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A common gynecological disease in the world is breast cancer that early diagnosis of this disease can be very effective in its
treatment. The use of image processing methods and pattern recognition techniques in automatic breast detection from
mammographic images decreases human errors and increments the rapidity of diagnosis. In this paper, mammographic images
are analyzed using image processing techniques and a pipeline structure for the diagnosis of the cancerous masses. In the first
stage, the quality of mammogram images and the contrast of abnormal areas in the image are improved by using image
contrast improvement and a noise decline. A method based on color space is then used for image segmentation that is
followed by mathematical morphology. Then, for feature image extraction, a combined gray-level cooccurrence matrix
(GLCM) and discrete wavelet transform (DWT) method is used. At last, a new optimized version of convolutional neural
network (CNN) and a new improved metaheuristic, called Advanced Thermal Exchange Optimizer, are used for the
classification of the features. A comparison of the simulations of the proposed technique with three different techniques from
the literature applied on the MIAS mammogram database is performed to show its superiority. Results show that the accuracy
of diagnosing cancer cases for the proposed method and applied on the MIAS database is 93.79%, and sensitivity and
specificity are obtained 96.89% and 67.7%, respectively.

1. Introduction

Breast cancer is common cancer and is the first cause of can-
cer mortality in women. Breast cancer is a malign tumor that
develops from cells in the same organ. The disease usually
begins in the lobules, or breast ducts, and can then penetrate
the ducts and walls of the glands and attack the surrounding
adipose tissue or even other parts of the body. There may be
other lumps in the breast that are not cancerous, but in any
case, the final diagnosis is up to the physicians. Science has
proven that despite the existence of a way to prevent cancer
and the lack of definitive treatment for this disease, early
diagnosis of this disease helps physicians to at least prevent
the progression of this disease. The number of cancer
patients in the world is increasing. Based on the World

Health Organization (WHO), breast cancer has a great effect
on about 2.1 million women annually. Based on this statistic,
in 2018, 627,000 women have died of breast cancer which
contains about 15% of all deaths among women cancer [1].
Figure 1 shows the statistical information of the cancer diag-
nosis and the cancer deaths in 2019 [2].

The best solution to decline breast cancer mortality is to
diagnose it in the primary stage and treat it. Early diagnosis
needs a precise and dependable diagnostic method. Among
the various methods of diagnosing breast cancer, mammog-
raphy is a very common and very popular method. System-
atic screening of the female population with mammograms
and early diagnosis of early stage breast cancer can also
increase the patients’ survival chances and reduce the nega-
tive side effects of necessary treatments. These results are
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possible if the quality of services is provided in the best
possible way.

On the other hand, the diagnosis of breast cancer based
on mammography film has several problems. In some cases,
there is a possibility that the film is damaged or the image is
not suitable for diagnosis. Meanwhile, the film wears out
over time, and the possibility of revision decreases. On the
other hand, the only tool a doctor can use to diagnose a
lesion is a visual video. The physician’s visual observations
to diagnose the lesion leads to two errors. The first is that
a radiograph is shown twice to a physician or radiologist.
If he does not know that both images are the same, his diag-
nosis may be different. Another error is showing an image to
two physicians or two radiologists, each of whom has a dif-
ferent diagnosis. Although mammography is usually the best
way to diagnose breast cancer, some classes of cancers are
not diagnosed in this way. In this condition, providing the
computer-aided systems can detect malignant lesions effi-
ciently [1]. Based on the literature, the effectiveness of a
computer diagnostic system is more precise than that of a
physician. Recently, various kinds of research works were

performed in the area of the automatic early detection of
breast cancers [3]. In other words, the higher efficiency of
the computer-aided systems assists the physicians to diag-
nose cancer with lower complexity and higher speed. For
instance, Liu et al. [4] proposed a proper image segmenta-
tion methodology for optimal breast cancer diagnosis
regarding the interval uncertainties. For considering the
indeterminacy, interval assessment was utilized. The method
is guaranteed to providing suitable results in any changes in
the imaging system. The main idea was to provide an
interval-based Laplacian of Gaussian filter to simulate the
intensity uncertainties. Final results have been performed
to MIAS database, and a comparison of the results with
some classic techniques was carried out to illustrate the
method efficiency.

Toğaçar et al. [5] introduced a breast cancer diagnosis
system by CNN. The method was improved by a technique
called BreastNet. The image data was established by the
expansion technique before implementing it into the model.
Then, a precise classification method was accomplished
based on the hypercolumn technique. Then, a comparison
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Figure 1: The statistical information of the cancers (a) and cancer deaths (b) in 2019 [2].
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of method results with some latest techniques was done to
state the higher precision of the suggested system.

Carvalho et al. [6] used another method for breast cancer
detection for utilizing in histopathological images. The
authors presented a method for using phylogenetic diversity
indexes to determine images to model creation and histo-
pathological breast image classification into some classes.
The method was then compared with several different latest
techniques to demonstrate the technique’s accuracy. The
results showed significant robustness to the method to help
experts at large medical centers.

It can be concluded from the previous studies that many
works have been done for the automatic diagnosis of breast
cancer. This paper proposes a new automated method for
breast cancers diagnosed in mammogram images. Here, an
optimized deep learning-based methodology based on a new
improved metaheuristic, called Advanced Thermal Exchange
Optimization algorithm, has been used for this purpose.

2. Image Preprocessing

The heterogeneity of light intensity in medical images has
weakened the boundaries of medical images, especially the
heterogeneity of light intensity in magnetic resonance
images created by nonuniform magnetic fields by radiofre-
quency coils, which is why preprocessing is so important
in medical research. Therefore, after obtaining the input
information of the medical images, preprocessing operations
should be performed, which are methods to eliminate noise
and isolate and improve the differentiation of areas where
there is a possibility of numerical information.

2.1. Image Contrast Improvement. Commonly, in images,
several forms of contrast issues are existing, for instance,
the inappropriate lighting and room conditions, the defi-
ciency of enough applicant interface for imaging, and the
inadequate quality of the measuring sensors and devices.
These variables will disappear with some essential details,
darkening or overexposure, and finally the image abnormal-
ities. The presence of these variables increases their need for
enhancement in numerous medical images. Lack of these
parameters in most numbers of medical images increases
their requirement for improvement. This improvement has
been performed based on contrast enhancement.

Here, the contrast enhancement has been applied to the
images to highlight the skin cancer areas with no changes on
the other areas. A simple application to perform a piecewise
linear contrast stretch operation on an image. The present
study uses a 16-bit lookup table to improve the contrast of
the images that are then stored on a disc. This is imple-
mented based on the following formula:

yhist =
xhist −Minhist

Maxhist −Minhist
, ð1Þ

where Maxhist and Minhist stand for the highest and the low-
est levels for the gray magnitudes of the main image histo-
gram, respectively, and xhist and yhist represent the input

image before contrast enhancement and the output image
after image contrast enhancement, respectively.

2.2. Noise Reduction. As aforementioned, due to different
conditions in the medical imaging, there are some kinds of
noises in them that should be removed before processing.
This is done by using noise reduction. Noises can be white,
random, or Gaussian (that contains a large part of medical
images). Noise is usually in the high-frequency bands of
the image; the important edges and details of the image are
in the same bands. Therefore, noise removal along with pre-
serving the edges and important image information is the
main problem in the image noise removal process. Many
noise removal techniques have been proposed in recent
years. One of the proper methods for noise removal in med-
ical images is to use the Wang-Mendel algorithm. This algo-
rithm is a beneficial technique based on fuzzy theory [7].
Because of the simple conception of the fuzzy theory, the
method of the Wang-Mendel algorithm is so easy to under-
stand. Also, due to the higher speed of this method, it is too
valuable for initial fuzzy model creation [8]. The method for
the rule database is achieved by the following:

(1) Perform fuzzy separation from the input variable
space which can be obtained based on the knowledge
or using normalization technique. Afterward, it clas-
sifies it into two parts including equal or unequal by
performing a fuzzy separation of the input variable
space. Afterward, the membership function has been
selected and the components have been given as a
fuzzy package. Afterward, membership has been
chosen and a fuzzy set is given to every part

(2) Creation candidate language rules which can be
formed by choosing the most all-encompassing laws
for the samples

(3) Level of validity assignment to the laws that are
achieved based on multiplying the membership
function values of the components and the member-
ship function value of the result of the law

(4) Provide final database rules from the collection of
candidate language which is done by classifying the
candidate rules into various groups, where each of
them contains candidate rules with similar assump-
tions. For obtaining the final rule base, the maximum
degree of verification law is achieved in every set

3. Image Segmentation

3.1. Changing Color Space. However RGB has a good con-
cept for the human, it is completely dependent on the three
colors (red, green, and blue), as base colors of the RGB color
space. This color space has also a high dependency on the
ambient light intensity which limits its usages in a different
application. To recover this issue, different color spaces have
been introduced. In this study, the XYZ color space is uti-
lized for the purpose after some trials and errors. The XYZ
color space makes a link between the physiologically
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supposed colors in human color vision and distributions of
wavelengths in the visible spectrum of the electromagnetic.
In the XYZ color model, Y states the luminance, and X
and Z indicate the color information. The formula for con-
verting the RGB to XYZ is as follows:

X

Y

Z

2
664

3
775 =

1
0:17697

×

0:49 0:31 0:2

0:17697 0:8124 0:01063

0 0:01 0:99

2
664

3
775 ×

R

G

B

2
664

3
775:
ð2Þ

The most significant benefit of the XYZ color model is
that it is completely independent of the device.

3.2. Method of Segmentation. The red (R) color space pro-
vides the main dimension in RGB color space to give nearly
the image intensity in medical images. As previously men-
tioned, both X and Z values provide similar color informa-
tion for the XYZ color space. So, for segmentation, X
dimension and red dimension are only normalized, i.e.,

R̂ =
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 +G2 + B2
p ,

X̂ =
Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 + Y2 + Z2
p :

ð3Þ

These normalization values are carried out on every pixel
in the input images. The Otsu threshold is used after this
normalization to provide a low-cost segmentation in the
sense of time complexity.

By intergroup variance optimization and lessening
pixels’ intragroup variance, the Otsu process is an efficient
way that is established to automatically pick the optimal
threshold. There is an issue with the global threshold when
the resolution of the image background is insufficient. To
remove the heterogeneity effect, it is possible to use a local
threshold. To remove inhomogeneity and add a global
threshold to the processed image, this problem is solved by
image preprocessing.

Based on the Otsu method, the threshold value has been
searched which minimizes the class-in-between variance as
follows:

σ2ω tð Þ = ω1 tð Þσ21 tð Þ + ω2 tð Þσ22 tð Þ, ð4Þ

where ωi describes the probability for two different groups
with a threshold magnitude of t and σ2i represents the vari-

ance amount of the groups. In other words, Otsu indicates
that variance minimization of a class is like maximization
of the variance in class-within, i.e.,

σ2
b tð Þ = σ2 − σ2ω tð Þ = ω1 tð Þω2 tð Þ μ1 tð Þ − μ2 tð Þ½ �2, ð5Þ

where μi describes the mean value. The Otsu algorithm will
be defined as the following pseudocode.

Subsequently, for better performance, postprocessing
mathematical morphology, including filling, closing, and
opening, was carried out on the images [9]. First, extra holes
in the image are filled by applying the mathematical filling
operator. The analytical model is as follows:

Xk = Xk−1 ⊕ Bð Þ ∩ Ac, k = 1, 2, 3⋯ , ð6Þ

where A and B describe the area that should be processed
and the constructing element, respectively.

Afterward, the mathematical opening has been employed
to the filled image to eliminate the ignitor information with
no adjustments on other gray surfaces. The mathematical
model of this operator is as follows:

A ∘ B = A ⊖ Bð Þ ⊕ B: ð7Þ

Then, the mathematical closing is executed based on the
following equation for linking the narrow parts:

A · B = A ⊕ Bð Þ ⊖ B: ð8Þ

This study uses a 5 × 5 identity matrix as a structural ele-
ment. Figure 2 gives some examples of the breast segmentation
of images depending on the approach suggested.

4. Feature Extraction

Feature extraction is the process of reducing the dimensional
of the images by dividing and reducing an initial set of
images to more controllable groups. So, the next processing
of the images can be simpler by this process. Of these large
datasets, the most important characteristic is that they have
numerous parameters. To process them, these parameters
need many calculating origins. Therefore, extraction of these
features helps to select and combine variables into features
to get the best feature from those big datasets, thereby effec-
tively decreasing the data volume. In this study, two popular
features including DWT and GLCM were employed for fea-
ture extraction that is described subsequently.

(i) Compute the histogram and probabilities of each intensity level
(ii) Give primary values of ωið0Þ and μið0Þ for all feasible threshold levels (highest intensity (t = 1, 2,⋯,)
(iii) Renew ωi and μi
(iv) Calculate σ2bðtÞ
(v) The optimal threshold here is the maximum of σ2

bðtÞ

Pseudocode 1: The pseudocode of the Otsu algorithm.
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4.1. Discrete Wavelet Transform (DWT). Wavelet transform
is an efficient tool for various applications in image process-
ing and is utilized in numerous fields such as image noise
removal, pattern recognition, coding, image compression,
and feature extraction. Wavelet transform is a method in
the frequency domain. In this method, instead of using sine
and cosine functions (such as Fourier transform), a function
called wavelet is used. When implementing a wavelet trans-
form, the wavelet function retains its shape but is displaced
along with the signal and compressed and opened during
the displacement, thus encapsulating the entire signal.
Unlike short-time Fourier transform, this method can create
different resolutions for low- and high-frequency ranges.

There are various solutions for implementing DWT, the
most common of which is the implementation of Multireso-
lution Analysis (MRA). In this method, the implementation
of discrete wavelet transform is done with the help of a series
of consecutive operations that each step of this operation
includes signal filtering and downsampling. At each stage
of the discrete wavelet process, the signal content is decom-
posed into two orthogonal subspaces including a low-pass
filter (LL) and a high-pass (HH) filter [10], which is then
split into four classifications: LH, LL, HH, and HL.

To increase the frequency resolution, this decomposition
is rendered consecutively, such that the approximation sig-
nal is passed through a pair of high- and low-pass filters
and decomposed into two new information and approxi-
mate signals. Afterward, the read rapidity was reduced by
50 percent. To give more information, the HL subbands with
further efficiency are applied. This process is mathematically
formulated as follows:

Pdwt sð Þ =
di,j =〠f sð Þ ×H ∗ i s − 2 × i × jð Þ,
di,j =〠f sð Þ × L ∗ i s − 2 × i × jð Þ,

8<
: ð9Þ

where di,j signifies the feature of the component in signal
f ðsÞ, L and H describe the coefficients of low-pass and
high-pass filters, respectively, and i and j stand for the
wavelet and the translation factor scales, respectively.

4.2. Gray-Level Cooccurrence Matrix. To study the structure
of different tissues, Haralick has proposed properties based
on the GLCM, which is one of the most successful methods
for studying the properties of different tissues [11]. In the
gray surface cooccurrence matrix method, it is assumed that
the texture image information is determined by a specific
matrix. This method is relied on manipulating the gray sur-
faces of an image. In this method, in addition to examining
the gray surface of the desired pixel, the gray surfaces of its
neighboring pixels are also examined, and by creating a
new matrix of gray surfaces of the pixel neighbors at differ-
ent angles and distances, the image properties are identified
and defined. The coevent matrix is a square matrix and its
size is the amount to the gray surfaces’ number.

The cooccurrence matrix of an image is defined using
radius d and angle θ. Usually, d is selected in the range of
1 and 2. Since each pixel has 8 neighbors at θ equal to 0,
45, 90, 135, 180, 225, 270, and 315 degrees to define the
cooccurrence matrix, so the angle selection may be up to 4
adjacent pixels at θ equal to 0, 45, 90, 135, and 180 degrees
(horizontal, right diagonal, vertical, and left diameter). In
addition to the radius and angle parameters used to define
the cosmopolitan matrix, the gray number parameter can
also be defined. In this study, to define the cooccurrence
matrix, a radial distance of 1 with four zero angles and the
number of 256 gray surfaces were used, for which a new
matrix was extracted. Subsequently, the information about
the utilized characteristics was explained. The first charac-
teristic is Contrast that describes the intensity magnitude
of the pixels and their neighborhood. The second feature is
Entropy which defines the image selected interference. The
third feature is Energy that describes the repetitive pixel pair

(A) (B) (A) (B)

Figure 2: Several instances of the breast segmentation of images depending on the approach suggested: (a) basic image and (b) segmented
image.
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quantity. The fourth feature is Correlation that defines the
spatial feature reliance among the pixels. Finally,Homogeneity
as the last feature as a local uniformity feature creates multi-
ple/single intervals for accusing the nontextured/textured
characteristics. Table 1 indicates five gray-level cooccurrence
matrix features extracted from the samples.

5. Convolutional Neural Networks

After feature extraction from the segmented images, they
should be classified properly as the final step of diagnosis.
In this study, convolutional neural network (CNN) was used
for this purpose. CNNs are significant deep learning tech-
niques where several layers are prepared strongly. This tech-
nique is very effective and is a usual technique in different
applications of computer vision. An outline of convolutional
neural network architecture is depicted in Figure 3.

Generally, aCNNismadeof threemajor layers: the convolu-
tional layer, the pooling layer, and the fully connected layer. Var-
ious layers do various tasks. Each convolution neural network
includes two stages: feedforward and backward for preparation.

In the first step, the features enter the network, and this
operation is the point multiplication between the input and
the variables of each neuron, and finally, the application of
convolution operations in every layer.

The output of the network is then computed. Here, to
establish the variables related to network training, network
output results are applied to compute the network error rate.
To do this, a comparison of the network output to the cor-
rect solution (optimal solution) is carried out by an error
function and the error rate is computed. In the later phase,
by the computed error rate, the postrelease phase begins.
The gradient of each variable is computed in this phase
based on the chain rule, and all variables are altered by the
influence they have on the error created in the network. Fol-
lowing parameters’ updating, the feed-forward phase starts.
Afterward, repeating a good number of these phases, the
network preparing finishes. In this study, CNN is employed
for local feature extraction in breast mammogram images.
To offer optimum weighting among network connections,
the backpropagation technique has been established. As the
activation mechanism, a rectified linear unit (ReLU) is used.

With multiplying filter matrices by the images, feature
maps are generated. To generate the feature map, the filter
moves from left to right and up to down with a specific
stride size to extract high-level features (like edges) until it
finishes the full width. Here, the Max-pooling process uses
the maximum value of the matrix in the feature maps to
decrease the output neurons and the cross-entropy loss value
based on backpropagation, which is formulated as follows:

L = 〠
N

j=1
〠
M

i=1
− d ið Þ

j log z ið Þ
j ,

dj = 0,⋯, 0, 1,⋯, 1|fflfflffl{zfflfflffl}
k

, 0,⋯, 0

0
BB@

1
CCA,

ð10Þ

where dj signifies the proper output vector and zj deter-

mines the achieved output vector for the mth class. The soft-
max function is achieved as follows:

z ið Þ
j =

ef j

∑M
i=1e

f i
, ð11Þ

where M describes the sample number.
To adjust function followed by keeping higher values, a

weighting penalty (ρ) is added that is illustrated in the fol-
lowing equation:

L = 〠
N

j=1
〠
M

i=1
− d ið Þ

j log z ið Þ
j +

1
2
ρ〠

K

〠
L

W2
k,l, ð12Þ

where Wk defines the weight of connections and L and K
define the overall number of layers and the layer l connec-
tions, respectively.

The CNN layouts were usually used based on trials and
errors, which yielded inaccurate results. Numerous auto-
mated and optimized works have been implemented to
address this problem [12]. The use of metaheuristic algo-
rithms is one of the normal approaches. A new, optimized
metaheuristic was used in this study to present an effective
CNN based on the previously described cases.

6. The Modified Thermal Exchange Optimizer

6.1. The Concept of Newton Law of Cooling. Heat transfer
that occurs simultaneously with the movement of a fluid is
called convection heat transfer. Depending on the process,
heat transfer is divided into two categories: free and forced.
In free movement, the energy transferred is due to natural
factors such as Archimedes’ force. But in forced displace-
ment, external forces such as a pump or fan cause the fluid
to move. The heat transfer analysis is complex due to
the simultaneous process of thermal conductivity and fluid
motion. The higher the fluid velocity, the higher the heat

Table 1: Five GLCM features extracted from the samples.

Feature name Mathematical equation

Contrast 〠
m−1

i=0
〠
n−1

j=0
i − jð Þ2 f i, jð Þ

Entropy − 〠
m−1

i=0
〠
n−1

j=0
log2 f i, jð Þ

Energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
m−1

i=0
〠
n−1

j=0
f 2 i, jð Þ

vuut
Correlation

∑m−1
i=0 ∑n−1

j=0 i, jð Þf i, jð Þ − μiμj

σiσj

Homogeneity 〠
m−1

i=0
〠
n−1

j=0

1
1 + i − jð Þ2 f i, jð Þ
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transfer rate. The transfer heat transfer velocity can also be
expressed using Newton’s law of cooling by the following
formula:

_Q = β × A × Ts − Tað Þ, ð13Þ

whereA describes the surface of the body that transfers heat,Q
determines the heat, α signifies the coefficient of the heat
transfer that relates to numerous cases like surface state, heat
transfer mode, and object geometry, and Tb and Ta represent
the body and the ambient temperatures.

According to the above equation, heat losing time is
β × A × ðTa − TÞ dt that defines reserved heat changing
once the temperature dT falls, i.e.,

V × ρ × c × dT = −α × A × T − Tbð Þdt, ð14Þ

where V represents the volume (m3), c defines the specific
heat (J/kg/K), and ρ describes the density (kg/m3).
Therefore,

T − Tb

Teh − Tb
= exp

−β × A × t
V × ρ × c

� �
, ð15Þ

where Teh describes the early high temperature. By consider-
ing the ðα × A × tÞ/ðV × ρ × cÞ, a time-independent value, i.e.,

ζ =
α × A

V × ρ × c
: ð16Þ

That ζ is a constant, the main equation can be reformu-
lated as follows:

T − Tb

Teh − Tb
= exp −ζtð Þ: ð17Þ

Accordingly,

T = Teh − Tbð Þ × exp −γtð Þ + Tb: ð18Þ

6.2. Thermal Exchange Optimization Algorithm. After expla-
nations about the concept of Newton’s law of cooling, it is time
to explain the concept of optimization and the relation of the
Newton law of cooling and the optimization [13]. Generally,
optimization contains all techniques that are used for finding
the best solution for optimization problems. Several methods

of optimization techniques have been introduced for this
aim. Classic methods give exact results for the optimization
problems, but recently, by increasing the complexity of these
problems, the ability to solve the problems with these algo-
rithms is decreasing. Metaheuristics are intelligent algorithms
that are used to find the optimal solution and resolve the
before mentioned issues [14, 15]. Metaheuristic algorithms
are approximation optimizers that have solutions to exit the
local optimization and proper for a wide range of problems.
Metaheuristic algorithms are an inspiration of various phe-
nomena from the nature, behaviors of animals, breeding, to
human societies and use these conceptions to simulate an
approach for solving the optimization problem. Several kinds
of metaheuristic algorithms have been proposed in recent
years [16, 17], for example, biogeography-based optimization
[18], elephant herding optimization [19], ant lion optimizer
(ALO) algorithm [20], equilibrium optimizer [21], world cup
optimizer [22], and Thermal Exchange Optimizer (TEO) [23].

Here, an enhanced design of the TEO algorithm is pre-
sented to provide more ability for this algorithm in terms
of accuracy and consistency. The TEO algorithm is an inspi-
ration of the temperature performance of the objects and
their position which is exchanged between warm and cold
portions to indicate the updated positions. In the TEO opti-
mizer, the individual is split into two parts. One group is the
candidates that are considered as cooling substances, and the
other group is considered as the environment, and then, the
reverse process has been made. Figure 4 shows the pairs of
transfer objects.

The algorithm begins with a predefined number of ran-
dom individuals as the initial solutions are as follows:

T0
j = T + θ × �T − T

� �
,

j = 1, 2,⋯, n,
ð19Þ

where θ denotes a random magnitude in the range [0, 1], T0
j

signifies the algorithm early population for the ith object, and
T and �T stand for the minimum and the maximum
limitations.

After achieving the cost value of the generated candi-
dates, T number of the best cost individual positions is saved
as Thermal Memory (TM) to provide higher efficiency with
lower complexity to the algorithm. The TM individuals are

Input
Pooling 1

Convolutional layer 2
Pooling 2

.

.

.

Feature mapsPooled feature mapsPooled feature maps
Feature maps

Outputs

Fully-connected 1

Convolutional 
layer 1

Figure 3: An overview of convolutional neural network architecture.
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then combined to the individual, and the equal number of
worst candidates is then taken out.

To provide more understanding, consider Figure 5. T1
describes the environment object for Tðn/2Þ+1 cooling object,
and contrariwise. If the object is less than ζ, the temperature
exchanges gradually. ζ is formulated as follows:

ζ =
Cos objectð Þ

Cos worst objectð Þ : ð20Þ

Time is another term in the simulation of the optimizer
that is related to the number of iteration. This term is
obtained by the following equation:

t =
iteration

Max:iteration
: ð21Þ

To improve the global searching of the algorithm, the
environmental temperature changing is considered that is
formulated as follows:

Te
i = 1 − α1 + α2 × 1 − tð Þ × δð Þð Þ × Ti′

e, ð22Þ

where δ describes a random number between 0 and 1, Ti′
e

represents the preceding temperature of the object modified
by Te

i , and α1 and α2 represent the control variables,
respectively.

Finally, the new position for the object temperature is
achieved by the following:

TN
i = Te

i + Told
i − Te

i

� 	
exp −ζtð Þ: ð23Þ

The algorithm also defines whether a component
changes in the cooling objects or not. This has been stimu-
lated by a term, called Pr. The Pr contains some individuals
that are compared with RðiÞ which is a random value in the
range [0, 1]. If RðiÞ is less than Pr, one dimension of the ith

candidate is randomly chosen and the magnitude is refor-
mulated as given in the following:

Ti,j = T j + δ �T j − T j

� �
exp −ζtð Þ, ð24Þ

where Ti,j describes the variable number j of the individual
number i and T j and �T j represent the lower and the higher
limitations of the parameter number j, respectively. The

algorithm is then terminated when the stopping criteria have
been reached.

6.3. Advanced Thermal Exchange Optimizer. Although the
Thermal Exchange Optimizer has a proper speed in solving
the problems, it may be trapped in the local optimum point
once solving complex and nonlinear optimization problems.
Due to this problem, here, an advanced design of the TEO
algorithm is designed and suggested to develop the search
power of the original TEO algorithm and to resolve the men-
tioned issue. The movement of the worst individual in the
groups (Tw) is improved in each iteration of the local search
in the Advanced Thermal Exchange Optimization (ATEO)
algorithm. First, an exchange vector is generated for the
worst solution in each iteration:

Ta
i = Tb + γ × Tr1 − Tr2ð Þ, ð25Þ

where Tb signifies the best solution achieved by the current
iteration, Tr1 and Tr2 represent two dissimilar agents that
are randomly chosen from the population in each group,
and γ describes the exchange coefficient to determine the
differences range between Tr1 and Tr2.

By considering the above condition, the value of the jth

parameter of the vector TNew
i in the following iteration is

achieved as follows:

... ...T1 T2 Tn/2 Tn/2+1 Tn/2+2 Tn

Figure 4: The pairs of transfer objects.

#1 #2 #3 #4 #5

#6 #7 #8 #9 #10

Figure 5: Some examples of the MIAS database mammography
images.
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TNew
i =

Ta
i if rand < CG,

TN
i O:W:,

(
ð26Þ

where CG signifies the general intersection constant
between 0 and 1 and rand signifies a random constant in
the range of [0, 1]. If the cost value of the new solution
has proper value in comparison to the preceding solution,
the new individual substitutes the former one; else, it will
be kept with no changes.

To give a proper result with the TEO algorithm, the
population size should be selected wisely. Indeed, population
size is a term to define the number of individuals
(candidates) that are randomly generated and tested on the
objective function to get the best solution. However, this case
is one of the difficult parts of all metaheuristics [24]. Here, a
self-adaptive mechanism is used for adjusting this case in
each iteration. The main characteristic of the self-adaptive
mechanism is that it regulates the population size automati-
cally in each iteration with no user intervention [25]. Based
on this mechanism, the initial population size before starting
the algorithm main loop is considered as follows:

PS = 10 ×D, ð27Þ

where PS signifies the population size and D describes the
problem dimensions. So, the new population size is achieved
by the following:

PSNew = round PS + rnd × PSð Þ, ð28Þ

where rnd defines a random magnitude in the range
[-0.5, 0.5].

The population size will increase or decrease by up to
half the current population size. If the population size
obtained for the next iteration increases compared to the
population size in the former iteration ðPopSizenew >
PopSizeÞ, then all members of the present individual are
kept unchanged.

Once the population size in the former iteration
decreases compared to the population size ðPopSizenew <
PopSizeÞ, the best members of the present population are
kept and the weak members have been discarded. If the size
of the population does not change ðPopSizenew = PopSizeÞ,
so there will be no population changing. Finally, if the
new population size reduces from the problem dimensions
ðPSNew <DÞ, then the population size becomes equal to the
problem dimension.

6.4. Algorithm Verification. After designing and introducing
the proposed Advanced Thermal Exchange Optimization
(ATEO) algorithm, the performance of the method should
be analyzed to ensure its ability in use in our purpose.

The present work uses the Single Objective Bound Con-
strained Numerical Optimization (CEC2020) benchmark
standard benchmark in 20 dimensions to analyze the effec-
tiveness of the method; in other words, each faction has 20
decision variables that should be optimally selected. The
CEC2020 is known as one of the latterly introduced bench-

mark functions for analyzing optimization problems. The
termination criteria, including the maximum number of
the calculation of the fitness function and the minimum
error value, are set 1e7 and 1e − 8, respectively. The con-
straint of the decision variables is in the range [−100, 100],
and 35 independent runs have been established for giving a
reliable result. The formulation for each equation can be
found in [26]. To provide an appropriate analysis for the
suggested algorithm, a comparison of its results with some
latest algorithms including blackhole (BH) [27], multiverse
optimize (MVO) [28], spotted hyena optimize (SHO) [29],
and original Thermal Exchange Optimization (TEO) [23]
algorithm has been performed. Table 2 indicates the param-
eter setting of the compared algorithms.

During the simulations, for all of the compared algo-
rithms, the population size is equal to 150. To analyze the
algorithms’ behavior, the mean magnitude and the (mean)
and the standard deviation value (Std) have been extracted
from the results. Table 3 discusses the achievements of the
algorithms applied to the CEC2020 benchmark sets.

As seen in Table 3, the scores of the analyzed algorithms
have been shown. It is clear from the results that in some test
functions, the suggested ATEO algorithm escapes the local
optimum and found the optimal value. Here, the mean value
is employed to consider all of the runs for the algorithm,
although the minimum value of the algorithms gives too bet-
ter or even incomparable results. The minimum value of
“Mean” for the proposed ATEO algorithm against the other
compared algorithms indicates its higher accuracy to find
the minimum value. On the other hand, the minimum value
of “Std” for the proposed ATEO algorithm state’s better reli-
ability of the proposed algorithm than the comparative
methods for the studied CEC2020 benchmark function.

7. Classification

With the advances made in the field of imaging and produc-
tion of high-resolution digital images, the need for accurate
image classification is felt so that one of the most basic parts
of image processing is image classification. The important
point in image classification is providing a method with high
accuracy. Taking into account the above-mentioned reasons,
backpropagation is in the form of preparing in the CNN
mostly. We also clarified why different methods have been
proposed to overcome it because of certain major drawbacks
of the backpropagation method. Here, the proposed

Table 2: The variable setting of the compared optimizers.

Algorithm Parameter Value

BH [27]
a [0, 1]

Number of stars 100

MVO [28]
Traveling distance rate [0.6, 1]

Wormhole existence prob. [0.2, 1]

SHO [29]
M
!

[0.5, 1]

h
!

[5, 0]
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Advanced Thermal Exchange Optimizer (ATEO) is devel-
oped and used to reduce the proper and output magnitude
by the selection of suitable network weights replacing
backpropagation in CNN for mean square error (MSE).
The MSE can be mathematically described by the follow-
ing equation:

MSE =
1
T
〠
N

j=1
〠
M

i=1
yij − dij

� 	2
, ð29Þ

where M and N represent the value of the output layers

and the data, respectively, and yij and dij define the

obtained and the proper magnitudes for jth unit in the
output layer of the CNN in time t, respectively.

8. Simulation Results

This study presents an efficient and automated method for
brain tumor detection by combining deep neural networks
and metaheuristics. The technique involves image prepro-
cessing, image segmentation, extraction of features, and then
classification. Based on digital mammogram images, the
process is validated.

Table 5: The feature extraction for the testing data.

# H CR E CN ER
1 0.794 0.072 0.794 0.047 0.272

2 0.758 0.053 0.856 0.012 0.311

3 0.786 0.032 0.851 0.046 0.347

4 0.865 0.029 0.783 0.019 0.215

5 0.749 0.028 0.764 0.018 0.337

6 0.708 0.029 0.886 0.029 0.318

7 0.819 0.017 0.895 0.053 0.319

8 0.693 0.022 0.851 0.031 0.420

9 0.649 0.034 0.817 0.050 0.433

10 0.684 0.069 0.963 0.079 0.351

Table 3: The comparison achievements between the suggested ATEO algorithm and the other compared algorithms on the CEC2020.

ATEO TEO [23] BH [27] MVO [28] SHO [29]

F1
Mean 7:38e8 5:83e11 4:22e15 8:37e13 9:07e15

Std 1:29e8 6:19e10 5:13e13 4:38e11 5:46e11

F2
Mean 5:79e1 9:67e2 4:67e3 1:76e4 4:46e6

Std 4:31e1 2:84e2 3:82e2 6:37e2 2:08e5

F3
Mean 2:08e1 6:92e2 9:37e2 5:17e2 4:83e5

Std 1:46e0 3:27e0 4:28e1 8:09e1 6:17e4

F4
Mean 0.00 6:15e − 10 5:80e − 6 4:96e − 7 7:67e − 6

Std 0.00 3:48e − 11 9:37e − 7 4:18e − 8 4:08e − 8

F5
Mean 1:76e2 4:53e2 6:37e4 6:55e3 9:86e7

Std 3:82e1 1:27e2 5:19e3 2:41e2 8:19e3

F6
Mean 3:29e − 1 6:12e − 1 8:09e0 7:18e0 2:96e1

Std 4:13e − 1 2:73e − 1 3:46e − 1 4:82e − 2 4:63e0

F7
Mean 3:18e0 4:16e0 8:09e1 5:33e2 4:29e3

Std 1:24e0 1:08e0 6:17e1 6:81e1 2:82e2

F8
Mean 7:19e1 8:35e2 2:19e4 5:24e5 2:56e4

Std 2:76e0 4:37e0 3:77e1 4:65e1 4:07e3

F9
Mean 1:96e2 3:17e2 6:51e3 2:85e3 5:11e4

Std 1:07e1 2:03e1 8:09e2 6:19e1 6:97e1

F10
Mean 5:76e2 9:83e2 9:23e3 5:37e3 5:17e3

Std 4:27e − 1 5:94e − 1 2:60e0 1:93e1 6:93e1

Table 4: The feature extraction for training data.

# H CR E CN ER
1 0.816 0.173 0.794 0.257 0.298

2 0.757 0.038 0.996 0.047 0.264

3 0.869 0.046 0.957 0.032 0.317

4 0.806 0.042 0.896 0.031 0.376

5 0.794 0.041 0.987 0.135 0.395

6 0.843 0.010 0.917 0.009 0.219

7 0.585 0.057 0.967 0.037 0.293

8 0.810 0.007 0.968 0.011 0.417

9 0.594 0.068 0.979 0.028 0.294

10 0.704 0.041 0.968 0.046 0.407
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8.1. Dataset Description. To verify the accuracy and the ability
of the suggested method, it is performed to a standard mam-
mographic benchmark database, known Image xAnalysis
Society Digital Mammogram Database (MIAS) [30]. The
MIAS database is compiled by UK researchers to support
researchers involved in working on mammogram images.
The database includes 322 number of 1024 × 1024 digital
mammography images that are taken from the UK National
Breast Screening Program. The MIAS database also includes
correct labels which are obtained with the help of experts. This
database has been gotten available by the Pilot European
Image Processing Archive (PEIPA) at the University of Essex.
Figure 5 shows some examples of the MIAS database mam-
mography images.

8.2. Simulations. By performing the discrete wavelet trans-
form to the image and using decomposition of LL and HL
characteristics from it, the GLCM characteristics are achieved
by the wavelet decomposition’s extracted levels. Then, the fea-
tures are combined with the optimized CNN-based classifier
that is arranged for the final detections. As mentioned before,
five features including homogeneity (H), correlation (Cr),
contrast (CN), energy (E), and entropy (ER) are employed to
the LL and HL subband levels on the image. Table 4 illustrates
the feature extraction for preparing data.

Also, Table 5 illustrates the feature extraction for the
testing data.

For more clarification of the proposed automatic system, it
is validated by three measurement indicators, precision, sensi-
tivity, and specificity that are formulated in the following:

Accuracy %ð Þ = TP + TN
TP + FP + FN + TN

,

Sensitivity %ð Þ = TP
TP + FN

,

Specificity %ð Þ = TN
FP + TN

,

ð30Þ

where TN, TP, FN, and FP represent Truly Negative, Truly
Positive, False Negative, and False Positive, respectively.

To proper validation of the suggested technique, it was
compared with three latest techniques including Multilayer
Perceptron (MLP) [31], Multiple Instance (MI) [32], and
Transfer Learning (TL) [33]. Figure 6 shows the comparison
results between the suggested pipeline Advanced Thermal
Exchange Optimization algorithm-based methodology and
the mentioned methods applied to the MIAS database.

Based on Figure 6, the suggested ATEO-based methodol-
ogy with a 93.79% accuracy rate has the highest precision,
and the method of MI, TL, and MLP with 82.91%, 82.91%,
and 81.99% is placed in the later ranks. Furthermore, the spec-
ificity of the suggested method with 67.7% provides the best
achievements than the other compared methods. Finally, the
total achievements display optimal results for the suggested
technique to automatic breast cancer diagnosis.

9. Conclusions

Breast cancer has been a cause of death in women in the last
decade; the rate of breast cancer is increasing worldwide. This
cancer is common cancer detected in women, and death from
breast cancer is more common in women between the ages of
15 and 54. In recent years, much research was performed on
mammographic images to be able to diagnose cancerous
tumors ignoring the intervention of a person by image process-
ing methods and computer programming. The present study
presented a computer-aided diagnosis system for automatic
detections of breast cancers. The mammogram images were
first preprocessed based on image contrast enhancement and
noise reduction to improve and prepare the image for the next
steps. Afterward, a method based on color space was used for
image segmentation that is followed by mathematical morphol-
ogy. To achieve the main characteristics of the mammogram
images, a combined gray-level cooccurrence matrix (GLCM)
and discrete wavelet transform (DWT) was applied to the proc-
essed images. Finally, a new optimized version of convolutional

82.91 82.91 81.99
93.7991.3 86.95

94.72 96.89

42.23
47.51

33.85

67.7

0

20

40

60

80

100

120

MI TL MLP Proposed method

Accuracy (%)

Sensitivity (%)
Specificity (%)

Figure 6: The comparison results between the suggested pipeline ATEO-based methodology and the mentioned methods applied to the
MIAS database.
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neural network (CNN) and a new improved metaheuristic,
called Advanced Thermal Exchange Optimization algorithm,
was applied for features’ categorization. Simulation achieve-
ments of the suggested technique were finally compared with
three other techniques including Multilayer Perceptron
(MLP), Multiple Instances (MI), and Transfer Learning
(TL) applied on the MIAS mammogram database to show
its superiority.

Data Availability

The database for analysis is based on MIAS (the mammo-
graphic image analysis society digital mammogram data-
base) which can be obtained as follows: http://peipa.essex
.ac.uk/info/mias.html.
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We propose a novel approach to develop a computer-aided decision support system for radiologists to help them classify brain
degeneration process as physiological or pathological, aiding in early prognosis of brain degenerative diseases. Our approach
applies computational and mathematical formulations to extract quantitative information from biomedical images. Our study
explores the longitudinal OASIS-3 dataset, which consists of 4096 brain MRI scans collected over a period of 15 years. We
perform feature extraction using Pyradiomics python package that quantizes brain MRI images using different texture analysis
methods. Studies indicate that Radiomics has rarely been used for analysis of brain cognition; hence, our study is also a novel
effort to determine the efficiency of Radiomics features extracted from structural MRI scans for classification of brain
degenerative diseases and to create awareness about Radiomics. For classification tasks, we explore various ensemble learning
classification algorithms such as random forests, bagging-based ensemble classifiers, and gradient-boosted ensemble classifiers
such as XGBoost and AdaBoost. Such ensemble learning classifiers have not been used for biomedical image classification. We
also propose a novel texture analysis matrix, Decreasing Gray-Level Matrix or DGLM. The features extracted from this filter
helped to further improve the accuracy of our decision support system. The proposed system based on XGBoost ensemble
learning classifiers achieves an accuracy of 97.38%, with sensitivity 99.82% and specificity 97.01%.

1. Introduction

Medical image processing has travelled a long journey since
the last two decades. The past decade has seen the bridging
of medical and information technology. It led to the develop-
ment of decision support systems for early identification of
various brain diseases. Age and structural changes in brain
cause physiological alterations, which are reflected in routine
human behaviour [1, 2]. Along the years, various studies and
constant attempts have been made to study dementia.

Studies [3–5] focus on specific regions of interest in brain
volumes, and these are calculated from two dimensional
manually traced areas. Segmentation algorithms are used to
segment out gray matter (GM), white matter (WM), and

cerebrospinal fluid (CSF). Such volumetric studies are lim-
ited to known brain structures like hippocampus and amyg-
dala, perirhinal, entorhinal, and parahippocampal cortex.

Voxel-based studies [6–8] provide an alternative neuro-
imaging method. These studies apply a general linear model
(GLM) to each voxel of an MRI and statistically compare
them with standard voxel values using Jacobean matrices.

Many studies [9, 10] give detailed insights on compari-
sons between voxel based and volumetric studies.

Several studies [11–13] use cortical thickness measure-
ment as a biomarker for the process of identification of
various brain aging diseases.

With the advancements in the machine learning tech-
niques for image processing and image analysis and the
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availability of abundance of medical imaging data, medical
informatics [14, 15] has achieved great heights. The work-
shop MICCAI 2014 “Challenges of Computer aided diagno-
sis of Dementia on Structural MRI data” addresses the
challenges of applying different algorithms on the same data
and the same algorithm on different data. A summary of all
algorithms presented in MICCAI 2014 is listed in [16]. This
paper did a standardized comparison of different studies in
the domain of the computer-aided decision support system
for the identification of dementia-related diseases using
structured MRI data. The best performing algorithm yielded
an accuracy of 63% and receiver operating characteristics
area under the curve with value 78.8%.

A review of various studies used for brain disorder detec-
tion using the machine learning techniques is published in
[17]. Another review of the latest image processing tech-
niques for studying brain pathology is summarized in [18].

A set of studies have been done on how oxygen supply
changes the brain functioning [19, 20].

The functional modalities of medical imaging include
MRI (magnetic resonance imaging), PET (positron emission
tomography), and CT (computerized tomography) giving us
an insight about the pathophysiology of the organ under
observation. Radiologists analyze this information with their
experience and knowledge. They find this time consuming
and cumbersome. In this study, we explore machine learning
techniques to analyze data extracted from medical images.
Machine learning is the study of algorithms that solve a prob-
lem by leaning from underlying patterns in data, as opposed
to statistical heuristics or rule-based programming. Radio-
mics [21, 22] aids in extracting imaging-based statistical bio-
markers from medical images which can be used as features
for machine learning methods to get accurate predictions.
Ageing leads to degeneration of the brain, which may lead
to dementia, further precipitating such diseases like Alzhei-
mer’s dementia, vascular dementia, dementia with lewy body
dementia, posterior cortical atrophy, and front temporal
lobar degeneration. These diseases affect different regions of
the brain. Clinical Dementia Rating or CDR is a five-point
scale to stage dementia, ranging from 0 to 3, where 0 denotes
no pathological degeneration (control patients) while any
value greater than 0 indicates some pathological brain degen-
eration (test patients).

