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The study of the chaotic dynamics in fractional-order discrete-time systems has received great attention over the last years. Some
efforts have been also devoted to analyze fractional maps with special features. This paper makes a contribution to the topic by
introducing a new fractional map that is characterized by both particular dynamic behaviors and specific properties related to the
system equilibria. In particular, the conceived one dimensional map is algebraically simpler than all the proposed fractional maps
in the literature. Using numerical simulation, we investigate the dynamic and complexity of the fractional map. The results
indicate that the new one-dimensional fractional map displays various types of coexisting attractors. The approximate entropy is
used to observe the changes in the sequence sequence complexity when the fractional order and system parameter. Finally, the
fractional map is applied to the problem of encrypting electrophysiological signals. For the encryption process, random numbers
were generated using the values of the fractional map. Some statistical tests are given to show the performance of the encryption.

1. Introduction

Fractional calculus is a topic which is developed more than
300 years. However, it is only the last decades that it has been
extensively and intensively investigated, due to its wide
application in signal mechanical controls and other fields [1].
Compared with integer order derivatives, fractional-order
derivatives are more accurate as they provide excellent tool
for the description of the memory effect in all kinds of
materials and processing. Based on this consideration, the
application of fractional-order systems have attracted more
and more researchers attention [2]. At the same time, during
the last decade, attention has been focused on discrete
fractional calculus and fractional difference operators [3, 4].
Several papers regarding the presence of chaotic phenomena

in fractional discrete-time systems (maps) have been pub-
lished to date [5-9]. For example, in [10] the hyperchaotic
dynamic of the fractional generalized Hénon map has been
investigated, whereas in [11] the presence of chaos in the
fractional discrete memristor system has been illustrated. In
[6] the presence of chaos in the fractional sine map and in
the fractional standard map has been analyzed in details. In
[7], control laws for stabilizing the chaotic dynamics of the
fractional Grassi-Miller map have been developed, whereas
in [8] the fractional Hénon map and its chaotic attractors
have been studied. In [12], the chaotic dynamics of three
maps (i.e., the fractional flow map, the fractional Lozi map
and the fractional Lorenz map) have been investigated,
whereas in [13] the chaotic behavior of the fractional Tin-
kerbell map has been illustrated. To our knowledge, all of the
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above reported systems have a finite number of equilibria. In
general, systems with more equilibria may bring unexpected
stabilities to some extent. Therefore, several efforts have been
devoted to the study of fractional chaotic maps with some
special features related to the system equilibria [14]. Among
these studies, Zambrano-Serrano et al. [15] analyzed the
dynamic properties and projective synchronization of the
fractional difference map with no equilibrium, whereas in
[16] Almatroud et al. found rich chaotic behaviours of a
novel two-dimensional (2D) hyperchaotic fractional map
with infinite line of equilibrium As a result, the analysis of
chaotic dynamical behaviours of the fractional-order dis-
crete-time systems without equilibrium points is an inter-
esting topic.

In recent years, there has been a growing interest in
discrete time systems with special complex dynamical be-
haviours, such as hidden attractors [17], coexisting multiple
attractors [18] and hyperchaotic behaviours. For instance, in
[19] the dynamic properties of a novel memristive hyper-
chaotic map and its application in secure communication
have been illustrated. A 2D sine map was presented in [20]
and several interesting behaviour like coexisting attractors
and initial offset boosting were explored. General speaking,
chaotic maps with coexisting attractors has drawn the at-
tention of many researcher. Coexistence of attractors is a
special phenomenon in nonlinear dynamical systems, which
denotes that with fixed values of system parameters, a tiny
disturbance in the initial condition can lead to the coexis-
tence of different attractors. This property makes the chaotic
maps very useful in the fields of secure communication and
encryption. Since such phenomenon has not received
enough attention with fractional discrete-time systems [21],
this paper aims to make a contribution by introducing a new
fractional map that is characterized by both particular dy-
namic behaviors and specific properties related to the system
equilibria. Namely, the proposed map possesses infinite
number of equilibria in a bounded domain, being this a new
feature for fractional map, not published in literature to date.
Dynamics and complexity of the conceived map are in-
vestigated in details. In particular, bifurcation diagrams,
maximum Lyapunov exponents and 0-1 test are reported to
highlight the coexistence of different periodic and chaotic
attractors. Moreover, the map is applied to the problem of
data encryption, which is a well established application of
chaotic systems. As recent examples of fractional systems
being applied to encryption, in the work [22] a technique to
improve chaotic behavior in fractional maps is proposed,
and applied to image encryption. An image encryption using
the fractional logistic map is proposed in [23], and a different
one in [24]. The 2D fractional Hénon map was also applied
to image encryption in [25]. In [26] a graphical user interface
is designed for random number generators based on integer
and fractional order chaotic systems. In [27] another pseudo
random number generator was designed based on the
coupling of multiple fractional chaotic systems. The above
works are just a small sample of the expanding use of
continuous and discrete fractional systems to encryption.
The use of fractional systems is drawing increasing attention
by researchers, since they have more complex dynamics due
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to their memory effect, and a higher key space than their
integer order analogues, since the fractional order and the
finite memory order constitute additional key values.

In this work, the encryption of electrophysiological
signals [28-33] is considered. To do so, first, a pseudo-
random bit generator (PRBG) is designed using the values of
the chaotic map. This chaotic PRBG is the basis for the
encryption design, since it is used as the source of deter-
ministic randomness [34-38]. Here, to take advantage of the
fractional nature of the map that is used as the basis of the
PRBG, a technique is proposed that takes into account its
memory effect. So first, the map is implemented using finite
memory, in order to reduce its computational cost. Then, in
each iteration, all previous values of the map are taken into
account in generating the bits, which leads in producing 459
bits per iteration. So the proposed technique reduces the
computational load of the PRBG, since fewer iterations of
the map are required to reach a desired bistream length, and
is specifically designed for fractional order systems.

After the PRBG is designed, to encrypt a given elec-
trophysiological signal, two rounds of masking are per-
formed. First, the signal is modulated to mask its structure
by combining it with the values of the fractional chaotic map.
Then, the modulated signal is transformed into its binary
representation, and combined with a bitstream generated
from the PRBG, to yield the encrypted signal. This binary
signal can then be safely transmitted through a communi-
cation channel. The original signal can be retrieved back at
the receiver end, by following the reverse encryption pro-
cedure. The performance of the encryption is finally eval-
uated by a series of statistical tests performed on the original,
modulated, and encrypted signals.

Finally, the encryption process is realised in a micro-
controller board. This implementation helps verify the
feasibility of simulating fractional maps in low cost hardware
devices, a task that is of high interest, due to the potential
implementability of chaotic systems in IoT related devices
[39, 40]. Such realizations have already been explored in the
literature, with positive results. For example, in [41] a
fractional macro-economic model was established, and a
microcontroller implementation was designed on an
Arduino Due. In [42] the problem of impulsive synchro-
nization for fractional order discrete chaotic maps is con-
sidered, and the design was again implemented in two
Arduino Mega boards that simulated the master and ob-
server systems. In [43] a hyperchaotic fractional order
system was proposed and discretized. The system was then
simulated in an Arduino Uno board and applied to the
problem of text encryption. In [44], a fractional order
modified Chua’s circuit was designed and implemented in
an Arduino Uno microcontroller. In [45] a generalized
fractional logistic map was constructed and applied to
random number generation and image encryption, imple-
mented on a Virtex-5 field-programmable gate array FPGA.
In the current work, the realization is done on an
STM32F103 nucleo development board, and the encrypted
signal from the microcontroller has the same statistical
properties to the signal generated from Matlab, as indicated
from all the statistical tests performed.
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1.1. Fractional Calculus and Preliminaries. In this section,
some preliminaries and basic concepts associated with
discrete fractional calculus are presented here for com-
pleteness. In the following we consider that our domain is
the time scale N, = {b,b+1,b+2,...} with b e R. Let X
denote any function defined from N,, thus the y-th frac-
tional sum for y >0 is defined by [46]:

A;”X(s)_r( )Z(s—l—l)” VX (), (1)

where s € N, ,,. Observe that the term s* indicates to the so-
called a falling function which may be defined via Gamma
function, T, as follows:

W _ F(S+l) . (2)
I(s+1-p)

Based on the above definition of the y-th fractional sum,
it is possible to define the y-Caputo like difference operator.
Let X denote any function defined from Nj. The Caputo
difference operator with order u ¢ N is defined by:

Definition 1. For n=[u]| + 1, the py-th order Caputo-like
operator can be defined as [47]:

CAb,X (s) = A",
) (3)
n (n—p—1) An
AX($) = 1o _) Z (s=1-1)"FDAIX (D).
For s e Ny, _

Now a theorem is briefly summarized, in order to derive
in the following the discrete formula of the new fractional
map.

Theorem 1. [48] For the fractional difference equation

{CA#ZX(S) = fs+u-LX(s+u—1),

) 4)
ANXb)=X,,n=[ul+1,r=0,1,...

,n—1.

Then, the discrete integral equation which is equivalent
to equations in (4) is:

s
X,=Xy+—— » (s—a(@)¥?

r( ) I=b+n—p (5)
fl+p=1LX(A+p-1),t €Ny,

Note that, for the purpose of numerical calculation, (5)
can be written as [48]:

1 F(n—z+y)
%o F(y)zI‘(m—z+1) A (©)

2. The New Fractional Map

Let us consider the following one dimensional map, which
has been recently proposed in [49] as an example of an
elegant map that can display chaotic behavior:

C
X = A sin(x—> + B, (7)

where A, B and C are three positive parameters. In this work,
we extend the original integer-order system to the frac-
tional-order case. Specifically, we consider the effect of the
fractional-order in the system dynamics by introducing the
following new fractional difference equation:

A’Zx (s)=A Sin(x(s+1—y)) -x(s+1-u)+B, (8)

where s € N(,,,_,) and p is the fractional order with 0 <p <1.
This fractional map is invariant under transformation
x — — x for all values of parameters A, B, C and order .
Hence this map could display coexisting attractors for ap-
propriate choice of initial conditions and fractional order
values as well. In order to investigate this property, the
numerical formula is designed as:

R z+;4)/ ~
F(y) Z T \ s1n<xi) x; + B).
9)

According to the discrete (9), the proposed fractional
map (8) has memory effect, which means that the iterated
solution x,, is determined by all the previous states. In order
to find the equilibrium points x ; of the fractional map (8),
we solve the following equation

ApEn = ¢" (r) - ¢"" (r), (10)

n_'xO

Obviously, (10) is a trigonometrical equation that is very
difficult to solve analytically, therefore, to analyze the
equilibrium points we adopt the graphic analytic method.
Taking the system parameters A =0.5, C =3, B=0 as an
example and the integer order value y = 1, Figure 1 shows
the phase portrait obtained by simulating (9) in the x,, — x,,,,
plane along with the y = x line. The black line in Figure 1,
bisects the first and third quadrants at the interval
[-0.5,0.5], and its crosses with the map are equilibrium
points. As one can see, Figure 1 visually demonstrates that
there are infinite equilibrium points in this case. On the
other hand, Figure 2 shows different phase portraits ob-
tained by simulating (9) for different values of order y. In
comparison to the integer-order case, the shape of the
bounded attractors does not change much with the decrease
of the value of y, while the interval where equilibrium points
exist is changed from [-0.5,0.5] into [-0.6,0.6].

3. Dynamics and Complexity of the New
Fractional Map

In this Section the dynamic behaviors of the fractional-order
map (8) are numerically investigated using bifurcation
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Figure 2: Different chaotic attractors of the fractional map (8) for system parameters A = 0.5, B =0, C = 3 and different values of u:

(a)u = 0.9 and (b)u = 0.8. (c)u = 0.8.

diagrams and computation of maximum Lyapunov expo-
nents, 0-1 test and entropy. Namely, the influence of both
fractional order and initial conditions on the dynamics of the
novel map are investigated in detail, with the aim to
highlight the coexistence of different chaotic attractors.
Namely, the influence of both fractional order and initial
conditions on the dynamical behaviour of the novel map are
investigated in detail, with the aim to highlight the coex-
istence of different chaotic attractors. To give a finer analysis
of our fractional map we model its dynamics for two pa-
rameter sets, i.e for the above values A = 0.5, B=0,C =3

and for A=0.05B=0,C=1.

3.1. Bifurcation Diagrams and MLE. By changing the system
parameters, the fractional map (8) can undertake different
dynamic scenarios. Figure 3 gives the three-dimensional
view of the bifurcation diagrams of the fractional map (8) for
different values of y (ie, y =1, u = 0.6, y =0.2). We con-
sider the parameter A as the bifurcation parameter and we
take the other parameters as B =0 and C = 1. We consider
two values of symmetric initial conditions: x, = 0.1 and the
negative one x;, = —0.1. Clearly, these diagrams are different
(see Figure 4). In particular, in Figure 4 the diagram in
magenta color represents the dynamic behavior of the
fractional map (8) for order y = 1 (i.e., for the integer-order
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FIGURE 4: Different bifurcation diagrams of the fractional map (8) in three-dimensional space with the variation of system parameter A, and
for two initial conditions: blue diagram for ¢ = 0.2 and for initial condition x;, = 0.1; red diagram ¢ = 0.2 and for initial condition x;, = -0.1;
brown and green diagram for order y = 0.6; magenta diagram for order y = 1.

case). As it can be seen, the fractional map is chaotic over
most of the range and is changed from chaotic to periodic
with the increase of A. It is worth noting that the phe-
nomenon of coexisting attractor is not observed in the in-
teger-order case, where the states of our system come in the
form of individual trajectories. By changing the order y from
1 to 0.6, the bifurcation diagrams become the ones depicted
in brown and green colors. In this case, coexisting periodic

orbits appear within the interval [0.1323,0.1723]U
[0.489,0.517], along with a symmetry breaking bifurcation.

Meanwhile, the region of chaotic motion increases with
the value of A. Finally, the bifurcation diagrams with y = 0.2
are considered and plotted in red and blue colors for dif-
ferent initial conditions. Specifically, the states colored in
blue are those starting from the positive initial condition,
whereas the states colored in red are those starting from the



negative initial condition. In this case, the fractional map (8)
displays symmetric separate coexisting diagrams. Figure 5
shows some coexisting chaotic and periodic attractors for
different values of the system parameter A. Specifically,
when we select the parameter A = 0.04, the fractional map
(8) highlights the coexistence of two symmetric chaotic
attractors corresponding to the positive and negative initial
conditions, respectively. Similarly, when we choose the
parameter A = 0.2, the phase plot in Figure 5 shows the
coexistence of two periodic symmetric attractors corre-
sponding to the positive and negative initial conditions,
respectively. The analysis conducted so far clearly highlights
that the dynamics of the fractional map (8) become very
complex when the value of the order y is significantly
decreased.

(b) In order to deeply investigate the properties of
coexisting attractors in the fractional map (8), bifurcation
diagrams and computations of maximum Lyapunov expo-
nents (LE) with respect to the fractional order are carried
out. Various dynamic behaviors can be observed by
changing the value of y at the interval [0, 1]. By considering
the values B =0, A = 0.5 and C = 3, Figure 5(a) displays the
bifurcation diagram of the state variable x, corresponding to
the positive initial condition (blue diagram) and the negative
initial condition (red diagram). For C = 3, the trajectories of
the fractional map change from chaos to coexisting chaotic
attractors with some periodic orbits through period dou-
bling route to chaos. When p<0.31 the chaotic behavior
disappears and separate coexisting periodic orbits appear.
This indicates that the dynamics of system (8) for C =3
become simpler as the value of 4 decreases. This result is also
confirmed by the maximum Lyapunov exponents reported
in Figure 5(b). Now the bifurcation diagram and the MLE of
the fractional map (8) are illustrated in Figure 7 for A =
0.05, B=0 and C = 1. Similarly, the dynamic behavior of
the map (8) depends on the initial condition and the value of
y. The computation of the MLE shows that the states of the
fractional map (8) go from chaotic to periodic with the
decrease of order y. From both the Figures 6 and 7 it can be
deduced that the property of having coexisting attractors is
observed when the fractional order assumes small values. In
order to further investigate this property, we choose to plot
the phase portraits of the fractional map (8) for multiple
initial conditions and for the same parameters used in
Figure 6. The obtained results are plotted in Figure 8. When
u = 0.9, a chaotic attractor is observed. When y = 0.6, there
are two symmetric separate chaotic attractors and a chaotic
attractor in magenta color. On the other hand, four coex-
isting attractors are obtained when y = 0.3, as depicted in
Figure 8(c). Suppose now that A =0.05, B=0,C =1 and
¢ = 0.3, then the corresponding phase diagram for the map
(8) is shown in Figure 9 using different initial conditions. In
particular, Figure 9 reveals the presence of four coexisting
chaotic attractors, i.e., the blue attractor for x;, = 0.1, the red
attractor for x, = —0.1, the green attractor for x, = 2 and the
magenta attractor for x, = —2. Figure 9 confirms the rich
dynamics of the conceived fractional map, indicating that a
number of different coexisting chaotic attractors could be
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found by taking other suitable values of the fractional order
as well as other proper initial conditions.

3.2. 0-1 Test. Another tool that can be used to study the
influence of the fractional order on the dynamic of a frac-
tional map is “0-1 test.” This test, proposed in [50] for
fractional-order systems, is able to check the presence of
chaos in a series of data that originates from a deterministic
system. For the fractional-order model, consider a set of data
x(n) where n=1,...N. Using the approach in [50], we
transform the trajectories of the fractional-order map into
p — q plots. Generally, unbounded p — g trajectories imply
chaotic behavior, whereas bounded trajectories implies
regular behavior. Herein, we apply the 0 — 1 test method
directly to the solution x,, that is obtained from the discrete
formula (9). Herein, we simulate the translation components
of the system (8) in the p — g plane. By taking A = 0.5, B =
0, C = 3 and by varying the value of y, the results of the
application of the 0-1 test to the fractional map (8) are
reported in Figure 10. In particular, Figure 10(a) depicts the
Brownian-like trajectories for all initial conditions, indi-
cating that the suggested map is chaotic for 4 = 0.9. On the
other hand, Figure 10(b) depicts the Brownian-like tra-
jectories for two different initial conditions, confirming the
coexistence of chaotic attractors for y = 0.6. Finally, when
u = 0.3 the coexistence of chaotic attractors and periodic
orbits is confirmed by the plot in Figure 10(c), which depicts
bounded-like trajectories for the initial state x, = 0.1 and
Brownian-like trajectories for the initial state x, = 2. It is
concluded that the 0-1 test proves to be a valuable tool for
checking the coexistence of different chaotic attractors as
well as the coexistence of periodic one in the proposed
fractional map (8).

3.3. Approximate Entropy. The approximate entropy (ApEn)
[51] is the measurement of the degree of complexity of a series
of data from multi-dimensional perspective. This method es-
timates the regularity by assigning a non-negative number,
where higher values indicate higher complexity. By applying
the technique in [52], we consider a set of points x(1),...,
x (N) that are obtained from the discrete formula (9). The value
of the approximate entropy depends on two important pa-
rameters, i.e., 7 and r, where the input r is the similar tolerance
whereas m is the embedding dimension. Here, to calculate
ApEn values we set m =2 and r = 0.2std (x) where std (x)
presents the standard deviation of the data x. Those values are
preferred values according to similar previous studies. We
reconstruct a subsequence of x such that X (i) = [x(i),
..., x(i+m—1)], where m presents the points from x (i) to
x(i+m—1). Let K be the number of x(i) such that the
maximum absolute difference of two vectors x (i) and X (j) is
lower or equal to the tolerance . The relative frequency of x (i)
being similar to X (j) is given by
n-m+1

m 1 m
¢ (T’):m ; lOgCi (r) (11)
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The ApEn is calculated as following
bgy. g7 = de2bi(mod([10"|x,|J, 256)),

where ¢ (r) is denoted to be

X, = Xy

1 GT(m—i+p)
+r(y);r(m—i+1)

C
. <A sin<—> — Xpymaiol T B),
Xp-m+i-1

(12)

(13)

We apply the ApEn method to simulated complexity of
the fractional map (8) by varying the fractional order and
control parameter from 0 to 10. For each value of order y, we
analyze a series of points of length 3500 with different values
of C. Figure 11 presents the 3D plots of the approximate
entropy for fractional map (8). It is observed that, the
fractional map (8) can have a higher complexity with rel-
atively larger parameters values C and fractional order y;
which consist with the previous results. The analysis results
in Figure 11 indicate that the change of system parameter C
has little effect on the complexity. Thus, in real applications,
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FIGURE 8: The coexisting attractors of the fractional-order map (8) with parameters A = 0.5, B =0, C = 3 and with the initial condition
x, = —0.1 for the red attractor and x;, = 0.1 for the blue attractor; (a) chaotic attractor for y = 0.9, (b) three coexisting chaotic attractors for
u = 0.6 with initial condition x;, = 10 for the magenta attractor; (c) four coexisting chaotic attractors for y = 0.3 with initial condition
Xy = 10 for the magenta attractor and x, = —10 for the black attractor.
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FIGURE 11: The approximate entropy ApEn of the fractional map (8) in three-dimensional space with the variation of system parameter C
and fractional order y, for A = 0.5 and B = 0.
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we should be careful for the range of parameters and
fractional order p.

4. Encryption of Electrophysiological Signals

In this section, an electrophysiological signal will be
encrypted using the proposed chaotic map. Here, the signal
that will be considered as a sample is a 10 second EEG
(electroencephalogram) recording ( f p;) of a subject during
arithmetic tasks. More details on the other types of EEG
signals can be found in the PhysioBank database [53, 54].

4.1. Design a PRBG. The first step in the encryption scheme
is to design a chaotic pseudo-random bit generator. Since the
main computational drawback of fractional order systems is
their memory effect, the system will be implemented using a
finite memory. Thus, its finite form is given as

[10°x;]
10°

M; = ¢ i=1,...,¢ (14)

i it
where m denotes the memory used. As one can see from (14),
when i = 1,...,m the fractional map states depends on the
past m variable, i.e, x, (1),...,x; (m). After some trial and
error, the memory is chosen as m = 50, which satisfyingly
models the dynamical behavior of the system, as can be seen
in Figure 12. Although the diagram is not identical to the one
of the fractional map shown in Figure 4, it accurately
showcases chaotic behavior in the range of around 0.2 to 0.8.
Implementing fractional systems using finite memory is a
standard approach in reducing computational cost and
avoiding overflow, and it is used in most microcontroller
implementations of fractional chaotic systems [41, 42, 55].
In order to take advantage of the fractional nature of the
proposed map, each individual term inside the finite sum
(14) is used in the bit generation. So in each iteration of the
map, the PRBG generates bits using the following rules:

Eenc—bin = ‘ﬂbine)‘%’ (15)

where | - ] denotes the floor operation. So in each iteration,
each individual term of the sum in (14), as well as the value
x,, of the map are multiplied by 10'> and the integer part of
this product is taken modulo 512. The result of this operation
is then transformed to binary representation. Since the
outcome of the modulo is an integer from 0 to 511,
transforming it to binary generates nine bits per iteration.
Thus, each of the terms b, ;,...,b, s, corresponds to nine
bits. The resulting bitstream is taken by concatenating the
bits as

*? bn—l,Sl’ bn,l’ ce

B={b, 115 b} (16)
With the algorithm, there are 459 bits generated in each
iteration. So this approach brings an advantage over classic
techniques that generate only one bit per iteration, takes
advantage of the fractional nature of the map, and also
reduces bit generation speed, since fewer iterations of the
map are required to reach the required bitstream length.
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As noted above, since the sum in (14) is limited from
i=1 toi=n when n<50, for n =0 there are 9 bits gen-
erated, for n =1 there are 18 bits, and so on, until n =49
where 450 bits are generated. Thus, to reach a bitstream of
length N, there are [N/459 + 92;1:901'/459] iterations
required.

To test the PRBG, a set of 100 - 10° bitstreams is gen-
erated and tested through the National Institute of Standards
and Technology (NIST) statistical test package SP 800-22
[56]. The test suite consists of 15 statistical tests that are used
to verify if a bit sequence is indistinguishable from a random
sequence. Each test returns a P value and if the value is
higher than a significance level, chosen as the default value
0.01 here, the test is successful. For a PRBG to be classified as
random, it should pass all 15 tests. This is verified from
Table 1.

4.2. Encryption of Electrophysiological Signal. After the ap-
propriate design of the PRBG, the encryption process is
presented. The process consists of two rounds, and a dif-
ferent chaotic map of the form (14) is used in each round,
each with parameters x,, A, B;,C, and y,, A,, B,, C,. In the
first round, the source signal is modulated by adding to it the
values of the first chaotic map, in order to mask its structure.
Then, the modulated signal is transformed into its binary
representation, and encrypted using the PRBG of the pre-
vious section, generated using the second chaotic map. The
encryption is performed using the bitwise XOR operator
between the information bitstream and the chaotic bit-
stream. The complete process is outlined in Algorithm 1.

The transformation of the modulated signal into its
binary representation in Step 2 of Algorithm 1 is performed
as follows. The modulated signal takes values in the range
[-127.999,127.999]. In order to sustain a low run time
execution we chose to convert the sampled values by mixing
a fixed-point-format with a two’s complement representa-
tion. So each sample is split into its sign, integer and a
decimal parts. The first bit of the binary representation is
used to denote the sign. Then, seven bits are used to rep-
resent the integer part and ten bits to represent the decimal
part. Hence, there are 18 bits overall for each sample,
resulting in a bitstream of length 18 x ¢. This transformation
is outlined in Figure 13.

For the decryption process, the original EEG signal can
be reconstructed at the receiver end by following the reverse
procedure, that is, performing an XOR between the
encrypted binary signal and the same bitstream from the
PRBG, generated using the same parameter values, trans-
forming the result back to its decimal format, and then
performing the demodulation process, as described in Al-
gorithm 2.

Note that the only information that the receiver needs to
know in order to decrypt the signal is the parameter values
for the two chaotic maps used to modulate the signal and
generate the PRBG. These parameters constitute the key
values of the encryption design. Since each chaotic map has
four parameters and one initial condition, there are overall
ten key values, x,, A;, By, Cy, ¢y ¥o» Ay> By, Cs, ;. Assuming
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FIGURe 12: Bifurcation diagram of (14) with respect to parameter A, for B=0,C = 1, y = 0.2, m = 50, and x,, = 0.1 (blue), x, = 0.1 (red).

TasLE 1: NIST test results (x, = 0.1, A=0.7, B=0,C=1, y=0.2, m=50).

No. Test Chi-square P-value Rate

1 Frequency 0.971 699 100/100
2 BlockFrequency 0.437274 100/100
3 CumulativeSums 0.213309 100/100
4 Runs 0.494 392 96/100
5 LongestRun 0.319 084 99/100
6 Rank 0.275709 99/100
7 FFT 0.366 918 99/100
8 NonOverlappingTemplate 0.554 420 100/100
9 OverlappingTemplate 0.897 763 99/100
10 Universal 0.897 763 100/100
11 ApproximateEntropy 0.455937 98/100
12 RandomExcursions 0.031 497 63/64

13 RandomExcursionsVariant 0.834 308 61/64

14 Serial 0.051 942 99/100
15 LinearComplexity 0.657 933 99/100

Input: An EEC signal & of length €. The key values of two chaotic maps of the form (14), xy, A,, B}, Cy, 4, and y,, A, B,, Cy, .
Output: An encrypted signal &,,. of the same length.
Step 1. Generate ¢ values of the first chaotic map x;, i = 1, ..., €. Modulate the EEG signal to mask its structure, as
M;=E; +|10°x;[/10°,i=1,...,¢
Step 2. Transform the modulated signal . into its binary representation .#y;, of length 18 x ¢.
Step 3. Generate a bitstream % of length 16 x £ using the map y; as a basis for the PRBG of the previous section (15). Since 8 bits are
generated per iteration, the map y; needs to be iterated [2.25 x £] times.
Step 4. Encrypt the information bitstream #y;, by combining it with the chaotic bistream as
sgenc—bin =M, bine)‘%'

Step 5. Transform the binary encrypted signal & to decimal form, to obtain the encrypted signal &_,,..

enc-bin

ArGoriTHM 1: Chaotic Encryption of EEG signal.

. XXX . YYY
B[R [[[[[][2[2]2]2]
| L ) L )

¥

Sign Integer part Decimal part

FIGURE 13: Binary representation of the modulated samples using 18 bits.
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Input: An encrypted signal &,
Output: A decrypted signal & of the same length.
Step 1. Transform the encrypted signal &,

enc

Step 3. Decrypt the bitstream &,
My, = BOE

enc-bin

enc—bin

& =M - |10°x,]/10%, i=1,...,¢

of length €. The key values of two chaotic maps of the form (14), x,, A;, B;,C, and y,, A,, B,,C,.

to its binary form, to obtain the encrypted bitstream &
Step 2. Generate a bitstream 9 of length 18 x £ using the map y; as a basis for the PRBG of the previous section (15). Since 8 bits are
generated per iteration, the map y; needs to be iterated [2.25 x €] times.

by combining it with the chaotic bistream as.

Step 4. Transform the modulated binary signal /#,;, into its decimal representation . of length ¢.
Step 5. Generate £ values of the chaotic map x;, i = 1,..., ¢ Demodulate the signal ./ as to obtain the original signal &.

of length 18 x €.

enc-bin

ArGoriTHM 2: Chaotic Decryption of EEG signal.

a 16-digit accuracy, an upper bound for the key space is
10816 = 1028 =~ (10%)**° = 2426, This is higher than the
bound of 2!% required to resist brute force attacks [57]. Note
though, that since the system is not chaotic for all parameter
values, the real key space is lower than 242,

4.3. Microcontroller Implementation. The encryption and
decryption process was simulated in a microcontroller. For
this, an STM32F103 nucleo development board is used,
which incorporates a high-performance ARM M3 32-bit
RISC core operating at 72 MHz, depicted at Figure 14.

Since an embedded system usually has low ram storage,
the modulated signal was saved at the flash memory of the
STM32F103RB which embeds an 128 K Byte of flash memory.

The simulation results are shown in Figure 15, where the
original (plaintext), modulated, and encrypted signals are
shown. Clearly, there is visually no relation between these
signals, something that is verified in the next section,
through a series of measures. The signals are plotted in
Matlab, where the data are loaded from the txt files resulting
from the microcontroller simulation. The numerical simu-
lations for the encryption performed in Matlab yield similar
results and are thus omitted.

Note that the computation time for the complete pro-
cedure of modulating the signal, transforming it to binary
format and encrypting it, takes around 8.5 seconds. To
reduce computational load and increase speed, the terms
I'(m—i+p)/T (m—i+ 1) where precomputed and saved in
the memory before execution begins. Additionally, further
experimentation could lead to reduction in the execution
time. For example, in the modulation step the fractional map
could be implemented using a shorter memory.

4.4. Encryption Performance. To test the performance of the
encryption algorithm, a series of tests are performed on the
original, modulated and encrypted signals. The results are
gathered on Table 2, for the simulation performed in Matlab
R2018b, as well as the microcontroller implementation. The
key values of the maps are x, =0.111, A; =0.7, B; =0,
C;=1 y4;=02 and y,=0.1, A,=0.7, B,=0, C, =1,
U, = 0.2.

Note that apart from the Approximate Entropy measure
that is computed for each individual signal, the rest of the
measures are computed in each case between the original

and modulated signal, and between the original and
encrypted signal, and shown in their respective columns.
In all cases, it can be seen that the measures for the
Matlab and microcontroller implementations are very close
to each other. This means that the microcontroller en-
cryption performs equally well compared to Matlab.

4.4.1. Histogram. Initially, the histogram of the original,
modulated and encrypted signals are plotted in Figure 16 for
the microcontroller simulation. An encrypted signal should
have a uniform histogram, so that no information on the
distribution of the signal’s values are revealed. Indeed it can
be seen that the histogram of the encrypted signal is much
more uniform compared to the original signal and modu-
lated ones, that have a shape closer to a normal distribution.
The simulation performed in Matlab yields similar histo-
grams, so both simulations perform the same.

4.4.2. Structural Similarity Index (SSIM). The SSIM is a
measure of the structural similarity between two signals [29],
initially considered for images [58]. It is given by

(Zyxyy + sl)(26xy + Sz)
(,ufC + yi + Sl)(éi + 6i + 82)’

where ., 4, the mean values of the original and encrypted
(or modulated) signals respectively, 81,(% their variances,
and J,, their cross-covariance. The parameters S;,S, take
small values, to avoid unstable results when the denominator
is close to zero.

The SSIM value is between [-1, 1], with 1 for identical
signals, and 0 for signals with no similarity. So, the closest
the measure is to zero, the better the encryption. Indeed,
the SSIM between the original and modulated signal
performed in Matlab is equal to —0.1160, and between the
original and encrypted signal is 0.001 6, which is indeed
very close to zero.

SSIM = (17)

4.4.3. Log-Likelihood Ratio (LLR). The LLR gives an esti-
mation on the quality of encryption [29, 59-61]. It is based
on the assumption that the segment can be represented by a
p-th order all-pole linear predictive coding model
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FiGure 15: Original EEG signal, modulated signal, and encrypted signal.
TaBLE 2: Performance measures of the encryption design.
) Matlab Microcontroller
Signals EEC
Modulated Encrypted Modulated Encrypted
SSIM — —-0.1160 0.001 6 —-0.0894 0.006 8
LLR — 1.9955 1.9937 1.9733 2.0456
SNR — -9.7873 —14.6874 -9.8402 -14.6757
Tyy — 0.3076 -0.0126 0.3037 0.0210
SD — 39.4949 44.053 6 39.6521 43.8649
ApEn 0.4970 1.577 4 22702 1.5798 2.2282
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FIGUure 16: Histograms of the encrypted, modulated, and encrypted signals.
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where x; is the ith signal sample, a,,, m =1,..., p the co-
efficients of the all-pole filter, G, the gain of the filter and u;
an appropriate excitation input to the signal. The LLR is then

defined as:
a.R.al
log| =~ =
a,R.a,

where a, the vector of Linear Prediction Coefficients
(LPCs) [1,a4,4a,,. . .,a,,] of the original signal, a, the LPCs
of the encrypted (or modulated) signal, and R, the au-
tocorrelation matrix of the encrypted (or modulated)
signal. A higher LLR value indicates a good encryption.
The LLR between the original and modulated signal is
1.9955 and between the original and encrypted signals is
1.993 7. The values are both high, which indicates a good
encryption.

LLR =

, (19)

4.4.4. Signal to Noise Ratio (SNR). The SNR is defined as
[29, 60]:

N 2
SNR = 10 log,g— Liz1 (20)

Yisn (x; - )’i)z’

where x, y the encrypted and decrypted (or modulated)
signals respectively, and N the number of samples. A low
SNR indicates a good encryption. The SNR between the
original and modulated signal is —9.7873, while the SNR
between the original and encrypted signal is —14.6874. Both
values are very low and indicate a good encryption.

4.4.5. Correlation Coefficient. The correlation coefficient
[29] between the original and encrypted (or modulated)
signals is computed as:

NP OR
xy \/g\/g (21)

where c, (x, y) the covariance of the two signals and &> their
variances. For uncorrelated signals, the correlation coeffi-
cient should be close to zero. The correlation coeflicient
between original and modulated signal is 0.307 6, while the
coefficient between original and encrypted is —0.0126.

4.4.6. Spectral Distortion (SD). The SD measures the dif-
ference between the spectrum of the original and encrypted
(or modulated) signals [29, 60-62]. It is computed as:

1 M-1
D= ZO Vi = Vi) (22)

where V, ;,V ; the spectrum of the original and encrypted
(or modulated) signal in decibel at instance i. A higher value
of SD indicates a better encryption. The SD between the
original and moculated signals is 39.4949, and the SD be-
tween the original and encrypted signals is 44.053 6, so both
values are high.

4.4.7. Approximate Entropy (ApEn). The ApEn is applied to
measure the complexity of the serie of data [51]. A series with
a higher ApEn is considered as being more complex, so for
the proposed scheme, the encrypted signal should have a
higher value of ApEn compared to the original signal. In-
deed the ApEn of the original signal is 0.4970, for the
modulated signal is 1.577 4, and for the encrypted signal is
2.2702, so the encrypted signal has the highest ApEn.
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Opverall, each of the measures computed indicates a good
encryption performance. Moreover, the design can be ac-
curately replicated on a microcontroller board.

5. Conclusions

Referring to fractional-order discrete-time systems with
special features, this paper has introduced the first ex-
ample of a fractional map with infinite number of equi-
libria in a bounded domain. The conceived map has also
shown coexistence of different types of periodic and
chaotic attractors. Dynamics and complexity of the
conceived map have been analyzed in details via bifur-
cation diagrams, maximum Lyapunov exponents, 0-1 test
and approximate entropy. Compared with the integer
order map, the fractional map has more complexity when
the fractional order values is smaller. That is the integer-
order map do not have the property of coexisting
attractors, while fractional map have it. Afterwards, the
proposed map was applied to the problem of encrypting
an electrophysiological signal. A PRBG was designed
based on the values of the chaotic map, and two rounds of
modulation and encryption were performed on the signal.
A set of measures were then computed for the original and
encrypted signals to verify the performance of the en-
cryption. The design was realised in a microcontroller
board, so to increase speed, the fractional map was
implemented with finite memory. Future extensions of
this work can consider modifications of the encryption
design, for example different methods to modulate the
signal.

Also, in order to improve execution time, the use of a
higher frequency CPU combined with hardware accelera-
tors, such as CORDIC (COordinate Rotation DlIgital
Computer), will allow faster sinusoidal calculations and
floating point arithmetic operations.

Finally, FPGA based realizations of the encryption de-
sign are among the future goals set by the authors, since they
have been proven an efficient low cost option for imple-
menting fractional [45] and integer order maps [63].
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This study presents the effectiveness of dynamic coupling as a synchronization strategy for fractional chaotic systems. Using an
auxiliary system as a link between the oscillators, we investigate the onset of synchronization in the coupled systems and we
analytically determine the regions where both systems achieve complete synchronization. In the analysis, the integration order is
considered as a key parameter affecting the onset of full synchronization, considering the stability conditions for fractional
systems. The local stability of the synchronous solution is studied using the linearized error dynamics. Moreover, some statistical
metrics such as the average synchronization error and Pearson’s correlation are used to numerically identify the synchronous
behavior. Two particular examples are considered, namely, the fractional-order Réssler and Chua systems. By using bifurcation
diagrams, it is also shown that the integration order has a strong influence not only on the onset of full synchronization but also on
the individual dynamic behavior of the uncoupled systems.

1. Introduction

Synchronization is an emergent physical phenomenon
caused by the interaction of two or more dynamic entities
that pervade the natural world [1-4]. In the case of oscil-
lating units, the synchronization phenomenon can be de-
fined as the adjustment of temporal evolution to a common
rhythm.

For the case of integer-order systems, there exists a vast and
mature literature where we can find different interconnection
schemes for synchronizing dynamic systems, like, for example,
master-slave synchronization scheme, adaptive synchroniza-
tion, and synchronization based on state observers, to name a
few [5-10]. Although each of these strategies is effective, there
are limitations in their applications, e.g., there are cases where
these schemes have marginal ranges for which the synchronous

response is achieved or have poor robustness to maintain a
stable synchronous state under the influence of external dis-
turbances. This is one of the reasons why dynamic intercon-
nections have emerged as an alternative to the classical static
schemes. In this case, the interaction between agents is indi-
rectly achieved through a suitably designed dynamic coupling
[11-13]. This type of synchronization strategy has shown better
performance than static couplings. In particular, dynamic
coupling increases the intervals of coupling strength values for
which it is possible to achieve synchronized behavior, and it
may also be possible to synchronize systems that cannot be
synchronized with static coupling [11].

On the other hand, the use of fractional calculus has been
extensively studied in nonlinear systems (see, e.g., [14-18])
and also, there exist notable contributions related to the
study of synchronization in fractional-order systems (see,
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e.g., [16, 19-23]). For example, there is work based on
applying sliding modes to fractional-order models to achieve
synchronization [24-29]. The modeling and analytical study
of fractional-order systems is also a fruitful field, e.g., the use
of the Razumikhin approximation for fractional-order
systems with delay [30, 31], the extrapolation of Lyapunov
theory to fractional systems [32, 33], and the existence and
uniqueness of equilibrium points of the Mittag-Leffler
criteria [34, 35]. However, the use of dynamic couplings in
the context of fractional-order systems seems to be unex-
plored so far.

Consequently, in this study we present a synchronization
scheme of fractional order based on dynamic coupling. In
particular, a master-slave interconnection is considered, in
which the systems have an indirect interaction via a frac-
tional-order linear system. In the analysis, the Rossler
equation [36] and the Chua double-scroll oscillator [37] are
considered. Among the questions to be addressed is whether
a dynamic coupling designed for integer-order systems is
also effective in its fractional-order version? If so, how does
the derivative order influence the occurrence of synchro-
nization in the coupled systems? The local stability of the
synchronous solution in the coupled systems is investigated
by analyzing the error dynamics, and furthermore, the onset
of synchronization is also numerically investigated by
computing some statistical metrics like Pearson’s correlation
between time series. Additionally, using bifurcation dia-
grams, we have investigated the dynamic behavior of the
uncoupled systems. The obtained results show that the in-
tegration order has a strong influence on the stability of the
synchronous solution, and interestingly, it also produces a
period-doubling cascade route to chaos in the uncoupled
systems.

The rest of the study is organized as follows: Section 2
describes the basics of fractional calculus and gives a brief
introduction to fractional-order systems. Then, Section 3
describes the proposed synchronization scheme and the
local stability of the synchronous solution in the coupled
systems is discussed. Subsequently, in Section 4, the per-
formance of the dynamic coupling is investigated using the
Rossler and Chua systems as application examples. Finally,
Sections 6 and 7 are dedicated to the discussion and con-
clusions, respectively.

2. Preliminaries

This section presents a brief overview of some basic concepts
about fractional-order systems. In particular, the Caputo
derivative, the general representation of a fractional-order
system, and the stability of linear time-invariant fractional-
order systems are revisited.

2.1. Fractional Caputo Derivative. In the literature, there are
various definitions of fractional-order derivatives, the most
common being the Riemann-Liouville and Caputo opera-
tors [38, 39]. The fractional Caputo derivative for a time-
invariant system described by the vector field f(x) is
defined as

Complexity

x (n)
L) M

a (x_ t)q—nﬂ >

1
q _
«Dof () = I(n—-q) j

with n = [g] for the integration order 0 <g <1, being I' the
gamma function defined as follows:

I'(z) = jzoﬁ‘le‘fdt. (2)

2.2. Fractional-Order Dynamic System. A commensurate
fractional-order time-invariant system can be described, in
general, as follows:

Dy x(t) = f(t,x (), Dy x(t), Dg2x (), ..., Dy x (1)),
(3)
subject to initial conditions

x7(0) =x, with j=0,1,...,[n] - 1, (4)

where ny,n,,...,n. are rational numbers, such that
> > >n >0, nj—n; <1 for all j=2,3,...,k
and 0 <, < 1. The least common multiple of the denomi-
nator of n;,n,,...,n, is defined by M and set g = 1/M and
N = Mny. Then, equation (3) can be expressed as follows

38]:
Dix, (t) = x, (t),
Dijx, (t) = x, (1),
: (5)
Dixy_, (8) = xy_, (1),

Dixyy (8) = ft %0 (£), %, 10 ()5 -5 %1 ()

2.3. Stability of Time-Invariant Fractional-Order System.
A linear time-invariant fractional-order system is described
by

d9x (1)
- Ax, (6)

where x € R" is the state vector, A € R™" is a constant
matrix, and 0<gq<1 is the fractional commensurate de-
rivative order. Then, the stability of the system described by
equation (6) is determined as follows [38]:

(i) System (6) is stable, if and
largh;| > qn/2, Vj=1,2,...,n
(ii) System (6) is asymptotically stable, if and only if
largh;| >qn/2, Vj=1,2,...,n
(iii) System (6) is unstable, if and only if |arg) il<qmi2,
for at least one A, j=1,2,...,n

only if

From these conditions, it is clear that the local stability of
fractional-order systems depends on the integration order g,
so that the stability of an equilibrium point can be modified
by the fractional order, and therefore, the stability region at
the complex plane is as in Figure 1 [40].
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FiGure 1: Stability region in a fractional-order linear time-in-
variant system for 0 <g<1.

3. Proposed Synchronization Scheme Based on
Dynamic Coupling

The dynamic interconnection considered in this study has
been presented in [11] for integer-order systems and is
adapted here to the fractional-order case. The scheme, where
the interaction between the systems is indirect via a dy-
namical system (Figure 2) is described by the following set of
equations:

Dix,, = F(x,,),
Dix; = F(x,) - Bih, 7
D%h = Gh - kB, (x,, — x,),

where x,,, x, € R" represents the state vectors of both the
master and slave systems and h = (h;, h,)” for h; € R, i =
1,2 is the state variables of the dynamic coupling. It is as-
sumed that the vector field F is smooth enough, which can be
either linear or nonlinear, and the coupling force between
the systems is denoted by k.

On the other hand, the design of a dynamic coupling
involves two coupling matrices, denoted B, € R™* and
B, € R¥". These matrices are generated under the premise
that only one of the elements of each of these matrices is
equal to 1, and the other entries are zero, which means that
the coupling is applied only in one state variable of the slave
system and that the coupling considers only one measured
variable.

Finally, the matrix G from equation (7) is given by

—a. 1
- (®)
Y1 )2

where y,,y,, and «, are design parameters of the dynamic
coupling. The construction of the coupling system, for the
integer-order case, is inspired by the so-called Huygen’s
coupling [11, 41], which in its simplest form can be inter-
preted as a damped oscillator.

h
—
xm
l xS

FIGURE 2: Schematic representation of unidirectionally coupled
fractional-order systems interacting via fractional-order dynamic
coupling.

Since in this study the focus is on synchronization, it is
necessary to give the following definition.

Definition 1. The coupled systems, equation (7), are said to
be asymptotically synchronized if

lim, . |x,, — x| = 0,lim,__,,h =0. 9)

3.1. Local Stability Analysis. In order to investigate the
stability of the synchronous solution defined in equation (9),
we proceed as follows. First, it is assumed that function F in
equation (7) can be written as the sum of linear and non-
linear components, i.e., it is assumed that

F(x;) = Px; + E(x;), (10)

where P € R™" is a constant matrix and E(x;) € R" is a
vector containing nonlinear terms.

Next, the synchronization error is defined as
e,= (X, — X, h)". Note that in the definition of the error,
we have included the state h of the dynamic coupling. The
reason is because the parameters in the dynamic coupling
should be chosen such that, when the systems synchronize,
the coupling vanishes. Then, by replacing equations (10) into
(7), and computing the corresponding synchronization error
dynamics, we obtain

qup = ;lep + gp(t, ep), (11)
where
_ [ P B ]
A= S
KB, G
(12)
_ f(xm) _f(xs)
9p(t’ ep) = o J

where O = (0,0)". Furthermore, note that the term 9p (t, ep)
is a vanishing perturbation [42] because 9p (¢,0) = 0. Then,
the stability properties of system equation (11) are fully
determined by the eigenvalues of the matrix A. In particular,
following the results presented in Section 2.3, we have that
the synchronization error dynamics (equation (11)) is locally
asymptotically stable if

|arg/1j'>%1,‘dj:l,2,...,n. (13)



Thus, if it is possible to find values of k,y,,y,, and «,
such that the above condition is satisfied, then the coupled
systems described by equation (7) will achieve complete
synchronization, according to Definition 1.

3.2. Statistical Metrics Used for Detecting Complete
Synchronization. In this study, the onset of synchronization
in the coupled systems (equation (7)) is also numerically
studied by computing the following synchronization index.

Sz{i |ei|+ici} (14)
i=1 i=1

where 7 is the dimension of the systems to be synchronized,
le;| is the absolute value of the synchronization error be-
tween the i-th state variable of the master and slave systems,
ie.,

(e =[x — x4, (15)

and C; is the Pearson correlation [43], computed from the
i-th state variable of the master and slave systems described
by

O'NWHNM
C=—" (16)
ONn,0 Ns,-

where oy is the covariance between the data obtained
from the time series of the state variables of the master and
slave systems, and oy oy is the standard deviation ob-
tained from the i-th state variable of the master (slave)
oscillator. Finally, when S = #, the systems are synchronized.

In the next section, the onset of synchronization with
dynamical coupling is studied for two particular fractional-
order chaotic systems, namely the Rossler and the Chua
oscillators.

4. Application Example 1: Rossler System

The fractional-order version of the well-known Rdssler
system [44] is given by

Ay —
Dix; = —x, — x5,
Dix, = x| + ax,, (17)

Dix; = b+ x,x; — x5,

where x;, i = 1,2, 3 denotes the state variables and a, b, ¢ are
constants.

