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,e interval concept lattice theory, a newmethod ofmining objects based on interval parameters, canmore accurately deal with uncertain
information than the classical concept lattice theory. ,e optimization of interval parameters has been a problem that is not well solved.
From the perspective of three-way decision space, we first combine the theories of interval concept lattice and three-way decision and then
put forward interval three-way decision space theory; second, in the interval three-way decision space, the positive region, negative region,
and boundary region are divided by extension of interval three-way decision concept; further, the decision loss function and three-way
decision rules are extracted.,rough adjusting interval parameters of the lattice structure, we could find that when parameter α is roughly
0.6, more credible decision rules will be mined and decision-making becomes more clear than that under the condition α is less than 0.6;
finally, we verify the model by a “Green Products Recommendation” example.

1. Introduction

,e interval concept lattice theory is the new method of
mining objects based on interval parameters α and β and
proposed by Liu [1] in 2012. Compared to the classical
concept lattice theory [2], it can not only contribute to
exploring the potential information from the uncertain
system, but also deal with uncertain information more ac-
curately. It provides the foundation for dealing with
boundary samples and reducing the decision loss [3]. In-
terval parameters α and β can divide the object domain U

into three regions according to the condition attributes U

meets.,is division method is similar to that in probabilistic
rough set [4]. ,e interval parameters affect not only the
concepts and lattice structure, but also the decision-making.
,erefore, it is very meaningful to study interval parameter
optimization problem. Although there are many general
interval parameter optimization methods [5], it is of weak

pertinence. In other words, the optimized interval param-
eters given by the general method could not be well applied
to our problem. ,us, we innovate the optimization method
by combining the original three-way decision theory.

To provide a reasonable semantic interpretation for
probabilistic rough set [3, 4] and decision-theoretic rough
set [6–10], Yao first puts forward the concept of three-way
decision [11–15], which is an extension of the traditional
two-way decision theory. It considers the uncertain factors
in the decision-making process and takes the delayed de-
cision as the third decision behavior in the case that the
information is insufficient to decide the acceptance or re-
jection [16].,e recently related research based on the three-
way decision theory impressing us deeply is a trisecting-and-
acting model to describe the three-way decision, in which
the model not only represents trisecting a whole into three
parts but also devises strategies and actions to act on the
three regions [12]. Liang et al. [17] involve the risk appetite of
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the decision-maker into three-way decisions and utilize
TODIM (interactive multicriteria decision-making) as a
valuable tool to handle the risk appetite character to con-
struct risk appetite dual hesitant fuzzy three-way decisions.
Jiang et al. [18] choose a strategy depending on the prob-
ability or distribution of three regions instead of the benefits
or costs and propose a probabilistic movement model of
three-way decision, and then give a strategy selection
mechanism based on information entropy.

,e last case to motivate our research is that Wei et al.
[19] give the three-way concept lattices theory and indicate
that they can supply much more information than classical
concept lattices since they contain the positive information
and negative information between objects and attributes
simultaneously. Motivated by the commonality of the above
two theories, we define the interval three-way decision space
according to the interval concept decision loss function that
depends on interval parameters α and β. Decision concepts
in the interval three-way decision space will change with
respect to the interval parameters, which can finally affect
users’ decision-making and benefit interval parameter op-
timization. To demonstrate the impact of interval parame-
ters on decision rules and the optimization process of
interval parameters, we use a “Green Products Recom-
mendation” example. ,e reason why we choose this case
mainly includes two sides. On the one side, recently the
research about “green,” “eco,” and “sustainable” has been a
hotspot issue [20, 21]. On the other hand, due to the
complexity of consumers’ preferences, it is definitely difficult
to establish an analytical model to master the green demand
of each consumer. ,e method of taking advantage of a
priori knowledge to further conclude consumers’

preferences is relatively feasible. Of course, our model can
also be extended to other cases about “Recommendation.”

2. Preliminaries

2.1..ree-WayDecision andRough Set. Suppose U is a finite
set of entity objects and E(E ⊆ U × U) is an equivalence
relation on U set, i.e., E is reflexive, symmetric, and tran-
sitive. ,e equivalence class of E containing an object
x(x ∈ U) is given by [x]E � [x] � y ∈ U|xEy􏼈 􏼉. ,e set of
all equivalence classes, U/E � [x]E|x ∈ U􏼈 􏼉, is called the
quotient set and we regard it as a partition of U.

Definition 1. For a pair of thresholds [α, β] with
0≤ α< β≤ 1, the [α, β]-probabilistic lower and upper ap-
proximations of X are expressed as follows:

apr
(α,β)

(X) � U [x] ∈
U

E
|Pr(X|[x]) ≥ β􏼚 􏼛,

apr
(α,β)

(X) � U [x] ∈
U

E
|Pr(X|[x]) ≥ α􏼚 􏼛.

(1)

For a subset X(X⊆U), Pr(X|[x]) denotes the condi-
tional probability of an object in X given that the object is in
equivalence class [x], and in other words, Pr(X|[x]) implies
the confidence coefficient of such entity belonging to ex-
tension of X.

Proposition 1. According to the lower and upper approxi-
mation, the following probabilistic positive, negative, and
boundary region can be given as follows:

POS(α,β)(X) � apr
(α,β)

(X) � ∪ x ∈
U

E
|Pr(X|[x])≥ β􏼚 􏼛,

NEG(α,β)(X) � apr(α,β)(X)􏼐 􏼑
c

� x ∈
U

E
|Pr(X|[x])< α􏼚 􏼛,

BND(α,β)(X) � POS(α,β)(X)∪NEG(α,β)(X)􏼐 􏼑
c

� x ∈ U|α≤ Pr(X|[x]) < β􏼈 􏼉.

(2)

where (apr(α,β)(X))c � U − apr(α,β)(X)..e three probabilistic
regions are pairwise disjoint and their union is the entire set U.

Proposition 2. .e false acceptance rates in different regions
are as follows:

(i) When Pr(X|[x])≥ β, we choose to accept. However,
accepting all entities of [x] will lead to an error. And
the false acceptance rate in the positive region is as
follows:

IAE POS(α,β)(X), X􏼐 􏼑 �
POS(α,β)(X)∩X

c
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

POS(α,β)(X)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (3)

(ii) When Pr(X|[x]) ≤ α, we choose to reject. Similarly,
rejecting all entities of [x] will lead to an error. And
the false rejection rate in the negative region is as
follows:

IRE NEG(α,β)(X), X􏼐 􏼑 �
NEG(α,β)(X)∩X

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

|NEG(X)|
. (4)

(iii) When the confidence coefficient is too low to warrant
an acceptance, at the same time, and too high to
warrant a rejection, then we choose a third option,
noncommitment.
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For the boundary region, two new types of errors are
introduced, namely, noncommitment for positives and non-
commitment for negatives. .ey are defined by the following
equations, respectively:

NPE NEG(α,β)(X), X􏼐 􏼑 �
BND(α,β)(X)∩X

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

BND(α,β)(X)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, for positives,

NNE POS(α,β)(X), X􏼐 􏼑 �
BND(α,β)(X)∩X

c
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

BND(α,β)(X)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, for negatives.

(5)

In contrast, due to allowing certain levels of error, a
probabilistic rough set model may have a smaller boundary
region than a classical rough set model. .e sizes of the three
regions are controlled by the pair of thresholds [α, β].

2.2. Interval Concept Lattice

Definition 2 (see [1, 5]). Given the formal context
(U, A, R), L(U, A, R) is a classic concept lattice based on it.
Assume the interval [α, β], 0≤ α< β≤ 1, we have

α-upper extension Mα: Mα � x|x ∈ U, |f(x) ∩Y|/|Y|􏼈

≥ α, 0≤ α≤ 1}

β-lower extension Mβ: Mβ � x|x ∈ U, |f(x)∩Y|/􏼈

|Y|≥ β, 0≤ α< β≤ 1}

Among them, Y is the intension of the concept. |Y| is the
number of elements contained by set Y, namely, cardinal
number. Mα expresses the objects covered by at least α × |Y|

attributes from Y and Mβ means the objects covered by at
least β × |Y| attributes from Y.

Definition 3 (see [1, 5]). Given the formal context (U, A, R),
the ternary ordered pairs (Mα, Mβ, Y) are called interval
concept. Among them, Y is the intension and describing the
concept, Mα is the α-upper extension, and Mβ is the β-lower
extension.

Definition 4 (see [1, 5]). We use L
β
α(U, A, R) to express all

interval concepts lattice structures in the formal context
(U, A, R). If (Mα

1 , M
β
1, Y1)≤ (Mα

2 , M
β
2 , Y2)⟺Y1 ⊆Y2, “≤ ”

is the partial order relation of L
β
α(U, A, R), and all concepts

meeting the partial order relation constitute L
β
α(U, A, R) in

formal context (U, A, R).

Definition 5. Suppose interval concept lattice L
β
α(U, C∪

D, R) is determined by formal context U, C∪D, R with the
interval parameters α and β. C � (Mα, Mβ, Y) is one interval
concept in the lattice structure. ,e upper and lower ex-
tensions of interval concept divide U into three regions:

POSβα(X) � M
β

� x|x ∈ U,
|f(x)∩Y|

|Y|
≥ β􏼨 􏼩,

BNDβ
α(X) � M

α
− M

β
� x|x ∈ U, α≤

|f(x)∩Y|

|Y|
≥ β􏼨 􏼩,

NEGβ
α(X) � U − M

β
� x|x ∈ U,

|f(x)∩Y|

|Y|
≥ α􏼨 􏼩,

(6)

where a subset X⊆U. If x ∈ POSβα(X), we could make the
acceptance decision on x; if x ∈ NEGβ

α(X), we could make
the rejection decision on x; otherwise, we make the non-
commitment decision.

2.3. Interval.ree-WayDecisionSpace. Combining the above
theoretical basis, in order to obtain decision rules, we in-
novate the theory of interval three-way decision space, and
the following definitions are presented.

Definition 6. When object x belongs to X (x ∈ X), we make
λPP, λNP, and λBP express the cost function of dividing an
object into POSβα(X), NEGβ

α(X), and BNDβ
α(X), respec-

tively. And when x ∉ X, we make λPP, λNP, and λBP express
the cost function of dividing an object into POSβα(X),
NEGβ

α(X), and BNDβ
α(X), respectively.

We suppose ζ � aP, aB, aN􏼈 􏼉, in which aP, aB, and aN,
respectively, express the possible states that the current
object belongs to a particular attribute set of three regions.
Under different states, the risk cost [22–24] of object x taking
different division plan is shown in Table 1.

Generally, the cost function meeting the conditions of
λPP ≤ λBP < λNP and λNN ≤ λBN < λPN, is explained as follows:
for an object x belonging to X, the risk cost of dividing it into
POSβα(X) is not more than that of dividing it into BNDβ

α(X),
and at the same time, the risk costs of the both are less than
that of dividing it into NEGβ

α(X). Similarly, for an object x
not belonging to X, the risk cost of dividing it into NEGβ

α(X)

is not more than that of dividing it into BNDβ
α(X), and

simultaneously, the risk costs of the both are less than that of
dividing it into POSβα(X).

Definition 7. ,e expectation loss functions [25, 26] of
taking aP, aB, aN decision action are expressed by the fol-
lowing equations, respectively:

R aP( 􏼁 � λPP
X∩M

β
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

M
β

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ + λPN
X∩M

β
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

M
β

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠,

R aB( 􏼁 � λBP
X∩ M

α
− M

β
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

M
α

− M
β

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ + λBN
X∩ M

α
− M

β
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

M
α

− M
β

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠,

R aN( 􏼁 � λNP
X∩ U − M

α
( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

U − M
α􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼠 􏼡 + λBN
X∩ U − M

α
( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

U − M
α􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼠 􏼡.

(7)
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Definition 8. Suppose interval concept lattice L
β
α(U, C∪D,

R) is determined by the formal context (U, C∪D, R). C �

(Mα, Mβ, Y) is one interval concept in the lattice structure.
We call 􏽥C � (Mα, Mβ, Y; R(aP), R(aB), R(aN)) interval
three-way decision concept.

Definition 9. Given the formal context (U, C∪D, R),
􏽥

L
β
α(U, C∪D, R) is an interval three-way decision space

composed by interval three-way decision concepts and
parent-children relationships between concepts.

For a new object x, the decision rules obtained by interval
three-way decision concept are composed by decision-making
action ai (i can express acceptance action P, noncommitment
action B, or rejection action N) and corresponding decision
loss R. We denote the decision rules as J � (ai, R(ai)).

,e process of generating interval concept lattice by the
formal context is essentially a process of clustering concepts.
Moreover, the inclusion relation between the intension of
interval concepts determines the father-children relation-
ship in the lattice structure. In our paper, the interval
concept lattice generated by the prior formal context con-
stitutes the interval three-way decision space. ,e divided
three decision regions by interval concept in the lattice can
be regarded as decision-making rules of a new object, and
the parent-children relationships in decision space can
decide the next action to reduce the loss of decision-making.

3. Interval Parameter Optimization under
Three-Way Decision Space

3.1. Decision Optimization Algorithm under Given Interval
Parameters. In the decision-making space, an object x can
make different decisions according to multiple interval three-
way decision concepts. If we obtain the noncommitment
decision rules J, for adventurists, they are more likely to make
acceptance or rejection decision J′ even though which has a
relatively small loss. Here, we suppose the corresponding
interval three-way decision concept of J′ is 􏽥C′. When deci-
sion-makers take acceptance or rejection decision which has
relatively small loss, we can reduce the loss of acceptance or
rejection decision according to decision regions divided by
the subconcepts of 􏽥C′. First, we give a decision optimization
algorithm [27] as follows (Algorithm 1).

3.2. .ree-Way Decision Space Updating with Changing In-
terval Parameters. ,e algorithm of finding decision rules of
object x based on the fixed interval parameters is given in the
previous section, and the updating algorithm of three-way
decision space with changing parameters is given in this
section. Considering that the interval parameters α and β can
change from [α0, β0] to [α1, β1] and the relationship between

α0(β0) and α1(β1) is indeterminate, therefore there are four
kinds of cases to explain the problem of updating the interval
three-way decision space. Moreover, the change of interval
parameters α and β can first lead to the change of extension
of interval three-way decision concepts.

Proposition 3. When α1 < α0, β1 < β0, Mα1 ⊇ Mα0 and
Mβ1 ⊇ Mβ0 .

Proof. Given Mα0 � x|x∈M,(|f(x)∩Y|/|Y|)≥α0>α1􏼈 􏼉, Mβ0

� x|x∈M(|f(x)∩Y|/|Y|)≥β0>β1􏼈 􏼉,Mα1 �Mα0∪ x1􏼈 􏼉, where
x1|α≤(|f(x1)∩Y|/|Y|)≤α1􏼈 􏼉. Similarly, Mβ1 �Mβ0∪ x11􏼈 􏼉,
where x11|β1≤(|f(x11)∩Y|/|Y|)≤β0􏼈 􏼉; obviously, Mα1⊇Mα0

and Mβ1⊇Mβ0 . □

Proposition 4. When α1 > α0 and β1 > β0, Mα1 ⊆Mα0 and
Mβ1 ⊆Mβ0 .

Proof. Given Mα0 � x|x∈M,α1>(|f(x)∩Y|/|Y|)≥α0􏼈 􏼉,Mβ0

� x|x∈M,β1>(|f(x)∩Y|/|Y|)≥β0􏼈 􏼉,Mα1 �Mα0 − x1􏼈 􏼉, where
x1|α≤(|f(x1)∩Y|/|Y|)≤α1􏼈 􏼉. Similarly, Mβ1 �Mβ0 − x11􏼈 􏼉,
where x11|β0≤(|f(x11)∩Y|/|Y|)≤β1􏼈 􏼉; obviously, Mα1⊆Mα0

and Mβ1⊆Mβ0 .
We assume interval parameters change into [α1, β1]

from [α0, β0] and there are four kinds of cases: (i) α1 > α0, (ii)
α1 > α0, (iii) β1 > β0, and (iv) β1 > β0.,e first two cases imply
to update the upper extension of the interval three-way
decision concepts, namely, Mα0⟶Mα1 ; the other two
cases mean to update the lower extension of the interval
three-way decision concepts, namely, Mβ0⟶Mβ1 .
,erefore, the following four functions are given, respec-
tively, to update the interval three-way decision concepts:

(i) Function: DCL1 (􏽥C, α0, α1)//􏽥C is any node in in-
terval three-way decision concept lattice, andα1 > α0
DCL1 (􏽥C, α0, α1)
{

Ma � ϕ􏼈 􏼉

For each x in Mα0 of 􏽥C:
If (|f(x)∩Y|/|Y|)≥ α1, then

Ma � Ma∪x

Mα1 � Ma
,e corresponding decision loss functions R

β0
α0(aB)

and R
β0
α0(aN) are changed into R

β0
α1(aB) and

R
β0
α1(aN)

}

(ii) Function: DCL2 (􏽥C, α0, α1)//􏽥C is any node in in-
terval three-way decision concept lattice, and
α1 > α0
DCL2 (􏽥C, α0, α1)
{

Ma � Mα0

For the upper extension Maf of any father
node 􏽥CF in 􏽥C:
{

Make maf1 � Maf − Mα0

For ∀x ∈ maf1:

Table 1: Risk cost in different decision-making plans and states.

aP aB aN

X λPP λBP λNP
Xc λPN λBN λNN
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If (|f(x) ∩Y|/|Y|)≥ α1, then// Y is the intension
set of 􏽥C

Ma � MaUx

}

Mα1 � Ma
,e corresponding decision loss functions R

β0
α0(αB)

and R
β0
α0(αN) are changed into R

β0
α0(αB) and

R
β0
α0(αN)

}

(iii) Function: DCL3 (􏽥C, β0, β1)//􏽥C is any node in in-
terval three-way decision concept lattice, and β1 > β0
DCL3 (􏽥C, β0, β1)
{

Mb � ∅{ }

For each x in Mβ0 of 􏽥C:
If (|f(x) ∩Y|/|Y|)≥ β1, then
Mb � MbUx

Mβ1 � Mb
,e corresponding decision loss functions R

β0
α0(αP)

and R
β0
α0(αB) are changed into R

β0
α0(αP) and R

β0
α0(αB)

}

(iv) Function: DCL4 (􏽥C, β0, β1)//􏽥C is any node in in-
terval three-way decision concept lattice, and β0 < β1
DCL4(􏽥C, β0, β1)
{

Mb � Mβ0

For the upper extension Mbf of any father
node 􏽥CF in 􏽥C:
{

Make mbf1 � Mbf − Mβ0

For ∀x ∈ mbf1:
If (|f(x)∩Y|/|Y|)≥ β1, then// Y is the intension
set of 􏽥C

Mb � MbUx

}

Mβ1 � Mb
,e corresponding decision loss functions R

β0
α0(αP)

and R
β0
α0(αB) are changed into R

β0
α0(αP) and R

β0
α0(αB)

}

Based on the four functions, when the interval param-
eters change, we use the method of breadth-first to visit and
judge each node from the root node in the interval three-way
decision space. According to the four different cases, we can
update and adjust the nodes; meanwhile, delete the re-
dundancy concepts and empty concepts from the space
structure (Algorithm 2).

On the basis of the original interval three-way decision
space, when interval parameters change, the extension and
decision loss function of local nodes will correspondingly
change in the space. ,e updating algorithm can help keep
or update the extension and decision loss function of each
node in the original space. Finally, the new interval three-
way decision space is obtained. Compared with recon-
struction, the updating algorithm is superior to recon-
struction in the aspects of time complexity. □

3.3. Interval Parameter Optimization in .ree-Way Decision
Space. ,rough the introduction from the previous two
sections, we have mastered the interval three-way decision
space updating algorithm. However, the problem of interval
parameters (α and β) choice has not been solved yet. It is also
an important role to play on decision-making, and the
optimal parameters can bring more potential information.
,erefore, we will introduce the process of interval pa-
rameter optimization as follows.

Input: decision formal context (U, C∪D, R);
Interval parameters [α0, β0];
Object x and its condition attribute set A(A⊆C);
Output: the decision rules of object x.
Step 1: according to the given formal context (U, C∪D, R), interval three-way decision space 􏽦

L
β0
α0(U, C∪D, R) will be built by interval

three-way decision concepts:
􏽥C � (Mα0 , Mβ0 , Y; R(aB), R(aN)) and parent-children relationship (Definitions 7–9);

Step 2: find intension Y in interval three-way decision concepts 􏽥C if Y − (Y∩D) � A, turn to Step 3; else Y − (Y∩D)≠A and
(Y − (Y∩D))∩A≠ϕ, and turn to Step 6;
Step 3: if there are n concepts like 􏽥C � (Mα0 , Mβ0 , A; R(aP), R(aB), R(aN)), n decision rules will be obtained, namely,
J1, J2, J3, . . . , Jn, and they can constitute n-dimensional decision space, JS � J1, J2, J3, . . . , Jn􏼈 􏼉;
Step 4: if there is only Jk meeting RPk � min(RP1, RP2, . . . , RPn), Jk will become the final decision rules of x, namely, making the
accept or reject decision of the smallest loss as the final decision;
Step 5: if there are some Ji, Jm meeting RPi � RPm � min(RP1, RP2, . . . , RPn), search the subconcepts of 􏽥Ci and 􏽥Cm. And on the basis of
intension of those subconcepts, add related attribute of x, until get the only decision meeting condition;
Step 6: according to the parent-children relationship in the three-way decision space, search concepts whose intension is Y′. Y′ meets
the conditions of A⊆Y′ and |Y′ − A| � 1, and turn to Step 3; else turn to Step 7;
Step 7: search the concepts whose intension is Y″, Y″ meets the conditions of A⊆Y″ and |Y″ − A| � 2 and turn to Step 3 to continue
making decision, until the end node whose intension is ∅.
End.

ALGORITHM 1: Decision optimization algorithm under given interval parameters (GPOA).
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3.3.1. .e Basic Idea. According to the given decision
formal context, decision rules of various parameters will
be obtained through this algorithm. First, we determine
the number n of attributes in the formal context and
divide α and β, respectively, by the equal step length.
Here, we suppose the step length λ � 1/n, and then αi is
i/n, (i � 1, 2, 3, . . . , n). Due to having preliminarily
researched [3] the values of α, we found that when α is in
the median (roughly 0.5), the stability of the lattice
structure can be ensured. So first we initialize α0 � 1/2 and
β0 � 1, build the interval three-way decision space, and
then further mine decision rules. When interval pa-
rameters change by the equal step, we update the original
space and obtain the new concepts, lattice structure, and
decision rules. Finally, the optimal decision rules of
object x and the best interval parameters are found under
those decision rules.

3.3.2. Algorithm Design. ,e original three-way decision
space obtains constantly updating with the respect of in-
terval parameters. Both concept and lattice structure will
change, and further, the decision rules of object x will be
influenced. Remarkably, the changing of these decision rules
is not sudden, but gradually guides tomake clear decisions of
acceptance or rejection. ,erefore, adventurist can make a
clear decision, but not noncommitment, which not only
saves the cost of time, but also rationally improves the
decision-making efficiency. When users make relatively
accurate or pleasant decisions, at this time, the values of
interval parameters can be considered to be the best pa-
rameters in this formal context.

4. Example Analysis

For the ease of understanding and exposition, we set pa-
rameter β value to 1 and explore the effect of α on decision
rules. We choose ten objects to demonstrate the above al-
gorithms and receive the meaningful decision rules. ,e
following example is about “Green Products Recommen-
dation.” Some attributes describing the feature of green
products, such as condition attribute set a, b, c, d{ }, where
“a” expresses “green packing,” “ b” expresses “green tech-
nology,” “c” expresses “green raw materials,” and “d” ex-
presses “environmental certification of manufacturer”;
decision attributes are “e” and “f,” which express that some
green products can be recommended to “consumer e” and
“consumer f.” When a green product has a green package,
but without green technology during the production, made
of green raw materials and by environmental certification
holder, its corresponding condition attribute set is 1, 0, 1, 1{ }.
Whereafter, the decision formal context is shown in Table 2.

,rough simply preprocessing this formal context, we
unify the representation of decision attributes and condition
attributes. For example, if a green product is of the condition
attributes of 1, 0, 1, 1{ }, consumer e will not consider pur-
chasing this green product, while consumer f would like to
purchase it as object 1 showing. ,e converted form context
is shown in Table 3.

4.1. Model Verification. According to the formal context
(U, A, R) as shown in Table 3, there are 6 attributes (A),
including 4 condition attributes and 2 decision attributes,
and 10 objects (U). We assume the new object x is a “green
packing” product, and we aim at recommending the new

Input: decision formal context (U, C∪D, R)Δ;

L
􏽥β0
α0(U, C∪D, R)

Interval parameters (α1, β1);

Output: L
􏽥β1
α1(U, C∪D, R).

Step 1: 􏽥C1 � (Mα0 , Mβ0 , Y, R
β0
α0(aP), R

β0
α0(aB), R

β0
α0(aN)) is the root node of L

􏽥β0
α0(U, C∪D, R). If Y � ∅, 􏽥C1 does not change; if Y � ∅

and α1 > α0, call function: DCL1 (􏽥C, α0, α1), else call function: DCL2 (􏽥C, α0, α1), then update Mα0 to Mα1 , R
β0
α0(aB) to R

β0
α1(aB), and

R
β0
α0(aN) to R

β0
α0(aN); as the same, if β1 > β0, call function: DCL3 (􏽥C, β0, β1), else call function: DCL4(􏽥C, β0, β1), then update Mβ0 to

Mβ1 , R
β0
α0(aP) to R

β1
α0(aP), and R

β0
α0(aB) to R

β1
α0(aB). And 􏽦C1 is totally updated to (Mα1 , Mβ1 , Y, R

β1
α1(aP), R

β1
α1(aB), R

β1
α1(aN));

Step 2: visit each children nodes 􏽥Ci in 􏽥C1;
Step 3: suppose􏽥Ci � (M

α0
i , M

β0
i , Yi R

′β0
α0 (aP), R

′β0
α0 (aB), R

′β0
α0 (aN)). If α1 > α2, call function: DCL1 (􏽥C, α0, α1), else call function: DCL2

(􏽥C, α0, α1), then update M
α0
i to M

α1
i , R
′β0
α0 (aB) to R

′β0
α1 (aB), and R

′β0
α1 (aB) to R

′β0
α1 (aN); if M

α1
i � ∅, delete node 􏽥Ci; otherwise, continue

updating the lower extension: if β1 > β0, call function: DCL3 (􏽥C, β0, β1), else call function: DCL4 (􏽥C, β0, β1), then update M
β0
i to M

β1
i ,

R
′β0
α0 (aP) to R

′β1
α0 (aP), and R

′β0
α0 (aB) to R

′β1
α0 (aB), and 􏽥Ci is totally updated to (M

α1
i , M

β1
i , Yi, R

′β1
α1 (aP), R

′β1
α1 (aB), R

′β1
α1 (aN));

Step 4: for each father node 􏽥Ci
′ � 􏽥Ci⟶ Parent in 􏽥Ci, and 􏽥Ci

′(M
α1
i , M

β1
i , Yi, R

′β1
α1 (aP), R

′β1
α1 (aB), R

′β1
α1 (aN)), if M

′α1
i � M

α1
i , M′β1i � M

β1
i ,

R
′β1
α1 (aP) � R

′β1
α1 (aP), R

′β1
α1 (aB) � R

′β1
α1 (aB), and R

′β1
α1 (aN) � R

′β1
α1 (aN), 􏽥Ci⟶ Parent � 􏽥Ci

′⟶ parent,namely delete 􏽥Ci
′;

Step 5: for each children node of 􏽥Ci,
􏽥Ci � 􏽥Ci⟶ Childrenren, turn to Step3, until visiting the final node in L

􏽥β0
α0(U, C∪D, R);

Step 6: output L
􏽥β1
α1(U, C∪D, R);

End.

ALGORITHM 2: Interval three-way decision space updating algorithm based on changing parameters (SPDA).
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Table 3: Converted form context.

Object a b c d e f
1 1 0 1 1 0 1
2 0 1 0 0 1 1
3 0 0 1 0 0 0
4 0 1 0 1 1 1
5 1 1 1 0 1 1
6 1 0 0 1 1 1
7 1 0 1 1 1 1
8 0 0 1 1 0 1
9 1 1 1 0 1 1
10 0 1 0 1 0 1

Table 2: Form context with decision.

Object a b c d Decision
1 1 0 1 1 F
2 0 1 0 0 Ef
3 0 0 1 0 NA
4 0 1 0 1 Ef
5 1 1 1 0 Ef
6 1 0 0 1 ef
7 1 0 1 1 ef
8 0 0 1 1 f
9 1 1 1 0 ef
10 0 1 0 1 f

Input: decision formal context (U, C∪D, R);
Object x and condition attribute set A(A⊆C);
Output: the decision rules of x;
,e interval parameters under optimal decision.
Step 1: determine the number n of attributes in the formal context, and set the step length λ � 1/n;

Step 2: initialize α(α1, β)(α1, β), β � 1, and build the interval three-way decision space 􏽥
L
β
α(U, C∪D, R);

Step 3: put 􏽥
L
β
α(U, C∪D, R) into Algorithm 1 (GPOA);

Step 4: in the output of Algorithm 1 (GPOA), if the accept loss is 0 and the reject loss is 0, turn to Step 5;
Step 5: make α � α + λβ � β − λ, and update three-way decision space according to Algorithm 2 (SPDA);
Step 6: turn to Steps 3 and 4;
Step 7: compare these decision rules of x, and output the optimal decision and interval parameters.
End.

ALGORITHM 3: Interval parameter optimization algorithm in three-way decision space (IPOA).

Table 4: ,ree-way decision concept by α � 3/6 and β � 1

Concept 􏽥C Upper extension Mα Lower extension Mβ Intension Y Accept lossR(aP) Noncommitment loss R(aB) Reject lossR(aN)

􏽥C1 {12345679} {5679} Ae 0 5.5 0
􏽥C2 U {15679} Af 0 7.6 0
􏽥C3 {245679} {59} abe 0 9 0
􏽥C4 {135679} {579} ace 0 4.33 7.5
􏽥C5 {1356789} {1579} acf 0 6.67 15
􏽥C6 {1345679} {67} ade 0 6.2 5
􏽥C7 {1345678910} {167} adf 0 7.67 15
􏽥C8 {123456789} {59} abce 0 6 0
􏽥C9 U {59} abcf 0 8.125 0
􏽥C10 {1234567910} ϕ abde 0 6.67 0
􏽥C11 {1345678910} {17} acdf 0 8 15
􏽥C12 {13456789} ϕ abcde 0 6.375 7.5
􏽥C13 {1345678910} ϕ abcdf 0 8.22 15
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product to the potential consumers (e and f ). On the one
hand, our model avoids the waste of information resources
by pushing the product information to partial consumers
instead of all consumers, and on the other hand, it causes less
customer churn than the classical model which is only for
precise consumers. Set λPP � 0, λBP � 9, λNP � 15, λPN �

17, λBN � 2, and λNN � 0. According to the previous three
steps of Algorithm 3, we can obtain the initial interval three-
way decision concepts as shown in Table 4.

Due to the new object x with “a” condition attribute, we
only need observing the concepts that contain condition
attribute “a” and the rest of interval three-way decision
concepts will be omitted on account of length limits.

First, we build the lattice structure as Figure 1 shows
based on three-way decision concepts in Table 4, where
􏽥C a,b,c,d,e,f{ } refers to the concept with a, b, c, d, e, f􏼈 􏼉 in-
tension and ∅ extension, and 􏽥C∅ represents the concept
with∅ intension and 12345678910{ } extension.,rough the
lattice structure, we can obviously find the parent-child
relationships between concepts. For example,
􏽥C12⟶ 􏽥C8⟶ 􏽥C3; their intensions have the relationship of
inclusion. ,e smaller the intension is (e.g., 􏽥C3), the higher
the possibility of loss of noncommitment is. Not until we
pointed out 􏽥C12 did the acceptance decision obtained.

From the perspective of decision-making, when α� 3/6
and β� 1, according to the decision loss of 􏽥C1 and 􏽥C2, we can
see that noncommitment will bring about a certain loss.
However, it will be a loss to make the decision of acceptance
or rejection, corresponding to step 4 of Algorithm 3. Ac-
tually, these decision rules in this case are not meaningful
because they still do not send a clear message of acceptance
or rejection. For this new “green packing” product, we could
not recommend it to consumer e or f yet. Next, we run step 5
of Algorithm 3 and will obtain the result as Table 5 shows.

In addition, to obtain the helpful decision-making in the
case α� 3/6 and β� 1, we could add condition attributes to the
object x which may be given over a period of observing. For
example, when adding condition attribute “c” to the object x,
according to the decision loss of 􏽥C4 and 􏽥C5 we can draw a
conclusion: the loss value of rejecting to recommend the object
x for “consumer e” is 7.5; the loss value of rejecting to rec-
ommend the object x for “consumer f” is 15. As a consequence,
the object x who includes condition attributes ac{ } should be
recommended to “consumer f.” Similarly, after adding con-
dition attribute “d,” the object x should be still recommended
to “consumer f.” And thus when we face with a new object x
which is “green packing” product, it is hard to immediately
make a clear decision on “product recommendation.” Instead,
we need to spend some time on discovering more product
information, which is beneficial to make a clear decision. It is
definitely the implication of noncommitment decision.

When α� 4/6 and β� 1, it is easy to see the number of
concepts is more than that under α� 3/6 and β� 1.,e parent-
child relationships between concepts are obtained in Figure 2.
Similarly, we find 􏽥C14⟶ 􏽥C9⟶ 􏽥C3 and make the accep-
tance decision from 􏽥C9. Compared to the case α� 3/6 and
β� 1, the efficiency of decision-making is obviously improved.

According to the decision loss of 􏽥C1, we can find that
“consumer e” accepts or rejects the new object x (“green

packing” product) will not bring about any loss. Nevertheless,
we make decision of noncommitment on “green packing”
product will bring about a certain loss. ,erefore, from 􏽥C1,
this decision rule is of no guiding significance. From 􏽥C2, it is
obviously willing for “consumer f” to accept the “green
packing” product. In conclusion, when α� 4/6 and β� 1,
there is no need to add condition attribute to promote de-
cision-making, and some practical significance decisions can
be directly obtained by the three-way decision concepts.
Interestingly, compared to the results under the condition
α� 3/6 and β� 1, we indicate that in the case α� 3/6 and β� 1,
the new object will be more efficiently recommended to
“consumer f.” ,erefore, our algorithm will end. To highlight
the validity of our model, we will give the case α� 5/6 and
β� 1 and α� 6/6 and β� 1 as Tables 6 and 7 show.

When α� 5/6 and β� 1, although the three-way decision
concept is more clear than before, some necessary decision
concepts like whose intension is {abdf} are missing. It is likely
to cause the customer churn because the recommendation is
too accurate. And the parent-child relationships between
concepts are shown in Figure 3. ,ere are four concepts
mattering the condition attribute “a,” namely, 􏽥C1, 􏽥C2, 􏽥C3, and
􏽥C4. And the number of concepts will start to decrease with
respect to parameter α. From the perspective of optimizing
parameters, we will consider α� 4/6 as the optimal parameter
of interval concept lattice. According to 􏽥C1, we easily draw the
conclusion that the “green packing” product should be rec-
ommended to “consumer f.” Furthermore, when the green
product is with attribute “c” or “d,” the result is the same
(being recommended to “consumer f”). Even although rec-
ommending the green product which is with attributes “ac” to
“consumer e” will not result in loss, rejecting to recommend
to “consumer f” could bring about more loss (12.5> 6.43).

Similarly, when α� 6/6 and β� 1, we can obtain the
lattice structure (three-way decision space) as Figure 4
shows. ,ere are obvious parent-child relationships,
􏽥C4⟶ 􏽥C2⟶ 􏽥C1 and 􏽥C4⟶ 􏽥C3⟶ 􏽥C1; meanwhile, these
decision concepts all imply that the “green packing” product
is definitely recommended to “consumer f.” ,e case is the
same as the classical model where the objects should
completely meet the condition attributes from Y. ,erefore,
some potential consumers may be ignored.

4.2. Model Comparison and Instruction. To further illustrate
the model, the loss value of each decision under variable
parameters is given in below trend charts. Here, we assume
that the new object x only is of condition attribute “a.”When
parameter α changes by the equal step, the trend chart of
making “e-decision” (acceptance, noncommitment, or re-
jection of “consumer e”) on the new object x is shown in
Figure 5(a), where the horizontal axis shows the loss value
and the vertical axis expresses the value of parameter α.

From Figure 5(a), we find that the loss value of accepting
or rejecting the “green product” for “consumer e” is 0 and
that of noncommitment decision is 5.5, based on the three-
way decision concept whose intension set is {ae} in the
condition from α� 1/6 to α� 4/6. ,ese decision rules are
obviously of no practical significance. From the perspective
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Figure 1: Lattice structure of α� 3/6 and β� 1.
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Figure 2: Lattice structure of α� 4/6 and β� 1.

Table 5: ,ree-way decision concept by α� 4/6 and β� 1.

Concept 􏽥C Upper extension Mα Lower extension Mβ Intension Y Accept loss R(aP) Noncommitment loss R(aB) Reject loss R(aN)

􏽥C1 {12345679} {5679} ae 0 5.5 0
􏽥C2 {15679} {15679} af 0 0 12
􏽥C3 {245679} {59} abe 0 9 0
􏽥C4 {124567910} {58} abf 0 9 7.5
􏽥C5 {135679} {579} ace 0 4.33 7.5
􏽥C6 {1356789} {1579} acf 0 6.67 15
􏽥C7 {1345679} {67} ade 0 6.2 5
􏽥C8 {1345678910} {167} adf 0 7.83 15
􏽥C9 {579} {5} abce 0 5 6.43
􏽥C10 {1579} {59} abcf 0 7.83 12.5
􏽥C11 {14567910} ϕ abdf 0 9 10
􏽥C12 {135679} {7} acde 0 6.2 7.5
􏽥C13 {1356789} {17} acdf 0 7.6 15
􏽥C14 {579} ϕ abcde 0 5 6.43
􏽥C15 {1579} ϕ abcdf 0 7.83 12.5
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Table 6: ,ree-way decision concept by α� 5/6 and β� 1.

Concept 􏽥C Upper extension Mα Lower extension Mβ Intension Y Accept loss R(aP) Noncommitment loss R(aB) Reject loss R(aN)

􏽥C1 {15679} {15679} Af 0 0 12
􏽥C2 {579} {579} Ace 0 0 6.43
􏽥C3 {1579} {1579} acf 0 0 12.5
􏽥C4 {167} {167} adf 0 0 12.86

Table 7: ,ree-way decision concept by α� 6/6 and β� 1.

Concept 􏽥C Upper extension Mα Lower extension Mβ Intension Y Accept loss R(aP) Noncommitment loss R(aB) Reject loss R(aN)

􏽥C1 {15679} {15679} af 0 0 12
􏽥C2 {1579} {1579} acf 0 0 12.5
􏽥C3 {167} {167} adf 0 0 12.86
􏽥C4 {17} {17} acdf 0 0 13.125
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Figure 3: Lattice structure of α� 5/6 and β� 1.
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of the parameter α, when α is less than the value (roughly
0.6), it results in the slight effect of uncertain information
on the decision-making. In other words, the information
obtained from the condition of small α is too vague to
make a clear decision of acceptance or rejection. On the
intension set {ae} side, it is not advisable for decision-
maker to seek the three-way decision concept whose
intension set is {ae}. According to the original form
context, recommending the object x with condition at-
tribute “a” to “consumer e” itself is ambiguous.,erefore,
from Figure 5(a) we cannot obtain the meaningful im-
plication of decision-making and the trend of line is
descending.

Meanwhile, the trend chart of making “f-decision”
(acceptance, noncommitment, or rejection of “consumer f”)
on the new object x is shown in Figure 5(b). According to
Figure 5(b), when α is from 1/6 to α� 3/6, “consumer f” still
cannot make a clear decision of accepting or rejecting the
object x. Nevertheless, when α� 4/6, the decision starts to be
clear and we would like to recommend the object x to
“consumer f” because the loss value of rejection is 12 and
acceptance is 0. When α continues increasing, we find the
loss value of rejection is still 12. Obviously, we should choose
“acceptance” (recommending the object x to “consumer f”).
,e trend of line is ascending and it means that the greater
the parameter α is, the clearer the decision-making is.

From both figures, it is easy to see that the loss function
of three-way decision concept has a shift at the condition of
roughly α� 4/6. In other words from this condition, the
decision-making starts to be explicit, and from the per-
spective of parameter optimization, we could consider the
parameter α at its most optimal. By the way, when we further
consider adding the condition attribute of the new object x,
it also contributes to the efficiency of decision-making.

5. Conclusion

,e interval parameters [α, β] in the concept lattice affect
the concepts and decision space generated by decision

formal context. ,e article is mainly taking the decision
loss function values as the rules of decision-making based
on three-way decision space. With the change of interval
parameters, different three-way decision spaces are ob-
tained. In addition, the decision rules will be explored
from the three-way decision concept in this space. It is
obvious that the decision rules of the same object x are
different under different interval parameters. However,
there definitely exist the optimal interval parameters to
make the decision rules more sufficient and clear. Until
making the decision of acceptance or rejection, according
to the example, we can consider that the best interval
parameters (roughly more than 0.6) are obtained. ,e
conclusion of the optimal parameters provided by our
paper is the same as the best parameters previously ob-
tained by the parameter optimization model [5] of interval
concept lattice. Although there are different ideas for
dealing with the problem of interval parameter optimi-
zation, finally roughly similar conclusions were drawn,
which has provided a reliable basis for selecting parameter
problem of interval concept lattice application. Subse-
quently, we will continue the study of optimization
problem of interval parameters under the setting of green
supply chain investment.
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In this paper, we propose an Attentional Concatenation Generative Adversarial Network (ACGAN) aiming at generating
1024×1024 high-resolution images. First, we propose a multilevel cascade structure, for text-to-image synthesis. During training
progress, we gradually add new layers and, at the same time, use the results and word vectors from the previous layer as inputs to
the next layer to generate high-resolution images with photo-realistic details. Second, the deep attentional multimodal similarity
model is introduced into the network, and we match word vectors with images in a common semantic space to compute a fine-
grainedmatching loss for training the generator. In this way, we can pay attention to the fine-grained information of the word level
in the semantics. Finally, the measure of diversity is added to the discriminator, which enables the generator to obtain more
diverse gradient directions and improve the diversity of generated samples. )e experimental results show that the inception
scores of the proposed model on the CUB and Oxford-102 datasets have reached 4.48 and 4.16, improved by 2.75% and 6.42%
compared to Attentional Generative Adversarial Networks (AttenGAN).)e ACGANmodel has a better effect on text-generated
images, and the resulting image is closer to the real image.

1. Introduction

In recent years, with the rise of artificial intelligence and
deep learning, natural language processing and computer
vision have become the hot research fields. )e text to image
as a basic problem in the field has also attracted the attention
and research of many scholars. Text to image is the gen-
eration of a realistic image that matches a given text de-
scription, requiring processing fuzzy and incomplete
information in natural language descriptions. Text to image
drives the development of multimodal learning and cross-
modal generation and shows great potential in applications
such as cross-modal information retrieval, photo editing,
and computer-aided design.

Since Goodfellow et al. [1] proposed Generative
Adversarial Networks (GANs) in 2014; the network model
has received extensive attention from academia and in-
dustry. With the continuous development of GAN, it has
been widely used to generate realistic high-quality images
based on text descriptions. )e commonly used method
[2–5] encodes the entire text description into a global
sentence vector, which is input to the generator as a con-
dition variable of GAN to generate an image. However, due
to the large structural differences between text and images,
the use of only word-level attention does not ensure the
consistency of global semantics, while it is difficult to
generate complex scenes; moreover, fine-grained word in-
formation is still not explicitly used for generating images.

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 6452536, 10 pages
https://doi.org/10.1155/2020/6452536

mailto:fuyuanhu@mail.usts.edu.cn
https://orcid.org/0000-0002-6818-2221
https://orcid.org/0000-0002-8145-712X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6452536


)erefore, the generated image does not contain enough
details and is still significantly different from the real image.

To address this issue, this paper proposes Attention
Cascade Generative Adversarial Networks (ACGAN). )e
network adopts multilevel cascade structure, the generator
and discriminator in each layer are composed of convolution
units, and a new network layer is added layer by layer during
the training process, and the generator and discriminator are
added for processing the details of the higher resolution
image. At the same time, the deep attentional multimodal
similarity model is introduced into the network, focusing on
the fine-grained information of the word level in the se-
mantics. )e word vector is used as the input of the gen-
erator, and through the constraint of the word vector, in the
case of ensuring that the overall shape of the image is un-
changed, the details of the generated image are emphasized,
the consistency of the image and the semantic cross-mo-
dality is maintained, and the generation process is smooth.
Finally, a measure of diversity is added to a layer of the
discriminator to influence the discriminator’s discriminant,
so that the generator can obtain more diverse gradient di-
rections, increase the diversity of generated samples, and
improve the quality of generated samples.

)e contribution of our method is threefold as follows:

(i) A multilevel cascade structure is proposed, which
improves the resolution of the generated image, and
can generate a high-resolution image of up to
1024×1024.

(ii) Introduce the attention mechanism model into the
network, and make the details of the generated
image richer by paying attention to the fine-grained
information of the word level in the semantics.

(iii) Add the measure of diversity to the discriminator,
increase the diversity of the generated samples, and
improve the quality of the generated samples.

2. Related Works

Generative image modeling is a fundamental problem in
computer vision. )ere has been remarkable progress in this
direction with the emergence of deep learning techniques.
Variational Auto Encoders (VAEs) [6, 7] is aimed to
maximize the lower bound of the data likelihood. Autore-
gressive models (e.g., PixelRNN) [8] that utilized neural
networks to model the conditional distribution of the pixel
space have also generated appealing synthetic images. Re-
cently, Generative Adversarial Networks (GANs) have
shown promising performance for generating sharper im-
ages and video [9–11]. For example, Eghbal-zadeh et al. [12]
proposed a Mixture Density Generative Adversarial Net-
works to improve the clarity and quality of generated images.
Gecer et al. [13] combined the generated confrontation
network with a deep convolutional neural network to re-
construct a 3D facial structure from a single face image. But
training instability makes it hard for GAN models to gen-
erate high-resolution images. A lot of work has been pro-
posed to stabilize the training and improve the image quality
[14–19].

Generating high-resolution images from text descrip-
tions, though very challenging, is important for many
practical applications such as art generation and computer-
aided design. Lyu et al. [9] learn joint embedding to establish
the relationship between natural language and real images,
and then train GAN to generate 64× 64 images that are
conditional on text descriptions. Cao et al. [10] proposed a
Stacked Generative Adversarial Networks, which decom-
pose the complex problem of generating high-quality images
into some subproblems with better control and generate
256× 256 high-resolution images.

Recently, attention models have been widely used in
computer vision and natural language processing, for ex-
ample, object detection [20, 21], video subtitle [22], and
visual question answer [23, 24]. Xu et al. [25] introduced the
attention mechanism into the GAN network and proposed
Attentional Generative Adversarial Networks, which in-
struct the generator to focus on different word-level
fine-grained information when generating different image
subregions. Qiao et al. [26] proposed a global-to-local col-
laborative attention module that uses word attention and
global sentence attention to enhance the consistency of
generated images and semantics.

2.1. 4e Proposed Model. )e Attentional Concatenation
Generative Adversarial Networks model proposed in this
paper consists of two parts: attentional concatenation
generative adversarial networks and deep attentional mul-
timodal similarity model. As shown in Figure 1, the At-
tentional Concatenation Generative Adversarial Networks
model is divided into multiple levels; each layer contains a
generator G and a discriminator D, using a multilevel
cascade structure, increasing generators and discriminators
layer by layer, and continuously adds a new residual network
layer during the training process, corresponding to the
generation from low-resolution to high-resolution images.
)eDeep Attentional Multimodal Similarity Model contains
a common semantic space, mapping the subregions of the
image and the word vector of the sentence into one of the
semantic spaces, and measuring the word-level image and
text similarity. Instead of adopting a one-step approach, the
entire model’s training process tries to generate low-reso-
lution images, then continuously increase the resolution,
and finally generate high-resolution and high-quality
images.

2.2. Concatenation Generative Adversarial Networks. )e
generative network has k generators (G0, G1, ..., Gk−1), which
take the hidden states (h0, h1, ..., hk−1) as input to the gen-
erator (G0, G1, ..., Gk−1), generating images of different
resolutions.

Specifically,

h0 � F0 z, F
ca

cs( 􏼁( 􏼁,

hi � Fi hi−1, F
atten
i cw, hi−1( 􏼁􏼐 􏼑, i � 1, 2, . . . , k − 1,

􏽢xi � Gi hi( 􏼁.

(1)
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Here, z is a noise vector usually sampled from a standard
normal distribution. cs is a global sentence vector, and cw is a
word vector. Fca represents the Conditioning Augmentation
[10] that converts the sentence vector cs to the conditioning
vector. Fatten

i is the proposed attention model at the ith stage
of the attention model. )e attention model Fatten(c, h) has
two inputs: the word features c ∈ RD×T and the image

features h ∈ R􏽢D×N from the previous hidden layer.
Training starts with both the generator G and dis-

criminator D having a low spatial resolution of 64× 64
pixels. As the training advances, we incrementally add layers
to G and D, and all existing layers remain trainable
throughout the process.When doubling the resolution of the
generator G and discriminator D we fade in the new layers
smoothly. During the transition, we treat the layers that
operate on the higher resolution like a residual block, whose
weight increases linearly from 0 to 1.

)en we add a new residual layer and transform word
features into semantic space of image features. Based on the
hidden feature h of the image, a word context vector is
calculated for each subregion of the image.

Finally, the image features and corresponding word
context features are combined to generate an image in the
next stage. In order to generate a real image with multiple
levels (sentence level and word level) of conditions, the final
objective function of the attention generation network is
defined as

L � LG + λLDAMSM,

LG � 􏽘
k−1

i�0
LGi

.
(2)

Here, λ is a hyperparameter to balance the two terms of
equation (2). )e first term is the GAN loss that jointly
approximates conditional and unconditional distributions.
At the ith stage of the ACGAN, the adversarial loss for is
defined as

LGi
� −

1
2
E􏽢xi ∼PGi

log Di 􏽢xi( 􏼁( 􏼁􏼂 􏼃 −
1
2
E􏽢xi ∼PGi

log Di 􏽢xi , cs( 􏼁( 􏼁􏼂 􏼃,

(3)

FC layer

Upsamping

z~N (0, 1) c (sentence)

G0

G1

G2

Residual

Conv 3 × 3

G3

G4

DAMSM Image 
encoder

c (sentence)

c (sentence)

c (sentence)

c (sentence)

c (sentence)

64 × 64 × 3

128 × 128 × 3

256 × 256 × 3

512 × 512 × 3

1024 × 1024 × 3

c (word)

c (word)

c (word)

c (word)

Figure 1: Attentional Concatenation Generative Adversarial Networks Model. Our training starts with both the generator and dis-
criminator having a low spatial resolution of 64× 64 pixels. As the training advances, we incrementally add layers to G and (D), thus
increasing the spatial resolution of the generated images.
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where the unconditional loss determines whether the image
is real or fake, while the conditional loss determines whether
the image and the sentence match or not.

As shown in Figure 2, for unconditional image gener-
ation, the discriminator is trained to distinguish between
real images and forged images. For conditional image
generation, images and variables are input to the discrim-
inator to determine if the image matches the condition, and
the bootstrap generator approximates the conditional image
distribution. Discriminator Di is trained to classify the input
into the class of real or fake by minimizing the cross-entropy
loss defined by

LDi
� −

1
2
Exi ∼Pdatai

log Di xi( 􏼁( 􏼁􏼂 􏼃

−
1
2
E􏽢xi ∼PGi

log 1 − Di 􏽢xi( 􏼁( 􏼁􏼂 􏼃+

−
1
2
Exi ∼Pdatai

log Di xi, cs( 􏼁( 􏼁􏼂 􏼃

−
1
2
E􏽢xi ∼PGi

log 1 − Di 􏽢xi, cs( 􏼁( 􏼁􏼂 􏼃,

(4)

where xi is from the true image distribution pdatai at the ith

scale, and 􏽢xi is from the model distribution PGi
at the same

scale. Discriminators Di of the ACGAN are structurally
disjoint, so they can be trained in parallel and each of them
focuses on a single image scale.

2.3. Deep Attentional Multimodal Similarity Model. )e
Deep Attentional Multimodal Similarity Model [25] learns
two neural networks that map subregions of the image and
words of the sentence to a common semantic space, thus
measuring the image-text similarity at the word level to
compute a fine-grained loss for image generation.

)is paper first uses a standard convolutional neural
network to transform an image into a set of feature maps.
Each feature map represents some subregions of the image.
)e dimension of the feature map is equal to the dimension
of the word vector, and they are treated as equivalent en-
tities. Next, based on each token in the text, attention is
applied to the feature map and their weighted averages are
calculated. Finally, the DAMSM is trained to minimize the
difference between the attention vector and the word vector
described above.

L
w
1 � − 􏽘

k

i�1
logP Si|Mi( 􏼁, (5)

where “w” stands for “word”.
Symmetrically, we also minimize

L
w
2 � − 􏽘

k

i�1
logP Mi|Si( 􏼁, (6)

where P is the posterior probability that sentence Si is
matched with its corresponding image Mi.

Finally, the DAMSM loss is defined as

LDAMSM � L
w
1 + L

w
2 . (7)

Using attention mechanism, the DAMSM is able to
compute the fine-grained text-image matching loss
LDAMSM. And LDAMSM is only applied to the output of the
last generator, because the ultimate goal of this paper is to
generate high-resolution images through the last generator.
If LDAMSM is applied to the images generated by all gen-
erators (G0, G1, ..., Gk−1), the computational cost will in-
crease greatly and the performance will not improve.

2.4. StandardDeviationofMeasuringDiversity. GAN usually
tends to capture only the changes found in the training data.
In order to obtain more training data, this paper has greatly
simplified this approach and has also improved the change
based on “minibatch discrimination”. Not only can feature
statistics be calculated from a single image, but they can also
calculate feature statistics for the entire small batch, thereby
encouraging the generation of images and training images to
display similar statistics. By adding a small batch layer at the
end of the discriminator, the layer learns a large tensor and
converts the input into a set of statistics. Finally, each in-
stance is generated with a separate set of statistics and
connected to the output of the layer so that the discriminator
can use the statistics internally.

3. Experiments and Evaluation

3.1. Experimental Environment and Data. )e algorithm
uses the deep learning framework Tensorflow [27], and the
experimental environment is Ubuntu 14.04 operating sys-
tem, using four NVIDIA 1080Ti graphics processing unit
(GPU) to accelerate the operation. At the same time, all
models were trained on the CUB [28] and Oxford [29]
datasets. As shown in Table 1, the CUB data set contains 200

Real Fake

Upsampling

FC layer

c (sentence)

Unconditional loss

Conditional loss

Figure 2: Discriminator model.
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species of birds with a total of 11,788 images. In this paper,
8855 images are used as training datasets and 2933 images as
test datasets. Since the target area of 80% of the bird images

in the dataset is less than 0.5 [28], we preprocess all images
before training to ensure that the proportion of the bird
target area is greater than 0.75 of the image size. )e Oxford

Table 1: Datasets of experiment.

Dataset CUB CUB Oxford Oxford
— Train Test Train Test
Sample 8855 2933 7034 1155

Table 2: Inception scores and human rank scores for the five GAN models on the CUB and Oxford datasets.

Metric Dataset GAN-INT-CLS GAWWN StackGAN++ AttnGAN ACGAN

Inception score CUB 2.88 ± 0.04 3.62 ± 0.07 4.05 ± 0.05 4.36 ± 0.03 4.48 ± 0.05
Oxford 2.66 ± 0.03 — 3.74 ± 0.03 — 3.98 ± 0.05

Human rank CUB 2.81 ± 0.03 1.99 ± 0.04 1.37 ± 0.02 1.25 ± 0.03 1.17 ± 0.02
Oxford 1.87 ± 0.03 — 1.13 ± 0.03 — 1.06 ± 0.02

A yellow bird with brown 
wings and a pointed bill

This bird is blue and black 
in color, with a sharp beak 

and small eyes
A white bird with white 
feathers and gray wings

This small bird with a 
red belly, a pointed bill 

and red wingsInput

StackGAN++

AttnGAN

ACGAN
(256 × 256)

ACGAN
(1024 × 1024)

Figure 3: Images generated from descriptions using three GAN models trained on CUB test set.
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dataset contains 102 flower categories with a total of 8189
images.)is article uses 7034 pictures as the training data set
and 1155 pictures as the test data set.

3.2. Evaluation Metrics. For the evaluation of the GAN
model, qualitative evaluation is usually used; that is, the
visual fidelity of the image generated by manual inspection is
required.)is method is time-consuming and subjective and
is somewhat misleading. )erefore, this paper mainly uses
two evaluation criteria to evaluate the quality and diversity of
generated images.

3.2.1. Inception Score. We choose numerical assessment
approach “inception score” [16] for quantitative evaluation,

I � exp ExDKL(p(y | x)||p(y))( 􏼁, (8)

where x denotes one generated sample, and y is the text label
corresponding to the sample, p(y) is the marginal distri-
bution, and p(y|x) is the conditional distribution. )e KL
divergence between the marginal distribution p(y) and the
conditional distribution p(y|x) should be large, so that a
variety of high-quality images can be generated. In the
experiments, an inception model was given to the CUB data
sets, and samples of each model were evaluated.

3.2.2. Human Rank. Human rank for qualitative assessment
50 text descriptions was randomly selected in the CUB and
Oxford test sets, and for each sentence, the generated model
generated 5 images. )e five images and corresponding texts
are described to different people to rank the image quality in
different ways, and finally the average ranking is calculated
to evaluate the quality and diversity of the generated images.

4. Experimental Result

)e comparisons between the inception score and human
rank results of various models on the CUB and Oxford
datasets are presented in Table 2. As can be seen from the
table, compared to the inception score of the AttnGAN
model, the inception score of the ACGAN model on the
CUB dataset has increased by 2.75% (Inception score in-
creased from 4.36 to 4.48). )rough the analysis of exper-
imental results, ACGAN scores higher in Inception score
than other GAN models; from an intuitive visual point,
Human rank score is lower than other GAN models. It
shows that the quality and diversity of the sample images
generated by the model in this paper have been enhanced,
and it is closer to the real image.

Subjective visual comparisons between the three
models of StackGAN++, AttnGAN, and ACGAN on the
CUB dataset are presented in Figure 3. It can be seen that
the image details generated by StackGAN++ and AttnGAN
are lost, colors are inconsistent with the text descriptions
(1st and 2nd row), and the shape looks strange (2nd and 3rd
column) for some examples. ACGAN achieved better re-
sults with more details and consistent colors and shapes
compared to AttnGAN. For example, the wings are vivid in
the 3rd and 4th row. By comparing ACGAN with Attn-
GAN, we can see that ACGAN contributes to producing
fine-grained images with more details and better semantic
consistency. For example, the color of the bird in the 2nd
column was corrected to black. By comparing ACGAN
(256 × 256) with ACGAN (1024×1024), we can see that the
images generated by ACGAN (1024 ×1024) have higher
definition, more vivid colors, and more lifelike details.
Generally, content in the CUB dataset is less; therefore, it is
easier to generate visually realistic and semantically con-
sistent results on CUB. )ese results confirm that ACGAN

A yellow bird with brown 
wings and a pointed bill

This bird is blue and black 
in color, with a sharp beak 

and small eyes
A white bird with white 
feathers and gray wings

This small bird with a red 
belly, a pointed bill and 

red wingsInput

StackGAN++

AttnGAN

ACGAN
(256 × 256)

ACGAN
(1024 × 1024)

Figure 4: Details (beak, wings) comparison of the images generated from descriptions using three GAN models trained on CUB test set.
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is better than AttnGAN, and the generated image is closer
to the real image.

Detailed (beak, wings) comparisons of the results
between the three models of StackGAN++, AttnGAN,
and ACGAN on the CUB dataset are presented in
Figure 4. It can be seen that the beak, wings, and feet of

the bird are clearer, and the edges and details are more
realistic in the images generated by the ACGAN in this
paper. For example, the beak of a bird is more vivid and
conforms to the text description in the 4th column.
Compared with StackGAN++ and AttnGAN, it has
achieved better results.

A pink flower with 
raised yellow stamens

�is flower has long thin 
yellow petals with many deep 

yellow anthers in the center

�e petals of this flower 
are pink with white edges 

and pink stamensInput

GAN-INT-
CLS

StackGAN++

ACGAN
(256 × 256)

ACGAN
(1024 × 1024)

Figure 5: Images generated from descriptions using three GAN models trained on Oxford test set.
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Subjective visual comparisons between the three models
of GAN-INT-CLS, StackGAN++ and ACGAN on the Ox-
ford dataset are presented in Figure 5. Details (petals)
comparison of the results are presented in Figure 6. It can be
seen that the image details generated by GAN-INT-CLS and
StackGAN++ are lost, and the shape looks strange (1st and
2nd row) for some examples. ACGAN achieved better re-
sults with more details and consistent colors and shapes
compared to StackGAN++. For example, the overall shape of
the flowers is clearer, and the details of the petals are more
obvious in the 4th row.)ese results confirm that ACGAN is
better than StackGAN++, and the generated image is closer
to the real image.

5. Conclusions

)is paper adds attention mechanism and multilevel cascade
structure to generate adversarial network, uses attention
mechanism to pay attention to the fine-grained information
of word level in semantics, enriches the details of generated
images, and generates through cascade structure Higher
resolution images. Experiments have shown that, on the
same data set, the Attentional Concatenation Generative
Adversarial Networks have clearer edge details and local
textures against the image generated by the network, making
the generated image closer to the real image. Although this
method has achieved good results in generating images, it is
still difficult to model complex scenes in life. How to deal
with this problem needs further study. At the same time, the

generated image is similar to the training data, lacking di-
versity. )erefore, it is intended to combine the zero shot
learning and the generative adversarial networks to syn-
thesize the new category image, which will be the focus of the
next step.
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In view of existing Visual SLAM (VSLAM) algorithms when constructing semantic map of indoor environment, there are
problems with low accuracy and low label classification accuracy when feature points are sparse. *is paper proposed a 3D
semantic VSLAM algorithm called BMASK-RCNN based on Mask Scoring RCNN. Firstly, feature points of images are extracted
by Binary Robust Invariant Scalable Keypoints (BRISK) algorithm. Secondly, map points of reference key frame are projected to
current frame for feature matching and pose estimation, and an inverse depth filter is used to estimate scene depth of created key
frame to obtain camera pose changes. In order to achieve object detection and semantic segmentation for both static objects and
dynamic objects in indoor environments and then construct dense 3D semantic map with VSLAM algorithm, a Mask Scoring
RCNN is used to adjust its structure partially, where a TUM RGB-D SLAM dataset for transfer learning is employed. Semantic
information of independent targets in scenes provides semantic information including categories, which not only provides high
accuracy of localization but also realizes the probability update of semantic estimation by marking movable objects, thereby
reducing the impact of moving objects on real-timemapping.*rough simulation and actual experimental comparison with other
three algorithms, results show the proposed algorithm has better robustness, and semantic information used in 3D semantic
mapping can be accurately obtained.

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a
technology which enables robots or UAVs to realize au-
tonomous positioning in an unknown environment and
autonomous mapping. *e robot can get rich information
through sensors, which brings more conveniences to solve
the problem of localization and mapping. *erefore, SLAM
technology is undoubtedly a priority for robot autonomy.
Compared with traditional SLAM based on laser sensor,
SLAM based on camera vision can make full use of rich
texture information on pictures taken by the camera, which

provides a huge advantage in relocation and classification
of scene semantic information. In recent years, intelligent
robots have been widely used in various industries, espe-
cially for rapid development of Visual SLAM (VSLAM).
Image feature extraction methods represented by deep
learning technology have appeared in VSLAM. Meanwhile,
deep learning also associates images with semantics and
combines with VSLAM methods to build a semantic map
and semantic knowledge base of environment. Salehi et al.
[1] focused on the real-time fusion of monocular Vision
SLAM and GPS data, where a hybrid method of con-
strained BA/position map is put forward to obtain the
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attitude estimation and reconstruction of city scale and
geographical parameters. Liu et al. [2] proposed a SSD
algorithm based on YOLO and Faster RCNN, adding
multiple convolution layers of different scales to maintain
the accuracy of Faster RCNN, while a faster speed than
YOLO is obtained. Zhang et al. [3] used collinear rela-
tionship of points to optimize the existing VSLAM algo-
rithm based on points, and a practical line matching
algorithm was given, where compensating computation
assisted by straight beam was utilized and the perspective of
n-point algorithm was improved. *e proposed method is
evaluated on indoor sequences of different ranges in the
dataset of TUM and also compared with point-based and
line-based methods. *e results show that the designed
algorithm has faster computing speed in comparison with
VSLAM system based on point line. Gao et al. [4] proposed
an improved method of augmented reality registration
based on VSLAM to solve the problem of unstable regis-
tration and low registration accuracy of unmarked aug-
mented reality of standard homographic matrix. *e
VSLAM algorithm generates a 3D scene map in the process
of dynamic camera tracking, and then AR based on VSLAM
uses 3D map of scene reconstruction to calculate the po-
sition of virtual object, which enables and enhances the
stability and accuracy of AR registration.

Recently, robustness and availability of VSLAM tech-
nology have been strengthened, which tends to be mature
[5]. However, sparse image features can provide limited
environmental semantic information in dealing with dy-
namic target motion, lack of texture, or single texture en-
vironment. For these problems, hierarchical image feature
extraction methods represented by deep learning have
appeared in the field of VSLAM in recent years, providing
ideas for solving such problems. By modeling bounding box
of the most representative first-level detector YOLOv3 in
accordance with Gaussian parameters and redesigning loss
function, Choi et al. [6] proposed a method to improve
detection accuracy and support real-time operation. Li et al.
[7] put forward a multitarget detection framework inte-
grating RCNN and DPM, which can precisely detect each
single object among all objects in the image. Especially better
performance was shown when objects are close to each
other. Cai and Vasconcelos [8] developed a multilevel target
detection structure, namely, Cascade RCNN, which includes
a series of detectors trained by increasing IOU threshold,
and higher selectivity for approaching misinformation is
obtained. Ren et al. [9] proposed an improved anchoring
scheme, where high resolution characterized mapping of
small targets for improvement of its performance was used.
Eggert et al. [10] introduced an improved scheme for
generating anchor proposals and proposed a modification to
Faster RCNN which leverages higher resolution feature
maps for small objects. A novel multiscale location per-
ception kernel representation (MLKP) method was pre-
sented by Wang et al. [11] to obtain the high-order statistics
of depth features, and it combined discriminated high-order
statistics into representation of object proposals for effective
detection for objects. Note that this method can be applied to
target detection flexibly. Li et al. [12] put forward a SOR

Faster RCNN algorithm, which was used to search same
target in different scenes with less training samples. A new
robust Faster RCNN method was developed by Zhou et al.
[13] to detect targets in multitag images. Unlike Fast RCNN,
this design method has stronger robustness. Tao et al. [14]
proposed a method of 3D environment semantic mapping
based on Mask RCNN algorithm. *e input image sequence
was filtered by ORB-SLAM for key frame and then image
semantic segmentation was combined with SLAM tech-
nology to build a 3D semantic map of the environment.
Schorghuber et al. [15] fused a robust static weighting
strategy based on corresponding distance of depth edge into
intensity assisted ICP and thus proposed a real-time RGB-D
visual range measurement method. Laidlo and Leutenegger
[16] proposed a 3D reconstruction system called Deep-
Fusion which leverages the output of a convolutional neural
network (CNN) in DeepLab-v2 [17] to produce fully dense
depth maps for key frames that include metric scale.
DeepFusion fuses the output of a semidense multiview
stereo algorithmwith the depth and gradient predictions of a
CNN in a probabilistic fashion, using learned uncertainties
produced by the network. McCormac et al. [18] proposed an
improved Elastic Fusion SLAM [19] method based on
convolution neural network to build a dense 3D semantic
map, which relies on Elastic Fusion SLAM algorithm to
provide estimation for interframe pose of indoor RGB-D
video, uses convolution neural network to predict classes
and labels of pixel-level object, and finally combines
Bayesian upgrading strategy and conditional random field
model to realize probability upgradation of predicted CNN
value from different perspectives so as to generate a dense
3D semantic map. Mur-Artal et al. [20, 21] proposed a ORB-
SLAM2method, which uses depth information to synthesize
a three-dimensional coordinate, and the information of an
image can be accurately extracted. *e backend uses BA
algorithm to build a global sparse map reconstruction.
*erefore, this method is more lightweight and can be used
in semantic mapping [22]. However, these aforementioned
methods have some drawbacks in correctness of classifica-
tion in the case of sparse feature points.

Motivated by the aforementioned existing problems, this
paper proposed an ingenious semantic VSLAM algorithm
combining BRISK feature [23] with a VSLAM algorithm
based onMask Scoring RCNN [24]. Semantic information of
independent targets in scenes provides semantic informa-
tion including categories. Meanwhile, the impact of moving
objects during semantic mapping is reduced by the prob-
ability update of semantic estimation by marking movable
objects.

2. Three-Dimensional Map Generation

2.1. System Overview. *e overall architecture of the algo-
rithm has two parts including front-end processing and
back-end processing. A BRISK algorithm is used in front-
end processing to extract features as well as key points. A
Mask Scoring RCNNmethod is used in back-end processing
including segmentation, semantic association, and semantic
mapping as shown in Figure 1.
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2.2. Dense SLAM Algorithm Based on BRISK Feature
Extraction. Binary Robust Invariant Scalable Keypoints
(BRISK) algorithm is similar to SIFT (scale-invariant feature
transform), SURF (speeded-up robust feature), and ORB
(oriented FAST and rotated BRIEF) [23], which is a feature
point matching algorithm, but calculation speed is faster than
other two algorithms. BRISK algorithm constructs image
pyramid for multiscale expression, so it has good rotation
invariance, scale invariance, good robustness, and so on. In
particular, BRISK algorithm performs the best for image
registration with large blurs. BRSIK algorithm consists of two
parts: detection of key points and description of key points.

*e detection for key points of BRISK is based on scale
space composed of image pyramid. FAST is used to detect
candidate key points in all layers of pyramid image, and
candidate key points suppressed by nonmaximum are taken

as final key points. After all the key points in image are
obtained, key points need to be described. Different from
descriptors constructed by SURF, SIFT, and other algo-
rithms, BRISK algorithm applies binary string to describe
key points so as to use Hamming distance to calculate
matching degree and enable it to have a calculation speed
faster than Euclidean distance. BRISK describes features in
the mode of neighborhood sampling. *e algorithm con-
structs multiple Bresenham concentric circles with key
points as a center and takes N points evenly distributed to
calculate feature direction and binary descriptors, respec-
tively, in accordance with its long distance sampling points
and short distance sampling points. Finally, Hamming
distance is used to match above binary feature description so
as to obtain global motion estimation of image.

In order to avoid the problem of sparse point cloud map
caused by strict screening strategy to avoid gross error, this
paper proposed a 3D mapping method of inverse depth
filtering based on Visual SLAM. *e task of inverse depth
filter is used to estimate scene depth of created key frame and
only build matching cost within depth range, which greatly
reduces stereo matching time [25]. Based on the principle of
depth similarity between adjacent pixels, after initial depth
map is obtained, smoothing of intraframe and elimination of
outer point are carried out, which increased density of depth
map and eliminated possible isolated matching points. And
Gaussian fusion is carried out for each candidate inverse
depth hypothesis through an inverse depth fusion method of
multikey frame to optimize current depth value of key frame.
*e specific algorithm steps are as follows:

Step 1: measuring for scene depth. Each map point
observed by key frame at any time is projected into key
frame image to calculate the depth value of the map
point in the key frame coordinate system. Maximum
depth and minimum depth are selected to set inverse-
depth search range of scene.

pi � xi, yi, zi( 􏼁
T

, (1)

p
k
i � Tk,wpi � x

k
i , y

k
i , z

k
i􏼐 􏼑

T
, (2)

pmin � min z
−k
i􏼐 􏼑,

pmax � max z
−k
i􏼐 􏼑,

i ∈ (0, n),

(3)

where pi is the homogeneous representation of 3D
coordinates of map points in the world coordinate
system; Tk,wpi is the pose transformation between the
camera coordinate system and world coordinate system
at time k; pk

i � Tk,wpi is the homogeneous representa-
tion of 3D coordinates of map points in the camera
coordinate system at time k; andN is the number of map
points that can be observed in the key frame at time k.
Step 2: stereo matching. Pixel depth is calculated by
using aggregate stereo matching algorithm of variable
weight cost [26]. Based on layers of cost volume in the
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point clouds 

Generate a 3D map
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Real-time
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Figure 1: *e entire framework of the proposed algorithm.
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limited stereo matching of scene depth value calculated
in Step 1, it is only searched in the range of parallax
opposite to inverse depth (pmin, pmax) so as to reduce the
amount of calculation. Post-processing step of parallax
deletion in stereo matching is eliminated at the same
time, only retaining inverse depth of pixels with the same
parallax in the left and right consistency matching.
Step 3: elimination of isolated outer point. It is assumed
that parallax obtained by stereo matching follows the
Gaussian distribution of variance 1, i.e., d: N(d0, 1):

p � z
− 1

� d(fb)
− 1

, (4)

where d0 is the parallax value calculated by stereo
matching, f is the focal length of the camera, b is the
baseline, z is the depth value of the pixel, and p is the
inverse depth. *e inverse depth distribution after
transformation is as follows:

p: N
d0

fb
,
1

fb
􏼠 􏼡. (5)

*e inverse depth map obtained in stereo matching
stage is filled and isolated outliers are eliminated. *e
specific steps are as follows:

(1) For each pixel with inverse depth distribution, the
number of pixels whose inverse depth distribution
meets χ distribution of less than 5.99 is calculated.
As shown in formula (6), inverse depth is elimi-
nated in case of number less than 2. When the
number is greater than 2, formula (7) is used to fuse
the inverse depth that meets the requirements of χ
distribution. After fusion, inverse depth of the pixel
is pp, while variance σ2pp

is theminimum variance of
inverse depth before fusion.

px − py􏼐 􏼑
2

σ2x
+

px − py􏼐 􏼑
2

σ2y
< 5.9, (6)
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􏽘
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􏽘
n

1/σ2pj
􏼒 􏼓

, (7)
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􏽘
n

1/σ2pj
􏼒 􏼓pj

􏽘
n

1/σ2pj
􏼒 􏼓

,

σ2p �
1

􏽘
n

1/σ2pj
􏼒 􏼓

,

(8)

where x and y are eight surrounding pixels around
current pixel and n is a number which satisfies χ
distribution.

(2) For each pixel that does not have an inverse depth
distribution, check whether the inverse depth dis-
tribution between the eight surrounding pixels
meets the chi-square distribution. When the
number which satisfies χ distribution is greater than
2, formula (2) is used for inverse depth fusion, and
homomorphic variance is the minimum variance of
inverse depth before fusion.
Step 4: fusion of inverse depth. After position and
pose of key frame are calculated by tracking thread,
current depth information of key frame is optimized
through following six inverse depth maps of the key
frame. *e specific steps are as follows:

(1) Project map point corresponding to inverse depth
map of current key frame to adjacent key frame and
read the inverse depth p0 of projection point and
inverse depth variance of σ20.

