stable at p0.

Proof. p0 = (0, 0,−m/c) is an equilibrium point of the model (2.2). Since detDEG|p0 = −c/= 0,
Jacobian matrix of the model (2.2) at p0 is given by

J =
[
DXF −DEF(DEG)−1DXG

]∣∣∣
p0

=

⎡

⎣
γ − α +

m

c
α

α γ − α

⎤

⎦, (3.5)

where DEG denote the derivative of the function G on the variable E.
The characteristic equation of Jacobian matrix (3.5) can be obtained:

λ2 −
[

2
(
γ − α) + m

c

]
λ + γ

(
γ − 2α

)
+
(
γ − α +

m

c

)
= 0. (3.6)
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If 0 < γ < α +m/2c and γ(γ − 2α) + (γ − α +m/c) > 0, the roots of the characteristic equation
(3.6) all have negative real part. Therefore, the model (2.2) is locally stable at p0.

In order to analyze the local stability at the positive equilibrium point p1, a linear
transformation χT = QST is used, where

χ =
[
x1 x2 E

]
, S =

[
u v E

]
, Q =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0

0 1 0

− pE0

px0 − c 0 1

⎞

⎟
⎟
⎟
⎟
⎠
. (3.7)

Thus, DχG(χ0)Q = [ 0 0 px0−c ], u = x1, v = x2, E = pE0/(px0 − c) +E. The model (2.2) is
changed into the following form:

du

dt
= γu

(
1 − u

K1

)
− α(u − v) − Eu +

pE0

px0 − cu
2,

dv

dt
= γv

(
1 − v

ηK1

)
+ α(u − v),

0 =
(
pu − c)

(
E − pE0

px0 − cu
)
−m.

(3.8)

Now the local stability of the model (3.8) at the positive equilibrium point p1 will be
analyzed. First, the diffeomorphism ψ is defined as follows:

[
u v E

]T
= ψ
(
Z
)
= S0

T +U0Z +V0h
(
Z
)
, (3.9)

where U0 =
[ 1 0

0 1
0 0

]
, V0 =

[ 0
0
1

]
, Z = [ y1 y2 ]T , S0 = [ u0 v0 E0 ], h : R2 → R1 is a smooth mapping.

Jacobi matrix Dψ is a 3 × 1 real matrix.
Second, by differentiating G(ψ(Z)) = 0, the following equation is obtained:

DG(χ)Dψ
(
Z
)
= 0. (3.10)

Differentiating (3.9) and multiplying on the left by UT
0 , it can be obtained that:

UT
0Dψ

(
Z
)
= I2, (3.11)

where I2 is a 2 × 2 unit matrix. From (3.10) and (3.11), the following formula is gotten:

Dψ
(
Z
)
=

[
DG(S0)

UT
0

]−1[
0

I2

]

. (3.12)
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Furthermore, the following model is further obtained [37]:

dZ
dt

= UT
0f
(
ψ
(
Z
))

= UT
0Df

(
χ0

)
[
DG(S0)

UT
0

]−1[0

I2

]

+ Y
(
Z
)
, (3.13)

where Y (Z) = o(Z) (Z → 0+).
From the transformation above and (3.13), the coefficient matrix of linear model

corresponding to the model (3.8) is gotten as follows:

E(S0) =

(
DSf1(S0)

DSf2(S0)

)(
DsG(S0)

U0
T

)−1⎛

⎝
0 0
1 0
0 1

⎞

⎠

=

⎛

⎜⎜⎜
⎝

γ − E0 − α − 2γu0

K1
+

2pE0u0

px0 − c α

α γ − α − 2γv0

ηK1

⎞

⎟⎟⎟
⎠
,

(3.14)

where u0 = x0, v0 = (m/α(px0 − c) + 1 − γ/α + γx0/αK1)x0, E0 = pE0/(px0 − c) + E0.
Thus, the characteristic equation of the matrix (3.14) is given by

λ2 +D1λ +D2 = 0, (3.15)

where D1 = 2(α− γ) + (3pE0x0 +E0(p − c))/(px0 − c) + 2γx0/ηK1((m/α(px0 − c)) + 2− (γ/α) +
(γ/αK1)), D2 = [γ − α + (3pE0x0 + E0(p − c))/(px0 − c)][γ − α − (2γx0/ηK1)((m/α(px0 − c)) +
2 − (γ/α) + (γ/αK1))].

About the local stability of the model (2.2) at the positive equilibrium point p1, we
have the following theorem.

Theorem 3.2. For the model (2.2):

(a) if D1 > 0 and D2 > 0, the model (2.2) is locally stable at the positive equilibrium point p1;

(b) if D1 < 0 or D2 < 0, the model (2.2) is unstable at the positive equilibrium point p1.

Proof. The model (3.8) and the model (2.2) are isomorphic. The local stability of them is
discussed by the eigenvalues of the coefficient matrix E(S0). When D1 > 0 and D2 > 0, two
roots of the characteristic equation (3.15) all have negative real part. The model (3.8) and the
model (2.2) are all locally stable at the positive equilibrium point p1.

However, when D1 < 0 or D2 < 0, at least one of the eigenvalues of E(S0) has
nonnegative real part. We can conclude that the model (2.2) is unstable at the positive
equilibrium point p1. Thus, the proof is completed.
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To further study the dynamic behavior of the model (2.2), x0 is given a specified value.
If x0 = c/p, the positive equilibrium point of the model (2.2) is

p1(x10, x20, E0) =
(
c

p
,
γ − α + θ

2pγ
,
(
γ − α)

(
α

2cγ
+ 1
)
− γc

pK1
+
αθ

2cγ

)
, (3.16)

where θ =
√
(γ − α)2p2η2K1

2 + 4pηK1γαc. By analysis, we know that there is a bifurcation
at the positive equilibrium point p1 for the model (2.2), which is shown in the following
theorem.

Theorem 3.3. If γ − (γ − α + θ)/K1p − α/= 0, there is a singular induced bifurcation for the model
(2.2) at the positive equilibrium point p1, andm = 0 is a bifurcation value.

Proof. Let m be a bifurcation parameter for the model (2.2). x1 = c/p makes Δ = det[DEG] =
px1 − c = 0. If γ − (γ − α + θ)/K1p − α/= 0, the following three conditions are satisfied:

(i) trace
[
DEFadj(DEG)

(
Dx1G Dx2G

)]
p1

=
(−pEx1 0

0 0

)

p1

= −c(γ − α)
(

α

2cγ
+ 1
)
+
γc2

pK1
− αθ

2γ /
= 0;

(ii)
∣∣∣∣
DXF DEF
DXG DEG

∣∣∣∣
p0

=

∣∣∣∣∣∣∣∣∣∣

γ − 2γ
K1

x1 − α − E α −x1

α γ − 2γ
ηK1

x2 − α 0

pE 0 px1 − c

∣∣∣∣∣∣∣∣∣∣
p1

=

[

c
(
γ − α)

(
α

2cγ
+ 1
)
− γc2

pηK1
+
αθ

2γ

](
γ − γ − α + θ

K1p
− α
)

/= 0;

(iii)

∣∣∣∣∣∣

DXF DEF DmF
DXG DEG DmG
DXΔ DEΔ DmΔ

∣∣∣∣∣∣
p0

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

γ − 2γ
K1

x1 − α − E α −x1 0

α γ − 2γ
ηK1

x2 − α 0 0

pE 0 px1 − c −1

p 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
p1

= − c
p

(
γ − γ − α + θ

K1p
− α
)

/= 0.

(3.17)
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Thus, we can conclude that there exists a smooth curve in R3 which passes through the
positive equilibrium point p1, and it is transversal to the singular surface at the positive
equilibrium point p1. And we can get the following equations:

i = −trace
[
DEFadj(DEG)

(
Dx1G Dx2G

)]
p1

= c
(
γ − α)

(
α

2cγ
+ 1
)
− γc2

pK1
+
αθ

2γ
;

j = DmΔ − (DXΔ DEΔ
)
(
DXF DEF
DXG DEG

)−1(
DmF
DmG

)

= −(p 0 0
)

⎛

⎜
⎜
⎜
⎜
⎝

γ − 2γ
K1

x1 − α − E α −x1

α γ − 2γ
ηK1

x2 − α 0

pE 0 px1 − c

⎞

⎟
⎟
⎟
⎟
⎠

−1

p1

⎛

⎝
0
0
−1

⎞

⎠

=
1

(
γ − α)(α/2cγ + 1

) − γc/pK1 + αθ/2cγ
.

(3.18)

From above we can get that i/j = c[(γ − α)(α/2cγ + 1) − γc/pK1 + αθ/2cγ]2. Obviously,
i/j > 0. According to Theorem 3 in [38], when m passes through 0, one eigenvalue of matrix
J = DXF−DEF(DEG)

−1DXGmoves fromC− toC+ along the real axis by diverging through ∞.
There is a singular induced bifurcation for the model (2.2), and the model turns to unstable.
The proof is completed.

Remark 3.4. When the economic profit is zero, it is called the overfishing in economics. One
eigenvalue of the model (2.2) is approaching to endless, and the impulse occurs in the model
(2.2). This would lead to the collapse of the population and destroy the ecological balance. It
is necessary to find an effective method to make that the population develop sustainably.

4. Controller Design

Variable structure control is often used to deal with some models with internal varying
parameters and external disturbances since it provides effective means to design robust state
feedback controllers. In this section, variable structure control is introduced to eliminate the
bifurcation behavior and ensure the system stable. This approach makes direct use of the
nonlinear model and the full biological state information. In order to facilitate the controller
design, differentiating the second differential equation in the model (2.2) and substituting
the other two equations into it, the model (2.2) is transformed into a second-order differential
equation [39]:

d2x2

dt2
+
(
α +

2γx2

K2
− γ
)
dx2

dt
− α2x2

=
K1pE

(
αγm − Ecαγ − α2m − α2cE − αmE) − αγm(m + cE + cE) − cα2γE2

K1p2E2
+
c

p
E.

(4.1)
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Equation (4.1) can be rewritten as a single-input and single-output model with the
parameters varying within definite intervals:

d2y

dt2
+ a1

dy

dt
+ a0y = b0u + β, (4.2)

where y = x2, u = E, a1 = α + 2γx2/K2 − γ , a0 = −α2, b0 = c/p, β = (K1pE(αγm−Ecαγ − α2m −
α2cE − αmE) − αγm(m + 2cE) − cα2γE2)/K1p

2E2.
Obviously, a0 and b0 are fixed, while a1 and β change with the parameters and the

variables. From the varying intervals (2.4), we can get the varying intervals of the coefficients
a1 and β:

α − γ < a1 < α + γ,

−cαγ − (α2 + α
)
m

p
< β <

(
αγ − α2)m

pγ
−
(
αγ + α2)c + αm

p
− αm

(
m + 2cγ

)

K1p2γ
− cα2γ

K1p2
.

(4.3)

In order to make the number of the population in protecting region Ω2 reach the
carrying capacity, let

e = K2 − y, (4.4)

where e is the error of y and K2. Here y is the number of population in Ω2, while K2 is the
carrying capacity of region Ω2.

Differentiating the formula (4.4) twice and considering the model (4.2), the following
equation is obtained:

d2e

dt2
+ a1

de

dt
+ a0e = −b0u +

(
a0K2 − β

)
. (4.5)

For the differential equation (4.5), a0K2 − β is considered as an external disturbance.
According to the transformation, the model (4.1) is considered as a linear uncertain system
with the control input. And then the model (4.5) is transformed into

de1

dt
= e2,

de2

dt
= −a0e1 − a1e2 − b0u + a0K2 − β,

(4.6)

where e1 = e.
The model (4.6) can be rewritten as a matrix form:

dw
dt

= Aw + Bu + CK2 +D, (4.7)

where w = [ e1 e2 ]T , A =
( 0 1
−a0 −a1

)
, B = [ 0 −b0 ]T , C = [ 0 a0 ]T , and D = [ 0 −β ]T .
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To stabilize the model (4.7), the variable structure controller is designed as

u = −(λ1e1 + λ2e2 + λ3K2)Sgn(δ(w)), (4.8)

where λi (i = 1, 2, 3) are switching coefficients and Sgn(δ(w)) is a sign function. δ(w) is called
sliding surface, which divides the phase plane into two regions. The function δ(w) contains
only endpoints of the trajectories of the model (4.7) coming from both sides of the surface
and is defined as

δ(w) = fe1 + e2, (4.9)

where f > 0 is a constant. To suppress the effect of the uncertainty and drive the trajectories of
the model (4.7) toward the sliding surface until intersection occurs, the following reachable
condition is established:

δ(w)
dδ(w)
dt

< 0, for δ(w)/= 0. (4.10)

That is

dδ(w)
dt

= f
de1

dt
+
de2

dt
=

⎧
⎨

⎩

(λ1 − a0)e1 +
(
f + λ2 − a1

)
e2 + (a0 + λ3)K2 < 0, δ(w) > 0

(−λ1 − a0)e1 +
(
f + λ2 − a1

)
e2 + (a0 − λ3)K2 > 0, δ(w) < 0.

(4.11)

According to the reachable condition (4.10), we get the variable structure controller
for the model (4.7):

u =

⎧
⎨

⎩

u+ = −(λ1e1 + λ2e2 + λ3K2), δ(w) > 0

u− = λ1e1 + λ2e2 + λ3K2, δ(w) < 0.
(4.12)

Using the controller u = u+ in the model (4.7), the controlled model is

⎡

⎢⎢
⎣

de1

dt

de2

dt

⎤

⎥⎥
⎦ =

[
0 1

λ1 − a0 λ2 − a1

][
e1

e2

]

+

[
0

a0 + λ3

]

K2 +

[
0

−β

]

. (4.13)

Let e′1 = e1 + (λ3 + a0)K2/(λ1 − a0) and e′2 = e2, then

⎡

⎢⎢⎢
⎣

de′1
dt

de′2
dt

⎤

⎥⎥⎥
⎦

=

[
0 1

λ1 − a0 λ2 − a1

][
e′1
e′2

]

+

[
0

−β

]

. (4.14)
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Obviously, the model (4.13) and the model (4.14) have the same state matrix M =[
0 1

λ1−a0 λ2−a1

]
. β is a bounded constant, and it does not influence the local stability of the

controlled model. Thus, we have the following theorem.

Theorem 4.1. If a0 − λ1 > 0, a1 − λ2 > 0, the model (4.7) can be stabilized by the controller u+.

Proof. When the model (4.7) is controlled by the controller u+, it is transformed into the linear
model (4.13). The characteristic equation of the state matrix M is

|λE −M| = λ2 − (λ2 − a1)λ − (λ1 − a0) = 0. (4.15)

According to the Routh-Hurwitz criterion, if a0 − λ1 > 0, a1 − λ2 > 0, two eigenvalues
for the state matrix M have negative real part. Therefore, the model (4.13) is locally stable.
That is to say, the model (4.7) can be stabilized by the controller u+.

If u = u− in the model (4.7), the controlled model is

⎡

⎢⎢
⎣

de1

dt

de2

dt

⎤

⎥⎥
⎦ =

[
0 1

−λ1 − a0 −λ2 − a1

][
e1

e2

]

+

[
0

a0 − λ3

]

K2 +

[
0

−β

]

. (4.16)

Let e′1 = e1 + (λ3 − a0)K2/(λ1 + a0) and e′2 = e2, then,

⎡

⎢⎢⎢
⎣

de′′1
dt

de′′2
dt

⎤

⎥⎥⎥
⎦

=

[
0 1

−λ1 − a0 −λ2 − a1

][
e′′1
e′′2

]

+

[
0

−β

]

. (4.17)

The model (4.16) and the model (4.17) also have the same state matrix N =[
0 1

−λ1−a0 −λ2−a1

]
. The transformation does not change the local stability of the model (4.16).

Furthermore, we have another theorem.

Theorem 4.2. If λ1 + a0 > 0, λ2 + a1 > 0, the model (4.7) can be stabilized by the controller u−.

Proof. When the model (4.7) is controlled by the controller u−, it is transformed into the linear
model (4.16). The characteristic equation of the state matrix N is

|λE −N| = λ2 − (λ2 + a1)λ − (λ1 + a0) = 0. (4.18)

According to the Routh-Hurwitz criterion, if λ1+a0 > 0, λ2+a1 > 0, two eigenvalues for
the state matrix N have negative real part. The model (4.16) is locally stable, and the model
(4.7) can be stabilized by the controller u−.
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From the condition (4.11), Theorems 4.1 and 4.2, we get the varying range of the
switching coefficients λi (i = 1, 2, 3):

λ1 ≥ max|−a0|, λ2 ≥ max
∣
∣f − a1

∣
∣, λ3 ≥ max|a0|. (4.19)

According to the condition δ(w) = 0 and dδ(w)/dt = 0, the equivalent control
on the sliding surface δ(w) = 0 can be obtained. If δ(w) = 0, there is a state variable
represented by the remaining state variables. From the condition Sgn(δ(w)) = 0, we
have

de1

dt
= −fe1. (4.20)

Remark 4.3. When applying variable structure control, the singular model is transformed
into a linear model with parameters varying within definite intervals. Since the sliding
surface can be designed as required and has nothing to do with the parameters and
disturbance, it makes the discontinuous control insensitive to internal parameter variations
and extraneous disturbance and decreases the chattering phenomenon. Variable structure
control can stabilize the nonlinear system effectively.

5. Simulations

Fishery production is an important aspect in human life. In order to guarantee the sustainable
development of the fishery, people have taken many necessary measures. Therefore, to study
the structure model for the inshore-offshore fishery is necessary. It is a good idea to divide
the population into two categories in keeping resources sustainable, a harvesting-permitted
category and a harvesting-forbidden category. Some inshore-offshore models in an aquatic
environment have ever been studied to keep the fishery sustainable [40–42]. But these papers
did not consider the economic profits that the fishery brings for people. In this paper, the
sustainable fishery and the economic interest are discussed for the inshore-offshore fishery
model.

The sea around Zhoushan is a famous fishing ground in Zhejiang province. The total
sea area is about more than 10800 km2. The area of the inshore region is about 3700 km2, and
the offshore region is about 7100 km2 [43]. The coiliaspp is a kind of fish, and it is about
1099 million in the whole sea area [44]. To protect the fishery resources, the coiliaspp in
the inshore region is permitted to be harvested, while the offshore region is forbidden. In
the inshore region, the density of the coiliaspp is greater than that in the offshore region
because of the environment effect. So the environment carrying capacity of the inshore
region is about 423 million, and the offshore environment carrying capacity is 676 million.
The intrinsic growth rate γ is assumed to be 0.2. When the number of the fish in two
regions are different, they migrate between two regions at the proportional α = 0.6. It is
supposed that they are sold at the average unit price p = 11, and its unit cost c is 6.
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Considering these conditions, the following singular ecological-economic model can be
established:

dx1

dt
= 0.2x1

(
1 − x1

423

)
− 0.6(x1 − x2) − Ex1,

dx2

dt
= 0.2x2

(
1 − x2

676

)
+ 0.6(x1 − x2),

0 = (11x1 − 6)E −m.

(5.1)

When the economic profit m varies, there are some complex dynamic behaviors for
the model (5.1), such as the singular induced bifurcation. When the economic profit m = 0,
the model (5.1) has a positive equilibrium point p∗(0.545, 0.818, 0.499). When economic profit
m = 0.001, there are two eigenvalues for the matrix J = DXF − DEF(DEG)

−1DXG, −1.2998
and −0.0002. The eigenvalues became −1.2998 and 0.0017 when the parameter m = −0.001.
It obvious that one eigenvalue remains constant, and the other eigenvalue moves from C−

to C+ along the real axis by diverging through ∞. It is called the overexploitation, and it
causes the extinction of the coiliaspp. In order to avoid such phenomena, a variable structure
controller is designed to make the coiliaspp in the offshore region reach the environment
carrying capacity 676 million. According to the varying range of the switching coefficients
(4.19), the variable structure controller is designed as follows:

u = −(10e1 + 76e2 + 15800)Sgn(δ(w)), (5.2)

where the sliding surface is chosen as δ(w) = 9.6e1 + e2. By controlling the harvesting effort
E, x2 reaches the environment carrying capacity 676 million in Ω2. Figure 2 shows the control
result of x1, x2, and E with variable structure control.

In Figure 2, when the harvesting effort E is controlled at 0.16 million, the number of
fish in region Ω2 reaches 675.2 million controlled by the controller u. Due to the migration
between Ω1 and Ω2, the coiliaspp in inshore region reaches 424.3 million accordingly. The
state variables stay in a stable situation, and the singular induced bifurcation is eliminated by
the controller u. In practical, we can regulate the harvesting behavior by the revenue to keep
the harvesting and the reproduction in balance. Therefore, the sustainable development of the
fishery can be realized by this controller. Further, we know that the corresponding nonlinear
singular ecological-economic model can be stabilized by variable structure control.

6. Conclusions

In this paper, the population is divided into the harvesting region and the protecting region,
in which the population can migrate between two regions. In harvesting the population
resources, when the economic interest and the environmental effects are taken into account,
a singular ecological-economic model is established. The local stability and the dynamic
behavior for this model are discussed. As the parameters changing, the singular model
undergoes the singular induced bifurcation. In order to apply variable structure control to
eliminate this complex behavior, the singular model is transformed into a linear single-
input and single-output model with parameters varying within definite intervals. Variable
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Figure 2: The state response of x1, x2, and E when m = 1325 with the controller u.

structure control with sliding mode is designed to stabilize the model. An inshore-offshore
fishery model illustrates the analysis result. Some simulations show the effectiveness of the
control method.
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The eigenvalues and the stability of a singular neutral differential system with single delay are
considered. Firstly, by applying the matrix pencil and the linear operator methods, new algebraic
criteria for the imaginary axis eigenvalue are derived. Second, practical checkable criteria for the
asymptotic stability are introduced.

1. Introduction

Nowadays, the time-delay systems have became an important natural models in physics,
engineering, multibody mechanics, computer-aided design, and economic systems. The
theory on ordinary differential equations with delays have been discussed for decades in
a wide range, so there are very many results for them. Especially, the eigenvalues and the
stability analysis of time-delay systems have received much attention of researchers and
many excellent results have been obtained, see [1–6]. Certainly most of them had been
focused on the analytical methods or numerical methods, such as V-functional methods,
Laplace transformation, Runge-Kutta methods, and linear multistep methods. In [7–9], the
numerical techniques for the computation of the eigenvalues were discussed. In [10], Zhu
and Petzold researched the asymptotic stability of delay-differential-algebraic equations
by applying the θ-methods, Runge-Kutta methods, and linear multistep methods. These
methods play the key roles at last. But in recent years, algebraic methods are developing fast,
especially for the research on the more complex systems, such as the n-dimensional systems.
Though the algebraic methods as a new and effective tool is also applied to analyze the time-
delay systems [2, 3], the results are very few.
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In this paper, we will discuss the differential-algebraic equations by the algebraic
methods. Their dynamics have not been well understood yet.

Example 1.1. Consider the simple differential-algebraic system:

ẋ1(t) = f1(t),

x1(t) − x2(t − τ) = f2(t),
(1.1)

where t ≥ 0, τ ≥ 0, and x1 and x2 are given by continuous functions on the initial interval
(−τ, 0]. So we have the solution:

x1(t) =
∫ t

0
f1(s)ds + c,

x2(t) = −f2(t + τ) +
∫ t+τ

0
f1(s)ds + c,

(1.2)

where c is a constant. From the solution, we find that the solution depends on future integrals
of the input f(t). This interesting phenomenon arrested many scholars to research. For a
general n-dimensional differential equations with delay, we can note by

BẊ(t) = A0X(t) +A1X(t − τ), (1.3)

where B,A0, A1 ∈ Rn×n, RankB ≤ n, t ≥ 0, τ ≥ 0, and X(t) ∈ Rn is given by continuous
functions on the initial interval (−τ, 0]. When RankB = n, we called it the retarded differential
equations. It can be improved as

Ẋ(t) = A0X(t) +A1X(t − τ). (1.4)

Many scholars have widely researched the delay-independent or delay-dependent stability
and asymptotic stability by analytic methods or numerical methods. When RankB < n,
it is called a singular (or degenerated) delay-differential equations. The imaginary axis
eigenvalues are discussed by using matrix pencil, see [2]. But because of the complex nature
of the singular differential systems with delay, the research is very difficult by using the
analytical treatment. So few studies on the stability and the bifurcations have been conducted
so far. Particulary, for the singular neutral differential systems with delays, there are hardly
flexible and efficient verdicts.

In this paper, we will apply the algebraic methods to discuss the stability of a singular
neutral differential system with a single delay, as follows:

B0ẋ(t) + B1ẋ(t − τ) = A0x(t) +A1x(t − τ), (1.5)

where B0, B1, A0, A1 ∈ R

n×n, x ∈ R

n, τ ≥ 0. For the system (1.5), if detB0 /= 0, we can improve
it as the form

ẋ(t) + B1ẋ(t − τ) = A0x(t) +A1x(t − τ). (1.6)
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It is a neutral differential equation with a single delay. The problem of computing imaginary
axis eigenvalues on the system (1.6) has been previously studied in [11]. Here, we consider
the state rank B0 ≤ n. The solvability of the system (1.5), which is essentially the existence and
the uniqueness of the solution, is determined by the regularity. The matrix pencil (B0, A0) is
said to be regular if sB0+A0 is not identically singular for any complex s. If (B0, A0) is regular,
the zero s of det(sB0 + A0) is called the eigenvalue of the matrix pencil (B0, A0). From [12],
we know that the system (1.5) is solvable if and only if (B0,A0) is regular. So, in this paper,
we suppose that (B0, A0) is regular. In the following, we will analyze the eigenvalues and the
stability of the system (1.5).

2. The Algebraic Criteria for Determining Imaginary Axis Eigenvalues

Firstly, we research an ordinary differential equation, which will motivate our analysis.
Consider

B0Ẋ(t) + B1Ẏ (t) = A0X(t) +A1Y (t),

Ẋ(t)BT1 + Ẏ (t)BT0 = −X(t)AT
1 − Y (t)AT

0 ,
(2.1)

where B0, B1, A0, A1 ∈ R

n×n, X,Y ∈ C

n×n. Let V denote the vector space V = C

n×n × C

n×n and
E,F denote the operators on V , given by

E
(
X
Y

)
=
(
B0X + B1Y
XBT1 + YBT0

)
, F

(
X
Y

)
=
(
A0X +A1Y
−XAT

1 − YAT
0

)
, ∀X,Y ∈ C

n×n. (2.2)

With Z(t) =
(
X(t)
Y (t)

)
, the system (2.1) can be written as

EŻ(t) = FZ(t). (2.3)

Supposing Z̃(t) =
(
X̃
Ỹ

)
=
(
X0e

st

Y0e
st

)
is a matrix solution of the system (2.1), we have

(sB0 −A0)X̃ + (sB1 −A1)Ỹ = 0,

X̃
(
sBT1 +AT

1

)
+ Ỹ
(
sBT0 +AT

0

)
= 0.

(2.4)

For any complex s, let T = T(s) be the operator T = sE − F; then

T
(
X
Y

)
=
(

(sB0 −A0)X + (sB1 −A1)Y
X
(
sBT1 +AT

1

)
+ Y
(
sBT0 +AT

0

)
)
, ∀X,Y ∈ C

n×n. (2.5)

For any complex s, let T+ = T+(s) : V → V , satisfying

T+
(
X
Y

)
=
(
X
(
sBT0 +AT

0

) − (sB1 −A1)Y
−X(sBT1 +AT

1

)
+ (sB0 −A0)Y

)
, ∀X,Y ∈ C

n×n. (2.6)
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For any complex s, let Λ = Λ(s), satisfying

ΛX = (sB0 −A0)X
(
sBT0 +AT

0

)
− (sB1 −A1)X

(
sBT1 +AT

1

)
, ∀X ∈ C

n×n. (2.7)

By simple computations, we can get

(sB0 −A0)X
(
sBT0 +AT

0

)
− (sB1 −A1)X

(
sBT1 +AT

1

)
= X0

(
sBT0 +AT

0

)
− (sB1 −A1)Y0,

(sB0 −A0)Y
(
sBT0 +AT

0

)
− (sB1 −A1)Y

(
sBT1 +AT

1

)
= −X0

(
sBT1 +AT

1

)
+ (sB0 −A0)Y0.

(2.8)

Expressing by the operator language, that is,

T+T
(
X
Y

)
=
(
ΛX
ΛY

)
. (2.9)

In the following, we will convert matrix ordinary differential equation (2.3) to vector
form. Let ξ be the elementary transform, ξ : C

n×n → C

n2
, that is,

ξA =

⎛

⎜
⎝

aT1
...
aTn

⎞

⎟
⎠, ∀A =

⎛

⎜
⎝

a1
...
an

⎞

⎟
⎠, aTi ∈ C

n, i = 1, 2, . . . , n. (2.10)

Let x = ξX, y = ξY, z =
( x
y
)
, and

E0 =
(
B0 ⊗ I B1 ⊗ I
I ⊗ B1 I ⊗ B0

)
, F0 =

(
A0 ⊗ I A1 ⊗ I
−I ⊗A1 −I ⊗A0

)
. (2.11)

Using the property of the Kronecker product, we have

ξ(AXB) = A ⊗ BTξX, (2.12)

where A,B,X ∈ C

n×n. So (2.3) can be written as

E0ż(t) = F0z(t). (2.13)

Similarly, by denoting T0 = T0(s), T+
0 = T+

0 (s), Λ0 = Λ0(s) as follows

T0 = T0(s) =
(
(sB0 −A0) ⊗ I (sB1 −A1) ⊗ I
I ⊗ (sB1 +A1) I ⊗ (sB0 +A0)

)
= sE0 − F0,

T+
0 = T+

0 (s) =
(
I ⊗ (sB0 +A0) −(sB1 −A1) ⊗ I
−I ⊗ (sB1 +A1) (sB0 −A0) ⊗ I

)
,

Λ0 = Λ0(s) = (sB0 −A0) ⊗ (sB0 +A0) − (sB1 −A1) ⊗ (sB1 +A1),

(2.14)
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we have

T+
0 T0

(
x
y

)
=
(
Λ0x
Λ0y

)
, that is, T+

0 T0 =
(
Λ0 0
0 Λ0

)
. (2.15)

Lemma 2.1. For all complex s, det T+
0 (s) = det T0(s), and so det T0(s) = ±detΛ0(s).

Proof. Let T0 =
(
a b
c d

)
, where a = (sB0 − A0) ⊗ I, b = (sB1 − A1) ⊗ I, c = I ⊗ (sB1 + A1), and

d = I ⊗ (sB0 +A0). Noting the Kronecker product identities (I ⊗M)(N ⊗ I) = (N ⊗ I)(I ⊗M) =
N ⊗M, we have db = bd, bc = cb. By regularity of (B0, A0), we know sB0 +A0 is nonsingular
for enough complex s. So by the property of the polynomial and easy computations, we can
get that det T+

0 (s) = det T0(s) for any complex s. Elsewhere,

T+
0 T0 =

(
Λ0 0
0 Λ0

)
, (2.16)

so

(det T0)
2 = det T+

0 det T0 = (detΛ0)
2. (2.17)

Thus

det T0(s) = ±detΛ0(s). (2.18)

Theorem 2.2. Any imaginary axis eigenvalue of the systems (1.5) is a zero point of detΛ0(s) and
thus also one of the eigenvalues of the matrix pencil (E0, F0).

