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Having neither precise definition nor a commonly accepted scope, the term “MicroGrid” tends to be used differently across
researchers and practitioners alike.(emanagement of energy usage within a microgrid is one of the topics that was handled from
numerous perspectives. (is study presents systematic literature review (SLR) of research on architectures and energy man-
agement techniques for microgrids, providing an aggregated up-to-date catalogue of solutions suggested by the scientific
community. (e SLR incorporated 45 papers selected according to inclusion/exclusion criteria and defined a priori. (e selection
process was based on an automated search and covered three known digital libraries. (e extraction process covers three main
questions. (i) (e architectures of microgrids including their components, their bus configuration, and the adopted utility grid
policy. (ii) (e employed methods to ensure an optimal usage of energy under uncertainty. (iii) (e confronted challenges and
constraints of the suggested strategies. (e findings of this SLR indicate a great diversity of methods and a rich background.
Finally, the SLR suggests that future research should take into account the uncertainty aspect relating to energy management
rather than the direct use of historical data as it is commonly done in most research papers. A sensitivity analysis should be
provided in the latter case.

1. Introduction

(e ever-increasing demand for electrical energy is a
worldwide phenomenon which is the product of different
changes happening across the nations. Coupled with a poor
consumer awareness with regards to energy efficiency, the
explosion in population growth and the wide spread and
adoption of electronic devices in daily life are driving this
trend to continue well beyond a couple of decades. (is
surge of demand imposes critical challenges facing grid
utilities. Currently, the majority of electrical networks are
relying on ageing infrastructures that restrict the perfor-
mance of power delivery. As a result, the expansion of the
grid proves to be complicated necessitating a radical
transformation of the grid architecture and components.
(e installation of distributed generation units comes as an

alternative solution to fill the continually expanding gap
between demand and supply.

(e use of distributed supply points presents many
benefits especially in term of energy loss. In fact, the
closer the generation to the consumer is, the less energy
loss it undergoes. However, at the same time, this al-
ternative solution faces some challenges. A distributed
energy network will require its monitoring unit to mi-
grate from the old-fashion centralized strategy presented
by a unique monitoring unit to a new decentralized
strategy. (is implies more implication of computer
technology and infrastructure. On the contrary, fossil
fuels remain the dominant sources for both centralized
and distributed power generation. Such sources of energy
are exhaustible and are going to disappear in the short
future. With the rise of new green technologies such as
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PV panels, wind turbines, and electrochemical batteries,
new ways of generating and consuming energy emerge. It
is considered that the integration of such clean distri-
bution units can have many advantages to the electrical
network. It can help mitigate climate change, alleviate
load from the main utility grids, and avoid the blackout/
brownout.

“MicroGrid” (μ grid) is flowering in the scientific
community as the future of the electrical grid. Although it
has neither well standardized definition nor defined scope,
there is a common agreement that the μ grid is a small-
scale energy network composed of loads and distributed
energy resources. (e integration of renewable energy
resources (RER) puts more pressure on the monitoring
units. In fact, the natural phenomena on which the RER
rely are intermittent and the result is an unpredictable
power supply. (e fluctuations in the RER power output
may cause network instability and yield to a demand-
supply imbalance. Researchers suggested different
methodologies to overcome these problems as well as to
further advance green technologies incorporation. Par-
ticularly, managing energy within a μ grid has been
studied widely using a variety of techniques in various
contexts.

(is paper provides a current state of the art regarding
the application of energy management strategies in μ grids.
(e overview was performed following a defined meth-
odology that is presented in Section 2. (e results of the
overview are divided into four parts and are presented in
the remaining sections. (e emphasize is first directed to
the adopted architectures. We focus in this part on the
common components that compose a μ grid, the different
modes of its operation, the policy of connecting a μ grid to
the main grid and the specifications associated with it, and
finally the bus configurations that structure the connection
of heterogeneous electric devices. In Section 3, we shed the
light on the proposed methods presented in the research
field to manage the energy usage in μ grids. Attention is
then paid to various algorithms and simulation tools that
are utilized to put into practice the suggested methods. As
aforementioned, an efficient energy usage in μ grids faces
many challenges and constraints. (ose latter will be
discussed in Section 5. (e section that follows explains the
limitation of our study and the difficulties that we en-
countered. Section 7 concludes the paper and opens on
further suggestions.

2. The Review Process

(e review process has been carried out, and the following
steps are structured into three phases: planning, conducting,
and documenting the review. Each phase involves several
activities. In this section, we present how the review was
planned and conducted. (e planning phase includes the
identification of the research questions and the development
of the search process. (en, we proceed to the review
conducting phase by selecting relevant studies and per-
forming data extraction process.

2.1.%eResearchQuestions. (emain objective of this study
was to answer the following research question:

RQ: how do researchers and modellers tackle the
problem of uncertainties of the RERs to ease their pene-
tration in the future electrical grids?

(e question was broken down into several “sub-
questions” that will help us focus on many facets of the
implementation of μ grids.

RQ1: what are the suggested architectures of a μ grid?
RQ2: what are the proposed methods for an efficient
energy usage?
RQ3: what are the challenges faced and what con-
straints are commonly taken into consideration?

2.2. %e Search Process. We searched the following three
electronic databases:

(i) Elsevier Science Direct (http://www.sciencedirect.
com/)

(ii) IEEEXplore (http://www.ieeexplore.ieee.org/Xplore/)
(iii) SpringerLink (http://www.springerlink.com/)

(e search process was not evident to apply. (e energy
management in the μ grid could take many forms. For
instance, the term “energy management” could not figure in
the elements searched (title, abstract, . . .) even if the paper
tackles the subject. (is could be load shifting, energy
balance, state of charge management, energy scheduling, etc.
Besides, for many studies, there is a mingling of the terms μ
grid, smart grid, and smart building. We were obliged to
enlarge our research target in order to include any relevant
study. Table 1 lists the different synonyms, abbreviations,
and alternative spellings of each of the individual facets of
the study.(e search terms of each facet were gathered using
a Boolean “OR” operator, while the different facet items were
combined using the Boolean “AND” operator.

A first selection based on the search strategy cited above
turned out to be nonrelevant since a huge number of papers
were returned. (us, the search process was done in an
iterative way, following the best practices of the agile
methods. In fact, the search process has been updated
throughout the review conducting phase as to ensure the
selection of the most relevant papers. (e aforementioned
lack of standards and specifications regarding the man-
agement of μ grids has been very apparent during this study

Table 1: Search terms.

Facet Search term

Microgrid

Microgrid
Micro-grid
Smart grid

Smart building

Energy management
Energy balance

Energy management
Load balance

Optimization Optimization
Optimal
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selection. For Science Direct library only, we found 604
papers based on our first search. We were obliged to narrow
the scope of our search by applying a supplementary filter on
papers. (e filter selects only the papers in which one of
these terms: PV, wind, solar, or “renewable energy” figures,
since our interest is more oriented on how researchers tackle
the problem of the intermittent aspect of RERs. Table 2 gives
the final command that was used for the study selection in
every database.

Table 3 reflects the number of papers found in each
library after applying the search command, but before
proceeding to the selection, thus providing a general idea
about the papers published in the field of energy usage
management for μ grids. With a growing yearly number of
published papers in this topic, the research community’s
interest is apparent.

2.3.%e Study Selection. We restrict our study to the first 15
relevant papers of each database. (e papers selected for the
study were subject to the following inclusion/exclusion
criteria.

Inclusion:

(i) Only papers written in English were selected
(ii) (e paper, be it a primary or secondary study, must

propose an energy management strategy for green
μ grids

Exclusion:

(i) Papers considering the whole smart grid network
since our study is more lenient towards a user-
driven low voltage networks.

(ii) Papers conducting research on the wireless
micronetworks and communication.

(iii) Papers that focus on the communication facet of μ
grids and optimize the communication energy
among the network nodes.

(iv) Papers proposing energy forecasting techniques
relating to RERs such as wind turbine and PV
panels without proposing an energy management
for μ grids.

(v) Papers not including a type of a RER since the
focus of the study is on green μ grids.

(vi) Papers not including a type of energy storage. (e
models we are interested in include a type of
energy storage that will increase the autonomy of
the system be it working under an on-grid mode,
off-grid mode, or hybrid mode.

(vii) Papers focusing on the charging/discharging
scheduling of electric vehicles (EV) since their
inclusion in μ grids is beyond the scope of our
SLR.

2.4. %e Data Extraction Process. After the selection was
made, we proceed to processing the selected papers and
extracting specific pieces of information that will help us
answer the defined research questions:

(i) (e components of the μ grid, namely, the exploited
RER, the storage, and the bus configuration

(ii) (e operational mode of the μ grid, namely, on, off,
and on/off modes

(iii) (e adopted pricingmodel of the utility for the grid-
connected and the switched mode μ grids

(iv) (e adopted policy of energy flow with the main
grid when dealing with grid-connected and
switched modes

(v) (e developed methods to overcome the problem of
uncertainty and make an optimal usage of energy

(vi) (e challenges and the constraints of the suggested
strategies

In the remaining sections, we cover the last phase of the
SLR and answer the defined research questions.

3. RQ1: Architectures

In this section, we will focus on the electrical architectures
proposed in the selected papers for μ grid systems. Table 4
summarizes the first part of the findings of the review. We
will focus as a first step on the different components that
make up a μ grid. Next, we will discuss the management of
power flow between these components. Finally, we will
differentiate between the various bus system configurations
for green μ grids.

We note that an efficient operation of a μ grid depends
not only on its electrical configuration but also on its
communication architecture. In fact, the projection of a
monitoring infrastructure onto the already existing power
system is what made a μ grid an actuality.

3.1. Integration of RERs in μ Grids. RERs, also known as
Renewable Energy Sources (RES) or nondispatchable
sources, are the type of technologies that provide energy
from renewable natural phenomena such as solar intensity,
wind speed, waves, tides, and geothermal heat. (ey usually
have low greenhouse gas emissions compared to their fossil
fuels counter parts and thus are considered a prominent
player in climate change mitigation. While some RERs are
implemented in large-scale projects, others were found to be
suitable for small-scale implementations such as μ grids. (e
most implemented RERs in μ grids are PV panels and wind
turbines.

3.1.1. PV-Based Systems. Recently, there has been a dramatic
fall of PV panels’ prices in the market. Coupled with other
advantageous aspects (e.g., high conversion efficiency, light
weight, and possibility of installation in the most uncon-
ventional conditions), PV panels became the most popular
type of renewable energy to be implemented in a μ grid scale.

Generally, PV panels installed on rooftops convert solar
irradiance into electric energy. (e paper [14] introduces a
new idea of hybrid PV thermal systems (PVT) producing
either thermal or electrical energy. (e thermal energy
production can be used for heating water or air and
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supplying thermal energy for domestic use. (is imple-
mentation increases the efficiency of the system since the
process of providing thermal energy passes through one step
conversion (i.e., conversion to thermal energy) instead of
passing through a two-step conversion (i.e., conversion to
electric energy and then to thermal energy), saving losses
related to the conversion process. Authors in [4] exploited a
new potential of PV systems and studied the PV installation
on facades.

Different equations were used to calculate the PV power
output. (e equation below is given in [1, 9], incorporating
all important parameters that impact the PV output such as
the temperature and the solar radiation:

PPV � P
nom
PV ×

G

Gref
× 1 + K × Tamb +

NOCT − 20
800

G  − Tref ,

(1)

where (i) Pnom
PV : nominal power of PV at standard test

conditions, (ii) G: solar radiation (W/m2), (iii)
Gref � 1 kW/m2: reference solar radiation, (iii) K:

temperature coefficient of power, (iv) Tamb: ambient tem-
perature, (v) Tref � 25°C: reference temperature at standard
conditions, and (vi) NOCT: nominal operation temperature.

Some papers (e.g., [6, 22]) neglect the term (((NOCT −

20)/800)G) to give a simpler equation. Other simplified
expressions for the output can be found in [6, 7, 32]. A
detailed expression is presented in [14]. (ese equations
showcase the relationship between the output with
manufacturing parameters (e.g., short-circuit current Isc,
open-circuit voltage Voc, the maximum points of voltage
Vmpp, and current Impp) as well with weather parameters
(i.e., temperature and irradiance).

3.1.2. WT-Based Systems. For relatively large μ grids, PV
panels can be combined with wind sourced energy. (is
technology is very suitable for rural areas and isolated re-
gions since it allows to compensate the lack of PV output in
cloudy periods. (e WTpower output depends on the wind
speed as

PWT �

0, VWT <Vcut−in, VWT >Vcut−out,

P
nom
WT ×

V
3
WT

V
3
nom − V

3
cut−in

−
V

3
cut−in

V
3
nom − V

3
cut−in

 , Vcut−in ≤VWT <Vnom,

P
nom
WT , Vnom ≤VWT <Vcut−out,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where (i) VWT: wind speed, (ii) Vnom: nominal wind speed,
(iii) Pnom

WT : nominal power of theWT, (iv) Vcut−in: cut-in wind
speed, and (v) Vcut−out: cut-out wind speed.

(is equation is used in [1, 9, 22, 42]. Other expressions,
namely, equation (3), integrate power coefficients and air

density and are given in [11, 32, 36, 43]. A more detailed
expression is presented in [36, 43]:

PWT �
ρ
2

× A × Cp(λ, β) × VWT, (3)

Table 2: Search commands.

Database Search command

Science Direct

Title, abstract, and keywords: (microgrid ORmicro-grid OR “smart building” OR “smart grid”) AND (“energy
management” OR “energy balance” OR “load balance”) AND (optimal OR optimization)

Find articles with these terms: (PV OR wind OR solar OR “renewable energy”) AND storage
Years: 2015–2018

IEEExplore and
SpringerLink

((“Smart grid” OR microgrid OR micro-grid OR “smart building”) AND (“energy management” OR “energy
scheduling” OR “load balance” OR “energy balance”) AND (optimal OR optimization) AND (PVORwind OR

solar OR “renewable energy”)) AND storage
Years: 2015–2018

Table 3: Number of papers’ result of the search command.

2015 2016 2017 2018 Total
ScienceDirect 50 64 89 114 317
IEEExpore 865 1104 1336 1858 5163
SpringerLink 159 170 271 423 1023
Total 1074 1338 1696 2395 6503
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where ρ is the air density, A is the swept area of the blade,
and Cp is the power coefficient that depends on the pitch
angle β and the tip speed ratio λ.

3.1.3. Micro-Hydropower System (MHP). A MHP system
transforms the energy of flowing water into electrical energy.
A turbine, a pump, or a waterwheel is used to convert the
flowing power into rotational energy. (e latter is then
converted into electrical energy using a generator. (e
authors in [11] compute the power output of the MHP
system using

PMHP �
9.8 × Hnet × ηMHP × ρw × Z

1000
, (4)

where Hnet: net head, ηMHP: efficiency of the MHP system,
ρw: water density, and Z: available discharge.

3.2. Conventional Energy Resources. (e conventional en-
ergy resources or the dispatchable energy resources are
small-scale energy generators relying on a specific type of
fuel. Usually, they are used as a backup energy supply to
overcome outage power events or as control sources to
regulate frequency and voltage deviations. Common

Table 4: Suggested architectures.

Ref ON/OFF Utility pricing RER DER Injection ESS Injection
[1] OFF — PV WT DG — BESS —
[2] ON Dynamic pricing PV — Y BESS Y
[3] OFF — PV WT — — BESS (lead-acid) —
[4] ON Dynamic pricing PV — Y BESS (Li-ion) Y
[5] ON/OFF — PV DG Y BESS (lead-acid) —
[6] OFF — PV Fuel cell — BESS (Li-ion), hydrogen —
[7] ON TOU PV — Y BESS N
[8] ON Dynamic pricing PV — Y Ice storage N
[9] OFF — PV WT — — Pump ESS —
[10] ON PV — Y BESS Y
[11] OFF — PV WT MHP BMG — BESS —
[12] OFF — PV DG — BESS —
[13] OFF — PV GT — BESS (lead-acid) —
[14] ON RTP PV WT MT FC Y BESS Y
[15] ON Flat PV CHP Y BESS (Li-ion), thermal storage N
[16] ON Dynamic pricing PV WT — Y BESS Y
[17] ON PV WT — BESS
[18] ON Dynamic pricing PV WT — N BESS N
[19] ON Quadratic RER — N ESS N
[20] ON Time-varying linear function RER — N ESS N
[21] OFF — PV WT DG MT — BESS (VRB), supercapacitor —
[22] OFF — PV WT DG — BESS (Li-ion) —
[23] ON TOU PV — N BESS (Li-ion) N
[24] OFF — PV — — BESS —
[25] OFF — PV WT DG — BESS, hydro-pumped storage —
[26] ON Dynamic pricing PV WT — N ESS N
[27] ON Dynamic pricing PV — Y BESS Y
[28] ON/OFF Dynamic pricing PV WT DG Y BESS Y
[29] OFF — PV WT MT — BESS —
[30] ON/OFF TOU PV — Y BESS —
[31] ON/OFF Dynamic pricing PV WT DG Y BESS (VRB, Li-ion), supercapacitor —
[32] ON TOU PV WT DG, FC, MT Y BESS N
[33] ON — PV WT — N BESS N
[34] ON TOU PV WT — Y BESS (lead-acid) N
[35] ON Dynamic pricing PV WT — BESS —
[36] OFF — PV WT FC — BESS —
[37] ON Flat price PV — Y BESS N
[38] ON/OFF Dynamic pricing PV DG Y BESS N
[39] OFF — PV WT DG — BESS (Li-ion) —
[40] ON TOU PV MT, BMG Y BESS, thermal storage —
[41] ON RTP PV WT MT, FC Y BESS —
[42] ON Auction price PV WT — Y Pumped storage —
[43] OFF — PV DG — BESS —
[44] ON TOU RER — Y ESS Y
[45] ON TOU PV — Y BESS (Li-ion) N
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examples of conventional energy resources include natural
gas turbines [13], microturbines [14], combustion turbines,
biomass generators, and distributed generators.

3.2.1. Biomass Gasifier (BMG) System. (eBMG systems are
energy systems that rely on biomass as a fuel source to
generate power or heat. Several biomass materials can be
used, such as wood chips, animal waste, farm waste, and
paper waste. Equation (5) from [11] calculates the power
output of a BMG system:

PBMG �
Av × CVBMG × ηBMG × 1000

365 × 860 × Op
. (5)

where Av is the biomass availability (tons/year), CVBMG is
the system’s calorific value, ηBMG is the overall conversion
efficiency from biomass to electricity, and Op is the oper-
ating hours per day.

(e burning of biomass generates a significant amount
of carbon dioxide, but it has less environmental impact than
fossil fuels which is already included in the natural cycle of
the biomass. BMG systems are then considered to be
“cleaner” than the fossil fuel systems, but less “cleaner” than
the RERs.

3.2.2. Distributed Generators (DGs). DGs convert the me-
chanical power into electric power.(ey consist of an engine
that drives motors operating with gasoline, diesel [1, 27],
natural gas, propane [39], etc. (e most known DGs are
diesel generators.

PDG, the output power of DGs in [22], is assumed to be
proportional to the fuel consumption ϱDG with a coefficient
of proportionality aDG (i.e., fuel consumption coefficients):

ϱDG(t) � aDGPDG(t). (6)

3.2.3. Fuel Cells. Fuel cells are another type of energy
converters. (ese electrochemical cells transform the
chemical energy of the fuel into electricity. (ere are five
major types of fuel cells generally available in the market:
alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC),
molten carbonate fuel cell (MCFC), solid oxide fuel cell
(SOFC), and proton exchange membrane fuel vell (PEMFC)
[43].

In [1], the relation between PFC, the output power of FC,
and ϱFC, the consumption of fuel, is given by

ϱFC � aFCPFC + bFCP
nom
FC , (7)

where aFC and bFC are coefficients of fuel consumption. A
similar equation is given in [40]. A detailed formula for
calculating the output voltage of a fuel cell is given in [36].
(e expression includes among other parameters: the uni-
versal gas constant (8.3145 J/(mol·K)), the Faraday constant
(96485A s/mol), the number of moving electrons, the charge
transfer coefficient, the operating temperature (K), the
partial pressure of hydrogen inside the stack (atm), and the
partial pressure of oxygen inside the stack (atm).

3.3. Energy Storage System (ESS) Integration. Electrical en-
ergy cannot be stored in the way it is generated.(e ESSs are
technologies that allow us to store another type of energy
such as chemical energy or mechanical energy and convert it
into electrical energy when needed.(ere is a large variety of
ESSs in the market. (ese include electrochemical battery,
super-capacitor, compressed air energy storage, and flywheel
energy storage. When the μ grid is working as a standalone
system, the main roles of an ESS are ensuring a continuous
energy supply as well as stabling the DC bus voltage. When
connected to the grid, the ESS (especially the battery) works
in coordination with the other elements of the μ grid to meet
its objectives as well be defined in Section 5.1.

(e authors in [46] give a comprehensive overview of
different ESSs and their roles when integrated in μ grids.
(eir technical roles and functions include the following:
grid voltage and frequency support, grid angular (transient)
stability, load levelling/peak shaving, spinning reserve, im-
balanced load compensation, power quality, and reliability
improvement.

(ere is a huge tendency in the μ grid research field that
considers the battery of electric vehicles (EV) as an ESS and
integrates it in the energy management policy; such systems
can be the sole subject of another review. In fact, when an EV
is present, its stored energy can be consumed in the system.
Although, this can introduce additional constraints in the
system (i.e., EV battery should be fully charged at some
predefined periods).

3.3.1. Battery Energy Storage Systems (BESSs). Batteries are
the common solution for energy storage in a μ grid scale.
(eir price is still not very affordable for household econ-
omy. Besides, the rigorous maintenance this type of ESS
needs (e.g., requiring a dry and cool place and huge volume)
does not encourage customers to adopt it as a solution. Still,
it is the best choice compared with the aforementioned ESS
solutions. When the type of battery is mentioned, it is either
lead-acid or lithium-ion.(e latter is getting more and more
popular thanks to its high efficiency rate, its extended
lifetime, and its deep depth of discharge (DoD).

(e charging/discharging equation of a battery is as
follows:

SE(t + Δt) � SE(t) ×(1 − δ) + ηchar × βchar −
βdis
ηdis

  × Δt.