(2) Map points whose inverse depth is p0 + σ0, p0 and
p0 − σ0 in the adjacent frame to current frame, and
the reverse depth of p1, p2, and p3 is retained.

(3) Construct candidate inverse depth of fusion, as-
suming ρ: N(p2, [max(|p1 − p2|, | p3 − p2)]

2).
(4) Cycle above steps to obtain 6 candidate hypotheses of

fusion inverse depth and select inverse depth hy-
pothesis to be fused by using χ distribution less than
5.99. After fusion, inverse depth pp and variance σ2p
are
where p represents pixels of current frame and n
represents numbers of inverse depth to be fused.
Step 5: re-elimination of isolated outer point. Based
on assumption that depth of adjacent areas in scene
is similar, inverse depth map obtained by inverse
depth fusion is smoothed in frame and removed
from outer points so as to improve accuracy of
output map points and increase density of point
cloud. *e specific steps are reverse depth filling and
removal in Step 2.
Step 6: get cloud point map. All points in the
processed depth graph are transformed to the
global coordinate system, and point cloud map is
obtained to construct current environment map.
However, if point cloud data of each frame are
integrated into map, a lot of computing resources
will be occupied, thus reducing real-time per-
formance of the system. *erefore, this paper uses
point cloud map based on key frame to build
dense environment map by dividing an entire map
into several submaps with specific key frames to
reduce memory consumption. *e extracted key
frame is optimized and saved to global map, and
the dense global map is finally output, as shown in
Figure 2.

For a key frame, the RGB-D camera provides color image
and depth image. *e formula of 3D point cloud in ac-
cordance with camera internal parameters is as follows:
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(9)

where fx, fy, cx, cy are internal parameters of the camera;
(u, v) is the image coordinate; (x, y, z) is the image coordinate
system; d is the distance of pixel point measured by the depth
camera, with unit of mm; and s is the scale coefficient of
actual distance andmeasured distance d. In this method, one
of the advantages of point cloud is that it can be generated
directly from RGB-D image efficiently without additional
processing, with very intuitive operation of filtering
(Algorithm 1).

3. Semantic Information Acquisition

*e task of target detection includes classification and po-
sitioning, which not only gives the category information of
an object to be detected but also determines position and size
of the object in an image and surrounds it with a smallest
rectangular frame.*emain steps of target detection include
preprocessing of input image and filtering of candidate areas
of the image by a sliding window. *en, one kind of feature
extraction algorithm is used including SIFT, HOG, or DPM
to extract features for candidate areas, and finally a

classification algorithm is used to classify extracted features.
However, some defects such as unstable matching, weak
antinoise ability, slow detection speed, and poor extraction
effect for fuzzy and smooth edges coexist in the traditional
object detection model. Compared with the traditional
object detection model, the object detection model based on
deep learning has more powerful feature expression ability,
strong generalization ability, and good robustness.

A BMASK-RCNN network is designed in this paper
which refers to Mask Scoring RCNN based on deep neural
networks. Mask Scoring RCNN evolves from Mask RCNN,
whose network framework is shown in Figure 3. *e tra-
ditional Mask RCNN consists of two stages. *e first stage is
realized by convolution of RPN. Regardless of the object
category, bounding box of a candidate object will be pro-
posed. *e second stage is called RCNN stage, which uses
RoIAlign to extract features for each candidate where a
bilinear interpolation is used to complete pixel-level
alignment and finally generate candidate classification,
bounding box regression, and mask prediction.

*e loss function of Mask RCNN consists of three parts,
namely, classification error, detection error, and segmen-
tation error. *e expression is as follows:

L � Lcls + Lbox + Lmask, (10)

where Lcls and Lbox are the same with Faster RCNN; mask
branch has dimensions of km2 for each ROI, which indicates
the solution is k binary masks with the solution of m×m; K
represents numbers of category, conducting sigmoid for
each pixel; and Lmask is defined as average entropy loss of
binary cross.

(a1) (a2)

(a3) (a4)

(a)

(b3) (b4)

(b1) (b2)

(b)

Figure 2: Key frame reconstruction in submaps. (a) Local image of four segments of experiments. (b) Local image of four segments of
experiments after being constructed.
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yijlog 􏽢y
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ij + 1 − yij􏼐 􏼑log 1 − 􏽢y

k
ij􏼐 􏼑􏽨 􏽩,

(11)

where yij is the label of cell (i, j) in the real mask within
region ofm×m and 􏽢yk

ij is the predicted value of the same cell
in the k learning mask of ground truth value class.

However, the score for detecting (instance segmentation)
hypotheses is determined by the largest element in its clas-
sification score in the currentMask RCNN framework. Due to
clutter background, occlusion, and other problems, the score
for classification may be high but mask quality is low. To
overcome this problem, on the premise of generality of Mask

Scoring RCNN, MaskIoU head module is added to enable the
improved Mask RCNN for obtaining higher mask scores.

MaskIoU head is used to regress the IoU between
predicted mask and its true label mask. For this purpose,
feature concatenation and predicted mask of RoIAlign layer
are used as input of MaskIoU head. A maximum pooling
layer with a kernel size of 2 and a step size of 2 is used to
make the predicted mask have the same space size as the RoI
feature, and only MaskIoU is chosen to return to real label
class. *e MaskIoU head consists of four roll up layers and
three fully connected layers. *e four roll up layers follow
mask head and set the kernel size and filter number of all the
convolution layers to 3 and 256, respectively. *ree fully
connected (FC) layers follow RCNN head and set output of

(1) Input: map point data x
(2) Output: point cloud map y
(3) *e search range of scene depth measurement (pmin, pmax) is defined as pi � (xi, yi, zi)

T

(4) *e scene depth value limits the number of layers of matching cost in stereo matching
(5) Isolated outlier culling while p � z− 1 � d(fb)−1d: N(d0, 1) then *e inverse depth distribution after transformation is

p: N((d0/fb), (1/fb))

(6) Inverse deep fusion
(7) Isolated outlier secondary culling
(8) Get point cloud map

ALGORITHM 1: 3D mapping method for inverse depth filtering.

Backbone network

RolAlign

Input image

7 × 7
× 256 1024 1024

RCNN head

Class

Box

28 × 28
× 1

28 × 28
× C

28 × 28
× 256

14 × 14
× 256

14 × 14
× 256 ×4

×3

Concat

14 × 14
× 257

14 × 14
× 256

7 × 7
× 256 1024 1024 C

MaskloU

MaskloU head

Mask head

MaxPooling

RolAlign

Figure 3: *e network framework of Mask Scoring RCNN [24].
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first two FC layers to 1024 and the final FC output to the
number of classes.

Table 1 is a comparison of results of MS RCNN algo-
rithm and other algorithms on COCO test set, which shows
that the MS RCNN algorithm has obvious advantages over
other algorithms.

4. 3D Semantic Mapping Method

In the process of semantic mapping, VSLAM not only obtains
geometric information in the environment but also recog-
nizes independent individuals and obtains semantic infor-
mation such as their position, posture, and functional
attributes. *e key of semantic VSLAM is to accurately
recognize objects in the environment. Extracted features from
target frame correspond to stored target object and map data,
respectively, and then mapping relationship between the
image data and the target object is established. *e core idea
of this paper can be expressed as follows: semantic infor-
mation is extracted from key frames during the process of 3D
mapping, and then the semantic information is fused into the
constructed 3D map to create a new 3D semantic map. *e
flowchart of 3D semantic mapping is shown in Figure 4.

Firstly, Mask Scoring RCNN is used to train semantic
database and then determine whether the current frame is a
key frame. After key frame is determined, objects contained
in semantic database in frame are detected and segmented,
and then 2D image in the current key frame is semantically
labeled. Finally, points containing semantic information in
2D image are mapped to 3D point cloud. It is regarded as the
same object if there is the same semantic information.

For a system, system resources will be greatly consumed
if all the image frames acquired by the camera are processed,
so image key frame is usually selected for processing, and
front-end tracking module of SLAM algorithm determines
whether to select a current image frame as the key frame.
Rules of key frame selection are as follows:

(1) *ere must be a sequence interval between the
current frame and the previous key frame

(2) *e thread of the local map is idle
(3) *e current frame and previous key frame share a

build area below a certain range
(4) *e current frame has enough feature points to

match, as shown in Algorithm 2

For each key frame, semantic information Xt � Xk􏼈 􏼉
N

can be obtained through instance segmentation algorithm of
Mask Scoring RCNN to obtain semantic information
Xt � Xk􏼈 􏼉

N, whereXk � (xa
k, xb

k, xc
k); xa

k represents category
of instance object; xb

k represents outline of instance object;
and xc

k represents confidence level of instance object. *e
result of semantic acquisition for a key frame is shown in
Figure 5.

*e flowchart of semantic mapping is shown in Figure 4.
After a key frame is selected, the key frame will be processed
by two threads simultaneously: one is VSLAM algorithm,
which runs according to original VSLAM system; the other
is mainly the association and fusion process of object

semantic.*e obtained semantic information is processed in
two aspects: on one aspect, feature points with dynamic
category are marked as unavailable to reduce the impact of
object movement on the mapping. On the other aspect, 2D
image with semantic annotation information in the key
frame is mapped to 3D point cloud so as to find mapping
relationship between map points through finding feature
points of object frame and semantic information. Algo-
rithm 3 is used for data fusion.

5. Experiments and Analysis

5.1. Introduction to Experiment Platform. *is experiment
uses a self-built experimental platform, as shown in Figure 6,
which is equipped with Microsoft Kinect 3.0 depth camera.
*e main body is composed of a main control unit, bracket,
driving wheel, and chassis.*e operating system adopts ROS
(Robot Operating System) [30]. ROS is a robot-oriented
open source operating system, which provides services in-
cluding hardware abstraction, low-level device control,
implementation of commonly functions, interprocess
messaging, and package management. Operating frame is a
processing architecture where ROS communication module
is used to realize network connection of loose coupling
between modules. It performs various types of communi-
cation, including service-based synchronous RPC (Remote
Procedure Call) communication, topic-based communica-
tion of data flow, and data storage on parameter server. *e
mobile robot independently designed in this paper is a
comprehensive experimental platform integrating envi-
ronment perception, dynamic decision making and plan-
ning, behavior control, and execution. Deep learning and
training are carried out in Ubuntu 18.04 system environ-
ment, with processor model of Intel i9-9900k andmemory of
64GB. In order to get higher training and testing speed, this
paper uses GTX 2080Ti graphics card to accelerate training.

5.2. Verification Experiments. In order to prevent irrelevant
semantic information from interfering with map con-
struction, the network structure of Mask Scoring RCNN is
adjusted. *is experiment uses a TUM RGB-D SLAM
dataset, where 24 types of objects are selected as shown in
Table 2.

Since the onboard computer of the robot is not
equipped with a GPU processor, the target detection al-
gorithm of this paper is completed by a graphics work-
station which uses TensorFlow as the framework. ROS is
used for communication between the workstation and the
robot. *e graphics workstation is equipped with a
GTX2080Ti graphics card for computing acceleration.
After the key frame is detected, the semantic information of
the target point cloud can be obtained according to the
coordinate correspondence. *e image of target detection
and recognition effect and semantic map of dense point
cloud are shown in Figure 7.

Comparisons of loss iteration curves for four algorithms
are shown in Figure 8.*e red line in Figure 8 represents the
loss value of the proposed BMASK-RCNN method, and its

Discrete Dynamics in Nature and Society 7



loss value is always smaller than Fast RCNN and Faster
RCNN. Although between 0.5×104 iterations and 1.5×104
iterations, the loss value of BMASK-RCNN is comparable to
Mask RCNN, but after 15000 iterations, the curve of
BMASK-RCNN stabilized below Mask RCNN. After
1.5×104 iterations, it can be seen that the proposed BMASK-
RCNN method is more accurate than three methods.

Comparisons of precision-recall curves for four algo-
rithms are shown in Figure 9, where the ordinate value

represents detection accuracy of a measured target. *e
value of abscissa represents recall rate, namely, the total
number of correctly detected targets divided by the total
number of targets. Obviously, when the area under the curve
is larger, the performance of the algorithm is better, and the
detection effect is more accurate and complete. It can be seen
from Figure 9 that the area under the precise recall curve of
this algorithm is significantly larger than other three
methods. Simulation results show that the proposed

Table 1: Comparative results of MS RCNN algorithm and other instance segment algorithms on COCO testing set.

Method Backbone AP AP@0.5 AP@0.75 APS APM APL
MNC [27] ResNet-101 23.2 43.2 25.1 4.5 24.8 44.3
FCIS [28] ResNet-101 28.9 48.7 — — — —
FCIS+++ [28] ResNet-101 34.2 53.7 — — — —
Mask RCNN [14] ResNeXt-101 FPN 36.9 61.2 38.6 17.1 38.7 52.4
MaskLab+ [29] ResNet-101(JET) 37.8 62.4 41.0 18.2 40.9 50.7
Mask RCNN ResNet-101 33.3 55.0 36.6 13.2 36.4 52.3
MS RCNN 35.4 54.9 38.1 13.7 37.6 53.3
Mask RCNN ResNet-101 FPN 37.0 59.2 39.5 17.1 39.3 52.9
MS RCNN 38.3 58.8 41.5 17.8 40.4 54.4
Mask RCNN ResNet-101-DCN+FPN 38.4 61.2 41.2 18.0 40.5 55.2
MS RCNN 39.6 60.7 43.1 18.8 41.5 56.2
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Figure 4: Flowchart for construction of semantic map.
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Figure 5: Acquisition of semantic information.

Input: last key frame;
Output: new key frames;

(1) if
(2) (1) *e interval between the current and previous key frame sequence is 30 frames;
(3) (2) Local map thread is idle;
(4) (3) *e current frame and previous key frame share a build area threshold of less than 90%;
(5) (4) *e number of matching point pairs is at least 100;
(6) Select as key frame;
(7) else
(8) discarded;
(9) end if

ALGORITHM 2: Key frame selection algorithm.

Input: feature points and semantic features on the current key frame；
Output: 3D global semantic map coordinates;

(1) Coordinate system;
(2) Mark unusable points on map;
(3) Determine current frame;
(4) if initial frames then
(5) (1) Find map point coordinates corresponding to the target feature points;
(6) (2) Get semantic information about the target pk � (p1, p2, p3), where p1 is the category, p2 is the confidence of the detection

result, and p3 is the target contour;
(7) (3) Semantic information is associated with geometric feature points through mapping relation so that feature points have both

geometric and semantic information;
(8) (4) *e relative motion of the camera is calculated according to feature matching, and the coordinates of the 3D map

corresponding to the target feature points are found;
(9) else
(10) (5) *e new parameters are substituted into the built model;
(11) (6) Insert a new key frame;
(12) (7) Repeat step (1), step (2), step (3), and step (4);
(13) (8) Save coordinate data;
(14) end if

ALGORITHM 3: Data association and fusion processes.

Discrete Dynamics in Nature and Society 9



Kinect 3.0

Master

Support

Chassis

Laser radar

Driving wheel

Figure 6: Experimental platform of robots.

Table 2: Selection for 24 types of objects.

Chair Air conditioner Screen Robot Desk Bookcase
Door Keyboard Mouse Drone Cup Person
Trophy Switchbox Bottle Desk Flower pot Book
TV Jackboard Cell phone Potted plant Suitcase Umbrella

(a) (b)

Figure 7: Effect image of target detection and recognition (a) and semantic map of dense point cloud (b).
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BMASK-RCNN method has higher accuracy than other
three methods.

Figures 10 and 11 show error analysis graph generated
using TUM dataset of freiburg2_large_with_Loop and
freiburg1_XYZ to run the proposed VSLAM algorithm.
freiburg1_xyz is a common small scenario dataset of TUM
dataset, and freiburg2_large_with_loop is a large scene
dataset from TUM. It can be seen from Figures 10 and 11
that overall effect of the proposed VSLAM algorithm is
better than RGB-D SLAM. In the small environment, two
systems have better stability; however, compared with
RGB-D SLAM, the red lines representing errors in the
absolute trajectory error diagram of the VSLAM algo-
rithm are significantly reduced. In large scenarios with
closed loops, under the influence of complex environ-
ment, RGB-D SLAM errors are relatively high and prone
to drift. However, through the semantic information in
the scene, the VSLAM algorithm can improve accuracy of
mapping and localization, and thus the peak value of blue

broken line in the relative pose error is small. In the same
period of time, the peak value of broken lines is kept
within 0.3 m, while the peak value of RGB-D SLAM lines
reaches 0.8 m at most. *e attitude error of the proposed
VSLAM algorithm is closer to the same range, and the
error is relatively low. In large scenarios, the performance
of the proposed VSLAM algorithm is obviously better
than RGB-D SLAM.

In order to obtain more accurate experimental results,
the TUM RGB-D SLAM dataset is used which provides
RGB-D images at a frame rate of 30Hz, with a resolution of
640× 480, as shown in Figure 12, for the operation effect.

*e front-end part of the algorithm is the SLAM pose
estimation and synchronous positioning module, which
performs target detection tasks at the same time. *en, key
frame pictures as well as all the useful data of key frame
images including corresponding map points, semantic in-
formation, and position information are saved. Finally, data
are transmitted to the server for data fusion calculation.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
Lo

ss
0 0.5 1

Iteration
1.5 2 2.5

×104

Fast RCNN
Faster RCNN

Mask RCNN
BMASK RCNN

Figure 8: Curve comparative chart of loss iteration.

1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1
0

0
Recall

Pr
ec

isi
on

Fast RCNN
Faster RCNN

Mask RCNN×
BMASK RCNN

Figure 9: Curve comparative chart of precision and recall.

Discrete Dynamics in Nature and Society 11



–1.0 –0.5 0.0 0.5 1.0 1.5
x (m)

0.5

0.0

–0.5

–1.0

y (
m

)

Ground truth
Estimated
Difference

(a)

0.05

0.04

0.03

0.02

0.01

0.00

0 20 40 60 80
Time (s)

Tr
an

sla
tio

na
l e

rr
or

 (m
)

(b)

Figure 10: Error analysis of dataset freiburg1_xyz. (a) Absolute track error for construction ofmap. (b) Relative pose error for construction ofmap.

–2

–2

–1

–1

0

0

1

1

2

2

3

x (m)
–3

y (
m

)

Ground truth
Estimated
Difference

(a)

Time (s)

Tr
an

sla
tio

na
l e

rr
or

 (m
)

0 10 20 30 40

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

(b)

Figure 11: Error analysis of dataset freiburg2_large_with_loop. (a) Absolute track error for construction of map. (b) Relative pose error for
construction of map.

Figure 12: Operation images of the dataset.
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Additionally, a semantic map is built in the robot in real time
as shown in Figure 13.

6. Conclusion

*is paper firstly uses a BRISK algorithm to extract feature
points, then a Mask Scoring RCNN algorithm is used to
detect targets and obtain semantic information of key targets
in the environment, and the relative position relationship
between target detection results is established. *en, targets
are matched, and the similarity is calculated between key
frames. Finally, the Mask Scoring RCNN algorithm is used
to complete segmentation of targets, and a dense 3D se-
mantic map surrounding the robot is constructed. *e
proposed method in this paper has achieved good results on
the TUM RGB-D SLAM dataset and has verified the fea-
sibility of the application of semantic information in Visual
SLAM mapping. *ere is still room for improvement in this
research. For example, the relationship between line and
surface features in the target detection frame and the cat-
egory of the corresponding object can be established to
achieve stronger robustness and structure a semantic
VSLAM system with better performance.
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&e identification of plant disease is the premise of the prevention of plant disease efficiently and precisely in the complex
environment. With the rapid development of the smart farming, the identification of plant disease becomes digitalized and data-
driven, enabling advanced decision support, smart analyses, and planning. &is paper proposes a mathematical model of plant
disease detection and recognition based on deep learning, which improves accuracy, generality, and training efficiency. Firstly, the
region proposal network (RPN) is utilized to recognize and localize the leaves in complex surroundings. &en, images segmented
based on the results of RPN algorithm contain the feature of symptoms through Chan–Vese (CV) algorithm. Finally, the
segmented leaves are input into the transfer learningmodel and trained by the dataset of diseased leaves under simple background.
Furthermore, the model is examined with black rot, bacterial plaque, and rust diseases. &e results show that the accuracy of the
method is 83.57%, which is better than the traditional method, thus reducing the influence of disease on agricultural production
and being favorable to sustainable development of agriculture. &erefore, the deep learning algorithm proposed in the paper is of
great significance in intelligent agriculture, ecological protection, and agricultural production.

1. Introduction

Plant disease can directly lead to stunted growth causing bad
effects on yields [1–3]. An economic loss of up to $20 billion
per year is estimated all over the world [4–6]. Diverse con-
ditions are the most difficult challenge for researchers due to
the geographic differences that may hinder the accurate
identification [7, 8]. In addition, traditional methods mainly
rely on specialists, experience, and manuals [9], but the ma-
jority of them are expensive, time-consuming, and labor-in-
tensive with difficulty detecting precisely [10]. &erefore, a
rapid and accurate approach to identify plant diseases seems so
urgent for the benefit of business and ecology to agriculture.

Internet technologies, in particular the availability of
multimodality data from various sensors including the

Internet of things and sensor networks, have developed
rapidly [11]. Herein, a novel plant leaf identification model
based on deep learning algorithm is designed to solve the
above issues. &e function contains leaf retrieval, image
segmentation, and identification with the utilization of in-
tegrated deep learning algorithm throughout the whole
process. &e first task is leaf retrieval, but many factors pose
the challenge of identification accuracy such as soil and
illumination in the complex environment [12]. Hence, the
model is investigated RPN algorithm for manipulating re-
trieval and represents the good adaption in practice. Image
segmentation is the second step that is considered to be the
most crucial because diagnostic precision plays an important
role in detection results. &e Chan–Vese algorithm based on
region shows promising results for segmenting images free

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 2479172, 11 pages
https://doi.org/10.1155/2020/2479172

mailto:wangwei@sicau.edu.cn
https://orcid.org/0000-0002-0322-9017
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2479172


of noise and weak edge. &e last step is to identify the disease
of leaves based on the migration learning algorithm. Based on
the pretrained model, the migration learning model uses the
dataset of disease leaves in a simple background to train the
model. &e rest of the paper is constructed as follows: Section
2 previews other scholars’ researches thoroughly.&e detailed
information about the model is shown in Section 3. Section 4
demonstrates the procedure of experiment and study. Con-
clusions and discussions are in Section 5.

2. Literature Review

At present, the research of plant disease recognition in the
complex environment mainly focuses on three aspects:
disease leaves image segmentation, feature extraction, and
disease identification.

2.1. Image Segmentation. In the complex environment, the
most crucial task is how to segment the images while lo-
calizing and detecting diseased plant leaves, since the major
aim of image segmentation is to set the symptom infor-
mation apart from the background. &ere are many re-
searchers making a deep investigation on it. In 2017, Ali et al.
applied the Delta E color difference algorithm to separate the
disease-infected area [13]. In general, four major methods
are used to perform the image segmentation which are
discussed the detail in the following paragraph [14].

Some researchers integrate the region of interest (ROI)
and other methods to segment images. For example, Kao
et al. claimed that the convolutional autoencoder served as
the background filter to determine the ROI in an image [15].
&e second method only concerns region segmentation. In
2013, Pujari et al. claimed that images were divided into
various regions which had a special meaning and extracted
the images’ feature [16]. Akram and other colleagues pro-
vided an image processing model with real-time synchro-
nous processing. By dividing the image into three color
spaces, it can carry out contrast stretching, feature vector,
and salient region recognition [17]. In addition, other re-
searchers chose deep learning techniques to segment and
detect images. Marko et al. recommended a depth-based
target detection algorithm and used the two-stage algorithm
to optimize plant disease images detection [18]. At last, the
thresholding is common in segmentation. In 2018, Li et al.
applied multilevel thresholding techniques based on gray
histogram for image segmentation [19]. Mohamed and
Diego presented a new multiobjective metaheuristic on the
basis of a multiverse optimization algorithm to segment
grayscale images via multilevel thresholding [20].

However, there is a fact that cannot be ignored. Because
of the complexity of color information in the complicated
environment, the machine vision algorithm based on color,
ROI, and threshold performs poorly in practice.

2.2. Feature Extraction. &e feature extraction of plant
disease faces many problems in identifying plant disease.&e
distinct image features include textures, shape, color, and
motion-related attributes, which are the essential conditions

for disease feature extraction [21, 22]. Raza and his col-
leagues described a method that uses color and texture
features to extract disease spots [23]. Hu et al. proposed the
Dempster–Shafer (D-S) evidence theory and multifeature
fusion for extracting features as well as the results were
processed by introducing variance to improve decision rules
of D-S evidence theory [24]. In addition, Turkoglu depicted
improved versions of the Local Binary Patterns (LBP)
methodology, which uses the original LBP local quadratic
value to transform the image into grayscale and processes
the R and G channels of the image by considering overall and
region [25]. Li et al. researched an IoT feature extraction for
the intelligent city based on the deep migration learning
model [26]. &ere was an application in music, which can
extract meaningful audio features in order to enable the
visualizations to be responsive to the music [27]. And in
recent studies, lots of novel approaches have been put
forward to implementing feature extraction. For example,
concerning the challenging task that the extraction of rel-
evant and distinct features from electroencephalogram
(EEG), Meziani et al. proposed two new spectral estimators
that were robust against non-Gaussian, nonlinear, and
nonstationary signals [28]. What is more, as Liu et al. re-
ported, the high-dimensional time–frequency spectrum
features were extracted by using the residual neural network
and the improved signal-to-clutter ratio (SCR) [29]. Xu et al.
introduced a feature extraction method based on the Hilbert
marginal spectrum to perform the wear of milling tools [30].

2.3. Disease Identification. As for the precise identification,
so many techniques are developed and researched to get
accurate results. &e identification model focused on using
class labels for training images and built a fine-grained image
classification system [31]. Zhang et al. reported a recognition
method for plant disease leaf images based on a hybrid
clustering [32]. In 2017, Patil et al. described a content-based
image retrieval (CBIR) system to extract texture features and
means value to compute color features, and support vector
machine (SVM) classifier was used for classification [33].
&rough above researches, the major goal was to design the
classification schemes and image analysis for feature ex-
traction and identification. Recently, other new approaches
have been introduced to identify the disease more accurately
and precisely. A novel system based on the selection of
pictures and short text descriptions helped nonexperts in
identifying plant diseases that can be used remotely from a
desktop as well as in a smart phone or personal digital as-
sistants [34]. Pertot et al. presented a scheme that used mobile
phones for real-time on-field imaging of diseased plants and
used mobile devices for leaf image segmentation and spotting
of disease patch with improved k-means clustering [35]. Yang
et al. presented a microscopy image detection methodology
based on the synergistic judgment of texture and shape
features and the decision tree-confusion matrix [36].

Additionally, the convolutional neural network is nu-
merously utilized in identifying diseases. Chad et al.
established a system capable of automatically identifying
plant disease in field-acquired images of maize plants [37].
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Ni et al. used the deep convolution neural network to train
1632 images of corn kernels and designed an automatic corn
detector [38]. Lu et al. proposed a rice diseases identification
method based on deep convolutional neural networks
(CNNs) techniques [39]. Zhang et al. designed an agricul-
tural machinery image recognition network using the deep
learning algorithm [40]. Zhang et al. improved deep con-
volution neural network to improve the accuracy of maize
leaf disease identification [41]. Images were input into two
deep learning-based architectures, namely, AlexNet and
VGG-16 net, to perform detection [42]. Coulibaly et al.
suggested a method using transfer learning for feature ex-
traction to build an identification system [43]. However, due
to the requirement for high hardware resources and tradi-
tional neural network models of high quality and quantity of
data sets in the training process, the training wastes much
time that is not conducive to the promotion and use of the
model. In this paper, we recommend a transfer learning
model for identification combined with the pretrained
model, using the dataset of disease leaves to train the model.

From the above research findings, some achievements
have been achieved in three aspects: leaf image segmentation,
leaf lesion feature extraction, and leaf disease recognition.
However, there are still many problems to be solved to realize
plant disease identification in the complex environment.

3. Modeling

3.1. ,e Solution Framework. &e full plant disease identi-
ficationmodel framework based on deep learning is shown in
Figure 1, including three steps, the localization of plant leaves,
the segmentation of images, the extraction of plant disease,
and the identification of disease.&emodel used in this paper
mainly consists of the following three steps.&e first step is to
locate the diseased leaves. &e RPN algorithm is used to train
the leaf dataset in the complex environment, and the frame
regression neural network and classification neural network
are used to locate and retrieve the diseased leaves in the
complex environment.&e second step is the segmentation of
diseased leaves. &e Chan–Vese algorithm is used to segment
the image of diseased leaves. Based on the set zero level set and
the minimum energy function as the goal, the leaf contour is
obtained by iterative calculation, so as to realize the image
segmentation of diseased leaves in the complex environment.
&e third step is the identification of leaf disease species. &e
pretrained transfer learning model is trained to realize plant
disease recognition in the simple background.

3.2. ,e Leaf Localization. Aiming at the localization of
disease-plant leaves, the paper manipulates the leaf dataset
under complex background to train the RPN algorithm and
integrates boundary regression neural network and classi-
fication neural network to perform localization and retrieval.

As for the classification neural network, the core task is to
distinguish whether the image in the boundary box is an object
or a background. During the process of training, making
Intersection over Union (IoU) as a criterion of classification,
the boundary box with IoU greater than 0.5 is annotated as an

object and the boundary box with IoU less than 0.1 is labeled as
a background. IoU is applied in calculating the relevance
between predicting boundary box and artificial marked
boundary box. &e formula of IoU is shown as follows:

IoU �
S1

S2
, (1)

where S1 represents the overlap area of predicting boundary
box and artificially marked boundary box, and S2 represents
the total area of it. Due to the fact that the classification
neural network is only used for binary classification prob-
lem, sigmoid function is employed as loss function.

With regard to the adjustment parameters of boundary
regression neural network and output boundary box, one
boundary box can be represented by four-dimensional
variable (x, y, w, h). (Px, Py, Pw, Ph) represents the given
boundary box, (Gx, Gy, Gw, Gh) represents the target
boundary box, and (Gx

∧
, Gy

∧
, Gw

∧
, Gh

∧
) represents the pre-

dicting boundary box. In order to find a mapping rela-
tionship f of boundary regression neural network,
f(Px, Py, Pw, Ph) � (Gx

∧
, Gy

∧
, Gw

∧
, Gh

∧
) and (Gx

∧
, Gy

∧
,

Gw

∧
, Gh

∧
) ≈ (Gx, Gy, Gw, Gh) are defined.

&e movement of boundary consists of pan and zoom.
&e parameter of pan is (Δx,Δy), given that
Δx � Pwdx(P) and Δy � Phdh(P). &e formula is shown as

Gx

∧
� Pwdw(P) + Px, (2)

Gy

∧
� Phdh(P) + Py. (3)

&e parameter of zoom is (Sw, Sh), given that Sw �

exp(dw(P)) and Sh � exp(dh(P)). &e formula is shown as

Gw

∧
� Pw exp dw(P)( 􏼁, (4)

Gh

∧
� Ph exp dh(P)( 􏼁. (5)

According to the above formula, the real learning ob-
jectives of boundary regression neural network are repre-
sented with d(P) � (dx(P), dy(P), dw(P), dh(P)), and the
real transform parameters between predicting boundary box
and artificially marked boundary box are shown as
t � (tx, ty, tw, th).

tx �
Gx − Px( 􏼁

Px

, (6)

ty �
Gy − Py􏼐 􏼑

Py

, (7)

tw � log
Gw

Pw

􏼠 􏼡, (8)

th � log
Gh

Ph

􏼠 􏼡. (9)

&e objective function of boundary regression neural
network is d(P) � wTP, where w represents the learning
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parameter of boundary regression neural network. &e loss
function is shown as follows:

Loss � 􏽘
N

i�1
ti − di(P)( 􏼁. (10)

3.3. ,e Leaf Image Segmentation. As for the segmentation
of images in complex environment, based on the results of
previous step, the model performs the segmentation by
Chan–Vese algorithm. Laying the foundation of the set zero
level set, aiming at minimizing the energy function and
obtaining blade profiles by iterative computing, the model
may perform the segmentation of diseased plant leaves
images. &e Chan–Vese algorithm uses the level set to
constructing an energy function to constrain the whole
region rather than to control surface evolution by the
explicit control speed F. &e energy function is defined as
the minimum sum of variances between the gray values of
the image inside and outside the contour, and the contour
length is increased to make it converge. Given a closed
curve in the image, the energy function is expressed as
follows:

E � μLength(C) + λ1B
c1

u(x, y) − u1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
dx dy

+ λ2B
c2

u(x, y) − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
dx dy.

(11)

c1 represents inside the contour, c2 represents outside the
contour, u(x, y) represents the gray values of the image, u1
represents the average gray values in contour, and u2 rep-
resents the average gay values out contour. &en, the given
formulas are as follows:

F1 � λ1B
c1

u(x, y) − u1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
dxdy, (12)

F2 � λ2B
c2

u(x, y) − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
dxdy. (13)

When F1 ≈ 0 and F2 ≈ 0, the computing ends.
Level set method is used to solve (11) and zero level set is

used to express contour lines. Heaviside’s function and
Dirac’s function are introduced:

T � Y, f(X), (14)

δ(φ) �
dH

dφ
. (15)

&e level set equation of energy function is as follows:

E � ηB
Ω

δ(φ)|∇φ|dx dy + λ1 B
Ω

u(x, y) − u1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
H(φ)dx dy

+ λ2 B
Ω

u(x, y) − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
(1 − H(φ))dx dy.

(16)

By minimizing (16) with variational method and com-
bining Euler–Lagrange equation, the following partial dif-
ferential equations are obtained, where u1 �JΩu(x,y)

H(φ)dxdy/JΩH(φ)dxdy and u2 �JΩu(x,y) (1− H(φ))

dxdy/JΩ(1− H(φ))dxdy.
zE

zφ
� δ(φ) η · div

∇φ
|∇φ|

􏼠 􏼡􏼠 􏼡 + δ(φ) −λ1 1 − u1( 􏼁
2

+ λ2 1 − u2( 􏼁
2

􏽨 􏽩.

(17)
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Figure 1: &e identification model framework.
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3.4. ,e Diseased Leaf Identification. In identifying disease
types, the paper utilizes the disease leaf dataset training
model under simple background to train the pretrained
transfer learning model. &is method finishes training in a
short period of time and performs the disease identification
in the simple environment, reducing the requirement of
deep learning algorithms for the hardware equipment. Due
to the fact that shallow network has similar characteristics
for various learning objects, the shallow neural network for
source task can be transferred to the neural network for a
target task by using the transfer learning algorithm. Transfer
learning has better performance in convergences and ulti-
mate results than new learning in practice.

Setting the domain as D, it includes two contents, where
X represents feature space and contains all possible char-
acteristic values. P(X) represents a specific feature sampling
instance in the feature space:

D � X, P(X). (18)

Setting the task as T, it includes two parts, where Y

represents label space, that is, all vector space consisting of
all tags. As prediction function, f(x) is obtained by learning
from the features and labels of input data:

T � Y, f(X). (19)

4. Experimental Study

4.1. ,e Acquisition of Data. First of all, this study needs to
obtain the leaf dataset in the complex environment. &e
paper employs Crawler technology and obtains 1000 leaf
photos from the Plant Photo Bank of China (PPBC), in-
cluding the leaves of various plants at each growth stage.&e
shapes of these leaves are different, and the health of the
leaves is also different. Aiming at watermark less shelter,
obvious leaves, and easy labeling, 189 images are screened
out as leaf photos in the complex environment. &is dataset
is used to train the RPN algorithm to detect and locate the
leaf in the complex environment.

&en, using LabelImg, images are quickly annotated and
XML files are generated in PASCAL VOC format. It can
directly input the target detection neural network as training
data. Finally, this study needs to obtain the dataset of dis-
eased leaves in the simple environment. &is paper down-
loads four kinds of images of black rot, bacterial plaque, rust,
and healthy leaves from PlantVillage Agricultural Question-
and-Answer Forum as training data of transfer learning
model, including 537 black rot, 1032 bacterial plaque dis-
ease, 293 rust, and 2852 healthy leaves.&is dataset is used to
train the transfer learning model.

4.2. ,e Parameter Setup

4.2.1. ,e Parameter Setup of Leaf Localization. &e pa-
rameter setup of classification neural network and boundary
regression neural network is shown in Tables 1 and 2. &e
anchors in the table represent the number of candidate boxes
generated.

4.2.2. ,e Parameter Setup of Leaf Segmentation. &e main
parameter setup of Chan–Vese algorithm is initial zero level
set and iteration number setting. In this paper, we set the
initial zero level set as a circle with the center of the picture
and one-third of the diagonal length of the picture as the
radius and set up the Chan–Vese algorithm to calculate 500
iterations.

&e image obtained by RPN algorithm is input into the
Chan–Vese algorithm and the image in the zero level set is
preserved. &e image outside the zero level set is set to black
to get the image segmentation result.

4.2.3. ,e Parameter Setup of Leaf Retrieval. Resnet-101 is
selected as the pretraining model, and the network is trained
by using the dataset of disease leaves under a simple
background in this paper. Its network parameters are shown
in Table 3.

In this paper, all its parameters are modified and ini-
tialized in the last output layer of Resnet-101, and the
classification number is changed from 1000 to 4, which
corresponds to the identification results of four kinds of leaf
diseases.

5. Results

5.1. ,e Result of Leaf Localization. &e test image is input
into VGG-16 model and RPN algorithm, and the results are
shown in Figure 2.

With regard to the above images, there is inaccuracy of
the frame selection range in Figure 2(b) and the blades in
Figure 2(d) are missing. But RPN algorithm can basically
frame the main blade structure, which has better perfor-
mance than the original model.

5.2.,eResult of Leaf Segmentation. &e iterative calculation
process of Chan–Vese algorithm is shown in Figures 3–6.
&e results of Chan–Vese algorithm compared with wa-
tershed algorithm are shown in Figure 7.

According to the above results, it can be found that after
500 iterations, Chan–Vese algorithm can get better leaf
image segmentation results. Although Chan–Vese algorithm
cannot effectively extract the edge contour of the blade
compared with the watershed algorithm, it retains the
complete structure of the central blade including leaf ve-
nation, spot color, and spot shape. &e complete central
structure of the blade obtained by Chan–Vese algorithm can
be used for disease identification of the next step.

5.3. ,e Result of Disease Identification. &e test image is
input into VGG-16 model and RPN algorithm, and the
results are shown in Figure 8.

According to the above pictures, although it can be
found that the frame selection range in Figure 8(b) is not
accurate enough and there are omissions in Figure 8(d),
RPN algorithm can basically frame the main blade structure
and can be used for the next operation.
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Table 1: &e composition and parameter setup of neural network.

Network layer Number of kernels Size of kernel Output shape Number of parameters
Convolution 512 (3, 3) (14, 14, 512) 2359296
Convolution Anchors∗ 2 (1, 1) — —
Softmax 4096 — — —

Table 2: &e composition and parameter setup of regression network.

Network layer Number of kernels Size of kernel Output shape Number of parameters
Convolution 512 (3, 3) (14, 14, 512) 2359296
Convolution Anchors∗ 4 (1, 1) — —

Table 3: &e composition and parameter setup of ResNet-101.

Network layer Number of kernels Size of kernel Output shape Number of parameters
Convolution 64 (7, 7) (112, 112, 64) 9408
Maxpooling — (2, 2) (56, 56, 64) 0
5∗ Convolution 64 (3, 3) (56, 56, 64) 36864
Convolution 128 (3, 3) (28, 28, 128) 73728
7∗ Convolution 128 (3, 3) (56, 56, 128) 147456
Convolution 256 (3, 3) (28, 28, 256) 294912
11∗ Convolution 256 (3, 3) (28, 28, 256) 589824
Convolution 512 (3, 3) (14, 14, 512) 1179648
5∗ Convolution 512 (3, 3) (14, 14, 512) 2359296
Averagepooling — (2, 2) (7, 7, 512) 0
Softmax 1000 (7, 7) (1, 1, 1000) 25088000

(a) (b)

(c) (d)

Figure 2: &e result of leaf identification: (a) black rot disease; (b) bacteria plaque disease; (c) rust disease; (d) healthy leaf.
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(a) (b) (c) (d)

Figure 4: &e result of Chan–Vese algorithm segmenting bacterial plaque diseased leaf: (a) image capture; (b) initial zero level set; (c)
contour image after 500 iterations; (d) segmentation results.

(a) (b) (c) (d)

Figure 3: &e result of Chan–Vese algorithm segmenting black rot diseased leaf: (a) image capture; (b) initial zero level set; (c) contour
image after 500 iterations; (d) segmentation results.

(a) (b) (c) (d)

Figure 6:&e result of Chan–Vese algorithm segmenting healthy leaf: (a) image capture; (b) initial zero level set; (c) contour image after 500
iterations; (d) segmentation results.

(a) (b) (c) (d)

Figure 5: &e result of Chan–Vese algorithm segmenting rust diseased leaf: (a) image capture; (b) initial zero level set; (c) contour image
after 500 iterations; (d) segmentation results.

Discrete Dynamics in Nature and Society 7



5.4. Comparative Test. In this paper, the parameters of the
transfer learning model include gradient descent optimi-
zation parameters and training parameters. &e specific
parameters are set as shown in Table 4.

After 4000 iterations of training, the loss value and
training set accuracy of the transfer learning model and the
traditional model are shown in Figure 9.

In Figure 9(a), ResNet-101 represents traditional model.
According to Figure 9(a), after the same 4000 iterations
training, the transfer learning model has faster convergence
speed and lower model loss value than the traditional model.
According to Figure 9(b), it can be found that in the process
of model training, transfer learning has higher accuracy,
lower variance, and better recognition effect than new
learning.

&erefore, compared with the new learning, this paper
uses the transfer learning to converge faster and achieve
better model identification effect. It can meet the require-
ments of smart agriculture for low hardware resources, fast
training time, and high training efficiency.

&en, the image is input into transfer learning model
based on the segmentation of Chan–Vese algorithm. As a
contrast, the image that has not been processed in this paper
is input into the traditional ResNet-101 model for identi-
fication, and the results are shown in Table 5.

According to the comparison results in the above table,
the average correct rate of the proposed method is 83.75%,
which is significantly better than that of the traditional
ResNet-101 model (42.5%). Comparing the performances of
this method in four samples, we can find that rust and
healthy leaves can get better results than black rot and
bacterial plaque.

6. Discussion and Conclusion

&is paper shows that the plant disease recognition model
based on deep learning has the characteristics of unsuper-
vised, high accuracy, good universality, and high training
efficiency. However, there are many challenges in accuracy
practicability of plant disease detection in the complex

(a) (b) (c)

(d)

Figure 8: Leaf retrieval results in complex environment: (a) black rot disease; (b) bacteria plaque disease; (c) rust disease; (d) healthy leaf.

(a) (b) (c) (d)

Figure 7: &e result of watershed algorithm: (a) black rot disease; (b) bacteria plaque disease; (c) rust disease; (d) healthy leaf.

8 Discrete Dynamics in Nature and Society



environment. In order to solve these problems and optimize
the identification method, this paper proposes a recognition
model integrating RPN algorithm, CV algorithm, and TL
algorithm, which can effectively solve the problem of plant
disease identification in the complex environment. &e
model not only adapts to complex environments, but also
increases the accuracy of identification. Compared with the
traditional model, the model proposed in this paper not only
guarantees the robustness of the convolutional neural net-
work, but also reduces the number and quality requirements
of the convolutional neural network on the data set and
obtains better results. &erefore, the model could help ag-
ricultural production personnel to prevent and cure the
plant disease quickly. &e model which overcomes the
problem of environment complexity can get an accurate

identification result in practical application. Furthermore,
this study enriches the existing theory and helps to improve
the accuracy. At the same time, it is of great significance for
the study of plant disease identification in the field of en-
vironmental complexity and helps researchers pay attention
to the important role of environmental complexity in plant
disease identification. &erefore, the model applies infor-
mation technology to agricultural production and is fa-
vorable to sustainable development of smart agriculture.

Although the plant disease identification model based on
deep learning proposed in this paper can overcome the
complexity of the environment and improve the accuracy of
identification, there are still some problems to be pointed
out. For example, the Chan–Vese algorithm needs repetitive
iterative calculation and runs for a long time, which is not

Table 4: &e parameter setup of transfer learning.

&e type of parameter &e name of parameter &e setup of parameter

Gradient descent optimization parameter

Learning rate 0.001
Weight decay 0.0005

Learning impulse 0.9
Decay of learning rate 0.1

Input data parameters
Picture size (224, 224)
Batch size 256

Iteration times 30000

1.2
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0.4

0.2

0.0
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(a)
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cu

ra
cy
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0 50 100 150
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200 250 300 350 400

Transfer learning
ResNet-101

(b)

Figure 9: &e comparison between transfer learning and traditional learning: (a) loss value comparison; (b) accuracy comparison.

Table 5: &e comparison between the proposed method and ResNet-101 model.

&e type of disease
&e proposed method ResNet-101 model

&e correct number &e correct rate (%) &e correct number &e correct rate (%)
Black rot disease 15 75 8 40
Bacterial plaque disease 16 80 6 30
Rust disease 18 90 9 45
Healthy 18 90 11 55
Total 67 83.75 34 42.5
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conducive to the fast identification results of this method. In
future research, we will use the neural network to generate
zero initial set corresponding to different leaves, which will
increase the end of calculation limit for the iterative process
of Chan–Vese algorithm, speed up the training speed, and
end the iteration ahead of time.
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Crash severity prediction has been raised as a key problem in traffic accident studies. 'us, to progress in this area, in this study, a
thorough artificial neural network combined with an improved metaheuristic algorithm was developed and tested in terms of its
structure, training function, factor analysis, and comparative results. Data from I5, an interstate highway in the Washington State
during the period of 2011–2015, were used for fitting and prediction, and after setting the theoretical three-layer neural network
(NN), an improved Particle SwarmOptimization (PSO)method with adaptive inertial weight was offered to optimize the NN, and
finally, a comparison among different adaptive strategies was conducted. 'e results showed that although the algorithms
produced almost the same accuracy in their predictions, a backpropagation method combined with a nonlinear inertial weight
setting in PSO produced fast global and accurate local optimal searching, thereby demonstrating a better understanding of the
entire model explanation, which could best fit the model, and at last, the factor analysis showed that non-road-related factors,
particularly vehicle-related factors, are more important than road-related variables. 'e method developed in this study can be
applied to a big data analysis of traffic accidents and be used as a fast-useful tool for policy makers and traffic safety researchers.

1. Introduction

1.1. Crash Severity. Traffic safety is a challenging task to be
accomplished and has been identified as crash hotspots
around the world. 'e total number of fatal crashes in the
U.S. increased to around 35,000 in 2016. In addition,
according to the Washington State Collision Summary re-
port, a total of 117,053 crashes were identified in the
Washington State, including 499 fatal collisions, 36,531
injury collisions, and 77,358 property-damage-only colli-
sions, indicating a crash occurred every 4.5min and a person
died in a crash every 16 hours [1]. Figure 1 shows the traffic
fatality rates between the U.S. and Washington State [1].
Billions of dollars in personal and property damage are
wasted in traffic crashes each year around the world [2].

To achieve the intrinsic goal of exploring numerous
factors that trigger the crash, crash severity is often used for

crash analyses to represent the degree of injury. A KABCO
scale was proposed by WSDOT to represent the level of the
injury: K—fatal injury; A—incapacitating-injury;
B—nonincapacitating injury; C—minor injury; and
O—property-damage-only injury. 'e KABCO scale has
been widely adopted and adapted by many scholars (e.g.,
[3–5]). In this paper, the predicted targets were regrouped
into three categories based on the combination of the
KABCO scale and crash severity category of 5-year data
(2011–2015) obtained from the HISI data system, namely,
incapacitating-injuries, injuries, and noninjuries.

1.2. Crash Severity Prediction. Crash prediction problems
have long been a popular area of study around the world.
Numerous studies conducted the prediction analyses based
on classic statistical models, e.g., the linear, nonlinear,
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generalized linear model (GLM), generalized estimating
equation (GEE), nominal binary (NB), and Poisson re-
gression models, which are regarded as a good attempt at
thoroughly formulating the relationship between tens or
hundreds of explanative variables. However, it should be
noted that the traditional statistical method has its limita-
tion. 'e artificial intelligence (AI) technique, particularly,
the deep learning methodology [6], as an emerging but
promising tool for addressing the problems faced by the
traditional statistical domain, deserves more attention and
exploration.

Safety performance functions (SPFs) are frequently
utilized to demonstrate the relationships between different
crashes and crash impact parameters. Such functions usually
use the crash frequency as the targeting variable. 'e
Highway Safety Manual [7] has several chapters demon-
strating the average crash frequency of an entire network,
facility, or individual site. Elvik et al. [8] developed six power
functions to demonstrate the relationship between speed
and road safety; these six equations are slightly adjusted
according to the road characteristics under the following
categories: fatal injuries, fatal and serious injuries, all in-
juries, fatal accidents, fatal and serious accidents, and all
injury accidents. Russo et al. [9] used a negative binomial
regression model to develop four sets of SPFs based on the
crash frequency and conducted a residual analysis to prove
the accuracy. Park and Abdel-Aty [10] developed several
crash modification factors (CMFs) for a combination of
traffic and roadway cross-sectional elements on noncurved
and curved roadway sections using a cross-sectional method
and found that CMFs for increasing the lane and shoulder
width were decreasing as the annual average daily traffic
(AADT) level increased. Using a Bayesian ranking tech-
nique, Ahmed et al. [11] examined the safety effects of the
roadway geometry on the crash occurrence rate along a
freeway section that features mountainous terrain and an
adverse weather condition and confirmed that segments
with steep downgrades are more crash-prone along the
studied section.

A number of researchers are eager to dig into the use of
statistical analysis for traffic safety research, such as linear,
nonlinear, GLM, GEE, NB, or Poisson regression models.
Such models have performed well when the number of
explanatory variables is constrained. Debrabant et al. [12]
applied an autoregressive Poisson–Tweedie model to mine
spatially and temporally aggregated hospital records of
traffic accidents, and it was confirmed that this method is
very accurate when applied to a black spot identification
problem. Pei et al. [13] developed a joint probability model
combined with a Markov chain, Monte Carlo (MCMC)
approach, and full Bayesian to estimate the effects of ex-
planatory factors, and their results indicated that the model
achieves a good statistical fit and provides an accurate
analysis of the influences of the explanatory factors. El-
Basyouny et al. [14] applied a multivariate model based on a
MCMC simulation to address the impact of weather ele-
ments, and their results showed that temperature and
snowfall are statistically significant with intuitive signs for all
crash types, whereas rainfall is mostly insignificant, as is the
maximumwind gust with a few exceptions that are positively
related to the crash type.

To address the shortcomings of the traditional statistical
model, scholars in the crash analysis field are more willing to
use AI methods at present. Karlaftis and Vlahogianni [15]
discussed the differences and similarities between a statis-
tical method and neural networks (NNs), and their results
showed that the goals of the analysis are more important
than the tools used, and that there are always assumptions to
all modeling approaches. Specific to a traffic accident
analysis, although classic statistical models such as NB,
Poison, and a Bayesian network can achieve a good iden-
tification of a broad range of risk factors, they are also
limited to a finite factor assumption as compared with a
deep-learning method [16]. Aided by the powerful hardware
and software of modern computers, deep-learning methods
are becoming powerful tools for many aspects of our daily
lives [6]. For example, in a crash analysis, Zeng and Huang
[17] used a pruned NN for the crash severity, adopting a
convex combination (CC) training algorithm and a NN
pruning for a function approximation (N2PFA) structure
optimization method, and found that the CC outperforms
the backpropagation (BP) method in both convergence
ability and training speed; in addition, simplification of the
nodes in an NN structure can obtain a better performance.
Huang et al. [18] developed an optimized radial basis
function neural network (RBFNN) model to analyze the
relationships between crash frequency and the relevant risk
factors, and their comparative work showed that RBFNN
models outperform negative binomial models and back-
propagation neural network (BPNN) models. Li et al. [5]
developed a data-driven method combining the non-
dominated sorting genetic algorithm (NSGA-II) with an NN
to identify the key factors in a fatal highway crash analysis.
All of the abovementioned studies have focused more on the
NN structure itself, using complicated mathematical equa-
tions to illustrate their abstract concepts; nevertheless, they
have seldom given a thoughtful, detailed, and general
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procedure to deal with a complete traffic severity analysis
problem.

However, in short, both statistical and AI methods in the
previous studies are still facing some challenges, and es-
pecially for neural networks, the traditional NNs are more
easily stuck in the local optimum in accordance with its
random weights initialization at the very first beginning.
Although some studies [5, 18] were carried out to address
the abovementioned problems, the efficiency of the global
optimum search for particle swarm optimization (PSO) and
local optimum search for some other optimization methods
is still to be improved.

To solve the aforementioned problems, the purpose of
this paper is as follows: (1) to provide a BPNN algorithm
integrating the PSO with adaptive inertial weights for the
establishment of the crash severity prediction model; (2) to
conduct a detailed factor analysis (FA) based on the refined
model to quantify the internal relationship and heteroge-
neity of different variables that trigger the crash of distin-
guished severity.'e prediction target in the first phase is the
crash severity. It should be noted that the novelty of the
paper lies in the fact that an integrated method incorpo-
rating an emerging AI technique and a traditional statistical
model was provided for crash severity analysis. Besides, it is
marginally original to use FA and PSO for the calculation of
the parameters of the crash triggers.

'is paper is organized as follows: in the first part, the
background and severity levels are discussed to demonstrate
the reason for conducting this research. In the second part,
classic statistical models and NN models dealing with crash
analysis are reviewed to illustrate their advantages and
limitations. 'e following section demonstrates the pro-
cessing of the dataset, including its description and sim-
plification. In the fourth part, the entire methodology for the
developed model and data incorporation are presented to
highlight the process of conducting a severity prediction
process. Finally, the results are presented with the
conclusion.

2. Data Description

'e dataset used in this study consisted of the data acquired
from the Highway Safety Information System (HSIS); in this
system, data from nine states (California, Washington,
Minnesota, Michigan, Maine, Ohio, North Carolina, and
Illinois) in the U.S. are available. Considering the author’s
time studying in the Washington State during the period of
2016 to 2017, the crash data from this were selected as the
target data.

'e HSIS data contained, roughly, two tables for the
variables. 'e first one is related to Accident, Vehicle, and
Occupant files, which involve TIME, ENVIRONMENT,
ACCIDENT-RELATED INFORMATION, VEHICLE IN-
FORMATION, DRIVER INFORMATION, OCCUPANT,
ROADWAY ELEMENTS, and PEDESTRIAN/BICYCLIST
INFORMATION, whereas the second table was more
concerned with the roadway containing LOCATION/
LINKAGE ELEMENTS, ROADWAY CLASSIFICATION,
ROAD ALIGNMENT, CROSS SECTION, ROAD

FEATURES, TRAFFIC CONTROL/OPERATIONS, and
TRAFFIC DATA. In addition, there were tens of sub-
variables for both the tables.

'e crash data from I5 in the Washington State covering
the years 2011–2015 were extracted. 'e data from the first
four years, 2011–2014, were used to fit the model, and the
data from the later year were used as the prediction vali-
dation set. 'e total crashes were 9926, 10083, 10127, 11628,
and 12804 from 2011–2015. Based on these raw samples, the
following steps need to be conducted before digging into the
model input procedure:

(1) Exclude apparently irrelevant variables. More than
40 features were requested from the HSIS database
system, and some features, such as “CASENO”
(accident case number), “MILEPOST” (milepost),
“RD_INV” (a linkage variable on the Accident file
which is used in the merging operation), and
“RTE_NBR” (route number) are not related to the
crash severity and were omitted for simplicity.

(2) Samples with features such as “LIGHT,”
“WEATHER,” and “ACCTYPE” (accident type)
which have values such as “UNKNOWN,” “NAN,”
“UNSTATED,” and “NULL” were also omitted for
simplicity.

(3) Some nominal variables which cannot be denoted by
the continuous number such as “DIR_CURV” (the
horizontal curve direction) and “DIR_GRAD” (the
vertical curve grade direction), both representing the
relative direction of left or right, were transformed
into discrete scale values (“1” or “0”).

(4) 'e vehicle-related and driver-related variables such
as “DRV_AGE” (driver age) and “DRV_SEX” (driver
sex) were incorporated with accident-related data
files through the “CASENO” label, whereas the grad/
curve-related variables were incorporated with ac-
cident-related data through “MILEPOST”; here, a
data process computer program written in MATLAB
was developed to locate the “MILEPOST” between
“BEGPOST” and “ENDPOST” in the grad/curve
files.

(5) “VEHYR,” which indicates the vehicle model year,
was transformed into the vehicle operation year
through the following formula:

Vehyri
m �

100 − Vehyri
raw + val yeari( 􏼁

Vehyri
raw > val yeari( 􏼁􏼐 􏼑,

val yeari( 􏼁 − Vehyri
raw

Vehyri
raw ≤ val yeari( 􏼁􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where Vehyri
m refers to the vehicle operation year in

the year of i, Vehyri
raw refers to the vehicle model

year i in the raw file (for example, “11” represents the
year 2011 and “98” represents the year “1998”), and
val(yeari) refers to the value of the year. For example,
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if a car was produced in the year 2011 and a crash
occurred in the year 2013, Vehyr2013m should be
(yeari) − Vehyri

raw, indicating 13 − 11 � 2.
(6) 'e output file contains the vectors derived from the

“SEVERITY” variable in the raw dataset. In detail,
noninjury was derived from “1, No Injury,” injury
was derived from “6, Nondisabling Injury; 7, Possible
Injury,” and incapacitating injury was derived from
the remaining.'e vectors are described through the
following formula:

Outi � BInjury, BNon−Injury, Bincapacitating−injury􏼐 􏼑, (2)

where Outi refers to the output of the crash item i, and
BInjury, BNon−Injury Bincapacitating−injury refer to the Boolean in-
dex of the crash severity for an injury, noninjury, and
incapacitating injury.

After the processing was conducted through the
abovementioned steps, a total of 4310, 4494, 4436, 4666, and
4984 samples from 2011 to 2015 were used for model fitting
and validation; glancing at the data, crashes seemed to be
slightly more prone to occur during the winter (cold season)
and on work days, whereas younger drivers contribute to a
significant number of accidents (Figure 2).

After the selection of 20 features (Table 1) available from
the raw file, the next step for the data cleaning and processing
work was variable standardization which was carried out
using the min-max method through the following formula:

xn �
(x − MinValue)

(MaxValue − MinValue)
. (3)

From Table 1, we can see that, among all 20 features,
there are 15 categorical and five continuous variables. In
addition, for a research perspective, we divided all variables
into two large categories: road-related and nonroad-related.

3. Methodology

3.1. NN with the BP Method. An artificial neural network
uses information technology to mimic the human neurons
and can process complicated connections between the input,
hidden, and output layers. Among the multiple-layer neural
networks, a three-layer simple NN has been proven to be
most adopted and effective in a previous research [19].

In the forward propagation three-layer NN, the input
variables can be defined as an input vector X:

X � x1, x2, x3, . . . xi, . . . , xI( 􏼁
T
, (4)

where xi refers to the ith input variable, I � 20, and T refers
to a transpose in the matrix calculation.

Similarly, the expectation of the crash severity level
output vectors Ψ can be

Ψ � ψInjury,ψNon−Injury,ψIncapacitating−Injury􏼐 􏼑
T
, (5)

where ψInjury refers to the Boolean index for an injury-related
crash, ψNoninjury refers to a Boolean index for a noninjury-
related crash, and ψIncapacitating−Injury refers to a Boolean index
for an incapacitating injury.

In addition, the weight matrix between the input and
hidden layers, W1, should be

W
(1)
j,i (j � 2, . . . , J; i � 1, . . . , I), (6)

where W
(1)
j,i denotes the weight between the ith input node

and jth hidden node and J refers to the total number of the
hidden layers, I� 20.

'e weight matrix between the hidden and output layers,
W2, should be

W
(2)
k,j (k � Injury, Non − injury, Incapacitating − Injury􏼈 􏼉;

j � 1, . . . , J),

(7)
where W

(2)
k,j denotes the weight between the kth output node

and the jth hidden node, J refers to the total number of
hidden layers, and the k vector has values indicating injuries,
noninjuries, and incapacitating injuries.

'e structure of a general three-layer neural network is
shown in Figure 3.

Using the forward calculation method [17], the outputs
of the nodes in the hidden layer Hj(m) can be depicted as

Hj(m) � gj 􏽘

I

i�1
W

(1)
j, i · xi(m) + βj

⎛⎝ ⎞⎠, (8)

where m is the number of the output neurons, W
(1)
j,i denotes

the weight between the ith input node and the jth hidden
node, J refers to the total number of nodes in hidden layer,
gj is the activation function between the input and hidden
layers, and βj is the bias term.

Similarly, the outputs calculated from the hidden layer
ψk(m) are shown as

ψk(m) � gk 􏽘

J

j�1
W

(2)
k, j · Hj(m) + θk

⎛⎝ ⎞⎠, (9)

where W
(2)
k,j denotes the weight between the kth output node

and the jth hidden node, J refers to the total number of
nodes in the hidden layer, the k vector has values including
injuries, noninjuries, and incapacitating injuries, and gk is
the activation function between the output layer and hidden
layers. θk is the bias term.

Generally, the activation functions such as sigmoid or
tanh are selected and have the ability to transform the input
signal into a certain range. If the network adopts sigmoid
function as the output activation function, the output can be
narrowed into a small scale as (0, 1); however, between the
hidden and input layers, usually, the tanh function is
adopted because it usually can converge fast.

Another aspect used for building an NN is the definition
of the number of nodes in the hidden layer, and there is no
easy and complete mathematical way of defining this
number; however, based on the experience from former
research [20], the empirical equation used is as follows:

n �
������
ni + n0

√
+ α, (10)

where n is the number of hidden nodes, ni is the number of
input nodes, n0 is the number of outputs, and α is a constant
varying from 1 to 10.
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Based on the BP method [17], the local gradients δ(2)
k (m)

and δ(1)
j (m) of the output and hidden layer neurons and the

correction values Δw(2)
k,j (m) and Δw(1)

j,i (m) of their con-
nection weights are as follows:

δ(2)
k (m) � ek(m) · gk

′ v
2
k(m)􏼐 􏼑,

Δw(2)
k,j (m) � a(m) · Δw(2)

k,j (m − 1) + η(m) · δ(2)
k (m) · ψk(m),

δ(1)
j (m) � gj

′ v
(1)
j (m)􏼐 􏼑 􏽘

K

δ(2)
k (m)Δw(2)

k,j (m),

(11)

where a(m) and η(m) are the momentum and step size,
respectively.

'e weights in the network can be updated as

W
(1)
j,i � W

(1)
j,i + Δw(1)

j,i (m), (12)

W
(2)
k,j � W

(2)
k,j + Δw(2)

k,j (m). (13)

Other than the general BP method, there are some other
modified training functions, including resilient back-
propagation (RPROP), conjugate gradient backpropagation,
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Figure 2: Crash distribution based on a (a) month, (b) weekday, and (c) driver age for 2011–2014.

Table 1: Summary of the selected variables.

Category Variables Value definition

Nonroad

(1) Accident type, (2) month, and (3) weekday Categorical, categorical, and categorical
(4) Location type, (5) light, and (6) Driver sex Categorical, categorical, and categorical

(7) Driver age, (8) driver restrain, and (9) vehicle year Continuous, categorical, and categorical
(10) Vehicle type and (11) weather Categorical and categorical

Road

(12) Road characteristics and (13) road surface Categorical and categorical
(14) Road functional class and (15) curve angle Categorical and continuous
(16) Curve direction and (17) gradient direction Categorical and categorical
(18) Gradient percentage and (19) curve radius Continuous and continuous

(20) Curve degree Continuous
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gradient descent/momentum, and adaptive back-
propagation. 'ese functions have different levels of accu-
racy and training speeds, and thus, an attempt should be
made to find a better solution.

In the traditional BP, method, the initialized weights in
formulas (6) and (7) are randomly initialized following two
different uniform distributions. However, this imple-
mentation will highly possibly cause the whole model so-
lution stopping at a local optimum. In order to address this
problem, the authors offered a particle swarm optimization
method with refined adaptive inertial weights to enhance
both local and global searching for the optimal initial
weights for BPNN. 'e details are provided in the following
section.

3.2. PSO with Adaptive Inertial Weights. 'e particle swarm
optimization method was a well-known metaheuristic
computation method provided in 1995 [21]. Also, it was easy
to use in different optimization applications [22]. 'e
standard and original formulas for this method are

V
r+1
s � V

r
s + c1λ1 pbestrs − U

r
s( 􏼁 + c2λ2 gbestrs − U

r
s( 􏼁,

(14)

U
r+1
s � U

r
s + V

r+1
s , (15)

where Ur
s is the sth particle at the rth generation and Vr+1

s

denotes this particle’s velocity to the r + 1th generation. c1
and c2 are two constants usually taken around the value of 2.
λ1 and λ2 are the two uniform random numbers in the range
of [0, 1], pbest is the best position experienced by the particle
itself, and gbest is the best position experienced by the
particle swarm.

In this paper, the initial weights from BPNN are treated
as the particles in the PSO algorithm, and the optimization
problem can be described as mapping a decision space X to
Y, and for a typical 3-layer neural network, they are encoded
in the following set:

min
x∈X

Y � f(x),

X � W1, B1, W2, B2􏼂 􏼃,

⎧⎨

⎩ (16)

where W1 and B1 refer to the weights and bias connecting
the input and hidden layer, while W2 and B2 refer to the

weights and bias connecting the hidden and output layer.
Also, the transfer objective function Y is the neural network
mean squared error (MSE).

For the standard or original PSO, it could solve non-
linear or nondifferentiable problems easily, but the searching
space for a particular particle is almost fixed during each
phase of generation, which means the model could then be
easy and fast to find a solution, a possible solution near the
local optimal. 'us, bringing the tradeoff between the local
search ability and global search ability ahead [23], an inertial
weight is introduced into formula (14), which could be
written as follows:

V
r+1
s � wsV

r
s + c1λ1 pbestrs − U

r
s( 􏼁 + c2λ2 gbestrs − U

r
s( 􏼁,

(17)

where ws is the inertial weights controlling the global and
local optimal searching speed, and it iterated during each
generation in a linear or nonlinear form.

'us, in this paper, different inertial weight setting
methods [23–25] including the linear and nonlinear form
are compared as follows:

w1(s) �
wend + wstart − wend( 􏼁 Smax − s( 􏼁( 􏼁

Smax
, (18)

w2(s) � wstart − wstart − wend( 􏼁
s

Smax
􏼠 􏼡

2

, (19)

w3(s) � wstart − wstart − wend( 􏼁
2s

Smax
−

s

Smax
􏼠 􏼡

2
⎡⎣ ⎤⎦, (20)

where wstart and wend refer to the weights at the start and the
end of the generation, and they are usually set to 0.9 and 0.4,
respectively, s is the current iteration, and Smax is the max
generation.

'e function graph for formulas (18)–(20) is depicted in
Figure 4. From Figure 4, can we see that the weight is of a
relatively high value at first in order to expand the search
space for global optimal; however, at the end of the iteration,
it is converging slowly to enhance the local optimal search.

In conclusion, the pseudocode for the whole procedure
in Sections 3.1 and 3.2 is formulated as follows:

FOR I� 1: MAX GENERATION
FOR J� 1: POPULATION SIZE

PARTICLE INITIALIZE;
CALCULATE FITNESS (MSE of BP NN);
UPDATE PARTICLE VELOCITY (WITH

ADAPTIVE INERTIAL WEIGHTS);
UPDATE PARTICLE POSITION;

END
END
ASSIGN SOLUTION TO BP NN;
BP NN TRAINING, TESTING, VALIDATION;
NN PREDICTION;

Risk factors
Hidden layer

Severity levels

x1 w1j,i

w2k,j

x2

x3

xI

Ψ1

①

①

①②

②

③

Ψk
k

j
I

Figure 3: General structure of a typical NN used in this study.
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'e calculation process is given in Figure 5.

3.3. Factor Analysis. To carry out a factor analysis (FA), the
factor importance index (FII) is introduced in this paper.
According to the nonlinear and classification function in
practice, the n-dimensional input vector constructs the
whole input space.'us, from the perspective of engineering
math, the first order partial derivative of the outcome Y with
respect to the ith variable xi could explain the connecting
weight of that input variable vector, according to the chain
rule in calculus, and the math description is as follows:

zY

zXi

�
zY

zα
zα
zXi

, (21)

where α is the linear output value from the hidden layer to
the output layer in BPNN, which could be described as
formula (9), and thus, equation (21) is transformed to

zY

zXi

� 􏽘
L

j�1
W

(2)
k,j

zHj

zXi

g(α)′, (22)

where j is the jth nodes in the hidden layer, W
(2)
k,j refers to

the weights through the hidden layer to the output layer,
g(α)′ denotes the derivative with respect to the activation
function between the output and hidden layers.

Considering formula (8) combined with chain rule in
calculus, formula (22) could be written as

zY

zXi

� 􏽘
L

j�1
W

(2)
k,j

zHj

zβj

zβj

zXi

g(α)′, (23)

zY

zXi

� 􏽘
L

j�1
W

(1)
j,i W

(2)
k,j f(β)′g(α)′, (24)

where β is a short note for formula (8) and W
(1)
j,i refers to the

weights through the input layer to the hidden layer. f(β)′
denotes the derivative with respect to the activation function
between the input layer and the hidden layer.

'rough formula (24), we can see that while given a fixed
input vector in the ith dimension, the value of f(β)′ and
g(α)′ is fixed with respect to all Xi; thus, considering the
remaining part, the FII for the ith variable can be written as

Ri �
􏽐

L
j�1 W

(1)
j,i W

(2)
k,j

􏽐
N
i 􏽐

L
j�1 W

(1)
j,i W

(2)
k,j

, (25)

where the value of W
(1)
j, i and W

(2)
k, j can be calculated through

formulas (12) and (13). 'ese values are stored in a dic-
tionary in a program code during the calculation process.

Finally, in order to ease the simulation variance of the
model training process, the FII expectation is introduced by
running the model for a certain k times:

E Ri( 􏼁 �
1
K

􏽘

K

k�1
R

k
i . (26)

4. Results and Discussion

4.1. NNModel Structure Test. Based on the theory discussed
in the previous section, the most primary step in building an
NN is to define the number of good hidden layer nodes and a
better training function. Usually, the model performance
(mean square error, MSE) combined with the total iteration
number of convergence is used to test the structure. For the
number of hidden layer nodes, based on formula (10),
consecutive numbers of 5 through 14 were selected; for the
training function, however, one of the following (Table 2) is
applied.

'e last two methods in Table 2 usually provide a fast
calculation speed, but tend to be challenging and inefficient
when dealing with the big data issues, especially, for the GPU
hardware with low configuration. For the present study,
considering the sample size, GPU support is not a problem,
and thus, this minor difference is not a significant concern.

'eoretically, the number of nodes in the hidden layers
should be within the range of (5, 14) based on formula (10);
usually, however, the number of hidden layer nodes does not
fall below 10, and thus, a combined test using the popular
training functions and 10–14 hidden layer nodes number
was carried out based on a loop test.

We randomly separated the sample data from 2011 to
2014 to form the dataset of training, testing, and validation
with respect to 70%, 15%, and 15%. In detail, a total data of
17839 were divided into 12487, 2676, and 2676, in accor-
dance with training, testing, and validation. 'e outcome is
shown in Table 3.

It can be seen from Table 3 that 12 and 14 hidden layer
nodes achieve the best performance (in other words, the
lowest MSE) and the BR training function has the lowest
MSE. However, when adopting these methods, the gradient
value of the GDA, GDX (with an adaptive learning rate), and
LM decreases quickly during the very early validation stage
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Figure 4: Weight function (18)–(20).
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and, thus, quickly converges to the preset goal, and methods
such as BR, GDM, and GD converge slowly, requiring more
validation than usual. 'us, in conclusion, the choice of

GDA, GDM, or LM should be better, and considering a lack
of GPU support for the simulation environment, we selected
the Levenberg–Marquardt backpropagation (LM) as the
training function. During the number test, LMwith 12 nodes
of the hidden layer showed the best performance.

4.2. Results for PSO Optimization. After setting the adaptive
inertial weights for the PSO optimizer, we can conclude the
following performance graph through each iteration.

To eliminate the random data separation variance, 100-
time simulation was conducted, and the average perfor-
mance for each method is described in Table 4.

From Figure 6 and Table 4, it could be seen that the
performance refers to the MSE of the training model,
training accuracy refers to the average classification accuracy
among the training set (17839), and the prediction accuracy
refers to the classification accuracy among the 4984 samples
from 2015. Although the fitness (MSE) of PSO with w1 drops
fast in the early stage (almost starts with 22), it converges
poorly and has the poor condition of performance and
training/testing accuracy, which means it lacks of certain

Table 2: Summary of training functions.

No. Function name Abbreviation
1 BFGS quasi-Newton backpropagation BFGS
2 Conjugate gradient backpropagation with Powell-Beale restarts CGB
3 Conjugate gradient backpropagation with Fletcher–Reeves updates CGF
4 Conjugate gradient backpropagation with Polak–Ribiere updates CGP
5 Gradient descent backpropagation GD
6 Gradient descent with adaptive learning rate backpropagation GDA
7 Gradient descent with momentum GDM
8 Gradient descent w/momentum and adaptive learning rate backpropagation GDX
9 One-step secant backpropagation OSS
10 RPROP backpropagation RP
11 Scaled conjugate gradient backpropagation SCG
12 Levenberg–Marquardt backpropagation LM
13 Bayesian regulation backpropagation BR

Table 3: Test on the number of neural network hidden layer nodes
(best validation performance in terms of MSE).

10 11 12 13 14 Average
BFGS 0.260 0.252 0.250 0.250 0.208 0.242
CGB 0.202 0.206 0.254 0.244 0.246 0.230
CGF 0.208 0.240 0.204 0.242 0.232 0.224
CGP 0.220 0.222 0.202 0.240 0.202 0.218
GD 0.230 0.232 0.236 0.224 0.232 0.230
GDA 0.204 0.206 0.208 0.204 0.206 0.204
GDM 0.466 0.472 0.228 0.216 0.240 0.324
GDX 0.206 0.202 0.204 0.198 0.204 0.202
OSS 0.200 0.202 0.204 0.244 0.206 0.212
RP 0.206 0.202 0.198 0.206 0.210 0.204
SCG 0.204 0.206 0.198 0.206 0.204 0.204
LM 0.204 0.204 0.198 0.208 0.202 0.202
BR 0.199 0.199 0.199 0.198 0.198 0.198
Average 0.230 0.234 0.214 0.220 0.214

Determine the structure of the NN 

Initialize the weights of NN

Initialize particle in PSO

Calculate the fitness and set 
Pbest/Gbest

Update velocity/position
using adaptive inertial weight 

Update fitness/Pbest/Gbest

NY

Calculate errors

Update weight and threshold

Reach
MaxGen?