It has been reported that every system has a limit of
integration order for which it is possible to use a fractional-
order derivative without stabilizing its dynamics [16, 17, 45].
This could be interpreted to mean that the dynamics de-
scribed in equation (17) are restricted to have at least one
eigenvalue in the unstable region, and this being true only if
larg (A)| < gn/2 for at least one of its eigenvalues (1). With
a=02,b=0.2,c=57, the eigenvalues obtained by the
Jacobian matrix evaluated at the equilibrium point E; =
(0.007,-0.0351, 0.0351) are = [0.0970 + 0.9952i; —
5.6870]. Since |min (arg(A))| = 1.4736, the critical order of
integration is defined as g, = |min (arg(A))| (2/m) (Section
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2), and by substitution it is obtained as g, = 0.9381. This
result is confirmed by the bifurcation diagram as shown in
Figure 3, where the local maxima in x, are plotted as a
function of the variation of the integration order. Note that
the derivative order is the same for all state variables of the
system. The inset shows the attractors and the corresponding
integration order considered for the developed analysis.

It is worth noting that the bifurcation diagram shown in
Figure 3 was numerically calculated using the
Adams-Bashforth-Moulton (ABM) method [46] and fol-
lowing the guides for plotting a proper bifurcation diagram
[47].

4.1. Dynamically Coupled Fractional-Order Rossler Systems.
Now, we consider a pair of identical Rossler systems [44]
described by

Ll [ —
Dmxlm_ Xom = X3mp

master system{ D%x, = x,,, +ax,,, (18)
q _
DY x5, =b+ X,,X3, — CX35
Aoy _
D Xis = ~Xps — X35 — hZ’
Aoy —
slave system{ D% x,, = x,, + ax,,, (19)
Aoy _
D% x5, = b+ x ;X35 — CX34,

D%h, = —ah, + hy,

dynamic COuPhng{ D%, = —y1hy — .k
2= 171 2772

- k(me - xzs),
(20)

where x,, ; denotes the state variables of the master and slave
systems, respectively, h, , denotes the states of the dynamic
coupling, k indicates the coupling force between the oscil-
lators, a, b, c are constants of the Rossler model, and g, j =
m, s, d denotes the integration order of the master, slave, and
dynamic coupling, respectively.

Here, we consider the case in which all orders of inte-
gration are equal, ie., ¢, =g, =¢q;. Then, the dynamic
behavior of system equations (18)-(20) is numerically
studied as a function of the coupling strength k and the
integration order g. For this purpose, equations (18)-(20) are
numerically integrated with the following parameter values
cf. [11]: a.=a,y,=k y,=k, a=0,2,b=0,2,c=5,7
and initial conditions [x;,,,x;,h;] = [0.1,0.1,0.1,-0.2,
—0.1,-0.1, 0, 0]. On the other hand, the coupling strength is
varied in the interval 0 <k <20 with a test size A; = 0.2 and
the integration order is varied in the interval 0.96<g<1 at
A, =2e"

The obtained results are shown in Figure 4(a), where the
colors indicate the value of the synchronization index S (see
equation (14)). Synchronous behavior is indicated by the
dark blue color (S = 3), while the remaining colors indicate
unsynchronized dynamics.

Moreover, it is evident from Figure 4(a) that there are
regions where, for a fixed coupling strength, the limit be-
havior is completely determined by the integration order.
For example, for a fixed coupling strength of k = 10, the
synchronization index S abruptly changes when the
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FiGURre 3: Bifurcation diagram of the Rdssler system by modifying the integration order, equation (16). The abscissa axis indicates that the
three oscillator state variables have the same integration order.
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FIGURE 4: Numerical results for equations (18)-(20). (a) Limit behavior of the system as a function of coupling strength k and integration

order q. (b) Synchronization index equation (14) as a function of integration order, for a fixed k = 10 and k = 15. A value of § = 3 indicates
complete synchronization.

integration order q is within the interval 0.988 < g < 0.995, as Die, = —e, —e. +e
- . . . 1 2 €3t es,

can be seen in Figure 4(b), but if the coupling strength is p

increased up to k = 15, the systems always achieve complete D'e, = e, + ae,

synchronization. Diey = X1, X3 — %135 — Ce3, (21)
To validate the synchronization regions obtained by the

) ; ) o . ) Dile, = —a e, +e-,
time series analysis, we conduct a stability analysis following 4 4t

the results presented in Section 3.1. First, let the following Dies = —y,e, — y,e5 — ke,.
synchronization errors be defined as follows: e; = x;,, — x,
for j =1,2,3,and e, = h;, e5 = h,. Then, the resulting error Note that the error dynamics in equation (21) can be

dynamics are given by written in the form of equation (11) with



6
0 -1 -1 0 17
1 a 0 0 O
A=|0 0 - 0 0 |,
00 0 —a 1
:0 —k (()) V1 —-Yz- (22)
0
gp(t, ep) = | XXz — X1sX35 |-
0
L 0 i

Note that the term g, (¢, e,) in equation (21) is indeed a
vanishing perturbation since when the systems synchronize
it follows that x,,, = x;,,X,,, = X,,, and x3,, = x5, and
therefore g, (t,0) = 0. Consequently, the local stability of the
synchronous solution in the coupled systems described by
equations (18)-(20) can be determined from the condition in
equation (13). In particular, we compute condition equation
(13) as a function of the integration order g and the coupling
strength k. The obtained results are shown in Figure 5(a),
where the blue region corresponds to values of k and g for
which condition (13) is not satisfied and thus the syn-
chronous solution is unstable, whereas on the white region,
condition (13) is satisfied and then the synchronous solution
is expected to be stable. For the sake of comparison,
Figure 5(b) shows the overlap of Figure 4 with Figure 5(a). It
can be seen that there is a good agreement between the
numerical and the analytical results.

Remark 1. In the previous analysis, we have considered the
case where the integration order of the systems and the
dynamic coupling are the same. However, we also have
conducted a numerical study in which the integration orders
are different. In particular, we have numerically integrated
equations (18)-(20) using the parameter values considered
before, as a function of the integration orders of the master
and slave systems, while the integration order of the dynamic
coupling remains fixed. The integration orders g,,,q, are
varied in the interval 0.98<q; <1, j = m, s, and considering
the integration order g, = 0.985. The obtained results are
shown in Figure 6(a) where the blue areas correspond to
synchronization (S = 3). From the obtained results, it is clear
to see that the integration order of the master and slave
systems should be almost the same to observe a synchro-
nized behavior and that larger differences are tolerated as
long as the integration order of both systems approaches to
one.

On the other hand, Figure 6(b) shows the obtained
results for the case that only the integration order of the
dynamic coupling is varied, while the oscillators are assumed
to have integer order, i.e., g,, = g, = 1. In this case, equations
(18)-(20) are numerically integrated by varying the inte-
gration order g, of the dynamic coupling in the interval
0.8<g,; <1 and the corresponding synchronization index,
given by equation (14), is calculated. The obtained results are
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shown in Figure 6(b) for two different coupling forces, where
the choice of these k values corresponds to those reported in
[11] and those obtained in Figure 4(b).

5. Application Example 2: Chua System

If the Chua system described in [37] is modeled with de-
rivatives of fractional order, then the system described in
equation (23) is analyzed.

Dix; = 0(x, - x = ¢(x1)),
Dix, = x| — x5 + x5, (23)
Dixy = —px;,

where D17 is the fractional-order derivative by Caputo’s
definition, x;, i = 1,2,3 denotes the system state variables,
o, B are constants of the Chua circuit, and ¢(x;) is a
nonlinear function defined in equation (24), with constant
values a, b.

Bar) =bx +3 (=)o +1] =[x - 1)) 29)

In the same way as for the Rossler fractional-order
model, the system described in (23) is analyzed to identify
the minimum fractional order that can be modeled without
stabilizing the dynamics, namely, g, =0.9541, since
0=10,5=14.87,a = -1.27,b = 0.68. This result is con-
firmed by the bifurcation diagram as shown in Figure 7,
where the local maxima in x; are plotted as a function of the
integration order variation. The inset shows the attractors
and the corresponding integration order.

5.1. Dynamically Coupled Fractional-Order Chua Systems.
In the same way as for the Rossler system described above, a
pair of Chua oscillators [48] coupled by dynamical con-
nections and defined by the system of equations (25)-(27) is
considered.

qu'xlm = O-(xZVn ~Xim ~ (p(xlm))’
master system Dq'"me =Xy — Xom + X3» (25)

9, —
D "Xy = _ﬁx2m>

D¥x)s = 0 (x5 — %15 — ¢ (x15)),
slave system{ D% x,, = x|, — x,, + X3, (26)
D¥x3 = =xy = hy,

D%h, = —a_ h, + h,,
quhz =—yh; = y2h, - k(x3m - x3s)’
(27)

dynamic coupling{

where x,, ; denotes the state variables of the master and slave
systems, respectively, h;, is the states of the dynamic
coupling, ¢(x,,, ) is the nonlinear function defined in
equation (28), and k is the coupling force between the
systems.
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FIGURE 5: (a) Stability analysis from linear error dynamics for the coupled Rossler system shown in equation (21). (b) Overlap of the
analytical result in the synchronization map shown in Figure 4(a).
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FIGURE 6: (a) Synchronization map as a function of integration orders g,, and g, of master and slave Rossler systems, equations (18)-(20),
and considering a fixed integration order of g; = 0.985 in the dynamic coupling. (b) Synchronization map for system equations (18)-(20) as
a function of the integration order g, of the dynamic coupling, while considering that the master and slave oscillators have fixed integer
order, i.e., g = 1.

1 ) To identify synchronization regions in the coupled Chua

¢ (xys) = by + 2 (a- b)(|x1,- 1] = ey - 1|)’ fori = m,s. systems of fractional order, an analysis of the coupling force
(28)  as a function of the integration order is developed. The

obtained results are shown in Figure 8. Note that the color

As reported in [11], the following values are used in this ~ map represents the value of the metric S and that the darkest

study for all analyzes developed; o =10,5=14.87,a=  shade of blue represents S = 3, which means that the systems
-1.27,b=-0.68 for a.=1,y, =k,y,=k/5 and initial  have reached full synchronization.
conditions [x,,,, x;,, h;] = [0.1,0.1,0.1,-0.2,-0.1,-0.1, 0, 0]. Analogous to the stability analysis performed for the

On the other hand, the coupling strength is varied in the  coupled Rossler system, the dynamic error model of the
interval 0<k<60 with A, =0.5941 and the integration  coupled pair of Chua oscillators described in equations
order is varied in the interval 0.965<g<1 for step size. (25)-(27) is described by



Complexity

Xl(max) (a'u‘)

3 ! . . . L i .
0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0995 1

Integration order q (a.u.)

F1GURE 7: Bifurcation diagram of the Chua system by modifying the integration order, equation (23). The abscissa axis indicates that the

three oscillator state variables have the same integration order.
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F1GUre 8: Numerical result equations (25)-(27). (a) Limit behavior of the system as a function of coupling strength k and integration order g.
(b) Synchronization index equation (14) as a function of integration order, for a fixed k = 13 and k = 20. A value of S = 3 indicates complete

synchronization.

Die; = o(e, —e; —[¢(x1) = ¢ (x1)]),

Die, =¢, —e, +e5,

Diey = —Be, — hy, (29)
Die, = —ae, + e,

qus = —y,e4 — y€5 — kej.

Due to the nature of the nonlinearity of the Chua circuit,
it is not possible to perform the same analysis as in the
Rossler system; instead, it is necessary to use the Jacobian of
the error model, equation (30), evaluated in one of the
equilibrium points of the system. Since the Chua circuit has
symmetric equilibrium points located at E, = (-1.841,
0.0004474,2.179) for the previously defined values, the
choice of one of these points does not affect the analysis.

[—oc—op(x) ¢ 0 0 0 ]
1 -11 0 o0
J= 0 -0 1 0 | (30)
0 00 —a 1
L 0 0 0 -y —y,

where p(x) =1/2(bsign(|x| - 1) +b) — 1/2(asign(|x| - 1)
—a)).

After defining the system shown in equation (30), it is
possible to perform the stability system analysis, where the
stability of the dynamic model of the Chua coupling error is
sought by modifying the integration order and the coupling
force. The analytical result is shown in Figure 9(a) and then
compared with the map obtained from the time series
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FIGURE 9: (a) Stability analysis from linear error dynamics for the coupled Chua system as shown in equation (29). (b) Overlay of the

analytical result in the synchronization map as shown in Figure 8(a).
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F1GURE 10: Synchronization map as a function of integration orders for the Chua systems, equations (25)-(27). (a) The integration order of
the master and slave is varied, whereas the integration order of the dynamic coupling remains fixed. (b) The order of the dynamic coupling is
varied, while the master and slave systems have fixed integer order g = 1.

analysis in Figure 8(b). As with the Rossler case, the ana-
Iytical result is able to describe the boundary at which the
system is unstable.

Remark 2. Similarly, to the case of the Rossler systems, we
have also investigated the onset of synchronization in the
fractional-order Chua oscillators as a function of the de-
rivative orders in the oscillators while keeping the coupling
system at fixed g, resulting in the map as shown in
Figure 10(a). The results from the analysis of the behavior of
the Chua systems under the dynamic coupling integration

order variation are shown in Figure 10(b), where the inte-
gration orders of the oscillators remain fixed at g,,,; = 1.

6. Discussion

From the results presented in this study, it is possible to
confirm the research question formulated in the introduc-
tion of this study, according to which the use of dynamic
couplings in chaotic systems of fractional order is able to
induce complete synchronization, as it has been reported in
their counterparts of integer order. Likewise, it is noteworthy
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to mention that the transition from unsynchronized be-
havior to synchronization is not abrupt, since there exists a
region where the coupled systems may exhibit some sort of
intermittency phenomenon. These areas are indicated by the
blurred areas in Figures 4 and 8.

If the oscillators are modeled with fractional derivatives
but a fixed integration order is maintained in the coupling
system, the desired synchronous behavior is achieved only
under the condition that both oscillators have the same
integration order. Small variations in the integration order
in some of the models cause the systems to lose their
synchrony, as shown in Figures 6(a) and 10(a). In contrast,
the synchronization seems to have some robustness against
variations in the integration order of the dynamic coupling,
provided that the oscillators have the same integration order,
as shown in the numerical results presented in Figures 6(b)
and 10(b).

It is also noteworthy that in the (g, k) plane there exist
regions where the systems are easier to synchronize. This is
explained by the bifurcation diagrams of the isolated os-
cillators, given in Figures 3 and 7, where the modification in
the integration order causes important qualitative changes in
the dynamics of the system, where both models are able to
present chaotic or periodic behavior, for a set of parameters
where the integer-order dynamics is always chaotic, only due
to the modification of the derivative order. This is not only
an indication that the synchronization between the systems
requires lower coupling forces for periodic and quasiperi-
odic behaviors but also a clear indication that the change in
the integration order can be associated with a modification
of the vector field, which can also be achieved in the integer-
order system by modifying the system parameters [17].

The local stability analysis is in good agreement with the
numerical analysis, as shown in Figures 5 and 9. It should be
noted, however, that the stability conditions are only nec-
essary conditions. This result is similar when talking about
the stability of the equilibrium points in a chaotic system,
where obtaining unstable saddle points with index 2 favors
the occurrence of chaotic behavior but does not guarantee
the occurrence of a strange attractor in the system [49].

It is worth mentioning that in the cases of analysis where
the equations to solve do not have the same derivative order,
the algorithm proposed by Petra$ is implemented [50];
otherwise, the Adams-Bashforth-Moulton (ABM) method
is used [46], which is a generalization of the classical ABM
integrator that is well known in the resolution of first-order
switching system problems [40, 51].

Notice that the results presented here have been obtained
under the assumption of identical oscillators. It is still
necessary to determine the robustness of the dynamic
coupling against parameter mismatches or external distur-
bances in the oscillators.

7. Conclusions

We have analyzed the onset of synchronization in fractional-
order chaotic systems interacting via a linear time-invariant
dynamic coupling, which also is described by fractional
derivatives. The obtained results have shown the ability of
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the dynamic coupling to induce synchronization in the
systems, and the strong influence of the integration order on
the onset of synchronized behavior has been demonstrated.

Among the observed limitations is that dynamic cou-
pling is sensitive to variations in the integration order of the
systems. Therefore, the master and slave systems should have
the same integration order. Furthermore, it has been shown
that the linearization approach used here to study the local
stability of the synchronous solution only provides necessary
conditions. Further investigation is needed to derive
stronger stability conditions. Perhaps the use of transverse
Lyapunov exponents can solve this problem. It remains as
future work to extend these results to the bidirectional case
and also to the case of networks. Also, it would be interesting
to investigate whether any emergent behavior or other types
of synchronous behaviors can occur in the coupled systems
depending on the integration order of both the systems and
the coupling.

Finally, we would like to point out that the results
presented here apply to the Caputo definition of fractional
derivative. Moreover, these results were obtained using two
different numerical approaches, namely, the ABM and the
Petra$ integrator method. As future work, we plan to
compare these results with different fractional operators,
such as the Riemann-Liouville operator or the Atanga-
na-Baleanu operator, to name a few.
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In the article titled “Chaos in a Financial System with
Fractional Order and Its Control via Sliding Mode” [1], the
authors identified errors in the code related to the minimum
effective dimension of the derivation order g5 The authors
have corrected this error, which has resulted in a number of
changes to the numerical results and to Figures 4 and 7. The
authors confirm that this change does not affect the con-
clusions of the article, and with the agreement of the edi-
torial board, the corrected article is as follows.

Abstract

In this paper, the dynamical behaviors and chaos control of a
fractional-order financial system are discussed. The lowest
fractional order found from which the system generates
chaos is 2.49 for the commensurate order case and 2.57 for
the incommensurate order case. Also, the period-doubling
route to chaos was found in this system. The results of this
study were validated by the existence of a positive Lyapunov
exponent. Besides, in order to control chaos in this frac-
tional-order financial system with uncertain dynamics, a
sliding mode controller is derived. The proposed controller
stabilizes the commensurate and incommensurate frac-
tional-order systems. Numerical simulations are carried out
to verify the analytical results.

1. Introduction

Investigating chaos in dynamical systems is one of the most
interesting topics which have been carried out extensively in
different scientific fields such as medicine [1], biology [2],
mathematics [3], and many others. In the literature, several
dynamical systems presenting chaotic behaviors have been
proposed such as the Lorenz system [4], the Chen system [5],
the Lii system [6], and the Newton-Leipnik system [7].
During the last decades, many researchers have taken a great
interest in the subject of chaotic systems’ control. In [8], the
authors used the sliding mode controller to eliminate chaos
in a new uncertain chaotic dynamical system (Liu system).
In [9], a robust adaptive sliding mode controller is used to
remove chaos in a novel class of chaotic systems. Chaos
control in the Lorenz, Chen, and Lii systems using the
backstepping technique is performed in [10]. Chaos control
in the Newton-Leipnik system is carried out using linear
feedback controllers in [11].

Fractional calculus involving fractional-order deriva-
tives, i.e., derivatives of noninteger order, has a history of
over 300 years [12]. During those years, this theory was
considered a purely mathematical concept. Recently, frac-
tional-order derivatives have been widely applied to several
systems in many areas of research to better understand these
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systems [13-19]. Indeed, fractional-order derivatives, pos-
sessing memory, can describe more accurately different
nonlinear phenomena than integer-order derivatives [20,
21]. Very recently, some interesting developments and re-
sults in the theory and applications of fractional calculus
have been obtained in the literature. For example, see [22], in
which the authors used Lie symmetry analysis to obtain an
exact solution of the conformable heat equation. In [23],
useful properties of the Lie group method with the invari-
ance subspace method are combined to obtain a large family
of exact solutions for the fractional Black-Scholes equation.
Also, in [24], the necessary optimality conditions of the
Euler-Lagrange type of variational problems in which
variational functional depends on Atangana-Baleanu de-
rivative are proved. Finally, the Hydon method to determine
discrete symmetries for a differential equation is employed
to construct discrete symmetries for a family of ordinary,
partial, and fractional differential equations in [25]. In
fractional-order systems, it was found that the systems with
derivation orders q;, g,, and g; generate chaotic behaviors
when g =¢, + ¢, + g5 <3 [13-19]; in other words, chaos
continues to exist in these systems for derivation orders less
than 3.

Since the discovery of chaos by Strotz et al. [26] in an
economical model, various financial and economical models
have been proposed in the literature to better understand
these complex dynamics of these systems. Among others, we
have the forced van der Pol model [27], the IS-LM model
(Investment Saving-Liquidity Money) [28], the new hyper-
chaotic finance model [29], and many others [30-33]. In 2001,
Ma and Chen [34] proposed a very interesting model to
represent the dynamics of financial systems. The analysis of
this model revealed interesting dynamics and also an extreme
sensitivity to the initial conditions of the variables and pa-
rameters of the system. Financial variables such as the ex-
change rate, gross domestic product, interest rate, and
production, to name a few, have a long memory [35, 36], i.e.,
all future fluctuations of these financial variables are influ-
enced by past and present fluctuations. Thus, fractional-order
derivatives, possessing memory effect, can describe more
accurately the dynamics of financial systems than integer-
order derivatives. In 2008, Chen [14] studied the general-
ization of Ma and Chen system [34], ie., considered this
system with fractional order. Two routes to chaos were found
in this fractional-order system, namely, the route to chaos via
intermittency and period-doubling. The lowest derivation
order found for which the system generates chaotic behavior
was 2.55 in the commensurate fractional-order case and 2.35
in the incommensurate fractional-order case.

Also, to better understand the dynamics of financial
systems, a new model was presented by Liao et al. [37] in
2020. Compared to the model proposed by Ma and Chen
[34], this new model takes into account the fact that the price
index is affected by investment demand. The study of this
model was carried out numerically by the authors. It was
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found that the interaction between three factors in this fi-
nancial system results in a complex behavior of the system.
Complex dynamics behaviors such as period-doubling and
chaos were found in this system [37]. Chaotic behavior is
undesirable in financial systems because it makes predictions
in finance and economics impossible and, therefore, con-
stitutes a risk for investments. Thus, its control in the
presence of uncertainties related to the parameters of the
system and external disturbances turned out to be necessary.

Chaos control in financial systems has been widely
studied in the literature. Several techniques have been
designed for the control of financial chaotic systems [38, 39].
One of these techniques is the sliding mode control. Indeed,
as a mathematical model cannot represent a physical situ-
ation perfectly, it is necessary to consider the uncertainties
linked to the values of the system parameters and also any
external disturbances to which a model may be subjected.
Therefore, it is better to design a robust controller, i.e.,
insensitive to uncertainties and external disturbances. The
sliding mode control is a powerful technique to robustly
control uncertain dynamical systems subject to uncertainties
and external disturbances [40-42]. The design of the sliding
mode controller has been widely discussed in the literature
[43-46]. These different criteria make the sliding mode
control the right technique for controlling financial systems
with uncertain dynamics. For example, in [38], a fractional-
order sliding mode controller was designed to eliminate the
chaotic behavior in an economical system in the presence of
model uncertainties and external disturbances.

Motivated by the above discussions, in this paper, chaos
in the financial system presented by Liao et al. [37] with
fractional order and robust control of this chaotic behavior
are investigated. The study of chaos in this system with
fractional order is carried out for the commensurate and the
incommensurate fractional order to find the minimum ef-
fective dimension, i.e., the lowest sum of derivation orders
from which chaos arises in the system using analytical
methods and numerical simulations. Finally, a sliding mode
control law is designed to control the chaos in this fractional-
order financial system with or without uncertainties and
external disturbances. Numerical simulations are carried out
to show that the controller can suppress chaos in the system
and also can stabilize and maintain the system states on the
sliding surface.

The remaining part of this paper is structured as follows:
In Section 2, some definitions and analytical conditions for
the existence of chaos in fractional-order systems are given.
The fractional-order financial system is presented in Section
3. The dynamics study of this fractional-order financial
system is carried out in Section 4. In Section 5, a simple but
robust fractional-order sliding mode controller is designed
to globally and asymptotically stabilize the system. Nu-
merical simulations are performed in Section 6 to verify the
analytical results obtained. This work ends with a conclusion
in Section 7.
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2. Definitions and Lemma

Fractional calculus is a generalization of ordinary calculus.
Some definitions of fractional derivatives are given in [12].
The most commonly used definitions in the literature are the
Grunwald-Letnikov, the Riemann-Liouville, and the
Caputo definitions [12].

During this work, we will only use the Caputo fractional
derivative, because unlike the Riemann-Liouville definition
of fractional derivative which involves initial conditions of
fractional order, this fractional derivative involves initial
conditions which take the same form as the case of the
integer order, which has a physical interpretation. The
Caputo (C) fractional derivative of order g is given by

Crya _ 1 ! _ _\n—q-1 £(n)
DO = pia |, - e N

n-1<qg<n,

with a and t which are numbers representing the limits of the
operator ¢D]. The symbol I'(.) is the gamma function.

Definition 1 (see [47-49]). A saddle equilibrium point is a
fixed point at which the equivalent linearized model has at
least one eigenvalue in the stable region (eigenvalue with the
negative real part) and one in the unstable region (eigenvalue
with the positive real part).

Definition 2 (see [47-50]). In a three-dimensional (3D)
dynamical system, a saddle fixed point is called a saddle
equilibrium point of index 1 if one of its eigenvalues is
unstable (positive) and the other two are stable (negative).
However, a saddle fixed point is called saddle equilibrium
point of index 2 if two of its eigenvalues are unstable and the
other is stable.

To analyze the stability of fixed points in a fractional-
order system, the following lemma can be used [47, 48, 51].

Lemma 1 (see [47]). For an incommensurate fractional-
order system, i.e., a fractional-order system in which deri-
vation orders are not the same, an equilibrium point E* of the
system is asymptotically stable if the condition

farg (] > 57 2)
is satisfied for all roots A of the following equation:
det (A (1)) = det(diag( [AM®,AM%, ... AM3]) - ]) =0,
(3)

in which ] is the Jacobian matrix of the system evaluated at the
equilibrium point E* and M represents the least common

multiple (LCM) of the denominators u;s of gis, where
q; = vi/u, viandu; € Z*, fori=1,2,...,n.

Condition (2) can be rewritten as follows:

iin{]arg ()L,)I} <0. (4)

2M

Hence, an equilibrium point E* will be asymptotically
stable if its roots A; satisty condition (4).

The term 7/2M — min{larg();)|} is called the instability
measure for equilibrium points in fractional-order systems
(IMFOS). This measure is a necessary [47] but not a suffi-
cient condition for the presence of chaos in a fractional-
order system [52-54].

3. The Chaotic Financial System with
Fractional Order

Recently, as reported in the literature [37], the financial
model takes into account the interaction between the in-
terest rate x, the investment demand y, and the price index
z. The system is described as follows:

(d

d—)::dz+(y—e)x,

d
] d—)t/=—ky2—lx2+m, (5)
k%}w—@x—p%

in which the parameters e, k, y, m, I, p, and § are constants.
The authors numerically investigated the chaotic behaviors
in this system. In [37], system (5) exhibits chaotic behavior
when e=0.3, k=002, y=1,m=1,1=0.1,p=0.05 d =
1.2, andd =1 and initial conditions (1.2, 1.5, 1.6) are
considered (see Figure 1).

In this paper, we consider system (5) with fractional
order. Standard derivatives are replaced by fractional-order
derivatives as follows:

DTx =dz +(y - e)x,
D%y = —ky2 — It +m, (6)
D%z = —yz - 6x - py,

where ¢; € (0,1) and D% =4d%/dt% (i=1,2,3). If
q, = q, = g5 = q, then system (6) is called a commensurate
fractional-order system; otherwise, it is called an incom-
mensurate order system [47].

The Jacobian matrix of system (6) is evaluated at one of
its equilibrium points E* = (x*, y*, z*) and is given by
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FIGURE 1: Phase diagrams and time series of system (5): (a) projected onto the x — y phase plane, (b) projected onto the x — z phase plane,

(c) time series of x, and (d) time series of y.
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When the values of the system parameters are chosen as
above, the equilibrium points of system (6) can be calculated
by solving the equations D%x = 0, D%y = 0, and D%z =0
The system has four equilibrium points which are given by

E, =(0.049498497, —7.070201517, 0.304011579),

E, =(0.076160842, 7.069016737, —0.429611679),

E; =(3.087391472, 1.529728564, —3.163877901),

E, =(-3.093050811, 1.471456216, 3.019478000).

(8)

The corresponding eigenvalues and their nature are
given in Table 1.

Taking into account Definition 2 and from Table 1, it can
be seen that fixed points E; and E, are saddle equilibrium
points of index 1 and the others are saddle equilibrium
points of index 2.

Using the Adams-Bashforth-Moulton predictor-cor-
rector method proposed by Diethelm et al. [55], the nu-
merical solution of system (6) can be written as follows:

where

Xn+1 = Xo +

h‘h

Y1 = Yo+

h‘b
+7
(g, + 2)

Zp1 =20t (

q3+2) ZXS]rH—l( = 0x;

I'(q +

Z xl,j,n+1(dzj +(y]- -

+—
T(q, +2) =0

(g, +2)

L
2) [dzﬁﬂ +(y£+l - e)xgﬂ]

e)xj)>

h%

[ ()’n+1)2 - l(xgﬂ)z + m]

ZX21n+1( ky] l'x +m)

h%

m [—Yzﬁﬂ 6xn+1 ny:ﬂ]

~Py;)

9)
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TaBLE 1: Equilibrium points, corresponding eigenvalues, and their nature.

Equilibrium points Eigenvalues Nature

E, A =-7.1758,1, = —=1.1944,1; = 0.2828 Saddle equilibrium point
E, Ay =6.6418,1, = —0.8428,1; = —0.2828 Saddle equilibrium point
E; Ay =—0.7378, 1,3 = 0.4532 + 1.5251i Saddle equilibrium point
E, Ay =-0.7548,1, 5 = 0.4337 + 1.5487i Saddle equilibrium point

x£+1 = xO r( ) Z 91]n+1(dz +( )xj)’
9 )’£+1 =)ot I'(q )Z 2]n+1( k}’] Ix +m)
Zp =20+ F( ) ZG3JH+1( j ‘ij_P,'Vj)>
[ 2! (n-q)(n+ 1%, j=0,
(n—j+2)%" + (n— )+
Xijjne1 = 1<j<n,
2(n-j+ 17,
| L, j=n+1,
hdi » »
Ojiner = ’ [(n=j+ D% =(n-jT],
1<j<n, i=1,2,3

(10)

4. Dynamics Analysis of the Financial
System with Fractional Order

In this section, the numerical method proposed by
Diethelm et al. [55] and presented in the previous section
is used to solve numerically system (6) in the commen-
surate and incommensurate fractional-order cases. The
parameters’ values defined in Section 3 and initial con-
ditions (x,, ¥y, 2,) = (1.2, 1.5, 1.6) will be considered in
this part. Using the well-known tools for studying dy-
namical systems such as phase diagrams, time series,
bifurcation diagram, and largest Lyapunov exponent, the
dynamics of the financial system with fractional order will
be investigated.

4.1. Dynamics for the Commensurate Fractional-Order
System. Here, we consider system (6) wheng, =¢q, = g5 =¢q
(commensurate order). System (6) does not exhibit chaotic
behavior if it satisfies the inequality g <2/7 min{|arg(A,)|}
[47, 48, 51] with A; being the eigenvalues of the Jacobian
matrix of system (6) evaluated at one of its fixed points. For

the equilibrium points E; and E,, we have
min{larg(1,)|} = 1.2819; hence,
2
— mi At = 0.816. 11
q<ﬂmiln{|arg( l)” (11)

Figure 2 shows that the largest Lyapunov exponent of
system (6) with commensurate fractional order is positive
only if g > 0.82. Therefore, the system does not show chaotic
behavior when g <0.82. It is found using numerical simu-
lations that the system exhibits a chaotic attractor for
q>0.83. For gq=0.83, phase diagrams are shown in
Figure 3(a) for the x — y phase plane and in Figure 3(b) for
the x — z phase plane. Figures 3(c) and 3(d) show the time
series of state variables x and y, respectively, for g = 0.83. As
it can be seen, the system exhibits chaotic behavior, and this
is confirmed by a positive Lyapunov exponent for g = 0.83.

Therefore, the minimum effective dimension of system
(6) for the commensurate fractional order is 0.83 x 3 = 2.49.
Thus, simulation results show that chaos exists in this
fractional-order financial system with a derivation order less
than 3. For numerical simulations, the step size h = 0.01 is
used.

4.2. Dynamics for the Incommensurate Fractional-Order
System. When one of the system’s derivation orders has a
different value from the other two, we get an incommen-
surate fractional-order system [47].

By observing Figure 4, we can see that the largest
Lyapunov exponent of system (6) is positive for g, >0.57
with g, = q; = 1 (see Figure 4(a)), for g, >0.87 with g, =
qs = 1 (see Figure 4(b)), and for g;>0.89 with g, =¢q, =1
(see Figure 4(c)). For example, we consider the following
cases.

Case 1. Fix q, = q; = 1, and let us take different values of q;:

(i) g, =0.55and g, = g3 = 1. In this case, we have v, =
11, u, =20, and v,=v;=u,=u;=1, so
M =LCM(20,1,1) =20 and
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FIGURE 3: Phase diagrams and time series of system (6) with fractional order g = 0.83: (a) projected onto the x — y phase plane, (b) projected
onto the x — z phase plane, (c) time series of x, and (d) times series of y.

A()) = diag(AM%, AM%AMD) - 1(E,) = diag(A',1%,4%) = ] (E,), (12)

det (A (L)) = A°' = 1.229728561" + 1.0611891421°" + 1.8014226241%° + 0.0611891421"! + 1.867529457 = 0. (13)
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By solving equation (13), we have
s 71
IMFOS = — — min|arg();)| = — - 0.079176
2M i 40
(14)
=-0.00064 < 0.

In this case, IMFOS < 0; therefore, for the derivation
orders g = (0.55, 1, 1), system (6) does not exhibit a
chaotic behavior.

(ii) Consider now g, = 0.57 and g, = g5 = 1; by the same
procedure as the above case, we have M = 100 and

det(A (1)) = A*7 - 1.229728561*%°

+ 1.0611891421"7 + 1.8014226241'%°

(15)

+0.0611891421% + 1.867529457 = 0.

By solving equation (15), we have

IMFOS = - — min|arg (1,)| = —— - 0.015682
oM 200 (16)

=0.000026 > 0.
IMFOS > 0; therefore, for the given derivation orders,

the system satisfies the necessary condition to present a
chaotic attractor. Numerical simulations confirm this

conclusion in Figure 5. Hence, the lowest value for which
q, in this case generates a chaotic behavior is 0.57, where
Mnax > 0.

max

Case 2. Fix q; = q; = 1, and let us take different values of q,:

(i) Consider g, = 1, g, = 0.86, and g, = 1; by the same
procedure as the above case, we get
M =LCM(1,50,1) = 50 and
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FIGURE 5: Phase diagrams of system (6) with fractional orders g, = 0.57 and q, = g5 = 1 projected onto (a) the x — y phase plane and (b) the

x — z phase plane.

det(A(L) = M'* +0.0611891421'%° — 0.229728561°

+1.8923403261° — 0.02972856\*
+ 1.867529457 = 0.
(17)

By solving equation (17), the IMFOS of the system is

T T
IMFOS = — - minlarg ()| = — - 0.027339
2M 100
(18)
= 0.004077 > 0.

In this case, IMFOS >0 but system (6) does not
exhibit chaotic behavior (A,,,, <0). This shows that
the condition IMFOS > 0 is a necessary condition for
chaos to exist and not the sufficient one.

(ii) Consider now g, =1, g, = 0.87, and g; = 1; by the
same procedure as the above case, we have M = 100
and

det(A (L)) = A** +0.0611891421** — 0.22972856)1'%”

+ 1.8923403261'%° - 0.029728561%7
+ 1.867529457 = 0.
(19)

The system’s IMFOS is
s ) s
IMFOS = -~ mi1n|arg )| = 500~ 0013605
(20)
=0.002103 > 0.
In this case, the system exhibits a chaotic behavior as it

can be seen in Figure 6, where we can observe the chaotic
attractor of the system.

Therefore, the lowest value for which g, in this case
generates chaotic behavior is 0.87, where A, >0.

Case 3. Fix q; = q, = 1, and let us take different values of q5:
(i) Consider q, =1, g, =1, and g5 = 0.88; then, M =
LCM(1,1,25) =25 and
det(AV) =A% + 1 — 1.168539418\"

+0.0314605821% + 1.8311511841%

+1.867529457 = 0.
(21)

By solving equation (21), we get

A A
IMFOS = — — mi A)| = —-0.051947
o mim|arg( ,)| =0
(22)
=0.010885> 0.

In this case, IMFOS >0 but the system does not
exhibit chaotic behavior (A_._ <0).

max
(ii) Consider now g, =1, g, =1, and g5 = 0.89; then,
we have M = 100 and
det(A(1)) = A% + 1% - 1.1685394181"%°

+0.0314605821' + 1.831151184\%°
+ 1.867529457 = 0.
(23)

From equation (23), we get
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IMFOS = —— — min|arg ()| = — — 0.012974
oM 200
(24)
= 0.002734 >0,

Hence, for the derivation orders g = (1, 1, 0.89), system
(6) satisfies the necessary condition for the existence of chaos
in the system. In this case, this is confirmed numerically in
Figure 7.

Therefore, the lowest value from which g, in this case
generates chaotic behavior is g; = 0.89, where. A, > 0.

When the value of g; increases from 0.85 to 0.90, the
route to chaos via period-doubling is found. The bifurcation
diagram and largest Lyapunov exponent when the deriva-
tion order g; varies on the closed interval [0.85, 0.90] are
plotted in Figure 8. Clearly, from the bifurcation diagram,
the period-doubling route to chaos can be seen.
Figures 9(a)-9(d) show that the system has period-1, period-
2, and period-4 and chaotic attractors for
q; = 0.85, 0.87, 0.878, and 0.89, respectively. Note that the
step size used for the numerical simulations in this section is
h =0.01.

From these three cases, we deduce that the minimum
effective dimension of system (6) in the incommensurate
fractional-order case is 2.57.

In the next section, a simple but robust fractional-order
sliding mode control law will be designed to control chaos in
system (6).

5. The Sliding Mode Controller Design

According to the sliding mode control theory, to design a
sliding mode controller, we have two steps:

(i) Build a sliding surface, which represents the desired
dynamics of the system such as stability

(ii) Develop a control law in a way that the system
states are brought towards the sliding surface
in a finite time and are maintained in a neigh-
borhood of the sliding surface when time evolves
[38]

The sliding mode control law is itself composed of two
parts; the first, which is continuous, is called equivalent
control law and the second is discontinuous. The equiv-
alent control law describes the behavior of the system to
be controlled when its trajectories are on the sliding
surface. The discontinuous reaching law ensures the
convergence of all the system states towards the sliding
surface.

To control chaos in fractional-order financial system (6),
the controller u(t)is added at the level of the second state
equation as follows:

DTx =dz +(y - e)x,
Dty =-ky’~Ix* + m+u, (25)
D%z = —yz - 8x —py.

Motivated by the literature [38, 43], as a choice for the

sliding surface, we choose the following fractional-order
sliding surface:

o(t) =D" 'y (t)+ D" (ky (1) + I (t) + ny (1)

t
0

= D%y (1) + j (ky* (1) +1x* () + ny (1))dr,
(26)

where 7 is an arbitrary positive constant. In the sliding mode,
the invariance conditions of the surface must be satisfied and
are defined as follows (i.e., the sliding surface and its de-
rivative must satisfy the relations which appear in the fol-
lowing equation):
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Lyapunov exponent (A,,,.)-
o(t) =0,

d .
ga(t) =0(t)=0.
From equations (26) and (27), we get
Dy (t) = - (ky? (t) + 1x* (t) + 7y (1)). (28)

From system (25) and equation (28), we obtain the
equivalent control law as follows:

92
ueq:itqf+ky2+lx2—m,
(1.2 2 2 2
= (ky +Ix +11y)+ky +Ix (29)
- m
=-ny-m.

Regarding the discontinuous reaching law, it is chosen as
follows:

u, = G,sign (o), (30)
in which
+1, ifo>0,
sign(o) =4 0, ifo=0, (31)
-1, ifo<0,

and G, is the gain of the controller.
Finally, the total control law has the following form:

u(t) = ueq (t) +u, (t) = —ny — m+ G,sign (o). (32)

Theorem 1. System (6) with control law (32), i.e., system (25)
is globally and asymptotically stable if the controller gain
G, <0.
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Proof. For this, let us choose the Lyapunov quadratic
function as follows:

V= -2, 33
50 (33)

and its derivative gives
V =06= U[quy +ky* +1x° + qy]
= 0[—ky2 —I+mtu+ky’ + Ik + r;y]
= a[—kyz—lx2 +m—-ny—m+G,sign (o) (34)
+ ky2 +Ix% + 11y]
= 0[G,sign(0)]
=G,lo] <0.
Therefore, we have found a Lyapunov function which
satisfies the conditions of Lyapunov theorem, i.e., V >0 and

V <0. Thus, system (25) with sliding mode control law (32)
is globally and asymptotically stable. O

Theorem 2. Suppose that system (25) is perturbed by un-
certainties and an external disturbance. Thus, the system has
the following form:

DTx=dz+(y-e)x,
Dty =—ky' - Ix*+m
y Y (35)

+Ag(x, y,2) + p(t) +u,

D%z =—yz-6x—py,
in which Ag(x, y,z) and p(t) are supposed to be bounded,
e, |Ag(x,y,2)|<p, and |p(t)| <y, where y, and u,
are positive constants. System (35) with sliding mode
control law (32) is globally and asymptotically stable if
G, < = (g + ).

Proof. For this, let us choose Lyapunov quadratic function
(33); thus, we have

V=00= U[D‘by+ky2 +Ix’ +;1y]
=o[-ky’ ~Ix’ +m+ Ag(x, y,2) + p(t)
+u+ky’ + Ix” + qy] (36)

= o[Ag(x, y,2z) + p(t)+G,sign(0)]
< (G, +u, +py)lol <0.

Thus, the proof is achieved. O
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6. Numerical Simulations

This part of the paper presents three illustrative examples to
verify the effectiveness of the proposed control technique.
Numerical simulations are carried out with initial conditions
(x> ¥o» 29) = (1.2, 1.5, 1.6), = 0.5, and G, = -2. For the
commensurate fractional-order case,
4, =49, =93 =q =0.83 is chosen for which the system is
chaotic (see Figure 3). For the incommensurate fractional-
order case, g, = 1, g, = 0.88, and g, = 1 are chosen. For this
choice, the largest Lyapunov exponent is positive (see
Figure 4(b)). The corresponding phase diagrams and time
series are shown in Figure 10. Note that the controller can be
activated in the system at any time. In this part, it is activated
at £ = 20 sec.

Case 1: commensurate order without uncertainty and
an external disturbance

As it was shown above, system (25) without the
controller u(t) is chaotic forq, =g, = g, = q = 0.83.
Now, applying controller (32) to the system, simu-
lation results can be seen in Figure 11. From this
figure, it is observed that control law (32) can effec-
tively asymptotically stabilize the state variables of
system (25) (see Figures 11(a)-11(c)). Besides, the
time series of the sliding surface o(t) is plotted in

Figure 11(d). From this figure, it can be observed that
the controller stabilizes the trajectories of the system
on the sliding surface and maintains them on this
surface when time evolves.

Case 2: commensurate order with uncertainty and an
external disturbance

In this part, we disturb the fractional-order financial
system by an  uncertainty  defined by
Ag(x,y,z) = 0.2 sin(+/x* + y?> + 22 ) and an external
disturbance p(t) = 0.5 sin(2t), where |Ag(x,y,z)|
<p; =0.2 and |p(t)|<p, = 0.5. The time series of
system (25) state variables (see Figures 12(a)-12(c))
and the time series of sliding surface (26) (see
Figure 12(d)) in the presence of control law (32) can
be seen through Figure 12. From this figure, we can see
that the controller stabilizes the system in the presence
of uncertainty and external disturbance.

Case 3: incommensurate order with uncertainty and
an external disturbance

In this case, we disturb financial system (25) with the
incommensurate fractional order by the same un-
certainty and external disturbance as Case 2.

The time series of system (25) state variables and the time
series of the sliding surface in the presence of control law
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(32) are shown in Figure 13. From this figure, it can be
observed that the state variables of the system are stabilized.

In each figure, the time series of the sliding surface is
plotted to show the ability of the controller to bring back
all the system states onto the sliding surface and to
maintain them on this surface when time evolves.

Simulation results show that controller (32) is able to
stabilize systems (25) and (35) in commensurate and
incommensurate fractional-order cases. Therefore, the
designed control law can suppress chaos in this fractional-
order financial system in the presence or absence of
uncertainty and external disturbance.
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7. Conclusions

In this paper, the dynamics of a financial system with
fractional order as well as the robust chaos control in this
system are studied analytically and numerical simulations
are performed to confirm the analytical results. The existence
of chaos in this study is validated by a positive Lyapunov
exponent and by an analytical condition existing in the
literature. The fractional-order system exhibits rich dy-
namics behaviors such as periodic and chaotic behaviors. A
period-doubling route to chaos is found in this system.
Numerical simulations revealed that chaos exists in this
fractional-order system for derivation orders less than 3. The
lowest derivation order found to have chaos in the com-
mensurate fractional-order case is 2.49 and 2.57 for the
incommensurate fractional-order case. Regarding the robust
control of chaos in the system, by using Lyapunov’s stability
theorem, a simple but robust fractional-order sliding mode
control law has been designed to stabilize the chaotic tra-
jectories of the fractional-order financial system in the
presence or absence of uncertainty and external disturbance.
It should be noted that the controller has been applied only
at the investment demand state equation to fully control the
system. Numerical simulations show that this controller is
effective and can control the financial system with com-
mensurate and incommensurate fractional orders. In [14],
Chen studied the fractional-order version of the financial
system proposed by Ma and Chen [34]. The lowest deri-
vation order obtained in [14] for chaos to exist is 2.55 in the
commensurate order case and 2.35 in the incommensurate
order case. Compared to the fractional-order version of Liao
et al. [37] proposed in this paper, the emergence of chaos is
enhanced in the commensurate order case and suppressed in
the incommensurate order case. It is well known that time
delay can affect the behavior of dynamical systems. For
future works, chaotic dynamics analysis of this fractional-
order financial system with time delay can be considered.
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It is important to investigate the firing activities of neurons, and previous experimental works have shown that fractional-order
neuronal models depict the firing rate of neurons more verifiably. In this study, a modified fractional-order Hindmarsh-Rose
neuronal model is proposed, and the dynamics and firing activities are investigated. Some novel phenomenon can be found. First,
by analyzing numerically and theoretically, the Hopf bifurcation is found to occur when the external direct current stimulus is
chosen appropriately. The effects of fractional-order on the bifurcation are also studied. Second, when injecting a direct current
stimulus, compared with the integer-order model, the system has more varying dynamic behaviors and firing pattern transitions.
Under different external current stimulus, periodic firing patterns and chaotic firing patterns occur when fractional-order
changes, but the regions of chaotic firing patterns are different. In other words, the transition mode of periodic firing and chaotic
firing induced by fractional-order is different under different external current stimulus. The two-dimensional colored diagram of
firing patterns is also investigated. Finally, when injecting periodic current stimulus, regular/irregular bursting, multiple spiking,
regular\irregular square wave bursting, and mixed firing mods are found by setting the appropriate fractional-order, amplitude,
and frequency of the external current stimulus. Some firing patterns cannot be found in integer-order models. When the
amplitude is chosen at appropriate values, the region of frequency when the system displays the mixed firing modes decreases with
increasing fractional-order.

1. Introduction

The neuron was modeled and analyzed by a large amount of
experimental data, and the results show that the firing be-
haviors of neurons are nonlinear processes. In 1952,
Hodgkin and Huxley used equivalent circuits and large
amounts of data from experiments to model and analyze the
data. They constructed the Hodgkin-Huxley (HH) neuron
model through theoretical derivation [1]. In 1961, FitzHugh
simplified the variables in the HH model and constructed a
low-dimensional model, the two-dimensional Fitz-
Hugh-Nagumo (FHN) model [2]. Morris and Lecar sum-
marized the new neuron model (Morris-Lecar (ML) model)
from the experimental data of the arctic goose muscle fiber,

which is a further simplification of the HH model. In 1982,
based on voltage clamp experiment data of snail nerve cells,
Hindmarsh and Rose proposed the Hindmarsh-Rose (HR)
model [3]. The modified HR model is called the polynomial
model, which is the modified HR-type model [4]. This is also
an important model for neurons, but research on this
model’s firing activities is limited. The modified HR model
has many dynamic characteristics and depicts bursting and
spiking behaviors successfully. It is significant to investigate
the dynamic behavior of the modified HR model. Firing
activities are important phenomena in the neuronal system.
A number of researchers have used different neuronal
models to try to explain some of the phenomena observed in
experiments. Studying the motor mechanism of the
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neuronal dynamical system helps us to understand relevant
phenomena in the brain and contribute to the development
of artificial intelligence.