Proof. The matrix polynomial for the system (1.5) is

p
(
s, e−sτ

)
= sB0 −A0 + (sB1 −A1)e−sτ . (2.19)

Let s = iw be an imaginary axis eigenvalue of the system (1.5) and v is associated eigenvector,
‖v‖ = 1. We have p(s, e−sτ)v = 0. By conjugating and transforming, we can get

(sB0 −A0)vv∗
(
sBT0 +AT

0

)
− (sB1 −A1)vv∗

(
sBT1 +AT

1

)
= 0. (2.20)

Via the elementary transform ξ, we get

[(sB0 −A0) ⊗ (sB0 +A0) − (sB1 −A1) ⊗ (sB1 +A1)]ξ(vv∗) = 0, (2.21)

that is, Λ0(s)u = 0, u = ξ(vv∗). We know that detΛ0(s) = 0, and so

det(sE0 − F0) = ±detΛ0(s) = 0. (2.22)
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From Theorem 2.2, we know that all of the imaginary axis eigenvalues of the system
(1.5) are zero points of the algebraic equation

det[(sB0 −A0) ⊗ (sB0 +A0) − (sB1 −A1) ⊗ (sB1 +A1)] = 0. (2.23)

Corollary 2.3. If det(B0 ⊗B0 −B1 ⊗B1)/= 0, then E0 is invertible, and any imaginary axis eigenvalue
of the systems (1.5) is the eigenvalue of F0E

−1
0 .

Proof. By proof of Lemma 2.1, we have

detE0 =
∣
∣
∣
∣
B0 ⊗ I B1 ⊗ I
I ⊗ B1 I ⊗ B0

∣
∣
∣
∣ = det(B0 ⊗ B0 − B1 ⊗ B1). (2.24)

The corollary follows immediately from Theorem 2.2.

Corollary 2.4. Any imaginary axis eigenvalue of the system with single delay

ẋ(t) = A0x(t) +A1x(t − τ) (2.25)

is an eigenvalue of F0 =
(

A0⊗I A1⊗I
−I⊗A1 −I⊗A0

)
.

Proof. It follows immediately from Theorem 2.2.

In fact, the above result contains the system (1.6). For the system (1.6), we also have
the following corollary.

Corollary 2.5 (see Jarlebring and Hochstenbach [2, Theorem 1]). For the system (1.6), the
imaginary axis eigenvalues are the roots of the equation

det[(sI −A0) ⊗ (sI +A0) − (sB1 −A1) ⊗ (sB1 +A1)] = 0. (2.26)

Remark 2.6. In fact, (2.23) or (2.26) is usually called a polynomial eigenvalue problem. The
classical and most widely used approach to research the polynomial eigenvalue problems
is linearization, where the polynomial is converted into a larger matrix pencil with the same
eigenvalues. There are many forms for the linearization: the companion form is most typically
commission. The linearization method is also an important tool to research the characteristic
equations in algebraic methods, see [2, 13].

From the above results, we find that the imaginary axis eigenvalues of the system
(1.5) or (1.6) can be computed via the algebraic equation (2.23) and (2.26). The imaginary
eigenvalues play an important role in the stability. Next, we will use the results to discuss the
stability of the systems. At first, we will give the condition of the delay-independent stability
on the system (1.5). Secondly, we will address the problem of finding the critical delays of the
system (1.6), that is, the delay such that the system (1.6) has purely imaginary eigenvalues.
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3. The Algebraic Criteria of the Asymptotic Stability

The stability of the delay ordinary differential equations has been widely discussed [14, 15].
It is well known that the Lyapunov-Krasovskii functional approach is the important analytic
method to find the delay-independent stability criteria, which do not include any information
on the size of delay. The main ideas for developing algebraic criteria of the stability analysis
on the systems can be found in many works, such as “The Degenerate Differential Systems
with Delay” (W. Jiang, 1998, [12]). The results for singular neutral differential equations are
still very few, especially by algebraic methods.

Next we first research the delay-independent stability of the system (1.5). The
characteristic equation for the system(1.5) is denoted again by

P(s, z) = det[s(B0 + B1z) − (A0 +A1z)], ∀s ∈ C, z = e−sτ . (3.1)

From [12], we known that the solution of the neutral time-delay systems is
asymptotically stable if all roots of (3.1) have negative real part bounded away from 0, that
is, there exists a number δ > 0, such that Re(s) ≤ −δ < 0 for any root s of (3.1). Especially
for the system (1.5), Zhu and Petzold had found that there must exist the δ, if the condition
|uTB0u| ≥ |uTB1u| for all u ∈ R

n holds, see [10]. So from [3, 10], we can get the following
theorem.

Theorem 3.1. Let s be the zeros of (2.23). If the coefficient matrices of the system (1.5) satisfies the
following conditions:

(i) Reλ < 0, λ ∈ σ(B0,−A0),

(ii) maxRe s=0ρ((sB0 −A0)
−1(sB1 −A1)) < 1,

then the system (1.5) is asymptotically stable for all τ ≥ 0, that is, the stability of the systems (1.5) is
delay independent.

Proof. It follows immediately from [10].
In the following, we consider the neutral system (1.6), whose characteristic equation

is denoted by

P(s, z) = det[s(I + B1z) − (A0 +A1z)], ∀s ∈ C, z = e−sτ . (3.2)

It is well known that the spectrum of the neutral delay systems exhibits some discontinuity
properties, that is to say, an infinitesimal change of the delay parameter may cause the
stability of the system to shift. These discontinuity properties are closely related to the
essential spectrum of the system. The critical condition for a stability switch of a neutral delay
system is that the rightmost eigenvalue goes from the left complex half-plane into the right
complex half-plane by passing the imaginary axis. So the appearance of the imaginary axis
eigenvalue is the critical condition. In Section 2, we find all of the imaginary axis eigenvalues.
Let the delay be a parameter. In the following, we will find the critical value of the delay
parameter such that the stability switch occurs. It is known that, if a neutral delay system is
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stable, it is necessary that its neutral part must be stable. For the system (1.6), this requirement
concerns the stability of the difference equation:

x(t) + B1x(t − τ) = 0. (3.3)

The eigenvalues of (3.3) are called the essential spectrum of the system (1.6). We know that
(3.3) is stable if ρ(B1) < 1. It is important to point out that, under this assumption, the
condition Re(s) ≤ −δ < 0 can be improved to Re(s) < 0. Our task is to find the critical
delay where the system (1.6) becomes unstable. So we have the following theorem.

Theorem 3.2. Supposing all of the eigenvalues of matrix A0 have negative real part and ρ(B1) < 1,
one has the following.

(i) If for any root s of (3.2), Re(s) < 0, else if for any root s = iw, w > 0, z = e−sτ , |z| <
1, then system (1.6) is asymptotic stability for any τ ≥ 0, that is, stability is delay
independent.

(ii) Otherwise, for each root s = iw, w > 0, |z| = 1, one can get the minimal critical value
of delay parameter τ∗, such that if τ ∈ [0, τ∗), then system (1.6) is asymptotic stability,
and when τ ≥ τ∗, the stability of system (1.6) changes, that is, the system (1.6) is delay-
dependent stable and generates bifurcation in τ = τ∗.

Example 3.3. Consider a neutral neural networks with a single delay, see [16]:

ẋ1(t) = −x1(t) + af(x1(t − τ)) + bg(x2(t − τ)) + bg(x3(t − τ))
+ a2f2(ẋ1(t − τ)) + b2g2(ẋ2(t − τ)) + b2g2(ẋ3(t − τ)),

ẋ2(t) = −x2(t) + bg(x1(t − τ)) + af(x2(t − τ)) + bg(x3(t − τ))
+ b2g2(ẋ1(t − τ)) + a2f2(ẋ2(t − τ)) + b2g2(ẋ3(t − τ)),

ẋ3(t) = −x3(t) + bg(x2(t − τ)) + af(x3(t − τ))
+ b2g2(ẋ2(t − τ)) + a2f2(ẋ3(t − τ)).

(3.4)

Now we rewrite system (3.4) as the matrix equations:

Ẋ(t) + BẊ(t − τ) = AX(t) + C1f(X(t − τ)) + C2g(X(t − τ)). (3.5)

The linearization of the system (3.4) around the origin is given by

Ẋ(t) + B1Ẋ(t − τ) = A0X(t) +A1X(t − τ), (3.6)

where

A0 =

⎛

⎝
−1 0 0
0 −1 0
0 0 −1

⎞

⎠, A1 =

⎛

⎝
a b b
b a b
0 b a

⎞

⎠, B1 =

⎛

⎝
a2 b2 b2

b2 a2 b2

0 b2 a2

⎞

⎠. (3.7)

Assume that a = −2, b = −1.5, a2 = 0.3, b2 = −0.3, and f(x) = g(x) = tanh(x). We carry out the
numerical simulations for system (3.4). From (2.26), by MATLAB computation, we can get
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Figure 1: For system (3.4), when τ = 0.44 < τ∗, the equilibrium is asymptotically stable.

the imaginary eigenvalue s .= ±0.445i, τ∗ .= 0.45. From Theorem (3.2), we know that the zero
solution of the system (3.4) is delay-dependent stable. The direction of the Hopf bifurcation
at τ = τ∗ is supercritical and the bifurcating periodic solutions are asymptotically stable. The
simulation results are shown in Figures 1 and 2.

4. Conclusion

In this paper, we consider a singular neutral differential system with a single delay. Via
applying the algebraic method, that is, the matrix pencil and the linear operators, we
discussed the eigenvalues and the stability of the time-delay systems (1.5) and (1.6). By using
MATLAB, we could easily compute imaginary eigenvalues from the algebraic equation (2.23)
or (2.26). In fact, we only find the imaginary axis eigenvalues, which are the small part of the
infinite eigenvalues. So compared with the analytic methods and the numerical methods, the
algebraic methods are more simple and more explicit for some time-delay system. Certainly,
applying the algebraic methods to analyze the dynamical properties of the singular neutral
differential systems with delays is a new and immature field. So we believe that the algebraic
methods used to research the stability of the dynamical systems would be more interesting
in the future.
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Figure 2: For system (3.4), when τ = 0.5 > τ∗, the periodic solution bifurcates from the equilibrium.
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Order-preserving and convergent results of delay functional differential equations without
quasimonotone condition are established under type-K exponential ordering. As an application,
the model of delayed Hopfield-type neural networks with a type-K monotone interconnection
matrix is considered, and the attractor result is obtained.

1. Introduction

Since monotone methods have been initiated by Kamke [1] and Müler [2], and developed
further by Krasnoselskii [3, 4], Matano [5], and Smith [6], the theory and application of
monotone dynamics have become increasingly important (see [7–18]).

It is well known that the quasimonotone condition is very important in studying
the asymptotic behaviors of dynamical systems. If this condition is satisfied, the solution
semiflows will admit order-preserving property. There are many interesting results, for
example, [6, 8–12, 14–17] for competitive (cooperative) or type-K competitive (cooperative)
systems and [6, 7, 13] for delayed systems. In particular, for the scalar delay differential
equations of the form

x′(t) = g(x(t), x(t − r)), (1.1)

if the quasimonotone condition (∂g(x, y))/∂y > 0 holds, then (1.1) generates an eventually
strongly monotone semiflow on the space C([−r, 0],R), which is one of sufficient conditions
for obtaining convergent results. In other words, the right hand side of (1.1) must be strictly
increasing in the delayed argument. This is a severe restriction, and so the quasimonotone
conditions are not always satisfied in applications. Recently, many researchers have tried
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to relax the quasimonotone condition by introducing a new cone or partial ordering, for
example, the exponential ordering [6, 18, 19]. In particular, Smith [6] and Wu and Zhao [18]
considered a new cone parameterized by a nonnegative constant, which is applicable to a
single equation. Replacing the previous constant by a quasipositive matrix, the exponential
ordering is generalized to some delay differential systems by Smith [6] and Y. Wang
and Y. Wang [19]. However, the above results are not suitable to the type-K systems
(see [6] for its definition). A typical example is a Hopfield-type neural network model
with a type-K monotone interconnection matrix, which implies that the interaction among
neurons is not only excitatory but also inhibitory. For this purpose, we introduce a type-K
exponential ordering and establish order-preserving and convergent results under the weak
quasimonotone condition (WQM) (see Section 2) and then apply the result to a network
model with a type-K monotone interconnection matrix.

This paper is arranged as follows. In next section, the type-K exponential ordering
parameterized by a type-K monotone matrix is introduced, and convergent result is
established. In Section 3, we apply our results to a delayed Hopfield-type neural network.

2. Type-K Exponential Ordering

In this section, we establish a new cone and introduce some order-preserving and convergent
results.

Let (Xi,X
+
i ), i ∈N = {1, 2, . . . , n}, be ordered Banach spaces with IntX+

i /= ∅. For xi, yi ∈
Xi, we write xi≤Xiyi if yi−xi ∈ X+

i ; xi<Xiyi if yi−xi ∈ X+
i \{0}; xi�Xiyi if yi−xi ∈ IntX+

i . For k ∈
N, we denote I = {1, 2, . . . , κ} and J =N \ I = {κ + 1, . . . , n}. Thus, we can define the product
space X =

∏i=n
i=1Xi which generates two cones X+ =

∏i=n
i=1X

+
i and K =

∏i=κ
i=1X

+
i ×∏i=n

i=κ+1(−X+
i )

with nonempty interiors IntX+ =
∏i=n

i=1 IntX+
i and IntK =

∏i=κ
i=1 IntX+

i ×∏i=n
i=κ+1(−IntX+

i ). The
ordering relation on X+ and K is defined in the following way:

x≤Xy ⇐⇒ xi≤Xiyi, ∀i ∈N,

x<Xy ⇐⇒ x ≤ y, xi<Xiyi, for some i ∈N, that is, x≤Xy, x /=y,
x�Xy ⇐⇒ xi�Xiyi, ∀i ∈N,

x≤Ky ⇐⇒ xi≤Xiyi, ∀i ∈ I, xi≥Xiyi, ∀i ∈ J,
x<Ky ⇐⇒ x≤Ky, xi<Xiyi, for some i ∈ I or xi>Xiyi, for some i ∈ J,

x�Ky ⇐⇒ xi�Xiyi, ∀i ∈ I, xi�Xiyi, ∀i ∈ J.

(2.1)

A semiflow on X is a continuous mapping Φ: X × R+ → X, (x, t) → Φ(x, t), which
satisfies (i) Φ0 = id and (ii) Φt · Φs = Φt+s for t, s ∈ R+. Here, Φt(x) ≡ Φ(x, t) for x ∈ X and
t ≥ 0. The orbit of x is denoted by O(x):

O(x) = {Φt(x) : t ≥ 0}. (2.2)

An equilibrium point is a point x for which Φt(x) = x for all t ≥ 0. Let E be the set of all
equilibrium points for Φ. The omega limit set ω(x) of x is defined in the usual way. A point
x ∈ X is called a quasiconvergent point if ω(x) ⊂ E. The set of all such points is denoted by Q.
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A point x ∈ X is called a convergent point if ω(x) consists of a single point of E. The set of all
convergent points is denoted by C.

The semiflow Φ is said to be type-K monotone provided

Φt(x)�KΦt

(
y
)

whenever x�Ky ∀t ≥ 0. (2.3)

Φ is called type-K strongly order preserving (for short type-K SOP), if it is type-K monotone,
and whenever x<Ky, there exist open subsets U, V of X with x ∈ U, y ∈ V and t0 > 0, such
that

Φt(U)�KΦt(V ) ∀t ≥ t0. (2.4)

The semiflow Φ is said to be strongly type-K monotone on X if Φ is type-K monotone, and
whenever x<Ky and t > 0, then Φt(x)�KΦt(y). We say that Φ is eventually strongly type-
K monotone if it is type-K monotone, and whenever x<Ky, there exists t0 > 0 such that
Φt0(x)�KΦt0(y). Clearly, strongly type-K monotonicity implies eventually strongly type-K
monotonicity.

An n × n matrix M is said to be type-K monotone if it has the following manner:

M =

⎛

⎝
A −B
−C D

⎞

⎠, (2.5)

where A = (aij)k×k satisfies (aij) � 0 if i /= j, similarly for the (n − k) × (n − k) matrix D and
B � 0, C � 0.

In this paper, the following lemma is necessary.

Lemma 2.1. If M is a type-K monotone matrix, then eMt remains type-K monotone with diagonal
entries being strictly positive for all t > 0.

Proof. The product of two type-K monotone matrices remains type-K monotone; the rest is
obvious and we omit it here.

Let r > 0 be fixed and letC := C([−r, 0], X). The ordering relations onC are understood
to hold pointwise. Consider the family of sets parameterized by type-K monotone matrix M
given by

K̃M =
{
φ =
(
φ1, φ2, . . . , φn

) ∈ C : φ(s)≥K0, s ∈ [−r, 0]φ(t)≥KeM(t−s)φ(s), 0 ≥ t ≥ s ≥ −r
}
.

(2.6)

It is easy to see that K̃M is a closed cone in C and generates a partial ordering on C which
is written by ≥M. Assume that φ ∈ C is differentiable on (−r, 0), a similar argument to [18,
lemma 2.1] implies that φ≥M0 if and only if φ(−r)≥K0 and dφ(s)/ds − Mφ(s)≥K0 for all
s ∈ (−r, 0).
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Consider the abstract functional differential equation

x′(t) = f(xt), (2.7)

where f : D → X is continuous and satisfies a local Lipschitz condition on each compact
subset of D and D is an open subset of C. By the standard equation theory, the solution
x(t, φ) of (2.7) can be continued to the maximal interval of existence [0, σφ). Moreover, if
σφ > r, then x(t, φ) is a classical solution of (2.7) for t ∈ (r, σφ). In this section, for simplicity,
we assume that, for each φ ∈ D, (2.7) admits a solution x(t, φ) defined on [0,∞). Therefore,
(2.7) generates a semiflow on C by Φt(φ) ≡ xt(φ), where xt(φ)(s) = x(t + s, φ) for t ≥ 0 and
−r ≤ s ≤ 0.

In the following, we will seek a sufficient condition for the solution of (2.7) to preserve
the ordering ≥M.

(WQM) Whenever φ, ψ ∈ D, ψ≥Mφ, then

f
(
ψ
) − f(φ)≥KM

(
ψ(0) − φ(0)). (2.8)

Theorem 2.2. Suppose that (WQM) holds. If ψ≥Mφ, then xt(ψ)≥Mxt(φ) for all t ≥ 0.

Proof. Let η ∈ IntK. For any ε > 0, define fε(φ) = f(φ) + εη for φ ∈ D, and let xεt (ψ) be a
unique solution of the following equation:

x′(t) = fε(xt), t ≥ 0,

x(s) = ψ(s), −r ≤ s ≤ 0.
(2.9)

Let yε(t) = xε(t, ψ) − x(t, φ) and define

S =
{
t ∈ [0,∞) : yεt ≥M0

}
. (2.10)

Since ψ≥Mφ, S is closed and nonempty. We first prove the following two claims.

Claim 1. If t0 ∈ S, there exists δ0 > 0 such that [t0, t0 + δ0] ⊂ S.
According to the integral expression of (2.9) we have

yε(t) = eM(t−s)yε(s) +
∫ t

s

eM(τ−s)[f
(
xετ
(
ψ
)) − f(xτ

(
φ
)) −M(xε(τ, ψ) − x(τ, φ)) + εη]dτ.

(2.11)

Since t0 ∈ S and (WQM) hold, we have

f
(
xεt
(
ψ
)) − f(xt

(
φ
)) −M(xε(t, ψ) − x(t, φ)) + εη|t=t0≥Kεη�K0. (2.12)

By the characteristic of a cone, there is δ0 > 0 such that

f
(
xεt
(
ψ
)) − f(xt

(
φ
)) −M(xε(t, ψ) − x(t, φ)) + εη≥K0, ∀t ∈ [t0, t0 + δ0]. (2.13)
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By Lemma 2.1, we have

yε(t)≥KeM(t−s)yε(s), ∀t0 ≤ s ≤ t ≤ t0 + δ0, (2.14)

which, together with the definition of K̃M, implies that

xεt
(
ψ
)≥Mxt

(
φ
)
, ∀t ∈ [t0, t0 + δ0]. (2.15)

Claim 2. Let S1 = {t : [0, t] ⊂ S}. Then supS1 = ∞.
If t∗ = supS1 < ∞, then there is a sequence {tn} ⊂ S1 ⊂ S such that tn → t∗ as n → ∞.

From the closeness of S we have t∗ ∈ S. By Claim 1, [t∗, t∗ + δ∗] ⊂ S for some δ∗ > 0, which
contradicts the definition of t∗. Therefore, supS1 = ∞, which implies S = [0,∞).

Since fε → f uniformly on bounded subset of D as ε → 0+, then

lim
ε→ 0+

xεt
(
ψ
)
= xt
(
ψ
)
, ∀t ≥ 0. (2.16)

Letting ε → 0+ in yεt = xεt (ψ) − xt(φ)≥M0, we have xt(ψ) − xt(φ)≥M0, which implies that
xt(ψ)≥Mxt(φ).

By the definition of the semiflow Φt, it is easy to see from (WQM) that Φt is monotone
with respect to ≥M in the sense that Φt(ψ)≥MΦt(φ) whenever ψ≥Mφ for all t ≥ 0.

As we all know the strongly order-preserving property is necessary for obtaining some
convergent results. However, it is easy to check that the cone K̃M has empty interior on C; we
cannot, therefore, expect to show that the semiflow generated by (2.7) is eventually strongly
type-K monotone in C. Let ϕ(·) ∈ IntK and define

Cϕ =
{
φ ∈ C : there exist γ ≥ 0 such that − γϕ≤Mφ≤Mγϕ

}
,

∥∥φ
∥∥
ϕ = inf

{
γ ≥ 0 : −γϕ≤Mφ≤Mγϕ

}
.

(2.17)

It is easy to check that (Cϕ, ‖φ‖ϕ) is a Banach space, KM = Cϕ ∩ K̃M is a cone with nonempty
interior IntKM (see [20]), and i : Cϕ → C is continuous. Using the smoothing property of
the semiflow Φ on C+ and fundamental theory of abstract functional differential equations,
we deduce that for all t > r, ΦtC ⊂ C ∩ Cϕ, Φt : C → C ∩ Cϕ is continuous, and Φt(ψ −
φ) ∈ IntKM for any ψ, φ ∈ C with ψ>Mφ. Thus, from Theorem 2.2, type-K strongly order-
preserving property can be obtained.

Theorem 2.3. Assume that (WQM) holds. If ψ>Mφ, then xt(ψ)�Mxt(φ) in KM for all t ≥ r.

In order to obtain the main result of this paper, which says that the generic solution
converges to equilibrium, the corresponding compactness assumption will be required.

(A1) f maps bounded subset of D to bounded subset of R

n. Moreover, for each compact
subset A of D, there exists a closed and bounded subset B = B(A) of D such that
xt(φ) ∈ B for each φ ∈ A and all large t.
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Theorem 2.4. Assume that (WQM) and (A1) hold. Then the set of convergent points in D contains
an open and dense subset. If E consists of a single point, it attracts all solutions of (2.7). If the initial
value x0≥K0(x0≤K0) and E consists of two points or more, we conclude that all solutions converge to
one of these.

Proof. By Theorem 2.3, the semiflow is eventually strongly monotone in KM. Let ê =
(1̂, . . . , 1̂,−1̂, . . . ,−1̂) ∈ K, where 1̂ denotes a constant mapping defined on C; that is, 1̂(s) = 1
for all s ∈ [−r, 0]. Obviously, ê≥M0̂. For any ψ ∈ D, either the sequence of points ψ + (1/n)ê
or ψ − (1/n)ê is eventually contained in D and approaches ψ as n → ∞, and, hence, each
point of D can be approximated either from above or from below in D with respect to ≥M.
The assumption (A1) implies the compactness; that is,O(x) has compact closure inX for each
x ∈ X (see [6]). Therefore, from [6, Theorem 1.4.3], we deduce that the set of quasiconvergent
points contains an open and dense subset of D. From the proof of [6, Theorem 6.3.1], we
know that the set E is totally ordered by ≥M. Reference [6, Remark 1.4.2] implies that the set
of convergent points contains an open and dense subset of D. The last two assertions can be
obtained from [6, Theorems 2.3.1 and 2.3.2].

Remark 2.5. The above theorem implies that there exists an equilibrium attracting all solutions
with initial values in the cone K. If E consists of a single element, the equilibrium attracts all
solutions with initial values in D.

3. Delayed Hopfield-Type Neural Networks

In this section, we will apply our main result to the following system of delayed differential
equations:

x′
i
(t) = −aixi(t) +

n∑

j=1

aijfj
(
xj
(
t − rj

))
+ Ii, i = 1, 2, . . . , n, (3.1)

where ai > 0 and rj ≥ 0 are constant, i, j = 1, . . . , n. The interconnection matrix (aij)n×n is
type-K monotone with the elements in the diagonal being nonnegative. In this situation,
the interaction among neurons is not only excitatory but also inhibitory. The external input
functions Ii are constants or periodic. The activation functions f = (f1, . . . , fn) : D → R,
where D is an open subset of X = C([−r, 0],Rn) with r = max{rj |j ∈ N}, satisfy (A1) and
following property.

(A2) There exist constants Lj such that |fj(x) − fj(y)| ≤ Lj |x − y| for j = 1, . . . , n.

First, we consider the case that the external input functions Ii are constants.

Theorem 3.1. Equation (3.1) has an equilibrium which attracts all its solutions coming from the
initial value φ≥K0 with φ(0) being bounded.

Proof. From [21, Theorem 1], we deduce that (3.1) admits at least an equilibrium; that is, the
equilibrium points set E is nonempty.
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For φ ∈ X, we define

Fi
(
φ
)
= −aiφi(0) +

n∑

j=1

aijfj
(
φj
(−rj

))
+ Ii. (3.2)

Choosing M = diag{−μ, . . . ,−μ} with μ > 0, and denoting L = max1≤j≤nLj , α = max1≤i,j≤n|aij |
and β = max1≤j≤naj . Since φ(0) is bounded, for ψ, φ ∈ D with ψ≥Mφ, there exist m ≥ 0 and
m ≥ 0 with m ≥ m such that

m ≤ ψj(0) − φj(0) ≤ m, ∀i ∈ I,
−m ≤ ψj(0) − φj(0) ≤ −m, ∀i ∈ J.

(3.3)

From (A2) and the definition of K̃M, if ψ≥Mφ, then

Fi
(
ψ
) − Fi

(
φ
)
+ μ
(
ψi(0) − φi(0)

)

=
(
μ − ai

)(
ψi(0) − φi(0)

)
+

n∑

j=1

aij
(
fj
(
ψj
(−rj

)) − fj
(
φj
(−rj

)))

≥ (μ − ai
)(
ψi(0) − φi(0)

) −
k∑

j=1

aijLj
(
ψj
(−rj

) − φj
(−rj

))

−
n∑

j=k+1

aijLj
(
ψj
(−rj

) − φj
(−rj

))

≥ (μ − ai
)(
ψi(0) − φi(0)

) −
k∑

j=1

aijLje
μrj
(
ψj(0) − φj(0)

)

−
n∑

j=k+1

aijLje
μrj
(
ψj(0) − φj(0)

)

≥
(
μ − βm

m
− nαLeμr m

m

)
m,

(3.4)

for all i ∈ I. By a similar argument we have

Fi
(
ψ
) − Fi

(
φ
)
+ μ
(
ψi(0) − φi(0)

) ≤
(
μ − βm

m
− nαLeμr m

m

)
(−m) (3.5)

for all i ∈ J . Let H = βm/m and let G = nαLm/m, and define g(μ) = μ −H − Geμr . If r = 0,
we have g(μ) ≥ 0 for μ ≥ H + G. If r > 0 and GeHrr < 1/e, we deduce that g(μ) reaches
its positive maximum value at μ = H + (1/r) ln(1/GeHrr) > 0. Thus, there exists a positive
constant μ such that (WQM) holds; the conclusion can be obtained by Remark 2.5.
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For the case of the external input functions Ii being periodic functions, we have follow-
ing result.

Theorem 3.2. For any periodic external input function I(t) = (I1(t), . . . , In(t)), Ii(t + ω) = Ii(t),
i = 1, . . . , n, (3.1) admits a unique periodic solution x∗(t) and all other solutions which come from the
initial value φ≥K0 with φ(0) being bounded converge to it as t → ∞.

Proof. Let x(t) = x(t, φ) be the solution of (3.1) for t ≥ 0 with x(s) = φ(s) for s ∈ [−r, 0]. From
the properties of the solution semiflow we have

x(t +ω) = x
(
t +ω,φ

)
= x
(
t, x
(
ω,φ

))
. (3.6)

From the proof of Theorem 3.1, we know that there exists a type-K monotone matrix such
that (WQM) holds; Theorem 2.4 tells us that every orbit of (3.1) is convergent to a same
equilibrium, denoted by φ∗, and then,

lim
n→∞

x
(
nω, φ

)
= φ∗. (3.7)

We have, therefore,

x
(
ω,φ∗) = x

(
ω, lim

n→∞
x
(
nω, φ

)
)

= lim
n→∞

x
(
ω, x
(
nω, φ

))
= lim

n→∞
x
(
(n + 1)ω,φ

)
= φ∗. (3.8)

From (3.6) and (3.8) we deduce that

x
(
t +ω,φ∗) = x

(
t, x
(
ω,φ∗)) = x

(
t, φ∗). (3.9)

Therefore, x(t, φ∗) =: x∗(t) is a unique periodic solution of (3.1). Using the conclusion of
Theorem 2.4 again, we have

lim
t→∞

x
(
t, φ
)
= lim

t→∞
x
(
t, x
(
t, φ
))

= lim
t→∞

x
(
t, φ∗). (3.10)

Since x∗(t) is a periodic solution, the proof is complete.

Remark 3.3. Neural networks have important applications, such as to content-addressable
memory [22], shortest path problem [23], and sorting problem [24]. Generally, the
monotonicity is always assumed. Here, we relax the monotone condition, and hence neural
networks have more extensive applications.
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We establish a result on existence and uniqueness on mean square almost periodic solutions for a
class of impulsive stochastic differential equations with delays, which extends some earlier works
reported in the literature.

1. Introduction

Impulsive effects widely exist in many evolution processes of real-life phenomena in which
states are changed abruptly at certain moments of time, involving such areas as population
dynamics and automatic control [1–3]. Because delay is ubiquitous in the dynamical system,
impulsive differential equations with delays have received much interesting in recent years,
intensively researched, some important results are obtained [4–9]. And almost periodic
solutions for abstract impulsive differential equations and for impulsive neural networks
with delay have been discussed by G. T. Stamov and I. M. Stamova [10], and Stamov and
Alzabut [11].

However, besides delay and impulsive effects, stochastic effects likewise exist in real
system. A lot of dynamic systems have variable structures subject to stochastic abrupt
changes, which may result from abrupt phenomena such as stochastic failures and repairs of
components, changes in the interconnections of subsystems, sudden environment changes,
and so on [12–14]. Moreover, differential descriptor systems also have abrupt changes
[15, 16]. Recently, a large number of stability criteria of stochastic system with delays have
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been reported [17–19]. Almost periodic solutions to some functional integro-differential
stochastic evolution equations and to some stochastic differential equations have been
studied by Bezandry and Diagana [20], and Bezandry [21]. Huang and Yang investigated
almost periodic solution for stochastic cellular neural networks with delays [22]. Because
it is not easy to deal with the case of coexistence of impulsive, delay and stochastic effects
in a dynamical system, there are few results about this problems [23–25]. To the best of our
knowledge, there exists no result on the existence and uniqueness of mean square almost
periodic solutions for impulsive stochastic differential equations with delays.