In this study, we propose a novel approach to develop a
computational decision support system capable of differenti-
ating control patients from test patients by analyzing features
of their MRI images using Radiomics. This system can be
used to assist radiologists for fast and accurate decisions.

(1) We explore the OASIS-3 dataset [23], which is a
longitudinal dataset with 4096 MRI scans. This data-
set also gives specific details about how the CDR
value changes for a subject with respect to changes
in the subject’s MRI scan. These ratings can be used
to label the MRI scans as healthy scans or scans
showing signs of brain degeneration. Using these
labels for a scan, a supervised machine learning
binary classifier can be trained to support brain
degeneration prognosis

(2) We employ data preprocessing best practices such as
data augmentation and feature selection which help
to mitigate overfitting and underfitting of the classifier
and drive it to achieve optimal accuracy on our data

(3) Feature extraction is done using Pyradiomics, which
provides a python implementation of the study
[24]. Pyradiomics provides a unified and standard-
ized set of features from structured MRIs based on
shape and volume as well as texture-based statistical
features. Advanced Pyradiomics algorithms can han-
dle missing data in case of low resolution MRI scans.
Literature studies indicate that Radiomics has mostly
been explored for oncological studies [25, 26], but not
for understanding brain cognition. Our study is also
an effort to determine the efficiency of Radiomics
features from structural MRI scans for classification
of brain degeneration diseases

(4) We explored various ensemble learning classification
algorithms such as random forests, bagging-based
ensemble classifiers, and gradient-boosted ensemble
classifiers such as XGBoost and AdaBoost for our clas-
sification tasks. Such ensemble learning classifiers
have not been used for biomedical image classification

(5) We propose a novel image texture analysis filter,
Decreasing Gray-Level Matrix, which further improves
the performance of our ensemble learning classifiers

We conclude the paper by comparing our novel solution
with existing work in this field. Our results show that the pro-
posed solution outperforms existing studies on various perfor-
mance metrics such as accuracy, specificity, and sensitivity.

2. Materials and Methods

2.1. Data Acquisition. Magnetic resonance imaging is the
process of acquiring images of anatomical structures using

MR image aquisition
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Figure 1: MRI acquisition process.
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magnetic field and radio frequency signals to detect diseases
and functional problems. The “image is snapped” with
different contrasts as different tissues and fluids react differ-
ently to magnetization signals. Tissue demagnetization time
is different for different tissues. These times are identified as
T1 and T2. Another characteristic of a tissue that affects an
MRI is its proton density known as PD. Figure 1 depicts
the complete MRI acquisition process.

In our study, we used the latest OASIS-3 dataset [23],
which is an open source brain MRI database published in
2019. Most of the earlier studies have been done using ADNI

datasets, which are cross-sectional datasets and do not
include more than 500 subjects. OASIS-3 is the largest longi-
tudinal dataset of longitudinal MRI images that consists of
1068 subjects (age group of 46 to 95), collected over a period
of 15 years.

“The CDR is a 5-point scale used to characterize six
domains of cognitive and functional performance applicable
to Alzheimer disease and related dementias: Memory, Orien-
tation, Judgment & Problem Solving, Community Affairs,
Home & Hobbies, and Personal Care. The necessary infor-
mation to make each rating is obtained through a semi-
structured interview of the patient and a reliable informant
or collateral source (e.g. family member)” [27].

The OASIS database also provides CDR for each subject.
The CDR values of a person over a particular period of time
may or may not be the same. There are multiple scans of the
same subject (4-5 times) in the time period of 15 years with
different CDR values. These scans can be further used as
samples. Hence, the database has more than 4000 MRIs.

2.2. Data Preprocessing. We performed data preprocessing
using Python and FreeSurfer [28]. Main steps of data prepro-
cessing are listed below and more visually shown in Figure 2.

2.2.1. Data Augmentation. We augmented our data to make
our classifier much more tolerant towards variance in the data
(prevents overfitting) and to increase dataset size (prevents
underfitting). We employed 4 augmentation techniques:

(1) Flips. Each image is flipped horizontally as well as
vertically.

(2) Scaling. Each image is scaled in either “x” or “y”
direction with the help of a transform matrix
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(3) Rotations. Affine transform matrix
cos ∅− sin∅
sin∅cos∅

 !

gives rotated MRI images in different directions. “∅”
was varied between 25 and 195.

(4) Shears. Affine transform matrix
1 s
0 1

 !
applied to

each image where Shear value changes from 0.3 to
0.7.

2.2.2. De-Oblique.During the MRI process, the subject’s head
may be tilted from to cover the whole brain or to avoid arte-
facts caused by water and air in the nose and eyes of the sub-
ject. This causes the MRI to be oblique and makes
intersubject or intrasubject registration more difficult. The
MRI images in our dataset were de-obliqued using the Free-
Surfer software.

2.2.3. Inhomogeneity Correction. Brain consists of different
types of tissues like gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF), and all these tissues have dif-
ferent range of penetration to the magnetic field and may
result into very bright or very dull artefacts in the MRI
images. This may confuse a radiologist since all tissues of a

(a)

Oxj

Oyj
Ozj

(b)

Figure 5: (a) Decimation of triangles as a mesh of the whole brain. (b) The trapezium points and edges. Xv is the number of voxels included in
the masked region. Vm is the volume of the mesh mm3. Am the surface area of the mesh in mm2.
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particular type should have exact intensity and brightness
values. The process of correcting this is known as inhomoge-
neity correction.

2.2.4. Skull Stripping. The nonbrain parts (skull, neck, eyes,
and nose) were removed from all MRI images to have a uni-
form area of study.

2.2.5. Registration. The brain consists of very fine spatial
structures, due to which it is very difficult to extract and inte-
grate the information from different images. The thickness of
the cortex can be as small as 5mm. The thickness of thalamic
nuclei only extends to few millimetres. Registration is the
process of aligning different MRI images in such a way that
the voxels of a particular tissue from all of those images
correspond to the same 3D location. We applied and
adjusted the registration parameters, i.e., translations, rota-
tions, scaling, and shear operations at voxel level to make
the MRI images concurrent.

2.3. Feature Extraction

2.3.1. Features Based on Shape. To extract features based on
shape, we studied spatial characteristics of MRIs as depicted
in Figure 3.

Slice: an MRI is a 3D image. It consists of a set of contig-
uous 2D slices. These slices may either represent the axial,
sagittal, or longitudinal cross section of the subject’s brain.

Voxel: each slice is subdivided into rows and columns.
The intersection of each row and column represents a

volume of the brain. This is known as a voxel. The field-of-
view matrix of a particular size of the slice is used to deter-
mine the voxel size. The voxel details are depicted in Figure 4.

Shape features include legends of 3D size and shape. We
took the whole brain area and volume as our region of inter-
est. A triangular mesh encapsulating the whole brain area
was used to extract various shape features. Figures 5(a) and
5(b) show how a brain is treated as a mesh surface [28].
The mesh has Xf number of triangles.

From this meshed surface of brain, as in Figure 5(b), we
calculated the following different shape features [24].

(i) Mesh volume V j =Oxi,:ðOyj ×OzjÞ/6 (Oxi,Oyj,Ozj are
the tetrahedral vertices)

Vm = 〠
X f

j=1
V j: ð1Þ

(ii) Voxel Volume. Voxelvolume =∑Xv
j=1Vm

The whole brain volume can be obtained by multiplying
the voxel volume V j with the number of voxels in the brain.

(i) Surface Area. AJ = 1/2ðXjY j × XjZjÞ

Sum of abosulte differences for pixel with level 1 =
|1-7/3|+|1-10/5|+|1-14/5|+|1-23/8|+|1-14/5|+|1-15/5| = 90775

(a)

Sum of abosulte differences for pixel with grey level 2
= |2-11/5|+|2-17 /5|+|2-24/8|+|2-17/5|+|2-14/5| = 4.8

(b)

Sum of abosulte differences for pixel with grey level 3
= |3-14/5|+|3-21/8|+|3-8/3|+|3-17/5|+|3-27/8| = 1.683

(c)

Sum of abosulte differences for pixel with grey level 4
= |4-28/8|+|4-17/5|+|4-24/8|+|4-13/5| = 3.5

(d)

Sum of abosulte differences for pixel with grey level 5
= |5-17/8|+|5-27/8|+|5-23/8|+|5-8/3| = 8.958

(e)

Figure 9: (a) NGTDM for neighbours of 1. Different color schemes were used to track NGTDM procedure to calculate the absolute sum of
gray-level difference. (b) NGTDM for neighbours of 2. Different color schemes were used to track NGTDM procedure to calculate the
absolute sum of gray-level difference. (c) NGTDM for neighbours of 3. Different color schemes were used to track NGTDM procedure to
calculate absolute sum of gray-level difference. (d) NGTDM for neighbours of 4. Different color schemes were used to track NGTDM
procedure to calculate the absolute sum of gray-level difference. (e) NGTDM for neighbours of 5. Different color schemes were used to
track NGTDM procedure to calculate absolute sum of gray-level difference.
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Am = 〠
Xf

j=1
Aj: ð2Þ

To calculate the surface area of the whole brain, it is
divided into small mesh areas. We first calculate the surface
area of each mesh and then sum all of them.

(i) Ratio of the Surface Area to the Volume of the Brain.
Am/Vm

(ii) Lower the ratio more the compactness

(iii) Maximum 3D Diameter. It is the largest Euclidean
distance on the various mesh surfaces on the whole
brain.

(iv) The Maximum 2D Diameter of the Slice. It is the
defined as the largest Euclidean distance on the
whole brain mesh surfaces where mesh vertices
are in the axial plane.

(v) Major Axis length. 4 ffiffiffiffiffiffiffiffiffiffiffi
γmajor

p
(vi) This feature calculates the largest axis length of the

whole brain area

(vii) Minor Axis Length. 4 ffiffiffiffiffiffiffiffiffiffiffi
γminor

p

(viii) This feature represents the minimum axis length of
the whole brain area

(ix) Elongation. This feature gives the relationship
between the largest and smallest component of
the whole brain.

(x) Elongation = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γminor/γmajor

p
(xi) Flatness = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γleast/γmajor
p

2.3.2. First-Order Features. These features are obtained by the
statistical analysis of the whole brain based on values of voxel
intensities [24].

Let S be a set of Nv voxels in the whole brain.
Let Nv be the discrete level of intensities in the whole

brain then XðiÞ is the first-order histogram.
The normalized first-order histogram xðiÞ = XðiÞ/Nv

(i) Energy =∑Nv
i=1ðSðiÞ + cÞ2

(ii) Total energy=Vvoxel∑
Nv
i=1ðSðiÞ + cÞ2

(iii) Entropy = −∑Nd
i=1xðiÞ log2ðxðiÞ+∈Þ

(iv) Minimum =min ðSÞ
(v) 10th percentile of S

(vi) 90th percentile of S

(vii) Maximum =max ðSÞ
(viii) Mean = 1/Nv∑

Nv
i=1SðiÞ is the average gray-level

intensity of the whole brain

(ix) Median = themedian gray level of the whole brain
(x) Range =max ðSÞ −min ðSÞ

(xi) Absolute mean deviation=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1jSðiÞ − �Sj

q

(xii) Rootmean square value of the whole brain ðRMSÞ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ + cÞ2

q

(xiii) Standard deviation =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ − �SÞ2

q

(xiv) Skewness =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ − �SÞ3

q
/

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ − �SÞ2

q
Þ
3
= μ3/σ3

(xv) Kurtosis =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1

q
ðSðiÞ − ŚÞ4/

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ − �SÞ2

q
Þ
2
= μ4/σ4

(xvi) Variance = 1/Nv∑
Nv
i=1jSðiÞ − �Sj

2.3.3. Gray-Level Cooccurrence Matrix [24]. GLCM is a
texture filter that gives the pixel distribution of a particular
set of pixels i, j in a specific direction and distance. The
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pði, jÞ ∣ ∅,δ| value of GLCM represents the number of
times; the pixel with intensity i coexists with intensity j
with angle Ø and distance δ. Figure 6 shows how GLCM
can be obtained from image matrix. The different color
schemes indicate a particular pixel’s coexistence. Generally,
the following statistical features are extracted and then
averaged over GLCM for each direction (angle).

(i) Autocorrelation

(ii) Joint average

(iii) Entropy

(iv) Variance

(v) Contrast

(vi) Energy

(vii) Homogeneity

(viii) Inverse of the difference movement

(ix) Inverse variance

2.3.4. Gray-Level Size Zone Matrix [24]. GLSZM quantifies
different pixel intensity values in different size zones. A size
zone is defined as connected pixels/voxels with the same
gray-level irrespective of direction. The Pði, jÞ element of
GLSZM represents the number of times the intensity value
i of the size zone j exists in the image matrix. Figure 7 depicts
how GLSZM can be obtained from the image matrix. Differ-
ent colors indicate different size zones of different intensity
values.

GLSZM can be used to extract the following features:

(i) Emphasis on small areas

(ii) Emphasis on large areas

(iii) Gray-level nonuniformity

(iv) Normalized gray-level nonuniformity

(v) Size zone nonuniformity

(vi) Normalized size zone nonuniformity

(vii) Low gray-level emphasis on small areas

(viii) High gray-level emphasis on small areas

(ix) Low gray-level emphasis on large areas

(x) High gray-level emphasis on large areas
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Figure 13: (a) Feature importance prediction by XGBoost. (b)
Feature importance prediction by AdaBoost. (c) Feature importance
prediction by bagging. (d) Feature importance prediction by
random forest.

Table 1: Sensitivity, specificity, and accuracy comparison of
different ensemble classifiers.

Classifiers Sensitivity Specificity Accuracy

XGBoost 99.82% 97.01% 97.38%

AdaBoost 94.91% 97.76% 97.21%

Bagging classifier 74.22% 90.07% 87.56%

Random forest 94.44% 87.07% 87.72%
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2.3.5. Gray-Level Run Length Matrix (GLRLM) [24]. The
intensity runs in a GLRLM are defined as the length of con-
nected pixels of equal intensity values and in a particular
direction. A GLRLM element Pði, jÞ ∣ ∅ represents the num-
ber of times a particular run length j of intensity i in direction
Ø occurs in the image matrix. Figure 8 depicts how GLRLM
can be obtained from image matrix. Different colors indicate
different run lengths of the particular length in a particular
direction.

The GLRLM is used to extract following features:

(i) Emphasis on short run

(ii) Emphasis on long run

(iii) Nonuniform gray level

(iv) Normalized nonuniform gray level

(v) Nonuniform run length

(vi) Normalized nonuniform run length

(vii) Run percentage

(viii) Variance of gray level

(ix) Run variance

(x) Run entropy

(xi) Low gray-level run emphasis

(xii) High gray-level emphasis

(xiii) Short run low gray-level emphasis

(xiv) Short run high gray-level emphasis

(xv) Long run low gray-level emphasis

(xvi) Long run high gray-level emphasis

2.3.6. Neighbouring Gray Tone Difference Matrix [24]. Here,
we consider neighbouring pixels of a particular pixel at a
distance ∂ of that pixel. Thismatrix is the set of absolute differ-
ences of the gray levels of the voxel and its neighbouring vox-
els. Let Pnv be the set of whole brain voxels; then, pnvðix , iy , izÞ
belongs to Pnv where pnv denotes the gray level of the voxel at
position ðix, iy , izÞ. The average gray level of the neighbour-

hood is given as follows: �Gj = �Gðix, iy, izÞ = 1/v∑∂
kx=−∂∑

∂
ky=−∂

∑∂
kz=−∂pnvðix + kx, iy + ky, iz + kzÞ where V is total number of

voxels in the whole brain.

(i) Let i denote the value of gray levels in the image

(ii) Let ni denote the number of voxels of gray level i

(iii) Let pi denote the gray-level probability
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Figure 14: Area under the accuracy curve for different ensemble classifiers.
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(iv) Let si be the sum of absolute difference of a gray level
i

Figures 9(a)–9(d) are the required NGTDM for the pixel
with intensities 1-4. Figure 9(e) describes how the absolute
difference of the different gray levels is calculated. Different
colors are used to track down the neighbours of a particular
gray level as shown in the following example where we have
5 discrete gray levels 1 to 5. Figure 10 is the final NGTDM.

Features calculated from NGTDM are as follows:

(i) The neighbourhood-based coarseness

(ii) Neighbourhood-based contrast

(iii) Rate of change of gray levels within voxels

(iv) The complexity of neighbourhood gray levels

(v) Strength of neighbourhood gray levels

2.3.7. Gray-Level Dependence Matrix [24]. GLDM represents
the dependencies of one gray level on other gray levels. It is
defined as a set of connected voxels within distance ∂ depen-
dent on a central voxel. A voxel with a gray level i is depen-
dent on another voxel of gray level j if

i − jj j ≤ γ: ð3Þ

The ði, jÞth element of GLDM Pði, jÞ represents how often
a voxel with the gray value i coexists with its dependent voxel
having gray level j occurs in the whole brain image. Figure 11
describes how GLDM is obtained from brain MRI with n = 5,
i.e., 5 discrete gray levels, γ = 0, and ∂ = 1. The GLDM col-
umns start from 0, and it can go to any finite number of
dependent voxels.

The above GLDM is used to extract the following features:

(i) Small dependence significance

(ii) Large dependence significance

(iii) Gray-level heterogeneity

(iv) Dependence heterogeneity

(v) Dependence heterogeneity normalized

(vi) Gray-level deviation

(vii) Dependence deviation

(viii) Entropy of dependency

(ix) The low gray-level significance

(x) The high gray-level significance

(xi) Small dependency and low gray-level significance

(xii) Small dependency and high gray-level significance

(xiii) Large dependency and low gray-level significance

2.3.8. Decreasing Gray-Level Matrix (Novel Filter). We pro-
pose a novel filter matrix to improve feature set. The pði, jÞ
∣ ∅,δ pixel of DGLM represents the occurrence of the pixel
with intensity i and pixel with intensity j such that i ≤ j.
Figure 12 depicts and obtains a DGLM from the image with
Ø = 0 and δ=1. Colors are used to track down the location
of pixels for which the condition i < j holds true.

The DGLM is used to extract the following features in
four directions, i.e., 0, 45, 90, and 135. Then, the average is
taken to get the summary of the following features:

(i) Energy

(ii) Mean

(iii) Absolute mean deviation

(iv) Skewness

(v) Kurtosis

Table 2: Comparison with similar studies.

Research study Year Dataset Brain area Classifier Accuracy

Ahmad Chaddad [32] 2018 OASIS-1
Hippocampus
Amygdala

Random forest
Random forest

84.09%

CNN 92.5%

Feng Feng [33] 2018
Local hospital

data
Hippocampus SVM 86.75%

Yupeng Li and Jiehui Jiang [34] 2019
Local hospital

data
Hippocampus SVM 91.5%

Kun Zhao [35] Jan 2020 ADNI Hippocampus SVM 88.21%

Tao-Ran Li [36]
Dec
2020

ADNI
Right posterior and left superior cingulate

Gyrus
SVM 95.9%

Current study proposed by us 2021 OASIS-3 Whole brain

Ensemble
classifiers

XGBoost 97.38%

AdaBoost 97.21%

Bagging 87.56%

Random forest 87.72%
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(vi) Entropy

(vii) Autocorrelation

2.4. Feature Selection. Feature selection is the process of eval-
uating and selecting the most important features from the set
of all features depending on their contribution to the
machine learning task at hand. This process helped us to
select the features with the highest predictive relevance to
our classification task. This in turn also helps to eliminate
redundant features.

In our study, we focused on tree-based classification
methods. These methods have intrinsic feature selection
methods. Using these intrinsic methods, we found the feature
relevance for that each classifier.

Figure 13(a) denotes that the novel feature “first order
mean of DLGM” has the highest predictive power for
XGBoost classifier; hence, it is the most important feature
for this classifier. The other important features for XGBoost
classifier are as follows:

(i) Decreasing Gray-Level Matrix feature first-order
mean 0.26

(ii) Gray-Level Dependence Matrix feature high gray-
level emphasis 0.16

(iii) Gray-Level Run Length Matrix feature gray-level
run emphasis 0.14

(iv) Gray-Level Cooccurrence Matrix feature correlation
0.08

(v) Gray-Level Cooccurrence Matrix feature cluster
shade 0.05

(vi) Decreasing Gray-Level Matrix feature information
measure of correlation

Figure 13(b), denotes that the novel feature “first order
mean of DLGM” has the highest predictive power for
AdaBoost classifier; hence, it is the most important feature
for this classifier. The other important top five features for
AdaBoost classifier are as follows:

(i) Decreasing Gray-Level Matrix feature first-order
mean 0.17

(ii) Neighbouring Gray Tone Difference Matrix feature
busyness 0.05

(iii) Decreasing Gray-Level Matrix feature maximal
correlation coefficient 0.04

(iv) Decreasing Gray-Level Matrix feature information
measure of correlation 0.035

(v) Gray-Level Cooccurrence Matrix feature correlation
0.03

Figure 13(c) denotes that the novel feature “Maximal
Correlation coefficient of DLGM” has the highest predictive
power for bagging classifier; hence, it is the most important

feature for this classifier. The other important top five fea-
tures for bagging classifier are as follows:

(i) Decreasing Gray-Level Matrix feature maximal cor-
relation coefficient 0.16

(ii) Gray-Level Dependence Matrix feature large depen-
dence emphasis 0.05

(iii) Decreasing Gray-Level Matrix feature information
measure of correlation 0.03

(iv) Gray-Level Cooccurrence Matrix feature difference
average 0.03

(v) Gray-Level Dependence Matrix feature high gray-
level emphasis 0.03

Figure 13(d) denotes that the novel feature “first order
mean of DLGM” has the highest predictive power for ran-
dom forest classifier; hence, it is the most important feature
for this classifier. The other important features for random
forest classifier are as follows:

(i) Decreasing Gray-Level Matrix feature first-order
mean 0.12

(ii) Decreasing Gray-Level Matrix feature information
measure of correlation 0.07

(iii) Decreasing Gray-Level Matrix feature maximal cor-
relation coefficient 0.06

(iv) Gray-Level Run Length Matrix feature high gray-
Level run emphasis 0.05

(v) First-order mean absolute deviation 0.05

2.5. nsemble Learning Classifiers. “Ensemble learning is a
machine learning paradigm where multiple learners are
trained to solve the same problem. In contrast to ordinary
machine learning approaches which try to learn one hypoth-
esis from training data, ensemble methods try to construct a
set of hypotheses and combine them to use” [29]. A good
number of studies [30, 31] proved that the generalization
capability of a set of learners is much greater than a single
learner. Ensemble classifiers have been applied in diversified
fields, e.g., cyber security, intrusion detection system, face
recognition system, and traffic control systems. The concept
of ensemble classification proceeds in two stages:

(a) Classifier generation

(b) Aggregation of results of these classifiers

There are three approaches to classifier generation and
aggregation.

(i) Bagging

(ii) Boosting

(iii) Stacking
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2.5.1. Bagging. In this method, different training datasets are
generated by resampling the training dataset, i.e., replacing
some of the samples randomly. Suppose we have the follow-
ing dataset: (4,5,6,7,8,9,10) and we have 5 classification algo-
rithms. A different dataset is created by randomly resampling
our data and passed to each classifier for training:

Dataset for classifier 0: (4,5,5,7,8,10,10) by replacing 6
with 5 and 9 by 10.

Dataset for classifier 1: (4,5,7,7,9,9,10) by replacing 6 by 7
and 8 by 9.

Dataset for classifier 2: (5,5,7,7,9,9,6) by replacing 4 by 5
and 10 by 6.

The results of all these classifiers are aggregated when
taking predictions and inference time.

2.5.2. Boosting. Boosting attempts to create chains of different
classification algorithms. The chain with the best perfor-
mance on training data is then used for inference, coming
back to our previous example where we had our training
dataset as (4,5,6,7,8,9,10) and 5 classification algorithms. If
we are creating chains of 3 classifiers, we can create 10 such
chains. A single chain of 3 classifiers is created in the follow-
ing manner:

(a) A batch of training dataset is passed through classifi-
cation algorithm 1, i.e., classifier 0

Dataset for classifier 0: (4,5,6,7,8,9,10)

(b) Based on the performance of classifier 0 on this train-
ing batch, the whole batch is redistributed. The incor-
rectly predicted samples (by classifier 0) from the
training batch are chosen more often to create the
training batch for classifier 1. In this manner, classi-
fier 1 will try to improve on the mistakes done by
classifier 0. This is true for each classifier in the chain

Dataset for classifier 1: (4,5,7,7,9,9,10) by replacing 6 by 7
and 8 by 9 as 7 and 8 was incorrectly predicted.

(c) The same process will be repeated for classifier 2

Dataset for classifier 2: (10,9,7,7,9,9,10) by replacing 4 by
10 and 5 by 7 as both 4 and 5 was incorrectly predicted.

In essence, boosting will create and choose the chain which
is able to collectively give better results than other chains.

In this study, we have explored two boosting ensemble
classifiers XGBoost and AdaBoost. As is evident from our
results, the prediction accuracy with these classifiers is much
higher than bagging classifiers.

2.5.3. Stacking. Stacking is usually a 2 step approach. The
classifiers in step 1 are known as base learners while the clas-
sifiers in step 2 are called stacking model learners. Each step
is an ensemble of few classification algorithms. Predictions
from the base learners are used as dataset for stacking model
learners. Note that the predictions from base-level classifiers
still maintain relationships with initial dataset which the
stacking level classifiers can understand. The predictions
from the stacking model learners are used at inference time.

3. Results

Along with accuracy, the most important metrics to analyze a
biomedical machine learning study are sensitivity and
specificity.

Sensitivity is the measure of true positives, which means
accurate identification of patient with the disease. The test
should have more true positives and minimum false nega-
tives. False negatives mean we may miss out the positive
identification of disease. Our study is a kind of screening test
hence should have more sensitivity. Table 1 shows highest
sensitivity is 99.82% hence in accordance to screening test.

Specificity is the measure true negatives, which is the abil-
ity of a test to rule out the disease accurately. Target of study
is to have minimum false positives. As the study is screening
test, we can have false alarms and less specific. The specificity
of our study is 97.01%.

The three metrics are measured with following formulae:
(i) Specificity = true negative outcomes/true negative

outcomes + false positive outcomes
(ii) Sensitivity = true positive outcomes/true positive

outcomes + false negative outcomes
(iii) Accuracy = true negative outcomes + true positive

outcomes/true negative outcomes + false positive outcomes
+ true positive outcomes

3.1. Analyzing Different Ensemble Methods and Results. In
our study, we observed that boosting ensemble learning clas-
sifiers such as AdaBoost and XGBoost perform better than
bagging and randomized classifiers. Bagging classifiers and
random forest classifiers yield almost the same accuracy of
87%. The results are listed in Table 1. The accuracy calculated
from the area under the curve is depicted in Figure 14 for all
four ensemble classifiers.

4. Conclusion

In this study, we have proposed to build a decision support
system for radiologists in order to make fast and accurate
decisions for early detection of brain degeneration by map-
ping CDR values to MRI images. The most important perfor-
mance metrics in the field of computer-aided biomedical
studies are sensitivity, specificity, and accuracy. Through this
study, we have shown that better data collection and prepro-
cessing (data augmentation and feature selection) along with
gradient-boosted ensemble learning classifiers contribute to
improvements in all 3 metrics.

Data is one of the most important factors for driving the
accuracy of any study. In our study, we worked on the
OASIS-3 dataset, which is a longitudinal dataset with 4096
MRI scans while earlier studies are performed on cross-
sectional datasets with less than 500 MRI scans. This dataset
also gives specific details about how the CDR value changes
for a subject with respect to changes in the subject’s MRI
scan. Any machine learning system requires large amount
of data to be optimally trained. In our study, we have also
employed data augmentation techniques. Data augmentation
resulted in our classifier being much more tolerant towards
variance in the data; this prevents overfitting. Another major
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impact of data augmentation was the increase in dataset size
from 4096 to 10000 MRI scans; this prevents underfitting.
Mitigating overfitting and underfitting helps to achieve opti-
mal accuracy on any dataset, irrespective of the classifier
being used.

Our domain experts (Dr. Kunal Jain and Dr. Tanu)
suggested that brain degeneration is not localized and affects
the brain as a whole. As such, we have utilized whole brain
volumes for our study and classification.

We experimented with Radiomics features and found
that, for our data, the most promising features of

(i) GLCM are correlation, cluster shade, joint average,
and cluster prominence

(ii) GLRLM are gray-level run emphasis, short run high
gray-Level emphasis, short run low gray-level
emphasis, and gray-level variance

(iii) NGTD Matrix is busyness

(iv) GLDM are high gray-level emphasis and small
dependence low gray-level emphasis

(v) GLSZM is small area low gray-level emphasis

Our study also proposes a novel texture filter DGLM. The
features mean, information measure of correlation, maximal
correlation coefficient, first-order entropy, and first-order
skewness from novel DGLM improved the accuracy from
95.6% to 97.38%.

This study also reaffirmed the fact that ensemble learning
classifiers are usually much more accurate than a single
classification algorithm. The study observed that gradient-
boosted classifiers do not suffer from overfitting and also help
to reduce generalization error, hence improving accuracy,
sensitivity, and specificity.

The study results have been compared to other different
studies in this area as depicted in Table 2.
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The work proposes a computer-based diagnosis method (CBDM) to delineate and assess the corpus callosum (CC) segment from
the 2-dimensional (2D) brain magnetic resonance images (MRI). The proposed CBDM consists of two parts: (1) preprocessing and
(2) postprocessing sections. The preprocessing tools have a multithreshold technique with the chaotic cuckoo search (CCS)
algorithm and a preferred threshold procedure. The postprocessing employs a delineation process for extracting the CC section.
The proposed CBDM finally extracts the vital CC parameters, such as total brain area (TBA) and CC area (CCA) to classify the
considered 2D MRI slices into the control and autism spectrum disorder (ASD) groups. This attempt considers the benchmark
brain MRI database which includes ABIDE and MIDAS for the experimental investigation. The results obtained with ABIDE
dataset are further confirmed against the fuzzy C-means driven level set (FCM+LS) and multiphase level set (MLS) technique
and the proposed CBDM with Shannon entropy along with active contour (SE +AC) presented improved result in comparison
to the existing methodologies. Further, the performance of CBDM is confirmed on MIDAS and clinical dataset. The
experimental outcomes approve that the proposed CBDM extracts the CC section from the 2D MR brain images that have
higher accuracy compared to alternative techniques.

1. Introduction

Corpus callosum (CC) is one among the vital brain parts
responsible for neural communication among the two brain
sections. CC is the prime commissural territory in the human
brain, and it is composed of nearly 200-300 axons [1]. The
work by Hinkley et al. (2012) on agenesis of corpus callosum
(ACC) confirms that CC plays a significant role in problem
cracking schemes and swiftness in vocal processing [2]. The
study of Paul et al. (2014) also presents the relation of ACC
and autism [3]. Their work also confirms that the CC disor-
der will lead to autism. In early significant researches, many
works are reported to observe autism disorder based on CC

[4–7]. Some of similar research works also report the study
of sexual dimorphism in CC [8–14].

Due to its clinical significance, a substantial amount of
CC assessment procedures has been proposed and dis-
cussed by researchers [15, 16]. Normally, the CC region is
best visible in the sagittal view of two-dimensional (2D)
brain MRI. The visibility of the CC is also approximately
similar to other normal brain tissues and hence, the seg-
mentation of CC from the MRI requires some complex
procedures in comparison with the separation of other
brain regions. Considering literature, procedures such as
manual segmentation [6], level set scheme [10], active con-
tour method [15], and fuzzy C-means [16] are applied to
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extract CC with possible accuracy. Most of these approaches
consider a two-step procedure to separate the CC from the
sagittal view MRIs.

In recent times, the two-step process which integrates
multithresholding and segmentation is widely adopted by
the investigators to obtain the region of interest (ROI) of
the brain MRI documented with various modalities such as
flair, T1, T1C, T2, and diffused weighting (DW) [17–22].
These approaches implement the heuristic algorithm-
oriented threshold process to develop the prominence of
the ROI and a preferred segmentation plan to mine the
ROI. Further, the ROI is assessed in comparison with the
corresponding ground truth (GT) pictures presented by a
domain professional. The image similarity parameters (ISP)
obtained during the ROI and GT evaluation confirm the
superiority of the brain MRI assessment technique [23–25].

The earlier works confirms that the heuristic approach-
based brain MRI work offers improved result. This is
obtained in comparison with the existing conventional
processes [25]. Hence, in this work, most successful heuristic
procedure called the cuckoo search (CS) algorithm is consid-
ered during the brain MRI preprocessing. The performance
of the traditional CS (TCS) is enhanced based on the chaotic
operator known as Ikeda map (IM), which aided to accom-
plish better threshold result. The details of the IM and its
application are discussed in [20, 21). Experimental investiga-
tion of their work is then compared with the Lévy-Flight and
Brownian-Walk operators, which confirmed that the chaotic
cuckoo search (CCS) offers better threshold compared to the
traditional CS.

During the preprocessing procedure, CCS identifies the
optimal value of thresholds for brain MRI. In preprocessing,
a comparative examination amongst the famous threshold
approaches, such as Kapur, Tsallis, Otsu, and Shannon is
performed. This helps in finding the best suited threshold
scheme for CC examination using the 2D brain MRI. The
role of the postprocessing plan is to demarcate the CC
subjected to preprocessing. After mining the CC, an assess-
ment in comparison with the ground truth is performed to
obtain the vital ISPs.

In literature, few methods are discussed to obtain the CC
present in the considered 2D brain images. Further, most of
the methods are interested in computing the total brain area
(TBA) and corpus callosum area (CCA) to categorize the 2D
brain MRI dataset into control and autism spectrum disorder
(ASD) groups. In analyzing an image which belongs to med-
ical, it is always essential to measure the outcome of the
proposed tool with a chosen image dataset. If the tool works
well on the dataset, further, the developed image examination
instrument can be considered to estimate the medical grade
images.

The earlier works on CC examination computes only
the TBA and CCA and directly implements a categorization
process. To evaluate the efficacy of the developed tool, it is
essential to compute the ISPs and the essential statistical
measures. Further, the soft computing-based CC examina-
tion is also needed to improve the extraction accuracy.
Because of these reasons, in the projected work, CCS with
CBDM is proposed for examining the CC section.

This research work also presents a detailed study on (i)
different threshold procedures, such as Otsu, Kapur, Tsallis,
and Shannon and (ii) various segmentation approaches, such
as level set (LS), Chan-Vese (CV), region growing (RG), and
active contour (AC) in order to identify the appropriate pre-
and postprocessing practice to mine CC.

The experimental investigation is implemented in Matlab
software (Version7, Release14, Lic. No. 285705 with perpet-
ual term) using the public autistic databases, like ABIDE
(images of 60 volunteers) [19, 20] and MIDAS (images of
4 × 2 volunteers) [21]. The clinical implication of projected
tool is confirmed with the real-time clinical MRI obtained
from Proscans laboratory (images of 10 × 2 volunteers) [22].

2. Related Works

The MR imaging technique is extensively utilized to
record the performance and malformations of internal
organs of living beings. The improvement in the MRI
method additionally supports the upgrading and appraisal
of features recorded in 3-dimensional digital pictures. Pre-
vailing evaluation methods which deal with 3D images are
intricate. They require extraordinary swiftness in computing
machines since data volume is enormous. To reduce the dif-
ficulty in assessing the MRI, reorganized 3D image is further
transformed into a significant amount of 2D slices. Finally,
the two-dimensional slices are assessed using a suitable image
investigation system. In the proposed work, 2D brain MRI
slices are considered for the study, and the stages involved
in the CC segmentation and the corresponding brain abnor-
malities to be detected are presented in Figure 1.

Examination of CC from 2D slices of MRI with sagittal
view is commonly considered by the researchers. Paul
et al. (2014) proposed a practical examination to compare
ACC and autism using 2D MRI of T1 and DW modalities
[3]. Their work confirms that examination of CC is essen-
tial to asses ACC and autism. Wolff et al. (2015) proposed
a clinical investigation to confirm that the CC region is
reduced for elders and adults having autism spectrum dis-
order (ASD) [4]. Frazier and Hardan (2009) applied a
region-based examination on CC section of patients with
autism [5]. A manual segmentation scheme is considered
to extract and evaluate the CC’s size values and confirmed
that the ASD can be predicted based on the size of the CC
section. Tepest et al. (2010) inspected the size of CC and
its segments associated with total brain volume (TBV) to
identify the autism with respect to gender and revealed
that the TBV values in males are higher than in females
[6]. Lefebvre et al. (2015) proposed a work on neuroana-
tomical variety of CC and TBV in autism and verified
the work by considering the brain MRIs of 694 volunteers
[7]. The studies on the sexual dimorphism in CC and var-
iation in size of TBV and CC also widely examined using
the 2D MRI slices [8].

Previous studies authenticate the requirement of CC
examination during the human brain analysis; hence, more
care is essential during the segmentation of the CC region.
Normally, the CC is a thin section in the brain MRI and
will have the pixel intensity similar to other brain sections.
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Hence, it is essential to consider an efficient image pro-
cessing system to excerpt and estimate the CC from the
2D brain MRI of a chosen modality.

Fredo et al. (2014) applied a two-step process with
fuzzy-C-means (FCM) clustering and multiphase level set
(LS) approach to delineate the CC, cerebellum, and brain
stem from the 2D MRI recorded with T1 modality and
obtained a mean area of 0.87 for control (normal) cases
and 0.67 for ASD cases [9]. Further, Fredo et al. (2015)
implemented a similar work on the ABIDE database with
20 samples of control cases (male = 14 and female = 6)
and 20 samples of ASD cases (male = 11 and female = 9)
and attained mean area of 0.90 for control cases and
0.75 for ASD [10, 11]. Fredo et al. (2015) employed the
reaction diffusion regularized level set (RDRLS) method
to delineate CC [10]. Vachet et al. (2012) implemented
the deformable active Fourier contour model [15], and
İçer (2013) discussed a two-step approach based on the
Gaussian mixture model and FCM to extract the CC
[16]. Li et al. (2013) executed an automated two-step seg-
mentation scheme by combining the mean shift clustering
technique-based image improvement and geometric active
contour (GAC) dependant segmentation of CC [26]. The
work of Elsayed et al. (2010) implements a spectral segmen-
tation with the multiscale graph decomposition process to
extract CC [27]. Recent review of Cover et al. (2018) presents
an elaborate evaluation of various CC evaluation schemes,
MRI modalities, and performance measures existing in the
literature [28]. Their work also reports that T1-weighted
MRI is the widely adopted modality (44%) to examine CC.
This work also discusses the merits and demerits of the exist-
ing schemes and also recommends the need for a novel eval-
uation tool.

The proposed procedure has a two-stage process to
extract the CC section present in 2D brain MRI of T1
modality that is also implemented. For experimental inves-
tigation, the database such as ABIDE and MIDAS is uti-
lized. Further, in this proposed method, it is implemented
and validated for the clinical MR image obtained from
Proscans laboratory.

3. Computer-Based Diagnosis Method

A brief summary concerning the methods adopted in this
paper to provide a computer-based diagnosis method
(CBDM) for the extraction of CC from 2D brain MRI is dis-
cussed in this segment. The outline of the database utilized,
rudimentary tasks in examining images of brain, preprocess-
ing, delineation, and validation are presented elaborately.

Figure 2 presents various phases used in this examination
tool. Firstly, a 2D image of sagittal viewMRI of chosen slice is
considered with/without skull section. Early improvement of

Corpus callosum
extraction from 2D MRI

Modality: T1
Orientation: sagittal view

Segmentation of CC with
manual/automated

technique

Agenesis of
corpus callosum

Autism spectrum
disorder

Total brain
volume

Figure 1: Various approaches to examine the CC to detect different brain abnormalities.

Image preprocessing

Skull
stripping

Image
enhancement

Image post-processing

Ground truth
image

Performance assessment for
proposed tool

Validation

Figure 2: Overview of proposed tool.

3Computational and Mathematical Methods in Medicine



raw MRI slice is carried out using an appropriate image pre-
processing method, and a preferred postprocessing scheme is
to be adopted to mine the CC section. Further, the perfor-
mance of the tool can be validated with a relative analysis
with ground truth (GT) image presented by a specialist.
Extracted CC is then validated by a doctor by providing the
decision of next step in treating the patient to normalize or
provide remedy for the brain prognosis state. In all cases,
the developed tool by any suitable approach can only offer
a suggestion/preopinion regarding the brain abnormality,
and the doctor has to provide consultation and thereby a
conclusion in treating the patient further based on the
condition.

3.1. MRI Database. The sagittal view of MRI adopted in
this paper is collected from the public database such as
ABIDE and MIDAS. Further, real clinical image obtained
from Proscans is also used in this research work. These
entire databases consist of 3D brain structures recorded
with T1 modality. ITK-SNAP version 3.6.0 tool aids to
obtain the 2D slices from the complete dataset. [29, 30],
and an image normalization is implemented to obtain
2D slices of size 256 × 256 pixels. Similar practice is
employed for the GT image of ABIDE. The ABIDE is
the commonly used database in autism studies, which pro-
vides the vital details, like subject case (controlled/autistic),
gender, age, area of CC, and TBV [9–11].

In this work, 60 volunteer’s (age group of 13-16 years)
images are considered for the examination. The MIDAS
database consists of two control (normal) and two autistic
volunteer’s images that are recorded in the age of 2 years
and follow-up in 4 years, respectively. Finally, the clinical
images of a volunteer collected from Proscans are also exam-
ined using the proposed approach.

3.2. Image Preprocessing. This scheme is generally considered
to improve the picture under assessment using a suitable
image processing technique. This procedure will increase
the ROI by uniting the similar pixel values with a set of
threshold values selected. Recent related works confirm that
preprocessing practice is an essential stage in two-step image
processing tool.

3.2.1. Skull Stripping. Usually, the reconstructed brain MRI is
associated with the outer head bone called the skull. For
modalities of T2 and flair type, concentration of pixels
belonging to the skull is roughly greater than soft brain
tissues. Also, in T1 MRI modality, the skull intensity is simi-
lar to the intensity level of the brain tissue. Automated brain
region segmentation always requires a suitable skull stripping
procedure to discrete the soft region of the brain from that of
the skull information [31]. Various skull removing methods
discussed by the researchers can be found in [32]. If semiau-
tomated brain section segmentation is implemented, the
additional procedure of skull removal will not be required
further. The methods such as LS, CV, RG, and AC fall in
the semiautomated group do not take into consideration of
the skull section. In this paper, the work is instigated on the
2D MRI slice, with and without skull section.

3.2.2. Cuckoo Search Algorithm. In consideration with var-
ious existing metaheuristic methods, cuckoo search (CS)
presented by Yang and Deb has appeared to be one of
the effective soft computing techniques [33–37]. Recently,
CS is widely accepted by maximum number of researchers
in solving numerous optimization tasks [38, 39]. The main
advantage of CS compared with the firefly and bat algorithm
is the structure of the CC that is simple and supports higher
probability of getting the optimized solution. Various chaotic
search procedures assisted CS can be found in [40, 41].

The mathematical expression of CS is as follows:
The CS executed with the following conventions:

(i) Each bird leaves behind an egg in randomly nomi-
nated nest of other host birds

(ii) Nest of strong surviving egg is inherited to the
succeeding level. The hatching rate of this egg is
faster than that of the host

(iii) The chance of categorizing the egg by host bird in CS
is pa ∈ ½0, 1� for a selected optimization task

In most of the heuristic algorithms, accomplishment in
discovering a resolution for a job generally depends on its
direction finding method. Typically, it is guided by Lévy
Flight (LF) and chaotic strategies [42, 43].

In this paper, the Ikeda map (IM) is chosen to drive the
CS, and the details on IM are available in [44, 45]. In CS opti-
mization investigation, nascent location ðXðt+1ÞÞ naturally
count on previous position ðXi

ðtÞÞ. In this section, the subse-
quent equations are accounted to search an updated location
of cuckoo:

X t+1ð Þ
i = X tð Þ

i + α ⊕ IM, ð1Þ

where Xðt+1Þ
i is the updated position and signifies early posi-

tion, ⊕ denotes the entrant multiplier, and IM shows the cha-
otic Ikeda map approach. Normally, the parameter “α” is
assigned with a positive integer (i.e., α > 0) and in this
research, “α” is allocated as 1. Additional particulars regard-
ing CS are cited in the works of Yang and Deb [37].