Reach Min
error?

Predict/simulate

N

Y

Figure 5: Calculation process for the method used in this study.
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ability for local optimal searching. On the other hand, PSO
with w2 and w3 (two nonlinear formulas) outperforms the
other methods not only in global optimal search (both from
28, while NN with standard PSO drops from nearly 40) but
also in the local optimal search (with good performance and
accuracy), and the NN and NN with standard PSO are in the
middle level with an acceptable result. It can be assumed that

with more data flushing in, the PSO with nonlinear will
perform a dominating advantage over the other methods.

As shown in Table 4, the accuracy of training is better
than the results of the prediction; the relatively lower sample
number may be a major contributor. Notably, the perfor-
mance from all categories is at the same rate related to the
sample size, and it can be concluded that although the

Table 4: Summary of the performance relating to different models.

Category Performance Training accuracy (percentage) Prediction accuracy (percentage)
NN 0.235 78.5 71.6
NN with std. PSO 0.232 78.6 72.4
NN with PSO (w1) 0.298 73.2 70.5
NN with PSO (w2) 0.194 80.4 73.1
NN with PSO (w3) 0.196 79.3 73.6
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Figure 6: NN performance (MSE) adopting different PSO optimizations. (a) PSOwithout inertial weight; (b) PSO with w1; (c) PSO with w2;
and (d) PSO with w3.
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Table 5: Summary of FII expectation (K� 100) and relative percentage for two different methods.

Variables Category
NN with PSO (w2) NN with PSO (w3)

FII Relative percentage (%) FII Relative percentage (%)

Acctype Nonroad 0.108 77.3 0.080 63.4
Month Nonroad 0.088 63.1 0.102 81.0
Weekday Nonroad 0.061 43.7 0.054 43.5
loc_type Nonroad 0.080 57.1 0.076 60.1
rd_char1 Road 0.078 55.6 0.063 50.2
Rdsurf Road 0.052 37.4 0.456 36.2
Light Nonroad 0.069 49.1 0.071 56.1
Weather Nonroad 0.067 47.7 0.059 47.2
func_cls Road 0.063 45.1 0.058 46.1
drv_sex Nonroad 0.024 17.4 0.017 13.1
drv_rest Nonroad 0.043 30.5 0.039 31.0
Vehtype Nonroad 0.092 65.6 0.090 72.0
dir_curv Road 0.032 23.2 0.028 22.1
dir_grad Road 0.020 14.2 0.019 15.1
drv_age Nonroad 0.117 83.4 0.113 90.0
Vehyr Nonroad 0.140 100.0 0.126 100
curv_ang Road 0.047 33.5 0.045 35.4
pct_grad Road 0.056 40.1 0.052 41.3
deg_curv Road 0.035 25.1 0.032 25.4
curv_rad Road 0.040 28.4 0.034 26.8
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Figure 7: Continued.
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prediction accuracy applied to other samples could result in
a marginally worse accuracy, the model can explain all
variance and contributors.

4.3. Results for Factor Analysis. 'e final results for two PSO
with nonlinear adaptive inertial weight are described in
Table 5.

From Figure 7 and Table 5 we can see that two methods
(PSO with w2 and PSO with w3) provide almost the same
ranking with respect to each variable, despite some minor
difference, for example, MONTH and LIGHT are ranked
slightly higher in the secondmethod, while DRIVER SEX are
ranked slightly lower. Nearly seven or eight of the 20 var-
iables have a relative importance value exceeding 50%, in-
cluding the vehicle year, driver age, accident type, month,
location type, and road functional class (also LIGHT in the
second method), with vehicle year and driver age taking the
top two values. Additionally, the related road factors such as
curve and gradient variables have the least importance, and
the only important factor contributing to the severity pre-
diction is the road functional class, which indicates whether
a crash occurred on a certain type of road. 'us, it can be
concluded that the relative road variables contribute less
than the relative nonroad variables, particularly, compared
with the relative vehicle factors (vehicle year and type).
'erefore, the policy makers should pay more attention to
the vehicle and driver regulation rules, as well as the road
design, to reduce the possible severity level in the future.

Driver age and month are two other important factors in
predicting a crash severity. From the sample size, we can see
that the most severe crashes occur during the winter in the
Washington State (December, January, and February), and
drivers below the age of 25 and above the age of 60 are more
prone to encountering severe injury crashes.'emonthmay

account for the rainy season in the mountainous Seattle area,
whereas age may be derived from the fact that younger
people and older people are more prone to making severe
mistakes.

5. Conclusions

In this study, a thorough artificial neural network (ANN)
was developed to address the problems of the crash severity
level modeling and factor analysis (FA). Besides the test of
different types of training structure and methods, more
importantly, a nonlinear adaptive PSO optimization method
was proposed in order to solve the tradeoff problem between
the global and local search ability among the previous
studies. 'e detail test of different algorithm confirmed our
hypothesis. 'e additional contributing factor analysis also
offers a different point of view compared with former sta-
tistical analysis. 'e main conclusions can be concluded as
follows:

(1) 'e number 12 hidden layer nodes fit the model
developed in this paper well; and the BP method
(Levenberg–Marquardt) can be better utilized when
aided by fast hardware

(2) 'e simulation result showed that the PSO optimizer
with nonlinear adaptive inertial weight outperforms
the standard PSO and PSO with linear adaptive
inertial weight

(3) 'rough the factor analysis (FA), it can be found
that, among all 20 variables, nonroad-related vari-
ables can account for most of the severity prediction
variance, and the rainy mountainous area in Seattle
may be the reason for the importance of the month
as a factor and, also, the impact of driver age, where

FII and its relative percentage for each variable (NN with PSO(w3))
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Figure 7: Summary of results for factor analysis. (a) FII and its relative percentage for each variable (NN with PSO (w2)); (b) FII and its
relative percentage for each variable (NN with PSO (w3)).
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younger and older people are more prone to en-
countering a severe crash

'e main innovations can be concluded as follows:

(1) Traditional studies often used statistical methods like
the Poisson regression, negative binary regression,
and generalized logit or probit model for the iden-
tification and mathematical qualification of the inner
internal triggers and their impact on crash severity,
while this paper utilized FA as the analytical tool,
which is unusual for the current research system of
crash severity, and we think that our attempt ex-
tended the methods of crash severity analyses, and
more research could be conducted in the future
work.

(2) FA, as a traditional statistical implement, also can
serve as a powerful explanatory tool in the last
stage of the model, and our work has proved it. 'e
application of FA in this paper indicated that the
basic statistical method is still useful and efficient
while the AI methods sometimes did not have an
agreeable explanation for the inner mechanism of
the data.

'e method developed in this study can be applied to a
big data analysis of traffic accidents and be used as a fast-
useful tool for policy makers and traffic safety researchers.
'e authors recognize that much can be further investigated.
In this paper, only crash severity was discussed. Further
research could be conducted from the perspective of the
collision type (e.g., head-on collisions and rear-end colli-
sions). Besides, the dataset could be enlarged in the future
research to improve the accuracy.
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RGBD scene flow has attracted increasing attention in the computer vision with the popularity of depth sensor. To estimate the 3D
motion of object accurately, a RGBD scene flow estimation method with global nonrigid and local rigid motion assumption is
proposed in this paper. Firstly, the preprocessing is implemented, which includes the colour-depth registration and depth image
inpainting, to processing holes and noises in the depth image; secondly, the depth image is segmented to obtain different motion
regions with different depth values; thirdly, scene flow is estimated based on the global nonrigid and local rigid assumption and
spatial-temporal correlation of RGBD information. In the global nonrigid and local rigid assumption, each segmented region is
divided into several blocks, and each block has a rigidmotion.With this assumption, the interaction of motion from different parts
in the same segmented region is avoided, especially the nonrigid object, e.g., a human body. Experiments are implemented on
RGBD tracking dataset and deformable 3D reconstruction dataset. &e visual comparison shows that the proposed method can
distinguish the motion parts from the static parts in the same region better, and the quantitative comparisons proved more
accurate scene flow can be obtained.

1. Introduction

Vedula et al. [1] proposed the scene flow first, which de-
scribes a 3D motion field formed by the motion in 3D space
scene. Scene flow is the fundamental input to high-level tasks
such as scene understanding and analysis. With the devel-
opment and applications of computer vision and artificial
intelligence, the related technologies have been used in the
object detection and segmentation [2, 3], depth interpola-
tion, and 3D reconstruction in many dynamic scenes, such
as autonomous driving [4, 5], high-speed video generation
[6], and 3D reconstruction [7].

Some research efforts have been dedicated to the es-
timation of the scene flow, which involve different envi-
ronments, monocular vision [8], stereo vision [1, 2, 9, 10],
and RGBD [11–13]. Affordable RGBD cameras can di-
rectly capture both colour and depth information si-
multaneously, so we focus on the RGBD scene flow

estimation. Among the existing methods, methods based
on segmentation are attractive, which can deal with large
displacement and occlusion better. For this method, the
correlation of motion in the local area is considered, such
as the assumption of local rigid area, which can improve
the accuracy of the scene flow estimation. In the local rigid
area, it is assumed that all pixels in a segmented region
share a rigid motion.

However, if the segmented region is a nonrigid object,
pixels with different motion degrees would affect each other
and then affect the overall scene flow estimation effect. In
this paper, the local rigid and global nonrigid assumption in
segmented regions is introduced into the RGBD scene flow
estimation. In this assumption, the local motion in a seg-
mented object area is correlated, and the motion of the
whole segmented object is nonrigid. With this assumption,
the interaction of motion from different parts in the same
segmented region is avoided.
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2. Related Work

According to the difference of solving process, these ap-
proaches are divided into two categories roughly: the var-
iational approaches [1, 8, 12, 13], which construct the
objective function on scene flow directly, and the methods
based on segmentation with the assumption of local rigid
motion [14–16].

&e variational approaches estimate the dense scene
flow with constraints of the spatial-temporal vision in-
formation commonly. An objective function is constructed
to estimate the dense scene flow [1, 8, 17]. Xiao et al. [8]
construct an objective function on scene flow in a mon-
ocular camera environment, which includes a brightness
constancy assumption, a gradient constancy assumption, a
short time object velocity constancy assumption, etc. Jai-
mez et al. [17] considered the depth information from the
RGBD camera and presented a dense real-time scene flow
algorithm with brightness constancy and geometric
consistency.

&e methods based on segmentation estimate the rigid
motion of each segmented region, and then the local rigid
motion and nonrigid motion are mixed to get dense scene
flow [16, 18–20]. In [20], an efficient RGBD PatchMatch was
used to solve large displacement motion patterns and stage,
and further occlusion model and spatial smoothness regu-
larization were used to compute the RGBD scene flow field.
Golyanik et al. [18] presented a multiframe scene flow ap-
proach that assumes scene transformations to be locally rigid
in RGBD image sequences. Xiang et al. [19] used a 3D local
rigidity assumption to estimate the dense scene flow in a
variational framework. Schuster et al. [21] interpolated the
sparse matches between stereoscopic image pairs to estimate
scene flow, in which the initial sparse match is the local rigid
assumption actually.

Sun et al [16] proposed a layered RGBD scene flow
method, in which the depth ordering from RGBD is used to
segment the scene, and solved the occlusions. &e layered
RGBD scene flow method is a promising method as spatial
smoothness is separated from the model of discontinuities
and occlusions, which can model occlusion boundaries by
obtaining the relative depth order. Depth image is layered
based on the depth information. In order to estimate the
motion of the scene, it assumed that pixels belonging to the
same layer have the same rigid motion.

&e result of estimating scene flow directly is high di-
mensional, so the solution space is large and the calculation
complexity is high. And methods with the assumption of
local rigid motion reduce the solution space. However, for
most of the methods, the assumption of local rigid motion, a
local region is semantic, such as a superpixel or a specific
object. So the assumption cannot be well applied to nonrigid
objects because the internal motion of nonrigid object is not
consistent. In this paper, we propose an assumption of global
nonrigid and local rigid motion based on the study of Sun
et al. [16], which can accurately estimate the motion of each
segmented region by dividing each segmented region into
different blocks. Besides, affordable RGBD cameras provide
both colour and depth information simultaneously.

&erefore, we would focus on approaches with colour and
depth information.

3. Methodology

In this section, a framework for estimating RGBD scene flow
is shown in Figure 1. In this framework, two steps are
presented to get scene flow: the preprocessing and the scene
flow estimation.

&e preprocessing mainly performs basic processing on
the input RGBD image sequence (the red box in Figure 1),
thus providingmaterials for estimating scene flow efficiently,
involving the colour-depth registration and depth image
inpainting. Details will be introduced in Section 3.1. &e
scene flow estimation would present the calculating pro-
cessing of scene flow. It includes two parts: depth image
segmentation and scene flow estimation with the pre-
processing result and spatiotemporal constraints from the
RGBD image sequence (Section 3.2).

3.1. Preprocessing. In the preprocessing, the color-depth
registration and the depth image inpainting are imple-
mented. &e color-depth registration is used to associate the
depth image with the RGB image. And the depth image
inpainting is used to repair holes and noises, which are from
occlusions, lack of point correspondences, sensor imper-
fection, etc.

3.1.1. Colour-Depth Registration [22]. To register the RGB
image and depth image, a projective matrix M is calculated
as shown in equation (1). In equation (1), (x, y) is a pixel
coordinate in the depth image, and (X, Y) is the corre-
sponding coordinate in the RGB image:

X

Y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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x
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1
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

Furthermore, equation (1) can be rewritten as follows:

X � m1x + m2y + m3 − m7xX − m8yX, (2)

Y � m4x + m5y + m6 − m7xY − m8yY. (3)

In M, eight unknown parameters need to be solved, and
four pairs of corresponding points in the depth image and
RGB image are needed at least. In our paper, corners are
used.

3.1.2. Inpainting. To process the holes and noises in the
depth image, the inpainting algorithm with the guidance of
RGB image information is used [23]. In this algorithm, holes
and small noises are all regarded as noises, but holes have
larger connected areas and the depth value is 0, while small
noises have smaller connected areas. In this paper, holes are
inpainted based on depth domain similarity and colour
consistency from the aligned depth image and RGB image.
And small noises are removed with the local bilateral filter.

2 Discrete Dynamics in Nature and Society



3.2. Scene Flow Estimation. In order to estimate scene flow
accurately, the depth image is segmented into different
regions roughly since there is stronger local motion cor-
relation in the same region. Based on the inpainted depth
image, K-means clustering algorithm is used to segment and
label the depth image, by which scene can be quickly and
simply segmented based on the depth information.&e value
of K depends on the number of moving regions in the scene.

To calculate the RGBD scene flow, an assumption of
global nonrigid and local rigid motion is proposed to de-
scribe the behaviours of the scene in this paper. In a seg-
mented region, the pixels’ motion of its inner local area is
highly consistent, so it is assumed that the local motion of a
segmented region is rigid.

3.2.1. Global Nonrigid and Local Rigid Assumption. Each
segmented region is divided into a number of sufficiently
small blocks and the size of the block is 3× 3 (Figure 2). In
the global nonrigid and local rigid assumption, pixels in each
block share the common 3D rigid motion R, which includes
the rotation and the translation relative to the camera co-
ordinate system (local rigid assumption), and different
blocks have different motions (global nonrigid assumption).

Let a 2D point p1 � (x1, y1) at frame t, and its corre-
sponding 2D point p2 � (x2, y2) in frame t + 1. &e depth
values of p1 and p2 are z1 and z2, which are from the depth
images. According to the camera imaging principle and the
2D-3D transformation model in [16], the corresponding 3D
point P1 � (X1, Y1, Z1) and P2 � (X2, Y2, Z2) of p1 and p2
are as follows:

X1 � z1 ·
x1 − cx( 􏼁

fx, Y1
� z1 ·

y1 − cy􏼐 􏼑

fy, Z1
� z1,

X2 � z2 ·
x2 − cx( 􏼁

fx, Y2
� z2 ·

y2 − cy􏼐 􏼑

fy, Z2
� z2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where (fx, fy)T and (cx, cy)T represent the camera focal
length and distortion coefficient, respectively.

&e rigid motion R from P1 to P2 can be expressed as
follows:

P2 � R ·
P1

1
􏼢 􏼣. (5)

In equation 5, the image coordinate p2 corresponding to
the spatial point P2 is given by

p2 � fx

X2

z2
+ cx, fy

Y2

z2
+ cy􏼠 􏼡. (6)

&e corresponding local rigid RGBD scene flow from p1
to p2 is as follows:

u
R

p1( 􏼁 � fx

X2

z2
+ cx − x1,

v
R

p1( 􏼁 � fy

Y2

z2
+ cy − y1,

w
R

p1( 􏼁 � z2 − z1,

(7)

where u, v, and w are the horizontal motion, vertical motion,
and depth change of p1.

Furthermore, a term on spatial constraints for scene flow
is presented as follows:

Espa utk, vtk, wtk, Rtk( 􏼁 � Espa_u utk, Rtk( 􏼁 + Espa_v vtk, Rtk( 􏼁

+ Espa_w wtk, Rtk( 􏼁,

(8)

where
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(9)

where utk, vtk, and wtk are the scene flow of in directions x, y,
and z for the segmented region k at frame t, and Np is 4
nearest spatial neighbours of the pixel p.

Espa u, Espa v, and Espa w reflect motion correlation in
different directions within the same segmented region.

3.2.2. Spatiotemporal Correlation. Referring to the objective
function in [16, 24, 25], the spatiotemporal correlation of the
RGBD image sequence is also considered besides the global
nonrigid and local rigid assumption. &e spatial-temporal
correlation of the RGBD image sequence contains two
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terms: the consistency of RGBD data and the coherence of
the segmented regions.

(1) 9eConsistency of RGBDData. If p is visible in frame
t and p + (utk(p), vtk(p)) is also visible in frame t + 1
in the depth image and the aligned RGB image, the
point has a constant appearance with the motion
(utk(p), vtk(p), wtk(p)). &e term consistency of
RGBD data can be represented as follows:

Edata utk, vtk, wtk( 􏼁 � 􏽘
p

It(p) − It+1 p + utk(p), vtk(p)( 􏼁( 􏼁( 􏼁
2

􏼐

+ Zt(p) + wtk(p) − Zt+1 p + utk(p), vtk(p)( 􏼁( 􏼁( 􏼁
2
),

(10)

(2) 9e Coherence of the Segmented Region. If p in
frame t belongs to the segmented region k, p +

(utk(p), vtk(p)) in frame t + 1 belongs to the seg-
mented region k. &e term coherence of the seg-
mented region can be represented as follows:

Esup utk, vtk, gtk( 􏼁 � 􏽘
p

􏽘

p′∈N(x,y)

gt,k(p) − gt,k p′( 􏼁􏼐 􏼑
2

+ 􏽘
p

gt,k(p) − gt+1,k p + utk(p), vtk(p)( 􏼁( 􏼁􏼐 􏼑
2
,

(11)

where gtk is a support function, which represents the
probability size that a pixel belongs to the segmented region
k in frame t.

According to equations (8), (10), and (11), a total ob-
jective function is constructed as follows:

E(u, v, w, g, R) � 􏽘
T−1

t�1
􏽘

K

k�1
λdataEdata utk, vtk, wtk( 􏼁(⎛⎝

+ λspaEspa utk, vtk, wtk, Rtk( 􏼁􏼑􏼑

+ 􏽘
T

t�1
􏽘

K−1

k�1
λsupEsup utk, vtk, gtk( 􏼁,

(12)

where λdata, λspa, and λsup represent the corresponding
weight of Edata, Espa, andEsup, respectively.

&e coordinate descent method is used to minimize the
RGBD scene flow energy function in equation (12). Firstly,
estimate the initial scene flow according to the interframe
optical flow and segmentation of the depth image. Sec-
ondly, obtain the optimized scene flow by image warping
while keeping the layering result fixed. &irdly, calculate
the optimized layered support function with coordinate
descent method while keeping the scene flow fixed. Finally,
get the final scene flow by looping the second and third
operations.

4. Experiments

In this section, the performance of the proposed method
is evaluated by analysing the results without the as-
sumption of global nonrigid and local rigid. &en, the
method is implemented on Princeton Tracking Bench-
mark and Deformable 3D reconstruction dataset, and
some qualitative or quantitative comparisons are
presented.

4.1. Performance Evaluation on the Term on Spatial Con-
straints of Scene Flow. &e term on spatial constraints of
scene flow reflects the relationship between the scene flow
of a pixel and its neighbourhood. To evaluate its perfor-
mance, some experiments are implemented without this
term.

In Figures 3 and 4, the scene flow is estimated without
the spatial constraints of scene flow. For clarity, the figures
for scene flow are not shrunk too much. It is obvious that
scene flow loses smoothness in the same segmented region.
&at means the scene flow of pixels in the same region is
discontinuous since the correlation of scene flow of pixels in
the same region is not considered.

4.2. Princeton Tracking Benchmark. &is dataset contains
multiple independent moving targets and large areas of
occlusion [28]. In this section, “Bear_back” sequence is
used to test the method in this paper, and the results are
shown in Figure 3. In the “Bear_back” sequence, the
motion of the scene is produced by the opposite movement

RGB images

Depth images

Color-depth 
registration

Depth image
inpainting

Depth image
segmentation

Scene flow
estimation

Input

Preprocesssing

Figure 1: &e framework for RGBD scene flow estimation. &is framework shows the steps of RGBD scene flow estimation.
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of two hands mainly, in addition to some slight motion of
the body.

In Figure 5, the first two columns are two consecutive
images from Bear_back sequence, including RGB and depth
images. &e third column is the segmentation results, and K
is set to 5 in the K-means clustering algorithm. &e first and
second rows of the fourth and fourth columns are the results
of Sun’s method [16] and our method, respectively. By
comparing the scene flow in the red box between Sun’s
method and ours, it can be found that, under the same
segmentation condition, the proposed method is closer to
the moving region of the real image.

4.3. Deformable 3D Reconstruction Dataset [26].
Deformable 3D reconstruction dataset is a nonrigid
dataset. In this paper, “Hat” and “Alex” sequence are used
to test the proposed method, and different poses from
different times are selected in these two sequences, re-
spectively, to validate the proposed method is invariant to
pose variation.

In “Hat” sequence, the motion is caused by the off-cap
behaviour, and two poses are used, which is called Pose 1
and Pose 2. Pose 1 has small amplitude, involving the
slight motion of hat, arm, and twist (Figure 6). Pose 2
includes the motion of hat mainly, and the direction of
scene flow is the same basically (Figure 7). In Figures 6 and
7, the first two columns are the consecutive RGB and
depth images, the third column is the segmented results
with K � 2 in the K-means clustering algorithm, and the
fifth column is the scene flow of Sun’s method and ours.
Occlusion calculation is an important part of Sun’s
method; therefore, the occlusions are also presented in
this section.

In the fifth column of Figures 6 and 7, the estimation
result of scene flow with Sun’s method covers the whole
human body which contains some stationary part. &e
reason for this problem may be that pixels in the same
segmented region share a common rigid motion, which
results in pixels without motion are also estimated scene
flow. However, our method can estimate the scene flow of

motion part, such as arm, head, and hat because each
segmented region is divided into different blocks and the
scene flow is estimated based on 3× 3 block in each seg-
mented region.

In “Alex” sequence, Pose 3 and Pose 4 are used. Pose 3
is produced by waving arms and some movement of
clothes (Figure 8), and Pose 4 is obtained by the motion of
arms (Figure 9). In the segmentation of “Alex” sequence,
K is also set to 2. In Pose 3 and Pose 4, the motion
amplitude of arms is greater than the rest of the human
body. In Sun’s method, the motion amplitude of the
whole body is considered to be the same; however, the
motion of arms is significantly greater than the rest of the
body.

By comparing the scene flow estimation results visually
(Figures 6∼9), it can be found that our method can accu-
rately estimate the scene flow of the nonrigid objects which
involves different motion parts.

4.4. Evaluation Results. Quantitative results, RMS and AAE,
are used to compare the proposed method and Sun’s
method.

RMS and AAE traverse all the pixels in the image, map
the 3D scene flow acquired by the algorithm into a 2D
optical flow, and compare it with the real optical flow value.
&e smaller the difference is, the more accurate the calcu-
lation is. Let that the estimated optical flow is (u, v)T, and the
true optical flow is (uGT, vGT)T, then the calculation formula
of the RMS and AAE is as follows:
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���������������������������������������������

1
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􏽘
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2

􏼐 􏼑 + vGT(x, y) − v(x, y)( 􏼁
2

􏼐 􏼑

􏽶
􏽴

,

AAE �
1
N

arccos
1 + uGT × u + vGT × v

�����������
u2

GT + v2GT + 1
􏽱

·
���������
u2 + v2 + 1

√
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(13)

where N is the number of pixels in the image.

(a) (b) (c)

Figure 2: Illustration for the assumption of global nonrigid and local rigid motion: (a) the depth layered image; (b) the layered result of the
tth frame kth layer and (c) the layered result of the t+ 1th frame kth layer. &e block size is 3∗ 3.
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Errors of the method in this paper and Sun’s are
shown, respectively, in Figures 10(a) and 10(b), where
the blue bar represents the errors of ours and the orange
bars are the errors of Sun’s method. From Figure 9, it

is obvious that the blue bars are shorter than the
orange bars, that is, RMS and AAE of the proposed
method are lower than those of Sun’s method in the test
datasets.

Sun’s 
method

Ours

(a) (b) (c) (d) (e)

Figure 5: “Bear_back” sequence test results. Two consecutive frames from “Bear_back” sequence are input and segmented into 5 regions to
estimate occlusion and scene flow. (a) RGB images. (b) Depth images. (c) Segmentation K� 5. (d) Occlusions. (e) Motion.

(a) (b) (c) (d)

Figure 3: “Hat” sequence [26] without spatial constraints of scene flow. Two consecutive frames from “Hat” sequence are input and
segmented into 2 regions to estimate scene flow. (a) RGB images. (b) Depth images. (c) Segmentation K� 2. (d) Scene flow.

(a) (b) (c) (d)

Figure 4: SRSF 20 sequence [27] without spatial constraints of scene flow. Two consecutive frames from SRSF 20 sequence are input and
segmented into 4 regions to estimate scene flow. (a) RGB images. (b) Depth images. (c) Segmentation K� 4. (d) Scene flow.
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(a) (b) (c) (d) (e)

Sun’s 
method

Ours

Figure 6: Pose 1 in “Hat” sequence.” Input two consecutive frames about Pose 1 in “Hat” sequence, segment them into 2 regions (human
body with hat and background), and estimate the occlusion and scene flow. (a) RGB images. (b) Depth images. (c) Segmentation K� 2.
(d) Occlusions. (e) Motion.

Sun’s 
method

Ours

(a) (b) (c) (d) (e)

Figure 7: Pose 2 in “Hat” sequence.” Input two consecutive frames about Pose 2 in “Hat” sequence. (a) RGB images. (b) Depth images.
(c) Segmentation K� 2. (d) Occlusions. (e) Motion.

Sun’s
method

Ours

(a) (b) (c) (d) (e)

Figure 8: Pose 3 in “Alex” sequence. Input two consecutive frames about Pose 3 in “Alex” sequence. (a) RGB images. (b) Depth images.
(c) Segmentation K� 2. (d) Occlusions. (e) Motion.

Sun’s 
method

Ours

(a) (b) (c) (d) (e)

Figure 9: Pose 4 in “Alex” sequence. Input two consecutive frames about Pose 4 in “Alex” sequence. (a) RGB images. (b) Depth images.
(c) Segmentation K� 2. (d) Occlusions. (e) Motion.
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5. Conclusions

In this paper, a RGBD scene flow estimation method with
global nonrigid and local rigid motion assumption is pre-
sented. In this method, the preprocessing and the scene flow
estimation are carried out. &e preprocessing is used to get
the registered RGB image and depth image, which would
provide material for estimating scene flow. In the scene flow
estimation, the K-means clustering algorithm is used to
segment the depth image and process the occlusions, and
then scene flow is estimated with the spatial-temporal
correlation of the RGBD image sequence and global non-
rigid and local rigid assumption in each segmentation re-
gion. To represent the global nonrigid and local rigid
assumption, each segmented region is divided into a number
of sufficiently small blocks since the pixels’ motion in the
same block is consistent and the pixels’ motion in the dif-
ferent block is inconsistent. Experiments on different
datasets and different poses show that the scene flow can be
estimated more accurately with the proposed method.

However, the running time of the code is longer than
[16] because each segmented region is divided into different
blocks. In the future work, we will refer to the optimization
of the model. For trained deep neural network methods can
predict scene flow rapidly, we will refer to the existing
methods to study learning-based methods.
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Multivariate cryptography is one of the most promising candidates for post-quantum cryptography. Applying machine learning
techniques in this paper, we experimentally investigate the side-channel security of the multivariate cryptosystems, which se-
riously threatens the hardware implementations of cryptographic systems. Generally, registers are required to store values of
monomials and polynomials during the encryption of multivariate cryptosystems. Based on maximum-likelihood and fuzzy
matching techniques, we propose a template-based least-square technique to efficiently exploit the side-channel leakage of
registers. Using QUAD for a case study, which is a typical multivariate cryptosystemwith provable security, we perform our attack
against both serial and parallel QUAD implementations on field programmable gate array (FPGA). Experimental results show that
our attacks on both serial and parallel implementations require only about 30 and 150 power traces, respectively, to successfully
reveal the secret key with a success rate close to 100%. Finally, efficient and low-cost strategies are proposed to resist side-
channel attacks.

1. Introduction

With the upcoming quantum computers, traditional cryp-
tosystems face huge challenges. Public-key cryptosystems
such as Rivest–Shamir–Adleman (RSA) and elliptic curve
cryptography (ECC), whose security relies on the difficulty
of certain number theoretic problems, are under great threat
of quantum attack. In as early as 1994, Peter Shor proposed
an algorithm on a quantum computer that efficiently solved
such number theoretic problems in polynomial time. Af-
terward,Monz et al. [1] presented the realization of a scalable
Shor algorithm in 2016, which means that once large-scale
quantum computers appear, public-key cryptosystems will
become insecure. Meanwhile, for symmetric-key primitives,
larger keys are required to resist the quantum attack to some
extent.

Since Shor’s discovery, the theory of post-quantum
cryptography has developed significantly. Many crypto-
graphic schemes proposed in the literature, such as code-
based cryptography [2] and lattice-based cryptography [3],

show great potentiality to resist quantum attacks, while
multivariate cryptography is one of the most promising
candidates [4]. Afterward, numerous cryptosystems based
on multivariate quadratic polynomials have been proposed,
such as unbalanced oil-and-vinegar (UOV) and its variant
[5], Rainbow [5, 6], ZHFE [7], and CHNN-MVC [8].

At Eurocrypt 2006, Berbain et al. [9] presented the first
multivariate stream cipher scheme denoted as QUAD, which
is referred to as a practical and provable secure stream ci-
pher, as well as a pseudorandom number generator (PRNG).
In 2009, Berbain et al. [10] revisited the stream cipher of
QUAD and proposed the provable security arguments
supporting its conjectured strength for suitable parameter
values. +e provable security of QUAD relies on the
hardness of solving systems of multivariate quadratic
equations. Bardet et al. [11] presented a cryptanalysis al-
gorithm with a complexity bounded by O(2134.56), which
means this cryptanalysis method cannot put into practice.

In recent years, GPUs are widely used in cloud com-
puting and blockchain, which faces huge security challenges
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to guarantee data security and user privacy [12–14]. Several
GPU acceleration schemes for multivariate systems are
proposed to make it suitable for security of cloud computing
and blockchain in the quantum world [15, 16]. In 2014,
Tanaka et al. [15] proposed two efficient parallelization al-
gorithms and a GPU-based multivariable quadratic poly-
nomial system. Furthermore, they proposed several effective
parallel implementations of QUAD on GPU to accelerate the
computing of quadratic polynomials. In 2018, Liao et al. [16]
proposed a GPU acceleration framework for high-order
multivariate cryptography systems, where the GPU accel-
eration schemes made multivariate cryptosystems feasible
for cloud computing and blockchain.

Moreover, multivariate cryptosystems are in general
computationally efficient, which supports the use of the
Internet of +ings (IoT) devices. IoT is essentially a network
of pervasive devices such as RFID tags, sensors, ASICs, and
smart cards, which have rigid cost constraints in terms of
area, memory, computing power, and battery supply. Tra-
ditional cryptosystems are not entirely applicable to the IoT
devices since they are too expensive for such pervasive
devices. At fast software encryption (FSE) 2010, Billet et al.
[17] showed that QUAD can be converted to efficiently
construct a privacy-preserving authentication protocol for
RFID with provable security. Arditti et al. [18] presented a
QUAD implementation and regarded it as the smallest
provably secure stream cipher so far. +e smallest QUAD
implementation requires only 2961 GE, which makes it a
competitive candidate for IoT security. Also, Hamlet et al.
[19] proposed a throughput-optimized parallel imple-
mentation of QUAD for more secure application scenarios
in 2015.

+e implementation of cryptography needs to take a
wide range of physical attacks into account, especially side-
channel attacks and fault attacks. Side-channel attacks ex-
ploit the dependency between physical information (e.g.,
power consumption, electromagnetic leaks, and timing in-
formation) and secret key to enable a divide-and-conquer
attack to reveal the key part by part. Typical side-channel
attacks include nonprofiled attacks (e.g., correlation power
analysis (CPA) [20], mutual information analysis (MIA)
[21]) and profiled attacks (e.g., template attacks (TA)
[22–28] and other machine learning-based side-channel
attacks [28–34]). Profiled side-channel attacks are the most
powerful attacks, which received a lot of attention in recent
years. Samples of power traces are regarded as features, and
feature selection methods are needed to reduce the com-
putational complexity and increase the prediction accuracy
[28]. Afterward, machine leaning techniques including
maximum-likelihood strategy [22–28], SVM [28–30], ran-
dom forest (RF) [28, 29], k-nearest neighbors (KNN) [31],
neural networks (NNs) [32], and deep learning (DL) [33, 34]
are widely applied to build the prediction model. Profiled
side-channel attacks include a profiling/training phase and a
matching/predicting phase. In the profiling/training phase,
machine learning algorithms are fed with labelled power
traces captured from a reference device to build the pre-
diction model. In the matching/predicting phase, prediction

models are used to predict the correct labels for those power
traces captured from a target device.

Template attack was first proposed at CHES’02 [22],
which efficiently revealed the key by a maximum-likelihood
strategy, and was rapidly accepted as the strongest form of
side-channel attack. Original template attack matched only
a single power trace, which sometimes failed in the
practical attack. Agrawal et al. [23] proposed template-
based DPA attack to accumulate the matching results of
power traces, which significantly improved the success rate.
Özgen et al. [24] combined classification algorithms with
template attacks in the matching phase to improve the
efficiency of attacks. Choudary and Kuhn [25] tackled some
of the practical obstacles of template attacks, such as pooled
covariance matrices, compression methods, and incom-
patibility of templates across different devices. Zhang [27]
theoretically analyzed the exact relationship between the
success rate of template attack and values of different
parameters, including signal-to-noise, number of inter-
esting points, and number of power traces. From the
viewpoint of machine learning, Picek et al. [28] adopted
feature selection techniques to improve the attack effi-
ciency. +ey concluded that L1 regularization wrapper and
linear SVM hybrid methods performed consistently well
for all data sets.

Although side-channel attacks have been developed over
20 years, research about side-channel attacks onmultivariate
cryptosystems is still in the early stages. Several literatures
about side-channel attack on multivariate cryptosystems
were published. In as early as 2005, Okeya et al. [35] analyzed
the power leakage of addition operations modulo 232 of
SHA-1 and successfully recovered the secret information of
SFLASH, which is the first successful power analysis attack
on multivariate cryptography in practice. Later, in 2013,
Hashimoto et al. [36] proposed a theoretical method based
on fault attack to reveal the partial key of MPKC systems. Yi
and Li [37] proposed a fault attack and DPA on ASIC
implementation of enTTS scheme in 2017. In 2018, Park
et al. [38] presented a correlation power analysis attack
against the Rainbow and UOV schemes on an 8-bit AVR
microcontroller that yields full secret key recoveries. In 2019,
based on the work of Hashimoto et al., Krämer and Loiero
[39] complemented the research on fault attacks of multi-
variate signature schemes. However, their attacks do not lead
to complete key recovery on Rainbow and UOV. Recently, Li
et al. [40] proposed a CPA attack against serial imple-
mentation of QUAD on FPGA. +eir work efficiently
revealed the secret key but still requires further work to
improve success rate.

Li et al. proposed the practical CPA cryptanalysis on
serial QUAD (2, 160, 160) with a much lower complexity,
but the success rate is only around 85%. Because of the low
signal-to-noise ratio, classic template attack and template-
attack DPA attack cannot exactly match the templates to
achieve a satisfactory success rate. To tackle this issue, we
have proposed template-based least-square power analysis
on serial QUAD (2, 160, 160).+emain contributions of our
paper can be highlighted as follows:
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(1) By applying the least-square technique to enable
fuzzy matching of the templates, which can find the
best matching via minimizing the squared sum of
errors. As a result, the proposed practical can achieve
a success rate of nearly 100%.

(2) We also extend the template-based least-square
power analysis attack to explore the leakage of
parallel implementation of QUAD (2, 160, 160),
which has successfully and efficiently revealed the
secret key with a success rate also close to 100%.

(3) For multivariate cryptography, all monomials and
polynomials can be computed in an arbitrary order
to break the link between the power consumption
and the secret key. We propose two low-cost hiding
countermeasures for serial and parallel imple-
mentations, respectively, which show great potential
to resist side-channel attacks.

+e remaining paper is organized as follows: in Section 2,
we review the mathematical definition, serial and parallel
FPGA implementations of the QUAD stream cipher; in
Section 3, the template-based least-square power analysis
attacks on the serial and parallel FPGA implementation of
the QUAD are presented; experimental results of our attacks
are given in Section 4; efficient and low-cost countermea-
sures to resist side-channel attacks are discussed in Section 5;
and Section 6 concludes the paper.

2. Preliminaries

2.1.MultivariateCryptography. Generally, the mathematical
definition of a multivariate quadratic equation with n var-
iables over GF (q) can be written as follows:

Q x1, . . . , xn( 􏼁 � 􏽘
1≤i≤j≤n

αijxixj + 􏽘
1≤i≤n

βixi + c, (1)

where αij, βi, and c are all coefficients over GF (q). Note that
the degree of polynomial is up to 2; otherwise, new variables
will be introduced to keep the polynomial of degree 2. A
multivariate quadratic system Q(X) consisting of m mul-
tivariate quadratic equations in n variables over GF (q) is
defined as

Q(X) � Q1(X), . . . , Qm(X)􏼈 􏼉, X � x1, . . . , xn. (2)

Given a multivariate quadratic system Q(X), the MQ
problem is defined as to find a value X � x1, . . . , xn, if any,
such that Qi(X) � 0 for all 1≤ i≤m. +e MQ problem is
proved to be NP hard, even in the smallest finite filed GF (2)
[10].

A particular QUAD stream cipher in n variables over GF
(q) is specified as QUAD (q, n, r), which computes n + r

polynomials per round. As shown in Figure 1, QUAD (q, n,
r) consists of an output function
Sout(X) � (Qn+1(X), . . . , Qn+r(X)) to produce r outputs as
the keystream, and an update function
Sin(X) � (Q(X)1, . . . , Qn(X)) is used to generate n outputs
to update X for the next round. +e parameters q, n, and r
and the coefficients αij, βi, and c for Sin and Sout are public.

+e QUAD cipher expands a secret initial state X0 ∈ GF(q)n

into a sequence of secret states X0, X1, X2, . . . ∈ GF(q)n and
a sequence of output vectors Y0, Y1, Y2, . . . ∈ GF(q)r.

QUAD (2, 160, 160) is a practical version with the se-
curity level of at least 280, which is strongly recommended in
[10]. QUAD (2, 160, 160) has 160 variables over GF (2),
which outputs 160 bits per round, resulting in a set of 320
multivariate quadratic equations.

From a perspective of implementation, operations over
GF (2) are more efficient than those over larger fields.
Moreover, the monomial forms xi · xi and xi are equal over
GF (2); therefore, αijxixj and βixi can be computed together.
In the case of randomly generated αij and c, equations of
QUAD over GF (2) can be simplified as

Q(X) � 􏽘
1≤i≤j≤n

αijxixj + c,
(3)

which brings great benefits in terms of efficiency and
security.

2.2. FPGASerial Implementation ofQUAD. Arditti et al. [18]
proposed a compact serial implementation of QUAD, which
is believed to be the smallest provably secure stream cipher.
As shown in Figure 2, the implementation consists of two
main components. +e first one is a nonlinear feedback shift
register (NFSR), in which the coefficients of α and c are
randomly generated. Each monomial of the equation is
computed by the second component at every clock tick and
accumulated to a result register. Multivariate quadratic
equations Q1(X), Q2(X), . . ., Qn+r(X) are computed se-
quentially. At every clock tick, the NFSR generates the
coefficient. Once a new monomial αijxixj of polynomial
Qk(X) is computed, its contribution will be accumulated to
the temporary register Qk. After n(n + 1)/2 + 1 clock cycles,
the polynomial Qk(X) is computed, and the above process is
repeated for Qk+1(X).

2.3. FPGA Parallel Implementation of QUAD. Hamlet and
Brocato [19] presented two throughput-optimized parallel
implementations of QUAD for amuch higher throughput. A
QUAD (2, 128, 128) version with the security level of ap-
proximately 264 is considered, which can be easily extended
to another version in GF (2) such as QUAD (2, 160, 160).
+e coefficients α and c are randomly generated and stored
in ROM. Multivariate quadratic equations

Yi

Sout (X)Sin (X)

Xi+1

Xi (initial X0)

Figure 1: Stream cipher generation in QUAD [9].
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Q1(X), Q2(X), . . . , Qn+r(X) are still computed sequentially,
while n monomials of polynomial Qk(X) are computed in
parallel at a time to achieve a higher throughput.

As shown in Figure 3, the FPGA parallel implementation
of QUAD (2, 160, 160) is summarized as follows:

(1) Sequentially compute the equations Q1(X), Q2(X),
. . ., Q320(X) by step (2) to step (6).

(2) Initialize the internal state X and rotated X with the
secret key and the initialization vector.

(3) Calculate ηi � xi AND rotatedxi, 1≤ i≤ 160
simultaneously.

(4) Load 160-bit coefficients α from ROM, feed η and α
into 8-input AND-XOR modules to compute
Mc � 􏽐3≥i≥0α4c− iη4c− i, 1≤ c≤ 40, and store Mc in
temporary register Pc.

(5) Calculate Vc1
� 􏽐3≥i≥0M4c1− i, 1≤ c1 ≤ 10, by XOR

modules. Compute Qk(X) � Qk(X)⊕􏽐1≤i≤10Vi and
store the value in result register Q.

(6) Rotate the internal state rotated X by one bit, and go
to step 3 to compute next 160 monomials until all
monomials of polynomial Qk(X) are completed,
which requires ⌈(n + 1)/2⌉ � 81 loops. Note that, in
the last loop, only half of the above modules are
enabled to compute the last 80 monomials.

(7) Repeat the above steps until all quadratic equations
are computed.

3. Proposed Attack on
Implementation of QUAD

3.1. Power Leakage Model. A typical CMOS transistor
consumes dynamic power when its output signal is

converted. Figure 4(a) shows the changing process of a
register when the output signal is converted from 0 to 1. A
charging current from the power supply to the output ca-
pacitance CL and a transient short-circuit current from
CMOS transistor are generated. On the contrary, Figure 4(b)
shows the discharging process when the output signal is
converted from 1 to 0. Only the instantaneous short-circuit
current is generated through CMOS transistor.

As a result, conversions of the output signal are focused
since dynamic power is the major power consumption of the
digital logical circuits of ASIC and FPGA. Denote the power
consumption of CMOS transistor by Pij when its signal
converts from i to j, where i and j equal to 0 or 1. P01 and P10
consume dynamic power, while P00 and P11 consume only
static power. As a result, it generally holds that
P00 ≈ P11≪P01, P10.

+erefore, the power consumption when writing data to
a register depends on the number of bit-flips. A hamming
distance (HD) model well summarizes the power con-
sumption of a register transition from a previous state to a
new state.

Regarding multivariate cryptosystems, which consist of a
large number of monomials and polynomials, registers are
indeed required to store monomial and polynomial values
during the encryption. Serial implementation, for instance,
monomials are computed sequentially and accumulated to
the temporary register Qk, as identified by rectangle in
Figure 2.

+e value of register Qk changes to Qk ⊕ αijxixj for all
monomials. +e power consumption of register Qk can be
concluded as follows:

L(Q(x)) � HD Qk, Qk ⊕ αijxixj􏼐 􏼑 � HW αijxixj􏼐 􏼑, 1≤ k≤ 160.

(4)

Consequently, an attacker is possible to predict secret
keys xi and xj by observing the power consumption of
registers Ql.

Other than serial implementations, parallel imple-
mentations compute 160 monomials simultaneously. 4
monomials are accumulated by an AND-XOR module and
stored into temporary register Pc. According to the parallel
implementation described in Section 2.3, when computing
the first 160 monomials, the values Mc, 1≤ c≤ 40, stored into
the temporary register Pc are

Mc � a4c− 3,4c− 3x4c− 3x4c− 3 ⊕ a4c− 2,4c− 2x4c− 2x4c− 2 ⊕ a4c− 1,4c− 1x4c− 1x4c− 1 ⊕ a4c,4cx4cx4c, 1≤ c≤ 40. (5)

Loop n(n+1)/2

...

Done

ak
ij

xi xj

AND

AND XOR

Sin

Sout

Output

Q1
Qk

Qk

Q320

NFSR

0 1

Result (Q1, …, Q320)

X = (x1, …, xn)

Figure 2: Serial implementation of QUAD (2, 160, 160) [18].
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After rotating the internal state rotated x by one bit to
compute the next 160 monomials, the values Mc

′, 1≤ c≤ 40,
stored into registers Pc are

Mc
′ � a4c− 3,4c− 2x4c− 3x4c− 2 ⊕ a4c− 2,4c− 1x4c− 2x4c− 1 ⊕ a4c− 1,4cx4c− 1x4c ⊕ a4c,4c+1x4cx4c+1, 1≤ c≤ 39,

Mc
′ � a157,158x157x158 ⊕ a158,159x158x159 ⊕ a159,160x159x160 ⊕ a1,160x160x1, c � 40.

(6)

+erefore, the values of registers Pc, 1≤ c≤ 40, change
from Mc to Mc

′, and the power leakage model of parallel
implementations can be defined as

L(Q(x)) � H D Mc, Mc
′( 􏼁 � HW Mc ⊕Mc

′( 􏼁, 1≤ c≤ 40.

(7)

3.2. Template-Based Least-Square Power Analysis Attack.
Classic side-channel attacks, such as DPA, CPA, and MIA,
require a large number of power traces to reveal the key,
which means that different plaintexts are needed to be
encrypted with the same key for obtaining as much power
traces as possible. However, multivariate cryptosystems

usually contain limited quadratic equations. Take QUAD as
an example, and the key of QUAD is constantly updated
after each round of encryption, which only generates n + r

power traces with the same key. In this case, machine
learning-based side-channel attacks such as template attack
have inherent advantages, which can extract the key with
much fewer target power traces.

Machine learning-based side-channel attacks are the
most powerful attacks. Based on a maximum-likelihood
strategy, template attacks reveal the secret key efficiently,
which consist of a profiling phase and a matching phase.
Classic template attacks match only a single power trace and
reveal the key by the Bayes theorem in the matching phase.
However, there is not enough valuable information in a

CL

Rmeas

Rmeas

VDD

(a)

CL

Rmeas

Rmeas

VDD

(b)

Figure 4: Charging and discharging process of register.
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single power trace to reveal the correct key in practical
situation; hence, the classic template attack has little pros-
pect of success rate.

To solve this problem, template-based DPA attack was
proposed as follows [23]:

p kj

􏼌􏼌􏼌􏼌􏼌 T􏼒 􏼓 �
􏽑1≤i≤Dp ti

􏼌􏼌􏼌􏼌 kj􏼐 􏼑􏼐 􏼑 · p kj􏼐 􏼑

􏽐1≤l≤K 􏽑1≤i≤Dp ti

􏼌􏼌􏼌􏼌 kl􏼐 􏼑􏼐 􏼑 · p kl( 􏼁􏼐 􏼑
, (8)

which accumulates the matching degree of each power trace
during template matching to improve the success rate.

Unfortunately, due to the low signal-to-noise ratio, the
accurate matching method of template-based DPA attack is
not applicable. For this reason, we proposed a template-
based least-square (LSQ) power analysis attack, which re-
veals the key by fuzzy matching. As described in Figure 5, the
main idea of template-based LSQ is as follows:

(1) Choose a strategy to build templates: according to
the power leakage models in equations (4) and (7),
two templates need to be built, corresponding to
leakage values 0 and 1.

(2) Collect power traces to build templates: two groups
of power traces are collected according to different
leakage values.

(3) Select interesting points (features): samples of power
traces are regarded as features, which include rele-
vant, irrelevant, and redundant features. Feature
selection methods are needed to select the most
relevant features to improve the attack efficiency.
Feature selection methods [28] such as squared
pairwise T-differences (SOST), Pearson correlation,
principal component analysis (PCA), linear SVM
wrapper, and L1 regularization are investigated. In
our experiments, the Pearson correlation method is
chosen to search interesting points, which can lead to
excellent classification performance. 25 interesting
points for serial implementation and 35 interesting
points for parallel implementation with the highest
ρt,hw are selected, where ρt,hw is defined as

ρt,hw �
cov(t, hw)

σtσhw

. (9)

(4) Build templates with interesting points: two tem-
plates hi � (mi, Ci) corresponding to leakage values 0
and 1 are built, respectively, by covariance matrix Ci

and mean vector mi, where mi and Ci are defined as

mi �
1
d

􏽘
1≤j≤d

t
i
j,

Ci(u, v) �
1

d − 1
􏽘

1≤l≤d
Nul − Nu( 􏼁 · Nvl − Nv( 􏼁,

(10)

(5) Match templates: power traces T � t1, t2, . . . , tD􏼈 􏼉

with the same key are captured from the device
under attack to match the templates, respectively.
Template that leads to the highest probability
p(tj; (mi, Ci)) indicates the correct leakage value,
where p(tj; (mi, Ci)) is defined as

p tj; mi, Ci( 􏼁􏼐 􏼑 �
exp − (1/2) · tj − mi􏼐 􏼑′ · C− 1

i · tj − mi􏼐 􏼑􏼐 􏼑
��������������

(2 · π)T · det Ci( 􏼁

􏽱 .

(11)

Denote such leakage values corresponding to T �

t1, t2, . . . , tD􏼈 􏼉 as H � [h1, h2, . . . , hD].
(6) Reveal the correct key. We map the hypothetical

intermediate values into leakage values by equation
(7) and compare with H � [h1, h2, . . . , hD] to reveal
the correct key. Taking attack on parallel imple-
mentations, for instance, denote the hypothetical
leakage values by S � s1, s2, . . . , s32􏼈 􏼉, where
si � si1, si2, . . . , si D􏼈 􏼉. +e least-square method de-
fined as

F(i) � 􏽘
1≤ j≤D

sij − hj􏼐 􏼑
2
, 1≤ i≤ 32, 1≤ j≤D, (12)

is applied to compare the hypothetical leakage values with the
leakage values revealed by the template attack, where i is the key
hypothesis. Finally, the correct key is revealed by

key � argminF(i). (13)

4. Experimental Results and Discussion

As shown in Figure 6, our experimental setup includes a
standard evaluation board SAKURA-G, an oscilloscope, and
a computer. SAKURA-G is designed for hardware security,
which equips with two separate Spartan-6 FPGA chips. One
chip serves as the control chip, while another serves as the
cryptographic chip. Cryptographic chip performs encryp-
tion operations, while the control chip controls the data flow
and communicates with the oscilloscope and computer.
During encryption, power consumptions of the crypto-
graphic chip are measured by the oscilloscope which is
triggered by the control chip. Finally, power analysis attacks
are performed on the computer.

We first perform a side-channel attack on serial
implementation of QUAD (2, 160, 160). In the template
building phase, 3000 power traces with different keys and
coefficients are captured from a reference device, based on
which 25 interesting points are selected by the CPA peak
method. Next, we collect two groups of power traces cor-
responding to leakage values 0 and 1 in equation (4), and
each group consists of 25 power traces. Finally, we build two
templates, and the result is shown in Figure 7.
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In the template matching phase, 320 power traces with
the same key are captured from the target device. Template
that leads to the highest probability indicates the correct key.
+e success rate of template-based LSQ attack on serial
implementation is shown in Figure 8. When the number of
power traces approach 30, the success rate tends to 100%.
+erefore, a successful attack only requires 30 power traces
in serial implementation.

To further illustrate the effectiveness of our attack, the
time required for our practical attack on serial QUAD is
discussed here. Our attack is performed on a personal
computer, which integrates an Intel i5-7500 CPU and 12GB
of RAM. +e time for templates building and templates
matching depends on the number of power traces for building
and matching, respectively. Figure 9 shows the time required
for the template building with the number of power traces
ranging from 1 to 3000. Figure 10 shows the time required for
template matching with the number of power traces ranging
from 1 to 30. As our successful attack on the serial imple-
mentation of QUAD (2, 160, 160) requires less than 3000
power traces for templates building and 30 power traces for
templates matching, the total time required for our successful
attack is less than 1010 seconds, according to Figures 9 and 10.

According to the leakage model of parallel imple-
mentation in equation (7), 4 bits of the key are simulta-
neously accumulated into temporary register. Consequently,
we need to guess 4 bits at a time. In the template building
phase, 10000 power traces with different keys and coeffi-
cients are captured from a reference device, based on which
35 interesting points are selected by the CPA peak method.
Next, we collect two groups of power traces corresponding
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Figure 6: Experimental setup.
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to leakage values 0 and 1 in equation (7), and each group
consists of 35 power traces. Finally, we build two templates,
and the result is shown in Figure 11.

In the template matching phase, 320 power traces with
the same key are captured from the target device. Template
that leads to the highest probability indicates the correct key.
+e success rate of template-based LSQ attack on parallel
implementation is shown in Figure 12. When the number of
power traces approach 150, the success rate tends to 100%.
+erefore, 150 power traces are sufficient for a successful
attack in parallel implementation.

Figure 13 shows the time required for the template
building with the number of power traces ranging from 1 to
10000. Figure 14 shows the time required for template
matching with the number of power traces ranging from 1 to
180. As our successful attack on the parallel implementation
of QUAD (2, 160, 160) requires less than 10000 power traces
for templates building and 150 power traces for templates
matching, the total time required for our successful attack is
less than 1977 seconds, according to Figures 13 and 14.

In order to compare the success probability of the at-
tacks, we performed our attack, template attack, and tem-
plate-based DPA attacks dozens of times, respectively. We
compare the typical results in Table 1, which shows that our
proposed attack has the highest accuracy, greatly out-
performing template attack, and template-based DPA attack.

5. Suggested Countermeasures

Side-channel countermeasures aim at reducing the data
dependency between physical information and secret key.
Usually, masking and hiding technologies are adopted. For
multivariate cryptography, all monomials and polynomials
can be computed in an arbitrary order. +erefore, the basic
idea of countermeasures for multivariate cryptography is to
randomly change the sequence of these operations.

A QUAD (q, n, r) has (n + r) × n(n + 1)/2 monomials,
which can be randomly computed in ((n + r) × n(n + 1)/2)!
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orders. However, it is too expensive to implement such
algorithm. We propose a low-cost shuffling countermeasure
by partially changing the orders of monomials for each

polynomial equation Qk(X). Starting with two randomly
generated index is and js, 1< is ≤ js ≤ n, each polynomial is
computed in the order as follows:

Q(x) � 􏽘
js ≤ j≤ n

αisj
xis

xj + 􏽘

is+1( )≤ i≤ j≤ n

αijxixj + 􏽘

1≤ i≤ is− 1( ),i≤ j≤ n

αijxixj + 􏽘

is ≤ j≤ js− 1( )

αisj
xis

xj + c.
(14)

A random index generator is required to generate such
an order index, as shown in Figure 15, whose imple-
mentation requires only 556GE.

For the parallel implementations, we proposed a low-
cost hiding countermeasure by partially randomizing the
initial value of rotated x to shuffle the computation orders of
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Table 1: Comparison of the success rates of different template attacks.

No. of experiments/success rate of attack 1 2 3 4 5 6 7 8 9 10
Template-based LSQ attack (%) 98.12 97.25 100 97.25 100 100 100 97.25 96.875 100
Template-based DPA attack (%) 71.88 65.63 71.88 68.75 81.25 75 81.25 78.13 68.75 75
Template attack (%) 61.75 71.88 53.125 65.63 75 68.75 61.75 65.63 63.75 59.375
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monomials. Before each calculation of Qk(X), the initial
value of rotated x is partially randomized with the random
starting index is as follows:

rotatedx � xis
, xis+1, . . . , xn, x1, . . . xis− 1􏼐 􏼑. (15)

6. Conclusions

Multivariate cryptosystems consist of a large number of
monomials and polynomials, where registers are required to
store monomial and polynomial values during the en-
cryption. +erefore, a hamming distance (HD) model of the
register will leak the secret of the implementation.

By applying the least-square technique to enable fuzzy
matching of the templates, we propose a practical template-
based least-square power analysis, where both the serial and
parallel implementations of QUAD (2, 160, 160) can achieve
a success rate close to 100%. +e proposed two low-cost
hiding countermeasures for serial and parallel imple-
mentations are also validated to be effective, where all
monomials and polynomials can be computed in an arbi-
trary order to break the link between the power con-
sumption and the secret key in multivariate cryptography.
Our proposed attacks require only 30 and 150 power traces,
respectively, to successfully reveal the secret key. Future
work will focus on low-cost countermeasures of multivariate
cryptography for IoT devices to resist side-channel attacks.
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Information-centric networking (ICN) provides request aggregation and caching strategies that can improve network perfor-
mance by reducing content server loads and network traffic. Incorporating network coding into ICN can offer several benefits, but
a consumer may receive the same coded block from multiple content routers since the coded block may be cached by any of the
content routers on its forwarding path. In this paper, we introduce a request-specific coded-block scheme to avoid linear
dependency of blocks that are utilizing in-network caching. Additionally, a non-cooperative coded caching and replacement
strategy is designed to guarantee that the cached blocks can be reused. Our experimental results show that the proposed scheme
has superior performance to conventional CCN and two network coding-based ICN schemes.

1. Introduction

Trends in recent years have shown that Internet users care
more about what the content is rather than where the
content is. Information-centric networking (ICN) [1] is a
novel design for a future networking architecture that has
been proposed as a promising alternative to the current
Internet. In ICN, IP addresses are replaced by content names
and content routers (CRs) are equipped with storage ca-
pabilities to cache the content passing through each router.
Content is requested by Interest packets that are sent by the
consumer. With in-network caching [2, 3], the content can
be cached by multiple CRs, and any content router (CR) that
contains the content that is being requested by the Interest
can respond with a data packet, where both the Interest and
the data are identified by the content name. Content-centric
networking (CCN) has been shown to be a promising ICN
architecture [4].

Network coding proposed by Ahlswede et al. [5] has
been proven to be helpful in several different network
scenarios, including peer-to-peer (P2P) [6], content distri-
bution networks (CDNs) [7], and wireless networks [8, 9].

Recently, several studies have shown that network coding
can also offer benefits to ICN [10–21], as network coding can
be employed in ICN to effectively utilize multiple paths and
reduce the complexity of the cache coordination. However,
due to the ICN caching strategy, the same coded block may
be cached by multiple CRs on its forwarding path and
provided to the same consumer at a later time in response to
their multicast requests [22].

In this case, the consumer will not be able to recover the
content from the received coded blocks. Several solutions
have been proposed to guarantee that all the coded blocks
that are provided to the consumer are linearly independent
of each other. In some centralized schemes [11, 15], central
routers are used to ensure that content caching and routing
strategies can provide independent blocks. In some dis-
tributed schemes [20, 21], information on the coded blocks
which have already been received by the consumer must be
carried by the Interest to retrieve linearly independent
blocks.(e CR can decide whether to respond to the Interest
according to the information carried by the Interest.
(erefore, several round trips will be required to obtain
sufficient linearly independent coded blocks. In our previous
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work [23], the CRs only cached the original received blocks
to guarantee that all the coded blocks provided to consumers
were linearly independent. Any coded blocks generated and
transferred were wasted.

To increase the caching efficiency and reduce the cost of
computation and communication induced by centralized
schemes, we propose a request-specific coded-block (RSCB)
scheme to reduce the transmission volume and download
delay and ensure that only a single round trip is required for
the consumer to retrieve sufficient linearly independent
blocks. A non-cooperative coded caching and replacing
strategy is then proposed to guarantee that any two coded
blocks that are cached in a network will be linearly inde-
pendent. It is assumed that chunk-based routing and traffic
control schemes are in place. (e contributions of this paper
are as follows:

(i) We propose a special content delivery strategy to
retrieve blocks from multiple CRs simultaneously.
Each CR on the forwarding path will aggregate
Interests received from multiple consumers for
chunks of the same content, to eliminate duplicates.
Interests received by a CR will be separated again
and forwarded in different directions. A mechanism
is proposed for the aggregation and separation of
Interests for the chunks of content to guarantee that
the minimum number of coded blocks will be
requested and will be linearly independent.

(ii) An on-path non-cooperative coded caching
mechanism is designed to guarantee that the cached
blocks can be reused. Blocks received by a CR can be
encoded and cached depending on pending Inter-
ests and the proposed caching strategy.

(iii) In our model, only chunks (i.e., original blocks) and
coded-from-original blocks can be cached. One
coded-from-original block can satisfy multiple In-
terests sent by different consumers requesting a set
of its component chunks. A chunk-level coding-
instead-of-evicting cache replacement scheme is
designed to effectively increase the caching effi-
ciency and optimize cache capacity.

(iv) Our strategy is evaluated by comparison with con-
ventional CCN and two network coding-based ICN
strategies. Our experimental results demonstrate that
the proposed strategy achieves the highest performance
in terms of parameters such as average download time,
server hit reduction rate, and cache hit rate.

2. Related Works

Network coding techniques have received much attention in
a variety of network scenarios including P2P networks [6],
CDNs [7], and wireless networks [9]. Recently, several works
have been proposed that apply network coding in ICN.
(ere are two categories of solutions that can be used to
ensure consumers are provided with sufficient linearly in-
dependent coded blocks: centralized strategies and distrib-
uted strategies.

Wang et al. [24] proposed a novel SDN-based framework
to implement content caching and routing in ICN with
linear network coding. (e SDN controllers determine how
to cache and route based on the information collected by the
CR. (us, a near-optimal caching and routing strategy can
be obtained. Sadjadpour [11] proposed an architecture based
on index coding for ICN, which groups the nodes into
several clusters. (e central router of each cluster maintains
information on which content is cached by each node.
Coded blocks generated by the central router are used to
satisfy Interests for different content sent by different nodes.
However, this strategy does not reduce traffic the first time
content is requested. Llorca et al. [14] presented a multicast
scheme based on network coding to achieve maximum
network efficiency. However, the proposal does not mention
a solution to deploy the proposed strategy in ICN. Talebifard
et al. [15] proposed a method based on network coding that
reduces the costs of coding and decoding by breaking the
network into several clusters, with network coding only
performed by selected nodes or clusters.

As well as centralized strategies based on network
coding, some works have obtained enough linearly inde-
pendent coded blocks by sending Interests repeatedly. Zhang
and Xu [21] proposed two checking strategies to guarantee
that the consumer will receive sufficient linearly indepen-
dent coded blocks, which were called precise matching and
RB matching. In precise matching, each Interest carries the
global coefficients X of the coded blocks that have already
been received by the consumer. Each CR performs Gaussian
elimination to check linear dependencies. Precise matching
is an efficient approach to guarantee that all blocks received
by consumers will be linearly independent. However, it has
very high communication and computation overheads.
(erefore, RB matching was proposed as a more lightweight
approach, where the Interest only carries the rank of the
global coefficients X of the coded blocks already received by
the consumer. If the number of coded blocks cached by the
CR is larger than the rank of the global coefficients X, the CR
can respond to the Interest with a coded block.(e larger the
value of |X| is, the more difficult it is to serve the Interest.Wu
et al. [16] proposed a network coding and random for-
warding-based caching strategy, CodingCache, to enhance
the caching efficiency. To guarantee all the blocks provided
to consumer are linearly independent, each Interest carries
the global coefficients of the coded blocks already received to
retrieve the next block, similar to precise matching.
(erefore, N rounds will be required in order to retrieve N
blocks. Nguyen et al. [20] proposed a lightweight caching
and Interest aggregation strategy to ensure that all the coded
blocks received by the consumer are independent. Like RB
matching, the rank of the global coefficients of the coded
blocks already received by the consumer is carried by the
Interest packet. Saltarin et al. [19] proposed a protocol
named NetCodCCN to permit Interest aggregation and
pipelining. Each node responds to an Interest once it has
received enough coded blocks to recover the content or |X| is
larger than the number of coded blocks already sent out over
face i previously, where |X| is the rank of the global coef-
ficients X of the coded blocks cached in ContentStore.
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However, NetCodCCN has a weakness also shared by RB
matching in that it may provide false negative decisions, i.e.,
a node may falsely decide it cannot provide an innovative
coded block for the consumer while actually the block is
available. Montpetit et al. [17] proposed an architecture
based on network coding, NC3N, where each Interest re-
trieves one coded block. However, there method does not
include a strategy to ensure all the received blocks are
independent. Liu et al. [18] proposed an ICN-NC method
to guarantee that all the blocks received are provided by
different CRs to increase the probability of obtaining lin-
early independent blocks. Each Interest packet contains a
record of the Interest exploration range of the previous
round. Only CRs within a new exploration area are per-
mitted to respond to these Interests. Several rounds are
required to retrieve enough independent coded blocks, and
the Interest may retrieve linearly dependent coded blocks.
(e authors in [25] proposed a framework based on net-
work coding for cache management in ICNs. Saltarin et al.
[26] proposed a distributed caching strategy for ICNs
enabled for network coding, which gives CRs the re-
sponsibility of estimating the popularity of contents and
ensuring that the most popular content is cached near the
network edge.

Most of the existing schemes require several round trips
to obtain sufficient linearly independent coded blocks to
recover the content. In this paper, we propose a novel
content delivery strategy to ensure enough blocks can be
retrieved within a single round. An on-path non-cooperative
caching and replacing strategy based on network coding is
proposed to guarantee that all blocks received by consumers
are linearly independent. Moreover, in our scheme, coded
blocks are generated only if the traffic can be saved instead of
generated at the server and all CRs on the forwarding path in
order to reduce the cost of coding and decoding.

3. Method of Interest Aggregation
and Separation

In ICN, chunk-based delivery strategies route chunks sep-
arately. Chunks may meet on an intermediate node during
their forwarding paths to several consumers. Motivated by
this, we propose a special request-specific coded-block
(RSCB) scheme to encode chunks that meet during transport
in order to reduce traffic.

3.1.OverviewofRSNC. (e definitions given in our previous
study (referred to as RSNC) will be followed here. Each
Interest (S, N) requests a specific set of chunks, where S �

1, . . . , N{ } is the set of chunk indices and N is number of
independent coded blocks required to recover the content.
Since chunks may be cached by different CRs, each CR can
aggregate, separate, and forward Interests. If Interest 1 re-
quests a set of chunks S1 and Interest 2 requests a set of
chunks S2, then (S, n) satisfies both Interests, where S �

S1∪S2 is the set of chunks used to generate n linearly in-
dependent coded blocks, n is the number of coded blocks to
be sent by the upstream CR, and n � max |S1|, |S2|􏼈 􏼉. When

n< |S|, the traffic required to deliver chunks from upstream
will be reduced.

Since an Interest sent by a consumer for multiple chunks
will be copied and forwarded along a multicast tree, requests
for different chunks sent from the same consumer will not
meet again in a CR on the multicast tree. (erefore, the
Interest aggregation operation “⊕” is defined to combine two
Interests originating from at least two different consumers,
i.e.,

S1, n1( 􏼁⊕ S2, n2( 􏼁⇒
def

(S, n),

where S � S1∪S2,

n � max n1, n2􏼈 􏼉.

(1)

Similarly, a separation operation “Div” is defined to split
an Interest into several sub-Interests:

Div(S, n)⇒
def

S3, n3( 􏼁, S4, n4( 􏼁􏼈 􏼉,

where S3, n3( 􏼁⊕ S4, n4( 􏼁 � (S, n),

S3 ∩ S4 � ∅,

S � S3∪S4,
n3 � min S3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, n􏽮 􏽯,

n4 � min S4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, n􏽮 􏽯.

(2)

3.2. Interest Aggregation and Separation inRSCB. In contrast
with RSNC [23], RSCB includes information on (S1, n1) and
(S2, n2) in the aggregated Interest (S, n) which guarantees
that linearly independent coded blocks are provided to
consumers and minimize the number of coded blocks
transported in the network. To reduce the size of the Interest,
the sub-Interest information is presented as a binary
number, b(Si). For example, if Interest (S � 1, 2, 3, 4{ },

b(S), n � 2) is an aggregated Interest of Interest 1 (S1 �

1, 3{ }, n1 � 2) and Interest 2 (S2 � 2, 4{ }, n2 � 2), the binary
information of Interest 1 is b(S1) � 1010, and the binary
information of Interest 2 is b(S2) � 0101, and thus
b(S) � b(S1)∪b(S2) � 1010, 0101{ }. (erefore, an Interest
can be expressed as I(p, [S, b(S)], n), where p is the name of
the requested content, S is a set of chunks that match the
name of the content p, b(S) is a set of binary numbers
representing the sub-Interests (each sub-Interest is a subset
of S ), and n is the number of linearly independent coded
blocks being requested. (erefore, any n linearly indepen-
dent coded blocks that contain all chunks specified by S will
satisfy the sub-Interests specified in b(S).

Equation (1) can thus be further modified as

S1, b S1( 􏼁􏼂 􏼃, s1( 􏼁⊕ S2, b S2( 􏼁􏼂 􏼃, s2( 􏼁 �
def

([S, b(S)], s),

where S � S1∪S2,

s � max s1, s2􏼈 􏼉,

b(S)⊆b S1( 􏼁∪b S2( 􏼁,

(3)

where s is the minimum number of linearly coded blocks
satisfying both Interests ([S1, b(S1)], s1) and
([S2, b(S2)], s2).
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It should be noted that the binary number b(Si) is used to
represent the subset information, which is required to
guarantee that the requested number of coded blocks is
minimized. When s � 1 or s � |S|, this subset information is
not necessary, as shown in Figure 1(a). Moreover, if Si⊆Sj,
the information on Si, i.e., b(Si), will be deleted from b(S).

For instance, Figure 1(a) shows that CR1 receives two In-
terests for content Cp from different interfaces, I(p, S1 �

2, 4{ }, 2) and I(p, S2 � 1, 3{ }, 2). Before these two Interests are
forwarded, CR1 aggregates the two requests into a single Interest
I(p, [S � 1, 2, 3, 4{ }, b(S) � 0101, 1010{ }], 2] using equation
(3). b(S) can then be used to reconstruct the subsets 2, 4{ } and
1, 3{ }.

Similarly, the separation operation used to split an In-
terest ([S, b(S)], s) into several sub-Interests is modified,
which is used to distribute the sub-Interests out over several
interfaces of the CR towards different content sources:

Div([S, b(S)], s) �
def

S1, b S1( 􏼁􏼂 􏼃, s1( 􏼁, S2, b S2( 􏼁􏼂 􏼃, s2( 􏼁􏼈 􏼉,

where S1 ∩ S2 � null,
S � S1∪S2;
s1 � min S1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, s􏽮 􏽯,

s2 � min S2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, s􏽮 􏽯.

(4)

If an Interest([S, b(S)], s) is formed by merging multiple
Interests, the subsets (Si, si) should be reconstructed based on
b(S), and these subsets should then be separated into sub-
subsets using equation (2). (en, new Interests, i.e.,
([S1, b(S1)], s1) and ([S2, b(S2)], s2) in equation (4), are
generated by aggregating the sub-subsets using equation (3).
(is procedure is described in Algorithm 1.(e complexity of
Algorithm 1 is O(n), where n is the number of subsets.
According to Algorithm 1, I(p, [ 1, 2, 3, 4{ }, b(S)], 2) can be
reconstructed into two subsets ( 2, 4{ }, 2) and ( 1, 3{ }, 2) for
b(S) � 0101, 1010{ }.(ese subsets can be further divided into
sub-subsets: ( 2{ }, 1), ( 4{ }, 1), ( 1{ }, 1), ( 3{ }, 1) using equation
(2), and then aggregated into Interest I(p, 1, 2{ }, 1) and In-
terest I(p, 3, 4{ }, 1) according to equation (3). If the original
blocks ob1 and ob2 are located in the same direction and the
original blocks ob3 and ob4 are located in another direction,
the new Interests can be sent from two interfaces in two
different directions, as shown in Figure 1(a). In this case, only
two blocks will transmitted which is in contrast with RSNC
[23], which requires four blocks to be transmitted.

If Interest 2 (S2, n2) arrives after Interest 1 (S1, n1) has
already been sent upstream, then the aggregated pending
Interest will be (S, n) �

def
(S1, n1)⊕(S2, n2). Since (S2, n2) may

contain some chunks that have also been requested by In-
terest (S1, n1), these chunks should be removed from In-
terest 2. (erefore, we define an operation to determine
incremental Interest based on the separation operation:

ΔS2,Δn2( 􏼁 �
def

S2, n2( 􏼁\ S1, n1( 􏼁,

whereΔS2 � S2\ΔS1,Δn2 � min ΔS2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, n2􏽮 􏽯,

ΔS1⊆S1 ∩ S2,

Δn1 � min ΔS1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, n1􏽮 􏽯.

(5)

Since Interest 1 will return at most n1 coded blocks,
Δn1 ≤ n1 is required. If |S1 ∩ S2|> n1 and n2 > n1, we let
ΔS1 ⊂ S1 ∩ S2 and Δn1 � |ΔS1| � n1. Similarly, if a CR has
cached a subset (W, w) of blocks, only the remaining (S′, n′)
blocks need to be requested from the upstream CRs, where
(S′, n′) � (S, n)\(W, w). In RSCB, the coded blocks gener-
ated by the original blocks (referred to as coded-from-
original block) are cached by the first node en route to
consumers. (e coded-from-original blocks are used as the
original blocks to satisfy future Interests. For example, in
Figure 1(b), the coded-from-original block, ocb1 � α11ob1+

α12ob2, can be presented as (W � 1, 2{ }, w � 1). When In-
terest (S � 1, 2{ }, n � 2) is received by CR2, the incremental
Interest (S′ � 2, n � 1) is determined and sent to the next
node.