Motivated by the above discussions, the main aim of this paper is to study the mean
square almost periodic solutions for impulsive stochastic differential equations with delays.
By employing stochastic analysis, delay differential inequality technique and fixed points
theorem, we obtain some criteria to ensure the existence and uniqueness of mean square
almost periodic solutions.

The rest of this paper is organized as follows: in Section 2, we introduce a class of
impulsive stochastic differential equations with delays, and the relating notations, definitions
and lemmas which would be used later; in Section 3, a new sufficient condition is proposed
to ensure the existence and uniqueness of mean square almost periodic solutions; in Section
4, an example is constructed to show the effectiveness of our results. Finally, a conclusion is
given in Section 5.

2. Preliminaries

Let R = (−∞,+∞), N = {1, 2, 3, . . .}, and B = {{tk} : t0 = 0 < t1 < t2 < · · · < tk < tk+1 <
· · · , limk→+∞tk = +∞} be the set of all sequence unbounded and strictly increasing. For x ∈ R

n

andA ∈ R

n×n, let ‖x‖ be any vector norm, and denote the induced matrix norm and the matrix
measure, respectively, by

‖A‖ = sup
x /= 0

‖Ax‖
‖x‖ , μ(A) = lim

h→ 0+

‖I + hA‖ − 1
h

. (2.1)

The norm and measure of vector and matrix are ‖x‖ = maxi|xi|, ‖A‖ = maxi
∑n

j=1 |aij |, μ(A) =
maxi{aii +

∑n
j /= i |aij |}.

Consider the following a class of Itô impulsive stochastic differential equations with
delay

dx(t) =
[
Ax(t) + Bf(t, x(t)) + Cg(t, x(t − h)) + I(t)]dt + σ(t, x(t))dω(t), t ≥ 0, t /= tk,

Δx(t) = x(tk) − x
(
t−k
)
= Dkx

(
t−k
)
+ Vk

(
x
(
t−k
))

+ βk, t = tk, k ∈ N,

x(t) = φ(t), −h ≤ t ≤ 0,
(2.2)

where x(t) = (x1(t), . . . , xn(t))
T is the solution process, A,B,C,Dk ∈ R

n×n are constant matri-
ces, f(t, x) = (f1(t, x), . . . , fn(t, x))

T , g(t, x) = (g1(t, x), . . . , gn(t, x))
T , I(t) = (I1(t), . . . , In(t))

T ,
σ(t, x) = (σij(t, x))n×n is the diffusion coefficient matrix, Vk(x) = (V1k(x), . . . , Vnk(x))

T is
impulsive function, h > 0 is delay; tk ∈ B is impulsive time, βk = (β1k, . . . , βnk)

T is a constant
vector, ω(t) = (ω1(t), . . . , ωn(t))

T is an n-dimensional Brown motion defined on a complete
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probability space (Ω,F,P) with a natural filtration {Ft}t≥0 generated by ω(t), and denote
by F the associated σ-algebra generated by ω(t) with the probability measure P. Moreover,

the initial conditions φ(t) = (φ1(t), . . . , φn(t))
T ∈ PCBbF0

([−h, 0],Rn) Δ= PCBbF0
. Denote by

PCBbF0
the family of all bounded F0-measurable, PC([−h, 0],Rn)-valued random variable ζ,

satisfying E‖ζ‖2 = E(sup−h≤θ≤0‖ζ(θ)‖2) < +∞, where PC([−h, 0],Rn) = {ζ : [−h, 0] → R

n is
continuous}. E denotes the expectation of stochastic process.

Let (H, ‖ · ‖) be a Hilbert space and (Ω,F,P) be a complete probability space. Define
L2(P,H) to be the space of all H-value random variable Y such that

E‖Y‖2 =
∫

Ω
‖Y‖2dP <∞. (2.3)

It is then routine to check that L2(P,H) is a Hilbert space when it is equipped with its
natural norm ‖ · ‖2 defined by

‖Y‖2 =
(∫

Ω
‖Y‖2dP

)1/2

<∞, (2.4)

for each Y ∈ L2(P,H).

Definition 2.1 (see [25]). For any φ ∈ PCBbF0
, a function x(t) : [−h,+∞) → L2(P,H) is said

to be solution of system (2.2) on [−h,+∞) satisfying initial value condition, if the following
conditions hold:

(i) x(t) is absolutely continuous on each interval (tk, tk+1) ∈ [0,+∞), k ∈ N;

(ii) for any tk ∈ [0,+∞), k ∈ N, x(t+
k
) and x(t−

k
) exist and x(t+

k
) = x(tk);

(iii) x(t) satisfies (2.2) for almost everywhere in [−h,+∞) and at impulsive points t = tk
situated in [0,+∞), k ∈ N, may have discontinuity points of the first kind.

Obviously, the solution defined by definition 1 is piecewise continuous.

Definition 2.2 (see [26]). The set of sequences {tjk}, tjk = tk+j − tk, k ∈ N, j ∈ N, {tk} ∈ B is said
to be uniformly almost periodic if for any ε > 0, there exists relatively dense set of ε-almost
periods common for any sequences.

Definition 2.3. A piecewise continuous function x(t) : [−h,+∞) → L2(P,H) with discontinu-
ity points of first kind at t = tk is said to be mean square almost periodic, if

(i) the set of sequence {tjk} is uniformly almost periodic;

(ii) for any ε > 0, there exists δ > 0, such that if the points t′ and t′′ belong to one and
the same interval of continuity of x(t) and satisfy the inequality |t′ − t′′| < δ, then
E‖x(t′) − x(t′′)‖2 < ε;

(iii) for any ε > 0, there exists a relatively dense set T such that if τ ∈ T , then E‖x(t +
τ) − x(t)‖2 < ε for all t ∈ [−h,+∞) satisfying the condition |t − tk| > ε, k ∈ N.

The collection of all functions x(t) : [−h,+∞) → L2(P,H) with discontinuity
points of the first kind at t = tk which are mean square almost periodic is denoted by
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AP ([−h,+∞);L2(P,H)), one can check that AP([−h,+∞);L2(P,H)) is a Banach space when
it is equipped with the norm:

‖x‖∞ = sup
t∈R

(
E‖x(t)‖2

)1/2
. (2.5)

Let (B1, ‖ · ‖1) and (B2, ‖ · ‖2) be Banach space and L2(P, B1) and L2(P, B2) be their
corresponding L2-space, respectively.

Lemma 2.4 (see [20]). Let f : R × L2(P, B1) → L2(P, B2), (t, x) 	→ f(t, x) be mean square almost
periodic in t ∈ R uniformly in x ∈ K, where K ⊂ L2(P, B1) is compact. Suppose that there exists
Lf > 0 such that

E
∥
∥f(t, x) − f(t, y)∥∥2

2 ≤ LfE
∥
∥x − y∥∥2

1 (2.6)

for all x, y ∈ L2(P, B1) and for each t ∈ R. Then for any mean square almost periodic function
ψ(t) : R → L2(P, B1), f(t, ψ(t)) is mean square almost periodic.

In this paper, we always assume that:

(A1) det(I +Dk)/= 0 and the sequence {Dk}, k ∈ N, is almost periodic, where I ∈ Rn×n is
the identity matrix;

(A2) the set of {tj
k
} is uniformly almost periodic and θ = infk{t1k} > 0.

Recall [2], consider the following linear system of system(2.2)

ẋ(t) = Ax(t), t /= tk,

Δx(tk) = Dkx
(
t−k
)
, k ∈ N,

(2.7)

that if Uk(t, s) is the Cauchy matrix for the system

ẋ(t) = Ax(t), tk−1 ≤ t < tk, (2.8)

then the Cauchy matrix for the system (2.7) is in the form

W(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Uk(t, s), tk−1 ≤ s ≤ t < tk,
Uk+1(t, tk)(I +Dk)Uk(tk, s), tk−1 ≤ s < tk ≤ t < tk+1,

Uk+1(t, tk)
i+1∏

j=k

(I +Dk)Uj

(
tj , tj+1

)
(I +Di)Ui(ti, s), ti−1 ≤ s < ti < tk ≤ t < tk+1.

(2.9)

As the special case of Lemma 1 in [10], we have the following lemma.
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Lemma 2.5. Assume that (A1), (A2) and the following condition hold. For the Cauchy matrixW(t, s)
of system (2.7), there exist positive constantsM and λ such that

‖W(t, s)‖ ≤Me−λ(t−s), t ≥ s, t, s ∈ R. (2.10)

Then for any ε > 0, t ≥ s, t, s ∈ R, |t − tk| > ε, |s − tk| > ε, k ∈ N, there must be exist a relatively
dense set T of ε-almost periodic of the matrix A and a positive constant Γ such that for τ ∈ T , it
follows:

‖W(t + τ, s + τ) −W(t, s)‖ ≤ εΓe(−λ/2)(t−s). (2.11)

Lemma 2.6 (see [6]). LetW(t, s) be the Cauchy matrix of the linear system (2.7). Given a constant
η ≥ ‖I +Dk‖ for all k ∈ N, if η ≥ 1 and θ = infk{t1k} > 0, then

‖W(t, s)‖ ≤ ηe(μ(A)+(lnη/θ))(t−s), t ≥ s. (2.12)

Introduce the following conditions:

(A3) The functions f, g : R × L2(P,H) → L2(P,H) are mean square almost periodic in
t ∈ R uniformly in x ∈ Θ, where Θ ⊂ L2(P,H) is compact, and f(0, 0) = g(0, 0) = 0.
Moreover, there exist Lf , Lg > 0 such that

E
∥∥f(t, x) − f(t, y)∥∥2 ≤ LfE

∥∥x − y∥∥2
,

E
∥∥g(t, x) − g(t, y)∥∥2 ≤ LgE

∥∥x − y∥∥2
,

(2.13)

for all stochastic processes x, y ∈ L2(P,H) and t ∈ R.

(A4) The function σ : R × L2(P,H) → L2(P,H) is mean square almost periodic in t ∈ R

uniformly in x ∈ Θ′, where Θ′ ⊂ L2(P,H) is compact, and σ(0, 0) = 0. Moreover,
there exists Lσ > 0 such that

E
∥∥σ(t, x) − σ(t, y)∥∥2 ≤ LσE

∥∥x − y∥∥2
, (2.14)

for all stochastic processes x, y ∈ L2(P,H) and t ∈ R.

(A5) The function Ii(t) : R → R is almost periodic in the sense of Bohr, {βk}k∈N
is almost

periodic sequence and there exists a constant γ0 > 0, such that

max
{

max
k

∣∣βk
∣∣, sup

t

‖I(t)‖
}

≤ γ0. (2.15)
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(A6) The sequence of functions Vk(x) : L2(P,H) → L2(P,H) is mean square almost
periodic uniformly with respect to x ∈ Θ′′, where Θ′′ ⊂ L2(P,H) is compact.
Moreover, there exists LV > 0 such that

E
∥
∥Vk(x) − Vk

(
y
)∥∥2 ≤ LVE

∥
∥x − y∥∥2 (2.16)

for all stochastic processes x, y ∈ L2(P,H).

Lemma 2.7 (see [26]). If conditions (A1)–(A6) are satisfied, then for each ε > 0, there exists ε1, 0 <
ε1 < ε and relatively dense sets T of real numbers and Q of integral numbers, such that

(i) E‖f(t+τ, y)−f(t, y)‖2 < ε, E‖g(t+τ, y)−g(t, y)‖2 < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k ∈
N, y ∈ L2(P,H);

(ii) E‖σ(t + τ, y) − σ(t, y)‖2 < ε, t ∈ R, τ ∈ T, |t − tk| > ε, k ∈ N, y ∈ L2(P,H);

(iii) ‖I(t + τ) − I(t)‖2 < ε, t ∈ R, τ ∈ T, |t − tk| > ε;
(iv) E‖Vk+q(y) − Vk(y)‖2 < ε, q ∈ Q, k ∈ N;

(v) ‖βk+q − βk‖2 < ε, q ∈ Q, k ∈ N;

(vi) ‖tk+q − τ‖2 < ε1, q ∈ Q, τ ∈ T, k ∈ N.

Lemma 2.8 (see [26]). Let condition (A2) holds. Then for each p > 0, there exists a positive integer
N such that on each interval of length p, there are no more thanN elements of the sequence {tk}, that
is,

i(s, t) ≤N(t − s) +N, (2.17)

where i(s, t) is the number of points tk in the interval (s, t).

3. Main Results

Theorem 3.1. Assume that (A1)–(A6) hold, then there exists a unique mean square almost periodic
solution of system (2.2) if the following conditions are satisfied: There exists a constant η ≥ 1, such
that ‖I +Dk‖ ≤ η, k ∈ N and

μ(A) +
lnη
θ

Δ= −λ < 0. (3.1)

Furthermore,

ρ = 6η2

[
2
λ2

(
‖B‖2L2

f + ‖C‖2L2
g

)
+

N2

(1 − e−λ)2
L2
V +

L2
σ

2λ

]

< 1. (3.2)

Proof. Let D = {ϕ(t) ∈ L2(P,H) : ϕ(t) = (ϕ1(t), . . . , ϕn(t))
T} ⊂ AP([−h,+∞);L2(P,H)) satisfy-

ing the equality E‖ϕ‖2 < K, where K = 2η2γ2
0 ((1/λ) + (N/(1 − e−λ)))2

> 0.
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Set

x(t) =W(t, 0)φ0 +
∫ t

0
W(t, s)

[
Bf(s, x(s)) + Cg(s, x(s − h)) + I(s)]ds

+
∑

0≤tk<t
W(t, tk)

[
Vk(x(tk)) + βk

]
+
∫ t

0
W(t, s)σ(s, x(s))dω(s), t ≥ 0.

(3.3)

where φ0 = x(0), it is easy to see that x(t) given by (3.3) is the solution of system (2.2)
according to [2] and Lemma 2.2 in [27].

By Lemma 2.6 and the conditions of Theorem, we have

‖W(t, s)‖ ≤ ηe−λ(t−s), t ≥ s, t, s ∈ R. (3.4)

For z(t) ∈ D, we define the operator L in the following way

(Lz)(t) =
∫ t

0
W(t, s)

[
Bf(s, z(s)) + Cg(s, z(s − h)) + I(s)]ds

+
∑

0≤tk<t
W(t, tk)

[
Vk(z(tk)) + βk

]
+
∫ t

0
W(t, s)σ(s, z(s))dω(s).

(3.5)

Define subset D∗ ⊂ D, D∗ = {z ∈ D : E‖z − z0‖2 ≤ ρK/(1 − ρ)}, and z0 =
∫ t

0 W(t, s)
I(s)ds +

∑
0≤tk<t W(t, tk)βk.

We have

E‖z0‖2 ≤ 2E

∥∥∥∥∥

∫ t

0
W(t, s)I(s)ds

∥∥∥∥∥

2

+ 2E

∥∥∥∥∥

∑

0≤tk<t
W(t, tk)βk

∥∥∥∥∥

2

≤ 2

[∫ t

0
ηe−λ(t−s)sup

s
‖I(s)‖ds

]2

+ 2

[
∑

0≤tk<t
ηe−λ(t−tk)max

k

∣∣βk
∣∣
]2

≤ 2η2γ2
0

(
1
λ
+

N

1 − e−λ
)2

= K.

(3.6)

Then for ∀z ∈ D∗, from the definition of D∗ and (3.6), since (a + b)2 ≤ 2a2 + 2b2, we have

E‖z‖2 = E‖(z − z0) + z0‖2 ≤ 2E
(
‖z − z0‖2 + ‖z0‖2

)

≤ 2

(
ρK

1 − ρ +K

)

=
2K

1 − ρ .
(3.7)
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For ∀z ∈ D∗, we have

‖Lz − z0‖ =

∥
∥
∥
∥
∥

∫ t

0
W(t, s)

[
Bf(s, z(s)) + Cg(s, z(s − h))]ds

+
∑

0≤tk<t
W(t, tk)Vk(z(tk)) +

∫ t

0
W(t, s)σ(s, z(s))dω(s)

∥
∥
∥
∥
∥
.

(3.8)

Since (a + b + c)2 ≤ 3a2 + 3b2 + 3c2, it follows

E‖Lz − z0‖2 ≤ 3E

(∫ t

0
‖W(t, s)‖∥∥Bf(s, z(s)) + Cg(s, z(s − h))∥∥ds

)2

+ 3E

(∥∥∥∥∥

∑

0≤tk<t
W(t, tk)Vk(z(tk))

∥∥∥∥∥

)2

+ 3E

(∫ t

0
‖W(t, s)σ(s, z(s))dω(s)‖

)2

.

(3.9)

For first term of the right-hand side, using (3.7), (A3) and Cauchy-Schwarz inequality, we
have

E

(∫ t

0
‖W(t, s)‖∥∥Bf(s, z(s)) + Cg(s, z(s − h))∥∥ds

)2

≤ η2

(∫ t

0
e−λ(t−s)ds

)

·
(∫ t

0
e−λ(t−s) · E∥∥Bf(s, z(s)) + Cg(s, z(s − h))∥∥2

ds

)

≤ η2

(∫ t

0
e−λ(t−s)ds

)

·
[∫ t

0
e−λ(t−s) ·

(
2‖B‖2L2

fE‖z(s)‖2 + 2‖C‖2L2
gE‖z(s − h)‖2

)
ds

]

≤ η2 · 2K
1 − ρ

[
2
λ2

(
‖B‖2L2

f + ‖C‖2L2
g

)]
.

(3.10)

As to the second term, using (3.7), (A6) and Cauchy-Schwarz inequality, we can write

E

(∥∥∥∥∥

∑

0≤tk<t
W(t, tk)Vk(z(tk))

∥∥∥∥∥

)2

≤ η2

(
∑

0≤tk<t
e−λ(t−tk)

)

·
(
∑

0≤tk<t
e−λ(t−tk)E‖Vk(z(tk))‖2

)

≤ η2

(
∑

0≤tk<t
e−λ(t−tk)

)

·
(
∑

0≤tk<t
e−λ(t−tk)L2

VE‖z(tk)‖2

)

≤ η2 · 2K
1 − ρ

[

L2
V · N2

(1 − e−λ)2

]

.

(3.11)
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As far as last term is concerned, using (3.7), (A4), and the Itô isometry theorem, we obtain

E

(∫ t

0
‖W(t, s)σ(s, z(s))dω(s)‖

)2

≤
∫ t

0
‖W(t, s)‖2E‖σ(s, z(s))‖2ds

≤ η2
∫ t

0
e−2λ(t−s)L2

σE‖z(s)‖2ds ≤ η2 · 2K
1 − ρ · L

2
σ

2λ
.

(3.12)

Thus, by combining (3.9)–(3.12), it follows that

E‖Lz − z0‖2 ≤ 3η2 · 2K
1 − ρ

[
2
λ2

(
‖B‖2L2

f + ‖C‖2L2
g

)
+

N2

(1 − e−λ)2
L2
V +

L2
σ

2λ

]

=
ρK

1 − ρ . (3.13)

By Lemmas 2.5 and 2.6, one can obtain

‖W(t + τ, s + τ) −W(t, s)‖ ≤ εΓe−(λ/2)(t−s). (3.14)

Let τ ∈ T, q ∈ Q, where the sets T and Q are determined in Lemma 2.7, and we assume that
0 < ε < 1, then

‖Lz(t + τ) − Lz(t)‖

=

∥∥∥∥∥

∫ t

0
[W(t + τ, s + τ) −W(t, s)]

[
Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)]ds

+
∫ t

0
W(t, s)

{[
Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)]

−[Bf(s, z(s)) + Cg(s, z(s − h)) + I(s)]ds}

+
∑

0≤tk<t

[
W
(
t + τ, tk+q

) −W(t, tk)
][
Vk+q

(
z
(
tk+q

))
+ βk+q

]

+
∑

0≤tk<t
W(t, tk)

[
Vk+q

(
z
(
tk+q

)) − Vk(z(tk)) + βk+q − βk
]

+
∫ t

0
[W(t + τ, s + τ) −W(t, s)][σ(s + τ, z(s + τ))]dω(s)

+
∫ t

0
W(t, s)[σ(s + τ, z(s + τ)) − σ(s, z(s))]dω(s)

∥∥∥∥∥
.

(3.15)
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Therefore, we have

E‖Lz(t + τ) − Lz(t)‖2

≤3E

∥
∥
∥
∥
∥

∫ t

0
[W(t + τ, s + τ)−W(t, s)]

[
Bf(s+τ, z(s + τ))+Cg(s + τ, z(s+τ−h)) + I(s + τ)]ds

+
∫ t

0
W(t, s)

{[
Bf(s + τ, z(s + τ))+Cg(s + τ, z(s + τ − h))+I(s + τ)]

−[Bf(s, z(s)) + Cg(s, z(s + −h)) + I(s)]ds}
∥
∥
∥
∥
∥

2

+ 3E

∥
∥
∥
∥
∥

∑

0≤tk<t

[
W
(
t + τ, tk+q

) −W(t, tk)
][
Vk+q

(
z
(
tk+q

))
+ βk+q

]

+
∑

0≤tk<t
W(t, tk)

[
Vk+q

(
z
(
tk+q

)) − Vk(z(tk)) + βk+q − βk
]
∥
∥
∥∥∥

2

+ 3E

∥∥∥∥∥

∫ t

0
[W(t + τ, s + τ) −W(t, s)][σ(s + τ, z(s + τ))]dω(s)

+
∫ t

0
W(t, s)[σ(s + τ, z(s + τ)) − σ(s, z(s))]dω(s)

∥∥∥∥∥

2

.

(3.16)

We first evaluate the first term of the right hand side

E

∥∥∥∥∥

∫ t

0
[W(t + τ, s + τ) −W(t, s)]

[
Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)]ds

+
∫ t

0
W(t, s)

{[
Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)]

−[Bf(s, z(s)) + Cg(s, z(s + −h)) + I(s)]ds}
∥∥∥∥∥

2

≤ 2E

[∫ t

0
‖W(t + τ, s + τ) −W(t, s)‖

× ∥∥Bf(s + τ, z(s + τ)) + Cg(s + τ, z(s + τ − h)) + I(s + τ)∥∥
]2

ds

+ 2E

[∫ t

0
‖W(t, s)‖∥∥B(f(s + τ, z(s + τ)) − f(s, z(s)))

+ C
(
g(s + τ, z(s + τ − h)) − g(s, z(s − h)))(I(s + τ) − I(s))

]∥∥∥∥∥

2

ds

≤ c1ε,

(3.17)

where c1 = (96η2/λ2)[‖B‖2L2
f
· ((K/(1 − ρ)) + 1) + ‖C‖2L2

g · ((K/(1 − ρ)) + 1) + γ2
0 + 1].
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For the second term, we can estimate that

E

∥
∥
∥
∥
∥

∑

0≤tk<t

[
W
(
t + τ, tk+q

) −W(t, tk)
][
Vk+q

(
z
(
tk+q

))
+ βk+q

]

+
∑

0≤tk<t
W(t, tk)

[
Vk+q

(
z
(
tk+q

)) − Vk(z(tk)) + βk+q − βk
]
∥
∥
∥
∥
∥

2

≤ 2E

∥
∥
∥
∥
∥

∑

0≤tk<t

[
W(t + τ, tk+q) −W(t, tk)

][
Vk+q(z(tk+q)) + βk+q

]
∥
∥
∥
∥
∥

2

+ 2E

∥
∥
∥
∥
∥

∑

0≤tk<t
W(t, tk)[Vk+q(z(tk+q)) − Vk(z(tk)) + βk+q − βk]

∥
∥
∥
∥
∥

2

≤ c2ε,

(3.18)

where c2 = (8η2N2/(1 − e−λ))[L2
V · ((K/(1 − ρ)) + 1) + γ2

0 + 1].
For the last term, using (A4) and Itô isometry identity, we have

E

∥∥∥∥∥

∫ t

0
[W(t + τ, s + τ) −W(t, s)][σ(s + τ, z(s + τ))]dω(s)

+
∫ t

0
W(t, s)[σ(s + τ, z(s + τ)) − σ(s, z(s)]dω(s)

∥∥∥∥∥

2

≤ 2E

∥∥∥∥∥

∫ t

0
[W(t + τ, s + τ) −W(t, s), σ(s + τ, z(s + τ))]dω(s)

∥∥∥∥∥

2

+ 2E

∥∥∥∥∥

∫ t

0
W(t, s)[σ(s + τ, z(s + τ)) − σ(s, z(s))]dω(s)

∥∥∥∥∥

2

≤ 2E
∫ t

0
‖W(t + τ, s + τ) −W(t, s)‖2‖σ(s + τ, z(s + τ))‖2ds

+ 2E
∫ t

0
‖W(t, s)‖2‖σ(s + τ, z(s + τ)) − σ(s, z(s))‖2ds

≤ c3ε,

(3.19)

where c3 = (2/λ)[Γ2L2
σ(K/(1 − ρ)) + 1].

Combining (3.17), (3.18) and (3.19), it follows that

E‖Lz(t + τ) − Lz(t)‖2 ≤ c0ε, (3.20)

where c0 = 3(c1 + c2 + c3).
So, Lz ∈ D∗, that is L is self-mapping from D∗ to D∗ by (3.13) and (3.20).
Secondly, we will show L is contracting operator in D∗.
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For ∀x, y ∈ D∗,

∥
∥Lx − Ly∥∥ =

∥
∥
∥
∥
∥

∫ t

0
W(t, s)B

[
f(s, x(s)) − f(s, y(s))]

+ C
[
g(s, x(s − h)) − g(s, y(s − h))]ds

+
∑

0≤tk<t
W(t, tk)

[
Vk(x(tk)) − Vk

(
y(tk)

)]

+
∫ t

0
W(t, s)

[
σ(s, x(s)) − σ(s, y(s))]dω(s)

∥
∥
∥
∥
∥
.

(3.21)

By a minor modification of the proof of (3.13), we can obtain

E
∥∥Lx − Ly∥∥2

≤ 6η2

[
2
λ2

(
‖B‖2L2

f + ‖C‖2L2
g

)
+

N2

(1 − e−λ)2
L2
V +

L2
σ

2λ

]

sup
t

E
∥∥x(t) − y(t)∥∥2

= ρ
∥∥x − y∥∥2

∞,

(3.22)

and therefore, ‖Lx−Ly‖∞ ≤ ρ‖x−y‖∞, it follows that L is contracting operator in D∗, so there
exists a unique mean square almost periodic solution of (2.2) by the fixed points theorem.

4. Example

Consider the following impulsive stochastic differential equation with delay

dxi(t) =

⎡

⎣aixi(t) +
2∑

j=1

bijfj
(
xj(t)

)
+

2∑

j=1

cijgj
(
xj(t − 0.1)

)
+ Ii(t)

⎤

⎦dt

+ 0.5xi(t)dωi(t), t ≥ 0, t /= tk,

Δx(t) = x(tk) − x
(
t−k
)
= Dkx

(
t−k
)
+ Vk

(
x
(
t−k
))

+ βk, t = tk, k ∈ N,

x(t) = φ(t), −h ≤ t ≤ 0,

(4.1)

where tk = k, k ∈ N, f(x(t)) = [sin x1(t), sin x2(t)]
T , g(x(t−0.1)) = [cos x1(t−0.1), cos x2(t−

0.1)]T , Vik = [0.01 sin x1(t), 0.01 cos x2(t)]
T , βk = 0.1, I(t) = [0.1, 0.1]T , γ0 = 0.1, for

convenience, we can choose

A =
[−2 0

0 −3

]
, B =

[−0.1 0
0 −0.1

]
, C =

[
0.2 0
0 −0.2

]
, Dk =

[−0.5 0
0 −0.5

]
. (4.2)

Then μ(A) = −2, ‖I + Dk‖ = 1/2, ‖B‖ = 0.1, ‖C‖ = 0.2, Lf = Lg = 1, LV = 0.01, Lσ = 0.5.
Choose θ = infk{t1k} = 0.01, η = 1,N = 6. By simple calculation, we have λ = −(μ(A) +
(lnη/θ)) = 2, ρ .= 0.8139 < 1, K .= 1.107, (ρK/(1 − ρ)) .= 4.841.
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Let D∗ = {z ∈ D : E‖z − z0‖2 ≤ 4.841}, so, by Theorem 3.1, system (4.1) has a unique
mean square almost periodic solution in D∗.

Remark 4.1. Since there exist no results for almost periodic solutions for impulsive stochastic
differential equations with delays, one can easily see that all the results in [10, 11, 20–22, 28]
and the references therein cannot be applicable to system (4.1). This implies that the results
of this paper are essentially new.

5. Conclusion

In this paper, a class of Itô impulsive stochastic differential equations with delays has been
investigated. We conquer the difficulty of coexistence of impulsive, delay and stochastic
factors in a dynamic system, and give a result for the existence and uniqueness of mean
square almost periodic solutions. The results in this paper extend some earlier works reported
in the literature. Moreover, our results have important applications in almost periodic
oscillatory stochastic delayed neural networks with impulsive control.
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We investigate the stochastic dynamics of bank liquidity parameters such as liquid assets and nett
cash outflow in relation to the global financial crisis. These parameters enable us to determine the
liquidity coverage ratio that is one of the metrics used in ratio analysis to measure bank liquidity. In
this regard, numerical results show that bank behavior related to liquidity was highly procyclical
during the financial crisis. We also consider a theoretical-quantitative approach to bank liquidity
provisioning. In this case, we provide an explicit expression for the aggregate liquidity risk when
a locally risk-minimizing strategy is utilized.

1. Introduction

During the global financial crisis (GFC), banks were under severe pressure to maintain
adequate liquidity. In general, empirical evidence shows that banks with sufficient liquidity
can meet their payment obligations while banks with low liquidity cannot. The GFC
highlighted the fact that liquidity risk can proliferate quickly with funding sources
dissipating and concerns about asset valuation and capital adequacy realizing. This situation
underscores the important relationship between funding risk (involving raising funds to
bankroll asset holdings) and market liquidity (involving the efficient conversion of assets
into liquid funds at a given price). In response to this, the Basel Committee on Banking
Supervision (BCBS) is attempting to develop an international framework for liquidity risk
measurement, standards, and monitoring (see, e.g., [1]). Although pre-Basel III regulation
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establishes procedures for assessing credit, market, and operational risk, it does not provide
effective protocols for managing liquidity and systemic risks. The drafting of Basel III
represents an effort to address the latter (see, e.g., [2–4]).

Current liquidity risk management procedures can be classified as micro- or
macroprudential. In the case of the former, simple liquidity ratios such as credit-to-deposit
ratios (nett stable funding ratios), liquidity coverage ratios and the assessment of the gap
between short-term liabilities and assets are appropriate to cover the objectives of bank
balance sheet analysis. The ratio approach for liquidity risk management is a quantitative
international accepted standard for alerting banks about any possible adverse economic
downturns. For instance, the credit-to-deposit ratio assesses the relationships between
sources and uses of funds held in the bank’s portfolio but has limitations which ultimately
do not reflect information on market financing with short-term maturity. By contrast, the
liquidity coverage ratio (LCR) performs better by ensuring the coverage of some of the
immediate liabilities. Since the LCR depends only on bank balance sheet data, it does not
take into account the residual maturities on various uses and sources of funds. Also, in
a global context, a quantitative approach may not take financial market conditions into
account. In this case, a more comprehensive characterization of the bank system’s liquidity
risk through designed stress testing and constructed contingency plans is considered. The
Basel Committee on Banking Supervision suggested best practices related to international
liquidity standards. In this case, a well-designed policy monitoring instrument to measure
and regulate the dynamics of foreign currency is considered to best take financial market
conditions into account. Also, central banks (CBs) have a pivotal role to play in managing
liquidity inflows via macroeconomic management of exchange rate and interest rate
responses. The modeling of capital markets as well as stock and bond behavior also contribute
to the liquidity response for possible stress conditions observed. The above approaches
for liquidity analysis take into account the macroprudential liquidity management of
banks.