IM is one of the chaotic search operator, and its explana-
tion and application on various heuristic algorithms can be
found in [17, 18].

IM = R::exp ZΦ − Z
δ

1 + Xi
tð Þ�� ��2

 !" #
, ð2Þ

where Z is the iteration number, ϕ is allotted as 0.1, δ is
chosen as 7, and the disordered attraction constraint (R)
value is given as 0.75.

Equation (2) presents the IM implemented in the recent
attempt of Satapathy et al. (2018) to increase the investiga-
tion competence of the bat algorithm (BA) [46]. This work
established that the IM-assisted BA offered better result in
comparison with particle swarm optimization (PSO), firefly
algorithm (FA), and traditional BA. Further, the work of
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Abhinaya and Raja (2015) [17] and Lakshmi et al. (2016) [18]
confirms the advantage of IM-based cuckoo search for the
medical image processing. Hence, this work implements a
chaotic IM search technique to improve the performance of
the traditional cuckoo search (TCS) method. The efficacy of
the proposed chaotic cuckoo search (CCS) is further
confirmed with other techniques, such as particle swarm
optimization (PSO) [47], bacterial foraging optimization
(BFO) [48], bat algorithm (BA) [41], and TCS [41].

The subsequent initial constraints are assigned for every
heuristic algorithms adopted in this paper: representative’s
dimension is designated as 30, exploration measure is set as
3 (a three-level), the complete iteration limit is maintained
as 1500, and end criteria are given as maximized value of
image measure (between class variance for Otsu and maxi-
mized entropy for Kapur, Shannon, and Tsallis thresholding
schemes).

3.2.3. Image Thresholding. Thresholding is an extensively
followed image enhancement process employed to process
traditional and medical images [23–25]. During the thresh-
old process, a picture frame is separated into several sections
by grouping related pixels, to find and evaluate the significant
information existing in the picture. Previous research works
confirm the availability of a variety of threshold schemes,
such as Otsu, Kapur, Shannon, and Tsallis to preprocess the
gray scale and RGB pictures. This section also implements
a comparative study among the above said threshold
procedures.

(1) Otsu’s Scheme. This scheme is one of the well-known pro-
cedures widely adopted to progress the trial picture based on
the chosen threshold value. In the related works of this
research, multithresholding based on Otsu’s approach is
widely applied by the researchers for a class of image cases
based on maximizing the interclass variance.

Otsu is a nonparametric threshold scheme developed in
1979 [49], and its mathematical relation is depicted as
follows;

Let L = 256, and the chosen threshold number is three
(i.e., Th = 3), which divides the input image into three dis-
tinct groups, like Q0, Q1, and Q2.

Assume that the image consists the thresholds like ðt1,
t2 ⋯ tThÞ, which split the input picture into three groups:
Q0; gray level values are accounted from 0 to t − 1, Q1
which has gray levels of range t1 to t2 − 1, and Q2 con-
tains gray levels from t3 to L − 1.

The objective function for the above case will be

Maximize F Tð Þ = φ0 + φ1 + φ2, ð3Þ

where φ0 = ω0ð μ0 − μTÞ2, φ1 = ω1ð μ1 − μTÞ2, φ2 = ω2
ðμ2 − μTÞ2:

In Eq. (3), the symbols ω and μ represent the class prob-
abilities and class means, respectively.

(2) Kapur’s Technique. Kapur’s entropy (KE) was originally
proposed in 1985 to appraise gray scaled images in accor-
dance with its entropy based on histogram [50]. KE aids to
explore the optimal threshold of a picture on the basis of its
entropy alone. Since the outcome proves to provide satisfac-
tory results, many researches using KE are deliberated in the
literature [18].

Precise model of the KE is well defined as follows:
Let T = ½t1, t2,⋯, tL−1� represent individual threshold

values of the image. Further, the complete entropy of KE is
represented as follows:

Costfunction = JKapur = F Tð Þ = 〠
L

J=1
OR

j forR 1, 2, 3f g: ð4Þ

Equation (4) designates to get the most out of value of
entropy for the selected threshold.

In trilevel thresholding assignment, the objective func-
tion value is denoted as

OR
1 = 〠

t1

j=1

PoRj
θR0

ln
PoRj
θR0

 !
,

OR
2 = 〠

t2

j¼t l+1

PoRj
θR1

ln
PoRj
θR1

 !
,

OR
3 = 〠

L

j¼t2+1

PoRj
θR2

ln
PoRj
θR2

 !
,

ð5Þ

where PoRj shows the likelihood distribution and θR0 , θ
R
1 , :θ

R
2

depicts the probability occurrence in L-levels.

(3) Shannon’s Technique. Shannon’s entropy (SE) procedure
was established by Kannappan in 1972 [51]. Rajinikanth et al.
(2017) states that the SE approach-based brain MRI exami-
nation offers better result in comparison with Kapur’s and
Tsallis technique [18].

In recent works, SE dependant thresholding is employed
to perform preprocess medical pictures. To elucidate the SE,
a picture with dimension A × B is to be under consideration.
The pixel arrangement of the gray picture (h, v) is expressed
as Gðh, vÞ, for h ∈ f 1, 2,⋯, Ag and v ∈ f 1, 2,⋯, Bg. Let L be
the various levels of gray for the considered test image, and
the set of all gray values f0, 1, 2,⋯, L − 1g can be symbolized
as Z, in such a way that

G h, vð Þ ∈ Z∀ h, vð Þ ∈ picture: ð6Þ

Then, the normalized histogram will be X = ft1, t2,⋯,
tL−1g.
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For thresholding with level set to 3, Eq. (5) becomes

X Tð Þ = x0 t1ð Þ + x1 t2ð Þ + x2 t3ð Þ,
F Tð Þ =max

T
X Tð Þf g: ð7Þ

Threshold value which is represented by T = ft1, t2,⋯,
tLg, X = fx0, x1,⋯, xL−1g denotes the normalized histogram,
and FðTÞ indicates the optimal threshold. Further informa-
tion about SE can be found in [52].

(4) Tsallis Technique. Tsallis entropy (TE) is a nonextensive
entropy idea derived from the SE by Tsallis [53, 54] and rep-
resented as

Sq =
1 −∑T

i=1 pið Þq
q − 1

: ð8Þ

In the equation, T is the scheme prospective, q is the
entropic indicator, and p i represents the probability of each
state i. Usually, the entropy value obtained with Tsallis proce-
dure, Sq, will meet Shannon’s entropy when q⟶ l.

The entropy information is denoted using a quasiadditive
instruction as

Sq A + Bð Þ = Sq Að Þ + Sq Bð Þ + 1 − qð Þ:Sq Að Þ:Sq Bð Þ: ð9Þ

TE can be utilized to discover the finest threshold
values in the image. A test picture with L gray levels
which have the values f0, 1,⋯, L − 1g with possibility
spreading pi = p0, p1,⋯, pL−1 is considered. Thus, the Tsal-
lis trilevel-based threshold process is achieved with the
objective function:

F Tð Þ = t1, t2, t3½ � = argmax,

F Tð Þ = t1, t2, t3½ � = argmax,

SAq Tð Þ + SBq Tð Þ + SCq Tð Þ + 1 − qð Þ:SAq Tð Þ:SBq Tð Þ:SCq Tð Þ
h i

,

ð10Þ

where

SAq Tð Þ = 1 −∑
t1−1
i=0 Pi/PA� �
q − 1

q

, PA = 〠
t1−1

i=0
Pi,

SBq Tð Þ = 1 −∑t2−1
i=t1 Pi/PB� �
q − 1

q

, PB = 〠
t2−1

i=t1

Pi,

SCq Tð Þ = 1 −∑L−1
i=t2 Pi/PC� �
q − 1

q

, PC = 〠
L−1

i=t2

Pi:

ð11Þ

When the multilevel process is executed base on
threshold, an optimal threshold value T is to be obtained
such that the objective function FðTÞ is being maximized.
In this existing work, the principal part of the CCS algo-

rithm is to discover the maximized optimal threshold
“FðTÞ” in Otsu, KE, SE, and TE cases for a chosen thresh-
old of three.

3.3. Image Postprocessing. This phase purpose is to mine the
ROI (CC) from preprocessed brain MRI. The details of var-
ious automated and semiautomated separation measures
prevailing in the image processing literature are presented
in detail. Based on the implementation, the segmentation
processes are categorized as (i) automated and (ii) semiauto-
mated schemes. In the automated scheme, the segmentation
procedure requires a minimal or nil operators’ assistance. In
the semiautomated method, the initiation of the segmenta-
tion task is to be done by the operator based on a trial and
error approach or a by adopting a directed practice.

3.3.1. Automated Segmentation. The segmentation methods,
such as watershed [55], principal component analysis [56],
and clustering approaches (k-means, fuzzy k-means, etc.)
[57], are some of the techniques that falls in the category of
the automated segmentation approach. In these procedures,
the interaction of human operator during the initiation is
comparatively less.

3.3.2. Semiautomated Segmentation. Semiautomated seg-
mentation (SAS) approaches are widely considered in medi-
cal image analysis, when a complex segmentation task is to be
completed. In these methods, the operator’s assistance is
essential throughout the segmentation execution. The opera-
tor is responsible to begin the operation, assigning the run
time/number of iteration required and assigning the termi-
nating criterion. SAS is widely applied by the investigators
to extract the ROI from a class of complex medical images
[25]. Generally, SAS works based on the identification of
the similar pixel values from its initial point. It will explore
all the possible alike pixel values present in the preprocessed
picture, until the maximum iteration value is reached. The
approaches, such as level set (LS) [58], Chan-Vese (CV)
[59, 60], region growing (RG) [61], and active contour
(AC) [62], fall in this category. In the projected work, the
AC segmentation is executed to obtain the CC, and its perfor-
mance is then validated against alternative approaches, like
LS, CV, and RG.

AC has an adaptable snake-like search mechanism,
which modifies its direction such that it addresses all the pos-
sible comparable pixel clusters available in the image based
on energy minimization theory as discuss in [63]. Because
of its merit, AC is commonly adopted to inspect medical
images.

AC performs operations, like (i) border recognition, (ii)
preliminary curve generation with respect to the identified
border, (iii) changing the snake’s orientation to follow the
pixel group till the energy becomes minimal, and (iv) final
curve generation and extraction of the region inside the final
contour.

Energy function of AC’s snake is

min
C

EGAC Cð Þ =
ðL Cð Þ

0
g ∇I0C sð Þj jð Þds

� �
, ð12Þ
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where ds is the Euclidean distance constituent and LðCÞ is the
length of the curvature C. It satisfies the constraints LðCÞ =Ð LðCÞ
0 ds. The limitation g indicates edge, which will wane

based on the objective periphery defined as

g ∇I0j jð Þ = 1
1 + β ∇I0j j2 , ð13Þ

where I0 signifies test image under study and β depicts a ran-
dom constant. The energy value quickly declines because of
the values reflected by the edges as in gradient succession
quantification.

This method is scientifically characterized as

∂tC = kg − ∇g,M
� �� �

M, ð14Þ

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3: Outcome of the preprocessing approach for a chosen test image (image 1). (a, b) depicts test image and the GT, respectively, (c, d)
shows Otsu’s thresholding outcome for image with and without skull section, (e, f) presents the outcome of Kapur’s entropy, (g, h) depicts the
thresholding result of Shannon’s, and (i, j) illustrates the result by Tsallis.
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where∂tC = ∂C/∂t indicates the changes in the snake
model. t represents the repetition period. k and M are
the curve and normal for the considered snake “C.” In this
process, the silhouette of the snake is constantly adjusted
till nominal value of the energy; EGAC is accomplished.

3.4. Evaluation of ROI with GT. The goal of this section
focuses to examine the performance of the suggested method
by employing a qualified examination amongst ROI and GT.
This work deliberates standard brain MRI dataset identified
as ABIDE, in which test images are associated with GT. In
this study, image resemblance values, such as Jaccard, dice,
false-positive rate (FPR), and false-negative rate (FNR), are
computed [23–25].

The mathematical terminologies are presented in Eqs.
(15)–(18):

Jaccard IG, ICð Þ = IG ∩ ICIG ∪ IC , ð15Þ

Dice IG, ICð Þ = 2 IG ∩ ICð Þ IGj j ∪ ICj j, ð16Þ
FPR IG, ICð Þ = IGICð Þ IG ∪ ICð Þ, ð17Þ
FNR IG, ICð Þ = ICIGð Þ IG ∪ ICð Þ, ð18Þ

where IG signifies the GT and IC represents the mined
section.

Furthermore, the image statistical outcomes, which
include sensitivity, specificity, accuracy, and precision, are
also calculated [64, 65].

Expressions for these bounds are specified in Eqs.
(19)–(22):

Sensitvity = TP TP + FNð Þ, ð19Þ

Specificity = TN TN + FPð Þ, ð20Þ
Accuracy = TP + TNð Þ/ TP + TN + FP + FNð Þ, ð21Þ

Precision = TP TP + FPð Þ, ð22Þ

where TN , TP, FN , and FP signify related measures.

4. Result and Discussions

The outcomes accomplished with the planned tool are elabo-
rated. Various early works endorse the accessibility of
considerable processing procedures for CC examination of
the considered images. The projected work tools have a
two-stage procedure to observe the well-known 2D sagittal
brain MRI and the MR images obtained from the clinic. This
work reflects the support of the contemporary heuristic tech-
nique known as CCS along with the well-known threshold
approach. A comprehensive valuation among the prevailing
segmentation processes, such as LS, CV, RG, and AC, is also
presented. The developed CDT is executed with a AMD C70
Dual Core 1GHz CPU with 4GB of RAM PC which is
equipped with Matlab software.

Firstly, the ABIDE dataset of 60 volunteers (30 control
and 30 ASD class) is considered for the examination. This
database contains the 2D sagittal MRI recorded with T1
modality with a pixel measurement of 256 × 256. This dataset
is associated with relevant GT offered by a professional.

Figure 3 depicts a chosen 2D MRI and the GT of ABIDE.
The preprocessing procedure is then implemented on this
image by considering its original version and the skull
stripped version. This figure also depicts the threshold results
of various procedures reflected in this work. Figures 3(c) and
3(d) represent the enhanced image with Otsu’s approach,
Figures 3(e) and 3(f) depict the outcome of KE-based trilevel
thresholding, and Figures 3(g) and 3(h) show that the result
of SE and Figures 3(i) and 3(j) shows the results by TE. After
enhancing the test picture based on a chosen threshold
approach, a segmentation task is used to extract the CC sec-
tion in order to find the parameters, such as TBA and CCA as
discussed in [11]. During the segmentation task, every
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Figure 4: Convergence of the optimization search with Otsu’s function.
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(a) (b) (c) (d) (e) (f)

Figure 5: Extraction of CC using active contour segmentation: (a) Otsu’s, (b) Kapur’s, (c) Shannon’s, (d) Tsallis, (e) Shannon’s without the
skull, and (f) Tsallis without the skull.

Table 1: Results obtained for the sample images.

Image
(ASD)

Image Test picture GT SE+AC TE+AC

Male

Image 2

Image 3

Female

Image 4

Image 5

Image 6
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preprocessed test image is tested using the LS, CV, RG, and
AC approaches. This test result confirms that the LS
approach offered false result most of the time due to the
visibility of CC. In most of the image cases, the CC pixel
intensity is similar to the normal brain tissue intensity.
Hence, for all the considered images, the extraction and eval-
uation task is implemented only with CV, RG, and AC.

Figure 4 represents the search merging of the heuristic
algorithm for Otsu’s trilevel threshold operation imple-
mented on image 1. The proposed CCS is converged at
582th iteration, and the search process is terminated at
1417th iteration. This confirms that the projected CCS per-
forms better compared to other approaches adopted in this
study. Similar techniques are repeated with other threshold
techniques, such as Kapur, Tsallis, and Shannon and for most
of the cases, the proposed CCS offered improved outcome
compared to the PSO, BFO, and BA. This confirms that the
CCS works well for the chosen brain MRI thresholding
problem.

Figure 5 depicts the execution of the AC-based extraction
of CC from the preprocessed test images presented in
Figure 3. Similar procedure is recurrent for the additional
2D sagittal images of the database, and its effects are
recorded. To confirm the preeminence of the considered
preprocessing approach, a relative study among the mined
CC and the GT is performed, and the image match and
statistical outcomes are calculated. This comparative study
confirmed that, for the chosen dataset, Otsu’s and KE pro-
cedures are failed to provide better result compared to the
SE and TE-based procedures. Hence, the results of Otsu’s
and KE are ignored, and the results of SE and TE are projected
in this paper. Table 1 represents the segmentation results
attained for the representative images with the SE+AC and
TE+AC. Similar results are attained with SE+CV, SE+RG,
TE+CV, and TE+RG. Tables 2 and 3 present the similar
information of the considered images and the statistical mea-
sures achieved during this experimental investigation. From
Tables 2 and 3, it can also be observed that the outcome

obtained with Otsu+AC and KE+AC is poor in comparison
to the alternatives.

The performance of the projected CBDM is confirmed
with a pixel level relative evaluation among the mined CC
section and the GT. To demonstrate the performance, the
mined CC sections SE+AC and TE+AC of image 1 are con-
sidered, and the obtained results are illustrated in Figure 6.
Figure 6(a) depicts the confusion matrix of SE+AC, and
Figure 6(b) presents the confusion matrix of TE+AC. From
these images, it can be distinguished that the image similarity
constraints (ISP) offered by the proposed CBDM are better.
Similar technique is repeated with further images, and the
sample consequences obtained with image 1 to image 6 are
depicted in Tables 2 and 3.

Table 3 authenticates that the image measures obtained
with the SE are better when compared to TE. The average

Table 2: Image similarity measures achieved for the selected sample mages.

Image Method TPR FNR TNR FPR Jaccard Dice

Image 1

Otsu 0.8035 0.1965 1.0000 0.0000 0.8032 0.8909

Kapur 0.1348 0.8652 0.9999 0.0001 0.1345 0.2372

Shannon 0.8804 0.1196 0.9992 0.0008 0.8201 0.9012

Tsallis 0.8800 0.1200 0.9996 0.0004 0.8518 0.9200

Image 2
Shannon 0.7907 0.2093 0.9992 0.0008 0.7454 0.8541

Tsallis 0.8339 0.1661 0.9996 0.0004 0.8078 0.8937

Image 3
Shannon 0.8405 0.1595 0.9993 0.0007 0.7841 0.8790

Tsallis 0.4450 0.1555 0.9993 0.0007 0.7876 0.8812

Image 4
Shannon 0.8912 0.1088 0.9991 0.0009 0.8281 0.9060

Tsallis 0.8482 0.1581 0.9988 0.0012 0.7750 0.8732

Image 5
Shannon 0.8535 0.1465 0.9998 0.0002 0.8270 0.9053

Tsallis 0.8261 0.1739 0.9995 0.0005 0.7705 0.8704

Image 6
Shannon 0.9133 0.9986 0.0014 0.0867 0.8019 0.8901

Tsallis 0.8396 0.1604 0.9998 0.0002 0.8263 0.9049

Table 3: Image statistical outcomes attained for the selected sample
images.

Image Method Sensitivity Specificity Accuracy Precision

Image 1

Otsu 0.8035 1.0000 0.9976 0.9996

Kapur 0.1348 0.9999 0.9373 0.9888

Shannon 0.8804 0.9992 0.9980 0.9230

Tsallis 0.8800 0.9996 0.9983 0.9637

Image 2
Shannon 0.7907 0.9992 0.9966 0.9287

Tsallis 0.8339 0.9996 0.9976 0.9627

Image 3
Shannon 0.8405 0.9993 0.9978 0.9212

Tsallis 0.8445 0.9993 0.9978 0.9212

Image 4
Shannon 0.8912 0.9991 0.9977 0.9212

Tsallis 0.8482 0.9988 0.9969 0.8998

Image 5
Shannon 0.8535 0.9998 0.9987 0.9638

Tsallis 0.8261 0.9995 0.9983 0.9197

Image 6
Shannon 0.9133 0.9986 0.9978 0.8680

Tsallis 0.8396 0.9998 0.9979 0.9811
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result computed for the ABIDE database (60 volunteers)
in percentage is presented in Table 4, and its graphical
representation is presented in Figure 7. This tabulation

and figure confirm that the overall image similarity and
the statistical outcomes obtained with SE+AC are superior
compared with other approaches. This also authenticates
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Figure 6: Confusion matrix to discuss the performance measure.

Table 4: Average values of similarity and statistical values of ABIDE dataset (60 volunteers).

Method Jaccard Dice Sensitivity Specificity Accuracy Precision

SE +AC 87.15 92.75 87.17 99.92 99.74 95.38

SE +CV 86.48 90.92 88.53 99.67 98.91 95.11

SE +RG 86.94 89.74 86.90 99.82 99.06 93.96

TE+AC 86.05 90.81 86.89 99.90 99.77 95.14

TE+CV 84.42 88.39 87.04 99.73 98.58 94.86

TE+RG 86.53 89.55 86.54 99.85 98.83 94.05
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Figure 7: Performance evaluation of CBDM with chosen processing methods.

Table 5: Average values of TBA and CCA of ABIDE dataset (60 volunteers).

Parameter
FCM+LS [11] Multiphase LS [9] SE +AC TE+AC

Controlled ASD Controlled ASD Controlled ASD Controlled ASD

TBA 0.87 0.92 0.59 0.79 0.8104 0.8826 0.8685 0.9175

CCA 0.90 0.75 0.82 0.69 0.9092 0.7761 0.8917 0.7481
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that AC outperforms the CV and RG for the considered
dataset. Table 5 presents the computed values of TBA
and CCA, and this result also authenticates that the aver-
age results of FCM+LS, SE+AC, and TE+AC are roughly
identical.

The results depicted in Figures 8 and 9 also confirm that
the method based on SE+AC and TE+AC provides better
result on the MIDAS and Proscans datasets. From these out-
comes, it can be understood that proposed CBDM has more

efficacy in mining the CC segment from the T1 modality
brain MRI slices.

This work also confirms that the average simulation
period taken by SE+AC/TE+AC for ABIDE dataset is
smaller (171.19 sec/168.94 sec) compared to other approaches
(SE + CV = 192:16 sec, SE + RG = 174:28, TE + CV = 191:38,
and TE + RG = 172:57 sec). The main limitation of the pro-
posed technique is it implemented the semiautomated seg-
mentation techniques, such as AC, CV, and LS procedures

Figure 8: Sample test pictures and a sample result obtained with the MIDAS database.

(a) (b)

(c) (d)

Figure 9: Sample 2D slices of real scan pictures and its corresponding result: (a) the sample test image with skull section, (b) segmented CC,
(c) sample image without skull section, and (d) extracted CC from image (c).
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to mine the CC section. In future, the segmentation methods
such as super pixel [66] and local binary pattern [67, 68] can
be considered to extract the CC. Further, the planned method
can be considered to evaluate the medical level brain MRI
collected from volunteers who are associated with autism.

5. Conclusion

This paper suggested a computerized CC extraction tool with
a two-step image processing scheme. The instigated method
considers the blend of CCS-assisted trilevel thresholding with
Shannon’s/Tsallis entropy and segmentation based on the
CV/RG/AC procedure. During the investigational assess-
ment, the benchmark datasets, such as ABIDE and MIDAS,
are used for the preliminary evaluation. Further, this tool is
tested on the clinical 2D sagittal MRI of T1 modality
obtained from a scan centre. The experimental investigation
authorizes that proposed tool extracts the CC region from the
brain picture with better accuracy and helps to compute the
TBA and CCA for the 2D brain MRI. A comparative study
also confirms that the results are approximately similar to
the result existing in the literature with fuzzy C-means+LS
procedure and better than multiphase LS. The proposed
CBDM also offers better segmentation result for the clinical
images. Hence, for the forthcoming requirements, this
method can be considered in medical clinics to estimate the
sagittal view MRI recorded with T1 modality. The proposed
outcome of this work could be extended further to aid the
investigations in identifying the prognosis of the disease at
various stages.
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Acute lymphoblastic leukemia (ALL) is the most common type of pediatric malignancy which accounts for 25% of all pediatric
cancers. It is a life-threatening disease which if left untreated can cause death within a few weeks. Many computerized methods
have been proposed for the detection of ALL from microscopic cell images. In this paper, we propose a hybrid Inception v3
XGBoost model for the classification of acute lymphoblastic leukemia (ALL) from microscopic white blood cell images. In the
proposed model, Inception v3 acts as the image feature extractor and the XGBoost model acts as the classification head.
Experiments indicate that the proposed model performs better than the other methods identified in literature. The proposed
hybrid model achieves a weighted F1 score of 0.986. Through experiments, we demonstrate that using an XGBoost classification
head instead of a softmax classification head improves classification performance for this dataset for several different CNN
backbones (feature extractors). We also visualize the attention map of the features extracted by Inception v3 to interpret the
features learnt by the proposed model.

1. Introduction

Leukemia is a malignancy that originates in cells that would
otherwise develop into different types of blood cells. Most
often, leukemia starts in the form of white blood cells (WBCs),
but some leukemias start in other blood cell types as well.
Their primary classification of leukemia is based on whether
the leukemia is acute (fast-growing) or chronic (slower-grow-
ing) and whether it starts in myeloid cells or lymphoid cells.
Knowing the specific type of leukemia helps doctors better
predict each person’s prognosis and select the best treatment.

Acute lymphocytic leukemia (ALL) is also called acute
lymphoblastic leukemia. “Acute”means that if left untreated,
leukemia can progress rapidly and cause fatality within
months. “Lymphocytic” means it develops from early
(immature) forms of lymphocytes, a type of WBC.

ALL starts in the bone marrow (the soft inner part of
certain bones, where new blood cells are made). Most often,
the leukemia cells invade the blood fairly quickly. They can
also sometimes spread to other parts of the body, including
the lymph nodes, liver, spleen, central nervous system (brain
and spinal cord), and testicles (in males). Some cancers can
also start in these organs and then spread to the bone
marrow, but these cancers are not leukemia.

Acute lymphoblastic leukemia (ALL) is the most com-
mon type of childhood cancer and accounts for approxi-
mately 25% of pediatric cancers [1]. Approximately 74% of
people under the age of twenty who are diagnosed with
leukemia are diagnosed with ALL. Most cases occur between
the ages of 2 and 5. ALL accounts for less than 1% of all new
cancer cases worldwide and also accounts for less than 1% of
all cancer-related deaths.
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The 5-year survival rate gives us the percent (out of 100)
of children and teenagers who live at least 5 years after being
diagnosed with cancer. The 5-year survival rate for children
between age 0 and 14 is 91%. The 5-year survival rate for
people between ages 15 and 19 is 75%. It is rare for ALL to
recur after 5 years; hence, children diagnosed with ALL
who remain free from the disease after 5 years are generally
considered cured.

98% of the children with ALL go into remission, and 85%
of those with first-time ALL are expected to have long-term
complications. However, the chance of recovery for adults
is not high, as the percent of adults cured with current treat-
ment is 20%-40%.

ALL is a life-threatening disease that can rapidly spread
through children’s bodies if left untreated and can cause
death within a few weeks. During the diagnosis of leukemia,
a necessary step is for the physician to classify the white
blood cells in the bone marrow. Not only is this step difficult
and complex, but it also results in increased human error and
procedure time. This process can be automated by develop-
ing computerized methods to automatically classify the white
blood cells. Not only does this method decreases the diagno-
sis time and error, but it also is economical especially with the
increasing trend in digitizing microscopic images.

However, this task is not trivial; there are several chal-
lenges associated with the classification of white blood cell
(WBC) images, the main challenge being the morphological
similarity between the normal and the immature leukemic
blast cells. Another challenging aspect in distinguishing
WBCs is that they are surrounded by other blood compo-
nents like red blood cells and platelets.

There are several methods and algorithms used for
medical imaging; however, convolutional neural networks
(CNNs) have proven to be the best choice. Pretrained neural
networks such as VGGNet, ResNet, and Inception have been
successfully utilized in various medical imaging applications.
Moreover, these CNNs mitigate the issue of lack of sufficient
training data which is a common problem in medical datasets
by utilizing transfer learning, where the CNNs are trained on
massive generic datasets and then trained on a specific down-
stream class on smaller datasets.

Our main motivation in this study is to develop a robust
and efficient model for the classification of ALL from micro-
scopic images. Medical image datasets are small; hence, it is
often not feasible to train a CNN from scratch; hence, we
aim to leverage the transfer learning ability of pretrained
CNN architectures to learn a classifier for the C-NMC 2019
dataset. To improve the performance of these CNNs, we
explore the use of different classification heads instead of a
conventional softmax classification head. We aim to experi-
ment with several data preprocessing techniques to improve
the generalizability and performance of the model. We also
aim to investigate and justify our choice of model design
through extensive experiments presented in Ablation Study.

To this end, we introduce a hybrid Inception v3 XGBoost
model which uses XGBoost as a classification head on top of
an Inception v3 model fine-tuned for classification on this
dataset. We perform extensive experimentation with several
pretrained CNNs and different augmentation techniques.

We also investigate the features learnt by the Inception v3
model visualizing the heat map of its feature maps using
Grad-CAM. We have performed experiments that indicate
the effectiveness of our model and justify the design; these
experiments are presented in Ablation Study.

The major contributions of this proposed model are the
following:

(i) The proposed model gives a high weighted F1 score
of 0.98 for the C-NMC 2019 dataset

(ii) The proposed architecture involving the use of
XGBoost classification head can be utilized with
several CNN backbone feature extractors and results
in increased performance (refer to Table 1)

(iii) The model can be interpreted using attention maps
of the feature maps extracted by the Inception v3
CNN

The paper is divided into 8 sections. Recent literature
pertaining to leukemia detection is reviewed in Section 2.
Section 3 briefly describes the dataset used in this study.
The proposed model and methodology are discussed in
Section 4. The implementation details are provided in Section
5. Section 6 discusses the experimental results. Section 7 pre-
sents an ablation study for our hybrid model. Finally, we con-
clude the study and discuss the future directions in Section 8.

To reproduce our results, we present detailed imple-
mentation details in Implementation Details. Moreover,
the full code for experiments conducted in this research
is publicly available at https://github.com/ramaneswaran/
lymphoblastic-leukemia-detection.

2. Literature Review

There has been a lot of research into the classification of
white blood cells. Early approaches to this problem involve
using traditional image processing techniques and machine
learning models for classification. Jagadev and Virani [2]
present an approach to classify leukemia lymphocyte images
using handcrafted image features and SVM classifier. Amin
et al. [3] propose yet another method involving SVM classi-
fiers to detect acute lymphoblastic leukemia (ALL) where
the geometrical and statistical features of nuclei are used to
train the classifier. Rodellar et al. [4] present an approach

Table 1: Comparison of the proposed approach with recent studies
on leukemia detection.

Method Accuracy Dataset Year

Yu et al. [29] 88.50% DTH 2017

Mourya et al. [30] 89.62% ISBI 2018

Kassani et al. [31] 96.17% ISBI 2019

Bodzas et al. [10] 100% Blood smear 2020

Kasani et al. [16] 96.58% ISBI 2020

Shafique and Tehsin [12] 99.50% ALL-IDB 2018

Proposed approach 98.50% ISBI 2021
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for morphological characterization and automatic cell image
recognition using handcrafted quantitative features.
Mahmood et al. [5] experiment with several models includ-
ing random forest, gradient-boosted machine, and CART
for the detection of pediatric ALL; from their experiments,
they conclude that the best fitting model for the dataset used
in the research was the CART model.

In recent literature, deep learning-based methods have
been utilized for ALL classification and have met with signif-
icant success. Pretrained CNNs, as well as custom CNNs,
have been successfully trained and tested on several cell
classification tasks.

Macawile et al. [6] propose a method for white blood cell
(WBC) classification and counting using pretrained CNNs.
They use modified AlexNet, GoogleNet, and ResNet-101 in
tandem to obtain classification results. Hegde et al. [7]
provide a comparison between traditional image processing
approaches and deep learning methods in the task of clas-
sifying WBCs. Using neural network architecture gives a
significant performance increase over traditional methods.
Sharma et al. [8] present a custom CNN architecture for
white blood cell classification; the proposed network con-
sists of 2D convolutions and MaxPooling layers with Relu
activations. This architecture achieves high accuracy scores
for both binary classification and multiclass classification
settings. Habibzadeh et al. [9] present a method for utilizing
the ResNet and Inception network for WBC classification.
The proposed method also utilizes several augmentation tech-
niques in the preprocessing stage. WBC classification is done
using hierarchy topological feature extraction by the CNNs.

In [10], Bodzas et al. propose an approach to automati-
cally identify ALL from peripheral blood smear images using
conventional image processing techniques and ML algo-
rithms. The approach uses an extensive preprocessing and
three-phase filtration algorithm. Sixteen handcrafted features
were extracted from the image and were used as input to
SVM and ANN classifiers. Muntasa and Yusuf [11] present
a model that detects ALL using principal object characteris-
tics of a color image. There are four main stages in the pro-
posed approach; these are enhancement, segmentation,
feature extraction, and accuracy measurement. The proposed
method archived the maximum accuracy on the ALL-IDB
dataset. Shafique and Tehsin [12] compare the different
methods for the early detection of ALL. The various stages
in the diagnosis procedure are comparatively analyzed in
their study. They also discuss the advantages and disadvan-
tages of each method. Shafique and Tehsin [13] present an
approach that uses pretrained AlexNet which is fine-tuned
for the task of classification of ALL into its 4 subtypes (L1,
L2, L3, L3, and normal). The last 4 layers are replaced with
new linear layers, and their weights are trained from scratch.
The research also employs several data augmentation tech-
niques to generalize the model performance. The model
achieves high accuracy of 99.5% for detection of ALL and
96.06% for ALL subtype classification.

Bhuiyan et al. [14] propose a framework for identifying
ALL frommicroscopic images of WBC. A total of four differ-
ent statistical models are used for classification, and their
performance is compared. From the experimental results,

the authors conclude that the SVM model gave the best fit
for their dataset. Acharya and Kumar [15] survey various
methodologies in current literature that are used to segment
WBCs and provide a novel method for segmenting the
nucleus and the cytoplasm of the WBC. Subsequently,
models are built to extract features and perform supervised
classification of the microscopic images into the four sub-
types of ALL. The model achieves an accuracy of 98.6% for
the dataset used. Kasani et al. [16] propose to use a pretrained
CNN model in an aggregated fashion to detect ALL from
microscopic WBC images. The authors use several data
augmentation techniques to avoid overfitting. The proposed
network consists of a VGG19 and a NASNetLarge which
are used together for classification. The final ensemble
produced an overall accuracy of 96.58% which is higher than
any of the individual networks.

An extensive survey on the current trends and
approaches to the detection of leukemia from microscopic
images is presented in [17–19].

3. Dataset

The dataset used in this research is called the ISBI C-NMC
2019 dataset [20]. The dataset consists of white blood cell
images collected from 60 cancer subjects and 41 healthy
subjects. The dataset was prepared at Laboratory Oncology,
AIIMS, New Delhi. There are a total of 10661 cell images in
the dataset. The train, validation, and test splits were 75%,
15%, and 15%, respectively. Figure 1 illustrates the micro-
scopic white blood cell images from the C-NMC 2019
Challenge dataset. Figure 2 portrays the class distribution of
the C-NMC 2019 dataset.

To remove the variations in illumination, a stain nor-
malization process has been applied to the images. The
normalization procedures applied to this dataset have been
described in detail in [21–25].

4. Proposed Approach

In this section, we describe our proposed model. Figure 3
shows the architecture of the proposed hybrid Inception v3
XGBoost model. Figure 4 portrays the architecture of the
Inception v3 model. The proposed model consists of two
components, an image feature extractor and a classification
head. Generally, the classification head in a pretrained
CNN for image classification tasks is a softmax classifier. In
the proposed model, however, we use the XGBoost classifier
as a classification head. The input features used for this
XGBoost classifier are provided by the fine-tuned Inception
v3 model. Through experiments, we also show that this setup
works for several other pretrained CNNs too.

The proposed model is trained in two stages. In the first
stage of training, we fine-tune the Inception v3 model on
the training data. Through experiments, we observe that
using features from fine-tuned Inception v3 leads to better
classification results by the XGBoost classifier as opposed to
using a pretrained Inception v3 directly as a feature extractor
(refer to Figure 5).
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4.1. Data Preprocessing. We have utilized the following pre-
processing techniques to preprocess the dataset being used.

(1) Center Cropping. There is a considerable black mar-
gin in the image which is redundant to classification.
Hence, the image is center cropped to size 448 × 448

(2) Resizing. The images in the dataset are of size 450 ×
450; however, Inception v3 requires input images of
size 299 × 299. Hence, we resize the image from 448
× 448 (center cropped image) to 299 × 299 using
bicubic interpolation

(3) Data Augmentation. Medical image datasets are
mostly limited in size owing to privacy and data
acquisition issues. To prevent overfitting and
improve generalization, we have applied several
image augmentation techniques. Microscopic cell
images are direction invariant; hence, we applied
conventional image augmentation techniques such
as rotation and flipping. We also used cutout [26]
augmentation that acts as a regularizer by randomly
masking out square regions of input during training

(4) Normalization. The images are normalized with Ima-
geNet mean and standard deviation. These values are
precomputed standards derived from the ImageNet
database

4.2. Image Feature Extraction. Literature review on recent
works of medical imaging suggests that deep convolutional
networks pretrained on large datasets such as ImageNet pro-
vide the best results for medical image classification tasks.
This is due to the fact that medical image datasets are difficult
to collect and are usually small in size. Hence, it becomes
difficult to train CNNs from scratch which often results in
overfitting. However, pretrained CNNs help in avoiding this
problem as we can use transfer learning to fine-tune these
CNNs on medical datasets. We experiment with several pop-
ular CNN architectures such as ResNet and DenseNet to
select the model which performs the best. We fine-tune these
CNNs for the task of classification and choose the model with
the best weighted F1 score. Refer to Experimental Results and
Discussion and Table 2 for more details.

We employ an Inception v3 [27] model that is initialized
with ImageNet weights and fine-tuned on the train set to
extract feature maps for images. After experimenting with
several pretrained CNN models for this task, Inception v3
gave the best F1 score. Inception v3 is the 3rd version of
CNN from the inception family of architecture that makes
several improvements. These improvements include factor-

ized convulsions that reduce the number of parameters with-
out decreasing the network efficiency. It uses label smoothing
to act as a regularizer. Additionally, it utilizes an auxiliary
classifier to propagate label information lower down the
network and further help in regularization.

4.3. Classification Head.We employ an XGBoost [28] classifier
to classify the cell images as leukemic blasts or normal.
XGBoost is a machine learning algorithm used for both classi-
fication and regression modelling tasks. It is an ensemble of
gradient-boosted decision trees. Gradient boosting is an
approach where newmodels are created that predict the resid-
uals or errors of priormodels and then added together tomake
the final prediction. It is a special case of boosting algorithms
where errors are minimized by a gradient descent algorithm.

4.4. Training Details

4.4.1. Stage 1 Training. In the first stage of training, Inception
v3 is trained on the training set. We employ the pretrained
ImageNet weights for Inception v3. The last fully connected
layer in Inception v3 is replaced with a 2-node softmax clas-
sifier. The parameters for this replaced layer were randomly
initialized:

Softmax xið Þ = exp xið Þ
Σj exp xj

� � : ð1Þ

The softmax function is used to convert logits of the clas-
sifier into a probability distribution. Each element of the out-
put lies in the interval ½0, 1�, and the output elements sum up
to 1. The input image is assigned to the class with maximum
probability. Equation (1) depicts the formula for softmax
function, where exp ðxiÞ is the exponent of the current
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Figure 2: Class distribution of the C-NMC 2019 dataset.
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Figure 1: Microscopic white blood cell images from the C-NMC 2019 Challenge dataset.
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output logit and Σj exp ðxjÞ is the summation of the expo-
nent of all output logits.

From Figure 2, we can observe that the dataset has a class
imbalance problem. To address this problem, we use a
weighted cross-entropy loss function. This function is given
by the formula

loss x, classð Þ = weight class½ � −x class½ � + log Σj exp x j½ �ð Þ� �� �
,

ð2Þ

whereweight½class� refers to the weight assigned to each class.
To minimize the effect of class imbalance, we assign larger
weights for minority classes. The losses are averaged across
observations for each minibatch. In this case, it is a weighted
average given by

loss =
Σi

N loss i, class i½ �ð Þ
Σi

Nweight class i½ �½ � : ð3Þ

During this stage of training, we used several augmenta-
tion techniques that were mentioned in Data Preprocessing.
Using the image augmentation helps the model generalize
better and improve performance. Figure 6 compares the
validation loss during training of two different Inception v3
models, one which uses image augmentation on the input
images and the other which does not use it. Using image
augmentation improves the performance of the model.

4.4.2. Stage 2 Training. In the second stage of training, an
XGBoost classifier is trained to classify the cell images as
normal or leukemic blasts. The XGBoost classifier is trained

Cell image Image feature
extractor

Classification
head1×2048

XGboost
classifierInceptionv3

Preprocess

Feature m
ap

Figure 3: The architecture of the proposed hybrid Inception v3 XGBoost model.
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Figure 4: The architecture of Inception v3 model.
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using features extracted with the Inception v3 network
trained in stage 1.

To extract the features using Inception v3, we remove the
softmax classifier from the network and directly obtain the
feature map from the penultimate layer. The feature maps
obtained are of dimension 2048 × 1. We use the same training,
validation, and test splits that were used in stage 1 training.

5. Implementation Details

All the networks were trained on the Tesla K80 GPU pro-
vided by Kaggle’s Machine learning kernels. We used the
PyTorch library to develop the deep learning models. The
models were optimized using Adam optimizer. For the
XGBoost classifier, we used the XGBoost library. We used a
grid search strategy to tune the model to optimize the loss.
The detailed hyperparameter configuration for the proposed
model is given in Table 3.

6. Experimental Results and Discussion

In this section, we report the experimental results for our
proposed model. The primary evaluation metric that we
adopt is the weighted F1 score. We additionally report accu-
racy, precision, recall, and AUC score.

Once the model is trained, we select the best checkpoint
to be used in model inference. The predicted classes are
compared to the actual target classes to calculate the afore-
mentioned metrics. We experimented with several CNN
backbone feature extractors such as AlexNet and DenseNet
during stage 1 of training. We experimented with these
CNNs to identify which model can be used as the feature
extractor for our hybrid model. Figure 7 compares the valida-
tion loss of the different CNNmodels during stage 1 of train-
ing. Among these, Inception, v3 was the best performing
model with a weighted F1 score of 0.97. Table 2 displays
the evaluation metrics of the various CNN models used
during stage 1 of training.

During stage 2 of training, we extracted image features
using the Inception v3 model trained in stage 1. These fea-
tures were used in training an XGBoost classifier. Using an
XGBoost classifier on top of this Inception v3 model gave
the best result on the test set with a weighted F1 score of
0.98. Figure 8 displays the confusion matrix obtained for
the proposed hybrid model. We observe that there are very
few misclassified data. We observe that there is a better false
positive rate when using an XGBoost classification head over
a CNN; this is an essential factor when dealing with the med-
ical diagnosis since it is better to screen a person as diseased
and conduct further tests to exclude the disease than exclude
a diseased person by falsely predicting a negative.

Sensitivity and specificity are two important metrics that
are used to validate medical diagnosis models. Sensitivity
reflects the probability that a diagnostic test will return posi-
tive for people who are diseased. Specificity on the other hand
reflects the probability that a test will return negative for

Input: A microscopic WBC image M
Output: Pre-processed image Mt
ProcedureMcropped = CenterCropped (M)
Mresized = Resizing (Mcropped)
Mflipped = HorizontalFlip (Mresized)
Mflipped = VerticalFlip (Mflipped)
Mrotated = Rotate (Mflipped)
Mcutout = Cutout (Mrotated)
Mnormalized = ImageNetNormalization (Mcutout)
Mt = ToTensor (Mnormalized)

Algorithm 1: Data preprocessing in training.