(8)

With δ is the self-discharging rate, ηchar and ηdis are,
respectively, the charging and discharging efficiencies, βchar
and βdis are, respectively, the charging and discharging rates,
and Δt is the time step. Some assumptions could be made to
simplify the equation:

(i) Neglect the self discharging rate (0.002)
(ii) Take Δt equal to one hour
(iii) Take ηchar � ηdis
(iv) Consider that the battery is either charging or

discharging at a single time step
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(is will lead to

SE(t + 1) �

SE(t) + η × βchar, chargingmode,

SE(t) −
βdis
η

, dischargingmode.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

3.3.2. Other ESSs. In [15], a thermal storage is used as a
buffer storage. (e authors in [9] used a pumped-storage
plant under two operation modes: a pump mode and a
discharge mode. (ey developed the water to power con-
version equation and set the constraints related to the op-
eration of the pump storage. In [8], the authors integrate an
ice storage model for which the mathematical modelling is
described in [47].

3.4. ON/OFFModes of Operation. (ere are three types of μ
grid operation: off-grid, on-grid, and on/off-grid. (e off-
grid mode, also known as stand-alone power system (SAPS),
is an isolated mode or islanded mode. In this mode, the μ
grid works autonomously without being connected to the
utility grid. (is mode of operation is very common in rural
areas or in regions with harsh geographical conditions. (e
use of an ESS is very crucial since they store the energy
during the period of peak production (i.e., when the gen-
eration exceeds the load demand, use it when the local
generation becomes insufficient). A backup supply is also a
plus in off-grid implementations since it will support the
load in the worst case scenarios. Consequently, a precise
design should be done to define the capacity of the local
resources as well as the capacity of the ESS to ensure a good
functioning of such systems and to avoid power outage.

When a μ grid is connected to the utility grid, we say that
it is working under on-grid mode, connected mode, or grid-
tied mode. (is mode is widely used in homes and busi-
nesses or any building located in zones supported by a utility
grid company. (e first version of this mode describes only
DER with no ESS. (us, any generated energy excess was
exported to the grid for which the customer gets paid with a
feed-in-tariff; any deficiency is supported by the utility grid.
(e significant drop in the price of ESS, especially batteries,
encouraged their integration in such μ grids. (is helps the μ
grid to get the best of both worlds. (e ESS is charged from
the excess and discharged when needed. (e utility acts as a
backup supply providing the μ grid with energy when both
generated and stored energy fail to fulfill the demand. With
this type of operation, ESS is able to be charged from the
utility during off-peak periods. (e option of exporting the
generated excess to the grid or charging the ESS from the
grid will be further detailed in Section 3.5.

(e last mode of operation is the on/off-grid mode. (is
mode is very similar to the on-grid mode with the only
additional feature of being able to disconnect from the utility
grid upon request. Generally, this type of μ grids works
under an on-grid mode. When a fault occurs in the utility
grid, the system switches to the off-grid mode in which it has

to work autonomously and rely basically on the local re-
sources. Similar to an off-grid μ grid, this system needs a
good sizing to calculate the capacity of its components in
order to ensure their operation under the partial autono-
mous mode. A basic layout scheme of the different modes of
operation is shown in Figure 1.

3.5. Energy Exchange Policy with the Grid. (e bidirectional
flow of energy is only available for the on-grid or on/off-
grid modes. From the 30 papers that suggested the on-grid
mode, 22 papers used the bidirectional flow of energy as a
valid option for the operation of the μ grid. Nevertheless,
the possibility of exporting the local generated energy to
the grid is not legally approved in many countries. In fact,
the structure of the electrical grid that is currently
implemented in almost all countries has a hierarchical
aspect. At the highest level, we have the power plants
where the energy is generated and transmitted to the high
voltage (HV) stations, also called transmission networks;
then, it passes through the medium voltage (MV) stations
(or distribution networks) to the low voltage (LV) net-
works, from where it is delivered to consumers. As it is
illustrated in Figure 2, the connection between different
levels of power voltage is done via transformers. (e
traditional type of transformers has a limited performance
preventing the bidirectional flow of energy, particularly
from a lower to a higher level. Upgrading this equipment
(and others) turns out to be very costly, and many utility
companies around the world are not ready yet to take this
step, as long as there is no incentive from the govern-
mental institutions.Countries allowing the injection of
energy into the public grid define a grid export limit. In
Australia, for example, export is limited to 10 kW. (is
limit is imposed to avoid signal disturbances occurring in
transmission lines. (e μ grid inverters must accurately
respect the voltage and the frequency of the public grid,
which are generally 240 V at 50 Hz or 120 V at 60 Hz. Yet,
from all the papers that allow the bidirectional flow of
energy, only a few touched on the bound on the energy to
be exported to the grid [16, 21, 27, 31, 38]. On the contrary,
the export limit puts more constraint on the size of the μ
grid system. (us, the customer should make good de-
cisions concerning the capacity of the implemented sys-
tem in order to increase its return on investment and
reduce the power waste.

(e exchange of energy between the ESS and the utility
grid is less common. Papers that allow the ESS to be charged
from the utility grid are few; the ones that allow both
charging and discharging from/to the grid are even fewer
[2, 4, 10, 28]. As a general case, the ESS is implemented to
improve the reliability of the system and increase its au-
tonomy. As a matter of fact, it is more common to see ESSs
only charging from the excess of the local generated energy
and discharging when needed by the customer.

3.5.1. Utility Pricing. (e utility companies can adopt a
static pricing or a dynamic pricing. In the former, the
price is flat and does not change with time or demand.
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While in the latter, the price is not fixed and can change
depending on several parameters such as the quantity of
requested energy, the time of the day, and the period of the
year. (e static pricing is beneficial to neither the cus-
tomer nor the supplier. In fact, during the peak periods
(e.g., in early evening), the utilities are often obliged to
activate “peak-plants” to catch up to the high demand of
energy in this period. (is type of plant is very costly and
the solution proves to be inefficient. (erefore, to com-
pensate the extra cost of activating the “peak plants,” the
company splits the cost evenly on the whole period of the
day. And, this means that a customer who is running the
washing machine or the dryer at 10 am is then overpaying
the cost of energy they consume. (e idea of a dynamic
pricing model to incentive customers is to shift/reduce
their energy consumption from peak periods by re-
warding them with lower prices for doing so.

Dynamic pricing models have been recently adopted by
electricity companies not only for the benefits they provide
but also because this was mandated by the governmental
legislatures in some regions. Authors in [48] present an
analysis of dynamic pricing in electricity grids and inves-
tigate the issues facing the integration of such pricing models
in the energy market. (ey also listed the different existing

models of dynamic pricing. Almost all the selected papers for
this study stated that they have adopted a dynamic pricing
for the energy drawn from the utility, but they do not
provide the model used. When mentioned, the model of
dynamic pricing is TOUP (Time-OF-Use Price) or RTP
(Real Time Pricing). TOUP determines two or three levels of
energy prices; each level for a certain period of the day. (e
price levels are predetermined and can be changed only once
or twice a year (i.e., summer period TOUP and winter period
TOUP). In RTP, instead of predetermining the price levels,
the exact price value for each period is calculated and an-
nounced to the user only at the beginning of the trading slot.

3.5.2. Feed-in-Tariff (FiT). (e FiT is the pricing policy
created to promote investments in RERs. It is adopted by
countries that encouraged the penetration of RERs in their
power systems.(e first FiTwas introduced in the US during
the late 1970s, and by the end of 2010, it has been enacted in
50 countries from which we cite Algeria, Germany, Iran, and
Australia. (e FiT provides a long-term agreement between
the RER users and electricity companies and defines the
price that the customer gets paid for injecting energy into the
grid and the limit of quantity to be injected.

Power plants

240V 132kV 132kV

400kV 400kV

HV transmission
lines

MV distribution
lines

LV lines

275kV

275kV

Figure 2: Example of a general structure of the public grid.
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Figure 1: Modes of operation.
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3.6. Bus Configuration. RERs as well as batteries provide
direct current (DC) energy. Most of the distributed gen-
erators supply alternating current (AC). (e load is com-
posed of both appliances that have to be fed by AC, such as
washing machines and refrigerators, and others by DC, such
as lighting and battery-powered devices. (erefore, many
suggestions focusing on bus configuration for green μ grids
exist in the literature.

(e traditional method is the centralized DC bus
configuration. It is very common especially in the imple-
mentation of isolated (off-grid) architectures. Figure 3
gives a general scheme of such configurations. (e sys-
tem is connected by a central DC bus to which the AC
components are connected via AC/DC inverters. Several
papers in the selection adapted this type of configuration,
e.g., [2, 6, 17, 22, 24, 27]. (ey justify their choice by stating
that the DC configuration has more efficiency, less cost, less
occupied space, lower lifetime cost, and high reliability
[34]. Besides, implementing a DC configuration helps
avoiding the frequency violation problem since only
voltage stabilization is dealt with. However, this method
presents several drawbacks. In fact, in a DC coupled sys-
tem, the battery inverter is responsible for delivering the
power. During the generated peak energy, the capacity of
resources surpasses the capacity of the battery, resulting in
a loss of the generated energy and limiting the performance
of the system.

(e centralized AC bus configuration shown in Figure 4
is a relatively more recent innovation. It provides an AC
medium to govern the interactions between different com-
ponents. (e DC components are connected to the AC main
bus through DC/AC converters or inverters. For example, in
such configurations, the PV panels are connected to the AC
bus through an AC inverter, and the batteries are either
connected via a bidirectional converter or paralleled inverter
and rectifier. (e centralized AC configurations work under
a higher operating voltage which results in fewer losses in
wire cables. Moreover, unlike the DC configurations, the
RERs can provide directly the power to home appliances.
(is enhances the expected lifetime of the battery by re-
ducing its charge/discharge cycles and leads to a better ex-
ploitation of the RER. Nevertheless, this configuration
requires additional safety measures (e.g., frequency stabili-
zation) in addition to having a slightly higher installation
cost than that of DC coupled systems. Compared to this
latter, only fewer papers have adopted the AC configuration
(i.e., [16, 21, 25, 43]).

(e last and the newest configuration is a hybrid DC-
AC coupling bus configuration (Cf. [1, 5, 10, 11, 23, 26]).
(is bus configuration contains two main buses: an AC
bus connecting the AC components and a DC bus con-
necting the DC components, as shown in Figure 5. (e
two buses are connected to each other via a bidirectional
inverter. (is configuration has the advantage of
benefiting from both previous configurations. It neces-
sitates minimum conversion requirements and reduced
power converters, since every component is connected to
either the DC or the AC bus, depending on its technical
functioning, leading to a reduced system cost. Yet, such

configuration requires more coordination between DC
and AC buses in terms of control strategy. In fact, co-
ordinated bus voltage (and frequency) operations need to
be considered.

In search of the most efficient configurations, many
researchers conducted comparative studies of the different
configurations. In [49], for instance, they deduced that
hybrid AC/DC coupled systems offer some compelling
advantages compared to other configurations. (e system
that underwent the study was composed of a genset, PV

AC bus

AC resources
DC resources

DC load
AC load

~
=

~
=

Figure 4: Centralized AC bus configuration.
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AC resources

AC load
DC load ~
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Figure 3: Centralized DC bus configuration.

AC busDC bus
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Figure 5: Hybrid AC/DC bus configuration.

Journal of Electrical and Computer Engineering 9



array, and a battery. Another study [50] concluded that the
hybrid coupled AC/DC is beneficial in all the investigated
scenarios.

4. RQ2: Methods

(e major grid imbalances causing instability are frequency
deviations, overloads, loss of synchronism, and voltage
collapses [51]. As mentioned before, the system has to work
with a 240V at 50Hz or with 120V at 60Hz. Any deviation
from the specified range of voltage/frequency operation will
lead to system instability.(e synchronism is lost when there
is a phase shift in the signal angles, while overloads occur
when there is an imbalance between the supply and the
demand. Energy management strategies address the prob-
lem of overloads by ensuring a continuous energy balance
within the system, while control strategies address the rest of
the imbalances and propose some adjustment mechanisms
to frequency and voltage.

(e second part of the findings are listed in Table 5,
outlining the different strategies employed in prior studies.

4.1. Control Strategies. It is challenging for systems inte-
grating RERs to provide reliable and stable power to load
demand. On the one hand, the intermittent characteristic of
RERs may cause some fluctuations in the power they gen-
erate. On the other hand, RERs generate low power com-
pared to the conventional sources. Control strategies (CS)
aim to address these types of problems; their main role is to
ensure a coordinated control of multiple sources and avoid
network violations through controlling variables such as
voltage, current, and frequency. (e architecture (i.e., bus
configuration and mode of operation) determines the tasks
that should be handled by a CS. In fact, under a DC-bus
configuration [17], only one component needs to be stabi-
lized which is the DC power. In this case, the source pro-
viding a stable voltage output operates in a voltage-
controlled mode to regulate the DC bus voltage, while the
other sources operate in the current-controlled mode. In the
case of an AC-bus configuration, the adopted control
scheme depends on whether the μ grid is isolated or grid-
connected. In fact, if it was isolated, four components should
be taken into account, namely, voltage, frequency, and active
and reactive powers. Indeed, voltage and frequency are
controlled through the V/f control scheme that is imple-
mented in the AC inverter to avoid related violations; while
the other nodes operate under the PQ control scheme
regulating the active and reactive powers. If the μ grid was
connected to the main grid, this latter takes charge of voltage
and frequency regulation. (us, only two components are
left to the μ grid to control which are active and reactive
powers. (ey are implemented in nodes using either a PQ or
a PV control scheme [52]. Flowchart in Figure 6 summarizes
the different control schemes adopted by different μ grid
configurations.We note that themost employed schemes are
the PQ control scheme to regulate the active/reactive powers
and the Vf control scheme to stabilize the voltage and
frequency violations.

4.1.1. %e V/f Control Scheme. (e V/f control ensures that
the output voltage is proportional to the nominal frequency.
(e voltage control maintains the nominal voltage ampli-
tude by adjusting the reactive output of the μ grid. Similarly,
the frequency control keeps the system working under the
nominal frequency (e.g., 50Hz) by adjusting the active
output of the system. (e two equations of a V/f control are
shown below:

Vi � V
∗
i − m Qi − Q

∗
i( ,

fi � f
∗
i − n Pi − P

∗
i( ,

(10)

where Vi,fi, Pi, and Qi are the voltage amplitude, frequency,
and active and reactive powers relative to the input electrical
signal, while V∗i , f∗i , P∗i and Q∗i are their references. m and n

are the drop amplitude and frequency coefficients.

4.1.2. PQ Control Scheme. (e PQ control ensures that the
active power P and the reactive power Q are regulated to
remain fairly constant. In fact, when connected to the grid,
voltage and frequency stability of an AC μ grid is handled by
the main grid. While this keeps voltage amplitude and
frequency varying within their allowable range, the PQ
control scheme ensures that the active and reactive outputs
remain unchanged. In addition of being implemented in
connected μ grids, the PQ control scheme is also applied by
slave nodes in the isolated mode.

(e control technique widely used in the literature to
implement control schemes is Pulse Width Modulation
(PWM) technique, which can be implemented via a PI
controller [10, 19, 52]. Authors in [52] give a comprehensive
review on the application of different control strategies in
both on- and off-grid modes of operation. To ensure μ grid
stability, the control strategy is sometimes associated to a
load management strategy, mainly a load shedding strategy.
In [24, 43], for instance, the authors resorted to the latter
strategy to keep voltage amplitude and frequency working
under their predefined limits.

4.2. Energy Management Strategies. Energy strategy or en-
ergy management strategy is an umbrella term. It is widely
known and used in utility companies and industrial settings.
We can define the energy management strategy as the
scheduling and the exploitation of different resources in-
cluding RERs to handle the customer’s demand load.
Nevertheless, with the emergence of the μ grid concept,
energy management started gaining interest in residential
setting as well, and it was coined home energy management
strategy (HEMS). From hereafter, we refer to this as EM
strategy.

μ grid systems incorporate one or more types of RERs,
which raises several challenges due to their stochastic nature.
(erefore, the task of energy balance between production
and consumption becomes less evident to achieve. To tackle
these problems, researchers focus their efforts to find op-
portunities that save energy and reduce routine energy waste
while keeping track of the system’s unpredictability.

10 Journal of Electrical and Computer Engineering



Table 5: Energy management strategies.

Ref Method Objectives Constraints Algorithm Simulation
tool

[1] Sizing Min COE, max reliability RF, BESS constraints MOSaDE —

[2] EM Min COE (ermal limit violation, voltage
stabilization, BESS constraints GA+DSM CEPLEX

Matlab
[3] Sizing Min loss, max reliability BESS constraints Myopic Matlab

[4] Sizing Ensure balance — Myopic PVsys,
Crmsolar

[5] Sizing Min NPC, min COE, min
CO2

RF (GAMS) HOMER

[6] EM Max reliability, min loss, max
lifetime

BESS, FC, hydrogen technical
constraints MPC+DSM —

[7] EM Min COE BESS, utility technical constraints MPC —
[8] EM Min peak demand User comfort Myopic +DSM EnergyPlus

[9] EM Min operation cost ESS, network and security constraints,
user comfort GAMS SBB solver

[10] CS +EM — BESS, utility technical constraints Myopic Matlab

[11] EM Min NPC Reliability, BESS and generation
constraints, excess of RER Myopic +DSM HOMER

[12] EM Min mismatch cost BESS, generation and load constraints Built algorithms —

[13] EM Min operation cost, max
reliability BESS, generation and load constraints MILP SimplexLP

[14] EM Min operation cost BESS and generation constraints Backtracking search optimization
algorithm (BSO) —

[15] EM Min operation cost, max
reliability ESS constraints MPC+ rule-based control Pyomo

(CPLEX)

[16] EM Min cash flow, min CO2, max
reliability BESS and network constraints Branch & bound Matlab

[17] CS Network stabilization Voltage stabilization Time rate multiple pulse width
modulation (TRM-PWM)

Matlab/
Simulink

[18] EM Min COE Energy balance PSO Matlab

[19] EM Min COE ESS constraints Sliding-window-based sequential
optimization —

[20] EM Min COE ESS and network constraints Store-then-cooperate/cooperate-
then-store —

[21] EM Min COE, max reliability BESS and generation constraints MPSO Matlab/
Simulink

[22] EM Min NPC, max reliability BESS and generation constraints Myopic Matlab

[23] EM Min O&M cost, max
reliability BESS constraints PSO Matlab

[24] CS Voltage stabilization BESS constraints Myopic PSCAD/
EMTDC

[25] Sizing Min annual cost, min CO2
BESS and generation constraints,

reliability Branch & cut Matlab

[26]
Sizing Min investment cost, min

expected operation cost Budget — —

EM Min operation cost BESS and load constrains, user
comfort Built algorithm —

[27] EM Min cash flow, max reliability BESS constraints Belleman dynamic programming —

[28] EM Min operation cost BESS constraints, voltage stabilization,
user comfort

Predictor corrector proximal
multiplier (PCPM) —

[29] EM — — Auction theory —

[30] EM Min COE
BESS and generation constraints,
islanding constraint, peak shaving

constraint
Linear programming MAtlab

CPLEX

[31] EM Min COE BESS and generation constraints regPSO —
[32] EM Min operation cost, min PAR BESS constraints Ant colony —

[33] EM Min operation cost BESS constraints Artificial neural network + linear
programming Matlab

[34] EM Min operation cost, min
emissions (CO2, NOx, SO2)

BESS and generation constraints Fuzzy-logic Matlab/
Simulink
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(e sizing (or design) of μ grids is the long term EM
strategy that aims to reduce the investment cost of the
implementation for the whole duration of the project. A
short term EM, commonly on a daily basis, can be done
subsequently to increase the opportunities of saving money
and energy. (ese techniques include resources scheduling,
load scheduling, or a combination of both. In the following
sections, we provide more details of the different EM
strategies cited above.

It is noteworthy that the EM strategies developed below
are presented from a technical aspect only. Although as
important, other aspects (e.g., behavioural aspects) are out
of the scope of this paper. (ese later require more at-
tention from the organizational structures to raise energy
awareness among customers by encouraging them to

replace inefficient equipments, install time switchers, and
generally use less energy.

4.2.1. Design and Sizing. (e optimal sizing is a techno-
economic approach conducted with the goal of finding the
best scenario that will return the highest Return On In-
vestment (ROI). From a customer perspective, questions
such as what kind of DER technology best fulfil my needs?
what should be the capacity of the implemented DER? what
is the capacity of ESS that will increase the efficiency? and
what if I increase the capacity of the DER, would it con-
tribute to cost savings or would it be a waste of money
because it would only generate unexploited energy excess?
will need convincing answers. By performing an optimal

Table 5: Continued.

Ref Method Objectives Constraints Algorithm Simulation
tool

[35] EM Min cost, min emissions BESS and generation constraints, user
comfort Myopic + shedding Arduino/

JADE

[36] EM Energy balance BESS and generation constraints Myopic + shedding Matlab/
Simulink

[37] EM Min COE, min mismatch cost BESS, generation and load constraints,
user comfort Myopic + shedding Matlab

[38] EM Min operation cost, min
mismatch cost, max profit BESS, generation, network constraints Column-&- constraint generation

algorithm (C& CG)
C++

(CPLEX)

[39] Sizing Min lifetime cost BESS constraints Myopic Matlab
EM Min operation cost BESS, generation and load constraints shedding + shifting —

[40] EM Min COE Cooling/heating balances, electricity
balances operational constraints Piecewise linear robust MILP —

[41] EM Min operation cost, min
emissions BESS and generation constraints MOPSO Matlab

[42] EM Max profit ESS and generation constraints MILP GAMS
(CPLEX)

[43] CS Min operation cost, min
mismatch cost

BESS and generation constraints,
voltage and frequency stabilization — Matlab

[44] EM Min energy bill User comfort Built algorithms JADE

[45] EM Min operation cost, max
reliability BESS and generation constraints — GAMS

(CPLEX)

Microgrid
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DC

Voltage 
controlled

(master node)

Current
controlled

(slave nodes)

AC

V/f control 
(master node)

PQ control 
(slave nodes)

Connected

AC

PQ control (all 
nodes)

Figure 6: Summary of control schemes for microgrids.
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sizing, we provide the customer with practical solutions for
an optimal design of μ grids suitable for their needs and
capacities.