In this paper, in Section 2, we discuss balance sheet items related to liquid assets
and nett cash outflow in order to build a stochastic LCR model. Before the GFC, banks
were prosperous with high LCRs, high cash inflows, low interest rates, and low nett cash
outflows. This was followed by the collapse of liquidity, exploding default rates, and the
effects thereof during the GFC. Next, in Section 3, we apply a dynamic provisioning strategy
to liquidity risk management. In this case, we address the problem of dynamic liquidity
provisioning for a mortgage, Λ, which is an underlying (illiquid) nonmarketable asset, by
substituting (liquid) marketable securities, S. In the light of the above, banks prefer to trade
in a Treasury bond market because of liquidity reasons. Since the loan process (Λt)0≤t≤T is
not completely correlated with the substitute, it creates the market incompleteness. In other
words, we will employ non-self-financing strategy to replicate the trading process. Therefore
the banks would require that the uncertainty involved over the remaining of the trading
period be minimized. In this case, we specifically minimize at each date, the uncertainty
over the next infinitesimal period. In the dynamics trading there is always a residual risk
emanating from the imperfection of the correlation between the Brownian motions. Due to
the no-arbitrage opportunities there are infinitely many equivalent martingale measures so
that pricing is directly linked to risk. Therefore, we choose a pricing candidate (equivalent
martingale measure) under which the discounted stock price follows a martingale. This
equivalent measure is chosen according to a provisioning strategy which ensures that the
value of Λ is the value of the replicating portfolio. We also provide a framework for assessing
residual aggregate liquidity risk stemming from the application of the above strategy.
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1.1. Literature Review

The documents formulated in response to the proposed Basel III regulatory framework
are among the most topical literature on bank liquidity (see, e.g., [1]). During the GFC,
unprecedented levels of liquidity support were required from CBs in order to sustain the
financial system and even with such extensive support a number of banks failed, were forced
into mergers, or required resolution. The crisis illustrated how quickly and severely liquidity
risks can crystallize and certain sources of funding can evaporate, compounding concerns
related to the valuation of assets and capital adequacy (see, e.g., [2–4]). A key characteristic
of the GFC was the inaccurate and ineffective management of liquidity risk. In recognition of
the need for banks to improve their liquidity risk management and control their exposures to
such risk, the BCBS issued Principles for Sound Liquidity Risk Management and Supervision
in September 2008 (see, e.g., [1]). Supervisors are expected to assess both the adequacy of
a bank’s liquidity risk management framework and its liquidity risk exposure. In addition,
they are required to take prompt action to address the banks risk management deficiencies or
excess exposure in order to protect depositors and enhance the overall stability of the financial
system. To reinforce these supervisory objectives and efforts, the BCBS has recently focussed
on further elevating the resilience of internationally active banks to liquidity stresses across
the globe, as well as increasing international harmonization of liquidity risk supervision
(see, e.g., [1]). The BCBS hopes to develop internationally consistent regulatory standards
for liquidity risk supervision as a cornerstone of a global framework to strengthen liquidity
risk management and supervision (see, e.g., [2–4]).

In [5] it is asserted that bank liquidity behavior can be described by straightforward
indicators constructed from firm-specific balance sheet data (see, also, [6, 7]). Also, their
analysis underscores the relevance of using several indicators of liquidity risk at the same
time, given the different leads and lags of the measures with systemic risk. Our study is
related to theirs in that we make use of balance sheet items to determine bank behavior.
Another similarity is that we make use of data from [6] to formulate conclusions in a
numerical quantitative framework (compare with the analysis in Section 3 below).

The contribution [8] studies the role of securitization in bank management. A new
index of “bank loan portfolio liquidity” which can be thought of as a weighted average of the
potential to securitize loans of a given type, where the weights reflect the composition of a
bank loan portfolio. The paper uses this new index to show that by allowing banks to convert
illiquid loans into liquid funds, securitization reduces banks holdings of liquid securities and
increases their lending ability. Furthermore, securitization provides banks with an additional
source of funding and makes bank lending less sensitive to cost of funds shocks. By extension,
the securitization weakens the ability of regulators to affect banks lending activity but makes
banks more susceptible to liquidity and funding crisis when the securitization market is
shutdown. We conduct a similar analysis in Section 4 of this paper where illiquid underlying
loans are substituted by liquid marketable securities.

In [9], we use actuarial methods to solve a nonlinear stochastic optimal liquidity risk
management problem for subprime originators with deposit inflow rates and marketable
securities allocation as controls (see [10]). The main objective is to minimize liquidity
risk in the form of funding and credit crunch risk in an incomplete market. In order to
accomplish this, we construct a stochastic model that incorporates originator mortgage and
deposit reference processes. Finally, numerical examples that illustrate the main modeling
and optimization features of the paper are provided. Our work in this paper also has a
connection with [9] in that the nexus between funding risk and market liquidity is explored.
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However, this paper is an improvement on the aforementioned in that bank balance sheet
features play a more prominent role (see, Sections 2, 3, and 4).

1.2. Main Questions and Article Outline

In this subsection, we pose the main questions and provide an outline of the paper.

1.2.1. Main Questions

In this paper on bank liquidity, we answer the following questions.

Question 1 (banking model). Can we model banks’ liquid assets and nett cash outflows as
well as LCRs in a stochastic framework? (compare with Section 2).

Question 2 (bank liquidity in a numerical quantitative framework). Can we explain and
provide numerical examples of bank liquidity dynamics? (refer to Section 3).

Question 3 (bank liquidity in a theoretical quantitative framework). Can we devise a liquidity
provisioning strategy in a theoretical quantitative framework? (compare with Section 4).

1.2.2. Paper Outline

The rest of the paper is organized as follows. Section 1 introduces the concept of liquidity risk
while providing an appropriate literature review. A stochastic LCR model for bank liquidity
is constructed in Section 2. Issues pertaining to bank liquidity in a numerical quantitative
framework are discussed in Section 3. Section 4 treats liquidity in a theoretical quantitative
manner. Finally, we provide concluding remarks in Section 5.

2. Bank Liquidity Model

In the sequel, we use the notational convention “subscript t or s” to represent (possibly)
random processes, while “bracket t or s” is used to denote deterministic processes. The
assessment of a bank’s relative composition of the stock of high-quality liquid assets (liquid
assets) and nett cash outflows, is one of the primary ways of analyzing its liquidity position.
In this regard, we consider a measure of liquidity offered by the LCR. Before the GFC, banks
were prosperous with high LCRs, high cash inflows, low interest rates, and low nett cash
outflows. This was followed by the collapse of liquidity, exploding default rates, and the
effects thereof. We make the following assumption to set the space and time index that we
consider in our LCR model.

Assumption 2.1 (filtered probability space and time index). Throughout, we assume that
we are working with a filtered probability space (Ω,F,P) with filtration {Ft}t≥0 on a time
index set [0, T]. We assume that the aforementioned space satisfies the usual conditions.
Under P, {Wt; 0 ≤ t ≤ T,W0 = 0} is an Ft-Brownian motion.

Furthermore, we are able to produce a system of stochastic differential equations that
provide information about the stock of high-quality liquid assets (liquid assets) at time t with
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x1 : Ω× [0, T] → R

+ denoted by x1
t and nett cash outflows at time t with x2 : Ω× [0, T] → R

+

denoted by x2
t and their relationship. The dynamics of liquid assets, x1

t , is stochastic in nature
because it depends in part on the stochastic rates of return on assets and cash inflow and
outflow (see [9] for more details) and the securitization market. Also, the dynamics of the
nett cash outflow, x2

t , is stochastic because its value has a reliance on cash inflows as well
as liquidity and market risk that have randomness associated with them. Furthermore, for
x : Ω × [0, T] → R

2 we use the notation xt to denote

xt =
[
x1
t

x2
t

]
, (2.1)

and represent the LCR with l : Ω × [0, T] → R

+ by

lt =
x1
t

x2
t

. (2.2)

It is important for banks that lt in (2.2) has to be sufficiently high to ensure high bank liquidity.

2.1. Liquid Assets

In this section, we discuss the stock of high-quality liquid assets constituted by cash, CB
reserves, marketable securities, and government/CB bank debt issued.

2.1.1. Description of Liquid Assets

The first component of stock of high-quality liquid assets is cash that is made up of banknotes
and coins. According to [1], a CB reserve should be able to be drawn down in times of stress.
In this regard, local supervisors should discuss and agree with the relevant CB the extent to
which CB reserves should count toward the stock of liquid assets.

Marketable securities represent claims on or claims guaranteed by sovereigns, CBs,
noncentral government public sector entities (PSEs), the Bank for International Settlements
(BIS), the International Monetary Fund (IMF), the European Commission (EC), or
multilateral development banks. This is conditional on all the following criteria being met.
These claims are assigned a 0% risk weight under the Basel II standardized approach. Also,
deep repo-markets should exist for these securities and that they are not issued by banks or
other financial service entities.

Another category of stock of high-quality liquid assets refers to government/CB bank
debt issued in domestic currencies by the country in which the liquidity risk is being taken by
the bank’s home country (see, e.g., [1, 4]).

2.1.2. Dynamics of Liquid Assets

In this section, we consider

dht = rht dt + σ
h
t dW

h
t , h(t0) = h0, (2.3)



6 Journal of Applied Mathematics

where the stochastic processes h : Ω × [0, T] → R

+ are the return per unit of liquid assets,
rh → R

+ is the rate of return per liquid asset unit, the scalar σh : T → R is the volatility
in the rate of returns, and Wh : Ω × [0, T] → R is standard Brownian motion. Before the
GFC, risky asset returns were much higher than those of riskless assets, making the former
a more attractive but much riskier investment. It is inefficient for banks to invest all in risky
or riskless securities with asset allocation being important. In this regard, it is necessary to
make the following assumption to distinguish between risky (e.g., marketable securities and
government/CB bank debt) and riskless assets (cash) for future computations.

Assumption 2.2 (liquid assets). Suppose from the outset that liquid assets are held in the
financial market with n + 1 asset classes. One of these assets is riskless (cash) while the
assets 1, 2, . . . , n are risky.

The risky liquid assets evolve continuously in time and are modelled using an n-
dimensional Brownian motion. In this multidimensional context, the asset returns in the kth
liquid asset class per unit of the kth class is denoted by ykt , k ∈ Nn = {0, 1, 2, . . . , n} where
y : Ω × [0, T] → R

n+1. Thus, the return per liquid asset unit is

y =
(
C(t), y1

t , . . . , y
n
t

)
, (2.4)

where C(t) represents the return on cash and y1
t , . . . , y

n
t represents the risky return.

Furthermore, we can model y as

dyt = r
y
t dt + Σy

t dW
y
t , y(t0) = y0, (2.5)

where ry : T → R

n+1 denotes the rate of liquid asset returns, Σy
t ∈ R

(n+1)×n is a matrix of
liquid asset returns, and Wy : Ω × [0, T] → R

n is standard Brownian motion. Notice that
there are only n scalar Brownian motions due to one of the liquid assets being riskless.

We assume that the investment strategy π : T → R

n+1 is outside the simplex

S =
{
π ∈ Rn+1 : π =

(
π0, . . . , πn

)T
, π0 + · · · + πn = 1, π0 ≥ 0, . . . πn ≥ 0

}
. (2.6)

In this case, short selling is possible. The liquid asset return is then h : Ω × R → R

+, where the
dynamics of h can be written as

dht = πT
t dyt = π

T
t r

y
t dt + π

T
t Σ

y
t dW

y
t . (2.7)
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This notation can be simplified as follows. We denote

rC(t) = ry
0
(t), rC : T −→ R

+, the rate of return on cash,

r
y
t =

(
rC(t), r̃yt

T

+ rC(t)1n
)T

, r̃y : T −→ R

n,

πt =
(
π0
t , π̃

T
t

)T
=

(
π0
t , π

1
t , . . . , π

k
t

)T
, π̃ : T −→ R

k ,

Σy
t =

(
0 · · · 0

Σ̃y
t

)

, Σ̃y
t ∈ R

n×n,

C̃t = Σ̃y
t Σ̃

y
t

T

. Then, we have that

πT
t r

y
t = π0

t r
C(t) + π̃jT

t r̃
y
t + π̃jT

t r
C(t)1n = rC(t) + π̃T

t r̃
y
t ,

πT
t Σ

y
t dW

y
t = π̃T

t Σ̃
y
t dW

y
t ,

dht =
[
rC(t) + π̃T

t r̃
y
t

]
dt + π̃T

t Σ̃
y
t dW

y
t , h(t0) = h0.

(2.8)

2.2. Nett Cash Outflows

In this section, we discuss nett cash outflows arising from cash outflows and inflows.

2.2.1. Description of Nett Cash Outflows

Cash outflows are constituted by retail deposits, unsecured wholesale funding secured funding
and additional liabilities (see, e.g., [1]). The latter category includes requirements about
liabilities involving derivative collateral calls related to a downgrade of up to 3 notches,
market valuation changes on derivatives transactions, valuation changes on posted noncash
or non-high-quality sovereign debt collateral securing derivative transactions, asset backed
commercial paper (ABCP), special investment vehicles (SIVs), conduits, special purpose
vehicles (SPVs), and the currently undrawn portion of committed credit and liquidity
facilities.

Cash inflows are made up of amounts receivable from retail counterparties, amounts
receivable from wholesale counterparties, receivables in respect of repo and reverse repo
transactions backed by illiquid assets, and securities lending/borrowing transactions where
illiquid assets are borrowed as well as other cash inflows.

According to [1], nett cash inflows is defined as cumulative expected cash outflows
minus cumulative expected cash inflows arising in the specified stress scenario in the time
period under consideration. This is the nett cumulative liquidity mismatch position under the
stress scenario measured at the test horizon. Cumulative expected cash outflows are calculated
by multiplying outstanding balances of various categories or types of liabilities by assumed
percentages that are expected to roll off and by multiplying specified draw-down amounts
to various off-balance sheet commitments. Cumulative expected cash inflows are calculated by
multiplying amounts receivable by a percentage that reflects expected inflow under the stress
scenario.
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2.2.2. Dynamics of Nett Cash Outflows

Essentially, mortgagors are free to vary their cash inflow rates. Roughly speaking, this rate
should be reduced for high LCRs and increased beyond the normal rate when LCRs are too
low. In the sequel, the stochastic process u1 : Ω × [0, T] → R

+ is the normal cash inflow rate per
nett cash inflow unit whose value at time t is denoted by u1

t . In this case, u1
t dt turns out to be

the cash inflow rate per unit of the nett cash inflow over the time period (t, t + dt). A notion
related to this is the adjustment to the cash inflow rate per unit of the nett cash inflow rate for a
higher or lower LCR, u2 : Ω × [0, T] → R

+, that will in closed loop be made dependent on the
LCR. We denote the sum of u1 and u2 by the cash inflow rate u3 : Ω × [0, T] → R

+, that is,

u3
t = u

1
t + u

2
t , ∀ t. (2.9)

Before the GFC, the cash inflow rate increased significantly as a consequence of rising
liquidity. The following assumption is made in order to model the LCR in a stochastic
framework.

Assumption 2.3 (cash inflow rate). The cash inflow,u3, is predictable with respect to {Ft}t≥0.
The cash inflow provides us with a means of controlling LCR dynamics. The dynamics

of the cash outflow per unit of the nett cash outflow, e : Ω × [0, T] → R, is given by

det = ret dt + σ
e
t dW

e
t , e(t0) = e0, (2.10)

where et is the cash outflow per unit of the nett cash outflow, re : T → R is the rate of outflow
per unit of the nett cash outflow, the scalar σe : T → R is the volatility in the outflow per nett
cash outflow unit, and We : Ω × [0, T] → R is standard Brownian motion.

Next, we take i : Ω × [0, T] → R

+ as the nett cash outflow increase before cash outflow
per monetary unit of the nett cash outflow, ri : T → R

+ is the rate of increase of nett cash
outflows before cash outflow per nett cash outflow unit, the scalar σi ∈ R is the volatility in
the increase of nett cash outflows before outflow, andWi : Ω×[0, T] → R represents standard
Brownian motion. Then, we set

dit = ritdt + σ
idWi

t , i(t0) = i0. (2.11)

The stochastic process it in (2.11) may typically originate from nett cash flow volatility that
may result from changes in market activity, cash supply, and inflation.

2.3. The Liquidity Coverage Ratio

This section discusses ratio analysis and liquidity coverage ratio dynamics.

2.3.1. Ratio Analysis

Ratio analysis is conducted on the bank’s balance sheet composition. In this case, the LCR
measures a bank’s ability to access funding for a 30-day period of acute market stress. In this
paper, as in Basel III, we are interested in the LCR that is defined as the sum of interbank
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assets and securities issued by public entities as a percentage of interbank liabilities. The LCR
formula is given by

Liquidity Coverage Ratio =
Stock of High Quality Liquid Assets

Nett Cash Outflows over a 30-day Period
. (2.12)

This ratio measures the bank system’s liquidity position that allows the assessment of a
bank’s capacity to ensure the coverage of some of its more immediate liabilities with highly
available assets. It also identifies the amount of unencumbered, high-quality liquid assets a
bank holds that can be used to offset the nett cash outflows it would encounter under a short-
term stress scenario specified by supervisors, including both specific and systemic shocks.

2.3.2. Liquidity Coverage Ratio Dynamics

Using the equations for liquid assets x1 and nett cash outflow x2, we have that

dx1
t = x

1
t dht + x

2
t u

3
t dt − x2

t det

=
[
rC(t)x1

t + x
1
t π̃

T
t r̃

y
t + x2

t u
1
t + x

2
t u

2
t − x2

t r
e
t

]
dt

+
[
x1
t π̃

T
t Σ̃

y
t dW

y
t − x2

t σ
edWe

t

]
,

dx2
t = x

2
t dit − x2

t det

= x2
t

[
ritdt + σ

idWi
t

]
− x2

t

[
ret dt + σ

edWe
t

]

= x2
t

[
rit − ret

]
dt + x2

t

[
σidWi

t − σedWe
t

]
.

(2.13)

The SDEs (2.13) may be rewritten into matrix-vector form in the following way.

Definition 2.4 (stochastic system for the LCR model). Define the stochastic systemfor the LCR
model as

dxt = Atxtdt +N(xt)utdt + atdt + S(xt, ut)dWt, (2.14)
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with the various terms in this stochastic differential equation being

ut =
[
u2
t

π̃t

]
, u : Ω × [0, T] −→ R

n+1,

At =
[
rC(t) −ret

0 rit − ret

]
,

N(xt) =

[
x2
t x1

t r̃
y
t

T

0 0

]

, at =
[
x2
t u

1
t

0

]
,

S(xt, ut) =

[
x1
t π̃

T
t Σ̃

y
t −x2

t σ
e 0

0 −x2
t σ

e x2
t σ

i

]

,

Wt =

⎡

⎣
W

y
t

We
t

Wi
t

⎤

⎦,

(2.15)

where W
y
t ,W

e
t , and Wi

t are mutually (stochastically) independent standard Brownian
motions. It is assumed that for all t ∈ T , σet > 0, σit > 0 and C̃t > 0. Often the time argument of
the functions σe and σi is omitted.

We can rewrite (2.14) as follows:

N(xt)ut :=
[
x2
t

0

]
u2
t +

[
x1
t r̃

y
t

T

0

]

π̃t

:=
[

0 1
0 0

]
xtu

3
t +

n∑

m=1

[
x1
t r̃

y,m
t

0

]
π̃m
t

:= B0xtu
0
t +

n∑

m=1

[
r̃
y,m
t 0
0 0

]
xtπ̃

m
t

:=
n∑

m=0
[Bmxt]umt ,

S(xt, ut)dWt =

⎡

⎣
[
π̃T
t C̃tπ̃t

]1/2
0

0 0

⎤

⎦xtdW1
t

+
[

0 −σe
0 −σe

]
xtdW

2
t +

[
0 0
0 σi

]
xtdW

3
t

=
3∑

j=1

[
Mjj(ut)xt

]
dW

jj
t ,

(2.16)

where B and M are only used for notational purposes to simplify the equations. From
the stochastic system given by (2.14) it is clear that u = (u2, π̃) affects only the stochastic
differential equation of x1

t but not that of x2
t . In particular, for (2.14) we have that π̃ affects
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the variance of x1
t and the drift of x1

t via the term x1
t r̃

y
t

T

π̃t. On the other hand, u2 affects only
the drift of x1

t . Then (2.14) becomes

dxt = Atxtdt +
n∑

j=0

[
Bjxt

]
u
j
tdt + atdt +

3∑

j=1

[
Mj(ut)xt

]
dW

jj
t . (2.17)

The model can be simplified if attention is restricted to the system with the LCR, as stated
earlier, denoted in this section by xt = x1

t /x
2
t .

Definition 2.5 (stochastic model for a simplified LCR). Define the simplified LCR system by
the SDE

dxt = xt
[
rC(t) + ret − rit + (σe)2 +

(
σi

)2
+ r̃yt

T

π̃t

]
dt

+
[
u1
t + u

2
t − ret − (σe)2

]
dt

+
[
(σe)2(1 − xt)2 +

(
σi

)2
x2
t + x

2
t π̃

T
t C̃tπ̃t

]1/2

dWt, x(t0) = x0.

(2.18)

Note that in the drift of the SDE (2.18), the term

−ret + xtret = −ret (xt − 1), (2.19)

appears because it models the effect of the decline of both liquid assets and nett cash outflows.
Similarly the term −(σe)2 + xt(σe)

2 = (σe)2(xt − 1) appears.

3. Bank Liquidity in a Numerical Quantitative Framework

In this section, we discuss bank liquidity in a numerical quantitative framework. Recently
the finance literature has devoted more attention to modeling and assessing liquidity risk in
a numerical quantitative framework (see, e.g., [5, 8, 9]).

3.1. Bank Liquidity: Numerical Example 1

In this subsection, we use the data supplied in [6] (see, also, Appendices A.1 and A.2) to
assess the liquidity of banks. The dataset originates from a supervisory liquidity report for
Dutch banks. It covers a detailed breakdown of liquid assets and liabilities including cash in-
and outflows of banks (see, also, [5]).

3.1.1. Data Description: Numerical Example 1

The aforementioned supervisory liquidity report includes on- and off-balance sheet items
for about 85 Dutch banks (foreign bank subsidiaries included) with a breakdown per item
(average granularity of about 7 items per bank). The report presents month end data available
for the period October 2003 to March 2009. In this case, supervisory requirements dictate that
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actual bank liquidity must exceed required liquidity, at both a one-week and a one-month
horizon. Actual liquidity is defined as the stock of liquid assets (weighted for haircuts) and
recognized cash inflows (weighted for their liquidity value) during the test period. Required
liquidity is defined as the assumed calls on contingent liquidity lines, assumed withdrawals
of deposits, drying up of wholesale funding, and liabilities due to derivatives. In this way,
the liquidity report comprises a combined stock and cash flow approach, in which respect it
is a forward looking concept. The weights, wi, of the assumed haircuts on liquid assets and
run-off rates of liabilities are presented in last two columns of Tables 1 and 2 below. In this
regard, the pecking order hypothesis is tested empirically in [5] by classifying the assets and
liabilities of the banks in our sample according to the month weights in the liquidity report
(as presented in the last column of Tables 1 and 2). In the report, the wi values are fixed (see,
e.g., [6]) and reflect the bank-specific and market-wide situation. The wi values are based
on best practices of values of haircuts on liquid assets and run-off rates of liabilities of the
banking industry and credit rating agencies.

The various balance sheet and cash flow items in the prudential report [6] are
assumed to reflect the instruments which banks use in liquidity risk management by way
of responding to shocks. The instruments are expressed in gross amounts. To enhance
the economic interpretation we define coherent groups of instruments and the sum of
item amounts per group. The first column of Tables 1 and 2 below provides the group
classification. Here, the second columns in these tables describe the particular class of assets
and liabilities. For the liquidity test for the full month, a distinction is made between non-
scheduled items and scheduled items. By contrast to non-scheduled items, scheduled items
are included on the basis of their possible or probable due dates. For the liquidity test for the
first week, scheduled items are only included if they are explicitly taken into account in day-
to-day liquidity management Treasury operations. In Tables 1 and 2 below, scheduled items
are indicated by the letter S.

3.1.2. Data Presentation: Numerical Example 1

In this section, we firstly represent data related to assets and then data related to liabilities.

3.1.3. Data Analysis: Numerical Example 1

From Tables 1 and 2, we have seen that the behavior of banks can be described by rather
simple indicators constructed from firm-specific balance sheet data. Although they are
descriptive in nature, the measures identify trends in banks behavior that convey forward
looking information on market-wide developments. A key insight from the analysis is that
while banks usually follow a pecking order in their balance sheet adjustments (by making
larger adjustments to the most liquid balance sheet items compared to less liquid items),
during the crisis banks were more inclined to a static response. This suggests that they
have less room to follow a pecking order in their liquidity risk management in stressed
circumstances. It implies that banks responses in crises may have more material effects on
the economy, since a static response rule means that banks are more likely to adjust their (less
liquid) retail lending and deposits than under normal market conditions. A sufficient stock
of liquid buffers could prevent that banks are forced to such detrimental static responses,
which lends support to the initiatives of the Basel Committee to tighten liquidity regulation
for banks (see, e.g., [1]).
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Table 1: Assets for liquidity testing.

Group Assets S Week Month

Cash in the form of Banknotes/Coins 100 100

Receivables from CBs (including ECB)

1 1 Demand deposits 100 100

1 2 Amounts receivable S 100 100

1 3 Receivables i.r.o reverse repos S 100 100

1 4 Receivables i.t.f.o securities or Tier 2 eligible assets S d∗ d∗

Collection documents

1 Available on demand 100 100

2 Receivable S 100 100

Readily marketable debt instruments/CB eligible receivables

Issued by public authorities

2 1 ECB tier 1 and tier 2 eligible assets 95∗∗ 95∗∗

2 2 ECB tier 2 eligible assets deposited 85∗∗ 85∗∗

2 3 ECB tier 2 eligible assets not deposited 85 85

2 4 Other readily marketable debt instruments 95 95

Zone A

2 5 Other readily marketable debt instruments 70 70

Zone B

Issued by credit institutions

2 1 ECB tier 1 eligible assets 90∗∗ 90∗∗

2 2 ECB tier 2 eligible assets deposited 80∗∗ 80∗∗

2 3 Other debt instruments qualifying under the capital adequacy
directive (CAD) 90 90

2 4 Other Liquid Debt Instruments 70 70

Issued by other institutions

2 1 ECB tier 1 eligible assets 90∗∗ 90∗∗

2 2 ECB tier 2 eligible assets deposited 80∗∗ 80∗∗

2 3 Other debt instruments qualifying under the capital adequacy
directive (CAD) 90 90

2 4 Other liquid debt instruments 70 70

Amounts receivables

Branches and banking subsidiaries not included in the report

3 1 Demand deposits 50 100

3 2 Amounts receivable i.r.o securities transactions S 100 100

3 3 Other amounts receivables S 100 90

Other credit institutions

3 1 Demand deposits 50 100

3 2 Amounts receivable i.r.o securities transactions S 100 100

3 3 Other amounts receivables S 100 90

Public authorities

3 1 Demand deposits 50 100

3 2 Amounts receivable i.r.o securities transactions S 100 100

3 3 Other amounts receivables S 100 90
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Table 1: Continued.

Group Assets S Week Month

Other professional money market players

3 1 Demand deposits 50 100
3 2 Amounts receivable i.r.o securities transactions S 100 100
3 3 Other amounts receivables S 100 90

Other counterparties

1 Demand deposits 0 0
2 Amounts receivable i.r.o securities transactions S 100 90

4 3 Other amounts receivables including premature redemptions S 50 40
Receivables i.r.o REPO and reverse REPO transactions
Reverse repo transactions (other than with CBs)

5 1 Receivables i.r.o Bonds S 100 100
5 2 Receivables i.r.o Shares S 100 100

Repo Transactions (Other Than with CBs)

5 1 Receivables i.r.o bonds S 90/d∗/∗∗ 90/d∗/∗∗

5 2 Receivables i.r.o shares S 70 70
Securities lending/borrowing transactions

5 1 Securities stock on account of securities 100 100
Lending/borrowing transactions

5 2 Securities receivable on account of securities 100 100
Lending/borrowing transactions
Other securities and gold

6 1 Other liquid shares 70 70
6 2 Unmarketable shares 0 0
2 3 Unmarketable bonds S 100 100

4 Gold 90 90
Official standby facilities

14 1 Official standby facilities received 100 100
14 Receivables i.r.o derivatives S ∗∗∗ ∗∗∗

∗
: Less applicable discount.

∗∗: Either at stated percentage or at percentages applicable for ecb/escb collateral purposes.
∗∗∗: Calculated amount for the period concerned.
90/d∗/∗∗: 90% OR less applicable discount (provided the method is consistently applied).

The measures for size and the number of extreme balance sheet adjustments gauge the
time dimension of macroprudential risk, and indicators of the dependency and concentration
of reactions capture the cross-sectoral dimension. The measures are robust to different
specifications and distributions of the data. Applied to Dutch banks, the measures show
that the number, size, and similarity of responses substantially changed during the crisis, in
particular on certain market segments. They also indicate that the nature of banks behavior
is asymmetric, being more intense in busts than in booms. Furthermore, during the crisis the
deleveraging of large banks started earlier was more intense and more advanced than the
deleveraging of smaller banks.

Given these findings, the indicators are useful for macroprudential analysis, for
instance with regard to monitoring frameworks. Our analysis underscores the relevance
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Table 2: Liabilities for liquidity testing.

Group Liabilities S Week Month

Moneys borrowed from CBs

7 1 Overdrafts payable within one week 100 100

7 2 Other amounts owed S 100 100

Debt instruments issued by the bank itself

8 1 Issued debt securities S 100 100

8 2 Subordinate liabilities S 100 100

Deposits and fixed term loans
Branches and banking subsidiaries not included in the
report

9 1 Amounts owed i.r.o securities transactions S 100 100

9 2 Deposits and other funding—fixed maturity—plus
interest payable S 100 90

Other counterparties

1 Amounts owed i.r.o securities transactions S 100 100

10 2 Deposits and other funding—fixed maturity—plus
interest payable S 100 90

10 Fixed-term savings deposits S 20 20

Liabilities i.r.o repo and reverse repo transactions

Repo transactions (other than with CBs)

11 1 Amounts owed i.r.o bonds S 100 100

11 2 Amounts owed i.r.o shares S 100 100

Securities lending/borrowing transactions

11 1 Negative securities stock on account of securities
lending/borrowing transactions 100 100

11 2 Securities to be delivered on account of securities
lending/borrowing transactions S 100 100

Credit balances and other moneys borrowed with
an indefinite effective term
Branches and banking subsidiaries not included in the
report

12 1 Current account balances and other demand
deposits 50 100

Other credit institutions

12 1 Balances on vostro accounts of banks 50 50

12 2 Other demand deposits 50 100

Other professional money market players

12 1 Demand deposits 50 100

Savings accounts

13 1 Savings accounts without a fixed term 2.5 10

Other

13 1 Demand deposits and other liabilities 5 20

13 2
Other amounts due and to be accounted for
including the balance of forward transactions and
amounts due i.r.o. social and provident funds

5 20
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Table 2: Continued.