Input: A microscopic WBC image M
Output: Pre-processed image Mt
ProcedureMcropped = CenterCroppe (M)
Mresized = Resizin (Mcropped)
Mnormalized = ImageNetNormalizatio (Mcutout)
Mt = ToTensor (Mnormalized)

Algorithm 2: Data preprocessing in validation/testing.

Table 2: Evaluation metrics of different pretrained CNN models
from stage I of training. These metrics are reported on the test set
after fine-tuning on the train set.

Model F1 score Recall Precision Accuracy AUC

AlexNet 0.889 0.894 0.901 0.894 0.832

DenseNet 121 0.871 0.869 0.876 0.869 0.861

ResNet 18 0.917 0.917 0.919 0.917 0.908

VGG 16 0.921 0.924 0.927 0.924 0.880

SqueezeNet 0.930 0.932 0.936 0.932 0.891

MobileNet v2 0.958 0.958 0.958 0.958 0.953

Inception v3 0.979 0.979 0.979 0.979 0.981
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Figure 6: Validation loss curve for Inception v3 model during stage
1 of training.
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persons without the disease. Clinically, these metrics are
important for confirming or excluding disease. We can inter-
pret these metrics from the confusion matrix (Figure 8). The
sensitivity is 0.9884, and specificity is 0.9133.

The TPR (true positive rate) and FPR (false positive rate)
are important AUC/ROC (Area Under the Curve/Receiver
Operating Characteristics) metrics that help to determine
the amount of information learnt by the model and how well

it is able to distinguish between the classes. In the ideal case,
TPR = 1 and the FPR = 0. Refer to Figure 5 that depicts the
ROC curve for the hybrid model on the test data. An AUC
of near 1 indicates that a model has excellent separability.
We can observe that the model achieves a high AUC of
0.9826. This shows that the proposed model has excellent
separability and correctly classifies most of the samples in
the test data with very few misclassifications. Also, the FPR
is close to 0 and TPR close to 1 from which we can deduce
that the model is performing well.

To benchmark and compare our hybrid model, we have
selected the following models from recent studies on leuke-
mia detection. These models are trained and validated on
either ISBI C-NMC dataset or other similar datasets of
microscopic WBC image for ALL classification. Moreover,
these models use CNN for feature extraction or have some
deep learning components in their model design. We have
described these models in brief below.

Yu et al.: to prevent a model from fitting data noise, the
authors have combined several CNNs and used their
combined output to get classification results. The CNN
architectures being used are ResNet50, Inception v3,
VGG16, VGG19, and Xception.

Mourya et al.: this approach combines the optical density
features and discrete cosine transform domain features
extracted through CNN to build the classifier. They use bilin-
ear pooling instead of average pooling after the last convolu-
tional layer to help in fine-grained recognition.

Kassani et al.: in this approach, the image is first
enhanced using several preprocessing and augmentation
techniques; then, features are extracted using a hybrid
VGG16 and MobileNet model. The authors have developed
an integrating strategy to overcome the shortcomings of the
individual models. Finally, a multilayer perceptron is trained
using these features.

Bodzas et al.: in this approach, the image is segmented
using a three-phase filtration; then, sixteen handcrafted
features are extracted and used for classification by SVM
and ANN classifiers.

Kasani et al.: the authors develop an aggregated deep
learning model ALL detection. Several data augmentation
techniques were applied to overcome dataset size issues,
and transfer learning was utilized to accelerate learning.
The authors have used the following CNN models: Inception
v3, AlexNet, DenseNet201, VGGNet-16, VGGNet19, Xcep-
tion, MobileNet, ShuffleNet, and two NASNet models.

Shafique and Tehsin: the authors have used a pretrained
AlexNet model in their study. They have replaced the last
layers with new linear layers and learnt the weights from
scratch by fine-tuning on the ALL-IDB dataset. They have
employed several data augmentation techniques to over-
come overfitting.

We compare the models based on the accuracy obtained
since this was a common metric we found in all these studies.
Table 1 compares the proposed approachwith its counterparts.

A common trend we noticed in these studies is that
several CNN models are being aggregated and utilized to
make a classification decision; we feel that this approach
makes the model unnecessarily complex. Not only does this

Table 3: Hyperparameter configuration for the proposed model.

Model Hyperparameter Value

Adam optimizer
[β1, β2] [0.9, 0.999]

Learning rate 1e − 4

XGBoost

n_estimators 1000

Max_depth 6

Min_child_weight 3

Loss weights
Normal class 1.5929

ALL class 0.7330

CNN model
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Figure 7: Validation loss curve for various pretrained CNNs during
stage 1 training.

464 11

1000

800

600

400

200
13

Normal

N
or

m
al

ALL

A
LL 1112

Figure 8: Confusion matrix for the hybrid model on test data.

7Computational and Mathematical Methods in Medicine



approach require a lot of computation and time resources to
train and validate, but it also makes interpreting results more
difficult. Our hybrid model achieves similar performance
with a single CNN backbone making it simpler without
losing performance.

Another limitation we noticed is that the studies do not
attempt to interpret and justify classification decisions made
by the models. Interpretability of models is of prime impor-
tance in building trust and towards the successful integration
of these models in everyday medical use. Since we use a single
CNN backbone for feature extraction, we can demystify the
CNN by visualizing their activation maps of the features
extracted (refer to Figure 9).

7. Ablation Study

In this section, we attempt to justify our design choices in
developing the proposed hybrid model.

We investigate the effectiveness of using an XGBoost
classification head with a fine-tuned CNN model. We
experiment with different CNN backbones such as AlexNet
and ResNet18 in our proposed model. The goal of this
experiment is to demonstrate the effectiveness and general-
izability of using the XGBoost classification head over the
softmax classification head for this dataset. Table 4 shows
the weighted F1 score of hybrid models using different
CNN backbones. Table 4 shows that generally there is a
significant increase in the performance of the model when
used in this setting.

We check whether a pretrained CNN can be direct with-
out fine-tuning on the train set. We conduct this experiment
to check for the effectiveness and need for fine-tuning the
feature extractor (stage 1 training). When we directly use
the pretrained Inception v3 as a feature extractor, we notice
that there is a significant drop in performance. We try to
investigate the reason behind this by plotting a scatter plot
of the features extracted from the Inception v3 (refer to

Figure 9). We use t-sne to convert the high-dimensional fea-
ture maps to lower-dimensional embeddings. We observe
that with fine-tuning, the Inception v3 learns better and more
discriminative feature representations for the dataset which
helps the XGBoost model in making better and more
informed classifications, whereas the features from a pre-
trained off the shelf Inception v3 are not discriminative at
all, which is clearly observed in Figure 9.

We also try to understand the inner workings of Incep-
tion v3 from stage 1. Being able to interpret the model can
help in justifying the classification decision; this kind of inter-
pretability will provide more confidence to medical practi-
tioners and patients in the model prognostics. To do this,
we would like to find out the parts the image Inception v3
pays attention to while making a classification decision. We
visualize the feature maps to understand the active areas of
the image. Figure 10 displays the heat map over the image;
the highlighted areas in the image are those areas that
contribute most to the classification decision. We observe
that the cell nucleus is the region that contributes most to
the classification decision. We also observe that the model
does not pay much attention to the area surrounding the
cells. This observation also justifies the choice to perform
center cropping while preprocessing the data as that removes
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Figure 9: Feature maps produced by pretrained Inception v3 and fine-tuned Inception v3, respectively. The features learnt by fine-tuned
Inception v3 are more discriminative.

Table 4: Comparison of pretrained CNN models with softmax
classifier and with XGBoost classifier. The results are the weighted
F1 score on the test set.

Model
name

Softmax classification
head

XGBoost classification
head

AlexNet 0.889 0.897

ResNet 18 0.917 0.957

VGG 16 0.921 0.924

Inception
v3

0.979 0.985
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the redundant parts of the cell image. We can conclude that
the feature extractor is not learning any spurious features that
may be inadvertently causing data leakage.

8. Conclusion and Future Scope

In this study, we present a hybrid classification model
consisting of Inception v3 (CNN backbone) and XGBoost
(classification head). With the fine-tuned Inception v3
model, we extract features from microscopic white blood cell
images. These learnt features are passed to an XGBoost
model that acts as the classifier that makes the classification
decision. Experiments indicate that the proposed hybrid
model can accurately and reliably detect acute lymphoblastic
leukemia cells with a F1 score of 0.986. The proposed hybrid
model and training strategy work with several other pre-
trained CNNs too, with experimental results indicating an
improvement in F1 score in the range of ½1%, 5%� over a
fine-tuned CNN with a softmax classifier. We also attempt
to explain the features learnt by Inception v3 by analyzing
the attention map for the features extracted. This attention
map demonstrates that the model pays a lot of attention to
the nucleus of the cell and the center of the microscopic
image where the cell is present; this is similar to how a hema-
tologist would analyze the image.

Due to the lack of publicly available ALL datasets, we are
not able to perform further analysis of the model’s perfor-
mance on similar datasets. In the future, we would like to
collect a large dataset or synthesize an artificial dataset using
GANs to improve research in this area.

A major focus on future research should be making the
model more interpretable. Although we attempt to interpret
the model using attention maps for feature maps, the model
largely remains a black box. For future scope, we would like
to make the model more explainable so that it can justify
the classification decision. This kind of interpretability will
provide more confidence to medical practitioners and
patients in the model prognostics.
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In the past few decades, the field of image processing has seen a rapid advancement in the correlation filters, which serves as a very
promising tool for object detection and recognition. Mostly, complex filter equations are used for deriving the correlation filters,
leading to a filter solution in a closed loop. Selection of optimal tradeoff (OT) parameters is crucial for the effectiveness of
correlation filters. This paper proposes extended particle swarm optimization (EPSO) technique for the optimal selection of OT
parameters. The optimal solution is proposed based on two cost functions. The best result for each target is obtained by
applying the optimization technique separately. The obtained results are compared with the conventional particle swarm
optimization method for various test images belonging from different state-of-the-art datasets. The obtained results depict the
performance of filters improved significantly using the proposed optimization method.

1. Introduction

For the purpose of object detection and recognition in the
fields of pattern recognition, computer vision, and image
processing [1–5], correlation filters have been widely
employed. Other fields in which correlation filters are used
are object tracking [6, 7] and biometric object recognition
[8–10]. The correlation filters are trained in a way to generate
maximum correlation peaks pertaining to the objects desir-
ous of being detected, while generation low peaks against illu-
mination, clutter, and noise. Correlation filters date back to
around three decades, when they were introduced primarily
for object recognition [11]. Over the years, improvement in
the accuracy of the correlation filters has been made, using
different optimization methods [12–15].

Accurate recognition and tracking of objects can be car-
ried out using the correlation filters. The Maximum Average

Correlation Height (MACH) and Maximum Average Corre-
lation Energy (MACE) are used for eliminating clutter distor-
tion and noise [16]. The MACE filter is extremely sensitive to
clutter and noise, while providing distinct peaks for the
detection of filter outputs [17]. The MACH filter gives max-
imum relative height w.r.t the expected distortions by gener-
ating the broader peaks [18].

Complex filter equations are employed for implementing
the correlation filters in different software. Thus far, many
correlation filters’ variants have been introduced by altering
values of the optimal tradeoff (OT) parameters of involved
filter equations. Up till now, experimental trials have been
conducted for tuning of the tradeoff parameters. The main
motivation of the proposed research is to optimize the OT
parameters using a technique that has not been employed
before, which enables determining the best possible values.
The optimization technique presented in this paper is based
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on the particle swarm optimization (PSO) variant. The PSO
algorithm was first introduced by Eberhart and Kennedy
[19]. It is a population-oriented method that is inspired by
animals and fish social behavior. The standard PSO algo-
rithm [20] is the one used for basic optimization of parame-
ters. EPSO proposed by Li et al. [21] is considered to be PSO’s
most renowned variant. This particular variant has been
employed in various applications of image processing [22–
28].

The paper compares the standard PSO and EPSO for OT
parameter optimization. The parametric optimization relies
on MACH and MACE filter cost functions. The filters pro-
duced as a result are application specific as the parameter
values vary based on each target object of interest. The filter
is generic in nature as given the application, it can be applied
successfully on any target object of interest based on calcula-
tions of the cost functions. The proposed algorithm is novel
in the sense that PSO variants have not been previously
employed in conjunction with correlation filters for accurate
object recognition. Previously, values suggested by Bone et al.
were used for the optimization of optimal tradeoff values of a
correlation filter. This is the first time that an ensemble of
EPSO and correlation filters is used for the optimization of
optimal tradeoff parameters for accurate object detection.

2. Proposed Methodology

2.1. Correlation Filters. The main motivation behind employ-
ing the enhanced version of the correlation filter is to exclude
the peaks that make the procedure of object detection, an
erroneous one. In multiplexed filters, it is usually very diffi-
cult to obtain a sharp peak using the correlation templates,
which often outputs high-intensity side lobes. For easy detec-
tion of object of interest, MACE filters are employed, which
are responsible for providing sharp peaks. The downside of
MACE filters is that they are sensitive to distortion. In the
MACE filter, the function level is evenly reduced over the
entire correlation plane, with the exception of the plane cen-
ter. On the contrary, MACH provides broader correlation
peaks, but it comes with an added advantage of being noise
and distortion tolerant. For the implementation of MACE
andMACH filters, the metrics of Average Correlation Energy
(ACE) and Average Similarity Matrix (ASM) are minimized,
respectively. Since minimization of ASM is directly related to
the reduction of dissimilarity among the correlation planes, it
makes the correlation process more accurate. The amplitude
of peaks of the MACH filter is higher than the MACE filter
peaks [17, 18].

Equation (1) shows the energy equation [29] pertaining
to the correlation filter.

E fð Þ = α ONVð Þ + β ACEð Þ + γ ASMð Þ − δ ACHð Þ: ð1Þ

The ASM can be calculated using

ASM = f +Sx f , ð2Þ

Sx =
1
N
〠
N

i=1
Xi −Mxð Þ∗ Xi −Mxð Þ, ð3Þ

where the variable “f ” depicts the chosen filter and the
“+” sign in the superscript depicts the conjugate response in
Equation (2).

The ACE of the filter can be computed using

ACE = f +Dxf ,

Dx =
1
N
〠
N

i=1
X∗
i Xi:

ð4Þ

Equation (5) is used for the calculation of output noise
variance [9].

ONV = f +Cf : ð5Þ

The variable “C” indicates a diagonal d ∗ d dimensional
vector. Normally, the value of C is taken as δ2I. Equation
(6) is used for the calculation of Average Correlation Height
(ACH) [29].

ACH =
1
N
〠
N

i=1
f TXi

�����
����� = f Tmx

��� ���, ð6Þ

where mx represents the average of N vectors.
By substituting all the values, Equation (1) can be mini-

mized into

E fð Þ = f +If − δ f Tmx

��� ���, ð7Þ

where I can be described using

I = αC + βDx + γSx: ð8Þ

Therefore, the filter equation becomes

f o =
δ

2

� �
I−1mx, ð9Þ

where δ represents the scaling factor and o in the super-
script depicts optimal complex filter transfer function. The
values of α, β, and γ are nonnegative entities. The effective-
ness of the MACH filter depends mainly on the adjustment
of these three parameters, i.e., α, β, and γ. By selecting α = 0
and γ = 0, the filter transfer function is transformed into a
simple MACE filter which is used for the minimization of
ACE. Setting α = 0 and β = 0 converts the filter transfer func-
tion to theMACH filter which is used for the minimization of
ASM. Up till now, the optimized values as suggested by Bone
et al. have been kept at α = 0:01, β = 0:1, and γ = 0:3, since
they are considered optimal for the implementation of the
MACH filter. In reality, these values do not show promising
results for some datasets as the conditions in different scenar-
ios vary. In this paper, a novel method using EPSO has been
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proposed for calculating the optimal OT values that can be
considered optimal for every environment.

A combination of a correlation filter and an optimization
technique is proposed in this paper. The combined optimized
filter provides optimal values of OT parameters based on the
specific target object of interest. The results of conventional
PSO and proposed EPSO algorithms will be compared in
the later section of the paper.

2.2. Particle Swarm Optimization. PSO, as previously
described, is an optimization algorithm that is derived from
fish schooling and motion of bird flocks. PSO is a very good
technique used primarily for the optimization of the param-
eters. PSO searches the most optimal solution in a multidi-
mensional search space with the help of several available
particles who all donate towards the optimized particles.
The algorithm searches the best value for each particle by
the convergence method. A cost function is employed for
the estimation of each optimized value. The cost function is
also used to identify the most suitable value for the defined
fitness function. Two primary parameters are associated with
each particle: (i) the velocity of each particle vðiÞ and (ii) the
particle position of each particle xðiÞ, where the iteration
index is indicated by i. Subsequently, the global best of whole
swarm is obtained by extracting the best values related to all
the particles and combining them. In a D-dimensional space
involving a swarm of N particles, the position and velocity of
each particle are updated using

vdk i + 1ð Þ =w:vdk ið Þ + c1:r1,k ið Þ: pdk − xdk ið Þ
� �

+ c2:r2,k ið Þ: gd − xdk ið Þ
� �

,
ð10Þ

xdk i + 1ð Þ = xdk ið Þ + vdk i + 1ð Þ, ð11Þ
where the dimensions of the particles are denoted by

d = 1, 2⋯ ,D and the particle index is denoted by k = 1,
2⋯ ,N . The constants c1 and c2 represent the cognitive
and social coefficients, respectively. The velocity and posi-
tion of the kth particle are represented by vkd and xkd ,
respectively, in a d-dimensional space. The particles’ local
best position is represented by pkd , while gd represents
the swarms’ global best position. While searching the
behavior of the swarm, the source of randomness and uni-
form random distribution [0, 1] are the two parameters
used for the derivation of r1,k and r2,k.

The most popular variant of the PSO was proposed by
Eberhart and Kennedy. Equation (12) shows the variant that
contains amodel based on inertial weight [19]. Themodel tends
to multiply a constant factor commonly known as the weight of
the inertia, with the velocity of the current iteration [19].

vdk i + 1ð Þ =w:vdk ið Þ + c1:r1,k ið Þ: pdk − xdk ið Þ
� �

+ c2:r2,k ið Þ: gd − xdk ið Þ
� �

:
ð12Þ

The momentum of the particle is controlled by the conver-
gence of inertia weight w ϵ ½0, 1�. For a small value of w, negli-

gible momentum is preserved and carried forward from the
previous iteration that tends to change the direction quickly.
On the contrary, a larger w value means slow convergence
and delayed change in particle direction. For the value of w =
0, the particle moves ahead without any prior knowledge of
the value of velocity. The defined variant is commonly known
as the standard PSO [30, 31].

The optimization algorithms have several applications
associated with them. Pandey et al. [32] employed the PSO
algorithm for clustering of data vectors. The algorithm was
also used for the user-defined centroid of data clusters and
their identification. While comparing PSO with its counter-
part, i.e., the k-means clustering technique, the PSO returned
the best convergence with minimal errors. The proposed
PSO algorithm by Nayyar et al. is now used in conjunction
with k-means for the refinement of clusters [24]. Grosan
et al. [33] proposed an application pertaining to the PSO
algorithm in data mining domain. They used the PSO
algorithm for cloud computing such that applications were
efficiently scheduled by optimizing the cloud resources. As
compared to the heuristic algorithms, the proposed tech-
nique by Grosan et al. reduced the cost of data transmission
and computation by one-third. As compared to the k
-means algorithm, the PSO algorithm for the optimization
of image clustering was utilized. Applications can be found
in satellite imaging and in MRI as well.

The most commonly employed PSO variant is the
extended PSO having the time-varying coefficients related
to acceleration (EPSO) [22]. An optimal solution is obtained
through the acceleration coefficients only by guiding the
movement of particles, while coefficients related to inertia
are removed. The coefficients related to acceleration move
linearly with respect to time. Therefore, if at some point,
velocity goes to zero, the particle is reinitialized through the
use of other predefined velocities.

2.3. Extended Particle Swarm Optimization (EPSO)
Algorithm. In each iteration of the conventional PSO tech-
nique, two extreme values are used for updating the state of
each particle. For optimizing the algorithm’s global conver-
gence and to increase its efficiency, the global impact of many
involved particles contributes towards updating the state of
each particle. Such an impact caused by the multiparticle
effect is commonly known as the extended particle swarm
optimization (EPSO) algorithm.

In EPSO algorithms’ recursive process, the optimization
process includes particles that contain more information as
compared to the conventional PSO. The main formula of
EPSO is stated in Equations (13) and (14) [21].

vi+1 =wvt + 〠
m

i=1
ψi pt − xtð Þ + 〠

n

i=1
ζi p̂t − xtð Þ, ð13Þ

xi+1 = xt + vt+1, ð14Þ
where ψi = c1,ir1,ið0, 1Þ and ζi = c2,ir2,ið0, 1Þ [21].
The number of iterations is depicted by the subscript t, vt

denotes the velocity of the particles, xt denotes the inter-
spaces of the involved particles, pt signifies the extreme value
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particle’s position, p̂t denotes the local extreme particles, and
r1,I ð0, 1Þ and r2,I ð0, 1Þ are random variables between 0 and 1,
while c1,I and c2,i represent the control parameters. A com-
parison of Equations (14) and (12) shows that in comparison
with the conventional PSO, EPSO takes into account the
information associated with more particles involved in the
optimization process, thus providing stronger and better
global convergence. EPSO can easily be converted to the con-
ventional PSO by setting values of m = n = 1.

Since the EPSO utilizes information from more particle
values and it also considers more particles and more con-
trolled parameters for the optimization process, the parame-
ter selection has to be spot on in order for the algorithm to
converge quickly. The setting strategy pertaining to the con-
trol parameters of the algorithm is obtained by testing the
convergence condition of the EPSO algorithm. The iterative
formula for the EPSO algorithm is calculated by substituting
Equation (13) in Equation (14) and using vt = xt − xt−1.
Equation (15) describes the main cumulative formula [21].

xi+1 = 1 +w − 〠
m

i=1
ψi + 〠

n

i=1
ζi

 !
xt −wxt−1 + 〠

m

i=1
ψipi + 〠

n

i=1
ζip̂t:

ð15Þ

Since for all the iterations, pt and p̂t are considered
constants, therefore, Equation (15) can be summarized to
Equation (16) [21].

xt+1

xt

1

2
664

3
775 =

1 +w − ψ − ζ −w ψp + ζp

1 0 0

0 0 1

2
664

3
775

xt

xt+1

1

2
664

3
775,

ð16Þ

where ψ =∑m
i=1ψi, ζ =∑m

i=1ζi, ψp =∑m
i=1ψipt , and ζp =

∑n
i=1ζip̂t [21].
The velocity solution is obtained by generalizing Equa-

tion (13), and Equation (14) can be categorized into Equation
(17) [22].

vdk i + 1ð Þ = c1:r1,k ið Þ: pdk − xdk ið Þ
� �

+ c2:r2,k ið Þ: gd − xdk ið Þ
� �

,

ð17Þ

where [22]

c1 = c1f − c1i
À Á

∗
k

max ITER
+ c1i,

c2 = c2f − c2i
À Á

∗
k

max ITER
+ c2i:

ð18Þ

Recursive updating of the position and velocity of the kth
particle is carried out using Equations (16) and (17),
respectively.

2.4. EPSO for Designing of Correlation Filter. Implementation
of correlation filters is performed using complex filter trans-

Table 1: Parameter optimization of correlation filter using PSO.

Optimal tradeoff parameter estimation for correlation filter
using PSO

1.
Each particle’s position and velocity parameters are randomly

initialized

2.
Fitness function value estimation using Equations (15) and

(17) for each particle

3. Calculation of best value for each particle

4. Calculation of Swarm’s global best

5. The position of particles is updated using Equation (11) [19]

6. The velocity of particles is updated using Equation (10) [19]

7.
Fitness function value estimation using Equations (16) and

(17) for each particle

8. Calculation of local best pertaining to each particle

9. Calculation of global best pertaining to each swarm

10.
If stopping condition is achieved, terminate the algorithm.

Otherwise, go back to Step 5

Table 2: Parameter optimization of correlation filter using EPSO.

Optimal tradeoff parameter estimation for correlation filter
using EPSO

1.
Each particle’s position and velocity parameters are randomly

initialized

2.
Fitness function value estimation using Equations (16) and

(17) for each particle

3. Calculation of local best pertaining to each involved particle

4. Calculation of global best pertaining to each involved swarm

5. The position of particles is updated using Equation (15) [21]

6. The velocity of particles is updated using Equation (17) [21]

7.
Reinitialize the velocity if the velocity of particles becomes

equal to zero

8.
Fitness function value estimation using Equations (16) and

(17) for each particle

9. Calculation of local best pertaining to each particle

10. Calculation of global best pertaining to each swarm

11.
If stopping condition is achieved, terminate the algorithm.

Otherwise, go back to Step 5

Table 3: Setting of PSO parameter values.

Parameter setting Values

Experiments 120

Iterations 320

Particles 10

Dimensions 03

Xmin -1

Xmax 1

Vmin -0.1

Vmax 0.1

W 0.9

C1, C2 2
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fer functions which are dependent on the selection of tradeoff
parameters. The tradeoff parameters should be optimal in
order for the filter to work in an effective manner. Better
selection of tradeoff parameters will result in accurate corre-
lation peaks and thus better object detection. Several
researchers have proposed methods for the effective calcula-

tion of these values. A method proposed by Bone et al. [16]
used fixed values for the optimal tradeoff parameters. The
choice of selection of these values was not obvious for certain
object recognition applications. A novel technique for effi-
cient selection of these tradeoff parameters is proposed in this
paper which pertains to the response of the filter. The

Figure 1: Datasets.

Table 4: COPI value comparison.

Dataset Testing image (degree) Bone et al. values (COPI)
PSO EPSO

α β γ COPI α β γ COPI

1 5 4:05E − 5 0.0040 0.0402 0.0473 2:74E − 4 8:45E − 9 0.0954 0.1722 2:74E − 1

2 5 4:91E − 5 0.0040 0.0421 0.0506 3:91E − 4 7:39E − 9 0.0921 0.2102 2:04E − 1

3 15 2:05E − 5 0.0041 0.0404 0.0470 6:05E − 5 3:04E − 8 0.0726 0.2232 1:24E − 1

4 15 3:98E − 5 0.0038 0.0388 0.0525 1:98E − 3 2:14E − 8 0.1229 0.2212 1:37E − 0

5 25 4:15E − 5 0.0035 0.0389 0.0499 3:15E − 4 1:45E − 8 0.1021 0.1639 1:34E − 1

6 25 5:05E − 5 0.0039 0.0384 0.0473 4:01E − 4 8:45E − 8 0.1512 0.1978 1:74E − 1

7 45 4:95E − 5 0.0042 0.0310 0.0428 3:15E − 4 6:27E − 9 0.2102 0.1099 2:44E − 2

8 45 7:05E − 5 0.0039 0.0390 0.0478 5:15E − 4 7:45E − 9 0.1022 0.1877 3:24E − 2
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Figure 2: Continued.
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parameter α mentioned in Equation (8) can be calculated
using Equation (15) [22].

αk t + 1ð Þ = αk tð Þ + vk,α t + 1ð Þ: ð19Þ

Similarly, using Equations (15) and (17), similar equa-
tions of β and γ can be obtained for the purpose of optimiza-
tion. EPSO calculates the values of optimal tradeoff
parameters via convergence of the involved fitness function.
It will enable the fitness function to be calculated for specific
object recognition applications by calculating the correlation
output peak intensity (COPI) cost function and peak to cor-
relation energy (PCE) cost function. The correlation pertain-
ing to the object of interest depends on the calculation of
COPI and PCE cost functions. The calculation of both of
these parameters is performed for the characterization of
the correlation plane [34], as mentioned in Equations (20)
and (21) [9].

COPI = max C x, yð Þj j2È É
: ð20Þ

Cðx, yÞ depicts at location ðx, yÞ the correlation peak out-
put and [9]

PCE =
COPI − C x, yð Þj j2

∑ C x, yð Þj j2 − �C x, yð Þj j2
h i2

/ NxNy − 2
À Á� �� �1/2 ,

ð21Þ

where the average COPI is represented by jCðx, yj2 =∑
jCðx, yj2/NxNy.

For maximizing the PCE cost function, the value of ACE
is reduced by the MACE filter. The MACH filter is responsi-
ble for minimizing the ASM value. The height of the correla-
tion peak is maximized due to the reduction of ASM. In the

optimization algorithms, fitness functions are defined by
COPI and PCE values. The summary of the steps is men-
tioned in Tables 1 and 2.

3. Results and Discussion

Eight publicly available datasets [35, 36] have been used for
the experiments and analysis. Five datasets are vehicle-
oriented datasets in which the object of interest, i.e., the vehi-
cle, undergoes different shift, scale, occlusion, and lightening
conditions. Three remaining datasets, i.e., Singer, Blur Body,
and Skating, are person-oriented datasets in which the object
of interest, i.e., person, undergoes motion blur, shift, scale,
and occlusion-based variations. The obtained results have
been used for the comparison of results of the proposed algo-
rithm with other similar state-of-the-art algorithms [16].

3.1. Setting of Parameters. In order to test and evaluate the
optimal values of tradeoff parameters, experiments have been
carried out using both the PSO and EPSO techniques. The
chosen parameters are shown in Table 3.

Implementation of parameters has been ensured with a
slight modification. Since there is a possibility that particles
may give negative values for some particular parameters,
only the magnitude is considered, while ignoring the sign.
The lower limit of values has been set to -0.1 to give weigh-
tage to the lower order negative values. The results proved
that the assumption was correct.

3.2. Comparison of Results of PSO and EPSO. Eight publicly
available datasets shown in Figure 1 were tested for acquiring
the results. The chosen datasets were based on the diversity of
the conditions that the images of datasets were taken. The
chosen datasets have been employed for comparison of
results of the algorithms and analyzing the optimized values
of each dataset. The 0-45 training images were rotated out-
of-plane. Among the images, a difference of 10 was ensured.
Cost function has been chosen based on the requirement in

(d)

Figure 2: (a) Correlation plane using Bone et al. values, (b) PSO value-based correlation plane, (c) ESPO correlation plane values, and (d)
testing image.
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Figure 3: Continued.
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hand. As a cost function, both the COPI and PCE values have
been individually selected for comparison of the EPSO and
PSO results with the Bone et al. suggested values [16].

Testing images belonging to different datasets and for dif-
ferent rotations are used for the analysis of the optimized
values and for experimentation purposes. For the Bone
et al. algorithm, the values of α, β, and γ have been set as
0.01, 0.1, and 0.3, respectively, as previously proposed.
Table 4 shows the comparison based on COPI cost function
between the proposed values of Bone et al. and the optimized
values calculated through the proposed algorithm. The
results evidently depict that the correlation peaks generated
by the EPSO optimization algorithm are better than the
peaks generated by PSO and Bone et al. values.

The optimization algorithms have been employed for the
comparison with Bone et al.’s proposed values using one of
the proposed datasets from Table 4. As a cost function, the
COPI value has been used for the algorithms. Results clearly
depict that in comparison with the PSO and Bone et al.’s
algorithms, the optimized values from EPSO perform very
well considering the COPI cost function as shown in
Figure 2. Out of plane rotation of 15° is applied on the testing
images. The attained COPI values in the cases of EPSO, PSO,
and Bone et al. are 3:24E − 2, 5:15E − 4, and 7:05E − 5,
respectively. The peaks obtained from Bone et al. and PSO
values are approximately the same as evident in
Figures 2(a) and 2(b), respectively. However, the results of
applying the PSO far outmatch the results obtained from
Bone et al.’s proposed parameter values. The COPI results
obtained from using the optimized parameter values of EPSO
are far better than the results obtained from both the Bone
et al. algorithm and the standard PSO, as shown in
Figure 2(c). The EPSO result for other performance metrics
is also better than the algorithms proposed by Bone et al.
and standard PSO as mentioned in Figures 3–5. Table 4 also

depicts that EPSO outperforms the PSO and Bone et al. algo-
rithm at varying degree levels which shows that the algorithm
is shift tolerant. Since all of the eight datasets include images
with varying scaling levels, therefore, it is evident from the
results depicted in Table 4 that EPSO provides scale invari-
ance as well.

A testing image that has been rotated out of plane by 45°

is shown in Figure 3. The achieved COPI values for EPSO,
PSO, and Bone et al. are 3:24E − 2, 5:15E − 4, and 7:05E − 5
, respectively. In the correlation plane, the presence of side
lobes using optimized values of EPSO is due to the occur-
rence of ONV as well as due to the inclusion of full correla-
tion process in the experimentation, i.e., full correlation of
the testing image is performed with the filter. Considering
the COPI cost function, the results of EPSO optimized values
outmatch the results of the other values.

The maximum value of the PCE parameter can be
achieved by minimizing the ACE value. This leads to a prom-
inent and sharper peak as compared to the other methods.
The pattern of optimized values is examined by experiment-
ing on different datasets consisting of test images that have
been rotated out of plane. The parameters α, β, and γ have
been set as 0.01, 0.1, and 0.3, respectively. The comparison
between the proposed algorithm and Bone et al.’s algorithm
based on PCE cost function is shown in Table 5. The results
evidently show that the PCE values generated by the EPSO
optimization algorithm outmatch the values generated by
PSO and Bone et al.’s values.

Different datasets have been employed for the analysis of
correlation plane based on PCE function. The testing image
is rotated out of plane by 45° as shown in Figure 4. The
achieved values of PCE cost function in the cases of EPSO,
PSO, and Bone et al. are 3:19E + 2, 2:77E + 2, and 2:72E + 1,
respectively. The obtained results of EPSO based on PCE cost
function again outmatch the results obtained for PSO and

(d)

Figure 3: (a) Bone et al. value-based correlation plane, (b) PSO value-based correlation plane, (c) ESPO correlation plane values, and (d)
testing image.
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Figure 4: (a) Correlation plane using Bone et al. values, (b) PSO value-based correlation plane, (c) ESPO correlation plane values, and (d)
testing image.
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Figure 5: (a) Bone et al. value-based correlation plane, (b) PSO value-based correlation plane, (c) ESPO correlation plane values, and (d)
testing image.
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Bone et al.’s proposed algorithm. The obtained optimized
values clearly depict a sharper peak in the case of EPSO as
compared with PSO and Bone et al.

Figure 5 shows a 15° out of plane rotated testing image.
The optimized values generated from EPSO are yielding
much sharper peaks as compared to the optimized values
generated through PSO or the conventional values of Bone
et al.’s algorithm. The PCE values for 15° out of plane rotated
testing image for EPSO, PSO, and Bone et al. are 5:01E + 2,
5:72E + 1, and 3:92E + 1. The results obtained by using con-
ventional PSO are better than the results obtained from Bone
et al.’s algorithm. However, the EPSO-generated optimized
values give the best results as compared to the results
obtained from the optimized values generated from PSO
and Bone et al., in terms of PCE and COPI cost functions.
The optimized values depend on the images contained in
the dataset. The cost functions and the datasets define the
values of the optimized parameters.

4. Conclusion

A novel technique has been proposed which combines opti-
mization algorithms with a correlation filter in order to
improve the results of the correlation filter. The technique
focuses on optimizing the tradeoff parameters pertaining to
correlation filters which have not been achieved earlier. The
optimization parameters achieved by using EPSO and PSO
algorithms have been compared with the optimization values
of the previously employed algorithms. The comparison was
based on the PCE and COPI cost functions for a specific
object recognition application. The values are not constant
for all the object recognition applications as suggested by
the previous studies. The values of optimal tradeoff parame-
ters and the PCE and COPI cost functions are calculated for
specific datasets based on their properties. The EPSO
optimized values helped in the reduction of the ONV factor
thus resulting in more accurate results as compared to the
PSO and other previously suggested similar algorithms. The
proposed work also has plenty of scope for future studies.
In the future, we will try to compare EPSO and PSO with
more advanced heuristic algorithms in order to achieve more
accurate results. A few recent algorithms are improved GA,
grasshopper, mothflame, and name a few more [37–39].
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Skin cancer is the most common cancer of the body. It is estimated that more than one million people worldwide develop skin
cancer each year. Early detection of this cancer has a high effect on the disease treatment. In this paper, a new optimal and
automatic pipeline approach has been proposed for the diagnosis of this disease from dermoscopy images. The proposed
method includes a noise reduction process before processing for eliminating the noises. Then, the Otsu method as one of the
widely used thresholding method is used to characterize the region of interest. Afterward, 20 different features are extracted
from the image. To reduce the method complexity, a new modified version of the Thermal Exchange Optimization Algorithm is
performed to the features. This improves the method precision and consistency. To validate the proposed method’s efficiency, it
is implemented to the American Cancer Society database, its results are compared with some state-of-the-art methods, and the
final results showed the superiority of the proposed method against the others.

1. Introduction

Cancer, as a difficult disease to treat, has long occupied the
human mind [1]. Cancer occurs when cells in a part of the
body grow uncontrollably, divide rapidly, invade different
tissues in the body, and spread throughout the body [2]. A
set of these uncontrollable cells is called a tumor [3]. One
of the deadliest sorts of cancers is skin cancer. Skin cancer
has grown significantly over the past decades, and the impor-
tance of its early treatment is increasing day by day [4].

Melanoma is the third most common type of skin cancer
and one of the malignant cancers. Melanoma is also referred
to as malignant melanoma, which changes the color of the
skin due to the abnormal function of pigment-producing
cells. The disease is formed by the accumulation of melanin
granules and its spread to the outermost layer of the skin.
Despite significant mortality, melanoma is often treatable in
the early stages of diagnosis. At the same time, distinguishing
between melanoma and other benign moles in the early

stages of development is a challenging task, even for derma-
tologists. Melanoma is known as the 19th prevalent cancer
in men and women. There were about 300,000 new cases in
2018.

The data gathered by the World Health Organization
(WHO) in 2018 showed that there were 17852 melanoma
cases in the United Kingdom [5]. This organization predicted
that the number of melanoma cases will grow by 9% to 19513
with deaths growing by 13% to 3119 by 2025.The growth of
skin cancer begins when damage to skin cells (often caused
by ultraviolet light) causes mutations that rapidly multiply
in skin cells and form malignant tumors.

Normally, skin cells grow in a controlled and regular way.
However, some newly produced cells may grow out of con-
trol and form a mass of cancer cells. Changes in the shape,
size, and color of a person’s mole are often the first signs of
melanoma [6]. Melanoma has a black or bluish-black border;
melanoma also appears as new black spots with an abnormal
appearance [7]. These pigment-producing tumors are
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present in the surface layer of the skin (epidermis [1]). Based
on the WHO reports, melanoma with 15000 cases is ranked
as the fourth prevalent cancer and with 1900 cases is the
ninth deadliest cancer [8].

Diagnosis of skin cancer is difficult to distinguish due to
the appearance of different types of skin lesions, especially
melanoma and nevi. Even with dermoscopy, a noninvasive
experimental technique, the accuracy of melanoma diagnosis
by dermatologists is 84-75%. Sampling, however, provides a
better diagnosis that is only possible based on surgery, which
can lead to an unpleasant experience for the patient.

To prevent unnecessary sampling, researchers have
reviewed several noninvasive methods for diagnosing mela-
noma. These methods usually involve three steps: (1) skin
boundary identification, (2) feature extraction, and (3) classi-
fication [9]. The border-detection process detects the tumor
in skin-related images, which is essential for the accurate
classification of skin lesions. The feature extraction process
uses visual properties such as color, mass shape, and texture
information to classify [10]. The classification process also
extracts the type of skin lesions from the image features
and performs classification operations.

Navid and Ghadimi [11] proposed a method for mela-
noma detection in the images. Edge detection and smoothing
technique were used for eliminating extra scales. Then, the
segmentation method was performed. During the segmenta-
tion, mathematical morphological was used for eliminating
the extra information on the melanoma boundary area. The
classification of the method was performed by an optimized
Artificial Neural Networks (ANN) based on World Cup
Optimization (WCO) algorithm to minimize the root mean
square error between the network output and the desired
output. The final results indicated that the suggested tech-
nique develops the method’s efficacy. Recently, several
research works are introduced for the early diagnosis of skin
cancers [12]. For example, Sugiarti et al. [13] introduced a
method for the early diagnosis of melanoma cancer. The fea-
ture extraction method of the first order was utilized for fea-
ture extraction to achieve higher precision. The classification
was performed by the Artificial Neural Network (ANN). The
final results indicated that that using the proposed method
provides a satisfied result for the analyzed images.

Zhi et al. [14] presented a CAD system for early detection
of skin cancer. The method uses a median filter for noise
reduction. Image segmentation was done based on Convolu-
tional Neural Network (CNN) that is optimized by Satin
Bowerbird Optimization (SBO). Afterward, feature extrac-
tion and feature selection were done to extract the valuable
information from the segmented image. The feature selection
was based on the SBO algorithm. Final features were fed to a
Support Vector Machine (SVM) classifier for final recogni-
tion. The results were validated by applying them to the
American Cancer Society database and comparing them with
some different techniques from the literature.

Esteva et al. [15] suggested a diagnosis technique for
lesion segmentation using deep learning. The analysis of the
proposed method is validated by 21 clinical images to classify
them into two groups of malignant and benign classes. The
study analyzed two cases: the first identified the prevalent

cancers, and the other one determined the deadliest skin can-
cer identification. The results indicated high efficacy for the
suggested method.

It is clear from the literature that several applications of
the deep learning in skin cancer detection still have lots of
space. Therefore, in this paper, a new optimized method
has been proposed for skin lesion diagnosis with higher per-
formance based on a new modified version of the Thermal
Exchange Optimization Algorithm.

The next parts of this study are structured as follows. In
“Noise Reduction from the Images,” the method of NLM
based on the Yaroslavsky filter is used as a beneficial noise
reduction tool. In “Image Segmentation,” the method of
image segmentation which is based on the Otsu thresholding
and mathematical morphology is explained. In “Methodol-
ogy,” the proposed Modified Thermal Exchange Optimiza-
tion Algorithm along with its application for optimal
feature selection is mentioned. In “Classification,” the classi-
fication method of the study which is based on the support
vector machine is stated. In “Results and Discussions,” the
simulation results and their discussion are explained, and
finally, the paper is concluded in “Conclusions.”

2. Noise Reduction from the Images

Preprocessing is used to correct problems in images taken
that may occur during medical imaging, such as noise or
light. In medical imaging, there may be disturbances due to
high-frequency reception, different brightness in the field,
and problems due to distant orientation, which are corrected
by artificial intelligence and image processing, and usually by
default on all images before the main processing. In this
paper, two modifications have been used as image prepro-
cessing to improve the system performance [16]. Due to the
stochastic physical nature of imaging systems, noise in the
image is unavoidable, making it difficult to perform various
image processes such as segmentation, detection, and inter-
pretation [17]. The important point during the noise reduc-
tion is that the original image and especially its details are
not damaged as much as possible and the structure of the
original image is preserved. Based on this, various methods
have been proposed to eliminate noise. In this study, we used
the newly introduced NLM method for this purpose.

The NLM filter is an extended version of the Yaroslavsky
filter [18], which uses nonlocal averaging of similar pixels
(pixels with a closer brightness level) to retrieve the actual
amount of pixels being processed. The main advantage of
the NLM method compared to this method is that it has a
more stable similarity criterion in the presence of noise,
because, in addition to comparing the pixels intensity levels,
a neighbor of them has also a role in determining the degree
of similarity. The NLM method has a good performance in
reducing most noise models, especially if the noise can be dis-
tributed collectively. The NLM method is based on the
weight of all the pixels in the image, in proportion to the sim-
ilarity of their neighbors; in other words, the more similar the
image pixel neighbors are to the pixel neighbor being proc-
essed, the higher the weight assigned to them. The amount
of pixels being processed is calculated using the total weight
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found from the other pixels. The neighborhood criterion
similarity in the NLM method is the weighted Euclidean
principle with the Gaussian kernel, which is shown in
Equation (1).

d = v ηið Þ − v ηj

� ���� ���2
2ρ
=
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where vðηiÞ describes the pixel neighborhood vector under
process, other pixels’ neighborhood vector, and k:k22ρ
represents the weighted Euclidean distance operator with
Gaussian kernel.