(e benefits of RSCB are illustrated in Figures 1 and 2. In
Figure 1(a), two consumers connected to router CR5 and
CR6 have requested content, which contains four original
blocks, ob1, ob2, ob3, and ob4 at the same time. Each original
block has a size of one unit, each CR has a two-unit cache
capacity, and each link has a one-unit transmission cost.
Figure 1 shows the communication and caching in RSCB.
For RSCB, CR5 and CR6 receive two coded-from-original
blocks generated by CR3 and CR4, respectively. Coded-
from-original blocks ocb1 and ocb2 are received from CR1,
where

ocb1 � α11ob1 + α12ob2,

ocb2 � α21ob3 + α22ob4.
(6)

(e total transmission cost is eight units. Figure 2
shows the conventional ICN communication. CR2 re-
ceives the four original blocks (ob1, ob2, ob3, ob4) from
CR3 and CR4 and then forwards these original blocks to
CR1. CR1 responds to Interest I(p: 2, 4{ }, 2) with two
original blocks, ob2 and ob4, and Interest I(p, 1, 3{ }, 2)

with two further original blocks, ob1 and ob3. (e total
transmission cost is 12 units. (erefore, our proposed
solution saves 33% of the transmission cost compared
with conventional ICN and 20% more than our previous
work [23].

3.3. Caching in RSCB. In RSCB, the original/coded-from-
original blocks are cached by CRs to respond to future
Interests. In order to provide consumers with sufficient
linearly independent blocks in a single round, none of coded
blocks that were encoded by coded blocks are cached in the
network. (e coded-from-original block only can be cached
by a single CR, which is the immediate downstream
neighbor of the CR that generated the block. (us, the two
coded-from-original blocks, ocb1 and ocb2, will be cached
only by CR2 (Figure 1(b). (e coded-from-original block
ocb1 can be used as the original block ob1 or ob2 to respond
to future Interests. When cache replacement happens, CR
encodes several original blocks into one coded-from-orig-
inal block to release the caching space. (is ensures that all
information contained in the original blocks is retained in
the CR.
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Figure 1: An example of RSCB. (a) Communication in RSCB. (b) Caching in RSCB.
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Figure 2: Communication in ICN.

Inputs
(1) Input Interest: I(p, [S, b(S)], s)

Steps
(1) Reconstruct subsets [S1, s1],. . .and [Sm, sm] according to b(S) � b(S1), . . . , b(Sm)􏼈 􏼉, where si � |Si|, for i � 1, . . . , m;
(2) if S≠∪iSi, i � 1, . . . , m then
(3) Determine subset [Sm+1, sm+1], where Sm+1 � S\∪iSi, sm+1 � 1;
(4) end if
(5) for each subset [Si, si] do
(6) Use equation (2) to divide subset [Si, si] into several sub-subsets [Ti1, ti1], . . . , [Tik, tik] based on the forwarding interface of each

chunk name (each and every sub-subset corresponds to an interface), where tij � min |Tij|, si􏽮 􏽯, for j � 1, . . . , k;
(7) end for
(8) Use equation (3) to generate new Interests by aggregating the sub-subsets [T1, t1], . . . , [Tn, tn] according to the forwarding

interfaces.

ALGORITHM 1: Separation.
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4. Architecture

CCN architecture is the most popular architecture of ICN,
and we have selected this architecture to implement RSCB.
To enable network coding in CCN, some changes are
required.

4.1. Content Publishing and Requesting. In CCN, content is
split into several smaller-sized chunks, with each chunk
identified by a unique hierarchical name. In RSCB, content is
firstly divided into h generations and each generation is then
divided into N chunks, i.e., original blocks. We denote
content as Cp � cp,1,1, . . . , cp,1,N􏽮 􏽯, . . . , cp,h,1, . . . , cp,h,N􏽮 􏽯􏽮 􏽯,
where p is the name of the content, N is a design parameter,
and h can be calculated based on the content size and N. (e
content name p should contain information on h and N. For
instance, the name of chunk cp,2,1 is /sysu.edu.cn/largefile/h/
N/2/1, where /sysu.edu.cn/largefile/h/N is the content name,
p, 2 is the generation ID, and 1 is the chunk ID (referred to as
the original block index).

A consumer will generate a set of Interests,
Ip,1, . . . , Ip,h􏽮 􏽯, for each generation in order to request
content Cp. Each Interest Ip,i requests a set of original
blocks, cp,i,1, . . . , cp,i,N􏽮 􏽯, where i is the number of genera-
tions.(e number of Interests sent by the consumer depends
on the flow control schemes which have been placed in the
network. (e consumer can send Interests either sequen-
tially or simultaneously.

Since the forwarding paths of requests for different
chunks generated by the same consumer will form a mul-
ticast tree, these requests will not meet in any intermediate
CR on the multicast tree. Interests are responded to with
chunks or coded blocks which are linear combinations of
chunks that have been specified by the Interest. Random
linear network coding (RLNC) is used to generate the coded
blocks within each generation. For convenience, in the re-
mainder of this paper, we will not explicitly state which
generation each chunk belongs to. Our model makes the
assumption that a chunk-based routing and flow control
scheme is in place.

4.2. Interest and Data. All communications are driven by
consumers in CCN. Consumers can receive chunks of
content from multiple sources, which may include the
content provider and CRs. A consumer interested in Cp

will send a set of requests Ip � ip,1, . . . , ip,N􏽮 􏽯 with one
request for each chunk. Before these requests are for-
warded, the CR determines the forwarding interface of
each chunk using the forwarding information base (FIB).
Requests that have the same forwarding interface will be
aggregated into a single Interest. Each Interest can contain
multiple requests for a set of chunks, Si, where Si is the set
of chunk names.

(ere are two types of CCN packets, Interests and data.
In our model, the network coding information is appended
to the selector field of the Interest packet and includes the set
of chunk names S, the sub-Interests b(S), and the number of
required blocks n. (e coefficient of the coded blocks, the

caching flag Fq, is contained within the signed info field of
the data packet.(e data field of the data packet contains the
original/coded block(s).

(e Interest and data packets used in our model are
formulated using the following method:

(i) I(p, [S, B], m) defines an Interest for content Cp,
where p is the content name, S � (S1∪S2∪ . . .∪Sn) is
the set of chunk names, and
m � max |S1|, |S2|, . . . , |Sn|􏼈 􏼉≤ |S| is the number of
required blocks. B � b(S1), b(S2), . . . , b(Sn)􏼈 􏼉 is used
to represent the subsets S1, S2, . . . , Sn and Si⊈Sj, if
i≠ j. For convenience, we express the Interest as
I(p, S, m).

(ii) D(p, S, block, Fq) defines a data packet for content
Cp containing block, which is either a chunk or a
coded block (a linear combination of several chunks
specified by set S). Fq is a caching flag which in-
dicates whether the block is cacheable or not. If the
block is a coded block, we obtain SD⊇SI, where SD is
the set of chunk names carried by the data and SI is
carried by the Interest.

4.3. Forwarding Module. (e forwarding module of RSCB
contains three components: the ContentStore (CS), the
pending interest table (PIT), and the forwarding informa-
tion base (FIB).(e blocks received by the CRs are cached by
the CS module. A CS entry can be formulated by
CS(p, W, w), which is defined as follows:

(i) p: content name.
(ii) Index (W, w): W is a set of chunk names and w is

the number of cached blocks. Since both the original
and the coded-from-original blocks can be cached,
we obtain |W|≥w.

(iii) Data: the original or coded-from-original blocks.

In contrast with CCN, each CR interface in RSCB
maintains a PIT. (e PIT can have two types of entry, PIT-
OUT and PIT-IN, which record information on Interests
already sent or received to the interface, respectively. PIT-
OUT and PIT-IN can be defined as follows:

(i) PITout− i([p, S, s], facelist): this is a PIT-OUT entry
that indicates that (p, S, s) is an aggregated Interest
generated by aggregating several Interests received
from interface(s) of facelist. (e aggregated Interest
has already been sent out over the interface i but a
response has not been received from the upstream
CR.

(ii) PITin− i(p, S, s): this is a PIT-IN entry that indicates
that (p, S, s) is an aggregated Interest generated by
aggregating several Interests received from interface
i. A response has not yet been sent over interface i.

(e FIB is the same as for CCN. When an Interest is
received by a CR, its CS is first consulted, followed by PIT
and finally FIB. Data packets will be sent back to consumers
using the same path that was created by the Interest, but in
the opposite direction.

6 Discrete Dynamics in Nature and Society



5. Communication Scheme

5.1. Forwarding Interest. When a CR receives an Interest
I(p, X, x) over interface f, the first step is to check its CS. If
the CS contains all chunks or the coded-from-original blocks
containing all the information in the Interested set X, the CR
will respond to Interest I(p, X, x) directly, as described in
Algorithm 2.(e complexity of Algorithm 2 isO(n), where n

is the number of coded blocks. If |X| � x, the CR responds to
Interest I(p, X, x) with the x cached blocks (chunks or
coded-from-original blocks) without coding; otherwise, the
CR will respond with the x coded blocks generated from the
blocks cached in the CS, which contain the chunk infor-
mation specified by set X. (e caching flag, Fq, will be
turned on, i.e., Fq� 1 if the block used to respond to the
Interest is an original block or a coded-from-original block
encoded by that CR; otherwise, Fq� 0. In RSCB, the CR
performs network coding only if it will save on the trans-
mission costs. For instance, as shown in Figure 1(a), CR
responds to Interest I(p, [ 1, 2, 3, 4{ }: 1010, 0101], 2) with
two coded-from-original blocks, ocb1 and ocb2, which were
received from CR3 and CR4, respectively, without further
coding. In this case, there is a saving on the cost of coding.

If the Interest cannot be satisfied by the CR, PIT-IN of
the arrival interface f will be checked. If there is a matched
entry PITin− f(p, Z, z), CR will aggregate the PIT-IN entry
and the Interest using equation (3) and will then update the
PIT-IN entry PITin− f(p, Z′, z′), where Z′ � X∪Z,
z′ � max x, z{ }. (erefore, the incremental Interest
(p,ΔX,Δx) � (p, X, x)\(p, W, w) will be determined.

(e CR will split the incremental requests for
(p,ΔX,Δx) into several Interests using Algorithm 1. If one
of the Interests, e.g., (p, Xj, xj), needs to be transmitted over
the interface j, PIT-OUT of interface j will be obtained. If
there is a matching PIT-OUT entry PITout− j(p, V, v), a new
incremental Interest for (p,ΔXj,Δxj) � (p, Xj, xj)\

(p, V, v) will be generated using equation (5) and trans-
mitted over interface j if ΔXj ≠null.(e PIT-OUTentry will
then be updated to PITout− j(p, V′, v′, facelist), where V′ �
V∪Xj and v′ � max v, xj􏽮 􏽯, and interface f will be added to
facelist. Algorithm 3 describes the process used to forward
an Interest. (e complexity of Algorithm 3 is O(n), where n

is the number of sub-Interests.

5.2. Forwarding Data. When data packet D(p, Y, block, Fq)

is received by a CR over interface f, the PIT-OUT of in-
terface f will be checked in the tables. If there is no PIT-
OUT match, the data D(p, Y, block, Fq) will be discarded
directly since the CR has not requested the block; otherwise,
the caching flag will be checked and the matching PIT-OUT
entry will be updated according to Algorithm 4. If Fq � 1,
the block carried by data will be cached into CS; otherwise, it
will be temporarily cached into CACHE. (e CR will then
check whether more chunks can be obtained by decoding the
blocks cached in CS and CACHE. If the CR has already
received enough blocks of content p to recover the content,
the chunks decoded from the received blocks will be cached
into CS and all of the blocks of content p that were cached in

CACHE will be deleted. In this case, CR can satisfy any
Interest of content p.

If interface i is included in the facelist of the matching
PIT-OUT entry, the corresponding PIT-IN entry is
PITin− i(p, Z, z). If Y∩Z≠∅, CR checks whether the
PITin− i(p, Z, z) can be satisfied using blocks cached in CS
and CACHE. If it can be satisfied, CR will generate z linearly
independent combinations of the blocks specified by the set
Z and will send z data packets over interface i. Each data
packet carries a coded block and PITin− i(p, Z, z) is then
deleted. Once the PIT-IN entries of all interfaces in facelist

of the matched PIT-OUT entry are satisfied, the coded
blocks of content p that are cached in CACHE are deleted, as
described by Algorithm 4. (e complexity of Algorithm 4 is
O(nm), since the complexity of Algorithm 2 is O(m), where
n is the number of interfaces in the facelist of the matched
PIT-OUT and m is the number of coded blocks.

(e network will try to deliver chunks without intro-
ducing extra traffic in order to increase the independence of
the blocks cached in CRs. When the CR receives a data
packet D(p, Y, block, Fq) carrying a chunk (i.e., |Y| � 1), if
z � |Z|, the data packet D(p, Y, block, Fq) will be sent out
over interface i without further processing or waiting for
other data packets. (e CR will then update PITin− i(p, Z, z)

to PITin− i(p, Z′, z′), where Z′ � Z\Y, z′ � z − 1. If z � 0,
the CR will delete the PIT-IN entry. In this case, the time to
download chunk Y will be reduced and the cost of coding
and decoding is saved without introducing additional traffic.

5.3. Cache Policy. Network coding-enabled ICN (NC-ICN)
will divide the content into n original blocks. For traditional
NC-ICN, each coded block is a linear combination of the n

original blocks. (e n coded blocks will be cached by n′
(n′ ≥ n) CRs along their forwarding paths to a group of
consumers. Figure 3(a) shows that for traditional NC-ICN,
network N1 will provide m coded blocks, cb1, . . . , cbm, to
consumers in group G1 and network N2 will provide the
remaining (n − m) coded blocks. During the process of
responding to consumers in group G1, m′ (m′ ≥m) coded
blocks generated by cb1, . . . , cbm will be cached by multiple
CRs in network N1, while n′ (n′ ≥ (n − m)) coded blocks will
be cached by multiple CRs in network N2. At a later time,
when the consumers in G2 multicast their Interests for n

coded blocks of content p, these Interests will be received
first by CRs in network N1. Each CR will respond to the
Interest with its cached coded blocks independently, and
thus t(t>m) coded blocks cached in network N1 may be
provided to consumers in G2. However, the maximum
number of independent coded blocks that a consumer can
receive from network N1 is m. In this case, at least (t − m)

blocks are not beneficial to the consumer and are a waste of
resources. (erefore, the conventional in-network caching
strategy is not suitable for NC-ICN.

To address this issue, we propose to introduce a simple
cache mechanism to guarantee that the blocks provided to
consumers will be independent. In RSCB, only original
blocks and coded-from-original blocks will be cached by
CRs. None of coded blocks that were encoded by other

Discrete Dynamics in Nature and Society 7



coded blocks can be cached in the network. (e received/
decoded original blocks can be cached by any CR. (e
coded-from-original blocks can only be cached by a single
CR, which is the immediate downstream neighbor of the
CR that generated the block. (us, any n coded-from-

original blocks cached in the network will be linearly in-
dependent, where n is the number of blocks required to
recover the content. Fq in data packet D(p, S, block, Fq) is a
caching flag that indicates whether the block is cacheable or
not.

Input: I(p, X, x)← Interest arriving on interface f,
CSp(W, w)←W is the set of blocks specified by I(p, X, x) and w is the number of blocks;

(1) if |X| � x or x � w then
(2) for each block csi in CSp do
(3) if csi is an original block then
(4) Fq� 1;
(5) else
(6) Fq� 0;
(7) end if
(8) Create a data packet D(p, Yi, csi, Fq) and send over interface f;
(9) end for
(10) else
(11) Generate x coded blocks, ob1, . . ., and obx, using the blocks in CSp;
(12) if all the blocks in CSp are original blocks then
(13) Fq� 1;
(14) else
(15) Fq� 0;
(16) end if
(17) for each coded block cbi do
(18) Generate a data packet D(p, Yi, cbi, Fq) and send over interface f;
(19) end for
(20) end if

ALGORITHM 2: Responding Interest.

Input: Interest I(p, X, x); interface f

(1) if CS matches then
(2) Respond to Interest according to Algorithm 2;
(3) else
(4) if PIT-IN of interface f matches then
(5) Update PIT-IN;
(6) else
(7) Establish a new PIT-IN entry;
(8) end if
(9) Calculate the incremental Interest ΔI;
(10) if ΔI≠ null then
(11) Separate the incremental Interest ΔI into several sub-Interests according to Algorithm 1;
(12) for each sub-Interest Ii which needs to be sent over interface i do
(13) if PIT-OUT of i matches then
(14) Update PIT-OUT;
(15) Calculate the incremental Interest ΔIi;
(16) if ΔIi � null then
(17) return;
(18) end if
(19) else
(20) Establish a new PIT-OUT entry;
(21) end if
(22) Send Interest Ii (or ΔIi) from interface i;
(23) end for
(24) end if
(25) end if

ALGORITHM 3: Forwarding Interest.

8 Discrete Dynamics in Nature and Society



Since CRs have limited storage capacity, a cache re-
placement policy is required. When cache replacement
occurs, the candidate content p that is to be discarded is
selected using the existing content-level cache replacement
policy, e.g., least recently used (LRU). Assume t units of
cache space are required to cache newly received/decoded
blocks and the cache space used to cache the candidate
content p is n units (one unit for each block). If t≥ n, content
p is deleted and t � t − n. (e first step is repeated until only
some of cached blocks of the candidate content pi need to be
discarded to cache new blocks, i.e., t< ni. Chunk-level cache
replacement is then introduced to discard blocks in content
pi. Firstly, any original blocks that are contained in the
cached coded-from-original blocks are discarded, i.e., the

information contained in the original blocks ob1 and ob2
may also be contained in the coded-from-original blocks
ocb1 � α11ob1 + α12ob2. Secondly, the remaining original
blocks are coded into a single coded-from-original block.
Finally, the received coded-from-original blocks are ran-
domly discarded. (ese three steps are performed in turn
until there is sufficient space for the newly received/decoded
blocks, as described in Algorithm 5. (e complexity of
Algorithm 5 is O(n), where n is the number of evicted
content. If content is rarely accessed, only the coded-from-
original blocks will be cached to respond to future Interests.
Since a single coded-from-original block can respond to an
aggregated Interest containing multiple requests for dif-
ferent chunks sent by multiple consumers, our chunk-level

Input: data packet D(p, Y, block, Fq); interface f

(1) if PIT-OUT of interface f matches then
(2) if Fq � 1 then
(3) Cache data into CS;
(4) else
(5) Cache data into CACHE;
(6) end if
(7) for each interface i in the facelist of the matched PIT-OUT do
(8) Find the matched PIT-IN entry, i.e. PITin− i(p, Z, z), where Y∩Z≠∅;
(9) if the matched PIT-IN entry of interface i is satisfied then
(10) Respond to the PIT-IN entry PITin− i(p, Z, z), according to Algorithm 2;
(11) Delete the PIT-IN entry;
(12) else
(13) if the block carried by data is an original block and |Z| � z then
(14) Send data D(p, Y, block, Fq) over interface i;
(15) Update PITin− i(p, Z, z) to PITin− i(p, Z′, z′), where Z′ � Z\Y, z′ � z − 1;
(16) end if
(17) end if
(18) end for
(19) if the matched PIT-OUT of interface f is satisfied then
(20) Delete the PIT-OUT entry;
(21) end if
(22) else
(23) Discard data D(p, Y, block, Fq);
(24) end if

ALGORITHM 4: Forwarding data.
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Figure 3: Caching. (a) Caching in ICN. (b) Caching in RSCB.
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Input: t newly received/decoded blocks
(1) Determine the candidate content p with n blocks using LRU;
(2) if t≥ n then
(3) Let t � t − n;
(4) Discard content p;
(5) if t> 0 then
(6) go to step 1;
(7) end if
(8) else
(9) Discard the n1 original blocks which are contained in the coded-from-original blocks;
(10) Let Δt1 � t − n1;
(11) if Δt1 > 0 then
(12) Encode the remaining n2 original blocks into a single coded blocks;
(13) Let Δt2 � Δt1 − n2 + 1;
(14) if Δt2 > 0 then
(15) Randomly discard Δt2 received coded-from-original blocks;
(16) end if
(17) end if
(18) end if
(19) Cache the newly received/decoded blocks into the CS;

ALGORITHM 5: Cache replacement strategy.
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Figure 4: Average download time. (a) Zipf parameter VS average download time. (b) Request numbers VS average download time.
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cache replacement policy can effectively increase the cache
efficiency.

6. Simulation

In this section, the performance of our model is investigated
by comparison with other three schemes: chunk-level CCN
strategy (CCN) [4], NC-CCN [21], and CodingCache (CC)
[16]. (e caching strategy leave copy everywhere (LCE) is
incorporated into the above strategies. In LCE, each block or
chunk is cached by all CRs on the forwarding path between
the content provider and the consumer.

6.1. Simulation Model. BRITE [27, 28] was used to generate
the network topology, since it can roughly reflect the actual
Internet topology.(e Dijkstra algorithm was used to generate
the FIB tables. All links have a bandwidth of 1Gbps.(erewere
a total of 1000 end hosts that were connected to 100CRs and 10

original content providers were randomly connected to the
CRs. 10,000 files were equally partitioned into 400 classes. Each
content packet was 1GB and was divided into 10 generations
with each generation containing 10 chunks; each chunk size
was 10MB. In our simulation, only chunks in the same
generation could be encoded. (e content popularity follows a
Zipf distribution with α ∈ [0.3, 0.7, 1, 1.5, 2]. Interests sent by
consumers follow a Poisson process. (e request number was
defined as the number of Interests sent by consumers during
the processing period. In our simulations, each CR was equally
configured to have a cache space of 0.1%, 0.25%, 0.5%, 1%, and
2% of the overall content catalog size. (e default cache size of
each CR was set to 10GB for caching, i.e., 1% of the total
content catalog size. Random linear network coding (RLNC)
was used for coding. (e size of a finite field was 28 [29]. (e
coefficient vector and the generation ID are contained within
the signed info field of the data packet. (e performance of all
four strategies was evaluated under the same simulation
environment.
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Figure 5: Average number of hops. (a) Zipf parameter VS average number of hops. (b) Request numbers VS average number of hops.
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(e following parameters were used for the evaluation:

(i) Average download time: the average time for
consumers to download each successfully received
content request response.

(ii) Average number of hops: the average number of
hops for each successfully received chunk from the
provider to the consumer.

(iii) Cache hit ratio: the ratio of the number of Interests
that were satisfied by the caches to the number of
Interests that were satisfied by either the caches or
the server.

(iv) Server hit reduction ratio c(t):

c(t) �
􏽐

N(t)
i�1 wi(t)

N(t)
, (7)

where wi(t) � 0 if the chunk i is sent from a cache or
an aggregated Interest; otherwise, wi(t) � 1. N(t) is
the number of chunks received by all consumers. t

indicates that the data were collected from time (t −

Δt) to t [20].
(v) Traffic: the total traffic to deliver the data packets

over the whole request process.
(vi) Average number of Interests: the average number of

Interest packets that were handled by each CR for
each chunk that was successfully received by the
consumer, as in [21].

6.2. Simulation Results. Due to its network coding-based
content delivery and caching strategies, our proposed RSCB
always achieves the best performance in terms of having the
shortest average download time, the highest cache hit ratio,
the lowest server hit reduction ratio, and the lowest trans-
mission volume. RSCB ensures that consumers will receive
sufficient independent coded blocks within a single round
and the coded blocks cached by the CRs can be used as
multiple chunks.

Figure 4 plots the average download time of the four
caching strategies for different system parameters. (e
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average download time decreases as the Zipf parameter α is
increased, as shown in Figure 4(a), since a larger Zipf pa-
rameter α indicates that the Interests sent by consumers are
concentrated on a smaller set of contents. As the number of
requests increases, chunks that have already been requested
will be cached on more CRs and thus consumers can retrieve
chunks directly from the CRs, which are much closer to the
consumers. (erefore, the average download time will be
reduced (Figure 4(b)). RSCB performs much better even for
a small Zipf parameter and a low number of Interests, since it
can retrieve chunks or coded blocks from multiple CRs
simultaneously. Compared with other schemes, RSCB
provides consumers with enough independent coded blocks
in a single round.

In RSCB, one coded-from-original block can be used to
respond to an aggregated Interest for multiple chunks
requested by different consumers. For instance, the coded-
from-original block, ocb1 � α11ob1 + α12ob2, can satisfy the
Interest for chunk ob1 from consumer 1 and the Interest for
chunk ob2 from consumer 2, as shown in Figure 1(b). (us,
RSCB achieves the best caching performance, in terms of
average download hops (Figure 5), cache hit ratio (Figure 6),
and server hit reduction ratio (Figure 7).

Figure 8 shows the traffic for different caching
schemes, and it can be seen that RSCB has the lowest
transmission volume. Moreover, we can see that as the
number of requests increases, RSCB has a higher traffic
saving too due to its Interest aggregation scheme which
saves on traffic required to deliver n − (n1 + n2) blocks, as
per equation (3).

RSCB can also aggregate Interests for different chunks
into a single Interest. As shown in Figure 9, the average
number of Interests processed by the CR is much lower
compared with other schemes. In ICN, a consumer requests
content with N chunks by sending out N Interests, and thus
the CR needs to process N Interests. However, in RSCB, only
one aggregated Interest containing several Interests will be
processed by the CR.(is can reduce the cost of transmitting
and processing the Interest.

7. Conclusion and Discussion

In this paper, we have proposed a request-specific coded-
block strategy to reduce the transmission volume. Addi-
tionally, a chunk-level on-path non-cooperative coded
caching and replacing strategy has been proposed to
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improve the caching efficiency. Our method enables a
consumer to multicast a set of Interests in order to obtain
multiple content chunks simultaneously from multiple
CRs. (e traffic can be reduced by encoding chunks that
meet in an intermediate CR and have been requested by
different consumers. A novel Interest forwarding-
responding strategy has been proposed to guarantee that
the minimum number of coded blocks will be requested
and that the blocks will be linearly independent. A network
coding-based caching and replacing mechanism has been
designed to guarantee that the cached blocks can be reused.
A chunk-level coded cache replacement strategy has been
proposed to discard blocks. Rather than discarding the
original blocks, the CR will encode the original blocks into a
single coded-from-original block to release cache space
when cache replacement is required. A single coded-from-
original block can satisfy multiple Interests from different
consumers for a set of its component original blocks.
(erefore, this will increase the caching diversity without
requiring extra cache space. (e simulation results have
confirmed that the RSCB scheme outperforms the other
three strategies.

However, although there are many benefits in deploying
network coding in ICN, it also introduces some additional
costs for computation and communication. Some studies
have already proven that RLNC is a practical method which
has acceptable costs. Since ICN is a new architecture, there
are still many issues that need to be resolved before ICN can
be deployed, such as efficient operation of PIT and FIB at a
chunk level [30, 31].
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To advance the study of lip-reading recognition in accordance with Chinese pronunciation norms, we carefully investigated
Mandarin tone recognition based on visual information, in contrast to that of the previous character-based Chinese lip reading
technique. In this paper, we mainly studied the vowel tonal transformation in Chinese pronunciation and designed a lightweight
skipping convolution network framework (SCNet). And, the experimental results showed that the SCNet was sensitive to themore
detailed description of the pitch change than that of the traditional model and achieved a better tone recognition effect and
outstanding antiinterference performance. In addition, we conducted a more detailed study on the assistance of the deep texture
information in lip-reading recognition. We found that the deep texture information has a significant effect on tone recognition,
and the possibility of multimodal lip reading in Chinese tone recognition was confirmed. Similarly, we verified the role of the
SCNet syllable tone recognition and found that the vowel and syllable tone recognition accuracy of our model was as high as
97.3%, which also showed the robustness of our proposed method for Chinese tone recognition and it can be widely used for
tone recognition.

1. Introduction

In recent years, the superior performance of lip reading in
robust speech recognition has received widespread atten-
tion. +e goal of lip reading is to improve the robustness of
speech recognition in special situations such as low signal-
noise ratio (SNR) or silent environments. However, due to
the complexity and variability of Chinese pronunciation, the
performance of lip-reading recognition in Chinese is not
always satisfactory in real-world scenarios.

One of the most important tasks of lip-reading rec-
ognition is feature extraction. Currently, there are two
main categories of visual information extraction in the lip
reading system, i.e., pixel-based methods and model-based
methods. Pixel-based methods extract visual features from
the image directly or after some preprocessing and
transformation. Yuhas et al. [1] used the greyscale image

pixel information of the lip and its surrounding areas as
features. Wolff et al. [2] used the horizontal and vertical
scanning lines centred on the lips as the eigenvector. Since
the method of directly using the pixel information of the
image as a feature is blind, more effective and targeted
approaches, such as discrete cosine transform (DCT),
principle component analysis (PCA), singular value de-
composition (SVD), discrete wavelet transform (DWT),
and linear discriminant analysis (LDA) [3–5], were pro-
posed to reduce the information redundancy. +e pixel-
based method can make full use of pixel information to
extract more comprehensive lip features. However, the
feature vectors are high dimensional and redundant. Also,
the pixel-based method is very sensitive to light, shadow,
pronunciation, and other conditions. Besides, model-based
methods aim to establish a parametric mathematical model
and then use the model parameters to describe lip contour
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information. Kaynak et al. [6] used the horizontal and
vertical distance of lip contours, the lip corner angle, and
the first-order derivative of the lip corner angle. Zhang et al.
[7] proposed geometric features of the lips, containing
mouth width, upper/lower lip width, lip opening
height/width, and the distance between the horizontal lip
line and the upper. Model-based methods utilize low di-
mensional features to express image features, and the
feature is typically not changed by factors such as trans-
lation, rotation, scaling, or illumination. Nevertheless, both
methods extract relevant information directly from the
region of interest (ROI) in the planar image [8].

With the development of high-sensitivity RGB-D
cameras, the three-dimensional information of the speaker’s
face can be extracted more accurately. For instance, Yargıç
and Muzaffer [9] developed a lip reading system that uses
a Kinect camera to acquire the depth feature points and then
extracts the angular features of the lip reading. Palecek et al.
[10] studied the fusion performance of face depth data in
isolated word visual speech recognition tasks. Rekik et al.
[11, 12] proposed an adaptive lip-reading system based on
image and depth data. Wang et al. [13] used 3D lip points
obtained from Kinect, improving the performance of
multimodal speech recognition. Studies by these pioneers
have demonstrated the effectiveness of depth information in
lip-reading recognition. Since the depth information is not
affected by illumination, skin colour, etc. [14], the defects of
the two-dimensional image information are compensated
for. However, since the characteristics of the lips are usually
obtained from discrete three-dimensional points or facial
depth images, it is difficult to fully represent the charac-
teristics of the lips.

+e currently proposed lip-reading recognition based
on 3D depth information does not consider the inherent
texture problem of driving the lip motion during natural
speech changes. In our previous work [15], to explore the
internal mechanism of the speech process, we conducted
an in-depth study on the facial texture information that
drives the changes in lip reading and explored the facial
texture information for lip movement changes in Chinese
vowel pronunciation that have significant influence.
However, since Chinese pronunciation is a strict tone-
changing language, the transformation of the pitch has
a significant role in the understanding of Chinese.
+erefore, the exploration of Chinese tonal trans-
formation in the current lip-reading research based on 3D
information is important.

In this work, we focus on the study of the vowel tonal
changes in Chinese pronunciation. Our main contributions
are as follows. (1) For Chinese pronunciation tonal changes,
we propose a new lightweight network framework, the
SCNet, which is more sensitive to the transformation of
details compared with the traditional network architecture.
(2) We explore in detail the important influence of our
proposed deep facial texture information on the change of
vowel tones in auxiliary lip reading. (3) In syllable recog-
nition with the depth texture, the experimental results show
the ubiquity and good performance of the SCNet model in
integrated tone recognition.

+e rest of this paper is organized as follows. Section 2
introduces the data collection and preprocessing. Section 3
presents the proposed model architecture. Section 4 in-
troduces our experimental results. Section 5 summarizes our
work and introduces the future work.

2. Data Collection and Feature Preprocessing

2.1. DataCollection. Eight native speakers of Chinese, four
males and four females, served as the subjects. All the
subjects used standard Mandarin pronunciations without
any accent influence. In the pronunciation of Chinese,
each syllable has four different pitch changes (tones 1–4).
In fact, there is a fifth pronunciation types in Chinese
pronunciation, which is the unvoiced sound (i.e., a special
silent tone in Chinese pronunciation) commonly spoken
in Chinese. In order to explore the effects of different pitch
transformations, we eliminated the unvoiced sounds that
are rarely pronounced in Chinese, so in the experiment
each syllable contained only one of the four commonly
used tones. In terms of experimental data, we collected 5
vowels (/a/, /e/, /i/, /o/, and /u/) and 5 syllables (/ta/, /te/,
/ti/, /fo/, and /tu/), a total of 40 tones. During the re-
cording process, each tone was pronounced 10 times per
person. For example, four tuned syllables (/a/, / á/, /�a/, and
/à/) were obtained by combining four lexical tones with
the atonal syllable /a/.

+e data acquisition device used a Microsoft Kinect V2
face real-time tracking camera and this camera through
facial key points to generate real-time 3D point clouds (1347
facial key points). In [16], Mallick et al. have proved that the
muscles of the facial expression recognition based on point
cloud is successful, and it has been verified that the gen-
eration of 3D face point clouds is related to muscle distri-
bution. At the same time, their experiments show that the
shape of the face of point cloud generated face has nothing to
do and can be very stable in different faces of the same
position. Meanwhile, [17, 18] also prove the stability and
effectiveness of Kinect V2. To ensure its quality, we collected
the data in a standard silent room. +e data collection
scenario is shown in Figure 1.

During the process, we reindexed the 1347 points. +e
index of feature points in the lip area is shown in Figure 2(b),
which used only the collected image information and 3D
depth information. By considering the changes in the head
model during movement, we corrected the head rotation
angle in the X − axis, Y − axis, and Z − axis directions. As an
example, the angle between vector P11P31

������→
(P11 and P13 are

two points in Figure 2(b)) and plane XY is calculated as
follows:

αXY � −1 × arctan
Z31 − Z11( 􏼁

x31 − x11( 􏼁
􏼠 􏼡, (1)

where (x11, y11, z11) and (x31, y31, z31) are the co-
ordinates of P11 and P31 and 31 and 11 represent the co-
ordinate point numbers on the plane XY. +e rotated face
point coordinates parallel to the XY plane are constructed by
the following algorithm.
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Finally, we acquired the standard point set of the real
speaker’s face.

2.2. Feature Preprocessing

2.2.1. Image Feature Preprocessing. For the collected image
information, we used the open source OpenCV lib library to
intercept a 128 × 100 lip region of interest, as shown in
Figure 4(a), and then used the image sequence represen-
tation method proposed by Saitoh et al. +e pronunciation
of the syllables extracts 16 consecutive frames
(center − 8, center + 8) in the middle of the pronunciation
to form a continuous sequence of image lip motion changes
(4 × 4, from left to right, top to bottom) and uses a gamma
transform (Vout � V

c

in) for light enhancement to augment
the data, as shown in Figure 4(b) (take 16 sheets and then
sort).

2.2.2. Muscle Dynamics Features. According to this study,
there are six main types of muscles that drive lip movement
in facial muscles. +e distribution of the facial functions and
characteristics of each muscle are presented in Tables 1 and 2
reflect the specific names of each muscle and the charac-
teristic point identification of each muscle in the kinect data.
In the specific depth texture feature representation, we
extracted the two most representative depth, muscle length
change, and muscle dynamic characteristic data points.

(1) Muscle Length Change Information. +e length feature is
expressed as [1/R], where l represents the muscle length
vector at the time of speech and R represents the muscle
length vector at the time of relaxation, which eliminates the
differences between different speakers.

(2) Muscle Dynamics Information. +e muscle dynamics
information characterizes the relationship between the facial
muscles and facial feature points and reflects the intrinsic

commonality between different speakers. We also analysed
the effects of different muscles on the displacement of the
feature points as the drivers of muscle dynamic trans-
formation. Regarding the feature information, the vector
variation between the muscles is obtained by calculating the
transformation trend of different feature points in adjacent
frames. +e specific expression is as follows:

Fmuscle i �
Pj−end − Pj−start

lj
􏼢 􏼣 · Vmuscle, (3)

where Fmuscle i represents the momentum change of the
feature point i, Pj−start and Pj−end represent the start and end
points, respectively, of the muscle j, and the direction of the
muscle movement at each point is represented by decom-
posing the displacement subvector of each point.Vmuscle
Indicates the length of movement of each muscle point.

3. Network Architecture

Considering the subtle differences in the mouth shape
changes in Chinese tonal changes, we designed a lightweight
skip convolutional structure network (SCNet) with subtle
descriptions of feature changes to evaluate our proposed 3D
lip features and to explore the feasibility of tonal changes and
syllable lip-reading recognition. +e overall architecture is
shown in Figure 3.

+e network architecture was inspired by that of VGG
[19] and ResNet [20]. In the initial phase of the network, we
used three 3 × 3 convolutional layers with a stride of 2 to
extract the surface features of the image. +is network
structure reduces not only the overall parameters of the
network but also the accuracy loss of the feature map.

+e main body of network structure is two connected
feature extraction blocks, and they different from the current
remaining block structure. Two subconnection blocks adopt
different subsampling expressions. At the back of block 1, to
make the edge features more obvious, the maximum pool
was used to indicate the specificity of different features,
highlighting the features of different feature maps. And, at
the block 2, to make the features, the map was associated
with the specificity of the feature maps more smoothly and
effectively using global average pooling. +e two connection
block structures in the frame were slightly different. In the
second block, tomaximize the smoothing effect after block 1,
the last convolutional layer output channel in block 2 was
doubled and the rest was the same as that of block 1. +is
structure also showed good performance in the experiment.
At the last end, a 128-dimensional linear layer was con-
nected, and then the classification probability was obtained.

3.1. Skip Convolution Structure. We used a skip connection
in each block. +e structure of each block is shown in
Figure 2(b), and the connection of each block is defined as
follows:

y � F(x) + G(x), (4)

where x and y represent the input and output, respectively,
of each block and F(x) represents the learning function of

Figure 1: Kinect V2 recording data experimental scene.
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Table 1: +e structures and functions of the major muscles.

Muscle name Structure Function
Levator labli
superioris From the medial infraorbital margin to the skin and muscle of the upper lip Elevates the upper lip

Levator anguli oris From the canine fossa, below the infraorbital foramen Draws the angle of the mouth
Zygomaticus Extends from the zygomatic arch to the corners of the mouth Draws the angle of the mouth

Buccinator From the alveolar processes of the maxilla and mandible and the
temporomandibular joint

Pulls back the angle of the
mouth

Orbicularis oris Composed of four independent quadrants, gives an appearance of circularity Encircles the mouth
Depressor anguli oris From the tubercle of the mandible to the modiolus of the mouth Depresses the angle of mouth

(a)

121

1

41

81

21

141

11 31

(b)

Figure 2: (a) Predefined 1347 planar facial points. (b) Reindexed 160 points of lip area.

a

3D-feature
2-linear-layer

(a)

1 × 1

3 × 3, stride = 2 3 × 3, stride = 2

3 × 3, stride = 1

(b)

Figure 3: Our SCNet structure. (a) +e overall structure of the model and (b) the skip connection structure.

(a) (b)

Figure 4: Picture-stitching process. (a) Feature extraction of interest and (b) representation of the image sequence splicing process.
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direct connection. As Figure 3(b) shows, the direct con-
nection is composed of three convolution layers, so F(x) is
specifically expressed as F(x) � W3 · σ(W2 · σ(W1 · x)), in
which σ is LeakyReLU and G(x) is the skip connection,
which represents the connection structure of a layer and is
given by the formula G(x) � W · x. Since the regularization
layer was introduced, to reduce the parameter changes in
this architecture, the bias item was not led into. Finally, the
F(x) + G(x) operation represents the direct weight addition
of the direct and skip connection, rather than the corre-
sponding result splicing.

Equation (4) is mainly divided into two parts: direct
connection structure and skip structure. In the stage of direct
connection structure, first we used a 1 × 1 convolution,
followed by a 3 × 3 convolution, with a stride of 2 to obtain
more detailed feature information, and then the network
optimization is connected to a 3 × 3 convolution kernel, with
a stride of 1 to simulate the processing of the Sobel matrix on
the feature boundary. +is structure makes the boundary
features more obvious, so that the feature was better
characterized in the feature judgement area. In the skip
module, we used a 3 × 3 convolution block, with a stride of 2,
and the number of channels was increased. +is procedure
generates the same channel for the network, and the same
size is more convenient for feature stitching. +is method
also ensures the fusion of the image on the feature structure.
+e purpose of the traditional Res block is to ensure the
characterization of the local structure and the global feature
to make the network structure more representative. We use
this structure to consider that the 1 × 1 convolution has
retained the global feature, using a 3 × 3 convolution. +is
convolution ensures the multiscale representation of the
network structure.

3.2. Feature Fusion Structure. +e expression for feature
fusion structure is given as follows:

Inforcat � Ffusion Inforimg, Infordepth􏼐 􏼑. (5)

To better integrate the depth information and picture
information, we adopted a decision fusion method to deeply
integrate the two different kinds of information. +e specific
expression is shown in formula (5), where Inforimg repre-
sents the 128-dimensional information acquired by the
SCNet. +e depth feature, Infordepth represents the depth
feature of the shallow stitching after two layers are fully
connected, and Ffusion indicates the fusion strategy. +us, the
feature, Inforcat, after the fusion of the two, was decoded by
a linear layer of one layer and output.

3.3. ImplementationDetail. In the experiment, the input size
of our image is 112 × 112. Since the image was adjusted
before input, no corresponding data enhancement method
was used during the experiment. Batch normalization (BN)
[21] was adopted in the network after each convolution,
before activation and after the BN. For the network weights,
the random initialization method was adopted and the
network was trained from zero. An Adam optimizer was
used in the experiment, and the small batch size was set to
30. +e learning rate started at 0.0003, and the expression of
the learning rate attenuation functions is shown in the
following formula:

new lr � lr × c
epoch− sleepepoch+1( )/half , (6)

where lr represents the last round of the learning
rate, sleepepoch(20) iterations decay once, and each damping
coefficient is c (0.5) times (epoch − sleep epoch + 1)/
half(5) − th. We did not use dropout during the
implementation.

4. Experiments and Results

In the experiment, to verify the smoothness of the proposed
model on the whole dataset, we set the experimental scheme
to a five-fold cross-validation and calculated the average of
all the results as the final experimental result.

4.1. Cross-Validation. To ensure the full use of the data and
the accuracy of the experimental results in our experiments,
we designed a 5-fold cross-validation. We randomly divided
all the experimental data into 5 parts. Water sampling was
used for the data division. +e data in each sample set
consisted of only 1860 groups. Four tests were used to train
one test, and the experiment was performed for a total of 5
rounds, so that each could be used as the training set and test
set and each experiment would give an independent result.

Because vowels play a leading role in the whole pro-
nunciation process, in the experiment, in order to verify the
difference between the entire syllable recognition effect and
the different syllable recognition performance of each syl-
lable, we first aimed at each vowel recognition accuracy was
discussed, and then further analysis of tone recognition of
vowels with different tones. By using different speech ex-
pressions, we ignore the unvoiced sounds in Chinese pro-
nunciation to verify that our proposed SCNet has
considerable experimental results in terms of accuracy of
tone recognition and accuracy of the entire syllable
recognition.

Table 2: +e starting and ending coordinates of each muscle.

Muscle name Start point End point Affected lip points
Levator anguli oris 603 126 125, 126, 127, 128
Zygomaticus 650 131 129, 130, 131
Buccinator 522 131 127, 128, 129, 130, 131
Levator labli superioris 769 165 125, 126
Orbicularis oris 717 126 125, 126
Depressor anguli oris 665 127 127, 128, 129, 1230, 131
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4.2. Vowel Detection and Vowel Tone Detection. We first
verified the validity of our proposed model and compared it
with the traditional models (VGG, ResNet, DenseNet [22]);
in addition, we tested the effects of the different models on
vowel recognition and vowel tone recognition. To ensure the
fairness of the comparison, a linear 1000 × 128 layer and
a softmax classification layer were added to the traditional
model, and the optimal values the parameter settings were
selected.

Figures 5 and 6 show the single vowel recognition results
and the vowel tone recognition results, respectively. By
comparing the two images quantitatively, we found that all
the models showed good recognition performance; specif-
ically, the proposed vowel distinction SCNet reached
a recognition rate of almost 100%, and the tone recognition
effect was significantly higher than that of the traditional
model structure. A comparison of the overall results of
several models in terms of the network depth, parameters,
and accuracy is shown in Table 3. It was found that the
SCNet gave the optimal values of the three parameters,
especially those of the parametric variables. Compared with
those of the previous models, the SCNet parameters were
only 1/50 of the VGG value, 1/4 of ResNet value, and 1/3 of
DenseNet value and even more advantages of the experi-
mental results. +ese results indicated that our designed
model was advantageous for processing real-time data and
had better performance than that of the existing traditional
framework.

Our analysis of this experimental phenomenon is based
on the application of the SCNet architecture to the trans-
formation of subtle differences in the datasets. +is archi-
tecture showed good results for the description of the data
details.

As a whole, the experiment can show such excellent
results and attribute the success to the following charac-
teristics of the network structure: (1) in tone recognition, the
degree of differentiation of the mouth shape between dif-
ferent tones of the same syllable is very small, and we used
a 3× filter in the experiment. +e use of such a small
convolution kernel can enhance the fine feature structure
discrimination. (2) Based on several previous verifications, it
was proved that skipping convolutions can preserve the
feature transformations between feature maps, which in
addition is more conducive to the propagation of gradients
than are traditional direct connections. +e jump connec-
tion proposed in this paper showed that our method can
capture more delicate network structure features and thus
improve the fine discrimination performance. (3) Different
downsampling methods between different structural blocks
can be used in feature selection, highlight the propagation
between different features, and make the network structure
smoother, which is more conducive to the expression of
different detailed features.

4.3. Texture Depth Information Fusion. To better verify the
validity of the depth texture information in tone recognition,
we designed a series of experiments to confirm the cor-
rectness of our conjecture.

+e results of the tone recognition of the picture only
and the tone recognition after the fusion of the depth in-
formation are shown in Figure 7. +e experimental results
showed that after fusion of the texture depth information,
the recognition result of the image-only tone recognition
increased by 2%, and especially in the case of low picture
recognition rate, the effect on the tone recognition was
obvious, which indicated that our proposed 3D depth tex-
ture information significantly influenced the auxiliary tone
recognition. +is effect occurred because image-based fea-
tures are not sufficient to fully represent continuous lip
motion. +e feature tone recognition of colour images is
sensitive to light, speaker skin colour, and camera acqui-
sition quality. However, 3D information has good anti-
interference for this kind of disadvantage and is hardly
affected. Our proposed facial texture depth information
largely compensates for the defect of lip pronunciation in
tone recognition caused by environmental problems and
complements the image-only lip pronunciation method.

Figure 8 shows the results of the model recognition for
adding different noise types. In the experiment, the random
Gaussian noise with the mean ∈ [0, 10] and
variance ∈ [10, 20] was added to simulate the recognition
scenario for different photographic definitions, and the
gamma algorithm with the gamma interval ∈ [1, 8] was used
to adapt to changes in the lighting due to real-life changes.
Adding such dynamic noise can better reflect the robustness
of different models in natural scenes and the ubiquitous
ability of different frameworks. Unexpectedly, the perfor-
mance of the proposed SCNet model was much higher than
that of the traditional model, which shows that our
framework has better application performance in real-world
scenarios. Similarly, for the performance of the recognition
effect before and after the texture depth information, there
was a stable improvement effect of more than 0.5% after the
fusion of the depth information, indicating that the fusion
depth information is more meaningful for the recognition of
the real scene.

4.4. Syllable Recognition. Since tone change occurs in all
Chinese pronunciations and the consonant is attached to the
vowel, the difficulty of syllable recognition is greater than
that of the vowels. To further verify the effectiveness of our
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Figure 5: Vowel recognition results of different models.
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proposed SCNet in the recognition of all Chinese tones, we
also verified the performance of the model in the recognition
of 40 mixed tones based on 5 vowels (/a/, /e/, /i/, /o/, and /u/)
and 5 syllables (/ta/, /te/, /ti/, /fo/, and /tu/).

+e recognition results are shown in Figure 9. Although
the pitch recognition of syllables is more difficult according
to the theory, our SCNet model was robust, and a high
recognition rate of 97.364% was obtained, indicating that
our model had not only a good vowel tone recognition
performance but also an excellent Chinese tone recognition
performance. Moreover, after adding the depth texture
information, the average recognition result of the pitch
showed a 0.2% improvement. Since the pronunciation of the
syllable is more complicated than that of the vowel and the
pronunciation organ is more involved, the facial depth may

be relevant. Texture information has a greater impact on the
recognition of syllables. A comparison with our previous
conjectures indicates that deep texture information has
a very clear effect on the recognition of the Chinese lip to
assist in lip reading for both consonant and vowel tone
recognition.

5. Summary

+is work was mainly focused on the difficulty of tone
recognition in Chinese lip-reading recognition. In this pa-
per, we designed an efficient lightweight network frame-
work, SCNet, based on a comprehensive and effective lip-
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Table 3: Comparison of the network depth, parameters and experimental accuracy of the four different models.

Method Depth Params Accuracy
VGG 11 531.5M 97.35
ResNet 18 46.9M 97.75
DenseNet 121 33.4M 97.528
SCNet 10 10.9M 98.352
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reading feature extraction method and verified the effec-
tiveness of our proposed network framework by several
experiments. In the study, we carried out an in-depth
verification on the proposed framework. Comparison ex-
periments showed that the framework can accurately
identify the tones of Chinese pronunciation. In addition, the
facial texture depth information and picture information
fusion demonstrated the feasibility of facial texture depth
information to help the recognition of Chinese tones.

With the wide application of depth cameras on video
equipment, lip reading will better assist speech recognition
in the future and improve the robustness of speech recog-
nition in different environments. +e dataset used in this
paper consisted of independent syllables, but the results
show that the proposed method is practical and can be
effectively applied to future large-scale datasets.
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Network intrusion detection system can effectively detect network attack behaviour, which is very important to network
security. In this paper, a multiclassification network intrusion detection model based on convolutional neural network is
proposed, and the algorithm is optimized. First, the data is preprocessed, the original one-dimensional network intrusion data
is converted into two-dimensional data, and then the effective features are learned using optimized convolutional neural
networks, and, finally, the final test results are produced in conjunction with the Softmax classifier. In this paper, KDD-CUP 99
and NSL-KDD standard network intrusion detection dataset were used to carry out the multiclassification network intrusion
detection experiment; the experimental results show that the multiclassification network intrusion detection model proposed
in this paper improves the accuracy and check rate, reduces the false positive rate, and also obtains better test results for the
detection of unknown attacks.

1. Introduction

Network security is one of themost important security issues
facing cloud computing, with frequent cyber attacks and
cyber intrusions, such as a DDoS attack by a botnet con-
trolled by the malware Mirai in October 2016 which caused
widespread outages on the East Coast of the United States.
*e ransomware software WannaCry, which broke out in
May 2017, exploited system vulnerabilities to poison the
computers of hundreds of thousands of users in several
countries around the world. In China, the annual losses
caused by digital crimes such as pseudo-base-stations and
malware extortion amount to tens of billions of yuan. *e
above examples show that network security not only affects
the development of national economy but also affects social
stability and national security [1].

Deep learning for network intrusion detection is one of
the hot spots in recent academic research. With the en-
hancement of hardware computing power and the rapid

growth of data volume, the development of deep learning
has been promoted, so that the practicality and popularity of
deep learning have greatly improved [2]. Deep learning is a
machine learning technique designed to enable artificial
intelligence through experience and data to improve com-
puter systems. Deep learning uses multiple nonlinear feature
transformations, that is, processing layers formed by mul-
tilayer perception mechanisms, to characterize data learning
[3]. Deep learning has been applied to computer vision [4],
speech recognition [5], natural language processing [6],
biomedicine [7], and malicious code detection [8], as well as
many other fields. Since 2015, the research applied to deep
learning in network security has gradually emerged, which
has attracted wide attention from the academic circles. At
present, deep learning is mainly used in the two major areas
of network security for malware detection and network
intrusion detection, and, compared with traditional machine
learning, deep learning improves detection efficiency and
reduces false positives. In addition, deep learning algorithms
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get rid of the reliance on feature engineering and are able to
intelligently identify attack features, helping to identify
potential security threats.

Convolutional neural network algorithm (CNN) [9] is an
effective algorithm of deep learning; convolutional neural
network is designed to process multidimensional array data,
and its greatest advantage is to be able to accurately extract
the local correlation of features and improve the accuracy of
feature extraction. Using convolutional neural network al-
gorithm, combined with mainstream deep learning tech-
nology such as Dropout and ADAM and Softmax classifiers,
this paper proposes a multiclassification network intrusion
detection model based on convolutional neural network and
implements the code based on TensorFlow. Finally, the
model established in this paper is applied to the standard
network intrusion detection dataset such as KDD-CUP 99
and NSL-KDD [10].

*e main contributions of this article are as follows:

(i) A multiclass network intrusion detection model
based on convolutional neural networks is pro-
posed. *is model can automatically and intelli-
gently learn and identify attack features, which is
helpful to find potential security threats.

(ii) Multiclass network intrusion detection experiments
were performed using KDD-CUP 99 and NSL-KDD
standard network intrusion detection datasets. *e
experimental results show that the network intru-
sion detection model proposed in this paper im-
proves the accuracy and recall and reduces the false
positive rate. *e detection of unknown attacks has
also achieved better detection results.

(iii) Compared with the common deep learning models
such as DNN, LSTM-RNN, GRU-RNN, and DBN,
the experimental results show that the network
intrusion detection model proposed in this paper
has higher accuracy and check rate and lower false
positive rate.

*e rest of the paper is arranged as follows: Section 2
describes the relevant work, Section 3 introduces the pro-
posed network intrusion detection model, Section 4 dis-
cusses the experiments and results, and Section 5
summarizes the paper.

2. Related Works

Network intrusion detection is one of the important security
defence means to protect computer systems and networks.
Deep learning for network intrusion detection is a hot topic
of recent academic research, and many literatures have
proposed the successful application of deep learning tech-
nology in solving network intrusion detection problems
[11, 12]. At present, the experimental results of network
intrusion detection using deep learning are mostly distin-
guished between normal and attack, and there is no dis-
tinction between the types of attack. *e next focus is on
several commonly used deep learning models for multi-
classification network intrusion detection: deep neural

networks, recursive neural networks, and deep belief
networks.

Network intrusion detection is one of the important
security defence means to protect computer systems and
networks. Deep learning for network intrusion detection is a
hot topic of recent academic research, and many literatures
have proposed the successful application of deep learning
technology in solving network intrusion detection problems
[11, 12]. At present, the experimental results of network
intrusion detection using deep learning are mostly distin-
guished between normal and attack, and there is no dis-
tinction between the types of attack. *e next focus is on
several commonly used deep learning models for multi-
classification network intrusion detection: deep neural
networks, recursive neural networks, and deep belief
networks.

2.1. Deep Neural Networks. Deep neural network (DNN)
[13] is a neural network model of deep structure, which is
widely used in the field of network intrusion detection. Deep
neural networks typically consist of input layers, multiple
hidden layers, and output layers, as shown in Figure 1. Kim
et al. [14]. proposed refined data for the KDD-CUP 99
dataset using a deep neural network model (DR� 99%,
FAR� 0.08%). As a method for network attack detection, an
accelerated deep neural network model is used together with
AEs and Softmax layers for fine-tuning of supervised
learning [15]. Evaluate their accelerated deep neural network
models using the NSL-KDD dataset, where DR is 97.5% and
FAR is 3.5%.

2.2. Recurrent Neural Networks. Recursive neural network
(RNN) is another deep structural model widely used in
network traffic anomaly detection in recent years. Recursive
neural networks mainly include LSTM-RNN [16] and GRU-
RNN [17]. Figure 2(a) shows the structure of the LSTM-
RNN storage unit. Figure 2(b) shows the structure of the
GRU-RNN unit. Ponkarthika and Saraswathy [18] explored
the network intrusion detection system based on the LSTM-
RNN architecture model. *ey trained and tested their
models on the KDD-CUP 99 dataset with an accuracy of
83%. Kim et al. [19] introduced a long-term-short-term
memory recursive neural network (LSTM-RNN) classifier
for network intrusion detection on the KDD-CUP 99
dataset, with DR being 98.88% and FAR being 10.04%. Yin
et al. [20] proposed a network intrusion detection system
based on recursive neural network and applied it to the NSL-
KDD dataset (DR� 72.95% percent, FAR� 3.44%). In Kim
et al.’ [21] study, an integrated method based on LSTM-RNN
was proposed, and an ADFA dataset was evaluated, resulting
in DR being 90% and FAR being 16%.

2.3.DeepBeliefNetworks. Deep belief network (DBN) [22] is
a layered structure of layer-to-layer restricted Boltzmann
machine (RBM). As a well-known deep learning model, it
has been widely used in network intrusion detection tasks.
Figure 3 describes the typical structure of a DBN. Fiore et al.
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[23] used an RBM-based discriminant model to detect
anomalies on 10% of the KDD-CUP 99 dataset. Gao et al.
[24] proposed a DBN-based network intrusion detection
model and performed experiments on the KDD-CUP 99
dataset (DR� 92.33%, FAR� 0.76%). Alom et al. [25] ex-
plored the DBN model, 40% of NSL-KDD ability to detect
the abnormal data sets, to obtain a 97.5% detection accuracy.
In Liu and Zhang’s research [26], the extreme learning
machine (ELM) was applied to the learning process of the
DBN model and then evaluated using the NSL-KDD dataset
(DR� 91.8%). Alrawashdeh and Purdy [27] proposed based
on RBM and DBN deep learning method for of KDD-CUP
99 in 10% of the intrusion detection system abnormality,
where the DR is 97.9% and FAR is 2.47%.
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*e comparison of the detection results of the above
three deep models is shown in Table 1, which is helpful for
researchers to compare the detection results of different deep
learning models. We can see from the table that, using the
same method, the detection results of the KDD-99 dataset
are better than those of the NSL-KDD dataset. *is is be-
cause the KDD-99 dataset contains a large number of
identical data records, while the NSL-KDD dataset removes
a large number of duplicate records.

Although the above studies have improved the recog-
nition ability and performance of network intrusion de-
tection samples, there are shortcomings such as overfitting
and poor generalization ability in network training, and the
detection accuracy and detection efficiency need to be im-
proved. In order to avoid network trained to be merged to
enhance the generalization ability, we use convolution
neural network combined with the structural characteristics
of cross-layer aggregation design concept proposed based on
convolutional neural network of multiclassification network
intrusion detection model.

3. The Proposed Model

*e functional composition of the network intrusion de-
tection model based on convolutional neural network is
shown in Figure 4, which is composed of three functional
modules: the data preprocessing module, the feature self-
learning module, and the classifier module. Based on con-
volutional neural networks, themodel is trained by preprocessed
original sample datasets and optimized by circular feature ex-
traction and iteration, so that the model can achieve good
convergence effect.

3.1. Convolutional Neural Networks. Compared with other
machine learning methods, network intrusion detection
methods using convolutional neural networks significantly
improve the accuracy of classification. As a semisupervised
neural network, convolutional neural networks have the
ability to abstractly represent low-level intrusion traffic data
features as high-level features and outstanding feature
learning capabilities, so they have been gradually applied to
the field of network intrusion detection in recent years.

Convolutional neural networks are neural networks that
use convolution operations in place of ordinary matrix
multiplication operations in at least one layer of the network
[28], as shown in Figure 5. Convolution is a special linear
operation, such as image recognition tasks; each convolution
corresponds to the different characteristics of the image; the
network’s lower-level convolution tends to learn the simple
properties of the image, including the edge of the space
frequency and colour [29].

*e proposed convolutional neural network effectively
solves the problem of the explosion of neural network pa-
rameters and also ensures the accuracy of classification. *e
three important core concepts in convolutional neural
networks are local perception, parameter sharing, and
pooling. Local perception means that neurons in the hidden

layer do not need to be connected to all the input pixels, and
different hidden layer neurons need only to be connected to
a specific area of the input pixel. In convolutional neural
networks, local perception is realized by convolutional
computations of the convolutional layers, which are realized
on input data by convolution nucleus.

3.2. Data Preprocessing. *e data preprocessing module
characterizes the data, including the numericalization of text
features and the standardization of numerical features, and
the original intrusion data is usually one-dimensional vector
data, which needs to be converted into two-dimensional data
similar to the image, so that the convolutional neural net-
work can process it. Using a data-based transformation
algorithm, based on retaining all the information of the
original sample, the sample is extended with features and
normal data is used to fill the extended features, which is to
expand the original data sample, thus preserving all the
useful information in the original data sample. *e ex-
panded features increase the information capacity of the data
sample, increase the distance between different categories of
data in the sample space, and improve the accuracy of
detection to a certain extent.

*is data needs to be processed during the data pre-
processing phase because each characteristic value of the
intrusion detection data has a different range of values and is
very different. In this paper, the numerical characteristics of
the intrusion data are standardized by using the mainstream
z-score standardized method, as shown in formula.

xi
′ �

xi − x

v
. (1)

In the formula, x � (1/n) 􏽐
n
i−1 xi,

v �

�������������������

(1/n − 1) 􏽐
n
i�1 (xi − x)2

􏽱

, n is the total number of
samples, xi is the characteristic value of a dimension of the
sample data before standardization, and xi

′ is the charac-
teristic value of the dimension corresponding to the sample
data after standardization.

Table 1: Summary of test results for different depth models.

Deep learning
model Reference Dataset

Results
Accuracy DR Far

DNN
[14] KDD-99 — 99.00% 0.08%

[15] NSL-
KDD — 97.50% 3.50%

LSTM-RNN

[18] KDD-99 83.00% — —
[19] KDD-99 — 98.88% 10.04%

[20] NSL-
KDD — 72.95% 3.44%

[21] ADFA — 90.00% 16.00%

DBN

[24] KDD-99 — 92.33% 0.76%

[25] NSL-
KDD 97.50% — —

[26] NSL-
KDD — 91.80% —

[27] KDD-99 — 97.90% 2.47%
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3.3. Feature Self-Learning. *e main function of the feature
self-learning module is to use convolutional neural networks
to automatically learn and extract useful features from the
original data samples and to learn, map, and generate new
features from the original data samples. Lecun et al. [30]
systematically expounded convolutional neural networks.
*e basic structure of the feature self-learning module based
on convolutional neural network designed in this paper is
shown in Figure 6. *e deep learning technology used in the
feature self-learning module mainly includes convolution
operations and pooling operations, dropout, activation
functions, and ADAM optimization algorithms [31].

Convolutional neural network effectively solves the
problem of neural network parameter explosion. *e three
important core concepts of convolutional neural networks
are local perception, parameter sharing, and pooling. *e
local perception of convolutional neural networks is realized
through convolutional operations. Convolution is as shown
in formula (2) [3]. In the formula, s is the output data also
called feature map, x is the input sample data, w is the weight
value of the kernel function, b is the offset value, and f is the
activation function.

s � f(x × w + b). (2)

Convolutional neural networks introduce parameter
sharing to further reduce the parameters of the neural
network, the essence is that all hidden neurons share a set of
weight parameters and bias parameters, and the statistical
characteristics based on different parts of the image are
usually the same [3]. A set of weight parameters and bias
parameters generate a feature map, and the representation
capability of a feature map is limited. *erefore, in practical
applications, a convolution layer will generate multiple
feature maps. *e pooling process is mainly to reduce the
dimensions of features. *e pooling operation generally
calculates the average or maximum value of multiple fea-
tures in a local area. *erefore, the pooling operation in

convolutional neural networks is divided into maximum
pooling and average pooling. *e model proposed in this
paper uses the average pooling operation.

*e common activation functions of convolutional
neural networks are sigmoid, tanh, ReLU [32], and so forth,
where tanh is also known as the double-curveting function,
and the tanh function will have a good effect when the
characteristics differ significantly and will expand the feature
effect in the course of the cycle. *erefore, tanh is used as the
activation function of the convolutional neural network.

*e common method of preventing overfitting include
regularization, early stopping, increasing the sample size,
dropout, and batch normalization. *is paper uses the
method of inserting a dropout layer between the feature self-
learning module and the classifier to prevent overfitting.*e
implementation process of dropout is as follows: during
model training, some neurons in the neural network are
randomly dropped according to the probability p; and,
during the test phase, all neurons are online, which can be
mitigated by preventing the synergy of certain features
overfitting [33, 34]. Using dropout later, each subnetwork is
trained neural network of the original, thus, for containing n
neural network hidden nodes, 2n models can be obtained.
When making predictions, the prediction results of all sub-
models are averaged to improve the model's capacity and
generalization ability. Srivastava et al. [33] pointed out that
whenp � 0.05, Dropouthas the best effect, and the network
structure generated at this time is therichest.

*e ADAM algorithm has been the most widely used
first-order optimization algorithm in the field of deep
learning in recent years. Kingma and Ba [31] pointed out
that the ADAM algorithm includes the advantages of both
adaptive gradient algorithms and root mean square prop-
agation algorithmsand has designed different adaptive
learning rates for different parameters, so it can converge
faster. Network intrusion detection data usually has prob-
lems of noise and sparseness. *erefore, this paper chooses

Classifier
moduleData input

Data
preprocess

module

Feature
self-learning

module

Classification
result

Figure 4: CNN-based network intrusion detection architecture.

Input layer Hidden layer1 Output layerHidden layer2 Hidden layer3

Figure 5: Convolutional neural networks.
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the ADAM algorithm as the optimization algorithm of the
convolutional neural network model.

3.4. Classifier Module. *e classifier module gives the final
test results based on the characteristics learned by the self-
learning module. *is article uses the Softmax classifier as a
classificationmodule for convolutional neural networks.*e
Softmax classifier is shown in formula (3). j in the formula is
the j weight vector, and x(i) is the i data sample.

yj �
eθjx(i)

􏽐kθkx(i)
. (3)

Common loss functions are mean square error (MSE)
and cross entropy error (CEE). *e equal square error loss
function is mostly used for linear regression and is suitable
for predicting values, that is, regression problem model. *e
cross-entropy error loss function is mostly used for logical
regression and is suitable for prediction probability, that is,
classification problem. *erefore, the cross-entropy error
loss function is used as the loss function of the convolutional
neural network model.

4. Experiments and Evaluation

4.1. Experiment Setting. *e computer configuration used in
the experiment in this paper is as follows: CPU i7-3920XM,
32Gb of memory, 1 Tb SSD, installed Ubuntu 16.04 oper-
ating system with Docker 19.03.5 container virtualization
environment, using TensorFlow 1.12.0 as a deep learning
framework and Python 3.7 as the programming language.

*is paper conducts multiple types of network intrusion
classification tests, in which each dataset has a normal
(negative) and amixture of various attack (positive) samples.
As shown in Table 2, the number of classes marked in each
dataset is different. *erefore, when each model is applied to
a specific dataset, a multiclass combined matrix is created to
visualize the performance of the model [35]. *is confusion

matrix maintains information about actual and predictive
classes. Four main results can be extracted from the con-
fusion matrix, namely, true positive (TPs), true negative
(TNs), false positive (FPs), and false negative (FNs).

Unlike the two classification schemes, these four results
have slightly different meanings in multiclass classification
tasks. First, TN is the correct predictor of a normal sample. FP
can be calculated by formula (4), where N is the number of
attack classes and FPi is misclassified as the normal number of
samples of the i attack class. TP is the sum of all attack samples
that are actually marked as their appropriate attack category
using formula (5), where TPi is the exact predictor of the i
attack category. Finally, FN is the sum of all attack samples
that aremisclassified into normal classes. FN can be calculated
according to formula (6), where FNi is the number of samples
of the attack class misjudged as normal; that is,

FP � 􏽘

N

i�1
FPi, (4)

TP � 􏽘
N

i�1
TPi, (5)

FN � 􏽘
N

i�1
FNi. (6)
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Figure 6: Feature self-learning module.

Table 2: KDD-CUP 99 data details.

Data type Training set Test set
Normal 97278 60593

Attack

DoS 391458 223298
Probe 4107 2377
R2L 1126 5993
U2R 52 39

Total 494021 292300
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*ese four results are then used to calculate five eval-
uation indicators, allowing us to evaluate the performance of
the model on the dataset. In order to adapt to the termi-
nology definition of the multiclass NIDS system described
earlier, some equations have been adjusted. *e evaluation
indicator definition used and its corresponding equation are
shown below.

(i) Accuracy shows the true prediction rate for all test
sets; that is,

Accuracy �
TP + TN

TP + TN + FP + FN
. (7)

(i) Precision is the accuracy of the classifier, that is, the
rate at which the attack is correctly marked from all
samples classified as an attack from the test set; that is,

Precision �
TP

TP + FP
. (8)

(i) Recall is the integrity of the classifier, that is, the
correct labelled attack rate for all attack samples in
the test set. It is also called true positive rate (TPR),
detection rate (DR), or sensitivity; that is,

Recall �
TP

TP + FN
. (9)

(i) F-Score can be viewed as the harmonic mean of the
precision (P) and recall (R) indicators; that is,

F − Score �
2 × Precision × Recall
Precision + Recall

. (10)

(i) *e error alert rate (FAR) shows that all normal
samples in the test set are misclassified as normal
sample rates for any attack category. It is also known
as false positive rate (FPR); that is,

FAR �
FP

FP + TN
. (11)

4.2. Experiment Datasets. *is paper uses the commonly
used network intrusion datasets KDD-CUP 99 and NSL-
KDD as experimental datasets, which can verify the effect of
the network intrusion detection model proposed in this
paper. KDD-CUP 99 and NSL-KDD are standard datasets in
the field of network intrusion detection and are used by a
large number of security research works [36]. In this paper,
two experiments are designed for these two datasets.

4.2.1. KDD-CUP 99 Dataset. *e KDD-CUP 99 dataset is
widely used in the field of network intrusion detection and
can be downloaded on the official website [37].*e complete
dataset includes approximately 5 million records in the
training set and approximately 2 million records in the test
set. In fact, only 10% of the KDD-CUP 99 dataset is used for
training and testing. *ere were 494,021 samples in the
training data and 292,300 samples in the test data. Each
sample is marked as normal or attack recorded. In 10% of the

dataset, there are 38 types of attacks. In order to evaluate the
effectiveness of the test model testing new attacks that did
not appear in the training set, only a sample of 24 types of
attacks appeared in the training set. In addition, similar
attacks are grouped into one category, forming four main
attack categories, namely, DoS, Probe, R2L, and U2R. Details
of the KDD-CUP 99 dataset are shown in Table 2.

4.2.2. NSL-KDD Dataset. Tavallae et al. [38] improved and
simplified the 10% KDD-CUP 99 dataset in 2009 to form the
NSL-KDD dataset. *ey solved the disadvantage of 10%
KDD-CUP 99 in two ways. First, they removed all the extra
records from the training and test ingress. Second, they
divided the records into different difficulty levels and then
selected records from each difficulty level which were in-
versely proportional to the 10% record percentage in the
original KDD-CUP 99 dataset. As a result, NSL-KDD has a
reasonable number of records in the training and test set,
enabling it to run experiments on a complete set. Although it
is no longer a good representation of the real network, it is
still considered a benchmark and is widely used in network
intrusion detection research. In addition, the NSL-KDD
dataset is public on the Internet [39]. Each record in the
NSL-KDD dataset consists of 41 characteristics that repre-
sent a network connection.*e data in the dataset is marked
as normal and attacked, and the attack types are divided into
four broad categories, with a total of 39 attack types. Twenty-
two attacks appear in training and test sets, and 17 attacks
appear only in test sets. Details of the NSL-KDD dataset are
shown in Table 3.

4.3. Experiment Results

4.3.1. KDD-CUP 99 Experiment. In the data preprocessing
stage, the three text features in the dataset are first digitized,
each text feature is converted to a corresponding integer
value, and then the data sample of 41 features is expanded to
42 dimensions, and the extended feature is transformed
using a data transformation algorithm. Fill it and convert it
into two-dimensional data. Take 75% of the training data as
the training set and 25% as the validation set. A total of 30
iterative trainings were performed. After the training was
completed, the test set was used for testing.*e experimental
results are shown in Table 4. *e first 4 columns of the data
in Table 4 are the average of the experimental results of the
pretrained (w/) and nonpretrained (w/o) stages in [40]; the
5th and 6th columns of the data are the experimental results
in [41, 42]. Figure 7 can intuitively compare the evaluation
indexes of all models. Experimental results show that the
model proposed in this paper obtains 98.02% accuracy and
0.02% false positive rate and has good generalization ability
and also has good detection ability for unknown attack types.
*e accuracy of the detection results is higher than the best
detection result in the literature [40–42], 95.00%, and the
false alarm rate is lower than the best detection result in the
literature [40–42], 0.97%. Figure8(a)intuitively describes the
detection rate of each type in KDD-CUP 99. It can be seen
from Figure 8(a) that if the amount of data of the attack type
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Table 4: KDD-CUP 99 experiment result.

Metric DNN [40] LSTM-RNN [40] GRU-RNN [40] DBN [40] KNN [41] CNNA [42] CNID (this paper) (%)
Accuracy 91.43 93.28 92.41 95.00 94.35% 92.18% 98.02
Precision 97.60 97.55 97.29 97.42 93.55% 90.95% 99.98
Recall 91.43 93.87 93.02 96.24 — — 99.81
F1-Score 94.41 95.68 95.10 96.82 — — 99.89
FAR 8.61 6.99 7.92 3.24 2.34% 0.97% 0.02
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Figure 7: KDD-CUP 99 experiment result.
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Figure 8: Detection rate for each class in the dataset. (a) KDD-CUP 99. (b) NSL-KDD.

Table 3: NSL-KDD data details.

Data type Training set Test set
Normal 67343 9711

Attack

DoS 45927 7458
Probe 11656 2421
R2L 995 2887
U2R 52 67

Total 125973 22544
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training set is large, the detection rate is correspondingly
higher. In the experiment, it is also found that the attack type
data unknown to the training set will also be correctly
classified. For example, the upper class of mscan is PROBE,
which only appears in the test set. It is an unknown threat to
the training set and will be recognized as PROBE in the
experiment.

4.3.2. KDD-NSL Experiment. *e NSL-KDD dataset was
processed using the same processing method as KDD-CUP
99, and a total of 30 iterative trainings were performed. *e
test results are shown in Table 5. *e first 4 columns of the
data in Table 5 are the average of the experimental results of
the pretraining stage (w/) and the nonpretraining stage
(w/o) in [40]; the fifth column of the data represents the
experimental results of [43]. Figure 9 can intuitively compare
the various evaluation indexes of all models. From the ex-
perimental results in Table 5, it can be seen that using the
network intrusion detectionmodel proposed in this paper has
an accuracy rate of 97.09% and a false alarm rate of 0.87%.*e
accuracy rate in the detection results is higher than the best
detection result in the literature [40, 43], 92.66%, and the false
alarm rate is lower than the best detection result in the lit-
erature [40, 43], 1.74%. Figure 8(b) intuitively describes the
detection rate of each type in NSL-KDD. Similar to the KDD-
CUP 99 data and the experimental results, it can be seen from
Figure 8(b) that if the amount of data in the attack type
training set is large, the detection rate is correspondingly
higher. In the experiment, it is also found that the attack type
data unknown to the training set will also be correctly
classified.