(e sizing implicitly includes an EM strategy. It is usually
intuitive and based on a simple process also known in prior
works as themyopic strategy. (is strategy consists of giving
a priority to the different energy resources in the system.(is
strategy starts by fulfilling the demand from the first energy
supply priority. When this energy supply is not enough to
feed the load, the system then activates the next energy
supply priority and so on. Figure 7 shows a general example
of such strategies involving three energy supplies: RER as a
primary supply, ESS as a second supply, and the utility grid
as the backup supply.More complicated strategies can be
integrated in the optimal sizing for performing EM. For
instance, the authors in [13, 26, 34] performed a combined
sizing and energy scheduling strategy. For a more detailed
overview about the optimal sizing/design strategies for μ
grids, see [53].

(e most common cost to minimize is the net present
cost (NPC). (ere are two types of constraints to take into
consideration: financial constraints defined by the budget
and technical constraints that include capacity limits, gen-
eration limits, and load limits.

4.2.2. Resource Scheduling. (e supply/resource schedul-
ing, also known as optimal power flow (OPF), involves the
scheduling of the controllable generators and ESS. It gives
the optimal dispatch of resources over a time horizon
during which the scheduling is performed, as showcased
in [19, 33]. When the architecture contains only RER and
ESS, the task is reduced to the optimal scheduling of
charging/discharging of the ESS. (e tools and algorithms
the researchers used to perform the scheduling are de-
tailed in Section 4.2.3. To tackle the problem of RER
intermittency, the authors in [23, 34] combine a fore-
casting block with a scheduling strategy. (e forecasting
block predicts the weather data and the customer demand
load.

4.2.3. Load Scheduling. Load scheduling is a part of the
Demand Side Management (DSM)/Demand Response (DR)
policies. It implicates load shifting, load shedding, and
thermal load adjustment. Some papers consider the thermal
load adjustment as a shifting technique. In fact, while the
shifting impacts flexible (i.e, deferrable) loads for which the
operation can be deferred over a specified period of time
(i.e., washer-dryer and dishwasher), the thermal loads ad-
justment alters the power around the nominal power rating
of power-level controlled appliances. Examples include
heating, ventilation, and air conditioning systems (HVAC)
and electric water heaters (EWH). For a short-term EM
purpose, one or more of the aforementioned techniques can
be combined.

(1) Load Shifting. Shifting appeared before the concept of
smart grid. In fact, the industry has been the driving sector
and the first one for which load shifting programs have been

deployed. Load shifting is a load rescheduling over time
from on-peak hours to off-peak hours. (e load resched-
uling helps to reduce peak power to avoid overloads. (e
load shifting programs are always associated to an opti-
mization of cost benefit, while respecting constraints such as
customer preferences. (e customer preferences are
expressed via the classification of residential loads into
different classes. (e selected papers that used the shifting
technique adopted various classifications, and we cite among
others

(i) Permanent loads, priority loads, and shiftable loads:
permanent loads refer to those that run for long
periods of time such as refrigerators. Priority loads
are those that are used regularly and can create
discomfort in users if shifted/shed (e.g., EWH).
Shiftable loads include washers [11].

(ii) Controllable (shiftable and elastic) and noncon-
trollable (nonshiftable and inelastic) loads: the latter
refers to loads that cannot run on a scheduled date
(e.g., electric cooker). Controllable loads on the
other hand are divided into deferrable and power-
level controlled loads. Deferrable loads have flexible
starting-time operation (e.g., washing machine),
while power-level controlled loads can vary their
power around the nominal power of operation (e.g.,
water heater) [12, 27, 37].

(iii) Low, medium, and high priority loads: priorities are
set according to customer preferences defining the
order of which loads are fed with energy. (e
highest priority demands are satisfied at the be-
ginning, then the medium priority demands, and
finally the lowest priority ones [44].

We can set priority for shiftable loads in order to plan the
operation of a load over another governed by a set of pa-
rameters such as the staring and ending time limits.

Start

Read data:
load (L)

generation (G)
stored energy (SE)

G > L

Yes

Yes Yes

No

No

Use utility grid
load Discharge Charge

Inject to the grid
send to dump load

decrease

No

SE > Cmin SE < Cmax

Figure 7: Example of myopic strategy.
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(2) Load Shedding. Shedding is a traditional solution used to
overcome the problem of overloads and network destabi-
lization. (e authors in [24] used it in their control strategy
to keep the voltage network under a stable state. In [33, 35],
loads were divided into critical and noncritical (i.e., ordi-
nary) loads. In an event of overloads, the system starts
dropping the noncritical loads starting with the least priority
ones. In [36], loads were grouped into three categories based
on their priority: L1, L2, and L3. L1 refers to loads that always
have to be fed and L3/L2 to loads that are shed if an energy
deficit occurs.

Combining shedding and shifting is also a common EM
strategy. (e authors in [8] perform a power shifting of
HVAC and lighting and shed less priority loads. A classi-
fication of loads into interruptible and deferrable loads was
performed in [28], where an interruptible load can be shed
and a deferrable load can be shifted.

4.3. Algorithms and Tools

4.3.1. Algorithms. (e two main approaches that are
commonly used for EM in μ grids are rule-based ap-
proaches and optimization-based approaches. (e former
approaches follow a certain predefined criteria in order to
make beneficial decisions for the system. (ey are mostly
very simple with a low computational complexity but can
provide efficient results. (e myopic strategy, as it was
demonstrated earlier in this paper, is an example strategy of
this type of approaches. Papers using this method
[8, 10, 11, 15, 21, 24, 35–37] proved the effectiveness of such
strategies through simulations. More advanced techniques
can be incorporated with rule-based approaches for higher
efficiency. We cite as examples artificial neural networks
(ANN) [33], fuzzy logic [34], and the adoption of multi-
agent systems (MAS) [35–37, 44]. (e use of the latter
technique has garnered much interest lately. In fact, its
incorporation helps to monitor the heterogeneous nodes
(e.g., home devices, energy supplies, ESS, and communi-
cation nodes) composing a μ grid system by representing
each node as an autonomous and intelligent agent capable
of taking decisions to better achieve the common goal.

(e latter approach (i.e., optimization-based) is more
sophisticated. It derives frommathematical models and aims
to optimize an objective function while taking into con-
sideration environmental constraints. When it comes to
optimizing the energy in the μ grid, it seems that heuristic
algorithms and linear programming are the go-to tools.

Heuristic algorithms [54] are optimization algorithms
that use the information currently gathered to help decide
which candidate solution should be tested next or how the
next individual can be produced. (ey are inspired form
nature as they mimic the behaviour of living species. A
variety of heuristics were used in the μ grid field. We cite
multiobjective self-adaptive differential evolution algo-
rithm (MOSaDE) [1], genetic algorithms (GA) [2], ant
colony optimization (ACO) [32], backtracking search
optimization algorithm (BSOA) [14], and particle swarm
optimization (PSO) [18, 24] and [21, 31, 41]. (e authors

in the latter references used different versions of the same
algorithm which are, respectively, modified PSO,
regrouping PSO, and multiobjective PSO. In all of the
referenced papers, results were compared with other
heuristic algorithms and found that the PSO always gives
better results.

Linear programming (LP), also called linear optimiza-
tion, is the maximization/minimization of an objective
linear function subject to linear constraints. (e general
form of a linear optimization is as follows:

min x f(x),max
x

f(x),

s.t.
Ax≥ b,

Cx � d,
s.t.

Ax≤ b,

Cx � d,

(11)

where x is the variable, f is the linear objective function, A
and B the parameters of the inequality constraint, and C

and D are the parameters of the equality constraint. (e
resolution of a linear programming system returns the sets
of vector x specifying the maximum/minimum value of
the objective function. Many papers used linear pro-
gramming to solve the energy usage optimization problem
[13, 30, 40, 42].

4.3.2. Tools. Many tools are used for the simulation of an
EMS. (ey can be grouped into three categories: tools for
simulating the output of the different technologies, tools
dedicated for sizing purposes, and solvers for rule-based or
optimization approaches.

In the first category, we find WindSim. A tool based
on computational fluid dynamics (CFD) for wind
modelling. It returns several outputs, regarding the
targeted terrain, the wind field, and the energy produced
by the wind farms [3]. (e authors in [4] simulated the
PV system with the help of the software PVsyst for the
annual yield and Crmsolar for the hourly simulations. To
simulate the CS strategy suggested in [24], the authors
used PSCAD/EMTDC which is a popular tool for this task
(see [52]).

(e second category covers numerous tools with HO-
MER (Hybrid Optimization Model for Electric Renewable)
[5, 11] and MSDO (Matlab/Simulation Design Optimiza-
tion) [3, 25, 39] being the most employed tool. A detailed list
of the available tools can be found in the optimal sizing
review in [53].

Matlab is also used for optimization purposes. It in-
tegrates a CPLEX solver for solving LP systems. Other
software solutions providing CPLEX such as General
Algebraic Modelling System (GAMS) [42, 45] and C++ are
also used. In addition, Matlab can also be used to solving
heuristic algorithms [2, 18, 21, 41] and to designing MAS
systems [36, 37]. Other interesting tools for optimization
are Pyomo that was used in [15]. Pymo is a python-based
optimization tool for LP, nonlinear programming, and
mixed integer LP (MILP). JADE (java agent development
environment) is also used for the modelling of MAS
systems [35, 44].
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5. RQ3: Challenges and Constraints

5.1. Objectives. (ree main objectives are targeted when
performing a microgrid optimization: Cost reduction, local
resources use increase, and CO2 emissions reduction.

5.1.1. Cost Reduction. Economic benefit is the major con-
cern taken into account by modellers and researchers alike.
Different sources of cost are considered: energy generation,
energy consumption, in addition to NPC which includes
Cost of Energy (COE), and others detailed bellow. (e NPC
is used for long-term optimization (i.e., sizing/design). It is
usually mentioned in papers that use HOMER as a solver
[5, 11]. (e NPC represents the project’s lifetime cost and
includes the capital cost, replacement cost, operation and
maintenance (O&M) costs, and fuel cost in case the ar-
chitecture incorporates a conventional energy source:

NPC �
Cann,tot

CRF
, (12)

where Cann,tot is the total annual cost and CRF is the capital
recovery factor defined by

CRF �
i(1 + i)

n

(1 + i)
n

− 1
, (13)

where i: the annual real interest rate and n: the project
lifetime. More detailed mathematical expressions describing
how capital and replacement costs were distributed evenly
on the project’s lifetime can be found in [11].

(e COE is the average cost of the electrical energy
generated by the μ grid in $/kWh. It can be used for short- or
long-term optimization. It is computed in [1] by

COE �
NPC
Eserved

× CRF �
Cann,tot

Eserved
. (14)

Other costs were introduced in the papers such as the
cost of generated energy [15, 23, 28, 38, 41], the cost of
degradation of ESS [38], the cost of purchased energy from
the grid [2, 14, 15, 19, 23, 28, 33, 37, 38, 41], the start-up/
shut-down cost of DER [14, 38, 41], cost of fuel [13, 14, 43],
and the comfort cost.

(e comfort cost is the cost related to the nonsupplied
energy [9] or to the action of shifting/shedding appliances
[38, 43]. In [26], for instance, the authors introduce a discomfort
cost thatmeasures the user experience under a load schedulingx

which deviates from their preferred power consumption y. It
was called themismatch cost in [12], and it penalized the change
in the satisfaction of a user which was assumed to be propor-
tional to the priority of the curtailed appliance. (e same
concept of cost was reproduced in [37] and was called the user
drop. Lifetime was also included as a type of cost in [6], and it
aims to increase the lifetime of devices bymaximizing the state of
health (SoH) of different components.

When a paper mentions an operation cost, it may refer to
one or a combination of the costs listed above. In [40], for
instance, the cost includes the cost of interacting with the
grid, the ageing cost of the battery, the gas cost, and the
O&M costs of RER. (e losses are also expressed via a cost

function. In [6], the authors took into consideration the cost
of power lost during the conversion process (e.g., electrical
conversion losses and chemical conversion losses).

5.1.2. Local Resources Use Increase/Reliability. (e auton-
omy of μ grids is another concern for the scientific com-
munity. By increasing the use of local resources, we increase
the autonomy of our system and implicitly attenuate the load
from the main electric grid. In the studied papers, this metric
has different mathematical expressions and is subject to
minimization or maximization depending on the context.

(i) In [1], the authors minimize the power supply
probability (LPSP) which is the probability of power
supply failure to meet load demand.

(ii) In [3], the authors minimize the rate of nonsupplied
demand load and the energy waste. (e energy
waste is the excess energy produced by RER which
cannot be stored for ESS capacity limits.

(iii) In [6], the authors penalize the unmet demand load.
(iv) In [16], the authors maximize RER use as well as

minimize utility grid use.
(v) In [45], the authors aim to have a zero purchased

energy from the grid (i.e., zero-net energy
consumption).

(vi) In [25], the authors take reliability as a constraint.

5.1.3. CO2 Emission Reduction. RER are pollutant-free; this
is the main incentive to their incorporation in the electric
grid. Any hybrid system that includes a non-RER would
generate an amount of greenhouse emissions. Two inter-
esting expressions were used in the selected studies.
Equation (15) was used in [5], where tCO2

presents the total
amount of CO emissions, mf is the fuel quantity in litre,
HVf is the fuel heating value in (MJ/L), CEFf is the carbon
emission factor in (ton carbon/TJ), and Xc is the oxidized
carbon fraction. We note that 3.667 g of CO2 includes 1 g of
carbon:

tCO2
� 3.667 × mf × HVf × CEFf × Xc. (15)

In [25], the authors used another expression to penalize
the CO2 emissions:

CCO2
� ωCO2

× E � ωCO2
× 

i

TDERi
E
op
DERi
ϱDERi

 , (16)

where ωCO2
: weight assigned based on the CO2 cost Euro-

pean negotiation, E
op
DERi

: the CO2 emissions generated by the
operation of the unit DERi, ϱDERi

: fuel consumption at one
unit of time, and TDERi: the number of time units the unit
DERi was operating.

If the objective consists of increasing the use of RERs, it
goes back to decreasing carbon emissions [13].

5.1.4. Lifetime. (e authors in [6] introduced another
metric, i.e., SoH. Xnom(t) and X0

nom are, respectively, the
actual nominal capacity (or power) and the initial nominal
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capacity (or power). When the component is new, SoH � 1;
when it reaches 0, the component is considered obsolete and
must be replaced. (is metric is governed by

SoH(t) � a
Xnom(t)

X
0
nom

− b, (17)

where a> b and a and b are the coefficients that change
depending on the component. X can be capacity or power.

Other metrics for calculating battery ageing are also
introduced in the same reference such as the calendar ageing
Acal and the cycling ageing Acyc.

An ESS’s SoH is considered as an objective in some
papers [6] and a constraint in others [16, 27], whereas, in
[27], it was constrained by a minimum bound SoHmin.

5.2. Challenges. (e intermittent aspect of RERs and the
unpredictable behaviour of consumers are the main chal-
lenges faced with the implementation of RERs-based μ grids.
To tackle this problem, researchers mainly base their tech-
niques on historical data. Nevertheless, other advanced so-
lutions are employed in the literature including probabilistic
models, forecasting models, and stochastic optimization.

5.2.1. Historical Data. (is method is adopted mainly for
sizing since, at this stage, EM can be performed from a
macroscopic perspective (i.e., no need for real-time data).
Yet, other papers rely on it to assess the performance of their
suggested EM strategy. Many papers have adopted this
method to simulate their systems (e.g., [1, 3, 17]). For in-
stance, the authors in [2] used their own historical data (i.e.,
load profiles and PV output) for the proposed EM strategy.
(e authors in [5] performed sizing relying on NASA’s
historical data (i.e., weather data and load profile), while the
authors in [14] developed an EM strategy using data orig-
inating from the technical report of NREL (National Re-
newable Energy Laboratory). Several websites provide free
historical weather data of many regions of the world as well
as load profiles of different energy scales (home, residential/
commercial building, etc.).

5.2.2. Probabilistic Models. Probabilistic models assume that
uncertain parameters such as demand load, wind speed,
solar irradiation, and temperature follow a certain proba-
bility distribution function. From the selection, only one
paper [43] used this type of models. (e authors considered
the speed of wind as a random variable following a Weibull
distribution function with two parameters:

F Vwind(  �
η
c

×
Vwind

c
 

η− 1
× exp −

Vwind

c
 

η
 , (18)

where Vwind is the wind speed (m/s), c is the scale factor of
theWeibull distribution wind with unit of speed, and η is the
shape factor of the Weibull distribution, which is dimen-
sionless. Different methods exist for the computation of
these parameters, and the authors in [43] used the following
two expressions:

η �
σw

Vmean

− 1.086
,

c �
Vmean

c(1 +(1/η))
,

(19)

where the c is the gamma function, Vmean is the average
value of the wind speed data, and σw is the standard de-
viation of the wind speed data. (e accuracy of such models
is verified through the comparison of their output with the
existing actual data.

5.2.3. Forecasting Models. Forecasting is the process of es-
timating what will happen in the future based on the in-
formation possessed in the present and the past. It is a very
useful method to handle the uncertainty issues within μ grid
systems. Table 6 gives an overview of the different fore-
casting models that were employed by the selection.

(e most chosen candidates for forecasting are Model
Predictive Controller (MPC), Two-Point Estimate Method
(TPEM), and Artificial Neural Networks (ANN). (e MPC
was used in [6, 15] to determine the optimal output re-
garding the objective function in a time control horizon of
12 h in [6] and 6 h in [15]. Aside from the data forecasting
stage used in [15], another stage was added to adjust the
errors made by the predictive model.

Uncertainties with the market price changes, the load
demand forecast error, and the RER output power changes
were handled by TPEM in [14]. (e authors in [9] used the
same method to forecast the RER output and to estimate the
load demand.

In [23, 42], the authors chose the MLPNN to model the
system uncertainties and predict the day-ahead values. (e
predictions of PV power, wind speed, and load demand are
modelled using neural networks in [33]. (e authors in [34]
applied a heterogeneous ANN composed from an aggre-
gation of MLPNN, radial basis function neural network
(RBFNN), and recurrent neural network (RNN) to make an
hour-ahead forecasting of load demand and wind power
generation and a 24 h ahead forecasting of solar power
generation.

Other methods were used in the selection. We cite

(i) General Collocated Velocity (GCV) solver [3] used
to estimate the energy produced by wind farms

(ii) Lagrange duality method used in [19, 20] as a
stochastic off-line approach with a 6 h control ho-
rizon, and an online deterministic approach was
juxtaposed to the first stage with a 10min time slot
interval

(iii) Autoregressive Moving Average (ARMA) [36]
(iv) Fast Fourier transformation (FFT) [45]

5.2.4. Stochastic Optimization. (is method optimizes an
objective function of a system under specific uncertainties.
(e application of stochastic optimization for smart grid
applications was thoroughly reviewed in [55]. From the
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selection, only the authors of two works [38, 40] employed
this method, and they both adopted the robust optimization
and a branch of the former, optimizing the output of a
system under the worst case scenario.

5.3. Constraints

5.3.1. Energy Balance. (e main constraint to consider is
delivering noninterrupted energy to the consumer. (is
constraint is considered in all papers. It allows to keep
customer comfort at a certain level and avoid the energy
shortage and possible outage risks. (e general expression of
this constraint that has to be fulfilled at each time step of the
control horizon is

Load − Generation � 0, (20)

where the first term refers to the consumed energy by the
customer’s appliances and the second term refers to the
energy produces locally by the DER and RER. During its
charging phase, the ESS is considered a load and a gener-
ation when discharging. In [15], the energy balance con-
straint was split into two separate balances: electrical and
thermal balance. (e thermal balance constraint is further
split in [40] into cooling balance and heating balance. (e
mathematical expression of this constraint gets complicated
when dealing with shifting strategies. In fact, additional
parameters are involved such as the schedule of each ap-
pliance i over the control horizon T: xi � (xi)0< t≤T, and the
binary variable ui equal to 1 if the appliance is on, and 0
otherwise.

5.3.2. Power and Capacity of Components. (e technical
constraints of μ grid components are expressed by the
limitations on their nominal power or capacity.

(1) Generation Units. (e power generation of the DER units
PDER is limited by an upper limit PDERmax

and a lower limit
PDERmin

[6, 12, 21, 28, 31, 37].
In [38], the authors give a comprehensive set of con-

straints for DER concerning

(i) (e initial on-line/off-line requirements for the
generation units.

(ii) Minimum number of time periods the generator
must remain on-line/off-line after the minimum
off-line/on-line required time.

(iii) Minimum number of time periods the generator
must remain on-line/off-line at the end of the time
horizon.

(iv) A generator can change its power supply depending
on its ramping rate rDER ∈ ]0, 1], which determines
how fast the generation can be changed hourly, or
when the generator is turned on or off a similar
constraint figures in [28, 40], see equation (21).

(v) Common constraints such as the lower and upper
limits of each generator as well as start-up and shut-
down costs’ computation:

PDER(t) − PDER(t − 1)


< rDER.PDER. (21)

(e capacity of the DER inverter sDER was considered in
[28], and the constraint related to it limits the active power
pDER and the reactive power qDER of the DER:

p
2
DER(t) + q

2
DER(t)≤ s

2
DER. (22)

In [25], the authors include an upper bound for the daily
fuel consumption.

(2) Utility Grid Unit (for the on-Grid Mode). Some papers do
not assign constraints on the utility grid, and this implies
that the utility grid can provide the μ grid with any amount
of energy it needs, and in case of a bidirectional flow of
energy, the μ grid can inject all of its generation excess into
the utility. Others, such as in [16, 21, 27, 31, 40], limit the
power exchanged with the utility PGrid by an upper limit
PGridmax

and a lower limit PGridmin
. (e upper limit is con-

strained by an upper bound Ppeak in [16, 27, 30]. (is last
constraint is usually called the peak shaving constraint
because it helps the network avoid overload events and
reduces peak to average ratio (PAR). (e term PGridmin

limits
the power to be injected into the grid: Pinjected ≤ |PGridmin

|

(e authors in [38] have followed another policy: only
the amount of energy exchanged under a firm contract is
bounded, which means that the grid can exchange any
amount with the μ grid but with different price rates. If the
exchanged amount is under a certain upper limit, the energy
will be exchanged at a price F (Firm) and a price N (non-
Firm) otherwise.

(3) Load Unit. For papers working with a load management
strategy, constraints on the loads are considered. In
[12, 13, 26, 37], a minimum and a maximum power con-
sumption of each appliance is determined. (is constraint is
further split into two constraints in [28]: a constraint on the
active power of the appliance, and another one on the re-
active power.