Neuronal models have been studied numerically and
theoretically [5, 6]. In [7], the HR neuronal model was used
to develop a new type of a central pattern generator.
Neuronal models describe the firing patterns in real neurons,
for example [8]. For neuronal model firing, the effects of
electromagnetic radiation [9, 10] and extracellular alter-
nating-current feld [11] have been investigated. In [9],
chaotic bursting and periodic firing were found in the HR
model under an electric field, and Hopf bifurcation was
verified in this system. In [10], the mode transition of
electrical activities induced by electromagnetic radiation was
studied. The two-dimensional discrete HR model was in-
vestigated in [12]. Diverse bifurcation points and dynamic
behaviors were found. The neuronal system’s synchroni-
zation behaviors were investigated in [9, 13]. For collective
behaviors in neuronal networks, [14] depicted the dynamics
of the neurons and neuronal network, such as the mode
transition in electrical activity, pattern formation, and se-
lection in networks of neurons. In recent years, some re-
searchers have investigated modified HR models by
analyzing bifurcation points theoretically and firing pattern
transitions [15-17]. Reference [15] analyzed the dynamic
behaviors of a modified HR model with induced electro-
magnetic radiation and injected current stimulus, and di-
verse bifurcation points and firing activities were found. The
firing pattern transitions with direct current stimulus and
without current stimulus were investigated in [16, 17], re-
spectively. At present, there are few studies on the modified
HR model, but this model’s dynamic behaviors can be
important to understand the experimental results.

The above studies studied the integer-order model only.
In results of [18], after analyzing the dynamics of the firing
rate with a range of stimulus dynamics, showed that the
multiple time scale adaptation is consistent with fractional-
order differentiation. Fractional computation is related to
the intrinsic properties of dynamical systems [19]. Local
memory, nonuniform diffusion effects, and many other
aspects require fractional computation [19, 20]. Fractional-
order differentiation is a fundamental and general com-
putation that can contribute to efficient information pro-
cessing, stimulus anticipation, and assessment of frequency-
independent phase shifts of oscillatory neuronal firing. In
this way, fractional-order differentiation has advantages over
integer-order differentiation in the depiction of the firing
characteristics of some types of neurons. The fractional-
order model can give a more complete picture of neurons’
dynamic characteristics than the integer-order model. In the
past, scholars have performed much research on fraction-
order dynamical systems and applied them in many fields,
such as financial systems [21], biomedicine [22, 23], and the
spread of infectious diseases [24]. In terms of the fractional-
order neuronal model, the single fractional-order HR
neuronal model [25] was investigated, and the transitions of
chaotic firing and periodical firing, spike firing, and bursting
firing were observed. Other fractional-order models such as
the fractional-order Lorenz [26, 27], piecewise-linear (PWL)
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hyperchaotic system [28], and Rossler system [27, 29] were
also investigated, and diverse dynamic behaviors were
found. The firing activities of neuronal models need to be
further investigated, and modified fractional-order HR
model may have more diverse firing patterns. However,
there is no research studying the modified fractional-order
HR model under external direct and periodic current
stimulus. Like [21, 23], the Adomian decomposition
methods (ADM) algorithm is used in the present study
because of its great computational efficiency.

From this perspective, this study is organized as follows:
first, the modified fractional-order HR model under an
external current stimulus is proposed. The bifurcation
analysis and influence of fractional-order on the bifurcation
are studied numerically and theoretically. Then, the firing
patterns, firing pattern transition, and bifurcation diagrams
with a bifurcation parameter of fractional-order when in-
jected with a direct current stimulus were investigated. Fi-
nally, when a periodic current stimulus is injected, diverse
firing activities are studied.

2. Model Description and Bifurcation Analysis

2.1. Model Description. After Hindmarsh and Rose proposed
the Hindmarsh-Rose model [3], a large number of studies
have been constructed on the HR neuronal model. The HR
neuronal model is described as follows:

x=y-—ax’ +bx’ -z +1,
y=c—dx’ -y, (1)
z=r[s(x-%)-z],

where x is the membrane action potential, y is a recovery
variable, z is a slow adaption current, and I is the external
stimulus current. a,b,¢,d,r,s,X are the parameters in the
system, and they are usually set as
a=1,b=3,c=1,d=57r=0.006,s=4,x =-1.56. From
previous studies [15-17], the integer-order modified HR
model under a current stimulus is described as follows:

x:—s(—ax3+x2)—y—bz+1,

y=9(x*-»), @
Z =¢[sa;x + b, —kz],

where x represents the membrane voltage of the model; y
and z measure the gating dynamics of the ion channels and
the dynamics of the cytosolic channels, respectively;
a,b,a,,b;,k,s, ¢ are the parameters of the modified HR
model, and in this study, they are set as a=0.5,b=1,
¢=1=0.02,s=-1.61,a, = -0.1,b; = -0.045,k = 0.2. I
is a variable.

There are many definitions of fractional derivatives, and
in practice, the most frequently used definitions are three:
the Grunwald-Letnikov derivative, Riemann-Liouville de-
rivative, and Caputo derivative. According to [25], under
some conditions, the three definitions are equivalent and can
be intertranslated. The Caputo derivative makes the Laplace
transformation more concise, so it is simpler to solve the
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fractional-order derivative. Similar to most literature, the
Caputo derivative is adopted in this study.

Definition 1. The Caputo derivative of function f(x) is
defined as

t f(”) (1)

I[(n-q) ,[o (t - 7y ar ®

SD}f (x) =

where n—1<g<mn, I'(e) is the gamma function which is
defined as

I'(z) = Jootz_le_ldt. (4)
0
Especially, when 0<g<1,
C o1 ()
Oth(x)_F(l—q) Jo (t- T)da' 5

The fractional-order modified HR neuronal model can
be proposed as

Dix = -s(-ax’ +x*) -y - bz +1,

Diy = ¢(x* - y), (6)

Diz = ¢[sa,x + b, — kz],

where D{ is the differential operator defined by Caputo, q is
the fractional-order operator, and the other variables and
parameters are the same as in the integer-order model. In this
study, similar to the integer-order model, the parameters are
set as follows: a=0.5b=1, ¢=1=0.02,s= -1.61,
a, =-0.1,b, = -0.045,k = 0.2. I and g are the variables.

2.2. Bifurcation Analysis. The equilibrium point can be
obtained by solving the equation system x=y=2z=0,
which is

x=—s(—ax3+x2)—y—bz+1=0,

y=9(x*-y) =0, @)
z=¢[sa;x+b, —kz] =0.

In this part, similar to the integer-order model in the
above part, I is variable, and the other parameters are set as
a=05b=1,¢=1,e=0.02,s=-161, a, =-0.1,b, =
—0.045, k = 0.2. The equilibrium point S, (x,, y,,2,.) can be
described as follows after calculation:

1
Se<xe, xi,E (sayx, + b1)>. (8)
From equation system (7) and the equilibrium point

Se (%, ¥.» 2.), the equation with one unknown quantity is as
follows:

—saxi +(s+ l)xﬁ + %xe +<bl}zl - I) =0. (9)

To solve the equation, the Cardan formula [5] is in-
troduced. Now, the conversions are m; = —sa, m, = (s + 1),
my =bsa,/k, m, = ((bb/k)-1), x,=y,— (m,/3my).
Equation (9) can be simplified as follows:

Yo+ Py +q=0, (10)

where  p =3mymy;—m3/3m?, q=27mim, — 9m m,m;
+3m3/27m3, and the Cardan discriminant is A=
(q/2)2 + ( p/3)2. After calculation, the Cardan discriminant
A >0, so there exists a single real root which is defined by

xe=§/—ﬂ+\/Z+§/—ﬂ—\/Z—ﬁ. (11)
2 2 3m,

Now, we consider the existence of Hopf bifurcation.
Suppose that the system x = f,(x), x € R,y € R has an
equilibrium (x,, 4,) at which the following properties are
satisfied:

(1) D, f,, (xo) has a simple pair of purely imaginary
eigenvalues and other eigenvalues with negative real
parts

(2) d/dp (RO (@)=, #0

Then, the system has a Hopf bifurcation at the equi-
librium (xg, yy). The eigenvalues can be analyzed by de-
termining the Jacobian matrix associated with system (7),
and the characteristic equation det(J, —AL) =0 can be
obtained as equation (12), where L is an identity matrix of
the same size as J,.

3sax’ —2sx, -1 -b

Je = 20x, -

% % (12)
esa, 0 —ke

P(A) =1 + FA* + F,A + F,

in which
Fi=¢—-G+ke
F, =2¢x, — ¢G + ke (¢ — G) + besa,,
(13)

Fy = ke(2¢x, — ¢G) + besa, ¢,
G= 3sax§ - 2sx,.

Using the same method as in equation (9), equation (9)
can be simplified as follows:

A+ pAPeg=0, (14)

in which p, = 3F, - F3/3, q; = 27F; — 9F,F, + 3F;/27. The
three roots of equation (12) are



_ 34D SN
)Ll—\/2+\/Z+\/2 VA >

-1+jV3,
Azzﬂ —%+\/Z+

AR KT, S
2 2

2 3’
__l_j\/§3 q -1+ jV3 [ q F,
A, = 5 2+\/Z+ 5 5 VA 3
(15)

From the above analysis, when I = I, = —0.253, there
exists a simple pair of purely imaginary eigenvalues and a
negative real root at equilibrium (x, 4,). Then, the results
can be calculated as

Al 0 (16)
The conclusion that there exists a Hopf bifurcation when

I =1, can be drawn. For the fractional-order system, the
stability can be studied using the following lemma:

Lemma 1. Consider the linear autonomous system
DiX = AX, X(0)=X, where X eR'(neN) and
A € R™", The system is asymptotically stable when and only
when |arg (1)| > qn/2 is satisfied for an arbitrary eigenvalue A.
The system is stable when and only when |arg(A)| > qmn/2 is
satisfied for an arbitrary eigenvalue . The stable area of the g-
order linear system is shown in Figure 1.

According to Lemma 1, the critical values of the external
current stimulus I, for the fractional-order model to start
firing at different fractional-orders can be calculated, and the
results are shown in Figure 2.

2.3. Firing Behavior under Different Direct Current Stimulus and
Fractional-Orders. In this section, the parameters are also set
as a=05b=1,¢=1,=002,5=-1.61,a, =-0.1,
b, =-0.045,k = 0.2. I and q are the variables. In [17], the
firing activity of integer-order and the influence of pa-
rameters on the firing patterns were studied. In this section,
the influence of fractional-order and direct current stimulus
are investigated. In [17], when I = 0.06, the integer-order
modified HR model shows a spiking firing pattern. Figure 3
shows the bifurcation diagram varying with the fractional-
order when I = 0.06. Figure 3 shows that the firing patterns
change with varying fractional-order.

Figure 4 shows the corresponding time series of x and
the phase diagram of (x, y). When g = 0.2, as shown in
Figures 4(a) and 4(b), the neuronal model displays periodic-
6 bursting. From Figures 4(c) and 4(d), the neuronal model
displays periodic-5 bursting when g = 0.25. When g =0.3 and
q=0.39, the neuronal model displays chaotic bursting
(Figures 4(e), 4(f), 4(i), and 4(j)). The neuronal model
displays periodic-4 bursting when g =0.35 (Figures 4(g) and
4(h)), periodic-2 bursting when g =0.415 (Figures 4(k) and
4(1)), and spiking when q=0.55 (Figures 4(m) and 4(n)).
From the above analysis, under the influence of the frac-
tional-order, more complex dynamic behaviors occur. The
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FIGURE 3: Bifurcation diagram with a bifurcation parameter of
fractional-order when I = 0.06.

fractional-order can induce a periodic firing pattern for the
integer-order model transiting to the chaotic firing pattern.

To prove that if fractional-order can induce a chaotic
firing pattern for an integer-order model transitioning to a
periodic firing pattern, the firing pattern varies with frac-
tional-order when I = 0.015 is set as an example. In [17], the
integer-order neuronal model displays chaotic firing. As
shown in Figure 5 (the bifurcation diagram when I = 0.015),
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periodic bursting occurs when the fractional-order de-
creases. There exists a periodic window around g = 0.65.

When I = 0.015, the corresponding time series of x and
the phase diagram of (x, y) are shown in Figure 6. When
q = 0.8, as shown in Figures 6(a) and 6(b), the neuronal
model displays chaotic firing. When q=0.4, g=0.3, ¢=0.2,
the neuronal model displays periodic-3, periodic-4, and
periodic-5 bursting (Figures 6(c)-6(h)). Meanwhile, frac-
tional-order can induce the chaotic firing pattern to tran-
sition to a periodic firing pattern.

From Figure 7, the two-dimensional colored diagram of
firing patterns, we can easily find the chaotic firing range and
periodic firing range. We find that the chaotic range is larger
when the direct current stimulus is smaller.

2.4. Firing Behavior under External Periodic Current Stimulus.
In the above analysis, various firing activities are investigated
when the modified fractional-order HR model is under
direct external current. When the direct external current is
replaced by a periodic external current stimulus, there are
various firing activities. New firing patterns are found when
the fractional-order changes. Spiking, bursting, and other
firing patterns can occur at an appropriate fractional-order
and by injecting a periodic current stimulus. The modified
fractional-order HR model under periodic external current
stimulus is as follows:

Dix = —s(—ax3 + xz) -y —bz + Asin(nt),
Dly = (p(xz - y), (17)
Dlz = e[sa,x + b, — kz],

where A is the amplitude of the external current stimulus
and 7 is the angular frequency. In this section, similar to the
above section, the parameters are setasa = 0.5,b =1, ¢ = 1,
£=0.02,s =-1.61,a, = -0.1,b; = —0.045,k = 0.2, and the
fractional-order g, the amplitude A, and angular frequency 4
are considered as variables.

We set A =0.01, and regular bursting and irregular
bursting can be found. When g = 0.3, # = 0.01, the system is

in regular bursting, as shown in Figure 8(a). Irregular
bursting can be found when g = 0.6, = 0.01 (Figure 8(b)).
After further investigating the firing activities, the critical
value of fractional-order exists between regular bursting and
irregular bursting. When the frequency # is changed, we can
also find irregular bursting and regular bursting. For ex-
ample, when # = 0.1, the system is in regular bursting when
q = 0.3 (Figure 8(c)) and irregular bursting when g = 0.6
(Figure 8(d)).

The amplitude of the external current stimulus is in-
creased as A = 0.05. Multiple spiking consisting of different
spiking frequencies, spiking, and square wave bursting can
be found. Set # = 0.01, and the system is in regular bursting
for ¢ = 0.3 (Figure 9(a)), multiple spiking when g = 0.7
(Figure 9(b)), and square wave bursting when g =0.9
(Figure 9(c)). Setting # = 0.05, the system displays mixed
firing modes that include bursting and spiking when g = 0.4
(Figure 9(d)), irregular bursting when g = 0.8 (Figure 9(e)),
and another irregular bursting that is different from the
above bursting activities when g = 0.95 (Figure 9(f)). Fur-
thermore, setting # = 0.1, the system displays regular spiking
when g = 0.9 (Figure 9(g)), mixed mode oscillations that
consist of multiple numbers of spiking and subthreshold
oscillations when g = 0.95 (Figure 9(h)), and the system can
also display regular bursting and mixed firing modes when
q = 0.4 (Figure 9(1)).

When A =0.1, the firing activities are similar to the
above firing patterns. However, a novel phenomenon can be
found. First, setting g = 0.5, the system is in mixed firing
modes when # = 0.01 (Figure 10(a)), irregular square wave
bursting when # = 0.05 (Figure 10(b)), and regular square
wave bursting when # = 0.1 (Figure 10(c)). Then, setting
q = 0.4, the system is in mixed firing modes when 7 = 0.01
and 7 = 0.05 (Figures 10(d) and 10(e)), and regular square
wave bursting when # = 0.1 (Figure 10(f)). When g = 0.3, we
can find that the system displays mixed firing modes when
n =0.01, # = 0.05, and # = 0.1. From the above analysis, we
can conclude that the region of frequency 7 when the system
displays the mixed firing modes decreases with increasing
fractional-order.
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3. Conclusion

In this study, the dynamic behaviors of the modified HR
model were investigated, and diverse firing activities and
some novel phenomena were found. First, according to the
integer-order model and Cardan formula, the existence of
Hopf bifurcation can be proven. The critical values of the
direct external current stimulus for each fractional-order
are also obtained. Then, when direct current stimulus is
injected, the fractional-order model exhibits more complex
dynamic behaviors compared with the integer-order
model. In some direct current stimulus, the fractional-
order can induce periodic firing for the integer-order
model transitioning to chaotic firing, vice versa. In an
appropriate direct current stimulus, from the bifurcation
diagram with a bifurcation parameter of fractional-order,
there is some transition of firing patterns such as chaotic
bursting, periodic bursting (including different bursting
modes), and periodic spiking. In addition, from the two-
dimensional colored diagram, we can clearly find the

chaotic firing range and periodic range. Finally, when
periodic current stimulus is injected, at some appropriate
fractional-order and parameters of periodic current stim-
ulus, the fractional-order model can display regular/ir-
regular bursting, regular/irregular spiking, multiple
spiking, regular/irregular square wave bursting, and mixed
firing modes. The region of frequency when the system
displays the mixed firing modes decreases with the in-
creasing fractional-order at some amplitude values of the
external current stimulus.
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The Caputo conformable derivative is a new Caputo-type fractional differential operator generated by conformable derivatives. In
this paper, using Banach fixed point theorem, we obtain the uniqueness of the solution of nonlinear and linear Cauchy problem
with the conformable derivatives in the Caputo setting, respectively. We also establish two comparison principles and prove the
extremal solutions for nonlinear fractional p-Laplacian differential system with Caputo conformable derivatives by utilizing the
monotone iterative technique. An example is given to verify the validity of the results.

1. Introduction

In recent years, fractional calculus has been widely devel-
oped in pure mathematics and applied mathematics [1-7].
The characteristic of fractional calculus is that there are
many different fractional derivatives or integrals, like Rie-
mann-Liouville (RL), Caputo, Hadamard, Capu-
to—-Hadamard types, and so on [1, 2, 8, 9]. So, the scholars
have the opportunity to choose the most appropriate op-
erators to describe complex problems in the real world. We
recall some definitions from the traditional fractional cal-
culus [1, 2].

The left RL fractional integral of order >0 is given by

RP _ /3 1 1
S - r(ﬁ)j (£ - (s)ds (M
The left RL fractional derivative of order 3 > 0 is defined
as
8 n-p (drde) (g
DPf(t) = ( ) U IORS L(t L f (s)ds.

(2)

The left Caputo fractional derivative of order >0 is
given by

o f =, 0 = j (t = )" P £ (5)ds

(3)

However, some basic properties such as product rule and
chain rule are not valid for the RL and Caputo-type frac-
tional derivatives. In 2014, Khalil et al. [10] defined a new
fractional differential operator named the conformable
derivative which satisfies the product rule and some other
properties. In 2015, Abdeljawad [11] defined the left con-
formable integral ,I* and derivative ;T* as

/3)

() = j (s—a) ' f(s)ds,

I'(a)
4)
f(t+et-a)”

&

)= (1)

Tf (t) = lim

where a € (0,1],¢>0, f: [a,+00) — R. If f is differen-
tiable, then ;T (t) = (¢ - )" f ().
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In 2017, Jarad et al. [12] established the conformable calculus
in both RL and Caputo setting based on the work of Abdeljawad.

The left RL conformable integral of order
p € C,Re(p) >0, is given by

1 [t (t-a)=(s—a)\" ds
T'(B) L( a ) 76 (s—a)'"
(5)

The fractional integral (5) coincides with the traditional
RL fractional integral (1) if & = 1.

Let I, ([a,b]) = {f: [a,b] — R; f (¢) = I*v(t)+ f (a)
forsomey € L,(a)}, where L,(a)={y: [a,b] — R;
J%y(t)existsforanyt € [a,b]}. If neN', feCy,
[a,b] = {f: [a,b] — R;"'T*f e I, ([a,b])}, the left
conformable derivative of order 8 € C,Re(f)>0, in the
Caputo setting is defined by

PO () =1 P T F (1)

B 1 t((t-—a)*—(s—a)” np-l
_F(n—ﬁ) L a (6)

aT f(f,)ad
(s—a)

n=[pl+1,

IO

>

where e = 10T T and

ntimes
JJ0f ()= (t- a)l_“f' (t). The fractional derivative (6)
coincides with the traditional Caputo fractional derivative
(3) if @ = 1. Readers can see [13, 14] for more details.

It is well known that the monotone iterative technique
coupled with the method of upper and lower solutions is an
effective mechanism to obtain extremal solutions for nonlinear
problems [15]. By using this method, scholars have studied the
periodic boundary value problems (BVPs) [16-24], anti-peri-
odic BVPs [25-27], and integral BVPs [28, 29] of integer-order
differential equations. Later, this method was widely used to
study the initial value problems, periodic BVPs or integral BVPs
of RL and Caputo fractional differential equations [30-35].

Mathematical modeling of the real world in physics and
mechanical and dynamical systems often involves the
p-Laplacian operator. In order to study the turbulent flow in
a porous medium, Lejbenson [36] introduced the model of
differential equation with the p-Laplacian operator. Many
results about the fractional differential equations with the
p-Laplacian operator were also studied [37-39]. However,
the Caputo conformable fractional differential equations
with the p-Laplacian operator have not been considered.

In [37], Liu et al. studied the following problem:

D} (¢,(“Do-x (1)) = h(t:x (1), “Dy.x (1)), t € (0,1),
“Dg.x(0) = x' (0) = 0,
x(1) = rlx(n),Cngc(l) = rZCngc(f),

(7)

where 1<a,<2,r,7,20, he C([0,1] xt[0,+00)nxq (—0o0,
0]h,;0,+00)), and ¢,(s) is the p-Laplacian operator. The
extremal solutions were obtained under the assumption that
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h(t,wy,2z) <h(twy,z,), for0<w, <w,,z;>2,20. (8)

Inspired by the above work, we study the nonlinear

fractional p-Laplacian differential system involving the
Caputo conformable derivatives as follows:

P (9,(5"D"x (1)) = h(t x (1), 5D x (1)), t € [a,b],

b
ZT“sbp(S’D“x(a)) = by, x(a) = J w(s, x(s))ds + p,

9
where n-1<f<nn=[fl+1,0<y,a<l, p=0,
heC([a,b] xR*%R), weC([ab]xR,R), bi(k=0,1,

..,n—1) are real numbers, ¢,(s) = Is|P"%s(p>1) is the
p-Laplacian operator, ((/)10)_1 = ¢, (1/p) + (1/q) = 1, and

SSD‘X is Caputo conformable derivative with order & (= §, y).
To obtain the extremal solutions of problem (9), we need
consider the nonlinear Cauchy problem

PD2(1) = g (1,2 (1)),

. (10)
J z(a)=b, te(ab]
and the linear Cauchy problem
Dz (1) = o (1) ~ Az (1), -

“T°2(a) = by, te[ab].

The main contributions of this paper are as follows:

(i) We obtain the unique solution to problem (10) and
construct the approximate solutions to problem (11)
in terms of Mittag-Leffler function. The corre-
sponding results of problem (10) and problem (11)
can be seen as a generalization of Theorem 3.25 and
Theorem 4.3 in [1], respectively.

(ii) Based on two comparison principles, we obtain the
extremal solutions to problem (9) by using the
monotone iterative technique. Different from [37],
the restrictive condition of function A is no longer
needed in this paper.

The remainder of this paper is organized as follows. In
Section 2, we give some preliminaries and define some
special spaces. In Section 3, we show the uniqueness of the
solution for linear and nonlinear Cauchy problems. In
Section 4, two comparison principles are established. In
Section 5, the extremal solutions for problem (9) are
obtained. In Section 6, a numerical example is given.

2. Preliminaries

In this section, we introduce some definitions and lemmas to
be used in the sequel.

Let C"(J,R) be a Banach space of all n-order continu-
ously differentiable functions on J=[a,b]. For
n-1<f<n0<y,a<l,and0<7<1suchthat r<f -k, we
define the spaces C, (), Cor (1), C7(J), C.. (J), and CIT”; N
as follows:
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C,N={f: FOec.ID fNec}). (12

under the norm

C o
Ifll, = 1fllc + "D fllc,  where
o o
Ifllc = max,;|f (8)] and 5D fllc = max,;le"D" f (¢)!.

(t—a) ) f(t)ecm},

(21

Cor () :{f(t) € C(a,b): (

Coo () =C(),
(13)

n n
1fley = 21T flle = X maxzT"f ()]
k=0 k=0

Cr.(N={f®eCc): T f(t) e CUNLIT f (1) € Cor, (D}

3
under the norm
N e-a%\ | (t—a)*\"
Iflc,, = < " ) f T max,; ( o ) f(t)‘,
Cr(h={f®eCc: 2T f(t) eC()},
(14)
under the norm
(15)

R ={f® ey : FDf () e Cur (D).

For convenience, we present the following assumptions:

(H,) For te (a,b], z,z, € C%'(J), assume that
function g satisfies

lg(t:z1 (1) - g(tz, ()| <Mz, (£) = 2, (1), M >0.
(16)
(H,) Assume that x,(t)<y,(t),t €], where

xo (£), o (£) € C, (J) are lower and upper solutions of
(9), respectively.

(H;) Assume that a constant A <0 such that

h(t, y (1), 'D" y () - h(t, x (1), ' D x (1))
(17)

> = A(¢,("D"y (1) - ¢,(D x (1)),

where x, (£) <x () <y () <y, (£), t € ].
(H,) Assume that a constant 0 < 7 < (1/ (b — a)) such that

w(t, y(1) —w(t, x (1) 2n(y(£) - x(1)), (18)

where x, (1) <x(t) <y (t) <y, (£), t € ].

Definition 1. The function x,(t) € C,(J) satisfying ¢,
(SVD xo (1)) € C7.(]) is a lower solution of problem (9) if it
satisfies

D (¢, (D xy (1)) <h(t, x0 (£), D xy (1)), teT,

ZTDC(pP(aCYDaxO (a)) <b,
b
x(a)< J. w (s, xq (s))ds + p.

(19)

The function y, (¢) € C, (J) satistying ¢p (aCYDayO (1) €
Ch.(J) is an upper solution of problem (9) if the above
inequalities are reversed.

Lemma 1 (see [12]). For a>0, the space C}; ,(]) consists of
those and only those functions which are represented in the
form

1 (- - (s—a)*\" y(s)ds
e e e
= ];Taf (a) (x —a)™*
+ >
20 g
(20)
where y(t) ="T° f (t) and y(t) € L, (a).
Lemma 2 (see [12]). Let f € C; (]), p € C. Then,
n—1 k% ak
SI“(aCﬁD"‘f(t)) = f@) - Z M. (21)

k=0 (ka!



Remark 1. Lemma 1 still holds if we replace the space
Cho () with Ct_(]). In such case, y(t) =,Tf(t) and
v (t) € Co (). In particular, y(t) € C(J) when 7=0.
Lemma 2 is also valid for f € C}.()).

Lemma 3 (see [12]). Let Re(f) >0, Re(y) > 0,0 <m < Re(f),
m € N. Then,
@B I F (0 =571 f (1),
() 51" (¢ - a)* 0~V = (1/af)
(t —a)* D,

() mTB1" £ (8)) = 51" f (o,

(/T (B+y)

Lemma 4 (see [1]) (Banach fixed point theorem). Let (U, d)
be a nonempty complete metric space, let 0<p <1, and let
A: U — U be the map such that, for every x,y € U, the
relation

d(Ax, Ay) <pd(x, y), (22)

holds. Then, the operator A has a unique fixed point x* € U.
Moreover, if Ak (k € N) is the sequence of operators defined by

Al = 4,

23
AF = AAF Y (ke N\{1)), 23

then for any x,, € U, the sequence {A¥xy} e, converges to the
above fixed point x*.

3. The Unique Solution to the Nonlinear and
Linear Cauchy Problems

In this section, we first consider the unique solution of
nonlinear Cauchy problem (10) and linear Cauchy problem
(11), where the function g: (a,b] xR — R such that
geC,. ().

Let z (t) € C%' (]), and by Lemma 2 and the initial value
condition kT z(t) by, problem (10) can be reduced to the
Volterra-type integral equation

Hr(/ﬁ )

J KF5 1 (1,9)g (5,2 (s))
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S

z(t) = Z

jt KA (8 5)g (5, 2()

o j! I'(p)
ds
(s—a)'™™
(24)
where K(t,s)= (((t-a)" - (s—a)Y)/a),a<s<t<b.

Denoting z, =

Z;‘;é (bt~ a)*/ad j!), equation (24) can be
rewritten as z (t) =

(Az)(t), where

(t) +L

(Az)(t) = )

I K (t,9)g (s, z(s))%.
(s—a)
(25)

Theorem 1. If (H,) holds, there exists a unique solution
z(t) € CY"(]) for problem (10).

Proof. First, we choose t; (a <t; <b) such that

oM (t, —a)\ "
k;)l"(/j’—k+1) a

and prove that (10) has a umque solution z () € C¥'[a,t,].
Applying the operator KT to both sides of (25), by
Lemma 3 (c), we can get
J ! KFk-1

(26)

k o _k o 1
T (Az0) =T 2 (04 g

g(s,z(s))ds
(5 _ a)l—zx

where *T° 29 (t) = Y (t-a) U P (- ). Tt s
obvious that T zZ, (t) is contmuous on [a,t,]. Furthermore,
for0st<f-kand g€ C, (]), we get by (14) that

(27)
(t,5)

ds

( a)l—zx

1 J (t-a)*—-(s-
F(ﬂ k) a

Iglic,, (o]

an Bk 1 q
il ) g(s 2 () —=
(s—a)
(28)
ds

<
Ir(B-k

(e

a)(x)ﬂ—k—l< (S _ a)a>—1’
o (S— a)l—oc

(24

L1 -Dlgle, | ((tl —a

<
- I(B- k+1—r)

)" )ﬁ
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that is,
i L= Dlgle, an] { (6 - @)\
. g’ [“tl]_ F(ﬁ k+1—‘[) < o ) '

(29)
Inequality (29) implies that the operator Bokp® is
bounded from C,,[a,t,] to Cla,t,]. In particular, if 7 =

n-1
k
2l

(£) - 5T (Az, (1))

then g € C(J) and E_kla is bounded from C[a, t,] to Cla, t,]
such that

Bk @

Iglcfan] [ (£ —a)* ™"
ol )

It follows from (29) and (30) that ’;T“ (Az(t)) is con-
tinuous on [a, t,], thatis, (Az) (t) € C%'[a, t,]. By (14), (15),
and (H,), we have

k=0
_ o 1 ¢ B-k-1 ds
_]Z(:)r(ﬁ_k) JaK (t,S)[g(S,Zl(S))—g(S,ZZ(S))]m
n-1 t v d
<Yl Elaen ) -ab a0l
(31)
tl(t—a) —(s—a)*\ F! ds
ZF([S k)J ( o ) IZ] (S)_ZZ(5)| (S— a)lia
3 M|z = 2o (1 - a)
& TB-k+1) o
< M2y = 2ot ] £ (1 - a)* VP
& TB-k+1) o ’
that is,
421~ Azalcpr oy = X [T (420 0) =T (422 )],
(32)
M|z = 2l o (1 - a)
& T@B-k+1) o '
From Lemma 4 and (26), we get that there exists a unique (r =1,2,...,R). Therefore, (10) has a unique solution

solution z} € C%'[a,t,] to problem (10). Moreover, z} (t)
satisfies

lmo ”Az —z1 o [at] =0, (33)
where z, (f) is any function in Ci'la,t;] and
A‘z (t) = AA" 1z (). Let 2;(t) = A’z (1); then,

lim |z (t) - 2]

crifan] = 0 (34)

Next, choose t,,t5,...,t; such that a=t,<t; <t,<
-» <tp = b. Using the same arguments as above, we get that
problem (10) has a unique solution z' € C¥!'[t,_,,t,]

zFt =z € CHY()).
Flnally, we show that the unique solution z* (¢) belongs
to CTT (]) By (15) and (H,), we have

Cor (D :“9 tz;(H) - g(tz" (1))

em(ClY o

[»4

c G
aBD zi—aﬁD z"

Cor ()

c

”Zi -z gy

(35)



Taking the limit as i — co, we obtain

CﬁD z; cﬁDaz*

Cor () =0, (36)

i—00

which implies that z (t)eCﬁ" 1(I). This ends the
proof. O

Remark 2. When « = 1, the RL conformable integral and
Caputo conformable derivative coincide with the traditional
RL fractional integral and Caputo derivative, respectively.
Hence, the results of Theorem 3.25 in [1] can be seen as the
special case of Theorem 1.

Corollary 1. If (H,) holds and the function g: ] xR — R
satisfies g € C(]), then Cauchy problem (10) has a unique
solution z(t) belonging to Ci' ().

Proof. Corollary 1 can be proven by replacing 7 with 0 and
using the same argument in Theorem 1. O

Theorem 2. Ifo(t) € C(J) and A is a constant, then problem
(11) has a unique solution z (t) € Ci~' (J) which is given by

LU B
O
(37)

toa o(s)ds
+ Ja Kﬁ l(t, S)Eﬁ)ﬁ(—AKﬂ (t, S)) m,

where E, . (p) = Y120 (p"/I'(pk +q)) is the Mittag-Leffler

function.

Complexity

Proof. Clearly g(t,z(t)) = o(t) — Az (t) satisfies (H,). By
Corollary 1, there exists a unique solution z (t) € Cgfl (J) to
problem (11).

Next, we prove that this unique solution is given by (18).
By Lemma 2 and the initial value condition KTz (t) = by,
problem (11) can be reduced to the equation

_ )\
ZU—Z ,( )

We apply the successive approximations method to solve
equation (38) by taking z,(¢) = Z;‘;ébj (t —a)¥/a/j! and

2, (1) = 2o (t) + (NPT 2, (1) +PT o (1),

+(VIz + ). (38)

m=12,....
(39)
By Lemma 3 (b), for m = 1, we have

2, (8) = 2o (8) + (M2 () +£1%0 (1)

n—-1 )
=z, (t) + Br(t—a) + P10 (1)
’ Jzo ol j! ‘ (40)

e (=A)b; (- a)* )

:zo(t)+j;) ocﬂ+jr(ﬁ+j+ 1)

+F1% (1)

By (a) and (b) of Lemma 3, for m = 2,

2, (£) = zo (1) + (NI 2z, () + P10 (1)

=2, () + (—A){j["‘[zo (#) + (VP2 (1) + fjf"‘a(t)] 0

= 2 (£) + (NPT 2y (£) + (AT 2y (8) + (NPT o (6) + P 0 (1)

nl (M), (¢~

=z () + )

a)* Pl ()b (¢ -

(41)
a)“@ﬁ*‘f)

+ (Vo) + P10 ().
Continuing this process, we have
n—1 l’l mo N (f raf m o
Z ] z (,BA) (t a) +Z(_A)r_1;ﬁl (T(t)
Do T(rf+j+1) o
_ Zl bt-a)" & (N (t—a)
j=0 of =0 “rﬁr(rﬁ +j+1)

t m r 1B
B-1 (=-A)'K'"(t,s) o(s)ds
+LK (t’s); T+ DP) (s-a)®

(42)

j=0 ocﬂ”f(ﬁ + ] + 1)

+ 2B+j .
o« reg+j+1)

Taking the limit as m — oo and according to the
definition of Mittag-Leffler function, we get formula (37).
This ends the proof. O

Remark 3. If a = 1, we can get the results of Theorem 4.3 in
[1].
4. Comparison Principles

In this section, two comparison principles which will be used
in the next section are established.



Complexity

Lemma 5. Let n+ (1/b—a) and y(t) € C(]). Then, the is equivalent to
following problem:

p

b ds
ODx(0)= y(t), tel, £ = [ 69y —

b (43)
x(a)=n J x(s)ds + p, where

[1-nb-a)lyl-a) 'K (ts)+ 1K' (b,s)

t >
1 0 <t<b
G(t,s) ==
K (b,
1]7’1(7(:5)@, a<t<s<b,
E=(b-a)" 'T(y+1).
[»1 o b
Proof. For0<y<1,byLemma2, equationSyD x(t) = y(t) x(t) =1y (1) + ﬂjax(s)d5+P-

can be reduced to
x(t) =11y (t)cos (46)

where ¢, is a constant. By the boundary condition, we easily
getcy =1 Ja x(s)ds + p. Hence,

b ¢ N (e @\ V1 b
A:J 1 J(“ a) (s ‘”) YO ds)l_“dt+J (7A + p)dt
S—a a

ar(y) a o
=r ! ((b—a)“—(s—a)‘”>y YOI A p)(b-a)
uf(y+1)(b—a)a71 o (s— a)lfa n P

_ J’b KY(b,s)y(s) ds

Ty+1)b-a)*" (s—a)™ + (A +p) (b - a).

Therefore,

Jb KY (b, S)y(s) ds N p(b_ a)
a[l-gb-al(y+1)(b-a)*" (s—a)* 1-nb-a)y

= T-q(b-ay

(44)

(45)

(47)

Let A = '[i x (t)dt, and we can deduce from (47) that

(48)

(49)



Substituting (49) into (47), we have

Complexity

1 ds np(b-a)
x(6) = ﬁﬁj O et T e
J’ 7K (b,s)y(s) ds
N-nb-a)l(y+1)b-a)*" (s-a)™
1 (" [1-y(b-a)ly®-a)* 'K (t,s)+ 1K’ (b,s) ds
_E J 1-#5(b-a) () (s—a)™ (50)
1 (" 7K (bs) ds p
e Ve o T
N ds p
- Lc(t,s)y(s) A e
This ends the proof. O Based on the above work, we can get the following

Remark 4. For a<t,s<b, 0<% < (1/(b - a)), the function
G(t,s) is continuous and nonnegative.

Lemma 6. For x(t) € Cy (]), the following linear problem:

FD (¢, (SD (1)) = 0 (1) - A9, (D x (1)), teJ,
];Ta(bp(SyDax(a)) = by,
b
x(a)=nq L x(s)ds +p,
(51)

has a unique solution.

Proof.  Let z(t):</>P(§yDax(t)). By Theorem 2, the
problem

Dz (1) = o (t) - Az (b),

3 (52)
"T2(t) = by,

te]

has a unique solution z(t) € Cr( J) that s,
S'Dx(1) = ¢,(2(1)) € CF(J). Hence, {'D x(t) € C()).
By Lemma 5, the followmg problem

D x () = ¢, (2 (1)),

b (53)
x(a) = 11J x(s)ds+p, te],
is equivalent to
N ds p
x() = L G154, (2(5)) (s—a)™ " 1-nb-a)
(54)

Considering (52) and (53), we obtain the conclusion that
problem (51) has a unique solution which is given by
(54). O

comparison principles.

Lemma 7. If A <0 and z(t) € C'(]) satisfy the following
relation:

[CPD" 2 (1) > ~2z(8),*T 2 (a) 20, (55)

then for t € J,z(t)>0.

Proof. Let $PD"z(t) = p(t) = Az(1),*T"z(a) = ay; then,
p(t)=0,a;>0.From (37), we can see that z (¢) > 0. This ends
the proof. O

Lemma 8. If0<#n< (1/(b—a)) and x(t) € Cy (J) satisfy the
following relation:

b
1(;”D“x(t)20,x(a)2nj x(s)ds, (56)

then for t € J,x(t) = 0.

Proof. Let ayD x(t) =q(t), x(a) = jz nx(s)ds + d; then,

q(t)=0,d>0. From (53) and (54), we have that
ds . d

- 1-nb-a)

which implies that x () >0 due to G (¢, s) > 0. This ends the
proof. O

(57)

b
x(t) = LG(t, s)q(s) G

5. Extremal Solutions for Nonlinear System

The extremal solutions of problem (9) are obtained in this
section.

Theorem 3. If (Hz)—(H4) hold, then problem (9) has
extremal  solutions  x*(t),y*(t) in  the  sector

[0 yo] = {x(8) € C, (]): x, (1) <x(8) <y (1), £ € J}.
Moreover,



Complexity

X () <x (1)< y* () <y, (8),

o o o o (58)
D, (1) <D X () <Dy (1) <Dy, (1)

[ ¢*D"(9,($"D"x, (1)) =

1 5%, (9D x, (a)) = by,

[P0 (9,(57 D"y, (1)) =

1 5%, (9D y, (@) = by
b

a

By Lemma 6, x,, y,, are well defined. The proof includes
three steps. O

Step 1. We prove t the monotone property of {x,} and {y,}.
Letr(t) = ¢, &p° x (1) - (/>P(uyD X, (t)), and by (H,)
and (59), we get

{PD"r()z -Ar(1), te]rTr@=z0.  (61)
From Lemma 7 we have r(t)>0, ie,

¢, (aCyD xq (1)) 2¢P(gyD X, (t)). Moreover,
“YDx, (1) =YD x, (1) (62)

holds because of the monotone increasing property of ¢,, (s).
Let 7(t) = x; (t) — x,(¢t). From (H,), (H,), (59), and
(62), we have

~ o
YDF(t) = YD x, (1) - D" x, (1) 2 0,
(63)

b
7(a)> J 77 ()ds.

D m(t) = "Dy, (1) - "D x, (1) 2 0,

b b
m(a) = J [W(s, v () + 1 (y,(5) = 5 (5)) —w(s, xy () = 17(x, (s) — x4 (5))]ds > L nim (s)ds.

From Lemma 8, we have m (t) >0,1i.e.

¢ |2 X Therefore,
Cy Cy
Xo<x; <y, <y, and 4 on a'D x <

yD 1= VD Yo-

Bt 7,1 (0,5, ()

b
5, (@) = | [w(55,2 ) 4 1%, (9) = %02 (5)]ds +

9
Proof. Forte],n=1,2, ..., define
h(t, %, (£, 5D %, (1) = A[$,($'D"x,, (1)) = ¢,($YD"x, ., (1))],
(59)
~A[¢,(D"y, () = 6,(7D "y, (1)),
(60)

| (@) = J [W(s, Y1 (8)) + 13, (8) = Yy (5))]ds + p.

From Lemma 8, we have 7 (t) > O i e, X (t)=x, (t) The
same argument holds that “rp’ Vo (£) >C D ¥, (£),

Yo ()23, (1). Let m(t) = ¢, (D" y, (1)) - ¢, ("D " x, (1)),
and from (H;), (59), and (60), we get

FD m(®) = h(t, 7o (0D yo () = h(t, 0 (£), ;"D x, (1))
~AMp("D" 71 (0) = $,(5D 30 ()]
+ A6, (57D %, (1)) - 9, (9D %, (1))
> —Am(t),
AT m(a) =
(64)

From Lemma 7, we have m(t)>0, Iie,

¢, ('D"y, (1) ¢p ('D"x, (t)). Hence,
Dy ()= "D"x, (1) (65)

Let m(t) = y; — x,. We get from (65) and (H,) that

(66)

Next we prove x, (t), ¥, (¢) are lower and upper solutions

of (9), respectively. From (H;), (H,), and (59), we have
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D" (9,(5TD %, (1)) = h(t,xo (£), D" x4 (1)) = h(£, 2, (1), D x, (1))
(20 (8),7D%x, () = A[4,(27D"x, (1)) = ¢ ("D ()]
< = A, ($D %y (1)) = ¢, (57D x, (6))] + (£ x, (£), D" x, (1))
~ Mo, (5D %, (0) - ¢, (D xy (1))] = h(t, x, (1), D" x, (1)),
T 0D x (@) = by, (67)

b
x,(a) = J [w(s,xq(5)) —w(s,x,(5) +w(s, x,(s)) +7(x,(s) —x,(s))]ds + p

b
< J [17(x0(s) =%, (8)) + 71(x; () = x0 (5)) + w(s, x,(s))]ds + p

a

b
= J w(s, x, (s))ds + p.

a

Clearly, x, (t) is a lower solution of (9). Similarly, y, (t) is
an upper solution of (9). We obtain by applying mathe-
matical induction that

xo(t)le(t)S an(t)s S}/n(t)S gyl(t)Syo(t),
D x, (0D x, (< -+ <D x, ()< - D"y, (1) o
< ... SSYD“)/I (t)SaCyDayo (t)

Step 2. We conclude that the sequences {x,,} and {y,} satisfy Let F(x,)(t)=h(tx, (t),gyDuxn )+, (uCyDaxn (1)).
the relations: We can see that the function F is continuous and nonde-
creasing from the assumption of h. By (37) and (54),

nleoo X, () = x° (1), equation (59) can be reduced to the equation

N . (69)
lim $D"x, (t) = 'D"x" (1),
Jimy, (5 =y (®),
(70)

lim <'D%y, (t) = "D y* (1).

_g)® (s — )
xn(t))J G(t, s)¢q[z bj(s—a) Eﬁjﬂ(“;%)

F(x,, (9))d6] ds
(

(71)
6-a)

# K 008 (AKP .6)

s— a)l—tx

N Ib[w(S Xy 1(5)) n%,1 (s)]ds tp
n(b-a)

Clearly, {x,} is uniformly bounded in C,(J). By the  Step 3. We prove that x* and y* are extremal solutions of
continuity of F,G, ¢,, and K, we can easily get that {x,} is  problem (9).
equicontinuous. By the Arzela-Ascoli theorem, we have that Assume that any solution x (t) of problem 9) satisfies
{x,} satisfies (69). In the same way, we get that {y, } satisfies  x () 2x(t) <y, (). Let u(t) = ¢, &'D x (1)) - ¢,
(70). Moreover, x* (t) and y* (t) are solutions of (9). (aYD X, (1)), and by (H;), we have



Complexity

PD u(t) = h(t, x (1), 57D x (1)) - h(t, x, (1), 57D x,, (1))
2[4, (07D %01 (1) = 6,(0D"x, )]
> —du(t),
';Tau (a) =0.
(72)
“YDE () 2 0,

b
ti(a) = J [w(s,x(s) —w(s, %, () = 7 (%31 () = x,,(5))]ds > 1y J

We get u(t)=0 from Lemma 8, ie., x(t) =x,,,, (1)
Similarly, "D Vp (£) = D x (1), Y1 (1) = x(t). Hence,
Xy () <x(t) < y,,, (£) holds. Therefore, x*(t)<x(t)<
y* (t) as n —> 00, Vt € J. This ends the proof.

Remark 5. In [37], the authors assume that
h € C([0,1] x £[0,+00)n x q(-00,0]h,| 0, +00)),
1/2 D (1/2) ¢2<(1/2)D (t)) NETIN

(1/2)
~¢2<é”2)D x(O))=o,

‘ x(0) = J;[; (s+ 1Dx(s) +s]ds+ 1,

where k=0,b,=0,p=2,a=0b=1p=1F=yp=a=
(1/2) and

(1/2)
h(t,x(t),fj/”p x(t)) = 1O

w(t, x () = ; (t+ 1)x(t) + 1.

3(t(1/4) +t

11

From Lemma 7, we have u(t)>0, Iie,

¢,(S'D"x (1) 2 ¢, (5D x,,, (1)). Hence,
D x(8) 2D x, ., (8). (73)

Leti(t) = x(t) —
have

X, (), and by (H,), (59), and (73), we

b (74)
i (s)ds.

h(t,w,z;) <h(t,w,,z,) for 0w, <w,,z,>2,20,
t € [0,1]. The nonlinear term h in this paper satisfies the
weaker conditions.

6. Example

We present a numerical example as follows:

x(t 1 12
® L LoaptD g e o),

(75)

x(t) I(I/Z)D(l/z)x(t)

7(3/4)) + 40
(76)
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Taking x, (t) = 0, y, (t)

Complexity

= 3t + 3, we can get

[ (1/2) (112) <(1/2 (1/2) ) (34) x(t) La12),,(12)
D t o<t ———r o<t D t), tel0,1],
0 (/)2 0 0( ) 3(1‘(1/4) N t7(3/4)) +40 XO( ) ( ]
3
¢2<(§1/2 X, (0)) x,(0) < >
(77)
i (()1/2)D(1/2)¢2((()1/2)D(1/2> (t)) W2y (1/2)(4\/§t(3/4)) _ 3,12 (2+\/§)t(3/4), telo1],
v v
<
(1/2) 5
&:(870" 5, ) =0, Y00 =357
Hence, x,, and y,, are lower and upper solutions of (75),
respectively. Therefore, (H,) is satisfied. For x,(t)<x<
y<yo(0),
12
H(ty .80y 0) - h(tx@.0D" P x (1))
_ YW -x()  lapypam
= 3T 4 O 0 (y () - x(1))
1
>2p" (1) - x () 78)

- i [¢2<(§1/2)D(1/2)y(t)> - ¢2<é1/2)D(1/2)x(f)>]’

w(t, y(t)) —w(t, x(t)) 2; (y(t) — x(1)).

We can see that A =—(1/4) <0, = (1/7). Therefore,
(H;) and (H,) hold. In light of Theorem 1, the extremal
solutions of (75) can be obtained in [x, y,].

7. Conclusions

In this paper, we mainly use the montone iterative tech-
nique to study the Caputo conformable differential equa-
tions with p-Laplacian operator and integral boundary
condition. A minimal and a maximal solution between the
lower and the upper solutions are obtained. This method
provides a constructive procedure for the solutions, and it
is also useful for the investigation of qualitative properties
of solutions. Since the Caputo conformable derivative can
be reduced to the traditional Caputo derivative, some re-
sults produced from the traditional Caputo differential
system can be seen as special cases of this paper. Moreover,
the Caputo conformable derivative depends on two pa-
rameters naturally and the one coming from conformable

operator can better describe long-memory processes. We
believe that the Caputo and RL conformable fractional
operators will play a key role in studying new types of
fractional variational problems, Sturm-Liouville problems,
optimal control problems, and modeling of complex
systems.