Group Liabilities S Week Month

Official standby facilities
14 1 Official standby facilities granted 100 100

Liabilities i.r.o. derivatives
14 1 Known liabilities i.r.o derivatives S ∗∗∗ ∗∗∗

14 1 Unknown liabilities i.r.o derivatives ∗∗∗ ∗∗∗

Other contingent liabilities and irrevocable credit
facilities

14 1 Unused irrevocable credit facilities, including
underwriting of issues 2.5 10

14 2 Bills accepted S 100 100
14 3 Credit-substitute guarantees 2.5 10
14 4 Non-credit-substitute guarantees 2.5 10
14 5 Other off-balance sheet liabilities 1.25 5

of using several indicators of liquidity risk at the same time, given the different leads
and lags of the measures with systemic risk. The empirical results also provide useful
information for financial stability models. A better understanding of banks behavior helps
to improve the microfoundations of such models, especially with regard to the behavioral
assumptions of heterogeneous institutions. Finally, the empirical findings in our study are
relevant to understand the role of banks in monetary transmission and to assess the potential
demand for CB finance in stress situations. The measures explain developments of financial
intermediation channels (wholesale and retail, unsecured, secured, etc.) along the cross-
sectional and time dimensions. They also shed more light on the size and number of banks
that rely on CB financing.

3.2. Bank Liquidity: Numerical Example 2

In this section, we provide a simulation of the LCR dynamics given in (2.18).

3.2.1. Simulation: Numerical Example 2

In this subsection, we provide parameters and values for a numerical simulation. The
parameters and their corresponding values for the simulation are shown in Table 3.

3.2.2. LCR Dynamics: Numerical Example 2

In Figure 1, we provide the LCR dynamics in the form of a trajectory derived from (2.18).

3.2.3. Properties of the LCR Trajectory: Numerical Example 2

Figure 1 shows the simulated trajectory for the LCR of low liquidity assets. Here different
values of banking parameters are collected in Table 3. The number of jumps of the trajectory
was limited to 1001, with the initial values for l fixed at 20.
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Figure 1: Trajectory of the LCR for low liquidity assets.

Table 3: Choices of liquidity coverage ratio parameters.

Parameter Value Parameter Value Parameter Value

C 1 000 rC 0.06 re 0.07
ri 0.02 σe 1.7 σi 1.9
r̃y 0.05 π̃ 0.4 u1 0.03
u2 0.01 C̃ 750 W 0.01

As we know, banks manage their liquidity by offsetting liabilities via assets. It is
actually the diversification of the bank’s assets and liabilities that expose them to liquidity
shocks. Here, we use ratio analysis (in the form of the LCR) to manage liquidity risk relating
various components in the bank’s balance sheets. In Figure 1, we observe that between
t = 2000 and t = 2005, there was a significant decrease in the trajectory which shows that
either liquid assets declined or nett cash outflows increased.

There was also an increase between t = 2005 and t = 2007 which suggests that either
liquid assets increased or nett cash outflows decreased. There was an even sharper increase
subsequent to t = 2007 which comes as somewhat of a surprise. In order to mitigate the
aforementioned increase in liquidity risk, banks can use several facilities such as repurchase
agreements to secure more funding. However, a significant increase was recorded between
t = 2005 and t = 2008, with the trend showing that banks have more liquid assets on their
books. If l > 0, it demonstrated that the banks has kept a high volume of liquid assets which
might be stemming from quality liquidity risk management. In order for banks to improve
liquidity they may use debt securities that allow savings from nonfinancial private sectors, a
good network of branches and other competitive strategies.

The LCR has some limitations regarding the characterization of the banks liquidity
position. Therefore, other ratios could be used for a more complete analysis taking into
account the structure of the short-term assets and liabilities of residual maturities.
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4. Bank Liquidity in a Theoretical Quantitative Framework

In this section, we investigate bank liquidity in a theoretical quantitative framework.
In particular, we characterize a liquidity provisioning strategy and discuss residual
aggregate risk in order to eventually determine the appropriate value of the price process.
In order to model uncertainty, in the sequel, we consider the filter probability space
(Ω,F, (Ft)0≤t≤T ,P), T ∈ R described in Assumption 2.1.

4.1. Preliminaries about the Liquidity Provisioning Strategy

Firstly, we consider a dynamic liquidity provisioning strategy for a risky underlying illiquid
asset process, (Λt)0≤t≤T . For purposes of relating the discussion below to the GFC, we choose
Λ to be residential mortgage loans hereafter known simply as mortgages. Mortgages were very
illiquid (nonmarketable) before and during the GFC. In this case, for liquidity provisioning
purposes, the more liquid marketable securities, S—judging by their credit rating before
and during the GFC—are used as a substitute for mortgages. This was true during the
period before and during the GFC, with mortgage-backed securities being traded more
easily than the underlying mortgages. Furthermore, we assume that the bank mainly holds
illiquid mortgages and marketable securities (compare with the assets presented in Tables 1
and 2) with cash for investment being injected by outside investors. The liquid marketable
securities, S, are not completely correlated with the illiquid mortgages, Λ, creating market
incompleteness. Under the probability measure, P, the price of the traded substitute securities
and the illiquid underlying mortgages are given by

dSt = St
[
μsdt + σsdWS

t

]
, dΛt = Λt

[
μΛdt + σΛdWΛ

t

]
, (4.1)

respectively, where μ and σ are constants. We define the constant market price of risk for
securities as

λs =
μs − r
σ

. (4.2)

We note that if the market correlation |ρ| between WS and WΛ is equal to one, then the
securities and mortgages are completely correlated and the market is complete.

Let Θ be a liquidity provisioning strategy for the bank’s asset portfolio. The dynamics
of its wealth process is given by

dΠt = nSt dSt +
(
Πt − nSt St

)
rdt + dCt, (4.3)

where dCt is an amount of cash infused into the portfolio, nSt is the number of shares of
securities held in the portfolio at time t, Πt is the value of the wealth process, and r is the
riskless interest rate. The cumulative cost process C(Θ) associated with the strategy, Θ, is

Ct(Θ) = Π̀t(Θ) −
∫ t

0
nSudS̀u, 0 ≤ t ≤ T. (4.4)
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The cost process is the total amount of cash that has been injected from date 0 to date t. We
determine a provisioning strategy that generate a payoff (ΛT − K)+ at the maturity T . The
quantity

∫T
t exp{−r(s− t)}dCs is the discounted cash amount that needs to be injected into the

portfolio between dates t and T . Since
∫T
t exp{−r(s− t)}dCs is uncertain, the risk-averse agent

will focus on minimizing the associated ex-ante aggregate liquidity risk

Rt(Θ) = E

P

⎡

⎣

(∫T

t

exp{−r(s − t)}dCu

)2
⎤

⎦, 0 ≤ t ≤ T. (4.5)

It is clear that this concept is related to the conditioned expected square value of future costs.
The strategy Θ, 0 ≤ t ≤ T is mean self-financing if its corresponding cost process C = (Ct)0≤t=T
is a martingale. Furthermore, the strategy Θ is self-financing if and only if

Π̀t(Θ) = Π̀0(Θ) +
∫ t

0
nSudS̀u, 0 ≤ t ≤ T. (4.6)

A strategy Θ̂ is called an admissible continuation of Θ if Θ̂ coincides with Θ at all times before
t and Πt(Θ) = L, P a.s. Moreover, a provisioning strategy is called liquidity risk minimizing if
for any t ∈ [0, T], Θ minimizes the remaining liquidity risk. In other words, for any admissible
continuous Θ̂ of Θ at t we have

Rt(Θ) ≤ Rt
(
Θ̂

)
. (4.7)

Criterion given in (4.5) can be formally rewritten as

∀tmin
(nS,Π)

Rt, subject to Πt = (ΛT −K)+. (4.8)

We define the expected squared error of the cost over the next period as

E

P

[
(ΔCt)2

]
= Et

[(
Πt+Δt −Πt − nSt (St+Δt − St) −

(
Πt − nSt St

)(
exp{r(t + Δt)} − exp{rt})

)2
]
.

(4.9)

In the next section, we minimize the above quantity at each date, with respect to
(nS0 , n

S
Δ, . . . , n

S
t+Δt) and also discuss the notion of a liquidity provisioning strategy.

4.2. Characterization of the Liquidity Provisioning Strategy

During the GFC, liquidity provisioning strategies involved several interesting elements.
Firstly, private provisioning of liquidity was provided via the financial system. Secondly,
there was a strong connection between financial fragility and cash-in-the-market pricing.
Also, contagion and asymmetric information played a major role in the GFC. Finally,
much of the debate on liquidity provisioning has been concerned with the provisioning of
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liquidity to financial institutions and resulting spillovers to the real economy. The next result
characterizes the liquidity provisioning strategy that we study.

Theorem 4.1 (characterization of the provisioning strategy). The locally liquidity risk minimiz-
ing strategy is described by the following.

(1) The investment in mortgages is

ǹSt =
σΛΛt

σSSt
ρCΛ(t,Λt) =

σΛΛt

σSSt
ρ exp

{(
μΛ − r − ρσΛλS

)
(T − t)

}
N(d1, t), (4.10)

where λs is the Sharpe ratio and C(t,Λt) is the minimal entropy price

C(t,Λt) = exp{−r(T − t)}EQ
[
(ΛT −K)+

]

= exp
{(
μΛ − r − ρσΛλS

)
(T − t)

}
ΛtN(d1, t) −K exp{−r(T − t)}N(d2, t),

(4.11)

where Q is the minimal martingale measure defined as

dQ

dP

∣∣∣∣
t

= exp
{
−1

2
ΛS2(T − t) − λS

(
WS

T −WS
t

)}
,

d1,t =
1

σΛ
√
T − t

[

ln
Λt

K
+

(

μΛ − ρσΛλS +
σΛ2

2

)

(T − t)
]

, d2,t = d1,t − σΛ
√
T − t.

(4.12)

(2) The cash investment is

C(t,Λt) − ǹSt St. (4.13)

If the Sharpe ratio, λs, of the traded substitute securities is equal to zero, the minimal mar-
tingale measure coincides with the original measure P, and the above strategy is globally
liquidity risk minimizing.

Proof. Let S̀t ≡ exp{−rt}St be the discounted value of the traded securities at time t. This
process follows a martingale under the martingale measure, Q, since we have

dS̀t = S̀tσSdW
S,Q
t , (4.14)

where dWS,Q
t ≡ dWS

t + λSdt is the increment to a Q-Brownian motion. Hence, we can write
the Kunita-Watanabe decomposition of the discounted option payoff under Q:

exp{−rt}(ΛT −K)+ = H0 +
∫T

0
ζtdS̀t + VH

T , (4.15)
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where VH is a P-martingale orthogonal to S̀ under Q. Lévy’s Theorem shows that the process
A defined by

dAt =
dWΛ

t − ρdWS
t√

1 − ρ2
(4.16)

is a P-Brownian motion and that it is independent of WS. Then, by Girsanov’s theorem,
(WS,Q, A) also follows two-dimensional Q-Brownian motion. Since VH is a martingale under
Q and is orthogonal to F, the martingale representation theorem shows that we have VH

t =
ψdAt for some process ψ. In particular, VH is orthogonal under P to the martingale part of S̀,
where the martingale part of S̀ under P is defined as

Gt =
∫ t

0
σSSsdW

S
s . (4.17)

Next, we suppose that

Pt = exp{−r(T − t)}EQ
[
(ΛT −K)+

]
. (4.18)

Using (4.15) we obtain

Pt = exp{rt}
[

H0 +
∫ t

0
ζsdS̀s + VH

t

]

. (4.19)

Consider now the non-self-financing strategy with value Π̀t = Pt and the number of securities
given by ǹSt = ζt. Given (4.1) and (4.19), we obtain that dC̀t = exp{rt}dVH

t . This shows
that, VH, C̀ is a P-martingale orthogonal to G. We recall that a strategy (Π, nS) is locally risk
minimizing if and only if the associated cost process follows a P-martingale orthogonal to G.
Hence the strategy (Π̀, ǹS) is locally risk minimizing.

We now prove an explicitly expression for the random variable Pt, which is called the
minimum entropy price. The Black-Scholes formula implies that

Pt = C(t,Λt)

= exp
{(
μΛ − r − σΛρλS

)
(T − t)

}[
ΛtN(d1, t) −K exp

{(
μΛ − ρσΛλS

)
(T − t)

}
N(d2, t)

]
,

(4.20)

which can be written as a function C(t,Λt) of t and Λt. Using (4.19), we obtain that

ζt =
σΛΛt

σSSt
ρCΛ(t,Λt). (4.21)

The required expression for ǹFt follows immediately.
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Our paper addresses the problem of dynamic bank provisioning for (illiquid)
nonmarketable mortgages, Λ, for which substitute (liquid) marketable securities, S, is part
of the liquidity provisioning strategy. Due to the presence of cross-hedge liquidity risk we
operate in an incomplete market setting. In this regard, we employ a non-self-financing
strategy to ensure that uncertainty is reduced and trading is conducted in the Treasuries
market. Moreover, the strategy is designed to influence a perfect replication at the cost
of continuous cash infusion into the replicating bank portfolio. Since the cash infusion is
random, the risk-averse agent would require that the total uncertainty involved over the
remaining life of the mortgage be minimized. As a consequence, for 0 ≤ t ≤ T , the associated
ex-ante aggregated liquidity risk is given by

Rt(Θ) = E

P

⎡

⎣

(∫T

t

exp{−r(s − t)}dCu

)2
⎤

⎦, 0 ≤ t ≤ T. (4.22)

Now
∫T
t exp{−r(s − t)}dCu is stochastic, so we will focus on minimizing the risk in (4.5).

We apply a local risk minimization criterion which entails that instead of minimizing the
uncertainty with respect to the cash infusion, Ct, over the process, the strategy attempts
to minimize, at each date, the uncertainty over the next infinitesimal period. Also, the
incompleteness entails the existence of infinitely many equivalent martingale measures. In
order to determine the appropriate price of the asset value one should choose an appropriate
equivalent martingale measure. In this case, the process is Q-Brownian motion so that the
discounted price process exp{−rt}St follows martingale pricing. The equivalent martingale
measure will be determine according to the risk minimization criterion in Theorem 4.1. Let
us consider the discounted price to be

exp{−rt}(ΛT −K)+. (4.23)

Applying the Kunita-Watanabe decomposition for the discounted price under a measure Q,
we get

KΠ = H0 +
∫T

0
ζtdS̀u + VH

T , (4.24)

where VH is a P-martingale orthogonal to S̀ under the measure Q. Let

Pt = exp{−r(T − t)}EQ

t

[
(ΛT −K)+

]
(4.25)

which can be rewritten as

Pt = exp{rt}
[

H0 +
∫ t

0
ζudS̀u + LHt

]

. (4.26)
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4.3. Residual Aggregate Liquidity Risk

During the GFC, two types of uncertainty concerning liquidity requirements arose. Firstly,
each individual bank was faced with idiosyncratic liquidity risk. At any given time its
depositors may have more or less liquidity needs. Uncertainty also arose from the fact that
banks face aggregate liquidity risk. In some periods aggregate liquidity demand is high while
in others it is low. Thus, aggregate risk exposes all banks to the same shock, by increasing
or decreasing the demand for liquidity that they face simultaneously. The ability of banks
to hedge themselves against these liquidity risks crucially depend on the functioning, or,
more precisely, the completeness of financial markets. The next theorem provides an explicit
expression for the aggregate liquidity risk when a locally risk minimizing strategy is utilized
in an incomplete market.

Theorem 4.2 (residual aggregate liquidity risk). The aggregate liquidity risk when a locally risk
minimizing strategy at time t is implemented is equal to

Rrmt = σΛ2
(

1 − ρ2
)∫T

t

exp{−2r(s − t)}EP

[
ΛS2CΛ(s,Λs)2

]
ds. (4.27)

This can be approximated by

Rrmt ≈ σΛ2(1 − ρ)2
CΛ(0,Λ0)2Λ2

0
1 − exp{−2r(T − t)}

2r
. (4.28)

Proof. Let us now assume Φ = Φ� and Πt = C(t,Λt). Under Q, the wealth process, Π, evolves
as

dΠt = rΠtdt + ρσΛΛtC
Λ(t,Λt)dW

S,Q
t + dC̀t. (4.29)

In addition, (exp{−rt}C(t,Λt))t follows a Q-martingale, where

dC(t,Λt) = rC(t,Λt)dt + CΛ(t,Λt)σΛΛtdW
Λ,Q
t , (4.30)

dWΛ,Q
t = dWΛ

t + ρλSdt (4.31)

defines a Q-Brownian motion. One can write it as

dWΛ,Q
t = dWΛ

t − ρdWS
t + ρdWS,Q

t =
√

1 − ρ2dW2
t + ρdW

Λ,Q
t . (4.32)

Comparing (4.29) and (4.30) we obtain that

exp{−rt}dCt = exp{−rt}CΛ(t,Λt)σΛΛt

√
1 − ρ2dW2

t
, (4.33)

hence (4.27).



24 Journal of Applied Mathematics

In what follows, we let δt be the delta of the mortgage process at time t that is
computed from the minimal entropy price so that δt = CΛ(t,Λt). We must now compute
E

P[δ2
tΛ

2
t ] for all t in [0, T]. If (δ2

t ,Λ
2
t )t>0 were a martingale, the task would be easy since we

would have E

P[δ2
tΛ

2
t ] = δ

2
0Λ

2
0. But (δ2

tΛ
2
t )t≥0 is not a martingale. However, it can be shown that

for small σΛ2T , the expectation E

P[δ2
tΛ

2
t ] is approximated by the constant δ2

0Λ
2
0. The formal

proof follows from the fact that E

P[γtΛ2
t ] ≈ γ0Λ2

0, γt = CΛΛ(t,Λt), denoting the gamma of the
value of the asset. Therefore, we finally have that

σΛ2
(

1 − ρ2
)∫T

t

exp{−2rs}EP

[
δ2
sΛ

S2
]
ds ≈ σΛ2

(
1 − ρ2

)
δ2

0Λ
2
0

1 − exp{−2r(T − t)}
2r

. (4.34)

Applying a non-self-financing strategy and considering Π̀t = Pt and ǹSt = ζt, we obtain
that

dC̀t = exp{rt}dVH
t . (4.35)

This implies that C̀ is P-martingale orthogonal to G. In this regard, the strategy (Π, nS) is
locally risk minimizing if and only if the associated cost process C(Θ) follows a P-martingale
orthogonal to G. This means the strategy minimizes at each date the uncertainty over the
next infinitesimal period. In applying the risk-minimization strategy there remains some
“residual” aggregate liquidity risk stemming from the imperfection of the Brownian motion
processes WS and WΛ. After the bank has implemented the locally risk minimizing strategy
at time t, the aggregate liquidity risk is

Rrmt = σΛ2
(

1 − ρ2
)∫T

t

exp{−2r(s − t)}EP

[
Λ2CΛ(S,Λu)2

]
. (4.36)

For δt associated with the value process at time t computed via the minimized entropy price,
we now need to compute E

P[δ2
t ,Λ

2
t ] for all t in [0, T]. Since E

P[δ2
t ,Λ

2
t ] is approximated by

the constant δ2
0Λ

2
0, then E

P[γtΛ2
t ] ≈ γ0Λ2

t , γt = CΛ(t,Λt) which is the gamma of the mortgage
value. Therefore, the residual liquidity risk at time t is

σΛ2(1 − ρ)2
∫T

t

exp{−2rs}EP

[
δ2
uΛ

S
u

]
du ≈ σΛ2(1 − ρ)2

δ2
0Λ

2
0
− exp{−2r(T − t)}

2r
. (4.37)

5. Conclusions and Future Directions

In this paper, we discuss liquidity risk management for banks. We investigate the stochastic
dynamics of bank items such as loans, reserves, securities, deposits, borrowing and bank
capital (compare with Question 1). In accordance with Basel III, our paper proposes that
overall liquidity risk is best analyzed using ratio analysis approaches. Here, liquidity risk is
measured via the LCR. In this case, we provide numerical results to highlight some important
issues. Our numerical quantitative model shows that a low LCR stems from a low level of
liquid assets or high nett cash outflows (compare with Question 2). Moreover, we provide
a characterization of liquidity risk provisioning by considering an (illiquid) nonmarketable
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mortgage as an underlying asset and using (liquid) marketable securities for provisioning.
In this case, we use non-self-financing strategy that considers market incompleteness to
provision for liquidity risk. Then, we provide a quantitative framework for assessing residual
risk stemming from the above strategy (compare with Question 3).

Future research should focus on other features of the GFC that are related to liquidity
provisioning. The first involves the decrease in prices of AAA-rated tranches of structured
financial products below fundamental values. The second is the effect of the GFC on
interbank markets for term funding and collateralized money markets. Thirdly, further
investigations should address the fear of contagion should a major institution fail. Finally, the
effects on the real economy should be considered. In addition, the stochastic dynamic model
we have consider in this paper does not take assets and liabilities with residual maturities
into account. Such a model should be developed.

Appendices

A. More about Liquidity Risk

In this section, we provide more information about measures by cash flow, liquidity monitor-
ing approaches, liquidity risk ratings and national approaches to liquidity risk.

A.1. Measures by Cash Flow

Banks use the intensity of the cash flow to predict the level of stress events. In this case, we
determine the level of both cash in flows and cash out flows depending on both supply and
demand for liquidity in the normal market performance. In this regard, the bank cash flow
predicts the level of stress event s. Moreover, the use of proforma is an acceptable standard
which determine the uses and sources of funds in the bank. It identifies where the bank
funding short fall and liquidity gap lies.

A.2. Liquidity Monitoring Approaches

The BCBS has set international standards for sound management of liquidity risk. In this
regard, the monitoring and evaluation of the banks operational activities is an internal control
measure. However, the monitoring approach is divided into three levels, that is, the liquid
assets approach, the cash flow approach, and a mixture of both. Liquid asset approach is mostly
appropriate used in the Treasury bond market. In this regard, banks are required to maintain
some liquid asset in their balance sheet that could be used during the hard period. Assets
such as government securities are appropriate to maintain in the balance sheet because they
can easily enable the bank to secure funding through securitization. While Cash flow matching
approach enable banks to match the cash in flows with the cash out flows from the balance
sheet activities.

The monitoring approaches for assessing liquidity risk is divided into three classes,
that is, liquid asset approach, the cash flow approach and the combination of both. In the
liquid asset approach a bank prescribed to a minimum level of cash or high-quality liquid
or marketable assets in relation to the deposits and other sources of funds. While maturity
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Table 4

Quantitative indicators

Availability of funds
Diversification of funding sources
Alternative funding sources
Capacity to augment liquidity through asset sales and/or
securitization
Volume of wholesale liabilities with embedded options
Vulnerability of a bank to funding difficulities
Support provided by parent company

Qualitative indicators
Effectiveness of a board’s policy in response to liquidity
risk
Effectiveness process in identifying, measuring,
monitoring, and controlling
Interacting of management to changing market conditions
Development of contingency funding plans
Information system management
Comprehensive and effective internal audit coverage

mismatch classify the expected inflows and outflows of funds into time bands of their residual
maturity.

A.3. Liquidity Risk Rating

The rating of liquidity risk is categorized into two sets of indicators, that is, the quantitative
and qualitative liquidity risk indicators.

Table 4 shows the quantitative and qualitative liquidity risk indicators. In light of the
above, the rating for quantitative liquidity risk management is classified into three levels, that
is, low, moderate level, and high level of liquidity risk. Therefore, a bank with a full set of all
the indicated quantitative indicators has a low level of liquidity risk. Moreover, the rating
for qualitative liquidity risk is divided into three levels, that is, strong, satisfactory, and weak
quality of management of liquidity risk. In the above, we indicated that rating of liquidity
risk is divided into two sets of indicators, namely, the quantitative liquidity risk indicators
and qualitative liquidity risk indicators. According to Table 4, a bank with a full set of all the
indicated qualitative indicators has a low level of liquidity risk, while a bank with a full set
of all indicated qualitative indicators has a higher level of liquidity risk management.

A.4. National Approaches to Liquidity Risk

In this section, we discuss a useful principle which needs to be developed by individual
countries to ensure sound management of liquidity risk and appropriate level of liquidity
insurance by banks. This principle could be enforced via policies that assess liquidity as an
internal measure; stress testing and other scenario analysis which determine the probability
of a bank culminating into liquidity crisis; contingency funding to provide reliable sources of
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funds to cover the short fall; setting limitations such as holding of liquid assets, minimum
liquid assets, limits on maturity mismatches, and limits on a particular funding sources;
reporting about liquidity risks and sources of liquidity as well as through public disclosure
to enable investors to access bank information.
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This paper proposes the optimal control methods for a class of chaotic systems via state feedback.
By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain
the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal
control method of piecewise linear systems, which is cast as an optimization problem under
constraints of bilinear matrix inequalities (BMIs). In addition, the lower bound on cost function
can be achieved by solving a semidefinite programming (SDP). Finally, numerical examples are
given to illustrate the results.

1. Introduction

As a very interesting nonlinear phenomenon, chaos has been widely applied in many areas,
such as secure communication, signal generator design, biology, economics, and many other
engineering systems, which has been researched thoroughly over the past two decades
[1]. Recently, chaos control of chaotic systems has become an active research topic [2]. In
general, there are several schemes to achieve the control of continuous time chaotic systems,
such as OGY method [3], parametric resonance method [4], adaptive feedback method
[5, 6], delay feedback method [7], backstepping design method [8], fractional controller
design method [9], sliding mode control method [10, 11], internal model approach [12],
impulsive control approach [13], as well as linear and nonlinear feedback control methods
[14–17]. However, most of the existing methods were used to achieve chaos control either
by employing the linearization scheme in the neighborhood of the objective point which is
difficult to accomplish the global analysis, or by applying the nonlinear feedback controller
which often limits practical applications. Based on the fuzzy control theory, Tanaka et al.
[18] studied the feedback control of chaotic systems. The result formulated in terms of linear
matrix inequalities (LMIs, [19]) was convenient to solve, but the controller design for the
associated fuzzy systems was fulfilled by virtue of global quadratic Lyapunov function which
is conservative in the control synthesis.
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As pointed out in [20], piecewise linear systems, which can approximate general non-
linear systems to any degree of accuracy, can be analyzed based on piecewise quadratic
Lyapunov function technique that introduces more flexibility than the classical global quad-
ratic Lyapunov function technique. Thus, the piecewise linear systems provide a powerful
way of analysis and synthesis for nonlinear systems. Chaotic systems belong to complex non-
linear systems. In fact, it is significant to design a practicable piecewise linear feedback con-
troller to stabilize globally a chaotic system with a performance measure for the control syn-
thesis. We recently [21] proposed a new chaotic system and designed a piecewise linear feed-
back controller to stabilize globally the new system based on piecewise linear systems
method. So far, there have been very few results dealing with the optimal control for chaotic
systems. In this paper, we investigate the problem of designing piecewise linear feedback
controller to stabilize a class of chaotic systems, and meanwhile minimize a quadratic cost
function for the closed-loop systems. Particularly, in this paper, a class of chaotic systems
are converted to uncertain piecewise linear systems. Then, based on piecewise quadratic
Lyapunov function technique and Hamilton-Jacobi-Bellman (HJB) inequality method, the
optimal chaos control via piecewise linear state feedback controller is studied. It is shown that
the optimal controller minimizing the upper bound on cost function can be obtained by solv-
ing an optimization problem under constraints of bilinear matrix inequalities (BMIs). The
lower bound on cost function can be attained by solving a semidefinite programming (SDP).
If the upper and lower bounds obtained are sufficiently tight, it is concluded that the asso-
ciated solutions achieve or get close to optimality.

This paper is organized as follows. In Section 2, the optimal control problem of chaotic
systems is introduced. In Section 3, the optimal control for a class of chaotic systems via
piecewise linear state feedback controller is proposed. The upper bound and lower bound on
cost function are designed. Illustrative examples are given in Section 4, and the conclusion is
drawn in Section 5.

Throughout this paper, a real symmetric matrix P > 0 (≥0, ≤0) denotes P being a
positive definite (positive semidefinite, or negative semidefinite) matrix, and A > B means
A − B > 0. I denotes an identity matrix of appropriate dimension. The superscript “T” re-
presents the transpose of a matrix. Matrices, if their dimensions are not explicitly stated, are
assumed to have compatible dimensions for algebraic operations.

2. Problem Formulation

Consider the chaotic system of the form:

ẋ = Ax + F(x) + Bu, (2.1)

where A and B are constant matrices, x ∈ �n is the state vector, u ∈ �m (m ≤ n) is the control
input variable, and the nonlinear term F(x) ∈ �n is assumed to satisfy Lipschitz continuity
condition, uniform or local, and F(0) = 0.

Associated with this system is the cost function:

J =
∫∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt, (2.2)

where Q > 0, R > 0 are given weighting matrices.
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The goal of this paper is to design a state feedback law u(t) stabilizing the chaotic sys-
tem (2.1) and meanwhile minimizing the cost function (2.2).

It is known that the control law u(t) can be derived from the solution to the asso-
ciated HJB equation. However, generally speaking, the HJB equation corresponding to a gen-
eral nonlinear system is notoriously hard to solve. Many numerical methods have been de-
vised for the solution of optimal control problems but tended to suffer from combinatorial
explosion. Piecewise linear systems, which can approximate nonlinear systems to any degree
of accuracy, provide a powerful means of analysis for nonlinear systems. By virtue of HJB
inequalities rather than equations, the authors in [20, 22] have investigated the state feedback
optimal control of piecewise linear systems. It was shown that the upper bound on piecewise
quadratic cost function can be obtained by solving a nonconvex BMIs problem, and the lower
bound on cost function can be obtained by solving an SDP. Motivated by this, we first convert
the chaotic system (2.1) to the form of uncertain piecewise linear systems and then extend the
corresponding results of optimal control for the ordinary piecewise linear systems in [20] to
the case of uncertain piecewise linear systems. Thus, we can achieve the optimal control for
the original chaotic system.

Note that the nonlinear term F(x) in system (2.1) can be approximated by a piecewise
linear function as follows:

F(x) = Kix + ai + Δi(x), x ∈ Xi, i ∈ I, (2.3)

where Ki ∈ �n×n, ai ∈ �n are some given parameters, {Xi}i∈I
⊆ �n denotes a partition of the

state space of chaotic system, I is the index set, and Δi(x) is the approximation error, which
can be regarded as uncertainties in the system. Then, it is obvious that system (2.1) can be con-
verted to the uncertain piecewise linear system:

ẋ = (A +Ki)x + ai + Δi(x) + Bu, x ∈ Xi, i ∈ I. (2.4)

It is worth mentioning that system (2.1) can represent a large class of chaotic systems
such as Genesio-Tesi chaotic system [23], Coullet chaotic system [24], Chua’s Circuit system
[25], and the new chaotic systems presented in [21, 26]. A simple but typical case is the three-
dimensional chaotic system with the nonlinear term F(x) taking the following form:

F(x) =
[
0, 0, f(x1)

]T
, (2.5)

where f(x1) is the nonlinear term in the 3rd dimension of the system and can be approxi-
mated by a piecewise linear function as

f(x1) = kix1 + li + δi(x1), x ∈ Xi, i ∈ I, (2.6)

where ki, li ∈ � are some given parameters, δi(x1) is the approximation error. Then, system
(2.1) with the nonlinear term (2.5) can be converted to the form of the uncertain piecewise
linear system (2.4) as

ẋ = Aix + ai + Δi + Bu, x ∈ Xi, i ∈ I (2.7)
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with

Ai = A +

⎡

⎢
⎢
⎣

0 0 0

0 0 0

ki 0 0

⎤

⎥
⎥
⎦, ai =

⎡

⎢
⎢
⎣

0

0

li

⎤

⎥
⎥
⎦, Δi =

⎡

⎢
⎢
⎣

0

0

δi(x1)

⎤

⎥
⎥
⎦. (2.8)

3. State Feedback Optimal Control of Systems

Without loss of generality, consider the uncertain piecewise linear system of the form

ẋ(t) = (Ai + ΔAi)x(t) + (Bi + ΔBi)u(t) + ai + Δai (3.1)

for x(t) ∈ Xi, where {Xi}i∈I
⊆ �n denotes a partition of the state space into a number of

polyhedral cells, I is the index set of the cells, (Ai, Bi, ai) is the ith nominal local model of
the system, ai is the offset term. ΔAi, ΔBi, and Δai represent parametric perturbations in the
system state matrix, input matrix, and offset term of the ith nominal local model, respectively,
and are assumed to be of the following form:

[
ΔAi, ΔBi, Δai

]
=MiH

[
NAi, NBi , Nai

]
, (3.2)

where H ∈ �i×j is an uncertain matrix bounded by HTH ≤ I, and Mi, NAi , NBi , Nai are
known constant matrices of appropriate dimensions which specify how the elements of the
nominal matrices Ai, Bi, and ai are affected by the uncertain parameters in H.