(4) Storage Units. When considering the storage, many
constraints should be taken into account: the capacity
constraint, the charging/discharging rate constraint, and the
charging/discharging limits. Since the majority of papers
implement an electrical storage, we will focus first on the
constraints on this type of storage. A deep discharging or an
extra charging can damage the ESS. Batteries, for instance,

Table 6: Algorithms for forecasting.

Ref. Algorithm
[3] GCV
[6, 15] MPC
[9, 14] TPEM
[19, 20] Lagrange duality method
[23, 42] MLPNN
[33, 34] ANN
[36] ARMA
[45] FFT

Journal of Electrical and Computer Engineering> 17



undergo a fast degradation if discharged under the optimal
DoD. (is constraint is expressed by the capacity of the ESS
at a time t Cmin ≤C(t)≤Cmax or with the state of charge
(SOC) of the ESS: SOCmin ≤ SOC(t)≤ SOCmax. SOC defines
the percentage of the stored amount compared to the total
capacity of an ESS: SOC(t) � C(t)/Cmax.(e charging (resp.
discharging) rate is the rate at which a storage is charged
(resp. discharged) relative to its capacity. (e two param-
eters are bounded by an upper limit and a lower limit:

βcharmin
≤ βchar ≤ βcharmax

,

βdismin
≤ βdis ≤ βdismax

.
(23)

To simplify, the charging rate is taken equal to the
discharging rate. Additional constraints on the electrical
storage include the following. (e SOC at the end must be
equal to the SOC at the beginning of the time horizon as in
[26]. Constraint on the storage inverter in [28] is

p
2
b(t) + q

2
b(t)≤ s

2
b, (24)

where s2b is the inverter’s capacity and pb and qb are, re-
spectively, the battery’s active and reactive powers.

Constraints on the thermal storage are identical to the
electrical storage: bounds on capacity and charging/discharging
rates (Cf. [40]). A detailed series of constraint equations for the
pump-storage system can be found in [9, 42].

5.3.3. Network Constraints. (e network constraints fre-
quently considered are the bus voltage limit, the bus fre-
quency limit (for the AC configurations), the active/reactive
power limits, the feeder limit, and the physical capacity of
the transmission lines.

(1) Bus Voltage and Frequency Limits. (e bus voltage V

should not exceed a voltage limit defined by the sum of the
nominal voltage and a tolerance range (habitually
Vnom ± 5% [9, 28]). In the expression below, the voltage is an
absolute term and the two bounds are positives:

Vmin ≤ |V|≤Vmax. (25)

(e same rule applies on the frequency [43]. (e bus
operation frequency should be maintained within a 0.5Hz
around the nominal frequency:

f
min ≤f≤f

max
. (26)

(2) Active/Reactive Power. In [9], the constraints on the
active power P and reactive power Q are expressed by

PG,i − PL,i � 
j

Vi


 Vj



Yij cos θij + αj − αi ,

QG,i − QL,i � 
j

Vi


 Vj



Yij sin θij + αj − αi ,
(27)

where Vi and Vj are the i/j-bus voltage, αj and αi are the
voltage angle of bus i and j in rand, and θij angle of complex
Y-bus element.

(3) Feeder Flow Limit. (e apparent power flow Sij from the
bus i to the bus j in [9] was subject to a limit constraint:

Sij ≤ S
max
ij . (28)

(4) Physical Capacity of the Transmission Lines. (ese
constraints were considered in [38]. In fact, each medium
has a predefined capacity; transmitting a power flow higher
than this capacity is called the thermal limit violation.
Nevertheless, the voltage is the most important parameter of
the transmission line since it gives an idea about the power
that the line can hold. (erefore, if the voltage limit were
respected, the capacity limitation is not considered.

5.3.4. User Comfort. For certain papers, the user comfort
was included in the objective function as the cost of shifting
appliances from the preferred period of operation. In other
papers, the user comfort is expressed as a constraint.

In [8], three parameters were considered:

(i) (ermal comfort was measured using the thermal
comfort index: predicted mean vote (PMV)

(ii) Visual comfort was measured by illuminance, which
is an index for assessing the quantity of light

(iii) (e priority comfort was measured using the pri-
ority list of the costumer

(e user comfort constraint in [9] was expressed by the
equation given below. Df and Dinit refer, respectively, to the
demand load after DSM application and the initial demand
load, e is the elasticity coefficient and it translates the
willingness of the consumer to shift their loads, and Pr0 is the
base utility price:

Df � Dinit × 1 + e
Penality − Incentive

Pr0
  . (29)

(e load shifting was subject to the following constraint:
|Df − Dinit|≤ x%Dinit, where x% is the percentage of shifting
that the DSM algorithm must not exceed.

5.3.5. Budget Constraint. (e budget is an important pa-
rameter to consider when searching for an optimal sizing of
the μ grid. Unfortunately, only the authors in [26] have
considered this condition and required that the sum of
purchasing cost, installation cost, and O&M costs of
equipment should not exceed an upper bound.

5.3.6. Renewable Factor. (e authors in paper [1] consider
the renewable factor as the quantity of power generated from
the diesel generator compared to the amount generated from
RERs:

RF � 100 × 1 −
PDG

PRER
 . (30)

(e more RF approaches 100%, the more it is efficient
because it means that the system covers its energy need
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mainly from RERs. While, in [5], the authors used a more
generic expression. RF refers to the energy delivered to the
load by RERs compared to non-RERs:

RF � 100 × 1 −
Pnon−RER

PLoad
 . (31)

5.3.7. Islanding Constraint. In [30], the authors adapted
the on/off μ grid mode of operation. In case of a shortage
event when the μ grid has to switch between on-to off-
mode, a minimum energy level for the total storage in the
network is computed adaptively to ensure sufficient en-
ergy reserve.

6. Study Limitations

(e first limitation that we had to face was the huge number
of papers that cover the EM topic. (e study would have
been more interesting if we had covered all the papers from
the selection process. Yet, due to their massive number, we
were obliged to restrict our study to the 15 first relevant
papers of each database. (is restriction has the drawback of
leaving behind papers that suggest worthwhile methods and
strategies. After the selection was done and during the ex-
traction process, we encountered a lack of information. In
fact, important information was missing in some papers
such as the adopted utility price policy or the type of bat-
teries. A lot of papers did not mention the complexity of
their suggested algorithms. (us, we were not able to per-
form a quality assessment and apply a comparative study of
the suggested algorithms.

7. Conclusion and Suggestions

Managing the energy usage in μ grids has a vast impact in
energy efficiency and sustainability research. (is SLR
proposes an overlook on different EM strategies suggested
by researchers for green μ grid systems. It starts by sum-
marizing the different architectures proposed in the litera-
ture. (is includes the components that compose a μ grid,
the different operation modes, and a brief discussion on the
energy exchange policy with the main grid network. (en,
the review proceeds to presenting the various methods,

algorithms, and tools that help perform EM and concludes
with pointing out objectives and faced constraints.

As a result of this SLR, we propose a methodology for
an efficient use of energy in a green μ grid system. As
shown in Figure 8, a good EM starts with a sizing study.
(e sizing will have the benefit of increasing the ROI in a
long-term vision and help decrease the energy waste due
to the frequent overgeneration. To perform the sizing,
rule-based strategies and linear programming are the
most appropriate for the task. (e short term EM is a
critical block since it is where the unpredictable behaviour
of RERs is handled. It is usually performed in a daily basis
and can be done in two different ways: utilize the sto-
chastic optimization or combine a two-block strategy that
includes a forecasting block and deterministic optimi-
zation block. (e last part of the methodology is processed
real time. It is generally a rule-based strategy. (is part has
the task of compensating the differences between the
scheduled values and the actual values. (e correction and
the regulation of the system’s electric signals are per-
formed at this level as well.

A significant part that starts to emerge and that was
not detailed in this paper regards the cooperative energy
management strategies. In fact, by allowing μ grids to
collaborate, the costs resulting from losses can be sig-
nificantly reduced, especially with the integration of an
efficient distributed EM strategy. (e peer-to-peer in-
terconnection of numerous μ grids in a distribution
network will take us one step towards the future smart
grid network. (erefore, it is essential to take into account
the cooperative aspect in each step of the suggested
methodology.

We have to bear in mind that EM strategies reviewed
here are highly related to the communication infrastruc-
ture. In fact, in all EM Strategies, we assume that the EMS
receives all the information it requires. Yet, we have to
consider whether this is feasible or not. (e communica-
tion architecture carrying the μ grid information is made of
small-capacity sensors and channels that are not very ro-
bust. Transmitting massive data on a real-time basis for the
EM purpose is questionable.
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*emanagement of clean energy is usually the key for environmental, economic, and sustainable developments. In the meantime,
the energy management system (EMS) ensures the clean energy which includes many sources grouped in a small power plant such
as microgrid (MG). In this case, the forecasting methods are used for helping the EMS and allow the high efficiency to the clean
energy. *e aim of this review paper is providing the necessary data about the basic principles and standards of photovoltaic (PV)
power forecasting by stating numerous research studies carried out on the PV power forecasting topic specifically in the short-
term time horizon which is advantageous for the EMS and grid operator. At the same time, this contribution can offer a state of the
art in different methods and approaches used for PV power forecasting along with a careful study of different time and spatial
horizons. Furthermore, this current review paper can support the tenders in the PV power forecasting.

1. Introduction

*e demand of energy by miscellaneous areas and the
worldwide energy exploitation are really highest than any
time before. In addition to the uppermost energy demand,
oil and other planet’s resources in fossil are becoming scarce.
In this case, the environmentalists, the socialists, and the
economists are supporting the climatic agreements and
adopting the clean energy as a solution to retort the global
energy demand, the cost effectiveness, and the ecological
consequences such as the universal challenge caused by
global warming and the greenhouse effect.

In this situation, the clean energy which includes the
variable renewable energy, particularly the wind and solar
PV, which provides free fuel source to the global energy
market, consequently will improve the levelized cost of
electricity (LCOE) in the medium and long terms. In this
case, the solar PV is in the head of interest by the global
investment, and also, Green Banks are leading the low-

carbon energy rebellion, helping to avoid the climate risk
and serving the consumer and their concerns. According to
the reports by the International Energy Agency (IEA), the
solar PV pushed up for more growth, in spite of a decade of
acceleration. In this detail, the cumulative solar PV capacity
reached 398GW, which represents around 2% of the global
power energy [1]. Despite of the policies and regulation, the
innovation, and the corporate commitments, the integration
of solar PV in the power grids is suffering from both
problems of unpredictability of weather parameters and
poor infrastructure grids, which minimize the high pene-
tration of solar PV. In this way, the forecasting techniques
can help the rise of solar PV and promise the optimality of
energy transition management between intermittent and
conventional energies by providing the PV power forecasts
in various time and spatial horizons. Subsequently, the PV
power forecasting can support the grid operator by pro-
viding the future energy generated through the solar PV
installations, which can help the planning and scheduling of
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the effective unit commitments tomeet themarket demands.
In addition, the PV power forecasting is advantageous for
the benefit of new power generation such as the microgrids,
in which they are smart, small microgenerations, based on
numerous microsources including the solar PV. *e
microgrids, meanwhile, are a very ambitious technological
asset for energy savings. However, their technology must
meet certain stringent standards to integrate them into the
power grids. *e microgrids also need nearly smart regu-
lations and controls. *erefore, the PV power forecasting
methods can afford themmotivated sustenance, and so, they
can help the energy management system (EMS).

*is review paper suggests the best strategy for building a
PV power forecasting model, which, firstly, includes the
analysis of the time horizons that means the time between the
present and the future times. Several time horizons are
considered by the literature. *ey include the very short term
also called the “now-cast” or “intrahour,” which often begins
from nearly seconds and ends in few minutes. 0–6 h which is
also considered by the literature, as well as the short term,
considers 24 hours or day-ahead forecasts; these time periods
are generally expedient for utility scheduling and microgrids.
In addition, other time horizons including the medium term,
which is planned from several hours to several days, and the
long term, which is organized from several days to several
months, are used for the engine maintenance. Furthermore,
the spatial horizon is revealed in the literature, which is
strategic for PV power forecasting since it can display the total
space foreseen by a forecasting method. *is forecasting
horizon, meanwhile, can include the single site and the
multisite (regional forecasting) [2]. Secondly, the process of
PV power forecasting consists of choosing the accurate
methods and approaches of forecasting. In this case, the
survey of the literature detailed that the PV power forecasting
is possible by the direct and indirect methods. *e direct
methods consist of estimating directly the quantity of PV
power foreseen in a future time horizon. In this situation, the
experts suggest the artificial intelligence andmachine learning
techniques for short-term PV power forecasting [3, 4]. *e
indirect methods consist of transforming the result of solar
irradiation forecasting to the PV power forecasts through the
solar PV model [5]. For instance, the literature examination
showed three main possible approaches destined for PV
power forecasting [6]. *ey involve the physical performance
or real PV model, the statistical approach including the
methods of artificial intelligence and machine learning, and
the hybrid approach, which consists of the combination of
multiple techniques of different approaches or cooperation
between techniques of the same approach. Indeed, other
approaches exist which include the time series models, re-
gressive models, and probabilistic models.

*e objective of this review paper is abridging and
expounding the principal components of PV power fore-
casting design by presenting the insightful analysis of several
research publications. To that end, this deep analysis con-
ducted through this review paper has shown a gap in the
application of some standard accuracy metrics (SAMs) that
are often used to validate the right forecasting method. Such
as the research paper by Dong et al.[7] that indicated the

result of Error Maximization-Kalman Filter model imple-
mentation which is best in the term of MAPE and does not it
really in the term of RMSE. *erefore, the one can find the
best result by using a specific metric and does not find it by
using another one. In this case, the present review paper
opens a way to do the research in the normalization and
generalization of standard metrics. *e research papers by
Vallance et al. and Zhang et al. [8, 9] in the standard accuracy
metrics are very helpful for the future research, in which they
contain an ensemble of new assessment criteria for en-
hancing the quality and accuracy of PV power forecasting
models. *e analysis conducted through these papers
showed two new metrics: the first one is called the temporal
distortion mix, and the second one is called the rampmetric.

Moreover, this review paper presents a complete study
on time horizons by focusing the attention on the short-term
PV power forecasting due to the expediency of this time
horizon in several applications including the planning and
scheduling, the unit commitments, the microgrids, and the
electric vehicles (EVs). In addition, this review paper tackles
the utility of PV power forecasting in numerous fields, which
is the novelty and the value added.

*e remainder of this paper is structured as follows: the
first section covers the overview of spatial and time ho-
rizons, methodologies, and models recently applied for PV
power forecasting. *e second section recommends the
artificial intelligence models and machine learning tech-
niques as the benefit value to the PV power forecasting. *e
third section puts in a current literature analysis of several
research papers conducted in different time and spatial
horizons along with a profound study regarding the
technical and economic benefits of PV power forecasting in
the smart energy. Finally, the last section displays the
feasibility study concerning the time utility scale for PV
power forecasting.

2. PV Power Forecasting Spatial and
Time Horizons

*e modelling of PV power forecasting is pertinent when
picking up the right time horizon and the resolution of
forecasts. *erefore, the time horizons are defined as the
time between the present and the future times of forecasting,
and they can include the very short term that is considered
from few seconds to few minutes, also including the “now-
cast” and the “intrahour,” the time horizon of 0–6 h, the
short term or day ahead that is considered up to 24 hours,
the medium term that starts from several hours to several
days, and the long term that begins from several days to
several months.

In addition to the time horizons, the spatial horizons are
also relevant in the forecasting system design and can be
ranged from the single site to the regional area including
several PV plants (multisite forecasts) [10].

2.1. Very Short-Term, 0–6 h, and Short-Term Time Horizons.
*e time horizons are the key for clustering forecasts. In
addition, the forecasts made in various time horizons are
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very stimulating in the diverse phases of grid operating, such
as maintaining the grid permanency, the scheduling of
rotating reserves, load monitoring, unit commitments, and
other integrated generations such as microgrid planning.

2.1.1. Very Short-Term Time Horizon. *e very short-term
time horizon for PV power forecasting, also called the PV
power immediate forecasting, covers time scales from few
seconds to fewminutes.*is time horizon, meanwhile, is the
key to ensure the grid operator by planning the energy
reserves and meeting the consumption demand. *is be-
comes a critical issue when considering stand-alone grid
with deprived quality and strong solar penetration. *ere-
fore, the very short-term time horizon is advantageous for
controlling the power distribution, and it can help in
dropping the number of transformer operations.

In addition, the very short-term time horizon is appli-
cable for particular bids such as the manufacturing appli-
cations (e.g., solar airplanes and solar cars). However, this
time horizon strongly obeys to the weather parameters such
as the clouds’ motion which comply with the physical rules;
their stormy deportment is stochastic and not simple to
model [11]. In this item, several research studies were
proposed such as a system based on sky imaging which is
used to decide the speed and the stability of clouds by [12]. A
useful review paper including deep study of very short-term
PV power forecasting with several useful techniques re-
garding this time horizon is available in [13]. For more
literature study and analysis, Table 1 presents a summary of
the literature in the very short-term time horizon, and Table
2 corresponds to a current literature review which carried
out the methods, time, and spatial horizons and results. As a
result, from the literature study, the techniques of artificial
intelligence are the most important models for the very
short-term time horizon. Nevertheless, this time prospect
needs further accomplishment materials and additional
advances in the digital technologies such as high-resolution
cameras and unconventional satellites.

2.1.2. 0–6 h Time Horizon. *e 0–6 h or intraday time ho-
rizon generally ranged from zero to six hours (0–6 h). *is
time horizon was used for both load control and monitoring
and the power system operators, particularly for solar energy
markets [16]. *is time horizon was already revealed by
several research papers. In this review paper, we discuss
some research papers such as Zhang et al. employed the
persistence model of cloud in order to improve the fore-
casting modelling of PV power, respectively, in one hour-
ahead and one day-ahead. *is forecasting approach
employed the data of past PV power and NWP [9]. *e
hybrid techniques are also practical for 0–6 h PV power
forecasting which consisted of combining multiple tech-
niques to forecast the PV power, as well as the hybrid ap-
proach is more powerful in the front of other approaches
[32].

Indeed, other references and techniques used in the
0–6 h time horizon are presented in Tables 2 and 3 which

show some precious references regarding the methods, the
results, and the data sources.

2.1.3. Short-Term Time Horizon. *e weather conditions
greatly affect the capacity of solar PV power generation. At
the same time, the daily energy produced by PV systems
depends on the weather such as the relativeness of PV power
to the irradiance in the plane of array, the air temperature,
and the wind speed, which themselves depend on the day,
the month, the year, and the season. However, this de-
pendability makes the energy planned for grid integration
variable, which consequently makes out undesirable sce-
narios to the electric grids regarding their stability, reli-
ability, and operation scheduling, sideways of the economy
losses. For that reason, the forecasting techniques can an-
swer this stroppy condition of weather variability and get
back the information about the quantity of solar PV power
generation in the future time horizons. *erefore, the
forecasts from 6 am until the day before are also called short-
term forecasts. *ey cover the times beginning from 6 hours
to 48 hours ahead. *ey are typically practical for planning
and unit commitments. In addition, they support the EMS to
answer the grid operator demand. However, they are relative
to the rent of the PV system, methods, and input data as
shown in Tables 2 and 4, which summarize various research
studies conducted in the short-term time horizon by fo-
cusing on the methods, the inputs, and the results.

In addition to the techniques shown in Tables 2 and 4,
other worthwhile research studies were found in the liter-
ature such as Das et al. added a review paper in the topic of
solar PV power forecasting which consisted of methods used
for various time horizons including the short term along
with the optimization techniques used for improving the
results of forecasting. At the same time, they included ge-
netic algorithm (GA), PSO, grid-search, FOA, firefly algo-
rithm (FF), CO, chaotic ant swarm optimization (CASO),
chaotic artificial bee colony algorithm (CABCA), and arti-
ficial intelligence [68]. Furthermore, the recent review pa-
pers by [3, 4] put on the literature review of recent methods
that are used in PV power forecasting which includes the
methods of artificial intelligence, machine learning, and
deep learning algorithms. *ese models are considered by
this review paper as the boosted techniques for PV power
forecasting reliability.

2.2. 1e Spatial Scale for PV Power Forecasting. *e tech-
niques of forecasting used to predict the power produced by
a single module or by a solar plant are useful for a single site
(city, a rural area) or a regional area (utility-scale solar power
system forecasting) [10]. *e regional forecasts are practical
for providing the grid operator by the information on the
future energy and consequently maintaining the balances
between supply and demand. In the order to make some
differences between the solar forecasting applied to the
single and the regional area, the experts suggest the study of
variability of PV power in the short-term time horizon. *is
variability is due to the nature of solar resources and geo-
graphical specifications.
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Furthermore, the regional forecasts are characterized by
the decrease in the error. *is error, meanwhile, has an ex-
ponential curve of the distance between stations [31]. Sub-
sequently, the process of regional forecasts can include the
following: (a) the knowledge of the PV power generation from
all PV systems. (b)*e knowledge of PV power only at certain
PV plants and not at the regional level. (c) *e knowledge of
the amount of energy produced by only regional sites. (d) If
no photovoltaic energy data are available, in this case, it is
always possible to use the solar irradiance forecasts and then
their conversion to the power through a PV system model.

*e literature survey, in the meantime, showed several
approaches that tackled the regional forecasts. However,
they depend on the data availability. *e summation of
individual forecasts is still used by da Silva Fonseca et al.
[69], whereas Persson et al. presented a nonparametric
machine learning approach applied for multisite PV power.
In this case, the past data of power generation and relevant
meteorological variables related to 42 rooftop installed PV
power systems are used to form the forecasting model [10].

In addition, for calculating the installed capacity of PV
panels in an area, the following equation can be used:

P
reg
pred �

P
reg
cap

Iref
K 

n

i�1
AiIPOA,i, (1)

where Iref is the nominal irradiance, P
reg
cap is the PV power

capacity, K is the ratio between the system coefficients, IPOA
is the irradiance on the plane of array, and A is the accu-
mulation of weights specified to the forecast of solar irra-
diation that ranges the PV panels correspondingly to a
certain tilt angle and orientation; consequently, its form is
given by the following equation:


n

i�1
Ai � 1. (2)

3. PV Power Forecasting Approaches
and Methods

*e selection of convenient forecasting time and/or spatial
horizon and the appropriate forecasting approach are primal in

the forecasting process. In this case, the methods are classified
into three important approaches: firstly, the physical approach
which is based on the PV power model, secondly, the statistical
approach which is based on the artificial intelligence and
machine learning methods, and thirdly, the hybrid approach,
which is based on the mix of the techniques of the same
approach or the techniques belonging to the other approaches.