Abbreviations

RL: Riemann-Liouville
BVP: Boundary value condition.
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This work principally considers the stability issue and the emergence of Hopf bifurcation for a class of fractional-order BAM
neural network models concerning time delays. Through the detailed analysis on the distribution of the roots of the characteristic
equation of the involved fractional-order delayed BAM neural network systems, we set up a new delay-independent condition to
guarantee the stability and the emergence of Hopf bifurcation for the investigated fractional-order delayed BAM neural network
systems. The work indicates that delay is a significant element that has a vital impact on the stability and the emergence of Hopf
bifurcation in fractional-order delayed BAM neural network systems. The simulation figures and bifurcation plots are clearly
presented to verify the derived key research results. The established conclusions of this work have significant guiding value in

regulating and optimizing neural networks.

1. Introduction

Neural networks have been found to have immense ap-
plication prospect in a lot of subject areas such as modeling
human brain, remote sensing, biological science, pattern
recognition, artificial intelligence, and control technique
[1, 2]. Usually, time delay often occurs in neural network
systems due to the lag of the response of signal transmission
of the neurons in neural networks. Thus, it is necessary for
us to establish the delayed neural networks to describe the
real situation of neural networks. Generally speaking, time
delay often gives rise to the disappearance of stability,
periodic oscillation, chaotic behavior, and so on [3, 4]. In
order to grasp the effect of time delay on various dynamical
properties of neural networks, miscellaneous delayed
neural networks have been built and studied. Up to now, a
great deal of valuable publications has been achieved. For
instance, Aouiti et al. [5] investigated the existence and

global exponential stability of pseudo almost periodic so-
lution to delayed BAM neural networks involving leakage
delays by virtue of fixed point theory and mathematical
inequality skills. Yang et al. [6] studied the almost auto-
morphic solution to high-order delayed BAM neural
networks by means of the exponential dichotomy theory,
Banach contraction mapping law, and differential in-
equality strategy. Maharajan et al. [7] set up a new global
robust exponential stability condition for a class of un-
certain BAM neural network systems involving mixed time
delays. Popa [8] focused on the global y-stability for im-
pulsive complex-valued BAM neural networks concerning
mixed delays. Sowmiya et al. [9] made a detailed analysis on
mean-square asymptotic stability for impulsive discrete-
time stochastic BAM neural networks involving Markovian
jumping and multiple delays. For details, we refer the
readers to [10, 11].
The general BAM networks are given by
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pi(t) = —a;p; (t) + Z ajihi(qj(t - ’71'1')) + P
j:I
) (1)
q;(t) = =B;a; () + ) bisk;(pi(t = ) + @,
i=1

where i=1,2,..,n;j=1,2,..,m, a; and f3; describe the
stability of internal neuron processes on P-layer and
@-layer, respectively; aj,b;; represent the connection
weights; p; (f) and g; (f) denote the states of the neurons on
P-layer and @-layer, respectively; h; and k; are activation
functions; &;, @; denote the inputs; 77;; and (;; are time
delays. The model (1) describes the change law of different
neurons which lie in two layers. For details, please see
(12, 13].

System (1) is a large-scale nonlinear dynamical model. It
owns very complicated dynamical properties. In order to
have a good command of the internal law of network system
(1), many researchers pay much attention to some simplified
versions of delayed neural network models. By the inves-
tigation on various dynamical peculiarities of the simplified
neural network systems, we are able to grasp the potential
dynamical properties for large-scale delayed neural network
systems. During the past several years, a lot of works on the
simplified neural network models have been published. For
example, Hajihosseini et al. [14] discussed the bifurcation
problem for recurrent neural networks involving three
neurons. Kaslik and Balint [15] investigated the Nei-
mark-Sacker bifurcation of a discrete-time delayed neural
network system involving two neurons. Ge and Xu [16]
obtained the sufficient condition to ensure the stability and
the onset of Hopf bifurcation for delayed neural networks

du, ()
dt*

d£”2 (1)
dtt

dus (t)
dtt

d*u, (t)
drt

du, (t)
dt*

dug (1)
dr*
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involving four neurons. Yang and Ye [17] dealt with the
stability and bifurcation behavior for delayed BAM neural
network involving five neurons. As to more concrete lit-
eratures on this theme, one can see [4, 18].

All above publications are only restricted to the integer-
order dynamical equations. In recent years, fractional cal-
culus has displayed wide application value in a lot of fields
such as heat and mass transfer, electromagnetic and elec-
trodynamics, control science, population systems, bio-
physics, and neural networks [19-27]. The study shows that
fractional calculus can be regarded as a very useful tool to
describe the object issues in the real world because it owns
the memory property and hereditary function during the
dynamic change process [28, 29]. Recently, fractional cal-
culus has become the biggest concern of the present day
world. In particular, fractional-order neural networks have
also become one of the key hot issues in neural network area.
Delay-induced Hopf bifurcation is a significant dynamical
property in delayed dynamical models. However, it is a pity
that a great deal of works is only concerned with delay-
induced Hopf bifurcation for integer-order dynamical sys-
tem concerning delays and few publications focus on the
fractional-order case (see [30, 31]). In fractional-order
neural networks, what is the effect of time delay and frac-
tional-order on the stability and bifurcation? The solution of
this problem is beneficial to the design of neural networks.
Up to now, there are many bifurcation problems that are
expected to be solved. This viewpoint stimulates us to deal
with the delay-induced Hopf bifurcation of delayed neural
networks involving multiple neurons.

Based on the neural networks (1), we consider the fol-
lowing fractional-order simplified delayed neural networks:

= —kuy () + ay h(uy (t = Q) + apl (us (£ = 0) + aysl (ug (t = 0)),

= —ku, (t) + ay h (us (t = Q) + axl (ug (t = 0)) + ayl (u, (t = ),

= —kus (t) + as h(ug (t = 0)) + az,l (uy (t = 0) + assl (us (t - (),

(2)

= —kuy (t) + ayh(uy (t = 0) + anl (uy (t = 0) + agl (us (t - (),

= —kus (£) + as h (uy (t = Q) + ag,l (us (t = 0) + agsl (uy (t = ),

= —kug (t) + a61h(u3 (t- C)) +agl (“1 (t- C)) + a63l(u2 (t- C)),
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where & € (0,1] is a real number; k describes the stability of
internal neuron processes on &-layer and @-layer; a;; (i =
1,2,3,4,5,6; j = 1,2,3) represents the connection weights;
u;(t)(i =1,2,3) denotes the state of the i-neuron on
P-layer; u 4 (t)(j = 4,5, 6) denotes the state of the j-neuron
on @-layer; h and I are activation functions. In order to
establish the key results of this work, we make the following
hypothesis:

(HL)h,
leC, ©)
h(0) =1(0) =0.

The remainder of this article is planned as follows.
Section 2 presents the key theories on fractional calculus.
Section 3 displays the main conclusions on stability and
Hopf bifurcation for neural networks (2). Section 4 executes

software simulations to illustrate the key conclusions of this
article. Section 5 ends this work with a simple conclusion.

2. Indispensable Definitions and Lemmas

In this part, we give several necessary definitions and
lemmas about fractional calculus which will be used in the
next part.

[ db o, (1)
dtfl

A, (t)
1 d®

A& (1)
| dtfz

where & € (0,1)(i=1,2,..,1), the initial  value
H;(t) = w;(t) €e C[-max (;,,0], e [-max(;,0], and
i,h=1,2,..,1. Denote™" Bh

],Ifl _ elle*ﬂ(n _6126*71(12 . _elleiﬂ(“
-1y, & ~1Cxn -1y
—€51€ n- —exe cee —€4€
_ 21 22 21
A(n) =
-1, -1, & -1y
—€ne —€pe e N o ege

(7)

Definition 1 (see [32]). Define Caputo fractional-order
derivative as follows:

1 r u(l)(s)

4 _
2ule) = TI-8 Jo (p- 5t >

(4)

where 1 (p) € ([, ©0),R),T (s) = ISO o le"edo, >0,
andl € Z*, &€ [I-1,)).
Lemma 1 (see [33, 34]). Consider the following model:

4
d;g” — w(t,u (), u(0) = u, (5)

where & € (0,1] and w(t,u(t)): R" xR" — R",n € Z*. Let
u, be the equilibrium point of system (5). If every eigenvalue
(denoted by ) of (ow(t,u)/0u)l,., obeys larg(q)|> (§n/2),
then we say that u, is locally asymptotically stable.

Lemma 2 (see [35]). Consider the following model:

=en ) (t=Cy) +end, (t =)+ +eyd i (t - (),

=en ¥ (t=(n) +endl,(t— () +--+eyd (t - {y),

(6)

=enIy(t =) +endy(t—(p) +-- + ey (t = Gy),

Then, the zero solution of system (6) is said to be as-
ymptotically stable in Lyapunov sense provided that every
root of det(A(n)) = 0 owns negative real parts.

3. Exploration on Delay-Induced
Hopf Bifurcation

In this part, by discussing the characteristic equation of
system (2) and setting the time delay as bifurcation pa-
rameter, we will establish the delay-independent sufficient



condition to guarantee the stability
bifurcation for system (2).
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and the onset of Hopf system of system (2) at the zero equilibrium % (0, 0, 0, 0, 0, 0)

owns the expression:

In view of (H1), one can easily know that system (2)

owns the unique equilibrium % (0,

du, ()
att

du, ()
datt

du, (t)
dat*

du, (t)
dat*

df”s (1)
datt

dug (t)
dart

where b, = a;h;y (0),by, = a,l'

0,0,0,0,0). The linear

= —kuy (t) + by (uy (t = Q) + by, (us (t = ) + b3 (s (t =),

= ~ku, (t) + by, (Us (t- C)) +by, (UG (t- C)) + by (U4 (t- O),

= —kus (t) + by, (g (t = Q) + by (g (t = ) + b3z (us (£ = ),

= —kuy (£) + by () (£ = Q) + by (uy (¢ = ) +byy (3 (£ = ),

= —kus (t) + bsy (uy (t = () + bs, (us (t = {)) + bss (uy (¢ = ),

= _kuﬁ () + b61 (u3 (t- ()) + bsz (“1 (t- ()) + b63 (uz (t- C)),

(0), bi3 = ai3l, (0),

i=1,2,3,4,5,6. The characteristic equation for equation (8)

owns the expression:

[ sS4k 0 0 —bye —bpe s —be ]
0 Stk 0 —byue ™ —bye S —be
det 0 0 sS4k —bype ™ —byue  —bye o
“bye —bpe S —bue 1k 0 0
“bge ™ —bye " —bye 0 Sk 0
| —be ™ —bge ¥ —bge 0 0 S+k

By equation (9), we get

%1 (S) +%2(S)e—25(+%3(s)e—4sf+%4(s)e—6s( =0,

(8)

(9)

(10)
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where

U, (s) = s 4 [,15555 + ‘144545 + ‘u3$35 + ‘uzszg + ylsE + Uos

U,(s) = 1/454'E + 738

3¢ 3

2
+1,5% 498t + v,

Us(s) = XzSZE + Xlsf * Xo»

U, (s) = py = —€11€26335

where

~

Hs = 6k,

C1p = by byy +bypbys +bysbs,,
€1y = byybyy +byyby; + byzbss,
€13 = by bys + by, +bysbsys
€31 = bszbyy + b5 ba3 + bsyb3,,
€2 = bs3byy + b5 by + bsybsss
€3 = bs3bis + b5 by + bsybsy,
€31 = beybyy + be3bys + bg b3y
€33 = beybiy + bg3byy + bg b33,

€33 = beybyz + bg3byy + b by

+Ca3(€1p + Cp) +€11Co5

_ 3
p3 = 26k — 4k (cy3631 + €150y + €55635) = (€11625631 +€13621C32)5

vy = —dk(cyy + ¢ + C33),

vy = (e + e +e33),

Xo = K [c33 (€11 + €22) + €116
X1 = 2k[cs3 (cy + ) + 1125

[ X2 = c33 (1 +620) + €165

( 6 14 3
po =k — k" (cr3c31 + €126 +€363) =k (11623631 + €13621C32)5

+2k[c35 (1) + €30) + €1160)5

2
py = 15k" = (13¢5 + €16y + €563

5
where
(11)
2 3 2
py = 6k” — 4k (c13¢31 + €126h1 + 363) = 3k (€11623¢31 + €13621€3)
4 2
py = 9k" — 6k (c13¢31 + €126y + €33€3) — 3k (c11€23631 + €13621C35)
(12)

_ 12 4
Vo = k(1163160 + €15651 €35 + €11C23€3,) — K7 (€11 + € + €33),
3
vy = 2k (€11631C0p + €15621€33 + €11€23C3) — 4K (€1y + € + €33))

2
Yy = €11€31Cp + €156 €35 + €11C23C3, — 6K,

By virtue of (10), we get
U, ()€™ + Uy ()™ + Uy (s) + Uy (s)e =0, (14)

Assume that s = 19 = 9(cos (77/2) + i sin(77/2)) is the root
of (14) and denote the real parts and imaginary parts of
%;(s)(j=1,2,3,4) by U r () and CZlﬂ(s)(j =1,2,3,4),

(13) respectively. It follows from (14) that

U g (9)cos 490 — U, ; (9)sin 49 + [Ux (9) + U 4z (9)]cos 29
+[ U4 (9) = Uy (9)]sin 290 = —U;5 (9),
U, (9)cos 49C + U5 (9)sin 49 + [U,; (9) + U 41 (9)]cos 29
U (9) = Ug (9)]sin2 9 = =U;; (9),

(15)
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where

5¢m

Uyp (9) = 9% cos 3 Em + y595£ cos —=+ /44945 cos 2 &m

3

+[4393E cos % + ‘L¢2\92'E cos &+ y19£ cos % + o>
6E . 5¢ . 5€7T VTN

U, (9) =9 sin 3 Em + pg 9 sin T+/,449 sin 2 &
3

+ y393E sin % + ‘142925 sin & + y1195 sin %[,

3¢m

T
Uyp (9) = 1/494’E cos 2 ém+ v3935 cos —~ + VZSZE cos ém + 7/119E cos %+ Vo»
1 (16)

K194 s
Uy, (9) = v,9% sin 2 & + v, sin % +2,9% sin & + v, 9 sin %

Usp (9) = 1,9 cos &m + y, 9 cos %”+ Yor

Uy (9) = 1,9 sin &m + y, 9 sin %ﬂ,

%ir(9) = po>

| %, (D) =0.

In view of (16), we can rewrite (15) as

{ U, g (9)cos 4 90 — U, (9)sin 4 9 + [,z (9) + U g (9)]cos 2 9 — U, (9)sin 2 9 = =U5, (9),

(17)
U, (9)cos 4 9 + Uz (9)sin 4 9 + U, (9) + cos 2 9 + [Upg (9) — U 4z (9)]sin 2 9 = U5, (9),
According tosin 2 90 = + /1 — c0s?29(, we are to deal (i) If sin 2 9 = 4/1 — co0s229¢, it follows from the first

with two cases. equation of (17) that

2% 5 (9)(2 cos’29¢ — 1) = 2%, (9)cos 2 9\1 = 052290 + [Uyp (9) + U g (9)]cos 2 9 — Uy (N1 — cos>29 = U (9),
(18)

which leads to
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[2%,r (9)(2 08290 — 1) + [ %, (9) + U 4 (9)]cos 2 9 + Uy (9)]2 —[2%,; (9)cos 2 9 = Uy (9]*(1 - cos’29().

Then, one gets

p,€08* 29 + p,cos 29¢ + p;cos>29¢ + p, cos 2 9 + ps = 0,
(20)

[(p, = 1623, (9) + 423, (9),

| ps = (Usx (9) = 2%,z (9)) - U3, (9).

Suppose that cos 2 9 =  and set

Pr3 P32 P4 Ps
h(n) ="+ 227 + 207+ 2 22
P1 P1 Pr P (22)
then
dh 3 2
ﬂ=4,73+ﬁ,72+ﬁ,7+&_ (23)
dn P PP
Let
3 2
4113+ﬁ112+ﬁ;1+&:0. (24)
1 Py P1
Assume that y =#+ (p,/4p,), then (24) can be
expressed as
y3+r1y+r2=0, (25)
where
_ Py 3
2p, 16P%’
(26)
3
320, 8p; 4py
Denote
2 3
ORI
2 3
(27)
5, = -1 +2i\/§'

By (25), one gets

(19)

where

Py = 8% g (9) Uk (9) + Up (9)) + 4%, (9)U,; (9),
1 ps = (U (9) + Uz (9) + 8% 1z (9) (Usg (9) = 2% 5 (9)) + U3, (9) — 4% (9), (21)
Py =2(Usp (9) + Uyg (9) (U3 (9) = U g (9)) — 4%, (DU (9),

( 3 [ 3| T [
yl B \/_5-’— 81 * \/_E_ 8 ’
3| T [ 3 T [
] yz - \/_72 " 61 62 " \/_72 - 81 62’ (28)
3| T 3| T
| s = \/_52+ \[8, 85 + \/—EZ— N

According to the analysis above, one can obtain the
expression of cos 2 9. Then, one can derive the expression
of sin 2 9. Here, we suppose that

cos 2 9 =¢,(9),
sin 2 9 = ¢, (9).

(29)

Hence,
P19 +95(9) =1L (30)

By virtue of computer software, one can easily derive the
root (say 9) of (30). Thus, one has

1
e =E[arccosq)l(9)+2ln], 1=0,1,2,.... (31)

(ii) If sin 2 9 = —/1 — cos?29(, by means of the same

method, one can also derive

cos 2 9 =y, (9),

(32)
sin 2 9 =y, (9).

Then,



V(9 +v5(9 =1 (33)

By virtue of computer software, we can derive the root
(say 9) of (33). Then,

k= ! [arccos v, (9) + 2kn], k=0,1,2,.... (34)
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(65
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+ 25‘142935_1 cos 3

+ fyISS_l cos

QE-Dn
2

_ 3¢6-1
+ 357/3935 1cosy
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+ 451/4935_1 cosi( 52 i
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+ 351/39(3)6_1 sin 7(35 5 i

[ 4&-1
+| 48, 985! sin#

+ EXISg_I c

[ 201
+ 2{)(29(2)5_1 cosg( 52 n

(&- l)ﬂ]
oS———
2

(6§ - 1)m (5¢-1m
2 2

dy = 65985_1 sin + 55/45985_1 sin

(f Eu, 95_

+ 2&,”2935—1 . (f - 1)7T:|

2

_ 3¢-1
+ 357/3935 1cos%

[ 48 -1
+ 4&’1/4935_1 cos#

(46 -1m
2

3¢-1
+ 3&/39(3)5_1 sing( 52 n

4{1/4935_1 sin

@ + EXISg_l cos

- 28,9 cos &= Dn —21)71]

3§

+ 45;44935_1 X oS

+ 251/29(2)5"1
+ 257}2935_1 i
cos 49,(, + [25}(2935_1 sin

+ 45/44935_1 X sin

2¢6—1
+ 2&/2905
+ 2{7/2935_1 i

sin 49,(, + [25)(2935_1 sin
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Define

¢ =min{¢",¢"}, 1=0,1,2,.... (35)
In the sequel, we are to verify the transversality condition

to ensure the onset of Hopf bifurcation. The following

hypothesis is needed. (H2) o/ 3 By + A; B >0, where

GE-1n

(4¢ -1)nm _
— 35‘143935 ' cos 5

L9 co

(28 - D JE-Dr
2 2

] cos 29,(,

Tt &0, 95 sin

(28 - D (-1
2 2

n]sin NG

(28 -Dm E

+&x 195 Usi sin 49,

(E— D
2

GE- D

(48 - D 1
— 35;439(3)5 'sin 3

(25 £
2 E 9

(E _zl)n]sin 29y¢,

(28-Dm 1 g
2 59

¢ ;l)n]cos 29,(0

&E-1Dr
2

+ erng_l sin 7“ _21)

ﬂ]cos 49,(,,

. m m .
By = 290<v4935 cos 2 &m+ 7/393f cos —=+ 1/29(2)f cos &+, 9 cos % + v0>sm 29,¢,

3ém

+ 290<v49 sin 2 &m + 7@935 sin -t v,9 2 sin &+ 1/19'S sin 52 + v0>cos 29,(0

3¢én

* Vi
B = 290(1/4935 cos 2 &m+ 7/319(3)E cos —=+ 1/2‘9(2)5 cos &m + vISg cos % + vo>cos 29y¢o

3¢m

+29, <V49 sin 2 & + 9,9 sin -t 2,98 sin &x + 7,9} sin 52 + vo)sm 29,

(36)
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Lemma 3. Assume that s({) = ¢, ({) +i¢, () is the root of ~ Proof. By virtue of (10), we get

(10) at (=¢, and $;() =0,0,(y) =9, then
Re [(dS/dO](:(O,S:sO > 0.

d, () + ¥, (S)e_ 20 _2e” 25((;—2( + S>%2 (s) + s (s) (S)€_4S(>

da¢ da¢ da¢
(37)
_ ds d,(s) _ _ ds
_ 4s¢[ @ GU45) —6s( 6s¢[ “ _
4e (d((+s)%3(s)+ s e 6e (d((+s)%4(s) 0.
Since
( 114
d?i;(@) = [65565_1 + 5&’/45555_1 + 4£y4s4£_1 + 3{;43535_1 + 2{;42525_1 + &’yls{ 1] d—z,
d, (s) 46-1 3E-1 26-1 1 ds
i [4£v4s + 380y + 280,57 + Eups ] b
(38)
d%3 (S) 261 -1 ds
i = [2{)(25 + &y ]d_f,
I2¥/4
4 (s) =0,
a¢
then by (37) and (38), one gets where
-1
i A (39)
d¢ B(s) s
( A (s) = 6556‘{’1 + Sfyssszf1 + 45;4454571 + 35;4353‘5’1 + ZE‘uzszf’1
+ f‘ulsffl +(4fv454571 + 351/353571 + 251/252571 + Evlsffl)efzs( + [2{)(252571 + Exls&l]e*“(,
(40)

B (s) = 256725((%‘545 + 2580+, s+ Vo)

| +45(X252€ +x, S+ Xo)e_M +6spye .
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It follows from (H2) that

ds]”!
Re ¥Ts le=¢, 029, =

This completes the proof.

Let
Ty = Us»
Ty = Uyt Vg
T3 = U3 +vs,

Ty =l Y + X5
Ts =W + Y+ Xp»

[ T6 = Ho + Y0 T Xo T Po-

A By + A By
T N2 w2
()" + (%)

Next, the following assumption is needed:
(H3) the following inequalities are true:

G, = det

?3 = det

1 &, =det

G5 = det

(¢, =1,>0,

T, 1
LT3 T
rr; 1

T3 T

| G5 =16>0.

>0,

>0,

>0,

(41)

(42)

(43)

Complexity

Lemma 4. If { = 0 and (#3) is fulfilled, then system (2) is
locally asymptotically stable.

Proof. Obviously, (10) with (=0 owns the following
expression:

U, (s)+ Uy (s)+ Us (s)+ U, () = 0. (44)
Namely,
M+ X+l + 0 + 1,2 + 1 d + 7 = 0. (45)

By means of (H3), one knows that every root A; of (45)
satisfies |arg(A;)| > (én/2) (i = 1,2,...,6). So, we can obtain
that Lemma 3 holds. This ends the proof.

According to the study above, the following result is
built.

Theorem 1. If (H1)-(H3) hold true, then the equilibrium
point 2% (0,0,0,0,0,0) of system (2) is locally asymptotically
stable proved that { € [0, () and a Hopf bifurcation is to arise
around %(0,0,0,0,0,0) if { = (.

Remark 1. Theorem 1 shows that (|, is a critical value which
determines whether system (2) is stable or unstable. If { < ,
then system (2) is stable, and if { >, then system (2) be-
comes unstable and a family of periodic solutions will appear
near % (0,0,0,0,0,0).

Remark 2. In [3, 4], Cheng et al. studied the stability and
Hopf bifurcation of integer-order delayed neural networks.
They obtain the characteristic equation by applying integer-
order differential equation theory and determinant knowl-
edge. In this work, we investigate the stability and Hopf
bifurcation of fractional-order delayed neural networks. We
obtain the characteristic equation by applying fractional-
order differential equation theory, Laplace transform, and
determinant knowledge. The investigation on the distribu-
tion of the characteristic roots for characteristic equation of
fractional-order neural networks is more difficult that of
integer-order case. From this viewpoint, we think that our
work replenishes and improves the earlier works of Cheng
et al. [3, 4].

4. Software Simulation Plots

Give the fractional-order neural network system:
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Figure 1: Continued.
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Ficure 1: Stability property for neural network model (46) involving { = 0.65 < {, = 0.75.

(dou, (1)
dtt

du, (t)
dt*

du, (t)
datt

du, ()
datt

dé”s ()
dtt

dug (t)
dt*

Apparently, neural network system (46) owns the unique
zero equilibrium point % (0,0,0,0,0,0). Let & =0.94. By
means of computer software, one can derive {, = 0.75 and
9 = 2.0922. By virtue of algebraic computation with
computer, one can verify that the assumptions (H1)-(H3)
of Theorem 1 hold. Then, one can conclude that the zero
equilibrium point % (0, 0, 0, 0, 0, 0) of neural network system
(46) is locally asymptotically stable provided that
{ € [0,0.75). To illustrate this fact, we carry out computer
simulations. We carry out numerical discretizations of
model (46) by Adams-Bashforth-Moulton numerical al-
gorithm. The integration algorithm starts with the solutions
of system (46) in terms of R-L integral. The implicit dis-
cretization approach is applied to construct the tactics. We
select { = 0.67 < {, = 0.75. The computer simulation figures
are presented in Figure 1 which shows the locally asymp-
totically stable behavior of the neural network system (46).
When ( passes through the critical value {, = 0.75, then the
delay-induced Hopf bifurcation of neural network system

—u, (¢) + 0.8tanh (u, (t — {)) + 0.8tanh (u5 (t — {)) — 0.9tanh (u (t - (),

= —u, (t) + 0.5tanh (u5 (¢t — {)) — 0.2tanh (g (t — {)) + 0.5tanh (u, (t - {)),

= —u, (t) — 0.5tanh (ug (£ — {)) — 0.5tanh (uy (t — {)) + 0.8tanh (us (t - ()),

(46)

= —u, (t) + 0.2tanh (u, (t — {)) + 0.6tanh (u, (t — {)) — 0.8tanh (u; (t - ()),

= —u; (t) — 0.9tanh (u, (t — {)) — 0.5tanh (u3 (t — {)) + 0.7tanh (u, (t - ()),

= —ug (t) + 0.2tanh (u; (t — {)) — 1.2tanh (&, (t — {)) — 0.9tanh (u, (t - {)).

(46) will arise in the vicinity of % (0, 0,0, 0,0, 0). To explain
this fact, we select { = 0.9>(, = 0.75. The computer sim-
ulation figures are presented in Figure 2 which shows the
Hopf bifurcation phenomenon of neural network system
(46). The initial conditions are (0.09,0.038,0.02,
0.02,-0.039, 0.08) and the time step is 0.0035 and the time of
simulation is 250 seconds. To display the Hopf bifurcation
phenomenon of neural network system (46) intuitively, we
also draw the bifurcation plots which can be seen in
Figures 3-8. From Figures 3-8, one can easily know that the
bifurcation value of neural network system is 0.75.

Remark 3. In Figure 1, the subfigures 1-10 stand for the
relation of the variable in horizontal axis and vertical axis.
The subfigures 11-26 stand for the relation of the variable in
horizontal axis, vertical axis, and vertical axis. In Figure 2,
the subfigures 1-10 stand for the relation of the variable in
horizontal axis and vertical axis. The subfigures 11-26 stand
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Ug (t)

(d)

Ficure 2: Hopf bifurcation for neural network model (46) involving { = 0.9 > {, = 0.75.

¢

FiGuRre 4: Bifurcation figure of neural network model (46): {-u,.
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for the relation of the variable in horizontal axis, vertical axis,
and vertical axis.

5. Conclusions

Delay-induced Hopf bifurcation phenomenon is a signifi-
cant dynamical behavior in delayed dynamical models. In
particular, delay-induced Hopf bifurcation in neural net-
work area has attracted much attention from good many
scholars in the whole world. During the past decades, some
researchers have investigated the Hopf bifurcation problem
of fractional-order delayed neural networks. However, the
major works are only concerned with the low-dimensional
delayed fractional-order delayed neural networks; few works
focus on the high-dimensional fractional-order ones. In this
work, we mainly focus on the stability problem and the
appearance of Hopf bifurcation of high-dimensional frac-
tional-order delayed BAM neural network systems. The
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study shows that when the time delay keeps in a suitable
range, the neural network systems will remain a stable state
and if the time delay passes the critical value, then a Hopf
bifurcation will take place around the equilibrium point of
the involved neural networks. Thus, the time delay is a
momentous factor that affects the stability and Hopf bi-
furcation for the investigated neural networks. In the end,
the software simulation results and bifurcation diagrams
efficaciously illustrate the effectiveness of the crucial ana-
lytical conclusions.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Innovation Exploration and
Academic New Seedling Project of Guizhou University of
Finance and Economics ([2017]5736-025) and National
Natural Science Foundation of China (No. 62062018).

References

[1] B. Wrébel, A. Abdelmotaleb, N. Davey, and V. Steuber,
“Evolving small spiking neural networks to work as state
machines for temporal pattern recognition,” BMC Neuro-
science, vol. 16, 2015 Article number: P238.

[2] 1. Rojas, J. Cabestany, and A. Catala, “Advances in artificial
neural networks and computational intelligence,” Neural
Processing Letters, vol. 42, no. 1, pp. 1-3, 2015.

[3] Z. Cheng, K. Xie, T. Wang, and J. Cao, “Stability and Hopf
bifurcation of three-triangle neural networks with delays,”
Neurocomputing, vol. 322, pp. 206-215, 2018.

[4] Z. Cheng, D. Li, and J. Cao, “Stability and Hopf bifurcation of
a three-layer neural network model with delays,” Neuro-
computing, vol. 175, pp. 355-370, 2016.

[5] C. Aouiti, I. Ben Gharbia, J. Cao, M. Salah M’hamdi, and
A. Alsaedi, “Existence and global exponential stability of
pseudo almost periodic solution for neutral delay BAM neural
networks with time-varying delay in leakage terms,” Chaos,
Solitons & Fractals, vol. 107, pp. 111-127, 2018.

[6] W.Yang, W. Yu, J. Cao, F. E. Alsaadi, and T. Hayat, “Almost
automorphic solution for neutral type high-order Hopfield
BAM neural networks with time-varying leakage delays on
time scales,” Neurocomputing, vol. 267, pp. 241-260, 2017.

[7] C.Maharajan, R. Raja, J. Cao, and G. Rajchakit, “Novel global
robust exponential stability criterion for uncertain inertial-
type BAM neural networks with discrete and distributed time-
varying delays via Lagrange sense,” Journal of the Franklin
Institute, vol. 355, no. 11, pp. 4727-4754, 2018.

[8] C.-A. Popa, “Global p-stability of neutral-type impulsive
complex-valued BAM neural networks with leakage delay and
unbounded time-varying delays,” Neurocomputing, vol. 376,
pp. 73-94, 2020.

[9] C. Sowmiya, R. Raja, Q. Zhu, and G. Rajchakit, “Further
mean-square asymptotic stability of impulsive discrete-time
stochastic BAM neural networks with Markovian jumping



20

and multiple time-varying delays,” Journal of the Franklin
Institute, vol. 356, no. 1, pp. 561-591, 2019.

[10] F.Lin and Z. Zhang, “Global asymptotic synchronization of a
class of BAM neural networks with time delays via integrating
inequality techniques,” Journal of Systems Science and
Complexity, vol. 33, no. 2, pp. 366-382, 2020.

[11] N. Belmahi and N. Shawagfeh, “A new mathematical model
for the glycolysis phenomenon involving Caputo fractional
derivative: well posedness, stability and bifurcation,” Chaos,
Solitons & Fractals, vol. 142, Article ID 110520, 2021.

[12] M. Liu, X. Xu, and C. Zhang, “Stability and global Hopf
bifurcation for neutral BAM neural network,” Neuro-
computing, vol. 145, pp. 122-130, 2014.

[13] K. Gopalsamy and X. Xue-Zhong He, “Delay-independent
stability in bidirectional associative memory networks,” IEEE
Transactions on Neural Networks, vol. 5, no. 6, pp. 998-1002,
1994.

[14] A. Hajihosseini, F. Maleki, and G. R. Rokni Lamooki, “Bi-
furcation analysis on a generalized recurrent neural network
with two interconnected three-neuron components,” Chaos,
Solitons & Fractals, vol. 44, no. 11, pp. 1004-1019, 2011.

[15] E. Kaslik and S. Balint, “Bifurcation analysis for a discrete-
time Hopfield neural network of two neurons with two delays
and self-connections,” Chaos, Solitons ¢ Fractals, vol. 39,
no. 1, pp. 83-91, 2009.

[16] J. Ge and J. Xu, “Stability and Hopf bifurcation on four-
neuron neural networks with inertia and multiple delays,”
Neurocomputing, vol. 287, pp. 34-44, 2018.

[17] Y. Yang and J. Ye, “Stability and bifurcation in a simplified
five-neuron BAM neural network with delays,” Chaos, Soli-
tons & Fractals, vol. 42, no. 4, pp. 2357-2363, 2009.

[18] B. Wang and J. Jian, “Stability and Hopf bifurcation analysis
on a four-neuron BAM neural network with distributed
delays,” Communications in Nonlinear Science and Numerical
Simulation, vol. 15, no. 2, pp. 189-204, 2010.

[19] R. Amin, K. Shah, M. Asif, and I. Khan, “A computational
algorithm for the numerical solution of fractional order delay
differential equations,” Applied Mathematics and Computa-
tion, vol. 402, Article ID 125863, 2021.

[20] A. Si-Ammour, S. Djennoune, and M. Bettayeb, “A sliding
mode control for linear fractional systems with input and state
delays,” Communications in Nonlinear Science and Numerical
Simulation, vol. 14, no. 5, pp. 2310-2318, 2009.

[21] C.Xu, Z. Liu, L. Yao, and C. Aouiti, “Further exploration on
bifurcation of fractional-order six-neuron bi-directional as-
sociative memory neural networks with multi-delays,” Ap-
plied Mathematics and Computation, vol. 410, Article ID
126458, 2021.

[22] P. Mani, R. Rajan, L. Shanmugam, and Y. Hoon Joo,
“Adaptive control for fractional order induced chaotic fuzzy
cellular neural networks and its application to image en-
cryption,” Information Sciences, vol. 491, pp. 74-89, 2019.

[23] L. Li, X. Liu, M. Tang, S. Zhang, and X.-M. Zhang,
“Asymptotical synchronization analysis of fractional-order
complex neural networks with non-delayed and delayed
couplings,” Neurocomputing, vol. 445, pp. 180-193, 2021.

[24] C.Xu, M. Liao, P. Li, and S. Yuan, “Impact of leakage delay on
bifurcation in fractional-order complex-valued neural net-
works,” Chaos, Solitons & Fractals, vol. 142, Article ID 110535,
2021.

[25] B. Cao and X. Nie, “Event-triggered adaptive neural networks
control for fractional-order nonstrict-feedback nonlinear
systems with unmodeled dynamics and input saturation,”
Neural Networks, vol. 142, pp. 288-302, 2021.

Complexity

[26] C. J. Xu, W. Zhang, C. Aouiti, Z. X. Liu, M. X. Liao, and
P. L. Li, “Further investigation on bifurcation and their
control of fractional-order BAM neural networks involving
four neurons and multiple delays,” Mathematical Methods in
the Applied Sciences, vol. 75. , 2021 in press.

[27] C.Xu, Z. Liu, M. Liao, P. Li, Q. Xiao, and S. Yuan, “Fractional-
order bidirectional associate memory (BAM) neural networks
with multiple delays: the case of Hopf bifurcation,” Mathe-
matics and Computers in Simulation, vol. 182, pp. 471-494,
2021.

[28] T. Kan, Z. Gao, C. Yang, and J. Jian, “Convolutional neural
networks based on fractional-order momentum for parameter
training,” Neurocomputing, vol. 449, pp. 85-99, 2021.

[29] M. Xiao, W. X. Zheng, J. Lin, G. Jiang, L. Zhao, and J. Cao,
“Fractional-order PD control at Hopf bifurcations in delayed
fractional-order small-world networks,” Journal of the
Franklin Institute, vol. 354, no. 17, pp. 7643-7667, 2017.

[30] B.Tao, M. Xiao, Q. Sun, and J. Cao, “Hopf bifurcation analysis
of a delayed fractional-order genetic regulatory network
model,” Neurocomputing, vol. 275, pp. 677-686, 2018.

[31] W. Hu, D. Ding, Y. Zhang, N. Wang, and D. Liang, “Hopf
bifurcation and chaos in a fractional order delayed mem-
ristor-based chaotic circuit system,” Optik, vol. 130,
pp. 189-200, 2017.

[32] 1. Podlubny, Fractional Differential Equations, Academic
Press, New York, NY, USA, 1999.

[33] D. Matignon, “Stability results for fractional differential
equations with applications to control processing,” Compu-
tational Engineering in Systems Applications, vol. 2, pp. 963-
968, 1996.

[34] X. Wang, Z. Wang, and J. Xia, “Stability and bifurcation
control of a delayed fractional-order eco-epidemiological
model with incommensurate orders,” Journal of the Franklin
Institute, vol. 356, no. 15, pp. 8278-8295, 2019.

[35] W. Deng, C. Li, and J. L, “Stability analysis of linear frac-
tional differential system with multiple time delays,” Non-
linear Dynamics, vol. 48, no. 4, pp. 409-416, 2007.



Hindawi

Complexity

Volume 2021, Article ID 9162259, 13 pages
https://doi.org/10.1155/2021/9162259

Research Article

WILEY

Hindawi

Fast Simulation and Chaos Investigation of a DC-DC

Boost Inverter

Rachid Dhifaou' and Houda Brahmi

TUnit of Research (ERCO), INSAT Tunisia, Centre Urbain Nord, B.P. N 676, 1080 Tunis Cedex, Tunisia
2University of Tunis el Manar, Higher Institute of Medicals Technologies of Tunis (ISTMT), Unit of Research ERCO-INSAT,

9 Rue Zouhair Essafi, 1006 Tunis, Tunisia

Correspondence should be addressed to Houda Brahmi; houda.brahmi@istmt.utm.tn

Received 24 May 2021; Accepted 29 July 2021; Published 14 August 2021

Academic Editor: Guillermo Huerta Cuellar

Copyright © 2021 Rachid Dhifaou and Houda Brahmi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Intensive and repetitive simulations are required to study static and dynamic behaviours of systems. Particular phenomena such as
bifurcation and chaos require long simulation times and analysis. To check the existence of bifurcations and chaos in a dynamic
system, a fine-tuning procedure of a bifurcation parameter is to be carried out. This increases considerably the computing time,
and a great amount of patience is needed to obtain adequate results. Because of the high switching frequency of a boost inverter,
the integration process of the dynamic model used to describe it uses an integration step that is in general less than one mi-
crosecond. This makes the integration process time consuming even for a short simulation. Thus, a fast, but accurate, method is
suitable to analyse the dynamic behaviour of the converter. This work contains two topics. First, we develop a like-discrete
integration process that permits precise results in a very fast manner. For one switching period, we compute only two or a
maximum of three breaking points depending on whether we treat a continuous conduction mode (CCM) or a discontinuous
conduction mode (DCM) of the inductor current. Furthermore, with each segment of the dynamic trajectory, an exact analytic
formula is associated. The second goal is to use this result to develop a discrete iterative map formulated as in standard discrete
time series models. The Jacobian matrix of the found iterative map is defined and used to compute Lyapunov exponents to prove
existence of chaos. Performance of the developed study is positively evaluated by using classical simulations and fine-tuning a
bifurcation parameter to detect chaos. This parameter is the desired reference of the inductor current peak. Results show that the
proposed scheme is very fast and accurate. The study can be easily extended to other switching topologies of DC-DC inverters.

1. Introduction

DC-DC boost inverter, also known as a step up inverters, are
largely studied in literature [1-3]. These power electronic
devices transfer electric energy from a DC input voltage
source to an output load that requires a higher voltage. The
efficiency of DC-DC boost inverter is good in general which
makes them largely employed in various applications.
Battery chargers, photovoltaic energy-based systems, and
DC motor drives are typical examples [4,5]. As for all DC-
DC power converter topologies, energy transfer in this
device is achieved by switching the state of a power transistor
at high frequencies. Output voltage or current is varied by
adjusting the control variable, commonly named the duty

cycle. The operating steady-state regime can be done with an
open loop or closed loop configuration, by using the ap-
propriate controller. Important advances are reached in the
field of both voltage control and current control [6-8].

To perform successful and reliable practical control,
numerical simulations are of great importance. Intensive
and repetitive simulations are also needed to study particular
phenomena such as bifurcations [9,10] and chaos [10,11]. It
is shown in the literature that a lot of piecewise dynamic
systems exhibit chaotic behaviour [12,13]. DC-DC con-
verters are nonlinear periodically controlled systems that
operate under practically piecewise dynamic trajectories.
Chaotic regimes are confirmed for various switching power
converters.
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To check the existence of bifurcations and chaos in a
dynamic system, a fine-tuning procedure of a bifurcation
parameter is required. This increases considerably the
computing time, and a great amount of patience is required
to establish adequate results. Because of the high switching
frequency of the PWM technique [14], to solve the model of
a DC-DC boost inverter, an integration step smaller than
one microsecond is required. This makes the integration
process time consuming even for short simulations. Thus, a
fast, but accurate, method is required to analyse the dynamic
behaviour of the converter.

The first goal of this work is to develop a type-like
discrete integration process with precise and fast results. For
one switching period, we compute only two or a maximum
of three breaking points depending on whether we treat a
continuous conduction mode (CCM) or a discontinuous
conduction mode (DCM) of the inductor current [1,2].
Furthermore, with each segment of the dynamic trajectory,
an exact analytic formula is associated.

The second goal of the paper is to use these results in
developing a discrete iterative map formulated as in stan-
dard discrete time series models [15,16]. A Jacobian matrix
as found with an iterative map is defined and used to
compute Lyapunov exponents [12,13] via the QR factor-
isation technique.

In switching inverter topologies, a current peak control
(CPQ) is frequently used [3] to impose an adequate operating
point. In such case, the feedback control block is composed of
a saw tooth generator, a comparator, and a latch. A drive
circuit uses latch output to generate the gating pulses. The
switch is turned on at the beginning of each switching period
and turned oft if the inductor current becomes greater than a
reference value and remains in the off state until the beginning
of the next cycle. Simulations of this control system are
frequently done in Matlab/Simulink environment. In this
paper, we will demonstrate that there is no need for this
control block. Only a simple relation is needed to compute
transient duty cycle. Furthermore, the program is realised in
terms of a simple and fast Matlab m-file.

According to these goals, the paper is organised as
follows. Section 2 develops fundamentals of the inverter. It
includes the equivalent electrical circuit modelling the
DC-DC boost inverter, commutation equations, properties
of DCM and CCM regimes, and dynamical submodels as-
sociated with ON and OFF states. Section 3 develops exact
and analytical relations of dynamic variables for both ON
and OFF states. This section proposes, in particular, a simple
correction of the time interval associated with DCM regime.
Section 4 deals with fundamental steady-state equations. For
both DCM regime and CCM regime, mean values of in-
ductor current and output voltage are detailed and
expressed. Effect of inductor inductance, output load re-
sistance, and switching period on the boundary between
DCM and CCM is graphically explained. Section 5 presents
the main steps of the dynamic simulation algorithm and
discusses how to implement the current peak control. In
Section 6, we develop the procedure of obtaining a discrete
map model and discuss how to conduct the computation of
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Lyapunov exponents. Finally, Section 7 presents various
simulation cases. Results obtained in open-loop and closed-
loop control are presented and commented. The discussion
is particularly focused on tuning the bifurcation parameter
and analysing chaos. Computing time is also considered in
the scheme evaluation.

2. Fundamentals of a DC-DC boost inverter

Figure 1 shows an equivalent circuit diagram of a boost DC-
DC inverter supplying a pure resistive loadR,. ParametersE,
L, and C denote, respectively, the input voltage source, the
inductance of the inductor, and the output filtering ca-
pacitor. In this work, we consider the most widely used
model [2, 8] characterised by ideal components. This means
that the power transistor is an ideal switch; the inductor,
filtering capacitor, and diode are lossless. In the conduction
mode, the voltage across the diode is zero. The power
transistor works as short circuit or as an open circuit
depending on whenever the signal command u(t) equals 1
or0. Along switching time, boost inverter equivalent circuit
shown by Figure 1 takes two forms as shown by Figures 2(a)
and Figure 2(b) [14]. During the ON state, the transistor
behaves like a short and no current flows through the diode.
Therefore, the inductor becomes in fact disconnected from
the parallel part (R, —C) and the positive voltage of the
capacitor biases the diode. The current flowing through the
inductor increases; as a result, the electromagnetic energy in
the inductance L increases. At the same time, the filtering
capacitor discharges into the load resistance R,, and
therefore the voltage across the capacitor decreases. During
the OFF state, the power transistor behaves like an open
circuit, and the diode is conducting. Therefore, the input
voltage supplies directly to the load. The voltage across the
capacitor increases and the current through the inductor
decreases because the electromagnetic energy is transformed
into electrostatic energy.

Command u(t) is a PWM signal characterised by a
switching period T and a duty cyclea. In the following, this
period will be divided into three time intervals ¢y, t,, and #3 as
indicated by equations (1) and (2). The first interval cor-
responds to the ON state given by (u(t) = 1). The second
and third intervals are associated with the OFF state cor-
responding to (u(t) =0). In these equations, coeflicients
(a, B,y) correspond, respectively, to ratios of (t,,t,,t;) with
respect to the switching periodT. Coeflicient ais known by
duty cycle. Coefficient f3 is the complement of « in the case of
continuous conduction mode (CCM). Coefficient y is the
complement of (a + f) in the case of discontinuous con-
duction mode (DCM).

t, =aoT,
t2 = ,BT) (1)
ty =yT,

L+t +t; =T,

a+f+y=1 @
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FIGURE 1: Boost inverter equivalent circuit.

This organisation aims to take into account continuous
conduction mode (CCM) and discontinuous conduction mode
(DCM) of inductor current. As previously indicated, inductor
current i,(t) increases during the ON state and decreases
during the OFF state. Let us consider that the switching period
T begins with an inductor current I,, and a capacitor voltage
V o> and just when the OFF state takes place, these variables are,
respectively, I,jand V. If i,(¢) in the OFF state remains
positive until the end of the period, we have the CCM case and
(t; = 0); therefore, (t, = fT = (1 - a)T). At the end of the
period T, the current through the inductor and voltage across
the capacitor are denoted I,, and V, respectively. If
ip (t)reaches zero before the period finishes, we have the DCM
case, (t;>0) and(t, = BT < (1 — a)T). In this case, the current
through the inductor remains null during ¢; because the diode
is biased. However, the voltage across the capacitor decreases
exponentially from the value V to a third value V.
Figures 3(a) and 3(b) sketch this scenario in terms of inductor
current i, (¢) and capacitor voltage v, (t). These figures cor-
respond to the transient regime and report the possible
breaking points for a DCM case. For both DCM and CCM
regimes, we establish the following commutation equation:

v,=E—-(1-uv,

¢ o ( 3)

=V,
Thus, without any particular difficulty, the following

dynamic model is derived:

di, E-(1-u)v,
dr L

>

(4)
dv, _ (1 -u)Ryip — v,

dt R,C

Depending on whether we are dealing with an ON state
or an OFF state, we have to treat two different models. In the
ON state, the model becomes equivalent to two independent
submodels as given by systems (5) and (6). In the OFF state,
we have the model given by systems (7) and (8).

di, E

{a T ©
dv v

—C = — ¢ > 6
{dt R,C (6)

3
UO
di, E-v
—_t = = 7
R 2
dv.  Ryi,—v,
{E " RC ®

For the OFF state case, isolating v.from (7) and estab-
lishing its time derivative yields

v, =E- L%, 9)
dv, d’i

Thus, for the OFF state case, equations (9) and (10),
combined with equation (8), result in

&ip 1 dip iy 1

= =0, (11)

T, dt T, T,
7. = R,C,
L
T, =—,
TR, (12)
E
I, = R_o

The second-order linear ODE (11) furnishes the fol-
lowing characteristic polynomial:

2 N 1
sSS+—+—=0. (13)
T TeTc
With the condition (L <4R2C), this polynomial admits
two complex conjugate poles which means that we have a
damped oscillating system. The time constant (7) and the
pulsation (w) are expressed by

s=—% jw
7

T= ZTC = ZROC, (14)
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FIGURE 3: (a) Illustrative evolution of inductor current. (b) Illustrative evolution of capacitor voltage.

3. Temporal Solution of the
Mathematical Model

3.1. Analytical Solution of ON State Case. Here, we have to
solve a simple dynamic system ((5) and (6)) which is
completely decoupled into two independent subsystems. The
inductor current and capacitor voltage of the boost inverter
are of the form

. E
le(t) = I€O +zt,
(15)

v.(t) = Vcoe_(t/TC).