4.3.3. Comparison with Other Related Works. *e effec-
tiveness of the model for detecting network intrusion de-
pends on the reasonable setting of its evaluation indicators.
*e higher the accuracy, accuracy, recall, and F-Score, the
lower the FAR value, indicating that the classifier is effective.
*e accuracy and recall of an ideal classifier reach 1, and the
FAR value reaches 0. *e experimental results on the KDD-
CUP 99 dataset and NSL-KDD dataset are compared with
the four deep learning models in the latest literature [40–42]
on the same datasets. On KDD-CUP 99 data, the accuracy
rate of 98.02% in this paper is better than the accuracy rate of
95.00% in the literature [40–42]. On NSL-KDD data, the
accuracy rate of 97.09% in this article is better than the
accuracy rate of 92.66% in the literature [40, 43]. Literature
[44] proposed a new network intrusion detection model
using convolutional neural network (CNN), using CNN to
automatically select traffic features from the original data set,
and set the cost function weight coefficient according to the
number of categories to solve the problem of balance. *is
model is used for large-scale network intrusion detection,
using NSL-KDD dataset, and its accuracy is lower than the
model proposed in this paper. Literature [45] proposed a
network intrusion detection system based on the convolu-
tional neural network model Lenet-5 and introduced OHE
coding and normalization method to process the feature
matrix; using KDD-CUP99 dataset, its accuracy is lower
than this article’s proposed model. Similar literatures
[46–48] use convolutional neural networks for intrusion
detection in different research areas. *e method proposed
in this paper has better generalization ability, good detection
ability for unknown attack types, and good detection per-
formance in distinguishing normal data and attack data, but
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Figure 9: NSL-KDD experiment result.

Table 5: NSL-KDD experiment result.

Metric DNN [40] (%) LSTM-RNN [40] (%) GRU-RNN [40] (%) DBN [40] (%) ICNN [43] CNID (this paper) (%)
Accuracy 85.74 90.39 89.58 92.66 91.79% 97.09
Precision 96.73 97.52 97.02 97.43 93.65% 99.98
Recall 77.19 83.70 82.95 89.56 — 97.14
F1-Score 86.05 90.99 89.79 93.33 — 98.49
FAR 2.75 2.03 2.58 1.74 2.32% 0.87
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there is room for further improvement in distinguishing
different attack types.

5. Conclusions

Network intrusion detection is very important in the field of
network security. In recent years, although there has been a
lot of research on network intrusion detection, there is very
little in-depth research on this issue, especially in multiclass
network intrusion detection. In this paper, a multiclass
network intrusion detection model based on convolutional
neural network is proposed, and the algorithm is optimized.
It was tested on a computer configured with 32Gb of
memory, 1 Tb of solid-state drive, and Ubuntu 16.04 op-
erating system and Docker 19.03.5 container virtualization
environment.*e experiment uses KDD-CUP99 dataset and
NSL-KDD dataset and compares the experimental results
with the deep learning models of DNN, LSTM-RNN, GRU-
RNN, DBN, KNN, ICNN, and so on. *e experimental
results show that the network intrusion detection model
proposed in this paper improves the accuracy and recall,
reduces the false positive rate, and obtains better detection
results for the detection of unknown attacks.

*e accuracy of the model proposed in this paper in
multiclass experiments needs to be improved; in particular,
the classification results of unknown different attack types
still have room for improvement, which needs to be explored
in future work. *e dataset used in the experiment in this
paper is a dataset that has been manually processed and
optimized. In the future work, the following datasets will be
studied: the newly emerging dataset for network intrusion
detection will extract the corresponding data from real
network traffic features to verify the method proposed in this
article.

Data Availability

*e basic data used in this article was downloaded from the
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dataset that can be downloaded from https://github.com/
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Based on the design idea of future network, this paper analyzes the network security data sampling and anomaly prediction in
future network. (rough game theory, it is determined that data sampling is performed on some important nodes in the future
network. Deep learning methods are used on the selected nodes to collect data and analyze the characteristics of the network data.
(en, through offline and real-time analyses, network security abnormal events are predicted in the future network. With the
comparison of various algorithms and the adjustment of hyperparameters, the data characteristics and classification algorithms
corresponding to different network security attacks are found. We have carried out experiments on the public dataset, and the
experiment proves the effectiveness of the method. It can provide reference for the management strategy of the switch node or the
host node by the future network controller.

1. Introduction

At present, people attach great importance to the research
and application deployment of new technologies and new
networks. Scientists are actively exploring the use of tech-
nologies such as IPv6, software-defined network (SDN), and
5G to build future networks that meet the requirements of
high reliability, low delay, and wide coverage [1]. We need to
pay attention to the new features of security events of future
network.

5G has brought about massive communications and tens
of billions of device access scenarios, all of which require
flexible network architecture and high-performance net-
works. Software defined networking (SDN) is being strongly
considered as the next promising networking platform [1, 2].
(e logical centralization of network has brought new op-
portunities and challenges of the field of network security. In
future network, the detection and prediction of network data
anomaly caused by network malicious attack is an important
problem to be solved. Research on the network data sam-
pling strategy and the appropriate anomaly detection model

of network security event in the future network has guiding
significance for preventing future network. In this paper, we
design and simulate a kind of network data sampling
strategy of SDN using zero-sum game. After those steps, we
can find out some important nodes to protected. And then,
we intend to use the method of deep-learning to establish
and analyze the network anomaly flow in future network.

(e remainder of the paper is organized as follows.
Section 2 summarizes the background and related work of
deep learning-based network security data sampling and
anomaly prediction in future network. In Section 3, we
introduce the sampling model of SDN security data and the
method of deep learning-based security flow anomaly
prediction in detail. Experimental results and comparisons
are presented in Section 4. Finally, conclusion is given in
Section 5.

2. Related Work

2.1. SDN Network Architecture and Security Data Sampling
Model. In recent years, Major mainstream manufacturers
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have begun to deploy SDN networks. Many commercial
cases have been applied. For example, Google built a B4 [3]
network based on SDN to transform its network; Cimorelli
[4] propose a distributed load balancing algorithm based on
game theory to balance the traffic of the controller cluster.
Abraxas of Switzerland adopted Huawei’s SDN-based data
center network solution to build a virtualized multitenant
cloud data center network. In order to provide users with a
better experience, Tencent use SDN to achieve differentiated
path differentiation calculation and flow control. And, in the
development of Internet communication technology in the
coming decades, SDN also has broad prospects for development.

SDN is based on the granularity of data flow control, so
that it does not understand the internal information of the
data stream, which makes SDN vulnerable to attacks by
Trojan, worms, spam, etc [5]. In order to ensure the security
of the network, it is necessary to detect packets in the future
network. Lan [6] propose a dynamic model with a time-
varying community network, inspired by research models
on the spread of epidemics in complex networks across
communities. (e results may help to decide the SDN
control strategy to defend against network malware and
provide a theoretical basis to reduce and prevent network
security incidents.

Data packet sampling under limited network resources is
necessary to reduce latency, improve the network band-
width, and ensure network security of future network at the
same time. Afek [7] present techniques for traffic sampling
and large flows detection in SDNwith OpenFlow.(eymake
use of the sampling mechanisms for the development of an
efficient method to detect large flows. Tang [8] propose an
efficient sampling and classification approach with the two-
phase elephant flow detection. (ey demonstrate their
system can provide accurate detection with less sampled
packets and short detection time. Aiming at the problem of
existing flow statistical sampling in anomaly detection, the
authors [9–11] analyze the distortion cause that packet
sampling and time domain polymerization lead to flow
record time series in theory.(ey propose different methods
to solve it. Result shows that their methods can reduce
impact of sampling rate on the signal to noise ratio and
improve the performance of the anomaly detection.

Zero-sum game is a concept of game theory and it is a
noncooperative game. As its model is relatively simple, a
zero-sum game model can be built between the attacker and
the defender in network attack and defense [12]. When the
attacker attacks successfully, the attacker gains positive
scores, while the defender gains negative scores, and the sum
of the two is zero. In network attack and defense model, both
attack and defense resources are limited. By quantifying net-
work nodes and allocating the corresponding profit value, the
game model of attack and defense is established, and we can
improve the defense capability, reduce the attack loss, and find
a reasonable packet sampling strategy in the future network.

2.2. Deep Learning andAnomaly Detection. As an important
subfield of machine learning, deep learning has made
breakthroughs in many artificial intelligence fields, such as

speech recognition, computer vision, autonomous driving,
and natural language processing [13]. Data flow in future
network is usually high dimensional and heterogeneous.
Deep learning can learn different levels of features from a
large number of raw network data streams, and these au-
tomatic learning features do not require the domain
knowledge of human experts, saving a lot of labor and time
costs. We take these learned important features as the input
of machine learning algorithm to complete the classification
task, which can solve the problem of false alarm rates (FAR)
and false positives (FP) of the intrusion detection system
(IDS) in the future network security and realize the iden-
tification of network traffic [14].

In recent years, some scholars have introduced the
method of deep learning into the field of network security
[15–18]. (ey used convolutional neural networks (CNNs)
to learn the spatial characteristics of network traffic and used
the method of image classification to identify malicious
network traffic. Recurrent neural network (RNN) is used to
learn the temporal characteristics of network traffic and
identify the traffic characteristics to improve the detection
rate.

In the deep learning [19–21], CNNs have obtained good
performance and wide application in the field of computer
vision, and the recognition of handwritten numbers has
achieved an extremely low false positive rate on the MNIST
test set. (e long short-term memory (LSTM) improves the
original RNN algorithm [22–24], solves the problem of
gradient disappearance or gradient explosion after training
of time series modeling, and conducts deep learning through
long-term state preservation and forward calculation and
uses the back-propagation algorithm to train time series to
establish the prediction model [25, 26].

3. Models and Methods

When the network is attacked in future network, we need to
have a certain strategy, as soon as it is possible to find the
existence of the attack and obtain the attack category and
location information. (e SDN controller is used to allocate
defense resources according to the importance of nodes
under the condition of limited defense resources to reduce
network losses.

For the important nodes selected from the model, the
spatial-temporal characteristics of network traffic are
learned by combining CNN and LSTM in deep learning, so
as to realize abnormal detection of network traffic. (e
processing process consists of three parts. First, the ad-
vantages of CNN in spatial feature extraction of image
processing are utilized, and the spatial feature training is
carried out after the network traffic data are processed
graphically to form a traffic spatial classification model.
Secondly, the traffic vectors processed by CNN are processed
in time series, and the time characteristics of the traffic are
learned through LSTM to form a traffic time feature rec-
ognition model. (en, combining spatial classification
model and temporal feature recognition model, the current
network traffic is classified. (e model is shown in Figure 1.
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3.1. Packet Sampling Model of Future Network. For the
sampling and classification of future network security data,
the analysis is carried out from the aspects of SDN attack loss
calculation method, node importance calculation, attack and
defense strategy game model analysis, etc.

3.1.1. Attack Loss Score Calculation. (e attacker’s behavior
can be seen as sending attack packets from a controlled
computer to one or more network devices. When the de-
fender nodes checked the attack packet by sampling strategy,
the attack will fail and the defender will get a positive score;
otherwise, the defender will get a negative score.(e attacker
sends packets fromone network device to one ormore network
devices; if the packet is not intercepted by the defender, the
attack is successful and the score is positive; otherwise, the
attack is considered as a failure and the score is negative.

Based on the above background, the following hy-
potheses are considered:

Hypothesis 1. Under the limited defensive resource con-
straints, the probability that a defender detects a packet is
directly proportional to its importance.

Hypothesis 2. Attackers always pursue maximum revenue,
so they will prioritize attacks on network devices of high
importance.

In the process of attack and defense game, both the
attacker and the defender will use the optimal strategy to
maximize their own benefits, and the SDN packet sampling
problem will be simulated as a zero-sum game in which both
sides of the attack and defense participate.

(e SDN network is constructed into an undirected
graph, and the set of vertices is V, the graph of the edge set E
is recorded as G� (V, E), and the number of vertices and the
number of edges of G� (V, E) are, respectively, |V| and |E|.
Connect two vertices u, and the edges of v are denoted as
e� (u, v).

When an attacker launches an attack, the probability
of sending an attack packet is proportional to the im-
portance. It is assumed that k packets are extracted for
every n packets of the network device of importance x and
m packets are included in the n packets. (en, the
probability of extracting k out of n packets in n packets is
ck

n−m/C
k
n; then this is the probability that no attack packets

are detected.
For the attacker, the benefit score is
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Figure 1: Deep learning-based network security data sampling and anomaly prediction diagram.
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3.1.2. Node Importance Calculation. When an attacker
successfully attacks the network node vt, the score that can
be obtained is based on the importance φ (vt) corresponding
to the node vt, and the attacker tends to attack the higher-
priority nodes in the network to cause greater impact on the
network. (e network node value is quantified according to
the importance of the network node, and the higher value is
given to the more important network nodes. (e nodes in
the network are divided into switch nodes Sk ∈ S, and the
host nodes Hk ∈ H, S, and H are included in N. For the
normal operation of the network, the importance of the
switch node (Switching device) is equal to the sum of im-
portance value of all the host nodes (Terminal devices)
connected to it. (e importance of different switches in
future network may be different, such as the core switch is
more important than the edge switch; there is no difference
between hosts. In summary, (eorem 1 and (eorem 2 are
proposed.

Theorem 1. 3e importance value of each S node is divided
into direct importance value and indirect importance value.

Theorem 2. 3e direct importance value of a S node is equal
to the sum importance value of the H nodes which it is
connected, and the indirect importance value is equal to the
direct importance value of the S node which it is connected.

Theorem 3. 3e importance value of each S node may be
different, and the importance value of each H node is equal.

According to(eorem 1–3, the importance value of the S
node and the H node is divided. (e importance SI value of
the switch node is often higher than the importance HI value
of the host node. (e specific values can be used to represent
different network nodes according to different network
scenarios, for example, we may set HI value as 1. When SI
value and HI value are set, attention is paid to the size
relationship between them, that is, the value of S node
SI� 􏽐

n
i�1 HI, where n is the H node connected to the S node.

According to (eorem 2, assuming that the importance
value of each H node is 1, then the direct importance value of
a S node is equal to the sum of all the H nodes connected to
it. And, the indirect importance value the S node is equal to
the sum of all S nodes connected to it. We add the two values
when we calculate the importance value of S node.

3.1.3. Zero-Sum Game Model of Attack and Defense
Strategies. For an attacker, there are two main attack
strategies:

(1) Sends attack packets to the defender network device
on average if the importance of network nodes is
unknown

(2) Sends attack packets to the defender network device
by its proportion if the importance of network nodes
is known.

Suppose an attacker uses attack strategy 1 to distribute
attack packets evenly to n network devices, this n is exactly
equal to the number of defender network devices. It is as-
sumed that when an attacker uses an attack strategy, it may
be randomly assigned to attack a network device of high

Normalization

Data Preprocessing

Canonicalization

Data Serialization

…

LSTM-CNN Model

Seq (t) Seq (t + 1) Seq (t + n)

So�max

Traffic identification

Dataset Network
traffic

Figure 2: (e network anomaly detection model based on deep
learning in future network.

Table 1: Network topology.

Topology
1

Topology
2

Topology
3 Topology 4

Number of
switches 3 1 5 3

Number of
hosts 4 4 5 5

Number of
links 7 4 9 7

Topology Tree type Star type Line type Hybrid
type
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importance value of defender network or may be randomly
assigned to attack a network device of low importance value
defender network.

When defenders deal with attackers, there are two main
defense strategies:

(1) (e probability of network device packet detection is
equal

(2) (e probability of network device packet detection is
directly proportional to its importance value

3.2. Network Anomaly Detection Based on Deep Learning.
After describing the sampling model in Section 3.1, we find
the secure nodes that need sampling in future network. On
these nodes, we use the network traffic anomaly detection
method based on deep learning and combine CNN and
LSTM to detect and classify network security data. (e
spatial-temporal characteristics of network traffic can be
obtained through training, which has great potential to
improve the overall performance of network traffic detection
technology in future network. (e algorithms analyze the
possible security events and submit them to the controller of
SDN for further analysis and optimization of the whole
network.

(e network anomaly detection model based on deep
learning in future network is shown in Figure 2.

For the data on the important nodes found by the
sampling model, the data are firstly preprocessed, including
numerical coding and normalization. (en, the pre-
processed data were input into the LSTM-CNN model, and
the spatial and time feature learning of network traffic were
carried out. Finally, the two kinds of neural networks were
combined, and the output was classified by Softmax and the
attack events were classified.

(e experimental process is as follows:

Step 1 open IDS datasets or simulated attacks are used as
training datasets, and real-time network traffic is
collected as test data

Step 2 data preprocessing is carried out, and the flow
data after feature extraction is numerically coded
and feature normalized

Step 3 the preprocessed data were coded with one-hot
coding, the matrix was converted into m × m

traffic images, and the image data were classified
through the CNN neural network

Step 4 the preprocessed data were divided into time
series and trained by LSTM neural network to
obtain the abnormal flow probability of the next
period.

Finally, the two training models are combined to predict
and identify the current network traffic and realize the real-

Table 2: Defender’s detection success rate of attack and score of the attacker.

Experimental method Defensive detection success rate Attacker score

Topology 1

Attack strategy 1 vs. defensive strategy 1 0.41 7.2
Attack strategy 1 vs. defensive strategy 2 0.75 6.8
Attack strategy 2 vs. defensive strategy 1 0.75 6.3
Attack strategy 2 vs. defensive strategy 2 0.98 5.7

Topology 2

Attack strategy 1 vs. defensive strategy 1 0.62 3.1
Attack strategy 1 vs. defensive strategy 2 0.96 2.1
Attack strategy 2 vs. defensive strategy 1 0.96 2.2
Attack strategy 2 vs. defensive strategy 2 0.99 2.4

Topology 3

Attack strategy 1 vs. defensive strategy 1 0.19 16.1
Attack strategy 1 vs. defensive strategy 2 0.29 17.1
Attack strategy 2 vs. defensive strategy 1 0.29 17.1
Attack strategy 2 vs. defensive strategy 2 0.39 13.7

Topology 4

Attack strategy 1 vs. defensive strategy 1 0.41 8.5
Attack strategy 1 vs. defensive strategy 2 0.75 7.3
Attack strategy 2 vs. defensive strategy 1 0.75 7.3
Attack strategy 2 vs. defensive strategy 2 0.98 6.1
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Figure 3: Dataset statistics.
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time automatic monitoring of future network traffic
anomaly detection function.

4. Experimental Results and Analysis

4.1. Experimental Method of Packet Sampling. In order to
verify the difference of sampling strategy described in 3.1,
Matlab and graph theory were used to build the model and
construct the network topology and node sampling function.
Four kinds of topology structure and four kinds of attack
and defense strategies were used to carry out 16 groups of
simulation, each group of simulation was repeated 10 times,
and then the average value of each group of data was cal-
culated. Under different combinations of attack strategies
and topologies, SDN packet sampling strategy based on

zero-sum game is compared with random sampling strategy.
(e experimental topology is shown in Table 1. (e
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0

500000

1000000

1500000

2000000

2500000

Benign DoS hulk PortScan DDoS DoS
goldeneye

FTP patator SSH patator DoS slowloris DoS
slowhttptest

Bot Web attack
brute force

Web attac
XSS

Infiltration Web attack
Sql injection

Heartbleed

Network traffic types in CICIDS2017

Figure 4: Network traffic types in CICIDS2017.
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detection success rate of defenders against attacks and the
scores of attackers are shown in Table 2.

In the experiment, there is only one attack host and the
attack data sent to the network every second is 20 per second.
Each network device can receive 20 packets per second. (e
total number of sampling nodes per second for network
devices in the entire topology is 20, and the attack score is
reserved to decimal.

Experimental data show that, compared with attack
strategy 1, attack strategy 2 can improve the defense success
rate and reduce the attack score, which indicates that, in
network attack, increasing the power of sending attack
packets to the target host will make the target host easy to
detect the attack and take active defense. Compared with
defensive strategy 1, defensive strategy 2 can improve the
detection success rate and reduce the attack score. (e
reason is that SDN packet sampling strategy based on zero-
sum game tends to protect important nodes, so this strategy
is effective.

4.2. Datasets and Experimental Methods of Anomaly
Detection. In this section, the mentioned network traffic
anomaly detection method is tested. All models of this
method are designed and verified on the Google Colab
platform, and the TPU accelerator provided by Google
Colab is used. (e framework of deep learning selects Keras
based on TensorFlow 2.1 and CICIDS2017 [27] as the dataset
for anomaly detection.

We use CICIDS2017 as the dataset for anomaly detec-
tion, published by the Canadian Institute for Cybersecurity.
CICIDS2017 is a dataset for simulating real attacks and
contains the necessary features for common network events.
Among them, the traffic data are captured by packet and
extracted by CICFlowMeter. Each data contains more than
80 dimensions of network traffic characteristics.

Before the experiment, we first conducted data statistics
on CICIDS2017, and its traffic types is shown in Figure 3 and
its traffic distribution is shown in Figure 4. It can be seen that
there are 15 types of traffic, including normal traffic and 14
types of attack traffic.

(en, we carried out numerical normalization and traffic
label coding on the dataset, and the numerical normalization
was mapped by theMinMaxmethod. In the process of traffic
label coding, according to the traffic distribution charac-
teristics of CICIDS2017, we can see that the normal traffic
occupies more than 80%, and the attack traffic is mainly
DOS, PortScan, and DDoS.(erefore, we divided 15 types of
traffic into Benign, DOS, DDoS, PortScan, and other attacks,
as shown in Figure 5; it make our experimental training and
statistics more convenient.

We input the serialized preprocessed data into LSTM
and CNN neural network, where LSTM predicts the tem-
poral characteristics of the traffic sequence and CNN learns
the spatial characteristics of the network traffic sequence.
(is experiment of deep learning framework using Keras
LSTM and neural network (CNN) in the model structure as
shown in Figure 6, including CNN and LSTM three-layer
neural network, is adopted, and each layer neural network

using the dropout discard part features, to prevent over-
fitting, on the fourth floor, LSTM is combined with CNN
through the flatten layer for dimension reduction and finally
the output was sorted through the softmax layer.

After experimental tests, as the number of epochs in-
creased, we obtained the variation trend of loss value and
accuracy value in the traffic classification of the LSTM-CNN
model. It can be seen from Figure 7 that when the epoch
reached 7.5 times, the performance of this model tended to
be stable. (e loss value was 0.0441, and the accuracy value
was 0.9853 when the epoch was 20 times.

After training the data, we tested the model and the
accuracy reached 0.966, with a better recognition rate of
network attacks. Table 3 shows the comparison of detection
rates between normal traffic and attack traffic using CNN-
LSTM. (e evaluation criteria include precision, F1Score,
and recall.

(rough the experiment, DDOS can achieve 100%
successful detection, and the average F1-score of normal
traffic and other attack traffic can reach 97.6%, indicating
that this method has excellent performance in the future
network anomaly detection.

5. Conclusion

(e global view and centralized control of the future net-
work make the network traffic control in the big data en-
vironment convenient and effective, butmost of the anomaly
traffic detection often needs to be detected through a large
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Figure 7: Loss-accuracy change rate.

Table 3: Classification report.

Types Precision Recall F1-score
BENIGN 1.00 0.98 0.99
DoS 0.99 1.00 0.99
PortScan 0.95 1.00 0.98
DDoS 1.00 1.00 1.00
Other attacks 0.89 0.94 0.92
Total 0.966 0.984 0.976
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number of data samples and the number of abnormal traffic
explosive growth, resulting in a decline in detection
efficiency.

(is paper proposes a sampling and classification pre-
diction model of anomaly traffic of future networks based on
game theory and deep learning. (e defense performance of
network is improved by protecting important nodes. (e
experimental platform has been built, and we also use public
datasets to test our method. (e results show that the
sampling strategy of SDN packets based on zero-sum game
and the method of deep learning analysis for the selected
important nodes are effective. In the future, further research
can be carried out on the gamemodel, different types of deep
learning methods, and super-parameter selection.
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Machine vision-based surface defect detection and classification have always been the hot research topics in Artificial Intelligence.
However, existing work focuses mainly on the detection rather than the classification. In this article, we propose GSPSO-LRF-
ELM that is the grid search (GS) and the particle swarm optimization- (PSO-) based local receptive field-enabled extreme learning
machine (ELM-LRF) for the detection and classification of the surface defects on the magnetic tiles. In the ELM-LRF classifier, the
balance parameter C and the number of feature maps K via the GS algorithm and the initial weight Ainit via the PSO algorithm are
optimized to improve the performance of the classifier. (e images used in the experiments are from the dataset collected by
Institute of Automation, Chinese Academy of Sciences. (e experiment results show that the proposed algorithm can achieve
96.36% accuracy of the classification, which has significantly outperformed several state-of-the-art approaches.

1. Introduction

(e magnetic tile is an important component of the motor,
whose surface defects directly affect the performance and the
life of the motor. (erefore, defective surfaces on the
magnetic tiles need be detected and analyzed during the
production process [1].(e common types of surface defects
of the magnetic tiles mainly include “break,” “crack,” “fray,”
“uneven,” and “blowhole” [2], which are shown in Figure 1.
(ese surface defects are used to be inspected by humans,
which has inevitably suffered from several downsides such as
the low detection efficiency, the poor detection consistency,
and the high laboring cost. As a result, the automatic de-
tection of such surface defects using the visual inspection
and image processing attracts more and more attention [3].
However, conventional automatic detection methods either
have low detection accuracy or fail to classify the detected
defects, which have severely affected the following process of
industrial production [4].

In recent years, a number of approaches based on
machine vision have been proposed for improving the de-
tection and classification of surface defects on magnetic tiles.
Valavanisa and Kosmopoulos [5] proposed a method which
uses the geometric and the texture features to detect and
classify defects in the weld radiographs. (is method im-
proved the detection speed, but the extracted features were
too complicated. Li et al. [6] used the fast discrete curvelet
transform (FDCT) and texture analysis for the detection of
“cracks” in magnetic tiles longer than 0.8mm, but it could
only detect single “cracks” whilst other types of defects were
not considered. Yang et al. [7] proposed to use non-
subsampled shearlet transform for surface defects detection
of the magnetic tiles, which could effectively remove “un-
even” background, grinding texture and noise interference
during defect detection rather than any other kinds of de-
fects. He et al. [8] proposed a framework for the detection of
steel surface defects, classification priority network (CPN),
and a new classification network, multigroup convolutional
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neural network (MG-CNN). (e framework has better
classification performance, but there is the problem that the
classification results are unstable in early training.

In summary, most of the existing approaches for surface
defect detection of the magnetic tiles can detect a single type
of surface defects and often have relatively low detection
accuracy. After detection of the possible defects, their types
are not further classified, which is not conducive to finding
the cause of the defect for improving the subsequent pro-
duction process. In this article, we aim to solve the afore-
mentioned problems. We use the GS method to obtain the
optimal parameter combination (C, K) more accurately and
divide the GS method into two parts: rough optimization
and fine optimization; PSO algorithm is proposed to opti-
mize the initial weight Ainit of ELM-LRF and further classify
the defect categories. (e main contributions of our work
can be highlighted as follows.

(1) Because ELM-LRF has poor initial weights stability,
we use the particle swarm optimization (PSO) to
optimize the initial weights of ELM-LRF, which
improves the classification accuracy of the classifier

(2) In order to improve the performance of the classifier,
the method of grid search (GS) rough optimization
and fine optimization is used to optimize the balance
parameter C and the number of feature maps K in
ELM-LRF

(3) Using the optimized ELM-LRF to classify the surface
defect categories in the detected images and com-
pared with some advanced multicategory classifi-
cation algorithms, our proposed method has higher
classification accuracy

(e remainder of this article is organized as follows. In
Section 2, the related work and technical background of
ELM-LRF are introduced. Section 3 presents the proposed
GSPSO-LRF-ELM algorithm, that is, the grid search and the
particle swarm optimization optimized ELM-LRF. (e ex-
periments results and analysis are given in Section 4. Finally,
Section 5 concludes the article along with future prospects
for the next phase of research.

2. Related Work and Technical Background

(ere are six common types of the magnetic tiles, which are
“break,” “crack,” “fray,” “uneven” “blowhole,” and “free,” on
the surface of the magnetic tile. In order to further classify
the test results, it is necessary to extract the feature infor-
mation of each category as the input of classifier to realize
the defect classification.

Vision-based defect detection and classification systems
have great advantages for industrial production, which have
promoted a large number of related work in relevant fields
[9]. (e general workflow of the system is illustrated in
Figure 2.

2.1. Extraction of Region of Interest (ROI). Firstly, the in-
dustrial camera and the video acquisition equipment are
used to obtain the image of the magnetic tile. After back-
ground removal, the region of interest (ROI) is extracted as
the input for next stage of processing.

2.2. Preprocessing and Image Segmentation. Image pre-
processing includes enhancement, sharpening, and
denoising of images. For image segmentation or detection of
defects, several methods can be used. Commonly used image
segmentation methods include region growing [10], mean
iterative segmentation [11], maximum entropy segmenta-
tion [12], and Otsu [13]. In this article, considering that the
surface of the magnetic tile image is dim and the image is
complicated, an entropy weighted automatic threshold Otsu
maximum interclass variance image segmentation method is
chosen for the image segmentation [14].

2.3. Image Feature Extraction and Defection Classification.
Some commonly used features include color, shape, texture,
and spatial relationship. ELM-LRF with convolution layer
and pooling layer can realize feature self-extraction of input
image. For image classification, some classical algorithms
include support vector machine (SVM), artificial neural
network (ANN), Bayesian classification (BC), and K-nearest
neighbor (K-NN). Zhou et al. [15] extracted features as input
to SVM for classification of automobile surface defects.
Kumar et al. [16] used the gray level cooccurrence matrix
and the texture shape geometry as the features of the de-
tected weld image, followed by using the ANN for detection
and classification of the defects. Yapi et al. [17] trained BC to
distinguish the defect-free fabrics from the defect ones and
achieved good detection results. Cetiner et al. [18] used
features obtained from wavelet distance as the input of
K-NN to further classify wood materials.

With the development of deep learning, convolutional
neural network (CNN) has been successfully applied in
many different applications. Tao et al. [19] classified the
detected metal defects through a compact CNN, which
satisfies the robustness and accuracy of detection. Wang
et al. [20] realized the function of automatically extracting

(a) (b) (c) (d) (e)

Figure 1: Five common types of the surface defects on magnetic tiles: (a) break. (b) Crack. (c) Fray. (d) Uneven. (e) Blowhole.
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image features in the case of less prior knowledge of the
defect detection images.

Due to the advantages of CNN sharing convolution kernel
and feature self-extraction, it has been widely used in current
classification research. But CNNadopts traditional BP training,
which has the disadvantages of slow convergence and being
easy to fall into local optimum. In 2015, Huang et al. [21],
inspired by CNN and the extreme learning machine (ELM),
proposed a local receptive field-based extreme learning ma-
chine [22] (ELM-LRF). In this article, the ELM-LRF algorithm
is used to detect and classify the surface defects of the magnetic
tiles, where the grid search (GS) and particle swarm optimi-
zation (PSO) algorithm are used to optimize the parameters
and weight in the ELM-LRF algorithm. (e experimental
results show that this proposed method has significantly im-
proved the accuracy of the defect detection and classification.

After detecting and classifying the surface defects of the
magnetic tile, the overall defect detection accuracy and
classification accuracy of the different defect types are ob-
tained and compared with existing approaches for perfor-
mance assessment and evaluation.

2.4. Technical Background of ELM-LRF. In 2004, a new type
of single hidden layer feedforward neural network (SLFNs)
was proposed by Huang and his team as extreme learning
,machine [21], which is characterized by easy parameter
selection, fast learning speed, and good generalization
performance. In this article, a special ELM, namely, ELM-
LRF, is adopted [22]. (e feature of this method is to add a
single layer convolution and pooling network similar to
CNN on the basis of ELM to realize the self-extraction of
image features and to classify the input by the output weights
of ELM.

In order to make the input more adequate, K different
feature maps can be obtained by using K different input
weights in the ELM-LRF [23]. Its specific implementation is
divided into the following three steps.

(1) Randomly generating the initial weight Ainit. (e
specific calculation formula is as follows:

A
init ∈ R

r2×K
,

A
init

� αinit1 , αinit2 , . . . , αinitK􏽨 􏽩,

αinitk ∈ R
r2

,

k � 1, 2, . . . , K,

(1)

where Ainit is the initial weight, K is the number of
feature maps, r2 is the size of the local receptive field,
and each column αk in Ainit is a set of the orthogonal
bases of Ainit. (e input weight of the feature map kth
is αk ∈ Rr×r, which is arranged by the column αk.

(e initial weight Ainit is orthogonalized by the
singular value decomposition (SVD), and the result
of the orthogonalization is A. (e value ci,j,k of the
convolution node (i, j) of the feature map kth is
calculated by

ci,j,k(x) � 􏽘
r

m�1
􏽘

r

n�1
xi+m−1,j+n−1 · αm,n,k􏼐 􏼑,

i, j � 1, 2, . . . , (d − r + 1),

(2)

where d× d is the input image size, (d − r + 1) ×

(d − r + 1) is the size of the feature map, and αm,n,k is
the input weight of the kth feature map at (m, n)
point.

(2) Square root pooling.(e specific calculation formula
is as follows:

hp,q,k �

�����������

􏽘

p+e

i�p−e

􏽘

q+e

j�q−e

c2i,j,k

􏽶
􏽴

, p, q � 1, 2, . . . , (d − r + 1).

(3)

If (i, j) is out of bound, then ci,j,k � 0,
where the pooling size e represents the distance from
the center of the pool to the edge [24]. In the ELM-
LRF, the pooling map has the same size as the feature
map, and both are (d − r + 1) × (d − r + 1). ci,j,k and
hp,q,k represent the nodes (i, j) in the feature map kth

and the combined nodes (p, q) in the kth pool map.
(3) Calculating the output weight matrix. To calculate

the corresponding feature map and pooling map for
each input sample x, the row vector is formed by
concatenating the combined nodes in the pooling
graph and then connecting the row vectors of the N
input samples to obtain the combined layer matrix
H ∈ RN×K·(d− r+1)2 . (e final combined layer and the
output layer are fully connected.(e output weight is
β, which is calculated using regularized least squares
analysis. (e specific equation is as follows.

(a) If N≤K · (d − r + 1)2,

β � H
T 1

C
+ HH

T
􏼒 􏼓

− 1
T. (4)

(b) If N>K · (d − r + 1)2,

β �
1
C

+ H
T
H􏼒 􏼓

− 1
H

T
T, (5)

where N is the number of input samples, K is the
number of feature maps, (d − r + 1) × (d − r + 1) is
the size of the feature map, β is the output weight, T

Acquire the image
to be detected

Extraction of
region of

interest (ROI)

Preprocessing
and image

segmentation

Image feature extraction
and defection
classification

Performance
assessment

Figure 2: Workflow of machine vision-based defect detection and classification.
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is the expected output matrix, and C is the regula-
rization parameter.

3. TheProposedGridSearchandParticleSwarm
Optimization-Based Local Receptive Field-
Enabled Extreme LearningMachine (GSPSO-
LRF-ELM) Algorithm

(e surface of the magnetic tile is curved and the cur-
vature is different. (e collected magnetic tile images have
uneven illumination. In this article, we use the entropy
weighted automatic threshold Otsu image segmentation
method to segment magnetic tile images [14]. In view of
the different local changes in the magnetic tile images, we
use adaptive thresholds to segment uniform and non-
uniform regions.

(e GS is used to optimize the balance parameter C and
the number of feature maps K in the ELM-LRF to find the
optimal parameter combination (C, K). (e PSO algorithm
is used to optimize the initial weight in the ELM-LRF to find
the optimal Ainit. (e optimized ELM-LRF classifier is called
GSPSO-LRF-ELM. (e classification algorithm flow chart is
shown in Figure 3.

3.1. Optimization of the Balance Parameter C and theNumber
of Feature Maps K by GS. In the ELM-LRF algorithm, the
most important parameter combination is the balance pa-
rameter C and the number of the feature maps K. (e se-
lection of these two parameters directly affects the
performance of the algorithm. (erefore, the GS is used to
optimize the parameter combination (C,K) in the ELM-LRF.
(e optimization Algorithm 1 of GS for the parameters C
and K is as follows:

(e array matrix is obtained by combining the values of
the arrays A and B. Each array in the matrix is inputted into
the classifier to obtain the corresponding classification ac-
curacy. Comparing the accuracy of the each classification,
the parameters BestC and BestK corresponding to the
highest classification accuracy are selected as the balance
parameter C and the number of feature maps K in the
classifier.

3.2. Optimization of the Initial Weight Ainit by PSO. (e idea
of PSO is derived from the foraging behavior of birds, in
which each particle represents a set of possible solutions, and
all particles form a group. (e particles determine their
speed and position according to their historical information
and group historical information until the optimal solution
is found. (e iterative update equation is as follows:

v
k+1
i d � wv

k
i d + c1r1 P

k
i d − x

k
i d􏼐 􏼑 + c2r2 G

k
d − x

k
i d􏼐 􏼑,

x
k+1
i d � x

k
i d + v

k+1
i d ,

(6)

where vk
i d and xk

i d are the velocity and position of the
number d dimension of particle i at the number k iteration
and w is the weight, respectively, c1 and c2 are the learning
factor of the individual and the group, Pk

i d is the optimal

position of particle i in the d dimension in the number k
iteration, Gk

d is the optimal position of the individual in the d
dimension of the whole population, and r1, r2 is a random
number of [0, 1] intervals.

In order to make the PSO have the better global search
ability in the early stage and the better local search ability in
the later stage, the work adopts the nonlinear inertia
weighting factor w [25], as shown in the following :

w � wmax − wmax − wmin( 􏼁 × arcsin
t

tmax
×
π
4

􏼠 􏼡, (7)

where wmax and wmin are maximum and minimum weights,
respectively, and t and tmax are the current iteration number
and the maximum iteration number.

(e work uses the PSO algorithm to optimize the initial
weight Ainit in the ELM-LRF algorithm. Firstly, D initial
particles are generated, and the corresponding feature map
matrix, pool graph matrix, and output weight matrix β are
calculated; secondly, it uses the formula Hβ�T to calculate
the prediction label T; finally, the classification accuracy of
the image is taken as the fitness function, and the optimi-
zation goal of the PSO is to maximize the fitness function.
(e PSO for initial weight optimization of ELM-LRF Al-
gorithm 2 is as follows:

4. Experiments and Results

4.1. Experiment Settings. (e dataset used in the experiment
was from the dataset on surface defect detection of the
magnetic tile collected by Institute of Automation, Chinese
Academy of Sciences [2]. (e folder name of the dataset is
magnetic-tile-defect-datasets (magnetic-tile-defect-datasets
dataset acquisition address: https://github.com/abin24/
Magnetic-tile-defect-datasets.). A total of 1344 images
were collected. In order to make the experiment more
reasonable and reliable, the experimental data were ran-
domly selected as the defect and defect-free images by 1 :1.
(e types and quantities of experimental data selected are
shown in Table 1. Due to the different ROI of different
magnetic tiles, the size of the image is different. For this
reason, the image is uniformly converted into 64 dip× 64 dip
size before preprocessing.

(e classification accuracy of the surface defect of the
magnetic tile is used as a criterion for judging the ex-
perimental results. (e higher the classification accuracy
is, the better the classification performance of the algo-
rithm has.

In addition, in order to better analyze the experimental
results, the false detection rate and the missed detection rate
of each category are separately counted as follows:

false detection rate �
number of errors
number of samples

,

missed detection rate �
number of not recognized

number of samples
.

(8)

All experimental environments in this article are oper-
ating system Windows 8.1 64 bit, processor Intel Core i5-
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4200M @ 2.50GHz, memory (ARM) 8GB, and software
MATLAB R2018a.

4.2. Experiment Results and Analysis. We use ELM-LRF
algorithm for defect detection and classification experi-
ments. Dividing the dataset into training set and test set
randomly, the types and quantities of images in training set
and test set are shown in Table 2.

In the ELM-LRF algorithm, in order to analyze the
influence of the balance parameter C and the number of
feature maps K on the algorithm, the GS is used to optimize
the two parameters. (e parameter optimization is divided
into two parts: rough optimization and fine optimization. In
the rough optimization, the range of the parameterC is set to
{10−4, 10−3, 10−2, ... , 102, 103}, the range of the parameterK is
set to {10, 20, 30, 40, 50, 60}, and the rough optimization 3D
map of the results is shown in Figure 4. It can be seen from

Start

Image preprocessing, image segmentation

Meshing method parameters (C, K) rough optimization

Meshing method parameters (C, K) fine optimization

Produce an initial population, D initial particles

Calculate the feature map matrix according to formula (4)

Calculate the pooled matrix according to formula (5)

Calculate the output weight matrix β according to formula (5)

Calculate the fitness funtion fitness

PSO update particle

Meet the preset conditions 

Calculate the prediction catagory based on Hβ = T

End

No

Algorithm 1
(3.1 (C, K) optimization)

Algorithm 2
(3.2 Ainit optimization)

Yes

Figure 3: GSPSO-LRF-ELM classification algorithm flow chart.
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Figure 4 that when lgC is taken as −2 and K is taken as 50, a
rough optimal parameter combination (C, K) is obtained.

For the further fine optimization, according to the rough
optimization experiment results, the C and K setting range
and step size are reduced, and the range of the parameterC is
set to {0.005, 0.006, 0.007, ... 0.019, 0.020}, the range of the
parameter K is set to {45, 46, 47, ... 53, 54, 55}, and the fine
optimization 3D map of the results is shown in Figure 5. It
can be seen from Figure 5 that whenC is taken as 0.016 andK
is taken as 55, a fine optimal parameter combination (C,K) is

obtained. At this time, the highest classification accuracy of
parameter optimization is 98.04%. In the parameter opti-
mization experiment, the test classification accuracy is
adopted as the criterion for judging the experimental results.

In the following experiment, the population size P was
set first, followed by the number of iterations N, the max-
imum inertia weight ωmax and the minimum ωmin, the
learning factors c1 and c2, the maximum particle velocity
Vmax and the minimum Vmin, and the maximum particle
position Xmax and the minimum Xmin. (e selection of the

(1) Setting the maximum, minimum and step size of C and K to get array A and array
(2) B respectively. (e numerical angle in array A is 1: m, and the numerical angle in
(3) array B is 1: n,
(4) Bastacc� 0;
(5) For C� 1: m %C is the balance parameter
(6) {
(7) For K� 1: n %K is the number of feature maps
(8) {
(9) Substituting C and K into the ELM-LRF algorithm, the classification
(10) accuracy of the algorithm is obtained;
(11) If Acc (C, K)>Bastacc
(12) Bestacc�Acc (C, K);
(13) BestC�C;
(14) BestK�K;
(15) End
(16) }
(17) }

ALGORITHM 1: GS optimization for the parameters C and K.

(1) Particle swarm algorithm initialization begins:
(2) generating D initial particles;
(3) Calculating a feature map matrix, a pool map matrix, and an output weight
(4) matrix β corresponding to the particles;
(5) (e prediction label T is obtained by the formula Hβ�T;
(6) Obtaining a fitness function;
(7) (e update operation begins:
(8) Individual update obtains the best value of the individual;
(9) Global update obtains the best value of the global;
(10) (e optimal value is the optimal initial weight Ainit;

ALGORITHM 2: PSO optimization for the initial weight Ainit.

Table 1: Data categories and quantities used in the experiment.

Data category
Defect image Defect-free image

Break Crack Fray Uneven Blowhole Free
Data quantity 85 57 32 103 114 391

Table 2: Training and testing data categories and quantities used in the experiment.

Data category
Defect image Defect-free image Total

Break Crack Fray Uneven Blowhole Free
Training 60 40 20 70 80 270 540
Testing 25 17 12 33 34 121 242
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balance parameter C, the number of feature maps K, the
kernel size Ke, and the pool size e in the ELM-LRF algorithm
are shown in Table 3.

(e proposed classification algorithm counts the de-
tection and classification results of six categories of the
magnetic tile surface. (e statistical results are shown in
Table 4. As seen from Table 4, the classification algorithm
proposed in this article can achieve 100% correct rate when
identifying the defect and defect-free magnetic tiles. Among
the five types of the defect categories, the classification rate of
“break” is the highest, which is 100%; the lowest rate of
“uneven” is 86.67%. In the experiment, the number of the
defective magnetic tiles is falsely detected as the blowhole
and the number of uneven defective magnetic tiles is missed
from detection the most, both of which are 4 pieces. Based
on the whole test results, the proposed algorithm achieves
good results in the detection of surface defects of the
magnetic tiles and can be applied to detect and identify
surface defects of the magnetic tile in actual production.

4.3. Comparative Experiment. In order to verify the per-
formance of GSPSO-LRF-ELM algorithm in image classi-
fication, the proposed algorithm was compared with four
traditional classification algorithms, support vector machine

(SVM), artificial neural network (ANN), extreme learning
machine (ELM), and local receptive field-based extreme
learning machine (ELM-LRF). (e experimental results are
shown in Table 5.

As can be seen from Table 5, the training accuracy of the
proposed GSPSO-LRF-ELM algorithm is 99.07%, and the
test accuracy is 96.36%, the highest among all five compared
algorithms. (e test accuracy of the proposed algorithm is
4.54% higher than that of the traditional ELM-LRF algo-
rithm, and it is much higher than the other three classical
classification algorithms. In terms of time consumption,
ELM training time and test time are the shortest. SVM and
ANN detection time is also very short. Comparatively
speaking, the training and testing time of the proposed
GSPSO-LRF-ELM algorithm in this article is longer. (is is
because the convolution and pooling layers are added to the
algorithm, and the input weight is optimized by PSO, so the
algorithm runs longer. Although the running time of the
algorithm proposed in this article is slightly longer, its
training and testing accuracy have been significantly im-
proved, which is more consistent with the demand for
detection efficiency in the offline defects detection of the
magnetic tile.

In order to make the experiment more comprehensive,
the accuracy, false detection rate, and missed detection rate
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of the five algorithms for six categories of the magnetic tile
defect as shown in Figures 6–8.

As can be seen from Figures 6–8, the classification accuracy
of the GSPSO-LRF-ELM algorithm for the magnetic tile defect
category is higher than that of the other four algorithms, and
the classification rate of “free” and “break” reaches 100%. In
terms of false detection rate, the overall false detection rate of

the proposed algorithm is low, and the false detection rate of
“crack” and “uneven” is 0%. In terms of missed detection rate,
the algorithm proposed in this article is significantly lower than
the other four classification algorithms, and the missed de-
tection rate of “free” and “break” is 0%.

In summary, the algorithm proposed in this article is
outstanding in the classification of the magnetic tile defects,

Table 5: Comparison of classification results of different classification algorithms.

Algorithm Training accuracy (%) Training time (s) Test accuracy (%) Testing time (s)
SVM 95.56 0.2443 86.82 0.4672
ANN 92.15 6.9703 87.73 0.0215
ELM 73.18 0.0066 72.27 0.0026
ELM-LRF 97.85 47.8906 91.82 10.2463
GSPSO-LRF-ELM 99.07 26.4375 96.36 12.1420

Table 4: Classification results of various surface defect categories.

Category Identification/
total

Correct rate
(%)

False detection/
Total

False detection rate
(%)

Missed detection/
total

Missed detection rate
(%)

Free 109/109 100.00 1/109 0.92 0/109 0.00
Break 24/24 100.00 2/24 8.33 0/24 0.00
Crack 15/17 88.24 0/17 0.00 2/17 11.76
Fray 8/9 88.89 1/9 11.11 1/9 11.11
Uneven 26/30 86.67 0/30 0.00 4/30 13.33
Blowhole 30/31 96.77 4/31 12.90 1/31 3.23

Table 3: Parameters related to the GSPSO-LRF-ELM algorithm.

ωmax ωmin c1, c2 Vmax/Vmin Xmax/Xmin P N C K Ke e

1.2 0.4 1.49445 ±0.5 ±3 25 70 0.016 55 4∗ 4 4
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Figure 6: Comparison of five algorithms for correct rate (the horizontal axis is the defect type, and the vertical axis is the correct rate).
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and the classification accuracy is higher than the other four
algorithms.

5. Conclusion

In this article, we propose an optimized local receptive field-
based extreme learning machine for detecting and classi-
fying the surface defects of the magnetic tile. In the ELM-
LRF classifier, considering the difficulty of selecting the
balance parameter C and the number of the feature maps K,
the grid search method (GS) is used to optimize the balance
parameter C and the number of the feature maps K, and in
order to obtain the optimal initial weight Ainit, the particle
swarm optimization algorithm (PSO) is used to optimize the
initial weight Ainit of the classifier. (e optimized classifier is
named GSPSO-ELM- LRF. After preprocessing and

segmenting, the magnetic tile images are inputted to the
GSPSO-LRF-ELM classifier, and the surface defects of the
magnetic tile will be detected and classified. (rough ex-
perimental comparison and analysis, the method proposed
in this article has the highest accuracy and better detection
efficiency in the detection and classification of the magnetic
tile surface defects.

In the future, the online detection and classification
systems for the surface defects of the magnetic tiles will be
further researched to achieve real-time detection, classifi-
cation, and analysis.

Data Availability

(e dataset used in the experiment was from the dataset on
surface defect detection of the magnetic tile collected by
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Figure 7: Comparison of five algorithms for false detection rate (the horizontal axis is the defect type, and the vertical axis is the false
detection rate; less than five columns in each defect means false detection rate is 0% in the missing algorithm).
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Institute of Automation, Chinese Academy of Sciences. (e
Magnetic-tile-defect-datasets master data used to support the
findings of this study have been deposited in the https://
github.com/abin24/Magnetic-tile-defect-datasets repository.
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+e coronavirus disease 2019 (COVID-19) pandemic has triggered a new response involving public health surveillance. +e
popularity of personal wearable devices creates a new opportunity for tracking and precaution of spread of such infectious
diseases. In this study, we propose a framework, which is based on the heart rate and sleep data collected from wearable devices, to
predict the epidemic trend of COVID-19 in different countries and cities. In addition to a physiological anomaly detection
algorithm defined based on data from wearable devices, an online neural network prediction modelling methodology combining
both detected physiological anomaly rate and historical COVID-19 infection rate is explored. Four models are trained separately
according to geographical segmentation, i.e., North China, Central China, South China, and South-Central Europe. +e ano-
nymised sensor data from approximately 1.3 million wearable device users are used for model verification. Our experiment’s
results indicate that the prediction models can be utilized to alert to an outbreak of COVID-19 in advance, which suggests there is
potential for a health surveillance system utilising wearable device data.

1. Introduction

Since the outbreak of the coronavirus disease 2019 (COVID-
19) pandemic, more than 300,000 people have been infected
in at least 127 countries as of March 23, 2020, according to
the World Health Organization’s (WHO’s) report [1].
COVID-19 spreads easily from person to person and has
killed thousands of people [2–5]. Since the beginning of the
COVID-19 outbreak, several studies have been carried out to
forecast the epidemic trend of COVID-19 in China [6–8].
For example, Wu et al. built a Susceptible-Exposed-Infec-
tious-Recovered (SEIR) model to simulate the epidemics
across the major cities in China [7]. Yang et al. applied the
Long Short Term Memory (LSTM) model to predict the
number of newly infected COVID-19 cases by utilizing data
from the outbreak of Severe Acute Respiratory Syndrome
(SARS) in 2003 [6]. Although the models used in those
studies could simulate the outbreak trend of the disease, they
relied heavily on officially reported statistics; therefore, the
timeliness of the models could be affected. On the contrary,

big data analysis, such as analysis of Internet data, may
provide real-time surveillance and improve the timeliness of
the forecasting [9–16]. For instance, Google invented the
influenza epidemic prediction tool Google Flu Trend (GFT)
to estimate the level of in-fluenza activity based on the
individual web search queries from different regions [9–11].
+ey assumed that more individuals in a certain region
might search online for the information about specific
diseases if the influenza disease risk was higher in that
certain region.+erefore, Google built a database containing
50 million of the most common web search queries on all
influenza-related topics and constructed the risk prediction
model GFT using this search query data as the input [9].
Google showed that GFT could help predict the influenza-
like illness outbreak 7–10 days before the Centers for Disease
Control and Prevention (CDC) report [10]. In fact, the
surveillance report from CDC usually has a lag time of
around 1-2 weeks. +erefore, the result from Google indi-
cated that big data analysis could improve timeliness for
public health surveillance. However, search queries can be
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greatly influenced by social hotspots, which weakens the
correlation between the search queries and the occurrence of
influenza-like diseases [17].

With the rise in popularity of fitness band and smart-
watch devices, physiological signs, such as heart rate, ac-
tivity, sleep, etc., can be conveniently acquired from these
wearable biosensors [18–20]. As of 2019, more than 100
million consumers owned Huami wearable devices, and the
number continues to grow. In contrast with the big data
from web search engines, data from wearable devices can
provide more objective information on the health status of
the users. For example, once users are infected with an
influenza-like illness, their physiological signs would be
altered. Radin et al. explored the relationship between the
physiological anomaly rate from wearable device users and
the influenza-like illness rate reported by the US CDC [21] to
build the regression models for predicting the influenza-like
illness cases within different states of America. +ey utilized
the heart rate and sleep data from the wearable devices to
improve upon the standard models. +e prediction results
have strong correlation with the official data. Li et al. also
investigated the role of physiological changes measured with
wearable devices on the diagnosis and analysis of disease
[22]. +e researchers established a personalized disease
detection framework, which identifies abnormal physical
signs, e.g., from Lyme disease and other inflammatory re-
sponses, from the longitudinal data of the individuals. All the
studies mentioned above can inform the way wearable de-
vice data is used for public health surveillance.

According to clinical studies [23–25], the most common
symptoms at the onset of COVID-19 are fever, cough, and
fatigue, which are closely related to the physiological signs
measured by the wearable devices. +erefore, a good method
to predict the epidemic trend of COVID-19 may involve
building a predictionmodel based on the wearable device data.

+e main purpose of this study is to provide a novel
framework for predicting the trend of COVID-19 outbreak
within different countries and cities, using big data collected
from wearable devices. +ere are two major contributions
from this study: (1) a physiological anomaly detection
method is developed and can identify the anomalous signs
reflected by the physiological data fromwearable sensors; (2)
an online learning framework is proposed for public health
emergency surveillance.

2. Methodology

2.1. Physiological Anomaly Detection. According to a study
on fever and cardiac rhythm [26], heart rate increases by 8.5
beats per minute, on average, for every 1°C increase in body
temperature, so an elevated resting heart rate (RHR) might
be related to fever caused by COVID-19 or influenza-like
illness. +e basic anomaly detection method is based on the
elevated RHR. Because shortened sleep length also causes an
increase in RHR [27], we weaken the contribution of this
factor in the physiological anomaly detection method.

RHR and sleep length are directly acquired with the
corresponding sensors of Huami wearable devices. Both
kinds of synchronized data from the accelerometer (ACC)

sensor and the photoplethysmography (PPG) sensor are
used to analyze sleep status (including sleep recognition and
stage) for measuring sleep length. During sleep, the PPG
data is used to compute the RHR. For each user, overall
mean and standard deviation (SD) of RHR and sleep length
throughout the entire period are calculated. A daily RHR is
defined as an anomaly if it is larger than the average RHR
plus 1.5 SD, and if in addition, the daily sleep is longer than
the average sleep minus 0.5 SD. Considering that COVID-19
or influenza-like illness persist for several days, we define the
detection standard of physiological anomaly as continuous
anomaly measured for at least five consecutive days.

2.2. Online Prediction of COVID-19 Infection Rate. +e
physiological anomaly detected by our method is an indi-
cation of fever, which in fact can be caused by COVID-19 or
other influenza-like illness. +us, the key point for COVID-
19 infection rate prediction is to distinguish an anomaly
arising from COVID-19 from the wider category of phys-
iological anomalies. To this end, as shown in Figure 1, a
heterogeneous neural network [28] regression model
combining sparse categorical features and dense numerical
features (CDNet) is proposed.

CDNet concatenates 2 subnetworks: CatNN and DenNN.
+e inputs of the CatNN are sparse categorical features, i.e.,
holiday activity, season, and weather. +e inputs of the
DenNN are historical physiological anomaly rate, active user
density, and historical officially reported COVID-19 rate,
where the historically detected physiological anomaly rate is
calculated with dividing the number of users detected with a
physiological anomaly by the number of total active users.+e
output layer of CDNet normalized by a Sigmoid function
outputs the predicted physiological anomaly rate.+e detailed
inputs and outputs are summarized in

Rt+1,k
′ � CDNet Rt−j,k, rt−j,k, Ct−j,k, ct−j,k, j � 0, 1, . . . , 6􏽮 􏽯,􏼐

RCt,k, Dt,k􏼑,

(1)

where, for country or city k, the output Rt+1,k
′ is the predicted

physiological anomaly rate in the next period, Rt−j,k is the
physiological anomaly rate the j-th period earlier, rt−j,k is the
physiological anomaly rate in the same period of Rt−j,k last
year, Ct−j,k and ct−j,k are the corresponding categorical in-
formation with the same temporal definition as Rt−j,k and
rt−j,k, respectively, RCt,k is the officially reported COVID-19
rate (ratio of confirmed COVID-19 patient number to the
number of residents in the country or city) in the current
period, Dt,k is the current active user density (ratio of active
user number to the number of residents in the country or
city). To distinguish regional disparity, four different CDNet
models are trained separately for North China, Central
China, South China, and South-Central Europe.

In order to get the predicted anomaly rate caused by
COVID-19 for the next period, the predicted physiological
anomaly rate with (Rt+1,k

′) and without (Rt+1,k
′ |RCt,k � 0) the

supervision of officially reported data is calculated sepa-
rately. As shown in Figure 2, the supervision is removed by

2 Discrete Dynamics in Nature and Society



setting RCt,k as 0. +en, the predicted anomaly rate caused
by COVID-19 for the next period Pt+1,k

′ can be calculated as
the difference between Rt+1,k

′ and R’
t+1,k | RCt,k � 0:

Pt+1,k
′ � Rt+1,k

′ − Rt+1,k
′ |RCt,k � 0􏽮 􏽯. (2)

To consecutively predict the epidemic trend of COVID-
19, the CDNet model is trained in an online learning way. As
shown in Figure 3, the initial CDNet model M0 is trained
with the input of Rt−j,k, rt−j,k, Ct−j,k, ct−j,k, j � 1, 2, . . . , 7􏽮 􏽯,
and with the target as Rt,k. +e weights of CDNet are
updated step by step with the transmission of COVID-19,
using the arriving data of newly officially reported COVID-
19 rate and detected physiological anomaly rate. +e step
size of the sliding window for online learning is set as 1 week.

3. Experiments

3.1. Dataset. Anonymised sensor data of approximately 1.3
million users who wore Huami devices from July 1, 2017, to
April 8, 2020 were obtained according to appropriate se-
curity control processes. All users are notified that their
anonymised data could potentially be used for academic
research under the Huami Privacy Policy.

All the users wore their Huami devices for at least 100
days throughout the entire period. Daily measures include
RHR, activity, and sleep length, which are the bases of

physiological anomaly detection. Data with missing RHR or
sleep length were excluded. +e daily COVID-19 infection
rate data come from CDC of the corresponding countries.

We build separate models for different countries and
cities listed in Table 1, according to the geographical seg-
mentation considering the regional and lifestyle differences.
Taking North China as an example, we utilized data from
five representative cities (Beijing, Shijiazhuang, Jinan,
Taiyuan, and Tianjin) for analysis and model building. +e
detailed summaries of the active user numbers are also listed
in Table 1. +e users enrolled in the study were chosen from
19 cities of Central, Southern, and Northern China and
seven South-Central European countries to sufficiently re-
veal the regional disparity.

3.2. Analysis Result in China. +e consecutive 3-year
physiological anomaly rate curves in Wuhan together with
the predicted physiological anomaly rate curves with and
without the supervision of the officially reported COVID-19
infection rate in 2020 are illustrated in Figure 4. +ey are
aligned by the time of the Chinese Spring Festival in the
temporal axis. In the figure, all five curves peak around the
time of Chinese Spring Festival. In addition, the predicted
physiological anomaly rate with the supervision of official
data in 2020 fits well with the rate calculated by the anomaly
detection algorithm, which validates the prediction per-
formance of the CDNet. Additionally, the physiological
anomaly rate curve excluding COVID-19 in 2020 overlaps
with both the predicted and the detected physiological
anomaly rate curves including COVID-19 in 2020 before the
outbreak of COVID-19, which verifies the basic reliability of
the model. After that, all these three curves rise rapidly,
which indicates that the outbreak of influenza-like illness is
occurring alongside COVID-19. +e predicted outbreak
period aligns with the real-life situation. In addition, we also
predicted the physiological anomaly rate curve from 2018 to
2019 with the prediction model and found that the predicted
curve fits well with the total anomaly rate curve during the 2
years. +is may indicate that the obvious separation hap-
pening around the Chinese Spring Festival between the
predicted anomaly rate curves with and without the su-
pervision of the officially reported COVID-19 infection rate
in 2020 results from the outbreak of COVID-19.

Figure 5 illustrates the predicted COVID-19 infection
rate across five Chinese cities and the officially reported
accumulating COVID-19 infection cases in Wuhan. In the
figure, there is a clear outbreak period in the predicted
infection rate curve for each city, which may correspond to
that of the newly confirmed cases. Taking Wuhan as an
example, the predicted infection rate peaks around January
28, while the officially reported newly confirmed infection
rate in Wuhan reached its highest on February 8 (the data
after February 12 in Wuhan is omitted since the COVID-19
diagnostic criteria changed on that day, which causes a
sudden sharp increase of 13,436 newly confirmed cases).+e
predicted disease peak is ahead of the officially reported peak
by 11 days. +e predicted earlier peak may indicate that
health surveillance involving wearable sensors can play an

CatNN DenNN
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Figure 1: Diagram of the CDNet neural network architecture.
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Figure 2: Illustration for the prediction stage of the model.
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important role in alerting to infectious disease outbreaks and
in timely public health management. In fact, Wu and
McGoogan also found there was a lag between the start of the
illness and the diagnosis of COVID-19 by viral nucleic acid
testing [2]. +e newly infected cases actually peaked around

January 28 if determined by the onset of the symptoms,
which happens to be consistent with our findings. In ad-
dition, Figure 5 also shows that the predicted infection rate
in Wuhan gradually decreases following January 28 and
reaches a local minimum on February 1, which may

M0

M1

Mt–1

Mt

Sequential data

Figure 3: Work-flow of the online prediction framework for COVID-19 infection trend.

Table 1: Number of users enrolled in the study.

Region Cities or countries User number Cities or countries User number

North China
Beijing 126,575 Jinan 42,569

Shijiazhuang 33,257 Taiyuan 16,753
Tianjin 49,237

Central China

Shanghai 153,711 Nanjing 76,204
Hangzhou 78,840 Chengdu 64,436
Wuhan 44,529 Hefei 33,257
Nanning 19,641 Huanggang 3,412
Xiaogan 2,358

South China
Guangzhou 92,219 Shenzhen 71,669
Foshan 20,229 Dongguan 29,146
Fuzhou 23,061

South-central Europe

Italy 68,494 Portugal 18,343
Spain 187,788 Switzerland 4,431

Germany 65,941 Greece 12,830
France 34,711
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Figure 4: Physiological anomaly rate curves in Wuhan aligned by the time of Chinese Spring Festival. +e two grey curves and the blue
curve represent the physiological anomaly rate calculated by the anomaly detection algorithm from 2018 to 2020, respectively. +e purple
curve and the red curve represent the predicted physiological anomaly rate with and without the supervision of the official data, respectively.
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correspond to the plateau in the officially reported accu-
mulating infection curve that occurs after February 19. +is
result may indicate that the model can also predict the
disease control outcome in advance. Moreover, Figure 5
shows Wuhan has the highest prediction disease peak
among the five cities. +is is also consistent with the fact that
Wuhan is the most affected city in China.

3.3. Analysis Result in Italy and Spain. Figures 6(a) and 6(b)
illustrate the predicted COVID-19 infection rate and the
officially reported accumulating COVID-19 infection rate in
Italy and Spain, respectively. +e predicted infection rate in
Italy rises rapidly from February 23, 2020, which coincides
with the outbreak of COVID-19 in this country. As for
Spain, the predicted infection rate starts to increase from
February 29, which is 6 days later than Italy, and the pre-
dicted rate increases quickly following that.+is is consistent
with the real-life situation where the outbreak of COVID-19
was later in Spain.

As shown in Figure 6, the principal peak in the predicted
COVID-19 infection curve of either Italy or Spain arrives as of
April 8. In correspondence to the largest number of newly
confirmed infection cases, which are reported officially by Italy
on March 21 and Spain on March 25, the predicted principal
peaks for the two countries occur around the time ofMarch 13
andMarch 18, respectively. Both predicted principal peaks are
ahead of the officially reported data by at least 1 week.

3.4. Correlation Analysis. To evaluate the appropriateness of
predicting COVID-19 infection rate from physiological
anomaly rate, we chose 19 Chinese cities to calculate the
correlation between the officially reported COVID-19 in-
fection rate and the detected physiological anomaly rate
using Pearson’s correlation coefficient shown in equation
(3). In the equation, t0 represents the start of the COVID-19
outbreak, t1 stands for the end of the study period, and X, Y
represent the officially reported COVID-19 infection rate
and the physiological anomaly rate, respectively. +e

correlation analysis is performed in two steps. In the first
step, we find the point, corresponding to the outbreak peak
point of the officially reported COVID-19 infection curve,
on the physiological anomaly rate curve. In the second step,
we align the curves by the two points, and calculate the
correlation coefficient.

ρX,Y �
􏽐

t1
t�t0 Xt − X( 􏼁 Yt − Y( 􏼁

�������������

􏽐
t1
t�t0 Xt − X( 􏼁

2
􏽱 �������������

􏽐
t1
t�t0 Yt − Y( 􏼁

2
􏽱 . (3)

Pearson’s correlation coefficients, ρ, for different cities in
China are listed in Table 2. +e average ρ value reaches around
0.68, which is strong correlation that further supports the
opinion that physiological signs are useful for public health
emergency alert. However, some cities do not show strong
correlation, which may be due to the following reasons. Firstly,
the officially reported cases of infection in some cities, e.g.,
Wuhan, were adjusted on certain days resulting in sudden
changes. Secondly, the number of active users in some cities,
e.g., Nanning, are relatively small which influences the per-
formance of the model; therefore, the ρ value can be further
improved when the number of active users increases. Finally,
some cities, e.g., Beijing, have unstable user population and
data noise due to the population shift.

3.5. Retention Effect. In the above correlation analysis, it is
noticeable that there might be some retention effect in the
detected physiological anomaly rate. To be specific, some
people with anomalous measurements may continue to wear
their devices so that they are calculated as anomalies on
multiple days. +is results in statistical error during the
correlation analysis.

In order to analyze the impact, we calculate the retention
rates of people detected as anomalies for several consecutive
days. As shown in Figure 7, if a person is detected as anomaly
on a certain day, the possibility of wearing the device is
decreasing gradually from 3.5% down to 0.2% in the fol-
lowing 4 days. +is indicates that the retention effect may
have very limited influence on the correlation analysis.
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4. Discussion

In this study, a prediction model for COVID-19 epidemic
trends has been realized using physiological data collected by
wearable devices. +e results show that prediction with
dynamic physiological data may have an advantage in
alerting to the infection outbreak in advance. However, the
detection method for calculating the physiological anomaly
rate has some limitations.

Firstly, on holidays, e.g., Chinese Spring Festival,
Christmas, etc., transportation and population shift, social
activities, and alcohol drinking might greatly influence the
physiological signs of the users. For example, the elevated
RHR due to heavy drinking on holidays might persist for
several days and greatly influences the physiological
anomaly rate to be detected. Especially for China, the
outbreak of COVID-19 and influenza-like illness overlap
with the Chinese Spring Festival. +us, it is necessary to
distinguish the elevated RHR cases induced by holiday ac-
tivities from infection.

Secondly, the anomaly rate is the statistical description of
wearable device users’ physiological signs measured in the
anomalous range. +e validity of the statistical description
depends on both the user scale and diversity. For example,
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Figure 6: Predicted COVID-19 anomaly rate and the officially reported accumulating COVID-19 infection number of (a) Italy and (b)
Spain.

Table 2: Correlation coefficient between the physiological anomaly
rate and the officially reported number of newly confirmed
COVID-19 cases.

City ρ
Beijing 0.31
Shijiazhuang 0.58
Tianjin 0.53
Jinan 0.68
Taiyuan 0.55
Shanghai 0.51
Hangzhou 0.74
Wuhan 0.58
Nanning 0.52
Xiaogan 0.70
Nanjing 0.83
Chengdu 0.75
Hefei 0.84
Huanggang 0.87
Guangzhou 0.80
Foshan 0.81
Fuzhou 0.73
Shenzhen 0.82
Dongguan 0.75
Average 0.68
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for a city with 0.1% officially reported infection rate of
COVID-19, if the number of active users in the city is less
than 10,000, there might be only 10 people infected among
them. Such scale of data cannot support a convincing in-
ference. Regarding the diversity, the prediction accuracy can
be greatly improved if the distribution of active users is
consistent with the natural distribution. For example, since
elderly people and people with other diseases, e.g. cardio-
vascular disease (CVD), are more susceptible to COVID-19
[2, 3], the statistical performance of the model will be
influenced if there is not enough coverage of such people.

+irdly, although the current study provides a pop-
ulation evolution model for public health surveillance, it
may be more meaningful for medical workers as well as
individuals to take early precautions, if individualized health
status prediction model is available. In the future, such
prediction models based on wearable device data will be
explored by incorporating more individual features, such as
age, gender, body mass index (BMI), etc.

5. Conclusions

Public health emergencies can cause severe damage to the
health and prosperity of our society. +e popularity of
wearable devices provides the opportunity for researchers to
utilize big health data for public health emergency sur-
veillance. In this study, a COVID-19 prediction framework
using the health data fromwearable devices was put forward.
+e proposed model could predict the epidemic trend of
COVID-19 outbreak in various countries and cities. +e
results from the study may shed light on a nationwide so-
lution for the infectious disease surveillance system.
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In many supervised computer vision tasks such as object
detection, manual annotation crowdsourcing platforms are
widely used for acquiring large-scale labeled data. However,
the annotation quality may suffer low quality that can se-
verely affect the training of models. As a result, the evalu-
ation of the annotations within the dataset is critical, yet it
has seldom been addressed in object detection. In this paper,
we present a fine-grained annotation quality assessment
(FGAQA) framework for evaluating the quality of object
detection datasets. First, we formulate a generic annotation
quality assessment framework based on the core general-
purpose data quality dimensions, using the bounding box
and the label. Second, cognition theory in terms of hierarchy
and continuity is utilized to refine the basic framework,
including the consistency of the bounding box, complete-
ness of the category, hierarchical accuracy of the label, and
the consistency of the label. Comprehensive experiments on
the two object detection datasets are used for performance
evaluation. It is found that the ground truth annotations of
the Urban Traffic Surveillance dataset have more quality
issues than the ones of the PASCAL VOC 2007 detection
dataset. (e proposed FGAQA framework performs an
effective fine-grained evaluation of the annotations, which is
significant for quality assurance of annotations from
crowdsourcing platforms and the subsequent model’s
training.

1. Introduction

In supervised learning, annotation quality plays a vital role
in training and assessment of the models for several com-
puter vision tasks such as object classification [1, 2], de-
tection [3–6], and segmentation [7–9].(e training of object
detection models relies on accurate and sufficient annota-
tions. For large-scale object detection datasets, annotations
are usually obtained through crowdsourcing platforms,
which results from anonymous participants, and can be
collected for efficiency [10–12]. However, due mainly to the
untrained participants involved in the professional and
time-consuming annotation tasks, this has inevitably led to
subjective inconsistency and relatively low quality of the
collected annotations. As a result, the annotation quality
cannot be guaranteed, where the quality assessment of such
annotations becomes a challenge in this context.

Annotation quality in object detection is a specialized-
purpose data quality problem. Data quality has been widely
studied since the 1980s [13]. According to [14], data quality
can be defined as the degree to which a set of characteristics
of data fulfills the requirements. Data with high quality
should represent the real-world entities accurately in the
structure and fit for their intended uses. Besides, data quality
is of multidimensional characteristics. By reviewing the
related literature [14–19], a core set of data quality
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dimensions is defined, including the completeness, accuracy,
and consistency. Moreover, there are a fair number of re-
searches about annotation quality. Regarding the annotation
quality in classification, accuracy is employed generally [20],
not considering the hierarchy of categories. For annotation
quality in object detection, quality is evaluated by Inter-
section-over-Union (IoU) [21]. IoU is the ratio of the in-
tersection area of the ground truth and human annotation to
the total area, only considering the quality of the bounding
box [22]. (ere are few systematic researches about anno-
tation quality of object detection. Consequently, we refer to
general-purpose data quality and construct an annotation
quality framework.

To date, there are relatively few works reported on this
topic. (is is only addressed from the perspectives of the
object category and IoU [21]. However, a few general-
purpose metrics can also be applied for annotation quality
assessment. And we should perform annotation quality
assessment from various aspects of the two attributes:
bounding box and label.

Evaluation measures for object classification, detec-
tion, and segmentation could serve as a reference for
annotation quality in object detection. Regarding flat
object classification, precision and recall are employed to
assess the performance [23–26]. As for hierarchical object
classification, distance in the tree or the directed acyclic
graph (DAG) is used to assess the performance [27–30].
(e distance can treat the prediction errors differently. In
terms of object detection, the mAP is usually employed
[31–36], integrating precision, recall, and IOU. (e mAP
is calculated according to the predicted results and
confidence scores. However, for annotations, reasonable
confidence scores are hard to obtain. As a result, in this
paper, we employ the metrics of precision and recall.
Regarding object segmentation, evaluation measures can
be categorized into three types: area-based measures,
location-based measures, and combined measures
[37–41]. (ese image segmentation measures pay more
attention to the details and the intrinsic visual charac-
teristics. Consequently, the idea of image segmentation
evaluation is introduced into the annotation quality as-
sessment framework.

In this paper, we propose a fine-grained framework for
annotation quality assessment of object detection datasets,
containing three dimensions: accuracy, completeness, and
consistency. First, we construct the basic quality assessment
framework based on the core general-purpose data quality
(DQ) measurement, including accuracy and completeness,
which considers the characteristics of annotation. For
consistency, we find that it is difficult to give a strict defi-
nition. Further, the relationship of classes should be con-
sidered. Previous literature indicates that the cognition of
humans is hierarchical in concept [42, 43] and consistent in
space-time representations [44–46]. Inspired by these ob-
servations, the consistency of bounding box, completeness
of category, hierarchical accuracy of label, and consistency of
label are extracted as four additional elements for annotation
quality assessment. (e main contributions of this paper are
as follows:

(1) We present a fine-grained annotation quality as-
sessment (FGAQA) framework for evaluating the
quality of object detection datasets. By analyzing the
characteristics of the attributes of the bounding box
and the corresponding label, the annotation quality
contains three dimensions: accuracy, completeness,
and consistency.