In other words, in calculating the similarity of neighbor-
hoods, the central pixel has a higher value, and by moving
through the central pixel, the effect of the pixels decreases.
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where Zi is a normalization parameter that guarantees the
utilized sum of weights equals 1. h describes the main param-
eter of the NLM that determines the filtering intensity. If h is
selected small, the value of the filtering in the image is small,
and the noise effect has been not removed properly, but a
large value for h makes an overfiltering for the image, and
the reconstructed image is completely blurred and devoid
of fine structural details. The final equation of the NLM filter
with computed weighted coefficients can be formulated as
follows:

NLM Mið Þ =〠
j

W Mi,Mj

� �
Mj, ð4Þ

Although all pixels must be weighed in retrieving each
pixel image, this operation is very time-consuming, so a spe-
cific area called the search window around each pixel being
processed is used for the weighting operation. As explained
before, NLM is a parameter filter with the following parame-
ters: search window radius, similarity window radius, and
smoothing parameter (h). Figure 1 shows a sample of noise
reduction for this case.

3. Image Segmentation

3.1. Image Thresholding. The thresholding method is used to
remove unnecessary information and focus on the basic
information in the image. Also, if the objects in the image
and the “background” have similar gray levels, this method

is used to reveal hidden details in the image. Therefore, after
noise reduction in the previous section, for highlighting the
brain region, image thresholding has been used. One of the
most popular and classic methods for finding the best thresh-
old value is the Otsu method.

The Otsu method provides global thresholding for the
input image. It uses the image histogram for maximizing
the “between-class variance” of the segmented classes which
consequently minimizes the “within-class variance” of the
segmented classes. However, maximizing “between-class var-
iance” needs less computational complexity than minimizing
“within-class variance.” During the Otsu thresholding, we
look forward to a threshold level to minimize the class
variance, i.e.

σ2ω tð Þ = ω1 tð Þσ2
1 tð Þ + ω2 tð Þσ22 tð Þ, ð5Þ

σ2b tð Þ = σ2 − σ2ω tð Þ = ω1 tð Þω2 tð Þ μ1 tð Þ − μ2 tð Þð Þ2, ð6Þ

whereωi signifies the probability for two separate classes with
a threshold value of t, σ2i describes the variance of the classes,
and μiðtÞ represents the mean value of the class and is
updated alternately.

The Otsu thresholding can be briefly considered as
follows:

(1) Calculate the histogram and the probabilities for each
intensity level:

(1.1) Initialize the ωið0Þ and μið0Þ for all possible
threshold levels

(1.2) Update ωi and μi

(1.3) Calculate σ2
bðtÞ

(2) The optimal threshold is the maximum of σ2bðtÞ.

3.2. Morphological Operations. After performing the thresh-
olding stage, mathematical morphology has been used to
abolish the spare parts of the region of interest in skin cancer
images [19]. Mathematical morphology is based on applying
a structural element (e) to the considered image. Here, a 5 × 5
identity matrix is used for structure element. In this study,
mathematical filling, opening, and closing have been
employed for this purpose. The first operation is to use math-
ematical filling. This operation is used to fill the empty holes

(a) (b)

Figure 1: Image noise reduction: (a) before and (b) after processing.
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in the threshold image. This operator can be achieved by the
following equation:

Xk = Xk−1 ⊕ eð Þ ∩ Ac, k = 1, 2, 3⋯ , ð7Þ

where A and e represent the area and the structure element,
respectively.

After filling the holes, the mathematical opening opera-
tion has been performed to the image to eliminate the lighter
details without deploying other gray surfaces. This is done by
the following equation:

A ∘ e = A ⊖ eð Þ ⊕ e: ð8Þ

The last process is to perform the mathematical closing to
connect the narrow parts. The formula for this operation is
given below:

A•e = A ⊕ eð Þ ⊖ e: ð9Þ

Figure 2 shows a sample for skin cancer segmentation
based on the explained method.

4. Methodology

In this study, a new modified metaheuristic has been pro-
posed, and then, it has been applied for providing an optimal
feature selection to get better results of diagnosing.

4.1. The Modified Thermal Exchange Optimization
Algorithm. Achieving the optimal state has been one of the
most fundamental issues in the world since the creation of
the universe. The scope of application of optimization-
related topics is very wide. Mathematics, computer science,
engineering, physics, and economics are just some of these
topics. In this type of problem, the goal is to get the best deci-
sion mode from several different modes [20]. Metaheuristic
algorithms can be considered one of the most important clas-
ses of optimization solutions for these types of issues. These
algorithms have a lot of variety [21]. The great variety of
these algorithms in solving different problems, as well as
the introduction of new algorithms with different titles, has
made choosing a suitable algorithm for the user who intends
to use them a difficult and complex task [22]. On the other
hand, each of these algorithms obtains the optimal solution
with certain accuracy and speed. Therefore, it seems neces-
sary to have a structure that can well identify the differences
between these algorithms and make their comparison easier.
On the other hand, the implementation of each algorithm
typically requires complete knowledge of that algorithm
and professional programming knowledge. Some examples
of these algorithms are like the Chimp Optimization Algo-
rithm (ChOA) [23], Black Hole (BH) [24], Crow Search
Algorithm (CSA) [25], Water Strider Algorithm (WSA)
[26], Ant Lion Optimizer (ALO) algorithm [27], and Ther-
mal Exchange Optimization (MTEO) [28]. In this study, a
modified version of this algorithm called the Modified Ther-
mal Exchange Optimization (MTEO) algorithm is proposed
to achieve optimal results for different parts of the diagnosis

system. This TEO algorithm is a metaheuristic technique that
is derived by the temperature behavior for the objects and
their location which is exchanged between warm and cold
parts and specifies the updated locations. More explanations
are explained in the following.

4.1.1. The Newton Law of Cooling. The Newton law of cooling
states that the rate at which a body temperature changes is
approximately proportional to the difference in temperature
between the body and its surroundings. This was first discov-
ered by Newton. When the temperature difference between
the body and its surroundings is small, the average amount
of heat exchanged between the body and its surroundings
due to conduction, convection, and infrared radiation is
approximately proportional to the difference in temperature
of the body and the environment. Newton’s law of cooling
is the solution of a differential equation of the Fourier law
which is formulated as follows:

dQ
dt

= α × A × Ts − Tað Þ, ð10Þ

where Q defines the heat, A signifies the body area surface
which transmits heat, α represents the heat transfer coeffi-
cient which depends on several cases such as heat transfer
mode, surface state, and object geometry, and Tb and Ta
describe the body temperature and the ambient temperature.

Based on the equation, the time for losing heat is α × A
× ðTa − TÞ dt which determines the change in reserved heat
as the temperature falls dT , i.e.

V × ρ × c × dT = −α × A × T − Tbð Þdt, ð11Þ

where c represents the specific heat (J/kg/K), ρ describes the
density (kg/m3), and V specifies the volume (m3).

Hence

T − Tb

TM − Tb
= exp

−α × A × t
V × ρ × c

� 	
, ð12Þ

(a) (b)

Figure 2: A sample for skin cancer segmentation based on the
explained method: (a) input image and (b) segmented.
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where TM represents the early high temperature. The above
equation is correct when α × A × t/V × ρ × c is has not
depended to T :

ζ =
α × A

V × ρ × c
, ð13Þ

Hence, by assuming ζ as a constant

T − Tb

TM − Tb
= exp −ζtð Þ: ð14Þ

Accordingly

T = TM − Tbð Þ × exp −γtð Þ + Tb: ð15Þ

4.1.2. The Algorithm. In Thermal Exchange Optimization
Algorithm, some individuals are considered cooling sub-
stances, and the other leftover individuals are considered
the environment, and then, the reverse process is performed.
Like any other metaheuristic algorithm, the TEO algorithm
starts with initializing a definite number of randomly distrib-
uted individuals as the solution candidates. This can be pre-
sented as follows:

T0
i = Tmin + δ × Tmax − Tminð Þ,
i = 1, 2,⋯, n,

ð16Þ

where T0
i describes the initial population of the algorithm for

the ith object, δ represents a random value limited in the
range [0, 1], and Tmin and Tmax describe the minimum and
maximum boundaries.

The cost value of all randomly generated individuals is
then evaluated to indicate the cost of each algorithm. Then,
the best T candidate vector positions have been stored as
thermal memory (TM) to employ for developing the algo-
rithm performance with less complexity. Some best TM can-
didates are then added to the individuals, and the same
numbers of them that have the worst values are removed.
Therefore, individuals have two equal types of environment,
and the heat and cooling transfer objects can be seen in
Figure 3.

To get a better conception, T1 defines the environment
object for Tðn/2Þ+1 cooling object, and contrariwise. If the
object gives a lower value than ζ, the temperature exchanges
gradually. In this situation, ζ has been achieved as follows:

γ =
Cos objectð Þ

Cos worst objectð Þ : ð17Þ

This algorithm uses time as another significant term for
the simulation. This term directly depends on iteration num-
ber. This can be mathematically formulated as follows:

t =
iteration

Max:iteration
: ð18Þ

For increasing the global searching in the algorithm,
environmental temperature changing has been considered
that can be considered as follows:

Te
i = 1 − m1 +m2 × 1 − tð Þ × randð Þð Þ × Ti′

e, ð19Þ

where Ti′
e
describes the previous temperature of the object

modified by Te
i and m1 and m2 represent the control vari-

ables, respectively.
Considering the past models, the object new temperature

can be mathematically updated by the following equation:

T+
i = Te

i + Told
i − Te

i

� �
exp −ζtð Þ: ð20Þ

The final case which is considered in this algorithm is Pr.
This term shows that a component changes in the cooling
objects or not.

The Pr individuals have been compared with RðiÞ which
has a random value in the range [0, 1]. If RðiÞ < Pr, one
dimension of the ith individual has been randomly selected,
and the value is rewritten in the following:

Ti,j = Tmin
j + rnd Tmax

j − Tmin
j

� �
exp −ζtð Þ, ð21Þ

where Ti,j describes the j
th variable of the individual number i

and Tmin
j and Tmax

j represent the lower and the upper bounds
of the variable number j, respectively. Finally, the algorithm
will be terminated if stopping criteria have been met.

4.1.3. Modified Thermal Exchange Optimization Algorithm.
From the literature, the method is compared with DE, ECBO,
CBO, PSO, GWO, GA, and lots of other optimization
methods (20 other methods). The results showed that the
original TEO has better convergence than most of the algo-
rithms with a satisfied solution value. Then, the original
paper concluded that TEO can be employed as a search
engine in most of the optimization problems [28]. Also, it
might be a source of inspiration for future algorithms or
improved and hybridized with other methods. In this section,
the details of the suggested modified Thermal Exchange
Optimization Algorithm, named MWSA, have been pre-
sented. In a general form, metaheuristic algorithms should
be efficient in two significant terms, exploitation and explora-
tion, such that it can found an appropriate trade-off between
them for better performance. The algorithm has the advan-
tage of fast convergence and excellent local search capability,
although it tends to fall into a local optima point rather than
finding the global optimum [29–31]. In order to develop the
algorithm efficiency by giving a proper balance between
exploration and exploitation terms, a modification has been
applied to it in this study. Opposition-based learning and
chaos map are two modification mechanisms that are used
here for improving algorithm efficiency.

The first mechanism, the opposition-based learning
(OBL) mechanism, was first presented by Tizhoosh [32].
This mechanism contains a strong mathematical concept
for improving the global searching of the algorithm. As
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aforementioned, the initializing step in TEO is completely
random, and the aim is to find the best points in the solution
space. Here, if the generated variables have a proper value
close to the solution space, the proper solution will be
achieved. But, if the algorithm starts with values too distant
from the optimal solution, the time for finding the global
value will be extended or even makes a premature conver-
gence in some cases. The OBL is a mechanism to modify this
issue by generating opposite values from the originally gener-
ated population. So, for every single solution, its original cost
value and its opposite cost value have been compared, the
best one will have remained, and the other will be removed.
This can be mathematically formulated as follows:

T̂
+
i = Tmax + Tmin − T+

i , ð22Þ

where T̂
+
i describes the opposite position of T+

i and Tmin and
Tmax describe the variables upper and the lower bounds in
the problem, respectively.

The new position provides a higher opportunity to get
the best solution. The second mechanism is the chaos map.
This mechanism utilizes chaotic conception to generate
unpredictable variables instead of random variables. This
mechanism accomplishes simple searches at a higher conver-
gence rate than probability-based random searches [33]. By

employing chaotic variables instead of random ones in meta-
heuristics, better exploration has been generated for the solu-
tion space because of the dynamic behavior of the sequence
[34]. Several functions have been introduced as chaos func-
tions [35]. This study employed a sinusoidal chaotic map
function to modify the convergence speed of the TEO and
make a balance between its exploitation and exploration
terms. By considering the sinusoidal map in the TEO algo-
rithm, environmental temperature changing is considered:

Te
i = 1 − m1 +m2 × 1 − tð Þ × ki+1ð Þð Þ × Ti′

e, ð23Þ

ki+1 = α × k2i sin π:kið Þ, ð24Þ

where ki+1 describes a chaotic random number made by cur-
rent iteration and ki describes the chaotic random number
made by the previous iteration. P = 2:3 defines the control
parameter, and the k0 is considered a random value in the
range [0, 1].

4.1.4. Algorithm Authentication. In this paper, in order to
demonstrate the effectiveness of the suggested MTEO, eight
standard benchmark functions have been selected which
are listed in Table 1. To provide a comprehensive analysis
on the optimization performance, the results of the proposed

… …T1 T2 Tn/2 Tn/2+1 Tn/2+2 Tn

Figure 3: The pairs of environment and the heat and cooling transfer objects.

Table 1: The information about the utilized test functions.

No. Test function Minimum value Boundary

1 F1 = 〠
N

n=1
x2n 0 −∞≤ x ≤∞

2 F2 = 〠
N−1

n=1
100 × xn+1 − x2n


 �2 + 1 − xn½ �2
� �

0 −∞≤ xn ≤∞

3 F3 = 〠
N

n=1
xnj j − 10 cos

ffiffiffiffiffiffiffiffiffiffiffiffi
10xnj j

p� �
0 −∞≤ xn ≤∞

4 F4 = x sin 4xð Þ + 1:1y sin 2yð Þ -18.5547 0 ≤ x, y ≤ 10

5 F5 = 〠
N

n=1
nx4n

" #
+Nn 0, 1ð Þ Varies −∞≤ x ≤∞

6 F6 = 10N + 〠
N

n=1
x2n − 10 cos 2πxnð Þ
 �

0 −∞≤ xn ≤∞

7 F7 = 1 + 〠
N

n=1

x2n
4000

−
YN
n=1

cos xnð Þ 0 −∞≤ xn ≤∞

8 F8 =
1
2
+
sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
− 0:5

1 + 0:1 x2 + y2ð Þ -0.5231 −∞≤ x, y≤∞
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MTEO have been compared with some different new state-
of-the-art metaheuristics, including the Biogeography-
Based Optimizer (BBO) [36], Locust Swarm Optimization
(LS) [37], Emperor Penguin Optimizer (EPO) [38], Spotted
Hyena Optimize (SHO) [39], and original Thermal Exchange
Optimization Algorithm [40]. Table 1 indicates the informa-
tion about the utilized test functions.

The experiment environments are MATLAB 2019b, the
Core™ i7-4720HQ with 1.60GHz CPU, 16GB RAM with
Windows 10. Table 2 indicates the parameters setting utilized
for the comparative algorithms utilized in this study.

This study, considers two important measures including
mean value and standard deviation value results from the
applying optimization algorithms on the benchmark functions
after 35 independent runs. To achieve a fair comparison
between the proposed MTEO and the comparative algo-
rithms, the population size for all of them and the iteration
number are considered 100 and 200, respectively [41].
Table 3 illustrates the performance analysis of the comparison.

As can be observed from Table 3, the proposed MTEO
algorithm provides the smallest value for the mean value of
the benchmark functions. This shows that the proposed
MTEO algorithm has the highest accuracy compared with
the other algorithms. Also, the standard deviation value
achieved by the algorithms shows the minimum value based
on the MTEO algorithm that shows consequently the higher
reliability of the proposed method against the other com-
pared methods.

4.2. Feature Extraction and Selection. After segmentation of
the region of interest from the input images, the main infor-
mation (features) has been extracted from the images to
reduce the complexity of the diagnosis process by consider-
ing only vital characteristics. In other words, feature extrac-
tion provides an easy way for demonstrating and analyzing
the images. Recently, several algorithms have been per-
formed for proper feature extraction of the images. During
the feature extraction with different methods, all of the pat-
terns in the features should be searched and determined. In
this study, 20 different features are employed to extract the
beneficial features from the segmented skin cancer for the

diagnosis. In this study, three groups of features, i.e., geomet-
ric features, statistical features, and texture features, are
utilized. In the following, the formulation of the utilized
features is explained:

Mean = 1
MN

〠
M

i=1
〠
N

j=1
p i, jð Þ, ð25Þ

Variance =
1

MN
〠
M

i=1
〠
N

j=1
p i, jð Þ − μð Þ, ð26Þ

Std =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
variance

p
, ð27Þ

Contrast = 〠
M

i=1
〠
N

j=1
p2 i, jð Þ, ð28Þ

Area = 〠
M

i=1
〠
N

j=1
p i, jð Þ, ð29Þ

Rectangularity =
Area
a × b

, ð30Þ

Elongation =
2
ffiffiffiffiffiffiffiffiffiffi
Area

p

a
ffiffiffi
π

p , ð31Þ

Irregularity index =
4π × Area
Perimeter2

, ð32Þ

FormFactor =
Area
a2

, ð33Þ

Eccentricity = 2a−1 a2 − b2
� �0:5, ð34Þ

Entropy = 〠
M

i=1
〠
N

j=1
p i, jð Þ log p i, jð Þ, ð35Þ

Perimeter = 〠
M

i=1
〠
N

j=1
bp i, jð Þ, ð36Þ

Homogeneity = 〠
M

i=1
〠
N

j=1

p i, jð Þ
1+∣i − j ∣

, ð37Þ

Energy = 〠
M

i=1
〠
N

j=1
p2 i, jð Þ, ð38Þ

Correlation = 〠
M

i=1
〠
N

j=1

p i, jð Þ − μrμc
σrσc

, ð39Þ

φ1 = η20 + η02,

φ2 = η20 − η02ð Þ2 + 4η211,

φ3 = η30 − 3η12ð Þ2 + 3η21 − μ03ð Þ2,
φ4 = η30 + 3η12ð Þ2 + 3η21 + μ03ð Þ2,

ð40Þ

where bp signifies the external side length of the boundary
pixel, pði, jÞ represents the pixel intensity value at point ði, jÞ,

Table 2: The parameters setting utilized for the comparative
algorithms utilized in this study.

Algorithm Parameter Value Algorithm Parameter Value

BBO [36]

Phabit 1

EPO [38]

A
!

[-1.5, 1.5]

Pimig [0,1] T ′ [1, 1000]

Step size 1 M 2

E 1 f [2, 3]

I 1 S [0, 1.5]

Pmutation 0.005 l [1.5, 2]

LS [37]

F 0.6

SHO [39]

M
!

[0.5, 1]

L 1
h
!

[5, 0]
g 20
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MN describes best the image size, a and b represent the major
and the minor axis, respectively, and μ and σ represent the
mean value and the standard deviation value, respectively.

Because of the higher volume of feature information and
the presence of some useless features, some of these features
should be then eliminated before the classification stage. This
is done by using a method, called feature selection. To
achieve an optimal diagnosis system, the suggested modified
Thermal Exchange Optimization Algorithm has been utilized
that is explained in the following.

Feature selection is the process of reducing the data
dimension by choosing the best features and eliminating
the others. Furthermore, however, some features are useless,
but once they blend with other features, they have been
beneficial. This study uses a definite cost function where by
minimizing it, the optimal features can be selected. The cost
function is formulated in the following:

CF =
TP × TNð Þ − FP × FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN + FPð Þ × TP + FPð Þ × TP + FNð Þ × TN + FNð ÞÞp ,

ð41Þ

where TP, FP, TN , and FN represent the true positive, false
positive, true negative, and false negative, respectively.

The main idea is to minimize the above function. This is
performed by the proposed modified Thermal Exchange
Optimization Algorithm.

5. Classification

The classification in this study is based on the Support Vector
Machine (SVM). The SVM consists of a set of points in the n-

dimensional space of data which indicates the class bound-
aries and organizes them and can be altered with the rear-
rangement of one of these two cases. The SVM provides the
best results for separating the data with the criterion for
placement of the support vectors. This classifier organizes
the best separation surface by the following equation:

y = sgn 〠
N

i=1
yiαiK x, xið Þ + b

 !
, ð42Þ

where Kðx, xiÞ describes a kernel function, x signifies a test
set vector with d dimensions, xi describes the ith training
set vector, y represents the output class by labeling -1 or 1,
N is the number of the training set, and b and α = ½α1 ⋯ αN �
represent the model parameters, respectively.

The present study uses SVM for the classification of the
extracted features achieved by the feature selection in the pre-
vious stage into two parts of healthy and cancerous groups.

Table 3: The performance analysis of the comparative algorithms applied to studied standard benchmarks.

Algorithm
BBO [36] LS [37] EPO [38] SHO [39] TEO MTEO

Function

f1
Min 2.615e-25 1.1100e-29 -3.2688e-26 2.3086e-27 2.4400e-30 9.2082e-32

Std 1.448e-20 3.3826e-28 4.0754e-27 1.8827e-28 1.0062e-32 3.2681e-33

f2
Min 6.0652e-4 8.3420e-3 5.6024e-3 1.4527e-4 2.4352e-5 7.6700e-5

Std 4.1073e-5 3.0718e-4 1.0056e-4 2.4807e-5 3.0537e-6 1.0142e-5

f3
Min -6.1442 -9.0464 -9.86 -8.0826 -9.86 -9.86

Std 0.31 0.42 0.23 0.11 0.11 0.06

f4
Min -6.1735 -17.020 -16.0035 -15.2816 -17.0095 -17.0572

Std 3.015 1.183 2.280 4.089 1.520 0.980

f5
Min 12.35e-10 1.486e-15 3.0765e-8 4.0802e-8 1.7085e-22 2.6827e-23

Std 7.831e-11 3.0862e-16 1.1832e-9 5.4403e-9 3.7786e-24 6.0826e-25

f6
Min 5.165e-10 3.1842e-11 1.0856e-20 1.0846e-9 3.0008e-20 4.5013e-22

Std 8.186e-11 2.4253e-13 5.1738e-22 4.7080e-11 1.2058e-21 2.5387e-23

f7
Min 3.512e-14 2.2621e-9 4.0305e-8 2.6517e-10 1.5670e-9 7.2837e-16

Std 1.056e-15 3.0856e-11 3.8253e-9 2.1825e-12 2.0834e-10 3.1175e-18

f8
Min 0.0056 -0.1361 -0.2381 -0.4735 -0.4680 -0.4162

Std 0.542 0.356 0.274 0.704 0.141 0.089

Figure 4: Some examples of the American Cancer Society (ACS)
database [43].
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6. Results and Discussions

The main purpose of this study is to present a computer-
aided automatic method for optimal diagnosis of skin cancer
from the dermoscopy images. The idea is to utilize a
metaheuristic-based method to achieve the best feature selec-
tion, and consequently the best diagnosis.

6.1. Database. To validate the proposed skin cancer diagnosis
system, the so-called American Cancer Society (ACS) data-
base has been employed. This database contains 68 pairs of
XLM and TLM images that are collected from the Nevoscope
system. 51 XLM images and 60 TLM images have been man-
ually classified by a dermatologist since other images do not
show pigmentation [42]. Therefore, the validation has been
based on comparing our results with these manually seg-
mented results. For giving less complexity to the analysis,
all of the images are resized to 256 to 256 pixels. Some exam-
ples of this database are given in Figure 4 [43].

6.2. Simulation Results. The present study in this subsection
has been verified on the ACS database, and the results have
been validated based on some different state-of-the-art tech-
niques. Simulations have been validated by the MATLAB
2019b environment with the following hardware configura-
tion: Core™ i7-4720HQ 1.60GHz with 16GB RAM. The
overall procedure of the suggested method is illustrated in
Figure 5.

The present study uses 85% of the data for training and
15% for testing the data. The training stage is based on apply-
ing 750 iterations and is iterated 20 times independently to
achieve a guaranteed result. Five measurement indicators

including PPV, NPV, specificity, accuracy, and sensitivity
are used for validation that is formulated as follows:

PPV = correctly detected skin cancer cases
detected skin cancer cases

, ð43Þ

NPV =
correctly detected healthy skin cases

detected healthy skin cases
, ð44Þ

Specificity =
correctly detected healthy skin cases

total healthy skin cases
, ð45Þ

Accuracy =
correctly detected cases

total cases
, ð46Þ

Sensitivity =
correctly detected skin cancer cases

Total skin cancer cases
: ð47Þ

To give a fair analysis on the proposed method, its results
have been compared with some different state-of-the-art
methods including the Particle Swarm Optimization- (PSO-)
based method [44], m-Skin Doctor [45], GFAC [46], ANN
[47], and Genetic Algorithm (GA) [42]. The results of the
validation are tabulated in Table 4.

It can be observed from Table 4 that the proposed opti-
mized methodology with 92.79% accuracy has the highest
precision against the other comparative methods. Similarly,
with 90.99% sensitivity, it has proper reliability compared
with the other methods. This is also proved for the specificity,
NPV, and PPV compared with the others. The higher value
of NPV and PPV including 93.69% and 85.58%, respectively,
which are the highest among the comparative methods, pro-
vides the higher prevalence of the condition to diagnose the
likelihood of a test cancer diagnosis system. Finally, the better
results of the sensitivity and specificity for the proposed
method indicate the suggested method’s higher prevalence-
independent results.

7. Conclusions

Skin cancer is one of the most dangerous diseases among dif-
ferent cancers in the world. However, early detection of this
disease can be so beneficial for cancer treatment. In the pres-
ent study, a new hierarchical methodology was proposed for
the optimal diagnosis of skin cancer from dermoscopy
images. According to the suggested method, after performing
noise reduction of the input dermoscopy images, the consid-
ered area has been segmented based on a simple Otsu. Then,

Start Input skin 
cancer images

Noise 
reduction

Image 
thresholding

Morphological 
operation

Feature 
extraction

Feature selection by 
MTEO algorithm

Classification 
by SVMFinal resultsEnd

Figure 5: The pipeline of the proposed methodology.

Table 4: The validation results of the compared method for skin
cancer diagnosis.

Method
Performance metric

NPV PPV Specificity Accuracy Sensitivity

PSO 93.69 89.19 88.29 88.29 90.99

m-Skin Doctor 83.87 65.76 61.26 81.98 83.78

GFAC 88.28 77.48 82.88 86.48 89.19

ANN 82.88 58.56 56.76 67.57 81.98

GA 85.58 74.77 79.28 81.08 79.28

Proposed
method

93.69 85.58 89.19 92.79 90.99
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feature extraction has been performed to the processed image
to extract valuable features from the images. To provide an
optimized result, the best features have been selected by a
modified metaheuristic method, called the Modified Thermal
Exchange Optimization Algorithm to modify the network
performance in terms of precision and consistency. Final
results were obtained by applying support vector machine
as the final classifier. To give a proper validation, the results
of the proposed method were applied to the American Can-
cer Society (ACS) database, and its results were compared
with some different methods including Particle Swarm Opti-
mization- (PSO-) based method, m-Skin Doctor, GFAC,
ANN, and Genetic Algorithm (GA). The final results indi-
cated that according to different measurement indicators,
the proposed methodology has the best results for the other
compared methods. As can be observed from the explana-
tions, the proposed method has good results for skin cancer
detection. However, this can be an inspiration to our future
work to use different hybrid and developed versions of differ-
ent new computational intelligence algorithms like the
Monarch Butterfly Optimization (MBO) [48], Earthworm
Optimization Algorithm (EWA) [49], Elephant Herding
Optimization (EHO) [50], Moth Search (MS) algorithm
[51], Slime Mold Algorithm (SMA) [52], and Harris hawks
optimization (HHO) [53] to improve the system efficiency.
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Diabetic retinopathy occurs as a result of the harmful effects of diabetes on the eyes. Diabetic retinopathy is also a disease that
should be diagnosed early. If not treated early, vision loss may occur. It is estimated that one third of more than half a million
diabetic patients will have diabetic retinopathy by the 22nd century. Many effective methods have been proposed for disease
detection with deep learning. In this study, unlike other studies, a deep learning-based method has been proposed in which
diabetic retinopathy lesions are detected automatically and independently of datasets, and the detected lesions are classified. In
the first stage of the proposed method, a data pool is created by collecting diabetic retinopathy data from different datasets.
With Faster RCNN, lesions are detected, and the region of interests are marked. The images obtained in the second stage are
classified using the transfer learning and attention mechanism. The method tested in Kaggle and MESSIDOR datasets reached
99.1% and 100% ACC and 99.9% and 100% AUC, respectively. When the obtained results are compared with other results in
the literature, it is seen that more successful results are obtained.

1. Introduction

Diabetes occurs as a result of insufficient production of
insulin or insufficient use of produced insulin [1]. There
are many organs damaged by diabetes. For example,
diabetic nephropathy damaging kidney nephrons, diabetic
neuropathy damaging brain neurons, and diabetic retinop-
athy damaging eye retina can be given [2]. Diabetic reti-
nopathy (DR) is a type of type II diabetes in which the
retina of the eye is damaged and if left untreated, the
disease can progress to vision loss [3]. DR’s effect on the
eye is often blurred or complete loss of vision [4]. The risk
of blindness in diabetic patients is many times higher than
in a healthy person. Therefore, DR is one of the leading
causes of blindness in the world between the ages of 20
and 65 [5]. The World Health Organization (WHO) stated
that up to half a million people are at risk of DR [6]. The
economies of low- and middle-income countries suffer
seriously from diabetes. By 2040, it is estimated that 33%
of 600 million diabetic patients worldwide will have
diabetic retinopathy [7].

Deep learning (DL) started with the work of LeCun et al.
[8]. DL’s popularity began in 1998 with the success of the
convolutional neural network (CNN), a DL method used by
his student Krizhevsky [9] at the 2012 ImageNet [10] compe-
tition. In the years after AlexNet on ImageNet, GoogleNet
[11], InceptionV3 [12], VGGNet [13], ResNet [14], and
DenseNet [15], networks were developed, and more success-
ful results were achieved. Improvements in GPU hardware
have a great impact on the success here. Because as the depth
increases in the developed networks, the number of trained
parameters increases in direct proportion. While the number
of parameters in GoogleNet is 6.8M, there are 144M param-
eters in the deeper VGG19. While CNN image classification
was done, the CNN structure was modified for segmentation
and object detection in the image. Region-based CNN
(RCNN) [16], Fast RCNN [17, 18], Faster RCNN [19], Single
Shot multiBox Detector (SSD) [20] and You Only Look Once
(YOLO) [21, 22] appeared with this change. Experts believe
that deep learning will facilitate medical studies in the com-
ing years of medicine. The successes obtained in the works
[23–30] on the subject support this idea; it is about the
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improvement, classification, segmentation, and detection of
medical images and related to the images and taking vital
precautions. Moreover, Limwattanayingyong et al. showed
that DL was more successful when they compared sight-
threatening DR (STDR) screening with educated human
grading and DL grading [31].

When the studies about DR classification in the literature
were examined in detail, each study performed a preprocess-
ing stage before training the network with CNN. The reason
for this is that the lesions do not have a certain shape or form
and are scattered in the image. This causes classification
errors by reducing the clarity of the lesions in the image.
These preprocessing phases were generally traditional image
processing methods. Also, each study focused on operations
for a particular dataset, and different methods were used for
each dataset. This is because the grading system of each data-
set is different. In this study, we proposed the 2-stage method
that detecting independent from the dataset and classifying
diabetic retinopathy lesions, completely based on deep learn-
ing. In the first stage, we created a pool of selected DR data-
sets and trained with Faster RCNN. We automatically
determined the lesion region of interests in the images with-
out any special process for the images in different DR data-
sets and prepared a pretrained model for the classification
process, which is the second stage of the work. We completed
the classification process by training images with the atten-
tion mechanism we added to pretrained ImageNet models.

In the second part of the work, literature research was
made, and DR features, related studies, and results were men-
tioned. In the third chapter, features of the proposed method
used datasets, and DL methods used were mentioned. In the
fourth chapter, the results obtained with the proposedmethod
and the comparison of the results in the literature were men-
tioned. In the fifth and last section, information was given
about the success, effects, and future works of the method.

2. Literature Review

2.1. Diabetic Retinopathy Datasets. There are many datasets
belonging to DR in open access. Some of these are MESSI-
DOR [32], DIARETDB [33], IDRiD [34], and Kaggle 2015

DR Competition Dataset [35]. These datasets has been
reviewed and graded by ophthalmologists. Each dataset can
be used in a different grading system. For example, DR levels
were graded from 0 to 4 in Kaggle, while in MESSIDOR, they
were graded from 0 to 3. The MESSIDOR dataset contains
1200 images classified into 4 levels [36]. MESSIDOR was
published in 2008 by Criann [37].

DIARETDB consists of 219 retinal images containing 25
healthy and 194 with DR symptoms. Images were classified
as exudate (soft and hard), spots (red), and bleeding. The
detected lesions were expressed in 5 different degrees with
0.25 intervals between 0 and 1. Kaggle dataset images were
shared with an award-winning DR determination contest.
Approximately, 90,000 right and left eye retinal images were
reserved for the test of approximately 40% and 60% of the
training set. Images were graded in five different classes
according to the ETDRS [38] grading method. IDRiD is a
dataset with DR lesions created in India. The dataset pre-
sented for ME detection classified DR in five levels according
to the ETDRS grading method. The dataset contains 516
images (413 training sets, 103 test sets) [39].

2.2. Diabetic Retinopathy Symptoms. Microaneurysms (MA):
these are deformations of the blood vessel walls of 1-3 pixels
in images [40, 41].

Bleeding/hemorrhages (HM): bleeding/hemorrhages is a
blood leaking from damaged capillaries [40, 42].
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Figure 1: EX, HM, optic disc (OD), and macula in the DR retina.
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Table 2: Studies using Kaggle dataset and results.

Authors Training type Method Process type ACC AUC SEN

Grinsven et al. [53] CNN EE Lesion detection - 91.7 84.8

Mansour [59] AlexNet + SVM TL Fundus classification 97.9 - 100

Quellec et al. [60] CNN EE Fundus classification - 95.5 -

Colas et al. [61] CNN EE Fundus classification - 94.6 96.2

Pratt et al. [62] CNN EE Fundus classification 75.0 - 95.0

Jinfeng et al. [63] CNN TL Fundus classification 80.3 - -

Table 1: Studies using MESSIDOR dataset and results.

Authors Training type Method Process type ACC AUC SEN

Zhang et al. [49] ZFNet TL Optic disc localization 99.9 —

Alghamdi et al. [50] CNN EE Optic disc localization 99.2 — —

Xu et al. [51] CNN TL Optic disc localization 99.4 — —

Abràmoff et al. [52] CNN EE Lesion detection — — 100

Grinsven et al. [53] CNN EE Lesion detection — 97.9 93.1

Gulshan et al. [54] CNN TL Fundus classification — 99.0 87.0

Costa and Campilho [55] SURF + CNN EE Fundus classification — 90.0 —

Gargeya and Leng [56] CNN EE Fundus classification — 94.0 —

Wang et al. [57] Zoom EE Fundus classification 91.1 95.7 —

Chen et al. [58] SI2DRNet EE Fundus classification 91.2 96.5 —

3Computational and Mathematical Methods in Medicine



Softmax
FC 1000
FC 4096
FC 4096

Pool

Pool

Pool

Pool

Pool

Input
3 × 3 conv, 64
3 × 3 conv, 64

3 × 3 conv, 128
3 × 3 conv, 128

3 × 3 conv, 256
3 × 3 conv, 256

3 × 3 conv, 512
3 × 3 conv, 512
3 × 3 conv, 512

3 × 3 conv, 512
3 × 3 conv, 512
3 × 3 conv, 512

fc8
fc7
fc6

Conv5-3
Conv5-2
Conv5-1

Conv4-3
Conv4-2
Conv4-1

Conv3-2
Conv3-1

Conv2-2
Conv2-1

Conv1-2
Conv1-1

(a)

Softmax
FC 1000
FC 4096
FC 4096

Pool

Pool

Pool

Pool

Pool

Input
3 × 3 conv, 64
3 × 3 conv, 64

3 × 3 conv, 128
3 × 3 conv, 128

3 × 3 conv, 256
3 × 3 conv, 256

3 × 3 conv, 512
3 × 3 conv, 512

3 × 3 conv, 512
3 × 3 conv, 512

3 × 3 conv, 512
3 × 3 conv, 512

3 × 3 conv, 512
3 × 3 conv, 512

(b)

Output

Conv
1×1

Conv
3×3

Conv
1×1, s = 2

Conv
1×1, s = 2

Input

Block

(c)

1×1 convolutions

1×1 convolutions 1×1 convolutions

1×1 convolutions3×3 convolutions

3×3 max pooling

5×5 convolutions

Filter
concatenation

Previous layer

(d)

Figure 4: Continued.

4 Computational and Mathematical Methods in Medicine



Exudates/exudates (EX): when blood leaks more through
capillaries, it causes exudates that are usually yellow in the
retina [43].

Macular edema (ME): it occurs when there is leakage
from the vessels around the macula [44].

Neovascularization (NV): it occurs when veins grow into
the vitreous [45].

Figure 1 shows the EX, HM, optic disc (OD), and macula
in the DR retina. The OD is the reference point for DR detec-
tion [45–47].

2.3. Performance Metrics. The confusion matrix in Figure 2
shows the predicted number of outcomes for 2 classes (0
and 1). Accordingly, when the classification value is 1 and
the obtained value is 1 then true positive (TP); else then false

negative (FN) is obtained. When the classification value is 0
and the obtained value is 0 then true negative (TN); else then
false positive (FP) is obtained.

Accordingly, performance metrics can be calculated with
the following equations:

Sensitivity = TPRate TPRð Þ = TP
FN + TP

, ð1Þ

Specificity SPEð Þ = TN
FP + TN,

ð2Þ

Accuracy ACCð Þ = TN + TP
FP + FN + TP + TN

, ð3Þ

FPRate FPRð Þ = 1 − SPE, ð4Þ
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Figure 4: Pretrained models: (a) VGG16, (b) VGG19, (c) ResNet, (d) Inception, (e) MobileNet, (f) InceptionResNet, (g) DenseNet, and
(h) NasNet.
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AUC (area under curve) is the area under the receiver
operator characteristics (ROC) curve obtained with the
change rates of FPR and TPR.

3. Related Works

There have been 747 studies on about DR in the literature
[48]. In this section, studies on DR detection with deep learn-
ing are examined. Some of the studies created their own CNN
models and used end-to-end learning (EE), while others used
transfer learning (TL) using pretrained models available on
ImageNet. In the studies, optic disc localization, lesion detec-
tion, and fundus classification procedures were performed on
the DR images. Most of the studies used the MESSIDOR
dataset. In end-to-end training, there are studies that create
their own special models such as Zoom, ZFNet, and
SI2DRNet.

The authors in [49] developed the ZFNet based on the
Faster R-CNN in their work on the localization of the
optical disc using a Hessian matrix. This study was con-
ducted using the MESSIDOR dataset. Alghamdi et al.
[50] first classified the images as OD or non-OD with
the CNN they developed. Detected OD locations were
classified by the second CNN module as normal, suspect,
or abnormal. The MESSIDOR dataset was used in this
study. In [51], the authors made changes before the last
FC layer of the VGG model to find the OD, thresholding
the probability map and obtaining the center of gravity of
the pixels. This study was conducted using the MESSI-
DOR dataset. The authors in [52] developed a controlled
CNN model to classify the ME lesion type. This study

was conducted using the MESSIDOR dataset. In [53],
HM is detected, and a 41-pixel square image containing
HM was extracted from the original image. The resulting
image was classified and labeled according to the number
of HM removed. It was then given to the CNN network
for training. The method was tested on a Kaggle and
MESSIDOR datasets using a 10-layer CNN model. The
authors in [54] used TL to determine DR in 1748 samples
from the MESSIDOR dataset and DR in 9963 samples
from the EyePACS dataset. Each image was graded 3 to
7 times by ophthalmologists. In [55], they created a
CNN model by extracting rare local features with the
structure they call Bag of Visual Words (BoVW) and
Speed-Up Robust Properties (SURF). This study was con-
ducted using the MESSIDOR dataset. Gargeya and Leng
[56] proposed a CNN for DR detection by modifying
ResNet. They evaluated the method with MESSIDOR.
The authors of [57] proposed a pretrained CNN model
that includes the attention network and crop network to
detect suspicious patch sites called Zoom for DR detection.
The management was developed using the MESSIDOR

Images CNN model

Feature map ROI pooling

Bounding box
regression loss

Bounding box
regression loss

Classification loss

Classification lossRPN

Figure 5: Faster RCNN architecture.

Table 3: The number of images in datasets and the number of training and test images used for detection and classification.

Dataset
Total
images

Number of images for
detection stage training

Number of images for
detection stage testing

Number of images for
classification stage training

Number of images for
classification stage testing

Kaggle 80,000 100 4900 3920 980

MESSIDOR 1200 100 1100 880 220

IDRiD 516 100 - - -

DIARETDB 219 100 - - -

Figure 6: DR image, whose lesions are detected automatically with
the trained model.
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dataset. The authors in [58] created SI2DRNet-v1 by scal-
ing the kernel size from 3 × 3 to 5 × 5 after each pooling
layer in CNN. MESSIDOR was used in the model. The
author in [59] developed a method for localizing blood
vessels and a pretreatment for bound component analysis.
Linear separation analysis was then used to reduce dimen-
sionality. SVM was used for classification in this method.
Kaggle dataset was used in this study. Quellec et al. [60]
developed a CNN model to detect DR lesions. Heat maps
created by this method were not optimized for diagnosis.
In this study, Kaggle dataset was used. The authors of
[61], proposed a method for EX detection using the LeNet
model. They dismissed the EX zones and gave them input
to the LeNet network for training. They made data repli-
cation before the training. The work was developed using
the Kaggle dataset. In [62], the authors dealt with overfit-
ting and skewed datasets in DR detection. They used data
amplification to train the CNN model, which consists of
13 layers. Kaggle dataset was used in this study. In the
work of Jinfeng et al.'s [63], an ensemble technique and two
deep CNN models were proposed to detect all stages of DR
using balanced and unbalanced datasets. First, they created 3
sub-datasets by dividing the Kaggle dataset into 3 parts. In
the first model, they trained 3 datasets separately with
DenseNet-121 and ensembled their results. In the second
model, they trained 3 dataset separately with DenseNet-121,
ResNet50 and Inception-V3, and ensembled their results.
Then, the models were compared with each other.

When examined Table 1, the highest SEN value among
the studies was 100, and Abramoff et al. have achieved. With
the highest AUC of 99.0, Gulshan et al. have achieved. The
highest ACC value of 99.4 was obtained by Xu et al. that
have achieved.

When Table 2 was examined, the highest SEN and ACC
values were 100 and 97.9, respectively, Mansour; with the
AUC value of 95.5, Quellec et al. have achieved.

4. Materials and Methods

Based on the abovementioned shortcomings, a 2-stage
method was proposed where all types of DR datasets could
be trained using DL completely without preprocessing in tra-
ditional ways. If it is explained in more detail, since the use of
CNN directly to classify DR is insufficient, the lesions should
be clarified by preprocessing. In order to clarify the lesions,
the region of interests(ROIs) of the lesion must be deter-
mined first. These regions can be made clear by using
regional CNN with DL. As the regional CNN only detects
objects, a CNN structure is needed for classification. For

these reasons, Faster RCNN and CNN were used together,
and a 2-stage method was developed. The first stage of the
2-stage method is the automatic detection of lesions and
marking of the lesion ROIs, and the second stage is the clas-
sification of marked images with a model created by transfer
learning and attention mechanism [64] (Figure 3).

4.1. Used DL Methods. CNN has a structure that learns these
properties by determining the image properties. CNN consists
of certain layers. The convolution layer (conv), as evident from
its name, performs a filter operation by convolution of the
input image with the kernel matrix. This layer reveals the
details in the image. Pooling layer pools the input image with
one of the maximum (max pool) or global average pooling
(global avg pool-GAP) methods, resulting in an image smaller
than the image size. The aim is to delete unnecessary details
and make learning easier. The fully connected (FC/Dense)
layer helps the classification process by image features at the
end of the network. In this study, VGG [65], DenseNet [66],
ResNet [67], Inception [68], NasNet [69], MobileNet [70],
and InceptionResNet [71], which are pretrainig models in
ImageNet, were used in order to make faster training (Figure 4).