This solution is verified by the construction of (i,(0) =
I,) and (v, (0) =V ). I, and V; of i, (¢) and v (t) at (t, =
aT) are expressed by

EaT

I,, =i,(t;)=1 —_—
o =ip(t) = I+ i3

>

(16)
Vcl =Y (tl) = VCOei(aT/TC)'

3.2. Analytical Solution of OFF State Case. Solution i, (t) of
(11) is naturally composed of two terms. The first term is the
particular solution corresponding to the case where i, (t)is
constant. The second one is the homogeneous solution
which is a sinusoidal damped variable. Thus, we get

ip(t) = I,, +[n, sin (6) + 1, cos (B)]e "7, (17)

0 = wt. (18)
For (t = 0), we have (i,(0) = I,;) which implies
My = Iy = I (19)

To identify parameter #,, we obtain the derivative with
respect to time of equation (17) and make it equal to
equation (7). Therefore, we obtain

di ml.. _ E-v,
S o im0 o[- o7 - %

(20)
By applying this expression at (¢ = 0), one deduces
I€1 - Ier + E - Vcl'

21
T Lw (21)

m=
The behaviour of the voltage across the capacitor is

derived from equation (20). This results in

v, (t) = E +[n;sin () + ny cos ()], (22)

M
%=whﬁ—+

P ]
=Lw|—=-7n,]|.
un w[a)r m

To compute values I, of i, (t) and V, of v, () at t,, let us
first assume that we are in the CCM regime by setting (y =
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0) and(B = (1 -«)) or equivalently by setting (t;=0)
and(t, = (1 — «)T). The following equations are obtained.
Note that all coefficients (7,75, %4 fj5)are functions

of (8 = wfT).
Iy =1, + 151, sin (8) + 1, cos (8)], (24)
Vo = E+15[15sin(8) + 17, cos (8)], (25)
ns = e—(é‘/wr)’
0 = wfT, (26)
Bf=(1-a).

If I,, computed by equation (24) is positive, the as-
sumption of CCM holds and the computed values of I,, and
V., are valid. If I,, is negative, this means that the as-
sumption is false and we are in DCM case. Consequently,
coefficient f is less than (1 — &) and must be equal to the
solution satisfying

Iy, =1,, +15(8) 1, (8)sin(8) + 1, cos ()] = 0. (27)

This relation is nonlinear in terms of  and needs to be
solved iteratively by the Newton-Raphson method. To ovoid
additional computing time, we propose to compute 5 by
linearizing i, (t) around (t = 0) and setting the result to zero.
This approach is based on the fact that the damping time
constant (7) is big enough when compared with the
switching period, which is true in the real world. So, applying
a first-order Taylor expansion to equation (20) yields

. dig
ip(t) =1y + Eh:o’

(28)
t=1 [V“ - E]t
=1p L .
Thus, we obtain
3 LI,
ﬂ - (Vcl - E)T (29)

The voltage of the capacitor V, at (¢, =pT) is
recomputed by using equation (25) that continues to be valid
with the new value of (8 < (1 — «)). During the remaining
time interval (¢t € [(a + B)TT]), the inductor current is kept
null; (i,(t) = I,, = 0). However, the voltage across the ca-
pacitor decreases exponentially from the value V, to a third
valueV 5. At the end of the switching period, this voltage
takes the value of

VC3 = VcZe_(YT/T)’
p=1-a-p.

Note finally that according to Figures 3(a) and 3(b), the
mean values of the current through the inductor and the
voltage of the capacitor are calculated at each switching
period by the following equations. In the case of CCM, the
third term in equation (31) must be removed because pis null
in this situation.

(30)

5

I€=“(Ieo+1e1)+/5(1e1 +Iez)’ (31)
2

Vc — (X(VCO + Vcl) + ﬁ(vcl;' VCZ) + y(VCZ + Vc3). (32)

4. Fundamental Steady-State Equations

As previously outlined, there are two possible modes for the
boost converter: CCM and DCM. In CCM, the inductor
current flows continuously above zero during the totality of
the switching period. The output voltage can be described by
a relatively simple expression making control reliable via the
duty cyclea. In addition, the inductor voltage waveform is
almost a constant signal that results in an inductor current
ripple close to a triangular signal. In the DCM, the inductor
current reaches zero before the end of the switching period.
The output voltage is described by a high nonlinear equation
in terms of the duty cycle making it difficult to control.
Figures 4(a) and 4(b) sketch general shapes of the inductor
and diode current in the case of DCM regime.

To evaluate the input current and the output voltage in
steady operating conditions, we use the small ripple ap-
proximation hypothesis that permits to replace instanta-
neous variables in minor time intervals by their mean values.
Figures 5(a) and 5(b) report waveforms of inductor voltage
v, (t) and capacitor current i, (t) during one switching pe-
riod. During the three possible time intervals forming the
switching period as defined by Figures 3(a) and 3(b), from
Figures 5(a) and 5(b), we establish

%
tet,=al: Ve=E:1c=—R—°=—IO,

[

tet,=pT:V,=E-V,I =1,-1, (33)

tet,=yT:V,=0,I, =-I

o*

By applying the principle of charge-discharge balance of
inductor electromagnetic energy and capacitor electrostatic
energy, mean values V,and I, of v, (t) and i, () must be zero.
So, we deduce

aE+B(E-V,) =0,
—(1 _/3)10 +ﬁ(I€ _Io) =0.

Solving these equations for unknown V, andIl,, we
generate the steady-state solution:

_ (a+B)E
o ﬁ >
f,=lo_ (@t Pl (36)

B B

Also, note that equations (35) and (36) established above
for steady state of CCM case can be found from models (5)
and (6) if we substitute variable (1 —u) by its mean value

(34)

\% (35)
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FIGURE 5: (a) Simplified waveform of inductor voltage. (b) Simplified waveform of capacitor current.

Pand we set time derivatives to zero as in classical contin-
uous dynamic systems.

4.1. Continuous Conduction Mode. In the CCM case, we
have (= (1-a)), and consequently equations (35) and
(36) become

(37)

er (38)

I,=—e
- w

With this assumption, the peak-to-peak ripple of the
inductor current and capacitor voltage is approximated by
the following equations:

EaT
Aip=—, 39
g =—7 (39)
I, oT
Avp=—— 40
Tt —a) (40)

4.2. Discontinuous Conduction Mode. In the DCM case, the
initial inductor current I, is zero and peak current I, is
such that

EaT

I,, =——. 41
a="7 (41)

The inductor peak current I,; and diode average current
I, are defined by

IdZIOZ&:ﬁEaT, (42)
2 2L
This allows us to deduce
KV,
h= aFE
(43)
2L
" R,T
Substituting f into equation (35) results in
KV, (V, - E) = (aE)’ = 0. (44)

Solving equation (44) in terms of V, allows us to define
the output voltage and input current:

E 40°
V. =—|1+\[1+—|, 45
0 2[ | K] (4
Ed* + KV
Iezg (46)
R,K

Just when the steady-state operating point passes from the
CCM to the DCM regime, i.e., just at the boundary separating
these regimes, the voltage solution given by equation (45)
becomes greater than that of equation (35). That is:
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2
1+ \{1+4i> 2 . (47)
K 1-«a

Arranging this, one concludes that DCM is characterised
by the following inequality:

f(a)=a(l-a)’>K. (48)

Function f (&) of inequality (48) passes by a maximum
point defined by (f,,.x = 4/27) for (a = 1/3) as illustrated by
Figure 6. If (K> f,,..), the inductor current is continuous
over the complete range of the switching period and rela-
tions (37) and (38) hold for (a« € [0 1]).If (K< f.,), the
inductor current has a discontinuous mode in the interval
(e €[a, a;]) and a continuous mode in the remaining
intervals (@€ [0 a;]) and (a€[a, 1]). Parameters
a,and «, are the solutions of equation( f () = K). In the
central region where we have DCM, the output voltage and
input current are given by equations (45) and (46).

5. Dynamic Simulation Algorithm and Control

Now that all necessary relations to realise the dynamic
simulation of the boost converter are available, it is of
importance to note that an integration step that corresponds
to a one switching period is needed. We will first present
how the integration process works. Second, we will discuss
the possibility of implementation of the classical switching
controller.

5.1. Dynamic Simulation Algorithm. The dynamic simula-
tion algorithm is simple. It is based on the following main
steps:

(i) Set the initial inductor current and capacitor voltage
(i,=1,=0) and (v,=V_, =0) and save these
values as a first point.

(ii) Compute (I,,V ;) and save this point.

(iii) Compute (I,,,V,) using (f=1-«a). If (I,,>0),
save this point and go to step (iv); otherwise, go to
step (v).

(iv) Reinitialise with (I, = I,) and (V =V ) and go
to step (ii).

(v) Recompute § and V, as previously explained and
save the new point (0,V,). Then, compute V ,, set
(I,5 = 0), and save this point.

(vi) Reinitialise with (I, = 0)and (V, = V3) and go to
step (ii).

It is obvious that for one period, we have to save two or

three points depending on whether we are in the CCM or
DCM case. Furthermore, if we zoom in a plotted curve il-

lustrating the result, we find a linear piecewise trajectory.
The reason is evident.

5.2. Dynamic Control. Various interesting works in the
field of control design of DC-DC boost inverter, such as

7
f@)
--------------------------------- 4/27
cem peM ee
: K =2L/TR
- > -
: S ? 1«
® ® L o—
% %)

FiGure 6: DCM-CCM boost inverter curve.

classical control [8], sliding mode control [17], fuzzy
control [18], and so on, can be found in the literature.
Widely used approaches develop a second-order con-
troller based on transfer functions for small signals. Here,
the main goal is to implement the classical switching
controller, which is by nature a current peak controller
(CPC). The feedback control block is composed of a saw
tooth generator, a comparator, and a latch. The output of
the latch is used by the drive circuit that generates the
gating pulses. The switch is turned on at the beginning of
each switching period and turned off if the inductor
current becomes greater than a programmed reference
value I, and remains in the OFF state until the beginning
of the next cycle. During simulation, this is equivalent to
computing the PWM duty cycle « from the initial current
I,, and reference current I, . Thus, at the beginning of the
period, duty cycle « is computed by equation (49) which is
equivalent to equation (41) where I, is set equal to I .
The simulation algorithm previously presented remains
practically the same.

(et = Ip)L
_ et = Loo) & 49
« TE ' (49)

6. Discrete Map and Lyapunov Exponents of
DC-DC boost inverter

In this section of the paper, the load resistance is chosen to
ensure that the circuit operates theoretically in the con-
tinuous mode. The sequence of the braking points computed
for a set of some consecutive switching periods is used to
define a discrete iterative map process. The obtained time
series added to the Jacobian matrix of the map permits the
computation of Lyapunov exponents. If the largest Lyapu-
nov exponent (LLE) is positive, the system enters in a chaotic
behaviour. Points corresponding to the minimum peak
current form the selected discrete time series. In this sense,
let us indicate two successive switching periods by (k, k + 1)
and denote the couple (I,,I,,) of inductor current and the
corresponding couple (V, V) of voltage capacitor as
follows:
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Loy = Xps
Iy = Xpi1s (50)
Vc() = Vi
Ve = Vi

In this way, equation (50) of the duty cycle and equations
(21), (23), and (26) of coefticients (#;, 75,14, 15) are refor-
mulated as functions of the discrete iterative variables.

§=0(x) = T - wa (Tre = Xk)>

Mo = 1o (xk) _ e—(Z(wT—(?(xk))/wr))
E—ny(x
My =1 (% i) = %+%
(51)
X
M5 = 115 (%1 ) = Lw[nz +W]
Ma = M4 (i i) = Lw[ﬂ— n (xk,yk)],
4= My wr
M5 =15 (x;) = e (O(w)er),
This leads to the iterative process defined by
L
8(x¢) = T == (I = 1), (52)
fx (xk’ yk) = Ier 15 ('xk) [rll (xk’ yk)Sin (6 (xk)) (53)
+ 11, cos (8 (x))),
Iy (X yi) = E + 115 (xi) [115 (x4 y)sin (8 (x1.))
+’14(xk’yk)cos(8(xk))]’ (54)

Xks1 = fx (xk’ yk)’
Vi1 = fy (%> Vi)-

Let J(x, y) denote the Jacobian matrix associated with
the system above. The computation of this matrix at each
iteration furnishes the possibility to compute Lyapunov
exponents A via the QR factorisation method. This is the
most suitable method to compute these exponents for a time
series process with known Jacobian. At each iteration k, the
Lyapunov exponents are computed as follows:

A(k) = ¥ Log(IDiag (R)). (55)
k

In this relation, Diag (R) denotes the diagonal of matrix
R computed in Matlab environment by the following syntax.
In this process, matrix Q is initialised by the identity matrix.
Note also that because J(x,y) is space consuming, the
development of its elements is reported in the Appendix.

[Q Rlyr = qr (1 Q). (56)

Complexity

Kaplan-Yorke dimension [19] is a powerful tool that
describes the complexity of chaotic attractors. This di-
mension is also known by the Kaplan-Yorke conjecture.
First, Lyapunov exponents are arranged in decreasing order
(A;>A,>---1,), and index j corresponding to inequality
(57) is determined. Then, the conjecture is that the di-
mension of the attractor is given by (53). For the studied
case, equation (58) is equivalent to equation (59).

(57)
j+1
Z)Lj <0,
i=1
1 J
Dy, =j+i— 2 A (58)
|’1j+1 i=1
A
Dy, =1+ l)‘_;i (59)

Reference peak current I, will be considered a bifur-
cation parameter. By varying I, we will observe how the
circuit changes its behaviour from a stable system to a
chaotic system via the period-doubling mechanism.

7. Results and Comments

The boost inverter parameters used to illustrate this study are
reported in Table 1. Results are carried out in Matlab en-
vironment. Necessary software is written in a m-file code.
For all simulations, the initial inductor current and capacitor
voltage are set to zero.

According to these parameters, the frequency and time
constant characterising dynamic inverter behaviour in the
OFF state are (f =1.415kHz) and (7 =480us), respec-
tively. This time constant is 4.8 times greater than the
switching period. Equation (48) implies that the DCM
boundary coeflicient is (K = 1>4/27). That is, the inverter
works in CCM for full range of the duty cycle because the
used rated resistance load is less than the critical load re-
sistance whose value is (R, = 135Q). To simulate a DCM
case, we use (R,=200Q). In this case, we have
(K =0.1<4/27) that results in a DCM in the range
(a € [0.1330 0.5874]).

7.1. Simulation No. 1. Two simulation tests are carried out.
The first test corresponds to (a = 0.5) and (R, =20Q). A
CCM regime is expected. Using equation (38), we found
(I, = 1.967 A). The second simulation is realised with (a =
0.3) and (R, =200Q)) and a DCM regime is expected.
Using equation (46), we found (I, = 0.1237 A). Figures 7(a)
and 7(b) show steady-state evolution of inductor current
for these tests, respectively, and confirm the predicted
I values.
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TaBLE 1: System parameters.
Parameter Notation Value
Rated input voltage E 10V
Rated resistance of the load R, 200
Rated switching period T 100 us
Inductor inductance L 1000 uH
Filtering capacitor C 12 uF
03

Inductor Current [A]

0,3997 0,4
Time [S]

()

1.6
0,3994

0.25}

0.2

0.15 }

0.1}

Inductor Current [A]

0.05

0.3997 0.4
Time [S]

(b)

FIGURE 7: (a) CCM steady state of inductor current in open-loop case. (b) DCM steady state of inductor current in open-loop case.

Inductor Current [A]

0.0988

Time [s]

(a)

0.0994 0.0996 0.1

2.5

Inductor Current [A]

0,0635
Time [s]

(b)

1.5
0,0625 0,0645 0.0650

FI1GURrE 8: (a) CCM chaotic steady state of inductor current in closed-loop test with (I.; = 2 A). (b) CCM chaotic steady state of inductor

current in closed-loop test with (I, =3 A).

7.2. Simulation No. 2. We consider a load resistance
(R, =20Q), and we simulate two tests of inductor current
peak: (I,.;; =2A) and (I, = 3 A). Figures 8(a) and 8(b)
show steady-state evolution of inductor current for these two
tests, respectively. I,, and V, of inductor current and ca-
pacitor voltage at the end of the switching period are saved.
Figures 9(a) and 9(b) show phase portraits of I,, and V, in
dot plot form. Figures 10(a) and 10(b) show the dot plot of
(Ip, = f(@)) and (V, = f(«)), respectively. All these fig-
ures show without ambiguity the existence of chaos phe-
nomenon in boost DC-DC dynamics when controlled in
CPC type. To show areas with period doubling and those of

intermittence, a fine variation of bifurcation parameter is
required.

7.3. Simulation No. 3. The load resistance (R, =20Q) is
used. We tune the bifurcation parameter I, with a small
variation in the range of 1 A to 5 A. For each value of I ¢, we
discard the transient part of the trajectory and save the
remaining steady-state part. At the end, all results are plotted
in dot plot form. Lyapunov exponents are calculated at the
same time of dynamic trajectories. Figures 11(a) and 11(b)
show bifurcation diagrams of inductor current and capacitor
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voltage, respectively. We observe the phenomenon of period
doubling and then the entrance of the system in a chaotic
behaviour. Figures 12(a) and 12(b) furnish more details on
this behaviour. It is observed that period doubling begins
with (I = 1.69 A). Then, at(I,; = 2.37 A), (I, = 2.63A),
and (I, = 2.7 A), the system enters in 47, 8T, and 16T type
orbits, respectively. Two intermittence [20] areas are ob-
served around (I, = 4.1 A) and (I, = 4.9 A). Figures 13(a)
and 13(b) show Lyapunov exponents and Kaplan-Yorke
dimension evolution versus the bifurcation parameter. As
the system is of dimension 2, we generate two Lyapunov
exponents. It is found that one (LLE) becomes positive for a
bifurcation parameter (I.;>2.8A). This indicates the be-
ginning of a chaotic region. The second exponent is negative.
The largest exponent is red colored while the other is blue
colored. Note that LLE detects intermittence areas.
Kaplan-Yorke dimension evolution is similar to LLE be-
cause LLE here is dominant. In the chaotic region, this
dimension increases but remains inferior to 2, the physical
dimension of the system.

8. Conclusion

We have developed in this paper a study on DC-DC boost
inverter based on two levels. The first level of the paper
develops a like-discrete integration process based on de-
termination of precise analytical relations of breaking points
characterising the switching behaviour of DC-DC boost
inverter. The presented scheme gives good results in a very
fast manner because for one switching period, we compute
only two three breaking points depending on whether we
have a continuous conduction mode (CCM) or a discon-
tinuous conduction mode (DCM) of the inductor current.
Performance of the developed analytical solution is thus
successfully proved. The second level of the paper develops a
discrete iterative map as in standard discrete time series
models. Jacobian matrix of the found iterative map is defined
and used to compute Lyapunov exponents. These exponents
confirm the existence of chaos in the system behaviour when
varying the reference value of the controlled inductor
current. This level of the study is limited to CCM regime. On
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the other hand, it is obvious that established iterative map

can be easily extended to other inverter topologies such as OF
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In this paper, the dynamical behaviors and chaos control of a fractional-order financial system are discussed. The lowest fractional
order found from which the system generates chaos is 2.49 for the commensurate order case and 2.13 for the incommensurate
order case. Also, period-doubling route to chaos was found in this system. The results of this study were validated by the existence
of a positive Lyapunov exponent. Besides, in order to control chaos in this fractional-order financial system with uncertain
dynamics, a sliding mode controller is derived. The proposed controller stabilizes the commensurate and incommensurate

fractional-order systems. Numerical simulations are carried out to verify the analytical results.

1. Introduction

Investigating chaos in dynamical systems is one of the
most interesting topics which has been carried out ex-
tensively in different scientific fields such as medicine [1],
biology [2], mathematics [3], and many others. In the
literature, several dynamical systems presenting chaotic
behaviors have been proposed such as the Lorenz system
[4], the Chen system [5], the Li system [6], and the
Newton-Leipnik system [7]. During the last decades,
many researchers have taken a great interest in the subject
of chaotic systems’ control. In [8], the authors used the
sliding mode controller to eliminate chaos in a new un-
certain chaotic dynamical system (Liu system). In [9], a
robust adaptive sliding mode controller is used to remove
chaos in a novel class of chaotic systems. Chaos control in
the Lorenz, Chen, and L systems using the backstepping
technique is performed in [10]. Chaos control in the

Newton-Leipnik system is carried out using linear
feedback controllers in [11].

Fractional calculus involving fractional order deriva-
tives, i.e., derivatives of noninteger order, has a history of
over 300 years [12]. During those years, this theory was
considered a purely mathematical concept. Recently, frac-
tional order derivatives have been widely applied to several
systems in many areas of research to better understand these
systems [13-19]. Indeed, fractional order derivatives, pos-
sessing memory, can describe more accurately different
nonlinear phenomena than integer order derivatives
[20, 21]. Very recently, some interesting developments and
results in the theory and applications of fractional calculus
have been obtained in the literature. For example, see [22], in
which authors used Lie symmetry analysis to obtain an exact
solution of the conformable heat equation. In [23], useful
properties of the Lie group method with the invariance
subspace method are combined to obtain a large family of
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exact solutions for the fractional Black-Scholes equation.
Also, in [24], the necessary optimality conditions of
Euler-Lagrange type of variational problems in which
variational functional depends on the Atangana-Baleanu
derivative are proved. Finally, the Hydon method to de-
termine discrete symmetries for a differential equation is
employed to construct discrete symmetries for a family of
ordinary, partial, and fractional differential equations in
[25]. In fractional order systems, it was found that the
systems with derivation orders q;,q,, and q; generate
chaotic behaviors when g = q; + g, + q; <3 [13-19]; in other
words, chaos continues to exist in these systems for deri-
vation orders less than 3.

Since the discovery by Strotz et al. [26] of chaos in an
economical model, various financial and economical models
have been proposed in the literature to better understand
this complex dynamic of these systems. Among others, we
have the forced Van der Pol model [27], the IS-LM model
(Investment Saving-Liquidity Money) [28], the new
hyperchaotic finance model [29], and many others [30-33].
In 2001, Ma and Chen [34] proposed a very interesting
model to represent the dynamics of financial systems. The
analysis of this model revealed interesting dynamics and also
an extreme sensitivity to the initial conditions of the vari-
ables and parameters of the system. Financial variables such
as the exchange rate, gross domestic product, interest rate,
and production, to name a few, have a long memory [35, 36],
i.e, all future fluctuations of these financial variables are
influenced by past and present fluctuations. Thus, fractional
order derivatives, possessing memory effect, can describe
more accurately the dynamics of financial systems than
integer order derivatives. In 2008, Chen [14] studied the
generalization of the Ma and Chen system [34], i.e., con-
sidered this system with fractional order. Two routes to
chaos were found in this fractional order system, namely, the
route to chaos via intermittency and period doubling. The
lowest derivation order found for which the system gen-
erates chaotic behavior was 2.55 in the commensurate
fractional-order case and 2.35 in the incommensurate
fractional-order case.

Also, to better understand the dynamics of financial
systems, a new model was presented by Liao et al. [37] in
2020. Compared to the model proposed by Ma and Chen
[34], this new model takes into account the fact that the
price index is affected by investment demand. The study of
this model was carried out numerically by the authors. It
was found that the interaction between three factors in this
financial system results in a complex behavior of the sys-
tem. Complex dynamics behaviors such as period doubling
and chaos were found in this system [37]. Chaotic behavior
is undesirable in financial systems because it makes pre-
dictions in finance and economics impossible and, there-
fore, constitutes a risk for investments. Then, its control in
the presence of uncertainties related to the parameters of
the system and external disturbances turned out to be
necessary.

Chaos control in financial systems has been widely
studied in the literature. Several techniques have been
designed for the control of financial chaotic systems [38, 39].
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One of these techniques is the sliding mode control. Indeed,
as a mathematical model cannot represent a physical situ-
ation perfectly, it is necessary to consider the uncertainties
linked to the values of the system parameters and also any
external disturbances to which a model may be subjected.
Therefore, it is better to design a robust controller, i.e.,
insensitive to uncertainties and external disturbances. The
sliding mode control is a powerful technique to robustly
control uncertain dynamical systems subject to uncertainties
and external disturbances [40-42]. The design of the sliding
mode controller has been widely discussed in the literature
[43-46]. These different criteria make the sliding mode
control the right technique for controlling financial systems
with uncertain dynamics. For example, in [38], a fractional-
order sliding mode controller was designed to eliminate the
chaotic behavior in an economical system in the presence of
model uncertainties and external disturbances.

Motivated by the above discussions, in this paper, chaos
in the financial system presented by Liao et al. [37] with
fractional order and robust control of this chaotic behavior
are investigated. The study of chaos in this system with
fractional order is carried out for the commensurate and the
incommensurate fractional order to find the minimum ef-
fective dimension, i.e., the lowest sum of derivation orders
from which chaos arise in the system using analytical
methods and numerical simulations. Finally, a sliding mode
control law is designed to control the chaos in this fractional-
order financial system with or without uncertainties and
external disturbances. Numerical simulations are carried out
to show that the controller can suppress chaos in the system
and also can stabilize and maintain the system states on the
sliding surface.

The remaining part of this paper is structured as follows.
In Section 2, some definitions and analytical condition for
the existence of chaos in fractional order systems are given.
The fractional-order financial system is presented in Section
3. The dynamics study of this fractional-order financial
system is carried out in Section 4. In Section 5, a simple but
robust fractional-order sliding mode controller is designed
to globally and asymptotically stabilize the system. Nu-
merical simulations are performed in Section 6 to verify the
analytical results obtained. This work ends with a conclusion
in Section 7.

2. Definitions and Lemma

Fractional calculus is a generalization of ordinary calculus.
Some definitions of fractional derivatives are given in [12].
The most commonly used definitions in the literature are the
Grunwald-Letnikov, the Riemann-Liouville, and the
Caputo definitions [12].

During this work, we will only use the Caputo frac-
tional derivative because unlike the Riemann-Liouville
definition of the fractional derivative which involves
initial conditions of the fractional order, this fractional
derivative involves initial conditions which take the same
form as the case of the integer order, which has a physical
interpretation. The Caputo (C) fractional derivative of
order q is given by
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t
G DIf (1) :ﬁ L t-0" T fP(n)dr, n-1<q<n,
(1)

with a and t which are numbers representing the limits of the
operator D]. The symbol I'(-) is the gamma function.

Definition 1 (see [47-49]). A saddle equilibrium point is a
fixed point at which the equivalent linearized model has at
least one eigenvalue in the stable region (eigenvalue with the
negative real part) and one in the unstable region (eigenvalue
with the positive real part).

Definition 2 (see [47-50]). In a three-dimensional (3D)
dynamical system, a saddle fixed point is called a saddle
equilibrium point of index 1 if one of its eigenvalues is
unstable (positive) and the other two are stable (negative),
whereas a saddle fixed point is called a saddle equilibrium
point of index 2 if two of its eigenvalues are unstable and the
other is stable.

To analyze the stability of a fractional-order system fixed
points, the following lemma can be used [47, 48, 51].

Lemma 1 (see [47]). For an incommensurate fractional-
order system, i.e., a fractional order system in which deri-
vation orders are not the same, an equilibrium point E* of the
system is asymptotically stable if the following condition

larg (V)| >ﬁ, (2)

is satisfied for all roots A of the following equation:
det (A (1)) = det(diag( [A"®, A%, AMu]) - T) =0,
(3)

in which ] is the Jacobian matrix of the system evaluated at
the equilibrium point E* and M represents the Least Common
Multiple (LCM) of the denominators u;’s of q;’s where q; =
(vi/u;),v;andu; € Z+, fori =1,2,...,n.

Condition (2) can be rewritten as follows:

iin{|arg ()L,)l} <0. (4)

2M

So, an equilibrium point E will be asymptotically stable if
its roots A; satisfy condition (4).

The term (7/2M) — min,{larg(1;)|} is called the Insta-
bility Measure for equilibrium points in Fractional Order
Systems (IMFOS). This measure is a necessary [47], but not a
sufficient condition for the presence of chaos in a fractional
order system [52-54].

3. The Chaotic Financial System with
Fractional Order

Recently, as reported in the literature [37], the financial
model takes into account the interaction between the in-
terest rate x, the investment demand y, and the price index
z. The system is described as follows:

3
’Ccll—f:dz+(y—€)x,
.Cc‘l_fz_kyz_z,cum, (5)
A%:—yz—&x—py,

in which the parameters e, k,y,m, 1, p, and § are constants.
The authors numerically investigated the chaotic behaviors
in this system. In [37], system (5) exhibits chaotic behavior
when e=03k=002y=1m=11=0.1, p =0.05,
d =1.2,8 = 1, and initial conditions (1.2,1.5,1.6) are con-
sidered (see Figure 1).

In this paper, we consider system (5) with the fractional
order. Standard derivatives are replaced by fractional order
derivatives as follows:

Dlx=dz+ (y—e)x,
D%y = —ky* - Ix* + m, (6)
D%z = —yz - 8x - py,

where g; € (0,1) and D% = (d?/dt%)(i = 1,2, and 3). If
q, = q; = g5 = q, then system (6) is called a commensurate
fractional-order system; otherwise, it is called an incom-
mensurate order system [47].

The Jacobian matrix of system (6) evaluated at one of its
equilibrium points E* = (x*, y*,z*) is given by

y'-e x* d
J=| -2Ix" -2ky" 0 | (7)
-6 -p -y

When the values of the system parameters are chosen as
above, the equilibrium points of system (6) can be calcu-
lated by solving the equations D7ix =0,D%y =0, and
D%z = 0. The system has four equilibrium points which are
given by

E, = (0.049498497,-7.070201517,0.304011579),

E, = (0.076160842,7.069016737,-0.429611679),

E; = (3.087391472,1.529728564, —3.163877901),

E, = (-3.093050811, 1.471456216, 3.019478000).

(8)

The corresponding eigenvalues and their nature are
given in Table 1.

Taking into account Definition 2 and from Table 1, it can
be seen that fixed points E; and E, are saddle equilibrium
points of index 1 and the others are saddle equilibrium
points of index 2.

Using the Adams-Bashforth-Moulton predictor-
corrector method proposed by Diethelm et al. [55], the
numerical solution of system (6) can be written as
follows:



Complexity

y (1)

z (1)

-10 -5 0 5 10
x (1)
(a)
10 T T T
51
S 0 S
® BS
-5
_ 10 Il X Il Il _2 Il Il Il
500 600 700 800 900 500 600 700 800 900
Time (sec.) Time (sec.)
(©) (d)

FIGURE 1: Phase diagrams and time series of system (5). (a) Projected onto the x — y phase plane. (b) Projected onto the x — z phase plane.
(c) Time series of x. (d) Time series of y.
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TaBLE 1: Equilibrium points, corresponding eigenvalues, and their nature.

Equilibrium points Eigenvalues Nature

E, A =-7.1758,4, = —=1.1944,1; = 0.2828 Saddle equilibrium point
E, A =6.6418,1, = —0.8428,1; = —0.2828 Saddle equilibrium point
E; Ay =-0.7378,4, 5 = 0.4532 + 1.5251i Saddle equilibrium point
E, Ay =-0.7548,1, 5 = 0.4337 + 1.5487i Saddle equilibrium point

n

n

r (QZ) =0

1
z,

Xijjns1l =
1)

h‘li

4. Dynamics Analysis of the Financial
System with Fractional Order

In this section, the numerical method proposed by Diethelm
et al. [55] and presented in the previous section is used to
solve numerically system (6) in the commensurate and
incommensurate fractional-order cases. The parameters’
values defined in Section 3 and initial conditions
(x> Y9, 20) = (1.2,1.5,1.6) will be considered in this part.
Using the well-known tools for studying dynamical systems
such as phase diagrams, time series, bifurcation diagram,
and largest Lyapunov exponent, the dynamics of the fi-
nancial system with the fractional order will be investigated.

4.1. Dynamics for Commensurate Fractional-Order System.
Here, we consider system (6) when ¢q,=¢g,=¢;=9
(commensurate order). System (6) does not exhibit chaotic
behavior if it satisfies the inequality g < (2/m)min,{larg (A;)[}
[47, 48, 51] with A; being the eigenvalue of the Jacobian
matrix of system (6) evaluated at one of its fixed points. For

the equilibrium points E; and E,, we have
min,{larg ()|} = 1.2819; so,
2
q<— min{|arg(};)|} = 0.816. (11)
1

Figure 2 shows that the largest Lyapunov exponent of
system (6) with the commensurate fractional order is

+1 =20t I(g) ;}93,]‘,%1(_)’21‘ —0x; - P)’j)’

nl*t —(n - q;)(n+1)%,

| 1
xﬁH =X, + m ;914,%1((12; + (yj - e)xj),

Ly =yt 3 0, (—ky? — 152+ m),

(10)

(n_j+2)qi+1 + (n_j)q,‘*l _Z(n—j+ l)qi+1) IS]SH,

0 jne1 =;[(n—j+ D% —(n- )%, 1<j<ni=12,3.

positive only if g>0.82. Therefore, the system does not
show chaotic behavior when g<0.82. It is found using
numerical simulations that the system exhibits a chaotic
attractor for q>0.83. For q = 0.83, phase diagrams are
shown in Figure 3(a) for the x — y phase plane and in
Figure 3(b) for the x — z phase plane. Figures 3(c) and 3(d)
show the time series of state variables x and y, respectively,
for g = 0.83. As it can be seen, the system exhibits chaotic
behavior, and this is confirmed by a positive Lyapunov
exponent for g = 0.83.

Therefore, the minimum effective dimension of system
(6) for the commensurate fractional order is 0.83 x 3 = 2.49.
Thus, simulation results show that chaos exists in this
fractional-order financial system with the derivation order
less than 3. For numerical simulations, the step size & = 0.01
is used.

4.2. Dynamics for Incommensurate Fractional-Order System.
When one of the system’s derivation orders has a different
value from the other two, we get an incommensurate
fractional-order system [47].

By observing Figure 4, we can see that the largest
Lyapunov exponent of system (6) is positive for g, >0.57
with g, = q; =1 (see Figure 4(a)), for g, >0.87 with q, =
qs =1 (see Figure 4(b)), and for g;>0.13 with g, =g, =1
(see Figure 4(c)). For the examples, we consider the fol-
lowing cases:
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Case 1: fix g, = g5 = 1, and let us take different values of
q-

(i) g =0.55and g, =gq; = 1. In this case, we have

vy =11Lu; =20, andv, = v =u, = u; = 1, )
M =LCM(20,1,1) = 20 and

A() = diag(AM®, AM%,AMB) — ] (E;) = diag(A', 1%, 1%°) = J (E;), (12)

det(A (L)) = A" — 1.22972856)1%°

+1.0611891422% + 1.8014226241%° (13)
+0.0611891421" + 1.867529457 = 0.

By solving equation (13), we have

IMFOS = —— — min [arg (1;)] = — — 0.079176
2M i 40

(14)

=-0.00064 < 0.

In this case, IMFOS < 0; therefore, for the deriva-
tion orders g = (0.55,1,1), system (6) does not
exhibit a chaotic behavior.

(ii) Consider now g, =0.57andq, =gq; =1; by the

same procedure as the above case, we have
M =100, and

det(A (L)) = A*7 = 1.229728561*% + 1.0611891421" + 1.8014226241' + 0.0611891421% + 1.867529457 = 0.  (15)

By solving equation (15), we have

m 7r

IMFOS = — — min |arg(};)| = —— — 0.015682
2M i 200

(16)

= 0.000026 > 0.

IMFOS > 0; therefore, for the given derivation orders, the
system satisfies the necessary condition to present a chaotic
attractor. Numerical simulations confirm this conclusion
in Figure 5. So, the lowest value for which g, in this case
generates a chaotic behavior is 0.57, where A ., > 0.

Case 2:fix g, = g5 = 1, and let us take different values of

Q-

(i) Consider q; = 1,4, = 0.86, and g; = 1; by the same
procedure as the above case, we get
M =LCM(1,50,1) = 50, and

det(A (1)) = A'"* +0.0611891421'%

~0.229728561% + 1.8923403261>°

~0.029728561* + 1.867529457 = 0.
(17)

By solving equation (17), the IMFOS of the system
is

IMFOS = —— — min arg (A;)| — — 0.027339
oM 100

(18)

= 0.004077 > 0.

In this case, IMFOS >0 but system (6) does not
exhibit chaotic behavior (A,,,<0). This shows
that the condition IMFOS>0 is a necessary
condition for chaos to exist and not the sufficient
one.
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(ii) Consider now ¢, = 1,4, = 0.87, and g; = 1; by the
same procedure as the above case, we have
M =100, and

det(AL)) = A% +0.0611891421°%

~0.22972856M'%7 + 1.8923403261'%° (19)
—0.029728561% + 1.867529457 = 0.
The system’s IMFOS is
IMFOS = —— — min [arg (A,)] —— — 0.013605

=0.002103 > 0.

In this case, the system exhibits a chaotic behavior as it
can be seen in Figure 6, where we can observe the
chaotic attractor of the system.

Therefore, the lowest value for which g, in this case
generates chaotic behavior is 0.87, where A, > 0.
Case 3:fix g, = g, = 1, and let us take different values of
9s-

(i) Consider g, =1,9, =1, andg; =0.10;  then,
M =1LCM(1,1,10) = 10, and
det(A(L) = A% + 1% —1.168539418)1 "
+0.0314605821'% + 1.8311511841  (21)
+ 1.867529457 = 0.
By solving equation (21), we get
IMFOS = ﬁ — min [arg (,)] % ~0.135623
’ (22)

=0.021457 > 0.

In this case, IMFOS >0 but the system does not
exhibit chaotic behavior (A, <0).

max

(ii) Consider now g, =1,g9, = 1, andg; = 0.13; then,
we have M = 100, and

det(A (L)) = A*P + 1% — 11685394181

+0.0314605821'% + 1.8311511841"  (23)
+ 1.867529457 = 0.
From equation (23), we get
n ) n
IMFOS = — — min |arg(};)| =—— — 0.013550

=0.002158 > 0.

So, for the derivation orders q = (1,1,0.13), system (6)
satisfies the necessary condition for the existence of chaos in
the system. In this case, this is confirmed numerically in
Figure 7.

Therefore, the lowest value from which g5 in this case
generates chaotic behavior is g; = 0.13, where A, >0.

When the value of g, increases from 0.85 to 0.90, the
route to chaos via period doubling is found. The bifurcation
diagram and largest Lyapunov exponent when the deri-
vation order g, varies on the closed interval [0.85,0.90] are
plotted in Figure 8. Clearly, from the bifurcation diagram,
the period-doubling route to chaos can be seen.
Figures 9(a)-9(d) show that the system has period-1, pe-
riod-2, period-4, and chaotic attractors for
g = 0.85,0.87,0.878, and 0.89, respectively. Note that the
step size used for the numerical simulations in this section
is h =0.01.

From these three cases, we deduce that the minimum
effective dimension of system (6) in the incommensurate
fractional-order case is 2.13.

In the next section, a simple but robust fractional-order
sliding mode control law will be designed to control chaos in
system (6).
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5. The Sliding Mode Controller Design

According to the sliding mode control theory, to design a
sliding mode controller, we have two steps:

(i) Build a sliding surface, which represents the desired
dynamics of the system such as stability

(ii) Develop a control law in a way that the system states
are brought towards the sliding surface in a finite
time and are maintained in a neighborhood of the
sliding surface when time evolves [38]

The sliding mode control law is itself composed of two
parts; the first, which is continuous, is called the equivalent
control law, and the second is discontinuous. The equivalent
control law describes the behavior of the system to be
controlled when its trajectories are on the sliding surface.
The discontinuous reaching law ensures the convergence of
all the system states towards the sliding surface.

To control chaos in fractional-order financial system (6),
the controller u(t) is added at the level of the second state
equation as follows:

Dix=dz+ (y—e)x,
D%y =—ky’ —Ix> + m+u, (25)
D%z = —yz — 8x — py.

Motivated by literature [38, 43], as a choice for the
sliding surface, we choose the following fractional-order
sliding surface:

o(t) =D 'y(t) + D' (ky* (1) + Ix* (t) + ny (1))

‘ (26)

=DE 1y () + Jo(kyz(r) +1x* (1) + ny(1))dr,

where 7 is an arbitrary positive constant. In the sliding mode,
the invariance conditions of the surface must be satisfied and
are defined as follows (i.e., the sliding surface and its de-
rivative must satisfy the relations which appear in the fol-
lowing equation):

o(t) =0,
(27)
d b
&a(t) =0 (t)=0.
From equations (26) and (27), we get
Dy (t) = {ky* (t) + 1x* (1)) + 1y (2). (28)

From system (25) and equation (28), we obtain the
equivalent control law as follows:
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d'12 y
eq = g%

<

+ky* +1x" —m

:—(ky2+lx2+11y)+ky2+lx2—m (29)

=~y —m.

Regarding the discontinuous reaching law, it is chosen as
follows:

u, = G,sign (o), (30)
in which
+1, ifo>0,
sign(o) =10, ifo=0, (31)
-1, ifo<0,

and G, is the gain of the controller. Finally, the total control
law has the following form:

u(t) = Ueq (t) + u, (t) = —ny — m + G,sign (0). (32)

Theorem 1. System (6) with control law (32), i.e., system (25)
is globally and asymptotically stable if the controller gain
G, <0.

Proof. For this, let us choose the Lyapunov quadratic
function as follows:

V==0, (33)

and its derivative gives

V =06 =0[D"y +ky® 17+ ny]
of
of
0[G,sign (0)]
G,lo] <O0.

—kyz—lx2+m+u+ky2+lx2+;1y]
—ky

?—Ix’ + m—ny - m+G,sign(0) + ky” + Ix + ny]

(34)

Therefore, we have found a Lyapunov function which
satisfies the conditions of Lyapunov theorem, ie.,
V>0and V' <0. Thus, system (25) with sliding mode
control law (32) is globally and asymptotically stable. O

Theorem 2. Suppose that system (25) is perturbed by un-
certainties and an external disturbance. Thus, the system has
the following form:

Di'x =dz+ (y - e)x,
D%y = —ky2 —Ix*+m+ Ag(x,y,2) +p(t) +u,
D%z = —yz - 8x - py,

(35)

in which Ag(x, y,z) and p(t) are supposed to be bounded,
ie, |Ag(x,y,2)| <y, and |(t)| <p,, where y, and u, are
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positive constants. System (35) with sliding mode control law
(32) is globally and asymptotically stable if G, < — (4, + U,).

Proof. For this, let us choose Lyapunov quadratic function
(33); thus, we have

V=00= J[Dq2y+ky2 +1x% + qy]
= U[—ky2 —Ix* +m+ Ag(x, y,2)
+p(t) +u+ky’ +1x" +ny] (36)

=0[Ag(x, y,2) + p(t) + G,sign (0)]
< (G, +u, +py)lol <0.

Thus, the proof is achieved. O

6. Numerical Simulations

This part of the paper presents three illustrative examples to
verify the effectiveness of the proposed control technique.
Numerical simulations are carried out with initial conditions
(xg> ¥o» 20) = (1.2,1.5,1.6), = 0.5, and G, = -2. For the
commensurate fractional-order case,
q, =4, = g3 = q = 0.83 is chosen and for which the system is
chaotic (see Figure 3). For the incommensurate fractional-
order case, q; = 1,4, = 0.88, and g5 = 1 are chosen. For this
choice, the largest Lyapunov exponent is positive (see
Figure 4(b)). The corresponding phase diagrams and time
series are shown in Figure 10. Note that the controller can be
activated in the system at any time. In this part, it is activated
at £ = 20 sec.

Case 1: commensurate order without uncertainty and
an external disturbance.

As it was shown above, system (25) without the
controller u(t) is chaotic for q, =g, = g5 = q = 0.83.
Now, applying controller (32) to the system, simu-
lation results can be seen in Figure 11. From this
figure, it is observed that control law (32) can effec-
tively asymptotically stabilize the state variables of
system (25) (see Figures 11(a)-11(c)). Besides, the
time series of the sliding surface o(t) is plotted in
Figure 11(d). From this figure, it can be observed that
the controller stabilizes the trajectories of the system
on the sliding surface and maintains them on this
surface when time evolves.

Case 2: commensurate order with uncertainty and an
external disturbance.

In this part, we disturb the fractional-order financial
system by an uncertainty defined by Ag(x,
y,z) = 0.2sin(~/x? + > + z?) and an external distur-
bance p(t) = 0.5 sin(2t), where |Ag (x, y,z)| <p; = 0.2
and |p(t)| <y, = 0.5. The time series of system (25)
state variables (see Figures 12(a)-12(c)) and the time
series of sliding surface (26) (see Figure 12(d)) in the
presence of control law (32) can be seen through
Figure 12. From this figure, we can see that the con-
troller stabilizes the system in the presence of uncer-
tainty and external disturbance.
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Case 3: incommensurate order with uncertainty and an
external disturbance.

In this case , we disturb financial system (25) with the
incommensurate fractional order by the same uncertainty
and external disturbance as case 2.

The time series of system (25) state variables and the
time series of the sliding surface in the presence of control
law (32) are shown in Figure 13. From this figure, it can be
observed that the state variables of the system are
stabilized.

In each figure, the time series of the sliding surface is
plotted to show the ability of the controller to bring back all
the system states onto the sliding surface and to maintain
them on this surface when time evolves. Simulation results

show that controller (32) is able to stabilize systems (25) and
(35) in commensurate and incommensurate fractional-order
cases. Therefore, the designed control law can suppress
chaos in this fractional-order financial system in the pres-
ence or not of uncertainty and external disturbance.

7. Conclusions

In this paper, the dynamics of a financial system with the
fractional order as well as the robust chaos control in this
system are studied analytically, and numerical simulations
are performed to confirm the analytical results. The existence
of chaos in this study is validated by a positive Lyapunov
exponent and by an analytical condition existing in the
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literature. The fractional order system exhibits rich dynamics
behaviors such as periodic and chaotic behaviors. A period-
doubling route to chaos is found in this system. Numerical
simulations revealed that chaos exists in this fractional order
system for derivation orders less than 3. The lowest deri-
vation order found to have chaos in the commensurate
fractional-order case is 2.49 and 2.13 for the incommen-
surate fractional-order case. Regarding the robust control of
chaos in the system, by using Lyapunov’s stability theorem, a
simple but robust fractional-order sliding mode control law
has been designed to stabilize the chaotic trajectories of the
fractional-order financial system in the presence or not of
uncertainty and external disturbance. It should be noted that
the controller has been applied only at the investment de-
mand state equation to fully control the system. Numerical
simulations show that this controller is effective and can
control the financial system with commensurate and in-
commensurate fractional orders. In [14], Chen studied the
fractional order version of the financial system proposed by
Ma and Chen [34]. The lowest derivation order obtained in
[14] for chaos to exist is 2.55 in the commensurate order case
and 2.35 in the incommensurate order case. Compared to
the fractional order version of Liao et al. [37] proposed in
this paper, the emergence of chaos is enhanced in both cases.
It is well known that time delay can affect the behavior of
dynamical systems. For future works, chaotic dynamics
analysis of this fractional-order financial system with time
delay can be considered.
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Due to the introduction of memristors, the memristor-based nonlinear oscillator circuits readily present the state initial-dependent
multistability (or extreme multistability), i.e., coexisting multiple attractors (or coexisting infinitely many attractors). The dimensionality
reduction modeling for a memristive circuit is carried out to realize accurate prediction, quantitative analysis, and physical control of its
multistability, which has become one of the hottest research topics in the field of information science. Based on these considerations, this
paper briefly reviews the specific multistability phenomenon generating from the memristive circuit in the voltage-current domain and
expounds the multistability control strategy. Then, this paper introduces the accurate flux-charge constitutive relation of memristors.
Afterwards, the dimensionality reduction modeling method of the memristive circuits, i.e., the incremental flux-charge analysis method,
is emphatically introduced, whose core idea is to implement the explicit expressions of the initial conditions in the flux-charge model and
to discuss the feasibility and effectiveness of the multistability reconstitution of the memristive circuits using their flux-charge models.
Furthermore, the incremental integral transformation method for modeling of the memristive system is reviewed by following the idea
of the incremental flux-charge analysis method. The theory and application promotion of the dimensionality reduction modeling and
multistability reconstitution are proceeded, and the application prospect is prospected by taking the synchronization application of the
memristor-coupled system as an example.

1. Introduction

The intrinsic memory property [1] of the memristor makes
the memristor-based nonlinear circuits and systems easily
exhibit the state initial-dependent dynamical behaviors. By
keeping the system parameters unchanged and changing the
state initials, the trajectories of the memristive circuits and
systems can asymptotically approach to different stable
states, showing the state initial-dependent multistability
[2, 3] or extreme multistability [4-7], i.e., coexisting multiple
or infinitely many attractors. On the one hand, these
coexisting multistable modes can provide more flexibility for
information engineering applications [8-11]; on the other
hand, it may also lead the application systems to abnormal
working states [12]. These ungovernable problems pose a
severe test for realizing the control of multistable modes. In

addition, the dynamical behaviors of memristive circuits and
systems are highly dependent on the state initials, but the
state initials cannot be explicitly expressed in their state
equations, which bring great obstacles in mechanical ana-
lyses of the state initial-dependent dynamical behaviors.
Moreover, the memristive circuits and systems usually have
line equilibrium set, plane equilibrium set, no equilibrium,
or stable equilibrium, whose stabilities and induced dy-
namical behaviors are hard to be analyzed by using the
traditional stability theory [12]. Therefore, accurate pre-
diction, quantitative analysis, and physical control of such
special phenomena have become an important research
problem in the field of information science.