(2) To tackle the limitations of the basic quality as-
sessment framework, we introduce the theory of
cognitive perception to analyze the annotation
quality and add four elements of annotation quality,
including the consistency of bounding box, com-
pleteness of category, hierarchical accuracy of the
label, and consistency of label. Specifically, the hi-
erarchical accuracy of the label can treat annotation
errors distinctively and softly.

(3) Comprehensive case studies on the Urban Traffic
Surveillance (UTS) dataset and the PASCAL VOC
2007 detection dataset verify the effectiveness of the
proposed annotation quality assessment framework.
We find that the ground truth annotations of the
UTS dataset have more quality issues, compared to
the ones of the PASCAL VOC 2007 detection
dataset.

(e rest of this paper is organized as follows. In Section
2, the proposed cognitive-driven FGAQA framework is
presented in detail. Section 3 discusses experiments as two
case studies on the UTS and PASCAL VOC datasets. Finally,
concluding remarks and future work are given in Section 4.

2. Annotation Quality Assessment Framework

A novel annotation quality assessment framework in object
detection is given in this section, which is shown in Figure 1.
(e annotation has two attributes: bounding box and label.
Annotation quality depends on its characteristics. For the
bounding box, the size, location, and quantity could have
some quality issues. Regarding the label, there may exist the
quality problems of value and quantity. And the annotation
quality serves reference for the training of the object de-
tection model. (erefore, we define the quality dimensions
according to the quality problems and the use of annotation.
Inspired by some existing work [14–19], the dimensions of
completeness, accuracy, and consistency are selected as the
core set of the data quality dimensions. By considering the
theory of cognitive perception, we redefine some elements
based on annotation characteristics. As a result, a fine-
grained annotation quality assessment framework is pro-
posed, as shown in Figure 1. (e framework is constructed
from the views of the bounding box and label. Regarding the
quality of the bounding box, completeness, accuracy, and
consistency are defined. (e completeness of the bounding
box can be divided into the completeness of the bounding
box’s quantity and the completeness of the bounding box’s
size. In terms of the quality of the label, we define com-
pleteness, accuracy, and consistency. (e completeness of
the label consists of the completeness of the bounding box’s
label and the completeness of the category. (e accuracy of
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the label contains flat and hierarchical accuracy. Andmost of
these dimensions are computed for every object and are
averaged for an image and the total dataset.

2.1. Annotation Quality of Bounding Box’s Quantity

2.1.1. Completeness of Bounding Box. (e dimension can be
defined as the extent to which bounding boxes are of
sufficient quantity and coverage degree for the object. (e
dimension of completeness focuses on the null values. As
for the completeness of the bounding box’s quantity, the
null values correspond to unannotated objects. In an
object detection dataset, small objects are often be
neglected. During the modeling process of object detec-
tion, the unannotated objects would be regarded as
background. For the completeness of the bounding box’s
size, the null values correspond to the uncovered areas of
the bounding boxes.

(1) Completeness of bounding box’s quantity: for image
i, completeness of bounding box’s quantity is a
metric that can be defined as follows:

CBQuantity
i �

nHu
i

ni

, (1)

where ni is the true object number and nHu
i is the

number of human annotations, namely, the number of
bounding boxes. For the dataset, CBQuantity is

CBQuantity
�

􏽐
N
i�1,...,N CBQuantity

i

N
, (2)

where N is the number of images in the dataset.
(2) Completeness of bounding box’s size: the com-

pleteness of the bounding box’s size is a pixel-count-
based metric and can be defined as follows. For the
jth object in image i, the metric is

CBSize
ij �

SIntij

S
Obj
ij

, (3)

where SIntij is the intersection area of the object and
bounding box, and S

Obj
ij is the area of the object. For

image i, CBSize
i is

CBSize
i �

􏽐
nHu

i

j�1,...,nHu
i

CBSize
ij

nHu
i

. (4)

For the dataset, CBSize is

Quality of
bounding
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Quality of
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Figure 1: Annotation quality evaluation framework.
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CBSize
�

􏽐
N
i�1,...,N CBSize

i

N
. (5)

2.1.2. Accuracy of Bounding Box. (edimension is intended to
measure the closeness of the bounding box to the object.When the
accuracy is low, the bounding box contains toomuch background
affecting the distinction between the object and the background.
For the bounding box of jth object in image i, the accuracy is

AccBij �
SIntij

SBBij

, (6)

where SBBij is the area of the bounding box. In image i, the
accuracy is

AccBi �
􏽐

nHu
i

j�1,...,nHu
i

Acc Bij

nHu
i

. (7)

For a dataset, the accuracy can be given as follows:

AccB �
􏽐

N
i�1,...,N AccBi

􏽐
N
i�1,...,N nHu

i

. (8)

2.1.3. Consistency of Bounding Box. (edimension focuses on
the violation of spatiotemporal continuity of size and location. In
crowdsourcing platforms, bounding boxes in adjacent frames
may be drawnbydifferentworkers. As a result, they could conflict
in size and location. Facedwith the case, we can perform a quality
assessment of the consistency of the bounding box during the
corresponding postprocessing. Afterward, the annotations would
satisfy the constraints. Concretely, for example, if an objectmoves
toward the camera parallelly, the constraints are as follows:

x
previous
center ≈ xcurrent

center ≈ xnext
center,

y
previous
center ≤ycurrent

center ≤ynext
center,

wprevious ≤wcurrent ≤wnext,

hprevious ≤ hcurrent ≤ hnext,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where xcenter and ycenter are the coordinates for the center of
the bounding box, and w and h are the width and height of
the bounding box.When the jth object in image i satisfies the
constraints, the metric ConBij = 1. Otherwise, ConBij = 0.
For image i, the consistency is

ConBi �
􏽐

nHu
i

j�1,...,nHu
i

ConBij

nHu
i

. (10)

For the dataset, ConB is

ConB �
􏽐

N
i�1,...,N ConBi

N
. (11)

2.2. Annotation Quality of Label

2.2.1. Completeness of Label. (e dimension can be split into
two types. (e completeness of the bounding box’s label is

employed to measure if each box has a label. (e completeness
of category describes the completeness for the category’s
quantity from the aspect of computational learning theory. In
the common benchmarks for object detection, there exist
minority categories. For a category, if the metric does not meet
the requirement, the detection accuracy would be affected.

(1) Completeness of bounding box’s label: for image i,
the completeness is

CLi �
nLabel

i

nHu
i

, (12)

where nLabel
i is the number of labels. For a dataset, the

metric is

CL �
􏽐

N
i�1,...,N CLi

N
. (13)

(2) Completeness of category: the completeness of cat-
egory is a metric that measures whether the number
of samples can meet the training for the object de-
tection model. As for a dataset, the classes are usually
organized in a semantic hierarchy tree. Regarding a
leaf node, if it meets the condition nleaf > nlowbound,
the completeness is 1. Otherwise, the completeness is
0. For a parent node, the completeness is

CCLabel
parent �

􏽐
nchild

k�1,...,nchild CCLabel
k

nchild , (14)

where nchild is the number of the corresponding child
nodes. As a result, we can have the completeness of the
category for a dataset.

2.2.2. Accuracy of Label. (e dimension is employed to
measure the closeness of the human and ground truth
annotations. Regarding a dataset collected by a crowd-
sourcing annotation platform, the label noise is the most
common error and has a direct influence on the training of
the object detectionmodel.(e dimension has two elements:
flat accuracy and hierarchical accuracy. (e flat accuracy of
the label is the usual element. However, the label space is
often hierarchical. (e hierarchical element can treat an-
notation errors distinctively and is the foundation of the
utilization of annotation errors. As a result, we introduce
these two kinds of elements for label accuracy evaluation.

(1) Flat accuracy of label: the flat accuracy of the label
includes two metrics: precision and recall. (e
precision and recall of class t are

Pt �
tpt

tpt + fpt

,

Rt �
tpt

nGTr
t

,

(15)

where nGTr
t is the number of ground truth annotations

for class t, and tpt and fpt are the numbers of true

4 Discrete Dynamics in Nature and Society



positive objects and false-positive objects, respectively.
For a dataset, precision can be calculated as follows:

P �
􏽐

M
t�1,...,M Pt

M
, (16)

which treats each class equally. And similarly, the
recall is obtained.

(2) Hierarchical accuracy of label: the element also has
two metrics. (e metrics of class t are

HPt �
􏽐

nHu
i

k�1,...,nHu
i

ans Ck( 􏼁∩ ans Ck
′( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/ ans Ck

′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
1/p

nHu
i

,

HRt �
􏽐

nGTr
i

k�1,...,nGTr
i

ans Ck( 􏼁∩ ans Ck
′( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/ ans Ck( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

1/p

nGTr
i

,

(17)

where nHu
i and nGTr

i are the corresponding numbers of
human and ground truth annotations, Ck and Ck

′ denote
the ground truth and human annotation labels, and ans(C)
is the operation for computing ancestors for class C, p> 0.
(en, via macroaveraging the metrics for all classes, the
hierarchical precision and recall can be calculated.

2.2.3. Consistency of Label. Similar to the consistency of the
bounding box, consistency of label concentrates on the
confliction of spatiotemporal continuity of label. In the
crowdsourcing platform, the labels in the adjacent frames
often conflict due to the existence of low-level workers. If the
label of an object is consonant with the labels in the previous
and next frames, the metric Con Lobject is 1; otherwise,
Con Lobject is 0. For image i, the consistency is

Con Li �
􏽐

nLabel
i

j�1,...,nLabel
i

ConLij

nLabel
i

. (18)

For the dataset, ConL is

Con L �
􏽐

N
i�1,...,N Con Li

N
. (19)

3. Case Study

To verify the effectiveness of the quality framework, two case
studies are conducted based on the UTS dataset [47] and
PASCAL VOC 2007 detection dataset [48]. UTS dataset is a
video dataset with varying illumination conditions and
viewpoints. PASCAL VOC 2007 dataset is an image dataset
and contains twenty categories. Note that a few dimensions
of the quality assessment framework are not fit for the
dataset. To acquire the annotations, we let a group of stu-
dents fulfill the annotation work. Generally, ground truth
annotations are employed as golden standard annotations.
However, in the evaluation process, we find that, to a certain
extent, the ground truth annotations have quality problems,
especially for the UTS dataset. Consequently, ground truth
annotations are evaluated, where human annotations are
regarded as “ground truth annotations.” Additionally, to
verify the completeness of category, the relationship between

this metric and detection performance is studied by con-
ducting object detection experiments.

3.1. Case Study for UTS Dataset. In this case study, the UTS
dataset is utilized for verification. To reduce the amount of
annotation labor, four shots are selected, and we annotate an
image for every four or five images. Finally, the numbers of
images in the four shots are 75, 120, 100, and 120 with 1166,
686, 639, and 919 objects, respectively. (e evaluation is
presented from the aspects of an image and a dataset. We
find that the ground truth annotations have quality prob-
lems, especially for the completeness of the bounding box’s
quantity and the flat recall of the label.

3.1.1. Annotation Quality of an Image. For the clarity of the
description of annotation quality, an image is selected for
evaluation, which is given in Figure 2. (e semantic hier-
archy tree we defined is presented in Figure 3. (e quality
evaluation results for an image are given in Table 1. (e
accuracy of the bounding box for each object is shown in
Figure 4.

Now, the analysis is given below. According to Table 1,
the flat precision of hatchback is 0.25. However, it is because
of the quality problems of ground truth annotations.
Reviewing the annotations, we find that there are two small
unannotated objects as shown in Figure 2. Hierarchical
measures can reflect the relation of the classes. For instance,
hierarchical precision for the hatchback is 0.42, while the flat
precision is 0.25. Further, the consistency of the label is less
than 1. It shows that there are inconsistent labels with the
labels in adjacent frames. In Table 1, four metrics are equal to
1, reflecting that there is no error from these aspects.

3.1.2. Annotation Quality of Human and Ground Truth
Annotations. Afterward, we show the annotation quality of
the UTS dataset for the human and ground truth annota-
tions. (e annotation accuracies of the label are given in
Tables 2 and 3. (e completeness of the category of the
ground truth annotations for each class and the original
vehicle dataset is given in Figure 3, where the threshold is set
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to 1000. (e results of other quality dimensions are pre-
sented in Table 4.

(e quality of human annotations is analyzed first.
According to Tables 2 and 4, the overall annotation quality of

the bounding box is good, while the annotation quality of the
label is relatively poor. Accordingly, it can be inferred that
the label’s annotation is a more difficult task. In particular,
for SUV and MPV, the accuracy and recall are too low. (e
hierarchical accuracy is higher than the flat accuracy,
treating errors distinctively. According to Table 4, compared
with other dimensions, the consistency of the label is lower
on account of the own property.

(e quality of ground truth annotations is evaluated here.
According to Tables 2–4, the completeness of bounding box’s
quantity, flat and hierarchical recall of label, and consistency of
label for ground truth annotations are lower than those for
human annotations. When reviewing ground truth annota-
tions, we find that ground truth annotations neglect some small
and incomplete objects. But these small and incomplete objects
can be annotated properly by experience. (ere are more
inconsistent labels in ground truth annotations than in human
annotations. Figure 3 shows that the completeness of category
for MPV and pickup is 0, as the corresponding category’s
quantities do not reach the threshold. Generally, the quality
problem exists in the ground truth annotations. (erefore, it is
significant to perform a quality assessment in the process of
annotation and ground truth inference.

3.1.3. Relationship between the Completeness of Category and
Detection Performance. For the sake of exploring the rela-
tionship between the completeness of category and detection
performance, the following experiment is conducted, which
implies the effectiveness of the dimension. (e object de-
tection experiment on the UTS dataset is performed on the
original dataset and downsampled dataset. As for down-
sampling, we just select images for every two images. (e
detection algorithm we use is Faster RCNN [3]. Table 5
presents the corresponding result.

Hatchback
Minibus

MPVSedan

Minibus
Hatchback

Hatchback

HatchbackHatchback

SUV

Figure 2: Human and ground truth annotations from the UTS dataset (ground truth and human annotations are shown in red and yellow,
respectively).

Car:
0.75 Bus: 1 Truck: 0

Vehicle:
0.58

Hatchb
ack: 1 SUV: 1Sadan:

1 MPV: 0 Minibus
e:1

Pickup:
0

Figure 3: Semantic hierarchy tree and completeness of category of
ground truth annotations for the original UTS training dataset.

Table 1: Results of other quality dimensions for an image.

Annotation quality dimension Value
Completeness of bounding box’s quantity 1
Completeness of bounding box’s size 0.64
Accuracy of bounding box 0.67
Consistency of bounding box 1
Completeness of bounding box’s label 1
Flat precision/recall of label –/0.5
Hierarchical precision/recall of label 0.69/0.79
Flat precision/recall of hatchback 0.25/1
Hierarchical precision/recall of hatchback 0.42/0.83
Consistency of label 0.84
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0.71
0.46

0.79
0.71

Figure 4: Accuracy of the bounding box in an image (note that two small objects are missed by the image instance segmentation algorithm.).

Table 2: Annotation accuracy of human annotations for the downsampled UTS dataset.

Class
Flat accuracy of label Hierarchical accuracy of label

Precision Recall Precision Recall
Hatchback 0.79± 0.02 0.55± 0.14 0.92± 0.01 0.81± 0.07
Sedan 0.58± 0.08 0.78± 0.12 0.86± 0.03 0.88± 0.07
Minibus 0.93± 0.10 0.57± 0.33 0.95± 0.06 0.70± 0.22
SUV 0.20± 0.06 0.27± 0.10 0.69± 0.03 0.74± 0.04
MPV 0.19± 0.14 0.26± 0.14 0.62± 0.14 0.72± 0.08
Pickup 0.57± 0.41 1± 0 0.72± 0.27 1± 0
On average 0.55± 0.11 0.57± 0.07 0.79± 0.07 0.81± 0.05

Table 3: Annotation accuracy of ground truth annotations for the downsampled UTS dataset.

Class
Flat accuracy of label Hierarchical accuracy of label

Precision Recall Precision Recall
Hatchback 0.57± 0.13 0.57± 0.04 0.85± 0.06 0.67± 0.05
Sedan 0.79± 0.12 0.44± 0.04 0.91± 0.08 0.65± 0.02
Minibus 0.58± 0.34 0.77± 0.17 0.72± 0.23 0.79± 0.17
SUV 0.27± 0.10 0.15± 0.05 0.75± 0.04 0.53± 0.09
MPV 0.26± 0.14 0.17± 0.15 0.72± 0.08 0.51± 0.18
Pickup 1± 0 0.28± 0.19 1± 0 0.28± 0.19
On average 0.58± 0.07 0.40± 0.07 0.83± 0.04 0.57± 0.07

Table 4: Results of other quality dimensions for the downsampled UTS dataset.

Annotation quality dimension Human annotations Ground truth annotations
Completeness of bounding box’s quantity 0.98± 0.02 0.75± 0.05
Completeness of bounding box’s size 0.96± 0.02 0.99
Consistency of bounding box 0.977± 0.002 0.96
Completeness of bounding box’s label 0.52± 0.11 0.58
Consistency of label 0.86± 0.01 0.71
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According to Table 5, we argue that the detection result is
closely related to the completeness of category. Overall, for
the complete class whose training samples’ quantity is over
1000, the corresponding mAP is high, while the detection
mAPs of other classes are quite low. However, for SUV in the
downsampled dataset, the quantity is about 880. (e de-
tection performance is still acceptable. It is due to its salient
visual feature. (us, the threshold varies with the class.
Additionally, for the incomplete class, the performance
declines with downsampling.

3.2. Case Study for PASCAL VOC 2007 Detection Dataset.
In the case study, PASCAL VOC 2007 detection dataset is
utilized for verification. To save labor, we select twenty images
for each class as annotation samples. Finally, a random-selected
dataset containing 353 images is obtained. (e PASCAL VOC
2007 dataset is an image dataset. Consequently, a few quality
dimensions are not fit for the dataset.

3.2.1. Annotation Quality for Human and Ground Truth
Annotation. (e quality of human and ground truth
annotations for the PASCAL VOC 2007 dataset is given
below. Accuracies of the label for the human and ground
truth annotations are given in Tables 6 and 7. (e se-
mantic hierarchy tree and completeness of category
quantity are given in Figure 5, where the threshold is set as
400. (e results of other quality dimensions are provided
in Table 8.

According to Tables 6 and 8, we can see that the human
annotation quality for the dataset is good overall. However,
the accuracies of the chair, potted plant, and dining table are
relatively poor. For instance, the average flat recall for the
potted plant is 0.54. (is is because the potted plant is small
and tends to be neglected. And for the other dimensions of
human annotations, quality is relatively reliable.

Afterward, we evaluate the annotation quality of ground
truth annotations. According to Tables 6–8, we find that the
quality of ground truth annotations is slightly worse than that
of human annotations. Specifically, the completeness of the
bounding box’s quantity and the flat recall of the label are
relatively low. (ese dimensions indicate that there are more
unannotated objects. As there are not enough images in the
random-selected dataset, we calculate the completeness of
category according to the original training set. (e total
completeness of category is 0.62, as 38% of the classes do not
have enough samples.

3.2.2. Relationship between the Completeness of Category and
Detection Performance. To explore the relationship between
the completeness of category and detection performance, an
experiment is conducted in the sameway as the previous section.
We conduct object detection experiments on the original dataset
and downsampled dataset of which the sampling ratio is 0.5.
And the major classes of person, car, and chair are not
downsampled. Table 9 presents the detection results, where
classes are in descending order of quantity of training samples.

According to Table 9, on the whole, the detection per-
formance declines after the dataset is downsampled. For the
majority classes of person, car, and chair, there are no
obvious declines of mAPs, as we do not make downsampling
on these classes. As for the minority classes, mAPs for the
bottle and potted plant decline a lot, which can be regarded

Table 5: Comparison of detection results based on the original training dataset and downsampled dataset.

Class Object number in the training dataset mAP (original) mAP (downsampled)
Hatchback 12165 0.669 0.744
Sedan 5484 0.573 0.565
Minibus 3220 0.663 0.601
SUV 1761 0.560 0.576
MPV 898 0.154 0.142
Pickup 263 0.020 0.0001
On average 3965.2 0.440 0.438

Table 6: Annotation accuracy of human annotations for the se-
lected images of the PASCAL 2007 dataset (the average values are
computed for the twenty classes).

Class
Flat accuracy of label Hierarchical accuracy of

label
Precision Recall Precision Recall

Person 0.98± 0.01 0.92± 0.05 0.99± 0.01 0.92± 0.04
Car 0.99± 0.02 0.94± 0.04 0.99± 0.01 0.94± 0.03
Chair 0.96± 0.03 0.74± 0.08 0.98± 0.01 0.82± 0.07
Bottle 0.98± 0.01 0.81± 0.08 0.99± 0.01 0.82± 0.07
Potted plant 1± 0 0.54± 0.31 1± 0 0.57± 0.29
Cow 0.99± 0.01 0.95± 0.01 0.997± 0.005 0.96± 0.01
Dining table 0.75± 0.16 0.59± 0.18 0.91± 0.06 0.64± 0.15
Bus 1± 0 0.94± 0.04 1± 0 0.96± 0.03
On average 0.96± 0.01 0.89± 0.04 0.983± 0.005 0.90± 0.04

Table 7: Annotation accuracy of ground truth annotations for the
selected images of the PASCAL 2007 dataset (the average values are
computed for the twenty classes).

Class
Flat accuracy of label Hierarchical accuracy

of label
Precision Recall Precision Recall

Person 0.97± 0.01 0.79± 0.11 0.98± 0.01 0.81± 0.1
Car 0.94± 0.02 0.82± 0.08 0.96± 0.01 0.83± 0.08
Chair 0.90± 0.02 0.81± 0.09 0.96± 0.01 0.84± 0.08
Bottle 1± 0 0.74± 0.10 1± 0 0.81± 0.09
Potted plant 0.98± 0.02 0.77± 0.02 0.99± 0.01 0.78± 0.03
Cow 0.99± 0.01 0.81± 0.10 1± 0 0.83± 0.10
Dining table 0.68± 0.16 0.63± 0.11 0.87± 0.06 0.65± 0.09
Bus 0.91± 0.09 0.89± 0.08 0.94± 0.05 0.90± 0.07
On average 0.94± 0.02 0.84± 0.05 0.97± 0.01 0.87± 0.05
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as hard classes. But mAPs for the other classes of the mi-
nority are relatively high and change little, which should be
regarded as easy classes. (e hard classes are usually of small
scale and have nonsalient visual features, hindering the
learning of the object detection model. (erefore, the
threshold for hard classes is relatively high. In the future
process of constructing a dataset, the training samples’
quantity for hard classes should be added.

4. Conclusion

Annotation quality is essential for the object detection model’s
training. In this paper, conceptual cognitive modeling for fine-
grained annotation quality assessment is proposed. (e an-
notation quality is calculated from the perspectives of the
bounding box and label. To begin with, a generic framework
based on general-purpose data quality dimensions is con-
structed from two aspects: the bounding box and the class label.

(is framework is used to assess the completeness and accuracy
from the corresponding aspects. Nonetheless, the basic
framework has limitations in assessing the consistency, the
category’s quantity, and the annotation errors. (ereupon, the
cognitive theory is introduced, and we add the corresponding
elements, including consistency of bounding box, hierarchical
accuracy of label, consistency of label, and completeness of
category. Case studies on the Urban Traffic Surveillance dataset
and PASCAL VOC 2007 detection dataset indicate the validity
of the framework. Currently, the annotation quality framework
is constructed in an ideal condition. Future research is required
to consider more practical factors.

Data Availability

(e Urban Traffic Surveillance dataset and PASCAL VOC
2007 detection dataset used to support the findings of this
study are included within the article.

Vehicle:
0.29

Animal:
0.50

Object:
0.62

Person: 1
Household

product:
0.67

Boat: 0

Aeropla
ne: 0

Bicycle:
1

Train: 0Bus: 0 Motorbi
ke: 0Car: 1 Dining

table: 0

Bottle:
1 Chair: 1

TV/
monitor:

0

Potted
plant: 1 Sofa: 1 Cow: 0

Bird: 1 Cats: 0

Sheep:
0Dog: 1 Horse:

1

Figure 5: Semantic hierarchy tree and completeness of category for original PASCAL VOC 2007 training dataset.

Table 8: Results of other quality dimensions for the selected images and its original training dataset of the PASCAL VOC 2007 dataset.

Annotation quality dimension Human annotations Ground truth annotations
Completeness of bounding box’s quantity 0.90± 0.04 0.88± 0.05
Completeness of bounding box’s size 0.84± 0.02 0.85
Completeness of bounding box’s label 0.9991± 0.0008 1

Table 9: Comparison of detection results based on the original training dataset and downsampled dataset (the average values are computed
for the twenty classes).

Class Object number in the training dataset mAP (original) mAP (downsampled)
Person 5447 0.779 0.778
Car 1644 0.831 0.807
Chair 1432 0.520 0.511
Bottle 634 0.576 0.519
Potted plant 625 0.459 0.376
Cow 356 0.767 0.721
Dining table 310 0.682 0.671
Bus 272 0.772 0.776
On average 783.1 0.714 0.678
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Deep convolutional neural networks have been successfully applied to face detection recently. Despite making remarkable
progress, most of the existing detection methods only localize each face using a bounding box, which cannot segment each face
from the background image simultaneously. To overcome this drawback, we present a face detection and segmentation method
based on improved Mask R-CNN, named G-Mask, which incorporates face detection and segmentation into one framework
aiming to obtain more fine-grained information of face. Specifically, in this proposed method, ResNet-101 is utilized to extract
features, RPN is used to generate RoIs, and RoIAlign faithfully preserves the exact spatial locations to generate binary mask
through Fully Convolution Network (FCN). Furthermore, Generalized Intersection over Union (GIoU) is used as the bounding
box loss function to improve the detection accuracy. Compared with Faster R-CNN, Mask R-CNN, and Multitask Cascade CNN,
the proposed G-Mask method has achieved promising results on FDDB, AFW, and WIDER FACE benchmarks.

1. Introduction

Face detection is a key link of subsequent face-related ap-
plications, such as face recognition [1], facial expression
recognition [2], and face hallucination [3], because its effect
directly affects the subsequent applications performance.
-erefore, face detection has become a research hotspot in
the field of pattern recognition and computer vision and has
been widely studied in the past two decades.

Large amounts of approaches have been proposed for
face detection. -e early research on face detection [4–9]
mainly focused on the design of handcraft feature and used
traditional machine learning algorithms to train effective
classifiers for detection and recognition. Such approaches
are limited in that the efficient feature design is complex and
the detection accuracy is relatively low. In recent years, face
detection methods based on deep convolutional neural
network [10–13] have been widely studied, which are more
robust and efficient than handcraft feature methods. Besides,
a series of efficient object detection frameworks are used for

face detection to improve detection performance [14–18],
including R-CNN [19], Fast R-CNN [20], and Faster R-CNN
[21]. -ese methods mainly implement face detection and
the location of the face bounding box, which may have some
drawbacks such as the extracted face features have back-
ground noise, spatial quantization is rough and cannot be
accurately positioned. -ese drawbacks will directly affect
the follow-up subsequent face-related applications, such as
face recognition, facial expression recognition, and face
alignment [22]. -erefore, it is necessary to study a face
detection and segmentation method.

Mask R-CNN [23], an improved object detection model
based on Faster R-CNN, has an impressive performance on
various object detection and segmentation benchmarks such
as COCO challenges [24] and Cityscapes dataset [25]. Unlike
traditional R-CNN series methods, Mask R-CNN adds a
mask branch for predicting segmentation masks on each
Region of Interest (RoI), which can fulfil both detection and
segmentation tasks. In order to fulfil both face detection and
segmentation tasks from the image to overcome the
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drawbacks of the existing methods, a face detection and
segmentation method based on improved Mask R-CNN (G-
Mask) is proposed in this paper. In particular, our scheme
introduces Generalized Intersection over Union (GIoU) [26]
as the loss function for bounding box regression to improve
detection accuracy of face detection.-e main contributions
of this paper are as follows:

(1) A new dataset was created (more details are de-
scribed in Section 4.1), which annotated 5115 images
randomly selected from the FDDB [27] and
ChokePoint datasets [28].

(2) A face detection and segmentation method based on
improved Mask R-CNN was proposed, which can
detect faces correctly while also precisely segmenting
each face in an image. Furthermore, the proposed
method improves the detection performance by
introducing GIoU as a bounding box loss function.
-e experimental results verify that our proposed
G-Mask method achieves promising performance on
several mainstream benchmarks, including the
FDDB, AFW [29], and WIDER FACE [30].

-e remainder of this paper is organized as follows.
Section 2 briefly reviews the related work. -e G-Mask
framework for face detection and segmentation is described
in detail in Section 3. Section 4 presents the experiment and
discussion of the proposed method. In the last section, the
work is summarized and the direction of future work is
proposed.

2. Related Work

Face detection as one of the important research directions of
computer vision has been extensively studied in recent years.
From the development process of face detection, we can
simply classify previous work as handcraft feature based and
neural networks based methods.

2.1. Handcraft Feature BasedMethods. With the appearance
of the first real-time face detection method called Viola-
Jones [4] in 2004, face detection has begun to be applied in
practice. -e well-known Viola-Jones can perform real-time
detection using Haar feature and cascaded structure, but it
also has some drawbacks, such as large feature size and low
recognition rate for complex situations. To address these
concerns, a lot of new handcraft features are proposed, such
as HOG [5], SIFT [6], SUFT [7], and LBP [8], which have
achieved outstanding results. Apart from the above
methods, one of the significant advances was Deformable
Part Model (DPM), proposed by Felzenszwalb et al. [9]. In
the DPM model, the face is represented as a set of de-
formable parts, and the improved HOG feature and SVM are
used for detection, achieving remarkable performance. In
general, the advantages of handcraft features are that the
model is intuitive and extensible, and the disadvantage is
that the detection accuracy is limited in the face of multi-
objective tasks.

2.2. Neural Networks Based Methods. As early as 1994,
Vaillant et al. [10] first proposed using neural network to
detect faces. In this work, Convolutional Neural Networks
(CNN) is used to classify whether each pixel is part of a face
and then determine the location of the face through another
CNN. After that, the researchers did a lot of research based
on this work. In recent years, the deep learning approaches
has significantly promoted the development of the computer
vision technology, including face detection. Li et al. [11]
proposed a cascade CNN network architecture for rapid face
detection, which is a multiresolution network structure that
can quickly eliminate background regions in the low-res-
olution stage and carefully evaluate challenging candidates
in the last high resolution stage. Ranjan et al. [12] proposed a
deformation part model based on normalized features
extracted by deep convolutional neural network. Yang et al.
[13] proposed a method called Convolutional Channel
Feature (CCF) by combining the advantages of both filtered
channel features and CNN, which has a lower computational
cost and storage cost than the general end-to-end CNN
method.

Recently, witnessing the significant advancement of
object detection using region-based methods, researchers
have gradually applied the R-CNN series of methods to face
detection. Qin et al. [14] proposed a joint training scheme for
CNN cascade, Region Proposal Network (RPN), and Fast
R-CNN. In [15], Jiang et al. trained the Faster R-CNNmodel
by using WIDER dataset and verified performance on the
FDDB and IJB-A benchmarks. Sun et al. [16] improve the
Faster R-CNN framework through a series of strategies such
as multiscale training, hard negative mining, and feature
concatenation. Wu et al. [17] proposed a different scales face
detection method based on Faster R-CNN for the challenge
of small-scale face detection. Liu et al. [18] proposed a
cascaded backbone branches fully convolutional neural
network (BB-FCN) and used facial landmark localization
results to guide R-CNN-based face detection. -e neural
networks based methods are already the mainstream of face
detection because of its high efficiency and stability. In this
work, we propose a G-Mask scheme, which achieves fairly
progress in face detection task compared to the original
architecture.

3. Improved Mask R-CNN

3.1.NetworkArchitecture. -e proposed method is extended
from the Mask R-CNN [23] framework, which is the state-
of-the-art object detection scheme and demonstrated im-
pressive performance on various object detection bench-
marks. As stated in Figure 1, the proposed G-Mask method
consists of two branches, one for face detection and the other
for face and background image segmentation. In this work,
the ResNet-101 backbone is used to extract the facial features
of the input image, and the Region of Interest (RoI) is rapidly
generated on the feature map through the Region Proposal
Network (RPN). We also use the Region of Interest Align
(RoIAlign) to faithfully preserve exact spatial locations and
output the feature map to a fixed size. At the end of the
network, the bounding box is located and classified in the
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detection branch, and the corresponding face mask is
generated on the image in the segmentation branch through
the Fully Convolution Network (FCN) [31]. In the following,
we will introduce the key steps of our network in detail.

3.2. Region Proposal Network. For images with human faces
in our daily life, there are generally some face objects with
different scales and aspect ratios.-erefore, in our approach,
Region Proposal Network (RPN) generates RoIs by sliding
windows on the feature map through anchors with different
scales and different aspect ratios. Details are shown in
Figure 2. -e largest rectangle in the figure represents the
feature map extracted by the convolutional neural network,
and the dotted line indicates that the anchor is the standard
anchor. Assume that the standard anchor size is 64 pixels,
and the three anchors it contained represent three anchors
with aspect ratios of 1 :1, 1 : 2, and 2 :1.-e dot-dash line and
the solid line represent the anchors of 32 and 128 pixels,
respectively. Similarly, each of them also has three aspect
ratios anchors. For traditional RPN, the above three scales
and three aspect ratios are used to slide on the feature map to
generate RoIs. In this paper, we use 5 scales (162, 322, 642,
1282, and 2562) and 3 aspect ratios (1 :1, 1 : 2, and 2 :1),
leading to 15 anchors at each location, which was more
effective in detecting objects of different scales.

3.3. RoIAlign Layer. G-Mask, unlike the general face de-
tection methods, has a segmentation operation, which re-
quires more refined spatial quantization for feature
extraction. In the traditional region-based approaches,
RoIPool is the standard operation for extracting small
feature map from RoIs, which have two quantization op-
erations that result in misalignments between the RoI and
the extracted features. For traditional detection methods,
this may not affect classification and localization, while for
our approach, it has a great impact on prediction of pixel-
accurate masks, as well as for small object detection.

In response to the above problem, we introduced the
RoIAlign layer, following the scheme of [23]. As shown in
Figure 3, suppose the feature map is divided into 2× 2 bins.

It can be seen that the RoIAlign layer cancels the harsh
quantization operations on the feature map and uses bilinear
interpolation to preserve the floating-number coordinates,
thereby avoiding misalignments between the RoI and the

Fully convolution network

Fully
connected

layers

RPN

RoIAlign

Box

Class

Mask

ResNet

Fixed size 
feature map

Figure 1: Network architecture of the G-Mask.

Figure 2: Illustration of RPN network.

Fixed size output

Pooling

Figure 3: Bilinear interpolation in RoIAlign, where the dashed
background grid represents the feature map, the solid grid rep-
resents an RoI (with 2× 2 bins in this example), and the dots
represent the four sample points in each bin.
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extracted features. -e bilinear interpolation function has
two steps, which are defined as follows:

Interpolate on the x-axis direction as follows:

f R1( 􏼁 ≈
x2 − x

x2 − x1
f Q11( 􏼁 +

x − x1

x2 − x1
f Q21( 􏼁, R1 � x, y1( 􏼁,

(1)

f R2( 􏼁 ≈
x2 − x

x2 − x1
f Q12( 􏼁 +

x − x1

x2 − x1
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Interpolate on the y-axis direction as follows:

f(P) � f(x, y) ≈
y2 − y

y2 − y1
f R1( 􏼁 +

y − y1

y2 − y1
f R2( 􏼁, (3)

where f(x, y) is the value of the sampling point P, f(Q11),
f(Q12), f(Q21), and f(Q22) are the values of the four
nearby grid points Q11 � (x1, y1), Q12 � (x1, y2),
Q21 � (x2, y1), and Q22 � (x2, y2), and f(R1), f(R2) are the
value obtained by interpolating in the x-axis direction.

3.4. Mask Branch. -e mask branch realizes the seg-
mentation of face object and background image in
G-Mask model, which predicts the segmentation mask in
a pixel to pixel manner by applying Full Convolutional
Network (FCN) [31] to each RoI. -e FCN scheme is one
of the solutions for instance segmentation, which orig-
inates from CNN but is also different from general CNN.
For the traditional CNN network architecture, in order to
obtain the feature vector of fixed dimensions, the con-
volutional layer is generally connected with several full
connection layers, and finally the output is a numerical
description of the input, which is generally applicable to
tasks such as image recognition and classification, object
detection, and positioning. -e FCN framework is similar
to the traditional CNN network, which also includes the
convolutional layer and the pooling layer. In particular,
the FCN uses the deconvolution to up-sample the feature
map in the end convolution layer so that the output image
size can be restored to the original image size, and finally
uses the Softmax classifier to predict the category of each
pixel.

3.5. Generalized Intersection over Union. Bounding box re-
gression, as one of the fundamental components of many
computer vision tasks, deserves further study by researchers
[32]. However, unlike the architecture and feature extraction
strategy improvement researches, which have made great
progress in recent years [33], the research of bounding box
regression has lagged behind somewhat. -e Generalized
Intersection over Union (GIoU) [26], as the latest metric and
bounding box regression method, demonstrates state-of-
the-art results on various object detection benchmarks by
incorporating with the general object detection frameworks.
For traditional IoU, there are two weaknesses when it is used
as a metric or a bounding box regression loss: (a) the IoU
value is zero when two objects do not overlap, making it

difficult to optimize the nonoverlapping bounding boxes; (b)
the IoU value may be the same when two objects intersect in
different orientations, so the IoU function does not reflect
how the two objects overlap. To overcome these drawbacks,
GIoU not only focuses on the situation where two objects
overlap but also considers the situation of nonoverlapping.
-e details of the GIoU metric are shown in Figure 4.
Suppose Bp � (x
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Similarly, the smallest enclosing box Bc can be found
through
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and the area of Bc can be computed as

Ac � x
c
2 − x

c
1( 􏼁 × y

c
2 − y

c
1( 􏼁. (11)

-e IoU between BP and Bg is defined as

IoU �
Ai

Ap + Ag − Ai

. (12)

-erefore, GIoU can be calculated by the definition of

GIoU � IoU −
Ac − Ap + Ag − Ai􏼐 􏼑

Ac

. (13)

3.6. Loss Function. -e proposed G-Mask model consists of
two stages, which are the same as the general region-based
model. In the first stage, RPN proposes the candidate
bounding boxes of the object face. -e second stage, follow
the Fast R-CNN architecture, extracts features from each
candidate box and then performs classification and
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bounding box location. In addition, like the Mask R-CNN,
we added a mask branch parallel to the classification branch
and the bounding box location branch. -erefore, we define
a multitasking objective function, which includes classifi-
cation loss Lcls, bounding box location loss Lbox, and seg-
mentation loss Lmask. Our loss function for each image is
defined as

L � Lcls
∗ + Lbox

∗ + Lmask
∗ . (14)

In (14), the classification loss Lcls and segmentation loss
Lmask are defined the same as in Mask R-CNN. For the
bounding box loss, we found that GIoU can better respond
to face detection tasks through several experiments com-
pared with the traditional bounding box regression method.
-erefore, in this paper, we introduced GIoU as a bounding
box loss function. In more detail, the classification loss is
defined as in

Lcls
∗ � pi􏼈 􏼉( 􏼁 �

1
Ncls

􏽘
i

Lcls pi, pi
∗

( 􏼁, (15)

where Ncls is the minibatch size, i is the index of an anchor
in a minibatch, and pi is the prediction probability of
whether anchor i is a face target. -e ground-truth label
p∗i � 1 if the anchor is positive, and p∗i � 0 when the
anchor is negative. -e classification loss Lcls of each
anchor is log loss of whether an object is a face, which is
defined as

Lcls pi, p∗i( 􏼁 � − p∗i logpi + 1 − p∗i( 􏼁log 1 − pi( 􏼁􏼂 􏼃. (16)

For bounding box loss, we introduce GIoU as the loss
function, and the definition of GIoU metric is described in
(13), so the loss bounding box function is defined as follows:

Lbox
∗ � 1 − GIoU. (17)

For segmentation box loss, we adopt the average binary
cross-entropy loss, which is defined in

Lmask
∗

� −
1

m2 􏽘
1≤i,j≤m

yijlog 􏽢y
k
ij + 1 − yij􏼐 􏼑log 1 − 􏽢y

k
ij􏼐 􏼑􏽨 􏽩, (18)

where yij is the label value of a cell (i, j) for the region of size
m × m and 􏽢yk

ij is the predicted value of the k-th class of this
cell. L∗mask is only defined on a specific mask, which is related
to the ground-truth class k, and other mask outputs do not
affect the loss.

4. Experiments

4.1. Experimental Setup. Unlike object detection and generic
face detection, there are no off-the-shelf face datasets with
masks annotation that can be employed to train our model
[34]. -erefore, the first step of our work is to create a new
dataset with mask annotations. In order to enhance the
reliability of the samples, we selected 5115 samples from
FDDB and ChokePoint datasets and annotated them with
masks labels. After the annotation work, we trained the
G-Mask model on this dataset.

For implementation, we adopt Keras [35] framework to
train the G-Mask model in Ubuntu 16.04. ResNet-101 [36] is
used as the backbone network architecture in our work. In
the training phase, the G-Mask model is train on afore-
mentioned dataset for 150,000 iterations (where the epoch is
50 and the steps of per epoch are 3000) with the learning rate
set to 0.001 and the weight decay rate set to 0.0001. We
randomly sample one image per batch for training [37], in
which the short side of each image was resized to 800 and the
long side was resized to 1024. In the RPN part, RoIs is
generated by sliding the window on the feature map through
anchors of different scales and different aspect ratios. It will
have 2000 RoIs kept after nonmaximum suppression, and
the RoIs will only be considered as foreground if its IoU with
the ground truth is greater than 0.5. -e testing phase
settings are the same as the training phase, and the region
proposal is considered to be a face only if the confidence
score is greater than 0.7. -e training and testing process is
carried out on the same server, which is a Xeon E5 CPU of
128GB flash memory and NVIDIA GeForce GTX
1080TiGPU.

4.2. Experimental Results. In this work, G-Mask model not
only realized the bounding box localization of the face target
but also separated the face information from the background
image by binary mask, so that more detailed face infor-
mation could be obtained through the above process. -e
comparison experiment was carried out on three popular
face benchmark datasets, including FDDB, AFW, and
WIDER FACE.

Figure 4: Illustration of GIoU metric. -e solid line indicates the
prediction box and ground truth box, the dotted line indicates the
smallest enclosing box, and the shaded portion indicates the in-
tersection of the prediction box and the ground truth box.
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-e FDDB [27] dataset is a well-known face detection
evaluation dataset and benchmark, which contains 2845
images of 5171 human faces. In this dataset, the faces of each
image come from different scenes, which is quite chal-
lenging. We compared several methods on the FDDB
dataset, including Faster R-CNN [15], Mask R-CNN [23],
Pico [38], Viola-Jones [39], and Koestinger [40]. For ef-
fective comparison, the training data of the G-Mask, Mask
R-CNN, and Faster R-CNN models are the same, which is
the dataset constructed in this work. We compared the true
positive rates at 1500 false positives, and the results are
shown in Figure 5. It can be seen from Figure 5 that G-Mask

performs better than Faster R-CNN when there are more
than 160 false positives. When there are more than 280 false
positives, the performance of G-Mask is better than that of
Mask R-CNN. Furthermore, our method can achieve
88.80% true positive rate in 1500 false positives, which
exceeded all the comparison methods. -e comparison
results of the FDDB dataset show that our proposed
G-Mask method has achieved promising results, demon-
strating that our method can segment face information
while detecting effectively. Some detection results of the
Mask R-CNN and G-Mask models in the complex scenario
of FDDB dataset are shown in Figure 6. It is obvious that
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Figure 5: Comparisons of face detection with other methods on FDDB benchmark.
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(b)

Figure 6: Different detection results of Mask R-CNN and G-Mask in the complex scene of FDDB dataset. (a) Mask R-CNN model and
(b) G-Mask model.

6 Discrete Dynamics in Nature and Society



0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.2 0.4 0.6 0.8 1.00.0
Recall

DPM (AP 97.21)
HeadHunter (AP 97.14)
G-Mask (AP 95.97)

Structured Models (AP 95.19)
SquaresChnFtrs-5 (AP 95.24)

Shen et al. (AP 89.03)
TSM (AP 87.99)
Face.com
Picasa
Face++

Figure 7: -e precision-recall curve of our method on the AFW benchmark. Data of other models and evaluation code are derived from
[41].

MSCNN-0.916
G-Mask-0.902
CMS-RCNN-0.899
ScaleFace-0.868
Multitask Cascade
CNN-0.848

LDCF+–0.790
Faceness-WIDER-0.713
Multiscale Cascade
CNN-0.691
Two-stage CNN-0.681
ACF-WIDER-0.659

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

isi
on

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Recall

(a)

MSCNN-0.903

G-Mask-0.854

CMS-RCNN-0.874
ScaleFace-0.867

Multitask Cascade
CNN-0.825

LDCF+–0.769

Faceness-WIDER-0.634

Multiscale Cascade
CNN-0.664

Two-stage CNN-0.618
ACF-WIDER-0.541

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

isi
on

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Recall

(b)

Figure 8: Continued.
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the G-Mask model performs better in the multiscale face
task, which demonstrates the effectiveness of the proposed
method in face detection.

-e AFW dataset [29] is a face dataset and benchmark
established by using Flickr image, which contains 205 images
with 473 labeled faces.-e precision-recall curve of our method
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Figure 8:-e precision-recall curve on theWIDER FACE benchmark: (a) on the easy subset, (b) on the medium subset, and (c) on the hard
subset.

Figure 9: More results of G-Mask method.
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on the AFWbenchmark is shown in Figure 7, and it can be seen
that the G-Mask method achieved 95.97% average precision
(AP). Although our dataset has a different label format from the
AFW benchmark, as well as the moderately sized training
dataset, we also demonstrate the generalization of our method.

WIDER FACE [30], one of the largest and most chal-
lenging face detection datasets in the open source data, has
32,203 images and 393,703 labeled faces. In this dataset,
various changes in the face size, pose, and occlusion have
brought great challenges to face detection, and the dataset is
divided into easy, medium, and hard subsets according to
the difficulty level. To further demonstrate the detection
performance of our proposed method, we trained the
G-Mask model on WIDER FACE dataset and verified it on
the validation dataset. -e proposed method is compared
with several major methods including MSCNN [42], CMS-
RCNN [43], ScaleFace [44], Multitask Cascade CNN [45],
and Faceness-WIDER [46]. -e precision-recall curves of
G-Mask method on the WIDER FACE benchmark are
shown in Figure 8. It can be seen that our method obtained
0.902AP in the easy subset, 0.854AP in the medium subset,
and 0.662AP in the hard subset, which exceeded most of the
comparison methods. Compared with the state-of-the-art
MSCNN method, the AP value of the proposed method is
only 0.014 lower in the easy subset and 0.049 lower in the
medium subset. -ere are some gaps between G-Mask and
MSCNN methods on hard subset. -e reason may be that
theMSCNNmethod uses a series of strategies for small-scale
faces detection and thus they can deal with more challenging
cases. Nevertheless, the G-Mask method still achieves
promising performance, which demonstrates the effective-
ness of the G-Mask method.

We further demonstrate more qualitative results of
G-Mask method in Figure 9. It can be observed that the
proposed method can detect faces correctly while also
precisely segmenting each face in an image.

We also compared the running time of different region-
based methods in the a series of dataset such as FDDB,
AFW, and ChokePoint. -e WIDER FACE dataset was not
used for testing because the running time of the hard and
easy subset on the WIDER FACE was quite different. We
randomly selected 100 images from each of the above
datasets to test and calculate their average time, and the
results are reported in Table 1. We can clearly see that
Faster R-CNN has the shortest running time because of its
relatively simple structure, while the proposed method has
a running time similar to Mask R-CNN. Compared with
Faster RCNN method, G-Mask adds a segmentation
branch, which leads to an increase in computational

complexity. However, the G-Mask method can achieve
higher accuracy with less time consumption compared with
other region-based methods and can also obtain more
detailed face information through segmentation branches
while accurately locating.

5. Conclusions

In this paper, a G-Mask method was proposed for face
detection and segmentation. -e approach can extract
features by ResNet-101, generate RoIs by RPN, preserve the
precise spatial position by RoIAlign, and generate binary
masks through the full convolutional network (FCN). In
doing so, the proposed framework is able to detect faces
correctly while also precisely segmenting each face in an
image. Experimental results with self-built face dataset as
well as public available datasets have verified that our
proposed G-Mask method achieves promising performance.
For the future work, we will consider improving the speed of
the proposed method.
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/e range of light illumination in real scenes is very large, and ordinary cameras can only record a small part of this range, which is
far lower than the range of human eyes’ perception of light. High-dynamic range (HDR) imaging technology that has appeared in
recent years can record a wider range of illumination than the perceptual range of the human eye. However, the current
mainstream HDR imaging technology is to capture multiple low-dynamic range (LDR) images of the same scene with different
exposures and then merge them into one HDR image, which greatly increases the amount of data captured. /e advent of single-
pixel cameras (compressive imaging system) has proved the feasibility of obtaining and restoring image data based on compressive
sensing. /erefore, this paper proposes a method for reduced-dimensional capture of high dynamic range images with com-
pressive sensing, which includes algorithms for front end (capturing) and back end (processing). At the front end, the K-SVD
dictionary is used to compressive sensing the input multiple-exposure image sequence, thereby reducing the amount of data
transmitted to the back end. At the back end, the Orthogonal Matching Pursuit (OMP) algorithm is used to reconstruct the input
multiple-exposure image sequence. A low-rank PatchMatch algorithm is proposed to merge the reconstructed image sequence to
obtain anHDR image. Simulation results show that, under the premise of reducing the complexity of the front-end equipment and
the amount of communication data between the front end and the back end, the overall system achieves a good balance between
the amount of calculation and the quality of the HDR image obtained.

1. Introduction

With the development of mobile Internet and Internet of
/ings (IoT) technology, devices with cameras are becoming
more common, such as smart phones, network surveillance
cameras, laptop computers, autonomous vehicles, and traffic
monitoring cameras. Furthermore, camera is now an es-
sential feature for smartphones and laptops. However,
common cameras on the market can only capture low-dy-
namic range (LDR) images, i.e., these cameras can only
capture a small part of the rang of illuminance in a real scene.
/e dynamic range of the real scene perceptible to the
human eye is as high as 108 :1, but the dynamic range of the
LDR images captured by these cameras is only 28 :1 or 216 : 1,
which makes the LDR images unable to truly represent the
real scene. To solve this problem, high-dynamic range

(HDR) imaging technique has been proposed, and it can
capture a wider range of illumination than that of human
eye. /ere are two ways to obtain HDR images: software and
hardware. /e hardware method directly captures HDR
images by increasing the dynamic range of the sensor, but
the range is very limited, and it is expensive [1]. /erefore,
the software method is currently the main method, i.e.,
fusing multiple-exposure LDR images (hereinafter called
image sequence or sequence) to obtain HDR images. /e
fusion method can be further divided into two categories:
one is to restore the Camera Response Function (CRF) and
then reconstruct the HDR light radiation pattern [2]; the
other is to directly fuse the pixels of multiple-exposure
sequences at the pixel level. Both categories of methods need
to consider all the pixels of the multiple-exposure image
sequence, increasing the computational complexity and
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storage space. In the process of transmission and storage, the
images are further compressed and transformed to remove
redundancy to extract the required information. /is
method of sampling after compression results in sampling
redundancy, excessive storage space, and increased trans-
mission costs.

Compressive sensing (CS, also called compressed
sensing) [3–5] can solve the above problem, which com-
presses signal while sampling. CS breaks through the lim-
itation of the traditional Shannon sampling theorem and can
perform high-probability reconstruction of incomplete
signals at a condition far below the Nyquist sampling rate.
Rice University has developed a single-pixel camera based
on the theory of compressive sensing [6]. By replacing the
CCD or CMOS sensors with a digital micromirror array
(DMD) and a single photon detector, it only needs to sample
the image fewer times than the number of pixels. Its ap-
pearance confirms the feasibility of compressive sensing
applying to imaging systems. /erefore, this paper proposes
a method for reduced-dimensional capture of high dynamic
range images with compressive sensing, which includes
algorithms for front end (capturing) and back end (pro-
cessing). At the front end, the K-SVD dictionary is used to
compressive sensing the input multiple-exposure image
sequence, thereby reducing the amount of data transmitted
to the back end. At the back end, the Orthogonal Matching
Pursuit (OMP) algorithm is used to reconstruct the input
multiple-exposure image sequence. A low-rank PatchMatch
algorithm is proposed to merge the reconstructed image
sequence to obtain an HDR image.

2. Materials and Methods

Figure 1 is the schematic of the proposed method./e whole
system of this method includes three parts: front end,
communication, and back end. In practical applications,
especially for IoT applications, the front end is generally a
low-power device with very limited computing resources,
and its main role is to sense the real world. /e back end is
generally a cloud computing center or edge computing node,
which has powerful computing resources, but is far away
from the field that needs to be sensed. Communication
between front end and back end includes Ethernet, mobile
communication networks (including 2G, 3G, 4G, 5G, and
NB-IoT), wireless local area networks (WLAN), and low-
power wide area networks (LPWAN, including Lora, Sig-
fox). Among these communication methods, the wired
network (such as Ethernet) is rarely used to directly connect
front-end equipment because of high deployment costs and
inflexibility. Because WLAN has a limited transmission
distance, it is applicable but is relatively limited. /e
communication distance of LPWAN is very long, but its
bandwidth is also very small, which is difficult to use for
transmitting traditional image sequences. /e most suitable
technology for transmitting image sequences is the mobile
communication network (especially 4G and 5G), but the
larger the bandwidth used is, the higher the price is, and the
more energy the front end uses for communication.
/erefore, it is necessary to reduce the computational

complexity of the front-end device and the amount of
communication data between the front end and the back
end. /e method proposed in this paper uses compressive
sensing technology to reduce the computational complexity
and data volume of HDR image capturing front-end devices,
thereby reducing the cost of the entire system.

2.1. Reduced-Dimensional Capture and Reconstruction of
Multiple-Exposure Image Sequences. Since compressive-
sensing cameras are not common now, we assume that the
front end uses a common camera to capture a series of LDR
images with different exposures. /is assumption makes the
system not only easier to implement, but also easier to
compare with other methods. Every image in the image
sequence is resampled using compressive sensing. Com-
pressive sensing includes sparse representation of signals,
design of measurement matrices, and design of signal re-
construction algorithms [7].

2.2. Sparse Representation of Image with Overcomplete
Dictionaries. Signals are not sparse in practical applications,
but when a suitable basis is used to represent the signals, they
are sparse or compressible [8], i.e., the number of nonzero
elements is small, which is conducive to the improvement of
the sampling rate. /e use of sparse representation in
multiple fields has become increasingly mature, such as
compression, regularization in inverse problems, and feature
extraction [9]. Sparseness is the premise of compressive
sensing, which means that the signal itself is sparse or sparse
after some transformation, for example, transforming
nonsparse signals into sparse ones by Fourier transform,
discrete wavelet transform [7], i.e., the nonsparse signal is
represented by a linear combination of several atoms in a
fixed dictionary (such as a DCT dictionary, a wavelet dic-
tionary, a Haar dictionary, and a Gabor dictionary). /e
fixed dictionary has a simple structure and simple calcula-
tion, but it can only be applied to a limited range of signals,
and the sparse representation cannot be guaranteed to be
optimal, i.e., the sparseness of the signal sparse represen-
tation cannot be guaranteed. To best suit a set of given
signals, we can train an overcomplete dictionary with the
given signals. /e K-SVD [9] method can continuously it-
erate through sparse coding and dictionary update to op-
timize the sparse representation of the signal on the premise
of a given training set. K-SVD can be regarded as a gen-
eralized form of K-means clustering. /e only difference is
that the number of atoms used for each signal is different.

Blocking each image in the multiple-exposure image
sequence can further reduce storage space and the block size
can usually be 8 × 8, 16 × 16, 32 × 32, and so on [10]. Fig-
ure 2 is the flowchart of the K-SVD algorithm. /e input
image sequence is {I1, I2, . . ., IM}, where M is the number of
images in the sequence and Im,m� 1, 2, . . .,M, is an image in
the sequence. Here we suppose that all images in the se-
quence have the same size of r × c. All images in image
sequence are divided into blocks (with block size b × b) and
pixels in each block are rearranged into a column vector yi,
i� 1, 2, . . ., N. In case that b is not divisible by r or c, the
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Figure 1: Schematic of the proposed method.

Input multiple-exposure image sequence
{I1, I2, …, IM}

Initialize dictionary matrix
D(0) = (d1, d2, …, dK) and J = 1

Solve matrix with a pursuit algorithm
X = (x1

T, x2
T, …, XK

T)T

Images blocking to get signal matrix
Y = (y1, y2, …, yN)

Define a group of indices pointing to yi that use dk:
ωk = {i| 1≤i≤K, Xk

T(i) ≠ 0}

Compute representation error matrix:
Ek = Y – ∑(j≠k)djX

j
T

Restrict Ek by choosing only columns 
corresponding to ωk to get Ek

R

Stopping rule?

Output dictionary matrix D(J)

J = J + 1

N

Y

k>K?

Initialize column index of D(J–1): k = 1

k = k + 1

N

Y

Update dk in D(J–1) by SVD decomposition of Ek
R

Figure 2: /e flowchart of the K-SVD algorithm: Im, (m)� 1, 2, . . ., (M), is an image in image sequence. All images in image sequence are
divided into blocks and pixels in each block are rearranged into a column vector yi, i� 1, 2, . . ., N. (N) is the number of vectors generated
from the image sequence and (n) is the length of yi. Y ∈ Rn×N is a matrix of column vectors yi. /e dictionary D(J) ∈ Rn×K is made up of atom
vector dk, where K is the total number of atoms in D(J) and the superscript (J) is the number of iterations. X ∈ RK×N is the sparse
representation of (Y) under dictionary (D) and is made up of row vectors xi

T, i � 1, 2, . . . , K, where the subscript Tof xi
T indicates that xi

T is
a row vector and superscript T indicates matrix transpose. /e matrix Ek is the error for all the input signal when the (k)th atom is removed.
/e detail of ER

k and SVD decomposition of ER
k can be found in [9].

Discrete Dynamics in Nature and Society 3



image is expanded by 0. N � r × c × M/b2 is the number of
vectors generated from the image sequence and n� b2 is the
length of yi. Y ∈ Rn×N is a matrix of column vectors yi. /e
dictionary D(J) ∈ Rn×K is made up of atom vector dk,
where K is the total number of atoms in D(J) and the su-
perscript (J) is the number of iterations. X ∈ RK×N is the
sparse representation of Y under dictionary D and is made
up of row vectors xi

T, i � 1, 2, . . . , K, where the subscript T
of xi

T indicates that xi
T is a row vector and superscript T

indicates matrix transpose. Equation (1) is the object
function of K-SVD, where xi is the ith column of matrix X
and T0 is the predetermined number of nonzero elements in
xi:

min
D,X

‖Y − DX‖
2
F􏽮 􏽯 subject to∀i, xi

����
����0 ≤T0. (1)

/ematrix Ek is the error for all the input signal when the
kth atom is removed. /e detail of ER

k and SVD decom-
position of ER

k can be found in [9].

2.3. MeasurementMatrix Design. After the signal is sparsely
represented, a suitable measurement matrix Φ ∈ RK×n is
needed to compressive sense the signal. /e design principle
of the measurement matrix is that the sensing matrix Θ �

ΦD should meet the Restricted Isometry Property (RIP)
[11], [12] to ensure one-to-one mapping from the original
space to the sparse space. /e compressive sensing of signal
yi is shown in (2), where zi ∈ RK×1 is the compressed sample
of signal yi:

zi � Φyi � ΦDxi � Θxi. (2)

When Φ is a Gaussian random matrix, the sensing
matrix Φ can satisfy the RIP with large probability [13]. /e
advantage of a Gaussian measurement matrix is that it is not
related to almost any sparse signal, so it requires very few
measurements. /erefore, we use the Gaussian random
matrix as measurement matrix.

2.4. Reconstructing Image Sequence. /e reconstruction
method is the core step of compressive sensing. /e quality
of the reconstruction method determines the quality of the
reconstructed image. Compressive sensing reconstruction
methods mainly include three categories [14]. /e first is
greedy algorithm (such as orthogonal matching pursuit
(OMP) [15], stagewise orthogonal matching pursuit
(StOMP) [16], and regular orthogonal matching pursuit)
(ROMP) [17]). /is method solves the local optimal solution
to approximate the signal in each iteration. /e second is a
convex optimization algorithm (such as the base tracking
algorithm (BP) [18], the interior point method [19], the
gradient projection method [20], and the iterative threshold
algorithm [21]). Convex optimization can achieve better
reconstruction results with a small number of samples but
has a higher computational complexity. /e third is com-
bination optimization algorithm, which uses the group
testing to accurately reconstruct the signal. /e recon-
struction speed is fast, but the scope of application is limited,
such as HHS Pursuit [22]. In this paper, we use the OMP

algorithm to reconstruct the image sequence. /e perfor-
mance of the OMP algorithm is stable and the recon-
struction accuracy is high, which can ensure that the original
signal is accurately recovered at a lower sampling rate.

Given the sensing matrix Θ � ΦD � (θ1, θ2 , . . . , θK)

and the compressed sample zi of signal yi, the OMP algo-
rithm can estimate the sparse representation xi of signal yi.
/en the signal yi can be recovered by 3

yi � Dxi. (3)

/e idea behind the OMP is to pick columns in a greedy
fashion, i.e., at each iteration t, the column θt of Θ that is
most strongly correlated with the remaining part of xi is
chosen [15]. Figure 3 is the flowchart of the OMP algorithm.
/e input is the sensing matrixΘ and one of the compressed
signals z� zi, i� 1, 2, . . ., N in (2). After running N times of
OMP, we can get the matrix X (the sparse representation of
Y) and Y can be calculated column by column using (2). At
last the image sequence can be reconstructed from Y.

2.5. Low-Rank PatchMatch Algorithm. During the capture
process of the multiple-exposure image sequence, camera
shaking or unpredictable moving objects in the scene are
inevitable, which will cause artifacts or noise to appear in the
final fused HDR image. Currently, block matching fusion
method is mainly used to eliminate the artifacts and noise.
/e essence of block matching fusion is to find a mapping
relationship between two different images A and B (given the
image block set of A and B as {PA} and {PB}, respectively),
i.e., by calculating the correlation, find the nearest-neighbor
field (NNF) of B, so that the error of similar image blocks in
the two images is minimized. By looking for the block in
{PA} that is closest to block in {PB}, the artifacts in the fused
image are reduced.

If image block matching is performed through a full
search, the complexity is as high as O(mM2), where m andM
are size of the image and the size of the block, respectively.
To reduce the complexity, Connelly Barnes et al. [23], [24]
proposed a fast PatchMatch algorithm with randomized
nearest neighbor and successfully reduced the complexity of
the algorithm to O(mMlog(M)). /e main steps of the al-
gorithm can be summarized as initialization, propagation,
and random search. Due to the high efficiency and better
performance of the PatchMatch algorithm, it has a profound
impact in the fields of image stitching, image completion,
and image reorganization.

In fact, there are generally more than three multiple-
exposure LDR images of the same scene to fuse into HDR
image, so Pradeep Sen et al. [25] proposed multisource
bidirectional similarity (MBDS), as shown in (4). S is the
original image, and T is the target image. N is the number of
source images. P and Q are patches in S and T, respectively.
ωk(P) weighs the source patches when calculating com-
pleteness based on how well-exposed they are. In order to
measure the weight of a well-exposed image block, the well-
exposed image block has a large weight, and vice versa. d (·)

is a distance metric, which is usually calculated using the l2
norm. |T| is the total number of image blocks of the target
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image. /is formula mainly includes the integrity of mapping
from S to T and the correlation from T to S. MBDS selects
well-exposed blocks in the image sequence to fill the regis-
tration image, so it can achieve better registration results:

MBDS T|S1, . . . , SN( 􏼁 �
1
N

􏽘

N

k�1
􏽘

P∈S1 ,...,SN

ωk(P)min
Q∈T

d(P, Q)

+
1

|T|
􏽘
Q∈T

min
P∈S1 ,...,SN

d(Q, P).

(4)

From the perspective of low-rank matrix recovery,
combined with the idea of MBDS, this paper proposes an
improved algorithm for removing artifacts from HDR im-
ages./e objective function is shown in (5). /e input image
sequence has N images Ii, i� 1, . . ., N, and Iref is the ref-
erence image selected from the sequence. Li, i� 1, . . ., N, is
the result image of Ii being aligned to the reference image
Iref; that is, the content of Li is aligned with the reference
image, and the exposure parameters remain the same with Ii.
Function gi(Ij) is the mapping from exposure parameter i to
exposure parameter j. Function h(·) maps the grayscale
domain of LDR to the radiance domain of HDR. Function
vec(·) turns a two-dimensional image into a column vector:

􏽘

N

i�1,i≠ ref

MBDS Li|Ii, gi Iref( 􏼁( 􏼁

s.t rank vec h L1( 􏼁, . . . , vec h LN( 􏼁( 􏼁( 􏼁( 􏼁 � 1.

(5)

Solve the MBDS problem to get Li. More details can be
found in [25]. In addition, the addition of a low-rank
constraint enables the aligned images to ensure a sufficiently
low rank, i.e., to maintain a linear correlation in brightness.
/e solution is to divide into two independent local opti-
mization subproblems, namely, the problem of MBDS and
low-rank matrix recovery. At the same time, the iterative
solution under multiresolution scale is used to find the
optimal solution of MBDS. /e low-rank matrix finally
obtained is the target HDR image with high dynamic range
and linear brightness of the scene. /e process is shown in
Figure 4.

3. Results and Discussion

/is section will analyze the convergence of the low-rank
PatchMatch algorithm, simulate the multiexposure image
compressive sensing and reconstruction algorithm and the
antiartifact fusion algorithm, and evaluate the algorithms in
terms of subjective and objective criteria.

3.1. Convergence of the Low-Rank PatchMatch Algorithm.
Randomly generate data matrices with rank of r and size of
1000 × 500, and add sparse noise with a noise ratio of p.
Validate the convergence by two sets of experiments. In first
set, fixmatrix rank r to 1, and observe the convergence under
different noise ratios p. In the second set, fix the noise ratio
p, which is set to 0.2 in the experiment, and observe the
convergence under different ranks r. /e results are shown
in Figure 5. In both cases, the low-rank PatchMatch algo-
rithm converges within 5 iterations.

3.2. Image Evaluation Criteria. In this paper, we will use the
mean squared error (MSE), peak signal-to-noise ratio
(PSNR), information entropy, average gradient, and running
time to objectively evaluate the image quality and algorithm.

/e definition of mean squared error (MSE) is shown in
(4), wherem and n are the width and height of the images, and
f and g are two different images. /e standard deviation
represents howmuch the experimental data deviates from the
mean./e higher the standard deviation, themore diverse the
result data, and the lower the accuracy of the result:

MSE �
1
mn

􏽘

m−1

i�0
􏽘

n−1

j�0
‖f(i, j) − g(i, j)‖

2
. (6)

PSNR is a commonly used criterion for reconstructed
image quality evaluation. According to the definition of the
standard deviation in equation (4), the definition of PSNR is
given in equation (5), where MAXI is the maximum value of
the pixel value of an image, for example, 255 for an 8 bit grey
image. /e larger the PSNR value, the lower the degree of
distortion of the image:

PSNR � 10 × log10
MAX2

I

MSE
􏼠 􏼡. (7)

Information entropy represents the average information
of an image, that is, the average information after removing

Input compressed signal z and sensing 
matrix: Θ = {θ1, θ2, ..., θK}

Find the index λt by
λt = arg max(j = 1, 2, …, K)|<rt–1, θj>|

Augment the index set and the matrix of 
chosen atoms:

Λt = Λt–1{λt}, Θt = (Θt–1,θt)

Initialize the residual r0 = z, the index set 
Λ = Φ, chosen atoms matrix Θ0 is empty,and

the iteration counter t = 1.

Estimate xt by least squares:
xt = arg minx||z – Θtx||2

Calculate the new approximation at of z
and the newresidual:
at = Θtxt, rt = z – at

Output estimation of x:
x(i) = xt(i), for i in Λt; otherwise set x(i) = 0

t<K?

t = t + 1

N

Y

Figure 3: /e flowchart of the OMP algorithm.
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redundant information. /e definition is shown in equation
(7), where p(bi) is the probability that the brightness bi

appears in the image, and L is the maximum grey value of the
image:

Entropy � − 􏽘
L

i�1
p bi( 􏼁log2 p bi( 􏼁. (8)

/e average gradient characterizes the relative sharpness
of the image and reflects the rate of change in contrast of
details. /e larger the average gradient is, the larger the
changes of grey level are, and the richer the levels of the
image are. /e definition is shown in equation (8), whereM
and N are the number of rows and columns of the image f,
respectively:

Select reference image Iref

Initialize parameters
j = 1, Li = Iref

Update nearest-neighbor field:
between Iref–j and Lref–j, between Iref+j and Lref+j,

Lref–j = gref–j (Iref)
Lref+j = gref+j (Iref)

Maximum resolution scale?
N

Solve the MBDS problem to get 
Lref–j, Lref+j

Upsampling nearest-
neighbor field to the 

next scale

Iterate through all images?

Find low-rank matrix of
{Li|i = ref, ref–j, ref+j, …}

Y

j++

N

Output HDR image

Y

Maximum number of iterations?
N

Y

Input multiexposure image sequence Ii, 
exposure time, and camera response function

Multiscale pyramid decomposition:
Iref–j, Iref, Iref+j

Figure 4: Process of low-rank PatchMatch.

6 Discrete Dynamics in Nature and Society



g �
1

(M − 1)(N − 1)

× 􏽘
M−1

i�1
􏽘

N−1

j�1

������������������������������������

(f(i, j) − f(i + 1, j))2 +(f(i, j) − f(i, j + 1))2

2

􏽳

.

(9)

For the fusion of multiple-exposure images of complex
scenes with moving objects, the evaluation of deghosting
needs to be further explored. At present, there is no mature
objective criterion to evaluate the deghosting of HDR images.
In this paper, the deghosting evaluation method proposed by
Karaduzovic-Hadziabdic and Telaovic et al. [26] is used, and
the test image set used is a complex real scene.

3.3. Simulation of Compressive Sensing andReconstruction for
Multiple-Exposure Images. /e simulation platform for this
experiment is MATLAB 2015b; the hardware is 32G memory,
Intel Core i5-6600K processor (main frequency 3.5GHz).
Airplane and Lena with an image size of 512 × 512 were se-
lected for simulation, and the simulation results were com-
paredwith BP,OMP, and StOMP algorithms at lower (R� 0.3),
medium (R� 0.5), and higher (R� 0.7) sampling rates, re-
spectively. /e simulation results are shown in Table 1.

Among the three major types of algorithms for com-
pressive sensing reconstruction, the convex optimization
algorithm has the best performance, but then it has the
highest complexity and the longest reconstruction time. As a
representative of convex optimization algorithm, BP has
better reconstruction performance than greedy algorithm
and combinatorial optimization algorithm. At the sampling
rate of 0.3 and 0.5, compared with BP algorithm, the per-
formance of our algorithm is better than BP algorithm.With

a sampling rate of 0.8, although the PSNR of our algorithm is
slightly lower than BP, it is higher than the other algorithms.
In addition, the reconstruction time of our algorithm is
shorter than the reconstruction time of the BP algorithm
except that the sampling rate is low (R� 0.3).

/e simulation results are shown in Figure 6 when the
sampling rate is 0.5. From a subjective point of view, for the
letter area on the fuselage and wings of the airplane image,
both the BP algorithm and our algorithm can recover the
clear letters, but the letters recovered by the OMP algorithm
and the StOMP algorithm are blurred. /e images recovered
by BP, OMP, and StOMP algorithms all have obvious noise.
/e particle noise of StOMP algorithm is the most obvious.
Our algorithm can basically restore the image information
correctly.

/e reconstruction difference of the Lena image is not as
obvious as the aircraft image from the subjective point of
view, but it can be observed that the images recovered by BP,
OMP, and StOMP all have different degrees of noise, and the
particle noise of StOMP is the most obvious.

Among the above algorithms, the StOMP algorithm has
the shortest reconstruction time, but the reconstruction
effect is also the worst, and the particle noise is very obvious.
Because of the existence of noise, the average gradient of the
StOMP algorithm is higher than that of other algorithms.
/e average gradient of our algorithm is similar to the OMP
algorithm, which is better than the BP algorithm. From the
perspective of MSE, the MSE of BP algorithm is the smallest,
and our algorithm is second. Information entropy is similar
to the case of MSE.

3.4. Simulation Multiple-Exposure Images Fusion Algorithm.
In this section, the multiple-exposure image sequences Arch,
Sculpture Garden, and Puppet are compressive sensed,
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Figure 5: Convergence of the low-rank PatchMatch algorithm. (a) /e convergence under different noise ratios (p) (the matrix rank (r) is
fixed to 1). (b) /e convergence under different ranks (r) (the noise ratio (p) is set to 0.2).
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Table 1: Comparison of difference compressive sensing and reconstruction algorithm.

Image Sampling rate Algorithm PSNR MSE Entropy Average gradient Running time （s）

Airplane

0.3 BP 23.774 44.389 7.215 7.802 28.199
OMP 23.609 46.271 7.188 8.543 15.442
StOMP 25.271 47.781 7.065 10.049 0.075
Ours 28.861 46.341 7.097 8.227 36.31

0.5 BP 30.278 45.169 6.996 6.673 42.239
OMP 28.506 46.545 7.057 7.167 30.557
StOMP 24.913 48.297 7.113 11.379 0.079
Ours 33.356 46.365 6.999 7.158 38.024

0.8 BP 40.16 46.097 6.902 6.189 81.628
OMP 34.257 46.368 6.952 6.462 60.081
StOMP 26.219 47.882 7.117 10.788 0.311
Ours 36.601 46.348 6.938 6.551 42.084

Lena

0.3 BP 27.394 46.153 7.862 6.303 27.167
OMP 26.285 47.967 7.864 7.26 15.625
StOMP 26.579 48.876 7.861 9.157 0.089
Ours 30.116 47.846 7.862 7.12 28.709

0.5 BP 32.867 47.262 7.865 5.88 39.993
OMP 30.808 47.803 7.866 6.371 29.406
StOMP 25.885 49.249 7.859 10.208 0.313
Ours 33.442 47.743 7.863 6.308 29.429

0.8 BP 40.415 47.678 7.862 5.795 80.541
OMP 35.008 47.85 7.865 5.971 58.919
StOMP 27.261 49.012 7.861 9.779 0.326
Ours 36.171 47.799 7.863 6.051 32.847

(a) (b) (c)

(d) (e)

Figure 6: Continued.
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(f) (g) (h)

(i) (j)

Figure 6: Comparison of difference compressive sensing and reconstruction algorithm at medium sample rate (R� 0.5). (a) Airplane. (b)
BP. (c) OMP. (d) StOMP. (e) Ours. (f ) Lena. (g) BP. (h) OMP. (i) StOMP. (j) Ours.