Regional training in CNN is needed to focus on specific
objects in the image and to identify and segment them.
RCNN structures have been developed to perform these
operations. In simple terms, RCNN returns the box corridors
of the regions detected in the image and the classification
results. The first developed RCNN [72] creates weak candi-
date regions, while Fast R-CNN [73] feeds an input image
directly to the CNN and reshapes it to be passed to the FC
layer by ROI pooling. Faster R-CNN [74] uses region pro-
posal network (RPN) instead of the selective search algo-
rithm, unlike Fast R-CNN (Figure 5).

5. Results and Discussion

5.1. Used Datasets. In the proposed 2-stage method, a total of
6400 image data were used, including 1200 fromMESSIDOR,

Figure 7: Proliterative DR images.

Figure 8: DR image with marked lesion region of interest.

7Computational and Mathematical Methods in Medicine



5000 fromKaggle, and 100 fromDIARETDB and IDRiD data-
sets. In the first stage, the dataset was divided into 400 training
and 6000 tests to determine DR lesion ROIs. In the second
stage, the marked 6000 data used for testing in the first stage
were used. In the first stage, MESSIDOR, Kaggle, DIARETDB,
and IDRiD datasets were used together to automatically detect
lesions in different datasets. Since MESSIDOR and Kaggle
datasets were used in the second phase, the test data of the first
phase were used from these datasets. The training, test, and
validation set of the data used in the two DL methods were
given in detail in the relevant sections. Table 3 shows the num-
ber of images in the datasets used in the proposed method and
the number of training and test images used for each stage.

5.2. Detection of Lesions with Region-Based CNN. In this
stage, EX and HM lesion ROIs on DR datasets were deter-
mined by training with Faster RCNN. For Faster RCNN
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Figure 9: AUC prediction values in the ROC curve for the model trained with VGG16 in the second stage for (a) MESSIDOR non-DR, (b)
MESSIDOR proliterative DR, (c) Kaggle non-DR, and (d) Kaggle proliterative DR.

Table 4: Results obtained by using MESSIDOR dataset and
different pretrained models on the proposed method.

Model TP FN TN FP ACC AUC SEN

VGG16 220 0 660 0 100 100 100

VGG19 220 0 660 0 100 100 100

DenseNet201 217 3 650 10 98.5 100 98.5

DenseNet121 195 25 658 2 96.9 97.6 88.6

DenseNet169 192 28 647 13 95.3 91.3 87.2

MOBILENET 192 28 574 86 87.0 94.5 87.2

NASNet 190 30 570 90 86.3 96.5 86.4

InceptionV3 200 20 593 67 90.1 94.2 90.1

InceptionResNetV2 192 28 574 86 87.0 87.0 87.2

Resnet50 186 34 560 100 84.7 89.8 84.5
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training, a total of 400 data including EX andHM lesions from
MESSIDOR, Kaggle, DIARETDB, and IDRiD datasets were
selected randomly and labeled as EX and HM. 1100 remaining
data from MESSIDOR and 4900 remaining data from Kaggle
were used for the test of 6000 data in total. 80 of the 400 data
used for training were used for validation. The purpose of
using all datasets together in training is to diversify training
and to automatically detect lesions for any dataset related to
DR. With the trained model in the first step, the lesion ROIs
were predicted in 6000 data as EX or HM and marked on
the images as in Figure 6.

The marked images obtained in the first stage will be clas-
sified in the second stage by adding the attention layer to the
pretrained ImageNet models. In the proposed model, the
lesion ROIs were made clear so that the attention mechanism
can work more efficiently.

When Figure 7 is analyzed, some images of proliterative
DR are EX-weighted, and some are HM-weighted; some have
only EXs while some have only HMs. With this information,
it is seen that when grading DR, the density of the lesions is
taken into account, not the type. Therefore, the ROIs in the
lesion were displayed in one color, and the training phase
was started as shown in Figure 8.

5.3. Classification of Detected Lesions. In this stage, the lesion
ROIs detected in the DR images were classified by adding the
mechanism of attention to the pretrained ImageNet CNN
models. In this section, MESSIDOR and Kaggle datasets,
which were used for testing at the first stage and marked on
the image of the ROIs of the lesion, were used for DR classi-
fication. By ophthalmologists, the MESSIDOR dataset was
divided into 4 classes (0-3) and the Kaggle dataset into 5 clas-
ses (0-4). The grading was not based on EX or HM lesions
detected in the retina, but according to the intensity of any
of the lesions in the retina, as seen in Figure 7. Therefore,
lesion ROIs detected in the first stage are marked with the
same color. During the training phase, the model was aimed
to learn the lesion density by focusing on the marked lesion
ROIs on the image and to give more accurate results. For this
reason, the last layer of ImageNet models was changed with
the mechanism of attention. The reason for the addition of
the mechanism of attention is that the GAP added after pre-
trained models is simple because the prominent lesion ROIs
are more important than others. Therefore, 4 convolution
layers were added to unlock pixels in space before pooling.
Then, the global weighted average pooling (GWAP) layer is
created in which attention was multiplied by features and
then divided by the sum of attention. Let fx1, x2, x3,⋯:,xn�
be a finite nonempty array and the weights of the x in this
array be fw1,w2,w3,⋯:,wn�. In this case, the weighted
average (�x) of the array is calculated as follows [75]:

�x =
∑n

i=1wixi
∑n

i=1wi
: ð5Þ

Let the dimensions of a 3D image be expressed by x, y,
and z, respectively. Let IF (x, y, z) expresses image features,

and AF (x, y, z) expresses attention features. GWAP in image
pixels is calculated according to Equation (5) as follows:

GWAP x, y, zð Þ = ∑x ∑yAF x, y, zð ÞIF x, y, zð Þ� �

∑x ∑yAF x, y, zð Þ� � : ð6Þ

Table 5: Results obtained by using Kaggle dataset and different
pretrained models on the proposed method.

Model TP FN TN FP ACC AUC SEN

VGG16 971 9 3887 33 99.1 99.9 99.1

VGG19 969 11 3889 31 99.1 99.7 98.9

DenseNet201 919 61 3865 55 97.6 98.6 93.8

DenseNet121 952 28 3894 26 98.9 99.6 97.1

DenseNet169 836 144 3811 109 94.8 98.5 85.3

MOBILENET 684 296 3630 290 88.0 92.6 69.8

NASNet 508 472 3496 424 81.7 83.8 51.8

InceptionV3 674 306 3683 237 88.9 92.3 68.8

InceptionResNetV2 540 440 3726 194 87.0 84.3 55.1

Resnet50 202 778 3142 778 68.2 82.4 20.6

Eye image
class: 1

Eye image
class: 3

Eye image
class: 2

Attention map
pred: 100.00%

Attention map
pred: 100.00%

Attention map
pred: 100.00%

Figure 10: The predicted results of the training using the VGG16
model of the proposed method and the MESSIDOR dataset and
the attention map obtained in the attention layer.
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The Lambda layer was then added to the rescaling results by
pixel count to include the missing values in the attentionmodel.
Finally, the model was obtained by adding 4 dense layers. The
resulting model’s hyper parameters were finely tuned for each
ImageNet model individually to achieve the best results.

For classification, a total of 6000 data were used 1100
from MESSIDOR and 4900 from Kaggle whose lesion ROIs
were marked on the image as a result of the test in the first
stage. Since DR classes for MESSIDOR and Kaggle are not
the same, they were evaluated by training and testing sepa-
rately for the two datasets. In MESSIDOR, 880 data were
used for training, and 220 data were used for testing. 176 of
the 880 data used for training were used for validation. In Kag-
gle, we used 3920 data for training and 980 data for testing.
784 of 3920 data used for training were used for validation.

Figure 9 shows the ROC curve and AUC values drawn
with the classification prediction results for the non-DR
(DR level 0) and proliterative DR (MESSIDOR DR level 3,
Kaggle DR level 4) classes in the MESSIDOR and Kaggle
datasets in the second stage. While calculating the ROC
curve, the average of each FPR and TPR prediction result
formed with 980 test data in Kaggle and 220 test data inMES-
SIDOR reserved for the classification test was taken. Detailed
performance criteria obtained as a result of the prediction in
the second stage were explained in Tables 4 and 5.

Table 4 shows the results obtained by using the method
with different pretrained models in the MESSIDOR dataset.
According to the results, VGG16 and VGG19 achieved 100%
value in all metrics. DenseNet201 achieved 100% in AUC.

Table 5 shows the results obtained by using the method
with different pretrained models in the Kaggle dataset.
According to the results, the best result in the SEN value was
obtained with VGG16 with 99.1%, and the best results in the
AUC value with 99.9% in VGG16 and the best results in the
ACC value with 99.1% were obtained in VGG16 and VGG19.

Figure 10 shows the prediction results of marked
DR images selected randomly and in different classes,
obtained with the test data of the trained model using
VGG16 and MESSIDOR dataset in the proposed method.
The figure also shows the attention map obtained in the
attention layer.

In Table 6, the results obtained in the studies that made
the MESSIDOR dataset fundus classification were compared
with our proposed study. Accordingly, our method achieved
a better result than other methods in all metrics.

In Table 7, the results obtained in studies developed with
the Kaggle dataset were compared with our proposed study.
Accordingly, our method achieved a better result than other
methods with 99.1% in ACC and 99.9% AUC values. With
a sensitivity value of 100%, Mansour achieved better results
than our method.

6. Conclusions

Deep learning gives successful results in disease detection. In
this work, a deep learning-based method has been proposed
in which diabetic retinopathy lesions were detected automat-
ically and independently of datasets, and the detected lesions
were classified. In the first stage, lesions were detected with
the regional CNN, and the images obtained in the second
stage were classified using the transfer learning and attention
mechanism for diabetic retinopathy grading. When the
method tested in Kaggle and Messidor datasets was evalu-
ated, 99.1% and 100% ACC, and 99.9% and 100% AUC were
obtained, respectively. When the obtained results were com-
pared with other results in the literature, it was seen that
more successful results were obtained.

In future studies, the algorithms using the method will be
developed to use minimum system resources.

Table 6: Comparison of studies conducted with the MESSIDOR dataset and the proposed study.

Authors Training type Method Process type ACC AUC SEN

Gulshan et al. [54] CNN TL Fundus classification — 99.0 87.0

Costa and Campilho [55] SURF + CNN EE Fundus classification — 90.0 —

Gargeya and Leng [56] CNN EE Fundus classification — 94.0 —

Wang et al. [57] Zoom EE Fundus classification 91.1 95.7 —

Chen et al. [58] SI2DRNet EE Fundus classification 91.2 96.5 —

Ours Faster RCNN + CNN TL Fundus classification 100 100 100

Table 7: Comparison of studies conducted with the Kaggle dataset and the proposed study.

Authors Training type Method Process type ACC AUC SEN

Mansour [59] AlexNet + SVM TL Fundus classification 97.9 - 100

Quellec et al. [60] CNN EE Fundus classification - 95.5 -

Colas et al. [61] CNN EE Fundus classification - 94.6 96.2

Pratt et al. [62] CNN EE Fundus classification 75.0 - 95.0

Jinfeng et al. [63] CNN TL Fundus classification 80.3 - -

Ours Faster RCNN + CNN TL Fundus classification 99.1 99.9 99.1
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Data Availability

Previously reported diabetic retinopathy datasets were
used to support this study and are available at https://
www.adcis.net/en/third-party/messidor/, https://www.kaggle
.com/c/diabetic-retinopathy-detection/data, https://www.it.lut
.fi/project/imageret/diaretdb0/, https://www.it.lut.fi/project/
imageret/diaretdb1/, and https://ieee-dataport.org/open-
access/indian-diabetic-retinopathy-image-dataset-idrid. These
datasets are cited at relevant places within the text as refer-
ences [32–35].
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Cardiovascular disease (CVD) is the most common type of disease and has a high fatality rate in humans. Early diagnosis is critical
for the prognosis of CVD. Before using myocardial tissue strain, strain rate, and other indicators to evaluate and analyze cardiac
function, accurate segmentation of the left ventricle (LV) endocardium is vital for ensuring the accuracy of subsequent
diagnosis. For accurate segmentation of the LV endocardium, this paper proposes the extraction of the LV region features based
on the YOLOv3 model to locate the positions of the apex and bottom of the LV, as well as that of the LV region; thereafter, the
subimages of the LV can be obtained, and based on the Markov random field (MRF) model, preliminary identification and
binarization of the myocardium of the LV subimages can be realized. Finally, under the constraints of the three aforementioned
positions of the LV, precise segmentation and extraction of the LV endocardium can be achieved using nonlinear least-squares
curve fitting and edge approximation. The experiments show that the proposed segmentation evaluation indices of the method,
including computation speed (fps), Dice, mean absolute distance (MAD), and Hausdorff distance (HD), can reach 2.1–2.25 fps,
93:57 ± 1:97%, 2:57 ± 0:89mm, and 6:68 ± 1:78mm, respectively. This indicates that the suggested method has better
segmentation accuracy and robustness than existing techniques.

1. Introduction

Cardiovascular diseases (CVDs) are one of the most common
diseases affecting humans. “Global Burden of Cardiovascular
Diseases and Risk Factors, 1990–2019,” published in [1], shows
that the incidence and mortality of CVD worldwide have been
increasing since 1990 and that the mortality of CVD ranks first
and is far higher than that of other diseases. Therefore, early
detection and diagnosis of cardiac disease through various
means is crucial for reducing the prevalence and mortality of
CVD and improving the quality of life of patients [2].

Compared with X-ray coronary angiography, myocardial
contrast echocardiography, computed tomography, and mag-
netic resonance imaging, the use of ultrasound for the screening
and diagnosis of heart function and disease has great advan-
tages. Using an ultrasound instrument, the heart and blood
vessels, the movement of the ventricular wall, and the opening

and closing of the valve can be observed dynamically in real
time through flexible operation from multiple directions and
angles. In addition, ultrasound has many advantages, such as
safety and noninvasiveness, high diagnostic accuracy, and rapid
inspection, and has become one of themost used and important
examination methods for heart disease.

At present, the diagnosis of heart diseases based on ultra-
sound technology usually focuses on the analysis of the left
ventricle (LV). The LV is responsible for blood supply to the
body. Based on the changes in the LV, indicators such as LV
end-diastolic volume, LV end-systolic volume, LV ejection
fraction (EF), and LV stroke volume can be obtained. To
obtain the indicators above, accurate positioning and segmen-
tation of the LV on echocardiography are very important.

Clinically, the segmentation methods for LV ultrasound
images can be classified into manual and automatic methods.
The manual segmentation method requires the user to outline
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the region of interest manually. Marking the position or con-
tour of the LV manually is tedious and time-consuming, and
there are subjective differences among different observers.
The automatic segmentationmethod is superior to themanual
segmentation method [3, 4]. Usually, the automatic segmenta-
tion method of LV ultrasound images includes two steps.

First, it is necessary to determine the position of the LV in
the ultrasound images. Methods such as scale-invariant fea-
ture transformation [5] and histogram of oriented gradient
[6] can be used to determine the position of the LV. However,
the shape and appearance of the LV corresponding to differ-
ent individuals are usually different, so these methods cannot
accurately identify the position of the LV, and the segmenta-
tion accuracy of LV is also affected. Recently, the application
of deep learning models for target detection and localization
has attracted increasing attention [7, 8]. Compared with the
faster R-CNN model [9] and the single-shot multibox detec-
tor model [10], the YOLOv3 model [11] has a higher detec-
tion speed and accuracy. Therefore, a method based on the
YOLOv3 model is proposed herein for accurate positioning
and segmentation of the LV.

Second, after the LV in the ultrasound image is accurately
located, the LV can be segmented. Methods such as structured
random forest based on machine learning [12] have been pro-
posed for LV segmentation; however, such methods require
manual selection of space features. Dong et al. [13] developed
a deep fusion network and deformable model to achieve LV
segmentation in 3-D echocardiography. Smistad et al. [14] suc-
cessfully segmented the LV in two-dimensional ultrasound
images based on the U-Net method. Oktay et al. [15] further
extended the U-Net model to improve the accuracy of LV seg-
mentation. However, these methods usually require significant
morphological features or prior knowledge and have the disad-
vantages of poor real-time performance and high computing
power requirements. Traditional image processing methods,
such as a motion-based method (Kalman filter) [16], deform-
able models (BEAS, level-set) [17, 18], graph-based approach
(graphcut) [19], active appearance model [20], and atlas-
based method [21], have been proven to have high segmenta-
tion speed and robustness in heart image segmentation. There-
fore, the YOLOv3 model and the traditional statistical shape
model are combined in this study to achieve fast and accurate
LV segmentation in ultrasound images.

Herein, an automatic segmentation method based on the
YOLOv3 model to satisfy the relevant constraints and achieve
appropriate positioning is proposed for accurate segmentation
of the LV endocardium. The results of experiments conducted
using the proposed method show that the segmentation eval-
uation indices, including the computation speed (fps), Dice,
mean absolute distance (MAD), and Hausdorff distance
(HD), can reach 2.1–2.25 fps, 93:57 ± 1:97%, 2:57 ± 0:89
mm, and 6:68 ± 1:78mm, respectively.

2. Method

To obtain clinical indicators such as EF, strain, and strain rate
of the LV on echocardiography, accurate segmentation of the
LV is crucial. In this study, the YOLOv3 model is first used to
determine the three positions of the apex and bottom of the

LV, as well as the location of the LV region. Then, based on
the Markov random field (MRF) model with the iterated
conditional mode (ICM), preliminary identification and
binarization of the myocardium of the LV subimages are per-
formed, and under the three constraint points of the LV, the
left and right parts of the myocardium in the LV subimages
are located. Finally, when approaching the edge of the myo-
cardium, the B-spline method is used to smooth the edge of
the endocardium, and then, accurate segmentation and
extraction of the LV endocardium are achieved. Speckle noise
and artifacts in ultrasound images can lead to the loss of bor-
ders and edges during image segmentation; therefore, when
approaching the LV endocardium, a morphological mask is
applied to eliminate the interference from speckle noise and
edge artifacts inside the LV cavity. Figure 1 presents the block
diagram of the proposed technique.

3. Segmentation of LV Endocardium Based on
YOLOv3 for Positioning and Restraint

3.1. LV Localization and Collection of Restraint Points Based on
the YOLOv3 Model. There are large differences in the shape of
the LV in different echocardiogram frames. In addition, due to
the interference of the mitral valve, as well as the influence of
noise, artifacts, and frame-to-frame drift, traditional methods
cannot locate the LV position well or extract the endocardium
accurately. Therefore, this study proposes to use the target
detection model YOLOv3 to realize the positioning of the LV
region and the three ventricular constraint points in echocardi-
ography. From Figure 2, the YOLOv3 model consists of the
following: a general feature extraction network based on the
Darknet-53 network, a multibranch deep feature extraction
network, and a multiscale target area bounding box detection
network.

In Figure 2, for the general feature extraction network,
the convolutional network (Conv), batch normalization
(BN) layer, and linear activation function (Leaky ReLU) con-
stitute Darknetconv2d BN Leaky (DBL), which extracts the
general features of cardiac ultrasound images. The DBL is
also the basic block of deep feature extraction networks. Con-
currently, to solve problems such as the disappearance of
gradients due to the deep network structure, DarkNet53 uses
the jump structure to form Res_unit, Resblock_body, and
Res_Module in multiple DBLs.

For the deep-level feature extraction network, YOLOv3
forms a multibranch network and a Concat layer through
the route structure. Simultaneously, YOLOv3 uses a bilinear
upsampling layer to expand the feature map to form three
branch networks for locating target areas of three different
scales; through these three branch networks, the feature
matrix of the LV ultrasound image can be obtained. In prac-
tice, it is difficult to obtain enough labeled LV images, and to
avoid overfitting, transfer learning is applied in this study to
train the entire feature extraction network: first, load the
weight parameters obtained based on the VOC dataset [22]
and then fine-tune the weight parameters of the feature
extraction network using the labeled heart dataset.

After the feature matrices of the LV ultrasound images of
the heart are obtained, they are input into the detection
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network to obtain the positioning matrices. The YOLOv3
model divides the original input images into three types of
S × S grids (i.e., 13 × 13, 26 × 26, and 52 × 52) for positioning
the target area; hence, three types of positioning matrices
with different dimensions are obtained. As shown in
Figure 2, the y1 matrix corresponding to a 13 × 13 grid is used
to detect a large target area and is used to locate the LV area
in this study; the y2 and y3 matrices correspond to the 26 × 26
and 52 × 52 grids, respectively, which are used to locate three
ventricular restraint points in this study.

Each grid corresponds to a ðB +OÞ × anchors-dimen-
sional positioning vector, where B is the bounding box of
the target area, composed of (bx, by , bw, bh, bc), correspond-
ing to the center abscissa, ordinate, width, height, and confi-
dence from the center of the target area, respectively, andO is
the number of types of the target area. In this study, there are
four types of targets: the LV region and three ventricular con-
straint points. anchors are the number of anchor frames in
the positioning matrix; the number of anchor frames with
three scales in this study is three.

Generating le�
ventricular

positioning and
constraint frames 

Localization of the
le� ventricular
myocardium

Segmentation the
endocardium of the

le� ventricle
Smoothing

Segmentation and extraction of the
endocardium of the le� ventricle

Le� ventricular myocardial curve
fitting based on position constraint

Binarization based on Markov
random field model

Original image

YOLOv3

Figure 1: Block diagram of the proposed method.
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The anchor box is used to describe the length and width
of the target area in this study, and the relationship between
the anchor box and bounding box is shown in Equation (1).

bx = σ txð Þ + Cx,

by = σ ty
� �

+ Cy ,

bw = Pwe
tw ,

bh = Phe
th ,

ð1Þ

where Cx, Cy, Pw, and Ph are the abscissa, ordinate, and
the width and height of the upper left corner of the grid
where the center point of the anchor frame is located, respec-
tively; σð∙Þ is the sigmoid activation function; tx and ty are
the abscissa and ordinate offsets of the center of the anchor
frame; and tw and th are the changes in the length and width
of the anchor frame.

In this study, the target area in the training set is divided
into nine anchor boxes using theK-means [23] clustering algo-
rithm, and each anchor box is represented as ðw, hÞ. For these
anchor boxes, three small anchor boxes (ð0 × 0Þ, ð11 × 13Þ, and
ð11 × 15Þ) (i.e., the y1 matrix in Figure 2) are used to locate the
LV area: threemedium anchor boxes (ð13 × 15Þ, ð14 × 20Þ, and
ð15 × 17Þ), and three large anchor boxes (ð16 × 22Þ, ð110 ×
218Þ, and ð146 × 323Þ) (i.e., the y2 and y3 matrices in
Figure 2) are used for the positioning of three constraint points.

3.2. Extraction of Endocardium Based on Constraint Points.
The three positions of the apex and bottom of the LV, as well
as the positioning of the LV area, can be found by the YOLOv3
model mentioned above. Then, based on the MRF model, the
binarization and preliminary identification of the LV myocar-
dial region in the subimages can be performed. Under the
constraints of the three position points of the apex and bottom
of the LV, curve fitting was performed on the left and right
myocardial parts in the LV subimages, and the edge of the
endocardium was approximated to realize accurate segmenta-
tion of the LV endocardium, and the B-spline method was also
employed to smooth the edge of the LV endocardium.

3.2.1. Binarization of LV Myocardium Based on MRF Model.
Before the LV myocardial images are binarized, to reduce
the influence of speckle and noise in echocardiograms, the
echocardiograms are denoised on the premise of preserving
the characteristics of the LV myocardium. First, the LV subi-
mages are smoothed via 2-D adaptive Wiener noise-removal
filtering [24], the local neighborhood size is set to ð5 × 5Þ,
and then, the pixel-wiseWiener filter can be constructed using
Equation (2).

b n1, n2ð Þ = μ +
σ2 − ν2

σ2 a n1, n2ð Þ − μð Þ, ð2Þ

where μ and σ2 are the local mean and variance around each
pixel, respectively, and ν2 is the variance of the noise. The
Wiener filter adjusts itself to the local image variance, i.e.,
when the variance is large, a minor smoothing operation is

performed by the Wiener filter whereas when variance is
small, the Wiener filter performs a major smoothing.

The MRF model utilizes the correlation between the
upper and lower adjacent pixels in the image; thus, the spatial
connectivity and edge smoothness of the binarized region
can be improved. Therefore, an MRF model based on the
ICM algorithm was used in this study to binarize and initially
identify the myocardial region.

Assume that X and Y are random fields on a two-
dimensional plane, where X = fxi, i = 1, 2, 3,⋯,M ×Ng rep-
resents the input image and Y = fyi, i = 1, 2, 3,⋯,M ×Ng
represents the labeling field, where M and N represent the
rows and columns of the image, respectively. In this study,
the K-means clustering method was used to obtain the initial
marker field, and the category was set to 2.

Considering the input images as an MRF model, the
image segmentation problem can be transformed into an
optimization problem using the ICM algorithm. According
to the Bayesian principle, the posterior probability distribu-
tion of MRF is as follows:

P X = x ∣ Y = yð Þ = P Y = y ∣ X = xð ÞP X = xð Þ
P Y = yð Þ , ð3Þ

= xÞ is the prior probability of the label domain, and PðY
= y ∣ X = xÞ is the likelihood function.

When binarizing the LV images, the optimal labels can be
obtained by maximizing the posterior probability of Equa-
tion (3).

P X = x ∣ Y = yð ÞMAP = argmax P Y = y ∣ X = xð ÞP X = xð Þf g:
ð4Þ

The prior probability PðX = xÞ in the MRF neighborhood
system can be expressed using the Gibbs distribution func-
tion [25]. Then, based on the Gibbs distribution, the prior
probability PðX = xÞ of the marker field can be characterized
as follows:

P X = xð Þ = 1
Z

exp −
E xð Þ
T

� �
, ð5Þ

where Z =∑x∈Ω exp ½−EðxÞ/T� is a normalized constant,
EðxÞ =∑c∈SVcðxÞ is the energy function, VcðxÞ is the
potential function, and T is the temperature parameter,
which is usually set to 1 [26].

Similarly, the posterior probability PðX = x ∣ Y = yÞ can
also be expressed by an energy function, as shown in Equa-
tion (6).

P X = x ∣ Y = yð Þ = 1
Z

exp −
E x ∣ yð Þ

T

� �
: ð6Þ

Substituting Equations (5) and (6) into Equation (4), and
taking the logarithms on both sides of the equation simulta-
neously, the product form is transformed into a summation
form, and the result is as follows:
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E x ∣ yð Þ = argmax E y ∣ xð Þ + E xð Þf g, ð7Þ

where Eðx ∣ yÞ represents the minimized energy function,
Eðy ∣ xÞ is the likelihood function energy of pixel x, and
EðxÞ is the prior probability energy corresponding to pixel
x. Therefore, the final energy relationship can be expressed
as Equation (8).

E xF ∣ yð Þ = E y ∣ xð Þ + E xð Þ, ð8Þ

where xF is the final segmentation mark.
The ICM algorithm is used to optimize Equation (8), i.e.,

to minimize the energy function EðxF ∣ yÞ. Finally, the binari-
zation results of LV myocardium images can be obtained and
are shown in Figure 3. As shown in Figure 3, the LV myocar-
dium can be clearly observed after the original LV images are
binarized using the MRF model.

3.2.2. Segmentation and Extraction of LV Myocardium Based
on Position Constraints. After binarizing the original LV
images based on the MRF model, the positioning curve of
the LV myocardium will be fitted based on the position con-
straints. Firstly, divide the LV into the left and right regions
and then use the nonlinear least squares (NLS) method to
perform curve fitting on the two regions. Because only the
LV endocardium is approximated in this study, three con-
straint points are used to limit and constrain the fitted curve.

In this study, a polynomial model based on the NLS
method is employed to fit the left and right segments, respec-
tively, as shown in Equation (9).

F xð Þ = a1x
m + a2x

m−1+⋯+amx + am+1, ð9Þ

where a1, a2,⋯, am+1 represents the fitting coefficient of the
polynomial, and m is the polynomial degree; in this study,
the polynomial degree m is set to 3.

For a given set of coordinate points fðxi, yiÞ: i = 1, 2,⋯,
ng, the polynomial fitting error equation can be written as
Equation (10).

V = BX − L, ð10Þ

where

B =

xm1

xm2

⋮

xmn

xm−1
1

xm−1
2

⋮

xm−1
n

⋯

⋯

⋮

⋯

x1

x2

⋮

xn

0
BBBBB@

1
CCCCCA,

X =

a1

a2

⋮

am+1

0
BBBBB@

1
CCCCCA,

L =

F x1ð Þ
F x2ð Þ
⋮

F xnð Þ

0
BBBBB@

1
CCCCCA:

ð11Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Binarization results of LV endocardium images based on MRF: (a–d) the original frames extracted at the equal interval from the
same echocardiogram and (e–h) the corresponding binarization results.
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(a) (b)

(c) (d)

(e)

Figure 5: Extraction and segmentation of LV endocardium. (a) Result of binarization of the LV image using MRF model. (b) Morphological
mask generated according to the fitted positioning curve. (c) Binary myocardial image obtained after mask processing. (d) Approximation
result of the endocardium based on the three constraint points. (e) Result of smoothing the myocardium based on the B-spline method.

(a) (b) (c)

Figure 4: Fitting curve results of the LV subgraph in different sequences without and with constraints.

6 Computational and Mathematical Methods in Medicine



Based on the NLS method, the estimated value of X can
be obtained as follows:

X = BTB
� �−1

BTL: ð12Þ

Substituting the result obtained from Equation (12) into
Equation (9), the LV myocardial positioning fitting curve
can be obtained, as shown in Figure 4, where the red boxes
in Figure 4(a) are the constraint points obtained by the
YOLOv3 model. The obtained three constraint points are
used for the constraint of the myocardial fitting curve.
Figure 4(b) is the positioning fitting curve without restraint,
and Figure 4(c) is the constrained positioning fitting curve.

As shown in Figure 4, under the three constraint points
obtained based on the YOLOv3 model, the positioning curve
of the myocardium can be accurately determined in the LV.

To mitigate the influence of speckle noise around the LV
myocardium, the binary LV images obtained based on the
MRF model are processed using the morphological masking
method. After the initial positioning of the LV myocardium
is achieved, the endocardium is approached based on the
three constraint points, the edge of the endocardium is
smoothed by the B-spline method [27], and the segmentation
and extraction of the LV endocardium can be realized as
shown in Figure 5.

4. Results

The cardiac ultrasound imaging data used in this study were
provided by the Ultrasound Imaging Department of the First
Affiliated Hospital of Medical College of Shantou University.

4.1. Evaluation Criteria. For target detection tasks, the
average precision (AP) indicator [28] is commonly used to
evaluate whether a model can detect a target class accurately.
The AP is computed as the intersection of union (IOU)
between the detection bounding box and the label bounding
box. When the IOU of the detection bounding box and the
label bounding box is greater than the set IOU threshold, it
is considered that the model detects the target correctly. Sub-
sequently, the AP value of the target class is calculated. In
practice, the IOU threshold is usually set to 0.5, and the
corresponding AP indicator is called AP50. For a model used
to detect multiple target classes, the mean average precision
(mAP) can comprehensively evaluate the performance of
the model, i.e., compute the average value of the AP values
of all target classes.

A precision-recall (P‐R) curve [29] is shown with precision
and recall as the vertical and horizontal axis, respectively. Also
the size of the area under the P‐R curve can comprehensively
reflect the performance of a model for detecting the target.

AP can be expressed as

AP =
ð1
0
P Rð ÞdR, ð13Þ

where P and R represents the precision and recall rates,
respectively. The precision and recall in the P‐R curve are

calculated using Equations (14) and (15), respectively.

precision =
TP

TP + FP
, ð14Þ

recall =
TP

TP + FN
, ð15Þ

where TP, FP, and FN represent the true positive, the false
positive and the false negative, respectively.

The Dice coefficient [30], MAD [31], and HD [32]
parameters are used to evaluate the segmentation results of
the LV endocardium:

Dice S,Gð Þ = 2Area S ∩Gð Þ
Area Sð Þ + Area Gð Þ ,

MAD A, Bð Þ = 1
2

1
m
〠
m

i=1
d ai, Bð Þ + 1

n
〠
n

j=1
d bi, Að Þ

( )
,

HD A, Bð Þ =max max
i

d ai, Bð Þf g, max
j

d bj, A
� �� �� 	

,

ð16Þ
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Figure 6: P‐R curve of the LV identification and constraint box
based on the proposed method in this paper. (VS: ventriculus
sinister; Lower left: the constraint point in the lower left corner;
Lower right: the constraint point in the lower right corner; and
Top: the constraint point on the top of the myocardial wall).

Table 1: Evaluation results of the YOLOv3-based LV and three
bounding box positioning model using AP50.

LV Left_down Right_down Top

AP 100.00% 92.33% 95.44% 94.50%
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where S represents the myocardial area data obtained by
different binarization methods, G is the gold standard data
of the myocardial area, A = fa1, a2,⋯, amg is the endomyo-
cardial edge data obtained by the method proposed in this
paper, and B = fb1, b2,⋯, bng is the gold standard endomyo-
cardial edge data.

4.2. LV and Restraint Point Positioning Model Based on
YOLOv3. Table 1 illustrates the performance of the
YOLOv3-based LV and bounding box positioning model on
the test dataset using AP50. From Table 1, all the AP50 values
of the four target regions formed by the LV and the three
bounding boxes are above 92%, and the mAP value reaches
95.57%, which indicates that the model designed in this study
can detect the LV and the three bounding box areas well and
meet the requirements of LV myocardium segmentation.

The P‐R curve, which can intuitively evaluate whether the
model can detect a target class well, is drawn based on the
precision-recall value pairs calculated from different confi-
dence values when the model detects a target class. The value
of the area enclosed by the P‐R curve is the AP value.

The P‐R curve of the model on the test dataset is shown
in Figure 6. It can also be seen from Figure 6 that the area
under the four P‐R curves is sufficiently large, which indi-
cates that the performance of the model is satisfactory.

4.3. LV Binarization. To analyze the effect of the MRF model
on the binarization of the ultrasound LV images, the
proposedmethod, traditional Otsumethod, andK-means clus-
tering algorithms were used to binarize the same LV image for

comparison; the binarization results obtained by different
methods were also compared with the gold standard, and the
results are shown in Figure 7.

From Figure 7, it can be verified that the myocardial area
obtained using the proposed model is closest to the gold
standard.

For quantitative analysis, the Dice index is used for evalua-
tion. The LVmyocardial regions obtained by the Otsu method,
K-means clustering algorithm, and the method based on MRF
proposed in this paper are compared with the gold standard
myocardial region obtained by manual segmentation by senior
clinicians, and the corresponding Dice indices are obtained,
and the results are shown in Table 2.

It can be seen from Table 2 that the Dice value corre-
sponding to the proposed binarization method based on the
MRF model is 0:88 ± 0:03, which is far greater than the Dice
values corresponding to the Otsu method and K-means clus-
tering algorithm, namely, the performance of the binariza-
tion method based on the MRF model proposed in this
paper is much better than the other two methods. Therefore,
the binarization method proposed in this study can fully
meet the requirements for extraction of the LV myocardial
region.

Table 2: Comparison of binarization results obtained by different
methods and gold standards.

Otsu K-means MRF

Dice 0:58 ± 0:07 0:59 ± 0:06 0:88 ± 0:03

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Binarization results of ultrasonic LV images using the Otsu method, K-means clustering method, and MRF model. The area
enclosed by the blue line in (a) and (e) is the gold standard for the LV myocardium. (b, f) The binarization results obtained by using the
Otsu method. (c, g) The binarization results obtained by using the K-means clustering algorithm. (d, h) The binarization results obtained
by using the method proposed in this paper.
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4.4. LV Endocardium Segmentation. In order to evaluate the
performance of the method proposed in this paper, the same
LV ultrasound images were segmented using different
methods (listed in Table 3) along with the proposed method,
and the segmentation results by different methods were com-
pared with the gold standard obtained by manual segmenta-
tion by cardiologists, and five evaluation indicators including
training set size, computation speed, Dice coefficient, MAD,
and HD were used to evaluate the segmentation results.
The results are shown in Table 3.

It can be seen from Table 3 that the proposed segmenta-
tion technique is superior to other methods in terms of vari-
ous evaluation indicators. In particular, for the computation
speed index, the method proposed in this paper has a great
advantage, and owing to the use of transfer learning, the
method uses less training data to obtain a better segmenta-
tion effect.

5. Discussion

In this paper, an automatic LV segmentationmethod based on
the YOLOv3 model is proposed to determine the constraints
and positioning. Through the YOLOv3 model, the three posi-
tions of the apex and bottom of the LV and LV area are posi-
tioned, and based on the MRF model, the LV myocardium
subimages are binarized; under the limitation of the three
constraint points of the LV, combined with NLS curve fitting
and B-spline smoothing, the accurate segmentation and
extraction of the LV can be realized. Experiments show that
the suggested method can accurately and automatically iden-
tify and segment the LV in cardiac ultrasound images.

In the experimental section, a comparison is presented
with other segmentation models. Hansson et al. [33] pro-
posed an unsupervised segmentation method based on a
Bayesian probability map. Although MADs corresponding
to the aforementioned method and the method proposed
herein are similar (which means that the two methods are
similar in terms of segmentation accuracy), the computation
speed of the latter is much higher than that of the former (see
the computation speed indicator). The level set segmentation
method proposed by Qin et al. [34] is unsupervised, does not
require a training dataset, and can yield accurate segmenta-
tion results. However, owing to the need for sparse matrix
transformation to identify the right ventricle, this method
requires many training sets and a large processing time; in
addition, it is necessary to readjust the parameters according
to the movement of the heart, which will lead to unstable
results. Compared with that of the aforementioned method,

theMAD of the method proposed herein this paper is slightly
lower, but the Dice value is better. In fact, the method pro-
posed by Qin et al. is similar to our method in terms of seg-
mentation accuracy. However, the method proposed herein
is far superior in terms of the computation speed indicator.
The method proposed by Carneiro and Nascimento [35] uses
a deep neural network method to segment the systolic and
end-diastolic contours and achieves high segmentation accu-
racy; however, a large number of datasets is required, and
thus, a set of 496 images had to be established. Compared
with this method, the method proposed herein only requires
a small amount of data (252 frames) to obtain a suitable posi-
tioning effect; in terms of calculation speed, the method pro-
posed herein this paper is significantly better than that
proposed by Carneiro and Nascimento (see the correspond-
ing computation speed index in Table 3). Finally, according
to the computation speed, Dice, MAD, and HD, the auto-
matic LV segmentation method based on constraints and
positioning are better in the proposed technique than uncon-
strained positioning segmentation methods in terms of
segmentation accuracy and computation speed.

In summary, if the segmentation accuracy indices (i.e., Dice,
MAD, andHD) are considered, the method proposed is not the
best, but it can be said that the method proposed in this paper is
one of the best methods in terms of segmentation accuracy;
however, if the computation speed, data volume, and segmenta-
tion accuracy are considered comprehensively, it can be said
that the method proposed in this paper is the best. Compared
with other methods, the proposed segmentation technique
has significant advantages in terms of computation speed and
the amount of data required. The method proposed in this
study uses fewer data to obtain a good segmentation effect. It
is well known that it is very difficult to obtain medical data in
practice, thus obtaining a good segmentation effect based on a
small amount of data is conducive to the clinical application
of the algorithm. The computation speed is another important
factor that affects the application of algorithms in clinical prac-
tice, and the algorithm proposed has significant advantages in
terms of computation speed over the other methods.

6. Conclusions

Here, an automatic LV segmentation method based on the
YOLOv3 model for constraint and positioning determina-
tion is proposed. Through the YOLOv3 model, the three
positions of the apex and bottom of the LV and LV area are
positioned, and based on the MRF model, the LV myocar-
dium subimages are binarized; under the limitation of the

Table 3: Comparison of endocardial segmentation results by different methods.

Methods Training set size (frame) Computation speed (fps) Dice (%) MAD (mm) HD (mm)

Hansson et al. [33] 0 0.3 — 2:58 ± 0:85 —

Qin et al. [34] 450 0.01 90:8 ± 1:7 2:0 ± 0:42 6:86 ± 1:71

Carneiro and Nascimento [35] 496 0.2 — 1:94 ± 0:51 —

The method without constraints 252 1.5–1.8 80:103 ± 2:13 7:06 ± 0:85 10:34 ± 3:51

Proposed method 252 2.1–2.25 93:578 ± 1:97 2:57 ± 0:89 6:68 ± 1:78
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three constraint points of the LV, combined with NLS curve
fitting and B-spline smoothing, the accurate segmentation
and extraction of the LV can be realized. Experiments show
that the method can accurately and automatically identify
and segment the LV in cardiac ultrasound images, and
related indicators such as fps, Dice, MAD, and HD can reach
2.1–2.25 fps, 93:57 ± 1:97%, 2:57 ± 0:89mm, and 6:68 ± 1:78
mm, respectively. Compared with other methods, the pro-
posed method has a better segmentation accuracy and
robustness. In particular, our method has a high computa-
tional speed, which is very important for real-time evaluation
of cardiac function based on echocardiography. In addition,
our method uses less training data to achieve better segmen-
tation results. In short, our method can accurately segment
LV ultrasound images, which is important for the accurate
acquisition of clinical indicators for cardiac function evalua-
tion, such as the EF, strain, and strain rate of the LV on echo-
cardiography and will play a vital role in assisting doctors in
clinical diagnosis.
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The automatic diagnosis of Alzheimer’s disease plays an important role in human health, especially in its early stage. Because it is a
neurodegenerative condition, Alzheimer’s disease seems to have a long incubation period. Therefore, it is essential to analyze
Alzheimer’s symptoms at different stages. In this paper, the classification is done with several methods of machine learning
consisting of K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), linear discrimination analysis
(LDA), and random forest (RF). Moreover, novel convolutional neural network (CNN) architecture is presented to diagnose
Alzheimer’s severity. The relationship between Alzheimer’s patients’ functional magnetic resonance imaging (fMRI) images and
their scores on the MMSE is investigated to achieve the aim. The feature extraction is performed based on the robust multitask
feature learning algorithm. The severity is also calculated based on the Mini-Mental State Examination score, including low,
mild, moderate, and severe categories. Results show that the accuracy of the KNN, SVM, DT, LDA, RF, and presented CNN
method is 77.5%, 85.8%, 91.7%, 79.5%, 85.1%, and 96.7%, respectively. Moreover, for the presented CNN architecture, the
sensitivity of low, mild, moderate, and severe status of Alzheimer patients is 98.1%, 95.2%,89.0%, and 87.5%, respectively. Based
on the findings, the presented CNN architecture classifier outperforms other methods and can diagnose the severity and stages
of Alzheimer’s disease with maximum accuracy.

1. Introduction

In fluorodeoxyglucose-positron emission tomography
research, cognitive impairment in AD has been correlated
with localized brain metabolic damage in systematic and
functional imaging experiments [1–3]. Blood-oxygen-level-
dependent imaging was seen to reflect healthy functional net-
works, including default mode (DMN), visual (VIS), and

executive networks (EN) [4], within a given resting state.
Unlike task-related functional MRI (fMRI), patients’ capabil-
ity to recognize and memorize the instructions for executing
a given task is not confounded by resting-state fMRI, which
makes it useful for the survey of individuals with cognitive
decline [5]. Besides, convincing literature-wide data confirms
the application of resting-state connectivity as an AD bio-
marker [6]. Machine learning (ML) is an artificial intelligence
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field that typically utilizes factual methods to allow com-
puters to “learn” through data from stored datasets. A subset
of ML [7] is fundamental deep learning (DL). The DL is a
neural network that uses several variables and layers to
define. There are a variety of simple network architectures
[8], including CNNs, mainly a standard spatial mutual
weight neural network [9].