Define I0 ⊆ I as the set of indices for cells that contain origin and I1 ⊆ I the set of
indices for cells that do not contain the origin. It is assumed that ai = Δai = 0 for all i ∈ I0.

For any given initial condition x(0) = x0, and input signals u, it is assumed that
system (3.1) has a unique solution, and there is no sliding mode. Note that with possible dis-
continuities in Aix across the boundaries of the partitions, the solution of system (3.1) may
be just continuous and piecewise C1. For a definition of the state trajectory of the system in
(3.1) refer to [20] for details.

For convenience, the following notations are introduced:

x =

[
x

1

]

, Ai =

[
Ai ai

0 0

]

, Bi =

[
Bi

0

]

, Mi =

[
Mi

0

]

, NAi =
[
NAi, Nai

]
,

ΔAi =

[
ΔAi Δai

0 0

]

=MiHNAi, ΔBi =

[
ΔBi

0

]

=MiHNBi ,

(3.3)

then system (3.1) can be expressed as

ẋ(t) =
(
Ai + ΔAi

)
x(t) +

(
Bi + ΔBi

)
u(t), i ∈ I. (3.4)
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Associated with this system is the following cost function:

J =
∫∞

0

(
xT (t)Qix(t) + uT (t)Riu(t)

)
dt, (3.5)

where i is defined so that x(t) ∈ Xi, and Qi > 0, Ri > 0 are given weighting matrices.
Note that if Qi, Ri in (3.5) are set to be the same, respectively, for every i ∈ I, the cost

function (3.5) will reduce to (2.2). In addition, the matrix Qi = diag{Qi, 0} ∈ �(n+1)×(n+1) is
introduced, which will be used in the sequel.

As noted in [20], to find a piecewise Lyapunov function that is continuous across re-
gion boundaries, the matrices Fi = [Fi, fi], i ∈ I with fi = 0 for i ∈ I0 should be constructed,
which are used to characterize the boundaries between the regions:

Fix = Fjx, x ∈ Xi ∩Xj, i, j ∈ I. (3.6)

Then, the piecewise Lyapunov function candidates that are continuous across the region
boundaries can be parameterized as

V (x) =

⎧
⎨

⎩

xTPix, x ∈ Xi, i ∈ I0,

xTP ix, x ∈ Xi, i ∈ I1,
(3.7)

with Pi = FTi SFi and Pi = F
T

i SFi, where S is a symmetric matrix which characterizes the free
parameters of the Lyapunov function candidates.

Note the form of Pi and the characteristics of the matrices Fi. The continuity of the
Lyapunov function V (x) across the partition boundaries is ensured from (3.6) and (3.7).

The S-procedure has been used in [20, 22] to reduce the conservatism of the stability
result. Specifically, the matrices Ei = [Ei, ei], i ∈ I with ei = 0 for i ∈ I0, such that

Eix ≥ 0, x ∈ Xi, i ∈ I, (3.8)

should be constructed to verify the positivity of a piecewise quadratic function of the form
(3.7) on a polyhedral partition. It should be noted that the above vector inequalities imply
that each entry of the vector is nonnegative.

A systematic procedure for constructing the matrices Ei, Fi for a given piecewise linear
system was suggested in [20].

Consider the following piecewise linear feedback control law:

u = −Lix − li := −Lix, x ∈ Xi, i ∈ I, (3.9)

with li = 0 for i ∈ I0.
In general, the control law of form (3.9) will bring more flexibility in stability ana-

lysis than that of the ordinary linear feedback form. However, this control law may be
discontinuous and give rise to sliding modes [20]. To avoid this case, we should construct
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the control law continuously across subspace boundaries and take the feedback gain matrix
Li as follows

Li = LTFi, i ∈ I, (3.10)

where L is a parameter matrix characterizing the free parameters of the state feedback
controller, and Fi is the matrix defined in (3.6). It should be pointed out that the gain matrix
Li should take the form of Li = LTFi for i ∈ I0.

Substituting the control law (3.9) into system (3.4), we can get the following closed-
loop system:

ẋ(t) = (Ai + ΔAi − (Bi + ΔBi)Li)x(t), for i ∈ I0,

ẋ(t) =
(
Ai + ΔAi −

(
Bi + ΔBi

)
Li
)
x(t), for i ∈ I1.

(3.11)

Our goal in this section is to find a parameter matrix L to stabilize system (3.11) and
meanwhile minimize the cost function (3.5). Before presenting the main results of this paper,
we introduce the following lemmas.

Lemma 3.1 (Johansson and Rantzer [22]). Consider symmetric matrices S, Ui, andWi such that

Ui andWi have nonnegative entries, while Pi = FTi SFi, i ∈ I0 and Pi = F
T

i SFi, i ∈ I1, satisfy

AT
i Pi + PiAi + ETi UiEi < 0,

ETi WiEi < Pi,
(3.12)

for i ∈ I0, and

A
T

i P i + PiAi + E
T

i UiEi < 0,

E
T

i WiEi < Pi,
(3.13)

for i ∈ I1, then every continuous and piecewise C1 trajectory x(t) of system (3.4) with ΔAi = 0,
Δai = 0 and u = 0 for all t > 0 tends to zero exponentially.

Lemma 3.2 (Xie [27]). Given matrices G,M, andN of appropriate dimensions with G symmetric,
then G +MHN +NTHTMT < 0 for all matricesH satisfyingHTH ≤ I, if and only if there exists
some ε > 0 such that

G + ε−1MMT + εNTN < 0. (3.14)

Motivated by the result in [20], we can get the upper bound on the cost function (3.5)
for uncertain piecewise linear systems based on the HJB inequality method. The result is
presented as follows.
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Theorem 3.3. Consider the closed-loop uncertain system (3.11) with x0 ∈ Xi0 . If there exist a set of
constants εi > 0 and symmetric matrices S, Ui, and Wi such that Ui and Wi have nonnegative en-

tries, while Pi = FTi SFi, i ∈ I0, and Pi = F
T

i SFi, i ∈ I1, satisfy

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Φi εi(NAi −NBiLi)
T PiMi LTi

εi(NAi −NBiLi) −εiI 0 0

MT
i Pi 0 −εiI 0

Li 0 0 −R−1
i

⎤

⎥
⎥
⎥
⎥
⎥
⎦
< 0,

ETi WiEi < Pi

(3.15)

for i ∈ I0,

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Φi εi
(
NAi −NBiLi

)T
P iMi L

T

i

εi
(
NAi −NBiLi

)
−εiI 0 0

M
T

i Pi 0 −εiI 0

Li 0 0 −R−1
i

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

< 0

E
T

i WiEi < Pi

(3.16)

for i ∈ I1, where

Φi := (Ai − BiLi)TPi + Pi(Ai − BiLi) + ETi UiEi +Qi,

Φi :=
(
Ai − BiLi

)T
P i + Pi

(
Ai − BiLi

)
+ E

T

i UiEi +Qi,
(3.17)

then the closed-loop system is globally exponentially stable, and the cost function (3.5) satisfies

J ≤ inf
S,Ui,Wi,εi

xT0Pi0x0. (3.18)

Proof. By Schur complement [19], the first inequality of (3.15) is equivalent to

Φi + LTi RiLi + ε−1
i PiMiM

T
i Pi + εi(NAi −NBiLi)

T (NAi −NBiLi) < 0. (3.19)

Note the definitions of (3.3) and (3.17). By virtue of Lemma 3.2, inequality (3.19) is equivalent
to

(Ai + ΔAi − (Bi + ΔBi)Li)TPi+Pi(Ai + ΔAi − (Bi + ΔBi)Li) + ETi UiEi +Qi + LTi RiLi < 0.
(3.20)
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Along a similar proof technique as used above, it can also be shown that the first inequality
of (3.16) is equivalent to

(
Ai + ΔAi −

(
Bi + ΔBi

)
Li
)T
P i+Pi

(
Ai + ΔAi −

(
Bi + ΔBi

)
Li
)
+ E

T

i UiEi +Qi + L
T

i RiLi < 0,

(3.21)

where Qi = diag{Qi, 0}. Note that Qi > 0 and Ri > 0. By Lemma 3.1, it is obviously shown
from inequalities (3.20), (3.21), and the second inequalities of (3.15) and (3.16) that the closed-
loop system (3.11) is stable.

In addition, it can be seen from inequalities (3.20) and (3.21) that

(
Ai + ΔAi −

(
Bi + ΔBi

)
Li
)T
P i + Pi

(
Ai + ΔAi −

(
Bi + ΔBi

)
Li
)

+ E
T

i UiEi +Qi + L
T

i RiLi ≤ 0, i ∈ I.

(3.22)

Multiplying from left and right by xT and x, respectively, and removing the nonnegative term

xTE
T

i UiEix render

d
dt

(
xTP ix

)
+ xTQix + uTRiu ≥ 0. (3.23)

Integration from 0 to ∞, and noticing the global stability of closed-loop system (3.11), gives
the result of (3.18). The proof is thus completed.

It is shown that the matrix inequalities (3.15) and (3.16) are BMIs due to the bilinear
forms of PiBiLi and εiLi when both the Lyapunov matrix Pi and the feedback gain matrix
Li become the variables to be determined. Our interest is to find a parameter matrix L to
minimize the upper bound xT0Pi0x0 on the cost function (3.5) for the state feedback closed-
loop system (3.11). Then, the optimization problem can be formulated as

min
L,S,Ui,Wi,εi

xT0Pi0x0

s.t.

⎧
⎨

⎩

Li ∈ L

(3.15)-(3.16),

(3.24)

where i ∈ I, and L is the set of admissible values for the state feedback gain matrix Li, bound-
ed by practical design constraints.

Remark 3.4. It should be noted that the optimization problem (3.24) is a nonconvex op-
timization problem with the BMIs constraints of (3.15) and (3.16). For BMIs problem, we
[28] recently have already designed a mixed algorithm combining genetic algorithm (GA)
and interior point method to solve it. Here, we can use the mixed algorithm proposed in [28]
to obtain the optimal controller parameter matrix L and the corresponding objective xT0Pi0x0.
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In general, one can set the parameter matrix L to be the decision variables searched by GA.
For a given chromosome corresponding to L, the nonconvex problem (3.24) reduces to an
SDP involving LMIs which can be solved efficiently by Matlab LMI toolbox.

Remark 3.5. It should be pointed out that when solving the BMIs problem which is an NP hard
problem in essence, the mixed algorithm combining GA with the interior point method may
suffer from long computational time, especially for high-dimensional systems. Therefore, the
optimal control problem can only be solved offline. In addition, the approximation error
introduced by the linearization procedure for the chaotic system in Section 2 may adversely
impact the stability analysis of the closed-loop system. To overcome this negative impact, one
can divide the state space into a more sophisticated partition, but this will also increase the
computational burden. Thus, one should seek a balance between the solution accuracy and
the computational burden. On the other hand, for the chaotic systems there exists at least a
bounded attractor. Due to the boundedness of the chaotic attractor, a relatively fine partition
can be achieved to reduce the approximation error in the piecewise linearization procedure,
which leads to a controller with a good performance.

To tell if the solutions obtained above are close to optimality or not, we must set up a
lower bound on cost function (3.5). The result is presented as follows.

Theorem 3.6. If there exist a set of constants εi > 0 and symmetric matrices S and Ui such that Ui

have nonnegative entries, while Pi = FTi SFi, i ∈ I0 and Pi = F
T

i SFi, i ∈ I1 satisfy

⎡

⎢⎢⎢
⎣

Ψi PiBi − εiNT
Ai
NBi PiMi

BTi Pi − εiNT
Bi
NAi Ri − εiNT

Bi
NBi 0

MT
i Pi 0 εiI

⎤

⎥⎥⎥
⎦
> 0, (3.25)

for i ∈ I0,

⎡

⎢⎢⎢⎢
⎣

Ψi P iBi − εiN
T

Ai
NBi P iMi

B
T

i P i − εiNT
Bi
NAi Ri − εiNT

Bi
NBi 0

M
T

i Pi 0 εiI

⎤

⎥⎥⎥⎥
⎦
> 0, (3.26)

for i ∈ I1, where

Ψi := AT
i Pi + PiAi +Qi − ETi UiEi − εiNT

Ai
NAi ,

Ψi := A
T

i P i + PiAi +Qi − E
T

i UiEi − εiN
T

Ai
NAi ,

(3.27)

then for every trajectory x(t) of the uncertain system (3.4) with x(∞) = 0, x(0) = x0 ∈ Xi0 , the cost
function (3.5) satisfies

J ≥ sup
S,Ui,εi

xT0Pi0x0. (3.28)
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Proof. We will first show the conditions for the cost function (3.5) satisfying the lower bound
(3.28) can be guaranteed by

[
(Ai + ΔAi)TPi + Pi(Ai + ΔAi) +Qi − ETi UiEi Pi(Bi + ΔBi)

(Bi + ΔBi)TPi Ri

]

> 0, (3.29)

for i ∈ I0, and

⎡

⎢
⎣

(
Ai + ΔAi

)T
P i + Pi

(
Ai + ΔAi

)
+Qi − E

T

i UiEi P i
(
Bi + ΔBi

)

(
Bi + ΔBi

)T
P i Ri

⎤

⎥
⎦ > 0, (3.30)

for i ∈ I1.
Actually, for i ∈ I, we can get from (3.29) and (3.30) that

⎡

⎢
⎣

(
Ai + ΔAi

)T
P i + Pi

(
Ai + ΔAi

)
+Qi − E

T

i UiEi P i
(
Bi + ΔBi

)

(
Bi + ΔBi

)T
P i Ri

⎤

⎥
⎦ ≥ 0. (3.31)

Multiplying from left and right by [xT ,uT ] and [xT ,uT ]
T

, respectively, and removing the

nonnegative term xTE
T

i UiEix yield

0 ≤ 2xTP i
((
Ai + ΔAi

)
x +
(
Bi + ΔBi

)
u
)
+ xTQix + uTRiu

=
d
dt

(
xTP ix

)
+ xTQix + uTRiu.

(3.32)

Integration from 0 to ∞, and noticing x(∞) = 0, gives the result of (3.28).
Next, we will show that inequality (3.29) is equivalent to (3.25). For simplifying the

presentation, denote

G :=

[
AT
i Pi + PiAi +Qi − ETi UiEi PiBi

BTi Pi Ri

]

. (3.33)

Note the uncertain form (3.2). Then, inequality (3.29) can be written as

G +

[
PiMi

0

]

H
[
NAi, NBi

]
+
[
NAi, NBi

]T
HT

[
PiMi

0

]T

> 0. (3.34)

By Lemma 3.2, inequality (3.34) is equivalent to the existence of some εi > 0 such that

G − ε−1
i

[
PiMi

0

][
PiMi

0

]T

− εi
[
NAi, NBi

]T[
NAi, NBi

]
> 0, (3.35)
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that is,

⎡

⎣
AT
i Pi + PiAi +Qi − ETi UiEi − εiNT

Ai
NAi − ε−1

i PiMiM
T
i Pi PiBi − εiNT

Ai
NBi

BTi Pi − εiNT
Bi
NAi Ri − εiNT

Bi
NBi

⎤

⎦ > 0, (3.36)

which, by Schur complement, is equivalent to inequality (3.25). By similar techniques, it can
also be shown that inequality (3.30) is equivalent to inequality (3.26). The proof is complete.

Remark 3.7. It is shown that inequalities (3.25) and (3.26) are LMIs about the variables Pi, Pi,
and εi. So the problem of maximizing the lower bound (3.28) can be cast as an SDP with LMIs
constraints of (3.25) and (3.26), and solved numerically effectively.

Remark 3.8. In the above analysis, it is assumed that the initial condition x0 is given or known
in advance. Note that the bounds in (3.18) and (3.28) depend on the initial state x0. To remove
this dependence on the initial state, we can use the techniques developed in [28] and extend
the corresponding results to the case where the initial condition x0 is a random variable sub-
jected to uniform distribution on a certain bounded regionX0. For further details, please refer
to [28].

The global quadratic Lyapunov function technique is often applied in the control
synthesis of dynamical systems [26]. In the following, by virtue of the global quadratic
Lyapunov function technique and linear feedback control law, we present an optimal
guaranteed cost control method for the chaotic system (2.1) associated with the cost function
(2.2), which with the comparisons in the simulation results will show advantages of the
obtained results in Theorems 3.3 and 3.6.

Consider the following linear feedback control law:

u = −L̃x. (3.37)

Substituting the control law (3.37) into system (2.1), we can get the following closed-loop sys-
tem:

ẋ(t) =
(
A − BL̃

)
x(t) + F(x). (3.38)

Additionally, note the boundedness of the chaotic attractor and the Lipschitz con-
tinuity condition for the nonlinear term F(x). There exist some matrix Γ ≥ 0 and a bounded
set Ω which bounds the chaotic attractor, such that

FT (x)F(x) ≤ xTΓ2x, ∀x ∈ Ω. (3.39)

The upper bound on the cost function (2.2) for the chaotic system (2.1) by applying
linear feedback control law (3.37) is presented as follows.
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Theorem 3.9. Consider system (2.1) with the initial condition x0 ∈ Ω. If there exist positive con-
stants α, β, positive definite matrix Y , and any matrix Z with appropriate dimensions such that

⎡

⎢
⎢
⎢
⎢
⎢
⎣

AY + YAT − BZ − ZTBT + αI YΓ Y ZT

ΓY −αI 0 0

Y 0 −Q−1 0

Z 0 0 −R−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
< 0,

[−β xT0
x0 −Y

]

< 0,

(3.40)

then the closed-loop system (3.38) is globally exponentially stable, and the cost function (2.2) satisfies

J < β. (3.41)

Furthermore, the corresponding control law can be obtained as u = −ZY−1x.

Proof. Denote P = Y−1 > 0. Construct the Lyapunov function candidate as

V (x) = xTPx. (3.42)

By virtue of the fact that MTN+NTM ≤ α−1MTM+αNTN, for all α > 0, and matrices
M and N with appropriate dimensions, calculating the time derivative of V (x) along the
trajectory of the closed-loop system (3.38) and noticing (3.39) yield

dV (x)
dt

= xT
((

A − BL̃
)T
P + P

(
A − BL̃

))
x + FT (x)Px + xTPF(x)

≤ xT
((

A − BL̃
)T
P + P

(
A − BL̃

)
+ αP 2

)
x + α−1FT (x)F(x)

≤ xT
((

A − BL̃
)T
P + P

(
A − BL̃

)
+ αP 2 + α−1Γ2

)
x.

(3.43)

On the other hand, by Schur complement, the first inequality of (3.40) is equivalent to

AY + YAT − BZ − ZTBT + αI + α−1YΓ2Y + YQY + ZTRZ < 0. (3.44)

Noticing YP = I, L̃ = ZP , pre- and postmultiplying both sides of (3.44) by P implies

(
A − BL̃

)T
P + P

(
A − BL̃

)
+ αP 2 + α−1Γ2 +Q + L̃TRL̃ < 0. (3.45)
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Thus, it follows from (3.43) and (3.45) that

dV (x)
dt

+ xTQx + xT L̃TRL̃x < 0. (3.46)

Note that Q > 0 and R > 0. It is obvious that dV (x)/dt < 0 which guarantees the global
stability of closed-loop system (3.38), that is, x(∞) = 0.

Integration both sides of (3.46) from 0 to ∞, and noticing V (x(∞)) = 0, renders

J < V (x0) = x0Y
−1x0, (3.47)

with which combining the second inequality of (3.40) shows the result of (3.41). The proof is
complete.

Remark 3.10. It is shown that the inequalities in (3.40) are LMIs in the variables Y , Z, α,
β. So the problem of minimizing the upper bound (3.41) can be cast as an SDP with LMIs
constraints of (3.40) and can be solved numerically effectively. On the other hand, it should
be pointed out that the control synthesis methods based on the global quadratic Lyapunov
function (3.42) and linear feedback control law (3.37) are conservative in practice compared
with those in Theorems 3.3 and 3.6, which will be shown in illustrative examples.

4. Illustrative Examples

In this section, we will give two examples to illustrate the effectiveness of the proposed
methods.

4.1. Genesio—Tesi Chaotic System

Consider the Genesio—Tesi chaotic system presented in [23], and the controlled system is
described as follows:

⎡

⎢⎢
⎣

ẋ1

ẋ2

ẋ3

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−p1 −p2 −p3

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x1

x2

x3

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

0

0

x2
1

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

1

1

1

⎤

⎥⎥
⎦u, (4.1)

where p1 = 6, p2 = 2.92, p3 = 1.2.
Denote that cT = [1, 0, 0] and xT = [x1, x2, x3]. Note the boundedness of the chaotic

attractor shown in [23]. The state space can be confined to X := {x | −6 ≤ cTx ≤ 6} by simu-
lation. The partition of state space is set to be

X1 =
{
x | cTx ∈ [−1, 1)

}
, X2 =

{
x | cTx ∈ [1, 3)

}
, X3 =

{
x | cTx ∈ [3, 6]

}
,

X4 =
{
x | cTx ∈ [−3,−1)

}
, X5 =

{
x | cTx ∈ [−6,−3)

}
.

(4.2)
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Then, the nonlinear term x2
1 can be described as

x2
1 = kix1 + li + δi(x1), x ∈ Xi, i = 1, 2, 3, 4, 5, (4.3)

where δi denotes the approximation error. Taking k1 = 0, k2 = −k4 = 4.5, k3 = −k5 = 9, l1 = 0,
l2 = l4 = −4.5, l3 = l5 = −18, one can obtain that

|δ1(x1)| ≤ |x1|, |δ2(x1)| ≤ 1, |δ3(x1)| ≤ 2.25,

|δ4(x1)| ≤ 1, |δ5(x1)| ≤ 2.25.
(4.4)

Note the expressions (4.3) and (4.4). System (4.1) can be converted to the piecewise
linear system (3.1) with

A1 =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−6 −2.92 −1.2

⎤

⎥⎥
⎦, A2 =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−1.5 −2.92 −1.2

⎤

⎥⎥
⎦, A3 =

⎡

⎢⎢
⎣

0 1 0

0 0 1

3 −2.92 −1.2

⎤

⎥⎥
⎦,

A4 =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−10.5 −2.92 −1.2

⎤

⎥⎥
⎦, A5 =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−15 −2.92 −1.2

⎤

⎥⎥
⎦, Bi =

⎡

⎢⎢
⎣

1

1

1

⎤

⎥⎥
⎦,

a1 = 0, a2 = a4 =
[
0 0 −4.5

]T
, a3 = a5 =

[
0 0 −18

]T
,

ΔA1 =M1HNA1 , ΔA2 = ΔA3 = ΔA4 = ΔA5 = 0, ΔBi = 0,

Δa1 = 0, Δa2 =M2HNa2 , Δa3 =M3HNa3 ,

Δa4 =M4HNa4 , Δa5 =M5HNa5 ,

Mi =

⎡

⎢⎢
⎣

0

0

2

⎤

⎥⎥
⎦, NA1 =

⎡

⎢⎢
⎣

0 0 0

0 0 0

0.5 0 0

⎤

⎥⎥
⎦,

Na2 =Na4 =

⎡

⎢⎢
⎣

0

0

0.5

⎤

⎥⎥
⎦, Na3 =Na5 =

⎡

⎢⎢
⎣

0

0

1.125

⎤

⎥⎥
⎦,

(4.5)

where i = 1, . . . , 5, and H is an uncertain matrix bounded by HTH ≤ I.
It is worthwhile to mention that the nominal autonomous piecewise linear system (3.1)

with parameters (4.5), that is, u ≡ 0, ΔAi = 0, Δai = 0, can exhibit chaotic dynamics, and the
strange attractor is depicted in Figure 1. It is shown from Figure 1 that the system (3.1) with
parameters (4.5) evolves to a single-scroll chaotic attractor, which is similar to the Genesio-
Tesi chaotic attractor. Thus, it is indicated that the piecewise linear system approximating a
chaotic system can preserve the complex dynamic behaviors of the original system.
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Figure 1: Phase portraits of the nominal autonomous system (3.1) with parameters (4.5).

Consider the cost function (2.2) with Q = diag{1, 1, 1}, R = 1, and the initial value x0 =
[−1.8,−1, 1]T of system (4.1). The matrices Ei and Fi can be constructed by virtue of the meth-
od proposed in [20]. Assume that the feedback gain matrix Li is bounded by ‖Li‖∞ < 12,
where ‖Li‖∞ denotes the largest absolute value among all the entries of vector Li. Then, ap-
plying the mixed algorithm provided in [28], we solve the BMIs problem (3.24) based on
Theorem 3.3 with the code written in MATLAB 7.0 and get the optimal upper bound on J ,
denoted as J

∗
, and the corresponding optimal parameter matrix L∗ as follows:

J
∗
= 17.7528,

L∗ =
[−3.3088, −0.3345, 2.7111, 1.2363, −0.0548

]T
.

(4.6)

According to the expression of (3.10), we can get the following state feedback gain matrices:

L1 =
[
2.7111, 1.2363, −0.0548

]
,

L2 =
[
2.3765, 1.2363, −0.0548, 0.3345

]
,

L3 =
[
6.0198, 1.2363, −0.0548, −10.5954

]
,

L4 =
[
6.0198, 1.2363, −0.0548, 3.3088

]
,

L5 =
[
2.3765, 1.2363, −0.0548, −7.6212

]
,

(4.7)

with which the optimal control u taking the form of piecewise linear feedback control law
(3.9) can be obtained.

Actually, the cost function (2.2) for the closed-loop system (4.1) with above controller
gain matrices is computed as J = 13.1623. The numerical simulation of system (4.1) with the
piecewise linear state feedback control is shown in Figure 2.

In addition, according to Theorem 3.6, the maximal lower bound on J , denoted as J∗,
can be obtained by solving the corresponding SDP with the LMI toolbox in MATLAB 7.0 as
follows:

J∗ = 10.2047. (4.8)
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Figure 2: Time response of system (4.1) with the piecewise linear state feedback.

On the other hand, note that −6 ≤ cTx ≤ 6. The matrix Γ in (3.39) can be obtained as
Γ = diag{6, 0, 0}. According to Theorem 3.9, we solve the corresponding SDP, and obtain the
optimal gain matrix L̃∗ in (3.37) and upper bound β∗ as follows:

L̃∗ = ZY−1 =
[
14.1843, 1.1514, −0.3980

]
, β∗ = 53.0699, (4.9)

which shows a fact that the optimal control methods based on the global quadratic Lyapunov
function are conservative compared with those in Theorem 3.3.

4.2. A New Chaotic System

Consider the new chaotic system presented in [26], and the controlled system is described as
follows:

⎡

⎢⎢
⎣

ẋ1

ẋ2

ẋ3

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−p1 −p1 −p1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x1

x2

x3

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

0

0

p2 tanh(x1)

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

0.5

1

1

⎤

⎥⎥
⎦u, (4.10)

where p1 = 0.5, p2 = 5, and the hyperbolic function tanh(x) = (exp(x) − exp(−x))/(exp(x) +
exp(−x)). The strange attractor of the autonomous system (4.10) with u ≡ 0 is shown in
Figure 3, which is a double-scroll chaotic attractor.
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Figure 3: Phase portraits of the autonomous system (4.10).

Note the boundedness of the chaotic attractor shown in Figure 3. The state space can
be confined to X := {x | −23.3 ≤ cTx ≤ 23.3} by simulation. The partition of state space is set
to be

X1 =
{
x | cTx ∈ [−23.3, −1.18)

}
, X2 =

{
x | cTx ∈ [−1.18, 1.18)

}
,

X3 =
{
x | cTx ∈ [1.18, 23.3]

}
.

(4.11)

Then, the nonlinear term tanh(x1) can be described as

tanh(x1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k1x1 + l1 + δ1(x1), x ∈ X1,

k2x1 + l2 + δ2(x1), x ∈ X2,

k3x1 + l3 + δ3(x1), x ∈ X3,

(4.12)

where δi denotes the approximation error. Taking k1 = 0, k2 = 0.85, k3 = 0, l1 = −1, l2 = 0,
l3 = 1, one can obtain that

|δ1(x1)| ≤ 0.17, |δ2(x1)| ≤ 0.15|x1|, |δ3(x1)| ≤ 0.17. (4.13)

Note the expressions (4.12) and (4.13). System (4.10) can be converted to the piecewise
linear system (3.1) with

A1 = A3 =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−p1 −p1 −p1

⎤

⎥⎥
⎦, A2 =

⎡

⎢⎢
⎣

0 1 0

0 0 1

−p1 + 0.85p2 −p1 −p1

⎤

⎥⎥
⎦,

B1 = B2 = B3 =

⎡

⎢⎢
⎣

0.5

1

1

⎤

⎥⎥
⎦, a1 = −a3 =

⎡

⎢⎢
⎣

0

0

−p2

⎤

⎥⎥
⎦, a2 = 0,
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ΔA1 = ΔA3 = 0, ΔA2 =M2HNA2 , ΔB1 = ΔB2 = ΔB3 = 0,

Δa1 =M1HNa1 , Δa2 = 0, Δa3 =M3HNa3 ,

M1 =M2 =M3 =

⎡

⎢
⎢
⎣

0

0

1

⎤

⎥
⎥
⎦, NA2 =

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0.15p2 0 0

⎤

⎥
⎥
⎦, Na1 =Na3 =

⎡

⎢
⎢
⎣

0

0

0.17p2

⎤

⎥
⎥
⎦.

(4.14)

Consider the cost function (2.2) with Q = diag{0.8, 0.8, 0.8}, R = 1.2, and the system initial
value x0 = [1.4, 1,−0.6]T . Assume that the feedback gain matrix Li is bounded by ‖Li‖∞ < 8.
Then, similarly to the above subsection, we get the maximal lower bound J∗, the optimal up-

per bound J
∗
, and the corresponding optimal parameter matrix L∗ as follows:

J∗ = 5.5117, J
∗
= 9.7024,

L∗ =
[−4.3655, 1.2292, 2.3555, 1.3460, 1.4357

]T
.