(a)

(b)

Figure 7: Continued.
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(c) (d) (e) (f )

Figure 7: Multiple-exposure image sequences Arch fusing result. (a) Multiple-exposure image sequence Arch. (b) Arch after compressive
sensed and reconstructed (c) Reference [2]. (d) RPCA. (e) PSSV. (f ) OURS.

(a)

(b)

(c) (d) (e)

Figure 8: Multiple-exposure image sequences Puppet fusing result. (a) Multiple-exposure image sequences Puppet. (b) Puppet after
compressive sensed and reconstructed (c) Reference [31]. (c) SEN [25]. (d) HU [30]. (e) OURS.
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(a)

(b)

(c) (d)

(e) (f )

(g)

Figure 9: Multiple-exposure image sequences Sculpture Garden fusing result. (a) Multiple-exposure image sequence Sculpture Garden. (b)
Sculpture Garden after compressive sensed and reconstructed. (c) Reference [31]. (d) Reference [2]. (e) SEN [25]. (f ) HU [30]. (g) OURS.
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reconstructed, and then fused into HDR images. /e results
are compared with robust principal component analysis
(RPCA) [27], partial sum of singular value (PSSV) [28], [29],
and [2], MBDS algorithm (referred to as SEN) proposed by
Pradeep Sen et al. [25], the brightness and texture consis-
tency deghosting method (referred to as HU) proposed by
Jun Hu et al. [30], and the low-rank restoration based
deghosting fusion proposed by Tae-Hyun Oh et al. [31].

Figure 7 shows the Arch image sequence. /ere are
moving people in the picture. Artifacts can occur with direct
fusion. Reference [2] and RPCA cannot suppress the ap-
pearance of artifacts, and our algorithm and PSSV algorithm
can both suppress artifacts well and have better subjective
visual effects.

Figure 8 shows the results of the Puppet sequence. Our
algorithm adds low-rank constraints to minimize the impact
of misaligned regions and keep the resulting image as linear
as possible. It can be seen from the result that our algorithm
is better.

Figure 9 shows the results of Sculpture Garden sequence.
/ere are many pedestrians in the picture, which makes it
difficult to remove artifacts. From the results of the fusion,
[30] is the worst, and there are obvious artifacts in [6], and
the SENmethod has a fuzzy phenomenon. Both HU and this
algorithm suppress artifacts well, but due to the effect of
image blocking, block effect exists in the fusion result.

Figure 10 is the local area details of the fusion result in
Figure 9. Because result of [31] is the worst compared to
other algorithms, the detail of it is not enlarged. /e liter-
ature [6] is less effective in removing artifacts because of the
obvious silhouette cross. /ere is obvious blurring at the
pedestrian edges of the SEN method. HU and our algorithm
achieve better results, but our algorithm has noise caused by
block effects.

4. Conclusions

Aiming at the problems of traditional cameras with re-
dundant sampling, large storage space consumption, and
inability to fully record the radiance in the real scene due to
the limitation of the dynamic range of the sensor, this article
uses the K-SVD dictionary to compressive sensing LDR
images of different exposure in the same scene. /en the
LDR images is reconstructed and fused with low-rank
PatchMatch algorithm to get an HDR image. /e simulation
results show that the method in this paper can effectively

reduce the sampling rate and remove the image artifacts and
blurring caused by the camera shake and the motion of the
objects in the scene. It provides a method for compressive
sensing to obtain HDR images.

However, due to the introduction of block compressive
sensing, the size of the image block has become a factor that
cannot be ignored. Simulation results show that when the
image block is small, the block effect is more obvious and the
edge details are distorted. But when increasing the image
block, it will increase the storage space and computational
complexity. In addition, adding compressive sensing and
dictionary learning before fusion increases the computation
time, sacrificing time in exchange for reduction in com-
plexity, and sampling rate. /erefore, the next step is to
perform pixel-level fusion in the compressive sensing do-
main of the HDR image to further reduce the time required
for the algorithm and improve the quality of the fused image.
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Scene parsing plays a crucial role when accomplishing human-robot interaction tasks. As the “eye” of the robot, RGB-D camera is
one of the most important components for collecting multiview images to construct instance-oriented 3D environment semantic
maps, especially in unknown indoor scenes. Although there are plenty of studies developing accurate object-level mapping
systems with different types of cameras, these methods either process the instance segmentation problem in completed mapping
or suffer from a critical real-time issue due to heavy computation processing required. In this paper, we propose a novel method to
incrementally build instance-oriented 3D semantic maps directly from images acquired by the RGB-D camera. To ensure an
efficient reconstruction of 3D objects with semantic and instance IDs, the input RGB images are operated by a real-time deep-
learned object detector. To obtain accurate point cloud cluster, we adopt the Gaussian mixture model as an optimizer after
processing 2D to 3D projection. Next, we present a data association strategy to update class probabilities across the frames. Finally,
a map integration strategy fuses information about their 3D shapes, locations, and instance IDs in a faster way. We evaluate our
system on different indoor scenes including offices, bedrooms, and living rooms from the SceneNN dataset, and the results show
that our method not only builds the instance-oriented semantic map efficiently but also enhances the accuracy of the individual
instance in the scene.

1. Introduction

Robot vision plays an important role with the development
of artificial intelligence industries. With aid of RGB-D
cameras (such as Kinect), robots can “see” and analyze the
surrounding environment easily. (en, how to make robots
accurately and rapidly percept the meaning of objects in
real-world environments without a prior knowledge is one
of the most important technologies in robotic community.
For tasks, such as path planning, object grabbing, or even
autonomous driving, we need not only the semantic un-
derstanding of a single object but more important, the spatial
relationships and layout among individual instances in a 3D
environment. It thus leads to the demand of building high-
level instance-oriented representations of the scene that

would greatly advance the human-robotic interaction.
Hence, building progressive semantic instance-level 3Dmap
for indoor scenes with multiview RGB-D images has always
been a major project for researchers.

(e conventional methods of constructing object-aware
semantic maps generally consist of two inseparable aspects:
instance segmentation of 3D image and transformation
across multiple views. (e former focuses on obtaining
semantic information via the convolutional neural network
[1–6], which is followed by integrating geometric segmen-
tation approach to label 3D objects of the scene. (e latter
usually carries out simultaneous localization and mapping
(SLAM) [7–9], which completes 3D scene reconstruction
using RGB-D cameras. Motivated by the mentioned tech-
nologies, several works efficiently combine them to generate
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a semantically segmented 3D map [10–12] and have
achieved impressive results. However, such methods suffer
from the oversegment problem or lack of proper data as-
sociation strategy, and meanwhile, they are computationally
inefficient, making them unsuitable for the real-time ap-
plications. Some other works focus on processing large-scale
video retrieval [13–15], but they mainly deal with the entire
scene.

(is paper intends to incrementally build instance-ori-
ent semantic 3D maps via RGB-D cameras in real time.
Without the need of a prior knowledge, the proposed
mapping system contains optimized semantic information
about the individual object instances from the scene and,
meanwhile, integrates semantic probabilities from multiple
viewpoints to a globally consistent 3D semantic map. (e
entire algorithm is basically carried out in three steps. First,
RGB images captured by cameras undergo the Mask
R–CNN [1] algorithm to generate 2D instance and class
predictions. In the second step, the proposed system asso-
ciates prediction results online into corresponding point
cloud mapping by the SLAM system. To improve the in-
stance accuracy, we utilize a Gaussian mixture model with
the EM algorithm to cluster and optimize semantical labels
predicted from the convolutional neural network. In the last
step, we propose a voxel-based Bayesian update strategy
towards incremental class update across different frames,
which will be incorporated into the truncated signed dis-
tance function- (TSDF-) based reconstruction maps for the
purpose of accelerating the computational efficiency and
reducing time complexity.

(e major difference between our system and other
works [10, 16, 17] is that we employ the projection relation
between voxel and pixel directly to obtain instances semantic
in the 3D map instead of using the combination between
geometry segmentation on depth images and 2D instance
segmentation methods. Doing so helps avoid oversegment
with no computation increased. Moreover, our goal is to
build an instance-level indoor map consisting of recon-
structed object instances with semantic annotation. So,
unlike many other dense reconstructions works [18–20] that
pursuit accurate instance segmentation, the proposed ap-
proach aims to achieve the real-time performance, facili-
tating real-life robotic applications.

To sum up, the main contributions of this work are as
follows:

(i) A novel incremental instance-oriented mapping
system that utilizes an RGB-D camera to obtain
sequential images and represents as a TSDF-based
voxelization map

(ii) An optimization method based on a Gaussian
mixture model that clusters the point cloud, further
integrating TSDF volumes that contain semantic
class and instance IDs

(iii) A voxel-based Bayesian update strategy that tracks
and updates class probability distribution across
different frames to perform consistent global scene
mapping

(iv) Qualitative and quantitative analysis of the pro-
posed system on the SceneNN [21] dataset in
multiple scenarios

2. Related Works

2.1. Dense 3D Scene Reconstruction. We can roughly divide
3D reconstruction technologies based on RGB-D images
into three categories: feature-based methods, voxel-based
methods, and surfel-basedmethods. Feature-basedmethods,
in general, involve front-end frame-to-frame motion
through feature matching and back-end “loop closing”
constraints from a heuristic search to perform pose graph
optimization. (e first popular open-source system was
RGB-D SLAM [22] proposed by Endres et al. Subsequent
similar methods include DVO-SLAM by Kerl et al. [23] and
ORB-SLAM2 by Mur-Artal and Tardos [24]. Although such
methods directly consume the point cloud, they could cause
incomplete instance segmentation in object-level mapping
tasks. Voxel-based methods, such as [8, 25, 26], integrate all
depth data of the sensor into a volume model from a 3D
space, which uses the iterative closest point (ICP) algorithm
to track camera poses and reconstruct dense 3D scene maps.

2.2. Semantic Instance-Aware Mapping. Previous methods
have addressed the task of mapping at the level of individual
objects. Civera et al. [27] used a monocular SLAM system to
create 3D environment maps and then inserted the modeled
object from the built database. Similarly, Pavel et al. [28] also
required priori 3D object models. Although these methods
perform object-oriented semantic mapping, the requirement
for priori knowledge of modeling objects makes it difficult
for them to be applied in real-time human-robot interaction.

Recent developments in deep learning have also enabled
the integration of rich semantic information within real-
time simultaneous localization and mapping (SLAM) sys-
tems. (e work in [11] fuses semantic predictions from a
CNN into a dense map built with a SLAM framework.
However, conventional semantic segmentation is unaware
of object instances, i.e., it does not disambiguate between
individual instances that belong to the same category. (us,
the approach in [11] does not provide any information about
the geometry and relative placement of individual objects in
the scene. A number of other works have addressed the task
of detecting and segmenting individual semantically
meaningful objects in 3D scenes without predefined shape
templates [10, 16, 17, 27, 29–34]. Runz et al. [32] employed
the object detector for the first step and then updated the
class probabilities of each element consisting of the
reconstructed 3D map. As it has a huge time complexity,
these methods suggested to only extract semantic infor-
mation on a subset of the input frames; McCormac et al. [29]
utilized the same prediction model but aims at extending the
SLAM system by means of object-level pose graph opti-
mizations and relocalizations. [16, 17] are similar to that, but
they employ depth segmentation methods to segment 3D
instances, which led them to take different approaches and
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reach different goals. [22] Proposes an object-oriented
mapping system that combines a Single Shot MultiBox
Detector (SSD) [6] with ORB-SLAM2 [24]. (ere are also
several object-oriented dense 3D mapping methods [30, 31],
the main idea of which is to obtain 2D semantic information
by a CNN framework, create associated relationships be-
tween 2D semantic and 3D mapping, and then utilize
conditional random fields (CRFs) as a postprocessing step to
refine the results of semantic segmentation. Another project
worth mentioning is [35]. Although it also combines a CNN
and SLAM to generate 3D semantic mapping, it adds a
recurrent neural network (RNN) [28] in data association.

2.3. Instance Detection and Segmentation. Nowadays, with
the rapid development of the convolutional neural network,
semantic-related tasks in real-world environments have
shown some remarkable results. Beginning with the object
detection [3, 28] in RGB images, soon afterwards, Mask
R–CNN came out which is further able to predict a per-pixel
semantically annotated mask for each of the detected in-
stances, achieving state-of-the-art results on the COCO [36]
instance-level semantic segmentation task. Other similar
works that are worth to mention, including YOLO [5] and
SSD [6], deliver an outstanding performance in terms of
accurately segmenting instances. With the help of 2D se-
mantic information, we explore semantical objects in 3D
environments.

3. Materials and Methods

(e architecture of our system is shown in Figure 1. Each
RGB image from the incoming video stream is processed
with the Mask R–CNN framework to detect a semantically
annotated segmentation mask, then, along with the corre-
sponding depth image, is initialized to the point cloud using
the projection method between coordinate frames followed
by an optimization strategy using a Gaussian mixture model
(GMM) for a more accurate instance label. Next, we employ
a voxel-based Bayesian update method to merge class se-
mantic or instance IDs across different frames. Finally, we
complete the construction of an incremental instance-ori-
ented semantic mapping system. Details of the proposed
system are discussed in the following sections.

3.1. Semantic Instance Segmentation Method. In order to
annotate and segment the 3D instances in the scene, we
needed to combine the 3D point cloud with its corre-
sponding semantic class distribution and instance IDs. To
label objects, we first employed the Mask R–CNN as an
object detector to the input image. Mask R–CNN achieved
real-time performance while showing high accuracy on the
computer vision benchmarks, including the Microsoft
COCO dataset [37] and the Pascal VOC collection of
datasets [38]. Given the input image It( u

→
),

u
→

� (x, y) ⊂ Z2, 0≤x<W, 0≤y<H, Mask R–CNN pro-
vides a set of bounding boxes as bi, i ⊂ N, 1≤ i≤M, and
class probabilities are assigned to each bounding box as
P(ci | Ik

) ⊂ R by letting M ∈ R100∗15∗15 be the number of

bounding boxes and cεR100 be the class category. Note:
although there is a good deal of related research, we chose
Mask-R-CNN to achieve the task because of its stability and
ability to obtain good results on different datasets. (is way,
our system can theoretically handle another similar network
for an acceleration or accuracy request.

3.2. Incremental 3D Semantic Instance-Oriented Update

3.2.1. 2D-3D Association with Semantic Information. One
requirement of the proposed system is to know the camera
pose in the target scene. In view of real-time and computing
costs, we chose voxel hashing [9] as our SLAM system. (is
takes advantage of volumetric approaches to achieve dense
surface representation while using spatial hashing tech-
niques to avoid memory overhead. (e proposed system
takes both RGB and depth information as the input and
incrementally project them into a single 3Dmodel to achieve
the volumetric reconstruction. For each arriving RGB-D
frame, the 6-DoF camera pose is estimated by combining
ICP [36] and RGB alignment, denoted as TWC ∈ SE(3),
where W represents the world coordinate and C represents
the camera coordinate. (en, we employ the homogeneous
transformation matrix T−1

WC(k) � TCW(k) to project the
transformation from the world coordinate to the camera
coordinate. In our case, instead of integrating the original
incoming RGB image, the proposed system takes the se-
mantic image Ik that was processed through the Mask
R–CNN as the input, along with corresponding Dk, and then
generates the 3D reconstruction with the estimated camera
pose. (erefore, the initial point cloud with instance IDs has
been generated.

3.2.2. Instance Refinement via the Gaussian Mixture Model.
After the rough 2D-3D data association of the SLAM system,
point cloud data instances are initially formed, but some
false matching points occurred during the projection pro-
cess. In order to obtain more accurate object representation,
we optimized the objects by formulating an accelerated
generative model in the form of a GMM with a highly
parallel hierarchical expectation-maximization (EM) algo-
rithm, inspired by [39]. Also, there is an alternative clus-
tering approach which can be used for optimization, such as
ROC algorithm [12]. As a cluster solution for 3D point cloud
data, the advantages of GMM are suited to our work. First,
the projected data are embedded into the covariance ma-
trices of GMM, which provides an effective way of pro-
cessing noisy data. Second, because the storage requirements
for a GMM are much lower, the system’s ability to perform
in real time is not affected. However, due to the compu-
tational complexity of the GMM, processing is relatively
slow. Normally, the processing method would employ a k-
means algorithm to run on the sample set. Because our
system already implements 2D-3D association using the
projection method of the SLAM system, it generates the
corresponding 3D cloud with semantic and instance an-
notations. (is is equal to the process of the sample set, and
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therefore, we can optimize the point cloud data clusters
directly with the GMM.

(1) Model Definition. After masks mk
j are produced by the

Mask R–CNN integrated into depth map Dk, we obtained a
corresponding point cloud X � x1, . . . , xN􏼈 􏼉 of size N. We
assume that there are K classes that can be altered according
to the demands of different scenarios. (e latent variable
represents as Z � z1, . . . , zN􏼈 􏼉, which is a discrete random
variable related to sampled point cloud X. In our case, Z

indicates classes, the purpose is to index which observed
variable belongs to which Gaussian distribution, and the
probability of Z represents as p(Z) � p1, . . . , pk􏼈 􏼉. For our
formulation, the parameter Θ � pk, μk,Σk􏼈 􏼉 that needs to be
estimated with pkεp(Z) represents as class probability and
μk and Σk being the mean and covariance matrix, respec-
tively. Our function describing the generation of incoming
point cloud data is a linear combination of Gaussians:

p(X |Θ) � 􏽙
N

i�1
􏽘

K

k�1
pkN xi

􏼌􏼌􏼌􏼌 μk,Σk􏼐 􏼑, (1)

with 􏽐
K
k�1 pk � 1, and the point cloud data are sets of in-

dependent and identically distributed (iid) points.

(2) Executive Parameters. In our case, we are trying to
maximize the overall likelihood of a set of Gaussians pro-
ducing a given point cloud. (e general way to compute the
maximizer of a parameter is maximum likelihood estima-
tion, but it is only suitable for one Gaussian distribution-
contained problem; otherwise, it would not provide an
analytical solution. (at is why we chose to solve this
problem using the EM algorithm, which employs an iterative
approach to finding the maximizer of a parameter.

Given initial value θ(0), the function represents in E-step:

E
Z∣X,θ(t) � 􏽚

1

Z
log[p(X, Z ∣ Θ)]p Z ∣ X, θ(t)

􏼐 􏼑dz

� 􏽘
K

k�1
􏽘

N

n�1
log pkN xi

􏼌􏼌􏼌􏼌 μk,Σk􏼐 􏼑􏽨 􏽩

pzi
N xi
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zi
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zi

􏼒 􏼓

􏽐
K
k�1 p

(t)
k N xi

􏼌􏼌􏼌􏼌 μ(t)

k
,Σ(t)

k

􏼒 􏼓

.

(2)

In the M-Step, we maximize the expected log-likelihood
with respect to θ. (e objective function is

θ(t+1)
� argmaxEZ ∣ X, θ(t)

. (3)

Given a fixed set of expectations, one can solve for the
optimal parameters at iteration t:

p
(t+1)
k �

1
N

􏽘
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􏼌􏼌􏼌􏼌 xi, θ
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(4)

Mask R-CNN

Hashing voxel

Data association

GMM optimization

Incremental class 
update

2D semantic mask prediction

Instance-oriented semantic 
mappingRGB-D cameras

Figure 1: Overview of our incremental instance-level 3D scene reconstruction method. From continuous frames of an RGB-D sensor, our
system performs on-the-fly reconstruction and 3D semantic prediction. All of our processing is performed on a frame-by-frame basis in an
online fashion, thereby making it useful for real-time applications.
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3.2.3. Voxel-Based Bayesian Class Update Approach.
Because frame-wise segmentation processes each incoming
RGB-D image pair independently, it lacks any spatiotem-
poral information about corresponding segments and in-
stances across the different frames.(erefore, we propose an
incremental voxel-based Bayesian class update approach.
According to Nießner et al. [9], given a series of RGB images
I1, . . . ,Ik with semantic and instance IDs, as discussed in
Section 3.2.1, and corresponding depth images D1, . . . , Dk,
volumetric representation divides them into a small square
called a voxel, v, which stores information such as location,
color, and class. In order to update the class distribution of
each voxel according to the given classes of pixels from the
2D images, we must first find the correspondence between
the voxel and the pixel. (is is performed by the SLAM
system. (erefore, for the current incoming frame Ik, the
world coordinate of the corresponding voxel, vk( u

→
), in a 3D

map is computed by using backprojection:

vk( u
→

) � Dk( u
→

)K
− 1

_u, (5)

where K denotes the intrinsic camera parameter and _u denotes
the corresponding homogeneous coordinate of the pixel’s u

→.
Each voxel is then projected onto the RGB image plane

via camera projection as follows:

u
→

(v, k) � π T
−1
WC(k)vk( u

→
)􏼐 􏼑. (6)

When a new imageIk comes in, the system feeds it to the
Mask R–CNN to segment n masks denoted as
mk

j , j � 1, 2, . . . , n. Mask R–CNN outputs masks that may
overlap each other, sowe do not directly gain a class distribution
per pixel, as in semantic segmentation.(erefore, we update the
class distribution mask by mask. With the relationship between
each pair of voxel and pixel computed from (6), we update the
class distribution by an optimized recursive Bayesian update
algorithm [11], which fits better with our system:

P cv � ci

􏼌􏼌􏼌􏼌I1, . . . ,Ik􏼐 􏼑 �
1
Z

P cv � ci

􏼌􏼌􏼌􏼌I1, . . . ,Ik−1􏼐 􏼑P cv � ci

􏼌􏼌􏼌􏼌Ik􏼐 􏼑

�
1
Z

P cv � ci

􏼌􏼌􏼌􏼌I1, . . . ,Ik−1􏼐 􏼑 􏽙

n

j�1
P c

u
→

(v, k)
� ci

􏼌􏼌􏼌􏼌 m
k
j􏼒 􏼓.

(7)

(e instance probability distribution update procedure
is similar. Nonetheless, the two distributions are updated
independently. We store a list of instance probabilities
P(Iv � Ii) for each voxel v with I representing instance IDs.
We update the instance distribution according to the seg-
mentation result given by the Mask R–CNN. (e general
update function for instance distribution adopts a recursive
Bayesian update scheme as well:

P Iv � Ii

􏼌􏼌􏼌􏼌I1, . . . ,Ik􏼐 􏼑 � P Iv �Ii

􏼌􏼌􏼌􏼌I1, . . . ,Ik−1􏼐 􏼑

􏽙

n

j�1
P I

u
→

(v,k)
� Ii

􏼌􏼌􏼌􏼌 m
k
j􏼒 􏼓.

(8)

3.3. Map Integration. (e instance segmentation in the 3D
format mentioned above achieves associate class

probabilities over multiple camera views. After voxel-based
class update approach, every voxel’s instance ID has been
updated as Iv. For map integration, we attempt to integrate
3D semantic instances into a globally volumetric map with
greater speed. To this end, each clustered instance is pro-
gressive and integrated into a TSDF-based voxel grid, which
is measurement from a depth map, Dk, into a volume, V. V

stores at each discrete voxel location, v � (vx, vy, vz), both
the current normalized truncated signed distance value, its
associated weight, and instance class Iv. And we use raycast,
the main method for integrating information from sensor
data into TSDF for tracking, data association, and visuali-
zation to render depth, normals, vertices, RGB, and object
indices as shown in Figure 2.(e fusion part of our system is
incorporated with Voxblox [40], which is a real-time
framework of 3D reconstruction based on volumetric TSDF
representation. (e main benefit of the Voxblox framework
is that it has been extended to the label volume, which can
store the instance label related with each voxel in the TSDF
grid. At each view, the set of point clouds representing the
3D object with semantics is integrated into the voxel-based
representation, and our system ensures consistency among
the instance labels across different frames.

4. Results and Discussion

We evaluated the performance of our system on an Ubuntu
operating system with an Intel Core i5-6500 CPU at 3.2GHz
and an Nvidia GeForce GTX1080 Ti GPU with 11GB of
RAM. Our system is built on top of ROS open-source
middleware. (e core function is implemented in Python
and uses TensorFlow for instance predictions.

(eMask R–CNNuses ResNet-101 based on the publicly
available implementation fromMatterport Inc. [41], with the
pretrained weights provided for the Microsoft COCO
dataset [37].

(e input stream is typically a 640× 480 resolution RGB-D
video. To display the ability of progressive building of instance-
aware maps per frame, we perform a Mask R–CNN thread
simultaneously with 3D reconstruction upon every frame.

Although there aremany 3Ddatabases [42, 43] for different
research purposes, we chose the SceneNN dataset [21] to
evaluate the 3D object accuracy of the proposed instance-level
semantic mapping system, which contains 100 indoor scenes,
including offices, bedrooms, living rooms, and kitchens, and
scenes with repetitive objects; the SceneNN dataset also pro-
vides the annotations with fine-grained information, e.g., axis-
aligned bounding boxes, oriented bounding boxes, and object
poses. It is suited to the task of reconstruction of the instance-
oriented semantic mapping.

4.1. Run-Time Performance. To demonstrate the efficiency
of our system, we analyzed its run-time performance and
compared it with other state-of-the-art systems, as shown
in Table 1. (ese systems are mainly concentrated on
object-level mapping tasks. Our system achieved a speed of
10.8 Hz while performing all processing components on
every input frame, thereby outperforming other similar
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systems in run-time tests. Compared to the process for
utilizing the semantic information from the input image in
conventional methods [16, 29, 32], the proposed system

has substantially reduced the computational time by
exploiting a voxel-based class probability update scheme.
All systems were tested on the same sequences of the
SceneNN dataset.

Figure 3 shows the evaluation of the execution times
upon each individual stage of the proposed incremental
instance-level mapping system averaged over five sequences
in the SceneNN dataset. Input RGB-D images have 640× 480
resolution. Mask R–CNN runs on the GPU, while the rest of
the components run on the CPU. (e trend lines in the
figure showed the data association module running under
low rate, which the proposed method effectively improves
the operation speed of the system; GMMmodule maintained
on a stable running rate; the map integration module slowed
down after 500 frames, ensuring the real-time demand of the
system. Note that, by speeding up the system, it is possible to
change to a faster object detector network, and the pro-
cessing of map fusion and Mask R–CNN can occur
simultaneously.

4.2. Accuracy. Several recent research projects have focused
on semantic instance segmentation of 3D scenes. (e ma-
jority of these, however, takes as the input the full recon-
structed scene, either processing it in chunks or directly as a
whole. Because such methods are not constrained to
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Figure 2: Map integration of the proposed system, showing the interaction between multiple layers and with incoming sensor data through
integrators.

Table 1: Comparison of run-time performance. FQ denotes the frequency recognition of when the input frame is performed, and the class
probabilities of the 3D map are updated.

Method Representation FQ FPS
SemanticFusion [11] Dense Every 10 frames Under 8Hz
Hermans et al. [34] Dense Every 6 frames 3Hz
PanopicFusion [44] Dense Every 10 frames 4.3Hz
Voxblox++ [16] Instance-oriented Every frame 1Hz
Pham et al. [45] Instance-oriented Every frame 1Hz
Fusion++ [29] Instance-oriented Every frame 4Hz
Ours Instance-oriented Every frame 10.8Hz
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Figure 3: Measured execution times of each stage of the proposed
incremental instance-oriented mapping system, averaged over the
5 evaluated sequences from the SceneNN [21].
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progressively integrating predictions from partial observa-
tions into a global map but can learn from the entire 3D
layout of the scene, they are not directly comparable with our
work. Among the frameworks that study online, incremental
instance-aware semantic mapping, we chose Grinvald et al.
[16] as a comparison. Because we relied on a Mask R–CNN
model trained on the 80 Microsoft COCO [38] object classes
to get the instance IDs, we evaluated the segmentation ac-
curacy on the nine object categories that were common to
the SceneNN dataset [21]. (e proposed approach was
evaluated on the 10 indoor sequences from the SceneNN
dataset, the same as Grinvald et al. [16] reported instance-
level segmentation results. (e results in Table 2 demon-
strate that our approach achieves better accuracy in most
sequences compared with [16], which is one of the advanced
methods focused on real-time incremental instance-aware
3D mapping. It is worth mentioning that further comparing
it with [16], our system runs faster and is more suitable for
human-robot interaction.

To expand the evaluation of the accuracy of our system,
we compared class-averaged mean average precision (mAP)
values over the ten evaluated categories with [16, 45]. (e
results in Table 3 show that the proposed approach out-
performs the baseline on six sequences. [45] focuses on
building incremental 3D semantic maps of indoor scenes;
although it is different from our system, there is an ex-
periment designed for the accuracy of instance classes, and
the author explained they only used a simple clustering
algorithm to obtain instance semantic so that it can be used
as a baseline to compare with similar systems. As the results
shown in Table 3, our system highly outperformed in eight
scenes compared to their system. Compared to Voxblox++,
the proposed system exceeded in six sequences, which

proved the advancement of our system. However, it did not
perform better in sequences 16, 61, 96, and 206, through
analyzing the categories in those sequenced, such as bed and
sofa, had more clutter appearances, using the GMM model
to optimize might cause oversegment which reduced ac-
curacy. Also, Voxblox++ uses the geometric segmentation
method which is better to segment objects with more details,
such as chair. We will improve the algorithm in the future.

Furthermore, we showed the qualitative results about the
proposed framework on the SceneNN dataset. We presented
the incremental instance-oriented 3D semantic mapping
generation process in Figure 4. As can be seen, the left image
showed the respective progressive semantic segmentation
results of our method, the middle image shows the final
mapping results, and the right one shows the ground truth
segmentation, and the 3D shapes of the object instances,
such as chair, sofa, and desk, were incrementally generated

Table 2: Comparison to the 3D semantic instance segmentation approach from Voxblox++ [16] proposed by Grinvald et al. For 10
sequences from the SceneNN dataset [21], the per-class average precision (AP) is computed using an intersection over union (IoU) threshold
of 0.5 over the predicted 3D segmentation masks.

Seq. ID Method Bed Chair Sofa Table Books Refrigerator TV Toilet Bag

011 Voxblox++ — 75 50 100 — — — — —
Ours — 68.7 67 100 — — — — —

016 Voxblox++ 100 0.0 0.0 — — — — — —
Ours 75 0.0 0.0 — — — — — —

030 Voxblox++ — 54.4 100 55.6 14.3 — — — —
Ours — 76 100 50 8.3 — — — —

061 Voxblox++ — — 100 33.3 — — — — —
Ours — 59.9 33.3

078 Voxblox++ — 33.3 — 0.0 47.6 100 — — —
Ours — 50 — 100 54.2 75

086 Voxblox++ — 80 — — 0.0 — — — 0.0
Ours — 66.7 — — 25 — — — 50

096 Voxblox++ 0.0 87.5 — 37.5 0.0 — 0.0 — 50
Ours 0.0 55.7 — 39.5 11.1 — 0.0 — 68.7

206 Voxblox++ — 58.3 100 60 — — — — 100
Ours — 60 100 55 — — — — 100

223 Voxblox++ — 12.5 — 75 — — — — —
Ours — 16.7 — 75 — — — — —

255 Voxblox++ — — — — — 75 — — —
Ours — — — — — 75 — — —

Table 3: Comparison to the 3D semantic instance-segmentation
approach from Voxblox++ [16] and Pham et al. [45] on class-
averaged mAP value.

Sequence ID Voxblox++ [16] Pham et al. [45] Ours
011 75.0 52.1 78.6
016 33.3 34.2 25.0
030 56.1 56.8 58.6
061 66.7 59.1 46.6
078 45.2 34.9 69.8
086 20.0 35.0 47.2
096 29.2 26.5 26.7
206 79.6 41.7 78.0
223 43.8 40.9 45.8
255 75.0 48.6 75.0
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by our system. Because our system is designed to segment
instances from the scene, the color of the instance is different
from the ground truth, in which the color is assigned
according to the classes. As our proposed mapping system
focuses primarily on recovering instances of the scene, we
have chosen to ignore the background and floor.

4.3. Ablation Analysis. To further illustrate the perfor-
mance of our GMM model pertaining to the optimized
instance cluster, we carried out an ablation analysis to
evaluate the effects of accuracy of instance, as shown in
Figure 5. Circle A shows that, after GMM optimization,
the boundaries of the instance are clearer, and the

Figure 4: Generation process of incremental instance-oriented semantic mapping in real time.

Ground truthProposed system with GMM 
optimization

Proposed system without GMM 
optimization

A

A

B B

C C

Figure 5: Ablation study on the effects of GMM optimization. (e comparison shows the refinement help to improve the segmentation
accuracy.
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segmentation is more accurate. And circle B displays that
two different instances are segmented after GMM opti-
mization. (e same optimization result is showed in C,
and the boundaries of different objects are clearer. (is
proves that cluster operation in the point cloud based on
predicted class information is valid in dense semantic
instance-level mapping.

5. Conclusions

Our proposed system is an efficient instance-oriented se-
mantic mapping system. We employed a projection method
in the SLAM system that could rapidly associate 2D “masks”
and the corresponding depth images to generate a 3D point
cloud with instance labels and then used a cluster optimized
algorithm to resolve the confusion if projection mismatch
occurred. For the 3D reconstruction, the resulting instance-
aware semantically annotated volumetric maps are expected
to provide benefits in navigation and manipulation planning
tasks.

However, as mentioned above, because our system fo-
cuses only on recovering 3D instances of an unknown scene,
we overlooked the structure of the surrounding environ-
ment, such as walls and floors. In the future, we hope to
come up with a method that could solve this problem in real
time. And also, our system can be used in different appli-
cations, such as [44, 46–48]. We intend to research how the
segmented instances can serve as semantic landmarks to
promote the accuracy of the SLAM system in order to attain
a full semantic SLAM system.
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In the multilabel learning framework, each instance is no longer associated with a single semantic, but rather with concept
ambiguity. Specifically, the ambiguity of an instance in the input space means that there are multiple corresponding labels in the
output space. In most of the existing multilabel classification methods, a binary annotation vector is used to denote the multiple
semantic concepts. +at is, +1 denotes that the instance has a relevant label, while −1 means the opposite. However, the label
representation contains too little semantic information to truly express the differences among multiple different labels. +erefore,
we propose a new approach to transform binary label into a real-valued label. We adopt the low-rank decomposition to get latent
label information and then incorporate the information and original features to generate new features. +en, using the sparse
representation to reconstruct the new instance, the reconstruction error can also be applied in the label space. In this way, we
finally achieve the purpose of label conversion. Extensive experiments validate that the proposed method can achieve comparable
to or even better results than other state-of-the-art algorithms.

1. Introduction

Classification is a high-frequency vocabulary in machine
learning. We often say that classification generally refers to
single-label classification, that is, an object is given a cate-
gory. In multilabel learning, the meaning of classification is
multilabel classification. Specifically, an instance is associ-
ated with more than one class label simultaneously. Mul-
tilabel learning has many application fields, such as web
mining [1–3], text categorization [4–6], multimedia contents
annotation [7–11], and bioinformatics [12–14].

In recent years, the field of multilabel learning has
gradually attracted significant attention. A variety of algo-
rithms have been proposed, which can be basically divided
into two categories [15]: algorithm adaptation and problem
transformation. +e core idea of the former is to transform
the previous supervised learning algorithm so that it can be
used to solve multilabel learning problems, such as ML-kNN
[16], while the latter is to convert the multilabel learning

problem into other known problems to solve, such as BR
[17]. Some multilabel algorithms solve the multilabel
learning problem without using the correlation among
different labels, such as LIFT [18]. +e main idea of the LIFT
is to obtain the identifying characteristics of each label and
build a new feature space. It first obtains the positive and
negative examples corresponding to each label and then
performs cluster analysis on the corresponding set of ex-
amples to obtain the cluster centers and finally uses the
cluster centers to construct the label-specific features. In the
process of solving the multilabel learning problem, LIFT
does not consider label correlations; hence, it can be
regarded as a new feature conversion method. Some algo-
rithms consider the label correlation [19–25] for solving the
multilabel learning problem. For example, the basic idea in
[20] is to model the correlation among labels based on the
Bayesian network and to achieve efficient learning by using
the approximate strategy. Indeed, the rational use of the
correlation among labels can effectively boost the
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performance of multilabel classification. For example, if an
image has labels “football” and “rainforest,” it is likely to be
labeled “Brazil”. It has a low probability of being labeled
“river” if a document is annotated with “desert”. +erefore,
how to effectively explore and make full use of label cor-
relations is a crucial problem for multilabel learning.

In fact, for an object with multiple labels, the importance
of the related labels is still different. Although the impor-
tance of each label is not given directly, we can judge the
importance of each label through external observation.
Generally speaking, the larger the proportion in the original
object, the more important the corresponding label. Ac-
cordingly, how to accurately express the importance of the
label is also a challenge.

+e method in [26] decomposes the original output
space in order to obtain potential label semantic informa-
tion, which can effectively increase the ability of the sub-
sequent feature selection. Motivated by the decomposition
of the label space in [26], in the paper, we propose a method
named label low-rank decomposition (LLRD) for multilabel
classification. +e LLRD algorithm first performs low-rank
decomposition on the label matrix, then combines the
decomposed results with the original features to form new
features, and mines the structural information of the feature
through sparse reconstruction. +ird, it transforms the bi-
nary label into the real-valued and finally converts the
classification problem into a regression problem.

+e contribution of this paper is as follows:

(1) Utilize low-rank decomposition to reveal the global
label correlations and achieve good classification
results

(2) Combine the low-rank decomposition results with
the original features reducing the information loss in
the subsequent label transformation process

(3) Carry out extensive experiments on different field
datasets to verify the effectiveness of different
algorithms

2. Materials and Methods

2.1. Datasets. In this experiment, a total of 13 datasets were
used covering four fields: audio, text, image, and biology. All
these data resources can be collected from Mulan (http://
mulan.sourceforge.net/datasets.html) and Meka (http://
meka.sourceforge.net/#datasetsru). Table 1 gives the spe-
cific details of the datasets. +e number of instances, label
space, and the dimension of features are denoted by |S|, L(S),
andD(S), respectively. LDen (S) is the density of label, which
is the result of the normalization of label cardinality
LCard(S).

2.2. Notations. Formally, suppose X � Rd be the d-di-
mensional input space and Y � l1, l2, . . . , lq􏽮 􏽯 denote the
output domain of q class labels. LetD � (xi, yi)|1≤ i≤p􏼈 􏼉 be
the multilabel training dataset with p examples, where
xi ∈ X is a d-dimensional instance vector and yi ⊆Y is the
label vector corresponding to xi. Let

X � [x1, x2, . . . , xp] ∈ Rd×p represent the input data matrix,
and Xi � [x1, x2, . . . , xi−1, xi+1, . . . , xp] denote the matrix
from which xi is removed from X. Let Y �

[y1, y2, · · · , yp] ∈ −1, 1{ }q×p is a matrix composed of label
vector.

2.3. 3e Process of LLRD. First, LLRD decomposes the label
matrix with low-rank method. In the framework of multi-
label learning, label matrix is often considered to be low rank
[27, 28] due to the existence of label correlations. Low-rank
structure is also a way to explore the global relationship
between labels. +erefore, we can perform low-rank de-
composition on the label matrix. Assuming that the rank of
Y is r< q, Y can be written as follows:

Y≃AB, (1)

where A ∈ Rq×r represents the dependency of B ∈ Rr×p on
the original label space and B is a mapping of the original
label and also contains label correlation information.

Second, we combine B with X to form a new feature
space N � [X; B][n1, n2, . . . , np] � ∈ R(r+d)×p. In order to
reveal the inner structure of the feature space, we use sparse
reconstruction [29] method to model the relationship be-
tween the training instances. Specifically, we use W[sij]�p×p

to represent the training object relationship matrix, where sij

is a measure of the relationship between ni and nj. Let Si �

[s1i, . . . , si− 1,i, si+1,i, . . . , spi]
T denote the corresponding

sparse reconstruction coefficient related to ni. According to
the sparse representation theory, Si can be calculated as
follows:

min
Si

NiSi − ni

����
����
2
2+η Si

����
����1, (2)

where Ni � [n1, n2, . . . , ni−1, ni+1, . . . , np] represent a com-
bination of all training instances except ni. We can solve the
above problem using alternating direction method of
multiplier [30].

+ird, we transform the original binary label set yi �

(li1, li2, . . . , liq)T associated with any xi in the training set
into a real-valued label vector ci � (ci1, ci2, . . . , ciq)T, where
lij ∈ −1, 1{ } and cij ∈ R. Because the real value contains
more information, and through the size of the value, we can
also infer the importance of the label. Since the input space

Table 1: Properties of the experimental datasets.

Datasets |S| D(S) L(S) LCard(S) LDen(S) Domain
cal500 502 68 174 26.044 0.150 Audio
Emotions 593 72 6 1.868 0.311 Audio
Medical 978 1449 45 1.245 0.028 Text
Llog 1460 1004 75 1.180 0.016 Text
Image 2000 294 5 1.236 0.247 Image
Scene 2407 294 5 1.074 0.179 Image
Yeast 2417 103 14 4.237 0.303 Biology
Slashdot 3782 1079 22 1.181 0.054 Text
rcv1subset1 6000 500 101 2.880 0.029 Text
rcv1subset2 6000 500 101 2.634 0.026 Text
rcv1subset3 6000 500 101 2.614 0.026 Text
rcv1subset4 6000 500 101 2.484 0.025 Text
rcv1subset5 6000 500 101 2.642 0.026 Text

2 Discrete Dynamics in Nature and Society

http://mulan.sourceforge.net/datasets.html
http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/#datasetsru
http://meka.sourceforge.net/#datasetsru


and the label space are often interrelated, it is assumed that
the relationship between ni and nj in the input space also
exists between ci and cj in the label space. Accordingly, the
representation errors of different elements in the label space
can be written as follows:

min
C

􏽘

p

i�1
ci − 􏽘

p

j�1
sijcj

����������

����������

2

2

s.t. k1 ≤ lijcij ≤ k2 (1≤ i≤p, 1≤ j≤ q),

(3)

where c � [c1, c2, . . . , cp]. +e above quadratic program-
ming problem can be solved by mature tools related to
quadratic programming. +e original multilabel classifica-
tion problem can be transferred into a multioutput re-
gression problem. +ere are many solutions [31] to solve it.
+e learning of LLRD method contains three phases: low-
rank decomposition, sparse reconstruction, and multioutput
regression. +e time complexity of low-rank decomposition
and sparse reconstruction is O(d2p + d3). If we choose
multioutput support vector regression to realize the clas-
sification, the time complexity is O(qp3). +us, the total
complexity of LLRD is O(d2p + d3 + qp3).

3. Results and Discussion

3.1. Experiment Setup. In this subsection, we investigate
comparisons between our LLRD and other six multilabel
learning methods on six multilabel evaluation criteria,
which include two categories: example-based and label-
based metrics [32]. +e example-based metric is to first
obtain the performance of the learning system on each test
example and finally returns the average of the entire test set.
Unlike the above example-based metric, the label-based
metric first returns the performance of the system on each
label and finally gets the macro/microaveraged F1 value on
all labels.

In this paper, one-error, coverage, ranking loss, and av-
erage precision are employed for example-based

performance evaluation. And macroaveraging and micro-
averaging F1 are label-based metrics. For example-based
metrics except average precision, as their values increase, it
means that the performance of the algorithm is worse. For
the remaining metrics, their values are proportional to the
performance of the algorithm.

Let T � (xi, yi)􏼈 􏼉
m
i�1 ⊂ R

d × +1, −1{ }q be the multilabel
test set and f(x, l) can be seen as the confidence of l being
the corresponding label associating with x. In addition,
f(x, l) can be converted into a ranking function rankf(x, l).
If f(x, l1)>f(x, l2) holds, then the corresponding ranking
function has rankf(x, l1)< rankf(x, l2).

+e six evaluation criteria for the algorithm used in the
paper are defined as follows:

(1) One-error:

one-error(f) �
1
m

􏽘

m

i�1
argmaxl∈Yf xi, l( 􏼁􏽨 􏽩 ∉ yi􏽨 􏽩. (4)

(2) Coverage:

coverage(f) �
1
m

􏽘

m

i�1
maxl∈yi

rankf xi, l( 􏼁 − 1. (5)

(3) Ranking loss:

rloss(f) �
1
m

􏽘

m

i�1

1
yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

l′, l′′( 􏼁|f xi, l′( 􏼁≤f xi, l′′( 􏼁,􏼈
􏼌􏼌􏼌􏼌

· l′, l′′( 􏼁 ∈ yi × yi􏼉
􏼌􏼌􏼌􏼌.

(6)

(4) Average precision:

avgprec(f) �
1
m

􏽘

m

i�1

1
yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
l∈yi

l′|rankf x, l′( 􏼁≤ rankf xi, l( 􏼁, l′ ∈ yi􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

rankf xi, l( 􏼁
. (7)

(5) Macroaveraging F1:

F1macro(h) �
1
q

􏽘

q

j�1

2TPj

2TPj + FNj + FPj

. (8)

(6) Microaveraging F1:

F1micro(h) �
2􏽐

q

i�1 TPj

2􏽐
q
i�1 TPj + 􏽐

q
i�1 FNj + 􏽐

q
i�1 FPj

, (9)

where FNj, TNj, FPj, and TPj indicate the number of false-
negative, true-negative, false-positive, and true-positive in-
stances with regard to lj.

In order to test the effectiveness of LLRD, we chose six
multilabel learning algorithms MLFE [33], RAKEL [34], ML2
[35], CLR [36], LIFT [18], and RELIAB [37] for performance
comparison. MLFE makes full use of the intrinsic information
in feature space, making the semantics of the label space more
abundant. +e specific parameters of MLFE are set as follows:
ρ � 1, c1 � 1, c2 � 2, and β1, β2, and β3 searched from {1, 2,
. . .,10}, {1, 10, 15}, and {1, 10}. RAKEL is a high-order approach.
+e basic idea of the algorithm is to transform the multilabel
learning problem into integration of multiclass classification
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problem.We use the default settings recommended by RAKEL
algorithm, namely, k � 3, ensemble size n � 2q. For ML2,
respective parameter values are recorded as follows: λ � 1, K �

l + 1 and C1 and C2 selected from {1, 2, . . ., 10}. ML2 is the first
multilabel learning algorithm to attempt to explore manifolds
at the label level. CLR is a second-order problem transfor-
mation method. It solves the problem of multilabel classifi-
cation by using label ranking, in which ranking among labels is
implemented by pairwise comparison.+e associated parameter

ensemble size is set to (
q
2). LIFT uses different feature sets to

distinguish different labels by clustering positive and negative
examples. +e value of ratio parameter r is 0.1, as suggested in
[18]. RELIAB utilizes the implicit relative information of label to
achieve the task of multilabel learning. +e parameters τ and β
take values from {0.1, 0.15, . . ., 0.5} and {0.001, 0.01, . . ., 10},
respectively. For LLRD, η � 1, r can be selected from {1, 2, . . .,
q−1}. In a word, the parameter settings of the comparison al-
gorithm are as recommended in the related papers.

Table 2: Performance of each multilabel algorithm (mean± std. deviation) on the regular-scale datasets.

Comparing algorithms cal500 Emotions Medical Llog Image Scene Yeast
One-error ↓
LLRD 0.136± 0.041 0.248 ± 0.048 0.125 ± 0.031 0.657 ± 0.038 0.244 ± 0.018 0.116 ± 0.019 0.217 ± 0.013
MLFE 0.168± 0.049 0.259± 0.050 0.131± 0.030 0.672± 0.041 0.257± 0.031 0.127± 0.022 0.233± 0.026
LIFT 0.125± 0.049 0.251± 0.027 0.156± 0.041 0.664± 0.034 0.276± 0.026 0.132± 0.012 0.226± 0.021
RELIAB 0.116 ± 0.030 0.255± 0.041 0.163± 0.028 0.754± 0.035 0.342± 0.032 0.258± 0.011 0.255± 0.016
ML2 0.201± 0.090 0.261± 0.045 0.135± 0.032 0.674± 0.051 0.260± 0.027 0.144± 0.019 0.246± 0.034
CLR 0.243± 0.058 0.310± 0.019 0.362± 0.009 0.841± 0.036 0.449± 0.013 0.331± 0.031 0.234± 0.022
RAKEL 0.622± 0.065 0.289± 0.032 0.237± 0.032 0.871± 0.028 0.397± 0.019 0.314± 0.030 0.291± 0.031
Coverage ↓
LLRD 0.774± 0.021 0.282± 0.034 0.029 ± 0.009 0.194± 0.025 0.157 ± 0.010 0.008 ± 0.009 0.447 ± 0.010
MLFE 0.769± 0.024 0.283± 0.030 0.033± 0.010 0.200± 0.027 0.162± 0.018 0.012± 0.008 0.449± 0.011
LIFT 0.753± 0.015 0.271 ± 0.023 0.040± 0.014 0.164± 0.007 0.172± 0.013 0.026± 0.007 0.454± 0.017
RELIAB 0.746 ± 0.019 0.306± 0.020 0.044± 0.013 0.155 ± 0.013 0.185± 0.007 0.114± 0.004 0.457± 0.015
ML2 0.814± 0.033 0.292± 0.044 0.035± 0.013 0.201± 0.026 0.164± 0.009 0.010± 0.007 0.461± 0.016
CLR 0.789± 0.010 0.330± 0.011 0.073± 0.041 0.182± 0.050 0.233± 0.017 0.122± 0.011 0.484± 0.020
RAKEL 0.958± 0.011 0.335± 0.031 0.077± 0.014 0.332± 0.021 0.249± 0.006 0.161± 0.007 0.553± 0.016
Ranking loss ↓
LLRD 0.185± 0.011 0.144 ± 0.028 0.018± 0.007 0.185± 0.022 0.129 ± 0.010 0.042 ± 0.008 0.163 ± 0.008
MLFE 0.188± 0.010 0.146± 0.030 0.014± 0.007 0.191± 0.025 0.134± 0.017 0.046± 0.010 0.167± 0.011
LIFT 0.178 ± 0.008 0.144 ± 0.026 0.029± 0.009 0.148± 0.014 0.148± 0.012 0.054± 0.015 0.164± 0.013
RELIAB 0.182± 0.007 0.165± 0.021 0.026± 0.008 0.134 ± 0.011 0.176± 0.008 0.076± 0.007 0.185± 0.021
ML2 0.205± 0.021 0.153± 0.033 0.011 ± 0.009 0.194± 0.027 0.136± 0.012 0.050± 0.007 0.175± 0.015
CLR 0.231± 0.020 0.181± 0.020 0.072± 0.051 0.137± 0.028 0.241± 0.015 0.098± 0.021 0.196± 0.009
RAKEL 0.359± 0.012 0.213± 0.019 0.066± 0.019 0.281± 0.034 0.244± 0.016 0.155± 0.023 0.243± 0.010
Average precision ↑
LLRD 0.506 ± 0.018 0.819± 0.031 0.905 ± 0.020 0.421 ± 0.033 0.841 ± 0.009 0.934 ± 0.010 0.775 ± 0.008
MLFE 0.490± 0.017 0.812± 0.032 0.901± 0.021 0.410± 0.029 0.835± 0.019 0.928± 0.013 0.766± 0.016
LIFT 0.502± 0.021 0.824 ± 0.024 0.880± 0.030 0.416± 0.031 0.820± 0.018 0.922± 0.008 0.768± 0.018
RELIAB 0.497± 0.016 0.801± 0.021 0.869± 0.020 0.405± 0.041 0.781± 0.009 0.851± 0.008 0.751± 0.010
ML2 0.481± 0.030 0.816± 0.031 0.898± 0.022 0.404± 0.031 0.832± 0.014 0.930± 0.009 0.759± 0.020
CLR 0.425± 0.034 0.770± 0.019 0.695± 0.032 0.312± 0.059 0.722± 0.015 0.801± 0.012 0.755± 0.006
RAKEL 0.343± 0.009 0.772± 0.037 0.798± 0.018 0.228± 0.020 0.731± 0.017 0.777± 0.023 0.717± 0.007
Macroaveraging F1 ↑
LLRD 0.231± 0.026 0.676 ± 0.051 0.736 ± 0.050 0.408± 0.028 0.666 ± 0.024 0.800 ± 0.016 0.420± 0.030
MLFE 0.239± 0.025 0.668± 0.050 0.702± 0.056 0.415 ± 0.041 0.655± 0.021 0.787± 0.015 0.430± 0.024
LIFT 0.179± 0.014 0.651± 0.035 0.694± 0.052 0.392± 0.045 0.624± 0.033 0.788± 0.018 0.377± 0.019
RELIAB 0.288 ± 0.015 0.639± 0.038 0.686± 0.058 0.394± 0.031 0.568± 0.030 0.671± 0.021 0.409± 0.023
ML2 0.226± 0.024 0.656± 0.045 0.686± 0.058 0.382± 0.035 0.652± 0.018 0.783± 0.015 0.438± 0.017
CLR 0.220± 0.017 0.604± 0.032 0.616± 0.118 0.402± 0.056 0.523± 0.027 0.635± 0.013 0.386± 0.016
RAKEL 0.195± 0.010 0.615± 0.030 0.679± 0.037 0.377± 0.054 0.545± 0.018 0.654± 0.012 0.441 ± 0.011
Microaveraging F1 ↑
LLRD 0.325± 0.011 0.692 ± 0.048 0.814 ± 0.030 0.126± 0.027 0.665 ± 0.024 0.792 ± 0.017 0.656 ± 0.011
MLFE 0.384± 0.017 0.683± 0.047 0.785± 0.031 0.137± 0.032 0.653± 0.024 0.781± 0.015 0.643± 0.013
LIFT 0.313± 0.013 0.664± 0.015 0.763± 0.031 0.168± 0.034 0.625± 0.031 0.779± 0.022 0.650± 0.016
RELIAB 0.454 ± 0.011 0.647± 0.038 0.748± 0.024 0.188 ± 0.028 0.562± 0.021 0.639± 0.013 0.631± 0.015
ML2 0.366± 0.013 0.674± 0.042 0.780± 0.021 0.074± 0.031 0.650± 0.019 0.776± 0.018 0.635± 0.018
CLR 0.330± 0.012 0.626± 0.029 0.606± 0.143 0.165± 0.050 0.531± 0.008 0.634± 0.017 0.623± 0.010
RAKEL 0.356± 0.025 0.648± 0.024 0.669± 0.016 0.155± 0.019 0.533± 0.005 0.645± 0.009 0.637± 0.011
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3.2. Experimental Results. For each dataset in our experi-
ment, we adopt the tenfold cross-validation strategy. Our
experimental results are mainly distributed in Tables 2 and 3,
where we record the performance of different algorithms in
different multilabel datasets. Specifically, the average and
standard deviation of the corresponding evaluation criteria
are recorded in the tables. For each evaluation metric, “↓”
indicates “the smaller the better” and “↑” indicates “the
larger the better”. +e best results are shown in bold form.

Table 3: Performance of each multilabel algorithm (mean± std. deviation) on the large-scale datasets.

Comparing algorithms Slashdot rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5
One-error ↓
LLRD 0.363 ± 0.026 0.414± 0.013 0.411± 0.017 0.416± 0.029 0.317 ± 0.015 0.401± 0.018
MLFE 0.374± 0.027 0.406± 0.018 0.399± 0.013 0.402± 0.025 0.328± 0.013 0.392± 0.008
LIFT 0.393± 0.033 0.427± 0.011 0.434± 0.017 0.441± 0.020 0.363± 0.019 0.430± 0.019
RELIAB 0.508± 0.022 0.449± 0.015 0.458± 0.028 0.454± 0.012 0.433± 0.024 0.423± 0.009
ML2 0.370± 0.025 0.404 ± 0.017 0.395 ± 0.018 0.398 ± 0.021 0.323± 0.021 0.388 ± 0.010
CLR 0.965± 0.013 0.513± 0.022 0.515± 0.009 0.518± 0.028 0.472± 0.031 0.521± 0.021
RAKEL 0.602± 0.009 0.605± 0.013 0.574± 0.012 0.585± 0.022 0.561± 0.022 0.614± 0.009
Coverage ↓
LLRD 0.107± 0.010 0.125 ± 0.008 0.121 ± 0.009 0.123 ± 0.006 0.092± 0.004 0.116 ± 0.009
MLFE 0.126± 0.013 0.136± 0.005 0.130± 0.010 0.129± 0.007 0.094± 0.007 0.124± 0.007
LIFT 0.112± 0.008 0.144± 0.020 0.135± 0.008 0.156± 0.008 0.113± 0.012 0.148± 0.013
RELIAB 0.131± 0.007 0.152± 0.012 0.128± 0.014 0.144± 0.011 0.105± 0.020 0.131± 0.014
ML2 0.103 ± 0.011 0.138± 0.008 0.132± 0.010 0.126± 0.006 0.078 ± 0.006 0.129± 0.009
CLR 0.254± 0.003 0.146± 0.018 0.141± 0.007 0.137± 0.010 0.109± 0.018 0.136± 0.011
RAKEL 0.226± 0.020 0.426± 0.023 0.372± 0.016 0.381± 0.014 0.365± 0.009 0.388± 0.020
Ranking loss ↓
LLRD 0.090 ± 0.010 0.049 ± 0.004 0.050 ± 0.004 0.052 ± 0.002 0.038± 0.002 0.047 ± 0.003
MLFE 0.107± 0.013 0.052± 0.002 0.055± 0.007 0.055± 0.002 0.040± 0.004 0.050± 0.003
LIFT 0.098± 0.016 0.058± 0.007 0.057± 0.009 0.068± 0.004 0.059± 0.010 0.055± 0.007
RELIAB 0.124± 0.003 0.066± 0.010 0.063± 0.008 0.062± 0.004 0.052± 0.006 0.063± 0.005
ML2 0.103± 0.012 0.056± 0.004 0.057± 0.004 0.056± 0.003 0.031 ± 0.003 0.050± 0.004
CLR 0.237± 0.008 0.062± 0.011 0.066± 0.008 0.065± 0.012 0.047± 0.006 0.071± 0.005
RAKEL 0.211± 0.019 0.226± 0.019 0.215± 0.017 0.230± 0.015 0.235± 0.014 0.214± 0.016
Average precision ↑
LLRD 0.725 ± 0.019 0.611± 0.010 0.638± 0.011 0.634± 0.017 0.717 ± 0.008 0.643± 0.011
MLFE 0.712± 0.021 0.618± 0.016 0.645± 0.009 0.639± 0.014 0.708± 0.012 0.647± 0.012
LIFT 0.703± 0.010 0.586± 0.009 0.598± 0.012 0.595± 0.011 0.674± 0.013 0.598± 0.011
RELIAB 0.624± 0.014 0.578± 0.021 0.611± 0.011 0.614± 0.018 0.655± 0.018 0.604± 0.009
ML2 0.715± 0.022 0.621 ± 0.012 0.647 ± 0.013 0.643 ± 0.016 0.717 ± 0.013 0.650 ± 0.010
CLR 0.269± 0.002 0.575± 0.013 0.584± 0.021 0.571± 0.032 0.614± 0.020 0.588± 0.013
RAKEL 0.522± 0.020 0.395± 0.012 0.445± 0.018 0.431± 0.014 0.450± 0.012 0.437± 0.016
Macroaveraging F1 ↑
LLRD 0.427± 0.035 0.235± 0.020 0.259± 0.019 0.213± 0.031 0.300± 0.019 0.211± 0.020
MLFE 0.466± 0.035 0.198± 0.017 0.195± 0.056 0.202± 0.030 0.249± 0.021 0.204± 0.021
LIFT 0.429± 0.037 0.223± 0.025 0.186± 0.024 0.200± 0.031 0.238± 0.013 0.196± 0.031
RELIAB 0.425± 0.029 0.342 ± 0.022 0.338 ± 0.016 0.348 ± 0.014 0.342 ± 0.028 0.352 ± 0.014
ML2 0.472 ± 0.029 0.216± 0.020 0.206± 0.024 0.195± 0.030 0.244± 0.023 0.208± 0.011
CLR 0.174± 0.032 0.285± 0.032 0.264± 0.021 0.272± 0.022 0.311± 0.031 0.305± 0.017
RAKEL 0.354± 0.037 0.269± 0.030 0.251± 0.014 0.255± 0.014 0.263± 0.014 0.274± 0.018
Microaveraging F1 ↑
LLRD 0.496± 0.021 0.393± 0.013 0.381± 0.017 0.406± 0.027 0.470± 0.013 0.402± 0.018
MLFE 0.545± 0.019 0.373± 0.014 0.375± 0.031 0.392± 0.024 0.403± 0.020 0.381± 0.017
LIFT 0.510± 0.030 0.320± 0.017 0.353± 0.014 0.347± 0.018 0.342± 0.024 0.363± 0.008
RELIAB 0.453± 0.011 0.408 ± 0.010 0.449 ± 0.008 0.451 ± 0.021 0.478 ± 0.016 0.454 ± 0.012
ML2 0.556 ± 0.022 0.371± 0.014 0.391± 0.010 0.383± 0.026 0.393± 0.022 0.410± 0.015
CLR 0.104± 0.005 0.367± 0.011 0.368± 0.024 0.320± 0.024 0.381± 0.015 0.372± 0.008
RAKEL 0.365± 0.020 0.359± 0.023 0.348± 0.016 0.341± 0.016 0.371± 0.015 0.342± 0.006

Table 4: +e Friedman statistics FF and the critical value.

Evaluation metric FF Critical value
One-error 34.0909

2.2274

Coverage 20.3765
Ranking loss 21.1642
Average precision 39.8409
Macroaveraging F1 2.6520
Microaveraging F1 7.6088
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We use Friedman test [38] based on the average ranks for
verifying whether the difference between algorithms is
statistically significant. If the assumption that “all algorithms
have equal performance” is rejected, it means that the
performance of each algorithm is significantly different. As
can be seen from the data presented in Table 4, the
hypothesis that there is no significant difference among
the algorithms is not valid under the condition of 0.05
significance level. +erefore, we need to conduct a post
hoc test to further distinguish the various algorithms.
Usually, there are two options for post hoc test, one is the
Nemenyi test [38] and the other is the Bonferroni–Dunn
test [39]. For k algorithms, the former needs to compare
k(k − 1)/2 times, while the latter only needs k − 1 times in
some cases. +us, we choose the latter. +e Bonferro-
ni–Dunn test is used to test whether LLRD is more
competitive than the comparative algorithm, in which
LLRD plays a role of control algorithm. When the dif-
ference of average rank between two algorithms is more
than one critical difference CD, the performance of two
algorithms is obviously different. +e CD value mentioned
here can be calculated from CD � qα

�����������
k(k + 1)/6N

􏽰
, where

k� 7 and N � 13, when the significance level is 0.05, the
corresponding qα � 2.638.

+e CD diagram associated with LLRD and its com-
parison algorithm is shown in Figure 1. +e numbers on the
horizontal axis of the coordinate indicate the average rank
value of each algorithm under different evaluation criteria.
+ere is no significant difference in performance among the
various algorithms connected by solid lines.

+rough the analysis of the above experimental results,
we can draw the following conclusions:

(1) In terms of the four evaluation criteria of one-error,
coverage, ranking loss, and average precision, LLRD is
obviously superior to RELIAB, RAKEL, and CLR.

(2) +e smaller the average rank value, the better the
performance of the corresponding. For LLRD, five of
the average rank value in the six CD subdiagrams are
optimal, which shows LLRD outperforms other
algorithms.

(3) For regular-size datasets, LLRD ranks first in 69% of
the cases under different evaluation criteria, while for
large-scale datasets, it ranks first in 36.1%.

4. Conclusions

In this work, we propose a novel multilabel classification
algorithm named LLRD, which adopts the low-rank de-
composition to gain the internal information of label and
further reduce the information loss of the label transfor-
mation via the new feature space. Experimental results show
that the performance of the proposed LLRD is better than
many state-of-the-art multilabel classification techniques. In
the future, we will explore alternative models combining the
low-rank decomposition and classification into a joint op-
timization problem for considering more complex corre-
lation of labels.

Data Availability

+e datasets used in our manuscript are all public datasets,
which can be downloaded from “http://mulan.sourceforge.
net/datasets.html” and “http://meka.sourceforge.net/
#datasetsru”.
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Figure 1: Comparison of LLRD (control algorithm) against other related approaches with the Bonferroni–Dunn test. Approaches that are
not connected to LLRD are significantly different in performance from LLRD. (a) One-error. (b) Coverage. (c) Ranking loss. (d) Average
precision. (e) Macroaveraging F1. (f ) Microaveraging F2.
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With the continuous development of economy, consumers pay more attention to the demand for personalization clothing.
However, the recommendation quality of the existing clothing recommendation system is not enough to meet the user’s needs.
When browsing online clothing, facial expression is the salient information to understand the user’s preference. In this paper, we
propose a novel method to automatically personalize clothing recommendation based on user emotional analysis. Firstly, the
facial expression is classified bymulticlass SVM. Next, the user’s multi-interest value is calculated using expression intensity that is
obtained by hybrid RCNN. Finally, the multi-interest value is fused to carry out personalized recommendation. +e experimental
results show that the proposed method achieves a significant improvement over other algorithms.

1. Introduction

With the rapid development of e-commerce, online shop-
ping has become one of the main ways people spend
shopping. On the one hand, there is too much information
about online clothing, which may drown users in the mass
clothing information; how to quickly choose the clothing
they need and improve the shopping efficiency are crucial for
the merchant. On the other hand, users have their own
preferences and focus on individual needs of clothing.
+erefore, research on the clothing personalized recom-
mendation method is very important to improve the user’s
shopping efficiency and meet the user’s personalized needs.
However, in the traditional personalized recommendation,
due to the lack of user information, the recommendation
quality of the clothing recommendation system is not high
enough to meet the user’s expectations. In addition, per-
sonalized recommendation function is limited to recom-
mending products related to the user or favoured by the
user.

Furthermore, with the development of emotional
computing and intelligent human-computer interface, the

computers are required to perceive and understand human’s
expression. +ere are a variety of facial expression-recog-
nition methods, but existing expression analysis frameworks
are less likely to measure the intensity of expressions. In the
field of human-computer interaction, the measurement of
facial expression intensity is also very necessary; it can help
computers understand people’s emotions. For example,
when a user browses clothing information, the intensity of
his expression can reflect the degree of affection of clothing.
+e computer can use it to recommend the clothing of
interest to the user. +erefore, we propose an efficient
method for the personalized recommendation of clothing
based on user emotional analysis. +e novel contributions of
the proposed work are as follows:

(1) +e scheme of the hybrid recurrent convolutional
neural network (RCNN) is proposed to compute
the expression intensity. +ese implementations
improve the precision of personalized clothing
recommendations.

(2) To the best of our knowledge, this is the first time to
describe the user’s multi-interest value by combining
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expression intensity and the expression duration,
which well captures the user’s preferences and
improves the recall of personalized clothing
recommendation.

+e remainder of this paper is organized as follows. We
first describe some related research for facial expression
recognition and personalized clothing recommendation. In
section 3, we introduce our method, focusing on facial
expression recognition by multi-class support vector ma-
chine (SVM), computing the expression intensity that is
obtained by the hybrid RCNN, fusing the user’s multi-
interest value and personalized recommendation. In section
4, we present detailed experimental results and compare the
performance of our proposed method with other current
approaches. Finally, we conclude with discussions.

2. Related Work

Deep neural networks have been successfully applied in
computer vision, especially in face recognition, where the
use of convolutional neural networks (CNNs) outperforms
all the previously proposed methods, and the obtained re-
sults surpass the human performances [1–5]. Subsequently,
Zhou et al. [6] proposed the recurrent convolutional neural
network (RCNN) for object recognition by applying re-
current connections with the same layer. With fewer pa-
rameters, the RCNN achieved better results than the state-
of-the-art CNNs by testing object recognition datasets [7].
+e end-to-end RCNN framework can predict the pain
intensity of each frame by considering sufficiently large
historical frames while limiting the scale of the parameters
within the model [6]. Besides that, the RCNN outputs
continuous scores rather than discrete labels as in the
problem of classification.

Facial expression is salient information to understand
certain target’s emotional situation. Most of the human
emotional expressions are able to be observed on their face
than any other signs. At the same time, the CNN is used for
the facial expression recognition task with Tang [8], Bergstra
[9], and Jeon et al. [10] and achieved the best performance on
Kaggle facial expression recognition challenge. Tang used
the CNN with linear-SVM instead of the SoftMax layer in
the classification phase. His model performed the best ac-
curacy of 69.77% on the challenge. Bergstra’s model is
concentrated to hyperparameter optimization. Jeon con-
structed a real-time facial expression recognizer using a deep
neural network which is invariant to the subject. Soon after,
many deep learning methods are used for facial expression
recognition and have achieved good performance [11–14].
In summary, there are a variety of facial expression rec-
ognition methods, but the method of expression intensity
based on deep learning is less [15].

Meanwhile, with the continuous development of econ-
omy, consumers pay more attention to the demand for
personalization of clothing. Personalized clothing recom-
mendation not only meets the personalized needs of con-
sumers but also greatly saves time for consumers to choose
clothes.+erefore, the personalized clothing recommendation

has attracted the attention of domestic and foreign clothing
experts, and the method of personalized clothing recom-
mendation has emerged [16–18]. +e clothing personalized
recommendation system mainly obtains user preferences
based on the user’s purchase record, browsing history, and
neighbouring user information analysis. +ere are problems
such as cold start and low degree of personalization, which
cannot satisfactorily satisfy the personalized recommendation
effect.

In summary, we propose a novel method to automati-
cally personalize clothing recommendation based on user
multi-interest value, which is calculated using expression
intensity that is obtained by the hybrid RCNN.

3. The Proposed Framework

3.1. InitializationRecommendation. Clothes are divided into
multiple classes by the affinity propagation cluster. For each
class of clothes (ci, σi), ci represents themean of the class and
σi represents the variance of the class. For the user u, we
calculate the similarity between each class of clothes and the
user, and recommend the suitable class of clothes for the
user according to the ranking of similarity. +e formula for
calculating similarity between the class of clothes and user is
as follows:

dcu ci, u( 􏼁 �

��������������

􏽘

K

k�1
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σik

􏼠 􏼡
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􏽶
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Scu ci, u( 􏼁 � − exp dcu ci, u( 􏼁( 􏼁,

i � 1, 2, . . . , N,

(1)

where dcu(ci, u) is the Euclidean distance of the class of
clothes ci and the user u, cik and uk are the k-th features of
the class of clothes ci and the user u, N is the total number of
the class of clothes, and K is the feature dimension number.
Scu(ci, u) represents the similarity between the class of
clothes ci and the user u.

Similarly, the other users are also divided into multiple
clusters by the affinity propagation cluster. For each class of
users (uj, σj), uj represents the mean of the class, σj rep-
resents the variance of the class. We calculate the similarity
between each class of users and the user and recommend a
suitable other class of users’ clothes for the user according to
the ranking of similarity. +e formula for calculating sim-
ilarity between the class of users and user is as follows:
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���������������
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Suu uj, u􏼐 􏼑 � − exp duu uj, u􏼐 􏼑􏼐 􏼑.

j � 1, 2, . . . , M

(2)

where duu(uj, u) is the Euclidean distance of the class of
users uj and the user u, ujk and uk are the k-th features of
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other user uj and the user u, M is the total number of the
class of other users, and K is the feature dimension number.
Suu(uj, u) represents the similarity between the class of users
uj and the user u.

3.2. Calculation of Expression Intensity. +e high-definition
camera was used to obtain the user’s expression feedback of
the initialization recommendation clothing video and rec-
ognize the user’s expression in the video. We adopt the
multiclass SVMmethod for dynamic expression recognition
and use the method of the recurrent convolution neural
network (RCNN) to evaluate the expression (happy, angry,
etc.) intensity.

3.2.1. Facial Expression Recognition. We convert facial ex-
pression recognition into a classification problem, and
recognition of the expression (happy, sad, etc.) in the video.
+e specific expression recognition framework is shown in
Figure 1:

+e specific steps are as follows:
Firstly, the video is transformed into a series of frames of

image sequences, and the active shape model method is used
for face detection, and the video volume is created [7].
Secondly, the Local Gabor Binary Pattern Histogram Se-
quence (LGBPHS) features [19] of the three planes XY, XT,
and YT are extracted, and all the features of the video
volume are combined as the features of the final image
sequence (the specific steps are shown in Figure 2).

Multiclass SVM aims to assign labels to instances by
using SVM, where the labels are drawn from a finite set of
several elements (Sad, Happy, Angry, Disgust, Fear, Sur-
prise, and Neutral). +e dominant approach for doing this is
to reduce the single multiclass problem into multiple binary
classification problems. Common methods for such re-
duction include one versus all and one versus one. Both
methods have been found to produce approximately similar
results when dealing with face recognition. Compared with
one versus one, one versus all constructed a much less
number of decision planes. When the number of classes is
large, the prediction speed is faster. In our paper, we use one
versus all to train multiclass SVM.

We train multiclass SVM for expression recognition.+e
procedure is as follows. Firstly, for the samples of happy, we
assign 1 as the class label (Sad/Angry/Disgust/Fear/Surprise/
Neutral set to 2/3/4/5/6/7). Secondly, the samples of all
emotions are trained for multiclass SVM.

3.2.2. Calculation of Expression Intensity

(1) Calculation of Expression Duration. We use the ex-
pression duration as one of the expression intensities, and
calculate the expression duration based on the recognized
frame expressions. +e calculation formula is as follows:

Ii �
TEi

Ti

, i � 1, 2, 3, . . . , M, (3)

where Ii is the time value of the i-th interest measure and TEi

is the duration of the interest in the i-th interest measure
(expression: happy, angry, etc.). Ti is the viewing total time.
+en, the time values of all interest measures are sorted in
descending order. +e smaller the serial number, the more
interested in trying on the clothing. Set a threshold for Ii,
and recommend it to the user if Ii is greater than the
threshold.

(2) Evaluate of Expression Intensity. From the field of face
recognition, the face model strained on several specific facial
parts can significantly improve the recognition accuracy
[20, 21]. Compared with the full-face model, the specific part
model is able to extract more detailed information. For the
sake of exploring the effectiveness of different face parts, we
divide the entire face into several parts. In addition, based on
the promising results obtained by the RCNN, we trained a
hybrid RCNN using different face parts. +e main idea of
our method can be concluded as (1) train a hybrid RCNN
based on the face region, eye region, and mouth region. (2)
Concatenate the last fully connected layer of the hybrid
RCNN to constitute the features.

To save computation and reduce the time consumption,
we simplified the architecture of the RCNN [6]. +e RCNN
used in our paper contains one convolutional layer, three
Recurrent Convolutional Layers (RCLs), three max pooling
layers, and one fully connected layer. +e first layer is the
standard feed-forward convolutional layer without recurrent
connections, followed by max pooling. +ree RCLs are used
with a max pooling layer in the middle. Between neigh-
bouring RCLs, there are only feed-forward connections. +e
output of the third RCL follows a global max pooling layer,
which outputs the maximum over every feature map,
yielding a feature vector representing the image. +e main
architecture of the hybrid RCNN is shown in Figure 3.

+e framework of the hybrid RCNN to evaluate ex-
pression intensity is shown in Figure 4. +e specific steps are
as follows.