3.1. Naı̈ve Models. *e PV power is also foreseeable by the
techniques of persistence, also called the naı̈ve models,
which are commonly practical as the benchmarking models.

3.1.1. Naı̈ve Persistence. A naı̈ve model assumes that the
expected power over the future time horizon is similar to the
power in the past time horizon as shown by equation (3).
*is model, meanwhile, is normally used for the stationary
time series. Since the solar time series are not stationary,

Pn(T + h) � P(T). (3)

In general, the näıve persistence is restricted to very short-
term or intrahour applications. *is technique involves
breaking down of the PV power production into a stationary
and a stochastic component. However, the stationary term is
typically allied with the production in the clear sky condition,
whereas the stochastic term is associated to the cloud that
induced the changes in the PV power production [5].

3.1.2. Smart Persistence. A smart persistence model is usually
usedwhen the variable is no longer stationary.*emathematical
form of a smart persistencemodel is given by equation (4) which
corresponds to the best implementation of this technique:

Pi(T + h) �

Pnc(T + h), if Pnc(T) � 0,

Pnc(T + h)
P

Pnc(T)
, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where Pnc(T) is the projected power when the sky is clear. In
the periods of low variability and short-term time horizons,
the power Pnc(T) is very accurate [70].

Table 1: Summary of the literature review in the very short-term time horizon.

References Methods Inputs Best results

[12] Cloud speed forecast (VOF and CCM forecasting
techniques) PNG images FS� 0.19

[13] NWPmodel, sky images, satellite images, cloud cover, and
the time series models — —

[14] SVR-2D Past PV power and weather data
MRE� 9.65%

MAID� 108.33 kW
ICP� 73.07%

[15] Cloud speed persistence Solar power output data of 96 inverters and
cloud motion data RMSE� 4%

[16] Machine learning techniques based on ANNs and support
vector regression (SVR)

Past data of PV power and weather
parameters —

[17] Regression tree (RT) method applied for 3 cases (cloudy
day, clear day, and yearlong)

Past data of weather parameters and PV
power NRMSE� 13.8 %
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A smart persistence model can be separated into sto-
chastic and clear sky PV power production parts as shown by
equations (5) and (6) [5]:

P(T) � Pnc(T) + Pnl(T + h), (5)

Pi(T + h) � Pnc(T + h) + Pnl(T), (6)

where Pnl(T) is the stochastic term.

Table 2: Current literature review in the PV power forecasting including the references, methods, time and spatial horizons, and results.

References Methods TH Inputs Best results
[18] Persistence, MPL, CNN, LSTM, and LSTM full. VST Past PV power data and sky images. RMSE� 15.3%.

[19]

*e component methods including SARIMA, ETS,
MLP, STL, TBATS, theta, NWP, MOS, temporal

reconciliation (TmpRec), and geographical
reconciliation (GeoRec). *e combined forecasts
including simple averaging, Var, ordinary least
squares (OLS), least absolute deviation (LAD),

constrained least squares (CLS), subset, AIC, lasso,
and Oracle.

ST Past PV power. NRMSE� 15.4%.

[20] Probabilistic forecast based on the Gaussian process
(GP) and the reference model based on ARIMA. 0–6 h Household electricity consumption and

past PV power.

NRMSE� 8.2%
PINAW: 12.4%
PICP: 87.57%.

[21] GA+PSO+ANFIS compared to BPNN, and LRM. ST Past PV power data and NWP data. NRMSE� 5.48%.

[22] WT, FNN, ELM, and cascade forward BPNN
(NewCF) learned with different learning methods. ST Past PV power, air temperature, wind

speed, and humidity. MAPE� 3.10%.

[23]
RF, fuzzy C-means (FCM), sparse Gaussian process

(SPGP), and improved grey wolf optimizer
(IMGWO).

ST Past PV power data. NRMSE� 6.5%.

[24]

Models for clear sky weather: SARIMA, W-SARIMA,
RVFL, W-RVFL, and SVR.

Models for cloudy/rainy weather: SARIMA-RVFL
hybrid model.

VST PV power data. RMSE� 9.34%.

[25] SVM, MLP, multivariate adaptive regression spline
(MARS), and SVM-MLP-MARS. ST

Past PV power, wind speed, wind
direction, temperature, relative humidity,

GHI, and DHI.
RMSE� 21.41%.

[26] CNN VST PV power and sky images. RMSE� 2.5 kW.

[27] CNN, LSTM, and the hybrid model of CNN-LSTM. ST
Wind speed, temperature, relative

humidity, GHI, DHI, wind direction,
current phase average, and active power.

RMSE� 0.9 kW.

[7]

Uncertain basis function method (UBF): UBU
(uniform), UBG (Gaussian), and UBP (Laplace).
Stochastic state-space method (STS): prediction

minimization error and expectation maximization
and Kalman filter (EM-KF).

VST Past PV power and solar irradiance. NRMSE� 8.11%
MAPE� 5.81 %.

[28]
CNN with the rectified linear activation function

(RLAF), the multiheaded CNN of 4 CNNs, the CNN-
LSTM, and the ARMA.

ST PV power, irradiation, module and
ambient temperatures, and wind speed. RMSE� 0.046 kW.

[29]
CNN, residual network (RN), dense convolutional
network (DCNN), theta, ETS, SVR, RFR, physical,

MPL, and the hybrid of RN-DCNN.
ST Past PV power and NWP data. MSE� 0.152 kW.

[30]
Hoff, Perez, Lave, variability reduction index (VRI)—
gene expression programming (GEP) and WT-

ANFIS models.
0–6 h Irradiance data and weather conditions. RMSE� 9.52 %.

[31] Similarity algorithm (SA), KNN, NARX, and smart
persistence models (SPMs). ST

Past PV power, air and module
temperatures, wind speed, wind direction,

humidity, and solar irradiance.

RMSE� 2.3%
RMSE� 0%
RMSE� 5.9%.

Table 3: Summary of the literature review in data sources for the
intraday time horizon.

References Data sources
[16, 33–54] NWP data
[9, 55, 56] Endogenous data
[14, 55–58] Meteorological records
[39, 59, 60] Records from nearby PV plants
[61] Past GHI data
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3.1.3. 1e Persistence of the Ramp. In the short-term time
horizon, the persistence of the ramp is normally practical.
*erefore, it is beneficial for prolonging the deviation of the
electricity production during the previous second to stay on
the forecasting time horizon as shown by equations (7) and
(8) [5, 15]:

Pr(T + h) � P(T) + kASC Pnc(T + h) − Pnc(T) , (7)

where kASC is the fraction of the current power and that in a
clear sky condition

Pr(T + h) � P(T) + h[P(T) − P(T − 1 second)]. (8)

Furthermore, in the case of clear sky conditions and the
clarity clue relations, the readers are invited to check

equations (1) and (2) in the review paper by Antonanzas
et al. [5].

3.2. Physical Approach. *e conversion of GHI into the PV
power is not a technique of forecasting. In the meantime,
other variables such as the temperature and wind forecasts
are typically coming from NWP models. A physical ap-
proach employs the PV system parameters and does not
require any further historical data; however, it is totally
depended on the NWP models. *erefore, inaccurate NWP
data can be a source of errors [71]. For that reason, the MOS
are used to escape these errors, but they are strongly relative
to the weather forecasts, and they involve the past meteo-
rological data. To deepen the understanding of the PV power

Table 4: Summary of the literature review in the short-term time horizon.

References Methods Inputs Best results

[62]

Quantile regression forest (QRF) method
and 3 selecting methods, which are

previous, KT, and Kolmogorov–Smirnov
distance (KS). *e result classification is

based on the daily clearness index (KTd). At
the same time, 3 classes are cloudy, partially

cloudy, and clear days.

*e past values of power, POA,
temperature, wind, and NWP data. NRMSE� 3.29%.

[63]

Prediction interval centred on the
maximum likelihood estimation method,
SVR for analysing the relationship between
the input data and the NWP data (mesoscale

model, GPV-MSM).

*e past values of power andNWP of
temperature, RH and cloud cover
(CC), and extraterrestrial irradiance

(EI).

*e annual forecast error coverage with
prediction intervals� 85–95% and the

error aggregation of 1.5%.

[64]

Machine learning with functional analysis of
variance (FANOVA), North American

mesoscale model (NAM), (NOAA), rapid
refresh (RAP), and high-resolution rapid

refresh (HRRR).

GHI, DNI, temperature, and wind
speed taken from NWP. However,
the vertical atmospheric and cloud
profiles and surface albedo are used

to calculate the DNI.

RAP/HRRR/NAM: MAE is less than
2MW.

[39]

*e gradient boosting (GB) technique for
the deterministic prediction technique and
K-nearest neighbour (KNN) regression for

probabilistic forecasts.

*e NWP variables taken from
ECMWF and past values of the PV
system and from the adjacent PV

power plants.

—

[16] ANN and SVR techniques.
Inverter historical power data, NWP

of temperature, wind direction
(WD), and solar geometry (SG).

RMSE� 182.6 kWh.

[51]
Probabilistic forecasting based on the voted
set of QRF and fixed random forest (RF)

methods.

*e NWP data and earlier values of
power. —

[65]

*e prediction bands based on time series
equations and algebraic viewpoint and the
test of normality based on the algebraic

setting of Jarque–Bera,
Kolmogorov–Smirnov, and Lilliefors

theories.

*e data for one day collected from
the rent of two PV systems based in

France country.

*e mean interval length (MIL), the
prediction interval coverage probability

(PICP), and the best cooperation
between MIL and PICP obtained
according to the clear sky index.

[66]
MLP, PHANN, and clear sky radiation
model (CSRM) for sunny and cloudy

conditions.

Irradiance, temperature, day, and
clear sky index. MAPE� 10%.

[67] Adaptive-network-based fuzzy inference
system (ANFIS) and PSO-ANN models.

One year of input data including
actual recorded PV power from the
PV system rent in the northeast of
*ailand country, solar irradiance,

module temperature, and air
temperature.

RMSE� 0.1184%.
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modelling, bookworms are referred to check the research
papers by Do et al. and Bessa et al. [71, 72].

In this case, this review paper wants to update the readers
by the fresh references available in the physical approach
part; however, the literature review does not cover enough
research in this section. Furthermore, the analysis of the
literature covered by this present review paper does not
include the techniques used for the solar irradiance fore-
casting. To that end, the readers are invited to check out
some beneficial references on the solar irradiance forecasting
such as [73, 74].

3.3. Statistical Approach. A statistical approach corresponds
to the data-driven model. *e main process of this approach
is often based on the extraction of the relationships for the
earlier data in order to forecast the future performance of a
PV power plant. *e statistical models have the capacity to
adjust the systematic errors; consequently, they have shown
better performances than the PV performance models [75].
In the meantime, the inputs of models are optimized and
organized by an application of optimization algorithms that
selects the inputs that give the best results and make a
compromise between stress and accuracy. *e literature
analysis revealed that the statistical approach is commonly
used and often provides better results in comparison to the
physical approach. Some techniques such as the stepwise
regression by Fonseca et al. [76] and the principal com-
ponent analysis (PCA) by Monteiro et al. [63] presented
better results. Furthermore, Tables 2 and 5 offer some
worthwhile references related to the application of statistical
methods in the solar PV power forecasting.

3.4. Hybrid Approach. A hybrid approach consists of com-
bining the forecasting techniques belonging to the same
approach or the mix of techniques belonging to other ap-
proaches. *erefore, the combination of models is achievable
by many conducts, such as the bagging, strengthening, voting,
or stacking. A hybrid forecasting approach, meanwhile, can
be realized through a combination of statistical, physical, and
probabilistic methods, and it is often used in the literature. In
this section, we present to the reader the most combinations
found in the literature which are the autoregressive integrated
moving average (ARIMA) technique combinedwith the ANN
technique employed by Fonseca et al. [76] and the ANN and
NARX models tested by Lorenz et al. [60]. In addition,
grouping of the gradient-descent optimization technique and
ANNs is used to establish the forecasting model. In this point,
the metaheuristic optimization model, called shuffled frog
leaping algorithm (SFLA), is developed to check the optimal
parameters of ANNs by using the initial individuals found by
the gradient-descent optimization method. In the meantime,
the past solar power values of 5-, 10-, and 15-minute periods
are used to feed the forecasting model. In this study, the
forecasting model has given the best results in terms ofMAPE
[83]. In addition, grouping of ensemble forecasting methods
was based on 142 models from six families that are the
SARIMA family (36 models), ETS family (30 models), MLP (1
model), STL decomposition (2 models), TBATS family (72

models), and the theta model (1 model). *e forecasts,
meanwhile, were made by (1) simple averaging, (2) the
variance-based grouping, (3) the least squares regression, (4)
the least absolute deviation regression, (5) the constrained
least squares regression, (6) the complete subset regressions,
(7) the Akaike information criterion- (AIC-) weighted subset
regressions, and (8) the lasso regression. *is study, mean-
while, was established for the one day-ahead operational PV
power forecasting and based on both the data diversity and
the NWP data. *erefore, the forecasting model has given
better results in terms of AIC, NMBE, FS, Kolmogor-
ov–Smirnov test integral (KSI), and NRMSE [19]. At the same
time, a research paper proposed a forecasting tool based on
time-series models and their analysis which taken into ac-
count the nonstandard analysis which corresponds to the
infinitely small and infinitely large numbers, this analysis take
a time interval [0,1] . Furthermore, the Cartier-Perrin the-
orem is also used for time series analysis. *is study,
meanwhile, was established for a time horizon of short term
and based on the full-year data collected from two sites lo-
cated at Nancy in the east of France and Ajaccio in Corsica, a
French island in the Mediterranean Sea. Consequently, the
forecasting process has given a better-quality model in terms
of MIL stems from the MRL and the prediction interval
coverage probability (PICP) [65].

As a conclusion of this section, the hybrid approach is
considered by the literature as the boosted technique for the
reason that it takes the advantages from both physical and
statistical approaches. Formore research studies in this section,
Table 2 affords the recent references available in the hybrid
forecasting approaches and applied for different time horizons.

3.5. Probabilistic Approach. *e probabilistic methods
considered by the literature as the advanced approach of PV
power forecasting added the concept of limits (upper and
lower) in the aim to provide more accurate data by using the
probability density function (PDF). *e survey of the lit-
erature showed many research papers that used the prob-
abilistic methods such as Lorenz Kühnert et al. who used the
grouping between the statistical and probabilistic methods
to generate the PV power forecasting in the time horizon of
0–6 h ahead. *e proposed model, meanwhile, was based on
the vector autoregression framework, whereas the param-
eters of forecasting used in this study were the solar PV
power time series and distributed time-series information
collected from the smart grid infrastructure. *erefore, the
proposed forecasting tool presented better results in terms of
RMSE and continuous ranking probability score (CRPS) in
which they were susceptible for evolving the grid man-
agement functions [59]. Moreover, Sperati et al. developed a
model based on the grouping between the statistical and
probabilistic approaches which were based on the PDF
method. *e ANNs, meanwhile, were used to reduce the
model bias and to generate the PDF of PV power. At the
same time, the variance deficit (VD) and the ensemble model
output statistics (EMOS) methods combined with the en-
semble prediction system (EPS) were used to produce the
skillful probabilistic forecast (SPF) in numerous weather
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conditions, as well as the persistence ensemble (PE) tech-
nique was used as the benchmarking model. In addition, the
PV power forecasting model parameters were derived from
three solar farms located at different sites in Italy. *erefore,
the forecasting model was established for the time horizon of
0 to 72 hours ahead and had given better results in terms of
Brier skill score (BSS), relative operating characteristic (ROC)
skill score (ROCSS), CRPS, and the missing rate error [53]. In
addition, Ayompe et al. added a research paper that consisted
of a probabilistic approach used for short-term (24 hours
ahead) PV power forecasting. *e proposed algorithm,
meanwhile, was integrated with the demand-side manage-
ment (DSM) algorithm. In addition, the performance of
forecasting models was confirmed by the cloudiness data that
included the cloud classification (low-level clouds, midlevel
clouds, and high-level clouds), the weighted relative root
mean squared error (WRRMSE), and self-consumed energy,
as well as the RMSE, MAE, MBE, and CRPS. Consequently,
the probabilistic forecasting model was beneficial for in-
creasing the skilfulness of the DSM algorithm under various
load generations in a household [84].

To conclude this section, the probabilistic approach
remains as the undeveloped method; however, it needs more
growth. For more studies conducted in this section, Table 2
offers the recap of some recent studies in the probabilistic
models.

3.6. Regressive Methods. *e principal role of the regressive
methods is estimating the correlations between dependent
variables (PV power) and certain independent variables
called forecasters (e.g., solar irradiance and ambient tem-
perature). *e time series, meanwhile, can have the linear or
nonlinear forms, and they can be stationary or nonsta-
tionary, whereas the regression methods such as the support
vector machine (SVM) including the supervisedmethods are
used in the classification problems. However, in the re-
gression problems, this technique is known as the vector
support regression (SVR). *erefore, this technique is
stronger in the capacity of generalization and has the ca-
pacity to deal with the nonlinear problems.

Furthermore, the study of the literature showed many
related research papers such as the research study conducted
by Das et al. which presented a complete and methodical
study in the PV power forecasting. *ey also examined the
status of relationships between the input and the output data
and the preprocessing of input data [68]. In addition,
González Ordiano et al. appended a contribution in the PV
power forecasting topic that consisted of the time-series
forecasting techniques, probabilistic forecasting techniques
of point forecast, and an outline of time horizons [85].
Moreover, Sobri et al. added a clustering of PV power
forecasting methods, in which three main categories were
distinguished in this paper. *ey consisted of time-series

Table 5: *e references of the statistical methods used in the forecasting approach.

References Approaches

[14]

Grid-tie PV power-forecasting model for 0–6 h ahead, also called the 2D-interval forecasts based on SVR-2D, that computes
directly the 2D-interval forecasts from the previous historical solar power and meteorological data by using the SVR method.
*e parameters of the forecasting model were the solar and the weather data that included the solar irradiance, temperature,
humidity, and wind speed provided from the “Australian photovoltaic data” for two years sampled for every 1, 5, and 30min
along with the past data of PV power. At the same time, the mean absolute interval deviation (MAID), MRE, and interval

coverage probability (ICP) were used to perform the forecasting model accuracy.

[77]

ARmodel that had comparable performances with the ARMAmodel to produce the short-term PV power forecasting, and the
forecasting parameters include the climate state of previous time samples. *erefore, the forecasting model used for false data
injection attacks (FDIAs) detection showed performance results in the security and the control of power grid. To that end, the

phase-phase correlation (PPC) was used for evaluating the accuracy of forecasts.

[78]
Cloud and irradiance forecasting of 15min to 5 hours ahead based on the satellite images and SVM. *e 4 years of historical
satellite images, meanwhile, were used to learn themodel. Consequently, this application showed an improvement for the EMS

in terms of RMSE, MRE, and the coefficient of determination R2.

[79]

*e parametric approach that relied on the mathematical models with several parameters that describe the PV system, whereas
the nonparametric approach was based on quantile regression forests with training and forecast stages. In the meantime, the
forecasting parameters are the meteorological variables from the NWP models. In this case, this forecasting model showed
better results in terms of mean-based error (MBE), RMSE, MAE, and skill scores (SS). *erefore, the forecasting engine has
been used for calculating the hourly power delivered to the grid.

[80]

Multilinear adaptive regression splines and persistence method used for the short-term PV power forecasting model. *e
forecasting parameters, meanwhile, include the weather forecasts from the “US Global Forecasting Service (GFS)” and PV
power output data (estimated to 1.3MW) of a PV power plant located in the Borkum city of Germany country. *erefore, the
application of this forecasting model showed better results in terms of R2, RMSE, MAE, and MBE, and in this situation, the

forecasting process was advantageous for calculating the day-ahead production from a PV power plant.

[81]

A classical statistical method based on neural network modelling. *e forecasting model parameters, meanwhile, are the
number of sunny hours, length of the day, air pressure, maximum temperature, insolation of the day, and cloudiness. *e
forecasting model showed better results in terms of Pearson’s linear correlation coefficients, kurtosis, skewness, and RMS, and

it was developed to perform the short-term PV power forecasting model.

[82]

A multistep method used for forecasting the PV power in different ranges of time, respectively, 10 s, 1min, 5min, 30min, and
2 hours. *e forecasting model, meanwhile, was based on the persistence method and the auto regressive exogenous (ARX)
model, which presented better results in terms of RMSE andMAE once trained by the forecasting parameters, which included

the data from the NREL radiometer grid, Hawaii (USA), and the Microgen database, East Midlands (UK).
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models, statistical approaches, physical techniques, and
overall methods [6]. In addition, van der Meer et al. pro-
posed a comprehensive study about the practice of Gaussian
methods for probabilistic forecasting of the residential
electricity consumption, PV power generation, and net
demand of the single household [20]. For more references
and methods in this section, Tables 2 and 6 offer a recap of
recent regressive methods used for PV power forecasting.

3.7. Ensemble Methods. *e literature review indicated that
this approach sets two kinds of methods that are the
competitive and the cooperative. *e first method, mean-
while, consisted of making the forecasting by using the
individual training of models. *e training process is based
on heterogeneous data and parameters. *e result of fore-
casting is consequently equal to the average of all forecasting
models. *e second method consisted of the split of the
forecasting process into several subprocesses. *erefore, the
selection of the convenient forecasting model is adaptable
with the characteristics of each subtask. *e forecasting
result, meanwhile, corresponds to the sum of all forecasting
subprocesses [33, 89].

Furthermore, the survey of the literature showed some
concomitant research papers that debated this topic such as
the work by Raza et al. which proposed a contribution in the
ensemble methods through the multivariate neural network
ensemble forecast (MNNEF) methods, including the
Bayesian model averaging (BMA) technique, namely FNN,
Elman backpropagation network (ELM), and cascade for-
ward backpropagation network (CFN). In this case, the WT
is used to smooth the historical of PV power data used to
train the MNNEFs ensemble methods. *erefore, this
forecasting tool is based on Neural Networks ensembles
which generates one day-ahead PV power forecasting,
whereas the forecasting parameters considered by this study
are the historical PV power, air temperature, wind speed,
humidity, and solar irradiance. In addition, the MAPE and
R2 are used to test the forecasting model performances [22].
For more research studies and contributions in the ensemble
forecasting techniques, Table 2 provides some recent studies
in this field.