The CNN is designed to identify images that see the edges
of a known target on the image by making convolutions
inside [10]. (ii) Recurrent neural networks are names of arti-
ficial neural networks where a graph is generated by specific
associations between nodes in the temporal chain. RNNs
can use their internal condition to handle the sequences of
inputs, unlike feedforward neural networks. RNN is meant
to identify sequences such as a voice signal or a text [9], for
example. (iii) In recursive neural networks, the input
sequence does not include a time dimension, and the input
must be hierarchically evaluated in a tree form [8, 10]. Vari-
ous external inputs usually contribute to distinct brain func-
tions, and various functional brain representations are
displayed by different brain activities [11]. For that function,
the classification of images plays an essential role in detecting
various brain functions. Several deep learning approaches
have recently been suggested to carry out image recognition
for various brain activities [12, 13]. A deep neural network
feedforward has been employed by Koyamada et al. [12] to
identify different brain functions, including preferences;
motor, social, emotional, and language activities; and work
memory, using functional magnetic resonance imaging
(fMRI) images. A SoftMax layer and various secret layers
were used in the feedforward deep neural network. Similarly,
to get high-level latent properties, these hidden layers were
used. In contrast, the SoftMax layer has been applied to cal-
culate a subject’s ability in a class. To boost the final classifi-
cation efficiency, dropout, minibatch stochastic decrease
[14], and main sensitivity analyses [15] were also integrated
into the deep feedforward neural network. Jang et al. newly
exploited deep neural networks and hidden layers completely
connected to feedforward to distinguish different sensor
roles, including visual attention and stimuli and right-hand
and left-hand clenching, are included. The DL classification
of MRI images included other classifications above and below
the classifications, such as diagnosis of stroke [16], age pre-
dictions [17], classification of attention-deficit hyperactivity
disorder (ADHD) [18], prejudice against cerebellar ataxia
[19], and predictive emotional response [20]. Due to science,
computer-aided diagnosis systems (CADs) were developed
to play an important role in enhancing the understanding
of medical imagery among researchers and physicians. The
application of the machine learning technique, in particular
DL strategies in CAD models to diagnose and classify stable
control patients with average (CN), AD, and mild cognitive
impairment (MCI), has exponentially grown [21, 22]. The
automatic diagnosis of AD performs an essential role in
human health, especially in the early stages. AD has a consid-
erable incubation period because it is a neurodegenerative
disorder.

Thus, the AD symptoms need to be analyzed at various
levels. Currently, several scholars have discussed using image

classification to carry out AD diagnosis. Several DL
approaches have been suggested to use MRI images to intro-
duce multiple AD patients’ severity [22, 23]. The higher the
image quality, the better the outcomes achieved, known in
image analysis. However, the quality of image relies on image
processing, and when the picture is acquired higher, the
image quality is higher. MRI retains noninvasive and good
contrasting properties of soft tissue but does not expose to
people ionizing with high radiation. As MRI can produce a
great deal of priceless knowledge of tissue frameworks such
as position, size, and type, more attention is paid to comput-
erized diagnostics and clinical routine [24, 25]. Functional
and structural imaging can be classified into MRI. T1-
weighted MRI (T1w), diffusion tensor imaging (DTI), and
T2-weighted MRI (T2w) [26] are used in structural imaging.
Functional imagery includes functional MRI task status (ts-
fMRI) and functional MRI resting state (rs-fMRI). Medical
diagnostic data systems are employed for medical centers
and doctors to treat diseases, and analytical tools to improve
management and diagnosis are critical. Given the crucial
function of medical data in humans’ lives, computer scien-
tists have been involved in this area. Healthcare professionals
may make their decisions, including medical diagnoses and
the effects of severe conditions, by contributing to the medi-
cal details’ classification. In addition to the number of these
conditions, a data collection of diseases comprises patient
symptoms as characteristics. The extensive patient evidence
available can be used for health treatment. Data mining
may be used in medical center studies to provide appropriate
origins of disease for prohibiting and prompt diagnosis and
avoiding the significant costs of diagnostic tests [27].

In this paper, machine learning methods are utilized for
Alzheimer’s disease classification. Moreover, robust multi-
task methods are utilized for feature extraction of fMRI
images from the ADNI dataset. In the output layer, the main
aim is to find the severity of Alzheimer’s diseases. Therefore,
the results of MMSE are used. For classification and diagnosis
of Alzheimer’s disease severity, the machine learning
methods are trained. Input and output features are applied
for six classifiers including, KNN, SVM, DT, LDA, RF, and
CNN. Finally, performance analysis consists of the confusion
matrix and the ROC curve illustrates the classification results.

2. Research Background

AD recognition has been extended to many different
methods focused on deep learning. Nevertheless, several con-
troversial findings encouraged us to participate in the litera-
ture review to determine the current operating condition
and what could be the potential innovations. In this section,
the primary study concern is if DL techniques have been able
to classify AD using neuroimaging data. The training dataset
scale is considered to significantly impact the classifier’s out-
put over an undefined test range [28]. In each dataset, the
amount of AD and MCI topics can be minimal, inadequate
for deep models to be evaluated. For multimodality experi-
ments, the condition is worse. Any experiments, however,
have mixed datasets. While it can result in more heterogene-
ity by integrating multiple datasets, this may advance a broad
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and stable classification and prediction model. Using data
augmentation is another means of addressing the small num-
ber of topics in a dataset. Data increase is a technique that
increments the data range of training model applications
without additional data being obtained. In approximately
20 percent of research aimed at enhancing classification per-
formance, data enhancement strategies like random transla-
tion, rotation, reflection, adding noise, gamma filter,
blurring, cutting, and scaling were used where appropriate
[29].

Moreover, at various time points, longitudinal datasets
include multiple brain scans per subject; it may also be
employed for data increase in time, while their main objective
was to analyze disease development [30]. While implement-
ing a DNN from scratch is completed in some experiments,
it is always impossible to do so: the training phase can use
much time, or the sample may be tiny [31]. Even though
there are millions of images in datasets of object detection
and etiquette, neuroimaging datasets contain hundreds of

images that help overfit the planning. It is generally beneficial
to start tested, previously trained CNN with one dataset and
retrain them with just the fine-tuning of CNN on another
dataset (transfer learning). It is feasible since more general
characteristics in the lower CNN layers can profit certain
classification activities that can be moved from one program
domain to another. CNN classifier is one of the effective
methods for classification for all brain diseases. Besides, find-
ing the best way for classification impacts diagnosis accuracy
and process time. Therefore, our presented method is justi-
fied computationally.

Transfer learning is also more comfortable with small
projects and produces higher performance than planning
from the beginning [53]. Payan and Montana proposed clas-
sifying AD stages, namely, MCI, AD, and standard control
[54] (NC). The algorithms were designed to implement a
3D CNN to separate brain scans employing autoencoding
systems and 2D CNN. For 3D CNN and 2D CNN versions,
an accuracy of 89.47 percent and 85.53 percent was reached.

Table 1: Summary research on Alzheimer’s disease diagnosis methods.

Author Year Database Modality Method Accuracy

Suk and Shen [32] 2013
Alzheimer’s Disease

Neuroimaging
Initiative (ADNI)

PET, MRI,
CSF

Stacked autoencoder, SVM 95.9

Suk al.[33] 2014 ADNI PET, MRI Deep Boltzmann machine 95.4

Liu et al. [34] 2016 ADNI MRI
Influence of subclass number,

multiview feature extraction, subclass
clustering-based feature selection, SVM

93.8

Zu et al. [35] 2016 ADNI PET, MRI
Label-aligned multi-task feature
selection, support vector machine

96.0

Sarraf and Tofighi [36] 2016 ADNI fMRI LeNet-5 96.85

Sarraf and Tofighi [37] 2016 ADNI MRI, fMRI LeNet, GoogleNet 98.84

Li et al. [38] 2017 ADNI MRI CNN 88.31

Amoroso et al. [39] 2018 ADNI MRI
Random Forest, deep neural network, fuzzy

logic
38.8

Liu et al. [40] 2018 ADNI MRI, PET 2D and 3D CNN, 93.26

Yang et al. [41] 2018 ADNI MRI
The convolutional neural network,

3DVGGNET, 3DRESNET
76.6

Wang et al. [42] 2018
Open Access Series of Imaging

Studies
MRI CNN 97.65

Khvostikov et al. [43] 2018 ADNI MRI, DTI CNN 96.7

Shi et al. [44] 2018 ADNI MRI, PET
Multimodal stacked deep polynomial

network, SVM
97.13

Ramzan et al. [45] 2019 ADNI fMRI Off-the-shelf and fine-tuned 97.88

Parmar et al. [46] 2020 ADNI fMRI 3D CNN 96.55

Duc et al. [47] 2020 ADNI fMRI 3D CNN and SVM-RFE 85.27

Li et al. [48] 2020 ADNI 4D fMRI 3D CNN and C3d-LSTM 89.47

Al-Khuzaie et al. [49] 2021 Alzheimer Network (AlzNet) 2D fMRI CNN 99.30

Bhaskaran and Anandan
[50]

2021

Research Anthology on
Diagnosing and

Treating Neurocognitive
Disorders

rsfMRI Graph metrics and lateralization 97.54

Luo et al. [51] 2021
Population-specific Chinese

brain atlas
rsfMRI

Graph metrics and false discovery
rate (FDR)

95.67

Ahmadi et al. [52] 2021 Harvard Medical School MRI Robust PCA and CNN method 96
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Liu et al. have also achieved a classification accuracy of about
85.53 percent with the identical network structure for 2D
CNNs [34]. A study for the classification of AD was done
by Sarraf and Tofighi [36]. The research was focused on clas-
sifying AD patients using MRI and fMRI scans from normal
control subjects. For binary classification, two network archi-
tectures have been implemented. LeNet-5 and GoogleNet
were the foundations for these CNN-based architectures. It
obtained an approximate accuracy of 99 percent with LeNet
and 100 percent with GoogleNet utilizing fMRI data. An anal-
ysis of research that focuses on AD classification using deep
learning techniques is given in Table 1. Structural MRI or
PET scans have been used in many experiments that concen-
trate on characterizing a few stages of the disorder, i.e., AD,
MCI, and CN. In multiclass AD diagnosis and grouping, a
restricted number of researches have employed fMRI findings.

3. Methods and Materials

3.1. Quantum Matched-Filter Technique (QMFT). Initially, a
preprocessing step with a noise reduction would take place. In
conjunction with the local threshold and the active contour,
each image is displayed employing a two-dimensional pixel
array, the value of which is an integer in the [0, 255] scale. In
two stages, local thresholds initialize images. Then, the input
noise picture is named the main image to which image noise
reduction is implemented. This procedure is used explicitly by
the quantummatched-filter technique (QMFT) as a local search
operator to improve the initial images. In this article, the utiliza-
tion of local thresholds and active contours was considered
since it is faster computationally than other approaches in the
literature. Thus, there will be a decomposed picture at the end
of the first stage. Thresholding is performed on the thorough
coefficients in the second step, and each of the decomposed
pieces is randomly picked and submitted to a reconstruction
process. It is possible to describe the restoration portion [55]:

(i) Gaussian Blur: a Gaussian filter is used to filter an
image. The filter size is chosen unintentionally,
between 3 × 3 pixels and 5 × 5 pixels

(ii) Mean filter (averaging filter): the picture is filtered
utilizing an average filter

(iii) Intensity change: a randomly selected associated cri-
terion in [0.7, 1.3] range is used to multiply all the
image pixels

(iv) Integrate light-intensive parts that conduct the
QMFT in quantum and reverse processing

Then, it executes the following procedures:

(i) One-point row: random selection of a pixel row

(ii) One-point column: it is similar to the preceding
method, except that it is regarded instead of a row

(iii) Point-to-point random: every pixel is incorrectly
chosen until a new image is produced from
decomposition

(iv) Mark points in rows and columns of the picture as
QMFT to diminish the bulk of the noise

If the range value [0.1] chosen in the QMFT is lower than
the rate of local search, the current image will be passed to the
local search operator after a review. Its pixel value sorts the
entire picture until the decomposition is complete. The best
aspect ratio of the picture is then known in the sequel as a
quantum value. The signal can be split into multiple dis-
placed or revamped characteristic displays located at the fea-
ture’s extraction point in fMRI photos. For the study of an
image in its elements, local thresholds and active contours
may be used. After implementing QMFT alongside local
and active contouring thresholds, it is feasible to execute
image classification operations. In this case, it is possible to
destroy the local threshold coefficients and the QMFT-
based active contour to delete certain information. Local
thresholds and active contours based on QMFT have a signif-
icant advantage when details are separated into an image. It is
possible to employ active contour to isolate excellent image
information. Simultaneously, extensive details can be identi-
fied by local thresholds, integrating fine and extensive details
and linearly and diagonally reading all rows and columns.
Quantum reaches QMFT, so noise in the fMRI image can
be minimized. A light display can be used to create a QMFT
display with local thresholds and active contours. The local
and active QMFT contouring mechanism has two key fea-
tures: the oscillation or wave presence function, as in the fol-
lowing equation [55]:

ð0
−∞

Ψ tð Þ
����
2
dt <∞: ð1Þ

The energy in ΨðtÞ is confined to a short period as

ð0
−∞

Ψ tð Þdt = 0: ð2Þ

Generally, the suggested approach is estimated to
decrease the noise in

Ω Ið Þ = 〠
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + β2 ∇Ij j2

q !
+ λ

2 I − I0ð Þ2: ð3Þ

Within Equation (3), the term ðI − I0Þ2 guarantees the
rated image and a certain degree of authenticity and consis-
tency in the original image, where I denotes the rated picture
and I0 corresponds to the noisy picture. The parameter ∇I is
described as the number of times of variable change, β and λ
are balancing variables, and Ω is the sum of the image’s
pixels. The purpose of reducing Equation (3) is to diminish
the broad variety of images while retaining accuracy and val-
idation. For both β and λ, balancing values are modified from
1 to the image size to decrease Equation (3) [55].

3.2. Robust Multitask Feature. This paper is aimed at simulta-
neously catching common characteristics among several sim-
ilar tasks and detecting outer work using the robust multitask
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learning function algorithm (rMTFL). The rMTFL will esti-
mate the correct assessment and the true underlying weights.
Also, if the true underlying weights are over noise thresholds,
rMTFL will achieve exact sparsity patterns. Also, rMTFL
optimization can be easily solved, and rMTFL scales can be
used to solve significant problems [56]. Presume that there
are m learning tasks relevant to the fðX1, y1Þ,⋯,ðXm, ymÞg,
training results, where Xi ∈ Rd×ni is the ith task data matrix
with column as a sample; yi ∈ R

ni is the ith task response (yi
has continuous regression values and discrete classification
values); d is the dimensionality of the data; and ni is the num-
ber of ith task samples. The data were normalized to

satisfyXi’s ðj, kÞth input, which is referred to as xðiÞjk [56]:

〠
ni

k=1
x ið Þ
jk

� �2
= 1, j ∈ℕd: ð4Þ

The linear function of learning is

yii ≈ f i x ið Þ
j

� �
= x ið Þ

j

� �T
wi, i ∈ℕm, j ∈ℕni

: ð5Þ

The sum of two elements, P and Q, for each task and for
decomposing of the weight matrixW = ½w1,⋯,wm � ∈ Rd×m.
To manipulate relationships between tasks, various regulari-
zation conditions on P and Q are used. The rMTFL model,
theoretically, is developed as

min
W,P,Q

 〠
m

i=1

1
mni

XT
i wi − yi

�� ���� ��2 + λ1 pj jj j1,2 + λ2 QT�� ���� ��
1,2

s:t: W = P +Q:

ð6Þ

When P reports the mutual functions between tasks and
Q learns the second term’s outer tasks, λ1 and λ2 are nonneg-
ative parameters to handle these two terms [56].

3.3. Convolutional Neural Network. CNNs have been widely
employed for DL and the most prominent classes of neural
networks, mostly in extensive data such as images and videos.
It is a multilayer neural network architecture caused by cor-
tex neurobiology. It consists of convolutional layers and fully
connected layers. Between these two layers, subsampling
layers can exist. The best of DNNs is achieved, which are
challenging to scale along with multidimensional input data
associated locally well. Therefore, CNN can be automatically
applied in databases where comparatively large numbers of
nodes and parameters are trained (e.g., image processing) [57].

3.3.1. Convolutional Layer. This is the essential building
block of a CNN that determines the output of associated
inputs in the field of reception. These kernels’ findings trans-
late into data height and width, calculate the point product
between inputs and filter values, and then create a 2D filter
map enabled. It helps the CNN quickly find the filters that
enable when an input temporarily detects a specific type of
function [57].

3.3.2. Nonlinearity Layer. Nonlinear characteristics have a
high degree of importance and curvature. This layer’s pri-
mary purpose is to convert the input signal into the output
signal, which is used as an input in the next layer. Sigmoid
or logistical forms, Tanh, ReLU, PReLU, ELU, and more,
are not linear.

3.3.3. Pooling Layer. The CNN may be locally or globally
sampled to link the neuron outputs to an established neuron
on a single layer in the following layer. The critical task is to
limit the number of parameters and equations within the
model to reduce spatial depiction volume [57]. It not only
speeds up calculations but also takes the issue of overfitting
into account. The most popular method of pooling is max
pooling.

3.3.4. Fully Connected Layer. FC layers are deep NNs typical
for the regression or classification of the activation to con-
struct the predictions. A description of the multilayer percep-
tron (MLP) neural system is equivalent to the typical neural
system. The entire relationship with each activation is
formed in the antecedent layer. Activation can be determined
by the matrix multiplication and a bias offset [57].

3.3.5. Loss/Classification Layer. The loss layer defines how the
training eliminates the disparity between the actual and pro-
jected marks, ensuring that the training phase of NN is
directly guided by it. Various loss functions for different

•fMRI
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•
•

•
•
•
•
•

Output
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•
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Mini-Mental State Exam (MMSE)
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Figure 1: The conceptual flowchart of the presented process.
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commands such as SoftMax and crossentropy may be used
in DCNN. SoftMax losses are used to measure a solo class
of K mutually exclusive classes. The SoftMax layer is used
to calculate the likelihood, i.e., the total output values for
1. Furthermore, this layer is a responsive max-output layer
type, such that irregularities are distinguishable and often
scalable. Sigmoid crossentropy loss is used to foresee K
-free probability values [58]. The sigmoid capability yields
negligible probabilities, and lines can be used for grouping
various groups alongside these probabilities. A problem
with sigmoid is that the gradient disappeared after the sat-
uration had been achieved. Euclidean failure is used to regress
to fully appreciated names. The following is an overview of the
neural network model’s programs, database, results, and
implementations.

4. Results and Discussion

In this paper, machine learning methods are utilized for Alz-
heimer’s disease classification. First of all, the input image is
filtered with the QMFT method to reduced input fMRI
images. To imply the classifier in fMRI images, feature
extraction should be done for both the input and output
layers. Therefore, robust multitask methods are used for fea-
ture extraction of input layers. Then, for reducing the num-
ber of features, the PCA method is chosen. In the output
layer, the main aim is to find the severity of Alzheimer’s dis-
ease. Therefore, the results of MMSE are the best choice. It
consists of four categories: the low, mild, moderate, and
severe patients’ severity. The next step is to train the machine
learning methods. Input and output features are applied for

(a) (b)

(c) (d)

Figure 2: Results of noise reduction using QMFT: (a) input image; (b) input image contour form; (c) noise-reduced image; (d) contour form
of noise-reduced image.
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six classifiers including, KNN, SVM, DT, LDA, RF, and
CNN. Finally, performance analysis consists of the confusion
matrix and the ROC curve illustrates the classification results.
The conceptual diagram of the method is presented in Figure 1.

4.1. Preprocessing of Dataset. Data used in this paper’s prep-
aration was obtained from the ADNI database. Each subject’s
standard format was a series of 140 64 × 64 × 48 3D NIFTI
files and a single T1-weighted structural MRI file. Each 3D
NIFTI file represented the patient’s brain’s rs-fMRI data
from a 3-Tesla MRI scanner. Multiple subjects had nonstan-
dard fMRI size (e.g., 96 × 96 × 48, 80 × 80 × 48) and were fil-
tered out as well.

First, subjects were arbitrarily categorized into groups for
training and testing. Around 80 percent of the details were
required for training, and the remaining 20 percent was used
for testing. For the training and testing datasets, similar pre-
processing was implemented. First, the skull and neck voxels,
which are the MRI scans’ nonbrain regions, were removed
from the T1-weighted image that corresponded to each sub-
ject. The resting-state fMRI contained 140 time steps per sub-
ject and was corrected for motion artifacts. Then, regular
slice timing correction was applied to each time series

because later steps assume all slices were acquired halfway
through the relevant acquisition time. Slice timing correction
shifts each time series by the appropriate fraction. Spatial
smoothing was carried out next using a Gaussian kernel
(5mm full width at half maximum). Then, low-level noise
was removed from the data using quantum matched-filter
technique (QMFT). The noise reduction results can be
shown by the 2D section of images in Figure 2.

Based on the results of QMFT in Figure 2, the prominent
image noise was removed from 3D fMRI images. For better
illustration of noised and reduced images, the contour form
of image matrixes is shown in Figures 2(b) and 2(d). The
peak signal-to-noise ratio (PSNR) is shown in Figure 3.
Results of reduction for 140 images are depicted in
Figure 3. The average value of PSNR for the tested images
is 83.9731. The reduction of noise gives an exciting outcome
that enables a proper extraction of features.

4.2. Feature Extraction and Input Features. The ADNI data-
base is adopted for feature extraction of fMRI images. The
fMRI of 675 patients is included in the results. fMRI data
include 285 features classified into five types: average cortical
thickness, the standard deviation of cortical thickness, the
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Figure 3: The PSNR value of noise reduction from fMRI images.

Table 2: Scoring system of MMSE and the severity of Alzheimer’s disease.

Score Severity Psychometric analysis Day-to-day functioning

25-30 Low
If there are clinical symptoms of cognitive disability,

a formal cognition test can be useful

Clinically significant, however mild, deficits may be available.
Only the most stressful everyday life tasks are expected

to be affected

20-25 Mild
To further assess the trend and nature of deficits, a

systematic examination can be useful
Meaningful effects. Any monitoring, assistance, and aid

may be needed

10-20 Moderate
The formal assessment of whether there are clear health

indications may be helpful
Obvious deficiency. 24-hour surveillance could be

required

0-10 Severe The patient will not be testable
Impairment labelled. 24-hour surveillance and support

with ADL are likely to be required
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volume of cortical parceling, white matter, and surface area.
The result is the score from 6 separate time points of the
Mini-Mental State Examination: M06, M12, M18, M24,
M36, and M48. The samples that fail to track the consistency
of fMRI and missing results are removed.

4.3. Mini-Mental State Exam (MMSE). According to certain
risk factors, the cognitive function can decrease (e.g., hyper-
tension, elevated cholesterol, cardiac arrhythmias). The
physical and life quality of older people may be adversely
affected. Dementia is a significant disorder and a cause of
elderly disabilities. The second leading source in the demen-
tation of AD is brain vascular disease or multi-infarct demen-
tia. The Mini-Mental State Exam (MMSE) is an elderly
cognitive function test commonly used; it requires orienta-
tion, attention, memory, language, and visual-spatial ability.
The MMS is broken into two parts; the first only includes
vocal responses and encompasses orientation, memory, and
attention; 21 is the highest score. The second section checks
the ability to name, obey verbal and written orders, automat-
ically write a phrase, and copy a complex Bender-Gestalt
figure-like polygon; the highest score is 9. Patients with seri-
ously affected vision can have some added difficulties due to
the reading and writing involved in part II, which can typi-
cally be eased by broad writing and allowed for in the scoring.
There is a full cumulative score of 30 [59] (see Table 2).

For this paper, the relationship between Alzheimer’s
patients’ functional magnetic resonance imaging (fMRI)
images and their MMSE scores is assessed. Furthermore, a
machine learning model’s training is done on sample data
consisting of 285 features (extracted from an fMRI image)
and the patients’ respective MMSE scores. The training data
contained information for 800 patients with normalized fea-
tures. The test sample consists of 200 datasets of features and
a corresponding MMSE score as well.

4.4. Dimensionality Reduction. For function collection and
reduction, the well-known PCA approach is used. PCA is a
commonly utilized strategy for reducing dimensionality,
extraction of features, and visualization of results. PCA can
be described as the information’s orthogonal projection into
a low-dimensional, linear space known as the principal
spaces. The predicted data variance rises. PCA diminishes
the mean projection cost, defined as the mean square dis-
tance between the data points and their projections [60].
The value of characteristics is sorted in a descending order
to find a sufficient number of characteristics. The total stan-
dard value summation (NCSEðiÞ) is then calculated as the
corresponding sorted value:

NCSE ið Þ = ∑i
n=1eigenvalue nð Þ

∑
N f

n=1eigenvalue nð Þ
, 1 ≤ i ≤Nf , ð7Þ

where the nth function’s value is eigenvalue ðnÞ and the
dimensionality of the function vector obtained by the PCA
method isNf . The result of feature reduction is depicted in
Figure 4. Based on the chart, the minimum value of features
with maximum variance should be chosen. Based on results,
167 features contain 98% variance of all 285 features. There-
fore, classification should continue with these 167 features,
regarding this reduction number of features decremented
by 41.4%.

The results of classification with several methods of
machine learning consisting of KNN, SVM, decision tree
(DT), linear discrimination analysis (LDA), and random for-
est (RF) are illustrated in Figure 5. Regarding the confusion
matrix of Figure 5, the green arrays show the true values,
and red elements indicate false ones. The classification is per-
formed based on four classes, including low, mild, moderate,
and, severe based on the MMSE scoring system. The
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Figure 4: The cumulative summation of sorted eigenvalues.
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horizontal gray cells indicate sensitivity, and vertical cells
illustrate precision values for each class. For instance, in the
SVM method, from 690 patients with low severity, 656
(94.1%) are diagnosed correctly. However, 30 of them are
misdiagnosed with mild, and four are detected with moderate
severity. In other words, the sensitivity of low, mild, moder-

ate, and severe is 95.1%, 57.6%, 84.9%, and 100%, respec-
tively. Moreover, in the RF classifier, from all detected
patients in the mild class, 97.7% (precision) are true. On
the other hand, the precision of low, mild, moderate,
and severe classes for RF classifier is 82.5%, 97.7%,
100%, and 100%, respectively. The value of the lower-
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Figure 5: Confusion matrix of machine learning methods.
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right corner cell in the confusion matrix is the total accu-
racy value. To conclude, the results show that the accuracy
of KNN, SVM, DT, LDA, and RF methods is 77.5%,
85.8%, 91.7%, 79.5%, and 85.1%, respectively. Moreover,

the total error value of the classifier is illustrated in the
lower-right corner with red text. Results indicated that
from all traditional classifiers, DT results with high accu-
racy than other methods.
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Figure 6: ROC curves of machine learning methods.

Table 3: The architecture of the presented CNN method.

Layer Type Properties

1 Feature input 167 × 1 × 1 images

2 Convolution 16 (5 × 5) convolutions with stride [1]

3 ReLU F xð Þ =max 0, xð Þ
4 Fully connected 384 fully connected layer

5 Fully connected 384 fully connected layer

6 Fully connected Four fully connected layer

7 SoftMax σ xð Þi =
exi

∑K
j=1e

xj
, i = 1,⋯, K x = x1,⋯, xKð Þ

8 Classification output For multiclass grouping problems with mutually exclusive groups, the crossentropy loss
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For a better analysis of the machine learning classifiers,
the ROC curve is represented in Figure 6. For each of the
classes, the ROC curve is different because it is plotted based
on binary classification. The horizontal axis displays the ROC
curve’s false-positive trend, and its vertical axis shows the
true-positive rate. In other words, the ROC curve is depicted,
with consideration of each class as the positive state. Based on
the ROC curve, if the values are observed with a low, false-
positive rate and high true-positive rate, it is considered
desirable. One of the essential criteria for the classifier’s per-
formance analysis is the area under the curve of ROC curve
called AUC. It can be seen that the DT classifier resulted in
high AUC than other methods. Furthermore, the AUC value
for the severe class is almost identical, almost 100%.

Based on robust multitask features and MMSE score
results, a CNN architecture for assessing or diagnosing Alz-
heimer’s patient severity in this article is presented. The input
layer consists of 167 features for every 1000 patients. There-
fore, input matrix size is 167 × 1. For the convolutional layer,
16 filters with 5 × 5 size are used with stride [1] and zero pad-
ding. Moreover, for activating the layers, the ReLU function
is used to vanish the negative values. Then, four fully con-
nected layers are used with 384, 384, 384, and 4, respectively.
Finally, the SoftMax layer is used to find probability and to
activate the final layers. Then, the classification layer is used
based on the crossentropy considering mutually exclusive
classes. The architecture of the CNN layer is shown in
Table 3.

The results of the classification process are indicated in
Figure 7. The process is performed with core i7, Intel proces-
sor with 3GHz CPU and 12GB RAM. The training process is
done for 420 iterations. The accuracy and loss value of the
training process is depicted in Figure 7. Furthermore, the
confusion matrix of the presented CNNmethod is illustrated
in Figure 8. Based on the low, mild, moderate, and severe sta-
tus of Alzheimer patients, the sensitivity is 98.1%, 95.2%,
89.0%, and 87.5%, respectively. Moreover, the precision value
for low, mild, moderate, and severe is 98.1%, 92.4%, 97.0%,
and 100%, respectively. The absolute accuracy is also 96.7%.
The summary of the results and comparison of the different
classifiers are indicated in Table 4.

The results of the comparison between the presented
architecture and traditional machine learning methods are
shown in Table 4. Based on results, the sensitivity of the pre-

sented method outperforms other approaches. The sensitiv-
ity indicates the power of the method to diagnose disease
severity based on the inputs. Therefore, the magnitude of it
represented the potential of the classifiers. In other words,
the sensitivity of the proposed CNN architecture is higher
than that of other methods. The precision also shows the
potential of results or reliability of the method. For instance,
the precision of the CNNmethod is 98.1% for the low class. It
means that, from all patients that the CNN recognized as
low-severity patients, 98.1% are correct. To conclude the
results, the presented CNN method’s accuracy is 96.7% and
higher than other methods. In the next priority, DT, SVM,
RF, LDA, and KNN indicate high accuracy, respectively.

5. Conclusion

AD is an incurable brain illness affecting a large percentage of
the planet. To enhance patients’ lives and establish effective
care and targeted drugs, early detection of AD is critical.
The machine learning approaches are used to diagnose the
seriousness of AD focused on fMRI images. To start the
training process, matched-filter technique is applied to
increase the contrast of the 3D images and decrease the noise
or outlier of images. The ADNI containing fMRI data of 675
patients is used. The fMRI data include 285 features base on
the robust multitask feature learning algorithm. The
response (target) is the Mini-Mental State Examination score
that shows the severity of AD including low, mild, moderate,
and severe categories.

Furthermore, the machine learning model’s training task
is implemented using sample data consisting of 285 features
(extracted from an fMRI image) and the patients’ respective
MMSE scores. The training data contained information for
800 patients with normalized features. The test sample con-
sists of 200 datasets of features and a corresponding MMSE
score as well. Then, the PCA approach is used for feature
selection and reduction. Based on results, 167 features con-
tain 98% variance of all 285 features. The classification is per-
formed with several machine learning methods consisting of
KNN, SVM, DT, LDA, random forest (RF), and CNN. The
results show that the accuracy of the KNN, SVM, DT, LDA
RF, and presented CNN method is 77.5%, 85.8%, 91.7%,
79.5%, 85.1%, and 96.7%, respectively. For the presented
CNN architecture, for the low, mild, moderate, and severe

Table 4: Comparison of the diagnosis methods used in this paper.

Class KNN SVM DT LDA RF Presented CNN

Sensitivity

Low 94.6% 95.1% 94.9% 91.0% 99.9% 98.1%

Mild 51.1% 57.6% 94.3% 50.2% 54.6% 95.2%

Moderate 6.8% 84.9% 61.6% 61.6% 47.9% 89.0%

Severe 0.0% 100% 12.5% 87.5% 25.0% 87.5%

Precision

Low 79.0% 86.5% 96.9% 83.4% 82.5% 98.1%

Mild 70.1% 80.0% 80.6% 70.6% 97.7% 92.4%

Moderate 83.3% 89.9% 83.3% 61.6% 100% 97.0%

Severe 0% 100% 50.0% 63.6% 100% 100%

Accuracy 77.5% 85.8% 91.7% 79.5% 85.1% 96.7%
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status of Alzheimer patients, the sensitivity is 98.1%,
95.2%,89.0%, and 87.5%, respectively. Moreover, the preci-
sion value for low, mild, moderate, and severe is 98.1%,
92.4%, 97.0%, and 100%, respectively. In the next priority,
DT, SVM, RF, LDA, and KNN indicate high accuracy,
respectively. The detection of the severity of AD could help
discover medications by having improved pathogenesis for
evaluating the efficacy of target therapies that can delay the
development of the disease. It can help recognize patterns
of brain structural changes associated with the progression
of Alzheimer’s by combining clinical imaging with DL
methods that can help identify risk factors and prognostic
markers.
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Using strategies that obtain biomarkers where early symptoms coincide, the early detection of Alzheimer’s disease and its
complications is essential. Electroencephalogram is a technology that allows thousands of neurons with equal spatial orientation
of the duration of cerebral cortex electrical activity to be registered by postsynaptic potential. Therefore, in this paper, the time-
dependent power spectrum descriptors are used to diagnose the electroencephalogram signal function from three groups: mild
cognitive impairment, Alzheimer’s disease, and healthy control test samples. The final feature used in three modes of traditional
classification methods is recorded: k-nearest neighbors, support vector machine, linear discriminant analysis approaches, and
documented results. Finally, for Alzheimer’s disease patient classification, the convolutional neural network architecture is
presented. The results are indicated using output assessment. For the convolutional neural network approach, the accurate
meaning of accuracy is 82.3%. 85% of mild cognitive impairment cases are accurately detected in-depth, but 89.1% of the
Alzheimer’s disease and 75% of the healthy population are correctly diagnosed. The presented convolutional neural network
outperforms other approaches because performance and the k-nearest neighbors’ approach is the next target. The linear
discriminant analysis and support vector machine were at the low area under the curve values.

1. Introduction

The term “dementia” refers to many neurodegenerative ill-
nesses caused by neuronal failure and death that interrupt
cognitive and behavioral activities. The most prevalent of
the several types of dementia is Alzheimer’s disease (AD),
with about 70% of worldwide dementia cases. It affects the
individual over 65 years, and the rate of occurrence increases
exponentially at the age of 65 years [1–3]. To date, AD has
not been resolved by palliative therapies, which have been

temporarily slow to deteriorate in patients and caregiver liv-
ing [4]. Today, only postmortem diagnosis of definitive AD is
possible after examining the structural brain injury that is
typical of the condition. Accuracies of up to 90% have usually
been recorded for modern testing procedures, such as neuro-
logical assessments and medical history. The National Insti-
tute on Aging and Alzheimer’s Association has established
the existing standards of clinical diagnosis of AD, and the
Alzheimer’s Association has established them [5]. These
standards are an advancement in the previous guidelines,
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which had been developed in 1984 by the National Institute
of Neurological And Communicative Diseases and Stro-
ke/Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) [6]. It is part of the NINCDS-ADRDA
guideline. These revised suggestions require neuroimagery
and the use of biomarkers and cerebrospinal fluid to diagnose
AD for symptomatic people [5].

A guideline for diagnosing and monitoring AD [7] was
established by the European Federation of Neurological Soci-
eties. The Mini-Mental State Assessment [8, 9] is the most
used AD diagnosis method to test cognitive ability. The
revised Montreal Cognitive Assessment [10] is commonly
used in therapeutic functional applications and the revised
Addenbrooke Cognitive Evaluation [11]. Another example
of neurological testing is the Extreme Cognitive Disorder,
Alzheimer’s Cognitive Disease Evaluation Scale, Neuropsy-
chological Assessment Battery, and Serious Impairment Bat-
tery. The Trail Making Test [12] and the clock drawing test
[13], by contrast, focus not only on testing thinking abilities
but also on concentrating and administrative work. In com-
parison, the visual learning test and the Rey Auditory Flu-
ency Assessment assess all patient support practice skills
[14]. In some instances, AD is also associated with other dis-
eases that cause dementia as brain vascular injury, Lewy body
disease, and Parkinson’s disease [15]. The early diagnosis of
AD and these problems is improved using methods that gain
biomarkers as early signs overlap [16–19]. Electroencephalo-
gram (EEG) is a technology that enables the recording by
postsynaptic potentials of a thousand neurons of identical
spatial orientation of the time of cerebral cortex electrical
activity. Scalp-positioned electrodes measure the electrical
potentials. EEG’s spatial resolution refers to the number
and location of electrodes on the scalp. The most used config-
uration is the international 10-20 system, which consists of
21 electrodes; the 10-20 system is often used for higher den-
sity versions, for instance, 10-10 and 10-5, usually 64 and 128
electrodes, and theMaudsley [20] and geodesic positions [21]
alternating layouts. Reliable therapeutic methods have been
shown in recent years for the diagnosis and analysis of disor-
ders and cortical conditions like the Huntington syndrome,
the autism spectrum disorder [22], epilepsy and seizure
[23], brain ischemia [24], frontotemporal dementia [25],
and Parkinson’s dementia [26]. Furthermore, EEG evalua-
tions were carried out on the comparative diagnosis of AD
and other dementia-contributing diseases such as brain vas-
cular injuries [27, 28] and Lewy disease [29, 30]. Theta (θ)
4–8Hz, delta (δ) 0.1–4Hz, beta (β) 12–30Hz, alpha (α) 8–
12Hz, and gamma ðγÞ > 30Hz are typically divided between
5 major frequency bands in the analytics. Also, more divi-
sions into these bands (high alpha, low alpha, low beta) are
considered, but the subband frequency limits are not uni-
form in all studies. The different data on brain function
and synchronization are given in each frequency band [31–
33]. There has been a comprehensive study of the possible
use of electroencephalography to diagnose dementia and
AD [34]. EEG is a high time resolution noninvasive, com-
paratively inexpensive, and potentially mobile technology
(about milliseconds). It was studied primarily as an AD
diagnostic tool when comparing EEG records in AD patients

with control subjects (healthy individuals) [35, 36]. AD is
generally known to decrease the complexity of EEG signals
and synchronous change in EEG.

These improvements have been used as discriminatory
features for AD diagnosis in EEG recordings. Several
methods of assessing the complexity of EEG signals have
been established. The connection factor and the first positive
exponent of Lyapunov have been used frequently [37–42].
EEG signals from AD patients have been shown to show
lower (lower complexity) values of certain tests than signals
from age-matched control subjects. Other information-
theoretical methods, in specific entropy-based approaches,
have appeared as theoretically useful EEG indicators for
AD: epoch-based entropy [43, 44], sample entropy [45], Tsal-
lis entropy [46], approximate entropy [47, 48], multiscale
entropy [49], and complexity of Lempel-Ziv [50]. These
approaches relate the strength of a signal to unpredictability:
irregular signals are more complicated than regular ones
because they are erratic. Different detection algorithms have
been suggested in previous studies for epileptiform EEG data
[51]. Current seizure detection methods use hand-built fea-
ture extraction techniques from EEG signals [52], including
frequency domain, time domain, time-frequency domain,
and nonlinear evaluation of signals [53, 54]. The features
selected must be listed after the feature extraction to identify
various EEG signals using all forms of classifiers [55]. Hamad
et al. employed a differential wavelet transformation proce-
dure to obtain the feature collection, then trained the radial
reference algorithm with the support vector machine
(SVM), demonstrating an epilepsy diagnosis with the sug-
gested SVM gray wolf optimizer [56]. For the refinement of
the SVM parameters based on genetic algorithms and parti-
cle swarm optimization, Subasi et al. developed a hybrid
model. The proposed SVM hybrid model shows that neuro-
scientists use EEG as an essential method for diagnosing epi-
leptic seizures [57]. However, the manual function selection
criteria are not eradicated by these strategies [58]. The feature
extraction is an important stage in classification determina-
tion, as it determines its specificity in large part. A system
for classifying without the removal of complicated properties
was suggested. Furthermore, recent advancements in deep
learning have shown a new way of coping with this problem.
Deep learning has in recent years reached the recognized
form of computer vision and machine learning and has dem-
onstrated that almost all human and superhuman functions
such as pattern recognition and sequence learning perform
numerous functions [59], among other things. Feature
extraction before classification is more advantageous than
entering raw EEG samples directly into the classifier. Never-
theless, several recent research types have not performed fea-
ture extraction, but instead, raw EEG signals were used for
the deep learning model [60, 61].

In this paper, the time-dependent power spectrum
descriptor (TD-PSD) method is utilized for feature extrac-
tion of the EEG signal from three categories of MCI, AD,
and HC sample test. The final feature with labeling is used
in three types of traditional classification methods, including
k-nearest neighboring (KNN), SVM, and linear discriminant
analysis (LDA) approaches, and the results are recorded.
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Finally, an architecture of convolutional neural network
(CNN) for AD patients’ classification is provided. The results
are indicated using performance analysis.

2. Literature Review

EEG signals’ complex and nonlinear nature implies creating
new methods to study machine and signal processing [62,
63]. Recent progress has been made to enhance high-level
abstractive methods for the automated removal of complex
data features in the field of deep learning methodologies
[64–66]. In the last years, these deep learning methods are
usually used in image processing, natural language process-
ing [67–70], speech processing, and video games [71]. The
biomedical area has also been identified with these methods
[72–74]. Acharya et al. [60] suggested a deep, 13-layer neural
CNN that distinguishes normal, preictal, and EEG signals of
seizure. In the study, 300 EEG signals were used for register-
ing a classification rate of 88.67%. The same group proposed

a deep neural network approach for an innovative EEG-
based depression screening method [60]. This investigation’s
outcomes are reported in 15 regular and 15 depressive
patients, 93.5% (left hemisphere) and 96.0% (right hemi-
sphere). Oh et al. [75] suggested that further studies used
EEG signals to diagnose Parkinson’s disease. A 13-layer
CNN model of 20 healthy and 20 Parkinson patients reached
an accuracy of 88.25%. Hong et al. [76] propose a mathemat-
ical model employing Long Short-Term Memory (LSTM), a
recurrent neural network (RNN) that predicts the mild cog-
nitive impairment of AD. The data is taken in image form
in this research, and the preprocessing is done by skull strip,
normalization, registration, smoothing, and segmentation.
The training is carried out by feeding sequential data with
time steps to the model after preprocessing, and the model
projects the state of the next six months. During model test-
ing, when the feature data for the 18th and 24th months is
presented, it forecasts the state of the subject for the 30th
month. Similarly, Aghili et al. [77] suggest an RNN approach

Table 1: Summary of machine learning method for brain disease diagnosis with EEG signal.