Traditional control strategies usually adopted nonfeed-
back control strategy to convert a multistable system to a
mono-stable system [13-17] or adopted feedback control
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strategy to stabilize the system in a certain desired state
[13, 18, 19]. But these control strategies cannot achieve the
multistable control. To solve this problem, researchers
proposed different dimensionality reduction modeling
schemes based on the memristive circuit and system [20, 21].
In [22], the concept of dimensionality reduction modeling
was proposed, which modeled the memristive circuits with
two physical quantities of flux and charge as main state
variables, and the dimension of the obtained flux-charge
model was lower than that of the traditional voltage-current
model. Bao et al. [23] built the reduce-ordered flux-charge
model of a two-memristor-based circuit and analyzed its
dynamical characteristics via the voltage-current and flux-
charge models. Bao et al. [24] qualitatively pointed out that
the flux-charge model of the memristive circuit can be
equivalent to realize its dynamical behavior in the voltage-
current model. However, in these early studies, the state
initials of the memristive circuit were not explicitly
expressed in the dimensionality reduction model [25],
resulting in the information loss of state initials of the
memristive circuit. Therefore, the established dimensionality
reduction model could not reflect the multistability of the
memristive circuit. In recent years, Corinto proposed an
incremental flux-charge analysis method [26, 27] and ap-
plied it to the dimensionality reduction modeling of
memristor-based cellular neural networks [28] and mem-
ristor-based oscillator array [29]. With this method, the state
initials of the memristive circuit can be expressed as
standalone system parameters in the flux-charge domain
[12], which is conducive to the analyses and measurements
of the state initial-dependent dynamical behaviors. There-
after, this method was applied for reconstituting and ana-
lyzing extreme multistability of ideal memristor-based
circuits [12, 20, 30, 31]. On this basis, the incremental in-
tegral transformation method was proposed for the analyses
of memristive systems [21, 32]. Hereto, a complete set of
dimensionality reduction reconstruction theory for ideal
memristor-based circuits and systems was thereby formed.

It should be noted that, in the original literature, these
two methods were called the flux-charge analysis method
[26, 27] and the state variable mapping method [21], re-
spectively. But the state variables of the dimensionality re-
duction model are actually expressed by the incremental
integral of the original memristive circuit’s and system’s
state variables, whose core idea is integral transformation.
Therefore, in this paper, these two methods are called the
incremental flux-charge analysis method and the incre-
mental integral transformation method, respectively. By
using these two methods, on the one hand, the implicit state
initials in the original memristive circuit and system can be
transformed into the explicitly state initial-related system
parameters appearing in the dimensionality reduction
model. On the other hand, the line or plane equilibrium set
in the original memristive circuit and system can be con-
verted into the certain equilibrium, which is beneficial to the
elaboration of the dynamic mechanism. In short, the state
initial-dependent dynamical behaviors of the original
memristive circuit and system are transformed into the
parameter-dependent ~ dynamical behaviors of the
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dimensionality reduction model. In addition, synchroniza-
tion, as one of the basic nonlinear phenomena, has received
extensive attention in the field of basic theory and engi-
neering applications [33]. In the nonmemristor-coupled
system, the state initials have significant effect on the syn-
chronization characteristics [34-36]. Based on the above
dimensionality reduction methods, in the study of the
synchronization on the memristor-coupled system [37], the
synchronization effect of the state initial-related system
parameters can be studied quantitatively after the state
initials are expressed explicitly in the state equation.

The incremental flux-charge analysis method and the
incremental integral transformation method realize the
mapping transformation of the state variable domain by
means of integral transformation and describe and analyze
the multistability of the original memristive circuit and
system based on the transformed state variable domain,
which provides theoretical basis for the precise prediction,
quantitative analysis, and physical control of such special
phenomena. In this paper, the dimensionality reduction
modeling and multistability reconstruction of the mem-
ristive circuit and system are summarized to help researchers
fully understand the state initial-dependent multistability
dimensionality reduction reconstruction strategy of the
memristive circuit and system. Then, the reconstruction
strategy is applied to the synchronization research of the
memristor-coupled system to quantitatively study the in-
fluence of state initials on synchronization.

2. Multistability of Memristive Circuit in the
Voltage-Current Domain

2.1. Multistability and Coexisting Multiple Attractors.
Multistability [13, 38-41] is an inherent phenomenon of the
nonlinear dynamical system, in which multiple attractors
coexist with the change of state initials under the fixed
system parameters. The term “multistability” first appeared
in the study of visual perception [42]. Arecchi also found the
coexistence attractors’ phenomenon in electronic circuits
[43] and gas lasers [44]. Later, a large number of theoretical
and experimental studies have explored this special phe-
nomenon in different systems [45-55]. In addition, in some
special coupled systems [56, 57], the phenomenon of
coexisting infinitely many attractors, i.e., extreme multi-
stability [58-61], can also be observed.

In recent years, the hidden attractor [62-76], as a special
class of newly defined attractor, has attracted extensive at-
tention from researchers. The attractor that we usually say is
also called the self-excited attractor, which is caused by the
unstable equilibrium. Unlike the self-excited attractor
[67, 77], the attraction basin with the hidden attractor does
not intersect any equilibrium [78], and its existence increases
the uncertainty of the system. When the system has a stable
equilibrium [5] or no equilibrium [3, 79, 80], the induced
multistability is called hidden multistability. Note that when
the system has a stable equilibrium [5] and can produce
dynamical behavior other than the point attractor, it can be
confirmed that the system has hidden multistability.
However, if the system has no equilibrium and can produce
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only one stable oscillation behavior, the system is a hidden
system, but it does not have multistability [81].

It has been shown that the hidden attractor is sensitive to
the state initial of the system. In the domain of stable
equilibrium, the system trajectory will converge to the stable
point, but under the special state initial, the system trajectory
can form the stable chaotic attractor or periodic limit cycle.
Figures 1(a) and 1(b), respectively, show the self-excited and
hidden attractors generated by a novel Chua’s circuit [67].
Figures 1(c) and 1(d), respectively, show the local plane
projection of Figures 1(a) and 1(b), where the red dots are a
pair of nonzero equilibria. According to the orbit of the
attractor and the position relationship of the equilibrium in
the figure, it can be seen that the attraction basin of the self-
excited attractor must cover the unstable equilibrium, while
the attraction basin of the hidden attractor with the
neighborhood of the stable equilibrium does not overlap.
Therefore, the self-excited attractor and hidden attractor can
be clearly distinguished according to the intersection rela-
tionship between the attraction basin and the equilibrium
neighborhood in phase space.

In general, coexisting infinitely many attractors can be
classified into the following four types:

(a) Different attractor types: hyperchaotic attractor,
chaotic attractor, quasi-periodic limit cycle, periodic
limit cycle, and stable point

(b) Different attractor topologies: the same type of
attractor has completely different topologies, such as
spiral and double-scroll attractors, scroll complete
and incomplete attractors, and attractors with dif-
ferent dynamic amplitude

(c) Different number of limit cycles: limit cycles with
different number of periods

(d) Different attractor positions: attractors are located in
different phase space.

2.2. The Difference between Multistability and Chaotic Initial
Sensitivity. Since Chua put forward the generalized concept
of the memristive system [82], the circuit and system
constructed by the memristor have received great attention.
In the early memristive circuit [83-87], scholars found that
the stability of the equilibrium was closely related to the state
initial of the memristor, which meant that the coexistence of
multiple attractors was easy to occur in the memristive
circuit. Then, in the memristive circuit, Bao found that the
state initial-dependent dynamical behavior was a special
kind of multistability phenomenon, i.e., extreme multi-
stability. And, in [88], Bao et al. explicitly proposed the
extreme multistability in the memristive circuit for the first
time, that is, in the memristive circuit with line equilibrium,
there was a peculiar coexistence infinitely many attractor
phenomenon, which relied on the internal state initial of the
memristor. In particular, Jafari et al. [89] pointed out the
difference between the state initial-dependent dynamical
behavior (extreme multistability) of the memristive system
and the chaotic initial sensitivity of the general nonlinear
dynamical system. That is, for the general nonlinear

dynamical system, the initial sensitivity of system trajectory
was only a quantitative change, and the trajectories of the
system starting from the different state initials would tra-
versal in the corresponding attraction region along different
trajectories, without changing the dynamical properties of
the system. However, the extreme multistability of the
memristive system was a qualitative change; the change of
state initial could cause the trajectory of the memristive
system to jump between the attraction domains of different
dynamical behaviors. Therefore, the state initial-dependent
multistability in the memristive circuit and the chaotic initial
sensitivity in the general chaotic circuit are two completely
different concepts.

2.3. Multistability in Memristive Circuit and System. Since
physical accessibility of memristors has been reported [90],
lots of investigations were carried out for various memristor-
based application circuits and systems, including cellular
nonlinear/neural network [91], spiking and bursting neuron
circuit [92], active band-pass filter-based oscillating circuit
[93], FitzHugh-Nagumo neuron circuit [94], recurrent
neural network [95], hypogenetic jerk chaotic system
[21, 96, 97], and hyperchaotic autonomous system [98], from
which rich dynamical behaviors have been manifested by
theoretical studies, numerical simulations, and experimental
measurements. The results showed that the stabilities of the
memristive circuit and system, especially the ideal mem-
ristor-based nonlinear circuit and system, had a great re-
lationship with the state initial of the memristor [88, 99].
Therefore, the coexisting infinitely many attractors appeared
in such memristive circuit and system [12, 20, 100]. Under
the fixed system parameters, the solution trajectories of the
system can be represented by diverse stable states with the
varied state initials, such as point, period, quasi-period,
chaos, and hyperchaos [7, 98, 101, 102]. Such a special
phenomenon is mostly relevant to no equilibrium [103, 104],
limited number equilibria [105], or even infinitely many
equilibria [6, 106]. Particularly, when the number of
coexisting attractors tends to infinite, the phenomenon is
called extreme multistability [39, 56, 89, 107-109].

In principle, the coexisting infinitely many attractors
caused by extreme multistability generally has a complete
smooth bifurcation route with respect to the state initial, and
the bifurcation trajectories are gradual [110], such as period-
doubling bifurcation and Hopf bifurcation, as shown in
Figure 2. It is important to emphasize that extreme multi-
stability is not the same as coexisting infinitely many
attractors. The aforesaid coexisting infinitely many attractors
are commonly triggered in the memristive circuit and
system with line or plane equilibrium set, entirely different
from those generated from the offset-boostable flow by
introducing an extra periodic signal [111-113] and also
different from those generated from the attractor position
offset caused by the state initial [114].

According to the definition of memristor
[1, 82, 115, 116], researchers have proposed a variety of
physical realizable memristor simulators with the charac-
teristics of memristor ports [117], which can be mainly
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FIGURE 2: Extreme multistability: (a) with the variation of memristive initial x,4(0); (b) with the variation of memristive initial x5(0).

divided into two categories: one is the ideal memristor or
nonideal memristor based on the equivalent realization of
operational amplifier and analog multiplier
[62, 101, 118, 119]; the other is the generalized memristor
with diode bridge cascade RC, RL, or LC filters [120-124].
From the essential definition of the ideal memristor [116], it
can be seen that the memristor is derived from the rela-
tionship between flux and charge [115]. The ideal memristor
is usually divided into the charge-controlled memristor and
flux-controlled memristor. Its voltage-current relation curve
has the characteristic of typical italic “8” type pinched
hysteresis loop, and the main characteristics are zero
crossing [82, 116, 125], double value [115], singular

symmetry, tapering [116, 126], self-crossing type [127], and
stability [128].

The nonideal memristor-based nonlinear circuit or
system usually has certain equilibria [129], and their stability
is not affected by the state initials. However, under the fixed
system parameters, with the varied state initials, the system
will produce the coexistence steady-state mode [2], namely,
multistability. And, when a memristive circuit or system has
a stable equilibrium or no equilibrium [3, 5], the system will
produce hidden multistability.

The ideal memristor-based nonlinear circuit or system
usually has infinitely many equilibria, and their positions
and stabilities are related to the internal state initials of
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memristors, which indicates the extreme multistability of the
memristive circuit or system. Bao et al. [88] proposed an
ideal flux-controlled memristor-based Chua’s circuit with
line equilibrium set and revealed the state initial-dependent
extreme multistability phenomenon of the memristive cir-
cuit. In [93], the ideal flux-controlled memristor was used to
replace Chua’s diode, and a memristive circuit with line
equilibrium set was obtained, and the extreme multistability
phenomenon of the circuit was studied. By introducing two
ideal memristors into Chua’s circuit, a memristive circuit
with a plane equilibrium set was obtained in [130] and
further revealed the extreme multistability phenomenon. By
introducing an ideal flux-controlled memristor into a three-
dimensional hypogenertic jerk system, the paper [96]
constructed a memristive system with four line equilibria
sets, which could produce the extreme multistability phe-
nomenon dependent on the state initial of the memristor
and other state initials. Yuan et al. [107] designed a mem-
ristor-based multiscroll hyperchaotic system by introducing
an ideal flux-controlled memristor and revealed its extreme
multistability phenomenon. By introducing a micro-
perturbation into the memristive circuit, a memristive cir-
cuit with no equilibrium was constructed, which could
produce the phenomenon of hidden extreme multistability
[131].

3. Multistability Control Strategy

3.1. Multistability Generic Control Strategy. Multistability
has been reported in different scientific fields such as physics,
chemistry, biology, and economy [13]. Because of its sen-
sitive dependence on state initial, the multistability phe-
nomenon can induce the system to switch between different
coexisting states under the fixed system parameters, which
provides great flexibility for the engineering application of
the multistable system [8, 9, 13, 105, 132-134]. But, at the
same time, it is easy to lead the application systems to
abnormal working states, which puts forward a severe test to
the multistable mode control strategy. For example, in the
design of equipment with certain characteristics, it is nec-
essary to avoid multistable or to stabilize it in the desired
state, which will cause a lot of inconvenience in practical
application. Therefore, it is necessary to control the multi-
stable through appropriate control strategy.

In order to convert a multistable system to a mono-stable
system, nonfeedback control strategy was usually adopted.
In other words, by adding external disturbance to the sys-
tem, such as the introduction of short pulse [13], a specific
attractor could be selected in a multistable system to achieve
multistability control. By introducing pseudoperiodic
driving [14, 15] or harmonic disturbance [16, 17], the un-
desirable attractor types could be eliminated, and then, the
system could be controlled in a certain stable state. In order
to stabilize the system in a certain desired state, feedback
control strategy was usually adopted [18], such as periodic
driving [19] and time-delay feedback [13]. Yet these control
strategies cannot achieve the multistable control. However,
via the special constitutive relation of the memristor, some
scholars have proposed appropriate multistability

dimensionality reduction reconstitution strategies for spe-
cific types of the memristive circuit and system and realized
the control of multistable modes. A brief introduction is
given below.

3.2. Multistability Dimensionality Reduction Reconstitution
Strategy. The multistability of the memristive circuit/system
can provide more flexibility for the memristive circuit/
system to be applied in engineering application fields of
image processing, signal encryption, and so on
[8, 9, 105, 132-137]. However, due to the sensitive depen-
dence of the multistability on the state initial, there are two
main problems when the traditional analysis method is used
to analyze the multistable mode of the memristive circuit/
system. On the one hand, the dynamical behaviors of the
multistable circuit/system are highly dependent on the state
initials, but the state initials cannot be expressed explicitly in
the state equation of the multistable circuit/system, which
makes it impossible to quantitatively analyze the state initial-
dependent dynamical behavior of the memristive circuit/
system. On the other hand, since the memristive circuit/
system usually has line equilibrium set, plane equilibrium
set, space equilibrium set, or no equilibrium, when we use
the traditional analysis method to analyze the dynamical
behavior, it is very difficult to correctly judge whether the
equilibrium of the system is stable or not, or cannot analyze
the system equilibrium, which makes it impossible to
quantitatively describe the internal mechanism of multi-
stability. These problems make it difficult to accurately
predict, quantitatively analyze, and physically control the
state initial-dependent dynamical behaviors.

Therefore, in the process of analyzing the multistability
of the memristive circuit and system, in order to solve these
problems, researchers proposed different dimensionality
reduction modeling schemes based on the memristive circuit
[20] and memristive system [21]. In fact, a prototype of
dimensionality reduction modeling had been developed in
the earlier literature [22-24]. In [22], the concept of di-
mensionality reduction modeling was proposed, which
modeled the memristive circuits with two physical quantities
of flux and charge as main state variables, and the dimension
of the obtained flux-charge model was lower than that of the
traditional voltage-current model. Bao et al. [23] built the
reduce-ordered flux-charge model of a two-memristor-
based memristive circuit and analyzed its dynamical char-
acteristics via the voltage-current and flux-charge models.
Bao et al. [24] qualitatively pointed out that the flux-charge
model of the memristive circuit could be equivalent to re-
alize its dynamical behavior in the voltage-current model.
However, in these early studies, the state initials of the
memristive circuits were not explicitly expressed in the
dimensionality reduction model [25], resulting in the in-
formation loss of state initials of the memristive circuit.
Therefore, the established dimensionality reduction model
could not reflect the original multistability of the memristive
circuits and systems.

In recent years, Corinto proposed an incremental flux-
charge analysis method [26], the method was based on the



Kirchhoff flux and charge law and the constitutive relation of
the circuit element under the incremental flux and incre-
mental charge. Compared with the circuit equation in the
voltage-current domain, the circuit equation in the flux-
charge domain established by this method had a simpler
equation structure, which could simplify the complexity of
dynamical analysis and clearly understand the influence of
state initial. To further demonstrate the effectiveness of the
method, Corinto applied the method to the analysis of Hopf
bifurcation and period-doubling cascade induced by state
initial [27]. Subsequently, more scholars applied it to the
study of complex memristive circuits such as memristor-
based cellular neural network [28] and memristor-based
oscillator array [29]. Then, Chen clearly proposed that this
method could represent the state initials of all dynamical
elements in the circuit as standalone state initial-related
system parameters [12], which was conducive to the analysis
and measurement of the state initial-dependent dynamical
behaviors in the memristive circuit. Moreover, this method
was applied to the reconstruction and analysis of extreme
multistability for the ideal memristor-based circuit
[12, 20, 30, 31]. And, on this basis, the incremental integral
transformation method for the memristive system was
proposed [21, 32], forming a complete set of dimensionality
reduction reconstruction theory for ideal memristor-based
circuits and systems. That is, firstly, the integral transfor-
mations on all state variables of the original memristive
circuit/system are carried out (note that all terms in the
system equation must be integrable). Then, the dimen-
sionality reduction modeling is implemented by using the
nondynamic property [22] of the memristor in the flux-
charge domain. Then, based on the dimensionality reduction
model, the state initial-dependent dynamical behaviors of
the original memristive circuit/system are reconstructed and
analyzed.

4. Flux-Charge Constitutive
Relation of Memristor

In the 1970s, Chua proposed the fourth basic circuit element,
memristor, to characterize the relationship between flux and
charge [115] and deduced the existence the memristor from
the symmetry of circuit variables and the characteristics of
the electromagnetic field, as shown in Figure 3. As can be
seen from Figure 3, there are four basic physical quantities in
the circuit: current 7, voltage v, charge g, and flux ¢. There are
six mathematical relations among them; among which the
relations between current and charge and voltage and flux
are as follows:

t
q(t) = j i(E)dE, (1a)

t
o= | v (1b)
—00

Equations (la) and (1b), respectively, represent that
charge is the integral of current with respect to time and flux
is the integral of voltage with respect to time. According to
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FiGgure 3: Circuit basic variables and four basic elements.

the incremental flux-charge analysis method, Corinto and
Forti [26] gave the definition of incremental charge and
incrementa} flux for any ttz ty (—oo<ty<o0), ie.,
q(t;tg) = [, i(§)d, p(t:t) = [, v(§)dE, and equation (1)

can be further written as

a=[ ied=[" i©d | i(©d=ak) )
(2a)

o= voa=|"

—00

v(&)dE + Ji v(§)dE = o(ty) + @ (t; 1)
(2b)

It is well known that charge and flux are internal state
variables of the memristor in the voltage-current domain,
and the internal state initial represents the memory property
of the memristor. However, its state initial cannot appear
explicitly in the state equation, so it is naturally impossible to
assign its value accurately. Therefore, the memory of the
memristor cannot be simulated effectively in the voltage-
current domain. Compared with the two basic physical
quantities of voltage and current, flux and charge can better
represent the basic physical properties of circuit elements
[138], which provide a theoretical basis for exploring the
intrinsic properties of circuit elements. To this end, it is
assumed that the voltage v(f) and the current i(f) on the
memristor adopt the associated reference direction, and two
different types of memristors are selected to build their flux-
charge constitutive relation.

4.1. Flux-Charge Constitutive Relation of Charge-Controlled
Memristor. For the charge-controlled memristor in
Figure 4(a), the voltage-current relationship between the
current i(t) flowing through it and the voltage v(¢) at both
ends of it in the voltage-current domain can be described as

v(t) = M (qp)i(0), (3)

where the memristive function M (g,,) is the nonlinear
function about charge g,(f) and has the same dimension as
resistance; the unit is ohms (Q). In this voltage-current
model, ga(t) is the internal state variable of the memristor,
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FIGURE 4: Charge-controlled memristor. The constitutive relation transformation from the voltage-current domain to the flux-charge
domain: (a) voltage-current constitutive relation; (b) flux-charge constitutive relation.

and its state initial g,,(#,) represents the memory property of
the memristor.

Compared with the voltage-current domain, we take
charge and flux as state variables in the flux-charge domain;
take the integral from —oo to t for both sides of equation (3),
and combine with equation (1) to obtain the flux-charge
constitutive relation of the charge-controlled memristor in
the flux-charge domain as follows:

o= | v©& = M(@u)i = (g ©),
)

where the function h(e) is the nonlinear function about
qum(?).

According to equations (2a) and (2b), equation (4) can
be further rewritten as

Pu (tito) = h(qu (t5t0) + daro) = Pavros (5)

where @0 = @(to) and qaso = qui(to); equation (5) describes
the memristor as a special nonlinear element whose memory
is explicitly shown by the internal state initial gaz [27], i.e.,
the internal state initial of the memristor can be explicitly
expressed in the flux-charge domain, which is conducive to
the quantitative analysis of state initial-dependent dynamical
behavior. By comparing equation (5) with equation (3), it is
not difficult to conclude that the state variable in the flux-
charge domain is expressed by the incremental integral of
the state variable in the voltage-current domain, and its state
initial is zero, i.e., when t=t,, @un(to; to) =qmlte; to) =0.
Figure 4 visually shows the transformation of the charge-
controlled memristor from voltage-current constitutive
relation to flux-charge constitutive relation.

4.2. Flux-Charge Constitutive Relation of Flux-Controlled
Memristor. For  the flux-controlled memristor in
Figure 5(a), the voltage-current relationship between the
current flowing through it and the voltage at both ends of it
in the voltage-current domain can be described as

i(t) =W (pw)v(®), (6)

where @y is the internal state variable of the memristor and
W(¢w) is the memductance function.

Similar to the charge-controlled memristor, charge and
flux are used as state variables in the flux-charge domain.
The integral of both sides of equation (6) from —co to ¢ is
taken, and the flux-charge constitutive relation of the flux-
controlled memristor in the flux-charge domain is obtained
by combining with equation (1) as follows:

aw(®= | i©dE= | Wipw)r®E = 1 (0w )
)

where the function f(e) is the nonlinear function about
@w(t).Further, equation (7) can be written as

qw (t:to) = f (ow (t:t0) + Pwo) = Gwos (8)

where @wo=@wl(to) and qwo=qwlty). Similarly, the flux-
controlled memristor can also be expressed as a special
nonlinear element in the flux-charge domain, and its
memory is reflected by the internal state initial ¢y0; and,
when = to, @y (to; to) = quwlto; to) = 0. Figure 5(b) shows the
flux-charge constitutive relation of the flux-controlled
memristor.

5. Incremental Flux-Charge Analysis
Method for Memristive Circuit

Bao etal. [22] pointed out that, in the voltage-current model,
the memristor was a dynamic element, resulting in an in-
crease in the order of the circuit equation. In the flux-charge
model, the memristor was a nondynamic element, so the
order of the circuit remains the same. Therefore, for the
memristive circuit, when flux and charge are taken as state
variables rather than voltage and current [25, 139], the
memristor is described as a nondynamic element, which can
reduce the dimension of the established mathematical model
[12, 20, 30], from which the term “dimensionality reduction”
is derived. It should be noted that the flux-charge model and
the voltage-current model are different from each other in
their algebraic equations, but they are equivalent repre-
sentations in nonlinear dynamical behaviors. And, the
implicit state initials of all dynamic components in the
voltage-current model can be expressed as the explicit ini-
tial-related system parameters in the flux-charge model,
which is convenient to realize the mechanism explanation of
state initial-dependent dynamical behavior in the
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FIGURE 5: Flux-controlled memristor: the constitutive relation transformation from the voltage-current domain to the flux-charge domain;
(a) voltage-current constitutive relation; (b) flux-charge constitutive relation.

memristive circuit, namely, to realize the multistability re-
constitution [30]. In addition, dimensionality reduction
modeling can reduce the complexity of quantitative analysis
and numerical simulation, which has certain theoretical
significance and engineering application value.

Bao et al. [130] proposed a two-memristor-based Chua’s
circuit, as shown in Figure 6, and revealed its state initial-
dependent extreme multistability phenomenon. Based on
the memristive circuit, Chen adopted the incremental flux-
charge analysis method [31] and obtained the dimension-
ality reduction model in the flux-charge domain, which not
only solved the special dynamic characteristics problem of

dv 1
TR ViV
dt ~ RC,

dv, k

=2._ = 1%
dt RCZ( 1 2)+
dvy  k+1

dt | RG, (Vi-Vy)+
v, 1,

dt ~ RrRC, "V

av, 1

dt ~ RCs ?

Its dimensionality reduction model [31] in the flux-
charge domain was

k
R, (1-g,V2)V, -

) (1 - gzvé)vz -

the circuit which could not be quantitatively explained in the
voltage-current domain but also made the system model
simpler and more conducive to the analysis of its dynamical
formation mechanism.

To be specific, this article mainly solved the following five
problems:

(a) The 5-order dynamic circuit of the original system
was described by a 3-dimensional system model, and
the dimensionality reduction modeling was realized.

The two-memristor-based Chua’s circuit [130] in the
voltage-current domain was

2k +1
(k+1)R,C, °

2
— V.,
XAl (9)

do, (t;¢
(20 E0) L (g, (1) g (1:10) - (1:00) + LV, (1)
d £t
1 G %c(lt 0) (‘ﬁ"l (tito) + @y (t:)) +kas (t;t,) — (k )R ————05(t;ty) + C,V, (ty), (10)
d ; k
Cs% = %1 (=1 (t:t9) + @y (t:t0)) + (k+ 1)gs (5 1)) — Ril% (t;to) + C3V5 (ko)
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FIGURE 6: Two-memristor-based Chua’s circuit: (a) circuit schematic of active BPF-based memristive Chua’s circuit; (b) equivalent circuit
for the memristors W, and W.

where

2
¢, (t;ty) RAGOIIAED) [ 2 91V (to) ]
tit,) = 1- - g, Vi (t,) + 222 () |,
94 (t;to) R, |: 3(R3C4)2 R, 91V (to) RC, ¢, (t5to)
(11)
¢, (t;ty) 929"% (t;to)| 92 (t:to) [ 2 9,V (to) ]
tit,) = 1- + —g,VE(t,) + 222%0 (£:¢,) |.
g5 (t;to) R, [ 3(RCC5)2 R, 92 5(0) R.C, ¢, (t51))

(b) Converted the plane equilibrium set of the original initial-related system parameter of dimensionality
memristive circuit to three or five determined reduction model (10) was fine-tuned from 107 to
equilibria. ~107%), and the dynamical behavior changed greatly.

This phenomenon could not be reasonably explained

in the voltage-current domain, but after dimen-

sionality reduction modeling, it could be explained
in the flux-charge domain according to the sym-

metry of dimensionality reduction model (10).

Original memristive circuit (9) had a plane equi-
librium set P={(V;, V, Vi Vg, V3
Vi=V,=V3=0V, V,=uV, Vs=1V}, which led to
two critical stable zero eigenvalues at the equilibrium
set. Therefore, it was impossible to accurately de-
termine the stability of equilibrium set, resulting in
local inconsistency between the stability interval
divided by the nonzero eigenvalues and the actual
observed dynamical behavior. In flux-charge di-

(d) Extreme multistability ~ reconstitution  was
implemented.
The implicit state initial Vi(¢,) of system (9) was
explicitly expressed in dimensionality reduction

mensionality reduction model (10), the plane equi-
librium set was transformed into three or five
determinate equilibria which were related to the
initial-related system parameter Vi(to) (i=1, 2, 3, 4,
and 5), which eliminated the ill-posed zero eigen-
values of the original memristive circuit. According
to the evolution characteristics of the determined
equilibria with Vi(t), the theoretical explanation of
the inconsistency between the stability interval of the
equilibrium set and the dynamical behavior of the
original memristive circuit was given, and the state
initial-dependent dynamical mechanism of the
original memristive circuit was quantitatively
expounded.

model (10) as the initial-related system parameter.
When the state initial of system (10) was set as (0, 0,
0), the kinetic map shown in [31] had the same
dynamical behavior as the attraction basin shown in
[130], intuitively illustrated dimensionality reduc-
tion model (10), perfectly reconstructed the state
initial-dependent dynamical behavior of original
memristive circuit (9), and realized the extreme
multistability reconstitution.

(e) In the hardware circuit of the flux-charge model, the

multistable mode control of the memristive circuit
was realized by changing the initial-related system
parameters.

(c) Reasonable reasons for the significant change of
dynamical behavior under the change of small state
initial were expounded.

6. Incremental Integral Transformation
Method for Memristive System

The state initial V(%) of original memristive circuit On the basis of the incremental flux-charge analysis method,
(9) was fine-tuned from 107 to —107° (that is, the for the ideal memristor-based system, the incremental
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integral transformation method was proposed in [21] to
obtain an equivalent dimensionality reduction model. From
the new state variable domain, the state initial-dependent
extreme multistability of the original memristive system was
studied quantitatively, so as to realize the reconstitution of
the extreme multistability, and then, the theoretical basis of
the dimensionality reduction reconstitution of the mem-
ristive system was given [110]. However, it should be noted
that this method only applies to the simple ideal memristor-
based system with only memristor nonlinear terms. But for
the complex memristive system with other nonlinear terms
besides the memristor nonlinear term [32], because it is
difficult to obtain an explicit expression of the time integral
of complex nonlinear terms, it is necessary to find appro-
priate intermediate variables and variable substitution to
achieve the purpose of equivalent dimensionality reduction
modeling. For this reason, the hybrid incremental integral
transformation method was proposed in [32].

6.1. Incremental Integral Transformation Method for Simple
Memristive System. For the simple ideal memristor-based
system with only the memristor nonlinear term, the incremental
integral transformation method is used to realize dimensionality
reduction modeling and multistability reconstitution. Taking the
memristive hyperjerk system as an example, the system has only
one memristor nonlinear term with smooth hyperbolic tangent
memductance [140], and its mathematical model is

X =Xy,
X, = X3,
) (12)
X3 = Xy

x4 = tanh (x;)x, — x5 — 0.5x,.

According to the incremental integral transformation
method [21], the dimensionality reduction model can be
obtained as

X, = X5+ 8,
X, =X, +0,,
X, =-X;-05X,+In cosh(X,+8,)~In cosh(s,)+3,.

(13)

The corresponding equilibrium is transformed from the
line equilibrium set to two determined equilibria, and the state
variables between the dimensionality reduction model and the
original system have the following corresponding relationship:

x; =X, +6,,

x, = X5+ 6, (14)
x; =X, + 65,

X, = X,

It should be noted that the system parameter §; (i=1, 2,
3, and 4) of the dimensionality reduction model represents
the state initial x;(0) (i=1, 2, 3, and 4) of the original
memristive system. Similar to the above incremental flux-
charge analysis method, when the initial is set to (0, 0, 0),
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based on the dimensionality reduction model, the state
initial-dependent extreme multistability reconstitution of
the original memristive system can be realized.

6.2. Hybrid Incremental Integral Transformation Method for
Complex Memristive System. For the ideal memristor-based
system with other nonlinear terms besides the memristor
nonlinear term, the hybrid incremental integral transfor-
mation method was proposed in [32], which successfully
solved the dimensionality reduction modeling and multi-
stability reconstitution problems of the memristive system
with complex nonmemristor cubic nonlinear terms.

To be specific, this article mainly solved the following
three problems:

(a) By introducing a new intermediate variable, the
problem that the nonmemristor cubic nonlinear
integral term could not be expressed by a simple
relation was eliminated.

The mathematical model of a four-dimensional
complex memristive system with a nonmemristor
cubic nonlinear term [32] is described as

X, =Xy,

Xy = (1 - x4)x3,

) 3 (15)
X3 = x; —ax, — x3 — bxj,

Xy = —X3.

Incremental integral transformation method [21] was
adopted to carry out integral transformation on the
system. By introducing an intermediate variable
W=>b jf) x3dr, the problem that this integral term
could not be expressed as a simple relational expression
was eliminated, and a four-dimensional intermediate
transformation system with the same dimension as the
original system was obtained, that is,

X, =X, +06,

X, = 0.5X5 + (1 - 8,) X5 + &y,
X;=X,-aX, - X;-W+6,,
W=b(X,+6,).

(16)

(b) The variable substitution method was used to
eliminate the divergence of state variables in the
intermediate transformation system, and then, the
dimensionality reduction modeling was realized.

Through variable substitution Y;=X; - W, Y,=X,,
and Y3;=X;, the divergence problem of state vari-
ables X; and W was eliminated, and the equivalent
three-dimensional dimensionality reduction model
of the system was obtained, i.e.,

Y, =Y, +8, -b(Y,+6,)%,

Y, =0.5Y:+(1-8,)Y;+0,, (17)

Y,;=Y,-aY,-Y,;+9d,.
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(c) The extreme multistability reconstitution of the
memristive system with other nonlinear terms be-
sides memristor nonlinear terms was realized.

The three line equilibria sets of the original system
were transformed into six determinated equilibria,
and the ill zero eigenvalue of the original system was
eliminated. And, the state initial x;(¢,) (i=1, 2, 3, and
4), as the initial-related system parameter §; (i=1, 2,
3, and 4), was explicitly expressed in the dimen-
sionality reduction model. When Y;(0), Y,(0), and
Y5(0) were set to 0, dimensionality reduction system
(17) could reconstruct the extreme multistability of
original system (15).

6.3. Hidden Extreme Multistability — Reconstitution.
Different from the memristive system mentioned above, the
nonautonomous FitzHugh-Nagumo (FHN) neuronal cir-
cuit was used to solve the problem of critical stability (i.e.,
hidden attractors) of the system [141]. By using dimen-
sionality reduction modeling, it was proved that the
attractors generated by the system were indeed hidden
[70, 141]. This article mainly solved the following four
problems:

{ X, =X, +0.5X, +0.5In cosh(X, —8;) + 1.8 sin(r) + &, — 0.5 In cosh(d;),

X, =-X, - X, +96,

(c) The critical stability of the original system was
transformed into the deterministic stability of the
dimensionality reduction model.

The original system contained the nonautonomous
term, which caused the system’s equilibrium to
change alternately between stable line equilibrium
set and no equilibrium with time. The attractor
generated by no equilibrium was hidden. However,
due to the existence of zero eigenvalue, the line
equilibrium set had critical stability, so it was im-
possible to determine whether the system produced
hidden attractor. After dimensionality reduction
modeling, no equilibrium and zero eigenvalue were
eliminated, and the dimensionality reduction model
only had certain equilibria which changed with time
and were always stable, thus the equilibria had
certain stability; it was proved that the attractors
generated by the original system were indeed hidden.

(d) The hidden extreme multistability reconstitution of
the nonautonomous memristive system was realized.

7. Synchronization Application of Memristor-
Coupled System

Because of the nano-sized property, memristors are used to
mimic biological neuronal synapses [142-145], which play
important roles in the process of information transmission
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(a) It made up for the gap that the nonautonomous
memristive circuit produced extreme multistability.

A memristor with a smooth hyperbolic tangent
nonlinear memductance was used to replace the
nonsmooth piecewise linear memductance in the
FHN neuron circuit in [94]; a nonautonomous
memristive FHN neuron model that could produce
extreme multistability was obtained.

(b) By using the incremental integral transformation
method, the original 3-dimensional system was
transformed into 2-dimensional dimensionality re-
duction. The nonautonomous memristive FHN
neuron model is described as

Xy = x, +0.5(1 — tanh x;)x; + 1.8 cos (1),

Xy = —X; — Xy, (18)

X3 = —X.

After the incremental integral transformation, the
model of dimensionality reduction was obtained:

(19)

among the coupled neurons [146-149]. And, various
memristor-coupled systems are studied, such as memristor-
coupled Hindmarsh-Rose neurons [150] and memristor-
coupled Hopfield neural network [151, 152].

It is all known that abundant collective behaviors appear
in the actual neural system due to the interactions in neurons
[153, 154]; among them, synchronization is the outstanding
collective features in neuroscience [155-157], which is
regarded as one of the mechanisms to propagate and to code
information in brain [158, 159]. However, there are different
kinds of brain disorder diseases, such as Alzheimer’s, epi-
lepsy, Parkinson’s, and schizophrenia, which are involved
with the abnormal activities of synchronization [160].
Therefore, neuron synchrony is a fundamental topic in
neuroscience.

Different from the traditional nonlinear elements, the
memristor is a special nonlinear element with internal state
variables [1]. Therefore, using the memristor to couple the
nonlinear system can easily generate special synchronization
behaviors that depend on the initials of the memristor,
which is completely different from the general nonlinear
coupling system [161, 162]. In the general nonlinear coupled
system, as long as the coupling strength is large enough, the
master system and slave system starting from any state
initials will always asymptotically achieve complete syn-
chronization [163]. Naturally, in the nonmemristor-coupled
system, some scholars have analyzed the initial influence on
synchronization from the qualitative point of view and
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FIGURE 7: Periodic synchronizations with parallel offsets between the master system and slave system.

found that the synchronization stability depended on the
state initial setting to some extent [35]. For memristor-
coupled systems, various synchronization research studies
have attracted important attention, and different influencing
factors on synchronization were proposed. For examples, in
[164], the effect of coupling strength on synchronization
transition was investigated. In [165], the influence of cou-
pling intensity and induction coefficient on phase syn-
chronization was discussed. In [166], the effect of
electromagnetic parameters on synchronization was studied.
In [94], the effect of the coupling memristor parameter on
synchronization was given. In [147, 167, 168], the robust
analysis approach to asymptotic finite-time synchronization
and interval matrix method of global exponential syn-
chronization were proposed for investigations of the delayed
memristive neural networks.

However, the dynamical effects of the state initials on
synchronization in the memristor-coupled systems were
rarely concerned in the published literatures [37, 169, 170].
The first reason is that the state initials are implicit pa-
rameters and cannot be expressed explicitly in the state
equations. Secondly, such a result makes many researchers
question it, because according to our previous under-
standing of synchronization, state initials are irrelevant to
synchronization behavior [161, 162, 171]; however, now, it is
said that state initials have influence on synchronization
behavior, and their influence cannot be ignored; most
scholars are doubtful about this conclusion. At the same
time, if the conclusion is presented only by numerical
analysis and other qualitative means, its credibility is un-
doubtedly not enough.

Interestingly, these problems can be solved by simpli-
fying the mathematical models via using appropriate state
variables or applying reasonable approximation and sim-
plification [21, 37, 172, 173]. In [173], the initial effects on
synchronization for the memristor-coupled system were
quantitatively analyzed by the incremental flux-charge
analysis method. Due to the inherent state initial mis-
matches between the two identical coupling systems, the two
systems could not achieve complete synchronization under a
large coupling strength [173], but synchronous motion with
parallel offset could be realized, as shown in Figure 7. Based
on the above dimensionality reduction reconstitution

method, in the study of the synchronization of the mem-
ristor-coupled system, the inherent state initial mismatches
between two identically coupled systems can be expressed as
the initials-related parameter mismatches between two
nonidentically coupled dimensionality reduction systems,
and then, the quantitative theoretical research on the in-
fluence of the state initial on synchronization can be easily
realized.

8. Summary and Prospect

The inherent memory property of the memristor makes the
memristor-based circuit and system easy to produce the
state initial-dependent dynamical behavior. Especially, the
state initial-dependent extreme multistability phenomenon
has been paid more and more attention by scholars, and
abundant results have been obtained. Most of the existing
literatures verify this special phenomenon through nu-
merical simulation or circuit simulation, or capture different
attractors randomly by closing and disconnecting the power
supply in hardware experiments. The dimensionality re-
duction analysis method proposed in the literature theo-
retically realizes the precise prediction, quantitative analysis,
and physical control of extreme multistability. For the ideal
memristor-based circuit and system, the incremental flux-
charge analysis method and incremental integral transfor-
mation method can effectively realize dimensionality re-
duction modeling and extreme multistability reconstitution
of memristive circuits and systems, and then, physical
control and mechanism exposition of extreme multistability
can be realized through quantitative analysis. It can be seen
from the existing research contents and results that although
great progress has been made in the study of the state initial-
dependent dynamical behavior of memristive circuits and
systems, there are still many problems to be studied, mainly
focusing on the following seven aspects: (a) prediction and
control of the nonideal memristor-based circuit and system
by state initial; (b) how to model the dimensionality re-
duction of the memristive circuit and system with high order
or complex nonlinear terms; (c) study on the influence of
state initial on the dynamical behavior of the memristor-
coupled circuit and system and neural electrical networks;
(d) for different types of complex memristive systems (such
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as time-delay memristive system and fractional-order
memristive system), how to carry out equivalent transfor-
mation and dimensionality reduction modeling, so as to
realize the reconstitution of its state initial-dependent dy-
namical behaviors; (e) the multistability of the original
memristive circuit and system can be reconstructed from the
dimensionality reduction model constructed by the incre-
mental flux-charge analysis method and incremental inte-
gral transformation method, only when the state initial is set
as the origin. However, the dimensionality reduction model
is usually a nonlinear system, and its state initial will have a
great influence on the system. Therefore, when the state
initial is set to nonzero, how to predict and control the
multistability of the original memristive circuit and system;
(f) at present, the dimensionality reduction methods are
used to study continuous memristive systems, so how to
study the multistability of discrete memristive systems is an
urgent scientific problem to be solved; (g) it is also a scientific
problem to be solved whether the extreme multistability
system can be built with real memristor devices and tested
experimentally to make the research method more practical.
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The fractional calculus in the neuronal models provides the memory properties. In the fractional-order neuronal model, the
dynamics of the neuron depends on the derivative order, which can produce various types of memory-dependent dynamics. In
this paper, the behaviors of the coupled fractional-order FitzHugh-Nagumo neurons are investigated. The effects of the coupling
strength and the derivative order are under consideration. It is revealed that the level of the synchronization is decreased by
decreasing the derivative order, and the chimera state emerges for stronger couplings. Furthermore, the patterns of the formed

chimeras rely on the order of the derivatives.

1. Introduction

Fractional-order models have attracted much attention
from scientists in different fields such as physics and
electronics [1-5]. Considering the fractional derivative, a
memory feature is added to the systems. Therefore, the
fractional-order model can provide a more precise de-
scription of the real phenomena than the integer-order
[6]. Furthermore, the fractional calculus has found wide
applications in controlling the integer-order systems [7].
The fractional derivative also plays important role in
demonstrating different firing patterns of the neurons [8].
Consequently, several fractional neuron models have
been presented [9-11].

The complicated interactions among the neurons cause
the neural system to act as a complex network [12]. The
emergence of collective behaviors is an important

characteristic of complex networks [13]. Some examples of
collective behaviors are synchronization [14], chimera state
[15], and solitary state [16]. Synchronization is an important
phenomenon in many applications [17]. Many studies have
focused on the synchronization of chaotic systems [18-23].
Furthermore, synchronization manages many neural func-
tions and participates in many brain disorders [24]. In
special cases, synchrony and asynchrony are observed si-
multaneously in a specific region of the brain. For example,
the unihemispheric sleep, the neural bump state, and the
epileptic seizure disease can be mentioned [25]. This par-
ticular condition is called the chimera state [26]. After the
foundation of chimera state in 2002 [27], it became the focus
of many researchers in a variety of dynamical systems such
as the mechanical [28], optical [29], and chemical [30] os-
cillators and neuronal models [25, 31, 32]. Furthermore,
these studies have represented the chimeras with different
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spatiotemporal patterns and properties, including the am-
plitude chimera [33] and traveling chimera [34].

In neuronal studies, the chimeras were under consid-
eration from different perspectives such as the neurons’
dynamics, network topology, and coupling scheme. Santos
et al. [35] investigated the chimera in 2D networks with
regular and fractal topologies and found the spiral chimeras
with multiple asynchronous cores. Wang et al. [36] reported
the existence of chimera state in the hyperchaotic neurons
with hyperchaotic dynamics. Blondeau Soh et al. [37] rep-
resented that shifting the neighbors in the coupling leads the
network towards the chimera state. Provata and Venetis [38]
studied a neuronal network with power-law coupling and
showed that the chimera exists in the weak couplings with
large exponents. Li et al. [39] considered two unidirec-
tionally coupled layers of neurons and showed different
collective behaviors in the master layer and the induced
imperfect chimera state in the slave layer.

Among the chimera studies in neuronal networks, a few
have considered the fractional models. Vazquez-Guerrero
et al. [40] showed that the network of fractional Hind-
marsh-Rose neurons is capable of representing chimera
state. They also presented a fractional adaptive controller to
obtain the synchronization. In another study, they designed
an observer to synchronize the chimera state in coupled
fractional neurons [41]. He [42] investigated the magnetic
Hindmarsh-Rose model with fractional derivative and
showed that analyzing the complexity of the network can
help in recognition of its dynamical behavior. In this paper,
we study the dynamical behaviors of a network of fractional-
order FitzHugh-Nagumo systems. The effects of the order of
derivatives and the coupling strength on the chimera state
are under consideration.

2. The Model

Recently, the scientists have focused on proposing new
models for describing the neural behaviors with considering
different aspects of neurons [43, 44]. Here, we use the
FitzHugh-Nagumo (FHN) model with considering the
fractional derivative as follows [45]:

du u’ o
—=u—-——-v+1,
dr? 3
(1)
dlv

4 =0.08(u + 0.7 - 0.8v),

T ( )
where u and v are the membrane voltage and the recovery
varjable and I is the external excitation current fixed at 0.5.
The fractional derivative order is denoted by g, and d?/d#1 is
the Caputo-Fabrizio (CF) fractional operator defined by

N S e
@u(t) " T(1-¢q) J'to (t - 7)1

where I' is the Gamma function. The dynamics of the model
relies on the values of the derivative order. Figure 1(a)
represents the bifurcation of the model according to g. To
consider the spiking firing for the model, the range of

dr, 0<g<l, (2)

Complexity

0.7 <q <1 is selected in all simulations. The time series and
phase spaces of the model for g =1, 0.9, 0.8, and 0.7 are
shown in Figures 1(b)-1(e). It is observed that by decreasing
g the amplitude of the oscillations decreases and the period
increases.

We consider the network of fractional FHN neurons
with the following equations:

q 3 N

(iitl;i =u; - 143_1 -v;i+I1+d Z Gij [buu(uj - ui) + bw(vj - vi)],

j=1

N
% =0.08(u; + 0.7 - 0.8v,) +d Zl Gij[bou(; — ;) + b, (v; = v) ],
=

(3)

where d is the coupling strength and G is the Laplacian
matrix of connections. The network has a ring structure with
nonlocal coupling as shown in Figure 2 (each neuron is
connected to its 40 nearest neighbors, and N = 100). The
coupling between variables is through a rotational matrix as
follows [46]:

b, b cos¢ sin
B:( » ):( ¢ ¢>>, “
b,, b,, —-sin¢ cos¢
with ¢ = (7/2) — 0.1 being the coupling phase.

3. Results

The network is solved numerically by using the
Adam-Bashforth method based on the algorithm proposed
in [47] with random initial conditions. To identify different
behaviors, the strength of incoherence (SI) is used [48]. To
find this measure, at first, the variables are transformed into
new ones as x; = U; — U;,1,i = 1,..., N. Then, the network is
divided into M = N/n groups of n neurons, and the local
standard deviation is computed as follows:

mn

o(m) = 1 Z

j=n(m-1)+1

[x; _<x>]2 >

t

(5)

where (x) = 1/N ¥~ x; (). Finally, the SI is computed by
S = 0(6 — o (m)),

(6)

M
SI=1 _Zm:l Sm
M bl

where 0 is the Heaviside function and § is a threshold set at
0.23, here, and n = 4. The value of SI determines the behavior
of the network by SI=0, 0<SI<1, and SI=1 for syn-
chronization, chimera, and asynchronization, respectively.

The network of equation (3) with integer-order (g = 1)
represents different dynamical behaviors with varying the
coupling strength (d). However, the dynamical changes
occur in very small coupling strengths. The patterns of the
neurons by varying d values are demonstrated in Figure 3.
The left panel represents the space-time plots, and the right
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FIGURE I: (a) The bifurcation diagram of the model; inter spike intervals (ISI) versus the derivative order (g). (b—e) The time series and phase
spaces of the model for different g values: (b) g =1; (c) g =0.9; (d) g =0.8; (¢) g =0.7.