3.8. Data Mining Approach. Data mining is defined in
simple terms as the process of finding useful patterns in the
data. In other terms, it consisted of the knowledge discovery,
machine learning, and predictive analytics, in addition to the
methods of data exploration, preprocessing, modelling,
evaluation, and knowledge extraction [90].

3.8.1. Data Exploration. Data exploration firstly clusters the
descriptive statistics that are the process of summarizing the
key characteristics in the dataset. *e communal metrics
used in this process are the mean, standard deviation, and
correlation. Secondly, the process of data visualization
consisted of projecting the data in a multidimensional space.
In the context of data mining, the data exploration,

meanwhile, used both the descriptive statistics and the vi-
sualization techniques [90].

3.8.2. Classification. *e predictive analytic problems are of
two categories: the classification and the numeric prediction
problems. In classification or class prediction, the infor-
mation from the predictors or independent variables is used
to categorize the data samples into two or more distinct
classes or buckets, but in the case of numeric prediction, the
numeric value of a dependent variable is predictable by using
the values assumed by the independent variables such as the
traditional regression modelling [90].

3.8.3. Fitting Data. *e basic idea at the back of fitting
function is its practicality for forecasting the value (or class)
of a dependent variable. In the meantime, the function of
fitting involved several methods.*emost common ones are
of two categories: the linear regression for the numeric
forecasting technique and the logistic regression for the
classification technique [90].

3.8.4. Association Analysis. *e objective of this class of data
mining algorithms is finding usable patterns in the co-
occurrences of the items bymeasuring the strength of the co-
occurrence between one item and another [90].

3.8.5. Clustering. *e principal role of clustering is simply to
capture the possible natural groupings in the data by
clustering all meaningful groups’ data. *e clustering,
meanwhile, is usable for describing the dataset and used as a
preprocessing step for other predictive algorithms [90].

3.8.6. Time-Series Forecasting Models. *e time-series
forecasting models are the oldest known predictive analytic
techniques including the supervised models that consisted
on collecting the data from several different attributes of a
system that are used to fit a function in order to predict the
desired quantity or target variable, for example, in our case
of PV power forecasting, the target variable corresponds to
the PV power. Some recommendations for time series
models are that, firstly, they needed the choice of the ap-
propriate forecasted variable. However, the presence of the
noise component also called the nonsystematic component
which is by definition random [90].

3.8.7. Time-Series Analysis Methods. *e process of time
series forecasting corresponds to the descriptive models or
time series analysis and the predictivemodels.*is process is
based on the decomposition of the data into a trend com-
ponent, a seasonal component, and a noise component. *e
trend and seasonality are also called the systematic com-
ponents that are predictable. However, the noise component
is called the nonsystematic component, and it is random
[90].
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3.8.8. Feature Selection Methods. *e feature selection
methods are simply filters that eliminate some attributes;
they are of two categories: filter type and wrapper type. *e
filter approach is based on selecting the only attributes that
meet certain stated criteria, whereas the wrapper approaches
randomly selected the feedback of attributes that improve
the performance of the algorithm. *e filter approach,
meanwhile, does not require any learning algorithm.
However, the wrapper type is based on the optimization
through a learning algorithm [90].

3.8.9. 1e Quality of a Predictive Model. *e survey of the
literature showed three best techniques which were used to
test the quality of predictive models including the confusion
matrices (or truth tables), lift charts, and receiver operator
characteristic (ROC) curves. *e evaluation of regression
models, meanwhile used for numeric predictions, is based
on conventional statistical tests [90].

3.8.10. Anomaly Detection. *e process of finding the
outliers in the dataset is called anomaly detection. *e
outliers, meanwhile, are the data objects that stand out
amongst other data objects and do not conform to the
expected performance. *e outliers usually bias the fore-
casting process result [90].

3.9. Machine Learning Approach. *e machine learning
(ML) approach is actually the advanced algorithm that
upholds the use of data at their raw form [91]. In the
meantime, the survey of the literature showed several
applications of ML in the process of PV power forecasting,
as well as model implementation, such as the research paper
by Amaro e Silva and Brito who carried out a study in the
PV power forecasting for a time horizon of one day ahead.
*e approach, meanwhile, based on the extreme learning
machine (ELM), that is a novel algorithm is used to train
the feedforward neural networks. At the same time, this
method was used for elaborating three models designed for
three weather types (sunny, cloudy, and rainy), whereas the
input data are the past PV power records from a PV plant.
In order to compare their results, the method ELM was
used in this study alongside the BP neural network

technique. *e MAPE and NRMSE were used to test the
accuracy of models [92]. In addition, Teneketzoglou et al.
appended a basic ML approach that consisted of imple-
menting ELM without exogenous inputs. At the same time,
the ELM algorithm was used in this study for training a
single hidden layer feedforward neural network. *e ELM
algorithm, meanwhile, used to forecast the PV power for a
time horizon of very short term (5min ahead) was based on
10 historical days of PV power. Subsequently, ELM was
excellent in the front of the gradient-based learning method
in terms of overtraining and local minima. Furthermore,
the proposed model in this study has been compared to the
time delay neural network (TDLNN) technique in terms of
RMSE and NRMSE [93]. Moreover, Zhang et al. added a
study based on the ML approach which consisted of using a
mix of probabilistic intervals (PIs) for point forecast and
the stochastic gradient boosting machine (SGBM) that are
used for total loss function optimization. *e association of
SGBM, least square error (LSE), and least absolute error
(LAE), meanwhile, was used to process the point forecast
generation, unlike the PIs with multiple quantiles that were
used for both probabilistic and point forecasting. At the
same time, the input data of models were based on weather
data such as the air temperature, humidity, solar irradiance,
and wind speed, along with one year of PV power recorded
(from 2012 to 2013); for precision, the time between
samples was one minute. *erefore, the model assessment
indicates that the SGBMmethod was very accurate than the
ELMmethod in terms of MAE and RMSE [94]. At the same
time, Luo et al. proposed a model of ML that consisted of
mix of the fuzzy clustering method along with the grey
correlation coefficient algorithm that was used in this study
to select the similar days. In the meantime, the ELM
method generated forecasts of PV power and was based on
historical data of similar days. Furthermore, the GA was
engaged in this process to overawe the problem of over-
fitting. *e input data, meanwhile, correspond to the
historical similar days of meteorological data including the
highest, lowest, and mean value of solar radiation, hu-
midity, and temperature and wind speed of the desired
forecasted day. Additionally, the RMSE and MAPE were
used in this study for testing the accurateness of forecasting
models [95]. In addition, *eocharides et al. appended a
recent study in the short-term PV power forecasting based

Table 6: *e most popular regressive models in the literature.

References Methods

[86] Artificial intelligence (AI) techniques including the MLP, NN Delay, recurrent Elman NN, NN radial basic function, ANFIS,
adaptive resonance theory (ART), and k-NN techniques.

[59] Point and probabilistic forecasts based on multivariate models such as autoregressive (AR), vector AR (VAR), and vector ARX
(VARX). *erefore, VARX is the most accurate model with NRMSE� 8.5%.

[14] *e techniques of SVM and SVR.
[87] Nonlinear stationary models including nonlinear-AR exogenous (NARX).

[88]

Random forests (RFs) that are the set of decision RTs.*e analysis of the literature in the PV power forecasting showed the best
results from RFs in terms of average forecasting for individual trees. In addition, the bagging technique that involved the
increasing analysis to understand the complete trees, respectively, with a sample initiated from the entire training set.
Nevertheless, the RFs deal with this problematic with a feature encapsulation that involves the choice of an unplanned

subgroup of entities at each node. *e feature encapsulation, meanwhile, reduced the error of correlation.
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on ML algorithms that include the ANNs, SVR, and RTs
along with the varied hyperparameters and feature
methods. *e input data of models are the forecasts of
weather variables provided by NWP, satellite images, sky
images, and other yearly historical data. In the meantime,
the MAE, MAPE, RMS, SS, and NRMSE were used for
testing the accurateness of models [96]. Moreover, for more
techniques and studies in this field, Table 2 provides more
information about ML was that used for PV power fore-
casting in various time horizons.

3.10. Deep Learning Algorithms. *e basic idea of the deep
learning neural network (DNN) comes from the use of
multilayer perceptron that consisted of organizing the
nonlinear modules of a given task into multiple layers. *ey
are part of the artificial intelligence techniques, and they
have many utilizations in the real life such as in the health
care (tumour predictions), in the traffic (vehicle speed
prediction), and in the renewable energy (detection of wind
turbines fault, etc.). Furthermore, the DNN techniques are
practical in the renewable energy forecasting for both PV
and wind power. At the same time, they have many pros
such as their usefulness in the noisy environment, in which
they can filter and extract the data needs. In the meantime,
they can display some visual analytic graphics after the
training process. In addition, they offer the data discrimi-
nation possibility. In addition, they can classify the un-
structured data as structured ones by applying some
strategies such as deep belief method (DBM) or convolu-
tional neural networks (CNN), as well as they can solve
many problems by a near similar manner to the human
brain. However, the deep learning algorithms are not far
from challenges that are the need to supplement CPUs or
GPUs. For the prerequisite of high volume data for the
success of such networks, they have the problem with
overfitting and suffer from the hyperparameter optimization
problem [91].

*e analysis of the literature showed some outstanding
research studies in the PV power forecasting based on the
DNN approach such as the research conducted by Zhang
et al. who proposed a study on the deep PV now-casting
forecasting model that consisted of PV power forecasting by
using the DNN fed by multiple historical sky images. *is
model was compared to the CNN, long short-term memory
(LSTM), and MLP methods [18]. In addition, Lee et al.
appended a new study on one day-ahead PV power fore-
casting based on the DNN algorithm. *is research paper,
meanwhile, consisted of a question about the usefulness of
the short-term memory recurrent neural network algorithm
for data pattern recognition. In this case, the TensorFlow
tool was used for the training process and based on data
provided from multisite PV power. *e input data are the
total generation, output voltage and current, power factor,
wind speed, wind direction, PV module temperature, am-
bient temperature, and weather information from the Korea
Meteorological Administration. Consequently, the fore-
casting process was used to connect with the EMS [2].
Recently, the review papers by Ahmed et al. and Mellit et al.

[3, 4] offered the detailed studies on PV power forecasting
models in which they confirmed that the capacity of deep
learning methods is clear in the handling of big data and can
afford a better solution for solar PV power forecasting;
therefore, they can be considered as the revolutionary
methods in this topic. Moreover, for more data about DNN
techniques, [97, 98] give a deepen knowledge.

As a conclusion to this part of this review paper, the
DNNs are characterized by an important number of neurons
in which they suffer from two problems that consist of less
fitting when the number of iterations is too few and over-
fitting when the number of iterations is too many.*erefore,
the experts confirmed that the larger the number of hidden
layers, the deeper the depth of the DNN. Moreover, the
commonly used activation functions in a learning process
include sigmoid, tanh, ReLU, and Leaky ReLU. In the
meantime, ReLU is typically the most used activation
function [99]. For more information about the literature
review and the applications of the DNN, Table 2 shows the
recap of some recent studies in the DNN and used for PV
power forecasting.

4. Study of the Current Literature in the PV
Power Forecasting

*is section offers a careful study and analysis of the recent
literature from the period of 2015 to 2020 of some selected
research papers in the PV power forecasting as presented in
Table 2. *e aim of this table is to bring the reader useful
information on the PV power forecasting methods and their
corresponding time horizons (THs) alongside the inputs
that have been used and the findings. *e results found are
presented by using the standard average metrics (SAMs).
*erefore, this approach can help the reader to pick the PV
power forecasting method easily without returning to the
main paper.

5. Study of the Current Literature in the PV
Power Forecasting Operations

*e presence of renewable energy in the electrical systems
needs the management, planning, and scheduling of power
systems and the grid’s power control. Subsequently, the
forecasting methods can be used for resolving those prob-
lems. In the meantime, this review paper presents the lit-
erature review of some applications of PV power forecasting
such as follows.

5.1. 1e Employment of the Forecasting Methods in the Dy-
namic Economic Dispatch. *e forecasting techniques can
be useful for the power system management as well as the
dynamic economic dispatch (DED). In this case, Mahmoud
et al. [100] tackled the DED with solar PV of various
profiles’ (clear and cloudy) proliferation. *erefore, the
Salp swarm algorithm (SSA) method and the LSTM with
adaptive moment estimation (ADAM) methods were used
in this study.*e short-term forecasting utility, meanwhile,
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was based on the LSTM-ADAM method and presented the
best results for DED. Moreover, Bedawy et al. [101] added a
study on voltage regulations and their effect on distributed
systems with the solar PV penetration. Consequently, the
multiagent system (MAS) was used for voltage sensitivity
control. *erefore, this study showed best results in terms
of voltage deviation minimization tested for different sun
profiles (sunny or cloudy), as well as the IEEE test systems
were used for benchmarking utility. Furthermore, Mah-
moud and Abdel-Nasser [17] appended 3 case studies
relative to the weather states (cloudy day, clear day, and
yearlong) in the distribution systems including high solar
PV penetration. *erefore, the very short term including
times of 1 sec, 30 sec, 1min, 15min, 30min, and 1 hour was
considered as the time observation of the distribution
systems analysis. In this case, the RTmethod was used, and
consequently, the best result was found for case 1.
*erefore, the best numeric results in terms of
NRMSE� 0.0138, 0.0141, 0.014, 0.0141, 0.0146, and 0.0153,
respectively, for 1 sec, 30 sec, 1min, 15min, 30min, and 1
hour in which they represent good results. In addition,
Abdel-Nasser et al. [102] appended a study on the efficient
state estimation methods (the estimation of voltages and
active and reactive power losses) using the quadratic-based
backward/forward sweep (QBBFS) which is a kind of
ANNs. As a result, the best outcomes were obtained for
NRMSE� 0.0110, 0.0312, and 0.0315, respectively, for the
voltages, active, and reactive state estimations. In addition,
Mahmoud and Abdel-Nasser [103] presented a research
paper concerning the analysis of sequential power flow
(SPF) for the active distribution systems including the solar
PV. *e RT method, meanwhile, was proposed for the
voltage estimation. *e final algorithm contained the SPF-
RTand SPF-RTC with additional correction method. In the
meantime, the PV and load data were used for algorithm
feeding. Consequently, the best results in terms of
NRMSE� 0.000263 and MRE � 0.120477 were found by the
SPF-RTC method. Nevertheless, this study neglected the
effect of uncertainties of PV and load which can affect the
clearness of the final results. Furthermore, Marzband et al.
[104] proposed a statistical approach based on the neural
network combined with a Markov chain (ANN-MC)
method. *is technique, for now, presented an advantage
for economic dispatch considering the generation, storage,
and responsive load offers through the minimization of
generation cost and the market-clearing price. Further-
more, the proposed approach of forecasting was used for
one day-ahead and very short-term forecasts. *is study
taken into account the effect of uncertainties, as well as the
wind-speed signal considered as the main model param-
eter. Moreover, Ying et al. [105] proposed a probabilistic
approach based on the approximate probability distribu-
tion of the light intensity along with the dichotomy
method. *e proposed approach, meanwhile, was used to
obtain the PV power forecasting with the interval [PV min,
PV max]. In this case, the forecasting system was based on
historical data of light intensity. *erefore, this forecasting
model was effective to reinforce the optimality dispatching
of the electrical grid.

5.2. 1e Employment of the Forecasting Techniques in the
Planning of Power Systems. *e PV power forecasting can be
applicable in the planning of power systems. In this situa-
tion, Mahmoud et al. [106] proposed an approach for
minimizing the power losses in the electrical distribution
systems. In the meantime, the RPL formulation, the RPL
including distributed generation (DG), and the RPL with
multiple DGs were used with the IEEE test systems such as
33-bus and 69-bus for the DG allocation problem. Later,
Mahmoud et al. [107] appended an efficient analytical
method (EA) for optimal multiple DG installations with the
power loss minimization. *e method, meanwhile, included
the optimal power flow (OPF) algorithm. In addition, the
IEEE test systems such as 33-bus and 69-bus were used in
this study for testing the RPL formulation, the RPL including
distributed generation (DG), and the RPL with multiple
DGs. Moreover, Mahmoud and Naoto [108] added a study
about the optimal allocation of DGs including the solar PV.
In the meantime, the optimal power flow (OPF) method was
used for deciding the optimal sizing and the locations, as well
as the promising of the best mix of various DGs, conse-
quently reducing the power losses in the electric distribution
networks. In addition, Ali et al. [109] proposed the active
power curtailment (APC) for determining the optimal
oversize of DG inverters as well as the voltage regulation.*e
approach, meanwhile, passed through the renewable energy
sources and the load modelling based on the probability
(beta and Weibull PDF) methods. Consequently, the results
confirmed that the APC showed the best results and en-
couraging optimal voltage regulation with minimum total
costs, as well as this method is helpful for the optimal in-
verter oversizing and voltage regulation, especially at dif-
ferent levels of DG penetration. Moreover, Luo et al. [110]
added a study concerning the home energy management
system (HEMS) with the penetration of renewable energy
sources (RESs) such as the solar PV. *erefore, this study
meant to minimize the energy cost and the peak-to-average
ratio (PAR), and consequently, the proposed methods are
PSO and BPSO which showed the best outcome for the
energy cost of HEMS (19.7% reduced), and for both the
energy cost and PAR, the reduction was 10%.

As a recommendation, the DGs can include the fore-
casting techniques for planning the nondispatchable energy
resources such as the solar PV for power loss recovery. At the
same time, the integration of the forecasting techniques can
help the HEMS by getting the future data about the peak of
power and, therefore, managing the load when there is less
production by RESs.

5.3. 1e Employment of the Forecasting Techniques in the
ElectricVehicles. *e PV power forecasting can be practical
for managing the changing of the electric vehicles (EVs). In
this case, Ali et al. [111] added a research paper concerning
the optimal day-ahead scheduling of EVs considering the
uncertainty of renewable energy source generation and
loads. In the meantime, the model of EV was based on the
state of charge (SOC), and the PV model was based on the
mathematical equations alongside the wind turbine model.
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In addition, the IP method was used for interval opti-
mization modelling, as well as the Karush–Kuhn–Tucker
(KKT) condition was used for introducing uncertainties.
*e IEEE 33-bus, meanwhile, was used for testing the
results. Consequently, this study proved that the reactive
power of PV inverters and the active power of EV are
preferable for minimizing the total losses as well as en-
suring the voltage security. Furthermore, Ali et al. [112]
appended a research paper about the plug-in hybrid
electric vehicles (PHEVs). *e subject of this study is
optimizing the reactive power of PV inverters and the
active power of PHEV smart charging, consequently
controlling the voltage deviation. *erefore, the sensitiv-
ity-based (SB) and the optimization-based (OB) methods
were used in this study alongside the SOS. As a result, this
study demonstrated that the proposed methods are ca-
pable to mitigate the negative impacts of PV. At the same
time, the reactive power from the PV inverters can reduce
the required capacity of PHEVs reducing the voltage
fluctuations and the voltage rise. Later, Ali et al. [113]
added a research paper that tackled the problematic of
optimizing the reactive power used for charging EV and, at
the same time, maintaining the voltage deviations. In this
case, the hull moving average (HMA) was proposed for
alleviating the voltage fluctuations, as well as the gravi-
tational search algorithm (GSA) was employed for solving
the optimization model. *erefore, the IEEE 90-bus and
IEEE 33-bus were used for testing the results which ef-
fectively improved the voltage deviations and optimized
the charging/discharging rate of EVs. Other studies were
found in the literature which carried out the EVs such as
[114, 115].

Nevertheless, after the careful study and the analysis
conducted through the proposed references, we did not see
the use of the PV power forecasting; therefore, we recom-
mend future studies for the application of short-term PV
power forecasting.

5.4. 1e Employment of the Forecasting Techniques in the
SmartGrids andMicrogrids. *e forecasting techniques can
be helpful for the smart grids as well as the microgrids
management. In this item, Wason [21] proposed the hybrid
of PV power forecasting methods that was based on
grouping the GA, PSO, and ANFIS. In the meantime, the
binary GA with Gaussian process regression model based
on the fitness function was applied to select the significant
parameters of the forecasting model that significantly in-
fluence the amount of PV power generation. *erefore, the
hybrid algorithm based on GA and PSO is used for opti-
mizing the ANFIS model. *is was used for one-day ahead
PV power forecasting for a solar PV plant in the Goldwind
Microgrid system located at China. Consequently, this PV
power forecasting process was practical for the utility of
electricity generation from the microgrid with high PV
power penetration. In addition, Girbau-LListuella et al.
[116] developed a tool of an innovative EMS that was used
to optimize the grid operation based on economic and
technical criteria. *e EMS, meanwhile, is used to process

the output from the forecasting model which was created
by using the parameters such as the demand and renewable
generation forecasts, electricity prices, and the status of
distributed storages through the network. In addition, the
time horizons considered in this study are, respectively, 3
days, 1 day, and 6 hours ahead. Furthermore, Abedinia
et al. [117] added a study that consisted of a hybrid model
for effective PV power forecasting created by using the
VMDmethod, information theoretic, feature selection, and
the forecasting engine (FE) with high learning capability.
*e feature selection method, meanwhile, was based on the
ITcriteria and an optimization algorithm. However, the FE
was an MPL neural network equipped with a modified
Levenberg–Marquardt learning algorithm. *e forecasting
model was based on the parameters such as the historical
data of PV power and historical data of irradiance, weather
temperature, and cell temperature. *is strategy of fore-
casting, consequently, showed the best rate return in the
Hungarian solar power plant. In addition, Galván et al.
[118] added a study that consisted of using the neural
networks to create the complex and nonlinear models with
the output limits (upper and lower forecasting intervals). In
the meantime, the proposed strategy was based on four
traditional methods that are delta, Bayesian, bootstrap, and
mean-variance. Furthermore, the ANNs, fuzzy logic, and
PSO were used as the optimizer tools. Additionally, the
effectiveness of this approach was tested by using the
hypervolume that was typically used for multiobjective
approaches which are employed to evaluate the excellence
of the final Pareto fronts. *e utility of this study, mean-
while, was the optimization of forecasting models. More-
over, Bao et al. [119] used a hybrid approach that was held
in a random fuzzy theory method. *e aim of this ap-
proach, meanwhile, is optimizing the scheduling model by
optimizing the short-term line maintenance of the grid by
taking into account the uncertainties of the PV power
modelling which were based on the historical data driven
out from NASA. In addition, Kroposki [120] tackled the
question about the high-level penetration of variable re-
newable energy in the local grids and how to sustain the
equilibrium between the load and the generation at all
timescales. Recently, Gomes et al. [121] appended a re-
search paper concerning the microgrid smart management
with the peer-to-peer energy transaction model. In the
meantime, the multiagent method was used in this study
alongside the eight forecasting methods including three
methods of baselines, two of weighted arithmetic average
forecasts using the last periods, and three of the SVM
method. As a result, the microgrid forecasting generation
showed best results in terms of MAPE � 7.16% calculated
for one week.