(4.15)

According to the expression of (3.10), we can get the following state feedback gain matrices:

L1 =
[
6.7210, 1.3460, 1.4357, 5.1513

]
, L2 =

[
2.3555, 1.3460, 1.4357

]
,

L3 =
[
3.5847, 1.3460, 1.4357, −1.4505

]
,

(4.16)

with which the optimal control u taking the form of (3.9) is obtained.
Additionally, the cost function (2.2) for the closed-loop system (4.10) with above con-

troller gain matrices is computed as J = 7.8725. The numerical simulation of system (4.10)
with piecewise linear state feedback control is shown in Figure 4.

Furthermore, note that tanh2(x1) ≤ x2
1. The matrix Γ in (3.39) can be obtained as Γ =

diag{p2, 0, 0}. According to Theorem 3.9, we solve the corresponding SDP, and obtain the
optimal gain matrix L̃∗ in (3.37) and upper bound β∗ as follows:

L̃∗ = ZY−1 =
[
19.2415, 2.5432, −0.2071

]
, β∗ = 98.965, (4.17)

which is significantly greater than the optimal upper bound J
∗

obtained from Theorem 3.3.
It is obviously shown from the above examples that the optimal upper bounds J

∗
ob-

tained above get close to the corresponding lower bounds J∗, respectively. This implies that
we have achieved or got close to the optimal control for the chaotic systems. Additionally,
it should be pointed out that the newly reported chaotic system (4.10) is topologically not
equivalent to the Genesio-Tesi chaotic system (4.1). However, by virtue of the optimal control
methods proposed in this paper, both the different chaotic systems (4.1) and (4.10) can be
optimally stabilized. The examples show the effectiveness of the proposed results.
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Figure 4: The control law and time response of the controlled system (4.10).

5. Conclusion

In this paper, we first convert a class of chaotic systems to the form of uncertain piecewise
linear systems then investigate the optimal control for the chaotic systems where the piece-
wise linear state feedback optimal controller can be obtained by solving an optimization pro-
blem with BMIs constraints. The performance of the controller can be evaluated by the upper
and lower bounds on the cost function. The optimal chaos synchronization for this class of
chaotic systems will be studied in the near future.
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A kind of nonlinear finance system with time-delayed feedback is considered. Firstly, by
employing the polynomial theorem to analyze the distribution of the roots to the associate
characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given.
Secondly, by using the normal form theory and center manifold argument, we derive the explicit
formulas determining the stability, direction, and other properties of bifurcating periodic solutions.
Finally, we give several numerical simulations, which indicate that when the delay passes through
certain critical values, chaotic oscillation is converted into a stable steady state or a stable periodic
orbit.

1. Introduction

Since the chaotic phenomenon in economics was first found in 1985, great impact has been
imposed on the prominent western economics at present, because the chaotic phenomenon
occurring in the economic system means that the macroeconomic operation has in itself the
inherent indefiniteness. Although the government can adopt such macrocontrol measures as
the financial policies or the monetary policies to interfere, the effectiveness of the interference
is very limited. The instability and complexity make the precise economic prediction greatly
limited, and the reasonable prediction behavior has become complicated as well. In the
fields of finance, stocks, and social economics, because of the interaction between nonlinear
factors, with all kinds of economic problems being more and more complicated and with
the evolution process from low dimensions to high dimensions, the diversity and complexity
have manifested themselves in the internal structure of the system and there exists extremely
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Figure 1: Strange attractor of finance system (1.1).

complicated phenomenon and external characteristics in such a kind of system. So it has
become more and more important to study the control of the complicated continuous
economic system and stabilize the instable periodic or stationary solutions, in order to make
the precise economic prediction possible [1, 2].

Recent works [1, 2] have reported a dynamic model of finance, composed of three
first-order differential equations. The model describes the time variations of three state
variables: the interest rate x, the investment demand y, and the price index z. By choosing
an appropriate coordinate system and setting appropriate dimensions for each state variable,
[1, 2] offer the simplified finance system as

ẋ(t) = −a(x(t) + y(t)),

ẏ(t) = −y(t) − ax(t)z(t),

ż(t) = b + ax(t)y(t),

(1.1)

which is chaotic when a = 1.69, b = 4 (see Figure 1).
Over the last years, [3, 4] studied impulsive control and state feedback control of the

finance system (1.1). In this paper, we are interesting in delayed feedback control of the
finance system (1.1). The effects of the time-delayed feedback on the finance system have
long been investigated [5–8].

Recently, different techniques and methods have been proposed to achieve chaos
control. The existing control methods can be classified, mainly, into two categories. The first
one, developed by Ott et al. [9] is based on the invariant manifold structure of unstable orbits.
It is theoretically well understood but difficult to apply to fast experimental systems. The
second, proposed by Pyragas [10], uses time-delayed controlling forces. In contrast to the
former one, it is simple and convenient method of controlling chaos in continuous dynamical
system. Thus, we adopt the second one in the present paper.
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For predigesting the investigation, here we only put time delay on investment demand
y. By adding a time-delayed force K(y(t)−y(t− τ)) to the second equation of finance system
(1.1), we obtain the following new system

ẋ(t) = −a(x(t) + y(t)),
ẏ(t) = −y(t) − ax(t)z(t) +K(

y(t) − y(t − τ)),
ż(t) = b + ax(t)y(t).

(1.2)

Here we assume that (C1) a, b, τ ∈ (0,∞) and K ∈ R. The time delay τ is taken as the
bifurcation parameter and we show that when τ passes through some certain critical values,
the equilibrium will lose its stability and hopf bifurcation will take place; by adjusting
K values, we achieve the purpose of chaos control. The research of this paper is a new
investigation about the hopf bifurcation and chaos control on the finance system and has
important theoretical and practical value.

2. Stability of Steady States and Bifurcations of Periodic Solutions

In this section, we investigate the effect of delay on the dynamic behavior of system (1.2).
Obviously, when τ = 0, system (1.2) becomes the system (1.1). First, we introduce the
following several lemmas in [1, 2] for T’s system(1.1).

We know that under the assumption (C1), the system (1.1) has two equilibrium points:

S1 =

(√
ab

b
,−

√
ab

b
,

1
a

)

, S2 =

(

−
√
ab

b
,

√
ab

b
,

1
a

)

. (2.1)

The characteristic equation of the system (1.1) at S1(S2) is

λ3 + (1 + a)λ2 + abλ + 2a2b = 0. (2.2)

By analyzing the characteristic equation (2.2) and the Routh-Hurwitz criteria, we get
the following.

Lemma 2.1. For a < 1, the characteristic equation (2.2) has three eigenvalues with negative real
parts, so two equilibrium points S1, S2 of the system (1.1) are asymptotic stable.

Lemma 2.2. For a = 1, the characteristic equation (2.2) has a pair of purely imaginary eigenvalues
λ1,2 = ±iω0 (ω0 =

√
b) and a negative real eigenvalue λ3 = −2, and

λ̇(a = 1) =
5b

2b + 8
> 0. (2.3)

According to the hopf bifurcation theorem [11], a hopf bifurcation of the system (1.1) occurs at a = 1.

Lemma 2.3. For a > 1, the characteristic equation (2.2) has one negative real root and one pair of
conjugate complex roots with positive real parts, so two equilibrium points S1, S2 of the system (1.1)
are unstable.
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Clearly, the delayed feedback control system (1.2) has the same equilibria to the
corresponding system (1.1). In this section, we analyze the effect of delay on the stability of
these steady states. Due to the symmetry of S1 and S2, it is sufficient to analyze the stability
of S1. By the linear transform

x1(t) = x(t) −
√
ab

b
,

y1(t) = y(t) +

√
ab

b
,

z1(t) = z(t) − 1
a
,

(2.4)

system (1.2) becomes

ẋ1(t) = −a(x1(t) + y1(t)
)
,

ẏ1(t) = −x1(t) − y1(t) −
√
abz1(t) − ax1(t)z1(t) +K

(
y1(t) − y1(t − τ)

)
,

ż1(t) = −
√
abx1(t) +

√
aby1(t) + ax1(t)y1(t).

(2.5)

It is easy to see that the origin S0(0, 0, 0) is the equilibrium of system (2.5). The associated
characteristic equation of system (2.5) at S0(0, 0, 0) is

det

⎛

⎜
⎝
λ + a a 0

1 λ + 1 −K +Ke−λτ
√
ab√

ab −
√
ab λ

⎞

⎟
⎠ = 0. (2.6)

Expanding (2.6), we have

λ3 + (1 + a −K)λ2 + (ab − aK)λ + 2a2b +K
(
λ2 + aλ

)
e−λτ = 0. (2.7)

Thus, we need to study the distribution of the roots of the third-degree exponential pol-
ynomial equation:

λ3 + a2λ
2 + a1λ + a0 +

(
b2λ

2 + b1λ + b0

)
e−λτ = 0, (2.8)

where ai, bi ∈ R (i = 0, 1, 2) and
∑2

i=0 b
2
i /= 0. We first introduce the following simple result

which was proved by Ruan and Wei [12] using Rouche’s theorem.

Lemma 2.4. Consider the exponential polynomial

P
(
λ, e−λτ1 , . . . , e−λτm

)

= λn + p(0)1 λn−1 + · · · + p(0)n−1λ + p(0)n +
[
p
(1)
1 λn−1 + · · · + p(1)n−1λ + p(1)n

]
e−λτ1

+ · · · +
[
p
(m)
1 λn−1 + · · · + p(m)

n−1λ + p(m)
n

]
e−λτm ,

(2.9)
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where τi ≥ 0 (i = 1, 2, . . . , m) and p
(i)
j (i = 0, 1, . . . , m, j = 1, 2, . . . , n) are constants. As

(τ1, τ2, . . . , τm) vary, the sum of the order of the zeros of P(λ, e−λτ1 , . . . , e−λτm) on the open right half
plane can change only if a zero appears on or crosses the imaginary axis.

Obviously, iω(ω > 0) is a root of (2.8) if and only if ω satisfies

−iω3 − a2ω
2 + a1ωi + a0 +

(
−b2ω

2 + b1ωi + b0

)
(cosωτ − i sinωτ) = 0. (2.10)

Separating the real and imaginary parts, we have

a2ω
2 − a0 =

(
b0 − b2ω

2
)

cosωτ + b1ω sinωτ,

−ω3 + a1ω =
(
b0 − b2ω

2
)

sinωτ − b1ω cosωτ,
(2.11)

which is equivalent to

ω6 +
(
a2

2 − b2
2 − 2a1

)
ω4 +

(
a2

1 − 2a0a2 − b2
1 + 2b0b2

)
ω2 + a2

0 − b2
0 = 0. (2.12)

Let z = ω2 and denote p = a2
2 − b2

2 − 2a1, q = a2
1 − 2a0a2 − b2

1 + 2b0b2, r = a2
0 − b2

0, then (2.12)
becomes

z3 + pz2 + qz + r = 0. (2.13)

In the following, we need to seek conditions under which (2.12) has at least one
positive root. Denote

h(z) = z3 + pz2 + qz + r. (2.14)

Therefor, applying [13], we obtain the following lemma.

Lemma 2.5. For the polynomial equation (2.13), one has the following results.

(i) If r < 0, then (2.13) has at least one positive root.

(ii) If r ≥ 0 and Δ = p2 − 3q ≤ 0, then (2.13) has no positive roots.

(iii) If r ≥ 0 and Δ = p2 − 3q > 0, then (2.13) has positive roots if and only if z∗1 = (1/3)(−p +√
Δ) > 0 and h(z∗1) ≤ 0.

Suppose that (2.13) has positive roots. Without loss of generality, we assume that it
has three positive roots, defined by z1, z2, and z3, respectively. Then (2.12) has three positive
roots:

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3. (2.15)
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From (2.11), we have

cosωτ =
b1ω

2(ω2 − a1
) − (

a2ω
2 − a0

)(
b2ω

2 − b0
)

(b2ω2 − b0)
2 + b2

1ω
2

. (2.16)

Thus, if we denote

τ
(j)
k

=
1
ωk

⎡

⎣cos−1

⎛

⎝
b1ω

2
k

(
ω2
k − a1

) − (
a2ω

2
k − a0

)(
b2ω

2
k − b0

)

(
b2ω

2
k − b0

)2 + b2
1ω

2
k

⎞

⎠ + 2jπ

⎤

⎦, (2.17)

where k = 1, 2, 3; j = 0, 1, 2, . . ., then ±iωk is a pair of purely imaginary roots of (2.8) with τ (j)
k

.
Define

τ0 = τ (0)
k0

= min
k∈1,2,3

τ
(0)
k
, ω0 = ωk0 . (2.18)

Note that when τ = 0, (2.8) becomes

λ3 + (a2 + b2)λ2 + (a1 + b1)λ + a0 + b0 = 0. (2.19)

Therefor, applying Lemmas 2.4 and 2.5 to (2.8), we get the following lemma.

Lemma 2.6. For (2.8), one has

(i) if r ≥ 0 and Δ = p2 − 3q ≤ 0, then all roots with positive real parts of (2.8) have the same
sum to those of the polynomial equation (2.19) for all τ ≥ 0.

(ii) if either r < 0 or r ≥ 0, Δ = p2 − 3q > 0, z∗1 = (1/3)(−p+
√
Δ) > 0 and h(z∗1) ≤ 0, then all

roots with positive real parts of (2.8) have the same sum to those of the polynomial equation
(2.19) for τ ∈ [0, τ0).

Let

λ(τ) = α(τ) + iω(τ) (2.20)

be the root of (2.8) near τ = τ (j)
k

satisfying

α
(
τ
(j)
k

)
= 0, ω

(
τ
(j)
k

)
= ωk. (2.21)

Then by [13], we have the following transversality condition.
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Lemma 2.7. Suppose that zk = ω2
k and h

′(zk)/= 0. Then

Rλ
(
τ
(j)
k

)

dτ
/= 0, (2.22)

and Rλ(τ (j)
k
)/dτ and h′(zk) have the same sign.

Now, we study the characteristic equation (2.7) of the system (2.5). Comparing (2.7)
with (2.8), we know that

a2 = 1 + a −K, a1 = ab − aK, a0 = 2a2b, b2 = K, b1 = aK, b0 = 0.
(2.23)

Thus,

p = a2
2 − b2

2 − 2a1 = a2 + 2a + 1 − 2ab − 2K,

q = a2
1 − 2a0a2 − b2

1 + 2b0b2 = a2b2 + 2a2bK − 4a2b − 4a3b,

r = a2
0 − b2

0 = 4a4b2 > 0,

(2.24)

and then we can compute

Δ = p2 − 3q, h(z) = z3 + pz2 + qz + r, z∗1 =
1
3

(
−p +

√
Δ
)
. (2.25)

When τ = 0, (2.7) becomes (2.2)

λ3 + (1 + a)λ2 + abλ + 2a2b = 0. (2.26)

Applying Lemmas 2.1, 2.2, 2.6, and 2.7 to (2.7), we have the following theorems.

Theorem 2.8. Let τ (j)k and τ0 be defined by (2.17) and (2.18). Suppose that conditions (C1) and a < 1
hold.

(i) If Δ ≤ 0, then (2.7) had all roots with negative real parts for all τ ≥ 0, and the equilibrium
S1 (or S2) of the system (1.2) is stable.

(ii) If Δ > 0, z∗1 > 0 and h(z∗1) ≤ 0, (2.7) had all roots with negative real parts for τ ∈ [0, τ0),
and the equilibrium S1 (or S2) of the system (1.2) is stable.

(iii) If the conditions of (ii) are satisfied, and h′(zk)/= 0, then system (1.2) exhibits the Hopf
bifurcation at the equilibrium S1 (or S2) for τ = τ (j)k .

Theorem 2.9. Let τ (j)
k

and τ0 are defined by (2.17) and (2.18). Suppose that conditions (C1) and
a > 1 hold.

(i) If Δ ≤ 0, then (2.7) had two roots with positive real parts for all τ ≥ 0, and the equilibrium
S1 (or S2) of the system (1.2) is unstable.
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(ii) If Δ > 0, z∗1 > 0 and h(z∗1) ≤ 0, (2.7) has two roots with positive real parts for τ ∈ [0, τ0),
and the equilibrium S1 (or S2) of the system (1.2) is unstable.

(iii) If the conditions of (ii) are satisfied, and h′(zk)/= 0, then system (1.2) exhibits the Hopf
bifurcation at the equilibrium S1 (or S2) for τ = τ (j)

k
.

3. Direction and Stability of the Hopf Bifurcation

In the Section 2, we obtained some conditions which guarantee that the system (1.2)
undergoes the Hopf bifurcation at a sequence values of τ . In this section, we shall study the
direction and stability of the Hopf bifurcation. The method we used is based on the normal
form theory and the center manifold theorem introduced by Hassard et al. [14]. Throughout
this section, we always assume that system (1.2) undergoes Hopf bifurcations at the steady
state (x∗,y∗, z∗) for τ = τk and then ±iωk is corresponding purely imaginary roots of the
characteristic equation at the steady state (x∗,y∗, z∗).

Letting x1 = x − x∗, x2 = y − y∗, x3 = z − z∗, xi(t) = xi(τt), τ = τk + μ and
dropping the bars for simplification of notations, system (1.2) is transformed into an FDE
in C = C([−1, 0], R3) as

ẋ(t) = Lμ(xt) + f
(
μ,xt

)
, (3.1)

where x(t) = (x1(t),x2(t),x3(t))
T ∈ R3, and Lμ : C → R, f : R × C → R are given,

respectively, by

Lμ
(
φ
)
=
(
τk + μ

)
⎛

⎝
−a −a 0
−az∗ K − 1 −ax∗
ay∗ ax∗ 0

⎞

⎠

⎛

⎝
φ1(0)
φ2(0)
φ3(0)

⎞

⎠ +
(
τk + μ

)
⎛

⎝
0 0 0
0 −K 0
0 0 0

⎞

⎠

⎛

⎝
φ1(−1)
φ2(−1)
φ3(−1)

⎞

⎠,

f
(
μ, φ

)
=
(
τk + μ

)
⎛

⎝
0

−aφ1(0)φ3(0)
aφ1(0)φ2(0)

⎞

⎠.

(3.2)

By the Riesz representation theorem, there exists a function η(θ, μ) of bounded variation for
θ ∈ [−1, 0], such that

Lμφ =
∫0

−1
dη(θ, 0)φ(θ) (3.3)

for φ ∈ C[−1, 0].
In fact, we can choose

η
(
θ, μ

)
=
(
τk + μ

)
⎛

⎝
−a −a 0
−az∗ K − 1 −ax∗
ay∗ ax∗ 0

⎞

⎠δ(θ) − (
τk + μ

)
⎛

⎝
0 0 0
0 −K 0
0 0 0

⎞

⎠δ(θ + 1), (3.4)
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where δ is the Dirac delta function. For φ ∈ C1([−1, 0], (R3)∗), define

A
(
μ
)
φ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),

∫0

−1
dη

(
μ, s

)
φ(s), θ = 0,

R
(
μ
)
φ =

{
0, θ ∈ [−1, 0),
f
(
μ, φ

)
, θ = 0.

(3.5)

Then system (3.1) is equivalent to

ẋt = A
(
μ
)
xt + R

(
μ
)
xt, (3.6)

where xt(θ) = x(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], R3), define

A∗ψ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],
∫0

−1
dηT (t, 0)ψ(−t), s = 0,

(3.7)

and a bilinear inner product

〈
ψ(s), φ(θ)

〉
= ψ(0) · φ(0) −

∫0

θ=−1

∫θ

ξ=0
ψT (ξ − θ)dη(θ)φ(ξ)dξ, (3.8)

where η(θ) = η(θ, 0). Then A = A(0) and A∗ = A∗(0) are adjoins operators.
By the discussion in Section 2, we know that ±iωkτk are eigenvalues of A, thus they

are also eigenvalues of A∗.
By direct computation, we obtain that q(θ) = q0e

iθωkτk , with

q(0) =
(
1, α, β

)T =

(

1,−a + iωk

a
,
a
(
y∗ − x∗

) − iωkx∗
iωk

)T

, (3.9)

is the eigenvector of A corresponding to iωkτk, and q∗(s) = Dq∗0e
isωkτk , with

q∗0 =
(
1, α∗, β∗

)T =
(

1,
iωk(a − iωk)

a2x∗y∗ − iωkaz∗
,

(a − iωk)ax∗
a2x∗y∗ − iωkaz∗

)T

, (3.10)

is the eigenvector of A∗ corresponding to −iωkτk, where

D =
1

1 + αα∗ + ββ∗ −Kτkαα∗eiωkτk
. (3.11)
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Using the same notation as in [14], we compute the coordinates to describe the center
manifold C0 at μ = 0. Let xt be the solution of (3.1) when μ = 0. Define

z(t) =
〈
q∗,xt

〉
, W(t, θ) = xt(θ) − 2 Re

{
z(t)q(θ)

}
. (3.12)

On the center manifold C0, we have

W(t, θ) =W(z(t), z(t), θ), (3.13)

where

W(z, z, θ) =W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+W30(θ)

z3

6
+ · · · , (3.14)

z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Note that
W is real if xt is real. We consider only real solutions. For the solution xt ∈ C0 of (3.1), since
μ = 0, we have

ż(t) = iτkωkz + q
∗(θ)f

(
0,W(z, z, θ) + 2 Re

{
zq(θ)

})

= iτkωkz + q
∗(0)f

(
0,W(z, z, 0) + 2 Re

{
zq(0)

}) def= iτkωkz + q
∗(0)f0(z, z).

(3.15)

We rewrite this equation as

ż(t) = iτkωkz(t) + g(z, z), (3.16)

where

g(z, z) = q∗(0)f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.17)

Noticing

xt(θ) = (x1t(θ),x2t(θ),x3t(θ)) =W(t, θ) + zq(θ) + zq(θ),

q(θ) =
(
1, α, β

)T
eiθωkτk ,

(3.18)

we have

x1t(0) = z + z +W
(1)
20 (0)

z2

2
+W (1)

11 (0)zz +W (1)
02 (0)

z2

2
+O

(
|(z, z)|3

)
,

x2t(0) = αz + αz +W
(2)
20 (0)

z2

2
+W (2)

11 (0)zz +W (2)
02 (0)

z2

2
+O

(
|(z, z)|3

)
,

x3t(0) = βz + βz +W
(3)
20 (0)

z2

2
+W (3)

11 (0)zz +W (3)
02 (0)

z2

2
+O

(
|(z, z)|3

)
.

(3.19)
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Thus, form (3.17), we have

g(z, z) = q∗(0)f0(z, z) = Dτk
(

1, α∗, β∗
)
⎛

⎝
0

−ax1t(0)x3t(0)
ax1t(0)x2t(0)

⎞

⎠

= −aDτkα∗
[

z + z +W (1)
20 (0)

z2

2
+W (1)

11 (0)zz +W (1)
02 (0)

z2

2
+O

(
|(z, z)|3

)]

[

βz + βz +W (3)
20 (0)

z2

2
+W (3)

11 (0)zz +W (3)
02 (0)

z2

2
+O

(
|(z, z)|3

)]

+ aDτkβ∗
[

z + z +W (1)
20 (0)

z2

2
+W (1)

11 (0)zz +W (1)
02 (0)

z2

2
+O

(
|(z, z)|3

)]

[

αz + αz +W (2)
20 (0)

z2

2
+W (2)

11 (0)zz +W (2)
02 (0)

z2

2
+O

(
|(z, z)|3

)]

.

(3.20)

Comparing the coefficients of (3.17), we get

g20 = −2aDτk
(
β∗α − α∗β

)
,

g11 = 2aDτk
(
β∗ Re(α) − α∗ Re

(
β
))
,

g02 = −2aDτk
(
β∗α − α∗β

)
,

g21 = −aDτkα∗
[
2W (3)

11 (0) +W (3)
20 (0) + 2βW (1)

11 (0) + βW (1)
20 (0)

]

+ aDτkβ∗
[
2W (2)

11 (0) +W (2)
20 (0) + 2αW (1)

11 (0) + αW (1)
20 (0)

]
.

(3.21)

Since there are W20(θ) and W11(θ) in g21, we need to compute them.
From (3.6) and (3.12), we have

Ẇ = ẋt − żq − żq =

{
AW − 2 Re

{
q∗(0)f0q(θ)

}
, θ ∈ [−1, 0),

AW − 2 Re
{
q∗(0)f0q(0)

}
+ f0, θ = 0.

def= AW +H(z, z, θ),

(3.22)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.23)

Expanding the above series and comparing the corresponding coefficients, we obtain

(A − 2iτkωk)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), . . . . (3.24)
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From (3.22), we know that for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(0) = −gq(θ) + gq(θ). (3.25)

Comparing the coefficients with (3.23) gives that

H20(θ) = −g20q(θ) − g02q(θ), (3.26)

H11(θ) = −g11q(θ) − g11q(θ). (3.27)

From (3.24), (3.26) and the definition of A, it follows that

Ẇ20(θ) = 2iτkωkW20(θ) + g20q(θ) + g02q(θ). (3.28)

Notice that q(θ) = (1, α, β)Teiθωkτk , hence

W20(θ) = − ig20

ωkτk
q(0)eiθωkτk +

ig02

3ωkτk
q(0)e−iθωkτk + E1e

2iθωkτk , (3.29)

where E1 = (E(1)
1 , E

(2)
1 , E

(3)
1 )

T ∈ R3 is a constant vector.
Similarly, from (3.24) and (3.27), we can obtain

W11(θ) = − ig11

ωkτk
q(0)eiθωkτk +

ig11

ωkτk
q(0)e−iθωkτk + E2, (3.30)

where E2 = (E(1)
2 , E

(2)
2 , E

(3)
2 )

T ∈ R3 is also a constant vector.
In what follows, we shall seek appropriate E1 andE2. From the definition of A and

(3.24), we obtain

∫0

−1
dη(θ)W20(θ) = 2iωkτkW20(0) −H20(0), (3.31)

∫0

−1
dη(θ)W11(θ) = −H11(0), (3.32)

where η(θ) = η(θ, 0). By (3.22), we have

H20(0) = −g20q(0) − g02q(0) + 2τk

⎛

⎝
0
−β
α

⎞

⎠, (3.33)

H11(0) = −g11q(0) − g11q(0) + 2τk

⎛

⎝
0

−Re
(
β
)

Re(α)

⎞

⎠. (3.34)
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Substituting (3.29) and (3.33) into (3.31), we obtain

(

2iωkτkI −
∫0

−1
e2iθωkτkdη(θ)

)

E1 = 2τk

⎛

⎝
0
−β
α

⎞

⎠, (3.35)

which leads to

⎛

⎝
2iωk + a a 0
az∗ 2iωk −K + 1 +Ke−2ωkτk ax∗
−ay∗ −ax∗ 2iωk

⎞

⎠E1 = 2

⎛

⎝
0
−β
α

⎞

⎠,

E
(1)
1 =

2a
(
2iωkβ + aαx∗

)

A
,

E
(2)
1 =

−2(2iωk + a)
(
2iωkβ + aαx∗

)

A
,

E
(3)
1 =

2
A
A1,

(3.36)

where

A = det

⎛

⎝
2iωk + a a 0
az∗ 2iωk −K + 1 +Ke−2ωkτk ax∗
−ay∗ −ax∗ 2iωk

⎞

⎠,

A1 = det

⎛

⎝
2iωk + a a 0
az∗ 2iωk −K + 1 +Ke−2ωkτk −β
−ay∗ −ax∗ α

⎞

⎠.

(3.37)

Similarly, substituting (3.30) and (3.34) into (3.32), we can get

⎛

⎝
a a 0
az∗ 1 ax∗
−ay∗ −ax∗ 0

⎞

⎠E2 = 2

⎛

⎝
0

−Re
(
β
)

Re(α)

⎞

⎠,

E
(1)
2 =

2a2x∗ Re(α)
B

,

E
(2)
2 =

−2a2x∗ Re(α)
B

,

E
(3)
2 =

2
B
B1,

(3.38)

where

B = det

⎛

⎝
a a 0
az∗ 1 ax∗
−ay∗ −ax∗ 0

⎞

⎠, B1 = det

⎛

⎝
a a 0
az∗ 1 −Re

(
β
)

−ay∗ −ax∗ Re(α)

⎞

⎠. (3.39)
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Thus, we can determine W20(0) and W11(0) from (3.29) and (3.30). Furthermore, we can
determine g21. Therefore, each gij in (3.21) is determined by the parameters and delay in
(3.1). Thus, we can compute the following values:

c1(0) =
i

2τkωk

(

g11g20 − 2
∣
∣g11

∣
∣2 −

∣
∣g02

∣
∣2

3

)

+
g21

2
,

μ2 = − Re(c1(0))
Re(λ′(τk))

,

β2 = 2 Re(c1(0)),

T2 = − Im(c1(0)) + μ2 Im(λ′(τk))
τkωk

,

(3.40)

which determine the quantities of bifurcating periodic solutions in the center manifold at the
critical value τk, that is, μ2 determines the directions of the Hopf bifurcation: if μ2 > 0(μ2 < 0)
then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions
exist for τ > τk(τ < τk); β2 determines the stability of the bifurcating periodic solutions: the
bifurcating periodic solutions are stable (unstable) if β2 < 0(β2 > 0); and T2 determines the
period of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0(T2 < 0).

4. Application to Control Chaos

In the present section, we apply the results in the previous sections to system (1.2) for the
purpose of control of chaos. From Section 2, we know that under certain conditions, a family
of periodic solutions bifurcate from the steady states of system (1.2) at some critical values of
τ and the stability of the steady state maybe change along with increase of τ . If the bifurcating
periodic solution is orbitally asymptotically stable or some steady state becomes local stable,
then chaos may vanish. Following this ideal, we consider the following delayed feedback
control system:

ẋ(t) = −1.69
(
x(t) + y(t)

)
,

ẏ(t) = −y(t) − 1.69x(t)z(t) +K
(
y(t) − y(t − τ)),

ż(t) = 4 + 1.69x(t)y(t),

(4.1)

which has two steady states S+=̇(0.65,−0.65, 0.5917), S−=̇(−0.65, 0.65, 0.5917). Clearly, when
τ = 0 or K = 0, system (3.1) is chaotic (as depicted in Figure 1).

For the steady state S+ or S−, we have the corresponding characteristic equation of
system (4.1) as follows:

λ3 + (2.69 −K)λ2 + (6.76 − 1.69K)λ + 22.8488 +K
(
λ2 + 1.69λ

)
e−λτ = 0. (4.2)

Clearly, when τ = 0, (4.2) has a negative root and a pair of complex roots with positive
real parts. Following Section 2, we can obtain p = −2K − 6.2839, q = 22.8488K − 77.2289,
r = 522.0677 > 0, Δ = p2 − 3q > 0, and z∗1 = (1/3)(−p +

√
Δ) > 0 for all K ∈ R. When
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Figure 2: Chaos still exists for K = −1, τ = 0.2.
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Figure 3: Chaos still exists for K = −1, τ = 2.5.

K < −0.1907 or K > 12.107, h(z∗) < 0. Thus, from Lemma 2.6 and Theorem 2.9, we know that
(4.2) has roots with positive real parts. In particular, we have K = −1, that is,

ẋ(t) = −1.69
(
x(t) + y(t)

)
,

ẏ(t) = −y(t) − 1.69x(t)z(t) − (
y(t) − y(t − τ)),

ż(t) = 4 + 1.69x(t)y(t).

(4.3)

In this case, we can compute

p=̇ − 4.2839, q=̇ − 100.077, r=̇522.0677, Δ=̇318.5850,

z1=̇8.9478, ω1 = 2.9913, τ
(j)
1 =̇0.2205 +

2jπ
ω1

, h′(z1)=̇63.4487,

z2=̇5.6545, ω2 = 2.3779, τ
(j)
2 =̇0.5227 +

2jπ
ω2

, h′(z2)=̇ − 52.6043.