FIGURE 2: The ring structure of the N = 100 neurons with nonlocal
coupling. Each neuron is connected to its 40 nearest neighbors. The
connections for i = 1 are illustrated.

panel represents the time snapshots of the neurons. By
increasing the coupling strength, the initial asynchronous
pattern of the neurons changes to the chimera state. For
d = 1077, a chimera state is created (shown in Figure 3(a)),
and it can be seen that there are synchronous and asyn-
chronous neurons in the network. With an increment in the

coupling strength, more neurons locate in the synchronous
group. The behavior of the network for d = 1.7 x 107 is
illustrated in Figure 3(b). In this case, most neurons are
synchronous, while a few oscillate differently. This behavior
is called the solitary state [49, 50]. As the coupling becomes
stronger, different neurons are attracted to the synchronous
group and a complete synchronization is observed
(Figure 3(c)).

The behavior of the neurons is considerably influenced
when the derivative of the network’s equations changes to
the fractional. To investigate this, the coupling strength is
considered to be fixed at d = 2 x 107, where the integer-
order network shows the solitary state (similar to
Figure 3(b)) and the fractional order is changed. With de-
creasing the fractional order (g), firstly, the network syn-
chronization is enhanced. This is shown in Figure 4(a) for
q =0.9. However, more decrement of g disturbs the syn-
chronous behavior of the network. Figure 4(b) represents the
chimera state for g = 0.8 with a similar coupling strength
value. When g decreases to g = 0.7, the network becomes
completely asynchronous (Figure 4(c)). The waveforms of
the neurons in each case are depicted in the right panel of
Figure 4.

For different fractional orders, the range of the coupling
strength for the appearance of different dynamical behaviors
is different. As the fractional order decreases, the chimera
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FIGURE 3: The patterns of the network (left panel) and time snapshots (right panel) with integer-order derivative: (a) chimera state for
d=10"7 (SI =0.74); (b) solitary state for d = 1.7 x 107> (SI = 0.39); (c) synchronization for d = 5x 107> (SI = 0).

state is formed in higher coupling strengths. Figure 5(a) shows
the chimera state in g = 0.9 for d = 4.6 x 10~ °. In this case,
there are several groups containing a few synchronous
neurons. Forg = 0.8, the chimera is observed for d = 3 x 10°°
and more neurons are involved in the synchronous cluster
(Figure 5(b)). When ¢ decreases to g = 0.7, in some time
intervals, some neurons become synchronous. Therefore, the
chimera for this derivative is nonstationary. The chimera for
q = 0.7 is shown in Figure 5(c). To illustrate the coherent and
incoherent clusters better, the local order parameter is
computed and shown in the right column of Figure 5. This
parameter can be obtained as Ly =[1/2p} ;. exp
(o)l k=1,...,N, where ¢, is the geometric phase of Ith
oscillator calculated by ¢; = a tan(y,/x;). The size of the

spatial window is denoted by p. When L; = 1, the kth os-
cillator belongs to a coherent group.

Figure 6 represents the strength of incoherence of the
network for different fractional orders. For g =1, the
network is in chimera state until d = 5 x 10”° and becomes
synchronous for larger coupling strengths (Figure 6(a)). A
similar pattern is observed for g =0.95 (Figure 6(b)).
When g decreases to g = 0.9, the synchronization occurs
for very smaller coupling strengths (d = 2.2 x 10~°). For
q = 0.85, the network’s dynamical behavior returns to the
q =1 manner. With more decrement of g, a stronger
coupling is needed for the synchronization. Figure 6(e)
shows that g = 0.8 has the larger chimera region. For g =
0.7 and q=0.75, a large asynchronization region is
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FIGURE 4: Upper panel: the patterns of the network for d = 2 x 10~° and different derivative orders. The integer-order network exhibits a
solitary state at this coupling. (a) Synchronization for g = 0.9 (SI = 0). (b) Chimera for g = 0.8 (SI = 0.8). (c) Asynchronization for g = 0.7

(SI=0).

observed. The variation of SI according to g is illustrated in
Figure 7. It is observed that for low coupling strength, the
integer network is in a chimera state. The chimera state is
preserved until g = 0.835, and then all neurons become
asynchronous. For strong couplings, the integer-order

network is synchronous. With decreasing g, the syn-
chronization remains until g =0.84. For g<0.84, the
chimera state is formed. However, in the range
0.8<g<0.823, the synchronization may appear in the
network determined by the initial conditions.
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4. Conclusion

In this paper, a network of coupled fractional-order Fitz-
Hugh-Nagumo neurons was studied. The dynamical be-
havior of the network was investigated under the variation of
the coupling strength and the derivative order. The bifur-
cation diagram of the fractional system with respect to the
derivative order revealed that the dynamics of the model is
dependent on the fractional order. Consequently, by
changing the value of the derivative order, various collective
behaviors of the neurons can be found. The integer-order

neurons experience asynchronization, chimera, and syn-
chronization with increasing the coupling strength, re-
spectively. In the fractional-order network, decreasing the
derivative order for the constant coupling strength, resulted
in the lower synchrony level in the network. Therefore, the
fractional-order network has the same state transition;
however, it occurs in higher coupling strengths. Thus, the
chimera or synchronous states appear for stronger cou-
plings. Furthermore, the pattern of the chimera was changed
with varying the derivative order. For g = 0.9, some small
synchronous clusters were formed, while in g = 0.8, a large



cluster of synchronous neurons was observed. For lower q
values (g = 0.7), the position of the synchronous cluster was
time-dependent and the nonstationary chimera state
appeared.
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This paper is presented on the theory and applications of the fractional-order chaotic system described by the Caputo fractional
derivative. Considering the new fractional model, it is important to establish the presence or absence of chaotic behaviors. The
Lyapunov exponents in the fractional context will be our fundamental tool to arrive at our conclusions. The variations of the
model’s parameters will generate chaotic behavior, in general, which will be established using the Lyapunov exponents and
bifurcation diagrams. For the system’s phase portrait, we will present and apply an interesting fractional numerical discretization.
For confirmation of the results provided in this paper, the circuit schematic is drawn and simulated. As it will be observed, the

results obtained after the simulation of the numerical scheme and with the Multisim are in good agreement.

1. Introduction

In the last decade, chaos theory has attracted many re-
searchers. Chaos theory is a field of mathematics that can be
applied in many domains: from modeling chaotic financial
systems [1], in representing circuit schematics [2, 3], and
others. The chaotic systems and their circuit schematics have
received many investigations in the literature, see, for ex-
ample, [2-4]. With the new development of fractional
calculus, some researchers were interested in modeling
chaotic systems using the new and old fractional operators.
The impact of the fractional derivatives is an interesting
question which merits investigations. Many problems are
opened in fractional calculus. The first question is how to
construct the numerical scheme to obtain the phase portraits
of chaotic systems. Many numerical techniques are used in
fractional differential equations that can be applied naturally
to solve chaotic systems. In [5], Danca finds interesting
remarks that the characterization of the hyperchaotic system
using two positive Lyapunov exponents is not an adequate
definition in a fractional context. Therefore, modeling chaos
using fractional operators is an open problem that admits
some interesting interrogations which are not solved yet.

Fractional calculus finds many recent advancements in
fractional operators and their applicability in real-world
problems. For recent advances of fractional calculus and its
applications, see the following investigations [1, 6-10].
The chaos literature in integer version and fractional
context is very long, but we recall the investigations we find
essential for our study. In [11], Pacheco et al. study a new
analysis of a new chaotic system with different families of
hidden and self-excited attractors by using the fractional
operator. In [12], Rajagopal et al. analyze using fractional-
order derivative a memristor no equilibrium chaotic system;
they proposed synchronizing their introduced model. In
other words, they try to find adequate control to synchronize
slave and master chaotic systems. In [2], Avalos-Ruiz et al.
propose a control implementation on an FPGA for a class of
fractional chaotic systems in the context of fractional var-
iable order derivative with Mittag-Leffler kernel. In [13],
Perez et al. propose the fractional-order chaotic system in
the context of conformable Liouville-Caputo operator. At
the same time, they present a novel numerical scheme for the
used fractional operator to depict the phase portraits of their
proposed chaotic system. In [14], Gomez et al. investigate the
chaos in a calcium oscillation model using the Mittag-LefHler
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fractional derivative operator. In [15], Atangana and Gomez
offer a new hyperchaotic system in the context of the Mittag-
Leffler fractional operator. They provided a numerical
scheme to depict the considered model’s phase portrait in
the fractional operators’ context. They mainly apply their
numerical procedure to the fractional Chua model. In [16],
Li et al. introduce a new four-wing model with integer-order
derivative, which will be subject to investigations in the
fractional context. In [3], Akgul gives a chaotic system for
modeling the memcapacitor model using a fractional-order
derivative. In [17], Rajagopal et al. continue their exciting
investigation of the fractional-order chaotic system in the
fractional calculus field. They propose a work on the mul-
tiscroll chaotic system and give an application to the syn-
chronization of their proposed model. In [18], Akgul et al.
address a user interface for the generation of random
numbers based on fractional and integer-order chaotic
systems. For more investigations in chaos, see in the fol-
lowing investigations [4, 12-14, 19].

The novelties of the present paper are described in the
following lines. This paper focuses on the phase space, the
bifurcation diagrams, and the chaos’s characterization using
the Lyapunov exponents for a fractional version of the Li
et al. chaotic system. We analyze the impact of the fractional-
order derivative on the dynamics of a fractional version of
the system in [16] with Lyapunov exponents and bifurcation
diagram aids. Its possible implementation in terms of
electrical modeling has been proposed as well. One of the
novelties of the present work is the Lyapunov exponents in
the fractional context, which is an open problem. Note that
the Lyapunov exponents’ properties in the integer context
for hyperchaotic and chaotic behaviors are not adequate
definitions in the fractional version. This remark was first
discussed in [5]. Furthermore, the slight variation of the
model’s parameters in the dynamics has been investigated
using bifurcation diagrams. We provide in this paper that
the initial conditions impact the chaotic behaviors in the
fractional context. The circuit schematic of the fractional
chaotic system and the results after simulation in Multisim
confirm the theoretical findings obtained via the numerical
scheme.

The paper is structured in the following form. In Section
2, we define the fractional operators’ necessaries for our
work. In Section 3, we present the fractional-order chaotic
system described by the Caputo derivative. Section 4 offers
the numerical scheme used to obtain the considered frac-
tional system’s phase portraits. In Section 5, we illustrate the
numerical method by depicting the supposed system’s phase
portraits with different fractional-order of the Caputo de-
rivative. We also characterize the nature of the chaos using
the Lyapunov exponents. In Section 6, we present the bi-
furcation diagrams and phase space according to the vari-
ation of the considered fractional-order chaotic system’s
parameters. In Section 7, we give the possible imple-
mentation of the fractional-order chaotic system in mod-
eling electrical circuits; this section will confirm the paper’s
theoretical findings. Section 8 provides the stability analysis
of the fractional-order chaotic system’s equilibrium points
with the Matignon criterion used in fractional calculus. In
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Section 9, we analyze the sensitivity of the initial conditions
in the fractional-order chaotic system. We finish with the
final remarks and future perspectives of research.

2. On Fractional Operators in
Fractional Calculus

In this paper, we study a fractional differential system;
before, it was indispensable to recall the fractional operators
used in this work. Many fractional derivatives exist, those
with singularities as the Caputo and Riemann-Liouville
derivatives, those with nonsingularities as the exponential
derivative, and the Mittag-Leftler fractional derivative. Due
to space limitations, we provide the Caputo derivative and
the Riemann-Liouville derivative and their generalizations.

Definition 1 (see [20, 21]). The integral defined by Riemann
and Liouville called Riemann-Liouville integral of a given
function z: [0, +co[ — R is

12 =—— [ (t-9'z(5)d (1)
(") =7 J, =9 29

with the function I'(...) symbolizing the Gamma Euler
function and under the order a > 0.

There exists a generalization of the Riemann-Liouville
operator recently proposed in the literature; we have the
following definition.

Definition 2 (see [22]). The generalized Riemann-Liouville
fractional integral of a given function z: [0, +oo[ — R is

. 1 =S ot ds
”Z“)‘mjo( ; ) SR

where the orders « and p satisfy the following relationship «
and p >0 and the function gamma is I'(...), for all #> 0.

We can observe that when the order p = 1, we get the
classical Riemann-Liouville integral operator. Furthermore,
when « = p = 1, we have the integer version of the integral.

Caputo proposed another derivative due to the incon-
venience of the Riemann-Liouville operator. We recall the
Caputo derivative in the following definitions and its
generalization.

Definition 3 (see [20, 21]). The Caputo fractional derivative
of order a € (0,1) can be represented as the form of the
function z: [0, +0co[ — R:

P _ 1 ! -
D‘z(t)_l“(l—oc) ,[o (t—s) "z (s)ds, (3)

with the Gamma Euler function denoted by I'(...).
Definition 4 (see [22]). The generalized Caputo derivative of

order a € (0,1) is described as the form of the function
z: [0,+00[ — R:
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. B 1 ttr—sP\ Y,
D pz(t)_r(l—oc) Jo( P ) z (s)ds, (4)

with the orders « and p satisfying the relations a € (0.1) and
p>0 and the Gamma function is denoted by I'(...), for all
t>0.

There exist many fractional operators, and all of them
have their advantages. The use of the Caputo derivative in
the present work has many motivations. Firstly, all fractional
operators take into account the memory effect. Secondly, our
main motivation is the initial conditions because the Rie-
mann-Liouville derivative cannot consider them. In the
Riemann-Liouville derivative case, the starting condition
should be an integral form known in physics to be unre-
alistic. It cannot be satisfied in many real-world problems.
Another basic motivation is in the context of Rie-
mann-Liouville; the derivative of a constant is not null,
contrary to the context of the Caputo derivative where the
derivative of a constant is null.

3. Fractional-Order Chaotic System

This section provides a fractional version of the chaotic
model based on the system presented by Li et al. [16]. Before
the investigation, we recall Li et al. chaotic equations rep-
resented with the integer-order derivative by the following
equation:

x' =ax+y+yz
y' = -xz+yz, (5)
Z,

=-bz-cxy+m,

with initial conditions

x(0) =1,
y(O) =-1 (6)
z(0) = 1.

The strange attractor is obtained ata = 1,b = 1,and m =
1 according to Li et al. work. The Lyapunov exponents of the
model presented in system (5) are LYE, = 0.409, LYE, =0,
and LYE; = —1.773. In the original paper, the system pre-
sented in equation (5) is called a four-wing chaotic equation
and admits three real equilibrium points, which are unstable
and have two other complex equilibrium points. For more
explanations related to the system in equation (5), see [16].
In our present work, we consider the memory effect gen-
erated by the fractional operators. Therefore, we investigate
the following modified fractional-order chaotic system:

Dix =ax+y+yz,
Dfy=—xz+yz, (7)
Diz = -bz—cxy+m,

with the initial condition defined by the following relation:

3
x(0) =x,=0.2,
y(0) =y, =02, (8)
z(0) =z, = 0.2.

Our objective is to give a new fractional-order system;
therefore, we set the following values for the parameters of
model (7); there area=1,b=1,c =1, and m = 0. In terms
of comparison, we can observe that equation (7) is a frac-
tional version of equation (5). Furthermore, we can observe
when the order of the Caputo derivativeis k = f = a =1 in
equation (7); we recover the constructive equation of
original equation (5) presented in [16]. The difference is in
the initial conditions. This paper will be to focus on detecting
the chaotic behavior when the fractional-order derivative is
utilized. The fractional-order operator impact will be ana-
lyzed and proved by the comparison of the attractors’ ge-
ometries. The variation of the model’s parameters such as a
and ¢ generate strange actuators and will be confirmed using
the bifurcation diagrams. We will also establish via the
stability analysis of the equilibrium points of our considered
chaotic system; there exists a chaotic region according to the
variation of the order of the Caputo derivative. Equation (7)
is said the system with commensurate fractional-order when
k = f = a; else, it is said the equation with incommensurate
fractional-order.

4. Numerical Scheme for the Fractional-Order
Chaotic System

In this section, we apply the numerical scheme proposed by
Garrapa [23] for our proposed fractional-order equation (7)
necessary to depict the phase portraits. This numerical
discretization uses the numerical approach of the Rie-
mann-Liouville integral. In this section, we consider
equation (7) with commensurate fractional-order. The first
step will be to determine the analytical solution of fractional
differential equation (7) using Riemann-Liouville integral:

x(t) = x(0) + Iu(t, x,), (9)
y(t) = y(0) + I"v(t, x), (10)
z(t) = z(0) + I"w(t, x;). (11)

We set the following function obtained from model (7):
u(t,x;) =ax+y+yz
v(t,x,) = —xz + yz, (12)
w(t,x,) = bz — cxy.

For the graphical representations, we introduce the

discretization at the point t,; then, equations (9)-(11) can be
written in the following form:

x(t,) = x(0) + I"u(t,, x,), (13)

y(t,) = y(0) + I*v(t,, x), (14)



z(t,) =z(0) + I"w(t,, x;). (15)

Introducing the step-size h and t,, = nh, the discretiza-
tion of the fractional integrals can be represented for the
functions u, v, and w as the following:

n

Fu(tyx) =h* Y d, u(tx;), (16)
j=1

I*v(t,x)=h") d, jv(t)>x1;); (17)
j=1

I'w(t,,x,) =h" Z dn_jw(tj, xlj), (18)
j=1

where the parameters are given by

((n-j+1)"=(n-j)°)
1/(T(1+a)
((n+ 1) - (")

"I+ )

d —

n—j =

(19)

For the simplification of the numerical scheme of the
Riemann-Liouville integral, we introduce the first-order
interpolant polynomial of the functions u (), v(7), and w (1)
given by the following relations [23]:

—t.
u(t)=u (tj+17x1j+l) + % [”(tﬁl’xljﬂ) - ”(tj’xlj)]’
(20)
T—tj+1

[(tju0x1j01) = (1t x05) ]
(21)

v(‘r)=v(t]-+1,x1j+1)+ 7

T—1t;

“’(T):w(tﬁl’xlﬁl)+Tjﬁ[w(t1+vxu+1)‘w(tj’xlj)]~

(22)

Replacing equations (20)-(22) into equations (16)-(18),
we get, after recursive summation, more simple formulas for
the numerical approach of the fractional integrals:

I"u(t,,x;) = h* {Hﬁa’u(o) + Z d,(ﬁiu(tj, xlj)], (23)

j=1

n
I*v(t,,x,) = h" |:H,(1a)v(0) + Z df,f;v(tj,xlj):l, (24)
i1

I‘xw(tn, xl) =h* |:d;ioc)w(0) —+ Z dfﬁ)jw(tj, xlj):|’ (25)
j=1

where the parameters are given explicitly as the following
form:
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@ _ m-1)"-n"*n-a-1)

d , 26
n I'2+a) (26)
and furthermore, when n =1,2,..., then the parameter d
can be expressed as the following forms:
1
d(a) _ ,
* T(+a)
(27)
@ (7’1 _ 1)a+1 _ 2na+l + (1’1 + 1)(x+1
d,” =

T'(2+a)

For the numerical schemes which are used to represent
the graphics, it is obtained after plugging equations
(23)-(27) into equations (13)-(15); we have the following
expressions:

x(t,) = x(0) + A" Efl“)u(O) +y Kfl“)ju(tj,xlj):|,
§ j=1

y(t,) = y(0) + h* Ena v(0) + Z Kflf)jv(tj,xlj)], (28)

z(t,) =z (0) + h* H,ﬁ"‘)w(o) +) K,(L“;w(tj,xlj):|.
=1

For the previous representations, it is necessary to recall
the numerical discretization for our functions u, v, and w; we
have the following:

u(tj,xlj) =ax;+y;+y;z;
v(tj,xlj) =-X;Z;+YiZj (29)
w(tj,xlj) = —sz—cxjyj.

The convergence and stability are not detailed in this
section, see [23]; here, we just give information related to
these two properties. We assume that x (t,,), y (t,,), and z (¢,,)
are the approximate numerical solutions of the fractional
system represented in equation (7), and x,,, y,,, and z, are the
exact solutions; the residual function with the Caputo de-
rivative is given by the following expression:

|x(tn) - xn' = @(hmin{‘”l@}))
ly(tn) — yﬂl — @(hmin{a+1,2})) (30)
|Z(tn) - Zn| = @(hmiﬂ{aJrl,Z}).

We can notice that the convergence of the numerical
scheme presented in this section is obtained when the step-
size h converges to 0 [23]. The stability of our numerical
scheme is obtained from the Lipchitz criterion of the
functions u, v, and w.

5. Illustration of the Numerical Scheme

This section presents the phase portraits of fractional-order
system (7) with commensurate and incommensurate frac-
tional orders. The main objective is to illustrate the nu-
merical scheme presented in previous Section 4. We set the
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following values for the parameters of the model a =1,
b =1, and c = 1 and the initial conditions given by equation
(9). For Figure 1, the considered order is & = 0.95.

For more illustrations, we consider system (7) with
commensurate order o« =0.90. The phase portraits are
presented in Figure 2.

An interesting procedure of comparison between the
geometry of the attractors can be found in [24]. The method
consists of comparing the amplitude of the attractors in
different orders of the Caputo derivative. The comparison of
the attractors’ geometry at the orders a = 0.9 and « = 0.95
can be analyzed for model (7). We adopt the sketch pre-
sented in [24]. We consider the phase portraits in plane
(x, ) in Figures 1 and 2 and construct polygons, calculate
their areas, and compare them. We have following Figures 3
and 4.

In Figure 3, amplitudes are EF =122cm and
AB = CD = 4cm, and in Figure 4, the amplitudes are KL =
10.88 cm and GH = I] = 3 cm; referring to the dimension
and calculating the areas of the polygons AFBDEC and
GLHJKI, we notice that the
area (AFBDEC) > area(GLHJKI); thus, there exists a sig-
nificant difference between the attractors at the orders o =
0.9 and « = 0.95. The method adopted in this section proves
the influence of the order of the Caputo derivative. To see
more the impact of the order of the Caputo derivative, we
consider fractional chaotic equation (7) with incommen-
surate order:

x'=ax+y+yz
Yy =-xz+yz, (31)
Diz = —bz — cxy.

System (31) is obtained when « = 1 and § = 1 in equation
(7). We have the phase portraits in following Figure 5.

The Caputo derivative’s impact can be observed by
comparing the phase portrait in the commensurate sce-
nario and the phase portrait in the incommensurate sce-
nario, which have different geometries. To detect equation
(7) chaotic behavior with the orders « = 0.9 and « = 0.95,
we calculate the Lyapunov exponents. The Lyapunov ex-
ponents will permit us, in general, to recognize chaotic
behaviors. The Jacobian matrix of fractional differential
equation (7) with the same order is given by the following
matrix, which is a fundamental tool for finding the Lya-
punov exponents:

a l+z y

J=| -z z -x+y | (32)

-y —cx b

The Lyapunov exponents in the context of fractional
calculus in the chaotic system using Matlab code are pro-
posed in Danca’s work. Following the same proposed al-
gorithm, the Lyapunov exponents for fractional-order
equation (7) with commensurate order when « = 0.95 are
given as follows:

5
LYE, = 0.3449,

LYE, =0, (33)
LYE, = —2.5326.

And, its associated Kaplan-Yorke dimension is given as
follows:

LYE, + LYE,

dim (LYE) = 2 +
[LYE,

=21362.  (34)

Following the previous results, we can give the nature of
the behaviors. First of all, the fractional system is dissipative
because the sum of all Lyapunov exponents gives a negative
number. The second property is to detect the chaotic be-
havior of our presented equation (7) with the same order.
We can see with equation (33), we have one positive Lya-
punov exponent corresponding to the chaotic behavior of
equation (7). We repeat the same analysis with the order
a =0.9; the Lyapunov exponents are represented as the
following form:

LYE, = 0.3775,
LYE, =0, (35)
LYE,; = —3.0042.

And, its associated Kaplan-Yorke dimension is given as
follows:

LYE, + LYE,

dim(LYE) =2 +
LYE|

=21257.  (36)

The system is dissipative as well because the addition of
all Lyapunov exponents is negative. For the nature of the
behaviors, we analyze equation (35); we have the same
conclusion as in the previous case, equation (7) has chaotic
behavior with the order & = 0.9. It is caused by the existence
of one positive Lyapunov exponent. This section’s main
conclusion is when the fractional derivative orders vary in
the interval [0.9, 1), fractional equation (7) with the same
order has chaotic behavior. To confirm this assumption, we
calculate in following Table 1 the Lyapunov exponents
versus the fractional-order derivative’s variation into
[0.9,1).

Checking the results on Table 1, we conclude that
fractional-order equation (7) is dissipative at all orders in the
interval [0.9, 1). It is because, at all orders, the addition of the
Lyapunov exponents is negative. We observe one positive
Lyapunov exponent at all orders a, which means the frac-
tional-order system’s solutions have chaotic behavior.

6. Stability of the Equilibrium Points in
Fractional Context Calculus

In this part, we discuss the fractional-order system’s stability
by using the Matignon criterion. It is a famous criterion used
in fractional calculus. Stability analysis is one of the fun-
damental points in the chaotic and hyperchaotic system. In
general, all equilibrium points when the system is chaotic fail
to be stable. In this section, we consider equation (7) with
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(a) (b)

FiGgure 2: Continued.
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FIGURE 3: Phase spaces with polygon with the order a = 0.9.

commensurate order. It is also interesting to focus on the
stability of its equilibrium points. The Jacobian matrix given
in the previous section will be used again. We have the
matrix described by the following expression:

a l+z y
J=| -z z —x+y | (37)
—-cy —cx -1
The following points are the real equilibrium points
when you exclude the complex eigenvalues:

Pl = (07 0) 0))
P, =(-1.41,-1.41,-2), (38)
P, = (1.41,1.41,-2).

The principle of the method consists of evaluating the

Jacobian matrix at all points previously mentioned. For the
first point P,, the Jacobian matrix is as follows:

7
-6 -4 -2 0 2 4 6
X
FIGURE 4: Phase spaces with polygon with the order « = 0.95.
110
J(P)=1 00 0 | (39)
00 -1

The previous matrix has eigenvalues as the following
numbers A, =1, A, =0, and A; = —1. We notice that the
third eigenvalue satisfies |arg(A;)| = m> (an/2). The first
eigenvalue obeys that |arg(A,)| = 0 < (an/2) for all a. Thus,
the equilibrium point is not stable for all orders « of the
Caputo derivative.

The matrix in equation (37) at the point P, is described
as the following form:

1 -1 -141
jp)=| 2 -2 o | (40)
141 141 -1

The previous matrix has eigenvalues as the following
numbers A, = 0.1230 + 1.8776i, A, = 0.1230 — 1.8776i, and
A3 = —2.246. We remark that the third eigenvalue satisfies
larg(A;)| = > (am/2). The first eigenvalue obeys to
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(d)

FIGURE 5: Phase portraits with the order & = 0.9 in equations (32)-(34).

8
X
(c)
TaBLE 1: Lyapunov exponents.

a LE, LE, LE,
0.90 0.3775 0 -3.0042
0.91 0.3581 0 -2.7858
0.92 0.3083 0 -2.8379
0.93 0.2701 0 -2.7337
0.94 0.2979 0 —2.5546
0.95 0.3449 0 -2.5326
0.96 0.2177 0 -2.3049
0.97 0.2107 0 -2.1671
0.98 0.2171 0 -2.0931
0.99 0.2402 0 -2.0701
0.9950 0.2215 0 -1.9927

larg(A))| = (437/90) > (am/2) for all «<0.9 and the last
eigenvalue |arg(A,)| = (437/90) > (an/2) for all a. Thus, the
equilibrium point is not stable when « exceeds 0.9.

The Jacobian at the point P; is described by

1 -1 141
jp)=| 2 =2 o | (41)
-1.41 -1.41 -1

The previous matrix has eigenvalues as the following
numbers A, = 0.1230 + 1.8776i, A, = 0.1230 — 1.8776i, and
A3 = —2.246. We have that the third eigenvalue satisfies
larg(A;)| = > (am/2). The first eigenvalue obeys that
larg(A,)| = (437/90) > (am/2) for all «<0.9 and the last
larg (A,)| = (437/90) > (am/2) for all «a. Then, the equilib-
rium point is not stable when « exceeds 0.9.

7. Bifurcation Diagrams and
Lyapunov Exponents

This section analyzes the impact caused by the variation of
the parameters a and ¢ on chaotic behavior. Small variations
are applied to a and ¢, and we depict the responses via the
bifurcation diagrams plus phase portraits. In this section, for
more clarity in the curve, we consider the step-size
h =0.005. All findings are obtained with equation (7) in
commensurate order.

We begin our analysis with the variation of the pa-
rameter a in the interval (0,5). Wefixb=1and c=1.In
Figure 6, we represent the bifurcation diagram versus the
parameter a.

We notice that when the parameter a varies in the
region [0.6,5), fractional system (5)-(8) has chaotic be-
havior. Note that the variation of the parameter a into
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(0,0.5) generates the solutions’ convergence to a stable
equilibrium point. For an illustration of the chaotic be-
havior, we represent the phase portraits of our system at
a = 1.5and fixing b = 1 and ¢ = 1 at the order a = 0.95, see
Figure 7.

We confirm the chaotic behavior with the existence of
one positive and large Lyapunov exponent:

LYE, = 0.1918,
LYE, =0, (42)
LYE, = —2.4806.

And, its associated Kaplan-Yorke dimension is given as
follows:

LYE, +LYE,

dim(LYE) =2 +
LYE,|

=20773.  (43)

To validate the convergence of the solutions to a stable
equilibrium point, we study the local stability of the non-
trivial equilibrium point of equation (7) with commensurate
order considering a =0.4. The equilibrium points of
equation (7) with commensurate order with a = 0.4 are
given by 0(0,0,0), A(-1.18,-1.18,-1.4), and
B(1.18,1.18,-1.4). The Jacobian matrix at the point
0(0,0,0) gives

041 0
0 0 0 | (44)
0 0 -1

J(O) =

The eigenvalues of the previous matrix are given by A, =
0.4, 1, =0, and A\; = —1. We can remark that the first ei-
genvalue does not obey to Matignon criterion; thus, the
point O(0, 0, 0) is not local stable. Thus, the convergence of
the solutions of equation (7) is not at the point O (0, 0, 0). We
now try to a point A(-1.18,-1.18,—1.4); thus, the Jacobian
matrix is given by

04 -04 -1.18
J(A=| 14 -14 0 | (45)
1.18 1.18 -1
We obtain as eigenvalues the following values

A, =-0.0763 + 1.4507i, A, = -0.0763 — 1.4507i, and
A; = —1.8474. We can observe that all eigenvalues have
negative real parts. Thus, the Matignon criterion is satisfied
by all eigenvalues. Thus, the point A(-1.18,-1.18,-1.4) isa
stable equilibrium point. We finish with the point
B(1.18,1.18,-1.4). The Jacobian matrix at the point B is
described as the following form:

04 -04 1.18
J(C) = 14 -14 0 | (46)
-1.18 -1.18 -1

The eigenvalues of the previous Jacobian matrix at this
point are given by Ay = -0.0763 + 1.4507i,

A, = —0.0763 — 1.4507i, and A; = —1.8474. We can observe
that all eigenvalues have negative real parts; thus, the
Matignon criterion is automatically satisfied. Thus, the
point C coincides with the stable equilibrium point. Re-
ferring to the phase portraits, the trajectories converge to
the point B when a = 0.4.

We finish this section by the bifurcation diagram gen-
erated by the variation of the parameter ¢ € (0,25), and we
illustrate the impact of the parameter ¢ on the phase por-
traits, see Figure 8, taken at a = 1 and ¢ = 4.

The bifurcation diagram shown in Figure 9 indicates that
, in our considered interval (0,25), the system has con-
tinuously chaotic behavior. Let us ¢ = 4; the chaotic behavior
at this point is confirmed by the existence of one positive
Lyapunov exponent; we have the following calculations:

LYE, = 0.2485,
LYE, =0, (47)
LYE, = —2.4311.

And, its associated Kaplan-Yorke dimension is given as
follows:

LYE, +LYE,

dim(LYE) =2 +
[LYE,|

=21022.  (48)

For more confirmation of the chaotic region, we depict our
fractional system’s phase portraits at a = 1 and ¢ = 0.5, see
Figure 10.

8. Electrical Circuit Schematic of the
Fractional System

In this section, we give the circuit representation associated
to chaotic system (7) with incommensurate order. For more
details in the context of the fractional chaotic circuit, we
consider equation (7) with x = = 1 written using electronic
tools:

L 1
= s 4
¥ IRGTRG Y RGP (49)
oo bt (50)
= — P4 Z,
y R4C1 RSCZy
3 1 1
D’z =— Xy, (51)

Z —_—
‘ RCs R;Cs

where C; for i = 1,...,n denotes the value of the capacitors
and R, represents the resistance value. To connect the results
in this paper with the experimental results, we draw the
circuit schematic and generate the phase portraits using
oscilloscopes. We first use our numerical scheme in the
previous sections to draw the phase portraits. We consider
the order of the Caputo derivative as « = 0.95. The portraits
of model (49)-(51) are represented in following Figure 11.

For the circuit schematic, the values of the capacitors are
given by C, = C, = C; = 1 nF, and the values of the resistors
are given R, =250kQ, R, =250kQ, R;=625kQ,
R, = 6.25kQ, Ry = 6.25kQ, Ry = 250k, and R, = 6.25kQ).
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X max

FIGURE 6: Bifurcation diagram versus the parameter a at order a = 0.95.

(o) (d)

FIGURE 7: Phase portraits with the order & = 0.95 and a = 1.5.

We need to utilize the fractional integrators associated with In equation (52), the third-order approximation is used,
the order a = 0.95 [25]; we have the following formula: but more suitable approximations can also be used. This
) section’s objective is the circuit schematic to validate our
% ~ 31'28625 + 128'60045 *2.0833 : (52)  theoretical results; therefore, third- or fourth-order ap-

s s +18.4738s" + 2.6547s + 0.003

proximations can be used for illustration. The method of
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FIGURE 9: Bifurcation diagram versus the parameter ¢ at order x = 0.95.
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FIGURE 10: Phase portraits with the order a = 0.95.

approximation in equation (52) is not unique. There also
exists the 4™-order approximation, which can generate a
satisfactory magnitude and phase response over a consid-
erable frequency band [26]. For more related works
addressing the approximation of the fractional-order ca-
pacitor via fourth-order continued fraction expansion, see
Mishra et al’s investigation [26]. Utilizing the transfer
function, the above function can be written as the following
formula:

(1/Cy) (1/cy) (1/Cs)
T(s) = .
() = T WRCY s+ (URWCy) 5+ (UR,.Cy)

(53)

Identifying two above equations (45) and (46), we have
the following values for the resistors and the capacitors for
the fractional integrator, C;=1.27nF, C,=4.7nF,
Cs = 3.63nF, Ry = 700 MQ, R,y = 1.5MQ, and R, = 15kQ.
The circuit schematic is done with the aids of 14 resistors,
five capacitors, four multipliers for the 4 nonlinear func-
tions, and others, see Figure 12.

The results corresponding to the simulation of the
electronic circuit in the Multisim platform are shown in
following Figures 13-15.

We can observe that the results with Matlab after
simulating the numerical scheme in Figure 11 and the
findings corresponding to the simulation of the electronic
circuit in the Multisim platform shown in Figures 13-15 are
in good agreement. This section connects the theoretical
results with experimental results.

Before closing this section, we will implement the integer
version of model equations (49)-(51). Therefore, the order «
should be & = 1. For the confirmation of our results obtained
after the simulation of the electronic circuit in the Multisim
platform, we first simulate the following differential
equations:

x'=ax+y+yz (54)

y' = -xz+ yz, (55)
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FIGURE 12: Circuit schematic for fractional-order system (42)-(44).
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FIGURE 13: (x, y) space portrait of the Multisim simulation of equations (49)-(51).

z' = -z —cxy. (56)

Under the initial conditions given by system (9) and with
a =1 and ¢ = 1, the phase portraits are represented in fol-
lowing Figure 16.

For simulation of system (54)-(56), we rewrite equations
(54)-(56) by using resistors and capacitors; we have the
following representation:

T 1 1

= + + Z, 57

¥ 7RG, TRC,? TR, (57)

! L + L (58)

= — Xz Z,

7RG TRG,

, 1 1 (59)
Z = — z — Xy,
R6C3 R7C3 y

where the values of capacitors are given C, = C, = C; = 1nF
and resistors are given by R, =250kQ, R, =250kQ,
R, = 6.25kQ, R, = 6.25kQ, R, = 6.25kQ, R, = 250kQ, and
R, = 6.25kQ. The schematic of the above system is repre-
sented in following Figure 17.

The phase portraits obtained after the simulation of the
circuit in Figure 17 are in following Figures 18-20.

We can observe that the theoretical results 16 and the
experimental results 18, 19, and 20 are in good agreement.

9. Sensitivity to Initial Conditions

In this section, we study the sensitivity of our model when
the initial conditions change permanently. By the definition
of chaos, the chaotic systems are very sensitive to the starting
conditions. In this section, we try to measure the impact of
the initial conditions via the bifurcation diagrams. For the
rest of the paper, we consider equation (7) with commen-
surate order « = 0.95. The comparisons are made with the
conditions given by

x(0) =x,=0.2,
y(0) = yy=0.2, (60)
z(0) =z, =0.2.

We first consider the variation of the parameter a, and
we influence the last initial condition z,. The bifurcation
map?2l associated with the initial conditions (0.2,0.2,0.2)

(blue) and (0.2,0.2,0.5) (red) versus the variation of the
parameter a is given in following Figure 21.

The present bifurcation diagram, see Figure 21, in-
forms us that the chaotic regions do not change signifi-
cantly when the parameter a varies. Note that, for the
initial condition (0.2,0.2,0.2), the chaotic region is
(0.6,5), and for the initial condition (0.2,0.2,0.5), the
chaotic region is (0.7,5). The initial conditions’ impact
can be observed at the beginning of the bifurcation dia-
gram, in the interval (0, 1), where system (7) trajectories
converge to a stable equilibrium point. We notice that,
with the first initial condition (0.2,0.2,0.2), the system
enters first in the chaotic region. The small perturbation
on the starting condition can generate changes but not
significantly when the parameter varies. To see the initial
condition’s influence according to the variation of a, we
illustrate by representing the phase portraits at a = 0.6 and
a =0.7. When a = 0.6, we can observe that, in Figure 22,
the phase space in (x, y) plane (blue) corresponding to
(0.2,0.2,0.2) is chaotic, contrary to the phase space22 in
plane (x,y) (red) corresponding to (0.2,0.2,0.5), where
clearly the solutions of the system converge to an stable
equilibrium point. Let us now a = 0.7; in Figure 22, the
phase space in the plane (x, y) (blue) corresponding to the
condition (0.2,0.2,0.2) is chaotic, and the phase space22
in the plane (x, y) (red) corresponding to (0.2,0.2,0.5) is
also chaotic.

In the second, we suppose y, = 0.5, x, = 0.2, and z, =
0.2 are fixed. The variation of the parameter a is also
considered in the bifurcation diagram. The sensitivity to the
starting condition can also be observed in the bifurcation
diagram. The bifurcation diagram, see Figure 23, associated
with the conditions (0.2,0.2,0.2) (blue) and (0.2,0.2,0.5)
(red) versus the variation of the parameter a is given in
following Figure 23.

The bifurcation diagram, see Figure 23, informs us the
chaotic regions (0.6, 5) for the starting condition of equation
(7) are given by (0.2,0.2,0.2) and (0.7,5) for the new
condition (0.2,0.5,0.2). The influence of the initial condi-
tions can be noticed in the interval (0.6, 0.7), after this region
equation (7) has strange attractors with the conditions
(0.2,0.2,0.2) and (0.2,0.5,0.2). For illustration, see Fig-
ure 24, we consider a = 0.65, and we represent the phase
space in the plane (x,z) for more clarity.

We finish this section with the perturbation of the first
initial condition. The bifurcation diagram, see Figure 25,
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FIGURE 14: (x,z) space portrait of the Multisim simulation of equations (49)-(51).

FIGURE 16: Phase portraits with system (54)-(56).
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FiGUre 17: Circuit schematic for system (57)-(59).

FIGURE 18: (x, y) space portrait of the Multisim simulation of equations (54)-(56).

FIGURE 19: (x,z) space portrait of the Multisim simulation of equations (54)-(56).

associated to the initial conditions (0.2,0.2,0.2) (blue) and
(0.5,0.2,0.2) (red) versus the variation of the parameter a is
given in the following figure.

The bifurcation diagram presented in Figure 25 can be
interpreted as with the condition (0.2,0.2,0.2), the chaotic

region does not change, and with (0.5,0.2,0.2), the new
chaotic region is also the interval (0.7,5). In bifurcation
diagrams, see Figures 21, 23, and 25, the general observation
is that the chaotic regions do not significantly change when
the parameter a varies. We also observe that the chaotic
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FIGURE 22: (a) Portrait at a = 0.6 in the plane (x, ). (b) Portrait at a = 0.6 in the plane (x, y).
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FIGURE 23: Bifurcation diagram versus the parameter a at (0.2,0.2,0.2) and (0.2,0.5,0.2).
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FIGURE 25: Bifurcation diagram versus the parameter a at (0.2,0.2,0.2) and (0.5,0.2,0.2).
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region (0.7,5) is conserved for all new conditions
(0.2,0.2,0.5), (0.2,0.5,0.2), and (0.5,0.2,0.2). Thus, the
small variation in the starting conditions does not affect the
chaotic region of our present model.

10. Conclusion

In this paper, we have proposed a new system of differential
equations that exhibit chaotic behavior and then studied
with the Caputo fractional derivative. We have discussed the
nature of the chaos for different orders of the fractional
derivative using Lyapunov exponents. It is noticed that the
fractional-order system considered in this paper has chaotic
behavior when the order of the fractional derivative is into
(0.9,1). The small variation of the model’s parameters has
been studied using bifurcation diagrams, which play an
essential role in the chaos characterization. We also find that
the initial condition’s choice is crucial because our frac-
tional-order system is very sensitive to the initial conditions.
The investigations related to the Lyapunov exponents in the
context of the fractional derivative are an open problem. The
incommensurate fractional-order chaotic system can be
investigated for future work. For example, how the phase
portraits can be obtained in the context of incommensurate
order. How can the Lyapunov exponents be calculated for a
fractional-order chaotic system with incommensurate or-
der? What about the variations of the parameters? What will
be the impact of the different fractional-order derivatives?
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This article is dedicated to the existence results of solutions for boundary value problems of inclusion type. We suggest the infinite
countable system to fractional differential inclusions written by ,p-D%[v; (£)] € %; (£, {; (t)}:2,). The mappings z; (t, {v; (t)}:))
are proposed to be Lipschitz multivalued mappings. The results are explored according to boundary condition

07;(0) = yv; (p),

1. Introduction

Consider the following infinite system:

apcD [V (1)] € %(t,{vj(t)}j;), ieNtel0p], (1)

av;(0) = yv;(p), 0,y €R, (2)
where D% denotes the Atangana-Baleanu fractional
derivative in the Caputo sense of order « € (0, 1] and {y;}, .y
is an infinite countable family of Lipschitz continuous
multivalued mappings. This means there is an infinite
countable sequence of continuous real-valued functions
{v; (1)}, satisfying problems (1) and (2). In this case, we can
define the function V' (¢t): [0,p] — RN by V (t) = (%; (1)) ;en
This function denotes the sequence of solutions for the given
system.

In the field of infinite systems, the research to fractional
differential problems started via ordinary derivatives (see
[1-4] and the mentioned references therein). Then, many
scholars were attracted to develop these problems into the
ones associated with fractional derivatives. For instance, see
the required results in [5-8] and references cited therein. The
importance of the infinite system was arising naturally in the
description of physical problems such as stochastic

o,c¢ € R. This type of condition is the generalization of periodic, almost, and antiperiodic types.

(stochastic metapopulation) models [9, 10], models descried
by the Becker-Déring cluster [11, 12], and optimal pursuit
equations [13] and the control problems for the models
descried by parabolic and hyperbolic equations [14].

The concept of fractional derivative arose before 300
years when L’Hospital asked in 1695 which is addressed in
Leibnitz notation for the nth derivative “What would happen
if the order n = 1/2?”. So, the idea of fractional derivative
started by operators with power kernel (Riemman and
Caputo derivatives). It has been industrialized due to
complexities associated with the heterogeneous phenome-
non. The fractional differential operators are capable of
capturing the behavior of multifaceted media as they have
diffusion processes. In this field, many researchers have paid
attention in several ways to develop these derivatives. For
instance, they found the ways for the development to new
ones without the problem of nonsingularity (Capu-
to-Fabrizio with the exponential kernel) and then without
nonlocality (Atangana-Baleanu with the Mittag-Leffler
kernel). Mittag-Leffler kernel in the AB derivative helps to
understand the beginning and the end of a considered
phenomenon which is due to the memory effect of the
Mittag-Leffler function. Additionally, in some works, it was
proved that the AB derivative can generate chaotic behaviors
in some linear and nonlinear systems for certain values taken
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by the derivative order. In other situations, some researchers
have shown that the fractional derivatives lost some of the
basic properties that usual derivatives have such as the
product rule and the chain rule. For the sake of solving this
problem, they investigated the conformable fractional de-
rivative. This derivative is important to develop the Lie
symmetry analysis for differential equations involving dif-
ferent fractional derivatives such as the Caputo-Fabrizio
derivative and Atangana-Baleanu derivative. In fact, the
development of fractional calculus theory matches with the
development of analytical and numerical methods for
solving fractional differential equations and systems. For
showing this importance, we refer to see [15-18] and the
references therein.

In [19], we studied how to generate the differential
equations and inclusions by one form (we call them as equi-
inclusion problems). Then, we studied the solvability of this
form. Next, in [20], we generated the fractional differential
equation at resonance on the halfline into the inclusion one
and explored the existence results of positive solutions for
this problem. After research and reading about the infinite
system topic, we find that all proven treatises are linked
only to single-valued operators. So, what we refer here is to
survey the infinite fractional differential system proposed
with multivalued mappings. This means we hatch a gen-
eralization of previous literature studies in the infinite
system field. This draws a way to new and important extents
for the infinite system theory of nonlinear analysis. Fur-
thermore, it would be useful to express some descriptions
of complicated physical phenomena. We have a strong
anticipation that the partial differential inclusion which
leads to the infinite system of fractional differential in-
clusions would be very influential to make a fundamental
shift in the theory of complicated neural sets, huge and
stochastic branching processes, and the theory of disso-
ciation of polymers. Also, by the inclusion system with
apcD%> we think that modeling and computations will be
performed to explore deep and manifold aspects of mixed
convective flow of nanofluids and random flow processes of
so many fluids.

Our work is concerned with the existence of anti-
periodic, periodic, and almost periodic solutions for prob-
lem (1) in the Banach space KP(IRN), 1 < p<00. Theorems
used here give us sufficient conditions for the existence of
common solutions to the infinite family of quasi-non-
expansive multivalued operators in the uniformly convex
real Banach space. The results are affected by hemi-
compactness, compactness, contraction properties, and the
one-step iterative scheme.

It is worth remarkable to mention that the field of
studying the existence and uniqueness of solutions to
fractional differential equations has drawn attention of many
contributors [21-28].

2. Preliminaries

We present this section with some needed definitions, facts,
lemmas, theorems, and auxiliary results used to start the
main theorems.

Complexity

2.1. Real Sequence Banach Space. Define the space V to be the
real sequence Banach space ¢ » (RN), 1 < p<oo, endowed

with the norm
o (1/p)
Vi, = v|F ,
¢, le | )

V= (0)ien:

Then, from [29-31], we have the following facts.

Definition 1. (uniformly convex space). A normed space V is
called a uniformly convex space if for any ¢ € (0, 2], there
exists 6 = 8 (¢) >0 such that if v}, v, € V with |v,|| = [v,]l =
land [v, — v | = ¢, then |(1/2) (v, + )l <1 -6.

Lemma 1. The space ¢, is uniformly convex for all 1 < p < co.

Theorem 1. Adopt 1< p,q < oo such that (1/p) + (1/g) = 1.
Then, the inequalities thereafter hold:

(i) Holder inequality: let n €€, andnie €, Then,
nnte €, and

e, < Wil Il (4)

(ii) Mi(ijfzkowski inequality: let n, n1€ £,. Then, n+nie €,
an

I +nrlle, <llmlle, +lnrll - (5)

(iii) Imbedding theorem: let Q) have a finite positive
measure and 1 <q < p <oo. Then, ¢, (Q)Qﬁp (Q) and

I7lle, < Il (6)

Theorem 2. (compactness in €,). Let E be a Banach space
and K c €, (E). Then, K is compact in €, (E) if and only if
(i) K is closed and bounded
(i) (X, Iv,1P) VP — 0asn — oo

(iii) If D,: £, (E) — Edefined forall (v,) € £, (E)
by D,[(v,),s] = v,, then D, (K) is compact for all
r>1

Corollary 1. The subsets

Kx :{(Vr)rzl € €P| Ivfl s |x7‘|’

x,|—>0 asr—>0,1§psoo}
(7)

are compact subsets of €, spaces.