As a conclusion to this part, the research and devel-
opment requirements are mostly in the PV power fore-
casting topic as shown in Figure 1 that pointed out the
need of solar PV power forecasting that is necessary for
the utilities of smart grid management, grid operations,
and solar market scheduling. *e most required time
horizon, meanwhile, is the short-term PV power fore-
casting [5].
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6. Feasibility Study of PV Power Forecasting
Time Horizons

*e utility time scale of the short-term PV power forecasting
extends to one day ahead. *is time horizon, meanwhile, is
applicable in the utilities of clean energy management (e.g.,
PV power trend curve in the near future), the solar energy
market that includes planning and scheduling, and unit
commitments that have used the PV power forecasting when

the PV plants cogenerate with other sources of power. In the
meantime, the short-term PV power forecasting is helpful
for the benefit of microgrids which hold the energy-side
management system (ESMS) that rules the PV power
forecasting algorithms which are used to provide the near
upcoming data from the solar PV power plants. Further-
more, the data provided by the forecasting system to the
ESMS are useful for the optimization of other generation
sources based on fuel, natural gas, and coal by maximizing

Long-term
load

forecasting

Wind power
forecasting
short-term
and load

forecasting
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power
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Electricity
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Figure 1: Development flowchart of different energy forecasts [5].
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Figure 2: Energy penetration from numerous sources including microgrids with clean energy integration to the power grid.
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the penetration of clean energy in the energy mix as shown
in Figure 2.

Furthermore, this review paper is including the time
scale from 0 to 6 h that is convenient for the same effec-
tiveness as the short term. In addition, other time horizons
such as the very short term were also called the now-cast or
online forecasting. *is time scale, meanwhile, is useful for
the solar PV power monitoring and is usable for the systems
that request minimum time forecasting such as the industrial
applications. In addition, the very short-term time horizon
has been introduced in the solar car industry that was re-
cently developed by the manufacturers (e.g., Toyota man-
ufacturer). Subsequently, the utility of now-cast forecasting
in the solar car is its effectiveness to prevent sides including
shadows and is also used to provide the weather forecasts
[122]. Moreover, the time horizons including the medium
term and long term were used in the planning of engine
maintenance (e.g., power plants) and for the energy analysis
and policy which aided the policy makers to choose the right
decisions about the long-term investment return in the
energy market.

Additionally, this present review paper provides the
research about the time horizons used in the forecasting time
utility scale as well as to brighter the time horizon value.

*erefore, two case studies were presented in this review
paper: the first one concerns the publications discussed
above as illustrated in Figure 3; the second study is based on
Google Scholar research platform which provided all studies
conducted in the PV power forecasting time horizons since
2015 to 2020. In the meantime, a simple comparison based
on Google Scholar research has showed the best-used time
horizon in 2019 that is the time horizon of 0–6 h, which
returned 17,700 results as shown in Figure 4. To that end, the
terminologies used in this website research are short-term
photovoltaic power forecasting, very short-term photovol-
taic power forecasting, zero to six hours photovoltaic power
forecasting, and medium-term photovoltaic power
forecasting.

7. Conclusion

*is review paper revealed the checkup of several research
papers available in the arena of PV power forecasting. After
the attending analysis, the literature presented that the solar
PV power forecasting depends upon the unpredictable
parameters of weather as well as the intrinsic parameters of
solar PV systems themselves such as the temperature of PV
modules and the irradiance on the plane of PV array. In this
case, the study of the forecasting parameters including both
variables of weather and PV system can be considered before
the modelling such as the use of similarity algorithm which
can help the designer to select the best parameters and fast
modelling [31]. At the same time, after a careful analysis of
methods used to forecast the PV power, this study ascertains
the need for developing more skillful methods and ap-
proaches in this area alongside the generalization methods
that are capable to generalize the forecasting results. Indeed,
this review paper suggests the practise of the hybrid models
including the methods of artificial intelligence and machine
learning such as the deep learning and CNN algorithms
alongside the probabilistic models, in which they are efficient
methods which are able to improve the accuracy of PV
power forecastingmodels and resolve the complexity of solar
PV power forecasting. In addition, there is a need for driving
more research studies in the standard accuracy metrics
(SAMs). Many research papers in the literature, meanwhile,
showed several SAMs that were applied for testing the ac-
curacy of forecasting results by comparing the forecasted
data with the measured ones; however, these SAMs needed
more generalization in their applications as shown previ-
ously in Table 2. Furthermore, the standardization of time
horizons needs more research and development.

As a conclusion of this recent review paper, we rec-
ommend for the benefit of the industrials and practitioners
the integration of PV power forecasting algorithms along
with the EMS, the HEMS, and the optimal DG planning and
dispatching. *e PV power forecasting is also useful in the
cases of microgrids and EVs. It provides the necessary in-
formation about the PV power available in the future time
horizon and going to join the input of PV inverters. Further
recommendation concerning the PV power forecasting
modelling consisted on the PV power forecasting model for
each time horizon which means, for example, a model for
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short-term time horizon cannot be used for a time horizon
of very short-term. *is conclusion is proved through the
analysis conducted on research papers [55, 60].

Nomenclature

AR: Autoregressive
ART: Adaptive resonance theory
AMVs: Atmospheric motion vectors
ARMA: Autoregressive moving average
ARX: AR exogenous
ARMAX: ARMA with exogenous variables
ARIMA: AR integrated with MA
ANN-MC: Artificial neural network combined with a

Markov chain
ANEN: Analog ensemble
ANFIS: Adaptive-network-based fuzzy inference system
AIC: Akaike information criterion
BMA: Bayesian model averaging
BSS: Brier skill score
CC: Cloud cover
CASO: Chaotic ant swarm optimization
CABCA: Chaotic artificial bee colony algorithm
CI: Clarity index
CFN: Cascade forward backpropagation network
CNNs: Convolutional neural networks
CRPS: Continuous ranking probability score
DPC: Dual-population chaotic
DNN: Deep learning neural network
DBM: Deep belief method
DSM: Demand-side management
EMOS: Ensemble MOS
EPS: Ensemble prediction system
ECMWF: European Centre for Medium-Range Weather

Forecasts
ELM: Elman backpropagation network
EI: Extraterrestrial irradiance
ELMs: Extreme learning machines
EMS: Energy management system
FF: Firefly algorithm
F-FNN: Feedforward neural network
FDIAs: False data injection attacks
GP: Gaussian process
GB: Gradient boosting
FCM: Fuzzy C-means
GA: Genetic algorithm
GSO: Genetic swarm optimization
GTNN: GHI-temperature neural network
GBRT: Gradient boosted regression trees
GPU: Graphic processing unit
GRNN: Generalized regression neural network
GEMS: Global energy management system
HIRLAM: High-resolution limited area model
IMGWO: Improved grey wolf optimizer
ICP: Interval coverage probability
IA: Immune algorithm
KSI: Kolmogorov–Smirnov test integral
KNN: K-nearest neighbours
LAE: Least absolute error

LVQ: Learning vector quantization
LSTM: Long short-term memory
LSE: Least square error
LS-SVM: Least square support vector machines
LS-SVR: Least-square SVR
MLR: Multiple linear regression
MAE: Mean absolute error
MOS: Model output statistics
MSE: Mean square error
MRE: Mean relative error
MBE: Mean-based error
MAPE: Mean absolute percentage error
MLP: Multilayer perceptron
MARS: Multivariate adaptive regression spline
MR: Multivariate regression
MIL: Mean interval length
MNNEF: Multivariate neural network ensemble forecasts
MAID: Mean absolute interval deviation
MABC: Multiperiod ABC
MM5: Fifth-generation Penn state
MA: Moving average
NOAA: National Oceanic Atmospheric Administration
NRMSE: Normalized root mean square error
NSDE: Normalized standard deviation of the error
NARX: Nonlinear AR with exogenous input
NWP: Numerical weather prediction
PICP: Prediction interval coverage probability
PDF: Probability density function
PE: Persistence ensemble
PINAW: Prediction interval normalized average width
PCA: Principal component analysis
POA: Plane of array irradiance
PHANN: Physical hybridized artificial neural network
PPC: Phase-phase correlation
QR: Quantile regression
QRFs: Quantile regression forests
RPS: Ranked probability score
RH: Relative humidity
ROC: Relative operating characteristic
RMSE: Root mean square error
RFs: Random forests
RMS: Root mean square
SPF: Short-term probabilistic solar power forecasts
SOM: Self-organized map
RTs: Regression trees
SSE: Sum squared error
SG: Solar geometry
SR: Stepwise regression
SAM: Solar advisor model
SFLA: Shuffled frog leaping algorithm
SDE: Standard deviation of error
SAMs: Standard accuracy metrics
SVM: Support vector machine
SMA: Simple moving average
SGBM: Stochastic gradient boosting machine
SGBQR: Stochastic gradient boosting quantile regression
SS: Skill scores
SSO: Shark smell optimization
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SARIMA: Seasonal ARIMA
SPF: Skillful probabilistic forecast
SPGP: Sparse Gaussian process
SVR: Support vector regression
TDLNN: Time delay neural network
VD: Variance deficit
TCWB: Taiwan Central Weather Bureau
VARX: Vector ARX
VMD: Variational mode decomposition
VAR: Vector AR
WT: Wavelet transform
WRFM: Weather research and forecasting model
WRRMSE: Weighted relative root mean squared error
VST: Very short term
ST: Short term
0–6 h: Zero to six hours
PINAW: Prediction interval normalized average width
MABC: Multiperiod ABC.

Data Availability

*e data used to support the findings of the study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] OECD, Renewables 2017: Global Status Report, OECD, Paris,
France, 2017.

[2] J.-I. Lee, I.-W. Lee, and S.-H. Kim, “Multi-site photovoltaic
power generation forecasts based on deep-learning algo-
rithm,” in Proceedings of the 2017 International Conference
on Information and Communication Technology Convergence
(ICTC), pp. 1118–1120, Jeju, Republic of Korea, October
2017.

[3] R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, “A review
and evaluation of the state-of-the-art in PV solar power
forecasting: techniques and optimization,” Renewable and
Sustainable Energy Reviews, vol. 124, Article ID 109792, 2020.

[4] A. Mellit, A. Massi Pavan, E. Ogliari, S. Leva, and V. Lughi,
“Advanced methods for photovoltaic output power fore-
casting: a review,” Applied Sciences, vol. 10, no. 2, p. 487,
2020.

[5] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca,
F. J. Martinez-de-Pison, and F. Antonanzas-Torres, “Review
of photovoltaic power forecasting,” Solar Energy, vol. 136,
pp. 78–111, 2016.

[6] S. Sobri, S. Koohi-Kamali, and N. A. Rahim, “Solar photo-
voltaic generation forecasting methods: a review,” Energy
Conversion and Management, vol. 156, pp. 459–497, 2018.

[7] J. Dong, M. M. Olama, T. Kuruganti et al., “Novel stochastic
methods to predict short-term solar radiation and photo-
voltaic power,” Renewable Energy, vol. 145, pp. 333–346,
2020.

[8] L. Vallance, B. Charbonnier, N. Paul, S. Dubost, and P. Blanc,
“Towards a standardized procedure to assess solar forecast
accuracy: a new ramp and time alignment metric,” Solar
Energy, vol. 150, pp. 408–422, 2017.

[9] J. Zhang, A. Florita, B.-M. Hodge et al., “A suite of metrics for
assessing the performance of solar power forecasting,” Solar
Energy, vol. 111, pp. 157–175, 2015.

[10] C. Persson, P. Bacher, T. Shiga, and H. Madsen, “Multi-site
solar power forecasting using gradient boosted regression
trees,” Solar Energy, vol. 150, pp. 423–436, 2017.

[11] D. P. Larson, L. Nonnenmacher, and C. F. M. Coimbra,
“Day-ahead forecasting of solar power output from photo-
voltaic plants in the American Southwest,” Renewable En-
ergy, vol. 91, pp. 11–20, 2016.

[12] C. W. Chow, S. Belongie, and J. Kleissl, “Cloud motion and
stability estimation for intra-hour solar forecasting,” Solar
Energy, vol. 115, pp. 645–655, 2015.

[13] F. Barbieri, S. Rajakaruna, and A. Ghosh, “Very short-term
photovoltaic power forecasting with cloud modeling: a re-
view,” Renewable and Sustainable Energy Reviews, vol. 75,
pp. 242–263, 2017.

[14] M. Rana, I. Koprinska, and V. G. Agelidis, “2D-interval
forecasts for solar power production,” Solar Energy, vol. 122,
pp. 191–203, 2015.

[15] M. Lipperheide, J. L. Bosch, and J. Kleissl, “Embedded
nowcasting method using cloud speed persistence for a
photovoltaic power plant,” Solar Energy, vol. 112, pp. 232–
238, 2015.

[16] Z. Li, S. Rahman, R. Vega, and B. Dong, “A hierarchical
approach using machine learning methods in solar photo-
voltaic energy production forecasting,” Energies, vol. 9, no. 1,
p. 55, 2016.

[17] K. Mahmoud and M. Abdel-Nasser, “Fast yet accurate en-
ergy-loss-assessment approach for analyzing/sizing PV in
distribution systems using machine learning,” IEEE Trans-
actions on Sustainable Energy, vol. 10, no. 3, pp. 1025–1033,
2019.

[18] J. Zhang, R. Verschae, S. Nobuhara, and J.-F. Lalonde, “Deep
photovoltaic nowcasting,” Solar Energy, vol. 176, pp. 267–
276, 2018.

[19] D. Yang and Z. Dong, “Operational photovoltaics power
forecasting using seasonal time series ensemble,” Solar En-
ergy, vol. 166, pp. 529–541, 2018.

[20] D. W. van der Meer, M. Shepero, A. Svensson, J. Widén, and
J. Munkhammar, “Probabilistic forecasting of electricity
consumption, photovoltaic power generation and net de-
mand of an individual building using Gaussian processes,”
Applied Energy, vol. 213, pp. 195–207, 2018.

[21] Y. K. Semero, J. Zhang, J. Zhang, and D. Zheng, “PV power
forecasting using an integrated GA-PSO-ANFIS approach
and Gaussian process regression based feature selection
strategy,” CSEE Journal of Power and Energy Systems, vol. 4,
no. 2, pp. 210–218, 2018.

[22] M. Q. Raza, N. Mithulananthan, and A. Summerfield, “Solar
output power forecast using an ensemble framework with
neural predictors and Bayesian adaptive combination,” Solar
Energy, vol. 166, pp. 226–241, 2018.

[23] Z. Cheng, Q. Liu, and Y. Xing, “A hybrid probabilistic es-
timation method for photovoltaic power generation fore-
casting,” Energy Procedia, vol. 158, pp. 173–178, 2019.

[24] V. Kushwaha and N. M. Pindoriya, “A SARIMA-RVFL
hybrid model assisted by wavelet decomposition for very
short-term solar PV power generation forecast,” Renewable
Energy, vol. 140, pp. 124–139, 2019.

[25] L. Liu, M. Zhan, and Y. Bai, “A recursive ensemble model for
forecasting the power output of photovoltaic systems,” Solar
Energy, vol. 189, pp. 291–298, 2019.

Journal of Electrical and Computer Engineering 17



[26] Y. Sun, V. Venugopal, and A. R. Brandt, “Short-term solar
power forecast with deep learning: exploring optimal input
and output configuration,” Solar Energy, vol. 188, pp. 730–
741, 2019.

[27] K. Wang, X. Qi, and H. Liu, “A comparison of day-ahead
photovoltaic power forecasting models based on deep
learning neural network,”Applied Energy, vol. 251, Article ID
113315, 2019.

[28] V. Suresh, P. Janik, J. Rezmer, and Z. Leonowicz, “Fore-
casting solar PV output using convolutional neural networks
with a sliding window algorithm,” Energies, vol. 13, no. 3,
p. 723, 2020.

[29] H. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Wei, and
G. Sun, “Day-ahead photovoltaic power forecasting ap-
proach based on deep convolutional neural networks and
meta learning,” International Journal of Electrical Power &
Energy Systems, vol. 118, Article ID 105790, 2020.

[30] H. A. H. Al-Hilfi, A. Abu-Siada, and F. Shahnia, “Combined
ANFIS-wavelet technique to improve the estimation accu-
racy of the power output of neighboring PV systems during
cloud events,” Energies, vol. 13, no. 7, p. 1613, 2020.

[31] A. El hendouzi, A. Bourouhou, and O. Ansari, “*e im-
portance of distance between photovoltaic power stations for
clear accuracy of short-term photovoltaic power forecast-
ing,” Journal of Electrical and Computer Engineering,
vol. 2020, Article ID 9586707, 14 pages, 2020.

[32] D. Yang, J. Kleissl, C. A. Gueymard, H. T. C. Pedro, and
C. F. M. Coimbra, “History and trends in solar irradiance
and PV power forecasting: a preliminary assessment and
review using text mining,” Solar Energy, vol. 168, pp. 60–101,
2018.

[33] M. Ahmed and Aung, “Ensemble learning approach for
probabilistic forecasting of solar power generation,” Energies,
vol. 9, no. 12, p. 1017, 2016.

[34] S. Alessandrini, L. Delle Monache, S. Sperati, and
G. Cervone, “An analog ensemble for short-term probabi-
listic solar power forecast,” Applied Energy, vol. 157,
pp. 95–110, 2015.

[35] D. AlHakeem, P. Mandal, A. U. Haque, A. Yona, T. Senjyu,
and T.-L. Tseng, “A new strategy to quantify uncertainties of
wavelet-GRNN-PSO based solar PV power forecasts using
bootstrap confidence intervals,” in Proceedings of the 2015
IEEE Power & Energy Society General Meeting, pp. 1–5,
Denver, CO, USA, July 2015.

[36] P. Bacher, H. Madsen, and H. A. Nielsen, “Online short-term
solar power forecasting,” Solar Energy, vol. 83, no. 10,
pp. 1772–1783, 2009.

[37] L. A. Fernandez-Jimenez, A. Muñoz-Jimenez, A. Falces et al.,
“Short-term power forecasting system for photovoltaic
plants,” Renewable Energy, vol. 44, pp. 311–317, 2012.

[38] T. Hong, P. Pinson, and S. Fan, “Global energy forecasting
competition 2012,” International Journal of Forecasting,
vol. 30, no. 2, pp. 357–363, 2014.

[39] J. Huang and M. Perry, “A semi-empirical approach using
gradient boosting and k-nearest neighbors regression for
GEFCom2014 probabilistic solar power forecasting,” Inter-
national Journal of Forecasting, vol. 32, no. 3, pp. 1081–1086,
2016.

[40] S. Jafarzadeh, M. S. Fadali, and C. Y. Evrenosoglu, “Solar
power prediction using interval type-2 TSK modeling,” IEEE
Transactions on Sustainable Energy, vol. 4, no. 2, pp. 333–
339, 2013.

[41] J. G. d. S. F. Junior, T. Oozeki, H. Ohtake, K.-I. Shimose,
T. Takashima, and K. Ogimoto, “Forecasting regional

photovoltaic power generation - a comparison of strategies
to obtain one-day-ahead data,” Energy Procedia, vol. 57,
pp. 1337–1345, 2014.

[42] J. G. d. S. F. Junior, T. Oozeki, H. Ohtake, K.-I. Shimose,
T. Takashima, and K. Ogimoto, “Characterizing the regional
photovoltaic power forecast error in Japan: a study of 5
regions,” IEEJ Transactions on Power and Energy, vol. 134,
no. 6, pp. 537–544, 2014.

[43] Y. Li, Y. Su, and L. Shu, “An ARMAX model for forecasting
the power output of a grid connected photovoltaic system,”
Renewable Energy, vol. 66, pp. 78–89, 2014.

[44] V. P. A. Lonij, A. E. Brooks, A. D. Cronin, M. Leuthold, and
K. Koch, “Intra-hour forecasts of solar power production
using measurements from a network of irradiance sensors,”
Solar Energy, vol. 97, pp. 58–66, 2013.
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1e photovoltaic DCmicrogrid has strong nonlinearity and time variation.1erefore, traditional dual closed-loop control strategy
of voltage and current based on PI controller cannot effectively restrain the fluctuation and impact of DC bus voltage when the
dynamic response of the system is improved. Under this situation, in this paper, the fuzzy-PI dual-mode controller is designed to
upgrade the traditional dual closed-loop control, taking voltage outer ring into consideration, which is adopted to achieve good
transient performance while the bus voltage deviation is large. While the bus voltage deviation is small, the PI controller is utilized
for good steady-state performance. Hence, simulation and experimental results show that the fuzzy-PI dual-mode controller has
the same advantages with both fuzzy control and PI control; in other words, it has the features of speedy response, low overshoot,
good robustness, and strong anti-interference under different working conditions.

1. Introduction

In terms of the photovoltaic DC microgrid system, the bus
voltage is the only standard to measure the systematic se-
curity and stability [1, 2]. However, as affected by the
randomness and fluctuation of the power of photovoltaic
power generation as well as the dynamic change of load,
there is an unpredictable power disturbance of the PV DC
microgrid in the practical function, bringing large fluctua-
tion into the bus voltage. 1erefore, how to maintain the
stable operation of the DC bus voltage and how to ensure the
quality of power are crucial problems to be solved urgently
[3]. Currently, compensation is made through energy
storage device (ESD) that is incorporated into the DC bus
through the bidirectional DC/DC converter (BDC) [4]. 1e
micropower source is able to supply energy and the load can
store energy, relying on the amount of the bus voltage, so as
to strengthen the systematic robustness [5–10].