Author Year Disease Feature extraction Classification Results

Xin et al.
[80]

2021 Epilepsy
Dimensionality reduction
principal component

analysis (PCA)
Convolution SVM

The method’s accuracy, sensitivity, and specificity
reach up to 99.56%, 99.72%, and 99.52%,

respectively

Aliyu and
Lim [81]

2021 Epilepsy
Discrete wavelet transforms

(DWT)
LSTM network

Reduction of the number of LSTM trainable
parameters needed to achieve extreme accuracy

Tuncer [82] 2021
Epileptic
seizure

Nonlinear textural feature
extraction (Hamsi hash)

k-nearest
neighborhood

This model has an accuracy in the EEG dataset of
99.20% for five classes and has 100.0% accuracy in

other conditions

Cicalese
et al. [83]

2020 AD
Pearson correlation

coefficient-based feature
selection (PCCFS)

LDA

The EEG-fNIRS feature set combination was
expected to obtain greater precision (79.31%) by

combining its supplementary properties as
compared with the EEG (65.52%) or fNIRS alone
(58.62%). Moreover, AD development is associated

with the right and left parietal lobe

Ferri et al.
[84]

2020 AD rsEEG + sMRI
Low-resolution brain

electromagnetic
tomography
(LORETA)

Classification accuracy of 80%, 85%, and 89% using
rsEEG, sMRI, and rsEEG + sMRI features,
respectively, discriminates against them

Trambaiolli
et al. [85]

2017 AD Feature selection (FS) SVM classifier

Since eliminating 88:76 ± 1:12% of the initial
elements, the filtered subset evaluator technique

obtained the highest efficiency gain, both on a per-
patient basis (91.18% accuracy) and on a per-epoch

basis (85:29 ± 21:62%)

Nobukawa
et al. [86]

2020 AD Functional connectivity SVM

A novel interpretation of neural network functions
in healthy brains and unhealthy disorders can be
provided by applying a mixture of both machine

learning approaches to neurophysiological evidence

Kulkarni
and Bairagi
[87]

2017 AD
Extracting salient features
that are spectral-, wavelet-,

and complexity-based
SVM The increased performance in AD diagnosis

Vecchio
et al. [88]

2020 AD — SVM

A low-cost and noninvasive process uses readily
available tools that, when integrated, achieve high
sensitivity/specificity and optimum individual

classification accuracy (0.97 of AUC)
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to evaluate longitudinal data to differentiate between stable
people against AD individuals. The input is preprocessed,
and the function is normalized. It is fed into LSTM and gated
recurring units after preprocessing the data. In the model of
LSTM and gated regular units, each subject’s time point data
is provided to the corresponding cell along with its final diag-
nosis mark to learn the pattern of data transition. The effect
models are contrasted with the effects of nonrecurrent net-
works, i.e., multilayer perceptron (MLP), for all data arrange-
ments. For each patient, the data is fed into the MLP once.
There are many trainable parameters in the LSTM models
that need to be substantially trained for sequential data and
are vulnerable to overfitting the training data. The purpose
of unsupervised feature learning is to define AD using the
principle of unsupervised feature learning. An approach used
sparse filtering to learn the expressive characteristics of brain
images [78]. The SoftMax regression is trained to classify the
circumstances. In the first step, there are three phases: sparse
filtering is trained, and its W weight matrix is calculated. The

sparse filtering learned is used to extract from each sample
the local characteristics. In terms of negative matrix factori-
zation (NMF) and SVM with limitations of certainty, Padilla
et al. [79] offer a novel conclusion technique for the early
determination of Alzheimer’s disease. Through implement-
ing the Fisher discriminant proportion and non-NMF for
highlighting preference and extraction of the most important
highlights, the single-photon emission computed tomogra-
phy and positron emission tomography datasets are studied
(see Table 1).

3. Research Methodology

The proposed study uses the EEG signal to describe the
phases of the disorder. It is suggested that a deep CNN net-
work architecture is learned to distinguish multichannel
human EEG signal data into different stages and that
increases the efficiency of classification. This work includes
the modules below:

log (m0-m2)

log (m0)

log (m0-m4)

log (S)

log (IF)

log (COV)

log (TEO) f7

f6

f5

f4

f3

f2

f1

m4

m2

m

EEG signal
X

Δ
2

Δ

Figure 1: The block diagram of the TD-PSD feature extraction method for EEG signals.
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(i) Preprocessing

(ii) Feature extraction

(iii) Classification

3.1. Feature Extraction. The EEG trace is expected to be expli-
cated in a function of frequencyX½k�, using the discrete Fou-
rier transform, as a product of the sampled representation of
the EEG signal as x½j� with j = 1, 2,⋯,N , length N , and sam-
pling frequency fs (Hz). Parseval’s theorem explains that the
function’s total square is the complete square of its transfor-
mation; the process starts with the extraction of features.

〠
N−1

j=0
x j½ �j j2 = 1

N
〠
N−1

k=0
X k½ �X∗ k½ �j j = 〠

N−1

k=0
P k½ �: ð1Þ

According to the above equation, P½k� is the phase-
excluded power spectrum. It means that the frequency index
is obtained by multiplyingX½k�by theX∗½k�conjugate divided
byN , where the phase-excluded power spectrograph is P½k�,
i.e.,X½k�has its conjugateX∗½k�, separated byN , which is com-
pounded byk, and frequency index. The full definition of the
frequency as obtained by the Fourier transform is usually
well-known to be symmetrical concerning zero frequency;
i.e., it has similar sections extending to the frequencies, which
are both positive and negative [89]. The whole spectrum,
including positive and negative frequencies, is free from this
symmetry. Access to spectral power from the time domain
has not been completed. According to the concept of a one-
minute m of the order nP½k� of the power spectral density,
all irregular moments are also zero by the frequency distribu-
tion model’s statistical approach.

mn = 〠
N−1

k=0
knP k½ �: ð2Þ

In the latter equation, the Parseval theorem of Equation
(1) may be used where n = 0 is used, and the Fourier trans-
form time-differentiation feature for nonzero quantities of
n is used. Such a feature explicitly indicates then′thequal to
multiply thekaugmented by the spectrum to then′thpower,
the derivative of a time-domain function referred to asΔn

for various time signals.

F Δnx j½ �½ � = knX k½ �: ð3Þ

To this end, as seen in Figure 1, the description of the
characteristics used is as follows:

Root squared zero-order moment (m0 ): this is a function
that shows the overall power of the frequency domain and is
as follows:

m0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N−1

j=0
x j½ �2s

vuut : ð4Þ

All channels may also standardize their corresponding

zero-order moments by dividing all channels into zero-
order moments.

Root squared second and fourth-order moments: accord-
ing to Hjorth [89], the second time is used as power, but
then, a spectrum shifted k2P½k�, referring to the frequency
function:

m2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N−1

k=0
k2P k½ � =

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

〠
N−1

k=0
kX k½ �ð Þ2

vuut =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N−1

j=0
Δx j½ �ð Þ2

vuut : ð5Þ

A repetition of this procedure gives the moment:

m4 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N−1

k=0
k4P k½ � =

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N−1

j=0
Δ2x j½ �� �2

vuut : ð6Þ

The total energy of the signal is decreased by consider-
ation of the second and fourth signals; thus, a power
transformer is implemented to normalize the domain of
m0, m2, and m4 to minimize the noise effect on all
moment-based features as follows:

m0 =
m0

λ

λ
,

m2 =
m2

λ

λ
,

m4 =
m4

λ

λ
:

ð7Þ

The experimental setting ofλis 0.1. From these param-
eters, consequently, the first three features extracted are
described as follows:

f1 = log m0ð Þ,
f2 = log m0 −m2ð Þ,
f3 = log m0 −m4ð Þ:

ð8Þ

Sparseness: this feature measures the amount of vector
energy in just several more elements. It is followed as

f4 = log
m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m0 −m2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m0 −m4
p

� �
: ð9Þ

A feature represents a vector with all elements equiva-
lent to a zero-sparseness index, i.e.,m2 and m4 = 0, due to
differentiation and log ðm0/m0Þ = 0, while it should require
a value greater than zero for all other sparseness levels
[90].

Irregularity factor (IF): a measure that expresses the ratio
of peak numbers divided by zero crossings. According to
[91], only in terms of their spectral instances can the number
of upward zero crossings (ZC) and the number of peaks (NP)
in a random signal be specified. It is necessary to write the
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corresponding feature as

f5 =
ZC
NP

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2/m0

pffiffiffiffiffiffiffiffiffiffiffiffiffi
m4/m2

p =

ffiffiffiffiffiffiffiffiffiffiffiffi
m2

2
m0m4

s
=

m2ffiffiffiffiffiffiffiffiffiffiffiffi
m0m4

p : ð10Þ

Covariance (COV): COV function is the ratio of the stan-
dard deviation on arithmetic averages as follows:

f6 = log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N−1

j=0 x − �xð Þ2
� �

/n
r

�x

0
BB@

1
CCA: ð11Þ

Teager energy operator (TEO): it mainly displays the
magnitude of the signal amplitude and instantaneous
changes that are very susceptible to minor changes. While
TEO was proposed for nonlinear speech signal modeling, it
was later used to process audio signals. It is formed as follows:

f7 = log Ψ x j½ �ð Þð Þ = log 〠
N−1

j=0
x2 j½ � − x j − 1½ �x j + 1½ �

 !
: ð12Þ

In conjunction with the schematics in Figure 1, from each
EEG record x, first, the seven features are extracted. In the
classification method, the features described by the corre-
sponding vector f are used. These characteristics can be
assumed to reflect the EEG behavior in the form of cepstrum.
Contrary to the well-known voice cepstral features [92], our
EEG features have been obtained as the orientation between
characteristics derived from a nonlinear EEG record and an
initial EEG record following the equation. In the case of
EEG classifications at differing levels of force, orientation-
based feature extraction processes have recently been dem-
onstrated to be of considerable significance for research on
intact-limbed subjects as force generation relies on multiple
hand muscle coordination [93].

There have not been any prior attempts to test the effi-
cacy of specific features in amputees. In the coming subsec-
tion, the suggested orientation-based feature is adequate for
amputees to classify EEG signals with different classes. In
the remainder of the essay, the last feature f is defined,
together with the time-dependent descriptor spectrum, from
all channels, given as TD-PSD.

3.2. Convolutional Neural Network. CNN is one of the learn-
ing networks inspired by the MLP in this type of neural net-
work. This deep network comprises an input layer, an output
layer, and a deeply hidden layer. Firstly, the problem’s signal
or data are identified and trained into the algorithm. The hid-
den weights of the output layer appear in many forms [94]. If
the algorithm output includes numerous numerical compo-
nents, such as a binary number or index (e.g., signal classifi-
cation, normal = 1, abnormal = 2), then the algorithm
presented is a classification or detection algorithm. That is,
the outcomes are weighted after the training of several sig-
nals. When a new signal is added to the algorithm other than
the training signals, the signal form is identified, for example,

whether a matrix of various kinds of signals is sent to the
algorithm and trains the machine, signals of benign or malig-
nant types of cancer, Alzheimer’s, sarcoma, or brain tumor,
for example. The type of disease can be identified by the algo-
rithm with the weights obtained. CNN consists of numerous
hidden sublayer forms that are explained as follows.

3.3. Convolutional Sublayer. The basic of the CNN is the con-
volutional sublayer, and it is possible to view its output
matrix as a three-dimensional neuron matrix. For a deeper
explanation of this, imagine traditional neural networks.
Each layer was a little more than a list (one-dimensional as
a rectangle) of neurons in regular neural networks in which
each neuron generated its output, and gradually, a collection
of outputs referring to each neuron was produced. However,
instead of a single list, it is presented with a three-
dimensional list (one cube) where the neurons are organized
in three dimensions. Therefore, a three-dimensional matrix
would also be the production of this cube. This principle
and the distinction between the two are illustrated in the
images below [95].

Let the size of the input matrix be 20 × 16 × 16. Thus, uti-
lizing a receptive field of 3 × 3, each neuron would have 3 ×
3 × 20 = 180 connections to the input matrix in the conven-
tional layer. Notice that space’s connection is local (for exam-
ple, 3 × 3 here) but covers the maximum depth (Figure 2). An
input displays the left image (for example, a 3 × 32 × 32
image). The neuron matrix is observed in the conventional
blue sheet. In terms of spatial coordinates (length and width)
in the input matrix, each neuron in the conventional layer is
related to one local region only, but this connection extends
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Figure 3: The place of electrodes of EGG signals.
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Figure 2: A conventional sublayer in CNN.

6 Computational and Mathematical Methods in Medicine



in-depth (i.e., covers all color channels). There are depths (in
this case, neurons) that all look at one place at the entrance.

The hyperparameter regulates the output matrix’s
dimension. The depth, stride, and zero-padding layer are
these three parameters. The parameter can be used in the
depth of the output matrix. This parameter regulates the
number of neurons that bind to a region in the conventional
layer’s input matrix. This variable is analogous to multiple

neurons in a hidden layer all attached to one input in classical
neural networks. All these neurons learn to function on var-
ious feedback features in which the deep columns around the
spatial dimensions must be defined (width and height).
When the stride is equal to 0, the spacing coordinates of just
five spaced points are allocated to a new depth column of
neurons. Also, in large output matrixes, this leads to receptive
areas of overlap between columns. Alternatively, the
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receptive areas are less frequent if the measures taken are big-
ger, and the output mass is smaller in the spatial dimension
[96]. Overriding the inbound matrix with a zero pad is also
more precise. In other terms, fill zero with the input picture
circle. Our signal is put within a zero signal like inserting
row 1 and column 2 at the beginning and end of a signal.

3.4. Max Pool Sublayer. One standard technique in conven-
tional architecture is the positioning of a pooling layer
between many successive layers. This layer’s purpose is to
minimize the matrix (input) size (width and height) by
reducing the number of variables and calculations within

the grid and thereby overfitting the monitor. The pooling
layer functions and uses it on each depth cut of the input
matrix independently. The MAX function resizes the spot.
The most typical way to utilize this layer is to use this layer
with filters of 2 × 2 sizes with phase S = 2 that eliminates
any depth cuts at the input by deleting two elements from
the width and two elements from the height and deleting
2% of the values [97].

3.5. Activation Function. Artificial neural networks’ activa-
tion function determines the node’s output node or “neuron”
according to the input or group of inputs. In the next node,
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this output is known as the input. It follows before a solution
to the issue is sought. The outcome values are translated to
the target set, such as 0 to 1 or -1 to 1 (depending on the acti-
vation function selected). Using the logistic activation func-
tion, for example, transforms all inputs into true real ranges
between 0 and 1. Another essential characteristic of an acti-
vation function is that it must be derivative to execute the
optimization technique for backpropagation error and mea-
sure the weight gradient error in the network and use gradi-
ent descent or another optimal approach. Another
optimization is optimizing weight to reduce weight. The rec-
tified linear unit (ReLU) is used in this paper for the use of
functions as follows:

f xð Þ =
0, x < 0,

x, x ≥ 0:

(
ð13Þ

Some activation functions are also not unique to a single
variable and refer to the vector or different variables used in
this article, such as SoftMax [98]:

f i x!
� �

=
exi

∑J
j=1e

xj
: ð14Þ

Also, to normalize input results, a batch normalization
layer is applied to the network to speed up the training
process and reduce network sensitivity between convolu-
tional layers and nonlinearities. Also, to create an abnor-
mal signal augmentation, a dropout layer on the fully
connected layers is applied. Fully connected layers are used
at the end of the hidden layer, which has been known to
distinguish signals. The deep learning layer’s outcome
leads to a fully connected layer that drives the final classi-
fication judgment.

3.6. Receiver Operating Characteristic (ROC) Curve. In 2004,
the ROC curves were developed, which were used to detect a
radio noise signal [99]. These curves have recently been
discovered to have important uses in medical decision-
making. Presume having two kinds of individuals, one is
normal and the other is a patient. It is a screening test
on both our patients and healthy people, and the spectrum
of values from the test ranges from 0 to the large number
scale. In this case, the greater the test outcome, the greater
the risk of the disease. (For certain things, the action can
be the opposite.)

The ROC curve is established by the true-positive rate
(TPR) projection in different threshold settings against the
false-positive rate (FPR). The TPR is often identified in ML
as sensitivity, recall or detection probability. Beginning from
the ROC’s left side, both the FPR and the TPR are zero at this
point. (This argument indicates that the threshold line, which
is the most significant number of test outcomes, is very large.)
The TPR and FPR values in this case are measured and the
next curve is drawn. The definition of TPR equals TP/Y,
and the definition of FPR equals FP/N.

For a reduced number of previous values, let us reduce
the threshold line. For lower values, the trend is replicated
and eventually reaches the rightmost point of the ROC curve,
which is equal to the baseline of the lowest value of the test
outcome in this case. In this function, there is one TPR and
one FPR. Accuracy relies entirely on allocating random
errors and does not correspond with the real value or the
value specified. In terms of bias, correctness is conveyed. A
complete structural error can consist of one or more com-
ponents of a systematic error. In the comparison value, a
strong bias implies a large disparity. The two variables’ sen-
sitivity and specificity in statistics were used to determine
the binary classification outcome (duality). When the data
can be broken into positive and negative classes, using sen-
sitivity and attribute indicators, the consistency of a test’s
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Figure 8: Conceptual diagram of the process used in this paper.

9Computational and Mathematical Methods in Medicine



outcomes that separate the information into these two divi-
sions is observable and descriptive. Sensitivity means the
number of positive cases that would be accurately checked
as positive. Specificity means the number of negative cases that
accurately label them as negative (positive = special illness,
negative = other cases).

True positive (TP): the positive signal is accurately
detected.

False positive (FP): the negative signal is detected with
mistakes.

True negative (TN): the negative signal is detected
accurately.
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False negative (FN): the positive signal is detected with
mistakes.

The sensitivity divides TP cases into the sum of true-
positive and false-negative cases in statistical terms.

Sensitivity =
TP

TP + FN
: ð15Þ

The confusion matrix is the role of the algorithms
described in the field of artificial intelligence. Usually, for
supervised learning algorithms, such a demonstration is
being used, but it is often utilized in unsupervised learning.
An instance of the predicted value is seen in each column
of the matrix. Suppose it includes an actual (true) instance
in each row. This matrix’s name is also gained, making it pos-
sible to mistake and mess with the results. This matrix is
commonly called a contingency matrix or an error matrix
outside of artificial intelligence.

4. Results and Discussion

4.1. Data Collection. Multichannel EEG signals were cap-
tured using earlobe-electrode hallmark monopolar connec-
tions [100]. The location of the electrodes over the scalp
was obtained according to the 10-20 International Electrode
Positioning Method (i.e., Fp1, Fp2, F7, F3, Fz, F4, F8, T3,
C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2). In Figure 3, an
example of EEG electrode placement is shown. The elec-
trodes calculate the weak electrical potential in the microvolt
range produced by brain activities. Recordings were con-
ducted with closed eyes in a sleeping state. In this way, mul-
tiple brain regions can be believed to be governed by the exact
hierarchical mechanism.

Data with a signal length of 300 seconds and a sampling
frequency of 1024 and 256 samples per second were
obtained. Just 180 seconds is extracted for each signal (i.e.,
from 60 to 240 seconds) to minimize the EEG context arti-
facts and convert each one to 256 samples per second. The

sampling frequency, or sample rate, is the number of equal-
spaced samples per unit of time. For instance, if there are
1024 equally spaced observations per second, the sampling
rate is 1024/second or 1024Hz. In this paper, for each sec-
ond, 256 samples are used. Therefore, the length of the time
series is 300 ∗ 256 = 76800. Moreover, the time interval from
60 to 240 seconds (of 300-second signals) is used with length
240 − 60 = 180. Finally, the length of the signal is 180 ∗ 256
= 46080. To summarize, the EEG capacity of human samples
belonging to three categories has been recorded:

(1) Patients who have Alzheimer’s disease (AD)

(2) Patients who suffer from mild cognitive impairment
(MCI)

(3) Healthy control (HC)

Figure 4 gives an example of extracted EEG recordings of
256 samples for each group.
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Figures 5–7 show each category’s time-frequency analysis
based on continuous threshold wavelet transform. The EEG
signal processing strategies are addressed in this section to
extract the necessary quality information from clinical limi-
tations and simultaneously determine patients’ status. The
dispersion coefficient is a strong ADmarker that can separate
AD EEG from MCI and HC.

4.2. Implementation of the Proposed Pattern Detection
Method. In this research, the automatic classification of
normal and abnormal EEG signals was built in a deep
learning model. EEG signals are used in the EEG database.
Documents are separated into two sections of the EEG
database: training and testing samples. During the learning
stage, the training data were used, and during the evalua-
tion stage, assessment data were used for training the algo-
rithms with 80% used as validation data, while the remaining
with 20%.

These data distributions have been randomly chosen. For
validation purposes, many datasets have been used since the
model parameter is set in several steps. However, experimen-
tal results with a specific random seed value are obtained to
ensure that the model is reproducible and uniform.
Figure 6 provides a thorough description of the data consid-
ered for this work. The block diagram of the process is
described in Figure 8. Based on the process, firstly, TD-PSD
is used for feature extraction of input EEG signals. The results
of feature extraction are the produced seven features of values
from 256 EEG samples.

Regarding this fact, the number of input variables for
each person reduced from 256 to 7 features. It not only
reduced the number of inputs but also increased the classifi-
cation process speed. Signals with the time-dependent value

are needed to be transformed into a meaningful value. There-
fore, these values are extracted features. Altogether, it is 64
persons for each category of MCI, AD, and HC that each
one has seven features. Therefore, the input matrix for each
category has 7 × 64 elements.

In the next step, the output features are used for classifi-
cation methods. For achieving this purpose, three powerful
traditional methods of classification of EEG signal and diag-
nosis of AD and MCI patients from HC or healthy people are
used. Used methods include KNN, SVM, and LDA. All the
methods are chosen from powerful machine learning tech-
niques. The results of classification for mentioned methods
are as follows (Figure 9). Figure 9 shows the confusion matrix
of utilized methods of classification. The labeling (1, 2, and 3)
illustrates MCI, AD, and HC, respectively. Based on the con-
fusion matrix. The green values show the number of persons
diagnosed correctly from 64 people. Based on Figure 9(a),
from 64 patients who suffered from MCI, 51 of them
(79.7%) are diagnosed correctly.

Moreover, for people with AD, the sensitivity of the KNN
is 71.9% (46 out of 64 patients). Moreover, 62.5% (40 per-
sons) of healthy samples are detected correctly. Based on
the results, the lower row of the matrix illustrates the sensitiv-
ity of the methods for the classification of each category.
Moreover, red %ages indicated miss rates of each class. The
right column of the matrix represents the precision of the
KNN technique. Based on the results, 63.7% of the MCI-
diagnosed patients are classified correctly. Other precision
values are depicted in the right column. Finally, the accuracy
of the methods is presented in the lower-right corner of the
matrix. Based on the result, the accuracy of KNN, SVM,
and LDA approaches is 71.4%, 41.1%, and 43.8%, respec-
tively. In other words, the accuracy of the KNN is higher than
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that of the other methods. On the other hand, SVM and LDA
methods represent results with very low accuracy. It can be
noticed that the classification with two categories of patients
and healthy people illustrates higher accuracy in comparison
with three categories.

In this paper, a novel deep learning process for the classi-
fication of EEG signals is introduced based on a CNN. The
architecture of the presented method is illustrated in
Figure 10. Input layer includes the following:

(i) Seven features of 64 people for each category of MCI,
AD, and HC

(ii) Input matrix 4D [7 × 1 × 1 × 192]

(iii) Output matrix 1D [1 × 192]

The labeling (1, 2, and 3) illustrates MCI, AD, and HC,
respectively, output matrix. The process of the classification
using the presented CNN architecture is shown in
Figure 11. The maximum accuracy for the process reached
almost 100%, and the loss value decreased to almost zero.

The confusion matrix of the presented method is indi-
cated in Figure 12 without uncertainty value. The confident
value of the accuracy for the CNN approach is 82.3%. In
detail, 85% of the MCI patients are detected correctly; how-
ever, 89.1% of the AD and 75% of the normal sample are
diagnosed correctly. For comparison of the resulted model
of CNN with other KNN, SVM, and LDA techniques, the
ROC plot is depicted in Figure 13. Regarding Figure 13, the
value of FP rate versus TP rate is depicted based on output
classification scores. Based on this graph, if the values would
be higher for the TP rate and lower for the FP rate, it is better
than the other graphs.

Moreover, the area under the curve (AUC) is one of the
criteria for the classification method’s performance analysis.
Based on Figure 13, the presented CNN outperforms other
methods, and the KNN method is in the following priority.
The LDA and SVM reached low AUC values (see Table 2).
To conclude, it can be seen that the presented CNN architec-
ture is better and more accurate than other classification
methods. Based on Table 2, the best method for diagnosing
AD patients from EEG signals is the presented architecture’s
CNN approach.

5. Conclusion

In this article, the TD-PSD approach is used for EEG signal
feature extraction from three groups of MCI, AD, and HC
test samples. The final features used in three conventional

classification methods are registered: KNN, SVM, and LDA,
and the effects are recorded. Finally, the CNN architecture
is provided for AD patient classification. The findings are
indicated using performance measurement. Data were
obtained with a signal duration of 300 seconds and a sampling
frequency of 1024 and 256 samples per second. To minimize
the EEG background artifacts, it obtains 180 seconds for each
signal (i.e., from 60 to 240 seconds), and it is translated to 256
samples per second. The EEG ability of human samples
belonging to three groups, including AD, MCI, and HC, has
been summarized. First, the TD-PSDmethod is utilized to fea-
ture input EEG signals based on the procedure. The results of
the extraction of features are the generation of seven value
characteristics from 256 EEG samples. For classification
methods, the output features are used in the next step.
Methods used include KNN, SVM, and LDA. All the strategies
are picked from effective methods in machine learning.

Based on the findings, 51 of the 64 patients with MCI
(79.7%) were correctly diagnosed. In comparison, the KNN
sensitivity for AD persons is 71.9% (46 out of 64 patients).
In comparison, 62.5% (40 individuals) of sound samples are
appropriately classified. Also, 63.7% of the MCI diagnosed
patients are appropriately categorized based on the findings.
In comparison, KNN, SVM, and LDA methods have a preci-
sion of 71.4%, 41.1%, and 43.8%, respectively. The precision
of KNN, in other words, is greater than that of other pro-
cesses. Then, a new EEG signal classification architecture is
implemented that is focused on a CNN. For the CNN
approach, the accurate meaning of accuracy is 82.3%. 85%
of MCI cases are accurately detected in-depth, but 89.1% of
the AD and 75% of the healthy population are correctly diag-
nosed. The presented CNN outperforms other approaches
based on performance, and the KNN approach is the next
target. The LDA and SVM were at low AUC values. For
potential outcomes, it is recommended to modify feature
extraction with another EEG signal justification for classifica-
tion with a lower number of features and training using the
design provided.
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Table 2: Comparison of the diagnosis methods used in this paper.

Sensitivity Precision
AUC Accuracy

MCI AD HC MCI AD HC

KNN 79.7% 71.9% 62.5% 63.7% 75.4% 78.4% 0.902 71.4%

SVM 9.4% 32.8% 81.3% 31.6% 47.7% 40.3% 0.593 41.1%

LDA 28.1% 53.1% 50.0% 45.0% 43.0% 48.8% 0.594 43.8%

Presented CNN 82.8% 89.1% 75.5% 81.5% 79.2% 87.3% 0.988 82.3%
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Background. Pulse rate variability monitoring and atrial fibrillation detection algorithms have been widely used in wearable devices,
but the accuracies of these algorithms are restricted by the signal quality of pulse wave. Time synchronous averaging is a powerful
noise reduction method for periodic and approximately periodic signals. It is usually used to extract single-period pulse waveforms,
but has nothing to do with pulse rate variability monitoring and atrial fibrillation detection traditionally. If this method is improved
properly, it may provide a new way to measure pulse rate variability and to detect atrial fibrillation, which may have some potential
advantages under the condition of poor signal quality. Objective. The objective of this paper was to develop a new measure of pulse
rate variability by improving existing time synchronous averaging and to detect atrial fibrillation by the new measure of pulse rate
variability. Methods. During time synchronous averaging, two adjacent periods were regarded as the basic unit to calculate the
average signal, and the difference between waveforms of the two adjacent periods was the new measure of pulse rate variability.
3 types of distance measures (Euclidean distance, Manhattan distance, and cosine distance) were tested to measure this
difference on a simulated training set with a capacity of 1000. The distance measure, which can accurately distinguish regular
pulse rate and irregular pulse rate, was used to detect atrial fibrillation on the testing set with a capacity of 62 (11 with atrial
fibrillation, 8 with premature contraction, and 43 with sinus rhythm). The receiver operating characteristic curve was used to
evaluate the performance of the indexes. Results. The Euclidean distance between waveforms of the two adjacent periods
performs best on the training set. On the testing set, the Euclidean distance in atrial fibrillation group is significantly higher than
that of the other two groups. The area under receiver operating characteristic curve to identify atrial fibrillation was 0.998. With
the threshold of 2.1, the accuracy, sensitivity, and specificity were 98.39%, 100%, and 98.04%, respectively. This new index can
detect atrial fibrillation from pulse wave signal. Conclusion. This algorithm not only provides a new perspective to detect AF but
also accomplishes the monitoring of PRV and the extraction of single-period pulse wave through the same technical route,
which may promote the popularization and application of pulse wave.

1. Introduction

The radial artery pulse wave is an important signal in health
monitoring and disease diagnosis, which contains abundant
physiological information. Different from the ECG signal
which is often used to detect all kinds of arrhythmias [1],
the radial artery pulse wave not only contains the informa-
tion of heart rate and its variability which is widely used in
smart watches and other wearable devices [2–4] but also
can assist conventional methods to diagnose and monitor
the occurrence and development of multiple common dis-

eases such as hypertension, diabetes, and coronary heart dis-
ease [5–10]. In addition, the acquisition of radial artery pulse
wave is much more convenient than ECG. However, except
for atrial fibrillation (AF) detection and other the applica-
tions closely related to pulse rate variability (PRV), most of
the applications depend on the information contained in
single-period pulse waves. Due to the susceptibility of wear-
able devices to interference, it is so difficult to collect valuable
single-period pulse waves with existing wearable devices that
the information contained in the single-period pulse waves is
neglected by wearable device researchers. Even for PRV
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monitoring and AF detection algorithms, it is imperative that
subjects remain stationary during pulse wave acquisition.
The application of pulse wave is restricted by the weak anti-
interference ability.

Time synchronous averaging (TSA) is a widely used sig-
nal processing technique which enables periodic waveforms
to be extracted from noisy signals [11, 12]. It is traditionally
suited for the vibration analysis of mechanical systems which
move circularly such as gearboxes. The noise of such signals
can be effectively averaged out by gradually accumulating
those portions of the signals that are synchronized with the
fiducial points. Different from other noise reduction
methods, TSA can effectively reduce all independent noise
without considering frequency properties and threshold
selection. Moreover, the signal-period pulse wave quality
evaluation method [13] can be incorporated in TSA to iden-
tify and eliminate the seriously interfered periods. That is to
say, we can select the less interfered periods from a pulse
wave series with poor quality to complete TSA, rather than
discarding the whole series (Figure 1). Similar algorithms
have been applied to single-period pulse waveform extraction

[14, 15]. However, in existing applications, the pulse wave
signal is assumed to be a strict periodic signal, and the start-
ing point or the highest point of the waveform is used as the
fiducial point for synchronization without discussing the
basis of these steps. More importantly, the single-period
pulse wave extracted by existing TSA method does not con-
tain the PRV information. It has nothing to do with PRV
monitoring and AF detection. This may be the reason why
TSA is neglected by wearable device researchers.

However, if we take two adjacent periods as the basic unit
to calculate the average signal, it can be expected that with the
increasement of PRV, the waveform of the second period will
be gradually distorted due to the misalignment (Figure 2).
The difference between waveforms of the two adjacent
periods obtained by TSA may provide a new measure of
PRV. Compared with traditional PRV measures, it may have
some potential advantages under the condition of poor signal
quality. And this index mainly reflects the irregular changes
of heart rate. For patients with premature contraction (PC)
which usually have regular changes in heart rhythm, the dif-
ference between adjacent periods may not be large because
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Figure 1: General steps of TSA combined with signal-period pulse wave quality evaluation method. (a) A pulse wave series was segmented
into periods. (b) The signal quality of each segment was evaluated, and the abnormal segments were eliminated. (c) All the normal segments
were synchronized with the starting points. (d) The noise was suppressed by averaging the synchronized signals.
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there are still a considerable number of second period wave-
forms are synchronous. The new index may effectively distin-
guish AF from PC and sinus rhythm (SR).

The objective of this paper was to develop a new measure
of PRV by improving existing TSA and to detect atrial fibril-
lation by the new measure of pulse rate variability.

2. Methods

2.1. Data. In this study, the radial artery pulse wave signals
were taken from 112 inpatients who had underwent an elec-
trocardiographic (ECG) examination at Shanghai Shuguang
Hospital between July 2019 and January 2020, including 11
cases with AF, 8 cases with PC, and 93 cases with SR. For each
subject, a left radial artery pulse wave signal with a length of
60 seconds was taken by a wrist-type pulse wave monitor
(type: Smart TCM-I, product by: Shanghai Asia & Pacific
Computer Information System CO, Ltd, Shanghai, China)
after the subject was either sitting or lying down for at least
5min. ECG examination and pulse wave acquisition were
performed on the same day but not simultaneously.

2.2. Preprocessing. The steps of preprocessing, including
period segmentation and signal quality evaluation, are illus-
trated in Figure 3.

To segment the pulse wave series into periods, the deriv-
ative of the original signal was used to locate segmentation
points by the threshold method (Figure 4). During threshold
determination, each pulse wave series was segmented with 9
trial thresholds (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9). All
the obtained segments were evaluated by a logistic regression
model [13] which can divide the segments into normal seg-
ments and abnormal segments. The threshold with which

the maximum number of normal segments were obtained
was selected for the next steps.

During signal quality evaluation, the segment obtained
by period segmentation were divided into normal and abnor-
mal segments by the same logistic regression model as used
in threshold determination. The abnormal segments were
eliminated, and the range of normal segment was expanded
by 50% on both sides to prepare for the measurement of
PRV (Figure 5).
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Figure 2: The average pulse wave with a basic unit of two adjacent periods. (a) The average pulse wave of a normal individual. The waveforms
of the two adjacent periods are similar. (b) The average pulse wave of a patient with AF. The waveform of the second period is seriously
distorted.
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Figure 3: Steps of preprocessing. During period segmentation, the
original pulse wave series were segmented into periods by
threshold method. During signal quality evaluation, the segment
obtained by period segmentation were divided into normal and
abnormal segments by a logistic regression model. The abnormal
segments were eliminated, and the range of normal segment was
expanded by 50% on both sides to include the information of
adjacent periods.
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2.3. Time Synchronous Averaging.How to average the single-
period pulse waves with different lengths in the same
sequence and what is the appropriate fiducial point with
the strongest anti-interference ability are questions that have
not been fully discussed in current applications of TSA.

As shown in Figure 2, even in the pulse wave of a patient
with AF, all the systoles have similar lengths and shapes, and
the difference of cardiac cycle duration is mainly caused by
the difference of diastolic duration. It is because the process
of myocardial contraction and the state of arterial vessels are
relatively stable for the same individual, and the duration of
diastole does not significantly affect the left ventricular end-
diastolic volume due to the low rate of left ventricular filling
during late diastole. The initial condition and process of sys-
tole are basically stable. It is an appropriate averaging method
to accumulate and average the preprocessed data without any
stretching or compression, becausemost of the common time-

domain features except the duration of cardiac cycle and dias-
tole are extracted from the pulse wave of systole.

Figure 4 shows a pulse wave series and its derivative. The
derivative of the original signal is almost entirely unaffected
by baseline wander and shows clearer segmentation points.
The spikes of the derivative are formed by the periodic rapid
ejections of blood from the left ventricle. Different from the
starting point or the highest point of a period where the
waveform is relatively gentle and easy to be distorted by
external interference, the spikes of the derivative have stron-
ger anti-interference ability because the change of pulse wave
caused by rapid ejection of blood is more significant than that
caused by external interference. Moreover, the QRS complex,
which is the most frequently used heartbeat fiducial point to
calculate the heart rate in ECG [16], is formed by the same
cardiac event. Using the peak of the derivative in each period
as the reference point, the calculated results may have better
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comparability with the results of ECG. Therefore, the peak of
the derivative is an appropriate fiducial point for synchroni-
zation of TSA.

Therefore, during TSA, the expanded single-period pulse
waveforms obtained by preprocessing were synchronized

with the maximum derivative value of each period, and all
the waveforms from one pulse wave series were averaged
directly without stretching or compression. After synchro-
nizing, all the expanded single-period pulse waveforms were
unified to the same length by filling with 0. If Xi = fx1, x2,
⋯, xng was an expanded single-period pulse waveform and
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Figure 6: Steps to generate the simulated training set. (a) 50 single-period pulse waveforms were extracted from pulse wave signals of the 50
selected cases by TSA. (b) 1000 single-period pulse waveforms were generated by stretching or compressing the original single-period pulse
waveform to make its length equal to Tb. (c) 60 single-period pulse waveforms were generated by stretching or compressing the
corresponding single-period pulse waveform generated in (b) to make its length equal to Tb + ΔT separately. Only the waveforms of
diastole were stretched or compressed in this step. The pulse wave series of each training sample were subsequently obtained by
connecting the 60 single-period pulse waveforms end to end.
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N was the number of normal segments in the sequence, the
average expanded single-period pulse waveform of the
sequence was given by

Xa =
1
N
〠
N

i=1
Xi: ð1Þ

2.4. Measure of PRV and Detection of AF. To find an effective
index of PRV, 50 cases with SR were randomly selected from
the data set to generate the simulated training set with a
capacity of 1000. The testing set consisting of the other 62
cases (AF:11, PC:8, SR:43) was used to test the ability of the
selected index to detect AF. The training set was generated
according to a simple and commonly used identification cri-

terion for irregular heart rhythm—there is a variation of
more than 0.16 seconds between the longest cardiac cycle
duration and the shortest cardiac cycle duration [17]. The
detailed steps to generate the simulated training set are as fol-
lows (Figure 6):

(1) 50 single-period pulse waveforms were extracted
from pulse wave signals of the 50 selected cases by
TSA

(2) Considering that the cardiac cycle duration is usually
between 0.6 s and 1 s, for each single-period pulse
waveform, 20 random numbers (denoted by Tb)
which obey the uniform distribution U (0.6,1) were
generated to simulate different cardiac cycle dura-
tions of different individuals. A total of 1000 base car-
diac cycle durations were generated for the 1000
expected training samples

(3) 1000 single-period pulse waveforms were generated
by stretching or compressing the original single-
period pulse waveform to make its length equal to
Tb. All the 1000 single-period pulse waveforms were
randomly divided into arrhythmia group and control
group with 500 waveforms in each group

(4) Each training sample consists of 60 cardiac cycles,
and the duration of each cardiac cycle fluctuates
around the base duration Tb. The duration of each
cardiac cycle is given by T = Tb + ΔT . In arrhythmia
group, ΔT obeys the uniform distribution U (-0.09,
0.09). Whereas in control group, ΔT obeys the uni-
form distribution U (-0.07, 0.07). A sequence of 60
durations was generated for each training sample.
In arrhythmia group, the variation between the max-
imum value and the minimum value of 60 durations
is less than 0.18 but usually more than 0.16. Whereas
in control group, the variation between the maxi-
mum value and the minimum value of 60 durations
is less than 0.14. It is in accordance with the identifi-
cation criterion for irregular heart rhythm

(5) 60 single-period pulse waveforms were generated by
stretching or compressing the corresponding single-
period pulse waveform generated in step 3 to make
its length equal to the 60 durations separately. The
pulse wave series of each training sample were subse-
quently obtained by connecting the 60 single-period
pulse waveforms end to end. Considering that the
systolic duration of an individual is almost constant,
only the waveforms of diastole were stretched or
compressed to satisfy the requirement of cardiac
cycle durations in this step

After the training set was generated, the average
expanded single-period pulse waveform of each training
sample was extracted by TSA. The difference between the
first ascending limb and the second ascending limb were
tested to distinguish between arrhythmia group and control
group. The first ascending limb is defined as the data between
the minimum value and the maximum value in the first half

Table 1: Comparison of De in different groups of testing set by
Kruskal-Wallis test.

Groups Test statistic Standard error p

SN-AF 32.049 6.096 <0.001
PC-AF 24.659 8.383 0.010

SN-PC 7.390 6.947 0.862
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of the expanded single-period pulse waveform. The second
ascending limb is defined as the data starting from the mini-
mum value between the maximum values of the first half and
the second half of the expanded single-period pulse wave-
form and with the same length as the first ascending limb
(Figure 7). Considering that Euclidean distance (De), Man-
hattan distance (Dm), and cosine distance (Dc) are commonly
used distance measures between two vectors, these 3 candi-
date indexes were tested on the training set to distinguish
between arrhythmia group and control group. If Xf = fxf 1,
xf 2,⋯, xf ng and Xs = fxs1, xs2,⋯, xsng were the data of first
ascending limb and the second ascending limb, respectively,
De, Dm, and Dc were given by

De =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〠
n

i=1
xf i − xsi
� �2

s

,

Dm = 〠
n

i=1
xf i − xsi
�

�

�

�,

Dc =
∑n

i=1xf ixsi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1xf i2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1xsi2

p

:

ð2Þ

The receiver operating characteristic (ROC) curve was
used to evaluate the performance of the indexes. The
index with the maximum area under ROC curve (AUC)
was selected to detect AF on the testing set. The distribu-
tion of the selected index in different groups of the testing
set was compared by Kruskal-Wallis test. And the AF
identification performance on the testing set was evaluated
by ROC curve.

3. Results

3.1. Performance of Candidate Indexes on Training Set. The
ROC curves of 3 candidate indexes on the training set are
shown in Figure 8. The AUC of De, Dm, and Dc were 0.857,
0.801, and 0.516, respectively. Both De and Dm can effectively
identify irregular pulse rhythm, and De performed best in
this task.

3.2. Comparison of De in Different Groups of Testing Set. The
comparison result of De in different groups of testing set by
Kruskal-Wallis test is shown in Table 1. And the box-plot

of De in different groups of testing set is shown in Figure 9.
The result indicated that De in AF group is significantly
higher than that of the other two groups, and there was no
significant difference between the PC and SN group. There-
fore, De can be used as an indicator to detect AF.

3.3. Performance of De to Detect AF on Testing Set. The ROC
curve of De to identify AF on the testing set are shown in
Figure 10. The AUC was 0.998, and the accuracy, sensitivity,
and specificity were 98.39%, 100%, and 98.04%, respectively,
with the threshold of 2.1. De can effectively detect AF from
pulse wave signals.

3.4. Comparison with Other Works. With the popularity of
wearable devices, the research of AF detection based on pulse
wave is increasing in recent years (Table 2). However, except
Shannon entropy, most of the features used to detect AF are
based on the interbeat interval (IBI) series, which makes the
accurate calculation of the cardiac cycle duration a prerequi-
site for AF detection. Therefore, the sensitivity to external
interference has become a common weakness of these

Table 2: Comparison of recent pulse-wave-based AF detection techniques.

Reference Methods Accuracy (%)

McManus DD, et al. (2013) [18] RMSSD and Shannon entropy 96.76

Krivoshei L, et al. (2017) [19] Shannon entropy and other IBI features 87.5

Fallet S, et al. (2019) [20] Bagging decision tree based on IBI features 88.5

Kabutoya T, et al. (2019) [3] Irregular heartbeat ratio 98.3

Kashiwa A, et al. (2019) [21] IBI features 97.3

Zalabarria U, et al. (2020) [22] ANN with foot point detection 93.68

Han D, et al. (2020) [23] Random forest with Poincare plot 95.32

This paper De between adjacent periods based on TSA 98.4
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Figure 11: A typical average pulse wave of PC. There are still
enough synchronized second ascending limbs in pulse wave of PC
to form a similar average waveform with the first ascending limbs.
The other second ascending limbs will form the bulge in the red box.
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studies. As indicated in Table 2, the method proposed in this
paper is one of the most accurate methods. And it does not
rely on IBI series, consequently, and may have stronger
anti-interference ability.

4. Discussion

In this paper, we propose a new measure of PRV based on
TSA. It was discovered that this new index can effectively
detect AF from pulse wave signals. It can not only be
applied to the seriously interfered signal by combining
with single-period pulse wave quality evaluation method,
but also extract a high-quality single-period pulse wave-
form at the same time, which can be used in other pulse
wave-related applications. In addition, it can distinguish
AF and PC, which has long been a problem in the identi-
fication of AF [21].

Figure 11 shows a typical average pulse wave of PC.
Although the PRV of patient with PC is large, the change of
its cardiac cycle durations is usually regular. Therefore, there
are still enough synchronized second ascending limbs to
form a similar average waveform with the first ascending
limbs. The other second ascending limbs will form the bulge
in the red box of Figure 9. This feature is usually located in
the diastolic of the average waveform. The diastolic pulse
wave of healthy people usually decreases gradually without
obvious features. This feature may be used to detect PC in
the future.

In summary, the new index provides a new perspective to
measure PRV and to detect AF. Moreover, it accomplishes
the monitoring of PRV and the extraction of single-period
pulse wave through the same technical route, which may pro-
mote the popularization and application of pulse wave. How-
ever, this study also has limitations: (1) the sample size is so
limited that we had to use simulated data instead of real clin-
ical data to screening candidate indexes. Therefore, De may
not be the best choice for real clinical data. (2) The ECG
and pulse wave are not collected simultaneously, which
may lead to incorrect label. (3) The anti-interference ability
has not been verified because the new index was not tested
on seriously interfered data set.

In the future, we hope to improve this algorithm by
collecting more real clinical data and screening more dis-
tance measures. In addition, it has been discovered that
there is a unique characteristic on the average pulse wave
of PC. It is also one of the future research directions to
develop an automatic PC detection algorithm based on
this characteristic.
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