2.2. Basics in Multivalued Maps. The concept of multi-
operators is related to the multivalued maps. So, it is re-
quired to show some facts about them and their properties.
These facts are confirmed in [32-37].
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Let (E|.l) and (H,|.|) be two Banach spaces. A
multivalued map A: E — P (E) is seen as convex (closed)
if for every e € E, then A(e) is convex (closed) and selected
to be completely continuous if A (B) is relatively compact for
every B € Py (E).

The map A is said to be upper semicontinuous if for each
closed subset W ¢ E, A~' (W) is a closed subset of E. This
means the set {e € E: A(e)cO} is open for all open sets
O C E. It is lower semicontinuous if for each open subset
Z CcE A" (2Z) is an open subset of E. In other words, A
seems to be lower semicontinuous as long as the set
{e € E: A(e)N O+ J} is open for all open sets O C E.

A map A: [0,&] — P, (E) is presented to be measur-
able multivalued if for every ee€E, the function
T —> d(e, A(1)) = inf{d (e, a): a € A(1)} is L—measurable
function.

Given C, B € P (E); then,

h(C,B) = H,(C, B) = dy (C, B)

(8)
= max{sup,.cd (¢, B), sup,cd (C, b)}

absorbs the Pompeiu-Hausdorft distance of C, B.

If we adopt A as a completely continuous function with
nonempty compact values, then it is upper semicontin-
uous if and only if its graph is closed (ie., if
v, —v,and y, — y,, then y,€ A(v,) implies to
Y. € AB,)).

Definition 2. A multivalued map A: [a,b] x R — P(R) is
known as Caratheodory if
(1) Vr,eR,neN,

(2) For ae. 7€ [a,b], ({r,}) — A(z,{r,}) is upper
semicontinuous

7 —> A(7,{r,}) is measurable

In addition to assumptions (1) and (2), the map A is
L'-Caratheodory if for each k>0, 3¢, € L' [a, b] satisfying
SUp,l¢, (T)] < + 00 and ¢, >0 and nondecreasing map L
for which

"A(T, {rn})" = sup{lal: a(z) € A(7,{r,})}
< ¢ (OLIel), r = (r,),
for all ||r|<k,neN, 7 € [a,b].

(9)

Definition 3 (nonexpansive and quasi-nonexpansive mul-
timapping). Let K be a subset of a metric space E and
T: K— Pg,(K) be a multivalued map with
Fix(T) = {v € K|T'v = v} (the set of all fixed points of T in
K). Then, we have the following:

(i) T is called a nonexpansive mapping if it is con-
traction according to the metric. This means that,
for all v, v, € K, we have

Hy(Tv,, Tvy) < v, = vy | - (10)

(ii) T is said to be quasi-nonexpansive if Fix (T) # & and
for all w € Fix(T) and all v € K, we have

H,;(Tv,Tw) < |lv—wlp. (11)

(iii) Fix(T') is a closed subset if K is closed and convex
of E.

Definition 4 (hemicompactness). Let K, E, and T be defined
as in Definition 3. Then, T is called hemicompact if

(i) For any sequence (v,),qy € K such that d(v,,
Tv,) — 0asr — 0, there is a subsequence (v}) of
(v,) with v; — w e K

(ii) T is compact

Theorem 3 (nonempty infinite intersection). For any space
W, the following statements are equivalent:

(i) W is compact.

(ii) Every decreasing sequence {W ,|n € N} of nonempty
closed subsets of W has a nonempty intersection

<(i.e)wmgwn, Vn e N= nlw,ﬂe@). (12)
nz

(iii) Every collection {W,|n € N} of nonempty closed
subsets of W satisfying the finite intersection property
has a nonempty intersection

<(i.e) r_ﬁl W, #0= Qlwn;t@). (13)

2.3. Fractional Calculus. In this part, we give definitions
related to the used derivative, its history, the corresponding
integral, and some properties [38-40].

Definition 5 (Riemann-Liouville integral). For the order
(>0, the Riemann-Liouville fractional integral of a function
h(7): [0,00) — R is defined by

Fhr) = % jo (r- O Th(Q)ds (14)

since the R.H.S is pointwise defined on (0, c0).

Definition 6 (Caputo-Fabrizio derivative). CF derivative for
the order a € [0, 1] and 7 (¢) € H' (a,b) is given by
CF (2 - (X)M(O() J-c —(a(g—s)/1-a)
D =— = ds, 15
1(¢) 20— e nt(s)ds, (15)
where M («a) is a normalization function such that
M(O0)=M(1)=1.

Definition 7 (Mittag-LefHler function). The general form of
Mittag-Leftler function E, of order « is written by

(e8] VT"
E(X(V) = ;m (16)



The main derivative used in the present paper is the
Atangana-Baleanu fractional derivative in the Caputo sense.
It is proposed by interchanging the kernel
exp (- (a (¢ —s)/1 — «)) in the Caputo-Fabrizio derivative by
the equivalent form via the Mittag-Leffler formula that is
Yooo((—a(t=s)/rl), a= (a/l —a). After that, replace
rlby I'(ar + 1) and (—a(t —s))" by (—a(t —s))*. So, in the
space

H'(Q) ={n(9)ln(c), D’n(q) e L*(Q), Vp<1}, (17)

we have the following definitions.

Definition 8 (Atangana-Baleanu fractional derivative in the
Caputo sense). ABC derivative for the order « € [0, 1] and
v(¢) € H' (a,b) is given by

M(a) (¢ a(c—s)"
- L E“[_H] v (s)ds.  (18)

This derivative is related to the fading memory concept
and frequently used to discuss and analyze the real-world
phenomena such as fluid and nanofluid models (see [41-43]
and references therein). Depending on the constant M («),
the corresponding integral is given by the following
definition.

ABCDlxy (¢) =

Definition 9 (Atangana-Baleanu fractional integral). AB
integral of the order a € [0,1] and v(¢) € H! (a,b) is given
by

v(t) + I v(t), (19)

Iv(t) = —
. M( ) M( )
where 1% is the Riemann-Liouville integral of order a.
Lemma 2. For a € (0,1), t € (a,b), and v(t) € AC'[a, b],
the following statements hold:

al: AB integral together with the ABC derivative satisfies
the Newton-Leibniz formula

Al [apcDa:v] (8) = v(t) = v(a). (20)

a2: they also satisfy the property

ascDos [aplo-v] (1) = v(t) —v(0)E, (1 ft ) (21)

a3: AB integral is a commutative operator such that, for
any two orders a, 5 € (0,1), we have

N a a L[[1=-B B g
ABI“*[ ](t) [M(a) M (a) RI“HM(ﬁ) M(B) RI]

-p B gl 1-« o o
"= [ M(pB) M(ﬁ)RI“HM(m*M(a)RI“]

V(1) = ap b [4pI% V] (©).
(22)
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Lemma 3 (antiperiodic solution). The unique solution of the

problem

apcD[v(D] = (), tel0,p], (23)

av(0) =yv(p),o, yeR,witho#y, a€[0,1], (24)

is given by

v = %)+ (t — )% 'e(s)ds

M («) M (« )F( )J

y 1-

o
M(oc)F(oc)

J (p—9)" 1e(s)ds]

Proof. By applying ,,I* to both sides of (23), we get
v(t) = " () (1) +c, (26)

which implies

v(0) = s(O) +c,

v(p) = 517 () (p) +c.
Now, applying (24), we find that

Y 1
S0y [M(a)< e(p) ——s(O))

%
M(oc)F(oc)

(28)

J (p—9)" 1s(s)ds]
|

Lemma 4 (periodic/almost periodic solution). The unique
solution of the problem

acD [y =¢(t), tel0,p], (29)
v(0)=v(p), «ace€ [0,1],
is given by
v(t) = \gI" () (1) + ¢ whenever (30)
e(0)=e(p), (31)
p (P _ S)tx—l ~
Jowe(s)dho, (32)
and then c= — (1 — a/M (a))e(0)= — (1 — /M (a))e(p).
Proof. Similar to the proof of Lemma 3, we have
v(t) = I (e) (1) +c (33)

The almost periodic/periodic condition leads to
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(1—«)(e<p)—s<o>>+mj (p— )" 'e(s)ds=0. (34)

Under this equation, we have three cases:

pl: if & =0, then e(p)=e(0) must hold

p2:  when wae (0,1), both  e(p)=e(0) and
[ ((p = )* T (a))e(s)ds=0 must hold

p3: in case & = 1, we get _[g e(s)ds=0

So, we can say, in general, that there is an almost pe-
riodic/periodic solution if both (31) and (32) hold for every
a € [0,1]. Now, substituting (31) and (32) to the value of
¢ = ¢(0) in Lemma 3 with ¢ — y and using the continuity
condition, we get limg_wc =—((1-a/M(a)))e(0) = C|0:y
Hence, the periodic/almost periodic solution is given by

V() = (I () (1) - (;4( )>e<0)

l-«a
=M OO

J (t - ) e (s)ds.
(35)

It is clear to see that v(0)=0=v(p) which completes the
proof. O

2.4. Fixed-Point Theorems. This section is surveyed by some
fixed-point theorems investigated in the uniformly convex
real Banach space [44, 45].

Theorem 4. Let V be a uniformly convex real Banach space
and K be a closed, bounded, convex subset of V. Let
T: K — P, (K) be nonexpansive multivalued mappings.
Then, T has a fixed point x € K with x € Tx.

The next theorem is formulated for the infinite countable
family of multioperators under the vision of the one-step
iterative scheme defined as follows.

Let K be a closed, bounded, convex subset of a uniformly
convex real Banach space V. Let {T;: K — P, (K)} be an
infinite countable family of quasi-nonexpansive multivalued
mappings with N2, Fix(T;) # & and p € N2 Fix(T;). Then,
for all n € N, the sequence {V,} is defined by

(36)

nr " nr>

VieK, V. =0,V, +Za

r=1

V,r € T,V,, suchthat || PV, n

{onr} €

—d(p.T,V,).  (37)

n
[0,1), with )" g, =1,

r=0

reN. (38)

Theorem 5. Let K be a closed, bounded, convex subset of a
uniformly  convex  real  Banach  space V. Let
{T;: K — P, (K)} be a sequence of quasi-nonexpansive and
continuous multivalued mappings with N2, Fix(T;) + & and
p € NP Fix(T;). Let {V;} be a sequence defined by (36) with
the condition that lim 0, andlim 0, exist and lie

n——-00 n—00

in [0,1) for all r € {0}UN. Assume that one of {T;} is
hemicompact. Then, the sequence {V;} converges strongly.

3. Inferred Results

3.1. Auxiliary Results. Let V (t): C[0,p] — RN be defined
by V (t) = (¥ (t));en. Then, for every multivalued mapping
Y, we have y; (£, v, (t),...,v;(t),...) = y,;(t,V(t)). Define
the set-valued maps Sy, such as

Syw={&Ol& @) € 7 (L, VO)NL (,R)}, T =10,p].
(39)

For the antiperiodic solutions, we define the multi-
operators {Y,»: t, — IR} for all i € N as follows:

(V) (1) ={¥y, (D1¥y, (1) = A(g) (1), &(t) €Sy v},
(40)
where

Ag) (1) = L aei(t) +M(ogl"(oc)

M (a)
l ( ) — (0)

j (p-9""g (s)ds]

Jt (t—s5)* 'e; (s)ds
0

o
M(oc)F(oc)
(41)

For the almost periodic/periodic solutions, the multi-
operators {Hi: ¢, — R} for all i € N are defined by

(ILV) (1) ={®4, ()] O, (t) = A(g;) (1), (1) € Sy v},
(42)

where

Ae) (1) =~ & (1) ~ & (0)]

M( )
(43)
(04

t a—1
+7M(0¢)F(¢x) Jo (t=35)" "&(s)ds.

Consider that the following conditions hold:
(H,) (z;) is a sequence of L'-Caratheodory multi-
valued mappings that are

4 TXV — P_,(R), (44)

with

(1) The maps t — g, (¢, V (t)) are measurable for all
VeV

(2) The maps V. — y; (t,V (t)) are measurable for all
te].

(3) For all i € N, there exist y; € C[J,R,] such that

(H,) y; are Lipschitz mappings with constants L; € R,
respectively. This means



Vi e N.
(46)

Hy(%:i(6Vi(0), Z:(6VL (D)) <LV, = Vo,

(#3) Yis1Li<ocoand Z = EYX L; <1 whenever

i=1 i

_ Ly |\ ¢
‘2<Mxm> ( o) @

(Z4) (Iil/Ey; i) > 1, yi = supy;ly; ()]
Then, we have the following propositions.

1]

Proposition 1. The set-valued maps Y; (V) are bounded and
contraction for all i € N.

Proof. In view of (#;) and (¥ ,), we have

vl

l-«a
M (x)

—a |y (1
M@  M@I@ |o-7]

p
+m)]l%(t>‘/(t))l
<EBy; |n| <.

(48)

Thus, we prove the boundedness.

To prove the contraction condition for all i € N, con-
sider that ‘I’1 (t) €Y, (V,). This implies the existence
of some ¢; (t) € Sy.v, subject to

¥y, (1) = A (1), (49)

where A is defined by (41). By using (#,), we can
define the sets

Y0 ={e e RIlel 0 - e <LV, - Vo], }. - 50)

According to Theorem II1.41 in [46], (%)), and the
measurability ~of the functions ¢ (#) and
W(t) =LV, - Vzllfp, the sets Y;(¢) are also measur-
able for all ieN. Therefore, the maps
t— Y, (t)N¥,;(t, V(t)) are measurable with non-
empty closed values. Hence, the measurability of Y; ()
and Proposition 2.1.43 in [47] drive to the existence of
some ¢ € Sy, v for which

le; (1) =& O] <LV, =V, ieN. (51)
Define ‘P?% by
v, (1) = A(g (1)), (52)
which leads to
|‘P? H-v, (t)' 'A ) - Ae (t)|
(53)
<EL|V, - Vzllep, ieN,

Complexity

where EL; <1 by (7). Using the Akin relation ob-
tained by interchanging the rules of V,and V,, we
conclude that, for all i€ N, the operators Y, are
contraction. O

Proposition 2. For all neN, define
T, K,—P(K,),

T,(V) =1 sVt Vs Yy (V), . .)

B v, i<n (54)
_<{vaxi>n})

where K, is created as the one in Corollary 1. The
following statements are all satisfied:

(i) T,(V) € P,(K,) foralln e N
(ii) T are contraction with constants Z = EY ") L; for
all neN if and only if there exist some
‘I’?/t(t) € Y; (V) such that v; = \P%(t)
(iii) {T,}, is a decreasing nested sequence which
means T, <T,, for all n e N

the operators

n+1

Proof

(i) Using Proposition 1 and the definition of K,
we get, for all ieN, that [Y;(V)|[<|y|<l|xl.
This implies (Y;(V));s, € K,. Consequently,
T,(V) € P,(K,), and thus, all T, (V) € P, (K ) for
all i e N.

(ii) Define the metric map G, as

Ga (T, (V1), ZHd (V1) Yi (V2)):

(55)
Consider that there exist some ¥y (t) € Y;(V) such
that »; = W, (£),i = 1,...,n. Using the contraction
result in Proposition 1, we find

Ga(T, (V). T, (V2)) < [zﬂwlwm

=Z|Vi= Vo,

(56)

Applying (#;), we get the result of the contraction
condition for T, for all n € N.

Now, consider that, for all n € N, T', are contraction
and v; ¢ Y; (V). Define the metric

cxnw»nwm=im—ﬁ

Then,
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Gy (T, (V1), T, (V)

Sn||v1_v2||€p+[a 5 Ll]nvl—vzuep 58)

r=n+1

=(n+2)|v, - V2||ep,

where (n+ Z)>1. This contradicts with the as-
sumption that T', are contraction operators. Hence,
we get v; € Y; (V).

(iii) By (ii), we have for all n € N that

; i<n
T”(V)ZHY,(V) i>n>
_(1\1'%@ iSn)D<{‘I’%(t) i£n+1>
Y; (V) i>n Y; (V) i>n+1

(17 =T . (V)
_GYi(V) )‘ mee

i<n+1

i>n+1

5

Proposition 3. For all n € N, define T, such as in Propo-
sition 2. Then,

al: for all n € N, T, are quasi-nonexpansive mappings
a2: for all n € N, Fix(T,,) are closed subsets of K.,

a3: for all n € N, T, are all hemicompact mappings
ad: N Fix(T,) +

Proof

al: following the theorem saying that the continuous
image of the compact set is compact itself with applying
Proposition 2 (I, 1I) implies T, (K,) c P.,(K,). By
Theorem 6 and Definition 3, we get Fix (T,) # & for all
n € N. Thus, T, are all quasi-nonexpansive operators.

a2: from (al) and since K is a closed and convex subset
of Banach space, we see that Fix(T,) are closed subsets
of K, according to Definition 3.

a3: due to Definition 4 and the proof of (al), T, are
hemicompact for all n € N.

a4:let p € Fix(T,,,); then, p € T, (p)<T, (p). Hence,
peT,(p) which follows Fix(T,,,)<Fix(T,). Using
Theorem 3, we get N Fix(T,) + . O

3.2. Main Results
Theorem 6. Consider that ¥;: ] xV — P.,(R) satisfy

(1), (H,), (H3),and (K ,). Assume that, for all
neN, T, are defined by (40), (41), and (54). Also, let

(1-« |y | p°
~(5m) () e @

[1]

Then, infinite systems (1) and (2) are able to have a
common antiperiodic solution if and only if there exist
some ¥y, (t) € Y;(V) such that v, = ‘P%(t).

Proof. Define the sequence {V,},.. , by (36)-(38). Under the
vision of Theorem 5, Propositions 1-3 explain the existence
of the common solution to infinite systems (1) and (2). O

Theorem 7. Consider that ¥;: ] xV — P.,(R) satisfy
(), (H,), and (¥ ,). Assume that, for all n e N, T, are
defined by the same way as (54) with respect to (42) and (43).
Moreover, let

]

_[(1-«a p°
- Z(M((x)) "M@ () (61)

and
(#s) Y Li<ocoandZ =EY 2 L;<1.

1

Then, infinite systems (1) and (2) are able to have at least a
common periodic solution if and only if there exist some
G%(t) € I1; (V) such that v; = 0y, ().

Proof. Similar to the proof of Theorem 6 but with respect to
E. O

Corollary 2. Infinite systems (1) and (2) are able to have one
or more common almost periodic solutions.

4. Examples

Example 1. Consider the problem

(2/3) i v "
L () R
3V (0) = V(p). (63)
Then, we have %,(t,V(¥))=[1/2") (v, /1+
Zizl lv.D], and
PARET! (64)

If we take v, (t) = (1/2") = y;, we find that (%) holds.
Furthermore, we have

By (746 V1 0, 7, (6 V2 (00)) < 55 ]
(65)

1 (p) 1
= ?(M -4 "< 7"‘/1 -V, “ep’

which explains that (#,) holds with L, = (1/2"). It is
known that 72 L, = > (1/2") = 1 <co. In this case, we
need to make sure that E < 1 for the sake of obtaining (%’;).

First, by using the rules



M () = ﬁ
(66)

Ml -oa)= sin o

we find that

1
F<§> =~ 2.6789385347077476337,

1

———————— =~ 0.0086,
M (2/3)T (2/3)

| Y |) Pa (2/3)
1+ ~0.0129p,
( lo—y| ) M(@)T' (@) P

) 1-« _4
M) 9

Taking  p@ < (2/9(0.0129)) implies that
p € (0,10.5881117). Therefore, £< (8/9) <1 which means
that (%;) holds. Finally, since y;E< (8/9(2"))<1, n>1,
(#,) holds. Applying Theorem 6, there exists at least one
solution of antiperiodic type for problems (62) and (63).

(67)

Example 2. Assume the following problem:

sin v,

1 1 "
ancD (] € [<z+r>" (1 . ||>] )

V(0) =V (p). (69)

In this problem, we have a = M («) = 1,

sin v,

1 n
Y, V() = [ Q2+r) (1 +30 |Vs|):|r=1)

1
|?HIS?|1}"|'

It follows that v, (t) = (1/3") = y;;, and thus, (&)
holds. It is clear to see that (#,) holds if we take L, = (1/3")
and then Y0 L, = (1/2)<1. Since a=1, E=p, and Z =
(p/2) tends to take p € (0,2) in order to obtain (7). Fi-
nally, we have (1/Ey;) = (3"/p) > (3/2) > 1 which drives to
(#¢). According to Theorem 7, problems (42), (43), (54),
(62), (63), (68), and (69) have at least one periodic solution.

(70)

Remark 1. If we take problems (42), (43), (54), (62), (63),
(68), and (69) with the condition V (0) = V (p), then by the
same results in Example 2, we get the existence result of the
almost periodic solution.
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5. Conclusion

By this work, we connected between three sides of gener-
alization: first, using the generalization of fractional dif-
ferential operators with the Mittag-Leffler kernel; second,
generating the infinite countable system of equations by
multivalued mappings; third, using the general form of
periodic, almost periodic, and antiperiodic boundary con-
ditions. We explain how to obtain the exact solutions in the
three cases according to the boundary conditions. Conse-
quently, we show the sufficient conditions for the existence
results to different solutions and give some related examples
to the main theorems. These results have strong impacts to
give an even better description of the dynamics of real-world
problems (in particular, the dynamics complex systems).
These results also have practical extensions to understand
the complex phenomena related to multifaceted media,
chaotic behaviors, fluctuations, nanofluids, and heteroge-
neous phenomenon. Next time, we will work to study the
generalization of the conjugate value problem with one of
the most important derivatives.
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In this paper, bifurcation points of two chaotic maps are studied: symmetric sine map and Gaussian map. Investigating the
properties of these maps shows that they have a variety of dynamical solutions by changing the bifurcation parameter. Sine map
has symmetry with respect to the origin, which causes multistability in its dynamics. The systems’ bifurcation diagrams show
various dynamics and bifurcation points. Predicting bifurcation points of dynamical systems is vital. Any bifurcation can cause a
huge wanted/unwanted change in the states of a system. Thus, their predictions are essential in order to be prepared for the
changes. Here, the systems’ bifurcations are studied using three indicators of critical slowing down: modified autocorrelation
method, modified variance method, and Lyapunov exponent. The results present the efficiency of these indicators in predicting

bifurcation points.

1. Introduction

Chaotic dynamics is interesting in the field of nonlinear
systems. Real systems can present chaotic oscillations [1].
Phenomenological behaviors of chaotic systems are inter-
esting [2]. Two types of systems can show chaos: continuous
systems (flows) and discrete systems (maps) [3-5]. Chaos is
still a challenge, and there are many unknown mysteries
about it in both continuous and discrete chaotic systems
[6-8]. Studying various dynamics of discrete and continuous
systems has been a hot topic [9-11]. Hyperchaotic dynamics
of coupled systems was discussed in [12]. A chaotic system
with symmetry was investigated in [13]. A piecewise linear
system was studied in [14, 15]. Discrete systems can show
many exciting dynamics, while most dynamics can be in-
vestigated using an in-depth study of their structures [16].

The reliability of the dynamics of discrete systems is highly
dependent on simulation time [17]. The finite precision of
computers has a significant effect on the simulation of
chaotic dynamics [18]. Critical points of the bifurcation
diagram in a chaotic map were investigated in [19]. Chaotic
maps have some engineering applications, such as random
number generators [20, 21]. In [22], the Henon map was
investigated using fuzzy logic. Fractional order of the gen-
eralized Henon map was discussed in [23]. Various dy-
namics of the Bogdanov map were investigated in [24].
Multistability is an interesting behavior of dynamical sys-
tems [15, 25, 26]. Multistability is a condition in which the
system’s attractor is dependent on the initial values [27].
Various types of multistability can be discussed, such as
extreme multistability [28]. Multistability of a 1D chaotic
map has been studied in [29]. Secure communication and
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image encryption are some of the applications of chaotic
dynamics [30, 31]. Image encryption based on the Bogdanov
map is very applicable [32, 33]. Control is an important
challenge in the study of chaotic dynamics [34-36].

Dynamical properties of systems can be investigated
using bifurcation diagrams. In a bifurcation diagram, var-
ious dynamics of the system can be seen as well as its bi-
furcation points [37-39]. Nonlinear dynamical tools are very
useful [40, 41]. Hidden and nonstandard bifurcations of a
system were studied in [42]. The study of bifurcations of a
nonautonomous memristive FitzZHugh-Nagumo circuit has
been done in [43]. In [44], bifurcations of memristor syn-
apse-based Morris-Lecar were discussed. Recently, the study
of bifurcation points and their predictions is interesting
[45, 46]. Before the occurrence of bifurcation points, slowing
down is seen in the system dynamics [47]. This slowness is
useful in the indication of bifurcation points [48, 49].
Prediction of bifurcation points is vital since some bifur-
cations may cause an undesired new behavior. Prediction of
bifurcation points of biological systems has been studied in
[50]. For example, the application of slowing down of blood
pressure in predicting ischemic stroke was discussed in [51].
The ability of older adults to recover was investigated as a key
for antiaging issue [52]. The advantage of predicting bi-
furcation points using indicators is to predict approaching
the bifurcation points before their occurrence. Many studies
try to indicate bifurcation points [53, 54]. Prediction of
noise-induced critical transitions was studied in [55]. The
most exciting predictors of bifurcation points are autocor-
relation at lag-1 and variance [47]. In [56], some issues in
those indicators in predicting bifurcation points during a
period-doubling route to chaos were studied. So, a new
version of the well-known indicators was proposed to solve
those issues [56]. In [57, 58], the Lyapunov exponent was
studied as an indicator of bifurcation points. However, some
points in the calculation of Lyapunov exponents should be
considered [59].

Here, we study various dynamics of two chaotic maps.
These maps show different bifurcations. The cobweb plot is
used to study the dynamics of the chaotic map in which the
transition of the time series is also shown in the map plot
[60]. Then, using critical slowing down indicators, various
tipping points of the systems are investigated.

2. The Chaotic Maps

Two chaotic maps are studied in this paper. The first one is a
one-dimensional chaotic map, which is called the sine map,
as shown in the following equation:

Xiy = Bsin(mxy). (1)

To study various behavior of the system by varying initial
values, cobweb diagrams of the sine map in parameter B =
0.6 and various initial conditions are shown in Figure 1.
Here, in the cobweb plots, the map is shown in red color, the
identity line is shown in cyan color, and the transition of
time series is shown in black color. Figure 1 shows that the
system has three equilibrium points in this parameter since

Complexity

its map has three intersections with the identity line where
X1 = Xi. The origin is unstable because the slope of the
map is larger than one, and the other ones are stable because
the amplitude of slope is smaller than one. So, the system is
multistable in this parameter, and initial conditions are
crucial in the system’s final state. The figure shows that
different initial conditions result in various equilibrium
points.

To briefly explain the dynamic of System (1), its bifur-
cation is presented in Figure 2. The diagram depicts that the
system has various dynamics, and the amplitude of attractors
is expanded by increasing the bifurcation parameter. The
bifurcation diagram shows that the map has various dy-
namics from equilibrium points to chaotic attractors. In
bifurcation parameters 0 < B <0.318, the system shows one
fixed point at zero. Figure 3(a) shows the cobweb plot with
B =0.2 and initial condition x, = 0.2. By increasing pa-
rameter B, two equilibrium points are created, and the origin
becomes unstable (Figure 3(b) with B = 0.5and x, = 0.2).
So, the two equilibrium points are coexisting. After that, an
increase in parameter B causes a period-doubling route to
chaos. The cobweb plot of the chaotic dynamics with B =
1 and x; = 0.2 is shown in Figure 3(c). So, in this interval of
parameter B, the system has two stabilities, which can vary
from an equilibrium point to chaos by changing the bi-
furcation parameter. By increasing parameter B, a crisis
happens, and the chaotic attractor is expanded. Figure 3(d)
shows that the attractor can move from the positive part of
the sine function to the negative one and vice versa
(B =1.001and x, = 0.2). After that, in B = 1.466, a period-
two dynamic is generated, followed by the period-doubling
route to chaos. Figure 3(e) shows the cobweb plot of the
system in B = 1.5 and x; = 0.2 in which the system has a
periodic dynamic. In larger parameters such as B =2.5
(Figure 3(f)), an exciting dynamic appears in which in-
creasing parameter B causes another peak of the sine
function touches the identity line. It can create four new
equilibrium points. Two equilibrium points are stable, and
another two equilibrium points are unstable. Then, the same
route to chaos happens by increasing parameter B, and the
bifurcations repetitively happen, which are just different in
the amplitude of the dynamics.

The sine function is symmetric concerning the origin.
This property causes two different symmetric stabilities
shown in the bifurcation diagram with two positive and
negative initial conditions. Figure 4 shows the bifurcation
diagram of System (1) with x, = 0.5 for the black diagram
and x, = —0.5 for the red diagram. The system has two stable
equilibria in B € [0.317,0.719], and each of them continues
with a period-doubling route to chaos. Also, in each of the
periodic windows, the multistability of the system can be
seen.

The second studied system is the Gaussian map. This
map is formulated as follows:

Xppp = e ¥ + B, (2)

where parameter a = 6.2 is fixed and parameter B is the
bifurcation parameter. Figure 5 shows bifurcation diagram
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FiGURre 1: Cobweb diagram of System (1) in parameter B = 0.6 and initial condition (a) x, = —1.4; (b) x, = —1.1; (¢) x, = —1; (d) x, = —-0.5;
(e) xo =0.5; (f) x5 = 1; (g) x5 = 1.1; (h) x, = 1.4; this shows that the system has two stable equilibria in this value of parameter.

FIGURE 2: Bifurcation diagram by varying parameter B and constant initial condition x, = 0.5. The symmetric sine map has a period-
doubling route to chaos and with periodic windows observed within.
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Xy = —0.5; the sine map has two stabilities in some intervals of parameter B, while in some other intervals, the two stabilities merge to one

attractor.

of this map by changing parameter B. It can be seen that the
system shows a period-doubling route to chaos and its in-

verse route by increasing B.

3. Critical Slowing Down Indicators of the

Chaotic Maps

Here, the bifurcations of the symmetric sine map are studied.
The studies of the previous section show that the system has

various dynamics and many bifurcation points. Critical
slowing down is observed before the tipping points. The
slowness can be characterized using the critical slowing
down predictors [47]. One of the useful slowing down in-
dicators is autocorrelation at lag-1. Before the tipping points,
the system became slower, so the similarity of consecutive
states increases. Another well-known indicator is variance,
which increases before the bifurcation points. However, a
previous study has shown that these indicators can only
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predict tipping points of type “period-one” [56]. In that
work, to modify the previous indicators, the previous in-
dicators such as autocorrelation and variance were applied
to subvectors obtained from each cycle of the m-cycle
attractor where m is the period of the signal [56].

The modified autocorrelation (AC) method is applied
to the dynamics of the map for varying parameter B.
Figure 6 shows the bifurcation diagram of the sine map in
the interval B € [0,5] in black and the absolute of the
modified autocorrelation indicator in blue. The results
depict that the predictor indicates various bifurcation
points in the route of period-doubling to chaos. Many
bifurcations can be seen in this interval. For example, in
B =1.596, a pitchfork bifurcation happens, which is pre-
dicted by increasing AC’s value. Also, bifurcation points of
the period-doubling route to chaos in the periodic window
intervals such as B € [2.48,2.68] were appropriately pre-
dicted. To have a closer look at the performance of this
predictor, Figure 7(a) presents the bifurcation diagram
and its correspondence modified autocorrelation in in-
terval B € [0, 1.2]. By approaching the tipping point, the
absolute of modified autocorrelation approaches its
maximum value (one). Then, by going far away from the
bifurcation point, its value decreases to zero. Figure 7(b)
shows the estimated period of the system using the al-
gorithm proposed in [56].

The modified variance method is applied to the dy-
namics of System (1) (Figure 8). In Figure 8(a), the bi-
furcation diagram is shown in black color, and the scaled
version of the logarithm of the modified variance (x0.1) is
shown in blue color by changing B € [0, 5]. To have a closer
view, these diagrams are shown in Be [0,1.2], in
Figure 8(b). The figure shows that the modified variance
increases by approaching the bifurcation point and de-
creases by going far away from it.

Another indicator of bifurcation points is the Lyapunov
exponent [57, 58]. Lyapunov exponent goes to zero by
approaching the bifurcation points. It has an exact value in
various bifurcation points. Figure 9 presents the bifurcation
diagram in black and Lyapunov exponent in blue color.

0.8
0.6 |
0.4 |
0.2

x, & |AC|
(=)

-0.2 |
-0.4 |
—06 |
~0.8

FIGURE 6: The scaled bifurcation diagram of the sine map (x0.2) for
changing B € [0, 5] and initial condition x;, = 0.5 in black and the
absolute value of modified autocorrelation in blue color; this
presents that |[AC| can predict various bifurcations by approaching
to the value 1.

Figure 9(a) shows the diagrams in B € [0, 5] and Figure 9(b)
shows in B € [0, 1.2]. The results depict that the Lyapunov
exponent can predict various tipping points of the sine map.

The second studied system is the Gaussian map. It was
shown that the system has various dynamics and bifurcation
points. To predict the bifurcations, AC, variance, and
Lyapunov exponent are used. Figure 10 shows that the
absolute value of AC predicts various bifurcation points. For
instance, the system has a bifurcation point in B = —0.88
from period-1 to period-2 dynamics. The absolute value of
AC increases until its value becomes one in the bifurcation
point. The same trends can be seen in other bifurcation
points.

Figure 11 shows the modified variance, which is cal-
culated from the states of the Gaussian map by changing
parameter B. The figure shows that the variance increases
before bifurcation points, but it does not reach a constant
value in various bifurcation points. So, increasing variance
alarms the approaching bifurcation points.
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changing B € [0, 5]; (b) by changing B € [0, 1.2]; the results show that the variance method increases by approaching bifurcations which
alarms that a tipping point is getting close.
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FIGURE 9: Bifurcation diagram in black and Lyapunov exponent in blue color by changing (a) B € [0, 5]; (b) B € [0, 1.2]; Lyapunov exponent
approaches to zero by approaching bifurcation points, which can help their predictions.
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Another studied indicator of the paper is the Lyapunov
exponent. The results of the Lyapunov exponent are shown
in Figure 12. Lyapunov exponent alarms approaching the
bifurcation points by approaching zero. So, approaching
zero shows that a bifurcation point is very close, while going
away from it shows that the system is getting far from bi-
furcation points.

4. Discussion and Conclusion

This paper aimed to predict bifurcation points of chaotic
maps. Two systems were studied: sine map and Gaussian
map. Various dynamics of the sine map were studied, and
its bifurcations were investigated. The results presented
the multistability of the system because of its symmetric
map. The system’s critical slowing down was indicated
using the modified autocorrelation method, modified
variance method, and Lyapunov exponent. These studies
showed that the bifurcation points of the sine map could
be predicted using the indicators. The other studied
system was the Gaussian map. The system shows various
dynamics in a period-doubling route to chaos. Bifurcation
points of the system were predicted using modified au-
tocorrelation, modified variance, and Lyapunov exponent.
Some indicators, such as autocorrelation and Lyapunov
exponent, have an exact value in the bifurcation points.
So, approaching the exact values indicates approaching
the bifurcations. However, the variance method does not
have an exact value in the bifurcation points. In the
variance method, increasing the variance shows
approaching the bifurcation points; however, we cannot
precisely determine when it happens. The chaotic
attractors are very complex dynamics. In chaotic domain,
we cannot determine the transient time and slowness of
dynamics. So, we cannot trust the indicators in the chaotic
dynamics.

This study shows that some indications can alarm
approaching the various bifurcation points. Those indicators
had various natures. For example, autocorrelation calculates
the short-term memory of the time series. Variance is based
on the variations which increase by approaching the bi-
furcation points. The third method was the Lyapunov ex-
ponent, which shows the speed of the system approaching its
final dynamic. The results, tested on two discrete systems,
showed that these indicators had a proper trend when
approaching bifurcation points that alarms their occur-
rences. In the future works, prediction of bifurcation points
of systems with other types of bifurcations than period-
doubling route to chaos can be investigated. As a suggestion
for future works, some can consider the application of deep
learning and reinforcement learning in the prediction of
tipping points.
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Memristor is the fourth basic electronic element discovered in addition to resistor, capacitor, and inductor. It is a nonlinear gadget
with memory features which can be used for realizing chaotic, memory, neural network, and other similar circuits and systems. In
this paper, a novel memristor-based fractional-order chaotic system is presented, and this chaotic system is taken as an example to
analyze its dynamic characteristics. First, we used Adomian algorithm to solve the proposed fractional-order chaotic system and
yield a chaotic phase diagram. Then, we examined the Lyapunov exponent spectrum, bifurcation, SE complexity, and basin of
attraction of this system. We used the resulting Lyapunov exponent to describe the state of the basin of attraction of this fractional-
order chaotic system. As the local minimum point of Lyapunov exponential function is the stable point in phase space, when this
stable point in phase space comes into the lowest region of the basin of attraction, the solution of the chaotic system is yielded. In
the analysis, we yielded the solution of the system equation with the same method used to solve the local minimum of Lyapunov

exponential function. Our system analysis also revealed the multistability of this system.

1. Introduction

Recently, chaotic systems have attracted wide attention from
researchers due to their own particularities and their vast
application potential in the memristor [1-4], random
number generator [5, 6], secure communication [7-9],
image encryption [10-14], and artificial neural network
[15-20]. How to increase the complexity of a chaotic system
and generate complex chaotic attractors to make it hard to
encipher information in encryption system applications has
become a field of interest for researchers both in and outside
China. In 1971, Professor Shaotang Cai published the
“Memristor-The Missing Circuit Element” [21]. After the-
oretic derivation of the relationships between the four basic
electrical physical quantities—voltage, current, charge, and
magnetic flux—Cai assumed that there exists a fourth basic
circuit element: the memristor. Over the most recent decade,
the use of memristors in designing chaotic circuits, such as
pure memristor networks and complex circuits containing
one or more memristors, has been extensively studied

[22-24]. Results show that memristor-based chaotic circuits
provide a greater variety of dynamic behaviors. As mem-
ristors are nanoelements which are not commercialized yet,
in the current studies related to conventional memristor-
based chaotic circuits, researchers tend to use existing
simulation analog elements to realize a memristor analog
circuit and then use it to investigate the dynamic properties
of the designed system. For this reason, selecting a mem-
ristor model and designing a memristor analog circuit
constitutes an important part of fundamental research.

At present, the generation and application of multi-
stability and extreme multistability has become a very hot
topic for chaotic circuit systems [25-29]. Compared with
other chaotic systems, combining memristors with chaotic
systems can generate chaotic attractors possessing compli-
cated dynamic properties. Yet the multistability of a chaotic
system is dependent on the initial state of the system.

In fact, a multistable dynamic system usually has a very
complicated basin of attraction structure that can be defined
by a fractal boundary. From a mathematical point of view, a
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basin of attraction indicates that there is a chaotic attractor
on the smooth hypercurve observed in a dynamic system
showing invariables and a subspace with positive finite time
fluctuation in addition to the invariable subspace in as-
ymptotic termination state. Although the chaotic attractor is
laterally stable, the insertion of an unstable periodic orbit in
the chaotic attractor constitutes the source of losing this
lateral stability. Whether the chaotic attractor will lose lateral
stability is determined by how the orbit becomes unstable.
Dynamically, beyond invariable manifolds, there can appear
different bifurcations and different forms of basin of at-
traction. If there are sieve basins in a multistable chaotic
system, their final state will be totally unpredictable. This is
similar to a random process, for which only the probability
of the final state of the system can be determined.

The purpose of this research is to take the analysis on the
proposed chaotic system as an example to exhibit the
nonlinear dynamical behavior of a memristor-based frac-
tional-order chaotic system and to provide a new theoretical
basis for the study of nonlinear systems. In the study, we
used Adomian algorithm to solve the proposed fractional-
order chaotic system and yield the chaotic phase diagram,
and the bifurcation, Lyapunov exponent, and SE complexity
of the chaotic system. Here, we specifically present a new
analytical method of using Lyapunov exponent to describe
the state of the basin of attraction of a chaotic system, from
which we yielded the solution, basin of attraction region,
transitional region, and divergence trajectory of the system.
Our system analysis also revealed the multistability of the
system.

2. New memristor-Based Fractional-Order
Chaotic System

We propose a new memristor-based fractional-order chaotic
system which is expressed by

[ dx?
ar - AD T,
q
% = Bx — xz — xW (w),
1 (1)
q
% = x? -Cz,
dw?
3

The function of memristor [30] is
W (w) = 0.1w’ + 0.6. (2)

When A=5, B=20, C=4, q=0.98 (0<g<1), and the
initial value is (0.1, 0.1, 0.1, 0.1), Adomian decomposition
algorithm is used to solve system (1) and yield the corre-
sponding system phase diagram, as shown in Figure 1. When
q=0.9, the phase diagram of system (1) is as shown in
Figure 2. Here, we are going to analyze the proposed
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fractional-order chaotic attractor subsystems for orders 0.98
and 0.9. Figure 2 is more complex than Figure 1.

2.1. Equilibrium Point and Lyapunov Exponent Analysis.
The equilibrium points of system (1) can be obtained by
solving the following equation:

0=A()/_x),
0 = Bx — xz — xW (w),
2 (3)
0=x"-Cgz
0=x.

Through equation (3), we get the equilibrium point for
system (1) as (0, 0, 0, 0). When ¢g=0.98, the Lyapunov
exponents of system (1) are LE1=0.7505, LE2=-0.0297,
LE3 =-0.2298, and LE4 = —9.8612, suggesting that system (1)
is a chaotic system. The Lyapunov exponent of the system (1)
is calculated and the corresponding index map is obtained
based on predictor-corrector (PECE) method of
Adams-Bashforth-Moulton type and Wolf's method. The
Lyapunov exponents are shown in Figure 3.

2.2. Bifurcation and Lyapunov Exponent Spectrum Analysis.
Assume that the fractional-order parameters are g=0.98,
B=20, and C=4; the control parameter A of system (1) is
increased from 1 to 6; the initial value of system (1) is (0.1, 0.1,
0.1, 0.1); the step size of A is 0.01. The bifurcation diagram of the
fractional-order system is as shown in Figure 4(a). We can see
that when the fractional-order system is in order 0.98, system
(1) is in the chaotic state. When parameters g = 0.9, B= 20, and
C=4 and again when control parameter A is increased from 1
to 6, the fractional-order system will come into the chaotic state
through period doubling bifurcation. The bifurcation diagram
is as shown in Figure 5(a) when the fractional-order parameters
are q=0.98, A =5, and C =4, the control parameter B of system
(1) is increased from 10 to 22, the initial value of system (1) is
(0.1, 0.1, 0.1, 0.1), and the step size of B is 0.01. The bifurcation
diagram of the fractional-order system is as shown in
Figure 6(a). We can see that when the fractional-order system is
in order 0.98, system (1) will come into chaotic state through
bifurcation. When parameters g=0.9, A=5, and C=4 and
again when control parameter B is increased from 10 to 22, the
fractional-order system has hidden bifurcation. The bifurcation
diagram is as shown in Figure 7(a). At the same time, the
Lyapunov exponent of system (1) is calculated and the cor-
responding index map is obtained based on the predictor-
corrector (PECE) method of Adams-Bashforth-Moulton type
and Wolf's method. The Lyapunov exponents are as shown in
Figures 4(b), 5(b), 6(b), and 7(b). The Lyapunov spectrum
provides the parameter range when system (1) is in chaos, and
these ranges are consistent with bifurcation analysis results.

2.3. SE Complexity Analysis. The complexity analysis of
systems covers a range of fields. Researchers into these fields
have reported different understandings about the com-
plexity of the systems. So far, no consensus has been reached
over the definition of complexity. The complexity of a
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chaotic system is the random nature of the chaotic sequence. ~ complexity of a chaotic system is essentially the complexity

The higher the complexity of a chaotic system is, the closer ~ of chaotic dynamics. So far, many complexity algorithms
the sequence is to a random one and, accordingly, the higher =~ have been used to measure the complexity of a system, such
the security of the corresponding system becomes. The  as multiscale entropy [31], Shannon entropy [32], fuzzy
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entropy [33], and spectral entropy (SE) [34]. Compared with
other algorithms, SE is more popular for having fewer pa-
rameters and higher accuracy. For this reason, we used SE to
measure the complexity of our new chaotic system. Fur-
thermore, chaotic mapping-based SE can provide better
basis for choosing the right parameters in real applications.
Figure 8 shows the SE complexity analysis related to pa-
rameter A and order g. From this diagram, we can see that
the lower the order is, the darker the color is and, ac-
cordingly, the greater the complexity of the system becomes.
This well agrees with the reality that the lower the order of a
fractional-order chaotic system, the greater the complexity
of the chaos. Within the corresponding parameters, if this
system is used in a chaotic secure communication system,
the confidentiality of the communication system will be
improved.

2.4. Basin of Attraction Analysis. Regarding fractional-order
chaotic systems, we have published two articles on basin of
attraction analysis [35, 36]. In the present study, we further
analyzed the characteristics of a basin of attraction and again
analyzed the stability of the system by considering Lyapunov
exponential function. When the system operates in the initial
state, it will move towards the direction in which Lyapunov
exponential function decreases until reaching its local minima.
The local minima point of Lyapunov exponential function
means the stable point in phase space, where each attractor will
surround a substantial basin of attraction. In that sense, these
points are also called attractors. These basins of attraction
represent a stable chaotic state. When the stable point comes
into the lowest region of the basin of attraction, the solution of
the chaotic system can be yielded. The size of a basin of at-
traction, as indicated by the radius of attraction, can be defined
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as the maximum distance between all states contained in a
basin of attraction or the maximum distance of the state that
can be attracted by the attractor. In a dynamic system with
more than one attractor, the corresponding basin may have a
fractal boundary or even more complicated structure. Hence, in
system (1), the representative coexistent attractors will have
such a complicated basin boundary structure. The orange
region is the basin of attraction for attractors at infinity which
shows the coexistence of multiple attractors. In the yellow
region, there is a line composed of a number of green points
which fall in the center of the yellow region. They are the local
minima points of Lyapunov exponential function, which in-
dicate the stable points in phase space. They are also the so-
lutions of a chaotic system, as well as the symmetry points of
the basin of attraction. The blue region is the transitional re-
gion. From the basin of attraction diagrams for different orders,
the basin of attraction section is a series of symmetric graphs

which are unevenly distributed but have a self-similar ap-
pearance. From Figures 9-11 , we can see that system (1) has
quite a few coexistent attractors. The basin of attraction is
described by the Lyapunov exponent, so in the matlab pro-
gram, we found the local minimum of the Lyapunov exponent.
The green line was actually discrete points, but the figure was
shrunk, making them look like a line. In the global basin of
attraction figure, it can be found that the steady-state regions
represented by yellow are spaced apart. So, they are multistable.
Under different orders, the basin of attraction of system (1)
shows different states, especially its area in the yellow region.
How to use the radius of attraction to derive the size of a basin
of attraction is a future field of concern. Now, that we have
derived the position of the central point of the basin of at-
traction, the next step will be to obtain the size of the basin of
attraction. Panorama of the base of attraction of system (1) with
q=0.9, as shown in Figure 12.
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FiGURE 9: The basin of attraction of system (1) with g=0.98: (a) x(0)—y(0) plane, (b) x(0)—z(0) plane, and (c) y (0)-z(0) plane.
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FIGURE 10: The basin of attraction of system (1) with g=0.9: (a) x(0)—y(0) plane, (b) x(0)-z(0) plane, and (c) y(0)-z(0) plane.

2.5. FPGA Implementation. The hardware experiment of
system (1) with g=0.98 is conducted by the method of fixed-
point number, based on FPGA technology. We use Xilinx
Zyng-7000 series XC7Z020 FPGA chip and AN9767 dual-port
parallel 14 bit digital to analog conversion module with the
maximum conversion rate of 125 MHz and adopt Vivado17.4
and the System Generator to realize the joint debugging of
matlab: FPGA. Besides, we use oscilloscope to visualize the
analog output. After the analysis, synthesis and compilation of

Vivado. To further confirm that the chaotic system (1) is
correct, after confirming that the timing simulation results are
correct, generate the bit file by Vivado and download the
generated bit file to the FPGA development board, convert the
output of FPGA into the analog signal using AN9767 digital
analog converter, and then connect AN9767 digital analog
converter to the oscilloscope to observe the phase diagram of
system (1) attractor. The phase diagrams displayed by the
oscilloscope are, respectively, shown in Figure 13.
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3. Conclusions

Through the example of the memristor-based fractional-
order chaotic system, this paper proposes a method to
analyze the domain of attraction of the chaotic system via
Lyapunov exponents. This method is used to depict the states
when the orbit of the Lyapunov exponents takes different

initial values, then obtain the center point of the attraction
domain, and analyze the various states of the chaotic system
as described under the domain of attraction at different
orders. At the same time, the chaotic phase portraits are
achieved by the solution of the proposed fractional-order
chaotic system based on Adomian algorithm, and the dy-
namic analysis of the chaotic system is studied, such as



Lyaponov exponential spectrum, bifurcation, and SE com-
plexity. Furthermore, this paper forecasts the future research
directions and application areas of the domain of attraction.
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