(4.4)
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Figure 4: When K = −1, τ = 0.8, chaos vanishes, and S1 becomes local stable. Here initial value is
(0.5, −0.5, 0.6).
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Figure 5: When K = −1, τ = 0.8, chaos vanishes, and S2 becomes local stable. Here initial value is
(−0.5, 0.5, 0.6).
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Figure 6: When K = −1, τ = 2, chaos vanishes, and S2 becomes a stable periodic solution. Here initial
value is (5, −5, 5).
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Thus, from Lemma 2.7, we have Reλ(τ (j)1 )/dτ > 0 and Reλ(τ (j)2 )/dτ < 0. In addition,
notice that

τ
(0)
1 =̇0.2205 < τ (0)2 =̇0.5227 < τ (1)1 =̇2.3210 < τ (1)2 =̇3.1650. (4.5)

Thus, from Theorem 2.8, we have the following conclusion about the stability of the steady
states of system (4.3) and Hopf bifurcation.

5. Conclusion

Suppose that τ (j)
k
, k = 1, 2; j = 0, 1, 2, . . . is defined by (4.4).

(i) When τ ∈ [0, τ (0)2 ) ∪ (τ (1)1 ,∞), the steady states S1 and S2 of the system (4.1) are
unstable (see Figures 2 and 3).

(ii) When τ ∈ (τ (0)2 , τ
(1)
1 ), the steady states S1 and S2 of the system (4.1) are as-

ymptotically (see Figures 4 and 5).

(iii) When τ = τ (j)
k

, system (4.1) undergoes a Hopf bifurcation at the steady states states
S1 and S2.

The above simulations indicate that when the steady state is stable or the bifurcating
periodic solutions are orbitally asymptotically stable, chaos vanishes (see Figures 4–6).
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Traditional pump scheduling models neglect the operation reliability which directly relates with
the unscheduled maintenance cost and the wear cost during the operation. Just for this, based
on the assumption that the vibration directly relates with the operation reliability and the degree
of wear, it could express the operation reliability as the normalization of the vibration level. The
characteristic of the vibration with the operation point was studied, it could be concluded that
idealized flow versus vibration plot should be a distinct bathtub shape. There is a narrow sweet
spot (80 to 100 percent BEP) to obtain low vibration levels in this shape, and the vibration also
follows similar law with the square of the rotation speed without resonance phenomena. Then,
the operation reliability could be modeled as the function of the capacity and rotation speed of
the pump and add this function to the traditional model to form the new. And contrast with
the tradition method, the result shown that the new model could fix the result produced by the
traditional, make the pump operate in low vibration, then the operation reliability could increase
and the maintenance cost could decrease.

1. Introduction

As important aspects in engineering industries, low cost and high reliability are the focus of
the operation control in pumping system [1, 2].

The purpose of pump scheduling function is to schedule the operation of N pumps
over a time period to meet consumer demands, and optimizing this function has been proven
to be a practical and highly effective method in reducing operation costs without altering the
actual infrastructure of the whole system. Thus, this issue naturally draws the attention of
researchers [2].
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Pump system scheduling should be robust with any operation scenarios and should
deal virtually with all operation factors, such as variable speeds, constant speeds, and
switched-off pumps, in relation with operation constraints relative to power, head, flow, and
speed. It is a very complex problem.

Many researchers have developed optimal control concepts to minimize operating
costs associated with water-supply pumping systems. Mays [3] listed and classified various
algorithms that have been developed to solve the associated control problem. In earlier
studies, linear, nonlinear, integer, dynamic, mixed, and other kinds of programming were
used to optimize a single objective: reduction of the electric energy cost. A detailed review
of these works can also be found in [4]. Later, Lansey et al. [5] introduced the number of
pump switches as an alternative to evaluate the pumps’ maintenance costs, which became
the second objective considered until that time. This method also proved that one Gulf Coast
refinery project [6] can save about $2 million per year. In this way, as far as pump operation
is concerned, the basic optimal scheduling model to reduce electrical and maintenance costs
was formulated. The development of the pump scheduling model was later modified by
forming or adding some optimization objectives, such as reservoir level variation and power
peak, according to specific conditions.

However, in contrast to the estimation of electrical cost, where the computation is
straightforward, computing for maintenance costs using the number of pump switches has
some limitations.

According to some researchers [7–10], the cost of unscheduled maintenance which
was not considered in former model may be the largest contributor to operation cost in
process plants, and although with the mainly aspect of the wear and tear in switch course,
the operation course should not been ignored.

At the same time, Bloch and Geitner [7] published three hydraulic factors, namely,
rotation speed, impeller diameter (tip clearance), and operation point that can affect
operation reliability which affects the unscheduled maintenance directly.

Subsequently, further improvements can be realized if these hydraulic factors could
be quantified to develop an objective model in pump scheduling to enable the pump to
operate in a high-reliability mode, then the reliability incidents would be reduced. As a result,
maintenance cost can be reduced [10].

Vibration is one of the most vexing problems of pumping machineries, and it is the
primary cause of considerable altercations and litigations. Excessive vibration of pumps and
piping can destroy parts of the equipment (such as drive shafts, bearings, and seals). It can
affect the reliability and life of the equipment and is often assumed as direct sign of reliability
and health of the machine. One major end user puts a great deal of emphasis in reducing
pump vibration through precise maintenance program, and some researchers adopted this
index to indicate the degree of health and reliability of pumps. For example, Perez proposed
a new method based on vibration called Nelson plot to assess the risk of low-flow operation
in centrifugal pumps [11].

The main purpose of the current study is to set the vibration level as quantification of
the hydraulic factors that influence operation reliability and the wear and tear in operation.
Based on analysis of the vibration characteristics, an objective model is formulated to describe
the relative reliability during operation, which presents a quantitative approach to evaluate
alternative operating conditions. This new objective is added to the traditional model to
form a new scheduling model. Subsequently, the operating conditions of the pump can
be improved by making the pump operate at low vibration, the maintenance cost will be
reduced, and the operation reliability will be enhanced to a certain degree.
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2. Vibration Characteristics of Pumps

For centrifugal pumps, the sources or causes of vibration are mainly composed of two types:
mechanical and hydraulic.

For the mechanical cause, some imbalance and shaft misalignment always exist. This
can cause vibration of the pump, and the intensity of this kind of vibration is related to
the excitation force caused by the imbalance of the load. The load is directly related to the
operation point.

Hydraulic vibration is caused by the reaction of the impeller vane as it passes the
casing cutwater. Pump operation offers the best efficiency point (BEP) and thus creates eddies
within the pump and some flow instabilities, such as cavitation. All these factors directly
correlate with the operation point.

As throttle and speed controls are the most common control methods in centrifugal
pumping system, the vibration characteristics under these two control operating modes were
analyzed.

2.1. Vibration Characteristics of the Pump under Throttle Control

Basically, three types of vibrations should be distinguished: free vibrations, forced vibrations,
and self-excited vibrations. Whereas free vibrations are rarely significant in pump operations,
forced and self-excited vibrations frequently cause problems. For the forced vibrations,
the force is the cause of the vibration, and self-excited vibration occurs when the exciting
frequency is close to the natural frequency; it is an abnormal condition that should be avoided
in system design and installation. Therefore, the vibration characteristics can be obtained by
studying the mechanical and hydraulic force characteristics.

A force curve is shown in Figure 1 [12], summarized by Vorhoeven through test
results from 47 pumps. The horizontal axis represents the BEP multiples, and the vertical axis
represents the dimensionless number of the forces, expressed as

KR =
F

ρgHD2b2
, (2.1)

where F is the force, ρ is the fluid density, H is the pump head, D2 is the outer diameter of
the impeller, and b2 is the outlet width of the blade.

From the curve, the force caused by imbalance has a remarkable characteristic: it does
not become small because of the BEP, and it is related to the load. When the load exceeds the
BEP, the force significantly increases, and this force is relatively stable and small when the
pump operates with partial load.

For the force generated by the flow, some features can be found. The minimum
excitation is in the range of 0.9 BEP to BEP, and the excitation increases with partial load and
at high flow condition. These curves are displayed in distinct bathtub shape. The stronger
excitation caused by the interaction has a large slope at the right of the BEP, whereas the
other has smaller slope at the left of the BEP.

From the above discussion, conclusion can be drawn that the idealized flow versus
vibration plot should have a distinctive bathtub shape. For this bathtub shape, a narrow
sweet spot (80% to 100% BEP) exists that can be used to obtain low vibration levels. The
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Figure 1: Forces in the impeller.

capacities move to the left and right of the low vibration level point, the vibration levels
begin to increase, and the slope at the right area is larger than that at the left.

This bathtub-shaped flow versus vibration plot also can be found in some research
works [9–11].

Figure 2 shows the test result of a well-designed centrifugal pump obtained by Ni et
al. [13]. The pump was precision manufactured and installed. In Figure 2, BX, BY, and BZ
are three direction vibration levels of the bearing house, whereas pc is the vibration level of
the pump cover. The flow versus vibration plot in that test is exactly as the expression, and
similar result can also be found in Perez’s work [11].

2.2. Vibration Characteristics of the Pump under Speed Control

Mechanical and hydraulic excitations are the main causes of vibration.
According to the affinity law in pumps, when a pump is operating at two different

speeds, the flow condition in the pump is homologous. Thus, when the pump operates at
different rotation speeds, the variable tendency of hydraulic excitation versus the flow is
still the same as that at different speeds, but the degree of some flow phenomena, such as
instability interaction, will change under different speeds, especially at low speed.

The mechanical excitation is mostly related to the balance degree and the load. The
load still has some homologous regularities expressed as the variable tendency of hydraulic
excitation versus flow, which is almost the same at different speeds. In addition, once the
speed drops below the nominal motor speed, the mechanical excitation is reduced quite
obviously.
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Figure 2: Vibration level in a well-designed centrifugal pump by Ni.

Based on the above results, the excitation versus flow at different rotor speeds is noted
to have similar varying tendency to a certain extent, but the degree of excitation is different.
Therefore, the vibrations among different rotor speeds from this point have similar varying
tendency to a certain extent.

Figure 3 [10] shows the test vibration level dates of a pump in a chemical process
with model 1.5× 3–13 ANSI B 73.1. The measured point of vibration is at the thrust bearing
horizontal plane, and the date was adopted with root mean square (RMS) expression. The
vibrations among different rotor speeds have similar varying tendency to a certain extent.

However, in centrifugal pumps, the vibration spectrum usually contains only the
fundamental shaft frequency, the blade passage frequency, and one or two harmonics. All
these characteristic frequencies are directly decided by the rotor speed. Therefore, potential
dangers of resonance exist, and when resonance occurs at the characteristic frequency close
to the natural frequency, the similar varying tendencies are gone. Thus, in practice, lockout
speed range is recommended.

As all forces are proportional to the product of pressure × area, F ∼ n2×d4 also applies.
For a given pump, the hydraulic excitation forces increase with the square of the tip

speed and the density, that is, ρ × u2. The bearing housing and shaft vibrations of the pump
would also increase with ρ × u2 if it were not for resonance phenomena.

In Stavale’s work [10], the overall vibration was measured for a variable-speed test and
compared with a constant-speed system with throttle valve, as shown in Figure 4. During the
variable-speed test, the system was fixed, that is, there was no throttling of the control valve
to initiate changes in the flow. Prior to the variable-speed test, the control valve was opened
wide, and the backpressure valve was adjusted to obtain maximum flow at maximum speed;
the backpressure was approximately zero.

Figure 4 shows that in the course of the variable-speed operation, the pump
can operate by following the same operating condition line for the approximately zero
backpressure. The vibration level of the square of the flow under the same operating
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condition line can be clearly seen, so the vibration also follows the same law for the resonance
phenomena of a given pump Ve ∼ n2, expressed as

Ve(n1)
Ve(n2)

=
n1

2

n2
2
, (2.2)

where n1 and n2 represent two different operating pump speeds.
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3. Maintenance Cost Model in Pump Operation

Maintenance costs cannot be easily estimated, however, the wear of pumps is mainly caused
by frequent switching them on and off. Formally, a pump switch is defined as turning on a
pump which was previously off. Therefore, minimizing the number of pump switches will
result in minimization of maintenance costs. As a result, the traditional method assumes that
it increases as the number of “pump switched” increases, and its model can be built according
to Lansey and Awumah [5] and Vladimir et al. [14].

In many applications, the cost of unscheduled maintenance which was not considered
in former model may be the largest contributor to operation cost in process plants, and
although with the mainly aspect of the wear in switch course, the operation course should
not been ignored.

The life of the mechanical seal is directly related to shaft movement. Vibration can
cause carbon face chipping and seal face opening. Drive lugs will wear, and metal bellows
seals will fatigue. In some instances, the shaft movement can cause the rotating seal
components to contact the inside of the stuffing box, or some other stationary object, causing
the seal faces to open and allowing solids to penetrate between the lapped faces. Vibration is
also a major cause of set screws becoming loose and slipping on the shaft, causing the lapped
seal faces to open. The vibration would also cause denting of the bearing races for no design
for the bearings to handle both a radial and axial load.

Critical dimensions and tolerances such as wear ring clearance and impeller setting
will be affected by vibration.

Bearing seals are very sensitive to shaft radial movement. Shaft damage will increase
and the seals will fail prematurely. Labyrinth seals operate with a very close tolerance.
Excessive movement can damage these tolerances also.

Vibration can affect the reliability and life of the equipment and is often assumed to be
the direct as direct sign of the reliability and health of the machine.

As vibration can affect the reliability and life of the equipment, indicators must be
set up to consider vibration data. Maintenance cost is further assumed to increase as the
reliability indicators reduce. In addition, maintenance cost can be significantly reduced with
operation in a high-reliability mode, thus reducing wear and reliability incidents.

3.1. Indicators of Operation Reliability

Vibration data can be normalized based on the following equation:

R =
(

1 −
(

V

Vmax

))
+ C, (3.1)

where V is the vibration level at a certain point, Vmax is the maximum date value, C is a
constant added to set the peak value of R (equal to one) equal to Vmin/Vmax, and R is the
relative reliability indicator.

The R value in (3.1) is a relative reliability number between zero and one. A zero value
does not necessarily indicate zero reliability but is rather intended to discourage running the
pump at these conditions. Similarly, a value of one does not indicate infinite reliability but is
intended to be a relative indicator of the best operating conditions for a given pump. As the
mechanical design of a pump can also affect reliability, these values should not be used to
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compare pumps of different designs or manufacturers. It is intended to compare the effect of
alternative operating conditions on reliability.

3.2. Maintenance Cost Model during Operation Based on
Reliability Indicators

3.2.1. Single-Pump Model

For a fixed-speed pump, the mathematical model can be expressed as a set of static rela-
tionships between the vibration level and flow rate. The pump vibration level is referred to
as vibration velocity or vibration displacement, expressed as RMS or peak-to-peak values.
The vibration level data are divided by the lowest of all the flows for simplification and
normalization. The flow rate is also referred to as capability. Then, a single model can be
expressed as a cubic or fourth-order polynomial equation for the bathtub-shaped curve:

V = v0 + v1Q + v2Q
2 + v3Q

3, (3.2)

where V is the normalized vibration level at a certain point, Q is the flow rate, and system
parameters vi are determined by specific pump vibration characteristics and can be identified
by test data.

With regard to the variable-speed pump, the relationship between (3.2) and its param-
eters is motor-speed dependent. The affinity law in pump theory states the following:

Q(n1)
Q(n2)

=
n1

n2
,

H(n1)
H(n2)

=
n1

2

n2
2
,

P(n1)
P(n2)

=
n1

3

n2
3
, (3.3)

where n1 and n2 represent two different operating pump speeds.
Assuming that the pump model (3.2) for a VSD at a special speed n0 is obtained and

its indicators are v0, v1, v2, and v3, the pump model of the considered VSD for a given limited
speed n has the property defined by (2.2) and (3.2), that is,

V (n)
V (n0)

=
V (n)

v0 + v1Q(n0) + v2Q(n0)2 + v3Q(n0)3
=
n2

n0
2
,

V (n) =
n2

n0
2

[
v0 + v1Q(n0) + v2Q(n0)2 + v3Q(n0)3

]
.

(3.4)

Then, according to (3.3), with k = n/n0, this part can be transformed into

V (n) =
n2

n0
2

[

v0 + v1

(
Q(n) ∗ n0

n1

)
+ v2

(
Q(n) ∗ n0

n1

)2

+ v3

(
Q(n) ∗ n0

n1

)3
]

= k2v0 + kv1Q(n) + v2Q
2(n) + k−1v3Q

3(n).

(3.5)
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Subsequently, according to (3.1), the operation reliability of the signal pump can be
expressed as

Rsig =
(

1 −
(
V (n,Q)
Vmax

))
+
Vmin

Vmax
. (3.6)

Rsig is a function of Q (flow rate) and n (rotation speed). It is directly related to the
operating conditions and reflects the relationship between the maintenance cost and the
operating conditions. The higher Rsig is, the lower is the maintenance cost in the course of
operation.

3.2.2. MultiPump Model

The general multiple pump systems consist of some special characteristics for operating
maintenance cost analysis.

(1) The model should only reflect the pumps that are in operation. Pumps that are not
running should not be considered.

(2) As maintenance cost is not the same for different pumps, the model should consider
the difference.

(3) The relative normalization number is also between zero and one, similar to the
single-pump model.

Considering the above-mentioned factors, the following methods are adopted.

(a) A swift variable vector is added to represent the operating condition of the pump
group. Then, only the pump in operation is considered; hence, the program (2.1)
can be solved.

(b) As the cost of pump is usually related to the installed capacity, assumption is made
that the bigger the installed capacity is, the higher is the maintenance cost. Thus,
a weight constructed with the ratio of single installed capacity to total installed
capacity is adopted to represent the different maintenance costs.

From the above discussion, conclusion is made that the maintenance cost model for
multipump system with k pumps can be expressed as follows:

R =
k∑

i=1

wiϕiRsigi

wiϕi
, (3.7)

where

wi ∈ {0, 1}, i = 1, 2 . . . k. (3.8)

This equation is the swift variable vector. “1” shows that the pump is working, and
“0” indicates that the pump is off:

ϕi =
Ndi

NdT
, i = 1, 2 . . . k. (3.9)
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Figure 5: Idealized flow versus vibration plot recommended by API 610.

NdT is the total installed capacity of the multipump system, and Ndi is single installed
capacity of the ith pump.

3.2.3. Modeling Method of the Maintenance Cost without Test Data

As environment and reliability requirements increase, the pumps are built and tested
to standards and specifications that define the maximum allowable vibration amplitudes
(process pumps and almost all large pumps) in many applications. However, unlike the
pump characteristics, some installations still do not have such vibration data because no
mandatory standard is required. Thus, the maintenance cost model may not work. Hence,
other modeling methods must be developed to deal with this situation.

Fortunately, although specific vibration data may not be known, the allowable
vibration amplitudes defined in standards, such as API 610 [15], are clear. The standards
define different vibration limits for a “preferred operation range” and an “allowed operation
range.” In the preferred operation range, the maximum increment of vibration is less than
10%. On the other hand, the maximum increment of vibration is less than 30% for the allowed
operation range. In a certain pumping system, if the preferred and the allowed operation
ranges are known, assumption can be made that all systems meet the standard. Therefore, a
maintenance cost model can be developed.

Even if the preferred and allowed operation ranges are unknown, API 610 still
provides an idealized flow versus vibration plot [11], as shown in Figure 5. Maintenance
cost model can also be developed based on the assumption that the pump follows this
law.

4. Optimization Model

Generally, the optimal policy should result in the lowest total operating cost for a given set
of boundary and system constraints. Thus, objective function and constraints are needed for
optimal scheduling model.
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4.1. Objective Function

In a typical pumping system, the operation cost mostly comprises energy-consumption cost
and maintenance cost. Thus, the objective function also comprises these two factors [16–19].

4.1.1. Energy Cost

Pump scheduling is used for dealing with the following two situations.
One is the selection process on which available pumps are to be used and for what

period of time (e.g., a day) the pumps should operate.
The other is referred to as (real-time) control problem. The optimal strategy is

concerned with which available pumps must be operated and when they should be operated
according to fluctuations in demands and/or operating conditions.

For the first situation [14], the objective is the determination of energy consumption
of all pumps in the pumping station during the optimization period. The charging structure
used by the electric utility is the factor that must be considered in analyzing electric energy
cost. Then, the objective function is mathematically expressed as

E =
I∑

i=1

T∑

t=1

(ERit)CQit(HSit), (4.1)

where E is the total energy cost to be minimized, I is number of pump systems, and T is
number of time intervals that constitute the operating horizon. ERit is the electrical rating
of pump i during time period t, C is the conversion coefficient, and Qit and HSit are the
discharge and pressure head, respectively, of pump i during time period t.

For the second situation [16], the real scheme is to consider the total input electrical
power as the objective function. This method is much closer to the real situation. However,
the calculation time will be long, which may not be suitable for real-time control. Thus, the
modeling method commonly used is by considering the shaft horsepower of the pumps as
objective function because the energy consumption of the motor and the inverter is very much
less than that of the pump. Then, the objective function can be mathematically expressed as

f1 =
I∑

i=1

wiPi(Qi, ki), (4.2)

where f1 is the total shaft horsepower to be minimized, I is number of pumps, and Qi

and ki are the discharge and pressure head, respectively, of pump i under certain operating
conditions. Pi is the shaft horsepower of pump i under this condition, which can be expressed
as (3.9) according to the characteristic of the pump and the affinity law, and pi is the
conversion coefficient:

P(Q, k) = p0k
3 + p1k

2Q + p2kQ
2 + p3Q

3. (4.3)
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4.1.2. Pump Maintenance Cost

The pump maintenance cost can be as important as the electric energy cost or even more
relevant; however, this cost cannot be quantified easily, but it can be described through
other correlative factors indirectly. Thus, the number of “pump switched” and the operation
relative reliability indicators are chosen to describe this factor.

(1) The Number of “Pump Switched”

Due to the difficulty in starting-up the pumps and the significant increase in frequency during
their switching, the maintenance cost increases as the number of “pump switches” increases,
which can be expressed as follows when real control is used for the pump schedule:

dH
(
w,w′) =

n∑

i=1

∣
∣wi −w′

i

∣
∣, (4.4)

where I is the number of pumps, wi is the operating status of pump i for the next step, w′
i is

the present operating status, wi and w′
i are both switch variables, 1 indicates that the pump

is in operation, and 0 shows that the pump is off.When the pump schedule is used for this
scheme for a period of time, the objective function becomes the total switch number at this
time, expressed as

Ns =
T∑

t=1

n∑

i=1

∣∣∣wi
t −wi

t−1
∣∣∣. (4.5)

(2) Operation Relative Reliability Indicators

R in (3.6) and (3.7) is a relative reliability number between zero and one. As R approaches
one, the higher the reliability is, the lower is the pump wear and the longer is the MTBR;
subsequently, maintenance cost will be reduced.For the real-time control, (3.7) can be used
directly to express the scheme in a period of time. The summation of the time periods can be
used as the objective function.

4.2. Constraints

4.2.1. Water-Supply Demand Constraints

For the pump system to meet some of the water-supply requirements [17], the desired water-
supply index, which is known for the pump system, can be expressed as (HST,Qe), expressed
in a mathematic model.

For parallel-connected pump systems,

Qe =
n∑

i=1
Qi,

HST = Hi.

(4.6)
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For series-connected pump systems,

Qe = Qi, (4.7)

HST =
n∑

i=1

Hi. (4.8)

4.2.2. Operation Constraints

Obviously, a pump should be selected so that it operates predominantly close to the BEP
in the so-called “preferred operation range.” This mode of operation is apt to produce the
lowest energy and maintenance costs and minimize the risk of system problems. However,
off-design operation for limited periods cannot be avoided. Rules are needed to define the
allowable ranges and modes of operation to reduce the risk of damage and excessive wear. To
this effect, limits must be defined for continuous and for short-term operations at maximum
and minimum flow [16].

The range of preferred continuous operation can be defined, for instance, by the
requirement that the efficiency must not fall below 80% to 85% of the maximum efficiency
of the pump, and allowable ranges can be defined so that the efficiency must not fall below
70%.

This constraint can be expressed as

min(QPOPi) ≤ Qi ≤ max(QPOPi), (4.9)

min(QAOPi) ≤ Qi ≤ max(QAOPi). (4.10)

For optimal operation, the constraint should be in POP, as shown in (4.9). However,
for some situations, the optimization model may have no solution. In this case, the constraint
is adjusted to AOP; then, (4.10) can be applied.

At the same time, when the pump is operated by VSD, the speed regulation range
should also be constrained. The operation efficiency will decrease because of a very wide
speed range, and reliability will reduce. Therefore, the factors for operation should be
considered. The speed regulation range is constrained as [kmin 1] · kmin is determined by
several factors, such as the rotation speed at which the pump is no longer able to maintain
discharge against the static head from the demand side, the rotation speed to avoid system
resonance, and the rotation speed to ensure that the pump operating economically.

As the pump operates under speed-control model, the range of the continuous and
short-term operations will constantly change.

According to the affinity law in pump theory, l1 and l2 (Figure 6) are set as similar lines,
and A, B, C, and D are the boundaries of the operation zone; then, l1 and l2 can be expressed
as

Hl1 =
HA

QA
Ql1

2, Hl2 =
HB

QB
Ql2

2. (4.11)
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Figure 6: Efficient operation area for the variable-speed pump.

If head He is needed for this water supply system, then the boundary could be
changed:

Qmin =

⎧
⎪⎨

⎪⎩

QA

√
He

HA
He ≥ HC,

Qc He < HC,

Qmax =

⎧
⎪⎨

⎪⎩

QB

√
He

HB
He < HB,

QB He ≥ HB.

(4.12)

5. Application

5.1. Profiles of the Pump Station

A sample model is a circulating water pumping station, one of the most important facilities
in an alumina plant used for the mother liquor evaporation process. It uses almost 17% of the
electricity consumption in the plant, and the reliability of this system is very important for
the whole plant.

There are five pumps of single- and double-stage suction in the pumping system, and
the pump model is shown in Table 1.

Variable-speed control is adopted for 1# and 2#, and the minimum speed regulation
ranges (kmin) are 0.7 and 0.75 in this system.

The operation characteristics of these pumps are shown in Table 2.
For this pumping system, the basic demand characteristic obeys (4.10) and can be

calculated based on process requirements and pipeline characteristics.

Hdem = 42 + 3.51 × 10−7Q2. (5.1)
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Table 1: The configuration and the parameters of the pump.

Serial number Pump model Qden(m3/h) Hden (m) Qmin (m3/h) Qmax (m3/h) N (RPM)

1# 14SH-9B 1425 58 855 1853 1450
2# 20SA-10 2850 58 1710 3848 960
3# 20SA-10 2850 58 1710 3848 960
4# 20SA-10 2850 58 1710 3848 960
5# 20SA-10 2850 58 1710 3848 960

Table 2: The model parameters of the pump.

H = Hx − SQ2

Serial number Hxi Si

1# 71.17 k2
1 7.488e − 6

2# 70.39 k2
2 1.780e − 6

3# 70.39 1.780e − 6
4# 70.39 1.780e − 6
5# 70.39 1.780e − 6

P = P0 + P1Q + P2Q
2 + P3Q

3

Serial number P0 P1 P2 P3

1# 146.4 k3
1 0.05 k2

1 4.4e − 5 k1 −1.44e − 8
2# 230.5 k3

2 0.1025 k2
2 5.826e − 6 k2 −2.1e − 9

3# 230.5 0.1025 5.826e − 6 −2.1e − 9
4# 230.5 0.1025 5.826e − 6 −2.1e − 9
5# 230.5 0.1025 5.826e − 6 −2.1e − 9

V = V0 + V1Q + V2Q
2 + V3Q

3

Serial number V0 V1 V2 V3

1# 7.696e − 10k2
1 −1.57e − 6 k1 3.84e − 4 1.483 k−1

1

2# 9.62e − 11 k2
2 −3.936e − 7k2 1.92e − 4 1.483 k−1

2

3# 9.62e − 11 −3.936e − 7 1.92e − 4 1.483
4# 9.62e − 11 −3.936e − 7 1.92e − 4 1.483
5# 9.62e − 11 −3.936e − 7 1.92e − 4 1.483

The whole flow date is shown in Figure 7, and these values are obtained from the water
demand curve based on historical data.

5.2. Optimization Pump Scheduling and the Result

A one-day optimization result was made. Assumption was made that the shortest period for
each combination of pumps is 1 h, that is, a pump can be switched off/on after having been
active or inactive for at least 1 h.

Based on the flow demand in Figure 7 and the head demand in (4.10), the desired
objective value is shown in Figure 8.

Genetic algorithm was selected as the optimization method because of its suitable
characteristics for adaptability to complex optimization problem [18, 19].
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Figure 8: Daily supply index.

In this optimization problem, the single objective approach developed by Mackle was
adopted because of its simplicity. The fitness function consists of the energy consumption
cost and penalties for violation of the constraints of the system. All these factors were linearly
weighted.

Then, the optimal result is shown in Figures 9, 10, and 11. A represents the result
when only the minimum energy cost is considered, and B represents the result when both
maintenance and energy costs are considered.

Figure 9 shows the result of the shaft power in the two different optimization
objectives under the same water supply index. The result considered that the energy
consumption was smaller, and the multiobjects are almost equal to the whole, whereas in
some cases, they were smaller. This condition might be because the high efficiency point is
the most reliable operation point in most situations; however, in some cases, the general shaft
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Figure 9: Input power of the different models.
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Figure 10: (a) Operation state of the form model. (b) Operation state of the new improved model.

power may be lower. For a single pump, operating in the high vibration point can cause the
whole system to operate in unreliable conditions.

Thus, from energy-saving perspective, considering only energy cost as the main
objective may be even better. However, when the switch number and reliability factor are
considered in the optimization course, pump control are easy and simple using the least
number of switches, and reliability will be enhanced when the operation point is close to the
low vibration point as much as possible. Then, the pump system will be operating under
high reliability condition, the maintenance cost will be reduced, and the service life will
be extended. Subsequently, the whole LCC will be decreased by this kind of optimization
scheduling model.
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Figure 11: Reliability factor number of the different models.

6. Conclusions

In the present work, a new multiobjective approach, which takes into account operation
reliability and maintenance cost incurred in operation, is presented.

The main conclusions from the current study are the following.
(1) Operation cost reduction and operation reliability enhancement are the focus of

operation control for pump systems. Operation reliability for running pumps, which is a key
to decrease unscheduled maintenance costs caused by the reliability incidents, and the wear
cost during the operation should be considered.

(2) Vibration can affect the reliability and life of the equipment. An index reflecting
the operation reliability and the wear degree in operation course could be considered as the
normalization of vibration level.

(3) The idealized flow versus vibration plot should take a distinct bathtub shape.
For this bathtub shape, a narrow sweet spot (80% to 100% BEP) exists that can be used to
obtain low vibration levels, and the vibration also follows a similar law with the square of the
rotation speed if it were not for resonance phenomena with a given pump.

(4) The maintenance cost which is not considered by traditional model concluding the
unscheduled maintenance cost and the wear cost during the operation can be modeled as a
function of the pump capacity and rotation speed based on the vibration characteristics. This
function is then added to the traditional optimal scheduling model to create a new optimal
scheduling model.

(5) Compared with the traditional method, the result of the new optimal model
changes the result produced by the traditional one. It improves the operating conditions of
the pump and enables the pump to run operate low vibration level. Therefore, maintenance
cost can be reduced and the operation reliability can be enhanced to a certain degree.
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