For each frame of the face image in the video sequence,
firstly, the active shape model method is used to detect face
feature points [7]. Secondly, in the process of face aligning
and warping, we warped every facial image in R, G, and B
channels separately, then combined all channels back to get
the final RGB warped faces. +ird, the input samples of our
hybrid RCNN structure should be no more than two di-
mensions, but to reserve the temporal information among
frames and the spatial pixel information of warped facial
images at the same time, each frame is converted into a one-
dimensional vector by flattening. After flattening, we con-
catenated all 1D flattened warped facial images in frame
order to achieve frame vector sequences.

3.2.3. Calculation of Interest Value. We combine the ex-
pression intensity and the expression duration as the user
interest value. +e calculation formula of interest value is as
follows:

Ie � αIi + βIt, (4)
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where Ie is the interest value, Ii and It are the duration value
and intensity value of the expression, respectively, and α β
are the weights value, and it meets the formula α + β � 1.

3.3. Fusion User’s Multi-Interest Value and Personalized
Recommendation. We intend to calculate the user’s multi-
interest (colour, style, texture, price, etc.) value. +e method
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of multi-interest value fusion is adopted to carry out per-
sonalized recommendation.

Rank aggregation is the fusion of decision-making re-
sults which is expressed by the order list. Because the order
list expresses the decision-making result, it is necessary to
facilitate direct comparison of the different results, and
contains a wealth of information for decision-making result.
+erefore, we exploit the weighted Borda count method [22]
to fuse multi-interest value. Ballots in the Borad count are
counted by assigning a point value to each place in the
hierarchy, and the choice with the largest number of points is
selected. +e Borda method scores each sequence of the list
of interests (colour, style, texture, and price) linearly, and the
score of objects i in the sequence τj of interest measure is
estimated as follows:

B
j
(i) � − τj(i), i � 1, 2, 3, . . . , M, j � 1, 2, 3, . . . , N;

(5)

where τj(i) is the ordinal function of the sequence τj of
interest value, and it indicates the order of the object i in the
interest value list τj, M is the total number of objects, and N

is the total number of interest lists. +e symbol in the
formula is to place the value of the object in front of the
order of bits higher. When J sequence of interest value is
fused, the weighted Borda method is adopted according to
the performance difference of sequences of different interest
measure, which is:

B(i) � 􏽘
J

j�1
wjB

j
(i), i � 1, 2, 3, . . . , M, j � 1, 2, 3, . . . , N;

(6)

where Bj(i) is the score of the object i in the j-th sequence of
interest value, M is the total number of objects, N is the total
number of interest value lists, andwj is theweight of the interest
measure sequence j. +e calculation formula is as follows:

wj � APj, j � 1, 2, 3, . . . , N;

􏽘

J

j�1
wj � 1, 0<wj < 1,

(7)

where APj (average precision) is the average accuracy of the
j-th sequence of interest value.

We sort the multi-interest (colour, style, texture, price,
etc.) value and then use the weighted Borda method to
perform rank aggregation. +e final rank aggregation result
is the sorting of the weighted scores from high to low,
which gives a personalized recommendation based on the
results.

4. Experiments

4.1. Dataset. Kaggle [23] facial expression recognition
challenge database is used for training and testing per-
formance. +is dataset has 7 facial expression categories
(angry, disgust, fear, happy, sad, surprise, and neutral),
28,709 training images, 3,589 validation images, and 3,589
test images. +is dataset contains the human frontal face
with various illumination, poses, and domains, and even
cartoon characters are included. Moreover, in Kaggle facial
recognition challenge training dataset, 7215 images are in
the happy category and 436 images are in the disgust
category.

Forty female university students from Soochow Uni-
versity conducted a verification experiment on the per-
sonalized recommendation system. Forty subjects had a
rating of points for the system’s recommended clothing, and
it contains 132 sample pictures of women’s winter wool coats
[23]. Among them, 32 clothing images (See Figure 5) are
used to train and 100 clothing images are used to recom-
mend. Women’s winter woollen coat has 7 attributes, of
which the colour attribute has 8 attribute values, and the
other 6 attributes have 4 attribute values.
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Figure 4: Frame diagram of the expression intensity evaluation method.
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4.2. Experimental Setup. For the clothing sample, we let each
image in the sample to automatically play at intervals of 3
seconds. During the playback, the user is asked to evaluate
the clothing according to their own preferences, so as to
obtain the user’s evaluation form for the sample. E is used to
indicate the user’s evaluation of the sample clothing. +e
values of E are 1, 2, 3, 4, and 5, respectively, indicating that
the consumer’s evaluation of each garment in the sample is
“very dislike, “dislike,” “general,” “like,” and “very like.”
Similarity, the expression intensity values are graded into 5
intensity levels: [0,0.2] for level 1, the weakest level, [0.2, 0.4]
is level 2, and so on, [0.8,1] is level 5.

+e hybrid RCNN was implemented and run on two
GeForce GTX TITAN Black GPUs. Initially, the weight of
feed-forward/recurrent is set to 0.02, and the bias is set to 1.
In addition, the parameter β in equation (4) are analysed in
Figure 6. In order to better trade off average precision,
average recall and average E, α is set to 0.2 and β is set to 0.8
for calculating interest value.

4.3. Results andAnalysis. We compare the proposed method
with Wang’s method [16], Hu’s method [17], and Melo’s
method [18]. Wang’s method is tested on the same clothing
dataset which we use in our experiments. Hu’s method used
the user interest degree to express the user preference model;
the idea is similar to Melo’s method and our paper. To
evaluate the effectiveness of the proposed method, we select
40 people to evaluate the recommend clothing, and evaluate
the performance by calculating the average precision, av-
erage recall, and average E. +e experiment result is shown
in Table 1.

As shown in Table 1, our proposed method obtained the
better result for personalized clothing recommendation.

Because the measurement of facial expression intensity can
help computers understand people’s emotions, when a user
browses clothing information, the intensity of his expression
can reflect the degree of affection of the clothing. +e
computer can use it to recommend the clothing of interest to
the user, which can satisfactorily satisfy the personalized
recommendation effect.

In addition, we compare the classification accuracy of the
facial expression recognitionmethod with Tang’s method [8]
and Jeon’s method [10]. +ese two methods are tested on the
same facial expression dataset that we use in our experi-
ments. +e classification accuracy of facial expression is
shown in Table 2.

As shown in Table 2, the average accuracy for all cate-
gories was 72.36% in our method. Accuracy for the happy
and surprise category was higher than the others, but ac-
curacy for the fear category was poor.

Meanwhile, we also compare the precision of classifi-
cation of intensity levels for happy expressions with SVM

Figure 5: Training images.
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Figure 6: Compared results with varying β.
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[15] and the RCNN [6]. Although Zhou proposed an au-
tomatic frame-by-frame pain (not facial expression) in-
tensity estimation framework in a video based on the RCNN
[6], the solution to intensity estimation is similar.

As shown in Table 3, our proposed method obtained the
better result for facial expression intensity estimation.
Compared with the full-face model, the specific part model is
able to extract more detailed information, so the face model
strained on several specific facial parts can significantly
improve the precision of expression intensity estimation.

5. Conclusion

We have presented a method for personalized recommen-
dation of clothing based on the user’s emotional analysis.
Particularly, the hybrid RCNN is used to compute the ex-
pression intensity, which improves the precision of per-
sonalized clothing recommendation. In addition, to capture
the user’s preferences, the user’s multi-interest value is
computed by combining expression intensity and expression
duration, which improves the recall of personalized clothing
recommendation. For the datasets used in the experiments,
our proposed method is superior to other existing methods.

+ere are still some possible directions to improve the
performance of our method. In this study, we only process
fewer datasets, and multiclass SVM can get much better
results than other algorithms on small sample training sets,
so multiclass SVM is used for expression classification.
However, for a large-scale dataset, a large amount of storage
space is required, which multiclass SVM cannot handle.
Most deep learning methods can get good results for ex-
pression classification. Besides that, we use rank aggregation
for recommendation, and collaborative filtering and
knowledge graph could be also used for recommendation.
+e proposed idea can also be applied to other problems

such as personalized news recommendations, personalized
travel recommendations, and so on.
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In this paper, upper bound on the probability of maximum a posteriori (MAP) decoding error for systematic binary linear codes
over additive white Gaussian noise (AWGN) channels is proposed. *e proposed bound on the bit error probability is derived
with the framework of Gallager’s first bounding technique (GFBT), where the Gallager region is defined to be an irregular high-
dimensional geometry by using a list decoding algorithm. *e proposed bound on the bit error probability requires only the
knowledge of weight spectra, which is helpful when the input-output weight enumerating function (IOWEF) is not available.
Numerical results show that the proposed bound on the bit error probability matches well with the maximum-likelihood (ML)
decoding simulation approach especially in the high signal-to-noise ratio (SNR) region, which is better than the recently proposed
Ma bound.

1. Introduction

Upper bounds on the maximum a posteriori (MAP)
decoding error probability, as a key technique for evaluating
the performance of the binary linear codes over additive
white Gaussian noise (AWGN) channels, bring a profound
impact on the reliable transmission of the next-generation
mobile communication systems since they can be used to not
only predict the performance without resorting to computer
simulations but also guide the design of coding [1]. In order
to improve the looseness of the union bound in the low
signal-to-noise ratio (SNR) region, many improved upper
bounds, on the bit error probability [2–5] and on the frame
error probability [2–4, 6–15], are proposed. As surveyed in
[1], the improved upper bounds on the bit error probability
[2–4] are based on Gallager’s first bounding technique
(GFBT):

Pr Eb􏼈 􏼉 � Pr Eb, y ∈R􏽮 􏽯 + Pr Eb, y ∉R􏽮 􏽯, (1)

≤Pr Eb, y ∈R􏽮 􏽯 + Pr y ∉R􏽮 􏽯, (2)

in which Eb denotes the event that represents an error in
one of the information bits of the decoded codeword, y

denotes the received signal vector, and R denotes an ar-
bitrary region around the transmitted signal vector (called
the Gallager region). Divsalar [2] chose the region R to be
an Euclidean sphere centered at the point along the line
connecting the origin to the transmitted signal vector.
Sason and Shamai [3] chose the region R to be a circular
cone whose central line passes through the origin and the
transmitted signal vector. *e upper bounds [2, 3] on the
bit error probability based on equation (2) can be con-
sidered to be simply replaced by the weight spectra
Ad, 1≤ d≤ n􏼈 􏼉 in the upper bound on the frame error
probability by

A
∗
d ≜ 􏽘

k

i�0

i

k
Ai,d, 1≤ d≤ n, (3)

where Ai,d denotes the number of code words of Hamming
weight d encoded by information bits of Hamming weight i
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and k denotes the dimension of the linear code. However, as
noted by Zangl and Herzog [4], computing the expression
Pr y ∉R􏽮 􏽯 by the factor 1.0 in (2) means that the worst case
of k bit errors is assumed if y falls outside the good regionR,
and then Zangl and Herzog [4] improved the tangential-
sphere bound (TSB) on the bit error probability [3] by
computing this probability in a more accurate way. *e
upper bounds on the bit error probability [2–4] require the
whole input-output weight enumerating function (IOWEF),
which can be applied to both systematic codes and non-
systematic codes. *e upper bound on the bit error prob-
ability by Ma et al. [16] can be evaluated by calculating
partial IOWEF with truncated information weight
( Ai,d, 0≤ i≤T, 0≤ d≤ n − k + T􏽮 􏽯, where T≥ 0 is a positive
integer), which holds only for systematic codes. However,
for most codes, the IOWEF is usually not computable. In
contrast, it is reasonable to assume that the weight spectra
Ad, 0≤d≤ n􏼈 􏼉 of codes are available, such as the BCH code
[17]. In this paper, different from most of the existing
bounds, we derive a tighter upper bound on the bit error
probability of systematic binary linear codes via their weight
spectra.

*e main results as well as the structure of this paper are
summarized as follows:

(1) In Section 2, we present the preliminaries and
necessary notation. *e conventional union bound
and four reported upper bounds based on GFBT are
also reviewed in Section 2.

(2) In Section 3, in a detailed way, we rederive the re-
cently proposed bound on the bit error probability
by Liu [5], in which the union bound is firstly
truncated and then amended for the systematic
linear codes over AWGN channels. In this paper, the
proposed upper bound on the bit error probability is
derived in a much more detailed way by considering
more information of the Gallager region R and the
truncated IOWEF of the code. Finally, with the
framework of GFBT, we derive the upper bound on
the bit error probability which requires only the
knowledge of weight spectra of the code.

(3) In Section 4, numerical examples are given to show
that the proposed bound is helpful to evaluate the
performance of the systematic binary linear codes
which can predict the performance of the code in the
high-SNR region, avoiding the time-consuming
computer simulations.

(4) Section 5 concludes this paper.

2. Preliminaries

Let F2 � 0, 1{ } be the binary field. LetC[n, k] be a systematic
binary linear block code of dimension k and length n with a
generator matrix G� [Ik, P], where Ik is the k × k identity
matrix. Let u ∈ Fk

2 be the information vector and c ∈ Fn
2 be

the associated codeword. We have the encoding function as
follows:

u⟶ c � uG. (4)

Considering the binary phase shift keying (BPSK)
mapping, we have c⟶ s by st � 1 − 2ct for 0≤ t≤ n − 1.
Suppose that s is transmitted over an AWGN channel. Let
y � s + z be the received vector, where z is a vector of in-
dependent Gaussian random variables with zero mean and
variance σ2. We have the decoding function as follows:

y⟶ 􏽢u. (5)

Without loss of generality, assume that the all-zero
codeword c(0) is transmitted.*e conventional union bound
and four reported upper bounds based on GFBT are also
reviewed in the following sections.

2.1.UnionBound. *e simplest upper bound on the bit error
probability is the union bound:

Pr Eb􏼈 􏼉≤ 􏽘

k

i�1

i

k
􏽘

n

d�1
Pr E

i,d
b􏽮 􏽯

≤ 􏽘
k

i�1

i

k
􏽘

n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡,

(6)

where Ei,d
b is the event that there exists at least one codeword

of Hamming weight d encoded by information bits of
Hamming weight i that is nearer than c(0) to y, and
Q(

��
d

√
/σ) is the pairwise error probability with

Q(x)≜ 􏽚
+∞

x

1
���
2π

√ e
− z2/2( )dz. (7)

However, the above conventional union bound is loose
and even diverges (≥1) in the low-SNR region. *en, the
improved upper bounds on the bit error probability based
on GFBT were proposed, such as the Divsalar bound [2],
the tangential-sphere bound (TSB) [3], the improved
tangential-sphere bound (ITSB) [4], and the Ma bound
[16].

2.2. ,e Divsalar Bound. In 1999, Divsalar derived a simple
upper bound [2] on the bit error probability based on GFBT,
where the regionR is chosen to be an n-dimensional sphere
centered at a scaled transmitted signal vector. Both the
radius and the center of the sphere can be optimized. Let
dmin denote the minimum Hamming weight. Taking into
account the definition of A∗d in (3), we have the Divsalar
bound on the bit error probability:

Pb ≤ 􏽘
n− k+1

d�dmin

min e
− nEb(δ,β,c)

, A
∗
dQ􏼒

����

2dc

􏽱

􏼓􏼚 􏼛, (8)

where
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Eb(δ, β, c) � − rb(δ) +
1
2
ln β +(1 − β)e

2rb(δ)
􏼐 􏼑 +

βcδ
1 − (1 − β)δ

,

c �
1
2σ2

,

δ �
d

n
,

rb(δ) �
lnA∗d

n
,

β �

�������������������������������������

c(1 − δ)

δ
2

1 − e− 2rb(δ)
+

1 − δ
δ

􏼠 􏼡

2

(1 + c)
2

− 1􏽨 􏽩

􏽶
􏽴

−
1 − δ
δ

(1 + c).

(9)

2.3. ,e Tangential-Sphere Bound. In 2000, Sason and
Shamai [3] derived the tangential-sphere bound on the bit
error probability based on GFBT, where the region R is
chosen to be an n-dimensional circular cone whose central
line passes through the origin O and the transmitted signal.
Let

c(a, x) �
1
Γ(a)

􏽚
x

0
t
a− 1

e
− tdt, a> 0, x≥ 0, (10)

denote the normalized incomplete gamma function. Taking
into account the definition of A∗d in (3), we have the TSBwith
a parameter r on the bit error probability:

Pb � 􏽚
+∞

− ∞
Pb z1( 􏼁

1
���
2π

√
σ

e
− z2

1/2σ
2( )dz1, (11)

where

Pb z1( 􏼁≤ 􏽘

d: δd/2( )< αd

A
∗
d 􏽚

rz1

βd z1( )

e− z2
2/2σ

2( )
���
2π

√
σ

c
n − 2
2

,
r2z1

− z2
2

2σ2
􏼠 􏼡dz2􏼨 􏼩

+ 1 − c
n − 1
2

,
r2z1

2σ2
􏼠 􏼡,

δd � 2
��
d

√
,

αd � r

�����

1 −
δ2d
4n

􏽳

,

rz1
� r 1 −

z1�
n

√􏼠 􏼡,

βd z1( 􏼁 �
rz1

��
d

√

r
��������
1 − (d/n)

􏽰 .

(12)

*e parameter r in the TSB can be optimized by a
numerical solution of the following equation:

􏽘

d: δd/2( )<αd

A
∗
d 􏽚

θd

0
sinn− 3 ϕ dϕ �

��
π

√
Γ(n − 2/2)

Γ(n − 1/2)
, (13)

where

θd � arccos
δd

2r
���������
1 − δ2d/4n􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (14)

2.4. ,e Improved Tangential-Sphere Bound. In 2001, Zangl
and Herzog [4] derived the improved tangential-sphere
bound on the bit error probability based on GFBT by
computing the expression Pr y ∉R􏽮 􏽯 in a more accurate
way. We have the ITSB with a parameter rΨ on the bit error
probability:

Pb ≤ 􏽚
+∞

− ∞
􏽘

d: δd/2( )<αd

Ad

gd

k
c

n − 2
2

,
r2z1

− β2d z1( 􏼁

2σ2
⎛⎝ ⎞⎠ · Q

βd z1( 􏼁

σ
􏼠 􏼡 − Q

rz1

σ
􏼒 􏼓􏼠 􏼡

⎧⎨

⎩

⎫⎬

⎭ +
max g0, . . . , gopt􏼐 􏼑

k
· c

n − 1
2

,
β2dopt+1 z1( 􏼁

2σ2
⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

· 􏽘
d�dopt+1

n max g0, . . . , gd− 1( 􏼁 − max g0, . . . , gd( 􏼁

k
· c

n − 1
2

,
r2z1

2σ2
􏼠 􏼡⎛⎜⎝ ⎞⎟⎠ +

max g0, . . . , gn( 􏼁

k

⎫⎪⎬

⎪⎭
·

1
���
2π

√
σ

e
− z2

1/2σ
2( )dz1.

(15)
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*e parameter rΨ in the ITSB can be optimized by a
numerical solution of the following equation:

􏽘

d: δd/2( )<αd

Ad

gd

k
􏽚
θd

0
sinn− 3 ϕ dϕ �

max g0, . . . , gopt􏼐 􏼑

k

·

��
π

√
Γ(n − 2/2)

Γ(n − 1/2)
,

(16)

where

θd � arccos
δd

2rΨ

���������
1 − δ2d/4n􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (17)

2.5.,eMaBound. In 2018, Ma et al. [16] derived the upper
bound on the bit error probability under maximum a
posteriori (MAP) decoding. *e Ma bound can be evaluated
by calculating partial IOWEF with truncated information
weight. We have the Ma bound with a parameter r∗ on the
bit error probability

BERMAP ≤ min
0≤r∗≤T/2

􏽘
i≤2r∗

i

k
􏽘
d

Ai,dQ

��
d

√

σ
⎛⎝ ⎞⎠

⎧⎨

⎩

+ 􏽘
k

i�r∗+1

min i + r∗, k{ }

k

k

i

⎛⎝ ⎞⎠p
i
b 1 − pb( 􏼁

k− i
⎫⎪⎬

⎪⎭
,

(18)

where

pb � Q
1
σ

􏼒 􏼓. (19)

3. Upper Bound on the Bit Error Probability
Based on GFBT

3.1. ,e Gallager RegionR. We define the region R by the
Hamming distance based on a list decoding algorithm which
is shown in Figure 1, resulting in an irregular high-di-
mensional geometry (Algorithm 1).

*e list decoding algorithm is similar to but different
from the algorithm presented in [14].*e list region in [14] is
an n-dimensional Hamming sphere with center at the hard
decision of the whole received sequence, while the list region
here is a k-dimensional Hamming sphere with center at the
hard decision of the information part of the received
sequence.

*e Gallager region R can be defined by

R≜ y u
(0)

∈Ly

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩

� y WH 􏽢y
k− 1
0 􏼓≤ r

∗
􏼛.􏼒

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼚

(20)

3.2. Upper Bound on the Bit Error Probability via IOWEF.
We assume that Ai,d ≥ 1 and denote all the code words of
Hamming weight d encoded by information bits of Ham-
ming weight i by c(ℓ), 1≤ ℓ ≤Ai,d. Let E0⟶ℓ be the event that
c(ℓ) is nearer than c(0) to y.

With the framework of GFBT, we have

Pr Eb􏼈 􏼉 � Pr Eb, y ∈R􏽮 􏽯 + Pr Eb, y ∉R􏽮 􏽯. (21)

As shown in Figure 1(b), we have

Pr Eb, y ∈R􏽮 􏽯≤ 􏽘
2r∗

i�1

i

k
􏽘

n

d�1
Pr E

i,d
b , y ∈R􏽮 􏽯, (22)

≤ 􏽘
2r∗

i�1

i

k
􏽘

n

d�1
Ai,dPr E0⟶1, y ∈R􏽮 􏽯. (23)

As shown in Figure 1(a), we have

Pr Eb, y ∉R􏽮 􏽯≤ 􏽘
k

i�r∗+1

min i + r∗, k{ }

k

k

i

⎛⎝ ⎞⎠p
i
b 1 − pb( 􏼁

k− i
,

(24)

which means that the decoder outputs at most i + r∗ er-
roneous bits.

Assuming a binary vector of total length Nt passes
through a BSC with cross error probability p, we denote
B(p, Nt, Nℓ, Nu) to be the probability that the number of bit
errors occurring ranges from Nℓ to Nu, that is,

B p, Nt, Nℓ, Nu( 􏼁≜ 􏽘

Nu

m�Nℓ

Nt

m
􏼠 􏼡p

m
(1 − p)

Nt− m
. (25)

*en, we define

C r, p, Nt, Nℓ, Nu( 􏼁≜ 􏽘

Nu

m�Nℓ

min m + r, Nt􏼈 􏼉

Nt

Nt

m

⎛⎝ ⎞⎠p
m

(1 − p)
Nt− m

.

(26)

Theorem 1. We have the upper bound on the bit error
probability of systematic binary linear codes under MAP
decoding

Pr Eb􏼈 􏼉≤ min
0≤r∗≤ k

􏽘

2r∗

i�1

i

k
􏽘

n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r −

i

2
⌋􏼒 􏼓

⎧⎨

⎩

+ C r
∗
, pb, k, r

∗
+ 1, k( 􏼁

⎫⎬

⎭.

(27)
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Proof. Without loss of generality, we denote

c(1) ≜ 1 · · · 1􏽼√√􏽻􏽺√√􏽽
i

0 · · · 0􏽼√√􏽻􏽺√√􏽽
k− i

1 · · · 1􏽼√√􏽻􏽺√√􏽽
d− i

0 · · · 0􏽼√√􏽻􏽺√√􏽽
n− k− d+i

⎛⎝ ⎞⎠,

􏽢y
k− 1
0 ≜ 1 · · · 1􏽼√√􏽻􏽺√√􏽽

i1

0 · · · 0􏽼√√􏽻􏽺√√􏽽
i− i1

1 · · · 1􏽼√√􏽻􏽺√√􏽽
i2

0 · · · 0􏽼√√􏽻􏽺√√􏽽
k− i− i2

⎛⎝ ⎞⎠.

(28)

Notice that a necessary condition for the event E0⟶1 is
that the corresponding input information sequence of the
codeword c(1) is in the list Ly. Hence,

WH c
(1)k− 1
0 − 􏽢y

k− 1
0􏼐 􏼑≤ r

∗
. (29)

We have
i − i1 + i2 ≤ r

∗
. (30)

Also notice that, for y ∈R,

WH 􏽢y
k− 1
0􏼐 􏼑≤ r

∗
. (31)

We have
i1 + i2 ≤ r

∗
. (32)

By combining (30) and (32), we can verify that

i2 ≤ ⌊r
∗

−
i

2
⌋. (33)

By the union bounds, we have

Pr E0⟶1, y ∈R􏽮 􏽯

� Pr E0⟶1, WH 􏽢y
k− 1
0􏼐 􏼑≤ r

∗
􏽮 􏽯

≤ 􏽘
r∗

i2�1
Pr E0⟶1, WH 􏽢y

i− 1
0􏼐 􏼑≤ r

∗
− i2, WH 􏽢y

k− 1
i

􏼐 􏼑 � i2􏽮 􏽯

≤ 􏽘
r∗

i2�1
Pr E0⟶1, WH 􏽢y

k− 1
i

􏼐 􏼑 � i2􏽮 􏽯

� 􏽘

⌊r∗ − (i/2)⌋

i2�1
Pr E0⟶1, WH 􏽢y

k− 1
i

􏼐 􏼑 � i2􏽮 􏽯,

(34)

for i2 ≤ r∗ − (i/2) from (33).
Since the event Pr E0⟶1􏼈 􏼉 is independent of 􏽢y k− 1

i
and

Pr E0⟶1􏼈 􏼉 � Q(
��
d

√
/σ), we have

u(0)

y0k–1

Ly

r∗

(a)

u(0)

u(1)

y0k–1 r∗
2r∗

i

Ly

(b)

Figure 1: Graphical illustrations of the decoding error events. (a) *e error event that the all-zero sequence u(0) is not in the list. (b) *e
error event that the all-zero sequence u(0) is in the list but not the closest one.

(1) We denote
y ≜ (yk− 1

0 yn− 1
k

)

in which
yk− 1
0 � (y0 · · · yk− 1)􏽼√√√√√􏽻􏽺√√√√√􏽽

k
and

yn− 1
k

� (yk · · · yn− 1)􏽼√√√√√􏽻􏽺√√√√√􏽽
n− k

Make hard decisions on the information part yk− 1
0 � (y0 · · · yk− 1)􏽼√√√√√􏽻􏽺√√√√√􏽽

k

of the received vector y, resulting in a vector 􏽢yk− 1
0 � (􏽢y0 · · · 􏽢yk− 1)􏽼√√√√√􏽻􏽺√√√√√􏽽

k
of length k. *en, the channel becomes a memoryless binary symmetric channel (BSC) with cross probability

pb ≜Q(1/σ)

(2) List all sequences of length k within the Hamming sphere with center at 􏽢yk− 1
0 of radius r∗, where r∗ is a positive integer.

*e resulting list is denoted as Ly.
(3) Encode each sequence in Ly by the encoding algorithm of the systematic code, resulting in a list of code words, denoted as Lc.
(4) Find the codeword c∗ ∈Lc that is closest to y. Output the information part 􏽢u of c∗ as the decoding result.

ALGORITHM 1: A list decoding algorithm.
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􏽘
i2�1

(r∗ − i/2)

Pr E0⟶1, WH 􏽢y
k− 1
i􏼐 􏼑 � i2􏽮 􏽯, (35)

� 􏽘
i2�1

(r∗− i/2)

Pr E0⟶1􏼈 􏼉Pr WH 􏽢y
k− 1
i􏼐 􏼑 � i2􏽮 􏽯, (36)

� Pr E0⟶1􏼈 􏼉 􏽘

r∗− (i/2)

i2�1
Pr WH 􏽢y

k− 1
i􏼐 􏼑 � i2􏽮 􏽯, (37)

� Q

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r∗ −

i

2
⌋􏼒 􏼓. (38)

*en, by substituting (38) in (23), we have

Pr Eb, y ∈R􏽮 􏽯≤ 􏽘
2r∗

i�1

i

k
􏽘

n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r∗ −

i

2
⌋􏼒 􏼓.

(39)

*erefore, it can be verified by substituting (24) and (39)
in (1) to complete the proof. □

Corollary 1. ,e proposed upper bound on the bit error
probability (,eorem 1) can improve the conventional union
bound on the bit error probability.

Proof. As to the proposed bound (*eorem 1), note that

C r
∗
, pb, k, r

∗
+ 1, k( 􏼁 � 0, (40)

by setting

r
∗

� k. (41)

we have

Pr Eb􏼈 􏼉≤ 􏽘
k

i�1

i

k
􏽘

n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r∗ −

i

2
⌋􏼒 􏼓

≤ 􏽘
k

i�1

i

k
􏽘

n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡.

(42)

Since B(pb, k − i, 0, ⌊r∗ − (i/2)⌋)≤ 1, the proof is
completed. □

Corollary 2. ,e proposed upper bound on the bit error
probability (,eorem 1) can improve the Ma bound on the bit
error probability (18).

Proof. Assuming that we know only partial IOWEF with
truncated information weight Ai,d, 0≤ i≤T, 0≤d≤ n −􏽮

k + T}, the parameter r∗ in the proposed bound (*eorem 1)
is optimized in the interval [0, ⌊T/2⌋]. *eorem 1 can be
written as

Pr Eb􏼈 􏼉≤ min
0≤r∗≤⌊T/2⌋

􏽘

2r∗

i�1

i

k
􏽘

n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r −

i

2
⌋􏼒 􏼓

⎧⎨

⎩

+ C r
∗
, pb, k, r

∗
+ 1, k( 􏼁

⎫⎬

⎭.

(43)

Since B(pb, k − i, 0, ⌊r − (i/2)⌋) is the probability that the
number of bit errors occurring in a binary vector of total length
k − i, when passing through a BSC with cross error probability
pb, it ranges from 0 to r − (i/2). *en, it can be verified by

B pb, k − i, 0, ⌊r∗ −
i

2
⌋􏼒 􏼓≤ 1, (44)

to complete the proof. □

*e objective of this paper is to derive the upper bound on
bit error probability with only knowing of the weight spectrum.

3.3. Upper Bound on the Bit Error Probability via Weight
Spectra. In this section, we focus on how to derive the upper
bound on the bit error probability via weight spectra. *e
IOWEF is usually not computable, but the weight spectra
Ad, 0≤ d≤ n􏼈 􏼉 of the code are usually available, such as the
BCH code [17]. Let T≥ 0 be a positive integer that is rela-
tively small. Assuming that we know only the truncated
IOWEF {Ai,d, 0≤ i≤T, 0≤ d≤ n − k + T} which can be ob-
tained by using a brute-force method and the weight
spectrum Ad, 0≤ d≤ n􏼈 􏼉.

Define

Ad
′ � Ad − 􏽘

T

i�1
Ai,d, (45)

for 0≤ d≤ n.
*en, we focus on how to obtain the upper bound on the

bit error probability by using the IOWEF {Ai,d, 0≤ i≤T,
0≤d≤ n − k + T} and the weight spectrum Ad, 0≤d≤ n􏼈 􏼉.
We derive the upper bound in the two following cases.

Case 1: if the radius of the Hamming sphere
r∗ ∈ [0, ⌊T/2⌋] in Figure 1, we can get the IOWEF {Ai,d,
0≤ i≤T, 0≤d≤ n − k + T} by using a brute-force
method, and we have

Pr Eb􏼈 􏼉≤ min
0≤r∗≤⌊T/2⌋

􏽘

2r∗

i�1

i

k
􏽘

n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡B

⎧⎨

⎩

· pb, k − i, 0, ⌊r −
i

2
⌋􏼒 􏼓 + C r

∗
, pb, k, r

∗
+ 1, k( 􏼁

⎫⎬

⎭ ,

(46)

which can be verified by *eorem 1.
Case 2: if the radius of the Hamming sphere
r∗ ∈ [⌊T/2⌋ + 1, k] in Figure 1, we can derive the upper
bound on the bit error probability by employing both
the IOWEF {Ai,d, 0≤ i≤T, 0≤ d≤ n − k + T} and the
weight spectrum Ad, 0≤d≤ n􏼈 􏼉.
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From *eorem 1, we have

Pr Eb􏼈 􏼉≤ min
⌊T/2⌋+1≤r∗≤k

􏽘

2r∗

i�1

i

k
􏽘
n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r −

i

2
⌋􏼒 􏼓

⎧⎨

⎩

+ C r
∗
, pb, k, r

∗
+ 1, k( 􏼁

⎫⎬

⎭,

(47)
in which

􏽘

2r∗

i�1

i

k
􏽘

n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r∗ −

i

2
⌋􏼒 􏼓⎛⎝ ⎞⎠

� 􏽘
T

i�1
􏽘

n

d�1

i

k
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r∗ −

i

2
⌋􏼒 􏼓

+ 􏽘
2r∗

i�T+1
􏽘

n

d�1

i

k
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r∗ −

i

2
⌋􏼒 􏼓.

(48)

Note that

􏽘

2r∗

i�T+1
􏽘

n

d�1
Ai,d � 􏽘

2r∗

i�T+1
􏽘

2r∗

d�i

Ai,d + 􏽘

2r∗

i�T+1
􏽘

2r∗+n− k

d�2r∗+1
Ai,d. (49)

Firstly, it is easy to verify that the first term in the right-
hand side (RHS) of (49)

􏽘

2r∗

i�T+1
􏽘

2r∗

d�i

Ai,d � 􏽘
2r∗

d�T+1
􏽘

d

i�T+1
Ai,d. (50)

Since

􏽘

d

i�T+1
Ai,d � Ad

′ , (51)

for d ∈ [T + 1, 2r∗] and i is obviously not greater than
min d, k{ }, we have

􏽘

d

i�T+1

i

k
Ai,d ≤

min d, k{ }

k
Ad
′ . (52)

*erefore,

􏽘

2r∗

i�T+1
􏽘

2r∗

d�i

i

k
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r∗ −

i

2
⌋􏼒 􏼓

≤ 􏽘
2r∗

d�T+1

min d, k{ }

k
Ad
′Q

��
d

√

σ
􏼠 􏼡,

(53)

for

B pb, k − i, 0, ⌊r∗ −
i

2
⌋􏼒 􏼓≤ 1. (54)

Secondly, it is easy to verify that the second term in the
RHS of (49)

􏽘

2r∗

i�T+1
􏽘

2r∗+N− K

d�2r∗+1
Ai,d ≤ 􏽘

2r∗+N− K

d�2r∗+1
Ad
′ . (55)

Since

􏽘

2r∗

i�T+1
Ai,d ≤Ad

′ , (56)

for d ∈ [T + 1, 2r∗ + n − k] and i is obviously not greater
than min 2r∗, k{ }, we have

􏽘

2r∗

i�T+1

i

k
Ai,d ≤

min 2r∗, k{ }

k
Ad
′ . (57)

*erefore,

􏽘

2r∗

i�T+1
􏽘

2r∗+n− k

d�2r∗+1

i

k
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r∗ −

i

2
⌋􏼒 􏼓

≤ 􏽘
2r∗+n− k

d�2r∗+1

min 2r∗, k{ }

k
Ad
′Q

��
d

√

σ
􏼠 􏼡,

(58)

for B(pb, k − i, 0, ⌊r∗ − (i/2)⌋) ≤ 1.
*en, we have

􏽘

2r∗

i�T+1
􏽘

n

d�1

i

k
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r∗ −

i

2
⌋􏼒 􏼓

≤ 􏽘

2r∗

d�T+1

min d, k{ }

k
Ad
′Q

��
d

√

σ
􏼠 􏼡 + 􏽘

2r∗+n− k

d�2r∗+1

min 2r∗, k{ }

k
Ad
′Q

��
d

√

σ
􏼠 􏼡,

(59)

by combining (53) and (58) with (59).
Finally, we have

Pr Eb􏼈 􏼉≤ min
⌊T/2⌋+1≤r∗≤k

􏽘

T

i�1

i

k
􏽘

n

d�1
h i, d, r

∗
( 􏼁

⎧⎨

⎩

+ 􏽘
2r∗

d�T+1

min d, k{ }

k
Ad
′Q

��
d

√

σ
􏼠 􏼡

+ 􏽘
2r∗+n− k

d�2r∗+1

min 2r∗, k{ }

k
Ad
′Q

��
d

√

σ
􏼠 􏼡

+ C r
∗
, pb, k, r

∗
+ 1, k( 􏼁

⎫⎬

⎭,

(60)

by combining (48) and (59) with (47).
*en, we have the following theorem.

Theorem 2. We have the upper bound on the bit error
probability of systematic binary linear codes via their weight
spectra

Pr Eb􏼈 􏼉≤min Pr Eb1
􏽮 􏽯,Pr Eb2

􏽮 􏽯􏽮 􏽯, (61)

where
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Pr Eb1
􏽮 􏽯 � min

0≤r∗≤⌊T/2⌋
􏽘
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d
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∗
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∗
+ 1, k( 􏼁
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⎩
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Pr Eb2
􏽮 􏽯 � min

⌊T/2⌋+1≤r∗≤k
􏽘

T

i�1

i
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􏽘

n

d�1
h i, d, r

∗
( 􏼁 + 􏽘

2r∗

d�T+1

min d, k{ }

k
Ad
′Q

��
d

√

σ
􏼠 􏼡 + 􏽘

2r∗+n− k

d�2r∗+1

min 2r∗, k{ }

k
Ad
′Q

��
d

√

σ
􏼠 􏼡 + C r

∗
, pb, k, r

∗
+ 1, k( 􏼁

⎧⎨

⎩

⎫⎬

⎭.

(62)

Proof. We can complete the theorem by combining (46) and
(60). □

Corollary 3. ,e proposed upper bound on the bit error
probability (,eorem 2) can improve the proposed upper
bound on the bit error probability (,eorem 1).

Assuming that we know only the truncated IOWEF {Ai,d,
0≤ i≤T, 0≤d≤ n − k + T} and the proof weight spectrum
Ad, 0≤d≤ n􏼈 􏼉, *eorem 1 can be written as

Pr Eb􏼈 􏼉≤ min
0≤r∗≤⌊T/2⌋

􏽘

2r∗

i�1

i

k
􏽘

n

d�1
Ai,dQ

��
d

√

σ
􏼠 􏼡B pb, k − i, 0, ⌊r −

i

2
⌋􏼒 􏼓

⎧⎨

⎩

+ C r
∗
, pb, k, r

∗
+ 1, k( 􏼁

⎫⎬

⎭,

(63)

implying that Pr Eb􏼈 􏼉≤Pr Eb1
􏽮 􏽯. *eorem 2 needs a mini-

mization over 0≤ r∗ ≤ k if the optimal parameter r∗ is in the
interval [0, ⌊T/2⌋], and*eorem 2 is exactly*eorem 1; if r∗

is in the interval [⌊T/2⌋ + 1, k], *eorem 2 is tighter than
*eorem 1.*erefore, we claim that*eorem 2 can improve
*eorem 1 to complete the proof.

Corollary 4. ,e proposed upper bound on the bit error
probability (,eorem 2) can improve the Ma bound on the bit
error probability (18).

Proof. It can be verified by combining Corollaries 2
and 3. □

Remark. *e proposed bound (*eorem 2) has a little
higher computational loads than the conventional union
bound. Firstly, the overhead is caused by recursively
computing B(·, ·, ·, ·) and C(·, ·, ·, ·, ·). *e probability
B(·, ·, ·, ·) and C(·, ·, ·, ·, ·) is the summation with at most k
summands, which are independent of the IOWEF and
hence can be calculated and stored for use. Secondly,
the overhead is caused by minimizing over r∗

(0≤ r∗ ≤ k). A brute-force method can be implemented by
computing the bound for each r∗, which can be done
recursively.

4. Numerical Examples

In this section, we need to point out that the weight
spectra of the compared BCH codes can be found in [17].
For all the upper bounds on the bit error probability
except the Ma bound, we need the whole IOWEF. *en,
in this paper, the compared bounds are the Ma bound
(18) and the proposed bound (61) in*eorem 2 on the bit
error probability, which are also compared with the
simulation results under the maximum-likelihood (ML)
decoding.

Figures 2 and 3 show the comparisons between the upper
bounds of BCH codes [127, 106] and [127, 113], respectively,
which are also compared with the simulation results under
ML decoding. A partial IOWEF {Ai,d, 0≤ i≤T, 0≤d≤
n − k + T} with T � 8 of the BCH codes [127, 106] and [127,
113] can be obtained by using a brute-force method, re-
spectively. *e computed IOWEF {Ai,d, 0≤ i≤ 8, 0≤ d≤ 29}
of the BCH code [127, 106] is given in Table 1.*eMa bound
is obtained by this truncated IOWEF according to (18). *e
proposed upper bound is obtained by this truncated IOWEF
and the weight spectrum according to (61) in *eorem 2
(note that (61) is different from [5], (23)) since *eorem 2
here is derived in a much more detailed way when the
Hamming weight d ∈ (T, 2r∗]). As pointed out in [18],
multidimensional signal processing plays a very important
role in effective data analytics and interpretation. In this
paper, we tighten the upper bound by analysing the k-di-
mensional vector. We can see that the proposed bound is
tighter than theMa bound.We can also see that, for the same
code length n, the higher the code rate is, the tighter the Ma
bound is. *e proposed bound is always tighter whatever the
code rate is.

Figure 4 shows the comparisons between the upper
bounds on the bit error probability of the BCH code [255,
239], which are also compared with the simulation results
under ML decoding. A partial IOWEF {Ai,d, 0≤ i≤T,
0≤d≤ n − k + T} with T � 5 of the BCH code [255, 239] can
be obtained by using a brute-force method.*eMa bound is
obtained by this truncated IOWEF according to (18). *e
proposed upper bound is obtained by this truncated IOWEF
and the weight spectrum according to (61). We can see that
the proposed bound is tighter than the Ma bound. We can
also see that, the proposed bound coincides nicely with the
ML decoding results in the high-SNR region when we only
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know less IOWEF {Ai,d, 0≤ i≤ 5, 0≤ d≤ 21} of the BCH code
[255, 239].

Figure 5 shows the comparisons between the upper
bounds on the bit error probability of the BCH code [31, 21],
which are also compared with the simulation results under
ML decoding. *e whole IOWEF Ai,d, 0≤ i≤ 21, 0≤d≤ 31}
of the BCH code [31, 21] can be obtained by using a brute-

force method. *e Ma bound is obtained by the whole
IOWEF according to (18), where T � 21. *e proposed
upper bound is obtained by the whole IOWEF and the
weight spectrum according to (61). We can see that the
proposed bound is tighter than the Ma bound in the low-
SNR region when we know the whole IOWEF. We can also
see that, the proposed bound and the Ma bound coincide
nicely with the ML decoding results in the high-SNR region.
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Figure 3: comparison between the proposed bound (*eorem 2)
and the Ma bound on the bit error probability of the BCH code
[127, 113], which is also compared with the simulation results
under ML decoding.
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Figure 2: comparison between the proposed bound (*eorem 2) and the Ma bound on the bit error probability of the BCH code [127, 106],
which is also compared with the simulation results under ML decoding.
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Table 1: *e partial IOWEF {Ai,d, 0≤ i≤ 8, 0≤d≤ 29} with T � 8 of the BCH code [127, 106].

1 7 17 3 19 1847 5 20 2627123 7 15 2.364896e+ 009
1 8 8 3 20 584 5 21 984117 7 16 3.415877e+ 009
1 9 2 3 21 127 5 22 288687 7 17 4.098554e+ 009
1 10 4 3 22 21 5 23 64158 7 18 4.098554e+ 009
1 11 23 4 7 3470 5 24 10105 7 19 3.415535e+ 009
1 12 27 4 8 15952 5 25 1049 7 20 2.364660e+ 009
1 13 13 4 9 46995 5 26 59 7 21 1351255504
1 14 3 4 10 125279 6 7 19462 7 22 630548101
1 15 8 4 11 275791 6 8 194386 7 23 236462455
1 16 1 4 12 484126 6 9 1059704 7 24 69546072
2 7 71 4 13 697948 6 10 4752113 7 25 15457425
2 8 188 4 14 834510 6 11 16623036 7 26 2439979
2 9 305 4 15 834260 6 12 44331232 7 27 243848
2 10 472 4 16 696623 6 13 94527372 7 28 11614
2 11 711 4 17 482965 6 14 165420289 8 8 163532
2 12 1007 4 18 275130 6 15 239125721 8 9 2946230
2 13 964 4 19 128772 6 16 286915986 8 10 29469636
2 14 794 4 20 47734 6 17 286915986 8 11 192045523
2 15 511 4 21 14385 6 18 239077900 8 12 864339336
2 16 340 4 22 3172 6 19 165519571 8 13 2.924072e+ 009
2 17 135 4 23 513 6 20 94593564 8 14 7.797383e+ 009
2 18 48 4 24 37 6 21 44141017 8 15 1.672354e+ 010
2 19 12 4 25 2 6 22 16553366 8 16 2.926719e+ 010
2 20 7 5 7 11611 6 23 4864138 8 17 4.226740e+ 010
3 7 614 5 8 73116 6 24 1082409 8 18 5.072263e+ 010
3 8 2097 5 9 281110 6 25 170775 8 19 5.072258e+ 010
3 9 4816 5 10 960971 6 26 17090 8 20 4.226969e+ 010
3 10 10482 5 11 2633699 6 27 823 8 21 2.926271e+ 010
3 11 18637 5 12 5642851 7 7 13142 8 22 1.672131e+ 010
3 12 27236 5 13 9825582 7 8 276537 8 23 7.803514e+ 009
3 13 32706 5 14 14197834 7 9 2380926 8 24 2.926377e+ 009
3 14 32212 5 15 17043850 7 10 15092372 8 25 860707256
3 15 27027 5 16 17047259 7 11 69866721 8 26 191259366
3 16 18689 5 17 14202094 7 12 237457686 8 27 30195788
3 17 10826 5 18 9829514 7 13 630106871 8 28 3021987
3 18 5000 5 19 5614707 7 14 1350174932 8 29 143670
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Figure 5: comparison between the proposed bound (*eorem 2) and the Ma bound on the bit error probability of the BCH code [31, 21],
which is also compared with the simulation results under ML decoding.
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5. Conclusions

In this paper, upper bound on the bit error probability of
systematic binary linear codes under MAP decoding is
derived. *e proposed bound just requires the weight
spectra of the code, which is helpful when the whole
IOWEF of the code is not available. *e proposed bound
(*eorem 2) is proved to be tighter than the recently
proposed Ma bound. *e numerical results show that the
proposed bound on the bit error probability via weight
spectra coincides nicely with the ML decoding results in
the high-SNR region, which can predict the BER per-
formance without resorting to computer simulations
since the simulation is time-consuming in high-SNR
region.
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Nowadays, deep learning has achieved remarkable results in many computer vision related tasks, among which the support of big
data is essential. In this paper, we propose a full stage data augmentation framework to improve the accuracy of deep con-
volutional neural networks, which can also play the role of implicit model ensemble without introducing additional model
training costs. Simultaneous data augmentation during training and testing stages can ensure network optimization and enhance
its generalization ability. Augmentation in two stages needs to be consistent to ensure the accurate transfer of specific domain
information. Furthermore, this framework is universal for any network architecture and data augmentation strategy and therefore
can be applied to a variety of deep learning based tasks. Finally, experimental results about image classification on the coarse-
grained dataset CIFAR-10 (93.41%) and fine-grained dataset CIFAR-100 (70.22%) demonstrate the effectiveness of the framework
by comparing with state-of-the-art results.

1. Introduction

Computer vision is the first and most widely used field of
deep learning technology. After the advent of AlexNet [1],
deep convolutional neural networks (CNNs) have been
quickly applied for various tasks in computer vision, in-
cluding pedestrian detection [2], face recognition [3], image
classification [4–6], semantic segmentation [7, 8], and target
tracking [9, 10]. Due to the availability of big data and
massive computing resources, overparameterized deep
learning models have demonstrated their superior perfor-
mance depending on the highly nonlinear fitting capabilities.
So far, many kinds of deep learning models have been
developed and improved, including different structures and
connections [11]. .e corresponding training methods are
also constantly updated [12, 13].

However, deep learning still has many unintelligible
properties and the theory behind it is not perfect. Typi-
cally, due to its difficulty of interpretation, deep learning

models are difficult to be improved in a targeted manner.
Researchers usually need to consider both optimization
and generalization. Moreover, big data driven mode based
deep CNNs still have the “overfitting” problem; that is, the
neural network can perform well on the training set but
cannot be effectively generalized on the unseen test data.
On the other hand, a larger model tends to perform better
[14], but it also requires people to make tradeoffs between
accuracy and reasoning speed in practice. .e noise in the
natural image also affects the mining of implicit knowledge
and the extraction of expressive features of the object.
.ese challenges have hindered its successful application
in some special scenarios, such as the medical diagnosis
tasks [15], where there is lack of training data and auto-
matic driving systems [16] that require high real-time
performance.

At present, many methods have been developed to al-
leviate the “overfitting” problem of deep CNNs, and they can
be summarized as follows:
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(i) Regularization techniques for limiting network
complexity, such as L2-regularization [17] and
Hierarchical Guidance and Regularization (HGR)
learning [18]

(ii) Data augmentation methods for expanding sample
set, such as translation [19], horizontal flipping [20],
and noise disturbance [21]

(iii) Model ensemble for reducing dependence on single
network, for example, auxiliary classification nodes
in GoogleLeNet [22], Dropout [23], and Drop-
Connect [24]

(iv) Some special training tricks like well-designed
initialization [25], early stopping [26], and learning
rate decay [27]

In this paper, we propose the full stage (i.e., training and
testing stages) data augmentation framework in deep
learning for natural image classification. Data augmentation
in the training process is used to ensure that the network can
mine the structural information of samples and finally
converge in the appropriate position, and the data aug-
mentation in the test process can play the role of model
ensemble to reduce the dependence on a single network.
Augmentation in two stages needs to be consistent to ensure
accurate transfer of domain information. It is worth noting
that the framework is universal to any network architecture
and data augmentation strategy and can therefore be applied
to a variety of deep learning based tasks. We have done
extensive experiments on fine-grained and coarse-grained
image classification datasets, that is, CIFAR-10 and CIFAR-
100 [28]. Compared with different algorithms, our frame-
work shows significant improvement on deep CNN and
achieves state-of-the-art results.

.e remainder of the paper is organized as follows.
Section 2 gives a brief review of the related work on data
augmentation in deep learning. In Section 3, we introduce
the proposed full stage data augmentation framework in
detail. Experimental results and comparisons are presented
in Section 4. Finally, we conclude our work and discuss
future directions in Section 5.

2. Related Work

Data augmentation is an effective method to reduce the
“overfitting” of deep CNN caused by limited training
samples, which approximates the data probability space by
manipulating input samples, such as horizontal flipping,
random crop, scale transformation, and noise disturbance.
In general, as long as the quantity, quality, and diversity of
the data in the dataset are increased, the effectiveness of the
model can be improved. Sample pairing [29] is a simple but
surprisingly effective data augmentation technique for
image classification task, which can create the new image
from an original one by overlaying another image ran-
domly picked from the training set. However, many special
training tricks hinder its real application. Neural Aug-
mentation [30] and Smart Augmentation methods [31]
teach the neural network autonomous learning how to

generate new samples by minimizing the error of that
network. .e appearance of Generative Adversarial Net-
works (GANs) provides a new research direction for data
augmentation. Frid-Adar et al. [32] have illustrated that
training with adversarial samples generated by GANs can
improve the generalization ability of deep CNNs and help
to overcome the defects of activation functions. But, in
practice, GANs require considerable time for training and
are difficult to converge. As for data augmentation in
testing phase, Wang et al. [33] have used different un-
derpinning network structures and augmented the image
by 3D rotation, flipping, scaling, and adding random noise.
Experiments showed that test-time augmentation can
achieve higher segmentation accuracy and obtain uncer-
tainty estimation of the segmentation results. .ere have
been many data augmentation methods in deep learning
community, but how to efficiently apply them is currently
the most important research direction.

In addition, there are many regularization methods at
the loss layer which can also be interpreted as an implicit
data augmentation, such as Dropout [23], DropConnect
[24], DisturbLabel [34], and SoftLabel [35]. Dropout and
DropConnect can be interpreted as data augmentation
methods by projecting the introduced noises back into the
input space. DisturbLabel and SoftLabel add specially
distributed noises to ground-truth category labels of ran-
domly selected samples during the training process. .e
noises have been distributed in the implicit augmented
samples. Although the above methods can improve the
generalization ability of the model, the impact of additional
noise on the decision boundary has not been analyzed
rigorously.

In fact, approximating real and natural input spaces
through data augmentation is intuitionistic. A more com-
prehensive input space allows the model to better converge
on a global minimum or a better local minimum. However,
the “overfitting” problem of deep CNNs still exists, which
prompts us to rethink of the influence of data augmentations
during training and testing process on the optimization and
generalization of deep CNNs.

3. Full Stage Data Augmentation Framework

3.1. Problem Formulation. Given a deep CNN model
M0: f(x; θ0) trained on the training set D: (xi, yi)􏼈 􏼉

N

i�1, (x, y)
and θ0: Wl

0, b
l
0􏽮 􏽯

L

l�1 represent the inputs (i.e., the natural
images and corresponding ground-truth labels) and ini-
tialized network parameters, respectively. Parameters are
organized into four-dimensional tensors and two-dimen-
sional matrices in the convolutional and fully connected
layers, respectively. .e network is optimized by mini-batch
stochastic gradient descent (SGD) method based on back
propagation.

In the forward propagation stage, the output of each
layer is the input of the next; the output hl of l-th layer in
deep CNN for l� 1, . . ., L − 1 can be given by

hl � σ Wl
0hl− 1 + bl

0􏼐 􏼑, (1)
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where h0 � x and σ (·) represents the element-wise nonlinear
activation function, such as Leaky-ReLU [36], which is
defined as

σ(x) �

x, if x> 0,

x

a
, if x≤ 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where a is a fixed hyperparameter in (1, +∞). .en the final
output of deep CNN model can be obtained by

f(x) � softmax WL
0hL− 1 + bL

0􏼐 􏼑, (3)

where softmax (·) is defined as the logarithmic normalization
function of finite term discrete probability distribution and
can be calculated according to

softmax(f)i �
efi

􏽐
C
j�1e

fj

, for i � 1, 2, . . . , C, (4)

whereC is the number of neurons in the last layer, that is, the
number of classification categories. Finally, the training loss
of deep CNN can be given by

L xi, yi( 􏼁 � −
1
C

􏽘

C

j�1
y

j
i logf xi( 􏼁

j
+ 1 − y

j
i􏼐 􏼑log 1 − f xi( 􏼁

j
􏼐 􏼑􏽨 􏽩

+ λ 􏽘
L

k�1
Wk

�����

�����F
.

(5)

.e first term is the negative log-likelihood loss and the
second term is L2-regularization of all the weights. λ is the
weight decay rate that controls the regularization intensity
and ‖·‖F represents the Frobenius norm. By continuously
optimizing the loss function and updating the network
parameters, the model is trained for convergence and used
for testing.

In the back propagation stage, our goal is to minimizeL
through updating parameters (weights W and biases b) in
deep CNN. Based on mini-batch SGD, parameters at t-th
training iteration can be updated as

Wl
t � Wl

t− 1 − α ·
1

M
􏽘

M

i�1

zL xi, yi( 􏼁

zWl
t− 1

,

bl
t � bl

t− 1 − α ·
1

M
􏽘

M

i�1

zL xi, yi( 􏼁

zbl
t− 1

,

(6)

where α and M represent the learning rate and batch size,
respectively. .rough continuous iteration (each of which
includes M forward propagation steps and 1 back propa-
gation step), a convergent model M∗: f(x; θ∗) is obtained.
In the test process, the convergent deep CNN model is used
to output the category labels of test samples. Finally, the
entire flow chart is drawn in Figure 1.

3.2. Data Augmentation during Training Process. From the
perspective of image acquisition, an acquired image is only

one of many possible observations of the potential anatomy
that can be observed by different spatial transformations and
noise disturbance. Direct inference of the acquired images
may result in biased results affected by specific transfor-
mations and noise associated with equipment and envi-
ronment. In order to obtain a more reliable and robust
prediction, we propose a full stage data augmentation
framework to decrease the “overfitting” problem in deep
CNN.

At the first level, that is, training stage, the training
samples Dt: (xi, yi)􏼈 􏼉

M

i�1 in a mini-batch set at t-th training
iteration can be expanded to 􏽥Dt: (􏽥xi, 􏽥yi)􏼈 􏼉

􏽥M
i�1 through various

data augmentation techniques when they are fed into the
deep CNN, such as translation [19], horizontal flipping [20],
and noise disturbance [21]. All the augmentation parameters
like translation step, rotation range, and noise intensity are
set and retained. Furthermore, it is worth noting that all data
augmentations are performed at the data input stage rather
than at the beginning of the entire training process. In this
way, the training data are expanded to 􏽥M/M times of the
original data and the number of training iterations remains
almost unchanged.

3.3. Data Augmentation during Testing Process. At the sec-
ond level, that is, test stage, we use the same distributions of
augmentation parameters for the convergent deep CNN.
Each test image is augmented to 􏽥M/M images through the
same data augmentations used in the training process. .e
consistency of data augmentation in the two stages is helpful
to ensure the accurate transfer of domain information. .e
􏽥M/M prediction results are combined to obtain the final
prediction based on majority voting:

Training phase

Testing phase

Initialize a deep CNN

Input training data

Data augmentation Augmentation

Forward propagation

Loss computation

Satisfying 
conditions Back propagation

Parameter updating

Input test data

Forward propagation

Data augmentation

Output results

Yes

No

Figure 1: .e overall flow of training and testing of deep CNNs.
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f(x) �
M

􏽥M
􏽘

􏽥M/M

i�1
f 􏽥xi( 􏼁. (7)

.en the label corresponding to the location of the
largest value in the one-dimensional vector f (x) is the final
prediction result. If there exists a balanced vote, the category
with largest probability is chosen as the final prediction
result. .e whole framework is shown in Figure 2.

3.4. Interpretation asModel Ensemble. Researchers [37] have
reported that the combination of deep CNNs trained on
different noisy datasets is usually helpful. However, training
each neural network separately is prohibitively expensive,
since this requires exponentially many large sets containing
noisy data. At test stage, data augmentation operation of
each test sample (x⟶ 􏽥x) can be viewed as 􏽥x � g(x) where
g (·) represents corresponding data augmentation operation.
Each different data augmentation strategy can be repre-
sented by a different g (·). .erefore, the final prediction
based on majority voting can be rephrased as

f(x) �
M

􏽥M
􏽘

􏽥M/M

i�1
f gi(x)􏼂 􏼃 �

M

􏽥M
􏽘

􏽥M/M

i�1

􏽥fi(x), (8)

where 􏽥fi can be seen as a series of heterogeneous weak
learners that focus on different aspects of training samples.
Assuming that all the samples are independent and iden-
tically distributed (i.i.d), the data augmentation in the test
stage can be interpreted as an implicit model ensemble
through transforming 􏽥x back to x. It can reduce the bias and
variance of the convergent network, thus reducing the risk of
“overfitting” problem on the training set while increasing the
classification accuracy on the test set.

By reducing the reconstruction error between original
sample and augmented samples, we can obtain the updated
parameters of deep CNNs. We have observed the parameter
distribution of a series of networks [􏽥f1,

􏽥f2, . . . , 􏽥f􏽥M/M] in
Figure 3. It can be seen that the parameter distribution of
some networks is obviously different from that of other
models. .erefore, these models can be viewed as focusing
on different features of the image.

4. Experimental Results and Analysis

4.1. Experimental Setup

4.1.1. Experimental Datasets and Image Preprocessing.
Two benchmarks CIFAR-10 and CIFAR-100 represent
coarse-grained and fine-grained natural image classification
tasks, respectively, which are used to evaluate the effec-
tiveness of full stage data augmentation frameworks under
different difficulties. CIFAR-10 and CIFAR-100 are labeled
subsets of the 80 million tiny images dataset [28]. .e
CIFAR-10 dataset consists of 60,000 32× 32 color images in
10 classes, with 6,000 images per class. .ere are 50,000
training images and 10,000 test images. CIFAR-100 is just
like CIFAR-10, except it is a fine-grained version and has 100
classes containing 600 images each. .ere are 500 training

images and 100 testing images in each class. Some examples
of images in the two datasets are shown in Figure 4.

Input images of CIFAR-10 and CIFAR-100 datasets [28]
are preprocessed in the following manner. Each original
image is first color-normalized and then zero-padded to be
40× 40 pixels. As for data augmentation at both training and
testing stages, all samples are cropped to be 32× 32 pixels
and followed by a random horizontal flip with the 50%
probability during both training and testing stages. .e
sample size is expanded ten times by considering model
stability. Moreover, each image subtracts its own three-
channel (R/G/B) mean value to speed up the convergence of
deep CNN model.

4.1.2. Network Architectures. Two specially designed deep
CNNs are constructed to complete the image classification,
as shown in Figure 5. .e network trained on CIFAR-100
uses a deeper and broader structure than network trained on
CIFAR-10, because finer-grained data require a larger ca-
pacity for the model to characterize. Batch normalization
layer [38] is added between each convolutional layer and the
activation function. Fully connected layers that usually
appear in traditional networks are replaced by global average
pooling layer [39] to alleviate the “overfitting” problem,
except for the last fully connected layer with softmax
function used to output the category probability. All the
weights in the network are set according to MSRA method
[25].

4.1.3. Hyperparameters Setting. Network hyperparameters
including initial learning rate, batch size, dropout rate,
momentum, weight decay rate, and Leaky-ReLU hyper-
parameter a are set to 0.01, 512, 0.5, 0.9, 0.0005, and 5,
respectively. Nine-tenths of the samples in a batch come
from data augmentation. As training iterations, the learning
rate is decreased in an exponential form with a decay rate of
0.9.

4.1.4. Experimental Platform. All the training and testing
procedures of deep CNNs are carried out under the Caffe
deep learning framework [40], based on the workstation
consisting of an Intel Core i7-8700k CPU, a NVIDIA
GeForce GTX 1080 GPU, 16 gigabytes of memory, and 1
terabyte of storage. .e hardware platform and framework
only affect the training efficiency rather than the actual
classification performance of deep learning model.

4.2. Comparison of Classification Results. In this section, we
report the experimental results and discuss possible reasons
behind some phenomena. To prove the validity of proposed
full stage data augmentation method, fivefold cross vali-
dation results are computed for final evaluation and com-
parison. Furthermore, the classification results of two
datasets are presented separately in terms of the fineness
degree of object categories.
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4.2.1. Coarse-Grained Image Classification Results. We first
report the baseline classification results before and after
using full stage data augmentation method, as shown in
Figure 6. .e results show that the full stage data aug-
mentation framework leads to a significant improvement of
classification accuracy for deep CNNmodel. It can be clearly
seen that the confusion matrix of original network is more
confusing than that of the data-augmented network. In fact,
the average classification accuracy of CIFAR-10 has in-
creased from 85.7% to 93.4%. Furthermore, we also report
the results of using data augmentation only during training
or testing phase. Data augmentation in training phase is

more effective than that in testing phase, with an accuracy
increase of about 3%. However, the deep CNN also needs
longer training time. In contrast, the additional reasoning
costs associated with the data augmentation in the test phase
can be neglected. In other words, full stage data augmen-
tation framework improves the performance of traditional
training data augmentation methods without introducing
additional costs.

.en we observe the effectiveness of various data aug-
mentation methods under the proposed full stage data
augmentation framework, including translation, horizontal
flip, rotation, scale transformation, and noise disturbance.

∗ : f (x; θ∗)

Training stage

Test stage

g1(·), ... OutputInput

g1(·), ... OutputInput

∗ : f (x; θ∗)

0 : f (x; θ0)

f (x)

Figure 2: .e whole full stage data augmentation framework.
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Figure 3: Parameter distribution of a series of deep CNNs by projecting the augmented images back into the input space..e horizontal axis
represents the normalized network parameters.
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Figure 4: Some examples of images in CIFAR-10 (first row) and CIFAR-100 (second row).

CIFAR-10

32 × 32 × 3 input

3 × 3 conv, 64
3 × 3 conv, 64

Batch normalization

2 × 2 max pool
dropout (0.1)

3 × 3 conv, 128
3 × 3 conv, 128

Batch normalization

2 × 2 average pool
dropout (0.1)

3 × 3 conv, 128
3 × 3 conv, 128

Batch normalization

Global average pool
dropout (0.5)

Dense (10)
So�max

CIFAR-100

32 × 32 × 3 input
3 × 3 conv, 128
3 × 3 conv, 128
1 × 1 conv, 128

Batch normalization
2 × 2 max pool
dropout (0.1)

3 × 3 conv, 128
3 × 3 conv, 128
1 × 1 conv, 128

Batch normalization
2 × 2 average pool

dropout (0.1)
3 × 3 conv, 256
3 × 3 conv, 256
1 × 1 conv, 256

Batch normalization
Global average pool

dropout (0.5)
Dense (100)

So�max

Figure 5: .e structure of two specially designed deep CNNs.
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Figure 6: Continued.
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Translation and horizontal flip are based on the settings
given above. .e rotation range is from negative to positive
five degrees, and the step size is 1 degree. Four Gaussian
convolutional kernels with different fuzzy radii are used for
the scale transformation, including 3× 3, 5× 5, and 7× 7
pixels. .e noise disturbance adds Gaussian white noises
with different intensity to the original image, including 0.01,
0.05, 0.1, and 0.2. During the testing phase, the data aug-
mentation strategy of test samples is consistent with the
training samples. .e experimental results are presented in
Table 1. .e results show that any data augmentation
strategy under the full stage data augmentation framework
can improve the classification performance of the deep
CNN. As far as CIFAR-10 is concerned, translation and
horizontal flip are the most effective means of data aug-
mentation, while the improvement of classification accuracy
caused by rotation and noise disturbance is limited. We
think this may be related to the small size of the samples in
CIFAR-10..e image itself is only 32× 32 pixels and is quite
blurred. .erefore, rotation and noise disturbance have a
large impact on the image structure, resulting in limited
help.

Finally, we compare state-of-the-art results brought by a
series of algorithms to demonstrate the effectiveness of
proposed full stage data augmentation framework, as shown
in Table 2. .ese algorithms only adopt data augmentation
strategies during the training phase. It can be seen that our
proposed method has significantly improved the classifi-
cation accuracy from 89.59% to 93.41%.

4.2.2. Fine-Grained Image Classification Results. Since its
high similarity between different classes and the scarcity of
samples in each class, fine-grained image classification is
more challenging than coarse-grained classification task.
Table 3 shows the experimental results on CIFAR-100 before

and after using full stage data augmentation method. It can
be seen that the average classification accuracy has been
increased from 62% to 70%, which exceeds the improvement
of CIFAR-10. On the other hand, the performance of single
augmentation of training set and test set has also been
improved, which increases the accuracy by 4.64% and 1.99%,
respectively. In fine-grained image classification task, fewer
samples in each classes caused by multiple classes make the
data augmentation strategy play a greater role.

.en we also observe the effectiveness of various data
augmentation methods on CIFAR-100, as given in Table 4.
We find that the effect of data augmentation can only be
achieved when the number of augmented samples becomes

Tr
ue

 la
be

l
Airplane

Classification accuracy = 91.03%

Predicted label

Automobile
Bird
Cat

Deer
Dog
Frog

Horse
Ship

Truck

A
irp

la
ne

Au
to

m
ob

ile
Bi

rd Ca
t

D
ee

r
D

og
Fr

og
H

or
se

Sh
ip

Tr
uc

k

0.0

0.2

0.4

0.6

0.8

1.0

(c)

Tr
ue

 la
be

l

Airplane
Automobile

Bird
Cat

Deer
Dog
Frog

Horse
Ship

Truck

Classification accuracy = 93.41%

Predicted label

A
irp

la
ne

Au
to

m
ob

ile
Bi

rd Ca
t

D
ee

r
D

og
Fr

og
H

or
se

Sh
ip

Tr
uc

k

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 6: Classification results on CIFAR-10 before and after using full stage data augmentation method. (a)–(d) represent “no data
augmentation,” “augmentation in training stage,” “augmentation in test stage,” and “full stage data augmentation,” respectively.

Table 1: Classification accuracy of various data augmentation
methods on CIAFR-10 under the proposed full stage data aug-
mentation framework.

Methods CIFAR-10 (%)
Translation 91.41
Horizontal flip 90.27
Rotation 88.78
Scale transformation 90.70
Noise disturbance 87.54

Table 2: Comparison with state-of-the-art algorithms on CIFAR-
10.

Algorithms CIFAR-10 (%)
Dropout [41] 84.40
Probout [42] 88.65
NIN+dropout [43] 89.59
Maxout + dropout [44] 88.32
Stochastic pooling [45] 84.86
Probabilistic weighted pooling [46] 88.71
Our method 93.41
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larger than that of CIFAR-10. Moreover, fine-grained image
classification is more sensitive to data augmentation strat-
egy, and some methods may even have negative effects, such
as the noise disturbance, which reduces the classification
accuracy by 1.38%. .is is related to the structure of dataset
and the distribution condition of all samples. .e distri-
bution of samples in the dataset should be smooth; other-
wise, it is easy to overlearn and cause the “overfitting”
problem, which results in poor generalization on unseen test
samples.

Table 5 gives the comparison results of CIFAR-100 with
a series of state-of-the-art algorithms. It is worth noting that
if dropout is employed improperly like in [45], the classi-
fication accuracy would decrease. Probabilistic weighted
pooling [46] can also be regarded as model ensemble in the
test stage, thus achieving good result (62.87%). Finally,
classification accuracy has been increased from 64.32% to
69.22% by using full stage data augmentation framework.

4.3. Relationship between Data Augmentation and Network
Generalization Ability. In practice, one of the obstacles to
the mature application of data augmentation strategies in
deep learning is that it is difficult for people to determine
how many samples are efficient. In other words, the regu-
larization intensity of data augmentation is usually uncer-
tain. Although some scholars [47, 48] have suggested that the
more samples the better, developers usually have to weigh
the network performance and time cost in training and
reasoning. In this part, we discuss the relationship between
data augmentation and network generalization ability
through extensive experiments.

We set up a series of data augmentation schemes of
different sizes and observe the classification performance of
the network in an attempt to mine and establish the rela-
tionship between the expanded sample size and the network
generalization boundary. .e experimental results of
CIFAR-10 and CIFAR-100 are shown in Figure 7. .e
classification results of deep CNN with full stage data

augmentation are always better than the baseline results on
both datasets, regardless of the augmentation strength. In
other words, the size of the dataset directly determines the
quality of the deep learning models. On the other hand, the
effect of various data augmentation methods clearly has a
saturation interval. Once the augmentation strength exceeds
this threshold, the performance of the network on the test set
no longer grows and tends to be stable. In this case, we
believe that the data itself or the network structure itself has
become an “information bottleneck,” which hinders the
further improvement of classification accuracy. At this
point, the direction of improvement should be considered
from data sources with higher quality and more advanced
network structures.

.en we visualize the convolutional kernels in the first
layer of deep CNN trained on CIFAR-10/100, as shown in
Figure 8. All of them are ordered according to the value of
their L1-norm. Visual spatial images can be combined by
decoupled component-level convolutional kernels and
mapped to different geometric spaces. .ese convolutional
kernels reflect the organization information in the images
extracted by the deep CNN, that is, the features of the object
in the image. Generally speaking, the ordered convolutional
kernels usually mean effective extraction of the organization
information, while chaotic ones mean the “overfitting” of
networks [49]. .is is helpful for establishing the relation-
ship between regularization intensity and network gener-
alization ability and provides standards or principles to
guide algorithm development or model structure
improvement.

4.4. Impact on Network Optimization and Generalization.
Data augmentation in training phase inevitably affects the
network convergence, including the convergence speed and
the final convergence position. We observe the decrease
curve of the loss function of deep CNN on the training sets of
CIFAR-10 and CIFAR-100 (see Figure 9) to analyze the
impact of full stage data augmentation framework on net-
work convergence. .e loss of the model can reach the same
level within the two epochs and eventually stabilize at 15
epochs, which means that the impact of data augmentation
during the training phase on the convergence speed of the
network can be ignored. On the other hand, the final loss
value of the augmented model is slightly higher than that of
the original model due to the regularization caused by the
diversity of expanded samples. Actually, the generalization
capability of deep CNNs, that is, the classification

Table 3: Experimental results on CIFAR-100 before and after using
full stage data augmentation method.

Methods CIFAR-100 (%)
No data augmentation 61.85
Augmentation in training stage 66.49
Augmentation in testing stage 63.84
Full stage augmentation 70.22

Table 4: Classification accuracy of various data augmentation
methods on CIFAR-100 under the proposed full stage data aug-
mentation framework.

Methods CIFAR-100 (%)
Translation 63.73
Horizontal flip 64.11
Rotation 62.20
Scale transformation 64.83
Noise disturbance 60.47

Table 5: Comparison with state-of-the-art algorithms on CIFAR-
100.

Algorithms CIFAR-100 (%)
Probout [42] 61.86
NIN+dropout [43] 64.32
Maxout + dropout [44] 61.43
Stochastic pooling [45] 57.49
Probabilistic weighted pooling [46] 62.87
Our method 70.22
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Figure 7:.e relationship between the expanded sample size and network generalization ability, in which the number of images is expanded
to Au times.
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Figure 8: Visualization of convolutional kernels in the first layers of the deep CNNs trained on CIFAR-10 (a) and CIFAR-100 (b), respectively.

CIFAR-10

Without data augmentation
Two-level data augmentation

1 20 40 60
Training epoch

CIFAR-100

Without data augmentation
Two-level data augmentation

10 20 30 401
Training epoch

0

0.5

1

1.5

2

Tr
ai

ni
ng

 lo
ss

0

0.5

1

1.5

2

Tr
ai

ni
ng

 lo
ss

Figure 9: .e optimization of the loss function of deep CNNs trained on CIFAR-10 and CIFAR-100, respectively.
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performance on the test set rather than the training set, is
our pursuit. .erefore, the optimization gap brought by data
augmentation has no impact on the application of deep
CNN in practice.

5. Conclusion

In this paper, we propose a full stage data augmentation
framework to improve the accuracy of deep CNNs, which
can also play the role of model ensemble without intro-
ducing additional model training costs. Simultaneous data
augmentation during training and testing stages can en-
sure network convergence and enhance its generalization
capability on unseen test samples. Furthermore, this
framework is universal for any network architecture and
data augmentation strategy and therefore can be applied to
various deep learning based tasks. Finally, experiments
about image classification on the coarse-grained dataset
CIFAR-10 and fine-grained dataset CIFAR-100 demon-
strate the effectiveness of the proposed framework by
comparison with state-of-the-art algorithms. .rough
visualization of convolutional kernels, we have demon-
strated that the ordered convolutional kernels usually
mean effective extraction of the organization information,
while chaotic ones mean the “overfitting” of networks. We
have also analyzed the relationship between data aug-
mentation and network generalization ability and ob-
served the impact of the framework on the convergence of
deep CNNs..e empirical results have shown that the data
augmentation framework can improve the generalization
ability of deep learning models, and it can have a negligible
impact on the model’s convergence.

As for future research directions, we plan to apply the
proposed full stage data augmentation method to more
complex CNN structures and some other machine
learning related applications, such as liveness detection
and gait and face recognition. We believe that it can help
improve the performance of deep learning models in a
series of tasks.
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