At present, the converter of energy storage unit generally
adopts the strategy of dual closed-loop control of voltage and
current or its upgraded strategy. Furthermore, traditional

dual closed-loop control of voltage and current, with taking
the bus voltage as the control outer ring and energy-storing
inductive and current as the control inner ring, makes
compensation by the PI controller under the classical control
theory [11, 12]. 1is traditional control fails to effectively
restrain the large fluctuation and impact of the DC bus
voltage while improving the systematic dynamic response.

According to this problem, a great number of scholars
introduce the method of feedforward control into the tra-
ditional dual closed-loop control [13, 14]. And these
methods can be divided into current feedforward and power
feedforward according to different variables of the feed-
forward. For example, Takei et al. put forward three methods
for testing feedforward control of load current aiming at
unstable zero point of Boost converter, which, compared
with the feedback control, successfully restrained the volt-
age’s change and enhanced systematic stability when re-
ducing the output filter capacitance [15]. In addition, Hou
et al. fed forward the load current to the control link based
on direct power control. And experimental results and
simulations showed that the load current feedforward
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scheme significantly intensified the dynamic response of DC
converters and kept the constant of output voltage under
load’s abrupt change [16]. Besides, Lu et al., based on the
DC/DC buck converter, brought in ripple compensation link
established by load current feedforward in the current inner
ring control, so as to speed up the dynamic response speed of
the inner ring and perfect the quality of the systematic
output power [17]. 1e above current feedforward control
strategy enhances the dynamic response performance of the
system to some extent. But due to the delay of the voltage
ring and current ring, the output current response will lag
behind the load disturbance.

1e power feedforward is similar to the current feed-
forward control, and it feeds forward the disturbance power
to the control link to suppress the fluctuation of the bus
voltage [18]. For example, Zhi-Lin et al., taking the fluc-
tuation problem of the DC bus caused by the mismatch
between output power and load consumption of renewable
energy for the DC microgrid into consideration, raised the
control method of power feedforward compensation based
on the classical dual closed-loop control to lead power
disturbance into controller through the feedforward chan-
nel, so as to restrain the fluctuation of the bus voltage and
reinforce systematic stability [19]. Moreover, Song and Zhu,
in order to elevate the antiload disturbance ability of the
bidirectional DC/DC converter, came up with the strategy of
virtual direct power control on the basis of direct power
feedforward control which did not need to consider the
parameters of converter’s energy storage inductance and
transformer’s changing ratio and boosted systematic com-
patibility [20]. More importantly, the power feedforward
accelerates the response speed of the system to power dis-
turbance, which, to a certain degree, improves the system’s
ability to restrain the fluctuation of the bus voltage. How-
ever, similar to the current feedforward, the power feed-
forward needs going through the current inner ring as well,
from which the output current still has certain delay
compared with the load disturbance. Meanwhile, it should
be noted that the feedforward control requires to simulta-
neously collect the real-time information of systematic
parameters and increases the cost of the system while re-
ducing its reliability at the same time, which is not conducive
to the expansion of the microgrid and the popularization of
plug-and-play functions. In view of the problems in the
feedforward control, Ibrahim et al. introduce the methods of
state observer, nonlinear perturbation observer into the
control loop. When the state observer estimates the amount
of disturbance, it is not necessary to establish an accurate
mathematical model including the disturbance signal
[21, 22]. As the models’ construction is relatively simple, a
great deal of mathematical calculation is avoided to meet the
requirements of system’s real-time property, whereas noises
are inevitably introduced and affect the power quality of the
microgrid at the time when the observer is used to observe
the state variables of the system.

In terms of the strong nonlinearity and time variability of
the photovoltaic DCmicrogrid [23–27], fuzzy-PI dual-mode
controller upgrades the traditional dual closed-loop control
in this paper. And for the voltage outer ring, the fuzzy

controller is adopted to obtain good transient performance
when the deviation of the bus voltage is large. On the
contrary, the PI controller is adopted to get good steady-state
performance when the deviation of the bus voltage is small.
1e simulation and experimental results show that the
fuzzy-PI dual-mode controller, boosting the advantages of
the fuzzy control and the PI control, enjoys fast response
speed, low overshoot, good robustness, and strong anti-
jamming ability under different working conditions.

2. Topology Structure and Circuit Structure
Diagram of the Photovoltaic DC Microgrid

2.1. Topology Structure of the Photovoltaic DC Microgrid.
1e topology structure of the photovoltaic DC microgrid is
shown in Figure 1, and it is mainly composed of photovoltaic
arrays, batteries, loads, and various types of energy con-
version devices, among which the photovoltaic arrays and
batteries are connected to the DC bus by the Boost and BDC,
respectively, and the loads include resistive load and con-
stant power load. For the two loads, the first one is directly
parallel connection to the DC bus, and the other one is
connected to the DC bus through the Buck converter, which
is equivalent to the constant power load together with the
Buck converter. As the photovoltaic DC microgrid can work
in grid-connected and off-grid working mode, this paper
mainly takes the bus voltage stabilization of the photovoltaic
DC microgrid when off-grid functions.

2.2. Circuit Diagram of the Photovoltaic DC Microgrid.
1e main circuit construction of the photovoltaic DC
microgrid during the off-grid operation is shown in Figure 2.
In this figure, Lpv, Lbat, and L1 represents the energy storage
inductance (H) of the Boost converter, the bidirectional DC/
DC converter, and the Buck converter respectively;ipv_dc
serves as the output current for the Boost converter, and ib_dc
shows the output current that bidirectional DC/DC con-
verter is connected behind the battery, which has bidir-
ection; iloadrepresents the current of the Buck converter; iR is
the current of the resistive load; Cdcrefers to the capacitance
of the DC bus; and udc indicates the voltage of the DC bus.

If the battery modules are not considered, according to
the current equation by Kirchhoff, the dynamic equation for
the DC bus is

Cdc
dudc

dt
� ipv_dc − iload − iR. (1)

From formula (1), the DC bus voltage is influenced by
output current as well as load current of the photovoltaic
modules. And when photovoltaic output is equal to load
consumption, the voltage of the DC bus is stable, but it is
affected by the randomness and volatility of the photovoltaic
output and the dynamic change of the load. Hence, it is
difficult to ensure that the output current is exactly the same
as the input current of the load of the Boost converters
within all periods. After adding battery modules, the dy-
namic equation for the DC bus is
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Cdc
dudc

dt
� ipv_dc ± ib_dc − iload − iR. (2)

When ib_dc is expressed as “+,” it shows that the battery
discharges, providing energy for the system. When ib_dc is
expressed as “−,” it shows that the battery charges, absorbing
system’s surplus energy. 1e system is guaranteed to
function safely and stably through controlling the charge
and discharge of the battery to restrain the fluctuation of DC
bus voltage.

3. Fuzzy-PI Dual-Mode Controller

1e classical PI controller not only has simple and strongly
stable algorithm, but also has simple and effective control
effects for precise linear system of mathematical models.
However, the distributed power source is of diverse cate-
gories, the running states, the output characteristics, and the
control methods, belonging to the typical nonlinear system
in the microgrid. When systematic workload is large, es-
pecially in the case of largely sudden change of load or access
to impact load, the robustness of microgrid system based on
the PI control is less weak, which is difficult to suppress the
impacts of system’s high-power disturbance on the DC bus
voltage in a short time. 1e fuzzy control serves as a kind of

intelligent control algorithm based on fuzzy set theory, fuzzy
language variables, and fuzzy logic reasoning. Importantly, it
transforms natural language into control strategy not relying
on the system’s precise mathematical models. Furthermore,
its great robustness is suitable to solve the problems of
nonlinearity, strong coupling time variation, and lag in the
control process, and it is an important method for human
beings to tackle complicated nonlinear systems, while the
fuzzy control lacks the integral link, which is difficult to
eliminate and leads to the reduction of the controlled ac-
curacy and the dynamic quality of the system.

In order to effectively cope with the contradiction of the
dual closed-loop control based on the PI in improving the
steady accuracy and dynamic performance of the system,
this paper proposes a PI controller that the fuzzy-PI dual-
mode controller replaces the voltage outer ring with com-
bining the advantages of the fuzzy controller and PI con-
troller. If the system’s deviation is large, the fuzzy control
scheme is selected to enhance the mediation range. If the
error is small, the PI control scheme is chosen to elevate the
steady-state accuracy. 1e control frame is shown in
Figure 3.

In Figure 3, U∗dc and i∗bat are the given values of the
voltage outer ring and the current inner ring, respectively;
Udc and ibat are the sampling values of the voltage of the DC
bus and the current of energy-storing inductance, respec-
tively. In addition, the current inner ring adopts the PI
controller, and the voltage outer ring applies the fuzzy-PI
dual-mode controller, which chooses different controlling
strategies according to the deviation of the bus voltage. Since
application of the PI controller is so mature, the fuzzy
controller and mode selector are primarily described as
follows.

3.1.FuzzyController. 1e fuzzy controller is also called fuzzy
logic controller. Because the adopted fuzzy control rules are
described by fuzzy conditional statements of fuzzy theory,
the fuzzy controller is a language controller, also known as
fuzzy language controller. 1is paper employs a two-di-
mensional fuzzy controller, and the system’s frame is shown
in Figure 4.

In Figure 4, e and ec are the input of the fuzzy control,
where e represents the systematic deviation; ec acts as the
deviation’s changing rate ec � de/dt; u is the amount of
output control; ke and kec as well as ku are the quantitative
factors of e, ec, and u respectively; E, EC, and U are the
language variables of e, ec, and u defined on its respective
theory domains; and D/F acts as fuzzy modules, whose
functions are to convert the real determinate input into fuzzy
vector. And A∗∘R module is the reasoning module.
According to the input fuzzy vector and the fuzzy control
rules, the fuzzy output U is worked out according to the
fuzzy reasoning synthesis rules. F/D module is defined as
clear modules, which is to convert the fuzzy quantity U into
clear amount, then to obtain the actual control amount and
to act on the executing agency through quantitative factor.

In the design of the fuzzy control, the universe of lan-
guage variables is usually defined as the discrete universe of
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finite integers, and the input and output variables are
transformed on dimension, so that they can fall within the
scope of their respective universe. 1is paper regards the
fuzzy universe of E, EC, and U as N � [−5, 5] and, according
to the various sensitivity of the controlled objects to the
input variables, sets the fuzzy subset of E and U as negative
big (NB), negative medium (NM), negative small (NS),
negative zero (NO), positive zero (PO), positive small (PS),
positive medium (PM), and positive big (PB) and sets the
fuzzy subset as negative big (NB), negative small (NS), zero
(ZO), positive small (PS), and positive big (PB). Reducing
the number of ECfuzzy subset can reduce the number of
subordinate functions in the reasoning module and can
speed up the operation speed of fuzzy controller. Among
them, the universe transformation schematic is shown in
Figure 5, and subordinate functions of the input amount E,
ECand the output amount U are shown in Figures 6(a)–6(c).

1e fuzzy reasoning rules of U are presented in Table 1 in
accordance with the control theory and experience. Taking
E � NB and EC � NB then U � NB as an example, it in-
dicates that the current DC bus voltage is much larger than
expected value, and the error is increasing continuously
when the voltage deviation e of the DC bus is NB and the
deviation’s change rate is negative big. 1erefore, it is
necessary to rapidly reduce the output U of converters so
that it operates in the Buck mode, absorbs redundant energy
from the system, and maintains the stability of the bus
voltage.

On the basis of the above fuzzy-control rules, the 3D
effect diagram of input and output relationship of the fuzzy
controller is shown in Figure 7.

3.2. Mode Selector. 1e mode selector is used to automat-
ically switch the operating mode of the dual-mode con-
troller, and it will calculate an error threshold based on the
control blind field of the fuzzy controller. Hence, when the
systematic deviation is greater than that of the threshold, the
fuzzy controller is employed to render the controlled objects

faster approaching the expected value to accelerate the
dynamic response speed of the system. It is believed that the
systematic adjustment accesses the adjust blind area of the
fuzzy controller when systematic input error is less than that
of the threshold. So, it automatically switches to the PI
control mode, aiming at lowering the system’s steady-state
error and improving the system’s controlling accuracy.

1e fuzzy controller on the discrete universe has control
blind area near the equilibrium points. 1rough setting the
physical universe of systematic deviatione as [−a, a](a> 0),
the fuzzy universe as Nj � [−nj, −nj + 1, ..., −1, 0, 1, ..., nj −

1, nj] (nj is usually a positive integer from 3 to 7), and the
quantitative factor as ke � nj/a of e, it can be concluded that
the corresponding fuzzy value of the systematic deviation is
n � ke × e. If n is an integer, it is the value in the fuzzy
universe Nj. And the calculated nis not an integer; the value
of n is worked out from the following formula:

n �

nj,

sgn ke × e( int ke × e| + 0.5
 ,

−nj,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ke × e≥ nj,

−nj < ke × e< nj,

ke × e≤ − nj.

(3)

In the formula, the symbol operator “sgn” means plus-
minus sign of the value in the parenthesis. 1e integer
operator “int” represents the integer part in the parenthesis
behind the sign. For example, if there is
ke × e � −6.2, n � nj � −6. According to (3), if n � 0 near the
equilibrium points, the value of the system’s deviation at this
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timemay not equal zero.1ere is a controlled blind area, and
its critical value is

|X| �
0.5
ke

�
0.5a

nj

. (4)

When the deviation e of the system satisfies |e|< 0.5a/nj,
the system enters into the blind area of the fuzzy controller,
which is considered to have reached a steady state.1erefore,
this deviation cannot be eliminated, seriously affecting the
stable-state performance of the controlled system. As can be
seen from formula (4), the larger a is, the greater the critical
value of the blind regions will be and the more the system’s
error of the steady state will be. And the larger nj is, the less
the critical value of the blind area will be and the less the
system’s error of the steady state will be, while the system’s
calculation will increase at the same time. According to the
size of the critical value of the fuzzy control blind area, the
threshold is set, and generally the latter is greater than the
former.

4. Simulations and Experimental Results

4.1. Simulations and Results. In the light of the circuit
structure diagram of the photovoltaic DC microgrid shown
in Figure 2, the simulation model is constructed in MAT-
LAB/Simulink, as shown in Figure 8, and the systematic
simulation parameters are shown in Table 2.

1e expected value of the bus voltage is 650V, and the
PV module Boost converters make use of tracking control
mode (MPPT) at the maximum power point. And the Buck
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Figure 6: Relationship diagram of subordinate function. (a) Subordinate function of the input amount E, (b) subordinate function of the
input amount EC, and (c) subordinate function of the output amount U.

Table 1: 1e table of fuzzy reasoning rules of U.

U

EC/E NB NS ZO PS PB
NB NB NB NB NM NM
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Figure 7: 1e input and output relationship figure of the fuzzy
controller.
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utilizes single closed-loop control of voltage to lower the bus
voltage to the rating voltage of the load motor, in order to
ensure the motor’s properly working. 1e following studies
are used to research three transient processes of the system’s
initial power-up, the surge, and reduction of the load. In
addition, the outer ring of the energy storage converter
voltage works on the system’s ability to restrain the fluctu-
ations ability and dynamic response performance under the
PI control, fuzzy control, and fuzzy-PI dual-mode control.

1e oscillogram of the DC bus voltage under different
control strategies is shown in Figure 9. In order to more
intuitively compare the control effects of the three control
strategies in different transient processes, the three parts,
initial power-up, load’s surge, and load’s plummet, are
enlarged as shown in Figures 10–12, respectively.

1e partial amplification chart of the DC bus voltage at
the initial power-up is shown in Figure 10. As seen from
Figure 10, when the voltage outer ring is controlled by the PI,
the overshoot of the DC bus is 15.5V, stable at 650V at
about 0.5 s, while the voltage outer ring is controlled by the
fuzzy control, the DC bus voltage reaches stable at 0.3 s, and
there is no overshoot. But due to the existence of control
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Table 2: Experimental parameters.

Parameter Numerical value
Output voltage of photovoltaic battery (V) 12
Capacitance of the DC bus (uF) 1000
Rated voltage of battery (V) 12
Rated capacitance of battery (Ah) 38
Rated power of DC motor (W) 30
Rated voltage of DC motor (V) 24
Rated current of DC motor (A) 2.1
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Figure 9: 1e comparison chart of the bus voltage.
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blind spots, the bus voltage is stable at 649.2V and fails to
achieve the expected value, and the system does not have the
trend of farther adjustment, while the fuzzy-PI dual-mode
controller using the fuzzy control is introduced; if the de-
viation of the bus voltage is large, the fuzzy control is used; if
the deviation of the bus voltage is small, the PI control is
adopted. On the basis of the figures above, due to the large
voltage deviation of the bus, far greater than the threshold set
by the mode selector, the control curves of the fuzzy control
and fuzzy-PI dual-mode almost coincide, indicating that the
fuzzy-PI dual-mode controller is operated in fuzzy control
mode at this time. 1e bus voltage is 649.7 V at 0.3 s,
reaching a steady state. From the above analysis, it can be
seen that in the process of electrical transient state on the
system, the fuzzy-PI dual-mode control improves the dy-
namic response performance of the system compared with
the PI control. And compared with the fuzzy control, the
fuzzy-PI dual-mode control reduces the steady-state error of
the system.

Figure 11 is the partial magnification of the DC bus
voltage during the load’s surge. As can be seen from the
figure, at the 1.5 s, the DC bus voltage under the PI control
sharply drops, but it is stable at 650V attachments at some
85 s with load power suddenly increasing, while in the re-
covery process there is an overshoot phenomenon. When
adopting the fuzzy control, the load instantaneously elevates,
the bus voltage reduces by 2.5V and stabilizes at 650V with
1.5V steady-state error, and the system cannot be further
adjusted.When using the fuzzy-PI dual-mode controller, the
drop of the bus voltage is about 1V, reaching stability at
1.6 s, gradually restoring to 650V, and having no overshoot
and steady-state error.

Figure 12 is a partial enlarged one of the DC bus voltage
when the load is suddenly reduced. 1e load suddenly re-
duces at 2.5 s, the bus voltage uplifts 10V under PI control,
the overshoot phenomenon is presented in the recovery
process, and the voltage is gradually stabilized to 650V at
about 2.9 s. On employing the fuzzy controller, the bus
voltage reaches the steady-state value of 649.2 V after os-
cillating adjustment. When employing the fuzzy-PI dual-

mode controller, the voltage of the bus increases 1V in the
load’s instantaneous reduction and recovers to about 650V
at 2.7 s.

1e above analysis shows that in the three different
transient processes, systematic initial power-up, load’s surge,
and load’s reduction, relative to PI control and fuzzy control,
the fuzzy-PI dual-mode controller combines the advantages
between the fuzzy control and the PI control, which is able to
effectively restrain the large fluctuations and impact on
improving the dynamic response at the same time and
enhance the robustness of the system.

4.2. Experiments and Results. Taking the safety factors into
account, the voltage level will be lowered for experiments,
and the DSPACE 1104 control platform is used to further
test the effectiveness of the proposed fuzzy-PI dual-mode
controller in this paper. With designing the bus voltage level
of 24V of experimental platform, the photovoltaic simulator
and battery connected to the input of the experimental board
as the distributed power source and energy storage equip-
ment of the system, and output of the experimental board is
connected to the DC motor load, and the specific experi-
mental parameters are shown in Table 2.

Figure 13 is the oscillogram for the DC bus voltage,
similar to the simulation part. In studying the three different
transient processes of the initial power-up, load’s surge, and
load’s reduction of photovoltaic DC microgrid, the voltage
outer ring utilizes the PI control, fuzzy control, and fuzzy-PI
dual-mode controller to research the fluctuation situations
of the bus voltage. Figures 14–16 are the oscillograms of the
bus voltage for these processes.

As can be seen from Figures 14–16, in the three different
transient processes of the initial power-up, load’s surge, and
sudden reduction, when using the fuzzy control, the voltage
outer ring has steady-state errors and has no further
adjusting trend. 1ere is less steady-state errors, while the
overshoot and weak dynamic performance exists under the
PI control. Using the fuzzy-PI dual-mode controller can
effectively lower the steady-state errors under the fuzzy
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Table 3: Comparison of performance indexes under different
controlling strategies.

PI
controller

Fuzzy
controller

Fuzzy-PI
controller

Initial
power-up

Adjustment
time (s) 0.4 0.2 0.2

Voltage
overshoot (V) 2.5 0 0

Steady-state
error (V) 0 0.8 0

Load’s
surge

Adjustment
time (s) 0.8 0.2 0.2

Voltage
variation (V) 7.5 4.5 3.5

Steady-state
error (V) 0 1.2 0

Load’s
sharp
reduction

Adjustment
time (s) 0.8 0.2 0.2

Voltage
variation (V) 1 0.5 0.3

Steady-state
error (V) 0 0.8 0
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control and improve the dynamic response performance
under the PI control.

1e results of the experiments mentioned above show
that when the system is disturbed, the fuzzy-PI dual-mode
controller can successfully enhance the adjusted speed and
controlled accuracy of the system, meeting the requirements
of rapid recovery of the DC bus voltage, better realizing the
voltage stability of the DC bus. 1e specific performance
indexes are shown in Table 3:

5. Conclusion

In terms of the problems of bus voltage stabilization in the
photovoltaic DCmicrogrid, this paper adopts the fuzzy-PI dual-
mode controller to upgrade the traditional dual closed-loop
control. For the voltage outer ring, according to the bus voltage
deviation, functioning mode automatically switches. When the
bus voltage deviation is large, the fuzzy controller is used to
obtain good transient performance. When the bus voltage de-
viation is small, the PI controller is used to obtain good steady-
state performance. 1e specific conclusions are as follows:

(1) Compared with the PI control and the fuzzy control,
fuzzy-PI dual-mode controller combines the ad-
vantages of these two controllers, which can validly
enhance the dynamic respond and restrain the
fluctuation and impact of the DC bus voltage, so as to
improve the robustness of the system

(2) 1e fuzzy controller in the discrete universe has
controlling blind areas near the equilibrium points.
1e larger the theoretical material universe interval is,
the greater the critical value of the blind areas is and
the more the system’s errors of the steady state are.
1e more elements in the fuzzy universe, the smaller
the critical value of the blind areas is, and the less the
steady-state error of the system is, which will lead to
an increase in the system’s calculation amount

(3) Simulation and experiments show that in the three
different transient processes, including initial power-up,
load’s surge, and load’s sudden reduction, the fuzzy-PI
dual-mode controller control has flexible control, strong
adaptability, and strong antijamming ability.
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